
Durham E-Theses

Studies on ion movement in malpighian tubules of

locusta migratoria l. with particular reference to

electrical events

Baldrick, Paul

How to cite:

Baldrick, Paul (1987) Studies on ion movement in malpighian tubules of locusta migratoria l. with

particular reference to electrical events, Durham theses, Durham University. Available at Durham
E-Theses Online: http://etheses.dur.ac.uk/6853/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support O�ce, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/6853/
 http://etheses.dur.ac.uk/6853/ 
http://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk


STUDIES ON ION MOVEMENT IN MALPIGHIAN TUBULES OF 

LOCUSTA MIGRATORIA L. WITH PARTICULAR REFERENCE 

TO ELECTRICAL EVENTS 

by 

PAUL BALDRICK 

B. Sc. (Dunelm) 

Being a thesis submitted for the degree of Doctor of Philosophy 

of the University of Durham 

Hatfield College 
University of Durham 

December 1987 

The copyright of this thesis rests with the author. 

No quotation from it should be published without 

his prior written consent and information derived 

from it should be acknowledged. 



DECLARATION 

I hereby declare that the work presented in this 

document is based on research carried out by me 

and that no part has previously been submitted 

for a degree in this or any other univarsity. 

STATEMENT OF COPYRIGHT 

The copyright of this thesis rests with the 

author. No quotation from it should be published 

without his prior written consent and information 

derived from it should be acknowledged. 

Paul Baldrick 

Durham 

December 1987 



To my parents 

and "moineau" 



ACKNOWLEDGEMENTS 

I would like to express my thanks to Dr. J.H. Anstee, my 

supervisor, and to Dr. D. Hyde, for their help and encouragement 

throughout this study, and also for assistance in the preparation 

of this thesis and to Professor K. Bowler for making the research 

facilities of the Zoology Department available to me. 

i 

I am also grateful to Miss P. Carse for typing the manuscript, 

Mr. D. Hutchinson for assistance with the figures, and Miss J. 

Chambers, Mr. T. Gibbons and all the other technical staff for 

their help in many ways. 

Finally, I wish to express my gratitude to the University of 

Durham and the Department of Education for Northern Ireland, for 

financial support 



CONTENTS 

Acknowledgements i 

Contents 

Abstract 

Glossary 

Chapter 1. 

Chapter 2. 

Chapter 3. 

Chapter 4. 

Bibliography 

Appendix 

ii 

iii 

iv 

Introduction 1 

Materials and Methods 25 

Results 40 

Section 1: Ouabain-binding Studies on the 
Na++K+-ATPase. 40 
Discussion 43 

Section 2: Electrophysiological Studies on 
VB, VA and T.E.P. Using K+ free, Na+ free and 
Cl- free Salines 48 
Discussion 70 

Section 3: Electrophysiological Studies on 
VB,VA and T.E.P. Using Ouabain-, Vanadate-, 
Amiloride-, Monensin- and Ba2+-containing 
Salines 86 
Discussion 100 

Section 4: Electrophysiological Studies on 
VB,VA and T.E.P. Using Furosemide-, Bumetanide-, 
Thiocyanate-, SITS- and HCO) free + Acetazol-
amide-Containing Salines 115 
Discussion 125 

Section 5: Electrophysiological Studies on 
VB,VA and T.E.P. Using ca2+ free, Ca2+ free + 
A23187 and Verapamil-Containing Salines 133 
Discussion 138 

Section 6: Electrophysiological Studies on 
VB,V~ and T.E.P. Using 5-Hydroxytryptamine-
and cAMP-Containing Salines 145 
Discussion 148 

Conclusion 156 

167 

190 

ii 



iii 

ABSTRACT 

Intracellular microelectrodes have been used in conjunction with 

ion substitution, and agonists and inhibitors of known transport 

processes to investigate the mechanisms whereby ions cross the basal 

and apical cell membranes of the Malpighian tubules of Locusta. 

Values for basal, apical and transepithelial potentials in 'Normal' 

saline were -71.6 ± 0.3 mV, -82.6 ± 0.8 mv and +5.7 ± 1.0 mv (lumen 

positive) respectively. Ion substitution experiments, involving 

+ + -Na ,K and Cl in the bathing media, indicated that the basal membrane 

+ + -was more permeable to K than Na and Cl • Two different electrical 

responses to high [K+] 0 s~line (the Type A and Type B response) were 

noted and these probably reflect distinct physiological states of 

basal membrane permeability. 

Experiments with ouabain and vanadate suggested that whilst 

+ + Na +K -ATPase activity, which has been demonstrated in microsomal 

preparations, was not significantly electrogenic, asymmetric ionic 

distribution across the basal membrane was partly maintained by this 

enzyme. ;o~ Furthermore, 3-H ouabain-binding studies indicated that 

+ + Na +K exchange 'pump' turnover was adequate to account for substantial 

K+ entry and Na+ exit across the basal membrane. The electrochemical 

gradient across the apical membrane suggests that ~+ exit from the 

cell must involve an active process with Cl following passively. 

Data from ion substitution experiments and treatment with 

furosemide and bumetanide su~gest that Cl entry across the basal 

+ + membrane may be via cotransport with Na and/or K • However, the 

+ differential electrical responses to Na free and Cl free salines 

+ . . 
question the role of Na ~n th~s process. 

h ff f 
2+ b . . d . . h. b. t T e e ects o cAMP, Ca su st~tut~on an var~ous 1n 1 ~ ors on 

basal and apical membrane potentials, taken in conjunction with the 

results referred to above, are discussed and a hypothetical model proposed 

h . . 1 2+ d 1 f . w ereby changes 1n ~ntrace lular Ca an cAMP effect contra o 10n 

movements across the two cell surfaces. 
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CHAPTER 1 

Introduction 

It is generally accepted that fluid movement across a variety of 

epithelia, whether secretory or absorptive in nature, is a consequence 

of active ion transport with water movement being osmotically linked 

to ion movements (e.g. Ernst et al, 1980; Maddrell, 1971; 1977). In 

insects, Malpighian tubules form an important part of the excretory 

system being responsible for the formation of the primary urine and 

functioning to regulate and control the haemolymph composition and volume 

(Maddrell, 1980). The mechanism of ion and water transport across 

the Malpighian tubules of Carausius was first studied by Ramsay (1953; 

1954) and has been the subject of many subsequent studies, e.g. Calliphora 

(Berridge, 1968; 1969), Rhodnius (Maddrell, 1969; 1971; 1977), Locusta 

(Anstee and Bell, 1975; 1978; Morgan and Mordue, 1981; 1983a) and Glossina 

(Gee, 1975; 1976). 

At present the .mechanism of solute-coupled-water movements is 

not fully understood in most epithelia. To understand ion and water 

movements, it is necessary to point out that epithelia contain two 

major diffusional pathways - a transcellular route in which ions penetrate 

the apical and basal membranes and a paracellular pathway consisting 

mainly of "tight" junctions in series with the lateral spaces between 

epithelial cells. Initially, it was thought that such junctions presented 

a barrier to paracellular transport (DiBona, 1972). However, in the 

early 1970s, it was recognized that such epithelial "tight" junctions 

were not tight enough to preclude paracellular transepithelial transport 

(DiBona, 1972; Fr8mter and Diamond, 1972). Consequently, the term 

"tight" and "leaky" (Fr8mter and Diamond, 1972) became common descriptions 

in epithelial classification (Schneeberger and Lynch, 1984). In "leaky" 



epithelia, transepithelial diffusion of ions occurs paracellularly 

through the tight junctions and lateral intercellular spaces (Fr8mter 

and Diamond, 1972). Examples are gallbladder ofNecturus (Fr8mter, 

1972), kidney proximal tubule ofNecturus (Guggino et al., 1982) and 

intestine of fresh water prawns (Ahearn, 1980) and Aplysia (Gerencser, 

1982). In contrast in tight epithelia, most ionic diffusion and water 

movements occur transcellular1y because the combined resistances of 

apical and basal membranes is lower than that of the tight junctions 
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and intercellular spaces. Examples of this second category where "tightness" 

has been quantified electrophysiologically include toad urinary bladder 

(Reuss and Finn, 1974), fundic gastric mucosa (Spenny et al., 1974), 

rabbit urinary bladder (Lewis et al., 1976) and locust rectum (Hanrahan 

et al., 1982). 

It is now generally thought that epithelia which transport isotonic 

fluid possess cell junctions which are "leaky" (Staehelin, 1974; Lord 

and Di Bona 1976; Lane, 1979) and therefore allow a considerable flow 

of ions and water through the paracellular route (Sackin· and Boulpaep, 

1975; Gupta and Hall, 1979). Studies on the Malpighian tubules of 

insects indicate that whilst in some species a slight hypo-osmotic 

urine is secreted (Carausius, Ramsey, 19~4; Dysdereus, Berridge, 1965) 

in the majority of species, including Locusta, the tubules produce 

a urine which is marginally but consistently hyperosmotic to the bathing 

medium over a wide range of osmotic concentrations (Berridge, 1968; 

Maddrell, 1969; Phillips, 1964; Anstee et al., 1979). On this basis 

one would have predicted that insect Malpighian tubules would be "leaky". 

However, recent studies by O'Donnell·and Maddrell (1983) and O'Donnell 

et al. (1984) suggest that water probably moves through the cells during 

fluid secretion by the Malpighian tubules of Rhodnius and that water 



movements are coupled to salt transport across the basal and apical 

cell membranes. These workers argue that water movements via a 

paracellular route are unlikely to represent a significant component 

3 

of total transepithelial tubule secretion in this species. Similarly, 

from measurements on transepithelial concentration gradients and 

resistance, Williams and Beyenbach (1984) have stated that the Malpighian 

tubule of Aedes should be classified as a moderately "tight" epithelium. 

However, in other insect epithelia, there is good evidence that some 

of the fluid moves paracellularly and that solute/solvent coupling 

occurs in an extracellular compartment (O'Donnell and Maddrell, 1983). 

Indeed, paracellular fluid flow has been suggested in the rectal pads 

of Periplaneta and Calliphora (Wall et al, 1970; Gupta and Hall, 1983) 

and the salivary glands of Calliphora (Gupta et al., 1978). 

The fact that the fluid secreted by nearly all Malpighian tubules 

is marginally but consistently hyperosmotic to the bathing fluid 

(Maddrell, 1977) shows that the produced rates of fluid flow are in 

fairly close inverse relationship to the osmotic concentration of 

the bathing solution. In other words, the rate of solute movement 

is approximately constant but water movements change so that the fluid 

produced is slightly hypertonic (Maddrell, 1977). Several theories 

have been proposed to explain how solute transport effects such iso

or near-isomotic secretion across epithelia. Diamond and Bossett 

(1967; 1968) proposed the so-called standing-gradient o~motic flow 

hypothesis for fluid transporting epithelia. This model is based 

on the functional geometry of the tissue and depends upon channels 

which are structurally or functionally closed at one end. Solute 

is pumped into the closed ends of the spaces from the adjacent cytoplasm, 

making the region hyperosmotic to the cell. Water moves into the 
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space from the adjacent cytoplasm so that towards the open end of 

the space, the fluid is isosmotic to the cytoplasm. Thus, a standing

gradient is established along the length of the channels at equilibrium. 

Difficulties arise when this model is applied to insect Malpighian 

tubule secretion because (a) the infolding and microvilli of Malpighian 

tubules are shorter than in the tissues for which the model was originally 

developed (Taylor, 1971; Maddrell, 1977), (b) biological membranes 

do not seem to have sufficiently high osmotic permeability to permit 

isotonic flow in epithelia to occur by local osmosis (Hill, 1975a;b) 

and (c) ion concentrations exist in the microvilli of Malpighian 

tubules which are unfavourable to a standing-gradient osmotic flow 

(Gupta et al., 1976; 1977). 

Another theory which has been proposed to explain the mechanism 

of ion and water movements across epithelia is based on electro-osmosis 

(Hill, 1975b; 1977). Maddrell has discussed the implication of this 

electro-osmosic theory for inse~t Malpighian tubules. He suggests 

that electrogenic catfon pumps, situated 6n the apical plasma membrane 

of tubules, produce an electrical potential difference across this 

membrane. The resulting electrochemical gradient would draw Cl out 

from the cell through the membrane, and in crossing the membrane Cl- would 

functionally interact with water molecules and cause them also to 

move out of the cell. Therefore, this mechanism relies on the maintenance 

of a potential gradient across the cell membrane. 

Finally, it may be that s~mple 'local osmosis' (Diamond, 1964) 

may be responsible for water movements across the tubule. This theory 

proposes that the cytoplasm is marginally hypertonic to the bathing 

medium as a result of solute pumping across the basal membrane, and 

similarly
1
the lumen becomes marginally hypertonic to the cytoplasm. 
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Water flows passively as a result of these small osmotic pressure 

differences, their magnitude being determined by the rate of solute 

transport and the osmotic permeability of the membrane. This theory 

has been favoured by Maddrell (1972) and Taylor (1971) for insect 

Malpighian tubules. They suggest that the foldings of the basal and 

apical membranes is primarily a device for increasing the effective 

passive permeability of the cells to solute and that the driving force 

for water movements is, in fact, the overall osmotic pressure difference 

between the lumen and the bathing solution. 

Whatever the exact mechanism for coupling of ions and water movements, 

the various models agree, that fluid secretion by insect Malpighian 

tubules is a consequence of solute transport. Indeed, Ramsay (1953) 

first recognized the central role of potassium transport in generating 

fluid secretion in Malpighian tubules. Subsequent studies have confirmed 

that this cation is the 'prime mover' in generating fluid secretion 

in the Malpighian tubules of most insects (Berridge, 1968; Maddrell, 

1969; Anstee and Bell, 1975). However, this is not the-case for all 

insects which have been investigated. Exceptions include stimulated 

fluid secretion by the Malpighian tubules of Rhodnius (Maddrell, 1969; 

+ + 
1977) in which fluid secretion requires the presence of Na and K and 

+ Glossina (Gee, 1975; 1976) in which Na is the "prime mover". 

Whilst the active pumping of K+ from the haemolymph to the lumen 

has been established for the Malpighian tubules of many ~nsects (Ramsay, 

1958; Berridge, 1968; Maddrell and Klunswan, 1973), the nature of 

the ion translocation mechanism has still to be fully elucidated. 

It is generally agreed that an electrogenic cation pump is located 

on the apical cell membrane (Berridge, 1967; Berridge and Oschman, 1969; 

Gee, 1976; Maddrell, 1971; 1977; O'Donnell and Maddrell, 1984). Although 
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mainly a potassium pump, this hypothetical cation pump appears to 

be relatively unspecific and will readily transport other cations 

under appropriate conditions (Berridge, 1968; Maddrell cited in Berridge 

et al., 1976; Maddrell, 1977). This lack of specificity suggests 

that the cation which is transported is determined by the major cation 

present within the intracellular compartment which, in turn, is determined 

by the permeability of the basal plasma membrane rather than by the 

affinity of the pump for a particular ion. Indeed, Maddrell (1977) 

and O'Donnell and Maddrell (1984) have used these suggestions in an 

attempt to explain how one basic mechanism can account for the secretion 

of Na+ rather than K+ in some species of insect (e.g. Rhodnius, Glossina 

and Aedes). Thus, in the Malpighian tubules of Rhodnius, these workers 

have suggested that the apical cation pump has a higher affinity for 

sodium than potassium and would act to maintain the intracellular 

+ + 
level of Na lower than that of K • The actual rate at which cations 

are pumped across the tubules from the bathing solution into the lumen 

by this p~mp depends not only on the affinity of the pump for·the 

two cations but also how fast these cations enter the cell. This, 

in turn, depends partly on the electrochemical gradient across the 

basal cell membrane and on the permeability of this membrane to these 

ions. Thus, small changes in the relative permeability of the basal 

+ + membrane to Na and K may cause large changes in the ionic composition 

of the fluid secreted by Malpighian tubules. The ability of tubules 

from Glossina to secrete aNa+ rich fluid at a high rate (Gee, 1975), 

for example, might be simply explained by their having a high permeability 

+ + to Na than have other tubules; as a result, Na enter faster than 

K+ and as the apical pump has a higher affinity for Na+ in any case, 

it is these ions which are transported. 
. + . 

In contrast, ~n the K -secret~ng 
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+ tubules of the majority of insect species, K enters the cell faster 

+ + + . 
than Na , Na being virtually excluded, and so it is K wh1ch is 

transported. The extent to which such a model, for cation transport, 

however, might be applicable to all insect Malpighian tubules, remains 

to be established. 

It is interesting to note that although active K+ transport 

was first deduced from ion distribution against electrochemical gradients 

in the Malpighian tubules of several insects by Ramsay (1953), such 

movement has been confirmed by measurement of net 42K fluxes in short-

circuited lepidopteran midgut by Harvey and Nedergaard (1964). This 

led Anderson and Harvey (1966) to propose the presence of an electrogenic 

K+ pump in the midgut of Manduca sexta which is located in the apical 

membrane of the goblet cells (Harvey et al., 1983). As well as Malpighian 

tubules and lepidopteran midgut, evidence exists to suggest the presence 

of an apical K+ pump in the dipteran salivary glands (Prince and 

Berridge, 1972; Berridge et al., 1975; Gupta et al., 1978), the sensory 

sensilla of dipteran labella (Thurm and Kllppers, 1980; Wieczorek, 

1982) and lepidopteran labial glands (Halim and Kafatos, 1974). More 

recently, the occurrence of a potassium sensitive ATPase activity 

has been reported in preparations of Manduca sexta midgut (Wolfersberger, 

1979; Wolfersberger et al., 1982; Deaton, 1984) and the labellum 

from the dipteran Protophormia (Wieczorek, 1982; Wieczorek et al., 

1986). 
+ However, although this putative K -ATPase may be a candidate for 

the electrogenic apical potassium pump, as yet no biochemical evidence 

exists for K+-ATPase activity in insect Malpighian tubules (see Chapter 3). 

Wieczorek et al. (1986) have pointed out that the midgut K+-ATPase 

+ + 
activity of Manduca midgut is not homologous to a K +H -ATPase as 

suggested by Deaton (1984) and English and Cantley (1984) in the 
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same species. + + The electroneutral K ~H -ATPase has, since its discovery 

by Sachs et al. (1976), been found only in specialized cells of vertebrate 

stomach (Schuurmans Stekhoven and Banting, 1981). In this tissue, 

this apical membrane enzyme transports K+ into the cell in exchange 

+ for H (Rabon et al., 1983). From studies on a Manduca sexta embryonic 

cell line CHE, English and Cantley (1984) and English et al. (1986) 

suggested that a similar enzyme may function in some insect cells, 

+ coregulating both cellular pH and K • 

At this point it is important to point out that the transport 

of ions across cell membranes requires the presence of cell membrane 

proteins and these act in various ways (Scobie et al., 1986). Uniporters 

facilitate movement of an ion down its own concentration gradient. 

Symporters facilitate diffusion of an ion across a membrane down 

its concentration gradient in association with the movement of a 

second ion without a concentration gradient; this results in secondary 

active transport of the second ion. Antiporters link diffusion of 

one ion down its concentration gradient to movement of a second ion 

in the opposite direction. ATPases link hydrolysis of ATP to ionic 

movements while channels form a "hole" through a membrane, facilitating 

movement of ions down their concentration gradients. Indeed, the 

presence of ion channels is now well-established in epithelia and 

to date most have been found to be highly K+ selective (Lewis and 

Hanrahan, 1986). 
+ 0 

K channels are found in either apical or basolateral 

cell membranes from leaky as well as tight epithelia (Van Driessche 

and Zeiske, 1985). 
2+ 

The fact that cellular Ca entry leads to an 

increase in K+ permeability - the Gard6s effect in red cells (Gard6s, 

1958) - has recently lead to the demonstration of the presence of 

2+ . + h 1 . specific basolateral Ca -act~vated K conductance c anne s ~n a 
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variety of cell types (Latorre and Miller, 1983; Van Driessche and 

Zeiske, 1985). To date, selective ion channels have been characterized 

+ 2+ + 
in epithelia for Na , Ca and Cl , as well as for K (Van Driessche 

and Zeiske, 1985). Almost all ionic channels display the "gating" 

phenomenon, i.e. transitions between one or more open or closed 

conformations that are triggered by factors such as voltage, blocking 

the channel or inducing its opening by interaction with appropriate 

substances, or confonnational fluctuations that are simply spontaneous 

(Van Driessche and Zeiske, 1985). 

Despite the number of models for Malpighian tubule fluid secretion, 

much controversy exists to explain the mechanism for ion entry into the 

cell across the basal membrane. Berridge (1967) and Berridge and Oschrnan 

(1969) suggested that movement across the basal membrane occurs as a 

+ + result of a coupled Na ~K -exchange pump. In the majority of tissues 

examined the enzyme responsible for this 'pump' is a Mg
2
+-dependent 

+ + . 1 ( ) Na +K -st1mu ated ATPase Skou, 1957 . Since the early discoveries of 

Hodgkin and Keynes (1955), Skou (1957} and Caldwell et al. (1960}, which 

h . . h + + h' h b lead to t e descr1pt1on of t e Na ~K -ATPase, t 1s enzyme as een 

demonstrated in a great variety of animal cells and tissues (Banting, 

+ + 
1970; Anstee and Bowler, 1984; Norris and Cary, 1981). Indeed, aNa +K-

ATPase has been exhibited in microsomal preparations from the Malpighian 

tubules of Locusta (Anstee and Bell, 1975; Anstee et al., 1979} and has 

many of the properties of Na++K+-ATPase from other species (Banting, 

1970; Anstee and Bowler, 1979; 1984). 
+ + 

The Na +K-ATPase has been reviewed 

by many authors (Glynn and Karlish, 1975; Robinson and Flashner, 1979; 

Skou, 1975; Schuurmans Stekhoven and Banting, 1981} and has been shown 

+ to be electrogenic in nature, pumping 3 Na out of the cell for every 

+ 2 K it pumps in, for the majority of cells (Post and Jolly, 1957; Cantley, 
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1981). Several attempts at cytochemical and histochemical localization 

of this enzyme in insect tissue point to the enzyme being present in 

the basal and lateral plasma membrane (Anstee and Bowler, 1984), which 

is consistent with conclusions from studies on many vertebrate transporting 

epithelia (DiBona and Mills, 1979; Ernst et al., 1980; Towle, 1984). 

Autoradiographic studies of [3H] ouabain binding to larval dragonfly 

rectal cells by Komnick and Achenbach (1979)have demonstrated that the 

+ + . . Na +K -ATPase 1s restr1cted to the basolateral membranes in contact with 

interstitial fluid.and blood. . + . An ultracytochem1cal study of K -act1vated 

phosphatase in blue crab gill epithelium has shown the majority of this 

enzyme to be localized in basolateral membranes (Towle, 1984). 

+ + Despite the vast literature on the Na +K -ATPase, controversy exists 

concerning its involvement in secretion of fluid by insect Malpighian 

tubules. The conflicting reports are mainly due to the failure of some 

investigators to demonstrate an effect on tubule function by the cardiac 

+ + glycoside, ouabain, a specific inhibitor of Na +K -ATPase (Skou, 1965; 

Albers et al., 1968; Wallick et al., 1980). · A review by Anstee and Bowler 

(1979) offers some possible explanations for the causes of these conflicting 

reports (also see Chapter 3). In addition, it is of interest that the 

+ + 
sensitivity of the Na +K -ATPase to cardiac glycosides such as ouabain 

differs markedly from species to species (Wallick et al., 1980). Some 

researchers suggest that the Na++K+-ATPase from different sources bind 

ouabain at the same rate and that differences in sensitivity are determined 

by differences in the rates of dissociation of the glycoside from the 

enzyme (Wallick et al., 1980; Erdmann and Schaner, 1973). Rubin et al. 

(1981) report that the ouabain dissociation reaction is considerably 

faster with microsomal preparations from brain of Manduca sexta than 

with bovine brain, accounting for the decreased sensitivity of the insect 
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enzyme to inhibition by ouabain. Other workers suggest that the lower 

sensitivity of the Na++K+-ATPase from certain species cannot be explained 

solely on the basis of the dissociation rate (Wallick et al., 1981; Pitts 

et al., 1977). To date, with the notable exception of the study by Rubin 

et al. (1981) referred to above, few studies report the use of [3H]ouabain 

in insect tissue preparations. Fristrom and Kelly (1976) and Jungreis 

and Vaughan (1977) studied [3H]ouabain binding to imaginal discs of 

Drosophila melanogaster, and midgut and nerve of three lepidopteran species, 

respectively. Unfortunately, both these studies were carried out under 

conditions that were inappropriate for determining maximal binding, owing 

to the· inclusion of K+ in the incubation medium. 

In order to overcome the problem of ouabain-insensitivity in the 

Malpighian tubules of Calliphora and Carausius, Maddrell (1971) proposed 

a model of active ion transport across both the basal and apical cell 

+ + 
membranes in these insects which does not involve a Na +K -exchange pump. 

This model suggests that K+ is actively transported into the cell by 

+ . 
an electrogenic 'pump' which is stimulated by Na and ·is situated on 

+ the basal cell membrane, whereas Na and Cl enter the cell passively. 

+ + -
On the apical surface, Na and K are transported into the lumen by 

electrogenic 'pumps', whilst the transport of Cl is passive. At the 

same time, Maddrell (1971; 1980) suggested that basal membrane electrogenic 

+ + Na and K pumps may be found in the Malpighian tubules of Rhodnius 

with Cl ente~ing the cell passively. These ions would then enter the 

lumen via three electrogenic 'pumps' for Na+, K+ and Cl-. A later model 

(mentioned earlier) by Maddrell (1977) proposed to suit transport through 

+ + 
Malpighian tubules of any insect (regardless of whether K or Na is 

the prime mover) can be seen in Fig. 1A. + This model suggests that K , 

+ Na and Cl all enter the cell passively across the basal membrane. An 

+ 
electrogenic cation pump on the apical membrane is responsible for K 



Fig. lA-C 

Schematic diagrams of three models proposed to explain ion translocation 

across Malpighian tubules. In all cases, the basal membrane faces the 

bathing medium whilst the apical membrane faces the lumen. 

Fig. lA 

Fig. lB 

Fig. lC 

This general model has been described to explain ion 

transport across the Malpighian tubules in all insects 

(Maddrell, 1977). . + + -In th1s model, K ,Na and Cl all enter 

the cell passively across the basal membrane. Across the 

apical membrane, K+ and/or Na+ exit the cell by means of a 

cation pump, whilst Cl exits passively. 

In this model, which has been proposed for the Malpighian 

tubules of Rhodnius (O'Donnell and Maddrell, 1984), a basal 

+ + + + 
membrane Na K 2Cl cotransport is thought to move Na ,K 

and Cl into the cell. + + The exit of K and/or Na from the 

cell occurs, it is suggested, by means of a catholic apical 

pump, whilst Cl exits passively. 

This model has been proposed for the Malpighian tubules of 

Locusta by Morgan and Mordue (1983a). It is thought that a 

+ d + . 1 h passive entry of K an Na 1nto the eel occurs across t e 

basal membrane, whilst Cl enters by an active process. In 

contrast, an active process is required for the apical 

membrane exit of K+ and Na+, whilst Cl exits the cells by 

a passive process. 
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+ and/or Na exit while Cl leaves the cell passively. More recently, O'Donnell 

and Maddrell (1984) have modified this model for the Malpighian tubules 

of Rhodnius upon finding that the basal membrane is largely impermeable 

to sodium and chloride and that furosemide and bumetanide, blockers of 

sodium chloride entry (Palfrey and Rao, 1983),have an inhibitory effect. 

Earlier, Maddrell (1971) had queried the feasibility for K+ to move passively 

from low extracellular to high intracellular potassium concentrations 

across the basal membrane. As a result, O'Donnell and Maddrell (1984) 

+ + have proposed that a basal membrane Na , K , 2 Cl cotransport step occurs 

to allow the entry of these ions into the cell (Fig. lB). A catholic 

apical pump exists for the extrusion of K+ and/or Na+ out of the cell 

while chloride enters the lumen passively. Furthermore, Maddrell (personal 

. . ) . + + . commun1cat1on has sa1d that a basal membrane Na +K -ATPase occurs 1n 

Rhodnius tubules and acts to maintain the cellular gradients during non-

stimulated fluid secretion. Similarly, Gee (1976) has suggested that 

such a pump may be necessary to maintain the intracellular ion concentration 

of resting Malpighian tubule cells of Glossina. From a study on the 

Malpighian tubules of Locusta,Morgan and Mordue (1983a) have proposed 

that K+ and Na+ can enter the cell across the basal membrane passively, 

but Cl must enter by an energy-dependent mechanism (Fig. 1C). An energy 

. + + . dependent mechanism, however, is requ1red for K and Na ex1t across 

the apical membrane whilst Cl enters the lumen down a favourable electrical 

gradient. 

+ + Although K and Na have been considered to be the prime movers 

in fluid secretion, anions too play an important role in Malpighian tubule 

urine production. Nevertheless, for many years active cation transport 

across both vertebrate and invertebrate epithelia has been intensively 

studied with Cl and Hco; assuming a secondary role as passive counter-

ions. However, recently there has been an explosive interest in 
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transepithelial movement of both these anions, especially since Cl has 

been found to be moved actively in a wide range of species (Frizzell et 

al., 1979). Some of the proposed schemes for the transport of anions 

are shown in Fig. 2A-F. As previously mentioned, it was generally thought 

that Cl transport across the basal membrane of Malpighian tubule cells 

was passive and that Cl + followed K out of the cell on the luminal side 

(Maddrell, 1977). Indeed, Dalton and Windmill (1980) have suggested 

that Cl movement across the tubules of Musca is passive. However, the 

recent models of O'Donnell and Maddrell (1984) and Morgan and Mordue 

(1983a) for Rhodniusand Locusta tubules respectively (Fig. lA-C), both 

propose that Cl enters the cell across the basal membrane by a non-diffusive 

mechanism. Furthermore, although chloride movement is thought to be 

passive across the salivary glands of Calliphora, Berridge et al. (1976) 

could not completely exclude the possibility of a pump on the basal membrane 

which transports chloride into the cell. Although they did not speculate, 

Williams and Beyenbach (1984) found evidence for coupled cation-Cl secretion 

during stimulation with head extract,~in the Malpighian tubules of Aedes. 

Intensive studies on several vertebrate epithelia have revealed 

- -
various types of Cl transport including electrically silent Cl -Hco3 

exchange, + Na -dependent co-transport of Cl 
+ + 

(or Na , K , Cl cotransport) 

and Cl secretion which is often electrogenic (Phillips and Lewis, 1983; 

Frizzell et al., 1979; Gerencser and Lee, 1983; Reuss et al., 1983; 

Hanrahan and Phillips, 1984). The NaCl co-transport is a€tive by nature 

+ and is thought to be effected through an electrically neutral Na -coupled 

carrier mechanism, which drives Cl- uphill into epithelial cells via 

+ the inward flow of Na down a favourable electrochemical potential gradient, 

i.e. the transport of Cl is secondarily active (Frizzell et al., 1979; 

Shorofsky et al., 1982). The Na+ gradient across the cell is established 



Fig. 2 A-F 

Schematic diagrams of various models proposed to explain anion (and 

cation) transport across the cells of secretory and absorptive epithelium. 

In all cases, the basal (serosal) membrane faces the bathing medium whilst 

the apical (mucosal) membrane faces the lumen. 

Fig. 2A This model has been described to explain Cl secretion in 

canine tracheal epithelium (Shorofsky et al.~ 1982) and the 

secretory shark renal proximal tubules (Sawyer and Beyenbach, 

1985b). In this model, a secondary active entry of Cl into 

the cell across the basal membrane occurs as a consequence of 

. d + an 1nwar movement of Na down its electrochemical gradient, 

+ -
by means of a Na Cl cotransporter. This transport is driven 

+ + by the action of the Na +K -ATPase. Cl leaves the cell across 

the apical membrane by a conductive pathway. 

Fig. 2B In this model, proposed to explain the transport of Cl across 

Fig. 2C 

the absorptive Necturus proximal tubule, Reuss et al. (1983) 

+ -suggest that a Na Cl cotransporter which is independent of 

K+, occurs on the apical membrane to allow the entry of Cl 

into the cell. This anion then leaves the cell across the 

+ basal membrane via a transport system that moves both Na and 

Hco
3 

into the cell in exchange for Cl • 

This model has been described to explain NaC1 secretion in 

the shark rectal gland tubules (Greger et al., 1984). Cl 

entry into the cell occurs by means of an electroneutral basal 

+ + membrane Na ,K ,2Cl cotransport step. The gradient for this 

+ + transport is provided by the action of a Na +K -ATPase. A 

conductive pathway allows the exit of Cl at the apical membrane. 

In a similar model, proposed for the absorptive diluting 

segment of mammalian nephron. Greger (1985) has suggested 

+ + -that an apical Na ,K ,2Cl cotransporter allows the entry 



·,:' 

A 
LUMEN 

Cl-

• 
B 

LUMEN 

Na+ Cl-

CELL 
CELL 

K+ Cl- Na+ K+ Hco-
Na• 

BATHING MEDIUM BATHING MEDIUM 

Na+ Na• Cl-

c Cl-

LUMEN • 
PASSIVE MOVEMENTS 

CELL --- ACTIVE MOVEMENTS 

K+ 

BATHING MEDIUM 

Na• K+ 2CI-
Na+ 



Fig. 2D 

Fig. 2E 

Fig. 2F 

of Cl into the cell, with this anion exiting either via a 

+ -
conductive pathway or by means of an electroneutral K Cl 

symport on the basolateral membrane. 

-This model shows the exit of Hco
3 

from rabbit proximal 

tubule during acid secretion (Reuss et al., 1983). Acid 

+ secretion involves the movement of H from the cell into 

the tubule lumen. The mechanism of Hco
3 

exit involves-an 

-electroneutral basolateral Cl -Hco
3 

exchanger. Related models 

have shown that Hco
3 

may exit the cell via an electrogenic 

-Hco
3 

pathway or an electrogenic transporter that mediates 

- + the coupled exit of HCO) and Na (Reuss et al., 1983). 

In a model to describe ion translocation in locust rectum, 

Hanrahan and Phillips (1984) have proposed that during 

transepithelial absorption, Cl enters the cell across the 

apical membrane by an active mechanism which is thought 

to be electrogenic and K+-stimulated. The entry of K+ 

+ occurs through a parallel conductive pathway whilst Na _ and ;, __ 

amino acids enter by means of a cotransporter. It is 

thought that Cl exits across the basal membrane via a 

conductive pathway, with K+ probably leaving the cell by 

electrodiffusion. The whole cellular mechanism is 

+ + maintained by the action of a Na +K -ATPase. 

In this model described to explain Cl absorption in 

Amphiuma intestine, White (1980 and 1986) has proposed 

that an electrogenic Cl uptake mechanism occurs in the 

apical membrane with Cl leaving the cell by means of a 

- -basolateral Cl -Hco
3 

exchange. This process, may be in 

+ + 
part, controlled by an apical membrane Na -H exchanger 

which affects the availability of Hco
3 

for the basolateral 

- -Cl -Hco
3 

exchange. 
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+ + by the basolateral Na +K -ATPase pump (see Fig. 2A and B). Similarly, 

+ + in Na , K , Cl cotransport the energy for Cl transport is apparently 

provided by the cation electrochemical gradient (Phillips and Hanrahan, 

1984; Fig. 2C). + + + The Na (or Na ,K ) coupled secretion mechanism 

is located within the apical membrane if Cl is actively absorbed 

by the epithelium or is located within the basolateral membrane 

if Cl is actively secreted (Gerencser and Lee, 1983; Fig. 2A,B 

and C). 

A broad range of vertebrate transporting epithelia have been shown 

to exemplify NaCl co-transport absorption and secretion, including frog 

cornea, canine tracheal epithelium and shark renal proximal tubules 

(Candia, 1986; Welsh, 1983; Sawyer and Beyenbach, 1985b; Frizzell et 

al., 1979; Gerencser and Lee, 1983). . + The more recently descr1bed Na , 

+ K , Cl cotransport has also been implicated in both transepithelial 

absorptive and secretory salt transport in a variety of species and 

cell types, notably epithelial cells such as shark rectal gland tubules 

and mammalian kidney nephron (Greger and Schlatter, 1984; Greger, 1985; 

Rugg et al., 1986). Indeed, it is this transporter which O'Donnell 

and Maddrell (1984) have proposed to occur in the basal membrane of 

tubule cells of Rhodnius (Fig. lB) • + + -Recent reviews on the Na ,K ,Cl 

transporter (Palfrey and Rao, 1983; Geck and Heinz, 1986) have shown 

+ + it to be electroneutral with a stoichiometry of 1 Na : 1 K : 2 Cl • 

Palf:tey and Rao (1983) point out that it is as yet unclear whether NaCl 

and NaKCl cotransport mechanisms are distinguishable, or whether all 

NaCl cotransport systems involve K. However, some NaCl cotransport 

systems do not seem to involve K (Ericson and Spring, 1982). 

The widely accepted epithelial Cl transport process involving 

- -Cl -HC03 countertransport or exchange has been found in a variety of 

tissues (Gerencser and Lee, 1983) including the rectal salt gland 



15 

epithelium of Aedes (Strange and Phillips, 1984; Fig. 2B). The energy 

source for this process is unknown but it has been suggested that uphill 

Cl transport is energized by a favourable downhill electrochemical 

potential gradient for Hco; (Frizzell et al., 1979). In Aedes rectal 

- -gland, the actively coupled 1 : 1 Cl -HC03 exchange is thought to occur 

on the basolateral membrane (Strange and Phillips, 1984). Recent research 

has pointed to double exchange as opposed to direct cotransport as a 

possible mechanism by which the transport of Cl could be coupled to 

+ the flux of Na in some epithelia (Warnock et al., 1983). This electroneutral 

process involves the parallel operations of Na+-H+ and Cl -Hco; (or 

Cl -OH ) exchanges coupled by circular proton movements. Such a mechanism 

has been described as the predominant or sole mechanism of apical membrane 

NaCl entry inNecturus gallbladder (Reuss, 1984, but see Spring in Warnock 

et al., 1983). It has been pointed out in the literature that although 

differences occur between the two mechanisms as to the effects of various 

transport inhibitors, an absolute, unambiguous test for distinguishing 

double exchange from direct cotransport does not occur for an intact· 

epithelium (Warnock et al., 1983). 

The exit of Cl from cytoplasm to lumen or blood is less well studied 

than Cl entry. Since there appears to be a favourable electrochemical 

gradient for Cl movement out of the cell in many tissues then Cl movement 

across the exit membrane may be downhill if the conductance is sufficiently 

high (White, 1986; Frizzell et al., 1979; Fig. 2A and C). Such an exit 

mechanism has been suggested for a wide variety of epithelia including 

shark renal proximal tubules, mammalian nephron, canine tracheal epithelium, 

frog cornea and rabbit cortical collecting duct (Greger and Schlatter, 

1984; Greger, 1985; Sawyer and Beyenbach, 1985b; Welsh et al., 1983; Candia 

1981; Sansom et al., 1984). Guggino and Giebisch (in Reuss et al., 1983) 

have suggested that as well as a conductive pathway, Cl can leave the 
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+ -cell by an non-electrodiffusive pathway in which Na and Hco
3 

move into 

the cell in exchange for Cl- in a process that may or may not be 

electroneutral (Guggino et al., 1983; Fig. 2B). This mechanism has 

recently been proposed by Kuijpers et al. (1984) to explain fluid 

secretion in rabbit pancreas and is thought to be driven by the Na+ 

gradient in the basolateral membrane. Furthermore, in Arnphiurna 

intestinal cells, Cl- exit is thought to occur via a tentative Na-Cl-HCO 
3 

exchange (White et al., 1984; White, 1986). + . It appears that a Na -~ndependent 

+ -
cotransport of K and Cl in the form of a KCl syrnport may be responsible 

for Cl exit in various transporting epithelia includingNecturusproximal 

tubule and gallbladder (Reuss et al., 1983; Corcia and Armstrong, 1983). 

Gupta and Hall (1983) have suggested that uphill Cl entry across the 

basal membrane of cockroach salivary gland cells may be driven by a 

+ large downhill gradient of Na • Although these authors have proposed 

-a passive exit for Cl , they state that the transcellular movement of 

Cl (and the entire secretory mechanism) could be driven by a Cl-purnp 

at the apical membrane. 

+ The ability to regulate internal H ion concentration is a virtually 

universal attribute of living cells. It appears that acid production 

+ by cellular metabolism or H permeation down an electrochemical gradient 

requires extrusion of protons (or absorption of alkali) to maintain 

a constant cellular pH (Ross and Boron, 1981). Thus, in many systems 

the downhill movement of Na+ via a Na+-H+ exchange drives secondary 

active H+ secretion out of the cell. Intracellular OH generated by 

H+ secretion is buffered by co
2 

to form Hco; (catalysed by the enzyme 

carbonic anhydrase). The exit of base from the cell may occur by passive 

diffusion of ionic Hco; although evidence for coupled transport mechanisms 

- - + -such as Cl -Hco
3 

exchange or electrogenic Na -Hco
3 

cotransport have also 
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been shown (Aronson, 1983; Fig. 2D). It is of interest that both 

+ + Na -H exchange and carbonic anhydrase have important transport roles. 

,_Since the discovery of a directly coupled Na + -H + exchange process _(Murer 

et al., 1976)-, this electroneutral transporter has been found in a variety 

of renal tissue (Aronson, 1981; 1983). + + The Na -H exchanger appears 

to occur largely on the apical membrane of absorptive tissue (Warnock 

et al., 1983), although research has suggested a basal location in some 

tissues (Boron and Boulpaep, 1983). The carbonic anhydrase enzyme has 

been found in insect ion transporting epithelia (Henry, 1984) and has 

been documented histochemically in Malpighian tubules of praying mantis 

(Polya and Wirtz, 1965). Henry (1984) points out that the distribution 

of carbonic anhydrase in arthropod tissues suggests that the enzyme 

is involved in ion transport processes. Its presence in ion transporting 

tissue such as insect midgut epithelium, Malpighian tubules and anal 

papillae, and crustacean gills is a strong indication that this enzyme 

plays a role in blood ion regulation (Henry, 1984; Strange and Phillips, 

1984). 

-A considerable amount of Cl and Hco
3 

transport data has accumulated 

that does not conform to any of the well-established systems described 

above. This has led to the long-standing controversy as to the existence 

in animals of a primary Cl (and Hco
3

) transport process (e.g. De Pont 

and Bonting, 1981; Gerenscer and Lee, 1983) involving an anion-ATPase 

in the plasma membrane esee Fig. 2E and F). Since its discovery by 

Kasbekar and Durbin (1965) anion-stimulated ATPase activity has been 

demonstrated in both microsomal and mitochondrial fractions of many 

tissues (De Pont and Bonting, 1981; Schuurmans, Stekhoven and Bonting, 1981; 

Gerenscer and Lee, 1983). 
2+ 

Indeed, the presence of a Mg -dependent 

anion-stimulated ATPase has been demonstrated in microsomal preparations 

from Malpighian tubules of Locusta (Anstee and Fathpour, 1979; 1981). 
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As the name of this enzyme implies, it is involved in the transport 

-of anions,especially HC0
3 

and Cl and is variously referred to as a 

2+ - - -Mg -dependent Cl + Hco
3
-stimulated ATPase, a HC0

3
-stimulated ATPase or 

a Cl -stimulated ATPase. Although considerable controversy surrounds 

the role of anion-stimulated ATPases in ion transport, it has been suggested 

that it has a function in the movement of ions and water across various 

epithelia (Kasbekar and Durbin, 1965; Simon and Thomas, 1972; Herrera 

et al., 1978; Jungreis, 1979). However, to assign a direct role of 

Cl or HC0
3 

transcellular transport to an ATPase, the enzyme should be shown 

.to be an integral component of the plasma membrane (Gerenscer and Lee, 

1983). De Pont and Bonting (1981) and Schuurmans Stekhoven and Bonting 

(1981) have stated that microsomal or plasma membrane localization of 

this enzyme is entirely due to mitochondrial contamination. However, 

various workers have demonstrated anion-stimulated ATPase activity in 

plasma membrane fractions either with virtually no mitochondrial contamination 

or a differentiated mitochondrial counterpart (Gerenscer and Lee, 1983; 

Komnick, 1978; Cole, 1979; Garner et al.; 1983J. 

Despite the controversy, there is some evidence that anion ATPase 

activity is located in the plasma membrane of a variety of epithelia inc luning 

locust rectal epithelia (Hanrahan and Phillips, 1983), Aplysia gut 

epithelia (Gerenscer, 1983), Amphiuma intestinal epithelia (White, 1980; 

1986) and bullfrog intestinal epithelia (Armstrong et a1., 1972) (see 

Fig. 2E and F). Other indirect evidence has occurred for dragonfly 

rectal epithelia (Komnick, 1978) and locust rectal epithelium 

(Herrera et al., 1978). Although Fathpour (1980) has hinted that a 

-Hco
3

-ATPase may occur for transport of water and anions across the 

Malpighian tubules of Locusta, this worker was unable to ascertain with 

certainty whether the cellular location of this enzyme was mitochondrial 
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or non-mitochondrial in origin or both. In the rectum of Schistocerca, 

Hanrahan and Phillips (1983; 1984) have described an unusual 

chloride transport system which absorbs Cl from a KCl-rich Malpighian 

tubule fluid. This electrogenic Cl- transport is activated and stimulated 

directly by K+ and is independent of Na+ and Hco
3

• Herrera et al. (1977; 

1978) have also found evidence of an active mechanism, probably on the 

basal side of the cells, for transporting Cl from the lumen to the 

haemolymph across the rectal wall in Schistocerca. Gerenscer (1983) 

has presented results that are consistent with an active Cl extension 

process which exists in the basolateral membrane of Aplysia intestinal 

epithelium. + This mechanism is electrogenic and is independent of Na 

- -and may be a Cl ~Hco3-stimulated ATPase (Gerenscer and Lee, 1985). 

The study of the divalent cation ca
2

+ in transport processes, 

especially among insect epithelia, is limited in comparison to studies 

on monovalent ions. However, since Douglas' (1968) proposal of a central 

. 2+ 
role for Ca in secretory processes, it has become evident that this 

cation is necessary for secretion in a wide variety of tissues and that 

the control of intracellular ca
2

+ is crucial for the regulation of cellular 

processes (Rasmussen and Goodman, 1977). Indeed, recent evidence indicates 

that calcium plays an important role in regulating net transport of 

ions and water in transporting epithelia (Windhager and Taylor, 1983; 

Taylor and Windhager, 1979). For a proper understanding of the role 

of ca2+ in celtular function, it is crucial to have clear information 

2+ 
regarding the mechanism by which free intracellular Ca is regulated. 

It appears that in addition to the contribution of intracellular 

sequestering organelles in such control, voltage-dependent and receptor-

operated calcium channels are also important (Spedding, 1985), although 

. 2+ 2+ 
the funct1on of such Ca channels as a major pathway for Ca influx 

(down the electrochemical gradient) is best charcterized in excitable 
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tissue {Reuter, 1983). Calcium as a conveyor of information is well 

known in the form of a second messenger in many tissues (Berridge, 

1980). Indeed, second messengers feature significantly in conveying 

information between both surfaces of the cell in a number of transporting 

epithelia such as intestine, mammalian salivary glands, cornea and 

insect salivary gland {Berridge, 1980). 

. 2+ 2+ + 2+ 
More 1mportantly, the Ca +Mg -ATPase and Na -Ca exchanger 

have been shown to be an integral part of intracellular ca
2+ regulation 

in many cells. 
2+ 

Since its discovery bySchatzmann {1966), a Ca -ATPase 

has been found in a large number of vertebrate tissues {Carafoli and 

Zurini, 1982) including the basolateral membrane of kidney proximal 

tubules {Gmaj et al., 1983; Doucet and Katz, 1982) and has been shown 

to be responsible for the extrusion of calcium ions across the cell 

membrane against a steep electrochemical ca2+ gradient {Carafoli and 

Zurini, 1982). Similarly, since the original proposal by Blaustein 

{197 ) h . + 2+ . . b 4 , t e ex1stence of a Na -Ca ant1porter, 1n asolateral membrane 

vesicles from a variety of transporting epithelia, has been documented 

{Gmaj et al., 1979; Chase and Al-Awqati, 1981; Chase, 1984). This 

exchanger operates in an electrogenic fashion with a proposed stoichio-

+ 2+ 
metry of 3-5 Na transported for every Ca {Mullins, 1979). Although 

+ 2+ 
the physiological and functional importance of Na -Ca exchange in 

transporting epithelia is still controversial {Snowdowne and Borle, 

1985; Mandel and Murphy, 1984), recent research has suggested the exchanger 

functions by transporting calcium out of the cell in exchange for the 

movement of sodium ions across the basal membrane {Scoble et al., 1986; 

Taylor and Windhager, 1983). Thus, this exchange appears to have an 

important role in the maintenance and function of cytosolic calcium 

in renal transporting tissue {Scoble et al., 1986). 
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Remarkably little is known about calcium transport by Malpighian 

tubules. Ramsay (1956) could find no evidence for active transport 

of calcium in the tubules of Carausius. and Maddrell (1971) has 

suggested that calcium transport across both the basal and apical membranes 

of the tubules of Carausius and Calliphora is by passive movements. 

However, Wright and Cook (1985) have suggested that the surprisingly 

large amounts of calmodulin (a calcium binding protein responsible 

2+ 
for regulating theCa -ATPase- Villalobo et al., 1986) present in 

Malpighian tubules of the cockroach Leucophaea probably reflects some 

kind of involvement with the active transport mechanisms of fluid secretion. 

Among other transporting epithelia, Barkai and Williams (1983) have 

suggested that calcium pumps consisting of calcium-activated ATPases 

2+ 
play an important role in transporting Ca from the drinking fluid 

h h 1 h d b b . 2+ h. h h b d b h to t e aemo ymp an rea sor 1ng Ca w 1c as een excrete y t e 

Malpighian tubules in the urine, in the larva of Aedes. In cockroach 

+ 2+ 
salivary gland, House and Ginsberg (1982) have postulated a Na -C~ 

exchange mechanism on the basal metnbrarie to maintain low levels of 

intracellularca2+activity, with Na linked to feed the Na++K+-ATPase 

on the basal side (Gupta and Hall, 1983). 
+ 2+ 

Also, Na -ca exchange 

appears to be .an important mechanism of calcium efflux at the basolateral 

2+ 
membrane during transcellularCa transport by the midgut of Calliphora 

(Taylor, 1984). 
2+ 

A basolateral Ca -ATPase may also be present in this 

tissue. 

In many insects, fluid secretion and the related ionic processes 

have been shown to be under control of the putative insect neurosecretory 

hormone known as diuretic hormone (Phillips, 1981; 1982). Diuretic 

hormone (D.H.) is a family of neuropeptides present in at least 20 

insect species, which probably regulates the passive permeability of 
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Malpighian tubules (Phillips, 1981; 1982). In the locusts Schistocerca 

and Locusta, D.H. appears to be a small peptide (Mordue and Goldsworthy, 

1969) which is stored in and released from the storage lobes of the 

corpus cardiacum (Mordue, 1969; 1972). The hormone is released into 

the haemolymph in response to feeding (Maddrell, 1963; Mordue, 1972; 

Gee, 1977; Nijhout and Carrow, 1978) thereby reducing the water load 

incurred as a result of food intake. As noted by Maddrell et al. (1971), 

Morgan and Mordue (1984) and Gee (1975), all parts of the insect central 

nervous system may contain extractable diuretic activity. Recently, 

insect D.H. has been partially purified and characterized in several 

insects including Locusta, but progress has been limited by the 

instability of the purified form (Aston and Hughes, 1980; Morgan and 

Mordue, 1983b; Phillips, 1982). 

Over recent years, it has been found that the biogenic amine 

5-hydroxytryptamine (5-HT or serotonin) mimics the action of D.H. on 

the Malpighian tubules of some insects but not others (Phillips, 1981). 

Similarly, it has been found that external application of the cyclic 

nucleotide, cAMP, mimics the action of D.H. in many insects (Phillips, 

1982) and D.H. stimulation causes an increase in tissue levels of cAMP 

in Rhodnius and Locusta (Aston, 1979; Rafaeli et al., 1984; Morgan 

and Mordue, 1984). Furthermore, 5-HT has been implicated in the activation 

of cyclic nucleoti~ in many invertebrate tissues (Walker, 1984) and 

it has been shown that this amine increases the intracellular concentration 

of cAMP in the salivary glands of Calliphora (Berridge and Patel, 

1968). Morgan and Mordue (1984), however, have shown that 5-HT does 

not produce an elevation in intracellular cAMP in Locusta tubule cells 

nor stimulates adenylate cyclase activity in broken cell preparations. 

Despite these facts, little is known about the means by which 
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hormonal regulation of ion and fluid secretion, by the Malpighian 

tubules of insects, occurs. Prince and Berridge (1973), Berridge (1980) 

and Berridge and Heslop (1982), however, have examined the receptor 

mechanisms mediating the action of 5-HT in the salivary glands of 

Calliphora. In this epithelia, it is thought that the normal information 

of the 5-HT molecule is decoded into second messengers in the form 

of cAMP and calcium through a specific interaction with a cellular 

receptor (Prince ~nd Berridge, 1973). Thus, a 5-HT
1 

receptor opens 

channels for calcium and a 5-HT
2 

receptor activates adenylate cyclase 

to generate cAMP (Berridge and Heslop, 1982). The second messengers 

cAMP and ca
2
+ are then responsible for mediating the ability of 5-HT 

to greatly accelerate the secretion of ions and water (Berridge, 1980}. 

Recent research has shown that another second messenger, inositol 1,4,5-

triphosphate (IP
3

}, is generated by the 5-HT
1 

receptor (Berridge, 1986} 

and this appears to mobilize intracellular calcium (Berridge et al., 

1984}. 

It is difficuif to apply this model for hormone-stimulated fluid 

secretion by the salivary glands of Calliphora to Malpighian tubules 

as 5-HT is thought to be the physiological hormone in the former 

epithelia (Trimmer, 1985). Indeed, although Maddrell et al. (1971} 

found that the Malpighian tubules of Rhodnius and Carausius were sensitive 

to remarkably low concentrations of 5-HT, they were able to conclude 

that 5-HT was not the physiological hormdne released in response to 

feeding. Despite this, Morgan and Mordue (1984} have proposed a 

hypothetical model for the hormonal control of fluid secretion by the 

tubules of Locusta. This model suggests that two spatially distinct 

receptors exist on the surface of the tubule cells; one which activates 

adenylate cyclase activity (R
1

} to increase cAMP synthesis and the 

other triggering a different secondary cellular event (R
2
}, possibly 
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. . . 11 1 2+ . 1ncreas1ng 1ntrace u ar Ca concentrat1on. It is suggested that 

D.H. is able to stimulate both receptors (R
1 

and R2) simultaneously 

thereby activating maximum stimulation. Each receptor can be stimulated 

independently with 5-HT stimulating fluid secretion at R
2

• Two 

independent agonists may act at the two receptor sites, with maximal 

activity being achieved by stimulation via either receptor (Morgan 

and Mordue, 1984). 

In view of the lack of information concerning the nature of the 

mechanisms of ion and water transport across the Malpighian tubules 

of insects, the present study has been carried out to examine the 

electrical events associated with ion movements across cells of the 

tubules of Locusta. From this, it is hoped to construct a model which 

describes the ionic fluxes which support fluid secretion by the Malpighian 

tubules of Locusta. In addition, a study was undertaken to characterize 

ouabain binding to the Na++K+-ATPase of Malpighian tubules of Locusta, 

to determine the sensitivity of the enzyme preparation to ouabain and 

+ + to assess the likely contribution of the Na +K -ATPase •p-ump' to cation 

translocation in this tissue. 
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CHAPTER 2 

Materials and Methods 

Maintenance of Insects 

A stock population ofLocustamigratoria L. was reared in gregarious 

phase in an insectctry at 28 ± 0.5°C, 60 ± 5% relative humidity and a 

photoperiod of 12 hours light 12 hours dark. Circulation of air was 

provided by three electric fans and a continuous air exchange was 

maintained by a fan-driven ventilator (Xpelair). Humidity was controlled 

by three humidifiers (Lumatic, Humidifier Group, Bromley, Kent, England). 

Locusts were kept in perspex fronted cages (41 em x 41 em x 60 em) supplied 

by Philip Harris Biological Ltd., Oldmixon, Weston-super-Mare, Avon, 

England). Each cage was illuminated with a single 40 watt bulb which 

resulted in cage temperatures varying from 30° - 40°C depending on the 

distance from the bulb and the photoperiod. The humidity inside the 

cage also varied with the addition of fresh food and water. Locusts 

were fed daily on fresh grass, water and Bemax. Animals were reared 

at sufficiently high population density to prevent reversion to the 

solitaria phase (Joly and Joly, 1953). 

Glassware and Reagents 

Pyrex glassware was used throughout and prior to use was cleaned 

by soaking overnight in a 2% (w/v) solution of 'Quadralene' laboratory 

detergent followed by rinsing in tap water (four times). It was tpen 

dried in an oven at 100°C. 

All chemicals and drugs were AnalaR grade or the purest commercially 

available and were largely supplied by Sigma Co., Poole, Dorset, England 

or B.D.H., Poole, Dorset, England. Sodium acetazolamide (Diamox) was 

obtained from Lederle (American Cyonamid Company, Pearl River, N.Y., 

U.S.A.) and Amiloride was a gift from Merck Sharp and Dolme Research 
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Laboratories (Heddesdon, Hertfordshire, England). Bumetanide was kindly 

supplied by Dr. S.H.P. Maddrell and was originally obtained from Leo 

Pharmaceutical Products, Denmark. 

Solutions 

The composition of the 'Normal' insect saline was as follows (mM): 

NaCl 100, KCl 8.6, MgC1 2 (6H
2

0) 8.5, CaC12 2, NaH2 Po4 4, NaH co3 4, 

Glucose 34, HEPES 25, NaOH 11, pH 7.2. In ion substitution experiments 

alternative salines were used (Table 1). Various potassium concentrations 

were obtained by mixing calculated amounts of high K+ and zero K+ saline 

(these had the following K+ concentrations (mM): 128, 64, 32, 8.6, 4.3, 

+ 2.5, 1.25 and 0 K ). All solutions were adjusted to pH 7.2. 

In studies involving monensin, verapamil, A23187, SITS, furosemide 

and bumetanide it was necessary to dissolve each agent in spectroscopically 

pure absolute ethanol (Fison Scientific Apparatus, Loughborough, Leics., 

England) before adding it to the appropriate saline. In all experiments 

involving such agents, the same concentration of solvent (< 0.1%) was 

included in the control. 

Oxygen Electrode 

Measurements of oxygen consumption by Malpighian tubules were carried 

out using a polarographic electrode (Yellow Springs Instrument Co., Yellow 

Springs, Ohio, U.S.A., YSI Model 53) which is of similar design to the 

Clark oxygen electrode (Clark, 1956). The former oxygen electrode has 

been described in detail by Fathpour (1980). 

Adult female locust Malpighian tubules were dissected out under 

ice-cold 'Normal' saline, weighed after blotting dry and placed in the 

incubation chamber of the oxygen electrode which contained 3 mls of air 

saturated 'Normal' saline at 30 ± 0.1°C.Following a 10 min equilibation 

period, the rate of oxygen consumption was determined polarographically. 



Table 1 

Composition of different salines used in the study of in vitro 

Malpighian tubules of Locusta. All values are in mM. 

* + + Note: The K concentration in Na free saline was 8 mM and not 

8.6 mM as in 'Normal' saline. 

~·· 



Saline (Values in rnM) 

High K+ 
K+ free 

'It HighK+~ K+ free K+ free, High K+, ca2+ free 
High K+, 

'Normal' 
(Na+ free) 

Cl- free Na+ free 
cl- free cl- free Na+ free Low Na+ ca2+ free 

NaCl 100 - 108.6 - :·;: - - - - 10 100 . 
KCl 8.6 108.6 - - .... - - - 98.6 8.6 108.6 

CaCl2 2 2 2 - 2 - - 2 2 

MgCl2.6H20 8.5 8.5 8.5 - 8.5 - - 8.5 8.5 8.5 8.5 

NaH2P04 4 - 4 4 - - 4 - - 4 

KH2P04 - 4 - - 4 4 - - 4 - 4 

NaHC03 4 - 4 4 - - 4 - - 4 

KHC03 - 4 - - 4 4 - - 4 - 4 

Glucose 34 34 34 34 34 34 34 34 34 34 34 

HE PES 25 25 25 25 25 25 25 25 25 25 25 

NaOH 11 - 11 11 - - 11 - - 11 11 

KOH - 11 - - - 11 - - 11 

Na Gluconic 
100 108.6 Acid - - - - -

K Gluconic 
8.6 108.6 Acid - - - -

Ca Gluconic 
2 2 2 Acid - - - -

Mg Gluconic - - - 8.5 - 8.5 8.5 Acid 

Choline 
108.6 108.6 Chloride - - - - - -

Trizma Base - - - - 11 - - 11 

Choline 
4 Bicarbonate - - - - - - -

Trizma 
Phosphate - - - - - - - 4 

EGTA - - - - - - - - - 2 2 
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The consumption of oxygen was monitored with a Servoscribe pen recorder 

(Goerz Electro) and the data are expressed in ~moles oxygen consumed/g wet 

weight/min. The oxygen content of the saline in the incubation chamber 

was determined on the basis that the oxygen content of 1 m1 of saline 

saturated with air at 30°C.contained 0.223 ~moles oxygen (Chappell, 1964). 

Thus for the 3 mls of reaction medium used in this study, the oxygen 

content was 0.669 ~moles oxygen. 

Determination of ATPase Activity 

The methods of preparation of membrane microsomal fractions, measurement 

of ATPase activity and the estimation of microsomal protein are as described 

by Peacock et al. (1976) and Anstee and Bell (1975) (see also Anstee 

and Bowler, 1984). 

Reagents (Final Concentration) 

Homogenization medium (pH 7. 2). 

Histidine/HCl 

Mannitol ..... -
EDTA 

Sodium deoxycholate 

40 mM 

250 mM 

SmM 

0.1 w/v 

Sodium iodide extraction medium (pH 7.2) 

MgC1 2 
Nai 

EDTA 

Washing Medium 

NaCl 

EDTA 

SmM 

4mM 

10 mM 

SmM 

SmM 

Ionic reaction medium for total ATPase (pH 7.2) 

MgCl2 

NaCl 

KCl 

Histidine/HCl 

4mM 

100 mM 

20 mM 

50 mM 



2+· Ionic reaction medium for Mg ATPase (pH 7.2) 

MgCl2 

Histidine/HCl 

4mM 

50 mM 
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Reaction stopping solution (Cirrasol solution) (Atkinson et al., 1973) 

Mix equal volumes of 1% Cirrasol ALN-WF in deionized water with 

1% ammonium molybdate in 0.9 M H2so4 • 

The reaction was stopped by adding 4 mls of this mixture to each 

solution. 

Substrate used 

Tris ATP 3mM 

The disodium salt of ATP was converted into Tris ATP by a method 

described by Anstee and Bowler (1984). This involved suspending 20 g 

Dowex 50-X8 resin in 1 i of 1M HCl and stirring for 30 mins. After 

the Dowex beads had been allowed to settle, the acid was poured off. 

The beads were then washed with deionized water until the washings were 

at pH 3-4. These washed beads were stored wet at 4°C until required. 

A layer of charged Dowex was placed in a Buchner funnel lined with 

2-3 layers of moistened filter paper. A known volume of disodium ATP 

solution was added and left to drain through slowly without suction. 

This procedure was repeated six times. The effluent was collected in 

a conical flask as ATP in an acid form. This was then converted to Tris 

salt by the addition of drops of 2M Tris until the pH was 7.2, made up 

to the required volume and stored at 20°C. 

(a) Preparation of Microsomal Fraction 

Forty adult female locusts were killed by twisting the head so as 

to break the neck cuticle from the thorax. The extreme tip of the abdomen 

was cut off allowing the whole gut bearing the Malpighian tubules to 

be carefully drawn out through the thorax with the head still attached. 
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The Malpighian tubules and a small 'collar' of attached gut were quickly 

dissected free under ice-cold homogenizing medium. Tubules were pooled 

in 10 mls of fresh ice-cold homogenizing medium and homogenized. After 

this process, the resulting homogenate was extracted with an equal volume 

(10 mls) of ice-cold Nai extraction medium for 30 mins at 0-4°C (Nakao 

et al., 1965). The extract was then diluted to 50 mls with ice-cold 

deionized water and centrifuged at 50,000 g at 0-4°C for 30 mins. The 

resulting pellet was discarded and the supernatant centrifuged at 

100,000 g for 60 mins. The supernatant was discarded and the resulting 

pellet was resuspended in approximately 10 mls of washing medium and 

centrifuged at 100,000 g for 45 mins. This washing procedure was repeated 

twice, centrifuging for 20 mins each time. The final microsomal pellet 

was suspended in an appropriate volume of ice-cold deionized water. 

(b) ATPase Activity 

Incubations were carried out at 30 ± O.l°C for 20 or 30 mins. Pairs 

of boiling tubes containing 1 ml of the appropriate ionic medium and 

0.5 mls, 12 mM Tris ATP were set up and equilibrated at 30°C for 10 mins. 

The reactions was started by the addition of 0.5 mls of the microsomal 

fraction and was stopped by the addition of 4 mls of freshly prepared 

Cirrasol solution (Atkinson et al., 1973). 

+ + Na+K -ATPase activity was obtained as the difference in inorganic 

phosphate (indicated by a yellow colour) released in media containing 

Na+,K+ and Mg2+ (with and without lmM ouabain) and Mg2+ alone. Inorganic 

phosphate released was proportional to the absorbancy value measured 

at 390 nm in a Pye Unicam 1800 Dual Beam Spectrophotometer. The amount 

of phosphate released was determined by reference to a standard calibration 

curve (Fig. 3). This was prepared from the serial dilution of a stock 

phosphate solution containing 20 ~g phosphorus (as KH2Po4/ml). Samples 



Fig. 3 

A standard calibration curve for determination of inorganic phosphate. 

Ordinate: Absorbance 390 nm 

Abscissa: nmoles Inorganic Phosphate 
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of 20, 15, 10, 5, 2, 1 and 0 ~g Pi/ml were used. To 2 mls of each sample, 

4 mls of Cirrasol solution was added with the tubes being allowed to 

stand at room temperature for 10 mins before the absorbancy was measured. 

Enzyme activities were expressed as ~moles inorganic phosphate liberated/ 

mg protein hr-1 • 

This method was modified slightly to determine the inhibition of 

Na++K+-ATPase by ouabain (Anstee and Bowler, 1984). Microsomes were pre-

incubated for 15 mins in the presence of Na+,Mg2~ATP and ouabain (0 

to 10-3 M) before the reaction was started by the addition of K+ in a 

ouabain solution. 

(c) Protein Estimation 

Protein estimations were made by the method of Lowry et al. (1951) 

using bovine serum albumen Fraction V (BSA) as a standard, and Folin 

Solution A and Folin Solution B. Folin Solution A was prepared by mixing 

equal volumes of 0.5% cuso4 and 1% KNa Tartrate and to each volume of this 

mixture adding 50 volumes of 2% Na2co3• Folin Solution B was prepared by 

diluting 4 volumes of Folin Ciocalteaus phenol reagent with 6 volumes 

of deionized water. A 500 ~g/ml stock solution of BSA was serially 

diluted to give samples with the following protein concentration: 500, 

400, 300, 200, 100, 50 and 0 ~g/ml. To calculate the protein concentration, 

3 mls of Folin Solution A was added to 0.2 mls of protein solution and 

allowed to stand for 30 mins at room temperature. Then 0.3 mls of Folin 

. 
Solution B was added and the resulting solutions were allowed to stand 

for a further 60 mins at room temperature before the absorbancy was read. 

A standard calibration curve (Fig. 4) relating absorbancy at 500 nm to 

protein concentration was constructed. The protein concentration was 

expressed in ~g/ml. 



Fig. 4 

A standard calibration curve for determination of protein. 

Ordinate: Absorbance at 500 nm 

Abscissa: Concentration of Protein in ~g/ml 
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Ouabain Binding 

The binding of ouabain with Malpighian tubule membrane microsomal 

preparation from Locusta was determined by a rapid Millipore filtration 

procedure similar to that described elsewhere (Hansen, 1971; Harms and 

Wright, 1980; Rubin et al., 1981; Anstee and Bowler, 1984). Approximately 

1 mg microsomal enzyme protein was incubated in 5 mM MgCl 2 , 2 mM EDTA, 

100 mM NaCl, 3 mM ATP in 20 mM imidazole/HCl (pH 7.2) with [3H)-ouabain 

at 30°C. At the end of the appropriate incubation period a sample of 

the medium (usually 100 ~1 ) was removed and rapidly filtered through 

nitrocellulose filters (pore size 0.45 ~m) on a Millipore sampling manifold 

by suction. Following washing with three separate 5 ml aliquots of cold 

(0-4°C) washing medium, whose composition was identical to that of the 

incubation medium but without ouabain or ATP, the filters were dissolved 

in Liquiscint scintillation cocktail (National Diagnostics) and the amount 

of labelled ouabain determined by liquid scintillation counting in a 

Packard TRI-CARB 300C liquid scintillation counter. Counting efficiency 

. was approximately 30%. Quenching was monitored by the external standard 

channel ratio that was calibrated by internal standards (Kazazoglou et al., 

1983). Non-specific ouabain-binding was determined by running a parallel 

set of incubations in which 3 mM unlabelled ouabain ('excess') was also 

present in the incubation medium. Specific binding of ouabain was obtained 

by substration of the ouabain bound non-specifically. Dissociation of 

ouabain from the enzyme preparation was determined by a chase method 

(Wallick et al., 1980). The amount of membrane suspension needed was 

allowed to bind [3H)-ouabain at 30°C, as described above, for a sufficient 

time (45 mins) for equilibrium to be attained. At this time an excess 

of unlabelled ouabain was added to a final concentration of 1 mM and 

at appropriate times aliquots were removed, filtered, washed and counted. 

[3H)-ouabain (1.55 TBq/mmol) was obtained from Amersham International 

plc., Amersham, England. 
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Determination of Malpighian Tubule Cell Numbers 

The number of cells per Malpighian tubule was estimated by counting 

the number of nuclei in a series of known lengths of unfixed tubules. 

These segments of tubule were then weighed and the weight of 1 mm of 

tubule calculated. By relating this value to the number of cells in 

1 mm of tubule it is possible to obtain an estimate for the weight of 

a tubule cell and from the weight of the total tubule mass in a locust, 

the total number of Malpighian tubule cells. This value may then be 

used in conjunction with determinations of protein levels in microsomal 

preparations, from known numbers of locusts, to provide an estimation 

of microsomal protein yield per cell. 

Statistical Analysis 

Statistical comparisons of data were performed using the conventional 

technique described by Snedecor and Cochran (1967). Where necessary, 

the statistical tables of Fischer and Yates (1963) were used. Values 

and probabilities less than 0.05 were taken as significant. All means 

are given ± S.E.M. 

Electron Microscopy, Cell Size and Lead Staining 

(a) Electron Microscopy 

In Locusta, Malpighian tubules arise from the alimentary canal and 

either pass anteriorly to loosely attach to the gut caeca (anterior 

tubules) or pass posteriorly to loosely attach to the rectum (posterior 

tubules). For transmission electron microscopy adult female locusts 

were killed by decapitation and the anterior Malpighian tubules were 

quickly dissected out in ice cold Normal saline. The tubules were then 

fixed for 1-11 hrs at 4°C inKarnovsky's fixative (Karnovsky, 1965) which 

was composed of: 
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Solution A 

para formaldehyde 2 g 

distilled water 40 mls 

in NaOH 2-6 drops 

Solution B 

25% gluteraldehyde 10 mls 

0.2 M cacodylate 
50 mls buffer pH 7.3 

Solutions A and B are mixed in 1: 1 ratio just before use. After fixing, 

the tissue was post-fixed with 1% osmium tetroxide in 0.1 M sodium cacodylate 

buffer (pH 7.5) for 1 hr_before dehydration through a graded series of 

ethanols to propylene oxide, prior to embedding in Araldite epoxy resin. 

Silver/grey sections wre cut on a Reichert NK ultratome, post stained 

with uranyl acetate followed by lead citrate (Reynolds, 1963), prior 

to their examination in an AEl 801 electron microscope. 

(b) Cell Size 

Cell size was estimated from measurements made on 5 ~m thick serial 

sections through Malpighian tubules as prepared for electron microscopy 

above. 

(c) Lead Staining of Type 2 Cells 

Although one cell type predominates throughout the length of the 

tubules (Peacock, 1975), two types of cell have been found in the Malpighian 

tubules of Locusta (Charnley, 1984) - Type 1 or primary cells and Type 

2 or stellate cells. The latter are demonstrable by virtue of the fact 

that they take up lead (Berridge and Oscham, 1969; Peacock, 1975). The 

relative number of Type 2 cells was estimated using this lead staining 

method. Whole mounts of anterior Malpighian tubules were prepared by 

fixing them for 15 mins in 2.5% gluteraldehyde in 0.15 M sodium cacodylate 

buffer (pH 7.3) containing 0.15% lead nitrate. After washing in fresh 
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0.15 M sodium cacodylate buffer for 1 hr, the tubules were treated with 

ammonium sulphide, mounted on glass slides in fresh buffer, examined 

and photographed under a Nikon Optiphot microscope (method attributed 

toM. Locke and cited in Berridge and Oscham, 1969). 

Rate of Fluid Secretion 

In vitro measurements of the rates of fluid secretion by Malpighian 

tubules of Locusta were carried out using essentially the same technique 

as that described by Maddrell and Klunsuwan (1973) (see also Anstee and 

Bell, 1975; Donkin and Anstee, 1981). The gut of an experimental animal 

with the head still attached was immersed in a small volume of 'Normal' 

saline in a hollow in a perspex dish. Up to ten tubules were drawn out 

of the saline bath into the liquid paraffin and looped around a small 

peg. Each tubule was then partially severed at a convenient point along 

its length and the rate of secretion determined by measuring the rate 

of increase in the diameter of the approximately spherical droplet 

secreted from the--cut. 

The secretion rate of each tubule was determined by measuring the 

diameter of the secreted droplet at 5 min intervals over a period of 

30 mins after an initial equilibrium period of 15 mins. This gave Rate 1 

and at the end of this time, the saline was replaced by a fresh solution 

which had either the same (the controls) or a different (the experimental) 

composition. The rate of secretion wa$ re-determined, after an equilibrium 

period of 20 mins for a further 30 mins (giving Rate 2). The volume of 

fluid secreted was calculated and expressed in nl/min. The effect of the 

particular treatment was determined by comparing Rates l-and 2. In this 

way each tubule acts as its own control. This is necessary as the rate 

of secretion varies considerably from tubule to tubule. The temperature 

throughout was maintained at 30 ± 0.5°C by placing the perspex dish inside 

a water heated temperature chamber. 
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Electrophysiology 

Malpighian tubules were dissected out as described previously under 

Normal saline at 30°C. Before experimentation, tubules were placed under 

liquid paraffin to check for leaks (bubbles of 'urine' emerging from 

a hole in the tubule). Leaking tubules were discarded. For electrical 

measurements tubules were set up in a Perspex perfusion chamber which 

was based on the 'gap' system of Berridge and Prince (1972) (see Figs. 5 

and 6 ). The chamber consisted of five connected baths (A-E) which were 

coated to a depth of about 2 mrn with the silicon elastomer Sylgard 184 

(Dow-Corning, Seneffe, Belgium). A section of Malpighian tubule (usually 

about 17 mrn) was drawn through slits connecting baths A, B, C and D and 

"pinned" into the Sylgard of baths A and D. Microelectrode recordings 

took place in the experimental bath C which was perfused via a glass 

inlet tube F. The volume of this bath was 0.5 ml and the perfusion rate 

was approximately 4 mls/min. Thus, the contents changed every 7.5 s. 

Superfusion occurred from baths C to E and the perfusate was drawn away 

from the system via a glass outlet tube G by means of a peristaltic 

pump (Watson Marlow 502S). Fluid was generally passed on to a waste 

bottle. The system also had a recycling facility by means of a series 

of 3-way taps. Fluid entering the experimental chamber arrived from 

one of various perfusion bottles (P.B.). These bottles were jacketed 

to allow the contained saline to be thermo-equilibrated at 30°C and were 

connected to a single Perspex manifold (M) (Fig. 7). A single outlet 

(0) from this manifold was in connection with the glass inlet tube (F) 

of the experimental bath c. Tests were carried out from time to time 

in which amaranth dye was introduced into the system. This confirmed 

that no observable mixing of solutions occurred at manifold junctions. 

All tubing used was P.V.C. (Gallenkamp) or silicon (Watson Marlow). 



Fig. 5 

A schematic diagram of the Perspex experimental chamber (PC) used for 

superfusing and the recording of membrane and transepithelial 

potentials of the Malpighian tubules of Locusta. The chamber consists 

of five connected baths (A-E), a glass inlet tube with support (F) 

and a glass outlet tube with support (G). During experimentation, a 

Malpighian tubule was drawn through slits between baths A to D and 

rested on a raised Sylgard block(H)in the experimental bath C. It 

was in this bath that microelectrode recordings from the tubule took 

place. Perfusion occurred from bath C to E; this two chamber 

perfusion arrangement ensured no electrical 'pickup' occurred. Areas 

I and J represent cut away regions in the Perspex chamber into which 

the Ag/AgCl electrodes were placed (see Fig. 6). 
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Fig. 6 

This shows the position of a Malpighian tubule in the experimental 

chamber used for superfusing and recording of membrane potentials. 

Tubules of about 17 mm length were drawn taut from baths A to D and 

fixed into 'nicks' in the Sylgard bases of these baths to prevent 

movement. The tubule rested on a raised block of Sylgard (H) in bath 

C and this ensured that the tubule had a firm base for microelectrode 

penetration. The portion of tubule in bath A was partiaily severed 

using a tungsten needle; ensuring the lumen of the tubule was contiguous 

with the contents of the experimental bathA. Baths A and C contained 

saline whilst baths B and D were filled with liquid paraffin (LP) to 

provide insulation. Surface tension kept saline and liquid paraffin 

from mixing. 

This figure also shows the circuit diagram of the system used for 

the simultaneous measurement of membrane and transepithelial potentials 

in the Malpighian tubules of Locusta. The transepithelial potential 

(T.E.P.) was measured by connecting qaths A and C to Ag/AgCl electrodes 

in 2M KCl (E) via agar bridges (AG). The Ag/AgCl electrodes were 

connected to an oscilloscope (CRO) and a pen-recorder via two components 

of a high input impedance amplifier (PE1 and E
1
). T.F..P. was measured 

by having one E/AG in bath A and the other in bath C. Membrane potentials 

were measured by connecting single barrelled microelectrodes (ME) via 

two components of an amplifier (PE
2 

and E
2

) to a second channel of the 

oscilloscope (CRO) and the pen recorder. The presence of a switch box 

(SB) and the fact that the two amplifier components PE
1 

and PE
2 

were 

connected allowed the measurement of the basal cell membrane potential 

(VB) and T.E.P. with the perfusate as reference (bath C) and the apical 

cell membrane potential (VA) and T.E.P. with the luminal fluid as 

reference (bath A). 
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Fig. 7 

A schematic diagram of a perfusion bottle (PB) and manifold (M) used 

in superfusing Malpighian tubules from Locusta. A number of water

jacketed perfusion bottles were connected to a single manifold whose 

single outlet (O) was in connection with the glass inlet tube (F) of 

the experimental chamber. Perfusing solutions were changed by clipping 

off the flow from one bottle and opening the clip (C) on"the tubing of 

another bottle. 
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The temperature of the experimental bath was kept at 30° ± 0.1°C (with 

a Gallenkamp Haake DI water bath) by placing the Perspex experimental 

chamber on the surface of a water-heated temperature place. A 'seal' 

between the chamber and the plate was achieved by means of liquid paraffin. 

Illumination was by a fibre optic system (Ealing Beck Ltd., Watford, 

Herts., England) arranged at one side of the chamber. 

(a) Electrical Recording 

The arrangement for recording electrical potentials was similar 

to that of Berridge and Prince (1972). Fig. 6 shows that the transepithelial 

potential (T.E.P.) wasmeasured by connecting baths A and C of the experimental 

chamber to Ag/AgCl electrodes in 2 M KCl (E) via glass Normal saline/4% 

agar bridges (AG). Each Ag/AgCl electrode was connected to the head-stage 

(PE1 ) of a high input impedance field effect amplifier E1 (based on the 

design of Colburnand Schwartz, 1972). The output from this amplifier 

was displayed on an oscilloscope CRO (Telequipment Type Dl010) and 

permanent_records made on a vertical multi-channelled pen recorder 

(Servogor 460- Metrawatt, Nllrnberg, F.R.G.). Initial zeroing of the 

system was carried out by placing both agar bridges in bath C. Any 

deviation of potential from a standardized baseline was due to junction 

potentials between KCl and the Ag/AgCl electrodes or old agar bridges 

(Barry and Diamond, 1970). This was eliminated by scraping the Ag wires 

and coating in AgCl by passing a 25 rnA current through a solut~on of 

100 mM HCl for 1 min with the wire to be coated made the anode. Wires 

were then rinsed and stored until required. 

Membrane potentials were measured using single-barrelled microelectrodes 

(ME) fabricated from 1 mm diameter thin-walled filamented glass capillary 

tubing (GC 200F-10, Clarke Electromedical, Reading, England). These 

were pulled on a horizontal electrode puller (Palmer Ltd., London) and 
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back-filled with 4 M potassium acetate (the electrolyte) using a syringe 

and a 30 swg needle. A thin, chloride-coated silver wire was inserted 

into the back of a microelectrode and used to connect it to the. input 

stage (PE2) of a high input impedQnce field-effect amplifier (E2) whose 

output was displayed on a second channel of the oscilloscope CRO and 

recorded on the Servogor chart recorder. 

The simultaneous recording of the tubule membrane potential and 

T.E.P. occurred as a result of the two amplifiers (E1 and E2) bein9 connected 

at the input stages PE1 and PE2 . The introduction of a relay switching 

mechanism (SB) connected to a foot pedal (RS 316-939) changed the reference 

from bath A (the luminal 'fluid) to bath C (the perfusate) so that the 

basal cell membrane potential (V8 ) and T.E.P. was recorded with the perfusate 

as reference. Upon switching, the apical cell membrane potential (VA) 

and T.E.P. was recorded with the luminal fluid as reference. 

Microelectrodes were mounted on a Prior micromanipulator (Prior, 

England) and positioned in the perfusing fluid near to the Malpighian 

tubule. The tip resistances of the microelectrodes, inserted in the 

perfusing fluid, were 20-50 MQ and the tip potentials (potential between 

the electrolyte in the microelectrode and the perfusate) were about 

3 mV. Microelectrode tips were less than 1 ~m; fine tips were needed 

to allow easy impalement. The resistances of microelectrodes were 

measured using a constant current generator system incorporated in the 

amplifiers (based on the design of Colburn and Schwartz, 1972). A 1 nA 

current was passed down a microelectrode resulting in a voltage deflection 

on the oscilloscope. Using Ohm's Law (V = IR) a value for microelectrode 

resistance was calculated. The constant current generator was used 

periodically to measure the membrane input resistance by passage of 

current (usually 1 nA) through the tip of the microelectrode while it 
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was in a cell (however, see later). 

Before experimentation, a microelectrode was equilibrated in the 

perfusate and the resistance noted. After this period, the microelectrode 

was positioned very close to the tubule using the fine advance on the 

micromanipulator. Further changes with the manipulator adjusted the 

microelectrode to an angle of about 60° with respect to the tubule. 

Gentle tapping of the baseplate of the manipulator caused the microelectrode 

to rapidly penetrate a cell as signalled by the rapid registration of 

a resting potential on both the oscilloscope and the recorder. Occasionally, 

oscillatory voltages were passed across the microelectrode to facilitate 

penetrations of cells. This was achieved by momentarily overcompensating 

the negative capacity adjustment of the amplifier (PE2). The criteria 

adopted as indicators of a successful microelectrode penetration were: 

(i) the change in potential from baseline was abrupt 

(ii) the intracellular voltage remained constant within 2 mV for 

5-10 mins after impalement 

(iii) the voltage returned to the original baseline or a value close 

to it when the microelectrode was withdrawn from the cell (experiments 

were not used if the voltage 'drift' was more than 10 mv over 

the period of 1 hr). 

The rationale of these criteria was to exclude leaky impalements from 

this study. 

After a successful penetration, solution changes were carried out 

as described earlier. Experimentation on a tubule usually did not last 

longer than 1.5 hrs. After this time, the microelectrode was removed 

from a cell and the microelectrode resistance measured as a means of 

checking for electrode blocking. Blocking of the microelectrode tip 

sometimes caused a slight 'drift' of the recorder traces and this was 
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related to criterion (iii) described above as to whether an experiment 

was accepted or not. Changing to a new perfusing solution often lead 

to a liquid junction potential at the agar bridge in the experimental 

bath. Membrane potentials and T.E.P. measurements were corrected for these 

junction potentials whose magnitude (usually only a few mV) were calculated 

by changing solutions after experimentation with the microelectrode 

withdrawn from the tubule but remaining in the perfusate. The perfusion 

chamber was thoroughly washed out with de-ionized water and dried after 

each experiment. Setting up and penetration of tubules was viewed under 

a Zeiss microscope. Experiments were carried out in a Faraday cage to 

cut out electrical interference and a vibration damped bench was used~ 

This system allowed three voltage measurements, namely basal and 

apical cell membrane potentials and T.E.P. measurements to be recorded in 

the present study. (In addition, T.E.P. was also calculated from T.E.P. = 

v -V .) All potentials were measured in millivolts (mV). 
B A 

(b) Intracell~lar Injection of Fluorescent Dye 

The fluorescent dye Lucifer Yellow CH was injected intracellularly 

into Malpighian tubule cells by iontophoresis through the microelectrode 

(Stewart, 1978; Hanrahan and Phillips, 1984; Thomas and May, 1984). A 

3 mm column of dye was placed into the tip of a microelectrode by immersing 

the blunt end of the electrode into a 5% solution of Lucifer Yellow CH 

in 1 M lithium chloride. The rest of the microelectrode was back-filled . 
with 1 M LiCl. Cells were penetrated as described in section (a) above -

microelectrode resistances being higher on average (50-60 MQ). Dye was 

injected by passing a 10 nA hyperpolarizing current for 20 mins through the 

microelectrode using the constant current source described earlier. 

Continuous penetration during injection was ensured by switching off the 

current for a few seconds to observe the membrane potential. After 
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injecting, tubules were left for 15 mins in Normal saline, then fixed 

in 4% paraformaldehyde buffered with 0.1 M phosphate at pH 7.2. After 

1 hr of fixation, tubules were dehydrated in ethanol (70, 95 and 100% 

for 5, 5 and 10 mins respectively) and then cleared for 5 mins in xylene. 

Tubules were mounted in Fluoromount mountant (BDH, Chemical Ltd., Poole, 

England) and viewed in whole mounts under a u.v. fluorescence microscope 

(Nikon). Controls in which tubules were immersed (and not injected) 

in a 5% Lucifer Yellow solution were carried out. 

Note on Membrane Resistance Measurements 

Results using Lucifer Yellow showed that the Malpighian tubules 

of Locusta rapidly excreted this dye. Indeed, no fluorescence was observed 

under the u.v. microscope. The lack of Lucifer Yellow staining was probably 

not due to a failure of the dye to come out of the microelectrode, and 

this was supported by the number of impalement experiments, along with 

the reliability of the technique as shown by other workers (Stewart, 

1978; Hanrahan and Phillips, 1984; Thomas and May, 1984). Thus, it was 

impossible to determine whether Malpighian tubule cells were electrically 

coupled or not. For this reason, the measurement of the basal, apical 

and transepithelial resistance was not carried out in this study. 



Results 

Section 1: 

CHAPTER 3 

+ + Ouabain-binding Studies on the Na +K -ATPase 

40 

The method of extraction of microsomal preparations from the 

Malpighian tubules of Locusta and the technique of ouabain-binding 

have been described earlier (see Materials and Methods, Chapter 2). In 

1 + + 0 d the present study twe ve separate Na +K -ATPase preparat1ons were use . 

Each was obtained from homogenates of Malpighian tubules prepared from 

40 locusts. 
2+ 

The mean specific activity of the Mg -ATPase and the 

+ + 
Na +K -ATPase was 1.56 ± 0.22 and 5.86 ± 0.82 ~mol inorganic phosphate 

liberated/mg protein per h, respectively. 
+ + 0 0 Thus, Na +K -ATPase act1v1ty 

accounted for ca. 75% of the total ATPase activity of these preparations. 

+ + 0 0 0 f d 0 ff Na +K -ATPase act1v1ty was assayed 1n the presence o 1 erent 

-8 -3 
concentrations pf ouabain over the range 10 -10 M. The inhibition 

curve for ouabain obtained from this assay (Fig. 8) shows.that as the 

+ + concentration of ouabain increased so did the inhibition of the Na +K -

ATPase activity. The concentration of ouabain effecting 50% inhibition 

of activity (I
50

) was 1.12 ~ (95% confidence limits= 0.7-1.9 ~M). 

Ouabain B.<.nciing 

+ + • 
Na +K -ATPase binds ouabain specifically according to the mass-law 

equation: 

k1 

E + I ~ EI 

where E is the receptor concentration, I is the ouabain concentration, 

EI is the ouabain-receptor complex concentration, and k1 and k_1 are 



Fig. 8 

Effect of different concentrations of ouabain (1 x 10-
8 M to 1 x 10-

3 
M) 

30 0 + + . . at C on Na +K -ATPase act1v1ty. Typical experiment which is 

representative of four experiments. 

Ordinate: 
+ + 

Probits of Fraction of Na +K -ATPase 

Activity Remaining 

Abscissa: Negative Logarithm of Ouabain Concentra~ion (M) 
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the association and dissociation rate constants, respectively. 

The formation of [3H]ouabain-enzyme complex follows second-order 

kinetics (Erdmann and Hasse, 1975). Thus, both the initial receptor 

concentration and the initial ouabain concentration need to be known 

before the association rate constant (k
1

) can be calculated. However, 

Wallick et al. (1980) suggest that if the concentration of ouabain 

is maintained in large excess of the receptor, the forward reaction 

becomes pseudo first-order (Hill, 1909). This greatly facilitates 

the determination of k
1 

from the equation: 

(k b - k 1)/I 
0 s -

where k b is the observed first-order approach to equilibrium (Wallick 
0 s 

et al., 1980). 

Fig. 9 shows the time course of ouabain binding to a microsomal 

preparation from Malpighian tubules of Locusta. [
3

H]Ouabain binding 

reached a maximum after 5-10 min and remained stable over a 1 h incubation 

period. Fig. 10 shows that the initial- rate of binding follows pseudo 

first-order kinetics under the conditions used and is consistent with 

the findings of other researchers (Wallick et al., 1980). Such plots 

were used to determine kobs and hence the association rate constant, k1 . 

3 -1 -1 
The mean calculated k

1 
was 1.5 x 10 M ·s (Table 2). 

In the present study, the dissociation of ouabain from the enzyme 

was determined following incubation in the presence of 3 x 10-
6 

M 

[3H]ouabain at 30°C. The dissociation of the ouabain-receptor complex 

follows first-order kinetics and consequently the dissociation rate 

constant (~1 ) can be calculated from the exponential decay of ouabain 

binding (Erdmann and Hasse, 1975) (Fig. 11). The mean calculated k_1 
-3 -1 

was 3.7 x 10 s (Table 2). 



Fig. 9 

Time course of specific ouabain-binding to a microsomal preparation 

6 -7 
from Malpighian tubules of Locusta at 3 x 10- M (!) and 3 x 10 M (•) 

concentration. Typical experiment representative of three experiments. 

Ordinate: Ouabain Bound (pmol/mg protein) 

Abscissa: Time in Minutes 
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Fig. 10 

Pseudo first-order binding of ouabain to a microsomal preparation of 

Malpighian tubules of Locusta. Binding was carried out in the 

-6 
presence of 3 x 10 M ouabain. Typical experiment representative of 

three experiments. 

Ordinate: (Ae-A)/Ae (loge scale) where Ae and A are Ouabain 

Bound at Equilibrium and at Time, t, Respectively 

Abscissa: Time in Minutes 
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Table 2 

Kinetic constants for ouabain-binding to microsomal preparations of 

Malpighian tubules of Locusta. n represents the number of independent 

experiments and a and b represent values for high- and low-affinity 

sites, respectively. Kd and Bmax were calculated from Scatchard 

plots of data. 



Parameter Value ± S.E.M. n 

kl (M-l X s-1) 1.5 X 103 ± 3.5 X 102 3 

k_l (s-1) 3.7 X 10-3 ± 0.6 X 10-3 5 

k_1/k1 (M) 2.5 X 10-6 

a 0.2 X 10-6 ± 0.1 X 10-6 3 
Kd (M) 

b 4.2 X 10-6 ± 1.3x 10-6 3 

Bmax a 11.0 ± 1.2 
(pmol/mg 
protein) b 25.9 ± 2.5 



Fig. 11 

Time course of ouabain dissociation from Na++K+-ATPase preparation. 

The enzyme-ouabain complex was formed by incubating the tissue for 

45 mins at 30°C in the presence of 3 x 10-6 M[ 3 H]ouabain. The 

dissociation reaction was started by the addition of unlabelled 

ouabain to a final concentration of 1 x 10-3 M (see Materials'and 

Methods). Typical experiment representative of five experiments. 

Ordinate: Present Ouabain Bound 

Abscissa: Time in Minutes After Addition of Excess 

Unlabelled Ouabain· 
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The Michaelis constant or the equilibrium dissociation constant 

(Kd) can be calculated by the equation: 

(see Table 2) or can be measured directly from the equilibrium binding 

of ouabain as a function of ouabain concentration. The binding of 

[
3
H]ouabain to Malpighian tubule Na++K+-ATPase preparations was determined 

after 45 min incubation at different concentrations of ouabain and 

the data were plotted according to Scatchard (1949) (Fig. 12). It 

can be seen that the resulting plot is curvilinear, suggesting either 

that there is binding to multiple independent binding sites or that 

there is negative cooperativity between binding sites (Hansen, 1976; 

Wallick et al., 1979). More recently, Noel and Godfraind (1984) have 

concluded, from their studies on rat heart, that ouabain-specific 

binding occurs at two classes of independent sites. On this basis, 

the binding c~~acities and affinities for high- and low-affinity sites 

have been determined in the present study (Table 2). The results suggest 

that about 30% of binding sites displayed a high affinity for ouabain 

(Kd = 0.2 x 10-6 M), whereas 70% of binding sites were characterised 

by a lower affinity (Kd = 4.2 x 10-
6

M) (Table 2). 

E6tima;tu ofi Ce£1. S..i.ze. and Nwnbe.M 

It was estimated that the tot~l cell number for the Malpighian 

tubules of an adult locust was about 363000. Furthermore, approximately 

189.4 ± 6.9 ~g microsomal protein were extracted per insect from 

Malpighian tubules (n = 5 independent determinations, each involving 

40 locusts). 
-7 

Thus approximately 5.2 x 10 mg of microsomal protein 

are derived from each cell. 



Fig. 12 

Scatchard plot of ouabain binding to a microsomal preparation from 

Malpighian tubules of Locusta. The enzyme-ouabain complex was 

formed by incubating the preparation for 45 mins at 30°C with 

3 x 10-8-10-5 M ouabain. Typical experiment representative of 

three experiments. 

Ordinate: Rate of Bound/Free Ouabain 

Abscissa: Concentration of Ouabain Bound (nM) 
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Measurements on serial sections through Malpighian tubules of 

3 Locusta indicate that the mean cell volume is 72430 ± 2355 ~m (n : 8) 

with approximate dimensions of 85 ~m x 85 ~m x 10 ~m. 

Ceil Type and V~tnibution 

Charnley (1984) has shown that two types of cell occur in the 

Malpighian tubules of Locusta, namely Type 1 (or primary) cells and 

Type 2 (or stellate) cells. The Type 1 cells are considered to be 

primary agents of ion and water transport (Maddrell, 1971) whilst the 

Type 2 cells may be primarily mucocytes (Charnley, 1984). Results 

from lead staining (Fig. 13) in the present study showed that 1 in 

10 of the total cell number per tubule were Type 2 cells. 

Discussion 

+ + The Na +K -ATPase of Malpighian tubules of Locusta exhibits many 

+ + of the properties of (Na +K )-ATPases from other species (Anstee and 

Bowler, 1979; 1984). It is maximally activated at an ATP/Mg
2
+ ratio 

. + i + 
of 1:1.3 and at lOOmM Na /20 mM K (Anstee and Bell, 1978)· and is 

inhibited by ouabain (Anstee and Bell, 1975; 1978; Donkin and Anstee, 

1980; Anstee and Bowler, 1984). In the present study, the concentration 

of ouabain which half-maximally inhibited enzymatic activity was 1.12 ~M. 

This agrees well with I 50 values reported for other insect preparations 

(Anstee and Bowler, 1984). 

+ + Many studies on the binding of cardiac glycosides to Na +K -ATPase 

preparations result in saturable binding which involves a single class 

of binding site (Wallick et al., 1979; Erdmann, 1981). In the present 

study curvilinear Scatchard plots were obtained which suggests that 

microsomal preparations from Malpighian tubules of Locusta bind ouabain 

-6 
specifically with a dissociation constant of 0.2 x 10 M and 



Fig. 13 

Photomicrographs of glutaraldehyde/lead preparations of whole mounts of 

Malpighian tubules from Locusta showing secondary cells as dense 

regions on the surface of the tubule. 

Fig. 13a 

Fig. 13b 

Primary and secondary cells at low magnification. PC, primary 

cell, SC, secondary cell. Scale 50 ~m. 

Secondary cell at higher magnification. PC, primary cell, 

SC, secondary cell. Scale 25 ~m. 
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-6 
4.2 x 10 M at high- and low-affinity sites, respectively. Other 

workers have reported the possible existence of at least two classes 

of binding sites of high and low affinities with different tissues 

from a variety of species (Hansen, 1976; Noel and Godfraind, 1984; 

Godfraind et al., 1980; Kazazoglou et al., 1983; Fricke and Klaus, 

1977; Fricke, 1985). As pointed out earlier, such heterogeneity might 

+ + be due to the presence of different Na +K -ATPase conformations with 

different affinities for ouabain or the existence of independent binding 

sites. The existence of two classes of independent binding sites in 

rat heart has been proposed (Noel and Godfraind, 1984). Furthermore, 

it is reported that K+ increased the proportion of the high-affinity 

sites in microsomal fractions from guinea-pig heart (Godfraind et al., 

1980). However, the possibility that such curved plots are due to 

negative cooperativity cannot be ruled out. Noel and Godfraind (1984) 

reported that, in rat heart, the proportion of low- and high-affinity 

components observed in enzyme inhibition studies was similar to that 

measured in [
3
H]ouabain binding experiments. They suggested that this 

might be explained on the basis of two isozymes being present. 

86 
Furthermore, they suggest that, since Rb uptake by cells in intact 

-5 
tissue was not affected by ouabain at concentrations less than 10 M 

-4 
but was almost completely abolished at 10 M (Erdmann et al., 1980), 

only low-affinity sites are inhibitory in vivo. Similarly, on the 

basis that Kd for low-affinity sites was a value close to ouabain r 50 , 

it was suggested that the low-affinity sites could be inhibitory sites 

in guinea-pig heart (Godfraind et al., 1980). Giunta et al. (1985) 

have proposed a regulatory model in which it is suggested that at very 

low levels of cardiac glycoside, binding to the high-affinity sites 

causes conformational changes leading to enzyme activation, whereas 

at higher cardiac glycoside levels, binding to the low-affinity 
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site results in enzyme inhibition. These same workers (Guinta et al., 

+ + 1985; 1984) suggest a model for activity modulation of Na +K -ATPase 

activity, in vivo, involving ouabain-like compounds, such as have been 

reported in a variety of animal tissues (Flier et al., 1980; Lichtstein 

and Samuelov, 1980; Godfraind et al., 1982; 1983; Schwartz, 1983). 

Such compounds inhibit enzymatic activity in the same range of 

concentrations as ouabain. Thus it is proposed that under physiological 

conditions the level of circulating ouabain-like compounds can saturate 

the high-affinity site, promoting enzyme activation. An increase in 

the concentration of such digitalis-like compounds, it is argued, leads 

to saturation of the lower-affinity binding site also, resulting in 

enzyme inhibition. In the present investigation, the value for I
50 

was not significantly different from the dissociation constant (Kd) 

for the low-affinity site, suggesting that here also, the low-affinity 

site may be responsible for enzyme inhibition. The significance of 

the_ high-affinity sites and the application of the regulative model 

+ + . . . 
of Na +K -ATPase activity, described above, to insect Malpighian tubules 

must await further investigation. 

Table 3 compares the kinetic constants of ouabain-binding to 

Na++K+-ATPase in microsomal preparations of Malpighian tubules with 

those obtained elsewhere, from a variety of species. It can be seen 

that the association rate constant (k
1
), the dissociation rate 

constant (k_
1
r and Kd for Locusta are within the range of values quoted 

for a variety of tissues and different species. 

There is disagreement concerning the ratio of ATP-binding and 

+ + 
ouabain-binding sites to phosphorylation sites on the Na +K -ATPase. 

J¢rgensen (1974; 1977) has shown that there is one ouabain-binding 

site, one ATP-binding site and one phosphorylation site per 280000 

molecular wieght unit. Similarly, a ratio of 1: 1 for ATP sites to 



Table 3 

Comparison of mean kinetic constants for ouabain binding in preparations 

from different species. a and b represent values for high- and low

affinity sites, respectively. 



Tissue 
kl .·k-1 k_l/kl Kd 

Reference (M-1 X s-1) (s-1) (jlM) (llM) 

Malpighian tubules of Locusta 
3 -3 

2.5 0.2 1. 5 X 10 3.7 X 10 a Present study 
b 4.2 

Rabbit kidney 0.5 X 10 
2 -5 2. 4 X 10 . 0.5 Shaver and Stirling, 1978. 

Manduca sexta brain 1.9 X 104 2.2 X 10-3 0.12 Rubin et al., 1981 

Rat intestine 1. 3 X 103 3.6 X 10-2 29.0 15 Harms and Wright, 1980. 

Cavia cobaya kidney a 0.35 Giunta et al. , 1985. 
b 2.1 

Chick cardiac cells 7.6 X 102 5.o·x 10-3 6.6 a 0.03-0.05 Kazazoglou et al., 1983. 
b Z-6 

Rat heart a 0.21 Noel and Godfraind, 1984. 
b 13 

Rabbit nephron 5.0 X 102 1.0 X 10-3 2.0 1.8 El Mernissi and Doucet, 1984. 

Rectal gland of Squalus a 0.2 Silva et al. , 1983. 
b 5.0 

Whole imaginal discs 4.7 X 102 8.6 X 10-5 0.18 Fristrom and Kelly, 1976. 
of Drosophila 
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phosphorylation sites (Hegyvary and Post, 1971) and a 1 : 1 ratio for 

ouabain-binding sites to phosphorylation sites (Erdmann and Schoner, 

1973; Albers et al., 1968) has been reported elsewhere. However, 

Na++K+-ATPase from guinea-pig kidney binds 4 mol ouabain/mol 
32

P-labelled 

phosphoprotein formed (Erdmann and Schoner, 1973), whilst enzyme 

preparations from the electric eel organ bind only 1 ouabain per two 

phosphorylation sites (Albers et a1., 1968). 

In the Malpighian tubule preparations from Locusta maximum binding 

(B ) was 11.0 pmol/mg protein at the high-affinity sites and 25.9 max 

pmol/mg protein at the lower-affinity sites (see Table 2). These data, 

taken in conjunction with the mean Na++K+-ATPase activity measured, 

indicate a value of 6.3 pmol ouabain bound/~mol inorganic phosphate 

liberated at both the high- and the low-affinity sites. This yields 

an overall turnover of 2645/min, assuming that one ouabain is bound 

per pump site. This turnover number for the pump is compared with those 

reported for a number of other tissues and different species in Table 4. 

It was estimated that each cell yielded approx. 5.2 x 10-
7 

mg 

membrane protein, a value which compared favourably with the 2.5 x 10-
7 

mg 

protein/cell quoted for vertebrate intestinal cells (Harms and Wright, 

1980). However, in view of the fact that, in the present study, the 

yield was only a fraction of the total membrane protein per cell, this 

value is a substantial underestimate. Nevertheless, accepting its 

limitations we can use this value to make certain calculatiens on the 

basis of data obtained with Locusta. Thus, assuming 1 ouabain bound 

per enzyme site, it can be calculated that there are 3.4 x 10
6 

high

affinity pump sites and 8.1 x 10
6 

lower-affinity pump sites per tubule 

6 
cell (i.e. a total of 11.5 x 10 pump sites/cell). This pump site density 

is compared with values reported for a variety of other cell types in 

Table 5. Harms and Wright (1980) calculated that there were approx. 



Table 4 

Comparison of turnover values for Na++K+-ATPase from various 

species. 



Preparation 

Malpighian tubules of Locusta 

Red blood cell 

Rabbit nephron 

Bovine kidney 

Rat intestine 

Guinea-pig kidney 

Bovine heart 

Bovine brain 

i\:. 

Turnover 
(ATP hydrolysed/ 

site per min) 

2645 

1400 

2000 

3430 

8300 

11100 

8550 

11500 

Reference 

Present study 

Joiner and Lauf, 1978. 

El Mernissi and Doucet, 1984. 

Erdmann and Schaner, 1973. 

Harms and Wright, 1980. 

Erdmann and Schaner, 1973. 

Erdmann and Schaner, 1973. 

Erdmann and Schaner, 1973. 



Table 5 

Comparison of ouabain binding site density for various species. 

a and b represent values for high- and low-affinity sites, respectively. 

* indicates value calculated from data given by Rubin et al. (1981) and 

assuming 5.2 x 10-7 mg protein per cell. + indicates values are 

likely to be underestimates. 

~-



Preparation 

Malpighian tubules of Locusta 

Chick heart membrane 

Rat intestine 

Rabbit renal tubule 

HeLa cells 

Cultured guinea-pig kidney 

Chloride cells of teleost gill 

Human erythrocyte 

Manduca sexta brain 

Whole imaginal discs of 
Drosophila melanogaster 

~,. .. 

Number of Sites 
;' per Cell Reference 

+a 6 
3.4 X 10 Present study. 

+b 8.1 X 106 

a 1.5 X 105 Kazazoglou et al., 1983. 

b 1.4 X 106 

1.5 X 106 Harms and Wright, 1980. 

4.1 X 106 Shaver and Stirling, 1978. 

8.2 X 10 5 
Baker and Willis, 1972. 

7.5 X 105 Baker and Willis, 1972. 

1.5 X 108 Karnaky et al., 1976. 

228 Erdmann and Hasse, 1975. 

2.5 X 107 * Rubin et al., 1981. 

1.8 X 104 Fristrom and Kelly, 1976. 
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1.5·10
5 

sites per cell (estimated from maximum phosphorylation studies) 

in rat intestine. However, their estimate was an order of magnitude 

larger when determined from maximum ouabain-binding data. The somewhat 

higher value reported for the salt-secreting chloride cells of teleost 

gill (viz. 1.5 x 10
8 

sites/cell) (Karnaky et al., 1976) is thought to 

be related to their larger cell volume and the membrane magnification 

factor (Shaver and Stirling, 1978). 

+ + If the Na +K -ATPase pump of Malpighian tubule cells of Locusta 

+ + . h' + + move Na and K with the sto1c 1ometry of 3Na : 2K per ATP hydrolysed 

10 
at each site (see above) then, at the calculated turnover rate, 9.1 x 10 

+ Na could be maximally pumped out of a tubule cell per min in exchange 

for 6.1x1o
1° K+. If one assumes that the intracellular Na+ concentration 

is approx. 13 mM as reported for Rhodnius (Gupta et al., 1976) and that 

3 11 + 
cell volume is 72430 ~m, then each cell contains ca. 5.7 x 10 Na 

(No. of intracellular Na+ = Na+ concentration (13 mM) x cell volume x 

+ Avo.gadro' s number). Thus, at maxima~ pump rate, intracellular Na would 

·be depleted in about 9 mirr at 30°C. In addition, total ATP utilization, 

on the basis of 1 ATP hydrolysed per cycle of the pump, would be 

10 
3.0 x 10 ATP/cell per min. Thus, 363000 tubule cells (i.e., estimated 

16 
tubule cell per locust) would hydrolyse 1.1 x 10 ATP per min and if 

3ATP are produced for each atom of oxygen consumed then, at maximum 

turnover, the total oxygen consumption necessary to sustain this pump 

rate would be 3.0 x 10-9 mol o
2 

per min. This 'is equivalent to 0.12 

~mol o2;g wet weight per min. In the present study, the Malpighian 

tubules from Locusta consumed oxygen at a rate of 1.5 ± 0.2 ~mol/g wet 

weight per min. Thus, approximately 8% of total metabolic activity 

would appear to be necessary to sustain maximal pump turnover at 30°C. 

This value compares favourably with the observation that 18% of tubule 

oxygen consumption is inhibited by 1 mM ouabain, bearing in mind the 
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various assumptions made in its calculation and given that the higher 

reported levels of inhibition (Anstee et al., 1979) would include 

secondary effects on metabolic rate due to the run-down of ion gradients. 

Finally, it has been estimated that up to 1500 cells (approx. 

75% of the estimated total cell number per tubule) may be responsible 

for the secretion of 'urine' at a mean rate of 3.4 nl/min per tubule, 

by iE vitro preparation such as those used by Anstee et al. (Anstee 

+ et al., ·1979; Donkin and Anstee, 1980). If all the K transported 

+ + into the cell by the Na +K -ATPase pump were ultimately transferred 

to the lumen of the tubule by an apical electrogenic pump, the K+ 

concentration of the secreted ··urine' could be as high as 45 mM. Indeed, 

at the basal secretion rate of 2.5 nl/min reported by Morgan and Mordue 

(1981), the K+ concentration could be as high as 61 mM, a value which 

+ 
would represent a substantial component of the 140 mM K concentration 

reported for locust 'urine' (Anstee et al, 1979; Morgan and Mordue, 

1983). However, the exact values calculated in the present study 

should not be interpreted too precisely and whilst it is unlikely 

that the pump would be operating maximally at all times, it is nevertheless 

apparent that, since the number of 'pump' sites per cell has been 

underestimated, the measured turnover values are adequate to account 

+ for substantial K transport in Malpighian tubules of Locusta migratoria. 

Section 2: Electrophysiological Studies on VB~ and T.E.P. 

+ . + -Using K free, Na free and Cl free Salines 

The electrophysiological recording apparatus and the method of 

the measurement of membrane potentials has been described earlier 

(see Materials and Methods, Chapter 2). The three electrical para~eters 

measured in this study, namely the basal and apical cell membrane 
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potentials (VB and VA) and the transepithelial potential (T.E.P.) are 

all expressed in mV. Since VB and VA were found to be negative with 

respect to the reference electrode throughout this study (except under 

a few extreme experimental conditions described later) potentials 

are given a negative prefix. In contrast, T.E.P. varied in polarity 

and so is quoted with an accompanying positive or negative prefix. 

Finally, the microelectrode resistance in this study had a range of 

14 to 55 MQ with a mean value of 29.7 ± 0.5 MQ. 

Values for the mean recorded v ,V and T.E.P. are shown in Table 6. 
B A 

Thus, the mean VB for all cells examined was -71.6 ± 0.3 mV (n = 530), 

cytoplasm negative with respect to the bathing fluid and the mean 

VA was -82.6 ± 0.8 mV (n = 372), cytoplasm negative with respect to 

the lumen. T.E.P. had a mean value of +5.7 ± 1.0 mV (n = 389), lumen 

positive and a range of -47 to +51 mV. From this range 64% of cells 

gave a positive T.E.P., 33% gave a negative T.E.P. and only 3% of 

cells gave a zero value for T.E.P. Thus, in just under two thirds 

of cells examined,,·vA was more negative than VB. 

It can be seen from Table 6 that T.E.P. (+5.7 ± 1.0 mV) differed 

significantly (p < 0.001) from the transcellular potential, T.C.P. 

(VB-VA) of +11.0 ± 0.7 mV. This discrepancy can be explained by the 

fact that T.E.P. was obtained from the whole tubule whilst T.C.P. 

was the difference between VB and VA in only one cell. Differences 

between T.E.P. and T.C.P., therefore, may be explained on the basis 

of local coupling or short-circuiting between cells. In this study, 

all values reported are T.E.P. values. 

Figs. 14, 15 and 16 show the distribution the individual potential 

components measured in Normal saline. It can be seen that VB, VA 

and T.E.P. were all Normally Distributed. 

Cyclic oscillations of V occurred in Normal saline for 53% of 
A 



Table 6 

The mean membrane potential parameters in Normal saline. VB and VA 

are the basal and apical cell membrane potentials whilst T.C.P. 

and T.E.P. are the transcellular (VA-VB) and transepithelial 

potentials, respectively. n represents the number of independent 

experiments, each involving separate tubule preparations. 



x ± S .·E.M. Polarity (%) 
Parameter Treatment 

(mV) n 
Positive Zero Negative 

VB -72.6 ± 0.3 - - - 530 
Normal 

VA -82.6 ± 0.8 - - - 372 
Saline 

T.C.P. +11.0 ± o. 7 78 6 16 372 

T.E.P. +5.7±1.0 64 3 33 389 

\'i 



Fig. 14 

Distribution of the basal membrane potential (VB) recorded from the 

Malpighian tubules of Locusta. 

Ordinate: Number of Cells 

Abscissa: VB in mV 
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Fig. 15 

Distribution of the apical membrane potential (VA) recorded from 

the Malpighian tubules of Locusta. 

Ordinate: Number of Cells 

Abscissa: VA in mV 
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Fig. 16 

Distribution of transepithelial potential (T.E.P.) recorded from 

the Malpighian tubules of Locusta. 

Ordinate: Number of Cells 

Abscissa: T.E.P. in rnV 
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cells examined and coincident oscillations with the same time course 

were observed in T.E.P. (see Fig. 18). Furthermore, VB did not show 

oscillations, the potential being steady within the noise of the recording 

system. The oscillations had a mean amplitude of 6.0 ± 0.3 mV measured 

from minimum to maximum and ranged up to 26 mV. Each oscillatory cycle 

took from 0.5 to 2 mins to complete. 

A study was carried out to determine the initial change in VB 

as a result of varying the K+ concentration of the bathing saline from 

1.25 to 128 roM. Results obtained are shown in Table 7. It can be 

seen that, as the K+ concentration of the perfusate was decreased below 

+ Normal saline values, VB initially hyperpolarized whereas when [K ] 0 was 

increased, VB depolarized. The hyperpolarization of VB in 1.25, 2.5 

+ and 4.3 mM [K ] 0 took between 1 and 2 mins and the new VB was either 

maintained or the potential gradually became less hyperpolarized by 

·-
1 to 24 mV over the next 2 to 15 mins • 

..... -- The depolarization of VB in 

+ 32, 64 and 128 mM [K ] 0 took between 0.5 and 1.5 mins and the new VB 

was maintained for at least 3 mins. The perfusate was returned to 

Normal saline after each change in external K+ concentration and at 

least 5 mins elapsed before the next solution change. The original 

resting membrane potential was usually restored in 1-2 mins on return 

+ to 'normal' [K ] 0 and was always re-established to within about 2 mV of 

the original VB. 

+ 
Fig. 17 shows the relationship between the mean VB and log[K ] 0 • 

It can be seen that VB followed the Nernstian prediction of a 60.1 mV 

change in potential for a 10-fold increase in [K+] 0 quite closely for 

+ . +) external K concentrat1ons greater than the Normal saline (8.6 mM K • 

+ At [K ] 0 lower than that of Normal saline, however, VB started to 



Table 7 

Mean values for the initial VB in various external concentrations 

of potassium. n represents the number of independent experiments, 

each involving separate tubule preparations. 



+ + [K ] 0 1og[K ] 0 New VB ± S.E.M. 
n 

(mM) (mM) (mV) 

1. 25 0.10 -107.7 ± 1.2 30 

2.5 0.40 - 95.8 ± 1.1 29 

4.3 0.63 - 87.5 ± 1.7 16 

8.6 0.93 - 71.6 ± 0.3 530 

32 1. 51 - 39.6 ± 1.4 19 

64 1.81 - 25.9 ± 1.1 31 

128 2.11 - 6.6 ± 0.3 210 



Fig. 17 

Relationship between the basal membrane potential (VB) and log10 
. + concentrat1on of external K • 

{ • ) represents the mean measured VB values. 

{---) represents the Nernst prediction for VB at 30°C. 

{---) indicates the line calculated for VB from the Golaman constant 

Field Equation based on the assumption that the basal membrane 

is 100 times more permeable to K+ and Na+ (see later). 
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deviate from the Nernstian prediction in a positive direction; the 

deviation getting larger as [K+] 0 got smaller. This showed that at 

+ higher [K ] 0 , VB was behaving as a potassium electrode whilst at lower 

·+ 
[K ] 0 , other ions were becoming increasingly important in determining 

the membrane potential. 
+ + . + 

For a K electrode; [K li 1s equal to [K ) 0 

when the membrane potential is zero. Thus, from Fig. 17, extrapolation 

of the Nernstian plot in the region where VB acts as a K+ electrode, 

gives a value of 157 mM for [K+li which compares favourably with the 

+ value of 165 mM expected for a perfect K electrode. 

Table 8 and Fig. 18 show the effect of changing the perfusate 

+ from Normal to 128 mM K saline on VB, VA and T.E.P. It can be seen 

that VB (as noted earlier) and VA depolarized with the same time course 

to a new potentialJover 0.5 to 1.5 mins,with the depolarization of 

VA being 65% of the value found for VB. The new depolarized VB and 

+ VA were stable during the maintained increase in [K )0 for at least 

3 mins. The depolarization of VA was very variable with a range of 

12 60 in 128 
+ 

saline,varied from +16 to -89 mV to mV. Hence VA, mM K 

(2% of cells actually depolarized to a positive potential with respect 

to the lumen). On the re-introduction of Normal saline, both membrane 

potential hyperpolarized to their original values, with the same time 

course, over 1 to 2 mins. + In 128 mM [K ) 0 , T.E.P. followed the change 

in the differences between VB and VA; there being a significant increase 

in lum~n positivity. 

The responses of VB, VA and T.E.P. to 128 mM K+ saline, described 

above,occurred in the majority of cells. However, the membrane potentials 

of a number of cells exhibited a different and unexpected behaviour 

in 128 mM K+ saline. This atypical response to 128 mM [K+) 0 will 

be described later. The more usual response, described in this section, 

will be,in future,designated the Type A Response. 



Table 8 

Effect on v
8

, VA and T.E.P. of changing the perfusate from Normal 

1 + . ( ) to 28 mM K sal1ne Type A response . n represents the number of 

independent experiments, each involving separate tubule preparations. 



Treatment 
P.O. ± S.E.M. 

Treatment 
New P.O. ± S.E.M. New P.O. Range 

Parameter 
(mV) (mV) (mV) 

n 

VB -71.5 ± 0.5 -6.6 ± 0.3 0 to -25 210 
128 rnM K 

+ 
Normal 

VA Saline -83.1 ± 0.9 Saline -41.1 ± 1.4 +16 to -89 166 

T.E.P. + 5.6 ± 1.3 +33.6 ± 1.6 -43 to +84 171 



Fig. 18 

Typical example of the effect on VB, VA and T.E.P. of changing the 

+ 
perfusate from Normal to 128 mM K saline. Note that oscillations 

occurred in VA and T.E.P. but not VB. 
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Approximately 18% of all cells examined showed potential changes, 

+ following treatment with 128 mM [K ] 01 that were not predictable on the 

basis of K+ selectivity. These responses, referred to briefly above, 

are designated Type B Responses. Figure 19 shows an example of a 

typical Type B response by basal and apical membranes following a change 

+ from Normal to 128 mM K saline. Thus, following the introduction 

+ of 128 mM [K ] 0 , there was an initial depolarization of both membrane 

potentials over 0.5 to 1 min. However, instead of levelling at the 

depolarized potentials, as in the Type A response, both VB and VA repolarized 

over the next 1 to 2 mins to new maintained values. Following the 

re-introduction of Normal saline, both membrane potentials depolarized 

over 0.5 mins before hyperpolarizing to the original resting potentials 

in 1 to 2 mins. Associated with these changes, T.E.P. increased in 

positivity over a 2 min period, in 128 mM K+ saline, to a new maintained 

potential. With the re-introduction of Normal saline, T.E.P. returned 

to its original resting value over 1 to 2 mins. 

Figure 20 is a diagrammatfc form of Fig. 19 and describes the 

variety of range of potential changes seen in cells that were classified 

as showing the Type B response; these changes being divided into 

components. Table 9 shows the mean values for these components for 

VB, VA and T.E.P. No statistically significant difference could be 

found for VB, VA or T.E.P. between cells which exhibited Type B or 

Type A responses in Normal saline (p = 0.3-0.4, p = 0.4-0.5 and 

p = 0.2-0.3 respectively). However, examination of Table 9 shows that 

the mean initial depolarization (component b, Fig. 20) of VB, despite 

being very variable (from 11 to 68 mV), was 23 mV less than the 

depolarization found in cells that showed the Type A response. As 

indicated above, the initial depolarization appeared somewhat quicker 

in cells exhibiting the Type B response; taking 0.5 to 1 min compared 



Fig. 19 

Typical example of the effect on VB, VA and T.E.P. of changing the 

perfusate from Normal to 128 mM K+ saline in cells which exhibited the 

Type B response. Note the unusual repolarization of VB and VA seen 

after the initial depolarization in 128 mM K+ saline • 

. ~· 
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Fig. 20 

The variety of membrane changes and resulting potentials in high 

+ K (128 mM) saline during the 'typical' Type B response. Thus: 

a = the membrane potential in Normal saline, 

b the initial change in potential in high K 
+ 

saline, 

c = the new potential, 

d the repolarizing change in high + 
saline, K 

e = the repolarized potential, 

f the initial change in potential with the re-introduction of 

Normal saline, 

g the re-established resting potential in Normal saline. 

Ordinate: Potential in mV 

Abscissa: Time in Mins 
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Table 9 

Effect on VB, VA and T.E.P. of changing the perfusate from Normal 

+ to 128 mM K saline in cells which exhibited the Type B response. 

n represents the number of independent experiments, each 

involving separate tubule preparations. 



Parameter Treatment 

v 
B 

Normal 

VA 

Saline 

T.E.P. 

P.D. ± S.E.M. 
(component a, 

Fig. 20) 
(mV) 

-73.4 ± 0.9 

-84.2 ± 2.0 

+3. 7 ± 1. 4 

Treatment 

128 mM K 
+ 

Saline 

\\', 

New P.D. ± S.E.M. 
(component c, 

Fig •. ;20) 
(mV) 

-30.9 ± 1.2 

-54.0 ± 2.1 

+ 20.0 ± 1.7 

Repolarized 
P.D. ± S.E.M. 
(component e, Treatment 

Fig. 20) 
(mV) 

-54.3 ± 2.7 

Normal 

-76.1 ± 3.1 

Saline 

+20.0 ± 1. 7 

Initial ~ P.D. Re-established 
± S.E.M. P.D. ± S.E.M. 

(component f, 
Fig. 20) 

(mV) 

+20.2 ± 2.0 

+20.0 ± 1.0 

-

(component g, 
Fig. 20) 

(mV) 

-74.2 ± 0.7 

-83.1 ± 3.1 

+ 4.5 ± 0.9 

n 

95 

71 

70 
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with 1 to 2 mins in the Type A response. This difference cannot be 

attributed to differential perfusion rates; the latter remaining 

unchanged throughout. 

Following the transient depolarization seen in 128 mM K+ saline, 

a repolarizing change (component d, Fig. 20) of VB occurred in approximately 

69% of cells showing Type B responses and had a range of magnitude 

from 2 to 95 mV. This meant that in some cases VB reached a value 

more negative than the membrane potential in Normal saline (-104 mV in 

the most extreme case). VB was maintained at the repolarized potential 

(component e, Fig. 20), in about 65% of these cells, for at least 2 

mins. On re-introduction of Normal saline, VB showed an initial 

depolarization (component f, Fig. 20) in about 58% of cells, of between 

5 and 50 mV, before hyperpolarizing to the original resting VB (component 

g, Fig. 20) in 1 to 2 mins. 

A degree of variation in the 'typical' Type B response, described 

above, was observed. Such variations are illustrated in Fig. 21. It 

must be emphasized, however, that despite variations, in all cases 

+ there was a marked deviation from the Nernstian prediction for K • 

The major differences from the 'typical' Type B response noted were 

as follows: 

i) variation in the magnitude of the initial depolarization 

(component b, Fig. 20) and the repolarizing change (component 

d, Fig. 20) of VB (Fig. 21, traces i), 

ii) although nearly two thirds of cells showing Type B responses 

were maintained at the repolarized potential (component e, 

Fig. 20), about 35% of cells gradually became less negative 

by a mean of 4.7 ± 0.8 mV over 2 mins {Fig. 21, trace ii), 

iii) whilst 69% of cells exhibited a repolarizing change (component 

+ d, Fig. 20) in 128 mM K saline, approximately 25% of cells 



Fig. 21 

Examples of variations of v
8 

and VA (i-v) found for the Type B response 

in high K+ (128 mM) saline (see Fig. 19 for the 'typical' Type B 

response). --+indicates the change in perfusate from Normal to 128 mM 

K+ saline. 

It can be seen that the variations for both membrane potentials 

occurred over the same time and voltage, resulting in T.E.P. increasing 

+ in positivity to a maintained value in high K saline. Results show that 

a variety in the magnitude of the initial depolarization (component b, 

Fig. 20) and the repolarizing change (component d, Fig. 20) occurred for 

both membranes (i). Another variation included a lack of maintenence of 

the repolarized potential (component e, Fig. 20) in high K+ saline (ii). 

Further variations of the Type B response include a lack of a 

+ repolarizing change (component d, Fig. 20) in high K saline and an initial 

depolarization in Normal saline (iii) and both the latter features plus a 

lack of maintenence of the depolarize4 potentia~ (component c, Fig. fO) 

in 128 mM K+ saline (iv). Finally, another variation included a lack of 

the initital depolarization (component f, Fig. 20) in Normal saline in cells 

which exhibited the repolarizing change (component d, Fig. 20) in high K+ 

saline (v). 

Actual values for these variations can be found in the text. 

Ordinate: Potential in mV 

Abscissa: Time in Mins 
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studied did not. However, such cells showed a significant 

reduction in depolarization (component b, Fig. 20) compared 

with the Type A response, over 0.5 to 1.5 mins, in 128 mM 

[K+) 0 , giving a maintained potential (component c, Fig. 20) of 

-28.9 ± 2.7 mV which was stable for at least 2 mins (Fig. 

21, trace iii), 

iv) the remaining 6% of cells showed the reduced depolarization 

(component b, Fig. 20) of VB, referred to in (iii) above, 

. + . 1n 128 mM K sal1ne. However, the new VB (component c, Fig. 

20) then depolarized more slowly by 4.3 ± 0.6 mV over the 

next 2-3 mins (Fig. 21, trace iv), 

v) the transient depolarization (component f, Fig. 20) of VB, 

noted on re-introduction of Normal saline, did not occur in 

cells responding as described in (iii) and (iv) above, nor 

in approximately 21% of remaining cells exhibiting the more 

typical Type B behaviour (Fig. 21, traces v). 

Table 9, along with Figs. 19 and 21, show that VA showed qualitatively 

similar changes over the same time course as VB, in the Type B response. 

Thus, the mean initial depolarization (component b, Fig. 20) of VA, 

despite being very variable (from 7 to 51 mV) was 12 mV less than the 

value found in cells showing the Type A response. The mean depolarization 

of VA was approximately 71% of the value found for VB in these Type 

B responding cells - a value slightly higher than in the Type A response 

(65%). The repolarizing change (component d, Fig. 20) of VA in 128 mM 

+ [K ) 0 had a range of magnitude from 4 to 75 mV and this meant that, in 

some cases, VA reached a value more negative than the potential in 

Normal saline (~128 mV in the most extreme case). On the re-introduction 

of Normal saline, v responsed with an initial depolarization (component 
A 

f, Fig. 20) of between 4 and 45 mV before hyperpolarizing to a value 



similar to the original resting VA (component g, Fig. 20). 

As with the Type B response for VB, some variations in VA were 

noted following exposure to 128 mM K+ saline. These variations were 
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almost identical to those described for VB (see Fig. 21, traces I-V). 

Indeed, in all cases, the basal and apical membranes exhibited similar 

responses at the same time. 

Table 9, along with Figs. 19 and 21, show the change in T.E.P. 

in 128 mM K+ saline during the Type B response. It can be seen that 

T.E.P. gradually became more positive and levelled over 1.5 to 3 mins 

in 128 mM [K+] 0 in most cells. The new T.E.P. was maintained for at least 

2 mins and reduced over 1.5 to 2 mins to the original resting value 

when Normal saline was re-introduced. Some cells (about 21%) exhibited 

some small differences (ca. 3-4 mVs) between the relative changes of 

VB and VA such that T.E.P. changed with a pattern similar to that of 

the Type B response. 

All membrane potenti~ls measured in association with the Type 

B response, in f28 mM K+ saline, were significantly more negative 

(p < 0.001) than those found in the Type A response. In addition, 

T.E.P. measured in association with the Type B response was significantly 

less positive (p < 0.001) in 128 mM [K+] 0 than that measured during 

the Type A response due to VB depolarizing less than VA in the former 

situation. Furthermore, throughout this study, tubule cells from the 

same animal showed either Type A or Type B behaviour in 128 mM K+ saline, 

suggesting that within a given insect all cells were in a similar 

physiological state. No seasonal distribution in the appearance of 

the Type B response was apparent. 

Finally, the amplitude of the oscillations of VA (and T.E.P.) 

in 128 mM k+ saline were 11.4 ± 0.8 mV and 9.0 ± 1.0 mV respectively 
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in cells which exhibited the Type A and Type B response, with oscillations 

occurring in 61% and 50% of cells. These amplitude values were not 

significantly different (p = 0.05-0.1) from each other but were 

significantly greater (p < 0.001 and p 0.001-0.01 respectively) than 

the value (6.0 ± 0.3 mV) found in Normal saline. However, although 

the mean amplitude of these oscillations increased in 128 mM K+ saline, 

the maximum measured oscillation increased only slightly, from 29 mV 

in Normal saline to 33 mV in 128 mM [K+) 0 •. Oscillations decreased 

to the original value when Normal saline was re-introduced. 

Appuc.a.:tA..on o6 the NeJtYL6t Equation to Ceii.f., whic.h Exhibded the 

Type B RupoYL6e 

Table 10 shows the response of VB to a range of [K+) 0 ,in cells 

+ which exhibited the Type B response. At [K ) 0 less than Normal saline, 

VB hyperpolarized as described earlier for the Type A response. At 

+ . [K ) 0 above Normal sal1ne, the 'typical' Type B response was evident· 

+ for 64 and 128 mM [K ) 0 • 
. + 

In 64 mM [K ) 0 , the me_an initial depolarization 
-i--· 

(which took 1-1.5 mins) was 19 mV less than the value at the same 

concentration in the Type A response. Furthermore, a repolarizing 

change (component d, Fig. 20), in the range 4 to 20 mV, was observed 

+ in 64 mM K saline, although an initial depolarization (component f, 

Fig. 20) on return to Normal saline was not observed. On changing 

to 32 mM [K+) 0 from Normal saline, the mean initial depolarization was 

12 mV less than in the Type A response and took 1.5 mins. At this 

+ [K ) 0 , no repolarizing change (component d, Fig. 20) occurred; VB 

remaining at the new potential (component c, Fig. 20) for at least 

2 mins. + As in the Type B response in 128 mM K saline, th~ established 

+ + . values of VB, in 64 mM K and 32 mM K sal1nes, were significantly 

more negative (p < 0.001) than the equivalent values during the Type A 



Table 10 

Mean values for VB in various external concentrations of potassium 

in cells which exhibited the Type B response. n represents the 

number of independent experiments, each involving separate tubule 

preparations. 



VB ± S.E.M. 
(component a, 

Fig. 20) 
(mV) 

-73.4 ± 0.9 

[K+lo 
(roM) 

1.25 

2.5 

4.3 

8.6 

32 

64 

128 

New VB ± S.E.M. 
(component c, 

Fig. 20) 
(mV) 

-105.0 ± 7.2 

- 94.1 ± 2.9 

- 85.4 ± 5.0 

- 73.4 ± 0.9 

- 53.0 ± 5~2 

- 43.7 ± 3.2 

- 30.9 ± 1. 5 

Repolarized 
P.D. ± S.E. 

(component e, 
Fig. 20) 

(mV) 

-
-
-
-

-53.0 ± 5.2 

-52.7 ± 2.3 

-53.6 ± 2.7 

Treatment 

:,\Normal 

Saline 

Initial 6PeD. 
± S.E.M. 

(component f, 
Fig. 20) 

(mV) 

-
-
-
-
-
-

+20.2 ± 2.0 

Re-established 
P.D. ± S.E.M. 
(component g, 

Fig. 20) 
(mV) 

-72.0 ± 2.3 

n 

3 

3 

3 

95 

3 

3 

95 
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response. 

Figure 22 shows the relationship between the repolarized·Type 

+ B potentials (component e, Fig. 20) and log[K 10 . It can be seen clearly 

+ that at lower [K 10 , VB deviates in a positive direction from Nernst 

+ 
as described earlier for Type A responses, whilst at higher [K 10 , a 

large deviation of VB occurred in the negative direction from Nernst. 

The nature of this negative deviation from Nernst was investigated 

further. 

Figure 22 shows that the mean established potentials in 32 mM, 

64 mM and 128 mM [K+l 0 during the Type B response were very similar (all 

about -53 mV). This suggests that the final membrane potential in 

+ _[K 10 greater than Normal saline, in cells which exhibit the Type B 

response, may be independent of [K+l 0 above a certain value (i.e. 32 mM K+ 

saline in this study). 

+ It was noted that further additions of 128 mM K saline, in cells 

which exhibited the Type B response, following at least 5 mins recovery 

of VB in Normal saline, induced similar Type B behaviour. No significant 

differences (p = 0.4-0.5) in potential changes were noted between the 

first and subsequent Type B responses. 

+ Finally, as a result of the 128 mM K saline used in experiments 

described so far containing noNa+, it may be argued that, despite 

+ its presence in 32 mM and 64 mM [K 10 , the Type B response was the 

direct result of a change in the Na+ gradient across the cell membranes 

(see later). 
+ Thus, it was decided to examine the effect of some Na 

+ in high K saline treatments. Tables lla and 11b show the effect of 

+ + 118 mM K , 10 mM Na saline on VB, VA and T.E.P. in cells which exhibited 

either the Type A or Type B response. Table 11a shows that although 

+ + the depolarization of v
8 

and VA in 118 mM K , 10 mM Na saline were 



Fig. 22 

Relationship between the basal membrane potential and log10 
+ concentration of external K in cells which exhibited the Type B 

response. 

( • ) represents the mean measured VB values in cells which exhibited 

the Type A response. 

( o ) represents a typical experiment representative of three 

experiments in cells which exhibited the Type B response. 

(---) indicates the Nernst prediction for VB at 30°C. 
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Table lla 

+ Effect of changing the perfusate from Normal to 118 mM K , 10 mM 

+ Na saline in cells which exhibited the Type A response. 

Table llb 

+ Effect of changing the perfusate from Normal to 118 mM K , 10 mM 

+ Na saline in cells which exhibited the Type B response. 

n represents the number of individual experiments, each involving 

separate tubule preparations. 



Table 11a 

Parameter Treatment 
P.D. ± S.E.M. 

(mV) 

VB Normal 

VA Saline 

T.E.P. 

Table llb 

Parameter Treatment 

VB Normal 

VA Saline 

T.E.P. 

-71.8 ± 2.8 

-84.5 ± 4.0 

+ 9.0 ± 5.9 

P.D. ± S.E.M. 
(component a, 

Fig. 20) 
(mV) 

-75.0 ± 4.3 

-79.4 ± 5.5 

+ 1.4 ± 5.2 

Treatment 

118 mM K+, 

10 mM Na+ 

Saline 

Treatment 
New P.D. ± S.E.M. 

118 mM K+, 

10 mM Na+ 

Saline 

New P.D. ± S.E.M. 
(component c, 

Fig. 20) 
(mV) 

-34.2 ± 6.4 

-52.2 ± 7.0 

+18.2 ± 4.1 

(mV) 

-11.5 ± 4.3 

-51.8 ± 11.1 

+34.5 ± 14.0 

Repolarized 
P.D. ± S.E.M. 

n 

4 

4 

4 

(component e, Treatment 
Fig. 20) 

(mV) 

-40.5 ± 4.8 
Normal 

-61.5 ± 2. 7 Saline 

-

Initial 
t.P.r:i. ± S.E.M. 
(component f, 

Fig. 20) 
(mV) 

-

-

-

Initial 
P.D. ± S.E.M. 
(component g, 

(Fig. 20) 
(mV) 

-73.1 ± 5.1 

-80.3 ± 4.8 

+2.3 ± 4.2 

n 

5 

5 

5 
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+ slightly less than in 128 mM K saline in cells which exhibited the 

Type A response, the new V and VA (component c, Fig. /.0) and T.E.P. were not p, 

significantly different (p = 0.2-0.3, p = 0.3-0.4 and p > 0.9 

respectively) . + The slightly more negative value for VB in 118 mM [K ] 0 

+ compared with 128 rnM [K ] 0 can be attributed to a Nernstian reduction in 

+ This can be seen if the depolarized value for VB in 118 mM [K ]0 

is substituted into the Nernst plot of Fig. 17. 

From Table 11b it can be seen that, in the presence of a small 

+ . + amount of Na , h1gh K saline still produced Type B behaviour in cells 

which exhibited the naturally-occurring Type B response. Indeed, the 

depolarized VB and VA (component c, Fig. 20) and T.E.P. were not 

significantly different (p > 0.9 for VB, VA and T.E.P.) from the equivalent 

values found in 128 rnM K+ saline. However, the small repolarizing 

changes (component d, Fig. 20) of VB (from 5 to 7 mV) and VA (from 

4 to 17 mV) in 118 rnM K+, 10 mM Na+ saline produced repolarized potentials 

(component e, Fig. 20) which were significantly less negative (p = 

0.02-0.03 for VB and-p < 0.001 for VA) than the equivalent potentials 

found in 128 mM K+ saline. Furthermore, the initial depolarization 

(component f, Fig. 20) of VB and VA, which occurred in many cells on 

returning to Normal from 128 rnM K+ saline, did not occur in 118 mM 

K+, 10 rnM Na+ saline. Thus, a small amount of Na+ in high K+ saline 

reduced the extent, but not the production, of the Type B response. 

Table 12 and Fig. 23 show that when the perfusate was changed 

from Normal saline to a K+ free saline, in which K+ was replaced by 

+ Na, both VB and VA hyperpolarized by 42.7 ± 0.8 mV and 23.6 ± 2.2 mV, 

respectively, within 1-2 mins. Thereafter, in the majority of cases, 

both membrane potentials depolarized. The extent of this depolarization 



Table 12 

Effect of VB, VA and T.E.P. of changing the perfusate from Normal 

+ + + + saline to K free or K free, Na free or K free, Cl free saline. 

n represents the number of individual experiments, each involving 

separate tubule preparations. 



Parameter Treatment 
P.D. ± S.E.M. 

Treatment New P.O. ± S.E.M. 
(mV) (mV) n 

VB Normal -69.6 ± 0.9 
K+ free -112.3 ± 1.2 42 

VA -83.2 ± 3.1 -106.8 ± 3.2 19 
Saline 

+ 8.3 ± 1.9 
Saline 

- 12.5 ± 2.3 19 T.E.P. 

VB Normal -73.3 ± 1.8 K+ free, -107.9 ± 2.1 7 

VA -78.0 ± 6.0 Na+ free -102.3 ± 4.4 7 
Saline 

+ 2.4 ± 7.7 Saline 8.4 ± 4.8 7 T.E.P. -

VB Normal 
-68.0 ± 4.4 K+ free. -114.3 ± 8.0 3 

VA -79.0 ± 3.5 cl- free -109.7 ± 10.2 3 

T.E.P. Saline 
+ 8.3 ± 0.7 Saline - 12.0 ± 14.2 3 



Fig. 23 

Typical example of the effect on v
8

, VA and T.E.P. of changing 

+ + the perfusate from K free to 128 mM K saline. Note the induced 

Type B response which contrasts with the naturally occurring Type A 

+ 
response (as shown by an earlier addition of 128 mM K saline). 
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was very variable and ranged from 2 to 90 mV, over 2 to 20 mins, for 

VB and 2 to 48 mV, over 3 to 8 mins, for VA. After depolarizing, a 

maintained VB and VA were established for at least 7 mins. A small 

proportion of cells studied (ca. 12%) maintained the potential after 

hyperpolarization. In view of this variation in the depolarization 

+ of both VB and VA in K free saline, the final established potential 
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could be either more negative or more positive than the original resting 

values in Normal saline. Associated with the above changes in VB and 

VA, T.E.P. decreased from +8.3 ± 1.9 mV to -12.5 ± 2.3 mV over 1 to 

2 mins in K+ free saline due to VB hyperpolarizing more than VA; VA 

only hyperpolarized 55% of the value found for VB. In one third of 

tubules studied, T.E.P. remained at this negative value. However, 

in the majority of tubules, the mean T.E.P. reduced by 8.4 ± 2.9 mV 

over 3 to 11 mins to a maintained T.E.P. which was then established 

for at least 5 mins. This reduction in T.E.P., to a less negative 

value, was due to VB depolarizing faster than VA before a maintained 

potential was achieved. 

Only 27% of cells exhibited oscillations of VA (and T.E.P.) in 

K+ free saline and these had a mean amplitude of 4.0 ± 1.0 mV. Thus, 

+ although the frequency of oscillations were reduced in. K free saline, 

the amplitude was not affected (p = 0.1-0.2) compared with Normal 

saline. 

In order to substantiate the earlier observation that the initial 

+ hyperpolarization of VB and VA in K free saline was due largely to 

the lack of K+, the effect of changing the perfusate from Normal saline 

. +f +f +f 1 to e1ther K ree, Na ree or K ree, C free saline was examined 

(for composition of solutions, see Materials and Methods, Table 1.) 

F.esults are shown in Table 12. It was found that the 

hyperpolarization of VB and VA and the decrease of T.E.P. on introduction 
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of K+ free, Na+ free saline (which took 1-2 mins) produced potentials 

which were not significantly different (p 0.2-0.3, p = 0.8-0.9 and 

. + p = 0.8-0.9 respectively) from the values found 1n K free saline 

. . + 
conta1n1ng Na • After hyperpolarizing, VB and VA declined by 12 to 

60 mV and by 8 to 62 mV, respectively over 6 to 13 mins in K+ free, 

+ 
Na free saline. Similarly, the hyperpolarization of VB and VA and 

the decrease of T.E.P. found with ~n absence of Cl- in K+ free saline, 

over 1-2 mins, produced potentials which were not significantly different 

(p 0.8-0.9, p = 0.7-0.8 and p > 0.9 respectively) to values found 

+ + 
in K free saline. As with other K free treatments, VB and VA declined 

by 12 to 54 mV and by 12 to 40 mV, respectively, over 6 to 11 mins 

in K+ free, Cl free saline. 

Table 13 shows the effect on VB of adding Normal saline immediately 

+ after 10 to 20 mins K free treatment. It can be seen that two types 

of response occurred and this was related to the negativity of VB in 

+ + 
K free saline. Thus, for cells in which VB had depolarized! in K 

free saline, to a· value· similar or more negative~· than the original 

Normal saline potential, the introduction of Normal saline resulted 

in a depolarization of VB between 12 and 54 mV, over 0.5 to 1 min, 

before a gradual hyperpolarization towards the original resting value. 

In contrast, cells in which VB had depolarized, in K+ free saline, 

to a value less negative than the original Normal saline potential, 

responded with an immediate gradual hyperpolarization in Normal saline; 

towards the original VB. Hence, it would appear that once VB had 

declined to a given value in K+ free saline, no further depolarization 

was possible when Normal saline was introduced. 

FJte.e. Sa.Li.ne. 

It was found earlier that an unusual hyperpolarization of both 



Table 13 

+ Effect on VB of changing the perfusate from K free to Normal 

saline. 

a represents cells in which VB did not.decrease greatly during 

K+ free saline treatment. 

b represents cells in which VB decreased to a value less than 
+ the original resting potential, during K free saline 

treatment. 

n represents the number of individual experiments, each involving 

separate tubule preparations. , 



P.O. ± S.E.M. P.O. ± S.E.M. 
New P.O. ± S.E.M. New P.O. ± S.E.M. 

Parameter Treatment 
(mV) 

Treatment (mV) 
Treatment After 0.5 min After 4 mins n 

I'•' 
(mV) (mV) 

Normal a -70.2 ± 0.9 K+ free -74.4 ± 6.4 
Normal 

-40.7 ± 3.8 -63.1 ± 4.9 10 

VB Saline 
b -69.6 ± 1.1 

Saline 
-53.1 ± 2.7 

Saline 
-55.4 ± 2.9 -66.4 ± 3.3 10 
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VB and VA, the Type B response,was sometimes observed in the presence 

of 128 mM K+ saline. In order to explore the possibility that the 

Type B response was related to an altered physiological condition in 

the cells involved, such as the state resulting from K+ free saline, 

. + . . + 1t was decided to introduce 128 mM K sal1ne d1rectly after K free 

treatment. In these experiments,cells showing the Type A response 

were selected and these were identified by changing the perfusate from 

Normal to 128 mM K+ saline. Following a recovery period in Normal 

+ saline, the latter was substituted by K free saline. 

Table 14 and Fig. 23 show the effect of the introduction of 

128 mM K+ saline on VB, VA and T.E.P. after a period of 7 to 20 mins 

in K+ free saline. It can be seen that this K+ free treatment induced 

the Type B response by VB and VA in all cells studied. However, this 

+ was only achieved if tubules had been exposed to K free saline for 

a minimum of 5 mins. Results show that the induced Type B response 

was similar in nature to the naturally occurring Type B response with 

VB and VA changing withexactly the same time course and with 

quantitatively similar potentials. Indeed, all the membrane changes 

and resulting VB and VA values in 128 mM K+ saline after K+' free treatment 

were not significantly different (p > 0.9) to the equivalent values 

found during the Type B response. Similarly, the mean T.E.P. in 128 

+ mM K saline was not significantly different (p = 0.2-0.3) from that 

found in tubules which e~hibited the natural Type B response and was 

significantly smaller (p < 0.001) than that found in tubules which 

exhibited the Type A response. Again, as with natural Type B behaviour, 

this smaller T.E.P., compared with the Type A situation, was due to 

VB depolarizing proportionally less than VA. Thus, the initial 

depolarization (component b, Fig. 20) of VA was ca. 70% of that for 



Table 14 

Effect on VB alone or VB, VA and T.E.P. of changing the perfusate 

+ + + + from K free, 1.25 mM K or 2.5 mM K saline to 128 mM K saline. 

n represents the number of individual experiments, each involving 

separate tubule preparations. 

:=~---



Parameter Treatment 

VB 

VA 

T.E.P. 

VB 

VB 

Normal 

Saline 

Normal 
Saline 

Normal 
Saline 

P.O. ± S.E.M. 
(mV) 

-70.4 ± 1.1 

-76.7 ± 3.8 

+ 5.2 ± 3.2 

-71.0 ± 0.5 

-71.0 ± 0.6 

... 

P.O. ± S.E.M. 
Treatment (component Treatment 

a, Fig.20) 
(mV) 

K+ free -75.0 ± 4.8 128mM K+ 

-82.5 ± 5.6 
Saline Saline 

-1.7±3.7 

K+ 1.25mM -72.8 
Saline 

± 4.l 12BmM K+ 
Saline 

mM K+ + 2.5 -75.3 -
Saline 

0. 7 128mM K+ 
Saline 

New P.O. ± 
S.E.M. 

(component 
c, Fig.20) 

(mV) 

-27.6 ± 3.4 

-49.6 ± 4.1 

+15.5 ± 3.5 

-21.8 ± 5.5 

-12.7 ± 4.1 

Repolarized 
P.O. ± S.E.M. 
(component Treatment 
e, Fig.20) 

(mV) 

-54.3 ± 3.4 
Normal 

-76.1 ± 4.9 
Saline 

-

-41.6 ± 5. 7 Normal 
Saline 

Normal 
Saline 

Initial~P.O. 

± S.E.M. 
(component 
f, Fig.20 

(mV) 

+16.4 ± 3.0 

+18.9 ± 3.8 

-

+13. 5 ± 1.7 

Re-
established 
P.O. ± S.E.M. 
(component n 

g, Fig.20 
(mV) 

-72.4 ± 1.3 24 

-77.7 ± 3.5 15 

+ 5.4 ± 2.9 18 

-70.3 ± 1.0 5 

-72.1 ± 0.8 3 
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VB and compared favourably with the relationship found in cells which 

exhibited the Type B response naturally (ca. 71%). As for the latter 

response, some variations of VB· and VA from the general pattern of 

induced Type B responses, were noted. These variations, however, were 

similar to those shown in Fig. 21. 

It is clear that cells which normally exhibited Type A behaviour 

to 128 mM K+ saline can be induced to give a Type B response. This 

supports the view expressed earlier that the differences between the 

Type A and Type B response are unrelated to penetration of different 

cell types. 

Oscillations of VA (and T.E.P.) were exhibited in 39% of cells 

and had a mean amplitude of 7.4 ± 0.6 mV; values were not significantly 

different (p = 0.2-0.3) from those found in cells exhibiting the 

naturally occurring Type B response in 128 mM K+ saline. 

As results show that a Type B response could be induced in 128 mM 

+ + [K ] 0 after K free treatment, it was decided to investigate the effect 

-- + ' . ' + 
of 1.25 mM and 2.5 mM K saline pretreatment on the 128 mM K saline 

response of VB in cells which originally showed the Type A response. 

Results are shown in Table 14. It can be seen that a period of 8 to 

10 mins in 1.25 mM K+ saline resulted in an inducement of Type B 

behaviour in 128 mM K+ saline. However, the magnitude of this Type 

B response was less than that found in both cells which exhibited the 

naturally occurring Type B response and cells which were induced 

. . . + f . to exh1bit the Type B response w1th K ree sal1ne treatment. Thus, 

+ the repolarized VB (component e, Fig. 20),in 128 mM [K ] 0 after 

1.25 mM K+ saline treatment,was significantly less negative (p 0.002-

0.003) than the equivalent potential of the Type B response but 

significantly more negative (p < 0.001) than the depolarized potential 

of the Type A response. 



Results from Table 14 show that treating cells for up to 15 mins 

with 2.5 mM K+ saline before the addition of 128 mM K+ saline did not 
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induce Type B behaviour. Thus, the depolarized VB (component c, Fig. 

20), after such treatment, was not significantly different (p = 0.8-0.9) 

from the equivalent value found in the Type A response. 

A small number of cells (n 4) 64 + 1' were exposed to mM K sa lne 

immediately after treatment in K+ free or 1.25 mM K+ saline for 10 mins. 

In all cases, VB still exhibited the Type A response. Thus, the 

maintained VB of -23.0 ± 2.8 mV in 64 mM [K+] 0 was not significantly 

different (p = 0.4-0.5) from that obtained in cells showing the Type 

+ . A response in 64 mM K sallne. 

It seems that in order to artificially induce the Type B response, 

[K+] 0 has to be below a certain value (< 2.5 mM K+) otherwise the original 

Type A response will still occur. Similarly, in order for the artificially 

induced Type B behaviour to be exposed, [K+] 0 has to be above a certain 

+ value (> 64 mM K ), otherwise the original Type A response will still 

occur. 
+ +_ 

However, other factors besides [K ] 0 , including [Na 10 , may 

be important in these modified low and high K+ salines. 

Finally, it was decided to explore whether a Type B response could 

still be induced for VB if an addition of Normal saline occurred between 

treatment with K+ free and 128 mM K+ salines (n = 20). It was found 

+ that a Type B response was still demonstrable in 128 mM [K ] 0 after 

+ perfusing with Normal saline, following K free treatment. Thus, 

the depolarized VB (component c, Fig. 20) and repolarized VB (component 

e, Fig. 20) in 128 mM K+ saline were not significantly different 

(p > 0.9) from the equivalent values found during the naturally occurring 

Type B response. 

Table 15a shows the effect on VB, VA and T.E.P. of changing the 



Table lSa 

Effect on VB, VA and T.E.P. of changing the perfusate from Normal 

+ to Na free saline. 

Table lSb 

+ Effect on VB, VA and T.E.P. of changing the perfusate from Na free 

+ to 128 rnM K saline in cells which exhibited the Type A response. 

n represents the number of individual experiments, each 

involving separate tubule preparations. 

~· 



Table 15a 

P.D. 
Parameter Treatment ± s. E.M. Treatment 

(mV) 1 2 5 

Time in New Saline (mins) 

10 15 20 30 45 

VB Normal 
-68.5 ± 1.0 

Na+free -62.5 ± 2. 2 -70.3 ±'.2.6 -62.6 ± 1. 3 -55.9 ± 1.5 -49.2 ± 2.2 -46. 6 ± 2. 4 . -43. 3 ± 3. 8 -44.3 ± 2. 7 

VA -76.9 ± 3.0 -70.9 ± 3.1 -76.1 ± 3.3 -71.2 ± 3.2 -64.7 ± 3.6 -57.2±4.6 -54.8±5.2 -50.0±8.0 +52.0 ± 5.0 

T.E.P. 
Saline 

+ 3.9 ± 2.9 
Saline 

+ 5.0±2.7 +4.5±2.8 +4.5±3.2 + 4.2±3.6 +4.9±4.8 + 3.3±9.2 - -

n - 18 - 9 9 18 17 14 12 7 3 

Table 15b Re-
Repolarized Initial llP.D. established 

P.D. ± S.E.M. 
P.E. ± S.E.M. New P.D. ± S.E.M. P. D. ± S.E.M. ± S;.E.M. P.D. ± S.E.M. 

Parameter Treatment 
(mV) 

Treatment (component Tr.eatment (component (component Treatment (component (component n 
a, Fig.20) c, Fig.20) e, Fig.20) f, Fig.20) g, Fig.20) 

(mV) (mV) (mV) (mV) (mV) 

-69.4 ± 1.1 -48.2 ± 3.6 - 1.3 ± 2.8 
I 

-58.8 ± 3.8 10 VB Na+free 128mM K+ - -Normal Normal 

VA -81.4 ± 3.5 -61.2 ± 4.6 -32.6±4.1 - - -72.3 ± 3.8 10 

T.E.P. 
Saline 

+ 6.4 ± 4.1 
Saline 

+ 6.6 ± 2.2 
Saline 

+28.5 ± 4.5 
Saline 

+8.2±2.2 10 - -
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perfusate from Normal to Na+ free saline (with choline replacing Na+). 

+ Results show that VB and VA depolarized at similar rates in Na free 

saline, gradually declining 21.9 ± 2.8 mV and 19.1 ± 2.9 mV respectively 

over the first 20 mins before levelling at the resulting potentials 

over the next 25 mins. As a consequence, little change occurred in 

+ T.E.P. throughout exposure to Na free saline. However from Table 15a, 

it can be seen that in 50% of cells (n = 9), the membrane potentials 

did not depolarize immediately. Instead, VB and VA exhibited an initial 

depolarization between 2 and 18 mV over the first min of Na+ free 

treatment followed by a hyperpolarization between 2 and 18 mV over the 

next min, before beginning to depolarize. No change in T.E.P. occurred 

as both membrane potentials changed by similar values. 

Oscillations of 6.0 ± 2.0 mV in amplitude occurred in 44% of cells 

in Na+ free saline. The frequency and amplitude of these oscillations 

of VA (and T.E.P.) were not significantly different (p > 0.9) from 

the values found in Normal saline. 

+ It was observed earlier that exposure to K free saline directly 

before the addition of high K+ saline resulted in the inducement 

of a Type B response. It was decided to explore the possibility 

. + f 1' that a similar situation occurred from pretreatment 1n Na ree sa 1ne. 

Thus, the effect of 128 mM K+ saline on VB, VA and T.E.P. was examined 

after a period of 10 to 45 mins in Na+ free saline. Results are 

shown in Table 15b. It was found that membrane changes and resulting 

potentials to this Na+ free/high K+ treatment were the same whether 

the cells originally exhibited the Type A or Type B response (as 

+ found by an earlier addition of 128 mM K saline). Thus, results 

from cells originally exhibiting Type A and Type B behaviour were 
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grouped together in Table 15b. 

+ From Table 15b it can be seen that the introduction of 128 mM K 

saline after Na+ free treatment resulted in a 'reduced' Type A response 

for both VB and VA. Indeed, despite the fact that the mean VB (component 

c, Fig. 20), after depolarization in 128 mM [K+] 0 was negative, the range 

of maintained potential was +14 to -12 mV with two fifths of cells 

actually depolarizing to a positive VB. However, although quite close 

to being significantly less negative than the equivalent values found 

in the Type A response, the depolarized VB and VA (component c, Fig. 20) 

+ in 128 rnM K saline were not different (p = 0.05-0.1 for both potentials). 

Furthermore, the initial depolarization of VA (component b, Fig. 20) 

in high K+ saline was 61% of that for VB (c.f. 65% for the Type A 

response), producing a T.E.P. that was similar (p = 0.2-0.3) to the 

value found in the Type A response. 

Although the depolarized VB and VA (component c, Fig. 20) were 

maintained for at least 3 mins in the majority of cells, a small 

percentage (30%) showed c:( small repolarizing change (component d, 

+ 
Fig. 20), of 12.3 ± 3.4 mV for VB and 9.7 ± 1.2 mV for VA, in 128 mM K 

saline. This Type B response feature, which was not related to whether 

the cells originally exhibited Type A or Type B behaviour, however, 

only occurred in cells in which VB had initially depolarized to a 

positive potential. Thus, this small hyperpolarization may simply 

. + be a change in the distribution of 1ons, afte~Na free treatment, 

pushing the membrane potentials back towards the 'normal' Type A response 

values found in 128 rnM K+ saline. 

On re-introduction of Normal saline, VB and VA only reached values 

85% and 89% respectively of the final re-established potentials after 

2 mins and took 6 to 28 mins to reach the original resting values. 
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Finally, it was noted that the introduction of high K+ saline 

after treatnent in Na+ free saline produced a similar response whether 

cells originally exhibited the Type A or Type B response. This suggests 

that the alteration of ionic gradients during pretreatment in Na+ free 

saline was sufficient to abolish Type B behaviour. 

Table 16a and Fig. 24 show the effect on VB, VA and T.E.P. of 

changing the perfusate from Normal to Cl- free saline (Cl was replaced 

by gl~onic acid). It can be seen that whilst VB did not change even 

after 40 mins exposure to Cl free saline, VA hyperpolarized gradually 

over the first 5-10 mins in this modified solution before levelling 

after about 10 mins. The new maintained VA was 10.7 ± 0.7 mV more 

negative than the original resting value. T.E.P. followed the change 

of VA, becoming more positive in Cl free saline. Cells took between 

3 and 8 mins to recover to the original resting VA (and T.E.P.) on 

re-introduction of Normal saline. 

Oscillations of 8.0 ± 1.9 mV amplitude occurred for VA (and T.E.P.) 

in only 23% of cells in Cl free saline. This rate of oscillation 

was less but not significantly different in amplitude (p = 0.3-0.4) 

from the value found in Normal saline. 

+ -E66ect o6 128 mM K ,C! 6~ee Saline A6t~ T~eatment in Nokmal Saline 

(with o~ without Ci-l 

A variety of experiments were carried out to examine the effect 

of Cl 
. + 

free saline on the response of VB, VA and T.E.P. 1n 128 mM K 

saline. Table 16b and Fig. 24 show the effect on VB, VA and T.E.P. 

+ -of introducing 128 mM K ,Cl free saline, after a period of 5 to 20 

mins exposure to Cl free saline, in cells which exhibited the Type A 

. + -free pretreatment followed by h1gh K ,Cl response. It can be seen that Cl 



Table 16a 

Effect on VB, VA and T.E.P. of changing the perfusate from Normal 

to Cl free saline. 

Table 16b 

Effect on VB, VA and T.E.P. of changing the perfusate from Cl free to 

+ -
128 mM K ,Cl free saline in cells which exhibited the Type A response. 

n represents the number of individual experiments, each 

involving separate tubule preparations. 



Table l6a 

Parameter Treatment 

VB 

VA 
Normal 

T.E.P. 
Saline 

n -

Table 16b 

Parameter Treatment 

VB Normal 

VA Saline 
T.E.P. 

I~ 

P.D. ± S.E.M. 
(mV) 

Treatment 
1 

-71.4 ± 0.9 

-78.8 ± 3.0 
Cl-free 

-81.5 ± 2. 8 

+ 4.1 ± 3.0 
Saline 

+ 6.8 ± 2.9 

22 

P.D. ± S.E.M. 
(mV) 

-74.0 ± 2.0 

-77.7 ± 4.7 

+ 3.7 ± 4.5 

-0 

P.D. ± S.E.M. 
Treatment (component 

a, Fig.20) 
(mV) 

Cl-free -74.0 ± 2.0 

Saline 
-86.7 ± 6.7 

+ 8.7 ± 7.1 

22 

Treatment 

128mM K+, 
Cl-free 
Saline 

Time in New Saline (mins) 

5 10 15 

-86.4 ± 3.3 -90.5 ± 5.0 -91.0 ± 5.1 

+11.3 ± 3.4 +14.7 ± 5.1 +14.0 ± 5.3 

22 13 3 

New Repolarized Initial Re-established 
P.D. ± S.E.M. P.D. ± S.E.M. ilP.D. ± S.E.M. P.D. ± S.E.M. 
(component (component Treatment (component (component n 
c, Fig.20) e, Fig.20) f, Fig.20) g, Fig. 20) 

(mV) (mV) (mV) (mV) 

-10.0 ± 2.1 
Cl-free - -72.3 ± 3.1 3 

-62.3 ± 8.8 -71.0±7.9 - -85.5 ± 7.1 3 Saline 
+62.7 ± 6.4 - + 9.1 ± 6.3 3 



Fig. 24 

Typical example of the effect on VB, VA and T.E.P. of changing the 

perfusate from Normal to Cl free saline before the subsequent 

+ addition of 128 mM K ,Cl free saline, in cells which exhibited the 

Type A response. 

* indicates a period of 10 mins during which a Type A response to 

+ 128 mM K saline was established (VB -10 mV, VA -45 mv, 

T.E.P. +31 mV). 

.~-
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free saline did not alter the Type A response of VB. Thus, the maintained 

VB in high K+,Cl free saline was not significantly different (p = 0.2-0.3) 

from the equivalent Type A response potential found in 128 mM K+ saline. 

Conversely, Cl free treatment and the subsequent addition of 128 mM 

+ K ,Cl free saline resulted in VA becoming more negative than in the 

Type A response by exhibiting membrane changes similar to those found 

in the Type B response. Hence, compared to the original Type A response, 

a reduced initial depolarization (component b, Fig. 20) of VA occurred 

+ in 128 mM K ,Cl free saline, followed by a repolarizing change (component 

d, Fig. 20) between 6 and 11 mV, over 1 min, to a maintained repolarized 

potential (component e, Fig. 20). The depolarized potentials (component c, 

Fig. 20) and repolarized potentials (component e, Fig. 20) for VA in 

+ 128 mM K 1 Cl free saline were both significantly more negative (p < 0.001) 

than the depolarized VA found in the Type A response, but were not 

significantly different (p = 0.5-0.6) from the equivalent values found 

in_ the Type B response. The initial depolarization (component b, 

Fig. 20) of VA was only 38% of that for v
8 

(c.f. 65%-and 71% found 

for the Type A and Type B response respectively). This was reflected 

in T.E.P. which was almost twice (p < 0.001) that found 1n the Type A 

response (+62.7 ± 6.4 mV compared with +33.6 ± 1.6 mV) during exposure 

+ 
to 128 mM K , Cl free saline. 

In relation to the previous experiment, the effect of VB, VA 

+ and T.E.P. oP introducing 128 mM K 1 Cl free saline, immediately after 

Normal saline, was examined in cells which exhibited the Type A response. 

Results are shown in Table 17a. It can be seen that this modified 

saline did not alter the Type A response of VB; 

being similar (p = 0.2-0.3) to the value in 128 

the depolarized VB 

+ mM [K ] 0 • However, VA 

did not exhibit the Type A response but gave a response qualitatively 

. + similar to that found in h1gh K ,Cl free saline after Cl free 



Table 17a 

Effect 

128 mM 

on VB, VA and T.E.P. of changing the perfusate from Normal to 

+ -K ,Cl free saline in cells which exhibited the Type A 

response. 

Table 17b 

Effect on VB, VA and T.E.P. of changing the perfusate from Normal to 

+ + -128 mM K saline before the subsequent addition of 128 mM K ,Cl free 

saline in cells which exhibited the Type A response. 

n represents the number of individual experiments, each 

involving :separate tubule preparations. -~' 



Table 17a 

Parameter Treatment 

VB Normal 

VA Saline 
T.E.P. 

Table 17b 

Parameter Treatment 

VB Normal 

VA Saline 
T.E.P. 

P.D. ± S.E.M. 
(mV) 

-68.6 ± 1.1 

-84.6 ± 6.7 

+ 9.5 ± 2.8 

P.D. ± S.E.M. 
(mV) 

-72.8 ± 2.0 

-78.6 ± 3.8 

+ 7.4 ± 2.2 

Treatment 

128mM K+, 
cl-free 
Saline 

Treatment 

128mM K+ 

Saline 

New P.D. ± S.E.M. 
(component 
c, Fig. 20) 

(mV) 
i'J 

- 3.4 ± 2.9 

-47.9 ± 7.5 

+54.8 ± 6.0 

New P.D. ± S.E.M. 
(mV) 

- 7.2 ± 2.6 

-38.0 ± 6.8 

+31.0 ± 5.0 

Repolarized 
P.D. ± S.E.M. 
(component Treatment 
e, Fig.20). 

(mV) 

- Normal 
-62.4 ± 7.8 

Saline 

-

Treatment 

128mM K+, 
cl-free 
Saline 

New P.D. ± S.E.M. 
(mV) 

-
-47.8 ± 4.7 

+41. 8 ± 2. 3 

Initial 
L\P.D. ± S.E.M. 

(component 
f, Fig.20) 

(mV) 

-
-
-

Treatment 

Normal 

Saline 

Re-established 
P.D. ± S.E.M. 
(component 
g, Fig.20) 

(mV) 

-68.0 ± 1.8 

-84.1 ± 6.0 

+10.1 ± 2.5 

Re-established 
P.D. ± S.E.M. 

(mV) 

-72.4 ± 2.3 

-78.2 ± 4.1 

+ 7.5 ± 2.4 

n 

5 

5 

5 

n 

5 

5 

5 
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pretreatment. As a result, the depolarized potentials (component c, 

Fig. 20) and repolarized potentials (component e, Fig. 20) of VA in 

+ 128 mM K ,Cl free saline were significantly more negative (p < 0.001) 

than the depolarized value in the Type A response but were not 

significantly different (p 0.4-0.5) from the equivalent values found 

in the Type B response. The initial depolarization (component b, 

Fig. 20) of VA in high K+,Cl- free saline was 56% of that for VB and 

resulted in T.E.P. becoming significantly more positive (p < 0.001) 

than in the Type A response. 

+ -The ability of VA to hyperpola~ize in high K ,Cl free saline 

in cells which exhibited the Type A response was examined further 

+ by changing the perfusate from Normal to 128 mM [K ] 0 before the 

+ subsequent addition of 128 mM K ,Cl free saline. In these experiments, 

+ 128 mM K ,Cl free saline was added only when VB, VA and T.E.P. had 

demonstrated maintained values, in 128 mM [K+] 0 , similar (p = 0.6-0.7) to 

those found in the Type A response. Results are shown in Table 17b 

+ 
and Fig. 25. It was found that whilst the introduction 6f 128 mM K ,Cl 

free saline did not change VB, even after 4 mins exposure, VA hyperpolarized 

0 to 18 mV (20% of cells did not change), over 1 min, to a maintained 

value in this new saline. T.E.P. followed the change of VA, becoming 

more positive over 1 min in 128 
+ 

mMK ,Cl free saline. 

+ -
The effect of changing the perfusate from Normal to 128 mMK ,Cl 

free saline on VB,VA and T.E.P. was examined for cells which exhibited 

the naturally occurring Type B response and is shown in Table 18a. 

+ It can be seen that the introduction of 128 mM K ,Cl free saline 

did not qualitatively alter the sequence of potential changes for 

either membrane potential found in the natural Type B response. Thus, 

the depolarized potentials (component c, Fig. 20) and repolarized 

potentials (component e, Fig. 20) for both VB and VA, and thus T.E.P., 



Fig. 25 

Typical example of the effect of changing the perfusate from Normal 

+ + -to 128 mM K saline before the subsequent addition of 128 mM K ,Cl 

free saline, in cells which exhibited the Type A response. 

* indicates a period of 10 mins during which a Type A response to 

+ 
128 mM K saline was established (VB= -8 mV, VA= -39 mV, 

T.E.P. +30 mV) • 
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Table 18a 

Effect on VB, VA and T.E.P. of changing the perfusate from Normal 

+ to 128 mM K ,Cl free saline in cells which exhibited the Type B 

response. 

Table 18b 

Effect on VB, VA and T.E.P. of changing the perfusate from Normal 

to 128 mM K+ saline before the subsequent addition of 128 MM K+,Cl 

free saline in cells which exhibited the Type B response. 

n represents the number of individual experiments, each involving 

separate tubule preparations. 



Table !Sa 

Repolarized 
P.D. ± S.E.M. New P.O. ± S.E.M. P.D. ± S.E.M. 

Parameter Treatment (component Treatment (component (component 
a, Fig.20) c, Fig.20) e, Fig.20) 

(mV) (mV) (mV) 

VB Normal 
-74.0 ± 3.8 128mM K+, -29.5 ± 11.6 

1': 
-51.5 ± 8.0 

VA Saline 
-77.3 ± 10.0 Cl-free -48.5 ± 17.9 -73.5 ± 13.9 

Saline 
T.E.P. + 0.3 ± 5.2 +20.3 ± 12.5 -

Table 18b 

New Repolartzed 
P.D. ± S.E.M. P.D. ± S.E.M. P.O. ± S.E.M. New 

Parameter Treatment (component Treatment (component (component Treatment ± S.E.M. 
a, Fig.20) · c, Fig.20) e, Fig.20) (mV) 

(~) (~) (~) 

Initial 
LlP.D. ± S.E.M. 

Treatment (component 
f, Fig.20) 

(mV) 

-Normal 

-Saline 
-

Repolarized 
P.D. ± S.E.M. Treatment 

(mV) 

VB -74.3 ± 4.1 -33.3 ± 5.4 -55 • 7 ± 10 . 9 128mM K + - 3 7. 0 ± 17.2 -48.3 ± 17.2 

-Sl.O ± 4 _6 128mMK 
+ 

Normal 
VA 

Normal -54.3 ± 7.1 -77.3 ± 7.1 Cl-free -92.0 ± 9.5 -83.3 ± 5.2 
Saline + 

0
_

3 
± 

7
_

7 
Saline Saline Saline 

T.E.P. +23.7 ± 4.7 - +47. 7 ± 7.1 +29.3 ± 4.4 

Re-established 
P.D. ± S.E.M. 
(component 
g, Fig.20) 

(mV) 

-76.1 ± 4.6 

-80.3 ± 8.7 

+ 2.1 ± 4.0 

Initial LlP.D. 
± S.E.M. 
(component 
f, Fig.20) 

(mV) 

+ 9.0±0 

+13.0±0 

-

n 

3 

3 

3 

Re-
established 

P.D. ± S.E.M. 
(conponent n 
g, Fig.20) 

(mV) 

-73.8 ± 4.3 3 

-82.0 ± 4.4 3 

+ 1. 7 ± 6.6 3 



69 

were not significantly different (p > 0.9, p = 0.7-0.8, and p > 0.9 

respectively) from the values found in the Type B response when Cl 

was present. However, after reaching maximum repolarized potentials 

(component e, Fig. 20) over 1-2 mins during high K+,Cl- free exposure 

a gradual depolarization of both VB and VA occurred, with VB declining 

by 11.3 ± 3.7 mv and VA declining by 7.7 ± 3.1 mv over 2 mins. As 

a result of VB depolarizing faster than VA, T.E.P. steadily became 

more positive by 4.3 ± 2.3 mV over 2 mins. These results suggest 

that the maintenance of the Type B response may depend on the presence 

of external Cl • 

To investigate the dependence of the Type B response on [Cl-] 0 , 

+ + -the effect of changing the perfusate from 128 mM K to 128 mM K ,Cl 

free saline was examined,in cells which exhibited the naturally occurring 

+ Type B response. In these experiments, 128 mM K ,Cl free saline 

was added only when VB and VA (and T.E.P.) had exhibited maintained 

!epolarized potentials (component e, Fig. 20), in 128 mM [K+] 0 , similar 

(p = 0. 8-0 ~ 9) to those found during 1 typical 1 Type· H behaviour.- Results 

are shown in Table 18b and Fig. 26. It can be seen that the absence 

of Cl in high K+ saline affected both VB and VA; changing both potentials 

in opposite directions. 
+ -

Thus, with the introduction of 128 mM K ,Cl 

free saline, directly after 128 mM [K+] 0 , VB initially depolarized 

18.7 ± 7.0 mV over 1 min, then hyperpolarized 11.3 ± 4.7 mV over the 

next min to•a maintained value. In contrast, VA hyperpolarized 

+ 14.7 ± 6.8 mV.during the first min of 128 mM K ,Cl free treatment, 

then depolarized 8.7 ± 4.4 mV over the next min to a maintained value. 

Following these changes, T.E.P. increased in positivity by 23.7 ± 9.4 mV 

over 1 min, then decreased 18.0 ± 6.4 mV over the next min to a maintained 

value during exposure to high K+,Cl- free saline. Hence, the introduction 

+ + of 128 mM K ,Cl free saline directly after 128 mM K saline in cells 



Fig. 26 

Typical example of the effect on VB, VA and T.E.P. of changing the 

perfusate from Normal to 128 mM K+ saline before the subsequent 

+ -
addition of 128 mM K ,Cl free saline in cells which exhibited the 

Type B response. 

* indicates a period of 10 mins during which a Type B response to 

+ 
128 mM K saline was established (VB = -53 mV [component e, 

Fig. 20], VA = -77 mV [component e, Fig. 20], T.E.P. = +24 mV). 
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which exhibited the Type B response resulted in a transient depolarization 

of VB and a transient hyperpolarization of VA. Following these changes, 

maintained values for VB and VA, 8 mV less negative and 6 mV more 

negative respectively than the repolarized potentials (component e, 

+ Fig. 20) found in 128 mM [K ] 0 , were established. 

Finally, it was found that cells artificially induced to exhibit 

+ . + the Type B response in high [K ] 0 follow1ng K free saline (n 3), gave 

+ the same pattern of results when the perfusate was changed from 128 mM K ,Cl 

free saline. Thus, VB depolarized 18.0 ± 4.0 mV during the first min of 

+ high K ,Cl free saline treatment, then hyperpolarized 7.0 ± 5.0 mV 

over the next min to a value 9 mV less negative than the repolarized 

potential (component e, Fig. 20) found in 128 mM K+ saline. In contrast, 

VA hyperpolarized 15.5 ± 5.5 mV over the first min of exposure, then 

depolarized 5.0 ± 3.0 mV over the next min to a value 11 mV more negative 

than the repolarized potential (component e, Fig. 20) found in high 

+ . K sal1ne. As for the naturally occurring Type B response, T.E.P. 

increased in positivity, with the introduction of high K+,Cl -tree 

saline, by 20.3 ± 5.2 mV over the first min of exposure, then decreased 

in value by 13.5 ± 8.5 mV over the next min. 

Discussion 

The basal and apical cell membrane potentials (VB and VA) and 

the transepithelial potential (T.E.P.) found in the present study 

are compared with values found in various invertebrate and vertebrate 

tissue in Table 19. Whilst the majority of tubules examined had a 

positive T.E.P., a considerable variation in potential occurred in 

the tubules of Locusta (from -47 to +51 mV) and 33% of tubules exhibited 

a negative T.E.P. value. A variation in T.E.P. from tubule to tubule 

has also been found in Locusta by Ramsay (1953; 1954) and Morgan and 



Table 19 

Membrane and transepithelial potentials reported for various tissues 

from different species. 

VB and T.E.P. are measured with respect to the bathing medium 

whilst VA is measured with respect to the lumen. 

::_.!··· 



VB ;:J 
VA T.E.P. 

Tissue 
(mV) (mV) (mV) 

Reference 

Locusta -71.6 ± 0.3 -82.7 ± 0.9 + 5. 7 ± 1.0 Present Study 

Locusta - - +10.8 ± 2.1 Anstee et al. , 1980 

Locusta - - + 8.7 ± 0.3 Fathpour et al. , 1983 

Locusta -39.4 ± 0.5' +44.0 + 4.4 ± 0.5 Morgan and Mordue, 1983a 

Locusta - - -16 Ramsay, 1953 . 
Malpighian tubules of Schistocerca - - +16.6 ± 3.1 Maddrell and Klunsuwan, 1973 

Rhodnius -67.0 ± 2.0 -53.0 ± 4.0 - 8.0 ± 3.0 O'Donnell and Maddrell, 1984 

Aedes -65.2 ± 1.5 -118 +53.7 ± 5.6 Sawyer and Beyenbach, 1985a 

Carausius - - +21 Ramsay, 1953 

CalJ20des - - +25 Irvine, 1969 

TiJ2Ula - - +32 Coast, 1969 

Rectum of Schistocerca -50.7 ± 0.3 -57.8 ± 0.5 + 7.2 ± 0.3 Hanrahan and Phillips, 1984 

Salivary glands of CalliJ2hora -61.1 ± 0.4 - + 4.0 ± 1.0 Berridge and Schlue, 1978 

Midgut of CalliJ2hora - - -12.0 ± 1.0 O'Rio;rdan, 1969 

Proximal tubule of Squalus -63.2 ± 3.5 - + 0.4 ± 0.4 Beyenbach and Fromter, 1985 

Rectal gland tubule of Squalus -68.0 ± 1. 2 - -12.0 ± 1.1 Greger and Schlatter, 1984 

Cortical collecting duct of 
-69.6 ± 3.0 -68.9 ± 3.1 - 0.7 ± 0.3 O'Neil and Sansom, 1984 New Zealand white rabbits 

Proximal straight tubules of 
-62.0 ± 1.0 - -1.7±0.1 v8lkl et al., 1986 

Swiss mice 
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Mordue {1981; 1983a). Large differences in membrane potential values 

{both basal and apical) were recorded in the present study compared 

with those presented by Morgan and Mordue {1983a) for Locusta tubules. 

From a measured VB value of -39.4 mV and a T.E.P. value of +4.4 mV 

in 20 mM K+ Normal saline, Morgan and Mordue {1983a) erroneously calculated 

a value of +44 mV from T.E.P. = VB-VA for the potential across the 

apical membrane. This value differs greatly from the measured value 

of -82.6 mV in 8.6 mM K+ saline in the present study. Furthermore, 

this difference cannot be accounted for on the basis of [K+] in the 

saline used. The value for VB obtained in the present study is still 

30% higher than that found by Morgan and Mordue {1983a) after extrapolation 

+ 1' on a Nernst plot {see Fig. 17) to a value in 20 mM K sa 1ne. 

In the present study, treatment with modified salines resulted, 

in some cases, in VB and VA responding qualitatively similarly. This 

similarity was most obvious when comparing the changes which occurred 

in both membrane potentials in high K+ saline and may be because the 

tubule of Locusta is a "leaky" epithelium. In insects, information 

on the "leakiness" of epithelia is somewhat limited. However, it 

appears that the Malpighian tubules of some species are "tight" with 

salt and water transport taking place largely by a transcellular route. 

{O'Donnell and Maddrell, 1983; O'Donnell et al., 1984; Williams and 

Beyenbach, 1984), a process which also takes place in locust rectum 

{Hanrahan•, 1984). In contrast, studies on other insect epithelia, 

including rectal pads of Periplaneta and Calliphora and salivary glands 

of Calliphora {Gupta et al., 1978; Gupta and Hall, 1981) indicate 

that some solute/solvent coupling occurs paracellularly. If the Malpighian 

tubules of Locusta are "leaky", electrical measurements across -the 

cell would be short-circuited by the paracellular pathway with the 

result that one would observe similar potential changes across both 



membranes. The similarity or dissimilarity, therefore, between the 

electrical responses of VB and VA could then be explained by the 

leakiness of the tissue, e.g. if VA does not change in potential in 

high K+ saline then it can be assumed that the tissue is "tight"; 

+ alternatively, if both ~B and VA change by exact amounts in high K 

saline, then it can be assumed that the tissue is totally "leaky". 

As neither of these extremes were found during experimentation, it 

may be that the tissue exhibits variable leakiness, through "leaky" 

tight junctions. Evidence for the latter has been found in many 

vertebrate systems (DiBona, 1985). 

Although it is possible that the Malpighian tubules of Locusta 

possess "leaky" tight junctions, other evidence suggests that the 

tubules are "tight". This evidence includes the observations that 

a large T.E.P. was observed in both Normal and high K+ saline, in 

many cases, and that the potential changes of the basal and apical 
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membranes to modified saline was different in some cases. A large 

T.E.P. is not a characteri·stic of a leaky epithelium (Hanrahan, 1984). 

Thus, the depolarization of VB in high K+ saline, for example, may 

be the result of a Nernstian effect (see later) whilst the depolarization 

of VA in the same saline may be a secondary effect, resulting from 

the decrease of VB, possibly involving Cl • Indeed, results 

+ showed that the depolarization of VA in high K saline was 

reduced during the absence of Cl • Such an observation would be expected 

if the tubules of Locusta were "tight" as a short-circuiting effect, 

producing similar changes in VB and VA, whether Cl was present or 

absent in high K+ saline, could not occur. 

At this point, it is convenient to review the distribution of 

ions in the Malpighian tubules of Locusta (see Fig. 27). Although 

+ + a basolateral location for the Na +K -ATPase, which has already been 



Fig. 27 

Schematic diagram to show the distribution of potential and ions 

across the Malpighian tubule cell of Locusta (or other insects where 

pertinent). 

a indicates VB (-71.6 mV) 1 VA (-82.6 mV) 1 T.E.P. (+5.7 mV) 1 

+ + -
the bathing medium concentration of K 1 Na and Cl- and the 

intracellular concentration of K+ found in Locusta (Present 

Study) 

b + + indicates the luminal concentration of K and Na reported in 

Locusta (Anstee et al. 1 1979) 

+ c indicates the intracellular concentration of Na and Cl 

reported in Rhodnius (Gupta et al. 1 1976) 

d indicates the luminal concentration of Cl 1 K+ and Na+ reported 

in Locusta (Morgan and Mordue 1 1983a) 

e indicates the luminal concentration of Cl reported in 

Schistocerca (Maddrell and Klunsuwan 1 1973). 
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140mM K+ (139-169mM IK+) 

b d 
35mM Na+ (20-23mM Na + ) 

d e 
203mM Cl- ( 150mM Cl-). 
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c 
13mM Na+ 

c 
45mM Cl-
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a 
119mM Na+ 

a 
135.6mM Cl-
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examined using [
3

HJ ouabain-binding studies, has been assumed in Fig. 27, 

this position has not been definitely proven. However, consistent 

with studies on vertebrate tissue, various data support an exclusively 

basolateral location for this enzyme in arthropod transporting epithelia 

(see Introduction, Komnick and Achenbach, 1979; Anstee and Bowler, 

1984). 

The studies of Anstee et al. (1979) have shown the concentration 

+ + . 
of K and Na 1.n the "primary urine" secreted into the lumen of the 

tubules of Locusta. 
+ + 

The values for [K ] and [Na ] quoted by these 

workers (see Fig. 27) are similar to those reported subsequently by 

Morgan and Mordue (1983a) in Locusta tubules and by Maddrell and Klunsuwan 

(1973) in Schistocerca tubules. Morgan and Mordue (1983a) quote a 

value of 203 mM luminal Cl and this is the only .available figure 

for [Cl-] in the lumen of Locusta tubules. This urine [Cl ] , however, 

is similar but somewhat higher than the value of 150 mM quoted by 

Maddrell and Klunsuwan (1973) in Schistocerca tubules. From a Nernst 

plot in the present study (Fig. 17), a. value of 157 mM was calculated

for intracellular K+. This agrees fairly well with values found in 

Locusta skeletal muscle (140 mM, Leech, 1986), lepidopteran midgut 

(134 mM, Dow et al., 1984 and 140 mM, Zerahn, 1977), Calliphora salivary 

gland (170 mM, Berridge and Schlue, 1978) and Schistocerca Malplghian 

tubules (135 mM, Maddrell and Klunsuwan, 1973) but is higher than 

+ • the 95 mM [K ]i reported by Morgan and Mordue (1983a) in Locusta tubule 

cells and the 103 mM K+ determined by X-ray microanalysis of the main 

cell cytoplasm of unstimulated Rhodnius tubules (Gupta et al., 1976). 

Morgan and Mordue (1983a) found [Cl-]i in Locusta tubules to be 51 mM 

which is slightly higher than the Cl level (45 mM) in the main cell 

cytoplasm of Rhodnius tubules (Gupta et al., 1976). 
+ [Na li has not 

been measured in Locusta tubules but electron-probe X-ray microanalysis 
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by Gupta et al. (1976) has shown that the levels of intracellular 

+ . 
Na 1n Rhodniustubules are low (13 mM). This is in agreement with 

+ other transporting epithelia which, in general, have low Na levels 

(Diez de los Rios et al., 1981; Wang et al., 1984). 

The data above give an indication of the ionic concentration 

and electrical gradients across the basal and apical membranes. Thus, 

it would appear likely that, for a tubule bathed in Normal saline, 

entry across the basal membrane involves K+ moving against its concentration 

but.with its electrical gradient whilst entry of Na+ involves this 

cation moving down its concentration and with its electrical gradient. 

In contrast, Cl entry suggests movement down its concentration gradient 

but against the electrical gradient. 
+ + 

Presumably, the Na +K -ATPase 

+ in the basal membrane maintains intracellularly high levels of K 

+ and low levels of Na to help create these concentration and electrical 

gradients. 

Ion movements across the a~ical membrane from cytoplasm to lumen 

require that K+ move~against an electricai gradient, although there 

is little or no concentration gradient. + . In contrast, Na ex1t from 

the cell requires movement against a concentration and electrical 

gradient whilst a similarly directed movement of Cl would be against 

its concentration gradient but along the electrical gradient. In 

the present study, the mean apical potential was -82.6 mV and it is 

difficult to explain this large negative ~A on the basis of a purely 

passive ionic permeability of the apical membrane. This provides 

indirect evidence in favour of an apical active transport mechanism 

as has been proposed elsewhere. Indeed, an apical cation pump has 

been proposed in the Malpighian tubules of Calliphora (Berridge, 1968), 

Carausius (Maddrell, 1977) and Rhodnius (O'Donnell and Maddrell, 1984) 

+ and for K in the salivary glands of Calliphora (Prince and Berridge, 
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1972; Berridge et al., 1975), the labella of Protophormia (Thurm and 

Kllppers, 1980; Wieczorek, 1982) and the labial glands (Hakim and 

Kafatos, 1974) and the midgut of Manduca sexta (Harveyet al., 1983). 

Recent studies have revealed the presence of a potassium-sensitive 

+ 
ATPase in the K -transporting midgut of Manduca sexta (Wolfersberger 

et al., 1982; Deaton, 1984) and the labellum of Protophormia (Wieczorek, 

1982; Wieczorek et al., 1986). It is suggested (Wieczorek et al., 

+ 1986) that this may represent the electrogenic apical K pump. However, 

+ as was stated earlier, no biochemical evidence exists for K -ATPase 

activity in insect Malpighian tubules. The following table shows data 

recalculated from Anstee and Bell (1975) regarding the activity of 

+ + the Na +K -ATPase in the tubules of Locusta: 

+ + . 1 Na K -st1mu ated ATPase activity 

+ 
+ Ouabain 

Tissue 
+ + Na 

Species Complete -Na -K - + (rnM) K 

Locusta Malpighian 229.8 38.9 28.8 29.3 24.5 

mig:ratoria tubules ± 27.3 ± 4.9 ± 5.9 

+ + Harvey et a1. (1983) have incorrectly re-analysed this Na +K -ATPase 

activity data such that it appears that a K+-ATPase is present in 

Locusta tubules. Unfortunately, the significant K+ stimulated ATPase 

activity Harvey et al. (1983) refer to is the result of an arithmetic 

error on their part. There is, therefore, no evidence or data for 

an ATPase activity in the tubules of Locusta. 

The substitution of K+ by Na+ in the bathing fluid in the present 

study showed that the basal membrane acts essentially as a potassium 

electrode. Many examples of a similar behaviour occur in a variety 
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of tissues {e.g. salivary gland of Calliphora, Prince and Berridge, 

1972; Malpighian tubules of Rhodnius, O'Donnell and Maddrell, 1984; 

locust oocytes, Wollberg and Cocos, 1981 and locust skeletal muscle, 

Usherwood, 1978). The fact that the VB measured deviated from the 

Nernst prediction in a positive direction in [K+] 0 less than 8.6 rnM makes 

+ it reasonable to assume that VB is increasingly influenced by the Na 

gradient. Furthermore, the deviation of VB can be formally described 

by the Goldman constant field equation in which the concentration of 

each ion is multiplied by a permeability constant, P {Goldman, 1943). 

Thus: 

+ + 
PK[K li + PNa[Na li 

60.1 log ------------------
+ + PK[K ] 0 + PNa[Na ] 0 

Using values of 157 rnM for [K+li {obtained from the Nernst plot in the 

+ present study) and 13 rnM for [Na li {Gupta et al., 1976) and assuming 

PK = 1 and PNa = 0.01, it is possible to apply this equation to the 

tubules of Locusta. Results can be seen in Table 20. It was found 

+ + that calculated VB values for a permeability ratio of 1 : 0.01 {K : Na ) 

gave values very similar to experimental results. These values were 

+ plotted in a graph of membrane potentjal versus log[K ] 0 {see Fig. 17). 

Thus, application of the Goldman constant field equation for a membrane 

+ + permeable to both Na and K suggest that if the positive deviation 

+ from Nernst was due to Na , then the basal membrane must be approximately 

100 times more permeable to potassium than sodium. This relationship 

is consistent with that reported for various other epithelia, e.g. Aplysia 

neurones {Sato et al., 1968), but is rather lower than in other cases, 

e.g. the Malpighian tubules of Aedes {Williams and Beyenbach, 1984). In 

the latter tissue, the basolateral membrane is reported to be permeable 

+ + to both K and Na with membrane conductances for each ion being of 



Table 20 

Comparison of the measured VB and VB calculated from the Goldman 

Constant Field Equation (based on the assumption that the basal 

+ + membrane is 100 times more permeable to K than Na ) in varying 

external concentrations of potassium. Also see Fig. 17. 



+ VB Calculated From 
[K ] o Goldman Constant 

Actual VB 

(rnM) Field Equation (mV) 

(mV) 
--

1.25 -1'67. 8 -107.3 

2.5 - 97.3 - 95.8 

4.3 - 87.2 - 87.5 

8.6 - 72.3 - 71.6 

32 - 40.7 - 39.6 

64 - '23. 2 - 25.9 

128 - 5.2 - 6.6 

'\~.: . 
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similar magnitude under unstimulated conditions (Williams and Beyenbach, 

1984; Sawyer and Beyenbach, 1985a). 

T.E.P. measurements, in the present study, exhibited a maintained 

increase in positivity similar to values found by Fathpour et al. (1983) 

+ in Locusta tubules, for [K ] 0 greater than 8.6 mM. Berridge et al. (1975) 

found that T.E.P. in the salivary glands of Calliphora became more 

positive in high K+, low Na+ saline, although a gradual drift back 

towards the resting potential also occurred. Similarly, O'Donnell 

d (9) 
0 + 0 + 0 an Maddrell 1 84 found that treatment w~th K -r~ch, Na -free sal~ne 

caused an increase in T.E.P. positivity in the tubules of Rhodnius 

(unstimulated by the secretagogue 5-HT). However, these workers found 

that the apical potential was insensitive to transient changes in bathing 

fluid K+ concentration under resting conditions. 

The introduction of high K+ (128 mM), Na+ free saline probably 

leads to a reduction in the K+ gradient in the tubule cells of 

Locusta as [K+]_0 becomes similar to [K+]i (estimated at 157 mM). Under 

. + + 
these conditions, the activity of the Na +K pump, which normally 

0 + + functions to maintain h~gh [K ]i across a large K gradient (see 

Fig. 27), may be reduced. Although [Na+]i may rise through this ion 

+ + not being extruded across the basal membrane by the Na +K pump, the 

absence of Na+ in the high K+ perfusate may lead to a reduced [Na+]i as 

sodium entry mechanisms will halt. Sodium may also leak out of the cell. 

The depolarization of VA in high K+ saline does not seem to be 

due to an activation of an apical K+ pump as this would lead to an 

increase in VA as positive ions left the cell. Furthermore, it would 

+ be expected that the activity of an-apical K pump would not be affected 

as little change in [K+]i probably occurs in high K+ saline. An 

+ alternative explanation is that elevated [K ] 0 indirectly increases the 

exit of Cl across the apical membrane, reducing VA over the same time 



course as VB. This idea is supported by the observation that the 

absence of Cl- in high K+ saline reduced the depolarization 

of VA. This would occur as Cl were not available to leave the cell 

across the apical membrane. 
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+ Other experiments with altered [K ) 0 showed that the introduction of 

+ K free saline caused a large and rapid hyperpolarization of both 

membrane potentials with T.E.P. becoming negative. The latter observation 

agrees well with the studies of Fathpour et al. (1983) for the tubules 

of Locusta and the response of VB and T.E.P. was similar to that found 

by Berridge et al. (1976) and Berridge and Schlue (1978) for the salivary 

glands of Calliphora. 

+ The introduction of K -free saline would probably lead to an 

+ + + 
inhibition of the Na +K -ATPase in the tubules of Locusta as K was 

not available to be pumped into the cell. This would, in turn, lead 

to a cellular accumulation of Na+ and a reduction in the Na+ gradient 

due to areductionof the Na+ extrusion mechanism. Indeed{ Na+ accumulation 

has been demonstrated in lobster ganglion following treatment in K+ 

free saline (Livengood and Kusano, 1972). In addition, [K+li and the K+ 

gradient may also be reduced as K+ exits the cell across the basal 

membrane. As mentioned earlier, the initial hyperpolarization of VB 

+ in K free saline can be largely related to Nernst. The wide range 

of responses in this saline after the initial potential increase (from 

a maintained potential to a rapid depolarization), however, can be 

+ related to the permeability of the basal membrane to K and the initial 

+ + 
[K li· Berridge and Schlue (1978) have shown that [K li fell from 

170 mM to approximately 5 mM within 10 min of changing from 10 mM to 

0.2 mM [K+) 0 in the salivary glands of Calliphora. The hyperpolarization 

of VA in K+ free saline, observed in the present study, was probably 

not related to a reduction in the activity of an apical K+ pump (which 
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would lead to a depolarization of VA) but, as will be discussed later, 

may be due to an inhibition of apical Cl exit. 

+ + As a result of the postulated reduction of [K li and the K 

+ gradient in tubule cells of Locusta during exposure to K free saline, 

it can be inferred that an initial depolarization of VB would occur 

with the introduction of Normal saline directly after K+ free saline 

due to the basal membrane acting as a K+ electrode. This would be 

followed by a return to the original resting potential as the cellular 

gradients were re-established. This was not observed in the present 

study,with the addition of Normal saline after K+ free saline resulting 

in VB either depolarizing over a short period before hyperpolarizing 

or hyperpolarizing immediately. This result differs from that found 

in the salivary glands of Calliphora in which the initial depolarization 

+ upon changing from low K to Normal saline was so large that the inside 

of the cell actually became positive with respect to the bathing medium 

(Berridge and Schlue, 1978). Thus, in the tubules of Locusta, a large 

initial depolarization due to the presence uf Normal saline may be 

totally or partially masked by a hyperpolarized component. This 'component' 

may be due to an electrogenic Na++K+-ATPase "switching on" until the 

+ original intracellular K levels were recovered. The reactivation 

+ + + 
of the Na +K exchange pump following the re-introduction of K in 

the bathing medium has been shown by Livengood and Kusano (1972). 

However, studies with ouabain and vanadate (see later) suggest that 

the Na++K+-ATPase is not electrogenic under normal resting conditions. 

The lack of a large initial depolarization in Normal saline could also 

+ be explained by the fact that [K li had not decreased enough to produce 

a K+ electrode effect when Normal saline was introduced. Another 

explanation for the lack of a substantial depolarization of VB in Normal 

saline after K+ free treatment may be that such a change was masked 
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b 
+ . y a K -st1mulated Cl entry, causing a large influx of Cl into the 

cell. 

+ Experiments in which Na was replaced by choline resulted in both 

membrane potentials gradually depolarizing at similar rates with no 

change in T.E.P. In 50% of cells examined both VB and VA gave an 

initial small depolarization followed by a small hyperpolarization 

before depolarizing. The latter effect may simply reflect a redistribution 

of ions caused by a change in ion flux across the epithelium. The 

fact that VB showed a slow depolarization as opposed to a rapid change 

+ in potential in Na free saline, confirms the observations made in 

K+ substitution experiments viz that this membrane was not very permeable 

to sodium. Furthermore, Morgan and Mordue (1981) found that the reduction 

of Na+concentration in the bathing saline from 142 to 70 mM produced 

a negligible change in VB in tubules from Locusta. The results from 

the present study differ from those reported by .Williams and Beyenbach 

(1984) in the tubules of Aedes. They found that lqwering the bathing 

Na+concentration caused a prompt reduction in the positivity of T.E.P. 

Sawyer and Beyenbach (1985a) found that a five-fold reduction of the 

bath [Na+] produced reversible hyperpolarizations of VB under control 

conditions in the same tissue. 

+ The gradual ftepolarization of both membrane potentials in Na 

free saline may be largely attributed to an inhibition of the Na++K+-ATPase. 

+ 
The exclusion of Na from the bathing saline may result in a reduction 

. [ + + 1n Na li and a reversal and gradual reduction in the Na gradient as 

this ion no longer entered the cell across the basal membrane. Indeed, 

+ 
a lowering of cell Na has been shown in the electric organ of 

+ Electrophorus when Na was replaced in the ambient medium by choline 



(Albers et al., 1968). The reduction in [Na+li would be P-Xpected 

+ + 
to reduce the functioning of the Na +K pump, the activity of which 
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is dependent on the internal Na concentration in many tissues (Grantham, 

1980). 
+ + + 

With the Na +K pump rate reduced, [K li and the K gradient will 

probably reduce and this would produce a slow depolarization of the 

basal membrane. The reduction in [K+]i may decrease the transport of 

this ion across the apical membrane, perhaps leading to a slow 

depolarization of VA. 

Cl- Sub.6Wu;t.[on 

The introduction of Cl free saline (with Cl replaced by gl~ronic 

acid) resulted in no change in VB, although VA hyperpolarized (and T.E.P. 

increased in positivity) over 5-10 mins to a new maintained potential. 

The lowering of bath Cl concentration also increased the positivity 

of T.E.P. in most Malpighian tubules of Aedes examined by Williams and 

Beyenbach (1984) and in the salivary glands of Calliphora (Berridge, 

1980). In contrast, O'.Donnell and Maddrell (1984) found that T.E.P. 

in Rhodnius tubules (unstimulated by 5-HT) was relatively insensitive 

to [Cl ] 0 • In stimulated tubules, however, Cl free saline produced a 

larg~ decrease in T.E.P. which was matched by an apical membrane 

hyperpolarization. VB changed only very slightly in Cl free saline 

and these authors remark that the basal membrane, as found for Locusta, 

is not freely permeable to Cl . 

In many vertebrate tissues, including mammalian nephron (Greger 

and Schlatter, 1983) and rabbit cortical collecting duct (Sansom et 

al., 1984), a reduction in basolateral [Cl-l resulted in a depolarization 

of VB and this was consistent with the presence of a Cl conductance 

in the basolateral membrane. In the latter tissue, little change occurred 

in VA. Similar to the present study, however, reduced (or free) basolateral 
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Cl solutions lead to only small v
8 

changes in rabbit and Necturus 

proximal tubules (Cardinal et al., 1984; Guggino et al., 1982, 1983) 

and Necturus gallbladder (Reuss, 1984). 

Results suggest that under normal resting conditions a Cl conductance 

does not play an important role in Cl 

of the Malpighian tubules of Locusta. 

entry across the basal membrane 

+ + Also, although Na -H and 

+ 2+ + 
Na -ca exchange may contribute to [Na li (see later) there is the 

question of Na+entry into the cell across a membrane largely impermeable 

to this cation. As mentioned in the introduction, Cl- transport in 

+ + + 
the form of a Na (or Na ,K ) coupled Cl carrier has been postulated 

in a variety of epithelia (Frizzell et al., 1979; Phillips and Lewis, 

1983). Indeed, O'Donnell and Maddrell (1984) have suggested that an 

+ + -electroneutral Na K C1 transport occurs across the basal membrane of 

the Malpighian tubules of Rhodnius. Morgan and Mordue (1983a) have 

+ + also suggested that active Cl entry may be Na and/or K dependent or 

+ 
that the inward diffusion of Na into the cell may provide the energy 

for the-· inward movement of Cl- in the tubules of Locusta. As seen in· 

the present study I the absence of a N/ and cr conductance lead to the 

+ + -proposal of Na K Cl cotransport in Rhodnius tubules. 

+ + Results from K , Na and Cl substitution experiments do not support 

or reject the possibility of a NaKCl mechanism in the tubules of 

+ + Locusta. It may be that under K free or Na free conditions, such 

a cotransporter still functi~ns to allow Cl entry across the basal 

membrane. Indeed, O'Donnell and Maddrell (1984) propose that when the 

bathing saline contains Na+ or K~ but not both, Cl- entry may be possible 

in the tubules of Rhodnius, if the cotransport mechanism accepts, though 

+ - + -less readily, stoichiometries such as 2 Na : 2 Cl or 2 K : 2 Cl • If 

+ Na and Cl entry are linked in Locusta tubules, however, it seems odd 

that VB gradually depolarized in Na+ free saline but did not change 
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in Cl free saline. It may be that Cl entry involves other transport 

+ . - -mechanisms, such as K -st~mulated Cl entry, Cl -HC0
3 

exchange or 

- -an anion Cl +HC0
3 

-stimulated ATPase (see later). 

The hyperpolarization of VA observed in the absence of Cl may 

be related to the functioning of an apical K+ pump. Thus, in Cl free 

saline, Cl would become unavailable to act as a counterion across the 

apical membrane. + The continued pumping of K into the lumen would lead 

to a hyperpolarization of VA as positive ions moved out of the cell. 

Such a mechanism has been described from the 5-HT stimulated Malpighian 

tubules ofRhodnius (O'Donnell and Maddrell, 1984) and salivary glands 

of Calliphora (Berridge, 1980) to explain the apical membrane hyperpolar-

ization during treatment with Cl free saline. 

Type A and Type B R~po~e 

Results showed that both membrane potentials depolarized to maintained 

potentials folowing treatment with high K+ (128 mM) saline in most cells 

examined. The depolarization of VB,-as·mentioned earlier, produced 

a potential very similar to that predicted by Nernst and this was called 

the Type A response. This Type A response of VB to high K+ saline 

occurred in approximately 80% of cells studied with the remaining 20% 

showing an atypical response which appears not to have been reported 

previously. The latter response has been referred to as the Type B response. 

This Type B response was characterized by depolarized apical and basal 

cell membrane potentials significantly more negative compared with the 

Type A response when the tubule was bathed in high K+ saline. 

Before further discussion it was necessary to examine the nature 

of this naturally occurring and permanent Type B behaviour. Leaving 

VA aside for the present, it can be assumed that the introduction of 

high K+ saline results in VB starting to depolarize in a Nernstian 
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manner during the Type B response. It may be that as the membrane 

depolarizes, however, a hyperpolarized component "switches on" pushing 

VB away from the value predicted by Nernst. This "switch on" reaches 

its maximum value after 1-2 mins and results in a maintained potential. 

The introduction of Normal saline may result in a depolarizing "switching 

off" before VB hyperpolarizes in a Nernstian fashion to the original 

resting value. This idea that the Type B response was not a series 

of ionic events but the simple "switching on" of a hyperpolarized component 

is illustrated in Fig. 28. A subtraction of the hyperpolarized component 

showed that the Type B response may, in fact,be a Type A response which 

was overlaid and masked by a maintained hyperpolarization of VB in 

high K+ saline. The rate at which the hyperpolarized component was 

switched on and off and its ability to be maintained can be used to 

explain the variations of the 'typical' Type B response described 

elsewhere. Some of these explanations are shown in Fig. 28. Thus, 

the fact that some cells exhibiting the Type B response do not 

hyperpolarize after depolarizing in high K+ saline nor depolarize 

before hyperpolarizing in Normal saline may suggest that the hyperpolarized 

component was switching on during the initial high K+ depolarization. 

Similarly, a reduction of VB after the hyperpolarized component has 

switched on in high K+ saline may be explained by a simple depolarization 

of this component. As VA also exhibited the Type B response it may 

be that a similar s~t of events, with a hyperpolarized component 

"switching on" and "off", was observed across the apical membrane. 

What is the Type B response? Results showed that this unusual 

behaviour was not directly due to the enhanced [K+] 0 as it only occurred 

spontaneously in about one fifth of cells examined in high K+ saline. 

As high K+ saline contained noNa+, it could be argued that the Type B 

. + response was the direct result of a Nernst1an Na gradient. Thus, if 



Fig. 28 

This shows a schematic representation of three variations (i,ii,iii) 

of the basal membrane potential, during the Type B response (B) in 

+ 128 mM K saline, with respect to the more usual Type A response (A). 

It can be suggested that the hyperpolarized component (H.C.) of the 

Type B response in all three cases may be the result of a "switching 

on" of some unknown ionic process in 128 mM K+ saline followed by a 

"switching off" in Normal saline. As a result of the "switching on" in 

+ high K saline, VB becomes much more negative in the Type B response 

than predicted by Nernst. The different variations of the Type B 

response (Fig. 21, i-v) may be explained by the speed at which the 

+ hyperpolarized component is "switched on" and "off" when 128 mM K 

and Normal saline are introduced (see text for details). A similar 

set of events, with a hyperpolarized component "switching on" and 

"off", may occur across the apical membrane. 

+ indicates the change in perfusate from Normal 

to 128 mM K+ saline 

Ordinate: Potential in mV 

Abscissa: Time in Mins 
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one assumes that [Na+]i is approximately 13 mM as reported for the 

tubules of Rhodnius (Gupta et al., 1976) and that [Na+] 0 is low 
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(< 1 mM), then a potential of around 60 mVs could be generated across 

+ the basal membrane, if the membrane changed from being largely K to 

Na+ permeable in 128 mM K+ saline. + However, a small amount of Na 

+ 
(10 mM) in the high K (118 mM) saline showed that the Type B response 

was not due to an alteration in the Na+ permeability. 

The Type B response was observed for both membrane potentials if 

cells were introduced to 128 mM K+ saline directly after at least 

5 min treatment in K+ free saline. + Thus, K free saline pretreatment 

was a means of inducing Type B behaviour in cells which originally 

exhibited the Type A response to high K+ saline. The absence of external 

+ K , however, was not a pre-requisite>, for the induction of this· 

response. Thus, pretreatment with 1.25 mM K+ saline for at least 5 mins 

+ also induced the Type B response, although 2.5 mM K saline pretreatment 

did not. The concentration of K+ in the saline directly after the low 

K+ treatment· was also important as 64 mM K+·saline did not reveal the 

0 + + Type B response after e1ther 1.25 mM K or K free treatments. 

+ + Results from K free (and 1.25 mM K ) treatments suggest that 

0 + the Type B response may be related. to changes 1n [Na ]i for, as mentioned 

earlier, this condition probably lead to an increase in intracellular 

Na+. This is supported by the fact that treatment in Na+ free saline 

which, unlike K+ free saline, probably lead to a reduction in [Na+]i did 

not induce the Type B response. + -The introduction of high K ,Cl free 

saline after Cl free treatment also did not reveal the Type B response 

in cells which naturally exhibited the Type A response. However, a 

Type B response still occurred after such Cl substitution experiments 

in cells which exhibited this response naturally. This latter observation 

showed that the Type B response was probably not the result of an 
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electrogenic basal membrane Cl pump being "switched on", and that the 

absence of Cl did not prevent Type B behaviour from occurring. 

As mentioned earlier, the depolarization of VA during the Type 

. + A response may be due to h~gh K saline-induced intracellular changes 

leading to an increase in apical Cl exit. This was supported by the 

fact that the depolarization of VA during the Type A response was very 

much reduced in high K+,Cl free saline (VB was not affected). So, 

although the raised [K+] 0 may still have the ability of indirectly 

increasing the apical membrane Cl exit, the unavailability of Cl 

prevents a marked reduction in VA. 

+ -Despite the appearance of Type B behaviour in high K ,Cl free 

saline after Cl free treatment in cells which exhibited the naturally-

occurring Type B response, results show that this was not maintained 

across both membranes indicating a dependence upon the presence of 

+ -Also, the introduction of high K ,Cl free saline after high 

K+ saline exposed a Cl -dependent potential in VB and a Cl -free activated 

potential in VA during the naturally occurring Type B response. Thus, 

it appears that the Type B response may be related to an increase in 

+ [Na ]i and exhibits a partial dependence on Cl • 

Section 3: Electrophysiological Studies on VBLYA and T.E.P. Using 

0 ab . d . 1 . d . d 2+ u a~n-, Vana ate-, Am~ or~ e-, Monens~n- an Ba -

eontaining Salines 

E66ect o6 1 mM Ouab~n 

Table 21a and Fig. 29 show the effect of Normal saline containing 

1 mM ouabain on VB, VA and T.E.P. Results show that both membrane 

potentials gradually depolarized at similar rates during exposure to 

this inhibitor, producing little change in T.E.P. It was found that 



Table 2la 

Effect on VB, VA and T.E.P. of changing the perfusate from Normal 

saline to Normal saline + 1 mM ouabain. 

na represents the number of individual experiments for VB, each 

involving separate tubule preparations; 

nb represents the number of individual experiments for V and 
. A 

T.E.P., each involving separate tubule preparations. 

Table 21b 

Effect on VB, VA and T.E.P. of changing the perfusate from Normal 

saline + 1 mM ouabain to 128 mM K+ saline in cells which exhibited 

the Type A response. 

n represents. the number of _individual~experiments, each involving 

separate tubule preparations. 



Table 2la 

Parameter Treatment 

VB 

VA 
Normal 

Saline 
T.E.P. 

na -

nb -

Table 2lb 

Parameter Treatment 

VB 
Normal 

VA 
Saline 

T.E.P. 

P.O. ± S.E.M. 
(mV) 

-68.9 ± 1. 2 

-88.7 ± 3.0 

+11.5 ± 3.3 

34 

11 

P.O. ± S.E.M. 
(mV) 

-69.0 ± 1.4 

-85.7 ± 3. 7 

+12.0 ± 3.2 

Treatment 
5 10 

Normal -66.1 ± o. g. -
Saline+ 
1mM 

-85.0 ± 2. 7 -83.2 ± 2. 7 

Ouabain +11.9 ± 3.1· +11.5 ± 3.2 

34 31 

11 11 

P.O. ± S.E.M. 
Treatment (component Treatment 

a, Fig.20) 
(mV) ~·~· 

Normal -47.5 ± 1. 8 
Saline+ 

-64.0 ± 3. 5 
128mM K+ 

lmM 
Saline 

Ouabain +12.0 ± 5.5 

Time in New Saline (mins) 

15 20 30 45 60 

-62.1 ± 1. 0 -60.3 ± 1.1 -55.6 ± 1.5 -50.3 ± 1. 5 -46.4 ± 1. 5 

-79.9 ± 3.4 -79.2±4.7 -75.0 ± 6.2 

+12.0 ± 3.5 +12.6±4.3 +13.3±7.3 

31 27 25 21 20 

9 6 4 

Re-
New Repolarized Initial t:.P.o. established 

P.O. ± S.E.M. P.O. ± S.E.M. ± S.E.M. P.O. ± S.E.M. 
(component (component Treatment (component (component n 
c, Fig.20) e, Fig.20) f, Fig.20) g, Fig.20) 

(mV) (mV) (mV) (mV) 

I 

- 4.0±1.8 -22.6±3.7 +8. 9 ± 2. 7 -41.0 ± 2. 7 22 

-31.2±8.2 -36.2±8.2 
Normal 

+8.0 ± 2.5 -61.0 ± 4.1 6 
Saline 

+26.8±8.2 - - +8.0±5.3 6 



Fig. 29 

Typical example of the effect on VB, VA and T.E.P. of changing 

the perfusate from Normal saline to Normal saline + 1 mM ouabain 

+ before the subsequent addition of 128 mM K saline, in cells 

which exhibited the Type A response. 

* indicates a period of 10 mins during which a Type A response 
+ . 

to 128 mM K saline was established (VB = -8 mV, VA = -43 mV, 

T.E.P. = +30 mV). 
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VB depolarized by one third of the original resting value after 1 hr. 

The fact that both VB and VA had only depolarized by 4% of the original 

resting values after 5 mins of ouabain treatment and did not exhibit 

an initial rapid depolarization suggests that the ouabain-sensitive 

+ + 
Na +K -ATPase was not strongly electrogenic in this tissue (see later). 

The amplitude of the oscillations of VA (and T.E.P.) increased 

significantly (p 0.001-0.01) from 6.0 ± 0.3 mV in Normal saline to 

13.1 ± 2.5 mV in Normal saline containing ouabain, with oscillations 

occurring in 64% of cells. 

E66ec;t o6 128 mM K+ Sa.Li..ne A6teJt T!tea.tment in NoJtmai. Sa.Li..ne + 1 mM Ouabain 

+ The effect of the introduction of 128 mM K saline on VB, VA and 

T.E.P. after a period of 20 to 60 mins treatment in Normal saline + 

1 mM ouabain, in cells which exhibited the Type A response, can be seen 

in Table 2lb and Fig. 29. Results show that ouabain pretreatment 

+ induced a 'reduced' Type B response, in high K saline, for both VB 

and VA •. -However, the initial depolarization (component b, Fig. 20) 

of VB and VA in 128 mM [K+] 0 produced potentials (component c, Fig. 20) 

less negative but not significantly different (p 0.1-0.2 and p = 0.05-

0.2 respectively) from the equivalent values found during the Type A 

response. Furthermore, VB depolarized to a positive value (up to +13 mV 

in the most extreme case) in just under one third of cells exposed to 

high K+ saline after ouabain ~reatment. This response of VB and VA 

was similar to that found earlier when 128 mM K+ saline followed Na+ 

. + f . free treatment. However, unl1ke results from Na ree exper1ments, 

both VB and VA exhibited a ouabain-induced hyperpolarization following 

the initial depolarization in high K+ saline to maintained potentials 

(component e, Fig. 20). This repolarizing change (component d, Fig. 20) 

was between 2 and 71 mV (n = 22) for VB and 2 and 8 mv (n = 6) for VA. 



The variation in the repolarizing change in VB meant that some cells 

exhibited a value for VB, in high K+ saline, more negative than the 

potential seen in the immediately preceeding Normal saline + ouabain 
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treatment. The repolarized VB and VA (component e, Fig. 20) in 128 mM 

+ 
K saline were significantly more negative (p < 0.001) and not different 

(p = 0.5-0.6) respectively compared with the maintained potentials of 

the Type A response. The repolarized VB (component e, Fig. 20), however, 

was significantly less negative (p < 0.001) than the equivalent value 

in the Type B response. This 'reduced' Type B behaviour was reflected 

in T.E.P. which reached a value (+26.8 ± 8.2 mV) in 128 mM [K+] 0 

similar (p = 0.4-0.5) to that found in both the Type A and Type B 

response. 

On re-introduction of Normal saline, VB and VA only reached values 

86% and 95% respectively, of the potentials found before the addition 

of high K+ saline, after 2-3 mins, and did not recover further. This 

suggests that the gradual depolarization of the membrane potentials 

by ouabain was irreversible. 

Finally, it was found that the introduction of high K+ saline + 

1 mM ouabain, to cells which exhibited the Type A response and had no 

previous exposure to this inhibitor, did not induce Type B behaviour 

(n = 3). Thus, the depolarized potentials in cells so-treated were 

similar (p = 0.3-0.4) to those found in the Type A response. This 

suggests that pretreatment is needed in ouabain saline in order to induce 

Type B behaviour. 

Ennect on 1 mM Vanadate 

Table 22a shows the effect of Normal saline containing 1 mM vanadate 

on VB, VA and T.E.P. It was found that both membranes exhibited a 

biphasic decrease in potential, with a more rapid depolarization of 



Table 22a 

Effect on VB, VA and T.E.P. of changing the perfusate from Normal 

saline to Normal saline + 1 mM vanadate. 

Table 22b 

Effect on VB, VA and T.E.P. of changing the perfusate from Normal 

saline + 1 mM vanadate to 128 mM K+ saline + 1 mM vanadate in cells 

which exhibited the Type A response. 

n represents the number of individual experiments, each 

involving separate tubule preparations. 



Table 22a 

P.D. ± S.E.M. 
Parameter Treatment 

(mV) 
Treatment 

VB Normal 
-70.7 ± 2.6 Normal 

Saline+ 
VA Saline 

-88.0 ± 3.8 
lmM 

T.E.P. +12.1 ± 2.2 Vanadate 

n - 10 -

Table 22b 

0 

Treatment Parameter Treatment 
P.D. ± S.E.M. 

(mV) 

VB -70.7 ± 2.6 Normal 
Normal Saline + 

VA -88.0 ± 3.8 
1mM 

Saline 
T.E.P •. +12.1 ± 2.2 Vanadate 

Time in New Saline 

5 10 15 

-56.2 ± 5.2 -50.4 ± 6.4 -46.2 ± 3.6 

-66.8 ± 5.0 -63.3 ± 5.4 -59.2 ± 4.9 
;\{ 

+ 4.3 ± 2.7 + 3.6 ± 3.3 + 4.0 ± 4.4 

10 8 6 

New 

(mins) 

20 

-41.2 ± 2. 9 

-55.7 ± 4.9 

+ 4.2 ± 4.4 

6 

30 

-32.0 ± 7.0 

-49.5 ± 10.5 

+ 8.0 ± 9.2 

2 

He
Initial t.P.D. established 

± S.E.M. P.D. ± S.E.M. P.D. ± S.E.M. ' 
{component Treatment 
a, Fig.20) 

P.D. ± S.E.M. 
{component 
c, Fig.20) 

Repolarized 
P.D. ± S.E.M. 
(component 
e, Fig.20) 

Treatment (component 
f, Fig.20) 

(mV) 

(component 
g, Fig.20) 

(mV) (mV) (mV) (mV) 

-30.5 ± 3.8 128mM K+ + 0.7±2.3 - - -21.9±5.2 
Saline+ Normal 

-44.5 ± 4. 9 -21.2±3.9 - - -38.6±6.1 
lmM - Saline 

+7.8±3.1 Vanadate +17.7±3.1 - +10.4±3.7 

n 

10 

10 

10 
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VB and VA over the first 5 mins exposure to vanadate saline, followed 

by a slower change over the next 25 mins to values 56% and 43% 

respectively less negative than the original resting potentials. In 

one extreme case, the introduction of Normal saline containing vanadate 

resulted in VB and VA depolarizing from -73 mV and -83 mV to -30 mV 

and -38 mV respectively in the first 5 mins; after a further 25 mins, 

VB had decreased to -24 mV, whilst no further change occurred in VA. 

As a result of VA depolarizing quicker than VB over the first 5 mins 

in vanadate saline, T.E.P. reduced in positivity to +4.3 ± 2.7 mV. 

However, this value was maintained throughout the remaining exposure 

to vanadate saline as both membrane potentials declined at similar rates. 

After a period of 20 to 30 mins in vanadate treatment, 30% of cells 

were returned to Normal saline. None of these cells showed any sign 

of recovery over the next 3-4 mins. It would appear that the 

depolarization caused by vanadate was irreversible. 

Oscillations of VA (and T.E.P.) occurred in 30% of cells during 

exposure to 1 mM vanadate and were 4.0 ± 1.2 mV in amplitude. ·Although 

the frequency was slightly less than in Normal saline, the amplitdue 

of these oscillations was not significantly different (p = 0.1-0.2). 

In addition to examining the electrophysiological response of 

V , V and T.E.P. during vanadate treatment, the effect of this inhibitor 
B A 

on fluid secretion by the Malpighian tubules of Locusta was also examined 

(see Appendix, Table 1). It was found that Normal saline containing 

1 mM vanadate, significantly reduced (p < 0.001) fluid secretion by 

82% (n = 15). This result compares favourably with the significant 

77% reduction of fluid secretion (n = 30) found by Kalule-Sabiti (1985) 

in the same tissue. 
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E66ect o6 128 mM K+ Saline + 1 mM Vanadate A6t~ T~eatment ~n No~al 

Saline + 1 mM Vanadate 

The effect of 128 mM K+ saline + 1 mM vanadate on VB, VA and 

T.E.P. was examined after a period of 10 to 30 mins treatment in Normal 

saline + 1 mM vanadate. It was found that membrane changes and resulting 

potentials to this vanadate/high K+ treatment were the same whether 

the cells originally exhibited the Type A or Type B response. Thus, 

results from cells originally exhibiting either Type A or Type B behaviour 

have been grouped together in Table 22b. It was found that vanadate 

pretreatment resulted in the production of a 'reduced' Type A response 

+ for VB and VA on introduction of 128 mM K saline + vanadate. Indeed, 

the depolarized VB (component c, Fig. 20) which had a range of +14 mV to 

-11 mV (with 60% of cells depolarizing to a positive VB) had a positive 

mean value. Furthermore, the maintained VB and VA (component c, 

Fig. 20) were both significantly less negative (p < 0.001) than those 

predicted by Nernst. It was of interest, however, that the initial. 

depolarization (component b, Fig. 20) of VA in high K+ saline + vanadate 

was 75% of that for VB (c.f. 71% and 65% found in the Type B and Type A 

responses respectively) and this resulted in a T.E.P. value not 

significantly different (p = 0. 8-0. 9) from that found in the Type B response. 

On re-introduction of Normal saline, VB and VA only reached values 

72% and 87%, respectively, of the potentials found before the addition 

+ of 128 mM K saline + vanadate, after 2 mins, and did not recover 

further. 

It was noted that the introduction of high K+ saline + vanadate, 

after vanadate treatment, produced a similar response whether cells 

originally exhibited the Type A or Type B response. This suggests 

that the alteration of the ionic gradients during pretreatment in 

Normal saline + vanadate was sufficient to abolish Type B behaviour. 
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Results in Table 23 and Fig. ~0 show that the introduction of 

+ 
high K saline + vanadate, to cells which exhibited the Type A response 

and had no previous exposure to this inhibitor, induced Type B behaviour 

for VB and VA. It can be seen, however, that this induced Type B response 

did not develop strongly. Thus, the novel introduction of vanadate 

in high K+ saline produced depolarized potentials (component c, Fig. 20) 

that were not significantly different (p 0.05-0.1 for VB and p > 0.9 

for VA) from those found during the Type A response. After depolarizing, 

VB and VA exhibited repolarizing changes (component d, Fig. 20) between 

3 and 6 mV and 3 and 11 mV respectively. The resulting repolarized 

VB and VA (component e, Fig. 20) were not maintained, but decreased 

8.8 ± 3.2 mV and 15.3 ± 4.4 mV respectively, over 2 mins, after reaching 

a maximum value. Furthermore, during this 'weak' inducement of Type B 

behaviour, VB depolarized less than VA. Indeed, the initial depolarization 

of VA in 128 rnM K+ saline was 81% of that for VB (cf. 71% and 65% during 

the Type B an~ Type A response respectively) and this produced a T.E.P. 

which was not significantly different (p = 0.7-0.8) from that found 

in the Type B response. 

Finally, it was found that the presence of 1 rnM vanadate in 

128 rnM K+ saline did not qualitatively alter the Type B behaviour of 

either membrane potential when compared with results in the absence 

of vanadate (n = 4). Thus, the novel introduction of 1 rnM vanadate 

in high K+ saline, in ce~ls which originally exhibited Type B behaviour, 

had no significant effect (p 0.4-0.5) on the Type B response values 

for VB, VA and T.E.P. 

E66ect o6 1 mM Amilo~de 

Table 24a shows the effect of changing the perfusate from Normal saline 

to Normal saline containing 1 ~1 amiloride on VB, VA and T.E.P. Results show 



Table 23 

Effect on v
8

, VA and T.E.P. of changing the perfusate from Normal 

+ saline to 128 mM K saline + 1 mM vanadate in cells which exhibited 

+ 
the Type A response (i.e. a novel addition of vanadate in high K 

saline). 

n represents the number of individual experiments, each 

involving separate tubule preparations. 



New Repolarized Initial ~P.D. Re-established 
P.D. ± S.E.M. P.D. ± S. E.M. P.D. ± S.E.M. ± S.E.M~ P.D. ± S.E.M. 

Parameter Treatment (component Treatment (component (component Treatment (component (cor.1ponent n 
a, Fig.20) c, Fig.20) e, Fig.20) f, Fig.20) g, Fig.20) 

(mV) (mV) (mV) (mV) (mV) 

VB -68.8 ± 1.8 128mMK+ -17.5 ± 5.5 -22.3 ± 5.8 - -56.8 ± 2.9 4 
Normal Saline+ Normal 

VA -84.3 ± 7.1 -42.5 ± 11.2 -48.3 ± 10.4 - -70.3 ± 3.6 4 
Saline lmM 

Saline T.E.P. +6.3±3.9 Vanadate +18. 3 ± 5.1 - - + 6.0 ± 2.9 4 

1~', 



Fig. 30 

Typical example of the effect on VB, VA and T.E.P. of changing 

+ the perfusate from Normal saline to 128 mM K saline + 1 mM 

vanadate in cells which exhibited the Type A response. 

* indicates a period of 10 mins during which a Type A response 
+ to 128 mM K saline was established (VB = -9 mv, VA = -48 mV, 

T.E.P. = +36 mV). 
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Table 24a 

Effect on V , V and T.E.P. of changing the perfusate from Normal 
B A 

saline to Normal saline + 1 mM amiloride. 

Table 24b 

Effect on VB, VA and T.E.P. of changing the perfusate from Normal 

saline + 1 mM amiloride to 128 mM K+ saline + 1 mM amiloride in 

cells which exhibited the Type A response. 

n represents the number of individual experiments, each 

involving separate tubule preparations. 



Table 24a 

. Parameter Treatment 

VB Normal 

VA Saline 
T.E.P. 

n -

Table 24b 

Parameter Treatment 

VB Normal 

VA Saline 
T.E.P. 

Time in New Saline 
P.D. ± S.E.M. 

Treatment 
(mV) 

1 5 

-70.2 ± 1.3 Normal 

-81.1 ± 4.4 
Saline + 

-77 .; .. 0 ± 4. 4 -74.9 ± 4.4 
lmM 

+ 6.9 ± 3.6 Amiloride + 2.8 ± 3.5 +1.9 ± 3.5 

10 

P.D. ± S.E.M. 
(mV) 

-70.2±1.3 

-74.7±5.5 

+1.0±5.5 

Treatment 

Normal 
Saline + 
lmM 
Ami lor ide 

-

P.D. ± S.E.M. 
(component 
a, Fig.20) 

(mV) 

-70.2±1.3 

-72.2 ± 5. 7 

-1.8±5.4 

10 

Treatment 

128mM K+ 
Saline+ 
lmM 
Ami lor ide 

10 

New 
P.D. ± S.E.M. 
(component 
c, Fig.20) 

(mV) 

-7.7±1.1 

-25.2±9.3 

+14.2±8.6 

10 

-73.7 ± 4.4 

+ 0.6 ± 3.7 

9 

Repolarized 
P.D. ± S.E.M. 
(component 
e, Fig.20) 

(mV) 

-
-
-

(mins) 

15 20 

-72.6 ± 4.9 -72.8 ± 5.9 

+ 0.5 ± 3.9 + 0.7 ± 4.8 

8 

Treatment 

Normal 

Saline 

6 

Initial 
6P.D. ± S.E.M. 

(component 
f, Fig.20) 

(mV) 

-
-
-

Re-
established 

P.D. ± S.E.M. 
(component 
g, Fig.20) 

(mV) 

-68.2 ± 0.5 

-76.0 ± 4.1 

+3.0±4.3 

n 

6 

6 

6 
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that whilst VB did not change even after 60 mins of amiloride treatment, 

a gradual depolarization of VA was observed to a value that was 

7.3 ± 2.3 mV less negative than the original resting potential after 

30 mins exposure. T.E.P. gradually decreased in positivity, towards 

zero, as the difference in potential between the two membranes decreased. 

Oscillations of 5.3 ± 2.4 mV amplitude occurred for VA (and T.E.P.) 

in 30% of cells in Normal saline + 1 rnM amiloride. This rate of oscillation 

was less but not significantly different in amplitude (p = 0.7-0.8) 

from the value found in Normal saline. 

It was found that Normal saline containing 1 rnM amiloride significantly 

reduced (p < 0.001) fluid secretion by the Malpighian tubules of Locusta 

by 88% (n = 14) (see Appendix, Table 1). This result agrees favourably 

with the significant 94% reduction in fluid secretion (n = 22) found 

by Fathpour (1980) in the same tissue. 

E66ect o6 128 mM K+ Saline+ 1 mM Amilo~de A6t~ T~eatment in No~al 

Saline + 1 mM Amilo~de 

+ The effect of the introduction of 128 rnM K saline + 1 rnM amiloride, 

on VB, VA and T.E.P., directly after a period of 15 to 40 mins in Normal 

saline + 1 rnM amiloride, on cells which originally exhibited the Type A 

response, can be seen in Table 24b. It was found that treatment in 

amiloride saline did not alter the Type A response of either VB or 

VA. Thus, the depolarized values (component c, Fig. 20) of VB and 

VA were not significantly different (p = 0.3-0.4 and p = 0.05-0.1 

respectively) from the equivalent values found during the Type A response. 

However, although not significantly different, the depolarized VA 

(component c, Fig. 20) in high K+ saline + amiloride was 16 mV less 

negative than in the Type A response. This arose as a result of VA 

initially depolarizing 75% of that for VB (cf. 65% found during the 
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) . + . Type A response and resulted in a T.E.P. value, 1n 128 mM K sal1ne 

+ arniloride, which was significantly less positive (p = 0.02-0.03) 

than T.E.P. found in the Type A response. 

-5 -4 E66ect o6 10 M o~ 10 M Monenoin 

It was found that VB, VA and T.E.P. did not change even after 

30 mins exposure to Normal saline+ 10-
5

M monensin (n = 3). In contrast, 

changing the perfusate from Normal saline to Normal saline + 10-
4 

M 

monensin altered VB, VA and T.E.P. and results are shown in Table 25a 

and Fig. 31. It can be seen that VB and VA depolarized 10.3 ± 2.1 mV 

and 7.6 ± 2.3 mV respectively over the first 1 to 4 mins exposure to 

10-
4 

M monensin saline, then hyperpolarized 23.1 ± 2.9 mV and 20.2 ± 2.9 mV 

respectively over the next 2 to 7 mins. These changes were then followed 

by a decline of VB and VA, 6.3 ± 1.1 mv and 8.0 ± 2.1 mV respectively, 

over the next 3 to 7 mins. The extent of this depolarization was not 

followed. Due to VB and VA changing by similar values (with VA depolarizing 

and hypeq:>olarizing 74% and ~7% respectively of the values fqund for 

VB), T.E.P. changed little during Normal saline+ 10-
4

M monensin 

treatment. One third of the cells exposed to monensin were returned 

to Normal saline; VB and VA in these cells depolarized to the original 

resting values in about 4 mins. 

A variety of experiments (the purpose of which will be explained 

later) were carried out to explore this ability of monensin to induce 

an initial depolarization, followed by a secondary hyperpolarization, 

of both membrane potentials. Therefore, the effect of changing the 

perfusate from Normal saline to Normal saline + 1 mM ouabain on VB, 

VA and T.E.P. before the subsequent addition of Normal saline + 10-
4 

M 

monensin + 1 mM ouabain was examined (n = 5). Cells were exposed to 

Normal saline + ouabain for 10 to 20 mins. It was found that the 



Table 25a 

Effect on VB, VA and T.E.P. of changing the perfusate from Normal 

-4 
saline to Normal saline + 10 M monensin. 

Table 25b 

Effect on VB, VA and T.E.P. of changing the perfusate from Normal 

saline + 10-4 M monensin to 128 mM K+ saline + 10-
4 

M monensin in 

cells which exhibited the Type A response. 

n represents the number of individual experiments, each involving 

separate tubule preparations. 



Table 25a 

P.D. ± S.E.M • 
New P.D. ± Repolarized . 

Parameter Treatment 
(mV) 

Treatment S.E.M. P.D. ± S.E.M. n 
(mV) (mV) 

VB Normal 
-71.5 ± 1.3 Normal -61.2 ± 2. 9 -84.3 ± 2. 3 11 

Saline + 
VA Saline 

-89.3 ± 2.2 
10-4M 

-81.7 ± 2. 9 -101.9 ± 3.4 11 

T.E.P. +10.0 ± 1. 7 Monensin +12.7 ± 2.7 + 9.0 ± 2.8 11 

Table 25b 

Re-
New Repolarized Initial established 

P.D. ± S.E.M •. P.D. ± S.E.M. P.D. ± S.E.M. liP.D. ± S.E.M. P.D. ± S.E.M. 
Parameter Treatment 

P.D. ± S.E.M. 
Treatment (component Treatment (component (component Treatment (component (component (mV) n 

a, Fig.20) c, Fig.20) e, Fig.20) f, Fig.20) g, Fig.20) 
(mV) (mV) (mV) (mV) (mV) 

-72.0 ± 1.2 Normal -73.9 ± 4.1 
... 

128mMK+ -39.1 ± 8.4 -59.9 ± 7. 7 +15.0±6.3 -71.2 ± 2.1 VB Normal Normal 8 

-87.5±5.6 
Saline + 

-90.0 ± 6.0 Saline+ -62.3 ± 10.4 -78.8±7.1 +13.0 ± 6. 7 -85.6 ± 4. 7 8 VA Saline 10-4 M 10-4 M Saline 
T.E.P. +10.8 ± 1.8 Monensin +11.9 ± 3.4 +19.3± 4.1 - - + 9.9±2.3 8 Monensin 



Fig. 31 

Typical example of the effect on V 1 V and T.E.P. of changing 
B A 

-4 
the perfusate from Normal saline to Normal saline + 10 M 

+ monensin before the subsequent addition·of 128 mM K saline+ 

-4 
10 M monensin 1 in cells which exhibited the Type A response. 

* indicates a period of 10 mins during which a Type A response 

to 128 mM K+ saline was established (VB = -5 mV 1 VA = -38 mV 1 

T.E.P. = +32 mV). 
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introduction of Normal saline containing monensin and ouabain abolished 

the initial depolarization and reduced the secondary hyperpolarization 

of VB and VA. Thus, VB and VA hyperpolarized immediately by 6.8 ± 1.6 mV 

and 4.6 ± 2.4 mV respectively, over 2 to 3 mins, in this modified saline 

(cf. Table 25a). The new hyperpolarized VB and VA (-60.8 ± 2.1 mV 

and -82.8 ± 4.6 mV respectively) were maintained for 2 to 5 mins. Due 

to the similar changes of VB and VA, T.E.P. did not alter in saline 

containing monensin and ouabain. A period of ouabain pretreatment 

was needed. to produce these effects as the introduction of Normal saline 

+ monensin + ouabain directly after Normal saline resulted in the 'typical' 

monensin-induced depolarization and hyperpolarization phases described 

in Table 25a. 

It was found that changing the perfusate from Normal saline to 

Na+ free saline + 10-
4 

M monensin also abolished the initial monensin-

induced depolarization of both membrane potentials found when this 

ion was present (n = 3). Instead, as seen in Normal saline containing 

motiensin and ouabain, an immediate hyperpolarization of VB and VA (by 

28.7 ± 8.0 mV and 18.0 ± 2.5 mV respectively) occurred over 1 to 5 mins 

to produce values of -103.3 ± 2.4 mv and -107.0 ± 6.6 mv respectively. 

These new values were not maintained but declined 32.3 ± 9.6 mV and 

28.7 ± 8.1 mV respectively over the next 1 to 4 mins. Reflecting the 

changes seen in VB and VA, T.E.P. decreased in positivity by 8.3 ± 4.6 mV 

to 41.0 ± 5.0 mV over the first 1 to 5 mins in Na+ free saline+ monensin, 

then increased in positivity by 2.3 ± 2.2 mV over the next 1 to 4 mins. 

As with Normal saline containing monensin, changing the perfusate 

from Normal saline to Cl free saline + 10-
4 

M monensin resulted in 

a depolarization of both membrane potentials; however, the new values 

were maintained and did not exhibit a secondary hyperpolarization (n = 5). 

Thus, V and V depolarized 16.6 ± 4.4 mV and 7.6 ± 2.2 mV respectively 
B A 
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over 2 to 5 mins (cf. Table 25a). The new potentials (-54± 3.7 mV 

and -71.4 ± 2.9 mV respectively) were maintained for 2 to 10 mins. 

T.E.P. increased in positivity by 11.2 ± 2.7 mV over 2 to 5 mins in 

Cl free saline + monensin to a maintained value of +16.0 ± 2.8 mV. 

2+ 
Finally, changing the perfusate from Normal saline to Ca free saline 

-4 
+ 10 M monensin resulted in no change of either VB or VA even after 

15 mins exposure to this new solution (n = 6). This suggests that 

the initial depolarization, followed by the secondary hyperpolarization 

of both membrane potentials, found in Normal saline + 10-
4 

M monensin, 

2+ 
was Ca -dependent. 

Oscillations of VA (and T.E.P.) occurred in 36% of cells in Normal 

-4 
saline + 10 M monensin and were 6.0 ± 1.6 mV in amplitude. Although 

the frequency was less, the amplitude of these oscillations was not 

significantly different (p > 0.9) from the value found in Normal saline. 

Ennect on 1Z8 mM K+ Saline + 10-4 M Monen¢in Ant~ T~eatment in No~al 

Saline + 10-4 M Monen¢in 

The effect of the introduction of 128 rnM K+ saline + 10-
4 

M monensin 

on VB, VA and T.E.P. after a period of 5 to 20 mins treatment in Normal 

saline + 10-
4 

M monensin, in cells which exhibited the Type A response 1 

can be seen in Table 25b and Fig. 31. It can be seen that monensin 

pretreatment induced the Type B response for both VB and VA. Thus, 

the initial depolarization (component b, Fig. 20) of VB and VA, which 

was quite variable (between 4 and 48 mv, and 2 and 49 mV respectively) 

produced depolarized values (component c, Fig. 20) that were not 

significantly different (p = 0.3-0.4 and p = 0.4-0.5 respectively) 

from the equivalent values found in the naturally occurring Type B 

response. After depolarizing approximately 50% of cells were maintained 

at this potential. However, VB and VA in the remaining cells repolarized 
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(component d, Fig. 20) by 20.8 ± 6.0 mV and 16.5 ± 5.7 mV respectively 

0 0 + 0 

1n h1gh K sal1ne + monensin. The resulting repolarized potentials 

(component e, Fig. 20) were not significantly different (p > 0.9 for both 

v8 and VA) from the equivalent values found during the naturally occurring 

Type B behaviour. Following the changes of VB and VA, T.E.P. increased in 

positivity, in 128 I:1M K+ saline+ monensin, to a value similar (p = 0.8-0.9) tc 

that found in the Type B response. 

The pH of all solutions in which BaC1
2 

was used was 7.0, instead 

of the 'normal' pH 7.2. This occurred to avoid precipitation in 

solutions of the higher pH. Experiments involving solutions of pH 7.0 

did not alter VB, VA and T.E.P. when compared with results using 

solutions of pH 7.2. 

Table 26a and Fig. 32 show the effect of Normal saline containing 

1 mM BaC12 on VB, VA and T.E.P. It can be seen that VB and VA initially 

hyperpolarized between 3 and 34 mV, and 2 and 22 mV respectively over 

0.5 min and were maintained at the new potentials for up to 22 mins. 

The mean hyperpolarization of VA was just over half that for VB and 

resulted in VB becoming more negative than VA. This was reflected 

in T.E.P. which changed from +5.4 ± 1.9 mV to -5.1 ± 1.9 mV. On 

re-introduction of Normal saline, VB, VA and T.E.P. returned to the 

original resting values over 0.5.min. 

A variety of experiments (the purpose of which will be explained 

later) were carried out to explore the ability of VB and VA to 

h 0 0 2+ 1" yperpolar1ze 1n Ba sa 1ne. Therefore, the effect of changing the 

2+ 
perfusate from Normal saline to Normal saline + 1 mM Ba on VB,. VA 

and T.E.P. before the subsequent addition of Cl 
2+ 

free saline + 1 mM Ba 

was examined. Although the latter saline contained 1 mM BaC12 , [Cl-] 0 



Table 26a 

Effect on VB, VA and T.E.P. of changing the perfusate from Normal 

2+ 
saline to Normal saline + 1 mM Ba 

Table 26b 

Effect on VB, VA and T.E.P. of changing the perfusate from Normal 

2+ 2+ 
saline + 1 mM Ba to Cl free saline + 1 mM Ba 

n represents the number of individual experiments, each 

involving separate tubule preparations. 



Table 26a 

Parameter Treatment 

VB Normal 

VA Saline 
T.E.P. 

Table 26b 

Parameter Treatment 

VB Normal 

VA Saline 
T.E.P. 

P.D. ± S.E.M. 
(mV) 

-72.9 ± 1.0 

-79.9 ± 2.0 

+ 5.4 ± 1.9 

P.D. ± S.E.M. 
(mV) 

-72.2 ± 1.4 

-83.2 ± 3.2 

+ 8.0 ± 4.0 

Treatment 

Normal 
Saline + 
lrnM 
Ba2+ 

Treatment 

Normal 
Saline + 
lrnM 
Ba2+ 

New 
P.D. ± S.E.M. 

(mV) 

-93.4 ± 2.0 

-90.7 ± 2.6 

- 5.1 ± 1.9 

· New 
P.D. ±.S.E.M. 

(mV) 

-93.6 ± 5.2 

-93.0 ± 4.6 

- 2.8 ± 2.7 

\'!' 

Treatment 

Normal 

Saline 

Treatment 

cl- free 
Saline + 
lrnM 
Ba2+ 

New 
P.D. ± S.E.M. 

(mV) 

-72.7 ± 1.5 

-79.5 ± 2.3 

+ 5.4 ± 2.8 

New 
P.D. ± S.E.M. 

(mV) 

-70.4 ± 9.1 

-83.2 ± 5.3 

+ 6.8 ± 8.4 

n 

23 

23 

23 

n 

5 

5 

5 



Fig. 32 

Typical example of the effect on V , V and T.E.P. of changing the 
B A 

2+ 
perfusate from Normal saline to Normal saline + 1 mM Ba before 

+ 2+ . 
the subsequent addition of 128 mM K saline + 1 mM Ba , ln cells 

which exhibited the Type A response. 

* indicates a period of 10 mins during which a Type A response 
+ to 128 mM K saline was established (VB = -8 mV, VA= -43 mV, 

T.E.P. = +32 mV). 
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was so low, that the solution was deemed to be 'Cl -free'. In these 

experiments, Cl f 1" 2+ ree sa l.ne + Ba was added only when VB, VA and 

T.E.P. had demonstrated maintained values, in Normal saline 
2+ 

+ Ba 

similar (p = 0.8-0.9) to those found described above (see Table 26a). 

Results are shown in Table 26b. It was found that on introduction 

of Cl 
2+ 

free saline, containing Ba , both VB and VA depolarized, over 

1 min, to new values that were maintained for at least 5 mins. These 

new potentials were very similar to the original resting values before 

2+ 
Ba treatment (with p > 0.9 for VB 1and VA being identical to the 

original potential). T.E.P. increased in positivity, over 1 min, 

in Cl 
2+ 

free saline + Ba , to a value similar (p > 0.9) to that found 

originally. These results indicate that the hyperpolarization of 

2+ 
VB and VA in Normal saline + Ba was a Cl -dependent event. 

The Cl -dependence of the Ba
2
+-induced hyperpolarization of VB 

and VA was further investigated by changing the perfusate from Normal 

saline to Cl 
2+ 

free saline + Ba before the subsequent addition of 

Normal saline+ Ba2+ (n~= 3). It was found that both membrane potentials 

did not change, over 4 to 6 mins, on introduction of Cl free saline + 

2+ 
Ba but hyperpolarized, over 0.5 min, in the ensuing Normal saline 

2+ 
+ Ba treatment. The new VB and VA, which were maintained for up 

to 15 mins, were not significantly different (p > 0.9 and p = 0.2-0.3 

respectively) from the values found in Normal saline + Ba
2
+ described 

earlier (cf. Table 26a). 

The effect on VB, VA and T.E.P. of changing the perfusate from 

Normal saline to Normal saline containing both 1 mM Ba
2

+ and lmM ouabain 

was examined (n = 3). It was found that such treatment reduced the 

Ba2+-induced hyperpolarization and increased the rate of the ouabain-induced 

depolarization of both membrane potentials. Thus, the initial hyperpolar

ization of VB and VA in Normal saline containing Ba
2

+ and ouabain, 
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took 0.5 min, and was only 7.0 ± 3.5 mV (34%) and 2.3 ± 2.3 mV (21%) 

2+ 
respectively compared to the values found when Normal saline + Ba 

was introduced. VB did not become more negative than VA, resulting 

in the new mean T.E.P. remaining lumen positive (+1.0 ± 2.4 mV). 

After hyperpolarizing, VB and VA depolarized 8.7 ± 2.3 mV and 12.0 ± 8.0 mV 

. 1 5 15 . . 1 1" 2+ b . respect1ve y over to m1ns 1n Norma sa 1ne + Ba + oua a1n. This 

rate of decrease was approximately twice as fast as that found with 

Normal saline + 1 mM ouabain (1 mV/min compared with 0.5 mV/min for 

VB and 1.4 mV/min compared with 0.6 mV/min for VA). T.E.P. did not 

change during this decline of VB and VA. 

The Ba
2
+-induced decline of VB and VA in ouabain saline was 

further investigated by changing the perfusate from Normal saline 

2+ 
to Normal saline + Ba before the subsequent addition of Normal saline 

2+ ab . ( + Ba + ou a1n n 2). In these experiments, the latter saline 

was added only when VB, VA and T.E.P. had demonstrated maintained 

2+ 
values, in Normal saline + Ba , similar (p = 0.05-0.1) to those described 

in Table 26a. It was found that on introduction of Normal saline 

2+ 
containing Ba and ouabain, VB and VA depolarized 31.5 ± 16.7 mV 

and 32.0 ± 20.2 mV respectively over 10 to 25 mins. This decline 

of membrane potentials was approximately four times faster than the 

rate found in Normal saline + ouabain (1.8 mV/min compared with 0.4 mV/min 

for VB and 1.8 mV/min compared with 0.5 mV/min for VA). T.E.P. did not 

2+ 
• change during the decline of VB and VA in Normal saline + Ba + ouabain. 

Oscillations of 5.5 ± 0.8 mV in amplitude occurred for VA (and 

T.E.P.) in 48% of cells exposed to Normal saline + 1 mM BaC12 . These 

results were not significantly different (p = 0.4-0.5) from those 

found in Normal saline. 

2+ 
Finally, it was found that Normal saline containing 1 mM Ba 

significantly reduced (p < 0.001) fluid secretion by the Malpighian 
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tubules of Locusta by 63% (n 34) (see Appendix, Table 1). 

E66ect o6 128 mM K+ Saline + I mM BaCl2 A6t~ T~eatment ~n No~al 

Saline + 1 mM BaCl2 
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Table 27 and Fig. 32 show the effect on VB, VA and T.E.P. of 

changing the perfusate to 128 mM K+ saline + 1 mM Bac1
2 

after a period 

of 5 to 20 mins in Normal saline + 1 mM BaC1
2

, in cells which exhibited 

the Type A response. It can be seen that Ba2+ treatment induced 

an 'enhanced' Type B response for both membrane potentials which 

depolarized and repolarized by similar values. Thus, on introduction 

h . h + . 2+ of 1g K sal1ne + Ba , VB and VA depolarized (component b, Fig. 20) 

between 3 and 50 mV, and 0 and 42 mV respectively (VA did not change 

in 10% of cells) and repolarized (component d, Fig. 20) between 3 and 

46 mV, and 2 and 54 mV. As a result, the depolarized potentials 

(component c, Fig. 20) and repolarized potentials (component e, Fig. 

20) for VB and VA were significantly more negative (p < 0.001) than 

the equivalent values found in the naturally occurring Type B response. 

Indeed, the repolarized VB and VA (component e, Fig. 20) were similar 

to the results found in Normal saline + Ba2+ before the addition 

+ . 2+ 
of 128 mM K sal1ne + Ba • Furthermore, during this 'enhanced' 

inducement of the Type B response, VA depolarized 

the initial depolarization (component b, Fig. 20) 

less than VB. Indeed, 

. + 
of VA 1n 128 mM K 

. 2+ . 
sal1ne + Bp was only 56% of that for VB (cf. 71% dur1ng the Type B 

response). This produced a T.E.P. which was only +4.8 ± 2.7 mV, and 

significantly different (p < 0.001) from the +20.0 ± 1. 7 mV value 

found in the naturally occurring Type B response. 



Table 27 

Effect on v
8

, VA and T.E.P. of changing the perfusate from Normal 

2+ + 2+ 
saline + 1 mM Ba to 128 mM K saline + 1 mM Ba , in cells which 

exhibited the Type A response. 

n represents the number of individual experiments, each 

involving separate tubule preparations. 



Re-
New Repolarized Initial established 

P.D. ± S.E.M. 
P.D. ± S.E.M. P.D. ± S.E.M. P.D. ± S.E.M. llP.D. ± S.E.M. P.D. ± S.E.M. 

Parameter Treatment 
(mV) 

Treatment (component Treatment (component (component Treatment (component (component n 
a, Fig.20) c, Fig.20) e, Fig.20) f, Fig.20) g, Fig.20) 

(mV) (mV) (mV) (mV) (mV) 

VB Normal 
-72.1 ± 1.1 Normal -90.1 ± 2.3 128mM K+ -70.9 ± 4.4 -85.9 ± 5. 6 

Normal 
+18.6±4.4 -73.4 ± 0.8 21 

VA -79.6 ± 1.9 Saline+ -88.6 ± 3. 0 
Saline+ 

-77.8 ± 4.2 -97.4 ± 5. 2 Saline +20.7±3.6 -79.4 ± 1. 7 21 Saline 
lMM 

lmM 
T.E.P. + 3.8 ± 1.9 -5.3±2.1 Ba2+ + 4.8 ± 2. 7 - - + 4.0±1.6 21 

Ba2+ 
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Discussion 

Following the discovery by Skou (1957) of the involvement of 

+ + Na +K -ATPases in alkali metal transport across epithelia, Glynn 

(1957) noted that ouabain and other cardiac glycosides would inhibit 

this enzyme. Since, then, cardiac glycosides have been shown to 

inhibit ion transport across cell membranes and their specific effect on 

+ + . 
~Na +K -ATPase ~swell established (Albers et al., 1968; Wallick 

et al., 1980; Kazazoglou et al., 1983). 

In the present study, 1 mM ouabain caused an irreversible and 

gradual depolarization of both membrane potentials. As a consequence 

T.E.P. did not change during ouabain exposure. This result agrees 

with studies by Pilcher (1970) who reported that T.E.P. across the 

Malpighian tubules of Carausius was unaffected by 10-
4 

M ouabain. 

Also, T.E.P. was not affected by ouabain in Hyalophora midgut (Harvey 

and Zehran, 1971) and Calliphora salivary gland (Berridge et al., 1976). 

The lack of change of T.E.P., however, is in variance with the results 

of Anstee et al. (1980) and Fathpour et a1. (1983), who found that 

the presence of 1 mM ouabain caused a gradual decrease in potential 

in the tubules of Locusta, with a new stable potential reached after 

approximately 30 mins. Ouabain has been shown to decrease T.E.P. 

in other tissues including cockroach intestine (O'Riordan, 1969; 

Datta, 1971), locust oocytes and rectum (Wollberg and Cocos, 1981; 

Irvine and Phillips, 1971) and midgut of larval Sarcophaga (Prusch, 1978). 

The slow depolarization of VB by ouabain in the tubules of 

Locusta was similar to that found in many tissues including the 

gallbladder epithelium of Necturus (Giraldez, 1984), proximal tubules 

from mouse kidney (V8lkl et al., 1986) and the rectal gland tubules 

from Squalus (Greger and Schlatter, 1984) and is indicative of a 
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+ + ouabain-sensitive Na +K -ATPase. Berridge and Schlue (1978) reported 

that 10-
4 

M ouabain inhibited VB in Calliphora salivary glands. Thus, 

in the present study, ouabain would stop the functioning of the 

+ + + + 
Na +K -ATPase probably causing [Na li to rise as Na would not be 

pumped out of the cell, resulting in a reduction in the Na+ gradient. 

+ + + 
A rise in [Na li following the inhibition of the Na +K -ATPase is well 

documented (Cohen, 1983). Indeed, Giraldez (1984) showed that the 

intracellular activity of Na rose from 14.5 mM to 47.3 mM after 1 hr in 

the presence of 1 mM ouabain in Necturus gallbladder epithelium. 

+ + Furthermore, an inhibition of the Na +K -ATPase may result in a reduction 

in both [K+li and the K+ gradient as this ion exits the cell across 

the permeable basal membrane, leading to a slow depolarization of 

VB. Indeed, the presence of ouabain has been shown to cause significant 

+ decreases of cellular K in frog skin (Cox and Helman, 1986). Similarly, 

a reduction of VA may occur as a result of less K+ being available 

to move across the apical membrane. 

; + 
If an apical K pump occurs in the Malpighian ·tubules of 

Locusta, it is unlikely to be affected by ouabain. It has been shown 

that the K+ pump of lepidopteran midgut and dipteran labellum is 

ouabain-insensitive (Harvey et al., 1983; Wieczorek and Gnatzy, 1983; 

Wieczorek, 1986). 

+ + The effect of ouabain on VB indicates that the Na +K -ATPase 

does not contribute any significant electrogenic component to the 

membrane potential under 'normal' conditions in Locusta Malpighian 

tubules. If it did, the application of ouabain might be expected 

to produce an initial rapid depolarization of VB to be followed by 

+ + slow reduction. Such an electrogenic nature to the Na +K -ATPase 

has been shown in Locusta oocytes (Wollberg and Cocos, 1981) and in 

Necturusgallbladder (Giraldez, 1984), the latter being indicated by 
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a fast depolarization of 4 mV which took place in less than 2 mins. 

However, in mouse neuroblastoma-gliomia hybrid cells, ouabain treatment 

+ + 
indicates that the Na +K pump does not make a significant contribution 

to the resting potential (Lichtshtein et al., 1979). 

. . + + . As ment1oned earl1er, the Na +K -ATPase seems to have an 1mportant 

role in ion and water transport by the Malpighian tubules of 

Locusta (Anstee et al., 1979) and this is supported by the fact that 

fluid secretion is inhibited after 20-30 mins exposure to 1 mM ouabain 

(Anstee and Bell, 1975; Anstee et al., 1979; Donkin, 1981). Other 

studies on the tubules of Locusta (Anstee et al., 1979; Mordue and 

Rafaeli-Bernstein, 1978), Drosophila (Weber-von Grotthuss et al., 

1974) and pill millipede (Farquharson, 1974) have also shown Malpighian 

tubule function to be ouabain-sensitive. However, it must be noted, 

that fluid production by Malpighian tubules has also been reported 

to be ouabain-insensitive in several insect species (Calliphora, 

Berridge_, 1968; Rhodnius, Maddrell, 1969; Carausius, Pilcher, 1970; 

Glossina, Gee, "1976; Zonoterus, Rafaeli-Bernstein and Mordue, 1978; 

Musca, Dalton and Windmill, 1980). 

Apart from Malpighian tubules, ouabain sensitivity has been found 

in a wide range of insect tissues. These include inhibition of labial 

+ fluid secretion in Antherea (Kafatos, 1968), inhibition of Na and 

K+ fluxes across Periplaneta midgut (O'Riordan, 1969), Schistocerca 

midgut caecum (Dow,• 1981) and insect nerve (Treherne, 1966), a reduction 

in water absorption from locust rectum (Goh and Phillips, 1978) and 

fluid absorption by Rhodnius midgut (Farmer et al., 1981) and a 

. + decrease in 1ntracellular K level in Calliphora salivary glands (Berridge 

and Schlue, 1978). Ouabain has also been shown to inhibit the ATPase 

activity in homogenates of several gut f,ractio~of Glossina and 

Sarcophaga (Peacock, 1981; 1982), in homogenates of Malpighian tubules 
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and hindgut from Homorocoryphus (Peacock et al., 1976) and plasma 

membrane fractions from antenna of Periplaneta (Norris and Cary, 1981). 

On the other hand, Jungreis (1977) and Jungreis and Vaughan (1977) 

failed to find any ouabain sensitivity in the midgut epithelium of 

three phytophyagous lepidoptera. A large short-circuit current found 

by Dow (cited in Harvey et al., 1983) demonstrated in isolated 

Manduca midgut was not affected by 1 mM ouabain. Also Wolfersberger 

(cited in Harvey et al., 1983) found no ouabain inhibition of ATPase 

activity in the same tissue. However, Anstee and Bowler (1979) have 

discussed the lack of agreement in the literature concerning ouabain-

sensitivity of insect tissue and suggest that methodological differences 

account for much of the conflict in reported studies. 

Overall, results from the present and numerous other studies 

+ + . show without doubt that a Na +K -ATPase 1s present in insect Malpighian 

tubules and various other tissues. Indeed, Berridge (1980) has 

+ + proposed that under resting conditions there is a custodial Na +K -ATPase 

performing its normal function in the salivary glands of Calliphora, 

but during fluid secretion other processes take place which are ouabain 

insensitive. Similarly, Maddrell (personal communication) has stated 

. + + . h that cellular gradients are ma1ntained by a Na +K -ATPase 1n t e 

Malpighian tubules of Rhodnius. 

Vana.da.te. 

+ + In several studies on the Na +K -ATPase from vertebrate tissues 

(Phillips et al., 1983; Nechay et al., 1986), vanadate has been shown 

to be a potent inhibitor of the enzyme (Cantley et al., 1977), but 

it is not a specific inhibitor as other classes of ATPase, including 

2+ 2+ + + 
Ca +Mg -ATPase and K +H -ATPase (O'Neal et al., 1979) are also 

inhibited by this ion. Vanadate has also been shown to activate 
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adeny1ate cyclase (Cuthbert et al., 1980). In physiological conditions, 

vanadium is expected to occur principally in two oxidation states, 

vanadyl (+4) and vanadate (+5). It is vanadium in the latter oxidation 

+ + state which exerts a potent inhibitory effect on the Na +K -ATPase, whereas 

the vanadyl ion has only a minimal impact on the activity of the 

enzyme (Cantley and Aisen, 1979). 

Very few studies on the effect of vanadate on either the activity of 

+ + theNa +K -ATPase from insect tissues or on transport of ions across 

insect epithelial tissues have been published. Anstee and Bowler 

(1984) showed this inhibitor has about the same potency as ouabain 

on Na++K+-ATPase activity in Locusta Malpighian tubule microsomal 

preparations. Further, 1 rnM vanadate has been shown in both the present 

and previous studies (Kalule-Sabiti, 1985) to inhibit fluid secretion 

even more than ouabain. 
-6 

However, orthovanadate (2.3 x 10 M) effected 

substantial stimulation of fluid secretion by the Malpighian tubules 

of Rhodnius (Evans and Mills, 1980). Evans and Mills (1980) explain 

this effect on the basis of vanadate activation of adenyl -cyclase increasing 

intracellular cAMP levels (see later). In mammalian kidney, vanadate 

has been shown to inhibit fluid reabsorption (Edwards and Grantham, 

1983). 
-4 

English and Cantley (1984) found that 2 x 10 M vanadate 

86 + + 
caused an inhibition of Rb-K uptake and increased the Na level 

in cells from a Manduca embryonic cell line CHE, indicating an effect 

+ + 
on the Na +K -ATPase. These workers, however, found the vanadate 

effects were not induced by ouabain. 

The addition of 1 rnM vanadate in Normal saline caused a biphasic 

depolarization of both the apical and basal membrane potentials with 

a quicker 5 min depolarization followed by a slower potential reduction 

over the remaining exposure time. T.E.P. became less positive over 
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the first 5 min and was maintained at the new level for the remaining 

time in vanadate. 
-4 

Vanadate at concentrations of 4 x 10 M and 

-3 
4 x 10 M depolarized the resting membrane potential of mouse skeletal 

muscle fibre (Dlouha et al., 1981). In contrast to the present study, 

10-
4 

M vanadate caused a rapid decrease in the lumen-negative T.E.P. 

of rabbit cortical collecting tubule (Edwards and Grantham, 1983). 

As with ouabain treatment, the overall action of vanadate may 

+ + be explained by an inhibition of the Na +K -ATPase (leading to an 

increase in [Na+]i and a decrease in [K+]i) preventing the maintenance 

of the membrane potentials. A lot of variation occurred in the 

vanadate-induced membrane depolarization and this may be related to 

the speed of conversion of vanadate to the less active vanadyl within 

the cells (Cantley and Aisen, 1979). This observation may also be 

+ related to the fact that K enhances the inhibitory effect of vanadate 

+ + ( . . ) on the Na +K -ATPase H1gash1no et al., 1983 • 

+ If an apical membrane K pump occurs in the tubules of Locusta, 

it is unlikely to be affected by vanadate. Wieczorek et al. (1986) 

+ have shown that the K -ATPase activity (which may be a possible key 

+ component of the lepidopteran K pump) of goblet cell apical membranes 

in Manduca midgut is insensitive even to high concentrations of 

vanadate. 

AmtiotU..de 

The diuretic amiloride has been extensively used to investigate 

sodium transport in epithelia, being a well known inhibitor of 

conductive Na+ entry and Na+-H+ antiport activity (Benos, 1982). It 

has been shown that in a variety of epithelia low concentrations 

(10-S to 10-
4 M) of amiloride block Na entry (Bentley, 1968; Frizzell 

andTurnheim, 1978), while high concentrations (> 1 mM) inhibit 
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+ + Na -H exchange (Aronson, 1981). Aronson (1981) points out that at 

concentrations ~ 1 mM, amiloride may have additional effects, such 

as to inhibit paracellular cation permeability and to inhibit 

+ + Na +K -ATPase. However, Soltoff and Mandel (1983) found that it took 

very high concentrations of amiloride (> 10 mM) to inhibit this enzyme. 

In insects, amiloride has been shown to inhibit fluid secretion 

by the Malpighian tubules of Locusta (present study; Fathpour et al., 

. 1979) and Glossina (Gee, 1976) and by the salivary glands of Calliphora 

(Berridge et al., 1976). This shows a similarity with vertebrate 

tissues, in which the drug inhibits fluid transport in Necturus 

gallbladder (Reuss, 1984), frog skin (Nagel, 1980) and rabbit cortical 

collecting duct (O'Neil and Sansom, 1984). In the present study, 

1 mM amiloride did not affect VB but slowly· reduced the apical potential. 

As a consequence, T.E.P. slowly reduced in positivity towards zero. 

This is consistent with the findings of Fathpour et al. (1983) who 

found that the inclusion of amiloride in the bathing medium caused 

a fall in T.E.P. across Locusta tubules. In contrast, amiloride had 

no effect on T.E.P. across the tubules of Aedes (Williams and 

Beyenbach, 1984) and in shark rectal gland tubules (Greger and 

Schlatter, 1984). In the latter tissue, however, amiloride up to 

1 mM was devoid of effect on VB when present on either epithelial 

side (Greger and Schlatter, 1984). Application of luminal amiloride 

-5 -5 at concentrations of 10 M and 5 x 10 • M has been shown to 

hyperpolarize VA in frog skin (Nagel, 1980) and rabbit cortical 

collecting duct (O'Neil and Sansom, 1984) but had little effect on 

VB in the latter case. 
-5 

In Necturus gallbladder, 10 M luminal 

amiloride had no effect on membrane potential, whereas 1 mM depolarized 

VA (Reuss, 1984). Luminal amiloride did not alter T.E.P. in rabbit 

nephron (Greger, 1985) but caused a sudden decrease in both cell 
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membrane potentials in toad and frog urinary bladder (Davis and 

Finn, 1982). 

+ An apical amiloride-sensitive Na conductance has been proposed 

to explain the hyperpolarization of VA in the Na+ absorbing frog 

skin (Nagel, 1980) and rabbit cortical collecting duct (O'Neil and 

Sansom, 1984). If such a conductance occurs in the tubules of 

+ Locusta, Na would probably enter the cell across the apical membrane 

down its concentration and with its electrical gradient (see Fig. 27). 

However, amiloride inhibition of such a conductance would result in 

a hyperpolarization of VA and not the observed depolarization. Thus, 

+ it is unlikely that an apical Na conductance occurs in the tubules 

of Locusta. Furthermore, the lack of effect of amiloride on VB (and 

+ the relative impermeability of the basal membrane to Na , as shown 

+ by Na free saline) also suggests that a significant conductance 

+ pathway for Na on the basal membrane can probably be excluded from 

this tissue. The latter suggestion agrees with the results of Greger 

and Schlatter (1984) in shark rectal gland tubules. 

The fact that amiloride greatly reduced fluid secretion and gradually 

+ + 
decreased VA suggests that perhaps amiloride affects a Na -H exchanger 

in the tubules of Locusta. Indeed, this electroneutral transporter 

has been found in a variety of renal tissue (Aronson, 1981; 1983). 

In the salivary glands of Calliphora, Berridge et al. (1976) have 

concluded that amiloride may inhibit fluid secretion by interfering 

with the movement of cations across the basal membrane. Fathpour 

et al. (1983) have explained the action of amiloride in the tubules 

+ of Locusta on the basis of an inhibition of Na entry into the cell 

across the basal membrane. These authors suggest that the reduction 

+ + + 
in [Na li would affect the normal functioning of the Na +K -ATPase 

+ thereby reducing the transport of K across the tubule wall. Such 
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+ + a reducing affect on the Na +K -ATPase activity, however, would probably 

result in a depolarization of VB which was not observed in the present 

b h + + h . h'. db study. It may e that alt ough a Na -H exc anger was 1n 1b1te y 

amiloride, Na entered the cell by other means to maintain the activity 

+ + of the Na +K -ATPase and thus the basal potential. Thus, although 

VB was not affected, an increase in the activity of a basal membrane 

+ + + 
NaCl or NaKCl cotransporter to supply Na to the Na +K pump may occur 

+ + following inhibition of Na -H exchange. This may lead to sufficient 

changes in [Cl ]i to produce a depolarization of VA as Cl exit increases. 

It may be that the latter mechanism and the high + -[K ] 0 -induced Cl exit 

discussed earlier are related. To support this speculation, there 

is no evidence for an effect of amiloride on NaCl or NaKCl cotransport 

systems (Davis and Finn, 1985). Finally, amiloride inhibition of 

+ + a Na -H exchange could also alter the pH of the Locusta Malpighian 

tubule cell, perhaps affecting an apical K+ pump, reducing K+ exit 

and depolarizing VA. It is now known that the Na+-H+ antiporter plays 

an important role in the maintenance of cytosori.c [H+] in·a variety 

of cells and can thus control the pH of the cell cytoplasm (Scoble 

et al., 1986). 

&vu:.um 

Since the early demonstration by Pacifico et al. (1969) that 

basal application of the alkali earth metal Ba
2

+ inhibits basolateral 

+ . . . d f 2+ . t' K conductance 1n gastr1c mucosa, ev1 ence or Ba -sens1 1ve 

permeability of both basolateral and apical membranes has been obtained 

in at least nine epithelia and the list continues to grow (Lewis 

et al., 1984). 
2+ 

Indeed, Ba is reported to be a specific blocker 

of K+ permeability (in the concentration range 0.5-5 mM) in such 

transporting epithelia as frog skin (Nagel, 1980), tracheal mucosa 
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(Welsh, 1983), salivary gland acini (Petersen and Maruyama, 1984), 

cortical collecting tubules (Hunter et al., 1984) and locust rectum 

(Hanrahan et al., 1986). The action of Ba
2

+ is to inhibit K+ transport 

through various plasma membrane K+ channels (Latorre and Miller, 1983). 

2+ 
In the present study, 1 mM Ba in Normal saline caused a reversible 

maintained hyperpolarization of both membrane potentials and a reduction 

in the positivity of T.E.P. to a slightly negative value. Associated 

2+ 
with this action, 1 mM Ba greatly decreased fluid secretion across 

Locusta tubules. In contrast to these results, Greger and Schlatter 

2+ 
(1984) found that 3 mM Ba depolarized VB (but reduced T.E.P.) in 

shark rectal gland tubules. A large depolarization of VB has also 

been found in various other vertebrate tissues upon application of 

2+ 
Ba (Cox and Helman, 1986; O'Neil and Sansom, 1984; Candia and Cook, 

1986; Schlatter and Greger, 1985) and has been explained as an inhibition 

of K+ transport through a basolateral K+ conductance. In view of 

the established K+ permeability of the basal membrane of the tubules 

2+ 
of Locusta {see earlier) one must conclude that Ba is acting~somewhat 

2+ 
differently in the present situation, i.e. Ba may not be acting 

+ directly on the K conductance. Support for this observation comes 

2+ 
from the studies of Hanrahan et al. (1986), who found that Ba treatment 

resulted in hyperpolarization of the basolateral membrane in locust 

rectum preparations. These workers state that although simple changes 

in basolateral conductance could account for the observed hyperpolarization 

in locust rectum, they could not exclude the contribution of other 

+ + factors such as the Na +K -ATPase. Moffett and Koch (1985) suggested 

2+ + . . b . that Ba may block K permeab1l1ty in Manduca midgut y act1ng on 

+ the K uptake step rather than on the apical pump. They add, however, 

2+ 
that the effect of Ba cannot easily be accounted for by simple 

competition with K+ for basal membrane uptake sites. 
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The possibility that the Ba
2
+-induced hyperpolarization of both 

membrane potentials was due to an unmasking or activation of the 

+ + . . . . 2+ . h Na +K -ATPase was 1nvest1gated by comb1n1ng Ba treatment w1t 

exposure to ouabain. + Assuming 3Na moved out of the cell in exchange 

for 2K+ moved in across the basal membrane (Cantley, 1981) such an 

activation would hyperpolarize VB. The excess K+ derived from the 

2+ . . 
Ba act1vat1on of the pump may exit the cell across the apical membrane, 

without Cl following as a counterion, increasing VA. The results 

of such experiments in which ouabain was included in a Ba
2

+ saline 

are inconsistent with the proposal that the hyperpolarization of the 

+ + membrane potentials was due to an electrogenic action of the Na +K -ATPase, 

although ouabain reduced the extent to which the increase in potential 

2+ 
developed during Ba treatment. B 2+ . ab . The presence of a 1n ou a1n 

saline increased the decline of both membrane potentials suggesting 

2+ + 
that Ba may be increasing the exit of K from the cell across the 

basal membrane. 
2+ 

This, however, does not fit with the role of Ba as 

+ ; 
a K channel blocker and provides evidence £6r an inexplicable action 

for this cation. 

The fact that results show the 
2+ 

-induced hyperpolarization Ba 

of VB and VA to be abolished by Cl free saline (even in the presence 

of 
2+ 

Ba ) , suggests that Ba 
2+ 

may be affecting a change in anion transport 

across both membranes. This change is unlikely to involve a basal 

NaKCl transporter as this mechanism is thought to be electroneutral 

(Palfrey and Rao, 1983). Furthermore, Greger and Schlatter (1984) 

2+ 
have concluded that Ba does not impede the NaKCl carrier of shark 

rectal gland tubules. A Ba
2
+-induced increase in membrane potentlal, 

2+ . . 2+ 
however, may occur as a result of Ba subst1tut1ng for Ca , as has been 

shown in other tissues (Mandel and Murphy, 1984), leading to an increase in 

an independent Cl entry across the basal membrane and perhaps an increase in 

the activity of a K+ pump across the apical membrane (see later). 
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Monensin is a carboxylic acid ionophore that forms an uncharged 

+ 
complex with Na and protons and catalyzes the electroneutral exchange 

of the two ions across membranes (Christensen, 1975). Thus, monensin 

produces an initial large H+ efflux in exchange for Na+ influx, greatly 

increasing [Na+]i across a favourable Na gradient (Tartakoff, 1983). 

. + On this basis, monensin was used to 1ncrease Na entry into the tubule 

cells of Locusta. 

Very little information is available on the effects of monensin 

on insect tissue. The change from Normal saline to Normal saline 

containing 10-
4 

M monensin in the present study produced an initial 

depolarization (10 mV and 8 mV for VB and VA respectively) over 1-4 

mins followed by a secondary hyperpolarization (23 mV and 20 mV for 

VB and VA respectively) over 2 to 7 mins in both membrane potentials. 

The hyperpolarized potentials were greater than the original potentials 

but were not maintained and decreased slowly; T.E.P. was not affected 

by monensin. Monensin at 10-
5 

M has no effect on either membrane 

potential and this may suggest a threshold concentration occurs for 

monensin in this system. Similarly, in studies on toad urinary baldder, 

-5 
Hardy and Ware (1985) found that monensin at concentrations < 10 M 

had little or no effect. The ionophore has been shown to induce an 

increase in membrane potential in mouse neuroblastoma - rat gliomia 

hybrid and HeLa"cells (Lichtshtein et al., 1979; Alonso and Carrasco, 

1982). Indeed, in the former tissue, Lichtshtein et al., (1979) found 

that local application of monensin induced a 20-30 mV hyperpolarization. 

The initial depolarization followed by a secondary hyperpolarization 

of both VB and VA, in the tubules of Locusta, during monensin treatment 

are difficult to explain in terms of ion fluxes. The initial decrease 

of VB may be due to an inward movement of Na+ increasing [Na+]i as a 
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result of monensin increasing the permeability of the basal membrane 

to this ion. That an increase in [Na+]i should follow monensin treatment 

has been found in various tissues including neuroblastoma-gliomia 

cells (Lichtshtein et al., 1979), mouse fibroblasts (Smith and Rozengurt, 

1978) and midgut cells of Calliphora (Taylor 1984). Furthermore, 

it has been shown in mouse fibroblasts and neuroblastoma-gliomia hybrid 

11 h . . h + + b . . ce s t at monens1n greatly act1vates t e Na +K -ATPase y 1ncreas1ng 

internal Na+ (Smith and Rozengurt, 1978; Lichtshtein et al., 1979). 

Hence, the secondary hyperpolarization of VB in monensin may be the 

+ + result of an electrogenic component of the Na +K -ATPase developing 

as this enzyme pumps the excess Na+ out of the cell in exchange for 

+ extracellular K . (The increased [K+]i due to this activity may exit 

the cell across the apical membrane without Cl as a counterion, 

hyperpolarizing VA.) However, although results showed that the introduction 

of Normal saline containing monensin and the Na++K+-ATPase inhibitor 

ouabain (after a period of ouabain treatment) caused a disappearance 

; 

of the initial depolarization of both membran·e potentials, an immediate-· 

small hyperpolarization of VB and VA occurred instead. Similarly, 

an immediate hyperpolarization (although enhanced) of both potentials 

occurred with the introduction of Na+ free saline+ monensin. Thus, 

+ the presence of a hyperpolarization in ouabain and Na free saline 

containing monensin suggests that it was probably not due to the action 

+ + 
of the Na +K -ATPase. In contrast, Lichtshtein et al. (1979) found 

that monensin had no effect on the resting potential in the presence 

of ouabain and the monensin-induced increase in membrane potential 

required the presence of Na+ in neuroblastoma-gliomia cells. 

The monensin effect, observed with tubules of Locusta may be 

a consequence of changes in other ions such as Cl 
2+ 

and Ca This 

is supported by the observations that: a) with Cl free saline 
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-4 
+ 10 M monensin the initial depolarization of both membrane potentials 

still occurred but the new potentials were maintained and not followed 

by the secondary hyperpolarization and b) with ca
2

+ free saline + 

10-
4 

M monensin no change occurred in either membrane potential. Thus, 

the monensin-induced decrease in both v
8 

and VA may be due to the 

. . . . + 2+ 
1n1t1al entry of Na , in a process controlled by Ca • The secondary 

hyperpolarization may be due to a stimulation of a basal membrane 

Cl entry and an apical membrane K+ pump, produced by a monensin

induced change in [Ca
2
+Ji (see later). 

Finally, caution is needed regarding the application of an ionophore 

such as monensin (Reed, 1979). Primary cation movement by ionophores 

may result in secondary cation or anion fluxes (Pfeiffer et al., 1976) 

making it all but impossible to attribute an ionophore effect directly 

to transport of a specific cation. 

Type A and Type B R~pon6e 

The introduction of high K+ saline immediately after treatment 

in Normal saline + 1 mM ouabain exposed Type B behaviour for both 

membranes in cells which originally exhibited the Type A response 

h
. + . to 1gh K sal1ne. In contrast, the introduction of high K+ saline 

containing 1 mM vanadate or amiloride after pretreatment in the respective 

inhibitor did not reveal the Type B response in cells which originally 

exhibited,Typ~ A behaviour to high K+ saline. Furthermore, vanadate 

pretreatment abolished the naturally occurring Type B response in 

+ high K saline + vanadate. The fact that a Type B response was induced 

after a period of ouabain treatment showed that this unusual behaviour 

+ + was not due to an electrogenic component of the Na +K -ATPase 

"switching on". Indeed, ouabain would be expected to inhibit the 

response if it were the result of Na++K+-ATPase activity. 
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As was mentioned earlier the Type B response may be related to 

+ Both K free and ouabain treatments, which 

probably increase the cellular concentration of Na+, induce this response 

to 128 mM [K+] 0 . However, high K+ saline + vanadate, after vanadate 

treatment, which would also be expected to increase [Na+li did not 

+ result in a subsequent Type B response to 128 mM [K ] 0 • This may be 

related to the negativity of VB and VA immediately before the addition 

+ of high K saline. Thus, vanadate treatment by producing a much 

+ greater depolarization of the membrane potentials than K free or 

ouabain salines may result in cellular conditions different from those 

which are necessary for the Type B response to occur. This was 

supported by the fact that vanadate pretreatment abolished the Type B 

response in cells which originally demonstrated this behaviour. 

However, the observation that a novel introduction of vanadate in 

high K+ saline resulted in: a) some Type B behaviour for both membranes 

in cells which exhibited the Type A response in high K+ saline and 

b) did -not alter the Type B response ih cells which exhibited this 

naturally, suggests that overall an increase in [Na+li may be related 

to the production of the Type B response. Support for this comes 

from the observation that treatment in amiloride saline, which unlike 

+ K free,ouabain and vanadate treatments, may lead to a reduction 

in [Na+]i (as discussed earlier) did not induce the Type B response, which 

+ was also the case after Na free treatment. 

' ' h + ' 2+ f Barium induced a Type B response 1n h1g K sal1ne + Ba or 

cells which originally exhibited the Type A response. Pretreatment 

with monensin also resulted in the inducement of Type B behaviour 

+ 
in cells which originally exhibited the Type A response. As for K 

free and ouabain treatments, the postulated increase in [Na+li during 

exposure to monensin may berelatedto the production of the Type B 
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response. h 
2+ . . . 

T e Ba -1nduced Type B behav1our 1s more difficult to 

explain. However, the latter response was probably not related to 

+ 2+ 
an inhibition of the K conductance as Ba does not seem to act on 

+ the K permeability {see earlier). Thus, the complete disappearance 

+ of the marked depolarization of VB induced by a K concentration 

downward step in rectal gland tubules of shark due to the presence 

f 
2+ . . . h + f o Ba 1nteract1ng w1t the K conductance o the basolateral 

membrane {Greger and Schlatter, 1984) does not seem to be applicable 

to the tubules of Locusta. 

It was suggested earlier that the actions of both monensin and 

Ba
2

+ may be related to changes in [Ca2+Ji· Hence, it may be that not only 

an increase in [Na+)i, but also an increase in [Ca2+Ji which leads to 

the inducement of the Type B response. 

Section 4: Electrophysiological Studies on VB~A and T.E.P. 

Using Furosemide-, Burnetanide-, Thiocyanate-, SITS-

-and Hco
3
-free + Acetazolamide-Containing Salines 

The effect of Normal saline containing 1 rnM furosemide on v
8

, 

VA and T.E.P. can be seen in Table 28a and Fig. 33. It was found 

that VB and VA hyperpolarized 9.9 ± 0.6 mV and 8.1 ± 0.9 mV respectively, 

over the first min of furosemide treatment, to values which slightly 

increased over the next 19 mins. Thus, VB and VA increased to 

13.5 ± 3.5 mV and 11.0 ± 1.0 mV respectively more negative than the 

original resting values after 20 mins exposure to furosemide saline. 

T.E.P. exhibited a small decrease in positivity, due to VB hyperpolarizing 

more than VA, during the first min of Normal saline + furosemide but, 

thereafter, exhibited little change in value. 



Table 28a 

Effect on VB, VA and T.E.P. of changing the perfusate from Normal 

saline to Normal saline + 1 mM furosemide. 

Table 28b 

Effect on VB, VA and T.E.P. of changing the perfusate from Normal 

saline + 1 mM furosemide to 128 mM K+ saline + 1 mM furosemide in 

cells which exhibited the Type A response. 

n represents the number of individual experiments, each 

involving separate tubule preparations. 



Table 28a 

Parameter Treatment 

VB 
Normal 

VA 

T.E.P. 
Saline 

n -

Table 28b 

Parameter Treatment 

VB Normal 

VA Saline 
T.E.P. 

P.D. ± S.E.M. 
Time in New Saline (mins) 

(mV) 
Treatment 

1 5 

' 
-72.3 ± 1.1 Normal -82.2 ± 1. 5 -83.0 ± 1.3 

Saline+ 
-84.8 ± 5.9 

lmM 
-92.9 ± 5.8 -93.5 ± 5.6 

+ 8.3 ± 4.7 Furosemide + 5.5 ± 4.2 + 4.8 ± 4.1 

9 

P.D. ± S.E.M. 
(mV) 

-72.9±0.6 

-87.4 ± 5.9 

+7.6±3.0 

Treatment 

Normal 
Saline+ 
lmM 
Furosani<E 

-

P.D. ± S.E.M. 
(component 
a, Fig.20) 

(mV) 

-83.5 ± 2.7 

-93.1 ± 5.1 

+ 5.3±2.7 

9 9. 

New 
P.D. ± S.E . .M. 

Treatment (component 
c, Fig.20) 

(mV) 

128mM K+ -38.1 ± 5.2 
Saline + 

-57.6±5.6 
lmM 
F'ul:oseni.d:! +19.5±2.7 

10 15 20 

-83.8 ± 2.7 -83.5 ± 2.5 -85.0 ± 4.0 

-92.0 ± 7.3 -92.7 ± 2.3 -92.5 ± 5.5 

+ 2.4 ± 5.3 + 2.3 ± 5.8 + 3.5 ± 0.5 

5 4 3 

Repolarized 
P.D. ± S.E.M. 
(component 
e, Fig.20) 

Treatment 

Initial 
L\P.D. ± S.E.M. 

(component 
f, Fig.20) 

(mV) 

Re
established 
P.D. ± S.E.M. 
(component 
g, Fig.20) 

(mV) (mV) 

- - -71.0 ± 2.6 
Normal 

-70.5±6.0 - -87.1 ± 6.1 Saline 
- - + 8.0 ± 3.4 

n 

8 

8 

8 



Fig. 33 

Typical example of the effect on v
8

, VA and T.E.P. of changing 

the perfusate from Normal saline to Normal saline + 1 mM 

+ furosemide before the subsequent addition of 128 mM K saline+ 1 mM 

furosemide, in cells which exhibited the Type A response. 

* indicates a period of 10 mins during which a Type ~ 
+ response to 128 mM K saline was established (V = -8 mV, 

B 
V = -45 mV, T.E.P. = +36 mV). 

A 
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The amplitude of the oscillations of v (and T.E.P.) decreased 
A 

significantly (p < 0.001) from 6.0 ± 0.3 mV in Normal saline to 

3.8 ± 0.4 mV in Normal saline + 1 mM furosemide, with oscillations 

occurring in 67% of cells. 

It was found that Normal saline containing 1 mM furosemide 

significantly reduced (p < 0.001) fluid secretion by the Malpighian 

tubules of Locusta by 77% (n=24) (see Appendix, Table 1). This result 

compares favourably with the significant 62% reduction in fluid secretion 

(n=30) found by Kalule-Sabiti (1985) in the same tissue. 

E66e.ct: o6 1Z8 mM K+ Siline. + 1 mM Full.o~.>e.m..tde. A6teJt TJLe.a.tme.nt ..<..n NoJLma.l 

Sal..tne. + 1 mM FuJ!.oJ.Je.m..tde. 

Table 28b and Fig. 32 show the effect of 128 mM K+ saline + 

1 mM furosemide on VB,VA and T.E.P. directly after a period of 5 to 

20 mins treatment in Normal saline + 1 mM furosemide, in cells which 

exhibited the Type A response. It can be seen that pretreatment in 

furosemide saline induced Type.B:behaviour for both membrane potentials. 

Thus, VB and VA initially depolarized in high K+ saline + furosemide 

to potentials (component c, Fig. 20) similar (p = 0.1-0.2 and p = 

0.5-0.6 respectively) to those values found in the naturally occurring 

Type B response; T.E.P. increased in positivity to a value similar 

(p = 0.8-0.9) to that found in the Type B response. However, after 

depolarizing, VB and VA behaved differently. Hence, VB slowly 

depolarized by a further 4.6 ± 0.7 mV over 2 to 3 mins, in 128 mM 

K+ saline + furosemide, whilst VA exhibited a repolarizing change 

(component d, Fig. 20) of 12.9 ± 1.7 mV over 1 to 2 mins. The resulting 

maintained VA (component e, Fig. 20) was not significantly different 

(p = 0.4-0.5) from the equivalent potential found in the naturally 

occurring Type B response. This differing behaviour of VB and VA, 
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+ 
in high K saline containing furosemide, resulted in T.E.P. increasing 

to a value significantly more positive (p = 0.001-0.01) than in the 

Type B response but similar (p > 0.9) to the potential found in the 

Type A response. 

Overall, it seems that furosemide treatment induced a 'typical' 

Type B response for VA but a 'reduced' variation of this response 

Tables 29a and 29b and Fig. 34 show the effect on v
8

, VA and 

T.E.P. of changing the perfusate from Normal saline to Normal saline 

containing 10-
5 

M or 10-
4 

M bumetanide. Results shown that whilst 

-5 -4 v
8 

did not change even after 45 mins and 20 mins of 10 M and 10 M 

bumetanide treatment respectively, a small and gradual hyperpolarization 

of VA occurred over the same exposure time. Thus, VA hyperpolarized 

to values 4.6 ± ±.1 mV and 3.1 ± 1.7 mV more negative than the original 

5 -4 
resting potential after 20 mins of 10- M and 10 Mf bumetanide 

treatment respectively; this value had increased to 8.3 ± 3.2 MV more 

negative after 45 mins exposure to 10-5 M bumetanide. T.E.P. followed 

the hyperpolarization of VA by exhibiting a slow and gradual increase 

in positivity during exposure to both concentrations of bumetanide. 

Oscillations of VA (and T.E.P.) occurred in 50% of cells exposed 

to Normal saline + 10-
5 

M bumetanide and had a mean amplitude of 

4. 0 ± 1. 7 mV. Similarly,oscillations of V (and T.E.P.) occurred 
A 

-4 
in 57% of cells treated with Normal saline + 10 M bumetanide and 

had a mean amplitude of 7.5 ± 1.3 mV. The frequency of amplitude 

of these oscillations, at both concentrations of bumetanide, were 

not significantly different (p = 0.2-0.3 for both treatments) from 

the values found in Normal saline. 



Table 29a 

Effect on VB, VA and T.E.P. of changing the perfusate from Normal 

-5 
saline to Normal saline + 10 M bumetanide. 

Table 29b 

Effect on VB, VA and T.E.P. of changing the perfusate from Normal 

-4 
saline to Normal saline + 10 M bumetanide. 

n represents the number of individual experiments, each 

involving separate tubule preparations. 



Table 29a 

Time in New Saline (mins) 
Parameter Treatment 

P.O. ± S.E.M. 
Treatment 

(mV) 
5 10 15 20 30 45 

v -72.5 ± 2.3 Normal 
B 

Normal Saline + 
VA -90.1 ± 4.5 

10-5 M 
-91.6 ± 4.5 -92.6 ± 4.8 -94.7 ± 5.5 -95.6 ± 5.5 -98.2 ± 6.7 -100.7 ± 13.1 

Saline 
T.E.P. +11.5 ± 2.0 Burretanide +13.1 ± 2.4 +14.0 ± 2.4 +14.9 ± 2.8 +15.3 ± 2.9 +17.5 ± 3.9 + 17.7 ± 8.6 

n - 8 - 8 8 7 7 6 3 

Table 29b 

P.O. ± S.E.M. 
Time in New Saline (mins) 

Parameter Treatment 
(mV) 

Treatment 
5 10 15 20 

VB Normal 
-76.9 ± 2.6 Normal 

VA -91.4 ± 5.6 
Saline + 

-92.0 ± 5.6 -92.9 ± 5.7 -93.7 ± 5.8 -94.6 ± 6.0 Saline 10-4 M 
T.E.P. + 8.7 ± 2.2 Burretanide 

~I + 9.3 ± 1.9 +9.6±1.7 +10.0 ± 1.5 +10.3 ± 1.4 

n - 7 - 7 7 7 7 



Fig. 34 

Typical example of the effect on v
8

, VA and T.E.P. of changing the 

perfusate from Normal saline to Normal saline + 10-
4 

M bumetanide 

before the subsequent addition of 128 mM K+ saline + 10-
4 

M 

bumetanide, in cells which exhibited the Type A response. 

* indicates a period of 10 mins during which a Type A 

response to 128 mM K+ saline was established (V = -9 mV, 
B 

V = -47 mV, T.E.P. = +33 mV). 
A 
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It was found that the 16% inhibition of fluid secretion by the 

Malpighian tubules of Locusta in Normal saline containing 10-5 M 

bumetanide was not significant (p = 0.7-0.8; n 15) (see Appendix, 

Table 1). -4 In contrast, Normal saline containing 10 M bumetanide 

significantly reduced (p < 0.001) fluid secretion in this tissue by 

59% (n = 12) (see Appendix, Table 1). 

E66ect o6 128 mM K+ Saline + 

-<..n No tunal Saline. + 1 0- 5 M oft 

-5 -4 
10 oft 10 M Bume;ta.n..i_de A6t_e.ft Tfte.a;tme.nt 

-4 . 
10 M Bume.ta.n..i_de 

It was found that introducing 128 mM K+ saline + 10-5 M bumetanide 

directly after a period of 20 to 45 mins treatment in Normal saline 

+ 10-S M bumetanide, in cells which exhibited the Type A response, 

did not alter this behaviour (n = 8). Thus, the depolarized values 

(component c, Fig. 20) of VB and VA were not significantly different 

(p = 0.7-0.8 and p = 0.6-0.7 respectively) from the equivalent values 

found during the Type A response. 

+ -4 
In contrast, changing the perfusate to 128 mM K saline + 10 . M 

bumetanide after a period of 6 to 20 mins treatment in Normal saline 

+ 10-
4 

M bumetanide resulted in the production of a 'reduced' Type B 

response for VB and VA, in cells which originally exhibited the Type 

A response. Results are shown in Table 30 and Fig. 34. It can be 

seen that the introduction of high K+ saline + 10-
4 

M bumetanide produced 

depolarized potentials (component c, Fig. 20) that were not significantly 

different (p = 0.1-0.2 for VB and p = 0.3-0.4 for VA) from the 

equivalent values found in the naturally occurring Type B response. 

Although these depolarized potentials were maintained in most cases, 

about one third of cells studied exhibited a repolarizing change 

(component d, Fig. 20) of 12.0 ± 5.4 mV for VB and 11.5 ± 4.1 mv for 

VA to maintained repolarized potentials (component e, Fig. 20). The 



Table 30 

Effect on v
8

, VA and T.E.P. of changing the perfusate from Normal 

saline + 10-4 bumetanide to 128 mM K + saline + 10-
4

M bumetanide in cells 

which exhibited the Type A response. 

n represents the number of individual experiments, each 

involving separate tubule preparations. 



P.O. ± S.E.M. P.D. ± S.E.M. 
Parameter Treatment 

(mV) 
Treatment (component 

a, Fig.20) 
(mV) 

VB -75.9 ± 1.0 Normal -75.9 ± 1.0 Normal 
Saline + 

VA -92.6 ± 3.0 
10-4 M 

-95.1 ± 2. 8 Saline 
T.E.P. + 9.9±0.5 Bumetanide +13.0 ± 0.6 

Treatment 
11~ • 

128mM K+ 
Saline + 
10-4 M 
Burne tan ide 

"" ,,· 

New 
P.D. ± S.E.M. 
(component 
c, Fig.20) 

(mV) 

-27.0±1.9 

-58.0 ± 3.8 

+30.2 ± 2.1 

Re-
Repolarized Initial established 
P.D. ± S.E.M. 6P.D. ± S.E.M. P.D. ± S.E.M. 
(component Treatment (component (component n 
e, Fig.20) f, Fig.20) g, Fig.20) 

(mV) (mV) (mV) 

- - -75.1 ± 1.2 6 Normal 
- - -91.0 ± 3. 2 6 Saline 
- - +9.7±2.0 6 



+ 
initial depolarization (component b, Fig. 20) of VA in 128 mM K 

119 

-4 
saline + 10 M bumetanide was 76% of that found for VB, which compares 

favourably with the value (71%) found during the Type B response. 

However, T.E.P. in high K+ saline + bumetanide was significantly 

more positive (p < 0.001) than the value found in naturally occurring 

Type B behaviour and not significantly different (p = 0.1-0.2) from 

that found in the Type A response. The latter observation may be 

related to the initially high value of T.E.P. which resulted from 

the hyperpolarization of VA during Normal saline + bumetanide pretreatment. 

E66ect o6 10 mM Sodium Thioeyanate 

Table 31a and Fig. 35 show the effect of Normal saline + 10 mM 

sodium thiocyanate (NaSCN) on VB, VA and T.E.P. It was found that 

VB and VA hyperpolarized 5.9 ± 0.7 mV and 5.2 ± 1.5 mV respectively 

over the first min of SCN treatment to values which were maintained 

or slightly hyperpolarized over the next 19 mins. Thus VB and VA 

increased to 6.1 ± 0.8 mV and 9.8 ± 2.4 mV respectively more negative 

than the original resting values after 20 mins exposure to SCN saline. 

Due to both membrane potentials changing by similar amounts, T.E.P. 

-changed little over 20 mins in Normal saline + SCN • Just under 

one third of cells exposed to SCN saline were returned to Normal 

saline; VB and VA in these cells depolarized, over 1 min, to the 

original resting potentials. 

Oscillations of VA (and T.E.P.) occurred in only 9% of cells 

in Normal saline + SCN and were 4.0 ± 1.0 mV in amplitude. Although 

the frequency of these oscillations was greatly reduced during SCN-

treatment, the mean amplitude was not significantly different (p = 

0.05-0.1) from the value found in Normal saline. 

It was found that Normal saline containing 10 mM SCN significantly 



Table 31a 

Effect on VB, VA and T.E.P. of changing the perfusate from Normal 

saline to Normal saline + 10 mM SCN • 

Table 31b 

Effect on VB, VA and T.E.P. of changing the perfusate from Normal 

saline + 10 mM SCN + to 128 mM K saline + 10 mM SCN in cells which 

exhibited the Type A response. 

n represents the number of individual experiments, each 

involving separate tubule preparations. 



.... 1, 

Table 3la 

P.D. ± S.E.M. 
Time in New Saline (mins) 

Parameter Treatment 
(mV) 

Treatment 
1 5 10 15 20 

VB Normal 
-69.5 ± 2.3 Normal -75.4 ± 2.3 -75.4 ± 2.3 -75.4 ± 2.3 -76.7 ± 2.6 -76.7 ± 2.6 

Saline + 
VA Saline 

-75.6 ± 4.4 
10 mM 

-81.3 ± 4.4 -81.3 ± 4. 4 -82.4 ± 4.4 -85.1 ± 3.9 -87.4 ± 4.0 

T.E.P. + 2.0 ± 3.3 SCN - - 0.3 ± 3.4 - 0. 3 '± 3. 4 + 0.6 ± 3.4 + 2.6 ± 2.4 + 3.8 ± 2.3 

n - 11 - 11 11 11 9 9 

Table 3lb 

Re-
New Repolarized Initial established 

P.D. ± S.E.M. P.D. ± S.E.M. P.D. ± S.E.M. ~P.D. ± S.E.M. P.D. ± S.E.M. 
Parameter Treatment 

P.D. ± S.E.M. 
Treatment (component Treatment (component (component Treatment (component (component (mV) n 

a, Fig.20) c, Fig.20) e, Fig.20) f, Fig.20) g, Fig.20) 
(mV) (mV) (mV) (mV) (mV) 

VB Normal 
-69.8 ± 2. 4 Normal -74.5 ± 2.1 ·128mMK+ -21.6 ± 2.6 -40.6 ± 6. 8 

Normal 
+9.3 ± 3.2 -68.5 ± 3.1 10 

Saline+ Saline+ v -76.3 ± 3.8 
10 mM 

-82.8 ± 2.4 
10 mM 

-41.7 ± 4.2 -61.7 ± 5. 2 
Saline 

+8. 0 ± 2. 9 -76.7±3.4 10 A Saline 
T.E.P. + 1.4 ± 2.2 SCN - +2.9±2.5 SCN - +24.3 ± 1.6 - - + 2.0±2.7 10 



Fig. 35 

Typical example of the effect on v
8

, VA and T.E.P. of changing 

the perfusate from Normal saline to Normal saline + 10 mM SCN 

. + . 1 before the subsequent addit1on of 128 mM K sal1ne + 0 mM SCN , 

in cells which exhibited the Type A response. 

* indicates a period of 10 mins during which a Type A 
+ response to 128 mM K saline was established (V = -7 mV, 

B 

V = -43 mV, T.E.P. = +34 mV). 
A 
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reduced (p < 0.001) fluid secretion by the Malpighian tubules of 

Locusta by 57% (n=15) (see Appendix, Table 1). This result agrees 

favourably with the significant 62% reduction in fluid secretion 

(n=32) found by Kalule-Sabiti (1985) in the same tissue. 

E66ect o6 128 mM K+ Saline + 10 mM SCN- A6t~ T~eatment in No~al 

Saline + 10-4 M SCN-

Table 3lb and Fig. 35 show the effect of introducing 128 mM 

K+ saline + 10 mM SCN on VB, VA and T.E.P. after a period of 5 to 

20 mins in Normal saline + 10-
4 

M SCN~ in cells which exhibited the 

Type A response. It can be seen that SCN pretreatment induced a 

'reduced' Type B response for VB and VA. Thus, the initial depolarization 

(component b, Fig. 20) of VB and VA in 128 mM K+ saline + SCN produced 

depolarized potentials (component c, Fig. 20) that were significantly 

less negative (p = 0.02-0.03 and p 0.01-0.02 respectively) than 

the equivalent values found in the naturally occurring Type B response. 

However, VB and VA repolarized (component: d, Fig. 20) after .depolarizing. 

Although the resulting potentials (component e, Fig. 20) were 

significantly less negative (p = 0.02-0.03 and p = 0.01-0.02 respectively) 

than the equivalent values found in the naturally occurring Type 

B response, these maintained VB and VA values were similar (p = 0.1-0.2 

for both potentials) to the depolarized potentials (component c, 

Fig. 20) found during Type B behaviour. T.E.P. increased in positivity 

in 128 mM K+ saline + SCN to a value which was similar (p = 0.05-0.1) 

to that found in the Type B response. 

E66ect o6 1 mM SITS 

The effect on VB, VA and T.E.P. of changing the perfusate from 

Normal saline to Normal saline + 1 mM SITS is shown in Table 32a 
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and Fig. 36. It can be seen that a gradual depolarization of both 

membrane potentials occurred in this new saline which increased in 

rate after about 10 mins. Thus, VB and VA declined by only 3.6 ± 

1.2 mV and 3.7 ± 1.2 mV respectively after 10 mins, but by 17.1 ± 

5.0 mV and 14.8 ± 4.5 mV respectively after 30 mins. As a consequence 

of the similar changes of VB and VA, little change occurred in T.E.P. 

throughout exposure to SITS saline. However, although the overall 

picture in many cells was a depolarization of both membrane potentials, 

SITS saline had no effect on either VB or VA, over 30 mins, in one 

third of cells studied. 

Oscillations of VA (and T.E.P.) occurred in 39% of cells exposed 

to Normal saline + 1 mM SITS and had a mean amplitude of 9.1 ± 2.0 mV. 

Although the frequency of these oscillations was reduced during SITS 

treatment, the amplitude was not significantly different (p = 0.1-0.2) 

from the value found in Normal saline. 

Ennect on 128 mM K+ Saline + 1 mM SITS Ant~ T~eatment ~n No~al 

Saline + 1 mM SITS 

Table 32b and Fig. 36 show the effect of introducing 128 mM 

K+ saline + 1 mM SITS on VB, VA and T.E.P. directly after a period 

of 10 to 30 mins in Normal saline + 1 mM SITS 1 in cells which exhibited 

the Type A response. It can be seen that SITS pretreatment resulted 

in the inducement of a 'reduced' Type B response for both VB and 

+ VA. Thus, the introduction of high K saline + SITS produced depolarized 

potentials (component c, Fig. 20) that were not significantly different 

(p = 0.3-0.4 for VB and p > 0.9 for VA) from the equivalent values 

found in the naturally occurring Type B response. Although the majority 

of cells were maintained at these depolarized potentials, V and 
. B 

VA in a small number of cases (ca. 30%) exhibited a repolarizing 



Table 32a 

Effect on VB, VA and T.E.P. of changing the perfusate from Normal 

saline to Normal saline + 1 mM SITS. 

Table 32b 

Effect on VB, VA and T.E.P. on changing the perfusate from Normal 

+ saline+ 1 mM SITS to 128 mM K saline+ 1 mM SITS,in cells which 

exhibited the Type A response. 

n represents the number of individual experiments, each 

involving separate tubule preparations. 

.~· 



Table 32a 

Parameter Treatment 

VB Normal 

VA Saline 
T.E.P. 

n -

Table 32b 

Parameter Treatment 

VB Normal 

VA Saline 
T.E.P. 

P.D. ± S.E.M. 
Time in New Saline 

(mV) 
Treatment 

5 10 15 

-71.6 ± 1.2 Normal -70.7 ± 1.3 -68.3 ± 1. 7 -64.8 ± 2.8 

-80.5 ± 3.6 
Saline + 

-78.5 ± 3.6 -76.5 ± 4.3 -71.8 ± 5.8 
1rnM 

+ 5.7 ± 3.4 SITS + 5.1 ± 3.3 + 5.9 ± 3.7 + 5.7 ± 4.8 

23 - 23 22 15 

New 

P.D. ± S.E.M. 
(mV) 

Treatment 
P.D. ± S.E.M. 
(component 
a, Fig.20) 

Treatment 
P.D. ± S.E.M. 
(component 
c, Fig.20) 

Repolarized 
P.D. ± S.E.M. 
(component 
e, Fig.20) 

(inv> (mV) (mV) 

-74.3 ± 1.1 Normal -65.4 ± 4.0 Normal -27.8 ± 3.0 -
Saline+ Saline+ 

-81.7 ± 3.2 -77.3±6.1 -53.6±6.3 -1rnM 1rnM 
+ 5.2 ± 3.4 SITS +8.4±4.5 SITS +21.9±6.9 -

(mins) 

20 30 

-58.9 ± 3.6 -53.6 ± 4.7 

-66.2 ± 7.0 -64.1 ± 9.2 

+ 5.9 ± 5.9 + 5.8 ± 7.9 

12 

Treatment 

Normal 

Saline 

Initial 
L':.P.D. ± S.E.M. 
(component 
f, Fig.20) 

(mV) 

-
-
-

8 

Re-
established 

P.D. ± S.E.M. 
(component 
g, Fig.20) 

(mV) 

-65.4 ± 3. 9 

-78.4 ± 5. 7 

+9.2±5.3 

n 

14 

14 

14 



Fig. 36 

Typical example of the effect on VB, VA and T.E.P. of changing 

the perfusate from Normal saline to Normal saline + 1 mM SITS 

+ before the subsequent addition of 128 mM K saline + 1 mM SITS, in 

cells which exhibited the Type A response. 

* indicates a period of 10 mins during which a Type A response 
+ 

to 128 mM K saline was established (VB = -10 mV, VA = -45 mV, 

T.E.P. = +30 mV). 
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change (component d, Fig. 20) of 14.3 ± 5.1 mV and 11.8 ± 1.7 mV 

respectively to maintained repolarized potentials (component e, Fig. 

20). T.E.P. increased in positivity in 128 mM K+ saline+ SITS to 

produce a potential similar (p = 0.7-0.8) to that found in the Type B 

response. On re-introduction of Normal saline, VB and VA only reached 

values, after 2-3 mins, similar to those found before the addition 

of high K+ saline + SITS and did not recover further. This indicates 

some irreversibility in the effect of SITS. 

The effect of SITS on VB, VA and T.E.P. in high K+ saline was 

examined further, in cells which exhibited the naturally occurring 

+ Type B response, by changing the perfusate to 128 mM K saline + SITS 

after a period of 5 to 20 mins in Normal saline + SITS. Results 

are shown in Table 33a. It was found that SITS pretreatment altered 

the naturally occurring Type B behaviour of both membrane potentials 

in these cells. Thus, on introduction of high K+ saline containing 

SITS, both VB and VA depolarized to maintained potentials (component c, 

Fig. 20) that were not significantly different (p = 0.7-0.8) for 

VB, but were significantly less negative (p = 0.02-0.03) for VA,compared 

with the repolarized potentials (component e, Fig. 20) found during 

the Type B response. Indeed, the depolarized VA (component c, Fig. 20) 

was not significantly different from the equivalent value found during 

this behaviour. These results show that SITS pretreatment produced 

Type B values for VB and VA without a repolarizing change (component d, 

Fig. 20). Furthermore, this SITS-induced alteration of the Type B 

response affected VA more than VB. Indeed, the initial depolarization 

of VA (component b, Fig. 20) in high K+ saline + SITS was 106% of 

that for VB and this was much higher than the value (71%) found in 

the Type B response. This produced little change in T.E.P., which 

was only -1.2 ± 7.7 mV and significantly different (p < 0.001) from 



Table 33a 

Effect on VB, VA and T.E.P. of changing the perfusate from Normal 

+ 
saline + 1 rnM SITS to 128 rnM K saline + 1 rnM SITS in cells which 

exhibited the Type B response. 

Table 33b 

Effect on VB, VA and T.E.P. of changing the perfusate from Normal 

saline to 128 rnM K+ saline + 1 mM SITS in cells which exhibited the 

+ 
Type A response (i.e. a novel addition of SITS in high K saline). 

n represents the number of individual experiments, each 
' involving separate tubule preparations. 



Table 33a 

Parameter Treatment 

VB Normal 

VA Saline 
T.E.P. 

Table 33b 

P.O. ± S.E.M. 
lmV) 

-69.0 ± 2.6 

-79.2 ± 3.8 

+ 5.5 ± 3.6 

Treatment 

Normal 
Saline+ 
lmM 
SITS 

P.O. ± S.E.M. 

P.O. ± S.E.M. 
(component 
a, Fig.20) 

(mV) 

-48.8 ± 2. 6 

-50.4±7.1 

- 2.0±6.5 

New 

Treatment 

.".\~ 

New 
P.O. ± S.E.M. 
(component 
c, Fig.20) 

(mV) 

128 mMK+ -32.2 ± 4. 7 
Saline+ 

-32.8 ±' 6.5 
lmM 
SITS -1.2±7.7 

Repolarized 
P.O. ± S.E.M. P.O. ± S.E.M. 

Parameter Treatment (component Treatment (component (component 
a, Fig.20) c, Fig.20) e, Fig.20) 

(mV) (mV) (mV) 

VB -67.8 1.5 128 mM K+ -8.2±2.2 -23.4 ± 2.3 
Normal 

Saline + 
VA -74.6 ± 4.1 -44.8 ± 4. 5 -51.2±4.7 

Saline lmM 
T.E.P. +2.8±3.9 SITS +35.6 ± 3.3 +24.8 ± 4.0 

Repolarized 
P.O. ± S.E.M. 
(component 
e, Fig.20) 

(mV) 

-
-
-

Treatment 

Normal 

Saline 

Treatment 

Normal 

Saline 

Initial 
8P.O. ± S.E.M. 

(component 
f, Fig .• 20) 

(mV) 

-
-
-

Initial 
8P.O. ± S.E.M. 
(component 
f, Fig.20) 

(mV) 

-
-
-

Re-
established 

P.O. ± S.E.M. 
(component 
g, Fig.20) 

(mV) 

-42.4±2.7 

-42.4 ± 7. 5 

- 4.0 ± 6.6 

Re-established 
P.O. ± S.E.M. 
(component n 
g, Fig.20) 

(mV) 

-66.8 ± 1.2 5 

-69.6 ± 2. 7 5 

+0.6±2.9 5 

n 

5 

5 

5 
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the +20.0 ± 1.7 mV value found in the original Type B response. 

Results in Table 33b and Fig. 37 show that the introduction 

+ of high K saline + SITS to cells which exhibited the Type A response 

and had no previous exposure to this inhibitor, induced Type B behaviour 

for VB and VA. It can be seen, however, that this induced Type B 

response was slow to develop. Thus, the introduction of SITS in 

128 mM K+ saline produced depolarized potentials (component c, Fig. 20) 

that were not significantly different (p = 0.4-0.5 for both VB and 

VA) from those found during the Type A response. After depolarizing, 

VB and VA exhibited repolarizing changes (component d, Fig. 20) of 

15.2 ± 3.6 mV and 6.4 ± 1.9 mV respectively over 5 to 10 mins (cf. 1 to 

2 mins in the Type B response). The extent to which this gradual 

hyperpolarization developed was not followed. Following the changes of 

VB and VA, T.E.P. increased in positivity, in high K+ saline + SITS, 

to a value similar (p = 0.5-0.6) to that found in the Type A response, 

then decreased 10.8 ± 3.1 mV over the next 5 to 10 mins, as v
8 

_ 

hyperpolarized more than V~, to a value similar (p =~0.4-0.5) to 

that found during Type B behaviour. 

+ 
Finally, it was found that the presence of SITS in 128 mM K 

saline did not qualitatively or quantitatively alter the Type B behaviour 

of either membrane potential when compared with results in the absence 

of SITS (n=4). Thus, the novel introduction of 1 mM SITS in high 

+ K saline, in cells which originally exhibited Type B behaviour, 

had no significant effect (p = 0.8-0.9) on the Type B response values 

of VB, VA and T.E.P. 

E66ect o6 HC03-6nee Saline + 1 mM Aeetazoiamide 

Table 34 shows the effect on VB, VA and T.E.P. of changing the 

perfusate from Normal saline to Hco; free saline + 1 mM acetazolamide 



Fig. 37 

Typical example of the effect on VB, VA and T.E.P. of changing 

+ the perfusate from Normal saline to 128 mM K saline + 1 mM SITS, 

in cells which exhibited the Type A response. 

* indicates a period of 10 mins during which a Type A 
+ response to 128 mM K saline was established (VB ~ -5 mV, 

V = -42 mV, T.E.P. = +31 mV). 
A 
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Table 34 

Effect on VB, VA and T.E.P. of changing the perfusate from Normal 

saline to HC0
3 

free saline + 1 mM acetazolamide. 

n represents the number of individual experiments, each 

involving separate tubule preparations. 



P.D. ± 'S.E.M. Time in New Saline (mins) 
Parameter Treatment 

(mV) 
Treatment 

5 10 15 20 30 

VB Normal 
-71.0 ± 0.8 HCO) free 

VA -86.1 ± 2 Saline + -87.3 ± 2.7 -88.6 ± 2.5 -89.8 ± 2.9 -88.5 ± 4.5 -88.5 ± 4.5 Saline lmM 
T.E.P. + 6.5 ± 3.2 Acetazolamide + 7.1 ± 3.1 + 7.8 ± 2.9 + 8.8 ± 2.7 + 8.5 ± 2.5 + 8.5 ± 2.5 

n - 8 - 8 8 6 2 2 
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(Diamox). (NaHco
3 

was omitted from Normal saline and the pH was 

corrected to pH 7.2 with NaOH.) It can be seen that whilst VB did 

not change even after 30 mins exposure to Hco
3 

free saline containing 

acetazolamide, VA hyperpolarized gradually over the first 10-15 mins 

in this modified solution before levelling after about 15 mins. The 

new maintained VA was 3.0 ± 1.3 mV more negative than the original 

resting value. T.E.P. followed the change of VA, becoming more positive 

-in HC0
3 

free saline + acetazolamide. 

The amplitude of the. oscillations of VA (and T.E.P.) decreased 

significantly (p < 0.001) from 6.0 ± 0.3 mV in Normal saline to 

2.7 ± 0.7 mV in HC0
3 

free saline containing acetazolamide, with 

oscillations occurring in 38% of cells. 

Ennect on 128 mM K+,HC03 n~ee Saline+ 1 mM Aeetazotamide Ant~ 

T~eatment in HC03 6~ee Saline + 1 mM Aeetazotamide 

+ -It was found that introducing 128 mM K ,Hco
3 

free saline + 1 mM 

-
_acetazolamide directly after a period of 10 to 30 mins in HC0

3 
free 

saline + 1 mM acetazolamide, in cells which exhibited the Type A 

response, did not alter this behaviour for either VB or VA (n=7). 

Thus, the depolarized values (component c, Fig. 20) of VB and VA 

(-10.9 + -
± 2.7 mV and -39.4 ± 2.1 mV respectively) in high K ,Hco

3 
free 

saline + acetazolamide were not significantly different (p 0.5-0.6 

for both potentials) from the equivalent values founq during the 

Type A response. However, although not significantly different, 

these depolarized values arose as a result of VA initially depolarizing 

85% of that for VB (cf. 65% found during the Type A response) and 

+ -
resulted in a T.E.P. value (+18.3 ± 4.6 mV), in 128 mM K ,HC03 free 

saline + acetazolamide, that was significantly less positive (p < 0.001) 

than the T.E.P. value found in the Type A response. 
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Discussion 

FuJto.6 emide. a.nd Bwne:ta.nide. 

+ It was mentioned earlier that Na and Cl entry across the basal 

membrane of the Malpighian tubules of Locusta may be linked in the 

form of a NaKCl cotransporter as described for the tubules of Rhodnius 

(O'Donnell and Maddrell, 1984). This was examined using furosemide 

and bumetanide. These agents are examples of so-called "high-ceiling" 

diuretics or loop diuretics and are thought to block sodium chloride 

co-transport by inhibition of NaCl and NaKCl cotransport in various 

epithelia (Frizzell et al., 1979; Hanrahan and Phillips, 1983; 1984; 

Palfrey and Rao, 1983). 

-4 
Results showed that 1 mM furosemide and 10 M bumetanide caused 

a significant reduction in fluid secretion in the tubules of Locusta, 

whilst 10-
5

M bumetanide did not have a significant effect. Similarly, 

O'Donnell and Maddrell (1984) found that fluid secretion was severely 

4 -6 
reduced in the tubules of Rhodnius by 10- M furosemide and 4 x 10 -

-5 
10 M bumetanide. The introduction of 1 mM furosemide in the present 

study caused a hyperpolarization of both VB and VA (and a reduction 

in the positivity of T.E.P.) and this was followed by a gradual but 

very slow continual increase in both potentials (but maintained T.E.P.). 

The introduction of Normal saline containing 10-
5 

or 10-
4 

M bumetanide 

resulted in no change in VB but VA hyperpolarized in a slow gradual 

manner (with a slow increase in T.E.P.). In the tubules of Rhodnius, 

10-
4 

M furosemide treatment (in saline containing the secretagogue 

5-HT) resulted in a large decrease in T.E.P. which was largely due 

to a hyperpolarization of the apical membrane, although a small 

depolarization of VB was also observed (O'Donnell and Maddrell, 1984). 

In contrast, 1 mM furosemide had no effect on T.E.P. in tubules from 

Aedes (Williams and Beyenbach, 1984). 
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Among vertebrate tissue, furosemide leadSto a hyperpolarization 

of VB in mammalian nephron (Greger and Schlatter, 1983) and shark 

rectal gL~nd tubules (Greger and Schlatter, 1984) and an inhibition 

of fluid secretion and a hyperpolarization of VB in shark renal proximal 

tubules (Beyenbach and Fr8mter, 1985). Furosemide (1 mM) also inhibited 

fluid secretion in the canine tracheal epithelium (Welsh, ·1983). 

These results have all been related to an inhibition of NaCl cotransport 

by furosemide. Patarca et al. (1983) found that furosemide and 

bumetanide both resulted in a hyperpolarization of VB and VA (especially 

the latter) in frog cornea with a gradual recovery of VB back towards 

the original value. 

Results from the present study have shown the basal membrane 

of the tubules of Locusta to be largely K+ selective with a low permeability 

+ + to Na and Cl • If Na and Cl enter the cells by electroneutral 

NaCl of Na K Cl cotransport, it is difficult to explain why VB should 

hyperpolarize during furosemide treatment but not change during 

·•· bumetanide treatment, if such systems are inhibited by both these 

loop diuretics. Indeed, if NaKCl cotransport was the sole mechanism 

for Cl entry, treatment with furosemide and bumetanide would, in 

theory, ~epolarize VB due to a reduction in anion entry. However, 

such an inhibition of Cl entry may be balanced by a reduction in 

+ + Na and/or K entry. Overall, it may be that these loop diuretics 

are not affecting N~KCl cotransport in the tubules of Locusta. 

Williams and Beyenbach (1984) have reported that the coupled cation-Cl 

secretion found during stimulation with head extract in the tubules 

of Aedes was not a furosemide-sensitive system. Furthermore, Greger 

(1985) has pointed out that an effect on ion transport by furosemide 

and bumetanide does not permit the conclusion that the NaKCl carrier 

is present in the preparation under study. Loop diuretics have been 
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shown to inhibit carbonic anhydrase, the Na+K+ATPase, OH-/C1- exchange, 

basolateral anion carrier systems and electroneutral KCl exit at 

-4 
concentrations~ 10 M (Greger, 1985). Thus, the membrane changes 

and the inhibition of fluid secretion observed during furosemide 

and bumetanide treatments in the present study may not be related 

to a NaKCl cotransporter but to other non-specific effects. 

An inhibition of Cl entry into the cell by furosemide and bumetanide 

may lead to the observed hyperpolarization of VA as Cl was not available 

+ + to follow K extruded across the apical surface by a K pump. O'Donnell 

and Maddrell (1984) have suggested that the VA hyperpolarization 

observed in furosemide saline in the tubules of Rhodnius was evidence 

+ for co-transport of Na and Cl as this agent inhibited Cl flux. 

However, Patarca et al. (1983) have postulated that the loop diuretics 

induced hyperpolarization of VA in the frog cornea may be due to 

these agents decreasing the Cl- permeability of the apical membrane 

+ -and not by affecting Na -coupled Cl transport. Such a decrease 

in permeability.in the tubules of Locusta-would also lead to an increase 

+ 
in VA due to the inability of Cl to follow the actively extruded K • 

Sodium Thioeyanate 

Sodium thiocyanate has been shown to inhibit anion transport 

across a variety of epithelial systems. As well as inhibiting Na-

dependent active Cl transport (Epstein et al., 1973; Zadunaisky et al., 

1971), an inhibitory effect on anion-stimulated ATPase activity by 

SCN has been found in various tissues (Gerenscer and Lee, 1983). 

In the present study, 10 mM NaSCN resulted in a reversible hyperpolarization 

of both membrane potentials. The new potentials were maintained 

or slightly increased during SCN exposure and T.E.P. did not alter. 

In addition to these effects, fluid secretion was greatly reduced 
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in 10 mM SCN (present study; Fathpour, 1979; Ka1ule-Sabiti, 1985). 

In contrast, Dalton and Windmill (1980) found that 10 mM SCN 

stimulated tubule fluid secretion across the tubules of Musca. 

The maintained hyperpolarization of both membrane potentials 

found with SCN was similar to that found with furosemide. Thus, 

the hyperpolarization of VA may be due to a reduced availability 

of Cl (due to a SCN inhibited Cl entry) to follow the active 

+ . 
extrusion of K across the apical membrane. However, it is 

difficult to explain how the inhibition of Cl entry across the 

basal membrane by SCN could be lead to the observed hyperpolarization 

of VB on evidence currently available. 

SITS 

The stilbene derivation, SITS, blocks epithelial anion transport 

in ? variety of tissue (White, 1980; Ehrenspeck and Brodsky, 1976; 

Rothstein et al., 1976). The introduction of 1 mM SITS in Normal 

saline resulted in a gradual depolarization of both VB and VA and 

little change in T.E.P. It must be noted, however, that SITS had 

no effect on either VB or VA in one third of tubules examined. In 

contrast to the tubules of Locusta, a hyperpolarization of VA in 

Amphiuma intestinal cells occurred in 1 mM SITS (White, 1986). Further-

more, Greger ahd Schlatter (1984) found that 1 mM SITS had an 

inhibitory effect on T.E.P. in shark rectal gland tubules. 

As SITS affects anion transport but does not inhibit NaCl or 

NaKCl cotransport (Warnock et al., 1983), the gradual depolarization 

of both VB and VA in the present study during SITS treatment may 

be due to this stilbene derivation directly preventing Cl entry 
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into the cell (decreasing VB). However, it is difficult to speculate 

why such a SITS-induced reduction in [Cl-li should decrease VA. 

Although stilbene derivatives have been used as specific inhibitors 

of anion exchange, the use of these inhibitors in epithelial tissues 

is complicated by the possibility of effects on alternative mechanisms 

(Smith et al., 1986). Indeed, SITS has been shown to inhibit the 

Na++K+-ATPase in turtle bladder (Ehrenspeck and Brodsky, 1976). This 

inhibitory affect may be responsible for the decrease of both VB 

and VA through a decline of the cellular gradient as described earlier. 

+ + Such an inhibition of the Na +K -ATPase may also decrease Cl entry 

if Na+ (and K+) Cl cotransport occurs in the tubules of Locusta as 

the Na+ gradient across the cell, which operates this carrier, is 

+ + established by the Na +K -ATPase (Phillips and Lewis, 1983). 

Overall it is difficult to interpret whether SITS was having 

an effect on anion transport in Locusta tubules. It is of interest 

that Greger and Schlatter (1984) had no ready expl~nation for the 

inhibitory effect of SITS on T.E.P. in snark rectal gland tubules 

which possess a basolateral NaKCl cotranporter. However, SITS had 

no effect on Cl secretion by the canine tracheal epithelium which 

is thought to utilize NaCl cotranport (Welsh, 1983). Furthermore, 

if Cl enters the tubule cells of Locusta by a means other than NaKCl 

cotransport, such as Cl--Hco; exchange (see later), then SITS need not 

affect this either. Indeed, Strange and Phillips (1984) have•shown 

that 0.5 mM SITS did not have an affect on co2 (and thus Hco;) flux 

in the rectal glands of Aedes in which a Hco
3
-Cl exchange has been 

demonstrated. 

It is possible that Cl transport into the tubule cells of 
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-Locusta is associated with HC03• As mentioned in the introduction, 

- -electrically silent Cl -Hco
3 

exchange has been shown in a variety 

of epithelial tissues (Gerencser and Lee, 1983). The possibility 

of such an exchange was examined in the present study using HC0
3
-free 

saline in the presence of acetazolamide (Diamox). Acetazolamide 

acts by inhibiting the enzyme carbonic anhydrase (Rector et al., 1965) 

which catalyses the reversible dehydration of carbonic acid (Gay, 

1982). The latter, in solution, dissociates into H+ and HC0
3

• 

Acetazolamide will thus prevent or reduce the production of intracellular 

-Hco
3

. The introduction of Hco
3
-free saline + 1 mM acetazolamide 

produced no change in VB but a hyperpolarization of VA (and increase 

in the positivity of T.E.P.) over 10-15 mins to a new maintained 

-potential. Similarly, removal of basolateral co2 and HC03 or addition 

of acetazolamide hyperpolarized VA, but did not change VB, in the 

rectal glands of Aedes (Strange and Phillips, 1984). 

The fact that Hco
3
-free saline containing acetazolamide 

produced a similar re~ult to Cl free saline in the:present study, 

suggests that Cl and Hco
3 

transport may be related. If the former 

treatment produced a reduction in [Cl-] through an inhibition of 

- -a Cl -Hco
3 

exchange, then V may hyperpolarize as in Cl 
A . 

free 

saline, due to the reduced availability of Cl to act as a counterion 

. 1 + for an ap1ca K pump. In contrast to the hyperpolarization of 

VB following treatment with furosemide and SCN saline acetazolamide, 

which has been shown to be a good Cl transport inhibitor (White, 

1980), did not effect any change in VB. This observation, 

however, would be expected if Hco3~free saline containing 

acetazolamide inhibited electroneutral Cl--Hco; exchange in the 

tubules of Locusta. 
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Although controversial, various recent studies have provided 

-evidence which suggests a possible involvement of an anion Cl + HC0
3

-

stimulated ATPase in various tissues which is involved in the net 

movement of Cl up its electrochemical gradient across plasma membranes 

(see Introduction; Gerencser and Lee, 1983). Indeed, Anstee and 

2+ 
Fathpour (1979; 1981) have reported the presence of a Mg -dependent 

Hco
3
-stimulated ATPase in microsomal preparations from Malpighian 

tubules of Locusta. Furosemide has been shown to be an inhibitor of 

- -
Cl +Hco3-ATPase activity in various tissues, including insect rectum 

(Gassner and Komnick, 1982) and SCN inhibited anion-stimulated ATPase 

activity in microsonal preparations of Locusta tubules (Anstee and 

-Fathpour, 1979). If a Cl +Hco
3

-ATPase occurs in the basal membrane of 

the latter tissue, and is inhibited by furosemide and SCN , the 

hyperolarization of VA found during treatment with these modified salines 

nay be explained once again, by the reduced availability of intracellular 

Cl to follow the active extrusion of K+. 

-Recently, Peacock (1986) has suggested that a Hco;-stimulated 

ATPase may be involved in diuresis in Glossina upon finding an inhibition 

of this process in 4 mM acetazolamide (and 1-5 mM SCN ). Gerencser 

- -(1983) and Gerencser and Lee (1985) have postulated a Cl +HC0
3

-

+ stimulated ATPase which is electrogenic and independent of Na , in 

the basolateral membrane of Aplysia intestinal epithelium. These 

authors showed that the mechanism of Cl movement was independent 

+ -of the presence or movement of Na (no effect on Cl flux with 

furosemide, amiloride or ouabain), and independent of the simultaneous 

counter transport of another anion (no effect with SITS) but required 

the movement of Hco
3 

(a block of Cl flux with acetazolamide and 

SCN ). The unusual electrogenic Cl-transport system proposed by 

Hanrahan and Phillips (1983; 1984) in the rectum of Schistocerca 
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+ is activated and stimulated directly by K and is independent of 

+ Na and Hco
3

. This mechanism was proposed as experimental evidence 

+ + + - -
excluded the obvious ion gradients (Na ,K ,H ,OH and HC03) that 

might drive Cl transport (Hanrahan and Phillips, 1983; 1984). Thus 

ouabain, furosemide and SITS treatments had no effect on electrogenic 

Cl flux in locust rectum (Hanrahan and Phillips, 1983; 1984) although 

an inhibitory effect on Cl flux was shown in this tissue upon 

application of acetazolamide (Herrera et al., 1978). 

Overall, results from the present study, do not preclude the 

presence of either Cl--Hco; exchange or a Cl-+Hco;-ATPase in the 

basal membrane of Locusta. However, in the latter case, Anstee and 

Fathpour (1979; 1981) could not resolve the question as to whether 

the anion-stimulated ATPase activity in microsomal preparations from 

the tubules of Locusta was located in the plasma membrane or was 

due to mitochondrial contamination. 

Type A and Type B ReA po n6 e 

The treatment of tubules in Normal saline with 1 mM furosemide, 

-4 
10 M bumetanide, 10 mM SCN and 1 mM SITS all resulted in an 

inducement of Type B behaviour with the introduction of high K+ 

saline including the appropriate inhibitor, in cells with originally 

exhibited the Type A response. These results suggest than an induced 

Type B response still occurs even though treatment with these Cl 

transport inhibitors, as discussed above, may inhibit Cl entry. 

However, if the Type B response is related to an increase, and not 

a decrease, in basal Cl entry (see Chapter 4) then the presence 

of a Type B response after treatment with furosemide-, bumetanide-, 

SCN - and SITS-containing salines suggests that the Cl entry 

mechanism is not reduced by the action of these inhibitors. Thus, 
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the means of the furosemide-, bumetanide-, SCN - and SITS-induced 

Type B behaviour remains, as yet, unclear. It is also unclear 

a) why the depolarization of VB and VA found during SITS pretreatment, 

in cells which exhibited the naturally occurring Type B response 

should, upon introduction of high K+ saline + SITS, result in a 

change to Type A-like behaviour and b) why a novel introduction of 

high K+ saline containing SITS resulted in a very slow development 

of the Type B response. 

+ -
Finally, it was noted that the introduction of high K ,Hco

3 

free saline + 1 mM acetazolamide after Hco
3 

free + 1 mM acetazolamide 

treatment did not alter the Type A response. This result would be 

expected if the Type B response is related to a basal Cl entry 

and Hco
3 

free saline + acetazolamide reduced Cl entry, as noted 

- -earlier, by inhibiting the functioning of a Cl -Hco
3 

exchanger. 
-... -· 

Section 5: Electrophysiological Studies on V ,V and T.E.P. 
~~~~-~~~~~~~~~~~~~B--A----------

. 2+ 2+ . 
Us~ng Ca free, Ca free + A23187 and Verapam~l-

Containing Salines 

Table 35a and Fig. 38 show the effect o~ VB, VA and T.E.P. of 

. 2+ 
changing the perfusate from Normal sal~ne to Ca free saline + 

E.G.T.A. (CaC1
2 

was replaced with the calcium chelator E.G.T.A.). 



Table 35a 

Effect on VB, VA and T.E.P. of changing the perfusate from Normal 

2+ 
saline to Ca free saline + E.G.T.A. 

Table 35b 

2+ 
Effect on VB, VA and T.E.P. of changing the perfusate from Ca free 

. + 2+ 1' . sallne + E.G.T.A. to 128 mM K , Ca free sa lne + E.G.T.A. ln 

cells which exhibited the Type A response. 

n represents the number of individual experiments, each 

involving separate tubule preparations. 



Table 35a 

Parameter 

VB 

VA 

T.E.P. 

n 

Table 35b 

Parameter Treatment 

VB Normal 

VA Saline 
T.E.P. 

Treatment 

Normal 

Saline 

-

P.D. ± S.E.M. 
(mV) 

-70.5±2.1 

-82.9 ± 6.1 

+ 9.4±4.8 

... - ···- - . ---

P.D. ± S.E.M. 
(mV) 

Treatment 
1 

'-70.0 ± 1.9 
ca2+ free -77.3 ± 1.7 

-84.2 ± 5.7 Saline + -91.2 ± 4. 8 

+10.1 ± 4.4 
E.G.T.A. 

+ 9.0 ± 3.4 

7 

Treatment 

ca2+ free 
Saline + 
E.G.T.A. 

-

P.D. ± S.E.M. 
(component 
a, Fig.20) 

(mV) 

-75.4 ± 0.9 

-87.4 ± 3.3 

+6.9±2.5 

Treatment 

128 mMK+ 

ca2+ free 
Saline + 
E.G.T.A. 

7 

New 
P.D. ± S.E.M. 
(component 
c, Fig.20) 

(mV) 

-17.6 ± 1.2 

-46.3 it 3.6 

+28.6 ± 3.9 

Time in New Saline (mins) 

5 

-77.5 ± 1.6 

-92.3 ± 4.9 

+ 9.2 ± 3.4 

6 

Repolarized 
P.D. ± S.E.M. 
(component 
e, Fig.20) 

(mV) 

-32.1±5.3 

-62.0 ± 1. 5 

-

10 15 

-76.3 ± 1.1 -76.0 ± 2.0 

-90.8 ± 4.1 -90.0 ± 7.0 

+ 8. 7 ± 1. 3 + 9.0 ± 3.0 

4 

Initial 
~P.D. ± S.E.M. 

Treatment (component 
f, Fig.20) 

(mV) 

ca2+ free -
Saline + -
E.G.T.A. -

2 

Re
established 
P.D. ± S.E.M. 
(component 
g, Fig.20) 

(mV) 

-75.7±1.1 

-88.7 ± 4. 3 

+ 8.0 ± 3.9 

n 

6 

6 

6 



Fig. 38 

Typical example of the effect on v
8

, VA and T.E.P. of changing 

2+ 
the perfusate from Normal saline to Ca free saline + E.G.T.A. 

+ 2+ 
before the subsequent addition of 128 mM K ,Ca free saline + 

E.G.T.A. in cells which exhibited the Type A response. 

* indicates a period of 10 mins during which a Type A 
+ 

response to 128 rnM K saline was established (V = -11 mV, 
B 

V = -46 mV, T.E.P. = +29 mV). 
A 
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It was found that VB and VA hyperpolarized 7.3 ± 1.4 mV and 7.0 ± 

1 6 . 1 f. . 2+ • mV respect1ve y over the 1rst m1n of Ca free treatment to 

values which were maintained over the next 14 mins. Due to both 

membrane potentials altering by similar amounts, T.E.P. changed little 

15 . 2+ f 1' over m1ns exposure to Ca ree sa 1ne. 

Oscillations of VA (and T.E.P.) occurred in 83% of cells in 

2+ 
Ca free saline and were 3.8 ± 1.1 mV in amplitude. Although the 

frequency of these oscillations was increased, the amplitude was 

not significantly different (p = 0.05-0.1) from the value found in 

Normal saline. 

Ennect on 128 mM K+, Ca2+ n~ee Saline+ E.G.T.A. Ant~ T~eatment 

in Ca2+ n~ee Saline+ E.G.T.A. 
+ 2+ 

Table 35b and Fig. 38 show the effect of 128 rnM K ,Ca free 

saline + E.G.T.A. on VB, VA and T.E.P. directly after a period of 

5 15 . . 2+ f 1' . l h. h to. ·m1ns tr:eatment 1n Ca ree sa 1ne+E.G._T~A.,1n ce ls w 1c 

exhibited the Type A response. It was found that pretreatment of 

cells with ca
2

+ free saline resulted in the inducement of a 'reduced' 

Type B response for both VB and VA. Thus, the introduction of high 

+ 2+ f . . ( . 20) K ,Ca ree sal1ne produced a depolar1zed VB component c, F1g. 

that was half-way between, and significantly different (p < 0.001) 

from, th~ depolarized VB in either the Type A or Type B response. 

In contrast, VA depolarized to a value (component c, Fig. 20) that 

was not significantly different (p = 0.1-0.2) from the depolarized 

VA in either the Type A or Type B response. Although these 

depolarized potentials (component c, Fig. 20) were maintained in 

many cases, VB and VA in about 50% of cells exhibited a repolarizing 

change (component d, Fig. 20). The resulting repolarized potentials 
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(component e, Fig. 20) were not significantly different (p = 0.8-0.9 

for VB and p > 0.9 for VA) from the depolarized potentials 

(component c, Fig. 20) found in the naturally occurring Type 8 response. 

The 'reduced' nature of the ca
2+ free saline-induced Type B response 

was reflected in T.E.P. which increased in positivity to a value 

similar (p = 0.2-0.3) to that found in the Type A response but 

significantly more positive (p = 0.02-0.03) to that found in the 

Type B response. 

2+ -6 E66eet o6 Ca 6~ee Saline+ E.G.T.A. + 5 x 10 M A23187 

The effect on VB, VA and T.E.P. of changing the perfusate from 

Normal saline to ca2+ free saline + E.G.T.A. + 5 x 10-6 M A23187 

is shown in Table 36a. It can be seen that this modified saline 

h . d . . 1 h f d . 2+ f produced c anges 1n VB an VA s1m1 ar to t ose oun 1n Ca ree 

saline lacking A23187. Thus, VB and VA hyperpolarized 9.6 ± 0.9 mV 

d 9 2 1 5 . 1 h f . . . 2+ f 1 . an • ± • mV respect1ve y over t e 1rst m1n 1n Ca ree sa 1ne 

+. A23187 treatment to values which_ were maintained over the next _ 

9 mins. Due to both membrane potentials altering by similar values, 

2+ 
T.E.P. changed little over 10 mins exposure to Ca free saline 

+ A23187. 

Oscillations of VA (and T.E.P.) occurred in 27% of cells in 

2+ 
Ca free saline containing A23187 and were 4.0 ± 1.2 mV in amplitude. 

Although the frequency was reduced, the amplitude of these 

oscillations was not significantly different (p = 0.05-0.1) from 

the value found in Normal saline. 

E66eet o6 128 mM K+,ca2+ 6~ee Saline+ E.G.T.A. + 5 x 10-6 M A23187 

A6t~ T~eatment ~n Ca2+ 6~ee Saline+ E.G.T.A. + 5 x 10-6 M A23187 

· · + 2+ f 1' G T A The effect of 1ntroduc1ng 128 mM K ,Ca ree sa 1ne + E. • • . 

-6 + 5 x 10 M A23187 on v
8

, VA and T.E.P. after a period of 5 to 



Table 36a 

Effect on VB, VA and T.E.P. of changing the perfusate from Normal 

saline to ca
2

+ free saline+ E.G.T.A. + 5 x 10-
6

M A23187. 

Table 36b 

2+ 
Effect on VB, VA and T.E.P. of changing the perfusate from Ca free 

-6 + 2+ . 
saline + E.G.T.A. + 5. x 10 M A23187 to 128 mM K ,Ca free sal1ne 

+ E.G.T.A. + 5 x 10-
6 

M A23187 in cells which exhibited the Type A 

response. 

n represents the number of individual experiments, each 

involving separate tubule preparations.-



Table 36a 

o· 

Parameter 

VB 

VA 

T.E.P. 

n 

Table 36b 

Parameter Treatment 

VB Normal 

VA Saline 
T.E.P. 

P.D. ± S.E.M. 
Treatment 

(mV) 

Normal 

saline 

-

P.D. ± S.E.M. 
(mV) 

-67.3±1.9 

-80.0 ± 3. 3 

+7.8±3.8 

-67.3 ± 1.3 

-80.5 ± 3.8 

+ 7.4 ± 2.9 

Treatment 

ca2+ free 
Saline+ 
E.G.T.A. 

Sxl0-6 M 
A23187 

15 

P.D. ± S.E.M. 
(component 
a, Fig.20) 

(mV) 

-75.6 ± 1.4 

-90.3 ± 4.0 

+ 7.8±2.7 

Time in New Saline (mins) 
Treatment 

1 5 10 

ca2+ free 
-76.9 ± 1.5 -76.9 ± 1.5 -76.7 ± 1.8 

Saline + 
E.G.T.A. + -89.7 ± 4.1 -92.1 ± 3.8 -92.3 ± 4.7 

5 X 10-G M + 7.7 ± 3.2 +10.0 ± 2.9 + 9.6 ± 2.7 
A23187 

- 15 

New 
P.D. ± S.E.M. 

Treatment (component 
c, Fig.20) 

(mV) 

128mM K~ 
ca2+ free -28.8 ± 2.8 

Saline+ -52.0 ± 3.5 
E.G.T.A. + 

5 X 10-GM +25.2 ± 2.5 

A23187 

Repolarized 
P.O. ± S.E.M. 
(component 
e, Fig.20) 

(mV) 

-37.4±4.7 

-60.5 ± 4.4 

-

15 11 

Initial 
t.P.D. ± S.E.M. 

Treatment (component 
f, Fig.20) 

(mV) 

-
Normal 

-
Saline 

-

Re-
established 

P.D. ± S.E.M. 
(component 
g, Fig.20) 

(mV) 

-69.0 ± 1.5 

-79.2 ± 3.9 

+ 8.1±4.4 

n 

12 

12 

12 
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2+ 6 
10 mins inCa free saline+ E.G.T.A. + 5 x 10- M A23187, in cells 

which exhibited the Type A response, is shown in Table 36b. It can 

2+ 
be seen that pretreatment of cells with Ca free saline + A23187 

induced a 'reduced' Type B response for both VB and VA. Thus, the 

initial depolarization (component b, Fig. 20) of VB and VA in 

128 
+ 2+ . 

mM K ,Ca free sal1ne + A23187 produced depolarized values 

(component c, Fig. 20) that were not significantly different (p 

0.4-0.5 and p = 0.6-0.7 respectively) from the equivalent potentials 

found in the naturally occurring Type B response. After depolarizing, 

approximately 50% of cells were maintained at this potential. However, 

VB and VA in the remaining cells repolarized (component d, ·Fig. 20) 

to maintained values (component e, Fig. 20) that were significantly 

less negative (p = 0.001-0.01 for both potentials) than the equivalent 

potentials found in the naturally occurring Type B behaviour. 

Following the changes of VB and VA, T.E.P. increased in positivity 

+ 2+ 
in high K ,Ca free saline+ A23187, to a value similar (p = 0.05-0.1) 

to that found in the Type B response. 

Finally, it is of interest to note that the pattern of membrane 

+ 2+ 
changes and resulting potentials in high K saline produced by Ca free 

2+ 
+ A23187 pretreatment were similar to those found after Ca free 

pretreatment. Indeed, the depolarized potentials (component c, 

Fig. 20) and repolarized potentials (component e, Fig. 20) for VB 

+ 2+ and VA in high K ,Ca free saline + A2)187 were not significantly 

different (p = 0.4-0.5 and p = 0.7-0.8 respectively) from the values 

. + 2+ in h1gh K ,Ca free saline lacking A23187. Thus, the addition 

of 5 x 10-6 M A23187 to ca2+ free saline and to the ensuing 128 mM 

K+,ca2+ free saline did not have a significant effect on the induced 

Type B behaviour when compared to results in which A23187 was absent. 
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E66ect o6 1 mM Venapamii 

The effect of Normal saline + 1 mM verapamil on VB, VA and 

T.E.P. is shown in Table 37a and Fig. 39. It was found that VB 

and VA hyperpolarized 13.7 ± 3.0 mV and 7.9 ± 3.9 mV respectively 

over the first min of verapamil treatment. Thereafter, VB and 

VA depolarized to values 4.0 ± 3.0 mV and 7.3 ± 1.7 mV respectively 

less negative than the original resting potentials over the next 

9 mins. T.E.P. decreased in positivity due to VB hyperpolarizing 

more than VA during the first min of Normal saline + verapamil 

treatment but, thereafter, exhibited little change in value. 

None of the cells examined exhibited oscillations of VA (or 

T.E.P.) in Normal saline containing 1 mM verapamil. 

E66ect o6 128 mM K+ Saline + 1 mM Venapamil Ant~ T~eatment in No~al 

Saline + 1 mM Venapamil 

Table 37b and Fig. 39 show the effect on VB, VA and T.E.P. 

~-of changing the perfusate .to 128 mM K + saline + 1 mM verapamil after 

a period of 5 to 10 mins in Normal saline + 1 mM verapamil in cells 

which exhibited the Type A response. It was found that pretreatment 

in Normal saline + verapamil induced the Type B response for both 

VB and VA. Thus, on introduction of 128 mM K+ saline + verapamil 

v8 and VA depolarized (component b, Fig. 20) to new potentials 

(component c, Fig. ~0) that were similar (p = 0.6-0.7) for VB and 

significantly more negative (p = 0.02-0.05) for VA than the equivalent 

values found in the naturally occurring Type B response. After 

depolarizing, however, VB and VA hyperpolarized to repolarized potentials 

(component e, Fig. 20) that were not significantly different (p = 

0.1-0.2 and p = 0.5-0.6 respectively) from the repolarized values 

found in the Type B response. Following the changes of VB and VA, 



Table 37a 

Effect on VB, VA and T.E.P. of changing th~ perfusate from Normal 

saline to Normal saline + 1 mM verapamil. 

Table 37b 

Effect on VB, VA and T.E.P. of changing the perfusate from Normal 

saline + 1 mM verapamil to 128 mM K+ saline + 1 mM verapamil in 

cells which exhibited the Type A response. 

n represents the number of individual experiments, each 

involving separate tubule preparations. 



Table 37a 

P.D. ± S.E.M. 
Time in New Saline (mins) 

Parameter Treatment 
(mV) 

Treatment 
1 5 10 

VB Normal 
-67.6 ± 1.0 Normal -81.3 ± 2. 5 -72.1 ± 3.2 -64.0 ± 3.0 

VA -86.4 ± 3.5 
Saline + 

-94.3 ± 3.3 -86.3 ± 4.1 -78.0 ± 6.5 
Saline lmM 

T.E.P. +10.9 ± 2.4 Verapamil + 4.4 ± 1.8 + 5.4 ± 3.0 + 5.3 ± 7.4 

n - 7 - 7 5 3 

··I~ 

Table 37b 

Re-
New Repolarized Initial established 

P.D. ± S.E.M. P.D. ± S.E.M. P.D. ± S.E.M. t.P.D. ± S.E.M. P.D. ± S.E.M. P.D. ± S.E.M. 
Treatment (component Treatment (component (component Treatment (component (component Parameter Treatment 

(mV) n 
a, Fig.20) c, Fig.20) e, Fig.20) f, Fig.20) g, Fig.20) 

(mV) (mV) (mV) (mV) (mV) 

VB -68.3±2.4 Normal -64.8 ± 2. 6 128 mMK+ -33.6'± 5.5 -43.3±8.0 - -70.2±1.8 5 Normal 
Saline+ Saline+ 

Normal 
v -83.0 ± 2.5 -82.0 ± 2. 2 -63.8 ± 3.8 -72.1±5.2 - -81.9 ± 3.1 5 A Saline lmM lmM Saline 

T.E.P. +12.3±1.8 Verapamil +11.6 ± 0.9 Verapamil +26.8.± 6.0 - - +10.9 ± 2.4 5 



Fig. 39 

Typical example of the effect on VB, VA and T.E.P. of changing the 

perfusate from Normal saline to Normal saline + 1 mM verapami1 before 

the subsequent addition of 128 mM K+ saline + 1 mM verapamil, in 

cells which exhibited the Type A response. 

* indicates a period of 10 mins during which a Type A 
+ response to 128 mM K saline was established (V = -8 mV, 

B 
V = -46 mV, T.E.P. = +34 mV). 

A 



en 
z -·· 
~ 

N 

0 0 
N 
I 

0 ..,. 
I 

0 
CD 
I 

.0 
> 

* 

0 
CX) 
I 

(1\W) 1VIiN310d 3NVI:I8Vo!3lfll 

Cll 

> 

* :;: 
0 
0 -I 0 

N 
+ 

0 0 
N 
I 

(J\W) 1VI1N310d 

1VI13Hlld3SNVI:Il 

I} 

u 

.J 
< 
~ 
a: 
0 
z 

+ 
~ 

~ 
E 

CX) 

N 

.J 

~ 
< 
~ 

.<. 
a: 
w 
> 
~ 
E 

+ 
w 
z 
.J 
< 
en 
.J 
< 
~ 
a: 
0 
z 

.J 
< 
~ 
a: 
0 
z 

w 
z 
.J 
< en 

.J 

~ 
< 

w ~ 

z < 
a: 

.J w < > en 
~ 
E 

+ 

w 
z 
.J 
< en 



138 

T.E.P. increased in positivity, in high K+ saline + verapamil, to 

a value similar (p = 0.2-0.3) to that found in the Type B response. 

Results in Table 38 show that the introduction of high K+ saline 

+ verapamil, to cells which exhibited the Type A response and had 

no previous exposure to this inhibitor, induced Type B behaviour 

for VB and VA. Indeed, this induced Type B response developed 

strongly. Thus, the novel introduction of verapamil in high K+ 

saline produced depolarized potentials (component c, Fig. 20) and 

repolarized potentials (component e, Fig. 20) that were not significantly 

different (p = 0.8-0.9 and p = 0.1-0.2 respectively for both 

potentials) from the equivalent values found in the naturally 

occurring Type B response. In addition, although the initial 

depolarization of VA (component b, Fig. 20) was 88% of that for 

VB (cf. 71% in the Type B response), the resulting T.E.P. value 

+ in 128 rnM K saline + verapamil was similar (p = 0.2-0.3) to the 

value found in the naturally occurring Type B response. 

Discussion 

It has been postulated that calcium probably enters the cells 

of the Malpighian tubules of various insects by moving down its 

electrochemical gradient (Maddrell, 1971). If this is the case 

in Locusta, then calcium transport across the tubules is probably 

largely passive. The introduction of ca
2

+ free saline in the presence 

of the calcium chelator, E.G.T.A., effected a hyperpolarization 

of both VB and VA over 1 min to a maintained value with no change 

in T.E.P. Adifferentresponse was found in the salivary glands of 

2+ 
Calliphora, where removal of Ca from the bathing medium (in the 



~-

Table 38 

Effect on VB, VA and T.E.P. of changing the perfusate from Normal 

saline to 128 mM K+ saline + 1 mM verapamil in cells which 

exhibited the Type A response (i.e. a novel addition of verapamil 

in high K+ saline). 

n represents the number of individual experiments, ~ach 

involving separate tubule preparations. 



New Repolarized Initial Re-established 
P.D. ± S.E.M. P.D. ± S.E.M. P.D. ± S.E.M. ~P.D. ± S.E.M. P.D. ± S.E.M. 

Parameter Treatment (component Treatment (component (component Treatment (component (component n 
a, Fig.20) c, Fig.20) e, Fig.20) f, Fig.20) g, Fig.20) 

(mV) (mV) (mV) (mV) (mV) 

VB -73.0 ± 3.4 128 rnM K+ -31.9 ± 5.0 -45.7 ± 5. 8 - -72.8 ± 3.5 8 Normal Normal 
VA -88.9 ± 3.6 Saline + -52.8 ± 4.8 -64.8 ± 6. 0 - -88.3 ± 2.9 8 Saline lrnM Saline 

T.E.P. +13.6 ± 1.8 Verapamil +17.6±1.5 - - +13.8 ± 1.6 8 
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presence of the agonist 5-HT) increased T.E.P. due to a marked 

hyperpolarization of VA (Prince and Berridge, 1973). 

2+ 
It may be expected that Ca free saline affects the functioning 

2+ . 2+ 
of Ca -transportlng mechanisms in the form of a Ca -ATPase or a 

+ 2+ 
Na -Ca exchanger. Evidence from the present study does not preclude 

2+ 
the presence of a Ca -ATPase in the tubules of Locusta, but it is 

difficult to explain the observed hyperpolarization in membrane 

. l . 2+ f l . h b . f h. potentla s ln Ca ree sa lne on t e asls o t lS transporter. If 

+ 2+ h. h - 2+ a basal membrane Na -Ca exchanger, w lc moved Ca out of the 

cell in exchange for an inward movement of Na+ (Scoble et al., 1985; 

Taylor and Windhager, 1979), occurred in the tubule cells of 

2+ 
Locusta, the absence of Ca in the perfusate may reduce its 

functioning. As this exchange is thought to be electrogenic with 

+ 2+ 
3-5 Na transported for every Ca (Mullins, 1979; Chase, 1984), a 

reduction in its function may lead to a hyperpolarization of VB 

+ . + 2+ 
as less Na was moved lnto the cell. However, whether the Na -Ca 

·exchanger is electrogenic enough to produce the observed hyperpolar-

2+ 
ization of VB, or indeed, extrude Ca from the tubules of Locusta, 

remains to be seen. Support for this comes from Chase (1984) who 

calculated that, in Na+-transporting epithelia, the electrochemical 

. 1 + 2+ potentla for Na is steep enough to pump Ca out of the cell only 

+ When [Na li is higher, the exchanger 

{everses, sending ca2+ into the cell. This threshold value is 

+ similar to the estimated value of 13 rnM [Na li for Malpighian 

tubules (based on Rhodnius, Gupta et al., 1976). 

1 . h 2+ f 1' 1 . h t An exp anatlon for t e Ca ree sa lne resu t ln t e presen 

2+ 
study is made difficult due to the fact that Ca has been shown 

to be involved in the regulation of many cellular processes 

(Rasmussen and Goodman, 1977). The hyperpolarization of VB (which 
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may be the result of a ca
2

+ free-induced exposure of an electrogenic 

+ 2+ 
Na -Ca exchanger) and VA may be related to the observation that 

2+ 
the removal of Ca has been shown to have potentially damaging 

effects on cellular histology (Donowitz, 1983). In addition, 

reported values for intracellular free ca2+ are low (10-5-lo-8 M, 

Schatzmann, 1975). 2+ 
Thus, the presence of Ca free saline may 

not effect significant changes in intracellular ca2+ in the short term. 

Finally, a calcium-induced hyperpolarization has been attributed 

2+ + 
to the activity of Ca -dependent K channels as a result of an 

. . [ 2+] . . .. 1ncrease 1n Ca i 1n var1ous tissues (Gardos et al., 1976; 

Hoffmann et al., 1986). It is unlikely that the VB hyperpolarization 

in the present study was due to the activation of such channels due 

h ab 
2+ . 

to t e sence of Ca 1n the perfusate. 

A23187 

The cation ionophore A23187 has been widely used to assess 

the-role of divalent cations in physiological- processes (Pressman, 

1976). This divalent ionophore has a well-documented ability to 

transport ca
2

+ in biological systems in exchange for intracellular 

H+, or Mg2+, and is predominantly selective for divalent ions over 

monovalent ions (Reed, 1979). Thus, it is capable of stimulating 

various ca
2
+-dependent biological reactions without directly 

+ + disturbing preexisting balances of Na and K .(Pressman, 1976; 

Reed, 1979). 

In the present study, A23187 was supplied in the perfusate 

in calcium-free saline (+ E.G.T.A.), to allow its incorporation 

into the basal membrane. Chandler and Williams (1977) have shown 



141 

that various tissues may need to be preincubated with A23187 before 

addition of calcium in order for an effect to be seen. The addition 

of 5 x 10-
6 

M A23187 in ca
2
+ free saline lead to a maintained and 

reversible hyperpolarization of both v
8 

and VA with no change in 

T E P Th h . b th mb . 1 . 2+ f 1. • • • e c anges 1n o me rane potent1a s 1n Ca ree sa 1ne 

. h 1 . d . 1 h d . h 2+ + 1onop ore were a most 1 ent1ca to t ose faun w1t Ca free 

saline lacking A23187. Thus, the increase in membrane potentials 

2+ 
in the former saline may simply be a Ca free effect. The fact 

that A23187 did not alter the ca
2
+ free saline effect, plus the observatior 

that the membrane potentials return to their original values in 

Normal saline suggests that a) the ionophore may not be inserted 

into the basal membrane or b) treatment with A23187 does not greatly 

2+ 
alter the Ca gradient in the tubules of Locusta. The presence 

f 
2+ . + . 

o Ca -act1vated K channels has been ind1cated by a membrane 

2+ 
hyperpolarization in the presence of A23187 in a Ca containing 

medium in Necturus gallbladder (Bello-Reuss et al., 1981) and Ehrlich 

Ascites tumour cells (Hoffmann et al., 1986). However, a similar 

system in the tubules of Locusta is difficult to envisage due to 

the absence of ca
2
+ in the A23187 containing medium. 

VVUlpamil 

The ca
2+ antagonist verapamil has been shown to be a relatively 

.specific blocker of voltage-activated ca2
+ channels (Janis and Scriabine, 

1983). As a result of the action of this drug an inhibition of 

calcium transport has been reported in many tissues (.Triggle, 1981; 

Penta and Johnston, 1983). Furthermore, 1 mM verapamil blocks 

calcium influx action potentials in Rhodnius oocytes (O'Donnell, 

1985). In the present study, the introduction of Normal saline 

containing 1 mM verapamil resulted in an initial hyperpolarization 
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(and decrease in T.E.P. positivity) followed by a depolarization 

(but maintained T.E.P.) of both v
8 

and VA. An explanation of these 

changes found during verapamil treatment is not obvious but may 

be related to the nonspecific action of this drug. Indeed, a 

variety of nonspecific effects have been documented for verapamil 

and other calcium channel inhibitors (at concentrations > 10-
5 

M) 

including inhibition of K+, Na+ and other ionic channels, interaction 

with hormone receptors and alterations of adenylate cyclase and 

Na++K+-ATPase activities (Triggle, 1981; Huff and Reinach, 1985; 

Janis and Scriabine, 1983). It may be that the decline of both 

membrane potentials after the initial hyperpolarization in 

verapamil-containing saline is related to a nonspecific effect, 

+ + such as an inhibition of the Na +K -ATPase, leading to an inability 

to maintain the cellular gradients. 

Ge.neJz.a.l 

2+ 
It was suggested from Ca replacemen~ experiments that a 

. ""'---

+ 2+ Na -Ca exchanger may occur in the basal membrane of Locusta 

tubule cells. It is of interest that an alteration in the functioning 

+ + 
of such an exchanger during treatment with K free, Na free, 

ouabain, vanadate, amiloride and monensin salines may all increase 

( 2+ l h h . h. b. . f + 2+ h Ca i t roug 1n 1 1t1on o Na -Ca exc ange. An alteration of 

+ . h . ( 2+] . + the Na grad1ent has been s own to 1ncrease Ca i dur1ng Na 

free treatment (Taylor and Windhager, 1979; Mandel and Murphy, 

1984) and ouabain treatment (Cruz-Soto et al., 1984; Lorenzen et al., 

1984) due to a diminished calcium efflux from an inhibited 

+ 2+ 
Na -ca exchanger. 

t:L 
Although vandate does not directly inhibit 

" + 2+ + 
Na -ca exchange (Ueda, 1983), the increase of [Na li during 

+ 
treatment with this agent may prevent entry of Na in exchange 
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2+ 2+ 
for the outward movement of Ca , increasing [Ca li· An 

. . . 2+ . 1ncrease 1n cytosol1c Ca concentrat1on as a result of vanadate 

has been shown in frog skin (Aboulafia and Lacaz-Viera, 1984). 

An increase in [Na+li as found with K+ free, ouabain and vanadate 

treatments may also increase [Ca2+li through a reversal in the 

. f + 2+ act1on o a Na -Ca exchanger. As mentioned earlier, Chase (1984) 

+ has proposed that when [Na li exceeds a value of approximately 

10 mM, as after inhibition of the Na++K+ pump, the direction of 

+ 2+ . . + 
the Na -Ca exchanger reverses (in Na transporting epithelia), 

. 2+ . . . 
send1ng Ca 1nto the cell. Amiloride has been shown to 1nhib1t 

+ 2+ 
Na -Ca exchange in various preparations (Schellenberg et al., 

1983) and there are indications that this diuretic may inhibit 

the influx of ca
2
+ in the salivary glands of Calliphora (Berridge 

et al., 1976). Davis and Finn (1985) have suggested that 

amiloride may affect intracellular calcium levels in frog urinary 

bladder by influencing basolateral membrane calcium pathways. 

a result of an ·increased [Na+]i, monensin.treatment may result 

in an increase in [Ca
2
+]i due to an inhibition or reversal of 

As 

+ 2+ 
a Na -Ca exchange. Pressman and Painter (1983) have found that 

in different systems, monensin elicits the activation of 

mechanisms, the triggering of which is attributed to increases 

. [ 2+] 1n Ca i· In addition, this ionophore produced a fast, large 

and sustained increase in cytosolic ca2+ in toad urinary bladder 

(Hardy and Ware, 1985). 

Overall, as will be discussed later, an increase in [Ca
2
+li 

+ 2+ 
brought about by an inhibition of Na -Ca exchange, as described 

above, may explain many of the modified saline-induced membrane 

changes seen in the present study. 

--· 
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Type A and Type B R~po~e 
+ 2+ 

The introduction of high K ,ca free saline, with or without 

2+ 
the ionophore A23187, after Ca free treatment (with or without 

A23187) resulted in the exposure of Type B behaviour for both v
8 

and VA, in cells which originally exhibited the Type A response. 

Similarly, the introduction of high K+ saline + 1 mM verapamil after 

Normal saline + 1 mM verapamil treatment resulted in an exposure 

of the Type B response for both membrane potentials. Results show 

that 1 mM verapamil pretreatment was not needed to induce the 

Type B behaviour as it occurred with a novel introduction of high 

K+ saline + verapamil. 

The application of ca
2

+ free (with or without A23187) 

or verapamil saline would not be expected to increase [Ca
2
+li· 

2+ 
Thus, the Ca free- and verapamil-induced Type B response in 

high K+ saline seems to rule out the possibility that such 

b h . . . . [ 2+] e av1our 1s dependent on an 1ncrease 1n Ca i· However, 

this disagrees with an eariier suggestion (see -section 3) that 

2+ 
the Type B response may be induced by an increase in [Ca li· 

Furthermore, as will be discussed later (see Chapter 4), it is 

proposed that the Type B response is the result of an increase 

. [ 2+] . 1 . b 1 1n Ca i st1mu at1ng a asa Cl entry and the activity of 

an apical K+ pump. 
2+ 

It may be that the Ca free- or verapamil-

inducement of the Type B response cannot be explained on the 

basis of evidence currently available and may be related, 

2+ 
as noted earlier, to the potentially damaging effects of Ca 

free conditions on cellular histology (Donowitz, 1983). 
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Section 6: Electrophysiological Studies on V ,v and T.E.P. 
. B-A 

Using 5-Hydroxytryptamine- and cAMP-Containing 

Salines 

E66ect o6 1 mM 5-Hy~oxy~yptamine 

The effect of Normal saline containing 1 MM 5-Hydroxytryptamine 

(5-HT) on VB, VA and T.E.P. was examined by exposing the cells to this 

agent for 10 to 20 mins (n=6). No change was observed in either 

membrane potential even after 20 mins in Normal saline + 5-HT. 

Oscillations of VA (and T.E.P.) occurred in 67% of cells in 

Normal saline + 1 mM 5-HT and were 4.8 ± 1.8 mV in amplitude. These 

results were not significantly different (p = 0.4-0.5) from values 

found in Normal saline. 

Although Normal saline containing 1 mM 5-HT apparently increased 

fluid secretion by the Malp{ghian tubules of Locusta by 7%, this 

increase was not significant (p > 0.9; n=13) (see Appendix, Table 1). 

. + :~· 
E66ect ol 128 mM K SaLine + 1 mM 5-HT A6teA T!te.a.t.ment in NoJtmal. 

SaLine + 1 mM 5-HT 

It was found that introducing 128 mM K+ saline + 1 mM 5-HT 

directly after a period of 10-15 mins in Normal saline + 5-HT, in 

cells which exhibited the Type A response,did not alter this behaviour 

(n=6). Thus, the depolarized values (component c, Fig. 20) of VB 

and VA and the new T.E.P., in high K+ saline+ 5-HT, were not 

significantly different (p = 0.5-0.6, p = 0.8-0.9 and p = 0.3-0.4 

respectively) from the equivalent values found in the Type A response. 

+ . 1 5 Similarly, the introduction of 128 mM K sal1ne + mM -HT 

directly after a period of 10-20 mins in Normal saline + 1 mM 5-HT 

in cells which exhibited the Type B response did not alter this 

behaviour (n=3) . Thus the depolarized potentials (component c, Fig. 20) 
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and repolarized potentials (component e, Fig. 20) of V and V and 
B A 

the new T.E.P., in high K+ saline+ 5-HT,were not significantly 

different (p = 0.7-0.8, p = 0.3-0.4 and p = 0.1-0.2 respectively) 

from the equivalent values found in the Type B response. 

E66e.ct o6 1 mM c.AMP 

Table 39a shows the effect on VB, VA and T.E.P. of changing 

the perfusate from Normal saline to Normal saline+ 1 mM cAMP. It 

was found that VB and VA hyperpolarized 4.1 ± 0.6 mV and 8.2 ± 1.3 mV 

respectively over the first min of cAMP treatment to values which 

levelled over the next 9 mins. Thus, VB and VA reached maintained 

values 6.9 ± 1.5 mv and 18.9 ± 3.2 mV respectively more negative 

than the original resting potentials after 10 mins exposure to cAMP 

saline. T.E.P. increased in positivity due to VA hyperpolarizing 

more than VB during the first min of Normal saline+ cAMP treatment 

but, thereafter,exhibited little change in value. Just over 30% 

of :cells exposed to cAMP saline were_ returned to Normal saline; ~-

VB and VA in these cells depolarized to the original resting values 

after a period of 5 to 8 mins. 

The amplitude of the oscillations of VA (and T.E.P.) increased 

significantly (p 0.001-0.01) from 6.0 ± 0.3 mV in Normal saline 

to 11.5 ± 1.8 mV in Normal saline containing 1 mM cAMP, with 

oscillations occurring in 62% of cells. 

E66e.ct o6 128 mM K+ Siline. + 1 mM c.AMP A6tVL T!te.a.tme.nt ,i.n No!tma.l 

SaLLne. + 1 mM c. AMP 

+ The effect of introducing 128 mM K saline + 1 mM cAMP on v8 , 

V and T.E.P. after a period of 5 to 10 mins in Normal saline + 
A 

1 mM cAMP
1
in cells which exhibited the Type A response,is shown 



Table 39a 

Effect on v , V and T.E.P. of changing the perfusate from Normal 
B A 

saline to Normal saline+ 1 mM cAMP. 

Table 39b 

Effect on VB, VA and T.E.P. of changing the perfusate from Normal 

saline + 1 mM cAMP to 128 mM K+ saline + 1 mM cAMP in cells 

which exhibited the Type A response. 

n represents the number of individual experiments, each 

involving separate tubule preparations. 



Table 39a 

Parameter 

VB 

VA 

T.E.P. 

n 

Table 39b 

Parameter Treatment 

VB Normal 

VA Saline 
T.E.P. 

P.D. ± S.E.M. 
Treatment 

(mV) 

Normal 

Saline 

-

P.D. ± S.E.M. 
(mV) 

-74.5±1.5 

-86.5 ± 2. 5 

+6.3±3.4 

-74.1 ± 2.2 

-88.1 ± 3.0 

+ 9.2 ± 2.3 

13 

Treatment 
P.D. ± S.E.M. 
(component 
a, Fig.20) 

(mV) 

Normal -79.8 ± 2.8 
Saline + 

-95.0 ± 5. 8 lrnM 
cAMP + 9.0±6.7 

Time in New Saline 
Treatment 

, Normal 
Saline + 
1rnM 
cAMP 

,•; -

Treatment 

128 rnM K+ 
Saline+ 
lrnM 
cAMP 

1 5 

-78.2 ± 2.4 -80.2 ± 2.8 

-96.2 ± 3.0 -104.5 ± 3.3 

+12.4 ± 2.4 +18.4 ± 3.2 

New 
P.D. ± S.E.M. 
(component 
c, Fig.20) 

(mV) 

-10.8 ± 2.4 

-37. 3 ± 7.1 

+18.5±7.1 

13 

Repolarized 
P.D. ± S.E.M. 
(component 
e, Fig.20) 

(mV) 

-
-
-

13 

Treatment 

Normal 

Saline 

(mins) 

10 

-81.6 ± 3.0 

-107.4 ± 3.7 

+18.8 ± 4.5 

8 

Initial 
t:.P.D. ± S.E.M. 

(component 
f, Fig.20) 

(mV) 

-
-
-

Re-
established 

P.D. ± S.E.M. 
(component 
g, Fig.20) 

(mV) 

-74.1±2.1 

-86.0 ± 2.9 

+7.0±3.0 

n 

4 

4 

4 
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in Table 39b. It can be seen that cAMP pretreatment did not alter 

the original Type A response. Thus, the depolarized values 

(component c, Fig. 20) of VB and VA, in high K+ saline+ cAMP, were 

not significantly different (p = 0.05-0.1 and p = 0.6-0.7 respectively) 

from the equivalent values found during Type A behaviour. However, 

although not significantly different, depolarized values arose as 

a result of VA initially depolarizing 84% of that for VB (cf. 65% 

found during the Type A response) and resulted in a T.E.P. value, 

+ in 128 mM K saline + cAMP, that was significantly less positive 

(p < 0.001) than T.E.P. found in the Type A response. 

Table 40 shows the effect on VB, VA and T.E.P. of introducing 

+ 128 mM K saline+ 1 mM cAMP after a period of 10 to 15 mins in 

Normal saline+ 1 mM cAMP,in cells which exhibited the Type B 

response. It was found that cAMP pretreatment altered the Type B 

behaviour. Thus, on introduction of high K+ saline containing cAMP, 

both VB and VA depolarized to maintained potentials (component c, 

Fig; 20) that-were not significantly different (p' > 0.9 and p = ·0.05-0.1 

respectively) from the repolarized potentials (component e, Fig. 20) 

found during the Type B response. This shows that cAMP pretreatment 

produced the maintained repolarized potentials (component e, Fig. 20) 

of the Type B response, in high K+ saline + cAMP, without VB and 

VA exhibiting a repolarizing change (component d, Fig. 20). However, 

although not significantly different, the depolarized VA (component c, 

Fig. 20) in 128 mM K+ saline+ cAMP was 14 mV more negative than the 

Type B repolarized potential (component e, Fig. 20). This arose 

as a result of VA initially depolarizing only 55% of that for VB 

(cf. 71% found during the Type B response) and resulted in a T.E.P. 

value significantly more positive (p > 0.9) than the value found in 

the naturally occurring Type B response. 



Table 40 

Effect on V , V and T.E.P. of changing the perfusate from Normal 
B A 

saline + 1 mM cAMP to 128 mM K+ saline + 1 mM cAMP in cells 

which exhibited the Type B response. 

n represents the number of individual experiments, each 

involving separate tubule preparations. 



Re-
New Repolarized Initial established 

P.O. ± S.E.M. 
P.O. ± S.E.M. P.O. ± S.E.M. P.O. ± S.E.M. ~P.O. ± S.E.M. P.O. ± S.E.M. 

Parameter Treatment 
(mV) 

Treatment (component Treatment (component (component Treatment (component (component n 
a, Fig.20) ·v c, Fig.20) e, Fig.20) f, Fig.20) g, Fig.20) 

(mV) (mV) (mV) (mV) (mV) 

VB Normal 
-79.0±3.0 Normal -87.3±2.2 128 mMK+ -54.3 ± 6.2 - - -77.5±1.9 3 

Saline+ Saline+ 
Normal 

VA Saline 
-85.0 ± 7. 0 1mM 

-108.3±3.3 -90.3 ± 7. 2 - - -84.0 ± 5. 3 3 
1mM Saline 

T.E.P. + 8.0±1.0 cAMP +13.3 ± 2.0 cAMP +33. 7 ± 4.5 - - + 7.1±2.1 3 
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Finally, it was found that the introduction of high K+ saline 

+ cAMP, to cells which exhibited the Type A response and had no 

previous exposure to this agent, did not alter this behaviour (n=6). 

Thus, the depolarized potentials in cells so-treated were similar 

(p = 0.2-0.3) to those found in the Type A response. 

Discussion 

5-HT a.nd c. AMP 

Fluid secretion by the Malpighian tubules and related ionic 

processes are believed to.be under the control of diuretic hormone 

(D.H.) in many insects (Phillips, 1981; 1982). Although not examined 

in the present study, D.H. from the corpus cardiacum has been shown 

to greatly increase fluid secretion (Mordue, 1969; Donkin, 1981; 

Morgan and Mordue, 1984) but produced no significant change in membrane 

potentials (Morgan and Mordue, 1983a) in the Malpighian tubules of 

Locusta. Morgan and _Mordue (1983a) have usggested that D.H. might 

+ act by increasing the permeability of the basal membrane to Na , 

achieving a greater influx of NaCl into the cell. 

Recently, it has been shown that the biogenic amine 5-hydroxytryptamine 

(5-HT or serotonin) and the cyclic nucleotide (cAMP) mimic the action 

of D.H. on Malpighian tubule function in some insects but not others 

(Phillips, 1981; 1982). Various studies have demonstrated the 

stimulation of tubular fluid secretion (Maddrell et al., 1971; 

Nicolson and Miller, 1983), midgut fluid absorption (Farmer et al., 

1981) and salivary gland activity (Berridge ·and Prince, 1972) by 

5-HT. Other studies, however, have reported that Malpighian tubule 

fluid secretion is unaffected by 5-HT (Maddrell and Klunsuwan, 1973; 

Farquharson, 1974; Dalton and Windmill, 1980). Similarly, Anstee 

et al. (1980) and the present study found no significant stimulation 
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of fluid secretion in the presence of 5-HT in Normal saline in the 

tubules of Locusta, over the concentration range 10-8-10-4 M, 

Rafaeli and Mordue (1982) have also reported the tubules of Locusta 

to be insensitive to 5-HT. In contrast, Morgan and Mordue (1984) 

have reported that 5-HT stimulates fluid secretion in this latter 

-8 
tissue with the threshold of stimulation lying between 10 and 

10-
7 

M and maximum activation occurring at doses greater than 10-6 M. 

In the present study, 1 mM 5-HT had no effect on VB, VA or 

T.E.P. In contrast, electrophysiological studies on the tubules 

of Rhodnius showed that T.E.P. changed in 3 distinct phases (a respective 

increase, decrease and then increase in negativity over about 10 min), 

largely due to changes in VA, during exposure to 5-HT (Maddrell, 

1971; O'Donnell and Maddrell, 1984). During prolonged 5-HT treatment, 

T.E.P. in the salivary glands of Calliphora decreased in positivity 

to a maintained value, while brief 5-HT exposure resulted in an initial 

T.E.P. decrease in positivity followed by a rapid increase, and then 

a slow return to the original value over about 2·min, with these 

changes being largely attributed to changes in VA (Berridge and Prince, 

1972). 

The lack of effect of 5-HT on fluid secretion and membrane potentials 

points against any role for this biogenic amine in tubule function 

in Locusta. This differs from the tubules of Rhodnius in which 5-HT 

is a secretagogue and is thought to bring about changes in VA through 

an exit of Cl from the cell into the lumen, the.n an activation of 

the apical cation pump followed by an increase in the apical membrane 

Cl conductance (Maddrell, 1971) • No change in VB occurred during 

the action of 5-HT in this tissue as the 
+ + -proposed Na K 2Cl mechanism 

is electrically silent (O'Donnell and Maddrell, 1984). Similarly, 

Berridge et al. (1976) arid Berridge (1980) have suggested that exposure 
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to 5-HT in the salivary glands of Calliphora leads to changes in 

VA through a ca
2
+-induced C1- permeability switching on and a cAMP 

activated apical K transport developing (see later). However, 5-HT 

has no effect on ~ntracellular cAMP in the tubules of Locusta 

(Morgan and Mordue, 1984). 

Rafaeli et al. (1984) have suggested that the increases in 

intracellular cAMP levels in response to D.H. (Rafaeli et al., 

1984; Morgan and Mordue, 1984) in the tubules of Locusta, provide 

sufficient evidence for the involvement of cAMP in the coupling 

of hormonal stimulation to fluid secretion in this epithelium. This 

is supported by the fact that fluid secretion in the tubules of 

Locusta was greatly stimulated in cAMP (Donkin, 1981; Morgan and 

Mordue, 1981). Furthermore, with the exception of Musca (Dalton 

and Windmill, 1980), dibutryl cAMP acts as a secretagogue in all 

insect tubules studied (Donkin, 1981; Maddrell et al., 1971; Nicolson, 

1976; Gee, 1976; Maddrell and Phillips, 1978; Szibbo and Scudder, 

1979; Anstee et al., 1980; Morgan and Mordue, 1981;,Rafaeli and 

Mordue, 1982; Williams and Beyenbach, 1983). This nucleotide stimulates 

fluid secretion in the salivary glands of Calliphora (Berridge, 1980) 

and fluid absorption by Rhodnius midgut (Farmer et al., 1981). In 

Locusta tubules, the threshold for stimulation lies between 10-
4 

and 

3 x 10-
4 

M cAMP with maximum stimulation being observed in the 

-3 
presence of 10 M cAMP (Anstee et al., 1980). 

In the present study, the addition of 1 mM dibutryl cAMP to 

Normal saline caused both membrane potentials to hyperpolarize (andT.E.P. 

to increase in positivity) to values which were maintained after 

about 10 mins. This effect of cAMP was found to be reversible. 

Similarly, Anstee et al. (1980) showed that 1 mM cAMP effected 

a reversible increase in T.E.P. positivity in Locusta tubules, with 
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a new stable potential being established after about 16 mins. In 

the salivary glands of Calliphora, cAMP induces a reversible increase 

in lumen positivity mainly by hyperpolarizing the apical membrane 

(Berridge, 1980). In contrast to the findings from the present 

study, Morgan and Mordue (1983a) have shown that no change in VB 

was observed in response to cAMP in the tubules of Locusta. The 

suggestion by these authors that cAMP might stimulate coupled 

anion-cation transport across this membrane, therefore, may not 

be valid. In the Malpighian tubules of Aedes, cAMP caused a reversal 

and large depolarization of VB and virtually no change in VA (Williams 

and Beyenbach, 1984; Sawyer and Beyenbach, 1985a). It has been 

suggested that this was due to an entry of Na+ into the cell as 

+ a result of a selective increase in the basolateral Na conductance 

(Williams and Beyenbach, 1984; Sawyer and Beyenbach, 1985a). 

In order to examine the role of cAMP in the tubules of 

Locusta, it can be noted that cAMP-mediated increases in the 

apical membrane Ct conductance have been reported for many:tissues 

including shark rectal gland (Greger et al., 1984), cornea (Reuss 

et al., 1983) and canine trachea (Shorofsky et al., 1982; Welsh et 

al., 1983). Furthermore, it has been suggested that intracellular 

cAMP increases both Cl permeability and electrogenic transport 

of cations at the apical membrane in the tubules of Rhodnius 

(Phillips, 1982) and a cAMP activated apical K+ transport has 

been proposed for the salivary glands of Calliphora (Berridge 

et al., 1976; Berridge, 1980). In the tubules of Locusta, an 

increase in the activity of an electrogenic apical K+ pump, due to 

cAMP, may hyperpolarize VA. In contrast, a cAMP-induced increase 

in apical Cl exit would probably lead to a depolarization of 

VA and not the observed hyperpolarization. However, a cAMP-induced 
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increase in Cl entry across the basal membrane may explain the 

hyperpolarization of VB in cAMP-containing saline. It is of 

interest that the action of cAMP, suggested above, may be mediated 

by ca
2
+. A mobilization of intracellular ca2+ by cAMP has been 

proposed for a number of transporting epithelia (Berridge, 1980). 

Berridge (1980) has suggested that cAMP may be capable of releasing 

ca
2
+ from intracellular reservoirs in the salivary glands of 

Calliphora. 
2+ 

Furthermore, the ability of Ca to regulate Cl 

permeability has been described in many transporting tissues 

(Berridge, 1980; Nauntofte and Poulsen, 1986). In the salivary 

glands of Calliphora, Berridge (1980) has postulated a ca
2
+-induced 

increase in Cl conductance (albeit in the apical membrane) whilst 

2+ 
Berridge et al. (1975) have hinted at a role for Ca in increasing 

the activity of the apical K+ pump in the same tissue. 

As mentioned in the Introduction, Morgan and Mordue (1984) 

have proposed a hypothetical model to describe hormone-stimulated 

fluid secretion by the Malpighian tubules of Locusta, similar_to 

that found for Calliphora salivary glands (see Introduction; 

Berridge, 1980, Berridge and Heslop, 1982). In the model of Morgan 

and Mordue (1984), two distinct sites are thought to exist on the 

surface of the tubule cells; one which results in an increase in 

cAMP synthesis (R
1

) and the other perhaps leading to an increase 

. . 11 1 2+ . ( ) 1n 1ntrace u ar Ca concentrat1on R
2 

• Diuretic hormone is thought 

to stimulate both receptors (R1 and R2) activating maximum 

stimulation, with 5-HT stimulating fluid secretion by acting at R2. 

The latter observation wasmadeby Morgan and Mordue (1984) upon 

finding that 5-HT had a.· · ·..,..-=- tory effect on fluid secretion in 

the tubules of Locusta. However, as mentioned earlier, results from 

the present study, Anstee et al. (1980) and Rafaeli and Mordue (1982) 
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have shown the 5-HT had no effect on fluid secretion in this 

epithelium. Thus, as it stands, the viability of the model for 

hormonal control of fluid secretion by Morgan and Mordue (1984) 

may be invalid. 

Type A and Type B R~pon6e 

The introduction of high K+ saline + 1 mM 5-HT after treatment 

in 1 mM 5-HT did not alter the Nernstian Type A response nor did 

the presence of 5-HT alter the naturally occurring Type B response. 

These results support the observation mentioned earlier that 5-HT 

does not appear to have .a role in the functioning of the Malpighian 

tubules of Locusta. 

The introduction of high K+ saline + 1 mM cAMP after 1 mM 

cAMP pretreatment did not alter the Type A response nor the 

production of the naturally occurring Type B response. The former 

observation seems to rule out a role for cAMP in inducing 

Type B behaviour. This seems odd if, as mentioned in Section 5, 

the Type B response is induced by an increase in [Ca2+'] i• and 

. 2+ 
cAMPi leads to a mobilization of 1ntracellular Ca . However, 

as discussed for the final model (see Chapter 4), it may be that 

the postulated increase of [cAMP]i and [Ca
2
+Ji during treatment 

with cAMP-containing saline affects different Cl entry mechanisms, 

one leading to the Type A response, the other inducing the Type B 

response. Thus, whatever mechanism is dominant, at a given time, 

may determine whether a Type A or Type B response is exhibited in 

. + . h1gh K sal1.ne. 

Results from the Malpighian tubules of Locusta throughout 

the present study showed that cyclic oscillations of VA and T.E.P. 
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occurred in Normal saline in just over 50% of cells. The amplitude 

of these oscillations was increased only in high K+ saline and 

Normal saline containing ouabain and cAMP, but decreased in Hco; 

free saline + acetazolamide and Normal saline with furosemide. 

h f . . 2+ f 1' T e frequency o osc1llation was increased only 1n Ca ree sa 1ne 

+ but decreased in K free, vanadate, amiloride, Cl free, A23187 

2+ -(Ca free) and SCN salines. 

Transient oscillations of T.E.P., similar to those found in 

the present study, have been found in the Malpighian tubules of 

Locust~ (Morgan and Mordue, 1981), Carausius (Pilcher, 1970) and 

Aedes (Williams and Beyenbach, 1984; Sawyer and Beyenbach, 198Sa) 

and the salivary glands of Calliphora (Rapp and Berridge, 1981). 

The present findings show that the oscillations were solely a feature 

of the apical membrane, being copied exactly by T.E.P. This result 

differs from that of Aedes tubules in which the spontaneous transient 

oscillations are due to changes in the basolateral membrane (Sawyer 

and,"Beyenbach, 198Sa). .Sawyer and Beyenbach (198Sa) suggest that: 

these changes may be due to a transient increase of the K conductance 

at this membrane. It is not clear what role these osciliations 

play in the mechanism of fluid secretion in Malpighian tubules 

(Williams and Beyenbach, 1984). Morgan and Mordue (1981) have 

suggested that these changes are somehow related to control of 

the secretion rate by cy:lical fluxing of anions and cations across 

the tubule wall. Similarly, Rapp and Berridge (1981) have suggested 

that the oscillations of T.E.P. in Calliphora salivary glands may 

be driven by an oscillation in the intracellular concentration 

of cAMP and calcium and that oscillatory control provides a reliable 

strategy for controlling secretion rate and regulating ion transport 

across epithelia. 
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However, despite the speculation above, results from the 

present study do not provide a clear picture to explain the cause 

and function of VA oscillations in the tubules of Locusta. 
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CHAPTER 4 

Conclusion 

With the information obtained from ion substitution and the 

application of different pharmacological agents in Chapter 3, a 

hypothetical model can be postulated to describe the ionic fluxes 

which support fluid secretion by the Malpighian tubule of Locusta. 

This model can be seen in Fig. 40. + + As mentioned earlier, Na +K -ATPase 

activity has been reported in this tissue (Anstee and Bell, 1975; 

1972; Donkin and Anstee, 1980) and has been confirmed in the present 

study (also see Anstee et al., 1986). Ouabain-binding studies on 

microsomal preparations from Malpighian tubules of Locusta showed 

+ + that the pump-site density and turnover activity of the Na +K -ATPase 

is adequate to account for substantial K+ transport across the tubules 

of Locusta. + + Thus, in Fig. 40, it is suggested that a Na +K -ATPase 

occurs in Locusta tubule cells and since in the majority of tissues 

studied (DiBona and Mills, 1979;"Ernst et al;, 1980) -this enzyme 

is associated with the basolateral membranes, it is proposed that 

+ it is responsible for the entry of K into the cell in exchange 

+ for Na across the basal membrane, thereby maintaining the Na gradient. 

This suggestion is supported by the observation, in the present 

+ + study, that the Na +K pump inhibitors, ouabain and vanadate (Wallick 

et al., 1980, Kazazoglou et al., 1983; Phillips et al:, 1983; Nechay 

et al., 1986), both decreased the membrane potentials. Thus, 

inhibition of the enzyme probably results in an inability to maintain 

+ + . the K and Na grad1ent (decreasing VB) with an ensuing reduction 

inK+ exit across the apical membrane (decreasing VA). In common 

+ + with the present study, a Na +K -ATPase has also been proposed to 

maintain the cellular gradients in the Malpighian tubules of 



Fig. 40 

A schematic diagram of the model proposed to explain anion and cation 

transport across the cells of the Malpighian tubules of Locusta. In 

this model, the basal (serosal) membrane faces the bathing medium 

whilst the apical (mucosal) membrane faces the lumen. 

+ + 
In this model it is suggested that a basal membrane Na +K -ATPase 

maintains the cellular gradients. 
2+ 

Intracellular levels of Ca may be 

h . b + 2+ h controlled by t e act1on of a asal Na -Ca exc anger. It is proposed 

that passive exit of K+ with its concentration gradient and a passive 

+ entry of Na with its concentration and electrical gradient occur 

+ across the basal membrane • It may be that a basal K dependent Cl 

entry (which is stimulated [1] by [cAMP]i) and an apical K+ pump (which 

+ may also extrude Na ) also occur in the tubules of Locusta. During 

fluid secretion, diuretic hormone (D.H.) may act (2) on a basal 

2+ 
membrane receptor (O.H.R.) to elevate (3 and 4) intracellular Ca and 

. . . [ 2+] cAMP with cAMP, in turn, stimulat1ng (5) a further 1ncrease 1n Ca i· 

· The elevated [cAMP] i sti~ulates (1) ,,_K + dependent Cl- entry whilst the 

elevated ca
2
+ stimulates (6 and 7) an additional Cl- permeability (~) 

+ and the activity of the apical K pump. These steps ensure enough 

Cl crosses the cell to act as a counterion for K+ during D.H.-

stimulated fluid secretion. Finally, it is also proposed that Cl exit 

from the Malpighian tubule cells of Locusta may occur passively by 

following the active extrusion of K+. 
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Rhodnius (Maddrell, personal communication) and Glossina (Gee, 1975; 

1976) and the salivary glands of Calliphora (Berridge, 1980). 

The presence of a large negative apical membrane potential 

(ca. 80 mV) indicates an adverse electrical gradient for K+ and 

Na+ (but not Cl-) exit (see Fig. 27, Chapter 3) across the apical 

membrane suggesting that some form of cation pump is required at 

this membrane in the tubules of Locusta. Hence, an apical electrogenic 

K+ pump is proposed in Fig. 40 for similar reasons to that suggested 

elsewhere (Berridge, 1968; Maddrell, 1977; Morgan and Mordue, 1983a; 

O'Donnell and Maddrell, 1984). This pump is thought to be relatively 

unspecific, transporting Na+ or K+ out of the cells (Maddrell, 1977; 

O'Donnell and Maddrell, 1984). However, it is suggested that in 

K+ secreting tubules which includes Locusta and the majority of 

other species of insects studied (Anstee and Bell, 1975; Maddrell, 

1977), it is mainly K+ which is extruded by the apical pump (Maddrell, 

1977) with Cl following passively as proposed for Rhodnius (O'Donnell 

and Maddrell, 1984) and Locusta (Morgan and Mordue, 1983a). 

In the tubules of Locusta, the basal membrane acts largely 

as a K+ electrode with other ions contributing little to the resting 

potential. Indeed, results showed that the basal membrane is 

relatively impermeable to Na+ and Cl- with membrane permeability 

calculations (Goldman, 1943),indicating that this membrane was 

. + + approximately 100 t1mes more permeable to K than Na • Similarly, 

O'Donnell and Maddrell (1984) have found the basal membrane of ~he 

+ -tubules of Rhodnius to be largely impermeable to Na and Cl and 

postulated these two ions may enter the tubule cell by means of 

+ + -a Na K Cl cotransporter. Morgan and Mordue (1983a) have suggested 

that Cl + + entry may be Na and/or K dependent in the tubules of 

Locusta. In contrast, the Malpighian tubules of Aedes appear to 
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have basolateral conductances for K+ and Na+ of similar magnitude 

(Williams and Beyenbach, 1984; Sawyer and Beyenbach, 1985a). 

The hyperpolarization of VA found in the present study with 

the NaCl and NaKCl cotransport inhibitors furosemide and bumetanide 

(Palfrey and Rao, 1985) and the NaCl transport inhibitor SCN (Epstein 

et al., 1973) may suggest that NaCl cotransport occurs in the tubules 

of Locusta, with inhibition of Cl entry reducing the availability of 

+ this anion to follow the extrusion of K at the apical surface. 

However, if such a mechanism occurs in the tubules of Locusta, it 

is difficult to explain why Cl free saline had no effect on VB 

+ and hyperpolarized VA whilst application of Na free saline resulted 

in a depolarization of both VB and VA. Thus, unlike the tubules 

of Rhodnius (O'Donnell and Maddrell, 1984) the lack of similarity 

of effect of Cl free and Na+ free salines on VB and VA may suggest 

that Cl entry is not necessarily dependent on cotransport with 

+ Na in Locusta. It may be, of course, that some Cl movements are 

- - + 
possible across the basal membrane through a cotransport -with K 

+ under Na free conditions. Indeed, O'Donnell and Maddrell (1984) 

have suggested that whilst Cl entry was normally through cotransport 

with both Na+ and K+ in the tubules of Rhodnius, with a suggested 

stoichimetry of Na+:K+:2Cl-, in the absence of either cation other 

+ - + -
stoichimetries might be possible, such as 2 Na : 2 Cl or 2 K : 2 Cl 

The hyperpolarization of VB observed in Locusta, in response to 

furosemide, is difficult to attribute to a direct action of this 

agent on a cotransport process, particularly as no such effect on 

VB was observed with bumetanide. 

The lack of firm evidence for the presence of a NaKCl 

cotransporter in the tubules of Locusta may suggest that Cl enters 

the cells by another mechanism. This mechanism may be in the form 
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- -of Cl -Hco
3 

exchange, as proposed for Aedes rectal gland (Strange 

and Phillips, 1984), Cl-+Hco;-ATPase as proposed for Aplysia 

intestinal epithelium (Gerenscer and Lee, 1983) or some form of 

KCl transport such as the KCl symporter ofNecturusgallbladder and 

mammalian kidney diluting segment (Corcia and Armstrong, 1983; Greger, 

1985) or the K+-stimulated electrogenic Cl transport system of 

locust rectum (Hanrahan and Phillips, 1983). As mentioned in Chapter 3, 

the present or absence of a Cl--Hco; exchanger or a Cl-+Hco; -ATPase in the 

basal membrane of Locusta tubule cells cannot be resolved on the basis of 

results obtained from the present study. Whilst anion-ATPase has been 

demonstrated in the Malpighian tubules of Locusta (Anstee and 

Fathpour, 1979; 1981), the controversy as to whether the latter 

enzyme is associated with plasma membrane fractions (Anstee and 

Fathpour, 1981; Du Pont and Banting, 1981; Gerenscer and Lee, 1983) 

needs to be resolved before definite conclusions can be made about 

its role in ion transport in this tisspe. 

In Fig. 40 it-is proposed that Cl -~entry occurs by means of 

+ a K dependent mechanism. Evidence for this proposal comes from 

the observation that the depolarization of VA in high K+ saline 

was greatly reduced in the absence of Cl suggesting that when Cl 

was unavailable to enter the cell there was no short-circuiting 

of the extrusion of positive ions by the apical pump. Thus, under 

conditions in which Cl + was available, a basal K dependent Cl 

entry can be deduced from the fact that there is a greater depolarization 

of VA in high [K+] 0 saline due to increased short-circuiting of the 

~lectrogenic pump by Cl movement. The reduced level of depolarization 

of VB in high K+ saline (compared with the Type A response) observed 

in association with the Type B response, may be due to a short-

circuiting of VB by an increase in basal Cl permeability. However, 
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+ the latter is likely to be a process distinct from the K dependent 

Cl entry referred to earlier. Thus, it is suggested that upon 

. + application of hlgh K saline to cells which exhibit the Type B 

response, v
8 

began to depolarize in a typical Nernstian fashion 

until a point when an increase in Cl permeability occurred, 

hyperpolarizing VB. This is supported by the observation that the 

Type B hyperpolarization of V showed some Cl- dependence. However, 
B -

the fact that this hyperpolarization was not totally removed in 

Cl free conditions suggests that perhaps another anion may substitute, 

in part, for Cl when the latter is absent from high K+ saline. 

The paradox is that if the Type A depolarization of VA is due to 

Cl availability as a counterion, why, despite the apparent increase 

in Cl entry during the Type B response, VA did not depolarize further 

than in a Type A response. Indeed, VA hyperpolarized. This may 

be explained as follows. Initially, VA depolarized in high K+ saline 

presumably as a result of Cl 'shorting' the apical K+ pump. The 

; 

subsequent hyperpolarization of VA (a Type B response) may be accounted 

for by an increase in the activity of the apical electrogenic cation 

pump. This is supported by the observation that the Type B 

hyperpolarization of VA increased further when Cl was removed from 

the high K+ bathing medium; indicating reduced counterion availability 

+ to follow K out of the cell. 

The qu~stion arises as to how the basal and apical membrane 

permeability changes might be coupled in the tubules of Locusta. 

2+ Ca and cAMP, in the form of secondary messengers, are well known 

as conveyors of information, linking both surfaces of the cell, 

in many tissues (Berridge, 1980). Furthermore, as mentioned in 

2+ 
Chapter 3, Ca has been reported to regulate Cl permeability in 

many transporting epithelia (Berridge, 1980; Nauntofte and Poulsen, 
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1986) whilst cAMP is thought to activate apical K+ transport in 

the salivary glands of Calliphora (Berridge, 1980). In addition, 

intracellular cAMP has been reported to increase Cl permeability 

(albeit in the apical membrane) in the tubules of Rhodnius (Phillips, 

. 2+ 
1982) as well as leading to a mobilization of lntracellular Ca in 

a number of transporting epithelia (Berridge, 1980). In Fig. 40 

it is suggested that the stimulation of basal Cl permeability and 

the apical K+ pump which appear to be responsible for producing 

the Type B response may be due to changes in [Ca
2
+li· Thus, it may be 

+ that in addition to possessing a K dependent Cl entry step, increased 

2+ 
intracellular Ca , in cells which exhibit the Type B response, 

leads to a stimulation of a separate Cl permeability which results 

in a hyperpolarization of VB. 
2+ 

Increased [Ca li may also lead to an 

activation of the apical K+ pump, hyperpolarizing VA. Although 

the latter suggestion is speculative, a role for ca
2

+ in controlling 

the K+ pump in Calliphora salivary glands (but perhaps not directly) 

has been suggested by Berridge ·et al. (1975). It is further postulated 

in Fig. 40 that during the Type B response elevated [cAMP]i may increase 

basal Cl permeability and the activity of the apical pump,hyper-

polarizing V and V , but this 
B A -

may be an indirect effect through 

. . [ 2+] an lncrease ln Ca i· Evidence for the above speculation comes from the 

observation that,although the Type B response occurred naturally 

in only one fifth of cells,it could be artificially induced in all 

cells in high K+ saline by pretreatment in a variety of modified 

+ 2+ 
normal K salines, all of which may alter [Ca li (see later). In 

addition, the immediate hyperpolarization of VB and VA upon introduction 

of many of these modified normal K+ salines may also be due to a 

ca2+ stimulation of Cl entry and the activity of the apical K+ 

pump. 
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2+ 
A change in [Ca li may occur through an alteration in the 

+ 2+ 
functioning of a basal Na -ca exchanger (see Chapter 3). Such 

an exchanger is postulated in Fig. 40. 
+ 2+ 

Na -Ca exchanger, which 

+ is thought to be electrogenic with 3-SNa being exchanged for 

1Ca
2

+ (Mullins, 1979; Chase, 1984), has been proposed to extrude 

excess intracellular calcium in various transporting epithelia 

(Taylor and Windhager, 1979; Scoble et al., 1986). The fact that 

2+ f 1' h 1 . d ( b . h. b. . + 2+ Ca ree sa 1ne yperpo ar1ze V perhaps .Y 1n 1 1t1ng Na -Ca B . 
2+ 

exchange through a reduction in the amount of Ca extruded and 

exposing its electrogeni?ity) may provide some evidence for the 

presence of this mechanism in the tubules of Locusta. It may be 

+ that the hyperpolarization of VB in various modified, normal K 

+ 2+ 
salines in the present study was due to an inhibition of Na -ca 

h . . [ 2+1 h. . 1 -exc ange 1ncreas1ng Ca i w 1ch st1mu ated Cl entry. Indeed, 

+ Chase (1984) has shown in transporting epithelia, that when Na 

is raised, as after inhibition of the Na++K+ pump, the direction 

+ 2+ .· . 2+ 
of the Na -ca exchanger reversed~ sending Ca into the cell. 

+ Because an increase in cell Na has the additional effect of 

2+ 
reducing the affinity of the exchanger for Ca , the extrusion 

of calcium declines rapidly. Thus, the increase in [Na+li following 

treatment with monensin (Lichtshtein et al., 1979) and the non

specific inhibition of the Na++K+-ATPase (increasing [Na+)i) in 

furosemide- and verapamil-containing salines (Greger, 1985; Janis • 

and Scriabine, 1983) may increase [Ca
2
;li· This, in turn, may 

stimulate Cl entry, hyperpolarizing Vff. Similarly, the hyperpolarization 

of VA in monensin-, furosemide- and verapamil-containing salines 

may be due to an increase in [Ca
2
+Ji resulting in a stimulation of 

+ the activity of the K pump. In addition, the Type B response, for 

both VB and VA, found in high K+ saline after pretreatnent with 
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monensin-, furosemide- and verapamil-containing salines may be due to 

the increase in [Ca
2
+Ji stimulating Cl- entry and the activity of the 

. + 
ap~cal K pump respectively. The Type B response, induced in cells 

following pretreatment with K+ free-, ouabain- or SITS-containing 

saline may also be the result of a stimulation of a basal Cl entry 

+ 2+ 
and apical K pump, by increased intracellular Ca , due to a change 

. h + d' + . + ~n t e Na gra ~ent. A reduction in the Na gradient dur~ng K free 

and ouabain treatment {Livengood and Kusano, 1972; Giraldez, 1984) has 

+ 2+ 2+ 
been shown to inhibit Na -Ca exchange redueing Ca efflux (Cruz-Soto 

et al., 1984; Lorenzen et al., 1984). The nonspecific inhibitory action 

+ + of SITS on the Na +K -ATPase (Ehrenspeck and Brodsky, 1976) may lead to 

an increase in [Ca
2
+J, as mentioned earlier, due to a reduction in the 

+ 2+ 
functioning of the Na -Ca exchange (Chase, 1984). Finally, as discussed 

in Chapter 3, it is difficult to explain the action of Ba
2
+, in the 

+ present study, in terms of its reported inhibition of K channels 

(Nagel, 1980; Welsh, 1983; Hanrahan et al., 1986). Thus, the hyper-

! . . . 1 + 2+ . . d h . 2+ . po ar~zatlon, ln norma K ,Ba -contalnlng an t e ensulng Ba lnduced 

Type B response in high K+ saline, of both VB and V~, may be due to 

2+ 2+ 
Ba acting in a manner similar to Ca , as has been shown elsewhere 

(Bylerly and Hagiwara, 1982, Mandel and Murphy, 1984) to stimulate 

a basal Cl entry and the activity of the apical K+ pump. 

If an elevation in [ca
2
+li directly (or indirectly through the 

action of intracellular cAMP increasing [ca2+Ji) results in the 

stimulation of a basal Cl permeability and the apical K+ pump, 

+ then it seems odd that normal K , cAMP-containing saline (which 

. [ 2+] ) . may lncrease Ca i hyperpolarlzed VB and VA but did not result 

in a Type B response in high K+ saline containing cAMP. In contrast, 

+ 2+ 
normal K ,Ca free saline (which would not be expected to increase 

[ca
2
+Ji) hyperpolarized VB and VA and resulted in a Type B response 

;n h' h K+ C 2+ f 1' ~ lg , a ree sa lne. However, from the model in Fig. 40 

(in which it is suggested that intracellular cAMP controls K+ 

dependent Cl entry), it may be postulated that in normal K+,cAMP-
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containing saline a large elevation of [cAMP]i increases the action 

+ of the K dependent Cl entry. In addition, increased intracellular 

cAMP stimulates a basal Cl- permeability and the activity of the 

0 + ( 2+ ap1cal K pump hyperpolarizing VA) by increasing [Ca ]i through 

a mobilization from intracellular stores. + As the K dependent 

1 - 0 10 0 d b [ +] 2+ 0 C entry 1s 1m1te y K 0 , the Ca act1vated Cl permeability 

increase is dominant, hyperpolarizing VB. With the introduction 

of high K+ saline however, [K+] 0 is no longer limiting, resulting in 

+ K dependent Cl entry increasing in significance. Thus, even 

though a ca
2+ stimulated Cl- permeability and activity of the apical 

K+ pump occurs in high K+ saline, the increased K+ dependent Cl 

entry in high levels of intracellular cAMP results in enough 

transcellular Cl movement to mask the predicted hyperpolarization 

of VB and VA (the Type B response) producing a Type A response. 

As mentioned in Chapter 3, the unexpected Type B response found 

+ 2+ 2+ 
in high K ,Ca free saline after Ca free saline pretreatment 

cannot be explained on evidence currently available. 

. 2+ 
It may be asked how are increases in c".intracellular Ca and 

+ cAMP, which may lead to the cAMP stimulated K dependent Cl entry 

2+ 
(basal membrane) and the Ca stimulated Cl permeability (basal 

+ membrane) and K pump (apical membrane) seen in the proposed model 

for the tubule cells of Locusta, physiologically controlled? The 

hormonal control mechanism of fluid secretion may be the answer. 

As mentioned in the Introduction, it is postulated in the salivary 

glands of Calliphora that hormonal interaction at a basal membrane 

2+ 
receptor leads to an increase in intracellular Ca and cAMP and 

these secondary messengers are then responsible for greatly 

accelerating the secretion of ions and water (Prince and Berridge, 

1973; Berridge, 1980; Berridge and Heslop, 1982). In addition, 

0 2+ 
it is thought that 1ntracellular Ca is further increased due 
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to mobilization by another secondary messenger, inositol 1,4,5-

triphosphate, which is also generated by receptor activation 

(Berridge et al., 1984; Berridge, 1986). In the tubules 

of Locusta, Morgan and Mordue (1984) have suggestP.d that 

diuretic hormone may stimulate two distinct receptors on the basal 

2+ 
membrane, one leading to an increase in [Ca ]i, the other [cAMP]i. 

Although beyond the scope of the present study, it can be 

suggested that the proposed systems for hormonal control in the 

salivary glands of Calliphora (Berridge and Heslop, 1982) and the 

tubules of Locusta (Morgan and Mordue, 1984) may be applied to 

the conclusions of the present study. Thus, from the model in 

Fig. 40 it can be postulated that under unstimulated conditions 

+ a cAMP-controlled K dependent Cl entry step occurs in the basal 

membrane of Locusta tubules. Under these conditions, application 

of high K+ saline leads to the production of the Type A response 

+ for both VB and VA as cAMP controlled K dependent Cl entry is 

the dominant- mechanism· for anion entry. Howeve-r, stimulation of 

fluid secretion by diuretic hormone may necessitate an increase 

in the amount of anion crossing the cell, to act as a counterion 

for the increased movement of K+. Activation by diuretic hormone 

2+ 
may increase [cAMP] i and [Ca J i• through stimulation of a basal receptor. 

In addition, [ca2+Ji may be further increased through an intracellular 

mobilization by cAMP and/or inositol 1,4,5-triphosphate. These 

. . . 1 1 2+ 1ncreases 1n 1ntracel u ar cAMP and Ca may then lead to an 

increase in K+ dependent Cl entry (cAMP) and stimulation of a 

- . . ( 2+) . 1 + 2+) basal Cl permeab1l1ty Ca and the ap1ca K pump (Ca • Under 

these conditions, application of high K+ saline leads to the 

2+ 
production of the Type B response for both VB and VA as the Ca 

stimulated steps are dominant. Indeed, cells which exhibited the 
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naturally occurring Type B response in high K+ saline in the 

present study may, in fact, have been activated with diuretic 

hormone before the tubules were dissected out. This would have 

+ resulted in the electroneutral cAMP stimulated K dependent Cl 

entry being masked by the high [ca2+]i stimulated Cl- permeapility 

(hyperpolarizing v
8

) and activity of the K+ pump (hyperpolarizing 

VA). In addition, many of the modified salines used in the present 

study may have induced the diuretic hormone activated state, 

artificially exposing the ca2+ activation of the basal Cl- permeability 

. + and the ap~cal K pump. 

Finally, unlike the model to explain ion transport in the 

Malpighian tubules of Rhodnius (O'Donnell and Maddrell, 1984) the 

lack of strong evidence for a linked NaCl entry in Fig. 40 makes 

+ it necessary to explain how Na enters the tubule cell of Locusta. 

+ + 2+ 
Some Na will enter through the functioning of a Na -Ca exchange. 

In addition, although the basal membrane is relatively impermeable 

to N·a +, this cation may -ieak into the cell down its considerable 

electrical and concentration gradients (see Fig. 27, Chapter 3). 

Fig. 40 also shows how Na+ may exit the cell across the apical 

membrane. Thus, it is speculated that, as proposed for Rhodnius 

. + 
tubules by O'Donnell and Maddrell (1984), although ma~nly K 

extruding, the apical pump is unspecific enough to transport small 

+ amounts of Na out of the Locusta tubule cell. 

In conclusion, the results obtained in the present study, 

and incorporated in the hypothetical model (Fig. 40), indicate 

2+ 
that both Ca and cAMP play a central role in controlling ion 

movement across the basal and apical membranes of cells of the 

Malpighian tubules of Locusta. 
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APPENDIX 

Table 1 

Mean Rate of Fluid Secretion ± S.E.M. 

Agent Concentration Expressed in nl/min Expressed as % p n 

Rate 1 \'i Rate 2 
Original Rate 

(-Agent) (+Agent) 

Vanadate lmM 4.06 ± 0.79 1. 44 ± 0. 98 18.24 ± 6.06 < 0.001 15 

Ami lor ide lmM 3.55 ± 0.81 0.34 ± 0.08 12.26 ± 3.00 < 0. 001 14 

Bacl2 lmM 4.42 ± 0.42 1.62 ± 0.22 37.41 ± 3.11 < 0.001 34 

Furosemide lmM 2.26 ± 0.27 0.43 ± 0.06 22.63 ± 3.04 < 0.001 24 

Bumetanide lo-4 M 1.97 ± 0.40 0.76 ± 0.17 41.22 ± 5.96 < 0. 001 12 

Burne tan ide lo-5·M 1. 95 ± o. 36 1.64 ± 0.32 83.62 ± 5.63 NOT SIGNIFICANT 15 

NaSCN 10 mM 2.76 ± 0.63 0.91 ± 0.20 43.13 ± 6.31 < 0.001 15 

5-HT lmM 3.53 ± 1.07 3.28 ± 0.83 106.65 ± 9.32 NOT SIGNIFICANT 13 

The effect of various agents on fluid secretion by the Malpighian tubules of Locusta. p values were obtained 

by comparing Rate 1 and Rate 2 by paired 't' test. 
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