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ABSTRACT 

In an attempt to isolate and clone the promotor and preprosequence 

of the yeast vacuolar protease carboxypeptidase Y, three, PRC-1-derived, 

Bsc I - Bam HI restriction fragments were ligated into a vector plasmid 

(pKS+) and separately transformed into E. coli. Preliminary screening 

and restriction analysis suggested that on~ transformant (pCPYF3), 

contained the desired sequences. However, more detailed restriction 

analyses and ultimately DNA sequencing of the cloned insert, subsequently 

showed this not to be so. A reappraisal of the data indicated the likely 

location of the desired PRCl fragment in a different set of transformants 

(pCPYF2). Screening of these transformants however, yieided an inconclusive 

result. Legumin encoding eDNA sequences were successfully cloned into 

pKS+ 

Exonuclease III/mung bean nuclease deletion of both the PRCl and 

~ derived sequences was performed in order to edit both genes in 

preparation for the construction of a PRCl-~ gene fusion. 



Abbreviations used in this report 

Amp 

ATP 

CPY 

DHFR 

DTT 

dNTP 

ddNTP 

EDTA 

EtBr 

EtoH 

E.R. 

Exo III 

IPTG 

kd 

OD 

ss Rubisco 

TlOEl 

Tet 

X gal 

lOx 

TRIS 

Ampicillin 

Adenosine Triphosphate 

Carboxypeptidase Y 

Dihydrofolate Reductase 

Dithiothrietol 

Deoxynucleotide Phosphate 

Dideoxynucleotide Phosphate 

Ethylenediaminetetra-acetic acid 

Ethidium Bromide 

Ethanol 

Endoplasmic Reticulum 

Exonuclease III 

Isopropyl thiogalactoside 

Kilodalton 

Optical Density 

Small sub-unit Ribulose bisphosphate carboxylase 

lOmM TRIS Buffer,lmM EDTA pH 8.0 

Tetracycline 

5 Brom 4 Chloro 3 Indolyl ~D Galactoside 

Times 10 Concentrated 

TRIS (hydroxymethyl)methylamine 

3 



CONTENTS 

INTRODUCTION: 

(i) Protein Proc.essing in F.ukaryotes 

(ii) Protein Processing in Yeast 

(iii) Legumin - a plant storage protein 

AIMS 

MATERIALS 

BACTERIAL STRAINS AND PLASMIDS 

METHODS SECTION - Contents 

RESULTS: 

1. Cloning the 5' terminal sequences of the PRC1 gene. 

2. Cloning of a eDNA insert encoding Pea Legumin in 
the Bluescript vector plasmid pKs+. 

3. Dideoxynucleotide sequencing of the presumptive 
PRC1 fragment cloned as pCPYF3. 

4. Exonuclease III/mung bean nuclease deletion 
experiments: 

(a) deletion of the presumptive CPY encoding 
sequences in pCPYF3 

(b) Exonuclease III/mung bean nuclease deletion 
of pDUB2031 

(c) Exonuclease III/mung bean nuclease deletion 
of pDUB2030. 

DISCUSSION: 

1. The putative PRC1 fragment cloned in pCPYF3. 

2. Dideoxynucleotide sequencing of the insert cloned 
in pCPYF3. 

3. pDUB2030 Exonuclease III/mung bean nuclease 
deletion experiments. 

4. Future Studies. 

5. The use of Gene Fusion Experiments to identify and 
isolate the vacuolar localisation signal of 
carboxypeptidase Y. 

REFERENCES 

APPENDICES 

4 

5 

5 

9 

14 

16 

17 

18 

19 

40 

40 

54 

59 

60 

60 

63 

66 

71 

71 

72 

73 

75 

77 

84 

92 



INTRODUCTION 

(i) Protein processing in Eukaryotes 
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Many cellular proteins function at locations distant from their 

cytoplasmic sites of synthesis. The localisation of newly synthesised 

polypeptides into their destined sub-cellular compartments is thought 

to be mediated by signals within the precursors of the mature protein 

and by separate mechanisms contained within the organelle membranes 

(Horwich et al., 1985). Classically, two models of protein 

translocation have been differentiated: 

(a) post-translational translocation - characteristic of proteins 

destined for the chloroplast and mitochondrion. 

(b) obligatorily cotranslational - typified by proteins entering 

the endoplasmic reticulum (Schmidt et al., 1981). 

Recently, this dichotomy has been challenged in favour of a unitary 

mechanism (Maher and Singer, 1986, Schatz, 1986, Rothman and Kornberg, 

1986b,Singer et al., 1987). 

The majority of mitochondrial and chloroplast proteins are 

encoded by nuclear genes and are synthesised on free cytoplasmic 

ribosomes as oversized precursors bearing a charged, hydrophilic, 

N-terminal transit peptide (reviewed in Colman and Robinson, 1986 

and Rothman and Kornberg, 1986b) .The precursors are post-translationally 

targeted to the relevant organelle and seem to unfold (Eilers and 

Schatz, 1986) before being translocated to their specific sub-

organellar locations; a process which invariably requires energy 

either from ATP in the case of chloroplasts or the transmembrane 

potential of the inner mitochondrial membrane (Grossman et al., 1980; 

Schatz and Butow, 1983). Proteolytic cleavage of the transit peptide 

occurs during or shortly after import, by the action of specific 

peptides (Maccechini et al., 1979). 
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Hurt et al. (1985) used the gene fusion technique to confirm 

the targeting role of the transit peptide by demonstrating the import 

of a cytosolic protein (mouse dihydrofolate reductase) into the 

yeast mitochondrial matrix under the direction of a presequence 

from yeast cytochrome c oxidase. In a continuation of this work, 

Eilers and Schatz (1986) demonstrated that unfolding of the DHFR 

polypeptide is a prerequisite for post-translational import of this 

protein into the mitochondrion. 

Van den Broeck et al. (1985) have demonstrated by similar techniques, 

that the transit peptide of pea ss Rubisco will direct the bacterial 

protein neomycin phosphotransferase (II) into the chloroplast. 

However, the observation that the presequence from a protein destined 

to locate in the chloroplast (ss Rubisco) will direct the transport 

of a reporter protein into the yeast mitochondrion, (Hurt et al., 1986) 

illustrates the need for more research in this area. 

In contrast, the precursors of secretory proteins (Blobel and 

Dobberstein, 1975 ),lysosomal proteins (Erickson etal., 1981) and 

membrane proteins (Anderson etal.,l983) are synthesised on the rough 

endoplasmic reticulum (R.E.R.) and cotranslationally inserted into 

or translocated across the endoplasmic reticulum membrane under 

the direction of a generally hydrophobic 'signal' peptide. (Blobel 

and Dobberstein, 1975) aided by two receptor proteins; the signal 

recognition particle (S.R.P.) (Walter and Blobel, 1981) and the 

docking protein (Meyer et al., 1982). Energy in the form of ATP 

is required. There is some evidence that in yeast, post-translational 

uptake of some proteins (e.g. ~- mating factor) into the E.R. may 

occur (Hansen et al., 1986; Rothblatt and Meyer, 1986b). Subsequent 

modification of the polypeptide may involve the removal of the signal 

peptide, core and side-chain glycosylation and perhaps further 

proteolytic cleavage to yield the active protein. These events 
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are thought to occur in a sequential pathway, the 'secretory pathway' 

(Novick et al., 1981; Esmon et al., 1981) diagrammed overleaf. 

Recent studies examining the sorting, processing and membrane 

translocation of eukaryotic proteins and the control signals involved, 

have used yeast (S. cerevisiae) as a model organism due to the ease 

with which it may be cultured and manipulated at the genetic level. 

In S. cerevisiae, the above pathway has been characterised using 

temperature sensitive, secretory mutants (sec mutants), in which 

protein transport and hence further processing may be blocked at 

various sub-cellular sites, by placing mutant cells at the restrictive 

temperature (37°C) (Novick and Schekman, 1979). Under such conditions, 

different sec mutants accummulate the precursors of secretory 

glycoproteins either in the E.R., Golgi apparatus or secretory 

vesicles, according to their mutational block, but resume correct 

processing when returned to the permissive temperature (25°C) 

(Novick et al., 1980). 

The molecular mechanism(s) of protein sorting and intra-cellular 

targeting in higher eukaryotes have been widely studied (reviewed 

in Kelly, 1985; Davies and Tai, 1980), the most well defined system 

being the receptor-mediated sorting of lysosomal glycoproteins in 

mammalian fibroblasts (Sly and Fischer, 1982). The sorting receptor, 

located in the cis Golgi membrane, recognises and binds a mannose-6-

phosphate marker on the oligosaccharide side chains of certain 

lysosomal proteins and hence directs them to the lysosome 

(Kornfield, 1986). Mutant cells which fail to phosphorylate mannose, 

aberrantly secrete lysosomal proteins. However, that more than 

one sorting mechanism exists is evidenced by the correct targeting 

of certain lysosomal proteins in mutant cells bearing a defective 

receptor-mediated system. (Waheed et al., 1982; Owada and Neufield, 1982). 



Fig. 1 A Schematic Diagram of the Secretory Pathway of Eukaryotic Cells 
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(ii) Protein processing in Yeast 

The functional and biochemical similarities between the lysosome 

of higher eukaryotes and the yeast vacuole (Wiemken et al., 1979; 

Stevens et al., 1982) have stimulated investigations into the 

processing of vacuolar hydrolases, particularly carboxypeptidase Y 

(CPY). 

The preprozymogen is synthesised as an oversized, inactive, 

precursor, which is directed into the E.R. where cleavage of the 

signal peptide occurs (Blachly-Dyson and Stevens, 1987). Deletions 

in, or complete removal of the signal sequence, fail to fully inhibit 

the translocation of the CPY precursor; an observation that questions 

the role of this N-terminal peptide (Blachly-Dyson and Stevens, 1987). 

It may be that the signal sequence is redundant in E.R. translocation 

and that other signals located internally within the precursor are 

involved. Once in the E.R. lumen, preCPY receives four, asparagine-

linked oligosaccharide chains and is designated the pl form (M 67k~d) 
r 

(Trimble and Malay, 1977; Hasilik and Tanner, 1978a). Subsequent 

modification of the carbohydrate moieties occurs in the Golgi body 

(Stevens et al., 1982) to yield the p2 form, (M 69kd) with maturation 
r 

to active CPY finally being completed immediately before or on delivery 

to the vacuole (Hemmings et al., 1981; Mechler et al., 1982). The 

formation of the active protease involves the removal of an eight 

kD propeptide (Hemmings et al., 1981) and requires both proteinase 

ysc A, the product of the PEP4 gene; (Woolford et al., 1986; 

Amrnerer et al., 1986) and proteinase ysc B (Mechler et al., 1987). 

Sec mutant studies have established that both vacuolar proteins 

(e.g. CPY) and proteins destined for the cell surface (e.g. invertase), 

transit the secretory pathway as far as the Golgi body, (Novickand 

Schekman, 1979: Stevens et al., 1982) but are segregated from each 
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other in this organelle by an unknown sorting mechanism (Rothman 

and Stevens, 1986c;Valls et al., 1987). The introduction of multiple 

copies of the PRC-1 gene, encoding CPY, into yeast, causes over­

production of CPY and consequent secretion of a large proportion 

(>50%) of this enzyme, leading to the suggestion that CPY sorting 

and transport involves a saturable component, possibly a sorting 

receptor (Stevens et al., 1986a). The inhibition of glycosylation 

by tunicamycin, fails to prevent accurate targeting of CPY (Hasilik 

and Tanner, 1978a;Stevens et al., 1982; Schwaiger et al., 1982) 

suggesting that the putative sorting mechanism differs from that 

in mammalian fibroblasts in having no requirement for oligosaccharide 

phosphorylation, even though mannose phosphorylation does occur 

(Hashimoto et al., 1981). This, and the observation that all vacuolar 

proteases studied so far, bear a N-terminal propeptide, presumed to be 

removed at the vacuole to yield the active enzyme, has led to the 

suggestion that the segregation of proCPY from cell surface proteins 

requires a determinant located in its propeptide sequence 

(Valls et al., 1987). A discussion of a series of gene-fusion 

experiments designed to test this hypothesis is presented in section 5. 

The intracellular transport and processing of two other important 

yeast glycoproteins, invertase and the ~-mating factor pheremone, have 

been studied principally with a view to using their leader sequences 

to direct the processing and export of heterologous proteins 

expressed in yeast (Brake, 1984). Like CPY, these glycoproteins are 

synthesised as large precursor molecules on the rough endoplasmic 

reticulum, which are subsequently proteolytically processed to yield 

the active species. They differ from CPY in their final destination, 

since both are secreted into the periplasmic space, where invertase 

is retained whilst the oc-mating factor diffuses into the medium. 
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rr-mating factor is a peptide pheremone produced by rr haploid 

cells to trigger conjugation between the haploid cell types a and rr 

(Emr, 1983). The precursor molecule, prepro-cr-factor (M 18600 d) 
r 

comprises an 80 amino acid 'prepro' region bearing three N-linked 

glycosylation sites and tour tandem copies of the cr-factor pheremone 

separated by short spacer peptides. Fig. 2 (Kurajan and Herskowitz, 

1982; Julius et al., 1983). The precursor enters the secretory pathway 

without the removal of the signal peptide which is retained until 

the final processing stage in cr-factor maturation (Emr, 1983; Julius 

et al., 1984a). As previously stated, ATP-dependent, post-translational 

translocation of the precursor polypeptide into yeast microsomes has 

been observed in vitro, suggesting that for this polypeptide at least, 

cotranslational translocation need not necessarily be obligatory 

(Rothblatt and Meyer, 1986b). Although the prepro fragment of the 

cr-factor precursor receives core glycosylation at three sites on entry 

into the E.R. no further glycosylation usually occurs (Emr et al., 

1983; Jti]ius et al., 1984a). For reasons which are unclear, inhibition 

of glycosylation reduces the rate of cr-factor secretion, yet glycosylation 

is not an absolute requirement for either proteolytic cleavage or 

export (Julius et al., 1984a). 

Proteolytic processing to release the mature pheremone occurs 

in two stages, commencing in the Golgi apparatus, to be completed 

at a late stage in the secretory vesicles. The reasons for this delay 

are unclear and have provoked the following speculative suggestions 

(Julius et al., 1984a): 

(a) The prosequence may contain information required to direct 

transport from the E.R. to the Golgi and/or packaging into the 

secretory vesicles. 



(b) glycosylated prepro-~-factor may have greater resistance to 

non-specific proteolysis than the mature pheremone. 

(c) elevated intracellular concentrations of mature ~-factor may 

restrict growth and must therefore be kept low. 

13 

The first proteolytic step involves cleavage of the precursor by the 

KEX2 gene product to yield ~-factor with the spacer peptides still 

attached at theN-terminal end (Julius et al., 1984b) whilst subsequent 

proteolysis to liberate the mature pheremone is mediated by membrane­

bound dipeptidyl-amino peptidase A (Julius et al., 1983). The molecular 

mechanisms behind the targeting of the ~-factor precursor have yet 

to be elucidated (Rothblatt and Meyer, 1986b). 

S. cerevisiae synthesises two forms of invertase, a glycosylated, 

secreted form the production of which is subject to catabolite 

repression, and a non-glycosylated, cytoplasmic form which is produced 

constitutively (Pearlman and Halvorson, 1981; Carlson and Botstein, 1982). 

Both forms are encoded by separate mRNA species which differ in size 

and in the nature of the 5' terminal sequences, yet are transcribed 

from a cornmon gene, the SUC2 gene (Pearlman and Halvorson, 1981). 

rnRNA's encoding the precursors of secreted invertase specify a 19 

amino acid signal peptide, implicated in the cotranslational 

translocation of pre-invertase into the ER. The invertase signal 

peptide has been shown to encode sufficient information to direct 

the secretion of a number of heterologous proteins including 

prochyrnosin (Smith et al., 1985) and interferon ~-2 (Singh et al., 1984). 

rnRNA's encoding cytoplasmic invertase encode no signal peptide. 
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(iii) Legumin - a plant storage protein 

In this study, eDNA sequences encoding legumin were to be used 

in the construction of a hybrid gene. 

Legumin is a major seed storage protein of pea (Pisum sativum L.) 

which accumulates within membrane-bound protein bodies in the cotyledons 

(Chrispeels et al., 1982a). Its synthesis is confined to the seed 

and is a consequence of developmentally regulated gene expression, 

occurring only during the mid to late stages of seed maturation 

(Boulter, 1984). The protein is a hexamer, each constituent monomer 

comprises an acidic, ~ polypeptide (M - 40 000 d) and a basic 
r 

~polypeptide (M ~ 20 000 d), linked by disulphide bridges 
r 

(Wright and Boulter, 1974). The heterogeneity of the sub-unit 

polypeptides in both molecular size and charge arises because they 

are encoded by a small family of closely-related genes (Croy and 

Gatehouse, 1985). The nomenclature and classification of the sub-unit 

variants has been reviewed elsewhere (Croy and Gatehouse, 1985). 

The sub-unit pairs of the "major" legwniil class (Casey et al., 1979) 

encoded by the~ gene sub-family (Lycett et al., 1984) are 

synthesised as a single, contiguous precursor molecule (M 60 000 d) 
r 

comprising both the ~ and ~ polypeptide chains and an N-terminal 

signal peptide (Croy et al., 1982). A eDNA of this gene has been 

cloned (Lycett et al., 1984). 

Cotranslational import of legumin into the E.R. lumen is thought to 

occur under the direction of the signal peptide although the proteolytic 

cleavage of this sequence has yet to be demonstrated (Croy and 

Gatehouse, 1985). Legumin is not glycosylated (Gatehouse et al., 

1980; Badenoch-Janes et al., 1981). The~ and~ polypeptides are 

subsequently assembled into an 8s oligomer (possibly a trimer) and 

it is in this form that the protein is transported from the E.R., 
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perhaps along tubular vesicles, to the Golgi body and then in 

membrane-bound vesicles to the protein bodies (Chrispeels et al., 1982a; 

Chrispeels, 1984). The molecular mechanism behind the sorting and 

targeting of legumin to the protein bodies is presently unknown. It 

is in the vacuole-derived, protein bodies that rapid post-translational 

cleavage of the legumin precursor to yield the linked ~ and S 

polypeptides occurs, followed by the final assembly of the sub-units 

into the hexameric form (Chrispeels et al., 1982b). 



AIMS 

A major Legumin precursor has been expressed in S. cerevisiae from 

a eDNA under the yeast pgk promotor and found to lodge in the E.R. and 

Golgi apparatus with no further additional processing taking place 
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(Yarwood et al., FEBS letters, in press). Both the yeast vacuole and 

protein bodies of pea have a similar function and enzymic complement 

(Chrispeels et al., 1982). By expressing legumin in yeast under the promotor 

and preprosequence of carboxypeptidase Y, it may be possible to examine 

both the intra-cellular localisation of legumin by the presumptive CPY 

control sequences and the intra-cellular processing of legumin by yeast. 

The long term aim of this study is to examine the intra-cellular sorting 

of the legumin polypeptides when expressed from the carboxypeptidase Y 

promotor and under the direction of the CPY propeptide. By using legumin 

as a biochemical marker, it should be possible to monitor its intra-cellular 

location by in situ immunocytochemical analysis and by sub-cellular 

fractionation. The aim of this preliminary study was to isolate gene 

sequences encoding the putative vacuolar localisation signals of yeast 

carboxypeptidase Y (Valls et al., 1987; Johnson et al., 1987) and fuse 

them, in frame, with eDNA sequences encoding the legumin ~ and S 

polypeptides, from which the promotor and signal peptide had been deleted. 
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All buffers and reagents referred to in the Methods Section are detailed 
in the Appendix. 
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1. Purification and Concentration of Nucleic Acids 

(i) Deproteinisation of DNA preparations by "phenol extraction" 

The removal of bacterial cell proteins, restriction enzymes or other 

protein contaminants during DNA purification was by sequential phenol, 

phenol: chlorofonn, chloroform extraction (Appendix III) in which equal 

volumes of phenol were vortex mixed with the DNA solution to be purified, 

the emulsion separated by centrifugation for two minutes at 12000 rpm 

and the aqueous phase removed to a new tube to be re-extracted in the 

same way with phenol:chloroform and finally chloroform. The phenol 

removes the protein, the chloroform removes the phenol. Care was taken 

to leave denatured protein at the interface between the separated organic 

and aqueous phases. 

(ii) Recovery of DNA by ethanol precipitation 

Typically, the volume of DNA solution was made up to 100wl with 

T
10

E
1 

and 0.2 volumes (20wl) of 3M sodium acetate (pH 4.8) added, 

followed by five volumes (SOOwl) of cold, 100% ethanol. The mixture 

was stored at -80°C for 30 minutes, centrifuged for 10 minutes at 12000 rpm 

and the supernatant drained to leave a white, nucleic acid pellet. 

The DNA precipitate was washed with SOOwl of 70% (v/ ) ethanol, 
v 

recentrifuged for five minutes to retain the loose pellet and the tube 

carefully drained over tissue paper. Droplets of 70% ethanol were 

removed by capillary tube and the pellet dried under vacuum for 2-5 

minutes, before resuspending the DNA in the desired volume of T
10

E
1 

buffer or water. 

2. Enzvmic treatment of DNA 

(i) Digestion with Restriction Endonucleases 

Restriction digests were usually performed in JOwl reaction 

volumes. A typical restriction digest would comprise:-
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1-3~g of plasmid DNA (3-6~1 of DNA solution) 

5 units of restriction enzyme (1-2~1) 

3~1 of 10 x restriction enzyme buffer of suitable ionic strength 

[1~1 of DNAase free RNAase] 

made up to 30~1 with sterile distilled water. 

Low, medium and high ionic strength buffers (Appendix IIv) were used 

depending on the restriction enz~ne u~ed. Incubation was for a minimum 

of three hours and complete digests were left overnight. When double 

digests were performed using enzymes with different buffer requirements, 

the DNA was precipitated with ethanol between digests. Double digests 

with enzymes having similar buffer requirements were performed concurrently. 

Successful restriction was monitored by agorose gel electrophoresis 

(Methods Section 4) against suitably restricted bacteriophage A size 

markers. 

(ii) Ribonuclease Treatment 

RNA was removed from DNA preparations either by incorporating 1~1 of 

-3 
DNAase-free RNAase (1 mg ern ) into a restriction enzyme digest mixture or 

by incubating the following mixture for 30 minutes at 37°C. 

2~g of DNA 

40~1 of T
10

E
1 

buffer 

1~1 of RNAase (1 mg cm-
3

) 

(iii) Ligation Reactions 

Typically, a large excess of the insert to be cloned was mixed with 

linearised plasmid DNA in the presence of buffered T
4 

DNA ligase and left 

for four hours at room temperature or overnight at 15°C. To prevent the 

recircularisation of vector plasmids linearised in a double restriction 

digest designed to generate incompatible ends, excised polylinker 

fragments were purified away from the main vector fragment by agarose 

gel electrophoresis and the vector DNA recovered by the LMT agarose 

method (Methods Section Si). The recircularisation of plasmids bearing 

compatible ends, was minimised merely by providing a large excess of 
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insert DNA; intermolecular ligation was therefore favoured over intra-

molecular ligation. A typical reaction mixture is listed below: 

15~1 (::: 6.2 ~g of the DNA fragment to be cloned) 

10~1 C= 1.7 ~g of Vector DNA) 

3~1 10 X ligation buffer (Appendix II vi) 

1-2 units of T
4 

DNA ligase 

Sterile distilled water to 30~1 

Control Ligations 

Control ligations were always performed as just described but 

without the inclusion of "insert" DNA. 

Functions of Control Ligations 

(i) Detection of incompletely restricted vector plasmids in a double 

restriction digest 

In situations where vector recircularisation required an insert, 

bearing heterologous ends, a control ligation would be expected to 

yield no transformants. The growth of blue transformants on a control 

plate might indicate that vector restriction by a single enzyme had 

occurred in the double digest, allowing recircularisation either 

in the absence of an insert or, by the insertion of a contaminant 

DNA fragment bearing homologous compatible ends. 

(ii) The presence of numerous white colonies on control plates would 

invalidate the colour selection system used to locate insert bearing 

clones. 

(iii) The growth of blue transformants on control plates in the absence 

of transformants on experimental plates would exclude the incompetency 

of the bacterial cells or inactivity of the T1 DNA ligase as possible 
q 

reasons for transformation failure. 

3. The Isolation of Plasmid DNA from Bacterial Hosts 

(i) Large scale isolation of plasmid DNA by caesium chloride-

ethidium bromide density gradient centrifugation 

The major steps in this procedure designed to isolate plasmid 
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DNA from a bacterial host are swmnarised below: 

(a) Development of a 1 litre culture of the desired bacterial strain 

harbouring the plasmid including chloramphenicol amplification 

of plasmid DNA. 

(b) Harvesting and lysis of the bacterial cells, removal of cell 

debris and proteins and precipitation of the nucleic acids. 

(c) Purification of the plasmid DNA by Cscl-EtBr equilibrium 

centrifugation. 

Protocol 

(a) Overnight cultures of the transformed bacterium were prepared 

by innoculating 10 cm
3 

of sterile Luria broth (Appendix I) with cells 

taken from a glycerol culture or a single colony in an agar plate. 

The bacteria were cultured under appropriate antibiotic selection 

and were agitated throughout. The overnight culture was used to 

innoculate 1 litre of L-broth containing a suitable antibiotic and 

incubation continued with vigorous agitation, until the culture 

reached late logoritlli~ic phase (OD600Qm = 0.6). The plasmid DNA was 

then amplified by adding chloramphenicol to a final concentration 

-3 
of 200~g em and incubating overnight. The bacteria were harvested 

3 
in 4 x 250cm tubes by centrifugation for one minute at 9000 rpm 

3 
and 4°C, and the bacterial pellet resuspended in a total of 10 em 

of solution I (Appendix III) without lysozyme. 

(b) Cell Harvesting and Lysis 

The achieve cell lysis, SOmg of lysozyme were added, the solution 

mixed and left at room temperature for 30 minutes. 
3 

Twenty em of 

freshly prepared, solution II (Appendix III) were then added to 

release the cell contents and the mixture left on ice for 30 minutes 

more. Precipitation of cell debris and protein was subsequently 

achieved by the addition of 15cm
3 

of 3M sodium acetate (pH 4.8) 

(Appendix III), mixing the solution and leaving on ice for a further 
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10 minutes. The precipitate was recovered by centrifugation in 

3 2 x 50 em M.S.E. tubes for 45 minutes at 15,000 rpm and 4°C. 

Nucleic acid precipitation involved transferring the supernatant 

3 
to 2 x 100 em polyallomer tubes and adding an equal volume of 

isopropyl alcohol. After incubation for half an hour, the nucleic 

acid precipitate was collected by centrifugation for 30 minutes at 

12,000 rpm and l5°C, and the pellets resuspended in a total of 15 cm
3 

of T
10

E
1
s

10 
pH 8.0 (Appendix IJ. 

(c) Purification of Plasmid DNA by CsCl-EtBr Equilibrium Centrifugation 

20.6g of caesium chloride and 0.3cm3 of ethidium-bromide 

(10 mg cm- 3) were dissolved in the nucleic acid solution obtained 

above, and the volume made up to 27cm3 with T
10

E
1 

buffer prior to 

transfer by syringe to medium sized, quickseal, sorvoll centrifuge 

tubes. The solution was allowed to flow freely into the tube to 

minimise plasmid damage by shear. A balance tube was prepared in 

exactly the same way using T
10

E
1 

as a replacement for DNA solution. 

The tubes were matched to within O.lg by the addition of bretoll 

or CsCl solution (0.763 g cm- 3) and heat sealed, before centrifugation 

at 44,000 rpm for 17 to 22 hours at l5°C. 

The tubes were carefully removed from the VTi 50 motor and 

viewed under U.V. illumination. In a successful preparation, two 

deeply stained bands were clearly visible, the lower plasmid DNA 

band separated from the upper chromosomal DNA band. Extraction of 

the plasmid DNA was achieved by piercing the tube side with a syringe 

and withdrawing the lower layer. The ethidium bromide was removed 

by repeated solvent extraction using CsCl-saturated isopropyl alcohol 

and the caesium chloride removed by dialysis against several changes 

of T10E1 buffer. The purified plasmid was stored in 500~1 aliquots 



If complete separation had not been achieved, the lower band 

3 
was removed, made up to 15 em with T

10
E

1
s10 , prepared for CsCl 

purification and recentrifuged as just described. 

Spectrophotometric estimation of plasmid DNA concentrations 

Spectrophotometer: LKB Biochem Ultraspec 4050 10~1 of plasmid DNA 

made up to 1cm3 with sterile, distilled .water were introduced into 

a quartz cuvette (pathlength = 1cm) and the absorbance measured at 

25 

wavelengths of 260nm and 280nm. An OD
260 

of 1.000 spectrophotometer 

unit 
-3 = ~·~so ug DNA em (Maniatis et al., 1982). 

DNA concentrations were calculated as follows:-

Absorbance at 260nm x ~~so x Dilution factor ( = 100) = 

+ example CsCl purified pKS vector DNA: 

Absorbance at 260nm = 0.034 units. 

0.034 X 50 X 100 = 170.0 ~g DNA 
-3 

em 

~g DNA 
-3 

em 

Measurements at 280nm allow estimation of protein contamination. 

Plasmid DNA samples were accepted as of sufficient purity if the 

ratio OD260 exceeded 1.8. 
OD280 

3. (ii) Small scale isolation ("miniprep") of plasmid DNA by the alkaline 

lysis procedure 

Two similar methods were successfully employed in the isolation 

of plasmid DNA. The second method described here is the quicker 

of the two. 

Method 1 (Crouse et al., 1983) 

Bacterial cells picked from a single colony were cultured 

overnight under appropriate antibiotic selection. The cells were 

harvested by centrifugation for 10 minutes at 3500 rpm in a bench 

centrifuge and the bacterial pellet resuspended in 192~1 of solution I 

(Appendix III). 
3 

the suspension was transferred to sterile, 1.5cm , 

eppendorf tubes and left for five minutes at room temperature. The 

tubes were transferred to ice for two minutes, 400~1 of solution II 
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(Appendix III) added to lyse the cells, the tubes vortex mixed and 

returned to ice for five minutes more. 300~1 of 3M sodium acetate 

(pH 4.8) were then added, mixed and incubation on ice continued for 

a further 10 minutes. Bacterial proteins and debris were separated 

from the clear, viscous solution by centrifugation for 10 minutes 

in a microfuge. 750~1 of the supernatant was transferred to a new 

tube and the nucleic acid precipitated by addition of 500~1 of 

isopropanol. The DNA was pelleted by centrifugation for 5 minutes, 

the isopropanol poured away and the pellet washed with 1cm
3 

of cold 

ethanol. All traces of ethanol were eliminated by draining the tube 

and removing any droplets by glass capillary tube. The following 

additions were then made to remove the protein contaminants:-

200~1 

200~1 

200~1 chlorofcrrm 

Vortex mix 

Vortex mix 

- Vortex mix 

A 3 minute centrifugation step was followed by removal of the aqueous 

layer into a new tube and the DNA precipitated as described in 

(Methods Section 1ii). The vacuum dried pellet was resuspended in 

100~1 of T
10

E
1 

buffer and RNAsase treated (Methods Section 2ii) before 

use. 

Method 2 

1.5cm
3 

of bacterial suspension taken from a 5cm
3 

overnight 

culture, was centrifuged for 2 minutes in an eppendorf. The bacterial 

pellet was resuspended in 100~1 of ice cold lysozyme solution 

(Solution I) and stored at room temperature for five minutes. 200~1 

of solution II were then added, the solution mixed, and the clear 

viscous solution stored on ice for five minutes more, before 150~1 

of ice-cold, SM potassium acetate (pH 4.8) were added. The tube 

was vortex mixed and left on ice for five minutes to precipitate 



the proteins and cell debris. These were then removed by 

centrifugation and the clear supernatant removed to another tube. 

Phenol, phenol:chloroform, chloroform extraction and ethanol 

precipitation were completed as described in Section 1i and 1ii, 

and the DNA pellet vacuwn dried before resuspending in 501-11 of 

4. Agarose Gel Electrophoresis 

(i) Maxigels 

0.7% or 2% agarose gels were used in the separation and 

identification of DNA restriction fragments. Electrophoresis tank 

design, gel preparation and pouring were as described by Maniatis 

et al. ,(1982 ). All DNA samples and suitably restricted bacteriophage 

A size markers were mixed with stop dye (Appendix II) prior to 

loading. 
3 

To make a horizontal slab gel, 200cm of 0.7% agarose in 

Alex gel buffer (Appendix II) was heated for six minutes and the 

gel cooled before being poured. When solid, the well-forming comb 

and gel mould were removed and the gel immersed in 2 dm
3 

of Alex gel 

buffer. By incorporating ethidium bromide into the running buffer 

-3 
to a final concentration of S1-1g em , the DNA bands could be visualized 

as an orange fluorescence under ultra-violet illumination (A 300-360 rum) 

and were photographed using polaroid 667 film (ISO 3000). 

Electrophoresis was performed overnight at 40mA, SOV or at 100-120 rnA, 

120V for 3 to 4 hours. 

(ii) Minigels 

Minigels were often used for the rapid detection of DNA, when 

monitoring the progress of a restriction digest or to confirm the 

successful recovery of DNA following phenol extraction or fragment 

isolation from LMT agarose. 0.7% minigels were prepared in the same 

way as maxigels with TBE buffer (Appendix II ) substituting for Alex 

gel buffer. Minigels were operated at a maximum of 80mA 90V for 2 hours. 
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5. Isolation of DNA from Agarose Gels 

Three methods were used in the recovery of DNA from agarose 

gels. 

(i) Isolation from low melting temperature (LMT-) agarose gels 

A 70% low melting temperature gel was prepared (Appendix II viii) 

and cooled to 37ac prior to pouring. The low mechanical strength of 

LHT gels often leads to well collapse or gel splitting. The first 

of these problems was avoided by removing the well forming comb 

with the gel immersed in electrophoresis buffer; the second by pre-

electrophoresis for 10 minutes prior to loading the samples, during 

which time, the voltage was gradually increased to a maximum of 

7.5V 
-1 

em Restricted DNA samples were loaded and separated overnight 

at no more than 30V. Restriction fragments were visualised under 

U.V. light and a small slice containing the desired DNA fragment cut 

from the gel. The slice was melted at 65°C, two volumes of SOml'i 

Tris. HCl, 0.5mM EDTA (pH 8.0) added, and the mixture placed at 37°C 

for 3 minutes. The DNA was purified by sequential phenol, 

phenol:chloroform, chloroform extraction (Section 1i) and recovered 

by ethanol precipitation (Section 1ii) at -20°C for 1 hour. The vacuum 

dried pellet was resuspended in 20~1 sterile distilled water and 3~1 

applied to a minigel, along with a suitable size marker, to confirm 

the successful recovery of the DNA. 

(ii) Freeze elution from 0.7% agarose gells 

A thin gel slice containing the desired restriction fragment was 

3 
obtained as described above and placed in a 1.5cm eppendorf tube 

together with 0.9cm
3 

of sterile distilled water and 0.1cm
3 

of 3M 

sodium acetate, 10m1'1 EDTA. The tube was left, with occasional shaking, 

for 15 minutes in the dark. The gel slice was placed in a 0.5cm
3 

eppendorf tube that had been plugged with siliconised glass wool, 

a hole punctured in both lid and base and this small tube placed inside 
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the larger eppendorf tube. The two tubes were held at -80°C for 

15 minutes and immediately centrifuged as a pair for 15 minutes at 

12 000 rpm. The liquid accummulated in the large tube was retained 

and further elution of the DNA achieved in a second centrifugation. 

5~1 of 1M MgC1
2

, 10% acetic acid were added to the pooled sample and 

the DNA recovered by ethanol precipitation. The dried pellet was 

resuspended in 20~1 of T
10

E
1 

buffer. 

(iii) Isolation of DNA by electrophoresis into Watman 3MM filter paper 

(Girvitz et al., 1980) 

The restriction fragment bands were visualised under U.V. 

irradiation and a 1cm incision made in the gel just in front of the 

band to be excised. A small piece of Watman 3MM paper, backed by a 

piece of dialysis membrane was cut to fit the incision and inserted 

into the slot. All air bubbles were removed and electrophoresis 

continued for 5 minutes, or until the DNA band had absorbed into the 

paper. The absence of the band on the gel and an orange fluorescence 

on the 3MM paper was evidence of successful elution of the DNA. The 

paper strip was placed in a 0.5cm
3 

eppendorf tube which had a hole 

3 
pierced in the base and this in turn placed within a 1.5cm eppendorf 

tube. The tubes were centrifuged for 30 seconds and the eluate 

recovered. The DNA was rinsed from the paper three times with 

T
10

E
1
s

10 
and the eluate collected on each occasion. The pooled eluate 

was extracted with phenol, phenol:chloroform, chloroform and 

precipitated in ethanol at -80°C before being resuspended in 20~1 of 

6. Bacterial Transformations 

(i) Preparation of competent cells 

(Modified after Mandel and Higa, 1970) 

lcm
3 

of overnight culture was innoculated into 50cm
3 

of L-broth 

and the bacteria cultured, with vigorous shaking and under antibiotic 
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selection to mid logarithmic phase (OD
600

= 0.3 - 0.4). The bacteria 

were harvested by centrifugation for 5 minutes at 6000 rpm, the pellet 

resuspended in 25cm
3 

of iced, 50rnM CaCl
2

:10rnM Tris. Cl (pH 8.0) and 

the suspension left on ice for 45 minutes. The cells were then 

recovered under the same centrifugation regime and gently resuspended 

in 2crn
3 

of iced 50rnM CaC1 2 :10rnM Tris. (pH 80.0). The cell suspension 

was left for at least 1 hour at 0°C and occasionally overnight at 4°C. 

The competence of the cells to take up DNA is increased by storage 

at 4°C for up to 24 hours (Maniatis et al., 1982). 

(ii) Bacterial transformations by Calcium Chloride procedure 

10~1 of rDNA produced in the ligation reaction (Section 2iii) 

was mixed with 100~1 of cornpetant cells and the mixture left for 45 

minutes on ice. The suspension was transferred for 2 minutes to a 

water bath preheated to 42°C and returned immediately to 0°C. lcrn
3 

of 

L-Broth was added and the culture placed at 37°C for one hour to permit 

cell convalescence and expression of antibiotic resistance. A serial 

dilution in the range 
-2 3 

0° to 10 in L-broth was prepared and 0.1 ern 

aliquots spread onto antibiotic selective plates containing Xgal and 

IPTG (Appendix I). The plates were inverted and incubated at 37°C 

for 12-16 hours. 

XL.l-Blue, JM83 and JMlOl transforrnants bearing an insert appear 

white on IPTG, Xgal agar, due to insertional inactivation of the lacZ 

gene, against a background of blue, non-recombinant colonies. 

E.coli XLl-Blue was plated onto ampicillin, tetracycline, Xgal, 

IPTG L-agar (Appendix I). By culturing XLl-Blue under ampicillin and 

tetracycline selection, the background of white, false positive 

transforrnants can be reduced (suppliers documentation). E.coli strains 

JM83, JM109, JMlOl were all cultured on ampicillin, Xgal L-agar. 

Single, white transforrnants presumed to be bearing chimaeric 
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plasmids were sub-cultured under identical antibiotic selection 

prior to recovery of the plasmid DNA by 'miniprep' (Section 3ii). 

7. DNA sequencing by the dideoxynucleotide chain termination method 

In this technique, the Klenow fragment of DNA polymerase I 

is used to synthesise a complementary copy of a target sequence 

from an oligonucleotide primer annealed to a single-stranded DNA 

template. DNA synthesis is carried out in the presence of four 

deoxynucleotide phosphates (dNTP's), one of which is labelled with 

35s, and one dideoxynucleotide phosphate (ddNTP). Incorporation 

of a dideoxynucleotide into the DNA sequence causes chain termination 

and if four reactions are performed, each using a different ddNTP, 

a series of nested, DNA fragments are generated, differing in length 

by a single base. The fragments from each reaction may be separated 

side by side on ultra-thin urea-polyacrylamide gels and visualised 

by autoradiography. Since each fragment differs from the next by 

a single base, the base sequence of the target DNA can be determined. 

For a fuller explanatiOil of the technique refer to Sanger et al., 

\1977). 

Operations 

(iJ Preparation of the single-stranded template DNA. 

(ii) Annealing of the 17-mer primer to the template. 

(iii) DNA sequencing reactions. 

(iv) Urea - polyacrylamide electrophoresis. 

(v) Autoradiography and analysis. 

Two methods were used in repeated attempts to sequence the 

insert ligated into pCPYF3. 
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Method 1 

Protocol 

(i) Preparation of the single-stranded template DNA 

(a) Removal of RNA 

lO~g of CsCl purified plasmid DNA (Section 3i) was 

incubated for 30 minutes at ~7°C with 20~g of DNAase-free 

RNAase. The enzyme protein was removed by phenol, 

phenol:chloroform, chloroform extraction, the DNA recovered 

by ethanol precipitation and vacuum dried. 

(b) Alkali Denaturation of the DNA 

Denaturation of the DNA was by the method of Hattori 

and Sakaki (1986). Thd dried pellet from above, was 

resuspended in 18~1 of sterile distilled water and 2~1 

of 2M NaOH added to render the DNA single-stranded. After 

five minutes at room temperature, 8~1 of filter sterilised, 

5M ammonium acetate (pH 7.4) were added and the denatured 

DNA precipitated for 15 mintttes in 100~1 of ethanol at 

-80°C. The DNA was recovered by centrifugation, rinsed 

once with 70% ethanol and vacuum dried before resuspension 

in 12~1 of sterile distilled water. 2~1 were used in 

agarose gel electrophoresis to confirm successful recovery 

of the DNA. 

(ii) The Annealing Reaction (Hattori and Sakaki, 1986) 

To permit both strands of the insert to be sequenced, both 

M13 and M13 reverse primer, were annealed in separate reactions 

to the single-stranded DNA template as follows: 

5~1 of denatured template DNA, 1.5~1 of 10 x Klenow reaction 

buffer (Appendix IV), 6ng of M13 primer (or Ml3 reverse primer) 

and 4.5~1 of water, were mixed in an eppendorf tube. The 



mixture was placed at 68°C for 15 minutes and then at room 

temperature for a further 15 minutes to allow hybridisation 

between primer and template DNA. 

(iii) DNA Sequencing Reactions 
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The method used was as stated by the reagent manufacturer 

(Materials). 

Into four eppendorf tubes labelled A, G, C and T, 2~1 of 

the corresponding dNTP/ddNTP nucleotide mix were introduced. 

2~1 of 
35s dATP and 2 units of Klenow polymerase were added 

to the template DNA samples, and 3~1 of the resultant solution 

transferred to the nucleotide mixtures in the labelled tubes. 

The contents were mixed, briefly centrifuged and incubated 

for 20 minutes at 37°C. 1.5~1 of O.SmM dATP 'chase' solution 

were added and incubation continued for a further 15 minutes. 

The four samples were then dried under vacuum and resuspended 

in 4~1 of formamide-dye-mix (Appendix III). Occassionally, 

samples were stored in this form overnight at -20°C. More 

usually, the samples were boiled for 3 minutes to denature 

the DNA and 3~1 aliquots loaded onto a sequencing gel. 

(iv) Urea - polyacrylamide electrophoresis 

Two glass sequencing plates (20 x 40cm and 20 x 38cm) were 

thoroughly washed in detergent solution, degreased by repeated 

cleaning with 100% ethanol and siliconised on one surface 

using 'repelcote' (2% dimethyl dichlorosilane in 

1,1,1, trichloroethane). Care was taken to polish the siliconed 

surfaces and to render them particle-free. Two, wedge-shaped 

spacers were laid along the long edge of the larger plate and 

the smaller plate placed on top so that the siliconed surfaces 

faced each other. The two plates were taped together along 
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three sides to produce a watertight construct. 

The urea polyacrylamide solution was introduced between 

the two plates by holding them at an angle and allowing it 

to flow from a large syringe. Great care was taken to avoid 

entrapment of air bubbles within the gel. The straight edge 

of a sharks-tooth comb was inserted between the plates to create 

a well trough in the gel and the polyacrylamide allowed to 

set overnight, with the open end protected by cling film wrap. 

To form the sample wells, the sharks-tooth comb was reversed 

such that the teeth penetrated the gel surface to a depth of 

c lmm. The tape along the lower edge was removed and the gel 

construct mounted in the electrophoresis apparatus such that 

a watertight seal was formed between the upper buffer reservoir 

and glass plates. "Smiling effect" due to uneven heat 

distribution, was minimised by clamping an aluminium plate 

onto the larger glass plate. The upper and lower buffer 

reservoirs were filled with TBE buffer (Appendix IIvii) and 

the gel pre-electrophoresed for 30 minutes at 1300V, SOmA to 

achieve the 55-60°C working temperature. With the power off, 

the wells were flushed to remove urea or entrapped gas bubbles 

and 3~1 of heat-denatured DNA quickly loaded into each of four 

wells in the sequence A, G, C, T. The samples were 

electrophoresed for 1.5 to 2 hours until the lower of the two 

dye bands reached the bottom of the gel. The gelw.as allowed 

to cool before dismantling the apparatus. 

(v) Autoradiography and analysis 

The two plates were carefully separated, leaving the gel 

adhering to the lower plate. The gel was transferred to a 

sheet of Watman 3MM filter paper, covered with polythene sheeting 

and dried for 4 hours, under vacuum at 80°C. 
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The dried gel was overlaid with sensitised Fuji RX 

X-ray film, C'lamped between two glass plates and the film exposed 

for 12-14 hours before being developed. Alternatively, the 

gel was left on the larger plate, soaked for 30 minutes in 

10% methanol:lO% glacial acetic acid solution to remove the 

urea and dried in an oven for 2-3 hours at c 65°C. 

Autoradiography was performed as above. Despite using different 

drying regimes, the thick end of the gel invariably cracked 

on drying and peeled off the glass. The gel was often covered 

in cling film wrap and autoradiographed immediately. 

Method 2 

This method ls similar to that previously described and differs 

only in the use of linearised rather than circular plasmid DNA and 

gels of uniform thickness rather than wedge-shaped gels. 

Protocol 

lO~g of RNA free plasmid DNA was linearised in two separate, 

complete digests, using restriction enzymes which cleared either 

side of the insert. Xhoi was used in one reaction in preparation 

for sequencing the minus strand using the Ml3 primer, whilst 

Ssti (Sac I) was similarly used prior to sequencing the plus 

strand from the Ml3 reverse primer. The fully digested DNA 

samples were phenol extracted to remove the restriction enzyme 

protein and ethanol precipitated as previously described, and 

the dried pellet resuspended in 11~1 of sterile distilled water 

and 1.5~1 of 10 x Klenow polymerase reaction buffer (Appendix V). 

The mixture was boiled for 2 minutes, cooled to room temperature 

and lOng (= 5~1) of the relevant primer added. The mixture 

was boiled a second time for 3 minutes to separate the two 

strands and cooled quickly to favour annealing of the 17-mer 



primer oligonucleotide to the template strand. To the 

annealing reaction, the following additions were made: 

l iJ 1 0 . 1M DTT 

11-11 
35s dATP 

-1 - i 
(activity = 81-1Ci 1-11 , 650 ci mmol ) 

11-11 Klenow polymerase (= 2 units) 
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201-11 of the four ddNTP/dNTP nucl~otide mixtures were aliquoted 

into appropriately labelled tubes and 41Jl of primed template 

DNA from the annealing reaction added. Subsequent reactions, 

gel transfer and autoradiography were performed exactly as 

described in Method 1. 

8. Exonuclease III/Mung Bean Nuclease Deletion Experiments 

The exonuclease III/mung bean nuclease protocol detailed below, 

may be used to produce a series of unidirectional deletions of 

predictable length in any duplex DNA cloned within a suitable vector 

plasmid. Exonuclease III requires as a substrate, blunt ended, 

duplex DNA or duplex DNA bearing 5' single-stranded overhands; it 

will not digest 3' single-stranded overhangs. Unidirectional deletions 

can thus be constructed by doubly digesting an insert-bearing plasmid 

with two restriction enzymes when cut at unique, widely-spaced sites 

within the polylinker of the vector to yield linear plasmid with 

incompatible ends. The orientation of the insert must be known 

and the restriction site generating blunt or 5' "sticky ends" must 

lie between the insert sequences to be deleted and the 3' restriction 

site, as shown below: Fig. 3 

sequences to be 
deleted 

insert 

~ 
'2-j.O \\\ deletiol) 
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By exposing the linear plasmid to exoiii degradation for varying 

periods of time, deletions of differing length may be constructed 

in one strand of the insert. An equivalent deletion in the 

complementary strand is achieved by subsequent treatment with mung 

bean nuclease. The location and number of nucleotides to be deleted 

may be determined from the published gene or amino acid sequence, 

and the duration of exposures to exoiii required to produce a 

range of nested deletions of the desired length, calculated from 

the predicted deletion rate. 

Example experiment - Exoiii/mung bean nuclease deletion of pCPYF3 

Sufficient plasmid DNA to allow the construction of five 

deletions (= 25~g) was digested to completion in a double digest 

with BamHI and Ssti (Sac I). That these sites were unique to 

+ the pKS polylinker had previously been checked by restriction 

analysis. The orientation of the insert in pCPYF3 was such that 

deletion from the BamHI site would remove 3' coding sequence from 

the presumptive PRC 1 fragment. A single deletion reaction was 

prepared as below and 25~1 aliquots C= 5~g DNA) removed after 30s 

and then every 15s for a further minute, to produce deletions of 

62, 94, 125, 150 and 187 base pairs. 

Exonuclease III deletion reaction to construct five deletions 

25~1 of double digested plasmid DNA (= 25~g) 

62.5~1 of 2 x Exonuclease III buffer (Appendix IV) 

12.5~1 of fresh 100mM 2-mercaptoethanol 

25~1 sterile distilled water 

8~1 (= 500 units) of exonuclease III enzyme (20 units ~g- 1 DNA) 

133 ~1 TOTAL VOLUME 
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To terminate the deletions at the desired length, each 25~1 

aliquot was immediately mixed with 175~1 of exonuclease III stop 

solution (Appendix IV) that had been prepared in advance and aliquoted 

into five appropriately labelled tubes. When all five aliquots 

had been removed, the exonuclease III enzyme was denatured by 

incubation at 68°C for 15 minutes. The five samples were then placed 

on ice. 

Mung Bean Nuclease Treatment 

Forty units of mung bean nuclease were added to each tube and 

the mixture incubated for 30 minutes at 30°C. The mung bean 

nuclease protein was then removed from the DNA by a modified 

'phenol extraction' procedure in which the four solutions listed 

below were added, vortex mixed and centrifuged for one minute in a 

microfuge: 

4~1 20% SDS 

10~1 1M TRIS.Cl (pH 9.5) 

20ul 8M LiCl 

250~1 T
10

E
1 

buffer equilibrated phenol:chloroform. 

The upper aqueous phase was removed and re-extracted with chloroform. 

Failure to remove the protein may inhibit the ligation reaction. 

tRNA to a final concentration of 10 ng ~1-l was added, followed 

3 
by 0.5cm of cold ethanol. The DNA was left to precipitate for 

10 minutes on ice and recovered by centrifugation for 20 minutes 

at 12000rpm. The DNA pellet was washed with 70% ethanol, vacuum 

dried and resuspended in 15~1 of T
10

E
1 

buffer. 

Recircularisation of the deleted plasmid was performed under 

the following ligation conditions: 



lwl Exoiii/mung bean nuclease deleted DNA 

2wl 10 x ligation buffer (Appendix IV) 

2wl SmM ATP pH 7- 7.5 

2wl T
4 

DNA ligase 

12wl sterile distilled water 

lwl BarnHI oligonucleotide linker. 

20wl TOTAL VOLUME 

Incubation: Overnight at l5°C or 4 hours at room temperature 

Half (= 7wl) of the exoiii/mung bean nuclease treated DNA 

remaining was loaded onto a 2% agarose gel and electrophoresed 

against a suitable size standard to assess the success of the 

procedure. lOwl of the ligation mixture was used to transform 

39 

lOOwl of competent E. coli (JM83) using the method previously 

described (Section 6), and trans£ormants were selected on L-amp 

plates before recovery of the plasmid DNA by "miniprep" (Section 3ii) 

in order to allow further analysis of the deletions. 
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RESULTS 

The series of experiments detailed below (1 to 4) were designed 

to generate two recombinant plasmids, one bearing an insert encoding the 

promotor and preprosequence of carboxypeptidase Y, the other a truncated 

form of the leg. A gene encoding mature legumin. Results sections 1 and 

2 describe the isolation, cloning and purification of the PRC-1 and 

leg. A derived sequences, whilst section 4 describes the editing of the 

cloned inserts in preparation for performing the gene fusion. 

By cloning both the CPY and legumin sequences required to construct 

the hybrid gene in the vector plasmid pKS+, both exonuclease III deletion 

and dideoxynucleotide sequencing of the cloned insert could be performed 

in a single plasmid, thereby reducing the number of manipulations required. 

The restriction sites in the pKS+ polylinker are arranged to permit 

unidirectional deletions in insert DNA without risking the deletion of 

the primer sequences required for subsequent DNA sequencing by the 

dideoxynucleotide chain termination method. (Sanger et al., 1977). 

1. Cloning of the 5 terminal sequences of the PRC-1 gene 

The PRC-1 gene encoding preprocarboxypeptidase Y has been mapped 

to a 2.6kb Clai- Pvuii insert within pTSY3 (Stevens et al., 1986a) 

and the nucleotide and corresponding amino acid sequences have been 

presented (Valls et al., 1987). The first 111 amino acids of the 

CPY precursor encode the signal sequence and propeptide (Stevens et al., 

1986b). The coding region for these amino acids together with 695 bp 

of 5 untranslated region, are carried on a 1157 bp Clai - BarnHI 

fragment within the pTSY3 insert. The following procedure was designed 

to isolate a PRC-1 sub-clone encoding the promotor and prepro-sequence 

of carboxypeptidase Y. Fig. 4a illustrates pTSY3. Fig. 4b illustrates 

the restriction map of the PRC1 gene. 



Pst I 

Hind ffi 
Eco Rt 

URA 3 

Psti 

A val 

stui. BamHI 
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EcoRI 
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Fig, 4 a. Plasmid QT:SY3 with genomic PRC1 insert. 

(after St,evero~s et al., 1986a.) 
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pTSY3 restric ted with Bam HI . 
pTSY3 

restricted with Bsci +- Bam HI 

pKS+ restricted with BamH I 

pKS+ restricted with 
Bsci+BamHI 

0 

Fig . 6 . pTSY3 & p KS + restric tion digest 

2·95 1.0 kb. 
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pCPYFl cut with Bam HI & Bsc I 

pCPYFl cut with Bam HI & Bsc I 

pCPYF2 cut with Bam HI & Bsc I 

pCPYF2 cut with Bam HI & Bsc I 

pCPYF3 cut with Bam HI & Bsc I 

pCPYF3 cut with Bam HI & Bsc I 

Bacteriophage A cut Pst I 
size marker 

0 2-84 
I 4-75 I 1·70 0·81 

kb 

Fig. 7 Agarose Gel Electrophoresis 

Recombinant plasmids pCPYFl, pCPYF2 and ·pCPYF3 

recovered by 'miniprep' and restricted with Bam HI 

& Bsc I. 

Note: + Track 5 shows pKS (2.95kb) and a pTSY3 

derived fragment of ~ lkb. 



pCPYF3 linearised with Bam HI 

Bacteriophage A Pst I marker 

pCPYF3 linearised with Bsc I 

Bacteriophage A Pst I marker 

I -
a, I Il l I I , .. ,. 

.... __ ,.-&!:...~ 

• 
c3·8 

, ,,. , 
I I Ill I 

0 4·51 
~----~-------kb 

.Q3·8 

.,. 

Fig. 8 Restriction of pCPYF3 with Bam HI and separately 

Bsc I merely linearised the plasmid. 
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pTSY3 and pKS+ (Fig. 5) DNA purified by CsCl - EtBr equilibrium 

centrifugation (Section 3i) were restricted in a double digest with 

BamBI and BSci (Cla I) and the resulting fragments separated by 

agarose gel electrophoresis (Fig. 6). Repeated attempts to isolate 

the three pTSY3 fragments in the 1 - 1.5 kb range, both by freeze 

elution and electrophoresis into 3MM paper were unsuccessful and the 

DNA was finally recovered by the LMT agarose method (Section 5). 

This procedure was also used to obtain linearised pKS+ vector free 

of excised polylinker fragments. The three, small, pTSY3 derived 

restriction fragments (designated Fl, F2 and F3 in order of decreasing 

size) were separately ligated into pKS+ (creating pCPYFl,pCPYF2 and 

pCPYF3) and transformed without success into E. coli XLl-Blue, JMlOl 

and JM109. Successful transformation of E. coli JM83 was later 

achieved and single, white transformants presumed to be bearing 

chimaeric plasmids were streaked onto duplicate selective plates to 

confirm the purity of the sub-culture. 

The three sub-cultures were screened for Bsci-BamHI inserts by 

restricting plasmid DNA recovered by miniprep, with these two enzymes 

in a double digest. Two transformants putatively bearing the 

recombinant plasmid pCPYF3 returned vector and insert fragments of 

parental size (£3kb and 1kb respectively)(Fig.7) and the insert was 

confirmed as a Bsci-BamHI fragment in single digests with these two 

enzymes, which merely linearised the plasmid (Fig. 8). Similar results 

were not obtained from the few transformants screened, putatively 

carrying pCPYFl and pCPYF2. (Fig. 7) 

The published restriction maps (Stevens et al., 1986a and b) 
I 

indicate a unique Acci site 11 bases 5 of the translation start codon. 

Acci cleavage at this site was expected to eliminate an authentic 

Bsci-BamHI insert and yield two novel fragments of 682 and 473 bp. 



pCPYF3 

pCPYF3 

Fig. 9 

{

Bam HI only 
Bsc I + Bam HI 
Bsc I + Bam HI + Ace I 
Bsc I + Bam HI + Xba I 

Bacteriophage A Pst I 
size marker 

Bsc I and Bam HI 
Bsc I, Bam HI and Ace I 

Bsc I and Bam HI 
Bsc I, Bam HI and Ace I 

Bacteriophage A Pst I 
size marker 

.,. 

Restriction of pCPYF3 with a range of endonuclease 

enzymes. 

Note: Triple digest with Bsc I, Bam HI and Ace I. 
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The presence of an Acci site within the polylinker of ~+ 10 bp 3 

of the Clai site was not expected to detrimentally influence the 

result or its interpretation. Fig. 9 shows the result of a triple 

digest with Acci, Bsci and BamHI and illustrates the absence of the 

Bsci-BamHI insert and the appearance of two, assymetric fragments 

of approximately the expected size. In order to estimate the sizes 

of the restriction fragments separated on agarose gels, a linear 

regression of log
10 

number of base pairs (x) versus migration 

distance/em (y) was calculated (Appendix VI) and the fragment sizes 

determined from the relationship: 

log x = ~ 
b 

where: a = the intercept on the Y axis 

b = the slope of the line. 

However, it is difficult to accurately size fragments migrating 

close to the right border of the gel and an improvement implemented 

in later experiments was to use 2% rather than 0.7% agarose gels when 

sizing fragments of S 1000 bp. On the basis of these observations 

amplification and CsCl - EtBr purification of pCPYF3 was undertaken 

in preparation for exonuclease III/mung bean deletion experiments 

and DNA sequencing. 

More complete maps of the PRC-1 gene (Valls et al., 1987; 

Blachly-Dyson and Stevens, 1987) indicate unique Xbai and Stui 

restriction sites located within 97 bp of the Acci site. Repeated 

attempts to assymetrically cleave the excised Bsci-BamHI insert with 

Xbai of proven activity, failed to reproduce a result similar to that 

observed with Acci, neither eliminating the insert nor generating 

any new fragments. Similarly, attempts to linearise pCPYF3 with Stui, 

for when no site exists in pKS+ (Bluescript data) were unsuccessful; 

only the multiple forms of uncut plasmid DNA were visible on agarose 



A Pst I size marker 

pCPYF3 fails to linearise 
with Stu I 

II ... Ill : 1 

• •• 1-- -LL- -'1-'- +-'-.u..-.t--L--- kb 
0 '+ ·75 :t·,.,. 1·7o 

Fig. 10 Restriction with Stu I failed to linearise pCPYF3. 

Only the multiple forms of the uncui plasmid were 

visible on agarose gels . 
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" 
Bacteriophage · \ Pst I s i ze ma r ker 

rm HI 
pCPYF2 Bam HI + Bsc I 
Trans for ma nt Bsc I 
A Bsc I , Bam HI + Xba I 

Stu I 

rm HI 
pCPYF2 Bam HI + Bsc I 
Trans for mant Bsc I 
B Bsc I, Bam HI + Xba I 

Stu I 

r"' 
HI 

tCPYF2 Bam HI + Bsc I 
ransformant Bsc I 

c Bsc I, Bam HI + Xba I 
Stu I 
pBR322 r es tr icted with 
Alu I size ma rker 

rm HI pCPYF2 Bam HI + Bsc I 
Transformant Bsc I 
E Bsc I, Bam HI + Xba I 

Stu I 

Bacte cioph{~:m'Hj't I s ize marker 

pCPYF2 Bam HI + Bsc I 
Trans formant Bsc I 
F Bsc I, Bam HI + Xba I 

Stu I 

rm 
HI 

pCPYF2 Bam HI + Bsc I 
Trans formant Bsc I 
G Bsc I, Bam HI + Xba I 

Stu I 
pBR322 r estricted with 
Alu I size marke r 

Fig. 11 pCPYF2 DNA recovered from six transformant s restricted 

with various rest riction enzyme combinations. 

Note : pCPYF2 A a nd pCPYF2 F refe rred to i n text. 
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gels. (Fig. 1ro In view of the conflictory evidence, further 

restriction analysis and DNA sequencing were used to determine the 

identity of the insert cloned as pCPYF3 (Section 3). 

A concurrent reappraisal of the data (see Discussion Section 1) 

using the improved restriction map of Valls et al. (1987) indicated 

that an error had been made and suggested the probable location 

of the desired PRC-1 fragment. 

A re-examination of six, white transformants initially 

transformed with pTSY2 fragment F2 (pCPYF2) yielded an inconclusive 

result. Fig. 11 shows the restriction analysis of 'miniprep' DNA 

recovered from these transformants when digested with the following 

combination of restriction enzymes: 

1. BarnHI alone 

2. BarnHI and Bsci 

3. Bsci alone 

4. BarnHI, Bsci and Xbai 

5. Stui alone 

The restriction pattern of the plasmid recovered from one 

transformant (pCPYFZF) is summarised in the table overleaf. 
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Restriction 
Enzyme 

Restriction pattern Observed restriction pattern 
predicted from the 
published map of 
Valls et al., 1987 

Xbai :·~ Vector fragment 3.727kb Vector fragment c 3.8kb 

Insert fragment 380bp Insert fragment £ 380bp 

Bsci :'< Linear plasmid 4.17kb Linear plasmid £ 4.0kb 

HinciP'~ Vector fragment 2.95kb Vector fragment £ 3kb 

Insert fragment 1032bp Insert fragment £ 1000bp 

BamHI Linear vector 4.107kb Unrestricted fragment 
No BamHI site 

Bsci & BamHI Vector fragment 2.95kb Linear plasmid 

Insert fragment 1157bp 

BamHI ·& *t Vector 2.95kb Vector 2.95kb 
Bsci & 
Xbai 2 fragments 780bp 2 fragments 780bp 

380bp 380bp 

Stui Linear plasmid 4. 107kb Unrestricted plasmid 
No Stui site 

Restrictions marked this (*) conform with the predicted restriction 
pattern for an authentic Bsci-BamHI PRC-1 fragment. 

t Due to $he close proximity of the Xbai site to the BamHI site in 
the pKS polylinker, the restriction pattern produced by the triple 
digest illustrated here would appear identical to that produced 
in a double digest with Xbai and Bsci. The value of this test is 
thus limited. 



pDUB2031 Bam HI restricted 

pDUB2031 Bam HI restricted 

pDUB2031 Bam HI restricted 

pKS+ vector linearised with Bam HI 

Gel purified pDUB2029 insert 
(pEMBL yex 4.3) 
~ eDNA fragment. 

Fig. 12 Confirmation of successful transformation of 

E. coli with pDUB2031. Construct recovered 

by 'miniprep' from three white transformants 

(Tracks 1, 2 and 4) and restricted with Bam HI 
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2. Cloning of a eDNA insert encoding Pea Legumin in the Bluescript 

Vector Plasmid pKS+ 

A full length eDNA derived from the leg. A gene encoding the 

the BamHI site of the yeast expression vector pEt-IBLyex L1, to create 

pDUB2029 (Watson, M. pers.comm). The entire eDNA fragment was 

excised in a BamHI digest, isolated by the LNT-agarose method and 

+ 
ligated into pKS' prepared in the same way. The construct, 

designated pDUB20Jl was transformed into E.coli. (JM8J). Plasmid 

DNA recovered from three white transformants and restricted with 

BamHI, yielded vector and insert fragments of parental size (Fig. 12 ). 

The ass)~etric location of a Hind III restriction site within the 

insert allowed its orientation to be deduced and in all three 

transformants was shown to be as in Fig. 13 below. 

s' 3' 

Bam HI Hind ill Bam HI 

Legumin Sequences 

5
1 

3' 
Direction of Transcription 

5' 3' 

c 1·6 Kb 

Vector Sequences 

D lnser t Sequences 

£lg-=-.Jl 

Hind ill 



pDUB2030 restricted 
with Bam HI 

A Pst size marker 

0 

0 

Fig. 14 pDUB2031 purified by CsCl - EtBr Centrifugation 

Note: presence of degraded high M contaminant DNA 
r 
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CsCl - EtBr equilibrium centrifugation was used to prepare 

pDUB 2031 in large quantity for deletion using the exonuclease III/ 

mung bean nuclease protocol. However, dispite chloramphenicol 

amplification ot the plasmid DNA and two centrifugation cycles, only 

partially purified plasmid DNA was recovered (Fig. 14) 



f..l.g.l.§ Sequencing Gel Autoradiograph. 
seguencing the pCPYF3 insert. 

a)~uenced 

from M1.3 
P-rimer. 

b) sequenced 
from M13 

reverse 
Qrimer. 

pTSY3 derived 
sequences. 

CIa I restriction 
site. 

+ pKS vector 
sequences. 
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CAAGCTCGAAATTAACCCTCACTAAGGGGAACAAATGCT? 
( G ) ( A)(A) ( C ) (A) ( G ) 

C A A G C T C G G A A T T A A C C C T C A C T A A A G G G A A C A A A A G C T G 

r-Clai site 
GGTACCG??CCCCCCCTCGAGGTCGACG?TATCATTTCG 
(T) (G) (T)(T)(A)(A) (A) 

1-

[Clai site 
G G T A C C G G G C C C C C C C T C G A G G T C G A C G G T A T C G A T T T C 
-------------------------------11·----·--·---···--

CGTAT?T?TTTT?TTTTGAGGCT?C?GATTTGTTA?AGG 
( C)( A) (A) (A)(A) (C) 
(G) (G) (T) 

C G T A T A T G A T G A T A C A T A T G T T A G G T C T C T T A T G G T A G T 

TTTTCTTTTTTTTTTCTTCT?CTGCTC?CAATAGAT 
(AA) (A) (C) (T) (T)(T) 

T T T T A G G G T C T G T C C T G T T T T T T G A A G G C A T T G G T T 

Fig. 16 Nucleotide sequence of the pCPYF3 insert ( ---) with the nucleotide 

sequence of the authentic 5' end of the PRCl gene printed below (----) 

to permit comparison 

KEY 

? Base identity difficlut to 
determine due to multiple 
banding pattern. 

T Likely base at this locus. 

(A) Possible alternative base at 
this locus. 

(-) pKS+ 

C Determined from sequencing gel. 

C Determined from published data 
(Valls et al., 1987) 

Nucleotides too 
close to read. 

Vt 
00 



3. Dideoxynucleotide sequencing of the presumptive PRC-1 fragment 

cloned as pCPYF3 
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Four attempts to sequence the pCPYF3 insert using the method 

described in Section 2.1 were unsuccessful due to cracking of the 

wedge shaped gels during the drying down process and the failure to 

incorporate 35s into the elongating chains. The autoradiograph 

in Fig. 15 was obtained by a modified sequencing protocol 

(Section 2.2) using gels of uniform thickness which dried down 

mtact. The M13 reverse primer was used to sequence the template (+) 

strand of the putative PRC-1 fragment, from the Clai (Bsci) site in 

the polylinker toward the 3 1 BamBI site. By sequencing the 

complementary strand from the M13 primer the validity of the template 

sequence could be confirmed. However, the banding pattern obtained 

from this primer lacked the clarity needed to sequence this strand. 

The DNA sequence was obtained from the autoradiograph by commencing 

at the bottom and reading across all four lanes, progressing up the 

'ladder' of bands, recording the bases present in each lane as they 

were encountered. Where bands appeared in all four lanes due to sequencing 

artifacts (e.g. secondary structure), the most deeply staining band 

was recorded. If all four bands were of equal intensity, the identity 

of the base could not be determined. The first 73 bases obtained 

in this way from the autoradiograph are entirely homologous with 

the pKS+ + strand between the primer site and the Clai (Bsci) 

restriction site. Fig. 16 a lists the sequence of the 80 bases, 

3' of the Clai site belonging to the pCPYF3 insert. The first 60 

nucleotides of the Clai-Pvuii fragment encoding the PRC1 gene 

(Valls et al., 1987) are reproduced below (Fig. 16b), to permit 

sequence comparison. No obvious homology between the two nucleotide 

sequences seems to exist. 
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4. Exonuclease III/Mung bean nuclease deletion experiments 

The putative PRC-1 genomic fragment cloned in pCPYFJ and the leg. A 

derived eDNA cloned in pDUB2031 both required editing prior to the 

assembly of a hybrid gene encoding the promotor and preprosequence of 

CPY and the mature legumin polypeptides. The extent of the deletions 

required was determined from the published nucleotide sequences of the 

PRC-l (Valls et al., 1987) and leg. A genes (Lycett et al., 1984). 

Ia: Deletion of the presumptive CPY encoding sequences in pCPYFJ 

In order to isolate the desired CPY sequences detailed above, it 

<,.ias necessary to delete 129bp of coding sequence located immediately 5' 

of the unique BamHI site. 
Translation 
Initiation 
Codon Fig. 17 

Bam HI 
Sst I 

l Cia I 
(Sse I) 

~~~~~~~~~~~~~il __________ GT_AI~ ---

129 bp 

Region 
to be 
deleted 

Putative pre pro sequence of CPY 

r 
Propeptide cleavage site 

Vector sequences 

5' untranslated region 

Presumptive CPY coding sequence 



0 
~ ~ : ~; ~ 
~ .i .. ,..:.. ~ 

>. Pst I size marker. 
30s. 

Exo m I mung bean 45s. 
nuclease exposures 60s. 
for deletion of insert in 75s. 

pCPYF3. 90s 
non- restricted pCPY F3. 

Fig. 18 Exo]J[jmung bean nuclease deletion of pCPYF3 . 

. ,, 
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Fig. 19 pDUB2031 restricted with Sst I and Xba I in 

preparation for exonuclease III/mung bean 

nuclease deletion. Note smearing due to 

degraded high M contaminant DNA. 
I -~, 

' 
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This was attempted using the Exoiii/mung bean nuclease deletion 

protocol previously described (Methods Section 8). Prior to performing 

the ligation reaction, 7~1 of Exoiii/Mung bean nuclease treated DNA 

was loaded onto agarose gels in order to size the fragments. The 

expected inverse correlation between the duration of exposure to 

exonuclease III and fragment length was not visible when fragment 

separation was performed on 0.7% gels. (Fig. 18 ), although this was 

probably due to the small size of the deletions relative to that of 

the entire fragment and the low resolution of this type of gel. 

However, a 2% gel which was expected to discriminate between the 

largest and the smallest deletion, similarly failed to resolve any 

differences in fragment length (data not shown). In view of the 

mounting contradictory evidence regarding the authenticity of the 

pCPYF3 insert, ligation and transformation of the deleted plasmids 

were suspended. 

(b) Exonuclease III/Mung Bean Nuclease Deletion of pDUB2031 

Truncation of the leg.A derived insert cloned in pDUB2031 

required the deletion of 63 nucleotides from the S' end. The intention 

was to remove the presequence encoding the signal peptide but leave 

the sequences encoding the mature legumin polypeptides intact. 

Restriction analysis confirmed that the Xbai and Ssti sites in the 

pKS+ polylinker were unique in pDUB2031, therefore 25~g of this plasmid 

was restricted first with Ssti (Saci), and subsequently with Xbai, 

in order to linearise the plasmid and generate 3 1 single-stranded 

and 5' single-stranded overhangs, in preparation for unidirectional 

deletion with exonuclease III. The progress of the Sstidigest was 

monitored by separating a 2~1 sample on a minigel. Smearing on the 

gel indicated the presence of degraded, high M , contaminant DNA which 
r 

Cscl-EtBr centrifugation had failed to remove (Fig. 19). 

The Xbai digest was subsequently completed and the doubly digested 



Sst I 

Bam HI 
I 

Bam HI 
I 

-1 Legumin insert : 
Xbai~----------------------------~'J~---------

3'1'--t--------x-----------i 
Hind III L Putatat1ve signal 

cleavage site 

Deletion required= 76 bp 

_Kay_ 

D 

.6.156 bp 
!::. 94 bp 
6 73 bp 
4 62 bp 
L:. 31 bp 

Vector sequences 

leg A derived sequences 

peptide 

plasmid purified by LMT agarose gel electrophoresis. The 

exonuclease III/mung bean nuclease protocol was used to construct 

five deletions in the range 31-156bp in the leg.A insert. (Fig. 20). 

Fig.2la shows the result of this deletion procedure. A repeat 

of this protocol is shown in Fig.2lb. The major 4.2kb band represents 

the linear pDUB2031, the minor bands contaminant or deleted fragments 

not previously evident in Xbai, Ssti restrictions. In view of the 

impurity of the pDUB2031 preparation, subsequent exoiii/mung bean 

nuclease deletion trials were completed using a pure preparation of 

pDUB2030 a yeast expression vector which similarly contained the 



Bacteriophage A Pst I marker 

Exonuclease III /mung bean ISs 

nuclease exposures (seconds) 30s 

to produce deletions in the 4Ss 

pDUB203I insert. 60s 

7Ss 

Fig. 2Ia. Exonuclease III/mung bean nuclease deletions 

of pDUB2031 to produce nested deletions in 

the legumin encoding insert. 

Bacteriophage A Pst I marker 

Exonuclease III/mung bean ISs 

nuclease exposures (seconds) 30s 

to produce deletions in the 45s 

pDUB2031 insert. 60s 

75s 

Fig. 2Ib. Exonuclease III /mung bean nucleased deletions 

of pDUB2031 to produce nested deletions in 

the legumin encoding insert. 

6S 
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leg. A -derived eDNA in the same orientation. 

(c) Exonuclease III/Mung Bean Nuclease deletion of pDUB2030 

Removal of the presequence encoding the legumin signal peptide 

required the deletion of 63 nucleotides from the pDUB2030 insert. 

In an attempt to achieve this, 25~g of plasmid DNA, sufficient for 

five deletions, were restricted with Hind III which both linearised 

the plasmid and removed the first seven nucleotides of the leg. A 

presequence. Fig. 22. 

Bam HI Bam HI 
I I 

Sequences encoding 
mature legumin 

signal peptide 
cleavage site 

Deletion requ'i red (::; 21 amino acid ) 

Excised 1n Hind ill digest 

1-------J> 

Direction of Exonuclease ill deletion 

Key_ 

Vector sequences 

D _le.g_ A derived sequences 

Fig. 22 



>.. Pst I size marker 

Duration of exposure of 

pDUB2 030 to exonuclease 

mung bean nuclease. 

( seconds at 20°C) 

Unrestricted pDUB2030 

pDUB2030 restricted with 
Hind III 

0 
I I I "' ell 

15s 

III / 25s 

35s 
45s 

55s 

Fig. 23 Result of Exonuclease III /mung bean nucl~ase deletion 

of pDUB2030. (0.7% agarose gel electrophoresis) 
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Hind III digestion additionally generated 5' single-stranded 

overhangs at both ends of the plasmid permitting bidirectional deletion 

by exonuclease III. the predicted deletions produced by varying the 

duration of exonuclease III digestion (at 23°C) are summarised below:-

Duration of exonuclease III 
reactions Is 

Predicted number of 
bases deleted 

15 

31 

25 

62 

35 45 55 

73 94 114 

The exonuclease III reaction was performed at 20°C in order to 

reduce the size of each deletion and hence remove the residual stretch 

of presequence (=56 bp). The predicted deletion rate at this temperature 

is unpublished, precluding any estimate of the length of each deletion. 

The manipulations necessary to terminate the deletion reaction required 

lOs to complete; it was impracticable therefore, to reduce the duration 

of each reaction in order to shorten the deletions. The aim of 

incorporating a BamHI linker into the ligation reaction was to 

facilitate excission of the deletion insert prior to sub-cloning in 

an Ml3 phagescript vector in preparation for DNA sequencing. 

Electrophoretic separation of the exoiii/mung bean nuclease 

deleted DNA is illustrated in Fig. 23. No difference in fragment size 

was visible either on 0.7% or 2% gels. 

An alternative strategy for assessing the success of the deletion 

protocol involved the recovery of putatively deleted plasmid DNA from 

transformants in which it had been amplified, followed by digestion 

with BamHI and separately Hind III. BamHI restriction was expected 

to excise the deleted leg. A inserts provided that efficient 

incorporation of the BamHI linker had occurred, whilst the removal 

of the Hind III site from a successfully deleted fragment would 

preclude restriction with this endonuclease. Fig. 24 shows the 
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results of the electrophoretic separation of fragments generated in 

experimental BamHI and Hind III digests. 
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DISCUSSION 

1. The putative PRC-1 fragment cloned in pCPYF3 

Both restriction analysis and DNA sequencing indicated that the 

insert cloned in pCPYF3 was not the desired 5' terminus of the PRC-1 

gene. The erroneously isolated fragment represented a Bam HI-Bsc I 

(Cla I) pTSYJ derived fragment of apprqximately 850-900 bp, bearing 

an assymetrically located Sal I site. Unfortunately, this site had 

the same hexameric recognition sequence (GTCGAC) as Ace I and hence 

cleaved with this enzyme to yield two novel fragments. 

A reappraisal of the data suggested the probable location of the 

desired PRC-1 fragment. Restriction of pTSYJ with Bsc I and Bam HI 

appeared to yield three fragments in the 1 to 1.5kb range (Fig. 6, P43). 

Fragment F2 (Fig. 6, Track 2) comigrated with, and appeared to be, a 

single Bam HI fragment of approximately lOOObp. Although all three 

fragments were separately ligated into pKS+ and cloned in E. coli 

(JM83), the low number of transformants available for screening 

combined with the initial restriction analysis which seemed to favour 

pCPYF3 as the plasmid likely to encode the desired sequences, 

detracted from a complete analysis of pCPYFl and pCPYF2. In 

retrospect it seemed probable that although fragment F2 appeared as 

a single band on agarose gels, this band represented two fragments 

of similar size and which consequently comigrate. 

The improved restriction map of Valls et al., (1987) suggests 

that one fragment comprised a 1112bp, Bam HI fragment encoding 372 

amino acids of carboxypeptidase Y, the other, the desired 1157bp 

Clai-Bam HI fragment encoding the CPY preprosequence. Provided that 

the Bsc I - Bam HI restriction of pKS+ had been complete, selection 

of the larger fragment in the ligation reaction should have occurred 

and a re-examination of a wider range of transformants presumptively 
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carrying pCPYF3, was expected to yield the required insert. An 

+ incomplete Bam HI - Bsc I digest of pKS would have created a mixed 

population of vector fragments,allowing both Bam HI and Bam HI - Bsc I 

fragments derived from pTSY3 to be cloned. 

One pCPYF2 transformant (transformant ~· Fig.11, p 50), seems to 

bear a 1.1kb Bam HI fragment which lacks internal Xba I and Stu I 

sites. It may represent the 1112kb Bam HI fragment derived from 

the PRC-1 gene, unintentionally cloned into pKS+ due to the failure 

of Bsc I to cut a proportion of vector molecules in the original 

double digest. Further restriction analysis using enzymes which 

cleave within the fragment (e.g. Hinc II, Bgl I and Bglii) would 

be necessary to refute this hypothesis. 

The size of the insert and restriction pattern generated by 

Xba I, Bsc I and Hille II digestion of plasmid DNA isolated from a 

second pCPYF2 trans formant (transformant F, Fig. 11, pSO) conforms with 

that predicted for an authentic Cla I - Bam HI fragment of the PRC-1 

gene (Valls et al., 1987). However, the absence of both Bam HI and 

Stu I restriction sites renders the result inconclusive. 

2. Dideoxynucleotide sequencing of the insert cloned in pCPYF3 

No obvious sequence homology seems to exist between that of 

the insert cloned in pCPYF3 (Fig.l6,p56) and the Cla I - Bam HI fragment 

located at the 5' terminus of the PRC-1 gene, a result which is in 

accord with the restriction data. A number of sequencing artifacts 

were observed on the gel, most notably the presence of banding across 

all four lanes. The reasons for this are unknown but this banding 

pattern typically arises due to the presence of secondary structure 

in the template DNA caused by operating the gel at below optimal 

temperature, poor quality Klenow polymerase or due to impurities 
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in the plasmid preparation (Ornstein and Kashdan, 1985). The cause(s) 

of the low quality autoradiograph image obtained with the Ml3 "forward" 

primer is unknown but in the absence of any obvious, alternative 

variables, the fault presumably lay with the quality or concentration 

of the primer solution. More sequence information could have been 

gleaned either by using wedge-shaped gels or by constructing a second 

gel and separating the longer oligonucleotides over five hours. The 

use of wedge-shaped gels was precluded by the problems of gel splitting 

during drying down, whilst sufficient sequence information was obtained 

to confirm that the pCPYF3 insert was not the PRC-1 genomic fragment 

saught, thus rendering a second, 5 hour gel unnecessary. 

3. pDUB2030 Exonuclease II/Mung Bean Nuclease Deletion Experiments 

There was no evidence to suggest that the exonuclease III/mung 

bean nuclease protocol was successful in producing the desired, nested 

deletions. The small size of the deletions (3lbp) relative to that 

of the entire fragment, precluded the separation of individual fragments 

on agarose gels; a 2% gel which was expected to resolve the largest 

fragment from the smallest, failed to do so. Transformants from 

all five deletion trials returned at least one plasmid which failed 

to restrict with Hind III. To present this as evidence of successful 

exonuclease III deletion of this site would however, be erroneous 

since: 

(i) the degradation of Hind III, single-stranded, 5 1 overhangs by 

mung bean nuclease alone may account for the loss of this restriction 

site and 

(ii) the value of negative evidence of this nature is questionable 

given the many potential causes of restriction failure. 

Tracks 2, 6 and 7 Fig .. 24 p69 appear to illustrate successfully 

deleted plasmids although of a size greatly in excess of that predicted 
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by a 15s exposure to exonuclease III. The failure of exo III stop 

solution to arrest the deletion reaction may explain the greatly 

reduced size of the fragment in track 2 (Fig. 24) although there 

is no supporting evidence of this from other trials. An additional 

observation that questions the validity of this result is the unlikely 

retention of the Hind III site by one of the plasmids apparently 

bearing an excessively large deletion (Fig. 24, Track 7 ). 

Although a Bam HI linker was included in the post-deletion, 

ligation reaction as a pre-requisite for sub-cloning into pUC9, 

regeneration of the Bam HI site excised in the initial Hind III digest 

failed to occur. Subsequent restriction with Bam HI therefore, merely, 

linearised the plasmid, failing to excise the deleted insert. 

Clearly before this technique can be fully utilised in the 

truncation of gene sequences for use in gene fusions, an improved 

method of assessing the success of exonuclease III degradation in 

generating small deletions is required. The visualisation of small 

(3lbp) deletions might be achieved by assymetrically restricting 

the deleted plasmids to yield a large vector fragment and a small 

'insert' fragment in which the deletion represents a large proportion 

of the overall fragment size. Electrophoretic separation of the 

deleted fragments on 2% agarose gels against a suitable size marker 

(e.g. Alu I restricted pBR322, fragment size range 910bp - lOObp) 

might then permit visual discrimination between differentially deleted 

fragments. The alternative would seem to involve sequencing every 

deleted plasmid in order to select the one bearing the most appropriately 

truncated insert. A short, synthetic oligonucleotide might then 

be used to replace any deleted bases required at the gene fusion 

junction and to maintain the translational reading frame. 



4. Future Studies 

What follows is necessarily speculative in the absence of a 

complete restriction map of pTSY3. 
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The recent restriction map of the PRC-1 gene (Valls et al., 1987) 

indicates allinc II site one codon 5' of the CPY propeptide cleavage 

site. A double restriction digest of pTSY3 with Bsc I (Cla I) and 

Hinc II should yield a mixture of fragments including a 1023bp fragment 

encoding the 5' untranslated region and preprosequence of CPY, minus 

a single codon specifying an asparagine residue at the extreme 3' 

terminus. Whether this fragment could be obtained in isolation remains 

untested but if so, would avoid the problem experienced with the 

Bsc I - Bam HI digest, of isolating a pair of heterologous fragments 

of almost identical size. Replacement of the asparagine codon (AAC) 

might be achieved by means of a short, synthetic oligonucleotide 

designed to complete any sequence missing from both this PRC-1 fragment 

and a truncated legumin eDNA, whilst simultaneously retaining the 

translational reading frame. The integrity of the ligation junction 

would be checked by DNA sequencing. It may be vital to retain the 

asparagine residue at the C-terminus of the CPY propeptide in order 

to achieve correct proteolytic cleavage at this site in any projected 

CPY-Legumin fusion protein. Such a strategy, if successful would 

obviate the need for exonuclease III deletion of the PRC-1 fragment 

and might have been adopted had the restriction map been available, 

prior to commencing this project. 

The hybrid gene could then be transferred to a low copy number 

yeast expression vector (e.g. pEMBL yex 4) and transformed into a 

yeast strain deleted for the PRC-1 gene (e.g. EBY14-11C) by the lithium 

acetate method (Ito et al., 1983). The expression and localisation 

of legumin could then be monitored by in situ immunogold labelling 
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with legumin specific antiserum and by sub-cellular fractionation 

studies. Legumin targeted according to the CPY prosequence would 

be expected to localise in the vacuole and cofractionate with the 

vacuolar marker enzyme oc-mannosidase. 

Yarwood et al., (FEBS letters, in press) have successfully 

expressed a eDNA specifying the entire coding sequence and 3' 

untranslated region of the leg. A gene.in the yeastS. cerevisiae. 

However, the resultant legumin precursor (M 60000) failed to be 
r 

proteolytically cleaved to yield the heterodimer previously described 

and, having entered the ER, lodged in the Golgi apparatus with no 

further processing taking place. It is unknown whether the signal 

peptide was cleaved or whether transport between the ER and Golgi 

apparatus was retarded due to the retention of the leader (Schauer 

et al., 1985). The reasons behind the failure of yeast to 

proteolytically cleave legumin are unknown and the following 

suggestions have been made: 

(i) Yeast may lack the required processing enzymes or possess enzymes 

of an inappropriate specificity. 

(ii) The legumin precursor may enter an intracellular compartment 

where it escapes exposure to the yeast proteases. 

(iii) Once in the ER, the legumin precursor associates into insoluble 

aggregates in which the specific cleavage site is protected 

from attack (= conformation determined inaccessibility to yeast 

pro teases) . 

The legumin precursor clearly failed to transit the late Golgi 

sorting step proposed by Stevens et al., (1986a)being neither secreted 

nor directed to a cytoplasmic compartment. Whether the CPY 

preprosequence would overcome this Golgi block remains untested 

and is, in part, a long term aim of this study. 



5. The Use of Gene Fusion Experiments to Identify and Isolate the 

Vacuolar Localisation Signal of Carboxypeptidase Y 
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The mechanisms of protein sorting and transport in yeast cells 

have yet to be fully elucidated. The following hypothetical model 

has therefore been proposed. 

The N-terminal signal peptide directs the translocation of the 

precursor polypeptide into the ER lumen, where it is cleaved 

(Blachly-Dyson and Stevens, 1987), playing no further role in protein 

transport. Defective signal peptide cleavage retards the migration 

of pre-invertase to the Golgi apparatus but not its subsequent transport 

to the cell surface (Schauer et al., 1985). The mechanism of protein 

transfer to the Golgi apparatus is unknown but may be receptor-mediated 

(Fitting and Kabat, 1982). Polypeptides bearing the appropriate, 

additional, positive, localisation signals are directed by a putative 

trans-Golgi sorting system (Stevens et al., 1986a; Rothman and 

Stevens, 1986c; Valls et al., 1987) to the relevant sub-cellular 

organelles, whilst polypeptides lacking such signals fail to be 

redirected, transit the late (post-Golgi) secretory pathway and are 

secreted by default (Valls et al., 1987). 

TheN-terminal signal peptide of both invertase (Smith et al., 

1985) and ~-mating factor (Singh et al., 1984; Bitter et al., 1984; 

Sindu and Bollon, 1987) have been shown to encode sufficient information 

to direct the secretion of a wide range of heterologous proteins 

by yeast (e.g. ~ endorphin, prochymosin, interferon ~ and acid 

phosphatase.) However, since the above are all intrinsically secretory 

proteins, it is difficult to be certain that the presequence alone 

directs secretion and that additional secretion signals are absent 

from the mature protein. 
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Observations which are in accord with the concept of secretion 

by default include: 

(i) The overproduction-induced secretion of CPY arising from the 

introduction of the PRC-1 gene on a multicopy plasmid 

(Stevens et al., 1986a). Over 50% of the p2 precursor protein 

transits the late secretory pathw~y to locate in the periplasmic 

space and medium and it is envisaged that the secretion of this 

vacuolar protease occurs in the absence of any positive 'secretion' 

signals, rather due to the saturation of the putative Golgi 

sorting receptor (Stevens et al., 1986a). 

(ii) The isolation of vacuolar protein targeting mutants (vpt mutants) 

which bear a mutation perturbing the vacuolar localisation branch 

of the intracellular transport system, leading to the 

mislocalisation of CPY, proteinase ysc A and possibly other 

vacuolar proteins, to the cell surface (Ban.kaitis et al., 1986; 

Rothman and Stevens, 1986c). 

In order to examine the positive localisation signals presumed 

to be encoded in the polypeptide structure of vacuolar protease 

precursors, Bankaitis et al., (1986) performed a PRC-1 (CPY) - SUC2 

(invertase) gene fusion and demonstrated that the vacuolar localising 

determinant in CPY lies within a large N-terminal domain of the 

protein. Gene sequences encoding the N-terminal 533 amino acids 

of pro CPY were fused in-frame to a DNA fragment specifying a 511 

residue carboxyl-terminal domain of the periplasmic enzyme invertase. 

The cofractionation in isolated vacuole preparations of active invertase, 

with the vacuolar marker enzyme oc-mannosidase, together with evidence 

from indirect immunofluorescence experiments (after Kilmartin and 

Adams, 1984), confirmed that the hybrid protein localised to the 

vacuole. The natural extension of this work was to map the minimal 
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sequence(s) required for efficient targeting of CPY to the vacuole. 

Johnson et al., (1987) have constructed a range of seven PRC-l-SUC2 

gene fusions encoding hybrid proteins containing between 11 and 433 

N-terminal amino acids of CPY, fused to invertase. These workers 

were able to show that the N-terminal twenty amino acids of prepro CPY 

can replace the invertase signal p~ptide and efficiently direct 

the CPY-invertase hybrid into the ER lumen, where the signal peptide 

is removed. However, the hybridwas subsequently secreted into the 

periplasmic space, suggesting that further sequence information was 

necessary for vacuolar localisation. CPY-invertase gene fusions 

encoding thirty N-terminal amino acids of CPY produced a mixed 

distribution of the hybrid protein between the vacuole (45%) and 

periplasmic space (37%). Similar gene fusions encoding 50 or more 

CPY amino acids, targeted invertase to the vacuole with high (>95%) 

efficiency. This suggests that the vacuolar localising signal lies 

between amino acids 21 and 50. Deletion of this region from a gene 

fusion comprising 156 amino acids of CPY fused to invertase sequences 

(CPY-INV 156 ~) failed however, to fully inhibit vacuolar localisation, 

resulting in only partial (46%) mislocalisation of hybrid enzyme 

to the periplasm. The remainder apparently reached the vacuole since 

54% continued to cofractionate with the vacuolar marker enzyme. One 

highly speculative explanation for the mixed distribution is that 

the conformation of the CPY component is distorted by the mutation, 

causing the misfolded protein to be directed to the vacuole via a 

scavenger pathway. It is assumed that the efficiency of this disposal 

route is so low that a large proportion escapes to the cell surface. 
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When the same deletion was performed on the wild type PRC-1 

gene to confirm the targeting function of this domain, only the two 

precursor forms of CPY (p1 and p2 forms) were observed. As previously 

stated, maturation of the p2 precursor requires the removal of an 

8kd propeptide at or near the vacuole and it is tempting to speculate 

that incomplete processing of the deleted protein (6 CPY) occurred 

because it lacked the vacuolar sorting·signal. Whether the two 

precursors of 6 CPY reach the vacuole remains untested, since their 

instability and lack of enzymic activity, precluded their assay in 

isolated vacuolar fractions. However, Johnson et al., (1987) suggest 

that the deletion of the vacuolar sorting signal explains the localisation 

of the p2 precursor exclusively to the periplasmic space and external 

medium. 

The argument that the deletion may alter the conformation of 

the mutant protein to render it unrecognisable by the sorting machinery, 

is countered by the observation that the mutation fails to inhibit 

correct processing of the p1 precursor to the p2 form, and that mutant 

proCPY (p2) is fully activable to mature CPY both in vitro and in vivo 

(Valls et al., 1987). However, it need not necessarily follow that 

the protein consequently retains a conformation recognisable by the 

putative sorting receptor. 

Confirmation of the role of the propeptide in directing vacuolar 

localisation has been provided by Valls et al. (1987) who reasoned 

that if CPY sorting involves a receptor (Stevens et al., 1986a), 

mutations in the gene sequence encoding the signal recognised by 

the receptor should produce secretion rather than vacuolar delivery 

of CPY; a premise which assumes that intracellular proteins which 

enter the E.R. lumen but which lack positive targeting determinants 

are secreted by default. 
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Bal31 exonuclease digestion was thus used to generate in-frame 

deletions at two sites (the Xba I site, codons 29 to 30, and the 

Apa I site, codons 62 to 63) in the propeptide-encoding region of 

the PRC-1 gene. The deleted gene was then transferred into prc/1 

yeast cells and screened for extra cellular CPY by the colony 

imrnunoblot method of Rothman et al. (1986a). The aberrant secretion 

of CPY was never observed in transformants bearing the deletion at 

the Apai site but many (>5%) transformants deleted at the Xbai 

site in the prosequence, mislocalised CPY to the cell surface. Control 

experiments demonstrated that the secretion of CPY was not due to 

its over-production. 

When DNA sequencing was used to assess the extent of the deletions 

in clones abberrantly secreting CPY, all deletions terminated at 

amino acid 31 (LYS
31

) Fig. 25. This common carboxyl-terminus seems 

unlikely to have arisen by chance and has led to speculation that 

the removal of LYs
31 

may be necessary for the missorting of pro CPY 

but that removal of Asp
32 

might restore correct sorting. 

Further experiments involving hydroxylamine mutagenesis and 

site directed mutagenesis, allowed these workers to precisely define 

a sequence within the propeptide corresponding to amino acids 24 

to 31 that is necessary for efficient sorting of CPY to the vacuole. 

Indeed aberrant secretion of CPY could be induced by introducing 

a single amino acid substitution, lysine for glutamine, at residue 24. 

The theory that the vacuolar targeting determinant resides in 

the prosequence of the CPY precursor is not however, without criticism 

and a number of observations, as yet devoid of explanation, have 

been reported. For instance, Blachly-Dyson and Stevens (1987), have 

shown, in agreement with Valls et al. (1987), that deletion of amino 

acids 2 to 28 from the CPY preprosequence leads to the secretion 
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of the p2 precursor into the periplasmic space. However, the deletion 

of amino acids 9 to 29, a mutation which similarly removes the putative 

vacuolar determinant, fails to mislocalise the protein to the periplasm, 

permitting correct vacuolar localisation. It is presumed that amino 

acids two to eight in the signal peptide in some way mimic the CPY 

vacuolar localisation determinant. The previously stated observation 

that deletion of amino acids 21 to 50 from a CPY - INV 156 6 gene 

fusion (Johnson et al., 1987) resulted in only partial mislocalisation 

of the fusion protein, similarly questions the completeness of the 

prosequence theory and suggests that future refinement may be necessary. 

No conservation in primary structure has been observed between the 

propeptide of CPY and those of other vacuolar proteases, suggesting 

that higher order structure may be important in defining the 

functionality of the vacuolar localising determinant. 
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APPENDIX 

All materials and equipment were sterilised by autoclaving at 121°C 

for 15 minutes unless otherwise stated. 

APPENDIX I - GROWTH MEDIA 

Luria Broth (L-Broth) 

Per 100cm
3 

Broth 

Trypticase peptone 
Yeast extract 
Sodium chloride 
D-glucose (optional) 
Water 

Luria Agar (L-agar) 

(Miller, 1972) 

1. Og 
0.5g 
0.5g 
0.1g 
100cm3 

3 
As above but with lg of Bacto agar per 100cm 

Antibiotics were incorporated into both L-broth and L-agar to give 

the following final concentrations:-

Ampicillin 

Tetracycline 

Chloramphenicol 

501-!g 
-3 

em 

-3 
em 

(for plasmid amplification) 

Chloramphenicol 
(for bacterial selection) 

Antibiotic Stock Solutions 

Ampicillin (25mg cm- 3 ) 

Ethanol (70%) 

Ampicillin Na+ 

3 10cm 

250mg 

-3 
em 

-3 
em 

No autoclave requirement, store at -20°C 

Tetracvcline 
-3 

(12.5mg em ) 

125mg tetracycline hydrochloride 

stored in a dark bottle at -20°C. 

in ethanol/water (50% v/ ) 
v 



Chloramphenicol 34mg 
-3 . 

em 1n 100% ethanol. Store at -zooc. 

Stock 

Use 

(5 bromo, 4 chloro, 3 indolyl, S-D galactoside) 

-3 
20mg em freshly made in dimethyl formamide 

Use at a final concentration of 40~g per cm
3 

Isopropylthiogalactoside (100 mM) (lPTG) 

Use 10~1 per agar plate. 
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APPENDIX II 

BUFFERS 

General Buffers 

(i) TRIS HCl 1M (pH 8.0) stock. 
1M TRIS base adjusted to pH 8.0 with HCl 

(ii) EDTA 0.25M (pH 8.0) Stock 
0.25M EDTA adjusted to pH 8.0 with 

(iii) T10E1 (= lOmM TRIS HCl; lmM EDTA pH 8.0) 

lcm3 of 1M TRIS.HCl (pH 8.0) stock plus 0.4cm3 of 0.25M EDTA (pH 8.0) 

made up to 100cm3 with sterile distilled water. 

(iv) T
10

E
1
s

100 
(lOmM TRIS.HCl, lmM EDTA, lOOmM NaCl (pH 8.0)) 

lcm3 of 1M TRIS.HCl (pH 8.0) stock plus 

0.4cm3 of 0.25M EDTA plus 

10cm3 of 1M NaCl 

3 made up to lOOcm with sterile distilled water. 

(v) lOx Restriction Enzyme Buffers 

SM NaCl TRIS pH 7.4 1M Mgso4 DTT STERILE WATER 

LOW 01-!1 1001-!1 1001-!1 101-!1 7901-!1 

MEDIUM 1001-!1 1001-!1 1001-!1 101-!1 6901-!1 

HIGH 2001-!1 5001-!1 1001-!1 01-!1 2001-!1 

(vi) lOx Ligase Buffer 

(a) O.SM TRIS (pH 7.4) 

(b) 0 .1M MgC1
2 

(c) 0 .1M DTT 

(d) lOmM Spermidine 

(e) lOmMATP 

(f) lmg em 
-3 

BSA 



(vii) Agarose Gel Buffers 

Alex Gel Buffer (lOx stock) 

96.8g TRIS ~ 
7.44g EDTA 

1 
adjusted to pH 7. 7 made up to 21 

with glacial acetic acid 

-3 Add 0.6ml of ethidium bromide (lOmg em ) 

TRIS/BORATE Electrophoresis Buffer 

216g TRIS 

llOg Boric Acid 

18.6g EDTA 

l Made up to 21 with distilled water 

-3 3 
Add 5~1 EtBr (lOmg em ) per 30cm volume. 

Gel Loading Buffer 

0.25% bromophenol blue 

0.25% Xylene cyanol 

40% (w/ ) sucrose in water 
v 
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APPENDIX III 

SOLUTIONS 

3M Sodium acetate (pH 4.8) pH adjusted with glacial acetjc acid 

SM Potassium acetate (pH 4.8) pH adjusted with glacial acetic acid 

Competent Cells 

SOmM Calcium chloride, 10mM TRIS.HCl 

Cell Lysis 

Solution I 

1.0cm 
3 

20% glucose 

0.8cm 3 0.25M EDTA (pH 8.0) 

0 .Scm 3 1M TRIS.HCl (pH 8.0) 

17.6cm 
3 

Sterile distilled water 

Lysozyme-dissolve 40mg in the above solution. 

Solution II 

To 8.8cm
3 

of sterile distilled water add 0.2cm
3 

of 10M NaOH 

3 then add 1cm of 10% (w/ ) sodium dodecyl sulphate (SDS) solution. 
v 

Do not autoclave the SDS or NaOH solutions. 

Fragment Isolation 

1M MgC1
2

; 10% acetic acid 

Phenol Extraction 

Phenol 

Phenol:chloroform 

Chloroform 

distilled phenol, 8 hydroxyquinoline, 
0.1% equilibrated with T

10
E

1 
buffer 

25v phenol: 24v chloroform: lv isoamyl alcohol 

24v chloroform:!~ isoamyl alcohol 



APPENDIX IV 

Exonuclease III/Mung Bean Nuclease Deletions 

Buffers and Reagents 

2x Exoiii Buffer 

lOOmM TRIS.Cl (pH 8.0) 

lOmM MgC1
2 

20~g em- 3 tRNA}'( 

Sx Mung Bean Buffer 

lSOmM sodium acetate (pH 5.0) 

250mM NaCl 

5 mM ZnC1
2 

25% glycerol 

lx Mung Bean Dilution Buffer 

lOmM Sodium acetate (pH 5.0) 

O.lmM Zinc acetate 

l.OmM Cysteine 

0.005% Triton-X-100* 

50% Glycerol 

used in the Exoiii reaction. 

- used to terminate the 
exonuclease III reaction and 
in the mung bean nuclease 
reaction. 

- used to dilute the mung bean 
nuclease to 40 units in 20~1 

Each solution was autoclaved separately prior to preparation of the 
buffers unless marked with an asterisk. The buffer mixtures were 
stored at -80°C. 

Exonuclease III Stop Solution 

5x Mung Bean Buffer 
Sterile distilled water 
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APPENDIX V 

DNA SEQUENCING REACTIONS 

RNAase Stock Solution (lOmg cm- 3) 

lOmM TRIS-HCl pH 7.5 

15mM NaCl 

Boil for 20 minutes in water bath 
to destroy DNAase. Cool and store 
at -20°C. 

Alkali Denaturation Reaction 

2M NaOH 

Ammonium Acetate 

Annealing Reaction 

lOx annealing buffer 

5M pH7.4 

70mM TRIS.HCl (pH 7.5) 

70mH HgCl2 

300mM NaCl 

lOOmM DTT 

lmM EDTA 

Radioactivity [35s] d-ATP (Amerhsam, 8~ Ci, 650 Ci/mMol) 

Oligonucleotides 

Sequencing Primer 5' GTAAAACGACGGCCAGT ~ 3' 

Reverse Sequencing Primer 3' ~ GTACCAGTATCGACAA - 5' 

Deoxynucleotides and dideoxynucleotides were used as directed by the 

manufacturers. 

Chase solution: 0.125mM dNTP (all four) 

Formamide- 98% deionised formamide (w/w) 

Dye-Mix: lOmM EDTA pH 8.0 

0.2% bromophenol blue (w/v) 

0.2% xylene cyanol (w/v) 

The dye mix can be stored at 4°C for up to 2 months. 

98 



Gel Electrophoresis 

Preparation of solutions 

40% Acrylamide 

stock solution: 

Final concentrations: 

Weigh out 95g acrylamide and Sg N,N'-

methylenebisacryl-amide and make up to 

250ml with H
2
0. Sterile filter through 

a Millipore™.filter (0.45~m). Store at 

4°C in brown glass bottle. 

38% w/v acrylamide, 2% w/v bis-acrylamide. 

Preparation of Urea-polyacrylamide gel 

Substance 

Ultrapure urea (g) 

40% Acrylamide stock solution (ml) 

10 x TBE Buffer (ml) 

H
2

0 (ml) 

Final % concentration in gel 
6 

42.0 

14.5 

10.0 

40.5 

Allow urea to dissolve. make up volume to 99.2ml with H
2

0. Filter 

through a 0.45~m membrane filter (Millipore™). 

10% ammonium persulphate (ml) 

TEMED (~1) 

0.8 

30.0 

10% (w/v) ammonium Dissolve 0.5g ammonium persulphate in 

persulphate: Sml H
2

0. Make fresh each time. 

10% (v/v) acetic acid (18): 1800ml H
2

0 + 200ml glacial acetic acid. 
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APPENDIX VI 

LINEAR REGRESSION TO CALIBRATE THE AGAROSE GEL ILLUSTRATED IN FIG. 9 

The table below illustrates the migration distances for the Psti 

restricted, Bacteriophage A size marker. 

n = 13 

1 

·-. 
+- .. 

4---

Migration 
Distance/rom 

I I 

-9.4 

··-... 

DISTANCE/rom 
(y) 

18.0 

18.6 

19.2 

23.9 

25.4 

27.0 

28.0 

29.8 

34.0 

34.9 

38.0 

42.0 

L,2. 9 

43 
! 

.. l yt 
··------~-----..... __ J 

I .l~ 

T·::t­t ---.~:-_ 
-+- ·· ... _ 
.i ·· .. 

t 
1 
t 

NUMBER OF BASE PAIRS/kb 

·-. 

(x) 

5.08 

4.75 

4.51 

2.84 

2.48 

2.14 

1. 97 

1. 70 

1.14 

1. 09 

0.81 

0.52 

0.47 

y = -24.6 X log10 X+ 35.3 

Correlation Coefficient (r) 
····--... * 

·· .. 
·'+. 

""··. ·····:;.._ 

·-----~-. 
· .. __ 

-.. 
·-. 

8.7 

Log
10 

Number of base pairs/kb ----+ 

-0.999 
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Migration distance Fragment size, Expected 
of Restriction Number of base fragment 
fragment /nun pairs /kb size /kb 

pCPYF3 restricted 21.0 3.81 4.10 
with Bsci and BamHI 24.0 2.88 2.95 

36.5 0.89 1. 16 

pCPYF3 restricted 24.0 2.88 2.95 
with Bsci, BamHI 37.0 0.85 1.15 
and Acci 40.5 0.61 0.68 

47.0 0.33 0.48 

The size of the fragments generated in the above multiple digest 
(Column 3) was calculated from the equation: 

log x where: a = 35.3 

b -24.6 

y = migration distance/rnm 

x = fragment size/kb 

The fragment sizes expected for an identical restriction of an 
authentic PRCl Bsci-BamHI fragment is shown in Column 4. 




