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D. 1~. Wilkins 

ELLIPTIC OPERATORS, CONNECTIONS AND GAUGE TRANSFORMATIONS 

A study is made cf the action of various Banach Lie groups of 

principal bundle autnmorphi~ms (gauge transformations) on corresponding 

spaces of connections on some principal bundle, using standard 

theorem~. of global analysis together with elLiptic regularity theorems. 

A proof cf elliptic regularity theorems in Sobolev and H~lder norms for 

linear elliptic partial differential operators with smooth coefficients 

acting on sections of smooth vector bundles is presented. This proof 

assumes acquaintance with the theory of tempered distributions and 

their Fourier transforms and with the theory of compact and Fredholm 

operators, and also uses results from the papers of Calderon and 

Zygmund and from the early papers of H~rmandcr on pseu~o-diffcrcntial 

orct"8tors, but is otherwi sc intended to be self-contained. Elliptic 

regularity theorems arc proved for elliptic orcrators with non-smooth 

coefficients, using only the regularity theorems for elliptic operators 

hith smooth coefficients, together with the Sobolev embedding theorems, 

the Rcllich-Kondrakov theorem and the Sobolev multiplication theorems. 

For later convenience these elliptic regularity results are presented 

as a generalization of the analytical aspects of Hodge theory. Various 

theorems concerning the action of automorphisms on connections are 

proved, culminating in the slice theorems obtained in chapter VIII. 

Regularity theorems for Yang-Mills connections and for Yang-Mills

Higgs systems arc obtained, In chapter IX anal~tical properties of 

the covariant derivative operators associated with a connection arc 

related to the holonomy group of the connecbon via a theorem which 

shows the existence of an upper bound on the length of loop required 

Lo generate Lhc holonomy group of a connection with compact holonomy 

group. 
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Chapte1=_!. 

A DESCRIPTION OF THE MAIN RESULTS 

In this chapter we g1ve a brief outline of the results obtained 

and of their relationship to results occnrr1ng tn the literature. 

We begin with a discussion of the slice theorems proved 1n 

chapter VIII for the action of principal bundle automorphisms (gauge 

transformations) on connections and of the elliptic regularity 

results for Yang-Mills connections and Yang-Mills-Iiiggs systems. 

These results are consequences of general elliptic regularity 

results for elliptic partial differential operators with smooth 

coefficients, which imply results generalizing the analytical 

aspects of Hodge theory to the study of Hodge-de Rham Laplacians 

with respect to connections which need not be smooth. 

Slice theorems are used when studying the properties of 

suitably differentiable functionals defined on Banach manifolds 

with the property that the functional is constant along the orbits 

of some infinite dimensional symmetry group. We give a brief 

survey of occas1ons 1n geometry where this situation arises. An 

account is given of the methods of Morse theory and Lyusternik

Schnirclmann theory for relating the topology of a Banach manifold 

to the critical sets of functionals defined on that manifold. The 

role of slice theorems in circumstances where the functional is 

invariant under the action of an infinite dimensional symmetry 

group 1s described. 

We also give a survey of the physical or1g1ns of gauge theories 

and of recent work on the topological, geometric and analytical 

aspects of gauge theories. 

We g1ve an account of the plan of the thesis, A statement 

1s g1ven which specifics those parts of the thesis believed to be 

1 



original research and the sources on which other 1·esults Jn the 

thesis ar~ based. 
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3 

The Slice Theorem and Yang-Mills Connections 

We describe the results of chapter VIII. These results are 

the ma1n obJective of the thesis, for \vlnch the earJ.1er chapters 

prepare the necessat'y foundation. 

We study the action of various Banach Lie groups of principal 

bundle at1l:omorphisms on corresponding affine spaces of connections 

on a given prjncipal bundle over a compact manifold with compact 

s tructut'al group. These Banach Lie groups of automorphisms arc 

k 
modelled on Sobolev, C and fltJldcr spaces, and the affine spaces of 

k connections correspond to Sobolev, C and HtJlder spaces of sections 

of the appropriate vector bundle. 

Theorem 2.3 of chapter VIII 1s a slice theorem g1v1ng 

sufficient conditions for the existence of a differentiable structure 

on the quotient space obtained by quotienting a Sobolev or HtJlder 

space of connections by the action of the corresponding group of 

principal bundle automorphisms in such a way that the quotient map 

is a smooth map between Banach manifolds which admits smooth local 

sections. This theorem generalizes corresponding slice theorems 1n 

/singer, I. 1\1, , 197~7, {Narasimhan, 1\'L. S. and Ramadas, T. R. , 197~7, 

/Mittcr, P, 1<. and Viallct, C.l\1., 19817 and /Parl<er, T., 19827 and 1s 

clo:~cly t'clat:ccl to cort'cspondinr•. results in /i\tiyah, M.F., Ilitchin, N •. J. 

and Singer, I. M. , 197~7 and {Donaldson, S, 1\,, l983b/. 

The proof of the slice theorem uses the results of chapter VI 1n 

which a fairly detailed study of the action of Banach Lie groups of 

principal bundle automorphisms on the corresponding spaces of 

connections is undertaken, It 1s shown that the actions of the 

l · f P ck+l and ck+l,oc. · · 1 I ell Banac1 L1e groups o Lk+l' pr1nc1pa Jun e auto-

! . tl f I p C k d C k ' ~ t . t . 1 morp nsms on -1c spaces o · Jk, an conncc ·1ons respec 1 ve y 



are smooth, pri vided that l .!- p < oo and p ( k + l) > n, where n is 

the dimension of the base manifold of the bundle, and provided that 

o..::.cx.<l. In all these cases the quotient of the space of 

connecb ons by the cortoesponding group of automorphisms is Hausdorff, 

and the stabilizer of a connection in the appropriate group of auto-

morphisms is compact (see theorems VI. 4, land VI.4.2), Note that 

this result holds even for Lp connections which are not continuous, 

provided that p > n. It is also shown that if ( W . ) is a sequence 
1 

in an,y of the above spaces of connections, if ( T.) j s a sequence 111 
l 

the corresponding group of principal bundle automorphisms and if 

both ( W . ) and ( Y. '' W . ) converge in the space of connecti.ons, 
l l 1 

then some subsequence of (yi) converges 1n the group of auto-

morphisms (see corollary VI. 3. 3). Indeed if ( ~ i) converges on 

some given fibre of the principal bundle, then ('f" i) converges 1n 

the group of automorphisms (see theorem VI.3. 2). 

The proof of the slice theorem (theorem VIII. 2.3) uses both 

the resu]ts of chapter VI described above and also a generalization 

of the analytical aspects of Hodge theory, presented in chapter VII, 

which describes the properties of the covariant Hodge-De Rham Laplacian 

with respect to a connection that need not be smooth. 

This generalization of Hodge theory is also used to prove 

regularity theorems for Yang-Mills connections (theorems 3. l, 3.2 

and 3. 3 of chapter VIII) which place sufficient conditions on p and 

k in order that, for every L~ connection (A) satisfying the Yang

Mills equation, there should exist an L~+l principal bundle auto

morphism Y such that .. ffw is smooth. An informal discussion of 

the regularity of Yang-Mills-Higgs systems 1s given. Regularity 

theorems for Yang-Mills fields and Yang-Mills-Higgs systems are g1ven 

1n /Uhlcnbeck, K. K., 1982b/ and /Parker, T. , 1982/. 

4 



Elliptic Regularity and Hodge Theory 

In chapter III we shall prove a general regularity theorem 

for elliptic differential operators with smooth coefficients. 

be ,, ~ " ~ " u-1 
t.J l -=, 1•1 Ll...ll 

......-w- • 1:' 

II 2 . '-'2 
___., -, 

smooth vector bundles over a compact smooth manifold M and let 

This 

M be 

00 00 
L: C (E 1 )~ C (E

2
) be a linear elliptic differential operator 

of Oi'der m l'li th smooth coefficients. If k is an integer and if p 

satisfies 1 <. p <. oo then L extends to a bounded Fredholm map 

Moreover if u 1s an E1-valucd distribution with the property that 

p 
E Ll (El ). <-t-m 

Similarly if k 1s a non-negative 

integer and if ex. satisfies 0 "- o<. 4 1 then L extends to a bounded 

Fredholm map 

L ck-t-m,« (E ) -? ck,o< (E2) 
l 

and if u is an E
1
-valued distribution with the property that 

k ~ lnm oc 
Lu€ C' (E 2 ) then u E C ' (E:L), Rather surprisingly, I have 

not found this theorem stated in the above form in the literature. 

The nearest approach to this theorem that I have yet discovered in 

the literature is theorem 3. 54 of the book 'Nonlinear analysis on 

manifolds. Mongo-Ampere equations' by Aubin. 

We prove this regularity theorem using the theory of singular 

integrals, due to Calderon and Zygmund, and the theory of pseudo-

diffet'ential operators. A parametrix for L is defined to be a linear 

operator P 

I - LP and I - PL are smoothing operators (a smoothing operator is 

a continuous linear operator whose distribution kernel is smooth). 

I!I:Jrmander has shown that every linear elliptic differential operator 

5 
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of order m with smooth coefficients has a parametrix which is a 

pscudodiffcrcntial operator of order -m 1n the class of such 

operators introduced by Kahn and Nirenberg and by Hbrmander. Us:i ng 

the p:c:cuc!u!ocal p!"Opcrty of J'"'ClJdod i ffprcnti :1! operators and 8 

partition of unity argument it 5uffices to show that 8 pseudo-

co n ao n . 
eli fferential operator Q : C ("Hi ) ---l) C ("Hi ) of order -m 1n the 

0 

c18ss of pseudodifferential operators introduced by Kahn and 

Nirenberg extends to continuous linear maps 

Q 

Q 

Now pscudodiffcrential operators on En 1n the class intro-

Jueed by Kahn and Nirenberg have the form 

Q <f (x) (21T )-n s eix.J q(x,}) ~ ( ~) d~ 

for all ~ E c;; (.lRn ) , where the symbol q(x, f ) has an asymptotic 

expansion .in ! for large $ 1n vvhich each term 1s n positively 

homogeneous function of ~ Now if sufficiently many terms of 

this asymptotic expansion are taken, then the distribution kernel 

of the pseudodifferential operator corresponding to the remainder 

term is Cr for r as large as required, Thus it suffices to consider 

the boundedness in Sobolev and Hblder norms of the pseudodifferential 

operator corresponding to each individual term in the asymptotic 

expans1on. But one can express such an operator as a sum of campo-

sitions of operators which are either the singular integral operators 

'":i th variab 1 c kernels sutdicd by Calderon and Zygmund, or arc convolution 

opera tors '"i th summab le kernels, or are other '"ell-behaved operators. 

Thus the boundedness of the pseudodi ffercntia l operator will follow 

using the results of Calderon and Zygmund, together with Young's 



theorem on convolutions. This enables us to prove the elliptic 

regularity results of chapter III. 

We usc the t"cgulari ty thcot"cms pt"ovccl in chapter 111, 

tvgcthct" ..,,-ith the Sobo.lcv embedding thcor·cms, the nc.ll.ich-I\ondrakov 

theorem and the Sobolev mttLt:iplication theorems in order to derive a 

generalization of the analytical aspects of Hodge theory, which we 

present in chapter VII. This applies to the covariant Hodge-de Hham 

Laplacian with respect to connections which need not be smooth. 

~lore specifically, let k be a non-negative integer, let p satisfy the 

concli tions 1 < p < oo and p ( k + l) > n, where n is the dimension of 

the compact smooth manifold under consideration. If k = 0, let p 

also satisfy the condition p >,. 2 .. Let p' be the exponent conjugate 

to p, defined by 

1 
p' 

l 
P· 

w 
If 1T : E ~ M is a smooth vector bundle and if A 1s the covariant 

Hodge-de Hham Laplacian '"i th respect to an L!) connection w on 
l\ 

an associated principal bundle, and if 

the conditions 

- k ~ L ~ 1<, 

then 

1 
p 

k 
n 

1 
q 

1s a Fredholm operata~ 

L 
~ n 

1 
+ p' 

k 
n 

LEIZ :md q E: (1, oo) sati~;fy 

Using 

these resuLts one can prove an analogue of the Hodge decomposition 

theorem and define the Green's operator 

7 
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G I) I ~ j _ pI . j 
L_k-l(l~@ 1\ T'''[l[) ~ L-k+l (E ® (\ T'''[11) 

of /\ w ·.ill ~ the usuaL mannet", and this restricts to a bounded linear 

map 

® " .J 
rn..•.,.•\ 
l "I'll, 

Similar results can be proved if CA.) lS a Ck, <>< connection. 



Why are Slice Theorems important? 

In the mathematicaJ literature one may find var1ous instances 

where a study has been made of the following type of probJem. 

~~upro:,;c that one i.s given ~~ srnnnt~h m:1nifolcl M and that on this 

manifold i.s defined some cLass X of geometric structures, h'here 

X may be identified with some Banach (or Frechet) space of sections 

of some fibre bundle over M. Suppose that there is a naturally 

defined infinite climcnsiona l symmetry group II 1~hich permutes the 

clements of X. We shall suppose that H is a Banach (or Frechet) 

Lie group acting (smoothly) on X and that H acts freely on some 

open set X of ~eneric elements of X. The problem is then to show 
0 '" 

that the topological quotient X0 /H of X by the action of H 1s a 

IIausdorff topologicaL space which admits a canonical differentiable 

structure with the property that the natural projection from X0 to 

X
0
/l! 1 s smooth and ac.lmi ts smooth I ocaJ sections. 

A classic example 1s provided by TcichmUller theory. We let M 

be a smooth surface and define Con(M) to be the space of conformal 

structures on M. Given a conformal structure on M anc.l a diffeo-

morphism of M we may form a new conformal structure which is the 

pullback of the given conformal structure by the diffeomf'rphism. 

Thus the group Diff(M) of orientation-preserving diffeomorphisms of 

~I [tcb; on the space Con(M) of conformal structures on M, and thus 

1vc may form the quotient space Con(M)/Diff(~O. This quotient space 

1s referred to as the moduli space of Riemann surfaces whose topo-

logical type is that of M. Similarly the TeichmUller space 

Con(M)/Diff
0

(M) of marked Riemann surfaces whose topological type 

is that of M is defined to be the quotient of the space Con(M) of 

conformal structures on M by the identity component Diff (M) of the 
0 

group Diff(M) of orientation-preserving diffeomorphisms of M (see 

9 



/Earle, C •. ]. and Eel Js, .J. , J 969/. When M is a torus then the 

TeichmUller space of marked Iliemann surfaces of genus 1 is identi-

fied \\'i th the upper half plane a:_ ;:mel the moduli. space of 
+ 

Ri cmann sUl"faccs of genus is idcntiftcd v.ri th the quotient 

L /SL(2, ~). 
+ 

In general we see that the TeichmUller space 1s a 

cover1ng space of the moduli space. 

II second example is provided by the action of the group of 

diffcomorphisms of a smooth manifold on the space of Riemannian 

metrics on this manifold. This action has been studied in /Ebin, D. G. , 

1970/, in /Fischer, II. E. and ~larsclen, J. E., 1977/ and in 

{Bourguignon, .J. -P. , 197.:?_/. 

Let M be a compact smooth manifold of dimension n, let N be 

a compact Riemannian manifold of dimension 1<, v;herc k ~ n, and let 

B be a smooth Sllbmanifold of N of dimension n - l which is diffco-

morphic to ~ M. The n-dimensional Plateau problem is to find a 

map f : ~1 _, N 1<1hich sends '(l M diffcomorphically on to B 1<1ith the 

property that f(~1) has m:inimal volume among such maps from M to N. 

To study this problem one might take X to be the space of maps 

f : ~1 ~ N 1<1h:i ch send oM diffcomor'phicaLl.Y onto G and define 

vol X ~lH to be the m3p sending f E X to the volume of f(M). If 

f' ~1 ___, 1\1 JS a diffeomorphism of M and iff E-X then so docs 

, and vo 1 ( f o p vol(f). Thus vol X ~ :R induces a map 

vol : X/Diff(M) ~ lR. 

We shall be studying the action of groups ~ of principal 

bundle automorph:isms on spaces .A of connections on a smooth 

principal bundle over a compact smooth manifold M. The Yang-l\1i lls 

functional YM .A- ~ m. is invariant under '!} and thus induces a 

functional Y~l A I ~ ~ IL If the dimension of ~~ is 4 then 

the minimum of the Yang-~Ii lls functional is attained by the set .A: . 
mJn 

10 



of instantons (or anti-instantons) on the principal bundle. The 

moduli space of instantons (or anti-instantons) is defined to be 

the quotient A !ri and has been studied in _/Ativah, IV!. F. , min d""' ' J 

Hitchin, N.J. and Singer, [.~!., 1978/ and in /Donaldson, S.K., l98::ib/ 

Given a suitably v1ell-behaved funcbonal f : X__, JR defined on 

a Banach manifold X one may relate the critical sets of f to the 

topology of X by means of either Morse theory or Lyusternik-Schnirelmann 

theory. 

First we discuss Morse theory on Hilbert manifolds. Let 

f : X ~ JR. be a non-trivi:-ll c3 function defined on a connected 

Hilbert manifold X and let elf : X 4 PX be the differential of f. 

/\ critical point of f is an element of X c:tt which elf vanishes. 

Suppose that f satisfies the following condition: g1ven any subset S 

of X on 1..,rhi ch I f I is bounded and IJ elf IJ is not bounded away from 

zero, there exists a critical point of f adherent to S. Then Palais 

and Smale have shown that the conclusions of Morse theory apply to 

the fw1ction f, relating the critical sets of f to the topology of 

the manifold X (see /Palais, R. S., 1963/). The above condition on f 

IS referred to as the Palais-Smalc condition. It ensures that if 

y : (a, b) ~ X is a maximal integral curve of the gradient vector 

field V' f of f, where - oo ~a <. b ~ + oo , then either 

lim 
t-+b-

f(t) +00 

or there exists a sequence (t. E (a, b) : i e N) converging to b 
l 

~-;ueh that the sequence ( v ( t.) 
0 1 

i e JN) converges to a cri tic::tl 

point of f, and similarly when t converges to a from above. In 

particular the critical values of f arc isolated and if c is a 

critical value off then the set of critical points x satisfying 

f(x) -' c is compact (a critical value off is the imar~c under f of 

a critical point of f). 

11 



f : X~ E is ::~aiel to be a !V!orse function if and only if the 

critical setoff consists of isolated points and the Hessian off 

at those critical points is nonclegenerate. For all c E E let 

X 
c 

{ X €: X f(x) So c1" 

If f : X~ JR Ls a Jl:lorse funct~on and if c 1.s a critical value of f 

then for all sufficiently small 

homotopy equivalent to a relative CW complex, where X 1s 
c + E. 

obtained 

critical 

from X ,. 
c- c 

by attaching a cell of dimension k for each 

point in f- 1 (c) at which the index of the Hessian of f 

is k (see /Milnor, J. W., 1963/ or £Palais, H.S., 196~/). 

Suppose that I-I is a group acting on the Hilbert manifold X 

lS 

and that f is H-invariant. Then f : X --> E 1vi ll not in general be 

a Morse function, unless the critical points of f were fixed points 

for the action of II on X. llm'levcr one may apply the equi variant 

~1orsc theory described 1n {Atiyah, l\1. F. and 13ott, R., 1982/. 

One may also study the relationship between the topology of 

a topological space X and the critical sets of a continuous function 

theory 

where 

and K 

(sec 

X 

1S 

X 
c 

1 s 

a 

on this space by means of Lyusternik-Sehnirelmann 

_Ll.yustcrnik, L. fl. , 1966/). L.ct (X, f, K ) be a triple, 

a topological space, f : X _,m 1S a continuous function 

closed subset of X. For all c t m let 

-1 f ( (-00, c/). 

We may apply the techniques of Lyusternik-Schnirelmann theory to 

(X, f, K) provided that the following three conditions are satisfied: 

( i) f(K) is discrete, 

( i j) if c E :m '- f(K) then X may be deformed into X for 
c+'t, c- 'i. 

all sufficiently small l > o, 

12 



(iii ) if c E f(K) then for every open neighbourhood u -1 
of K I') f (c) 

there exists [ > 0 such that X may be deformed into 
C+ £. 

Uv X 
c- E. 

We refer to K us the critical set of f and to f(K) as the set of 

critical values of f. 

In Lyusternik-Schnirelmann theory one proves the existence of 

one or more distinct critical values of f : X -+m from a knowledge 

of the topology of X. One method of doing this may be described 

as follows. Let (Y, B) be a topological pair, let a € m and let 

r E ( (Y, B), (X, Xal] be a homotopy class of continuous maps 

(Y, B) ooo.+ (X, X ) with the property that q(Y) t/: X for all 
a a 

q E. r . Define 

c , sup 
yf:.Y 

f(q (y) ) . 

Then cl""' 1s a critical value off: X ~m. Indeed if c,., 

were not a critical value of f then there would exist a map 

h : X ~ X which was homotopic in X to the identity map 
C+ [ C-( C+£ 

of X for a] L sufficiently small ~ > 0, by condition (ii) above. 
C+'(. 

Rut by definition of c r there would exist q er such that 

q ( Y) c. X Rut then h 0 q E. r 
C+~ 

and h o q (Y) c X , contra-
c-t. 

dieting the definition of c r . Hence c r is a critical value of f. 

Using this method Lyusternik and Fet proved the existence of at 

least one closed geodesic on a compact Riemannian manifold (see 

/Klingenberg, W., L978/ of {_Klingenberg, W., 198~/). 

One may prove the existence of more than one critical point 

of f : X_, m using the concept of Lyustcrnik-Schnirclmann category. 

If A is a subset of X then the Lyusternik-Schnirelmann category of A 

1n X, cat(A; X), 1s the least integer n such that A may be covered 

by n closed subsets of X, each of which 1s contractible 1n X. If no 

13 



such integer exists then cat(/\; X) 1s defined to be 00 • We denote 

cat(X; X) by cat(X). 

For all m ~ cat(X), define 

c (f) 
m 

inf f a E! II1 ~~._lv • v\ :> m1-
\_,a. v \ ..~ .... 

3
, .f)._, -,.. l 

lt can be shown that 

c l(f) m+ 

and that if c (f)' (- OD, oo) then c (f) is a critical value of f. m m 

lllso f : X~ m has at least cat(X) critical points. Indeed if 

the number of critical points of f : X ~ m is fj ni tc then it may 

be shown that 

c (f) <. c (f) 
m n 

for all m and n satisfying 

l ~ m < n .$ cat(X) 

(sec /Palais, R.S., L966/ ). 

The Lyusternik-Schnirelmann category of a topological space may 

be related to the homology of that space. However one may deduce 

information about the critical point structure of f : X ~ :R directly 

from the homology of X without the need to introduce the concept of 

Lyusternik-Schnirelmann category. 

Given a E :R define i and J. to be the inclusions 
a a 

1 
a 

morphisms 

1 and ja induce homo
a 

and the kernel of j
8
* 1s the Lmage of a* by the homology exact 

14 



sequence of the pa1r (X, X ) . 
a Given z E: H (X)' define 

* 

c ( z) inf { a E- JR J a'~ z o} 

inf t a E JR z E 
3* 

l-1~, (X
3

)} 

c(z) is a critical value off : X~ :HL For suppose c(z) were not 

a critical value. Then ther~ would exist a continuous map 

h : X ~ X 
e+t c- t 

homotopic to the identity map of X for all 
C+ l 

sufficiently small ~ '> 0, where c = c(z). But then z = i w 
C+ 't_ * 

for some wE H (X and hence z ~ 1 * h * w, contradicting * c+~ c-E 

the definition of c(z). Thus c(z) is a critical value of f. 

Using the homology exact sequences and the naturality of the 

* cap product one may easily show that if z e H* (X) and fo t: H (X) 

then 

c( ~ n z) ~ c(z) 

and that if equality holds then k~~ ! 0 for all open neighbourhoods 

-1 
U of k f) f (c(z) ) , where kU denotes the inclusion ku: U Y X. 

One may also usc variants of the methods described above. For 

example the proof of the Lyusternik-Schnirelmann theorem on the 

existence of at least three simple closed geodesics on a Riemannian 

manifold diffeomor'phic to a L-sphere given in {Klingenberg, W., 198~_7 

docs not fal 1 strictly within the purview of the above m~thods though 

it is closely related to the homology method described above (see 

also /Ballmann, W., Thorbergsson, G. and Ziller, W., 1983/). 

. 2- f . f 1 2 . 1 G1 ven a C uncb.on : X ~ JR on a camp ete C F1ns er 

manifold X satisfying the Palais-Smalc condition described above 

one may verify that (X, f, K) satisfies conclitions (i), (ii) and 

( iii ) nbove, where 

K { X E: X df 
X 

o} 
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(see /~alais, R.S., 1966/), and thus any of the above methods of 

Lyustcrnik-Schirelmann theory are applicable. However Lyusternik-

Schnirclmann theory is more robust than Morse theory in that by 

vcr·ifying that condjtions (i), (ii), and (ij1) above are satisfi_ed 

using methods other than by studying the flow of an approximate 

gradient field, one may apply the techniques of Lyusternik-Schnirelmann 

theory in situations where the Palais-Smale condition is not appli-

cabLe (see {Klingenberg, W., 198~/). 

Having summarized the basic methods of Morse theory and 

I .yus tcrni k-Schni re lmann theory for relating the topology of a 

Banach manifold to the critical point structure of continuous 

functions defined on it we now indicate how one might apply these 

methods in sit:uations where lhe function in question is constant 

ulong the orbits of the action of some infinite dimensional symmetry 

group. Let f : X ~ 1R be such a function defined on the Banach 

manifold X and let f be constant on the orbits of the action of 

the Banach Lie group H acting on X. One would not in general expect 

to be able to verify the Palais-Smale condition for f : X~ 1R. 

Indeed given a sequence (xi EX: if; lN) for which Jf!x1 ll Js 

bounded and the norm of df at xi converges to ~ero then this sequence 

would not in general contain a convergent subsequence, for even if 

( x. e X : i E- JN) were to converge, one would expect to find a 
1 

sequence (h. e H : i € JN) such that (x .. h. : 1 ~ JN) contains no 
1 1 1 

convergent subsequence, yet f(x .. h.) 1s bounded and the norm of elf 
] 1 

at x. h. converges to zero. 
I. I 

In order to overcome this problem it is necessary to factor out 

the action of the symmetry group H from the Banach manifold X. Let 

us suppose that H has a Banach Lie subgroup II 
0 

Jn II which acts freely on X and such that ij 1s 

of finite codimension 

compact, where ~ = H/H . 
0 
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Define X X/H . 
0 

In order to apply critical point theory to the 

-
function f : X ~ ]'\ induced by f X~ ]'( on X, one would aim to 

prove a slice theorem which would state that~ admits a un1quc 

diffcrcnti ;Jble structure with the property that the natural projection 

from X onto X is smooth and admits smooth local sections. Then one 

has to reduce the problem to one of studying the behaviour of 

f : ~ ~ m , where f is constant along the orbits of the action of 

the compact L:ie group H. In these circumstances one has more hope of 

being able to verify the Palais-Smale condi bon for the function 

f : ~ ---+ 1R • Moreover if X satisf:i cs the second axiom of eountabil:i ty 

then X and ~ will be paracompact. Then the natural projection X ~X 

wjll be a principal bundle with fibre H over a paraeompact Hausdorff 
0 

base space X and thus will be a Hurewicz fibration (see _LSpan:ier, E.H., 

l CJfifi; PJ1· 92-9fi/). Thus the homotor.v r~roups of II , X and X arc 
0 

related by the homotopy exact sequence 

of the fibration, and the relationship between the homology of 1-1, X 
0 

and ~ may be studied using the Serre spectral sequence. 

Applying these remarks in the context of Yang-Mills theory we 

sec that it 1s sensible to consider the Yang-Mills functional as a 

smooth map 

YM L~A /L~ ~ m ~lR, 

where L~ A 1s the space of L~ connections on a principal bundle 

Tl : P ·~Mover a compact Riemannian manifold M with structural 

group G, and where L~ tj. m is the group of L~ principal bundle auto-

morphi sms of -rr P ~ M which fix the fibre of "11": P ~ M over 

for E: M. 2 

tS 
m well-defined Banach Lie m, some m L2 :L S a group 

acting smoothly on L~k when the dimension of M does not exceed 3, 

17 
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and in /uhlenbeck, K.K., 1982c7 it is conjectured that the Palais-

Smale condition is satisfied in these circumstances. 

However interesting problems in geometry occur Ln circumstances 

where the Palais-Smale condition just fails to apply (see ;ijhlenhcck, K.K., 

1982~/), notably in the study of harmonic maps whose domain is a compact 

2-dimensional surface and also in the study of the Yang-Mills functional 

for principal bundles over a compact 4-dimensional manifold. In the 

theory of harmonic maps whose domain is a 2-dimensional surface inter-

esting results may be obtained by perturbing the functional in 

question to nearby function8ls which satisfy the Palais-Smale 

conclition on the appropriate Banach manifold (see /Sacks, .J. and 

Uhlenbcck, K.K., L98l/ ) . By analogy this suggests that, to obtain 

results for the Yang-Mills functional for connections on a principal 

bundle over a 4-manifold, it m:lght be fruitful to study the functional 

YM p ( .r ( 1 + 
2 r,:a. 

/ F w f · ) d ( vol) 

defined on the Banach manifold Lf A /L~ ~ 

F w is the curvature of the connection UJ 

m for p > 2, where 



Gnuge Theories 

Non-.1\belian gauge theories were introduced by Yang and Mills 

Jn /~ills, R.L. and Yang, C.N., 19547 as a generalization of Maxwell's 

theory of electromagnetism. We recall that the electric and 

magnetic fields on spacetime are described by a 2-form F satisfying 

Maxwell's equations 

dF 0 

where J is some constant multiple of the current density, considered 

as a ]-form on spacetime, where d Ls the exterior derivative operator 

:mel \·:here ~ 1s the codiffercntial clcterminccl by the metric on 

spacetime. Since elF 0 there exists a 1-form A such that 

F dA 

by the Poincare' lemma. The 1-form A is often referred to as a 

4-potential of F. ThLs 1-form A is not umque. Indeed if 'f' 1.s a 

smooth function on spacetime, then A + d y is also a 4-potcntial 

of F. The correspondence sending A to A + d Y is referred to as 

a gauge transformation (this terminology arose from Weyl's attempt 

to unify gravitation and electromagnetism in a single theory in 

which the length of a measuring rod in spacetime would change under 

parallel transport around closed loops in spacetime). It became 

customary to 'fix a gauge' by demanding that A also satisfy the 

condition 

b (\ 0 

s 1 nee if !\ + d "'f also satisfied this condition then'(" would have to 

be harmonic, and thus if 'Y satisfied appropriate boundary conclitions 

at infinity then Y would have to be consb:m t. The condition that 

the divergence of!\ vanish is often referred to as the Lorentz gauge 
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condi t~on. Tf A satisfies the Lorentz gauge condition then Maxwell's 

equations become 

F dA, 

whcr·e 6 1 s the Jrodgc-clc Hham Laplucian acting on 1-forms, defined by 

Thus 

2 - \7 A + Ric • A J 

') 

using the Bochncr-Wci zenbl:kk formula, where - \7 c. 1s the rough 

Laplacian acting on l-fot"ms and where Ric Js the symmetri.c cndo-

morphism dctPrmined by the Ricci curvature of spacetime. 

The vacumm Maxwell equations are the Euler-Lagrange equations 

for the action 

1 (A) J IdA I 
2 

d ( vo 1 ) • 

Yang and Mills introduced a non-Abelian gauge theory with 

many similarities to the theory of electromagnetism just described. 

rn Lhis theory the gauge potentjals are 1-forms A on m4 
with values 

1n the Li.c algebra 9 of some compact Lie group G. Yang and Mills 

consider the case when G is SU (2). The group G 1s referred to by 

physicists as the gauge group. Corresponding to the gauge potential A 

we have a covariant derivative operator D. If V is a representation 

space for G and if f : JR
4 ~ V is differentiable then 

Df df + A.f. 

The appropriate analogue of the electromagnetic field tensor 1s the 

field strength F. F 1s a 9-valued 2-form whose components F 

arc g1vcn by 
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'Pl-.~--. 
ill'.-

F,.VlJ r J) N ' J) v J 

Yang-f'.1i ll s 

A 
~ F 0 

+ [ /\/" 'flv J. 

l'lhcrc ~ 11
, the covariant cocliffercntial, lS the formal adjoint 

of the covariant cxter'.ior· derivative. The Yang-Mills eyuation JS 

the ~ulcr-Lagrange equation of the Yang-Mills functional 

YM(/\) J IF\ 2 
d(vol). 

Civcn a map g: :m4 ~ G, g determines a gauge transformation 

sending the covariant derivative operator f H Df to the operator 

-1 
g D(gf). 

d + fig, !:hen 

-1 -] 
g fig + g . dg. 

-1 
The field strength F transforms !:o g Fg under the gauge trans-

format i on. 

For an account of non-Abelian gauge theories from the physicist's 

point of view, see {Taylor, J.C., 1976/ or chapter 12 of lftzykson, C. 

and Zuber, J.-8., 1980/. 

Physicists study gauge theories both on Minkowski spacetime 

and on four-dimensional Euclidean spacetime. We shall here be 

ccmccrnccl exclusively 1vilh the Eucli.dean case and its generalization 

to gauge theories on Riemannian manifolds, since we wish to apply 

the theory of elliptic partial differential equations. 
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Yang and Mills originally proposed their theory as a possible 

model for the isospin symmetry between protons and neutrons in 

elementary particle physics. In the standard theory an isospin 

'r·uLaLi<1JJ', dcLcnnirwJ b,y <ctrr L:l.cmcnL uf :-iU (2), would 'r·utatc aLL 

protons in the unrvcrse to the appropriate linear combination of 

proton and neutt··on eigenstates, and the relative proportion of the 

proton component and the ncutl"on component of the dynamical state of 

the 'rotated' particle would be the same for all protons in the 

universe. Yang and Mills wished to construct a theory of isospin 

v-•h i ch permi ttecl symmetries which might 'rotate' a proton into a 

neutron at one event in spacetime yet which fixed a proton at 

some nthcr event. Such a symmetry waul d be cktcrmincJ by a map from 

spacetime to the isospin grou? SU (2). However gauge theories found 

their application not 1n this context but in the context of unified 

field theories of the forces o/ nature, once it was shown that gauge 

theories were renormalizable and once spontaneous symmetry breaking 

had been introduced into the theory via the Higgs mechanism. Those 

theories currently regarded as standarJ include the Salam-Weinberg 

unification of the electromagnetic and weak interactions, and also 

quantum chromodynamics, which is the theory of the strong interaction 

1n which quarks interact v1a the exchange of gluons. 

Physicists imposed the appropriate analogue of the Lorentz 

gauge condition, namely the condition 

or their gauge potentials on the assumption that this would determine 

a untque gauge potential from each orbit of the group of gauge 

transformations. That this was not the case was pointed out in 

/Gribov, V. N., 1978/ in the case \'Jhcrc the gauge potentials satisfied 

appropriate boundary conditions at infinity. An explanation of why 



this had to be so was gtvcn 111 /Singer, I.M., 1978/. 

Singer observes that lhe boundary conditions at infinity imposed 

by Gribov arc such as to enabLe one to extend the gauge transformations 

, " ,.,.,.. L. ,.t1 '"]'4 
LU c,n,; compac LJ 1 t.ca lUll :) ul 1 The g.:tUge puLe11Lials sLudied by 

physicists correspond to connections defined nn a principal bundle 

1T : P 4 !'f. over the manifold M being considered (in this case 

4 
M = S ). Similarly the gauge transformations introduced by physicists 

correspond to principal bundle automot'phisms of lT : P .--1) M. Let 

C fr denote the Free he t space of smooth co nne cti ons on lT: P ~ M 

(strictly speaking this is an affine space modelled on a Frechct 

space) and let C 00 ~ be the group of smooth principal bundle auto-

morph isms of -rr : P --} M. C ()0 <} acts on C
00 A on the right where 

each principal bundle automorphism in C -1 acts on C 
00ftr by sending 

each connection on rr: P ~ M to its pullback under the g1vcn 

automorphism. What t0 the physicist 1s a choice of gauge condition 

corresponds to the construction of a section of the natural projection 

c cPA __, c 00 A /C 00 ~ 

r.ct C .oo flr . denote the open dense subset of C 
00A consisting 

1rr 

of all smooth irreducible connections on 1T : P ~ M. Let Ceo~ 
0 

be the quotient C 00 ~ /Z(G) of CCIO~ by the subgroup naturally 

isomorphic to the centre of the structural group G. Then c4lDq.o 
acts continuously on C

00A .. Singer states that the map 
1.rr 

v 1rr 

1 s a principal bundle I'Ji th structural group C 
00 ~ 

0 

shows that 

11· (C:-~. ) 0 
,) 1 rr 

for all non-negative integers J· Thus 

(C .co A . /C (XI r:. 
1rr 6 

,.._. 
Tf. 

J 
(Cao~ 

Singer also 

0 
) . 
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Now if the map V above has a section, then the identity automorphism of 

' OOj ' 00,0 ' r ' 'h ' ., ' '' '·• 1T . 
1

\C ./-t . ;C ~. 
0

J racc:ors t rougn tne zero nomomorpn1sm ana tnus 
,J+ trr 0 

1T. l (COOJJ.. /Coo{; ) 0. 
,J+ ~ 1rr ~ o 

4 
Singer shows by standard methods of homotopy theory that if M = S or 

3 S and if G = SU(N) for some ~ > l then TT . ( C 
00 t; ) f. 0 for some j .] dO 

and hence no continuous choice of gauge exists 1n the sense that there 

1s no continuous section 

1 rr 

of the natural projection 

1J 

The slice theorem stated 1n /Singer, I.M., 1978/ was proved in 

/~arasimham, M.S. and Ramadas, T.R., 1979/ and in /iittcr, P.K. and 

Viallet, C.M., 1981/. Narasimhan and Ramadas restrict their attention 

to SU(2) gauge fields over s3 
and prove theorems for the actions of L~+l 

2 
principal bundle automorphisms on Lk connections for k ~ 3. Mitter and 

Viallet prove slice theorems for the action of L~+l principal bundle 

2 
automorphisms on Lk connections where 

k > n 
2 

+ 1 

n being the direcnsinn of the base manifold of the principal bundle. 

1\ connection on a p incipal bundle over a four-dimensional 

manifold is an instanton (or anti-instanton) if and only if the 

curvature of the connection is self-dual (or anti self-dual). 

Instanlons or anti-instantons attain the minimum of the Yang-Mills 

functional, provided that they exist. The moduli space of instantons 

is defined to be the quotient coOA . /c<OO{; of the Banach manifold 
mtn d-

eo<> A mJ n of i nstantons by the group C tx~ ~ of principal bundle 

automorphisms. In LAtiyah, M.F., Hitchin, N.J. ar.d Singer, I.l\1., 1978/ 
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iL •c shown that the moduli space nf irred~rihlc inst3ntons over a 

compact (self-dual) half conformally flat 4-manifold with positive 

scalar curvature is either empty or is a manifold of dimension 

p
1 

( 9 
1
,) -%(dim G) IY--l::) 

where p ( 9 ) 1 s the first Pcmtryagi n number of the adjoint bundle 
l p 

9 I' x 9 y::_ 1s the l~ulcr charactcri stic of the base 
P = Ad ' 

manifold and '1::: 1s its signature. 

In general it 1s known that the moduli space of all instantons 

over a 4-manifold (not necessarily half conformally flat) will have 

singularities, though the regular set will have the dimension given 

~bovc. This dimension is calculated usjng the Atiyah-Singer index 

theorem. 

All instantons on s4 
have been classified using methods of 

algebraic geometry applied v1a twistor theory (see L_Atiyah, M.F., 

Hitchin, N .. J., Dri nfeld, U. and Manin, Yu., 1977/ and {Atiyah, M.F., 

19?9/), 

Bcurguignon, Lawson and Simons have proved stability, isolation 

and non-existence theorems for Yang-Mills fields on compact homo-

geneous Riemannian manifolds (see _{Bourguignon, J.-P. and Lawson, H.B., 

1980/ or {Bourguignon, .J.-P. and Lawson, H. B., 1982/). 

Taubes has proved an existence theorem for instantons on 

compact Riemannian 4-manifolds whose intersection form is positive 

definite (sec /Taubcs, C.ll., 1982/). 

Uhlenbcck has provided v3r1ous analytical tools that are 

useful in the study of connections whose curvature is bounded in 

some appropriate norm. In /uhlcnbeck, K.K., l982b/ it is shown that 

there exist constants 1'f and c, depending only on n, such that if 

~in ~ p < n and if d + A is an Li connection on a trivi >1 bundle 
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'>vcr the unit ball B11 
111 IR 11 whose curvature F(A) sati_sfics 

then d + A is gauge equivalent to a connection d + A satisfying 

the conditions 

?J A 0 , 

II A II F( A) II 

Using this result Uhlcnbeck shows that if 2p > nand if 

w ; i E JN) is a sequence of connections on a principal bun ell e 
l 

IT : P ~ M over a compact Riemannian manifold M of dimension n 

with compact structural group and if the Lp norms of the curvatures of 

( W i ) arc uniformly bounded then there exists a sequence ( ~ i : 1 E JN 

of L~ gauge transformat-ions such that the sequence ( 'f ~ * W i : i E JN ) 

1s weakly convergent in the space of Lr connections to some connection 

Mnrcov(;r the curvature F w of LA) satisfies 

1 im sup II F (1.)~ II Lp 

A similar theorem may be proved in the limiting case when 

2p = n, though here one finds that the sequence of connections will 

converge weakly only over the complement of some finite set of 

points in the base manifold of the principal bundle (sec _{Sedlacek, S., 

198~7 and/§onaldson, S.K., 1983~/). For Yang-Mills connections on 

4-manifolds one may then extend this limiting connection to a 

connection on some principal bundle defined over the whole of M 

using Uhlenbeck's removal of signularities theorem (discussed below), 

though the topological type of this new bundle may differ from that 

of the principal bundle on which the original sequence of connections 

\~3 s defined. 
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Uhlenbeck's removal of signularities theorem states that if 

. . d 4 a connection on a pr1nc1pal bun le over B ' satisfies the 

Yang-Mills equation and if the curvature of the connection is bounded on 

') 

in the L~ norm,then the principal bundle and the connection 

4 - -
may be extended over the whole of B (sec /Uhlenbeck, K.K., l982a/). 

Uh I cnhcck' s rcsu l t:s have been cxto:r.Jed to Yang-Mill s-Higgs 

s.'~~cms by Parker (sec /farker, T., 19827). Parker also proves 

slice theorems in Sobolev L~ norms for 2 < p <:: 4. 

Donaldson has made a study of the topology of the moduli 

space cf instantons introduced by Atiyah, Hitchin and Singer using 

the analytical tools developed by Taubes and Uhlenbeck. In con-

sequence he was able to prove his celebrated theorem that if the 

intersection form of a smooth 4-manifold is positive definite then 

it is a sum of squares. 

Atiyah and Bott have made a study of the Morse theory for the 

Yang-Mills functional for connections on a bundle over a Riemann 

surface (sec /~tiyah, M.F. and Batt, R., 19827. Donaldson has 

used the weak compactness theorem of Uhlcnbeck in giving a 

differential geometr·ic characterization of stable bundles over 

projective algebraic varieties (see {Donaldson, S.K., 1983a/ and 

/Donaldson, S.K., 19857. 
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Plan of the Thesis 

In chapter II we revtew the definitions and basic properties 

of Sobolev and HHlder spaces. We also discuss slice theorems 1n 

the general context of a Banach Lie group acting smoothly and freely 

on a Banach manifold. 

In chapter III we prove general elliptic regularity theorems 

1n Sobolev and HHlder norms for linear elliptic differential 

operators with smooth coefficients defined over a compact smooth 

manifold. The proof uses the theory of singular integrals, developed 

by Calderon and Zygmund, and the theory of pseudodifferentia1 

operators. 

In chapter IV we shall prove an inequality satisfied by 

continuous functions on a compact manifold which is closely related 

to the Sobolev embedding theorem for embeddings of Sobolcv spaces 

1n IH:Ilder spaces. 

In chapter V we give an account of the theory of Ehresmann 

connections on principal bundles and of principal bundle auto

morphisms in preparation for subsequent chapters. 

In chapter VI we study the action of Banach Lie groups of 

principal bundle automorphisms of connections and prove various 

res1Jlts that wil 1 be used 1n chapter VIII, where we prove slice 

theorems for· this action. 

In chapter VII we produce a generalization of the analytical 

aspects of Hodge theory which is applicable to covariant Hodge-

de Rham Laplacians with respect to connections that need not be 

smooth. This chapter uses the general elliptic regularity theorems 

of chapter Ifl, together with the Sobolev embedding theorems, the 

Rellich-Kondrakov theorem and the Sobolev multiplication theorems. 

In chapter VIII we prove slice theorems in Sobolev and HUlder 
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norms for the action of principal bundle automorphisms on 

connections, using the results of chapters VI and VII. We shall 

also prove regtllarity theorems for Yang-Mills connections and 

discuss the regularity of Yang-Mills-Higgs systems. 

In chapter IX we shall show the existence of an upper bound on 

the Length of loops required to generate the holonomy group of a 

principal bundle over a compact Riemannian manifold. We shall show 

how this result can be used to derive inequalities satisfied by 

sections of a fibre bundle associated to the given principal bundle. 
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The nclationship of the Hcsults to Published Material 

I give here a discussion of the sources from which the 

rcsc~!rch contained in th·i s work has been derived. 

Chapter II contains no original research, being a summary 

of the basic theorems of global analysis that we shall be us1ng. 

However I have not come across the general slice theorem 

(theorem 11.3.1) in the literature in the form 1n which I have 

stated it, though it is implicit in the proofs of slice theorems 

occurring in the literature and it is stated in the more abstract 

formulation given here mainly for reasons of economy (for not 

only do we need theorem II.3.l in prov1ng theorem VIII.2.3 but also 

Jn section 4 of chapter VI in forming the quotients of the groups 

of principal bundLe automorphisms by the centre of the structural 

gt'OUp). 

Sections 2 and 3 of chapter Ill do not contain any original 

research, being summaries of the results of Calderon and Zygmund 

and of H~rmander on which the proofs of the elliptic regularity 

theorems arc based. A partial exception to this is the proof 

that smoothing operators arc pseuclodifferential operators in the 

sense of HHrmander, which we prove using the methods of H~rmander. 

Section 4 of chapter III is original research, at least I have not 

yet come across a proof of Le and HUlder estimates for pseudo-

differential operators in the literature which employs this method. 

The elliptic regularity results of section 5 do not appear to be 

stated explicitly in the literature; their proofs are immediate 

l . . h p . genera 1zat1ons to t e Lk and lltllder cases of standard rcsul ts 111 

the L~ case obtained by merely rcplacin1~ the standard 1.~ estimates 

for pseudodiffcrcntial operators by the results of section 4 at the 

appropriate steps in the proofs. 
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Chapter IV consists of original research. The proof of 

theorem IV.3.3 was suggested by the ideas underlying the proof cf 

the Sobolev embedding theorem for e~beddings of Sobolev spaces 1n 

HtilJer spaces. 

Chapter V is basically an expanded and freely adapted account 

of the theory of Ehresmann connections and principal bundle auto-

morphisms based on the papers by Bourguignon an~ Lawson and by 

Atiyah, Hitchin and Singer listed in the references at the end of 

chapter V. Any result not found in these papers may be taken to be 

'original research', though many of these results are either 'obvious' 

or 'well-known'. Note however that theorem V.4.2 is stated as 

lemma 2.2 of /Narasimhan, M.S. and Hamadas, T.H., 1979/. 

Chapter VI is original research, apart from theorems VI.2.l and 

VI.2.2 which are stated in the Sobolev case as lemma 1.2 of 

/Uhlcnbeck, K.K., 1982~7 and there proved when k = 0 or 1. The 

differences between the proofs gi~en in chapter VI and the proofs 

g1ven by Uhlcnbeck arc essentially cosmetic in nature. 

Chapter VII consists of original research. 

Chapter VIII contains original research. The slice theorem 

(theorem VIII. 2. 3) generalizes theorems stated or proved in _{singer, I .M., 

1978/, /Narasimhan, M.S. and Ramadas, T.H., 197~7, {Mitter, P.K. and 

Viallet, C.M., 1981/ and /Parker, T., 1982/. Of these authors, only 

2 
Parker proves his results in Sobolcv spaces other than Lk spaces. 
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Chapter II 

BASIC RESULTS OF GLOBAL ANALYSIS 

~l. Introduction 

In this chaptcl", I<~C give an account of the basi.c ccsults of 

global analysis which we shalL be using. 

In §2 1·:c define the Sobolcv spaces ;mel Iltllde!" spaces of sections 

of a smooth vector bundle over a compact smooth manifold. We list 

some of their important properties. In particular we state the 

Sobolev embedding theorem (theorem 2.1), the Rellich-Kondrakov 

theorem (theorem 2.3) and the Sobolev multiplication theorems 

(theorem 2.4). Some sources in the literature give only restricted 

versions of the Sobolev multiplication theorems, such as the result 

that L}~ (.(l) lS a Banach algebra when Jl lS a bounded domain 1n IRn 

and pk>n. Other sources (for example /ralais, R.S., 19l18~ 

chapter 2? g:tve very r.eneral statement::; of these thcot"ems. The 

statement of theorem 2.4 is an attempt to strike a balance by 

stating a theorem which is sufficiently general for the applications 

which we shall make of it, yet which 1s not so general as to be 

difficult to remember and apply. We conclude §2 with a statement of 

the results proved 1n /Palais, H.S., 1968/ which g1ve sufficient 

conditions for one to be able to define Banach manifolds of sections 

of a smooth fibre bundle over a compact manifold modelled on Sobolev 

and Helder spaces (theorems 2.5 and 2.6). We present also a simple 

corollary (corollary 2. 7) of theot"em 2. 6. 

Palais proves these results in a more general setting. Let 

m be a functor which associates to every smooth vector bundle 

E-? ~I over a compact n-cl:imensiona I manifold M a complete normablc 

topoLogical vector space Oft! E) of continuous sections of E -HI 

satisfying the following two axiom~;: 
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(i) if M and N are compact smooth n-dimensional manifolds, 

if cp : ~·J ~N is a diffeomorphism of M into N and if E -+N 

1s a vector bundle over N then the map sending s to sop 

c]pfines 8 continuous Line::Jr m::Jp from m IF) into ML( 'f'''l'~)' 
( i i) if E

1 
~M and E2 ~~·I ar·e smooth vector bundles over a 

compact smooth n-climcnsiona L manifold M and if f : E 1 ~J·: 2 
is a smooth fibre preserving map then the induced map from 

m (1~ 1 ) to ffi(E
2

) is continuous. 

Palais shows that any functor tfL satisfying these hvo ax1oms extends 

to a unique functor which associates to any smooth fibre bundle 

B--+~1 a Banach manifold m_(B) of sections of 13--HI and which 

associates to any smooth fibre preserving map between fibre bundles 

a smooth map between Banach manifolds. Palais shows that the functors 

__ k ck )0( p 
L , . and L satisfy axioms (i) and (ii) for all non-negative 

]{ 

in tegcrs k and for all 0( and p satisfying the conditions 

O<O<. <. l, l ~ p<oo, pk > n. 

In §3 we consider Banach Lie groups H acting smoothly and 

freely on Banach manifolds X. In theorem 3.1 we g1ve necessary and 

sufficient conditions for the existence of a unique differentiable 

structure on X/II with the property that the projection map X ---?X/11 

is smooth and admits smooth local sections. We observe that these 

36 

conditions are automatically satisfied when His compact (corollary 3.2). 

In particular if H is a compact normal subgroup of a Banach Lie group 

then G/H is a Banach Lie group (corollary 3.3). 



§2. Sobolcv and JHjldcr Sp3ccs 

In this section we shall define Sobolev and Hl:llder spaces and 

rcvJew some of their basic properties. 

11 . . l Given a dom;1in U em , g1ven a non-negative integer z and 

f~l ven p E {l, 00 ) , the Sobo lev space t\~ ( U) 1 s defined to be the 

Banach space consisting of all functions f U~m vvith the property 

that, for all multi indices o< = ( o< 
1

, ... , o< n) satisfying 1 0(, 1 ~ k, 

..... o( f l p( ) 
0 Jelongs to L U , 1vhcre 

The not'm IJ. ll p,k on LJ>u) is given by 

II f II p,k -( [ j I d~+ I" ~ )~ 
lc(./<k u 

1·:hc l"C )-' is I..cbcc;que measure on mn · 

,k 
If o<. €. ( 0, l), I've define the space C ( U) to be the B~nach 

space of all functions f : u~m whose partial derivatives of order 

not cxcecdinr~ k are continuous, and "'e define the Hl:llder space 

kO( 
C 1 

( U) to be the Banach space of all func lions f : U ~m all of 

whose partial derivatives of order not exceeding k are continuous 

and sab sfy 3 lloldcr condition of order 0( . Norms ~ . II k and 

II . II 

~ f 11 k = L ~~~~ I d a f I 

and 

II r II = k} o<. 

IJI~k 

I ;l f( x) - o.s r ( y) 1 

lx-y\CK. 

Let ~1 be a compact smooth manifold and letrr: E--+M be a 

smooth vector bundle over M. 
p 

The Sobolev spaces Lk(E), the spaces 
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Cl<(E) and the Htllder spaces Ck, ~(E) are the Banach spaces of sections 

s : ~1 ~ E of -rr : E-'> fVl with the following property: for all smooth 

charts 
n 

~ : U --'> ]{ , for all smooth functions f : 1\'1 ___,. :m with compact 

support cont3j ned in U, and for a L 1 smooth sections cr : M ~ E~' of 

the dual bundle I~'''__.. ~1 of E, the composition 

. -1 
(f (c::J, s) )<> Cf' 

belongs to L~~( Cf (U) ) , Ck( 'f (U) 
)<oe 

) or C ' ( cp (U) ) respectively. 

Using the fact that M is compact, it can be shmm that Le(E), ck(E) 

and ck~ o<. (E) are complete normablc topological vector spaces together 

with norms that are well-defined up to equivalence of norms (see 

/Palais, ILS., 1968/). 

If k is a non-negative integer and if p~(l, oo) (i.e. \ve exclude 

the C3ses p = l and p = oo ) , then L:~ (E) is a reflexive Banach space 

(see /Adams, H./\., 1975; p.4.2:_/), and if p' is the exponent conjugate 

to p, defined by the condition 

1 
p + 

1 
p' 1' 

then Lp
1

(E''') is the dual space of Lp(E). If k E ZZ and k < 0 we define 

LR(E) to be the dual sp3ce of L~~(E*). 

The space C 
00 

(E) of smooth sections of Tf : E --') ~1 is dense in 

L~~(I~) for all p!:(1, oo) and k E ZZ, and 

all k €:: ZZ satisfying k ~ 0 and for all 

l%R; pp. 211-22_/). 

1 k k,« 
Jn Lk(E), C (E) and C (E) for 

o< E (0, 1) (see /Palais, fLS., 

l~crc are various embeddings amongst the Sobolev spaces, Ck 

spaces and Htlldcr spaces. These are given by the Sobolev embedding 

theorem. 

Theorem 2.1 (Sobolev Embedding Theorem) 

Let TT : E ~ M be a smooth vector bundle over a compact smooth 

manifold M of dimension n. Let p,q E /l, <>o), let k, L E ZZ and let 

oZ c (0, 1). Then 
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(i) if l.6k and if 

1 1 
~ 

1 k -
q n p n 

then \'iC have 8. continuous embedding 

L~ ( 1·:) ~ L ~ (E) 

(where k ~ 0 if p l and l. ~ 0 if q "" l) , 

( i i ) i f k, 1..?. 0 and if 

L<k n 
p 

then we have a continuous embedding 

(iii) if k, L ~ 0, if o<. e ( 0, l) and if 

l +0( < k - !: 
" p 

then we have a continuous embedclinf:; 

Proof 

Sec /i\ub:i n, T., 1982; chapter 2/ or //\clams, fL 1\., 1975; chapter 5/. 

D 
1\ map between Banach spaces 1s said to be compact if it maps 

bounded set:~; to sets with compact c lo~~ure. The foJ Lowinr~ theorem is 

;1 coro I l ary of the /\:-;coli -1\rzc La theorem. 

Theorem 2.2 

Let rr: E----7 M be a smooth vector bundle over a compact smooth 

man:i fold M. Let k and L- be non-negative integers and let ot.,fo E ( 0,1). 

Suppose that L +} < k + 0( . Then the embeddings 

ck'O(.(E)Y cl,.fo(l':) 

Ck'o<(E) ~ CL(E) 

Ck(E) ~ Cl,}(E) 

are compact. 
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Proof 

See /Adams, R.A., 1975; p.ll7· 

D 
Theorem 2.3 (Rellich-Kondrakov) 

Let lT: E~~·I be a smooth vector bundle over a compact smooth 

manifold ~1 of dimension n. Let p,qE{l,oo), let k,Le?Z and let 

~ E ( 0, l). Then 

( i) if t, <. k and if 

1 1-> 1 k 
q 11 p n 

then we have a compact embedding 

p n 

Lk (E)~ Ll(E) 

(where k ~ 0 if p 1 and L ~ 0 if q 

(ii) if k,L~ 0 and if 

(iii) 

Proof 

then we have a compact embedding 

if k, L ~ 0, if o< e ( 0,1) and if 

n L.+o<< 1<-
p 

then we have a compact embedding 

l) ' 
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See /Aubin, T., 1982; chapter 27 or /Adams, !LA., 1975; chapter 6/. 

D 
The following theorem is the basic multiplication theorem for 

Sobolev spaces which generalizes HHlder's inequality. Other multi-

plication theorems for multilinear maps between vector bundles may be 



deduced from the given theorem by induction on the degree of the 

multilinear map, by using the Sobolev embedding theorem, and by 

p p' 
using the duality between the Sobolev spaces Lk(E) and L_k(E*) where 

E'~ --)fvl is the vector bundle dual to E ---tM and where p; is the 

exponent conjugate to p, defined by 

l 1 
+ -

p p' 

(for more details, see /~alais, R.S., 1968; chapter 97). 

Theorem 2.4 

Let M be a compact smooth manifold of dimension n, let 

E
2

---?M ;md Tr
3 

: E
3
--)M be smooth vector bundles 

over ~1. and let B : E
1 

® E
2
---)E

3 
be a smooth morphism of vector 

bundles. Let 

G : C
00 (El) x C

00
(E

2
) ~ C

00
(E

3
) 

be the map sending (s
1

,s
2

) to B(s
1 

® s
2

), for all s
1 

E: C00 (E
1

) 

and s
2

EC
00

(E
2

). Let k be a non-negative integer and let p,q,rEL_T,oo). 

Then 

( i ) i f r ( p , r < q an cl 

r 

-

l 
p 

+ 
q 

k 
n 

then B extends to a continuous bilinear map 

(ii) if q > p and qk > n, then§ extends to a continuous 

bilinear map 

(iii) if pk) n, then B exte~ds to a continuous bilinear 

map 
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-
(iv) 8 extends to a continuous bilinear map 

Proof 

It suffices to prove the result for trivial bundles over the 

n 
unit ball in JR and for the map B sending s 1 ® s

2 
to the product s

1 
s

2
. 

Expand the partial derivatives of s 1s 2 of order not exceeding k by 

Lcibnitz' rule. Then use the Sobolev embedding theorems and 

Htlldcr's inequality. 

D 
Next we consider the continuity on Sobolev and HHlder norms of 

maps on sections induced by smooth fibre preserving maps (not 

necessarily linear) between vector bundles over a compact manifold. 

Theorem 2.5 

Let 1T 
1 

: E
1 

--i M and 1T 2 E
2 

4 M be smooth vector bundles 

over a compact smooth manifold M of dimension n. Let f : E1 ~ E2 

be a smooth fibre preserving map. Then, for all non-negative integers k, 

for all p E {T, oo) satisfying pk > n and for all o< E ( 0,1), the 

map f induces smooth maps 

Lc ( E l ) ~ L~~ ( E 2 ) 

ck ( E ) ---. ck ( E ) 
' 2 

of flanach spaces, mapping a section s of Tf 1 

section f 0 s of 1T 2 : E2 --+ 1\1. 

Pt'OOf 

E1 4 M to the 

This follows from theorem 9.10, the remarks at the beginning 

of section 11 and theorem 11.3 of /~a1ais, R.S., 19687. 

D 
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Let 1T: B --;{\] be a smooth fibre bundle ovet' a compact smooth 

manifold M of dimension n. Then for all non-negative :integers k, 

for all p€L_l,Oo) satisfying pk >nand for all o<E (0,1) there are 

1veU-def:incd smooth llanach manifolds L~~(B), Ck(B) and Ck 1 oc,(BJ with 

the [Jt'opct'ty that if lT 
1 

: E ~~I i:-o a smooth vectot" bundle, if U 

is an open set in B and if f : U ~ E is a fibre preserving diffeo-

morphism onto an open :-oubset of E, then f induces a diffeomorphism 

from 

p . . .k . ]\!X 
onto m1 open subset of Lk(E), and s1m1larly for C (B) and C 1 (B). 

Theorem 2.6 

Let Tr 1 : n
1

-+ 1\1 and 1T 
2 

: 13
2 
~ l\1 be smooth fibre bundles over 

a compact smooth manifold M of dimension n. Let f : s
1 

4 8
2 

be a 

smooth morphism of fibre bundles. Then, for all non-negative 

integers k, for all p E L_T, eo) satisfying pk > n and for all 

o< € ( 0, l) , the map f induces smooth maps 

p p 
Lk(Bl) ~ Lk(82) 

Ck(8l) ~ Ck(82) 

ck)oc. (8 l ~ ck,~ (8 l 1 . 2 

of Banach manifolds, mapping a sections of 1T 1 s 1 ~ M to the 

sec t:i on f 0 s of iT 2 : 8 2 ~IV!· 

Proof 

See /Palai.s, R.S., 1968; theorem 13.5/. 

D 
Corollary 2.7 

Let 1f: B~l\1 be a smooth fibre bundle and let Tf
1 

: E1 ~1\1 and 

TT 2 : E2 -+M be smooth vectot' bundles over a compact smooth manifold M 

of cHmensi.on n. Let f : B xrll4 E2 be a smooth morphism of fibre 

1}3 



bundles 1vi th the property that for all sCi: C 00 (B) the map from 

C
00 (E 1 ) to C

00
(E

2
) sending s

1
E.C 00 (E

1
) to f(s,s

1
) is linear. Then, 

for all non-negative intege1"S k, for all p E:L_I,oo), for aLl 

qE_Ll,oo) ~;at:i:_;fying ql~ >nand for all o<.E.(O,l), tltc map f induces 

smooth maps 

L~ ( 13) X Lj~ ( E l) ~ LE (E 2) 

Ck(B) x Ll>E]) ~ L~~(E 2 ) 

Cl<;(B) x Ck(E
1

) ~ Ck(E
2

) 

Ck}X(B) x Ck1 0((E ) -t Ck,o<(E ) 
1 2 

of Banach manifolds, mappJ.ng sections s of \T: l3~~·J and ro
1 

of 

1T 
1 

: E 1 ~r,J to the section m~f(s(m), s
1

(m)) of rr
2 

Proof 

Let f : B ~Hom (E
1

, E
2

) be the smooth map defined by 

for all sE.C 00 (B) and s
1

E:C-(E
1
). f defines smooth maps 

I.~~(B) ---7 L~(IIom(E 1 ,1~ 2 )), 

Ck(B)--? Ck(Hom(E
1

,E
2
)). 

Let e: l!om(E
1

,E
2

) ® E
1

--.r:
2 

be the evaluation map. e defines 

continuous bilinear maps 

k 
C (Hom(E

1
,E

2
)) x Ll~ (1\ ) ~ L~ (I~ 2 ) , 

k 
C (Hom ( E l , E 

2 
) ) 

k k " x C (El) ~ C (E2 ), 

Ck,o<(II (E E ) ) x Ck,Co((E\) ---lo. Ck'oc.(lo
2

). , -om . 1 ' < 2 - , --, ' 

The result then follows from the identity 

ecf(s),s
1

). 

D 
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§3. Quotients of Banach Manifolds by Banach Lie Groups 

In this section, we prove a theorem giving necessary and 

sufficient conditions for the existence of smooth local slices for 

a smooth free action of a Banach Lie group H on a Banach manifold X. 

Proving the existence of such slices is equivalent to proving the 

existence of a smooth structure on the quotient X/H of X by H with 

the property that the projection X___. X/H is smooth and admits 

smooth local sections around each element of X/H. These necessary 

;mel sufficient conditions are satisfied when II is a compact Lie 

group. We deduce that the quotient of a Banach Lie group G by a 

compact Lie subgroup H normal in G is a Banach Lie group G/H, and 

any smooth action of G on a Banach manifold which restricts to a 

trivial action of H induces a smooth action of G/H on this manifold. 

Theorem 3.1 

Let X be a connected Banach manifold and let H be a Banach Lie 

group (i.e. a Banach manifold with a group structure such that the 

group operations are smooth). Let H act smoothly and freely on X 

(on the right). Suppose that the action of H on X satisfies the 

following three conditions: 

(i) for all xex, the derivative at the identity element e of 

the map from H to X sending hE. H to x. h defines an isomorphism 

of T H onto a closed subspace of T X tangent to the orbit of e x 

H containing x, 

( ii) for all x EX, this tangent space to the orbit of H containing 

x has a closed complement in T X, 
X 

(iii) if (x. 
l 

i EJN) Js a sequence converg1ng 1n X and if (hi : iE JN) 

1s a sequence in II such that the sequence (x .. h. 
1 l 

also converges 1n X, then the sequence (hi i E. :IN) has a 

subsequence converging 1n H. 
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Then the quotient space X/II may be given the structure of a Banach 

manifold in such a way that the projection map p : X: --7 X/H is 

smooth and such that every point of X/H has an open neighbourhood 

1vhich is the domain of a smooth local section of p : X~X/H. More-

over, this smooth structure on X/H is the unique smooth structure 

satisfying these conditions, and if X/H has such a smooth structure, 

then the action of II on X satisfies (i), (ii) and (iii). 

Proof 

Suppose that the action of II on X satisfies ( i)' ( ii) and (iii). 

First \-JC sh01v that X/II lS a Hausdorff topological space. Let 

R = { (x,xl X X X : 3 hE:H such that x
1

.h = x2} 

Let (x,x) belong to the closure of R in X x X. X satisfies the 

fir:;t axiom of countability, hence there exist sequences (x. : iEJN) 
l 

and (h. : i~ JN) in X and II respectively such that the sequences 
I. 

(x. : iE:JN) and (x .• h. : iE:JN) converge to x and x respectively. By 
l l l 

condition (iii), some subsequence of (h. 
1 

iEJN) converges to h, for 

some h ~ H, and x. h = x by the continuity of the action of H on X. 

Hence (x,x)~R. Thus R is closed. Hence X/H is Hausdorff. 

Let x eX. Then there exists a smooth chart ~ : U ---?X, where 

U is an open nci ghbourhood of zero in TxX, such that cp maps sero 

to x and c;uch \:hat the dcrivabvc of cp at zcr'o i:-; the idcnti ty map 

of 'I'xX. Let Z be the subspace of 'I'x~: bngen t to the orbit of II 

through x. Z 1s closed by (i). By (ii), there exists a closed 

complement Z' of Z 1n TxX. Let Ul = Uf'\ Z'. By (i), the derivative of 

the smooth map g u
1 

x II~X sending (u,h) to cp!u). h 1s an 

isomorphism at (O,e), where e is the identity of element of H. By 

the inverse function theorem for Banach manifolds, there exist an open 

neighbourhood u2 of zero in u
1 

and an open neighbourhood v
2 

of e 1.11 

II such that 8/U2 x V 
2 

: u
2 

x V 
2 
-~X 1s a diffeomorphism onto an open 

set 1n X. Using the fact that 
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8(u,h) 

for all h
1 

€ 11, we sec that 8/U
2 

x H 1s a local diffeomorphism from 

u
2 

x II onto an open set in X. We claim that thcl'C cxist:c; a neighbour··-

hood u
3 

of zero in u
2 

such that e;u
3 

x II is a c.liffcomor·phi sm from 

u_ x H onto an open set 1n X. Suppose this were not so. Then, for 
,) 

each neighbourhood N of zero in u
2

, there would exist u,u'E Nand 

h,h 1 E:H such that ~(u).h == <p(u 1 ).h 1 though h,.fh 1
, and then 1ve 1vould 

~-1 1-1 
have hh ,.fe, uEN and <p(u).hh E «p(N). Since this 1voulcl be 

true for all such neighbourhoods N of zero, we would be able to 

construct sequences (u. 
l 

if JN) and ( u! 
l 

: ic: JN) lfl H such that 

~ (u.) .h. == <p ( ui I)' such that h.,.fe for all l' and such that the 
l l l 

sequences ( 'f ( ui) i e JN) and (~(ui I) i E:.JN) IVOUld converge Jn 

to x. By (iii), a subsequence of (h. : itJN) would converge to 
l 

some element of H and, by the continuity of the action of H on X, 

X 

this element woulJ stabilize x and so would be the identity clcm•~nl 

e of H. Thu:s there would exist positive integer:; i such that h. E V.). 
1 

But then for these values of i, we would have h ~e and 
1 

8(u. ,h.) 
1 l 

8( u. ',e), 
l 

contradicting the fact that 8IU2 X V2 is injective. It follows that 

there exists a neighbourhood u
3 

of zero in u2 such that elu3 x H 1s 

a diffeomorphism from u3 x H onto an open subset of X. Thus for 

all x Ei X there exist an open neighbourhood U of zero in some Banach 
X 

space and a smooth map ffx : Ux -+X mapping zero to x h'i th the property 

thatthemapfromU xlltoXscnding(u,h)EU xHto(l) (u).h 1s 
X X I X 

a diffeomorphism onto an open subset of X. 

Define V == pw (U ) . Then V 1s an open neighbourhood of p(x) 
X TX X X 

in X/H. The map P<fx : Ux ~X/H 1s continuous, injective and open, 

and is thus a homeomorphism onto V (where X/H is given the quotient 
X 

topology). There 1s then a unique smooth structure on V such that 
X 
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P w is a diffeomorphism from U 
TX X 

onto V . Let s : V ~X be the 
X X X 

. . ( ) -1 compos1 t1on s = (1) o p (L) • 
X f X T X 

Then s is smooth and po s lS the 
X X 

identity map on V . If x,y E: X and V and V intersect, then po s 
X X y X 

lS a smooth map from the open set 'l " V 1n '' +-/""\ +he roper set V f\ '' 1n X y \1 X vv VJ..l v .l X v y 

Vy, where Vx and Vy are given the smooth structures defined above, 

pos has inverse pos , and the map defined by pos between the under-
x y X 

lying topological spaces is the identity map. Thus the smooth structures 

on V and V are compatible. It follows that there is a unique smooth 
X y 

structure on X/II such that the open sets V are open Banach submanifolds 
X 

of X/H for all x E: X. This smooth structure on X/H has the property 

that p : X ~X/H is smooth and has smooth local sections around every 

element of X/H. This smooth structure is the unique smooth structure 

with this property, since if X/H is given two such smooth structures, 

then the identity map between the underlying topological spaces factors 

locally as the composition of a smooth local section and the smooth 

projection, and is thus smooth and has a smooth inverse. Conditions 

(i), (ii), and (iii) for the action of H on X follow immediately 

from the existence of a smooth structure on X/H with the above property. 

D 
Corollary 3. 2 

Let X be a connected Banach manifold and let H be a compact 

Lie group acting smoothly and freely on X (on the right). Then the 

quotient space X/H may be given the structure of a smooth Banach 

manifold \'lith the property that the projection map p : X~X/H is 

smooth and has smooth local sections around every element of X/H. 

Proof 

We must verify that the action of H on X satisfies conditions 

(i), (ii) and (iii) of the theorem. But, for all xEX, the derivative 

at the identity element e of the map from H to X sending he H to x. h 



defines a continuous linear injection from T H onto a finite dimen
e 

sional subspace of T H, and this injection is necessarily an 
X 

isomorphism onto a closed subspace ofT X which splits in T X. Thus 
X X 

(i) and (ii) are satisfied. (iii) 1s satisfied since H is compact. 

D 
Corollary 3.3 

Let G be a Banach Lie group and let H be a compact Lie sub-

group of G. Then G/H may be given the structure of a smooth Banach 

manifold 1n such a way that the projection map p : X~X/H is smooth 

and has smooth local sections around every element of G/H. If H 1s 
) 

normal in G, then the group operations on G induce smooth group 

operations on G/H, giving G/H the structure of a Banach Lie group, 

and if G acts smoothly on a Banach manifold X and if the subgroup H 

acts trivially on X via the action of G, then the action of G on x~ 

defines a smooth action of G/H on X. 

Proof 

The existence of the required smooth structure on G/H follows 

from the previous corollary. The smoothness of the group multipli-

cation j) : G/H x G/H ~G/H follows from the fact that j factors 

locally as j = p oy • ( s
1 

x s
2

), where p : G ~ G/H is the smooth 

projection, where )V : G x G~G is the group multiplication on G 

and where s 1 and s
2 

are smooth local sections of p. The smoothness of 

the map sending an element of G/H to its Inverse follows from a 

similar local factorization, as does the smoothness of the action of 

G/H on X. 

D 
Let : Y ---)X be an injection of Banach manifolds. We say 

that Y is a locally closed submanifold of X if and only if for all 

y E Y there exist a Banach space S, a closed subspace s1 of S, an 
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open neighbourhood N of zero in S and charts g : N ~X and 

cp : N f"l s1 ~ Y mapping zero to y with the property that gl N n s1 

Corollary 3. 4 

Let X be a connected Banach manifold and let H be a Banach Lie 

group acting smoothly and freely on X. Let Y be an H- invariant 

locally closed submanifo ld of X. If X/H admits a sr.Iooth structure 

with the property that the projection p : X~ X/H is smooth and has 

smooth local sections around every element of X/H, then Y/H admits 

a smooth structure with the property that the projection p Y : Y -+Y /H 

is smooth and has smooth local sections around every element of Y/H. 

Then Y/JI is a locally closed submanifold of X/1-1. 

Proof 

We must show that if the action of H on X satisfies conditions 

(i), (ii) and (iii) of theorem 3.1, then so does the action of H on Y. 

For all y E Y, T Y is a c lased subspace of T X containing the closed y y 

subspace Z of T X tangent to the orbit of H containing y. Since Z y y y 

splits in T X, there exists a continuous projection.,-: T X~Z. y y y 

Then Tr I TYY lS a continuous projection of Ty y onto zy hence zy splits 

in T Y. Zy is also closed in T Y since it is closed in T X. Thus y y y 

the action of I! on Y satisfies conditions (i) and (ii). Condition (iii) 

is also satisfied. Hence Y/H has a unique smooth structure such that 

the natural projection Y Y/11 Is smooth and hns smooth local sections 

around every element of Y/11. 

Since Y is a locally closed submanifold of X, there exists a 

chart g : N~X, where N is a neighbourhood of zero in T X, such that y 

g maps zero to y and GIN f) T Y y NnT Y~Y is a chart for I. y 

be a closed complement of Z in T X. Then S n T Y is a closed y y y y 

complement of Zy in TYY. By definition of the smooth structures on 

X/1! and Y /H it follmvs that if N is chosen sufficiently sma] l, then 
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p o g j N n s is a smooth chart for X/H and p o g I N rn Y n s is a 
y y y 

smooth chart for Y/H. Thus Y/H is a locally closed submanifold of 

X/H. 

D 
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Chapter III 

ELLIPTIC REGULARITY THEOREMS 

§1. Introduction 

In this chapter, we give a proof of general elliptic regularity 

theorems for linear elliptic differential operators with smooth 

coefficients. 

Let Tr 
1 

: E
1 
~ M, 1T 

2 
: E

2 
~l\'1 be smooth vector bundles 

over a compact manifold M. A linear map L : C00 (E
1

) ~C 00 (E 2 ) is said 

to be a differential operator of order not exceeding m with smooth 

coefficients if and only if there 1s a smooth vector bundle morphism 

T : Jm(E 1 ) ~E2 , where Jm(E 1 )~M 1s the bundle of m-jets of sections 

of E 1---+ M, such that 

\vhcre j 
m 

Ls T o j ( s) 
m 

1s the m-jct extension map (see 

/Palais, R.S., 1968; chapter~7). Let 1T: T'''M-H1 denote the co-

tangent bundle of M. L determines a map CS m(L) : 1T*E1 ~TI~'E2 as 

fo 110\vs: let wE: T"'i\1 and e. e: E1 satisfy 

so that (c.o,e) represents an element of the pullback lT*El of E1 by 

"11: T·::M~M, choose f~C 00 (M) and sEC 00 (E
1

) such that df(x) = w 

and s(x) c, Uwn dcfi nc 

() (L) (C.O,e) 
m ~! L (~s) (x). 

It may be verified that ~ (L) is well-defined, homogeneous of degree 
m 

m in C.U , and that L-+ 6 (L) is linear in L (see /Palais, R.S., 1968; m 

chapter 37). The map CS m ( L) : 1T *E 1 -4lT*E
2 

is referred to as the 

leading symbol of L. L is said to be elliptic if and only if the map 

e ~ CS ( L) (c:.o, e) 
m 

1s an isomorphism from the fibre of if "'El over co to that of IT "'E 2 



over W , for all non-zero w e: T'''l\1. 

It is well-lmown that if L : C
00

(E 1 )~ C
00 (E2 ) 1s a linear 

elliptic operator of order not exceeding m with smooth coefficients, 

2 , 
if s : 111-+E, is a section of E1 ~ l\1, and if Ls ~ Llr (E,), then 

_L _..._ "-.-.rm ...... 
2 s E:. Lk (E 1 ), and that L extends to a Fredholm operator 

L 

for all integers k. We shall show that the analogous results hold 

for the operator 

1n the case where p E ( 1 ,oo), and for the operator 

L 

1.n the case where l{ 3 m and 0(. E: ( 0,1) . In the special case where 

L : coO (1\1)~ C 00 (1\1) 1s a linear elliptic differential operator of 

even order with smooth coefficients acting on the ring C 00 0•1) of 

smooth functions on M, the above results are stated in /Aubin, T., 

1982; p.8~_7 where a proof is indicated, using results contained in 

£Morrey, C.B., 196~7 and in £Bers, L., John, F. and Schechter, l\1., 

1964/. Here we give an alternative proof, valid for linear elliptic 

differential operators with smooth coefficients of arbitrary order 

acting on sections of vector bundles over a compact manifold. 

The proof given here uses the theory of pseudodifferential 

operators. The class of pseudodifferential operators used is that 

defined 1n /Kahn, J.J. and Nirenberg, L., 19627 and /Htlrmander, L., 

1965/. This class was historically the first class of pseudo-

differential operators to be considered, and is the most suitable for 

our purposes. 

defined to be a linear operator which extends to a linear operator 

k : ~.,.. ( E l ) ~ C 00 
( E 

2
) 
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mapping the space ~ '(E
1

) of distribution-valued sections of 

E
1 
~ M to the space COo (E2 ) of smooth sections of the vector bundle 

E2 ~ l\1. The distribution kernel of k is then smooth. A parametrix 

F "oo,.., \~roolt;' \ 
'-' \u 2 } v \Dll ~+' 

VL ::1 linear elliptic differential operator 

L Cec(El)~ Coo(E2) 

PL I 

LP I 

lS a linear operator 

C
00

(El)~ Cco(El) 

C- (E
2

) ~ C 00 (E
2

) 

with the property that 

are smoothing operators. If P1 and P2 are parametrices of L, then 

and the linear operator 

1s a smoothing operator. Thus any two parametrices of L differ by 

a smoothing operator. It 1s a well-known result that if 

L : C00 (E 1 ) ~ C00 (E 2 ) is a linear elliptic differential operator 

of order m with smooth coefficients, then L has a parametrix 

P : C 00 (E 2 ) ~ C 00 (E 1 ) which is a pseudodifferential operator of 

order -m in the class of pseudodifferential operators that we are 

considering. 
2 

The required results in the ~< case follow from the fact 

that P extends to a continuous linear operator 

This result is proved using Fourier transform methods stemming from 

the Plancherel theorem, which states that the Fourier transform, 

acting on functions from ]{n to m, defines an automorphism of L 2 ( :nl). 

In order to obtain elliptic regularity rcsul ts in the L}~ case for 

pE(l,oo) and in the CkJoo..case fork~ m ando<..E(O,l), it is sufficient 

to show that P extends to continuous operators 
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p rP IE ) -4 rP(E• ) 
~k-m' 2 • ·-·k 1 ' 

p 

There is a class of linear operators acting on functions from 

]~n to ill which is closely related to the class of pseudod;fferential 

operators. This is the class of singular integral operators defined 

by Calderon and Zygmund. In a series of papers, these authors prove 

that a singular integral operator I-I : C 00 
( Rn ) ---; C 00

( :Rn ) extends to 
0 

continuous linear operators 

H L~ ( :Rn ) ~ Lk ( :Rn ) ( K ~ 0, p E ( l ,oo), 

H ck, oc.( mn ) ---lo. ck '0(( mn ) (k >,. E: (o 1) ) 
loc " loc O,o<. ' · 

In the case when H is translation-invariant, the result for the Lp 

norm is the well-known Calderon-Zygmund inequality. The result for 

the c 0 ~e<. norm is also well-known. The results for more general 

singular integral operators, not necessarily translation-invariant, 

can be proved from the translation-invariant case using expansions in 

spherical harmonics. 

The proof of the required continuity results for pseudo-

differential operators is obtained by showing that, locally, such 

an operator is a sum of products of singular integral operators, 1n 

local coordinates, and other well-behaved translation-invariant 

operators. Then the local results are pieced together using a 

partition of unity argument. 

In §2, we present a summary, without proofs, of the theory 

of singular integral operators due to Calderon and Zygmund. In 

§3 \'ie summarize the invariant definition and properties of the class 

of pseudodifferential operators studied in /H~rmander, L., 1965/. 

None of the material in these two sections is new. In §4, we develop 

the local theory of the continuity, 111 Sobolev and H~lder norms, of 



pseudodifferential operators defined on Euclidean space. In §5, the 

continuity, in Sobolev and H~lcler norms, of pseudodifferential 

perators on sections of vector bundles over ccmpact manifolds is 

deduced from the local theory presented in§~, and the required elliptic 

regularity results (theorems 5.2 and 5.3) are deduced. 

An alternative proof of the boundedness of classica~ pseudo

differential operators in Sobolev L~ norms for k e ~ and for p 

satisfying 1 ~ p ~oo is to be found in chapter IV of /Coifman, R. 

and Meyer, Y., 1978/ employing methods pioneered in {Calderon, A.P. 

and Zygmund, 1952/. This proof uses the Marcinkiewicz interpolation 

theorem (see chapter V of {Stein, E.M. and Weiss, G., 197~/. The 

principles of this proof have been employed by Muramatu and Illner 

to derive Sobolev L~ estimates for more general (non-classical) 

classes of pseudodifferential operators (see /Illner, R., 1975/). 
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§2. Singular Integrals on Euclidean Space 

We give an account of the main results of _LcaJderon, A.P. and 

Zygmund, 1-\., 195!i/ and {Calderon, A.P. and Zygmund, II., 195_:~7· 

Calderon and Zygmund c-- +- 1 1 rl,.. c· ·i n n 1 1 1 ~ r> i 1'1 t- p. n ,.-. -:t 1 c.: P 
.__} V '-' ........ .) '--) -'- l 1 h I_~ l . ..__.., J. .1. ' ' '-" "-' b _. L<. _.._ "--' ~ 

of the form 

Pr:p (x) lim s _()_ ( x,
1 
~ - ~~ ) 

€~0+ 

lx-yl ) e 

dy 

Hhcre D .Rn x Sn-l ~ ([ is a smooth function satisfying 

r [)_ (x,Z' )dz' 
j sn-1 

0 

n n-1 
for all x E- .lR , where dz' is the volume measure on S Every such 

singular integral operator may be expressed in the form 

p Cf (x) 

A 

where y:> 1s the Fourier transform of f{' and where W 

1s a smooth function with the property that 

I W(x,.f'lu!' 
n-1 s 

o. 

n n-1 r 
lR xS ~1.1.. 

Conversely every smooth function w: lRn x Sn-l~ 0: with this 

property arises from a singular integral operator in this way. CO 1s 

referred to as the symbol of P. 

If .f'l and its derivatives of all orders are bounded on lRn x Sn-l 

then the singular integral operator P determined by [l as above defines 

bounded linear maps 

p 

for all non-negative integers k and fot" all p and o( satisfyjng 

1 < p < oo and 0 <. o<. < l, where BR denotes the balL of radius r~ about 

the ortgJn in JRn 
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We now discuss the above results in more detail. 

Theorem 2.1 

f\ n n-1 ;r 
Let 1 L. : lH x S ~ u... be a smooth function v.Ji th the property 

th:l !: 

{L(x,z')dz' 0 

n ooo n oo n 
for all x E. m. , and let P : C ( m. ) ~ C ( lH ) be the singular 

0 

integral operator determined by Jl , defined by 

lim J n - E ~ o+ 

lx- yl>c 

X - y 
(x, l 

X - Yl 
<p (y) 

I x - yIn 
ely. 

n n-1 If'" 
Then there exists a smooth function W lH x S ~ "-, the symbol 

of P, such that 

Pcp(x) -n J ix ! ~ "" 
(2rr l e · w (x, HI l <f (!) d ~ ' 

"' where Y' 1s the Fourier transform of Y' , defined by 

J c-ix.~ Cf> (x) dx. 

n n-1 r 
]{ x S · _.., 1.1- has the property that 

I {).)(X, J I) d ~I 0 

"n-1 
.:> 

for all x lRn n n-1 
Conversely, given a smooth function ~ : m. x S 

with this property, there exists a smooth function n : JRn X Sn-l 

sa tisfyj ng 

j n (x,z 1
) dz 1 0 

n-1 s 

n 
for all x E. lR , such that W ts the symbol of the singular integral 

operator P determined by Jl as above. 

_()_ (x,z') and its derivatives of all orders are bounded on 

,.,n X Sn-1 
~' if and only if ~ and its derivatives of all orders are 

n n-1 ~ bounded on m x S ··, where W (x, ~ 1
) is the symbol of the singular 
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integral operator P determined by W as above. 

Proof 

We sketch the proof. For more details see /~alderon, A.P . 

and . A , , 1 9 57 7 8 n d /S t e i n , F . i\1 . ;;] n d W Pi s s , (; • , l q 7 2 ; 

chapter 1~7. In particular the Latter has a \vell-\<lritten account of 

the definition and properties of spherical harmonics. 

r'\ n n-1_,_ r 
We expand J L : ]\ x S ~ \.1- in spherical harmonics. 

Let 

00 

fL(x,z') a .(x)Y .(z') 
mJ mJ 

m = o J 

where Y . 1s a spherical harmonic of degree m and where 
ill.) 

(Y . : m,j E: ZZ , m ~ 0, l ~ j ~ d ) 
rnJ m 

l b · f I · lb 2 ( n-l) 1s an orthonorma as1s o t 1e l-11 ert space L S . One can show 

that the partial derivatives of Jl (x,z') with respect to z' of all 

orders are bounded on 
n n-1 

lli x S if and only if for all non-negative 

integers k ~ 0 there exist constants A independent of x such that 
k 

m = o .] 

Thus if _()_ is smooth then the expans1on of _(l 1n spherical harmonics 

converges rapidly. Let 

Pmj 'f = (~:+ S Ymj ( 
IX- ':Jilt E 

X - y ) 
X - y 

50 (y) 
n \X - Yl 

ely. 

We claim that there exists a constant 't m such that 

To show this, define tempered distributions K . : S( mn) ~ ([. and 
m,J 

K . c mJ o 
S ( JRn ) ~ <[. for all & satisfying 0 < b <.. ~n by 
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l( . 1.~) 
ffiJ 

[(. c (fa) 
m.J 0 r 

clx 

~ (x) 

I xj n- 6 
clx 

n 
(where S(m ) denotes the class of smooth rapidly decreasing test 

n 
functions on m ) . Then 

l'lh ere 1\mj '1: $0 

function CfJ . 

1s the convolution of the distribution K . and the test 
m,J 

A 
(P . ~) 

m.J r 

l!ence 

A A 
K . (n 

mJ r 

By the Fourier inversion formula we see that it suffices to show 

that 

I "' E Co ( =n ) 2 ( n) 1ence K . t. 1n + L m . 
mJ o 

Fourier transform of the function 

y . (~) I X I m.J 

lS of the form 

~~ Jsl ( y . 
mJ 

for some function '"'f/ 

-n + b 

! ) 1! I 

But K . c. 
m,J o 

Moreover it can be shown that the 

1s a distribution which is homo-
....... 

gencous of degree -n + & 1n 1 xI, hence K . ~:. is homogeneous of 
mJ o 

degree - b 1n I S I . Thus 

K ·c 
IDJ 0 

for some constant y l 
m,o 

to the test function 

..... 
One can evaluate v l by applying K ·c 

0 m, 0 · IDJo 
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to :shoh' that 

n, 
i -m 1T ;2 

r l~(m +b) ) 

r (~(n + m - s) 
A. A 

G u t 1\ . c ~ 1\ 1 n S 1 
( ]l ) as ~ ~ 0 , hence 1\ . c ~ K . 1 n 

mJO mJ mJo mJ 
n 

S 1 
( m ) as b ~ 0, by the continuity of the Fouriet" transform on 

the space of tempered distributions. It follmvs that 

A 

1\ ( ~) 
mJ 

e~nd hence that 

1vhere 

Define 

Then 

p . U' 
mJ r 

'{ m 
.-m 
1. 

W (x, ~I) 

(!h-) y y 
m mJ 

ix. j 
e Y . 

mJ 

r (~m) 
r (Yz(n + m) ) 

00 
f 

m = o J 

v a.(x)Y.(S). 
O m mJ mJ 

-nJ ix. l ~ ) A t 't 
( 21T) e w (x, w rr ( s ) cl ~ • 

Since v o m 
n/2 -l n;~ 

O(m- ) and '( ~· O(m ~) we sec that ..(l and all its 
m 
n n-1 

dcri vati ves arc bounded on :m x S if and only if W and all its 

. 011 .,..,n X Sn-l. der1vatives are bounded ~ The theorem follows directly 

from this. 

D 
An important example is provided by the Riesz operators 

oo n oo n 
R.: C (:R )~C (JR ), where j takes integer values from 1 ton. 

J 0 

~1e Riesz operators are defined by 
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R. <0 (x) 
.J r 

ro~(n + l)) 
,.f ~·i(n- + l) 

lim I 
E--+o+ J 

tx-yl'>E. 

The Riesz operators have the property that 

1 

for all Y' E c: (:mn ) . From this it follm.,rs that 

n... 

~X 
k 

R. (H. en) 
.J .J r 

X. - y . 
.J J co 1"' d" 

I 
· ·

1
n+lr'.:t' .:t· 

X - y 

When n = l the Riesz operator R1 1s the Hilbert transform 

H C
00 

( lR) ~ CO<>( lR) defined by 
0 

II~ (x) 
l 

lT 
lim J 
t~O+ 

)0 (y) 
ely. 

I x-y I> l 
X - y 

A cla~sical theorem, due to M. R1esz, states that the Hilbert 

transform extends to a bounded linear map 

(for a proof, see appendix A). This theorem is the basis of the 

proof of the following theorem, due to Calderon and Zygmund. 

Theorem 2.2 (Calderon-Zygmund) 

l .et ('\ E.COD(,..,nX Sn-l) _ .l ~_ .n' and suppose that 

f n (x,y') dy' 
n-1 s . 

0 

for all xE mn. Further suppose that [l and its derivatives of all 

n n-1 
orders are bounded on lR x S . Then the singular integral operator 

oon oo n . 
P : C (JR ) ~ C ( lR ) def1ned by 

0 
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P <;o (x) 
I 

dy 

extends to bounded linear maps 

for all non-negative integers k and for all p satisfying l < p < oo. 

Proof 

First we show that P 1s bounded on Lp( mn) whenever p satisfies 

l < p < oo and fl is odd, that is 

J1 (x, -z') - fl.(x, z') . 
In this case 

lT J {) (x z') H (Odz' 
? ' . z 'I 
~ n-l s . 

where 

1 

lT 
lim J 

£-to+ 
fsl > l 

(X - SZ 1 ) 

s 
ds 

n-l 
for all z' E S . It follows from M. Riesz' theorem on the bounded-

ness of the Hilbert transform on Lp( mn) and from Fubini's theorem 

that there exists a constant C such that 
p 

l"z. ~ II r ~ cr II ~ II P 

\-.Jhcrc II Cf liP denotes the LP norm of rp . lienee 

by the integral form of l\linkowski's inequality, where 

This proves that P is bounded on Lp (]in ) when .fl :ts odd. 

To prove the result l'ihen _() is even, that is 

n (x, -z') = n (x, z'), 

\\'e USC 
oo n .oo n . 

the Riesz opera tors R . : C ( lli ) ~ C ( :ffi ) def1nccl above. 
J 0 

64 



Since 

for Dll 

n 

p L (HoR.)o H .• 

j=l 
. J .j 

One can show that Poll. 1s a singular integral operator with odd 
J 

kernel, either directly or by observing that if 

, • ' ·. JRn x sn -1---->.. c where ........., - 7 l.l... is the symbol of P, then W 1s smooth and 

PRj rp (2-rr )-n I elx. i W /x, Iii ) ~ ( ~) d S 

I n n-l · d f · d b 1nere W . : JH. x S .ls e 1nc y 
J 

w .(x, ~ ') 
J 

for J = l, ... , n. 

SlnCC 

W .(x, - S') 
.J 

W (x,- X') 
and thus 

-iw(x,s'l~'· 
J 

Note that 

-W. (x, ~'), 
.) 

W (x, ~,..), 

S W. (x, f'l dJ' 
n-1 ·1 

s 

o. 

By thcroem 2 .l it follows that CA.> . 1s the symbo 1 of a singular 
.] 

integral operator with odd kernel. Thus Po R. is a singular integral 
.J 

operator with odd kernel. The boundedness of P on Lp( JRn) then follows 

from the boundedness of P D R. and R. on Lp ( :nl) . 
.J J 

The boundedness on LP( JRn) of a singular integral operator 

\vhose kernel is neither even nor odd follows by expressing the kernel 
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as a sum of an even kernel and an odd kernel and applying the above 

results. 

where 

P.)O(x) = 
.1 

lim s (\ ( t~O+ JLjX' 
lx-y I > E 

X - y 
\X - Yl 

("'\ (x, z') 
J L J 

0 
~X. 

..()_ (x, z'). 

Then 

p --ox· J 

J 

P.Cf'+P J ~X. 
J 

f:' (y) 

I x - Yin 
ely 

Since P and P. are bounded on LP( mn) it follows that P 1s bounded 
J 

on Ll( llin). By induction Pis bounded on Ll~( llin) for all non-negative 

integers k. 

D 
When k = 0 and fl. (x, z') is independent of x this result is 

known as the Calderon-Zygmund inequality (see {Calderon, A.P. and 

Zygmund, A., 1956/, {stein, E.l\1. and Weiss, G., 1972; chapter vr7, 

/Bers, L., John, F. and Schechter, M., 1964; pp.224, 245-250/ of 

lM'orrcy, C.B., 1966; pp.55-6]?\, 

The corresponding theorem for Htlldcr spaces 1s the following 

classical result. 

Theorem 2.3 

Let [l e: c00 
( mn x sn-l) and suppose that 

f n (X' y f ) dy I 
n-1 s . 

0 

for all x E::nl. Then the singular integral operator P 

defined by 
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p r(x) 
lim r 
£~0+j 

I x-y I'> E 

.f) (x, x_-_ _y_. 
I X - Yl 

fO (y) 
n I X - Yl 

dy 

extends to bounded linear maps 

p 

for all non-negative integers k, for all ex satisfying 0 < 0( ( 1 

and for all R > 0, where BR denotes the ball of radius R about the 

. . . n 
or1g1n ln ID 

Proof 

When k -::- 0 and n (x, z') is independent of X, the result lS 

classical and proofs may be found in /Bers, L., John, F. and 

Schechter, i\'1., 1964; pp.223, 244-245l/, (L_Morrey, C.B., 1966; 

pp.50-5~/ and {Calderon, A.P. and Zygmund, A., 195~/. The result 

in the general case follows by a straightforward adaptation of the 

proof in the case when ..(l (x, z') is independent of x or by expanding 

.f)_ 1n spherical harmonics as in theorem 2.1 and proving that each 

term 1n this expans1on 1s bounded on Ck 1 ~(B ) and then us1ng the 
R 

rapid convergence of the expansion. 

D 
Calderon and Zygmund have considered versions of the above 

theorems when the assumption that the kernel of the singular integral 

operator :is smooth is relaxed (see /Calderon, A.P. and Zygmund, A., 

1956/ and /Calderon, J\.P. and Zygmund, A., 1957/). 
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§3. Pseudo-Differential Operators on Manifolds 

In this section, we study the properties of pseudo-differential 

operators on smooth manifolds. There are several definitions of 

pseudo-differential operators in the literature (see, for example 

/Kahn, T.J. and Nirenberg, L., 1962_7, {Htlrmander, L., 19657, 

/Palais, H.S. et al, 1965; chapter XV~7, where they are referred to as 

Calderon-Zygmund operators, {Htlrmander, L., 1962_7, {Atiyah, M.F. and 

Singer, I.M., 196~7. {Nirenberg, L., 19707, {Wells, R.O., 19737). We 

adopt here the definition due to Htlrmander in his paper "Pseudo

differential operators", {Htlrmander, L., 19627· This definition has 

the advantage of defining pseudo-differential operators invariantly 

on smooth manifolds, without reference to local coordinates. If a 

pseudo-differential operator is defined in this way on open sets 1n 

JRn then it can be shown that it is the sum of a pseudo-differential 

operator 1n the sense of Kahn and Nirenberg /Kahn, J.J. and 

Nirenberg, L., 19657 and a smoothing operator. Htlrmander'3 paper 

can thus be regarded as giving a proof of the invariance of pseudo

differential operators defined 1n the sense of Kahn and Nirenberg 

under change of coordinates, modulo the smoothing operators. The 

Calderon-zygmund operators of Palais and Seeley as defined in 

ck1ptcr XVI of "Scmj nar on the Atiyah-Singcr index theorem" 

/ralais, H.S. et al, l9fi57, defined on smooth manifolds and vector 

bundles, are the pseudo-differential operators of Htlrmander 

{Htlrmander, L., 19627· 

In proving the continuity properties of pseudo-differential 

operators when extended to Sobolev and HHlder spaces, we shall relate 

pseudo-differential operators to the singular integral operators of 

Calderon and Zygmund. For this purpose, some of the later definitions 

(such as 1n /Htlrmander, L., 19677, ,LAtiyah, M.F. and Singer, I.M., 
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1968/, {Nirenberg, L., 1970/ or {wells, R.O., 1973/) of pseudo-

differential oper~tors arc less suitable. 

We shall state in this section the definition of a pseudo-

cliffel'ential oper~ator and its symbol, discuss pseudo-differential 

operators on open sets 1n En, smoothing operators, the composition 

of pseudo-differential operators, the adjoint of a pseudo-differential 

operator, pseudo-differential operators acting on sections of vector 

bundles, elliptic pseudo-differential operators and their parametrices. 

Let M be a smooth manifold. We recall the definition of a 

bounded subset of the Frechet space C 00 (M). A subset B of C 
00 

(J'il) 

is bounded if for every compact set K C M and for every differential 

operator L with smooth coefficients, there 1s a uniform bound for 

jLfj on K whenever fEB. We can now g1ve HHrmander's invariant 

definition of a pseudo-differential operator on a smooth manifold 

(see /HHrmander, L., 1965/). 

Definition 3.1 

A pseudo-differential operator P on a smooth manifold M 1s a 

continuous linear operator. 

P : C00 (M) ~ C 
00

(M) 
0 

69 

such that there exists a strictly decreasing sequence (s. : J 
J 

0,1,2, ... ) 

of real numbers converging to - oo as ,J ~ oo such that for all 

f E. C 00 (M), for all g t. C 00 (M) with f,', real-valued and dg;LO in the 
0 

support of f, and for all ). > 0, there is an asymptotic expansion 

co 

e -i).. g P(fei).. g) "'"'-../ L 
j=O 

p. ( f ,g) ASJ 
J 

with the property that for every integer N > 0 and for every compact 

set G of real-valued functions g E; C00 (M) with dg;LO in the support 

off, the error 



N-1 

~ 
j=O 

s. 
r . ( r , g 1 A .] 1 

J 

belongs to a bounded set in C 00 (~1) 1vhenever g~G and .A~ l. If 

the order is defined as - <>0 • 

and if all P. vanish identically, 
J 

It follows from this definition that P.(f,g) 1s a positively 
J 

homogeneous function of g of degree s .. Thus 
J 

e-lAgP(feiAg),...._ L 
j=O 

We define the symbol C5p(f,g) of P to be the formal sum 

L_ p. (f' g). 
J 

j=O 

In his paper /HI:lrmander, L., 196~7, Hl:lrmander studies the 

action of pseudo-differential operators on smooth functions whose 

support is contained in the domain of a coordinate chart on the 

rnani.folJ, ubLai.ning an expression fur the symbol in local coordinates, 

and uses it to study the properties of pseudo-differential operators. 

The following theorems characterize the local behaviour of pseudo-

differential operators (see /HI:lrmander, L., 1965; lemma 2.3 and 

theorems 3.3 and 3.7 and proposition 3.1/. 

Theorem 3.2 

Let M be a smooth manifold of dimension n, and let 

P : C 00 (M) ~ C Oco(M) be a pseudo-differential operator on M. Let 
0 

() be an open subset of M and let X : n 4 :nt be a chart giving 

local coordinates X on n 
supp f c n 

define pf : _() x JR
11 ~ ]{ by 

For every f e C00 (M) with 
0 

pf (x, l) e -ix. J P(felX. f ) 
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and let 

pf (x, AS ) ,.._ I 
j=O 

pf . (X' }_ ~ - , J 

be the asymptotic expans1on of pf as A 4 + oo , where pf . (x, l ) is 
, ,J 

homogeneous of degree s . in ~ 
J 

Then pf is smooth, and the asymptotic 

expans1on of pf(x,} ), and all its derivatives, in the variable t 1s 

uniformly asymptotic in x for all x belonging to some given compact 

subset of U . Thus for all multi indices o< and j3 and for all 

compact subsets K of _()_ , there exists a constant C o1., f.. ,l( such that 

I 'd: 'd~ (pr(x, ~ ) -

N-1 

Pr,j(x,! )) \ 

SN-Ifi I 

L .$ c 
~ ,p ,K Is I 

j=O 

whenever x E K and (~ l ~ I , and also 

P(fu) 

Theorem 

Let fl be an open set 1n 
n 

lR and let q Jl x lRn ~ JR be a 

smooth function with an asymptotic expansion 

oc 

q(x, ~ ~ ) ,._ I 
j=O 

q. (x,>..!l 
J 

1n A , for A > 0, where q. 1s positively homogeneous of degree 
J 

S. and smooth in n X ( JRn' {0} ) , SUCh that, for all multi
J 

indices o( and ft and for all compact subsets K of .f) , there 

exists a constant Cot.,}, K such that 

N-1 

L qj (x, ~ )) 

j=O 

whenever x e K and I~ J ~ 1 . Then we can define an operator 
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by the identity 

Qu ( 2 lT" ) -n S e ix · ~ q ( x, ~ ) ~ ( ~ ) cl ~ 

and Q : C 
00 

( fl ) ~ C 
00 

( () ) is a pseudo-differential opera tor 
0 

1vi th symbo 1 

and 

(J Q (f,g) l_ 
0(, j 

( -i) }o<l 

«! 

~ x grad g (x) 

hx (y) = g(y) - g(x) - ( y - x, ~ 
X >. 

If q.(x, \) = 0 for all j, then Q 1s a smoothing operator 
.J 

Qu(x) = J _()_ K(x,y) u(y) dy, 

where K E C
00 

( {)_ x [)_ ) 1s given by the identity 

K(x,x-y) q(x,~) d~ 
• 

Also given a strictly decreasing sequence s. which converges 
J 

to - oo as j ~ oo and smooth functions q. : ..(). x ( JRn'-[0} ) ~ JR 
J 

such that q. (x, J) is positively homogeneous of degrees. in f, 
J J 

then there exists a pseudo-differential operator 

where 

Qu = ( 2 lT ) -n I ix. ~ 
e 

.... 
q(x,j)u(~)d! 

and where q : _[)_ x JRn ~ JR is smooth and has an asymptotic expansion 

00 

q (x, ~ ~ ) ,_ I 
j=O 

q. (x, ).. S) 
J 
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for ~ > 0, which satisfiPs thP ronditions stated at the beginning 

of the statement of this theorem. This pseudo-differential operator 

Q is unique up to a smoothing operator on [). . 

Let M be a smooth manifold and let}' be a smooth measure 

on f\1. We define a pairing 

< . ' . > C OD(M) ® 

by the identity 

c Oo(l\1) --) lli 
0 

A continuous linear map P : C
00

(f\1) ~ C 
00

(!\1) is referred to as a 
0 

smoothing operator if there exists a smooth function 

K : C
00

(M x 111) ~ lli such that 

where 

(Pf) (x) 

K :M-7lli 
X 

Theorem 3.4 

y H K(x,y). 

Let M be a smooth manifold of dimension n and let 

P : c-(M) ~ C -(1\i) be a smoothing operator. Then P is a pseudo
a 

differential operator whose symbol vanishes everywhere. 

Proof 

It is sufficient to prove that for all functions <f ,'f" E c: (M), 

the smoothing operator ~ Py is a pseudo-differential operator. But, 

by employing a partition of unity subordinate to a locally finite 

covering of !11 by domains of coordinate charts, it suffices to prove 

N 
the result when supp ~ ~ U and supp -y; E. U' where x : U ---tlli AND 

n 
y : U' ~ lli are coordinate charts. Then if Q = ~ P y, we have 

Qu(x) J K(x,y) u(y) dy 

U' 
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where i\ u .X U' -? lR lS 

variables. Thus if f E: 

supp f, we have 

Let 

GK 
h_ 

oYK 

and n 

II G 11
2 I 

K=l 

smooth and L-. ~ -·- compact support ~in 
L.- ..L ]_ 

Jld>::> UU Lll 

coo (111) and g I: C 00 (M) and if dg fc 0 
0 

J K(x,y) f(y) e
1 

U' 

2 
GK 

)- (g(y)-g(x) )d y. 

on 

Then 1\ G \I 
2 

1c 0 on supp f, by assumption, and 

n 
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-iX -J K(x,y)f(y) 

II G 11
2 

i A (g(y)-g(x) )d 
e y 

U' 

n 

L ( 
K(x,y)~(y) G ) eiX(g(y)-g(x)~ 

II G II 2 
K .Y 

u 

on integrating once by parts. If we continue integrating by parts In 

this way, we obtain 

L(x,y) 

II G 112m 
i X (g(y)-g(x)) d 

e y 

where m is a positive integer and L is a polynomial in a finite number 

of derivatives of the functions K, f and g. L has compact support 

contained in the support of K. It follows that 

as ).. 7 +OO , for all non-negative integers N, and moreover, if B 

is a compact subset of C00 (M) and clg lc 0 on supp f for all gE B, then 

there is a constant C such that for all gE B 



for all ~ ~ 1. Thus Q ~ P y 1s a pseudo-differential operator. 

Hence P is a pseudo-differential operator. 

D 
The next theorem, express1ng the pseudolocal character of P, 

1s immediate from theorem 4.5 of /Htlrmander, L., 1965/. 

Theorem 3.5 

Let M be a smooth manifold of dimension n, and let 

P C 00 (~1) ~ C
00 

(M) be a pseudo-differential operator. If 
0 

f E- C
00 

(!II) and g E- C 
00 

(M) and if 
0 

supp f () supp g 0 

then gPf C00 (i'11) -7 C
00

(rvl) is a smoothing operator. 
0 

The next two theorems are theorems 4.3 and 4.4 of /i!tJrmander, L., 

75 

1965/. The asymptotic expansions are due to /Kohn, J.J. and Nirenberg, L., 

1965/ (sec also /Palais, n.s. et al, 1965; ch2.pter XVI/, /Htlrmander, L., 

1967/ and {Nirenberg, L., 1970/). 

Theorem 3.6 

Let M be a smooth manifold, let P : C
00

(M) ~ C
00

(M) and 
0 

Q : C00 (M) ~ C 
00

(M) be pseudo-differential operators of order s 
0 

and t respectively and let f E c- (M). Then 
0 

QfP : C - ( M ) ~ C oc ( M) 
0 

1s a pseudo-differential operator of order not exceeding s + t. In 

particular if p : c- ( n ) ~ c- ( n ) and Q : C
00 

( n ) ---) c .... (f)_ 
0 0 

d d ·r (""\ . n d ·r arc pscu o- 1 fercntial operators on an open set ~ L 111 m , an 1 · 

f ~ COCJ ( J1 ) and if 
0 

Pu (2-rr )-
11 f eix. ~ p(x,! ) ~( ~ ) d ~ , 

p(x,}) ,.._ ~Pj(x, \ ), 
J 



( 2-rr) -n f ix.s 
n ("'. '; ) 

A 
r't r1~ nn - e u x- J -1 '--, .> ' ' .. -- ~ 

q(x, ~ .) Lqk(x, \), 

k 
A 

-n J ix.! 
~ ) ( ~ ) d~ Ru QfPu = ( 27T ) e r(x, u 

r(xJ ~) L J". (x, 1)' 
] 

Nhere pj(x, ~), qk(x, -~) and ri (x, ~) are positively homogeneous 1n ~ , 

then we have an equality of formal sums 

r. (x,)) 
l 

Theorem 3.7 

o( 'j ,k 

Let M be a smooth manifold. To every pseudo-differential 

operator P : C 
00 

(M) ~ C 00 01) of order s, there is one and only one 
0 

pseudo-differential operator tp : c; (M) ~ C 
00 

(M) of order s, called 

its adjoint, such that 

( Pu; v) ( u; tPv ) 

if u, v E c:(r.1). In particular, if P : C
00 

( _(l ) ~ C00 
( f)_ ) is 

0 

a pseudo-differential operator on an open set n in llin ' and is 

given by the identity 

Pu e 
ix.~ p(x, ~ ) 

p(x,~),.., L p.(x, ~), 
. J 
J 

tPu ( 21T ) -n f e ix · f tp ( x, S ) ~ ( f ) cl ~ , 

t 
p(x, S ) 

where J?.(x, l ) and tpl (x, ~) are positively homogeneous 1n ! then 
J { 

we have an equality of formal sums 

=L 
ce, j 

. I o< I 
l 

o<,l 
de< p.(x, -l). 

l J 
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\lle C8_n define psPudo-di fferenti 81 opPr;:Jtors ::Jcting on spcti ons 

of vector bundles over a smooth manifold. Let l\'1 be a smooth manifold 

and 1T 
1 

: E __, ~-I and 1f 
2 

: F --') M be smooth vector bundles over l\'1. 

A continuous linear operator P : C00 (E)-'> C00 (F) is a pseudo-
a 

differential operator if for all smooth sections f E: C
00 

(E) and smooth 
0 

functions g c coe>(~l) with dg f 0 on supp f, there is an asymptotic 

expans1on 

j=O 

P. (f,g) "sj 
J 

which is uniformly asymptotic for all g belonging to any given 

oO 
compact subset of C (M), exactly as 111 the definition of pseudo-

differential operators acting on smooth functions. All the results 

stated so far go over without change, when applied to pseudo-

differential operators acting on sections of vector bw1dles. 

Let M be a smooth manifold and let 11
1 

: E ~ M and Tr 
2 

: F ~ M 

be smooth vector bundles over M. Let 1T : T>~M '- M ---7 M be the co-

tangent bundle over M with the zero section removed, and let 

lT '~E _, T*M ' M and 11" *F ~ T'>''~-1 '- M be the pullbacks of E and F. 

Then there is a correspondence c- which assigns to a pseudo-

differential operator P: C 00 (E)-+ C':IO(F) or orders a homomorphism 
0 0 

~ (P) : 1T '''E ~ lT'>''F of vector bundles over T'''M'M such that if 

w E- 'f>"M ' l\1 and ).. > 0, then 

s 
<S(P) (AU)) )... 

0 
<S(P) (CO), 

0 (P) is referred to as the leading symbol of P (or 1s often simply 

referred to as the symbol of P). 6 (P) 1s defined as follows. Let 

m e l\I, let e E E the fibre of E over m, and let w E T *~'! ' {o} . m' m 

Choose f € C 00 (E) and g E C
00

(111) such that dg f 0 on supp f, and such 
0 

that f(m) = e and dg (m) = C:.U . We then have an asymptotic expansion 
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Define 

;i.A g P(fei Ag) ,...._. I. 
j=O 

P(fg)(m). 
0 ' 

s. 
P.(f,g) \ J 

J 

We c1aim that 6" (P) is well-defined, independent of the choice of f 

and g. To verify this, it is sufficient to consider the case \'lhen 

the s~Jport of f is contained in the domain of a coordinate chart 

x : _()_--> :mn of M. But then there are unique1y defined functions 

pk : _()_ x ( JRn, { o'S ) ~ lR , where pk(x, ~ ) is positively homogeneous 

of degree sk 111 ! such that we have an equality of formal sums 

L P.(f,g) 
J 

. ,..,, 
(-1) ......_ ~ -r '\. 0( i hx 

O-r pk(x, l> ) a (fe ), 
«! S X .:J/C. 

J 

\'/here 't" Sx 

h (y) 
X 

grad g (x) and 

g(y)- g(x)- <Y- X, !x) 

(see /Titlrmander, L., 196~7, theorem 4.2), but then 

P ( f, g) ( m) fp ( x, grad g ( x) ) . 
0 0 

This shows that o- (P) is well-defined. 

Definition 3. 8 

Let M be a smooth mnnifold, let Tr
1 

smooth vector bundles over M, and let P : 

: E -} M and lT 
2 

: 

CGO(E), C00 (F) be 
0 

F -..., M be 

a pseudo-

differential operator. P is an elliptic pseudo-differential operator 

if and only if, for a11 mE !II and wET'''ll1' !11, the homomorphism 
m 

<S(P) (CA): E -7F 
m m 

of vector spaces is an isomorphism (i.e. C) (P) 1s an isomorphism of 

vector bundles over T'''l\1 'M). 

A very important property of elliptic pseudo-differential 

operators on smooth manifolds is the existence of a paramctrix, 

guaranteed by the next theorem (sec {Htlrmander, L., 1965/, theorem 4.8 
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or {Nirenberg, L., 1970/, p.l57). 

Theorem 3. 9· 

Let l\1 be a smooth manifold, let Tr l : E _, l\1 and Tf 
2 

: F ~ f-1 

be smooth vectoc bundles over iii, and let P: c-(E) ~ C
00

(F) be an 
0 

elliptic pseudo-differential operator of order s. Then for every 

f E C 00 (M), there exists a pseudo-differential operator 
0 

Q c;; (F) ~ C 00
( E) of order -s such that for any open set U 1n l\1 

on which f 1s identically equal to 1, the operators 

(QfP 

(PfQ 

I )j U 

I) I u 

c: (Ej U) ~ C00 
(E ju) 

c~ ( F I u) ~ coo ( F I u) 

are smoothing operators. In particular, if M 1s compact then there 

exists a parametrix Q : C
00 

(F) ~ C
06 

(E) of P such that the operators 
0 

QP - I and PQ - I are smoothing operators. 
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§4. Pseudo-Differential Operators on Euclidean Space 

In this sec£ion, we study some of the properties of pseudo-

differential operators on open sets in mn . We degin by establishing 

a convenient notation and using it to refurmulaLe suiJLe uf Lhe slandard 

properties of pseudo-differential operators on open sets in mn. The 

rest of the section is devoted to showing that if P 

IS a pseudo-differential operator of order M, defined on an open set 

_n_ of JRn, and if f, g t c: ( n ) , then gPf extends to continuous 

linear operators 

gPf 

gPf : ck,o< (mn)---=> c k-m, o<. (mn), o < o< < 1, k ~ max(m,O). 

First we make a number of definitions. Except for the definition of 

80 

2. m ( .f)_ ) , all the following clefini tions are taken from {Nirenberg, L. , 

1970/ or /HHrmander, L., 1967/. 

Definitions 4. 1 

Let _(). be an open set in mn and let m be a real number. We 

m r (')0 " ll denote by s"'( ..l l ) the set of all p E C ( ..1 L x m-· ) such that for 

every compact set K c fl and for all multi indices 0( and J3 , there 

exists a constant C such that 
d..,j3,K 

\a: d: p(x, ~) \ ~ c ( 1 + I ~ I l m- 1~ 1 
o(,.J3,K 

We denote by L m( Jl ) the subset of Sm( {l) consisting of all 

p E: sm ( n ) 1-lhich possess an asymptotic expansion 

00 

p(x,~)"'-" 2:, 
j=O 

p. (x, S ) 
J 

as I J I ~ oo , where p. 
J 

property that "f n 
1 1 : m 

is homogeneous of degree s . in ~ , with the 
J 

---=> /_O ,]] is any smooth function that vz;1ishes 

in a neighbourhood of 0 and is identically equal to 1 outside some 

compact set in mn , '"e have that 



N-1 
s 

p(x, S)- L l( S) p/x, ~) E- S N(_()). 

j=l 

Given p E Sm( _()_ ) \<Je define a linear operator 

f't ) by the i Jell LiLy 

p(x,D) u ( 2 1T) -n s ix.J 
e 

Given a strictly decreasing 

j~ oo and given p <; Sm(Jl) and 

we write 

if for all N ~ 0 

p 

j < N 

mN 
q. E S 

J 

Also if p E ~m(~ ), we write 

p(x,!) 

sequence mj converging to - C:P as 

q . E sm j ( _{)_ ) , 
J 

to denote the asymptotic expans1on of p Jn functions positively 

homogeneous in S . 
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Let f) be an open set in :Rn and let P : C00 
( _(l ) ~ C 

00
( [l ) be 

0 

a continuous linear operator. Then P is a pseudo-differential operator 

in the sense of Htlrmander (/Htlrmander, L., 1965/) if and only if for 

every f E. C
0 

( fl), there exists pf E z:-m( {1) such that 

P (fu) pf(x,D) u. 

Also P is a pseudo-differential operator in the sense of Kohn and 

Nirenberg ({Kohn, .J. J. and Nirenberg, L., 196 5/) if and only if there 

exists p E _Lm( fl ) such that 

Pu p(x,D) u. 



We may express the asymptotic expansions of compositions and 

adjoints of pseudo-differential operators, due to Kohn and Nirenberg, 

as follows. Let pE ~m,(_n ), qE Lm 2 (,()) and let P-=' p(x, D), 

Q = q(x, D) be the corresponding pseudo-differential operators, and 

oo r\ ,m +m let f E C
0 

( J L ) . Then there exist symbols r E L 1 'L. and 

t E~m, such that p 

QfPu r(x, D) u, 

tPu t 
p(x, D) u, 

t 
and r and p have asymptotic expc:~.nsions 

o( 

~ )~2_ 
(-i)lo<.l ~ol. r(x, q (x' ! ) dx (f(x)p(x, S) ) ' oll s ol 

t sl---L 
· I o< I dol. a( 1 

~~p(x, - ~). p(x, --
-<. o(~ :X. 

Incleecl, if p E sm' (D) and q E Sm 1 ( n ) then QfP = r(x, D) and 

tp = tp(x, D) for some r € Sm' + ml( [) ) and tp 6 Sm, ( {)_ ) and r 

t 
and p have asymptotic expansions as above (see /Hbrmander, L., 1967/ 

or {Nirenberg, L., 1970/). 

Let (mj) be a strictly decreasing sequence of real numbers 

mj 
converging to - oo and let q. E S 

J 
m 

p E S 
0 

( fi ) such that 

(_()_). 

m 
then p E. L o 1 n ) . 

Then there exists 

1\lso, given p E Sm( {l ) , 
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p(x, D) is a smoothing operator if and only if p- 0 (sec /HI:!rmancler, L., 

1967/ of {Nirenberg, L., 197.2_7 for proofs). 

Note also that if p e Sm(En ), then p(x, D) lS translation-

invariant if and only if p (x, J) is a fw1ction of S alone. For if 

we define '"r;k- : C 00 (En ) ~ C 00 
( ]~n ) by the identity 



then 

/\ 
(~) d-ih. ~ " sl ( 1'.:" h u) u 

hence 

L -1 
p(x, JJ)'"rh p(x h, IJ) 

h + 

so that 

p(x + h, D) - p(x, D) 0 

and thus 

p (X + h' ·S ) - p (X' s ) = 0. 

We \vrite p(D) = p(x, D) 1vhenever p 1s translation-invariant, and v;e 

then have that 

(p (D) u!"' = p ( ~) ~-

Given a pseudo-differential operator P : C 
00 

( :JRn ) ~ C 
00 

( :JRn ) and 
0 

functions f, g €: C oo ( :JRn ) , 
0 

we <vish to know 1vhen the pseudo-differential 

operator gPf coo ( mn ) -? 
0 

00 n 
C ( JR ) extends to a continuous linear 

operator between Sobolev or HHlder spaces. First we will prove a 

number of lemmas in preparation for the study of this question. 

Lemma 4.2 

Let 5" E L 
1
1 

( JHn ) and let P 
. oc 

oo n oo n . 
C ( JR ) -? C ( :JR ) be the hnear 

0 

operator defined by the identity 

Pu 1" '~ u 

where rp ·k u denotes the convolution of r,t' and u. Then, for all 

f,g E C 00
( lRn), for all non-negative integers k, for all pe/I,oo) and 

0 -

for all o<. E /0, l), gPf extends to continuous linear operators 

gPf 

Proof 

Given f,gECO<O( JR
11

), let 
0 

R =, sup { lx - y I : x E supp g, y E. supp f } 
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oo n and let , E C
0 

( m ) be a smooth function with compact support with 

the property tha~ ~ (x) 

all u E- c 00 
( mn ) 

0 

l for all x satisfying lxl ~ R. Then, for 

gP(fu) g ( <f * ( fu) ) g ( ( "'r) rp ) * ( fu) ) . 
I I 

Thus it suffices to prove that P 
0 

continuous linear operators 

p 
0 

p 
0 

p n) ~ p n 
Lk( m -r T,k( m ), 

ck, o<. ( mn) ~ ck,o<. ( mn)' 

where "V = 'Y}~ and P u 
0 

Y*u. 

theorem on convolutions 

lly * LA-IILp $ II"/' Ill' II u..-11 Lp 

Also 

oft ( Y* {A. ) = Y * ~~ v.. 

for all multi indicesjB , hence 

Thus P extends to a continuous linear operator 
0 

Also 

p n _____),. p n 
P : Ll ( JR ) --, Ll ( ID ) • 

0 ( ( 

sup I "'f" * u I ~ /1 Y II , sup I u I 
L 

hence P extends to a continuous linear operator 
0 

Then if v = 'f/*u 

sup 
n 

x,yE:H 
I u(x) - u(y) I 

lx-ylo<. 

Jv(x +h)- v(xl\ ~ J I'V(yJij u(x + h- y)- u(x- y) j dy 

~ h D( I u t d.. 1\ 'V II L I 
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hence 

jv\o< (. ..... I V-I 04 fl 'VII I 
L 

and thus 

II 'V 0 u... II c."" ~ II 'I' II L I II u.-11 c <X 

II y- 0 u.., \\ c. I{ I or.. ~ II "V II L I II u.-11 c k", 0( 

hence P extends to a continuous linear operator 
0 

Lemma 4. 3 

D 
Let fl be an open set in JRn. Let P : c<»( fl ) ~ C

00 
( [)_) 

0 

be the translation-invariant linear operator 

Pu p(D) u 

where p E Sm 1 ( _n ) , and let Q 

operator 

Qu q(x,D) u 

where q E- Sm 1( {). ) • Then 

QP R, 

H r(x,D)u, 

where r Sm I + m 'l ( n ) and 

r(x, ~) q(x, ~) p ( l ). 

CoO(f)) ~ C 00
( [L) be the linear 

0 

If p ~ L m I ( fl ) and q E L m 2 ( n ) ' then r E L m I + m 1. ( fl ) . 
Moreover, if gPf and gQf extend to continuous linear operators 

gQf Lk(.f)_) ~ LE-L (f)), (Vk ~ ll.), 
l. 

for all f, g E C 00 
( _[)_ ) , then gRf extends to a continuous 1 inear 

0 

operator 

for all f ,g e- c: ( Jl ) , where L = L, + 1,1... Simi lady if gPf and 

gQf extend to continuous linear operators 
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gPf 

for all f, g f C 00 
( {l ) , then gRf extends to a continuous linear 

- 0 

opera tot" 

( V l< >.. L) 

for all f ,g E c;; cfl ) ' where (.. = t., + L2.. 

Proof 

It is immediate that 

QPu r(x,D) u 

where 

dx, ~) q(x, ~) p ( l) 
m 1\ m 1\ m · m r\ 

and that if pES 1 
( J J..) and q ~ S 2 

( J L) then r ~ S ' ' 1.( ~ L ) 

and that if PEl: m, (JL) and qELml.{fl ), then rcL m, + ml(_() ). 

Thus it only remains to check that gRf extends to the given linear 

operators between Sobolev and Htllder spaces, for all f, g 1:. C
00 

( fl ) . 
0 

Choose hE c: ( ..() ) such that h := l on supp g and define 

T : co<> ( n ,' ..., c Oo ', n , h tl · d t · + O • 1 uy 1C 1 en 1 .._y 

T 
2 

gQh P. 

Then '1' = t(x,D) for some tE Sml + m1( _D ) and 

t(x, Il ,._. L. (-i) ~a( 
0( o(.~ i 

~ g(x) q(x,} ) p ( S) 

by the asymptotic expansion of Kahn and Nirenberg (cf. the remarks 

after definitions 4.1). 

Coo(("\) gR - T : 
0 

1 L 

is a smoothing operator, and hence gRf - Tf extends to continuous 

linear operators 

gRf Tf 

gRf - Tf 

L~ ( n ) ~ c 
0

00 
( n ) . 

Ck,oc (fl ) -7 Coo(_() ) . 
0 
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But Tf = (gQh) (hPf), hence Tf extends to the required linear 

operators between·Sobolev and H~lder spaces, and hence so does gRf. 

D 
The next result is taken from /~tein, E.M. and Weiss, G., 1972; 

theorem IV.4.17 (but note that the authors adopt a different definition 

of the Fourier transform from that adopted here). 

Lemma 4.4 

n 
Let sE-(0, 2 1 and let u JRn'-{0\~JR be the function 

u(x) jxls-n. 

"' Then the Fourier transform u of u 1s g1vcn by 

where 

'6 s 

Proof 

t s rr I -s 

IV,_ s 
Tf 2 

Let r E c:( JRn) be identically equal to 1 on a neighbourhood 
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of 0. Then u = u
1 

+ u
2

, where u
1 

= yu and ul.. = (1 -·<p)u, u
1 

€ L1( JRn) and 

1.. n A on ""'l. n 
u, E L ( JR ) . Then u

1 
E C ( JR ) and u.,_ E L ( JR ) , using the Plancherel 

theorem. " '2.. n Hence u E L 1 ( JR ) . But u is homogeneous of degree s - n, oc 
A . 

hence u 1s a tempered distribution, homogeneous of degree -s. Hence 

A 

u( J) 

for some constant y s Now if e E S( JRn) 1s a rapidly decreasing test 

function, then 

< ll' A < G, e) e > 
Let 

e ( f ) e -Yzl~\l. 

Then 

1- -Yz Jxl'2. 
e(x) ( 217' ) 1 e 



hence 

and thus 

s-n -/2 
e 

.'L I XI. 
dx '( s 

( 2 Tf Go ·.1 n- J
"oo s-n -Kr7. n-1 

r e ~ r dr 

0 

'{ s (J.) n-1 j
.,.oo -s 

r 

0 

1vhere W is the volume of the unit (n- 1) - sphere. 
n-1 

lienee 

hence 

D 
Lemma 4.5 

n - -
Let s be a positive real number, let ~ : m -7 /0, 1./ be a smooth 

function which is identically equal to 0 in a neighbourhood of 0 and 

is identically equal to 1 outside a compact set, and let 

z : C00 
( JRn) -+ c 00 

( mn) be the trans] ation-invariant pseudo-
-s o 

differential operator defined by the identity 

1 r t ) I 'S I -s ~ r ~ ) • 
oo n 

Then for all functions f, g E C ( .lR ) , gZ f extends to continuous 
o -s 

linear operators 

for all pE_{T,oo) and O'..E/0,1), and for all non-negative integers k. 

Pt'OOf 

It suffices to consider the case when s 1: ( 0, ~), s1nce for all 

s €: ( 0 ,oO) there exists an integer m such that 
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0 < 

and then 

>vhere 

z u 
-s 

s 
m < 

m 
Q u 

( Qu) 1\ ( ~ ) 

n 
2 

and if gQf extends to the required continuous linear operators 

oo n betlveen Sobolev and Htllder spaces for all f, g E C ( :R ) , then so does 
0 

gZ f by Lemma 4.3. Thus we now restrict ourselves to the case where 
-s 

Let c 1 mn ' { o} ...., m and c l. 
n 

m ' f o"\ -"> ]1 be the functions 

defined by 

IsI-s, 
( 1 - 1 ( I ) l /!I -s 

Then 

Sli1CC 
n 2 n 

s <. 2' c
2 

E: Lloc ( m ) and has compact support. 

t< 
, '(12) !]_ 2 n (1 + s c'l. E L ( .lR ) 

/\ 
for all k, and hence c2 = r2 

') n rp 4 ~ L; ( m ) 

Hence 

for all k, by the Plancherel theorem. Thus by the Sobolev embedding 

theorem 

/\ 
Also c 1 = 'f' 

1 
, where 

<(', (x) 

!l. s r (~) 
"'s 

TT"l. 2 r(n; s) 

by Lemma 4.4. Since s > 0 
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Hence 

z u 
-s 

- cp1. . But then 

Cf*u 

i~here ~ ·:: u 1s the convolution () 1' 'f and u. Hence gZ f extends 
-s 

to the required continuous linear operators between Sobolev and 

~oo n) HI:Hcler spaces, for all f, g E L ( :IT-t by Lemma 4. 2. 
0 

D 
Lemma 4.6 

Let m be an integer, let "') : m11 ~ /_0, 17 be a smooth function 

which is identically equal to 0 in a neighbourhood of 0 and 1s 

identically equal to 1 outside a compact set, and let 

oo n oo n z : c 0 ( m ) ___., c ( ]{ ) be tl1e translation-invariwt pseudo-
m 

differential operator defined by the identity 

Then for all functions f, g E- C 00 
( m11

), gZ f extends to continuous 
o m 

linear operators 

(\lk~m), 

('l{k~m) 

for all p ~ (l,oo) and ol, E-(0,1). 

Proof 

It suffices to consider the cases mE {-1, 0, 1}, s1nce if 

m -/c 0 then 

z u 0 1m1u 
m + 

where 
I 

I ~ I ::1 A P)(S) ,~, " ( ~ ) (Q u) u 
+ 
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and if 1',0 "1' extends Lo Ll1c rTCJULl'ed conbnuous opet'ators between 
+ 

- n 
SoboJcv and !Wlder spaces, for all f,gEC~( ](·),then so does 

nZ f for all mELZ, by Lemma 4.3. ,._, m . 

If m - 0 

(Zu)"(~) 
0 

~r I J - r 1 - YJ r ~ J J 0 r 5 J. 

But s 1 nee L - ') ( s ) is a smooth function with compact support, the 

last term 1s a smoothing operator, hence 

z u 
0 

u-rp~'U 

fo t' some CO E: C 
00 

( Jfl) , hence gZ f extends to the required continuous 
{ 0 

linear operators, 
n 

f' or a 11 f , g E C ( ]{ ) , by L c mm a t1 • 2 . 
0 

Next we consider the case m = -1. Note that 

But 

(
_<'>_ (Z_J u))/\ (5) 

'bx. 
J 

~; A 
-1 --- u 

If I 
1\ 

(R . u) 
J 

1"herc I< . 
J 

n .u 
,) 

1 S. (Z 
1 

u)"' 
J -

u(y) dy. 

Let c . 
.J 

nl '\.. i_o} ----} R be the function defined by 

c. ( r ) 
.I 

'I 

Then c . c '·!' .1 oc 

(I + I~~ 

and hence c . 
.) 

. -·I ( L - I ( ~ ) ) __L;_ 
I~ I 

n/1 l :md h:1s comp;1c L :;uppnrt. lienee 

') 15: ') n ~) l. c . E L~ ( JH ) , . ) 
/\ 

cp j , \<Jhcrc 

for all k, by the Planchercl theorem. Thus by the Sobolev embedding 

theorem 

9] 



Thus 

-R j u + <f j -;, u. 

Let Then 

b 21 g 
-- (gZ (fu) ) = Z (fu) -

'>. . -1 -1 
UX· bx. 

J J 

gR j ( fu) + g ( rp j -;, 

Now ( ~jg) z_1 f extends to continuous linear operators 

( ()jgl z_
1
f: ck,OI. ( JRn) --4 ck,cx.( JRn) 

by Lemma 4.5. Also CL:J • E- L
1
1 

( JRn) hence if T 
T J oc 

1s defined by 

Tu ~j 
,., u 

then gTf extends to continuous linear operators 

gTf L~ ( JRn) --7 Lk ( JRn) 

gTf : ck, ()( ( mn) ~ ck'oc.( JRn) 

(fu) ) . 

by Lemma 4.2. By the theorems of Calderon and Zygmund (theorems 2.2 

and 2.3) the Riesz operators extend to continuous linear operators 

Hence 

\\ 

~ 
(gz_1 (fu) I tp ~ II u II A 

p)k ox. Lp 
J k k 

\\ ~~ ( gZ -1 ( fu) ) II /;.A ll u II 
ck' <><.. k k,o<. 

J c '0(, 

for some constants A and A 
p,k k,o<. 

Hence gz_
1

f extends to continuous 

linear operators 
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gz_ 1 f 
p n__:,.p n 

Ll ( JR ) - "' Ll 1 ( JR ) ' 
{ {+ 

for ~ll~c.llDO) L~ .L -'-- t-' "\, \ -'- ' I ) all d. f: ( 0 , 1 ) an c! f o r 3.11 non-neg3.tive integers k. 

Finally we consider the case m = l. 

1\ 

"')(J) 1~1 " ( ! ) (Z
1
u) u 

11 ( ~; ) A 

~ "')( ~)(is . ) -l u 
J' \I I 

j=l 

A 

( n <> 
u)) -(1-~(fl)l~l 

A 

= L (R. u ( X ) . 
6x. J 

j=l J 

I I " ~ ()o 11 Now ( 1 - "( ( j ) ) ~ = Cf ( S ) for some ~ E C ( lli ) , as before. 

Hence 

n 

L 
j=l 

~ 

ox. 
J 

(R. u)- (L) ~, u. 
J r 

If T COo( JRn) --7 C
00

( JR
11

) 1s defined by 
0 

Tu 9=' ,., u 

oo n then for all f ,g EC
0 

( JR ) , gTf extends to continuous linear operators 

and ~. • R. extends to continuous linear operators 
J J 

O . o R. 
J J 

d . o R. 
J J 

lienee gz 1f extends to continuous linear operators 

p n p n 
Lk ( JR ) --7 Lk-1 ( lR ) ' 

gZ 1 f 
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for all pE(l,oo), all o(E-(0,1) and for all positive integers 1<:. 

Lemma 4.7 

Let fl be an open set in ] n 
1 ' 

D 
let m E: JR and let 

p : n X ( JR
11 

'\ { 0} ) ---? JR be a smooth fLmction with the property 

that for all multi in eli ces d.. and compact subsets K of Jl , there 

exists a constant c<X I' ( 1 + I~ I )m 
) \ 

for all x E K and ~ /c 0. Then if m + j ( -n, the function 

A : J1 x JRn ---} JR defined by the identity 

-n J iz .1 \: t. 1\(x,%.) = (21f) e p(x, ~ ) d.s 

1s continuous and given multi indices o<. and J3 \'Ji th If\~ j and 

a compact subset K of _fl , then 

n 
bounded for all (x,z)E K xJR. 

ol p 
0 x o z J\(x,z) 1s continuous and 

Let P : C
00 

( Jl ) ~ C00 
( fl. ) be the 

0 

continuous linear operator defined by the identity 

Pu(x) 

Then 

Pu(x) = J A(x,z) u (x - z) dz 

if m + j < -n, and hence gPf extends to continuous linear operators 

p,Pf : Lplr ( _n ) ~ Lpl . ( n ) , 
' {+,) 

for all f,gE.C 00 (JL ), all pE/l,oo), all real numbers o(c /0,1) and 
0 -

all non-negative integers k. 

Proof 

Let m + j < -n, and let K be a compact subset of ..(l . The 

integrals defining A and all its derivatives o"" 'tJ ft A with \j I < j 
X Z 

n 
are absolutely and uniformly convergent for (x,z)E K x JR and the 
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integrals are continuous functions of x and z. Also 

Pu(x) (2TT )-n J eix. l p(x,! ) ( J c -i (x-~) ·I u(x - %.)dz) d l 

s A (X, 2.) U (X - %. ) cl Z • 

Given 

where 

f, g E: C 
00 

( ()_ } , we 
0 

see that 

gP(fu) (x) J B(x,z) u (x - z) clz 

B(x,z) f(x) A (x,z) g (x- z). 

B(x,%) has compact support in x and z and all partial derivatives 

;) ~ d ~ B with I} I .$ j are continuous and uniformly bounded. It 

follows easily, using integration by parts, that gPf extends to the 

required continuous linear operators. 

D 
Corollary 4.8 

Let _()_ be an open set in Jit, let p E Sm ( Jl ) and define 

P = p(x,D). If m + j < -n then gPf extends to continuous linear 

operators 

gPf L~ ( n ) --? Lk+j ( n. ) ' 
gPf : Ck, 0(. (fl. ) -) Ck+j' o< ( n ) 

for all f,f~ C
00 

( f) ) , n I I p 
() 

;T,oo) aJ 1 ot. E: /o, l) and a II non-

negative integers k. 

Lemma 4.9 

Let n be an open set in :nl and let q : D X ( JR
11

'- {o} ) ~ JR 

be a smooth function such that q(x, I) is positively homogeneous 

of degree 0 ln J , and let 1') : mn ~ /O, 17 be a smooth fw1ction 

95 

which is identically equal to 0 on a neighbourhood of 0 and is identi

cally equa 1 to 1 outside a compact set, and let Q : c; ( Jl. ) -? C 
00 

( II.. ) 
be the pseudo-differential operator defined by 
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Qu ( 2 rr ) - n J c i X • J CJ ( X ' X ) ~ ( F ) ~~ ( r ) cl "! . 

Then for all functions f, g E: C
0 

( f""'t ) , gQf ex tends to continuous 1 inear 

opera tors 

for a 11 p E: ( l , oo ) , f o t" a ll <::>\ E ( 0 , J ) ::m cl f o t" a L I 11 o 11- n c g a t i v e integers k . 

Proof 

Let 

p(x, 1) (l-1(~))q(x,!l 

ancl 

Pu -= (2'TT')-n I eix.! p(x,!) ';'; ( ~) cl~. 

Then fOl' :t! J multi indices o( , ail compact set:.; I\ of Jl. ancJ all 

m E: JR there exists a constant C such that 
"",1\,m 

0( 

(Jx p(x, sl ~ c . ( 1 + lsI )Ill. 
0( 'I\' Ill 

Thus gPf extends to continuous lineal' maps 

gPf 

gPf : 

for all p (; ( l, oo), all a<-. E ( 0, 1) and al J non-nega Live integers k, 

by Lemma 4.7. Gut 

(J () - p 
0 

Hhere Q Js the singular integraL opcr'ator 
0 

Q
0

•• i"n- )-" J .,ix. f q(x, J I ~ If I US 

lienee 0 extends to continuous 1 inear Oj)Cratot"s 
'o 

Qo Le ( JRn ) _, I ,l: ( ]ln ) ' 

Q : ck' ( ]{n) --7 cl<' ( mn) 
o loc Joe 

for a l1 p E (l, oo), all o<E ( 0, 1) ancl aJ 1 non-negative integers k, by 

the theorems of C::tl de ron ancl Zygmuncl (theorems 2. J, 2. 2 and 2. 3). 



lienee gQf extends to the required continuous linear operators between 

::lobo lev and Iltl J del" c:;paees . 

D 
We arc now ready to prove the ma1n theorem of this section. 

Then r·em ·1. 1 0 

I.ct fL ll 
be :tn open set 1n JH , and 

Let P Coa ( _{)_ ) --'> C.,., ( n ) be the pseudo-differentiaL operator 
0 

clcfinecl by 

Pu(x) p(x,D) u 

Let f ,g <0: C
0 

( JL ) . Then gPf extends to continuous Linear 

gl:>f·. ck,o< ( n ) ----" ck-m,ot.. (_n ), r < 1 k > ( 0) J L " 0 .._ o... , - ;--- max m, 

Proof 

l,et the as,ymptotie expansion of p(x, 1) be 

p(x, ~) ' ' r, L p -\X,)) 
. .J 

\'.'here p.(x, S) is positively homogeneous of degreeS. lrl 5, S-~ ffi, 
.] J .J 

Let f : JHn--) /0,1/ be a smooth function l'.'hich is identically equal 

to 0 in a nci r.hboul'lwocl of 0 ;md is identiea lly equaL to l outs ide a 

compact sc t. . 1'\ ( 11 Dcfjne smooth funct1ons q. : .1 L x m ' 
.J 

by the identity 

q. (x, l) 
.] 

'f p.(x, ---) 
J I! I 

[ 01 ) ..., m 

SN n ;mel define I"NES ( ) for all positive integers N by the identity 

p(x, J) - '{ ( ~ )3 

Also let Z 
s 

N-1 

L 
j-0 

p. (x, ~ ) 
.J 

translation-invariant pseudo-differential ope;_".~_l:rJl" defined by the 

iclen tity 
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= "') ( ~ ) I $ \ -s ~ 

and let Qj : c;; ( S) ) ~ C <:><> ( fL) be the pseudo-differential 

operator defined by the identity 

0 L' (x) 
< j ' ( 2 1T ) -n s e ix. '! q . ( x' 'S ) 

.I 

for each non-negat:i ve integer j. We have shmm that if f, g E: C
00 

( n ) , 
0 

then 

gZ f 
m 

f,z r 
" m 

cz f ,_, s 

i!Z f s 

nO.f 
'"" .J 

pO.f 
'-" 'J 

gQjf nne! gllNf extend to conh nuous linear operators 

L~~ ( n ) --7 L~~-m ( _n_ ) , mE Z': 1 < p (. eo , k ?- max ( m , 0 ) , 

l :k' ""' ( 1\ ) --"" Ck-m' o<. ( rl ) ' E rr; 0 < o{ ( ] I > ( 0, J. L - r J L m u, , . , 'i. ~ max m, J , 

l .. _k, 0( (n ) ___,. ck, 0( ( 0.)' / / < J ;::>: - r .1. L S <.. 0, 0 <... o<. , ,; / 0, 

by Lemmas ;J. fi, 4. 9 and corolJ a ry t1. 8. 1\'loreover 

N-1 

p ~ 0. 7, z + nN '.J ~; .-m m 

.J 0 .J 

where s. - m < 0 for all .J· 
J 

By Lemma 4.3, gZ Z f extends to 
s.-m m 

.] 

contim1ous linear opcr;:li:or·s 

gZ z 
s .-m m 

.J 

gZ s s .-m m 
J 

for all f,g€C 
0 

f I p ( n ) -4 I p ( n ) 1 <:. p 1.. oo , k >,.. max ( m, 0) • 
~ ~-m ' 

f k d.. n k-m <)(, n C ' ( ) ~ C ' ( ) , 0 < o<.. ( 1, k >,. max ( m, 0) 

( n) and since Z Z 1s a translation-invariant s .-m m 
J 

pseudo-differential operator, gQ. Z Z f extends to continuous 
.J s ·-m m 

.J 
linear operators 



11().2 z f 
''.! s.-m m ... J 

nQ.Z Z f 
h J s .-m m 

k, o1- (\ . k-m ot. 0. 
C ( 1 L ) ~ C ' ( 1 L ) , 0 < o< < 1, k >-. max ( m, 0) 

' ,J 

The ''".p.p; ~;~-<-I .. 
. -, U i l t_ \.._., J.. C: I I l_, .l ,Y 1 ~ ·- ,... -

.lctl gc . 

D 
We can extend the action of pseudo-differential operators to the 

dual spaces of the Sobolev spaces. We recall that if k is a non-

pos i ti vc integer and l < p < oo , then 1ve define 

l
p 
'k Ol p' 

I. I -' 
(0 )'' 

for alL open sets n the dual space of 

o;ati sfies the i dcntit:l 

+ p' 
l. 

p 

Note that by HUldcr's inequality ru1d by the Ricsz representation 

theorem, 

so that the definition ts consistent 1-ihen k 0. 

Thcon~m -1. 11 
m 

Lc t D be an open set 111 JHn ' ] et mE IZ ' J ct p E ~ ( n ) and 

let I': c00
({)) ~ C:

00
(f)) he the pscuclo-diJTct'cnti;)l opct':tt:or 

() 

defined by 

]1 11 (X) p (X IJ) II 

Let f,g f C
00 

( n ) . Then gPf extends to a continuous linear operator 
0 

gPf : L"I
1
J,· (f)_ ) ~ Lp ( U ) , l < p < oo , k E Zl 

k-m 

Proof 

If k ~ max(m,O), then the result follows from the previous 



theorem. 
t 

Jf k >, m:in(m,O) then f Pg cxtcncls to a continuous linear 

operator 

+ 

p' 
L 

k-1-m n p' (\ 
( ) -4 L_k ( 1 L ) 

p p' 
1. 

But then 

t g ~p,•:f 

and hence the dual of ftPg 1:; a continuous I incat" operator 

t, . r· g )·.; : p((\)--"' p I.. .J L --, Ll 
k <-m 

(_{) 
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and if u E: c;( SL) then tP~'(j (u) ) = Pu '"here .i : c; (f) l-) tl~ 10 l 
is the natural embeddinr,. Since the image of j i_s dense in Ll~ ( n ) it 

t . 
follows that g P*f 1s the un1que continuous extension of gPf to 

It rema1ns to consider the cases 0 $. k ~ m and m ~ k ~ 0. 

In these cases, let r E [ k ( n ) be clef inecl by 

rlsl 11-~I!Jl+~l~llslk 

~Vhere 1'J : .llin~ /_O, _1/ is a smooth function ~Vhich 1s identically 

equal to 0 :in a neighbourhood of 0 and is identically equal to l 

outside a compact subset. Note that r( J)) 0 for all ~ E :m.11
• 

Defi nc also q E 

q (x, ~) 

Then 

Lm-k If)) 

p (x' ! ) 
r( J ) 

by the idenb ty 

p ( X , 0 ) = q ( X , 0 ) I' ( D ) 

and if h € C
00 

(Jl) and h :=: l of'l supp g then the linear· opcrat:or 
0 

2 
g(x) p(x,D) f(x) - g(x) q(x,D) h(x) r(D) f(x) 

1.s a smoothing operator, by the asymptotic expans1on of Kohn and 

Nirenberg. Thus since h(x) r(D) f(x) and g(x) q(x,D) h(x) extend to 

continuous linear operators 



LOl 

" (\ p ("\ 
h ( x ) r ( D ) f ( X ) : L lz ( J L ) ~ L O ( J L ) , 

g(x) q(x,D) h(x) r.;~ (f) ) --?> Ll~-m ( n ) ' 
it follows that gPf extends to a continuous linear operator 

D 



§s. Some Elliptic Regularity Results 

In t:hi.s section, \\'C prove some elliptic J"eguLll"ity rc:;ults 

conc(Tning linear elliptic diff:0renbaL operators ,,jt;h smooth 

coefficients. The t:hcolocms foliO\\' immediately from the follmving 

thccJrcm on the continuity of pseudo-differential operators on compact 

manifolds. 

Til eO l'Cm 5. l 

Let M be a compact smooth manifold, Let n
1 

: E ~ l\1 and 

Tf : F --'> M be smooth vector bundles over l\1 and let P 
'-

be a pseudo-differential operator of order not exceeding m, for some 

m E ~ . Then P extends to continuous linear operators 

p ck, ~(E)~ ck-m, o< (F), 0 <. o< ( l, k ~ max(m,O). 

8y using a part:i tinn of uni t:y subordinate to a finite cover 

of r.J by coonli.natc neighboul"hoocls in ~1 over 1vhich the vectot' 

bundles E and F arc trivial, it suffices to show that P~ extends to 

the required continuous linear operators between Sobolev and H~lder 

sp~1ccs 1-Jhcncvcr Y': ~1~ m is a smooth function with its support in 

the domain of some Coord ina tc chat't X : n -) .ffln OVer which the bundles 

E and F 3rc trivial. Let y be a :,;mooth function 1-Jhosc suppor·t 

is contained :in .fl and which 1s identically equaL to 1 on the 

support of 5t' Then the operator 

(l - y )P y:' 
00 00 

C (E) ---7 C (F) 

1s a smoothing operator, hence it suffices to show that the pseudo-

differential operator 

extends to continuous linear operators 
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p ( E I r\ ) ----) l.lp 
Ll\ j '- z-m (F j _()_ ) ' l<p<oo,kELZ 

C l<,o<.(I~j.n. J-4 c~k-m,o<.(F'In l, o< < 1 1 ( l . o<. , z ~ max m, 0 . 

But this follo1·Js immediately from the cot'rcsponcl:ing results for 

pseudo-differential operators defined on open sets in ~-n 
U{ (theorems 4.10 

and "1 • I I ) • 

Theorem 5.2 

Let ~I be a compact smooth manifold, let 1f. : E ~ lVI and 
I 

Tfl. : F ---? ~~ be smooth vector bundles over ~I and let L 

D 

be a linear elliptic differential operator of order m with smooth 

coefficients. Let f be a section of rr:l. : F --) M and Jet u E: ~'(E) 

be a weak solution of the equation 

Lu f. 

If p is a t"cal number s3 tisfying l < p < oo , I< 1s an integer ::mel 

f E L.l1),~ (F), then u E LP (E). If o<. is 3 real number satisfying 
k~t~m 

0 < <::><, < I, k i ~~; a twn-ne1~ative 

t:: r· kt·m, c.;. 1 r. \ 

I" ~ 
integer and fE c'' (F), then 

u.._'-', \LIJ• 

Pt"oof 

Let P C 00 (F) -> C 
00 

(E) be a parametrix for L. Then 

u PLu + Ku Pf + Ku 

where 1\ <i\ I ( E· ) ---lo. c 00 
( E· ) th . t ~ , 1s a smoo 1ng opera or. But P extends 

to continuous linear operators 

P LP
1
_(F) ~ r)

1
) (E), 

' u~ m 

from which the result follows immediately. 

D 
Let M be a compact smooth manifold, let)-' be a smooth measure 

on M, let 1T: E ~ ~~ be a smoot:h vector bundle ovet" M, and let 

---------------- -- --~---



104 

J3 E C
00 

(E'''®E''') be a smooth secLion of !~,··® E''' 1vhich restricts to 

a positive definite symmetric bilinear form on each fjbrc of E. We 

define an inner product on sections of E by 

(c. e ) r 8 (e. e ) rlv 
L ' 

'). 

J I l : :::!' / 
"' !'vi 

/\linear· differential operatot" I. C
00 

(I~)-----;) C 
00

(E) 1s self-adjoint 

i f and on Ly if 

The results of llodge theory for self-adjoint elliptic differential 

p 
operators apply to the Sobolev spaces LK (E) for p satisfying l < p < oo , 

and are g1vcn in the following theorem. 

Theorem 5. 3 

Let M be a compact smooth mr~nifold, let TT
1

: E ~ M and 

1T 2 : F-?M be smooth vcctot" bundles over M and let L: C
00

(E)-7C 00 (F) 

be a linear elliptic differential operator with smooth coefficients 

of cn'der m. If k is an integer and if r satisfies I <. p< oo, then the 

extension 

p( p ' /,: Ll E)--.}Ll (l·) 
< <-m 

p , ~ 
of L to Lk(l',) Is a Fredholm operator. If k ~ m and 0 < o<. < 1, then 

the extension 

L : ck, o< (E)~ ck-m, o< (F) 

,, <"-
or· L to C' (E) is a Ft'cdholrn orcrator. 

~!Ot'eOVCl' if 

Is a smooth 1nner pr'ocluct structur'e of E and L : C
00 (E) ~ C 00 (E) is 

a self-adjoint elliptic differential operator with smooth coefficients 

of order m, then the index of the Fredholm operators 



1s equal to zero and there exists a pseudodifferential operator 

of orclet" -m such that if II C()O(E) ~ C 
00

(E) JS the projection 

1 n1--a r1r.-. 
.>!llClf.::.,'-... 

; '" II I r. ) 
_,_,, 11, I.J I' 

11(1·:) - { e E C 
00

(1':) : I.e 0}, 

3ncl '"hosc ken1el is the Jmrnage of L., then 

J L.G I Gl. II. 

Proof 

Let P : C 
00

(E) ~ C ao(E) be a pseucloclifferential operator of 

order -m which is parametrix of L. Then LP - I and PL - I are 

smoothing operators, hence 

!.P - 1 : I p ( I•" ) _,. p , , .. ) 
-1 " L.l I :. 1:-m <-m 

PL - I 

LP - I 
k m o<. k-m ~ 

C- ' (F)---? C ' (F) 

k ~ k 01.. 
PL - I : C ' (E) -7 C ' ( 1;:) 

are compact operators. Hence 

L I p( L') ---llo Ll.) (I') ·']r ~. 7 , l< -rn 

are FreclhoLrn operators, thus proving the first part of the theorem. 

Let L: C
00

(E) ~ C 00 (1~) be self-adjoint 1vith t"espect to the 

g1vcn 1nner procluct structure. Let V 
1 

(E) be the ortho1~onal 
p) ( 

complement of !!(E) with r·cspcct to the 1nne1' product structure. Then 

and 

[ p (") P(-l} 1mage L : Ll I~ ~ Ll J·. u-rn z 

s1nce H(E) 1s the orthogonal complement of the Jmage of L, us1ng 
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the fact that L is self-adjoint. Then 

L I v (E) : v (E)~ v (E) 
p;k P;k p,k-m 

Js continuous and b<jective and hence has a bounded inverse, by the 

Banach isomorphism theorem. p ' p ' Define C : L (E)~ Ll (!~) by 
l<-m ~ 

0 

c; lv P; k-rn (E) (L I v (E) )-! 
p) k 

Then 

I - LC I - GL = H. 

Since H 1s a smoothing operator, G is a parametrix of L. But any 

two pararnetrices of L differ by a smoothing operator, hence G 1s a 

pscuclocliffcrcntial operator of order -m. 
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Ch:1pter IV 

1\N INEQUALITY FOR FUNCTIONS ON IUEMANNil\N 1\1.1\NIFOLDS 

§1. Introduct~nn 

In this ch3pter 1vc prove 3n inequality (theorem 3.3) satisfied 

by continuous functions f : M ~:m on 3 compact Riemannian manifold 1\1. 

Given f: ~·1----;>m and given m
1

, m::' E ~·1, lct_JJf ( m
1

, m2 ) denote 

the infimum of the integt"als of f with respect to arclength taken 

over all piecewise smooth paths from m
1 

to m2 . .Also let d(m
1

, m2 ) 

be the distance from m1 to m2 defined using the Riemannian metric 

on M. Theot'Cm 3.3 sbtes that if dim ~1< p<Oc:> and if o<.E(O, l) 

1s defined by 

o( 1 
dim M 

p 

then 

S K ( d (m
1

, m
2

) 
p . 

where J( is a constant depending only on p and the Riemannian geometry 
p 

of' ~1, and where 1/ f II p is the Lp norm of f l'li th respect to the 

Riemannian volume measure on M. 

In section §2, we shall study tubes about length minimizing 

geodesics in a compact Riemannian manifold, in preparation for 

section §3. In section §3 1ve shall prove the main result (theorem 3.3) 

and clcclucc from it a result (enrol lary 3.!J) which appLies when the 
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manifold M is noncompact. We shall show how the Sobolev embedding theorem 

for the embedding of a Sobolcv space in a l!l:llcler space may be cleclucecl 

from theorem 3.3. 



§2. Geodesic Tubes about Length Minimizing Geodesics 

In this section, we use compactness arguments to show that, 

g1ven a compact Riemannian manifold M, there exists a positive 

constant R such that, for any length minimizing geodesic 

't : /a, b/----} M, the geodesic tube of radius R about y 1s embedded 

in M. R 1s independent of the choice of m1n1m1z1ng geodesic. Further-

more, we may choose R such that, on considering the exponential map 

as a diffeomorphism from the tube of radius R about the zero section 

of the normal bundle of y to the geodesic tube of radius R about 

the derivatives of the exponential map and its inverse both 1ncrease 

the lengths of tangent vectors by a factor of at most 2. 

First we prove a topological lemma. 1\ continuous map f : X --} Y 

between topological spaces X and Y is sald to be locally injective if, 

for all x E X, there exists a neighbourhood Ux of x such that f I Ux 

1s injective. 

Lemma 2.1 

Let f: X ~Y be a continuous map from a topological space X 

to a Hausdorff topological space Y, and let K be a compact subset of X. 

Suppose that f : X ~ Y is locally injecti vc and that f / K : K ~ Y 

lS injective. Then there exists an open neighbourhood U of K such that 

f j U : U ~ Y Js injective. 

Proof 

For all x E K, there exists an open neighbourhood Ux of x such 

that f J Ux is injective. For all y E K ' U , it follows that 
X 

f(y) ~ f(x) (since f J K is injective) and hence that there exist open 

neighbourhoods V of x and W of y such that x,y x,y 

f(V ) ~ f(W ) 0 x,y x,y 

(since Y is Hausdorff). Since K 1s compact, there exist y
1

, ... , y
11 

E: K 

such that K C U U 1'/ \\There x · x' 
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Let 

w 
X 

v 
X 

n 
L) 

l= 1 

IJ 
X 

n 
(\ n v 

X' .Y ~ 
l~.L 1~ 

Then x E V , V c U and 
X X X 

f(V)'If(W) 0. 
X X 

l ll 

L.et Nx - Ux v Wx. Then Nx J s an open neighbourhood of K. If z E Vx, "' E: Nx 

and f(z) c~ f(li\/), then w~ Wx' hence wE Ux' and thus z = \\1 0 s1nce 

fj Ux is injective. Since K ts compact, there exist x 1 , 

such that K C V, where 

Let 

m 
v lJ v 

i=l xi· 

m 
N n N 

i=l xi • 

... ' X 
m 

Then N 1s an open neighbourhood of K. If z ~ V, w ~Nand f(z) = f(w), 

then z w. Thus if 11 V n N, then U 1s an open neighbourhood of K 

and f/ IJ 1s injective. 

D 
Thr:orc:m :~. :~ 

l,ct M be :t comr~•cL smooth llicm<nmian mnnifold. (;iven any geodesic 

t /a, b/ --7 M, Jet N '( --1 /_a, ~~ denote the normal bundle of f with 

its canonical flat Riemannian metric, let BRN¥ denote the tube 

f X EN y l)x/(.5R} 

of radius R about the zero section of N 't, let exp "t : N 't -? M denote 

the exponential map of '{ , and let exp 'I ·:: TN y ~ Tl\1 denote its 

derivative. Then there exists a constant R, independent of the choice 

of geodesic, with the following property: if y : !__a, ~~-? M is a 

length minimizing geodesic in M, then 



1s a diffeomorphism onto its image, and if z e TVN~ for some 

and 

X E 

then 

1; 
'2 II z II 

Proof 

Let 

ll exp 't ,., z II ~ 2 II z 11 . 

STM [ X E TM : /l X II = l } 

define a map E : SH1 XM TM -?M In the following 

ST M and y E:: T M. Then y -- yl + y2 where yl lS m m 

manner. Let 

a scalar multiple 

of X and y lS perpendicular to X. Let y : /5 17 ~ M be the geodesic -2 

t (t) exp t Y m 1 

(recall that M 1s compact, and hence geodcsically complete), let 

q = t (1), and let V E TqM be the vector obtained from Y2 by parallel 

transport along ( Then define 

E(X,Y) exp V. 
q 

Also, for a 11 X E ST 1\1, rlefi ne F. : T M --:) 111 to be the map sending m x m 

Y f:T 111 to E(X,Y) eM. Note that if Y is a scalar multiple of X, 
m 

then the derivative of E at y lS an isometry. 
X 

Let K be the subset of STl\1 ~ Tl\1 consisting of all elements 

(X,Y) such that y = AX for some real number >.~ 0, and also such 

Uwt 

'6 : /0, 17 ~ !11 : t H exp t Y 

is a length minimizing geodesic from '{(0) to d"'(l). K 1s a closed 

subset of STl\1 ~1 M. If (X, Y) E K, then II Y II ~ diam (M). Since M 

1s compact, K 1s also compact. Also if (X,Y) E K, then the derivative 

of Ex at Y is an isometry. Hence there ex i.s ts a neighbourhood U 1 of 1< 

such that if X,Y E. TmM, if II X II = 1, if (X,Y) E. u1 , and if 

Z E: TYTml\1' then 
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TT ~1 ~ Hl is the cle!'ivative of E . In pad:icular, if 
m x 

(X,Y) e u
1

, then the derivative of Ex at Y is an isomorphism. 

N01~ clefi nc f : ST!VI x~.J HI __, SH1 x ~! by 

f(X,Y) (X, E(X, ''{) ) . 

The derivative of f at (X, Y) E STM xM TM 1s an isomorphism if and only 

if the derivative of E at Y is an isomorphism. In parbcular, if 
X 

(X, Y) c u
1

, then the derivative off at (X, Y) is an isomorphism, 

hence r t u 1 1s a local diffeomorphism, by the inverse function theorem. 

By clcfini tion of E, if (X, Y) E: K then 

f(X, Y) (X, cxp Y). 

then there exists m E: M such that xl' x2' yl' y E: T ~1. /\lso xl X -
2 m 2 

for some X E: T ~I. Then yl = >-. X and y =t X for some 'A ·f ~ 0, 
m 2 

ancl the geodesics 

it /0, 17~ M tH expmtY1 

. , /0; 17 ~ M: h--~ <::>xp tY 
ll 2 m 2 

X 

arc length minimizing geodesics satisfying '( 
1 

( 1) = 't 
2 

( 1). It follows 

that v1 = Y;~· Thus l'<'e have shown th3t f 1 K 1s injective. 

Now f j U 1 1s a local diffeomorphism and f I 1\ 1 s i njeeti ve, hence 

I.IJct·•· <::-:i::L:·. :tn open nci1•.11bnttr·hood II of J(, eont;-,incc.l 111 u
1

, such th;tL 

f \ ll u; a dif'feomot·phi:-;m, by the previous lemma. Then if 

X, Y E- T
1
/l, 1\ X II l, (X, Y) e U and if Z E TYTm~l then 

;;; \l z II ~ \\ EX·:: z II ~ 2 I\ z II . 
Using the compactness of K, it follows that there exists R) 0 

such that if (X, Y)G STM xM TM, if Y Y
1 

+ Y
2 

where Y1 is parallel to 

X and 1·2 1s perpendicular to X, if (X, Y
1

) E K, and if \\ Y
2

)) (. 

-- H, 

then (X, Y) E U. We claim that H ls the t~equired constant. 

ll3 
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Let ~ /~, b)~ M be a length minimizing geodesic para-

mcterized by arclength, and let Tf : N 'I ~ /~, b/ be the normal 

bundle of t Let m = If ( 0) and let X = 't ' ( 0) . Then X E STM. 

Define V 

V (V) IT (V) X + C::::: (V) 

\\'here '1::: : N i ~ Tm~l 1s the map sending V E: Nil to the vector 

'l: ( V) in Tml\'1 obtained from V by parallel tr·ansport along 'I from 

't ( 1T (V) ) to m. Then v 1s an isometry from N onto its image 

111 Tml\'1, and if V E 13nN'i, then (X, ))(V)) E U, and also 

cxp y V E(X, V (V) ). 

l!cncc cxp y j 13RN 't : 13HN y--} l\'1 is a eli ffeomorphism onto its 1magc 

in M with the required properties. 

D 



§3. An Inequality concerning Functions on Riemannian Manifolds 

In this section, we consider the following situation. Let !VI be 

a compact smooth Riemannian manifold of dimension n, and let p be a 

real number satisfying n < p < oo 

constant 1\ , depending only on p and the Hiemannian geometry of !VI 
[l 

such that for all continuous functions f : M -? m, and for all 

m
1

, m
2 

E !II, the infimum f-J f(m
1

, m
2

) of the integrals of f with 

respect to arclength along all piecewise smooth paths from m1 to m
2 

satisfies 

where II f II p is the Lp norm of f, d(m
1

, m
2

) 1s the Riemannian distance 

from m1 to 

o( 

m.,, 
6 

1 

and 

dim M 
p 

Those cases of the Sobolev embedding theorems dealing with embeddings 

of Sobolev spaces into Ck spaces or H~lder spaces follow easily from 

this inequality. 

In what follows, we regard lRn as the Cartesian product 

n-1 
JR X ]1 { 

n-1 We denote the un j t ba 11 u E lR : 11 u II s 1} 

tn 
n n-1 

]{ by 13 
n-1 

The volume of 13 with respect to the Euclidean 

metric 1s p1vcn by 

vo 1 ( 13n-l) 

The ma1n theorem of the section will follow from a !.emma concct'n:ing 

the behaviour of functions defined on cones 1n Euclidean space. 

Lemma 3.1 

Given t ") o, L > o, let rc. lR 
n 

be the cone defined by 

r { (w, y) l_o, L7 n-1 
II Y II Ew} E: xm : ~ 

and, for all u E-
n-1 let /0, .!} ~ r be the ray defined by I3 ' c 

u 

lL5 



c ( t) 
u 

(Lt. l:Lkl 

(on regarding :wt as the Carte:::::an product 

p E (n, oo ) , let f E: Ll' ( r ) , and let 

I __ 1____,1- s ('S i If( c ( t) 
n- u 

vol(B ) 
8
n-l 

0 

n-1 
:n=tx m ). Let 

du 

n-1 I be the mean value, taken over B , of the integrals of f I with 

respect to arclength along the rays 

I !:- J(p 'n ' £. (,.... II f II r ' f 

where 

\vhere 

II r II r, r = ( J, I r I " 

and where 

K p,n,E 
r(~tl) 

1T "'1. 

c . 
u 

1 s a constant depending on p, n and E. . 

Proof 

Then 

Since C
0 

( r ) is dense J.n Lp ( r), it suffices to prove the 

- - n-1 r 
Let 'f : j_O, _!_/ x 13 ~ be 

the map defined by 

c.p (t, u) ( 1 t, £ l tu) . 

Let dx be the volume form on mn and let du be the volume form on 

n-1 n-1 
B c. JR Then 

l n-1 
~-:, dx ( ~ lt) cit 1'\ du. 

Also 

II c~ (t) II 1 2 2 ~(, 
.y(l+E._u)·, 

Llfi 



hence 

I = 
r c i t 1 

) J L c 1 t £7. u..,_ ) .,,_ ( r f: -t ) Jt "' L 
TT .... ,1. [ ] Bn-· 0 1 I '1-

r(~~~) I 

( Lo, tl < B "_, 
r f < 

J- p 
1-F~~/ r*& ..... c --- .,,1. f'J 1'\ I 'i. J L 

II 

r f~ + r) 4 

CL 
't: 

I- r If ( Jx ) P c 
"t p,fi,E,l TT ?.. 

by lltllder' s inequality, 1"here 

J 
~ 

c - ( slt) ( l-n) q ( 1 + €. 2u 2 ) l. 

p,n,E,L - _ _ n-l 
/0,1/ x B 

Cf''' dx 

and where q satisfies 

Hence 

1 
p 

1 
+ 

q 
1. 

C I l ( £ lt ) ( 11 -1) {1-q ) ( l + f. 2u 2 ) ~ d t A d u 
'p,n,£,l = 

1 /o, t7 x 13
11

- · 

provided that 

L ( Lt )(n-l)(l-q) I 
(n-1) (1-q) + l 

(n- l) (1 - q) + l > 0. 

But 

q - l 
l 

p - 1 

n-l 
B 

2 ') '!
(l t t, u~) 1. du, 
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hence 

(n - 1) (1 - q) + 1 

Since p > n, 

11 - 1 
1--

p - 1 

(n- J) (1- q) + l > 0 

as rcqui red. lienee 

Thus 

I 

1- p 
c p,'t,'i., l 

lienee 

.:: 

L 

I - !;:: l p 

I :!:-

I"L. L ,_ p 

t(, ) n_, t. 

Corollary 3. 2 

p - 11 

p=-r 

( L-· 
ll+llr.p. 

Given ~) o, L > o, let T c. mn be the tube 

T = [(w,y)€- m x.ffin-l: w E:f!J, 2.!], 1\yll St.L 1 

r 
:Up-•) 

f' 

D 

about [!j, 2q of rnd i tts ~ L , nnd lc t P be the sc t of piecewise 

118 

smooth paths c : f...O, ..!:_/ ~ T from (0, 0) E: m x .mn-l to (2L, 0) €: ]{ x mn-l 

hhich arc contained in T. For any continuous function f · T ~ ]{, define 

m(f) c Ut-f [J~lf(c(t) Jj n c'(t) II dl' c E r}. 
m(f) is the infimum of the integrals of I fj with respect to arc-

length along all paths be longing to P. Let p E (n, oo). Then there 

exists a constant K depending only on p ,n and E such that if 
p,n, [ 



f T ~ JR 1s a continuous function on T, then 

rn (f) ~ K 
p,n,E. 

\\'here~ c(O, 1) lS defined b.Y 

ol..... = 
n 
p 

Proof 

Let 
n n 

L: : JR -> JR denote the reflection defined by 

'1::::' (v.f, y) (2 L - I"• y) 

n-1 n 
for all (l._r, y) E' JR X JR , and let r C. JR be the cone defined by 

r r - - n-1 } 
' L (IV' y) E /_O' L_! X JR : II y II ~ ~ 1\' • 

Then r c T and '1:: ( r ) c. T. 

the r8y defined by 

c ( t) 
u (lt,ELtu) 

For u E Bn-l, let c 
u 

( d
. n n-1 

on regar Jng JR as the Cartesian product 1H x JR ) • 

/o, _!_7 ~ r 

Then the 

product path v = c ,., ( '1:: c )-l consisting of c followed by '1::.. c u u u . u u 

reversed is a piecewise smooth path from (0, 0) to (2L, 0) (via 

( L , £. L. u) ) , and if f : T ~JR is continuous and 

1 
n-1 

vol(B ) 

then 

l I 9 

be 

s:l-< - p, fl.., E L 1- i' ( (J r I f ( d" /' T ( L c r J 11= I' .b t ) 
L 0( ( I I-F I f' olx. ) ~p 

rv'):::(r) 

L ~ ( J' 
by the previous lemma. 

D 



Using this corollary, and us1ng properties of geodesic tubes 

about length m1nJz1ng geodesics, we may prove the ma1n theorem of 

this section. 

Theorem 3.3 

Let r.J be a compact Riemannian manifold of dimension n (possibly 

with boundary). For all continuous functions f : ~I ~ JR, and for all 

m
1

, m
2 

t: ill, let jJ f(m
1

, m
2

) denote the infimum, over all piece'"ise 

smooth paths c : /a, b/ ~ ~I from m1 to m
2

, of the integrals 

r a 

1 f (c (t) ) 1 Jlc 1 (tl\\ cit 

of lfl , with respect to arclength, along c. Then, for all 

p E. (n, oo), there exists a constant K , depending only on p and on 
p 

the Hiemannian geometry of M, such that if f : ~I~ JR is a continuous 

function on M, then 

for all m
1

, m
2 

E M, where ~ E (0, 1) 1s defined by 

1 
n 
p 

where d(m
1

, m
2

) is the distance from m
1 

to m
2 

with respect to the 

Riemannian metric, and where 

II r II r.r ,p 

Proof 

First, we restrict our attention to the case when o M = 0. 

Then there exists a constant II such Lkt!:, for aLL len1~th min1mizing 

geodesics () : /a, ~~ ~ M, the exponential map 

lS a diffeomorphism onto its image, and such that if Z E TVN 'I for 

some V € BRN)' , then 
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;:, II z 1\ 
II 

II exp ,, z II 2 !1 z II 
(here BRN)\ is the tube of radius H about the sero section of N~ 

consisting of all vectors of Length not exceeding R in the normal 

bundle N t -} /a, ~7 of 't ) . This fo.Ll01vs ft"om theorem 2. 2. 

l.c:t dio.m (~!) be the diametc:t' of ~~. and let 

2H 
clio.m (r.J) 

Let m
1

, m
2 

E 1\1 and let 'I : [!5, cr J ~ ~I be a length minimizing 

geodesic from m1 to m2 , parameterized by arclength (such a geodesic 

always exists, since M is compact, and since we are restricting our 

attention to the case when M is without boundary). Let 

1T : N '{ ~ i._O, ~7 be the normal bundle of 't Then the tube T of 

ro.chus Y, 6"E about the zero section of Ny lS contained in BnN'/ 

Let P be the set of piecewise smooth paths v : i._O, 17 ~ T in the tube T 

-1 -1 
from expy (ml) to expy (m

2
). T has a no.tural flat Riemannian 

metric and is isomett' i e to the correspondin1~ tube ln 
n 

JR. By the 

corollary Lu Lhc previous Lemma, if g T----) m L; a continuous function 

on T and if 

m(g) c inf {I I f(v It) ) 111 v' (t) II dt ' v € P} 
lS the infimum, taken over piecewise smooth paths in T from 

-1 
( m1) 

-1 
of the integrals of I g I with respect exp "I to exp r (m2)' to 

arclength o.long the curves, then 

I 

m ( f!.) ~ 
,. 

(~f(I, r K 
lg I 

p 
dx p,n' l 

where K 
1 

ls a constant depending only on p, n o.ncl E But p,n,E 

exp
1 

I T : T ~!'vi lncreascs the length of to.ngent vectors to T by a 

factor of at most 2, hence 



_jJ f ( m
1 

, m
2

) ~ 2 m ( f o exp) 

2 ";,n, l ( ~ )"' ( r )

i/p 

I f o exp J p clx 

n+l 
2 

I 
\ /p 

1~here 

1\ 
p 

')n+l- oc. 
1
_ 

~ " 

K 
p ,n' t. 

Kp ( cl (m
1

, m
2
)) 

p 'n' e 

Here we have used the fact that 

I clx I ~ 2n / e xp "t ,., d ( vo 1 ) 

cl(vol)) 

()(. 

(L 

where d (vol) is the volume measure on m and dx is the volume measure 

on T. This fact follows from the fact that if Z E TvNY for some 

V E !3HN "( , then 

:: II z II ~ II cxp lf ,., z II · 
The constant K depends only on p, n, Rand diam (M), and thus only on p 

p and on the Riemannian geometry of M. Thus we have proved the 

theorem in the case when ~ M = ~-

Now suppose that ~ M f ~- First note that if we prove the 

theorem for one particular' Riemannian metr:i c on M, then the result 

holds f'or any nicmannian metric on 1\1. 

Let h : M -'> M
1 

and j 2 : 111 --:) ~1 2 be diffeomorphisms of ~I onto 

disjoint copies M1 and M2 of M. Let 2M be the smooth manifold 

obtaincJ from the disjoint union of M1 and M2 by jdentifying j 1 (m) E M
1 

identification map, and let i 1 : 1\1 ~ 2M and i 2 : JVI ----> 2M be the 

maps i 1 = p o ,j 1 and 1 2 p o J 2 . Then 21\'1 is a compact smooth manifold 
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1-.rithout boundary, i, ~1 ~ 2~1 and i" : ~·I ~ 21\1 are embed dings of M in 2M, 
.L G 

~~~ = i] (M) U i
2

(M) and il (~·!) (') i 2 (M)~ ~ M. We have a sm'loth involution 

1:;:' : 2!\1 ~ 2M defined by the property that '1:" o i 
1 

= i
2 

and '"t o i
2 

= 1
1

. 

Given a smooth Riemannian metric g on 2M, we obtain a smooth 
0 

(:::" -inv;:tt':iant Riemannian mctri c g on 2M by defining 

g 1,1 (g +,.,....,.,g). 
' 2 "0 l- 0 

Then there exists a unique smooth Hicmannian metric on M such that 

1 1 and i
2 

are isometric embcddings. 

We have a piece1'1ise smooth map v : 2r.1 ~ l\I sending i
1 

(m) and i
2 

(m) 

tom, for all mE. H. Then 1
1 

o l) : 2M~ 2M 1s a piecewise smooth map 

l'lhose 1magc is contained in i 
1 

(~1) and which preserves the lengths of 

p_[ecev.J:i sc smooth curves. Let m
1

, m
2 

€: i
1 

(M). Suppose that y J.s a 

length minimizing geodesic from m1 to m
2

. Then 1
1 

° V• '( Is a path 

from m1 to m2 with the same length as y , and 1s thus also a length 

minimizing geodesic from m
1 

to m
2

. Thus 1
1 

<>')) o (( '( , unless both 

m1 E- i 1 (()l\J) and m
2 

€: i 1(d1•1), Jn \'lhich case either t
1

o)) "¥ oc 'I 

Thus any b'io points J.n i
1 

(!11) may be joined 

by a length minimizing geodesic lying wholly within i
1

(M). If 

f : 1·1 ~ :ffi is continuous, then f "'V : 21\1 4 m is continuous, and l'le 

have already shown that 

for some constant K depending only on the Riemannian geometry of 2M. p 

Tl1us 

r 
J f-1 

llcnce the theorem 1 s true l'lhen ~ M -1 0 also. 

D 



One may easily deduce part of the Sobolev embedding theorems 

from this theorem. For let ~I be a compact n-dimensional manifold, 

let p E. (n,oo), and let f be a c1 function on lVI. If ~~e define 

i\ t' ii p 
1 r 
\ J ~·I 

I 

-. -. \ /p 
d \ VO 1) ) 

then there exists a point mE. 1\1 such that 

I f ( m) l ..!. 
~ vol(l\1)- P \1 f II p . 

Let g \ df \ . Then g lS continuous, and if m
1

, m
2 

E: lVI, then 

I f(rn
1

) - f(rn
2

) I ~ }J g (m 1 ,m2 ) 

KP(d (m 1 ,m2 ) )a<.\\ df\\ P 

for some constant K depending only on p and on the Riemannian 
p 

geometry of M, where 

1 
dim M ---

p 

and ~~here v : M x M ~m 1s the function defined in the previous 
F g 

theorem. Applying this result with m1 = m, we obtain 

~ cp ll f II 11 , 1 

where c lS a constant depending only on p and on the Hicmannian p 

geometry of and whet'e II · II p,l the 
p 

Since c1(M) M, l s Ll -norm. 

dense 111 L:(M), it follows that we have a continuous embedding 

Also 

sup I f( m 1 ) - f ( m2 ) \ 

~ II elf liP ml,.fm2 
K 

( d(m
1 

,m
2

) ) a~, p 

K II f II p, 1 p 

lS 
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and thus we have a continuous embedding 

p 0 0( 
1

1 
(M) ~ C ' (!VI) 

where C0
' ~(!VI) is the H~lder space with exponent 

by 

dim !VI 
1 -

p 

o<. E: ( 0 , 1 ) g1 ven 

There is an analogue of theorem 3.3 when M is not compact. 

Corollary 3. 4 

Let M be a Riemannian manifold of dimension n. For all 

continuous functions f : !VI ~JR., for all bounded domains D in !VI 

and for all m1 , m
2 

E D, let }' f, D ( m
1

, m
2

) denote the infimum, over 

all piecewise smooth paths c : /a, b/ ~ D from m
1 

to m
2 

of the 

integrals 

J
b 

\ f (c (t) ) I 
a 

II c I ( t) II dt 

of Iff , with respect to arclength, along c. Then, for all 

p e (n, co) and for all bounded domains D and n1 satisfying 

there exists a constant K depending only on p, on the Riemannian 
p,D,Dl 

geometry of M and on the domains D and n1 such that iff: !VI~JR 

1s a continuous function on !VI, then 

for all m
1 

,m2 E D, where c:1... E ( 0, 1) is defined by 

l 
n 
p 

where d(m1 ,m2 ) is the distance from m1 to m2 with respect to the 

Riemannian metric on !VI, and where 

II f II If J P d(vol)) 

.!.... 
p 
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Proof 

As in the proof of theorem 3.3 we may assume that ~ M = ~. 

Then there exists a smooth function JO : M ~ /0, 1/ such that 

y:> has compact support contained in D1 and Cf E 1 on <J neighbourhood 

of D. By Sard's theorem, there exists a regular value t of cp in 

the open interval (0, 1). Then }0-l( [t, [J) is a compact manifold 

with boundary. The result then follows from theorem 3.3. 

D 
An alternative proof of corollary 3.4 not involving Sard's 

theorem could be constructed as follows. If M is a smooth Riemannian 

manifold (possibly noncompact) we could apply theorem 3.3 to compact 

geodesically convex sets in M with smooth boundary. By a well-

known theorem of J.H.C. Whitehead, the interiors of such sets form 

a base for the topology of M. The domain D in the statement of 

corollary 3.4 may be covered by a finite number of compact geodesically 

convex balls with smooth boundary which are contained in the interior 

of the domain n1 • By the Lebesque covering theorem, there exists 

~ > 0 such that if m
1 

,m
2 

E D then either m
1 

and m
2 

both belong to 

one of these geodesically convex balls or else d(m1 ,m2 ) ~ ~ . If 
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d(m
1

,m
2

) < ~ then the required incqu::tlity follows from theorem 3.3 applied 

to the geodesically convex ball containing m1 and m2 . If d(m1 ,m2 )~ ~ 
then we can find a finite sequence of points of D whose first member 

is m1 and whose last member is m2 with the property that any pair of 

successive members of the sequence is contained in one of the geo-

desically convex balls. One can then bound JV f,D(m 1 ,m2 ) in terms 

of II f II n1 ,p as required. 

An examination of the proof of theorem 6.3 shows that if M is 

a sufficiently well-behaved Riemannian manifold, such as a symmetric 

space, then it is in principle possible to find an upper bound on the 



constant K by studying the properties of geodesic tubes about length 
p 

minimizing geodesics using Jacobi fields. 
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Chapter V 

PRINCIPAL BUNDLES AND CONNECTIONS 

§1. Introduction 

In this chapter, we g1ve an account of Ehresmann connections 

on a principa] bundle and of the action of principal bundle auto-

morphisms on such connections, in preparation for subsequent chapters. 

This account is based to some extent on _LAtiyah, JILF., Hitchin, N.J. 

and Singer, I.M., 1978/ and {Bourguignon, J.-P. and Lawson, II.B., 

1981/. 

In §2 we review the construction of fibre bundles associated 

to a given principal bundle IT : P ~ M as described in, for example, 

chapter 9 of /Auslander, L. arne! MacKenzie, R.E., 1963/. Two such 

associated bundles of particular importance are the adjoint bundles 

p X 

1T 

ad G ~ M and P x 

P--) M and g 
d 

9 ~ M, where G is the structural group of 
A 

is the Lie algebra of G. We shall denote 

P x G by Gp and P x . , 9 by 9P· It is easily seen that each 
ad Aa 

fibre of Gp ~ M acts on the corresponding fibre of any fibre bundle 

associated to 1T: P -+ M. An important general principle is the 

following: given some structure on the fibre F of some fibre bundle 

1T F : Fp --'> M associated to 1r: P ~ M, where this structure is 

invariant under the action of G on F, then we may define a correspond-

ing structure on every fibre of the map 1TF : Fp ~Min a canonical 

way, and moreover this structure is invariant under the action of 

each fibre of Gp ~ M on the corresponding fibre of TT F : Fp 4 M. 

For example, this structure on F may be a group structure on F, a 

Riemannian metric on F, a vector space structure on F, a Lie algebra 

structure on F or a vector space norm on F. Using this principle, 

we shall show that if G and fl1 are compact, then any biinvariant 
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Riemannian metric on M determine a canonical biinvariant distance 

function on c0
(Gp) and canonical norms on the Banach spaces C0

( 9Pl, 

Lq(9pl, C0 (9p ® T*!II} and Lq(9P ~ T*!l1), where q satisfies 

1 :$ q <. oo. Moreover these canonical norms are invariant under the 

action of C0 (Gp) on these Banach spaces. We shall make use of this 

property in chapter VI. There appears to be no obvious analogue 

of this result which applies to the Sobolev spaces L~(gpl and 

L~ (9 p ® T~'ll'l) when k f- 0. 

In §3 we define Ehresmann connections and holonomy groups 

and review their basic properties. This material is standard. 

In §4 \ve define principal bundle automorphisms and study their 

action on connections. We show that the stabilizer of a smooth 

Ehresmann connection in the group of smooth principal bundle auto-

morphisms 1s naturally isomorphic to the centralizer of the holonomy 

group of the connection (theorem 4.2). This result has been used 

in studying the singularities in the moduli space of instantons 

over a 4-manifold that play an important role in the proof of 

Donaldson's theorem on the intersection form of a smooth 4-manifold 

(see iDonaldson, S.K., 1983/). 

In §5 we show that given two Ebresmann connections CO 
1 

and C.O 2 

on the principal bundle -rr : P ~ M, then their difference W 
1 

- U) 2 

may be identified with a section of the vector bw1dle 9 p ~ T*M ---+ M. 

We shall then show that if "'i'" P -?Pis a principal bundle auto-

morphism and if 1/. l1 is the canonical norm on c0 
( 9 p ® T*.M) or 

L q ( 9 p e T*l\1) then 

(Lemma 5.1). We also prove a theorem (theorem 5.2) which relates 

the distance between two principal bundle automorphisms "'r 1 and "'Y 2 

evaluated at the endpoints of a piecewise smooth curve in !11 to the 

integral of I y 
1

,·,(A) - +,., *w J along the curve, for any Ehresmann 
'-' 
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connection c.D on the principal bundle. We shall make use of this 

result in chapter VI. 

In §5 we revie1" the welJ-lmmm construction whereby, given an 

Ehresmann connection c..0 on a principal bundle iT : P ~ !VI we may 

split the tangent bundle TE ~ E of an associated fibre bundle 

E-? Minto the Whitney sum of the vertical bundle VE ~ E and a 

horizontal bundle HE--? E, where VE consists of all vectors tangent 

to the fibres of E ~ M. This enables us to define the covariant 

D ~ s : TM ~ VE of a section s : M ---+E of E ~ M with respect to 

the given connection in the obvious way. If E --+ M is a vector 

bundle then we may use this construction to define the covariant 

differential d o> s : M __, E ® T 1'~l of a section s : M ~ E of 

E -I) M. Given a smooth connection W we shall define a first order 

differential operator 

~U) 00 00 9 ............. : c ( Gp) --) c ( p e r>~r.n 

and a fibre bundle morphism 

with the properties that 

for all principal bundle automorphisms y and for all ~ E: C00 
( 9 p), 

1vhere 

oO -exp : C ( 9 p) ~ C ( Gp) 

1s the exponential map. The reason for introducing these operators is 

that 1n chapter VI we shall express the equations governing the action 

of principal bundle automorphisms on connections in terms of 

and B and by examining the form of these operators we may use the 

results of {Palais, R.S., 196~7, v;hich 1..;e have summarized 111 

chapter II, in order to deduce smoothness results for the action of 



Banach Lie groups of principal bundle automorphisms on the appropriate 

Banach spaces of connections. 

In section §7 we review the basic formalism of the covariant 

exterior derivative, covariant codifferential and covariant Hodge

de Rham Laplacian as developed in §tiyah, M.F., Hitchin, N.J. and 

Singer, I.M., 1978/ and in {Bourguignon, J.-P. and Lawson, H.B., 

1981/. 
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§2. The Adjoint Bundles 

In this section, we summarize first the construction of fibre 

bw1dles associated to a given principal bundle. We apply this 

construction to define the adjoint bw1dles TT ad : Gp ~ !IT :1nd 

1T Ad : 9 p ~ M of a principal bundle 1T: P ~ l\1 with structural 

group G '"hose Lie algebra is 9 . It is shown that, given a 

biinvariant metric on G, the biinvariant distance function on G 

resulting from this Riemannian metric determines a distance function 

on each fibre of 'TT ad : Gp ~!II, and hence determines a biinvariant 

distance function, the canonical distance fw1ction, on the group 

C
0

(Gp) of continuous sections of Trad: Gp ~Ill. Similarly, the 
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G-invariant norm on 9 resulting from the Riemannian metric on G 

determines a norm on each fibre of TTAd : 9 p ~ 111, and hence determines 

norms, the canonical norms, on the vector spaces C
0 (9pl and Lq( 9 p) 

of continuous sections and L q sections respectively of 1T Ad 9 p ~ 1\1 

for all q E f_I, oo); also, given a Riemannian metric on M, the 

invariant norm on 9 determines norms on each fibre of 9P ® T*M ~ 

and hence determines the canonical 
0 9 p ~ T*!l1) and norms, norms, on C ( 

L q ( 9 p & T*M). The norms on C
0 

( 9 p), L q ( 9 p), C
0 

( 9 p 8 T*~O and 

L q( 9 p ® T*M) are shmm to be invariant under the adjoint action of 

0 
C (Gp). 

Let 1T: P ~ 1\1 be a smooth principal bundle with structural 

group G, acting on P on the right. Let F be a smooth manifold on 

which G acts smoothly, with action g: G~Diff(F). Then '"e can 

construct a fibre bundle 1f g : P x g F ~!II with fibre F associated 

to the principal bundle 1T : P ~ ~I. The total space P x g F of this 

fibre bundle is defined to be the quotient space of P x F by the 

equivalence relation """ , where 

-1 
(p. y ' f) ,.._ (p' g ( y ) f) 

M, 



for all p E P, y E G, f E F. Let fP, !7 ~ P x g F denote the 

equivalence class of (p, f) E. P x F. The projection TT 9 : P x 9 F ~ M 

1s defined by 

Tf 8 ( fj. g 1T (p) 
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and each element p of P determines a diffeomorphism -1 
V : 1T (m) ---+ F, p 

where m = 1T (p) and 

for all f E F. If y c: G then 

since 

v ... , ( 5. 0 ) = v -• ( LP. 'i -l, e (..., ) 0 ) . 
P·Y P·Y 0 

The structural group G acts on P on the right and on F on the 

left. A map fi : P ~ I;' is said to be G-equi variant if and only if 

(.). -1 
/ (p. y ) 

for all p 6 P and y E: G. There is a bijective correspondence between 

sections of 1f 9 : P x 9 F ~ M and G-equi variant maps ft : P ~F. 

This correspondence sends a section s : 1\1 ~ P x 9 F to the 

G-equivariant map 

p ~ l) (s(it(p) 
p 

h . d d k 0 f t 0 0 k T 1s correspon ence sen s C sect1ons o P x 9 F o G-equ1var1ant C 

maps from P to F. 

Suppose that (F •I') is a metric space 1·6 th distance function 

~ : F x F ~m (we refer to such a function as a 'distance function' 

rather than as a 'metric' in order to distinguish between 'distance 

functions' and 'Riemannian metrics'; note however that a Riemannian 

metric on F determines a distance function on F, the distance between 

two points of F being the infimum of the lengths of all piecewise smooth 

paths joining these points, assuming that F is connected). The distance 

function.,/> : F x F ~m is G-invariant if and only if 



for all f
1
,f

2 
E F and a E G. If ,f>: F x F ~m is a G-invariant 

distance function, then for all m ~ M there is a unique distance 

-1 
function ;:> m on the fibre 1T fl (m) of 1T fl : P x fl F ~ M over m 

with the property that 

for 
-1 -1 

all e
1

, e
2 

E Tr fl (m) and for all p E. '"Tr (m), where 

-1 : 1T fl (m) -+ F is the diffeomorphism determined by p. Vp 

If M is compact, then we obtain a distance function p on 

C
0 

(P x fl F), the space of continuous sections of If fl : P x fl F ~ M 

by defining 

0 
If s l, s 2 E C ( P x Q F) and if (f'" l : P --? F and 6"" 2 P 4 F are the 

corresponding G-equivariant maps, then 

......, ( ) sup ( ...:- ( ) (J ( ) ) ,P s 1 ' s 2 = pf p v 1 p ' 2 p . 

A special case occurs when the fibre F of the fibre bundle is 

a normed vector space on which G acts as a group of vector space 

automorphisms preserving the norm I . J Then there is a unique norm 

-1 j.) m on the fibre 1T fl (m) of 1T fl : P x fl F ~M over mE: M such that 

I e I m = I v (e) I p 

-1 -1 -t for all e E lT fl (m) and p E: 1f (m), where )) p : 1T fl m) -7 F 1s the 

isomorphism determined by p. If l\1 is compact, then we have a norm 

II . J1 on C
0 

(P x fl F) defined by 

Jlsll sup I s (m) J 
IDEM m • 

If cr : P -+ F is the G-equi variant map determined by the section 

s M ~ P x 
9 

F, then 

II s II = sup l t5" (p) I 
peP 
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If we are given a smooth measure jJ on l\J, then, for all q c[I,oo) 

v-'e may define the norm II · II on Lq (P X F) by 
q 9 

(L dy) I~ 

\1 s II q I s (m) J ~ "" 

Now consider the case when F
1 

and F
2 

are smooth manifolds with 

smooth actions 91 G ~ Diff (F l) and 9
2 

: G ~ Diff (F
2

), and let 

'f : F l 4 F 
2 

be a G-equi variant smooth map ( 'f is G-equi variant 

if and only if 92( '() 0 r 'f o fli ( 'i ) for all '( e G). Then 

cp induces a smooth fibre bundle morphism Cfp : P x 
91 

F 1 ~ P x 
92 

F2 • 

We apply these general results to the bundles P x ad G and 

P x Ad 9 , where 9 is the Lie algebra of a compact Lie group G with 

a biinvariant Riemannian metric, G being the structural group of a 

smooth principal bundle iT : P -4 l\1 over a compact Riemannian manifold 

M. The adjoint action 

ad : G ~ Diff(G) 

of G on G is the map sending y E G to the inner automorphism 

of G. We denote the manifold P x ad G by Gp. 

Gp is the total space of a smooth fibre bundle 1T ad Gp __,.. l\1. The 

adjoint representation 

Ad : G ~ Aut ( 9 ) 
of G on 9 is the map sending '({ E G to the derivative Ad ( '{ ) : 9 ~ 9 
of ad ( '{ ) : G -+G at the identity element of G. We denote the 

manifold P x Ad 9 by 9P· 9 p is the total space of a smooth 

vector bundle rrAd = 9 p ~ l\1. We denote the fibre of "Tr ad : Gp ~ M 

over m E M by GpCmJ. 
The biinvariant Riemannian metric on G determines a biinvariant 

distance function~ : G x G ~ :m. It also determines a norm (. l on 

9 invariant under the adjoint representation of G. Also the 

Riemannian metric on M determines a smooth measure .J1 on M, the 

volume measure on M. 



Proposition 2 .l 

Let the principal bw1dle 1T : P ~ M, the structural gruup G, 

the adjoint bw1dle Tlo.L : Gp ~ JVJ, and the biinvariant distance function 

p G x G ~ JR on G be as above. 

Then, for all m € l\1 and for all p E TT -l(m), Gp /-m 7 is a 

Lie group and the diffeomorphism from GP !_-m_/ to G determined by p lS an 

isomorphism of Lie groups. These group operations on each fibre of 

n ad : Gp ~ M induce a corresponding group structure on the space 

C
0

(G ) of continuous sections of p 

For all m E M, there is a unique distance function 

~ m : Gp !_-m_7 x Gp !_-m_7 -7 JR with the property that, for all 

p ~ Gp!_-m_7, the isomorphisms from Gp!_-m_7 to G determined by p 1s an 

isometry of metric spaces. p m 1s then a biinvariant distance function 

on the Lie group GP [rq}. The biinvariant metric on G thus determines a 

..., 
distance function/' on C

0 
( G P ) defined by 

<>nd l"f' ..r • n ____.... " 
~ .. • ul. r---.- u, t5 

2 
: P --lt G are the G-equi variant maps 

corresponding to s 1 : M -+ Gp and s
2 

: M ~ C,:,• then 

and similarly for~ 
2

, and 

sup 
pEp ( 6""l(p), 0 2(p) ). 

The distance function} on C
0 

( GP) is biinvariant, and thus the group 

operations on the metric space (C
0
(GP),} ) are continuous. 

Proof 

Let m E M, 1 et p E 
-1 rr (m) and let v 

p 

diffeomorphism determined by p. Then 

v -· P·Y 
ad( y ) o V p 

for all y €; G, hence v • 
p. y-· 

-1 
vP G ~ G 1s an 1nner automorphism 
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of G. Thus there is a un1que group structure on Gp[mJ such that 

V p : Gp CmJ ~ G is an isomorphism of Lie groups for all 

p E u-l(m). We have already seen that there is a well-defined distance 

function _,P m : Gp [mJ x Gp [mJ ~m such that v p : Gp ["mJ ~ G 

1s an isometry of metric spaces for all p € lT-l(m). Since 

_/) : G x G ~ m 1s biinvariant and since l) p : Gp L mJ -7 G 1s a Lie 

group isomorphism, it follmvs that .?m : Gp 1_-mJ x Gp [""mJ-+m is 

also biinvariant. 

The map C5"" : P ~ G is G-equi variant 1vi th respect to the adjoint 

action of G on G if and only if 

-1 
cr(p))f 

-1 ()(p.)( ) = 't 
and l'ie have already seen that 

A sup 
,P (sl,s2) = ( cTl(p), c:s-2 ( p) ) 

pEP 

where t:S"" 1 and o 2 are the G-equi variant maps from P to G 

corresponding to s 1 and s 2 . 
A 

It remains to show that .fl is bi-

invariant and that the group operations on the metric space 

0 A A 
( C ( Gp) •...,.C ) are continuous. But the biinvariance of r is an 

immediate corollary of the biinvariance of _p m for all mE M. But 

then 

"" -1 -1 
:_I) (s2 ' sl ) 

0 -1 
for all sections s 1 , s

2 
(: C ( Gp), hence the map sending s to s 1s an 

, 0 A 0 
ISOmetry of (C (Gp),...P ). Also if sl's 2 ,s~.s; E: C (Gp), then 

hence the map ( s, s"') H ss"' 1s a continuous map from C0 
( Gp) x C0 

( Gp) 

to C
0 (Gp). Hence the group operations on (C 0 (Gp),~) are continuous. 

D 
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We refer to the distance function} : C
0

(Gp) x c0
(Gp) ~ lR, 

defined in the above proposition, as the canonical distance function 

(or canonical metric) on C0 (Gp) determined by the biinvariant Riemannian 

metric on G. 

Proposition 2. 2 

Let the principal bundle 7T : P ~ M, the Lie algebra 9 of 

the structural group, the adjoint bundle 1T Ad : 9P ~ ~!, the 

invariant norm J . I on .9 , and the Riemannian volume measure jJ on 

M be as above. 

Then, for all mE M and for all p E- lT-l (m), 9 PLmJ is a Lie 

algebra and the vector space isomorphism from 9 p{"m J to g defined 

by the element p of P is an isomorphism of Lie algebras. The Lie 

bracket on each fibre of 1f Ad : 9 p ~ l\1 induces a corresponding 

Lie bracket on the space C
0 L9PJ of continuous sections of 

1T Ad : 9P ~ M. 

For all m M there is a unique norm 1. I on m 9P CmJ \vith 

the property that, for all p ~ 9P ['mJ, the isomorphism from 

~p ~m~ to ~ is an isometry of normed vector spaces. 

determines a norm JJ. IJ on C
0 

( 9 p) defined by 

flail sup ja(m)J m 
mE !II 

I · I 

and if o< : P ~ 9 lS the G-equi variant map corresponding to 

a : l\1 -? 9P , then 

and 

-1 
o<.(p.y ) Ad (y)o((p) 

IJ a ll sup I o( ( p) J . 

pt-P 

m 

The Lie bracket lS a continuous map C
0 

( 9 pl x C
0 

( 9 p) ~ C0 
( 9 p). 

For all q E [f., oo) ive have a norm II . II q on L q ( 9 p) defined by 

H a l\ q 
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and if q,r,s t ;I, oo) and 

1 
q 

+ 
1 
r 

1 
s 

then the Lie bracket on each fibre of -r1 Ad : 9 p ~ M induces 1 

continuous bilinear map Lq ( 9pl x Lr ( 9pl ~ Ls ( 9pl· 

Proof 

The proof is analogous to that of the previous proposition, with 

the exception of the last part, which follows from H~lder's inequality. 

0 
We refer to the norm 1/ . 1/ on C

0 
( ,9 p), defined in the above 

proposition, as the canonical norm on C
0 

( fjpl determined by the 

biinvariant Riemannian metric on G. We refer to the norms \\. 1\ q 

on Lq( 9P ), for any q € L_T, 0o ), as the canonicc-.1 norms on Lq ( 9P 
determined ~y the biinvariant Ri~mannian m~tric o~ G and the smooth 

measure on M. If this measure is the volume measure of a given 

Riemannian metric on M, we refer to j\ . II q as the canonical norm on 

L q ( 9P ) determined by the biinvariant Riemannian me~ric on G and 

the Riemannian metric on M. 

For all -,; 1 , '( 
2 

t G, the exponential map exp : 9 ~ & satisfies 

and is thus G-equivariant and so induces a smooth fibre bundle moq:hism 

expp : 9P ~ GP. Also we have a smooth fibre bundle morphism 

Adp : GP ---+ End ( £j p ) , induced by Ad : G ~ End ( 9 ) . 
Proposition 2.3 

Let the principal bundle TT : P ----7 M, the structural group G 

with Lie algebra 9 , the adjoint bundles 1T ad : GP ___, M and 

"TT Ad : 8P -7 M, the biinvariant distance function 

0 0 0 
~ : C (Gp) x C (GP) ~ m on C (Gp), and the canonical norms 

Jr. II and ll·llq on c0
(9P) and Lq( 9P) respectively be as above. 
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Then the map exp : 9 ---> G induces a smoo-th fibre bundle 

morphism expp : 9 p ~ Gp. This in turn induces a continuous map 

exp : c0 
( 9 p ) ~ c0 

( Gp) between metric spaces, and if a E C
0 

( 9i' ) 
0 

and if e is the identity section of ~ lr. )_ thPn .. p. , ~--- -· 

A p (exp a, e) =IJall. 

The adjoint representation Ad: G-? End <fl ) induces a smooth 

fibre bundle morphism Adp : Gp -+ End ( 9 p ) . This in turn induces 

adjoint representations 

Co ( Gp) c Co ( 9 p ~ Co ( 9 p ) (s,a) ~ Ad(s)a, 

C
0

(Gp) x Lq( 9P) ~ Lq( 9P) : (s,a)~ Ad(s)a. 

If s : M ~ GP is a section of GP ~ M and if a : M ~9P is a section 

of 9P ~ M, then 

for all 

ll Ad ( s) a II II a II ' 

u Ad ( s) a 11 Jl a IJ q q 

;T, oo ) . Thus the canonical 
0 q € norms of C ( 

are invariant under the action of the group 

9P ) and 

0 
C ( Gp) • 

Proof 

The continuity of exp 0 ("1 0 
C (VI p ) -? C ( GP) and 

) follow by elementary compactness 

arguments. If I. I m is the canonical norm on the fibre 

140 

9P !_-m_7 of 9P ~ M over m ~ M and if _/) m is the canonical distance 

function on the fibre Gp !_-m_7 of G p ~ M over m, and if a E C
0 

( 9 p), then 

.P m (expp (a (m) ), e (m) ) = l a(m)\ m' 

hence 

A 

\I a II ..P (exp a, e) . 

Also if s E C
0 

(Gp)' then 

I Adp ( s (m) ) a ( m) l 
m 

l a(m) I 
m 

hence 

IJ Ad (s) a II ll a (/ 



and II Ad ( s ) a I! q 

for all q € {1, CD ) • 

D 
Finally we consider the bundle 9P GP T*~l ---? M. 

Proposition 2.4 

Let the principal bundle if : P ---) M over the Riemannian 

amnifold lli, the structural group G with Lie algebra 9 , the adjoint 

bundles 1f ad : Gp ~ l\1 and 1f Ad : 9P -+ M, the invariant norm I . I 

on 9 , and the norms l· I m on the fibres 9P £"mJ of 9 p _, 1\l 

be as above. 

Consider the vector bw1dle 9 p 4D T•cr.J ~ l\1. The fibre of this 

bundle over m E- M is isomorphic tu the vector space L ( TmM, 9 p ['"m J) 
of linear transformations from the tangent space TtnM of J.'vl at m to the 

fibre 9 p L m J of 9 p --') M over m. This vector space has a norm 

l . I m defined by 

sup { IS X 1m X E T 1\1 1· x j = 1 } m , 

for any S E: L(TmM 1 9 p f:mJ ) . If)-' is the volume measure of the 

Riemannian manifold ~~, we may define norms II . II and II . II on q 

C
0

( 9 p ® T*M) and L q( 9 p ® T*l\1) respectively, for all q E [f 1 <>0) 1 by 

{l -r 11 = sup I ~(m) I 
mEM m 

The smooth bundle morphism Adp : Gp ~ End ( 9 p) induces a smooth 

btmdle morphism Adp : C, -7 End ( 9 p ® T*l\1) 1 and hence induces 

continuous adjoint representations 

C
0

(Gp) x C
0 (9p e T*M) _,. C

0
( 9 p ~ T*M) : (s,~) I~ Ad(s)\:::', 

C
0

(Gp) x Lq( 9 p ®T~'M) ~ Lq( 9 p ®T*J\'1) : (s 1 '1:)H Ad(s)'"t:. 
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Then 

for all q E [f. oo). Thus the canonical norms of C
0 

( 9 p ® T"~'r.l) and 

L ~ 9 p ® T*M) are invariant under the action of the group c0 
( Gp). 

Proof 

The proof 1s exactly analogous to that of the previous 

proposition. 

D 
We refer to the norms 11 . l\ and lJ . fl q on C

0 
( 9 p $ T>~M) 

and L q ( 9 p ® T*l\1) as the canonical norms determined by the biinvariant 

Riemannian metric on G and the Riemannian metric on M. 



§3. Connections and Holonomy 

This section is a review of basic facts about Ehresmann 

connections on principal bundles and their holonomy groups. See 

L Ambrose, w. and Singer, I. 111. , 19 52/ or {Kobayashi, S. and Nomi zu, K., 

19637 for more details. 

Let Tf: P ~ M be a smooth principal bundle with structural 

group G whose Lie algebra is 9 . A tangent vector to P lS vertical 

if and only if it is annihilated by the derivative lT,., TP ~TM of 

-rr There lS a canonical mapping 

8 ~ vertical vector fields on P 

sending a e: 9 to the vector field ()(a) on P whose value cs-r (a) 

at p E P is tangent to the curve t ~ p. exp ta at t 0. The map 

a~ cr(a) is a Lie algebra homomorphism. cr(a) is referrP.d to as 

the fundamental vector field on P determined by a. 

An Ehresmann connection c:.o : TP ~ .9 on Tr : P ~ ]VJ is a 

1-form on P with the following two properties: 

( i) W ( () (a) ) = a 
p 

for all p E P and a 6 9 , 
for all ~ E G, 

where R~Y (A.) is the pullback of w under the map R Y 

mapping p to p. '( . 

p ~ p 

A tangent vector to P ls horizontal if and only if it is 

annihilated by W : TP---+ 9 If VP and HP are the subbundles of TP 

consisting of all vertical and all horizontal vectors respectively, 

then TP decomposes as a Whitney sum 

TP VP e HP. 

A piecewise differentiable curve in P is horizontal if and only if all 

tangent vectors to the curve are horizontal. If c : j_t
0

, t 1_7 ~ M is 

a pieceh'ise smooth curve, and if p E: P satisfies rr (p) = c(t
0

), then 

there is a unique piece1~ise smooth horizontal curve c = /t , t 1 7--7 P 
p - 0 -
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,.._ 
such that c (t ) = p. 

p 0 
If '( c G, then 

c (t) (c 
p. '( p 

(t)).)'. 

Let h : TP ~ HP be the projection onto the horizontal bundle 

HP over P whose kernel lS the vertical bundle VP. The curvature 

F c.o : 1\ 2TP ~ 9 of w is the 9 -valued 2-form on P defined by 

F w ( X , Y ) = d c.o ( hX, h Y ) 

for all vector fields X and Y on P. Fw has the following two 

properties: 

(i) F(.I.)(X, Y) = 0 if either X or Y is vertical, 

( i i) 
-1 

R*t F = Ad ( 't ) o F for all "( E G. 

Given a point peP, the holonomy bundle attached top, B(p), 

1s the set of all points of P which may be joined to p by a piecewise 

smooth horizontal curve 1n P. The holonomy group attached top, H(p), 

is a group of all '( E G such that p. '( E. B (p). The null holonomy 

group attached top, H
0

(p), is the subgroup of H(p) consisting of 

all '( E; H (p) with the property that p may be joined to p. y by a 

piecewise smooth horizontal curve in P \.,rhose image under If is a 

null-homotopic loop in M. If c 

beginning and ending at IT (p), then ¥E H(p) is said to be generated 
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£r c if and only if the horizontal lift c; : Lt0 ,t1_7 ~ P of c beginning 

at p ends at P·l . If c1 and c2 are loops in M beginning and ending at 

If (p) and generating the elements '{ 
1 

and '( 2 respectively of the 

holonomy group H(p) attached to p, then the product loop c 1 * c 2 (c 1 

follm.,red by c 2 ) generates '( 2 . 'f 1 E H(p). If c is a loop based 

at ""T'r (p) generating '( E H(p) and if ~ t G, then c generates 

-1 -'Y) 'i"YJ ~ H(p."'J ). If c0 : _it0 ,t 1_7~ M is a piecewise smooth 

curve which lifts to a horizontal curve in P from q to p for some 

p,q EP and if C· 1s a loop in M based at TI(p) generating '( E:H(p), 

-1 
then the loop c0 * c * c0 (c 0 followed by c followed by c0 reversed) 

generates the same element '! e. H ( q). 



Theorem 3.1 

Given a smooth principal bundle IT : P --'> M >·l:i th structural 

group G and given a smooth Ehresmann connection on .,- : P ~ ill, the 

holonomy bundle B(p) is a smooth immersed submanifold of P, the 

ho1onomy group H(p) is an immersed Lie subgroup of G hith identity 

component H (p), and lT I B (p) : B (p) ~ M is a smooth principal 
0 

bundle with structure group H(p) (H (p) 1s the null holonomy group). 
0 

Theorem 3.2 (Ambrose-Singer holonomy theorem) 

Let 1T : P ~ M be a smooth principal bundle with structural 

group G, and let 9 be the Lie algebra of G. Let c.o : TP 4 9 be a 

smooth Ehresmann connection on If : P ~ ~1. For all p E. P, let 

h (p) be the suba1gebra of 9 generated by all Fw (X, Y), '"here 

F <.o is the curvature of <..U and where X and Y run through all pairs of 

tangent vectors toP at all points of B(p), the holonomy bundle 

attached to p. Then the subgroup of G generated by h (p) is the 

null holonomy group H
0

(p) of W attached top. 

An Eh1'esmann connection on a principal bundle is said to be 

irreducible if and only if the holonomy group attached to any point 

of P is the whole structural group of the principal bundle -rr: P ~ M. 
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§4. Principal Bundle Automorphisms 

In this section, we define principal bundle automorphisms and 

present some of their properties. In particular, we examine the 

action of principal b,,,..rll c. 
LA...!,J. ........_ __.._ ...... cor.lncctions. 

Let 'TT : P -'> M be a smooth principal bundle with structure 

group G whose Lie algebra is 9 . A principal bundle automorphism 

~ : P ~ P is a fibre-preserving G-equivariant diffeomorphism of 

P (i.e. 

.,- ( ~(p) ) 1f (p) 

and 

for all p E P and y E G). The set of all principal bundle auto-

morphisms of IT : P --7 M is in bijective correspondence with the 

set of all G-equivariant maps from P to G, where the group G acts 

on G by the adjoint action (recall that y: P ~ G is G-equi variant 

if and only if 

""V(p.y) 

for all p E P and '( E G). This correspondence maps the principal 

bundle automorphism ;f-: P ~ P to the map y: P-+ G \\'i th the property 

that 

y(p) = p. '}r(p) 

f 11 f ...,.T, . k f . . k or a p E. P. I x : P ~ P ls C or some non-negat1ve 1nteger , 

then so is "f': P ___, G. 

Let "'~';: P __... G and ~: P ~ G be G-equi variant maps 

corresponding to principal bundle automorphisms 

Y2.: P -7 P. Then 

Y1°~2 (p) yl (p."f"2 (p)) 

~ 1 (p) • 'V 2 (p) 

p . y 1 (p) 'V2 (p) . 

Y : P ---+ P and 
I 
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Thus if the space of G-equivariant maps from P to G is considered as 

a group under the operations of poinbvise multiplication :md 

inversion of maps, then the above correspondence is a group iso-

f 
1' . . 1 b dl I . morphism from the group o C pr1nc1pa un e automorp11sms on 

k IT : P --? l\1 to the group of C G-equi variant maps from P to G. But 

k 
this latter group is isomorphic to the group of C sections of the 

adjoint bw1dle 1Tad : Gp ~ l\1 \\'hose total space Gp 1s P x ad H. 

Thus the group of Ck principal bundle automorphisms of 1T : P ~ M 

k 
1s isomorphic to the group C (Gp). 

Given y E G, let R 't : P ~ P denote the map sending p E: P to 

P·'l. Given a E: 9 , let t!i'(a) be the fundamental vector field on P 

determined by a, and let tS (a) denote the value of O""'(a) at p E P. 
p 

If y: P ~ P 1s a principal bundle automorphism, then 

Also the flm-; of 6"(a) is g1ven by 

( p , t) M p. exp ta. 

It follO\\'S that the flmv of ~(a) commutes with j(: P-; P, and 

hence 

Thus 

then 

Y*t:s(a) (j' (a). 

if c..u : TP -! 9 is an Ehresmann connection on -rr P ~ M, 

so lS Y*w if a e 9 , then 

( Y*(.AJ) ( 6 (a) GO ( Y* tS" (a)) 

u.> ( cr-(a) ) 

a 

and if y € G then 

R .. /' :f" ,.,OJ 

Given '(E G, let L '(-1 1, : T y G _, 9 be the derivative at '{ of 

the map L '( - 1 : G ~ G multiplying elements of G on the left by 
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and define 

t (X) L -• X " '~ 

for all X E T 
1 

G. The map ! TG ~ 9 1s a 9 -valued l-form on G, 

the IIIaurer-Cartan form on G. 

Lemma 4.1 

Let -rr : P --? l\1 be a smooth principal bundle vv-i th structure 

group G \vhose Lie algebra is 9 . Let i : TG ~ 9 denote the 

Maurer-Cartan form on G. Let y: P ~ P be a differentiable 

principal bundle automorphism and let '}': P ~ G be the corresponding 

G-equivariant map with the property that y(p) p. y(p) for all 

p E- P. Let Y* : TP ~ TG be the derivative of y . Then, for all 

X E T P, 
p 

Y*w (X) 

Proof 

Let c : (- E. , E ) ~ P be a short curve \'o'i th tangent vector 

X E T P at t = 0, where p 
p 

c(O). Let q = j?(p). Then, by Leibnitz' 

rule, 

y* X ddt (c (t) . "'( (c (t) l) l t=O 

R'"'fo'(p)''' X + 
d ( p. '\f"(p) ( '\((p)-l y (c ( t) ) ) ) dt 

t=O 

R "Y( p) '~ X + cs-q ( :t ( "-V ( p ) -1 y ( c ( t ) ) ) I t=O ) 

hence 

Y*w(X) Ad ( 'f"(p)-l) W (X) + f ( Y,., (X) ) . 

D 
We nmv describe the stabilizer of a smooth Ehresmann connection 

w1der the action of the group of smooth principal bundle automorphisms. 
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Theorem 4.2 

Let -rr : P --" l\1 be a smooth principal bundle, 1vi th structural 

group G whose Lie algebra lS 9 . Let W : TP-'> 9 be a smooth Ehresmann 

curmectiun on 1f : F--? Ivi and let Stab(w) be the stabilizer of w ll1 

the group of smooth principal bundle automorphisms. Then Stab(W) lS 

isomorphic to the centralizer ll1 G of the holonomy group of C.U attached 

to any point of P. 

Proof 

Let ~: P ~ P be a smooth principal bundle automorphism 

and let 'V: P ~ G be the G-equi variant map corresponding to Y , 

where "5f:(p) p. y(p) for all p ~ P. Now if X E TP is vertical, then 

Y* (.0 (X) (.A.) (X) • 

Since 'f'P decomposes as the Whitney sum of its vertical and horizontal 

subbundles \vi th respect to W , a necessary and sufficient condition 

forY to belong to Stab(u.J) is that Y'''UJ(X) = 0 for all X € TP 

satisfying CA> (X) = 0. But if W(X) = 0 then 

-\f/ ~' " . • I Y I ~ ..:t. \..Aoool , ..... / 
(Y) ) , ... ,., ) 

by lemma +.1 . Thus Y E Stab(c.o) iff 

for all X E TP satisfying w (X) = 0. This condition is satisfied if 

and only if ""'f" : P ~ G is constant along all piece1,ise smooth curves 

in P which are horizontal with respect to the connection W . Thus 

y belongs to Stab(<A>) if and only if "V: P -l> G is constant along 

all the holonomy bundles attached to points of P. 

But if y e G and if R y : P --7 P is the map sending p to p. '(! , 

then the smooth maps R y : P ~ P for all 't E G permute the holonomy 

bundles of the connection w, this action of G on the set of holonomy 

bundles of the connection w is transitive, and 

-1 ""r "'f" • R 't = ad ( '6 ) " T · 
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Hence if y is constant on one of the holonomy bundles in P of the 

connection w , then Y lS constant on all of these holonomy btmdles. 

Let pEP. Then "f"estab(w) if and only if y is constant on the 

holonomy bundle attached to p. It follohs that Y is determined unj quely 

by its value '{/(p) at p. Thus \'IC have a monomorphism from Stab(W) 

to the structural group G mapping y : P ~ P to '(' ( p), Nhere 

Y P ~ G is the G-equivariant map corresponding to Y. 
We recall that if '( €: G then 'I belongs to H(p), the holonomy 

group of w attached top, if and only if p.y belongs to the holonomy 

bundle of w attached top. Thus if :}'e-. Stab(W) and if y E: H(p), 

then 

'/'(p. y) '"'+' (p) 

and thus 

'1-l'V(ply =Y(p). 

Hence y(p) belongs to the centralizer of the holonomy group of W 

attached to p. Thus the image of the monomorphism from Stab ( C:.O ) to G 

mapping ~: P ~ P to Y(p) is contained in H (p). It remalns to 

show that if y belongs to the centralizer of H(p) ln G, then 

there exists "'f" E: Stab(CA.>) such that "'\f'"(p) = y 

is the G-equivariant map corresponding to Y. 

where '"'Y : P ~ G 

Let y belong to the centralizer of H(p) in G. For all 

p1 E P, there exists y 1 ~ G such that p. y
1 

belongs to the holonomy 

bundle of w attached to p
1

. Define 

-1 
r1 'lf'l1· 

V: P ~ G lS well-defined Slnce y centralizes H(p): if p. 'f 1 and 

p. '( 2 belong to the same holonomy bundle of (..J.) then so do p and 

-1 -1 
P. )( 2 Y l , hence 'I 2 '( l E H (p), and hence 

-1 

- '('Z.. '{ '(,_. 



Using the fact that we have a smooth foliation of P by the holonomy 

bundles of the connection u.> , >ve may easily show that ~ : P ~ G 

lS smooth. Thus v.;e have an isomorphism from Stab ( VU ) onto the 

centralizer of the holonomy group of the connection W ;:;tt!ichP.d to p. 

D 
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§s. Connections and Canonical Norms 

In this section, we review facts about the adjoint bundles 

Gp ~ r.J and 9P ~ l\1 associated to a smooth principal bundle 

1f : P ~ M over 8. compact group 

G whose Lie algebra is 9 We then show that the difference of 

hw Ehresmann connections determines a section of 9P 8 T*M -?IVJ, where 

9P ~ l\1 is the adjoint bcmdle v<i th total space P x Ad 9 , where 

Ad : G -4 Aut (9 ) is the adjoint representation of G. Denote by 
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11. /1 and IJ. JJ q the canonical norms on C
0

( 9 p ® T'"l\1) and L q( 9 p ® T*M), 

for q E _LT, oo ) , determined by a given biinvariant metric on G and 

a given Riemannian metric on l\1. We shall shO\'>' that if w 
1 

and w
2 

1 

are continuous connections and if y: P ~ P is a C_~_ principal 

bundle automorphism, then 

Wl- (..02 

Similarly, 

II vul- w 2 II q = II y.~·,w 1- Yo''w 2llq 

if c..u
1

- W 
2 

E. Lq( 9 p ® T*i"i). 1\'e shall then obtain results 

compar1ng principal bundle automorphisms along curves in the total 

space P of the principal bundle P \\'hich are horizontal v.·i th respect 

to some Ehresmann connection on P . 
k 

We recall that the group of C principal bundle automorphisms 

ls isomorphic to the group of Ck sections of the bundle 1T ad : Gp ~ l\1 

v>hose total space Gp is P xad G. Also, given a biinvariant Riemannian 

metric on the structural group G, determining a distance function 

,P : G X G ~m on G and a G-invariant norm I . I on 9 ' 
there lS 

for all m € ]\'], a unique distance fw1ction _p G X G ~]R on the 
m 

fibre GpLmJ of Gp over m, and a un1que norm I . I m on the fibre 

gpLmJ® T~l\1 of 9 p ® T*l\l ~ i1l over m, \.,ri th the property that 

every p E -rr- 1
(m) determines an isometry from GpLmJ to G, and from 



9 p[mJ ® T~l\I to 9 ®T~l\1 (lvhere the norm on 9® T~ill lS the usual 

norm 

S sup { I SX I : X ~ TmM and I X I = l } 

obtai11ed when \ve regard 9 ® T~l\l as the space of linear transformations 

from Tnll to 9 ) . We recall that the canonical norms IJ . II and 

II ·II q on C
0

( 9 p ® T*l\1) and Lq( .9P ® T'''lVJ) are then defined by 

II t: II 

11r: II~ 

sup 
mt: M 

(L 

I '1: (m) I m 

q 

I "t' (m) lm 
'; 

d(volume)) '1-

The adjoint representation Ad Gp {"'m_]--? Aut 9P ["'mJ induces 

continuous maps 

C
0 

(Gp) x C
0 

( 9P ® T*l\1) -7C
0 

( 9 p ® T*l\1), 

C
0 

(Gp) x Lq ( 9 p ~ T*M)-? Lq ( 9 p ® T'''il1), 

for q f: £I, 0o ) , which are linear over sections of Q p ® T"'il] ~ ill. 

The norms ll, II and II . 1/ q on C
0 

( 9 p ® Fr.J) and L q ( 9 p ® T'•;.J) 

are invariant under this adjoint action (see proposition 2.4). 

Let (;" : TP ~ 9 be a g-valued 1-form on P. "1;:: is said to be 

horizontal if and only if '""C' (X) = 0 for all vertical tangent vectors 

X ~ TP (a tangent vector to P is said to be vertical if and only if 

it is tangent to the fibres of 1T : P -4 M and is thus mapped to zero 

under the derivative of TT : P ~ M). '):; 1s said to be G-equi variant 

if and only if 

R ,., {::' 
y Ad( t -1) '"'(: 

lvhere R * '"1:;:: 
'I 

lS the pullback of "'t= under the map R y P ~ P sending 

p to p. y for all p E P and y E G. 

Let ""[;': TP-+ 9 be a horizontal G-equivariant 9 -valued 1-form 

on P. Then, for all p € P, there is a w1ique well-defined linear 
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map '"t p lT (p), such that 

L: p (IT 7, X) = ""'C(X) 

for all X ~ T np, 1vhere Tr * : TP .....; ni lS the derivative of 1T 

"' 
If R '( * : TP ~ TP lS the derivative of R 'I : P -? P, then 

,.....,.. 
'"'C p. '( ( Tf * X) 1:: p. 'I ( 1T 7, R '( ,., X) 

~ (R 't * X) 

R*t ""t;; (X) 

Ad ( '{ -l) 't: (X) 

-1 ,...., 
Ad ( ¥ ) 't::' p ( '1T ,~ X) • 

Thus, for all vector fields Y on M, the map sending p E P to 
..... 

p _, p,]. 

'"t:'p (Y Tr(p)) is a G-equivariant map from P to 9 and thus determines 

a unique section of lT Ad : 9 p ~ l\1. Thus every horizontal, 

G-equivariant 9 -valued 1-form 'C : TP ~ 9 determines a unique 

section of 9 p ® T'~III ~ M, which \\'e also denote by "'t on identifying 

sections of this bundle ,,,i th the corresponding 1-forms on P. 

If l . I m is the norm on the fibre of 9 p ® T*M ~ l\1 over 

-1 
m e M, then, for all p E 1T (m) and for all X E T P, 

p 

I '"t (X) I I ""t:(m) j m /1f * X I 

for all horizontal G-equi variant 9 -valued 1-forms on P. 

Lemma 5.1 

Let IT : P ~l\1 be a smooth principal bundle over a compact 

manifold M with compact structural group G whose Lie algebra is 9 
Let Gp == p X ad 

G and 9P == p X Ad 9 be the total spaces of the 

adjoint bw1dles 1T ad : Gp ~ l\1 and 'Tf Ad 9 p-? 1\I. For all m e. !1!, 

let I . I m be the norm on the fibre of 9P ® T'''l\1 ~ III over m e l\1 

determined by some biinvariant Riemannian metric on G and some 

Riemannian metric on l\1, and let II . II and II . II be the corresponding 
q 
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canonical norms on c0 
( gp® T*M) and Lq ( gp® T*M) for q E i_I,oo). 

Let W 
1 

: TP-+ 9 and c.o
2 

: TP ~ 9 be continuous Ehresmann 

,....T, l . . l b connections on 1T : P ~ 111 and let X : P 4 P be a C principa undle 

automorphism of 1T 

Then W 
1 

- W 
2 

: TP --'> 9 is a continuous horizontal G-equi

variant 9 -valued 1-form on P, and thus determines a unique continuous 

section of the vector bundle 9 p ® T*i\l -+ M, v<hich we also denote 

b '"'T' d t . l . f ____,. y W 1 - W 
2

• :±:" e ermines a C section o G~ -.. ilL Then 

and 

== llw - w II l 2 q. 

Proof 

The fact that W 
1 

-(A) 
2 

Is horizontal and G-equivariant follows 

from the definition of an Ehresmann connection. The final statement 

of the lemma follm.,rs from the invariance of II . II and II . II under q 

the adjoint action of C
0

(Gp), provided that h'e can show that 

~*Wl- Y'~W2 

\\'here the right hand side of this identity should be interpreted as 

-.T,.-1 
the image of the section ~ of Gp ~ !VI and the section C..O 

1 
- W 

2 

of 9 p ® T*l1l ~ !11 under the adjoint action. But if 

y(p) 

for some G-equi variant map '"'f" : P ~ G, then 

'"\l.r -1 y ,., W l ( p) == Ad ( T ( p) ) (,U l ( p) + L "'f"" ( p) -1 * '/-"" ,., ( p) 

where L 't ,., : TG ~ TG is the derivative of L y : G ~ G sending 

j3 E: G to ~ J3 , by Lemma 4. l. Thus 

The result follows using the correspondences between G-equivariant 
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maps '{-' : p -:) G and sections y of Gp and between horizontal 

G-equivariant 9 -valued 1-forms on P and sections of 9p® T*M. 

0 
Let p € P and let c /a, b/ ~ M be a loop beginning and 

ending at m, where m IT (p). Let c /a, b/ ~ P be a lift of c 

1 
beginning at p which 1s horizontal with respect to a C Ehresmann 

connection W Then 

c (b) p. '6 

for some 6E G. The image of (p, ¥)under the natural projection 

P x G ~ P x ad G is an element hol(c) of GP 

-1 
independent of the choice of p E: rr ( m)' 

hol(c) is 

of the fcrm hol(c) form a subgroup Holm( v.J) of Gp j_-m_7 idcntitied 

with the holonomy group of the connection (A) 

Theorem 5.2 

Let TI : P ~ M be a smooth principal bundle over a compact 

Riemannian manifold M with compact structural group G whose Lie 

algebra 1s 9 Let jO : G x G ~ m be the distance function of 

a given biinvariart Riemannian metric on G, and let 

~m: GP 1-m 7 x GP 1-m 7 ~ m be the corresponding distance function 

on the fibre Gp /-m 7 over m f- M of the adjoint bundle Gp ~ M, where 

Gp p X ad G. Let \ . I be the norm on the fibre 
m 

9P 1-m 7 * 9 p ~ T*M--? ® T l\'i over m t 111 of the bundle M where m 

.sp= p 
X Ad 9 

Let w : TP _, 9 be a c1 
Ehresmann connection on rr: p ~ M, 

and letHal (w 
m 

) denote the holonomy group of 0J generated by loops 

based at m E M. Let JFi p --? p and y-2 : p ~ p b(: c2 r;rincipal 

bundle automorphisms. Let c : /a, b/ ~ M be c.. piecewise smooth curve 

in M parameterized by arclength s, and define A : M 4 m by 

~ (m) .P m ( Yl (m)' Y 2 (m) ) • 
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Then 

J
r La• 

J Ll c c (b J> - ~ < c (a)) I $ 1 -y ~ w _ "i' ; (A> 1 c ( s) ds. 

Further, if c !_a, b/ ~ l\l 1s a pleCe\,'lSe smooth loop beginn:i ng 

and ending at m and generating the element h of the holonomy group 

Hol ( (.A)) of (.A!) , then 
m 
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.? (h-l~l(mJ--r2(mJ-lh,~l(mJ~2(mJ-l) ~Jbi'"'¥*~-Y.•wj. J.s. 
m a l 2.. C.(s) 

Proof 

Since ,P m lS biinvariant and I . j m is G-invariant 

6 (m) = o (Y (m) y~ 1 (m), e(m) 
/ m l. "" 

ld1ere e is the identity section of Gp ---+ III, and 

I(Yllf'?-l),''w u-:.1 _ - c(s) 

it suffices to prove thP- theorem h'hen '.:1: 
1 

= --\f' and '""\Tr -
.:t.2=e. 

Let c : /a, ~~ ~ P be a lift of c : b/ ~ ~~ 1vhich is 

horizontal with respect to c..u . Let Y: P ~ G be the G-equi variant 

function defined by 

for all p E P. Let ~ : {a, b7 ~ G be defined by 

YJ (s) y (c (s) ) 

and let '8' : /a, b/ ~ P be defined by 

..... 
c ( s) 7(s).'1 (s). 

Then 

/\ 
c ( s) Y 0 c (s). 

Thus the tangent vectors c' and 
...... ,...,... /\ 
c' to c and c are related by 

..... 
c' (s) 



where Y* : TP ~ TP is the derivative of Y. Thus 

Slnce 

/\ 

CA.> (c' (s) 

,.., 

( ~"'W) (c' (s) 

1:' (C'• (sJ 

CA.> (c' (s) 0. 

But by Leibnitz' rule 

~' (s) = R-ry (s)* c' (s) + C) ~(s) (! ( 1) (s) ) ) 

1vhere t TG ~ 9 is the Jl1aurer-Cartan form on G and 1vhere 0 A ) 
C (s 

is the map sending an element of 9 /\ 
to the value at c(s) of the 

corresponding fundamental vertical vector field. Hence 

Thus 

But 

hence 

But 

hence 

A 

W (c' (s)) = ~ (~(s) ). 

! ( "'rJ (s) ) -"'[: (c' (s) ). 

j'T (c' (s) It:: I m (l: \ m 

_/> ( ~ (b), "Y) (a) ) ~ I ba I I ( 7] ( s l J I ds 

-/ jba ..... \ ~:I c ( s) ds 

,? ( 1 (b), 'Y] (a) ) = ~ ("*"(;-(b) l,"f' (2"' (a) ) ) 

6 ( c( b ) ) - A ( c ( a)) I '"" J _,P ( y( c ( b ) ) , e ) - _p ( "(" ( c ( a ) ) , e ) I 
f:. _p ( "f" (c (b) ) , "V (c(a) ) ) 

:;: S: I Y * '-" - "" I c I s ) ds • 
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If in addition c : /a, b7 ---7 .M is a loop generating h t Hol ( w ) 
- - m 

is the image of (c (a),'j )E P x G under 

the natural projection P x G ~ Gp, then 

1') (b) 

and 

~(a) 

hence 

as required. 

'Y (c (b) ) 

-r(c(a).'t 

-1 ......,. 0 i"'(c (a) ) f 

Y (;'(a) ), 

( "Y] (b), YJ (a)) 

~ Jb 1-.T,..,·,w- LN I cls 
' X c(s) 

a 

D 

159 



§6. Covariant Derivatives of Sections of Fibre Bundles 

In this section, we show that, given a smooth fibre bundle 

Fp --?~I associated to a smooth principal bundle lT: P ~ P·l, and 

gnren a smooth connection W on l1' : P ~ I1i, v,•e may define, for any 

c1 
section s : I'l -4 Fp of Fp ~ r'l, the covariant derivative 

D ws : Ti\1 -?TFp of the section s. The image of D ws 1.s contained 1n the 

vector bundle VFp over Fp consisting of all vectors 1n TFp >'>'hich 

are tangent to the fibres of Fp ~ iii. We first consider the covariant 

derivative of sections of the adjoint bw1dle TI ad : Gp -+ l\1, v,rhere G 

is the structural group of iT : P ~ f.! and Gp = P xad G. Let 9 be 

the Lie algebra of G and let 9 p = P x Ad 9 . The Jllaurer-Cartan form 

! : TG ~ 9 induces a fibre bW1dle morphism! p : VGp ~ 9 p, and the 

composition tP o DtAY of the covariant derivative n'""i(: Tl\1-? VGp 

of some c1 
section Y of Gp --7 Jli 1\i th f p defines a 9p-valued 1-form 

X(A)( "'f'"J on Ill. We sho\V that if fe: c1
(Gp) corresponds to a 

principal bundle automorphism ~: P ~ P, then X'"\ i() corresponds 
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to the horizontal G-equivariant 9 -valued 1-form y*w - w. We define 

the covariant differential d c...u s of a section s of a vector bw1dle 

associated to -rr 

bw1dle morphism B 

JE c1
(9p), 

Xw(exp .f ) 

P ~ !II. We then shm\ the existence of a fibre 

9 p ~ End ( 9 p ~ T*Jil) such that, for all 

\'!here exp : c1 
( 8 p) ~ c1 

(Gp) 1s induced by the exponential map 

exp : 9 ~ G, and >'>'here d"" .f 1s the covariant differential of 

Also he sho"' that there exists a neigl1bourhood of the zero section 

of 9 p such that if ! belongs to this neighbourhood, then B ( J ) 1s a 

section of l>.ut ( 9 J> 0 T*l\1). Then \\e compare the covariant derivative 

operators Hith respect to different connections on the principal 

bW1dle 1T: p ~ M. 



Definition 

Let p : E ~ l\I be a smooth fibre bundle and let P.;, : TE ~ Tf.l 

be the derivative of p. The vertical btmdle VE-? !1! of E---? lVI is 

Llle fibre bundle over I•l defined by 

VE = t X E TE : p * ( X) = 0 } 

( v<e shall also regard VE as the total space of a vector bundle over E 

i'>'henever appropriate). 

If pl : El ~ M and p2 : E2 ~ i\1 are smooth fibre bw1dles over 

M, and if 
ft:J= El--? E2 lS a smooth fibre bundle morphism, i'ie 

define v~ : VEl -"> VE2 to be the restriction of the derivative 

Let \T P ~ l\1 be a smooth principal bundJ e 1\'i th structural 

group G. Let F be a smooth manifold on i\'hich G acts smoothly on the 

left with action 8 G --? Diff(F). Let lTg : Fp ~ J•.J be the fibre 

bW1dle i'ii th total space Fp = P x 
8 

F associated to 11 : P ~ l\I by the 

action 8. Let TF be the tangent bw1dle of F and let T8 G ~ Diff(TF) 

be the smooth left action sending ¥ ~ G to the derivative 
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T9(y) : TF-4TF of 9('/) : F ~F. Then Up~;·.J is a fibrebundlewith 

fibre TF and total space VFp = P x TS TF associated to 

by the action T8. 

Now let w: TP ~ 9 be a smooth Ehresmann connection on 

If : P ~Ill, where 9 is the Lie algebra of the structural group G. 

CD determines a splitting of TP as a direct sum 

TP VP G> HP 

of vector bw1dles over P, h·here 

P = f X E: TP : (.A.) (X) 0} . 

Let VPP and HPP denote the fibres of VP and HP respectively over p E P. 

For all t E G, let R t .,, . TP ~ TP denote the derivative of the 

smooth map R 't' : P ~ P sending p to p. 't . 



Then 

v p 
p.y 

!-I p 
p.y R'/''' !-I p p 

The derivative IT;, TP ~ Ti11 of TT : P ---; i1i restricts to an 

isomorphism 

Tr I !-I p : 1-1 p __, T ( ) M. * p p w p 

If Fp ---lt M is the fibre bw1dle \vi th total space P x 
8 

F 

associated to "'f: P ~ M by the smooth left action 8 G ~ Diff(F), 

then the natural projection 

(p, f),_., [j, !] 

from P x F to Fp determines, for each f E F, a map ef : P ---'> Fp 

sending p to fi, lj. The derivative ef>'• : TP ~ TFp of ef satisfies 

and thus ef,·• maps VP into VFp. Then 

hence 

e -1 
8 ( 'I ) f;';. 

Then 

ef~,. R " (H P) 
'( '· p 

Hence there 1s a well-defined subbundle HFp of TFp h'ith the property 

that if x = fj, !] for some p € P and f £: F, and if HxFp 1s the fibre 

of HFp over x, then 

H F 
X p 

and s1nce 

H P ~ T j\] 1s an isomorphism, \\'here m 
p m 

1T 8''' e f;': = rr i: 

TI (p), 
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it follm"ls that 

and 

H p 
p H P ~ HxFp p 

1T IHF :HF ~Tl\1 8* X p X p m 

are both isomorphisms, and we have a splitting of TFp as a direct 

sum 

TFp VFp ED HFp , 

Definition 

Let 1Tg : Fp ~ l\1 be a smooth fibre bundle associated to a 

smooth principal bundle IT: P .-, l\I with structural group G by a 

smooth left action g : G ~ Diff(F) of G on F. Let w be a smooth 

Ehresmann connection on P with horizontal bundle HP ~ P. 

Let ef>< : TP ~ TFp be the derivative of the map ef : P ~ Fp 

sending p E P to the image of (p, f) under the natural projection 

P x F ~ Fp, for all f E: F. Then the horizontal bundle HFp ~ Fp 1s 

the subbundle of the tangent bundle TFp ~ Fp with the property that 

if x = ef(p) then the fibre HxFp of HFp over x E Fp is given by 

The vertical projection pr; : TFp ---t VFp is the projection mapp1ng 

the tangent space TxFp of Fp at x onto the vertical subspace VxFp, 

the kernel of pr; at x being HxFp. Given a c1 
section s : l\1 ~Fp of 

Fp ~ M, the covariant derivative D ""'s : TI<l -7 VFp of s is the map 

Dws 

where s,., nJ ~ TFp is the derivative of s. 

Nov.• suppose that 1T 
1 

: E
1 
~ M and 1T 

2 
: E2 ~ l\1 are smooth 

fibre bw1dles associated to the principal bundle ;r : P ~ l\1, and that 

W is a smooth Ehresmann connection on -rr : P __, J',J. Suppose also 
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that ~ P : E
1 
~ E

2 
is a smooth mu::ophi sm of fibre bundles over M 

induced by a smooth equivariant map }t': r
1 
~ r

2 
between the fibres 

F d F f Tf E " M d 1T E ----"' Jl' If vJ 'I'El ~ \T]i] l an 2 o l : , l ----, an I 2 : 2 ., '. pr V : -

and pr""", TE -4 VE
2 

a.re the vertical projections, and if v 2 

VE
1 
~ VE

2 
1 s the restriction of the derivative 

TE
1 
~ TE

2 
of <f p to the vertical bundle, then 

0 v sop 0 

s1nce JOP* maps the horizontal bundle of E1 to that of E2 . Hence the 

covariant derivatives of a given section s M --.E1 and of }t'p o s 

satisfy 

w 
D ( 7t' p o s) 

D s. 

Thus the correspondence sending a section of a fibre bundle associated 

to a given prircipal bundle to its covariant derivative with respect 

to some Ehresmann connection on the principal bundle is functorial 

with respect to morphisms of fibre bundles induced by equivariant 

maps between their respective fibres. 

We recall that, given a fibre bundle 1T g : Fp ~ lll associated 

to a principal bundle iT : P ~ JIJ >·;ith struch:ral group G, there is 

a natural bi2ective correspondence between sections of Tr 9 : FP ---!1M 

and G-equivariant maps from P to the fibre F of 1T e : FP ~ JIL 

Lemma 6.1 

Let TT e : FP ~ M be a smooth fibre bundle associated to a 

smooth principal bundle 11 : P ~ M ,,·i th structural group G. Let 

00 be a smooth Ehresmann connection on Tr : P -:!l M. Let 

jJp * 
: TF ~ TF be the derivative of the map )lp F~ F from p p 

the fibre F of 1rg F p...., M into Fp mapping f e F to the Image 

A (p, f) of (p, f) E p X F under the natural projection 

\: P x F --? Fn, for aJl p E- P. ,. 
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Let s : M ----7 Fp be a c1 
section of Fp ~ M, and let 

""· s P --> F be the corresponding G-equi variant map from P to F. If 

p E P, if m = lT (p), if X E: Tm~·J and if X is the horizontal lift of 

X to T P, then 
r 

D~ s (X) 

Proof 

"" 

" J1 P'' s,., (X). 

s and s are related by the identity 

s("1T(p) "" .f'p s (p) "' A(p, s (pl J. 

We recall that ef : P -+ Fp is the map sending p E: P to A (p, f), 

for all f E: F. Let ).. . : T P ¢> TfF ~ T F 
>< p X p be the derivative of 

at (p,f), vvhere x = ).. (p,f), and let ef* : T P -4 T F be p X p the 

derivative of ef at p. Then, for all (Y1 , Y2 ) ~ TPP $ TfF, 

Thus 

(s • lr J,~ (X) 

..... 
(X, " S. 

~-
(X)) 

"' -But ef* X E HFp s* (X) & VFp, hence 

Dt»s (X) 

-(X). 

0 
We recall that if 1Tg : Fp --HI is a smooth fibre bundle 

associated to the principal bundle 1T : P ~ l\1 \\'i th structural group G, 

\\here Fp = P x 
9 

F, and \-vhere 9 : G -+Diff (F) 1s a smooth left 

action on the fibre F of IT 
9 

Fp ~ M, then the vertical bundle 

VFp ~ M of Fp ~ M is a fibre bundle with fibre TF associated to 

P ----7 111 by the action T9 G ~ Diff (TF), where T9( 't) : TF ~ TF 

165 



is the derivative of g( 'I) : F ~F. In particular, if Tr : Gp ~ l\1 
ad 

is the adjoint bundle, Gp being given by Gp = P x ad G, then the 

vertical bundle VGp ~ M of Gp ~ l\'1 is the bundle with fibre TG 

associated to 1T: P ~~~by the action T(ad): G -?Diff(TG). 

The adjoint bundle Tr Ad : 9 p ~!II is the vector bundle >-<hose fibre 

9 lS the Lie algebra of G, 1-1here 1TAd : 9 p --4 !11 is associated to 

IT : P ~ M by the adjoint representation Ad : G -') Aut ( 9 ) of G. 

The Maurer-Cartan form t : TG ~ 9 on G is the 9 -valued l-form 

mapping X € T 't G to L}J' -l* X E 9 , for all 't E: G, h'here 

T. 
1 

: TG~TG isthederivativeofthe map 
-~- * L 1 : y-

G -7 G sending 7jEG 

-1 
to 'I ") One may easily verify that f TG ~ 9 is G-equivariant, 

where G acts on TG by the left action T(ad) G4 Diff(TG) and on 9 
by the adjoint representation G ~ Aut ( 9 ) . It follm,'s that '! 
induces a smooth fibre bundle morphism ! p : VGp _..., g p. 

Let w : TP ~ 9 by a smooth connection on 1T : P ---i l\1. Let 

y M ~ Gp be a c1 
section of Tr ad : Gp ~ !11, and let 

D 
"".,.r_ ..... r_ 

::t; TM ~ VGp be the covariant derivative of .:r. . We may compose 

D ""Y v;ri th j p : VGp ~ 9P to obtain a map 

t P o n"" y : Till-} 9 P· 

It may easily be verified that this map is a morphism of vector bm1dles 

over !II, and thus determines a c 
0 

section X(,.) ( Y) : M ~ 9 p ® T*~l of 

9P ®T*l\l~l\1. We shall show that if Yec 1
(Gp) corresponds to 

a principal bundle automorphism y: P ~ P, then )(..,(y) E: C
0 (9p ® T'"~l) 

corresponds to the horizontal G-equi variant 9 -valued 1-form 

"q( *w - w on P. 

Theorem 6.2 

Let 1T : P ~ M be a smooth principal bundle with structural 

group G whose Lie algebra is 9 . Let Tr ad : Gp _, l\1 and 

TrAJ.:9p~l\l be the adjoint bundles 1~i th total spaces Gp = P x ad G and 

9 P = P x Ad 9 . Let GU : TP ~ g be a smooth Ehresmann connection 
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d 1 "'T...- b l . . 1 b d 1 . on iT : P __, M an et ~ : P __., P e a C pr1nc1pa un e automorpliism 

of ;r: P~ M, identified h'ith the section "f" E c1
(Gp) of Gp __., ~1. 

Let D~ y : Till ~ VGp be the covariant derivative of Y , and let 

Xw(~) E: c0 (_q p® T>''~l) be defined by 
v 

v.;here f p : VGp -'> 9 p is the map induced by the Maurer-Cartan form 

! : TG _, 9 on G. Then Xw( f-J is the section of C
0 

( 9 p ® T*lll) 

determined by the horizontal G-equi variant 9 -valued 1-form Y'" w - c.u 

on P. 

Proof 

Y determines a G-equi variant c1 
map y: P -:> G such that 

for all p E P. Given p €:. P, let }'p : G ~ Gp be the map sending 

y E G to A(p, '( ), \>Jhere ). : P x G ~ Gp is the natural projection . 

......... 
Let m E lT(p), let X E T M, and let X E: T P be the horizontal lift m p 

of X. Then 

by the preceding lemma. 

Let jJ p : 9 ~ 9 p be the map sending a E: 9 to the image 

of (p, a) under the natural projection from P x 9 onto 9 p. Then 

~p 0 }lp* = p p 0 i 

by definition of t p. Hence 

where 

Xw( yl (X) t p (f'p* \f".,, (X) 

= jj P f ( y * xl. 
NO\v consider the horizontal G-equivariant G-valued 1-form "1::"", 
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"c: (X) 

-' 

W (f., X), 

and by lerrun3 4 .1 
,_, 

w (Y,., X) 
-1 

Ad( y (p) ) w (X) + L 'V (p)-1,., y ,, X 

f ( 'V * X). 

Thus 

'"t: (X) 

and hence 

(J.) - 9 shm,·ing that X ( ~) is the section of p ® T*~l ~ l\1 determined by 

the horizontal G-equi variant 9 -valued 1-form y '1: w - W . 

D 
We see that, given a smooth vector bundle p : E -? ~1 associated 

to the principal bundle TI : P 4 M, and given a smooth Ehresmann 

connection c..o on 1T : P ~ M, each section s : M--., E has a covariant 

derivative D w s TI·l ~ V'E. We no1-1 shov.· how to define the covariant 

differential of s : ill ~E. There is a natural smooth isomorphism 

)) : E E) E ~ VE of vector bundles over M such that if (X, Y) E: E E) E 

then 'l) (X, Y) 1 s tangent to the curve 

t 1-? X + tY 

at t = 0. 
1 

It follows that for all C sections s 

1 dws l 1 1s a C map : Tl\1 ~ E sue 1 t 1at 

w ='V(s,d s). 

M ~E of E there 

d <.Ps is linear on each fibre of Till ___, M, and mz:y thus be identified 

with a smooth section of the vector bundle E ® T"'~l --., l\1. One may 

easily verify that 
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d c..v (fs) fd ..... s + s ® df 

for all sections s, s
1

, s
2 

of E and for all c1 
fm1ctions f on )i. 

d w s is the covariant differential of s. 

We now consider the composition of the map 

exp : c
1 

( 9 p) ~ c
1 

( G p ) , induced by the fibre bw1dle morphism 

9 p ~ Gp determined by exp : 9 ~ G, and the differential 

operator X w , mapping sections of Gp ~ l\1 to sections of 

.9 p ® T"''M ~ r.J, defined above. 

Theorem 6.3 

Let 1T : P ~ 111 be a smooth principal bW1dle \vi th structural 

group G ,,•hose Lie algebra lS g . Let Tr ad : Gp _, f;J and 

1T Ad 9 p ~ l\1 be the adjoint bundles Hi th total spaces 

Gp = P x ad G and 9 p : P x Ad 9 Let w : TP ~ 9 be a smooth 

Ehresmann connection on TT: P _..,~I. Let exp: c1
( 9 p)~ c1

(Gp) 

and Xw : c1
(Gp) ~ C

0
( 9P ® T":;J) be defined as above. 

Then there exists a smooth morphism B : 9p _, End ( 9 p ® T1:r.I) 

of fibre bundles such that 

(,-) 

X (exp! ) 

for all J e c1(9 p), where dw} E C
0 

( 9 p ® T'''iVI) lS the covariant 

differential of I 

Let \ . I m be the norm on the fibre 9P~ l\l 

over m E: l\1 determined by a given biim·ariant metric on G, and let 

:i(G) be the :injectivit,y radius of G. If the section j c C
0

( 9 p) 

satisfies 

\3 (m)jm < i(G) 
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for all m E- I\'1, then section of the bundle 

Aut( 9 p 0 T>':]\1) ~ M of vector bundle automorphisms of 

9P ® T'~']'.]~ !II. If 0 E. C
0 (9p) 1s the zero section, then B(O) 

lS the identity automorphism of 9 p ® T''''·l ~ Ill. 

Proof 

We recall that if expp 9 p 4 Gp lS the fibre bundle 

morphism induced by exp 9 ~ G, then 

(IV 

D ( exp o j p 

by the functorality property of the covariant derivative. Thus 

(;.) 

X (exp r ) ~p (D w (exp l ) 
p 

~p (V (expp) Dwj 

~ p ( V ( expp) 'l-' ( J , d w J ) 

·~\·here V : 9 p t1l 9 p ~ V 9 p is the natural vector bw1dle 

isomorphism defined above. Thus we may define 

B ( J ) '1 9'2 p (V ( exp ) V ( ~ , YJ ) ) . 
p 

Let a E 9 p{-m_7 for some m E III and let y exp a. Then the 
p 

maps 

bHV(a,b) 

va 9 p ~ v " Gp 

v y Gp ~ B p X ~ ~p (X) 

are linear. Hence B ( ) ) is linear. If I a/ m < i (G), then 

V(exp ) \ V 9 is an isomorphism from V 9 onto V G , p a p a p rp 
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and so 

B(a) 

is an automorphism of vector spaces whenever 

T ~1 
m 

D 
Let G : G -4 Diff(F) be a smooth left action of the structural 

group G of 1i : P ~ !11 on a smooth manifold F and ::_et If 
8 

: Fp ~ M 

be a fibre bw-Jdle h'i th fibre F and total space P x F associated g 

to TT : P ~ I1l by the action G. Then there is a natural fibre 

bundle morphism 

Gp : Gp x Fp ~ Fp 
M 

which is induced by the map from G x F to F sending ( ~ , f) to 

8( 'if )f. Gp ln turn induces a left action of C 
00 

( Gp) on Fp mapplng 

"'j:E C-oo (Gp) to the diffeomorphism X f-? Y .x, d1ere 

for all x E Fp. A smooth sectio;-; } of 9 p ~ M then determines 

a vertical vector field o< ( J ) on Fp 1-1hose flm,- is given by 

(x, t) H ( exp t l ) . x. 

The map o( , sending smooth sections of g p ~ T•l to vertical 

vector fields on fibre bundles associated to some given principal 

bundle is natural h'i th respect to those fibre bundle morphi sms that 

are induced by smooth G-equi variant maps beb-1een the fibres of the 

bw1dles. 
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Theorem 6.4 

Let Tr : F ~ l\1 be a smooth principal bundle h'i th structural 

group G \'.'hose Lie algebra is 9 . Let lT ad : Gp ~ :.I :md 

1T _Ad : 9 p ~ ~1 be the adjoint bundles, \'lith total spaces P x G 
ad 

and F x Ad 9 Let G : G ~ Diff(F) be a smooth left action of 

G on F and let 11 g : Fp ~ fvl be the fibre bw1dle \1i th total space 

Fp Px
8

F. Given JE C
010

(9p),letcx.x(flbethevalue 

at X E'= Fp of the vertical vector field eX. ( J ) on Fp \-:hose flo\\· 

ls given by 

(x, t) ~ (exp t Y ) . x. 

Let lT : TF --:' 9 be a smootl1 Ehresmann connection on 1T : F ~ I"-l 

and let ""t TP ~ 9 be a smooth horizontal G-equi variant 9 -valued 

1-form on F. Then, for all sections s : ~1 ~ Fp of 1T G : Fp --!J :.J 

and for all vectors X E: T ill, m 

W +'L '-" A 
D s(X) D s(X) + o< ()('"(.(X)) 

s m. 

/\ 
\\'here "'"(::. (X) E C 

00 
( 9 p) lS the image of X under the vector bw1dle 

morphism ""'C n1 ~ 9 p corresponding to ""t: . 

Proof 

w First \.,;e compare the vertical projections prV : TP --) VF and 

TP-? VP. For all ac 9 , let 0 (a) be the value at 
p 

p £. F of the fundamental vertical vector field C) (a) on P determined 

by a. Then, for all Y E T F, 
p 

(.,oJ 

pr (Y) v (Y (W(Y) p . 

and hence 

Pr\~ ( Y) + o ( L: ( Y) ) • . p 

But the principal bundle IT : F -? {.J may itself be regarded as a 

fibre bundle 1·'i th fibre G associated to 1T : P ~ M by the left 



co 
action of G on G by left multiplication. Thus C (Gp) acts on P on 

the left, and any section 3 of 9 p --- ~· M determ:i nes 8 verti c~l1 

vector field ex, ( ~) on P, and it is easily seen that 

where \T * : TP ~ BJ is the derivative of IT : P ~ ;,J. Hence 

and thus 

Pl" W+ "?: ( y) 
1-I 

W A 
pr V ( Y) + 0( p ( -"'(;. (IT -:: Y) ) 

w /\ 
prH (Y)- O('p (t:: (TT * Y)) 

w . 
where prH : TP ~ TP lS the horizontal projection on TP determined 

byW But the derivative of a fibre bundle morphism induced by 

a G-equi variant map beh<een the fibres of the bw1dles has the 

property that it maps the horizontal bundle of one bW1dle onto the 

horizontal bundle of the other, and it also maps the vertical vector 

f:ield o<. (I ) on one bundle to that on the other. Hence 

~ ~~~ 

prH TFp ~ TFp and prH , TFp --7 TFp satisfy 

(I.> /\. 
pr!-1 ( Z) - o< x ( '"t: ( if 

9
,., Z) ) 

for all Z E T Fp, and hence 
X 

w_,_~_ 

pr V ( Z) 
I» /\ 

pr V ( Z) + o< x ( 'L. ( Tf 
9

,., Z) ) • 

1 
Then, for any C section s ~1 ---l) Fp of 1f 

8 
Fp ~ M, and for any 

vector X e T N, we have 
m 

D VJ -r- '1: s ( X ) 

Corollary 6.5 

w 
D s 

(X) ) 

/\. 

(X) +D< s(m) ('1:.-(X) ). 

Let If P ~ M be a smooth principal bundle with structural 

group G whose Lie algebra ls 9 Let 1T 
1 

: Gp ~ ;v] and 
;:)( 



II Ad : 9 p-? il'l be the adjoint bundles, h'i th total spaces 

GP = P x 2.d G and 9 p == P x Ad 9 . For any smooth connection 

on 1r : P -7 M and for any differentiable section s of 

~w . ~ w \T 
8

d : Gp -? c.J, let J'- ( s) denote the sectlon '! p " D s of 

9p@T'"M~I\I, where Dws ~! ~ VGp is the covariant derivative 

of s and ~ p : VGp ~ 9 p lS the fibre bundle morphism induced by 

the 1\laurer-Cartan form ! : TG ~ 9 . Let "'C be a horizontal 

G-equivariant 9 -valued l-form on P, corresponding to a section 

~ of 9p~ T*l\1 ~ M. Then 

t.-J-t"'t 
X (s) 

Proof 

w 
X (s) + 

By the preceding theorem, we must show that 

! P ( o< s (m) ( ~ (X) ) ) 
-1 ..-'\ ..-'\ 

==Ad (s(m) )1::: (X) -"'t:(X) 

for all X E T M. It is thus sufficient to show that m 

f P ( o( s(m) ( J ) -1 t Ad (s (m) ) 5 -s 
for all J E 9 p /-m 7, the fibre of 9 p --? ;,r over m. But 

0( s(m) ( 1 ) ddt ( ( exp t1) s(m) exp (-t/) ) \. 

hence 

t=O 

ddt ( s(m)-l(exp t~) s(m) exp(-tj) \ teO 

dt s(m) (exp t 1 ) s(m) d c -1 'c: ) I 
-1 \ 

= Ad ( s ( m) ) .5 

by Leibnitz' rule, as required. 

t-o + ddt ( cxp(-t \ )) I 

Now let us consider the case \'lhen Tf g : Fp -'> M lS a vector 

bundle >'ii th fibre F associated to the principal btmdle lf: P ~ ill 

by the representation Q : G ~ Aut (F). The representation Q determines 
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a representation G : 9 -7 End (F) of g \\'hich induces a smooth 

morphism Gp 9P~ End(Fp). If ! r.J -7 9 P ]_ s a section of 

9P and s M---? Fp lS a section of Fp, "e shall denote Gp( ~ )s 

by r . s. If l!: Fp $ Fp--? VFp lS the natural isomorphism, 

o<.S(x)( S) ='V (s (x), .f . S (X) ) • 

If follm'>'s that if W : TP ~ 9 lS a smooth connection on 

If : P ~ M and -L: : TP _.;, g lS a horizontal G-equi variant 

9 -valued 1-forrn on P, then 

(/J+"'C 
d s 

(..u ........ 

d s + ~ .s 

for all differentiable sections s : Ill~ Fp of Fp ~ M, '"here 

then 

~ : ~~ ~ £3 p ~ T'"M is the section of g p ® T'"M ~ :·'1 determined 

"" ......... by "t", and where ( -r:.-.s) (X)= '"'C(X) . s for all vector fields 

X on III. 

Theorem 6.6 

Let IT : P ~ !II be a smooth principal bundle over a compact 

Riemannian manifold 1\1 \'ii th compact structural group G whose U e 

algebra is 9 . Let g G ~ Aut\F) be a representation of G as a 

group of isometries of a normed vector space F. Let -n g : E ~ M 

be the vector hundle with total space E = P x g F. 

let I· I m be the norm on the fibre E /-m 7 of 1T g 

determined by the norm j . j on F. 

For all mE M, 

E ~ 1\1 over m 

Let (/.J : TP~ .9 1 
be a C Ehresmann connection on 1T : P ~ Ill, 

and let Holm (W) denote the holonomy group of W generated by loops 

based at m E 1\1. 3 b 
1 . f ~ d Let : M-4 E e a C sectlon o 1T : E - , r·.J an e 

let c : i_a, .!::? ~ 1\1 be a piecewise smooth curve in 1\l parameterized 

by arclength s. Then 

l(c (b))l -
c(b) 
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Furthermore if c ;;-, b/ ---+ M lS a piece1"ise smooth loop 

beginning and ending at m and generating the element h of the holonomy 

group Hol ( W ) of (.,..) , then 
m 

r b 

l ( -1 1 ) (m) l (m) I ~ j I dwS (c ( s) ) ds. h . - .... 
a c ( s) 

Proof 

Let c /a, b7 ~ p be 9. lift of c : /a, b7 ~ f\1 'r.hich is 

"" horizontal with respect to w Let f : P ~ F be the G-equivariant 

map correspondir'g to } M ~ E. Then 

d 
....... 

I ds 1 (c ( s) ) 

c ( s) 

<( - c ( s) 

s1nce c /a, !:_7 ~ f\1 1s parameterized by arclength. Hence 

I r I c (a) J I "J (c(a) 

II, A 

} ( c (b) ~ ( ;;-- (a) 

J
b 

~ 
a 

d c.... 1 \ ds 

c ( s) 

as required. If c : /a, b/ ~ M 1s a loop bascj at m, generabng 

h E. Holm( W ) , then 

lh-1.~ 
...... "" - 1 I 3 

,._. 
~ (Z' (a) ) I (c (b) ) -

rr. 

~ J> c!"" s I ds 
c ( s) 

as required. 

0 
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§7. The Covariant Exterior Derivative and Codifferential 

In this section, we review the definition and properties of 

the covariant exterior derivative, covariant codifferenti::tl and 

covariant Hodge-de Rham Laplacian. The material is all standard, 

and is to be found in {Atiyah, M.F., Hitchin, N.J. and Singer, I.M., 

1978/, {Bourguignon, J.-P. and Lawson, H.B., 1981/, {Bourguignon, J.-P. 

and Lawson, H.B., 19827. 

Let TrE : E -4 M be a vector bundle associated to a principal 

bundle ,- : P ~Mover a compact Riemannian manifold M with 

structural group G whose Lie algebra is 9 . Let GO: TP ~ 9 be 

a sufficiently differentiable Ehresmann connection on ;r : P ~ M. 

We have seen that w determines a differential operator 

(A) 1 0 "" . d : C (E) __, C (E 4!:) T*M), where d s : M _, E ® T*M 1s the covariant 

1 differential of s : M -'> E with respect to u:> , for all s E C (E). 

Let (.,.) E ~E ~m be a smooth inner product structure 

(i.e. an 1nner product defined on each fibre of IT E : E ~ M by a 

suitable smooth section of E*e E*). We say that the connection 

preserves the inner product structure (. , . ) on If" E : E _..,. M if and 

only if 

where ( e1. ® ~ , e2 ) = < e1 , e 2 )"} 

and e 2 E: C 0 ( E ) . 

0 
for all e1 ® 'Y) E C (E ® T*M) 

For all non-negative integers p, let the covariant exterior 

derivative 

be the differential operator defined by 

w 
d (s flrrp duJs /\ 'Y) + s ® d't) 
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for all s E c1 (E) and "1 E c1 
( 1\ P T*M) . If g is an E-valued differential 



form on M and '( is a differential form on M, then 

However (dw)
2 f- 0 1n general. 

1 
In fact, if W is a C Ehresmann 

connection on the principal bundle iT' : P 4 M associated to 

Tr E : E ~ M 1 then the curvati ve F : 1\ 2TP ~ 9 of <AJ determines a 

.9 p-val ued 2-form F (A) on M 1 where 9P = P x Ad 9 But for all m (:. M, 

the fibre 9P [" m J of 9P 4 M over m is a Lie algebra acting 

naturally on the fibre E ["mJ of E -..l) M over m. This action defines 

a bilinear map 

and thus determines bilinear mars 

for all non-negative integers p and q 1 mapping ( S e1]l' s &7]
2

) to 
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( ~ .s) ® ( 1]
1

A TJ 2 ) for all f E c0 (9p), s (: c0
(E), 1') 1 E c0

( 1\PT*M) 

and "YJ 
2 

E c0 
( 1\ qT*M). If g (: c0 

( 9 p ® 1\ PT*M) and <pE c0 
{E 8 A. qT*M), 

we denote the image of ( g, 'f ) under this bilinear map by g 1\ <(' • It 

is well-known that 

for all E-valued differential forms g on M, where Fw E c0
( 9 p ® 1\ 2T*M) 

is determined by the curvature of ~ . 

We now suppose that ( , ) E ~ E ~m is a smooth inner product 

structure on the vector bundle irE : E ~ M over the compact Riemannian 

manifold M and that this inner product structure is preserved by the 

connection 00 on the associated principal bundle 1T : P ~ M. The 

Riemannian metric on M determines an inner product structure on 

if ( CS" 1' ... ' tS ) is an orthonormal coframe on M, then 
n 

J. ~ dim 1\1 
p 

is an orthonormal basis of sections of 1\ P T*M ~ M over the domain 



of definition of the co frame. If e1 ® l)l and e2 ® IJ
2 

are sections 

of E ~ Ap T*M ~ M, we define 

This defines a smooth inner product structure on E ® I\ p T*M ~ M. 

Given E-valued p-forms 9, and 92 on M, we define 

where the integral is taken with respect to the Riemannian volume 

measure on the compact manifold M. 

Let M be oriented, let n be the dimension of M and, for all 

integers p satisfying 0 ~ p ~ n, let 

* : 1\ PT*M ~ (\ n-pT*M 

be the Hodge star operator. If "YJ 1 and 7J 2 are p-forms 0~1 M then 

= "*YI 2 I 1. 

The Hodge star operator from A PT*M to An-pT*M satisfies 

* * = (-l)p(n-p). If e ®1[ € E® 1\ PT*M, we define *(e ® 1]) to be 

e®*'Y)· 

The codifferential 0 c1 
( 1\ PT*M) ~ c0 ( !\ p-lT*M) is defined 

by 

~ 1'J = ( _1 ) n ( p+ 1 ) + 1 * d * 'YJ 

for all c1 
p-forms ~ on M. 

We may define the covariant codifferential 

with respect to the connection 00 by 

~w 9 = (-l)n(p+l)+l * d w * 9 

for all E-valued p-forms 9. It may be verified that 

w 
(d 9,¥') 
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for all E-valued p-forms g and E-valued (p + 1)-forms r on M. The 

covariant Hodge-de Rham Laplacian 

~ is an elliptic operator which is self-adjoint with respect to 

the inner product ( ) on E-valued differential forms. If g 1s an 

E-valued differential form on the compact manifold M then ~w 9 = 0 

if and only if d w g = 0 and ~ w g = 0. 

Let W be a smooth connection on \T : P ~ M and let 'I:- be a 

~ p-valued 1-form on M determining a horizontal G-equivariant 

9 -valued 1-form on P which we also denote by l: . If s : M ~ E 

1s a section of E ~ M, then 

d'"'s + -c= . s 

where "t . s is the image of -c:: ® s under the natural action 

9 p «> E ~ E of the bundle 9 p of Lie algebras on the vector bundle E. 

It follows that 

and 

~w 9 + (-l)n(p+l)+l *( "t: 1'\ * g) 

for all E-valued p-forms 9. 

The Lie bracket on c0 ( 9 p) determines a bilinear map 

c0 < 9 p ® 1\ PT*M) x c0 <9 p e 1\ qT*M) _, c0 
( 9 p ® 1\ p+qT*M) 

mapping ( !1. ~ "") 1 , ~ 2 • 'r] 2 ) to [ ~ 1 , l 2]_ ® ( "'f] 1 1\ 1'} 2 ) for 

all ! F S 2 ~ C
0

( 9p), ~ t E c0
( ;\PT*M) and lJ 

2 
E c0g/\ qT*M). 

If 91 E c0
( 9 p ® /\ PT*M) and 92 E. c0 ( 9 p ® A qT*M), we denote 

the image of (9
1

, 92 ) under this bilinear map by [g2,9
2
). One may 

verify that 
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and that if in addition q = p then 

Thus if 9 ls a 9p-valued p-form on M, then 

[9, * 9] 0 

In particular if "'l:;' is a 9 p-valued 1-form on M, then 

~W+"C.."t;" h(A,)~- *([(;) *'"t]) 

= & w"t' 

The curvatures F ~ and F w +"'(. of the connections W and 

w + "C are related by the identity 

The curvature F c..u of CAJ satisfies the Bianchi identity 

The connection 60 is said to be a Yang-Mills connection if its 

curvature satisfies the Yang-Mills equation 

Using the Bianchi identity we see that this condition ls equivalent 

to the condition 

CJ.tJJFw:: 0 

(i.e. the curvature of w is harmonic). Yang-Mills connections 

are critical points of the Yang-Mills functional 

YM( w) = (F' F) 
= JM 

11Fll2 d ( vol). 

If } is a differentiable section of 9 p ~ M, we have 

seen that 

* ( exp j ) c.u - W 

where B 9 p ~ End( 9 p ® T*M) is a smooth fibre bundle morphism 

mapping the zero section of ~p ~ M to the identity section of 
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End( gp® T*l\1) ___, 111, and where (exp '! )*w ls the pullback of u...> 

by the principal bundle automorphism determined by exp l (see 

* theorems 6.1. and 6.'"3 ). Thus if Wt = (exp t!) C.U, then 

t=O 

We collect together some of the above facts ln the following 

proposition. 

Proposition 7.1 

Let iT E : E ~ M be a vector bundle associated to a principal 

bundle IT : P ~ 111 over a Riemannian manifold 111 with structural 

group G whose Lie algebra is 9 . Let Gp = P x ad G and 9 p = P x Ad 9 
Let U,) be a smooth connection on 1T : P ~ M, let F <...u be the 

curvature of W , let 't be a differentiable g p-valued 1-form on 111, 

let ! be a differentiable section of 9 p ~ 111, and let 9 be an 

E-valued p-form on 111. Then 

( i) d(ol)dW9 FwA 9, 

(ii) dwFw 0, 

(iii) dW+"t' 9 d ""'9 +~A 9, 

(iv) ~Wt-"'c: 9 ~w 9 + 

(v) FWt-'"l:: FUJ + dw~ 

(vi) b <.A) t "'t: "'t 
== ~c..u1: 

(vii) ddt ( exp t I ) * W \ 
t=O 

(-l)n(p+l)t-1 

+ ~ [ --e, 't: 

* ( ""t: 1\ * 9)' 

J, 

If M is compact and E has an inner product structure invariant with 

respect to the connection 00 , then 

I..V 
(viii) (d <f' , 9) (<f, ~W9) 

for all E-valued p-forms 9 and E-valued (p ·- 1)-forms ~ 

(ix) ~GU is elliptic, where 

6 w ~ w d"' + d w & "" 
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(x) ( t:p, CJ. we ) ;: ( 6w'f' J e ) 

(xi) 

for all E-valued p-forms Q and ~ on M, 

6-w Q = 0 if and only if d wQ = ~"-' 9 
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Chapter VI 

BANACH MANIFOLDS OF AUTOMORPHISMS AND CONNECTIONS 

~l. Introduction 

In this chapter, \ve study the action of var1ous Banach manifolds 

of automorphisms of a principal btmdle -rr : P ~ ~·1 on the corresponding 

spaces of connections on that btmdle. We define Lj~ A , Ck k and 

k o<..,L p t' k t· d k,O<. C ' ~to be the spaces of LK connec 1ons, C connec 1ons an C 

connections respectively on 1f : P ~ M. These are affine spaces 

modelled on the corresponding Banach spaces of sections of the vector 

bw1dle 9 p ® ·r-::~1, where 9 p is the adjoint bundle of lT : P ~ M. 

( . r 
When p k + l) > n, where n lS the dimension of ~1, we define Ll~+l 

k-t·l Fa 
c '(Y d ,k-d' o<. fo 

on c )- to be the corresponding Banach Lie groups of 

principal bundle automorphisms. 

We shm..r that L1. 1 acts p t} 
\+ . 

smoothly on L\: ,A--- when p (k + 1) > n 

(theorem 2.1) and that if Yis a principal bundle automorphism which 

p . 
maps on 11, connect1on UJ t tl I I1 t . ""\T.r •',• /.... d . f o ano 1cr ~,, connec·1on J: ·~ an 1 · 

"f' corresponds to a continuous section of the adjoint btmdle Gp 

- p 7': which is differentiable almost everywhere on M then YE L1, d '(r 

(theorem 2.2). These results are stated in /Uhlenbeck, 1\.K., 1982/, - -

where they are proved in the cases k = 0 and k = 1. Similar results 

Ck+lf: k A-are proved for the action of ~ on C ~ and for the action of 

k ot...A. 
on C ' n 

Our main result of this chapter 1s theorem 3.2 where it is 

shown that if the base manifold M and the structural group G are 

] 85 

p .A compact, j f pi< > n, if ( u.> i G Lk Jl 
. - p 

: 1 E JN) and (yi E: Lj<+l't} l E: JN) 

are sequences of connections and automorphisms respectively, if the 

sequences ( UJ . ) and ( y. ,., W . ) converge tn 1.11~ A and if the sequence 
l l 1 L 

of automorphisms converges on some fibre of the mop rr : P --'> M, then 

the sequence (if. ) of automorphisms converges in r)1~ l 'e . Similar 
1 \+ ~ 



186 

k results are proved for C and H~lder spaces. From this result we 

h I . 1 P-A I P 'f, ck_...t ;ck+l~ shall deduce t at t1e topolog1ca spaces Lk~ L~+l ~ , ~ ~ 

and CkJOI. A /ClHl' 'f'. d ff ( I ) 1 ~ ~ are Haus or - t1eorem 4.1 . A so the 

st::Jhi l i zrcr of ~my connection 1n L 1~ ... 4-, Ck it or Ck, 0(, .... 4 lS a 

p 'E k+ 1 r; 
subgroup of Lk+l tf , C · Y k+l ~ e _ . or C ' ~ respect1vely (theorem 4.2). 

The above results will be used in chapter VIII, where we shall 

prove var1ous slice theorems for the action of automorphisms on 

connections. 

In §5 we consider various properties of the covariant differential 

withr espect to a g1ven connection, considered as a map between Banach 

spaces of sections of the appropriate vector bundles. 



§2. Basic Properties of the Action of Automorphisms on Connections 

In this section, we shall study the action of principal bundle 

automorphisms on Ehresmann connections on a smooth principal bundle 

over a compact rnanj_fold \~j_th comp8.ct strucLurctl group. The group 

C 00 'f~ ~ of smooth principal bundle automorphisms acts on the space 

C 00 fr of smooth Ehresmann connections on the right, sending ( W , Y ) 
to 1(*(.,1.), the pullback of (..lJ by Y , for all wE. c-A and 

Let k be an integer. We shall define, for all 

p E _LI, oo ) , the space L~ A of L}~ connections and if also 

p(k + 1) >dim M "'e shall define the group L~+l ~ of L~-d principal 

bundle automorphisms and show that the action of C00 ~ on C -A 

the right extends to a smooth right action of L~+l 'fj.. on L~ k 
If k is non-negative and if 

on 

(provided that p(k + 1) > dim M). 

o( E ( 0, l), we shall define ckA 'and ck-t-l1' ck•O(A- and ck+l,oc 

and Ck+l '0( ~ act smoothly on ck,A-

right. We shall then show that if 

k-t-1 ~ similarly and show that C ~ 

and Ck,«.J_ t' 1 th 
~ respec 1ve y on e 
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~ : P ~ P is a continuous principal bundle automorphism satisfyjng 

certain mild differentiability conditions, then Y E L~+l 1- provided 

that Y maps some element of Lkjy into L~ J\- (where p(l\ + l) > dim l\1), 

Y E:. ck+l 't:} provided that y maps some element of ckA- into ckA 

and that Y E Ck-t-l,c< '\}. provided that 'f" maps some element of Cl\:,0(. .A-
into Ck' o< .A Finally, we shall obtain a theorem which will enable 

us to prove results concerning the action of L~+l ~ , Ck+l t} or 

k-t-1,«~ p .A kA. k,OI..A.. · L 
C ~ on Lk~, C ~ or C ~ respect1vely for large K from 

similar results for small k by a 'bootstrap' procedure using induction 

on k. 

Throughout this section, il : P ~ M will be a smooth principal 

bundle over a compact smooth manifold l\1 with compact structural 

group G whose Lie algebra is 9 , and -rr · Gp ~ 1\1 and 1T
11

d ad · 

will be the adjoint bundles, with total spaces Gp = P x d G and 
a 



9 p = p X Ad 9 ' 
We have seen that G-equivariant horizontal 9 -valued 1-forms 

on lT : P ~ l\1 are in natural bijective correspondence with sections 

of the vector bundle 9P ® T·k~·J __, l\1 over M. Thus if ().Ji. : TP ~ 9 
and ().) 

2 
: TP ~ 9 are Ehresmann connections on '1T : P ---J) M, then 

their difference W 
1 

- C..U 
2 

may be identified with a section of 

9 p® T*M ~ M, and conversely if w : TP ~ 9 lS an Ehresmann 

connection on 1T P ~ 111 and if "1:. : M ---l> 9 p ® T*M is a section 

of 9 ® T 1'~1 ~ 1\1, then we may construct an Ehresmann connection on 

If : P ~ M, denoted by w + l:' , such that the l-form ( w + '1::. 

on P corresponds to the section "1:::' of 9 p ® T*M ~ M. Thus the 

space C 
00_A of all smooth connections on -rr : P ~ M may be 
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-(}.) 

regarded as an affine space modelled on the Frechet space C
00 

( 9 p ® T*M). 

We have seen also that the group C~ ~ of smooth principal bundle 

automorphisms of IT : P --) M may be identified with the group C 
00

( Gp) 

of smooth sections of Tf ad : Gp ~ M. 

Definition 

For all integers I< and for all p ~ /l, 0o ) , define Lk k, the 

p . 
space of Lk connections on 1T : P __, M, to be the completion of 

C 
00 A with respect to the metric on c-.9\- defined by a norm on 

C 
00 

( 9 p ® T*M) generating the L~ topology. If in addition 

p(k + 1) > dim M, define L~+llJ., the group of L~+l principal bundle 

automorphisms on 1r : P ~ M to be the subset of the group of con-

tinuous principal bundle automorphisms identified with the Banach 

manifold Lk+l (Gp). Similarly, for all non-negative integers k and 

for all o1-. E ( 0, l), define ck_A- and Ck' ... A-- to be the completions 

of C 00 A with respect to the metrics defined by ck and Ck,t>< norms on 

D f . 1 ck~ and ck,O<r;: e lne a so 't 'r' to be the subgroups 

of the group of continuous principal bundle automorphisms identified 

with the Banach manifolds Clt(Gp) and Ck,o<. (Gp) respectively. 



The fsroup operations on the Banach mani fo lcls t.? , ~ (for 
K+l ~ 

p(k + 1) ) k~ dim M), C '5 Ck,o<F. ( ( ) ) and '6 for ~ E": 0, 1 are smooth 

by the results proved in /~alais, R.S., 1968] (see theorem II.2.6). 

The Lie algebras of these groups are identified with Le + 1 ( g P), 

ck ( 9 P) and Ck' o< ( 8 P) respectively and the exponential maps 

LLl(gP)~ LLl~, ck(9r) ~ ck<} and ck'cx(9r)~ ck,ocl} 

arc smooth. 

Let W be a smooth connection on Tf : P ---? M. For all integers k 
0 

and for all p E _LT, 00), every element of L~ A may be expressed 

uniquely as l/J + 1:' 
0 

for some "1:'cL~(8 P® T*M), and similarly for 

We have seen that if 0-)
0 

lS a smooth connection, then 

~T/ ~ ::: J: Wo - vvo 

for all differentiable principal bundle automorphisms i(: P ~ P, 

wo 
where Y:... is the first order non-linear differential operator defined 

in section V.6 (see theorem V.6.2). We have also seen that there 

exists a smooth fibre bundle morphism B 9 p ~ End( .9 p ® T'''M) 

such that 

for all differentiable sections J of 9 P ~ M. B maps the zero 

section of 9r -? 11'1 to the identity automorphism of 9r «8 T*M. Also 

if G is given a biinvariant Riemannian metric determining a canonical 

C
0 

-norm fJ . (I on C
0 

( 9 P) and if the norm Jl ~ lJ of J E C
0 

( 9 P) does 

not exceed the injectivity radius of G, then B( J 
automorphism of 9 P (i) T"'J\1 (see theorem V. 6. 3). 

lS a vector bundle 

Let VJ
0

: TP ~ 9 be a smooth connection on Tf : P--) M, let 

""t: be a section of 9 p ® T~'J\1 ---;:) J';J and let "f': P ~ P be a 

differentiable principal bundle automorphism of Tf: P -7 M. We 

have seen that 
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on regarding ~ as a section of 1T 
ad 

V. S. 1) . Thus 

ThCO!"em 2. 1 

190 

GP ~ ~1 (see the pcoof of 

Let TT P __, ~1 be a smooth principal blmclle over a compact 

smooth mru1ifold with compact structural group. For all non-negative 

integers k, for all p E Ll,<OO) satisfying p(k + l) > djm ~~. ru1d 

for all 0( E ( 0, l), the right action of the group C Ocl ~ of smooth 

principal bundle automorphisms on the space C 
00A- of smooth connections 

on rr : P ~ lVI extends to smooth right actions 

ckA-. x c k+l S:-- ~ cl'>ft- ' 

ck•ft- x clol,o<q ~ ck·~ 

Proof 

Consider the action of L~+l Sf_ on Lj~ A. Given an open neigh

bourhood of the zero section in L~+l ( gp ) , any element j? of 

LE+l ~ may be expressed as i(" = Y 
0 

exp ~ , vvhere ~0 E:. C
00 g_ , 

~ E Li:+l ( 9 p ) and r lS contained 1n the g1ven neighboudwod of the 

zero section. Also the map exp : L}~+l ( fJp ) ~ tJ:+l C} 1s a chart 

for Lfc+l ~ when restricted to some neighbourhood of the zero section. 

The map from Lfc k to itself sending w to -\Jr 
0 

,., '-'"' is smooth, hence 

it suffices to verify that the map from Lfck x Lfc+l ( 8 p ) to LEA
sending ( W , J ) to ( exp ! ) ,., 00 1s smooth. By the remarks above, 

it suffices to verify that the map 

( L. , ~ ) ~ A cl ( exp ( - ~ 

to LE ( 9 p ® T"'~l) :ts smooth. 

If k > 0, there exists q E: /l, Oo ) such that 

1 
p 

1 
dim 111 < l 

q 
k 

dim i\1 • 



Then He have a smooth Sobolev embedding Lj~+l ( 9 P) ~ L~( 9 P), the 

map from Lp ( 9 ) to Lp( 9 ® T"'JI!) :3encling 't to clv.~ 0 T 1s smooth, k+l p k p s ) 

and the map from Lk ( g P ® T~'JI1) x L~ ( 9 P) to LE ( 9 P ® T*M) sending 

"Y).}) +n f<f r )')'~ iS Sf'1,,00th hu r>nY'nJle>r>H fT ') 7 ,,,J-,o,...o J J;) I --~ ~, J lrl .._,J .....,....,_._..._,..._....,_.._._.._J ----'-·•·•L...••, •~11'--'l'-' 

B 9 P _, End ( 9 p ® T'~Jii) is the fibre bundle morphism with the 

property that 

""o X (exp ] ) 
w 

B( J ) d o S 
• 

Composing these smooth maps, we see that the map from LP
1 1 

( 9 ) to 
\:+ p 

LJ~( 9 p ® PJII) sending } to AW0
(exp r ) is smooth. Similarly 

the map from Lp ( 9 ® T'''JII) x Lp ( () ) to t11~ ( 9 PS T'''M) sending k p k+l ~ p • 

( 1::, 1 to Ad(exp (-} ) )"(:; is smooth, again using the Sobolev 

embedding theorem and corollary II.2.7. Thus the map 

Wo J ( '"C. , ) ) ~ Ad ( exp (- } ) ) L + X ( exp ) 

from rY ( g ® T'''l\1) x Lp ( g P) to LikJ ( g P ® 'f>'<JVI) is smooth. Thus k p k+l 

the action of Lk+ 1 q on Lk ~ 1s smooth 1vhenever p ( k + 1) > dim M and 

0. If p(k + 1) > dim ~~1 and k = 0, then the same argument applies 

on replacing 11( 9 p) by C
0

( 9 p) and using corollary II.2.7 again. 

An analogous argument again using corollary II.2.7 shows that 

l9l 

the f k+lG' d k+l,O<t! 
actions o C ~ an C ~ respectively 

are smooth. 

D 
Theorem 2.2 

Let Tr P ~ M be a smooth principal bundle over a compact 

smooth manifold 1\1 with compact structural group G whose Lie algebra 

is fj , and let If 
ad 

: Gp ~ 1\1 be the adjoint bundle with total 

space GP = P x ad G. Let y : P ~ P be the continuous principal 

bundle automorphism corresponding to a continuous section of 

-rr ad Gp ~ 1\1 that is differentiable almost cvery1'1here on M. 

Let k be a non-negative integer. Then 



( i) if p E {f, oo) satisfies p(k + 1) > dim lVI, if ()..) E: Lp A 
k 

if Y* wE L~A' then YE: p -g. 
Lk+l ' 

( ii) if we- ck.A- and if Y*w E ckA-
' 

then Yt clt+ll} , 

(iii) if o~-,_ E (0, l), if wE ck'fr and if y~'(..,Aj E. ck•O(A 

then -\f: e c1u 1 ' 0( )0 

~ 
Proof 

Choose a biinvariant Riemannian metric on G. Then 

and 

y =: ( exp ~ ) y 
0

, where y 
0 

: P ~ P is a smooth principal bundle 

automorphism, and where ~ 1s a continuous section of the adjoint 

bundle Tf Ad : 9 p ~ M whose c.:monical C
0 

norm does not exceed 

the injectivity radius of G. It is sufficient to prove the theorem 

when y is the 
0 

ckA or ck' 01A 
identity automorphism of P, since Y* w t L~ A-, 
if and only if ( yy

0 
-l) * w E: L~ A--, ckjy or 

ck,~ respectively. Let 0J = w + L: where UJ is a smooth 
0 0 

connection. Then 

Y*(Wo+"(; Ad(y-1
)L: + xWo(y) 

Ad(exp (- J )1: ~' ..,. ) 
.,Wo,.-

+ 15\ J a ~ 

where xwo and B are defined above. Since the canonical co norm 

of } is strictly less than the injectivity radius of G, B( J ) 1s 

a vector bundle automorphism of 9 p ® T*M (see theorem V. 6. 3). Thus 

- Ad ( exp (- l ) ) ( w - W ) ) . 
0 

We prove the theorem by induction on k. Suppose k = 0. 

~ € C
0

( 9 p), hence both B( ! )-l and Ad(exp (-!) ) belong to 

C
0 

(End ( 9 p ® T*l'-1) ) . Thus if W and y "~'(A) belong to Lp A for 

some p E {I, oo ) satisfying p > dim M, then dc.v 0 ~ € Lp ( 9 p ® T*M), 

and hence ~ €: Li ( 9 p) and i( E Li ~ ; if GU and y *w belong to 

C
0A , then d ""o ~ ~ C

0 
( 9 p ® T"~'M) and hence ! E. c

1 
( 9 p) and 

y E c
1 g. . This proves ( i) and ( ii) when k = 0. If w and Y* (.A..) 

0 di..A_ 
belong to C ' ..J'"f 
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and thus '= E. c 0
' co. ( 9 p) . l ( 't ) -l d d ( ( 'e. ) ) h 1 j T1en B 1 an A exp - s e ong 

o,"" ( to C End 9 p ® T*!v!) ) . Thus dolo J' belongs to C
0

' o. 9 p ® T*M), 

and hence J E c1
'<X ( 9 p). This proves (iii) when k = 0. We now 

use the induction hypothesis to prove the theorem when k > n. 

Consider case (i) when k > 0. We have Sobolev embeddings 

and Lj~+l) ~ L~ } , where q E !J-, oo ) may be chosen 

to satisfy 

1 1 

r dim 111 < 
1 
q < 

Then C-0 and "f*w belong to L~-l }r , and hence y E: L~ "} , by the 

induction hypothesis. Thus ~ E L~ ( 9 p). It follows that B ( l ) -l 

and Ad(exp (-]))belong to L~(End ( 9P ® T*M) ). Hence 

dw0 J E- L~( 9P ® T*M), by corollary II.2.7 and thus! E LL
1

( 9p). 

This pruvcs (i). The proof of (ii) and (iii) 

is analogous. 

D 
Theorem 2.3 

Let -rr P ~ M be a smooth principal bundle over a compact 

smooth manifold M with compact structural group. Let (().1. : i E lN) 
1 

and (~i : i E lN) be sequences of connections on Tr : P ~ M and 

continuous principal bundle automorphisms of 1T : P ~ M respectively. 

Let k be a non-negative integer. Then 

( i) if p € /l, oo) satisfies p(k + 1) > dim M, if W . E: Lp A 
1 k 

and -..T'. f. L1

1

J 
1 
~ , if the sequences ( W . ) and ( -.T .... . -1: uJ . ) 

.r1 u "} 1 ~1 1 

converge in LJ~A to C..U and W respectively, and if the 

sequence ( y i) converges in Ck tf to Y , where Y E: Ck-~ , 
then Y E. L\~+l g. , ( Y i) converges to :E"- in Lj~+l t} , and 

-y~'w=w, 



(ii) if k > 0, if p,q E {l, oc:>) satisfy p(k + l) >dim M, qk >dim M, 

q ~ p, if w. E r
1
P A andy. E T? 't;, if the sequences (W .) 

l { l -l\+l } l 

(iii) 

( i v) 

and ( j( *(...t..) i) converge in ~~A to W and 0:) respectively and 

if the sequence ( Y- ) converQes 
l = 

,~ ,q )" 
_c,. 'I\ ;} 

then Y E ~~+l ~ 

::}!-- * w = (A) ' 

, ( y. ) converges 
] 

toY 

andy. 
l 

, if the sequences ( W . ) 
l 

and ( 1;. '~ CA> . ) converge 
l l 

if the sequence (y.) converges 
l 

to w and ;::::; respectively and 

in ck g to y ' where 

Y E ck ~ , then "f" E. ck+l tj.. , 
k+l~ • C ';} , and y t.N = L.N , 

( Y- ) converges to Y in 
l 

l. f E ( o 1) · f L". ck '«--' 
0(,_ ' ' l w. ""- /1' 

l 
and .:t: . E C -.T _,.. k+ l , o£ g_ 

l 
, if the 

sequences ( W . ) and (..;r_,.._ '~ w . ) 
l ~ l l 

k 01, .A
converge in C ' )'1' to W and 

00 respectively and if the sequence (i(.) converges ln 
l 

toy where YE ck·""'-q 'then ye ck+l,o<~ ' (yi) 

---,T..- . k+l' co(. f.: -.T;- -converges to r ln C 'J- , and _y ,., w = w . 

Proof 

k,o< ~ c . ";}-

We claim that, without loss of generality we may assume that 

y i = exp f i and y = exp ! , where ~ i and- X are differentiable 

sections of 1T Ad : 9 p -) l\1 for all i E: JN and where the canonical C
0 

norms of J and l . determined by a given biinvariant metric on G 
l 
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do not exceed some constant which is strictly less than the injectivity 

radius of G. For since (y.) converges toY in the C
0 

topology in 
l 

all cases (i), (ii), (iii), and (iv), it follows that if a smooth 

principal bundle automorphism i("
0 

is sufficiently close toY in the 

C
0 

topology, then there exist differentiable sections f i of 

1T Ad : 8 p ~ l\1 for sufficiently large i, that are bounded in the 

canonical C
0 

norm 

radius of G, such 

by some constant strictly less than the injectivity 

-1 
that y i \f'" 

0 
= exp ~ i, and the conclusions of 



the theorem hold for the sequence ( y;) if they hold l'lhen the 
.l 
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sequence (yi) is replaced by the sequence ("f'i'f' 
0
-l) ln the 

statement of the theorem. Thus we may assume that y. = exp 3 
1
., 

.l 

f = exp ! and that the canonical C
0 

-norms of r i and ~ are bounded 

by a constant strictly less than the injectivity radius of G. 

If w is a smooth connection, then 
0 

WoJ l d . = B ( r . ) -- (""V. '" w . - Ad ( exp (- t . ) ) ( (,1..) . - W ) ) l l :s:l l ~l l 0 • 

Also let '? be the section of 9 p ® T*M ~ M defined by 

'YJ B ( r ) -l ( w - Ad ( exp (-I ) ) ( w - w 0) ) • 

By corollary II.2.7 it follows that ") f: L~( 9 p ® T*M) 1n cases 

(i) and (ii), "7 E: Ck( 9 p ® T*l\1) ln case (iii) and 

'YJ E Ck,OC ( 9 p (8) T*l\1) 

( d Wo t' i ). t 11 ) converges o .
1 

( d wo .f i) converves to ~ 

ln case (iv). It follows also that 

ln the Lp norm ln cases (i) and (ii), 
k 
k w 

1n the C norm 1n case (iii) and (d 0 S i) 

converges to ~ in the ck, .... norm in case ( i v). But ( d Wo r i) 

converges to d ~0 r ln L~-l ( e p ® T*l\1) in cases ( i) and ( ii), 

( d wo ~.) t d""&J in ck-l( 9P ® T*M) if k) 0 in .S 
1
_ converges o 

. ) Wo t W 'C r 9 cases (iii) and (lv , and (d J i) converges to d ~ in L_
1

( p ® T*M) 

for all r € (l,oo) if k""'O in cases (iii) and (iv). Hence 1 = dw"J 

in all cases. Thus ~ € LL1 ~ and (i( i) converges toY in the 

Lj~+l topology in cases (i) and (ii), ~E. Ck+l~ and (yi) converges 

..,_T,.. . k+l """'-DE: Ck+l,o< !': to x ln the C topology in case (iii), and ~ ~and 

-..7,- IHl o( 
(y.) converges to .I: in the C ' topology ln case (iv). 

1 
Then 

u.> y *(A) by the continuity of the actions of the appropriate 

groups of principal bundle automorphisms on the corresponding spaces 

of connections. 

D 
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§3. /1 Convergence Criterion for Principal Gundle 1\utomorphisms 

In this section, we give a condition for a sequence of principal 

p k k,o<. 
btmdle automorphisms to converge 1n the groups of L

1 
.L, C or C 

{-t 

principal btmclle automorphisms of a smooth principal bundle over a 

compact manifold with compact structural group, in terms of the 

action of the automorphisms on connections. 

Let IT : P ~ M be a smooth principal btmdle over a compact 

smooth manifold M with compact structural group G whose Lie algebra 

let G be given a biinvariant Riemannian metric, and let M 

be given a Riemannian metric. Let 1T ad : GP ~ il1 and lT Ad : 9 P ~ l\1 

be the adjoint bundles associaced to 1[ : P ~ !II with total spaces 

P x ad G and 9 P 

We recall that the biinvariant Riemannian metric on G determines 

a bi invariant Riemannian metric on each fibre of rf' ad : Gp ~ M 

which 111 turn determines a distance function on this fibre. We let 

p m : Gp /_-m_7 x Gp /_-m_/~JR denote this distance frmction on the 

fibre GP /_-m_7 of rr ad : GP _, M over mE iVI. We recall also that 

the biinvariant metric on G de Lerrnincs a G-invariant norm on g which 

1n turn induces norms on the fibres of Tf Ad g P ~ lil and 

We let J . I denote both the norm on the fibre 
m 

liAd : 9 p ~ 1\1 over m E: M and also the norm on 

The canonical di~:tance function 

.1' : c0
(Gp) x C

0
(Gp) ~ JR on C

0
(Gp), and the canonical C

0 
norms 1/. Jl 

on C
0 (9p) ond C

0
( 9P ® T·::l\1), and the canonical Lp norms 

I\, If p on Il( 9 p ) and Lp( 9P f.l} T'''i\1) for p E j_T, Oo) arc defined by 

(y .~) = 
l 2 

\\ '? II 
sup 

mel\1 

( f,, 
I "') (m) I m , 

\ "'] (m) \ p d(vol) 



may be regarded as a biinvariant distance function on C
0 

({_, 
Q 

on identifying C
0 ~ and C

0 
( Gp), and the canonical norms on C

0 
( 9 p), 

C
0

( 9 p ® T*l\1), Lp( 9 p) and Lp( 9 p ® T"'M) are invariant under 

(see proposiU_on~ V.2.3 aml V.2.4). Thus if w 
1 

and w 
2 

belong to c0)r , the space of continuous connections on 

IT' : P ~ M and if f E. C 
1 f} , then 

II y ,., w - y ,., t-0 11 = 11 w - w \1 
1 2 1 2 

L
p A and if w 

1 
and (J.J 

2 
belong to .......,. for some p € /J, oo) satisfying 

p > dim M and if Y(; Li ~ , J,;hen 

Jl y * w 1 - y * w 2 l/ P = II CA.> 1 - w 2 II P 

Lemma 3.1 

Let if : P --l) M be a smooth principal bundle over a compact 

manifold M with compact structural group G whose Lie algebra is 9 
Let lT ad : Gp ~ M and lT Au : 

total spaces Gp = P x G and 
ad 

9p ~ M be the adjoint bundles with 

9 p = P x Ad 9 . Let l\1 be given a 

Riemannian metric and let G be g1ven a biinvariant Riemannian metric, 

determining a distance function _;0 m on the fibre Gp L-m J of 

TI ad : Gp ~ M over m E M and determining canonical norms II . II on 

C
0 

( 9 p ® T"<M) and \1 . II p on Lp ( 9 p ® T*M), where dim 111 < p < ()0 • 

Given a compact subset K of 111, let 

for ·all y 1 , ~ 
2 

€- C
0 ~ • Then there exists a constant Ap, depending 

only on p and on the Riemannian geometry of l\1, such that 

(i) if wE c0A ,fl' "1? 2 e c1g_ and me K, then 

JSK(;lij_,'P"2l ~m("f'l(m),--i£'" 2 (m))+(h1?1 "'w -'¥ 2"'wll (diam K), 

( ii) 

L97 



\'.'here 

1 -
dim M 

p 
Proof 

Since and Lp A- , 

the smooth principal bundle automorphisms are dense in c1 g._ and L~ <'} , 
and since c1g__ and L1~q act continuously on c0

)}- and LPA- respec

tively, one may :1ssume that w , "'£' 1 andY 
2 

are smooth. By 

theorem V.5.2, if c : /a, b/ ~ M is a piece\-,rise smooth curve para-

meterized by arclength s, c(a) = m and c(b) = m', then 

where 

f (X) I ( Y/{N - "f / VJ ) (X) l X ' 

and hence 

and 

where f'f(m,m') is the infimum of the integrals of f with respect to 

arclength along all piecewise smooth curves from m to m'. 

1 
and y 1 , '1? 2 E: C s. , then y 1 * c..v - :](" 2 ,., (A) 

C
0 

( 9 p ® T*M), and 

and thus 

and hence 
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Also it follows from theorem IV.3.3 that there exists a constant A 
p 

depending only on p and the Riemannian geometry of M, such that 
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A r r 
p \ J fv1 

0(. 

(dist (m, m' )) 

o<. 
- ;Tr

2
*V-) II (dist (m,m') ) 

~ . p 

and hence 

o<. 

j5 K ( 'f" 1 ' Y 2 ) ~ ? m ( Y1 ( m) ' ::1( 2 ( m) ) + Ap 1/ Y 1 "~' W - Yl." <..0 If ( ~ k ) , 

D 
Theorem 3.2 

Let 1T P ~ M be a smooth principal bundle over a compact 

smooth manifold M with compact structural group G. Let Gp ["mJ be 

the fibre over some given m €: l\1 of the adjoint bundle TT ad : Gp _, M 

with total space Gp = P x ad G. Let ( W . : i E: JN) be a sequence of 
l 

connections on Tf : P --., l\1 and let ( y . : i E JN) be a sequence of 
l 

continuous principal bundle automorphisms of lT : P ~ M with the 

property that the sequence ( Y. (m) : i 
l 

JN) converges 1n Gp {-m_7. 

Let k be a non-negative integer. Then 

( i ) 

( i i) 

(iii) 

if pelf, 0o ), if p(k + 1) >dim M, if t-<\ ~ t}: and 

-p-i € Lj~+l "} , and if ( W i) and ( l"i "~' W i) converge in Lh* 
to w and i;J respectively then (yi) converges in Lt1 '} toY , 

for some Y E. LL 1 g , and -:fffw = w , 

. f k.A. 
1 w.E:C)'-t' 

l 
and "'',..

1
. E Cl<+lr,;- , and if ( w . ) and ("T'". *W . ) x J.- 1 .X1 1 

converge in c 1~ to <.,..) and w respectively, then (~.) 
l 

. 1<+1 r: converges 1n C d- toY for some -if(E Ck+l1- , and 

if o<..E (0, 1) ' if w.t. Ck'A and y. E. CIHl ,o< ~ 
1 l 

, and 

if (w.) and (y_-;,(.U . ) converge Jn ck, .... k to (....) and 
l l 1 

..,.T... k+l,o'-1 ..... r,. respectively, then (r.) converges 1n C to X for some 
l 

i("E c1<+l,.,., ~ , and-y* w = w . 
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Proof 

The proof 1s by induction on k. First consider the case k = 0. 

If w i t Lp .A- and Yi E: Li A- , \'/here p > dim 1\1, then for all positive 

integers i 2u1d j 

then 

11 -y · * w · - y- · ~, w · II J 1 1 1 

II (j.J i - w. 
J 

= II w · - ( t · "P" · - 1 
) ,., w · II p 1 1 J 1 p 

II p + II c,u j - (y i ~ j -l ) * w i II r 

11 p +II Y/wj -yi*wi II p. 

j/ pit-Thus if the sequences ( w . ) and ( . * w . ) converge 1n L , 1 1 1 

lim llw. 
1 

i 'j ~ +.oo> 
w j II p ~i~ IIi:.* w . - "t-. * w 

1,J~+oo J J 1 i 

and hence 

~i*will p=O. 

But by the previous lemma there exists a constant Ap depending only 

on p and the Riemannian geometry of 1\1 such that 

0 

? ('f'.,y.) ~ D (y.(m),y .(m) ) + Apfi-.U..*w ,_,r ...... "'w· J'I(~M)e<. 
J 1 1 m J J. .X J 1 ·.r "' t.. I 1 I 

where 

dim M 
1---

p 

But the sequence ( y. (m )) converges, hence 
l 

and thus 

p(y.,y.) 
] J 

0. 

But C
0 ~ is complete, hence there 

sequence ('f'.) converges to Y . 
1 

exists YE. C0 ~ 

Then YE. S ~ 
such that the 

and (~.) converges 
l 



i) 

to ::f 1n L~L i- by theorem 2.3. This proves (i) when I<= 0. The 

proof of ( i i) when ], = 0 is completely analogous to that of ( i) when 

k = 0. To prove (iii) when k = 0, note that if ( w . ) and (f' ... W . ) 
]. 1 l 

o oC.,L _r. 
converge 1n c ' -~then (y.) 

1 
con,.rerges for some 

":fe. c1t} (by (ii) \vith k = 0). Thus (y. ) converges to "J' 1n 
l 

co, 0<. g_ 
cl,C~> ~ 

..,1/E. cl 'C>( S- ("'-v ) , and hence y and ~: converges to 
l 

by theorem 2.3. This proves (iii) when k = 0. 

ln 

We now prove (i) for k ~ 0 using induction on k. Suppose the 

result is true for k- 1. Let p E: {1. eo) satisfy p(k + 1) > dim M. 

Then there exists q €:- /_l,Qo such that 

] 1 
p dim M 

1 
q < k 

dim 1\1 • 

Then there exists a Sobolev embedding L}~ A- ~ Lt
1
k . If the 

sequences ( w . ) and Cf'. * W . ) converge in L 11) fit- , then 
l l l ( 

they converge 

in L%_ 1 A- , hence the sequence (i,i'"i) converges toY in 

some Yc L% s. , by induction. Then, by theorem 2. 3, y E:

the sequence ('f\) converges toY in L~+ 1 -g. and Y''' w w 

proves ( i). (ii) ru1d (iii) are proved similarly us1ng induction, 

aga1n by theorem 2.3. 

D 
Corollary 3. 3 

Let "1T : P ~ M be a smooth principal bundle over a compact 

This 

smooth manifold M with compact structural group G. Let ( w . : i €: lN) 
l 

be a sequence of connections on 1T : P ~ M and let (--t'i : i E lN) be 

a sequence of principal bundle automorphisms of If : P ~ l\1. Let k 

be a non-negative integer. Then 

( i) if p E !J,oo ) ' if p( k + 1) dim ~I, if 
p 

> (JJ 
i E L kk ' if 

"¥ i €. L; 1 ~ ' 
and if the sequences (w.) and (":f.*w.) 

.a 1 l 1 

converge in LJ:k to c,.., and w respectively, then a subsequence 

of ("f'i . ) . p i : 1 € lN converges 1n L . 
~ l<+.L 

toY, for some 
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YE I p 'tJ. "k+l ' 
and Y*~ LO 

( i i) if (J.J . E cl)\.. , if -y. E ck+ll} 
' 

and if the sequences (w.) 
l l l 

andy.~' tfl . ) converge ln ck.A- to w and (.;.:) respectively, 
l l 

then :1 suhsPfjlJPnce of 1 ~~) converges to 

for some Yt.. k+l .,.!, c ~ , and ~ ,., w = v.:> 

k 0( A. 
w . E. c ' 11'" ' if \f'. E. 

l l 
if Ck+l 'I)( Fn 

';} , and (iii) o<,.E (0, 1), if 

if the sequences ( c.u . ) and (-iu·. * c..v . ) converge in Ck,oc.A 
l ~ l l 

to 

UJ and w respectively, then a subsequence of (y. : i ~ JN) 
l 

k+l ol ~ ,T,.. "T' Cl<+l , ... 'e converges 1n C ' ~ to ~ , for some ~ & J 

and Y*w W 

Proof 

In all cases, we may suppose that if. is continuous for all i. 
l 

Since the structural group of 11 : P ~ M is compact, for any g1 ven 

fibre of TT : P ~ fvl there exists a subsequence of (fi : i €- JN) 

converging on that fibre. By theorem 3.2, this subsequence has the 

required properties. 

D 
Lemma 3.1 has an analogue for sections of vector bundles 

associated to a given principal bundle. 

Lemma 3.4 

Let lT : P _., fvl be a smooth principal bundle over a compact 

Riemannian manifold M with compact structural group G whose Lie 

algebra is 9 . Let 9 G _, Aut(F) be a representation of G as a 

group of isometrics of a normal vector space F. Let lTg : E ~ M be 

the vector bundle associated to ,- : P _., M with total space 

E = P x Q F. For all m E M, let I . \ m be the norm on the fibre E L m J 
of TT" Q E --'> Ill over m determined by the norm I . I on F. For all 

compact subsets K of M let the C
0 

norms and Lp norms of C
0 

sections and 

L p sections rcspecti ve ly of 1T : r ~ M over K be defined by 
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II! II K,Co 
sup 

me k I f (m) / m 

I f (m) I 
p 

m 

for a 11 p satisfying dim M <: p .( 0o 

'tp 

d(vol) ) 

Then there exists a constant ~J' dP-pending only on p and on the 

Riemannian geometry of M such that 

( i) ! E c1
(E) and mE: K, then 

11 ~ \\ K c0 

' 
+ II d"" J /} M co ( diam K) 

' 

(ii) if t.0 t LP A- , ! E: L~(E) and mE: K, then 

where 

Proof 

1 
dim 111 

p 

It suff.ices Lu verify that the inequalities are satisfied when 

W and r are smooth. By theorem V.6.6, if c : /a, b7~ M 1s a 

piecewise smooth curve parameterized by arclength s, c(a) = m and 

c (b) = m, then 

I d w j I c ( s) ds . 

Let f : 1\1 ~ JR be defined by 

f(m) \ d (A)~ (m) l m· 

Then 

sup 
m 1 l: K 

IJ (m,m 1
) 

I f 

l'lhere )J f(m,m 1
) lS the infimum of the integrals of f with respect to 

arclength along all piecewise smooth curves from m to m1
• But 
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and 

1'-'r(m,m') ~~~dwJIIrvi,Co dist(m,m') 

00... 
(dist (m,m') ) 

by theorem IV, 3.3, and hence 

\1]11 0 
K,C 

lf(m)l m + II d~s II 

I S(m) I m + APJidw! /1 

(diam K) 

rvi,C
0 

' 

o'... 

0 
(diam K) 

M, L1 

D 
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§4. Further Properties of the Action of Automorphisms on Connections 

In this section we investigate the consequences of corollary 3.3 

for the action of the various groups of principal bundle automorphisms 

on the corresponding spaces of connections on a principal bundle over 

a compact manifo lei v.,ri th compact structural group. It is shown that 

the quotients of the various spaces of connections by the action of 

the corresponding groups of principal bundle automorphisms are 

Hausdorff, and that the stabilizer of any connection in these spaces 

is a compact subgroup of the appropriate group of automorphisms and 

it contains a subgroup naturally isomorphic to the centre of the 

structural group of the bundle. It is sho\vn that the subset of each 

space of connections consisting of those connections whose stabilizer 

1s the centre of the structural group form an open subset of the space 

of connections. We shall also consider the action on the spaces of 

connections of the subgroups of the corresponding groups of principal 

bundle automorphisms consisting of those automorphisms which fix the 

fibre of the bundle over some given element of the base space. 

Theorem 4.1 

Let -rr : P ~ l\1 be a smooth principal bundle over a compact 

smooth manifold ~~ with compact structural group. Let k be a non-

negative integer. Then, for all p E £1, oo) satisfying p(k + 1) > dim M 

. P.A.. p ~ kn4. k+lrg and for all ~ E (0, 1), the quot1ents Lk~ /Lk+l~, C ~ /C ~ 

and Ck,oc._A.- /Ck+l ,« ~ of the spaces Ll:J\.., C A- and Ck,oc:,A-- of 

connections on if : P ~ M by the corresponding groups of principal 

bundle automorphisms are Hausdorff. 

Proof 

If ..- is an equivalence relation on a topological space X, 

then X/- is Hausdorff if and only if R is closed in X x X, where 

H 



Thus Lp A-- IIY ~ j s Hausdorff if and only if R 1s closed 1n 
k lz+l d-

L1]) A- x Le ,4-, where 
< •• 

n= {(w,wl "3 ...,,,.. E: Lp t; such that 
.1: k+l ~ 

:f'*w w} 

Let (<:..c> ,w belong to the closure of R. Then there exists a sequence 

(w i : i e-. JN) in L}~A- and a sequence (Yi : i E:: JN) in Lt~+l "t$- such 

that ( W i) converges in ~~A- to W and ( Yi * (.).) i) converges in 

By corollary 3. 3, a subsequence of ( "f':. : i E: JN) 
l 

converges in 1{+ 1 t} to Y E L}~+l f} , and Y* w = W • .lence 

( (>J , W ) €: H. Hence H is closed in ~~ fr X Lt~ A-, and thus 
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p ..4. I p P. . d . . l 1 k IlL I ]q 1 Po Lk/""'f" Lk+l 0 1s Haus orff. S1m1 ar y c _rrr c cr and ck '0( A ICk+ 1 Jol fJ-
are Hausdorff. 

D 
Theorem 4.2 

Let "tr: P ~ M be a smooth principal bundle over a compact 

smooth manifold M with compact structural group. Let k be a 

non-negative integer, let p E _il, oo ) satisfy p (k + 1) > dim M, and 

let o<.c(o, 1). p _ 'f: ck+l f; 
Let Lk+l "J- , J- be the groups 

of principal bundle automorphisms acting on the corresponding spaces 

L}~ k, Ck A- and Ck '~ of connections on "TT : P ~ M. Then, 

( i) 

( ii) 

if wE. L~k, then the stabilizer of LV in L}~+l} 1s 

compact, 

if '·' c ck . .L b .._.... ~;.. /'of' , then the sta ilizer of c.u 

compact, 

k 0("" k-d .. e 
(iii) if WE: C ' )'-'r , then the stabilizer of w in C ' J--

1s compact. 

Proof 

Let (A)~ L)
1
J .Ar- and let (y. : i E: JN) be a sequence of principal 
< l 

bundle automorphisms in tP l e such that :1(. * w = W . By 
]~ ~ 1 



corollary 3. 3, there exists a subsequence of Cr. ; i e, JN) converging 
l 

- _-r_ 
Thus ·y be longs to 

the stabilizer of w Thus the stabilizer of w is a compact 

subgroup of Li~+l t{_ This proves (i). (ii) and (iii) are proved 

" 
similarly. 

D 
Let G be the structural group of 1T : P __.., f\1 and let Z (G) be 

the centre of G. If '( E- Z (G), then ~ defines a smooth principal 

bundle automorphism of TI : P ~ l\1 mapping p to p. '6 . Thus we have 

natural smooth embeddings Z (G) Y ri+l 1- (where p (k + 1) > dim !11), 

Z(G) C-) Ck~ and Z(G) E cl<,d ~ (where 0(.. E. (0, 1) ) for all non

negative integers k. Moreover if 'If E Z(G) and if y: P---) P is the 

principal bundle automorphism sending p E- P to p. '( , then "'f * w (..A.) 

1~ 

for all W t. C 
00)1-\- , and hence for all W E 1}~ ,.t\- , W € c'"A- and 

WE. ck 'o( .A Define 

Lp lJ k+l b 
Lp ~ k+l 

/Z(G), 

ck l}o Ck C} /Z(G), 

ck,ct~o ck' o(. ~ I z (G) • 

L~~+l ~o ' ck+l ~ o and ck+l ,c~ ~ o , ~ ~ (f are smooth Banach Lie groups 

acting smoothly on the spaces L~fly, c
1'/t and c

1'•fi- re>pecti vely, 

by coro 11 ary II . 3 . 3 . Define LI
1
J ,4- Ck tit. - and C k' c4. A-- to be the 
( 0 ' ......,...-0 0 

subsets of Le-4--, ck)!o-- and ck, oc.k respectively consisting of 

P 'f', ck+l t: connections on if : P _, M whose stabilizers in Ll-c+l ~ , (r- and 
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ck+l,O( g._ respectively are the subgroups of these groups corresponding 

to the centre Z(G) of G. Thus Lj~+l ~ 0 , ck+lt&o and ck+l,oe~o 

act freely on q~A0 , c 1:A---
0 

and Ck,O(__A,.
0 

respectively. 

Lemma 4.3 

Let G be a compact Lie group and let N be a closed normal 

subgroup of G. Then there exists a neighbourhood U of N such that if H 



208 

1s a subgroup of G and H c U then H c N. 

Proof 

Without loss of generality, we may assume that N is the trivial 

group consisting of the identity element of G, for otherwise we may 

apply the theorem to the subgroup HN/N of G/N. Choose a biinvariant 

Riemannian metric on G and let U be the ball of radius Xi(G) about 

the identity element e, where i(G) is the injectivity radius of G. 

If '(E U and 11}. e, then there exist a e. TeG and t E JR, where l a I 1 

and 0 < t < Xi(G), such that 1 = exp(ta). Then there exists n£ ~ 

such that 

i(G) 
n + 1 ~ t < i(G) 

n 

It follows that n ~ 3 and 

%i (G) ~ 
n 

n+l i(G) ~ nt <. i(G), 

n 
and thus -g does not belong to U. It follows that if H is a subgroup 

of G satisfying H c U then 1-1 = [e} , as required. 

D 
Theorem 4.4 

Let 1T P ~ M be a smooth principal bundle over a compact 

smooth manifold M with compact structural group G. Let k be a non-

negative integer, let p € _LT, oo) satisfy p(k + 1) >dim M, and let 

<:Xf: (0, 1). 

PJ:.., k...t.. 
LJ~ .1' ' c J"T' 

Let L}~ A-0 

and ck 'CO(. A-

k.t ck .~ J. , C ,.,.,.-
0 

and /'t' 
0 

be the subsets of 

respectively consisting of all connections 

whose stabilizer in ~~+l ~ , CIHl ~ and ClHl ,o< tt- respectively is the 

subgroup corresponding to the centre Z (G) of G. Then L
1
P k , Ckfr 
{ 0 0 

d 
I<, ~.J_ 

an C .?'1' 
0 

. p A . k A- Ck •"".A are open sets 1n LJ{~, C ~ and ~ respectively 

containing all smooth irreducible connections on IT : P -----} 111. 

Proof 

Let Z(G)IVI denote the trivial fibre bundle M x Z(G) ___, 111. The 

inclusion Z(G) ~ G induces an inclusion Z(G)
111 
~ Gp of fibre bundles 



p A k 
over M, where Gp = P x ad G. Suppose that wE: LkN , C ,4- or 

C
k,ci.A_ ..... ,..,. n and that .:r : P --'> P is a continuous principal bundle 

automorphism stabilizing w , identified with a section YEc 0
(Gp) of 

Gp~ M. Suppose that Y(rn) E Z(G)l\'1 for some mE iVi. Let y be 
0 

the principal bundle automorphism corresponding to the element of 
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Z (G) defined by y(m). Then i(. also stabilizes (..A) 
0 

andY (m) =T(m). 
0 

But then :f' = f , by lemma 3.1, and thus Y belongs to the subo 

group of the group of principal bundle automorphisms corresponding 

to Z (G). We deduce that if i:': M ~ Gp defines a principal bundle 

automorphism of -rr : P----'> M stabilizing some connection on iT: P --') 111, 

and if y is not a member of the subgroup of C
0 

( Gp) corresponding to 

Z(G), then -j?(M) and Z(G)M are disjoint subsets of Gp. 

Let U be an open neighbourhood of Z(G) in G with the property 

that if H 1s a subgroup of G satisfying H c U then H C.Z(G) (such a 

neighbourhood U exists by the previous lemma). We may choose U such 

that U is invariant under all inner automorphisms of G. Then U 

determines an open neighbourhood V of Z(G)M 1n Gp such that if H 1s 

a subgroup of C
0 

( Gp) consisting of sections of V ~ M then 

0 
HE. C (Z (G)M). 

Let wE:: L}~ ,+ If the stabilizer of w 1n L}~+l ~ corresponded 

to a subgroup of L~tl ( Gp) consisting of sections of V ~ M, then it 

would correspond to a subgroup of Lktl(Z (G)M) and hence the stabilizer 

of w would be the subgroup of L}~+l ( Gp) corresponding to Z (G). Thus 

w E Lp A' Lp A k k 0 
if and only if there exists Y E Lf~tl ~ and 

m E: M such that ;]? (m) E Gp' V. 

Let WE Li~ A- be long to the closure of Ll~A- '- LEA-
0 

• Then 

there exists a sequence (w i : i e IN) of elements of L}~A' Lf~ A-t> 

converging to vv Then there exist a sequence ("f\ : i €: IN) of elements 

of Lj~+l t} and a sequence (mi : i E IN) of elements of M such that 



..... r/ .*/.~. = w. and -.r,.._ (m.) E Gp' V. By corollary 3.3, q X 1 uv 1 1 X 1 1 

subsequence of (yi : i Eo JN) converges to YE t[~+l ~ and Y'~w 

and this subsequence may be chosen such that (m. : i E JN) converges 
1 

tn mE M, since M is But then--f'(m)E Gp' V, since the 

chosen subsequence converges uniformly to "f". 
I p ..__ ' p ...l 

T1US Lkpr Ll<:.l't"O 

. '1 1 k.._ S1m1 ar y C 1"4' 0 

respectively. 

is closed, and hence Lp A. k ~""'o 
k o( J. . 

and C ' /"r t . ].;: 1 
are open se s 1n C ~ 

By theorem V.4.2, the stabilizer of a smooth connection is 

isomorphic to the centralizer of the holonomy group of the connection. 

It follows that the stabilizer of a smooth irreducible connection is 

isomorphic to Z(G). I P A ck .A and ck' <:)1.}4-
0 

T1us L] ./1" , .......... < 0 0 
contain all 

smooth irreducible connections on If : P ___, ~1. 

D 
Theorem 4.5 

Let TT P ~ M be a smooth principal bundle over a compact 
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smooth manifold with compact structural group. Let k be a non-negative 

integer, let p E £I, oo) satisfy p(k + 1) > dim M and let o<. E ( 0, 1) . 

p A- k .J._ ck , ~ ""--Let Lj< 0 , C ~ 0 , n 
0 

be defined as above. Then 

( i) ri~+ 1 ~ 0 
acts smoothly and freely on ~~ J\.- 0 on the right, 

1.? .A-: /!.? ] ~ is Hausdorff, and if ( W . : i €: JN) is a 
-l< 0 -1<+ . ;;;r 0 l 

sequence in ~~ ft0 , ('f'"i : i E. JN) 1s a sequence in ~~+l 't&o 
and if the sequences ( W i) and ( W i. Y i) converge in 1{ )..- 0 
to VJ and w respectively, then the sequence ( -f'.) 

1. 
converges 

to Y, for some Y € ~: + 1 ~ 0 , and w .Y = G0 

(l. 1
.l ~<+lr. ~<A C J-

0 
acts smoothly and freely on C 

0 
on the right, 

k.A,_ k+l~ 
C ./"'V 0 /C · '<} 0 is Hausdorff and if ( CP i: i e JN) 1s a 

k"" ("'"" . ) . . lul~ sequence 1n C __,...,.
0 

, .r . : 1 € "IN 1s a sequence 1n C 
l 0 



and if the sequences ( W ; ) and ( (A) ~ • Y : ) converge in 
~ ~ ~ 

kA - ~ C ffo to w and w respectively, then the sequence ( .r.) 
] 

-.r.- kt-l ~ ,T,. 
converges to"'.!", for some .x::: E C 't 

0 
, and (....! • r W 

J\ + l ..... "" . . . k . "' • 
(iii) c · '-j

0
acts smoothly and freely on C ''.A-

0 
on the right, 

Ck'A-
0 

/Ck+l,«~o is Hausdorff, and if (GU i i E JN) is a 

k 01. ..4 .... ,.-/ 1.n c ],+ l' .,(. ~ 0 sequence in C ' ./""" , ( x: . : i E JN) lS a sequence 
0 l 

and if the sequences ( W . ) and ( w .. Y. ) converge ln l l l 

c 1<•(l(.A to GO and w respectively, then the sequence 
0 

... T-" """G kt- l 01. 'f.: ~ .... converges to X for some ::t. E C ' (fo , and (.A). X 

Proof 

('"f: ) 
l 

=W 

The action of Lp ~ on Lp A lS well-defined and smooth 
kt-l o- 0 k 0 

. . p ..... 
by corollary 11.3.3, it is free by the definltlon of L~~o Suppose 

that ( W . ) and ( W .• :f.) converged in LP
1
· J\r to w and w but ( "f"l. ) 

l l l < 0 

did not converge to the unique "'f € Ll
1
) 

1 
'f, with the pro,Jerty that 

{+ 'J'O 

w . Y = w (such a Y exists by corollary·3.3). Then there would 

exist a neighbourhood N of Y in Lj~+l 'tJ 
0 

and a subsequence of 
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(•f\ : i E JN) with the property that Y i - N. But then by corollary 3. '3, 

some subsequence of this subsequence converges to some Y E Lp -A. 
o lol 6 o 

and tv .j( = w , which would imply that :I( = ~ • But this is a 
0 0 

contradiction. Thus if ( W.) and ( W .. ':1?".) converge, then so does 
l l l 

( ,;, . ) . 
..rl 

· · P A. ; P e It follows lmmedlately that Lk rr0 Ll<+l 'if<::> lS Hausdorff. 

This proves (i). The proofs of (ii) and (iii) are similar. 

D 
Choose mE M and let Lk+l~ m, ck-t-lt} m and ck+l,oc.~m 

P t: I<+ 1 r. k + 1 0( r=:, . . the subgroups of Ll<+l '(f , C ';f- and C ' d-- conslshng of 

denote 

those 

principal bundle automorphisms of 1T : P ~ M which restrict to the 

identity automorphism on the fibre of "'11: P ~ M over m. 
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Theorem 4.6 

Let ,.,- : P __, M be a smooth principal bundle over a compact 

smooth manifold with compact structural group. Let It be a non-negative 

integer, let p E. £I, oo) satisfy p(k + l) >dim M and let o<. E (0, l). 

P .A. li.A k,«..t. 
Let m EM and let Lk~ , C , C ~ 

ckt-l,cx ~ m be defined as above. Then 

L
p m p A 

(i) k+l ~ acts smoothly and freely on Lk_,.,..- on the right, 

( ii) 

P "'- I P ~ m · d ff d · f ( · ) · Lk .......,- Lk+l r lS Haus or -' an l- w i : ]_ E JN lS a 

P ..l_ '\T/ . P e, m sequence in Lk.)"'" , ( :t i : i e JN) 1s a sequence 1n Lk+l d-- and 

if the sequences ( w . ) and ( ~ . . 'f:.) converge in L
1
P A- to (.A) 

l l l { 

and w respectively, then the sequence (y.) 
l 

converges to the 

unique "f e Lt 1l} m such that CAl."'[:= w , 

k+l m c"-.A.. C ~ acts smoothly and freely on .)"tr on the right, 

k.J. I k+ 1 {"" m . d ff d . f ( c ..1'-Y C (f" 1s Haus or an 1 w i i E JN) 1s a 

sequence in c A , cp·. : i ~ JN l is a sequence in c -k ~l~m 
l 

I· 
and if the sequences ( w . ) and ( w .. i( . ) converge in C '-.J.. 

l l l ~ 

to w and w respectively, then the sequence (y.) converges 
l 

to the un1que "fE Ck!l~m such that w .Y W 

k+l o<. ~ m lc OC..J. 
(iii) c ' a acts smoothly and freely on c , ~ on the right 

c k, ~ IC lnl ,o< l} m 1s Hausdorff, and if ( W i : i E JN) is 

l
. n C k, «A. (J- . E ) . . lH 1 , o< ~ m a sequence ./'Y , r i : l JN lS a sequence ln C 

] 

and if the sequences 1n ( W 
1
.) and ( w .. ~ . ) converge 1n 

l l 

and respectively, then the sequence (y.) 
l 

"'T/ li:+ 1 01. 'f! m "T/ -converges to the unique :t E C ' d- such that 0J . ;r.. = W 

Proof 

r> fo m k+ 1 'f.. m k+ 1 o<. ~ m . 
L k+l d- , C J- and C ' ~ act freely on the appropnate 

spaces of connections, by lemma 3.1. The convergence of the sequences 

(i(i) of principal bundle automorphisms follows immediately from 

theorem 3.2. 

0 



§5. Analytical Properties of the Covariant Differential 

In this section, we shall study some properties of the 

covariant differential dw mapping sections of a vector bundle 

E -') M to sections of E ® T*M ~ M. where 6J 1s a smooth connection 

on a principal bundle -rr : P ~ M to which E __.., M 1s associated. 

We shall prove a pr1or1 inequalities for the map d 1..0 and deduce 

w 
that d 

spaces of 

maps 

L~(E 

t.P 
1

(E), 
k+ 

® T*M), 

where p ( k + 1) > dim M. 

C k+ 1 (E) 

ck(E ® 

and ck+l, ~(E) onto closed sub-

T*M) and ck,ot. (E ® T*M) respectively, 

We have seen that the group Lj~+l q. p 
of Lkd principal bundle 

I . h P A P · automorp11sms acts smoot ly on the space Lk~ of Lk connect1ons on 

IT : P ~ lVI whenever p ( k + 1) > dim M. The Lie algebra of 

t\~+l 't} may be identified with tj~+l ( 9 p). For any WE LI~Ar , the 

map from Lj~+l ~ to L~)\--- sending Y to y *C-1..:) is smooth and its 

derivative at the identity may be identified with the map from 

L\:+l ( 9 p) to Lj~( fJ p ® T*M) sending I 6 L\~+l ( 9 p) to dw J (see 

proposition V.7.l(vii) ). Similar considerations apply to the actions 

k+l k A_ 
of C g._ on C n C

k+l,-<Fn and of 
0 

k oc.k on C ' • The theorems 

proved in this section will thus be applicable to the study of these 

actions. 

Let W 
0 

: TP -t g be a smooth Ehresmann connection on a smooth 

principal bundle -rr : P---} M over a compact smooth manifold l•l. Then 

for all vector bundles E ~ M associated to 11 : P __, M, for all 

differentiable sections j of E ~ M and for all connections W on 

1f : p ~ M 

where t. = W - CA> 
0 

The map 

1s a continuous linear map. Also if p(k + 1) > dim ~1 and k > 0 
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there exists q t /l, oo ) such that 

l 
q 

l 
p 

and qk > dim ~1. Then there lS a continuous Sobolev embedding 

and a continuous bilinear map 

sending ( L: , ~ ) to "1:: o\ J , \'!here 9P = P x Ad 9 
the map 

Hence 

1s a continuous whenever p(k + 1) > dim M and k = 0. The continuity 

of this map when p > dim M and k 0 1s proved similarly, as is the 

continuity of the maps 

Theorem 5.1 

Let '1T : P ~ M be a smooth principal bundle over a compact 

smooth manifold M with compact structural group G whose Lie algebra 

is 9 Let E -'> M be a vector bundle associated to 1T : P ~ M. 

Let 00 : TP ~ 9 be an Ehresmann connection on (T p~ J\1 

and let 3' : l\1 ~ E be a continuous section of E ---:} M which 1s 
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differentiable almost everywhere. Let k be a non-negative integer, let 

p € {l, oo ) satisfy p ( k + 1) > dim M and let o<.. E ( 0, l) . Then 

(i) if wE Lfz,4 and if d""J E: Lr(E ® T*M), then ~E. L~+l (E) aml 

there exists a constant Kw > 0, independent of ~ , such that 



and there exists a constant K w > 0 independent of ! , such 

that 

II ~ lj ll .... I 
1-.-1 c J\T j_ 

K .. (II dvJ~ II i. + 
VJ \ II - '' !\. \ c 
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k w \; Oo( . k.c L o~. 
(iii) if wE C ,<><A- and :if d J £ C' (E ® T*M) then 1 E C' ' (E) 

and there exists a constant Kc.u > 0, independent of ~ , such 

that 

II S II ck+l,<>< ~ K..._, {llctw!ll 

Proof 

Let V.J 
0 

TP --) 9 be a smooth connection and let 

Then 

There are continuous bj linear maps 

Lp ( 
k 9P ® T*JVI) X L~(E) -} Lp(E 

L ® T~'l\'1) 

Lp ( 9P ® T*M) c1
'"(E) 

;) 

X __, 1' ( E ® T'''M) k l·~ 

c"( 9P ® T*M) 
k k 

T*l\1) X C (E) ~ C (E 0 

ck,ac. ( 9 P ® T*M) 
!· « 

xc'• (E)-7 cl',"""' (E ® T*M) 

where qlc > dim M, by corollary II.2.7. Thus if qk > dim M, if 

q P d
w( p 

) t. Lie (E) , if w e Lk ,4- and if 5 c Lk ( E ® T*M) , then 

d"""'o 3 t:. Lt~(E ® T*M), and hence ~ E- L=+l (E). Furthermore there 

exist K1 > 0 and K2 > 0 such that 

II 3 ll L ~ ~ I ~ k I ( II cL w 
0 

f ll L ~ t II I ll L ~ ) 

~ k ( ll J,w II} p -r K1.llw-vvo \\ L'i- +{l 1IJL '1-) 
I LK I< k • 

Hence there exists a constant K
3

, depending on W but independent of 

I , such that 



k 'JA w P 
Similarly, if 3 E: C (E), if C-0 E L;<:J-'f' and :if d 3 E. Lk(E ® T*l\1), 

) 

then ~E Ll<+l(E) and 

for some constant K
3 

depending on G-0 but 

k . k.A. . w ! E C (E) 1 f w E C H"' and 1 f d I E 

J E C ]q 
1 (E) and 

independent of r 
k 

C (E ® T*M), then 

III II c.~<+• $ !-(
3 

(II cC~! II c"' + 1131\cK) 

for some 
k ol. k o<,A_ 

constant K
3

; if !E C' (E), if wE C 'rr and if 

k <X k+l Cl(. 
C ' ( E ® T*l\1) , then J E. C ' (E) and 

if 

II! llcKt-tJO<. ~ ks (II J__ w ~II cK,o<. + ll ~ \\ c't,<X) 
for some constant K

3
. It follows that (i) and (ii) are satisfied 

when k = 0. To prove (iii) when k = 0, we observe that l E c1 (E) 

and a fortiori ! E C0
' .,._(E). It then follows that ~ E. c1 • o< (E) and 
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the required inequality is satisfied, proving (iii) when k = 0. (ii) and 

(iii) for k > 0 follow from the case k = 0 by induction on k, using 

the a priori estimates derived above. 

We now proceed to prove ( i) by induction on k. If p ( k + 1) > dim M 

and k "> 0 then there exists q E _Ll, Oo) satisfying 

1 1 1 
q ~ p dim M 

and qk >dim M. If W € L}~A- and d w f E L~(E ® T*M), then 

q _.A and d w "(" r w E: Lk-1 )'t S '= L~-l (E ® T*M), and furthermore there 

exists K4 > 0 such that 

\lcLVJJill~ 
1<- I 



By the induction hypothesis, J c L~(E) and there exists KS > 0, 

depending on o..> but independent of f , such that 

II ~ II L 9, ~ k s- ( II ~ w ~ II 
l ~-1 +\\!\leo ) 

k-

) p and Hence E: Lkt-1 (E) 

k 3 ( II cL ~ ~ II l PK + \1 ! I J L ~ ) II ~ II L p ~ 
I(+ I 

as required. 

D 
Combining this theorem with lemma 3. 4 v<e obtain the following 

analogue of theorem 3.2. 

Theorem 5. 2 

Let lT P ~ M be a smooth principal bundle over a compact 

smooth manifold M with compact structural group. Let E --') M be a 

smooth vector bundle associated to IT : P ~ M. 

Let w : TP-+ 9 be an Ehresmann connection on IT : P ~ M 

and let ! : M~ E be a section of E~M. Let m ~ M. Let k be 

a non-negative integer, let p E. Lf,()IO) satisfy p(k + 1) >dim M and 

let ~ E (0, 1). Then 

(i) if w € Lf~k and r E- L~~+l (E) then there exists a constant 

K w > 0, independent of f , such that 

II ~~~L~ .. ~ kw ( ilcL""}IIL~ +llCm-11~)' 
( i i) and 

k+l ! ~ C (E) then there exists a constant 

K w > 0 independent of I , such that 

IIlii c. \HI ~ k""" ( II cL w 'i II c k + I 3 (M) I"'- ) ' 

( · · · l · f w,. c;'-,Q(..ll 1 Ll 1. o:; )'t' and r E Ck+l,o<. (E) then there exists a 

constant Kco "> 0 independent of .f , such that 
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\\ 'J II 

Proof 

·- (J_ 
[J\" 

l. ) 1 
q / p 

1 \ .... .LJ ~ exists q ) 

By the Sobolev embedding theorem, there exists K1 > 0, independent 

of J and vv , such that 

By theorem 5.1 and lemma 3.4 there exist constants K2 and K3 , 

independent of s , such that 

II ~ II L p 
1'\ +I 

f\, ( II J""' s II L ~ + H ~ II co ) , 

1-\ (II cLws II cv + J ~ crv\_d~) 
3 L . 

Combining these inequalities, we see that 

thus proving (i). The proofs of (ii) and (iii) are similar. 

D 
Corollary 5. 3 

Let lT' : P -? M be a smooth principal bundle over a compact 

smooth manifold M with compact structural group. Let E ~ M be a 

vector bundle associated to IT : P __.., M. Let (A) : TP ~ 9 be an 

Ehresmann connection on If P ~ M. 

Let k be a non-negative integer, let p E /l, 0o) satisfy 

p ( k + 1) > dim M and let o< € ( 0, 1) . Then 

( i) if w E L~ 4- then the continuous linear map 

2li:i 



( i i) 

has finite dimensional kernel and maps Lp (E) onto a closed 
k+l 

subspace of L}~(E ® T*M), 

then the continuous linear map 

k+l 
has finite dimensional kernel and maps C (E) onto 1 closed 

k 
subspace of C (E ® T*M), 

I\ o< .J 
(iii) if wE C ' .n- then the continuous linear map 

k+l,ol. 
has finite dimensional kernel and maps C (E) onto a closed 

subspace of Ck,o< (E ® T*l\1). 

Proof 

p 
Let mE- 111 and let X be the subspace of Lk+l (E) consisting of 

all ! E: LL
1 

(E) satisfying the condition j (m) = 0. X has finite 

codimension in t\~+l (E), thus it suffices to show that d w (X) is 

a closed subspace of L~~(E ® T*M) and that d~ I X is a monomorphism. 
h I 

X is a Banach space, hence in order to show that d 
00 

(X) is closed it 

1s sufficient to show that the map 

d"' l X : X __.., d w (X) 

1s an isomorphism of normed vector spaces. Thus it 1s sufficient to 

verify that 

(dw( X)-l : d '-"'(X)~ X 

1s bounded. But by the previous theorem 

) 

'""/ -1 for all J E X (since ) (m) = 0). Thus (d X) lS bounded, and 
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hence d ~(X) JS closed. Thus d (..&3 (Lt
1 

(E) ) is closed in Lt~(E ~ 1''~!11). 

This proves (i). The proofs of (ii) and (iii) are similar. 

D 
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Chapter VII 

A GENERALIZATION OF HODGE THEORY 

§1. Introduction 

Given a smooth vector bundle over a compact Riemannian manifold 

and given a connection on this bundle we obtain results for the co-

variant Hodge-de Rham Laplacian, acting on differential forms with 

values in the given vector bundle. These results generalize the 

results obtained by Hodge in his theory of harmonic differential 

forms on a compact Riemannian manifold. 

We first outline the main results of Hodge theory. Let M be 

a compact Riemannian manifold of dimension n and let d and S be 

the exterior derivative and codifferential respectively, acting on 

differential forms on M. The Hodge-de Rham Laplacian A is defined 

by 

The vector bundle 1\ JT*M ~ M has a natural inner product structure 

<. ' . > 
determined by the Riemannian metric on M, for all integers j 

satisfying 0 .$ j S n. Then 6. is a self-adjoint elliptic differen-

tial operator of order 2. Define an inner product(. , .) on L
2

( J\ jT*M) 

by J < ~ , ~ > d(vol) 

M 

for all j-forms 'YJ and ! on M. Then 

(6~, 1 ('"7,6~ ) . 

Also if "1 1s a j-form and '$ is a (j + 1 ) -form , then 

( d '? ,) (Y]' ~J ) . 
Thus 

( 6-ry ' l ) (d'? ' d J + ( ~ "'] ,bf ) 



for all j-forms 1 and 1 on M. Thus if 'Y) E Li,( 1\ JT*M) then 

6"7 0 if and only if d YJ = 0 and SYJ = 0. 

The Laplacian defines Fredholm operators 

of index zero, and if \..\... f: L~oo ( 1\ J T*M) 1 s a current "''i th the 

2 . 
property that .6 LA. €: Lk ( 1\. JT*M) for some k E: '2Z then 

(see /Warner, F.W.; 1971, chapter~~ or /Wells, R.O., 1973; chapter 4/). 

Let HJ(M) be the space of harmonic j-forms, defined by 

Using the above results, one may show that 

L2 ( (\ JT*M) 

+ 

for all k E: '2Z. We deduce that every smooth j-form "rJ on M 1s uniquely 

expressible in the form 

'7 :s + doc, + ~fi 

for some harmonic j-form ~ and for some smooth ( j - 1) -form o<. and 

(j + 1 )-form fi . Let 

G : C
00 

( 1\ jT*M) ~ C00 
( 1\ jT*M) 

be the unique linear map with the properties that G ~ 0 if 

'rJ € Hj (M), and if 'Y] e LJ (CoP ( f\ jT*M) ) then G~ 1s the unique 

element of c6 (C- ( 1\ jT*M) ) satisfying ~ (G ~ ) = -ry Let 

H : C 00 
( 1\. j T *M ) 4 Hj ( M ) 

be the orthogonal projection with kerne 1 6. (C.,., ( A jT*M) ) and 1mage 

1-!J (M). Then 

I- 6 G=I-G6 =H. 

Using the regularity results described above together with the Banach 
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isomorphism theorem, it follows easily that G and H extend to bounded 

lineal" maps 

G : Ll~( 1\ ,JT*M) ~ L2 ( 1\ jT*M), 
' k+2 

H 

The results of Hodge theory may be extended to differential forms 

on !11 with values in some smooth vector bundle E --+ 1\1 over 1\1. A smooth 

connection CA.) on E ~ M and an inner product structure on E ~ M 

preserved by this connection determine a covariant exterior derivative 

w cw d , a covariant codifferential o and a covariant Hodge-de Rham 

....... w' Laplacian ~ all acting on E-valued differential forms on M. All 

the results described above have obvious analogues with two exceptions. 

While it is true that 

A v.) ( L 2 ( E .o. A J 'f *M ) 
L\ k+2 ~ 10' I\ 

it is in general no longer true that this sum is direct. This is a 

f th f t tl t ( d ~ ) 2 
_L 0 . 1 consequence o e ac 1a r 1n genera . Thus though 

every smooth £-valued j-form 1'] on 1\1 is expressible in the form 

'f' w \.(A)Q 
~ ) +d ot.+o Joj 

1\ v.J 'r 
for some E-valued j-form J satisfying u ) = 0 and for some 

smooth E-valued (j- 1)-form o(. and (j + l)-formj3 , it is no 

longer true that this decomposition of ~ 1s unique. 

One may extend these results to Sobolev spaces and HHlder 

spaces using the regularity results of chapter III. Let k t ~ and 

let 

1< p<.oo 

Aw 
Then .u defines a Fredholm operator 
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/\~ 
L.\ 

of index zero. Moreover if u 1s an E-valued current with the 

property that 

\'lhere k E ~ and p E ( l, <X> ) • 

ACA 
if Qi... E (0, 1), then t.J 

Similarly if k E ~ satisfies k ~ 0 and 

defines a Fredholm operator 

of index zero. Moreover if u 1s an E-valued current with the property 

that 

In this chapter we shall relax the condition that W be smooth. 

Instead we shall demand that w be an Le connection on E ___, M 1-;here 

kE~ and p ~ (l,oo) satisfy the condition p(k + l) > n, where n 1s 

the dimension of M, and where also p ~ 2 in the case where k "" 0 

(note that this last condition follows immediately from the condition 

p (k + l) ) n when n ~ 2). Let p' E (1, oo) be the exponent conjugate 

to p, defined by the condition that 

1 1 
.L .L l + p p' 

Then we shall show that CJ.w defines Fredholm operators 

/:lw: Li-f-1 (E ® 1\ jT*M) __, L~-l (E ®I\ JT*M) 

for all L• ~ and q E ( l, oa) satisfying the conditions 

l k 
~ 

l L 
~ 

l k - + 
p 1'\, ,__ n p' n 

(theorem 3.4). Moreover if u E L~~+l (E ® 1\ jT*M) and 

t::t.J u Eo Li_
1
(E®/\ jT*M) then uf Li+l(E ® ;\JT*M) (theorem 3.5). 

From these results we shall deduce results corresponding to results 

in the theory of harmonic forms on a Riemannian manifold described 

above (theorem 4 .l). We shall also prove analogous results when ~ 

· k,o< t' f . t I " l d f 1s a C connec 1on or some 1n eger < ~ an or some o(,E(O,l) 

(theorem 4.2). 
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§2. Lemmas concerning Maps between Sobolev Spaces 

We study the linear maps between Sobolev spaces of sections of 

vector bundles E1 ~ 1\1 and E2 ~ 1\1 over a compact manifold M induced 

by a vector bundle morphism Q (= L~~(!Iom(E 1 ,E 2 ) ), 1vhere II. ~0 and 

p(k + 1) > dim M. 

Lemma 2.1 

Let Tr
1 

: E1 __, M and Tf 
2 

: E2 _, M be smooth vector bundles 

over a compact smooth manifold 1\1 of dimension n. Let the non-

negative integer k and the real numbers p and (. satisfy 

1 ~ p <.. 00 

0 ~ t. < 1 
n 

p 
1 < k + 1 

- E ' n 

r L and let Q ELk(IIom(E 1 , E2 ) ). Let e ZZ and q,r E (l,oo) satisfy 

1 
r 

1 
q 

+ 
1 - E • 
n 

Then Q defines a bounded 

f E L~(E 1 ) to Q o f provided th.1t 

-~< ~ L ~ ~<, 

1 
r 

1 
q 

Proof ---
First 

l 
q 

< 

< 

L 
n 

L 
n 

1 
~ p 

~ 1 -

note that 

1 1 -r n 

1 
l -n 

1 ( 1 
p 

k 
n 

+ £ 

+ E. 

!:) 
n . 

k ) n 

sending 
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22o 

and thus the condition 

l L 
( 1 ( l k ) -

q 11 p n 

lS automatically satisfied 1'/hen L~ o. Similarly 

1 > 1 l k 
+ 

r q p 11 

/ 
l k 
p n 

and thus the condition 

l L 
> 1 k 

r n p n 

lS automatically satisfied when l~ 0. Note that if 

l L l k 
r n p n 

then L > 0. 

First consider the case when L ~ 0 and 

r (1 > k 1 
p n 

Choose s E (1, 00} such that 

l k - L. < l < L. + 1 - £ ---p n s n 

and s > r. This is possible s1nce 

l k - (, < L + l 
E --- -p n n 

L+ l 
£ > --- - 0 

' n 

l k - (., < 1 --- ' p n 

l I< - l, < 1 ---p n r 

by the Sobolev embedding theorem. Moreover 



r < q, r < s and 

q s n 
L 1... 1 
n r 

1 1 
- + 

and thus the evaluation map def1nes a cont1nuous bilinear map 

by theorem 11.2.4, part (i). This proves the theorem when l~ 0 and 

l 
r 

l > l 
n p 

k 
n 

Next we prove the theorem when L > 0 and 

1 L -
r n 

l 
p 

k 
n 

(we have already seen that this equality implies that L > 0 g1ven 

that the hypotheses of the lemma are satisfied). Then 

l 
q 

L 
n 

and hence q L. > n. 

l 
p 

k + l < 0 
n 

r 
Now g E LL(I!om(E

1
, E2 ) ) by the Sobolev embedding 

theorem, and the evaluation map defines a continuous biliear map 

X 

by theorem 1!.2.4 part (ii). This completes the proof of the lemma 

when ~..-~ o. 

We prove the lemma when (., < 0 by duality. Let q' and r' be the 

exponents conjugate to q and r respectively, defined by 

Then 

1 
q 

1 
r 

l 
q' 

1 
q' 

+ 

+ 

l 
q' 

l 
r' 

r' + 

(- L.) 
n 

1' 

1. 

1 - t n 

~ 
1 k 
p n. 
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is dual to the section 9 of Hom(E 1 , E
2

) ~ M on each fibre of these 

vector bundles. From 1vhat we have already proved we see that g 1 defines 

r I q I .•. 
a bounded linear map from L (E *) to L (E 1-). The Banach space dual 

-L 2 -L 

9 1 * of Q 1 thus defines a bounded linear map from Ll(E 1 ) to L~(E 2 ), by 

duality. But 9 1
''' and Q coincide on Ceo(E

1
). Thus 9 = Q 1 ~' by definition 

of Q. Thus proves the lemma when l < 0. 

D 
Lemma 2.2 

Let 1T 
1 

: El -4 M and lf : E" ~ M be smooth vector bundles 
'2. 6 

over a compact smooth manifold M of dimension n. Let the non-negative 

integer k and the real numbers p and ( satisfy 

1 < p <.co -. 

~ E < 
1 

0 
n 

1 < k + 1 E -p n 

and let 9 E Lk(Hom(E 1 , E2 ) ) . Let l E ~ and q,r E (1, .oo) satisfy 

1 1 
- £ - =; 

r q 

q r 
Then g defines a compact linear map from Ll+l (E 1 ) to LL(E 2 ) sending 

f f L~t 1 ) to Q • f provided that 

- k - 1 ~ (., ~ k, 

1 t. 1 k 
r n ~ p n 

1 \.,+ 1 
~ 1 ( --- -

q n 

Proof 

1 
r 

First we prove the result when 

1 ~ > 1 k 

r n p n 

~) 

L ~ 0 and 
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/\s 1 n the proof of the previous l em_m8 we may choose s E ( l, o00) such 

that 

l 
p 

k - L 
-n- < l 

s < n - E 

and s > r. 
s 

Then Q E LL(Hom(E 1 , E2 ) ) by the Sobolev embedding theorem. 

No11 

hence 

Also 

L + 1 ---

l 
q 

l 
q 

n 

+ 

l 
s 

l 
n < 

L 
n 

- £ > 0 

l l l 
+ 

q n s 

l - € 
1 

s r 

> 0 

since s > r and L~ 0. Clearly 

1 l < l < 1 
q n r 

-

hence there exists t E ( l, Oo such 

1 
q 

Since 

1 
t > 

1 
n 

1 
q 

< 
l < 1 
t q 

1 
n 

we have a compact embedding 

L 
+ n 

E. 

l L 
+ 

s n 

that t > r and 

1 
£ -

.-, 

by the Rellich-Kondrakov theorem. Also the evaluation map defines a 

continuous bilinear map 

by theorem 11.2.4 since s > r, t > r and 

1 l 
t 

L 
n < l 

r 
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It follow::; that Q defines a compJcL linear map 1 q 'r:' \ 4-.--
J~l..o+l \!',1 J L,U 

Next we prove the theorem when l = 0 and 

1 L l k 
r n p n 

Then g €-
r 

L (Hom ( El, E2) by the Sobo]ev embedding theorem. Nm'i 

J l l k + l 
£ - + 

q n p n 

< 0 

and hence we have a compact embedding 

by the Rellich-Kondrakov theorem. Also the evaluation map defines a 

continuous bilinear map 

Thus g defines a compact linear map from L~(E 1 ) to Lr(E 2 ). 

Next we prove the theorem when L > 0 and 

g 

l 
r n 

r 
~ L L (Hom ( E l, E2) 

1 L+ 1 ---
q n 

1 
p 

by 

1 
r 

1 
p 

< 0 

k 
n 

the Sobolev 

L 1 
n n 

k + )_ 

n 

embedding 

+ t. 

+ £. 

and thus there exists t e ( l, oo ) such that 

1 
q 

1 
n < 1 

t < L 
n 

and t > r. Then we have a compact embedding 

theorem. Now 

by the Rellich-Kondrakov theorem. Also the evaluation map defines a 
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continuous bilinear map 

by theorem II.2.4, since t) r and t L > n. Hence Q defines a 

. f q ( ) r. ) compact llnear map -rom Ll+l ,Ei. to LL\ E 2 .. 
This completes the 

proof when l ~ 0. 

We prove the lemma when l < 0 by duality. Let q 1 and r 1 be the 

exponents conjugate to q and r respectively, defined by 

Then 

Let Ql 

l 
q 

r· 

l 
ql 

1 
ql 

6 

l + ql 

+ rl 1. 

1 
r' 

l+ 
~ + ---

n 

L~~ (Hom (E 2 ~', 

' 

l k 
p n. 

E ~') 
l be the section of Hom(E/'• E 1 ~')-} l\1 Nhich 

is dual to the section g of Hom ( E1 , E2 ) ~ i~l on each fibre of these 

vector bundles. Q' defines a compact linear map from L~~(E 2 *) to 

Thus Q defines a compact linear map from L~+l(E 1 ) to 

D 
Corollary 2. 3 

Let 'Tf 1 : E1 ~ M and Tr 2 : E2 ~ 1\I be smooth vector bundles 

over a compact smooth manifold M of dimension n. Let k be a non-

231 

negative integer and let p e: {l, oo) satisfy pk > n. Let Q € tfz(Jrom(E 1 ,E 2 ) ). 

Then 9 defines a compact linear map from L~+l (E 1 ) to L~(E 2 ) sending 

f~ L~(I~ 1 ) to 9 ° f provided that l€;7Z and q '= (l,oo) satisfy 

- k - 1 ~ L ~ k, 



1vherc 

., 
.l 

p 

p' 

1 
p 

lS 

Proof 

,_ 1 

·~ ~ 
.l_ 

n q 

the exponent 

p' 
L. 

L 1 ,_ 
+ 1 

.L !\. .L 

~ + ---
n p' n 

conjugate to p, defined by 

This follows immediately from the previous theorem on 

taking € 0. 
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~;:>. C:oni:i.nuity of some niffr;rent-.iCJl Operators between Sobolev Spaces 

In this section we study the covariant exterior derivative, 

codifferent-ial ancl!!odge-cle !<ham Laplacian, \vith respect to a not 

necessarily smooth connection, of differential forms with values in 

some vector bundle. 

Let IT : E ~ ~~ be D smooth vector bundle associated to a 

smooth rwincip;:l1 bundle IT : P ~ ~1 over a compact Hiemannian 

manifold M vJith structural group G whose Lie algebra is 9 . Let 

lr ad : Gp ~ ~1 and 1TAd 9 p ~ ~~ be the adjoint bundles, with 

total spaces Gp = P x ad G, 9 p = P x Ad 9 
a smooth inner product structure ( . , . ) 

Let Tf : E -'> JVI be given 

: E ® E --.m which is 

preserved by every connection on 1f : E ~ ~~ arising from an Ehresmann 

connection on -rr : p ~ ~I. 

Let TP __. 9 and w 2 : TP ~ 9 be Ehresmann connections 

on Tf : P --'> !11. We have seen that the covariant exterior derivatives 

w, c..:>~ (" w, l1 
d ~ and cl f and the covariant codifferentials o 

1 
and 

~w1.1J of an E-valued differential form ~ on 111 sCJtisfy 

where '1: : M --"> 9 p ® T~'~l is the 9 p-valued 1-form on l\1 corres-

paneling to w 
2 

- w
1 

(see proposition V.7). 

Proposition 3.1 

Let M be a compact Riemannian manifold of dimension n and let 

the vector bundle v : E __, M, the principal bundle Tf : P ~ M and 

the covariant exterior derivative and covariant coclifferential of 

!<>valued differential forms with respect to connections on Tr : P __., l\1 

be as above. Let k be a non-negative integer, let p E: _LI, 0o 

p ( k + 1) > n and let Liz jy be the space of Ll: connections on 

satisfy 

IT : p ~ lVl. 
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Let l EZZ and q E- ( 1' 00 ) s;:~tisfv the conditions 

- k - 1 ~ L ~ k, 

1 k 1 L .s 1 k + 1 
~ ---

p 11 q n p' n 

1vhere p' :lS the exponent conjugate to p, defined by 

1 
p 

+ 
1 
p' 

l . 

Then the covar·iant exterior det"ivative d w and the covariant 

c"" codifferent:ial o define bounded linear operators 

for ;:~ll w E Lk A- . If uJ 
1

, ~ 
2 

E Lkk then the line;:~r 

operators 

d 
W1. w, 

- d 

are compact. 

Proof 

The second part of the proposition follows from corollary 2.3 

and the fact that 

~ 1'\. '7 
n. ( J.ej "7 t I ) + I 

-=-(-l) 'Jf('L:A.~'}) 

234 

On applyinr~ this result when UJ 
2 

=(A.) and when W 1 1s a smooth connection 

we obtain the first part of the proposition. 
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l .emma 3 . 2 

Let f1! be a compact Riemannian manifold of dimension n and let 

the vee tor buncll c n : E ~ ~~, the principal bundle Tr: p ~ l\1 

and the covariant exterior derivative and covariant co-differential of 

E-v:1lued differential forms w:i th respect to connections on IT : P--) !VI 

be as above. Let k be a non-negative :integer, let p e ;I, <)c) 

satisfy p ( 1<: + l) .> n and let L\~ A- be the space of Ll: connections on 

11 : P __, I'll • Lc t w l , W 
2 

c L~ A--
Let [ E /0, oo ) sa bsfy the con eli tions 

0 ~ £ < n 
1 

l 
p <. 

k + l 
n 

and let l e. /Z and q, r E: ( l, oo ) satisfy 

L l £ 
r q 

- k - 1 .$ L !- k, 

1 L 
~ 

k 
r n r 11 

l L 
~ 

1 k + 1 
+ 

q n p' n 

\vhcre p' 1s the exponent conjugate to p, defined by 

1 1 
+ p' p 

1. 

Then clwl. w, 
- d and "" ~ 1 define bounded linear operators 

d 
Wz. 

- d 
c.,..) I 

&w'l. ~w, 

Proof 

This follows immediately from lemma 2.2. 

D 
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Lemma 3.3 

Let M be a compact Hiemannian manifold of dimension n and let 

the vector bundle 
,..._. 
rr : E ~ ]VJ, the principal bundle Tr : P ~ ~'! and 

Ute cuv;:u·ia!l L ex LeJ'HJI Jer_i_ va L_i_ vc a!lu cuva!·icul L cuJifferen Lia1 of 

E-va lued differential forms vo~ith t"espect to connections on iT:P-4l\1 

be as above. Let k be a non-negative integer, let p E {l, oo) satisfy 

p ( k + 1) > n and let Lk A- be the space of Lk connections on 

1f : p ~ M. Let c.J l, W 2 E L~~ k . 
Let l_ E /0, oo ) satisfy the concli tions 

0 ~ £ < I. 
n 

1 
p < k + l 

n - E. 

and let Le; LZ and q,r E. (1, 00 ) satisfy 

l 
r 

1 
q 

1 
+ 

n 

-k~l~ k 

1 L, >. 1 
r n r p 

1 L 
5: 

1 
p' q n 

k 
n 

k 
+ 

n 

where p' 1s the exponent conjugate top, defined by 

1 ]_ 
+ p' p 

l. 

Then d~'2- - dw, and 
c- w t. - (" v:~, o o define bounded linear operators 

d 
w"l 

b c..:IL 

Proof 

d ""'• 

~w, 

L~(E ® 1\ jT'''l\1} ~ L~(E ® 1\ j+lT,~~1), 

L~(E ® 1\ j+l'f,'>-M) ~ <(E ~ J\ j'f''<M). 

This follows immediately from lemma 2 .1. 

D 
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We recall that if (~ 1s a connection on TT : P ~ M then the 

"w covariant Hodge-de Rham Laplacian ~ 1-.,;i th respect to w 1 s the 

elliptic differential operator acting on E-valued differential forms 

defined by 

Theorem 3.4 

Let M be a compact Riemannian manifold of dimension n and let 

the vector bundle -IT E ~ M, the principal bundle IT : P ~ M 

and the covariant Hodge-de Rham Laplacian of E-valuecl differential 

forms 1-.,;i th respect to connections on 1T : P ~ l\1 be as above. Let 

k be a non-negative integer, let p E (1, oo) satisfy p(k + l) > n 

and 1n the case when k = 0 let p also satisfy the condition p ~ .-, 
L... 

Let L~ A- be the space of L~ connections on -rr P ---') M and let 

w € LEA . 
Let lt zz and q €(1,00) satisfy the conditions 

- k ~ L ~ k 

1 k 
5-

1 L 
~ 

1 k 
p' + p 11 q n n 

where p' ls the exponent conjugate to p, defined by 

1 1 
- + p p' 

1. 

Then the covariant Hodge-de Rham Laplacian defines a Fredholm linear 

operator 

Aw .. q j q J 
~ L(,d (E ® 1\ T~'l\1) ~ Lt.-l (E ~ 1\ T~'l\1) 

of index 0. 

Proof 

First suppose that W is smooth. 1s a self-adjoint 

elliptic differential operator and defines a Fredholm operator 
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q j q l 
L . ' ( E ® A. 'PM ) ~ L . ' ( E ~ " T ~'M ) 

L+l L-1 ~ .. 

of index 0, using theorem 111.5.3. 

Nm-.r consiJer the case when w ~ L~ A but w 1s not necessnrily 

smooth. The operators 

s~ Li(E ® 1\ j+lT"'IVI) ~ L~-l (E@ 1\ jT."'M) 

~"" L~+l (E ® J\ jT*~I) ---> L 1 (E ® (\ j-lT"'!VI) 

are bounded by proposition 3.1, and moreover, 1n each of these four 

w (..o.lo 
cases, the operator d - d or cw c w o - o 0 is compact, where 

w is any smooth connection. Thus 
0 

~ : L q l ( E ® 1\ J T*M) _, L q ( E ® )\ J T*M) 
L+ l-1 

1s bounded, provided that l and q satisfy the hypotheses of the 

Lheorem, and also 

L 4 (E ® /\JT*M) -} L q (E ®A JT*M) 
L+l l-1 

"'-' It follows that 6 is Fredholm, being the sum of a Fredholm operator 

and a compact operator. Also 

v-> 
index ~ 

Theorem 3.5 

AWo 
index L.:l 

o. 

D 
Let M be a compact Riemannian manifold of dimension n and let the 

vector bundle iT : E ~ M, the principal bundle 1r : P ~ M and the 

covariant Hodge-de Rham Laplacian of E-valued differential forms with 

23K 



respect to connections on 1T : p ~l\1 be as above. Let k 

negative integer, let p E ( l' -oo ) satisfy p(k + 1) > n and 

when k 0 let also satisfy the conch bon ~ 2. Let 
p 

= p p Lk 

space p t" of Lk ~onnP.~ .1 on"' on TI 

Let l ~ z;: and q E; ( l, oa satisfy the conditions 

- k $ L ~ k, 

]_ 

p 
k 
n 

1 
Cj 

l 
+ p' 

k 

n ' 

where p' is the exponent conjugate to p, defined by 

If 

1 
p + 

l 
p' 

J. 

'YI E rP' (E ® A JT*M) and 
1 ~-lul' 

Proof 

be a non-

in the case 

A be the 

Let w be a smooth connection on ,. P ~ M. There exists a 

real number £ satisfying the conditions 

0 < E < 1 
11 

1 < k + 1 
E. -p n 

First h'e show that if m E: LZ and r, s E. ( 1, oo ) satisfy the conditions 

- k ~ m ~ L 

1 
E. ~ 

1 .s 1 -r s r 

1 L 
~ 

1 m 
~ 

1 m 
~ 

1 k - + 
q n .s n r n p' m 

and if ~ € L:+ 1 (E ® 1\ jT'''M) then 'YJ E L:+l (E ® !\ jT'''M). By proposl

tion 3.1 and lemma 3.2 it follows that 

L
8 

(E ® 1\ j '1'"'1\1) 
m-l 

using the fact that 



.., 
1\w_/\o 
..... -
But E Ls (E ® 1\ JT'''M) by the Sobolev embedding theorem, 

m- J '\ 

SLI1CC 

Hence 

1 
q 

L 
n 

m 
n 

L s l ( E ® 1\ J T*M) . 
m-

Wo 
But 6 lS an elliptic 

differential operator with smooth coefficients, hence 

by the elliptic regularity theorem III.5.2. 

By iteration it follows that if ~ € L:+l(E ® A jT*M) for some 

m E U: and r E ( l, oo) satisfying 

then 

- k ~ m ~ l 

1 
q 

1') 

l 
q 

e 

l 
~ 

1 
n r 

L s (E 
m+l ® 

L ~ 1 
n s 

m 
~ 

l - + 
n p' 

j\ jT'''M) for all 

m 
n 

1 
~ p' + 

k 
n 

k 
n 

s E 

(note th3.t if s ~ r \·Je have an embedding 

(1, 00 ) satisfying 

and thus the result follm<Js trivially in this case). The theorem Is 

the case when L = -k follows directly from this result. 

Now let m € U. and r, s €' ( l, oo ) satisfy the conditions 

1 1 
~ 

1 
$ 

1 1 E + 
r n s r n 

1 1.. 
f. 

1 m 
$ 

l k 
p' 

+ 
q n r n n 

1 L. 
~ 

1 m - 1 
~ 

l Jc --- + 
q 11 s n p' n • 

We shall shm1 that if 
'YJ 

s ( 6 L E 
m 

0 1\ JT1'~1) then 
r 

A jT*M). 'YJf:. L l (E ® m+ 

Using proposition 3.1 and lemma 3.3 it follows that if '>"] E: Ls(E ® 1\ JT"'l\1) 
m 
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then 

w 
6 '1 

But r J 
E L 

1 
(E ~ !\ ''[''''lVI) by the Sobo1cv embedding theorem. 

m-_. 

lienee € 
r J. 

L 
1 

( E ® 1\ ' T'"'l'l!) and t~hus 
m-

by the elliptic regularity theorem III. 5. 2. 

'11 E Lr l(E ® J\ JT*M) 
1 mf 

Now let us suppose that n '> 1 and that L ) -k. Let m 6 7Z 

satisfy 

-k+1 ~ m~L 

and suppose that ~ € L! (E ® 1\ jT'''i,I) for some t €: ( 1, co ) satisfying 

the condition 

Then 

since 

1 

CJ 

there 

1 
q 

1 
s 

n 

1 
q 

< 

> 

L 
~ 

1 m - 1 ---
n t n 

exists s E. (1, 00 

t. 1 m - 1 
~ n s n 

1 
1 
n 

l :' ncl 

L- (m- 1) 1 
q n 

( 1 

~ 
k 

+ 
p' n 

satisfying the conditions 

1 k 
~ p' 

+ 
n 

1 
n 

1 
n 

But we have seen that if "'') e L! (E ® 1\ jT'''~1) then 1') E: L: (E 0 1\ jT.,.'l\1) 

and hence 1) E L~+l (E ® 1\ ,JT'''l\1), where r E ( 1, oo ) is defined by 

1 1 1 
r s n 

Iterating this procedure, we see that if p' J 'Y) E L-k+l (E ® 1\ T*l\1) then 

there exists r € ( 1, oo ) such that 

1 L 1 L 
~ 

1 k 
~ p' 

+ 
q n r n n 

and YJ E L~+l (E ~ 1\ jT*M). Hut we have seen that this implies that 
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1'\ET,q _(E®/\JT''']\1) ;}S l"erpJirPrl. This completes the nl,roof of the 
l+ L . ' . • • 

theorem when n > l. 

It only remains to prove the theorem when n l and L '> - k. 

But then 

l 
L <. 

1 
k - p' + 

q 

S:U1Ce p t ,q c(1,oo), L ,k ~ LZ ' L f k and 

l L ~ 
l 

k - + 
q p' 

\1/i thout loss of generality, 'i may be chosen such that £. also 

satisfies the condition 

1 
p' ' 

- L < 
9,.. 

as 1.,ell as the concli tions 

0 < [ < 
1 
n 

l <. k + 1 - £ p n 

Suppose that m € LZ satisfies 

-k+l 5o ms.L 

+ k - c. 
p' 

t J "Yl E: L (E ®I\· T'''M) for some t E (1, oo) satisfying the 
I m 

and that 

conclit:i on 

l 
q - L 1 

t (m - 1) 
1 
p' + k. 

Then there exists s E. ( 1, oo ) satisfying the conditions 

Then 

rE 

1 
q - L ~ 1 

- (m - 1 ) 
s 

1 <. E. s 

., € Ls(E ® J\ JT,~M) and 
m 

(1, oo) sa tisf:i.es 

1 > 1 
+ 1 - £ r s 

1 
p' + - £. 

hence 



1 
q L 

1 
m 

1 
+ p' 1<. 

n 1 1 ,.., 1 

/\s before, if "'7 E L~lul (E ® /\ vT,~ill) then 'Y) E L~l+l (E® 1\ '' T'"M) fJr 

some r satisfying the condition 

q - L 1 - L 1 
r' + 

k, 
r 

and hence -r; E:- Li+l! E ® 1\ jT,~fvl). This proves the theorem vJhen n = 1. 

D 
Corollary 3. 6 

Let ~1 be a compact Riemannian manifold of dimension n and let 

the vector bundle TI : E ~ !VI, the principal bundle Tf : P ~ lll and 

the covariant Hodge-de Rham Laplacian of E-valued differential forms 

with respect to connections on 1T : P _, l\1 be as above. Let k be 

a non-negative integer, let p E (1, oo ) satisfy p(k + 1) > n and in 

the case when k = 0 let p also satisfy the condition p >,. 2. Let 

Lp A be the space of Lp connections on -rr : P --} !vi and let k k 

w~ LJ~ A 

Let p' € ( l, oo ) be the exponent conjugate to p, defined by 

1 1 
+ p' p 

1. 

If P ' J /\w 1'1 "r) f L-k+l (E ® !\ T*M) and w I 0 then 

Proof 

Take q p and L = k Ln the above theorem. 

D 
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§4. Covariant Hodge Theory 1vi th res pee t to Non-Smooth Connections 

In this section we derive properties of the covariant Hodge-

de Rham Lapl::1c:ian 1<Ji th respect to a connccb on that is not necessarily 

smooti1, cons1dered as a mapp1ng bct1<Jeen Sobolev spaces of differential 

forms with values in a given vector bundle over a smooth manifold. 

These properties generalize properties of the Iloclge-de Rham Laplacian 

acting on differential forms defined on a compact manifold 1<Jhich form 

the basis of !lodge's theory of harmonic differential forms. 

Theorem 4.1 

Let M be a compact Riemannian manifold of dimension n and let 

-rr : E ~~I be a smooth vector bundle associated to the smooth 

principal bundle Tf : P -'> I'il. Let rr : E ~ M have a smooth inner 

product structure "'hich is preserved by every connection on 11 E 0 M 

arising from an Ehresmann connection on "TT'" : P ----> M. Let k be a 

non-negative integer, let p ~ (1, oo) satisfy p(k + 1) >nand 1n the 

case when k = 0 let p also satisfy the condition p >,. 2. Let t.0 be an 

Lf~ connection on IT' : p ~ M. Let d w , S u:> 
w 

and ~ denote the 

covariant exterior derivative operator, the covariant codifferential 

operator and the covariant Hodr,e-de Rham LaplCJcian r2spectively with 

respect to the connection W 

Let l E 72 and q E ( 1, oo ) satisfy the eoncli tions 

- k $ L s; k, 

1 
p 

k 
n 

1 
q 

L 
n 

]_ 
+ p' 

k 

n ' 

where p' 1s the exponent conjugate to p, defined by 

1 
p + 

1 
p' 

1. 



Define 

Then 

6 
w 

) 
'j,q,L+J 

(.A) 

(ker cl ) 
j, q, L-t 1 

(ker S w ) . l 
1 J 'q' +-

Aw ( im w. ) . 
1 J ,q' L-_ 

(im d w 
)j,q,l.-1 

) . ] 
J ,q' L-. 

~ "Yl F 
L - I -

{'7 E 

[1') E: 

[ 6w'"1 

[ 
w 

d YJ 

{ ~w'Y"J 

(i) HJ(E) 1s finite dimensional, 

( i i) (ker ~) j ,q, L-+ l 

(iii)Lq (E®f\jT*M) 
L-1 

r_C' JT*M) 
w n1 IF ® !\ D. ""' --

l-d ,~ f \ . { ~ J 

Lq (E ® !\ Jp~]IJ) '-" o}-L + l 
d '? 

q 
LL-d(E ~ .1\ JT'''M) bwYJ o} 

'Y] E L q ( E ® 1\ j T *M ) } 
L+1 

'J E Ll(E ® A j-1T*M) } 

"1] E L ~(E ® 1\ j+lT*M) } 

(~ 

(ker 6- ) 
j ,q,l+l (ker d '-"' ) . L 1 f\ (ker S""' ) . 

1 J,q, + J,q,L+ ' 

( v) 6v.J ) . 
J,q,L-1 

(im ( im d w ) . L 1 
,) • q. -

( im 3.... ) . l 
1 J,q, - • + 

Proof 

( i) follows immediately from the fact that 

1s Fredholm (see theorem 3.4), and (ii) follows immediately from 

corollary 3.6. 

Let q' be the exponent conjugate to q and let 

(.,.) : L~_ 1 (E ® f\ jT*M) x L~~+ 1 (E ® t\ jT,~M)-) JR. 

be the pairing induced by the inner product structure on Tf E~ M 

and the Riemannian metric on M. Note that 
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HJ(E) c C
0

(E®;\JT"'M) by the Sobolev emhcdding theorem, s1nce 

p ( k + l ) > n . Thus 

for all 

exists 

Sll1CC 

- r 
- j M 

I .,.., I 2 
I '/I 

A 1 •• ~1 \ 
U \ VV..t. j 

"Y} E H'J(f~). If 1') t HJ(E) f') (im /::.w ) . l 
I ,J, q, L-. 

! E Li+l (E ® 1\. JT*M) such that .., b,w ~ 

0 

At.J 
U lS self-acl,joint. Thus o. Hence 

H'J (E) I"\ ( im 6w ) t 0} 
,j,q,L-1 

then there 

Then 

Aw 
Also (im ~ ) 

j,q,L-1 
1s closed and has finite codimension, since 

1s Fredholm. Also (ker .6.VJ ) . 1 1 1 
is the annihilator of 

,] 'q '- t-+ 

(im 
c.u 

L;;. ). Ll J ,q, -.' 
s1nce 

codim( im ) . 1 j,q,l.-

by (ii). Thus 

~1is proves (iii). 

We observe that 

1 
p 

k 
n 

l 
2 

< .... 
1 

+ PI 

is self-adjoint. Thus 

dim(ker 
AtAJ 
~ ) . I L 1 J ,q ,- + 

dim HJ(E) 

) . 1 J,q,L- . 

k 
n 

if p and k satisfy the hypothese•.; of the theorem. If n >,... 2 this is 

a consequence of the condition p(k + l) > n. If n 1 and k > 0 then 

the above inequalities follow immediately. If n 1 and k 0 then 



the result is true by hypothesis. By the Sobolev embedding theorem 

there exist embcddings 

2 J p' J 
Ll (I<; ® f\ 'T*M) ~ L-k+l (E ® J\ '']'1<]\1). 

w 
If 'Yl E (ker 6 ) then 

I ,j,q,L+l 
~ f: H.J (E) and hence 

Then 
w w u.J ~~~' ~w'Yj) 0 = b "7 ·7 ) (d "? d ~ ) + ( 

and hence 

"'"' ~wl d "'} 0. 

Thus 

(ker 6w ). 
1 

C (ker d..v ). 
1 

() (ker ~t....J ) . 
.J,q,l+ .J,q,L+ J,q,L+l. 

The reverse inclusion 1s trivial. This proves (iv). 

Clearly 

(im "" (...0 4 ) . L 1 C. ( im d J ,q, -
) . 1 + ( :im 
.J,q,L-

b w ) 
j, q, L-1 , 

Thus J.n order to prove ( v) it suffices to shm~ that 

w 
( im d ) . L 1 J ,q, -

"w C. ( im u. ) ,i, q, L-1, 

( im ~"" ) . l 1 c. ( im 6w ) . L 
1 .J,q, -. j,q, - . 

~ ..... 
But (im 6 ) . L 1 is the annihilator of (ker ~ 

J ,q, -

AW .-l.S '-:I. self-adjoint. 

and (im 'b"" ). Ll J ,q, -

and l ~ HJ(E), then 

(d c....o j '~ ) 

0 

by ( i v). Similarly if 

This proves (v). 

Thus it suffices to show that 

annihilate HJ(E). But if ~ ~ 

J ' ~w'? ) 

o. 

je 

r . 
. 1 

.J + ·r· ,., 1\1 ) and 

) . , L 1 since 
J ,q ,- + 

( im d '""' ) . l 1 J ,q, -

LC(E ® 1\ ,j-lT*M) 

D 

:c.'47 
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Let the compact rliemannian manifold ~·1, the vee tot" bundle 

Tf : I~~ M and the principal buncl] c lT: P -!I i\'1 be as in the 

above theorem. Let k be a non-negative integer let p E ( l, Co ) 

S:lf-isfy r(k + J)) 1l :1nri )pi: !.0 lT : p ~ 1\1. 

Define 

( ~ , ~ ) c-• 0 for all ~ E- Hj (E) J 

for all m € LZ and r c ( 1, <» ) satisfying 

- k - 1 s m ~ k + 1, 

1 
p 

k + 1 
n 

l m 
n 

/ l k + 1 
r ::::- pI -f- n 

Since 

0 

and since 

cod im ( Hj (E) J.. ) 
r,m 

it follows that 

r cl p'<M) II'J(E) a3 (Hj (E )...1.. ) L (E ® 1\ m r,m. 

Let Le LZ and q e (l,oO ) satisfy 

- k ~ L 5 k 

1 k 
$ 

l L 
~ 

1 k 
p' 

+ 
p n q n n 

Since 

..... 
( 1-Ij (E) .J. (im 6 ) . 1 c ) 

q,l.-1 J ,q,L-. 

and 

w 
codim(imD. ). 

1 J ,q' l-

it follows that 

( im !:l"" ) . 1 1 J 'q 'I.-

j .i. 
(H (E) ) I -1 q,... . 



Since 

l·ker "w )' 
Ll q, L+ l 

if follows tho. t 

w I j _L 6 (H (E) ) l q,L+ 

1s a bijection, and is thus an isomorphism of Banach spaces, by the 

Banach isomorphism theorem. Define 

UJ 
G 

by the properties 

Then 

w 
G 

1\I.J I j . .l. -1 
w (H (!~) ) I I 1) p ,-<;+ • 

and hence G w restricts to a bounded linear map 

T q ( T? ""' li j '"~'''' \ ....lro. Lq I r,• e-. 1\ j .,..,, .. \ L·L-1 \L 10' I .L l'l J -, l+l \1'- lb" f \ 1 .. l'l}. 

We refer to G c...> as the Green 1 s operator of the covariant Hodge-de Rham 

.1\VJ 
Laplacian Ll Define 
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to be the projection mapping with kernel (Hj(E)~) , k 
1 

and 1mage Hj(E). 
p ,- -

Then H &.V restricts to a compact linear operator 

for all m E L.Z and r E ( 1, or> ) satisfying the conditions 

- k- 1 ~ m ~ k + 1, 

l 
p 

We see that 

k + l 
n 

VJ 
(I - D. 

l 
r 

m / 1 k + l 
""' + --n ... p 1 n 



We can obtain results simi h1r to those Glbovc when W 1s a 

Ck' ~ connection on lT : P ---} M. 

Theor·em 4.2 

Let M be a compact Riemannian manifold of dimension n and let the 

vector bundle 
,.._. 
rr : E --;) M, the principal bundle TT : P ~ M and the 

inner product structure on rr : E ~ M be as ln the previOUS theorem. 

Let k be a strictly positive integer, let o1... E (0, l) and let W be 

k oC. 
a C ' connection on 11 : P _, M. 

The covariant Hodge-de Rham Laplacian 6.v.J defines Fredholm 

operators 

of index zet·o fol' all p t ' 1 \.L, 00 and for all L ,m f. 'Zl and foE: (0, l) 

satisfying 

-k~L~k 

If 1') E Lp (E ® 1\ jT*M) for some q E (1, oo ) and if 
-k+l 

E L~+l (E ® 1\ jT*M), where L 

satisfies the condition above. If 'YI E Lq (E ® A jT*M) and 
I -k+l '\ 

satisfy the conditions given above. The Green's operator 

GtAJ 

restricts to bounded linear operators 

w 
G 

GCAJ 

L~-1 (E ® A jT*M) _, L~+l (E ® 1\ JT,~M)' 

cm-l ,.ft ( E ~ 1\ j T~<~I) ~ em+ J ,fl. ( E ® ~.J T''<l\1) , 
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\vhere L , m and j3 satisfy the concli tions gt ven above. Also 

where 

o} . 

Jl:lorcover 

w m+L ~ 1. '-' m Q J·-1 w m ~ J'+l 6 (C •r(J~®/\'T'~JI:l)) = d (C •F(E®/\' T*l\1)) + ~ (C •r(E~J\ T*l\1) 

where these spaces are considered as subspaces of Cm-l,fl (E ~AjT*l\1). 

Proof 

w .. 
Let ~ be a smooth connection on TI : P ~ 1\1. !:::. defines 

0 

Fredholm operators between Sobolev and H~lder spaces by theorem 111.5.3. 

w W 0 

Also 6 - ~ defines compact operators bcbveen the Sobolev and 

w 
!Wlder spaces under consideration. Thus 6 defines Fredholm operators 

between these spaces. 

Lq (E ® A jT*l\1) 
w 

r)~-l (E ® JT*M) If 'l)E and tl"J E- 1\ then 
-lul 

~ E r{+l (E ® 1\ JT*M) by theorem 3. 5. 
(.,.) 

cm-1 ' fo ( E ® 1\ JT1<J\1) If 6 "? E: 

then 6 '-' 1') € L:_l (E ®A J T''M) for all r E (l,oo) and hence 

11 t: Lr 
1 

(E ® 1\ jT''M). On choosing r sufficiently large we see that 
.I m+. 

"') € em •fo (E 8> 1\ jT*M) by the Sobolev embedding theorem. Then 

( 6w - 6.~o ) ~ e cm-1 ,fo (E ® 1\ jT,~M). 

Since ~w ~ E Cm-l ,p (E (/;) 1\ j,fi'l'vl) it follows that 

s; E cm-l' p (E ® 1\ jT*M) and hence that 'r) € cm+l ,fo (E @ 1\ jT''M). 

By the previous theorem 

Also 

by the result proved above, hence 

Cm-l,ft (E®I\ jT*M) = L:l (E®f\ jT''!i1)f'ICm-l,ft (E®!\jT 1'l\1) 

HJ(E) 6) {j_w(Cm+l,ft (E®J\jT,~M) ). 
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\'/e deduce that 

w m-1 A. 1. m"-l f.l J. 
G C 'r ( E ® 1\ ' T'''M) ~ C . 'r ( E 01\ ' T*M) 

lS bounded. The final stntement of the theorem follows from the 

w. m.ct. ...,.. • i-1 ..... 
fact that cl \L · (E 1611\ v '1'"1\IJ and 

annih i la tc 11,] (I\), as in the proof of the prcvlous theorem, 

D 
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Chapter VI II 

SLICE THEOREMS J\ND REGULJ\HTTY THEOREMS 

~1. Introduction 

This chapter contains the slice theorems and thP regularity 

Uteorems towat'ds which we h<tVC been wor·k.ing,. 

Let -rr : P-? M be a smooth principal bundle over a compact 

Riemannian manifold of dimension n with compact structural group G. 

Let k be a non-negative integer and let p satisfy the conditions 

l < p <.oo and p(k + l) > n. Let p also satisfy the condition p >,... 2 

in the case when k = 0. 

In chaptcJ" VI we define L~+l ~ to be the group of all r{+l 

principal buntlle automorphi sms of 11 : P --!> M, we also defined 

L~+l ~O to be the 

and given m E M we 

quotient L~+l t} /Z(G) where Z(G) is the centre of G, 

defined Ll~+l W, m to be the subgroup of LE 1 t: ~ + 2r 
consisting of those automorph:i sms which fix the fibre of Ti : P ~ M 

over m. We defined LEA to be the space of all Lp 
k 

connecticns on 

2:14 

II : p~ M anLl we defined LE A-0 to be the subset of Lp A 
k 

consisting 

of those connections whose stabilizer in L::+l ~ is Z(G). We prove that 

LE+ 1 q 
0 

acts smoothly and freely on L~ J\r 
0 

and that LE+l ~ m acts 

smoothly and freely on Lk ftr. 
We usc theorem II.3.l to prove a slice theorem (theorem 2.3) 

which states that Lk k 
0

/LE+l C} 
0 

and rE fr /LL 1 1-m admit unique 

differentiable ~tructures such that the projections 

are smooth and admit smoot~ local sections. J\nalogous results are 

d f I . f k+ l' oL . . b d k' ot... prove or t1e actton o C pr1nc1pal un le automorphisms on C 

connect ions, 1-1here k is an integer satisfying k ~ l and v.•hc re o<. sat i sfics 

ot:.d....<.. l. 



II Heakened form of the slice theorem (theorem 2.2) is proved 

. . P . I which states that 1f C-0 1s an Lk connect1on t 1en there exists a 

smooth connection (A) and an Lp principal bundle automorphism Y 
0 k-rl 

such that 

1vhere C Wo 
0 ls the covariant codifferential operator with respect 

to the connection (A.) 
0 

This result has applications 1n prov1ng the 

regularity results of §3. 

In §3 we prove var1ous regularity theorems for Yang-Mills 

cormections (theorems 3 .1, 3. 2 and 3. 3). In §4 1ve give an informal 

discussion on how these results may be extended to Yang-Mills-Higgs 

systems. 



~2. Slice Theorems for Connections 

We use the results of chapter VII to prove a theorem (theorem 2.2) 

which will be useful in pl'oving elliptic regulari_ty results. Then 

we shall prove a slice theorem (theorem 2.3) for the action of 

principal bundLe automot'phisms on connections. 

Lemma 2 . l 

Let ,- : P -4 M be a smooth principal bundle over a compact 

Riemannian manifold M of dimension n, let ()..) be a connection on 

TT P ~ M and let E ---) r'I be a smooth vector bundle associated to 

TT P ~ M with a smooth inner product structure preserved by the 

connection W Let k be a non-negative integer and let p satisfy the 

conditions l < p .C. oo ancl pi}-+ i) :>rt, and Ln the case v;hen k = 0 1 et p 

also satisfy the condition p ~ 2. If c.N ls an L~~ connection then 

L \~ (E ® T'~I\1) decomposes as the direct sum 

~ 

= im d (!;) ker?>w 

of the image of 

and the kernel of 

Moreover the image of d (A) ls closed and the kernel of d CA.) lS finite 

dimensional. 

Similarly if o( satisfies 0 < o< < 1 and if k is strictly 

positive then Ck' o<. (E ® T1'!11) decomposes as the direct sum 

of the image of 

d UJ Ckt l' oc.. (E) -J Ck, <><. (E ® PJI'I) 

and the kernel of 

k, 01.. k-1 oc. 
: C (E ® T'''ll1) -7 C . ' (E). 



Moreover the image of d~ 

dimensional. 

Proof 

(A} 

1s closed and the kernel of J lS finite 

Let c.0 he an Lk connection. By theorem VII.4.1 it: follm"s that 

\'ihcre 

l!o(E) $ 

H
0 

(E) ~ 

Aw 
Jill t-.:1 

Jill 

0} . 

H0 (E) is finite dimensional by theorem VII.4.1. Let 

GW :L~_ 1 (E)~L~_1_ 1 (E) 

/\(A) 
be the Green's operator of ~ (see §4 of chapter VII). Then, 

sJ.nce 

cw 
liD 0 :1.m 6CP 

it follm.,s that 

then ~ . c~ 
0, since G 1s injective on the 1mage of o and 

dw 1s injective on the image of G c.u Also if s then 

dWGW6_t.AJs 

"'1· 
since 

hence 
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is a bounded idempotent line at" map 1-,rhose kernel :J.s ker ~v..> and 

c ..... 
whose image 1s 1m d It follm's immediately that 

1m d u.J (I) 

;:mrl th::li- im rl(A) 1s closed. The kernel of clw is J-1°(E) by 

theorem VII.4.l and 1s thus finite dimensional. 

k,cx.<i 
The proof of the lemma when vv E C /-1' 1s exactly analogous, 

using theorem VII.4.2. 

D 
Let G be the s true tural group of the principal bundle TT: P 4 l\1, 

let 9 be the Lie algebra of G and let 9 p = P x Ad 9 1\ given 

b i inv:wi ant metric on G determines an 1nner product structure on 9P 
and thus determines the codifferential bw acting on 9 p-valued 

differential forms. 

Theorem 2. 2 

Let -n : P ---) M be a smooth principal bundle over a compact 

Riemannian manifold M of dimension n with compact structural group. 

Let k be a non-negative integer and let p satisfy the condi bons 

1 <:: p <. oo and p(k + 1) > n, and in the case when k = 0 let p also 

satisfy the condition p ~ 2. Let c.....:> be an Lk connection on 

1T : P ~ M. Then for all ~ > 0 and for alI neighbourhoods of 

the idcn l:ity in the group L~+ 1 i. of r.P
1 1 

principal bundle auto
<+ . 

morphisms there exist a smooth connection w 
0 

on lT : P -----) M and 

an L~+l princiapl bundle automorphism y : P ~ P, contained in the 

g1.ven neighbourhood of the identity in L~+l t}, such that 

and 

0 
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Similarly if 0( satisfies 0 < cA < 1 and if k ~ 1 and if w 

k,o<. . 1 f 1s a C connect1on, t1en, or all [ > 0 and for all neighbourhoods 

f 1 . d . . k-d ·"" ~ i 1 . t t1 t. 1 o t 1e 1 ent1 ty 1n C : 1ere ex1s- a smoo 1 connec .1on W anc 
0 

,.... ,...,k+l,~ '""'...,~nr>;n~l h11nrllP 
C.l. V 1-'..1. ..LJ.i"-'-'-t-''--"--L ,._.'-"i'"-" -'--"-' 3t!tomorp!~_i sm contained 1n the n1 \tr->n 

b~. ~·· 

neighbourhood such that 

II w - (AJ 0 1\ c 1'\ I 0(. 

and 

- (AID ) 0 

Proof 

Let c.u be an L~ connection and let H
0 

( 9 p) .l. be the 

orthogonal complement of the kernel H
0 

( 9 p) of d w in L~+l ( 9 p). 

Consider the map 

w 0 .L 9 Y' kcr ~ EB 1-f ( 9 p) -) L~ ( p ® T*M) 

defined by 

where ker b <AJ 1s the kernel of 

By theorem V.7.1, part (vii), the derivative Dp of~ at the origin 

is given by 
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and is thus an isomorphism. Thus r' 1s a diffeomorphism from a 

neighbourhood U x V of the origin 1n ker 2> w E9 H0 
( 9 p) to a neigh

bourhood of the origin in Lj~ ( 9 p ® T'''l\1), by the inverse function theorem 

for Banach spaces. Given any neighbourhood of the identity in Lj~-l-l ~ 

we may choose V sufficiently small such that exp(V) is contained in 

the given neighbourhood of the identity. . 0<> ..4. Slncc c ___...,... is dense in 

L~ ),.- , there exists a smooth connection w 
0 

such that 
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\1 W- Wo II ( ~ 

and such that 

C0- V0
0 

f:. \?' (\)XV). 

Let 

Then 

w 

0 ( w - exp (- J ) * W ) 0 . 
0 

Let W 1 = (cxp J )'''w Then 

( exp S ) 1: 2> w "'t" 

for all -c: E. Lt~ ( 9 p ® T*M) , and hence 

Thus 

:::0 

by theorem V.7.1, part (vi), 1vhere Y = exp J 
h f I . k, ex. t. tl T e proo · ''~ 1en w 1s a C connec 1on J.s exac y 

analor~ous. 

D 
In chapter VI, section §~, we identified U1c centre Z(G) of the 

t t ] · tl b f p ~ and of c101 ' 0( ~ , and s rue ura. group G w1 1 a su groupo Lk+l ~ J 

'"e defined 

p e. 
Llu 1 }- /Z (G) , 

and 

k+l ()I. t} c , 
0 

Ck+l,o<L:S- /Z(G). 



We s::n-1 that Lp 
'k-d ~0 and ck+l ,c( ) o act smoothly on L~ A- and 

ck, «A respectively and we defined L~A and ck,o<A to be 
0 0 

the subsets of L[~ A and ck ,oe ;\-- consisting of all connections on 

1vh i <:h rY " 'e( 
l~+ 1 ()" 0 

and 

k o(. 11 
C ' ~ are open 

0 

k+l,..._'P P.4 C - u act freely. We showed that L~ ~ and 
0 o ·'- G 

p b. ck,"' A subsets of Lk~ and ~ containing all smooth 

irreducible connections on TT: P-+M (theorem VI.4.4). 

· P 'f
4 

m d k+l '"' ~ m to be the Also given m € M we defined Lk-
1
_1 d- an C '6 

b f p f, d k+ l 'ot -e . t. f ll t 1 . f su groups o Lk+l ~ an C ~ cons1s 1ng o a au.omorp11sms o 

-rr : P ~ M which fix the fibre of rr : P ~ M over m. We showed 

that L and C -' act freely on L1{ ~ and C ' P ~m k+l "'C}m p A k '""A 
k+l 

(see 

theorem VI. 4. 6). 

Theorem 2.3 

Let TI : P-'> M be a smooth principal bundle over a compact 

Riemannian manifold M of dimension n with compact structural group. 

Let m E: M. Let k be a non-negative integer and let p satisfy the 

conditions 1 < p < oo and p(k + 1) > n, and in the case when 

k = 0 let p also satisfy the condition p >,. 2. Let Lk+l tj. 
0

, Lk A-
0 

26] 

and Lf-+l 1-m be defined as above. Then LEA- /Lf-+ 1 ~ 0 
and LEA- /LL 1 ~ 

111 

admit un1que differentiable structures such that the natural projections 

are smooth maps between Banach manifolds and admit smooth local sections. 

Similarly if k ~ 1 and if ex: satisfies 0 <. 0( < l then 

ck•"'A 0/Ck+l,o~1o and Ck'A /Ck+l,~q m admit unique differentiable 

structures such that the natural projections 

ck,o~A ___, ck,ocA /Ck+l,Oig_ m 

are smooth maps between Banach manifolds and admit smooth local sections. 



Proof 

We must check that the conditions of theorem II.3.l are satisfied. 

First consider Lfz A- /L~+l g 
0 

Let we LfzA-
0

. The centre z(9) 

of the J.ie algebra of the structural group may be identified '"ith a 

subalgebra of the Lie algebra LE+l ( 9 p) of L~+l ~ , corresponding to 

the identification of Z (G) "'i th a subgroup of LE+l ~ . The kernel of 

d w : Le + 1( 9 p) ~ L~ ( 9 p ® T~'Tvl) 

:ts z ( .9 ) ' since w~ Lr A . Let 
{ 0 

8 : LLl g ---) Lp A--
0 k 0 

be the smooth map sending the coset Z(G). ~ to y ~, ()...:l The 

derivative of 8 at the identity sends 5 + z( 9 ) to dw J for all 

J E LE+l ( gp), by theorem V.7.1, part (vii). By lemma 2.1 11e 

see that the derivative of 8 at the identity maps LE+l( gp)lz(9 

isomorphically onto a closed complemented subspace of the tangent 

space to 1Y
1 
A at (.).} 

{ 0 

are satisfied. 

Thus the first t\'fo conditions of theorem II.3.l 

If ( UJ. : i E :N) is a sequence 1n LlkJ ,4 , :if (y. : i ~ JN) is 
1 0 l 

a sequence :i.n Lpk 
1 

C: and if the sequences ( w . ) and ( LA' .• Y . ) 
+ l 0 1 1 1 

converge in 1Y
1
· A- then the sequence (Y. ) converges in rP

1 1 
'C by 

" ' o 1 <+ J-o 
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theorem VI. 4. 5. This verifies the remaining condition of theorem II. 3 .1. 

From theorem II.3.l we deduce that LEA 
0

/LE+l ~ 0 admits the required 

differentiable structure. 

The proof for LEA /LE+l) m 1s similar, using theorem VI.4.6, 

the fact that d w (LE+l ( g p) ) is a closed complemented subspace of 

Lk ( 9 p ® T*l\1) (by lemma 2.1) and the fact that 

f l E Ll~ + l ( 9 p ) : J ( m ) 0 } 

1s a closed subspace of Lkt-l ( g pl of finite codimens:ion (since 

p(k+l))n). 



The proof when or 
0 

analogous. 

k, "'J 
w E C /'r lS exactly 

D 
We have used the elliptic regularity results of chapter VII to 

prove that conditions (i) and (ii) of theorem II.3.1 are satisfied. 

The proof that (iii) is satisfied stems ultimately from H ~orem VI. 3. 2 

(or corollary VI.3.3). In fact condition (iii) of theorem II.3.1 ls 

. p k+l k+l 01.., 
satisfied by the actlons of groups of Lk+l' C or C ' auto-

! . 'f Jd f p I< k,"' t' . 1 morp11sms on manl o. s o Lk' C or C connec lons respectlve y, 

provided that k lS a non-negative integer and p and «. satisfy 

1 ~p<oo 0 < oi < 1 and p( I< + l) > n. Moreover if Uw t'e levant 

group acts freely then condition(i) of theorem II.3.1 is satisfied 

in these cases by corollary VI.5.3. It follows that in order to 

prove a slice theorem for the action of a group of automorphisms 

on some Banach manifold of connections in any of the above cases it 

suffices to verify that the action of the group of automorphisms lS 

free and that the image under d w of the Lie algebra of the group of 

automorphisms is complemented in the tangent space to the manifold 

of connections. In some cases it may be possible to prove this by 

methods other than by using elliptic regularity. In particular if 

p = 2 then the above theorem follows from corollary VI.3.3 and 

theorem VI.5.3, without the need to use any elliptic regularity 

results at all, since every closed subspace of a Hilbert space has 

a closed complement. 
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§3. Regularity Theorems for Yang-Mills Connections 

We prove regularity theorems for Yang-Mills connections on 

principal bundles over compact Riemannian manifo]ds. 

Let rr : P ----) M be a smooth principal bundle over a compact 

Riemannian manifold M of dimension n with compact structurnl group G 

whose Lie algebra is 9 . Let G be given a biinvariant Riemannian 

metric, determining a smooth 1nner product structure on the adjoint 

bundle 9P~ M, where 9P = P x Ad 9 This inner product 

structure is preserved by all connections on 1T : P --'> M, and i t 

determines the covariant codiffet"ential acting on 9 p-valued 

differential forms. 

Let W be an Lp connection, where k is a non-negative integer, 
k 

where p satisfies l < p (. oo and where p satisfies p ~ 2 in the 

case when k = 0. We recall that by theorem 2.2 there exists a 

smooth connection w 
0 

and an LC+l principal bundle automorphism 

Y : P 4 P such that 

= 0 

where 

We recall that a Yang-Mills connection c...u on 

1s a connection whose curvature F~..u satisfies the Yang-MilJs equation 

If GU
0 

1s a smooth connection with curvature F
0 

then 

w 
F 

0 
+ d (; - Yz [ (;, "t:" J 

where 't: = w - c.u 
0

, by proposition V. 7.1, us1ng the fact that 

w 
d "1; 

w 
d 0 '"'C + ["r,'"t] . 



Thus if c..u 1s a Yang-Mills connection and if ""(: satisfies the 

condition 

where L: - W for some smooth connection W , then 
0 0 

Theorem 3.1 

Let IT : P __, M be a smooth principal bundle over a compact 

Riemannian manifold M of dimension n with compact structural group. 

Let the structural group of the principal bundle be given a biinvariant 

Riemannian metric. Let k be an integer satisfying k ~ 2 and let p 

satisfy the conditions 1 <.. p < 0o and p(k + l) > n. If <..P 1s an 

Lk connect.i on on TT P _, M satisfying the Yang-~Jills equation, 

then there exists an LE+l principal bundle automorphism y: P ~ P 

such that y ~'W 1s smooth. 

Proof 

In vie\</ of theorem 2. 2, it suffices to prove that if W 1s an 

L~~ connection satisfying the Yang-Mills equation and if W 
0 

is a smooth 

connection such that 

then (..A) 

we see 

1s smooth. Let '"t = (}) - w . 
0 

that "CE Lfz(9p® T*M) satisfies 

From the remarks above 

the equation 

where F 1 s the curvature of w . Let E satisfy the condi bons 
0 0 

0 < t. < 1 
n 

1 
p < 

E < 

k + 1 
n 

1 
p 

2fi5 



and define q E. ( l, oo ) by 

Then 

1 
q 

(~ 

1 
p 

l) n 

- E.. . 

+ (~ ~) I< L -
n ( l k 1 \ + ) -1- ---

r p n 

1 
1.. q 

Using the Sobolev embedding theorem, theorem II.2.4 (the Sobolev 

multiplication theorems) and the condition p(l< + 1) > n, we deduce that 

(see lemma VII.2.2). Hence 

E: L q (8 ® T*M) 
k-2 p 

by proposition VII.3.l. Thus 
Aw,..... q 
D. ._ E Lk_ 2 {!3p~ T1'M) and hence 

\:: E: L~l9p® T1'M) by theorem VII.3.5. 

If we iterate this procedure a finite number of times we see 

that W is an L~ connection for some q satisfying the conditions 

1 < q<eo and qk) n. But then 

F E: L q (r::> ® T*J\1) , 
o kOP 

hence 6. w ""C E L~-l !fJp® T*M), and hence ""1:: E L~+l rgp® T*J\1) by 

theorem VII. 3. 5. By induction on k it follows that ""(; is smooth. 

D 
Theorem 3.2 

Let 1T : P ~ ~I be a smooth principal bundle over a compact 

Riemannian manifold J\1 of dimension n with compact structural group. 

Let the structural group of the principal bundle be given a biinvariant 

Riemannian metric. Let p satisfy the conditions 1 C::. p <.. oo and 

2ti6 



2p > n, o.nJ 1n the case n 

If W 
p 

J_s an r.
1 

connection on 

4 
2 let p also satisfy the concl:i tion p '> 

3 

1T : P ~ M satisfying the Yang-Mills 

267 

equation (weakly), then there exists an L~ principal bundle automorphism 

is smooth. 

Proof 

In viev; of theorem 2.2 jt suffices to prove that if W :ts an 

L~ connection satisfying the Yang-l\11 lls equation and if (A) 
0 

1 s a 

smooth connection such that 

then W lS smooth. Let ""(. ep-W 
0 

Note that 

2 l < l. 
p n 

When n >,. 3 this is a consequence of the condition 2p > n. When 

4 
n = 2 this is a consequence of the condition p ) 3 . When n 1 

this is a consequence of the condition p ) 1. Also since 2p > n it 

follows that 

2 
p 

1 < n 
1 
p 

+ 
1 
n 

Hence there exists q satisfying the conditions 1 < q <. p anJ 

2 
p 

1 
n ~ 

1 
q 

1 
p + 

1 
n 

By theorem II.2.4 (the Sobolev Multiplication theorems) it follows 

that 

1;2/- "'"" -; 
/? "'t"· '-_ -

ALAI_. "- q r':J 
L.l ... .:; L ( .:J p ® T*M) by proposition VII.3.1, since t-U ls a 

Yang-l\li lls connection. Hence "t:: E L~ ( 9 p ® T'''l\1) by theorem VII. 3. 5. 

But 3q > n, hence 'L: is smooth by the proof of the previous theorem. 

D 



Theorem 3.3 

Let 1T : P --") ~~ be a smooth principal bundle over a compact 

Hicmannian manifold M of dimension n with compact structural group. 

Let the structural group of i:he pr"incipal bunJle lJe given 21 
I. . : . - - -- -- ~ - -- .L 
IJ L ~II V ell'~ dll L 

Hicmannian metric. Let c..0 be a connection on IT : P ~ ~1 1vith the 

following properties: 

( i) is an Lp connection for some p satisfyjng the condj t:ion 

n < p <.oo 

(ii) w lS an Li connection for some q satisfying the condition 

( i i i ) 

(iv) 

1 
q 6- l 

1 

p ' 

W satisfies the Yang-Mills equation (weakly), 

there exists a smooth connection W such that 
0 

Then W is smooth. 

Proof 

First we shmv that W lS an Lp connection. 
1 

If q ~ p this lS 

trivial. Otherwise p > 2. Let £ satisfy the conditions 

0 < £ < 
1 
n 

1 < 1 - f. p n 

1 
£ -?. 1 -

q p 

and let 

1 l - E. 
r q 

~ - W then 
0 

by lemma VII.2.2, 1vhere F ls the curvature of W • Hence 
0 0 

2 68 



by proposition VII.3.l. Hence L:' € L~( Ll p ® 'FM) by theorem VII.3.5. 
.L '-"' • -

By a finite number of iterations of this procedure we see that 

for a 11 k, by induction on k as ;n the cone lm;j on of the proof of 

theorem 3.1. 

D 



§4. HcguJ2rity of Yang-1\Iills-Higgs Systems 

We give an :informal discussion of regularity theorems for 

Yang-Mills-Higgs systems corresponding to the results proved in §3. 

Let IT : F ~ l\1 be a smooth principal b1md le over a compact 

smooth Riemannian manifold M of dimension n with compact structural 

group G, nnd let G be given a biinvariant Hiemannian metric. Let 

9 be the Lie algebra of G and let 9 p ~ l\1 be the adjoint bundle 

of lT : P ~ 111, where g p = P x Ad 9 Let 1T : E ~ M be a smooth 
l 

27 0 

vector bundle associated to rT P ~ l\1 and let (. .) E®E __,]~ 

be a smooth inner product structure on E which is preserved by all 

connections on 1T : p-; M. 

Let CA.) be a connection on "TT : P ~ !~'! and let 

be a section of TT : E ~ M. The Yang-M:i lls-Higgs equations are 

the Euler-Lagrange equations for the functional 

w 1s the Hiemannian volume measure on M, where F lS the 

curvature of w and whei'e V( I ~ j lS an even poly11omial in I cl? J 

In the standard Higgs model, as used 1n the Salam-Weinberg unification 

of the electromagnetic and the \-Jeak forces, the potential V 1s given by 

V (I~ I ) ::: >--
4-! 

for some constants ~ and c in order to induce spontaneous symmetry 

breaking in the quantum field theory with the above Lagrangian v1a 

the Higgs mechanism (of course quantum field theories occurring in 

nature are formulated in the fir.3t instance in lllinkowski space-time 

rather than on a Hiemannian manifold). Here we shall allow V to be 

arbitrary, subject to constraints on the degree d of the polynomial 

V( \ ~ \ ) • 

The Yang-Mills-Higgs eauations have the form 



- 0 

Js a smooth vector bundle morphism and Hhere U ( ) , the 

derivative of V( I~ I ) v;ith respect to ~ , lS a polynomial of 

degree c1 - 1. 

We recall that if p(k + 1) > n then the group L~+l~ of 

Lp principal bundle automorphisms of n : P ~ 111 acts on L~ (E) 
lnl '-' 

on the left for all L satisfying 0 ~ L ~ k + 1. If GV lS an 

L~ connection, p is an L~ section of E --'> M and ( w , g? ) satisfies 

the Yang-Mills-Biggs equations then so does ( y• W) Y -: ~ ) for all 

1{+
1 

principal bundle automorphisms f: P ~ P. 

If the degree d of the potential V( I ~~ ) does not exceed 4, 

then one can prove regularity theorems for Yang-Mills-Biggs systems 

exactly analogous to theorems 3.1, 3.2 and 3.3 for Yang-Mills 

connections. For instance suppose that 00 lS an Lk connection and 

that p is an Lk section of E -? M, where k is an integer satisfying 

k ~ 2 and '"'here p satisfies 1 < p < oo and p(k + 1) > n, \-Jhere n 

-is the dimension of l\1. Suppose also that there exists a smooth 

connection W 
0 

such that 

~ vJo ( W - c.Mo) = 0 

Let 'l::: - (.A..) 
0 

The Yang-Mills-Biggs equations have the 

form 

u(~) 

\'lhere F ls the curvature of w . Let €. satisfy the concli tions 
0 0 
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< £ .:::. l 
0 

n 

1 <: k + 
't. -

p n 

< 
1 

z:. p 

and define q E (l,oo ) by 

1 1 
E -

q p 

Then 

as J_n the proof of theorem 3.1. Now d.:...>{P E L~~-l (E ® T'~~n hy 

proposition VII.3.l, hence 

by lemma VII.2.2, since 4> E L~~(E) and p(k + 1) > n. Hence 

6~A "'"t e: L~~- 2 ( 9 p ® T'''M). Also the degree of U ( ~ ) does not 

exceed 3 and since p(k + 1) > n it follows that U ( ~) E Lfc_ 2 (E), 

by two applications of lemma VII. 2. 2. Thus 6. w g? E L~_ 2 (E). Hence 

-- t::- Tql 9 p ® 'I',O:M\ ~nrl ~ r Tql17\ h" +-h~~~n~ UTI "< c; 
\_....- j_~ 1{\ .L 1'1) c....t.l\....1. ':t:' ~ ~...Jlc\LJj IJ.J V11VV.LV111 \'..L •V•'-'• 

By iterating this procedure a finite number of times we see 

that '1:::€: L~( 9P S 'P~l\1) and <}? E L~(I·:) for some q € (l,oo) 

satisfying qk > n. As in theorem 3.1, one may easily show that 

"'"t: € L~+l ( 9 p ® T*l\1) and ~ E L~~+l (E) and hence show by induction 

that ""t' and ~ are smooth. Thus we can prove the analogue of 

theorem 3.1 for Yang-Mills-Higgs systems the degree of whose potential 

docs not exceed -1. Similar analogues of 3.2 and 3.3 may be proved. 

When the degree d of the potential exceeds 4 the hypotheses of 

these regularity theorems must be strengthened. In addition to the 

condition p(k + 1) > n in the above proof we must also require that p 

be sufficiently large in order that U may map Lk (E) to L ~- 2 (E) for 

some q satisfying 
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1 l > 1 1 
> p q p n 

It :ts sufficient to requlrc that 

1 k - 2 > (d - l) ( ~ 
\ 1' p 

by the Sobolev embedding and multiplication theorems. Thus we reqtnre 

that 

( '1 ) k + G > p n 
d - 2 

in order to shoH that an lp 
'k Yang-Mills-Higgs system \vi th d > 4 and 

k ~ 1 may be transformed to a smooth Yang-Mi lls-Higgs system by an 

L~+l principal bundle automorphism, where p must also satisfy the 

condition p ) 
4 

in the case when n -= 2 and k "' l. 
3 
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Chapter IX 

COVARIANT DERIVATIVES liND HOLONOMY 

§l. Introduction 

Let Tf : P ~ ~1 be a smooth principal bundle ovet" a Riemannian 

mani fo lei M and let c.D be an Eht"csmann connection on TT 

whose holonomy group is compact. In theorem 2.1 we shall show that, 

given m e M, there exists a constant L such that every element of w,m 

the holonomy group of u..> may be generated by a loop based at m of 

length not exceeding L~,m· In essence, the proof is by showing 

that every element of the holonomy group of w is generated by a 

loop based at m which is a concatenation of lassos and their reversals, 

where the lassos arc taken from a finite set of one-parameter families 

of lassos '"hich generate the Lie algebra of the holonomy group of W 

The existence of such a set of one-parameter families of lassos is 

guaranteed by the Ambrose-Singer holonomy theorem. 

We give two applications of this theorem in §3. We show that, 

given any continuously differentiable section of a vector bundle 

associated to TT : P ~ M there exists a covariantly constant section 

whose distance from the given section is bounded by some constant 

multiple of the supremum of the magnitude of the covariant derivative 

of the given section (theorem 3.1). A similar result (theorem 3.3) is 

proved for principal bundle automorphisms. 

The main p !'ob] em is, of course, to cs tima te L w,m The proof 

of theorem 2.1 shows the existence of L but provides no effective w,m 

means of calculating it in general. Indeed one can easily visualise 

pathological examples of connections where the stalks of the lassos, 

whose existence is guaranteed by the Ambrose-Singer holonomy theorem, 

wander around the base manifold of the bundle in a complicated manner. 
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Hol<~ever :if one imposes sui table res tl"ictions on the curvatut"e tensor 

of the conncc bon and its covariant derivatives it may be possible to 

For example one could place restrictions on the 

arbitrarily small neighbourhood of some given point. An interesting 

problem might be to study the Levi-Civita connection on n Riemannian 

manifold :in this way. 

§2. The Length of Loops generating the Holonomy Group 

In this section we prove a theorem which provides an upper 

bound on the length of loops required to generate any element of the 

holonomy group of a smooth Ehresmann connection on a principal bundle 

Tr : P ~~I ovet" a compact Hiema11nian manifold ~I, provided that the 

holonomy group is a compact subgroup of the structuraL group. 

Theorem 2.1 

Let w be a smooth Ehresmann connection on a smooth principal 

bundle "TT : P ~ 1\~ over a Riemannian manifold M l"li th the property 

that the holonomy group of v.J is compact. Let m E fvl. Then there 

exists a constant L , depending on w and m, with the following 
(JJ 'm 

property: given any element of the holonomy group attached to some 

element of the fibre of TT : P --} M over m, there exists a piecewise 

smooth loop, of length not exceeding Lw , beginning and ending at m ,m 

which generates the required element of the holonomy group. 

Proof 

First \<Te introduce some terminology. !I piecelvise smooth curve 

111 1\1 1s a piecewise smooth map c : /a, b/ ~ 1\L !I pieccv-1ise smooth 

path 1n M is an equivalence class of piecewise smooth curves in 1\1 

where two curves arc equivalent if and only if each is a repara-

mcterization of the other. A ..!.C.??P based at m E M is a path beginning 

and ending at mE M. Given paths in M, represented by curves 
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/~. I o. ,...,. 

X/~ 1'1 and c 
2 

2 7 () 

the concatenation c
1 

~+' .-. 
\J J. \.....1 

and c
2 

1s the path represented by the curve c 1 * c 2 ;;-, b/ ~ M, v.rhere 

( c '~ c ) 
l 2 /Y., b/ c., 

Given a path, represented by the curve c /o, 17 ~ fvl the cevcrsc 

c ~ of c lS represented by the curve c ~ /0, l/ ~ M defined by 

~ c ( t) c(l - t) 

for all t E- /0, 17. 

NO\v consider curves 1n the ::;tructura1 group G of Tf : P ---'> ]\']. 

If ol : (- ~ , ~ ) ~ G and l '2. : (- £ , E. ) -"> G are continuously 

differentiable curves 1n G then the product curve j 1 • ¥1. : (- ~ , ( ) --') G 

-· and the 1nverse curve Y 1 : (- £ , f. ) ~ G are defined by 

i ,-I (t) 

for all t E (- ~ , £ ) . Let 9 be the Lie algebra of G. If 

'( 1 (0) '(~(0) = e, v.rhere e is the identity element of G and if 

xl and X are tangent to i, and i,_ at t = 0, then xl + x., lS tangent 
2 6 

to 't,.y,_ at t -- 0 and -Xl JS tangent 
-I 

also to i, at t = 0. Let us 

define a curve 

'(,_ ) (- ~ "l... 

by the conditions that 

v.rhen 0 ~ t <. ~ 1. and 

-I 

(t) .../ 1 ( ~t ) - 1 i., ( -J-t) i I ( J-t ) t 2. ( J-t ) c..o~("'( 1 ,yl.) = o J-L .._ 

1vhen - ~1.. <. t S 0. If '( 1 and "'(,_ are continuously clifferentiab]e, 

if 



"'' (0) 
'( 1. (0) e' 

and if x
1 

and x
2 

are the vectors in 9 tangent to '( 1 and y 1-. at 

t = 0 then comm( '£ 1 , '(._)is continuously differentiable and [x
1

, x
2
J 

lS tangent to comm( Q' 1 , i 1. ) at t = 0. 

Let m,m' E M and let c be a p1ccew1se smooth path from m to m'. 

We define a one-parameter family of Lassos based at m with stalk c 

and vertex m' to be a family [ At : t E (- €. , 'C. ) } of loops 

based at m with the property that there exists a one-parameter family 

{ ct: t e (- £, ~ l} of loops based at m' such that 

t t-c :': c * c 

0 
l'lhere the fam:i ly of { c t} satisfies the following conditions: C 1S 

t the constant path at m' and the paths c arc represented by a family 

t 
of curves c : /o, 17 ~ ~I with the property that the map from 

(- ~, t, ) x /0, 1/ toM sending (t, u) to ct(u) is piece1..,rise smooth 

and the map from (- f. , t ) to G sending t to the element of the 

holonomy group of W 
t 

generated by c 1s continuously differentiable. 

l t } Let z c : t E (- ~ , t ) be a one-parameter family of loops 

based at m with the property that c
0 

generates the identity element of 

the ho lonomy group Hp of (.1) attached to p, where p is an e lcment of the 

fibre of Tr: P~ Mover m. We say that {ct: t E (- ~, £ )J 
generates the short curve '( : (- l_ , ~ ) --'> H if and only :if ¥ (t) 

p 
t 

is the clement of H generated by c for all t e (-~'E). Under these 
p 

circumstances \'ie say that f c t} generates X E f) where X is the 
p 

clement of the Lie algebra ~ of the holonomy group H \'ihich 1s p p 

tangent to '( : (- ~ , £ ) ~ II at t = 0. 
p 

Let 
t t 

{ c 
1 

: t E- (- ~ , £ ) } and [ c
2 

: t E: (- ~ , t 

one-parameter families of loops based at m generating curves 

: (- 'i_ , t ) __, Hp and 'll.: (- £.. , ~ ) ~ liP respecti vc ly whose 

be 

tangent vectors at t 0 are x1 E h P and x2 E Then the one-

parameter families and 
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t E:- (- E £._) generate curves (- £ E ) ~ Il 
p 

and (-E..~)~ !!p' and hence gcncrnte x1 + x2 E ~ p :mel 

~ respectively. \1/e sec that if t >,... 0 then comrn( y
1 

, 01..) (t
2

) 
p 

t ·'· t .•. t~ c., c 1 c., 

d ( i' ' v,_ ) ( -t2
) t d I an comm 0 1s genera·c JY 

t ,., c ·'· 
2 

We now proceed with the proof of the theorem. Let p he 311 

element of the fibre of rr P ~ 1\1 over m, and let B be the 
p 

holonomy bundle of the connection W ottached to p. By the J\mbl"Ose-

Singer ho !anomy theorem there exist l pi E Gp : l = 1, ... ' and 

vectors U. E T P, v. €: 
l Pi l 

T P such th3t the Lie algebra h p of the 
Pi 

holonomy group liP of CN attached to p .1s generated by 

tFw(U.AV.) i=l, ... ' 
w 

, where F 1\ 2 TP ~ 9 1s the 
l .1 

eurv3ture of W Expressed geometric3lly, this implies that there 

{ t } exist one-parameter families 7. ~ :i : t E (- ~ , '{_ ) of lassos 11i th 

vertices 11 (pi) such Uwt the elements { \ E:- h p l=l, ... ,dx 
J\.lt"\. generated by the t ~ . ) form a set of generators for n p. Let 

'(.: (- [. .~ 
.l 

~ Hp be the cut"vc generated by the one-parameter 

family tE (-t:', E l} of lassos. Let L1 be 311 upper bound 

on the length of the lassos in 

£ t A . 
1 

: t€(- ~.E: ), ] l, ... ,c!}. 

We may construct a basis (Y. : J 
J 

l, ... , r) of the vector 

space h whose clements arc (iterated) Lie brackets of elements of p 

the set t X. : i = l, ... , c1 J 
J. 

The vectors Y j are t:cmgen t to 

continuously differentiable curves j3j : (- b ' 
~ ) ~H at t --

p 

11here the curves f ft. j = 1' ... ' rJ are constructed out of 
J 

t '( :i : i = l, ... , clJ us1ng the operation comm defined above. 

0, 

the curves 



Since every element of the image of fi .j for J 

generated by a concatenation of lassos 1n 

[ 
t A . 

1. 
tE(-"L,E), l' ... ' cl } 

1 , ... , r may be 

and !:heir reverses, a.ncl stnce the length of these las:3os does not: 

exceed L1 , it follows that there exists a constant L2 such that, 

given t E (- ~ , b ) and an integer j in the range 1 ~ j ~ r, 1<1e 

t 
can find a loop c . based at m of length not exceeding L 1-;hich 

J 2 

generates j3 . ( t). 
J 

Define a continuously differentiable map 

at the origin is an isomorphism since { Y. : J = l, ... , r "\ 
j 

lS 

a basis of h p. Thus the 1.mage of ~ contains an open neighbourhood 

of the identity, by the inverse function theorem. Hut every element 

of the image of ~ is genePated by a concatenation of r loops based 
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at m, each of length not exceeding L
0

• Thus there exists a neighbourhood 
L. 

N of the identity 1n H such that every element of N is generated by 
r 

a loop based at m of length not exceeding rL2 . 

Since II Js compact, there exists a positive integer k such that 
r 

every c lcmcnt of the identity component of II 1s of the form '( k for 
r 

some '( € N, and thus may be generated by a loop of length not exceeding 

krL2 . .1\lso Hphas finitely many components. Tl1us we may find 

representatives h
1

, ... , hm in each coset of the identity component. 

fi1en there exists L3 such that h 1 , ... , hm may all be generated by a 

loop of length not exceeding L
3

. Since every element of Hpis of the 

form h .. y 
] 

for some h. and for some clement ~ of the identity 
1 

component, every element of II may be generated by a loop of length 
p 

not exceeding L w , where ,m 

L . 
w ,rn 

D 
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Note t!w t if the ho 1 onom.Y group of uJ 1 s not comract then for 

all me M and for all compact subsets K of the holonomy group attached 

to some clement of the fibre of TT: r ~ M over m there exists a 

constant L k' such that every eJ.ement of k may be gencratccl by a 
c.o 'm' 

loop of length not exceeding L ~ . For as 1n the above proof 
(.l),m,n 

we sec that there exists a neighbourhood N of the identity 1n the 

holonomy group and a constant L' such that every element of N may 

be generated by a loop of length not exceeding L'. The required 

result follows easily on noting that k is covered by a finite 

number of translates of the neighbourhood N. 



§3. Furthet' Incqual_i ties for Sections of Fibre Bundles 

We present two theorems in which theorem 2.1 of the prev1ous 

section LS npplied to prove inequalities satisfied by sections of some 

fibre bundle associated to a g1 vcn principaL buncllc. 

Let H be a compact Lie group and let II~ End(V) be a repr·e-

sentation of H. Let < . , . ) be an H-invariant inner product on V. 

Let V
0 

be the subspace on which ll acts trivially and let V
0
J- be its 

orthor;onal complement. Then there exists a constant >. such that 

vi 

for all v E: 

f s ~m JS 

f(v) 

~ A sup I h.v -
h£:!-1 

v 
.1.., 

For let s be 
0 

continuous, where 

sup 
hEll 

jh.v-vl 

vi 

the unit sphere y.L ]_n 
0 

Then 

Since H lS compact. Moreover f(v) > 0 for all v e s hence there 

exists a constant such that f(v) ~ \ - L . 
1\ , SJnce S lS compact. 

This is the required constant. 

\Vc recall that if GO ,~ a smooth connection on a 

bundle Tr : P ~ M over a Riemannian manifold r.J and if the holonomy 

group of (A.) is compact then for all m E: ~1 there exists a constant 

L such that every clement of the holonomy group of ~ attached 
c.u ,m 

to an clement of the fibre of -rr: P__, l\1 over m may he generated 

by a loop based at m of length not exceeding LW , by theorem 2 .1. ,m 

Theorem 3.1 

Let "'TT : P ~ M be a principal bundle over a Hiemannian manifo lcl 

l\1 whose diameter cliam(J'cl) is fin:i te. Let W be a smooth Ehresmann 

connection on Tr: P ~~I \'/hose holonomy f~I'OUp lS compact. Let mE: ~I 

and let L be Wl upper bound on the length of loops based at m 
tAJ,m 

required to generate the holonomy group of 00 

28] 



T.ct \T 1 : E ~ ~1 be a vector bundle associated to Tr: p ~ ~1 

with fibre V, and let V be given an inner product invariant under the 

action of the structural group of lT : P ~ !11. Let II 1\ denote the 

canonical C
0 norm on C

0
(E) and on Cc(E ® T"'l\1) determined by the inner 

product on V and the Riemannian metric on M. Let V be the subspace 
0 

of V on \\'hich the ho Lonomy group II of W acts trivially and let ).. 

be a constant such that 

I vi 

.L 
for e~U v E V 

0 

sup 
hE: H 

lh.v-v 

Then for all c1 sections 

there cxis t:c; a section ~ 
0 

: 1\1 ~ f. such that 

0 

and 

Proof 

Let I.\ m be the norm on the fibr·e of 11'
1 

: E ~ i\l over m 

determined by the inner product un V. Let p be an clement of the 

fibre of 1T : P ~ M over m and let y be an clement of the holonomy 

group II of w attached top. Then there exists a loop c /0, L 7 ~ M - -

282 

based at m of length not exceeding L and parameterized by arclength s w ,m 

1vh i ch genera tcs '( 

by theorem V.6.6. 

for all 

space of 

16 

'( E H and 

-l 
11

1 
(m) 

( M) -

Then 

6(F\<\) 1"'-' ~ Jc. I J.._w6"} ls 

~ L e-u, m- II J w cs- H 

exists 
-1 

such that But there e E TT 
1 

-(m) '(.eo = e 
0 0 

such that 15" (m) - c l.S orthogonal to the sub-
0 

on which II acts trivially. Then 

S<.A.f' I ( '6. 0 m..) - 0 ( (\'\ ) r 

\ I 5- /\ L--- w ) M..-
\\ cl (.A.) () I \ 



But since 't . e = c for all y_ E II there cxis ts a unlquc section 
. 0 0 

()() 
(,.A..) 

: l\1 ~ E such that d tS 0 ;:md lr (m) = e . Then 
0 0 0 

\1 ° -oo 1\ ~ I o-C""-)- Co (M-) \M + c:Lc-.""- (M) II cf"'-'o -J-"'"'~ l\ 

~ ( \ L (P Y\'1.- + l~~ ( M ) ) 1\ J.. u;l 6 1\ 
I 

by theorem VI.3.4. 

D 
One cnn also combine the inequality 

v.Jith the inequalities stated in theorem VI. 5. 2, provided that 1n 

case (i) of VI.5.2, p and k satisfy the stronger condition pk > dim M. 

A result for principal bundle automorphisms corresponding to 

theorem 3.1 \-.;ill be proved using the following lemma. 

Lemma 3.2 

Let G be a compact Lie gr,oup with a bi invariant Riemannian 

meLric wl!OSC distance function is p ; G X G -~ m. Let II be a closed 

subgroup of G and let C(ll) be the centralizer of H. For nll y E G 

define 

Then there exists a positive constant 1\ such that 

Proof 

Let 9 be the Lie algebra of G, let 

-1 } V
0 

= {X E. .9 : 1\d(h ) X = X for nll h E- H 

.L 
and let V be the orthogonal complement of V . We have seen that 

0 0 

there exists a constant ).. sucl1 that 

sup 
h€H 

-1 I Ad(h ) X - X 



for all X f; vl.. Also f!,J vcn L 
0 

> 0 thcJ"C cx:i s ts ~ > 0 such that 

\X - y 5- ( 1 + ~ ) .? (cxp x~ cxp Y) 

l,iJ1Cncve r \ X l < ~ and l Y / < ~ .L. 
Thus if X € V and 

0 

(X l ( S then 

\XI ~(l+~ \. sup (!1-l ( X) I X) I' h E 
11 

cxp . 1 , cxp , . 

Nm-; suppo:.;c that y € G and th8t 

0 < _,P ( '( , C(Ir) < ~. 

Since H 1s compact, there exists an element 1J
0
E C(H) such that 

._? ( '( 1 '"Y]o) ::: f ( Y) C ( H ) ) , 

Then 

_, 
s:tnce ..P 1s biinvariant. I3ut then "'( 7J 

0 
is joined to c by a length 

minimizing geodesic of length strictly less than S whose tangent 

vector ate is orthogonal to the tangent space V to C(H) at e. Thus 
0 

for some X l3 V .L satisfying I X I < ~ Then 
0 

.P ( '( ' 
C(H) ) jJ (exp X 

' 
e) 

I xl 

~ (1 + ~ ) >- sup 
hE H 

-1 -1 -1 
(h '( YJo h' '(f 'J o ) 

~ ( 1 + f. )}._ sup 
hE:. II 

(h-1'( h'l]o-1 '~ "'];1) 

~ ( 1 + f. ) >- sup 
hE ![ 

(h-l 't h, )' ). 

Define f G '- C (H) ~ Jn by 

f ( '( ) 
-1 

sup .P (h y h, 'I ) 
hEll ./' ( '((, C:(H) 

f 1s continuous stnce H is compact. Also 1<1c have just shown that 
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f( y ) ~ 
(1+~)>. 

l'lhencvcr· ? ( t , C(H) ) <. ~ Since G 1s compact there exists a 

constant /1 :ouch that 

/\ >r (! I f. >-

anJ such that f( ¥ ) > A-J for all ~ o;a tisfying 

/ ( i ' C(II) ) ~ X s 
Then 

.P ( y , C (II) 

for all '{ E G. 

A sup 
hEll 

-1 .P (l! i h, '( ) 

D 
Let TT : P _, ill be a smooth principal bundle with compact 

structural group G. Let G be given a biinvariant Riemannian metric 

with distance function _p : G x G ~ m.. He recall that this determines 

a biinvariant distance function D 
1 m 

-1 
TT ad (m) x 

-1 
TT ad (m) ~ m 

on the fibre rr -1 
, ( m) of the ad.ioint bundle Tr aa · · - aJ : Gp ~ ill over m 

for all m € M, l'lhere Gp = P x ad G. This distance function has the 

-1 
property that the group isomorphism from G to Tr ad (m) determined by 

any element of Tr : P ~ IV! 1s an isometr'y. If !II is compact then the 

canonical distance function 

Theorem 3.3 

Let Tr : P --4 111 be a smooth principal bundle ovct· a compact 

Riemannian manifold M with compact structural group G. Let G be given 

a biinvariant Hiemannian metric with distance function _p GxG~m. 

determining the canonical distance fw1ction jl : C
0

(Gp) x C
0

(Gp) ~ m. 
0 

on C ( Gp), vJhere TT ad : Gp ~ !I'! is the adjoint bundle 1vi th total space 
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Gp -- p X ~ rl G. Lcl II II be t:hc canonical 110l"m on Co( Qp ® T~,~n , 
au ....,-

11herc 9 1 s the Lie algebra of G and 9P = p X 
Ad 9 

Let w be a smooth connccti on on lT : P ~ ~·1 with compact 

hoJonomy group II attached to some c Lcmcnt p of tile fibre of T1' : P 4 M 

ovc1" m, fo1~ some m E M. Let II be a consi:ant such that 

LJ ( v , C (H) ) S 1\ sup 
/ D h{:ll 

-1 p (h 'I h, i) 

for all '6 E G. Let L be an upper bound on the length of loops w ,m 

based at m required lo generate the holonomy group of VJ . 

If ;1( is a c1 
principal bundle automorphism then there 

exists a principal bundle automorphism -\)(0 .stabilizing W such that 

$ (AL + diam(M) ) - w,m 

Proof 

Let h E H and let c /0, L 7 ~ ~1 be a loop based at m generating 

h of length not exceeding L which 1s parameterized by arclength s. 
C.AJ ,m 

Let ""\.( : P ~ G be the unique c1 
function v.'ith the property that 

~ (p) P· 'f' (p) 

for all p E P. Then 

I' lh-
1 ""* lrl h, 'I' lrl) ~ f 1 -'£' "'w - o.> l ,L 

c 

by theorem V.5.2. Then 

Y < sup -ly-P ( (JJ), C(H) ) - A o (h- (JJ) h --.1/" (p) / - hE- II / ' T -

AL II y.,. (/.:) - vv \I 
w ,m 

hence there exists YJ €: C (H) such that 

(-t'"(p),~ ) ~ AL w ,m 

By theorem V .'1. 2 there exists a principal bundle automorphism -\fr 
0 

p -7 p 
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l'lhich stabilizes OJ such that 

i:o (p) P·""J · 

Then 

P r"f"(m),"f" (m)) <.. AI. II \I:*'w-f...(.)/1 
m o w ,m 

and hence 

.$ (AL 
l.A.J ,m 

+ d i am ( M ) ) II i"; i' CA:> - W /1 

by lemma VI.3.1. 

D 



1\ppendix !I 

TilE HILDEHT TRANSfORM 

The Hilbert tt"ansform llf R ~ ]~ of a measurable function 

f JR 4 m is defined by 

Hf(x) 
1 Lim I f(t) 

cit 
Ti 

~ ~ 0-l t X -

lx-ti~E. 

'"henever this principal value exists. We g1ve a proof, derived from 

/Calclcr'on, !I.P., 1966/, of a theorem clue toM. Hiesz, '"hich states 

that the Hilbert transform is bounded on Lp(Rn) for all p satisfying 

Theorem (M. Ricsz) 

The Hilbert transform defines a bow1ded linear map 

for all p satisfying 1 < p < oo 

Proof 

First 1-Je shmv that if l ~ p <. 3 then there exist positive 

constants c 1 and c 2 , depending on p, such that if w = u + iv is a 

complex number satisfying u =3 0, then 

2b8 

(1vhere we define (reie)p = rpe:ipe for all p E.- R and for all g satisfying 

-Tf<:G<IT). 

It suffices to verj fy this j nequali ty when I'" I = 1, by 

homogeneity. Since 1 C. p < 3 there exists ~ 

0 <. ~ < rr/4- such that 

-rr 311 
p.2< 2 ~ 

(
TI 

P2 - .s ) > 

1 and 

Tr 

2 
+ $) . 

satisfying 



then 

and hence 

where 

l 
s1n b 

Sll1CC I vI 
p 

~ l and 

- Re ,l > Slll s 
If''"'= l and 

- 1; 
1T + ~ <( arg \'I < /? 

then 

II vI 
p 

+ c,, 
6 

He (wp) I 
and 

Thus 

l vI r 

where 

Thi~.; complc tes the proof that 

I v 1 r < e ur ..._ I 

,, 
lz 

~If 

< ... 

- s 

1 + c" 
"' 

for aLL complex numbers w = u t : v satisfying u ~ 0, 1vherc 1 < p < 3. 

Let f (!: C 
00 

( JR ) be a non-negative function. Define an ana lytic 0 . 

function F on the upper half complex plane by 

F(z) i J~ zf~t)t dt 
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~:md let 

F (:< t iy) u(w, y) + iv(x, y) 

~) 

for some harmonic functions u n~ ~ ~ H and v 

z x + iy then 

u(x, y) 

v(x, y) 

+ 

J 
00 

yf(t) 
-(-x---"-1-: -) ~-) _+_y_2 

-()0 

S~ (x - t) /(t)? 

(X - t) ~ + y~ 
-oo 

'In 2 ]' 
.n ~ '• 

Note that u(x, y) ~ 0 for all x and for all y "> 0. 

Applying the inequality derived above we see that 

J
oo oo 

( v(x, y) J p dx ,; c 1 J u(x, 

-oP -oo 

If 

'"hen y > 0 and l < p < 3. Using the fact that f has compact support, 

\'ie sec that F(z) = O(!zl) and hence F(z)p = 0( lzl 11 ) as z _, OD in the 

upper half plane. Thus the integrals of F(z)p around the semicircles 

z "'- Rc
18 

+ iy, where 0 ~ 9 ~IT , converge to zero ns R ~ + 00 . 

Thus 

ao J F( x ' iy ) P dx 0 

-oo 

for all y > 0 by Cauchy's theorem, s1nce F(z)P has no poles 1n the 

upper half plane. It follows that 

Now u(x, y) is equal to the value at x of the convolution k ~ f 
y 

of k and f, where 
y 

k (x) 
.Y 

1 

1T 

y 
2 2 

X + y 

2'10 



13u t 

J ~' (x) dx y 

-~ 

l 

hence 

J~u(x, y) I p dx 
fot· a l I y > 0, by Young's theorem on convolutions. lienee 

co 

J-lfixll 
r-

J v (x, y) I p dx ~ cl 
p 

dx. 

-00 - Oc> 

l!f(x) 
1 

lT ( J f(t) - f(x) dt 
X - \: 

Lx-tl < 1 

co 
]_ Lim I (x - t) f(t) 

dt 
y~ 0+ ') 2 TI (x - t)~ + y 

-eo 

lim 
y~ 0+ 

V (X, y). 

By Fatou's lemma 

.iXJ J \ 11 r I x l I P dx 

- ()0 

j
t:l/0 

lim 
y~OI 

I v ( x, y) } p dx 

{:. 1i m in f J .oo J v ( x ' y ) I p dx 
y _,0+ 

-()C) 

OD 

~ e
1

. j I f(x) I P clx 

-00 

f(t) 
x=t dl) 

2 ~) 1 

()!) 

for all p satisfying 1 < p < 3 and for all non-negative f t C
0 

( R ) . To 

extend this result to general fE c
00

(m) 1ve observe that for all L,. 0 
0 

there exist non-negative f11nctions fl, f:J E c:(JR) such that f = f - f and 
- 1 2 

II r II 2 p ~ II f II P + £ 



1vhcrc II f I( 1 s the Lp norm of f. On 0pplying the above t"estll t to 
" "P 

f 1 and f 2 we sec that 

II 11r II p ll 11 r1 II p 

c ( II f 1 II 

c ( II r II 

+ 

p + \l r 2 II r 

p + E ) 

13ut ~ > 0 1s arbi tr"ary, hence 

\lur I\ ~ c p II r II 
p 

-for all f € C (Jn) and p s3tisfying l (. p < 3. Hence 1-1 1s bounded 
0 

on Lp{_H) when l < p <. 3. Since His self-adjoint, His bounded 

on LP(m) 1·:hen ~ < p <. oo , by duality. 

D 
In /Calderon, A.P., 1966/ it Js asserted that v(x, y) - Hf in 

the above proof is the convolution of f with an integrable function. 

However 

V (X, y) - Hf (X) 

and the function 

2 
y 

1 

1T 

lim 
t -t 0+ 

/ f(t) dt 

1s not an integrable function of x 1n a neighbourhood of zero. Fatou's 

lemma has been used in the above proof to ovct"eomc this difficulty. 

The theorem may also be deduced as a corollary of the 

1\Jarcinkiewicz inteqJolC~tion theorem (see /stein, E.M. anJ l'leiss, G., 

1972; pp .183-18~/). 

2 92 



293 

References to Appendix A 

Calderon, A.P., "Singular integrals", Bull. Amer. Math. Soc., 

72 (1966), pp.427-~65. 

Hiesz, ~1., "Sur les fonctions con,jugees", ~lath. Z., 27 ( 1927), 

pp.218-2!J4. 

Stein, E.M. and Weiss, G., Introduction to Fourier analysis on 

Euclidean Spaces, Princeton Univ. Press, Pr'inccl:on, 

New Jersey, 1972. 




