

Durham E-Theses

Elliptic operators, connections and gauge transformations

Wilkins, David Raynor

How to cite:
Wilkins, David Raynor (1985) Elliptic operators, connections and gauge transformations, Durham theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/6841/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-profit purposes provided that:

- a full bibliographic reference is made to the original source
- a link is made to the metadata record in Durham E-Theses
- the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.
Please consult the full Durham E-Theses policy for further details.
Λ study is made of the action of various Banach Lie groups of principal bundle automorphisms (gauge transformations) on corresponding spaces of connections on some principal bundle, using standard theorem: of global analysis together with elliptic regularity theorems. A proof of elliptic regularity theorems in Sobolev and Helder norms for lincar elliptic partial differential operators with smooth coefficients acting on sections of smooth vector bundles is presented. This proof assumes acquaintance with the theory of tempered distributions and their Fourier transforms and with the theory of compact and Fredholm operators, and also uses results from the papers of Calderon and Zygmund and from the early papers of HUrmander on pseuco-differential operators, but is otherwise intended to be self-contained. Elliptic regularity theorems arc proved for elliptic operators with non-smooth coefficients, using only the regularity theorems for elliptic operators with smooth coefficients, together with the Sobolev cmbedding theorems, the Rellich-Kondrakov theorem and the Sobolev multiplication thoorems. For later convenienco thesc elliptic regularity results are presented as a gencralization of the analytical aspects of Hodge theory. Various theorems concerning the action of automorphisms on connections are proved, culminating in the slice theorems obtained in chapter VIII. Regularity theorems for Yang-Mills connections and for Yang-MillsHiggs systems are obtained. In chapter IX analytical properties of the covariant derivative operators associated with a connection are related to the holonomy group of the connection via a theorem which shows the cxistence of an upper bound on the length of loop required to generate the holonomy group of a conncetion with compact holonomy group.

GAUGE TRANSFORMATIONS

by
David Raynor Wilkins

A thesis presented for the degree of Doctor of Philosophy at the University of Durham

The copyright of this thesis rests with the author No quotation from it should be published without his prior written consent and information derived from it should be acknowledged.

Department of Mathematical Sciences University of Durham DURHAM, UK.

The work for this thesis was carried out at the University of Durham during the academic years 1982-1985. This thesis has not been submitted for any other degree.

A statement as to which parts of the thesis are claimed as original and the sources from which the rest has been derived has been included in Chapter I.

I should like to thank Dr. J. Bolton and Dr. L.M. Woodward for many conversations over the past three years. I should also like to thank Professor S.K. Donaldson for discussing his research with me and Dr. F.G. Friedlander and Dr. P. Hall for conversations concerning elliptic regularity. I am grateful to the Science and Engireering research council for financial support for a period of three years. I should like to thank Mrs. C. Dowson for her patience in typing the manuscript. Most of all I should like to thank my supervisor Professor T.J. Willmore for his constant help and encouragement and for communicating his enthusiasm for mathematics and his perspective of the field of differential geometry.

Chapter I. A Description of the Main Results

Introduction 1

The slice theorem and Yang-mills connections .. 3
E11iptic regularity and Hodge theory 5
Why are slice theorems important? 9
Gauge theories 19
Plan of the thesis 28
The relationship of the results to published material 30

Chapter II. Basic Results of Global Analysis

1. Introduction 35
2. Sobolev and HH1der spaces 37
3. Quotients of Banacł manifolds by Banach Lie groups

Chapter III. Elliptic Regularity Theorems

1. Introduction 53
2. Singular integrals on Euclidean space 58
3. Pscudo-differential operators on manifolds 68
4. Pseudo-differential operators on Euclidean space .. 80
5. Some elliptic regularity results 102

Chapter IV. An Incquality for Functions on Riemannian Manifolds

1. Introduction 109
2. Geodesic tubes about length minimizing geodesics .. 110
3. An incquality concerning functions on Ricmannian manifolds

Chapter V. Principal Bundles and Connections

1. Introduction 128
2. The adjoint bundles 132
3. Connections and holonomy 143
4. Principal bundle automorphisms 146
5. Connections and canonical norms 152
6. Covariant derivatives of sections of fibre bundles .. 160
7. The covariant exterior derivative and codifferential 177
Chapter VI. Banach Manifolds of Automorphisms and Connections
8. Introduction 185
9. Basic properties of the action of automorphisms on connections 187
10. A convergence criterion for principal bundle automorphisms 196
11. Further properties of the action of automorphisms on connections 205
12. Analytical properties of the ccvariant differential 213
Chapter VII. A Generalization of Hodge Theory
13. Introduction 221
14. Lemmas concerning maps between Sobolev spaces 225
15. Continuity of some differential operators between Sobolev spaces 233
16. Covariant Hodge theory with respect to non-smooth connections 244
Chapter VIII. Slice Theorems and Regularity Theorems
17. Introduction 254
18. Slice theorems for connections 256
19. Regularity theorems for Yang-mil1s connections 264
20. Regularity of Yang-Mills-Higgs systems 270
Chapter IX. Covariant Derivatives and Holonomy
21. Introduction 274
22. The length of loops gencrating the holonomy group 275
23. Further irequalities for sections of fibre bundles 281
Appendix \wedge. The Hilbert Transform 288

Chapter I

A DESCRIPTION OF THE MAIN RESULTS

In this chapter we give a brief outline of the results obtained and of their relationship to results occurring in the literature.

We begin with a discussion of the slice theorems proved in chapter VIII for the action of principal bundle automorphisms (gauge transformations) on connections and of the elliptic regularity results for Yang-Mills connections and Yang-Mills-Higgs systems. These results are consequences of general elliptic regularity results for elliptic partial differential operators with smooth coefficients, which imply results generalizing the analytical aspects of Hodge theory to the study of Hodge-de Rham Laplacians with respect to connections which need not be smooth.

Slice theorems are used when studying the properties of suitably differentiable functionals defined on Banach manifolds with the property that the functional is constant along the orbits of some infinite dimensional symmetry group. We give a brief survey of occasions in geometry where this situation arises. An account is given of the methods of Morse theory and LyusternikSchnirclmann theory for relating the topology of a Banach manifold to the critical sets of functionals defined on that manifold. The role of slice theorems in circumstances where the functional is invariant under the action of an infinite dimensional symmetry group is described.

We also give a survey of the physical origins of gauge theories and of recent work on the topological, geometric and analytical aspects of gauge theories.

We give an account of the plan of the thesis. A statement is given which specifies those parts of the thesis believed to be
original research and the sources on which other results in the thesis are based.

We describe the results of chapter VIII. These results are the mam objective of the thesis, for which the earlier chapters prepare the necessary foundation.

We study the action of various Banach Lie groups of principal bundle automorphisms on corresponding affine spaces of connections on a given principal bundle over a compact manifold with compact structural group. These Banach Lie groups of automorphisms are modelled on Sobolev, C^{k} and Hylder spaces, and the affine spaces of connections correspond to Sobolev, C^{k} and Hylder spaces of sections of the appropriate vector bundle.

Theorem 2.3 of chapter VIII is a slice theorem giving, sufficient conditions for the existence of a differentiable structure on the quotient space obtained by quotienting a Sobolev or Hylder space of connections by the action of the corresponding group of principal bundle automorphisms in such a way that the quotient map is a smooth map between Banach manifolds which admits smooth local sections. This theorem generalizes corresponding slice theorems in /Singer, I.M., 1978 $\overline{/}, \underline{N}$ arasimhan, M. S. and Ramadas, T. R., 19797, /Mitter, P. K. and Viallet, C.M., 19817 and /Parker, T., 19827 and is closcly related to corresponding, results in Intiyah, M. F., llitchin, N.J. and Singer, I.M. , $197 \underline{8} \overline{7}$ and /Donaldson, S. K., 1983b7.

The proof of the slice theorem uses the results of chapter VI in which a fairly detailed study of the action of Banach Lie groups of principal bundle automorphisms on the corresponding spaces of connections is undertaken. It is shown that the actions of the Banach Lie groups of L_{k+1}^{p}, C^{k+1} and $C^{k+1, \propto}$ principal bundle automorphisms on the spaces of L_{k}^{p}, C^{k} and C^{k}, ∞ connections respectively
are smooth, privided that $1 \leqslant p<\infty$ and $p(k+1)>n$, where n is the dimension of the base manifold of the bundle, and provided that $0<\propto<1$. In all these cases the quotient of the space of connections by the corresponding group of automorphisms is Hausdorff, and the stabilizer of a connection in the appropriate group of automorphisms is compact (see theorems VI.4.1 and VI.4.2). Note that this result holds even for L^{P} connections which are not continuous, provided that $p>n$. It is also shown that if $\left(\omega_{i}\right)$ is a sequence in any of the above spaces of connections, if (Ψ_{i}) is a sequence in the corresponding group of principal bundle automorphisms and if both (ω_{i}) and ($\left.\Psi_{i}{ }^{*} \omega_{i}\right)$ converge in the space of connections, then some subsequence of (Ψ_{i}) converges in the group of automorphisms (see corollary VI. 3.3). Indeed if (Ψ_{i}) converges on some given fibre of the principal bundle, then $\left(\Psi_{i}\right)$ converges in the group of automorphisms (see theorem VI.3.2).

The proof of the slice theorem (theorem VIII.2.3) uses both the results of chapter VI described above and also a generalization of the analytical aspects of Hodge theory, presented in chapter VII, which describes the properties of the covariant Hodge-De Rham Laplacian with respect to a connection that need not be smooth.

This generalization of Hodge theory is also used to prove regularity theorems for Yang-Mills connections (theorems 3.1, 3.2 and 3.3 of chapter VIII) which place sufficient conditions on p and k in order that, for every L_{k}^{p} connection ω satisfying the YangMills equation, there should exist an L_{k+1}^{p} principal bundle automorphism Ψ such that $\Psi^{*} \omega$ is smooth. An informal discussion of the regularity of Yang-Mills-Higgs systems is given. Regularity theorems for Yang-Mills fields and Yang-Mills-Higgs systems are given in /Uhlenbeck, K. K., 1982bT and /Parker, T. , 1982 $/$.

E11iptic Regularity and Hodge Theory

In chapter III we shall prove a general regularity theorem for elliptic differential operators with smooth coefficients. This may be stated as follows. Let $\Pi_{1}: E_{1} \rightarrow M$ and $\Pi_{2}: E_{2} \rightarrow$ be smooth vector bundles over a compact smooth manifold M and let $\mathrm{L}: \mathrm{C}^{\infty}\left(\mathrm{E}_{1}\right) \rightarrow \mathrm{C}^{\infty}\left(\mathrm{E}_{2}\right)$ be a linear elliptic differential operator of order m with smooth coefficients. If k is an integer and if p satisfies $1<p<\infty$ then L extends to a bounded Fredholm map $L: L_{k+m}^{p}\left(E_{1}\right) \rightarrow L_{k}^{p}\left(E_{2}\right)$.

Moreover if u is an E_{1}-valued distribution with the property that Lu $\in L_{k}^{P}\left(E_{2}\right)$ then $u \in L_{k+m}^{P}\left(E_{1}\right)$. Similarly if k is a non-negative integer and if α satisfies $0<\alpha<1$ then 1 . extends to a bounded Fredholm map

$$
L: c^{k+m, \alpha}\left(E_{1}\right) \rightarrow c^{k, \alpha}\left(E_{2}\right)
$$

and if u is an E_{l}-valued distribution with the property that Lu $\in C^{k, \boldsymbol{\alpha}}\left(E_{2}\right)$ then $u \in C^{k+m, \infty}\left(E_{2}\right)$, Rather surprisingly, I have not found this theorem stated in the above form in the literature. The nearest approach to this theorem that I have yet discovered in the literature is theorem 3.54 of the book 'Nonlinear analysis on manifolds. Monge-Ampere cquations' by Aubin.

We prove this regularity theorem using the theory of singular integrals, duc to Calderon and Zygmund, and the theory of pseudodifferential operators. A parametrix for L is defined to be a linear operator $\mathrm{P}: \mathrm{C}^{\infty}\left(\mathrm{E}_{2}\right) \rightarrow \mathrm{C}^{\infty}\left(\mathrm{E}_{1}\right)$ with the property that the operators I - LP and I - PL are smoothing operators (a smoothing operator is a continuous linear operator whose distribution kernel is smooth). Ifrmander has shown that every linear elliptic differential operator
of order m with smooth coefficients has a parametrix which is a pscudodifferential operator of order -m in the class of such operators introduced by Kohn and Nirenberg and by Hormander. Using the psoudolocal property of psendodifferential operators and a partition of unity argument it suffices to show that a pseudodifferential operator $Q: C_{o}^{\infty}\left(\mathbb{R}^{n}\right) \rightarrow C^{\infty}\left(\mathbb{R}^{n}\right)$ of order $-m$ in the class of pseudodifferential operators introduced by Kohn and Nirenberg extends to continuous linear maps

$$
\begin{aligned}
& Q: L_{k, 1 o c}^{p}\left(\mathbb{R}^{n}\right) \rightarrow L_{k+m}^{p}, \operatorname{loc}\left(\mathbb{R}^{n}\right), \\
& Q: C_{\operatorname{Loc}}^{k, \boldsymbol{\alpha}}\left(\mathbb{R}^{n}\right) \rightarrow C_{1 o c}^{k+m, \alpha}\left(\mathbb{R}^{n}\right)
\end{aligned}
$$

Now pscudodifferential operators on \mathbb{R}^{n} in the class introduced by Kohn and Nirenberg have the form

$$
Q \varphi(x)=(2 \pi)^{-n} \int e^{i x . \xi} q(x, \xi) \hat{\varphi}(\xi) d \xi
$$

for all $\varphi \in C_{o}^{\infty}\left(\mathbb{R}^{n}\right)$, where the symbol $q(x, \xi)$ has an asymptotic expansion in ξ for large ξ in which each term is a positively homogeneous function of ξ. Now if sufficiently many terms of this asymptotic expansion are taken, then the distribution kernel of the pseudodifferential operator corresponding to the remainder term is C^{r} for r as large as required. Thus it suffices to consider the boundedness in Sobolev and HBlder norms of the pseudodifferential operator corresponding to each individual term in the asymptotic expansion. But one can express such an operator as a sum of compositions of operators which are ejther the singular integral operators with variable kernels sutdied by Calderon and Zygmund, or are convolution operators with summable kernels, or are other well-behaved operators. Thus the boundedness of the pseudodifferential operator will follow using the results of Calderon and Zygmund, together with Young's
theorem on convolutions. This enables us to prove the elliptic regularity results of chapter III.

We use the regularity theorems proved in chapter III, together with the Sobolov embedding theorems, the Rellich-Kondrakov theorem and the Sobolev multiplication theorems in order to derive a generalization of the analytical aspects of Hodge theory, which we present in chapter VII. This applies to the covariant Hodge-de Rham Laplacian with respect to connections which need not be smooth. More specifically, let k be a non-negative integer, let p satisfy the conditions $1<p<\infty$ and $p(k+1)>n$, where n is the dimension of the compact smooth manifold under consideration. If $k=0$, let p also satisfy the condition $p \geqslant 2$. Let p^{\prime} be the exponent conjugate to p, defined by

$$
\frac{1}{p^{\prime}}=1-\frac{1}{p}
$$

If $\pi: E \rightarrow M$ is a smooth vector bundle and if $\Delta^{\boldsymbol{\omega}}$ is the covariant Hodge-de Rham Laplacian with respect to an L_{k}^{p} connection ω on an associated principal bundle, and if $L \in \mathbb{Z}$ and $q \in(1, \infty)$ satisfy the conditions

$$
\begin{aligned}
& -\mathrm{k} \leqslant L \leqslant k \\
& \frac{1}{\mathrm{p}}-\frac{\mathrm{k}}{\mathrm{n}} \leqslant \frac{1}{q}-\frac{L}{n} \leqslant \frac{1}{p^{\prime}}+\frac{k}{n}
\end{aligned}
$$

then

$$
\Delta^{\omega}: L_{l+1}^{q}\left(E \otimes \Lambda^{j} T * M\right) \rightarrow L_{l-1}^{q}\left(E \otimes \Lambda^{j} T * M\right)
$$

is a Fredholm operator. Moreover if $u \in L_{-k+1}^{p^{\prime}}\left(E \otimes \wedge^{j} T^{j * M}\right)$ and $\Delta^{w} u \in L_{l-1}^{q}\left(E \otimes \Lambda^{j} T * M\right)$ then $u \in L_{l+1}^{q}\left(E \otimes \Lambda^{j} T * M\right)$. Using these results one can prove an analoque of the Hodge decomposition theorem and define the Green's operator
of Δ^{ω} in the usual manner, and this restricts to a bounded linear map

Similar results can be proved if $\boldsymbol{\omega}$ is a $c^{k, \alpha}$ connection.

Why are slice Theorems important?
In the mathematical literature one may find various instances where a study has been made of the following type of problem. Suppose that one is given a smonth manifold M and that on this manifold is defined some class X of geometric structures, where X may be identified with some Banach (or Frechet) space of sections of some fibre bundle over M. Suppose that there is a naturally defined infinite dimensional symmetry group If which permutes the elements of X. We shall suppose that H is a Banach (or Frechet) lic group acting (smoothly) on X and that H acts frecly on some open set X_{o} of generic elements of X. The problem is then to show that the topological quotient X_{O} / H of X by the action of H is a Hausdorff topological space which admits a canonical differentiable structure with the property that the natural projection from X_{0} to $X_{0} / I I$ is smooth and admits smooth local sections.
^ classic cxample is provided by Teichmuller theory. we let M be a smooth surface and define Con(M) to be the space of conformal structures on M. Given a conformal structure on M and a diffeomorphism of M we may form a new conformal structure which is the pullback of the given conformal structure by the diffeomerphism. Thus the group Diff(M) of orientation-preserving diffeomorphisms of M actis on the space $C o n(M)$ of conformal structures on M, and thus we may form the quoticnt space Con(M)/Diff(M). This quotient space is referred to as the moduli space of Riemann surfaces whose topological type is that of M. Similarly the Teichmuller space Con(M)/Diff ${ }_{0}(M)$ of marked Riemann surfaces whose topological type is that of M is defined to be the quotient of the space Con(M) of conformal structures on M by the identity component Diff (M) of the group Diff(M) of orientation-preserving diffeomorphisms of M (see

Earle, C.J. and Eells, J., 1969\%. When M is a torus then the Teichmuller space of marked Riemann surfaces of genus 1 is identified with the upper half plane \mathbb{C}_{+}and the moduli space of Riemann surfaces of genus 1 is identified with the quotient $\mathbb{C}_{+} / S 1(2, \mathbb{Z})$. In general we see that the Teichmuller space is a covering space of the moduli space.

A second example is provided by the action of the group of diffeomorphisms of a smooth manifold on the space of Riemannian metrics on this manifold. This action has been studied in / Ebin, D. G., 1970 ${ }^{7}$, in / Fisischer, N.E. and Marsden, J.E., $197 \underline{7} \overline{7}$ and in BBourguignon, J. -P. , 1.975 7 .

Let M be a compact smooth manifold of dimension n, let, N be a compact Riemannian manifold of dimension k, where $k \geqslant n$, and let B be a smooth submanifold of N of dimension $n-1$ which is diffeomorphic to ∂M. The n-dimensional Plateau problem is to find a map $f: M \rightarrow N$ which sends ∂M diffcomorphically onto B with the property that $f(M)$ has minimal volume among such maps from M to N. To study this problem one might take X to be the space of maps $r: M \rightarrow N$ which send ∂M diffcomorphically onto B and define vol : $X \rightarrow \mathbb{d}$ to be the map sending $f \in X$ to the volume of $f(M)$. If $\varphi: M \rightarrow M$ is a diffeomorphism of M and if $f \in X$ then so docs $\mathrm{f} \bullet \varphi$, and $\operatorname{vol}(f \circ \varphi)=\operatorname{vol}(f)$. Thus vol $: x \rightarrow \mathbb{R}$ induces a map vol : X/Diff(M) $\rightarrow \mathbb{R}$.

We shall be studying the action of groups \mathcal{G} of principal bundle automorphisms on spaces A of connections on a smooth principal bundle over a compact smonth manifold m. The Yang-mills functional $\mathrm{YM}: A \rightarrow \mathbb{R}$ is invariant under \mathcal{G} and thus induces a functional $\mathrm{yM}: \mathbb{A} / \boldsymbol{\mathcal { G }} \rightarrow \mathbb{R}$. If the dimension of M is 4 then the minimum of the Yang-mills functional is attained by the set A

[^0]of instantons (or anti-instantons) on the principal bundle. The moduli space of instantons (or anti-instantons) is defined to be the quotient A min $/ \mathscr{G}$, and has been studied in /Atiyah, M.F., Hitchin, N.J. and Singer, I. M., $197 \underline{8}$ and in /Donaldson, S.K., 1983b̄/. Given a suitably well-behaved functional $f: X \rightarrow \mathbb{R}$ defined on a Banach manifold X one may relate the critical sets of f to the topology of X by means of either Morse theory or Lyusternik-Schnirelmann theory.

First we discuss Morse theory on Hilbert manifolds. Let $f: X \rightarrow \mathbb{R}$ be a non-trivial C^{3} function defined on a connected Hilbert manifold X and let $d f: X \rightarrow T * X$ be the differential of f. A critical point of f is an element of X at which df vanishes. Supposc that f satisfies the following condition: given any subset S of X on which $|f|$ is bounded and $\|$ df $\|$ is not bounded away from zero, there exists a critical point of f adherent to s. Then Palais and Smale have shown that the conclusions of Morse theory apply to the function f, relating the critical sets of f to the topology of the manifold X (see / \bar{P} alais, R. S., 1963/). The above condition on f is referred to as the Palais-Smale condition. It ensures that if
$\gamma:(a, b) \rightarrow X$ is a maximal integral curve of the gradient vector field ∇f of f, where $-\infty \leqslant a<b \leqslant+\infty$, then either

$$
\lim _{t \rightarrow b-} f(t)=+\infty
$$

or there exists a sequence $\left(t_{i} \in(a, b): i \in \mathbb{N}\right)$ converging to b such that the sequence $\left(\gamma\left(t_{i}\right): i \in \mathbb{N}\right)$ converges to a critical. point of f, and similarly when t converges to a from above. In particular the critical values of f are isolated and if c is a critical value of f then the set of critical points x satisfying $f(x) \quad \therefore \quad c$ is compact (a critical value of f is the image under f of a critical point of f).
$f: X \rightarrow \mathbb{R}$ is said to be a Morse function if and only if the critical set of f consists of isolated points and the Hessian of f at those critical points is nondegenerate. For all $\subset \in \mathbb{R}$ let

$$
x_{c}=\{x \in X: f(x) \leqslant c\}
$$

If $f: X \rightarrow \mathbb{R}$ is a Morse function and if c is a critical value of f then for all sufficiently small $\varepsilon>0$ the pair ($X_{c+\varepsilon}, X_{c-\varepsilon}$) is homotopy equivalent to a relative $C W$ complex, where $X_{c+\varepsilon}$ is obtained from $X_{c-\boldsymbol{\varepsilon}}$ by attaching a cell of dimension k for each critical point in $f^{-1}(c)$ at which the index of the Hessian of f is k (see / Milnor, J.W., $196 \underline{3} \overline{/}$ or /Palais, R.S., 1963 $\overline{7}$).

Suppose that H is a group acting on the Hilbert manifold X and that f is H-invariant. Then $f: X \longrightarrow \mathbb{R}$ will not in general be a Morse function, unless the critical points of f were fixed points for the action of $I f$ on X. However one may apply the equivariant Morsc theory described in / Ātiyah, M. F. and Bott, R., $1982 \overline{7}$.

One may also study the relationship between the topology of a topological space X and the critical sets of a continuous function $f: X \rightarrow \mathbb{R}$ on this space by means of Lyusternik-Schnirelmann theory (see /Lyusternik, L.^., 1966/). Let (X, f, K) be a triple, where X is a topological space, $f: X \rightarrow \mathbb{R}$ is a continuous function and K is a closed subset of X. For all $c \in \mathbb{R}$ let

$$
x_{c}=f^{-1}((-\infty, \underline{c})
$$

We may apply the techniques of Lyusternik-Schnirelmann theory to (X, f, K) provided that the following three conditions are satisfied:
(i) $f(K)$ is discrete,
(ii) if $c \in \mathbb{R} \backslash f(K)$ then $X_{c+\varepsilon}$ may be deformed into $X_{c-\varepsilon}$ for all sufficiently small $\quad \varepsilon>0$,
(ii.i) if $c \in f(K)$ then for every open neighbourhood U of $K \cap f^{-1}(c)$ there exists $\varepsilon>0$ such that $X_{c+\varepsilon}$ may be deformed into $\cup \cup x_{c-\varepsilon}$.

We refer to k as the critical set of f and to $f(k)$ as the set of critical values of f.

In Lyusternik-Schnirelmann theory one proves the existence of one or more distinct critical values of $f: X \rightarrow \mathbb{R}$ from a knowledge of the topology of x. One method of doing this may be described as follows. Let (Y, B) be a topological pair, let a $\in \mathbb{R}$ and let $\Gamma \in\left[(Y, B),\left(X, X_{a}\right)\right]$ be a homotopy class of continuous maps $q:(Y, B) \rightarrow\left(X, X_{a}\right)$ with the property that $q(Y) \notin X_{a}$ for all $q \in \Gamma \quad$. Define

$$
{ }^{c} \Gamma=\inf _{q \in \Gamma} \quad \sup _{y \in Y} f(q(y))
$$

Then $c \Gamma$ is a critical value of $f: X \rightarrow \mathbb{R}$. Indeed if ${ }^{c} \Gamma$ were not a critical value of f then there would exist a map h $: X_{c+\varepsilon} \longrightarrow X_{c-\varepsilon}$ which was homotopic in $X_{c+\varepsilon}$ to the identity map of $X_{c+\varepsilon}$ for all sufficiently small $\quad \Sigma>0$, by condition (ii) above. But by definition of ${ }^{c} \Gamma$ there would exist $q \in \Gamma$ such that $q(Y) \subset X_{c+\varepsilon} \quad$ But then $h \bullet q \in \Gamma$ and $h \bullet q(Y) \subset X_{c-\varepsilon}$, contradicting the definition of $c \Gamma$. Hence $c \Gamma$ is a critical value of f. Using this method Lyusternik and Fet proved the existence of at least one closed geodesic on a compact Riemannian manifold (see $\underline{K} 1$ ingenberg, W., $197 \underline{/} \overline{/}$ of $/ \bar{K}$ lingenberg, W., 198277). One may prove the existence of more than one critical point of $f: x \rightarrow \mathbb{R}$ using the concept of Lyusternik-Schnirelmann category. If A is a subsct of X then the Lyusternik-Schnirelmann category of A in X, cat $(A ; X)$, is the least integer n such that Λ may be covered by n closed subsets of x, each of which is contractible in X. If no
such integer exists then $\operatorname{cat}(\Lambda ; X)$ is defined to be ∞. We denote cat (X; X) by cat(X).

```
For all m < cat (x), define
```

$$
c_{m}(f)-\inf \left\{a \in \mathbb{R}: \operatorname{cat}\left(x_{a} ; x\right) \geqslant m\right\}
$$

It can be shown that

$$
c_{m}(f) \leqslant c_{m+1}(f)
$$

and that if $c_{m}(f) \in(-\infty, \infty)$ then $c_{m}(f)$ is a critical value of f. Also $f: X \rightarrow \mathbb{R}$ has at least cat(X) critical points. Indecd if the number of critical points of $f: X \rightarrow \mathbb{R}$ is finite then it may be shown that

$$
c_{m}(f)<c_{n}(f)
$$

for all m and n satisfying
$1 \leqslant m<n \leqslant \operatorname{cat}(x)$
(see /Palais, R.S., 19667).
The Lyusternik-Schnirelmann category of a topological space may be related to the homology of that space. However one may deduce information about the critical point structure of $f: X \rightarrow \mathbb{R}$ directly from the homology of x without the need to introduce the concept of Lyusternik-Schnirelmann category.

Given $a \in \mathbb{R}$ define i_{a} and j_{a} to be the inclusions $i_{a}: x_{a} \longrightarrow x$ and $j_{a}: x \longrightarrow\left(x, x_{a}\right) . \quad i_{a}$ and j_{a} induce homomorphisms

$$
\begin{aligned}
& i_{a *}: H_{*}\left(X_{a}\right) \rightarrow H_{*}(X) \\
& j_{a *}: H_{*}(X) \rightarrow H_{*}\left(X, X_{a}\right)
\end{aligned}
$$

and the kernel of $j_{a *}$ is the image of $i_{a *}$ by the homology exact
sequence of the pair $\left(X, X_{a}\right)$. Given $z \in H_{*}(X)$, define

$$
\begin{aligned}
c(z) & =\inf \left\{a \in \mathbb{R}: j_{a *} z=0\right\} \\
& =\inf \left\{a \in \mathbb{R}: z \in i_{a *} H_{*}\left(X_{a}\right)\right\}
\end{aligned}
$$

$c(z)$ is a critical value of $f: X \rightarrow \mathbb{R}$. For suppose $c(z)$ were not a critical value. Then there would exist a continuous map $h: X_{c+\varepsilon} \rightarrow X_{c-\varepsilon}$ homotopic to the identity map of $X_{c+\varepsilon}$ for all sufficiently small $\varepsilon>0$, where $c=c(z)$. But then $z=i_{c+\varepsilon} * W$ for some $W \in H_{*}\left(X_{C+\varepsilon}\right)$ and hence $z=i_{c-\varepsilon *} h * w$, contradicting the definition of $c(z)$. Thus $c(z)$ is a critical value of f. Using the homology exact sequences and the naturality of the cap product one may easily show that if $z \in H_{*}(X)$ and $\varphi^{\epsilon} H^{*}$ (X) then

$$
c(\varphi \cap z) \leqslant c(z)
$$

and that if equality holds then $k \underset{\sim}{*} \neq 0$ for all open neighbourhoods U of $k \cap f^{-1}(c(z))$, where k_{U} denotes the inclusion $k_{U}: U \hookrightarrow X$. One may also use variants of the methods described above. For example the proof of the Lyusternik-Schnirelmann theorem on the existence of at least three simple closed geodesics on a Riemannian manifold diffeomorphic to a 2 -sphere given in /Kingenberg, w., 1982/ does not fall strictly within the purview of the above mothods though it is closely related to the homology method described above (see also /Eallmann, W., Thorbergsson, G. and Ziller, W., 1983/7).

Given a C^{2-} function $\mathrm{f}: \mathrm{X} \rightarrow \mathbb{R}$ on a complete C^{2} Finsler manifold X satisfying the Palais-Smale condition described above one may verify that (X, f, k) satisfies conditions (i), (ii) and (ii.i) above, where

$$
K=\left\{x \in X: \mathrm{df}_{\mathrm{x}}=0\right\}
$$

(see PPalais, R.S., 19667), and thus any of the above methods of Lyustcrnik-Schirelmann theory are applicable. However LyusternikSchnirelmann theory is more robust than Morse theory in that by verifying that conditions (i), (ii), and (iji) above are satisfied using methods other than by studying the flow of an approximate gradient field, one may apply the techniques of Lyusternik-Schnirelmann theory in situations where the Palais-Smale condition is not applicable (see /్Klingenberg, w., 1982/). Having summarized the basic methods of Morse theory and l.yusternik-Schnirelmann theory for relating the topology of a Banach manifold to the critical point structure of continuous functions defined on it we now indicate how one might apply these methods in situations where the function in question is constant along the orbits of the action of some infinite dimensional symmetry group. Let $f: X \rightarrow \mathbb{R}$ be such a function defined on the Banach manifold X and let f be constant on the orbits of the action of the Banach Lie group H acting on X. One would not in general expect to be able to verify the Palais-Smale condition for $f: X \rightarrow \mathbb{R}$. Indeed given a sequence $\left(x_{i} \in X: i \in \mathbb{N}\right)$ for which $\left|f\left(x_{i}\right)\right|$ is bounded and the norm of $d f$ at x_{i} converges to zero then this sequence would not in general contain a convergent subsequence, for even if $\left(x_{i} \in X: i \in \mathbb{N}\right)$ were to converge, one would expect to find a sequence $\left(h_{i} \in H: i \in \mathbb{N}\right)$ such that $\left(x_{i} \cdot h_{i}: i \in \mathbb{N}\right)$ contains no convergent subsequence, yet $f\left(x_{j} \cdot h_{i}\right)$ is bounded and the norm of $d f$ at $x_{i} ._{i}$ converges to zero.

In order to overcome this problem it is necessary to factor out the action of the symmetry group H from the Banach manifold X. Let us suppose that H has a Banach Lie subgroup H_{o} of finite codimension in H which acts freely on X and such that \bar{H} is compact, where $\bar{H}=H / H_{0}$.

Definc $\bar{X}=X / H_{0}$. In order to apply critical point theory to the function $\bar{f}: \bar{X} \rightarrow \mathbb{R}$ induced by $f: X \rightarrow \mathbb{R}$ on \bar{x}, one would aim to prove a slice theorem which would state that \bar{X} admits a unique differentiable structure with the property that the natural projection from X onto \bar{X} is smooth and admits smooth local sections. Then one has to reduce the problem to one of studying the behaviour of $\bar{f}: \bar{X} \rightarrow \mathbb{R}$, where \bar{f} is constant along the orbits of the action of the compact lie group \vec{H}. In these circumstances one has more hope of being able to verify the palais-Smale condition for the function $f: \bar{X} \rightarrow \mathbb{R}$. Moreover if X satisfies the second axiom of countability then X and \bar{X} will be paracompact. Then the natural projection $X \rightarrow \bar{X}$ will be a principal bundle with fibre H_{o} over a paracompact Hausdorff basc space \bar{X} and thus will be a Hurewicz fibration (see / Spanier, E.H., 1966; pp.92-967). Thus the homotopy groups of H_{n}, X and \bar{X} are related by the homotopy exact sequence

$$
\cdots \rightarrow \pi_{i}\left(H_{0}\right) \rightarrow \pi_{i}(x) \rightarrow \Pi_{i}(\bar{x}) \rightarrow \Pi_{i-1}\left(H_{0}\right) \rightarrow \cdots
$$

of the fibration, and the relationship between the homology of H_{o}, X and \vec{X} may be studied using the serre spectral sequence.

Applying these remarks in the context of Yang-Mills theory we see that it is sensible to consider the Yang-Mills functional as a smooth map

$$
\left.\mathrm{YM}: 1_{1}^{2} A / L_{2}^{2}\right\}{ }^{m} \rightarrow \mathbb{R}
$$

where $L_{1}^{2} A$ is the space of L_{L}^{2} connections on a principal bundle $\pi: P \longrightarrow M$ over a compact Riemannian manifold M with structural group G, and where $L_{2}^{2} \oint^{m}$ is the group of L_{2}^{2} principal bundle automorphisms of $\pi: P \longrightarrow M$ which fix the fibre of $\pi: P \longrightarrow M$ over m, for some $m \in M . L_{2}^{2} \oint^{m}$ is a well-defined Banach Lie group acting smoothly on $L_{1}^{2} A$ when the dimension of M does not exceed 3 ,
and in / Ūhlenbeck, K.K., 1982c] it is conjectured that the PalaisSmale condition is satisfied in these circumstances.

However interesting problems in geometry occur in circumstances where the Palais-Smale condition just fails to apply (see /Uhlenbeck, K.K., 1982c $\overline{/})$, notably in the study of harmonic maps whose domain is a compact 2-dimensional surface and also in the study of the Yang-mills functional. for principal bundles over a compact 4-dimensional manifold. In the theory of harmonic maps whose domain is a 2-dimensional surface interesting results may be obtained by perturbing the functional in question to nearby functionals which satisfy the Palais-Smale condition on the appropriate Banach manifold (see Sacks, J. and Uhlenbeck, K.K., 1981/). By analogy this suggests that, to obtain results for the Yang-Mills functional for connections on a principal bundle over a 4-manifold, it might be fruitful to study the functional

$$
Y M_{p}([\omega])=\int\left(1+\left|F^{\omega}\right|^{2}\right)^{P / 2} d(\operatorname{vol})
$$

defined on the Banach manifold $L_{1}^{p} A / L_{2}^{p} \boldsymbol{G}^{m}$ for $p>2$, where $\mathrm{F}^{\boldsymbol{\omega}}$ is the curvature of the connection $\boldsymbol{\omega}$.

Non-Abelian gauge thoories were introduced by Yang and Mills in $\bar{M} i l l s, R . L$. and Yang, C.N., $195 \underline{4} \overline{/}$ as a gencralization of Maxwell's theory of electromagnetism. We recall that the electric and magnetic ficlds on spacetime are described by a 2 -form F satisfying Maxwell's equations

$$
\begin{aligned}
& \mathrm{dF}=0 \\
& \delta \mathrm{~F}=\mathrm{J}
\end{aligned}
$$

where J is some constant multiple of the current density, considered as a l-form on spacetime, where dis the exterior derivative operator and where δ is the codifferential determined by the metric on spacetime. Since $d F=0$ there exists a 1 -form \wedge such that

$$
\mathrm{F}=\mathrm{dA}
$$

by the Poincaré lemma. The 1 -form A is often referred to as a 4-potential of F. This 1 -form A is not unique. Indeed if ψ is a smooth function on spacctime, then $\Lambda+d \psi$ is also a 4-potential of F. The correspondence sending Λ to $\Lambda+d \psi$ is referred to as a gauge transformation (this terminology arose from Weyl's attempt to unify gravitation and electromagnetism in a single theory in which the length of a measuring rod in spacetime would change under parallel transport around closed loops in spacetime). It became customary to 'fix a gauge' by demanding that A also satisfy the condition

$$
\delta \wedge=0
$$

since if $\Lambda+d \mathcal{Y}$ also satisfied this condition then \mathcal{F} would have to be harmonic, and thus if ψ satisfied appropriate boundary conditions at infinity then ψ would have to be constant. The condition that the divergence of \wedge vanish is often referred to as the Lorentz gauge
condition. If \wedge satisfies the Lorentz gauge condition then Maxwell's equations become

$$
F=d A \text {, }
$$

$\Delta \Lambda=J$
where Δ is the Hodge-de Rham Laplacian acting on 1 -forms, defined by $\Delta=\delta \circ d+d \circ \delta$.

Thus
$-\nabla^{2} A+R i c \cdot A=J$

Using the Bochncr-Weizenbbck formula, where $-\nabla^{2}$ is the rough Laplacian acting on 1-forms and wherc Ric is the symmetric endomorphism determined by the Ricci curvature of spacetime.

The vacumm Maxwcll equations are the Euler-Lagrange equations for the action

$$
I(A)=\int|d A|^{2} d(\operatorname{vol}) .
$$

Yang and Mills introduced a non- \wedge belian gauge theory with many similarities to the theory of electromagnetism just described. In this theory the gauge potentials are 1 -forms A on \mathbb{R}^{4} with values in the Lic algebra g of some compact Lie group G. Yang and Mills consider the case when G is $S U$ (2). The group G is referred to by physicists as the gauge group. Corresponding to the gauge potential Λ we have a covariant derivative operator D. If V is a representation space for G and if $f: \mathbb{R}^{4} \rightarrow V$ is differentiable then

$$
D f=d f+A \cdot f .
$$

The appropriate analogue of the electromagnetic ficld tensor is the ficld strength F. Fis a B-valued 2 -form whose components F are given by

$$
\begin{aligned}
F_{\nu \nu} & =\left[D_{N}, D_{\nu}\right] \\
& =\partial_{\mu} \wedge_{\nu}-\partial_{\nu} A_{\mu}+\left[\Lambda_{\mu}, A_{\nu}\right]
\end{aligned}
$$

The Yang-mills equation is

$$
\delta^{A} F=0
$$

where δ^{\wedge}, the covariant codifferential, is the formal adjoint of the covariant exterior derivative. The Yang-mills equation is the Fuler-Lagrange equation of the Yang-Mills functional

$$
\operatorname{YM}(\Lambda)=\int|F|^{2} d(\operatorname{vol})
$$

Given a map $g: \mathbb{R}^{4} \rightarrow G, g$ determines a gauge transformation sending the covariant derivative operator $f \mapsto D f$ to the operator $f \mapsto D^{g} f$, where

$$
D^{g} f=g^{-1} D(g f)
$$

If $D^{g}=d+A^{g}$, then

$$
\Lambda^{g}=g^{-1} \Lambda g+g^{-1} d g .
$$

The field strength F transforms to $g^{-1} \mathrm{Fg}$ under the gauge transformation.

For an account of non-Abelian gauge theories from the physicist's point of view, see Taylor, J.c., $197 \underline{\overline{7}}$ or chapter 12 of ITtzykson, C. and Zuber, J.-B., $1980 \overline{7}$.

Physicists study gauge theories both on Minkowski spacetime and on four-dimensional Euclidean spacetime. We shall here be concerned exclusively with the Euclidean case and its generalization to gauge theories on Riemannian manifolds, since we wish to apply the theory of elliptic partial differential equations.

Yang and mills originally proposed their theory as a possible model for the isospin symmetry between protons and neutrons in elementary particle physics. In the standard theory an isospin 'rotation', determined by an element of Sig (2), would 'rotate' ali protons in the universe to the appropriate linear combination of proton and neutron eigenstates, and the relative proportion of the proton component and the neutron component of the dynamical state of the 'rotated' particle would be the same for all protons in the universe. Yang and Mills wished to construct a theory of isospin which permitted symmetries which might 'rotate' a proton into a neutron at one event in spacetime yet which fixed a proton at some other event. Such a symmetry would be determined by a map from spacetime to the isospin group SU (2). However gauge theories found their application not in this context but in the context of unified field theories of the forces σ^{\prime} nature, once it was shown that gauge theories were renormalizable and once spontaneous symmetry breaking had been introduced into the theory via the figs mechanism. Those theories current il regarded as standard include the Salam-Weinberg unification of the electromagnetic and weak interactions, and also quantum chromodynamics, which is the theory of the strong interaction in which quarks interact via the exchange of gluons.

Physicists imposed the appropriate analogue of the Lorentz gauge condition, namely the condition

$$
\sum_{N} \partial^{\mu} A_{\mu}=
$$

or their gauge potentials on the assumption that this would determine a unique gauge potential from each orbit of the group of gauge transformations. That this was not the case was pointed out in /Gribov, V.N., $197 \underline{8} \overline{/}$ in the case where the gauge potentials satisfied appropriate boundary conditions at infinity. An explanation of why
this had to be so was given in Singer, I.M., $1978 \overline{/}$.
Singer observes that the boundary conditions at infinity imposed by Gribov are such as to enable one to extend the gauge transformations Lo the compactification S^{4} of \mathbb{R}^{4}. The gauge potentials studied by physicists correspond to connections defined on a principal bundle
$\pi: P \rightarrow N$ over the manifold M being considered (in this case $M=S^{4}$). Similarly the gauge transformations introduced by physicists correspond to principal bundle automorphisms of $\pi: P \rightarrow M$. Let $C^{\infty} \&$ denote the Frechet space of smooth connections on $\pi: P \rightarrow M$ (strictly speaking this is an affine space modelled on a Frechet. space) and let $c^{\infty} \xi$ be the group of smooth principal bundle automorphisms of $\pi: P \rightarrow M . C^{\infty} g$ acts on $C^{\infty} A$ on the right where each principal bundle automorphism in $c^{\infty} g$ acts on $c^{\infty} A$ by sending each connection on $\pi: P \rightarrow M$ to its pullback under the given automorphism. What to the physicist is a choice of gauge condition corresponds to the construction of a section of the natural projection

$$
\sim^{\infty} A \rightarrow 0^{\infty} A 1^{\infty} g .
$$

leet $\mathrm{C}^{\infty} \boldsymbol{A}_{\text {jr }}$ denote the open dense subset of $\mathrm{C}^{\infty} \mathcal{A}$ consisting of all. smooth irreducible connections on $\pi: P \rightarrow M$. Let $C^{\infty} \mathscr{G}_{0}$ be the quotient $c^{\infty} \oint / Z(G)$ of $c^{\infty} \oint$ by the subgroup naturally isomorphic to the centre of the structural group G. Then $c^{\infty} \mathcal{Y}_{0}$ acts continuously on $C^{\infty} A$ ire. singer states that the map

$$
\nu: c^{\infty} A_{i r r} \rightarrow c^{\infty} A_{i r r} / c^{\infty} \mathcal{G}_{0}
$$

is a principal bundle with structural group $c^{\infty} \mathcal{G}_{0}$. Singer also shows that

$$
\pi_{j}\left(0^{\infty} A_{i r r}\right)=0
$$

for all non-ncgative integers j. Thus

$$
\pi_{j+1}\left(C^{\infty} A_{i r r} /^{\infty} \mathcal{G}_{0}\right) \cong \pi_{j}\left(c^{\infty} \mathcal{g}_{0}\right) .
$$

Now if the map $\mathcal{\nu}$ above has a section, then the identity automorphism of TT ${ }_{j+1} i^{\infty} A_{i r r} c^{\infty} \mathcal{E}_{0}$) factors through the zero homomorphism and thus

$$
\pi_{j+1}\left(\mathrm{c}^{\infty} A_{\text {irr }} / C^{\infty} \hat{g}_{0}\right)=0
$$

Singer shows by standard methods of homotopy theory that if $M=S^{4}$ or S^{3} and if $G=S U(N)$ for some $N>1$ then $\pi_{j}\left(C^{\infty} \hat{g}_{0}\right) \neq 0$ for some j and hence no continuous choice of gauge exists in the sense that the re is no continuous section

$$
s: c^{\infty} A_{i r r} / c^{\infty} \mathcal{g}_{0} \rightarrow c^{\infty} A_{\mathrm{irr}}
$$

of the natural projection

$$
\nu: \mathrm{c}^{\infty} A_{\mathrm{irr}} \rightarrow \mathrm{c}^{\infty} A_{\mathrm{irr}} / \mathrm{c}^{\infty} \wp_{0}
$$

The slice theorem stated in $/$ Singer, I.M., $1978 \overline{7}$ was proved in /Narasimham, M.S. and Ramadas, T.R., $197 \underline{9} /$ and in $/ \bar{M} i t t e r, P . K$ and Viallet, C.M., 19817. Narasimhan and Ramadas restrict their attention to $S U(2)$ gauge fields over S^{3} and prove theorcms for the actions of L_{k+1}^{2} principal bundle automorphisms on L_{k}^{2} connections for $k \geqslant 3$. Mitter and Viallct prove slice theorems for the action of L_{k+1}^{2} principal bundle automorphisms on L_{k}^{2} connections where

$$
\mathrm{k}>\frac{\mathrm{n}}{2}+1
$$

n being the dimension of the base manifold of the principal bundle.
A connection on a principal bundle over a four-dimensional manifold is an instanton (or anti-instanton) if and only if the curvature of the connection is self-dual (or anti self-dual). Instantons or anti-instantons attain the minimum of the Yang-Mills functional, provided that they exist. The moduli space of instantons is defined to be the quotient $\mathrm{c}^{\infty} A A_{\min } /^{\infty} \mathcal{G}^{\infty}$ of the Banach manifold $\mathrm{c}^{\infty} \mathcal{A}_{\min }$ of instantons by the group $\mathrm{c}^{\infty} \mathcal{g}$ of principal bundle automorphisms. In /Ātiyah, M.F., Hitchin, N.J. ard Singer, I.M., 1978/
it is shown that the moduli space of irreducible instantons over a compact (self-dual.) half conformally flat 4-manifold with positive scalar curvature is cither cmpty or is a manifold of dimension

$$
p_{1}\left(\theta_{\mathrm{p}}\right)-\frac{1}{2}(\operatorname{dim} \mathrm{G})(x-\tau)
$$

where $p_{1}\left(g_{P}\right)$ is the first pontryagin number of the adjoint bundle $\exists_{P}=P^{\prime}{ }_{A d} \square, X$ is the Euler characteristic of the base manifold and τ is its signature.

In general it is known that the moduli space of all instantons over a 4-manifold (not necessarily half conformally flat) will have singularities, though the regular set will have the dimension given above. This dimension is calculated usjng the Atiyah-Singer index theorem.

N1 instantons on s^{4} have been classified using methods of algebraic geometry applied via twistor theory (see /Atiyah, M.F., Hitchin, N.J., Drinfeld, U. and Manin, Yu., $197 \underset{7}{\overline{/}}$ and / $\bar{A} t i y a h, ~ M . F .$, 19797).

Bourguignon, Lawson and Simons have proved stability, isolation and non-existence theorems for Yang-Mills fields on compact homogeneous Riemannian manifolds (see /Bourguignon, J.-P. and Lawson, H.B., 1980/ or /Bourguignon, J.-P. and Lawson, H.B., 1982̄/).

Taubes has proved an existence theorem for instantons on compact Riemannian 4-manifolds whose intersection form is positive definite (see /Taubes, C.H., 19827).

Uhienbeck has provided various analytical tools that are useful in the study of connections whose curvature is bounded in some appropriate norm. In / Ūhlenbeck, K.K., l982b̄ it is shown that there exist constants \mathcal{K} and c , depending on1y on n, such that if $1 / 2 n \leqslant p<n$ and if $d+\Lambda$ is an L_{1}^{p} connection on a trivin bundle
over the unit ball B^{n} in \mathbb{R}^{n} whose curvature $F(A)$ satisfies

$$
\|F(A)\|_{L} p<\pi
$$

then $d+A$ is gauge equivalent to a connection $d+A$ satisfying the conditions

$$
\begin{aligned}
& \delta \wedge=0 \\
& \|A\|_{L_{1}^{p}} \leqslant c\left\|_{F(A)}\right\|_{L}^{p} .
\end{aligned}
$$

Using this result uhlenbeck shows that if $2 p>n$ and if $(\omega) ; j \in \mathbb{N})$ is a sequence of connections on a principal bundle $\Pi: P \rightarrow M$ over a compact Riemannian manifold M of dimension n with compact structural group and if the L^{p} norms of the curvatures of $\left(\omega_{i}\right)$ are uniformly bounded then there exists a sequence $\left(\Psi_{i}: i \in \mathbb{N}\right)$ of $1, \frac{p}{2}$ gauge transformations such that the sequence $\left(\Psi_{i} * \omega_{i}: i \in \mathbb{N}\right)$ is weakly convergent in the space of L_{1}^{p} connections to some connection ω. Morcover the curvature F^{ω} of ω satisfies

$$
\left\|F^{\omega}\right\|_{L p} \leqslant \lim \sup \left\|_{F} \omega_{i}\right\|_{L} p
$$

A similar theorem may be proved in the limiting case when $2 p=n$, though here one finds that the sequence of connections will converge weakly only over the complement of some finite set of points in the base manifold of the principal bundle (see LS edlacek, S., $1.982 \overline{7}$ and [Donaldson, S.K., 1983b/]. For Yang-Mills connections on A-manifolds one may then extend this limiting connection to a connection on some principal bundle defined over the whole of M using Uhlenbeck's removal of signularities theorem (discussed below), though the topological type of this new bundle may differ from that of the principal bundle on which the original sequence of connections was defined.

Uhlenbeck's removal of signularities theorem states that if a connection on a principal bundle over $B^{4} \backslash\{0\}$ satisfies the Yang-mills cquation and if the curvature of the connection is bounded on $B^{4} \backslash\{0\}$, in the L^{2} norm, then the principal bundle and the connection may be extended over the whole of B^{4} (see /Uhlenbeck, K.K., 1982ā/).

Uhlonbeck's results have been oxtonded to Yang-Mills-Higgs sintems by Parkcr (sec /Parker, T., 1982才). Parker also proves slice theorems in Sobolev L_{k}^{p} norms for $2<p<4$.

Donaldson has made a study of the topology of the moduli space of instantons introduced by Atiyah, Hitchin and Singer using the analytical tools developed by Taubes and Uhlenbeck. In consequence he was able to prove his celebrated theorem that if the intorscetion form of a smooth 4 -manifold is positive definite then it is a sum of squares.

Atiyah and Bott have made a study of the Morse theory for the Yang-Mills functional for connections on a bundle over a Riemann surface (see Intiyah, M.F. and Bott, R., 19827. Donaldson has used the weak compactness theorem of uhlenbeck in giving a differential geometric characterization of stable bundles over projective algebraic varieties (see /Donaldson, S.K., 1983a7 and /Donaldson, S.K., 1985].

In chapter II we review the definitions and basic properties of Sobolev and H甘lder spaces. We also discuss slice theorems in the general context of a Banach Lie group acting smoothly and freely on a Banach manifold.

In chapter III we prove general elliptic regularity theorems in Sobolev and HUlder norms for linear elliptic differential operators with smooth coefficients defined over a compact smooth manifold. The proof uses the theory of singular integrals, developed by Calderon and Zygmund, and the theory of pseudodifferential operators.

In chapter IV we shall prove an inequality satisfied by continuous functions on a compact manifold which is closely related to the Sobolev embedding theorem for embeddings of Sobolev spaces in HBlder spaces.

In chapter V we give an account of the theory of Ehresmann connections on principal bundles and of principal bundle automorphisms in preparation for subsequent chapters.

In chapter VI we study the action of Banach lie groups of principal bundle automorphisms of connections and prove various results that will be used in chapter VIII, where we prove slice 1.heorems for this action.

In chapter VII we produce a generalization of the analytical aspects of Hodge theory which is applicable to covariant Hodgede Rham Laplacians with respect to connections that need not be smooth. This chapter uses the general clliptic regularity theorems of chapter III, together with the Sobolev embedding theorems, the Rellich-Kondrakov theorem and the Sobolev multiplication theorems.

In chapter VIII we prove slice theorems in Sobolev and HBlder
norms for the action of principal bundle automorphisms on connections, using the results of chapters VI and VII. We shall also prove regularity theorems for Yang-Millis connections and discuss the regularity of Yang-mills-Higgs systems.

In chapter IX we shall show the existence of an upper bound on the length of loops required to generate the holonomy group of a principal bundle over a compact Riemannian manifold. We shall show how this result can be used to derive inequalities satisfied by sections of a fibre bundle associated to the given principal bundle.

I give here a discussion of the sources from which the research contained in this work has been derived.

Chapter II contains no original research, being a summary of the basic theorems of global analysis that we shall be using. Howcver I have not come across the general slice theorem (theorem II.3.1) in the literature in the form in which I have stated it, though it is implicit in the proofs of slice theorems occurring in the literature and it is stated in the more abstract formulation given here mainly for reasons of economy (for not only do we need theorem II. 3.1 in proving theorem VIII.2.3 but also in section 4 of chapter VI in forming the quotients of the groups of principal bundle automorphisms by the centre of the structural group).

Sections 2 and 3 of chapter III do not contain any original research, being summaries of the results of Calderon and zygmund and of H甘rmander on which the proofs of the elliptic regularity theorems are based. A partial exception to this is the proof that smoothing operators are pseudodifferential operators in the sense of Hyrmander, which we prove using the methods of HBrmander. Section 4 of chapter III is original research, at least I have not yet come across a proof of L_{k}^{p} and Hסlder estimates for pseudodifferential operators in the literature which employs this method. The elliptic regularity results of section 5 do not appear to be stated explicitly in the literature; their proofs are immediate generalizations to the L_{k}^{p} and $H \delta 1 d e r$ cases of standard results in the L_{k}^{2} case obtained by merely replacing the standard L_{k}^{2} estimates for pseudodifferential operators by the results of section 4 at the appropriate steps in the proofs.

Chapter IV consists of original research. The proof of theorem IV.3.3 was suggested by the ideas underlying the proof of the Sobolev embedding theorem for embeddings of Sobolev spaces in ïbluer spaces.

Chapter V is basically an expanded and freely adapted account of the theory of Ehresmann connections and principal bundle automorphisms based on the papers by Bourguignon anc lawson and by Atiyah, Hitchin and Singer listed in the references at the end of chapter V. Any result not found in these papers may be taken to be 'original research', though many of these results are either 'obvious' or 'well-known'. Note however that theorem V.4.2 is stated as lemma 2.2 of /Narasimhan, M.S. and Ramadas, T.R., $1979 \overline{/}$.

Chapter VI is original research, apart from theorems VI.2.1 and VI. 2.2 which are stated in the Sobolev case as lemma 1.2 of IThlenbeck, K.K., 1982b/ and there proved when $k=0$ or 1 . The differences between the proofs given in chapter VI and the proofs given by Uhlenbeck are essentially cosmetic in nature.

Chapter VII consists of original research.
Chapter VIII contains original research. The slice theorem (theorem VIII.2.3) generalizes theorems stated or proved in Singer, I.M., 1978/ / / Narasimhan, M.S. and Ramadas, T.R., 1979/, /Mitter, P.K. and Viallet, C.M., $1981 \overline{7}$ and /Parker, T., 1982 7 . of these authors, only Parker proves his results in Sobolev spaces other than L_{k}^{2} spaces. The regularity theorems for Yang-Mills connections in section 3 and the corresponding results for Yang-mills-Higgs systems discussed in section 4 generalize results of / Ūhlenbeck, K.K., $1982 \underline{b} \overline{7}$ and Parker, T., $1982 \overline{7}$.

Chapter IX consists of original research.

Appondix \wedge contains no original research.

References for Chapter I

Atiyah, M.F., "Geometry of Yang-Mi11s fields", Fermi Lectures, Scuola Normale Pisa, 1979.

Atiyah, M.F. and Bott, R., "The Yang-Mills equations over Riemann surfaces", Phil. Trans. Roy. Soc. Lond. A308 (1982), pp.524-615.

Atiyah, M.F., Drinfeld, U., Hitchin, N.J. and Manin, Yu., "Construction of instantons", Proc. Nat. Acad. Sci. U.S.A. 74 (1977), pp.2662-2663.

Atiyah, M.F., Hitchin, N.J. and Singer, I.M., "Self-duality in four-dimensional Riemannian geometry', Proc. R. Soc. Lond. A362 (1978), pp.425-461.

Ballmann, W., Thorbergsson, G., Ziller, W., "On the existence of short closed geodesics and their stability properties', in "Seminar on minimal submanifolds", Ann. of Math. Studies, 1.03, Prirceton Univ. Press, Princeton N.J., 1982.

Bourguignon, J.-P., "Une stratification de l'espace des structures Riemannians'', Comp. Math., 30 (1975), pp.193-209.

Bourguignon, J.-P. and Lawson, H.B., "Stability and isolation phenomena for Yang-Mills fields', Comm. Math. Phys. 79 (1980), pp.189-230.

Bourguignon, J.-P. and Lawson, H.B., "Yang-Mills theory: its physical origins and differential geometric aspects", in "Seminar on differential geometry", Ann. of Math. Studies, 102, Princeton Univ. Press, Princeton N.J., 1982.

Donaldson, S.K., "A new proof of a theorem of Narasimhan and Seshadri", J. Diff. Gcom. I8 (1983), pp.269-277.

Donaldson, S.K., "An application of gauge theory to four-dimensional

```
topology'', J. Diff. Geom. 18 (1983), pp.279-315.
```

Donaldson, S.K., "Anti self-dual Yang-Mills connections over complex algebraic surfaces and stable vector bundles", Proc. Lond. Math. Soc. 50 (1985), pp.1-26.

Earle, C.J. and Eclls, J., "A fibre bundle description of Teichmuller theory', J. Diff. Geom., 3 (1969), pp.19-43.

Fbin. D.G., "The manifold of Ricmannian metrics", in "Global Analysis", Proc. Sympos. Pure Math., Vol. 15 , Amer. Math. Soc., Frovidencc R.I., 1970.

Fischer, $1 . E$. amd Marsden, J.E., "The manifold of conformally equivalent metrics", Car. J. Math., 29 (1977), pp.193-209.

Freed, D.S. and Uhlenbeck, K.K., Instantons and four-manifolds, Springer-Verlag, New York, 1984.

Gribov, V.N., "Quantization of non-abelian gauge theories", Nucl. Phys., B139 (1978), pp.1-19.

Itzykson, C. and Zuber, J.-B., Quantum field theory, McGraw-Hill, 1980.

Klingenberg, W., Lectures on closed geodesics, Springer-Verlag, Berlin, 1978.

Klingenberg, w., Riemannian geometry, de Gruyter, Berlin, 1982. Lyusternik, L.A., "The topology of the calculus of variations in the large", Translations of Russian monographs Vol. 16. Amer. Math. Soc., Frovidence R.I., 1966.

Mills, R.l. and Yang, C.N., "Conservation of isotopic spin and isotopic gauge invariance", Phys. Rev., 96 (1954), pp.191.195.

Milnor, J.W., "Morse theory", Ann. of Math. Studies, No. 51, Princeton Univ. Press, Princeton N.J., 1963.

Mitter, P.K. and viallet, C.M., "On the bundle of connections and the gauge orbit manifold in Yang-Mills theory", Comm. Math. Phys. , 79 (1981), pp.457-472.

Narasimhan, M.S. and Ramadas, T.R., "Geometry of SU(2) gauge fields", Comm. Math. Phys., 67 (1979), pp.121-136.

Palais, R.S., "Morse theory on Hilbert manifolds", Topology, 2 (1963), pp.299-340.

Palais, R.S., "Lusternik-Schnirelman theory of Banach manifolds", Topology, 5 (1966), pp.115-132.

Parker, T., "Gauge theories on 4-dimensional Riemannian manifolds", Comm. Math. Phys., 85 (1.982), pp.563-602.

Sacks, J. and Uhlenbeck, K.K., "The existence of minimal immersions of 2-spheres'", Ann. of Math., 113 (1981), pp.1-24.

Sedlacek, S., "A direct method for minimizing the Yang-Mills functional'", Comm. Math. Phys., 86 (1982), pp.515-527.

Singer, I.M., "Some remarks on the Gribov ambiguity", Comm. Math. Phys., 60 (1978), pp.7-12.

Spanier, E.H., Algebraic topology, McGraw-Hill, 1966.
Taubes, C.H., "The existence of self-dual connections on non selfdual 4-manifolds'", J. Diff. Geom., 17 (1982), pp.139-170.

Taylor, J.C., Gauge theories of weak interactions, Cambridge Univ. Press, Cambridge, 1976.

Uhlenbeck, K.K., "Removeable singularities in Yang-Mills fields", Comm. Math. Phys., 83 (1982), pp.11-30.

Uhlenbeck, K.K., "Connections with L^{p} bounds on curvature", Comm. Math. Phys., 83 (1982), pp.31-42.

Uhlenbeck, K.K., "Variational problems for gauge fields" in 'Seminar on differential geometry", Ann. of Mat'h. Studies No. 102, Princeton Univ. Press, Princeton N.J., 1982.

Chapter II

```
BASIC RESULTS OF GLOBAL ANALYSIS
```

\$1. Introduction

In this chapter, we give an account of the basic results of global analysis which we shall be using.

In 82 we define the Sobolev spaces and Hdider spaces of sections of a smooth vector bundle over a compact smooth manifold. We list some of their important properties. In particular we state the Sobolev embedding theorem (theorem 2.1), the Rellich-Kondrakov theorem (theorem 2.3) and the Sobolev multiplication theorems (theorem 2.4). Some sources in the literature give only restricted versions of the Sobolev multiplication theorems, such as the result that $L_{k}^{p}(\Omega)$ is a Banach algebra when Ω is a bounded domain in \mathbb{R}^{n} and $\mathrm{pk}>\mathrm{n}$. Other sources (for example /Palais, R.S., 1968 :
chapter 97) give very general statements of these theorems. The statement of theorem 2.4 is an attempt to strike a balance by stating a theorem which is sufficiently general for the applications which we shall make of it, yet which is not so general as to be difficult to remember and apply. We conclude 92 with a statement of the results proved in / Palais, R.S., $1968 \overline{/}$ which give sufficient conditions for one to be able to define Banach manifolds of sections of a smooth fibre bundle over a compact manifold modelled on Sobolev and hdlder spaces (theorems 2.5 and 2.6). We present also a simple corollary (corollary 2.7) of theorem 2.6.

Palais proves these results in a more general setting. Let
0 be a functor which associates to every smooth vector bundle $E \rightarrow M$ over a compact n-dimensional manifold M a complete normable topological vector space $\boldsymbol{O}(E)$ of continuous sections of $E \rightarrow \mathbb{N}$ satisfying the following two axioms:
(i) if M and N are compact smooth n-dimensional manifolds, if $\rho: M \rightarrow N$ is a diffeomorphism of M into N and if $E \rightarrow N$ is a vector bundle over N then the map sending s to $s \bullet \varphi$ defines a continuous linear map from $M(\mathrm{~m})$ into $M(\varphi=\mathrm{F})$,
(ii) if $E_{1} \rightarrow M$ and $E_{2} \rightarrow M$ are smooth vector bundles over a compact smooth n-dimensional manifold M and if $f: E_{1} \rightarrow E_{2}$ is a smooth fibre preserving map then the induced map from OM (E_{1}) to $\left.贝 \mathrm{~K}_{2}\right)$ is continuous.

Palais shows that any functor \nVdash satisfying these two axioms extends to a unique functor which associates to any smooth fibre bundle $B \longrightarrow M$ a Banach manifold $\not \subset(B)$ of sections of $B \rightarrow M$ and which associates to any smooth fibre preserving map between fibre bundles a smooth map between Banach manifolds. Palais shows that the functors $C^{k}, c^{k, \alpha}$ and L_{k}^{p} satisfy axioms (i) and (ii) for all non-negative integers k and for all \propto and p satisfying the conditions $0<\infty<1,1 \leqslant p<\infty, p k>n$.

In \AA_{3} we consider Banach Lie groups H acting smoothly and freely on Banach manifolds X . In theorem 3.1 we give necessary and sufficient conditions for the existence of a unique differentiable structure on $X / I I$ with the property that the projection map $X \rightarrow X / H$ is smooth and admits smooth local sections. We observe that these conditions are automatically satisfied when H is compact (corollary 3.2). In particular if H is a compact normal subgroup of a Banach Lie group then G / H is a Banach Lie group (corollary 3.3).

In this section we shall define Sobolev and Holder spaces and review some of their basic properties.

Given a domain $\cup \subset \mathbb{R}^{11}$, given a non-negative integer k and given $p \in I, \infty)$, the Sobolev space $L_{k}^{p}(u)$ is defined to be the Banach space consisting of all functions $f: U \rightarrow \mathbb{R}$ with the property that, for all multiindices $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ satisfying $\propto \leqslant k$, $\partial^{x} f$ belongs to $L^{p}(U)$, where

$$
\partial^{\alpha} f=\frac{\partial^{\mid \alpha \|_{f}}}{\partial x_{1}^{\alpha_{1}} \ldots \partial x_{n}^{\alpha_{n}}}
$$

The norm $\|\cdot\| \|_{p, k}$ on ${\underset{L}{k}}_{p}^{(U)}$ is given by

$$
\|f\|_{p, k}=\left(\sum_{|\alpha|<k} \int_{U}\left|\partial^{\alpha} f\right|^{p} d u\right)^{\frac{1}{p}}
$$

where μ is Lebesque measure on \mathbb{R}^{n}.
If $\propto \in(0,1)$, we define the space $C^{k}(U)$ to be the Banach space of all functions $f: U \rightarrow \mathbb{R}$ whose partial derivatives of order not cxcecding k are continuous, and we define the Holder space $c^{k, \alpha}(U)$ to be the Banach space of all functions $f: U \rightarrow \mathbb{R}$ all of whose partial derivatives of order not exceeding k are continuous and satisfy a Holder condition of order α. Norms $\mathbb{U} \cdot \|_{k}$ and $\|\cdot\|_{k, \alpha}$ on $C^{k}(u)$ and $c^{k, \infty}(u)$ may be taken to be

$$
\|f\|_{k}=\sum_{|\beta| \leqslant k} \sup _{x \in U}\left|\partial^{\beta} f\right|
$$

and

$$
\|f\|_{k, \alpha}=\|f\|_{k}+\sum_{|\beta| \leqslant k} \sup _{x, y \in U} \frac{\left|\partial^{\beta} f(x)-\partial^{\beta} f(y)\right|}{|x-y|^{\alpha}}
$$

Let M be a compact smooth manifold and let $\pi: E \rightarrow M$ be a smooth vector bundle over M. The Sobolev spaces $L_{k}(E)$, the spaces
$C^{k}(E)$ and the H\&lder spaces $C^{k, \alpha_{(E)}}$ are the Banach spaces of sections $s: M \rightarrow E$ of $\pi: E \rightarrow M$ with the following property: for all smooth charts $\varphi: U \rightarrow \mathbb{R}^{n}$, for all smooth functions $f: M \rightarrow \mathbb{R}$ with compact support contajned in U, and for all smooth sections $\sigma: M \rightarrow E *$ of the dual bundle $E * \rightarrow M$ of E, the composition
$(f\langle\sigma, \mathrm{~s}\rangle) \circ \varphi^{-1}$
belongs to $L_{k}^{P}(\varphi(U)), C^{k}(\varphi(U))$ or $C^{k}{ }^{\alpha}(\varphi(U))$ respectively. Using the fact that M is compact, it can be shown that $L_{k}^{p}(E), C^{k}(E)$ and $C^{k}, \boldsymbol{\alpha}_{(E)}$ are complete normable topological vector spaces together with norms that are well-defined up to equivalence of norms (see /Palais, R.S., 19687).

If k is a non-negative integer and if $p \in(1, \infty)$ (i.e. we exclude the cases $p=1$ and $p=\infty$), then $L_{k}^{p}(E)$ is a reflexive Banach space (see $\underline{\Lambda}$ dams, R.A., 1975; p.477), and if p^{\prime} is the exponent conjugate to p, defined by the condition

$$
\frac{1}{p}+\frac{1}{p}=1
$$

then $L^{P^{\prime}}(E *)$ is the dual space of ${ }^{P} P(E)$. If $k \in \mathbb{Z}$ and $k<0$ we define $L_{k}^{P}(E)$ to be the dual space of $\mathrm{L}_{-\mathrm{k}}^{\mathrm{p}}(\mathrm{E} *)$.

The space $C^{\infty}(E)$ of smooth sections of $\pi: E \rightarrow M$ is dense in $L_{k}^{p}(E)$ for alL $p \in(1, \infty)$ and $k \in \mathbb{Z}$, and in $L_{k}^{1}(E), C^{k}(E)$ and $C^{k, \infty}$ (E) for all $k \in \mathbb{Z}$ satisfying $k \geqslant 0$ and for all $\alpha \in(0,1)$ (see $\mathbb{P} a l a i s, R . S .$, 1.968; pp.21-257).

There are various embeddings amongst the Sobolev spaces, c^{k} spaces and Holder spaces. These are given by the Sobolev embedding theorem.

Theorem 2.1 (Sobolev Embedding Theorem)
Let $\pi: E \longrightarrow M$ be a smooth vector bundle over a compact smooth manifold M of dimension n. Let $p, q \in I \overline{1}, \infty)$, let $k, L \in \mathbb{Z}$ and let $\alpha \in(0,1)$. Then

$$
\begin{aligned}
& \text { (i) if } \mathrm{L} \leqslant \mathrm{k} \text { and if } \\
& \frac{1}{q}-\frac{1}{n} \geqslant \frac{1}{p}-\frac{k}{n} \\
& \text { then we have a continuous embedding } \\
& L_{k}^{P}(E) \xrightarrow{C}{ }_{L}^{q}(E) \\
& \text { (where } k \geqslant 0 \text { if } p=1 \text { and } L \geqslant 0 \text { if } q=1 \text {), } \\
& \text { (ii) if } k, L \geqslant 0 \text { and if } \\
& L<k-\frac{n}{p} \\
& \text { then we have a continuous embedding } \\
& L_{k}^{P}(E) \xrightarrow{\rightarrow} L_{(E)} \\
& \text { (iii) if } k, L \geqslant 0 \text {, if } \propto \in(0,1) \text { and if } \\
& l+\boldsymbol{L} \leqslant \mathrm{k}-\frac{\mathrm{n}}{\mathrm{p}} \\
& \text { then we have a continuous embedding } \\
& \text { Proof }
\end{aligned}
$$

Sce Inubin, T., 1982; chapter 27 or IAdams, R.A., 1975; chapter 57.

A map between Banach spaces is said to be compact if it maps bounded sets to sets with compact closure. The following theorem is a corollary of the Ascoli-Arzola theorem.

Theorem 2.2
Let $\pi: E \rightarrow M$ be a smooth vector bundle over a compact smooth manifold M. Let k and \mathcal{L} be non-negative integers and let $\alpha, \beta \in(0,1)$. Suppose that $L+\beta<k+\alpha$. Then the embeddings

$$
\begin{aligned}
& C^{\left.k, \alpha_{(E)}\right)} \text { c } c^{L, \beta_{(E)}} \\
& C^{\left.k, \alpha_{(E)}\right)}{ }^{c} L_{(E)} \\
& C^{k}(E) \hookrightarrow L^{L} \beta_{(E)} \\
& c^{k}(E) \longrightarrow c_{(E)}
\end{aligned}
$$

are compact.

Proof
See /Ādams, R.A., 1975; p.117.

Theorem 2.3 (Rellich-Kondrakov)
Let $\pi: E \longrightarrow M$ be a smooth vector bundle over a compact smooth manifold M of dimension n. Let $p, q \in I \overline{1}, \infty)$, let $k, L \in \mathbb{Z}$ and let $\alpha \in(0,1)$. Then
(i) if $\mathbf{L}<k$ and if
$\frac{1}{q}-\frac{\boldsymbol{L}}{n}>\frac{1}{p}-\frac{k}{n}$
then we have a compact embedding
${ }_{L}^{p}(E) \longleftrightarrow L_{1}^{q}(E)$
(where $k \geqslant 0$ if $p=1$ and $\boldsymbol{L} \geqslant 0$ if $q=1$),
(i.i) if $k, L \geqslant 0$ and if
$L<k-\frac{n}{p}$
then we have a compact embedding
$L_{k}^{p}(E) \longleftrightarrow C^{L}(E)$,
(i.ii) if $k, L \geqslant 0$, if $\alpha \in(0,1)$ and if
$L+\alpha<k-\frac{n}{p}$
then we have a compact embedding
$\mathrm{L}_{\mathrm{k}}^{\mathrm{p}}(\mathrm{E}) \longleftrightarrow \mathrm{C} \longrightarrow \boldsymbol{\iota}(\mathrm{E})$.
Proof
See ĪAubin, T., 1982; chapter $2 \overline{7}$ or IAdams, R.A., 1975 ; chapter $6 \overline{7}$.
\square
The following theorem is the basic multiplication theorem for Sobolev spaces which generalizes Holder's inequality. Other multiplication theorems for multilinear maps between vector bundles may be
deduced from the given theorem by induction on the degree of the multilinear map, by using the Sobolev embedding theorem, and by using the duality between the sobolev spaces $L_{k}^{P}(E)$ and $L_{-k}^{p^{\prime}}(E *)$ where $\mathrm{E}^{*} \rightarrow \mathrm{M}$ is the vector bunde dual to $\mathrm{E} \longrightarrow \mathrm{M}$ and where p^{\prime} is the exponent conjugate to p, defined by

$$
\frac{1}{p}+\frac{1}{p},=1
$$

(for more dctails, see /Palais, R.S., 1968; chapter $9 \overline{7}$).

Theorem 2.4

Let M be a compact smooth manifold of dimension n, let
$T_{1}: E_{1} \rightarrow M, \pi_{2}: E_{2} \rightarrow M$ and $\pi_{3}: E_{3} \rightarrow M$ be smooth vector bundles over M, and let $B: E_{1} \otimes E_{2} \longrightarrow E_{3}$ be a smooth morphism of vector bundles. Let

$$
\bar{B}: C^{\infty}\left(E_{1}\right) \times C^{\infty}\left(E_{2}\right) \rightarrow C^{\infty}\left(E_{3}\right)
$$

be the map sending $\left(s_{1}, s_{2}\right)$ to $B\left(s_{1} \otimes s_{2}\right)$, for all $s_{1} \in C^{\infty}\left(E_{1}\right)$ and $s_{2} \in C^{\infty}\left(E_{2}\right)$. Let k be a non-negative integer and let $\left.p, q, r \in I \overline{1}, \infty\right)$. Then
(i) if $r<p, r<q$ and
$\frac{1}{r} \geqslant \frac{1}{p}+\frac{1}{q}-\frac{k}{n}$
then \bar{B} extends to a continuous bilinear map
$\bar{B}: L_{k}^{p}\left(E_{1}\right) \times{ }^{L}{ }_{k}^{q}\left(E_{2}\right) \rightarrow L_{k}^{r}\left(E_{3}\right)$,
(ii) if $q>p$ and $q k>n$, then \vec{B} extends to a continuous bilinear map
$\bar{B}: L_{k}^{p}\left(\mathrm{E}_{1}\right) \times \mathrm{L}_{\mathrm{k}}^{\mathrm{q}}\left(\mathrm{E}_{2}\right) \rightarrow \mathrm{L}_{\mathrm{k}}^{\mathrm{p}}\left(\mathrm{E}_{3}\right)$,
(iii) if $\mathrm{pk}>\mathrm{n}$, then $\overline{\mathrm{B}}$ extends to a continuous bilinear map
$\bar{B}: L_{k}^{p}\left(E_{1}\right) \times L_{k}^{p}\left(E_{2}\right) \rightarrow L_{k}^{p}\left(E_{3}\right)$,
(iv) \bar{B} extends to a continuous bilinear map

$$
\bar{B}: L_{k}^{p}\left(E_{1}\right) \times C^{k}\left(E_{2}\right) \rightarrow L_{k}^{p}\left(E_{3}\right) .
$$

Proof
It suffices to prove the result for trivial bundles over the unit ball in \mathbb{R}^{n} and for the map B sending $s_{1} \otimes s_{2}$ to the product $s_{1} s_{2}$. Expand the partial derivatives of $s_{1} s_{2}$ of order not exceeding k by Leibnitz' rul.c. Then use the sobolev embedding theorems and Holder's inequality.

Next we consider the continuity on Sobolev and Hdlder norms of maps on sections induced by smooth fibre preserving maps (not necessarily linear) between vector bundles over a compact manifold.

Theorem 2.5
Let $\pi_{1}: E_{1} \rightarrow M$ and $\pi_{2}: E_{2} \rightarrow M$ be smooth vector bundles over a compact smooth manifold M of dimension n. Let $f: E_{1} \rightarrow E_{2}$ be a smooth fibre preserving map. Then, for all non-negative integers k, for all $p \in[\overline{1}, \infty)$ satisfying $p k>n$ and for all $\alpha \in(0,1)$, the map f induces smooth maps

$$
\begin{aligned}
& L_{k}^{p}\left(E_{1}\right) \rightarrow L_{k}^{p}\left(E_{2}\right) \\
& C^{k}(E) \rightarrow C^{k}\left(E_{2}\right) \\
& c^{k, \infty}\left(E_{1}\right) \rightarrow c^{k, \alpha}\left(E_{2}\right)
\end{aligned}
$$

of Banach spaces, mapping a section s of $\Pi_{1}: E_{1} \rightarrow M$ to the section $f \circ s$ of $\pi_{2}: E_{2} \rightarrow M$.

Proof
This follows from theorem 9.10 , the remarks at the beginning of section 11 and theorem 11.3 of /Palais, R.S., $1968 \overline{7}$.
\square

Let $\pi: B \rightarrow M$ be a smooth fibre bundle over a compact smooth manifold M of dimension n. Then for all non-negative integers k, for all $p \in / 1, \infty)$ satisfying $p k>n$ and for all $\alpha \in(0,1)$ there are well-defined smooth Banach manifolds $L_{k}^{p}(B), C^{k}(B)$ and $C^{k, \alpha_{1}}(B)$ with the property that if $\pi_{1}: E \rightarrow M$ is a smooth vector bundle, if U is an open set in B and if $f: U \rightarrow E$ is a fibre preserving diffeomorphism onto an open subset of E, then f induces a diffeomorphism from

$$
\left\{s \in L_{k}^{p}(B): s(M) \subset U\right\}
$$

onto an open subset of $L_{k}^{P}(E)$, and similarly for $C^{k}(B)$ and $C^{k, \alpha}(B)$.
Theorem 2.6
Let $\Pi_{1}: B_{1} \rightarrow M$ and $\Pi_{2}: B_{2} \rightarrow M$ be smooth fibre bundles over a compact smooth manifold M of dimension n. Let $f: B_{1} \rightarrow B_{2}$ be a smooth morphism of fibre bundles. Then, for all non-negative integers k, for all $p \in[\overline{1}, \infty$) satisfying $p k>n$ and for all $\boldsymbol{\alpha} \in(0,1)$, the map f induces smooth maps

$$
\begin{aligned}
& L_{k}^{P}\left(B_{1}\right) \rightarrow L_{k}^{p}\left(B_{2}\right) \\
& C^{k}\left(B_{1}\right) \rightarrow C^{k}\left(B_{2}\right) \\
& C^{k, \alpha}\left(B_{1}\right) \rightarrow C^{k, \alpha}\left(B_{2}\right)
\end{aligned}
$$

of Banach manifolds, mapping a section s of $\Pi_{1}: B_{1} \rightarrow M$ to the section $f \circ$ s of $\pi_{2}: B_{2} \rightarrow M$.

Proof
See IPalais, R.S., 1968; theorem 13. $\underline{57}$.

Corollary 2.7

Let $\pi: B \rightarrow M$ be a smooth fibre bundle and let $\pi_{1}: E_{1} \rightarrow M$ and $T_{2}: E_{2} \rightarrow M$ be smooth vector bundles over a compact smooth manifold M of dimension n. Let $f: B X_{M} E_{1} \rightarrow E_{2}$ be a smooth morphism of fibre
bundles with the property that for all $\mathrm{s} \in \mathrm{C}^{\infty}$ (B) the map from $C^{\infty}\left(E_{1}\right)$ to $C^{\infty}\left(E_{2}\right)$ sending $s_{1} \in C^{\infty}\left(E_{1}\right)$ to $f\left(S_{2} s_{1}\right)$ is linear. Then, for all non-negative integers k, for all $p \in I \overline{1}, \infty)$, for all $q \in / \overline{1}, \infty)$ satisfying $q k>n$ and for all $\mathfrak{x} \in(0,1)$, the map f induces smooth maps

$$
\begin{aligned}
& L_{k}^{q}(B) \times L_{k}^{p}\left(E_{1}\right) \rightarrow L_{k}^{p}\left(E_{2}\right) \\
& C^{k}(B) \times L_{k}^{p}\left(E_{1}\right) \rightarrow L_{k}^{p}\left(E_{2}\right) \\
& C^{k}(B) \times C^{k}\left(E_{1}\right) \rightarrow C^{k}\left(E_{2}\right) \\
& C^{k, \alpha}(B) \times C^{k, \alpha_{1}}\left(E_{1}\right) \rightarrow C^{k, \alpha}\left(E_{2}\right)
\end{aligned}
$$

of Banach manifolds, mapping sections s of $\pi: B \rightarrow M$ and s_{1} of $\pi_{1}: E_{1} \rightarrow M$ to the section $m \mapsto f\left(s(m), s_{1}(m)\right)$ of $\pi_{2}: E_{2} \rightarrow M$.

Proof

Let $\bar{f}: B \rightarrow$ Hom $\left(E_{1}, E_{2}\right)$ be the smooth map defined by

$$
\bar{f}(s) s_{1}=f\left(s, s_{1}\right)
$$

for all $s \in C^{\infty}(B)$ and $s_{1} \in C^{\infty}\left(E_{1}\right) . \bar{f}$ defines smooth maps

$$
\begin{aligned}
& L_{k}^{q}(B) \rightarrow L_{k}^{q}\left(\operatorname{Hom}\left(E_{1}, E_{2}\right)\right), \\
& c^{k}(B) \rightarrow C^{k}\left(\operatorname{Hom}\left(E_{1}, E_{2}\right)\right) . \\
& C^{k, \alpha_{(B)}} \rightarrow c^{k, \alpha_{(}}\left(\operatorname{Hom}\left(E_{1}, E_{2}\right)\right) .
\end{aligned}
$$

Let $\mathrm{e}: \operatorname{Hom}\left(\mathrm{E}_{1}, \mathrm{E}_{2}\right) \otimes \mathrm{E}_{1} \rightarrow \mathrm{E}_{2}$ be the evaluation map. e defines continuous bilinear maps

$$
\begin{aligned}
& L_{k}^{q}\left(\operatorname{Hom}\left(E_{1}, E_{2}\right)\right) \times L_{k}^{p}\left(E_{1}\right) \rightarrow L_{k}^{p}\left(E_{2}\right), \\
& c^{k}\left(\operatorname{Hom}\left(E_{1}, E_{2}\right)\right) \times L_{k}^{p}\left(E_{1}\right) \rightarrow L_{k}^{p}\left(E_{2}\right), \\
& c^{k}\left(\operatorname{Hom}\left(E_{1}, E_{2}\right)\right) \times c^{k}\left(E_{1}\right) \rightarrow c^{k}\left(E_{2}\right), \\
& c^{k, \alpha_{(}}\left(\operatorname{Hom}\left(E_{1}, E_{2}\right)\right) \times c^{k, \alpha_{(}}\left(E_{1}\right) \rightarrow c^{k, \alpha_{(}}\left(E_{2}\right) .
\end{aligned}
$$

The result then follows from the identity

$$
f\left(s, s_{1}\right)=e\left(\bar{f}(s), s_{1}\right) .
$$

§3. Quotients of Banach Manifolds by Banach Lie Groups

In this section, we prove a theorem giving necessary and sufficient conditions for the existence of smooth local slices for a smooth free action of a Banach rie group H on a Banach manifold X. Proving the existence of such slices is equivalent to proving the existence of a smooth structure on the quotient X / H of X by H with the property that the projection $X \rightarrow X / H$ is smooth and admits smooth local sections around each element of X / H. These necessary and sufficient conditions are satisfied when H is a compact Lie group. We deduce that the quotient of a Banach Lie group G by a compact Lie subgroup H normal in G is a Banach Lie group G / H, and any smooth action of G on a Banach manifold which restricts to a trivial action of H induces a smooth action of G / H on this manifold. Theorem 3.1

Let X be a connected Banach manifold and let H be a Banach Lie group (i.e. a Banach manifold with a group structure such that the group operations are smooth). Let H act smoothly and freely on X (on the right). Suppose that the action of H on X satisfies the following three conditions:
(i) for all $x \in X$, the derivative at the identity element e of the map from H to X sending $h \in H$ to $x . h$ defines an isomorphism of $T_{e}{ }^{H}$ onto a closed subspace of $T_{x} X$ tangent to the orbit of H containing x,
(ii) for all $x \in X$, this tangent space to the orbit of H containing x has a closed complement in $T_{x} X$,
(iii) if $\left(x_{i}: i \in \mathbb{N}\right)$ is a sequence converging in X and if (h_{i} : if \mathbb{N}) is a sequence in H such that the sequence $\left(x_{i} . h_{i}: i \in N\right)$ also converges in X, then the sequence $\left(h_{i}: i \in \mathbb{N}\right)$ has a subsequence converging in H.

Then the quotient space $X / 11$ may be given the structure of a Banach manifold in such a way that the projection map $p: X \rightarrow X / H$ is smooth and such that every point of X / H has an open neighbourhood which is the domain of a smooth local section of $p: x \rightarrow X / H$. Moreover, this smooth structure on X / H is the unique smooth structure satisfying these conditions, and if X / H has such a smooth structure, then the action of H on X satisfies (i), (ii) and (iii). Proof

Suppose that the action of H on X satisfies (i), (ii) and (iii).
First we show that $X / I I$ is a Hausdorff topological space. Let

$$
R=\left\{(x, \bar{x}) \quad x \times x: \exists h \in H \quad \text { such that } x_{1} \cdot h=x_{2}\right\} .
$$

L.et (x, \bar{x}) belons to the closure of R in $X X X$. X satisfies the first axiom of countability, hence there exist sequences ($x_{i}: i \in \mathbb{N}$) and $\left(h_{i}: i \in \mathbb{N}\right)$ in X and H respectively such that the sequences $\left(x_{i}: i \in \mathbb{N}\right)$ and $\left(x_{i}, h_{i}: i \in \mathbb{N}\right)$ converge to x and \vec{x} respectively. By condition (iii), some subsequence of ($\left.h_{i}: i \in \mathbb{N}\right)$ converges to h, for some $h \in H$, and $x . h=\bar{x}$ by the continuity of the action of H on X. Hence $(x, \bar{x}) \in R$. Thus R is closed. Hence X / H is Hausdorff.

Let $x \in X$. Then there exists a smooth chart $\varphi: U \rightarrow X$, where U is an open ncighbourhood of zero in $T_{X} X$, such that φ maps sero to x and such that the derivative of φ at zoro is the identity map of $\mathrm{T}_{\mathrm{X}} \mathrm{X}$. Let Z be the subspace of T_{X} tangent to the orbit of H through $x . \quad Z$ is closed by (i). By (ii), there exists a closed complement Z^{\prime} of Z in $r_{x} X$. Let $U_{1}=U \cap Z^{\prime}$. By (i), the derivative of the smooth map $\theta: U_{1} \times H \rightarrow X$ sending (u, h) to $\varphi(u) \cdot h$ is an isomorphism at ($0, e$), where e is the identity of element of H. By the inverse function theorem for Banach manifolds, there exist an open neighbourhood U_{2} of zero in U_{1} and an open neighbourhood V_{2} of e in II such that $\theta / U_{2} \times V_{2}: U_{2} \times V_{2} \rightarrow X$ is a diffeomorphism onto an open set in X. Using the fact that

$$
\theta(u, h)=\theta\left(u, h_{1}^{-1}\right) \cdot h_{1}
$$

for all $h_{1} \in H$, we see that $\theta / U_{2} \times H$ is a local diffcomorphism from $U_{2} \times H$ onto an open set in X. We claim that there exists a neighbourhood U_{3} of zero in U_{2} such that $\theta / U_{3} \times 11$ is a diffeomorphism from $U_{3} \times H$ onto an open set in X. Suppose this were not so. Then, for each neighbourhood N of zero in U_{2}, there would exist u, u ' $\in N$ and $h, h^{\prime} \in H$ such that $\varphi(u) \cdot h=\varphi\left(u^{\prime}\right) \cdot h^{\prime}$ though $h \neq h^{\prime}$, and then we would have $h^{\prime-1} \neq e, u \in N$ and $\varphi(u) \cdot h h^{-1} \boldsymbol{\epsilon} \varphi(N)$. Since this would be true for all such neighbourhoods N of zero, we would be able to construct sequences ($\left.u_{i}: i \in \mathbb{N}\right)$ and ($\left.u_{i}^{\prime}: i \in \mathbb{N}\right)$ in H such that $\varphi\left(u_{i}\right) \cdot h_{i}=\varphi\left(u_{i}{ }^{\prime}\right)$, such that $h_{i} \neq e$ for all i, and such that the sequences $\left(\varphi\left(u_{i}\right): i \in \mathbb{N}\right)$ and $\left(\varphi\left(u_{i}{ }^{\prime}\right): i \in \mathbb{N}\right)$ would converge in X to x. By (iii), a subsequence of ($\left.h_{i}: i \in \mathbb{N}\right)$ would converge to some element of H and, by the continuity of the action of H on X, this elenent would stabilize x and so would be the identity element e of H. Thus there would exist positive integers i such that $h_{i} \in V_{2}$. Eut then for these values of i, we would have h_{i} te and

$$
\theta\left(u_{i}, h_{i}\right)=\theta\left(u_{i}^{\prime}, e\right)
$$

contradicting the fact that $\theta \mid U_{2} \times V_{2}$ is injective. It follows that there exists a neighbourhood U_{3} of zero in U_{2} such that $\theta \mid U_{3} \times H$ is a diffeomorphism from $U_{3} X$ it onto an open subset of X. Thus for all $x \in X$ there exist an open neighbourhood U_{x} of zero in some Banach space and a smooth map $\varphi_{\mathrm{X}}: \mathrm{U}_{\mathrm{X}} \rightarrow \mathrm{X}$ mapping zero to x with the property that the map from $U_{x} x$ II to X sending $(u, h) \in U_{x} x H$ to $\varphi_{x}(u) . h$ is a diffeomorphism onto an open subset of X.

Define $V_{x}=p \varphi_{x}\left(U_{x}\right)$. Then V_{x} is an open neighbourhood of $p(x)$ in X / H. The map $p \varphi_{X}: U_{X} \rightarrow X / H$ is continuous, injective and open, and is thus a homeomorphism onto V_{x} (where X / H is given the quotient topology). There is then a unique smooth structure on V_{x} such that
$\mathrm{p} \varphi_{\mathrm{X}}$ is a diffeomorphism from U_{X} onto V_{X}. Let $\mathrm{s}_{\mathrm{X}}: \mathrm{V}_{\mathrm{X}} \rightarrow \mathrm{X}$ be the composition $s_{x}=\varphi_{x} \bullet\left(p \varphi_{x}\right)^{-1}$. Then s_{x} is smooth and pos ${ }_{x}$ is the identity map on V_{x}. If $x, y \in X$ and V_{x} and V_{y} intersect, then $\operatorname{pos}{ }_{x}$ is a smooth map from the open set $V_{x} \cap V_{y}$ in V_{x} to the open set $V_{x} \cap V_{y}$ in V_{y}, where V_{x} and V_{y} are given the smooth structures defined above, pos x_{x} has inverse pos ${ }_{y}$, and the map defined by pos ${ }_{x}$ between the underlying topological spaces is the identity map. Thus the smooth structures on V_{x} and V_{y} are compatible. It follows that there is a unique smooth structure on $X / I I$ such that the open sets V_{X} are open Banach submanifolds of X / H for all $x \in X$. This smooth structure on X / H has the property that $p: X \rightarrow X / H$ is smooth and has smooth local sections around every element of X / H. This smooth structure is the unique smooth structure with this property, since if X / H is given two such smooth structures, then the identity map between the underlying topological spaces factors locally as the composition of a smooth local section and the smooth projection, and is thus smooth and has a smooth inverse. Conditions (i), (ii), and (iii) for the action of H on X follow immediately from the existence of a smooth structure on X / H with the above property.

Corollary 3.2

Let X be a connected Banach manifold and let H be a compact Lie group acting smooth1y and freely on X (on the right). Then the quotient space X / H may be given the structure of a smooth Banach manifold with the property that the projection map $p: X \rightarrow X / H$ is smooth and has smooth local sections around every element of X / H.

Proof

We must verify that the action of H on X satisfies conditions (i), (ii) and (iii) of the theorem. But, for all $x \in X$, the derivative at the identity element e of the map from H to X sending $h \in H$ to $x . h$
defines a continuous linear injection from $T_{e} H$ onto a finite dimensional subspace of $\mathrm{T}_{\mathrm{X}} \mathrm{H}$, and this injection is necessarily an
isomorphism onto a closed subspace of $T_{X} X$ which splits in $T_{X} X$. Thus (i) and (ii) are satisfied. (iii) is satisfied since H is compact.

Corollary 3.3

Let G be a Banach Lie group and let H be a compact Lie subgroup of G. Then G/H may be given the structure of a smooth Banach manifold in such a way that the projection map $p: X \rightarrow X / H$ is smooth and has smooth local sections around every element of G / H. If H is normal in G, then the group operations on G induce smooth group operations on G / H, giving G / H the structure of a Banach Lie group, and if G acts smoothly on a Banach manifold X and if the subgroup H acts trivially on X via the action of G, then the action of G on X. defines a smooth action of G / H on X.

Proof

The existence of the required smooth structure on G / H follows from the previous corollary. The smoothness of the group multiplication $\bar{\mu}: G / H \times G / H \rightarrow G / H$ follows from the fact that $\bar{\mu}$ factors locally as $\bar{\mu}=p \cdot \mu \bullet\left(s_{1} \times s_{2}\right)$, where $p: G \rightarrow G / H$ is the smooth projection, where $\mu: G \times G \longrightarrow G$ is the group multiplication on G and where s_{1} and s_{2} are smooth local sections of p. The smoothness of the map sending an element of G / H to its inverse follows from a similar local factorization, as does the smoothness of the action of G / H on X .

Let $\mathrm{j}: Y \longrightarrow X$ be an injection of Banach manifolds. We say that Y is a locally closed submanifold of X if and only if for all $y \in Y$ there exist a Banach space S, a closed subspace S_{1} of S, an
open neighbourhood N of zero in S and charts $\theta: N \rightarrow X$ and $\varphi: N \cap S_{1} \rightarrow Y$ mapping zero to y with the property that $\theta \mid N \cap S_{1}=$ io φ. Corollary 3.4

Let X be a connected Banach manifold and let H be a Banach Lie group acting smoothly and freely on X. Let Y be an H - invariant locally closed submanifold of X. If X / H admits a snooth structure with the property that the projection $p: X \rightarrow X / H$ is smooth and has smooth local sections around every element of X / H, then Y / H admits a smooth structure with the property that the projection $\mathrm{p} Y: Y \rightarrow Y / H$ is smooth and has smooth local sections around every element of Y / H. Then Y / H is a locally closed submanifold of X / H.

Proof

We must show that if the action of H on X satisfies conditions (i), (ii) and (iii) of theorem 3.1, then so does the action of H on Y. For all $y \in Y, T y$ is a closed subspace of $T_{y} X$ containing the closed subspace Z_{y} of $T_{y} X$ tangent to the orbit of H containing y. Since Z_{y} splits in $T_{y} X$, there exists a continuous projection $\pi: T_{y} X \rightarrow Z_{y}$. Then $\pi / T_{y} Y$ is a continuous projection of $T_{y} Y$ onto Z_{y} hence Z_{y} splits in $T_{y} Y$. Z_{y} is also closed in $T_{y} Y$ since it is closed in $T_{y} X$. Thus the action of $l l$ on Y satisfies conditions (i) and (ii). Condition (iii) is also satisfied. Hence Y / H has a unique smooth structure such that the natural projection $Y \quad Y / I I$ is smooth and has smooth local sections around every element of Y / I.

Since Y is a locally closed submanifold of X, there exists a chart $\theta: N \rightarrow X$, where N is a neighbourhood of zero in $T_{y} X$, such that θ maps zero to y and $\theta \mid N \cap T_{y} Y: N \cap T_{y} Y \rightarrow Y$ is a chart for I. Let S_{y} be a closed complement of Z_{y} in $T_{y} X$. Then $S_{y} \cap T_{y} Y$ is a closed complement of Z_{y} in $T_{y} Y$. By definition of the smooth structures on $X / I I$ and Y / H it follows that if N is chosen sufficiently small, then
$p \bullet \theta \mid N \cap S_{y}$ is a smooth chart for X / H and $p \bullet \theta \mid N \cap T_{y} Y \cap S_{y}$ is a smooth chart for Y / H. Thus Y / H is a locally closed submanifold of X / H.

References for Chapter II

Adams, R., Sobolev Spaces. Academic Press, New York, (1975).
Aubin, T., Nonlinear analysis on manifolds, Monge-Ampere equations. Springer-Verlag, New York, (1982).

Palais, R.S., Foundations of global non-linear analysis. Benjamin, New York, (1968).

ELLIPTIC REGULARITY THEOREMS

§1. Introduction
In this chapter, we give a proof of general elliptic regularity theorems for linear elliptic differential operators with smooth coefficients.

Let $\Pi_{1}: \mathrm{E}_{1} \rightarrow \mathrm{M}, \quad \Pi_{2}: \mathrm{E}_{2} \rightarrow \mathrm{M}$ be smooth vector bundles over a compact manifold M. A linear map $L: C^{\infty}\left(E_{1}\right) \rightarrow C^{\infty}\left(E_{2}\right)$ is said to be a differential operator of order not exceeding m with smooth coefficients if and only if there is a smooth vector bundle morphism $T: J^{m}\left(E_{1}\right) \rightarrow E_{2}$, where $J^{m}\left(E_{1}\right) \rightarrow M$ is the bundle of m-jets of sections of $E_{1} \rightarrow M$, such that

$$
\mathrm{L} \mathrm{~s}=\mathrm{T} \bullet \mathrm{j}_{\mathrm{m}}(\mathrm{~s})
$$

where $j_{m}: C^{\infty}\left(E_{1}\right) \rightarrow C^{\infty}\left(J^{m}\left(E_{\mathbf{l}}\right)\right.$) is the m-jet extension map (see - Palais, R.S., 1968; chapter 37). Let $\pi: T * M \rightarrow M$ denote the cotangent bundle of M. L determines a map $\sigma_{m}(\mathrm{~L}): \pi * \mathrm{E}_{1} \rightarrow \Pi * \mathrm{E}_{2}$ as follows: let $\omega \in T * M$ and $e \in E_{1}$ satisfy

$$
\pi(\omega)=\pi_{1}(e)=x
$$

so that ($\boldsymbol{\omega}, \mathrm{e}$) represents an element of the pu11back $\pi{ }^{*} \mathrm{E}_{1}$ of E_{1} by $\pi: T * M \rightarrow M$, choose $f \in C^{\infty}(M)$ and $s \in C^{\infty}\left(E_{1}\right)$ such that $d f(x)=\omega$ and s (x) : e, then definc

$$
\sigma_{m}(L)(\omega, e)=\frac{1}{m}!L\left(f^{m} s\right)(x)
$$

It may be verified that $\sigma_{m}(L)$ is we11-defined, homogeneous of degree m in $\boldsymbol{\omega}$, and that $\mathrm{L} \rightarrow \sigma_{\mathrm{m}}(\mathrm{L})$ is linear in L (see IPalais, R.S., 1968; chapter 37). The map $\sigma_{m}(\mathrm{~L}): \pi{ }^{2} \mathrm{E}_{1} \longrightarrow \pi * \mathrm{E}_{2}$ is referred to as the leading symbol of L. L is said to be elliptic if and only if the map

$$
e \mapsto \sigma_{m}(L) \quad(\omega, e)
$$

is an isomorphism from the fibre of $\pi * \mathrm{E}_{1}$ over ω to that of $\pi{ }^{*} \mathrm{E}_{2}$
over ω, for all non-zero $\omega \in T * M$.
It is well-known that if $L: C^{\infty}\left(E_{1}\right) \rightarrow C^{\infty}\left(E_{2}\right)$ is a linear elliptic operator of order not exceeding m with smooth coefficients, if $s: M \rightarrow E_{1}$ is a section of $E_{1} \rightarrow M$, and if $L s \in L_{k-m}^{2}\left(E_{2}\right)$, then $s \in L_{k}^{2}\left(E_{1}\right)$, and that L extends to a Fredholm operator

$$
L: L_{k}^{2}\left(E_{1}\right) \rightarrow L_{k-m}^{2}\left(E_{2}\right)
$$

for all integers k. We shall show that the analogous results hold for the operator

$$
\mathrm{L} \quad: \quad \mathrm{L}_{\mathrm{k}}^{\mathrm{p}}\left(\mathrm{E}_{1}\right) \rightarrow \mathrm{L}_{\mathrm{k}-\mathrm{m}}^{\mathrm{p}}\left(\mathrm{E}_{2}\right)
$$

in the case where $p \in(1, \infty)$, and for the operator

$$
L: c^{k, \alpha}\left(E_{1}\right) \rightarrow c^{k-m, \alpha}\left(E_{2}\right)
$$

in the case where $k \geqslant m$ and $\alpha \in(0,1)$. In the special case where $L: C^{\infty}(M) \rightarrow C^{\infty}(M)$ is a linear elliptic differential operator of even order with smooth coefficients acting on the ring $C^{\infty}(M)$ of smooth functions on M, the above results are stated in EAubin, T., 1982; p. $8 \underline{7} \overline{7}$ where a proof is indicated, using results contained in /Morrey, C.B., $196 \underline{7}$ and in /Bers, L., John, F. and Schechter, M., 1964/. Here we give an alternative proof, valid for linear elliptic differential operators with smooth coefficients of arbitrary order acting on sections of vector bundles over a compact manifold.

The proof given here uses the theory of pseudodifferential operators. The class of pseudodifferential operators used is that defined in /Kohn, J.J. and Nirenberg, L., $1965 \overline{7}$ and /THdrmander, L., 19657. This class was historically the first class of pseudodifferential operators to be considered, and is the most suitable for our purposes.

A smoothing operator $k: C^{\infty}\left(E_{1}\right) \longrightarrow C^{\infty}\left(E_{2}\right)$ on $C^{\infty}\left(E_{1}\right)$ is defined to be a linear operator which extends to a linear operator

$$
\mathrm{k}: \mathbb{Q}^{\sim}\left(E_{1}\right) \rightarrow c^{\infty}\left(E_{2}\right)
$$

mapping the space \mathbb{Q} ' $\left(\mathrm{E}_{1}\right)$ of distribution-valued sections of $E_{1} \rightarrow M$ to the space $C^{\infty}\left(E_{2}\right)$ of smooth sections of the vector bundle $\mathrm{E}_{2} \rightarrow \mathrm{M}$. The distribution kernel of k is then smooth. A parametrix $P: C^{\infty}\left(E_{2}\right) \rightarrow C^{\infty}\left(E_{1}\right)$ of a linear elliptic differential operator $\mathrm{L}: \mathrm{C}^{\infty}\left(\mathrm{E}_{1}\right) \rightarrow \mathrm{C}^{\infty}\left(\mathrm{E}_{2}\right)$ is a linear operator with the property that

$$
\begin{aligned}
& \text { PL - I : } C^{\infty}\left(E_{1}\right) \longrightarrow C^{\infty}\left(E_{1}\right) \\
& L P-I: C^{\infty}\left(E_{2}\right) \longrightarrow C^{\infty}\left(E_{2}\right)
\end{aligned}
$$

are smoothing operators. If P_{1} and P_{2} are parametrices of L, then

$$
\begin{aligned}
P_{1} & =P_{1} L P P_{2}-P_{1}\left(L P_{2}-I\right) \\
& =P_{2}+\left(P_{1} L-I\right) P_{2}-P_{1}\left(L P_{2}-I\right)
\end{aligned}
$$

and the linear operator

$$
\left(P_{1} L-I\right) P_{2}-P_{1}\left(L P_{2}-I\right)
$$

is a smoothing operator. Thus any two parametrices of L differ by a smoothing operator. It is a wel1-known result that if L : $C^{\infty}\left(E_{1}\right) \rightarrow C^{\infty}\left(E_{2}\right)$ is a linear elliptic differential operator of order m with smooth coefficients, then L has a parametrix $\mathrm{p}: \mathrm{C}^{\infty}\left(\mathrm{E}_{2}\right) \longrightarrow \mathrm{C}^{\infty}\left(\mathrm{E}_{1}\right)$ which is a pseudodifferential operator of order -m in the class of pscudodifferential operators that we are considering. The required results in the L_{k}^{2} case follow from the fact that P extends to a continuous linear operator

$$
P: L_{k-m}^{2}\left(E_{2}\right) \rightarrow L_{k}^{2}\left(E_{1}\right)
$$

This result is proved using Fourier transform methods stemming from the Plancherel theorem, which states that the Fourier transform, acting on functions from \mathbb{R}^{n} to \mathbb{R}, defines an automorphism of $L^{2}\left(\mathbb{R}^{n}\right)$. In order to obtain elliptic regularity results in the L_{k}^{p} case for $p \in(1, \infty)$ and in the $C^{k, ~} \alpha_{\text {case }}$ for $k \geqslant m$ and $\propto \in(0,1)$, it is sufficient to show that P extends to continuous operators

$$
\begin{aligned}
& P: L_{k-m}^{p}\left(E_{2}\right) \rightarrow L_{k}^{p}\left(E_{1}\right) \\
& \left.P: c^{k-m, \alpha_{(}}\left(E_{2}\right) \rightarrow c^{k, \alpha_{(}} E_{1}\right) .
\end{aligned}
$$

There is a class of linear operators acting on functions from \mathbb{R}^{n} to \mathbb{R} which is closely related to the class of pseudodifferential operators. This is the class of singular integral operators defined by Calderon and zygmund. In a series of papers, these authors prove that a singular integral operator $H: C_{o}^{\infty}\left(\mathbb{R}^{n}\right) \rightarrow C^{\infty}\left(\mathbb{R}^{n}\right)$ extends to continuous linear operators

$$
\begin{aligned}
& H: L_{k}^{p}\left(\mathbb{R}^{n}\right) \rightarrow L_{k}^{p}\left(\mathbb{R}^{n}\right)(k \geqslant 0, p \in(1, \infty), \\
& H: C_{l o c}^{k, \alpha_{1}}\left(\mathbb{R}^{n}\right) \rightarrow C_{l o c}^{k, \alpha}\left(\mathbb{R}^{n}\right)(k \geqslant 0, \alpha \in(0,1))
\end{aligned}
$$

In the case when H is translation-invariant, the result for the L^{p} norm is the well-known Calderon-Zygmund inequality. The result for the $C^{0, \alpha}$ norm is also well-known. The results for more general singular integral operators, not necessarily translation-invariant, can be proved from the translation-invariant case using expansions in spherical harmonics.

The proof of the required continuity results for pseudodifferential operators is obtained by showing that, locally, such an operator is a sum of products of singular integral operators, in local coordinates, and other well-behaved translation-invariant operators. Then the local results are pieced together using a partition of unity argument.

In B_{2}, we present a summary, without proofs, of the theory of singular integral operators due to Calderon and Zygmund. In §3 we summarize the invariant definition and properties of the class of pseudodifferential operators studied in / H 8 rmander, $\mathrm{L} ., 1965 \overline{7}$. None of the material in these two sections is new. In ξ_{4}, we develop the local theory of the continuity, in Sobolev and Holder norms, of
pseudodifferential operators defined on Euclidean space. In $\mathbf{8}_{5}$, the continuity, in Sobolev and Hblder norms, of pseudodifferential perators on sections of vector bundles over compact manifolds is deduced from the local theory presented in $\bar{\xi} 4$, and the required elliptic regularity results (theorems 5.2 and 5.3) are deduced.

An alternative proof of the boundedness of classical pseudodifferential operators in Sobolev ${ }_{k}^{p}$ norms for $k \in \mathbb{Z}$ and for p satisfying $1<p<\infty$ is to be found in chapter $I V$ of / Coifman, R. and Meyer, Y., $197 \underline{8} \overline{/}$ employing methods pioneered in /Calderon, A.P. and Zygmund, 1952 $\overline{7}$. This proof uses the Marcinkiewicz interpolation theorem (see chapter V of ISTein, E.M. and Weiss, G., 19727. The principles of this proof have been employed by Muramatu and Illner to derive Sobolev L_{k}^{p} estimates for more general (non-classical) classes of pseudodifferential operators (see / I 11 ner, R., 1975/).

§2. Singular Integrals on Euclidean Space

We give an account of the main results of $\overline{\mathrm{C}}$ alderon, A.P. and Zygmund, A., $1956 \overline{/}$ and \bar{C} alderon, A.P. and Zygmund, A., $1957 \overline{7}$. Caldoron and zygmund study singular integrals $P: C_{o}^{\infty}\left(\mathbb{R}^{n}\right) \rightarrow C^{\infty}\left(\mathbb{R}^{n}\right)$ of the form

$$
P \varphi(x)=\lim _{\epsilon \rightarrow 0+} \int_{|x-y|>\boldsymbol{\varepsilon}} \int \sum\left(x, \frac{x-y}{|x-y|}\right) \frac{\varphi(y)}{|x-y|^{n}} d y
$$

where $\Omega: \mathbb{R}^{n} \times s^{n-1} \rightarrow \mathbb{C}$ is a smooth function satisfying

$$
\int_{S^{n-1}} \Omega\left(x, z^{\prime}\right) d z^{\prime}=0
$$

for all $x \in \mathbb{R}^{n}$, where $d z^{\prime}$ is the volume measure on s^{n-1}. Every such singular integral operator may be expressed in the form

$$
P \varphi(x)=(2 \pi)^{-n} \int e^{i x, \xi} \omega\left(x, \frac{\xi}{|\xi|}\right) \hat{\varphi}(\xi) \mathrm{d} \xi
$$

where $\hat{\boldsymbol{\varphi}}$ is the Fourier transform of φ and where $\omega: \mathbb{R}^{n} \times S^{n-1} \rightarrow \mathbb{C}$ is a smooth function with the property that

$$
\int_{S^{n-1}} \omega(x, \xi:) d \xi:=0
$$

Conversely every smooth function $\omega: \mathbb{R}^{n} \times S^{n-1} \rightarrow \mathbb{C}$ with this
property arises from a singular integral operator in this way. ω is referred to as the symbol of P.

If Ω and its derivatives of all orders are bounded on $\mathbb{R}^{n} \times s^{n-1}$ then the singular integral operator P determined by Ω as above defines bounded linear maps

$$
\begin{aligned}
& P: L_{k}^{p}\left(\mathbb{R}^{n}\right) \rightarrow L_{k}^{p}\left(\mathbb{R}^{n}\right) \\
& P: C_{o}^{\left.k, x_{\left(B_{R}\right.}\right) \rightarrow C^{k, \alpha_{(}}\left(B_{R}\right)}
\end{aligned}
$$

for all non-negative integers k and for all p and α satisfying $1<p<\infty$ and $0<\alpha<1$, where B_{R} denotes the ball of radius R about the origin in \mathbb{R}^{n}.

We now discuss the above results in more detail.
Theorem 2.1
Let $\Omega: \mathbb{R}^{n} \times S^{n-1} \rightarrow \mathbb{C}$ be a smooth function with the property that

$$
\int_{S^{n-1}} \Omega\left(x, z^{\prime}\right) d z^{\prime}=0
$$

for all $x \in \mathbb{R}^{n}$, and let $p: C_{o}^{\infty}\left(\mathbb{R}^{n}\right) \rightarrow C^{\infty}\left(\mathbb{R}^{n}\right)$ be the singular integral operator determined by Ω, defined by

$$
P \varphi(x)=\lim _{\varepsilon \rightarrow 0+} \int_{|x-y|>\varepsilon} \Omega \Omega\left(x, \frac{x-y}{|x-y|}\right) \frac{\varphi(y)}{|x-y|^{n}} d y
$$

Then there exists a smooth function $\omega: \mathbb{R}^{n} \times s^{n-1} \rightarrow \mathbb{C}$, the symbol of P, such that

$$
\mathrm{P} \varphi(\mathrm{x})=(2 \pi)^{-\mathrm{n}} \int \mathrm{c}^{i x \cdot \xi} \omega\left(\mathrm{x}, \frac{\xi}{|\xi|}\right) \hat{\varphi}(\xi) \mathrm{d} \xi,
$$

where $\hat{\boldsymbol{\varphi}}$ is the Fourier transform of $\boldsymbol{\varphi}$, defined by

$$
\hat{\varphi}(\xi)=\int \mathrm{e}^{-\mathrm{j} x \cdot \xi} \varphi(\mathrm{x}) \mathrm{dx}
$$

$\boldsymbol{\omega}: \mathbb{R}^{\mathrm{n}} \times \mathrm{s}^{\mathrm{n}-1} \rightarrow \mathbb{C}$ has the property that

$$
\int_{S^{n-1}} \omega\left(x, \xi^{\prime}\right) d \xi^{\prime}=0
$$

for all $\times \mathbb{R}^{n}$. Conversely, given a smooth function $\boldsymbol{\omega}: \mathbb{R}^{n} \times s^{n-1}$ with this property, there exists a smooth function $\Omega: \mathbb{R}^{n} \times s^{n-1}$ satisfying

$$
\int_{s^{n-1}} \Omega\left(x, z^{\prime}\right) d z^{\prime}=0
$$

for all $x \in \mathbb{R}^{n}$, such that $\boldsymbol{\omega}$ is the symbol of the singular integral operator p determined by Ω as above.
$\Omega\left(x, z^{\prime}\right)$ and its derivatives of all orders are bounded on $\mathbb{R}^{n} \times s^{n-1}$ if and only if ω and its derivatives of all orders are bounded on $\mathbb{R}^{n} \times s^{n-1}$, where $\boldsymbol{\omega}\left(x, \xi^{\prime}\right)$ is the symbol of the singular
integral operator P determined by $C U$ as above.

Proof

We sketch the proof. For more details see /Calderon, A.P. and Zygmund, A:, 19577 and /Stein, E.M. and Weiss, G., 1972 ; chapter IV/. In particular the latter has a well-written account of the definition and properties of spherical harmonics.

We expand $\Omega: \mathbb{R}^{n} \times S^{\mathrm{n}-1} \rightarrow \mathbb{C}$ in spherical harmonics. Let

$$
\Omega\left(x, z^{\prime}\right)=\sum_{m=0}^{\infty} \sum_{j} a_{m, j}(x) Y_{m, j}\left(z^{\prime}\right)
$$

where $Y_{m j}$ is a spherical harmonic of degree m and where

$$
\left(Y_{m j}: m, j \in \mathbb{Z}, m \geqslant 0,1 \leqslant j \leqslant d_{m}\right)
$$

is an orthonormal basis of the Hilbert space $L^{2}\left(s^{n-1}\right)$. One can show that the partial derivatives of $\Omega\left(x, z^{\prime}\right)$ with respect to z^{\prime} of all orders are bounded on $\mathbb{R}^{n} \times s^{n-1}$ if and only if for all non-negative integers $k \geqslant 0$ there exist constants A_{k} independent of x such that

$$
\sum_{m=0}^{\infty} \sum_{j}\left(1+m^{2}\right)^{k} a_{m j}(x)^{2} \leqslant A_{k}
$$

Thus if Ω is smooth then the expansion of Ω in spherical harmonics converges rapidly. Let

$$
P_{m j} \varphi=\lim _{\varepsilon \rightarrow 0+} \int_{|x-y|>\varepsilon} Y_{m j}\left(\frac{x-y}{x-y}\right) \frac{\varphi(y)}{|x-y|^{n}} d y .
$$

We claim that the exe exists a constant γ_{m} such that

$$
P_{m j} \varphi=(2 \pi)^{-n} \gamma_{m} \int e^{i x, \xi} Y_{m j}\left(\frac{\xi}{|\xi|}\right) \hat{\varphi}(\xi) d \xi
$$

To show this, define tempered distributions $K_{m, j}: S\left(\mathbb{R}^{n}\right) \rightarrow \mathbb{C}$ and $K_{m j \delta}: S\left(\mathbb{R}^{n}\right) \rightarrow \mathbb{C}$ for all δ satisfying $0<\delta<1 / 2 n$ by

$$
\begin{aligned}
& K_{m j}(\varphi)=\lim _{\varepsilon \rightarrow 0+} \int_{|x|>\varepsilon} Y_{m j}\left(\frac{x}{|x|}\right) \frac{\varphi(x)}{|x|^{n}} d x \\
& K_{m, j} \delta(\varphi)=\int Y_{m, j}\left(\frac{x}{|x|}\right) \frac{\varphi(x)}{|x|^{n-\delta}} d x
\end{aligned}
$$

(where $S\left(\mathbb{R}^{n}\right)$ denotes the class of smooth rapidly decreasing test functions on \mathbb{R}^{n}). Then

$$
P_{m, j} \varphi=k_{m j} * \varphi
$$

where $K_{m j} * \varphi$ is the convolution of the distribution $K_{m j}$ and the test function $\boldsymbol{\varphi}$. Hence

$$
\left(P_{m j} \varphi\right)^{\wedge}=\hat{\mathrm{K}}_{\mathrm{m}, \mathrm{j}} \hat{\varphi}
$$

By the Fourier inversion formula we see that it suffices to show that

$$
K_{m j}(\xi)=\gamma_{m} Y_{m j}\left(\frac{\xi}{|\xi|}\right)
$$

Now $K_{m j} \delta \in L^{1}\left(\mathbb{R}^{n}\right)+L^{2}\left(\mathbb{R}^{n}\right)$ for all δ satisfying $0<\delta<1 / 2 n$, hence $\widehat{K}_{m j \delta} \in C^{o}\left(\mathbb{R}^{n}\right)+L^{2}\left(\mathbb{R}^{n}\right)$. Moreover it can be shown that the Fourier transform of the function

$$
Y_{m, j}\left(\frac{x}{|x|}\right)|x|^{-n+\delta}
$$

is of the form

$$
\psi(|\xi|) Y_{m j}\left(\frac{\xi}{|\xi|}\right)
$$

for some function \mathcal{Y}. But $K_{m j} \delta$ is a distribution which is homogeneous of degree $-n+\delta$ in $|x|$, hence $\widehat{k}_{m j \delta}$ is homogeneous of degree $-\delta$ in $|\xi|$. Thus

$$
K_{m j \delta}=\gamma_{m, \delta}|\xi|^{-\delta} Y_{m j}\left(\frac{\xi}{|\xi|}\right)
$$

for some constant $\boldsymbol{\gamma}_{m, \delta}$. One can evaluate $\boldsymbol{\gamma}_{m, \delta}$ by applying $\widehat{K}_{m j \delta}$ to the test function
to show that

$$
\gamma_{m, \delta}=2^{\delta}{ }_{i}{ }^{-m} \pi^{n / 2} \frac{\Gamma(1 / 2(m+\delta j)}{\Gamma(1 / 2(n+m-\delta))} .
$$

But $k_{m j} \rightarrow k_{m, j}$ in $S^{\prime}\left(\mathbb{R}^{n}\right)$ as $\delta \rightarrow 0$, hence $\hat{k}_{m, j} \rightarrow \hat{k}_{m j}$ in
$S^{\prime}\left(\mathbb{R}^{n}\right)$ as $\delta \rightarrow 0$, by the continuity of the Fourier transform on the space of tempered distributions. It follows that

$$
\hat{K}_{m j}(\xi)=\gamma_{m} Y_{m j}\left(\frac{\xi}{|\xi|}\right)
$$

and hence that

$$
P_{m j} \varphi=(2 \pi)^{-n} \gamma_{m} \int e^{i x . \xi} Y_{m j}\left(\frac{\xi}{|\xi|}\right) \hat{\varphi}(\xi) d \xi,
$$

where

$$
\gamma_{m}=i^{-m} \pi^{n / 2} \frac{\Gamma(1 / 2)}{\Gamma(1 / 2(n+m)} .
$$

Define

$$
\omega\left(x, \xi^{\prime}\right)=\sum_{m=0}^{\infty} \sum_{j} \gamma_{m} a_{m j}(x) Y_{m j}\left(\xi^{\prime}\right) .
$$

Then

$$
{ }^{P} \varphi(2 \pi)^{-n} \int \mathrm{c}^{i x . \xi} \omega\left(\mathrm{x}, \frac{\xi}{|\xi|}\right) \hat{\varphi}(\xi) \mathrm{d} \xi
$$

Since $\gamma_{m}=0\left(m^{-n} / 2\right)$ and $\gamma_{m}^{-1}=0\left(m^{n / 2}\right)$ we sec that Ω and all its derivatives are bounded on $\mathbb{R}^{n} \times s^{n-1}$ if and only if ω and all its derivatives are bounded on $\mathbb{R}^{n} \times S^{n-1}$. The theorem follows directly from this.

An important example is provided by the Riesz operators $R_{j}: C_{o}^{\infty}\left(\mathbb{R}^{n}\right) \rightarrow C^{\infty}\left(\mathbb{R}^{n}\right)$, where j takes integer values from 1 to n. The Riesz operators are defined by

$$
R_{j} \varphi(x)=\frac{\Gamma(1 / 2(n+1))}{\pi^{1 / 2(n+1)}} \lim _{\varepsilon \rightarrow 0+} \int_{|x-y|>\varepsilon} \frac{x_{j}-y_{j}}{|x-y|^{n+1}} \varphi^{(y)} d y .
$$

The Riesz operators have the property that

$$
\left(R_{j} \varphi\right)^{\wedge}(\xi)=i \frac{\xi_{j}}{|\xi|} \hat{\varphi}(\xi)
$$

for all $\varphi \in C_{o}^{\infty}\left(\mathbb{R}^{n}\right)$. From this it follows that

$$
\begin{aligned}
& \sum_{j=1}^{n} R_{j}\left(R_{j} \varphi\right)=-\varphi, \\
& R_{j} R_{k} \varphi=R_{k} R_{j} \varphi \rho_{p} \\
& \frac{\partial}{\partial x_{k}}\left(R_{j} \varphi\right)=R_{j} \frac{\partial f}{\partial x_{k}}=R_{k} \frac{\partial f}{\partial x_{j}} .
\end{aligned}
$$

When $n=1$ the Riesz operator R_{1} is the Hilbert transform $H: C_{o}^{\infty}(\mathbb{R}) \rightarrow C^{\infty}(\mathbb{R})$ defined by

$$
H \varphi(x)=\frac{1}{\pi} \lim _{\varepsilon \rightarrow 0^{+}} \int_{|x-y|>\varepsilon} \frac{\varphi(y)}{x-y} d y
$$

A classical theorem, due to M. Riesz, states that the Hilbert transform extends to a bounded linear map

$$
H: L^{\mathbf{P}}(\mathbb{R}) \rightarrow \mathbb{L}^{\mathbf{P}}(\mathbb{R})
$$

(for a proof, see appendix A). This theorem is the basis of the proof of the following theorem, due to Calderon and Zygmund.

Theorem 2.2 (Calderon-Zygmund)
Let $\Omega \in C^{\infty}\left(\mathbb{R}^{n} \times S^{n-1}\right)$ and suppose that

$$
\int_{s^{n-1}} \Omega\left(x, y^{\prime}\right) d y^{\prime}=0
$$

for all $x \in \mathbb{R}^{n}$. Further suppose that Ω and its derivatives of all orders are bounded on $\mathbb{R}^{n} \times S^{n-1}$. Then the singular integral operator $P: C_{o}^{\infty}\left(\mathbb{R}^{n}\right) \longrightarrow C^{\infty}\left(\mathbb{R}^{n}\right)$ defined by

$$
P \varphi(x)=\lim _{\varepsilon \rightarrow 0+} \int_{|x-y|>\varepsilon} \Omega\left(x, \frac{x-y}{|x-y|}\right) \frac{(y)}{|x-y|^{n}} d y
$$

extends to bounded linear maps

$$
P: L_{k}^{p}\left(\mathbb{R}^{n}\right) \rightarrow L_{k}^{p}\left(\mathbb{R}^{n}\right)
$$

for all nonnegative integers k and for all p satisfying $1<p<\infty$.

Proof

First we show that P is bounded on $L^{p}\left(\mathbb{R}^{n}\right)$ whenever p satisfies $1<p<\infty$ and Ω is odd, that is

$$
\Omega\left(x,-z^{\prime}\right)=-\Omega\left(x, z^{\prime}\right)
$$

In this case

$$
{ }^{\mathrm{P}} \varphi=\frac{\pi}{2} \int_{S^{n-1}} \Omega\left(x, z^{\prime}\right) H_{z}, \varphi d z^{\prime}
$$

where

$$
\mathrm{H}_{z}, \varphi=\frac{1}{\pi} \lim _{\varepsilon \rightarrow 0+} \int_{|s|\rangle \varepsilon} \frac{\left(x-s z^{\prime}\right)}{s} d s
$$

for all $z^{\prime} \in \mathbb{S}^{\mathrm{n}-1}$. It follows from M. Riesz' theorem on the boundedness of the Hilbert transform on $L^{p}\left(\mathbb{R}^{n}\right)$ and from Fubini's theorem that there exists a constant C_{p} such that

$$
\left\|H_{z}, \varphi\right\| p \leqslant c_{p}\|\varphi\|_{p}
$$

where $\|\varphi\|_{p}$ denotes the L^{p} norm of φ. Hence

$$
\|P \varphi\|_{p} \leqslant 1 / 2 \pi\|\Omega\|_{0} C_{p} \operatorname{vol}\left(s^{n-1}\right)\|f\| p
$$

by the integral form of Minkowski's inequality, where

$$
\|\Omega\|_{0}=\sup \left\{\left|\Omega\left(x, z^{\prime}\right)\right|: x \in \mathbb{R}^{n}, z^{\prime} \in s^{n-1}\right\} .
$$

This proves that P is bounded on $L^{p}\left(\mathbb{R}^{n}\right)$ when Ω is odd.

$$
\text { To prove the result when } \Omega \text { is even, that is }
$$

$$
\Omega\left(x,-z^{\prime}\right)=\Omega\left(x, z^{\prime}\right),
$$

we use the Riesz operators $\mathrm{R}_{\mathrm{j}}: \mathrm{C}_{\mathrm{o}}^{\infty}\left(\mathbb{R}^{\mathrm{n}}\right) \rightarrow \mathrm{C}^{\infty}\left(\mathbb{R}^{\mathrm{n}}\right)$ defined above.

Since

$$
\sum_{j=1}^{n} R_{j}\left(R_{j} \varphi\right)=-\varphi
$$

for all $\varphi \in \mathbb{C}_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ it follows that

$$
P=-\sum_{j=1}^{n}\left(R \circ R_{j}\right) \circ R_{j}
$$

One can show that $P \circ R_{j}$ is a singular integral operator with odd kernel, either directly or by observing that if

$$
\rho \varphi(x)=(2 \pi)^{-n} \int e^{i x \cdot \xi} \omega\left(x, \frac{\xi}{|\xi|}\right) \hat{\varphi}(\xi) \mathrm{d} \xi
$$

where $\omega: \mathbb{R}^{n} \times S^{n-1} \rightarrow \mathbb{C}$ is the symbol of P, then \mathcal{W} is smooth and

$$
P R_{j} \varphi=(2 \pi)^{-n} \int e^{i x, \xi} \omega{ }_{j}\left(x, \frac{\xi}{|\xi|}\right) \hat{\varphi}(\xi) \mathrm{d} \xi
$$

where $\omega_{j}: \mathbb{R}^{n} \times S^{n-1}$ is defined by

$$
\omega_{j}\left(x, \xi^{\prime}\right)=-i \omega\left(x, \xi^{\prime}\right) \xi_{j}^{\prime}
$$

for $j=1, \ldots, n$. Note that

$$
\omega_{j}\left(x,-\xi^{\prime}\right) \quad:-\omega_{j}\left(x, \xi^{\prime}\right)
$$

since

$$
\omega\left(x,-\xi^{\prime}\right)=\omega\left(x, \xi^{\prime}\right)
$$

and thus

$$
\int_{s^{n-1}} \omega_{j}\left(x, \xi^{\prime}\right) d \xi
$$

By the rom 2.1 it follows that ω_{j} is the symbol of a singular integral operator with odd kernel. Thus $P \circ R_{j}$ is a singular integral operator with odd kernel. The boundedness of P on $L^{p}\left(\mathbb{R}^{n}\right)$ then follows from the boundedness of $P \circ R_{j}$ and R_{j} on $L^{p}\left(\mathbb{R}^{n}\right)$.

The boundedness on $L^{p}\left(\mathbb{R}^{n}\right)$ of a singular integral operator whose kernel is neither even nor odd follows by expressing the kernel
as a sum of an even kernel and an odd kernel and applying the above results.

$$
\begin{aligned}
& \text { Define } P_{j}: C_{o}^{\infty}\left(\mathbb{R}^{n}\right) \rightarrow C^{\infty}\left(\mathbb{R}^{n}\right) \text { by } \\
& P_{j} \varphi(x)=\lim _{\varepsilon \rightarrow 0^{+}} \int_{|x-y|>\varepsilon} \Omega_{j}\left(x, \frac{x-y}{|x-y|}\right) \frac{\varphi(y)}{|x-y|^{n}} d y
\end{aligned}
$$

where

$$
\Omega_{j}\left(x, z^{\prime}\right)=\frac{\partial}{\partial x_{j}} \Omega\left(x, z^{\prime}\right)
$$

Then

$$
P \frac{\partial \varphi}{\partial x_{j}}=P_{j} \varphi+P \frac{\partial \varphi}{\partial x_{j}}
$$

Since P and P_{j} are bounded on $L^{p}\left(\mathbb{R}^{n}\right)$ it follows that P is bounded on $L_{1}^{p}\left(\mathbb{R}^{n}\right)$. By induction P is bounded on $L_{k}^{p}\left(\mathbb{R}^{n}\right)$ for all non-negative integers k.

When $k=0$ and $\Omega\left(x, z^{\prime}\right)$ is independent of x this result is known as the Calderon-Zygmund inequality (see /Calderon, A.P. and Zygmund, A., 19567, IStein, E.M. and Weiss, G., 1972; chapter VĪ , /Bers, L., John, F. and Schechter, M., 1964; pp.224, 245-2507 of (Morrey, C.B., 1966; pp.55-617).

The corresponding theorem for Holder spaces is the following classical result.

Theorem 2.3
Let $\Omega \in C^{\infty}\left(\mathbb{R}^{n} \times S^{n-1}\right)$ and suppose that

$$
\int_{S^{n-1}} \Omega\left(x, y^{\prime}\right) d y^{\prime}=0
$$

for all $x \in \mathbb{R}^{n}$. Then the singular integral operator $P: C_{o}^{\infty}\left(\mathbb{R}^{n}\right) \rightarrow C^{\infty}\left(\mathbb{R}^{n}\right)$ defined by

$$
P \varphi(x)=\lim _{E \rightarrow 0+} \int_{|x-y|>\varepsilon} \Omega\left(x, \frac{x-y}{|x-y|}\right) \frac{\varphi(y)}{|x-y|^{n}} d y
$$

extends to bounded linear maps

$$
P: C_{o}^{k, \alpha}\left(B_{R}\right) \rightarrow c^{k, \alpha}\left(B_{R}\right)
$$

for all non-negative integers k, for all α satisfying $0<\alpha<1$ and for all $R>0$, where B_{R} denotes the ball of radius R about the origin in \mathbb{R}^{n}.

Proof

When $k=0$ and $\Omega\left(x, z^{\prime}\right)$ is independent of x, the result is classical and proofs may be found in / Bers, L., John, F. and Schechter, M., 1964; pp.223, 244-245) $\overline{/}$, (Morrey, C.B., 1966;
 in the general case follows by a straightforward adaptation of the proof in the case when $\Omega\left(x, z^{\prime}\right)$ is independent of x or by expanding Ω in spherical harmonics as in theorem 2.1 and proving that each term in this expansion is bounded on $C^{k, \alpha}\left(B_{R}\right)$ and then using the rapid convergence of the expansion.

Calderon and Zygmund have considered versions of the above theorems when the assumption that the kernel of the singular integral operator is smooth is relaxed (see Calderon, A.P. and Zygmund, A., 1956/ and /Calderon, A.P. and Zygmund, A., 1957 /).

In this section, we study the properties of pseudo-differential operators on smooth manifolds. There are several definitions of pseudo-differential operators in the literature (see, for example /Kohn, T..J. and Nirenberg, L., 19657, / \bar{H} brmander, L., 19657, EPalais, R.S. et al, 1965; chapter XVIT, where they are referred to as Calderon-Zygmund operators, /FBrmander, L., 19677, Atiyah, M.F. and
 adopt here the definition due to Hdrmander in his paper "Pseudo-
 the advantage of defining pseudo-differential operators invariantly on smooth manifolds, without reference to local coordinates. If a pseudo-differential operator is defined in this way on open sets in \mathbb{R}^{n} then it can be shown that it is the sum of a pseudo-differential operator in the sense of Kohn and Nirenberg / Kohn, J.J. and Nirenberg, L., 1965 and a smoothing operator. Hyrmander's paper can thus be regarded as giving a proof of the invariance of pseudodifferential operators defined in the sense of Kohn and Nirenberg under change of coordinates, modulo the smoothing operators. The Calderon-zygmund operators of Palais and Seeley as defined in chapter XVI of "Seminar on the Atiyah-Singer index theorem" /Palais, R.S. et al, 19657 , defined on smooth manifolds and vector bundles, are the pseudo-differential operators of Hdrmander /Hormander, L., 19657.

In proving the continuity properties of pseudo-differential operators when extended to Sobolev and Hblder spaces, we shall relate pseudo-differential operators to the singular integral operators of Calderon and Zygmund. For this purpose, some of the later definitions (such as in /THyrmander, L., 1967/, /Atiyah, M.F. and Singer, I.M.,

19687, LNirenberg, L., 19707 or /Wells, R.O., 19737) of pseudodifferential operators are less suitable.

We shall state in this section the definition of a pseudodifferential operator and its symbol, discuss pseudo-differential operators on open sets in \mathbb{R}^{n}, smoothing operators, the composition of pseudo-differential operators, the adjoint of a pseudo-differential operator, pseudo-differential operators acting on sections of vector bundles, clliptic pseudo-differential operators and their parametrices.

Let M be a smooth manifold. We recall the definition of a bounded subset of the Frechet space $C^{\infty}(M)$. A subset B of $C^{\infty}(M)$ is bounded if for every compact set $K \subset M$ and for every differential operator L with smooth coefficients, there is a uniform bound for $|L f|$ on K whenever $f \in B$. We can now give Hbrmander's invariant definition of a pseudo-differential operator on a smooth manifold (see /HBrmander, L., 19657).

Definition 3.1
A pseudo-differential operator P on a smooth manifold M is a continuous linear operator.
$P: C_{o}^{\infty}(M) \longrightarrow C^{\infty}(M)$
such that there exists a strictly decreasing sequence $\left(s_{j}: j=0,1,2, \ldots\right)$ of real numbers converging to $-\infty$ as $j \rightarrow \infty$ such that for all $f \in C_{o}^{\infty}(M)$, for all $g \in C^{\infty}(M)$ with g real-valued and $d g \neq 0$ in the support of f, and for all $\lambda>0$, there is an asymptotic expansion

$$
e^{-i \lambda g} P\left(f e^{i \lambda g}\right) \sim \sum_{j=0}^{\infty} P_{j}(f, g) \lambda^{s j}
$$

with the property that for every integer $\mathrm{N}>0$ and for every compact set G of real-valued functions $g \in C^{\infty}(M)$ with $d g \neq 0$ in the support of f, the error

$$
\lambda^{-S_{N}}\left(e^{-i \lambda g} p\left(f e^{i \lambda g}\right)-\sum_{j=0}^{N-1} P_{j}(f, g) \lambda^{S_{j}}\right)
$$

belongs to a bounded set in $C \infty(M)$ whenever $g \in G$ and $\lambda \geqslant 1$. If $P_{o} \not \equiv 0$, we say that P is of order s_{0}, and if all P_{j} vanish identically, the order is defined as $-\infty$.

It follows from this definition that $P_{j}(f, g)$ is a positively homogeneous function of g of degree s_{j}. Thus

$$
e^{-i \lambda g} p\left(f e^{i \lambda g}\right) \sim \sum_{j=0}^{\infty} P_{j}(f, \lambda g)
$$

We define the symbol $\sigma_{P}(f, g)$ of P to be the formal sum

$$
\sigma_{P}(f, g)=\sum_{j=0}^{\infty} P_{j}(f, g) .
$$

In his paper /[Ḧrmander, L., 1965], H\&rmander studies the action of pseudo-differential operators on smooth functions whose support is contained in the domain of a coordinate chart on the manifold, obtaining an expression for the symbol in local coordinates, and uses it to study the properties of pseudo-differential operators. The following theorems characterize the local behaviour of pseudodifferential operators (see / \bar{H} Hrmander, L., 1965; lemma 2.3 and theorems 3.3 and 3.7 and proposition $3.1 \overline{7}$.

Theorem 3.2

Let M be a smooth manifold of dimension n, and let $P: C_{o}^{\infty}(M) \rightarrow C^{\infty}(M)$ be a pseudo-differential operator on M. Let Ω be an open subset of M and let $x: \Omega \rightarrow \mathbb{R}^{n}$ be a chart giving local coordinates x on Ω. For every $\mathrm{f} \in \mathrm{C}_{\mathrm{o}}^{\infty}(\mathrm{M})$ with

$$
\text { supp } f \subset \Omega
$$

define $\mathrm{p}_{\mathrm{f}}: \Omega \times \mathbb{R}^{\mathrm{n}} \rightarrow \mathbb{R}$ by

$$
p_{f}(x, \xi)=e^{-i x \cdot \xi} P\left(f e^{i x \cdot \xi}\right)
$$

and let

$$
p_{f}(x, \lambda \xi) \sim \sum_{j=0}^{\infty} p_{f, j}(x, \lambda \xi)
$$

be the asymptotic expansion of p_{f} as $\lambda \rightarrow+\infty$, where $p_{f, j}(x, \xi)$ is homogeneous of degree s_{j} in ξ. Then p_{f} is smooth, and the asymptotic expansion of $\mathrm{p}_{\mathrm{f}}(\mathrm{x}, \boldsymbol{\xi})$, and all its derivatives, in the variable ξ is uniformly asymptotic in x for all x belonging to some given compact subset of Ω. Thus for all multi indices α and β and for all compact subsets K of Ω, there exists a constant $C \alpha, \beta, K$ such that

$$
\left|\partial_{x}^{\alpha} \partial_{\xi}^{\beta}\left(p_{f}(x, \xi)-\sum_{j=0}^{N-1} p_{f, j}(x, \xi)\right)\right| \leqslant c_{\alpha, \beta, k}|\xi|^{S_{N}-|\beta|}
$$

whenever $x \in K$ and $|\xi| \geqslant \mid$, and also

$$
P(f u)=(2 \pi)^{-n} \int e^{i x . \xi} p_{f}(x, \xi) \hat{u}(\xi) d \xi .
$$

Thcorem 3.3

Let Ω be an open set in \mathbb{R}^{n} and let $q: \Omega \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a smooth function with an asymptotic expansion

$$
q(x, \lambda \xi) \sim \sum_{j=0}^{\infty} q_{j}(x, \lambda \xi)
$$

in λ, for $\lambda>0$, where q_{j} is positively homogeneous of degree s_{j} and smooth in $\Omega \times\left(\mathbb{R}^{n} \backslash\{0\}\right)$, such that, for all multiindices α and β and for all compact subsets k of Ω, there exists a constant $C_{\alpha, \beta, K}$ such that

$$
\left|\partial_{x}^{\alpha} \partial_{\xi}^{\beta}\left(q(x, \xi)-\sum_{j=0}^{N-1} q_{j}(x, \xi)\right)\right| \leqslant c_{\alpha, \beta, k}|\xi|^{S_{N}-|\beta|}
$$

whenever $x \in K$ and $|\xi| \geqslant 1$. Then we can define an operator

$$
\mathrm{Q}: \mathrm{C}_{0}^{\infty}(\Omega) \rightarrow \mathrm{c}^{\infty}(\Omega)
$$

by the identity

$$
Q u=(2 \pi)^{-n} \int e^{i x \cdot \xi} q(x, \xi) \hat{u}(\xi) d \xi
$$

and $Q: C_{o}^{\infty}(\Omega) \rightarrow C^{\infty}(\Omega)$ is a pseudo-differential operator with symbol

$$
\sigma_{Q}(f, g)=\sum_{\alpha, j} \frac{(-i)^{|\alpha|}}{\alpha!} \partial_{\xi}^{\alpha} q_{j}\left(x, \xi_{x}\right) \partial_{x}^{\alpha}\left(f e^{i h x}\right)
$$

where

$$
\xi_{\mathrm{x}}=\operatorname{grad} g(\mathrm{x})
$$

and

$$
\begin{aligned}
& h_{x}(y)=g(y)-g(x)-\left\langle y-x, \xi_{x}\right\rangle . \\
& \text { If } q_{j}(x, \xi)=0 \text { for all } j, \text { then } Q \text { is a smoothing operator } \\
& Q u(x)=\int_{\Omega} K(x, y) u(y) d y,
\end{aligned}
$$

where $k \in C^{\infty}(\Omega \times \Omega)$ is given by the identity

$$
K(x, x-y)=(2 \pi)^{-n} \int e^{i y \cdot \xi} q(x, \xi) d \xi
$$

Also given a strictly decreasing sequence s_{j} which converges to $-\infty$ as $j \rightarrow \infty$ and smooth functions $q_{j}: \Omega \times\left(\mathbb{R}^{n} \backslash\{0\}\right) \rightarrow \mathbb{R}$ such that $q_{j}(x, \xi)$ is positively homogeneous of degree s_{j} in ξ, then there exists a pseudo-differential operator

$$
Q: C_{o}^{\infty}(\Omega) \rightarrow c^{\infty}(\Omega)
$$

where

$$
Q u=(2 \pi)^{-n} \int e^{i x \cdot \xi} q(x, \xi) \hat{u}(\xi) d \xi
$$

and where $q: \Omega \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ is smooth and has an asymptotic expansion

$$
q(x, \lambda \xi) \sim \sum_{j=0}^{\infty} q_{j}(x, \lambda \xi)
$$

for $\lambda>0$, which satisfies the conditions stated at the beginning of the statement of this theorem. This pseudo-differential operator Q is unique up to a smoothing operator on Ω.

Let M be a smooth manifold and let $\boldsymbol{\mu}$ be a smooth measure on M. We define a pairing

$$
\langle., .\rangle: C^{\infty}(M) \otimes C_{0}^{\infty}(M) \rightarrow \mathbb{R}
$$

by the identity

$$
\langle g, f\rangle=\int g f \mathrm{~d} \mu
$$

A continuous linear map $P: C_{0}^{\infty}(M) \rightarrow C^{\infty}(M)$ is referred to as a smoothing operator if there exists a smooth function
$K: C^{\infty}(M \times M) \rightarrow \mathbb{R}$ such that
(Pf) $(x)=\left\langle K_{x}, f\right\rangle$
where
$\mathrm{K}_{\mathrm{x}}: \mathrm{M} \rightarrow \mathbb{R}: y \mapsto K(x, y)$.
Theorem 3.4
Let M be a smooth manifold of dimension n and let
$P: C_{o}^{\infty}(M) \rightarrow C^{\infty}(M)$ be a smoothing operator. Then P is a pseudodifferential operator whose symbol vanishes everywhere.

Proof

It is sufficient to prove that for all functions $\varphi, \Psi \in C_{o}^{\infty}(M)$, the smoothing operator $\varphi \mathrm{P} \Psi$ is a pseudo-differential operator. But, by employing a partition of unity subordinate to a locally finite covering of M by domains of coordinate charts, it suffices to prove the result when $\operatorname{supp} \varphi \in U$ and $\operatorname{supp} \psi \in U^{\prime}$ where $x: U \rightarrow \mathbb{R}^{N}$ and $y: U^{\prime} \rightarrow \mathbb{R}^{n}$ are coordinate charts. Then if $Q=\varphi P \psi$, we have

$$
Q u(x)=\int_{U^{\prime}} k(x, y) u(y) d y
$$

where $K: U \times U^{\prime} \rightarrow \mathbb{F}$ is smooth and has compact support in both variables. Thus if $f \in C_{0}^{\infty}(M)$ and $g \in C^{\infty}(M)$ and if $d g \neq 0$ on supp f, we have

$$
e^{-i \lambda g} Q\left(f e^{i \lambda g}\right)=\int_{U^{\prime}} K(x, y) f(y) e^{i \lambda(g(y)-g(x))} d y
$$

Let

$$
G_{K}=\frac{\partial g}{\partial y_{K}}
$$

and

$$
\|G\|^{2}=\sum_{K=1}^{n} G_{k}^{2}
$$

Then $\|G\|^{2} \neq 0$ on supp f, by assumption, and

$$
\begin{aligned}
e^{-i \lambda g} Q^{\prime}\left(f e^{i \lambda g}\right) & =-i \lambda^{-1} \int_{U^{\prime}} \frac{K(x, y) f(y)}{\|G\|^{2}} \sum_{K=1}^{n} G_{K} \frac{\partial}{\partial y_{K}} e^{i \lambda(g(y)-g(x))} d y \\
& =i \lambda^{-1} \sum_{K=1}^{n} \int_{U^{\prime}} \frac{\partial}{\partial u_{K}}\left(\frac{K(x, y) f(y)}{\| G^{2}} G_{K}\right) e^{i \lambda\left(g(y)-g(x) \|^{2}\right.} d y
\end{aligned}
$$

on integrating, once by parts. If we continue integrating by parts in this way, we obtain

$$
e^{-i \lambda g} Q\left(f e^{i \lambda g}\right)=\lambda^{-N} \int_{U^{\prime}} \frac{L(x, y)}{\|G\|^{2 m}} e^{i \lambda(g(y)-g(x))} d y
$$

where m is a positive integer and L is a polynomial in a finite number of derivatives of the functions K, f and g. L has compact support contained in the support of K . It follows that

$$
e^{-i \lambda g} Q\left(f e^{i \lambda g}\right)=O\left(\lambda^{-N}\right)
$$

as $\lambda \rightarrow+\infty$, for all non-ncgative integers N, and moreover, if B is a compact subset of $C^{\infty}(M)$ and $d g \neq 0$ on supp for all $g \in B$, then there is a constant C such that for all $g \in B$

$$
e^{-i \lambda g} Q\left(f e^{i \lambda g}\right) \quad C \lambda^{-N}
$$

for all $\lambda \geq 1$. Thus $Q=\varphi P \psi$ is a pseudo-differential operator. Hence P is a pseudo-differential operator.

The next theorem, expressing the pseudolocal character of P, is immediate from theorem 4.5 of / Hyrmander, L., $1965 \overline{7}$.

Theorem 3.5
Let M be a smooth manifold of dimension n, and let
$P: C_{o}^{\infty}(M) \rightarrow C^{\infty}(M)$ be a pseudo-differential operator. If $f \in C_{o}^{\infty}(M)$ and $g \in C^{\infty}(M)$ and if
supp $f \cap \operatorname{supp} g=\emptyset$
then gPf : $C_{o}^{\infty}(M) \rightarrow C^{\infty}(M)$ is a smoothing operator.

The next two theorems are theorems 4.3 and 4.4 of ITHrmander, $L .$, 19657. The asymptotic expansions are due to /Kohn, J.J. and Nirenberg, L., $1965 \overline{7}$ (sce also /Palais, R.S. et al, 1965; chapter XVIT, /Hyrmander, L., $1967 \overline{/}$ and /Nirenberg, L., 19707).

Theorem 3.6
Let M be a smooth manifold, let $P: C_{o}^{\infty}(M) \rightarrow C^{\infty}(M)$ and $Q: C_{o}^{\infty}(M) \rightarrow C^{\infty}(M)$ be pseudo-differential operators of order s and t respectively and let $f \in C_{o}^{\infty}(M)$. Then

$$
\text { QfP : } C_{0}^{\infty}(M) \rightarrow C^{\infty}(M)
$$

is a pseudo-differential operator of order not exceeding $s+t$. In particular if $p: C_{o}^{\infty}(\Omega) \rightarrow C^{\infty}(\Omega)$ and $Q: C_{o}^{\infty}(\Omega) \rightarrow C^{\infty}(\Omega)$ are pscudo-differential operators on an open set Ω in \mathbb{R}^{n}, and if $f \in C_{o}^{\infty}(\Omega)$ and if

$$
\begin{aligned}
\mathrm{Pu}= & (2 \pi)^{-n} \int \mathrm{e}^{i x \cdot \xi} \mathrm{p}(\mathrm{x}, \xi) \hat{u}(\xi) \mathrm{d} \xi \\
p(x, \xi) & \sim \sum_{j} p_{j}(x, \xi)
\end{aligned}
$$

$$
\begin{aligned}
& \text { Qu = }(2 \pi)^{-n} \int e^{i x \cdot \xi} q(x, \xi) \hat{u}(\xi) d \xi ; \\
& \quad q(x, \xi) \sim \sum_{k} q_{k}(x, \xi), \\
& R u=\operatorname{QfPu}=(2 \pi)^{-n} \int e^{j x . \xi} r(x, \xi) \hat{u}(\xi) d \xi, \\
& r(x, \xi) \sim \sum_{i} r_{i}(x, \xi),
\end{aligned}
$$

where $p_{j}(x, \xi), q_{k}(x, \xi)$ and $r_{i}(x, \xi)$ are positively homogeneous in ξ, then we have an equality of formal sums

$$
r_{i}(x, \xi)=\sum_{\alpha, j, k} \frac{(-i)^{|\alpha|}}{\alpha!} \partial_{\xi}^{\alpha} q_{k}(x, \xi) \partial_{x}^{\alpha}\left(f p_{j}(x, \xi)\right)
$$

Theorem 3.7

Let M be a smooth manifold. To every pseudo-differential operator $P: C_{0}^{\infty}(M) \rightarrow C^{\infty}(M)$ of order s, there is one and only one pseudo-differential operator ${ }^{\mathrm{P}}: \mathrm{C}_{\mathrm{O}}^{\infty}(\mathrm{M}) \rightarrow \mathrm{C}^{\infty}(\mathrm{M})$ of order s , called i.ts adjoint, such that

$$
\langle\mathrm{Pu}, \mathrm{v}\rangle=\left\langle\mathrm{u}, \mathrm{t}_{\mathrm{Pv}_{\mathrm{V}}}\right\rangle
$$

if $u, v \in C_{o}^{\infty}(M)$. In particular, if $p: c_{o}^{\infty}(\Omega) \rightarrow c^{\infty}(\Omega)$ is a pseudo-differential operator on an open set Ω in \mathbb{R}^{n}, and is given by the identity

$$
\begin{aligned}
P u= & (2 \pi)^{-n} \int e^{i x \cdot \xi} p(x, \xi) \hat{u}(\xi) d \xi \\
& p(x, \xi) \sim \sum_{j} p_{j}(x, \xi), \\
t_{P u}= & (2 \pi)^{-n} \int e^{i x} \cdot \xi t_{p}(x, \xi) \hat{u}(\xi) d \xi, \\
& t_{p(x, \xi)} \quad \sum_{k} t_{p_{k}}(x, \xi),
\end{aligned}
$$

where $\boldsymbol{P}_{j}(x, \xi)$ and ${ }^{t} p_{k}(x, \xi)$ are positively homogeneous in ξ, then we have an equality of formal sums

$$
t_{p_{k}}(x, \xi)=\sum_{\alpha, j} \frac{i^{|\alpha|}}{\alpha!} \partial_{x}^{\alpha} \partial_{y}^{\alpha} p_{j}(x,-\xi) .
$$

We can define pseudn-differential operators acting on sections of vector bundles over a smooth manifold. Let M be a smooth manifold and $\pi_{1}: E \rightarrow M$ and $\pi_{2}: F \rightarrow M$ be smooth vector bundles over M. A continuous linear operator $P: C_{o}^{\infty}(E) \rightarrow C^{\infty}(F)$ is a pseudodifferential operator if for all smooth sections $f \in C_{o}^{\infty}(E)$ and smooth functions $g \in C^{\infty}(M)$ with $d g \neq 0$ on supp f, there is an asymptotic expansion

$$
e^{-i \lambda g} P\left(f e^{i \lambda g}\right) \sim \sum_{j=0}^{\infty} P_{j}(f, g) \lambda^{s} j
$$

which is uniformly asymptotic for all g belonging to any given compact subset of $C^{\infty}(M)$, exactly as in the definition of pseudodifferential operators acting on smooth functions. All the results stated so far go over without change, when applied to pseudodifferential operators acting on sections of vector bundles.

Let M be a smooth manifold and let $\Pi_{1}: E \rightarrow M$ and $\pi_{2}: F \rightarrow M$ be smonth vector bundles over M. Let $\pi: T r M \backslash M \rightarrow M$ be the cotangent bundle over M with the zero section removed, and let $\pi * E \rightarrow T * M \backslash M$ and $\pi * F \rightarrow T * M \backslash M$ be the pullbacks of E and F. Then there is a correspondence σ which assigns to a pseudodifferential operator $P: C_{o}^{\infty}(E) \rightarrow C^{\infty}(F)$ or order s_{o} a homomorphism $\sigma(P): \pi * E \rightarrow \pi * F$ of vector bundles over $T * M \backslash M$ such that if
$\omega \in T * M \backslash M$ and $\lambda>0$, then

$$
\sigma(\mathrm{P})(\lambda \omega)=\lambda^{\mathrm{S}_{0}} \sigma(\mathrm{P})(\omega)
$$

$\sigma(P)$ is referred to as the leading symbol of P (or is often simply referred to as the symbol of P$). \sigma(\mathrm{P})$ is defined as follows. Let $m \in M$, let $e \in E_{m}$, the fibre of E over m, and let $\omega \in T_{m} * M \backslash\{0\}$. Choose $f \in C_{o}^{\infty}(E)$ and $g \in C^{\infty}(M)$ such that $d g \neq 0$ on supp f, and such that $f(m)=e$ and $d g(m)=\omega$. We then have an asymptotic expansion

$$
e^{-i \lambda g} P\left(f e^{i \lambda g}\right) \sim \sum_{j=0} P_{j}(f, g) \lambda^{s_{j}}
$$

Define

$$
\sigma(P) \omega(e)=P_{o}(f, g)(m) .
$$

We claim that $\sigma(P)$ is well-defined, independent of the choice of f and g. To verify this, it is sufficient to consider the case when the support of f is contained in the domain of a coordinate chart $x: \Omega \rightarrow \mathbb{R}^{n}$ of M. But then there are uniquely defined functions $p_{k}: \Omega \times\left(\mathbb{R}^{n} \backslash\{0\} ; \rightarrow \mathbb{R}\right.$, where $p_{k}(\mathrm{x}, \xi)$ is positively homogeneous of degree $\mathbf{S}_{\mathbf{k}}$ in ξ such that we have an equality of formal sums

$$
\sum_{j} P_{j}(f, g)=\sum_{\alpha, k} \frac{(-i)^{|\alpha|}}{\alpha!} \partial_{\xi}^{\alpha} p_{k}\left(x, \xi_{x}\right) \partial_{x}^{\alpha}\left(f e^{i h x}\right),
$$

where $\xi_{\mathrm{x}}=\operatorname{grad} \mathrm{g}(\mathrm{x})$ and

$$
h_{x}(y)=g(y)-g(x)-\left\langle y-x, \xi_{x}\right\rangle
$$

(see /HUrmander, L., 19657, theorem 4.2), but then

$$
P_{o}(f, g)(m)=f p_{0}(x, \operatorname{grad} g(x))
$$

This shows that $\sigma(\mathrm{P})$ is we11-defined.

Definition 3.8

l.et M be a smooth manifold, let $\Pi_{1}: \mathrm{E} \rightarrow \mathrm{M}$ and $\Pi_{2}: \mathrm{F} \rightarrow \mathrm{M}$ be smooth vector bundles over M, and let $P: C_{o}^{\infty}(E) \rightarrow C^{\infty}(F)$ be a pseudodifferential operator. P is an elliptic pseudo-differential operator if and only if, for all $m \in M$ and $\omega \in T_{m} m M M$, the homomorphism

$$
\sigma(P)(\omega): E_{m} \rightarrow F_{m}
$$

of vector spaces is an isomorphism (i.e. $\sigma(\mathrm{P})$ is an isomorphism of vector bundles over $\mathrm{T} \% \mathrm{M} \backslash \mathrm{M}$).

A very important property of elliptic pseudo-differential operators on smooth manifolds is the existence of a parametrix, guaranteed by the next theorem (see / $\bar{H} \phi$ rmander, L., 19657, theorem 4.8
or / Nirenberg, L., 19707, p.157).
Theorem 3.9
Let M be a smooth manifold, let $\pi_{1}: E \rightarrow M$ and $\pi_{2}: F \rightarrow M$ be smooth vector bundles over M, and let $P: C_{o}^{\infty}(E) \rightarrow C^{\infty}(F)$ be an elliptic pseudo-differential operator of order s. Then for every $f \in C_{o}^{\infty}(M)$, there exists a pseudo-differential operator $Q: C_{0}^{\infty}(F) \rightarrow C^{\infty}(E)$ of order $-s$ such that for any open set U in M on which f is identically equal to 1 , the operators

$$
\begin{aligned}
& (Q f P-I) \mid U: C_{o}^{\infty}(E \mid U) \rightarrow C^{\infty}(E \mid U) \\
& (P f Q-I) \mid U: C_{o}^{\infty}(F \mid U) \rightarrow C^{\infty}(F \mid U)
\end{aligned}
$$

are smoothing operators. In particular, if M is compact then there exists a parametrix $Q: C_{o}^{\infty}(F) \rightarrow C^{\infty}(E)$ of P such that the operators QP - I and PQ - I are smoothing operators.

§4. Pseudo-Differential Operators on Euclidean Space

In this section, we study some of the properties of pseudodifferential operators on open sets in \mathbb{R}^{n}. We degin by establishing a convenient notation and using it to reformulate some of the standand properties of pseudo-differential operators on open sets in \mathbb{R}^{11}. The rest of the section is devoted to showing that if $p: C_{o}^{\infty}(\Omega) \rightarrow c^{\infty}(\Omega)$ is a pseudo-differential operator of order M, defined on an open set Ω of \mathbb{R}^{n}, and if $f, g \in C_{o}^{\infty}(\Omega)$, then $g P f$ extends to continuous 1inear operators

$$
\begin{aligned}
& \operatorname{gPf}: L_{k}^{p}\left(\mathbb{R}^{n}\right) \rightarrow L_{k-m}^{p}\left(\mathbb{R}^{n}\right), 1<p<\infty, k \in \mathbb{Z}, \\
& \operatorname{gPf}: C^{k, \alpha}\left(\mathbb{R}^{n}\right) \rightarrow C^{k-m, \infty}\left(\mathbb{R}^{n}\right), 0<\alpha<1, k \geqslant \max (m, 0) .
\end{aligned}
$$

First we make a number of definitions. Except for the definition of $\sum^{m}(\Omega)$, all the following definitions are taken from / $\bar{N} i r e n b e r g, L .$, 1970 $\overline{/}$ or / $\mathrm{H} b r m a n d e r, ~ L ., ~ 1967 \overline{7}$.

Definitions 4.1
Let Ω be an open set in \mathbb{R}^{n} and let m be a real number. We denote by $s^{m}(\Omega)$ the set of all $p \in C^{\infty}\left(\Omega \times \mathbb{R}^{n}\right)$ such that for every compact set $k \subset \Omega$ and for all multi indices α and β, there exists a constant $C, \boldsymbol{\beta}, \mathrm{~K}$ such that

$$
\left|\partial_{x}^{\alpha} \partial_{\xi}^{\beta} p(x, \xi)\right| \leqslant c_{\alpha, \beta, k}(1+|\xi|)^{m-|\beta|}
$$

We denote by $\sum^{m}(\Omega)$ the subset of $s^{m}(\Omega)$ consisting of all $p \in S^{m}(\Omega)$ which possess an asymptotic expansion

$$
\mathrm{p}(\mathrm{x}, \xi) \sim \sum_{j=0}^{\infty} \mathrm{p}_{j}(\mathrm{x}, \xi)
$$

as $|\xi| \rightarrow \infty$, where p_{j} is homogeneous of degree s_{j} in ξ, with the property that if $\eta: \mathbb{R}^{n} \rightarrow \overline{\overline{0}}, \overline{1}$ is any smooth function that vanishes in a neighbourhood of 0 and is identically equal to 1 outside some compact set in \mathbb{R}^{n}, we have that

$$
p(x, \xi)-\sum_{j=1}^{N-1} \eta(\xi) p_{j}(x, \xi) \in s^{S_{N}}(\Omega)
$$

Given $p \in S^{m}(\Omega)$ we define a linear operator
$\mathrm{p}(\mathrm{x}, \mathrm{D}): \mathrm{C}_{0}^{\infty}(\Omega) \rightarrow \mathrm{c}^{\infty}(\Omega)$ by the identity

$$
p(x, D) u=(2 \pi)^{-n} \int e^{i x . \xi} p(x, \xi) \hat{u}(\xi) d \xi .
$$

Given a strictly decreasing sequence m_{j} converging to $-\infty$ as $j \rightarrow \infty$ and given $p \in s^{m}(\Omega)$ and $q_{j} \in S^{m} j(\Omega)$, we write

$$
p \sim \sum_{j} q_{j}
$$

if for all $\mathrm{N} \geqslant 0$

$$
p-\sum_{j<N} q_{j} \in S^{m_{N}} .
$$

Also if $p \in \Sigma^{m}(\Omega)$, we write

$$
p \sim \sum_{j} p_{j}
$$

to denote the asymptotic expansion of p in functions positively homogeneous in ξ.

Let Ω be an open set in \mathbb{R}^{n} and let $p: c_{o}^{\infty}(\Omega) \rightarrow c^{\infty}(\Omega)$ be a continuous linear operator. Then P is a pseudo-differential operator in the sense of HHrmander ($/ \bar{H} H$ rmander, L., 1965 $\overline{7}$) if and only if for every $f \in C_{o}(\Omega)$, there exists $p_{f} \in \Sigma^{m}(\Omega)$ such that

$$
\mathrm{p}(\mathrm{fu})=\mathrm{p}_{\mathrm{f}}(\mathrm{x}, \mathrm{D}) \mathrm{u} .
$$

Also P is a pseudo-differential operator in the sense of kohn and Nirenberg (/Kohn, J.J. and Nirenberg, L., 1965 $\overline{7}$) if and only if there exists $p \in \Sigma^{m}(\Omega)$ such that

$$
\mathrm{Pu}=\mathrm{p}(\mathrm{x}, \mathrm{D}) \mathrm{u} .
$$

We may express the asymptotic expansions of compositions and adjoints of pseudo-differential operators, due to Kohn and Nirenberg, as follows. Let $p \in \sum^{m_{1}}(\Omega), q \in \sum^{m_{2}}(\Omega)$ and let $p=p(x, D)$, $Q=q(x, D)$ be the corresponding pseudo-differential operators, and let $f \in C_{0}^{\infty}(\Omega)$. Then there exist symbols $r \in \sum^{m_{1}+m_{2}}$ and $t_{p} \in \sum^{m}$, such that

$$
\begin{aligned}
& \mathrm{QfPu}=r(x, D) u, \\
& t_{P u}=t_{p(x, D)} u,
\end{aligned}
$$

and r and t_{p} have asymptotic expansions

$$
\begin{aligned}
& r(x, \xi) \sim \sum_{\alpha} \frac{(-i)^{|\alpha|}}{\alpha!} \partial_{\xi}^{\alpha} q(x, \xi) \partial_{x}^{\alpha}(f(x) p(x, \xi)) \\
& t_{p(x, \xi)} \sim \sum_{\alpha} \frac{i|\alpha|}{\alpha!} \partial_{x}^{\alpha} \partial_{\xi}^{\alpha} p(x,-\xi)
\end{aligned}
$$

Indeed, if $p \in S^{m_{1}}(\Omega)$ and $q \in S^{m_{2}}(\Omega)$ then $Q f P=r(x, D)$ and $t_{p}=t_{p(x, D)}$ for some $r \in S^{m}+m_{2}(\Omega)$ and $\left.t_{p \in S^{m}}^{m_{1}} \Omega\right)$ and r and ${ }^{t} \mathrm{p}$ have asymptotic expansions as above (see /HBrmander, L., $1967 \overline{/}$ or /Nirenberg, L., 19707).

Let $\left(m_{j}\right)$ be a strictly decreasing sequence of real numbers converging to $-\infty$ and $1 \mathrm{ct} q_{j} \in S^{m_{j}}(\Omega)$. Then there exists $p \in S^{m_{o}}(\Omega)$ such that
$p \sim \sum_{j} q_{j}$.
If $q_{j} \in \sum^{m_{j}}(\Omega)$, then $p \in \sum^{m_{o}}(\Omega)$. Also, given $p \in s^{m}(\Omega)$, $p(x, D)$ is a smoothing operator if and only if $p \sim 0$ (see /Hormander, L., 19677 of /Nirenberg, L., $197 \underline{7}$ for proofs).

Note also that if $p \in S^{m}\left(\mathbb{R}^{n}\right)$, then $p(x, D)$ is translationinvariant if and only if $p(x, \xi)$ is a function of ξ alone. For if we define $\tau_{h}: C^{\infty}\left(\mathbb{R}^{n}\right) \rightarrow C^{\infty}\left(\mathbb{R}^{n}\right)$ by the identity
$\left(\tau_{h} u\right)(x)=u(x-h)$
then

$$
\left(\tau_{\mathrm{h}} \mathrm{u}\right)^{\wedge}(\xi)=\mathrm{d}^{-i h} \cdot \xi \hat{\mathrm{u}}(\xi)
$$

hence

$$
\tau_{h}^{-1} p\left(x, \text { w) } \tau_{h}=p(x+h, D)\right.
$$

so that.

$$
p(x+h, D)-p(x, D)=0
$$

and thus

$$
p(x+h, \boldsymbol{\xi})-p(x, \xi)=0 .
$$

We write $p(D)=p(x, D)$ whenever p is translation-invariant, and we then have that

$$
(p(D) u)^{\wedge}=p(\xi) \hat{u}
$$

Given a pseudo-differential operator $P: C_{o}^{\infty}\left(\mathbb{R}^{n}\right) \rightarrow C^{\infty}\left(\mathbb{R}^{n}\right)$ and functions $f, g \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$, we wish to know when the pseudo-differential operator gPf: $\mathrm{C}_{\mathrm{o}}^{\infty}\left(\mathbb{R}^{n}\right) \rightarrow \mathrm{C}^{\infty}\left(\mathbb{R}^{n}\right)$ extends to a continuous linear operator between Sobolev or HBlder spaces. First we will prove a number of lemmas in preparation for the study of this question.

Lemma 4.2

Let $\varphi \in L_{l o c}^{1}\left(\mathbb{R}^{n}\right)$ and let $P: c_{o}^{\infty}\left(\mathbb{R}^{n}\right) \rightarrow C^{\infty}\left(\mathbb{R}^{n}\right)$ be the linear operator defined by the identity

$$
P u=\varphi * u
$$

where $\varphi * u$ denotes the convolution of φ and u. Then, for all $f, g \in C_{o}^{\infty}\left(\mathbb{R}^{n}\right)$, for all non-negative integers k, for all $\left.p \in I \overline{1}, \infty\right)$ and for all $\alpha \in \underline{\overline{0}}, 1)$, gPf extends to continuous linear operators

$$
\begin{aligned}
& \text { gPf }: L_{k}^{p}\left(\mathbb{R}^{n}\right) \rightarrow L_{k}^{p}\left(\mathbb{R}^{n}\right) \\
& \text { gPf }: C^{k, \alpha}\left(\mathbb{R}^{n}\right) \rightarrow C^{k, \alpha}\left(\mathbb{R}^{n}\right) \\
& \underline{\text { Proof }}
\end{aligned}
$$

Given $f, g \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$, let
$R=\sup \{|x-y|: x \in \operatorname{supp} g, y \in \operatorname{supp} f\}$
and let $\eta \in C_{o}^{\infty}\left(\mathbb{R}^{n}\right)$ be a smooth function with compact support with the property that $\eta(x)=1$ for all x satisfying $|x| \leq R$. Then, for all $u C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$

```
gP(fu) = g(\varphi*(fu))=g((\eta\varphi)*(fu)).
```

Thus it suffices to prove that $p_{0}: C_{o}^{\infty}\left(\mathbb{R}^{n}\right) \longrightarrow C^{\infty}\left(\mathbb{R}^{n}\right)$ extends to
continuous linear operators

$$
\begin{aligned}
& P_{o}: L_{k}^{p}\left(\mathbb{R}^{n}\right) \rightarrow L_{k}^{p}\left(\mathbb{R}^{n}\right) \\
& P_{o}: C^{k, \alpha}\left(\mathbb{R}^{n}\right) \rightarrow c^{k, \alpha}\left(\mathbb{R}^{n}\right),
\end{aligned}
$$

where $\mathcal{Y}=\eta \wp$ and $P_{o} u=\psi * u$. But $\psi \in L^{\mathbf{1}}\left(\mathbb{R}^{n}\right)$ and thus by Young's theorem on convolutions

$$
\|\psi \operatorname{si}\|_{L^{p}} \leqslant\|\psi\|_{L^{\prime}}\|u\|_{L^{p}}
$$

Also

$$
\partial^{\beta}(\psi * u)=\psi * \partial^{\beta} u
$$

for all multi indices β, hence

$$
\|\psi * u\|_{L_{k}^{\prime}} \leqslant\|\psi\|_{L^{\prime}}\|u\|_{L_{k}^{p}} .
$$

Thus P_{o} extends to a continuous linear operator

$$
P_{o}: L_{k}^{p}\left(\mathbb{R}^{n}\right) \rightarrow L_{k}^{P}\left(\mathbb{R}^{n}\right)
$$

A1 so

$$
\sup |\psi * u| \leqslant\|\psi\|_{L^{\prime}} \sup |u|
$$

hence P_{o} extends to a continuous linear operator

$$
P_{0}: C^{k}\left(\mathbb{R}^{n}\right) \rightarrow C^{k}\left(\mathbb{R}^{n}\right)
$$

For $u \in C^{\boldsymbol{\alpha}}\left(\mathbb{R}^{n}\right)$ let

$$
|u|_{\alpha}=\sup _{x, y \in \mathbb{R}^{n}} \frac{|u(x)-u(y)|}{|x-y|^{\alpha}}
$$

Then if $v=\psi * u$

$$
\begin{aligned}
|v(x+h)-v(x)| & \leqslant \int|\psi(y)||u(x+h-y)-u(x-y)| d y \\
& \leqslant h^{\alpha}|u|_{\alpha}\|\psi\|_{L^{\prime}}
\end{aligned}
$$

hence

$$
|v|_{\alpha} \leq|u|_{\alpha}\|\psi\|_{L^{\prime}}
$$

and thus

$$
\begin{aligned}
& \|\psi \cdot u\|_{c^{\alpha}} \leqslant\|\psi\|_{L^{\prime}}\|u\|_{c^{\alpha}} \\
& \|\psi \cdot u\|_{C^{k, \alpha}} \leqslant\|\psi\|_{L^{\prime}}\|u\|_{c^{k, \alpha}}
\end{aligned}
$$

hence P_{0} extends to a continuous linear operator

$$
P_{o}: c^{k, \alpha}\left(\mathbb{R}^{n}\right) \rightarrow c^{k, \alpha}\left(\mathbb{R}^{n}\right)
$$

$\underline{\text { Lemma } 4.3}$
Let Ω be an open set in \mathbb{R}^{n}. Let $P: c_{o}^{\infty}(\Omega) \rightarrow c^{\infty}(\Omega L)$
be the translation-invariant linear operator

$$
\mathrm{Pu}=\mathrm{p}(\mathrm{D}) \mathrm{u}
$$

where $p \in S^{m}(\Omega)$, and let $Q: c_{o}^{\infty}(\Omega) \rightarrow c^{\infty}(\Omega)$ be the linear operator

$$
\mathrm{Qu}=\mathrm{q}(\mathrm{x}, \mathrm{D}) \mathrm{u}
$$

where $q \in S^{m} \mathbf{2}(\Omega)$. Then

$$
\mathrm{QP}=\mathrm{R}
$$

$$
R=r(x, D) u,
$$

where $r \quad s^{m_{1}+m_{2}}(\Omega)$ and

$$
r(x, \xi)=q(x, \xi) p(\xi)
$$

If $p \in \sum^{m} 1(\Omega)$ and $q \in \sum^{m_{2}}(\Omega)$, then $r \in \sum_{1} m_{1}+m_{2}(\Omega)$.
Moreover, if gPA and gQf extend to continuous linear operators

$$
\begin{aligned}
& g P f: L_{k}^{p}(\Omega) \rightarrow L_{k-L_{1}}^{p}(\Omega),\left(\forall k \geqslant L_{1}\right), \\
& g \text { gif }: L_{k}^{p}(\Omega) \rightarrow L_{k-L_{2}}^{p}(\Omega),\left(\forall k \geqslant L_{2}\right),
\end{aligned}
$$

for all $f, g \in C_{o}^{\infty}(\Omega)$, then $g R f$ extends to a continuous linear operator
$\operatorname{gRf}: \operatorname{L}_{\mathrm{k}}^{\mathrm{p}}(\Omega) \rightarrow \mathrm{L}_{\mathrm{k}-\mathrm{l}}^{\mathrm{p}}(\Omega) \quad(\forall \mathrm{k} \geqslant \mathrm{l})$
for all $f, g \in C_{o}^{\infty}(\Omega)$, where $\mathbf{L}=\mathbf{L}_{1}+\mathbf{L}_{\mathbf{2}}$. Similarly if gif and
gQf extend to continuous linear operators

$$
\begin{array}{ll}
\operatorname{gPf}: c^{k, \alpha}(\Omega) \rightarrow c^{k-L_{1}, \alpha}(\Omega), & \left(\forall k \geqslant L_{1}\right), \\
\operatorname{gQf}: c^{k, \alpha}(\Omega) \rightarrow c^{k-L_{2}, \alpha}(\Omega), & \left(\forall k \geqslant L_{2}\right),
\end{array}
$$

for all $f, g \in C_{o}^{\infty}(\Omega)$, then $g R f$ extends to a continuous linear operator

$$
\operatorname{gRf}: c^{k, \alpha}(\Omega) \rightarrow c^{k-l, \alpha}(\Omega), \quad(\forall k \geqslant l)
$$

for all $f, g \in C_{o}^{\infty}(\Omega)$, where $L=L_{1}+l_{2}$.

Proof

It is immediate that
$Q P u=r(x, D) u$
where

$$
r(x, \xi)=q(x, \xi) p(\xi)
$$

and that i.f $p \in S^{m_{1}}(\Omega)$ and $q \in S^{m_{2}}(\Omega)$ then $r \in S^{m_{1}}+m_{2}(\Omega)$ and that if $p \in \Sigma^{m_{1}}(\Omega)$ and $q \in \sum^{m_{2}}(\Omega)$, then $r \in \Sigma^{m_{1}}+m_{2}(\Omega)$. Thus it only remains to check that gRf extends to the given linear operators between Sobolev and Hblder spaces, for all $\mathrm{f}, \mathrm{g} \in \mathrm{C}_{\mathrm{o}}^{\infty}(\Omega)$. Choose $h \in C_{o}^{\infty}(\Omega)$ such that $h \equiv 1$ on suppg and define $\mathrm{T}: \mathrm{c}_{\mathrm{o}}^{\infty}(\Omega) \rightarrow \mathrm{c}^{\infty}(\Omega)$ by the identity

$$
T=\mathrm{gQh}^{2} \mathrm{P} .
$$

Then $T=t(x, D)$ for some $t \in S^{m_{1}}+m_{2}(\Omega)$ and

$$
\begin{aligned}
t(x, \xi) & \sim \sum_{\alpha} \frac{(-i)}{\alpha!} \partial_{\xi}^{\alpha}(g(x) q(x, \xi)) \partial_{x}^{\alpha}\left(h(x)^{2} p(\xi)\right) \\
& \sim g(x) q(x, \xi) p(\xi)
\end{aligned}
$$

by the asymptotic expansion of Kohn and Nirenberg (cf. the remarks after definitions 4.1).

$$
\mathrm{gR}-\mathrm{T}: \mathrm{c}_{\mathrm{o}}^{\infty}(\Omega) \rightarrow \mathrm{c}^{\infty}(\Omega)
$$

is a smoothing operator, and hence gRf - Tf extends to continuous linear operators

$$
\begin{aligned}
& \operatorname{gRf}-\operatorname{Tf}: L_{k}^{p}(\Omega) \rightarrow c_{o}^{\infty}(\Omega) \\
& \operatorname{gRf}-\operatorname{Tf}: c^{k, \infty}(\Omega) \rightarrow c_{o}^{\infty}(\Omega)
\end{aligned}
$$

But $T f=(g Q h)(h P f)$, hence $T f$ extends to the required linear operators between Sobolev and Holder spaces, and hence so does gRe.

The next result is taken from /Stein, E.M. and Weiss, G., 1972; theorem IV.4.IT (but note that the authors adopt a different definition of the Fourier transform from that adopted here).

Lemma 4.4
Let $s \in\left(0, \frac{n}{2}\right)$ and let $u: \mathbb{R}^{n} \backslash\{0\} \rightarrow \mathbb{R}$ be the function
$u(x)=|x|^{s-n}$.
Then the Fourier transform \hat{u} of u is given by

$$
\hat{u}(\xi)=\gamma_{s}|\xi|^{-s}
$$

where

$$
\gamma_{s}=\pi^{n / 2} 2^{s} \frac{\Gamma\left(\frac{s}{2}\right)}{\Gamma\left(\frac{n-s}{2}\right)}
$$

Proof
Let $\varphi \in C_{o}^{\infty}\left(\mathbb{R}^{n}\right)$ be identically equal to 1 on a neighbourhood of 0 . Then $u=u_{1}+u_{2}$, where $u_{1}=\varphi u$ and $u_{2}=(1-\varphi) u, u_{1} \in L^{\mathbf{1}}\left(\mathbb{R}^{n}\right)$ and $u_{2} \in L^{2}\left(\mathbb{R}^{n}\right)$. Then $\hat{u}_{1} \in C^{o}\left(\mathbb{R}^{n}\right)$ and $\hat{u}_{2} \in L^{2}\left(\mathbb{R}^{n}\right)$, using the Plancherel theorem. Hence $\hat{u} \in L_{l o c}^{2}\left(\mathbb{R}^{n}\right)$. But u is homogeneous of degree $s-n$, hence \hat{u} is a tempered distribution, homogeneous of degree $-s$. Hence

$$
\hat{u}(\xi)=\gamma_{s}|\xi|^{-s}
$$

for some constant γ_{s}. Now if $e \in S\left(\mathbb{R}^{n}\right)$ is a rapidly decreasing test function, then

$$
\langle\mathrm{u}, \hat{\mathrm{e}}\rangle=\langle\hat{\mathrm{u}}, \mathrm{e}\rangle
$$

Let

$$
e(\xi)=e^{-1 / 2|\xi|^{2}}
$$

Then

$$
e(x)=(2 \pi)^{\frac{n}{2}} e^{-1 / 2}|x|^{2}
$$

hence

$$
(2 \pi)^{n / 2} \int|x|^{s-n} e^{-1 / 2}|x|^{2} d x \cdots \gamma_{s} \int|\xi|^{-s} e^{-1 / 2|\xi|^{2}} d \xi
$$

and thus

$$
(2 \pi)^{n / 2} \omega_{n-1} \int_{0}^{\infty} r^{s-n} e^{-1 / 2 r^{2}} r^{n-1} d r=\gamma_{s} \omega_{n-1} \int_{0}^{\infty} r^{-s} e^{1 / 2 r^{2}} r^{n-1} d r
$$

where ω_{n-1} is the volume of the unit ($n-1$) - sphere. Hence

$$
(2 \pi)^{\frac{n}{2}} 2^{\frac{s}{2}-1} \Gamma\left(\frac{s}{2}\right)=\gamma_{s} 2^{\frac{n-s}{2}-1} \Gamma\left(\frac{n-s}{2}\right)
$$

hence

$$
\gamma_{s}=\pi^{\frac{n}{2}} 2^{s} \frac{\Gamma\left(\frac{s}{2}\right)}{\Gamma\left(\frac{n-s}{2}\right)}
$$

Lemma 4.5

Let s be a positive real number, let $\eta: \mathbb{R}^{n} \rightarrow \overline{0}, \bar{T}$ be a smooth function which is identically equal to 0 in a neighbourhood of 0 and is identically equal to l outside a compact set, and let $Z_{-S}: C_{o}^{\infty}\left(\mathbb{R}^{n}\right) \rightarrow C^{\infty}\left(\mathbb{R}^{n}\right)$ be the translation-invariant pseudodifferential operator defined by the identity

$$
\left(Z_{-s} u\right)^{\wedge}(\xi)=\eta(\xi)|\xi|^{-s} \hat{u}(\xi)
$$

Then for all functions $f, g \in C_{o}^{\infty}\left(\mathbb{R}^{n}\right), g_{-S} f$ extends to continuous
linear operators

$$
\begin{aligned}
& g Z_{-S} f: L_{k}^{p}\left(\mathbb{R}^{n}\right) \rightarrow L_{k}^{p}\left(\mathbb{R}^{n}\right) \\
& g Z_{-s} f: c^{k, \alpha}\left(\mathbb{R}^{n}\right) \rightarrow c^{k, \alpha}\left(\mathbb{R}^{n}\right)
\end{aligned}
$$

for all $p \in \underline{\overline{1}}, \infty$) and $\alpha \in \overline{0}, 1)$, and for all non-negative integers k.
Proof

It suffices to consider the case when $s \in\left(0, \frac{n}{2}\right)$, since for all $s \in(0, \infty)$ there exists an integer m such that

$$
0<\frac{s}{m}<\frac{n}{2}
$$

and then

$$
Z_{-s}^{u}=Q^{m} u
$$

where

$$
(Q u)^{\wedge}(\xi)=(\eta(\xi))^{\frac{1}{m}}|\xi|^{-\frac{s}{m}} \hat{u}(\xi)
$$

and if goof extends to the required continuous linear operators
between Sobolev and Holder spaces for all $f, g \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$, then so does $g Z_{-s} f$ by Lemma 4.3. Thus we now restrict ourselves to the case where $s \in\left(0, \frac{n}{2}\right)$.

Let $c_{1}: \mathbb{R}^{n} \backslash\{0\} \rightarrow \mathbb{R}$ and $c_{2}: \mathbb{R}^{n} \backslash\{0\} \rightarrow \mathbb{R}$ be the functions defined by

$$
\begin{aligned}
& c_{1}(\xi)=|\xi|^{-s} \\
& c_{2}(\xi)=(1-\eta(\xi))|\xi|^{-s}
\end{aligned}
$$

Then

$$
\eta(\xi)|\xi|^{-s}=c_{1}-c_{2}
$$

since $s<\frac{n}{2}, c_{2} \in L_{\text {oc }}^{2}\left(\mathbb{R}^{n}\right)$ and has compact support. Hence

$$
\left(1+|\xi|^{2}\right)^{k / 2} c_{2} \in L^{2}\left(\mathbb{R}^{n}\right)
$$

for all k, and hence $c_{2}=\hat{\varphi}_{2}$ where

$$
\varphi_{\mathbf{2}} \in \mathrm{L}_{\mathbf{k}}^{2}\left(\mathbb{R}^{\mathrm{n}}\right)
$$

for all k, by the Plancherel theorem. Thus by the Sobolev embedding theorem

$$
\varphi_{2} \in C^{\infty}\left(\mathbb{R}^{n}\right)
$$

Also $c_{1}=\hat{\boldsymbol{\varphi}}_{1}$, where

$$
\begin{aligned}
& \varphi_{1}(x)=\gamma_{s}^{-1}|x|^{s-n} \\
& \gamma_{s}=\pi^{\frac{n}{2}} 2_{2}^{s} \frac{\Gamma\left(\frac{s}{2}\right)}{\Gamma\left(\frac{n-s}{2}\right)}
\end{aligned}
$$

by Lemma 4.4. Since $s>0$

$$
\varphi \in \mathrm{L}_{\mathrm{loc}}^{\mathrm{l}}\left(\mathbb{R}^{\mathrm{n}}\right)
$$

Hence

$$
\varphi \in \operatorname{L}_{1 o c}^{l}\left(\mathbb{R}^{n}\right)
$$

where $\varphi=\varphi_{1}-\varphi_{2}$. But then

$$
z_{-s} u=\varphi * u
$$

where $\varphi * u$ is the convolution of φ and u. Hence $g Z_{-s} f$ extends to the required continuous linear operators between Sobolev and H H lder spaces, for all $f, g \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ by Lemma 4.2 .
\square

Lemma 4.6

Let m be an integer, let $\eta: \mathbb{R}^{n} \rightarrow \overline{0}, 17$ be a smooth function which is identically equal to 0 in a neighbourhood of 0 and is identically equal to 1 outside a compact set, and let $Z_{m}: C_{o}^{\infty}\left(\mathbb{R}^{n}\right) \rightarrow C^{\infty}\left(\mathbb{R}^{n}\right)$ be the translation-invariant pseudodifferential operator defined by the identity

$$
\left(z_{m} u\right)^{\wedge}(\xi)=\eta(\xi)|\xi|^{m} \hat{u}(\xi)
$$

Then for all functions $f, g \in C_{o}^{\infty}\left(\mathbb{R}^{n}\right), g Z_{m} f$ extends to continuous linear operators

$$
\begin{aligned}
& g Z_{m} f: L_{k}^{p}\left(\mathbb{R}^{n}\right) \rightarrow L_{k-m}^{p}\left(\mathbb{R}^{n}\right), \quad(\forall k \geqslant m), \\
& g S_{m} f: c^{k, \alpha}\left(\mathbb{R}^{n}\right) \rightarrow c^{k-m, \alpha}\left(\mathbb{R}^{n}\right), \quad(\forall k \geqslant m)
\end{aligned}
$$

for all $p \in(1, \infty)$ and $\alpha \in(0,1)$.
Proof
It suffices to consider the cases $m \in\{-1,0,1\}$, since if $m \neq 0$ then

$$
\mathrm{Z}_{\mathrm{m}}^{\mathrm{u}}=\mathrm{Q}_{ \pm}^{|\mathrm{m}|_{\mathrm{u}}}
$$

where

$$
\left(\mathrm{Q}_{ \pm} \mathrm{u}\right)^{\wedge}=\left(\eta(\xi)^{\frac{1}{1 / m}}|\xi|^{ \pm} 1 \hat{u}(\xi)\right.
$$

and if $\Omega_{ \pm} f$ extends to the required continuous operators between Sobolev and Holder spaces, for all $f, g \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$, then so does $g_{\mathrm{m}} \mathrm{f}$ for a $11 \mathrm{~m} \in \mathbb{Z}$, by lemma 4.3 .

$$
\begin{aligned}
& \text { If } m-0 \\
& \left(z_{o} u\right)^{\wedge}(\xi)=\hat{u}(\xi)-(1-\eta(\xi)) \hat{u}(\xi)
\end{aligned}
$$

But since $1-\eta(\xi)$ is a smooth function with compact support, the last term is a smoothing operator, hence

$$
Z_{0}{ }^{u}=u-\varphi * u
$$

for some $\varphi \in C^{\infty}\left(\mathbb{R}^{n}\right)$, hence $\varepsilon Z_{o} f$ extends to the required continuous lincar operators, for all $f, g \in C_{o}\left(\mathbb{R}{ }^{n}\right)$, by Lemma 4.2 .

Next we consider the case $m=-1$. Note that

$$
\left(\frac{\partial}{\partial x_{j}}\left(z_{-1} u\right)\right)^{\wedge}(\xi)=i \xi_{j}\left(z_{-1} u\right)^{\wedge}--\eta(\xi)\left(-i \frac{\xi_{j}}{|\xi|} u\right)
$$

But

$$
-i \frac{\xi_{j}}{|\xi|} \hat{u}=\left(R_{j} u\right)^{\wedge}
$$

where $K_{j}: \mathbb{C}_{o}^{\infty}\left(\mathbb{R}^{n}\right) \rightarrow C^{\infty}\left(\mathbb{R}^{n}\right)$ is the Riesz transform

$$
R_{j} u=\frac{\Gamma\left(\frac{n+1}{2}\right)}{\Pi^{\frac{r_{2}+1}{2}}} \text { P.V. } \int \frac{x_{j}-y_{j}}{|x-y|^{n+1}} u(y) d y
$$

Let ${ }_{\mathrm{c}}^{\mathrm{j}}: \mathbb{R}^{\mathrm{n}} \backslash\{0\} \rightarrow \mathbb{R}$ be the function defined by

$$
e_{j}(\xi)=-i(1-\eta(\xi)) \frac{\xi j}{|\xi|}
$$

$$
\left(1+|\xi|^{2}\right)^{\frac{k}{2}} \quad c_{j} \in L^{2}\left(\mathbb{R}^{n}\right)
$$

and hence $c_{j} \cdots \hat{\varphi}_{j}$, where

$$
\varphi_{j} \in L_{k}^{2}\left(\mathbb{R}^{n}\right)
$$

for all k, by the Plancherel theorem. Thus by the Sobolev embedding theorem

$$
\varphi_{j} \in C^{\infty}\left(\mathbb{R}^{n}\right)
$$

Thus

$$
\frac{\partial}{\partial x_{j}}\left(z_{-1} u\right)=-R_{j} u+\varphi_{j} * u
$$

Let $f, g \in C_{o}^{\infty}\left(\mathbb{R}^{n}\right)$. Then

$$
\frac{\partial}{\partial x_{j}}\left(g Z_{-1}(f u)\right)=\frac{\partial g}{\partial x_{j}} z_{-1}(f u)-g R_{j}(f u)+g\left(\varphi_{j} *(f u)\right)
$$

Now $\left(\partial_{j} g\right) Z_{-1} f$ extends to continuous 1 inear operators

$$
\begin{aligned}
& \left(\partial_{j} g\right) Z_{-1} f: L_{k}^{p}\left(\mathbb{R}^{n}\right) \rightarrow L_{k}^{p}\left(\mathbb{R}^{n}\right) \\
& \left(\partial_{j} g\right) Z_{-1} f: C^{k, \alpha}\left(\mathbb{R}^{n}\right) \rightarrow C^{k, \alpha^{\prime}}\left(\mathbb{R}^{n}\right)
\end{aligned}
$$

by Lemma 4.5. Also $\varphi_{j} \in L_{\text {loc }}^{l}\left(\mathbb{R}^{n}\right)$ hence if $\Gamma: C_{o}^{\infty}\left(\mathbb{R}^{n}\right) \rightarrow C^{\infty}\left(\mathbb{R}^{n}\right)$ is defined by

$$
\mathrm{Tu}=\varphi_{\mathrm{j}}^{*} \mathrm{u}
$$

then gTf extends to continuous lincar operators

$$
\begin{aligned}
& \operatorname{gTf}: \operatorname{L}_{k}^{p}\left(\mathbb{R}^{n}\right) \rightarrow L_{k}^{p}\left(\mathbb{R}^{n}\right) \\
& \operatorname{gTf}: c^{k, \alpha}\left(\mathbb{R}^{n}\right) \rightarrow c^{k, \alpha}\left(\mathbb{R}^{n}\right)
\end{aligned}
$$

by Lemma 4.2. By the theorems of Calderon and Zygmund (theorems 2.2 and 2.3) the Riesz operators extend to continuous linear operators

$$
\begin{aligned}
& \mathrm{R}_{j}: \mathrm{L}_{\mathrm{k}}^{\mathrm{p}}\left(\mathbb{R}^{\mathrm{n}}\right) \rightarrow \mathrm{L}_{k}^{\mathrm{p}}\left(\mathbb{R}^{\mathrm{n}}\right) \\
& \mathrm{R}_{j}: \mathrm{c}^{\mathrm{k}, \alpha_{(}}\left(\mathbb{R}^{n}\right) \rightarrow c^{k, \alpha}\left(\mathbb{R}^{\mathrm{n}}\right)
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \left\|\frac{\partial}{\partial x_{j}}\left(g Z_{-1}(f u)\right)\right\|_{L_{k}^{p}} \leqslant A_{p, k}\|u\|_{L_{k}^{p}} \\
& \left\|\frac{\partial}{\partial x_{j}}\left(g Z_{-1}(f u)\right)\right\|_{c^{k, \alpha}} \leqslant A_{k, \alpha}\|u\|_{c^{k}, \alpha}
\end{aligned}
$$

for some constants $A_{p, k}$ and $A_{k, \alpha}$. Hence $g Z_{-1} f$ extends to continuous linear operators

$$
\begin{aligned}
& g Z_{-1}^{f}: L_{k}^{p}\left(\mathbb{R}^{n}\right) \rightarrow L_{k+1}^{p}\left(\mathbb{R}^{n}\right), \\
& g Z_{-1} f: c^{k, \alpha}\left(\mathbb{R}^{n}\right) \rightarrow c^{k+1}, \alpha_{\left(\mathbb{R}^{n}\right),}
\end{aligned}
$$

for all $p \in(1, \infty)$, all $\alpha \in(0,1)$ and for all non-negative integers k.
Finally we consider the case $m=1$.

$$
(z, u)^{\wedge}=\eta(\xi)|\xi| \hat{u}(\xi)
$$

$$
=\sum_{j=1}^{n} \eta(\xi)\left(i \xi_{j}\right)\left(-i \frac{\xi j}{|\xi|}\right) \hat{u}
$$

$$
=\left(\sum_{j=1}^{n} \frac{\partial}{\partial x_{j}}\left(R_{j} u\right)\right)^{\wedge}-(1-\eta(\xi))|\xi| \hat{u}(\xi)
$$

Now $(1-\eta(\xi))|\xi|=\hat{\varphi}(\xi)$ for some $\varphi \in c^{\infty}\left(\mathbb{R}^{n}\right)$, as before.
Hence

$$
z_{i} u=\sum_{j=1}^{n} \frac{\partial}{\partial x_{j}}\left(R_{j} u\right)-\varphi * u .
$$

If $T: C_{o}^{\infty}\left(\mathbb{R}^{n}\right) \rightarrow C^{\infty}\left(\mathbb{R}^{n}\right)$ is defined by

$$
\mathrm{Tu}=\varphi: \mathrm{u}
$$

then for all $f, g \in C_{o}^{\infty}\left(\mathbb{R}^{n}\right)$, gif extends to continuous linear operators

$$
\begin{aligned}
& \operatorname{gTf}: L_{k}^{p}\left(\mathbb{R}^{n}\right) \rightarrow L_{k}^{p}\left(\mathbb{R}^{n}\right), \\
& \operatorname{gTf}: c^{k, \alpha}\left(\mathbb{R}^{n}\right) \rightarrow c^{k, \alpha\left(\mathbb{R}^{n}\right)}
\end{aligned}
$$

and $\partial_{j} \bullet R_{j}$ extends to continuous linear operators

$$
\begin{aligned}
& \partial_{j} \circ R_{j}: L_{k}^{p}\left(\mathbb{R}^{n}\right) \rightarrow L_{k-1}^{p}\left(\mathbb{R}^{n}\right) \\
& \partial_{j} \circ R_{j}: c^{k}, \alpha\left(\mathbb{R}^{n}\right) \rightarrow c^{k-1}, \propto\left(\mathbb{R}^{n}\right)
\end{aligned}
$$

Hence $g Z_{1} f$ extends to continuous linear operators

$$
\begin{aligned}
& g Z_{1} f: L_{k}^{p}\left(\mathbb{R}^{n}\right) \rightarrow L_{k-1}^{p}\left(\mathbb{R}^{n}\right), \\
& g Z_{1} f: c^{k, \propto}\left(\mathbb{R}^{n}\right) \rightarrow c^{k-1, \alpha^{\prime}}\left(\mathbb{R}^{n}\right)
\end{aligned}
$$

for all $p \in(1, \infty)$, all $\alpha \in(0,1)$ and for all positive integers k.

Lemma 4.7
Let Ω be an open set in $\mathbb{R}^{i 1}$, let $m \in \mathbb{R}$ and let $p: \Omega x\left(\mathbb{R}^{n} \backslash\{0\}\right) \rightarrow \mathbb{R}$ be a smooth function with the property that for all multi indices α and compact subsets k of Ω, there exists a constant $c_{\alpha, k}(1+|\xi|)^{m}$
for all $x \in K$ and $\xi \neq 0$. Then if $m+j<-n$, the function
$A: \Omega \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ defined by the identity

$$
\Lambda(x, \mathbf{z})=(2 \pi)^{-n} \int e^{i z \cdot \xi} p(x, \xi) d \xi
$$

is continuous and given multi indices α and β with $|\beta| \leqslant j$ and a compact subset k of Ω, then $\partial_{x}^{\alpha} \partial_{z}^{\beta} A(x, z)$ is continuous and bounded for all $(x, z) \in K \times \mathbb{R}^{n}$. Let $P: C_{o}^{\infty}(\Omega) \rightarrow c^{\infty}(\Omega)$ be the continuous linear operator defined by the identity

$$
\operatorname{Pu}(x)=(2 \pi)^{-n} \int e^{i x . \xi} p(x, \xi) \hat{u}(\xi) d \xi
$$

Then

$$
P u(x)=\int A(x, z) u(x-z) d z
$$

if $m+j<-n$, and hence $g P f$ extends to continuous linear operators

$$
\begin{aligned}
& \text { gPf }:{ }_{k}^{p}(\Omega) \rightarrow{ }_{\mathrm{L}}^{\mathrm{L}+\mathrm{j}} \mathrm{p}(\Omega) \\
& \operatorname{gPf}^{\mathrm{p}}: \mathrm{c}^{\mathrm{k}, \boldsymbol{\alpha}}(\Omega) \rightarrow \mathrm{c}^{\mathrm{k}+j, \alpha}(\Omega)
\end{aligned}
$$

for all $f, g \in C_{o}^{\infty}(\Omega)$, all $\left.p \in I T, \infty\right)$, all real numbers $\left.\alpha \in I \overline{0}, 1\right)$ and all non-negative integers k.

Proof

Let $m+j<-n$, and let k be a compact subset of Ω. The integrals defining A and all its derivatives $\partial_{x}^{\alpha} \partial_{z}^{\beta} A$ with $|\beta|<j$ are absolutely and uniformly convergent for $(x, z) \in K \times \mathbb{R}^{n}$ and the
integrals are continuous functions of x and z. Also

$$
\begin{aligned}
\operatorname{Pu}(x) & =(2 \pi)^{-n} \int e^{i x \cdot \xi} p(x, \xi)\left(\int e^{-i(x-\mathbf{z}) \cdot \xi} u(x-\mathbf{z}) d z\right) d \xi \\
& =\int A(x, \mathbf{z}) u(x-\mathbf{z}) d z
\end{aligned}
$$

Given $f, g \in C_{o}^{\infty}(\Omega)$, we see that

$$
g P(f u)(x)=\int B(x, z) u(x-z) d z
$$

where

$$
B(x, z)=f(x) \wedge(x, z) g(x-z) .
$$

$B(x, \mathbf{z})$ has compact support in x and z and all partial derivatives $\partial_{x}^{\alpha} \partial_{z}^{\beta}$ B with $|\beta| \leqslant j$ are continuous and uniformly bounded. It follows easily, using integration by parts, that gPf extends to the required continuous linear operators.
\square

Corollary 4.8

Let Ω be an open set in \mathbb{R}^{n}, let $p \in S^{m}(\Omega)$ and define $P=p(x, D): \quad$ If $m+j<-n$ then $g P f$ extends to continuous linear operators

$$
\begin{aligned}
& \operatorname{gPf}: L_{k}^{p}(\Omega) \rightarrow L_{k+j}^{p}(\Omega) \\
& g P f: c^{k}, \alpha \\
& g(\Omega) \rightarrow c^{k^{+} \cdot j, \alpha}(\Omega)
\end{aligned}
$$

for all.f,p $c_{0}^{\infty}(\Omega)$, all $\left.p \underline{1}, \infty\right)$ all $\left.\alpha \in \underline{0}, 1\right)$ and all nonnegative integers k.

Lemma 4.9
Let Ω be an open set in \mathbb{R}^{n} and let $q: \Omega \times\left(\mathbb{R}^{n} \backslash\{0\}\right) \rightarrow \mathbb{R}$ be a smooth function such that $q(x, \xi)$ is positively homogeneous of degree 0 in ξ, and let $\eta: \mathbb{R}^{n} \rightarrow \underline{\overline{0}}, \underline{\overline{7}}$ be a smooth function which is identically equal to 0 on a neighbourhood of 0 and is identically equal to 1 outside a compact set, and let $Q: c_{o}^{\infty}(\Omega) \rightarrow c^{\infty}(\Omega)$ be the pseudo-differential operator defined by

$$
Q u=(2 \pi)^{-n} \int c^{i x \cdot \xi} q(x, \xi) \eta(\xi) \hat{u}(\xi) d \xi .
$$

Then for all functions $f, g \in C_{0}(\Omega)$, gQf cxtends to continuous linear operators

$$
\begin{aligned}
& g Q f: L^{p}(\Omega) \rightarrow L_{k}^{p}(\Omega), \\
& g \text { Qf }: c^{k, \alpha}(\Omega) \rightarrow c^{k, \alpha}(\Omega)
\end{aligned}
$$

for all $p \in(1, \infty)$, for all $\alpha \in(0,1)$ and for all non-negative integers k.

Proof

Let

$$
p(x, \xi)=(1-\eta(\xi)) q(x, \xi)
$$

and

$$
p u=(2 \pi)^{-n} \int e^{i x \cdot \xi} p(x, \xi) \hat{u}(\xi) d \xi
$$

Then for all multi indices α, all compact setis k of Ω and all $m \in \mathbb{R}$ there exists a constant $C_{\alpha, k, m}$ such that

$$
\partial_{x}^{\alpha} p(x, \xi) \leqslant c_{\alpha, k, m}(1+|\xi|)^{m} .
$$

Thus gef extends to continuous 1 inear maps

$$
\begin{aligned}
& \operatorname{gPf}: L_{k}^{p}(\Omega) \rightarrow c_{o}^{\infty}(\Omega), \\
& \operatorname{gPf}: c^{k}, \boldsymbol{\alpha}(\Omega) \rightarrow c_{o}^{\infty}(\Omega)
\end{aligned}
$$

for all $p \in(1, \infty)$, all $\alpha \in(0,1)$ and all non-negative integers k, by Lemma 4.7. But

$$
Q \quad Q_{0}-P
$$

where Q_{O} is the singular integral operator

$$
Q_{0}{ }^{u}(2 \pi)^{-n} \int c^{i x \cdot \xi}(q(x, \xi) \hat{u}(\xi) d \xi .
$$

Hence Q_{0} extends to continuous linear operators

$$
\begin{aligned}
& Q_{o}: L_{k}^{p}\left(\mathbb{R}^{n}\right) \rightarrow 1_{k}^{p}\left(\mathbb{R}^{n}\right), \\
& Q_{o}: C_{l o c}^{k}\left(\mathbb{R}^{n}\right) \rightarrow c_{\text {loc }}^{k}\left(\mathbb{R}^{n}\right)
\end{aligned}
$$

for all $p \in(1, \infty)$, all $\alpha \in(0,1)$ and all non-negative integers k, by the theorems of Calderon and Zygmund (theorems 2.1, 2.2 and 2.3).

Hence gQf extends to the required continuous linear operators between Sobolev and Hylder spaces.
\square

We are now ready to prove the main theorem of this section. Thoorem 1.10

Let Ω be an open set in \mathbb{R}^{n}, let $m \in \mathbb{Z}$, let $p \in \Sigma^{m}(\Omega)$ and Let $P: C_{o}^{\infty}(\Omega) \rightarrow C^{\infty}(\Omega)$ be the pseudo-differential operator dofined by

$$
P u(x)=p(x, D) u=(2 \pi)^{-n} \int e^{i x \cdot \xi} p(x, \xi) \hat{u}(\xi) d \xi
$$

Let $f, g \in C_{o}(\Omega)$. Then gPf extends to continuous linear operators

$$
\begin{aligned}
& \text { gPf }: L_{k}^{p}(\Omega) \rightarrow L_{k-m}^{p}(\Omega), 1<p<\infty, k \geqslant \max (m, 0) \\
& \text { gPf: } c^{k, \alpha}(\Omega) \rightarrow c^{k-m, \alpha}(\Omega), \quad 0<\alpha<1, k \geqslant \max (m, 0) \\
& \text { Proof }
\end{aligned}
$$

L.ct the asymptotic expansion of $p(x, \xi)$ be

$$
p(x, \xi) \sim \sum_{j} p_{j}(x, \xi)
$$

where $p_{j}(x, \xi)$ is positively homogeneous of degree s_{j} in $\xi, s_{j} \leqslant m$. I,et $\eta: \mathbb{R}^{n} \rightarrow \underline{\overline{0}}, \underline{\overline{7}}$ be a smooth function which is identically equal to 0 in a neimhourhood of 0 and is identically equal to 1 outside a compact set. Define smooth functions $q_{j}: \Omega \times\left(\mathbb{R}^{n} \backslash\{0\}\right) \rightarrow \mathbb{R}$ by the identity

$$
q_{j}(x, \xi)=p_{j}\left(x, \frac{\xi}{|\xi|}\right)
$$

and define $r_{N} \in S^{S_{N}}(\Omega)$ for all positive integers N by the identity

$$
r_{N}(x, \xi)=p(x, \xi)-\eta(\xi)^{3} \sum_{j-0}^{N-1} p_{j}(x, \xi)
$$

and let $R_{N}=r_{N}(x, D)$. Also let $Z_{S}: C_{o}^{\infty}(\Omega) \rightarrow C^{\infty}(\Omega)$ be the translation-invariant pseudo-differential operator defined by the identity

$$
\left(z_{s} u\right)=\eta(\xi)|\xi|^{-5} \hat{u}
$$

and let $Q_{j}: C_{o}^{\infty}(\Omega) \rightarrow C^{\infty}(\Omega)$ be the pseudo-differential operator defined by the identity

$$
Q_{j} u(x)=(2 \pi)^{-n} \int e^{i x \cdot \xi} q_{j}(x, \xi) \eta(\xi) \hat{u}(\xi) d \xi
$$

for each non-ncgative integer j. We have shown that if $f, g \in C_{o}^{\infty}(\Omega)$, then $g Z_{\mathrm{s}} \mathrm{f}, \underline{0} \mathrm{j}_{\mathrm{j}}^{\mathrm{f}}$ and $\mathrm{gR} \mathrm{N}_{\mathrm{N}} \mathrm{extend}$ to continuous linear operators

$$
\begin{aligned}
& g Z_{m}^{f}: L_{k}^{p}(\Omega) \rightarrow L_{k-m}^{p}(\Omega), m \in \mathbb{Z}, 1<p<\infty, k \geqslant \max (m, 0), \\
& g_{m} Z^{f}: c^{k, \alpha}(\Omega) \rightarrow c^{k-m, \alpha}(\Omega), m \in \mathbb{Z}, 0<\alpha<1, k \geqslant \max (m, 0), \\
& g Z_{s} f: L_{k}^{p}(\Omega) \rightarrow L_{k}^{p}(\Omega), s<0,1<p<\infty, k \geqslant 0, \\
& g Z_{s} f: c^{k}, \alpha(\Omega) \rightarrow c^{k}, \alpha(\Omega), s<0,0<\alpha<1, \ldots \geqslant 0, \\
& g Q_{j} f: L_{k}^{p}(\Omega) \rightarrow L_{k}^{p}(\Omega), 1<p<\infty, k \geqslant 0, \\
& g Q_{j} f: c^{k}, \alpha(\Omega) \rightarrow c^{k}, \alpha(\Omega), 0<\alpha<1, k \geqslant 0, \\
& g R_{N} f: L_{k}^{p}(\Omega) \rightarrow L_{k+L}^{p}(\Omega), s_{i N}+L<-n, 1<p<\infty, k \geqslant 0, \\
& g R_{N} f: c^{k}, \alpha(\Omega) \rightarrow c^{k+L, \alpha}(\Omega), s_{N}+L<-n, 0<\alpha<1, k \geqslant 0,
\end{aligned}
$$

by Lemmas 4.6, 4.9 and corollary 4.8. Moreover

$$
P=\sum_{j 0}^{N-1} Q_{j} Z_{i ; j}-m Z_{m}+R_{N}
$$

where $s_{j}-m<0$ for all j. By Lemma $4.3, g Z_{s_{j}-m} Z_{m} f$ extends to continuous lincar operators

$$
\begin{aligned}
& \mathrm{gz}_{s_{j}-m} Z_{m} f: L_{k}^{p}(\Omega) \rightarrow L_{k-m}^{p}(\Omega), 1<p<\infty, k \geqslant \max (m, 0) \\
& g Z_{s_{j}-m} S_{m} f: c^{k, \alpha}(\Omega) \rightarrow c^{k-m, \alpha}(\Omega), 0<\alpha<1, k \geqslant \max (m, 0)
\end{aligned}
$$

for all $f, g \in C_{o}(\Omega)$ and since $Z_{S_{j}-m} Z_{m}$ is a translation-invariant pseudo-differential operator, $\mathrm{gQ}_{\mathrm{j}} \mathrm{Z}_{\mathrm{s}_{\mathbf{j}-\mathrm{m}}} Z_{m} f$ extends to continuous linear operators

$$
\begin{aligned}
& \mathrm{RO}_{j} Z_{s_{j}-m} Z_{m} \mathrm{f}: \mathrm{I}_{\mathrm{k}}^{\mathrm{p}}(\Omega) \rightarrow \mathrm{L}_{\mathrm{k}-\mathrm{m}}^{\mathrm{p}}(\Omega), 1<\mathrm{p}<\infty, \mathrm{k} \geqslant \max (\mathrm{~m}, 0), \\
& g Q_{j} Z_{S_{j}-m^{2}} f^{f}: c^{k, \alpha}(\Omega) \rightarrow c^{k-m, \alpha}(\Omega), 0<\alpha<1, k \geqslant \max (m, 0)
\end{aligned}
$$

The rosult follow on choosing if sufficiently large.

We can extend the action of pseudo-differential operators to the dual spaces of the Sobolev spaces. We recall that if k is a nonpositive integer and $1<\mathrm{p}<\infty$, then we define

$$
1_{k}^{p}(\Omega)={ }_{1}^{p} P_{-k}^{\prime}(\Omega) *
$$

for all open sets Ω in \mathbb{R}^{n}, where $L_{-k}^{p^{\prime}}(\Omega) \%$ is the dual space of ${ }_{-k}^{p}(\Omega)$, and whore $p^{\prime} \in(1, \infty)$ satisfies the identity

$$
\frac{1}{p}+\frac{1}{p}=1
$$

Note that by H\&lder's inequality and by the Riesz representation theorem,

$$
\operatorname{Li}_{0}^{\mathrm{p}}(\Omega)=\mathrm{L}_{0}^{\mathrm{p}^{\prime}}(\Omega) *
$$

so that the definition is consistent when $k=0$.

Theorem 4.11

Let Ω be an open set in \mathbb{R}^{n}, let $m \in \mathbb{Z}$, let $p \in \sum^{m}(\Omega)$ and let $r: \underbrace{\infty}_{0}(\Omega) \rightarrow c^{\infty}(\Omega)$ be the psoudo-differential operator defined by

$$
p_{11}(x) \cdot p(x, 0) u(2 \pi)^{-n} \int e^{i x . \xi} p(x, \xi) \hat{u}(\xi) d \xi
$$

Let $f, g \in C_{o}^{\infty}(\Omega)$. Then gPf extends to a continuous linear operator $g \operatorname{Pf}: L_{k}^{p}(\Omega) \rightarrow L_{k-m}^{p}(\Omega), 1<p<\infty, k \in \mathbb{Z}$

Proof
If $k \geqslant \max (m, 0)$, then the result follows from the previous
theorem. If $k \geqslant \min (m, 0)$ then $f^{t} p_{g}$ extends to a continuous linear operator

$$
f^{t} P g: L_{k+m}^{P^{\prime}}(\Omega) \rightarrow L_{-k}^{p^{\prime}}(\Omega)
$$

where

$$
\frac{1}{p}+\frac{1}{p}=1
$$

But then

$$
\left(f^{t} \mathrm{Pg}\right) *=g^{t} P * f
$$

and hence the dual of $f^{t} \mathrm{Pg}$ is a continuous lincar operator

$$
g^{t}{ }^{\mathrm{p}}: i_{\mathrm{k}}^{\mathrm{p}}(\Omega) \rightarrow \mathrm{L}_{\mathrm{k}-\mathrm{m}}^{\mathrm{p}}(\Omega)
$$

and if $u \in C_{o}^{\infty}(\Omega)$ then $t_{P *}(j(u))=P u$ where $j: C_{o}^{\infty}(\Omega) \rightarrow L_{k}^{p}(\Omega)$ is the natural embedding. Since the image of j is dense in $\mathrm{L} \cdot \mathrm{k}(\Omega)$ it follows that $g{ }^{t} p \% f$ is the unique continuous extension of gPf to $L_{k}^{p}(\Omega)$. It remains to consider the cases $0 \leqslant k \leqslant m$ and $m \leqslant k \leqslant 0$. In thesc cases, let $r \in \sum^{k}(\Omega)$ be defined by

$$
r(\xi)=(1-\eta(\xi))+\eta(\xi)|\xi|^{k}
$$

where $\eta: \mathbb{R}^{n} \rightarrow \bar{O}, \underline{\mathcal{F}}$ is a smooth function which is identically equal to 0 in a neighbourhood of 0 and is identically equal to 1 outside a compact subset. Note that $r(\xi)>0$ for all $\xi \in \mathbb{R}^{n}$. Define also $q \in \sum^{m-k}(\Omega)$ by the identity

$$
q(x, \xi)=\frac{p(x, \xi)}{r(\xi)}
$$

Then

$$
p(x, D)=q(x, D) r(D)
$$

and if $h \in C_{0}^{\infty}(\Omega)$ and $h \equiv 1$ on supp g then the lincar operator

$$
g(x) p(x, D) f(x)-g(x) q(x, D) h(x)^{2} r(D) f(x)
$$

is a smoothing operator, by the asymptotic cxpansion of kohn and Nirenberg. Thus since $h(x) r(D) f(x)$ and $g(x) q(x, D) h(x)$ extend to continuous linear operators

$$
\begin{aligned}
& h(x) r(D) f(x): L_{k}^{p}(\Omega) \rightarrow L_{0}^{p}(\Omega), \\
& g(x) q(x, D) h(x): L_{0}^{p}(\Omega) \rightarrow L_{k-m}^{p}(\Omega),
\end{aligned}
$$

it follows that gFf extends to a continuous linear operator

$$
g P f: L_{k}^{p}(\Omega) \rightarrow L_{k-i n}^{p}(\Omega)
$$

when $0 \leqslant k \leqslant m$ or $m \leqslant k \leqslant 0$.

In this section, we prove some elliptic regularity results concerning linear elliptic differential operators with smooth coefficients. The theorems follow immediately from the following theorem on the continuity of pseudo-differential operators on compact manifolds.

Theorem 5.l.

Let M be a compact smooth manifold, let $\pi_{1}: E \rightarrow M$ and
$\pi_{2}: F \rightarrow M$ be smooth vector bundles over M and let $P: C^{\infty}(E) \rightarrow C^{\infty}(F)$ be a pseudo-differential operator of order not exceeding m, for some $m \in \mathbb{Z}$. Then P extends to continuous linear operators

$$
\begin{aligned}
& p: L_{k}^{p}(E) \rightarrow L_{k-m}^{p}(F), \quad l<p<\infty, \quad k \in \mathbb{Z}, \\
& p: c^{k, \alpha}(E) \rightarrow c^{k-m, \alpha}(F), \quad 0<\alpha<1, \quad k \geqslant \max (m, 0) . \\
& \text { Proof }
\end{aligned}
$$

By using a partition of unity subordinate to a finite cover of M by coordinate neighbourhoods in M over which the vector bundles E and F are trivial, it suffices to show that $\mathrm{P} \varphi$ extends to the required continuous linear operators between Sobolev and Hylder spaces whenever $\varphi: M \rightarrow \mathbb{R}$ is a smooth function with its support in the domain of some coordinate chart $x: \Omega \rightarrow \mathbb{R}^{n}$ over which the bundles F. and F are trivial. let ψ be a smooth function whose support is contained in Ω and which is identically equal to 1 on the support of φ. Then the operator

$$
(1-\psi) P \varphi: C^{\infty}(E) \rightarrow C^{\infty}(F)
$$

is a smoothing operator, hence it suffices to show that the pseudodifferential operator

$$
\psi_{P}^{P} \varphi: c_{o}^{\infty}(E \mid \Omega) \rightarrow c^{\infty}(F \mid \Omega)
$$

cxtends to continuous linear operators

$$
\begin{aligned}
& \psi P \varphi: L_{k}^{p}(E \mid \Omega) \rightarrow \sum_{k-m}^{p}(F \mid \Omega), \quad 1<p<\infty, k \in \mathbb{Z} \\
& \psi P \varphi: c^{k, \alpha}(E \mid \Omega) \rightarrow c^{k-m, \alpha}(F \mid \Omega), \quad 0<\alpha<1, k \geqslant \max (m, 0)
\end{aligned}
$$

But this follows immediately from the corresponding results for pseudo-differential operators defined on open sets in \mathbb{R}^{n} (theorems 4.10 and 4.11).

Theorem 5.2

Let M be a compact smooth manifold, let $\pi_{1}: E \rightarrow M$ and $\Pi_{2}: F \rightarrow M$ be smooth vector bundles over M and let $L: C^{\infty}(E) \rightarrow C^{\infty}(F)$ bc a lincar elliptic differential operator of order m with smooth coefficients. Let f be a section of $\pi_{2}: F \rightarrow M$ and let $u \in \mathscr{X}{ }^{\prime}(E)$ be a wals solution of the equation

$$
L u=f .
$$

If p is a real number satisfying $1<p<\infty, k$ is an integer and $f \in L_{k}^{p}(F)$, then $u \in L_{k+m}^{p}(E)$. If α is a real number satisfying $0<\alpha<1, k i s$ a non-negative integer and $f \in c^{k, \alpha}(F)$, then $u \in c^{k+m, \alpha}(E)$.

Proof

Let $P: C^{\infty}(F) \rightarrow C^{\infty}(E)$ be a parametrix for L. Then

$$
u=\operatorname{PLu}+\mathrm{Ku}=\mathrm{Pf}+\mathrm{Ku}
$$

where $K: \mathcal{D}{ }^{\prime}(E) \rightarrow C^{\infty}(E)$ is a smoothing operator. But P extends to continuous linear operators

$$
\begin{aligned}
& P: L_{k}^{P}(F) \rightarrow L_{k+m}^{p}(E), \\
& 0: c^{k, \alpha}(F) \rightarrow c^{k+m, \alpha_{(E: ~}},
\end{aligned}
$$

from which the result follows immodiately.

Let M be a compact smooth manifold, let μ be a smooth measure on M, let $\Pi: E \rightarrow M$ be a smooth vector bundle over M, and let
$\beta \in C^{\infty}(E * E *)$ be a smooth section of $E * \otimes E *$ which restricts to a positive dofinito symmetric bilinear fom on each fibre of E. We define an inner product on sections of E by

$$
\left(e_{i}, c_{2}\right) \cdots \int_{M} \beta\left(e_{i}, e_{2}\right) d \nu
$$

A lincar differential operator $1 .: C^{\infty}(E) \rightarrow C^{\infty}(E)$ is self-adjoint if and only if

$$
\left(L e_{1}, c_{2}\right)-\left(e_{1}, L e_{2}\right)
$$

The results of llodge theory for self-adjoint elliptic differential operators apply to the Sobolev spaces $L_{k}^{P}(E)$ for p satisfying $1<p<\infty$, and are given in the following theorem.

Theorem 5.3

Let M be a compact smooth manifold, let $\Pi_{1}: E \rightarrow M$ and $\Pi_{2}: F \rightarrow M$ be smooth vector bundles over M and let $L: C^{\infty}(E) \rightarrow C^{\infty}(F)$ be a linear elliptic differential operator with smooth coefficients of order m. If k is an integer and if p satisfies $1<p<\infty$, then the cxtension

$$
1 .: L_{k}^{P}(E) \longrightarrow L_{k-m}^{P}(F)
$$

of L to $L_{k}^{P}(E)$ is a Fredholm operator. If $k \geqslant m$ and $0<\alpha<1$, then the extension

$$
L: c^{k, \alpha}(E) \rightarrow c^{k-m, \alpha}(F)
$$

of L to $C^{k, \alpha}$ (E) is a Fredholm operator.
Moreover if
$($. , $): \mathrm{C}^{\infty}(\mathrm{E}) \times \mathrm{C}^{\infty}(\mathrm{E}) \rightarrow \mathbb{R}$
is a smooth inner product structure of E and $\mathrm{L}: \mathrm{C}^{\infty}(\mathrm{E}) \longrightarrow \mathrm{C}^{\infty}(\mathrm{E})$ is a self-adjoint elliptic differential operator with smooth coefficients of order m, then the index of the Fredholm operators

$$
\begin{aligned}
& L: L_{k}^{p}(E) \rightarrow L_{k-m}^{p}(E) \\
& L: C^{k, \alpha_{(E)}} \rightarrow C^{k-m, \alpha_{(E)}}
\end{aligned}
$$

is equal to zero and there exists a pseudodifferential operator

$$
G: C^{\infty}(E) \rightarrow C^{\infty}(E)
$$

of order -m such that if $H: C^{\infty}(E) \rightarrow C^{\infty}(E)$ is the projection whose image is H(e), where

$$
H(E)=\left\{e \in C^{\infty}\left(E_{i}\right): 1,0-0\right\}
$$

and whose kernel is the jmmage of l, then

$$
I-\mathrm{LG}=\mathrm{I}-\mathrm{GI}=11 .
$$

Proof
Let $P: C^{\infty}(E) \rightarrow C^{\infty}$ (E) be a pseudodifferential operator of order -m which is parametrix of L. Then LP - I and PL - I are smoothing operators, hence

$$
\begin{aligned}
& 1 P-I: L_{k-m}^{P}(F) \rightarrow L_{k-m}^{p}(E) \\
& P L-I: L_{k}^{P}(E) \rightarrow L_{k}^{P}(E) \\
& L P-I: C^{k-m, \alpha}(F) \rightarrow C^{k-m, \alpha}(F) \\
& P L .-I: C^{k, \alpha}(E) \rightarrow C^{k, \alpha}(E)
\end{aligned}
$$

are compact operators. Hence

$$
\begin{aligned}
& \text { L. }: L_{k}^{p}(E) \rightarrow L_{k-m}^{p}(F) \\
& I: \quad C^{k, \alpha}(E) \rightarrow C^{k-m, \alpha}(F)
\end{aligned}
$$

are Fredholm operators, thus proving the first part of the theorem.
Let $L: C^{\infty}(E) \rightarrow C^{\infty}(E)$ be self-adjoint with respect to the given inner product structure. Let $V_{\mathrm{F}, \mathrm{k}}(\mathrm{E})$ be the orthogonal complement of $H(E)$ with respect to the inner product structure. Then

$$
H_{k}^{P}(F) \quad I(E) \oplus v_{p, k}(E)
$$

and

$$
V_{p, k}(E)=\text { image }\left\{L: L_{k+m}^{p}(E) \rightarrow L_{k}^{p}(E)\right\}
$$

since $H(E)$ is the orthogonal complement of the image of L, using
the fact that L is self-adjoint. Then

$$
L \mid V_{p, k}(E): V_{p, k}(E) \rightarrow V_{p, k-m}(E)
$$

is continuous and bijective and hence has a bounded inverse, by the Banach isomorphism theorem. Define $G: L_{k-m}^{p}(E) \rightarrow L_{k}^{P}(E)$ by
$\mathrm{G} \mid \mathrm{H}(\mathrm{E})=0$
$G \mid V_{p, k-m(E)}=\left(L \mid V_{p, k}(E)\right)^{-1}$
T'hen

$$
I-L G=I-G L=H .
$$

Since H is a smoothing operator, G is a parametrix of L. But any two parametrices of L differ by a smoothing operator, hence G is a pscudodifferential operator of order $-m$.

References for Chapter ITT

Atiyah, M.F. and Singer, I.M., "The index of elliptic operators, I." Ann. of Math. (1968), pp.484-530.

Aubin, T., Nonlinear analysis on manifolds, Monge-Ampere equations, Springer-Verlag, New York, (1982).

Bers, L., Johr, J. and Schechter, M., Partial differential equations. Wiley, New York, (1964).

Calderon, A.P. and Zygmund, A., "On the existence of certain singular integrals' , Acta Math., 88 (1952), pp.85-139.

Calderon, A.P. and Zygmund, $\Lambda .$, "On singular integrals", Amer. Journ. Math., 78 (1956), pp.289-309.

Calderon, A.P. and Zygmund, A. "Singular integral operators and differential equations", Amer. Journ. Matt., 79 (1957), pp.901-921.

Coifman, R. amd Meyer, Y., "Au dela des operateurs rseudo-differentiels", Asterisque, no.57, 1978 .

Htsmancicr, 1. "pseucodifferential operators", Comm. Pure Λ ppl. Math., 18 (1965), pp.501-517.

Hermander, L. "Pseudodifferential operators and hypoelliptic equations", in "Singular integrals". Proc. Sympos. Pure Math. Vol. 10, Amer. Math. Soc., Providence R.J. (|967).

1l|ner, R., "n class of r^{P} bounded pscudo-differential operators", Proc. Amer. Math. Soc., 51 (1975), pp.347-355.

Kohn, J.J. and Nirenberg, L. "On the algebra of pseudodifferential. operators", Comm. Pure App1. Math., 18 (1965), pp.269-305.

Morrey, C.B., Multiple integrals in the calculus of variations, Springer-Verlag, New York, (1966).

Nirenberg, L., "Pseudo-differential operators" in "Global Analysis", Proc. Sympos. Pure Math., Vol.16, Amer. Math. Soc., Providence R.I. (1970).

Palais, R.S. et al, Seminar on the Atiyah-Singer index theorem, Princetor Univ. Press, Princeton, New Jersey, (1965).

Palais, R.S., Foundations of global non-linear analysis, Ben,jamin, New York, (1968).

Stein, E.M. ard Weiss, G., Introduction to fourier analysis on Fuclidean spaces, Princeton Univ. Press, Princeton, New Jersey, (1972).

Wells, R.O., Differential analysis on complex manifolds, Prentice Hall, Englowood Cliffs, New Jersey, (1973).

Chapter IV

AN INEQUALITY FOR FUNCTIONS ON RIEMANNIAN MANIFOLDS

81. Introduction

In this chapter we prove an inequality (thoorem 3.3) satisfied by continuous functions $f: M \rightarrow \mathbb{R}$ on a compact Riemannian manifold M. Given $f: M \rightarrow \mathbb{R}$ and given $m_{1}, m_{2} \in M$, let $\mu_{f}\left(m_{1}, m_{2}\right)$ denote the infimum of the integrals of f with respect to arclength taken over all piecewise smooth paths from m_{1} to m_{2}. Also let $d\left(m_{1}, m_{2}\right)$ be the distance from m_{1} to m_{2} defined using the Riemannian metric on M. Theorem 3.3 states that if $\operatorname{dim} M<p<\infty$ and if $\alpha \in(0,1)$ is defined by

$$
\alpha=1-\frac{\operatorname{dim} M}{D}
$$

then

$$
\mu_{f}\left(m_{1}, m_{2}\right) \leqslant k_{p}\left(d\left(m_{1}, m_{2}\right)\right)^{\alpha}\|f\|_{p}
$$

where K_{p} is a constant depending only on p and the Ricmannian geometry of M, and where $\|f\|_{p}$ is the L^{P} norm of f with respect to the Riemannian volume measure on M.

In section §2, we shall study tubes about length minimizing geodesics in a compact Riemannian manifold, in preparation for section $\$_{3}$. In section $\$ 3$ we shall prove the main result (theorem 3.3) and deduce from it a result (corollary 3.1) which applies when the manifold M is noncompact. We shall show how the Sobolev embedding theorem for the embedding of a Sobolev space in a loblder space may be deduced from theorem 3.3.

In this section, we use compactness arguments to show that, given a compact Ricmannian manifold M, there exists a positive constant R such that, for any length minimizing geodesic
$\gamma: \underline{\bar{a}}, \underline{\mathrm{~b}} \overline{/} \rightarrow \mathrm{M}$, the geodesic tube of radius R about γ is embedded in M. R is independent of the choice of minimizing geodesic. Furthermore, we may choose R such that, on considering the exponential map as a diffeomorphism from the tube of radius R about the zero section of the normal bundle of γ to the geodesic tube of radius R about, the derivatives of the exponential map and its inverse both increase the lengths of tangent vectors by a factor of at most 2.

First we prove a topological lemma. A continuous map $f: X \longrightarrow Y$ between topological spaces X and Y is said to be locally injective if, for all $x \in X$, there exists a neighbourhood U_{X} of x such that $f \mid U_{X}$ is injective.

Lemma 2.1

Let $f: X \rightarrow Y$ be a continuous map from a topological space X to a Hausdorff topological space Y, and let K be a compact subset of X. Suppose that $f: X \rightarrow Y$ is locally injective and that $f \mid K: K \rightarrow Y$ is injective. Then there exists an open neighbourhood U of k such that $f \mid U: U \rightarrow Y$ is injective.

Proof

For all $x \in K$, there exists an open neighbourhood U_{x} of x such that $f \mid U_{x}$ is injective. For all $y \in K \backslash U_{x}$, it follows that $f(y) \neq f(x)$ (since $f \mid K$ is injective) and hence that there exist open neighbourhoods $V_{x, y}$ of x and $W_{x, y}$ of y such that

$$
f\left(V_{x, y}\right) \cap f\left(W_{x, y}\right)=\emptyset
$$

(since Y is Hausdorff). Since K is compact, there exist $y_{1}, \ldots, y_{n} \in K$ such that $K \subset U_{x} \cup W_{x}$, where

$$
W_{x}=\bigcup_{i=1}^{n} W_{x, y_{i}}
$$

Let

$$
v_{x}=u_{x} \cap \bigcap_{i-i}^{n} v_{x, y_{i}} .
$$

Then $x \in V_{x}, V_{x} \subset U_{x}$ and

$$
f\left(V_{x}\right) \cap f\left(W_{x}\right)=\emptyset .
$$

Let $N_{X}=U_{X} \cup W_{X}$. Then N_{X} is an open neighbourhood of K. If $z \in V_{X}, W \in N_{X}$ and $f(z)=f(w)$, then $w \notin W_{x}$, hence $w \in U_{x}$, and thus $z=w$, since $f \mid U_{x}$ is injective. Since K is compact, there exist x_{1}, \ldots, x_{m} such that $K \subset V$, where

$$
v=\bigcup_{i=1}^{m} V_{x_{i}}
$$

Let

$$
N=\bigcap_{i=1}^{m} N_{x_{i}}
$$

Then N is an open neighbourhood of K. If $z \in V, w \in N$ and $\Gamma(z)=f(w)$, then $z=w$. Thus if $U=V \cap N$, then II is an open neighbourhood of K and $f \mid U$ is injective.

Theorem ?.?

let M be a eompact smooth Riemannian manifold. Given any geodesic $\gamma: \underline{\bar{a}}, \underline{b} \vec{\gamma} \rightarrow M$, let $N \gamma \rightarrow \underline{/ a}, \underline{b} \overline{/}$ denote the normal bundle of γ with its canonical flat Riemannian metric, let $B_{R} N_{\gamma}$ denote the tube

$$
B_{R^{N}}^{N} \gamma=\{X \in N \gamma:\|x\| \leqslant R\}
$$

of radius R about the zero section of $N \gamma$, let exp $\gamma: N \gamma \rightarrow M$ denote the exponential map of γ, and let $\exp _{\gamma}:$ TN $\gamma \rightarrow$ TM denote its derivative. Then there exists a constant R, independent of the choice of geodesic, with the following property: if $\gamma: \underline{\underline{a}}, \underline{b} \bar{\gamma} \rightarrow \mathrm{M}$ is a length minimizing geodesic in M, then

$$
\exp _{\gamma} \mid B_{R} N_{\gamma}: B_{R} N_{\gamma} \rightarrow M
$$

is a diffeomorphism onto its image, and if $Z \in T V N$ for some $V \in B_{R} N \gamma$, then
$1 / 2\|z\| \leqslant\|\exp \gamma * z\| \leqslant 2\|z\| \cdot$
Proof
Let
$\operatorname{STM}=\{x \in \operatorname{TM}:\|x\|=1\}$
and define a map $E: \operatorname{STM} X_{M} T M \rightarrow M$ in the following manner. Let $X \in S T M$ and $Y \in T_{m} M$. Then $Y=Y_{1}+Y_{2}$ where Y_{1} is a scalar multiple of X and Y_{2} is perpendicular to X. Let $\gamma: \underline{0} 1 \bar{T} \rightarrow M$ be the geodesic

$$
\gamma(t)=\exp _{m} t Y_{1}
$$

(recall that M is compact, and hence geodesically complete), let $q=\gamma(1)$, and let $V \in T_{q} M$ be the vector obtained from Y_{2} by parallel transport along γ. Then define

$$
\mathrm{E}(\mathrm{X}, \mathrm{Y})=\exp _{\mathrm{q}} \mathrm{~V}
$$

A1so, for al $1 \times \in S T_{m} M$, define $E_{x}: T_{m} M \rightarrow M$ to be the map sending $Y \in T_{m}^{M}$ to $E(X, Y) \in M$. Note that if Y is a scalar multiple of X, then the derivative of E_{X} at Y is an isometry.

Let k be the subset of STM X_{M} TM consisting of all elements (X, Y) such that $Y=\lambda X$ for some real number $\lambda \geqslant 0$, and also such that

$$
\gamma: \underline{\overline{0}}, \underline{1} \rightarrow \mathrm{M}: \mathrm{t} \mapsto \exp \mathrm{t} Y
$$

is a longth minimizing geodesic from $\gamma(0)$ to $\gamma(1) . K$ is a closed subset of $\operatorname{STM} X_{M} M$. If $(X, Y) \in K$, then $\|Y\| \leqslant$ diam (M). since M is compact, K is also compact. Also if $(X, Y) \in K$, then the derivative of E_{X} at Y is an isometry. Hence there cxists a neighbourhood U_{1} of K such that if $X, Y \in T_{m} M$, if $\|X\|=1$, if $(X, Y) \in U_{1}$, and if $Z \in T_{Y} T_{m} M$, then
$\frac{1}{2}\|z\| \leqslant\left\|E_{x_{*}} Z\right\| \leqslant 2\|z\|$
where $E_{X}: T T H_{M} \rightarrow T M$ is the derivative of E_{X}. In particular, if $(X, Y) \in U_{1}$, then the derivative of E_{X} at Y is an isomorphism. Now define $f: S T M X_{M}$ TM \rightarrow STM x M by $f(X, Y) \quad \because \quad(X, E(X, Y))$.

The derivative of f at $(X, Y) \in S T M X_{M} T M$ is an isomorphism if and only if the derivative of E at Y is an isomorphism. In particular, if $(X, Y) \in U_{1}$, then the derivative of f at (X, Y) is an isomorphism, hence $f \mid U_{1}$ is a local diffeomorphism, by the inverse function theorem. By definition of E, if $(X, Y) \in K$ then

$$
f(X, Y)=(X, \exp Y) .
$$

Hence if $\left(X_{1}, Y_{1}\right) \in K$ and $\left(X_{2}, Y_{2}\right) \in K$ and if

$$
f\left(X_{1}, Y_{1}\right)=f\left(X_{2}, Y_{2}\right)
$$

then there exists $m \in M$ such that $X_{1}, X_{2}, Y_{1}, Y_{2} \in \mathrm{~T}_{\mathrm{m}} \mathrm{M}$. NIso $X_{1}=X_{2}=X$ for some $X \in T_{m}^{M}$. Then $Y_{1}=\lambda X$ and $Y_{2}=\mu X$ for some $\lambda, N \geqslant 0$, and the geodesics

$$
\begin{aligned}
& \gamma_{1}=\overline{0}, \underline{1} \rightarrow M: t \mapsto \exp _{\mathrm{m}} \mathrm{tY} 1 \\
& \gamma_{2}=\overline{0}, \underline{1} \rightarrow M: t \mapsto \exp _{\mathrm{m}} \mathrm{t} \mathrm{Y}_{2}
\end{aligned}
$$

are length minimizing geodesics satisfying $\gamma_{1}(1)=\gamma_{2}(1)$. It follows that $Y_{1}=Y_{2}$. Thus we have shown that $f \mid K$ is injective.

Now $f \mid U_{\text {, }}$ is a local diffeomorphism and $f \mid K$ is injective, hence 1.herw axi:at: an open noighbourhood 11 of k, contained in ${ }^{\prime}$, such that $f \mid U$ is a diffeomorphism, by the previous lemma. Then if $X, Y \in T_{m}^{M},\|X\|=1,(X, Y) \in$ it and if $Z \in T_{Y} T_{m}^{M}$ then $y\|Z\| \leqslant\left\|E_{x *} Z\right\| \leqslant 2\|Z\|$.

Using the compactness of k, it follows that there exists $R>0$ such that if $(X, Y) \in \operatorname{STM} X_{M} T M$, if $Y=Y_{1}+Y_{2}$ where Y_{1} is parallel to X and Y_{2} is perpendicular to X, if $\left(X, Y_{1}\right) \in K$, and if $\left\|Y_{2}\right\| \leqslant R$, then $(X, Y) \in U$. We claim that R is the required constant.

Let $\gamma: \overline{0}, b) \rightarrow M$ be a length minimizing geodesic parameterized by arclength, and let $\pi: N \gamma \rightarrow \underline{\overline{0}}, \underline{b} \bar{\gamma}$ be the normal bundle of γ. Let $m=\gamma(0)$ and let $x=\gamma^{\prime}(0)$. Then $x \in$ STM. Define $\nu: N \gamma \rightarrow{ }^{\prime}{ }^{M}{ }^{M}$ by

$$
\nu(v)=\pi(v) x+\tau(v)
$$

where $\tau: N \gamma \rightarrow T_{m} M$ is the map sending $V \in N \gamma$ to the vector $\tau(V)$ in $T_{m} M$ obtained from V by parallel transport along γ from $\gamma(\pi(V))$ to m. Then ν is an isometry from N onto its image in $T_{m} M$, and if $V \in B_{R} N \gamma$, then $(X, \nu(V)) \in U$, and also

$$
\exp _{\gamma} V=E(X, \nu(V))
$$

Hence $\exp \gamma \mid B_{R} N \gamma: B_{R} N \gamma \rightarrow M$ is a diffeomorphism onto its image in M with the required properties.
§3. An Inequality concerning Functions on Riemannian Manifolds
In this section, we consider the following situation. Let M be a compact smooth Riemannian manifold of dimension n, and let p be a real number satisfying $n<p<\infty$. We show that there exists a constant K_{p}, depending only on p and the Riemannian geometry of M such that for all continuous functions $f: M \rightarrow \mathbb{R}$, and for all $m_{1}, m_{2} \in M$, the infimum $\mu_{f}\left(m_{1}, m_{2}\right)$ of the integrals of f with respect to arclength along all piecewise smooth paths from m_{1} to m_{2} satisfies

$$
\mu_{f}\left(m_{1}, m_{2}\right) \leqslant k_{p}\left(d\left(m_{1}, m_{2}\right)\right)^{\alpha}\|f\|_{p}
$$

where $\|f\|_{p}$ is the $L^{\boldsymbol{P}}$ norm of $f, d\left(m_{1}, m_{2}\right)$ is the Riemannian distance from m_{1} to m_{2}, and

$$
\alpha=1-\frac{\operatorname{dim} M}{p}
$$

Those cases of the Sobolev embedding theorems dealing with embeddings of Sobolev spaces into C^{k} spaces or H Hlder spaces follow easily from this inequality.

In what follows, we regard \mathbb{R}^{n} as the Cartesian product $\mathbb{R} \times \mathbb{R}^{n-1}$. We denotc the unit ball $\left\{u \in \mathbb{R}^{n-1}:\|u\| \leqslant 1\right\}$ in \mathbb{R}^{n} by B^{n-1}. The volume of B^{n-1} with respect to the Euclidean metric is given by

$$
\operatorname{vol}\left(B^{n-1}\right)=\frac{\pi^{\frac{n}{2}}}{\Gamma\left(\frac{n}{2}+1\right)} .
$$

The main theorem of the section will follow from a lemma concerning the behaviour of functions defined on cones in Euclidean space.

Lemma 3.1
Given $\varepsilon>0, l>0$, let $\Gamma \subset \mathbb{R}^{n}$ be the cone defined by

$$
\Gamma=\left\{(w, y) \in \underline{\overline{0}}, \underline{\mathbf{L} /} \times \mathbb{R}^{\mathrm{n}-1}:\|y\| \leqslant \varepsilon w\right\}
$$

and, for all $u \in B^{n-1}$, let $c_{u}: \underline{\overline{0}}, \underline{1} \boldsymbol{T} \rightarrow \Gamma$ be the ray defined by

$$
c_{u}(t)=(L t, \varepsilon(t u)
$$

(on regarding \mathbb{R}^{n} as the Cartesian product $\mathbb{R} \times \mathbb{R}^{\mathrm{n}-1}$). Let
$p \in(n, \infty)$, let $f \in L^{p}(\Gamma)$, and let

$$
I=\frac{1}{\operatorname{vol}\left(B^{n-1}\right)} \int B_{B^{n-1}}\left(\int_{0}^{i}\left|f\left(c_{u}(t)\right)\right|\left\|c_{u}^{\prime}(t)\right\| d t\right) d u
$$

be the mean value, taken over B^{n-1}, of the integrals of $|f|$ with respect to arclength along the rays c_{u}. Then

$$
I \leqslant k_{p, n, \varepsilon} l^{\alpha}\|f\|_{\Gamma, p}
$$

where

$$
\alpha=1-\frac{n}{p},
$$

where

$$
\|f\|_{\Gamma, p}=\left(\int_{\Gamma}|f|^{p} d x\right)^{\frac{1}{p}}
$$

and where

$$
K_{p, n, \varepsilon}=\frac{\Gamma\left(\frac{n}{2}+1\right)}{\pi^{n / 2}}\left(\frac{p-1}{p-n}\right)^{\frac{p-1}{p}} \varepsilon^{\frac{1-n}{p}}\left(\int_{B^{n-1}}\left(1+\varepsilon^{2} u^{2}\right)^{\frac{p}{2(p-1)}} d u\right)^{\frac{p-1}{p}}
$$

is a constant depending on p, n and $\boldsymbol{\varepsilon}$.

Proof

Since $C^{\circ}(\Gamma)$ is dense in $L^{P}(\Gamma)$, it suffices to prove the inequality for all $\mathrm{f} \in \mathrm{C}^{\mathrm{o}}(\Gamma)$. Let $\varphi: \underline{\overline{0}}, \underline{1} \overline{7} \times \mathrm{B}^{\mathrm{n}-1} \rightarrow \Gamma$ be the map defined by

$$
\varphi(t, u)=(1 t, \varepsilon 1 t u)
$$

Let $d x$ be the volume form on \mathbb{R}^{n} and let du be the volume form on $B^{n-1} \subset \mathbb{R}^{n-1}$. Then

$$
\varphi^{*} d x=\boldsymbol{L}(\varepsilon l t)^{n-1} d t \wedge d u
$$

Also

$$
\left\|c_{u}^{\prime}(t)\right\|=l\left(1+\varepsilon^{2} u^{2}\right)^{1 / 2}
$$

hence

$$
\begin{aligned}
I & =\frac{\Gamma\left(\frac{n}{2}+1\right)}{\pi^{n / 2}} \int_{[0,1] \times B^{n-1}} L\left(1+\varepsilon^{2} u^{2}\right)^{1 / 2}\left(\varphi^{*} f\right) d t \wedge d u \\
& =\frac{\Gamma\left(\frac{n}{2}+1\right)}{\pi^{n / 2}} \int_{[0,1] \times B^{n-1}}(\varepsilon L)^{1-n}\left(1+\varepsilon^{2} u^{2}\right)^{1 / 2}\left(\varphi^{*} f\right)^{*} d x \\
& \leqslant \frac{\Gamma\left(\frac{n}{2}+1\right)}{\pi^{n / 2}} C_{p, n, \varepsilon, L}^{1-\frac{1}{p}}\left(\int_{[0,1] \times B^{n-1}}|f \circ \varphi|^{p} \varphi^{*} d x\right)^{1 / p} \\
& =\frac{\Gamma\left(\frac{n}{2}+1\right)}{1-\frac{1}{p}} C_{p, n, \varepsilon, L}\left(\pi^{n / 2}\right.
\end{aligned}
$$

by Holder's inequality, where

$$
c_{p, n, \varepsilon, l}=\int_{\underline{\overline{0}, \underline{/}} \times B^{n-1}}(\varepsilon L t)^{(1-n) q}\left(1+\varepsilon^{2} u^{2}\right)^{\frac{q}{2}} \varphi * d x
$$

and where q satisfies

$$
\frac{1}{p}+\frac{1}{q}=1
$$

Hence

$$
\begin{aligned}
C_{p, n, \varepsilon, L}= & \int_{\underline{L}, \underline{L} / \times B^{n-1}} L(\varepsilon L t)^{(n-1)(1-q)}\left(1+\varepsilon^{2} u^{2}\right)^{\frac{q}{2}} d t \wedge d u \\
& L(\varepsilon L)^{(n-1)(1-q)} \int_{0}^{1} t^{(n-1)(1-q)} d t \int_{B^{n-1}}\left(1+\varepsilon^{2} u^{2}\right)^{\frac{q}{2}} d u \\
= & L \frac{(L \varepsilon)^{(n-1)(1-q)}}{(n-1)(1-q)+1} \int_{B^{n-1}}\left(1+\varepsilon^{2} u^{2}\right)^{\frac{q}{2}} d u,
\end{aligned}
$$

provided that

$$
(n-1)(1-q)+1>0
$$

But

$$
q-1=\frac{1}{p-1}
$$

hence

$$
(n-1)(1-q)+1=1-\frac{n-1}{p-1}=\frac{p-n}{p-1} .
$$

Since p > n,

$$
(n-1)(1-q)+1>0
$$

as required. Hence

$$
C_{p, n, \varepsilon, L}=L^{\frac{p-n}{p-1}} \varepsilon^{\frac{1-n}{p-1}}\left(\frac{p-1}{p-n} \int_{B^{n-1}}\left(1+\varepsilon^{2} u^{2}\right)^{\frac{p}{2(p-1)}} d u\right.
$$

Thus

$$
C_{p, n, \varepsilon, L}^{1-\frac{1}{p}}=L^{1-\frac{n}{p}} \varepsilon^{\frac{1-n}{p}}\left(\frac{p-1}{p-n}\right)^{\frac{p-1}{p}}\left(\int_{B^{n-1}}\left(1+\varepsilon^{2} u^{2}\right)^{\frac{p}{2(p-1)}} d u\right)^{\frac{p-1}{p}}
$$

Hence

$$
I \leqslant K_{p, n, \varepsilon} L^{1-\frac{n}{p}}\|f\|_{\Gamma, p}
$$

Corollary 3.2

Given $\varepsilon>0, L>0$, let $T \subset \mathbb{R}^{n}$ be the tube

$$
T=\left\{(w, y) \in \mathbb{R} \times \mathbb{R}^{n-1}: w \in[0,2 l],\|y\| \leqslant \varepsilon L\right\}
$$

about $[0,2 L]$ of radius εL, and let P be the set of piecewise smooth paths $c: \underline{O}, \underline{1} \overline{7} \rightarrow \operatorname{Trom}(0,0) \in \mathbb{R} \times \mathbb{R}^{n-1}$ to $(2 L, 0) \in \mathbb{R}^{2} \times \mathbb{R}^{n-1}$ which are contained in T. For any continuous function $f: T \rightarrow \mathbb{R}$, define

$$
m(f)=\inf \left\{\int_{0}^{1}|f(c(t))|\left\|c^{\prime}(t)\right\| d t: c \in P\right\}
$$

$m(f)$ is the infimum of the integrals of $|f|$ with respect to arclength along all paths belonging to P. Let $p \in(n, \infty)$. Then there exists a constant $K_{p, n, \varepsilon}$ depending only on p, n and ε such that if
$f: T \rightarrow \mathbb{R}$ is a continuous function on T, then

$$
m(f) \leqslant K_{p, n, \varepsilon} L^{\alpha}\left(\int_{T}|f|^{p} d x\right)^{1 / p}
$$

where $\alpha \in(0,1)$ is defined by

$$
\alpha=1-\frac{n}{p}
$$

Proof
Let $\tau: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ denote the reflection defined by

$$
\tau(w, y)=(2 L-w, y)
$$

for all $(w, y) \in \mathbb{R} \times \mathbb{R}^{n-1}$, and $\operatorname{let} \Gamma \subset \mathbb{R}^{n}$ be the cone defined by

$$
\Gamma=\left\{(w, y) \in \leq \overline{0}, \underline{\imath} \times \mathbb{R}^{n-1}:\|y\| \leq \varepsilon w\right\}
$$

Then $\Gamma \subset T$ and $\tau(\Gamma) \subset T$. For $u \in B^{n-1}$, let $c_{u}: \underline{\overline{0}}, \underline{1} \bar{\gamma} \rightarrow \Gamma$ be the ray defined by

$$
c_{u}(t)=(L t, E L t u)
$$

(on regarding \mathbb{R}^{n} as the Cartesian product $\mathbb{R} \times \mathbb{R}^{n-1}$). Then the product path $v_{u}=c_{u} *\left(\tau c_{u}\right)^{-1}$ consisting of c_{u} followed by τc_{u} reversed is a piecewise smooth path from (0,0) to ($2 l, 0$) (via $(l, \varepsilon(u))$, and if $f: T \rightarrow \mathbb{R}$ is continuous and

$$
J_{f}=\frac{1}{\operatorname{vo1}\left(B^{n-1}\right)} \int_{B^{n-1}}\left(\int_{0}^{1} \mid f\left(v_{u}(t)\right)\left\|_{u}^{\prime}(t)\right\| d t\right) d u
$$

then

$$
\begin{aligned}
\mu(\Gamma) & \leqslant J_{r} \\
& \leqslant K_{p, n, \varepsilon} L^{1-\frac{n}{\rho}}\left(\left(\int_{\Gamma}|f|^{p} d x\right)^{\frac{1}{p}}+\left(\int_{\tau(\Gamma)}|f|^{p} d x\right)^{1 / p}\right) \\
& \leqslant K_{p, n, \varepsilon} L^{\alpha}\left(\int_{\Gamma \cup \tau(\Gamma)}|F|^{p} d x\right)^{1 / p} \\
& \leqslant K_{p, n, \varepsilon} L^{\alpha}\left(\int_{T}|f|^{\rho} d x\right)^{1 / p}
\end{aligned}
$$

by the previous lemma.

Using this corollary, and using properties of geodesic tubes about length minizing geodesics, we may prove the main theorem of this section.

Theorem 3.3

Let M be a compact Riemannian manifold of dimension n (possibly with boundary). For all continuous functions $f: M \rightarrow \mathbb{R}$, and for all $m_{1}, m_{2} \in M$, let $\mu_{f}\left(m_{1}, m_{2}\right)$ denote the infimum, over all piecewise smooth paths $c: \overline{\bar{a}}, \underline{b} \overline{7} \rightarrow M$ from m_{1} to m_{2}, of the integrals

$$
\int_{a}^{b}|f(c(t))|\left\|c^{\prime}(t)\right\| d t
$$

of $|f|$, with respect to arclength, along c. Then, for all
$p \in(n, \infty)$, there exists a constant K_{p}, depending on $1 y$ on p and on the Riemannian geometry of M, such that if $f: M \rightarrow \mathbb{R}$ is a continuous function on M, then

$$
\mu_{f}\left(m_{1}, m_{2}\right) \leqslant k_{p}\left(d\left(m_{1}, m_{2}\right)\right)^{\alpha}\|f\|_{M, p}
$$

for all $m_{1}, m_{2} \in M$, where $\alpha \in(0,1)$ is defined by

$$
\alpha=1-\frac{n}{p}
$$

where $d\left(m_{1}, m_{2}\right)$ is the distance from m_{1} to m_{2} with respect to the Riemannian metric, and where

$$
\|f\|_{M, p}=\left(\int_{M}|f|^{p} d(\text { vol })\right)^{\frac{1}{p}}
$$

Proof

First, we restrict our attention to the case when $\partial M=\emptyset$.
Then there exists a constant k such that, for all length minimizing geodesics $\gamma: \underline{\sqrt{a}}, \underline{b} \bar{\gamma} \rightarrow M$, the exponential map

$$
\exp \gamma \mid \mathrm{B}_{\mathrm{R}} \mathrm{~N}_{\gamma}: \mathrm{B}_{\mathrm{R}} \mathrm{~N}_{\gamma} \rightarrow \mathrm{M}
$$

is a diffeomorphism onto its image, and such that if $Z \in T_{V} N \gamma$ for some $V \in B_{R} N_{\gamma}$, then
$1 /\|z\| \leqslant\|\exp \| z\|\leqslant 2\| z \|$
(here $B_{R} N_{\gamma}$ is the tube of radius R about the sero section of $N \gamma$, consisting of all vectors of length not exceeding R in the normal bundle $N \gamma \rightarrow \underline{\bar{a}}, \underline{b} /$ of γ). This follows from theorem 2.2 .
l.et diam (M) be the diameter of M, and let

$$
\varepsilon=\frac{2 R}{\operatorname{diam}(N)}
$$

Let $m_{1}, m_{2} \in M$ and let $\gamma:[0, \sigma] \rightarrow M$ be a length minimizing geodesic from m_{1} to m_{2}, parameterized by arclength (such a geodesic always exists, since $\begin{aligned} & \text { is compact, and since we are restricting our }\end{aligned}$ attention to the case when M is without boundary). Let $\pi: N \gamma \rightarrow \overline{0}, \sigma_{-} \bar{\gamma}$ be the normal bundle of γ. Then the tube T of radius $1 / 2 \sigma \varepsilon$ about the zero section of $N \gamma$ is contained in $B_{R} N \gamma$. Let P be the set of piecewise smooth paths $v: \underline{0}, \underline{1} \rightarrow T$ in the tube T from $\exp \gamma^{-1}\left(m_{1}\right)$ to $\exp _{\gamma}{ }^{-1}\left(m_{2}\right)$. Thas a natural flat Riemannian metric and is isometric to the corresponding tube in \mathbb{R}^{n}. By the corollary to the previous Lemma, if $g: T \rightarrow \mathbb{R}$ is a continuous function on T and if

$$
m(g)=\inf \left\{\int_{0}^{1}|f(v(t))|\left\|v^{\prime}(t)\right\| d t: v \in P\right\}
$$

is the infimum, taken over piecewise smooth paths in T from $\exp ^{-1}\left(m_{1}\right)$ to $\exp _{\gamma}^{-1}\left(m_{2}\right)$, of the integrals of $|g|$ with respect to arclength along the curves, then

$$
m(g) \leqslant K_{p, n, \varepsilon}^{\prime}\left(\frac{\sigma}{2}\right)^{\alpha}\left(\int_{T}|g|^{p} d x\right)^{\frac{1}{p}}
$$

where $K_{p, n, \varepsilon}^{\prime}$ is a constant depending only on p, n and ε. But $\exp _{\boldsymbol{\gamma}} \mid T: T \rightarrow M$ increases the length of tangent vectors to T by a factor of at most 2 , hence

$$
\begin{aligned}
\mu_{f}\left(m_{1}, m_{2}\right) \leqslant & 2 m(f \circ \exp) \\
& 2 k_{p, n, \varepsilon}^{\prime}\left(\frac{\sigma}{2}\right)^{\alpha}\left(\int_{T}|f \circ \exp |^{p} d x\right)^{1 / p} \\
& 2^{i n+1} K_{p, n}^{i}, \varepsilon\left(\frac{d\left(m_{1}, m_{2}\right)}{2}\right)^{\alpha}\left(\int_{M}|f|^{p} d(v o l)\right)^{1 / p} \\
& k_{p}\left(d\left(m_{1}, m_{2}\right)\right)^{\alpha}\left(\int_{M}|f|^{p} d(v o l)\right)^{1 / p}
\end{aligned}
$$

where

$$
k_{p}=2^{n+1-\alpha} K_{p, n}, \varepsilon
$$

Here we have used the fact that

$$
|\mathrm{dx}| \leqslant 2^{\mathrm{n}} \mid \exp \gamma * \mathrm{~d}(\text { vol }) \mid
$$

where d (vol) is the volume measure on m and $d x$ is the volume measure on T. This fact follows from the fact that if $Z \in T_{V} N \gamma$ for some $V \in B_{R} N_{\gamma}$, then
$\because\|z\| \geqslant\left\|\operatorname{cxp}_{\gamma *} z\right\|$.
The constant K_{p} depends only on p, n, R and diam (M), and thus only on p and on the Ricmannian geometry of M. Thus we have proved the theorem in the case when $\partial M=\emptyset$.

Now suppose that $\partial M \neq \emptyset$. First note that if we prove the thocorem for onc particular Riemannian metric on M, then the result holdis for any Riemannian metric on M.

Let $j_{1}: M \rightarrow M_{1}$ and $j_{2}: M \rightarrow M_{2}$ be diffeomorphisms of M onto disjoint copies M_{1} and M_{2} of M. Let $2 M$ be the smooth manifold obtained from the disjoint union of M_{1} and M_{2} by identifying $j_{1}(m) \in M_{1}$ and with $j_{2}(m) \in M_{2}$ for all $m \in \partial M$. Let $p: M_{1} v M_{2} \rightarrow 2 M$ be the identification map, and $1 e t i_{1}: M \rightarrow 2 M$ and $i_{2}: M \rightarrow 2 M$ be the maps $i_{1}=p \circ j_{1}$ and $i_{2}=p \bullet j_{2}$. Then $2 M$ is a compact smooth manifold
without boundary, $i_{1}: M \rightarrow 2 M$ and $i_{2}: M \rightarrow 2 M$ are embeddings of M in $2 M$, $2 M=i_{1}(M) \cup i_{2}(M)$ and $i_{1}(M) \cap i_{2}(M) \cong \partial M$. We have a smooth involution $\tau: 2 M \rightarrow 2 M$ defined by the property that $\tau \circ i_{1}=i_{2}$ and $\tau \cdot i_{2}=i_{1}$. Given a smooth Riemannian metric g_{0} on 2 M , we obtain a smooth τ-invariant Riemannian metric Ω on $2 M$ by defining

$$
g=1 / 2\left(g_{0}+\tau * g_{0}\right)
$$

Then there exists a unique smooth Ricmannian metric on M such that i_{1} and i_{2} are isometric embeddings.

We have a piecewise smooth map $\nu: 2 M \rightarrow M$ sending $i_{1}(m)$ and $i_{2}(m)$ to m, for all $m \in M$. Then $i_{1} \circ \nu: 2 M \rightarrow 2 M$ is a piecewise smooth map whose image is contained in $i_{1}(\mathbb{M})$ and which preserves the lengths of piecewise smooth curves. Let $m_{1}, m_{2} \in i(M)$. Suppose that γ is a length minimizing geodesic from m_{1} to m_{2}. Then $i_{1} \circ \nu \cdot \gamma$ is a path from m_{1} to m_{2} with the same length as γ, and is thus also a length minimizing geodesic from m_{1} to m_{2}. Thus $i_{1} \circ \nu \circ \gamma=\gamma$, unless both $m_{1} \in i_{1}(\partial M)$ and $m_{2} \in i_{1}(\partial M)$, in which casc either $i_{1} \circ \nu \circ \gamma=\gamma$ or $i_{1} \circ \nu \circ \gamma=\tau \circ \gamma$. Thus any two points in $i_{1}(M)$ may be joined by a length minimizing geodesic lying wholly within $i_{1}(M)$. If $f: M \rightarrow \mathbb{R}$ is continuous, then $f \bullet \nu: 2 M \rightarrow \mathbb{R}$ is continuous, and we have already shown that

$$
\mu_{f \circ \nu}\left(m_{1}, m_{2}\right) \leqslant k_{p}\left(d\left(m_{1}, m_{2}\right)\right)^{\alpha}\left(\int_{2 M}|f \circ \nu|^{p} d(\operatorname{vol})\right)^{1 / p}
$$

for some constant K_{p} depending only on the Riemannian geometry of 2 M . Thus

$$
\mu_{f}\left(m_{1}, m_{2}\right) \leqslant 2^{1 / p} k_{p}\left(d\left(m_{1}, m_{2}\right)\right)^{\alpha}\left(\int_{M}|f|^{p} d(\operatorname{vol})\right)^{1 / p}
$$

Hence the theorem is true when $\partial M \neq \emptyset$ also.
\square

One may easily deduce part of the Sobolev embedding theorems from this theorem. For let M be a compact n-dimensional manifold, let $p \in(n, \infty)$, and let f be a C^{1} function on M. If we define

$$
\|t\|_{p}=\left(\int_{M}|\hat{f}|^{p} d(v o I)\right)^{1 / p}
$$

then there exists a point $m \in M$ such that

$$
|f(m)| \leqslant \operatorname{vol}(M)^{-\frac{1}{p}}\|f\|_{p}
$$

Let $g=|d f|$. Then g is continuous, and if $m_{1}, m_{2} \in M$, then

$$
\begin{aligned}
\left|f\left(m_{1}\right)-\int\left(m_{2}\right)\right| \leqslant & \mu_{p}\left(m_{1}, m_{2}\right) \\
& k_{p}\left(d\left(m_{1}, m_{2}\right)\right)^{\alpha}\|d f\|_{p}
\end{aligned}
$$

for some constant k_{p} depending only on p and on the Riemannian geometry of M , where

$$
\alpha=1-\frac{\operatorname{dim} M}{p}
$$

and where $\mu_{g}: M x M \rightarrow \mathbb{R}$ is the function defined in the previous theorem. Applying this result with $m_{1}=m$, we obtain

$$
\begin{aligned}
\sup _{M}|f| & \leqslant \operatorname{vol}(M)-\frac{1}{P}\left\|_{f}\right\|\left\|_{p}+K_{p}(\operatorname{diam}(M))^{\alpha}\right\| d f \|_{p} \\
& \leqslant C_{p}\|f\|_{p, 1}
\end{aligned}
$$

where C_{p} is a constant depending only on p and on the Riemannian geometry of M, and where $\|\| p,$.1 is the L_{1}^{P}-norm. Since $C^{\mathbf{1}}(M)$ is dense in $L_{1}^{P}(M)$, it follows that we have a continuous embedding

$$
{ }_{L}{ }_{1}^{P}(M) C C^{O}(M)
$$

Also

$$
\begin{array}{r}
\sup _{m_{1} \neq m_{2}} \frac{\left|f\left(m_{1}\right)-f\left(m_{2}\right)\right|}{\left(d\left(m_{1}, m_{2}\right)\right)^{\alpha}} \leqslant k_{p}\|d f\|_{p} \\
k_{p}\|f\|_{p, 1}
\end{array}
$$

and thus we have a continuous embedding

$$
L_{1}^{p}(M) \longleftrightarrow c^{0, \alpha_{(M)}}
$$

where $C^{0, \alpha_{(M)}}$ is the HOlder space with exponent $\quad \alpha \in(0,1)$ given by

$$
\alpha=1-\frac{\operatorname{dim} M}{p} .
$$

There is an analogue of theorem 3.3 when M is not compact.
Corollary 3.4
Let M be a Riemannian manifold of dimension n. For all
continuous functions $f: M \rightarrow \mathbb{R}$, for all bounded domains D in M and for all $m_{1}, m_{2} \in D$, let $\mu_{f, D}\left(m_{1}, m_{2}\right)$ denote the infimum, over all piecewise smooth paths $c:\left[\bar{a}, \underline{b} \bar{T} \longrightarrow D\right.$ from m_{1} to m_{2} of the integrals

$$
\int_{a}^{b}|f(c(t))|\left\|c^{\prime}(t)\right\| d t
$$

of $|f|$, with respect to arclength, along c. Then, for all
$\mathrm{p} \boldsymbol{\in}(\mathrm{n}, \infty)$ and for all bounded domains D and D_{1} satisfying

$$
\overline{\mathrm{D}} \subset \operatorname{int} \mathrm{D}_{1}
$$

there exists a constant $K_{p, D, D_{1}}$ depending only on p, on the Riemannian geometry of M and on the domains D and D_{1} such that if $f: M \rightarrow \mathbb{R}$ is a continuous function on M, then

$$
\mu_{f, D}\left(m_{1}, m_{2}\right) \leqslant k_{p, D, D_{1}}\left(d\left(m_{1}, m_{2}\right)\right)^{\alpha}\|f\|_{D_{1}, p}
$$

for all $\mathrm{m}_{1}, \mathrm{~m}_{2} \in \mathrm{D}$, where $\alpha \in(0,1)$ is defined by

$$
\alpha=1-\frac{\mathrm{n}}{\mathrm{p}},
$$

where $d\left(m_{1}, m_{2}\right)$ is the distance from m_{1} to m_{2} with respect to the Riemannian metric on M, and where

$$
\|f\|_{D_{1}, p}=\left(\int_{D_{1}}|f|^{p} d(\operatorname{vo} 1)\right)^{\frac{1}{p}}
$$

Proof

As in the proof of theorem 3.3 we may assume that $\partial M=\emptyset$. Then there exists a smooth function $\varphi: M \rightarrow \bar{M}, \underline{1} \bar{T}$ such that φ has compact support contained in D_{1} and $\varphi \equiv 1$ on a neighbourhood of D. By Sard's theorem, there exists a regular value t of φ in the open interval $(0,1)$. Then $\varphi^{-1}([t, 1])$ is a compact manifold with boundary. The result then follows from theorem 3.3.

An alternative proof of corollary 3.4 not involving Sard's theorem could be constructed as follows. If M is a smooth Riemannian manifold (possibly noncompact) we could apply theorem 3.3 to compact geodesically convex sets in M with smooth boundary. By a we11known theorem of J.H.C. Whitehead, the interiors of such sets form a base for the topology of M. The domain D in the statement of corollary 3.4 may be covered by a finite number of compact geodesically convex balls with smooth boundary which are contained in the interior of the domain D_{1}. By the Lebesque covering theorem, there exists
$\delta>0$ such that if $m_{1}, m_{2} \in D$ then either m_{1} and m_{2} both belong to one of these geodesically convex balls or else $d\left(m_{1}, m_{2}\right) \geqslant \delta$. If $\mathrm{d}\left(\mathrm{m}_{1}, \mathrm{~m}_{2}\right)<\delta$ then the required inequality follows from theorem 3.3 applied to the geodesically convex ball containing m_{1} and m_{2}. If $d\left(m_{1}, m_{2}\right) \geqslant \delta$ then we can find a finite sequence of points of D whose first member is m_{1} and whose last member is m_{2} with the property that any pair of successive members of the sequence is contained in one of the geodesically convex balls. One can then bound $\mu_{f, \mathrm{D}}\left(\mathrm{m}_{1}, \mathrm{~m}_{2}\right)$ in terms of $\|f\| D_{1}, p$ as required.

An examination of the proof of theorem 6.3 shows that if M is a sufficiently well-behaved Riemannian manifold, such as a symmetric space, then it is in principle possible to find an upper bound on the
constant K_{p} by studying the properties of geodesic tubes about length minimizing geodesics using Jacobi fields.

Chapter V

PRINCIPAL BUNDLES AND CONNECTIONS
31. Introduction

In this chapter, we give an account of Ehresmann connections on a principal bundle and of the action of principal bundle automorphisms on such connections, in preparation for subsequent chapters. This account is based to some extent on / Ātiyah, M.F., Hitchin, N.J. and Singer, I.M., $1978 \overline{7}$ and / Bourguignon, J.-P. and Lawson, H.B., 19817.

In $\bar{§}^{2}$ we review the construction of fibre bundles associated to a given principal bundle $\pi: P \rightarrow M$ as described in, for example, chapter 9 of IAuslander, L. amd MacKenzie, R.E., 1963]. Two such associated bundles of particular importance are the adjoint bundles $P x_{\text {ad }}^{G} \rightarrow M$ and $P X_{A d} G \rightarrow M$, where G is the structural group of $\pi: P \rightarrow M$ and \square is the Lie algebra of G. We shall denote $P x_{a d} G$ by $G p$ and $P x_{A d} 9$ by $9 p$. It is easily seen that each fibre of $G p \rightarrow M$ acts on the corresponding fibre of any fibre bundle associated to $\pi: P \rightarrow M . \quad \Lambda n$ important general principle is the following: given some structure on the fibre F of some fibre bundle
$\Pi_{F}: F P \rightarrow M$ associated to $\pi: P \rightarrow M$, where this structure is invariant under the action of G on F, then we may define a corresponding structure on every fibre of the map $\pi_{F}: F P \rightarrow M$ in a canonical way, and moreover this structure is invariant under the action of each fibre of $G P \rightarrow M$ on the corresponding fibre of $\Pi_{F}: F P \longrightarrow M$. For example, this structure on F may be a group structure on F, a Riemannian metric on F, a vector space structure on F, a Lie algebra structure on F or a vector space norm on F. Using this principle, we shall show that if G and M are compact, then any biinvariant

Riemannian metric on M determine a canonical biinvariant distance function on $c^{\circ}(G p)$ and canonical norms on the Banach spaces $C^{\circ}(\underline{\rho})$, $L^{q}(g p), C^{o}(g p \otimes T * M)$ and $L^{q}(g p \otimes T * M)$, where q satisfies $l \leqslant q<\infty$. Moreover these canonical norms are invariant under the action of $C^{\circ}(G p)$ on these Banach spaces. We shall make use of this property in chapter VI. There appears to be no obvious analogue of this result which applies to the Sobolev spaces $L_{k}^{q}(\mathbb{P})$ and $L_{k}^{q}(g p \otimes T * \mathbb{P})$ when $k \neq 0$.

In $\S 3$ we define Ehresmann connections and holonomy groups and review their basic properties. This material is standard.

In S_{4} we define principal bundle automorphisms and study their action on connections. We show that the stabilizer of a smooth Ehresmann connection in the group of smooth principal bundle automorphisms is naturally isomorphic to the centralizer of the holonomy group of the connection (theorem 4.2). This result has been used in studying the singularities in the moduli space of instantons over a 4-manifold that play an important role in the proof of Donaldson's theorem on the intersection form of a smooth 4-manifold (see /Donaldson, S.K., 1983/).

In Ω_{5} we show that given two Ehresmann connections ω_{1} and ω_{2} on the principal bundle $\pi: P \rightarrow M$, then their difference $\omega_{1}-\omega_{2}$ may be identified with a section of the vector bundle $\mathcal{P} \otimes T * M \rightarrow M$. We shall then show that if $\boldsymbol{\Psi}: P \rightarrow P$ is a principal bundle automorphism and if $\|\cdot\|$ is the canonical norm on C^{0} ($\| P \otimes T * M$) or $L^{q}\left(g_{P} \otimes T * M\right)$ then

$$
\left\|\mathcal{I}_{1}-\omega_{2} * \omega_{2}\right\|=\left\|w_{1}-w_{2}\right\|
$$

(Lemma 5.1). We also prove a theorem (theorem 5.2) which relates the distance between two principal bundle automorphisms Ψ_{1} and Ψ_{2} evaluated at the endpoints of a piecewise smooth curve in M to the integral of $\left|\Psi_{1} * \omega-\Psi_{2} * \omega\right|$ along the curve, for any Ehresmann
connection $\boldsymbol{\omega}$ on the principal bundle. We shall make use of this result in chapter VI.

In \oint_{6} we review the well-known construction whereby, given an Ehresmann connection ω on a principal bundle $\pi: P \rightarrow M$ we may split the tangent bundle $\mathrm{TE} \rightarrow \mathrm{E}$ of an associated fibre bundle $E \rightarrow M$ into the whitney sum of the vertical bundle $V E \rightarrow E$ and a horizontal bundle $H E \rightarrow E$, where $V E$ consists of all vectors tangent to the fibres of $E \rightarrow M$. This enables us to define the covariant $D^{\omega} s: T M \longrightarrow V E$ of a section $s: M \longrightarrow E$ of $E \longrightarrow M$ with respect to the given connection in the obvious way. If $E \rightarrow M$ is a vector bundle then we may use this construction to define the covariant differential $d^{\omega}{ }^{\omega}: M \rightarrow E \otimes T * M$ of a section $s: M \rightarrow E$ of $E \rightarrow$ M. Given a smooth connection ω we shall define a first order differential operator

$$
\chi^{\omega}: c^{\infty}(G p) \rightarrow c^{\infty}(g p \otimes T * M)
$$

and a fibre bundle morphism

$$
B: C^{\infty}(g p) \rightarrow c^{\infty}(\text { End }(g p \otimes T * M)
$$

with the properties that

$$
\begin{aligned}
& \boldsymbol{X}^{\omega}(\boldsymbol{\Psi})=\Psi+\omega-\omega \\
& x^{\omega}(\exp \xi)=B(\xi) \mathrm{d}^{\omega} \xi
\end{aligned}
$$

for all principal bundle automorphisms $\boldsymbol{\xi}$ and for all $\xi \in C^{\infty}(\underline{Y})$, where

$$
\exp : c^{\infty}(פ p) \rightarrow c^{\infty}(G p)
$$

is the exponential map. The reason for introducing these operators is that in chapter VI we shall express the equations governing the action of principal bundle automorphisms on connections in terms of and B and by examining the form of these operators we may use the results of $/ \bar{P}$ alais, R.S., $1968 \overline{/}$, which we have summarized in chapter II, in order to deduce smoothness results for the action of

Banach Lie groups of principal bundle automorphisms on the appropriate Banach spaces of connections.

In section $\$ 7$ we review the basic formalism of the covariant exterior derivative, covariant codifferential and covariant Hodgede Rham Laplacian as developed in /Atiyah, M.F., Hitchin, N.J. and Singer, I.M., $197 \underline{8} /$ and in /Bourguignon, J.-P. and Lawson, H.B., 19817.

In this section, we summarize first the construction of fibre bundles associated to a given principal bundle. We apply this construction to define the adjoint bundles $T T$ ad $: G p \Rightarrow M$ and $T_{A d}: ~ g P \rightarrow M$ of a principal bundle $\pi: P \rightarrow M$ with structural group G whose Lie algebra is 9 . It is shown that, given a biinvariant metric on G, the biinvariant distance function on G resulting from this Riemannian metric determines a distance function on each fibre of $\Pi_{\text {ad }}: G p \rightarrow M$, and hence determines a biinvariant distance function, the canonical distance function, on the group $C^{\circ}(\mathrm{Gp})$ of continuous sections of $\pi_{\text {ad }}: G p \rightarrow M$. Similarly, the G-invariant norm on \int resulting from the Riemannian metric on G determines a norm on each fibre of $\pi_{A d}: \emptyset P \rightarrow M$, and hence determines norms, the canonical norms, on the vector spaces $c^{\circ}(g p)$ and $L^{q}(g p)$ of continuous sections and L^{q} sections respectively of $\Pi_{A d}: \emptyset P \rightarrow M$ for all $q \in[1, \infty)$; also, given a Riemannian metric on M, the invariant norm on g determines norms on each fibre of $\operatorname{Gp} \otimes \mathrm{T} \because \mathrm{M} \rightarrow \mathrm{M}$, and hence determines norms, the canonical norms, on $C^{\circ}(乌 p \otimes T * M)$ and
 $L^{q}(g p \otimes T * M)$ are shown to be invariant under the adjoint action of $c^{0}(\mathrm{Gp})$.

Let $\pi: P \rightarrow M$ be a smooth principal bundle with structural group G, acting on P on the right. Let F be a smooth manifold on which G acts smoothly, with action $\theta: G \longrightarrow \operatorname{Diff}(F)$. Then we can construct a fibre bundle $\Pi_{\theta}: P_{x}{ }_{\theta} F \rightarrow M$ with fibre F associated to the principal bundle $\pi: P \longrightarrow M$. The total space $P x_{\theta} F$ of this fibre bundle is defined to be the quotient space of $P \times F$ by the equivalence relation \sim, where

$$
\left(p \cdot \boldsymbol{\gamma}^{-1}, f\right) \sim(p, \theta(\boldsymbol{\gamma}) f)
$$

for all $p \in P, \quad \gamma \in G, f \in F . \operatorname{Let}[p, f] \in P x_{\theta} F$ denote the equivalence class of $(p, f) \in P x F$. The projection $\Pi_{\theta}: P x_{\theta} F \rightarrow M$ is defined by

$$
\pi_{\theta}\left(\left[\mathrm{p}, \mathrm{f}^{7}\right)=\pi(\mathrm{p})\right.
$$

and each element p of P determines a diffeomorphism $\nu_{p}: \pi^{-1}(m) \rightarrow F$, where $m=\pi(p)$ and

$$
\nu_{\mathrm{p}}([\mathrm{p}, f 7)=\mathrm{f}
$$

for all $f \in F$. If $\gamma \in G$ then

$$
\nu_{p \cdot \gamma^{-1}}=\theta \cdot \nu_{p},
$$

since

$$
\nu_{p \cdot \gamma^{-1}}([\mathrm{p}, £])=\nu_{p \cdot \gamma^{-1}}\left(\left[\mathrm{p} \cdot \gamma^{-1}, \theta(\gamma) £ 7\right) .\right.
$$

The structural group G acts on P on the right and on F on the left. A map $\beta: P \rightarrow^{F}$ is said to be G-equivariant if and only if

$$
\beta\left(p \cdot \gamma^{-1}\right)=\theta(\gamma) \beta(p)
$$

for all $p \in P$ and $\gamma \in G$. There is a bijective correspondence between sections of $\pi_{\theta}: P x_{\theta} F \rightarrow M$ and G-equivariant maps $\beta: P \longrightarrow F$. This correspondence sends a section $\mathrm{s}: \mathrm{M} \rightarrow \mathrm{PX}{ }_{\theta} \mathrm{F}$ to the G-equivariant map

$$
p \mapsto \nu_{p}(s(\pi(p))
$$

This correspondence sends C^{k} sections of $P x_{\theta} F$ to G-equivariant C^{k} maps from P to F.

Suppose that ($F, \boldsymbol{\rho}$) is a metric space with distance function $\rho: F \times F \rightarrow \mathbb{R}$ (we refer to such a function as a 'distance function' rather than as a 'metric' in order to distinguish between 'distance functions' and 'Riemannian metrics'; note however that a Riemannian metric on F determines a distance function on F, the distance between two points of F being the infimum of the lengths of all piecewise smooth paths joining these points, assuming that F is connected). The distance function $\rho: F \times F \rightarrow \mathbb{R}$ is G-invariant if and only if

$$
\rho\left(\theta(\gamma) f_{1}, \theta(\gamma) f_{2}\right)=\rho\left(f_{1}, f_{2}\right)
$$

for all $f_{1}, f_{2} \in F$ and $\gamma \in G$. If $\rho: F x F \rightarrow \mathbb{R}$ is a G-invariant distance function, then for all $m \in M$ there is a unique distance function ρ_{m} on the fibre $\pi_{\theta}^{-1}(m)$ of $\Pi_{\theta}: P x_{\theta} F \rightarrow M$ over m with the property that

$$
\rho_{m}\left(e_{1}, e_{2}\right)=\left(\nu_{p}\left(e_{1}\right), \nu_{p}\left(e_{2}\right)\right)
$$

for all $e_{1}, e_{2} \in \Pi_{\theta}^{-1}(m)$ and for all $p \in \Pi^{-1}(m)$, where $\nu_{p}: \Pi_{\theta}^{-1}(m) \rightarrow F$ is the diffeomorphism determined by p.

If M is compact, then we obtain a distance function $\hat{\rho}$ on $C^{\circ}\left(\mathrm{P} \mathrm{x}_{\theta} \mathrm{F}\right)$, the space of continuous sections of $\Pi_{\theta}: \mathrm{P} \mathrm{X}_{\theta} \mathrm{F} \rightarrow \mathrm{M}$ by defining

$$
\hat{\rho}\left(s_{1}, s_{2}\right)=\sup _{m \in M} \rho_{m}\left(s_{1}(m), s_{2}(m)\right)
$$

If $s_{1}, s_{2} \in C^{0}\left(P x_{\theta} F\right)$ and if $\sigma_{1}: P \rightarrow F$ and $\sigma_{2}: P \rightarrow F$ are the corresponding G-equivariant maps, then

$$
\hat{\rho}\left(s_{1}, s_{2}\right)=\sup _{p \in P}\left(\sigma_{1}(p), \sigma_{2}(p)\right)
$$

A special case occurs when the fibre F of the fibre bundle is a normed vector space on which G acts as a group of vector space automorphisms preserving the norm |.|. Then there is a unique norm $1.1 m$ on the fibre $\pi_{\theta}^{-1}(m)$ of $\pi_{\theta}: P x_{\theta} F \rightarrow M$ over $m \in M$ such that

$$
|\mathrm{e}|_{\mathrm{m}}=\left|\nu_{\mathrm{p}}(\mathrm{e})\right|
$$

for all e $\in \Pi_{\theta}^{-1}(m)$ and $p \in \Pi^{-1}(m)$, where $\mathcal{V}_{p}: \Pi_{\theta}^{-1}(m) \rightarrow F$ is the isomorphism determined by p. If M is compact, then we have a norm $\left\|\|\right.$ on $C^{0}\left(P_{x} x_{\theta}\right)$ defined by

$$
\|s\|=\sup _{\mathrm{m} \in \mathrm{M}}|\mathrm{~s}(\mathrm{~m})|_{\mathrm{m}}
$$

If $\sigma: P \longrightarrow F$ is the G-equivariant map determined by the section $s: M \rightarrow P x_{\theta} F$, then
$\|s\|=\sup _{p \in P}|\sigma(p)|$.

If we are given a smooth measure μ on M, then, for all $a \in \Omega, \infty$) we may define the norm $\|\cdot\|_{q}$ on $L^{q}\left(P x_{\theta} F\right)$ by

$$
\|s\|_{q}=\left(\int_{M}|s(m)|_{m}^{q} d \mu\right)^{1 / q}
$$

Now consider the case when F_{1} and F_{2} are smooth manifolds with smooth actions $\theta_{1}: G \longrightarrow \operatorname{Diff}\left(F_{1}\right)$ and $\theta_{2}: G \longrightarrow \operatorname{Diff}\left(F_{2}\right)$, and let $\varphi: F_{1} \rightarrow F_{2}$ be a G-equivariant smooth map (φ is G-equivariant if and only if $\theta_{2}(\boldsymbol{\gamma}) \cdot \boldsymbol{\varphi}=\boldsymbol{\varphi} \cdot \theta_{\mathbf{2}}(\boldsymbol{\gamma})$ for all $\boldsymbol{\gamma} \boldsymbol{\epsilon}$ G). Then φ induces a smooth fibre bundle morphism $\varphi_{\mathrm{P}}: \mathrm{Px}{ }_{\theta_{1}} \mathrm{~F}_{1} \rightarrow \mathrm{Px} \theta_{2} \mathrm{~F}_{2}$. We apply these general results to the bundles $P \times{ }_{a d} G$ and P $x_{\text {Ad }} \boldsymbol{\Omega}$, where \emptyset is the Lie algebra of a compact Lie group G with a biinvariant Riemannian metric, G being the structural group of a smooth principal bundle $\pi: P \longrightarrow M$ over a compact Riemannian manifold M. The adjoint action

$$
\text { ad }: G \longrightarrow \operatorname{Diff}(G)
$$

of G on G is the map sending $\boldsymbol{\gamma} \in G$ to the inner automorphism $\beta \mapsto \gamma \beta \gamma^{-1}$ of G. We denote the manifold $P x{ }_{\text {ad }} G$ by Gp. $G p$ is the total space of a smooth fibre bundle $\Pi_{a d}: G p \rightarrow M$. The adjoint representation

$$
\text { Ad }: G \rightarrow \operatorname{Aut}(g)
$$

of G on \emptyset is the map sending $\gamma \in G$ to the derivative $\operatorname{Ad}(\gamma): g \rightarrow g$ of $\operatorname{ad}(\gamma): G \rightarrow G$ at the identity element of G. We denote the manifold $P_{\text {xd }} g$ by $9 p$. $9 p$ is the total space of a smooth vector bundle $\Pi_{A d}: פ p \rightarrow M$. We denote the fibre of $\Pi_{a d}: G P \rightarrow M$ over $m \in M$ by $G P[m]$.

The biinvariant Riemannian metric on G determines a biinvariant distance function $\rho: G \times G \rightarrow \mathbb{R}$. It also determines a norm $|$.$| on$ 9 invariant under the adjoint representation of G. Also the Riemannian metric on M determines a smooth measure μ on M, the volume measure on M.

Let the principal bundle $\Pi: P \rightarrow M$, the structural group G, the adjoint bundle $\pi_{a d}: G_{P} \rightarrow M$, and the biinvariant distance function $\rho: G \times G \rightarrow \mathbb{R}$ on G be as above.

Then, for all $m \in M$ and for all $p \in \Pi^{-1}(m), G p \leq m \neq$ is a
Lie group and the diffeomorphism from $G_{\mathbf{P}} \underline{I}_{\mathbf{m}} \overline{/}$ to G determined by p is an isomorphism of Lie groups. These group operations on each fibre of
π ad $: G_{P} \rightarrow M$ induce a corresponding group structure on the space $C^{\circ}\left(G_{\mathbf{P}}\right)$ of continuous sections of $\pi \pi_{\text {ad }}: G_{\mathbf{P}} \rightarrow M$.

For all $\mathrm{m} \in \mathrm{M}$, there is a unique distance function
$\rho_{\mathrm{m}}: \mathrm{G}_{\mathbf{p}} \Gamma_{\mathrm{m}} \bar{\prime} \times \mathrm{G}_{\mathbf{p}}\left\lceil\mathrm{m}_{-}\right\rceil \rightarrow \mathbb{R}$ with the property that, for all
$p \in G p / m_{-} 7$, the isomorphisms from $G p / m_{-} 7$ to G determined by p is an isometry of metric spaces. ρ_{m} is then a biinvariant distance function on the Lie group $G_{p}[\mathrm{~m}]$. The biinvariant metric on G thus determines a distance function $\hat{\rho}$ on $C^{\circ}\left(G_{p}\right)$ defined by

$$
\hat{\rho}\left(s_{1}, s_{2}\right)=\sup _{m \in \mathbb{N}} \rho_{m}\left(s_{1}(m), s_{2}(m)\right)
$$

and if $\sigma_{1}: P \rightarrow G, \quad \sigma_{2}: P \rightarrow G$ are the G-equivariant maps corresponding to $s_{1}: M \rightarrow G_{P}$ and $s_{2}: M \rightarrow G_{P}$, then

$$
\sigma_{1}\left(p \cdot \gamma^{-1}\right)=\gamma \sigma_{1}(p) \gamma^{-1}
$$

and similarly for σ_{2}, and

$$
\left(s_{1}, s_{2}\right)=\sup _{p \in P}\left(\sigma_{1}(p), \sigma_{2}(p)\right)
$$

The distance function $\hat{\rho}$ on $C^{0}\left(G_{\mathbf{P}}\right)$ is biinvariant, and thus the group operations on the metric space $\left(C^{\circ}\left(G_{P}\right), \hat{\rho}\right)$ are continuous.

Proof
Let $m \in M, \operatorname{let} p \in \pi^{-1}(m)$ and let $V_{p}: G p<m_{-} \rightarrow G$ be the diffeomorphism determined by p. Then

$$
\mathcal{V}_{p \cdot \gamma^{-1}}=\operatorname{ad}(\gamma) \circ \nu_{p}
$$

for all $\gamma \in G$, hence $\nu_{p, \gamma^{-1}} \cdot \nu_{p}^{-1}: G \rightarrow G$ is an inner automorphism
of G. Thus there is a unique group structure on $G P[m]$ such that
$\nu_{\mathrm{p}}: \mathrm{G}[\mathrm{m}] \rightarrow \mathrm{G}$ is an isomorphism of Lie groups for all
$p \in \pi^{-1}(m)$. We have already seen that there is a well-defined distance function $\rho_{m}: G P[m] \times G P[m] \rightarrow \mathbb{R}$ such that $\nu_{p}: G p[m] \rightarrow G$ is an isometry of metric spaces for all $p \in \Pi^{-1}(m)$. Since $\rho: G \times G \rightarrow \mathbb{R}$ is biinvariant and since $\nu_{\mathrm{P}}: G \mathbf{P}[\mathrm{~m}] \rightarrow \mathrm{G}$ is a Lie group isomorphism, it follows that $\rho_{m}: G p[m] \times G[m] \rightarrow \mathbb{R}$ is also biinvariant.

The map $\sigma: P \rightarrow G$ is G-equivariant with respect to the adjoint action of G on G if and only if

$$
\sigma\left(p \cdot \gamma^{-1}\right)=\gamma \sigma(p) \gamma^{-1}
$$

and we have already seen that

$$
\hat{\rho}\left(s_{1}, s_{2}\right)=\sup _{p \in P}\left(\sigma_{1}(p), \sigma_{2}(p)\right)
$$

where σ_{1} and σ_{2} are the G-equivariant maps from P to G corresponding to s_{1} and s_{2}. It remains to show that $\hat{\rho}$ is biinvariant and that the group operations on the metric space $\left(C^{\circ}(G \mathbf{p}), \hat{\boldsymbol{p}}\right)$ are continuous. But the biinvariance of $\hat{\rho}$ is an immediate corollary of the binvariance of ρ_{m} for all $m \in M$. But then

$$
\begin{aligned}
\hat{\rho}\left(s_{1}, s_{2}\right) & =\hat{\rho}\left(s_{1}^{-1} s_{1} s_{2}^{-1}, s_{1}^{-1} s_{2} s_{2}^{-1}\right) \\
& =\hat{\rho}\left(s_{2}^{-1}, s_{1}^{-1}\right)
\end{aligned}
$$

for all sections $s_{1}, s_{2} \in C^{0}(G p)$, hence the map sending s to s^{-1} is an isometry of $\left(\mathrm{C}^{\mathrm{O}}(\mathrm{Gp}), \hat{\boldsymbol{\rho}}\right)$. Also if $\mathrm{s}_{1}, \mathrm{~s}_{2}, \mathrm{~s}_{1}^{\prime}, \mathrm{s}_{2}^{\prime} \in \mathrm{C}^{\mathrm{O}}\left(\mathrm{G}_{\mathrm{P}}\right)$, then

$$
\begin{aligned}
\hat{\rho}\left(s_{1} s_{1}^{\prime}, s_{2} s_{2}^{\prime}\right) & \leqslant \hat{\rho}\left(s_{1} s_{1}^{\prime}, s_{2} s_{1}^{\prime}\right)+\hat{\rho}\left(s_{2} s_{1}^{\prime}, s_{2} s_{2}^{\prime}\right) \\
& \leqslant \hat{\rho}\left(s_{1}, s_{2}\right)+\hat{\rho}\left(s_{1}^{\prime}, s_{2}^{\prime}\right)
\end{aligned}
$$

hence the map $\left(s, s^{\prime}\right) \mapsto s s^{\prime}$ is a continuous map from $C^{\circ}(G p) \times C^{\circ}(G p)$ to $C^{0}(G \mathcal{P})$. Hence the group operations on $\left(C^{0}(G p), \hat{\rho}\right)$ are continuous.

We refer to the distance function $\hat{\rho}: C^{\circ}(G p) \times C^{\circ}(G \mathcal{P}) \rightarrow \mathbb{R}$, defined in the above proposition, as the canonical distance function (or canonical metric) on $C^{\circ}(G \mathbf{p})$ determined by the biinvariant Riemannian metric on G.

Proposition 2.2

Let the principal bundle $\pi: P \rightarrow M$, the Lie algebra g of the structural group, the adjoint bundle $\pi_{A d}: ~ G p \rightarrow M$, the invariant norm 1.1 on g, and the Riemannian volume measure μ on M be as above.

Then, for all $m \in M$ and for all $p \in \pi^{-1}(m), ~ G p[m]$ is a Lie algebra and the vector space isomorphism from $\operatorname{GP}[\mathrm{m}]$ to \square defined by the element p of P is an isomorphism of Lie algebras. The Lie bracket on each fibre of $\pi_{A d}: g p \rightarrow M$ induces a corresponding Lie bracket on the space $C^{\circ}[g P]$ of continuous sections of

$$
\Pi_{A d}: \quad ⿹_{P} \rightarrow M
$$

For all m M there is a unique norm 1.1 m on $9 \mathrm{~m}[\mathrm{~m}]$ with the property that, for $a l l p \in g p[m]$, the isomorphism from Ip [m] to g is an isometry of normed vector spaces. $1 \cdot 1 \mathrm{~m}$ determines a norm $\|$.$\| on c^{\circ}(\theta p)$ defined by

$$
\|a\|=\sup _{m \in \mathrm{M}}|\mathrm{a}(\mathrm{~m})|_{\mathrm{m}}
$$

and if $\alpha: P \rightarrow \square$ is the G-equivariant map corresponding to $a: M \rightarrow$ Qp, then

$$
\alpha\left(p \cdot \gamma^{-1}\right)=\operatorname{Ad}(\gamma) \alpha(p)
$$

and

$$
\|a\|=\sup _{p \in P}|\alpha(p)|
$$

The Lie bracket is a continuous map $c^{\circ}(g p) \times c^{\circ}(g p) \rightarrow c^{\circ}(g p)$.
For all $q \in\left[1, \infty\right.$) we have a norm $\|$. $\|_{q}$ on $L^{q}(g p)$ defined by

$$
\|a\|_{q}=\left(\int_{M}|a(m)|_{m}^{q} d \mu\right)^{\frac{1}{q}}
$$

and if $q, r, s \in I, \infty)$ and

$$
\frac{1}{q}+\frac{1}{r}=\frac{1}{s}
$$

then the Lie bracket on each fibre of $\pi_{A d}: \Delta_{p} \rightarrow M$ induces A continuous bilinear map $L^{q}\left(\Xi_{p}\right) \times L^{r}\left(\Xi_{p}\right) \rightarrow L^{s}\left(\Xi_{p}\right)$.

Proof
The proof is analogous to that of the previous proposition, with the exception of the last part, which follows from Hblder's inequality.

We refer to the norm $\|\cdot\|$ on $C^{\circ}(\Delta p)$, defined in the above proposition, as the canonical norm on $c^{\circ}(\Delta p)$ determined by the biinvariant Riemannian metric on G. We refer to the norms $\|$. II q on $L^{q}(\exists p)$, for any $\left.q \in I \overline{1}, \infty\right)$, as the canonical norms on L^{q} ($\exists p$) determined 'y the biinvariant Ri smannian mətric ol G and the smooth measure on M. If this measure is the volume measure of a given Riemannian metric on M, we refer to $\|\cdot\| q_{q}$ as the canonical norm on $L^{q}(\square p)$ determined by the biinvariant Riemannian metric on G and the Riemannian metric on M.

For all $\gamma_{1}, \gamma_{2} \in G$, the exponential map $\exp : \emptyset \rightarrow G$ satisfies $\operatorname{Ad}\left(\gamma_{1}\right)\left(\exp \gamma_{2}\right)=\exp \left(\operatorname{ad}\left(\gamma_{1}\right) \gamma_{2}\right)$
and is thus G-equivariant and so induces a smooth fibre bundle morphism $\exp _{p}: \Xi_{p} \rightarrow G_{P}$. Also we have a smooth fibre bundle morphism $A d_{P}: G_{P} \rightarrow$ End (Ξ_{p}), induced by $A d: G \rightarrow$ End (Ξ).

Proposition 2.3
Let the principal bundle $\pi: P \rightarrow M$, the structural group G with Lie algebra $马$, the adjoint bundles $\pi_{\text {ad }}: G_{P} \rightarrow M$ and $\pi_{\text {Ad }}: \nabla \rho \rightarrow M$, the biinvariant distance function $\rho: C^{0}\left(G_{p}\right) \times C^{0}\left(G_{p}\right) \rightarrow \mathbb{R}$ on $C^{\circ}\left(G_{p}\right)$, and the canonical norms $\|\cdot\|$ and $\|\cdot\|_{0}$ on $C^{\circ}\left(\exists_{p}\right)$ and $L^{q}\left(\Xi_{p}\right)$ respectively be as above.

Then the map exp: $\boldsymbol{\square} \rightarrow$ induces a smooth fibre bundle morphism $\exp _{P}: ⿹ \rho \rightarrow G_{P}$. This in turn induces a continuous map $\exp : C^{0}\left(\Xi_{p}\right) \rightarrow C^{0}\left(G_{P}\right)$ between metric spaces, and if a $\in C^{o}\left(g_{p}\right)$ and if e is the identity section of $C^{0}\left(G_{p}\right)$, then

$$
\hat{\rho}(\exp a, e)=\|a\| .
$$

The adjoint representation $A d: G \rightarrow$ End (G) induces a smooth fibre bundle morphism $A d_{P}: G_{P} \rightarrow$ End (\exists_{P}). This in turn induces adjoint representations

$$
\begin{aligned}
& c^{o}\left(G_{P}\right) \text { с } c^{\circ}(\Delta p) \rightarrow c^{o}(\Delta p):(s, a) \mapsto A d(s) a, \\
& c^{o}\left(G_{p}\right) \times L^{q}\left(\Xi_{p}\right) \rightarrow L^{q}\left(\Xi_{p}\right):(s, a) \mapsto \operatorname{Ad}(s) a .
\end{aligned}
$$

If $s: M \rightarrow G_{P}$ is a section of $G_{P} \rightarrow M$ and if $a: M \rightarrow g_{P}$ is a section of $\exists_{P} \rightarrow M$, then

$$
\begin{aligned}
& \|\operatorname{Ad}(s) a\|=\|a\| \\
& \|\operatorname{Ad}(s) a\|_{\mathrm{q}}=\|a\|_{\mathrm{q}}
\end{aligned}
$$

for all $q \in \mathbb{1}, \infty)$. Thus the canonical norms of $c^{\circ}(\square p)$ and $L^{q}\left(\exists_{p}\right)$ are invariant under the action of the group $C^{\circ}\left(G_{P}\right)$.

Proof

The continuity of exp : $c^{0}\left(\exists_{P}\right) \rightarrow c^{0}\left(G_{P}\right)$ and Ad : $C^{0}\left(G_{p}\right) \rightarrow$ End $\left(C^{0}\left(D_{p}\right)\right)$ follow by elementary compactness arguments. If $||$.$m is the canonical norm on the fibre$ GpIm_ of $\exists p \rightarrow M$ over $m \in M$ and if ρ_{m} is the canonical distance furction on the fibre $G_{p} \leq m_{-} \not \operatorname{lof}^{G} p \rightarrow M$ over m, and if a $\in c^{o}(\square p)$, then

$$
\rho_{m}\left(\exp _{p}(a(m)), e(m)\right)=|a(m)|_{m}
$$

hence

$$
\hat{\rho}(\exp a, e)=\|a\| .
$$

Also if $s \in C^{0}\left(G_{P}\right)$, then

$$
\left|\operatorname{Ad}_{P}(\mathrm{~s}(\mathrm{~m})) a(\mathrm{~m})\right|_{\mathrm{m}}=|\mathrm{a}(\mathrm{~m})|_{\mathrm{m}}
$$

hence

$$
\|\mathrm{Ad}(\mathrm{~s}) \mathrm{a}\|=\|\mathrm{a}\|
$$

and $\| A d(s)$ a $\|q=\|$ a $\| q$
for all $q \in[1, \infty)$.

Finally we consider the bundle $D P \otimes T * M \rightarrow M$.
Proposition 2.4
Let the principal bundle $\pi: P \rightarrow M$ over the Riemannian amnifold M, the structural group G with Lie algebra g, the adjoint bundles $\Pi_{\text {ad }}: G p \rightarrow M$ and $\Pi_{A d}: g p \rightarrow M$, the invariant norm 1.1 on \emptyset, and the norms 1.1 m on the fibres $\emptyset p[\mathrm{~m}]$ of $\emptyset p \rightarrow M$ be as above.

Consider the vector bundle $g(\mathbb{T} * \mathrm{M} \rightarrow \mathrm{M}$. The fibre of this bundle over $m \in M$ is isomorphic to the vector space $L\left(T_{m}, ~ \exists P[m]\right)$ of linear transformations from the tangent space $T_{m} M$ of M at m to the fibre $⿹ p[m]$ of $g p \rightarrow M$ over m. This vector space has a norm $1 \cdot 1 \mathrm{~m}$ defined by

$$
|\mathrm{s}|_{\mathrm{m}}=\sup \left\{|\mathrm{s} x|_{\mathrm{m}}: x \in \mathrm{~T}_{\mathrm{m}} \mathrm{~m},|\mathrm{x}|=1\right\}
$$

for any $S \in L\left(T_{m} M, ~ \exists P[m]\right)$. If μ is the volume measure of the Riemannian manifold M, we may define norms $\|$.$\| and \|\cdot\| \|_{q}$ on $c^{0}(g \mathrm{p} \otimes \mathrm{T} * \mathrm{M})$ and $L^{q}(\square \mathrm{p} \otimes \mathrm{T} * \mathrm{M})$ respectively, for all $q \in[1, \infty)$, by

$$
\begin{aligned}
\|\tau\| & =\sup _{m \in M}|\tau(m)|_{m} \\
\|\tau\|_{q} & =\left(\int_{M}|\tau(m)|_{m}^{q} d \mu\right)^{1 / q}
\end{aligned}
$$

The smooth bundle morphism Adp : Gp \rightarrow End ($\mathcal{F} p$) induces a smooth bundle morphism Adp $: G p \rightarrow$ End $(\square p \otimes T * M)$, and hence induces continuous adjoint representations

$$
\begin{aligned}
& c^{o}(G p) \times c^{o}(\square p \otimes T * M) \rightarrow c^{o}(D p \otimes T * M):(s, \tau) \mapsto A d(s) \tau \\
& c^{o}(G p) \times L^{q}(\square p \otimes T * M) \rightarrow L^{q}(\square p \otimes T * M):(s, \tau) \mapsto A d(s) \tau
\end{aligned}
$$

Then

$$
\begin{aligned}
& \|\operatorname{Ad}(\mathrm{s}) \tau\|=\|\tau\| \\
& \|\operatorname{Ad}(\mathrm{s}) \tau\|_{\mathcal{q}}=\|\tau\|_{\underline{q}}
\end{aligned}
$$

for all $q \in[\mathcal{T}, \infty)$. Thus the canonical norms of $c^{0}(\square p \otimes T * M)$ and $\left.q_{p} \boldsymbol{T} * M\right)$ are invariant under the action of the group $C^{\circ}(G p)$.

Proof
The proof is exactly analogous to that of the previous proposition.

We refer to the norms $\|\cdot\|$ and $\|\cdot\|_{q}$ on $C^{0}(\boldsymbol{G} \otimes T * M)$ and $L^{q}(G p \otimes T * M)$ as the canonical norms determined by the biinvariant Riemannian metric on G and the Riemannian metric on M.
33.

Connections and Holonomy
This section is a review of basic facts about Ehresmann connections on principal bundles and their holonomy groups. See /Ambrose, W. and singer, I.M., iysz or /Kobayashi, s. and Nomizu, k., 1963 for more details.

Let $\pi: P \rightarrow M$ be a smooth principal bundle with structural group G whose Lie algebra is 9 . A tangent vector to P is vertical if and only if it is annihilated by the derivative $\pi_{\%}: \mathrm{TP} \rightarrow \mathrm{TM}$ of π. There is a canonical mapping
$\Delta \rightarrow$ vertical vector fields on P
sending $a \in \boldsymbol{D}$ to the vector field $\sigma(a)$ on P whose value $\sigma_{p}(a)$ at $p \in P$ is tangent to the curve $t \mapsto p . \exp$ ta at $t=0$. The map $a \mapsto \sigma(a)$ is a Lie algebra homomorphism. $\sigma(a)$ is referred to as the fundamental vector field on P determined by a.

An Ehresmann connection $\omega: \mathrm{TP} \rightarrow \boldsymbol{D}$ on $\pi: \mathrm{P} \rightarrow \mathrm{M}$ is a
1-form on P with the following two properties:
(i) $\quad \omega\left(\sigma_{p}(a)\right)=a \quad$ for all $p \in P$ and $a \in G$,
(ii) $R_{\gamma}^{*} \omega=\operatorname{Ad}\left(\gamma^{-1}\right) \cdot \omega$ for all $\gamma \in G$,
where $R_{\gamma}^{*} \omega$ is the pullback of ω under the map $R \gamma: P \rightarrow P$ mapping p to $p \cdot \gamma$.

A tangent vector to P is horizontal if and only if it is annihilated by $\omega: T P \rightarrow \theta$. If VP and HP are the subbundles of TP consisting of all vertical and all horizontal vectors respectively, then TP decomposes as a Whitney sum

$$
\mathrm{TP}=\mathrm{VP} \oplus \mathrm{HP}
$$

A piecewise differentiable curve in P is horizontal if and only if all tangent vectors to the curve are horizontal. If $c: \bar{t}_{o}, t_{1-} \bar{T} \rightarrow M$ is a piecewise smooth curve, and if $p \in P$ satisfies $\pi(p)=c\left(t_{0}\right)$, then there is a unique piecewise smooth horizontal curve ${\tilde{c_{p}}}_{p}=\bar{t}_{0}, t_{1-} \bar{P} \rightarrow P$
such that $\widetilde{c}_{p}\left(t_{o}\right)=p$. If $\gamma \in G$, then

$$
\widetilde{c}_{p_{0} \gamma}(t)=\left(\widetilde{c}_{p}(t)\right) \cdot \gamma
$$

Let $h: T P \rightarrow$ HP be the projection onto the horizontal bundle HP over P whose kernel is the vertical bundle VP. The curvature ${ }^{\omega} \omega: \Lambda^{2} \mathrm{TP} \rightarrow \boldsymbol{g}$ of ω is the \boldsymbol{g}-valued 2 -form on P defined by $\mathrm{F}^{\boldsymbol{\omega}}(\mathrm{X}, \mathrm{Y})=\operatorname{d\omega }(\mathrm{hX}, \mathrm{hY})$
for all vector fields X and Y on $P . \quad F^{\omega}$ has the following two properties:
(i) $\quad \mathrm{F}^{\boldsymbol{\omega}}(\mathrm{X}, \mathrm{Y})=0$ if either X or Y is vertical, (ii) $R_{\gamma}^{*} F=\operatorname{Ad}\left(\gamma^{-1}\right) \cdot F$ for all $\gamma \in G$.

Given a point $p \in P$, the holonomy bundle attached to $p, B(p)$, is the set of all points of P which may be joined to p by a piecewise smooth horizontal curve in P. The holonomy group attached to $\mathrm{p}, \mathrm{H}(\mathrm{p})$, is a group of all $\gamma \in G$ such that $p . \gamma \in B(p)$. The null holonomy group attached to $p, H_{o}(p)$, is the subgroup of $H(p)$ consisting of all $\gamma \in H(p)$ with the property that p may be joined to $p \cdot \gamma$ by a piecewise smooth horizontal curve in P whose image under Π is a null-homotopic loop in M. If $c: \bar{t}_{0}, \mathrm{t}_{1-} 7 \rightarrow \mathrm{M}$ is a loop in M beginning and ending at $\Pi(p)$, then $\gamma \in H(p)$ is said to be generated by c if and only if the horizontal lift $\widetilde{c}_{p}: \bar{\epsilon}_{0}, t_{1-} 7 \rightarrow P$ of c beginning at p ends at $p \cdot \gamma$. If c_{1} and c_{2} are loops in M beginning and ending at
$\pi(p)$ and generating the elements γ_{1} and γ_{2} respectively of the holonomy group $H(p)$ attached to p, then the product loop $c_{1} * c_{2}\left(c_{1}\right.$ followed by c_{2}) generates $\gamma_{2} \cdot \gamma_{1} \in H(p)$. If c is a loop based at $\Pi(p)$ generating $\gamma \in H(p)$ and if $\eta \in G$, then c generates $\eta^{-1} \gamma \eta \in H(p . \eta)$. If $\left.c_{0}: I_{0}, t_{1}\right] \rightarrow M$ is a piecewise smooth curve which lifts to a horizontal curve in P from q to p for some $p, q \in P$ and if c is a loop in M based at $\pi(p)$ generating $\gamma \in H(p)$, then the loop $c_{0} * c * c_{0}^{-1}\left(c_{0}\right.$ followed by c followed by c_{0} reversed) generates the same element $\gamma \in H(q)$.

Theorem 3.1
Given a smooth principal bundle $\pi: P \rightarrow M$ with structural group G and given a smooth Ehresmann connection on $\pi: P \rightarrow M$, the holonomy bundle $B(p)$ is a smooth immersed submanifold of P, the holonomy group $H(p)$ is an immersed Lie subgroup of G with identity component $H_{o}(p)$, and $\pi \mid B(p): B(p) \rightarrow M$ is a smooth principal bundle with structure group $H(p)\left(H_{o}(p)\right.$ is the null holonomy group).

Theorem 3.2 (Ambrose-Singer holonomy theorem)
Let $\pi: P \rightarrow M$ be a smooth principal bundle with structural group G, and let \mathscr{F} be the Lie algebra of G. Let $\omega: T P \rightarrow G$ be a smooth Ehresmann connection on $\pi: P \rightarrow$ M. For all $\mathrm{p} \in \mathrm{P}$, let $\mathcal{F}_{(\mathrm{p})}$ be the subaigebra of \boldsymbol{g} generated by all $\mathrm{F}^{\boldsymbol{\omega}}(\mathrm{X}, \mathrm{I})$, where F^{ω} is the curvature of ω and where X and Y run through all pairs of tangent vectors to P at ail points of $B(p)$, the holonomy bundle attached to p. Then the subgroup of G generated by $\mathcal{F}(p)$ is the null holonomy group $H_{o}(p)$ of ω attached to p.

An Ehresmann connection on a principal bundle is said to be irreducible if and only if the holonomy group attached to any point of P is the whole structural group of the principal bundle $\pi: P \rightarrow M$.

S4. Principal Bundle Automorphisms
In this section, we define principal bundle automorphisms and present some of their properties. In particular, we examine the action of principal bundle automorphisms on connections.

Let $\pi: P \rightarrow M$ be a smooth principal bundle with structure group G whose Lie algebra is 9 . A principal bundle automorphism $\Psi: P \rightarrow P$ is a fibre-preserving G-equivariant diffeomorphism of P (ie.

$$
\pi(\boldsymbol{\Psi}(p))=\pi(p)
$$

and

$$
\Psi(p \cdot \gamma)=\Psi(p) \cdot \gamma
$$

for all $p \in P$ and $\gamma \in G)$. The set of all principal bundle automorphisms of $\pi: P \rightarrow M$ is in bijective correspondence with the set of all G-equivariant maps from P to G, where the group G acts on G by the adjoint action (recall that $\mathcal{\psi}: P \rightarrow G$ is G-equivariant if and only if

$$
\psi(p \cdot \gamma)=\gamma^{-1} \psi(p) \gamma
$$

for all $p \in P$ and $\gamma \in G)$. This correspondence maps the principal bundle automorphism $\Psi: P \rightarrow P$ to the map $\psi: P \rightarrow G$ with the property that

$$
\Psi(p)=p \cdot \Psi(p)
$$

for all $p \in P$. If $\Psi: P \rightarrow P$ is C^{k} for some nonnegative integer k, then so is $\psi: P \rightarrow G$.

Let $\Psi_{1}: P \rightarrow G$ and $\Psi_{2}: P \rightarrow$ G be G-equivariant maps corresponding to principal bundle automorphisms $\Psi_{1}: P \rightarrow P$ and $\Psi_{2}: P \rightarrow P, \quad$ Then

$$
\begin{aligned}
\Psi_{1} \cdot \Psi_{2}(p) & =\Psi_{1}\left(p \cdot \Psi_{2}(p)\right) \\
& =\Psi_{1}(p) \cdot \Psi_{2}(p) \\
& =p \cdot \Psi_{1}(p) \Psi_{2}(p)
\end{aligned}
$$

Thus if the space of G-equivariant maps from P to G is considered as a group under the operations of pointwise multiplication and inversion of maps, then the above correspondence is a group isomorphism from the group of c^{k} principal bundle automorphisms on $\pi: P \rightarrow M$ to the group of C^{k} G-equivariant maps from P to G. But this latter group is isomorphic to the group of C^{k} sections of the adjoint bundle $\Pi_{\text {ad }}: G p \rightarrow M$ whose total space $G p$ is $P \times$ ad H. Thus the group of C^{k} principal bundle automorphisms of $\pi: P \rightarrow M$ is isomorphic to the group $c^{k}(G \mathbf{p})$.

Given $\boldsymbol{\gamma} \in G, \operatorname{let} R \underset{\gamma}{ }: P \rightarrow P$ denote the map sending $p \in P$ to p. γ. Given $a \in \mathcal{G}$, let $\sigma(a)$ be the fundamental vector field on P determined by a, and let $\sigma_{p}(a)$ denote the value of $\sigma(a)$ at $p \in P$. If $\Psi: P \rightarrow P$ is a principal bundle automorphism, then

$$
\Psi \cdot R_{\boldsymbol{\gamma}}=R_{\boldsymbol{\gamma}} \cdot \Psi
$$

Also the flow of σ (a) is given by

$$
(p, t) \mapsto p . \exp t a .
$$

It follows that the flow of $\sigma(a)$ commutes with $\Psi: P \rightarrow P$, and hence

$$
\Psi_{*} \sigma(a)=\sigma(a)
$$

Thus if $\omega: T P \rightarrow G$ is an Ehresmann connection on $\pi: P \rightarrow M$, then so is $\Psi * \omega$: if $a \in \boldsymbol{G}$, then

$$
\begin{aligned}
(\Psi * \omega)(\sigma(a)) & =\omega\left(\Psi_{*} \sigma(a)\right) \\
& =\omega(\sigma(a)) \\
& =a
\end{aligned}
$$

and if $\gamma \in G$ then

$$
\begin{aligned}
R_{\gamma}^{*} \Psi \Psi^{*} \omega & =\Psi^{*} R_{\gamma}^{*} \omega \\
& =\operatorname{Ad}\left(\gamma^{-1}\right) \bullet \Psi^{*} \omega
\end{aligned}
$$

Given $\boldsymbol{\gamma} \in \mathrm{G}$, let $\mathrm{L}_{\boldsymbol{\gamma}^{-1} *: ~}^{T} \boldsymbol{\gamma}^{G} \rightarrow \boldsymbol{\square}$ be the derivative at $\boldsymbol{\gamma}$ of the map $L \gamma^{-1}: G \rightarrow G$ multiplying elements of G on the left by γ^{-1},
and define

$$
\Phi(x)={ }^{L} \gamma^{-1} * x
$$

for all $x \in T, G$. The $\operatorname{map} \boldsymbol{\Phi}: T G \rightarrow \boldsymbol{G}$ is a \boldsymbol{g}-valued 1 -form on G, the Maurer-Cartan form on G.

Lemma 4.1

Let $\pi: P \rightarrow M$ be a smooth principal bundle with structure group G whose Lie algebra is G. Let Φ : TE $\rightarrow 9$ denote the Maurer-Cartan form on G. Let $\Psi: P \rightarrow P$ be a differentiable principal bundle automorphism and let $\psi: P \rightarrow G$ be the corresponding G-equivariant map with the property that $\Psi(p)=p . \Psi(p)$ for all $p \in P$. Let $\mathcal{Y}_{*}: T P \rightarrow T G$ be the derivative of Ψ. Then, for all $X \in T_{p} P$,

$$
\Psi * \omega(x)=A d\left(\psi(p)^{-1}\right) \omega(x)+\Phi(\psi *(x))
$$

Proof
Let $c:(-\varepsilon, \varepsilon) \rightarrow P$ be a short curve with tangent vector $X \in T_{p} P$ at $t=0$, where $p=c(0)$. Let $q=\Psi(p)$. Then, by Leibnitz' rule,

$$
\begin{aligned}
\Psi_{*} x & =\left.\frac{d}{d t}(c(t) \cdot \psi(c(t)))\right|_{t=0} \\
& =R \psi(p) * x+\frac{d}{d t}\left(\left.p \cdot \psi(p)\left(\psi(p)^{-1} \psi(c(t))\right)\right|_{t=0}\right. \\
& =R \psi(p) * x+\sigma_{q}\left(\left.\frac{d}{d t}\left(\psi(p)^{-1} \psi(c(t))\right)\right|_{t=0}\right) \\
& =R \psi(p) * x+\sigma_{q}(\Phi(\psi *(x))),
\end{aligned}
$$

hence

$$
\Psi \Psi^{*} \omega(x)=\operatorname{Ad}\left(\psi(p)^{-1}\right) \omega(x)+\Phi\left(\psi_{*}(x)\right)
$$

We now describe the stabilizer of a smooth Ehresmann connection under the action of the group of smooth principal bundle automorphisms.

Theorem 4.2
Let $\pi: P \rightarrow M$ be a smooth principal bundle, with structural group G whose Lie algebra is 9 . Let $\omega: T P \rightarrow g$ be a smooth Ehresmann connection on $\pi: P \rightarrow M$ and let Stab($\boldsymbol{\omega}$) be the stabilizer of $\boldsymbol{\omega}$ in the group of smooth principal bundle automorphisms. Then stab(ω) is isomorphic to the centralizer in G of the holonomy group of ω attached to any point of P.

Proof
Let $\Psi: P \rightarrow P$ be a smooth principal bundle automorphism
and let $\Psi: P \rightarrow G$ be the G-equivariant map corresponding to Ψ, where $\Psi(p)=p . \Psi(p)$ for all $p \in P$. Now if $X \in T P$ is vertical, then

$$
\Psi * \omega(x)=\omega(x)
$$

Since TP decomposes as the whitney sum of its vertical and horizontal subbundles with respect to ω, a necessary and sufficient condition for Ψ to belong to $\operatorname{Stab}(\omega)$ is that $\Psi * \omega(X)=0$ for all $X \in \operatorname{TP}$ satisfying $\omega(X)=0$. But if $\boldsymbol{\omega}(x)=0$ then

$$
\Psi * \omega(x)=\Phi\left(\psi_{*}(x)\right)
$$

by lemma 4.1 . Thus $\Psi \in \operatorname{stab}(\omega)$ iff

$$
\Psi_{:}(X)=0
$$

for all $X \in T P$ satisfying $\boldsymbol{\omega}(X)=0$. This condition is satisfied if and only if $\Psi: P \rightarrow G$ is constant along all piecewise smooth curves in P which are horizontal with respect to the connection ω. Thus Ψ belongs to $\operatorname{stab}(\boldsymbol{\omega})$ if and only if $\psi: P \rightarrow G$ is constant along all the holonomy bundles attached to points of P.

But if $\gamma \in G$ and if $R{ }_{\gamma}: P \rightarrow P$ is the map sending p to $p \cdot \gamma$, then the smooth maps $R \gamma: P \rightarrow P$ for all $\gamma \in G$ permute the holonomy bundles of the connection ω, this action of G on the set of holonomy bundles of the connection ω is transitive, and

$$
\psi \cdot R \gamma=\operatorname{ad}\left(\gamma^{-1}\right) \cdot \psi
$$

Hence if ψ is constant on of the holonomy bundles in P of the connection ω, then ψ is constant on all of these holonomy bundles. Let $p \in P$. Then $\Psi \in \operatorname{Stab}(\boldsymbol{\omega})$ if and only if ψ is constant on the holonomy bundle attached to p . It follows that ψ is determined uniquely by its value $\psi(p)$ at p. Thus we have a monomorphism from Stab($\boldsymbol{\omega}$) to the structural group G mapping $\Psi: P \rightarrow P$ to $\psi(p)$, where
$\Psi: P \rightarrow G$ is the G-equivariant map corresponding to Ψ.
We recall that if $\gamma \in G$ then γ belongs to $H(p)$, the holonomy group of ω attached to p, if and only if $p \cdot \gamma$ belongs to the holonomy bundle of $\boldsymbol{\omega}$ attached to p. Thus if $\Psi \in \operatorname{Stab}(\boldsymbol{\omega})$ and if $\gamma \in H(p)$, then

$$
\psi(p \cdot \gamma)=\psi(p)
$$

and thus

$$
\gamma^{-1} \psi(p) \gamma=\psi(p)
$$

Hence $\psi(p)$ belongs to the centralizer of the holonomy group of ω attached to p. Thus the image of the monomorphism from $\operatorname{Stab}(\omega)$ to G mapping $\Psi: P \rightarrow P$ to $\boldsymbol{\Psi}(p)$ is contained in $H(p)$. It remains to show that if γ belongs to the centralizer of $H(p)$ in G, then there exists $\Psi \in \operatorname{Stab}(\boldsymbol{\omega})$ such that $\boldsymbol{\Psi}(\mathrm{p})=\boldsymbol{\gamma}$ where $\boldsymbol{\Psi}: \mathrm{P} \rightarrow \mathrm{G}$ is the G-equivariant map corresponding to Ψ.

Let γ belong to the centralizer of $H(p)$ in G. For all
$p_{1} \in P$, there exists $\boldsymbol{\gamma}_{1} \in G$ such that $p \cdot \boldsymbol{\gamma}_{1}$ belongs to the holonomy bundle of $\boldsymbol{\omega}$ attached to p_{1}. Define

$$
\psi\left(p_{1}\right)=\gamma_{1}^{-1} \gamma \gamma_{1}
$$

$\psi: P \rightarrow G$ is well-defined since γ centralizes $H(p):$ if $p \cdot \gamma_{1}$ and $p \cdot \gamma_{2}$ belong to the same holonomy bundle of ω then so do p and p. $\boldsymbol{\gamma}_{2} \boldsymbol{\gamma}_{1}^{-1}$, hence $\boldsymbol{\gamma}_{2} \boldsymbol{\gamma}_{1}^{-1} \in H(p)$, and hence

$$
\begin{aligned}
\gamma_{1}^{-1} \gamma \gamma_{1} & =\gamma_{1}^{-1}\left(\gamma_{1} \gamma_{2}^{-1} \gamma \gamma_{2} \gamma_{1}^{-1}\right) \gamma_{1} \\
& =\gamma_{2}^{-1} \gamma \gamma_{2} .
\end{aligned}
$$

Using the fact that we have a smooth foliation of P by the holonomy bundles of the connection ω, we may easily show that $\psi: P \rightarrow G$ is smooth. Thus we have an isomorphism from $\operatorname{Stab}(\boldsymbol{\omega})$ onto the centralizer of the holonomy group of the connection ω attached to p.

In this section, we review facts about the adjoint bundles $G p \rightarrow M$ and $G p \rightarrow M$ associated to a smooth principal bundle
$\Pi: P \rightarrow M$ over a compact manifold with compact structural group G whose Lie algebra is 9 . We then show that the difference of two Ehresmann connections determines a section of $\operatorname{GP} \cdot \mathrm{T} \div \mathrm{M} \rightarrow \mathrm{M}$, where Gp $\rightarrow M$ is the adjoint bundle with total space $P x_{\text {Ad }} G$, where $A d: G \rightarrow A u t(g)$ is the adjoint representation of G. Denote by
 for $q \in \underline{1}, \infty)$, determined by a given biinvariant metric on G and a given Riemannian metric on M. We shall show that if $\boldsymbol{\omega}_{1}$ and $\boldsymbol{\omega}_{2}$ are continuous connections and if $\Psi: P \rightarrow P$ is a C^{1} principal bundle automorphism, then

$$
\omega_{1}-\omega_{2}=\left\|\Psi \div \omega_{1}-\Psi * \omega_{2}\right\| .
$$

Similarly,

$$
\left\|\omega_{1}-\omega_{2}\right\|_{q}=\left\|\Psi * \omega_{1}-\Psi * \omega_{2}\right\|_{q}
$$

if $\omega_{1}-\omega_{2} \in L^{q}(\square p \otimes T \% i)$. We shall then obtain results comparing principal bundle automorphisms along curves in the total space P of the principal bundle P which are horizontal with respect to some Ehresmann connection on P.

We recall that the group of c^{k} principal bundle automorphisms is isomorphic to the group of C^{k} sections of the bundle $\pi_{\text {ad }}: G p \rightarrow M$ whose total space $G p$ is $P X_{a d} G$. Also, given a biinvariant Riemannian metric on the structural group G, determining a distance function $\rho: G \times G \rightarrow \mathbb{R}$ on G and a G-invariant norm 1.1 on g, there is for all $m \in \mathbb{M}$, a unique distance function $\rho_{m}: G X G \rightarrow \mathbb{R}$ on the fibre $G p[\mathrm{~m}]$ of Gp over m , and a unique norm 1.1 m on the fibre Ap $[\mathrm{m}] \otimes \mathrm{T} \mathrm{m}_{\mathrm{m}}$ of $g \mathrm{P} \otimes \mathrm{T} * \mathrm{M} \rightarrow \mathrm{M}$ over m , with the property that every $p \in \pi^{-1}(m)$ determines an isometry from $G p[m]$ to G, and from
 norm

$$
S=\sup \left\{|S X|: X \in T_{m}^{M} \text { and }|X|=1\right\}
$$

obtained when we regard $\theta \otimes \frac{\mathrm{T}}{\mathrm{m}}$ as the space of linear transformations from $T_{m} M$ to g). We recall that the canonical norms $\|$.$\| and$ $\|\cdot\|{ }_{q}$ on $c^{0}(g p \otimes T * M)$ and $L^{q}(g p \otimes T * M)$ are then defined by

$$
\begin{aligned}
& \|\tau\|=\sup _{m \in M}|\tau(m)|_{m} \\
& \|\tau\|_{q}=\left(\int_{M}|\tau(m)|_{m}^{q} d(\text { volume })\right)^{1 / q}
\end{aligned}
$$

The adjoint representation $A d: G p[m] \rightarrow$ Aut $] p[m]$ induces continuous maps

$$
\begin{aligned}
& c^{0}(G p) \times c^{0}(g p \otimes T * M) \rightarrow c^{0}(g p \otimes T * M) \\
& c^{0}(G p) \times L^{q}(g p \otimes T * M) \rightarrow L^{q}(g p \otimes T * M)
\end{aligned}
$$

for $q \in I \bar{I}, \infty)$, which are linear over sections of $\theta p \otimes \pi * M \rightarrow M$.
 are invariant under this adjoint action (see proposition 2.4).

Let $\tau: T P \rightarrow g$ be a g-valued 1 -form on $P . \tau$ is said to be $\underline{h o r i z o n t a l}$ if and only if $\tau(X)=0$ for all vertical tangent vectors $X \in T P$ (a tangent vector to P is said to be vertical if and only if it is tangent to the fibres of $\pi: P \rightarrow M$ and is thus mapped to zero under the derivative of $\pi: P \rightarrow M) . \tau$ is said to be G-equivariant if and only if

$$
\mathrm{R}_{\gamma}^{*} \tau=\operatorname{Ad}\left(\gamma^{-1}\right) \tau
$$

where $R \gamma^{*} \tau$ is the pullback of τ under the map $R \gamma: P \rightarrow P$ sending p to $p \cdot \gamma$ for all $p \in P$ and $\gamma \in G$.

Let $\tau: T P \rightarrow G$ be a horizontal G-equivariant S-valued 1 -form on P. Then, for all $p \in P$, there is a unique well-defined linear
$\operatorname{map} \tilde{\tau}_{p}: T_{m} M \rightarrow Q$, where $m=\pi(p)$, such that

$$
\tilde{\tau}_{p}\left(\pi_{*} x\right)=\tau(x)
$$

for all $X \in T_{p} P$, where $\pi_{*}: T P \rightarrow T M$ is the derivative of $\pi: P \rightarrow M$. If $R_{\gamma *}: T P \rightarrow T P$ is the derivative of $R{ }_{\boldsymbol{\gamma}}: P \rightarrow P$, then

$$
\begin{aligned}
\tilde{\tau}_{p \cdot \gamma}\left(\pi_{*} x\right) & =\tilde{\tau}_{p \cdot \gamma}\left(\pi_{*} R_{\gamma *} x\right) \\
& =\tau\left(R_{\gamma}, x\right) \\
& =R_{\gamma}^{*} \tau(x) \\
& =\operatorname{Ad}\left(\gamma^{-1}\right) \tau(x) \\
& =\operatorname{Ad}\left(\gamma^{-1}\right) \widetilde{\tau}_{p}\left(\pi_{*} X\right)
\end{aligned}
$$

Thus, for all vector fields Y on M, the map sending $p \in P$ to $\hat{\tau}_{p}(Y \pi(p)$ is a G-equivariant map from P to θ and thus determines a unique section of $\pi_{A d}: g P \rightarrow M$. Thus every horizontal, G-equivariant \square-valued 1 -form $\tau: T P \rightarrow \square$ determines a unique section of $\Theta p \otimes T * M \rightarrow M$, which we also denote by τ on identifying sections of this bundle with the corresponding 1 -forms on P.

If 1.1_{m} is the norm on the fibre of $\quad \triangle p \otimes T * M \rightarrow M$ over $m \in M$, then, for all $p \in \Pi^{-1}(m)$ and for all $X \in T_{p} P$,

$$
|\tau(x)| \leqslant|\tau(m)|_{m}\left|\pi_{*} x\right|
$$

for all horizontal G-equivariant g-valued l-forms on P.

Lemma 5.1

Let $\Pi: P \rightarrow M$ be a smooth principal bundle over a compact manifold M with compact structural group G whose Lie algebra is 9 . Let $G P=P \times$ ad G and $g p=P \times$ ad g be the total spaces of the adjoint bundles $\Pi_{\text {ad }}: G p \rightarrow M$ and $\Pi_{A d}: \theta p \rightarrow M$. For all $m M$, let 1.1 m be the norm on the fibre of $\quad \neg P \otimes T * M \rightarrow M$ over $m \in M$ determined by some biinvariant Riemannian metric on G and some Riemannian metric on M, and let $\|\cdot\|$ and $\|\cdot\|_{q}$ be the corresponding
canonical norms on $C^{0}\left(⿹_{P} \otimes T * M\right)$ and $L^{q}\left(⿹_{P} \otimes T * M\right)$ for $\left.q \in I \bar{I}, \infty\right)$ ． Let $\boldsymbol{\omega}_{1}: T P \rightarrow G$ and $\omega_{2}: T P \rightarrow g$ be continuous Ehresmann connections on $\pi: P \rightarrow M$ and let $\Psi: P \rightarrow P$ be a C^{1} principal bundle automorphism of $\pi: P \rightarrow M$ ．

Then $w_{1}=\omega_{2}: T P \rightarrow G$ is a continuous horizontal G－equi－ variant \mathcal{G}－valued 1 －form on P ，and thus determines a unique continuous section of the vector bundle $⿹_{P} \otimes \mathrm{~T}_{\mathrm{M}} \rightarrow \mathrm{M}$ ，which we also denote by $\omega_{1}-\omega_{2}$ ．Ψ determines a C^{1} section of $G P \rightarrow M$ ．Then

$$
\left\|\Psi * \omega_{1}-\Psi * \omega_{2}\right\|=\left\|\omega_{1}-\omega_{2}\right\|
$$

and

$$
\left\|\Psi * \omega_{1}-\Psi * \omega_{2}\right\|_{q}=\left\|\omega_{1}-\omega_{2}\right\|_{\mathrm{q}}
$$

Proof

The fact that $\omega_{1}-\omega_{2}$ is horizontal and G－equivariant follows from the definition of an Ehresmann connection．The final statement of the lemma follows from the invariance of $\|$.$\| and \|.\|_{q}$ under the adjoint action of $C^{\circ}(G \mathcal{P})$ ，provided that we can show that

$$
\Psi * \omega_{1}-\Psi * \omega_{2}=\operatorname{Ad}\left(\Psi^{-1}\right)\left(\omega_{1}-\omega_{2}\right)
$$

where the right hand side of this identity should be interpreted as the image of the section Ψ^{-1} of $G p \rightarrow M$ and the section $\omega_{1}-\mathcal{W}_{2}$ of $G_{P} \otimes T * M \rightarrow M$ under the adjoint action．But if

$$
\Psi(p)=p \cdot \Psi(p)
$$

for some G－equivariant map $\psi: P \longrightarrow G$ ，then

$$
\Psi * \omega_{1}(p)=\operatorname{Ad}\left(\Psi(p)^{-1}\right) \omega_{1}(p)+L \psi(p)^{-1 *} \Psi_{*}(p)
$$

where $L_{\gamma}:: T G \longrightarrow T G$ is the derivative of $L_{\gamma}: G \rightarrow G$ sending $\beta \in G$ to $\gamma \beta$ ，by Lemma 4．1．Thus

$$
\Psi * \omega_{1}-\Psi * \omega_{2}=\operatorname{Ad}\left(\Psi(p)^{-1}\right)\left(\omega_{1}-\omega_{2}\right)
$$

The result follows using the correspondences between G－equivariant
maps $\psi: P \rightarrow G$ and sections Ψ of G_{P} and between horizontal G-equivariant \square-valued l-forms on P and sections of $\exists \rho \otimes T * M$.

Let $p \in P$ and let $c:[\bar{a}, \underline{b}] \rightarrow M$ be a loop beginning and ending at m, where $m=\pi(p)$. Let $\tilde{c}:[\underline{a}, \underline{b}] \rightarrow P$ be a lift of c beginning at p which is horizontal with respect to a C^{1} Ehresmann connection $\boldsymbol{\omega}$. Then
$\tilde{c}(b)=p \cdot \gamma$
for some $\gamma \in G$. The image of (p, γ) under the natural projection $P x G \rightarrow P x{ }_{\text {ad }} G$ is an element hol(c) of G_{P} [m_7. hol(c) is independent of the choice of $p \in \Pi^{-1}(\mathrm{~m})$. The elements of $\mathrm{G}_{\mathrm{p}} \Gamma_{\mathrm{m}} \mathrm{T}^{7}$ of the form hol(c) form a subgroup $\operatorname{Hol}_{m}(\omega)$ of $G_{P} I_{m_{-}} \overline{7}$ identitied with the holonomy group of the connection ω.

Theorem 5.2
Let $\Pi: P \rightarrow M$ be a smooth principal bundle over a compact Riemannian manifold M with compact structural group G whose Lie aigebra is G. Let $\rho: G \times G \rightarrow \mathbb{R}$ be the distance function of a given biinvariart Riemannian metric on G, and let $\rho_{\mathrm{m}}: \mathrm{G}_{\mathrm{P}} \Gamma_{\mathrm{m}} \boldsymbol{\gamma} \times \mathrm{G}_{\mathrm{P}} \Gamma_{\mathrm{m}} \boldsymbol{\gamma} \rightarrow \mathbb{R}$ be the corresponding distance function on the fibre G_{p} I $_{m}$ 耳 over $m \in M$ of the adjoint bundle $G_{P} \rightarrow M$, where $G_{P}=P \mathrm{x}{ }_{\text {ad }}{ }^{G}$. Let $1 . I_{m}$ be the norm on the fibre
 $\exists_{P}=P \times{ }_{\text {ad }} \boldsymbol{3}$.

Let $\omega:$ TP $\rightarrow \boldsymbol{Z}$ be a C^{1} Ehresmann connection on $\pi: P \rightarrow M$, and let $\mathrm{Hol}_{\mathrm{m}}(\omega$) denote the holonomy group of ω generated by loops based at $m \in M$. Let $\Psi_{1}: P \rightarrow P$ and $\Psi_{2}: P \rightarrow P$ b: C^{2} principal bundle automorphisms. Let $\mathrm{c}: \underline{[a}, \underline{\mathrm{b}}] \rightarrow \mathrm{M}$ be a piecewise smooth curve in M parameterized by arclength s, and define $\Delta: M \longrightarrow \mathbb{R}$ by

$$
\Delta(\mathrm{m})=\rho_{\mathrm{m}}\left(\Psi_{1}(\mathrm{~m}), \Psi_{2}(\mathrm{~m})\right)
$$

Then

$$
|\Delta(c(b))-\Delta(c(a))| \leqslant \int_{a}^{b}\left|\Psi_{1}^{*} \omega-\Psi_{2}^{*} \omega\right|_{c(s)} d s .
$$

Further, if $c: \leq \underline{a}, \underline{b} \bar{T} \rightarrow M$ is a piecewise smooth loop beginning and ending at m and generating the element h of the holonomy group $\mathrm{Hol}_{\mathrm{m}}(\omega)$ of ω, then

$$
\left.\rho_{m}^{\left(h^{-1}\right.} \Psi_{1}(m) \Psi_{2}^{(m)^{-1} h}, \Psi_{1}(m) \Psi_{2(m)^{-1}}\right) \leqslant \int_{a}^{b}\left|\Psi_{1}^{*} \omega-\Psi_{2}^{*} \omega\right|_{c(s)} d s
$$

Proof

Since ρ_{m} is biinvariant and $1 \cdot 1_{\mathrm{m}}$ is G-invariant
$\Delta(m)=\rho_{m}\left(\Psi_{1}(m) \Psi_{2}^{-1}(m), e(m)\right)$
where e is the identity section of $G p \rightarrow M$, and

$$
\begin{aligned}
\left|\Psi_{1} * \omega-\Psi_{2} * \omega\right|_{c(s)} & =\left|\Psi_{2}^{-1 *} \Psi_{1}^{*} \omega-\omega\right|_{c(s)} \\
& =\left|\left(\Psi_{1} \Psi_{2}^{-1}\right) * \omega-\omega\right|_{c(s)}
\end{aligned}
$$

it suffices to prove the theorem when $\Psi_{1}=\Psi$ and $\Psi_{2}=e$.
 horizontal with respect to ω. Let $\psi: P \rightarrow G$ be the G-equivariant function defined by

$$
\Psi(p)=p \cdot \Psi(p)
$$

for all $p \in P$. Let $\eta: \underline{[a}, \underline{b} \bar{T} \rightarrow$ G be defined by

$$
\eta(s)=\psi(\tilde{c}(s))
$$

and let $\hat{c}: \underline{a}, \underline{b} \bar{T} \rightarrow \mathrm{P}$ be defined by

$$
\hat{c}(s)=\tilde{c}(s) \cdot \eta(s) .
$$

Then

$$
\hat{c}(s)=\Psi \circ \tilde{c}(s) .
$$

Thus the tangent vectors \widetilde{c}^{\prime} and \hat{c}^{\prime} to \widetilde{c} and \hat{c} are related by

$$
\hat{c}^{\prime}(s)=\Psi_{*} \widetilde{c}^{\prime}(s)
$$

where $\Psi_{\#}: T P \rightarrow$ TP is the derivative of Ψ. Thus

$$
\begin{aligned}
\omega\left(\hat{c}^{\prime}(\mathrm{s})\right) & =\left(\Psi^{*} * \omega\right)\left(\overline{\mathrm{c}}^{\prime}(\mathrm{s})\right) \\
& =\tau\left(\tilde{\mathrm{c}}^{\prime}(\mathrm{s})\right)
\end{aligned}
$$

where

$$
\tau=\Psi * \omega-\omega
$$

since

$$
\omega\left(\tilde{c}^{\prime}(s)\right)=0
$$

But by Leibnitz' rule

$$
\hat{c}^{\prime}(s)=R \eta(s) * \vec{c}^{\prime}(s)+\sigma \hat{c}(s)(\Phi(\eta(s)))
$$

where $\boldsymbol{\Phi}: T G \rightarrow \hat{g}$ is the Maurer-Cartan form on G and where $\sigma \hat{C}(s)$ is the map sending an element of 9 to the value at $\hat{c}(s)$ of the corresponding fundamental vertical vector field. Hence

$$
\omega\left(\hat{c}^{\prime}(s)\right)=\Phi(\eta(s))
$$

Thus

$$
\Phi(\eta(s))=\tau\left(\tilde{c^{\prime}}(s)\right)
$$

But

$$
\left|\tau\left(c^{\prime}(s)\right)\right| \leqslant|\tau|_{\mathrm{m}}\left|c^{\prime}(s)\right|=|\tau|_{\mathrm{m}}
$$

hence

$$
\begin{aligned}
\rho(\eta(b), \eta(a)) & \leqslant \int_{a}^{b}|\Phi(\eta(s))| \mathrm{ds} \\
& \leqslant \int_{a}^{b}|\tau|_{c(s)} d s
\end{aligned}
$$

But

$$
\rho(\eta(b), \eta(a))=\rho(\psi(\widetilde{c}(b)), \psi(\tilde{c}(a)))
$$

hence

$$
\begin{aligned}
|\Delta(c(b))-\Delta(c(a))| & =|\rho(\psi(c(b)), e)-\rho(\psi(c(a)), e)| \\
& \leqslant \rho(\psi(c(b)), \psi(c(a))) \\
& \leqslant \int_{a}^{b}\left|\Psi^{*} \omega-\omega\right| c(s) d s
\end{aligned}
$$

If in addition $c:[\bar{a}, \underline{b}] \rightarrow M$ is a loop generating $h \in \operatorname{Hol}_{m}(\omega)$
where $h=h o l(c)$, and if h is tho image of (o (a), γ) $\in P \times G$ under the natural projection $P \times G \rightarrow G P$, then

$$
\begin{aligned}
\eta(b) & =\psi(\bar{c}(b)) \\
& =\psi(\widetilde{c}(a) \cdot \gamma) \\
& =\gamma^{-1} \psi(\widetilde{c}(a)) \gamma
\end{aligned}
$$

and

$$
\eta(a)=\psi(\tilde{c}(a))
$$

hence

$$
\begin{aligned}
\rho_{m}\left(h^{-1} \Psi(m) h, \Psi(m)\right) & =\rho\left(\gamma^{-1} \psi(\tilde{c}(a)) \gamma, \psi(\tilde{c}(a))\right) \\
& =(\eta(b), \eta(a)) \\
& \leqslant \int_{a}^{b}|\Psi * \omega-\omega|_{c}(s) d s
\end{aligned}
$$

as required.

S6. Covariant Derivatives of Sections of Fibre Bundles
In this section, we show that, given a smooth fibre bundle $\mathrm{FP} \rightarrow \mathrm{M}$ associated to a smooth principal bundle $\pi: P \rightarrow M$, and given a smooth connection ω on $\pi: P \rightarrow M$, we may define, for any C^{1} section $s: M \rightarrow F P$ of $F P \rightarrow M$, the covariant derivative ${ }_{D} \boldsymbol{\omega}_{S}: T M \rightarrow T F P$ of the section s. The image of $D \omega_{S}$ is contained in the vector bundle VF over Fp consisting of all vectors in TFP which are tangent to the fibres of $\mathrm{FP} \rightarrow \mathrm{M}$. We first consider the covariant derivative of sections of the adjoint bundle $\pi_{a d}: G P \rightarrow M$, where G is the structural group of $\pi: P \rightarrow M$ and $G p=P x_{a d} G$. Let g be the Lie algebra of G and let $G_{p}=P x_{A d} g$. The Naurer-cartan form $\Phi: T G \rightarrow g$ induces a fibre bundle morphism $\Phi p: V G p \rightarrow G p$, and the composition $\Phi p \cdot D^{\omega} \Psi$ of the covariant derivative $D^{\omega} \Psi: T M \rightarrow V G p$ of some C^{1} section Ψ of $G p \rightarrow M$ with Φp defines a $G p$-valued l-form $\chi^{\omega}(\Psi)$ on M. We show that if $\Psi \in C^{1}(G p)$ corresponds to a principal bundle automorphism $\Psi: P \rightarrow P$, then $\mathcal{X}^{\omega}(\Psi)$ corresponds to the horizontal G-equivariant g-valued 1 -form $\Psi * \omega-\omega$. We define the covariant differential d_{s} of a section s of a vector bundle associated to $\pi: P \rightarrow M$. We then show the existence of a fibre bundle orphism $B: \emptyset p \rightarrow$ End $(g P \rightarrow T * M)$ such that, for all $\xi \in c^{1}(\square \mathrm{p})$,

$$
x^{\boldsymbol{\omega}}(\exp \xi)=\mathrm{B}(\xi) \mathrm{d}^{\boldsymbol{\omega}} \boldsymbol{\xi}
$$

where $\exp : c^{1}\left(⿹_{p}\right) \rightarrow c^{1}(G \mathbf{p})$ is induced by the exponential map $\exp : ⿹ \rightarrow G$, and where $d^{\boldsymbol{\omega}} \boldsymbol{\xi}$ is the covariant differential of Also we show that there exists a neighbourhood of the zero section of $\exists \mathrm{P}$ such that if ξ belongs to this neighbourhood, then $B(\xi)$ is a section of $\operatorname{Aut}(\boldsymbol{\rho} \otimes \mathrm{T} * \mathrm{M})$. Then we compare the covariant derivative operators with respect to different connections on the principal
bundle $\pi: P \rightarrow M$.

Definition

Let $p: E \rightarrow M$ be a smooth fibre bundle and let $p_{:}: T E \rightarrow T M$ be the derivative of p. The vertical bundle $V E \rightarrow M$ of $E \rightarrow M$ is the fibre bundle over in defined by

$$
V E=\left\{x \in T E: p_{\pi}(x)=0\right\}
$$

(we shall also regard VE as the total space of a vector bundle over E whenever appropriate).

If $p_{1}: E_{1} \rightarrow M$ and $p_{2}: E_{2} \rightarrow M$ are smooth fibre bundles over M, and if $\varphi: E_{1} \rightarrow E_{2}$ is a smooth fibre bundle morphism, we define $V \varphi: V E_{1} \rightarrow V E_{2}$ to be the restriction of the derivative $\varphi: \mathrm{TE}_{1} \rightarrow \mathrm{TE}_{2}$ of φ to VE_{1}.

Let $\pi: P \rightarrow M$ be a smooth principal bundle with structural group G. Let F be a smooth manifold on which G acts smoothly on the left with action $\theta: G \rightarrow \operatorname{Diff}(F)$. Let $\pi_{\theta}: F \boldsymbol{p} \rightarrow M$ be the fibre bundle with total space $F P=P X_{\theta} F$ associated to $\pi: P \rightarrow M$ by the action θ. Let $T F$ be the tangent bundle of F and let $T \theta: G \rightarrow \operatorname{Diff(TF)}$ be the smooth left action sending $\gamma \in G$ to the derivative $\mathrm{T} \theta(\gamma): \mathrm{TF} \rightarrow \mathrm{TF}$ of $\theta(\gamma): \mathrm{F} \rightarrow \mathrm{F}$. Then IFp \rightarrow is a fibre bundle with fibre $T F$ and total space $V F=P X_{T \theta} T F$ associated to $\pi: P \rightarrow M$ by the action $T \theta$.

Now let $\omega: T P \rightarrow g$ be a smooth Ehresmann connection on $\pi: P \rightarrow M$, where g is the Lie algebra of the structural group G. ω determines a splitting of TP as a direct sum

$$
\mathrm{TP}=\mathrm{VP} \Theta \mathrm{HP}
$$

of vector bundles over P, where

$$
P=\{x \in T P: \omega(x)=0\}
$$

Let $V_{F} P$ and $H_{p} P$ denote the fibres of $V P$ and $H P$ respectively over $p \in P$. For all $\gamma \in G$, let $R_{\gamma *}: T P \rightarrow T P$ denote the derivative of the smooth map $R_{\gamma}: P \rightarrow P$ sending p to $p \cdot \gamma$.

Then

$$
\begin{aligned}
& V_{p \cdot \gamma} P=R \gamma * V_{p} P \\
& H_{p \cdot \gamma} P=R \gamma H_{p} P
\end{aligned}
$$

The derivative $\Pi \pi: \overline{I F} \rightarrow \overline{I M}$ of $\pi: P \rightarrow$ ii restricts to an isomorphism

$$
\pi * \mid H_{p} P: H_{p} P \rightarrow T_{\pi(p)}^{M}
$$

If $\mathrm{FP} \rightarrow \mathrm{M}$ is the fibre bundle with total space $P \mathrm{X}{ }_{\theta} \mathrm{F}$ associated to $\pi: P \rightarrow M$ by the smooth left action $\theta: G \rightarrow \operatorname{Diff}(F)$, then the natural projection

$$
(p, f) \mapsto[p, f]
$$

from $P \times F$ to $F p$ determines, for each $f \in F$, a $m a p e_{f}: P \longrightarrow F P$ sending p to $[p, f]$. The derivative $e_{f *}: T P \rightarrow$ TFP of e_{f} satisfies

$$
\pi_{\theta *} e_{f *}=\pi_{*}
$$

and thus e_{f} : maps VP into VFP. Then

$$
e_{f} \cdot R_{\gamma}=e_{\theta\left(\gamma^{-1}\right) f,}
$$

hence

$$
e_{f *} \cdot{ }^{R} \boldsymbol{\gamma} *=e_{\theta\left(\boldsymbol{\gamma}^{-1}\right) f * .}
$$

Then

$$
\begin{aligned}
e_{\theta\left(\boldsymbol{\gamma}^{-1}\right) f *\left(H_{p} P\right)} & =e_{f *}{ }^{R} \boldsymbol{\gamma} *\left(H_{p} P\right) \\
& =e_{f *}\left(H_{p \cdot \gamma} P\right)
\end{aligned}
$$

Hence there is a well-defined subbundle HFp of TFp with the property that if $x=[p, f]$ for some $p \in P$ and $f \in F$, and if $H_{X} F p$ is the fibre of HFP over x , then

$$
H_{x} F_{p}=e_{f *}\left(H_{P} P\right)
$$

Since $\Pi_{*} \mid H_{p} P: H_{p} P \rightarrow T_{m}$ is an isomorphism, where $m=\pi(p)$, and since

$$
T_{\theta *} e_{f *}=T_{*}
$$

it follows that

$$
\mathrm{e}_{\mathrm{f} *} \mid \mathrm{H}_{\mathrm{p}} \mathrm{P}: \quad: \mathrm{H}_{\mathrm{p}} \mathrm{P} \rightarrow \mathrm{H}_{\mathrm{x}} \mathrm{~F}_{\mathbf{p}}
$$

and

$$
\pi_{\theta^{*}} \mid H_{x} F_{p}: H_{x} F_{p} \rightarrow T_{m}^{M}
$$

are both isomorphisms, and we have a splitting of TFP as a direct sum

$$
\mathrm{TFP}=\mathrm{VF} \boldsymbol{P} \boldsymbol{\oplus} \boldsymbol{H F P} .
$$

Definition

Let $\Pi_{\theta}: F \mathbf{p} \rightarrow M$ be a smooth fibre bundle associated to a smooth principal bundle $\boldsymbol{\pi}: P \longrightarrow M$ with structural group G by a smooth left action $\theta: G \rightarrow \operatorname{Diff}(F)$ of G on F. Let ω be a smooth Ehresmann connection on P with horizontal bundle $H P \rightarrow P$.

Let $e_{f *}: T P \rightarrow T F P$ be the derivative of the map $e_{f}: P \rightarrow F P$ sending $p \in P$ to the image of (p, f) under the natural projection $P \times F \rightarrow F p$, for all $f \in F$. Then the horizontal bundle $H F p \rightarrow F P$ is the subbundle of the tangent bundle TFP \rightarrow Fp with the property that if $x=e_{f}(p)$ then the fibre $H_{x} F \boldsymbol{P}$ of $H F p$ over $x \in F p$ is given by

$$
H_{X} F P=e_{f *}\left(H_{P} P\right)
$$

The vertical projection $\mathrm{pr}_{\mathrm{V}}^{\boldsymbol{\omega}}: \mathrm{TFp} \rightarrow \mathrm{VFp}$ is the projection mapping the tangent space $T_{X} F P$ of $F p$ at x on to the vertical subspace $V_{X} F p$, the kernel of $\operatorname{pr}_{V}^{\omega}$ at x being $H_{x} F \mathbf{P}$. Given a $C^{l} \operatorname{section} s: M \rightarrow F P$ of $\mathrm{Fp} \rightarrow \mathrm{M}$, the covariant derivative $\mathrm{D}^{\boldsymbol{\omega}} \mathrm{S}: \mathrm{TM} \rightarrow \mathrm{VFp}$ of s is the map

$$
{ }^{\omega_{S}} \omega^{\omega_{V}} \operatorname{pr}_{V}^{\omega} 0 s_{*}
$$

where $s_{*}: T M \rightarrow T F P$ is the derivative of s.

Now suppose that $\pi_{1}: E_{1} \rightarrow M$ and $\Pi_{2}: E_{2} \rightarrow M$ are smooth fibre bundles associated to the principal bundle $\pi: P \longrightarrow M$, and that ω is a smooth Ehresmann connection on $\pi: P \longrightarrow M$. Suppose also
that $\varphi_{p}: E_{T} \rightarrow E_{2}$ is a smooth murphism of fibre bundles over M induced by a smooth equivariant map $\varphi: \mathrm{F}_{1} \rightarrow \mathrm{~F}_{2}$ between the fibres F_{1} and F_{2} of $\Pi_{1}: E_{1} \rightarrow M$ and $\Pi_{2}: E_{2} \rightarrow M$. If $\mathrm{pr}_{\mathrm{V}}^{\omega}: T E_{1} \rightarrow V E_{1}$ and $\mathrm{PI}_{V}^{\boldsymbol{\omega}}: \mathrm{TE}_{2} \rightarrow \mathrm{VE}_{2}$ are the vertical projections, and if $V \varphi_{\mathrm{P}}: V E_{1} \rightarrow V E_{2}$ is the restriction of the derivative $\varphi_{\mathbf{P}^{*}}: \mathrm{TE}_{1} \rightarrow \mathrm{TE}_{2}$ of $\boldsymbol{\varphi}_{\mathbf{P}}$ to the vertical bundle, then

$$
\operatorname{pr}_{\mathrm{V}}^{\omega} \circ \varphi_{\mathrm{P}}{ }^{\omega}=\mathrm{V} \varphi_{\mathrm{P}} \circ \mathrm{pr}_{\mathrm{V}}^{\omega}
$$

since $\varphi_{\mathrm{P} *}$ maps the horizontal bundle of E_{1} to that of E_{2}. Hence the covariant derivatives of a given section $s: M \rightarrow E_{1}$ and of $\varphi_{P} \circ s$ satisfy

$$
\begin{aligned}
D^{\omega}\left(\varphi_{\mathrm{P}} \circ \mathrm{~s}\right) & =\operatorname{pr}_{\mathrm{V}}^{\omega} \circ \varphi_{\mathrm{p}^{*}} \circ \mathrm{~s}_{*} \\
& =v^{\omega} \varphi_{\mathrm{P}} \circ \mathrm{D}^{\omega} \mathrm{s} .
\end{aligned}
$$

Thus the correspondence sending a section of a fibre bundle associated to a given prircipal bundle to its covariant derivative with respect to some Ehresmann connection on the principal bundle is functorial with respect to morphisms of fibre bundles induced by equivariant maps between their respective fibres.

We recall that, given a fibre bundle $\pi_{\theta}: F_{P} \longrightarrow$ M associated to a principal bundle $\pi: P \rightarrow M$ with structural group G, there is a natural biiective correspondence between sections of $\Pi_{\theta}: F_{P} \rightarrow M$ ard G-equivariant maps from P to the fibre F of $\pi_{\theta}: F_{P} \rightarrow M$.

Lemma 6.1

Let $\pi_{\theta}: F_{P} \rightarrow M$ be a smooth fibre bundle associated to a smooth principal bundle $\pi: P \longrightarrow M$ with structural group G. Let ω be a smooth Ehresmann connection on $\pi: P \rightarrow M$. Let
$\mu_{\mathbf{p}} *: T F \rightarrow \mathrm{TF}_{\mathbf{p}}$ be the derivative of the $\operatorname{map} \mu_{\mathbf{P}}: \mathrm{F} \rightarrow \mathrm{F}_{\mathbf{P}}$ from the fibre F of $\pi_{\theta}: F_{\mathbf{P}} \rightarrow M$ into F_{p} mapping $f \in F$ to the image $\lambda(p, f)$ of $(p, f) \in P x F$ under the natural projection $\lambda: P \times F \rightarrow F_{p}$, for $a l 1 p \notin P$.

Let $s: M \rightarrow F P$ be a C^{1} section of $F p \rightarrow M$, and let
$\hat{\mathrm{S}}: P \rightarrow F$ be the corresponding G-equivariant map from P to F. If $p \in P$, if $m=\pi(p)$, if $X \in T_{m} M$ and if \tilde{X} is the horizontal lift of X to $T_{p} P$, then

$$
D^{\boldsymbol{\omega}} \mathrm{S}(\mathrm{X})=\boldsymbol{\mu}_{\mathrm{p} *} \hat{\mathrm{~s}}_{*}(\widetilde{X}) .
$$

Proof
s and \hat{s} are related by the identity

$$
\mathrm{s}(\pi(\mathrm{p}))=\mu_{p} \hat{\mathrm{~s}}(\mathrm{p})=\lambda(\mathrm{p}, \hat{\mathrm{~s}}(\mathrm{p}))
$$

We recall that $e_{f}: P \rightarrow F P$ is the map sending $p \in P$ to $\lambda(p, f)$, for all f $f \in F . \quad$ Let $\lambda_{*}: T_{p} P \quad \oplus T_{f} F \rightarrow T_{x} F_{p}$ be the derivative of
λ at (p, f), where $x=\lambda(p, f)$, and let $e_{f *}: T_{p} P \rightarrow T_{x} F_{p}$ be the derivative of e_{f} at p. Then, for all $\left(Y_{1}, Y_{2}\right) \in T_{p} P \oplus T_{f} F$,

$$
\lambda_{*}\left(Y_{1}, Y_{2}\right)=e_{f *}\left(Y_{1}\right)+\mu_{p *}\left(Y_{2}\right)
$$

Thus

$$
\begin{aligned}
s_{*}(X) & =(s \circ \pi)_{*}(\tilde{X}) \\
& =\lambda_{*}\left(\tilde{X}, \hat{S}_{*}(\tilde{X})\right) \\
& =e_{f *}(\tilde{X})+\mu_{p} * \hat{s}_{*}(\tilde{X}) .
\end{aligned}
$$

But $e_{f *} \widetilde{X} \in H F P$ and $\mu_{p} * \hat{\mathrm{~s}}_{*}(\widetilde{\mathrm{X}}) \in \operatorname{VFP}$, hence

$$
\begin{aligned}
D_{s}^{\boldsymbol{\omega}_{S}}(X) & =\operatorname{pr}_{V}^{\boldsymbol{\omega}_{S_{*}}}(X) \\
& =\mu_{p *} \hat{\mathrm{~s}}_{*}(\widetilde{X})
\end{aligned}
$$

We recall that if $\pi_{\theta}: F p \longrightarrow M$ is a smooth fibre bundle associated to the principal bundle $\pi: F \rightarrow M$ with structural group G, where $F P=P x_{\theta} F$, and where $\theta: G \longrightarrow \operatorname{Diff}(F)$ is a smooth left action on the fibre F of $\mathbb{T}_{\theta}: F \boldsymbol{P} \rightarrow M$, then the vertical bundle VF $\rightarrow M$ of $F P \rightarrow M$ is a fibre bundle with fibre $T F$ associated to $\pi: P \rightarrow M$ by the action $T \theta: G \longrightarrow \operatorname{Diff}(T F)$, where $T \theta(\gamma): T F \longrightarrow T F$
is the derivative of $\theta(\gamma): F \rightarrow F$. In particular, if $\Pi_{\text {ad }}: G P \longrightarrow M$ is the adjoint bundle, $G \boldsymbol{p}$ being given by $G \boldsymbol{P}=\mathrm{P} \times \mathrm{ad} \mathrm{G}$, then the vertical bundle $V G P \longrightarrow M$ of $G P \rightarrow M$ is the bundle with fibre $T G$ associated to $T T: P \rightarrow M$ by the action $T(a d): G \rightarrow \operatorname{Diff}(T G)$. The adjoint bundle $\Pi_{A d}: ⿹ P \rightarrow M$ is the vector bundle whose fibre θ is the Lie algebra of G, where $\pi_{A d}: ~ Q P \rightarrow M$ is associated to $\pi: P \rightarrow M$ by the adjoint representation $A d: G \rightarrow A u t(D)$ of G. The Maurer-Cartan form $\Phi: T G \rightarrow g$ on G is the g-valued l-form mapping $X \in T T_{\gamma} G$ to $L_{\gamma}-1_{*} X \in G$, for all $\gamma \in G$, where $\mathrm{L}_{\boldsymbol{\gamma}}-1 \%: \mathrm{TG} \rightarrow \mathrm{TG}$ is the derivative of the map $\mathrm{L}_{\boldsymbol{\gamma}-1}: \mathrm{G} \rightarrow \mathrm{G}$ sending $\boldsymbol{\eta} \in \mathrm{G}$ to $\gamma^{-1} \eta$. One may easily verify that $\boldsymbol{\Phi}: T G \rightarrow g$ is G-equivariant, where G acts on $T G$ by the $1 \in f t$ action $T(a d): G \rightarrow \operatorname{Diff(TG)}$ and on \square by the adjoint representation $G \rightarrow$ Aut $(\boldsymbol{\theta})$. It follows that $\boldsymbol{\Phi}$ induces a smooth fibre bundle morphism $\Phi p: V G p \rightarrow \square p$.

Let $\omega: T P \rightarrow \square$ by a smooth connection on $\pi: P \rightarrow M$. Let $\Psi: M \rightarrow G p$ be a C^{1} section of $\pi_{a d}: G p \rightarrow M$, and let
$D^{\omega} \Psi: T M \rightarrow V G p$ be the covariant derivative of Ψ. We may compose $\mathrm{D}^{\omega} \Psi$ with $\Phi p: V G p \rightarrow$ Gp to obtain a map
$\Phi p \cdot D^{\omega} \Psi: T M \rightarrow \Delta p$.
It may easily be verified that this map is a morphism of vector buidles over M, and thus determines a $c^{o} \operatorname{section} \chi^{\omega}(\Psi): M \rightarrow G p \otimes T * M$ of $\theta p \otimes \mathrm{~T} \div \mathrm{M} \rightarrow \mathrm{M}$. We shall show that if $\Psi \in \mathrm{C}^{1}(\mathrm{Gp})$ corresponds to a principal bundle automorphism $\Psi: P \rightarrow P$, then $\mathcal{X}^{\omega}(\Psi) \in C^{\circ}\left(\Xi_{P} \otimes Q_{M} * M\right)$ corresponds to the horizontal G-equivariant Ω-valued 1-form $\Psi * \omega-\omega$ on P.

Theorem 6.2
Let $T: P \rightarrow M$ be a smooth principal bundle with structural
group G whose Lie algebra is 9 . Let $\Pi_{\text {ad }}: G p \rightarrow M$ and
$\Pi_{A d}: \square P \rightarrow M$ be the adjoint bundles with total spaces $G P=P x$ ad G and
$\square \mathrm{P}=\mathrm{P} \mathrm{x}_{\mathrm{Ad}} \boldsymbol{g}$. Let $\omega: \mathrm{TP} \rightarrow \boldsymbol{\square}$ be a smooth Ehresmann connection
on $\pi: P \rightarrow M$ and let $\Psi: P \rightarrow P$ be a C^{1} principal bundle automorphism of $\pi: P \rightarrow M$, identified with the section $\Psi \in C^{1}(G p)$ of $G p \rightarrow M$.

Let $D^{\omega} \Psi: T M \rightarrow V G p$ be the covariant derivative of Ψ, and let $X^{\omega}(\Psi) \in c^{\circ}(\square p \otimes T * M)$ be defined by

$$
x^{\omega}(\Psi)=\Phi p D^{\omega} \Psi
$$

where $\Phi p: \operatorname{vGp}_{\mathrm{P}} \rightarrow \boldsymbol{g}_{\mathrm{P}}$ is the map induced by the Maurer-Cartan form $\Phi: T G \rightarrow g$ on G. Then $X^{\omega}(\Psi)$ is the section of $C^{\circ}(g \mathrm{~g} \otimes \mathrm{~T}=\mathrm{M})$ determined by the horizontal g-equivariant \oint-valued l-form $\Psi * \omega-\omega$ on P .

Proof

Ψ determines a G-equivariant $C^{1} \operatorname{map} \psi: P \rightarrow G$ such that

$$
\Psi(p)=p \cdot \Psi(p)
$$

for all $p \in P$. Given $p \in P$, let $\mu_{p}: G \rightarrow G p$ be the map sending $\gamma \in G$ to $\lambda(p, \gamma)$, where $\lambda: P \times G \rightarrow G \boldsymbol{p}$ is the natural projection. Let $m \in \mathbb{T}(p)$, let $X \in T_{m} M$, and let $\widetilde{X} \in T_{p} P$ be the horizontal lift of X. Then
$\left(D^{\omega} \Psi\right)(X)=\mu_{p *} \Psi_{*}(\widetilde{x})$
by the preceding lemma.
Let $\bar{N}_{p}: ⿹ \rightarrow \mathcal{D}$ be the map sending a \mathcal{Y} to the image of (p, a) under the natural projection from $\mathrm{P} \times 9$ onto $乌 \mathrm{p}$. Then

$$
\Phi_{p} \cdot \mathcal{N}_{p_{*}}=\bar{\mu}_{p} \cdot \boldsymbol{\Phi}
$$

by definition of $\boldsymbol{\Phi} \mathbf{P}$. Hence

$$
\begin{aligned}
x^{\omega}(\Psi)(x) & =\Phi p\left(\mu_{p *} \psi_{*}(\tilde{x})\right) \\
& =\bar{\mu}_{p} \Phi\left(\psi_{*} \bar{x}\right)
\end{aligned}
$$

Now consider the horizontal G-equivariant G-valued l-form $\mathcal{\tau}$, where

$$
\tau=\Psi \div \omega-\omega
$$

Now

$$
\begin{aligned}
\tau(\tilde{x}) & =\omega(\tilde{\Psi} * \tilde{x})-\omega(\tilde{x}) \\
& =\omega(\tilde{\Psi} * \widetilde{x})
\end{aligned}
$$

and by lemma 4.1

$$
\begin{aligned}
\omega\left(\Psi_{*} \tilde{x}\right) & =\operatorname{Ad}\left(\Psi(p)^{-1}\right) \omega(\tilde{x})+L \Psi(p)^{-1} * \psi * \tilde{x} \\
& =\Phi\left(\Psi_{*} \tilde{x}\right)
\end{aligned}
$$

Thus

$$
\Phi\left(\psi_{*} \tilde{X}\right)=\tau(\tilde{x})
$$

and hence

$$
\chi^{\omega}(\Psi)(x)=\bar{\mu}_{p}\left(\Psi \Psi^{*} \omega-\omega\right)(\widetilde{x})
$$

showing that $\chi^{\omega}(\Psi)$ is the section of $\mathscr{I P}_{\mathrm{P}}^{\boldsymbol{\Psi}} \mathrm{T} * \mathrm{M} \rightarrow \mathrm{M}$ determined by the horizontal G-equivariant \int-valued 1 -form $\Psi * \omega-\omega$.

We see that, given a smooth vector bundle $p: E \rightarrow M$ associated to the principal bundle $\pi: P \rightarrow M$, and given a smooth Ehresmann connection ω on $\Pi: P \rightarrow M$, each section $s: M \longrightarrow E$ has a covariant derivative $D^{\boldsymbol{\omega}}{ }_{S}: T M \rightarrow$ VE. We now show how to define the covariant differential of $s: N \rightarrow E$. There is a natural smooth isomorphism $\nu: E \oplus E \rightarrow V E$ of vector bundles over M such that if $(X, Y) \in E \oplus E$ then $\mathcal{\nu}(X, Y)$ is tangent to the curve

$$
t \mapsto X+t Y
$$

at $t=0$. It follows that for all C^{1} sections $s: M \rightarrow E$ of E there is a $C^{1} \operatorname{map} d^{\boldsymbol{\omega}}{ }_{S}: T M \longrightarrow E$ such that

$$
D^{\omega_{S}}=\nu\left(s, d^{\omega_{s}}\right)
$$

$d^{\omega_{S}}$ is linear on each fibre of $T M \rightarrow M$, and may thus be identified with a smooth section of the vector bundle $E \boldsymbol{T} * \mathrm{M} \rightarrow \mathrm{M}$. One may easily verify that

$$
\begin{aligned}
& d^{\omega}\left(s_{1}+s_{2}\right)=d^{\omega} s_{1}+d^{\omega} s_{2} \\
& d^{\omega}\left(f s^{\omega}\right)=f d^{\omega} s+s \otimes d f
\end{aligned}
$$

for all sections s, S_{1}, S_{2} of E and for all C^{1} functions f on 1 . $\mathrm{d}^{\omega} \mathrm{s}$ is the covariant differential of s .

We now consider the composition of the map
$\exp : C^{l}(\Omega p) \rightarrow C^{l}\left(G_{p}\right)$, induced by the fibre bundle morphism
$\exp _{p}: 马 p \rightarrow G p$ determined by $\exp : 马 \rightarrow G$, and the differential operator x^{ω}, mapping sections of $G p \rightarrow M$ to sections of
gp $\otimes \mathrm{T} * M \rightarrow \mathrm{M}$, defined above.

Theorem 6.3
Let $\pi: P \rightarrow M$ be a smooth principal bundle with structural group G whose Lie algebra is 5 . Let $\pi_{\text {ad }}: G p \rightarrow M$ and $\Pi_{\text {Ad }}: ~ \forall P \rightarrow M$ be the adjoint bundles with total spaces
 Ehresmann connection on $\Pi: P \rightarrow M$. Let $\exp : c^{1}(G p) \rightarrow c^{1}(G p)$ and $X^{\omega}: C^{1}(G p) \rightarrow C^{0}(g p \otimes T)$ be defined as above.

Then there exists a smooth morphism $B: g p \rightarrow$ End $(\Delta p \otimes \mathrm{~T} * \mathrm{M})$ of fibre bundles such that

$$
x^{\omega}(\exp \xi)=B(\xi)\left(d^{\omega} \xi\right)
$$

for all $\xi \in C^{1}(\square \mathrm{p})$, where $\mathrm{d}^{\omega} \xi \in C^{\circ}(\square \mathrm{P} \otimes \mathrm{T} \%$) is the covariant differential of ξ.

Let 1.1 m be the norm on the fibre $\quad 9 p \mathrm{~m}_{-}$of $g \mathrm{p} \rightarrow \mathrm{M}$ over $m \in M$ determined by a given biinvariant metric on G, and let $i(G)$ be the injectivity radius of G. If the section $\xi \in C^{\circ}$ ($\Delta \mathbf{p}$) satisfies

$$
|\xi(m)|_{m}<i(G)
$$

for all $m \in M$, then $R(\mathcal{Y})$ is a section of tho bundle
$\operatorname{Aut}(\square \mathrm{g} \otimes \mathrm{T} \otimes \mathrm{M}) \rightarrow \mathrm{M}$ of vector bundle automorphisms of
$g_{P} \otimes T * M \rightarrow M$. If $0 \in C^{\circ}(g \mathrm{P})$ is the zero section, then $B(0)$ is the identity automorphism of $g P \otimes T * M \rightarrow M$.

Proof

We recall that if $\exp _{p}: ⿹_{P} \rightarrow G \mathbf{p}$ is the fibre bundle morphism induced by $\exp : g \rightarrow G$, then

$$
D^{\boldsymbol{\omega}}\left(\exp _{p} \cdot \xi\right)=v\left(\exp _{p}\right) D^{\boldsymbol{\omega}} \boldsymbol{\xi}
$$

by the functorality property of the covariant derivative. Thus

$$
\begin{aligned}
X^{\omega}(\exp \xi) & =\Phi_{P}\left(D{ }^{\omega}\left(\exp _{P} \xi\right)\right) \\
& =\Phi_{P}\left(V\left(\exp _{P}\right) D^{\omega} \xi\right) \\
& =\Phi P\left(V\left(\exp _{p}\right) \nu\left(\xi, d^{\omega} \xi\right)\right)
\end{aligned}
$$

where $\nu: g p \oplus g P \rightarrow V \operatorname{GP}$ is the natural vector bundle isomorphism defined above. Thus we may define

$$
B(\xi) \eta=\Phi_{p}\left(V\left(\exp _{p}\right) \nu(\xi, \eta)\right)
$$

Let $a \in 马 p, m$ for some $m \in M$ and let $\gamma=\exp _{p} a$. Then the maps

$$
\begin{aligned}
& \Delta p \mathrm{~m}_{-} \rightarrow v_{a} g p: b \mapsto v(a, b) \\
& v_{a} \Xi p \rightarrow v_{\gamma} G p: A \mapsto v\left(\exp _{p}\right) A \\
& v_{\gamma} G p \rightarrow \Delta p: x \rightarrow \Phi_{p}(x)
\end{aligned}
$$

are linear. Hence $B(\zeta)$ is linear. If $|a|_{m}<i(G)$, then $v\left(\exp _{p}\right) \mid v_{a} \exists_{p}$ is an isomorphism from $V_{a} g_{p}$ onto $v_{\gamma}{ }^{G} p$,
and so

Let $\theta: G \rightarrow$ Diff (F) be a smooth left action of the structural group G of $\pi: P \rightarrow M$ on a smooth manifold F and $\operatorname{let} \pi_{\theta}: F P \rightarrow M$ be a fibre bundle with fibre F and total space $P X{ }_{\theta} F$ associated to $\pi \boldsymbol{T}: P \rightarrow M$ by the action θ. Then there is a natural fibre bundle morphism
${ }^{\theta} P: \quad G \mathbf{P} x[F P \rightarrow F P$
which is induced by the map from $G x F$ to F sending (γ, f) to $\theta(\gamma) f . \quad \theta p$ in turn induces a left action of $C^{\infty}(G p)$ on $F p$ mapping $\Psi \in C^{\infty}(G p)$ to the diffeomorphism $x \mapsto \Psi . x$, where

$$
\Psi \cdot x=\theta p\left(\Psi\left(\pi_{\theta}(x)\right), x\right)
$$

for all $x \in F P$. A smooth section ξ of $日 P \rightarrow M$ then determines a vertical vector field $\boldsymbol{\alpha}(\xi)$ on $F P$ whose flow is given by

$$
(x, t) \mapsto(\exp t S) \cdot x
$$

The map α, sending smooth sections of $\Delta p \rightarrow M$ to vertical vector fields on fibre bundles associated to some given principal bundle is natural with respect to those fibre bundle norphisms that are induced by smooth G-equivariant maps between the fibres of the bundies.

Theorem 6.4

Let $\pi: P \rightarrow M$ be a smooth principal bundle with structural group G whose Lie algebra is \square. Let Π ad $G p \rightarrow$ and $\pi_{A d}: \forall P \rightarrow M$ be the adjoint bundles, with total spaces $P X_{\text {ad }} G$ and $P x$ Ad S. Let $\theta: G \rightarrow \operatorname{Diff}(F)$ be a smooth left action of G on F and let $\pi_{\theta}: F p \rightarrow M$ be the fibre bundle with total space $F p=P x_{\theta} F$. Given $\xi \in C^{\infty}(\Omega p)$, let $\alpha_{x}(\xi)$ be the value at $x \in F p$ of the vertical vector field $\alpha(\xi)$ on $F p$ whose flow is given by
$(x, t) \mapsto(\exp t \xi) \cdot x$.
Let $\pi: T P \rightarrow \square$ be a smooth Ehresmann connection on $\pi: P \rightarrow M$
and let $\tau: T P \rightarrow \square$ be a smooth horizontal G-equivariant g-valued 1 -form on P. Then, for all sections $s: M \rightarrow F P$ of $\Pi_{\theta}: F_{P} \rightarrow$ and for all vectors $X \in T_{m}{ }^{M}$,

$$
D^{\omega+\tau_{S}(X)}=D^{\omega}(X)+\alpha_{S(m)}(\hat{\tau}(X))
$$

where $\hat{\tau}(\mathbb{X}) \in c^{\infty}(\boldsymbol{g})$ is the image of x under the vector bundle morphism $\hat{\tau}: \operatorname{TM} \rightarrow \boldsymbol{\rho}$ corresponding to τ.

Proof

First we compare the vertical projections $\mathrm{pr}_{\mathrm{V}}^{\boldsymbol{\omega}}: T P \rightarrow \mathrm{VP}$ and ${ }_{\mathrm{pr}}^{\mathrm{V}}{ }^{\boldsymbol{\omega}+\boldsymbol{\tau}}: \mathrm{TP} \rightarrow \mathrm{VF}$. For all a $\in \boldsymbol{\square}$, let $\sigma_{\mathrm{p}}(\mathrm{a})$ be the value at $p \in P$ of the fundamental vertical vector field σ (a) on P determined by a. Then, for all $Y \in T_{p} p$,

$$
\operatorname{pr}_{V}^{\omega}(Y)=\sigma_{p}(\omega(Y))
$$

and hence

$$
\operatorname{pr}_{V}^{\omega}+\boldsymbol{\tau}(Y)=\operatorname{pr}_{V}^{\omega}(Y)+\sigma_{p}(\tau(Y)) .
$$

But the principal bundle $\pi: P \rightarrow$ may itself be regarded as a fibre bundle with fibre G associated to $\pi: P \rightarrow \mathbb{N}$ by the left
action of G on G by left multiplication. Thus $C^{\infty}(G P)$ acts on P on the left, and any section ξ of $\bar{\square} \boldsymbol{y} M$ determines a vertical vector field $\alpha(\xi)$ on P, and it is easily seen that

$$
\sigma_{p}(\tau(Y))=\alpha_{p}\left(\hat{\tau}\left(\pi_{* Y} Y\right)\right.
$$

where $\pi_{*}: T P \rightarrow T M$ is the derivative of $\pi: P \rightarrow$ ii. Hence

$$
\left.\operatorname{pr}_{\mathrm{V}}^{\omega_{+} \tau_{(Y)}}=\operatorname{pr}_{V}^{\omega}(\mathrm{Y})+\alpha_{\mathrm{p}}\left(\hat{\tau}_{(\pi}^{* Y}\right)\right)
$$

and thus

$$
\operatorname{pr}_{H}^{\omega+\boldsymbol{\tau}}(Y)=\operatorname{pr}_{H}^{\omega} \omega_{(Y)}-\alpha_{p}\left(\hat{\tau}\left(\Pi{ }_{*} Y\right)\right)
$$

where $\mathrm{pr}_{\mathrm{H}}^{\boldsymbol{\omega}}: \mathrm{TP} \rightarrow \mathrm{TP}$ is the horizontal projection on TP determined by $\boldsymbol{\omega}$. But the derivative of a fibre bundle morphism induced by a G-equivariant map between the fibres of the bundles has the property that it maps the horizontal bundle of one bundle onto the horizontal bundle of the other, and it also maps the vertical vector field $\alpha(\xi)$ on one bundle to that on the other. Hence $\mathrm{pr}_{\mathrm{H}}^{\omega}: \operatorname{TFP} \rightarrow \operatorname{TFP}$ and $\mathrm{pr}_{\mathrm{H}}^{\omega+\tau}:$ TFP \rightarrow TFP satisfy

$$
\operatorname{pr}_{H}^{\omega+\tau}(z)=\operatorname{pr}_{H}^{\omega}(z)-\alpha_{x}\left(\hat{\tau}\left(\pi_{\theta^{*}} z\right)\right)
$$

for all $Z \in T_{x}{ }^{F} P$, and hence

$$
\operatorname{pr}_{\mathrm{V}}^{\boldsymbol{\omega}}+\boldsymbol{\tau}_{(z)}=\operatorname{pr}_{\mathrm{V}}^{\boldsymbol{\omega}}(z)+\alpha_{\mathrm{x}}\left(\hat{\tau}^{\left(\pi_{\theta^{*}} z\right)}\right)
$$

Then, for any C^{1} section $s: M \rightarrow F P$ of $\Pi_{\theta}: F_{P} \rightarrow \mathbb{M}$, and for any vector $\mathrm{X} \in \mathrm{T}_{\mathrm{m}}{ }^{\mathrm{M}}$, we have

$$
\begin{aligned}
D^{\omega+\tau_{s}(x)} & =\operatorname{pr}_{V}^{\omega+\tau_{s}}(x) \\
& =\operatorname{pr}_{V}^{\omega} s_{*}(x)+\alpha_{s(m)}\left(\hat{\tau}\left(\pi_{\theta *} s_{*}(x)\right)\right. \\
& =D^{\omega}{ }_{s}(x)+\alpha_{s(m)}\left(\hat{\tau}_{(x)}\right) .
\end{aligned}
$$

Corollary 6.5

Let $\pi: P \rightarrow M$ be a smooth principal bundle with structural group G whose Lie algebra is $\theta \cdot$ Let $\Pi_{a d}: G P \longrightarrow$ and
$\Pi_{\mathrm{Ad}}: \exists P \rightarrow M$ be the adjoint bundles, with total spaces $G_{P}=P x_{a d} G$ and $\boldsymbol{G P}=P x_{\text {Ad }} \Omega$. For any smooth connection on $\pi: P \rightarrow M$ and for any differentiable section s of $\Pi_{\text {ad }}: G p \rightarrow M$, let $X^{\omega}(s)$ denote the section $\Phi P \bullet D^{\omega}$ of $\theta p \otimes T * M \rightarrow M$, where $D \omega_{S}: M \rightarrow V G p$ is the covariant derivative of s and $\Phi \rho: V G P \rightarrow \emptyset p$ is the fibre bundle morphism induced by the Maurer-Cartan form $\Phi: T G \rightarrow 9$. Let τ be a horizontal G-equivariant \cap-valued l-form on P, corresponding to a section $\hat{\tau}$ of $\operatorname{gP}_{\mathrm{P}} \otimes_{\mathrm{T} * \mathrm{M}} \rightarrow \mathrm{M}$. Then

$$
x^{\omega+\tau}(s)=x^{\omega}(s)+\operatorname{Ad}\left(s^{-1}\right) \hat{\tau}-\hat{\tau}
$$

Proof
By the preceding theorem, we must show that

$$
\Phi_{p}\left(\alpha_{s(m)}(\hat{\tau}(X))\right)=\operatorname{Ad}\left(s(m)^{-1}\right) \hat{\tau}(X)-\hat{\tau}(X)
$$

for all $x \in T_{m} M$. It is thus sufficient to show that

$$
\Phi P\left(\alpha_{s(m)}(\xi)\right)=\operatorname{Ad}\left(s(m)^{-1}\right) \xi-\xi
$$

for all $\xi \in \emptyset p I_{-}$

$$
\alpha_{s(m)}(\xi)=\left.\frac{d}{d t}((\exp t \xi) s(m) \exp (-t \xi))\right|_{t=0}
$$

hence

$$
\begin{aligned}
\Phi \mathbf{p}\left(\alpha_{s(m)}(\xi)\right. & =\left.\frac{d}{d t}\left(s(m)^{-1}(\exp t \xi) s(m) \exp (-t \xi)\right)\right|_{t=0} \\
& =\left.\frac{d}{d t}\left(s(m)^{-1}(\exp t \xi) s(m)\right)\right|_{t=0}+\left.\frac{d}{d t}(\exp (-t \xi))\right|_{t=0} \\
& =\operatorname{Ad}\left(s(m)^{-1}\right) \xi-\xi
\end{aligned}
$$

by Leibnitz' rule, as required.

Now let us consider the case when $\Pi_{\theta}: F P \rightarrow M$ is a vector bundle with fibre F associated to the principal bundle $\Pi: P \rightarrow M$ by the representation $\theta: \mathrm{G} \longrightarrow$ Auth(F$)$. The representation θ determines
a representation $\bar{\theta}: 马 \longrightarrow$ End (F) of \boldsymbol{G} which induces a smooth morphism $\bar{\theta}_{P}: \exists_{P} \rightarrow \operatorname{End}(\mathrm{FP})$. If $\xi: M \rightarrow \square \mathrm{~B}$ is a section of $\exists p$ and $s: M \rightarrow F p$ is a section of $F p$, we shall denote $\bar{\theta} p(\xi)$ s by ζ.s. If $\nu: \mathrm{Fp} \oplus \mathrm{Fp} \rightarrow \mathrm{VFp}$ is the natural isomorphism, then

$$
\alpha_{s(x)}(\xi)=v(s(x), \quad \xi \cdot s(x))
$$

If follows that if $\omega: T P \rightarrow g$ is a smooth connection on $\Pi: P \rightarrow M$ and $\tau: T P \rightarrow 日$ is a horizontal G-equivariant \square-valued l-form on P, then

$$
d^{\omega+\tau}{ }_{s}=d^{\omega}+\hat{\tau} \cdot s
$$

for all differentiable sections $s: M \rightarrow F p$ of $F p \rightarrow M$, where $\widehat{\tau}: M \rightarrow \Delta P \otimes T{ }_{M} M$ is the section of $\triangle P \otimes T * M \rightarrow M$ determined by τ, and where $(\hat{\tau}$.s) $(x) \equiv \hat{\tau}(x)$. s for all vector fields X on M .

Theorem 6.6

Let $\pi: P \longrightarrow M$ be a smooth principal bundle over a compact Riemannian manifold M with compact structural group G whose Lie algebra is $9 . ~ L e t ~ \theta: G \rightarrow$ Aut(F) be a representation of G as a group of isometries of a normed vector space F. Let $\Pi_{\theta}: E \rightarrow M$ be the vector hundle with total space $E=P X_{\theta} F$. For all $m \in M$, let 1.1 m be the norm on the fibre $\left.E \Gamma_{-}\right]_{-}$of $\Pi_{\theta}: E \rightarrow M$ over m determined by the norm $|\cdot|$ on F.

Let $\boldsymbol{\omega}: \mathrm{TP} \rightarrow \boldsymbol{g}$ be a C^{1} Ehresmann connection on $\pi: P \rightarrow M$, and let $\mathrm{Hol}_{\mathrm{m}}(\boldsymbol{\omega})$ denote the holonomy group of $\boldsymbol{\omega}$ generated by loops based at $m \in M$. Let $\xi: M \longrightarrow E$ be a C^{1} section of $\Pi_{\theta}: E \rightarrow M$ and let $c:[\bar{a}, \underline{b} \bar{T} \longrightarrow M$ be a piecewise smooth curve in M parameterized by arclength s. Then

$$
\left.\left.\left||(c(b))|_{c(b)}^{-}\right|(c(a))\right|_{c(a)}\left|\leqslant \int_{a}^{b}\right| d^{w} \xi(c(s))\right|_{c(s)} d s
$$

Furthermore if $c: \underline{\bar{a}}, \underline{b} \overline{/} \rightarrow \mathrm{M}$ is a piecewise smooth loop beginning and ending at m and generating the element h of the holonomy group Holm $\mathrm{m}_{\mathrm{m}}(\omega$) of ω, then

$$
\left|\left(h^{-1} \cdot \xi\right)(m)-\xi(m)\right| \leqslant \int_{a}^{b}\left|d^{\omega} \xi(c(s))\right| \quad d s
$$

Proof

Let $\tilde{c}: \underline{a}, \underline{b} \overline{7} \rightarrow P$ be a lift of $c: \bar{a}, \underline{b} \bar{T} \rightarrow M$ which is horizontal with respect to ω. Let $\hat{\xi}: P \rightarrow F$ be the G-equivariant map corresponding to $\xi: M \rightarrow E$. Then

$$
\begin{aligned}
\left|\frac{d}{d s} \hat{\xi}(c(s))\right| & =\left|\left(d^{\omega} \xi\right)\left(\frac{d c(s)}{d t}\right)\right|_{c(s)} \\
& \leqslant\left|d^{\omega} \xi\right|
\end{aligned}
$$

since $c: \bar{a}, \underline{b} \bar{\gamma} \rightarrow M$ is parameterized by arclength. Hence
as required. If $c: \underline{\bar{a}}, \underline{b} \overline{\bar{T}} \rightarrow \mathrm{M}$ is a loop based at m, generating $h \in \operatorname{Hol}_{\mathrm{m}}(\omega)$, then

$$
\begin{aligned}
\left|h^{-1} \cdot \xi-\xi\right|_{m} & =|\hat{\xi}(\tilde{c}(b))-\hat{\xi}(\tilde{c}(a))| \\
& \leqslant \int_{a}^{b}\left|d^{\omega} \xi\right|{ }_{c(s)}^{d s}
\end{aligned}
$$

as required.

37. The Covariant Exterior Derivative and Codifferential

In this section, we review the definition and properties of the covariant exterior derivative, covariant codifferential and covariant Hodge-de Rham Laplacian. The material is all standard, and is to be found in /A A iyah, M.F., Hitchin, N.J. and Singer, I.M., 19787, /Bourguignon, J.-P. and Lawson, H.B., 19817, /Bourguignon, J.-P. and Lawson, H.B., 19827.

Let $\Pi_{E}: E \rightarrow M$ be a vector bundle associated to a principal bundle $\Pi: P \rightarrow M$ over a compact Riemannian manifold M with structural group G whose Lie algebra is 9 . Let $\omega: T P \rightarrow \square$ be a sufficiently differentiable Ehresmann connection on $\pi: P \rightarrow M$. We have seen that ω determines a differential operator $d^{\omega}: C^{1}(E) \rightarrow C^{0}(E \otimes T * M)$, where $d^{\omega} s: M \rightarrow E \otimes T * M$ is the covariant differential of $s: M \rightarrow E$ with respect to ω, for all $s \in C^{1}(E)$. Let $\langle.,\rangle:. E \otimes E \rightarrow \mathbb{R}$ be a smooth inner product structure (i.e. an inner product defined on each fibre of $\Pi_{E}: E \rightarrow M$ by a suitable smooth section of $E *\left(\otimes E^{*}\right)$. We say that the connection preserves the inner product structure $\langle.,$.$\rangle on \Pi_{E}: E \rightarrow M$ if and only if
$\mathrm{d}\left\langle\mathrm{s}_{1}, \mathrm{~s}_{2}\right\rangle=\left\langle\mathrm{d}^{\omega} \mathrm{s}_{1}, \mathrm{~s}_{2}\right\rangle+\left\langle\mathrm{s}_{1}, \mathrm{~d}^{\omega_{s_{2}}}\right\rangle$,
where $\left\langle e_{1} \otimes \eta, e_{2}\right\rangle \equiv\left\langle e_{1}, e_{2}\right\rangle \eta$ for all $e_{1} \otimes \eta \in C^{0}(E \otimes T * M)$ and $e_{2} \in C^{0}(E)$.

For all non-negative integers p, let the covariant exterior derivative

$$
d^{\omega}: C^{1}\left(E \otimes \Lambda^{p} T * M\right) \rightarrow C^{0}\left(E \otimes \Lambda^{p+1} T * M\right)
$$

be the differential operator defined by

$$
d^{\omega}(s \otimes \eta)=d^{\omega} s \wedge \eta+s \otimes d \eta
$$

for all $s \in C^{1}(E)$ and $\eta \in C^{1}\left(\Lambda^{T * M}\right)$. If θ is an E-valued differential
form on M and φ is a differential form on M, then

$$
d^{\omega}(\theta \wedge \varphi)=d^{\omega} \theta \wedge \varphi+(-1)^{\operatorname{deg} \theta} \theta \wedge \mathrm{d} \varphi
$$

However $\left(d^{\omega}\right)^{2} \neq 0$ in general. In fact, if ω is a C^{1} Ehresmann connection on the principal bundle $\pi: P \rightarrow M$ associated to $\pi_{E}: E \rightarrow M$, then the curvative $F: \Lambda^{2} \mathrm{TP} \rightarrow \boldsymbol{\eta}$ of ω determines a Ip-valued 2-form F^{ω} on M, where $G_{P}=P x_{A d}$ g. But for all $m \in M$, the fibre $\emptyset p[m]$ of $\emptyset p \rightarrow M$ over m is a Lie algebra acting naturally on the fibre $E[\mathrm{~m}]$ of $E \rightarrow M$ over m. This action defines a bilinear map

$$
C^{0}(\square \mathrm{p}) \times \mathrm{C}^{0}(\mathrm{E}) \rightarrow \mathrm{C}^{0}(\mathrm{E})
$$

and thus determines bilinear mars

$$
c^{0}\left(\square p \otimes \wedge^{P} T^{*} * M\right) \times c^{0}\left(E \otimes \Lambda^{q} T * M\right) \rightarrow c^{0}\left(E \otimes \wedge^{p+q_{T} * M}\right)
$$

for all non-negative integers p and q, mapping $\left(\xi \otimes \eta_{1}, s \otimes \eta_{2}\right)$ to $(\xi . s) \otimes\left(\eta_{2} \wedge \eta_{2}\right)$ for all $\xi \in C^{0}(\Delta p), s \in C^{0}(E), \eta_{1} \in C^{0}\left(\Lambda^{p_{T} * M}\right)$ and $\eta_{2} \in C^{0}\left(\Lambda^{q} T_{M}\right)$. If $\theta \in C^{0}\left(\Delta_{P} \otimes \Lambda^{p_{T} * M}\right)$ and $\varphi \in C^{0}\left(E \otimes \Lambda^{q_{T}} M\right)$, we denote the image of (θ, φ) under this bilinear map by $\theta \wedge \varphi$. It is well-known that

$$
\mathrm{d}^{\boldsymbol{\omega}} \mathrm{d}^{\boldsymbol{\omega}} \theta=\mathrm{F}^{\boldsymbol{\omega}} \boldsymbol{\wedge} \boldsymbol{\theta}
$$

for all E-valued differential forms θ on M, where $F^{\omega} \in C^{0}\left(\square \rho \Lambda^{2} T * M\right)$ is determined by the curvature of ω.

We now suppose that $\langle\rangle:, E \otimes E \rightarrow \mathbb{R}$ is a smooth inner product structure on the vector bundle $\Pi_{E}: E \rightarrow M$ over the compact Riemannian manifold M and that this inner product structure is preserved by the connection ω on the associated principal bundle $\pi: P \rightarrow M$. The Riemannian metric on M determines an inner product structure on $\wedge_{\mathrm{T} * \mathrm{M}}$: if $\left(\sigma_{1}, \ldots, \sigma_{\mathrm{n}}\right)$ is an orthonormal coframe on M, then

$$
\sigma_{j_{1}} \wedge \ldots \wedge \sigma_{j_{p}}: 1 \leqslant j_{1} \quad \ldots \quad j_{p} \leqslant \operatorname{dim} M
$$

is an orthonormal basis of sections of $\Lambda^{p} T * M \rightarrow M$ over the domain
of definition of the coframe. If $e_{1} \otimes \eta_{1}$ and $e_{2} \otimes \eta_{2}$ are sections of $E \otimes \Lambda^{p} T * M \rightarrow M$, we define

$$
e_{1} \otimes \eta_{1}, e_{2} \otimes \eta_{2}=\left\langle e_{1}, e_{2}\right\rangle\left\langle\eta_{1}, \eta_{2}\right\rangle
$$

This defines a smooth inner product structure on $E \Lambda^{p} T * M \rightarrow M$. Given E-valued p -forms θ, and θ_{2} on M , we define

$$
\left(\theta_{1}, \theta_{2}\right)=\int_{M}\left\langle\theta_{1}, \theta_{2}\right\rangle d(v o 1)
$$

where the integral is taken with respect to the Riemannian volume measure on the compact manifold M.

Let M be oriented, let n be the dimension of M and, for all integers p satisfying $0 \leqslant p \leqslant n$, let
be the Hodge star operator. If η_{1} and η_{2} are p-forms o.1 M then

$$
\left(\eta_{1}, \eta_{2}\right)=\int_{M} \eta_{1} \wedge * \eta_{2}=\int_{M} \eta_{2} \wedge * \eta_{1} .
$$

The Hodge star operator from $\Lambda^{p_{T * M}}$ to $\Lambda^{n-p_{T * M}}$ satisfies $* *=(-1)^{\mathrm{p}(\mathrm{n}-\mathrm{p})}$. If $\mathrm{e} \otimes \eta \in \mathrm{E} \otimes \Lambda^{\mathrm{p}_{\mathrm{T}} * \mathrm{M}}$, we define $*(\mathrm{e} \otimes \eta)$ to be e $\otimes * \eta$.

The codifferential $\delta: c^{1}\left(\Lambda^{p_{T} * M}\right) \rightarrow c^{0}\left(\Lambda^{p-1} T * M\right)$ is defined by

$$
\delta \eta=(-1)^{n(p+1)+1} * d * \eta
$$

for all C^{1} p-forms η on M.
We may define the covariant codifferential

$$
\delta^{\boldsymbol{\omega}}: c^{1}\left(E \otimes \wedge^{\left.p_{T * M}\right)} \rightarrow c^{0}\left(E \otimes \wedge^{p-1} \mathrm{~T}^{\mathrm{T} * \mathrm{M}}\right)\right.
$$

with respect to the connection ω by

$$
\delta^{\omega}{ }_{\theta}=(-1)^{n(p+1)+1} * \mathrm{~d} \omega * \theta
$$

for all E-valued p-forms θ. It may be verified that

$$
\left({ }^{\omega} \theta, \varphi\right)=\left(\theta, \delta^{\omega} \varphi\right)
$$

for all E-valued p-forms θ and E-valued $(p+1)$-forms φ on M. The covariant Hodge-de Rham Laplacian

$$
\Delta^{\omega}: c^{2}\left(E \otimes \Lambda^{p_{T * M}}\right) \rightarrow c^{0}\left(E \otimes \Lambda^{p_{T} * M}\right)
$$

is defined by

$$
\Delta^{\omega}=d^{\omega} \delta^{\omega}+\delta^{\omega} d^{\omega} .
$$

Δ^{ω} is an elliptic operator which is self-adjoint with respect to the inner product (,) on E-valued differential forms. If θ is an E-valued differential form on the compact manifold M then $\Delta^{\omega} \theta=0$ if and only if $\mathrm{d}^{\boldsymbol{\omega}} \boldsymbol{\theta}=0$ and $\boldsymbol{\delta}^{\boldsymbol{\omega}} \boldsymbol{\omega}_{\theta}=0$.

Let ω be a smooth connection on $\pi: P \rightarrow M$ and let τ be a §p-valued 1 -form on M determining a horizontal G-equivariant \square-valued 1 -form on P which we also denote by τ. If $s: M \rightarrow E$ is a section of $E \rightarrow M$, then

$$
d^{\omega+\tau_{s}}=d_{s}^{\omega}+\tau \cdot s
$$

where $\tau . s$ is the image of $\tau \boldsymbol{s}$ under the natural action乌p E $\rightarrow E$ of the bundle $Я p$ of Lie algebras on the vector bundle E. It follows that

$$
d^{\omega+\boldsymbol{\tau}_{\theta}}=\mathrm{d}^{\boldsymbol{\omega}} \theta+\tau \wedge \theta
$$

and

$$
\delta^{\omega+\tau} \theta=\delta^{\omega} \theta+(-1)^{\mathrm{n}(\mathrm{p}+1)+1} *(\tau \boldsymbol{\tau} * \theta)
$$

for all E-valued p-forms θ.
The Lie bracket on $c^{0}(9 p)$ determines a bilinear map
mapping $\left(\xi_{2} \otimes \eta_{1}, \xi_{2} \otimes \eta_{2}\right)$ to $\left[\xi_{1}, \xi_{2}\right] \otimes\left(\eta_{1} \wedge \eta_{2}\right)$ for all $\xi_{1}, \xi_{2} \in C^{o}(G \mathbf{p}), \eta_{1} \in C^{0}\left(\Lambda^{p_{T} * M}\right)$ and $\left.\eta_{2} \in C_{9}^{0} \Lambda_{T^{*} * M}\right)$.
 the image of $\left(\theta_{1}, \theta_{2}\right)$ under this bilinear map by $\left[\theta_{1}, \theta_{2}\right]$. One may verify that

$$
\left[\theta_{1}, \theta_{2}\right]=(-1)^{\mathrm{pq}+1}\left[\theta_{2}, \theta_{1}\right]
$$

and that if in addition $\mathrm{q}=\mathrm{p}$ then

$$
\left[\theta_{2}, * \theta_{2}\right]=-\left[\theta_{2}, * \theta_{1}\right] .
$$

Thus if θ is a $\square p$-valued p-form on M, then

$$
[\theta, * \theta]=0 \text {. }
$$

In particular if τ is a $9 p$-valued 1 -form on M , then

$$
\begin{aligned}
\delta^{\omega+\tau} \tau & =\delta^{\omega} \tau-*([\tau, * \tau]) \\
& =\delta^{\omega} \tau
\end{aligned}
$$

The curvatures $\mathrm{F}^{\boldsymbol{\omega}}$ and $\mathrm{F}^{\boldsymbol{\omega}+\boldsymbol{\tau}}$ of the connections $\boldsymbol{\omega}$ and $\omega+\tau$ are related by the identity

$$
F^{\omega+\tau}=F^{\omega}+d^{\omega} \tau+1 / 2[\tau, \tau] .
$$

The curvature $\boldsymbol{F}^{\boldsymbol{\omega}}$ of $\boldsymbol{\omega}$ satisfies the Bianchi identity

$$
{ }_{d} \boldsymbol{\omega}_{F} \boldsymbol{\omega}=0
$$

The connection $\boldsymbol{\omega}$ is said to be a Yang-Mills connection if its curvature satisfies the Yang-Mi11s equation

$$
\delta^{\omega} F^{\omega}=0 .
$$

Using the Bianchi identity we see that this condition is equivalent to the condition

$$
\Delta^{\omega} F^{\omega}=0
$$

(ie. the curvature of ω is harmonic). Yang-Mills connections are critical points of the Yang-Mills functional

$$
\mathrm{YM}(\boldsymbol{\omega})=(F, F)=\int_{M}\|F\|^{2} \mathrm{~d}(\mathrm{vol})
$$

If ξ is a differentiable section of $g p \rightarrow M$, we have seen that

$$
(\exp \xi)^{*} \omega-\omega=B(\xi)\left(d^{\omega} \xi\right)
$$

where $\mathrm{B}: ⿹ \mathrm{P} \rightarrow \operatorname{End}\left(\square \mathrm{P} \boldsymbol{\otimes}_{\mathrm{T}} \mathrm{*M}_{\mathrm{M}}\right.$) is a smooth fibre bundle orphism mapping the zero section of $\triangle P \rightarrow M$ to the identity section of
$\operatorname{End}\left(\theta_{p} \otimes{ }_{T} \mathrm{M}_{\mathrm{M}}\right) \rightarrow \mathrm{M}$, and where $(\exp \xi)^{*} \omega$ is the pullback of ω by the principal bundle automorphism determined by $\exp \xi$ (see theorems 6.2 and 6.3). Thus if $\omega_{t}=(\exp t \xi)^{*} \boldsymbol{\omega}$, then

$$
\left.\frac{d \omega_{t}}{d t}\right|_{t=0}=d^{\omega} \xi .
$$

We collect together some of the above facts in the following proposition.

Proposition 7.1

Let $\Pi_{E}: E \rightarrow M$ be a vector bundle associated to a principal bundle $\pi: P \rightarrow M$ over a Riemannian manifold M with structural group G whose Lie algebra is G. Let $G P=P x_{a d} G$ and $G P=P x_{\text {ad }} G$. Let ω be a smooth connection on $\pi: P \rightarrow M$, let $F \omega$ be the curvature of ω, let τ be a differentiable Ω-valued 1-form on M, let ξ be a differentiable section of $\exists_{P} \rightarrow M$, and let θ be an E-valued p-form on M. Then
(i) $\mathrm{d}^{\boldsymbol{\omega}} \mathrm{d}^{\boldsymbol{\omega}}{ }_{\theta}=\mathrm{F}^{\boldsymbol{\omega}} \wedge \boldsymbol{\theta}$,
(ii) $d^{\omega}{ }_{F}^{\omega}=0$,
(iii) $d^{\omega+\tau} \theta=d^{\omega} \theta+\tau \wedge \theta$,
(iv) $\quad \delta^{\omega+\tau} \theta=\delta^{\omega} \theta+(-1)^{n(p+1)+1} *(\tau \wedge * \theta)$,
(v) $\mathrm{F}^{\omega+\tau}=\mathrm{F}^{\omega}+\mathrm{d}^{\omega} \tau+1 / 2[\tau, \tau]$,
(vi) $\quad \delta^{\omega+\tau} \tau=\delta^{\omega} \tau$
(vii) $\left.\frac{d}{d t}(\exp t \xi)^{*} \omega\right|_{t=0}=d^{\omega} \xi$.

If M is compact and E has an inner product structure invariant with respect to the connection $\boldsymbol{\omega}$, then
(viii) $\left({ }^{\omega}{ }^{\omega} \varphi, \theta\right)=\left(\varphi, \delta^{\omega} \theta\right)$ for all E-valued p-forms θ and E-valued (p-1)-forms φ,
(ix) Δ^{ω} is elliptic, where

$$
\Delta^{\omega}=\delta^{\omega} d^{\omega}+d^{\omega} \delta^{\omega}
$$

(x) $\left(\varphi, \Delta^{\omega} \theta\right)=\left(\Delta^{\omega} \varphi, \theta\right)$
for all E-valued p-forms θ and φ on M ,
(xi) $\quad \Delta^{\boldsymbol{\omega}} \theta=0$ if and only if $d^{\boldsymbol{\omega}} \theta=\boldsymbol{\delta}^{\boldsymbol{\omega}} \theta=0$.

Ambrose, W. and Singer, I.M., "A theorem on holonomy", Trans. Amer. Math. Soc., 75 (1953), pp.428-433.

Atiyah, M.F., Hitchin, N.J. and Singer, I.M., 'Self-duality in four-dimensional Riemannian geometry", Proc. R. Soc. Lond. A. 362 (1978), pp.425-461.

Auslander, L. and Mackenzie, R.E., Introduction to differentiable manifolds, McGraw-Hill, New York, 1963.

Bourguignon, J.-P. and Lawson, H.B., 'Stability and isolation phenomena for Yang-Mills fields", Comm. Math. Phys., 79 (1981), pp.189-230.

Donaldson, S.K., "An application of gauge theory to four dimensional topology", J. Diff. Geom., 18 (1983), pp.237-315.

Kobayashi, S. and Nomizu, K., Foundations of differential geometry, Interscience, New York, 1963.

Palais, R.S., Foundations of global non-1inear analysis, Ben,jamin, New York, 1968.

Chapter VI

BANACH MANIFOLDS OF AUTOMORPHISMS AND CONNECTIONS

81. Introduction

In this chapter, we study the action of various Banach manifolds of automorphisms of a principal bundle $\pi: P \rightarrow M$ on the corresponding spaces of connections on that bundle. We define $L_{k}^{P} A, C^{k} A$ and $C^{k, \alpha} A$ to be the spaces of L_{K}^{p} connections, C^{k} connections and $c^{k, \alpha}$ connections respectively on $\pi: P \rightarrow M$. These are affine spaces modelled on the corresponding Banach spaces of sections of the vector bundle $\forall P \otimes T * M$, where $\triangle p$ is the adjoint bundle of $\pi: P \rightarrow M$. When $p(k+1)>n$, where n is the dimension of M, we define $L_{k+1}^{p} \mathcal{G}$, $c^{k+1} \wp$ and $c^{k+1, \alpha} \wp$ to be the corresponding Banach Lie groups of principal bundle automorphisms.

We show that $L_{k+1}^{p} Y$ acts smoothly on $L_{k}^{p} A$ when $p(k+1)>n$ (theorem 2.1) and that if Ψ is a principal bundle automorphism which maps an L_{k}^{p} connection ω to anothor L_{k}^{p} connection $\Psi * \omega$ and if I corresponds to a continuous section of the adjoint bundle Gp which is differentiable almost everywhere on M then $\Psi \in \mathbb{L}_{k+1}^{p} Y$ (theorem 2.2). These results are stated in / Uhlenbeck, K.K., 19827, where they are proved in the cases $k=0$ and $k=1$. Similar results are proved for the action of $c^{k+1} \varrho$ on $c^{k} A$ and for the action of $c^{k+1, \alpha} g$ on $c^{k, \alpha} A$.

Our main result of this chapter is theorem 3.2 where it is shown that if the base manifold M and the structural group G are compact, if pi>n, if $\left(\omega_{i} \in L_{k}^{P} A: i \in \mathbb{N}\right)$ and $\left(\Psi_{i} \in L_{k+1}^{p} \zeta_{\mathcal{G}}: i \in \mathbb{N}\right)$ are sequences of conncetions and automorphisms respectively, if the $\operatorname{sequences}\left(\omega_{i}\right)$ and $\left(\Psi_{i} * \omega_{i}\right)$ converge in H_{k}^{p} and if the sequence of automorphisms converges on some fibre of the map $\pi: P \rightarrow \mathbb{M}$, then the sequence $\left(\Psi_{i}\right)$ of automorphisms converges in ${ }_{k+1}^{p} \zeta_{\mathcal{G}}$. similar
results are proved for $C^{k i}$ and Hylder spaces. From this result we sha11 deduce that the topological spaces $L_{k}^{p} A / L_{k+1}^{p} G_{G}, c^{k} A / C^{k+1} \mathcal{G}$ and $c^{k, \alpha} A / C^{k+1}, \mathcal{A}$ are Hausdorff (theorem 4.1). Also the stabilizer of any connection in $L_{k}^{p} A, C^{k} A$ or C^{k}, α, A is a compact subgroup of $L_{k+1}^{p} \xi, c^{k+1} \xi$ or $c^{k+1, d} \mathcal{g}$ respectively (theorem 4.2).

The above results will be used in chapter VIII, where we shall prove various slice theorems for the action of automorphisms on connections.

In \S_{5} we consider various properties of the covariant differential withr espect to a given connection, considered as a map between Banach spaces of sections of the appropriate vector bundles.

In this section, we shall study the action of principal bundle automorphisms on Ehresmann connections on a smooth principal bundle aver à compact manifold with compact structural group. The group $c^{\infty} \sum_{f}$ of smooth principal bundle automorphisms acts on the space $c^{\infty} \notin$ of smooth Ehresmann connections on the right, sending (ω, Ψ) to $\Psi^{*} \omega$, the pullback of ω by Ψ, for all $\omega \in C^{\infty}$ \& and $\Psi \in c^{\infty} \mathcal{G}$. Let k be an integer. We shall define, for all $p \in / 1, \infty)$, the space $L_{k}^{p} A$ of L_{k}^{p} connections and if also $p(k+1)>\operatorname{dim} M$ we shall define the group $L_{k+1}^{p} \zeta$ of L_{k+1}^{p} principal bundle automorphisms and show that the action of $\mathrm{c}^{\infty} \xi$ on $\mathrm{c}^{\infty} A$ on the right extends to a smooth right action of $\mathrm{L}_{\mathrm{k}+1}^{\mathrm{p}} \xi^{\rho}$ on $\mathrm{L}_{\mathrm{k}}^{\mathrm{p}}$ \& (provided that $p(k+1)>\operatorname{dim} M$). If k is non-negative and if $\alpha \in(0,1)$, we shall define $c^{k} A$, and $c^{k+1} \wp, c^{k, \alpha} A$ and $c^{k+1, \alpha} \mathscr{g}$ similarly and show that $c^{k+1} \varphi$ and $c^{k+1, \alpha} \varphi$ act smoothly on $C^{k} A$ and $c^{k, \alpha} \not A$ respectively on the right. We shall then show that if $\Psi: P \rightarrow P$ is a continuous principal bundle automorphism satisfying certain mild differentiability conditions, then $\left.\Psi \in \mathcal{L}_{k+1}^{p}\right\}$ that Ψ maps some element of $L_{k}^{p} \notin$ into $L_{k}^{p} A($ where $p(k+1)>\operatorname{dim} M)$, $\Psi \in c^{k+1} \oint$ provided that Ψ maps some element of $c^{k} A$ into $c^{k} A$, and that $\Psi \in C^{k+1, \alpha} \mathcal{y}$ provided that Ψ maps some element of $c^{k, \alpha} A$ into $c^{k, \alpha} A$. Finally, we shall obtain a theorem which will enable us to prove results concerning the action of $L_{k+1}^{p} \zeta, c^{k+1} \zeta$ or $c^{k+1, \infty} \varphi$ on $L_{k}^{p} A, c^{k} A$ or $c^{k, \alpha} A$ respectively for large k from similar results for small k by a 'bootstrap' procedure using induction on k.

Throughout this section, $\pi: P \rightarrow M$ will be a smooth principal bundle over a compact smooth manifold M with compact structural group G whose Lie algebra is \emptyset, and $\pi_{a d}: G p \rightarrow M$ and $\pi_{A d}: ⿹ P \rightarrow M$ will be the adjoint bundles, with total spaces $G P=P \times$ ad G and

Gp=Pxad \quad.
We have seen that G-equivariant horizontal 9 -valued 1-forms on $\pi: P \rightarrow M$ are in natural bijective correspondence with sections of the vector bundle $\operatorname{Gp}_{\mathrm{p}} \otimes \mathrm{T} * \mathrm{M} \rightarrow \mathrm{M}$ over M . Thus if $\omega_{\mathbf{1}}: T P \rightarrow \boldsymbol{\square}$ and $\omega_{2}: T P \rightarrow \Xi$ are Ehresmann connections on $\pi: P \rightarrow M$, then their difference $\omega_{1}-\omega_{2}$ may be identified with a section of $G p \otimes T * M \rightarrow M$, and conversely if $\omega: T P \rightarrow G$ is an Ehresmann connection on $\pi: P \rightarrow M$ and if $\tau: M \rightarrow 9 P \otimes T * M$ is a section of $\quad \mathrm{T} * \mathrm{M} \rightarrow \mathrm{M}$, then we may construct an Ehresmann connection on $\pi: p \rightarrow M$, denoted by $\omega+\tau$, such that the 1 -form $(\omega+\tau)-\omega$ on P corresponds to the section τ of $\exists \mathrm{P} \otimes \mathrm{T} * \mathrm{M} \rightarrow \mathrm{M}$. Thus the space $C^{\infty} A$ of all smooth connections on $\pi: P \rightarrow M$ may be regarded as an affine space modelled on the Frechet space ${ }^{\infty}{ }^{\infty}(\square \mathrm{P} \otimes \mathrm{T} * \mathrm{M})$. We have seen also that the group $c^{\infty} \varrho$ of smooth principal bundle automorphisms of $\Pi: P \rightarrow M$ may be identified with the group C^{∞} (Gp) of smooth sections of $\Pi_{\text {ad }}: G p \rightarrow M$.

Definition

For all integers k and for all $p \in I \overline{1}, \infty)$, define $L_{k}^{p} \notin$, the space of L_{k}^{p} connections on $\Pi: P \rightarrow M$, to be the completion of $C^{\infty} A$ with respect to the metric on $C^{\infty} A$ defined by a norm on $c^{\infty}(\Delta p \otimes T * M)$ generating the L_{k}^{p} topology. If in addition $p(k+1)>\operatorname{dim} M$, define $L_{k+1}^{p} \oint$, the group of L_{k+1}^{P} principal bundle automorphisms on $\pi: P \rightarrow M$ t.o be the subset of the group of continuous principal bundle automorphisms identified with the Banach manifold $L_{k+1}^{p}(G p)$. Similarly, for all non-negative integers k and for all $\alpha \in(0,1)$, define $C^{k} A$ and $C^{k, \alpha} A$ to be the completions of $C^{\infty} \&$ with respect to the metrics defined by C^{k} and $c^{k, \alpha}$ norms on ${ }^{\infty}{ }^{\infty}\left(\boldsymbol{\Delta} \boldsymbol{\otimes} \mathrm{T}^{* M}\right)$. Define also $c^{k} \varphi$ and $c^{k, \alpha} \xi$ to be the subgroups of the group of continuous principal bundle automorphisms identified with the Banach manifolds $C^{k}(G \mathbf{p})$ and $C^{k, \alpha}(G \mathbf{p})$ respectively.

The group operations on the Banach manifolds $L_{k+1}^{p} \zeta$ (for $p(k+1)>\operatorname{dim} M), c^{k} G$ and $c^{k, \alpha} g$ (for $\alpha \in(0,1)$) are smooth by the results proved in [Palais, R.S., 19687 (see theorem II.2.6). The Lie algebras of these groups are identified with $L_{k}^{p}+1\left(\hat{G}_{p}\right)$, $c^{k}\left(\square_{p}\right)$ and $c^{k, \alpha}\left(\Omega_{p}\right)$ respectively and the exponential maps ${ }_{L}^{p}{ }_{k+1}\left(\theta_{p}\right) \rightarrow{ }_{L_{k+1}^{p}}^{p}, c^{k}\left(\boldsymbol{\theta}_{\mathrm{P}}\right) \rightarrow c^{k} \xi \quad$ and $c^{k, \infty}\left(\theta_{p}\right) \rightarrow c^{k, \infty} \xi$ are smooth.

Let ω_{0} be a smooth connection on $\pi: P \longrightarrow M$. For all integers k and for all $p \in I, \infty)$, every element of $L_{k}^{p} A$ may be expressed uniquely as $\omega_{0}+\tau$ for some $\tau \in L_{k}^{p}\left(\exists_{\mathrm{P}} \otimes \mathrm{T} * \mathrm{M}\right)$, and similarly for $c^{k} A$ and $c^{k, \alpha} A$.

We have seen that if ω_{0} is a smooth connection, then

$$
\Psi \omega_{0}^{*}-\omega_{0}=x^{\omega_{0}}(\Psi)
$$

for all differentiable principal bundle automorphisms $\Psi: P \longrightarrow P$, where $X^{\omega_{0}}$ is the first order non-linear differential operator defined in section V. 6 (see theorem V.6.2). We have also seen that there exists a smooth fibre bundle morphism B : $\Xi_{\mathrm{P}} \rightarrow \operatorname{End}\left(\Xi_{\mathrm{P}} \otimes \mathrm{T} * \mathrm{M}\right)$ such that

$$
x^{\omega_{0}}(\exp \xi)=B(\xi) d^{\omega_{0}} \xi
$$

for all differentiable sections ξ of $\exists_{P} \rightarrow M$. B maps the zero section of $g_{P} \rightarrow M$ to the identity automorphism of $g_{P} \otimes \mathrm{~T} * \mathrm{M}$. Also if G is given a biinvariant Riemannian metric determining a canonical c°-norm $\|\cdot\|$ on $c^{o}\left(\xi_{P}\right)$ and if the norm $\|\xi\|$ of $\xi \in c^{\circ}\left(\exists_{p}\right)$ does not exceed the injectivity radius of G, then $B(\xi)$ is a vector bundle automorphism of $\exists_{P} \otimes T * M$ (see theorem V.6.3).

Let $\omega_{0}: T P \rightarrow$ be a smooth connection on $\pi: P \rightarrow M$, let τ be a section of $\exists_{P} \otimes T * M \rightarrow M$ and let $\Psi: P \rightarrow P$ be a differentiable principal bundle automorphism of $\pi: P \rightarrow M$. We have seen that

$$
\Psi *\left(\omega_{0}+\tau\right)-\Psi * \omega_{0}=\operatorname{Ad}\left(\Psi^{-1}\right) \tau
$$

on regarding Ψ as a section of $\Pi_{a d}: G_{P} \rightarrow M$ (see the proof of v.5.i). Thus

$$
\Psi *\left(\omega_{0}+\tau\right)=\operatorname{Ad}\left(\Psi^{-1}\right) \tau+x^{\omega_{0}}(\Psi)
$$

Theorem 2.1

Let $\pi: P \longrightarrow M$ be a smooth principal bundle over a compact smooth manifold with compact structural group. For all non-negative integers k, for all $p \in I \bar{l}, \infty)$ satisfying $p(k+1)>$ dim M, and for all $\alpha \in(0,1)$, the right action of the group $c^{\infty} \xi$ of smooth principal bundle automorphisms on the space $\mathbb{C}^{\infty} \&$ of smooth connections on $\pi: P \rightarrow M$ extends to smooth right actions

$$
\begin{aligned}
& L_{k}^{p} A \times L_{k+1}^{p} G \rightarrow L_{k}^{p} \notin, \\
& c^{k} A \times c^{k+1} y \rightarrow c^{k} \phi, \\
& c^{k, a} A \times c^{k+1, \alpha} \nrightarrow c^{k, \alpha A} . \\
& \text { Proof }
\end{aligned}
$$

Consider the action of $L_{k+1}^{p} \mathcal{Y}$ on $L_{k}^{p} \notin$. Given an open neighbourhood of the zero section in $L_{\mathrm{k}+1}^{\mathrm{p}}(\boldsymbol{\Xi p})$, any element Ψ of ${ }_{\mathrm{L}+1}^{\mathrm{p}} \mathcal{G}_{\mathrm{p}}$ may be expressed as $\Psi=\Psi_{0} \exp \xi$, where $\Psi_{0} \in \mathrm{c}^{\infty} \mathscr{\mathcal { G }}$, $\xi \in L_{k+1}^{p}(\xi p)$ and ξ is contained in the given neighbourhood of the zero section. Also the map $\exp : L_{k+1}^{p}(G p) \rightarrow L_{k+1}^{p} Y$ is a chart for ${ }_{L}^{p}{ }_{k+1} \mathcal{Y}$ when restricted to some neighbourhood of the zero section. The map from $L_{k}^{p} \notin$ to itself sending ω to $\Psi_{0} \% \omega$ is smooth, hence it suffices to verify that the map from $L_{k}^{p} A x_{k+1}^{p}(g p)$ to $L_{k}^{p} A$ sending $(\boldsymbol{\omega}, \boldsymbol{\xi}$) to $(\exp \xi) \% \boldsymbol{\omega}$ is smooth. By the remarks above, it suffices to verify that the map

$$
(\tau, \xi) \mapsto \operatorname{Ad}(\exp (-\xi)) \tau+\chi^{\omega_{0}}(\exp \xi)
$$

from $L_{k}^{p}(\xi p \otimes T * M) \times L_{k+1}^{p}(\exists p)$ to $L_{k}^{p}(\xi p \otimes T * M)$ is smooth.
If $k>0$, there exists $q \in I \overline{1}, \infty$) such that

$$
\frac{1}{p}-\frac{1}{\operatorname{dim} M}<\frac{1}{q}<\frac{k}{\operatorname{dim} M}
$$

Then we have a smooth Sobolev embedding $L_{k+1}^{p}\left(\Xi_{p}\right) \longleftrightarrow L_{k}^{q}\left(⿹_{p}\right)$, the map from $L_{k+1}^{p}\left(\exists_{P}\right)$ to $L_{k}^{p}\left(\boldsymbol{g}_{P} \otimes T * M\right)$ sending $\}$ to $d^{\omega_{0}} \xi$ is smooth, and the map from $L_{k}^{p}\left(\theta_{P} \otimes T * M\right) \times L_{k}^{q}\left(\theta_{P}\right)$ to $L_{k}^{p}\left(\theta_{\mathrm{P}} \otimes T * M\right)$ sending (η, ξ) to $B(\xi)$ in is smooth by corollary II.2.7, where B : $\exists_{\mathrm{F}} \rightarrow \operatorname{End}\left(⿹_{\mathrm{P}} \otimes \mathrm{T} * \mathrm{M}\right)$ is the fibre bundle morphism with the property that

$$
X^{\omega_{0}}(\exp \xi)=B(\xi) \mathrm{d}^{\omega_{0}} \xi
$$

composing these smooth maps, we see that the map from $\mathrm{L}_{\mathrm{k}+1}^{\mathrm{p}}\left(\boldsymbol{g}_{\mathrm{P}}\right)$ to ${ }_{\mathrm{L}}^{\mathrm{k}}\left(\boldsymbol{g}_{\mathrm{p}} \otimes \mathrm{T} *_{\mathrm{N}}\right)$ sending ξ to $x^{\omega_{0}}(\exp \xi)$ is smooth. Similarly the map from $L_{k}^{p}\left(\boldsymbol{g}_{P} \otimes T * N\right) \times L_{k_{k+1}}^{p}\left(\boldsymbol{g}_{P}\right)$ to $L_{k}^{p}\left(\boldsymbol{g}_{P} \otimes T * M\right)$ sending (τ, ζ) to $\operatorname{Ad}(\exp (-\boldsymbol{\xi})) \tau$ is smooth, again using the Sobolev embedding theorem and corollary II.2.7. Thus the map

$$
(\tau, \zeta) \mapsto \operatorname{Ad}(\exp (-\xi)) \tau+X^{\omega_{0}}(\exp \xi)
$$

from $L_{k}^{p}\left(g_{P} \otimes T * M\right) \times L_{k+1}^{p}\left(g_{P}\right)$ to $L_{k}^{p}\left(g_{P} \otimes T * M\right)$ is smooth. Thus the action of $L_{k+1}^{p} \varphi$ on $L_{k}^{p} \notin$ is smooth whenever $p(k+1)>\operatorname{dim} M$ and $\mathrm{k}>0$. If $\mathrm{p}(\mathrm{k}+1)>\operatorname{dim} \mathrm{M}$ and $\mathrm{k}=0$, then the same argument applies on replacing $q_{k} \xi_{p}$) by $c^{0}\left(g_{p}\right)$ and using corollary II.2.7 again. An analogous argument again using corollary II.2.7 shows that the actions of $c^{k+1} \xi$ and $c^{k+1}, \alpha \xi$ on $c^{k} \phi$ and $c^{k, \alpha} A$ respectively are smooth.

Theorem 2.2

Let $\pi: P \longrightarrow M$ be a smooth principal bundle over a compact smooth manifold M with compact structural group G whose Lie algebra is $\boldsymbol{\int}$, and let $\pi_{\text {ad }}: G_{P} \rightarrow M$ be the adjoint bundle with total space $G_{P}=P X_{a d}{ }^{G}$. Let $\Psi: P \rightarrow P$ be the continuous principal bundle automorphism corresponding to a continuous section of $\pi_{a d}: G_{p} \rightarrow M$ that is differentiable almost cverywhere on M. Let k be a non-negative integer. Then
(i) if $p \in[1, \infty)$ satisfies $p(k+1)>\operatorname{dim} M$, if $\omega \in L_{l}^{p} A$ and if $\Psi * \omega \in L_{k}^{p} A$, then $\Psi \in L_{k+1}^{p} \wp$,
(ii) if $\omega \in C^{k} A$ and if $\Psi * \omega \in c^{k} A$, then $\Psi \in c^{k+1} \mathcal{G}$,
(iii) if $\alpha \in(0,1)$, if $\omega \in C^{k, \alpha} \notin$ and if $\Psi * \omega \in c^{k, \alpha} A$, then $\Psi \in c^{k+1, \alpha} \mathcal{Y}$.

Proof

Choose a biinvariant Riemannian metric on G. Then
$\Psi=(\exp \xi) \Psi_{o}$, where $\Psi_{o}: P \rightarrow P$ is a smooth principal bundle automorphism, and where ξ is a continuous section of the adjoint bundle $\pi_{\text {Ad }}: ⿹_{P} \rightarrow M$ whose canonical C° norm does not exceed the injectivity radius of G. It is sufficient to prove the theorem when Ψ_{0} is the identity automorphism of P, since $\Psi^{*} \omega \in L_{k}^{p} \&$, $c^{k} A$ or $c^{k, \alpha} A$ if and only if $\left(\Psi \Psi_{o}^{-1}\right) * \omega \in L_{k}^{p} A, c^{k} \notin$ or $c^{k, \alpha} \notin$ respectively. Let $\omega=\omega_{0}+\tau$ where ω_{o} is a smooth connection. Then

$$
\begin{aligned}
\Psi *\left(\omega_{0}+\tau\right) & =\operatorname{Ad}\left(\Psi \Psi^{-1}\right) \tau+x^{\omega_{0}}(\Psi) \\
& =\operatorname{Ad}(\exp (-\xi)) \tau+B(\xi) \mathrm{d}^{\omega_{0}} \xi
\end{aligned}
$$

where $\chi^{\omega_{0}}$ and B are defined above. Since the canonical C^{0} norm of ξ is strictly less than the injectivity radius of $G, B(\xi)$ is a vector bundle automorphism of $9 \mathrm{P} \otimes \mathrm{T} * \mathrm{M}$ (see theorem v.6.3). Thus

$$
d^{\omega_{0}} \xi=B(\xi)^{-1}\left(\Psi * \omega-\operatorname{Ad}(\exp (-\xi))\left(\omega-\omega_{0}\right)\right)
$$

We prove the theorem by induction on k. Suppose $k=0$. $\xi \in C^{o}(\square \mathbf{P})$, hence both $B(\xi)^{-1}$ and $\operatorname{Ad}(\exp (-\xi)$) belong to C° (End $(马 p \otimes T * M)$). Thus if ω and $\Psi * \omega$ belong to $L^{p} A$ for
 and hence $\xi \in L_{1}^{p}(\eta p)$ and $\Psi \in L_{1}^{p} G_{\mathcal{L}}$ if ω and $\Psi * \omega$ belong to $C^{\circ} \mathcal{A}$, then $d^{\omega_{0}} \xi \in C^{\circ}(\square p \otimes T * M)$ and hence $\xi \in C^{1}(\square p)$ and $\Psi \in C^{1} \mathcal{Y}$. This proves (i) and (ii) when $k=0$. If ω and $\Psi * \omega$ belong to $c^{0, \alpha} \notin$, then ω and $\Psi * \omega$ belong to $c^{\circ} \mathcal{A}$ and $\xi \in c^{1}\left(\Xi_{P}\right)$,
and thus $\xi \in c^{0, \boldsymbol{a}}(\boldsymbol{\beta})$. Then $B(\xi)^{-1}$ and $\operatorname{Ad}(\exp (-\xi)$) belong to $C^{0, \alpha}\left(\right.$ End $(g p \otimes T * M)$). Thus $d^{\omega_{0}} \xi$ belongs to $C^{0, \alpha}(\operatorname{GP} \otimes T * M)$, and hence $\xi \in C^{1, \propto}(\boldsymbol{g})$. This proves (iii) when $k=0$. We now use the induction hypothesis to prove the theorem when $k>0$.

Consider case (i) when $k>0$. We have Sobolev embeddings ${ }_{\mathrm{L}}^{\mathrm{p}} \mathrm{A} \hookrightarrow \mathrm{L}_{\mathrm{k}-1}^{\mathrm{q}} A$ and $\mathrm{L}_{\mathrm{k}+1}^{\mathrm{p}} \mathcal{G} \hookrightarrow \mathrm{L}_{k}^{q} \mathcal{G}$, where $q \in[1, \infty)$ may be chosen to satisfy

$$
\frac{1}{P}-\frac{1}{\operatorname{dim} M}<\frac{1}{q}<\frac{k}{\operatorname{dim} M}
$$

Then $\boldsymbol{\omega}$ and $\Psi \Psi^{*} \boldsymbol{\omega}$ belong to $L_{k-1}^{q} A$, and hence $\Psi \in L_{k}^{q} \mathcal{G}$, by the induction hypothesis. Thus $\xi \in L_{k}^{q}\left(g_{p}\right)$. It follows that $B(\xi)^{-1}$ and $\operatorname{Ad}\left(\exp (-\xi)\right.$) belong to $L_{k}^{q}($ End $(G p \otimes T * M))$. Hence $d^{\omega_{0}} \xi \in L_{k}^{p}(g p \otimes T * M)$, by corollary II.2.7 and thus $\xi \in L_{k+1}^{p}(\emptyset p)$. Hence $\Psi \in L_{k+1}^{p} \xi$. This proves (i). The proof of (ii) and (iii) is analogous.

Theorem 2.3

Let $\pi: P \longrightarrow M$ be a smooth principal bundle over a compact smooth manifold M with compact structural group. Let ($\boldsymbol{\omega}_{\mathrm{i}}$: if iN) and $\left(\Psi_{i}: i \in \mathbb{N}\right)$ be sequences of connections on $\pi: P \rightarrow M$ and continuous principal bundle automorphisms of $\pi: P \rightarrow M$ respectively. Let k be a non-negative integer. Then
(i) if $p \in I, \infty)$ satisfies $p(k+1)>\operatorname{dim} M$, if $\omega_{i} \in L_{k}^{p} A$ and $\Psi_{i} \in L_{k+1}^{p} \mathcal{G}_{\mathcal{G}}$, if the sequences $\left(\omega_{i}\right)$ and $\left(\Psi_{i} * \omega_{i}\right)$ converge in $\mathrm{L}_{\mathrm{k}}^{\mathrm{p}} A$ to ω and $\bar{\omega}$ respectively, and if the sequence $\left(\Psi_{i}\right)$ converges in $c^{k} \xi$ to Ψ, where $\Psi \in c^{k} \xi_{\mathcal{G}}$, then $\Psi \in L_{k+1}^{p} \zeta_{\mathcal{G}},\left(\Psi_{i}\right)$ converges to Ψ in $L_{k+1}^{p} \mathcal{G}$, and $\Psi * \omega=\bar{\omega}$,
(ii.) if $k>0$, if $p, q \in[\overline{1}, \infty)$ satisfy $p(k+1)>\operatorname{dim} M, q^{k}>\operatorname{dim} M$, $q \geqslant p$, if $\omega_{i} \in I_{i}^{p} A$ and $\Psi_{i} \in I_{\mathrm{k}_{\mathrm{i}}}^{\mathrm{p}} \xi$, if the sequences $\left(\omega_{i}\right)$ and ($\Psi^{*} \omega_{i}$) converge in $L_{k}^{P} A$ to ω and $\bar{\omega}$ respectively and if the sequence (Ψ_{i}) converges in $L_{k}^{q} \mathcal{Y}$ to Ψ where $\Psi \in \mathcal{L}_{k}^{q} \xi_{y}$, then $\Psi \in L_{k+1}^{\mathrm{p}} \mathscr{G},\left(\Psi_{i}\right)$ converges to Ψ in $L_{\mathrm{k}_{+1}}^{\mathrm{p}} \xi$, and $\Psi{ }^{*} \omega=\bar{\omega}$,
(iii) if $\omega_{i} \in C^{k} A$ and $\Psi_{i} \in c^{k+1} \xi$, if the sequences $\left(\omega_{i}\right)$ and $\left(\Psi_{i}{ }^{*} \omega_{i}\right)$ converge in $C^{k} A$ to ω and $\bar{\omega}$ respectively and if the sequence (Ψ_{i}) converges in $c^{k} \mathcal{G}$ to Ψ, where $\Psi \in c^{k} \mathcal{g}$, then $\Psi \in c^{k+1} \mathcal{G}$, $\left(\Psi_{i}\right)$ converges to Ψ in $c^{k+1} \mathcal{G}$, and $\Psi^{*} \omega=\bar{\omega}$,
(iv) if $\alpha \in(0,1)$, if $\omega_{i} \in C^{k, \alpha} A$ and $\Psi_{i} \in C^{k+1, \alpha} \mathcal{g}$, if the sequences $\left(\omega_{i}\right)$ and $\left(\Psi_{i} * \omega_{i}\right)$ converge in $c^{k, \alpha} A$ to ω and $\bar{\omega}$ respectively and if the sequence (Ψ_{i}) converges in $c^{k, \alpha} \zeta_{\mathcal{L}}$ to Ψ where $\Psi \in C^{k, \alpha} \xi$, then $\Psi \in C^{k+1, \alpha} \mathcal{G},\left(\Psi_{i}\right)$ converges to Ψ in $c^{k+1, \alpha} \varrho$, and $\Psi * \omega=\bar{\omega}$. Proof

We claim that, without loss of generality we may assume that
$\Psi_{i}=\exp \xi_{i}$ and $\Psi=\exp \xi$, where ξ_{i} and ξ are differentiable sections of $\Pi_{A d}: ~ ⿹ P \rightarrow M$ for all $i \in \mathbb{N}$ and where the canonical C^{0} norms of ξ and ξ_{i} determined by a given biinvariant metric on G do not exceed some constant which is strictly less than the injectivity radius of G. For since $\left(\Psi_{i}\right)$ converges to Ψ in the C° topology in all cases (i), (ii), (iii), and (iv), it follows that if a smooth principal bundle automorphism Ψ_{0} is sufficiently close to Ψ in the c° topology, then there exist differentiable sections ξ_{i} of $\Pi_{A d}: \emptyset p \rightarrow M$ for sufficiently large i, that are bounded in the canonical C^{0} norm by some constant strictly less than the injectivity radius of G, such that $\Psi_{i} \Psi_{o}^{-1}=\exp \xi_{i}$, and the conclusions of
the theorem hold for the sequence (Ψ_{i}) if they hold when the sequence $\left(\Psi_{i}\right)$ is replaced by the sequence $\left(\Psi_{i} \Psi_{o}{ }^{-1}\right)$ in the statement of the theorem. Thus we may assume that $\Psi_{i}=\exp \xi_{i}$, $\Psi=\exp \bar{\Psi}$ and that the canonical C°-norms of ξ_{i} and ξ are bounded by a constant strictly less than the injectivity radius of G.

$$
\begin{aligned}
& \text { If } \omega_{o} \text { is a smooth connection, then } \\
& d^{\omega_{0}} \xi_{i}=B\left(\zeta_{i}\right)^{-1}\left(\Psi_{i} * \omega_{i}-\operatorname{Ad}\left(\exp \left(-\xi_{i}\right)\right)\left(\omega_{i}-\omega_{o}\right)\right)
\end{aligned}
$$

Also let η be the section of $Я \mathbf{P} \otimes \mathrm{~T} * \mathrm{M} \rightarrow \mathrm{M}$ defined by

$$
\eta=B(\xi)^{-1}\left(\bar{\omega}-\operatorname{Ad}(\exp (-\xi))\left(\omega-\omega \omega_{0}\right)\right)
$$

By corollary II.2.7 it follows that $\eta \in L_{k}^{p}(\Omega p \otimes T * M)$ in cases (i) and (ii), $\eta \in C^{k}(g \mathbf{P} \otimes T * M)$ in case (iiii) and $\eta \in c^{k, \infty}(\eta p \otimes T * M)$ in case (iv). It follows also that ($d^{\omega_{0}} \xi_{i}$) converges to η in the L_{k}^{p} norm in cases (i) and (ii), ($d^{\omega_{0}} \xi_{i}$) converves to η in the C^{k} norm in case (iii) and ($d^{\omega_{0}} \xi_{i}$) converges to η in the $c^{k, \alpha}$ norm in case (iv). But ($d^{\omega} \omega_{i} \xi_{i}$) converges to $d^{\omega_{0}} \xi$ in $L_{k-1}^{p}(乌 p \otimes T * M)$ in cases (i) and (ii), $\left(d^{\omega_{0}} \xi_{i}\right)$ converges to $d^{\omega_{\circ}} \xi$ in $C^{k-1}(\Delta P \otimes T * M)$ if $k>0$ in cases (iii) and (iv), and ($\mathrm{d}^{\omega_{0}} \xi_{i}$) converges to $d^{\omega} \xi$ in $L_{-1}^{r}(g p \otimes \quad T * M)$ for all $r \in(1, \infty)$ if $k=0$ in cases (iii) and (iv). Hence $\eta=d^{\omega} \xi$ in all cases. Thus $\Psi \in L_{k+1}^{p} \oint$ and $\left(\Psi_{i}\right)$ converges to Ψ in the L_{k+1}^{p} topology in cases (i) and (ii), $\Psi \in c^{k+1} \varphi$ and (Ψ_{i}) converges to Ψ in the c^{k+1} topology in case (iii), and $\Psi \in c^{k+1, \alpha} \xi$ and $\left(\Psi_{i}\right)$ converges to Ψ in the $c^{k+1, \alpha}$ topology in case (iv). Then $\bar{\omega}=\Psi \Psi^{*} \omega$ by the continuity of the actions of the appropriate groups of principal bundle automorphisms on the corresponding spaces of connections.

In this section, we give a condition for a sequence of principal bundle automorphisms to converge in the groups of L_{k+1}^{p}, C^{k} or $C^{k, \alpha}$ principal bundle automorphisms of a smooth principal bundle over a compact manifold with compact structural group, in terms of the action of the automorphisms on connections.

Let $\pi: P \rightarrow M$ be a smooth principal bundle over a compact smooth manifold M with compact structural group G whose Lie algebra is Ω, let G be given a biinvariant Riemannian metric, and let M be given a Riemannian metric. Let $\pi_{a d}: G_{P} \rightarrow M$ and $\pi_{A d}: g_{P} \rightarrow M$ be the adjoint bundles associated to $\pi: P \rightarrow M$ with total spaces $G_{P}=P \times{ }_{\text {ad }}{ }^{G}$ and $\square_{P}=P \times{ }_{A d} \boldsymbol{g}$.

We recall that the biinvariant Riemannian metric on G determines a bi invariant Riemannian metric on each fibre of $\pi_{a d}: G_{P} \rightarrow M$ which in turn determines a distance function on this fibre. We let
 fibre $G_{P}\left[\sum_{m}\right]$ of $\pi_{a d}: G_{P} \rightarrow M$ over $m \in M$. We recall also that the bininvariant metric on G determines a G-invariant norm on g which in turn induces norms on the fibres of $\pi_{\Lambda d}: \exists_{P} \rightarrow M$ and $\square \mathrm{P} \otimes \mathrm{T} \% \mathrm{M} \rightarrow \mathrm{M}$. We let $\mathrm{I} .1_{\mathrm{m}}$ denote both the norm on the fibre $\exists_{P} \Gamma_{m} \overline{7}$ of $\pi_{A d}: \exists_{P} \rightarrow M$ over $m \in M$ and also the norm on
 $\bar{\rho}: \mathrm{C}^{\mathrm{o}}(\mathrm{G} \mathbf{p}) \times \mathrm{C}^{\mathrm{O}}(\mathrm{G} \mathbf{p}) \rightarrow \mathbb{R}$ on $\mathrm{C}^{\mathrm{o}}(\mathrm{G} \mathbf{p})$, and the canonical C^{o} norms \| \| \| on $\mathrm{C}^{\circ}\left(\Xi_{\rho}\right)$ and $\mathrm{C}^{\circ}\left(\operatorname{Gp}_{\rho} \otimes \mathrm{T} * \mathrm{M}\right)$, and the canonical L^{p} norms $\|\cdot\|_{p}$ on $L^{p}(g \rho)$ and $L^{p}\left(⿹_{p} \otimes T * M\right)$ for $\left.p \in I, \infty\right)$ are defined by

$$
\begin{aligned}
& \bar{\rho}\left(\Psi_{1}, \Psi_{2}\right)=\sup _{m \in M} \rho_{m}\left(\Psi_{1}(m), \Psi_{2}(m)\right) \\
& \|\eta\|=\sup _{m \in M}|\eta(m)|_{m}, \\
&
\end{aligned} \begin{aligned}
& =\left(\int_{M}|\eta(m)| p \quad d(v o l)\right)^{1 / \rho}
\end{aligned}
$$

$\vec{\rho}$ may be regarded as a biinvariant distance function on $c^{0} \mathcal{G}$, on identifying $C^{\circ} \mathcal{G}$ and $C^{\circ}(G p)$, and the canonical norms on $C^{\circ}(g \mathbf{p})$, $C^{\circ}(g p \otimes T * M), L^{p}(g p)$ and $L^{p}(g p \otimes T * M)$ are invariant under the action of $c^{\circ} \mathcal{G}$ (see propositions $v .2 .3$ and $v .2 .4$). Thus if ω_{1} and $\boldsymbol{\omega}_{2}$ belong to $C^{\circ} \mathcal{A}$, the space of continuous connections on $\pi: P \rightarrow M$ and if $\Psi \in C^{l} \mathcal{G}$, then

$$
\left\|\Psi * \omega_{1}-\Psi * \omega_{2}\right\|=\left\|\omega_{1}-\omega_{2}\right\|
$$

and if $\boldsymbol{\omega}_{1}$ and $\boldsymbol{\omega}_{2}$ belong to $L^{p} A$ for some $\left.p \in \mathbb{L}, \infty\right)$ satisfying $p>\operatorname{dim} M$ and if $\Psi \in L_{1}^{p} G$, then

$$
\left\|\Psi{ }^{*} \omega_{1}-\Psi^{*} \omega_{2}\right\|_{p}=\left\|\omega_{1}-\omega_{2}\right\|_{\mathrm{p}}
$$

Lemma 3.1

Let $\pi: P \longrightarrow M$ be a smooth principal bundle over a compact manifold M with compact structural group G whose Lie algebra is 9 . Let $\pi_{a d}: G p \rightarrow M$ and $\Pi_{\Lambda d}: 乌 p \rightarrow M$ be the adjoint bundles with total spaces $G p=P x_{\text {ad }} G$ and $g P=P x$ Ad \emptyset. Let M be given a Riemannian metric and let G be given a biinvariant Riemannian metric, determining a distance function ρ_{m} on the fibre $G p[\mathrm{~m}]$ of
$\mathbb{T}_{\mathrm{ad}}: \mathrm{Gp} \rightarrow \mathrm{M}$ over $\mathrm{m} \in \mathrm{M}$ and determining canonical norms $\|$.$\| on$ $C^{0}\left(g_{p} \otimes T * M\right)$ and $\|\cdot\|_{p}$ on $L^{p}(\exists p \otimes T * M)$, where $\operatorname{dim} M<p<\infty$. Given a compact subset K of M , let

$$
\bar{\rho}_{K}\left(\Psi_{1}, \Psi_{2}\right)=\sup _{\mathrm{m} \in \mathrm{~K}}\left(\rho_{\mathrm{m}}\left(\Psi_{1}(\mathrm{~m}), \Psi_{2}(\mathrm{~m})\right)\right.
$$

for all $\Psi_{1}, \Psi_{2} \in C^{0} \mathcal{G}$. Then there exists a constant ap, depending only on p and on the Riemannian geometry of M, such that
(i) if $\omega \in C^{0} \mathcal{A}, \Psi_{1}, \Psi_{2} \in C^{1} \mathcal{G}$ and $m \in K$, then

$$
\vec{\rho}_{K}\left(\Psi_{1}, \Psi_{2}\right) \leqslant \rho_{m}\left(\Psi_{1}(m), \Psi_{2}(m)\right)+\left\|\Psi_{1} * \omega-\Psi_{2}^{* \omega}\right\|(\text { diam } K)
$$

(ii) if $\omega \in L_{1}^{\mathrm{p}} \boldsymbol{A}, \Psi_{1}, \Psi_{2} \in \mathrm{~L}_{1}^{\mathrm{p}} \boldsymbol{\xi}$ and $m \in K$, then

$$
\bar{\rho}_{K}\left(\Psi_{1}, \Psi_{2}\right) \leqslant \rho_{m}\left(\Psi_{1}(m), \Psi_{2}(m)\right)+A_{p}\left\|\Psi_{1}^{*} \omega-\Psi_{2}^{*} \omega\right\| p(\operatorname{diam} K)^{\alpha},
$$

where

$$
\alpha=1-\frac{\operatorname{dim} \mathrm{ii}}{P} .
$$

Proof
Since the smooth connections arc dense in $C^{\circ} A$ and $L^{p} A$, the smooth principal bundle automorphisms are dense in $C^{1} \mathcal{G}$ and $L_{1}^{p} \mathcal{G}$, and since $C^{1} G$ and $L_{1}^{p} G$ act continuous $1 y$ on $C^{0} \phi$ and $L^{p} \&$ respectively, one may assume that ω, Ψ_{1} and Ψ_{2} are smooth. By theorem $V .5 .2$, if $c: \underline{\bar{a}}, \underline{b} \overline{7} \rightarrow M$ is a piecewise smooth curve parameterized by arclength $s, c(a)=m$ and $c(b)=m^{\prime}$, then

$$
\rho_{m^{\prime}}\left(\Psi_{1}\left(m^{\prime}\right), \Psi_{2}\left(m^{\prime}\right)\right)-\rho_{m}\left(\Psi_{1}(m), \Psi_{2}(m)\right) \leqslant \int_{c} f(c(s)) \text { as }
$$

where

$$
f(x)=\left|\left(\Psi_{1}^{*} \omega-\Psi_{2}^{*} \omega\right)(x)\right|_{x}
$$

and hence

$$
\rho_{m^{\prime}}\left(\Psi_{1}\left(m^{\prime}\right), \Psi_{2}\left(m^{\prime}\right)\right) \leqslant \rho_{m}\left(\Psi_{1}(m), \Psi_{2}(m)\right)+\mu_{f}\left(m, m^{\prime}\right)
$$

and

$$
\bar{\rho}_{K}\left(\Psi_{1}, \Psi_{2}\right) \leqslant \rho_{m}\left(\Psi_{1}(m), \Psi_{2}(m)\right)+\sup _{m^{\prime} \in K} \mu_{f}\left(m, m^{\prime}\right)
$$

where $\mu_{f}\left(m, m^{\prime}\right)$ is the infimum of the integrals of f with respect to arclength along all piecewise smooth curves from m to m^{\prime}.

$$
\begin{aligned}
& \text { If } \omega \in C^{\circ} A \text { and } \Psi_{1}, \Psi_{2} \in C^{1} 乌 \text {, then } \Psi_{1} * \omega-\Psi_{2}^{*} \omega \\
& C^{o}(g p \otimes T * M) \text { and } \\
& f(x) \leqslant\left\|\Psi_{1} * \omega-\Psi_{2}^{*} \omega\right\|,
\end{aligned}
$$

and thus

$$
\mu_{f}\left(m, m^{\prime}\right) \leqslant\left\|\Psi_{1}^{*} \omega-\Psi_{2}^{*} \omega\right\| \text { dist }\left(m, m^{\prime}\right)
$$

and hence

$$
\bar{\rho}_{K}\left(\Psi_{1}, \Psi_{2}\right) \leqslant \rho_{m}\left(\Psi_{1}(m), \Psi_{2}(m)\right)+\left\|\Psi_{1}^{*} \omega-\Psi_{2}^{*} \omega\right\|(\text { diam } k)
$$ Also it follows from theorem IV.3.3 that there exists a constant A_{p} depending only on p and the Riemannian geometry of M, such that

$$
\begin{aligned}
\mu_{f}\left(m_{1}, m_{2}\right) & \leqslant A_{p}\left(\int_{M} f(x)^{p} d(v o l)\right)^{1 / p}\left(\operatorname{dist}\left(m ; m^{\prime}\right)\right)^{\alpha} \\
& \leqslant A_{p}\left\|\Psi_{1}^{*} \omega-\Psi_{2}^{*} \omega\right\| \|_{p}\left(\text { dist }\left(m, m^{\prime}\right)\right)^{\alpha}
\end{aligned}
$$

and hence

$$
\bar{\rho}_{K}\left(\Psi_{1}, \Psi_{2}\right) \leqslant \rho_{m}\left(\Psi_{1}(m), \Psi_{2}(m)\right)+A_{p}\left\|\Psi_{1}^{*} \omega-\Psi_{2}^{*} \omega\right\|(\text { dean } K)^{\alpha}
$$

Theorem 3.2

Let $\pi: P \rightarrow M$ be a smooth principal bundle over a compact smooth manifold M with compact structural group G. Let Gp [m] be the fibre over some given $m \in M$ of the adjoint bundle $\Pi_{\text {ad }}: G p \rightarrow M$ with total space $G \mathbf{p}=P x_{\text {ad }} G \operatorname{Let}\left(\omega_{i}: i \in \mathbb{N}\right)$ be a sequence of connections on $\pi: P \rightarrow M$ and $\operatorname{let}\left(\Psi_{i}: i \in \mathbb{N}\right)$ be a sequence of continuous principal bundle automorphisms of $T T: P \rightarrow M$ with the property that the sequence $\left(\Psi_{i}(m): i \quad \mathbb{N}\right)$ converges in $G \mathbf{P} \boldsymbol{I}_{\mathbf{m}} \overline{7}$. Let k be a non-negative integer. Then
(i) if $p \in[1, \infty)$, if $p(k+1)>\operatorname{dim} M$, if $\omega_{i} \in L_{k}^{p}$ and $\Psi_{i} \in L_{\mathrm{k}+1}^{\mathrm{p}} \mathrm{I}_{\mathrm{g}}$, and if $\left(\omega_{\mathrm{i}}\right)$ and $\left(\Psi_{i}{ }^{*} \omega_{i}\right)$ converge in $\mathrm{L}_{\mathrm{k}}^{\mathrm{p}} A$ to ω and $\bar{\omega}$ respectively then $\left(\Psi_{i}\right)$ converges in $\mathrm{L}_{\mathrm{k}_{+1}}^{\mathrm{p}} \mathcal{G}$ to Ψ, for some $\Psi \in L_{k+1}^{p} \xi$, and $\Psi^{*} \omega=\bar{\omega}$,
(ii) if $\omega_{i} \in C^{k} A$ and $\Psi_{i} \in C^{k+1} \xi$, and if $\left(\omega_{i}\right)$ and $\left(\Psi_{i} * \omega_{i}\right)$ converge in $c^{k} A$ to ω and $\bar{\omega}$ respectively, then $\left(\Psi_{i}\right)$ converges in $c^{k+1} \mathcal{G}$ to Ψ for some $\Psi \in c^{k+1} \mathcal{G}$, and $\Psi^{*} \omega=\bar{\omega}$,
(iii) if $\alpha \in(0,1)$, if $\omega_{i} \in c^{k, \alpha} A$ and $\Psi_{i} \in c^{k+1, \alpha} \xi$, and if (ω_{i}) and ($\Psi_{i} * \omega_{i}$) converge in $c^{k, \alpha} \notin$ to ω and $\bar{\omega}$ respectively, then $\left(\Psi_{i}\right)$ converges in $c^{k+l, \alpha} \mathcal{G}$ to Ψ for some $\Psi \in c^{k+1, \alpha} \mathcal{G}$, and $\Psi^{*} \omega=\bar{\omega}$.

Proof

The proof is by induction on k. First consider the case $k=0$. If $\omega_{i} \in L^{p} \boldsymbol{A}$ and $\Psi_{i} \in L_{1}^{p} \boldsymbol{A}$, where $p>\operatorname{dim} M$, then for all positive integers i and j

$$
\begin{aligned}
& \left\|\Psi_{j}^{*} \omega_{i}-\Psi_{i}^{*} \omega_{i}\right\|_{p}=\left\|\omega_{i}-\left(\Psi_{i} \Psi_{j}^{-1}\right) * \omega_{i}\right\|_{p} \\
& \leqslant\left\|\omega_{i}-\omega_{j}\right\|_{p}+\left\|\omega_{j}-\left(\Psi_{i} \Psi_{j}^{-1}\right) * \omega_{i}\right\|_{p} \\
& \quad=\left\|\omega_{i}-\omega_{j}\right\|_{p}+\left\|\Psi_{j}^{*} \omega_{j}-\Psi_{i}^{*} \omega_{i}\right\|_{p} .
\end{aligned}
$$

Thus if the sequences $\left(\omega_{i}\right)$ and ($\left.\Psi_{i} \omega_{i}\right)$ converge in $L^{p} A$, then

$$
\lim _{i, j \rightarrow+\infty}\left\|\omega_{i}-\omega_{j}\right\|_{p}=\lim _{i, j \rightarrow+\infty}\left\|\Psi_{j} * \omega_{j}-\Psi_{i} * \omega_{i}\right\|_{p}=0
$$

and hence

$$
\lim _{i, j \rightarrow+\infty}\left\|\Psi_{j} * \omega_{i}-\Psi_{i} * \omega_{i}\right\|_{p}=0 .
$$

But by the previous lemma there exists a constant A_{p} depending only on p and the Riemannian geometry of M such that

$$
\bar{\rho}\left(\Psi_{j}, \Psi_{i}\right) \leqslant \rho_{m}\left(\Psi_{j}(m), \Psi_{i}(m)\right)+A_{p}\left\|\Psi_{j}^{*} \omega_{i}-\Psi_{i}^{*} \omega_{i}\right\|(\operatorname{diam} M)^{\alpha}
$$

where

$$
\alpha=1-\frac{\operatorname{dim} M}{p} .
$$

But the sequence ($\Psi_{i}(m)$) converges, hence

$$
\lim _{i, j \rightarrow+\infty} \rho_{m}\left(\Psi_{i}(m), \Psi_{j}(m)\right)=0
$$

and thus

$$
\lim _{i, j \rightarrow+\infty} \bar{\rho}\left(\Psi_{i}, \Psi_{j}\right)=0 .
$$

But $c^{0} \mathcal{G}$ is complete, hence there exists $\Psi \in C^{0} \mathcal{G}$ such that the sequence $\left(\Psi_{i}\right)$ converges to Ψ. Then $\Psi \in \mathbb{L}_{1}^{\mathrm{p}} \mathcal{G}$ and $\left(\Psi_{i}\right)$ converges
to Ψ in $L_{1}^{p} E_{f}$ by theorem 2.3. This proves (i) when $k=0$. The proof of (ii) when $k=0$ is completely analogous to that of (i) when $k=0$. To prove (iii) when $k=0$, note that if (ω_{i}) and ($\Psi_{i}^{*} \omega_{i}$) converge in $r^{0, \alpha} A$ then (Ψ_{i}) converges to Ψ in $c^{1} \varphi$ for some $\Psi \in C^{1} \mathcal{G}$ (by (ii) with $k=0$). Thus $\left(\Psi_{i}\right)$ converges to Ψ in $c^{\circ, \alpha} \mathscr{\mathcal { L }}$, and hence $\Psi \in c^{1, \alpha} \mathcal{G}$ and $\left(\Psi_{i}\right)$ converges to Ψ in $c^{1, \alpha} \oint$ by theorem 2.3. This proves (ii.i) when $k=0$.

We now prove (i) for $k>0$ using induction on k. Suppose the result is true for $k-1$. Let $p \in I \overline{1}, \infty)$ satisfy $p(k+1)>\operatorname{dim} M$. Then there exists $q \in I=\infty$) such that

$$
\frac{1}{\bar{P}}-\frac{1}{\operatorname{dim} M} \leqslant \frac{1}{q}<\frac{k}{\operatorname{dim} M}
$$

Then there exists a Sobolev embedding ${ }_{k}^{p} A \subset{ }_{k}^{q} \notin \mathbb{A}$. If the sequences $\left(\omega_{i}\right)$ and $\left(\Psi_{i} * \omega_{i}\right)$ converge in $L_{k}^{p} \notin$, then they converge in $L_{k-1}^{q} A$, hence the sequence $\left(\Psi_{i}\right)$ converges to Ψ in $L_{k}^{q} \mathcal{F}_{\mathcal{G}}$ for some $\Psi \in L_{k}^{q} \mathcal{y}$, by induction. Then, by theorem $2.3, \Psi \in{ }_{\mathrm{L}+1}^{\mathrm{p}} \oint_{\mathcal{G}}$, the sequence $\left(\Psi_{i}\right)$ converges to Ψ in $L_{k+1}^{P} \mathcal{E}^{\prime}$ and $\Psi * \omega=\bar{\omega}$. This proves (i). (ii) and (iii) are proved similarly using induction, again by theorem 2.3 .

Corollary 3.3

Let $\pi: P \rightarrow M$ be a smooth principal bundle over a compact smooth manifold M with compact structural group G. Let $\left(\omega_{i}: i \in \mathbb{N}\right)$ be a sequence of connections on $\mathbb{T}: P \rightarrow M$ and let $\left(\Psi_{i}: i \in \mathbb{N}\right)$ be a sequence of principal bundle automorphisms of $\pi: P \longrightarrow M$. Let k be a non-negative integer. Then
if $p \in[1, \infty)$, if $p(k+1)>\operatorname{dim} M$, if $\omega_{i} \in{ }_{k}^{p} \notin$, if $\Psi_{i} \in L_{k+1}^{p} \zeta_{\mathcal{G}}$, and if the sequences $\left(\omega_{i}\right)$ and $\left(\Psi_{i} * \omega_{i}\right)$ converge in $L_{k}^{P} A$ to ω and $\bar{\omega}$ respectively, then a subsequence of $\left(\Psi_{i}: i \in \mathbb{N}\right)$ converges in $L_{k+i}^{p} G_{\mathcal{L}}$ to Ψ, for some
$\Psi \in L_{k+1}^{p} \xi$, and $\Psi * \omega=\bar{\omega}$, if $\omega_{i} \in C^{l} \notin$, if $\Psi_{i} \in c^{k+1} \mathcal{G}$, and if the sequences $\left(\omega_{i}\right)$ and $\left.\Psi_{i} * \omega_{i}\right)$ converge in $c^{k} \mathcal{A}$ to ω and $\bar{\omega}$ respectively, then a subsequence of ($\Psi_{i}: \underline{i} \in \mathbb{N}$) converges in $c^{k^{k}+1} \mathcal{g}$ to Ψ, for some $\Psi \in c^{k+1} \mathcal{g}_{g}$, and $\Psi * \omega=\bar{\omega}$,
(iii) if $\alpha \in(0,1)$, if $\omega_{i} \in c^{k, \alpha} A$, if $\Psi_{i} \in c^{k+1, \alpha} \xi$, and if the sequences $\left(\omega_{i}\right)$ and $\left(\Psi_{i}{ }^{*} \omega_{i}\right)$ converge in $c^{k, \alpha} A$ to ω and $\bar{\omega}$ respectively, then a subsequence of $\left(\boldsymbol{\Psi}_{\mathrm{i}}: \mathrm{i} \in \mathbb{N}\right)$ converges in $c^{k+1, \alpha} \mathcal{g}$ to Ψ, for some $\Psi \in c^{k+1, \alpha} \xi$, and $\Psi^{*} \boldsymbol{\omega}=\bar{\omega}$.

Proof

In all cases, we may suppose that Ψ_{i} is continuous for all i. Since the structural group of $\pi: P \rightarrow M$ is compact, for any given fibre of $\pi: P \rightarrow M$ there exists a subsequence of $\left(\Psi_{i}: i \in \mathbb{N}\right)$ converging on that fibre. By theorem 3.2, this subsequence has the required properties.

$$
\square
$$

Lemma 3.1 has an analogue for sections of vector bundles associated to a given principal bundle.

Lemma 3.4
Let $\pi: P \rightarrow M$ be a smooth principal bundle over a compact Riemannian manifold M with compact structural group G whose Lie algebra is $9 . \operatorname{Let} \theta: G \rightarrow A u t(F)$ be a representation of G as a group of isometries of a normal vector space F. Let $\pi_{\theta}: E \rightarrow M$ be the vector bundle associated to π : $P \rightarrow M$ with total space $E=P X_{\theta} F$. For all $m \in M$, let $1 \cdot 1_{m}$ be the norm on the fibre $E[m$ of $\pi_{\theta}: E \rightarrow M$ over m determined by the norm 1.1 on F. For all compact subsets K of $M 1 e t$ the C° norms and L^{P} norms of C^{O} sections and $L^{\text {P }}$ sections respectively of $\pi T: P \rightarrow M$ over K be defined by

$$
\begin{aligned}
& \|\xi\|_{K, C^{0}}=\sup _{m \in K}|\xi(m)|_{m} \\
& \|\xi\|_{K, L^{p}}+\left(\int_{K}|\xi(m)|_{m}^{p} d(\text { vol })\right)^{1 / p}
\end{aligned}
$$

for all p satisfying $\operatorname{dim} M<p<\infty$.
Then there exists a constant A_{p}, depending only on p and on the Riemannian geometry of M such that
(i) if $\omega C^{0} \boldsymbol{A}, \xi \in C^{1}(E)$ and $m \in K$, then

$$
\|\xi\|_{K, c^{\circ}} \leqslant|\xi(\mathrm{m})|_{\mathrm{m}}+\left\|\mathrm{d}^{\omega} \xi\right\|_{\mathrm{M}, \mathrm{C}^{\mathrm{o}}}(\mathrm{diam} \mathrm{~K})
$$

(ii) if $\omega \in L^{P} A, \xi \in L_{1}^{p}(E)$ and $m \in K$, then

$$
\|\xi\|_{K, C^{\circ}} \leqslant|\xi(\mathrm{m})|_{\mathrm{m}}+A_{\mathrm{p}}\left\|_{\mathrm{d}}{ }^{\omega} \xi\right\|_{\mathrm{M}, \mathrm{~L}} \mathrm{p}\left(\text { diam K) }{ }^{\alpha}\right.
$$

where

$$
\alpha=1-\frac{\operatorname{dim} M}{p} .
$$

Proof

It suffices to verify that the inequalities are satisfied when ω and ξ are smooth. By theorem V.6.6, if $c: \underline{a}, \underline{b} 7 \rightarrow M$ is a piecewise smooth curve parameterized by arclength $s, c(a)=m$ and $c(b)=m$, then

$$
\left|\left|\xi\left(m^{\prime}\right)\right|_{m^{\prime}}-|\xi(m)|_{m}\right| \leqslant \int_{c}\left|d^{\omega} \xi\right| c(s) \text { ts. }
$$

Let $f: M \rightarrow \mathbb{R}$ be defined by

$$
f(m)=\left|d^{\omega} \xi(m)\right|_{m} .
$$

Then

$$
\|\xi\|_{K, c^{\circ}} \leqslant|\xi(m)|_{m}+\sup _{m^{\prime} \in K} \quad \mu_{f}\left(m, m^{\prime}\right)
$$

where $\mu_{f}\left(m, m^{\prime}\right)$ is the infimum of the integrals of f with respect to arclength along all piecewise smooth curves from m to m^{\prime}. But

$$
\mu_{f}\left(m, m^{\prime}\right) \leqslant\left\|d^{\omega} \xi\right\|_{M, c^{o}} \operatorname{dist}\left(m, m^{\prime}\right)
$$

and

$$
\mu_{f}\left(m, m^{\prime}\right) \leqslant A_{p}\left\|^{\omega}\right\|^{\omega} \xi, \|^{P} \quad\left(\text { dist }\left(m, m^{\prime}\right)\right)^{\alpha}
$$

by theorem IV, 3.3, and hence

$$
\begin{array}{ll}
\|\xi\|_{K, c^{\circ}} & |\xi(\mathrm{m})|_{m}+\left\|d^{\omega} \xi\right\|_{M, c^{0}}{ }^{(\text {diam } K)}, \\
\|\xi\|_{K, c^{\circ}} & |\xi(m)|_{m}+A_{p}\left\|d^{\omega} \xi\right\|_{M, L^{P}}{ }^{(\text {diam } K)}
\end{array}
$$

§4. Further Properties of the Action of Automorphisms on Connections
In this section we investigate the consequences of corollary 3.3 for the action of the various groups of principal bundle automorphisms on the corresponding spaces of connections on a principal bundile over a compact manifold with compact structural group. It is shown that the quotients of the various spaces of connections by the action of the corresponding groups of principal bundle automorphisms are Hausdorff, and that the stabilizer of any connection in these spaces is a compact subgroup of the appropriate group of automorphisms and it contains a subgroup naturally isomorphic to the centre of the structural group of the bundle. It is shown that the subset of each space of connections consisting of those connections whose stabilizer is the centre of the structural group form an open subset of the space of connections. We shall also consider the action on the spaces of connections of the subgroups of the corresponding groups of principal bundle automorphisms consisting of those automorphisms which fix the fibre of the bundle over some given element of the base space.

Theorem 4.1

Let $\pi: P \rightarrow M$ be a smooth principal bundle over a compact smooth manifold M with compact structural group. Let k be a nonnegative integer. Then, for all $p \in \underline{I}, \infty)$ satisfying $p(k+1)>\operatorname{dim} M$ and for all $\alpha \in(0,1)$, the quotients $L_{k}^{p} A / L_{k+1}^{p} \wp, c^{k} \& / c^{k+1} \varphi$ and $c^{k, \alpha} A / c^{k+1, \infty} \xi$ of the $\operatorname{spaces} L_{k}^{p} A, c A$ and $c^{k, \infty} A$ of connections on $\pi: P \rightarrow M$ by the corresponding groups of principal bundle automorphisms are Hausdorff.

Proof

If \sim is an equivalence relation on a topological space X, then $X /$ - is Hausdorff if and only if R is closed in $X X X$, where

$$
\mathrm{R}=\left\{\left(x_{1}, x_{2}\right) \in \mathrm{X} \times \mathrm{x}: x_{1} \sim x_{2}\right\}
$$

Thus $L_{k}^{p} A / L_{k+1}^{p} \mathcal{G}$ is Hausdorff if and only if R is closed in $L_{k}^{p} \mathcal{A} \times L_{k}^{p} A$, where

$$
\begin{aligned}
R= & \left\{(\omega, \bar{\omega}) \quad L_{k}^{p} A \times L_{k}^{p} A: \exists \Psi \in L_{k+1}^{p}\right\} \text { such that } \\
& \Psi * \omega=\omega\} .
\end{aligned}
$$

Let ($\omega, \bar{\omega}$) belong to the closure of R. Then there exists a sequence $\left(\omega_{i}: i \in \mathbb{N}\right)$ in $L_{k}^{p} A$ and a sequence $\left(\Psi_{i}: i \in \mathbb{N}\right)$ in $L_{k+1}^{p} G$ such that $\left(\omega_{i}\right)$ converges in $L_{k}^{p} \notin$ to ω and $\left(\Psi_{i} * \boldsymbol{\omega}_{i}\right)$ converges in $\mathrm{L}_{\mathrm{k}}^{\mathrm{p}}$ A to $\overline{\boldsymbol{\omega}}$. By corollary 3.3, a subsequence of $\left(\Psi_{i}: i \in \mathbb{N}\right)$ converges in $\mathrm{L}_{\mathrm{k}+1}^{\mathrm{p}} \mathcal{G}$ to $\Psi \in \mathrm{L}_{\mathrm{k}+1}^{\mathrm{p}} \mathcal{G}$, and $\Psi^{*} \omega=\bar{\omega}$. . fence $(\omega, \bar{\omega}) \in R$. Hence R is closed in $L_{k}^{p} \notin L_{k}^{p} A$, and thus ${ }_{L}{ }_{k}^{p} A / L_{k+1}^{p} \mathcal{G}$ is Hausdorff. Similarly $c^{k} A / c^{k+1} \mathcal{G}$ and $c^{k, \alpha A / c^{k+1, \alpha} \mathcal{G}}$ are Hausdorff.

Theorem 4.2
Let $\pi: P \longrightarrow M$ be a smooth principal bundle over a compact smooth manifold M with compact structural group. Let k be a non-negative integer, $\operatorname{let} p \in I \overline{1}, \infty)$ satisfy $p(k+1)>\operatorname{dim} M$, and let $\alpha \in(0,1)$. Let $L_{k+1}^{p} \mathcal{G}, c^{k+1} \mathcal{G}$ and $c^{k+1, \alpha} \mathcal{G}$ be the groups of principal bundle automorphisms acting on the corresponding spaces $\mathrm{L}_{\mathrm{k}}^{\mathrm{p}} \boldsymbol{A}, \mathrm{c}^{\mathrm{k}} \boldsymbol{A}$ and $\mathrm{c}^{\mathrm{k}, \boldsymbol{A} A}$ of connections on $\pi: \mathrm{p} \rightarrow \mathrm{M}$. Then,
(i) if $\omega \in \mathrm{L}_{\mathrm{k}}^{\mathrm{p}} \boldsymbol{A}$, then the stabilizer of ω in $\mathrm{L}_{\mathrm{k}+1}^{\mathrm{p}} \xi$ is compact,
(ii) if $\omega \epsilon_{c^{k}} \notin$, then the stabilizer of ω in $c^{k+1} \mathcal{g}$ is compact,
(iii) if $\omega \in c^{k, \alpha} A$, then the stabilizer of ω in $c^{k+1, \alpha} e y$ is compact.

Proof

Let $\omega \in \mathrm{L}_{\mathrm{k}}^{\mathrm{p}} A$ and let $\left(\Psi_{\mathrm{i}}: i \in \mathbb{N}\right)$ be a sequence of principal bundle automorphisms in $L_{\mathrm{k}+1}^{\mathrm{p}} \mathcal{G}^{\boldsymbol{g}}$ such that $\Psi_{i} * \omega=\omega$. By
corollary 3.3 , there exists a subsequence of $\left(\Psi_{i}: i \in \mathbb{N}\right)$ converging in $L_{k+1}^{p} \mathcal{G}$ to $\Psi \in L_{k+1}^{p} \hat{\mathcal{F}}$, and $\Psi * \omega=\omega$. Thus Ψ belongs to the stabilizer of ω. Thus the stabilizer of ω is a compact subgroup of $\mathrm{L}_{\mathrm{k}+1}^{\mathrm{p}} \mathscr{G}$. This proves (i). (ii) and (iii) are proved similarly.

Let G be the structural group of $\pi: P \rightarrow M$ and let $Z(G)$ be the centre of G. If $\gamma \in Z(G)$, then γ defines a smooth principal bundle automorphism of $\pi: P \rightarrow M$ mapping p to $p \cdot \gamma$. Thus we have natural smooth embeddings $Z(G) \hookrightarrow L_{k+1}^{p} G$ (where $\left.p(k+1)>\operatorname{dim} M\right)$, $Z(G) \hookrightarrow c^{k} g$ and $Z(G) \in c^{k, \alpha} \mathcal{g}$ (where $\alpha \in(0,1)$) for all nonnegative integers k. Moreover if $\gamma \in Z(G)$ and if $\Psi: P \rightarrow P$ is the principal bundle automorphism sending $p \in P$ to $p \cdot \gamma$, then $\Psi * \omega=\omega$ for all $\omega \in C^{\infty} \&$, and hence for all $\omega \in L_{k}^{p} \&, \omega \in C^{k} A$ and $\omega \in C^{k, \alpha} \phi$. Define

$$
\begin{aligned}
& L_{k+1}^{p} \xi_{0}=L_{k+1}^{p} \mathscr{g} / z(G), \\
& c^{k} \xi_{0}=c^{k} \xi_{\mathcal{L}} / z(G) \\
& c^{k, \alpha} \xi_{0}=c^{k, \alpha} \xi / z(G) .
\end{aligned}
$$

$L_{k+1}^{p} \mathscr{g}_{0}, c^{k+1} \mathscr{g}_{0}$ and $c^{k+1, \varnothing} \mathscr{g}_{0}$ are smooth Banach Lie groups acting smoothly on the spaces $L_{k}^{p} \not \&, c^{k} \&$ and $c^{k, \alpha} \not \&$ rerpectively, by corollary II. 3.3. Define $L_{k}^{p} \phi_{0}, C^{k} \phi_{0}$ and $c^{k, \alpha} A_{0}$ to be the subsets of $L_{k}^{p} \notin C^{k} \notin$ and $c^{k, \alpha} \notin$ respectively consisting of connections on $\pi: P \rightarrow M$ whose stabilizers in $L_{k+1}^{p} \varphi_{g}, c^{k+1} \varphi_{g}$ and $c^{k+1, \alpha} \varphi$ respectively are the subgroups of these groups corresponding to the centre $z(G)$ of G. Thus $L_{k+1}^{p} G_{o}, c^{k+1} G_{0}$ and $c^{k+1, \alpha} \mathcal{G}_{0}$ act freely on $L_{k}^{p} A_{0}, c^{k} A_{0}$ and $c^{k, \alpha} A_{0}$ respectively.

Lemma 4.3

Let G be a compact Lie group and let N be a closed normal
subgroup of G. Then there exists a neighbourhood U of N such that if H
is a subgroup of G and $H \subset U$ then $H \subset N$.

Proof

Without loss of generality, we may assume that N is the trivial group consisting of the identity element of G, for otherwise we may apply the theorem to the subgroup $H N / N$ of G / N. Choose a biinvariant Riemannian metric on G and let U be the ball of radius $1 / 3 i(G)$ about the identity element e, where $i(G)$ is the injectivity radius of G. If $\gamma \in U$ and $\gamma \neq e$, then there exist $a \in T e G$ and $t \in \mathbb{R}$, where \mid al $=1$ and $0<t<1 / 3 i(G)$, such that $\gamma=\exp (t a)$. Then there exists $n \in \mathbb{N}$ such that

$$
\frac{i(G)}{n+l} \leqslant t<\frac{i(G)}{n}
$$

It follows that $n \geqslant 3$ and
$3 / 4 i(G) \leqslant \frac{n}{n+1} i(G) \leqslant n t<i(G)$,
and thus γ^{n} does not belong to U. It follows that if H is a subgroup of G satisfying $H \subset U$ then $H=\{e\}$, as required.
\square

Theorem 4.4

Let $\pi: P \rightarrow M$ be a smooth principal bundle over a compact smooth manifold M with compact structural group G. Let k be a nonnegative integer, let $p \in I \overline{1}, \infty)$ satisfy $p(k+1)>\operatorname{dim} M$, and let $\alpha \in(0,1)$. Let $L_{k}^{p} A_{0}, c^{k} A_{0}$ and $c^{k, \alpha} A_{0}$ be the subsets of $L_{k}^{p} A, c^{k} \notin$ and c^{k}, \boldsymbol{A} respectively consisting of all connections whose stabilizer in $L_{k+1}^{p} \oint, c^{k+1} \oint$ and $c^{k+1, \alpha} \oint$ respectively is the subgroup corresponding to the centre $Z(G)$ of G. Then $L_{k}^{p} \not_{o}, c^{k} \not A_{0}$ and $c^{k, \alpha} A_{0}$ are open sets in $L_{k} A \not A, c^{k} \notin$ and $c^{k, \alpha} \notin$ respectively containing all smooth irreducible connections on $\pi: P \rightarrow M$.

Proof

Let $Z(G){ }_{M}$ denote the trivial fibre bundle $M x Z(G) \rightarrow M$. The inclusion $Z(G) \longrightarrow G$ induces an inclusion $Z(G){ }_{M} \longrightarrow G p$ of fibre bundles
over \mathbb{N}, where $G P=P x_{\text {ad }} G$. Suppose that $\omega \in L_{k}^{p} A, C^{k} A$ or $C^{i}, \alpha A$ and that $\Psi: P \rightarrow P$ is a continuous principal bundle automorphism stabilizing ω, identified with a section $\Psi \in C^{\circ}(G p)$ of $G_{p} \rightarrow M$. Suppose that $\Psi^{\mathcal{F}}(\mathrm{m}) \in Z(G)_{M}$ for some m $\in \operatorname{ivi}$ Let Ψ_{o} be the principal bundle automorphism corresponding to the element of Z(G) defined by $\Psi(m)$. Then Ψ_{0} also stabilizes ω and $\Psi_{o}(m)=\Psi(m)$. But then $\Psi_{0}=\Psi$, by lemma 3.1 , and thus Ψ belongs to the subgroup of the group of principal bundle automorphisms corresponding to $Z(G)$. We deduce that if $\Psi: M \rightarrow G p$ defines a principal bundle automorphism of $\pi: P \rightarrow M$ stabilizing some connection on $\pi: P \rightarrow M$, and if Ψ is not a member of the subgroup of $C^{\circ}(G \mathbf{p})$ corresponding to $Z(G)$, then $\Psi(M)$ and $Z(G)_{M}$ are disjoint subsets of $G p$.

Let U be an open neighbourhood of $Z(G)$ in G with the property that if H is a subgroup of G satisfying $H \subset U$ then $H \subset Z(G)$ (such a neighbourhood U exists by the previous lemma). We may choose U such that U is invariant under all inner automorphisms of G. Then U determines an open neighbourhood V of $Z(G){ }_{M}$ in $G p$ such that if H is a subgroup of $C^{\circ}(G p)$ consisting of sections of $V \rightarrow M$ then $H \in C^{O}\left(Z \quad(G) M_{M}\right)$.

Let $\omega \in L_{k}^{p} A$. If the stabilizer of ω in $L_{k+1}^{p} G$ corresponded to a subgroup of $L_{k+1}^{p}(G \boldsymbol{p})$ consisting of sections of $V \rightarrow M$, then it would correspond to a subgroup of $L_{k+1}^{p}\left(Z(G){ }_{M}\right)$ and hence the stabilizer of ω would be the subgroup of $L_{k+1}^{p}(G p)$ corresponding to $Z(G)$. Thus $\omega \in L_{k}^{p} \boldsymbol{A} \backslash L_{k}^{p} A_{0} \quad$ if and only if there exists $\Psi \in L_{k+1}^{p} G_{\mathcal{G}}$ and $m \in M$ such that $\Psi(m) \in G p \backslash V$.

Let $\omega \in L_{k}^{p} A$ belong to the closure of $L_{k}^{p} \notin L_{k}^{p} A_{0}$. Then there exists a sequence $\left(\omega_{i}: i \in \mathbb{N}\right)$ of elements of $L_{k}^{p} A, L_{k}^{p} A_{0}$ converging to ω. Then there exist a sequence $\left(\Psi_{i}: i \in \mathbb{N}\right)$ of elements of $L_{k+1}^{p} \mathcal{G}$ and a sequence $\left(m_{i}: i \in \mathbb{N}\right)$ of elements of M such that
$\Psi_{i}{ }^{*} \omega_{i}=\omega_{i}$ and $\Psi_{i}\left(m_{i}\right) \in G p \backslash V$. By corollary 3.3, ${ }^{\text {q }}$ subsequence of ($\Psi_{i}:$ i $\in \mathbb{N}$) converges to $\Psi \in L_{L_{k+1}}^{p} \xi$ and $\Psi^{*} \omega=\omega$, and this subsequence may be chosen such that (m_{i} : i $\in \mathbb{N}$) converges to $m \in M$, since M is compact. But then $\Psi(m) \in G \mathcal{V} V$, since the chosen subsequence converges uniformly to Ψ. Thus $\omega \in L_{k}^{P} A, L_{k}^{P} A_{0}$. Thus $L_{1}^{p} A \cup L_{k}^{p} A_{0}$ is closed, and hence $L_{k}^{p} \boldsymbol{A}_{0}$ is open in $L_{k}^{p} \boldsymbol{A}$. Similarly $C^{k} A_{0}$ and $C^{k, \alpha} A$ are open sets in $C^{k} A$ and $c^{k, \alpha} A$ respectively.

By theorem V.4.2, the stabilizer of a smooth connection is isomorphic to the centralizer of the holonomy group of the connection. It follows that the stabilizer of a smooth irreducible connection is isomorphic to $Z(G)$. Thus $L_{k}^{p} \boldsymbol{A}_{0}, C^{k} \boldsymbol{A}_{0}$ and $C^{k, \alpha} A_{0}$ contain all smooth irreducible connections on $\pi: P \rightarrow M$.

Theorem 4.5

Let $\pi: P \rightarrow M$ be a smooth principal bundle over a compact smooth manifold with compact structural group. Let k be a nonnegative integer, let $p \in I \overline{1}, \infty)$ satisfy $p(k+1)>\operatorname{dim} M$ and let $\alpha \in(0,1)$. Let $L_{k}^{p} A_{0}, c^{k} A_{0}, c^{k, \alpha} A_{0}, L_{k+1}^{p} \mathscr{g}_{0}, c^{k+1} \mathcal{H}_{0}$ and $c^{k+1, \alpha} \mathcal{H}_{0}$ be defined as above. Then
(i) $L_{\mathrm{L}_{\mathrm{k}+1}}^{\mathrm{G}} \mathcal{S}_{0}$ acts smoothly and freely on $\mathrm{L}_{\mathrm{k}}^{\mathrm{p}} A_{0}$ on the right, $L_{k}^{p} A_{0} / L_{k+1}^{p} \mathcal{G}_{0}$ is Hausdorff, and if $\left(\omega_{i}: i \in \mathbb{N}\right)$ is a sequence in $\mathrm{L}_{\mathrm{k}}^{\mathrm{p}} \not \not_{0},\left(\Psi_{i}: i \in \mathbb{N}\right)$ is a sequence in $\mathrm{L}_{\mathrm{k}+1}^{\mathrm{p}} \zeta_{0}$, and if the sequences $\left(\omega_{i}\right)$ and ($\left.\omega_{i} \cdot \Psi_{i}\right)$ converge in $L_{k}^{p} A_{o}$ to ω and $\bar{\omega}$ respectively, then the sequence (Ψ_{i}) converges to Ψ, for some $\Psi \in L_{k+1}^{\mathrm{p}} \xi_{0}$, and $\omega . \Psi=\bar{\omega}$,
(ii) $c^{k+1} \mathcal{F}_{0}$ acts smoothly and freely on $c^{k} \mathcal{A}_{0}$ on the right, $c^{k} \mathcal{A}_{0} / c^{k+1} \xi_{0}$ is Hausdorff and if $\left(\omega_{i}: i \in \mathbb{N}\right)$ is a sequence in $c^{k} \not_{0},\left(\mathbb{X}_{i}: i \in \mathbb{N}\right)$ is a sequence in $c^{k+1} \xi_{0}$
and if the sequences $\left(\omega_{i}\right)$ and ($\left.\omega_{i} \cdot \Psi_{i}\right)$ converge in $c^{k} \mathcal{A}_{0}$ to ω and $\bar{\omega}$ respectively, then the sequence $\left(\Psi_{i}\right)$ converges to Ψ, for some $\Psi \in c^{k+1} \varphi_{0}$, and $\omega . \Psi=\bar{\omega}$, (iii) $c^{k+1, \alpha} \mathscr{y}_{0}$ acts smoothly and freety on $c^{k, \infty} \propto_{0}$ on the right, $c^{k, \alpha} A_{0} / c^{k+1, \alpha} \varphi_{0}$ is Hausdorff, and if $\left(\omega_{i}: i \in \mathbb{N}\right)$ is a sequence in $c^{k, \alpha_{A}} A_{0},\left(\Psi_{i}: i \in \mathbb{N}\right)$ is a sequence in $c^{k+1, \alpha} \xi_{0}$ and if the sequences $\left(\omega_{i}\right)$ and ($\omega_{i} \cdot \Psi_{i}$) converge in $c^{k, \alpha} A_{0}$ to ω and $\bar{\omega}$ respectively, then the sequence $\left(\Psi_{i}\right)$ converges to Ψ for some $\Psi \in C^{k+1, \alpha} \mathcal{g}_{0}$, and $\omega \cdot \Psi=\bar{\omega}$. proof
The action of $\mathrm{L}_{\mathrm{k}+1}^{\mathrm{p}} \mathcal{G}_{0}$ on $\mathrm{L}_{\mathrm{k}}^{\mathrm{p}} A_{0}$ is well-defined and smooth by corollary II.3.3, it is free by the definition of $L_{k}^{p} \phi_{0}$. Suppose that $\left(\omega_{i}\right)$ and $\left(\omega_{i} \cdot \Psi_{i}\right)$ converged in $L_{k}^{p} \phi_{0}$ to ω and $\bar{\omega}$ but $\left(\Psi_{i}\right)$ did not converge to the unique $\Psi \in L_{k+1}^{p} \zeta_{0}$ with the proserty that $\omega . \Psi=\bar{\omega}$ (such a Ψ exists by corollary•3.3). Then there would exist a neighbourhood N of Ψ in $L_{k+1}^{p} \xi_{0}$ and a subsequence of $\left(\Psi_{i}: j \in \mathbb{N}\right)$ with the property that $\Psi_{i} \notin N$. But then by corollary $\mathbf{3 . 3}$, some subsequence of this subsequence converges to some $\Psi_{o} \in L_{k+1}^{p} \mathcal{G}_{0}$ and $\boldsymbol{\omega} \cdot \Psi_{0}=\bar{\omega}$, which would imply that $\Psi_{0}=\Psi$. But this is a contradiction. Thus if $\left(\omega_{i}\right)$ and ($\left.\omega_{i} \cdot \Psi_{i}\right)$ converge, then so does $\left(\Psi_{i}\right)$. It follows immediately that $L_{k}^{p} \mathcal{A}_{0} / L_{k+1}^{p} \mathcal{G}_{0}$ is Hausdorff. This proves (i). The proofs of (ii) and (iii) are similar.

Choose $m \in M$ and let $L_{k+1}^{p} \mathcal{g}^{m}, c^{k+1} \mathcal{g}^{m}$ and $c^{k+1, \alpha} \mathcal{g}^{m}$ denote the subgroups of $L_{k+1}^{p} \mathcal{G}, c^{k+1} \mathcal{Y}$ and $c^{k+1, \alpha} \mathcal{G}$ consisting of those principal bundle automorphisms of $\pi: P \rightarrow M$ which restrict to the identity automorphism on the fibre of $\pi: P \longrightarrow M$ over m.

Theorem 4.6

iet $\pi: \bar{P} \rightarrow$ me a smooth principal bundle over a compact smooth manifold with compact structural group. Let k be a non-negative integer, let $p \in I \overline{1}, \infty)$ satisfy $p(k+1)>\operatorname{dim} M$ and let $\alpha \in(0,1)$. Let $m \in M$ and $\operatorname{let} L_{k}^{p} A, C^{k} A, c^{k, \alpha} A, L_{k+1}^{p} \mathcal{g}^{m}, c^{k+1} \mathcal{g}^{m}$ and $c^{k+1, \alpha} \ell^{m}$ be derined as above. Then
(i) $\quad \mathrm{L}_{\mathrm{k}+1}^{\mathrm{p}} \oint^{\mathrm{m}}$ acts smoothly and freely on $\mathrm{L}_{\mathrm{k}}^{\mathrm{p}} A$ on the right, $L_{k}^{p} \notin / L_{k+1}^{p} G^{m}$ is Hausdorff, and if $\left(\omega_{i}: i \in \mathbb{N}\right)$ is a sequence in $L_{k}^{p} \notin\left(\Psi_{i}:\right.$ i $\left.\in \mathbb{N}\right)$ is a sequence in $L_{k+1}^{p} \zeta^{m}$ and if the sequences $\left(\omega_{i}\right)$ and ($\omega_{i} \cdot \Psi_{i}$) converge in $L_{k}^{p} \&$ to ω and $\bar{\omega}$ respectively, then the sequence $\left(\Psi_{i}\right)$ converges to the unique $\Psi \in L_{k+1}^{p} \mathcal{G}^{m}$ such that $\omega . \Psi=\bar{\omega}$,
(ii) $c^{k+1} \varrho^{m}$ acts smoothly and freely on $c^{k} \notin$ on the right, $C^{k} \mathcal{A} / c^{k+1} \mathcal{E}^{m}$ is Hausdorff and if $\left(\omega_{i}:\right.$ i $\left.\in \mathbb{N}\right)$ is a sequence in $C^{k} \notin,\left(\Psi_{i}: i \in \mathbb{N}\right)$ is a sequence in $c^{k+1} \mathcal{L}^{m}$ and if the sequences $\left(\omega_{i}\right)$ and $\left(\omega_{i} \cdot \Psi_{i}\right)$ converge in $c^{k} \&$ to ω and \bar{w} respectively, then the sequence $\left(\Psi_{i}\right)$ converges to the unique $\Psi \in C^{1 k+1} \xi^{m}$ such that $\omega . \Psi=\bar{\omega}$,
(iii) $c^{k+1, \alpha} \oint^{m}$ acts smoothly and frecly on $c^{k, \alpha} \notin$ on the right $c^{k, \alpha} A / C^{k+1, \alpha} \mathcal{G}^{m}$ is Hausdorff, and if $\left(\omega_{i}: i \in \mathbb{N}\right)$ is a sequence in $c^{k, \alpha},\left(\boldsymbol{I}_{i}: i \in \mathbb{N}\right)$ is a sequence in $c^{k+1, \alpha} \mathcal{g}^{m}$ and if the sequences in $\left(\omega_{i}\right)$ and $\left(\omega_{i} \cdot \Psi_{i}\right)$ converge in $c^{k, \alpha} A$ to ω and $\bar{\omega}$ respectively, then the sequence $\left(\Psi_{i}\right)$ converges to the unique $\Psi \in c^{k+1, \alpha} \mathcal{y}^{m}$ such that $\omega \cdot \Psi=\bar{\omega}$. Proof
$L_{k+1}^{p} \varrho^{m}, c^{k+1} \xi^{m}$ and $c^{k+1, \alpha} \varrho^{m}$ act freely on the appropriate spaces of connections, by lemma 3.1. The convergence of the sequences $\left(\Psi_{i}\right)$ of principal bundle automorphisms follows immediately from theorem 3.2.
\square

In this section, we shall study some properties of the covariant differential $d^{\boldsymbol{\omega}}$ mapping sections of a vector bundle $E \rightarrow M$ to sections of $E \otimes T * M \rightarrow M$, where ω is a smooth connection on a principal bundle $\pi: P \rightarrow M$ to which $E \rightarrow M$ is associated. We shall prove a priori inequalities for the map d^{ω} and deduce that $d^{\omega} \operatorname{maps} L_{k+1}^{p}(E), C^{k+1}(E)$ and $C^{k+1}, \boldsymbol{\alpha}(E)$ onto closed subspaces of $L P_{k}(E \otimes T * M), C^{k}(E \otimes T * M)$ and $C^{k, \alpha}(E \otimes T * M)$ respectively, where $\mathrm{p}(\mathrm{k}+1)>\operatorname{dim} \mathrm{M}$.

We have seen that the group $\mathrm{L}_{\mathrm{k}+1}^{\mathrm{p}} \oint$ of $\mathrm{L}_{\mathrm{k}+1}^{\mathrm{p}}$ principal bundle automorphisms acts smoothly on the space $L_{k}^{p} A$ of L_{k}^{p} connections on
$T: P \rightarrow M$ whenever $p(k+1)>\operatorname{dim} M$. The Lie algebra of
 map from $L_{k+1}^{p} G$ to $L_{k}^{p} A$ sending Ψ to $\Psi * \omega$ is smooth and its derivative at the identity may be identified with the map from ${ }_{\mathrm{L}+1}^{\mathrm{p}}(g \mathrm{p})$ to $\mathrm{L}_{\mathrm{k}}^{\mathrm{p}}(\exists \mathrm{p} \otimes \mathrm{T} * \mathrm{M})$ sending $\xi \in \mathrm{L}_{\mathrm{k}+1}^{\mathrm{p}}(\boldsymbol{\nabla})$ to $\mathrm{d}^{\boldsymbol{\omega}} \xi$ (see proposition V.7.1(vii)). Similar considerations apply to the actions of $c^{k+1} \mathcal{g}$ on $c^{k} A$ and of $c^{k+1, \alpha} \mathscr{g}$ on $c^{k}, \alpha A$. The theorems proved in this section will thus be applicable to the study of these actions.

Let $\omega_{0}: T P \rightarrow ⿹$ be a smooth Ehresmann connection on a smooth principal bundle $\pi: P \rightarrow M$ over a compact smooth manifold M. Then for all vector bundles $\mathrm{E} \rightarrow \mathrm{M}$ associated to $\pi: \mathrm{P} \rightarrow \mathrm{M}$, for all differentiable sections ξ of $E \rightarrow M$ and for all connections ω on $\pi: P \rightarrow M$

$$
d^{\omega} \xi=d^{\omega_{0}} \xi+\tau \wedge \xi
$$

where $\tau=\omega-\omega_{0}$. The map

$$
d^{\omega_{0}}: L_{L_{+1}}^{p}(E) \rightarrow L_{L_{k}}^{p}(E \infty T * M)
$$

is a continuous linear map. Also if $p(k+1)>\operatorname{dim} M$ and $k>0$
there exists $q \in \sqrt{1}, \infty)$ such that

$$
\frac{1}{q} \geqslant \frac{1}{p}-\frac{1}{\operatorname{dim} M}
$$

and $\mathrm{qk}>\mathrm{dim} \mathrm{M}$. Then there is a continuous Sobolev embedding

$$
L_{k+1}^{p}(E) \hookrightarrow L_{k}^{q}(E)
$$

and a continuous bilinear map

$$
L_{k}^{p}(g p \otimes T * M) \times L_{k}^{q}(E) \rightarrow L_{k}^{p}(E \otimes T * M)
$$

sending (τ, ξ) to $\tau \wedge\}$, where $\nabla_{p}=\mathrm{P}_{\mathrm{ad}} \boldsymbol{A} \boldsymbol{J}$. Hence the map

$$
\mathrm{d}^{\boldsymbol{\omega}}: \mathrm{L}_{\mathrm{k}+1}^{\mathrm{p}}(\mathrm{E}) \rightarrow \mathrm{L}_{\mathrm{k}}^{\mathrm{p}}(\mathrm{E} \otimes \mathrm{~T} * \mathrm{M})
$$

is a continuous whenever $p(k+1)>\operatorname{dim} M$ and $k=0$. The continuity of this map when $p>\operatorname{dim} M$ and $k=0$ is proved similarly, as is the continuity of the maps

$$
\begin{aligned}
& d \omega: c^{k+1}(E) \rightarrow c^{k}(E \otimes T * M) \\
& d \omega: c^{k+1, \alpha}(E) \rightarrow c^{k, \alpha}(E \otimes T * M) .
\end{aligned}
$$

Theorem 5.1

Let $\pi: P \rightarrow M$ be a smooth principal bundle over a compact smooth manifold M with compact structural group G whose Lie algebra is $B \cdot$ Let $E \rightarrow M$ be a vector bundle associated to $\pi: P \rightarrow M$.

Let $\omega: T P \rightarrow g$ be an Ehresmann connection on $T: P \rightarrow M$ and let $\xi: M \rightarrow E$ be a continuous section of $E \rightarrow M$ which is differentiable almost everywhere. Let k be a nonnegative integer, let $p \in[1, \infty)$ satisfy $p(k+1)>\operatorname{dim} M$ and $\operatorname{let} \alpha \in(0,1)$. Then (i) if $\omega \in L_{k}^{p} A$ and if $d^{\omega} \xi \in L_{k}^{p}\left(E \otimes T^{p} * M\right)$, then $\xi \in L_{k+1}^{p}(E)$ and there exists a constant $K_{\omega}>0$, independent of ξ, such that

$$
\|\xi\|_{L_{k+1}^{p}} \leqslant K_{\omega}\left(\left\|d^{\omega} \xi\right\|_{L_{k}^{p}}+\|\xi\|_{C^{\circ}}\right),
$$

(ii) If $\omega \in C^{k} A$ and if $d^{\omega} \xi \in C^{k}(E \otimes T * M)$, then $\xi \in C^{k+1}(E)$ and there exists a constant $\mathrm{K}_{\boldsymbol{\omega}}>0$ independent of ξ, such that
$\|\xi\|_{C^{k+1}} \leq k_{\omega}\left(\left\|d^{\omega} \xi\right\|_{c^{k}}+\|\xi\|_{C^{0}}\right)$,
(iii) if $\omega \in C^{k, \alpha} A$ and if $d^{\omega} \xi \in C^{k, \alpha}(E \otimes T * M)$ then $\xi \in C^{k+1, \alpha}(E)$ and there exists a constant $\mathrm{K}_{\boldsymbol{\omega}}>0$, independent of ξ, such that

$$
\|\xi\|_{c^{k+1, \alpha}} \leqslant k_{\omega}\left(\left\|d^{w} \xi\right\|_{c^{k}, \alpha}+\|\xi\|_{c^{0}}\right)
$$

Proof
Let $\omega_{0}: T P \rightarrow g$ be a smooth connection and let
Then

$$
d^{\omega_{0}} \xi=d^{\omega} \xi-\tau \wedge \xi
$$

There are continuous bilinear maps

$$
\begin{aligned}
& L_{k}^{p}\left(g p \otimes T^{*} * M\right) \times L_{k}^{q}(E) \rightarrow L_{L_{k}}^{p}(E \otimes T * M) \\
& \mathrm{L}_{\mathrm{k}}^{\mathrm{p}}(\forall \mathrm{P} \otimes \mathrm{~T} * \mathrm{M}) \times \mathrm{C}^{\mathrm{K}}(\mathrm{E}) \rightarrow \mathrm{L}_{\mathrm{h}}^{\mathrm{P}}(\mathrm{E} \otimes \mathrm{~T} * \mathrm{M}) \\
& c^{k}\left(日_{P} \otimes T * M\right) \times c^{k}(E) \rightarrow C^{k}(E \otimes T * M) \\
& c^{k, \boldsymbol{\infty}}(g \mathrm{P} \otimes \mathrm{~T} * \mathrm{M}) \times \mathrm{c}^{\mathrm{k}, \boldsymbol{\alpha}}(\mathrm{E}) \rightarrow \mathrm{C}^{\mathrm{k}, \boldsymbol{\alpha}}(\mathrm{E} \boldsymbol{\otimes} \boldsymbol{T} * \mathrm{M})
\end{aligned}
$$

where $\mathrm{qk}>\operatorname{dim} \mathrm{M}$, by corollary II.2.7. Thus if $\mathrm{qk}>\operatorname{dim} \mathrm{M}$, if

$$
\xi \in L_{k}^{q}(E) \text {, if } \omega \in L_{k}^{p} A \text { and if } d^{\omega} \xi \in L_{k}^{p}(E \otimes T * M) \text {, then }
$$

$d^{\omega_{0}} \xi \in L_{k}^{P}(E \otimes T * M)$, and hence $\xi \in L_{k+1}^{P}(E)$. Furthermore there exist $\mathrm{K}_{1}>0$ and $\mathrm{K}_{2}>0$ such that
$\|\xi\|_{L_{K+1}^{p}} \leqslant K_{1}\left(\left\|d^{\omega_{0}} \xi\right\|_{L_{K}^{p}}+\|\xi\|_{L_{K}^{q}}\right)$

$$
\leqslant K_{1}\left(\left\|d^{\omega} \xi\right\|_{L_{k}^{p}}+K_{2}\left\|\omega-\omega_{0}\right\|_{L_{k}^{q}}+\|\xi\|_{L_{k}^{q}}\right)
$$

Hence there exists a constant K_{3}, depending on ω but independent of ξ, such that

$$
\|\xi\|_{L_{k+1}^{p}} \leqslant K_{3}\left(\left\|d^{\omega} \xi\right\|_{L_{k}^{p}}+\|\xi\|_{L_{k}^{q}}\right) .
$$

Similarly, if $\xi \in C^{k}(E)$, if $\omega \in L_{k}^{p} A$ and if $d^{\omega} \xi \in L_{k}^{p}(E \otimes T * M)$, then $\xi \in 1_{k+1}^{p}(E)$ and

$$
\|\xi\|_{L_{K+1}^{p}} \leqslant K_{3}\left(\left\|d^{\omega} \xi\right\|_{L_{K}^{p}}+\|\xi\|_{c^{k}}\right)
$$

for some constant K_{3} depending on ω but independent of ξ; if $\xi \in C^{k}(E)$ if $\omega \in C^{k} \notin$ and if $d^{\omega} \xi \in C^{k}(E \otimes T * M)$, then $\xi \in C^{k+1}(E)$ and

$$
\|\xi\|_{c^{k+1}} \leqslant K_{3}\left(\left\|d^{\omega} \xi\right\|_{c^{k}}+\|\xi\|_{c^{k}}\right)
$$

for some constant K_{3}; if $\xi \in C^{k, \alpha}(E)$, if $\omega \in C^{k, \alpha} A$ and if $d^{\omega} \xi \in C^{k, \alpha}(E \otimes T * M)$, then $\xi \in C^{k+1}, \alpha(E)$ and

$$
\|\xi\|_{C^{k+1, \alpha}} \leqslant K_{3}\left(\left\|\alpha^{\omega} \xi\right\|_{C^{k, \alpha}}+\|\xi\|_{C^{k, \alpha}}\right)
$$

for some constant K_{3}. It follows that (i) and (ii) are satisfied when $k=0$. To prove (iii) when $k=0$, we observe that $p \in C^{1}(E)$ and a fortiori $\xi \in C^{0, \alpha}(E)$. It then follows that $\xi \in C^{1, \alpha}(E)$ and the required inequality is satisfied, proving (iii) when $k=0$. (ii) and (iii) for $k>0$ follow from the case $k=0$ by induction on k, using the a prior estimates derived above.

We now proceed to prove (i) by induction on k. If $p(k+1)>\operatorname{dim} M$ and $k>0$ then there exists $q \in I \overline{1}, \infty$) satisfying

$$
\frac{1}{q} \geqslant \frac{1}{p}-\frac{1}{\operatorname{dim} M}
$$

and $q k>\operatorname{dim} M$. If $\omega \in L_{k}^{p} A$ and $d^{\omega} \xi \in{ }_{L}^{p}(E \otimes T * M)$, then $\omega \in{ }_{\mathrm{L}}^{\mathrm{k}-1} \mathrm{q}$ and $\mathrm{d}^{\omega} \xi \in \mathrm{L}_{\mathrm{k}-1}^{\mathrm{q}}(\mathrm{E} \otimes \mathrm{T} * \mathrm{M})$, and furthermore there exists $K_{4}>0$ such that

$$
\left\|d^{\omega} \xi\right\|_{L_{K-1}^{q}} \leqslant K_{4}\left\|d^{\omega} \xi\right\|_{L_{k}^{p}}
$$

By the induction hypothesis, $\xi \in L_{k}^{q}(E)$ and there exists $K_{5}>0$, depending on ω but independent of ξ, such that

$$
\|\xi\|_{L_{k}^{q}} \leqslant K_{5}\left(\left\|d^{\omega} \xi\right\|_{L_{k-1}^{q}}+\|\xi\|_{C^{0}}\right)
$$

Hence $\xi \in \mathrm{L}_{\mathrm{k}+1}^{\mathrm{p}}(\mathrm{E})$ and
$\|\xi\|_{L_{K+1}^{p}} \leqslant K_{3}\left(\left\|d^{\omega} \xi\right\|_{L_{K}^{p}}+\|\xi\|_{L_{K}^{q}}\right)$

$$
\leqslant\left(K_{3}+K_{3} K_{4} K_{5}\right)\left\|d^{\omega} \xi\right\|_{L}^{P}+K_{3} K_{5}\|\xi\|_{C^{0}}
$$

as required.

Combining this theorem with lemma 3.4 we obtain the following analogue of theorem 3.2 .

Theorem 5.2

Let $\Pi: P \rightarrow M$ be a smooth principal bundle over a compact smooth manifold M with compact structural group. Let $E \rightarrow M$ be a smooth vector bundle associated to $\Pi: p \rightarrow M$.

Let $\omega: T P \rightarrow \square$ be an Ehresmann connection on $\pi: P \rightarrow M$ and let $\quad \xi: M \rightarrow E$ be a section of $E \rightarrow M$. Let $m \in M$. Let k be a non-negative integer, let $p \in[1, \infty)$ satisfy $p(k+1)>\operatorname{dim} M$ and let $\alpha \in(0,1)$. Then
(i) if $\omega \in \mathrm{L}_{\mathrm{k}}^{\mathrm{p}} \boldsymbol{A}$ and $\xi \in \mathrm{L}_{\mathrm{k}+1}^{\mathrm{p}}(\mathrm{E})$ then there exists a constant $\mathrm{K} \omega>0$, independent of $\boldsymbol{\xi}$, such that
$\|\xi\|_{L_{K+1}^{p}} \leqslant K_{\omega}\left(\left\|\alpha^{\omega} \xi\right\|_{L_{K}^{p}}+\|\left.\xi(m)\right|_{m}\right)$,
(ii) if $\omega \in C^{k} \notin$ and $\xi \in C^{k+1}$ (E) then there exists a constant $k_{\omega}>0$ independent of ξ, such that
$\|\xi\|_{c^{k+1}} \leqslant K_{\omega}\left(\left\|d^{\omega} \xi\right\|_{C^{k}}+|\xi(m)|_{m}\right)$,
(iii) if $\omega \in C^{k, \alpha} A$ and $\xi \in C^{k+1, \alpha}$ (E) then there exists a
constant $\mathrm{K}_{\boldsymbol{\omega}}>0$ independent of $\boldsymbol{\xi}$, such that

$$
\|\xi\|_{c^{k+1, \alpha}} \leqslant K_{\omega}\left(\left\|d^{\omega} \xi\right\|_{c^{k, \alpha}}+|\xi(m)|_{m}\right) .
$$

Proof

$$
\begin{aligned}
& \text { Since } p(d ; 1)>\operatorname{dim} M \text {, there exists } q>\operatorname{dim} M \text { satisfying } \\
& \frac{1}{q} \geqslant \frac{1}{p}-\frac{k}{\operatorname{dim} M}
\end{aligned}
$$

By the Sobolev embedding theorem, there exists $\mathrm{K}_{1}>0$, independent of ξ and ω, such that

$$
\left\|d^{\omega} \xi\right\|_{L^{q}} \leqslant K_{1}\left\|d^{\omega} \xi\right\|_{L_{k}^{p}} .
$$

By theorem 5.1 and lemma 3.4 there exist constants K_{2} and K_{3}, independent of ξ, such that

$$
\begin{aligned}
& \|\xi\|_{L_{K+1}^{p}} \leqslant K_{2}\left(\left\|d^{\omega} \xi\right\|_{L_{k}^{p}}+\|\xi\|_{C^{0}}\right), \\
& \|\xi\|_{C^{\circ}} \leqslant K_{3}\left(\left\|d^{\omega} \xi\right\|_{L^{q}}+|\xi(m)|_{m}\right) .
\end{aligned}
$$

Combining these inequalities, we see that

$$
\|\xi\|_{L_{K+1}^{p}} \leqslant\left(K_{1}+K_{1} K_{2} K_{3}\right)\left\|d^{\omega} \xi\right\|_{L_{K}^{P}}+K_{2} K_{3}|\xi(m)|_{m}
$$

thus proving (i). The proofs of (ii) and (iii) are similar.
\square

Corollary 5.3

Let $\pi^{\prime}: ~ P \rightarrow M$ be a smooth principal bundle over a compact smooth manifold M with compact structural group. Let $E \rightarrow M$ be a vector bundle associated to $\pi: P \rightarrow M$. Let $\omega: T P \rightarrow \boldsymbol{b}$ be an Ehresmann connection on $\pi: P \rightarrow M$.

Let k be a non-negative integer, let $p \in I, \infty)$ satisfy $p(k+1)>\operatorname{dim} m$ and let $\alpha \in(0,1)$. Then
(i) if $\omega \in \mathbb{L}_{k}^{P} A$ then the continuous linear map
$d^{\omega}: L_{k+1}^{\mathrm{p}}(E) \rightarrow L_{\mathrm{L}}^{\mathrm{p}}(E \boldsymbol{\otimes} \mathrm{~T} * \mathrm{M})$ has finite dimensional kernel and maps $L_{k+1}^{p}(E)$ onto a closed subspace of $L_{k}^{p}(E \otimes T * M)$,
(ii) if $\omega \in C^{k} \mathcal{A}$, then the continuous linear map $d^{\omega}: C^{k+1}(E) \rightarrow C^{k}(E \otimes T * M)$
has finite dimensional kernel and maps $C^{k+1}(E)$ onto a closed subspace of $C^{k}(E \boldsymbol{T} \boldsymbol{T} M)$,
(iii) if $\omega \in C^{k, \alpha} A$, then the continuous linear map
$d^{\omega}: C^{k+1, \alpha}(E) \rightarrow c^{k, \alpha}(E \boldsymbol{\otimes} T * M)$
has finite dimensional kernel and maps $C^{k+1, \alpha}(E)$ onto a closed subspace of $C^{k, \propto}(E \otimes T * M)$.

Proof
Let $m \in M$ and let X be the subspace of $L_{k+1}^{p}(E)$ consisting of all $\zeta \in L_{k+1}^{p}(E)$ satisfying the condition $\xi(m)=0 . \quad X$ has finite codimension in $L_{k+1}^{P}(E)$, thus it suffices to show that d^{ω} (X) is a closed subspace of $L_{k}^{p}(E \otimes T * M)$ and that $d^{\omega} \mid X$ is a monomorphism. X is a Banach space, hence in order to show that $d^{\omega}(X)$ is closed it is sufficient to show that the map

$$
\mathrm{d}^{\omega} \mid \mathrm{x}: \mathrm{x} \rightarrow \mathrm{~d}^{\omega}(\mathrm{x})
$$

is an isomorphism of normed vector spaces. Thus it is sufficient to verify that

$$
\left(\mathrm{d}^{\omega} \mid \mathrm{X}\right)^{-1}: \mathrm{d}^{\omega}(\mathrm{X}) \rightarrow \mathrm{X}
$$

is bounded. But by the previous theorem

$$
\|\xi\|_{L_{k+1}^{p}} \leqslant K \omega\left\|d^{\omega} \xi\right\|_{L_{k}^{p}},
$$

for all $\xi \in X($ since $\xi(m)=0)$. Thus $\left(d^{\omega} / X\right)^{-1}$ is bounded, and hence $d^{\omega}(X)$ is closed. Thus $d{ }^{\omega}\left(L_{L_{+1}}^{p}(E)\right.$) is closed in $L_{k}^{p}\left(E \otimes T^{\omega} \% M\right)$. This proves (i). The proofs of (ii) and (iii) are similar.
\square

References for Chapter VI

Palais, R.S., Foundations of global non-linear analysis,
Benjamin, New York, 1968.
Uhlenbeck, K.k., "Connections with L^{P} bounds on curvature", Comm. Math. Phys., 83 (1982), pp.31-42.

Chapter VII

A GENERALIZATION OF HODGE THEORY

§1. Introduction
Given a smooth vector bundle over a compact Riemannian manifold and given a connection on this bundle we obtain results for the covariant Hodge-de Ream Laplacian, acting on differential forms with values in the given vector bundle. These results generalize the results obtained by Hodge in his theory of harmonic differential forms on a compact Riemannian manifold.

We first outline the main results of Hodge theory. Let M be a compact Riemannian manifold of dimension n and let d and δ be the exterior derivative and codifferential respectively, acting on differential forms on M. The Hodge-de Ram Laplacian Δ is defined by

$$
\Delta=\delta d+d \delta .
$$

The vector bundle $\bigwedge^{j_{T * M}} \rightarrow M$ has a natural inner product structure

$$
\langle.,\rangle \quad: \wedge^{j_{T} * M} \otimes \wedge^{j_{T} * M} \rightarrow \mathbb{R}
$$

determined by the Riemannian metric on M, for all integers j satisfying $0 \leqslant j \leqslant n$. Then Δ is a self-adjoint elliptic differenrial operator of order 2. Define an inner product (. , .) on $L^{2}\left(\wedge^{j} T * M\right)$ by

$$
(\eta, \xi)=\int_{M}\langle\eta, \xi\rangle \mathrm{d}(\mathrm{vol})
$$

for all j-forms η and ξ on M. Then

$$
(\Delta \eta, \xi)=(\eta, \Delta \xi)
$$

Also if η is a j-form and ζ is a $(j+1)$-form, then

$$
(\mathrm{d} \eta, \zeta)=(\eta, \delta \zeta)
$$

Thus

$$
(\Delta \eta, \xi)=(d \eta, d \xi)+(\delta \eta, \delta \xi)
$$

for all j-forms η and ξ on M. Thus if $\eta \in L_{2}^{2}\left(\Lambda^{\left.j_{T} * M\right)}\right.$ then $\Delta \eta=0$ if and only if $\mathrm{d} \eta=0$ and $\delta \eta=0$.

The Laplacian defines Fredholm operators

$$
\Delta: L_{k+2}^{2}\left(\Lambda^{j_{T} * M}\right) \rightarrow L_{k}^{2}\left(\Lambda^{j_{T} * M}\right)
$$

of index zero, and if $u \in L^{2}-\infty\left(\Lambda^{j} T * M\right)$ is a current with the property that $\triangle u \in L_{k}^{2}\left(\wedge^{j * M}\right)$ for some $k \in \mathbb{Z}$ then $u \in L_{k+2}^{2}\left(\Lambda^{j}{ }_{T * M}\right)$
 Let $H^{j}(M)$ be the space of harmonic j-forms, defined by

$$
H^{j}(M)=\left\{\eta \in C^{\infty}\left(\Lambda^{j_{T} * M}\right): \Delta \eta=0\right\} .
$$

Using the above results, one may show that

$$
\begin{aligned}
& L^{2}\left(\Lambda^{j_{T * M}}\right)=H^{j}(M) \oplus \Delta\left(L_{k+2}^{2}\left(\Lambda^{\left.j_{T * M}\right)}\right)\right. \\
& \left(L_{k+2}^{2}\left(\Lambda^{j_{T * M}}\right)\right)=d\left(L_{k+1}^{2}\left(\Lambda^{j-1} T_{* M}\right)\right)+\delta\left(L_{k+1}^{2}\left(\Lambda^{j+1} T_{T * M}\right)\right)
\end{aligned}
$$

for all $k \in \mathbb{Z}$. We deduce that every smooth j-form η on M is uniquely expressible in the form

$$
\eta=\zeta+\mathrm{d} \alpha+\delta \beta
$$

for some harmonic j-form ζ and for some smooth ($j-1$)-form \propto and $(j+1)$-form β. Let

$$
G: C^{\infty}\left(\Lambda ^ { \mathrm { j } _ { \mathrm { T } * \mathrm { M } }) } \rightarrow \mathrm { c } ^ { \infty } \left(\Lambda^{\left.\mathrm{j}_{\mathrm{T} * \mathrm{M}}\right)}\right.\right.
$$

be the unique linear map with the properties that $G \eta=0$ if
$\eta \in H^{j}(M)$, and if $\eta \in \Delta\left(C^{\infty}\left(\wedge^{j_{T} * M}\right)\right)$ then $G \eta$ is the unique element of $\Delta\left(C^{\infty}\left(\wedge^{j_{T} * M}\right)\right)$ satisfying $\Delta(G \eta)=\eta \cdot$ Let

$$
\mathrm{H}: \mathrm{C}^{\infty}\left(\wedge^{\left.\mathrm{j}_{\mathrm{T} * \mathrm{M}}\right) \rightarrow \mathrm{H}^{\mathrm{j}}(\mathrm{M})}\right.
$$

be the orthogonal projection with kernel $\triangle\left(C^{\infty}\left(\Lambda^{\mathrm{J}^{\mathrm{j}} * \mathrm{M}}\right)\right)$ and image $H^{j}(M)$. Then

$$
\mathrm{I}-\Delta \mathrm{G}=\mathrm{I}-\mathrm{G} \Delta=\mathrm{H}
$$

Using the regularity results described above together with the Banach
isomorphism theorem, it follows easily that G and H extend to bounded linear maps

$$
\begin{aligned}
& \mathrm{G}: \mathrm{L}_{\mathrm{k}}^{2}\left(\Lambda^{\left.\mathrm{j}_{\mathrm{T} * \mathrm{M}}\right) \rightarrow \mathrm{L}_{\mathrm{k}+2}^{2}\left(\Lambda^{\left.\mathrm{j}_{\mathrm{T}} * \mathrm{M}\right)}\right.}\right. \\
& \mathrm{H}: \mathrm{L}_{\mathrm{k}}^{2}\left(\Lambda \mathrm{j}_{\mathrm{T} * \mathrm{M}}\right) \rightarrow \mathrm{H}^{\mathrm{j}}(\mathrm{M})
\end{aligned}
$$

The results of Hodge theory may be extended to differential forms on M with values in some smooth vector bundle $E \rightarrow M$ over M. A smooth connection ω on $E \rightarrow M$ and an inner product structure on $E \rightarrow M$ preserved by this connection determine a covariant exterior derivative d^{ω}, a covariant codifferential δ^{ω} and a covariant Hodge-de Rham Laplacian Δ^{ω}, all acting on E-valued differential forms on M. All the results described above have obvious analogues with two exceptions. While it is true that

$$
\left.\begin{array}{rl}
\Delta^{\omega}\left(L_{k+2}^{2}\left(E \otimes \wedge{ }_{T}{ }^{j * M)}\right)=\right. & d^{\omega}\left(L_{k+1}^{2}\left(E \otimes \wedge^{j-1} T^{j * M}\right)\right.
\end{array}\right)
$$

it is in general no longer true that this sum is direct. This is a consequence of the fact that $\left(\mathrm{d}^{\omega}\right)^{2} \neq 0$ in general. Thus though every smooth E-valued j-form η on M is expressible in the form

$$
\eta=\zeta+d^{\omega} \alpha+\partial^{\omega} \beta
$$

for some E-valued j-form ζ satisfying $\Delta^{\omega} \zeta=0$ and for some smooth E-valued $(j-1)$-form α and $(j+1)$-form β, it is no longer true that this decomposition of η is unique.

One may extend these results to Sobolev spaces and H甘lder spaces using the regularity results of chapter III. Let $k \in \mathbb{Z}$ and let
$1<p<\infty \quad$.
Then Δ^{ω} defines a Fredholm operator

$$
\Delta^{\omega}: L_{k+2}^{p}\left(E \otimes \Lambda ^ { i _ { T * M }) } \rightarrow L _ { k } ^ { p } \left(E \otimes \Lambda^{\left.j_{T} * M\right)}\right.\right.
$$

of index zero. Moreover if u is an E-valued current with the property that $\Delta^{\boldsymbol{\omega}} u \in L_{k}^{P}\left(E \otimes \wedge^{j}{ }_{T * M}\right)$ then $u \in L_{k+2}^{P}\left(E \otimes \wedge^{\left.j_{T * M}\right)}\right.$, where $k \in \mathbb{Z}$ and $p \in(1, \infty)$. Similarly if $k \in \mathbb{Z}$ satisfies $k \geqslant 0$ and if $\alpha \in(0,1)$, then Δ^{ω} defines a Fredholm operator

$$
\Delta^{\omega}: C^{k+2, \alpha}\left(E \otimes \wedge^{j_{T * M}}\right) \rightarrow C^{k, \alpha}\left(E \otimes \wedge^{j_{T * M}}\right)
$$

of index zero. Moreover if u is an E-valued current with the property that $\Delta^{\omega} u \in C^{k, \alpha}\left(E \otimes \Lambda^{j, * M}\right)$ then $u \in C^{k+2, \boldsymbol{\alpha}}\left(E \otimes \Lambda^{j} T * M\right)$.

In this chapter we shall relax the condition that \mathcal{U} be smooth. Instead we shall demand that ω be an L_{k}^{p} connection on $E \rightarrow M$ where $k \in \mathbb{Z}$ and $p \in(1, \infty)$ satisfy the condition $p(k+1)>n$, where n is the dimension of M , and where also $\mathrm{p} \geqslant 2$ in the case where $k=0$
(note that this last condition follows immediately from the condition $\mathrm{p}(\mathrm{k}+1)>\mathrm{n}$ when $\mathrm{n} \geqslant 2)$. Let $\mathrm{p}^{\prime} \in(1, \infty)$ be the exponent conjugate to p, defined by the condition that

$$
\frac{1}{\mathrm{p}}+\frac{1}{\mathrm{p}}=1 .
$$

Then we shall show that Δ^{ω} defines Fredholm operators

$$
\Delta^{\omega}: L_{l+1}^{q}\left(E \otimes \wedge^{j_{T} * M}\right) \rightarrow L_{L-1}^{q}\left(E \otimes \wedge^{j_{T} * M}\right)
$$

for all $L \in \mathbb{Z}$ and $q \in(1, \infty)$ satisfying the conditions

$$
\frac{1}{p}-\frac{k}{n} \leqslant \frac{1}{q}-\frac{L}{n} \leqslant \frac{1}{p}+\frac{k}{n}
$$

(theorem 3.4). Moreover if $u \in{ }_{L_{-K+1}}^{p^{\prime}}\left(E \otimes \wedge{ }^{j_{T} * M}\right)$ and $\Delta^{\omega} u \in L_{L-1}^{q}\left(E \otimes \Lambda^{\left.j_{T * M}\right)}\right.$ then $u \in L_{L+1}^{q}\left(E \otimes \Lambda^{\left.j_{T * M}\right)}\right.$ (theorem 3.5). From these results we shall deduce results corresponding to results in the theory of harmonic forms on a Riemannian manifold described above (theorem 4.1). We shall also prove analogous results when ω is a $c^{k, \alpha}$ connection for some integer $k \geqslant 1$ and for some $\alpha \in(0,1)$ (theorem 4.2).

§2. Lemmas concerning Maps between Sobolev Spaces

We study the linear maps between Sobolev spaces of sections of vector bundles $E_{1} \rightarrow M$ and $E_{2} \rightarrow M$ over a compact manifold M induced by a vector bundle morphism $\theta \in \mathrm{L}_{\mathrm{k}}^{\mathrm{P}}\left(\operatorname{Hom}\left(\mathrm{E}_{1}, \mathrm{E}_{2}\right)\right.$), where $\mathrm{k} \geqslant 0$ and $p(k+l)>\operatorname{dim} M$.

Lemma 2.1
Let $\pi_{1}: E_{1} \rightarrow M$ and $\pi_{2}: E_{2} \rightarrow M$ be smooth vector bundles over a compact smooth manifold M of dimension n. Let the nonnegative integer k and the real numbers p and ε satisfy
$1 \leqslant p<\infty$,
$0 \leqslant \varepsilon<\frac{1}{n}$,
$\frac{1}{p}<\frac{\mathrm{k}+1}{\mathrm{n}}-\varepsilon$,
and let $\theta \in \mathbb{L}_{k}^{p}\left(\operatorname{Hom}\left(E_{1}, E_{2}\right)\right)$. Let $L \in \mathbb{Z}$ and $q, r \in(1, \infty)$ satisfy

$$
\frac{1}{r}=\frac{1}{q}+\frac{1}{n}-\varepsilon .
$$

Then θ defines a bounded linear map from $L_{L}^{q}\left(E_{1}\right)$ to $L_{L}^{r}\left(E_{2}\right)$ sending $f \in L_{L}^{q}\left(E_{1}\right)$ to $\theta \cdot f$ provided that
$-k \leqslant l \leqslant k$,
$\frac{1}{r}-\frac{L}{n} \geqslant \frac{1}{p}-\frac{k}{n}$,
$\frac{1}{q}-\frac{l}{n} \leqslant 1-\left(\frac{1}{p}-\frac{k}{n}\right)$.

Proof

First note that

$$
\begin{aligned}
\frac{1}{q} & =\frac{1}{r}-\frac{1}{n}+\varepsilon \\
& <1-\frac{1}{n}+\varepsilon \\
& <1-\left(\frac{1}{p}-\frac{k}{n}\right)
\end{aligned}
$$

and thus the condition

$$
\frac{1}{q}-\frac{l}{n}<1-\left(\frac{1}{p}-\frac{k}{n}\right)
$$

is automatically satisfied when $L \geqslant 0$. Similarly

$$
\begin{aligned}
\frac{1}{r} & >\frac{1}{q}+\frac{1}{p}-\frac{k}{n} \\
& >\frac{1}{p}-\frac{k}{n}
\end{aligned}
$$

and thus the condition

$$
\frac{1}{r}-\frac{l}{n}>\frac{1}{p}-\frac{k}{n}
$$

is automatically satisfied when $L \leqslant 0$. Note that if

$$
\frac{1}{r}-\frac{L}{n}=\frac{1}{p}-\frac{k}{n}
$$

then $L>0$.
First consider the case when $L \geqslant 0$ and

$$
\frac{1}{r}-\frac{l}{n}>\frac{1}{p}-\frac{k}{n} .
$$

Choose $s \in(1, \infty)$ such that

$$
\frac{1}{\mathrm{p}}-\frac{\mathrm{k}-l}{\mathrm{n}}<\frac{1}{\mathrm{~s}}<\frac{l+1}{\mathrm{n}}-\varepsilon
$$

and $s>r$. This is possible since

$$
\begin{aligned}
& \frac{1}{p}-\frac{k-l}{n}<\frac{l+1}{n}-\varepsilon \\
& \frac{l+1}{n}-\varepsilon>0 \\
& \frac{1}{p}-\frac{k-l}{n}<1 \\
& \frac{1}{p}-\frac{k-l}{n}<\frac{1}{r} .
\end{aligned}
$$

Then $\theta \in L_{L}^{S}\left(\operatorname{Hom}\left(E_{1}, E_{2}\right)\right.$) by the Sobolev embedding theorem. Moreover
r $<q, r<s$ and

$$
\frac{1}{q}+\frac{1}{s}-\frac{l}{n}<\left(\frac{1}{r}-\frac{1}{n}+\varepsilon\right)+\left(\frac{L+1}{n}-\varepsilon\right)-\frac{l}{n}<\frac{1}{r}
$$

and thus the evaluation map defines a continuous bilinear map

$$
L_{L}^{q}\left(E_{1}\right) \times L_{L}^{s}\left(\operatorname{Hom}\left(E_{1}, E_{2}\right)\right) \rightarrow L_{L}^{r}\left(E_{2}\right)
$$

by theorem II.2.4, part (i). This proves the theorem when $\mathcal{L} 0$ and

$$
\frac{1}{r}-\frac{L}{n}>\frac{1}{p}-\frac{k}{n} .
$$

Next we prove the theorem when $L>0$ and

$$
\frac{1}{r}-\frac{L}{n}=\frac{1}{p}-\frac{k}{n}
$$

(we have already seen that this equality implies that $L>0$ given that the hypotheses of the lemma are satisfied). Then

$$
\frac{1}{q}-\frac{l}{n}=\frac{1}{p}-\frac{k+1}{n}+\varepsilon<0
$$

and hence $q L>n$. Now $\theta \in L_{L}^{r}\left(\operatorname{Hom}\left(E_{1}, E_{2}\right)\right.$) by the Sobolev embedding theorem, and the evaluation map defines a continuous biliear map

$$
L_{L}^{q}\left(E_{1}\right) \times{ }_{L}^{r}\left(\operatorname{Hom}\left(E_{1}, E_{2}\right)\right) \rightarrow L_{L}^{r}\left(E_{2}\right)
$$

by theorem II.2.4 part (ii). This completes the proof of the lemma when $L \geqslant 0$.

We prove the lemma when $\mathcal{L}<0$ by duality. Let q^{\prime} and r^{\prime} be the exponents conjugate to q and r respectively, defined by

$$
\begin{aligned}
& \frac{1}{q}+\frac{1}{q}=1 \\
& \frac{1}{r}+\frac{1}{r^{\prime}}=1
\end{aligned}
$$

Then

$$
\begin{aligned}
& \frac{1}{q^{\prime}}=\frac{1}{r^{\prime}}+\frac{1}{n}-\varepsilon, \\
& \frac{1}{q^{\prime}}-\frac{(-L)}{n} \geqslant \frac{1}{p}-\frac{k}{n} .
\end{aligned}
$$

Let $\theta^{\prime} \in{\underset{k}{p}}_{P}^{p}\left(\operatorname{Hom}\left(E_{2}^{*}, E_{1}^{*}\right)\right.$) be the section of $\operatorname{Hom}\left(E_{2} *, E_{1} *\right) \rightarrow M$ which is dual to the section θ of $\operatorname{Hom}\left(E_{1}, E_{2}\right) \rightarrow M$ on each fibre of these vector bundles. From what we have already proved we see that θ^{\prime} defines a bounded linear map from $L_{-L}^{r^{\prime}}\left(E_{2} *\right)$ to $L_{-L}^{q^{\prime}}\left(E_{1} *\right)$. The Banach space dual $\theta^{\prime} \%$ of θ^{\prime} thus defines a bounded linear map from $L_{L}^{q}\left(E_{1}\right)$ to $L_{L}^{r}\left(E_{2}\right)$, by duality. But $\theta^{\prime} \%$ and θ coincide on $C^{\infty}\left(E_{1}\right)$. Thus $\theta=\theta^{\prime} \%$ by definition of θ. Thus proves the lemma when $L<0$.

Lemma 2.2
Let $\Pi_{1}: E_{1} \rightarrow M$ and $\pi_{2}: E_{2} \rightarrow M$ be smooth vector bundles over a compact smooth manifold M of dimension n. Let the non-negative integer k and the real numbers p and ε satisfy
$1 \leq p<\infty$
$0 \leqslant \varepsilon<\frac{1}{n}$
$\frac{1}{p}<\frac{k+1}{n}-\varepsilon$
and let $\theta \in L_{k}^{p}\left(\operatorname{Hom}\left(E_{1}, E_{2}\right)\right)$. Let $L \in \mathbb{Z}$ and $q, r \in(1, \infty)$ satisfy

$$
\frac{1}{r}=\frac{1}{q}-\varepsilon
$$

Then θ defines a compact linear map from $L_{L+1}^{q}\left(E_{1}\right)$ to $L_{L}^{r}\left(E_{2}\right)$ sending
$f \in L_{4}^{q}\left(E_{1}\right)$ to $\theta \bullet f$ provided that
$-k-1 \leqslant l \leqslant k$,
$\frac{1}{\mathrm{r}}-\frac{\mathrm{L}}{\mathrm{n}} \geqslant \frac{1}{\mathrm{p}}-\frac{\mathrm{k}}{\mathrm{n}}$
$\frac{1}{q}-\frac{l+1}{n} \leqslant 1-\left(\frac{1}{p}-\frac{k}{n}\right)$.
Proof
First we prove the result when $L \geqslant 0$ and
$\frac{1}{r}-\frac{L}{n}>\frac{1}{p}-\frac{k}{n}$.

As in the proof of the previous lemma we may choose $s \in(1, \infty)$ such that

$$
\frac{1}{p}-\frac{k-L}{n}<\frac{1}{s}<\frac{L+1}{n}-\varepsilon
$$

and $s>r$. Then $\theta \in L_{L}^{S}\left(\operatorname{Hom}\left(E_{1}, E_{2}\right)\right.$) by the Sobolev embedding theorem. Now

$$
\frac{L+1}{n}-\frac{1}{s}-\varepsilon>0
$$

hence

$$
\frac{1}{q}-\frac{1}{n}<\frac{1}{q}+\frac{L}{n}-\frac{1}{s}-\varepsilon .
$$

Also

$$
\begin{aligned}
\frac{1}{q}+\frac{L}{n}-\frac{1}{s}-\varepsilon & =\frac{1}{r}-\frac{1}{s}+\frac{l}{n} \\
& >0
\end{aligned}
$$

since $s>r$ and $L \geqslant 0$. Clearly

$$
\frac{1}{q}-\frac{1}{n}<\frac{1}{r}<1
$$

hence there exists $t \in(i, \infty)$ such that $t>r$ and

$$
\frac{1}{q}-\frac{1}{n}<\frac{1}{t}<\frac{1}{q}+\frac{l}{n}-\frac{1}{s}-\varepsilon .
$$

Since

$$
\frac{1}{t}>\frac{1}{q}-\frac{1}{n}
$$

we have a compact embedding

$$
L_{L+1}^{q}\left(E_{1}\right) \longleftrightarrow L_{L}^{t}\left(E_{1}\right)
$$

by the Rellich-Kondrakov theorem. Also the evaluation map defines a continuous bilinear map

$$
{ }_{L}^{L_{L}}\left(E_{1}\right) \times L_{L}^{s}\left(\operatorname{Hom}\left(E_{1}, E_{2}\right)\right) \rightarrow L_{L}^{r}\left(E_{2}\right)
$$

by theorem II. 2.4 since $\mathrm{s}>\mathrm{r}, \mathrm{t}>\mathrm{r}$ and

$$
\frac{1}{s}+\frac{1}{t}-\frac{l}{n}<\frac{1}{r}
$$

It follows that θ defines a compact linear map from in $L_{+1}^{q}\left(E_{1}\right)$ to $L_{L}^{r}\left(E_{2}\right)$.

Next we prove the theorem when $L=0$ and

$$
\frac{1}{r}-\frac{l}{n}=\frac{1}{p}-\frac{k}{n}
$$

Then $\theta \in L^{r}\left(\operatorname{Hom}\left(E_{1}, E_{2}\right)\right.$) by the Sobolev embedding theorem. Now

$$
\begin{aligned}
\frac{1}{q}-\frac{1}{n} & =\frac{1}{p}-\frac{k+1}{n}+\varepsilon \\
& <0
\end{aligned}
$$

and hence we have a compact embedding

$$
L^{q}\left(E_{1}\right) \hookrightarrow c^{0}\left(E_{1}\right)
$$

by the Rellich-Kondrakov theorem. Also the evaluation map defines a continuous bilinear map

$$
C^{\mathrm{o}}\left(\mathrm{E}_{1}\right) \times \mathrm{L}^{\mathrm{r}}\left(\operatorname{Hom}\left(\mathrm{E}_{1}, \mathrm{E}_{2}\right)\right) \rightarrow \mathrm{L}^{\mathrm{r}}\left(\mathrm{E}_{2}\right)
$$

Thus θ defines a compact linear map from $L_{1}^{q}\left(E_{1}\right)$ to $L^{r}\left(E_{2}\right)$.
Next we prove the theorem when $L>0$ and

$$
\frac{1}{r}-\frac{L}{n}=\frac{1}{p}-\frac{k}{n}
$$

$\theta \in L_{L}^{r}\left(\operatorname{Hom}\left(E_{1}, E_{2}\right)\right)$ by the Sobolev embedding theorem. Now

$$
\begin{aligned}
\frac{1}{q}-\frac{l+1}{n} & =\frac{1}{r}-\frac{l}{n}-\frac{1}{n}+\varepsilon \\
& =\frac{1}{p}-\frac{k+2}{n}+\varepsilon \\
& <0
\end{aligned}
$$

and thus there exists $t \in(1, \infty)$ such that

$$
\frac{1}{q}-\frac{1}{n}<\frac{1}{t}<\frac{l}{n}
$$

and $t>r$. Then we have a compact embedding

$$
{ }_{L}^{\mathrm{q}}{ }_{\mathbf{L}+1}\left(\mathrm{E}_{1}\right) \longleftrightarrow L_{L}^{\mathrm{t}}\left(\mathrm{E}_{1}\right)
$$

by the Rellich-Kondrakov theorem. Also the evaluation map defines a
continuous bilinear map

$$
L_{L}^{t}\left(E_{1}\right) \times L_{L}^{r}\left(\operatorname{Hom}\left(E_{1}, E_{2}\right)\right) \rightarrow L_{L}^{r}\left(E_{2}\right)
$$

by theorem II.2.4, since $t>r$ and $t L>n$. Hence θ defines a compact linear map from $L_{L+1}^{q}\left(E_{1}\right)$ to $L_{L}^{r}\left(E_{2}\right)$. This completes the proof when $\ell \geqslant 0$.

We prove the lemma when $L<0$ by duality. Let q^{\prime} and r^{\prime} be the exponents conjugate to q and r respectively, defined by

$$
\begin{aligned}
& \frac{1}{q}+\frac{1}{q}=1 \\
& \frac{1}{r}+\frac{1}{r},=1
\end{aligned}
$$

Then

$$
\begin{aligned}
& \frac{1}{q},=\frac{1}{r^{2}}-\varepsilon, \\
& \frac{1}{q},+\frac{l+1}{n} \geqslant \frac{1}{p}-\frac{k}{n} .
\end{aligned}
$$

Let $\theta^{\prime} \in L_{k}^{P}\left(\operatorname{Hom}\left(E_{2} *, E_{1} *\right)\right)$ be the section of $\operatorname{Hom}\left(E_{2} *, E_{1} *\right) \rightarrow M$ which As dial to the section θ of $\operatorname{Hom}\left(\mathrm{E}_{1}, \mathrm{E}_{2}\right) \rightarrow$ on each fibre of these vector bundles. $\quad \theta^{\prime}$ defines a compact linear map from $\mathrm{L}_{-L_{L}^{\prime}}\left(E_{2}{ }^{*}\right)$ to $L_{-L-1}^{q^{\prime}}\left(E_{1} *\right)$. Thus θ defines a compact linear map from $L_{L+1}^{q}\left(E_{L}\right)$ to ${ }^{\mathrm{L}}{ }_{\mathrm{l}}^{\mathrm{r}}\left(\mathrm{E}_{2}\right)$, by duality.

Corollary 2.3

Let $\pi_{1}: \mathrm{E}_{1} \rightarrow \mathrm{M}$ and $\Pi_{2}: \mathrm{E}_{2} \rightarrow \mathrm{M}$ be smooth vector bundles over a compact smooth manifold M of dimension n. Let k be a nonnegative integer and 1 et $p \in I T, \infty)$ satisfy $p k>n$. Let $\theta \in L_{k}^{p}\left(\operatorname{Hom}\left(E_{1}, E_{2}\right)\right.$). Then θ defines a compact linear map from $L_{L+1}^{q}\left(E_{1}\right)$ to $L_{L}^{q}\left(E_{2}\right)$ sending $f \in L_{L}^{q}\left(E_{1}\right)$ to $\theta \circ f$ provided that $L \in \mathbb{Z}$ and $q \in(1, \infty)$ satisfy

$$
\frac{1}{p}-\frac{k}{n} \leqslant \frac{1}{q}-\frac{L}{n} \leqslant \frac{1}{p}+\frac{k+1}{n}
$$

where p^{\prime} is the exponent conjugate to p, defined by

$$
\frac{1}{p}+\frac{1}{p}=1
$$

Proof
This follows immediately from the previous theorem on taking $\varepsilon=0$.

In this section we study the covariant exterior derivative, codifferential and Hodge-de Rham Laplacian, with respect to a not necessarily smooth connection, of differential forms with values in some vector bundle.

Let $\tilde{\pi}: E \rightarrow M$ be a smooth vector bundle associated to a smooth principal bundle $\pi: P \rightarrow M$ over a compact Riemannian manifold M with structural group G whose Lie algebra is Δ. Let $\Pi_{\text {ad }}: G p \rightarrow M$ and $\Pi_{A d}: \Delta p \rightarrow M$ be the adjoint bundles, with total spaces $G p=P x_{\text {ad }}^{G}, ~ \exists p=P x_{\text {ad }} G$. Let $\tilde{\pi}: E \rightarrow M$ be given a smooth inner product structure $\langle.,\rangle:. E \otimes \mathbb{E} \rightarrow \mathbb{R}$ which is preserved by every connection on $\tilde{\pi}: E \rightarrow M$ arising from an Ehresmann connection on $\pi: P \rightarrow M$.

Let $\omega_{1}: \mathrm{TP} \rightarrow \boldsymbol{\square}$ and $\omega_{2}: \mathrm{TP} \rightarrow \square$ be Ehresmann connections on $\pi: P \rightarrow M$. We have seen that the covariant exterior derivatives $\mathrm{d}^{\omega_{1}} \eta$ and $\mathrm{d}^{\omega_{\mathbf{2}}} \eta$ and the covariant codifferentials $\delta^{\omega_{1}} \eta$ and
$\delta^{\omega_{2}} \eta$ of an e-valued differential form η on M satisfy

$$
\begin{aligned}
& d^{\omega_{2}} \eta=d^{\omega_{1}} \eta+\tau \wedge \eta \\
& \delta^{\omega_{2}} \eta=\delta^{\omega_{1}} \eta+(-1)^{n(\operatorname{deg} \eta+1)} *(\tau \wedge * \eta)
\end{aligned}
$$

where $\tau: M \rightarrow \bar{P} \otimes T * M$ is the $\square \mathbf{p}$-valued 1 -form on M coresbonding to $\omega_{2}-\omega_{1}$ (see proposition V.7).

Proposition 3.1

Let M be a compact Riemannian manifold of dimension n and let the vector bundle $\widetilde{\pi}: E \rightarrow M$, the principal bundle $\pi: P \rightarrow M$ and the covariant exterior derivative and covariant codifferential of E-valued differential forms with respect to connections on $\pi: P \rightarrow M$ be as above. Let k be a non-negative integer, let $p \in I \overline{1}, \infty$) satisfy $\mathrm{p}(\mathrm{k}+1)>\mathrm{n}$ and $\operatorname{let} \mathrm{L}_{\mathrm{k}}^{\mathrm{p}} \boldsymbol{A}$ be the space of $\mathrm{L}_{\mathrm{k}}^{\mathrm{p}}$ connections on $\pi: \mathrm{P} \rightarrow \mathrm{M}$.

$$
\begin{aligned}
& \text { Let } L \in \mathbb{Z} \text { and } q \in(1, \infty) \text { satisfy the conditions } \\
& -k-1 \leqslant L \leqslant k \\
& \frac{1}{p}-\frac{k}{n} \leqslant \frac{1}{q}-\frac{L}{n} \leqslant \frac{1}{p}+\frac{k+1}{n},
\end{aligned}
$$

where p^{\prime} is the exponent conjugate to p, defined by

$$
\frac{1}{p}+\frac{1}{p},=1 .
$$

Then the covariant exterior derivative d^{ω} and the covariant codifferential δ^{ω} define bounded linear operators

$$
\begin{aligned}
& \delta^{\omega}:{ }_{L+1}^{q}\left(E \otimes \Lambda^{j+1}{ }_{T * M}\right) \rightarrow L_{L}^{q}\left(E \otimes \Lambda_{T * M)}^{j}\right.
\end{aligned}
$$

for all $\omega \in L_{k}^{p} A$. If $\omega_{1}, \omega_{2} \in L_{k}^{p} A$ then the linear operators

$$
\begin{aligned}
& d^{\omega_{2}}-d^{\omega_{1}}: L_{L+1}^{q}\left(E \otimes \wedge^{\left.j_{T * M}\right) \rightarrow L^{q}\left(E \otimes \wedge^{j+l_{T * M}}\right)}\right. \\
& \delta^{\omega_{2}}-\delta^{\omega_{1}}: L_{L+1}^{q}\left(E \otimes \Lambda^{j+1} T * M\right) \rightarrow L^{q}\left(E \otimes \wedge^{j_{T} * M}\right)
\end{aligned}
$$

are compact.

Proof

The second part of the proposition follows from corollary 2.3
and the fact that

$$
\begin{aligned}
& d^{\omega_{2}} \eta-d^{\omega_{1}} \eta=\tau \sim \eta \\
& \delta^{\omega_{2}} \eta-\delta^{\omega_{1}} \eta=(-1)^{n(\operatorname{deg} \eta+1)+1} *(\tau \wedge+\eta)
\end{aligned}
$$

On applying this result when $\omega_{2}=\omega$ and when ω_{1} is a smooth connection we obtain the first part of the proposition.
\square

Let M be a compact Riemannian manifold of dimension n and let
the vector bundle $\pi: E \rightarrow N$, the principal bundle $\pi: P \rightarrow M$ and the covariant exterior derivative and covariant co~differential of E-valued differential forms with respect to connections on $\pi: P \longrightarrow M$ be as above. Let k be a non-negative integer, let $p \in \mathbb{I}, \infty$) satisfy $p(k+1)>n$ and $\operatorname{let} L_{k}^{p} A$ be the space of L_{k}^{p} connections on $\pi: P \rightarrow M . \operatorname{Let} \omega_{1}, \omega_{2} \in L_{k}^{p} A$

Let $\Sigma \in \overline{\bar{O}}, \infty$) satisfy the conditions
$0 \leqslant \varepsilon<\frac{1}{n}$,
$\frac{1}{p}<\frac{k+1}{n}-\varepsilon$
and let Le \mathbb{Z} and $q, r \in(1, \infty)$ satisfy

$$
\begin{aligned}
& \frac{1}{r}=\frac{1}{q}-\varepsilon \\
& -k-1 \leqslant L \leqslant k \\
& \frac{1}{r}-\frac{L}{n} \geqslant \frac{1}{p}-\frac{k}{n}, \\
& \frac{1}{q}-\frac{L}{n} \leqslant \frac{1}{p}+\frac{k+1}{n},
\end{aligned}
$$

where p^{\prime} is the exponent conjugate to p, defined by

$$
\frac{1}{p}+\frac{1}{p}=1
$$

Then $d^{\omega_{2}}-d^{\omega_{1}}$ and $\delta^{\omega_{2}}-\delta^{\omega_{1}}$ define bounded linear operators

$$
\begin{aligned}
& d^{\omega_{2}}-d^{\omega_{1}}: L_{L+1}^{q}\left(E \otimes \Lambda^{j_{T} * M}\right) \rightarrow{ }_{L}^{r}\left(E \otimes \Lambda^{j+1} T * M\right) \\
& \delta^{\omega_{2}}-\delta^{\omega_{1}}: L_{L+1}^{q}\left(E \otimes \Lambda^{j+1} T * M\right) \rightarrow L_{L}^{r}\left(E \otimes \Lambda^{j_{T} * M}\right)
\end{aligned}
$$

Proof
This follows immediately from lemma 2.2.

Lemma 3.3

Let M be a compact Riemanmian manifold of dimension n and let the vector bundle $\widetilde{\pi}: E \rightarrow M$, the principal bundle $\pi: P \rightarrow M$ and the covariant exterior derivative and covariant couifererential of E-valued differential forms with respect to connections on $\pi: P \rightarrow M$ be as above. Let k be a non-negative integer, let $p \in I \bar{l}, \infty$) satisfy $p(k+1)>n$ and let $L_{k}^{p} A$ be the space of L_{k}^{p} connections on $\pi: P \rightarrow M . \quad \operatorname{Let} \omega_{1}, \omega_{2} \in L_{k}^{p} A$.

Let $\varepsilon \in[\overline{0}, \infty)$ satisfy the conditions
$0 \leqslant \varepsilon<\frac{1}{n}$,
$\frac{1}{p}<\frac{k+1}{n}-E$,
and let $l \in \mathbb{Z}$ and $q, r \in(1, \infty)$ satisfy

$$
\begin{aligned}
& \frac{1}{r}=\frac{1}{q}+\frac{1}{n}-\varepsilon, \\
& -k \leqslant L \leqslant k \\
& \frac{1}{r}-\frac{L}{n} \geqslant \frac{1}{p}-\frac{k}{n}, \\
& \frac{1}{q}-\frac{L}{n} \leqslant \frac{1}{p},+\frac{k}{n}
\end{aligned}
$$

where p^{\prime} is the exponent conjugate to p, defined by

$$
\frac{1}{p}+\frac{1}{p^{\prime}}=1 .
$$

Then $d^{\omega_{2}}-d^{\omega_{1}}$ and $\delta^{\omega_{2}}-\delta^{\omega_{1}}$ define bounded linear operators

$$
\begin{aligned}
& d^{\omega_{2}}-d^{\omega_{1}}: L_{L}^{q}\left(E \otimes \Lambda^{j_{T} * M}\right) \rightarrow L_{L}^{r}\left(E \otimes \wedge{ }^{j+1_{T} * M}\right) \\
& \delta^{\omega_{2}}-\delta^{\omega_{1}}: L_{L}^{q}\left(E \otimes \Lambda^{j+1_{T} * M}\right) \rightarrow L_{L}^{r}\left(E \otimes \Lambda j_{T * M}\right)
\end{aligned}
$$

Proof
This follows immediately from lemma 2.1.
\square

We recall that if ω is a connection on $\pi: P \rightarrow M$ thon the covariant Hodge-de Rham Laplacian Δ^{ω} with respect to ω is the clliptic differential operator acting on E-valued differential forms defined by

$$
\Delta^{\omega}=\delta^{\omega} d^{\omega}+d^{\omega} \delta^{\omega} \text {. }
$$

Theorem 3.4

Let M be a compact Riemannian manifold of dimension n and let the vector bundle $\widetilde{\pi}: E \rightarrow M$, the principal bundle $\pi: P \rightarrow M$ and the covariant Hodge-de Rham Laplacian of E-valued differential forms with respect to connections on $\pi: P \rightarrow M$ be as above. Let k be a non-negative integer, let $p \in(1, \infty)$ satisfy $p(k+1)>n$ and in the case when $k=0$ let p also satisfy the condition $p \geqslant 2$. Let $L_{k}^{p} A$ be the space of L_{k}^{p} connections on $\pi: P \rightarrow M$ and let $\omega \in \mathrm{L}_{\mathrm{k}}^{\mathrm{p}} \boldsymbol{A}$.

Let $l \in \mathbb{Z}$ and $q \in(1, \infty)$ satisfy the conditions
$-k \leqslant L \leqslant k$
$\frac{1}{p}-\frac{k}{n} \leqslant \frac{1}{q}-\frac{l}{n} \leqslant \frac{1}{p},+\frac{k}{n}$
where p^{\prime} is the exponent conjugate to p, defined by

$$
\frac{1}{p}+\frac{1}{p},=1
$$

Then the covariant Hodge-de Rham Laplacian defines a Fredholm linear operator

$$
\Delta^{\omega}: L_{L+1}^{q}\left(E \otimes \wedge^{\left.j_{T * M}\right)} \rightarrow L_{L-1}^{q}\left(E \otimes \wedge^{j_{T * M}}\right)\right.
$$

of index 0 .

Proof

First suppose that ω is smooth. Then Δ^{ω} is a self-adjoint elliptic differential operator and defines a Fredholm operator

$$
\Lambda^{\omega}: L_{i+1}^{q}\left(E \otimes \Lambda^{j_{T} * M}\right) \rightarrow 1_{i-1}^{q}\left(E \otimes \Lambda_{T}^{j * M}\right)
$$

of index 0 , using theorem III.5.3. Now consider the case when $\omega \in L_{1}^{p} A$ but ω is not necessarily smooth. The operators

$$
\begin{aligned}
& d^{\omega}: L_{L+1}^{q}\left(E \otimes \wedge^{j_{T} * M}\right) \rightarrow L_{L}^{q}\left(E \otimes \wedge^{j+]_{T} * M}\right) \\
& \delta^{\omega}: L_{L}^{q}\left(E \otimes \wedge^{\left.j+1_{T * M}\right) \rightarrow L_{L-1}^{q}\left(E \otimes \wedge^{j_{T} * M}\right)}\right. \\
& \delta^{\omega}: L_{L+1}^{q}\left(E \otimes \wedge^{j_{T * M}}\right) \rightarrow L_{L}^{q}\left(E \otimes \wedge^{j-1} T_{T} * M\right) \\
& d^{\omega}: L_{L}^{q}\left(E \otimes \wedge^{j-1} T * M\right) \rightarrow L_{L-1}^{q}\left(E \otimes \wedge^{\left.j_{T} * M\right)}\right.
\end{aligned}
$$

are bounded by proposition 3.1, and moreover, in each of these four cases, the operator $d^{\omega}-d^{\omega}$ or $\delta^{\omega}-\delta^{\omega_{0}}$ is compact, where ω_{0} is any smooth conncction. Thus

$$
\Delta^{\omega}: \mathrm{L}_{\mathrm{L}+1}^{\mathrm{q}}\left(\mathrm{E} \otimes \wedge \wedge_{\mathrm{T} * M}^{\mathrm{j}^{*}}\right) \rightarrow \mathrm{L}_{\mathrm{L}-1}^{\mathrm{q}}\left(\mathrm{E} \otimes \wedge^{\left.\mathrm{j}_{\mathrm{T} * \mathrm{M}}\right)}\right.
$$

is bounded, provided that L and q satisfy the hypotheses of the theorem, and also

$$
\Delta^{\omega}-\Delta^{\omega}: L_{L+1}^{\mathrm{L}}\left(\mathrm{E} \otimes \wedge^{\mathrm{j}_{\mathrm{T} * M}}\right) \rightarrow \mathrm{L}_{\mathrm{L}-1}^{\mathrm{q}}\left(\mathrm{E} \otimes \wedge^{\left.\mathrm{j}_{\mathrm{T} * M}\right)}\right.
$$

$$
\text { is compact, using the fact that } \quad \Delta^{\omega}-\Delta^{\omega_{0}}=\left(\delta^{\omega}-\delta^{\omega_{0}}\right) d^{\omega}+\delta^{\omega_{0}}\left(d^{\omega}-d^{\omega_{0}}\right)+\left(d^{\omega}-d^{\omega_{0}}\right) \delta^{\omega}+d^{\omega_{0}}\left(\delta^{\omega}-\delta^{\omega_{0}}\right) .
$$

It follows that Δ^{ω} is Fredholm, being the sum of a Fredholm operator and a compact operator. Nlso
index

$=0$.
\square
Theorem 3.5
Let M be a compact Riemannian manifold of dimension n and let the vector bundle $\widetilde{\pi}: E \rightarrow M$, the principal bundle $T: P \rightarrow M$ and the covariant Hodge-de Rham Laplacian of E-valued differential forms with
respect to connections on $\pi: P \rightarrow M$ be as above. Let k be a nonnegative integer, let $p \in(1, \infty)$ satisfy $p(k+1)>n$ and in the case when $k=0$ let p also satisfy the condition $p \geqslant 2$. Let $L_{k}^{p} A$ be the

Let $L \in \mathbb{Z}$ and $q \in(1, \infty)$ satisfy the conditions
$-k \leq L \leq k$,
$\frac{1}{p}-\frac{k}{n} \leqslant \frac{1}{q}-\frac{L}{n} \leqslant \frac{1}{p}+\frac{k}{n}$,
where p^{\prime} is the exponent conjugate to p, defined by

$$
\frac{1}{p}+\frac{1}{p}=1
$$

If $\eta \in{ }_{-k+1}^{p^{\prime}}\left(E \otimes \wedge j_{T}(E M)\right.$ and $\Delta{ }^{\omega} \eta \in{ }_{L-1}^{q}\left(E \otimes \wedge j_{T} * M\right)$ then $\eta \in L_{L+1}^{q}\left(E \otimes \wedge{ }_{T}^{j^{\prime}}(B)\right.$.

Proof
Let ω be a smooth connection on $\pi: P \rightarrow M$. There exists a
real number ε satisfying the conditions

$$
\begin{aligned}
& 0<\varepsilon<\frac{1}{n} \\
& \frac{1}{\mathrm{p}}<\frac{\mathrm{k}+1}{\mathrm{n}}-\varepsilon
\end{aligned}
$$

First we show that if $m \in \mathbb{Z}$ and $r, s \in(1, \infty)$ satisfy the conditions

$$
\begin{aligned}
& -k \leqslant m \leqslant l \\
& \frac{1}{r}-\varepsilon \leqslant \frac{1}{s} \leqslant \frac{1}{r}, \\
& \frac{1}{q}-\frac{l}{n} \leqslant \frac{1}{S}-\frac{m}{n} \leqslant \frac{1}{r}-\frac{m}{n} \leqslant \frac{1}{p}+\frac{k}{m}
\end{aligned}
$$

and if $\eta \in L_{\mathrm{m}+1}^{\mathrm{r}}\left(\mathrm{E} \otimes \wedge_{\mathrm{T} * \mathrm{M}}^{\mathrm{j}_{\mathrm{T}}}\right.$ then $\eta \in \mathrm{L}_{\mathrm{m}+1}^{\mathrm{S}}\left(\mathrm{E} \otimes \wedge_{\mathrm{T}}^{\mathrm{j}} \boldsymbol{\mathrm { M }} \mathrm{M}\right)$. By proposidion 3.1 and lemma 3.2 it follows that

$$
\Delta^{\omega} \eta-\Delta^{\omega_{0}} \eta \in L_{m-1}^{s}\left(E \otimes \Lambda j_{T * M}\right)
$$

using the fact that
$\Delta^{\omega}-\Delta^{\omega_{0}}=\left(\delta^{\omega}-\delta^{\omega_{0}}\right) d^{\omega}+\delta^{\omega_{0}}\left(d^{\omega}-d^{\omega_{0}}\right)+\left(d^{\omega}-d^{\omega_{0}}\right) \delta^{\omega}+d^{\omega_{0}}\left(\delta^{\omega}-\delta^{\omega_{0}}\right)$
But $\quad \Delta^{\omega} \eta \in \mathrm{L}_{\mathrm{m}-\mathrm{J}}^{\mathrm{S}}\left(\mathbb{E} \otimes \wedge^{\left.j_{\mathrm{T}}^{\mathrm{M}} \mathrm{M}\right)}\right.$ by the sobolev embedding theorem, since

$$
\frac{1}{q}-\frac{l}{n} \leq \frac{1}{s}-\frac{m}{n}
$$

Hence $\quad \Delta^{\omega_{0}} \eta \in L_{m-1}^{\mathrm{S}}\left(\mathrm{E} \otimes \wedge^{\left.j_{\Gamma} \# M\right)}\right.$. But $\Delta^{\omega_{0}}$ is an elliptic differential operator with smooth coefficients, hence $\eta \in \mathrm{L}_{\mathrm{m}+1}^{\mathrm{s}}\left(\mathrm{E} \otimes \Lambda^{\left.\mathrm{j}_{\mathrm{T}} * \mathrm{M}\right)}\right.$ by the elliptic regularity theorem III.5.2.

By iteration it follows that if $\eta \in L_{m+1}^{r}\left(E \otimes \Lambda^{j}{ }_{T} * M\right)$ for some $m \in \mathbb{Z}$ and $r \in(1, \infty)$ satisfying

$$
-k \leq m \leq l
$$

$$
\frac{1}{q}-\frac{l}{n} \leqslant \frac{1}{r}-\frac{m}{n} \leqslant \frac{1}{p},+\frac{k}{n}
$$

then $\eta \in \mathrm{L}_{\mathrm{m}+1}^{\mathrm{s}}\left(\mathrm{E} \otimes \wedge_{\mathrm{T} * M)}^{\mathrm{j}_{\mathrm{M}}}\right.$ for all $\mathrm{s} \in(1, \infty)$ satisfying

$$
\frac{1}{q}-\frac{l}{n} \leqslant \frac{1}{s}-\frac{m}{n} \leqslant \frac{l}{p},+\frac{k}{n}
$$

(note that if $s<r$ we have an embedding

$$
\mathrm{L}_{\mathrm{m}+1}^{r}\left(\mathrm { E } \otimes \wedge { } ^ { \mathrm { j } _ { \mathrm { T } } * M) } \hookrightarrow \mathrm { L } _ { \mathrm { m } + 1 } ^ { \mathrm { s } } \left(\mathrm{E} \otimes \wedge \wedge_{\mathrm{T} * \mathrm{M}}^{\mathrm{j}^{2}}\right.\right.
$$

and thus the result follows trivially in this case). The theorem is the case when $l=-k$ follows directly from this result.

$$
\text { Now let } m \in \mathbb{Z} \text { and } r, s \in(1, \infty) \text { satisfy the conditions }
$$

$$
\begin{aligned}
& -k+1 \leq m \leq l \\
& \frac{1}{r}-\frac{1}{n} \leq \frac{1}{s} \leqslant \frac{1}{r}-\frac{1}{n}+\varepsilon \\
& \frac{1}{q}-\frac{b}{n} \leqslant \frac{1}{r}-\frac{m}{n} \leqslant \frac{1}{p},+\frac{k}{n} \\
& \frac{1}{q}-\frac{l}{n} \leqslant \frac{1}{s}-\frac{m-1}{n} \leqslant \frac{1}{p}+\frac{k}{n} .
\end{aligned}
$$

We sha 11 show that if $\eta \in L_{m}^{s}\left(E \in \wedge^{j}{ }^{T} * M\right)$ then $\eta \in L_{m+1}^{r}\left(\mathbb{E} \otimes \wedge{ }^{j}{ }^{j} * M\right)$. Using proposition 3.1 and lemma 3.3 it follows that if $\eta \in L_{m}^{S}\left(E \otimes \wedge^{j_{T} \times M}\right)$
then

$$
\Delta^{\omega} \eta-\Delta^{\omega_{0}} \eta \in \mathbb{L}_{m-1}^{r}\left(\mathbb{E} \otimes \wedge^{\left.j_{T} * M\right)}\right.
$$

But $\Delta^{\omega} \eta \in L_{m-1}^{r}\left(E \otimes \wedge^{j} T * M\right)$ by the sobolev embedding theorem. Hence $\Delta^{\omega_{0}} \eta \in \mathbb{E}_{m-1}^{r}\left(E \otimes \wedge^{\left.j_{T} * M\right)}\right.$ and thus $\eta \in L_{m+1}^{r}\left(E \otimes \wedge^{\left.j_{T} * M\right)}\right.$ by the elliptic regularity theorem IIt.5.2.

Now let us suppose that $n>1$ and that $L>-k$. Let $m \in \mathbb{Z}$ satisfy

$$
-k+1 \leqslant m \leqslant l
$$

and suppose that $\eta \in \mathrm{L}_{\mathrm{m}}^{\mathrm{t}}\left(\mathrm{E} \boldsymbol{\otimes} \wedge{ }^{j_{\mathrm{T}}^{\mathrm{win}}}{ }^{2}\right)$ for some $\mathrm{t} \in(1, \infty)$ satisfying the condition

$$
\frac{1}{q}-\frac{l}{n} \leqslant \frac{1}{t}-\frac{m-1}{n} \leqslant \frac{l}{p},+\frac{k}{n} .
$$

Then there exists $\mathrm{s} \in(1, \infty)$ satisfying the conditions

$$
\begin{aligned}
& \frac{1}{\mathrm{q}}-\frac{l}{n} \leqslant \frac{1}{\mathrm{~s}}-\frac{m-1}{n} \leqslant \frac{1}{\mathrm{p}},+\frac{k}{n}, \\
& \frac{1}{\mathrm{~s}}<1-\frac{1}{n},
\end{aligned}
$$

since $n>1$ and

$$
\begin{aligned}
\frac{1}{q}-\frac{l-(m-1)}{n} & \leqslant \frac{1}{q}-\frac{1}{n} \\
& <1-\frac{1}{n} .
\end{aligned}
$$

But we have seen that if $\eta \in L_{m}^{t}\left(E \otimes \Lambda^{\left.j_{T * M}\right)}\right.$ then $\eta \in L_{m}^{S}\left(E \otimes \Lambda^{\left.j_{T} \times M\right)}\right.$ and hence $\eta \in \mathrm{L}_{\mathrm{m}+1}^{\mathrm{r}}\left(\mathrm{E} \otimes \wedge^{\left.j_{T * M}\right)}\right.$, where $\mathrm{r} \in(1, \infty)$ is defined by

$$
\frac{1}{r}=\frac{1}{s}-\frac{1}{n} .
$$

Iterating this procedure, we see that if $\eta \in L_{-k+1}^{\mathrm{p}^{\prime}}\left(E \otimes \wedge^{\left.\mathrm{j}_{\mathrm{T} * M}\right)}\right.$ then there exists $\mathrm{r} \in(1, \infty)$ such that

$$
\frac{1}{q}-\frac{l}{n} \leq \frac{1}{r}-\frac{l}{n} \leq \frac{l}{p},+\frac{k}{n}
$$

and $\eta \in L_{L^{r}+1}^{r}\left(E \otimes \wedge^{j}{ }_{T * M}\right)$. Rut we have seen that this implies that
$\eta \in \mathbb{L}_{L+1}^{q}\left(E \otimes \Lambda^{j_{T * M}}\right)$ as required. This completes the proof of the theorem when $n>1$.

```
It only remains to prove the theorem when n =1 and L>-k.
```

But then

$$
\frac{1}{q}-L<\frac{1}{p}, k
$$

since $p^{\prime}, q \in(1, \infty), l, k \in \mathbb{Z}, l \neq k$ and

$$
\frac{1}{q}-L \leqslant \frac{1}{p}, k .
$$

Without loss of generality, Σ may be chosen such that ε also satisfies the condition

$$
\varepsilon \leqslant \frac{1}{p}, \quad \frac{1}{q}-L<\frac{1}{p^{\prime}}+k-\varepsilon
$$

as well as the conditions

$$
\begin{aligned}
& 0<\varepsilon<\frac{1}{n} \\
& \frac{1}{p}<\frac{k+1}{n}-\varepsilon .
\end{aligned}
$$

Suppose that $m \in \mathbb{Z}$ satisfies

$$
-k+1 \leqslant m \leqslant l
$$

and that $\eta \in L_{m}^{t}\left(E \otimes \wedge^{j}{ }^{j} \cdots M\right)$ for some $t \in(1, \infty)$ satisfying the condition

$$
\frac{1}{q}-l \leqslant \frac{1}{t}-(m-1) \leqslant \frac{1}{p}+k
$$

Then there exists $\mathrm{s} \in(1, \infty)$ satisfying the conditions

$$
\begin{aligned}
& \frac{1}{q}-L \leqslant \frac{1}{s}-(m-1) \leqslant \frac{1}{p},+k-\varepsilon \\
& \frac{1}{s}<\varepsilon .
\end{aligned}
$$

Then $\eta \in L_{m}^{s}\left(E \otimes \wedge^{j_{T} * M}\right)$ and hence $\quad \eta \in L_{m+1}^{r}\left(E \otimes \Lambda^{j_{T} * M}\right)$ where $r \in(1, \infty)$ satisfies

$$
\frac{1}{r}>\frac{1}{s}+1-\varepsilon
$$

$$
\frac{1}{q}-L \leq \frac{1}{r}-m \leqslant \frac{1}{p^{\prime}}+k
$$

 some r satisfying, the condition

$$
\frac{1}{q}-L \leq \frac{1}{r}-L \leq \frac{1}{p}+k
$$

Corollary 3.6

Let M be a compact Riemannian manifold of dimension n and let the vector bundle $\widetilde{\Pi}: E \rightarrow M$, the principal bundle $T: P \rightarrow M$ and the covariant Hodge-de Rham Laplacian of E-valued differential forms with respect to connections on $T T: P \longrightarrow M$ be as above. Let k be a non-negative integer, let $p \in(1, \infty)$ satisfy $p(k+1)>n$ and in the case when $k=0$ let p also satisfy the condition $p \geqslant 2$. Let ${ }_{L}^{p}$ d be the space of L_{k}^{p} connections on $\pi: P \rightarrow M$ and let
$\omega \in \mathbb{L}_{k}^{P} A$.
Let $p^{\prime} \in(1, \infty)$ be the exponent conjugate to p, defined by $\frac{1}{p}+\frac{1}{p},=1$.

$\underline{\text { Proof }}$
Take $q=p$ and $L=k$ in the above theorem.
\square
§4. Covariant Hodge Theory with respect to Non-Smooth Connections In this section we derive properties of the covariant Hodgede Rham Laplacian with respect to a connection that is not necessarily smooth, considered as a mapping between Sobolev spaces of differential forms with values in a given vector bundle over a smooth manifold. These properties gencralize properties of the Hodge-de Rham Laplacian acting on differential forms defined on a compact manifold which form the basis of Hodge's theory of harmonic differential forms.

Theorem 4.1
Let M be a compact Riemannian manifold of dimension n and let
$\widetilde{\pi}: E \rightarrow M$ be a smooth vector bundle associated to the smooth principal bundle $\pi: P \rightarrow M$. Let $\pi: E \rightarrow M$ have a smooth inner product structure which is preserved by every connection on $\tilde{\pi}: E \rightarrow M$ arising from an Ehresmann connection on $\pi: P \rightarrow M$. Let k be a non-negative integer, let $p \in(1, \infty)$ satisfy $p(k+1)>n$ and in the case when $k=0$ let p also satisfy the condition $p \geqslant 2$. Let $\boldsymbol{\omega}$ be an L_{k}^{p} connection on $\pi: P \rightarrow M$. Let $d^{\omega}, \delta^{\omega}$ and Δ^{ω} denote the covariant exterior derivative operator, the covariant codifferential operator and the covariant Hodge-de Rham Laplacian respectively with respect to the connection ω.

Let $L \in \mathbb{Z}$ and $q \in(1, \infty)$ satisfy the conditions
$-k \leqslant L \leqslant k$,

$$
\frac{1}{p}-\frac{k}{n} \leqslant \frac{1}{q}-\frac{L}{n} \leqslant \frac{1}{p},+\frac{k}{n},
$$

where p^{\prime} is the exponent conjugate to p, defined by

$$
\frac{1}{\mathrm{p}}+\frac{1}{\mathrm{p}},=1 .
$$

Define

$$
\begin{aligned}
& H^{j}(E)=\left\{\eta \in L_{k+1}^{p}\left(E \otimes \Lambda^{\left.j_{T * M}\right)}: \Delta^{\omega} \eta=0\right\},\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left(\operatorname{ker}^{\omega}\right)_{j, q, L+1}=\left\{\eta \in L_{L+1}^{q}\left(E \otimes \wedge j_{T} * M\right): d^{\omega} \eta=0\right\} \\
& \left(\operatorname{ker} \delta^{\omega}\right), j, q, L+1=\left\{\eta \in \mathcal{L}_{\mathrm{L}}^{\mathrm{q}} \mathrm{~L}\left(\mathrm{E} \otimes \wedge \mathrm{j}_{\mathrm{T} * M}\right): \delta^{\omega} \eta=0\right\} \text {, } \\
& \left(\operatorname{im} \Delta^{\omega}\right)_{j, q, l-1}=\left\{\Delta^{\omega} \eta \quad: \eta \in L_{L+1}^{q}\left(E \otimes \Lambda_{T * M}\right)\right\} \text {, } \\
& \left(\operatorname{im}^{\omega}\right)_{j, q, L-1}=\left\{d^{\omega} \eta: \eta \in L_{L}^{q}\left(E \otimes \wedge{ }_{L}^{j-1_{T} * M}\right)\right\} \text {, } \\
& \left(i m \delta^{\omega}\right)_{j, q, L-1}=\left\{\delta^{\omega} \eta ; \eta \in L_{L}^{q}\left(E \otimes \wedge{ }^{j+1} T * M\right)\right\} .
\end{aligned}
$$

Then
(i) $H^{j}(E)$ is finite dimensional,
(ii) (ker $\left.\Delta^{\omega}\right)_{j, q, L+1}=H^{j}(E)$,
(iii) $L_{L-1}^{q}\left(E \otimes \wedge^{\left.j_{T * M}\right)}=H^{j}(E) \boldsymbol{(i m} \Delta^{\omega}\right)_{j, q, l-1}$,
(iv) (ker $\left.\Delta^{\omega}\right)_{j, q, l+1}=\left(\operatorname{ker} d^{\omega}\right)_{j, q, l+1} \cap\left(\operatorname{ker} \delta^{\omega}\right)_{j, q, l+1,}$
(v) (im $\left.\Delta^{\omega}\right)_{j, q, l-1}=\left(i m d^{\omega}\right)_{j, q, L-1}+\left(\operatorname{im} \delta^{\omega}\right)_{j, q, L-1}$.

Proof
(i) follows immediately from the fact that

$$
\Delta^{\omega}: L_{k+1}^{p}\left(E \otimes \Lambda j_{T * M}\right) \rightarrow L_{k+1}^{p}\left(E \otimes \wedge{ }_{T} \otimes M\right)
$$

is Fredholm (see theorem 3.4), and (ii) follows immediately from corollary 3.6 .

Let q ' be the exponent conjugate to q and let

$$
(., .): L_{L-1}^{q}\left(E \otimes \wedge_{T}^{\left.j_{T M}\right) \times L_{-L+1}^{q^{\prime}}\left(E \otimes \wedge{ }_{T}(E M) \rightarrow \mathbb{R}\right.}\right.
$$

be the pairing induced by the inner product structure on $\widetilde{\pi}: E \rightarrow M$ and the Riemannian metric on M. Note that
$H^{j}(E) \subset C^{\circ}\left(E \otimes \wedge^{j} T \# M\right)$ by the Sobolev embedding theorem, since $\mathrm{p}(\mathrm{k}+1)>\mathrm{n}$. Thus

$$
(\eta, \eta)=\int_{M}|\eta|^{2} d(\times 01)
$$

for all $\eta \in H^{j}(E)$. If $\eta \in H^{j}(E) \cap\left(i m \Delta^{\omega}\right)_{j, q, l-1}$ then there exists $\xi \in L_{q+1}^{q}\left(E \otimes \wedge^{j_{T} * M}\right)$ such that $\eta=\Delta^{\omega} \xi$. Then

$$
\begin{aligned}
(\eta, \eta) & =\left(\eta, \Delta^{\omega} \xi\right) \\
& =\left(\Delta^{\omega} \eta, \xi\right) \\
& =0
\end{aligned}
$$

since Δ^{ω} is self-adjoint. Thus $\eta=0$. Hence

$$
H^{j}(E) \cap\left(i m \Delta^{\omega}\right)_{j, q, l-1}=\{0\}
$$

Also (mm $\left.\Delta^{\boldsymbol{\omega}}\right)_{j, q, L-1}$ is closed and has finite codimension, since

$$
\Delta^{\omega}: L_{L+1}^{q}\left(E \otimes \wedge j_{T * M}\right) \rightarrow L_{L-1}^{q}\left(E \otimes \wedge{ }^{j_{T * M}}\right)
$$

is Fredholm. Also (ger $\left.\Delta^{\omega}\right)_{j, q^{\prime},-l+1}$ is the annihilator of (lm $\left.\Delta^{\boldsymbol{\omega}}\right)_{j, q, l-1}$, since $\Delta^{\boldsymbol{\omega}}$ is self-adjoint. Thus

$$
\begin{aligned}
\operatorname{codim}\left(i m \quad \Delta^{\omega}\right)_{j, \mathrm{q}, L-1} & =\operatorname{dim}\left(\operatorname{ker} \Delta^{\omega}\right)_{j, q^{\prime},-l+1} \\
& =\operatorname{dim}_{H^{j}(E)}
\end{aligned}
$$

by (ii). Thus

$$
L_{l-1}^{q}\left(E \otimes \wedge^{j_{T} \boldsymbol{\star}_{M}}\right)=H^{j}(E) \boldsymbol{\oplus}\left(i m \Delta^{\omega}\right)_{j, q, l-1} .
$$

This proves (iii).
We observe that

$$
\frac{1}{p}-\frac{k}{n} \leqslant \frac{1}{2} \leqslant \frac{1}{p}+\frac{k}{n}
$$

if p and k satisfy the hypotheses of the theorem. If $n \geqslant 2$ this is a consequence of the condition $p(k+1)>n$. If $n=1$ and $k>0$ then the above inequalities follow immediately. If $n=1$ and $k=0$ then
the result is true by hypothesis. By the Sobolev embedding theorem there exist embeddings

$$
\begin{aligned}
& L_{k+1}^{p}\left(E \otimes \wedge^{j_{T} * M}\right) \hookrightarrow L_{1}^{2}\left(E \otimes \wedge{ }_{T}^{j_{T}} \otimes M\right) \\
& L_{1}^{2}\left(E \otimes \wedge^{j} T * M\right) \hookrightarrow L_{-k+1}^{p^{\prime}}\left(E \otimes \wedge{ }_{T} * M\right)
\end{aligned}
$$

If $\eta \in\left(\operatorname{ker} \Delta^{w}\right)_{j, q, L+1}$ then $\eta \in H^{j}(E)$ and hence $\eta \in L_{1}^{2}\left(E \otimes \Lambda_{T * M}^{j_{T}}\right)$. Then

$$
0=\left(\Delta^{\omega} \eta, \eta\right)=\left(d^{\omega} \eta, d^{\omega} \eta\right)+\left(\delta^{\omega} \eta, \delta^{\omega_{\eta}} \eta\right)
$$

and hence

$$
d^{w} \eta=\delta^{\omega} \eta=0
$$

Thus

$$
\left(\operatorname{ker} \Delta^{\omega}\right)_{j, q, l+1} c\left(\operatorname{ker} d^{\omega}\right)_{j, q, L+1} \cap\left(\operatorname{ker} \delta^{\omega}\right)_{j, q, L+1}
$$

The reverse inclusion is trivial. This proves (iv).

$$
\begin{aligned}
& \text { clearly } \\
& \left(\operatorname{im} \Delta^{\omega}\right)_{j, q, L-1} C\left(i m d^{\omega}\right)_{j, q, L-1}+\left(i m \delta^{\omega}\right)_{j, q, L-1} .
\end{aligned}
$$

Thus in order to prove (v) it suffices to show that

$$
\begin{aligned}
& \left(i m d^{\omega}\right)_{j, q, L-1} \subset\left(i m \Delta^{\omega}\right)_{j, q, L-1}, \\
& \left(i m \delta^{\omega}\right)_{j, q, L-1} \subset\left(i m \Delta^{\omega}\right)_{j, q, L-1} .
\end{aligned}
$$

But (jim $\left.\Delta^{\omega}\right)_{j, q, l-1}$ is the annihilator of (er $\left.\Delta^{\omega}\right)_{j, q},-l+1$ since Δ^{ω} is self-adjoint. Thus it suffices to show that (in d^{w}) $j, q, L-1$ and $\left(\operatorname{im} \delta^{\omega}\right)_{j, q, L-1}$ annihilate $H^{j}(E)$. But if $\xi \in L_{L}^{q}\left(E \otimes \wedge^{j-1} T * M\right)$ and $\eta \in H^{j}(E)$, then

$$
\begin{aligned}
\left(d^{\boldsymbol{\omega}} \xi, \eta\right) & =\left(\xi, \delta^{\omega} \eta\right) \\
& =0
\end{aligned}
$$

by (iv). Similarly if $\xi \in L_{L}^{q}\left(E \otimes \wedge^{j+1} T * M\right)$ and $\eta \in H^{j}(E)$ then

$$
\left(\delta^{\omega} \xi, \eta\right)=\left(\xi, \mathrm{d}^{\omega} \eta\right)
$$

$$
=0
$$

This proves (v).

Let the compact Riemannian manifold M, the vector bundle
$\widetilde{\pi}: E \rightarrow M$ and the principal bundle $\pi: P \rightarrow M$ be as in the above theorem. Let k be a non-negative integer let $p \in(1, \infty)$ satisfy $p(k+1)>n$ and let ω be an f_{k}^{P} connection on $T: P \rightarrow M$.

Define
$\left(H^{j}(E)^{\perp}\right)_{r, m}=\left\{\eta \in L_{m}^{r}\left(E \otimes \wedge \mathcal{T}_{T M}\right):(\eta, \zeta)=0\right.$ for all $\left.\zeta \in H^{j}(E)\right\}$
for all $m \in \mathbb{Z}$ and $r \in(1, \infty)$ satisfying
$-k-1 \leqslant m \leqslant k+1$,

$$
\frac{1}{p}-\frac{k+1}{n} \leqslant \frac{1}{r}-\frac{m}{n} \leq \frac{1}{p}, \frac{k+1}{n} .
$$

Since

$$
H^{j}(E) \cap\left(H^{j}(E)^{\perp}\right)_{r, m}=0
$$

and since

$$
\operatorname{codim}\left(H^{j}(E)^{\mathcal{L}}\right)_{r, m}=\operatorname{dim} H^{j}(E)
$$

it follows that

$$
L_{m}^{r}\left(E \otimes \wedge{ }^{j_{T} * M}\right)=H^{j}(E) \oplus\left(H^{j}(E)^{\perp}\right)_{r, m}
$$

Let $L e \mathbb{Z}$ and $q \in(1, \infty)$ satisfy
$-k \leqslant l \leqslant k$
$\frac{1}{p}-\frac{k}{n} \leqslant \frac{1}{q}-\frac{L}{n} \leqslant \frac{1}{p}+\frac{k}{n}$.

Since

$$
\left(i m \Delta^{w}\right)_{j, q, L-1} c\left(H^{j}(E)^{\perp}\right)_{q, L-1}
$$

and

$$
\operatorname{codim}\left(\operatorname{im} \Delta^{\omega}\right)_{j, q, L-1}=\operatorname{dim} H^{j}(E),
$$

it follows that

$$
\left(\operatorname{im} \Delta^{w}\right)_{j, q, l-1}=\left(H^{j}(E)^{\perp}\right)_{q, l-1}
$$

Since

$$
\left(\operatorname{ker} \Delta^{\omega}\right)_{q, L+l}=H^{j}(E)
$$

if follows that

$$
\Delta^{\omega} \mid\left(H^{j}(E)^{\perp}\right)_{q, l+1}:\left(H^{j}(E)^{\perp}\right)_{q, l+1} \rightarrow\left(H^{j}(E)^{\perp}\right)_{q, L-1}
$$

is a bijection, and is thus an isomorphism of Banach spaces, by the Banach isomorphism theorem. Define

$$
{ }_{\mathrm{G}} \boldsymbol{\omega}:{ }_{L_{-k-1}}^{p^{\prime}}\left(\mathrm{E} \otimes \wedge \mathrm{j}_{\mathrm{T} * M}\right) \rightarrow L_{-\mathrm{k}+1}^{\mathrm{p}^{\prime}}\left(\mathrm{E} \otimes \wedge \mathrm{j}_{\mathrm{T} * \mathrm{M}}\right)
$$

by the properties

$$
\begin{aligned}
& G^{\omega} \mid H^{j}(E)=0 \\
& G_{G}^{\omega} \mid\left(H^{j}(E)^{\perp}\right)_{p^{\prime},-k-1}=\left(\Delta^{\omega} \mid\left(H^{j}(E)^{\perp}\right)_{p^{\prime},-k+1}\right)^{-1}
\end{aligned}
$$

Then

$$
{ }_{G}^{\omega} \mid\left(H^{j}(E)^{\perp}\right)_{q, l-1}=\left(\Delta \mid\left(H^{j}(E)^{\perp}\right)_{q, l+1}\right)^{-1}
$$

and hence $G^{\boldsymbol{\omega}}$ restricts to a bounded linear map

$$
G^{\omega}: L_{L-1}^{q}\left(E \otimes \wedge^{j_{T} * M}\right) \rightarrow L_{L+1}^{q}\left(E \otimes \wedge j_{T} \% M\right) .
$$

We refer to $G^{\boldsymbol{\omega}}$ as the Green's operator of the covariant Hodge-de Rham Laplacian Δ^{ω}. Define

$$
H^{\omega}: H_{-k-1}^{p^{\prime}}\left(E \otimes \wedge{ }^{j_{T} * M}\right) \rightarrow{ }_{-k-1}^{p^{\prime}}\left(E \otimes \wedge{ }_{T} \mathrm{j}_{\mathrm{T} * \mathrm{M})}\right.
$$

to be the projection mapping with kernel $\left(H^{j}(E)^{\perp}\right)_{p}^{\prime},-k-1$ and image $H^{j}(E)$. Then H^{ω} restricts to a compact linear operator

$$
H^{w}: L_{m}^{r}\left(E \otimes \wedge^{\left.j_{T * M}\right)} \rightarrow L_{m}^{r}\left(E \otimes \wedge^{j_{T} * M}\right)\right.
$$

for all $m \in \mathbb{Z}$ and $r \in(1, \infty)$ satisfying the conditions
$-k-1 \leqslant m \leqslant k+1$,

$$
\frac{1}{p}-\frac{k+1}{n} \leqslant \frac{1}{r}-\frac{m}{n} \leqslant \frac{1}{p}+\frac{k+1}{n}
$$

We see that

$$
\left(I-\Delta^{\omega} G^{\omega}\right) \eta=H^{\omega} \eta
$$

for all $\quad \eta \in L_{-k-1}^{p^{\prime}}\left(E \otimes \wedge^{j} \mathrm{~T} * M\right)$ and
$\left(I-G^{\omega} \Delta^{\omega}\right) \eta \Rightarrow H^{\omega} \eta$
for all $\quad \eta \in L_{-k+1}^{p^{\prime}}\left(E \otimes \wedge j_{T * M)}\right)$.
We can obtain results similar to those above when ω is a
$c^{k, \alpha}$ connection on $\pi: P \rightarrow M$.
Theorem 4.2
Let M be a compact Riemannian manifold of dimension n and let the vector bundle $\tilde{\pi}: E \rightarrow M$, the principal bundle $\pi: P \rightarrow M$ and the inner product structure on $\widetilde{\pi}: E \rightarrow M$ be as in the previous theorem. Let k be a strictly positive integer, let $\alpha \in(0,1)$ and let ω be a $C^{k, \alpha}$ connection on $\pi: P \rightarrow M$.

The covariant Hodge-de Rham Laplacian Δ^{ω} defines Fredholm operators

$$
\begin{aligned}
& \Delta^{\omega}: L_{L+1}^{p}\left(E \otimes \wedge^{j_{T} * M}\right) \rightarrow L_{L-1}^{p}\left(E \otimes \wedge^{j_{T} * M}\right) \\
& \Delta^{\omega}: C^{m+1, \boldsymbol{\beta}}\left(E \otimes \wedge^{j_{T} * M}\right) \rightarrow C^{m-1, \beta}\left(E \otimes \wedge{ }_{T * M)}^{j_{T}}\right.
\end{aligned}
$$

of index zero for all $p \in(1, \infty)$ and for all $L, m \in \mathbb{Z}$ and $\beta \in(0,1)$ satisfying
$-k \leqslant L \leqslant k$
$1<m+\beta \leqslant k+\alpha$.
If $\eta \in L_{-k+1}^{p}\left(E \otimes \wedge j_{T * M}\right)$ for some $q \in(1, \infty)$ and if $\triangle^{\omega} \eta \in{ }_{L}^{p}{ }_{L-1}\left(E \otimes \wedge{ }^{j_{T * M}}\right)$ then $\eta \in{ }_{L}^{p}{ }_{L+L}\left(E \otimes \wedge_{T * M)}\right.$, where L satisfies the condition above. If $\eta \in{ }_{L}^{q}{ }_{-k+1}\left(E \otimes \wedge^{j}{ }^{j} \% M\right)$ and $\Delta^{\omega} \eta \in C^{m-1, \beta}\left(E \otimes \Lambda^{j} \mathrm{~T}^{\mathrm{m} M}\right)$ then $\eta \in C^{\mathrm{m}+1, \beta}$, where m and β satisfy the conditions given above. The Green's operator

$$
G^{\omega}: L_{-k-1}^{q}\left(E \otimes \wedge{ }_{\mathrm{T}}^{\mathrm{T} * \mathrm{M}}\right) \rightarrow \mathrm{L}_{-\mathrm{k}+1}^{\mathrm{q}}\left(\mathrm{E} \otimes \wedge_{\mathrm{T} * \mathrm{M}}^{\mathrm{j}}\right)
$$

restricts to bounded linear operators

$$
\begin{aligned}
& { }_{G}^{\omega}:{ }_{L}^{p}{ }_{L-1}^{p}\left(E \otimes \wedge j_{T} * M\right) \rightarrow{ }_{L}{ }_{L+1}^{p}\left(E \otimes \wedge{ }_{T T * M}\right) \\
& { }_{G}^{\omega}: C^{m-1, \beta}\left(E \otimes \wedge{ }_{T}{ }^{\mathrm{j} * M}\right) \rightarrow C^{m+1, \beta}\left(E \otimes \Lambda^{j}{ }_{T * M}\right)
\end{aligned}
$$

where L, m and β satisfy the conditions given above. Also

$$
C^{\mathrm{m}-1, \beta}\left(E \otimes \wedge^{j_{T * M}}\right)=H^{j}(E) \oplus \quad \Delta^{\omega}\left(C^{m+1}, \boldsymbol{\beta}\left(E \otimes \wedge^{\left.j_{T} * M\right)}\right)\right.
$$

where

$$
H^{j}(E)=\left\{\eta \in C^{k+1, \alpha}\left(E \otimes \wedge^{j} \mathrm{~T}^{j}{ }^{\mathrm{j}}\right): \Delta^{\omega} \eta=0\right\} .
$$

Morcover

$$
\left.\Delta^{\omega}\left(C^{m+1, \beta}\left(E \otimes \wedge^{j}{ }_{T * M}\right)\right)=d^{\omega}\left(C^{m}, \boldsymbol{\beta}_{(E} \otimes \Lambda^{j-1} T * M\right)\right)+\delta^{\omega}\left(C^{m, \boldsymbol{\beta}}\left(E \otimes \Lambda^{j+1} T * M\right)\right)
$$

where these spaces are considered as subspaces of $c^{m-1, \beta}\left(E \otimes \wedge^{\left.j_{T} * M\right)}\right.$.

Proof

Let ω_{0} be a smooth connection on $\pi: P \rightarrow M . \quad \Delta^{\omega_{0}}$ defines
Fredholm operators between Sobolev and H甘lder spaces by theorem III.5.3.
Also $\Delta^{\omega}-\Delta^{\omega_{0}}$ defines compact operators between the Sobolev and Hblder spaces under consideration. Thus Δ^{ω} defines Fredholm operators between these spaces.

If $\eta \in L_{-k+1}^{q}\left(E \otimes \Lambda^{j_{T} * M}\right)$ and $\quad \Delta^{\boldsymbol{\omega}} \eta \in L_{L-1}^{p}\left(E \otimes \Lambda^{j_{T * M}}\right)$ then $\eta \in \int_{T_{+1}}^{p}\left(E \otimes \wedge^{\left.j_{T} * M\right)}\right.$ by theorem 3.5. If $\Delta^{\omega} \eta \in C^{m-1, \beta}\left(E \otimes \wedge{ }^{\left.j_{T} * M\right)}\right.$ then $\Delta^{\omega} \eta \in L_{m-1}^{r}\left(E \otimes \wedge j_{T * M}\right)$ for all $r \in(1, \infty)$ and hence
$\eta \in L_{m+1}^{r}\left(E \otimes \wedge^{\left.j_{T} * M\right)}\right.$. on choosing r sufficiently large we see that
$\eta \in C^{\mathrm{m}, \boldsymbol{\beta}}\left(\mathrm{E} \otimes \wedge^{j_{T} * M}\right.$) by the Sobolev embedding theorem. Then

$$
\left(\Delta^{\omega}-\Delta^{\omega_{0}}\right) \eta \epsilon C^{m-1, \beta}\left(E \otimes \wedge^{j_{T * M}}\right)
$$

Since $\Delta^{\omega} \eta \in C^{m-1, \beta}\left(E \otimes \wedge{ }^{j_{T} * M}\right)$ it follows that
$\Delta \eta{ }^{\omega_{0}} \in C^{m-1}, \boldsymbol{\beta}\left(E \otimes \Lambda^{j_{T * M}}\right)$ and hence that $\left.\eta \in C^{m+1}, \beta{ }_{(E)} \otimes \Lambda^{j_{T} * M}\right)$.
By the previous theorem

$$
L_{-1}^{2}\left(E \otimes \wedge^{\left.j_{T} * M\right)}=H^{j}(E) \oplus \Delta^{\boldsymbol{\omega}}\left(L_{1}^{2}\left(E \otimes \wedge^{j_{T} * M}\right)\right)\right.
$$

Also

$$
\Delta^{\omega}\left(L_{1}^{2}\left(E \otimes \Lambda^{j}{ }_{T} * M\right)\right) \cap C^{m-1}, \beta\left(E \otimes \Lambda^{j} * N\right)=\Delta^{\omega}\left(C^{m+1}, \beta \quad\left(E \otimes \Lambda^{j_{T} * M}\right)\right)
$$

by the result proved above, hence

$$
\begin{aligned}
C^{m-1}, \boldsymbol{\beta} & \left(E \otimes \wedge^{j_{T} * M}\right)
\end{aligned}=L_{-1}^{2}\left(E \otimes \wedge^{\left.j_{T} * M\right) \cap C^{m-1}, \boldsymbol{\beta}}\left(E \otimes \wedge^{j_{T} * M}\right) .\right.
$$

We deduce that

$$
G^{\omega}: C^{m-1, \beta}\left(E \otimes \wedge^{j}{ }_{T * M}\right) \rightarrow C^{m+1, \beta}\left(E \otimes \wedge{ }^{j * M}\right)
$$

is bounded. The final statement of the theorem follows from the fact that $d^{\omega}\left(C^{m, \alpha}\left(E \otimes A^{j-1} H_{M}\right)\right.$ and $\delta^{\omega}\left(C^{m, \infty}\left(E \otimes \Lambda^{j+1} \Gamma * M\right)\right.$) annihilate $H^{j}(\mathrm{~F})$, as in the proof of the previous theorem:
\square

Warner, F.W., Foundations of Differentiable manifolds and Lie groups,
Scott, Foresman and company, Glenview, Illinois, 1971.
Wells, R.O., Differential analysis on complex manifolds, Prentice Ilall, Englewood Cliffs, New Jersey, 1973.

Chapter VIII

SLICE THEOREMS \triangle ND REGULARITY THEOREMS

$\$ 1$.
Introduction
This chapter contains the slice theorems and the regularity theorems towards which we have been working.

Let $\pi: P \rightarrow M$ be a smooth principal bundle over a compact Riemannian manifold of dimension n with compact structural group G. Let k be a non-negative integer and let p satisfy the conditions $1<p<\infty$ and $p(k+1)>n$. Let p also satisfy the condition $p \geqslant 2$ in the case when $k=0$.

In chapter $V I$ we define $L_{k+1}^{p} \oint$ to be the group of all L_{k+1}^{p} principal bundle automorphisms of $\pi: P \rightarrow M$, we also defined $L_{k+1}^{p} \oint_{0}$ to be the quotient ${\underset{L}{k+1}}_{p}^{g} / Z(G)$ where $Z(G)$ is the centre of G, and given $m \in M$ we defined $L_{k+1}^{p} \xi^{m}$ to be the subgroup of $L_{k+1}^{p} \xi$ consisting of those automorphisms which fix the fibre of $\pi: P \rightarrow M$ over m. We defined $L_{k}^{p} A$ to be the space of all ${ }_{L}^{p}$ connections on $\pi: P \rightarrow M$ and we defined $L_{k}^{p} A_{o}$ to be the subset of $L_{k}^{p} A$ consisting of those connections whose stabiiizer in $L_{k+1}^{p} G_{\gamma} Z(G)$. We prove that ${ }_{L_{k+1}}^{p} \varphi_{0}$ acts smoothly and freely on $L_{k}^{p} A_{0}$ and that $L_{k+1}^{p} \mathcal{G}^{m}$ acts smoothly and freely on $\frac{p}{p} A$.

We use theorem II.3.1 to prove a slice theorem (theorem 2.3) which states that $L_{k}^{p} A_{0} / L_{k+1}^{p} \mathcal{G}_{0}$ and ${ }_{\mathrm{L}}^{\mathrm{p}} \boldsymbol{A} / \mathrm{L}_{\mathrm{k}+1}^{\mathrm{p}} \boldsymbol{\xi}^{m}$ admit unique differentiable structures such that the projections

$$
\begin{aligned}
& L_{k}^{p} d H_{0}^{p} A_{k} / L_{k+1}^{p} G_{0} \\
& { }_{\mathrm{L}}^{\mathrm{p}}{ }^{\mathrm{p}} \phi \mathrm{~L}_{\mathrm{k}}^{\mathrm{p}} A / \mathrm{L}_{\mathrm{k}+1}^{\mathrm{p}} \wp^{m}
\end{aligned}
$$

are smooth and admit smootr local sections. Analogous results are proved for the action of $C^{k+1, ~} \alpha$ principal bundle automorphisms on C^{k}, α connections, where k is an integer satisfying $k \geqslant 1$ and where α satisfies $0<\alpha<1$.

A weakened form of the slice theorem (theorem 2.2) is proved which states that if ω is an L_{k}^{p} connection then there exists a smooth connection ω_{0} and an L_{k+1}^{p} principal bundle automorphism Ψ such that

$$
\delta^{\omega_{0}}\left(\Psi^{*} \omega-\omega_{0}\right)=0
$$

where $\delta^{\omega_{0}}$ is the covariant codifferential operator with respect to the connection ω_{0}. This result has applications in proving the regularity results of $\$ 3$.

In S_{3} we prove various regularity theorems for Yang-Mills connections (theorems 3.1, 3.2 and 3.3). In \mathbb{S}_{4} we give an informal discussion on how these results may be extended to Yang-Mil1s-Higgs systems.

§2. Slice Theorems for Connections

We use the results of chapter VII to prove a theorem (theorem 2.2) which will be useful in proving elliptic regularity results. Then we shall prove a slice theorem (theorem 2.3) for the action of principal bundle automorplisms on connections.

Lemma 2.1
Let $\pi: P \rightarrow M$ be a smooth principal bundle over a compact Riemannian manifold M of dimension n, let ω be a connection on $\pi: P \rightarrow M$ and let $E \rightarrow M$ be a smooth vector bundle associated to $\pi: P \rightarrow M$ with a smooth inner product structure preserved by the connection ω. Let k be a non-negative integer and let p satisfy the conditions $1<p<\infty$ and $p(k+1)>n$, and in the case when $k=0$ let p also satisfy the condition $p \geqslant 2$. If ω is an L_{k}^{p} connection then ${ }_{L}{ }_{\mathrm{k}}^{\mathrm{p}}(\mathrm{E} \otimes \mathrm{T} \Psi \mathrm{M})$ decomposes as the direct sum

$$
L_{k}^{p}(E \boldsymbol{\otimes} T * M)=j m d^{\omega} \oplus \operatorname{ker} \delta^{\omega}
$$

of the image of

$$
d^{\omega}: L_{k+l}^{p}(E) \rightarrow L_{k}^{p}(E \otimes T * M)
$$

and the kernel of

$$
\delta^{\omega}: L_{k}^{p}(E \otimes T * M) \rightarrow L_{k-1}^{p}(E)
$$

Morcover the image of d^{ω} is closed and the kernel of d^{ω} is finite dimensional.

Similarly if α satisfies $0<\alpha<1$ and if k is strictly
positive then $C^{k, \alpha}(E \otimes T \% M)$ decomposes as the direct sum
$c^{k, \alpha}(E \otimes T * M)=i m d^{\omega} \boldsymbol{\operatorname { L e r }} \delta^{\omega}$
of the image of

$$
d^{\omega}: C^{k+1, \alpha}(E) \rightarrow c^{k, \alpha}(E \otimes T * M)
$$

and the kerncl of

$$
\delta^{\omega}: C^{k, \alpha}(E \otimes T * M) \rightarrow C^{k-1, \alpha}(E) .
$$

Moreover the image of d^{ω} is closed and the kernel of d^{ω} is finite dimensional.
Proof

Let ω be an L_{k}^{p} connection. By theorem VII.4.1 it follows that

$$
\begin{aligned}
L_{k-1}^{p}(E) & =H^{o}(E) \oplus \text { im } \Delta^{\omega} \\
& =H^{\circ}(E) \oplus \text { in } \delta^{\omega}
\end{aligned}
$$

where

$$
H^{0}(E)=\left\{s \in \mathbb{L}_{k+1}^{p}(E): \Delta^{\omega} s=0\right\}
$$

$\mathrm{H}^{\circ}(\mathrm{E})$ is finite dimensional by theorem VII.4.1. Let

$$
{ }_{G}^{\omega}: L_{k-1}^{p}(E) \rightarrow L_{k+1}^{p}(E)
$$

be the Green's operator of $\Delta^{\boldsymbol{\omega}}$ (see \S_{4} of chapter VII). Then, since

$$
\operatorname{im} \delta^{\omega}=\operatorname{im} \Delta^{\omega}
$$

it follows that

$$
\Delta^{\omega} G^{\omega} \delta^{\omega}=\delta^{\omega}
$$

If $\eta \in L_{k}^{p}(E \otimes T * M)$ and if

$$
d^{\omega}{ }_{G}^{\omega} \delta^{\omega} \eta=0
$$

then $\delta^{\omega} \eta=0$, since $G \omega$ is injective on the image of δ^{ω} and
d^{ω} is injective on the image of G^{ω}. Also if $\eta=d^{\omega}$ s then

$$
\begin{aligned}
d^{\omega}{ }_{\mathrm{G}}{ }^{\omega} \delta^{\omega} \eta & =d^{\omega}{ }_{\mathrm{G}}{ }^{\omega} \Delta^{\omega} \mathrm{S} \\
& =\eta
\end{aligned}
$$

since

$$
\mathrm{d}^{\omega}{ }_{\mathrm{G}}{ }^{\omega} \Delta^{\omega}=\mathrm{d}^{\omega}
$$

Now

$$
\begin{aligned}
\left(d^{\omega}{ }_{G}{ }^{\omega} \delta^{\omega}\right)^{2} & =d^{\omega}{ }_{G}^{\omega} \Delta^{\omega}{ }_{G}^{\omega} \delta^{\omega} \\
& =d^{\omega}{ }_{G}^{\omega} \delta^{\omega}
\end{aligned}
$$

hence

$$
d^{\omega}{ }_{G}^{\omega} \delta^{\omega}: L_{k}^{p}(E \otimes T * M) \rightarrow L_{k}^{p}(E \otimes \quad T \% M)
$$

is a bounded idempotent linear map whose kernel is kerf δ^{ω} and whose image is am d^{∞}. It follows immediately that

$$
L_{k}^{P}(E \otimes T * M)=\operatorname{im}^{\omega} \oplus \operatorname{ker} \delta^{\omega}
$$

and that in $\mathrm{d}^{\omega} \boldsymbol{\omega}$ is closed. The kernel of d ω is $\mathrm{H}^{\circ}(E)$ by theorem VII.4.l and is thus finite dimensional.

The proof of the lemma when $\omega \in c^{k, \alpha} A$ is exactly analogous, using theorem VII.4.2.
\square

Let G be the structural group of the principal bundle $\pi: P \rightarrow M$, Let g be the Lie algebra of G and let $g P=P x$ ad g. A given bi invariant metric on G determines an inner product structure on P and thus determines the codifferential $\delta^{\boldsymbol{\omega}}$ acting on Bp-valued differential forms.

Theorem 2.2
Let $\pi: P \rightarrow M$ be a smooth principal bundle over a compact Riemannian manifold M of dimension n with compact structural group. Let k be a nonnegative integer and let p satisfy the conditions $1<p<\infty$ and $p(k+1)>n$, and in the case when $k=0$ let p also satisfy the condition $p \geqslant 2$. Let ω be an $L_{k} p$ connection on $\pi: P \rightarrow M$. Then for all $\varepsilon>0$ and for all neighbourhoods of the identity in the group $L_{k+1}^{p} \oint_{g}$ of L_{k+1}^{p} principal bundle automorphisms there exist a smooth connection ω_{o} on $\pi: P \rightarrow M$ and an L_{k+1}^{p} princiapl bundle automorphism $\Psi: P \rightarrow P$, contained in the given neighbourhood of the identity in ${ }_{k+1}^{p} \zeta_{g}$, such that

$$
\left\|\omega-\omega_{0}\right\|_{L_{k}^{p}}^{p}<\varepsilon
$$

and

$$
\delta^{\omega_{0}}\left(\Psi^{*} \omega-\omega_{0}\right)=0
$$

Similarly if α satisfies $0<\alpha<1$ and if $k \geqslant 1$ and if ω is a $c^{k, \alpha}$ connection, then, for all $\varepsilon>0$ and for all neighbourhoods of the identity in $c^{\mathrm{ls+1}}, \alpha \nLeftarrow$ there exist a smooth connection ω_{0} and a $c^{k+1, \alpha}$ principal bundle automorphism contained in the given
neighbourhood such that

$$
\left\|\omega-\omega_{0}\right\|_{C_{k, \alpha}}<\varepsilon
$$

and

$$
\delta^{\omega_{0}}\left(\Psi^{*} \omega-\omega_{0}\right)=0 .
$$

Proof

Let ω be an L_{k}^{p} connection and let $H^{\circ}(g \mathrm{p})^{\perp}$ be the
 Consider the map

$$
\varphi: \operatorname{ker} \delta^{\omega} \oplus \mathrm{H}^{o}(g \mathrm{p})^{\perp} \rightarrow \mathrm{L}_{\mathrm{k}}^{\mathrm{p}}(\square \mathrm{p} \otimes \mathrm{~T} * \mathrm{M})
$$

defined by

$$
\varphi(\tau, \xi)=(\exp \xi)^{*}(\omega+\tau)-\omega
$$

where ken δ^{ω} is the kernel of

$$
\delta^{\omega}: L_{k}^{p}(马 p \otimes T * M) \rightarrow L_{k-1}^{p}(g p) .
$$

By theorem V.7.1, part (vii), the derivative $D \varphi$ of φ at the origin is given by

$$
D \varphi(\tau, \xi)=\tau+d^{\omega} \xi
$$

and is thus an isomorphism. Thus φ is a diffeomorphism from a neighbourhood $U \times V$ of the origin in ger $\delta^{\omega} \oplus H^{\circ}(\square \mathbf{p})$ to a neighbourhood of the origin in $L_{k}^{p}(g P \otimes T * M)$, by the inverse function theorem for Banach spaces. Given any neighbourhood of the identity in $L_{k+1}^{p} \zeta$ we may choose V sufficiently small such that $\exp (V)$ is contained in the given neighbourhood of the identity. Since $C^{\infty} \mathcal{A}$ is dense in ${ }_{\mathrm{L}}^{\mathrm{p}} \boldsymbol{A}$, there exists a smooth connection ω_{o} such that

$$
\left\|\omega-\omega_{0}\right\|<\varepsilon
$$

and such that

$$
\omega-\omega_{0} \in \varphi(U \times V) .
$$

Let

$$
\omega-\omega_{0}=\varphi(\tau, \xi) .
$$

Then

$$
\partial^{\omega}\left(\omega-\exp (-\xi) * \omega_{0}\right)=0 .
$$

Let

$$
\begin{aligned}
& \text { Let } \omega_{1}=(\exp \xi) * \omega \cdot \text { Then } \\
& \qquad(\exp \xi) * \delta^{\omega} \tau=\delta^{\omega_{1}}((\exp \xi) * \tau) \\
& \text { for all } \tau \in 1_{\mathrm{k}}^{\mathrm{p}}(\square \mathrm{P} \otimes \mathrm{~T} * \mathrm{M}) \text {, and hence }
\end{aligned}
$$

$$
\delta^{\omega_{1}}\left(\omega_{1}-\omega_{0}\right)=0 .
$$

Thus

$$
\begin{aligned}
\delta^{\omega_{0}}\left(\Psi^{*} \omega-\omega_{0}\right) & =\delta^{\omega_{1}}\left(\omega_{1}-\omega_{0}\right) \\
& =0
\end{aligned}
$$

by theorem V.7.1, part (vi), where $\Psi=\exp \xi$.
The proof when ω is a $c^{k, \alpha}$ connection is exactly analogous.

In chapter $V I$, section 84 , we identified the centre $Z(G)$ of the structural group G with a subgroup of $L_{k+1}^{p} \mathcal{G}$ and of $c^{k+1}, \propto \xi$, and we defined

$$
{ }_{L}^{\mathrm{L}+1} \mathrm{~g} \mathcal{L}_{\mathrm{k}}=\mathrm{L}_{\mathrm{k}+1}^{\mathrm{p}} \zeta_{\mathcal{L}} / Z(\mathrm{G}),
$$

and

$$
c^{\mathrm{k}+1, \alpha} \mathcal{g}_{0}=c^{\mathrm{k}+1, \alpha} \mathcal{g}^{\prime} / \mathrm{Z}(\mathrm{G}) .
$$

We saw that $L_{k+1}^{p} \xi_{0}$ and $c^{k+1, \alpha} \mathcal{G}_{0}$ act smooth1y on $L_{k}^{p} A$ and $c^{k, \alpha} A$ respectively and we defined $L_{k}^{p} A A_{0}$ and $C^{k, \alpha} A$ to be the subsets of $L_{k}^{p} A$ and $c^{k, \alpha} A$ consisting of all connections on which $L_{k+1}^{p} \mathscr{j}_{0}$ and $c^{k+1, \alpha} \mathscr{Y}_{0}$ act freely. We showed that $L_{k}^{p} A_{0}$ and $c^{k, \alpha} A$ o are open subsets of $L_{k}^{p} A$ and $c^{k, \infty} A$ containing all smooth irreducible connections on $\pi: P \longrightarrow M$ (theorem VI.4.4).

Also given $m \in M$ we defined $L_{k+1}^{p} \varphi_{\mathcal{m}}^{m}$ and $c^{k+1, \infty} \mathcal{G}^{m}$ to be the subgroups of $L_{k+1}^{p} \mathcal{G}$ and $c^{k+1, \infty} \mathcal{y}$ consisting of all automorphisms of $\pi: P \rightarrow M$ which fix the fibre of $\pi: P \rightarrow M$ over m. We showed that $L_{k+1}^{p} \mathcal{G}^{m}$ and $c^{k+1, \alpha} \mathcal{G}^{m}$ act freely on $L_{k}^{p} A$ and $c^{k, \alpha} A$ (see theorem VI.4.6).

Theorem 2.3

Let $\Pi: P \rightarrow M$ be a smooth principal bundle over a compact Riemannian manifold M of dimension n with compact structural group. Let $m \in M$. Let k be a non-negative integer and let p satisfy the conditions $1<\mathrm{p}<\infty$ and $\mathrm{p}(\mathrm{k}+1)>\mathrm{n}$, and in the case when $\mathrm{k}=0$ let p also satisfy the condition $\mathrm{p} \geqslant 2$. Let $\mathrm{L}_{\mathrm{k}+1}^{\mathrm{G}} \mathcal{G}_{\mathrm{o}}, \mathrm{L}_{\mathrm{k}}^{\mathrm{p}} A_{\mathrm{o}}$ and $L_{k+1}^{p} \mathcal{G}^{m}$ be defined as above. Then $L_{k}^{p} A_{o} / L_{k+1}^{p} \mathcal{G}_{0}$ and $L_{k}^{p} A / L_{k+1}^{p} \mathcal{G}^{\text {III }}$ admit unique differentiable structures such that the natural projections

$$
\begin{aligned}
& L_{k}^{p} \not A_{o} \rightarrow L_{k}^{p} A_{o} / L_{k+1}^{p} \xi_{o} \\
& L_{k}^{p} \notin L_{k}^{p} \boldsymbol{A} / L_{k+1}^{p} \xi^{m}
\end{aligned}
$$

are smooth maps between Banach manifolds and admit smooth local sections.

```
Similarly if k\geqslant 1 and if \alpha satisfies 0< < < 1 then
```

$c^{k, \alpha} A{ }_{o} c^{k+1, \alpha} \mathcal{g}_{0}$ and $c^{k, \alpha} A / c^{k+1, \alpha} \varphi g^{m}$ admit unique differentiable structures such that the natural projections

$$
\begin{aligned}
& c^{k, \alpha} \not{ }_{0} \rightarrow c^{k, \alpha} A{ }_{o} c^{k+1, \alpha} \mathcal{G}_{0} \\
& c^{k, \alpha} A \rightarrow c^{k, \alpha} A / c^{k+1, \alpha} \varphi^{m}
\end{aligned}
$$

are smooth maps between Banach manifolds and admit smooth local sections.

Proof

We must check that the conditions of theorem II.3.1 are satisfied. First consider $L_{k}^{p} A_{o} /_{k+1}^{p} \mathcal{S}_{0}$. Let $\omega \in L_{k}^{p} A_{0}$. The centre $z(B)$ of the lie algebra of the structural group may be identified with a subalgebra of the Lie algebra $L_{k+1}^{p}(G p)$ of $L_{k+1}^{p} \oint_{g}$, corresponding to the identification of $Z(G)$ with a subgroup of ${ }_{L}^{p} \mathcal{F}_{\mathrm{p}} \boldsymbol{G}$. The kernel of

$$
\begin{aligned}
& \mathrm{dl}^{\omega}: L_{\mathrm{k}+1}^{\mathrm{p}}(\square \mathrm{p}) \rightarrow \mathrm{L}_{\mathrm{k}}^{\mathrm{p}}(\Xi \mathrm{p} \otimes \mathrm{~T} * \mathrm{M}) \\
& \text { is z(D), since } \omega \in{ }_{\mathrm{L}}^{\mathrm{p}} A_{\mathrm{o}} \text {. Let } \\
& \theta: L_{k+1}^{p} \xi_{o} \rightarrow L_{k}^{p} \not \&_{o}
\end{aligned}
$$

be the smooth map sending the coset $Z(G) . \Psi$ to $\Psi * \omega$. The derivative of θ at the identity sends $\xi+z(\Omega)$ to $d^{\omega} \xi$ for all
$\xi \in L_{k+1}^{p}(马 \mathbf{p})$, by theorem V.7.1, part (vii). By lemma 2.1 we
 isomorphically onto a closed complemented subspace of the tangent space to $\mathrm{L}_{\mathrm{k}}^{\mathrm{p}} \boldsymbol{A}_{\mathrm{o}}$ at $\boldsymbol{\omega}$. Thus the first two conditions of theorem II.3.]. are satisfied.

If $\left(\omega_{i}: i \in \mathbb{N}\right)$ is a sequence in $L_{k}^{p} \mathcal{A}_{o}$, if $\left(\Psi_{i}: i \in \mathbb{N}\right)$ is a sequence in $L_{k+1}^{p} \zeta_{o}$ and if the sequences $\left(\omega_{i}\right)$ and $\left(\omega_{i} \cdot \Psi_{i}\right)$ converge in $\mathbb{1}_{k}^{p} A_{o}$ then the sequence $\left(\Psi_{i}\right)$ converges in $L_{k+1}^{p} \mathcal{Y}_{0}$ by theorem VI.4.5. This verifies the remaining condition of theorem II.3.1. From theorem II.3.1 we deduce that ${ }_{\mathrm{L}}^{\mathrm{p}} \boldsymbol{A}_{\mathrm{o}} /{ }_{\mathrm{L}}^{\mathrm{p}+1} \mathcal{G}_{\mathrm{o}}$ admits the required differentiable structure.

The proof for $L_{k}^{p} \mathcal{A} / L_{k+1}^{p} G^{m}$ is similar, using theorem VI.4.6, the fact that $d^{\boldsymbol{\omega}}\left(\mathrm{L}_{\mathrm{k}+1}^{\mathrm{p}}(\boldsymbol{g})\right)$ is a closed complemented subspace of $L_{k}^{p}(\Omega P \otimes T * M)$ (by lemma 2.1) and the fact that

$$
\left\{\xi \in L_{k+1}^{p}(\Xi p): \xi(m)=0\right\}
$$

is a closed subspace of $L_{k+1}^{p}(g p)$ of finite codimension (since $\mathrm{p}(\mathrm{k}+1)>\mathrm{n})$.

The proof when $\omega \in C^{k, \alpha} \mathcal{A}$ or $\omega \in C^{k, \alpha} A$ is exactly analogous.

We have used the elliptic regularity results of chapter VII to prove that conditions (i) and (ii) of theorem II.3.1 are satisfied. The proof that (iii) is satisfied stems ultimately from thaorem VI.3.2 (or corollary VI.3.3). In fact condition (iii) of theorem II.3.1 is satisfied by the actions of groups of L_{k+1}^{p}, C^{k+1} or $C^{k+1, \alpha}$ automorphisms on manifolds of L_{k}^{p}, C^{k} or $C^{k, \alpha}$ connections respectively, provided that k is a non-negative integer and p and α satisfy $l \leqslant p<\infty, 0<\alpha<1$ and $p(k+1)>n$. Moreover if the relevant group acts freely then condition(i) of theorem II.3.I is satisfied in these cases by corollary VI.5.3. It follows that in order to prove a slice theorem for the action of a group of automorphisms on some Banach manifold of connections in any of the above cases it suffices to verify that the action of the group of automorphisms is free and that the image under d^{ω} of the Lie algebra of the group of automorphisms is complemented in the tangent space to the manifold of connections. In some cases it may be possible to prove this by methods other than by using elliptic regularity. In particular if $p=2$ then the above theorem follows from corollary VI. 3.3 and theorem VI.5.3, without the need to use any elliptic regularity results at all, since every closed subspace of a Hilbert space has a closed complement.

§3. Regularity Theorems for Yang-Mi11s Connections

We prove regularity theorems for Yang-Mills connections on principal bundles over compact Riemannian manifolds.

Let $\pi: P \rightarrow M$ be a smooth principal bundle over a compact Riemannian manifold M of dimension n with compact structural group G whose Lie algebra is 9 . Let G be given a invariant Riemannian metric, determining a smooth inner product structure on the adjoint bundle $g p \rightarrow M$, where $\emptyset p=P x{ }_{P d} 9$. This inner product structure is preserved by all connections on $T: P \rightarrow M$, and it determines the covariant codifferential acting on P-valued differential forms.

Let ω be an L_{k}^{p} connection, where k is a nonnegative integer, where p satisfies $1<p<\infty$ and where p satisfies $p \geqslant 2$ in the case when $k=0$. We recall that by theorem 2.2 there exists a smooth connection ω_{o} and an L_{k+1}^{p} principal bundle automorphism I: $P \rightarrow P$ such that

$$
\delta^{\omega_{0}} \tau=\delta^{\omega_{0}+\tau} \tau=0
$$

where

$$
\tau=\Psi{ }^{*} \omega-\omega_{0}
$$

We recall that a Yang-Mills connection ω on $\pi: P \rightarrow M$
is a connection whose curvature $\mathrm{F}^{\boldsymbol{\omega}}$ satisfies the Yang -Mills equation

$$
\delta^{\omega} F^{\omega}=0
$$

If ω_{0} is a smooth connection with curvature F_{0} then

$$
\begin{aligned}
F^{\boldsymbol{\omega}} & =F_{o_{0}}+d^{\omega_{0}} \tau+1 / 2[\tau, \tau] \\
& =F_{o}+d^{\omega} \tau-1 / 2[\tau, \tau]
\end{aligned}
$$

where $\tau=\omega-\omega_{0}$, by proposition $V .7 .1$, using the fact that

$$
\mathrm{d}^{\omega} \tau=\mathrm{d}^{\omega_{0}} \tau+[\tau, \tau]
$$

Thus if ω is a Yang-Mills connection and if τ satisfies the condition

$$
\delta^{\omega} \tau=\delta^{\omega} \tau=0
$$

where $\tau=\omega-\omega_{0}$ for some smooth connection ω_{0}, then

$$
\Delta^{\omega} \tau=\frac{1}{2} \delta^{\omega}[\tau, \tau]-\delta^{\omega} F_{0}
$$

Theorem 3.1

Let $\pi: P \rightarrow M$ be a smooth principal bundle over a compact Riemannian manifold M of dimension n with compact structural group. Let the structural group of the principal bundle be given a biinvariant Riemannian metric. Let k be an integer satisfying $k \geqslant 2$ and let p satisfy the conditions $1<p<\infty$ and $p(k+1)>n$. If ω is an L_{k}^{p} connection on $\pi: P \rightarrow M$ satisfying the Yang-Mills equation, then there exists an \int_{k+1}^{p} principal bundle automorphism $\Psi: P \rightarrow P$ such that $\Psi * \omega$ is smooth.

Proof

In view of theorem 2.2, it suffices to prove that if ω is an L_{k}^{p} connection satisfying the Yang-Mills equation and if ω_{o} is a smooth connection such that

$$
\delta^{\omega_{0}}\left(\omega-\omega_{0}\right)=0
$$

then ω is smooth. Let $\tau=\omega-\omega_{0}$. From the remarks above we see that $\tau \in L_{k}^{p}\left(\square \mathrm{p} \otimes \mathrm{T}^{*} \times \mathrm{M}\right)$ satisfies the equation

$$
\Delta^{\omega} \tau=\frac{1}{2} \delta^{\omega}[\tau, \tau]-\delta^{\omega} F_{0}
$$

where F_{0} is the curvature of ω_{o}. Let ε satisfy the conditions
$0<\varepsilon<\frac{1}{n}$,
$\frac{1}{p}<\frac{k+1}{n}-\varepsilon$, $\varepsilon<\frac{1}{p}$,
and define $q \in(1, \infty)$ by

$$
\frac{1}{q}=\frac{1}{p}-\varepsilon .
$$

Then

$$
\begin{aligned}
\left(\frac{1}{p}-\frac{1}{n}\right)+\left(\frac{1}{p}-\frac{1}{n}\right)-\frac{k-1}{n} & =\frac{1}{p}+\left(\frac{1}{p}-\frac{k+1}{n}\right) \\
& <\frac{1}{q} .
\end{aligned}
$$

Using the Sobolev embedding theorem, theorem II. 2.4 (the Sobolev multiplication theorems) and the condition $p(k+1)>n$, we deduce that

$$
1 / 2[\tau, \tau]-\mathrm{F}_{\mathrm{o}} \in \mathrm{~L}_{\mathrm{k}-1}^{\mathrm{p}}\left(\mathrm{~g}_{\mathrm{p}} \otimes \Lambda^{2} \mathrm{~T} * \mathrm{M}\right)
$$

(see lemma VII.2.2). Hence

$$
\delta^{\omega}\left(\frac{1}{2}[\tau, \tau]-F_{0}\right) \in L_{k-2}^{q}\left(g_{p} \otimes T * M\right)
$$

by proposition VII.3.1. Thus $\Delta^{\omega} \tau \in L_{k-2}^{q}\left(g_{P} \otimes T * M\right)$ and hence $\tau \in L_{k}^{q}\left(g_{p} \otimes \mathrm{~T} * \mathrm{M}\right)$ by theorem VII.3.5.

If we iterate this procedure a finite number of times we see
that ω is an L_{k}^{q} connection for some q satisfying the conditions $1<\mathrm{q}\langle\infty$ and qk$\rangle \mathrm{n}$. But then

$$
1 / 2[\tau, \tau]-F_{o} \in L_{k}^{q}\left(\square_{p}(3) T M\right)
$$

hence $\Delta^{\omega} \tau \in{ }_{k-1}^{q}\left(g_{p} \otimes T * M\right)$, and hence $\tau \in L_{k+1}^{q}\left(g_{p} \otimes T * M\right)$ by theorem VII.3.5. By induction on k it follows that τ is smooth.

Theorem 3.2

Let $\pi: P \rightarrow M$ be a smooth principal bundle over a compact Riemannian manifold M of dimension n with compact structural group. Let the structural group of the principal bundle be given a biinvariant Riemannian metric. Let p satisfy the conditions $1<p<\infty$ and
$2 p>n$, and in the case $n=2$ Let p also satisfy the condition $p>\frac{4}{3}$. If ω is an L_{1}^{p} connection on $\pi: P \rightarrow M$ satisfying the Yang-Mills equation (weakly), then there exists an L_{2}^{P} principal bundle automorphism $\Psi: P \rightarrow P$ such that $\Psi * \omega$ is smooth.

Proof
In view of theorem 2.2 it suffices to prove that if $\boldsymbol{\omega}$ is an L_{1}^{p} connection satisfying the Yang-Mills equation and if ω_{0} is a smooth conncction such that

$$
\delta^{\omega_{0}}\left(\omega-\omega_{0}\right)=0
$$

then ω is smooth. Let $\tau=\omega-\omega_{0}$.
Note that

$$
\frac{2}{p}-\frac{1}{n}<1
$$

When $n \geqslant 3$ this is a consequence of the condition $2 p>n$. When $n=2$ this is a consequence of the condition $p>\frac{4}{3}$. When $n=1$ this is a consequence of the condition $p>1$. Also since $2 p>n$ it follows that

$$
\frac{2}{p}-\frac{1}{n}<\frac{1}{p}+\frac{1}{n}
$$

Hence there exists q satisfying the conditions $1<q<p$ and

$$
\frac{2}{p}-\frac{1}{n} \leqslant \frac{1}{q} \leqslant \frac{1}{p}+\frac{1}{n}
$$

By theorem II.2.4 (the Sobolev Multiplication theorems) it follows that
$1 / 2 L \tau, \tau_{-}-F_{0} \in{ }_{1}^{q}\left(\Delta p \otimes \wedge^{2} T^{*} * M\right)$.
$\Delta^{\omega} \tau \in L^{q}(\square p \otimes T * M)$ by proposition VII.J.I, since ω is a
Yang-Mills connection. Hence $\tau \in L_{2}^{q}(g \mathbb{P} \otimes T * M)$ by theorem VII.3.5.
But $3 q>n$, hence τ is smooth by the proof of the previous theorem.

Theorem 3.3

Let $\pi: P \rightarrow M$ be a smooth principal bundle over a compact Riemannian manifold M of dimension n with compact structural group. Let the structural group of the principal bundle de given a biinvariant Riemannian metric. Let ω be a connection on $\pi: P \rightarrow M$ with the following properties:
(i) ω is an L^{p} connection for some p satisfying the condition $n<p<\infty \quad$,
(ii) ω is an L_{1}^{q} connection for some q satisfying the condition

$$
\frac{1}{q} \leq 1-\frac{1}{p}
$$

(iii) ω satisfies the Yang-Mills equation (weakly),
(iv) there exists a smooth connection ω_{0} such that

$$
\delta^{\omega_{0}}\left(\omega-\omega_{0}\right)=0
$$

Then $\boldsymbol{\omega}$ is smooth.

Proof

First we show that ω is an L_{1}^{p} connection. If $q \geqslant p$ this is trivial. Otherwise $p>2$. Let ε satisfy the conditions

$$
\begin{aligned}
& 0<\varepsilon<\frac{1}{n} \\
& \frac{1}{p}<\frac{1}{n}-\varepsilon \\
& \frac{1}{q}-\varepsilon \geqslant \frac{1}{p}
\end{aligned}
$$

and let

$$
\frac{1}{r}=\frac{1}{q}-\varepsilon
$$

If $\tau=\omega-\omega_{0}$ then

$$
1 / 2[\tau, \tau]-F_{o} \in L^{r}\left(\emptyset p \otimes \wedge^{2} \Gamma^{1} N 1\right)
$$

by lemma VII.2.2, where F_{o} is the curvature of ω_{0}. Hence

$$
\delta^{\omega}\left(1 / 2[\tau, \tau]-F_{o}\right) \in 1_{-1}^{r}\left(\Delta p \otimes \wedge^{2} T * M\right)
$$

by proposition VII.3.1. Hence $\tau \in L_{1}^{r}(\theta p \otimes T * M)$ by theorem VII.3.5. By a finite number of iterations of this procedure we see that $\tau \in L_{1}^{p}(g p \otimes T * M)$. Since $p>n$ it follows that $\tau \in L_{k}^{p}\left(g_{P} \otimes T * M\right)$ for all k, by induction on k as in the conclusion of the proof of theorem 3.1.

84. Reguiarity of Yang-Mills-Higgs Systems

We give an informal discussion of regularity theorems for Yang-Mills-Higgs systems corresponding to the results proved in $\$ 3$.

Let $\pi: P \rightarrow M$ be a smooth principal bundle over a compact smooth Riemannian manifold M of dimension n with compact structural group G, and let G be given a biinvariant Riemannian metric. Let 9 be the Lie algebra of G and let $g P \rightarrow M$ be the adjoint bundle of $\pi: P \rightarrow M$, where $g P=P X_{\text {Ad }} \square$. Let $T_{1}: E \rightarrow M$ be a smooth vector bundle associated to $\pi: P \rightarrow M$ and let $\langle.,\rangle:. E \otimes \in \rightarrow \mathbb{R}$ be a smooth inner product structure on E which is preserved by all connections on $\pi: P \rightarrow M$.

Let ω be a connection on $\pi: P \rightarrow M$ and let $\Phi: M \rightarrow E$ be a section of $\pi: E \rightarrow M$. The Yang-Mills-Higgs equations are the Euler-Lagrange equations for the functional

$$
I(\omega, \Phi)=\int_{M}\left(\left\langle F^{\omega}, F^{\omega}\right\rangle+\left\langle d^{\omega} \Phi, d^{\omega} \Phi\right\rangle-V(|\Phi|)\right) d \mu
$$

where μ is the Riemannian volume measure on M, where $F \omega$ is the curvature of ω and where $v(|\Phi|$) is an even polynomial in $|\Phi|$. In the standard Higgs model, as used in the Salam-Weinberg unification of the electromagnetic and the weak forces, the potential V is given by

$$
V(|\Phi|)=\frac{\lambda}{4!}\left(|\Phi|^{2}-c^{2}\right)^{2}
$$

for some constants λ and c in order to induce spontaneous symmetry breaking in the quantum ficld theory with the above Lagrangian via the liggs mechanism (of course quantum field theories occurring in nature are formulated in the first instance in Minkowski space-time rather than on a Riemannian manifold). Here we shall allow V to be arbitrary, subject to constraints on the degree d of the polynomial $\mathrm{v}(\mid \Phi)$)

The Yang-Mills-Higgs equations have the form

$$
\begin{aligned}
& \partial^{\omega} F^{\omega}=j\left(\Phi \otimes d^{\omega} \Phi\right) \\
& \Delta^{\omega} \Phi+v(\Phi)=0
\end{aligned}
$$

where

$$
j: E \otimes \quad(E \otimes \quad T * M) \rightarrow \Delta P \otimes \quad T * M
$$

is a smooth vector bundle morphism and where $U(\Phi)$, the derivative of $v(|\Phi|$) with respect to Φ, is a polynomial of degree d - 1 .

We recall that if $p(k+1)>n$ then the $g r o u p ~ L_{k+1}^{p} \varphi$ of L_{k+1}^{p} principal bundle automorphisms of $\pi: P \rightarrow M \operatorname{acts}$ on $L_{L}^{p}(E)$ on the left for all L satisfying $0 \leqslant L \leqslant k+1$. If ω is an L_{k}^{p} connection, Φ is an L_{k}^{p} section of $E \rightarrow M$ and (ω, Φ) satisfies the Yang-Mills-Higgs equations then so does ($\Psi^{*} \omega, \Psi^{-1} \Phi$) for all ${ }_{L_{k+1}}^{p}$ principal bundle automorphisms $\Psi: P \rightarrow P$.

If the degree d of the potential $V(|\Phi|)$ does not exceed 4 , then one can prove regularity theorems for Yang-Mills-Higgs systems exactly analogous to theorems $3.1,3.2$ and 3.3 for Yang-Mil1s connections. For instance suppose that ω is an L_{k}^{p} connection and that Φ is an L_{k}^{p} section of $E \rightarrow M$, where k is an integer satisfying $k \geqslant 2$ and where p satisfies $1<p<\infty$ and $p(k+1)>n$, where n is the dimension of M. Suppose also that there exists a smooth connection ω_{o} such that

$$
\delta^{\omega_{0}}\left(\omega-\omega_{0}\right)=0 .
$$

Let $\tau=\omega-\omega_{0}$. The Yang-Mil1s-Higgs equations have the form

$$
\begin{aligned}
& \Delta^{\omega} \tau=j\left(\Phi \otimes d^{\omega} \Phi\right)+\frac{1}{2} \delta^{\omega}[r, \tau]-F_{0}, \\
& \Delta^{\omega} \Phi=U(\Phi)
\end{aligned}
$$

where F_{o} is the curvature of ω_{o}. Let ε satisfy the conditions

$$
\begin{aligned}
& 0<\varepsilon<\frac{1}{n} \\
& \frac{1}{\mathrm{p}}<\frac{\mathrm{k}+1}{n}-\varepsilon \\
& \varepsilon<\frac{1}{\mathrm{p}}
\end{aligned}
$$

and dofine $q \in(1, \infty)$ by

$$
\frac{1}{q}=\frac{1}{p}-\varepsilon
$$

Then

$$
\delta^{\omega}\left(1 / 2[\tau, \tau]-F_{0}\right) \in L_{k-2}^{q}\left(g_{p} \otimes T * M\right)
$$

as in the proof of theorem 3.1. Now $d^{\omega} \Phi \in L_{k-1}^{p}(E \otimes T * M)$ by proposition VII.3.1, hence

$$
j\left(\Phi \otimes d^{\omega} \Phi\right) \in L_{k-2}^{q}(\square p \otimes T * M)
$$

by lemma VII. 2.2 , since $\Phi \in \mathrm{L}_{\mathrm{k}}^{\mathrm{p}}(\mathrm{E})$ and $\mathrm{p}(\mathrm{k}+1)>n$. Hence $\Delta^{\omega} \tau \in L_{k-2}^{q}(\Xi p \otimes T * M)$. Also the degree of $U(\Phi)$ does not exceed 3 and since $p(k+1)>n$ it follows that $U(\Phi) \in L_{k-2}^{p}(E)$, by two applications of lemma VII.2.2. Thus $\Delta^{\boldsymbol{\omega}} \Phi \in L_{k-2}^{q}(E)$. Hence $\tau \in L_{k}^{q}(马 p \otimes T * M)$ and $\Phi \in L_{k}^{q}(E)$ by theorem VII.3.5.

By iterating this procedure a finite number of times we see that $\tau \in L_{k}^{q}(g p \otimes \Gamma * M)$ and $\Phi \in L_{k}^{q}(E)$ for some $q \in(1, \infty)$ satisfying qk> n. As in theorem 3.1, one may easily show that $\tau \in L_{k+1}^{q}(马 p \otimes T * M)$ and $\Phi \in L_{k+1}^{q}(E)$ and hence show by induction that τ and Φ are smooth. Thus we can prove the analogue of theorem 3.1 for Yang-Mills-Higgs systems the degree of whose potential does not exceed 4. Similar analogues of 3.2 and 3.3 may be proved.

When the degree d of the potential exceeds 4 the hypotheses of these regularity theorems must be strengthened. In addition to the condition $p(k+1)>n$ in the above proof we must also require that p be sufficiently large in order that U may map $L_{k}^{p}(E)$ to $L_{k-2}^{q}(E)$ for some q satisfying

$$
\frac{1}{p}>\frac{1}{q}>\frac{1}{p}-\frac{1}{n}
$$

It is sufficient to require that

$$
\frac{1}{p}-\frac{k-2}{n}>(d-1)\left(\frac{1}{p}-\frac{k}{n}\right)
$$

by the Sobolev embedding and multiplication theorems. Thus we require that
$p\left(k+\frac{2}{d-2}\right)>n$
in order to show that an L_{k}^{p} Yang-Mills-Higgs system with $d>4$ and $k \geqslant 1$ may be transformed to a smooth Yang-Mi11s-Higgs system by an L_{k+1}^{p} principal bundle automorphism, where p must also satisfy the condition $\mathrm{p}>\frac{4}{3}$ in the case when $\mathrm{n}=2$ and $\mathrm{k}=1$.

E1. Introduction

Let $\pi: P \rightarrow M$ be a smooth principal bundle over a Riemannian manifold M and let ω be an Ehresmann connection on $\pi: P \rightarrow M$ whose holonomy group is compact. In theorem 2.1 wo shall show that, given $m \in M$, there exists a constant $L_{\omega, m}$ such that every element of the holonomy group of ω may be generated by a loop based at m of length not exceeding $L^{\omega} \boldsymbol{\omega}, m$. In essence, the proof is by showing that every element of the holonomy group of ω is generated by a loop based at m which is a concatenation of lassos and their reversals, where the lassos are takon from a finite set of one-parameter families of lassos which generate the Lie algebra of the holonomy group of $\boldsymbol{\omega}$. The existence of such a set of one-parameter families of lassos is guaranteed by the Ambrose-Singer holonomy theorem.

We give two applications of this theorem in $\S 3$. We show that, given any continuously differentiable section of a vector bunde associated to $\pi: P \rightarrow M$ there exists a covariantly constant section whose distance from the given section is bounded by some constant multiple of the supremum of the magnitude of the covariant derivative of the given section (theorem 3.1). A similar result (theorem 3.3) is proved for principal bundle automorphisms.

The main problem is, of course, to estimate $L_{\omega, m}$. The proof of theorem 2.1 shows the existence of $L_{\boldsymbol{\omega}}$,m but provides no effective means of calculating jt in general. Indeed one can easily visualise pathological examples of connections where the stalks of the lassos, whose existence is guaranteed by the Ambrose-Singer holonomy theorem, wander around the base manifold of the bundle in a complicated manner.

However if one imposes suitable restrictions on the curvature tensor of the connection and its covariant derivatives it may be possible to estimatc ${ }^{L} \omega, m$. For example one could place restrictions on the curvature so that the holunomy gioup was generated by cirves in any arbitrarily small neighbourhood of some given point. An interesting problem might be to study the Levi-civita connection on a Riemannian manifold in this way.
§2. The Length of Loops generating the Holonomy Group
In this section we prove a theorem which provides an upper bound on the length of loops required to generate any element of the holonomy group of a smooth Ehresmann connection on a principal bundle $\Pi: P \rightarrow M$ over a compact Riemaninian manifold M, provided that the holonomy group is a compact subgroup of the structural group.

Theorem 2.1

Let $\boldsymbol{\omega}$ be a smooth Ehresmann connection on a smooth principal
bundle $\pi: P \rightarrow M$ over a Riemannian manifold M with the property that the holonomy group of ω is compact. Let $m \in M$. Then there exists a constant $L_{\omega, m}$, depending on ω and m, with the following property: given any element of the holonomy group attached to some element of the fibre of $\pi: P \rightarrow M$ over m, there exists a piecewise smooth loop, of length not exceeding L_{ω}, m, beginning and ending at m which generates the required element of the holonomy group.

Proof

First we introduce some terminology. A piecewise smooth curve in M is a piecewise smooth map $\mathrm{c}: \underline{\bar{a}}, \underline{b} \bar{\gamma} \rightarrow \mathrm{M}$. A piecewise smooth path in M is an equivalence class of piecewise smooth curves in M where two curves are equivalent if and only if each is a reparameterization of the other. A lorp based at $m \in M$ is a path beginning and ending at $m \in M$. Given paths in M, represented by curves
$c_{1}:\left[\bar{a}, \underline{x} \bar{T} \rightarrow M\right.$ and $c_{2}: \underline{X}, \underline{b} \bar{T} \rightarrow M$, the concatenation $c_{1} * c_{2}$ of c_{1} and c_{2} is the path represented by the curve $c_{1} * c_{2}:[\bar{a}, \underline{b}] \rightarrow M$, where

$$
\begin{aligned}
& \left(c_{1} * c_{2}\right) \mid \underline{a}, \underline{x} \overline{7}=c_{1}, \\
& \left(c_{1} * c_{2}\right) \mid \underline{x}, \underline{b} \bar{T}=c_{2} .
\end{aligned}
$$

Given a path, represented by the curve c : $\overline{0}, \underline{1} 7 \rightarrow \mathrm{M}$ the reverse $c \leftarrow$ of c is represented by the curve $c \leftarrow: \underline{I}, \underline{1} \longrightarrow \mathrm{M}$ defined by

$$
c \leftarrow(t)=c(1-t)
$$

for all $t \in \mathbb{O}, \underline{1}$.
Now consider curves in the structural group G of $\pi: P \rightarrow M$.
If $\gamma_{1}:(-\varepsilon, \varepsilon) \rightarrow G$ and $\gamma_{2}:(-\varepsilon, \varepsilon) \rightarrow G$ are continuously differentiable curves in G then the product curve $\gamma_{1} \cdot \gamma_{2}:(-\varepsilon, \varepsilon) \rightarrow G$ and the inverse curve $\gamma_{1}^{-1}:(-\varepsilon, \varepsilon) \rightarrow G$ are defined by

$$
\begin{aligned}
\left(\gamma_{1} \cdot \gamma_{2}\right)(t) & =\gamma_{1}(t) \cdot \gamma_{2}(t) \\
\gamma_{1}^{-1}(t) & =\gamma_{1}(t)^{-1}
\end{aligned}
$$

for all $t \in(-\Sigma, \varepsilon)$. Let g be the Lie algebra of G. If
$\gamma_{1}(0)=\gamma_{2}(0)=e$, where e is the identity element of G and if x_{1} and x_{2} are tangent to γ_{1} and γ_{2} at $t=0$, then $x_{1}+x_{2}$ is tangent to $\gamma_{1} \cdot \gamma_{2}$ at $t=0$ and $-x_{1}$ is tangent to γ_{1}^{-1} at $t=0$. Let us also define a curve

$$
\operatorname{comm}\left(\gamma_{1}, \gamma_{2}\right):\left(-\varepsilon^{2}, \varepsilon^{2}\right) \rightarrow G
$$

by the conditions that

$$
\operatorname{comm}\left(\gamma_{1}, \gamma_{2}\right)(t)=\gamma_{1}(\sqrt{t})^{-1} \gamma_{2}(\sqrt{t})^{-1} \gamma_{1}(\sqrt{t}) \gamma_{2}(\sqrt{t})
$$

when $0 \leq t<\varepsilon^{2}$ and

$$
\operatorname{comm}\left(\gamma_{1}, \gamma_{2}\right)(t)=\gamma_{1}(\sqrt{-t})^{-1} \gamma_{2}(\sqrt{-t}) \gamma_{1}(\sqrt{-t}) \gamma_{2}(\sqrt{-t})^{-1}
$$

when $-\varepsilon^{2}<t \leqslant 0$. If γ_{1} and γ_{2} are continuously differentiable,

$$
\gamma_{1}(0)=\gamma_{2}(0)=e,
$$

and if x_{1} and x_{2} are the vectors in g tangent to γ_{1} and γ_{2} at $t=0$ then comm $\left(\gamma_{1}, \gamma_{2}\right)$ is continuously differentiable and $\left[x_{1}, x_{2}\right]$ is tangent to comm (γ_{1}, γ_{2}) at $t=0$.

Let $m, m^{\prime} \in M$ and let c be a piecewise smooth path from m to m^{\prime}. We define a one-parameter family of lassos based at mith stalk c and vertex m^{\prime} to be a family $\left\{\lambda^{t}: t \in(-\varepsilon, \varepsilon)\right\}$ of loops bascd at m with the property that there exists a one-parameter family $\left\{c^{t}: t \in(-\varepsilon, \varepsilon)\right\}$ of loops based at m' such that

$$
\lambda^{t}=c * c^{t} * c^{\leftarrow},
$$

where the family of $\left\{c^{t}\right\}$ satisfies the following conditions: c^{0} is the constant path at m^{\prime} and the paths c^{t} are represented by a family of curves $\left.c^{t}: \overline{0}, \underline{1}\right] \rightarrow \mathbb{M}$ with the property that the map from $(-\varepsilon, \varepsilon) \times \underline{0}, \underline{1}$ to M sending ($t, u)$ to $c^{t}(u)$ is piecewise smooth and the map from ($-\varepsilon, \varepsilon$) to G sending t to the element of the holonomy group of ω generated by c^{t} is continuously differentiable.

Let $\left\{\mathrm{c}^{\mathrm{t}}: \mathrm{t} \in(-\boldsymbol{\varepsilon}, \boldsymbol{\varepsilon})\right\}$ be a one-parameter family of loops based at m with the property that c_{o} generates the identity element of the holonomy group H_{p} of $\boldsymbol{\omega}$ attached to p, where p is an element of the fibre of $\pi: p \rightarrow M$ over m. We say that $\left\{c^{t}: t \in(-\varepsilon, \varepsilon)\right\}$ generates the short curve $\gamma:(-\varepsilon, \varepsilon) \rightarrow H_{p}$ if and only if $\gamma(t)$ is the element of H_{p} generated by c^{t} for all $t \in(-\varepsilon, \varepsilon)$. Under these circumstances we say that $\left\{\mathrm{c}^{t}\right\}$ generates $x \in F_{\mathrm{p}}$ where x is the element of the Lie algebra $\boldsymbol{F}_{\mathrm{p}}$ of the holonomy group H_{p} which is tangent to $\gamma:(-\varepsilon, \varepsilon) \rightarrow H_{p}$ at $t=0$.
$\operatorname{Let}\left\{c_{1}{ }^{t}: t \in(-\varepsilon, \varepsilon)\right\}$ and $\left\{c_{2}{ }^{t}: t \in(-\varepsilon, \varepsilon)\right.$ be onc-parameter families of loops based at m generating curves

$$
\gamma_{1}:(-\varepsilon, \varepsilon) \rightarrow H_{p} \text { and } \gamma_{2}:(-\varepsilon, \varepsilon) \rightarrow H_{\mathrm{p}} \text { respectively whose }
$$ tangent vectors at $t=0$ are $x_{1} \in F_{p}$ and $x_{2} \in \mathcal{F}_{p}$. Then the oneparameter families $\left\{c_{1}{ }^{t} * c_{2}{ }^{t}: t \in(-\varepsilon, \varepsilon)\right\}$ and

$\left\{c_{1}{ }^{t \leftarrow}: t \in(-\varepsilon, \varepsilon)\right.$ generate curves $\gamma_{2} \cdot \gamma_{1}:(-\varepsilon, \varepsilon) \rightarrow H_{p}$
and $\gamma_{1}^{-1}:(-\varepsilon, \varepsilon) \rightarrow H_{p}$, and hence gencrate $x_{1}+x_{2} \in F_{p}$ and $-x_{1} \in \zeta_{p}$ respectively. We see that if $t \geqslant 0$ then $\operatorname{comm}\left(\gamma_{1}, \gamma_{2}\right)\left(t^{2}\right)$ is generated by

$$
c_{2}{ }^{\mathrm{t}} * \mathrm{c}_{1}{ }^{\mathrm{t}} * \mathrm{c}_{2}^{\mathrm{t}} \leftarrow * \mathrm{c}_{1}^{\mathrm{t}} \leftarrow
$$

and comm $\left(\gamma_{1}, \gamma_{2}\right)\left(-t^{2}\right)$ is generated by

$$
\mathrm{c}_{2}^{\mathrm{t} \leftarrow} * \mathrm{c}_{1}^{\mathrm{t}} * \mathrm{c}_{2}^{\mathrm{t}} * \mathrm{c}_{1}^{\mathrm{t} \leftarrow}
$$

We now proceed with the proof of the theorem. Let p be an element of the fibre of $\pi: P \rightarrow M$ over m, and $\operatorname{let} B_{p}$ be the holonomy bundle of the connection ω attached to p. By the AmbroseSinger holonomy theorem there exist $\left\{p_{i} \in B_{p}: i=1, \ldots, d\right\}$ and vectors $U_{i} \in T_{p_{i}} P, V_{i} \in T_{p_{i}} P$ such that the Lie algebra $\mathcal{F} p$ of the holonomy group H_{p} of ω attached to p is generated by $\left\{F^{\boldsymbol{\omega}}\left(U_{i} \wedge V_{i}\right): i=1, \ldots, d\right\}$, where $F^{\omega}: \wedge^{2} \mathrm{TP} \rightarrow ⿹$ is the curvature of $\boldsymbol{\omega}$. Expressed geometrically, this implies that there exist one-parameter families $\left\{\lambda_{i}^{t}: t \in(-\varepsilon, \varepsilon)\right\}$ of lassos with vertices $\pi\left(p_{i}\right)$ such that the elements $\left\{x_{i} \in \mathcal{F}_{p}: i=1, \ldots, d\right\}$ generated by the $\left\{\lambda_{i}^{t}\right\}$ form a set of generators for \mathcal{F}_{p}. Let $\gamma_{i}:(-\varepsilon, \varepsilon) \rightarrow H_{p}$ be the curve generated by the one-parameter family $\left\{\lambda_{i}^{t}: t \in(-\boldsymbol{\mathcal { E }}, \boldsymbol{\varepsilon})\right\}$ of lassos. Let L_{1} be an upper bound on the length of the lassos in

$$
\left\{\lambda_{i}^{t}: t \in(-\varepsilon, \varepsilon), i=1, \ldots, d\right\}
$$

We may construct a basis ($Y_{j}: j=1, \ldots, r$) of the vector space \mathcal{F}_{p} whose elcments are (iterated) Lic brackets of elements of the set $\left\{X_{i}: i=1, \ldots, d\right\}$. The vectors Y_{j} are tangent to continuously differentiable curves $\beta_{j}:(-\delta, \delta) \rightarrow H_{p}$ at $t=0$, where the curves $\left\{\beta_{j}: j=1, \ldots, r\right\}$ are constructed out of the curves $\left\{\gamma_{i}: i=1, \ldots, d\right\}$ using the operation comm defined above.

Since every element of the image of β_{j} for $j=1$, ..., r may be generated by a concatenation of lassos in

$$
\left\{\lambda_{i}^{t}: t \in(-\varepsilon, \varepsilon), i=1, \ldots, d\right\}
$$

and their reverses, and since the length of these lassos does not exceed L_{1}, it follows that there exists a constant L_{2} such that, given $t \in(-\delta, \delta)$ and an integer j in the range $1 \leq j \leq r$, we can find a loop $c^{t}{ }_{j}$ based at m of length not exceeding L_{2} which generates $\beta_{j}(t)$.

Define a continuously differentiable map

$$
\varphi:(-\delta, \delta)^{r} \rightarrow H_{p}
$$

sending (t_{1}, \ldots, t_{r}) to $\beta_{1}\left(t_{1}\right) \ldots \beta_{r}\left(t_{r}\right)$. The derivative of φ at the origin is an isomorphism $\operatorname{since}\left\{Y_{j}: j=1, \ldots, r\right\}$ is a basis of F^{p}. Thus the image of φ contains an open neighbourhood of the identity, by the inverse function theorem. But every element of the image of φ is generated by a concatenation of r loops based at m, each of length not exceeding L_{2}. Thus there exists a neighbourhood N of the identity in H_{F} such that every element of N is generated by a loop based at m of length not exceeding rL_{2}.

Since H_{p} is compact, there exists a positive integer k such that every clement of the identity component of H_{p} is of the form γ^{k} for some $\gamma \in N$, and thus may be generated by a loop of length not exceeding krL_{2}. Also H_{p} has finitely many components. Thus we may find representatives h_{1}, \ldots, h_{m} in each coset of the identity component. Then there exists L_{3} such that h_{1}, \ldots, h_{m} may all be generated by a loop of length not exceeding L_{3}. Since every element of H_{p} is of the form $h_{i} \cdot \gamma$ for some h_{i} and for some element γ of the identity component, every element of H_{p} may be generated by a loop of length not exceeding $L \boldsymbol{w}, m$, where

$$
L_{\boldsymbol{\omega}, \mathrm{ml}}=\mathrm{krl}_{2}+\mathrm{L}_{3} .
$$

Note that if the holonomy group of ω is not compact then for all $m \in M$ and for all compact subsets K of the holonomy group attached to some element of the fibre of $\pi: P \rightarrow M$ over m there exists a constant $\mathcal{L}_{\omega, m}, k$ such that every element of k may be generated by a loop of length not exceeding $L_{\omega, m, k}$. For as in the above proof we sec that there exists a neighbourhood N of the identity in the holonomy group and a constant L' such that every element of N may be generated by a loop of length not exceeding L^{\prime}. The required result follows easily on noting that K is covered by a finite number of translates of the neighbourhood N.

S3. Further Inequalities for Sections of Fibre Bundles
We present two theorems in which theorem 2.1 of the previous section is applied to prove inequalities satisfied by sections of some fibre bundle associated to a given principal bundle.

Let H be a compact Lie group and let $H \rightarrow$ End (V) be a representation of H. Let $\langle.,$.$\rangle be an H-invariant inner product on V$. Let V_{O} be the subspace on which H acts trivially and let $V_{0} \perp$ be its orthogonal complement. Then there exists a constant λ such that
$|v| \leqslant \lambda \sup _{h \in H}|h \cdot v-v|$
for all $v \in V_{o}^{\perp}$. For $1 e t S$ be the unit sphere in V_{o}^{\perp}. Then $f: S \rightarrow \mathbb{R}$ is continuous, where

$$
f(v)=\sup _{h \in H}|h \cdot v-v|
$$

since H is compact. Moreover $f(v)>0$ for all $v \in S$ hence there exists a constant λ such that $f(v) \geqslant \lambda^{-1}$, since s is compact. This is the required constant.

We recall that if w is a smooth connection on a principal bundle $\pi: P \rightarrow M$ over a Riemannian manifold M and if the holonomy group of ω is compact then for all $m \in M$ there exists a constant ${ }^{L} \omega, m$ such that every element of the holonomy group of ω attached to an clement of the fibre of $\pi: P \rightarrow M$ over m may be generated by a loop based at m of length not exceeding $L_{\omega, m}$, by theorem 2.1 . Theorem 3.1
let $\pi: P \rightarrow M$ bc a principal bundle over a Riemannian manifold M whose diameter diam(M) is finite. Let ω be a smooth Ehresmann connection on $\pi: P \rightarrow M$ whose holonomy group is compact. lect $m \in \mathbb{M}$ and let ${ }^{L} \boldsymbol{\omega}, m$ be an upper bound on the length of loops based at m required to generate the holonomy group of ω.
leet $\pi_{i}: E \rightarrow M$ be a vector bundle associated to $T: P \rightarrow M$
with fibre V, and let V be given an inner product invariant under the action of the structural group of $\pi: P \rightarrow M$. Let $\|$. \| denote the canonical C° norm on $C^{\circ}(E)$ and on $C^{\circ}(E \otimes T * M)$ determined by the inner product on V and the Ricmamian metric on ir. Let V_{o} be the subspace of V on which the holonomy group H of ω acts trivially and let λ be a constant such that

$$
|v| \leqslant \lambda \sup _{h \in H}|h \cdot v-v|
$$

for all $v \in V_{o}^{\perp}$. Then for all $\mathrm{C}^{1} \operatorname{sections} \sigma: M \rightarrow E$ of $\Pi_{1}: E \rightarrow M$ there exists a section $\sigma_{0}: M \rightarrow E$ such that

$$
d^{\omega} \sigma_{0}=0
$$

and

$$
\left\|\sigma-\sigma_{0}\right\| \leq\left(\lambda L_{\omega, m}+\operatorname{diam}_{\operatorname{lam}}(M)\right)\left\|d^{\omega} \sigma\right\| .
$$

Proof
Let $\quad 1.1 \mathrm{~m}$ be the norm on the fibre of $\pi_{:}: E \rightarrow M$ over m determined by the inner product on V. Let p be an element of the fibre of $\pi: P \rightarrow M$ over m and let γ be an element of the holonomy group H of ω attached to p. Then there exists a loop $c: \bar{D}, \iota_{-} \bar{l} \rightarrow M$ based at m of length not exceeding L_{ω}, m and parameterized by arclength s which generates γ. Then

$$
\begin{aligned}
|\gamma \cdot \sigma(m)-\sigma(m)|_{m} & \leqslant \int_{c}\left|d^{\omega} \sigma\right| d s \\
& \leqslant L_{\omega, m}\left\|d^{\omega} \sigma\right\|
\end{aligned}
$$

by theorem V.6.6. But there exists $e_{o} \in \pi_{1}^{-1}(m)$ such that $\gamma \cdot e_{o}=e_{o}$ for all $\gamma \in H$ and such that $\sigma(m)-c_{o}$ is orthogonal to the subspace of $\pi_{1}^{-1}(m)$ on which $I l$ acts trivially. Then

$$
\begin{aligned}
\left|\sigma(m)-e_{0}\right| & \leqslant \lambda \sup _{\gamma}|\gamma \cdot \sigma(m)-\sigma(m)| \\
& \leqslant \lambda L_{\omega, m}\left\|d^{\omega} \sigma\right\| .
\end{aligned}
$$

But since $\gamma \cdot e_{0}=c_{o}$ for all $\gamma \in \|$ there exists a mique section $\sigma_{0}: M \rightarrow E$ such that $d^{\omega} \sigma_{0}=0$ and $\sigma_{0}(m)=e_{0}$. Then

$$
\begin{aligned}
\left\|\sigma-\sigma_{0}\right\| & \leqslant\left|\sigma(m)-\sigma_{0}(m)\right|_{m}+\operatorname{diam}(M)\left\|d^{\omega} \sigma-d^{\omega} \sigma_{0}\right\| \\
& \leqslant\left(\lambda L_{\omega} \|, m+\operatorname{diam}(M)\right)\left\|d^{\omega} \sigma\right\|
\end{aligned}
$$

by theorem VI.3.4.

One can also combine the inequality

$$
\left|\sigma(m)-\sigma_{0}(m)\right|_{m} \leqslant \lambda L_{\omega}, m\left\|d^{\omega} \sigma\right\|
$$

with the inequalities stated in theorem VI. 5.2 , provided that in
case (i) of VI.5.2, p and k satisfy the stronger condition $p k>d i m M$.
A result for principal bundle automorphisms corresponding to
theorem 3.1 will be proved using the following lemma.
Lemma 3.2
Let G be a compact Lie group with a biinvariant Riemannian metric whose distance function is $\rho: G x G \rightarrow \mathbb{R}$. Let if be a closed subgroup of G and let $C(I I)$ be the centralizer of H. For all $\gamma \in G$ define

$$
\rho(\gamma, C(H))=\operatorname{lnf}_{\eta \in C(H)} \rho(\gamma, \eta)
$$

Then there exists a positive constant A such that

$$
\rho(\gamma, C(H)) \leqslant A \sup _{h \in H} \rho\left(h^{-1} \gamma h, \gamma\right)
$$

Proof
Let \square be the Lie algebra of G, let

$$
v_{o}=\left\{X \in D: \Lambda d\left(h^{-1}\right) X=X \text { for all } h \in H\right\}
$$

and let V_{0}^{\perp} be the orthogonal complement of V_{o}. We have seen that there exists a constant λ such that

$$
|x| \leqslant \lambda \sup _{h \in H}\left|\operatorname{Ad}\left(h^{-1}\right) x-x\right|
$$

for all $X \in V_{O}^{\perp}$. Also given $\varepsilon>0$ there exists $\delta>0$ such that

$$
|X-Y| \leqslant(1+\varepsilon) \rho(\exp X, \exp Y)
$$

whenever $|X|<\delta$ and $|Y|<\delta$. Thus if $X \in V_{0}^{\perp}$ and
$|x|<\delta \quad$ then

$$
|x| \leqslant(1+\varepsilon) \lambda \sup _{h \in 11}\left(h^{-1}(\exp x) h, \exp x\right)
$$

Now suppose that $\gamma \in G$ and that

$$
0<\rho(\gamma, c(I I))<\delta
$$

Since H is compact, there exists an element $\eta_{0} \in C(H)$ such that

$$
\rho\left(\gamma, \eta_{0}\right)=\rho(\gamma, C(H))
$$

Then

$$
\rho\left(\gamma \eta_{0}^{-1}, e\right)=\rho(\gamma, C(H))
$$

since ρ is bijnvariant. But then $\gamma \eta_{0}^{-1}$ is joined to o by a length minimizing geodesic of length strictly less than δ whose tangent vector at e is orthogonal to the tangent space V_{o} to $\mathrm{C}(\mathrm{H})$ at e . Thus

$$
\gamma \eta_{0}^{-i}=\exp x
$$

for some $X \in V_{0}^{\perp}$ satisfying $|x|<\delta$. Then

$$
\begin{aligned}
\rho(\gamma, C(H)) & =\rho(\exp x, e) \cdot \\
& =|x| \\
& \leq(1+\varepsilon) \lambda \sup _{h \in H}\left(h^{-1} \gamma \eta_{0}^{-1} h, \gamma \eta_{0}^{-1}\right) \\
& \leqslant(1+\varepsilon) \lambda \sup _{h \in H}\left(h^{-1} \gamma h \eta_{0}^{-1}, \gamma \eta_{0}^{-1}\right) \\
& \leqslant(1+\varepsilon) \lambda \sup _{h \in H}\left(h^{-1} \gamma h, \gamma\right) .
\end{aligned}
$$

Define $f: G \backslash C(H) \rightarrow \mathbb{R}$ by

$$
f(\gamma)=\sup _{h \in H} \frac{\rho\left(h^{-1} \gamma h, \gamma\right)}{\rho(\gamma, C(H))}
$$

f is continuous since H is compact. Also we have just shown that

$$
f(\gamma) \geqslant \frac{1}{(1+\varepsilon) \lambda}
$$

whenever $\rho(\gamma, C(H))<\delta$, Since G is compact there exists a constant A such that

$$
\Lambda \geqslant(1+\varepsilon) \lambda
$$

and such that $f(\gamma)>\Lambda^{-1}$ for all γ satisfying

$$
\rho(\gamma, c(H)) \geqslant 1 / 2 \delta
$$

Then

$$
\rho(\gamma, C(H)) \leqslant A \sup _{h \in H} \rho\left(h^{-1} \gamma h, \gamma\right)
$$

for all $\gamma \in G$.

Let $\Pi: P \rightarrow M$ be a smooth principal bundle with compact
structural group G. Let G be given a biinvariant Riemannian metric with distance function $\rho: G x G \rightarrow \mathbb{R}$. We recall that this determines a biinvariant distance function $\rho_{m}: \pi_{a d}^{-1}(m) \times \pi_{a d}^{-1}(m) \rightarrow \mathbb{R}$ on the fibre π ad $^{-1}(m)$ of the adjoint bundle π ad $:$ Gp \rightarrow over m for all $m \in M$, where $G P=P \times$ ad G. This distance function has the property that the group isomorphism from G to $T^{-1}(m)$ determined by any element of $\pi: P \rightarrow M$ is an isometry. If M is compact then the canonical distance function $\vec{\rho}: C^{O}(G \mathcal{P}) \times C^{O}(G \mathcal{P}) \rightarrow \mathbb{R}$ is defined by

$$
\vec{\rho}\left(\Psi_{1}, \Psi_{2}\right)=\sup _{m \in M} \rho_{m}\left(\Psi_{1}(m), \Psi_{2}(m)\right)
$$

Theorem 3.3
Let $\Pi: P \rightarrow M$ be a smooth principal bundle over a compact Riemannian manifold M with compact structural group G. Let G be given a biinvariant Riemannian metric with distance function $\rho: G \times G \rightarrow \mathbb{R}$, determining the canonical distance function $\overrightarrow{\boldsymbol{P}}: \mathrm{C}^{\mathrm{O}}(\mathrm{Gp}) \times \mathrm{C}^{\mathrm{O}}(\mathrm{Gp}) \rightarrow \mathbb{R}$ on $C^{\circ}(\mathrm{G} \mathbf{p})$, where $T_{\text {ad }}: G \mathbf{P} \rightarrow \mathrm{M}$ is the adjoint bundle with total space
$G p=p x_{a d}{ }^{G}$. let $\|$.$\| be the canonical norm on c^{0}(\underline{G P} \otimes \mathrm{~T} * \mathrm{M})$, where g is the Lie algebra of G and $g P=P \times{ }_{A C} G$.

Let $\boldsymbol{\omega}$ be a smooth connection on $\pi: P \rightarrow M$ with compact holonomy group il attached to some element p of the fibre of $\pi: \mathrm{P} \rightarrow \mathrm{M}$ over m, for some $m \in M$. Let A be a constant such that

$$
\rho(\gamma, C(H)) \leqslant A \sup _{h \in H} \rho\left(h^{-1} \gamma h, \gamma\right)
$$

for all $\gamma \in \mathrm{G}$. Let $\mathrm{L}_{\omega} \omega, \mathrm{m}$ be an upper bound on the length of loops based at m required to generate the holonomy group of $\boldsymbol{\omega}$.

If Ψ is a C^{1} principal bundle automorphism then there exists a principal bundle automorphism Ψ_{0} stabilizing ω such that

$$
\bar{\rho}\left(\Psi, \Psi_{0}\right) \leqslant\left(\mathrm{AL}_{\boldsymbol{\omega}, \mathrm{m}}+\operatorname{diam}(\mathrm{M})\right)
$$

Proof

Let $h \in H$ and let $c: \overline{0}, L _7 \rightarrow M$ be a loop based at m generating h of length not exceeding ${ }^{L} \boldsymbol{\omega}, \mathrm{~m}$ which is parameterized by arclength s . Let $\psi: P \rightarrow G$ be the unique C^{1} function with the property that

$$
\Psi(p)=p \cdot \Psi(p)
$$

for all $p \in P$. Then

$$
\begin{aligned}
\rho\left(h^{-1} \psi(p) h, \psi(p)\right) & \leqslant \int_{c}\left|\Psi^{*} \omega-\omega\right| d s \\
& \leqslant{ }^{1} \omega, m\left\|\Psi^{*} \omega-\omega\right\|
\end{aligned}
$$

by theorem V.5.2. Then

$$
\begin{gathered}
\rho(\psi(p), C(H)) \leqslant A \sup _{h \in H} \rho\left(h^{-1} \psi(p) h, \psi(p)\right) \\
A_{\omega, m}\left\|\Psi^{+} \omega-\omega\right\|
\end{gathered}
$$

hence there exists $\eta \in C(H)$ such that

$$
\rho(\psi(p), \eta) \leqslant{ }^{A L} \omega, m\left\|\Psi^{*} \omega-\omega\right\|
$$

By theorem V. 4.2 there exists a principal bundle automorphism $\Psi_{0}: p \rightarrow p$
which stabilizes $\boldsymbol{\omega}$ such that

$$
\Psi_{o}(p)=p \cdot \eta
$$

Then

$$
\rho_{m}\left(\Psi(m), \Psi_{0}(m)\right) \leqslant \wedge_{1} \omega, m\left\|\Psi^{*} \omega-\omega\right\|
$$

and hence

$$
\left.\bar{\rho}\left(\Psi, \Psi_{0}\right) \leqslant(A L \omega, m+\operatorname{diam}(M)) \| \Psi{ }_{\omega}\right)-\omega \|
$$

by lemma VI.3.1.
\square

The Hilbort transform $H f: \mathbb{R} \longrightarrow \mathbb{R}$ of a measurable function $f: \mathbb{R} \rightarrow \mathbb{R}$ is defined by

$$
\operatorname{Hf}(x)=\frac{1}{\pi} \lim _{\varepsilon \rightarrow 0+} \int_{|x-t| \geqslant \varepsilon} \frac{f(t)}{x-t} d t
$$

Whenever this principal value exists. We give a proof, derived from Calderon, A.P., 19667, of a theorem due to M. Riesz, which states that the Hilbert transform is bounded on $L^{p}\left(\mathbb{R}^{n}\right)$ for all p satisfying $1<p<\infty$.

Theorem (M. Riesz)
The Hilbert transform defines a bounded linear map
$\mathrm{H}: \mathrm{L}^{\mathrm{p}}(\mathbb{R}) \rightarrow \mathrm{L}^{\mathrm{p}}(\mathbb{R})$
for all p satisfying $1<p<\infty$.
Proof
First we show that if $1<p<3$ then there exist positive constants c_{1} and c_{2}, depending on p, such that if $w=u+i v$ is a complex number satisfying $u \geqslant 0$, then

$$
|v|^{p} \leqslant c_{1} u^{p}-c_{2} \operatorname{Re}\left(w^{p}\right)
$$

(where we define (re $\left.{ }^{i \theta}\right)^{p}=r^{p} e^{i p \theta}$ for all $p \in \mathbb{R}$ and for all θ satisfying $-\Pi<\theta<\pi)$.

It suffices to verify this inequality when $|w|=1$, by
homogeneity. Since $1<p<3$ there exists δ satisfying
$0<\delta<\pi / 4$ such that

$$
\begin{aligned}
& p \cdot \frac{\pi}{2}<\frac{3 \pi}{2}-\delta \\
& p\left(\frac{\pi}{2}-\delta\right)>\frac{\pi}{2}+\delta .
\end{aligned}
$$

If $|w|=1$ and

```
1/2\pi-\delta< | argw|< %
```

then

$$
1 / \pi+\delta<\arg \left(w^{p}\right)<\frac{3}{2} \pi-\delta
$$

and hence

$$
|v|^{p} \leqslant-c_{2}\left(\operatorname{Re} w^{p}\right)
$$

where

$$
c_{2}=\frac{1}{\sin \delta}
$$

since $|v|^{p} \leqslant 1$ and

$$
-\operatorname{Re} w^{p}>\sin \delta .
$$

If $|w|=1$ and

$$
-1 / 2 \pi+\delta<\arg w<1 / 2 \pi-\delta
$$

then

$$
\left||v|^{p}+c_{2} \operatorname{Re}\left(w^{p}\right)\right| \leqslant 1+c_{2}
$$

and

$$
u^{p} \geqslant(\sin \delta)^{p}
$$

Thus

$$
|v|^{p}+c_{2} \operatorname{Re}\left(w^{p}\right) \leqslant c_{1} u^{p}
$$

where

$$
c_{1}=\frac{1+c_{2}}{(\sin \delta)^{p}}
$$

This completes the proof that

$$
|v|^{p} \leqslant c_{1} u^{p}-c_{2} \operatorname{Rc}\left(w^{p}\right)
$$

for all complex numbers $w=u+i v$ satisfying $u \geqslant 0$, where $1<p<3$. Let $f \in C_{o}^{\infty}(\mathbb{R})$ be a non-negative function. Define an analytic function F on the upper half complex plane by

$$
F(z)=\frac{i}{\pi} \int_{-\infty}^{\infty} \frac{f(t)}{z-t} d t
$$

and let

$$
F(x+i y)=u(w, y)+i v(x, y)
$$

for some harmonic functions $u: \mathbb{R}_{+}^{2} \rightarrow \mathbb{R}$ and $v: \mathbb{R}_{+}^{2} \rightarrow \mathbb{R}$. If $z=x+i y$ then

$$
\begin{aligned}
& u(x, y)=\frac{1}{\pi} \int_{-\infty}^{\infty} \frac{y f(t)}{(x-t)^{2}+y^{2}}, \\
& v(x, y)=\frac{1}{\pi} \int_{-\infty}^{\infty} \frac{(x-t) f(t)}{(x-t)^{2}+y^{2}} .
\end{aligned}
$$

Note that $u(x, y) \geqslant 0$ for all x and for all $y>0$.
Applying the inequality derived above we see that

$$
\int_{-\infty}^{\infty}|v(x, y)| p d x \leqslant c_{1} \int_{-\infty}^{\infty} u(x, y)^{p} d x-c_{2} \operatorname{Re}\left[\int_{-\infty}^{\infty} F(x+i y)^{p} d x\right]
$$

when $y>0$ and $1<p<3$. Using the fact that f has compact support, we sec that $F(z)=O(|z|)$ and hence $F(z)^{p}=O\left(|z|^{p}\right)$ as $z \rightarrow \infty$ in the upper half plane. Thus the integrals of $F(z)^{p}$ around the semicircles $z=R e^{i \theta}+i y$, where $0 \leqslant \theta \leqslant \pi$, converge to zero as $R \rightarrow+\infty$. Thus

$$
\int_{-\infty}^{\infty} F(x+i y)^{p} d x=0
$$

for all $y>0$ by Cauchy's theorem, since $F(z)^{p}$ has no poles in the upper half plane. It follows that

$$
\int_{-\infty}^{\infty}|v(x, y)|^{p} d x \leqslant c_{1} \int_{-\infty}^{\infty} u(x, y)^{p} d x
$$

Now $u(x, y)$ is equal to the value at x of the convolution $k_{y} * f$ of k_{y} and f, where

$$
k_{y}(x)=\frac{1}{\pi} \frac{y}{x^{2}+y^{2}}
$$

Bu.t

$$
\int_{-\infty}^{\infty}\left|k_{y}(x)\right| d x=\int_{-\infty}^{\infty} k_{y}(x) d x=1
$$

hence

$$
\int_{-\infty}^{\infty}|u(x, y)|^{p} d x \leqslant \int_{-\infty}^{\infty}|f(x)|^{p} d x
$$

for all $y>0$, by Young's theorem on convolutions. Hence

$$
\int_{-\infty}^{\infty}|v(x, y)|^{p} d x \leqslant c_{1} \int_{-\infty}^{\infty}|f(x)|^{p} d x
$$

Now

$$
\begin{aligned}
H f(x) & =\frac{1}{\pi}\left(\int_{|x-t|<1} \frac{f(t)-f(x)}{x-t} d t+\int_{|x-t| \geqslant 1} \frac{f(t)}{x-t} d t\right) \\
& =\frac{1}{\pi} \lim _{y \rightarrow 0+} \int_{-\infty}^{\infty} \frac{(x-t) f(t)}{(x-t)^{2}+y^{2}} d t \\
& =\lim _{y \rightarrow 0+} v(x, y) .
\end{aligned}
$$

By Fatou's lemma

$$
\begin{aligned}
\int_{-\infty}^{\infty}|\mu f(x)|^{p} d x & =\int_{-\infty}^{\infty} \lim _{y \rightarrow 0+}^{\infty}|v(x, y)|^{p} d x \\
& \leqslant \lim _{y \rightarrow 0+} \int_{-\infty}^{\infty}|v(x, y)|^{p} d x \\
& \leqslant c_{1} \int_{-\infty}^{\infty}|f(x)|^{p} d x
\end{aligned}
$$

for all p satisfying $1<p<3$ and for all non-negative $f \in C_{o}^{\infty}(\mathbb{R})$. To extend this result to general $f \in C_{0}^{\infty}(\mathbb{R})$ we observe that for all $\varepsilon>0$ there exist non-negative functions $f_{1}, f_{2} \in C_{0}^{\infty}(\mathbb{R})$ such that $f=f_{1}-f_{2}$ and

$$
\left\|f_{1}\right\|_{p}+\left\|f_{2}\right\|_{p} \leqslant\|f\|_{p}+\varepsilon
$$

where $\|f\|_{p}$ is the L^{p} norm of f. On applying the above result to f_{1} and f_{2} we sce that

$$
\begin{aligned}
\| \text { uf } \|_{p} & \leqslant\left\|u f_{1}\right\|_{p}+\left\|H f_{2}\right\|_{p} \\
& \leqslant c\left(\left\|f_{1}\right\|_{p}+\left\|f_{2}\right\|_{p}\right) \\
& \leqslant c\left(\|f\|_{p}+\varepsilon\right)
\end{aligned}
$$

where $c^{p}=c_{1}$. But $\varepsilon>0$ is arbitrary, hence
$\|$ hf $\left\|_{p} \leqslant c\right\| f \|_{p}$
for all $f \in C_{0}^{\infty}(\mathbb{R})$ and p satisfying $1<p<3$. Hence H is bounded on $L^{p}(\mathbb{R})$ when $1<p<3$. Since H j.s self-adjoint, H is bounded on $L^{p}(\mathbb{R})$ when $\frac{3}{2}<p<\infty$, by duality.

In /Calderon, A.P., $196 \underline{6}$ it is asserted that $v(x, y)$ - Hf in the above proof is the convolution of f with an integrable function. However

$$
v(x, y)-H f(x)=-\frac{1}{\pi} \lim _{\varepsilon \rightarrow 0+} \int_{|t-x|>\varepsilon} \frac{y^{2} f(t) d t}{\left.(x-t)(x-t)^{2}+y^{2}\right)}
$$

and the function

$$
\frac{y^{2}}{x^{2}\left(x^{2}+y^{2}\right)}
$$

i.s not an integrable function of x in a neighbourhood of zero. Fatou's lemma has been used in the above proof to overcome this difficulty.

The theorem may also be deduced as a corollary of the Marcinkiewicz interpolation theorem (see \bar{S} tein, E.M. and Weiss, G., 1972; pp.183-1887).

Calderon, A.P., "Singular integrals", Bull. Amer. Math. Soc., 72 (1966), pp.427-465.

Riesz, M., "Sur les fonctions conjugees", Math. Z., 27 (1927), pp.218-244.

Stein, E.M. and Weiss, G., Introduction to Fourier analysis on Euclidean Spaces, Princeton Univ. Press, Princeton, New Jerscy, 1972.

[^0]: min

