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An investigation of chloride ion levels in coarse colliery discards 
was undertaken because modem British Coal practice is to restore discard 
tips and lagoon embankments at an early stage in construction, commonly 
before much leaching has taken place. High chloride ion concentrations 
result in p.hysiolcgical drotJMlt and the failure of vegetatioo cover. >--

------Sites at two collieries were studied using grid and traverse (depth) 
sampling procedures. Results indicate downward leaching of chloride ions 
into the embankment during Winter months and an increase in chloride levels 
towards the surface of the discard during dry, summer months. Salt r 

hotspots occur on embankment surfaces during Summer months. These high 
chloride/sulphate concentrations represent the desiccation of seepages, 
most of which are related to embankment coostructian inadequacies, rather 
than to lagoons incorporated into the structure. 

Chlorides within the discard originate from formation waters 
intimately associated with Coal Measures sequences. In the eastern 
coalfields in particular, high chloride ioo concentrations in the coal and 
waste rock from deep underground excavatioos are not removed by the coal 
washing processes. Consequently, they are retained in fresh colliery 
discards. 

Seasonal movements of chloride ions are associated with an increase in 
(negative) suction pressures within the near-surface layers of a colliery 
embankment. Suction pressures were monitored experiemtnally in two 
experimental tips and in the field at a third colliery site (Bilsthorpe 
Colliery). Cb an annual basis, suction pressures become operative early in 
April, reversing to residual negative or small positive pore pressures in 
mid-September. 

'!he leaching of chlorides from discard embankments 
the drainage characteristics of the materials and in 
leaching to low levels is shown to take 5 to 7 years. 
decrease significantly. 

is a function of 
clayey discards 
Hotspots do not 

The results of the present investigation can be applied to curent 
embankment restoration schemes. In particular, the sowing of an embankment 
during the Autumn window, when electrolytes move downwards into the 
structure, would enable young vegetation to become established before being 
subjected to the higher Summer chloride coocentrations. Hotspots require 
individual field drainage treatment~ 
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CHAPim 1 

1.1 Introductim am IBckgrourKI 

The mining of coal is an essential component in the economy of many 

countries. Current annual production from the British coal industry is 

approximately 100 Mt of bituminous coal, around 4.5% of the world total 

(Ward, 1984). With modem mechanised mining techniques, it is inevitable 

that a proportion of roof, floor or intra-seam discard is produced in 

association with the coal (run of mine, R.O.M.). A detailed study of the 

sources and quantity of colliery discard produced from coal mining 

activities, made by British Coal (formerly the National Coal Board) in 

1980, revealed that for the period 1979/80 an average of 67 Mt of discard 

was produced in association with 109 Mt of saleable coal (Table 1.1). Of 

the discard, only 3 Mt were retained tmderground (Blelloch, 1983). 

Year Coal Waste 
(Mt) (Mt) 

1920 230 10 

1950 205 10-15 

1979/80 109 67 

'!able 1.1 Coal am waste Productim 1920-1980 

Virtually all British coal produced is from Carboniferous strata. 

Other deposits include the Oligocene lignites of Bovey Tracey (Devonshire) 

and Loch Neagh (Northern Ireland), the Jurassic coals .of Brora (Sutherland) 

and North Yorkshire. However, apart from Loch Neagh, these are of little 

economic signifance. Ninety-five per cent of production is currently from 

the Westphalian beds, the remainder being produced from the Namurian 
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(Limestone Coal Group and Upper Limestone Group) of Scotland and in the 

Dinantian (Middle Limestone Group) of Northumberland. 

The thickness of the coal-bearing strata varies greatly. The 

Westphalian A-C series exceed 1500m in parts of Lancashire and North 

Staffordshire, but thin away completely towards the South, that is, against 

the Wales-Brabant Island. The coal-bearing Carboniferous succession is 

essentially a cyclic depositional sequence of mudstones, silts, sands, 

seatearths and organic layers. These cyclothems show considerable 

lithological variation throughout the coalfields of the United Kingdom. 

'lhe organic, or coal, beds are numerous in the sequences, but seldom exceed 

five per cent of the total thiclmess of sediments (Ward, 1984 ). 

Most colliery discard produced during coal cutting operations is 

brought to the surface along with the coal as R.O.M. This is then 

generally pre-crushed to a top size of between 76mm and 203mm, before 

entering the coal preparation plant, where it is screened, washed and 

sorted into several size fractions, before the coal and discard are 

separated. Two categories of discard are produced: coarse discard and fine 

discard. 

Coarse discard has a size distribution greater than 0.5mm. It is 

relatively free draining and may be dewatered in the coal preparation 

plant, or by gravity drainage on the tip. 'Ihe coarse discard is relatively 

easy to handle and may be transported, placed and compacted at disposal 

sites as required. 

'Ihe second category, fine discard, is carried in suspension from the 

washing process and can be classified into two types: slurry and tailings. 

Slurry is the fine material remaining in suspension, usually with a high 

coal content. Tailings are the fine reject from the froth flotation 
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process, now used in most preparation plants for cleaning the coal, and 

formed predominantly of argillaceous rock particles below 0.5mm in size 

(Taylor, 1984). Variations on the above processes include pressure 

filtration of tailings to prcduce tailings cake, which is then disposed of 

with coarse discard, super-thickening and other dewatering processes to 

reduce the volume of slurry and tailings, for example, some cement is added 

to tailings in South Wales. 

In Great Britain the greatest proportion of coarse discard is disposed 

of by tipping above ground, usually within a few kilometres of the colliery 

(Glover, 1978). Coarse discard may also be used to construct lagoons, or 

confinement darns within the tip structure, to contain the fine discards. A 

very small proportion of coarse discard (possibly 7-8 Mt a year) may be 

used for engineering purposes, such as the construction of road and rail 

embankments and as a landfill material (Turnbull, 1983). 

The principal rock types found in tips are the argillaceous rocks 

associated with the coal seams. 'Ihese are predominantly roof materials of 

mudstone, shale, siltstone and small quantities of sandstone, and floor 

materials, including seatearths varying from plastic fireclay to 

carbonaceous mudstones and occasionally siliceous sandstones. Tips 

containing a high percentage of plastic seatearths (>50%) appear fine

grained and clayey and are commonly light grey in colour. Tips with a 

high proportion of roof materials have a darker appearance. 

Some 50% of fine discards (slurry and tailings) are pumped into 

lagoons, where the solids begin to settle. 'Ihe resultant supernatant water 

may be pumped from the lagoon and recycled to the preparation plant, or 

simply drained from the lagoon surfce and discharged via the site drainage. 

Lagoon sediments may become highly stratified with alternate layers of 
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coarse-grained coal, silt and clay particles (Taylor, 1984). 

Initially these ·deposits are of high porosity. Consolidation with 

water expulsion will occur over time and a surface crust develops due to 

desiccation. In some cases this will ultimately be overtipped with a cover 

of coarse discard and the whole lagoon structure will become an integral 

part of the tip. At any one time, colliery tip complexes may contain 

lagoons at several stages of development: lagoons being constructed, active 

lagoons, consolidat~ lagoons and old overtipped lagoons. 

As well as the coarse and fine discards, some boulder-sized rock 

debris may be found in tips, originating from underground development and 

drivage work. These materials are customarily taken from the mine 

separately. 

Before the Aberfan flowslide disaster in 1966, little was known about 

the physical, chemical and geotechnical properties of colliery discards, 

and little consideration was given to the construction of spoil tips, 

embankments and lagoop structures, or the long-term geotechnical behaviour 

of such structures. ,However, following the disaster, the coal industry 

commenced to look very carefully at the properties of colliery discards and 

the geotechnical implications of surface emplacement. As a consequence, 

British Coal, in 1970, produced a Technical Handbook providing design 

guidelines and some engineering properties used in the construction of 

spoil heaps and lagoons, in accordance with the Mines and Quarries (Tips) 

Act of 1969. Much research into the nature of colliery discards was 

initiated at this tiffie, culminating in the publication by British Coal of 

the Composition and Engineering Properties of British Colliery Discards 

(Taylor, 1984). These new guidelines and detailed knowledge of the nature 

of colliery discards have resulted in a new generation of post-Aberfan 
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tips. Modem tips are now of low profile and are constructed in layers, or 

lifts, of up to 5m in thickness, to ensure stability and preclude 

spontaneous combustion. Safe tipping is now of prime consideration. 

A composite, 'overtipped', lagoon structure (Fig. 1.1) has been 

developed in the last decade and is likely to become the common form of 

disposal structure in British Coal Areas which prOO.uce high quanti ties of 

fine discard. The lagoon banks are the flanks of the final tip profile, 

which is completed by overtipping the fine discards in ·thin layers. In 

this way a minimum tipping space is effectively utilised. The Maltby 

embankment (Chapter 3, Fig. 3.2a) which forms a major part of the present 

investigation is essentially a disposal structure of this type. 

1.2 Infl.uence of' I®slatim m .Restaratim 

'Ihe tipping of large volumes of colliery waste can have a considerable 

long-term impact on the landscape and on the existing use of the land. A 

survey of derelict land by the Department of the Environment (1984) 

revealed that 45,000 ha, or 0.3% of the total land in England was classed 

as derelict: 48% of that total consists of spoil tips, excavations and old 

pits. Spoil tips alone account for 13,340 ha and altogether 20,130 ha have 

resulted from coal mining operations. :Because mining has attracted other 

industries, this dereliction is now situated in areas of high population 

(Bradshaw and Chadwick, 1980). 

Environmental considerations have become important issues in land 

reclamation schemes and new planning applications have to satisfY strict 

conditions, especially when associated with new mines and discard disposal. 

Until 1969, when the Mines and Quarries (Tips) Act came into 

operation, followed in 1971 by the Town and County Planning Act, no guide-
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Figure 1.1 Composite disposal structure waste heap 
incorporating lagoon (Arter Taylor, 1984). 



lines or regulations were set out for the siting, construction and general 

safety of spoil tips. Land used for tipping was not subject to any 

provisions for restoration or aftercare treatment. Before 1969, discard 

was generally transported to tips by aerial ropeways, conveyors and 

railways. Tipping took place at as high a point as possible, material 

being allowed to accumulate below in a loose state. Spoil tips tended to 

be high, steep sided,, loose and conical. The restoration of the tips was 

not the responsibility of British Coal, but of the Local ·Authority. After 

the 1971 Act, however, the County Planning Authority, which controls 

planning permission, may require submission of a scheme for tipping waste 

which facilitates sub~equent landscaping and restoration. 

The Town and Country Planning (Minerals) Act, 1981 makes some 

important changes to the Town and Country Planning Act 1971, and is an 

extremely important' piece of environmental legislation. It includes 

provision for the planning authorities to impose restoration and after-care 

conditions on applications for planning permission, stating; "Where 

planning permission for development consisting of the winning and working 

of minerals is granted, subject to a restoration condition, it may also be 

granted subject to any such after-care conditions, as the Mineral Planning 

Authority think fit.". After-care conditions are steps to bring land to the 

required standard for. use either for agriculture, forestry or amenity. The 

1981 Act also covers sites where mineral workings have ceased permanently, 

have been temporarily suspended, or where tips are to be reworked 

(Widdowson, 1983). 

Other recent legislation affects the use of land. The Local 

Government Planning and Land Act 1980 makes provision for the distribution 

of planning functions between Author! ties. 'Ihe Wildlife and Cot.mtryside 
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Act 1981 includes provisions for areas of special scientific interest and 

on public rights of w;zy (Widdowson, 1983). The Derelict Land Act 1982 re

enacted legislation dealing with dereliction of all kinds, including 

coalfield dereliction and provides for investment by the Government into a 

national reclamation programme to be substantially increased. It also 

encourages joint schemes by local authorities and private developers for 

reclaiming land (Sampey, 1983). 

The disposal of waste is now a significant environmental factor in the 

planning, development and operation of collieries. The Government White 

Paper (1981) on 'Coal and the Environment' concluded that local disposal of 

waste will remain predominant despite the application, where appropriate, 

of alternative disposal methods. 

The above measures are intended to reduce the enviranrnental impact of 

modern tipping sites, by the increased use of progressive restoration 

techniques, and by improvements in tip design. These will maximise the 

volume of spoil that can be tipped an a minimum acreage of land, consistent 

with landscaping and with contours which would allow the restored tip to 

blend into the surrounding landscape. Under the Town and Country Planning 

(Minerals) Act 1981, the subsequent responsibility and management of 

restored land will remain with British Coal, working to an agreed 5 year 

after-care programme with the local authority and the Ministry of 

Agriculture, Fisheries and Food (MAFF). The farmer will be acting as 

British Coal's agent or contractor in carrying out agricultural production, 

to ensure tipped land is restored to productive and beneficial use 

(Blelloch, 1983). 

Planning applications for major industrial development, including new 

mine planning, are now subjected to a thorough examination of their 
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environmental implications. Environmental assessment of new mining 

development tries to identify the impact the new mine will have on the 

environment. These include visual impact, landscape quality before and 

after, agricultural loss, water pollution, dust generation, subsidence, 

safety and waste disposal (Allett, 1973). 

British Coal has been involved in two major planning applications for 

new mines where environmental implications have been an important section 

of the application. These are the Selby Coalfield and the North East 

Leicestershire Prospect (Vale of Belvoir). These applications have 

involved three main stages. The first stage is a feasibility study, which 

is a commercial assessment primarily concerned with engineering, economic 

and environmental aspects. The second stage is a refinement of those plans 

and the third stage includes a Public Inquiry, with a final decision by the 

Secretary of State for the Environment. 

The disposal of colliery discard is obviously one of the more 

important environmental issues connected with new mine development. 

Restoration and after-care conditions play a large part in any final 

successful planning application. The Vale of Belvoir Coalfield Inquiry 

Report, 1981, outlined detailed plans for the process of restoration and 

aftercare. These included the three tips being designed so that the 

maximum amount of spod.l could be placed on the minimum land area. Details 

of top soil utilization, to enable successful progressive restoration to 

full agricultural production, had to be supplied together with a plan for 

future integration with the existing land use and landscape pattern. 

Nevertheless, all tips failed to meet either the inspector's yard-stick 

(Hose and saltby), or the Secretary of State's (Asfordby). 'Ihe latter was 

turned down on agricultural land merit, being opposed by MAFF. The tip 

9 



design which finally obtained permission at Asfordby was much more of a 

visual environmental intrusion, being higher and steeper than the one 

originally prcposed. However, it did not sterilise agricultural land of 

reasooable local quality. 

1.3 M1neralcgy arrl (hmistry of Coll1ery D1scard arrl Related Waters 

The reclamation of colliery tips for agricultural or recreational 

purposes is now common in all coal mining areas in Britain. However, 

vegetation establishment in some places is unsuccessful or impeded by the 

physical and chemical properties of the colliery discard (Kimber et al., 

1978). After tipping, colliery discard is regarded as a highly unstable 

environment both physically and chemically (IX>wn, 1974). 

Research into the mineralcgical and chemical prcperties of colliery 

discard has been carried out to investigate factors which might promote the 

breakdown and degradation of the discard. Interrelationships between the 

chemistry and mineralogy and the physical and mechanical properties of 

discards have been established over the past two decades (Taylor, 1984) 

(Figs. l.2a, 1.2b). 

'1bree distinct groups of minerals were reccgnised as being associated 

with different engineering properties of the coarse discard. The three 

were classified as detrital, noo-detri tal and coal group minerals. 

'Ihe detrital or transported minerals in discards are derived from land 

sources during the Carboniferous. This group includes quartz, clay 

minerals and titania. The clay mineral group is associated with bulk 

density and natural water content, correlating with the two water 

components of this group, H2o+. 
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Figure 1.2 
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The non-detrital group represents the carbonate minerals, primarily 

calcite, dolomite and siderite. 

Coal group minerals comprise mainly organic carbon and total sulphur. 

'lhe total sulphur represents organic sulphur and pyrite minerals found in 

association with coal. A strong negative correlation has been shown 

between bulk density and coal content and a positive one between natural 

water content and coal. 

Tables 1.2a and 1.2b show the average mineralogy of coarse and fine 

discards, (after Taylor, 1984 ). The discard fragments are predominantly 

argillaceous, dominated by the clay minerals illite, expandable mixed-layer 

clay, kaolinite and trace amounts of chlorite. Quartz is an important 

detrital mineral and smaller amounts of nan-detrital carbonates and pyrite 

are also found. 'lhe national average coal content of tips is 11%, although 

some very old tips contain large quantities of coal, an average of 21% 

organic carbon being reported in three old County Durham tips. Lagoon 

sediments have a higher average coal content, 47%, due to periodic 

discharges (overflows, plant flushings etc.) from the preparation plant. 

There is a distinct regional variation in the mineralogy of discards, 

especially in the clay mineral groups (Fig. 1.3). Kaolinite, a 

geotechnically more inert clay mineral, is dominant in the North East and 

Scottish Areas, whilst expandable mixed-layer clays, which have a greater 

tendency to promote breakdown and weathering of discard, are common in the 

Yorkshire coalfield and in the Doncaster British Coal Area in p~icular 

(Taylor and Spears, 1970). Coarse discard from the South Wales Area has a 

higher quartz content and the percentage of clay minerals is lower. The 

similar! ty in mineralogical properties of Scottish and North East Area 

discards is believed by Taylor (1984) to be a reason for their similar 
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COARSE DISCARD (74 SAMPLES) PINE DISCARD (54 SAMPLES) 

Mean Std.Dev. Max. Min. Mean Std. Dev. Max. Min. 

S10 46.23 7.77 61.42 23.86 32.68 8.90 46.19 10.74 

AlO 19.74 2.74 26.24 13.92 16 . 42 5.49 29.91 5.45 

Pe 0 5.39 2.69 19.30 2.57 4.86 1.80 8.70 2.14 

MnO 0.10 0.01 0.89 0.01 ND NO ND ND 

MgO 1.01 0.32 0.30 1. 70 0.99 0.38 2.38 0.05 

CaO 0.74 0.71 4.53 0.17 2.05 1.59 7.21 0.19 

Na 0 0.41 0.19 3.50 0.01 0.31 0.13 0.82 0.10 

1-' K 0 3.40 0.55 4.56 1. 76 2.83 0.88 4.40 0.74 w 

T10 0.88 0.10 1.11 0.56 0.78 0.13 1.06 0.46 

s 0.96 0.72 3.67 0.05 2.89 1. 54 7.85 0.44 

p 0 0.18 0.07 2.10 0.05 0 .10 0.03 0.18 0.03 

co 1.81 1.60 9.00 0.00 NO NO ND NO 

c 13.30 8.16 40.48 0.01 NO NO NO NO 

K 0 5.04 1. 77 10.29 1.86 NO NO NO NO 

H 0 1.15 0.27 1.83 0.74 ND NO ND NO 

Total 100.34 63 . 91 

ND . Not Determined 

Table 1.2a). Average major geochemistry or discards (weight percent) 
Arter Taylor, 1985. 



Quartz 

Illite clay~ Mixed-layer 
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Chlorite ) 

Carbonates (a) 

Pyrite 

clay 

minerals 

Coarse Discards 

74 Samples 

17.5 

31.5 
26.0 

10.5 

0.5 

1.0 

- (b) 

Organic carbon (dom.coal) 13.0 

Total 100.0 

Fine Discards 

47 Samples 

(72 Determinations) 

6.0 

~ 34.0 

8.5 

(b) 

2.0 

2.0 

47.4 

100.0 

(a) Dominately siderite and some ankerite in tips, whereas 
ferroan dolomite (ankerite) in some fine discards. 

(b) Small quantities in some samples. 

Note: In coarse and fine discards, trace amounts of sulphates 
feldspar, rutile and phosphate total less than 2%. 

Table 1.2(b) Average (Proximate) Mineralogy of discards. 
After Taylor, 1985 . 
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dra.:ined shear strength, which is of the same order as discard from the more 

deeply buried (high rank) South Wales coalfield. M:ineralogy and rank would 

seem to be important factors in determining shear strength differences in 

discards from British· coalfields. 

The chemical composition of colliery discard is also highly variable, 

both at individual tip sites and at a regional level (Table 1.2). This 

depends upon the mineralogical nature of the discard, treatment, 

preparation and disposal methods, and climatic conditions (Williamson, 

1982). 

Williamson concluded that some of the major chemical problems 

encountered by vegetation an colliery discard arise because of extremes in 

pH, an excess of toxic metals and salts, and a lack of essential.nutrients. 

Water and oxygen will affect the surface layers of a spoil tip first, 

:initiating chemical and physical breakdown of the discard (Bradshaw, 1980). 

A major reclamation problem of many spoil tips is that of acid generation 

from weathering of sulphides, particularly pyrite. Pyrite oxidation occurs 

mainly in the surface layers where moisture and oxygen are present (Fig. 

1.4). As a result of hydrolysis and oxidation, assisted by ferrous-ion 

oxidising bacteria such as Thiobacillus ferroxidans, pyritic wastes 

disposed of at a neutral or alkaline pH can weather with:in a few months or 

years to produce extreme acidity. 

Various other fa:ctors influence the rate of production of acid. The 

natural carbonate content of the material, particularly ankerite and 

siderite, may neutralise some of the acidity produced on the tip. This 

process produces secondary minerals such as gypsum and jarosite. However, 

this natural neutralising potential is relatively small and free hydrogen 

ions accumulate, resulting in a drop in pH (Bradshaw and Chadwick, 1980). 
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The size, morphology and type of pyrite present in the discard also 

influences acid production (Fig. 1.4 ). The smaller the grain size, the 

more reactive the pyrite; grams and .f'ramboids less than 0.25um oxidising 

readily, whilst those greater than 50pm are fairly stable. 'llle morphology 

of pyrite is also related to reactivity. 'llle principle iron sulphides in 

order of reactivity are pyrrhotite, FenSn+l > marcasite, Fes2 >pyrite, 

Fes2 (Williamson et al., 1982). Samples with a relatively high pyritic 

sulphur content can produce acid at the same rate as samples with a much 

lower pyritic content (Fig. 1.5, after Bradshaw and Chadwick). 

As the pH of colliery discard falls, toxicity to plants increases as 

potentially toxic elements, such as iron, aluminium and manganese, are 

mobilised. 'llle availability of some essential plant nutrients, calcium and 

phosphorous for example, decreases as these elements form insoluble 

canpounds, inhibiting cation exchange capacity. 

Freshly deposited discard is initially alkaline or neutral and may 

display salinity problems, due to a high content of water soluble salts, 

which may accumulate in the surface layers of the discard. These 

concentrations result from the presence of indigenous salts in the discard 

material, interactions between the products of pyrite weathering and 

carbonates in the discard, and ground water associated with fresh discard. 

Natural levels of the salts, mostly calcium, magnesium and scx:Uum sulphates 

and chlorides, are enhanced by the recycling of water to the coal 

preparation plant from tailings and slurry lagoons. Concentration also 

occurs around areas of natural drainage or seepages in lagoon and spoil 

tip embankments. 

Little is known of the effects of salinity on the grass mixtures and 

tree species used in colliery discard reclamation schemes. However, some 
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studies have been cooducted on the indigenous vegetation of saline soils 

and those of arid regions and also on crop plants such as wheat, barley, 

sugar beet and some vegetables. Salinity affects vegetation in several 

ways (York University publication, 1975): 

1) The osmotic effect of high concentrations of soluble salts which may 

restrict the uptake of water by plants. This is known as 

'physiolcgical drought' . 

2) Physiological disturbance within the plant which is caused by 

variations in the relative proportions, rather than the absolute 

amounts, of specific elements in the soil solution surrounding the 

plant roots. 

3) The specific toxic effects of high concentrations of individual ele

ments such as magnesium, sooium and chloride. 

~inion is divided as to the precise level at which the total soluble 

salt content of soil is likely to cause adverse effects an vegetation. The 

toxicity of different salts varies, for example, magnesium salts are more 

'toxic' than sodium salts. There is also considerable variation between 

species in their ability to tolerate saline conditions and calculation of a 

relative salt toxicity index of plants is difficult. 

The geochemistry of waters in the Coal Measures Strata has an 

important influence an the chemical and physical nature of both coarse and 

fine discard. Spears et al. (1971) concluded that the water chemistry of 

tips and lagoons was controlled mainly by the formation water released by 

the rock and (waste) coal components, with some dilution by recent meteoric 

water. 

Saline ground waters in Garbaniferous Strata have been studied from 

oil boreholes in the East Midlands (IOwning and Howitt 1969), from under-
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ground workings in Coal Measures Strata in Britain (Chamberlain and Glover, 

1969) and from other European coalfields (Palys, 1971). 

Fig. 1.6 indicates chloride ion trends in Coal Measures Strata waters. 

Data were obtained from various sources including British Coal, (Fellows, 

1979). It will be observed that there is a concentration gradient towards 

the Eastern coalfields. Levels are not consistent within any one British 

Coal Area, or with depth at any one mine. The South Wales coalfield is 

almost free from saline waters. 

In the past, cumulative problems have arisen from chloride levels, 

which at their minimum would satisfy World Health Organisation water supply 

standards (<200 mg/1). In terms of cumulative problems, the saline 

contamination of 27km2 of chalk aquifer around Tilmanstone Colliery, Kent, 

is illustrative. Contamination resulted from direct minewater discharge 

with a chloride concentration ranging from 200-5000 mg/1 (as Cl). 

According to Headworth et al. (1980) only about 15% of the estimated 

318,000 tannes of chloride discharged has so far been dissipated by stream 

flows from the aquifer. Chloride treatment is not a practical proposition, 

other than by dilution in rivers or discharge into the sea. In some parts 

of the country, it is necessary to pipe saline discharges over distances of 

about 20km (see Vale of Belvoir Coalfield Inquiry Report, 1981). 

L4 Aims of the Project 

The aim of this research project is to gain an understanding of 

contained electrolyte concentrations, particularly chloride, in the surface. 

layers of spoil tips whose constituents have been derived from coalmining 

operations. An assessment is made of their importance in terms of spoil 

tip morphology and restoration. 
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In earlier work (for example, Bradshaw and Chadwick, 1980), it was 

generally assumed that, when present, the chloride ion would be quickly 

leached from discard, in view of its high solubility. Previous to the last 

decade, however, the restoration of tips was not considered important, so 

any tip reclamation schemes generally concerned very old tips from which 

the chloride ion had been leached. Modern practice, required to fulfill 

the conditions of more recent legislation reviewed above, is to restore 

discard tips and lagoon embankments at an early stage of construction. 

The presence of high concentrations of electrolytes is likely to be 

detrimental to plant growth, so monitoring their presence and 'behaviour' 

is an important step in the planning of reclamation schemes for saline 

discards. 

Investigations into the seasonal movement of electrolytes in the 

surface layers of coarse discard were initiated. These included the 

following: 

1) How best to sample spoil tips for chloride movement. 

2) The monitoring of chloride variations throughout the year. 

3) The type of waste disposal structure in relation to chloride levels. 

4) The nature and origin of saline seepages (hotspots) in embankments. 

5) The physical and chemical nature of colliery discard associated with 

the salinity. 

6) Variations in salinity levels in discard tips in different coalfields. 

Mechanisms governing the movement of electrolytes in relation to soil 

suction variations were also studied. Soil moisture deficit in the surface 

layers is a response to evaporation of moisture from a tip. The moisture 

that remains in the .surface layers develops a (negative) suction pressure 
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which equilibrates by drawing water (and salts) from deeper levels, or in 

response to precipitation. This phenomenon was first monitored in two 

experimental spoil embankments. Equipment was then installed in a lagoon 

embankment at a Nottinghamshire. colliery and comparative results obtained. 

With these results, tcgether with the results from chemical and physical 

investigations into the nature of saline discard, it is hoped to gain a 

better understanding of electrolyte release, relative concentrations and 

movement 1n colliery discards. 

'Ihis information will also be used to produce guidelines, or a code of 

practice, for the reclamation and subsequent after-care of saline discards. 
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2.1 Introduction 

The origin of chlorides in the Coal Measures rocks, which were laid 

down mainly under non-marine conditions, is still a matter of debate. 'Ihe 

chemistry of the brines must reflect their evolution within the sediments, 

from their initial incorporation and through diagenetic reactions with 

their host rocks. 

Stratal waters have previously been rec®Iised as originating from one 

or more of a number of possible sources. These include sea water, connate 

water (fossil sea water), present day meteoric water, fossil meteoric 

water, or water of igneous derivation in some special circumstances. 

The evolution of subsurface saline waters is of interest for several 

reasons. They are associated with epigenetic metalliferous ore deposits in 

sediments, such as the Pennine Pb-Zn-Ba-F mineralisation. In this context, 

identification of the origin of the brine can make a large contribution to 

understanding the genesis of the deposit. Saline brines are also 

associated with petroleum deposits. Brines are further important in the 

identification of water emissions into mine workings, whether these be 

metalliferous mines or coal mines. 

Research in these fields has led to various theories for the origins 

of such brines and the mechanisms by which they might evolve into their 

present day compositions. 

Previous work by IOwning and Howitt (1979), Edmunds (1975), Billings 

et al. (1969) and Bredehoeft (1963) has concluded that the saline waters in 

the Coal Measures originated from the diagenesis of original Carboniferous 
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marine or brackish pore water, that is from connate water and/or the 

incursion (flushing) of marine water into the Carboniferous aquifer at a 

later date. Downing and Howitt (1979) outlined the processes which may 

have influenced the composition of saline stratal water found in 

Carboniferous rocks of the East Midlands at the present time. The 

geological succession in the area comprises the Carboniferous Limestone 

sequence, deposited in a marine environment, overlain by Millstone Grit and 

Coal Measures sequences, the latter being in cyclic series, deposited in 

marine, brackish, to fresh water environments. Tile Namurian Millstone Grit 

is believed to have been deposited largely in a deltaic environment with 

occasional brief marine incursions. 'Ihese incursions may have resulted in 

the Millstone Grit being flushed with more saline waters from time to time. 

During the Hercyn1an orogeny uplift, and erosion may have resulted in 

meteoric waters flushing Coal Measures rocks. Upper Permian marine 

transgressions could ~gain have introduced saline water into the Coal 

Measures rocks. In the East Midlands, ingress of meteoric water could have 

occurred during post-Cretaceous uplift. Thus we can see that there may 

have been a very complex history of pore water compositional changes 

through geological time since deposition of the Carboniferous. 

However, recent stable isotopic studies of saline subsurface waters 

from Permian and Coal Measures formations in North East England by Sheppard 

and Langley (1985) indicate the dominance of water of meteoric origin. 

Several of the sampled brines conformed to meteoric waters of recent 

origin, but fossil meteoric water, including probable Pleistocene water, 

was dominant in others. The/ D and J' lBo data produced by Sheppard and 

Langley indicate that the brines cannot simply be derived from connate 

water by dilution with: the recent or fossil meteoric waters. 'Ihey conclude 
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that the chemistry of the brines must largely be controlled by exchange 

and/or filtration processes with the minerals of the host rocks. 

Comparisons of the isotopic characteristics of oil field brines and 

present day sea water by Chilingarian and Ricke (1969) also suggest that 

the concentration of inorganic salts in the brines was due to compaction 

and ion filtration processes rather than to evaporation of trapped inter

stitial solutions. 

Processes which may alter the chemistry of buried waters thus include 

the physical process of compaction and chemical processes involving 

reactions between rock minerals, organic matter and the interstitial 

solutions. These chemical processes include filtration through ch-rged net 

clay membranes, adsorption, base exchange and biochemical processes. 

Anion exclusion in clays and sediments has been proposed as a possible 

concentration mechanism for subsurface brines - see for example, White 

(1965), Hanshaw and Coplen (1973). 

Clay particles in water develop a double layer structure consisting of 

a strongly bonded (Stern layer) made up largely of polar water and some 

cations, and a more diffuse part (Gouy layer) in which the ions are freer 

to move about (Drever, 1982). The diagrammatic model given by Taylor 

(1985) illustrates the relationship of the double layer to a negatively 

charged clay particle and to the free pore water in the larger capillaries 

(Fig. 2.1). 

If the porosity of a sediment is high then the free pore water and 

dissolved salts will move through the larger pores. However, as 

consolidation and compaction occur negatively charged (clay) particles 

become so closely packed that the anions in solution are repelled and 

cannot escape. The double layer space between any two adjacent clay 
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particles can be regarded as a 'clay membrane'. The adsorbed cations can 

continue to move through the 'membrane' and between adjacent exchange sites 

to some extent but this leads to an electrical imbalance. Uncharged water 

molecules will continue to pass through the membrane towards areas of lower 

water pressure, that is usually towards the upper surface of the sediment. 

Consequently, there will be an increasing salt content on the 'input' side 

of the clay membrane filtration system. Long term water movements between 

permeable formations and less permeable strata will occur across semi-

permeable membranes and brine concentrations will occur. 

Retardation of cations and anions by geological membranes has been 

studies by Kharaka and Berry (1973). In laboratory experiments using sea 

water and chloride solutions flowing across a filtration cell of clay, the 

following retardation 'selectivity sequences were obtained: 

1) cations 

least 
retarded 

Li<Na<NH3<K<Rb<Cs 

2) divalent cations 

least 
retarded 

~<Ga<Sr<Ba 

most 
retarded 

most 
retarded 

monovalent cations are retarded with respect to divalent cations. 

3) anions 

least 
retarded 

most 
retarded 

These sequences vary considerably with temperature and pressure, for 

example, at increased temperatures the passage of B, HC03, I and NH3 are 

greatly increased. 

Several other processes may affect the chemistry of buried waters. 
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'Ihey are, ai'ter Hitchon et al. (1971): 

l. Solution of bali te causing an increase in the proportions of sodium 

and chloride. (Increased salinities in formation waters may be 

related to the occurrence of known evaporite deposits as mentioned 

previously) . 

2. The dolomitization process may result in high calcium and low 

magnesium concentrations in formation waters, relative to sea water. 

3. Bacterial sulphate reduction and anhydrite precipitation are important 

in removing sulphate from solutions. 

4. Increased temperatures associated with burial, causing over pressuring 

and the conversion of smectite-type clay minerals to illite. This 

would be associated with an increased fixation of potassium, but 

addition of magnesium, calcium and same sodium to pore waters. 

The water quality patterns from different coalfields exhibit 

remarkably similar characteristics, although there are some notable 

exceptions, such as the South Wales coalfield, which will be discussed 

later. Different water sources within a single mine may have extremely 

variable chemistries, as have waters from profiles taken through sequences 

of coal and associated strata. These chemical differences are in part a 

reflection of differences in the mineralogy and grain size and in the 

porosities and pore size distribution of the host rocks. Sandstones have 

higher porosities and lower relative concentrations of salts than coals. 

Mudstones have intennediate values ( Gasfwell et al., 1984). 

As saline brines move up through Coal Measures sequences, they may 

pass through one or more clay layers. Water in the higher beds will thus 

be less mineralised because of filtration through charged net clay 

membranes. This could occur over depths of many metres, or on a much 
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smaller scale in individual coal/shale seams. These effects will give rise 

to discharges with differing salinities in any one mine. 

2. 2 Strat1graphical am Structural <Xntrols of the Regimal Distributim 
of Clllaride lam 1n British Cailf1eld Strata waters 

Saline groundwaters in Carbcniferous Strata have been studied from oil 

boreholes in the East Midlands (!:Owning and Howitt, 1969), from underground 

workings in the Coal Measures Strata in Britain (Chamberlain and Glover, 

1976), and from other European Coalfields (Palys, 1971). Fig. 1.6 

incorporates data from a number of sources and shows chloride ian levels in 

Coal Measures stratal waters in United Kingdom coalfield areas. Higher 

chloride ion concentrations are apparently present in the Eastern 

coalfields. However, chloride levels are not uniform within any one 

British Coal Area, or with depth at any one mine. It is pertinent that in 

South Wales chloride levels are less than 20 mg/1. 

'Ihe major source of chloride ions found in coal and coalbearing strata 

and thus in colliery discards, would appear to be the salineground (or 

pore) waters with which the Coal Measures rocks have been associated. 

Elemental ratios of Na and Cl in coal and associated strata are directly 

related to the ionic concentration of the stratal waters. 

'Ihe presence of saline ground waters in Coal Measures rocks implies 

that post-compaction diagenetic changes have occurred, since marine 

deposition was rare in this upper section of the Carbcniferous, and coal is 

a terrestrial deposit. 

Anderton et al., (1979) and Hollow, (1981) have suggested that there 

were two main marginal ocean basins covering the British Isles during the 

Carbcniferous. 'lbese two basins were separated by the Wales-Brabant Island 

or high (Fig. 2.2). This high formed from primary structures and 
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subsequent refolding events resulting from the Variscan thrust belt to the 

south. The thrust belt crosses Southern Ireland, Dyfed and Somerset, 

passing subsurface to the south of the London-Brabant high and reappearing 

in Holland, Belgium and N. Germany (see Fig. 2.2). 

The British Isles lie at the northern edge of the Variscan orogenic 

belt. To the east and south of Great Britain the Precambrian and 

Palaeozoic rocks are affected by the Variscan deformation (Rast, 1981). 

The deformation is polyphase with radiometric dating indicating events in 

the late Devonian, and in the middle to late carboniferous. 

Very extensive drainage systems were established both to the north and 

south of the Wales-Brabant high. During the Namurian basin sedimentation 

ended and major river systems with extensive alluvial plains developed. 

Coal Measures (Westphalian) deposition comprised extensive shallow water 

deltaic and estuarine conditions. 'Ihe Westphalian Coal Measures are the 

principal coal-bearing sequences in Britain and over much of North West 

Europe (Anderton et al., 1979). 

The South Wales, Irish and small Bristol coalfields have all been 

linked using stratigraphic, palaeontological and sedimentological evidence. 

These basins were fed by rivers and delta systems draining the Southern 

landmasses. 

The concealed Kent coalfield is the only British coalfield to lie 

within the French Basin. This was also fed from the south with 

sedimentation in a highly constructive, river dominated, environment 

(Bless et al., 1977). 

The Wales-Brabant high separated the Southern basins from northern 

sedimentological sources (see Fig. 2.2). These northern sources yielded 

clastic sediments and turbidites, sedimenting towards the south and forming 
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the Midlands, Northern and Scottish coalfields. 

Sequences obtained from boreholes located on the northern side of the 

Charnwood block (Fig. 2.3), on the northern edge of the Mercian highlands -

an eastern prolongation of the Wales-Brabant high - suggest the presence of 

extensive Lower Carboniferous evaporite deposits, notably the Hathern 

Anhydrite sequence described by Llewellyn and Stabbins (1970). 

These deposits are thicker than evaporites from the overlying Permian, 

Triassic and Jurassic sequences of the area, with anhydrite beds of l-1.5m 

thick, over an interval of 97m, interbedded with dolomites, shales and some 

limestone. Anhydrite deposits also occur an the margins of the Derbyshire 

block, in the Edale Gulf, further supporting the general occurrence of 

evaporite deposits on the margins of topographic highs in the Lower 

Carboniferous. The Edale Gulf deposits were also cyclic, formed by 

successive marine transgressions throughout the Lower Garboniferous. 

The Lower Garbaniferous evaporites of the Midlands, described above, 

are believed to have been in contact with circulating meteoric groundwaters 

from the Westphalian Coal Measures. This probably took place in the Permo

Trias, during uplift, resulting from unloading in pre-Bunter times 

(Llewellyn and Stabbins, 1970). The dissolution of such evaporites may 

have been an important source of the salts currently found in the saline 

brines of the Coal Measures of the region. Such an origin would also 

conform, in a general way, with oxygen isotope studies on a variety of 

formation waters which demonstrate a meteoric origin, though not. with 

Sheppard and Langley (1985), who established that the water constituting 

the brines in the Northumberland Coalfield is of much younger meteoric 

origin. Their evidence is, however, based on underground (colliery) 

sampling, .and the possibility of considerable drawdown causing ingress of 
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recent meteoric water, due to pumping of the coastal pits, was not 

considered. Solution of Permian Zechstein evaporites is a realistic source 

of cations and anions of Na and Cl, respectively. 

Bhatt (1975, 1976) has suggested that Lower Carboniferous evaporites 

were also deposited in lirni ted amounts in the South Wales Coalfield basin, 

to the south of the Wales-Brabant high. However, recent work does not 

substantiate this view. Detailed stratigraphic, palaeological and 

geochemical analysis of the South Wales basin by Eustance (1981), Wright 

(1981) and Hird (1986) suggest that marginal basin environments and 

climatic constraints were not favourable for the deposition of evaporite 

sequences in the Lower Carboniferous in South Wales. No evidence has been 

found to verifY their presence. 

The absence of extensive evaporite sequences in South Wales, when 

compared with extensive deposits in the Lower Carboniferous of the East 

Midlands area, may thus go some way to explain the current absence of 

saline brines in the South Wales Coal Measures rocks, since the solution of 

evaporites is believed to be one of the main processes in brine formation. 

Sections across the Kent coalfield (Trueman, 1954) also show no Lower 

Carboniferous evaporites which could influence the chemistry of the Coal 

Measures stratal waters. 

During the Late Carboniferous and early Permian, the climax of the 

Variscan deformation resulted in the formation of numerous thrust faults 

and folds in the South Wales area. Basin sediments were compressed in a 

north-south direction. Two main factors influenced the structural 

evolution of the South Wales coalfield. lliey were: 

1) llie position between the rigid Wales-Brabant high to the North and the 
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main Variscan deformation belt to the south. 

2) Regional northwards thinning of the Carboniferous sequence compared to 

older formations. Pre-Carboniferous strata thus had a greater 

influence to the' north than to the south (Rast, 1981). 

Mineralogical changes in carbonates, illite crystallinity, 

modifications in siliciclastic Carboniferous rocks and the development of 

diagenetic zones are mainly lateral in extent within the South Wales 

coalfield. There iS' little or no vertical variation in any of these 

properties with increase in the depth of burial. Coal rank and grade of 

metamorphism also increase progressively towards the west. 

Associated faulting and sediment deformation will influence grmmd 

water movements and the setting up of brine sinks or reservoirs. 

Interference in groundwater circulation patterns might also affect the 

solution of any halite that may take place under unaffected groundwater 

flow conditions. 

2 o3 Vertical Variations :in Groun!:tmter Cam;position 

The salinity of water commonly increases with depth below the surface, 

the composition of these subsurface brines alters with increasing depth and 

can be divided into three major zones. White (1965) and Cherbotarev (1955) 

identified these as near surface or shallow sulphate bearing waters, 

intermediate bicarbonate dominated waters and deeper chloride dominated 

zones (see Fig. 2.4 ). 

Chamberlain and Glover (1979), identified a similar pattern of 

differing ionic compositions with depth for stratal waters taken from 

geological sequences of the Coal Measures of the United Kingdcm. 

The shallow sulphate zone, with Cl ions less than 100 mg/1, extends 
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from the surface to depths ranging from 50m to 200m . Calcium and 

magnesium sulphates occur in these near surface waters (see Table 2.1). 

This is a near surface phenomenon related to oxidation of pyrite in the 

vadose zone. In the underlying sulphate free zone, the calcium and 

magnesium sulphates are replaced by sodium bicarbonate as the principle 

solute. With increasing depth in the sulphate free zone, sulphate less 

than 5 mg/1 as S04, the concentrations of sodium, calcium and magnesium 

chlorides increase progressively. At the deepest levels, strontium and 

barium also occur, presumably as chlorides. Table 2.2 shows water 

composi tians from the sulphate free zone. Water quality patterns from the 

British Coal Measures generally follow the above trends, although there are 

exceptions and local modifications. In the Kent coalfield, for example, no 

sulphate zone exists in the Coal Measures. This is because it is a 

concealed coalfield with no surface exposure. A typical coalfield aquifer 

may be represented by a progression from alkaline to less alkaline waters 

leading to more saline waters at depth. 

Data given in Chamberlain and Glover (1976; Tables 2.1 and 2.2) are 

assembled in order of increasing depth [Mr. H.G. Glover, pers. comm.] .. It 

will be noted from the tables that there is a progressive increase in the 

calcium/chloride ratio and a fall in the sodium/chloride ratio with depth. 

'Ibis converse behaviour of monovalent and divalent cations is not uncommon 

(see Downing and Howitt, 1969). This relationship itself suggests that 

some type of sediment/ cation reaction must impede the upward migration of 

the monovalent cations in Coal Measures Strata. 



SAMPLE REFERENCE SPA E. Sll P.H. WER E. DRFT N.G. KT 

pH Value 5.8 7.5 6.8 8.2 7.8 

Alkalinity to pH 4 • 5 
rrg/1 caco3 85 370 500 160 570 

Chloride mg/1 Cl 45 40 90 100 40 

Sulphate mg/1 SO 4 170 430 300 330 160 

Sodium mg/1 Na 40 65 70 100 340 

Magnesium mg/1 Mg 32 100 100 43 5 

calcium mg/1 ca 32 120 140 95 15 

Strontium mg/1 Sr nd 0.5 < 1 nd < 1 

Barium mg/1 Ea nd nd <10 nd <10 

Manganese rrg/1 Mn 2.5 <O.l 0.4 nd 0.2 

Ammonium rrg/1 N nd <O.l (0.1 nd 0.3 

"nd" signifies not determined. 

'!able 2ol Water qualities found 1n the near surfaceS) sulphate zoneo (Mter 
Chalnberla1n and GloverS) 1976) o 
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SAMPlE REFERENCE E. SlO W. PKG 0. SlO D. D08 M. P08 

8.4 8.3 8.4 7.5 6.4 

alkalinity to pH 4.5 
ng/1 eaco3 450 1730 410 200 60 

Chloride mg/1 Cl 45 100 6370 24800 135000 

Sulphate ng/1 so4 < 5 <10 < 5 < 5 < 5 

Sodium mg/1 Na 240 830 4100 13420 57300 

Magnesium ng/1 fv'g 0.2 13 46 410 3210 

Calcium mg/1 Ca 0.3 10 120 1680 20300 

Strontium mg/1 Sr <O.l < 1 4 49 660 

Barium mg/1 Ba < 1 <10 12 85 1180 

Manganese mg/1 Mn <O.l <O.l <O.l 0.3 15 

Ammonium mg/1 N <O.l 0.2 2.0 8 108 

'lable 2.2 Water qualities found in the deeperjl chloride enriched zone. 
(Af'ter <llamberlain am Glover» 1976) o 
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2.4 OO.arides 1n cau. am cau. ~ Roclcs 

'Ihe relaticnships between groundwater chloride concentration and depth 

have been studied in various sequences from the Coal Measures rocks of the 

United Kingdom, Germany and United States of America (Cas/well et al., 

1984; Lehmann, 1952; Gluskoter and Rees, 1964). 

The primary control on coal-chloride content would appear to be the 

salinity of the groundwaters with which the Coal Measures are associated, 

as is shown by a strong positive correlation between the two parameters. 

As ground water salinity generally increases with depth, so too does the 

chloride content of associated coals. 

Chemical analyses of seam profiles through the Coal Measures show that 

coal samples have higher water soluble chloride levels than the associated 

mudrocks. Casj well et al., (1984) found that a positive relationship 

exists between chloride levels and the organic matter contents of the 

sediments. Coals with a low ash content contain higher levels of chloride 

than mudrocks with a high ash content, where the chloride appears to be 

readily water soluble. 

Figs. 2.5 and 2.6 show geolcgical sections through two seams studied 

by the writer: the Parkgate and the Low Main Seams, from localities at 

Bilsthorpe Colliery, Nottingham. Each seam profile consists of roof 

materials, coal and associated intraseam dirt bands, and the floor 

seatearth. It can be seen that the chloride levels found from the above 

analyses follow those found by Casj well et al., (1984). 

2.5 StmiBry 

It is tmlikely that ooe single event or process is respoosible for the 

chloride ion concentrations found in the formation waters, or for the 
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geochemical trends associated with depth and regional variation in the 

United Kingdom Coal Measures rocks. Mechanisms that would seem to have 

influenced the origin and diagenesis of the formation waters can be 

sunuruarised as follows: 

1. 'Ihe Coal Measures are part of a cyclic sequence cootaining marine and 

brackish strata. 'Ihe sequence may have been flushed with saline water 

soan after deposition. 

2. There is evidence that Lower Carboniferous evaporite sequences were 

deposited around topographic highs to the north of the Wales-Brabant 

high. Typical is the Hathem Anhydrite, probably formed by a marine 

regression. These are believed to have been in contact with 

circulating groundwater fran the Westphalian, during the Penno-Trias. 

3. Composition of the groundwater of the Carboniferous would have been 

further altered and possibly concentrated by physical processes of 

compaction and by chemical processes involving reactions between rock 

minerals and intersitial solutioos, filtration through clay membranes, 

adsorption, base exchange and biochemical processes. 

4. Regional variation in groundwater chloride levels in the coalfields of 

Great Bri ta1n would appear to be linked to the geolcgical history of 

the basin within which the Coal Measures were sedimented. During 

Cartxniferous times, two main-drainage basins were established, to the 

north and south of the Wales-Brabant high. 'Ihe South Wales, Irish and 

Bristol coalfields were sedimented from the south whereas the 

concealed Kent coalfield lies within the French Basin. 'Ihe other main 

British coalfields were sedimented from northern sources. 'Ihe South 

Wales basin has subsequently been deformed by the climax of Variscan 

deformation. · 
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5. The absence of chloride ions in the groundwater of the South Wales 

coalfield may be explained in several ways: 

i. The position of the basin to the south of the Wales-Brabant high 

creating a different sedimentary enviranment. 

ii. The lack of evidence for Lower Garbaniferous evaporite sequences 

in South Wales. 

iii. The structural evolution of the basin in the late carboniferous

Early Permian, influencing groundwater movements and groundwater 

flow candi tions. 

6. Groundwater ionic composition varies with depth through Coal Measures 

rocks. Three major zones can be identified, a shallow sulphate 

dominated zone, intermediate bicarbonate-rich and deep chloride 

dominated waters. 

1. The chloride content of groundwaters influences the chloride content 

of the Coal Measures rocks. A positive relationship exists between 

organic matter content of sediments and chloride levels. Sequences 

taken through coal-bearing strata show high levels of chloride in 

coals and lower levels in associated mudrocks. 
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3 o 1 Site Selection Procedure 

'!he sites selected for this project had to fulfill several criteria. 

They had to remain undisturbed for the duration of the project, the R.O.M 

discard had to have a chloride content (as Cl) greater than about 500 ppm 

(close to the crop spraying threshold damage value) and the discard had to 

be less than three years old and preferably freshly tipped. 

Possible sample sites were suggested by British Coal, South Yorkshire 

Scientific Section. Maltby Colliery was chosen as it fulfilled all the 

above criteria and British Coal were already conducting top soiling 

experiments on part of the proposed embankment. 

After approximately one year, it was decided to extend the sampling to 

another site that fulfilled all the criteria set out in paragraph 1, but 

unlike Maltby, had no lagoon incorporated into the tip structure. British 

Coal Western Region were approached and Wolstanton Colliery, Stoke-on

Trent, was selected. 

To gather additional data on chloride distribution and to further 

study lagoon seepages and the effect of hot spots (areas of high salt 

concentration) on reclaimation procedures, Bilsthorpe Colliery in 

Nottinghamshire was incorporated into the study. '!he three sites are shown 

in Fig. 3.1. Further details about the sites are given in the following 

sections. 

3 o L 1 Maltby Colliery 

Maltby Colliery i;:; situated approximately 16 km east of Rotherham and 
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the same distance south of Doncaster, South Yorkshire. 

The site is bounded by rough pasture and woodland to the north and 

east and by a housing estate and Maltby town to the west and south. The 

pit shafts were sunk in 1907, so tipping has been active since that date. 

The tip site now extends over several hectares. A successful area of tree 

planting can be seen on the north facing slope of the tip, whilst the rest 

of the tip remains bare apart from areas next to the Durham University 

(Engineering Geology) sample site, where experimental planting by British 

Coal has produced patchy grass/clover cover. 

The tip structure has nine slurry lagoons incorporated into its 

design. Only two of these are active, receiving tailings from the coal 

preparation plant. The majority of the waste produced comes from the 

Swallow Wood seam with some from the Haigh Moor seam. 

The sample site chosen was a west facing lagoon emplacement. The 

slope was completed and last graded to 14° some two years prior to the 

start of sampling and has been tmdisturbed since that time (5 years). The 

discard at the site was thus between three and five years old when sampled. 

'Ihis site was chosen because the discard was known to have high electrical 

conductivity and chloride levels (British Coal survey by Mr. H.G. Glover). 

The lagoon embankment was constructed by the downstream method, in 

layers, in the conventional manner. Each lift would be expected to be less 

than 5m in thickness. The vertical distance between seepages, however, 

(Chapter 5) strongly suggests that the the compacted thickness of layers is 

in fact 3m. It is not known whether self-weight compaction has caused the 

reduction. 

The site is tmderlain by Permian Magnesian Limestone and marls. 'Ihis 

was identified in sample trenches at the toe of the embankment (Trench E, 
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Figure 3.2b Sample site at Maltby Colliery. 
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Fig. 3.2a and b). 

3 olo2 t'Jolstantan Colliery 

The Wolstanton Colliery High Carr tipping site is.situated 

approximately 5 krn north of Newcastle-under-Ly.me, Staffordshire. The site 

is bounded by rough pasture on the north, east and south sides, and by the 

A34 to the north. There is a slight gradient from west to east. 

Prior to acquisition by British Coal, the site had various usages: 

rough grazing, a local authority domestic refuse tip, site of a small 

engineering works and there is evidence of mining activities from the 

previous century. 

Tipping by British Coal commenced in 1975. Phase one comprised site 

levelling and was followed by phase two, involving the construction of a 

three-terraced tip. The upper plateau was completed in 1980 and tipping 

operations are currently in progress in the area of the intermediate and 

lower plateaus. Tipping is intermittent as discard produced at Wolstantan 

Colliery is often supplied to Local Authorities and private concerns for 

road construction and land reclamation uses. The slope between the inter

mediate and upper plateaus was seeded to grass and trees were planted in 

1980. Grass has developed well and a substantial proportion of the trees 

planted have survived. 

This site was chosen for research because the embankment was not a 

lagoon embankment and no lagoon structures were incorporated into the tip 

at any point, in direct contrast to the Maltby site. The tip could thus be 

used as a control to determine any influence the lagoon may have had on the 

distribution and movement of salts within the discard. Seepages and 

hotspots (although present) could not have arisen from lagoon seepages at 
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Wolstanton. Both the slope angle and discard age were comparable to those 

of the Maltby site. The sampling site (Fig. 3.3a and b) was the lowest 

slope of the three-tier terraced structure and was a large area of bare, 

undisturbed discard. Most of the discard originated from the Banbury and 

Cockshead seams. 

The site is underlain by patchy drift consisting of red/brown and 

yellow/brown Boulder Clay. The drift lies on Etruria Marls which are 

present as, bedrock beneath the whole of the tip site. ·They consist of 

red/brown mudstone with beds of coarse green and yellow grits and 

sandstones, and are relatively impermeable. 

3olo3 Bilsthorpe Colliery 

Bilsthorpe Colliery is situated approximately 11 krn east of Mansfield 

and was sunk in 1925. 

The site is bounded by woodland and rough pasture to the north, east 

and south, and by the village of Bilsthorpe to the west. rrhe tip structure 

has seven slurry lagoons incorporated into its design; two of them are 

active, receiving slurry from the washery. The slope chosen as a sample 

site forms the southern embankment of lagoon 6 and the dividing bank to 

lagoon 7 (Fig. 3.4a and b). The discard is approximately 3 years old, 

originating from the Parkgate and Low Main seams. The slope has been 

finished to a gradient of 14°. 

The embankment was constructed in two phases. The first phase 

involved the construction of an embankment rising to a height of 78m A.O.D. 

whilst the second phase was completed by day-to-day tipping in 1981. A 

gravel toe drain was placed at the original toe of the first phase, with 

finger drains to the final toe of the embankment. 
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Figure 3.3b Sample site at Wolstanton Colliery. 
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Figure J.4b Sample site at Bilsthorpe Colliery. 
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Restoration work is progressing well on the north/northeast side of 

the tip (Tip No. 1, Fig. 3.4). An extensive area has been topsoiled, 

grassed and is now being let to a local farmer as rough grazing pasture. 

On some parts of this embankment restoration work has failed and seepage 

points or hotspots are visible where vegetation cover has failed to grow. 

Tip No. 1, along with the southern embankment of lagoon 6 were sites 

of suction pressure measurements by tensiometers in the field (Chapter 6). 

Piezometers to monitor water tables were also installed in the lagoon 

embankment (see Bick, 1985) (Figs. 3.4a and b). 

The site of lagoon 6 is underlain by Keuper Green Beds, comprising 

stiff clays and thin interbedded sandstones. On the western boundary, 

Bunter Sandstone lies immediately below the Green Beds, outcropping just 

beyond the colliery boundary. The impervious Keuper clays should provide 

an effective seal between the lagoons and the Bunter Sandstone aquifer. 

3 o 2 Samplliig Procedures 

The sampling programme was initially carried out on the lagoon 

embankment at Maltby Colliery, South Yorkshire. 

A survey of statistical sampling models led to the adoption of a 

regular grid. Sampling experience of contaminated land by the 

Environmental Advisory Unit of Liverpool University (1982) had previously 

shown that as the number of sampling points increased, a square grid proved 

to be more reliable than a random one for sampling hotspots or areas of 

contamination. 

Two sampling procedures were established by the author. For 

assessments over a large surface area, and to locate possible seepage 

points or hotspots, a regular grid 5m x 5m, over a 50m x 25m area was 
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sampled in Spring 1983 (May), at two depths for each sample point; O-lOOmm 

and l00-200mm. Based, on preliminary results for this grid, a second, more 

limited grid, lOrn x lOrn, was sampled during Summer 1984 over the original 

grid area, to obtain a comparison of electrolyte variations with season. 

To gather information an electrolyte movements within the spoil 

embankment at varymg depths and through time, that is, from year to year 

and from season to season, a series of down-slope traverses, with sample 

points at the top, mid and toe of slope positions, were established. 'Ihese 

traverses were sampled in Spring (May), Summer (August) and Winter 

(December), to a depth of 500mm, at intervals of lOOmm (although at some 

sample points, samples were taken to a greater depth, depending on 

prevailing discard conditions). In addition, during the Summer of 1983, 

two machine-excavated trenches were sampled to depths of 1.8m and 3.9m, at 

the mid and toe slope positions respectively. 

Detailed sampling of the surface of the colliery discard embankment 

was also undertaken at the top, mid and toe slope positions, at depths of 

O-lOmm, 10-20mm and so on, to lOOmm, during Spring, Summer and Winter, from 

positions adjacent to the deeper sampling points on the slope. 

A detailed spatial and chemical analysis of hotspot points on the 

embankments was also undertaken. This included sampling across hot spots 

at two depths; O-lOOmm and l00-200mm, and detailed surface analysis of 

discard at depths of 0-lOmm, 10-20mm and so on, to lOOmm. Mineralogical 

investigations were un9ertaken on crystalline salt deposits recorded during 

summer months around hotspots on the embankment surface. 

A total of 590 samples were taken at Maltby Colliery, including run

of-mine, washery and embankment materials, together with lagoon and seepage 

water. 
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After the first year, the sampling programme was extended to the other 

locations at the collieries described above. These exhibited variations in 

embankment and lagoon conditions compared with those at Maltby Colliery. 

To enable direct comparisons to be made between Maltby and Wolstanton 

Collieries, an identical sampling regime was initiated at the latter site. 

A total of 180 samples were taken at Wolstanton Colliery, including 

r~.m-of-mine, washery and embankment materials. The analytical techniques 

used were identical to those listed for the Maltby Colliery samples. 

3.3 Sample ~tian 

For most samples, at least 0.5kg of discard was taken. This was 

sealed in air-tight plastic bags and weighed immediately on arrival in 

Durham. The discard was dried at a temperature of 30°C. After drying, the 

discard was reweighed and percentage moisture loss at 30°C calculated. 

Some samples were dried at 105°C, but no further appreciable water loss was 

recorded at this higher temperature. Drying at 30°C reduces the risk of 

volatilization of certain elements, or changing the physical structure of 

the discard (M.A.F.F., 1981). 

The dried samples were then sub-sampled using a chute splitting riffle 

box. A sub-sample was sieved to obtain the less than 2rnm fraction using a 

BS410 mesh sieve. It was presumed that this fraction would be more 

intimately associated with the establishment of vegetation on the surface 

of colliery tips than the large size grades, or 'whole' discard. There is 

evidence that it is this fine fraction which provides a plant's nutrient 

requirement (Russell, 1973). The less than 2rnm fraction is also standard 

in most soil analysis texts (M.A.F.F., 1981). 
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All samples have. been analysed for moisture content (%), water soluble 

chloride (Cl-ppm) and conductivity (p.S/cm). Selected samples have been 

analysed for water and acid soluble sulphate (so4--ppm). Analytical 

chemistry methods ar~ shown in Appendix 1. Selected ions have also been 

determined by atomic absorption spectrometry. Total discard chemistries of 

selected samples have been determined by XRF spectrometry and mineralogical 

studies made using XRD techniques (including semi-quantitative estimates). 

Details of the above techniques are given in Appendix 2. 

Initially, three different size fractions were analysed for water 

soluble chloride: the less than 2mm fraction, less than 2mm fraction tema-

milled, and samples of whole or complete discard tema-milled. From Table 

3.1, it can be seen ;that the less than 2mm tema-milled samples gave 

consistently higher results than the natural less than 2mm size and whole 

discard san:ples. 

Maltby 
Discard 

Parks ide 
Discard 

'!able 3ol 

WHOLE DISCARD LESS THAN 2mrn LESS THAN 2mrn 
T.EMA-MIUED T.EMA-MU .I ED 

1. 126 121 67 
2. 121 210 121 
3. 191 244 204 
4. 291 368 318 
5. 187 248 152 
6. 336 348 238 

1. 1216 1822 1522 

Variation in chloride concentration (ppm) in discard trith 
size fractian used. 

The tema-milled less than 2mm sample may be taken to represent a 
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potential maximum, as grinding to this fine grain size will release 

chlorides held in small_pores in coaly fragments. This fraction was 

rejected, however, since natural leaching and weathering processes do not 

reduce all coal .fragments and mudrocks to clay-sized grades. 

All water solubl~ analyses were dane using a 1:10 ratio of discard to 

deionised water suspension, agitated for 30 minutes. A 1:10 suspension 

creates obvious departures from the fluid concentrations experienced by 

plant roots. Cheng et al. (1983), however, suggest that for the evaluation 

of the total soluble ~ts of soil (and discard), and for the assessment of 

reclamation procedures, the 1:10 extract method is more suitable than other 

possible methods, sucp as the saturated paste extract method. 

Advantages w1 th the 1: 10 extract method used are: 

1. It gives a large, quantity of extract for analysis. 

2. Given the number of samples taken for analysis in this project, it is 

less time cons~ing than the saturated paste extract technique. 

3. A smaller quantity of discard was needed, making laboratory handling 

easier. 

'Ihe results shown were all based an this extract and thus information 

and inferences are internally consistent and can also be related to other 
I 

published data on sal1ne soils. 

Precision for water soluble chloride, sulphate and conductivity was 

tested by analysing the same sample twenty times. 'Ihe relative deviation 

of the specific ian ~lectrode method for the determination of chloride was 
I 

4.1%, for the determination of water soluble sulphate 4.9%, and for 

electrical conductivity 1.3% (see Table 3.2). 
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Cl 
(ppm) 

1190 
1290 
1320 
1300 
1300 
1390 
1350 
1400 
1390 
1290 
1390 
1400 
1350 
1390 
1400 
1410 
1400 
1320 
1390 

X 1348 

CS"n 56.4 

relative 4.1 
deviation 

(%) * 

* relative deviation = 

so 
(pp~) 

122 
140 
122 
119 
122 
126 
120 
123 
124 
119 
126 
121 
120 
128 
119 
120 
140 
124 

124 

6.1 

4.9 

0 

X 

Conductivi~ 
(j.JSI cmxlO ) 

0.738 
0.724 
0.734 
0.715 
0.745 
0.745 
0.749 
0.733 
0.730 
o·. 724 
0.717 
0.719 
0.749 
0.745 
0.748 
0.726 
0.731 
0.723 
0.731 

0.732 

0.01 

1.3 

X 100 

Table 3o2 Precision test for analytical methods used for 
water soluble chloride and sulphate and conductivityo 
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THE CHEMISTRY AND MINERALOGY OF DISCARD FROM MALTBY, WOLST~ AND 
BII.S'.lHmE ~ 

4.1 Introduction 

The detailed chemistry and mineralogy of seven samples of coarse 

colliery discard was undertaken as part of this study. The discard came 

from three different colliery tips - Maltby in South Yorkshire, Bilsthorpe 

in Nottinghamshire and Wolstanton in Stoke-an-Trent, the details of which 

have already been discussed in Chapter 3. The analyses obtained form a 

comparative study of the broad mineralogical and chemical differences 

between coarse discard from the three sites. 

Two samples were taken from each of the three colliery tip sites. 

These samples were surface samples from a 0-lOOmm depth, representing 

weathered material, samples from a 500mm depth from the Bilsthorpe and 

Wolstanton tips and samples from a l.8m depth from an excavated trench 

location at Maltby Colliery. These sub-surface samples represent 

unweathered material. The seventh sample was also Maltby discard but was 

taken from the highly weathered surface of the 5 to 7 year-old discard, 

used to monitor suction pressures in an experimental tip, at the Durham 

University courtyard site (Chapter 6). 

Comparison of dominant mineral groups and the chemistries of 

respective surface samples with those of deeper samples, allows the nature 

and extent of weathering to be evaluated. The presence or absence of 

weathering indicators such as pyrite, acid soluble sulphates and soluble 

carbonate minerals can be detennined. 

The presence of chloride/sulphate hotspots detected in desiccated 

63 



:7 
~ ao 
cd 0'1 ., Ql II s:: s:: ~ 
s:: Q, Q, 0 0 
ill "' "' 

., ., .. 
"CCS :-.1! 6 , .8'E6 .8'E ~1!6 ~1! • 'E"' >.J.. .... >.J.. :f.,,S .DcdJ.. .DIIIO Dcd .,.,0 .,~~6 .,.,0 .,.,6 .,0., .,uo .. OS •uo IIU IIUO IIU J..U:O. 

~IIQ,Q, ~~~~ ~11ao ... II~ 1"'4110 1"'411~ 1"'4110 .tied 
~ ..... )( ..... ~ ..... , cd..... • ..... ~, ..... ~0 0~1 o .... o >'"Eo< Qlzlf< Qo l£Q~ a:u::a 0 11:1011'1 :aoo ;JtQU'\ -co-

5102 38.25 45.02 42.14 53.10 52.43 35.86 36.87 46.23 

A1 2o
3 

17.22 21.79 20.31 19.86 19.92 13.40 13.93 19.74 

Pe2o3 5.19 7.27 4.43 3.90 4.20 5.10 6.07 5.39 

MgO 1.69 2.03 1.45 1.32 1.33 0.90 1.00 1.01 

CaO 2.50 2.57 0.89 0.91 0.91 2.00 2.65 0.74 

Na2o 0.32 0.44 0.62 0.115 0.45 0.31 0.51 0.41 

K20 3.31 3.36 3.66 2.94 3.02 1.93 2.00 3.40 

T10 0.75 0.76 0.86 0.97 0.94 0.811 0.87 0.88 

MnO 0.011 0.06 0.00 0.03 0.03 0.07 0.08 0.10 

P205 0.07 0.06 0.07 0.06 0.06 0.21 0.22 0.18 

s 1.38 o. 71 0.57 0.711 0.94 1.01 0.96 0.96 

ORGANIC c 23.10 10.00 21.60 11.45 11.93 311.62 29.20 13.30 

co 2+H2o+ 3.10 3.05 2.07 2.98 3.07 1.68 4.28 6.85 

H20- 1.56 1.65 1.89 1. 74 1.96 1.41 1.25 1.15 

TOTAL 98.48 98.77 100.56 100.44 101.19 99.34 99.89 100.34 

QUARTZ 111.0 11.0 10.0 25.0 22.0 12.0 15.0 17.5 

ILLITE 30.0 40.0 25.0 40.0 115.0 25.0 20.0 31.5 

M.L.C. 22.0 20.0 20.0 15.0 10.0 15.0 15.0 26.0 

KAOLINITE 6.0 8.0 8.0 10.0 10.0 7.0 10.0 10.5 

CHLORITE 4.0 4.0 3.0 0.5 

CALCITE 1.0 2.0 1.0 2.0 1.0 1.0 Average 

DOLOMITE 5.0 1.0 1.0 

SIDERITE 1.0 1.0 1.0 3.0 4.0 

ORGANIC C 23.0 16.0 22.0 11.0 12.0 35.0 27.0 13.0 

TOTAL 101.0 97.0 97.0 103.0 104.0 98.0 91.0 100.0 

Table 4.1 

Total Chemistry and Mineralogy of Discard Samples from Maltby, 
Bilsthrope and.Wolstanton Sites. 
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surface discards at Bilsthorpe and Wolstanton Collieries is discussed in 

Chapter 5. Suction pressures generated in the near-surface, partly 

saturated, zone of a spoil heap (Chapter 6) are also pertinent to 

weathering, which includes oxidation within partly saturated discard. 

In Chapter 1, brief mention was made of the three major mineral 

groupings revealed by a correlation matrix applied to a large number of 

samples of colliery discard from England and Wales (Taylor, 1984). The 

three groups are (a) detrital minerals, (b) non-detrital minerals and (c) 

the coal group. 'Ihe detrital minerals are mainly quartz, clay minerals and 

minor rutile. Carbonates comprise the principal non-detrital minerals and 

are largely siderite and ankerite. Constituents of the coal group were 

established as coal, pyrite and probably gypsum and calcite, both of which 

are found in the cleat of coal (see for example, Spears et al., 1971). 

Superimposed on the three groups in Fig. 1.2 are engineering properties 

which correlate with particular mineral/chemical groups. These three 

groups are used as a framework for discussion in this Chapter. 

4 o 2 l::lhole Rock Geoclisnistry 

4 o 2 o 1 Method of Analysis 

Chemical compositions of the whole rock and the less than 2mm fraction 

rock samples were analysed using a Phillips PW1212 Automatic Sequential X

ray Fluorescence (XRF) Analyser. Eleven major elements, expressed as 

elements or elemental oxides were analysed using pressed powders. They 

were; total Si, Al, Ti, Fe (as ferric oxide), Mg, Ca, Mn, Na, K, P and S. 

All constituents were expressed as percentages of the sample weight, the 

analyses being shown in Table 4.1. Moisture (as H2o-), H20+ and organic 
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Maltby 
Discard 
Experimental 
Tip 

Maltby 
Discard 
0-lOOmm 

Maltby 
Discard 
1.8m 

Bile thorpe 
Discard 

0'\ 
0-100DDD 

0'\ 
Bilsthorpe 
Discard 
50 0rran 

Wolstanton 
Discard 
0-lOOrran 

Wolstanton 
Discard 
50 0rran 

Average 
Qiscard 

(Taylor. 19711) 

RATIOS WITH A1 20
3 

WEIGHT ~ Illite 
Total Combined Fe2o

3 
MgO CaO NaO 1{20 Ti02 P205 s Cl so so width at 

Si02 Si02 (ppm) Wat~r Acid ~peak 
height to 

soluble soluble peak height 
(ppm) OO ratio 

2.22 1.41 0.30 0.09 0.14 0.02 0.19 0.04 0.07 1. 38 130.0 303.0 0 0.23 

2.06 1.56 0.33 0.09 0.11 0.02 0.15 0.03 0.06 o. 71 565.0 228.0 0.14 0.26 

2.07 1.58 0.22 0.07 0.89 0.03 0.18 0.04 0.07 0.57 lll3.0 128.0 0.1 0.21 

2.64 1.40 0.19 0.06 0.04 0.02 0.14 0.011 0.06 0.74 298.0 372.0 0.49 0.30 

2.63 1.52 0.12 0.06 0.04 0.02 0.15 0.011 0.06 0.94 70.0 480.0 0.10 0.211 

2.67 1. 78 0.38 0.06 0.15 0.02 0.111 0.06 0.21 1.01 22.0 23.0 0 0.118 

2.611 1.56 0.113 0.07 0.19 0.03 0.14 0.06 0.22 0.96 32.0 0.0 0.05 0.44 

2.311 1.115 0.27 0.05 0.04 0.02 0.17 0.04 

Table ~o2 Ratios with Al2o
3

o Chloride» acid and water soluble 
sulphatesa 



carbon contents were obtained by thermal treatment. Full details of the 

analytical procedures are given in Appendix 2. 

4.2.2 X--ray D.11'.fractim (XRD) 

Details of the X-ray diffraction techniques used in this study are 

outlined in Appendix 2. Clay mineral reflection intensities, in the form 

of peak heights or peak areas measured from the diffraction charts cannot 

be compared quantitatively due to the inherant orientation and mass 

absorption problems. Moreover, species vary in chemical composition and 

crystal perfection. Consequently, the XRD analyses given in Table 4.2 are 

expressed on a semi-quantative basis. Estimates are based on comparison 

with boehmite reflections used as an internal standard. 

The platy character of most clay minerals gives some degree of 

preferred orientation of particles, particularly in the surface layer of 

diffraction mounts exposed to X-rays. However, because consistant 

preparation techniques were used, it is concluded that the influence of 

orientation on the intensities will be substantially constant. Initially, 

both distilled water and acetone were used as liquid mediums in the 

preparation of the mounts. The intensity diffracted by each clay mineral 

was nearly the same for both liquid media, so acetone was chosen because 

the mounts could be prepared much more quickly. 

4 .3 ~trital Grote> M1neral.s 

4.3.1 QJartz (Si~) 

The composition of quartz is normally very close to 100% Si02• Being 

resistant to weathering, it is an abundant detrital mineral in Coal 

Measures rocks and is coocentrated during the sedimentary process. 

The range of quartz contents in the samples of discard analysed was 
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from 10% to 25% (Table 4.2). Materials from Bilsthorpe had the greatest 

percentage - 22% and 25%, then Wolstantan - 12% and 15%, followed by Maltby 

with relatively low levels of 10% and ll%. Surface samples do not appear 

to contain more quartz than the deeper samples and there is no indication 

that the Maltby discard is atypical. Average quartz found by Taylor (1984) 

for unburnt UK spoil heaps was 17 .5%. 

Although the total silica contents of Table 4.1 include combined 

silica, found largely in clay minerals, it will be observed that the 

Bilsthorpe specimens with the highest quartz contents (Table 4.2) also have 

the highest total silicas. However, low values of quartz are not 

identified so readily. 

4. 3. 2 Clay M1neral.s 

Clay minerals are hydrous silicates of aluminium and/or iron and 

magnesium. rrheir structure is based an groups built from composite sheets 

or layers of silica tetrahedra and aluminium or magnesium hydroxide 

octahedra, linked tcgether by oxygen atoms common to both. 'Ihe arrangement 

of these sheets and the degree of replacement of silica or aluminium ions 

by other elements, determine~ the clay mineral type. 

'Ihe clay minerals identified in this study are outlined in Tables 4.1 

and 4 . 2. 'Ihey are kaolinite, illite, mixed layer clays and chlorite. 

Variabilities in the ratios of various oxides to alumina in clay 

minerals are useful 'finger prints' for comparisons of the clay mineralcgy 

of Coal Measures samples. 'Ihese would include; Fe2~, MgO, CaO, Na2o and 

K2o in ratio with Al2o3• Potassium oxide, and to a lesser extent, Na2o, 
can be attributed to micaceous and mixed layer minerals, particularly 

illite, so the K20/Al2o3 ratio can be interpreted as a measure of illite 
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content. Total Fe as Fe2o3 is also probably related to the illite group 

but the total includes iron which may be present as pyrite and siderite and 

as oxidation products, mostly limonite. 

Total silica includes quartz, but if' this is subtracted then the ratio 

of combined Si02/Al2o3 is a useful guide to clay mineral type. The 

following approximations can be made: 

clay mineral 
group 

kaolinite 

illite 

smectite 

chlorite 

canbined Si02/ 
Al2o3 ratio 

1.06-1.37 (1.18 ideal kaolinite) 

1.45-2.40 

2.14-3.45 

1.02-2.06 

Ratios of combined Si02 to Al2o3 in Table 4.2 suggest that the 

dominant clay group in all samples studied is illite, as the ratios all 

fall within the range 1.45 to 2.40. The semi-quantitative mineralogy 

(Table 4.2) confirms the presence of illite and further indicates the 

importance of mixed-layer clays in these rocks. The average combined 

Si02/Al2o3 ratio for coarse discards from collieries in these areas is 1.45 

(Taylor, 1984). 

4.3.2.1 Kaolin! te 

Kaolinite is representative of a 1:1 clay mineral, each sheet being 

composed of one tetrahedral layer interlocked with one octahedral 

(gibbsite) layer. The ideal chemical composition is Si4Al4o10(oH)8 and the 

mineral varies little from this. Kaolinite is a relatively stable clay 

mineral at normal temperatures and can be identified by its diagnostic 



0 0 0 
reflections at 7 A (001), 3.58 A (002) and 2.37 A (003) (J.C.P.D.S. index, 

1974). Quantitative estimation is difficult because of variation in peak 

shapes. These are caused by differences in crystal size and by disorder, 

such as random displacement of the crystal lattices. ~creasing grain-size 

causes prominent basal reflections to become less ~ and less intense 

while increasing disorder is reflected by 'tails' to lower 'd' spacings on 

(hko) reflections. 
0 

When chlorite is present, the(002)reflection coincides with the 7 A 

(001) reflection of kaolinite, increasing the height and area of the 
0 

kaolinite peak. To allow for this, the chlorite contribution to the 7 A 

reflection was sub/ tracted following the methoo described by &n1 th ( 1978) . 

Kaolinite is third in order of clay mineral abundance in all of the 

discard samples analysed. The amotmts range from 6% to 10%, compared with 

an average of 10.5% in United Kingdom spoil heaps. Bilsthorpe discard 

samples have the highest percentage of kaolinite, with the Maltby 

experimental tip the lowest. There is no evidence to suggest that the 

kaolinite content differs in shallow as opposed to deeper samples. 

4.3.2.2 illite 
0 

The term 'illite' is used for a wide range of the fine grain-size 10 A 

'micaceous' minerals, serici tes and hydrous micas. In the samples studied 
0 

the illite has a 'tail' on the low 2e angle side of the 10 A reflection. 

This represents an expandable mixed-layer clay component (see Section 

4.3.2.3). 

Illite is present in largest amounts in the deeper samples from 

Bilsthorpe - 45%, and is at a minimum of 20% in the deepest Wolstanton 

sample. It is of interest that the K20/Al2o3 ratio (Table 4.2) does not 
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reflect illite abundance alone in the samples, but does show some 

relationship with illite plus mixed-layer clay. The Wolstantan samples 

which have the lowest totals (35-40%) have the lowest ratios (0.14: -o.l4 ). 

At the other extrem~, the Maltby sample from the lOOmm depth has the 
I 

highest illite plus m:+xed-layer clay content and this has a reasonably high 

ratio (0.154), altho~ not the highest. Potassium is high in all the 

Maltby samples, as cp.n be seen in Table 4.1, but an alternative site for 

K2o, such as jarosite (KFe3(0H)6(S04) 2), is not indicated by the acid 

soluble sulphate values (Table 4.2). 
I 

i 
Illite crystall;inity was used as an indicator of weathering in the 

I 

discard samples, fo'llowing the method used by previous authors (for 
,. 

example, Taylor, 197 11; Smith, 1978). Ratios of the width of the (001) 
: 

illite reflection peak at half peak height, to the peak height are given in 

Table 4.2. 

Wolstanton discard had the highest ratios, indicating least crystal 

degradation of the three discards from different sites. For each of the 

three discards, the surface samples from the O-lOOmm depth had higher 

ratios than the samples from depth, showing a higher degree of weathering. 

From the ratios. given in Table 4.2, discard from Maltby would appear 

to be the most weathered of the three types. 

Chlorite minerals, Al2Mg10 (Al2Si6)o 20 (0H)16, have a 2:2 layered 

structure composed 6f two tetrahedral and two octahedral layers in each 

sheet. There is som~ substi tutian by Fe2+ for Al and Mg in the octahedral 
0 

positions. 'Ihe basal spacing produces a (001) reflectance at 14 A and the 

mineral is generally identified without much difficulty on diffraction 
' 
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traces. 

Chlorite was not identified in all the discard samples analysed. 

Maltby experimental tip discard and Maltby deep discard had about 4% 

present and Bilsthorpe deep discard, 3%. These values are of the same 

order of magnitude as those reported elsewhere for Upper Carboniferous 

strata, (Shaw, 1981). 

4 .3 .2 .4 Mixed-layer Clays 

'Ihis is the term used for different types of sheet structure occurring 

in regular or random intergrowth. 'Ihe 001 reflecticn shows the combined 

effects of the different types of layers in the structure. 'Ihus a regular 

mixed-layer composed of 2 illite and 1 chlorite may have a (001) reflecticn 
0 

of approximately 34 A. Qualitative identification and quantitative 

estimation are difficult and imprecise. 

Expandable mixed-layer clays have smectite as a component and 
0 

glycolation may be used to split the 'tail' on the 10 A reflection by 

expanding the smectite component to a higher d-spacing. Comparison of 
0 

treated and untreated 10 A peaks can provide an indication of the mixed-

layer component. 

Table 4.2 indicates that mixed-layer clay is present in all samples. 

Estimates indicate a range from 10% to 22%, the latter figure being lower 

than the national average of 26.0%. The clayey discard from Maltby 

Colliery has the highest ccntent. 

4 .4 Ncn-~trital M:lneral.s: cartx:rlate Grcq> 

'Ihe minerals identified from X-ray diffraction traces were calcite, 

dolomite and siderite. 
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Tables 4.1 and 4.2 show that calcite was identified in the shallow 

Maltby sample and in both Bilsthorpe samples. Since this is the most 

soluble of the carbonates, its absence might suggest that it has been 

removed from other samples. However, it is a cleat mineral of coal (Spears 

et al., 1971) and is not as common as, say, siderite in the dominantly non-

marine mudrocks of Coal Measures age. Being a mineral associated with 

waste coal rather than the mudrocks, it may not be uniformly distributed. 

In other words, its absence in the deeper Maltby sample, and the reduced 

quantity in the deeper sample from Bilsthorpe, may not be indicative of 

weathering processes, but rather a crude measure of the amount of coal in 

the dis card. 

Siderite is the most resistant of the carbonate minerals in colliery 

discards (Taylor and Spears, 1970). It is present at the 3-4% level in the 

Wolstanton tip, where its presence is in accord with relatively high iron 

contents (Table 4.1) and the two highest Fe/Al ratios (Table 4.2). 

A small amount of dolomite is present in the deepest Bilsthorpe 

material with quite a high percentage being present in the deeper Maltby 

discard. The latter sample has the highest CaO/ Al2o3 ratio, but ratios 

involving magnesium and iron are not particularly high. Although the 
0 

reflection measured (2.89 A) is suggestive of essentially pure dolomite, it 

is likely that it is a ferroan type since the latter is more common in Coal 

Measures strata. 

4 0 4 01 Coal Group W:1nerals 

Colliery discards are different from conventional sediments and rocks 

by virtue of their high contents of waste coal, largely organic carbon, 

which thus forms an important constituent. At Wolstanton, organic carbon 
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accounts for between 29-35% of the constituents of the discard and at 

Maltby, levels vary from 22-23% (Table 4.1). 

Total sulphur is high in the three samples with the highest coal 

content (Table 4.1), but no pyrite was identified in any of the samples. 

Whilst discussing the coaly constituents, it should also be noted that the 

highest P2o5 values follow high coal contents. 

4.4.2 SUl:pbates 

The distribution of water soluble sulphate in the discards follows 

that for acid soluble sulphates. The highest acid and water soluble 

sulphates are found in the Bilsthorpe samples, the deeper of the two having 

the highest levels. The Wolstanton discard has the lowest values for 

sulphates. In the Maltby and Wolstanton discards, the surface samples have 

higher sulphate contents than the san:ples at depth (Table 4. 2) . 

4.5 Conclusions 

Discard from three different collieries was studied using total 

chemistries, obtained by XRF analysis and semi-quantitative mineralogical 

analyses by XRD techniques. 

A comparison of the results obtained by these methods shows that the 

discards fall into three groups, each having distinct characteristics. 

'Ihe Maltby discard is predominantly clayey cootaining little quartz, 

below the average for British colliery discards (Taylor, 1984). The 

discard is dominated by illite and is probably the most highly weathered. 

In this respect, it should be recorded that in a surface sample taken from 

the experimental heap and in ooe tip specimen taken from the O-lOOmm depth, 

2% and 5% gypsum, respectively, were estimated. 'Ibis additional evidence 
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of weathering was not.found in samples from the other two colliery tips. 

Discard from Bilsthorpe has a very high quartz content, but also a 

high clay content, compared to discards from Maltby and Wolstantan. This 

discard is dominated by illite and also has the highest mixed-layer clay 

content. This discard is probably more weathered than the Wolstanton 

discard. 

Wolstanton discard is markedly different from that of the other two 

collieries, being a coal-rich material. Wolstanton discard, although being 

dominated by illite, ~s the lowest total clay and illite contents of the 

three discards. The highest siderite percentages were found in this 

discard and this, along with a high illite crystallinity ratio and low acid 

and water soluble sulphate content, would indicate that Wolstantan discard 

is the least weathered of. the three studied. 
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CHAPlER 5 

DIS'IIDB1riCB <F CHUJU1m AND ornER ~ IN 'lHE NEAR SURFACE LAYERS 
<F OOIL1ERY EJt1BANKltall'S 

5.1 Grid Saop~ Results for <llloride 

Figures 3.2a and 3.3a show the location of the grids sampled at the 

Maltby and Wolstanton High carr sites. Sampling details have been outlined 

in Chapter 3 and at both sites a regular 5rn x 5rn grid was adopted. 

The effects of changing the grid size on chloride distribution 

patterns over the tip surface, can be clearly demonstrated and are 

presented in Figs. 5.1 and 5.2. The loss of resolution in the plots when 

using larger sampling grids of lOrn x lOrn or 15m x 15m is considerable. 

Such widely spaced grids are clearly relatively useless in their ability to 

isolate areas of high chloride concentrations or hotspots on the tip 

surface. 

Figures 5.3 (a) and (b), 5.4 (a) and (b), 5.5 (a) and (b) and 5.6 (a) 

and (b) are grid and contour plots of chloride levels at the Maltby and 

Wolstanton sites, for two different sampling depths of 0-lOOrnrn and 100-

200nm. 8arrpling was carried out during Spring. 

5.1.1 fiBJ.tby 

Chloride 'highs' or hotspots occur at grid intersections A, B, C and 

D for material from O-lOOrnrn depth as shown in Fig. 5.3(a) and photograph 

5. 7(a). These hotspots were not obvious on the ground in Spring and are 

not highlighted by a larger grid sampling plan. In material from the 100-

200mrn depth interval, most of these hotspots are still present, but are 

more subdued and dispersed (Fig. 5.3(b)). 
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Fig. 5.1 

(a) ~mx~m 

(b) 10mx 10m 

TOE SLOPE 

(c) 15mx15m 

Chloride distribution patterns on an embankment 
at Maltby Colliery using three different grid 
sizes: (a) 5m x 5m; (b) 10m x 10m; (c) 15m x 15m. 
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(a) 5mx5m 

(b) 10mx 10m 

TOE SLOPE 

(c) 15mx16m 

Fig. 5.2 Chloride distribution patterns on an embankment 
at Wolstanton Colliery using three fidderent grid 
sizes: (a) 5m x 5m; (b) 10m x 10m; (c) 15m x 15m. 
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Fig. 5.3 

MALTBY SAMPLE GRID 5mx5m 

SPRING Cl ppm 

DEPTH 0-100mm A 
CONTOUR INTERVAL 60 ppm 

TOP SLOPE 

( •) GRID PLOT 

TOP SLOPE 

(b) CONTOUR PLOT 

TOE SLOPE 

Chloride ion distributions on Maltby embankment 
during Spring 1983 at a depth of O-lOOmm, 
(a) grid plot; (b) contour plot. 
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MALTBY SAMPLE GRID 5mx5m 

SPRING Cl ppm 

DEPTH 100-200mm 

CONTOUR INTERVAL 50ppm TOP SLOPE 

(a) GRID PLOT 

TOP SLOPE 

(b) CONTOUR PLOT 

Fig. 5.4 

TOE SLOPE 

Chloride ion distributions on Maltby embankment 
during Spring 1983 at a depth of l00-200mm, 
(a) grid plot; (b) contour plot. 



WOLSTANTON SAMPLE GRID 5mx5m 

SPRING Cl ppm 

DEPTH 0-1 OOmm 

CONTOUR INTERVAL 1 Oppm c 

(a) GRID PLOT 
TOP SLOPE 

TOE SLOPE 

TOP SLOPE 

( b) CONTOUR PLOT 

TOE SLOPE 

Fig. 5.5 Chloride ion distributions on Wolstanton 
embankment during Spring 1984 at a depth of 
0-lOOmm, (a) grid plot; (b) contour plot. 
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WOLSTANTON SAMPLE GRID 5mx5m 

SPRING Cl ppm 

DEPTH 100-200mm 

CONTOUR INTERVAL 10ppm c 

(a) GRID PLOT 
TOP SLOPE 

TOE SLOPE 

TOP SLOPE 

(b) CONTOUR PLOT 

TOE SLOPE 

Fig. 5.6 Chloride ion distributions on Wolstanton 
embankment during Spring 1984 at a depth of 
100-200mm, (a) grid plot; (b) contour plot. 
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(a) 

(b) 

Pig. 5.7 (a) L0cation of grid sampling on Maltby 
embankment. hotspots A. B. C and D and 
excavated Trenches E and F. 

(b) LOcation of three traverses on Maltby 
· embankment with sampling positions 
indicated at. top. mid and toe of slope. 
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During the Winter and Spring months the average chloride levels are 

higher in the depth interval 100-200mm (218ppm) than that from O-lOOmm 

(189ppm). Chloride values fall in a downslope direction as might be 

expected because locations down-slope will progressively receive a greater 

volume of surface and shallow percolation runoff. This part of the tip 

will thus be subject to increased leaching and flushing of water soluble 

elements and to dilution of initial chloride concentrations. 

5.1.2 Wolstantan 

Chloride hotspots occur at grid intersections A, B, C, and D in the 

discard from O-lOOmm depth (Fig. 5.8(a) and (b)). These hotspots are of 

similar intensity in discard from the depth range l00-200mm (Fig. 5.5(a) 

and (b)). 

During the Winter and Spring months the average chloride levels are 

slightly higher in the discard from the range O-lOOrnm (40ppm), than in that 

from l00-200rnrn (34ppm). No overall effects resulting from position an the 

slope can be seen and there is no overall decrease in chloride levels in a 

downslope direction. 

A comparison between the Maltby and Wolstantan Winter and Spring grid 

patterns reveals basic differences in the level of chlorides in the two 

embankments. At Maltby the material from 0-lOOmm averages 189Ppm Cl-, 

compared to Wolstantan where the average is only 40ppm Cl-. Discard from 

100-200rnrn at Maltby averages 218ppm Cl- whereas that from Wolstantan has an 

average of 34ppm Cl-. Although hotspots are present at Wolstanton, the 

slope appears to be in equilibrium. Chlorides have probably reached a 

'background' level and leaching is not a significant process affecting the 

chloride concentration in the discard. At Maltby, downslope leaching is 
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still an active process (see Fig. 5.9). 

The differences may also be related in part to differences in the 

physical properties of the colliery discard at the two sites, as described 

in Chapter 4. The Maltby discard is predominantly a clayey discard, 

compared to a coal-rich discard at Wolstanton. Reference to Fig. 6.6 

(Chapter 6) highlights differences in particle size distribution for 

discards of similar age at each colliery site. 'Ihe degraded Maltby discard 

has a higher percentage of clay, silt and sand components, compared to the 

Wolstanton discard which has a higher percentage of coarser gravel, and 

would not appear to be as degraded as the Maltby material. 

The coarser, less clayey discard of Wolstanton, would be relatively 

free draining, compared to that of Maltby. Natural leaching of chlorides 

from the discards would appear to progress at a faster rate, as shown by 

the relatively low brackground chloride levels for Wolstanton compared to 

Maltby. Conversely, the Maltby discard which is less coarse and has a 

higher clay fraction, would be less free draining and natural leaching of 

chlorides would be slower. 

Table 5.1 shows chloride variation through time, from fresh ex-washery 

discard to a maximum of three years old. Comparison can be made with the 

Maltby discard, retaining its high chloride level, to that of Wolstanton, 

the three year old discard having reached a chloride level of less than 

50ppm. Both discards had the same approximate initial chloride level. 
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Fresh ex-washery Tip Leaching 
discard pericd 

Maltby 810 44-830 3 years 

East Hettan 283* <20 lyear 

Wolstantan Boo <50 3 years 

Lea Hall 3200 <50 3 years 

* mine water chloride content. 

'lable 5.1 (}llar1de (llJil} var1at1m 1n coarse colliery discard with time. 

5. 2 'lraverse data 1nCOI1)0I"at~ depth profiles w1 th a saup~ interval of 

lOOon 

Figures 5.7(b) and 5.8(b) show the locations of several of the 

traverses sampled on the Maltby and Wolstanton High carr sampling sites, 

respectively. Sampling details are as outlined in Chapter 3. In each 

traverse, three points were sample~ top of slope (i), mid slope (ii) and 
" 

toe of slope (iii), referred to as top, mid and toe. Depth profiles, 

sampled at lOOnrn intervals, were obtained at each traverse posi tian. 

5.2.1 (}llar1des 

5.2.1.1 MUtby 

A clear seasonal pattern of chloride movement in the discard 

embankment has emerged from the data. IA.ir1ng Spring and Winter seasons, 

specifically 1983, there was a significant movement of chloride ions from 

the surface, down into the embankment, for all traverse positions; top (r = 

0. 73, p = 0.05), mid (r = 0.97, p = 0.01) and toe (r = 0.99, P = 0.05). 

During Summer and Autumn seasons the above trends disappear and no 

significant movement of chloride into the embankment can be measured. 
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However, there is an increase of chloride concentration towards the surface 

and a more uniform distribution of chloride in the top 500mm of the 

discard. These trends were repeated in data obtained for subsequent years. 

The movement of chlorides into the embanlanent indicates that leaching 

has been an effective process in the colder and wetter months. Drier 

weather, in contrast, has resulted in increased evaporation and a general 

increase in chloride levels towards the surface (see also Chapter 6). 

Comparison of average concentrations by the non-parametric Wilcoxon 

Rank Sum Test (Siegel, 1956) shows a significant decrease in chloride 

levels in the top O-lm of discard from 1983 to 1984. This applies to top, 

mid and toe positions on the slope for all seasons, with p = 0.01 in all 

cases. This fall in chloride levels in the embankment from year to year 

can also be seen in Fig. 5.9, a graph of cumulative means for all positions 

on the spoil slope, for the period 1983-85. A continued decrease in 

chloride level in the discard embanlanent may be expected, as shown by the 

hashed black line on Fig. 5.9. 

5o2olo2 Wolstantan 

Data obtained from traverse sampling at Wolstanton reveals no 

statistically significant seasonal patternof chloride movement in the top 

500mm of discard. However, data obtained did indicate that some leaching 

occurred during the wetter months, for example Winter 1984, chloride levels 

were 19ppm at a depth of O-lOOmm and 35ppm at a depth of 500mm. A more 

uniform distribution occurs in the discard during the Summer months, for 

example during Summer 1984, chloride levels were 89Ppm, 105ppm and 60ppm 

for depths O-lOOmm, l00-20mm, 200-300mm and 300-400mm, respectively. 

Analysis of the data by the Wilkoxon Rank Sum Test, showed a 
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significant increase in chloride levels from 1984 to 1985 for the Spring 

and Winter season, for the top of slope position (p = 0.01), but decreases 

for the mid and toe slope posi ticns (p = 0.01). 'Ihere were no significant 

changes for the Summer months. 

Compariscn of average chloride levels in the surface layers of discard 

from Maltby and Wolstanton shows that concentrations at Wolstanton are 

lower by a factor of up to x 6.4. The traverses at Wolstanton show no 

significant seasonal movement of chloride in the discard and can show both 

increased and decreased chloride levels with time, depending on slope 

position. Chloride levels in the Wolstanton discard are thus probably too 

low to fluctuate significantly and have reached equilibrium. The 

distribution of chlorides is thus unlikely to change significantly, unless 

in the immediate vicinity of a hotspot or seepage point. 

5.3 Distribution of' Sulpha.tes and Patterns of' Electrical Conductivity 

W1th:1n the Discaro 

Data for sulphate distribution within the discards also reveal a 

seasonal movement within the embankment at the Maltby site. D.lring Spring 

1983, for the top and mid slope positions, a positive correlation was 

obtained between sulphate concentration and depth reflecting movement into 

the embankment, (r = 0.96 and r = 0.91, p = 0.01 respectively). During the 

Summer of 1983, the top slope position gave a positive correlation between 

sulphate and depth into the embanlanent (r = 0.78, p = 0.05). 

As with the chloride results for Wolstanton , only slight seasonal 

trends in sulphate concentration with depth were evident. These did not 

prove significant under statistical investigation. 
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5.3.1 Electrical Camlctivity 

The measurement of soluble salt contents in soils or discards is an 

essential component of agricultural studies and land reclamation practice. 

Under normal conditions total dissolved salts can be estimated accurately 

as a function of the electrical conductivity of soil moisture extracts . . 

Such relationships between total dissolved salts and electrical 

conduct! vi ty may, however, be too simple and will not predict variations in 

any particular salt such as sulphate or chloride (Chang et al., 1982). 

Relationships between electrical conductivity and total dissolved salts may 

thus underestimate the role of any one particular salt and cannot monitor 

variations in the combinations of salts present in the discard or soil. 

Although conductivity may be used to indicate if the combination of salts 

is at a level harmful to the establishment of plants, it cannot be used to 

define which ions are contributing to the h1gh conductivity levels. 

Data obtained from Maltby Colliery show that relationships between 

electrical conductivity and chloride and sulphate concentrations within the 

embankment are not easily assessed. Seasonal distribution patterns are not 

as clearly defined in the embankment as for those of chloride and sulphate. 

However, electrical conduct! vi ty did increase towards the surface of the 

embankment during Summer 1983 (r = 0.82, p = 0.05). Large increases in 

electrical conductivity were noted around hotspots, Winter grid 1983 0.568 

x 103; Summer grid 1984 0.130 x 104 r'.S/cm. Although there seems to be some 

increase in electrical conductivity levels towards the surface during 

Summer months, it is not statistically significant. 

From graph plots (Fig. 5.10) of chloride plus sulphate vs electrical 

conductivity, it would appear that the sulphate component has a greater 

\ 
effect on ele\ ctrical conductivity than the chloride component. When 
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conductivity is plotted against chloride and sulphate x 6, a better 

correlation is found. There would appear to be no ready explanation for 

this relationship. This may be especially true for surface discards where 

the oxidation of pyrite considerably increases the sulphate content in the 

top lOOmm (see Section 5.5). Because of these findings it is unwise to 

relj y on electrical conductivity as an accurate indicator of chloride 

levels in coarse discard, as a high electrical conductivity may not be 

indicative of high chloride levels. 

No such trends were found for Wolstanton High CarT site. 'Ibe figures 

for conductivity for Wolstanton discard compared to those of Maltby were 

very low and again may constitute a background level within the discard. 

Although fluctuations do occur, they are very slight and are not 

statistically significant. 

5.4 'Iraverse data 1ncarporat~ depth profiles with a saq>~ interval of 

lOon 

In section 5.2 three points were sampled, top, mid and toe of slope. 

Each position was sampled over the depth range 0-50mm at lOmm intervals. 

Samples were taken adjacent to positions used for the larger lOOmm sampling 

interval. This enabled direct comparisons between these near-surface 

profiles and the deeper profiles described in Section 5.2 

5.4 .1 all.orides 

5.4.1.1 Maltby 

The data reveal a clear seasonal pattern of chloride movement in the 

top 50mm of the embanlanent, for the top of slope position. In Summer 1984 

a surface chloride concentration of 12,740ppm was recorded, falling to 
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1,540ppm at a depth of 50mm below the surface, a significant fall in 

concentration with depth (r = 0.94, p =0.05). In contrast during the 

Spring of 1985, there was a significant downwards increase in chloride 

coocentration reflecting leaching into the embankment (r = 0.96, p = 0.01). 

5.4.1.2 Wolstantan 

The data for Wolstanton confirm the results obtained over the greater 

depth range, in that only sight seasonal trends are evident. The only 

significant data concerned a build-up of chloride during Summer 1984 at the 

toe of slope position (r = 0.95, p = 0.05). This was presumably due to the 

presence of a hotspot (or a seepage) at this point. 

No significant increases or decreases in chloride levels were noted 

from year to year, again indicating that discard had reached a background 

equilibrium level. 

5.5 D1stributian of Sulphates and Patterns of Electrical Conductivity 

within the D1scard 

In the Maltby discard a clear pattern of sulphate movement in the 

near-surface of the embankment emerges. During Winter 1984 there was 

significant movement of sulphates into the embankment for top and mid slope 

positions; r = 0.87, p = 0.05 and r = 0.85, p = 0.05 respectively. During 

the Summer of 1985, a surface accumulation of sulphate was noted, with a 

significant decrease in concentratioo with depth (r = 0.95, p = 0.05). 

In cootrast, at Wolstanton Colliery, ooly slight seasonal trends were 

evident. A build-up of sulphates during Summer 1984 was noted at the toe 

of slope position (r = 0.91, p = 0.05). This may reflect a surface hotspot 

as suggested by the chloride data. 
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5.5.1 EJ.ectrical C<niuctivity 

During the summer of 1984 at Maltby, electrical conductivity in the 

near-surface layers (0-lOOrnrn) of discard increased towards the surface for 

tip and toe positions on the embankment; r = 0.95, p = 0.05; r = 0.94, p = 

0.05 respectively. There was an increase of electrical conductivity 

downwards into the embankment during the Winter of 1985 (r = 0.87, p = 

0.05). 

At Wolstanton during the Spring of 1985, the top and toe of slope 

positions showed a significant increase in electrical conductivity with 

depth in the embankment (r = 0.83, p = 0.05). The lack of any other 

significant changes in conductivity levels reflect the overall low levels 

of electrolytes found in the Wolstantan discard compared to levels in the 

Maltby embankment. 

5. 6 Distributim patterns o1' chloride am sulphate 1n tq> soil over saline 

discard 

Berg et al. (1980), studied the movement of salts into tq:> soil cover, 

over previously desalinated mine spoil. The findings indicate that over 

periods of prolonged drought, under arid conditions or conditions where 

evaporation exceeds precipitation, the mine spoil may resalinate and tq:> 

soil applications may also becane saline. 

Top soil samples were taken from Bilsthorpe Tip No. 1 site in July 

1985, from patches of bare soil (seepage points). From table 5.2 it can be 

seen that an increase occurs in both chlorides and sulphates at the soil

discard interface. Some movement of electrolytes, particularly sulphates, 

into the tq:>soil has occurred. 
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Material ~pth Cl so4 
(nm) (ppm) (ppm) 

Tq:> soil 0-10 36 145 
10-20 35 84 
20-30 35 184 
30-40 45 345 
40-50 35 376 
50-60 51 314 

Soil/discard interface 

discard 55 683 

-»Wle 5.2 Chloride and Sulphate Levels 1n Top Soil and Discard on Tip No. 
1, BUs thorpe Colliery. 

5. 7 Hotspots 

As already mentioned in previous sections dealing with chloride and 

sulphate distributions in the discards from the three Colliery sites 

'hotspots', or areas with a much lllgher salt concentration, were observed 

an the surface of embankments, particularly at Maltby and Wolstantan (Figs. 

5.lla and 5.llb). 

A surveyed cross section of the Maltby embankment showed the positions 

of the hotspots on the embankment to be equivalent to top water level in 

the lagoon. '!he supernatent water in the lagoon during that perioo, had a 

chloride concentration of 112 000 ppm. The top 3m of the embankment 

probably represents the final lift, with the seepage line representing the 

position of the previous crest. Similar observations made at the 

Wolstanton High Carr disposal site, with respect to hotspot distribution, 

again showed linear deposition of salts running parallel to the crest of 

the embankment. At Wolstantan there is no lagoon incorporated into the tip 

and so the possibility of direct lateral seepage from the lagoon as a 

possible mechanism for hotspot develq:>ment (at Maltby) can be discounted. 



(a) 

(b) 

Fig. 5.11 (a) ·Hotspots on the Maltby embankment. 

(b) Hotspots on the Wolstanton embankment. 
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In July 1983, the hotspots A, Band C (Fig. 5.7a) were observed to 

form part of a linear surface deposition of salts running more or less 

parallel to the crest of the embankment. 'Iheir formatiOn would appear to be 

associated with the layering of discard in 'lifts' of up to 5m in thiclmess 

(Chapter 3), influencing permeability. 'Ihe raising of an embankment will 

usually mean that less dense discard is likely to be in contact with a more 

compacted and degraded underlying (older) surface, possibly of some years 

standing. In this way an old surface could act as a permeability barrier 

to water percolating downwards. 'Ibis would result in the concentration of 

soluble salts along these less permeable surfaces eventually appearing as 

hotspots on the embankment surface. 

Table 5.3 shows the distribution of chloride down two vertical faces 

excavated in August 1983 on the experimental embankment at Maltby Colliery. 

'Ihe positions of the two vertical faces are shown as E and F on Fig. 5. 7a). 

surface 

N .Flank haulage road 
Depth m Cl in ppm 

0.1-0.2 
0.3-0.4 
0.5-0.6 
0.7-0.8 
0.9-1.0 
1.1-1.2 
1.3-1.4 
1.5-1.6 
1. 7-1.8 

210 
290 

1016 
125 
145 
245 
215 
325 
435 

surface 

Below haulage road 
Depth m Cl in ppm 

35 
15 
27 
76 

285 
555 
535 
106 

1.9-2.0 
2.1-2.2 
2.5-2.6 
2.7-2.8 
2.9-3.0 
3.1-3.2 
3.3-3.4 
3.5-3.6 
3.7-3.8 lll2 
3.9-Bedrock 1085 
(Lr.Mag. L'st) 

'!able 5o3 ~ distribution of chlorides in Tralch ES> sampled 31 August 
1983o 

The analyses demonstrate downward leaching in the discard. Chloride 

values in the embankment adjacent to the grid shown in Fig. 5.7(b) are 

generally intermediate between comparable traverse holes T2(ii) and 



MALTBY SAMPLE GRID 5mx5m 

SPRING Cl ppm 

DEPTH 0-100nuft 

CONTOUR INTERVAL 50 pp111 

•) GRID PLOT 

b) CONTOUR PLOT 

Fig. 5.13 Comparison of chloride distribution on Maltby 
embankment during Spring 1983 and Summer 1984 
at a depth of O-lOOmm; (a) grid plot; 
(b) contour plot. 

99 



A 

MALTBY SAMPLE GRID 6nulm 

SUMMER Cl ppm 

DEPTH 0 100mm 

CONTOUR INTERVAL 50 ppm 

a)GRID PlOT 

TOP SLOPE 

b) CONTOUR PLOT 

TOE SLOPE 
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T2(iii). 

The parting between the two high chloride values underlined in Table 

5.3 is just over 3m in thickness, this may represent the position of the 

initial lift of the embankment. Indications from Maltby that seepages 

might be associated with impermeable surfaces of previous lifts were 

investigated further at Bilsthorpe Colliery (see Bick, 1985; Fig. 5.12). 

In addition to a definable phreatic surface being present, quite a high 

perched water table was measured in a lagoon embankment at Bilsthorpe. The 

perched water table was almost certainly supported by the the top of the 

initial lift, the present bank comprising two lifts. The old surface had 

been exposed to degradation for a period of 3 years prior to the 

construction of the second stage. 

The Maltby site was also sampled on a grid basis during the Summer 

months of 1984. At this time hotspots could be seen on the discard surface 

forming damp patches surrounded by an efflorescence of crystalline salts. 

A comparison between Figs. 5.13(a) and 5.13(b) shows that all hotspots 

occur in both, but highlights seepage A in the Summer grid. There is 

clearly a large increase in chloride concentrations at, and around, seepage 

A. Average chloride concentrations for the entire sites at the O-lOOmm 

depth in Summer are 724ppm Cl-, compared to a 234ppm Cl- Winter average. 

Seepage point A showed increased chloride concentration from 985ppm Cl- in 

Winter to 2388ppm Cl- in Summer, this was for discard of 0-lOOmm depth. 

Samples of the crystalline salts from efflorescences on the discard 

embankments at Maltby and Wolstanton Collieries were analysed using XRD 

techniques. 'Ihe main salt identified was thenardi te (Na~04) with traces 

of halite (NaCl). The predominance of sodium sulphate over sodium chloride 

on the surface may be explained by the preferential crystallisation of 
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sulphate minerals over chloride types (see Weast and Astle, 1983). 

Analysis of depth profiles of a sampling interval of lOmm (Section 5.4) 

shows a much increased ccncentratian of sulphate an and near the embankment 

surface. 

5.8 Conclusions 

Accurate sampling of colliery discard embankments is essential for 

investigating electrolyte distribution in such embankments. This process 

requires a grid of not less than 5m x 5m. A grid of this size can be used 

to locate hotspots and emissions from seepages. A grid size greater than 

5m x 5m was found to be ineffective in terms of hotspot definition. By 

comparing electrolyte concentrations in samples taken from grids of an 

identical pattern, but for Winter and Summer seasons, a pattern of 

electrolyte movement and concentration over a wide area can be assessed. 

Using data collected on a grid basis it can be seen that chloride 

levels are higher in to l00-200mm depth than the O-lOOmrn depth during the 

Winter/Spring months, whereas the converse is true during the Summer months 

when the surface discard has a higher chloride concentration (see also 

Chapter 6 in respect of suction pressure seasonal patterns). 

rata from the depth traverses in the embankment (to at least 500mrn), 

show that chloride levels increase in the surface layers of the discard 

during the summer months, and in certain areas salt efflorescences (or 

hotspots) appear, where salt concentrations are extremely high, and 

crystalline salts are visible on the surface. Seepages are not solely a 

symptom of seepage through the embankment from a lagoon. At Wolstantan, 

for example, seepage and chloride hotspots were identified in the absence 

of any encapsulated lagoon, or buried tailings within the tip. Further 
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investigations at Maltby and Bilsthorpe Collieries suggest that seepages 

and hotspots are associated with the impermeable surfaces of previous lifts 

during phased construction. 

Seasonal variations in chloride distribution are not as obvious in the 

discard at the Wolstanton, High Carr, site. This is presumed to be a 

function of the much lower levels of chloride found in this discard than in 

the Maltby discard during the Summer and Winter months, less than 50ppm in 

most cases. 'Ihis low level of chloride appears to represent a background 

level for chloride ions, so seasonal fluctuations are not obvious. Random 

samples were taken at two collieries not included in the main part of this 

project. Both sites were embankments of coarse discard older than three 

years, they were; East Hetton Colliery, County Durham and Lea Hall 

Colliery, Rugeley, Staffordshire. The discards both had chloride levels of 

less than 50ppm, suggesting that this discard has also reached a 

'background' chloride level. Although hotspots do appear on the surface, 

these are asst.m'led to be associated with embankment raising methcxis. 

At Maltby seasonal movements of chlorides are statistically 

significant. D.lring the Winter and Spring mcnths, chlorides move down into 

the embankment. This trend is reversed during the Summer months, when 

chlorides accumulate in the surface layers of colliery discards. 

Hotspots show little change in chloride levels over a two and a half 

year pericxi, compared with the initial fresh discard levels. Eac.kground 

levels at Maltby have fallen to about 200ppm in about 6 years, and in the 

coarser discard from Wolstanton, to less than 50ppm in about 3 years. 

Three tonnes of fresh, coarse discard from Bilsthorpe Colliery, with an 

initial chloride level of 3438ppm for run-of-mine, which was used to 

construct the expe~imental (courtyard) tip at Durham University, gave 
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chloride levels of 287ppm after six months exposure. A leaching experiment 

simulating a further 5 years exposure to precipitation indicated a 

reduction 1n chlorides to about 50ppm (Bick 1985) • 

There is a slight seasonal pattern for both sulphates and electrical 

ccnductivity movement 1n the Maltby embankment, that is, a Spring increase 

with depth into the embankment, and a Summer increase in concentration 

towards the surface of the discard. Same patterns appeared at Wolstantan, 

but because levels of both sulphates and measurements of conductivity are 

low, these patterns were not statistically significant. 

Sampling of embankments at both Maltby and Wolstant on with a much 

smaller depth interval (lOmm), revealed increases in sulphates, 

particularly towards to surface of the discard. These sulphates make up 

the principal salt found in XRD analysis of the effloresence hotspots on 

the discard surface, that is sodium sulphate 1n the form of thenardite. 
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6.1 Introduction 

High electrolyte concentrations and, particularly, high chloride 

levels cause physiological drought in vegetation, young vegetation being 

particularly susceptible. 'Ihe determination of salt concentrations and the 

movement patterns of electrolytes is thus important for restoration 

programmes. As chlorides and sulphates are relatively soluble, 

distribution patterns of these ions are likely to be governed by movement 

of water in the discard embankment. 'Ibis section investigates such water 

movement, in particular soil suction and its effects an surface wetting and 

drying, and the possible formation of suction gradients within the surface 

layers of the embankments. 

6.1.1 BQysio1og1cal Drought 

The effect of salinity on plant growth is to promote physiological 

drought, due to the osmotic effects of high salt concentration in reducing 

the availability of water to plants (Sutcliffe, 1976). 

In saline soil solutions the matrix potential is decreased, and hence 

the attraction of water to soil particles, cell walls and organic matter is 

decreased. Continued dehydration causes disorganisation of the protoplasm 

and death of most organisms. Root tissue is especially susceptible so that 

their measured lengths (dry weights) decrease. 

6.2 Soil Suction 

Between compacted soil or spoil particles is an interstitial space, 
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which, above the water table, is occupied partly by soil solution and 

partly by soil atmosphere. This pore space is continuous, consisting of 

voids intercormected by narrower channels (capillaries). Randomly packed 

soils have a statistically normal 'distribution' of pore sizes, but coarse 

grained soils (and hence fills) have pores which are large relative to 

finer grained soils, such as silts and clays. Pore size distribution is a 

major control an the mechanical properties and total porosity of the soil. 

'Ihus soil texture is related to pore size distribution which is referred to 

by soil scientists as textural pore space. Pore size distribution is also 

important in the structural development characteristics, or aggregation of 

soils. This characteristic is known as the structural pore size 

distribution. 

Water held in soil, the soil solution, can be categorised by its 

position in relation to the soil particles and type and size of pore. 

Gravitational water occurs in the larger pores of millimetre sizes, 

capillary water in those of intermediate size and adsorbed or hygroscopic 
0 

water in the ca. 40nm ( 400A) wide zane of strongly bonded water around clay 

sized and colloidal particles. Fig. 6.1 (after Buckman and Brady, 1969) 

illustrates the general zonation of water in relation to soil particles. 

6.2.1 Gravitational Water 

Following conditions in which the soil has become completely saturated 

with water, for example, after heavy rain, air is displaced from larger 

non-capillary pore spaces between soil particles. Under gravitational 

influence, this free water begins to percolate down through the soil 

towards the water table, the non-capillary spaces becoming refilled with 

air. 'Ibis gravitational water is of little direct use to plants and may be 
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detrimental if the soil remains saturated, causing injury to root systems 

through lack of oxygen, a build up of carbon dioxide and removal of 

nutrients. 

6. 2. 2 cap1.11ar,y water 

When gravitational water has drained away, a soil is said to be at 

field capacity. The remaining water in the soil exists as films around 

soil particles and in the smaller capillary pores. Most of this water is 

held loosely and is readily available to plants. However, some capillary 

water is firmly 'held' by colloidal material and, coupled with that in 

smaller pores, is relatively unavailable to plants. The finer the texture 

of the soil, the more surface area is exposed and the more capillary water 

it will hold. 

6. 2. 3 Hsgroscq>ic water 

Hygroscopic, or adsorbed, water is held in very thin films, 15 to 20 

molecules thick, on the soil particles by surface forces exerted by those 

particles. It can be thought of as the capillary water remaining in the 

air dried soil. This water is held so firmly that it can only move in the 

form of vapour and thus is unavailable to plants. This water can only be 

quantitatively determined by oven drying at 105-110°C. 

'Ihe relationships between soil water and plants is also illustrated in 

Fig. 6.1, indicating the range of root suction pressures which determine 

the water available to plants. In the requisite zone, the negative pore 

water pressure (suction pressure) ·is within the range 34-1471 kN/m2. 

Gravitational water is unlikely to be acted on by pressures greater than 34 

kN/m2, whilst suction pressures greater than 14 71 kN/m2 preclude capillary 
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water being availabl~ to vegetation. 

In agricultural studies, the water available to plants is described as 

the moisture content range between field capacity and permanent wilting 

percentage. Since field capacity is defined as the water content after 

drainage of gravitational water, as described earlier, the upper limit for 

plants is actually lower than the total 'field capacity' as is made clear 

in Fig. 6.2. Field qapacity includes capillary water not available to 

plants as well as hygroscopic water. Strictly it is not a precise 

description. Permanent wilting percentage is the lower unit of soil water 

storage for plant growth. It is the soil water content at which plants 

remain permanently wilted unless water is added to the soil. This is also 

referred to as the wilting coefficient. 

Continuous absorption of water is essential to the growth and survival 

of most plants. Plants absorb water through sections of the root o 

intimately associated and in contact with capillary water films around soil 

particles. 

If the water content is higher than field capacity, air is displaced 

from the non-capillarY pores and absorption is hindered by poor aeration. 

If the moisture content is too low, water is held so firmly by the soil 

that it cannot move into plant roots. 

The availability of soil moisture depends primarily on its tension, 

determined by gravitational, hydrostatic and surface forces, as mentioned 

above. Osmotic pressure which is determined by the concentration of 

solutes in the soil solution is also a factor. 

The attraction of soil water to mineral particles is customarily 

described in terms of water tension or suction pressure (the negative pore 

water pressure) • 
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Figure 6.2 Soil suction characteristics. 



6 o 3 Measm'\eiDSllt of Suet ian 

The measurement of soil suction in the field or in laboratory 

experiements can be achieved by using a tensiometer. Tensiometers usually 

take the form of a cylindrical, conical, pot of unglazed ceramic material 

connected to a measuring attachment, normally in the form of a mercury 

manometer. The tensiometer cone is inserted into a borehole in the soil 

material being tested. The borehole is of similar size to the cone, so a 

good contact between cone and soil material is achieved. Fig. 6.3 shows 

the system used in the experimental bunkers at Durham University. The 

following equations were used to calculate suction or positive pore water 

pressures. 

Dy = Dp + Dt + hml 

hm = hml + hm2 

[ (h2 + Dy) pw - hmfm]g<O 

[ (h2 + Dy) fW - hm lm]g>O 

DP = Depth of centre point of piezometer below discard tip surface 

Dt = Height of datum above discard tip surface 

hm1 = Mercury head 'above datum' in piezometer ann 

hm2 = Mercury head 'below datum' in open ann 

h2 = Excess head of water in open arm 

pw = Density of water= 1000 kg/m3 

p m = Density of mercury = 13,540 kg/m3 

g = acceleration due to gravity= 9.81 m/s2 

A Fortran computer program was used in order to calculate the suction 

pressures at the centre point of each of the piezometers from the daily 

manometer readings,. that is, hm1 (m); hm2 (m); and h2 (m). A listing of 
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the program is given in Appendix 3. 

The mercury manometer measuring system was later replaced by pressure 

transducers, calibrated for both pressure and tension. The electrical 

output from the tranducers could then be converted into mercury head and 

thence kN/m2. 

' 
Relationships between suction pressure and soil moisture conditions, 

using conventional units or the logarithmic pF scale, are shown on Fig. 

6.2. 

A porous body such as soil does not contain pores of tmiforrn size and 

shape which would all empty at the same suction pressure. Soils are 

characterised by a pore size distribution, thus pores with large channels 

of entry would empty at low suction pressures, whilst those with narrow 

channels of entry do not empty tmtil larger suction pressures are imposed. 

As soil water suction pressure is progressively increased, the soil 

moisture content is progressively reduced. 'Ihe plot of suction pressure 

against soil water content produces the curve known as the soil moisture 

characteristic. 

When suction is relaxed in an attempt to refill the cell, the smaller 

pores will fill before the larger pores. The suction pressure at which 

each size group refills is less than that at which it empties. 'Ihe curve 

obtained by plotting water content against suction pressure is similar in 

shape to that obtaiped during water removal, but is displaced in the 

direction of lower suction pressure. This deviation from perfect 

reversibility of the moisture characteristic, produces a hysteresis effect 

which is illustrated in Fig. 6.~ (Maltby discard less than 2rnrn grain size). 

The drying curves shown in Fig. 6.~ are for Maltby and Bilsthorpe 

coarse colliery discards. Tensiometers were embedded in the discard, then 
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using a large coring shoe, the tensiometers and sUITounding discard were 

taken and allowed to dry under laboratory conditions. These data can be 

compared with suction pressure water curves for material of less than 2mm 

size, separated from discard from a lagoon embankment at Maltby Colliery. 

These latter determinations were made by Simmonds (1984), using a 

laboratory suction plate apparatus. Suction pressures of up to pF 3 can be 

measured with this equipment (Fig. 6.5). It can be seen that the coarse 

discard from Maltby and Bilsthorpe show a much more restricted water 

content range, than the less than 2 mm fines from Maltby. This size 

fraction displays the characteristic shape of curve for silty and 

argillaceous soils and fine grained mudrocks (see, for example, Taylor, 

1978). 

As previously mentioned)) plants generally obtain their moisture and 

nutrient requirements from the smaller particle size fractions within a 

soil or discard. It can therefore be argued that the less than 2mm size of 

Maltby discard with its higher moisture content range in Fig. 6.3 is more 

ideal for plant growth than the in situ 'whole' discard sizes of Maltby and 

Bilsthorpe with lower moisture contents (Fig. 6.3). However)) in the 

restoration procedure)) scarifying is commonly used in the upper layer. 

This means that vegetation moisture requirements will be more nearly 

satisfied as in situ material is broken down. Weathering of the surface 

will)) of course)) help in producing smaller grain sizes if restoration is 

delayed for many months. 

6o4 Design of Project 

Two experimental discard tips were constructed in confined bunkers at 

Durham University. There were two reasons for conducting experiments in 
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these experimental (courtyard) tips: (a) provision could be made for 

continuous data logging of tensiometer readings~ and (b) research would not 

be interrupted by the Miner's Strike of 1984. Subsequently in 1985, 

measurements were made at two locations at Bilsthorpe Colliery, in the 3 

year old embankment of lagoon 6, and below the 3 year old soil cover at a 

location devoid of grass on the restored part of Tip No. 1. The discard at 

the latter site was about 15 to 20 years old. Individual readings only 

could be made at Bilsthorpe since data logging was deemed to be too 

expensive. 

The two experimental bunkers were of different construction. One used 

shuttering boards, reinforced with a vertical and horizontal framework of 

angular steel (11Dexion"), and the other was a more permanent structure 

made from breeze blocks. The base of each bunker had a 2-3° slope from 

back to front~ to allow base flow and runoff into a plastic gutter. This 

water was channelled into a pyrex collecting beaker. A double lining of 

thick plastic was placed inside the bunkers to prevent any loss of water 

from the base or side wall intersections. 

In June 1984, the first experimental tip was constructed using coarse 

discard from Maltby Colliery~ believed to be about 7 years old. The 

particle size distribution of the material is shown in Fig. 6.6. About 2.2 

tonnes of discard was used for the experimental tip. The structure shown 

in Fig. 6.l was compacted in 3 layers to a nominal bulk density of 2.0 

Mg/m3. The exposed face was given an inclination of 18°. 

During Spring 1985, the second experimental tip was constructed using 

3 tonnes of coarse discard from Bilsthorpe Colliery. This material was of 

considerably coarser grain size than that from Maltby, as seen in Fig. 6.6. 

Over a period of about 15 months, this discard degraded to a size range 
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Figure 6.5 Suction plate apparatus. 
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similar to that from, Maltby. During this period, however, it was subjected 

to a leaching experiment simulating 5 years' raini'all. 

6o4ol Tensiameters 

High air entry ceramic piezometers (Fig. 6.~) with a pore diameter of 

approximately 1 urn, an air entry value of approximately 1 atmosphere (ca. 

100 kN/m 2) and a permeability of 2 x 10-8 m/s were modified as 

tensiometers. They consisted of a porous ceramic cylinder, sealed at one 

end, connected at the other to a sealed water reservoir and a suction 

measuring device (Fig. 6.8). In the initial stages of the Maltby 

experimental tip, standard mercury manometers were used to measure suction 

of positive pore water pressures as outlined previously. These were 

replaced to enable continuous monitoring by Schaevitz pressure transducers 

(No. P721/001) calibrated in both tension and compression. These were 

calibrated using a mercury manometer linked to a vacuum pump. The 

transducers were connected via a stabilised power supply to a data logger 

(CHRISTIE CD 248 DATA LOGGER). The transducers minimised the time lag in 

tensiometer response, since practically no water flow occurs as the 

instrument adjusts. The water inside the tensiometer assumes the same 

solute composition and concentration as the soil water and therefore it is 

the matric potential (suction) which is measured and not the osmotic 

suction. Measurements by tensiometers of this type are limited to suction 

pressures of below 1 atmosphere (101 kN/m2). The highest measurement 

recorded in this study (see Fig. 6.11) was 86.7 kN/m2 (pF 2.94) in 

Bilsthorpe Tip No. 1, but it was suspected that in dry weather higher 

suction pressures would apply. 

Prior to installation of a tensiometer it is necessary to de-air the 
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Figure 6.7 Construction of Maltby experimental tip 
showing . tensiometer ready for installing 
in hole made by cutter tube. 

121 



1--' 
1\.) 
I\) 

HARD PL~STIC END 

RUBBER SEAL 

Figure 6.8 

BRA88 CENTRAL 

SPINDLE 

CERAMIC WALL 

DE-AIRED WATER 

Cross section of tensiometer (piezometer). 

TO TRANSDUCER 

DE~AIRED WATER 



ceramic cylinder and to ensure that it is not leaking after it has been 

filled by submergence in de-aired water and the top section assembled. In 

both experimental tips, tensiometers were installed at depths corresponding 

to shallow-100 mm; mid-200 mm; and deep-430mm (500 mm in the Bilsthorpe 

discard experimental tip). The depths correspond with the centre points of 

the ceramic cylinders and are indicated on Figs. 6.9-6.11. 

The instruments were installed in narrow holes filled with water in 

the colliery discard material, any large cobbles or boulders having been 

previously removed. The discard was then tamped down around the 

tensiometer, the excess water helping to provide a good seal. However, 

after extended periods of high suction pressures, air did enter the 

tensiometers and they needed to be flushed and refilled with de-aired 

water. Some breaks in the record of individual tensiometer readings (Fig. 

6.9) are a result of such system maintenance. The coarser material from 

Bilsthorpe was particularly troublesome in this respect. Breaks are 

indicated in the early Maltby readings highlighting the inadequacies of 

mercury manometers. 

The tensiometers installed at Bilsthorpe Colliery had to be read 

individually by means of a sealed lead acid battery, a voltage regulator to 

ensure a constant excitation of lOv, and a battery-powered multimeter to 

display the output voltage. Considerable problems were encountered with 

these tensiometers because of water leakage. These tensiometers were 

largely manufactured in the laboratory workshops and difficulties were 

experienced with seals. 

6 o 5 Suet ian Pressure M:easur6msnts 

OUtput for the two experimental embankments is shown in Figs. 6.9 and 
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6.10, whilst field measurements at Bilsthorpe Colliery are shown in Fig. 

6.11. Rainfall figures, maximum daily temperatures and wind speeds for the 

experimental tips were taken from the Durham University Observatory 

records, whilst those shown in Fig. 6.11 were supplied by the Nottingham 

Weather Station at Watnall. 

'Ihe Maltby record. commences in July 1984 and rtms through to the end 

of August 1985. 'Ihe Bilsthorpe experimental tip was monitored from early 

May to early August 1985, after which other experiments were carried out an 

the material (see Bick, 1985). 

Maltby and Bilsthorpe records (Figs. 6.9 and 6.10) indicate that 

throughout the monitoring period, only small negative or positive pore 

pressures were measured in the deepest tensiometers (430mm Maltby, 500mm 

Bilsthorpe). Although the early Maltby measurements (Fig. 6.9, July 1984) 

were affected by air entering the measuring equipment, the technique of 

refilling and stabilising tensiometers was perfected within a few weeks. 

The Bilsthorpe discard experimental tip was about 6 months old when 

instrumented. Air entry difficulties were experienced throughout the 

monitoring period due to its coarseness. 

The highest suction pressure reading in the experimental tips was 

recorded in July 1984, being 65 kN/m2 for Maltby discard. In July 1985, 

the tensiometer at lOOmm depth in the Maltby experimental tip registered a 

maximum of 59 kN/m2. 'Ihis compares with a maximum of only 26 kN/m2 for the 

shallowest tensiometer in the much coarser Bilsthorpe material. A 

comparison of the same time period in Figs. 6.9 and 6.10 illustrates the 

much lower suction pressures measured in the Bilsthorpe material. 

'Ihe shallowest tensiometers at about lOOmm depth recorded the h1ghest 

suction pressures, although in more continuous wet periods there was a 
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tendency for the middle tensiometers to give the highest readings. 

Reference to Fig. 6.9 shows that, in August 1985, the middle tensiometer 

was recording suction pressures of about 20 kN/m2, as against values below 

5 kN/m2 for the shallowest instrument. 

Examination of the records for both discards suggest that rainfall is 

the main control on suction pressure in the experimental tips. There is 

possibly some indication that wind speeds might have some influence on the 

Bilsthorpe readings. However, it was not possible to assess accurately the 

influence of wind and maximum temperature on these experimental heaps 

because they were to a large extent, protected by buildings. 

'Ihe main findings of the monitoring programme are best illustrated by 

the Maltby record shown in Fig. 6.9. In mid September 1984, the suction 

pressures dropped in all tensiometers and remained at negligible levels 

throughout the winter months. By April 1985 they had started to rise 

although it was not until June that fluctuating, but sharp, increases 

occurred (see also Fig. 6.10). 'Ihe highest suction pressures were measured 

in July and August in both 1984 and 1985. 

The pattern described above suggests that sowing and planting of 

vegetation is best initiated during Autumn, starting in mid September. 

Results outlined in Chapter 5 and by Taylor et al. (1984) have indicated 

that the downward concentration of chlorides into an embankment commences 

in late Autumn. Spring . sowing would mean that young vegetation might well 

be subject to the higher Summer suction pressures and thus to higher 

chloride and sulphate levels in new embankments constructed of saline 

discards. 
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6. 5.1 Field Meast.n'E!Dellts 

Fig. 6.11 is a record of the suction measurements taken in lagoon 

embankment L6 and within the grassed part of Tip No. 1 at Bilsthorpe 

Colliery. The 3 years old exposed coarse discard of embankment L6 forms 

the best comparison with the experimental tips, since Tip No. 1 has been 

top-soiled and seeded. 'Ihe pattern of measurements in the L6 embankment 

agrees with this interpretation. 

'Ihe maximum suction pressure readings shown both in Tip No. 1 and the 

lagoon embankment are notable at 89 and 86 kN/m2 respectively. These 

values are more than 20 kN/m2 higher than the maximum values measured in 

the Maltby experimental tip. Both field locations at Bilsthorpe Colliery 

are in open, exposed areas and will experience the drying effects of the 

wind to a greater degree than the experimental tip structures at the I:Urham 

University site. The lagoon 6 embankment is 11m high and Tip No. 1.17m 

high, compared to a height of under 1m for the experimental structures. 

Fluctuations in the suction pressure measurements from the shallow 

tensiometers placed in both embankments at Bilsthorpe are very marked. It 

would appear from Fig. No. 6.11 that the high suction pressures measures oo 

23rd July 1985 (L6) and 26th July 1985 (Tip No. 1) corresponded to 

increasing daily temperatures, rather than to windspeed which is falling. 

The rapid response to rainfall of the shallow tensiometer in Tip No. 1 

after 26th July is analogous to the tensiometer behaviour noted in the 

experimental tips. However, the weather station is not in the immediate 

site vicinity and slight discrepancies in weather and tensiometer response 

might be expected. 

The overall tensiometer response in Tip No. 1 suggests that soiled and 

vegetated embankments may behave rather differently from untreated coarse 
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discard exposed in embankments. The middle and deepest tensiometers were 

apparently unaffected by fluctuations in rainfall, although the deepest 

instrument did show a gradual rise in suction pressure following 

installation. Embankment L6 is more comparable with the Durham 

experimental tips. Here the deepest tensiometer, at 450mm, registered 

negligible suctioo pressures in rainy periods. The response to rainfall 

for all 3 tensiometers over the period 26th July to 6th August 1985 

suggests that the partly saturated zone of the embankment may be little 

more than a skin some 450mm in depth. 

6.6 Conclusions 

Soil suction pressures developed in the partly saturated zone of a 

waste embankment are of particular interest with respect to the early 

(progressive) restoration of saline colliery discards. Results to date 

(Taylor et al., 1984) suggest that 5 to 7 years of natural leaching may be 

necessary to reduce contained chlorides to acceptably low levels. Because 

chlorides can cause physiological drought in young vegetation, it is 

advantageous to assess their movement in colliery discard as precisely as 

possible. Monitoring of two experimental spoil banks by means of 

tensiometers connected to pressure transducers and a data logger has 

identified a number of important suctioo pressure characteristics. 

'Ihe highest suction pressures were measured in the months of July and 

August, when, as shown in Chapter 5, desiccated chloride/sulphate hotspot 

measurements were also found to be at a maximum. Chloride ioo levels in 

general are more evenly distributed through the partly saturated zone 

during this pericxl. In mid September, suctioo pressures drqlped to minimal 

levels, fluctuating around pF 0, until the following April, when they 
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started to rise again. It is suggested from this pattern of soil suction 

pressure variation that Autumn is the optimal sowing period for vegetation. 

At this time suction pressures are at a minimum and chloride ions are 

beginning to show a downward concentration into the embankment. In 

contrast, Spring sowing would subject young vegetation to enhanced suction 

pressures and the generally higher chloride levels of the Summer months. 

Suction measurements made in the 3 year old lagoon embankment and the 

restored colliery tip at Bilsthorpe Colliery indicate a much higher maximum 

(x 1.5) and greater fluctuations in suction pressures than in the 

experimental tips. 'lbese differences are believed to be a function of the 

greater exposure to the weather in the case of the Bilsthorpe structures. 

The pattern of suctions developed in the restored tip is rather 

different from that of the unrestored lagoon embankment, which shows 

certain similarities with the experimental tips. One similarity is the 

apparent depth of the partly saturated zone which suction measurements 

suggest is only about 450rnrn in thickness. Chemical oxidation is likely to 

be almost entirely restricted to the partly saturated zone in a shale 

embankment. In the older generation of unrestored loose tips, intense 

weathering is restricted to a depth of about lm, and, for example, in the 

50 year old Yorkshire Main tip, a low degree of weathering was detected 

even below this, to a maximum depth of 3.81m. Similarly, in discards 

placed in loose 1.5m layers at Gedling Colliery, suction pressures of 

between 6 and 17 kN/m2 were noted to a depth of 4.5m. The present work 

suggests that a much thinner, partly saturated zone obtains in modern 

colliery embankments. 
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High chloride ion concentrations found in freshly tipped coarse 

colliery discards are detrimental to the establishment and successful 

growth of vegetation. Chloride toxicity in agricultural crops has been 

reported by Parker et al. (1983) and high chloride and increased salt 

concentrations cause physiological drought and water stress to young 

vegetation. 

Until 1981, with the introduction of the Town and Country Planning 

Act, problems of restoring highly saline discards did not occur. Most 

colliery tips were left undisturbed for many years after tipping and the 

soluble salts were allowed to leach naturally from the discards. 

Eventually, when reclamation did take place, high salt concentrations, 

detrimental to plant growth, were not fmmd in these loog-standing colliery 

discards. 'Ihe problem was customarily low pH and high sulphates orginating 

fran surface pyrite oxidatioo (Bradshaw & Chadwick, 1980). 

'Ihe 1981 Act made progressive reclarnatioo practices compulsory within 

five years of discard disposal, that is, when the salt concentrations 

within the discard material are still sufficiently high to cause problems 

to plant establishment. British Coal, who now had to begin reclamation 

procedures, deemed it necessary to undertake a study of salinity in 

colliery tip surfaces. 'Ihe work presented in this thesis is the result of 

the study commissioned by British Coal, and deals with the causes of 

salinity in discard material, distributioo of salinity in freshly deposited 

discards, leaching patterns, seasonal fluctuations, possible effects of 

tipping practices and recommendations for restoration practices. 
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Problems of saline soils are not usually associated with British 

soil types, although such soils have been identified in South-east England, 

mainly on marshy land (South-east England Soils Discussion Group field 

meeting, May 1985). In other parts of the world, for example, western and 

central Europe, Africa, Asia, Australia, North and South America and Russia 

(Kovda, 1965), saline soils are common and can pose severe problems to 

agricultural prcduction. 

Saline salts generally contain large quantities of carbonate and 

bicarbonate salts of sodium and potassium and sodic salinity is often in 

combination with high concentrations of chlorides and sulphates. This 

gives rise to not only toxicity problems, but unfavourable soil physical 

conditions. 

The top horizons of saline soils are very unstructured and are 

compacted and cemented. Horizons are strongly compressed and during the 

Summer months, with drying, become traversed by cracks and fissures that 

may extend through several horizons (Kovda, 1965). LUring wetter Seasoos 
s 

the soil swells and become...., particularly impermeable, giving rise to the 

pending of surface water on the soil surface. During drying, these 

impermeable areas form hard crusts and salt efflorescences develop. 

'Ibis 'primary' salinity, forming saline, sodic and alkaline soils is 

found mainly on alluvial plains and river terraces. Secondary salinity, 

following the installation of irrigation systems, is particularly commoo in 

arid countries. A decline in productivity in the Punjab, India because of 

secondary salinity amounted to 10-50% (Raychalrlhuri, 1965) • 

The presence of saline soils in Great Britain is relatively unknown 

and so the reclamation problem of saline coarse colliery discard represents 

a pioneer study. 
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The need to study the origins of the salinity in colliery discards is 

obviously important and is discussed in Chapter 2. The primary control en 

coal chloride content and the chloride content of Coal Measures rocks, 

would appear to be the salinity of the groundwater with which the strata 

are intimately associated. 

The areas most affected by saline .groundwater are predominantly in the 

Eastern coalfields. Chloride ion in stratal waters varies from the low 

values of South Wales, with less than 20ppm Cl to the Eastern coastal 

coalfields and inland Notti.nghamshire coalfields where Cl levels are higher 

than lOO,OOOppm in stratal waters. 

Groundwater composition also varies with depth. Three major zones can 

be identified, a shallow sulphate dominated zone, an ' intermediate 

bicarbonate-rich zone, and deep chloride daninated waters. 

It is unlikely that one single event or process is respcnsible for the 

chloride ion concentrations found in the formation waters, or for the 

geochemical trends associated with depth and regional variations in 

concentration, found in the United Kingdom Coal Measures rocks. 

The composition of groundwaters circulating in the Coal Measures 

rocks, may have been influenced by solution of Lower Carboniferous 

evaporites and by subsequent uplift and erosion of overlying sedimen.t .s 

during the Permo-Trias, allowing entry of meteoric water and/or sea water 

from subsequent marine transgressions. The composition would have been 

further altered by processes such as compaction by overlying sediments, 

chemical reactions and by clay minerals acting as filtraticn membranes. 

After the discard has been tipped, an intiial, relatively rapid 

physical breakdown occurs (Spears et al., 1970). This physical weathering 

appears to be confined to the surface layers of the tip or embankment. 'Ihe 
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chemistry of the water in a spoil heap is thought to be controlled mainly 

by formation water, that is by entrapped water originating from a number of 

possible sources released by the rocks during weathering (Spears et al., 

op. cit.). 

The whole rock chemistry and mineralogy of discards from three 

collieries, Maltby, Wolstanton and Bilsthorpe were studied using XRF 

analysis and semi-quantitative XRD minera.l~ical analysis. A comparison of 

the results obtained by these methods, shows that the discards fall into 

three groups, each having distinct characteristics. 

Maltby discard is predominantly clayey, containing little quartz and 

the discard is dominated by illite. Discard from Bilsthorpe has the h1.gl'{ht 
" 

quartz content, but it also has a high clay content. Wolstantan discard is 

markedly different from the other two, being a coal-rich material, with a 

low total clay and illite content and is much more freely draining (See 

Chapter 5 and Chapter 6). 

Within any embankment structure, movement of water will occur, and 

equilibrium flow nets will ultimately develop. As well as formatioo water 

released from the discards upon weathering, water in colliery embankments 

will contain a component from the coal preparation plant. That is, from 

washing and screening processes. This recycled water is generally saline, 

and is discharged along with the discard. Thus the salt content of a tip 

or embankment may increase. 

Because of the soluble nature of most of the salts found in colliery 

discards, patterns of salt distribution and movement will be closely 

associated with water movenent within the coJJiery embankment. 

Chloride ion distributions within the near-surface zone of two 

colliery embankments at Maltby Colliery, South Yorkshire, and Wolstantoo, 
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Stoke-en-Trent, have been investigated in an attempt to raticnalise salt 

movement within tip surfaces. 'Ihe detailed results have been presented in 

Chapter 5. 'Ihe following principal factors have been identified:-

1. Following sampling methods developed by Liverpool University (1982), 

sampling on a grid pattern was used to locate hotspots and seepage 

emissioo areas. A grid size of greater than 5m x 5m, was found to be 

ineffective in terms of hotspot definitioo. 

2. Depth sampling by means of traverses from crest to toe indicate 

downward leaching of chloride ioos into the embankment in wet weather, 

that is in Winter and Spring seasoos. An increase in chloride levels 

towards the surface with a more uniform distributioo in the top 0.5m 

occurs in the relatively dry Summer mooths. 

When sampling colliery discard for chloride ioo coo tent, careful 

consideration should be given to the season in which the sampling 

takes place. Differences in chloride levels from Winter to Summer are 

obvious (Chapter 5). Summer sampling should be used to indicate the 

maximum levels of salts which young vegeta.tioo will have to tolerate, 

because it is in these months that chloride levels are at their 

maximum near the surface with which such vegetation will be in 

cootact. 

3. Chloride ion levels generally decrease in a downslope direction 

throughout the year. 

4. The 'background' level of chloride concentration in discard 

embankments falls from year to year through natural leaching (see Fig. 

5.9). The data is from areas on the embankment not associated with 

hotspots. 

5. Hotspots show little change in chloride levels over a two and a half 
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year period. Indeed at Wolstantoo Colliery, where backgr01.md chloride 

levels are less than 50ppm, hotspots still appear regularly on the 

embankment . 

6. Crystalline salts sampled from seepage hotspots on the surface of 

sal1ne heaps were identified, using X-ray Diffractioo techniques, as 

sodium sulphate, calcium sulphate and sodium chloride. The 

predom1nance of sodium sulphate over sodium chloride Cl1 the surface 

may be explained by the preferential crystallisation of sulphate 

m1nerals over chlorides (Weast & Astle, 1983). 

7. Seepages are not solely a symptom of leakage through a lagoon 

embankment. At the embankment studied at Wolstanton, seepages and 

hotspots were identified in the absence of any lagoon, or buried 

tailings being present in the heap. Evidence from the Maltby 

embankment indicates that seepages might be associated with 

impermeable surfaces of previous lifts. 'Ihis was investigated further 

in an embankment at Bilsthorpe Colliery, near Mansfield, 

Nottinghamshire. Findings indicate that in addition to a def1nable 

phreatic surface being present, a perched water table was measured, 

almost certainly supported by the top of the initial lift, the 

embankment carprising two lifts. 

Seasonal fluctuations in the soluble salt levels in discard 

embankments are associated with water movements. In order to study this 

phenomena, two experimental discard tips were constructured at Durham 

University. Each tip was made up of 3 toones of discard of two types: 

1. Weathered 7 year old Maltby discard, and 

2. Fresh Bilsthorpe discard. 
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Both tips had tensiometers installed at depths of lOOmm, 200mm and 

430mm below the tip surface. A continuous read-out system facilitated the 

measurement of both suction and small positive pore pressures for over 1 

year in the case of the Maltby discard. Output has been compared with 

rainfall, wind and sunshine data. ~tailed results are given in Chapter 6. 

'Ihe highest suction pressure measured in the clayey Maltby discard was 

65 kN/m2, this is compared with a value of 26 kNm2 for the fresher, 

granular discard in the Bilsthorpe experimental tip. The upper 

tensiometers indicated that the highest suctions occur in the tq:>, lOOmm 

deep, tensiometer, during Summer months. In wet periods, the top 

tensiometer measured slight positive pore pressures, whilst the deeper 

tensiometers were still recording suction pressures. On an annual basis, 

suctions became operative early in April, reversing to a small positive 

pore pressure in mid-September. 

Tensiometers installed in two embankments at Bilsthorpe Colliery 

measured much higher maximum suctions (>85 kN/m2) than those in the r::urbam 

Experimental tip. However, the exposed surface area and elevation was far 

greater at Bilsthorpe than at furham. Results indicate that significant 

suctions are unlikely to be operative at depths greater than lm, this is 

also equivalent to the depth of the superficial zone of major active 

physical and chemical weathering, previously determined in old spoil heaps 

(Taylor, 1984 ). 

'Ihe build-up of salts in the surface layers of coarse discard during 

the summer months is associated with increased suction pressures in the 

embankment surfaces. Drying of the discard surface and increased 

evaporation, causes water the be drawn from deeper discard material within 

the tip or embankment. 'Ihis already saline water, passes through saline 
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discard material. When the water reaches the surface, evaporation leaves 

salt deposits an the discard surface, and a build-up of salts through the 

near-surface profile. During the Winter (wetter season) the reverse 

process occurs. Salts are dissolved from the discard surface and as the 

wetting :f'ralt travels down through the near-surface profile, the salts in 

solution are redistributed down the profile. 

The clayey discards of Maltby and Bilsthorpe readily promote salt 

'retention' within their degraded surface layers, salts are unable to drain 

or be leached quickly. Discards such as Wolstantan which have a lower clay 

content and appear less degraded are relatively free draining, allowing 

soluble salt levels to fall to a 'background' concentration within several 

years of tipping (see '!able 5.2, Chapter 5). 

'Ihe movement of salts in solution affects both top soiling and sowing, 

or indeed sowing directly onto unbumt discard. 

Traditiooally two sowing 'windows' operate in Spring and Autrurnn, when 

climatic conditions are favourable for vegetation establishment. The above 

data, combining salt and chloride distributions within the discard with 

measurements of suction pressures within the surface layers, indicate that 

the use of an Autumn sowing 'window' is advisable. Sowing in Spring will 

introduce young, newly established plants to high salt concentrations and 

high suction pressures relatively soon after sowing. The young plants may 

thus be affected by physiological drought and/or toxicity due to high salt 

concentrations. Young rooting systems are particularly at risk (Fransway 

and Wagenet, 1981). Sowing in Autumn would allow young plants a greater 

time to establish on tip surfaceds, before facing the above hazards. 

The problem of the disposal of saline wastes from mining operations 

also occurs in the United States (Fransway & Wagenet, 1981; Merrill et al., 
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1983; Jurinak et al., 1984) and in Poland (Twardowskam, 1981). 

In the United States the reclamation of saline soils and saline mine 

spoils, from spent oil shales has received much attention over the past 30 

years (Bressler et al., 1982). Six major reclamation procedures are used 

depending en individual site conditions and the economic bt.rlget. Briefly, 

these are: 

1. Reclaiming saline soils by leaching, this includes leaching by water 

ponded on the soil surface. For example, if the depth required for 

reclamation was lm, then water would be ponded an the surface until a 

lm depth had been infiltrated. This method usually precludes crop 

establishment whilst leaching is being carried out. 

2. Leaching with water with a high salt content. Water with a high salt 

content is a source of divalent cations whihc act as flocculants 

maintaining soil structure and drainage. If the electrolyte 

ccncentraticn is lowered, the soils may become deflocculated and soil 

structure is lost. 

3. Reclaiming scxiic soils by the use of gypsum. Gypsum (CaS04 2H2o), is 

used as a source of ca2+ to replace Na+ on exchange sites on clay 

minerals. Surface applications of gypsum maintain or can increase 

infiltraticn rates. Gypsum can also be added to the soils in soluticn 

in the irrigation water. 

4. Sulphuric acid treatments for reclaiming scxiic soils. 'lhe additicn of 

acid an calcareous soils provides ca2+ to exchange with Na+. But this 

methcxi requires specialist handling. 

5. Deep mixing sodic soils for reclamation, such as ploughing and 

ripping. 

6. The use of mulches and surface management to enhance salt leaching. 
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As water evaporates from the soil surface, or is transpired from 

plants, soluble salts accumulate on the soil surface. Surface mulches 

and, for example, the application of straw onto the soil surface 

effectively reduces evaporatioo and the accumulatioo of surface salts. 

7. The use of topsoil to cover salt affected soils. Studies by Berg et 

al. (1980), indicate that under semi-arid conditions, or prolonged 

drought, previously leached mine spoil can resalinate, and topsoil 

applications may also become saline due to upward movement of 

grOlmdwater as a result of evaporation exceeding precipitation (see 

Table 5.2, Chapter 5). 

Most of the above methods are tmsui table as reclamatioo procedures for 

coarse colliery discard. Methods 1 and 2, invol v1ng prolcnged leaching are 

impractible because of the need to dispose of the rtmoff (leachate), with 

its high salt cootent. Disposal of the leachate into a water course, large 

enough to dilute the salts to an acceptable level, would then be necessary 

- see provisions for the disposal of saline discharges, Vale of Belvoir 

Coal Inquiry Report ( 1981) . 'Ihis generally is ecooanically tmviable. 

Reclamation methods 3 and 4 are unacceptable because of the use of 

sulphate in various forms. Although when first tipped, saline discard is 

pH neutral to alkaline, pyrite oxidatioo occurs rapidly, lowering the pH of 

the discard (see Figs. 1.4 and 1.5, Chapter 1). Sulphates can also be the 

end result of this reaction and the addi tioo of further sulphates would not 

be ccnduci ve to plant growth. 

Method 5 is already used by British Coal. ~ mixing, or ripping, of 

embankment surfaces prior to either top soiling or the planting of 

vegetatioo, is ccmncn practice. 

Experimentation with the addition of surface mulches to coliery 
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discard is now being undertaken by British Coal. Mulches such as sewage 

sludge have been applied as a fertilizer, as a source of organic matter, to 

increase spoil structure and cation exchange properties (Bradshaw and 

Chadwick, 1980). 

Covering spoil with topsoil is already a practice of British Coal, 

where economically feasible. Observations made as to the success of this 

procedure, indicate that where seepages, saline or nan-saline, appear oo 

the embankment surface, topsoil is dislodged and moved further down the 

slope, leaving a bare patch showing the location of the seepage. 

Natural leaching for between 5 to 7 years would appear to lower 

chloride levels in the Maltby embankment to an acceptable level (see Fig. 

5.3, Chapter 5), but hotspots remain a surface problem. These hotspots 

appear to be a function of impermeable layers between successive lifts 

during the construction of the embankment. An obvious answer would be to 

drain each of these hotspots independently, as they appear on the 

embankment surface, using downslope tile drains with dilution in the 

perimeter site drains. 

Restaratim awlicatims 

1. Individual seepage hotspots require standard land drainage treatment. 

2. 

Chloride/sulphate levels are unlikely to reduce to ambient values in 

these areas so vegetation will not thrive without specific drainage 

measures. 
I 

A large number of see;pages in staged embankments can almost certainly 
I 

be eliminated if the previous surface is properly scarified (ripped) 

prior to emplacement of the next lift. If this is not done then the 

individual hotspot drainage treatment is expensive. 
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3. The addition of surface mulches may reduce evaporation from the 

discard surface as well as promoting gocxi soil physical c<ndi tioos for 

plant growth. 

4. Background chloride ion levels in saline discard would seem to be 

reduced significantly an exposure over a period of 5 to 7 years. This 

suggests that resotratian of clayey discards should be left until the 

end of the legislative period. 

5. Sowing an embanlanent is best 1n1 tiated during the period of 'downward 

flow' of electrolytes into the heap. Suction pressure measurements 

favour an Autumn window, starting 1n mid-September. In contrast, 

Spring sowing will mean that young vegetation could be subject to the 

higher Summer chloride levels in embanlanents ccnstructed from saline 

discards. 

'lhe monitoring of electrolyte concentrations, particularly chlorides 

and sulphates, in coarse discard embankments is an essential procedure 

before considering the restoration of such embankments. 

'lhe importance of a structured sampling programme, such as the use of 

a regular grid, not less than 5m x 5m, over a complete tq> to toe of slcpe 

section of the embanlanent, has already been stressed. This should be dcne 

when the embanlanent is first completed, t~n, say repeated three to four 

years later to assess to what extent natural leaching has reduced 

electrolyte levels. Samples should always be taken during the Summer 

months, when electrolyte levels are at their highest. 

This need not necessarily be a complicated or costly procedure. Only 

surface, O-lOOmm samples, would be taken and an individual sample weight of 

less than 0. 25 kg would be sufficient. 
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Methods of sulphate and chloride analysis are not complicated. The 

use of a chloride specific ion electrode is an acceptable and accurate 

analytical procedure. Electrical conductivity analysis of coarse discard 

is not a reliable indicator as to absolute levels of chloride, because the 

sulphate content of discards has a greater influence on electrical 

conductivity than the chloride content. 

Note could be made of discard 'type', that is, clay or coal dominated. 

Chloride and sulphate coocentratians are likely to take looger to reduce to 

aceptable levels in clayey discard. 
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APHliDIX 1 

Al. .1 Saople Preparatim 
1. Oven dry the sarrple at 30°C. 
2. Sub-sanple using a Chute splitting riffle box, retaining one half. 
3. Obtain the less than 2nm fra.cticn of the sanple using BS Sieve. 

Al..2 water Soluble I)!teimfnatims 

Reagents 
1. I:eionized water. 

Apparatus 
1. Screw top plastic bottles, 125ml volume. 
2. Shaking machine. 
3. Glass filtering funnels. 
4. Whatman Nlmlber 2, 125nm filter papers. 

Method 
1. Weigh lOg of less than 2nm fraction discard into the plastic bottles. 
2. Add lOOml deionised water and stopper securely. 
3. Shake rigorously for 30 mins. 
4. Filter into a second set of plastic bottles using the glass funnels and 

Whatman No. 2 filter paper. 
5. Retain the clear filtrate for analysis. 

Al.3 water Soluble <lll.aride 

Reagents 
1. Standard solutions: 100 ppm chloride stock solution 1.65g Analar NaCl 

made up to 1 litre with deionized water. Standards used:- 1.0 ppm, 
10.0 ppm, 100.0 ppm chloride, made up using O.lml, l.Oml, and 10.00 of 
1000 ppm chloride stock solution respectively. 

2. Ionic strength adjuster; 5M NaNo3, 42. 5g Analar NaNo3 made up to lOOml 
with de ionised water. 

Apparatus 
1. 50ml volume glass beakers. 
2. Kent EIL 7055 pH meter. 
3. Orion combination chloride electrode. 

Method 
1. Galibrate the Kent EIL 7055 pH meter, using the Orion cambination 

chloride electrode and standard solutions of 10 ppm and 100 ppm 
chloride with ionic strength adjuster added (2 ml 5M NaN03 to each 100 
ml of solution) . 

2. Pipette 25ml of the clear filtrate, obtained in (Al.2) above, into a 
50ml glass beaker. 

3. Add 0. 5ml 5M NaNO~ and mix thoroughly. 
4 • Place the chlorid~ electrode into the solution and when the meter has 

stabilised, take the reading. 
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Al..4 water Soluble SUlpbates 

Reagents 
1. Acetone. 
2. Sulphonazo III indicator. 0.1 sulphonazo diluted to lOOml with 

deionized water. 
3. O.OlM barium perchlorate. 3.426g anhydrous Ba(Cl04)2 nede up to 1 litre 

with deionized water. 

Apparatus 
1. 50ml conical flasks. 
2. Graduated glass burette with 0.2ml divisions. 

Method 
1. Pipette 25rnl of the clear filtrate obtained in (Al.2) above, into the 

50ml conical flask. 
2. Add 2ml acetone and mix thoroughly. 
3. Add one drop of the sulphonazo III indicator. 'lhe solution turns 

purple. 
4. Add one drop of the 0.01 M Ba(Cl04 )2 solution. 'lhe solution turns 

sky blue. 
5. Add further lml of acetone upon which the solution turns back to purple. 
6. Filtrate to end point with the 0.01 M Ba(Cl04)2 solution, tmtil the 

solution turns sky blue. 

Al.5 pH ~teno1nat1ms 

Reagents 
1. ~ionized water. 
2. Buffer solutions pH 4, 7 and 9. 

Apparatus 
1. 5C!nl glass beakers. 
2. Glass stirTing rods. 
3. Kent EIL 7055 pH meter. 
4. pH Electrode. 

Method 
1. Weight lOg of discard into a glass beaker. 
2. Add 25rnl deionised water and leave to stand for one hour, stirTing 

occasionally. 
3. calibrate the Kent EIL 7055 pH meter and electrode using the buffer 

solution. 
4. Test the discard/water mix using the electrode. 
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Al.6 Canuctivity ~tenoinatims 

Apparatus 
1. Kent EIL 5003 protable conductivity measuring set. 

Method 
1. Use clear filtrate as obtained in (Al.2) above in conjtmction with the 

above apparatus. 

Al. 7 ~termlnatim or 'lhe 'lbtal Sulphate Cmtent or So11.-(ffil371:1975) 

Reagents 
1. Baritnn chloride, 5% solution. Dissolve 50g of baritnn chloride in 1 

litre of distilled water. 
2. Dilute hydrochloric acid. Dilute lOOrnl of concentrated hydrochloric 

acid (relative density 1.18) to 1 litre with distilled water. 
3. Dilute ammonia solution. Dilute 500rnl of ammonia (relative density 

0.880) to 1 litre with distilled water. 
4. Litmus paper (blue). 
5. Silver nitrate, 5% solution. Dissolve 0.5g of silver nitrate in lOrnl 

of distilled water. 
6. Branine water. Shake fml of liquid branine with 500 ml of distilled 

water. 

Apparatus 
1. Conical beakers, 500rnl capacity with watch glasses to fit. 
2. Glass filter ftmnels about lOOmm diameter. 
3. Porcelain or silica crucible, or porous porcelain or silica filter and 

ignition crucible. 
4. Suitable means of igniting the precipitate preferably an electric 

muffle furnace, capable of reaching and maintaining 8oo0 c. 
5. Iessicator containing anhydrous silica gel. 
6. Filter papers. Whatman No. 541, and No. 44, llOnm diameter. 
7. Glass rods. 

Method 
1. Weigh 2. Og of the less than 2I1m fraction discard into a 500 ml beaker. 
2. Add 200rnl of 10% hydrochloric acid, take care for any effervescence. 
3. Cover with a watch glass and boil gently for 4 rnins. 
4. Rinse underside of watch glass back into beaker and whilst solution 

continues to boil add 3ml of branine water. 
5. Add amenia solution (preferably fran a burette) stir constantly, tmtil 

sesquioxides are precipitated. 
6. Filter suspension through a llOmm hardened Whatman No. 541 filter 

paper, into a conical 500rnl beaker. 
7. When filtering has stopped, place filter paper back into first beaker. 

Add 20rnl of 10% hydrochloric acid and stir mixture. 
8. Remove filter paper and wash with distilled water tmtil all traces of 

yellow have been removed. 
9. Remove filter paper and boil contents of beaker. 
10. Add ammonia solution again, and filter suspension through a Whatman No. 

514 filter paper into the conical beaker containing the first washings. 
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11. Test the combined extract with litmus and make slightly acidic by the 
addition of hydrochloric acid. 

12. Bring extract to the boil and add 25ml of 5% barium chloride solution, 
drop by drop 0 

13. Cover the solution and keep hot but not boiling for at least one hour. 
14. Add several more drops of barium chloride solution to ensure carplete 

precipitation of barium sulphate. Keep solution hot for one hour. 
15. Filter the solution with extreme care through a Whatman No. 44 filter 

paper, to retain precipitate. 
16. Wash precipitate with hot distilled water until the washings are free 

f'ran chloride, as indicated by the absence of turbidity when a drop is 
tested with silver nitrate solution. 

17. Transfer the filter paper and precipitate to a previously 1gn1 ted and 
weighed porcelain or silica crucible. 

18. Place crucible and contents in a muffle furnace at roam temperature. 
Raise the temperature to 8oo0c and leave for 15mins at BooOC. 

19. When cool add a few drops of concentrated hydrochloric acid, then a few 
drops of concentrated sulphuric acid, ignite for a futher 15 mins. 

20. Cool in a dessicator. Weigh crucible and contents. 

A4 



APPEliDIX 2 

A2 .1 Atanic Absarptim Spectrqlhotaoetry 

In this technique the sample solution is delivered into the spray 

chamber as a fine mist in an air stream. It is then mixed in the burner, 

with fuel gas and the mixture is atomised on ignition. Pulsed light, from 

a hollow cathode lamp emitting the spectrum of the element to be 

determined; is passed through the flame and monochromator. The change in 

absorption of the light at an appropriate wavelength is detected 

electronically and recorded. The change in absorption is caused by the 

presence of free atoms of the element whose spectrum is being emitted and 

the degree of absorption is related to the number of atoms present (Beaty, 

1978). 

A2 .2 X-ray Fluorescence Spectranetry 

The rock samples were first crushed to a fine powder using a Tema 

swingmill with a tungsten carbide vial. Approximately 4.0g of powder were 

mixed with a few drops of PVA solution (MOWOIL) and pelletised in a 

hydraulic press at a pressure of 6 toos. 

The pellets were introduced into a Phillips PW1400 X-ray fluorescence 

spectometer. A Rhodium 3Kw X-ray tube was used, operating at 80 KV, 35mA. 

Standardisation was achieved by means of a set of international 

sedimentary rock standards (Abbey, 1980) and a further selected set of 

sed1mentary standards available at the University of IAlrham. 

Corrections due to inter-element matrix effects were obtained from 

standards using a selected multiple regression technique. This was 

incoporated 1n a statistical package called MIDAS (Michigan Interactive 
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lata Analysis System), available from the University Computer Unit. 'Ihese 

corrections were applied to the analysis of the unknown samples. 

Tr.ace elements were also analysed using X-ray fluorescence techniques. 

Standardisation was again achieved using a set of international rock 

standards (Abbey, 1980). Errors caused by matrix mass absorption and 

enhancement effects were minimised by correction for background radiation. 

The function used was peak/background minus one (P/(B-1)) (Anderman and 

Kemp, 1958), which was incorporated into a computer program available in 

the Geolcgy D=partment, University of llirha.m, called TRATIO (XRF.TR). Both 

sides of the pelleted samples were analysed for major and trace elements to 

prevent any erros arising from the pelleting process, such as a build up of 

sodium on one side of the pellet. No such discrepancies were found. 

A2.3 Saoi~t1tat1ve X-Ray Mlneralcgy Aanal.ysis 

Samples were prepared for X-ray analysis by mixing 0.9g of powdered 

rock sample with O.lg of an internal standard, boehmite, in an agate pestle 

and mortar (Griffin, 1954). A little of the sample - boehmite mix was then 

smeared onto a glass slide using acetone. 

'Ibis smear mount was placed in a Philips PW1130 2 kilowatt generator

diffractometer. Cobalt K radiation was used operating at 40 kV 20mA. 'Ihe 

machine ccndi tions used during analysis were from 2°2 · to 18°2 , divergent 

slit 0.5°, receiving slit 0.1°, scatter slit 0.5° and from 13°2 to 45°2 

divergent slit 1.0°, receiving slit 0.1°, scatter slit 1.0°. The 

gonianeter scan speed was 1° of 20/min and the chart speed lOnm/min. 

A scaled proportional detector was used together with pulse height 

analysis. X-ray diffraction scans were thus produced over the angular 

range 3°2 -45°2 and the mineral phases present identified using the 
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standard J.C.P.D.S. index (Joint Committee for the Powder Diffraction 

Standards (1974)) and data from Thorey (1975) and Brindley and Brown 

(1980). 

Semi-quantitative estimates were made on the clay minerals and on 

accessory minerals such as quartz and carbalates. 'll1ese estimates utilized 

calibrations prcxiuced by Taylor (1971) and ~th (1978). 
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APPENDIX 3 PROGRAM TO CALCULATE SUCTION PRESSURES . 

DIMENSION HMl(lOO ), HM2(200),HM(lOO),H2 (1 00 ),DY(lOO),S(lOO ) 
LOGICAL *l DATE(l00.9).TIME(l00,5 ) 
WRITE(6,1010) 

1010 FORMAT( // 20X ,' **~ SUCTION PRESSURE CALCULATION . ***') 
RHOM=l3540 
RHOW=l059 . 12 
GRAV=9.81 
WRITE( 6. 10 ) 

10 FORMAT(20X , 'SUCTION PRESSURE CALCULATION ' // lOX, ' WHAT IS THE DEPTH 0 
1 INSTALLATION (IN METRES)' / lOX,' OF THE PIEZOMETER TIP? :' ) 
READ(5,20)DP 

20 FORMAT(F5 . 2) 
WRITE(6,30) 

30 FORMAT( / lOX, 'GIVE HEIGHT OF DATUM ABOVE TOP OF SPOIL TIP (IN METRE 
lS) : ' ) 
READ(5 , 40 )DZ 

40 FORMAT(F6 . 3 ) 
WRITE(6 , 50) 

50 FORMAT( / lOX. 'HOW MANY SETS OF READINGS ARE THERE? ' ) 
READ(5, *) NREAD 
NK=2 
DO 100 I=l , NREAD 
NK=NK+1 
WRITE(6,60)I 

60 FORMAT( I 10X , 'FOR READING SET ' ,13,' GIVE DATE (EG 30 - SEP-84) ' ' lOX 
l, ' AND TIME ( EG 22:35 ): ' ) 
READ(5,70)(DATE (I. J) ,J=l. 9),(TIME (I,J),J=l,5) 

70 FORMAT(9Al / 5Al ) 
WRITE(6 , 80 ) 

80 FORMAT ( ! lOX . ' GIVE READUNGS IN METRES : ') 
IF(NK . NE . 3 )GOTO 85 
NK=O 
WRITE(6 , 82 ) 

82 FORMAT(!5X . ' FIRST : MERCURY HEAD ~ ABOVE • DATUM IN PEIZOMETER ARM ' / 
ll5X . · SECOND : HG HEAD *BELOW* DATUM IN OPEN ARM ' / l5X, ' THIRD : 
2 EXCESS HEAD OF WATER IN OPEN ARM ') 

85 READ ( 5.90) HMl ( I ) . HM2 (I ). H2(I ) 
90 FORMAT ( F6 . 3 ) 

HM(I ) =HMl (Il-HM2 ( I ) 
S ( I )=GRAV •(( H 2 1 I ) +DP+HM l( I ) ~ DZ )* RHOW-HM ( I) ~ RHOM ) 
S( I )=S(I ) ' 1000. 

100 CONTINUE 
WRITE (6.200 ) 

200 FORMAT ( ' lOX. ' RES FRON P. W. P. MONITORING AT SHALLOW DEPTH' · lOX. ' H~ 
l A MODEL COLLIERY SPOI L TIP . ' : 2X. ' DATE ' , 7X. ' TIME ' , 3X , ' TOTOL HEAD 
20F HG ( M)' ,3X. ' SUCTION PRESSURE (kN ' m2 )' , 3X . ' POSITIVE P.W . P. ( kN t m2 
3) ') 

DO 300 I=l.NREAD 
IF ( S( I).GT . O.O) GOTO 230 
WRITE ( 6.220 ) (DATE(I.J ) .J=l , 9 ),( TIME (I.J), J =l,5), HM ( I ),S(I) 

220 FORMAT ( 2X , 9Al , 4X , 5Al ,3X. F8.3 .17X,F9 . 3 ) 
GOTO 300 

230 WRITE(6,240 )(DATE (I , J ), J=l , 9 ) ,(TIME(I,J),J=l,5 ), HM(I) , S( I) 
240 FORMAT(2X , 9Al ,4X, 5Al , 3X , F8.3,51X , F9 . 3) 
300 CONTINUE 
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CALL FTNCMD( 'ASSIGN 8 =' PRINT * : ' , 0) 
WRITE(8,200) 
DO 400 I=l,NREAD 
IF(S(I).GT.O.O)GOTO 330 
WRITE(8,220)(DATE(I,J),J=l . 9).(TIME(I,J),J=l,5),HM(I),S(I) 
GOTO 400 

330 WRITE(8,240)(DATE(I,J),J=l,9) .(TIME(I , J),J=l,5),HM(I) , S(I) 
400 CONTINUE 

STOP 
END 
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Alt. DATA 

KEY 

NO.= SAMPLE NUMBER 
POS.= SLOPE POSITION;l= TOP,2= MID,3= TOE. 
DEP.= SAMPLE DEPTH (CM) 
MC.= MOISTURE CONTENT (%) 
CL = CHLORIDE (ppm) 
S04 = SULPHATE (ppm) 
EC ELECTRICAL CONDUCTIVITY xlO 3 US / CM 
pH 
SN = SEASON:l.4,7= SPRING, 2.5,8= SUMMER.3.6.9= WINTER 

1-3= MALTBY.4-6= WOLSTANTON,7 - 9= BILSTHORPE. 
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NO. POS . DEP. MC. Cl 804 EC pH SN 

5. 2 . 2.00 12.8 258 14 .200 -.0 1. 
6 . 2 . 2.00 12 . 2 258 . 51. . 200 -.0 1. 
7. 2 . 3.00 14 . 7 713 . 95. .348 -.0 1. 
8. 2 . 4.00 13.2 513 . 111. . 440 -.0 1. 
9 . 2 . 5.00 11.2 870 . 94. .377 -.0 1. 

20 . 1. 1. 00 10 . 3 430. 108. . 350 -.0 1. 
21. 1. 2.00 6 . 7 - 0. 194. .730 -.0 1. 
22. 1. 3.00 9 . 4 338. 146. .490 -.0 1. 
23. 1. 4.00 8.7 588. 148. . 480 -.0 1. 
24 . 1. 5.00 9 . 1 670. 194. .570 -.0 1. 
25. 1. 6.00 9 . 5 865. 223 . . 530 -.0 1. 
26. 1. 7.00 9 . 8 955. 221. . 600 -.0 1. 
27. 1. 7.00 10 .1 528 . 235. . 638 -.0 1. 
28. 1. 8 . 00 11 .1 861. 261. . 649 -.0 1. 
29 . 1. 9.00 11.2 661. 274 . .710 - .0 1. 

206 . 1. 1.00 11 . 8 -0. 59. 2.65 7.4 1. 
207. 1. 2.00 9.6 -0. 111. 4.30 7.4 1. 
208 . 1. 3.00 8 . 3 -0. 115. 3.04 7 . 4 1. 
209. 1. 4.00 6 .7 -0. 128. .631 7 . 3 1. 
210. 1. 5.00 8.5 - 0. 88. . 448 7.5 1. 
211 . 1. 6.00 9.1 -0. 159. . 685 7.3 1. 
212. 1. 10.00 12.5 -0. 151. . 440 7 . 1 1. 
220. 2. 1. 00 9.5 -0. 46. .147 7.5 1. 
221. 2. 2.00 11.6 -0. 89 . . 245 7.4 1. 
222. 2. 3.00 11 .1 -0. 173. . 407 7.1 1. 
223. 2 . 4.00 10 . 3 -0. 59. .162 7.6 1. 
224. 2 . 5.00 10 . 6 -0. 192. . 224 7.3 1. 
225 . 2. 6 . 00 10.6 -0. 111. . 251 7.3 1. 
226. 2 . 7.00 12.1 -0. 134. . 415 7.3 1 . 
227. 2. 8.00 10.4 -0. 119. . 519 7 . 2 1. 
236. 3. 1. 00 8.4 -0. 138. .418 7.4 1. 
237. 3. 2.00 12 .1 -0. 78 . .269 7.5 1. 
238 . 3. 3.00 11.5 -0. 153. . 472 7.4 1. 
239 . 3. 4.00 9.2 -0. 172. . 562 7.1 1. 
240 . 3. 5.00 8 . 5 -0. 159. . 510 7.4 1 . 
241 . 3. 6.00 8 . 8 -0. 145. . 463 7.3 1. 
351. 1. 1. 00 4 . 6 565. 228. . 708 - . 0 2 . 
352 . 1. 2.0C 5 .0 476. 226. . 6 15 -.0 2 . 
353 . 1. 3.0( 6 .5 510. 224. .612 - .0 2. 
354. 1. 4. OC· 8 .4 563 . 258. . 775 - .0 2 . 
355 . 1. 5.0( 7 . 5 410. 261. . 65 -.0 2 . 
356. 1 . 6.00 -0 . 0 525. 238. . 75 - . 0 2 . 
357. 1. 7.00 -0.0 5l3 . 295. . 78 - .0 2 . 
358 . 1 . 8.00 7.2 -0 . -0 . -· . 0 - . 0 2 . 
359 . 2 . 1. 00 =0.0 476 . 188. . 54 -.0 2 . 
360 . 2 . 2.00 -0.0 356. 153. . 45 - . 0 2 . 
361. 2. 3.00 -0 . 0 416 . 229. . 65 - . 0 2 : 
362 . 2. 4 . 00 -0.0 523. 205. . 6 - . 0 2. 
363 . 2. 5.00 -0.0 480. 197. .75 - . 0 2. 
364 . 2. 6.00 -0.0 395. 395. -.0 -.0 2 . 
365 . 3. 1. 00 -0.0 365. 365. -. 0 -.0 2 . 
366 . 3 . 2.00 -0.0 113 . -0. -.0 -.0 2 . 
367. 3 . 3 . 00 8 .3 115. -0. -.0 - . 0 2. 
368 . 3 . 4 . 00 10.5 135 . -0 . -. 0 -.0 2 . 
369 . 3 . 5 . 00 9.7 153 . -0 . -.0 -.0 2. 
370 . 3. 6.00 8 . 6 265. -0. -. 0 -.0 2 . 
371. 3 . 7.00 8 . 9 545 . -0. -.0 - . 0 2. 
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NO . POS . DEP . MC Cl 804 EC pH SN 

570 . 1 . 1. 00 12 . 1 460. - 0 . -. 0 -. 0 3 . 
571. 1. 2.00 8.4 330. -0 . -. 0 -. 0 3 . 
572 . 1. 3.00 8.6 490 . - 0 . -. 0 -. 0 3 . 
573 . 1 . 4.00 9.5 600 . -0 . -. 0 -. 0 3 . 
574. 1. 5 . 00 8.4 730 . - 0 . -. 0 -. 0 3 . 
575 . 1. 6 . 00 10 . 0 790. - 0 . -. 0 -. 0 3 . 
576. 1. 7 . 00 8.9 840 . - 0 . -. 0 -. 0 3 . 
577 . 2 . 1. 00 7 . 9 520 . - 0 . -. 0 -. 0 3 . 
578 . 2 . 2.00 9 . 0 440. - 0 . -. 0 -. 0 3. 
579 . 2 . 3 . 00 10 . 0 520. - 0 . -. 0 -. 0 3. 
580 . 2. 4.00 10.1 540 . - 0 . -. 0 - .0 3 . 
581. 2 . 5.00 9 . 1 450 . - 0 . -. 0 -. 0 3. 
582 . 2 . 6 . 00 10 . 6 640 . - 0 . -. 0 - .0 3 . 
583 . 2 . 7.00 10 . 1 660 . - 0 . - .0 - .0 3 . 
584. 2 . 8 . 00 10.0 530 . - 0 . -. 0 -. 0 3 . 
585. 2 . 9 . 00 8 . 9 560 . - 0 . -. 0 -. 0 3. 
586 . 2. 10.00 8.2 490. - 0 . -. 0 - . 0 3 . 
587 . 2 . 10 . 00 8.5 550 . - 0 . -. 0 - .0 3. 
588. 3 . 1. 00 10 . 5 100 . - 0. -. 0 -. 0 3 . 
589 . 3 . 2 . 00 8 . 7 270 . - 0. -. 0 -. 0 3 . 
591. 3 . 3 . 00 11 . 9 260 . - 0 . -. 0 -. 0 3 . 
592 . 3. 4.00 9.7 470 . - 0 . -. 0 -. 0 3. 
593. 3 . 5 . 00 11.9 440 . - 0 . -. 0 -. 0 3 . 
594. 3 . 6.00 13 . 9 630. - 0 . -. 0 -. 0 3 . 
595. 3 . 7.00 13 . 9 610 . - 0 . -. 0 -. 0 3 . 
596. 3 . 8 . 00 14.2 680 . - 0 . -. 0 -. 0 3 . 
700 . 1. 1. 00 5 . 9 245 . 117 . . 339 6 . 9 1. 
701. 1. 2 . 00 6.9 325. 160. . 468 6 . 9 1. 
702 . 1. 3 . 00 6 . 9 355. 91. . 498 6 . 9 1. 
703 . 1. 4 . 00 7 . 8 355. 7 1. . 438 7 . 0 1. 
704 . 1. 5 . 00 9.4 365. 96 . . 522 6 . 9 1. 
705 . 1. 6 . 00 7 . 5 275 . 98 . . 479 6 . 9 1. 
706. 2 . 1. 00 7 . 5 235 . 81. . 360 6.8 1. 
707. 2. 2.00 6 . 8 205. 6 1. . 315 7.0 1. 
708 . 2 . 3.00 8.6 185 . 7 1. . 395 7 . 0 1. 
709. 2 . 4 . 0 0 9 . 2 165 . 65 . . 323 7. 2 1. 
710 . 2 . 5 . 00 9 . 3 225 . 61. . 359 7 . 2 1. 
711 . 2 . 6 . 0 0 13.5 295 . 111. . 501 6 . 9 1. 
712 . 2 . 7. 0 0 15 . 9 535 . 113 . . 57 5 7.0 1. 
713. 2. 8 . 00 16 . 4 515 . 132 . . 638 6 . 8 1. 
714. 3 . 1. 0 0 4 . 9 85 . 46 . . 22 5 7. 1 1. 
715 . 3 . 2.00 6 . 4 50 . 49 . . 238 6.9 1. 
716 . 3 . 3. 0 0 9 . 6 7 5 . 59 . . 25 3 7.0 1. 
717 . 3 . 4 . 00 9 . 5 8 3. 84 . . 396 7.0 1. 
71 8. 3 . 5 . 00 .l-0 . 5 135. 66. . 298 7. 1 1. 
7 19 . 3 . 6 . 0 0 10.5 185. 81. . 38 2 7.1 1. 
720. 3 . 7 . 00 10 . 4 345 . 109 . . 535 6 . 9 1-. 
721. 3 . 8 . 00 11.2 625 . 92 . . 528 7. 0 1. 
722 . 3 . 9 . 00 11.7 805 . 92 . . 501 7 . 1 1. 
825 . 1. 1. 00 3 . 9 2138 . 460 . 1. 31 -. 0 2 . 
826 . 1 . 2 . 00 4 . 9 538 . 201. 1. 52 -. 0 2 . 
827 . 1 . 3 . 00 5 . 6 468 . 73 . . 820 -. 0 2 . 
828. 1. 4 . 00 5 . 5 498 . 97. . 857 -. 0 2. 
829 . 1. 5 . 00 4.6 92. 86 . . 408 -. 0 2 . 
830. 2. 1. 00 6 . 4 -0 . - 0 . -. 0 -. 0 2 . 
831. 2 . 2.00 8 . 6 128 . 122 . . 420 -. 0 2 . 
832 . 2. 3 . 00 10 . 9 245 . 236 . . 707 -. 0 2 . 
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NO. POS . DEP. MC Cl S04 EC pH SN 

833. 2 . 4.00 7 . 7 30 . 326. . 354 -. 0 2 . 
834 . 2 . 5 . 00 6.8 72. 102. . 284 - . 0 2 . 
835. 3 . 1. 00 4 . 5 34. 92 . . 318 - .0 2 . 
836. 3. 2.00 5 . 3 19 . 108. . 329 - .0 2 . 
837. 3. 3.00 7.1 24 . 120 . . 315 - .0 2 . 
838 . 3 . 4.00 8.8 238 . 216. . 659 - . 0 2 . 

1000. 1. 1.00 8.2 350. 149. . 449 - . 0 3 . 
1001 . 1. 2.00 8.8 465 . 255. .690 - . 0 3. 
1002. 1. 3.00 6 . 9 1165. 224 . . 703 -. 0 3 . 
1003. 1. 4.00 7 . 7 925. 227. . 689 -.0 3 . 
1004. 1. 5.00 7 . 7 655 . 179. . 572 -. 0 3 . 
1005. 1. 6 . 00 8 . 2 665 . 180 . .559 -.0 3 . 
1012. 2. 1. 00 10 . 0 80 . 58 . . 177 - . 0 3. 
1013 . 2. 2.00 9 . 2 120. 90 . . 253 -. 0 3 . 
1014. 2. 3.00 11.9 235 . 21. . 369 - . 0 3. 
1015. 2 . 4 . 00 11 . 5 425. 174. . 480 - .0 3 . 
1016. 2. 5.00 11.5 665. 182. . 570 - . 0 3. 
1017. 2 . 6.00 9 . 3 545. 223 . . 660 - . 0 3 . 
1024. 3 . 1. 00 12 . 2 265. 90 . .236 -. 0 3 . 
1025. 3. 2.00 10.7 105 . 46. . 245 -. 0 3 . 
1026. 3. 3 . 00 12 . 5 135 . 61. . 221 -.0 3 . 
1027 . 3 . 4.00 15 . 1 135 . 73 . . 229 -. 0 3 . 
1028 . 3 . 5 . 00 14 . 4 130 . 68 . . 226 -. 0 3. 
1029. 3 . 6 . 00 16.2 60 . 105. . 301 - .0 3. 
1119 . 1. 1. 00 9 . 5 110 . 165. - .0 -. 0 1. 
1120 . 1. 2.00 7.3 98 . 268. -. 0 -. 0 1 . 
1121 . 1. 3 . 00 6 . 8 110 . 182 . - . 0 -. 0 1. 
1122 . 1. 4 . 00 1.4 82. 105 . -. 0 - . 0 1. 
1123 . 1 . 5.00 - 0 . 0 115. 92 . - . 0 -. 0 1. 
1124 . 1. 6.00 8 . 5 120. 122 . - . 0 - .0 1. 
1125 . 2. 1. 00 10 . 3 180 . 264 . - .0 - . 0 1. 
1126. 2 . 2 . 00 10.6 250 . 549. -. 0 -. 0 1. 
1127. 2. 3.00 4 . 9 370 . 284 . -. 0 - . 0 1. 
1128. 2. 4.00 6.4 390. 299 . -. 0 -. 0 1. 
1129 . 2 . 5 . 00 6 . 7 470. 253 . -. 0 -. 0 1. 
1130 . 2 . 6 . 0 0 6.6 510. 303 . - .0 -. 0 1. 
1131. 3 . 1. 00 7 . 3 75. 42 . -. 0 -. 0 1. 
1132 . 3 . 2 . 0 C 8 . 8 70 . 76 . - . 0 - . 0 1. 
1133 . 3 . 3 . 0 C 8 . 4 904 . 65 . - . 0 -. 0 1. 
1134. 3 . 4.00 7.3 140 . 238 . -. 0 -. 0 1. 
1135. 3. 5 .0C 7 . 2 250 . 261 . -. 0 - . 0 1 . 
1136 . 3. 6 . 0 0 8 . 7 330. 234 . - . 0 - .0 1 . 
2100 . 1 . 1 . 0 0 2.0 22 . 23 . . 140 -. 0 1 . 
2101 . 1. 2.00 3.1 33 . 19 . . 140 -. 0 1. 
2102 . 1 . 3 . 00 - 3 . 5 29 . 34 . . 171 -. 0 1 . 
2103 . 1 . 4 . 0 0 3 . 3 29 . 11. . 148 -. 0 1 . 
2104. 1 . 5 . 0 0 4.0 32 . - 0 . . 140 -. 0 1- . 

2105. 1. 6 . 00 3.7 31. - 0 . . 140 -. 0 1 . 
2106. 2. 1. 00 3 . 6 89 . 59. . 259 -. 0 1. 
2107. 2. 2 . 00 13 . 6 105 . 120 . . 385 - .0 1. 
2108 . 2. 3.00 14 . 8 110 . 159 . . 420 -. 0 1. 
2109. 2 . 4 . 00 13 . 1 60 . - 0 . -. 0 -. 0 4 . 
2110. 3 . 1. 00 3 . 0 7 . - 0 . -. 0 -. 0 4 . 
2111. 3. 2 . 00 3 . 4 15. - 0 . -. 0 - . 0 4. 
2112. 3 . 3 . 00 14 . 2 14 . - 0 . -. 0 -. 0 4 . 
2113. 3. 4 . 00 8 . 0 13 . - 0 . -. 0 -. 0 4 . 
2114 . 3 . 5.00 6.9 20 . - 0 . -. 0 -. 0 4 . 
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NO. POS. DEP MC Cl 804 EC pH SN 

2115. 3. 6.00 5.1 9 . -0. -.0 -.0 4 . 
2200. 1. 1. 00 1.9 11. -0. -.0 -.0 5. 
2201. 1. 2.00 2 . 5 9. -0. -.0 -.0 5. 
2202. 1. 3.00 3 . 0 8 . -0. -.0 -.0 5. 
2203. 1. 4.00 3.1 17 . -0 . -.0 -.0 5. 
2204. 2. 1. 00 1.0 15 . -0. -.0 -.0 5. 
2205. 2. 2.00 2.0 13 . -0. -.0 -.0 5 . 
2206. 2 . 3.00 11 . 1 31. -0 . -.0 -.0 5. 
2207. 2. 4.00 8 . 6 32. -0. -.0 -.0 5. 

2208. 3. 1. 00 1.4 25. -0. -.0 -.0 5. 
2209. 3. 2.00 1.5 20. -0. -.0 -.0 5. 
2210. 3. 3.00 2 . 8 16. -0. -.0 -.0 5. 
2211. 3. 4.00 3.8 17. -0. -.0 -.0 5 . 
2300. 1. 1. 00 7.2 -0. -0 . -.0 -.0 6 . 
2301. 1. 2.00 8.0 -0. -0. -. 0 -.0 6. 
2302. 1. 3.00 7.4 -0. -0 . -.0 -.0 6 . 
2303. 1. 4.00 7.9 -0. -0. -.0 -.0 6 . 
2304. 1. 5.00 16.2 -0 . - 0 . -.0 -.0 6 . 
2311. 2. 1. 00 7 . 3 -0 . -0. -.0 -.0 6 . 
2312. 2. 2.00 6.5 -0 . - 0 . -.0 -.0 6 . 
2313 . 2. 3.00 6.6 -0. -0. -.0 -.0 6. 
2314 . 2. 4.00 7 . 3 -0 . -0. -.0 -.0 6. 
2'315 . 2. 5.00 6.2 -0 . - 0. -. 0 -.0 6. 
2322 . 3. 1. 00 9.5 -0 . -0. -.0 - .0 6. 
2323. 3. 2.00 12.8 -0. -0. -.0 -.0 6 . 
2324 . 3 . 3.00 13.4 -0 . - 0 . -.0 -.0 6. 
2325. 3 . 4.00 16 . 9 -0. -0. -.0 -.0 6. 
2418. 1. 1. 00 8.2 17. 84. .227 6 . 8 4. 
2419. 1. 2.00 13.3 24 . 57. .236 6 . 9 4. 
2420 . 1. 3.00 19 . 0 40 . 176. .241 · 7.0 4 . 
2421. 1. 4 . 00 14.1 46 . 168 . .298 6.9 4. 
2422 . 1. 5.00 16 . 4 45 . 203. .487 7.0 4. 
2423. 1. 6.00 16 . 3 53 . 176. .612 7.0 4. 
2424. 2 . 1. 00 3 . 9 18 . -0 . .246 7.1 4. 
2425. 2 . 2.00 4 . 7 15 . -0 . .137 7.1 4. 
2426. 2. 3.00 4.5 16 . -0. .196 6.8 4. 
2427. 2. 4.00 3 . 9 48 . -0 . .545 7.1 4 . 
2428. 2. 5.00 5 . 0 21. 78 . .210 7 . 1 4 . 
2429 . 2. 6.00 4.7 19. 65 . .227 6 . 8 4. 
2430. 3. 1. 00 5 . 2 19. -0. . 199 7 . 0 4 . 
2431. 3. 2. 0~ 5 . 9 16 . -0. .211 7 . 0 4 . 
2432 . 3. 3 .00 7 . 3 17 . - 0. . 218 7 . 0 4 . 
2433 . 3 . 4 .00 5.4 18. -0. . 213 6 . 9 4 . 
2434. 3. 5.00 8.4 35. 85 . . 294 7.1 4 . 
4025. 1. 1. 00 - 5.4 298 . -0. 1. 02 - .0 8 . 
4026 . 1. 2.00 3.7 57 . -0. 1. 03 -.0 8. 
4027. 1. 3 . 00 4.5 45 . -0 . 2.01 - .-o a. 
4028. 1. 4.00 4.0 65. -0. 1. 13 -.0 8 . 
4029. 1. 5.00 3 . 6 70 . -0. 1.43 -.0 8 . 
4030. 2. 1. 00 3 . 8 32 . -0 . .608 -.0 8. 
4031 . 2. 2 . 00 4.5 54. -0. .398 -.0 8. 
4032. 2. 3.00 6.5 36. -0. . 345 -.0 8. 
4033 . 2 . 4.00 6.3 56 . -0. .520 -.0 8 . 
4034 . 2. 5.00 8.5 52. -0 . .442 -.0 8 . 
4035. 3. 1. 00 4 . 3 589 . - 0 . 1. 28 -. 0 8 . 
4036. 3. 2 . 00 4 . 8 758. - 0 . 1. 20 -.0 8 . 
4037. 3. 3.00 4 . 8 818. -0. .970 -.0 8. 
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NO . POS. DEP MC Cl 804 EC pH SN 

4300. 1 . 1. 00 15 . 9 - 0 . - 0. -. 0 -. 0 9 . 
4301 . 1. 2.00 14 . 0 - 0 . - 0. -. 0 -. 0 9 . 
4302 . 1. 3.00 12 . 7 -0 . - 0 . -. 0 -. 0 9. 
4303. 1. 4 . 00 12 . 2 - 0 . - 0 . -. 0 -. 0 9 . 
4304 . 1. 5.00 10 . 3 - 0 . - 0 . -. 0 -. 0 9 . 
4311 . 2 . 1. 00 13.6 - 0 . - 0 . -. 0 - .0 9. 
4312 . 2 . 2 . 00 10 . 6 -0 . - 0 . -. 0 -. 0 9 . 
4313 . 2. 3 . 00 11.4 - 0. - 0. -. 0 -. 0 9. 
4314 . 2 . 4 . 00 11.7 -0 . - 0 . -. 0 -. 0 9 . 
4315. 2 . 5 . 00 11. 1 -0 . - 0 . -. 0 - .0 9 . 
4322 . 3. 1. 00 14.8 - 0 . - 0 . -. 0 - .0 9 . 
4323. 3 . 2.00 12.8 -0. - 0 . -. 0 -. 0 9 . 
4324. 3. 3.00 22 . 8 -0 . - 0. -. 0 -. 0 9 . 
4325 . 3. 4 . 00 12.6 -0 . - 0 . -. 0 - .0 9. 
4326. 3. 5 . 00 15 . 1 - 0 . - 0 . -. 0 -. 0 9. 
4418. 1. 1. 00 12 . 0 1270 . 604 . 1. 18 5.4 7 . 
4419 . 1. 2 . 00 15.3 490 . 422 . . 822 4 . 8 7 . 
4420. 1. 3 . 00 13 . 5 280 . 184 . . 890 3 . 6 7. 
4421. 1 . 4.00 12 . 2 89 . 816 . 1 . 14 3.7 7 . 
4422. 1 . 5 . 00 10.1 98 . 600 . 1. 04 3.5 7. 
4423 . 1. 6.00 11.2 470 . 782. 1. 37 3 . 6 7. 

4424. 2. 1. 00 10 . 6 670 . 225 . . 620 3 . 7 7 . 
4425. 2. 2.00 10 . 8 680 . 288 . . 745 3 . 6 7 . 
4426. 2 . 3.00 8 . 3 810 . 201. . 510 4 . 8 7 . 
4427 . 2 . 4.00 11.2 890 . 144 . . 445 6 . 0 7 . 
4428 : 2 . 5 . 00 6 . 9 660 . 105 . . 354 6 . 3 7 . 
4429. 2. 6 . 00 5 . 5 640. 105. . 327 6 . 1 7 . 
4430 . 3 . 1. 00 4 . 6 990. 134 . . 578 4 . 5 7. 
4431. 3 . 2 . 00 15 . 9 990. 134 . . 920 3.8 7 . 
4432 . 3. 3 . 00 9.2 - 0 . - 0 . -. 0 -. 0 7 . 
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NO. POS . DEP . MC Cl 804 EC pH SN 

810 . 1. 1.0 0 . 6 12740 . 1056 . 4 . 25 - . 0 2 . 
811. 1 . 2 . 0 1 . 9 11990 . 734 . 3 . 80 -. 0 2. 
812 . 1. 3.0 2.3 6790 . 755 . 2 . 48 -. 0 2 . 
813. 1. 4.0 3 . 4 690. - 0 . . 671 -.0 2. 
814 . 1. 5 . 0 3 . 6 1540 . 415 . 1 . 10 -. 0 2. 
815. 2. 1.0 0 . 4 110 . 276 . . 599 -. 0 2 . 
816 . 2 . 2.0 1.2 77 . 261. . 570 - . 0 2 . 
817 . 2 . 3.0 3 . 0 44 . 290 . . 655 - . 0 2 . 
818. 2 . 4.0 3 . 4 2590 . 432. 1. 35 - .0 2 . 
819. 2 . 5.0 4 . 2 38 . 298. . 719 -.0 2 . 
820. 3 . 1.0 0 . 7 173 . 324. . 794 - .0 2 . 
821. 3. 2 . 0 3 . 1 36. 210. . 565 -. 0 2 . 
822. 3 . 3 . 0 0 . 0 19 . 15 1. . 329 -. 0 2. 
823. 3 . 4.0 4 . 7 18. 134 . . 240 - . 0 2. 
824 . 3 . 5 . 0 4 . 7 15 . 86. . 245 -. 0 2 . 

1006 . 1. 1.0 12 . 1 125 . 58. . 192 -. 0 3 . 
1007. 1. 2 . 0 10.2 115 . 67. . 201 -. 0 3. 
1008. 1. 3.0 10.2 155 . 61. . 214 -. 0 3 . 
1009. 1 . 4.0 10 . 3 95 . 89 . . 197 - . 0 3 . 
1010 . 1. 5.0 10.9 205 . 47 . . 248 - .0 3 . 
1011 . 1. 6 . 0 11.4 245. 96. . 277 - . 0 3 . 
1018. 2 . 1. 0 17 . 1 195 . 70. . 223 - .0 3 . 
1019. 2. 2.0 14.7 235 . 106 . . 332 -. 0 3 . 
1020 . 2 . 3.0 12 . 4 185. 172 . . 390 -. 0 3 . 
1021 . 2. 4 . 0 12 . 2 255. 362 . . 750 -. 0 3 . 
1022. 2 . 5 . 0 11.9 235. 207 . .505 -. 0 3. 
1023. 2 . 6 . 0 11.2 365 . 386 . . 840 - . 0 3. 
1030 . 3 . 1. 0 11.8 75 . 10 0 . . 229 - .0 3 . 
1031. 3 . 2. 0 14 . 6 64 . 8 7 . . 214 - .0 3 . 
1032 . 3 . 3 . 0 10 . 1 45 . 10 9 . . 255 -. 0 3 . 
1033 . 3 . 4.0 8 . 6 49 . 91 . . 233 - .0 3 . 
1034. 3 . 5 . 0 10 .4 39 . 104 . . 289 -. 0 3 . 
1035 . 3 . 6 . 0 10. 1 35. 213 . . 495 - .0 3 . 
1101 . 1. 1. 0 9 . 8 90 . 104 . . 255 - . 0 1. 
1102. 1. 2 .0 8 . 6 115 . 94 . . 232 - .0 1. 
1103. 1. 3. 0 7 . 0 150 . 132 . . 275 -. 0 1 . 
1104. 1 . 4 . 0 7 . 2 170 . 78 . . 270 - . 0 1 . 
1105 . 1. 5 . 0 5 . 5 2 Cl0 . 14 5 . . 918 -. 0 1 . 
1106 . 1. 6 .0 4 . 5 190 . 188. . 290 -. 0 1 . 
1107. 2 . 1 . 0 15. 1 50 . 126 . . 243 - . 0 1 . 
1 108 . 2 . 2. 0 13 . 1 50 . 86 . . 2 13 -. 0 1 . 
1109 . 2 . 3.0 10. 5 45 . 71 . . 185 -. 0 1 . 
1110 . 2. 4 . 0 9 . : 35. 16 3 . . 331 - .Cl 1. 
1111 . 2 . 5 . 0 a . 9 37 . 132. .280 - .0 .l. 

1112. 2 . 6 . 0 c . l 4g___ 105 . . 229 - . 0 1 . 
1113 . 3 . 1 . 0 10 .6 4 2. 109 . . 2 13 - . 0 1. 
1114 . 3 . 2 .0 8.3 40 . 236 . . 421 - .0 1 . 
1115. 3 . 3.0 6.6 62 . 140 . . 271 - .0 1. 
1116 . 3. 4.0 11 . 6 54 . 126 . . 213 - .0 1. 
1117. 3 . 5.0 10 . 1 45 . 96 . . 213 - . 0 1. 
11 18 . 3 . 6 . 0 10 . 9 61. 57 . . 171 - .0 1 . 
2212. 

, 1. 0 0.2 21 . -0 . -. 0 -. 0 5 . .l . 

2213. 1. 2.0 0 . 6 20 . -0 . - . 0 - .0 5 . 
2214 . 1. 3.0 1.1 19 . - 0 . - . 0 -.0 5 . 
2215. 1. 4.0 1.5 18 . -0 . -. 0 - . 0 5 . 
2216. 1. 5 . 0 1.9 20. - 0 . -. 0 -. 0 5 . 
2217 . 2 . 1.0 0 . 5 32 . - 0 . -. 0 -. 0 5. 

2218 . 2 . 2 . 0 0 . 8 31. -0 . - . 0 - . 0 5 . 
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NO. POS. DEP. MC Cl 804 EC pH SN 

4022. 3. 3.0 3.2 6888 . -0 . 2.00 -.0 8 . 
4023. 3 . 4.0 3.9 4488. -0. 1.71 -.0 8. 
4024. 3 . 5.0 5.4 2888 . -0. 1. 57 - . 0 8. 
4305. 1. 1.0 13.9 -0 . -0. -. 0 -.0 8. 
4306 . 1. 2.0 16.4 -0. - 0. -. 0 - .0 9. 
4307 . 1. 3.0 17.0 -0 . -0. -. 0 -.0 9. 
4308. 1. 4 . 0 16.1 -0 . - 0 . -.0 -.0 9 . 
4309. 1. 5.0 18.8 -0 . -0 . - .0 -.0 9. 
4310. 1. 6.0 17.1 -0. -0. -.0 -.0 9. 
4316. 2. 1.0 17.8 -0 . -0 . -. 0 -.0 9. 
4317. 2 . 2.0 14.2 -0. -0. - . 0 -.0 9 . 
4318. 2. 3.0 13.4 -0. - 0. -.0 -.0 9. 
4319. 2. 4.0 13.4 -0 . -0 . -.0 - . 0 9. 
4320. 2 . 5.0 10.4 -0. -0. -.0 - . 0 9 . 
4321. 2. 6.0 -0.0 -0. -0 . -.0 -.0 9. 
4327. 3. 1.0 18.2 -0. -0. - .0 -.0 9. 
4328. 3. 2.0 18.6 -0. -0 . -.0 -.0 9. 
4329. 3. 3.0 17 . 8 -0. -0. -. 0 -.0 9. 
4330. 3. 4.0 16.4 -0 . -0. -.0 -.0 9. 
4331. 3. 5.0 14.2 -0 . -0. - . 0 -.0 9. 
4332 . 3. 6.0 14.8 -0. - 0 . -.0 -.0 9 . 
4400. 1. 1.0 6.7 2640. 552 . 1 . 42 6 . 3 7 . 
4401. 1 . 2.0 9.4 149 . 449. 1. 22 6.3 7. 
4402. 1 . 3.0 10.3 950. 468 . 1. 20 5.6 7 . 
4403. 1. 4.0 11.6 960 . 833 . . 098 5 . 8 7 . 
4404. 1. 5.0 12.7 780. 445 . 1 . 00 5.2 7 . 
4405. 1. 6 . 0 12 . 7 720. 503 . 1 . 10 4 . 4 7 . 
4406 . 2 . 1.0 5.3 280. 226 . . 649 3.2 7. 
4407 . 2 . 2.0 9 . 6 45 . -0 . 1. 80 2 . 8 7 . 
4408. 2 . 3.0 10.4 72. 264 . .641 3 . 4 7 . 
4409. 2. 4.0 11.7 55. 464 . 1. 00 3.1 7 . 
4410. 2 . 5 . 0 10 . 0 35 . 695 . 1. 29 3.1 7 . 
4411 . 2 . 6.0 10.3 85 . 779. 1.38 3.1 7. 
4412. 3 . 1.0 6.9 56 . 220 . . 680 3.0 7. 
4413. 3. 2.0 12.6 50 . 134 . . 505 3.2 7 . 
4414 . 3. 3.0 11 . 2 28. 307. . 755 3 . 0 7 . 
4415 . 3. 4 . 0 10 . 6 36 . 700 . 1. 23 3 . 0 7. 
4416. 3 . 5 . 0 ll . 6 75 . 940 . 1. 51 3 . 1 7 . 
4417. 3 . 6 .0 11.3 52 . 1526 . 2 . 51 2 .9 N 
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