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D. . Wilkins

ELLIPTIC OPERATORS, CONNECTIONS AND GAUGE TRANSFORMATTIONS

A study is made cf the action of various Banach Lie groups of
principal bundle automorphisms (gaugce transtormations) on corresponding
spaccs of connections on some principal bundle, using standard
theorem: of global analysis together with elliptic regularity theorems.
A proof c¢f elliptic regularity theorems in Sobclev and Hvlder norms for
lincar clliptic partial differential operators with smooth coefficients
acting on sections of smooth vector bundles is presented. This proof
assumes acquaintance with the theory of tempered distributions and
their Fourier transforms and with the theory of compact and Fredholm
operators, and also uscs results from the papers of Calderon and
Zygmund and from the carly papers of HBrmander on pseuco-diffcrential
opcrators, but is otherwisc intcended to be self-contained. Elliptic
regularity theorems arc proved for elliptic operators with non-smooth
cocfficicents, using only the repularity theorems for elliptic operators
with smooth coefficients, together with the Sobolev embedding theorems,
the Rellich-Kondrakov theorem and the Sobolev multiplication thcorems.
For later convenience thesc clliptic repularity results are presented
as a gencralization of the analytical aspects of Hodge theory. Various
theorems concerning the action of automorphisms on connections are
proved, culminating in the slice theorems obtained in chapter VIII.
Repularity theorcms for Yang-Mills connections and for Yang-Mills-
Higpgs systems arc obtained. 1In chapter IX analytical properties of
the covariant derivative operators associated with a connection are
related to the holonomy group of thc connection via a theorem which
shows the cxistence of an upper bound on the length of loop required
Lo penerate the holonomy group of a conncetion with compact holonomy

group.



ELLIPTIC OPERATORS, CONNECTIONS AND

GAUGE TRANSFORMATIONS

by

David Raynor Wilkins

A thesis presented for the degree of

Doctor of Philosophy at the University of Durham

The copyright of this thesis rests with the author.
No quotation from it should be published without
his prior written consent and information derived

from it should be acknowledged.

Department of Mathematical Sciences
University of Durham
DURHAM, UK.

July 1985

16.0CT.1985



DECLARATION

The work for this thesis was carried out at the University of
Durham during the academic years 1982-1985. This thesis has not

been submitted for any other degree.

A statement as to which parts of the thesis are claimed as
original and the sources from which the rest has been derived has

been included in Chapter I.



ACKNOWLEDGEMENTS

T should like to thank Dr. J. Bolton and Dr. L.M. Woodward for
many conversations over the past three years. 1 should also like to
thank Professor S.K. Donaldson for discussing his research with me
and Dr. F.G. Friedlander and Dr. P. Hall for conversations concerning
elliptic regularity. T am grateful to the Science and Engireering
resecarch council for financial support for a period of three years.

I should like to thank Mrs. C. Dowson for her patience in Lyping the
manuscript. Most of all T should like to thank my supervisor

Professor T.J. Willmore for his constant help and encouragement and
for communicating his enthusiasm for mathematics and his perspective

of the field of differential geometry.



Chapter

I.

CONTENTS

A Description of the Main Results

Chapter TI.

Introduction
The slice thecorem and Yanp~Mills connections

Elliptic regularity and Hodge theory .. .

Why are slice theorems important? .. ..
Gauge theories - .. - .
Plan of the thesis . .. .. ..

The relationship of the results to published
material -

Basic Results of Global Analysis

™)

Introduction - .. ..
Sobolev and HYlder spaces

Quotients of Banact manifolds by Banach Lie
groups ..

Chapter TII. Elliptic Regularity Theorems

[N

S (o8

[@2]

Chapter TV.

Introduction .o . - -
Singular integrals on Euclidean space ..
Pseudo-differential operators on manifolds
Pscudo-differential opcrators on Euclidean space

Some elliptic regularity results .. ..

An Incquality for Functions on Riemannian Manifolds

1. Introduction .. .. .. . o

2. Geodesic tubes about length minimizing geodesics

3. An inequality concerning functions on Ricmannian
manifolds .. - .. - ..

Chapter V. Principal Bundles and Connections

1. Introduction .. .. ..

2. The adjoint bundles

3. Conncctions and holonomy .. - ..

4. Principal bundle automorphisms . ..

5. Connections and canonical norms

6. Covariant derivatives of sections of fibre bundles

7. The covariant exterior derivative and codifferential

Page

28

30

35
37

45

53
58
63
80
102

109
110

115

128
132
143
146
152
160
177



Chapter VI.

Banach Manifolds of Automorphisms and Connections

N

[}

Introduction

Basic properties of the acticn of automorphisms on
connections

A convergence criterion for principal bundle
automorphisms

Further properties of the action of automorphisms
on connections .. . .. ..

Analytical properties of the ccvariant differential

Chapter VII. A Generalization of Hodge Theory

\]

Introduction . .. .. .. .
Lemmas concerning maps between Sobolev spaces

Continuity of some differential operators between
Sobholev spaces ..

Covariant Hodge theory with respect to non-smooth
connections .. .. .. .. ..

Chapter VIII. Slice Theorems and Regularity Theorems

1
2
3.
4

Chapter IX.

Introduction .. .. .. .. ..
Slice theorems for connections .
Regularity theorems for Yang-Mills connections

Repularity of Yang-Mills-Hipgps systems ..

Covariant Derivatives and Holonomy

I
2.
3.

Appendix A,

Introduction . .. - . -
The lenpth of loops gencrating the holonomy group

Further irequalities for sections of fibre bundles

The Hilbert Transform .. - .

Page

185

~1

-
(o}

196

205
213

221
225

233

244

254
256
264
270

274
275
281

288



Chapter I

A DESCRIPTION OF THE MAIN RESULTS

In this chapter we give a brief outline of the results obtained
and of their relationship to results occurring in the literature.

We begin with a discussion of the slice theorems proved in
chapter VIII for the action of principal bundle automorphisms (gauge
transformations) on connections and of the elliptic regularity
results for Yang-Mills connections and Yang-Mills-Higgs systems,
These results are consequences of general elliptic regularity
results for elliptic partial differential operators with smooth
coefficients, which imply results peneralizing the analytical
aspects of Hodge theory to the study of Hodge-de Rham Laplacians
with respect to connections which need not be smooth.

Slice theorems are used when studying the properties of
suitably differentiable functionals defined on Banach manifolds
with the property that the functional is constant along the orbits
of some infinite dimensional symmetry group. We give a hrief
survey of occasions in geometry where this situation arises. An
account is given of the methods of Morse theory and Lyusternik-
Schnirelmann theory for relating the topology of a Banach manifold
to the critical sets of functionals defined on that manifold. The
role of slice theorems in circumstances where the functional is
invariant under the action of an infinite dimensional symmetry
group is described.

We also give a survey of the physical origins of paupe theories
and of recent work on the topological, geometric and analytical
aspects of gauge theories.

We give an account of the plan of the thesis, A statement

is given which specifies those parts of the thesis believed to be




original research and the sources on which other results in the

thesis are based,



The Slice Theorem and Yang-Mills Connections

We describe the results of chapter VITI. These results are
the main objective of the thesis, for which the carlier chapters
preparc the necessary foundation.

We study the action of various Banach Lie groups of principal
bundle automorphisms on corresponding affine spaces of connections
on a piven principal bundle over a compact manifold with compact
structural group. These Banach Lie groups of automorphisms are
modelled on Sobolev, Ck and HYlder spaces, and the affine spaces of
connections correspond to Sobolev, Ck and HB8lder spaces of sections
of the appropriate vector bundle.

Theorem 2.3 of chapter VIII is a slice theorem giving
sufficicent conditions for the existence of a differentiable structure
on the quotient space obtained by quotienting a Sobolev or H8lder
space of connections by the action of the corresponding group of
principal bundle automorphisms in such a way that the quotient map
is a smooth map between Banach manifolds which admits smooth local
sections. This theorem generalizes corresponding slice theorems in
_§ingcr, .M, , 197§7,£ﬁarasimhan, M. S. and Ramadas, T,R., 19727,
iﬁittcr, B K. and viallet, C.M., 19817 and /Parker, T., 19827 and is
closcly related to corresponding results in zxtiyah, M., T, , Hitchin, N..,
and Singer, I.M., 197§7 and Lﬁonaldson, S, K. 198392

The proof of the slice theorem uses the results of chapter VI in
which a fairly detailed study of the action of Banach Lie groups of
principal bundle automorphisms on the corresponding spaces of
connections is undertaken, It is shown that the actions of the

k41

c k+1,

P

TRE and C

Banach Lie groups of L principal bundle auto-

. ] k, o . .
morphisms on the spaces of LE, ¢ and c*’ connections respectively



are smooth, privided that 1 & p<oo and p(k + 1) > n, where n is
the dimension of the base manifold of the bundle, and provided that
0 < o <1, In all these cases the quotient of the space of
connections by the corresponding group of automorphisms is Hausdorff,
and the stabilizer of a connection in the appropriate group of auto-
morphisms is compact (see theorems VI, 4,1 and VI.4.2), Note that
this result holds even for LP connections which are not continuous,
provided that p > n. It is also shown that if (<O i) 1s a sequence
in any of the above spaces of connections, if (1&‘1) 1s a sequence 1in
the corresponding group of principal bundle automorphisms and if
both (v i) and (Tfki*CO i) converge in the space of connections,
then some subsequence of (Wy’i) converges in the group of auto-
morphisms (see corollary VI.3.3). Indeed if (}Pri) converges on
some piven fibre of the principal bundle, then (ﬂP‘i) converges 1in
the group of automorphisms (see theorem VI.3.2).

The proof of the slice theorem (theorem VIII.2.3) uses both
the results of chapter VI described above and also a generalization
of the analytical aspects of Hodge theory, presented in chapter VII,
which describes the properties of the covariant Hodge-De Rham Laplacian
with respect to a connection that need not be smooth,

This generalization of Hodge theory is also used to prove
regularity theorems for Yang-Mills connections (theorems 3.1, 3.2
and 3.3 of chapter VIII) which place sufficicent conditions on p and
k in order that, for every LY connection o satisfying the Yang-

k

Mills equation, there should exist an LP principal bundle auto-

k+1
morphism ﬁi? such that ‘g?hud is smooth. An informal discussion of
the regularity of Yang-Mills-Higgs systems is pgiven. Regularity

theorems for Yang-Mills fields and Yang-Mills-Higgs systems are given

in iﬁhlenbeck, K, K., 198297 and Lﬁarker, T, , 1982/




F1liptic Regularity and Hodge Theory

in chapter III we shall prove a general regularity theorem

for elliptic differential operators with smooth coefficients. This

)

tlows, Let 7T, @ B, =2 Mand T, : B, —2 M be
1 1 2 2

) be a linear elliptic differential operator

of order m with smooth coefficients, If k is an integer and if p

satisfies 1 € p<oe then L extends to a bounded Fredholm map

() = P e,

k

2

Moreover if u is an El—valucd distribution with the property that
tu € LP(E) then u e LV (). Similarly if k is a non-negative
k72 kam 1 -

integer and 1f o satisfies 0 4 o« &4 1 then I. extends to a bounded

Fredholm map

oL
(E)) = o

K+m, =

L :C (E.)

2

and if u 1s an El—valued distribution with the property that

e %) b € ™ (5), Ratl isingl }
Lu C By, en u 4 ather surprisingly, I have
not found this theorem stated in the above form in the literature.
The nearest approach to this theorem that I have yet discovered in
the literature is theorem 3. 54 of the book 'Nonlinear analysis on
manifolds. Monpc-Ampere cquations' by Aubin,

We prove this repularity theorem using the theory of singular
intepgrals, duc to Calderon and Zygmund, and the theory of pseudo-~
diffcrential operators. A parametrix for L is defined to be a linear

oo, o0 .
operator P : C (Ez) e X0 (El) with the property that the operators
I - LP and I - PL are smoothing operators (a smoothing operator is

a continuous linear opcrator whosc distribution kernel is smooth).

Hrmander has shown that every linear elliptic differential operator



of order m with smooth coefficients has a parametrix which is a
pscudodifferential operator of order -m in the class of such
operators introduced by Kohn and Nirenberg and by H8rmander. Using
the pscudolocal praperty of pseundodifferential operators and a
partition of unity argument i1t suffices to show that a pseudo-

L= -] n o0 n

differential operator Q : C_ (R ) ~—>C (R

o } of order -m in the

class of pseudodifferential operators introduced by Kohn and

Nircenberg cxtends to continuous linear maps

n n

P

. P
Q L1{,100 (R) — Lk+m,1oc (R0,
Kk, n k+m, o n
Q€2 (R ) —> Cloe (R ),

. . n . .
Now pscudodifferential operators on R in the class intro-
duced by Kohn and Nirenberg have the form

A

0 ) - (2w J Vg, 1) p (¥ a¥

for all 90 € Cgo (I{]), where the symbol q(x, ¥ ) has an asymptotic
X

expansion in ¥ for large ¢ in which cach te ositively

=3
3
=
&}
£
el

homogeneous function of § « Now if sufficiently many terms of

this asymptotic expansion are taken, then the distribution kernel

of the pseudodifferential operator corresponding to the remainder
term is ¢' for r as large as required, Thus it suffices to consider
the boundedness in Sobolev and HBlder norms of the pseudodifferential
operator corresponding to each individual term in the asymptotic
expansion. But one can express such an operator as a sum of compo-
sitions of operators which are either the sinpular integral operators
with variable kerncls sutdied by Calderon and Zygmund, or are convolution
operators with summable kernels, or are other well-behaved operators.
Thus the boundedness of the pseudodiffercntial operator will follow

using the results of Calderon and Zygmund, together with Young's




theorem on convolutions, This enables us to prove the elliptic
repgularity results of chapter III,

We usc the regularity theorems proved in chapter ITIT,
topcther with the Sobolev cmbedding
theorem and the Sobolev multiplication theorems in order to derive a
generalization of the analytical aspects of Hodge theory, which we
present in chapter VIT. This applies to the covariant Hodge-de Rham
Laplacian with respect to connections which neced not be smooth.

More specifically, let k he a non-negative integer, let p satisfy the
conditions 1< p<eo and p(k + 1) > n, where n is the dimension of
the compact smooth manifold under consideration. If k = 0, let p

also satisfy the condition p 2 2. Let p' be the exponent conjugate

to p, defined by

T
p p -

[\
1f 9r : E- M is a smooth vector bundle and if A is the covariant
Hodge-de Rham Laplacian with respect to an Li connection ( on
an associated principal bundle, and if ez and g & (1,00 ) satisfy

the conditions

-k &L ¢k,
Lok o0 L o1k
p n q n P n
then
~ 4 (p J g q J e
A @AY )L (@ N TE)
is a Fredholm operator, Moreover if u € L?L+1(E & AY 1#M) and
. . .
ATuer] @AY 1w then ue L?H(E ® AYJ M), Using

these results onc can prove an analoque of the Hodge decomposition

theorem and define the Green's operator

~J]
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G Lo (B by /\‘j T

-~k

w
of ZX in the usual manner,
map

g J
Loy F ® A 1

Similar results can be proved

t
)y —» P

ny ‘J T
_k+1(5® A~ T=M)

and this restricts to a bounded linear

N\ ~ T C{ 4o A ‘-' sy )
M)~ L' (E @& HES SR
L+1 h
. . K, .
1f o 1s a € connection,
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Why are Slice Theorems important?

n the mathematical literature one may find various instances
where a study has been made of the following type of problem,
Supposc that one ig given a smooth manifold M and that on this
manifold is defined some class X of geometric structures, where
X may be identified with some Banach (or Frechet) space of sections
of some Tibre bundle over M., Supposc that there is a naturally
defined infinite dimensional symmetry group Il which permutes the
clements of X. We shall suppose that H is a Banach (or Frechet)
Lic group acting (smoothly) on X and that H acts freely on some
open sct X of generic elements of X. The problem is then to show
that the topological quotient Xo/H of X by the action of H 1s a
lHausdorff topological space which admits a canonical differentiable
structure with the property that the natural projection from X, to
Xo/11 is smooth and admits smooth local sections.

A classic example is provided by TeichmUller theory. We let M
he a smooth surface and define Con(M) to be the space of conformal
structures on M. Given a conformal structure on M and a diffeo-
morphism of M we may form a new conformal structure which i1s the
pullback of the given conformal structure by the diffeomcrphism.
Thus the group Diff(M) of orientation-preserving diffecomorphisms of
M acts on the space Con(M) of conformal structures on M, and thus
we may form the quotient space Con(M)/Diff(M). This quotient space
is referred to as the moduli space of Riemann surfaces whose topo-
lopical type is that of M. Similarly the Teichmiller space
Con(M)/Diff (M) of marked Riemann surfaccs whose topological type
is that of M is defined to be the quotient of the space Con(M) of
conformal structures on M by the identity component DiffO(M) of the

group Diff(M) of orientation-preserving diffeomorphisms of M (sce



/Earlc, C..J. and Eells, J., ]9697 When M 1s a torus then the

Teichmiiller space of marked Riemann surfaces of genus 1 is identi-
fied with the upper halfl planc d:+ and the moduli space of

Riemann surfaces of penus 1 is identified with the quotient

d: +/SL(Z,ZZ), In peneral we see that the TeichmUller space is a
covering space of the moduli space.

A second example is provided by the action of the group of
diffcomorphisms of a smooth manifold on the space of Riemannian
metrics on this manifold. This action has been studied in ifbin, D. G. ,
19797, in ifischer, A.E. and Marsden, J.LE., 19717 and 1in
iﬁourguignon, Je =P, 19757

Let M be a compact smooth manifold of dimension n, let N be
a compact Riemannian manifold of dimension k, where k 2 n, and let
B be a smooth submaﬁifold of N of dimension n - 1 which is diffco-
morphic to @ M. The n-dimensional Plateau problem ig to find a
map ¥ : M= N which sends ¥ M diffcomorphically onto B with the
property that (M) has minimal volume among such maps from M to N.
To study this problem one might take X to be the space of maps
f : M~ N which send 3¥M diffcomorphically onto B and define
vol : X =R to be the map scnding f € X to the volume of (M), If
fa : MM is a diffcomorphism of M and if f € X then so docs
f-;p , and vol(f °;o ) = vol(f). Thus vol : X = R induces a map
vol : X/Diff(M) — R.

We shall be studying the action of groups é% of principal
bundle automorphisms on spaces,}* of connections on a smooth
principal bundlec over a compact smooth manifold M. The Yanp-Mills
functional YM : }L'—% R is invariant under ég and thus induces a
functional YM : ‘}&’/ éi —> R. If the dimension of M is 4 then

the minimum of the Yanp-Mills functional is attained by the set }%/mjn

10
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of instantons {(or anti-instantons) on the principal bundle. The
moduli space of instantons (or anti-instantons) is defined to be
the quotient }& min/gi , and has been studied in ixtiyah, M. F, ,
Hitchin, N.J, and Singer, 1.M,, l97§7 and in iﬁonaldson, S.K., 198327
Given a sultably well-behaved functional £ : X =» R defined on
a Banach manifold X one may relate the critical sets of f to the
topology of X by means of either Morse theory or Lyusternik-Schnirelmann
theory.
First we discuss Morse theory on Hilbert manifolds. Let

f : X=R be a non-trivial C3 function defined on a connected
Hilbert manifold X and let df : X =3 T*X he the differential of f,
A critical point of f 1is an element of X at which df vanishes,
Supposc that f satisfies the following condition: given any subset S
of X on which )] is bounded and JJdf{] is not bounded away from
zero, there exists a critical point of f adherent to S. Then Palais
and Smale have shown that the conclusions of Morse theory apply to
the function f, relating the critical sets of f to the topology of
the manifold X (see lﬁalais, R.S., 1962?). The above condition on f
is referred to as the Palais-Smale condition., Tt ensures that if

Yy ¢ (a, b) = X is a maximal integral curve of the gradient vector

field f of f, where —aco % a < b $ +00, then either

lim

t b f(t) = + oo

or there exists a sequence (ti ¢ (a, b) : 1 € N) converging to b
such that the sequence ( Y (ti) : 1 € IN) converges to a critical
poiﬁt of I, and similarly when t converges to a from above, In
particular the critical values of f are isolated and if ¢ is a
critical value of f then the sct of critical points x satisfying
f(x) -+ ¢ is compact (a cri%ical value of  is the imapge under f of

a critical point of f).



f : X—=—>R 1is saild to be a Morse function if and only if the
critical set of f consists of isolated points and the Hessian of

at those critical points is nondegenerate. TFor all ¢ € R let
X = {A x € X : f(x) ¢ cj-.

If £ : X~ R 1s a Morse Tunction and if ¢ 1s a critical value of T

then for all sufficiently small £ > 0 the pair (X , X ) 1is

C+ & c-§

homotopy equivalent to a relative CW complex, where XC+E is

by attaching a cell of dimension k for each

1

obtained from XC

-E
critical point in f “{c¢) at which the index of the Hessian of f
is k (see /Milnor, J.W., 19627-0r /Palais, R.S., 19627).

Suppose that H is a group acting on the Hilbert manifold X
and that f is H-invariant. Then f : X —» R will not in general be
a Morse function, unless the critical points of f were fixed points
for the action of If on X, Howcver one may apply the equivariant
Morsc theory described in ixtiyah, M.F. and Bott, R., 19837

One may also study the relationship between the topology of
a topological space X and the critical sets of a continuous function
f : X —> R on this space by means of Lyusternik-Schnirelmann
theory (scc ifyustcrnik, L.A., 19697). Let (X, f, K) be a triple,

where X is a topological space, f : X =R is a continuous function

and K is a closed subset of X. For all ¢ € R let

x = £ ((coe, o).

We may apply the techniques of Lyusternik-Schnirelmann theory to
(X, f, K) provided that the following thrce conditions are satisfied:
(i) f(K) is discrete,
(i1) if ¢ € R~ f(K) then X may be deformed into X for
C+% c—- ¢
all sufficiently small € > O,



-1
(iii) if ¢ € f(K) then for every open neighbourhood U of K A f "(c)

there exists £ > 0 such that Xc+£ may be deformed into

Uy,

-t
We refer to K as the critical set of f and to f(K) as the set of
critical values of f.

In Lyusternik-Schnirelmann theory one proves the existence of
one or more distinct critical values of f : X —»R from a knowledge
of the topology of X. One method of doing this may be described
as follows. Let (Y, B) be a topological pair, let a € R and let

r1 € [ (v, B), (X, Xa)] be a homotopy class of continuous maps

g : (Y, B) = (X, Xa) with the property that g{Y) ¢: X, for all

q € rj . Define
. B inf sup
°h = 4en yEY fiq (y) )

Then ¢ is a critical value of f : X 2R . Indeed if cp
were not a critical value of f then there would exist a map

h @ X - Xc which was homotopic in X to the identity map

Cc+ g -€ c+¢g
of XC+€ for all sufficiently small ¢ > 0, by condition (ii) abovc.
But by definition of ¢ there would exist q €[  such that
q(Y)c.XC+i . But then h *® c1€T1 and h ¢ g (Y) € Xc—g , contra-
dicting the definition of ¢ p - Hence ¢ is a critical value of f.
Using this method Lyusternik and Fet proved the existence of at
lcast one closed geodesic on a compact Riemannian manifold (sce
LE]ingenbcrg, Ww., 197§7 of Lflingenberg, Ww., 19827).

One may prove the existence of more than one critical point
of £ : X R using the concept of Lyustcrnik-Schnirelmann category.
If A is a subsct of X then the Lyusternik-Schnirelmann category of A

in X, cat(A; X), is the least integer n such that A may be covered

by n closed subsets of X, each of which is contractible in X. If no
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such integer exists then cat(A; X) is defined to be 00 . We denote
cat(X; X) by cat(X).

For all m £ cat(X), define

cm(f) — inf { a e m Cat(xa, Xy 2 n]}
Tt can be shown that
cm({W < cm+1(f)
and that if om(f) € (-o00 ,00 ) then cm(f) is a critical value of f.

Also f : X —2» R has at least cat(X) critical points. Indeed if
the number of critical points of £ : X =R 1s finitc then it may

be shown that

c (f) < ¢ (f)

for all m and n satisfying
1 & m<€< n £ cat(X)

(sce lﬁalais, R.S., 196E7 ).

The Lyusternik-Schnirelmann category of a topological space may
be related to the homology of that space. However one may deduce
information about the critical point structure of f : X - R directly
from the homology of X without the need to introduce the concept of
Lyusternik-Schnirelmann category.

Given a € R define ia and ja to be the inclusions
ia : XaC—a X and ja 1 X (X, Xa)' ia and ja induce homo-

morphi sms
tow @ Hy (Xa)—$ H, (X),

‘]a“k : H:': (X) _—> ”* (X’ X:_\) *

and the kernel of jq* is the image of i by the homology exact

)

av



sequence of the pair (X, Xa)' Given z € H_ (X), define

cl(z) = inf { a &€ R : j z = 0 }

= inf § a € R : z € i H, (X()}

e = &)
- (5 o

c(z) 1s a critical value of f : X —» WM. Tor suppose c{(z) were not

a critical value. Then there would exist a continuous map

h X —> X homotopic to the i1dentity map of X for all
C+g c~-t c+ &

sufficiently small ¢ > 0, where ¢ = c¢(z). But then z = ic+<g . W

for some w € H_ (xc+g } and hence z = ic~£ . h 4 W, contradicting

the definition of c{(z). Thus c(z) is a critical value of f.
Using the homology exact sequences and the naturality of the

*
cap product one may easily show that if z € H_ (X) and F,e H (X)

*

then

cf (o N z) £ c¢(z)

and that if cquality holds then k:yp # 0 for all open neighbourhoods
U of kN f_l(c(z) ), where kU denotes the inclusion kU T U X.

Onc may also usc variants of the methods described above. For
examplce the proof of the Lyusternik-Schnirelmann theorem on the
existence of at least three simple closed gecodesics on a Riemannian
manifold diffeomorphic to a Z2-sphere given in Lilingenberg, w., 19827
docs not fall strictly within the purview of the above m~thods though
it is closely related to the homology mecthod described above (sce
also iﬁallmann, W., Thorbergsson, G. and Ziller, W., 19827).

Given a C2— function f : X —=>»R on a complete C2 Finsler
manifold X satisfying the Palais-Smale condition described above
one may verify that (X, £, K) satisfies conditions (i), (ii) and
(111) above, where

K :{xex:dfx:o}

15
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{see iﬁalais, R.S., 196§7), and thus any of the above methods of
Lyustcrnik-Schirelmann theory are applicable. However Lyusternik-
Schnirclmann theory i1s more robust than Morse theory in that by
verifying that conditions (i), (ii1), and (i11) above are satisfied
using methods other than by studying the flow of an approximate
gradient field, one may apply the techniques of Lyusternik-Schnirelmann
theory in situations where the Palais-Smale condition is not appli-
cable (see iﬁlingenberg, W., 19827).

Having summarizcd the basic methods of Morse theory and
Lyusternik-Schnirelmann theory for relating the topology of a
Banach manifold te the critical point structure of continuous
functions defined on it wc now indicate how one might apply these
methods 1n situations where the function in guestion is constant
atong the orbits of the action of some infinite dimensional symmetry
group. Let f : X ~3»R be such a function defined on the Banach
manifold X and let f be constant on the orbits of the action of
the Banach Lie group H acting on X. One would not in general expect
to be able to verify the Palais-Smale condition for f : X — R,
Indeed given a scquence (xi € X : i € N) for which If(xi)l is
bounded and the norm of df at x; converges to zero then this sequence
would not in general contain a convergent subscquence, for even if
(xi € X : i € W) were to converge, one would expect to find a
sequence (hi € H: i € N) such that (Xi'hi : 1 € N) contains no
convergent subsecquence, yet f(xj.hi) is bounded and the norm of df
at Xi.hi converges to zero.

In order to overcome this problem it is necessary to factor out
the action of the symmetry group H from the Banach manifold X. Let

us suppose that H has a Banach Lie subgroup HO of finite codimension

in H which acts freely on X and such that il is compact, where H = H/Ho'
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pDefine X = X/HO. In order to apply critical point theory to the
function f : X = R induced by f : X—= R on X, one would aim to
prove a slice theorem which would state that X admits a unique |
differentiable structure with the property that the natural projection
from X onto X is smooth and admits smooth local sections. Then one
has to reduce the problem to one of studying the behaviour of

f : X =>MR, where f is constant along the orbits of the action of

the compact Lie group H. In these circumstances one has more hope of
being able to verify the Palais-Smalc condition for the function

f : X—»R. Moreover if X satisfies the second axiom of countability
then X and X will be paracompact. Then the natural projection X — X
will be a principal bundle with fibre HO over a paracompact Hausdorff
basc space X and thus will be a Hurewicz fibration (see igpanjer, E.H.,
1966 ; pp.92—9§7). Thus the homotopy groups of Mo X and X are

rclated by the homotopy exact sequence

(H )

=TT, (H) = 9T, (X)) > (X) — m,_ (H

of the fibration, and the relationship between the homology of HO, X
and X may be studied using the Scerre spectral scequence.

Applying thesc remarks in the context of Yang-Mills theory we
see that it is sensible to consider the Yang-Mills functional as a

smooth map
.2 2 m
oA/ g " —>w,

where L%/& is the space of L2 connections on a principal bundle

1
7 : P ~2 M over a compact Riemannian manifold M with structural
. 2 m . 2 . .
group G, and where L2 t; ts the group of L2 principal bundle auto-
morphisms of - : P~ M which fix the fibre of 7 : P~ M over

2 - . .
m, for some m € M. Ly §§ ™ is a well-defined Banach Lie group

2 . .
acting smoothly on Lljﬁ’ when the dimension of M does not exceed 3,
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and in lﬁhlenbeck, K.K., 198237 it is conjectured that the Palais-
Smale condition is satisfied in these circumstances.

However interesting problems in geometry occur in circumstances
where the Palais-Smale condition just fails to apply (see iﬁhlenheck, K.K.,
198237), notably in the study of harmonic maps whose domain is a compact
2-dimensional surface and also in the study of the Yang-Mills functional
for principal bundles over a compact 4-dimensional manifold. In the
theory of harmonic maps whose domain is a 2-dimensional surface inter-
esting results may be obtained by perturbing the functional in
question to nearby functionals which satisfy the Palais-Smale
condition on the appropriate Banach manifold (see Lgacks, J. and
Uhlenbeck, K.K., 198£7 ). By analogy this suggests that, to obtain
results for the Yang-Mills functional for connections on a principal

bundle over a 4-manifold, it might be fruitful to study the functional

F.
™M, ( Cwl) - j(1+ [ P12 )™ d(vel)

defined on the Banach manifold L?/&’ /LE qg ™ for p 2 2, where

W . .
F is the curvature of the connection wa



Gauge Theorics

Non-Abelian gauge thcories were introduced by Yang and Mills
in /Mills, R.L. and Yang, C.N., 195&7 as a peneralization of Maxwell's

nd

w

& wLllsm

theory of electromagnetism. We recall that the clectric
magnetic ficlds on spacctime are described by a 2-form F satisfying

Maxwell's equations
dF = 0
&r = J

where J is some constant multiple of the current density, considered
as a l-form on spacetime, where d is the exterior derivative operator
and where & is the codifferential determincd by the metric on

spacetime. Since dF = 0 there exists a 1-form A such that

by thc Poincaré lemma. The l-form A is often referred to as a
4-potential of F. This l-form A is not unique. Indeed if \P’ is a
smooth function on spacctime, then A + d\f'is also a 4-potential
of F. The correspondence sending A to A + d¥V is referred to as

a pauge transformation (this terminology arose from Weyl's attempt
to unify gravitation and eclectromagnetism in a single theory in
which the length of a measuring rod in spacetime would change under
parallel transport around closed loops in spacetime). It became
customary to 'fix a gauge' by demanding that A also satisfy the
condition

$§A = 0

since 1 A + CPY/ also satisfied this condition then \f’ would have to
be harmonic, and thus if \f’ satisfied appropriate boundary conditions
at infinity then ¥ would have to be constant. The condition that

the divergence of A vanish is often referred to as the Lorentz pauge



condition. TIf A satisfies the Lorentz gauge condition then Maxwell's

cquations become

F o= da,
AN =
where /A is the Hodge-de Rham Laplacian acting on 1-forms, defined by
FAN = 6°(J + doe g
Thus
2 .
- v A+ Rice A = J

using the Bochner-Weizenbbek formula, where - {7:2 is the rough
Laplacian acting on l1-forms and wherc Ric is the symmetric endo-
morphism determined by the Ricci curvature of spacetime.

The vacumm Maxwecll equations are the Euler-Lagrange equations

for the action
2
I(A) = |da| © d(vol).

Yanp and Mills introduced a non-Abclian gauge theory with
many similarities to the thcory of electromagnctism just described.
In this thcory the gaupe potentials are l-forms A on R4 with values
in the Lic algebra E? of some compact lic group G. Yang and Mills
consider the case when G is SU (2). The group G is referred to by
physicists as the paupe group. Corresponding to the gauge potential A
we have a covariant derivative operator D. If V is a representation

space for G and if f : ]R4 —>»V is differentiable then
Df = df + A.f.

The appropriate analoguc of the electromagnetic ficld tensor is the
ficld strength Fu F is a E}~valued 2-form whosc components F

arc pgiven by



Fow = L[ Dy oDy ]
R 3y b+ Ly oy
Plharn Vaora_ M3l la Aot e —~
I L(lllf_ i LD V%LACIL;I\JI\ =]
A

A . . . . .
where g , the covariant codifferential, is the formal adjoint
of the covariant exterior derivative., The Yang-Mills cquation is

the Fuler-Lagrange equation of the Yang-Mills functional
2
YM(A) = lF | © d(vol)

. 4 . .
Given amap g : R — G, g determinces a gauge transformation
sendinp the covariant derivative opcrator f - Df to the operator

f > Dgf, where

pf - g " D(pf).
e 0% = d 4 AP, then
A= g v g de

The Ticeld strenpgth F transforms to g_l Fg undcr the gaupe trans-
formation.

For an account of non-Abelian gauge theories from the physicist's
point of view, see LTaylor, J.C., 197§7 or chapter 12 of lftzykson, C.
and Zuber, J.-B., 1980/.

Physicists study gauge theories both on Minkowski spacetime
and on four-dimensional Fuclidcan spacctimce. We shall herc be
concerned exclusively with the Euclidean case and its generalization
to gauge thcories on Ricmannian manifolds, since we wish to apply

the theory of elliptic partial differential equations.



Yang and Mills originally proposed their thecory as a possible
model for the isospin symmetry between prolons and neutrons in
elementary particle physics. 1In the standard theory an isospin
"rotationt, determined by an clement of SU {(2), would ‘rotate’ alil
protons in the universe to the appropriate linear combination of
proton and neutron eigenstates, and the rclative proportion of the
proton componcent and the neutron component of the dynamical statc of
the 'rotated' particle would be the same for all protons in the
universe. Yang and Mills wished to construct a theory of isospin
which permitted symmetries which might 'rotate' a proton into a
neutron at one event in spacetime yet which fixed a proton at
some other event. Such a symmetry would be detcermined by a map from
spacctime to the isospin proup SU (2). However pauge theories found
their application not in this context but in the context of unified
field theories of the forces o nature, once it was shown that gauge
theories were renormalizable and once spontancous symmetry breaking
had been introduced into the theory via the Higgs mechanism. Those
thecorics currently reparded as standard include the Salam-Weinberg
unification of thc electromagnetic and weak interactions, and also
quantum chromodynamics, which is the theory of the strong interaction
in which guarks interact via the cxchange of gluons.

Physicists imposcd thc appropriate analopue of the Lorentz
gauge condition, namely the condition

v oA, = O

N

or their gauge potentials on the assumption that this would determine
a unique gauge potential from cach orbit of the group of pauge
transformations. That this was not the case was pointcd out in
Laribov, V.N., l97§7 in the case where the gaupe potentials satisfied

appropriate boundary conditions at infinity. An explanation of why

[\W)
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this had to be so was given in iginger, I.M., 197§7.

Singer obscrves that the boundary conditions at infinity imposed
by Gribov arc such as to ecnable onc to extend the gauge transformations
Lo the compactificalion 5 of m4. The paupe pulenlials studied by
physicists correspond to connections defined on a principal bundle

T : P — ¥ over the manifold M being considered (in this case
M = 84). Similarly the gauge transformations introduced by physicists
correspond to principal bundle automorphisms of < : P — M. Let
CoiAr denote the Frechet space of smooth connections on T+ P — M
(strictly spcaking this is an affinc space modelled on a ¥rechet
spacc) and let C°°§; be the group of smooth principal bundle auto-
morphisms of v : P — M. C°°€; acts on CGUQ- on the right wherc
cach principal bundle automorphism in C“§ acts on %A by sending
ecach connection on 7T : P —>M to its pullback under the given
automorphism. What to the physicist is a choice of gauge condition

corresponds to the construction of a section of the natural projection

A o A /c“?

let C°°)¥ ipp denotc the open dense subset of Ceffk consisting
of all smooth irreducible conncctions on ¢ : P —» M. Let C“%O

be the quotient C°°§§ /7(G) of C“’Ei by the subgroup naturally

isomorphic to thc centre of the structural group G. Then C°°§;O

acts continuously on C‘°/& e singer states that the map

L Cwﬁ irr -—>C°°A irr/cwg

O

is a principal bundle with structural group Cooéi 0" Singer also

shows that
'T‘ v —
J (¢ }¥{irr) = 0

for all non-ncpative intepers j. Thus

oo oo L a0 )
TTJ'+1 (c A irr/L g 0) B TTJ (¢ %o)'



Now if the map ¥ above has a section, then the identity automorphism of

;. OO . oop N -~ . : N P 1 1 1ot
T . . (C )$ . /C } factors through the zero homomorphism and thus
J+1 irr 0

- - B
Trj+l (c Aj_r‘r/(" qro) = 0.

Singer shows by standard methods of homotopy theory that if M = 54 or

53 and if G = SU(N) for some N 2 1 then T\’J.(Coo go) # 0 Tor some j
and hence no conftinuous choice of gauge exists in the sense that there

is no continuous section
5 CMA irr/coo%o - CooA{]’rr‘
of the natural projection
v o CwA irr - CO.A 'ir'r/COOQO
The slice theorem stated in lginger, I.M., 197§7 was proved in
Lﬁarasjmham, M.5. and Ramadas, T.R., 19787 and in lﬁitter, P.K. and

Viallet, C.M., 198&7. Narasimhan and Ramadas restrict their attention

2

to SU(2) gauge ficlds over 83 and prove theorcms for the actions of Lk+l

. . . 2 . .
principal bundle automorphisms on Lk connections for k2 3. Mitter and

principal bundle

Viallet prove slice theorems for the action of Li+1

. 2 .
automorphisms on Lk connections where
n
k > E + ].,

n being the dimension of the base manifold of the principal bundle.

A conncction on a principal bundle over a four-dimensional
munifold 15 an instanton {or anti-instanton) if and only if the
curvature of the connection is self-dual (or anti self-dual).
Instantons or anti-instantons attain the minimum of the Yanpg-Mills
functional, provided that they exist. The moduli space of instantons
is defined to be the quotient Coilk min/Ccnqg of the Banach manifold
c” A

automorphisms. In lxtiyah, M.F., Hitchin, N.J. ard Singcr, I.M., 1978/

min of instantons by the proup C“(}i of principal bundle

24



it is shown that the moduli space of irreducible instantons over a
compact (self-dual) half conformally flat 4-manifold with positive

scalar curvature is cither cmpty or is a manifold of dimension

p () - %dim 6) (JC-T)

where pl(ga P) is the first Pontryagin number of the adjoint bundle
EBP = P x ijB , JC, is the Euler characteristic of fthe base
manifold and € 1s its signature.

In general it is known that the moduli space of all instantons
over a 4-manifold (not neccessarily half conformally flat) will have
singularities, though the regular sct will have the dimension given
above.,  This dimension is calculated using the Atiyah-Singer index
theorem.

All instantons on 54 have been classified using methods of
algebraic geometry applied via twistor theory (see ZZtiyah, M.F.,
Hitchin, N.J., Drinfeld, U. and Manin, Yu., 19717 and ixtiyah, M.F.,
1a797).

Bcurguignon, Lawson and Simons have proved stability, isolation

and non-existence theorems for Yang-Mills fields on compact homo-

geneous Riemannian manifolds (see lgourguignon, J.-P. and Lawson, H.B.

19897 or iﬁourguignon, J.-P. and Lawson, H.B., 19837).

Taubes has proved an existence theorem for instantons on
compact Riemannian 4-manifolds whose intersection form is positive
definite (see LTaubes, C.H., 19827).

Uhlenbeck has provided various analytical tools that are
useful in the study of connections whose curvature is bounded in
some appropriate norm. In 1Ehlcnbeck, K.K., 198297 it 1s shown that

there c¢xist constants 9 and c, depending only on n, such that if

p

Yn € p < nandif d+ Ais an Ll connection on a trivial bundle



nver the unit ball Bn in 'mn whose curvaturc F(A) satisfies

| XS

P

then d + A 1s pauge cquivalent to a connection d + A satisfying

the conditions

IIAIIL? < ol

Using this result Uhlenbeck shows that if 2p > n and if

(w ; 1 € N) is a sequence of connections on a principal bundle

1
r : P —> M over a compact Riemannian manifold M of dimension n

p

with compact structural group and if the LV norms of the curvatures of

{cew i) arc uniformly bounded then there exists a sequence (ﬁgj : 1€ WN)

of Lg gauge transformations such that the sequence (\P,*Lu ie IN)

2 L i

1s weakly convergent in the spacce of L? connections to some connection

w . .
Lo . Morcover the curvature F of w  satisfies

“ e “ o < lim sup ” FWe P

A similar theorem may be proved in the limiting case when
2p = n, though here one finds that the scquence of connections will
converge weakly only over the complement of some finite set of
points in the base manifold of the principal bundlec (sce /Sedlacek, S.,
19827 and[ﬁonaldson, S.K., 198397). For Yang-Mills connections on
4-manifolds one may then extend this limiting connection to a
conncction on some principal bundle defined over the whole of M
using Uhlenbeck's rcmoval of signularities theorem (discussed below),
though the topological type of this new bundle may differ from that
of the principal bundle on which the original scquence of connections

was defined.
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Uhlenbeck's removal of signularities theorem states that if
. . 4 . .
a connection on a principal bundle over B~ {(f% satisfies the

Yang-Mills equation and if the curvature of the connection is bounded on

n
. ' . . R .
in the L7 norm,then the principal bundle and the connection

n? N {0

i - )

may be extended over thc whole of B4 (see iUhlenbeck, K.X., 198237).

Uhlenbeck's results have been extended to Yang-Mills-Higgs
s/ntems by Parker (sec éﬁarker, T., 19827). Parker also proves
slice theorems in Sobolcy LE norms for 2 < p < 4,

Donaldson has made a study of the topology of the moduli
space ¢f instantons introduced by Atiyah, Hitchin and Singer using
the analytical tools developed by Taubes and Uhlenbeck. In con-
sequence he was able to prove his celebrated theorem that if the
intcrscction form of a smooth 4-manifold is positive definite then
it 1s a sum of squares.

Atiyah and Bott have made a study of the Morse theory for the
Yanp-Mills functional for connections on a bundle over a Riemann
surface (see £Ztiyah, M.F. and Bott, R., 19827. Donaldson has
uscd the weak compactness theorem of Uhlenbeck in giving a
diffcrential geometric characterization of stable bundles over
projective algebraic varieties (see iﬁonaldson, S.K., 198337 and

Zﬁonaldson, S.K., 19827.
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Plan of the Ihpsis

In chapter II we review the definitions and basic properties
of Sobolev and HBlder spaces. We also discuss slice theorems in
the general context of a Banach Lie group acting smoothly and freely
on a Banach manifold.

In chapter III we prove general elliptic regularity theorems
in Sobolev and HBlder norms for linear elliptic differential
operators with smooth coefficients defined over a compact smooth
manifold. The proof uses the theory of singular integrals, developed
by Calderon and Zygmund, and the theory of pseudodifferential
operators.

In chapter IV we shall prove an inequality satisfied by
continuous functions on a compact manifold which is closely related
to the Sobolev cmbedding theorem for embeddings of Sobolev spaces
in HB8lder spaces.

In chapter V we give an account of the theory of Ehresmann
connecticns on principal bundles and of principal bundle auto-
morphisms in preparation for subsequent chapters.

In chapter VI we study the action of Banach lLie groups of
principal bundle automorphisms of connections and prove various
results that will be used in chapter VIII, where we prove slice
thcorems for this action,

In chapter VIT we produce a generalization of the analytical
aspects of Hodge theory which is applicable to covariant Hodge-
de Rham Laplacians with respect to connections that need not be
smooth. This chapter uses the general clliptic regularity theorems
of" chapter IIl, topethcr with the Sobolev embedding theorems, the
Rellich~Kondrakov theorem and the Sobolev multiplication theorems.

In chapter VIII we prove slice theorems in Sobolev and HBlder
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norms for the action of principal bundle automorphisms on
connections, using the results of chapters VI and VII. We shall
also prove regularity theorems for Yang-Mills connections and
discuss the repularity of Yang-Mills-Higgs systems.

In chapter IX we shall show the existencc of an upper bound on
the length of loops required to generate the holonomy group of a
principal bundle over a compact Riemannian manifold. We shall show
how this result can be used to derive inequalities satisfied by

sections of a fibre bundle associated to the given principal bundle.
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The Relationship of the Results to Published Material

- 1
ct L e i i1 SRV U S 2

I pive here a discussion of the sources from which the
rescarch contained in this work has been derived.

Chapter II contains no oripinal research, being a summary
of the basic theorems of globul analysis that we shall be using.
However I have not come across the general slice theorem
(theorem 11.3.1) in the literature in the form in which I have
stated it, though it is implicit in the proofs of slice theorems
occurring in the literature and it is stated in the more abstract
formulation given here mainly for reasons of economy (for not
only do we need theorem II.3.1 in proving theorem VIII.2.3 but also
in section 4 of chapter VI in forming the quotients of the groups
of principal bundic automorphisms by the centre of the structural
proup).

Sections 2 and 3 of chapter TII do not contain any original
rescarch, being summaries of the results of Calderon and Zypmund
and of HYrmander on which the proofs of the elliptic regularity
thcorems arc based. A partial cxception to this is the proof
that smoothing opcrators are psecudodifferential operators in the
sense of HBrmander, which we prove using the methods of HBrmander.
Section 4 of chapter III is original research, at least I have not
yet come across a proof of LE and Hblder estimates for pseudo-
differential operators in the literature which employs this method.
The elliptic regularity results of section 5 do not appear to be
stated explicitly in the literature; their proofs are immediate
generalizations to the LE and HBlder cases of standard results in
the Li casc obtained by merely replacing the standard Li cstimates
for pseudodifferential operators by the results of section 4 at the

appropriate steps in the proofs,.
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Chapter TV consists of original research. The proof of
theorem TV.3.3 was suggested by the ideas underlying the proof cf
the Sobolev embedding theorem for embeddings of Sobolev spaces 1n
Holder spaces.

Chapter V is basically an expanded and freely adapted account
of the theory of Ehresmann connections and principal bundle auto-
morphisms basecd on the papers by Bourguignon anc Lawson and by
Atiyah, Hitchin and Singer listed in the references at the end of
chapter V. Any result not found in these papers may be taken to be
'original research', though many of these results are either 'obvious'
or 'well-known'. Note however that theorem V.4.2 is stated as
lemma 2.2 of Zﬁﬁrasimhan, M.S. and Ramadas, T.R., 19737.

Chapter VI is original rescarch, apart from theorems VI.2.l1 and
VI.2.2 which are stated in the Sobolev case as lemma 1.2 of
lﬂhlcnbeck, K.K., 198227 and there proved when k = 0 or 1. The
differences between the proofs given in chapter VI and the proofs
given by Uhlenbeck are essentially cosmetic in nature.

Chapter VII consists of original research.

Chapter VIII contains original research. The slice theorem

(theorem VIII.2.3) generalizes theorems stated or proved in 1§inger, I.M.,
197§7, lﬁarasimhan, M.S. and Ramadas, T.R., 19727, iﬁitter, P.K. and
Viallet, C.M., 19817 and éﬁarker, T., 19827. 0f these authors, only
Parker proves his results in Sobolev spaces other than LE spaces.
The repularity theorems for Yang-Mills connections in section 3 and
the corresponding results for Yang-Mills-Higgs systems discussed in
section 4 generalize results of iﬁhlenbeck, K.K., 198297 and
lﬁurkcr, T., 19827.

Chapter IX consists of original research.

Appendix A contains no original research.



Atiyah, M.F., "Geometry of Yang-Mills fields', Fermi Lectures,
Scuola Normale Pisa, 1979.
Atiyah, M.F. and Bott, R., "The Yang-Mills equations over

Riemann surfaces', Phil. Trans. Roy. Soc. Lond. A308

(1982), pp.524-615.
Atiyah, M.F., Drinfeld, U., Hitchin, N.J. and Manin, Yu.,

"Construction of instantons'", Proc. Nat. Acad. Sci. U.S.A.

74 (1977), pp.2662-2663.
Atiyah, M.F., Hitchin, N.J. and Singer, I.M., "Self-duality

in four-dimensional Riemannlan geometry', Proc. R. Soc. Lond.

A362 (1978), pp.425-461.
Ballmann, W., Thorbergsson, G., Zillier, W., "0On the existence of
short closed peodesics and their stability properties',

in "Seminar on minimal submanifolds', Ann. of Math. Studies,

103, Prirceton Univ. Press, Princeton N.J., 1982.
Bourpuignon, J.-P., "Une stratification de 1'espace des structures

Riemannians', Comp. Math., 30 (1975), pp.193~209.
Bourguignon, J.-P. and lLawson, H.B., "Stability and isolation

phenomena for Yanp-Mills fields'", Comm. Math. Phys. 79

(1980), pp.l189-230.
Bourguignon, J.-P. and Lawson, H.B., "Yang-Mills theory: its
physical origins and differential geometric aspects', in

"Seminar on differential geometry', Ann. of Math. Studies, 102,

Princeton Univ. Press, Princeton N.J., 1982,
Donaldson, S.K., "A new proof of a theorem of Narasimhan and Seshadri',

J. Diff. Geom. 18 (1983), pp.269-277.

Donaldson, S.K., "An application of gauge theory to four-dimensional

topology', J. Diff. Geom. 18 (1983), pp.279-315G.




Donaldson, S.K., "Anti self-dual Yanp-Mills connections over
complex algebraic surfaces and stable vector bundles",

Proc. Lond. Math. Soc. 50 (1985), pp.1-26.

Farle, C.J. and Fells, J., "A fibre bundle description of

Teichmiller theory", J. Diff. Geom., 3 (1969), pp.l19-43.

Fhin, D.G., "The manifold of Riemannian metrics', in "Global Analysis'",

Proc. Sympos. Pure Math., vol.l15, Amer. Math. Soc., Frovidencc R.I.,

1970.
Fischer, A.E. amd Marsden, J.E., "The manifold of conformally

equivalent metrics', Can, J. Math., 29 (1977), pp.193-209.

Freed, D.S. and Uhlenbeck, K.K., Instantons and four-manifolds,

Springer-Verlag, New York, 1984,
Gribhov, V.N., "Quantization of non-abelian gauge theories',
Nucl. Phys., B139 (1978), pp.1-19.

Ttzykson, C. and Zuber, J.-B., Quantum field theory, McGraw-Hill,

1980,

Klingenberg, W., Lectures on closed geodesics, Springer-Verlag,

Berlin, 1978.

Klingenberp, W., Riemannian geomctry, de Gruyter, Berlin, 1982.

Lyusternik, L.A., "The topology of the calculus of variations in
the larpe'", Translations of Russian monographs Vol.l6.

Amer. Math. Soc., Frovidence R.I., 1966.

Mills, R.I.. and Yang, C.N., "Conservation of isotopic spin and
isotopic gauge invariance'", Phys. Rev., 96 (1954), pp.191.195.

Milnor, J.W., "Morse theory'", Arn. of Math. Studies, No.51, Princeton

Univ. Press, Princeton N.J., 1963.
Mitter, P.K. and Viallect, C.M., "On the bundle of connections and
the paupe orbit manifold in Yang-Mills theory'",

Comm. Math. Phys. , 79 (1981), pp.457-472.




Narasimhan, M.S. and Ramadas, T.R., "Geometry of SU(2) gauge fields",

Comm. Math. Phys., 67 (1979), pp.121-13¢€.

Palalis, R.S5., "Morse theory on Hilbert manifolds', Topology, 2
{1963), pp.299-340.

Palais, R.S5., "Lusternik-Schnirelman theory of Banach manifolds",
Topology, 5 (1966), pp.l15-132.

Parker, T., "Gauge theories on 4-dimensional Riemannian manifolds',

Comm. Math. Phys., 85 (1982), pp.563-602.

Sacks, J. and Uhlenbeck, K.K., "The existence of minimal immersions

of 2-gpheres'", Ann. of Math., 113 (1981), pp.1-24.

Sedlacek, S., "A direct method for minimizing the Yanp-Mills

functional', Comm. Math. Phys., 86 (1982), pp.515-527.

Singer, I.M., "Some remarks on the Gribov ambiguity',

Comm. Math. Phys., 60 (1978), pp.7-12.

Spanter, E.H., Alpebraic topology, McGraw-Hill, 1966.

Taubes, C.H., "The existence of self-dual connections on non self-

dual 4-manifolds", J. Diff. Geom., 17 (1982), pp.139-170.

Taylor, J.C., Gauge theories of weak interactions, Cambridge Univ.

Press, Cambridge, 1976.
Uhlenbeck, K.K., "Removeable singularities in Yang-Mills fields",

Comm. Math. Phys., 83 (1982), pp.11-30.

Uhlenbeck, K.K., "Connections with Lp bounds on curvature",

Comm. Math. Phys., 83 (1982), pp.31-42.

Uhlenbeck, K.K., "Variational problems for gauge fields' in

"Seminar on differential peometry'", Ann. of Math. Studies

No.102, Princeton Univ. Press, Princcton N.J., 1982.



Chapter II

BASIC RESULTS OF GLOBAL ANALYSIS

81. Introduction

In this chapter, we give an account of the basic results of
global analysis which we shall be using.

In 82 we define the Sobolev spaces and Hlder spaces of sections
of a smooth vector bundle over a compact smooth manifold. We list
some of their important properties. 1In particular we state the
sobolev embedding theorvem (theorem 2.1), the Rellich-Kondrakov
theorem (theorem 2.3) and the Sobolev multiplication theorems
(theorem 2.4). Some sources in the literature give only restricted

versions of the Sobolev multiplication theorems, such as the result

P

1((_(\)_) is a Banach algebra when L) 1s a bounded domain in R"

that L
and pk »n. Other sources (for example lﬁalais, R.S., 1968-
chapter 27 ) give very general statements of these thcorems. The
statement of theorem 2.4 is an attempt to strike a balance by
stating a theorem which 1s sufficiently general for the applications
which we shall make of 1t, yet which is not so gencral as to he
difficult to remember and apply. We conclude 82 with a statement of
the results proved in ifalais, R.S., 196§7 which give sufficient
conditions for one to be able to define Banach manifolds of sections
of a smooth fibre bundle over a compact manifold modelled on Sobolev
and Hblder spaces (theorems 2.5 and 2.6). We present also a simple
corollary (corollary 2.7) of theorem 2.6.

Palais proves these results in a more gencral setting. Let
Jn, be a functor which associates to every smooth vector bundle
E—3M over a compact n-dimensional manifold M a complete normable
topological vector space UYL(E) of continuous sections of I ~—>M

satisfying the following two axioms:

a1



{i) if M and N are compact smooth n-dimensional manifolds,
if'99: M—3N 1s a diffeomorphism of M into N and if E—N
is a vector bundle over N then the map sending s to Sep
defines a continuous linear map from m(li‘,) into m((F*Ii‘,},

(11) if El-—ém and EZ——aM are smooth vector bundles over a
compact smooth n~dimensional manifold M and if [ : El——%EZ
is a smooth fibre preserving map then the induced map from
Un,(El) to KnjEZ) is continuous.

Palais shows that any functor ], satisfying these two axioms extends

to a unique functor which associates to any smooth fibre bundle

B—M a Banach manifold JJL(B) of sections of B—>M and which

associates to any smooth fibre preserving map between fibre bundles

a smooth map between Banach manifolds. Palais shows that the functors

&{ Ck,a

R and LE satisfy axioms (i) and {(ii) for all non-negative

integers k and for all o and p satisfying the conditions
0<X <1, 1 £ p<oo, pk > n.

In 85 we consider Banach Lie groups H acting smoothly and
freely on Banach manifolds X. 1In theorem 3.1 we give necessary and
sufficient conditions for the existence of a unique differentiable
structure on X/Il with the property that the projection map X-—»X/il
is smooth and admits smooth local sections. We observe that these
conditions are automatically satisfied when H is compact (corollary 3.2).
In particular if H is a compact normal subgroup of a Banach Lie group

then G/H is a Banach Lie group (corollary 3.3).



2 Sobolev and 1Wlder Spaces

in this scction we shall define Sobolev and HYlder spaces and
review some of their basic properties.

. - n . . .
Given a domain UCEIR , given a non-negative inteper k and

2l

given p & LT,CXD), the Soholev space L

k(U) is defined to be the

Janach space consisting of all functions £ : U—R with the property
that, for all multiindices & = (0<1, v, X n) satisfying § § £ k,
axf'belongs to Lp(U), where

37 = >Rl
Bx?'..nbxxn
n

The norm  |f. " bk On Li(U) is given by
, K

L S O I N R

I} < g

-ol-

. n.
whcrc/u 1s Lechesque measure on IR
If X € (0,1}, we define the space Ck(U) to bhe the Banach
space of all functions f : U—R whose partial derivatives of order

not cxceeding Kk are continuous, and we define the H8lder space

Ckﬁx(U) to be the Banach space of all functions f : U—R all of
whose partial derivatives of order not exceeding k are continuous

and satisfy a Holder condition of order o . Norms u "'k and

“.“ Koo O Ck(U) and Ck’q(U) may be taken to be
)
: - sup 8 ‘
uflhc B 2: XGU‘ ot
1B1sK
and

5w | 225 (x) - ey |
kx,yeU |x —y |o& .

I|f|h( o« "f “k +
’ ]

N

Let M be a compact smooth manifold and letTr: E--M be a

>
smooth vector bundle over M. The Sobolev spaces L;(E), the spaces
A



38

K

C {(E) and the HBlder spaces Ck" el

E) are the Banach spaces of sections
s : M—E of v : IE-—Mwith the following property: for all smooth
charts F,: U —9ﬁmn, for all smooth functions f : M—2 R with compact
support contained in U, and for all smooth sections o : M — E* of
the dual bundle E* ~» M of E, the composition

(F (o s> 0o

i k

helongs to HZ(?o(U) ), C( %O(U) ) or Ck'd( y)(U) } respectively.

Using the fact that M is compact, it can be shown that Ip(E), Ck(E)

'k
and Uk“*(ﬂ) are complete normable topological vector spaces together
with norms that are well-defined up to equivalence of norms (see
lﬁalais, R.S., 196§7).
If k is a non-negative integer and if pé(l, o2 ) (i.e. we exclude
the cases p = 1 and p = o }, then LE(E) is a reflexive Banach space

{see éﬂﬂams, R.A., 1975; p.4z7), and if p' is the exponent conjugate

to p, defined by the condition

= 1,

1 1
— + _—.‘
p p
t

then 1.P (£E*) 1s the dual space of LP(E). If ke Z and k < 0 we define
Pip ) N

Lk(h) to be the dual space of L_k(E~).

The space C°O(E) of smooth sections of Tw: E > M is dense in

k, =

Li(E) for all pe&(l,oe ) and ke Z, and in Ll(E), Ck(E) and C (E) for

k
all ke Z satisfying k2 0 and for all o € (0, 1) (see iﬁalais, R.S.,
19685 pp.24-25/).

There are various embeddings amongst the Sobolev spaces, Ck
spaces and H8lder spaces. These are given by the Sobolev embedding
theorem.

Theorem 2.1 (Sobolev Embedding Theorem)

Let 1 : E—» M be a smooth vector bundle over a compact smooth

manifold M of dimension n. Let p,ﬁ E:Zf,cw ), let k, L € Z and let

o € (0, 1). Then



(i) if L &k and if

S

_ 1
q n7%p
then we have a continuous embedding

A e < L;i( E)

Ik

(where k 2 0 if p = 1 and L20 if ¢ = 1),
(ii) if k,L>0 and if

L<k - %

then we have a continuous embedding

LE(E)C—)CL(E)

(111) 1if k,L)O, ifok €(0,1) and if

L+0(\<l<-%

then we have a continuous embedding
bl o
I_,i{(}‘j)c——)CL’ (E).

Proof

Sce LXubjn, T., 1982; chapter g/ or Zxdams, R.A., 1975; chapter 5/.

A map between Banach spaces is said to be compact if it maps
bounded sets to sets with compact closure. The following theorem is
a corollary of the Ascoli-Arzela thecorem.
Theorem 2.2
Let 1m: E—>M be a smooth vector bundle over a compact smooth
manifold M. Let k and L be non-negative integers and let dhﬁ € (0,1).
Suppose that { tﬂ <k + & . Then the embeddings
oxmy e b A
KXy e el
¢y e b P

~——

f
\E

are compact.
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Proof

See /Adams, R.A., 1975; p.117.

Theorem 2.3 (Rellich-Kondrakov)

Let T ¢ E—>3M be a smooth vector bundle over a compact smooth
manifold M of dimension n. Let p,q 61:,00), let k,LezZ and let
of € (0,1). Then

(1) if L <k and if

1 L>1 Kk

qa n " p n

then we have a compact embedding

1P ) e Li(E)

k 1

(where kK 2 0 if p =1 and L 2 0 if q = 1),

(i) if k,L 2 0 and if

L<k-2
P
then we have a compact embedding

Lﬁ(ﬁ.) by,

(iii) if k,L 20, if <€ (0,1) and if

L+ < k - n
p

then we have a compact embedding
LE(E)C_, b (5.

Proof

See LXubjn, T., 1982; chapter 27 or LKdams, R.A., 1975; chapter §7.

The following theorem is the basic multiplication theorem for
Sobolev spaces which generalizes HBlder's inequality. Other multi-

plication theorems for multilinear maps between vector bundles may be
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deduced from the given theorem by induction on the degree of the

multilinear map, by using the Sobolev embedding theorem, and by

p'

_k(E*) where

using the duality between the Sobolev spaces Lﬁ(E) and L

E*—>M 1s the vector bundlie dual to E—M and where p' is the

exponent conjugate to p, defined by

(for more details, see Lﬁalais, R.S., 1968; chapter 27).
Theorem 2.4
Let M be a compact smooth manifold of dimension n, let
TTl : EI—QM fﬂé : E2~3M and'ﬂ% : Es—)M be smooth vector bundles

over M, and let B : E] ® E2-)E3 be a smooth morphism of vector

bundles. Let

=

&

oo Lo had
C (El)xc Ez)—-)C (53)

. Qo
be the map sending (81,82) to B(sl G>s2), for all s € ¢C (Ll)

(- -4
and 526 C (E2

Then
(1) ifr<¢<p, r <g and

1 1 1
CRE T

k
n

then B extends to a continuous bilinear map
5 . P q . v
B : Lk(El) X Lk(LZ) - Lk(us),

(ii) if q > p and gk > n, then B extends to a continuous
bilinear map

=, P ¢ P
B Lk(Ll) X Lk(nz) — Lk(LS),

(iii) if pk > n, then B extends to a continuous bilinear

map

P(e_),

5 . P
B L k'3

; Pr
k(El) x LY(E.) =™ L

k ™2

). Let k be a non-negative integer and let p,q,rélff,oo).
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(1v) B extends to a continuous bilinear map

- 3
: }(

P L P
I El) x C (‘LZ) - L{(E ).

3

Proof

Tt suffices to prove the result for trivial bundles over the
unit ball in R and for the map B sending 5178)39 to the product 515,
Expand the partial derivatives of $18, of order not exceeding k by

Letbnitz! rulc. Then use the Sobolev embedding theorems and

H8lder's inequality.

Next we consider the continuity on Sobolev and H8lder norms of
maps on sections induced by smooth fibre preserving maps (not
necessarily linear) between vector bundles over a compact manifold.

Theorem 2.5

Let TT H

1 1—6 M and 7T, : E,-> M be smooth vector bundles

over a compact smooth manifold M of dimension n. Let f : By 2,

be a smooth fibre preserving map. Then, for all non-negative integers Kk,
for all p € ZT,OO) satisfying pk > n and for all <€ (0,1), the

map { induces smooth maps

P

L
k

. Py
(El) - Lk(Ez)

Kig )y~ cRE)

C
, 2

le, =

C 2)

(B) —> o
of Banach spaces, mapping a section s of TT1 P E M to the

section fes of TT2 : E, M.

Proof

This follows from theorem 9.10, the remarks at the beginning

of section 11 and theorem 11.3 of Lﬁalais, R.S., 196§7.
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Let 9T : B—3M be a smooth fibre bundle over a compact smooth
manifold M of dimension n. Then for all non-negative integers k,
for all p)€1ﬁ}CD) satisfying pk > n and for all X€(0,1) there are

S - . ; c p. . k. N [ - S o
well-defined smooth Banach manifolds Lk\BJ, C{(B) and C ? (B) with
the property that if TTl : E-M is a smooth vector bundle, if U
1s an open set in B and if f : U—=E 1s a fibre preserving diffeo-

morphism onto an open subset of E, then f induces a diffeomorphism

from
P . ,
{se il s eu}
. ) e~ . D .o - k , ke
onto an open subset of LY (E), and similarly for C (B) and C (B).

k
Theorem 2.6

Let TTr B, — M and TT2 : B, =M be smooth fibre bundles over

1R 2

a compact smooth manifold M of dimension n. Let  : Bl-—‘)B2 be a
smooth morphism of fibre bundles. Then, for all non-negative
integers k, for all p € 1I,°°) satisfying pk > n and for all

oK €(0,1), the map f induces smooth maps

P P
LiBy) — L (B

<

5)

2k k
C (Bl) -2 C (82)

k, o 'k’q(B )

¢ 2

(Bl) —C

of Banach manifolds, mapping a section s of TT1 : By M to the

section fes of 1T

P BZ—)I\’I.

Proof

ol
\l

See lfélais, R.S., 1968; theorem 13.°

Corollary 2.7

Let 17: B—M be a smooth fibre bundle and let TT] : E1 —M and

v, Ez-—QM be smooth vector bundles over a compact smooth manifold M

&

of dimension n. Let f : B XMEl-—)E2 be a smooth morphism of fibre



bundles with the property that for all se C®(B) the map from

£,) sending s1€.C°°(E]) to f(s,sl) is linear. Then,

for all non-negative integers k, for all p)ezj)oo), for all

e /1 0”) k> n and for all O(E-(O,l), the map f induces

g | B S TYIng g

/

smooth maps

N : p . p -
(B) x Lk(El) —> Lk(Ez)

k k

¢*(B) x C(E;) = Ck(Ez)

Ck;x(B) « Ck’q(El) - Ck’“(EZ)

of Banach manifoldsg, mapping sections s of TT: B—2M and sy of

Ir 1 S hmd to the section m*¥? f(s(m), sl(m)) of LLPEE Ez—ﬁ M.
Proof
Let f : B—) Hom (El’ Ez) be the smooth map defined by
f‘(s)s1 = f(s,sl)

for all s€C®(B) and s, € C”(El). f defines smooth maps

I, 1(b) - L?(”Om( ))’

]3
k k
(B) = ¢ (Hom(El,E,))).

% my = K om (e 5By

Let e : Hom(L 1, ) 8)1]7—$F be the evaluation map. ¢ defines

continuous bilinear maps
q p -
Lk,(llom(E E )) X L (E ) — L (I ),

K : . LI Pn
C (Hom(E]A,LZ)) X Lk(Li) e J Lk(Lz),

k k, .
],’Ez)) x C (El) — ¢ (E,),

)) X c 4 (E )——)c (132).

)}
C{(Hom(E

¢ = om (e, v

The result then follows from the identity

f(s,sl) = e(f(s),sl).




83, Quotients of Banach Manifolds by Banach Lie Groups

In this section, we prove a theorem giving necessary and
sufficient conditions for the existence of smooth local slices for
a smooth free action of a Banach Lie pgroup H on a Banach manifold X.
Proving the existence of such slices i1s equivalent to proving the
existence of a smooth structurc on the quotient X/H of X by H with
the property that the projection X—X/H is smooth and admits
smooth local sections around each element of X/H. These necessary
and sufficient conditions are satisfied when H 1s a compact Lie
proup. We deduce that the guotient of a Banach Lie group G by a
compact Lie subgroup H normal in G is a Banach Lie group G/H, and
any smooth action of G on a Banach manifold which restricts to a
trivial action of H induces a smooth action of G/H on this manifold.
Theorem 3.1
Let X be a connected Banach manifold and let H be a Banach Lie
proup (i.e. a Banach manifold with a group structure such that the
group opecrations are smooth). Let H act smoothly and freely on X
(on the right). Suppose that the action of H on X satisfies the
following three conditions:
(1) for all x€ X, the derivative at the identity element e of
the map from H to X sendingljell to x.h defines an isomorphism
of T H onto a closed subspace of T X tangent to the orbit of
H containing X,
(ii) for all xe X, this tangent space to the orbit of H containing
x has a closed complement in T X,
(iii) if (xi : 1€N) is a sequence converging in X and if (hi D 1€ IN)
is a sequence in I such that the sequence (Xi'hi : ieM)
also converges in X, then the sequence (hi : i€N) has a

subsequence converging in H,
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Then the quotient space X/H may be given the structure of a Banach
manifold in such a way that the projection map p : X—=2X/H is

smooth and such that every point of X/H has an open neighbourhood
which is the domain of a smooth local section of p : X—=>X/H. More-
over, this smooth structure on X/H is the unique smooth structure
satisfying these conditions, and if X/H has such a smooth structure,
then the action of H on X satisfies (i), (ii) and (ii1).

Proof

Suppose that the action of H on X satisfies (1), (ii) and (iii).
First we show that X/l is a Hausdorff topological space. Let

R = {(x,;() X x X : 3heH such that Xl'h = xz} .

Let (x,x) belonp to the closure of R in X x X. X satisfies the

first axiom of countability, hence there exist sequences (Xi : 1€ W)
and (hi : i€ N) in X and H respectively such that the sequences
(Xi : 1e€N) and (Xi'hi : i€ N) converge to x and x respectively. By

condition (iii), some subsequence of (hi : 1€ N) converges to h, for
some he€ll, and x.h = x by the continuity of the action of H on X.
Hence (x,x)&R. Thus R is closed. Hence X/H is Hausdorff.

l.et x€X. Then there exists a smooth chart 99: U —X, where
U is an open ncipghbourhood of zero in T,X, such that  maps sero
to x and such that the derivative of ¢ at zcro is the identity map
of T4X. Let Z be the subspace of T,X tangent to the orbit of H
through x. Z is closed by (i). By (ii), there exists a closed
complement Z' of Z in T, X. Let U1 =Un2z', By (i), the derivative of
the smooth map 6 : U1 x H=*X sending (u,h) to 9a(u) .h is an
isomorphism at (0,e), where e is the identity of element éf H. By
the inverse function theorem for Banach manifolds, there exist an open
neighbourhood u, of zero in Uy and an open ncighbourhood V, of e in

2

I such that e/U2 x V, + U, x VZ-)X is a diffeomorphism onto an open

sct in X. Using the fact that
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p )b

6(u,h) = 86(u,hh

R
for all h]e 1, we see that G/U2 x H 1g a local diffecomorphism from

U, x Hl onto an opcn sct in X.  We claim that there exists a neighbour-

<

hood Usg of zero in U, such that e/U3 x I is a diffeomorphism from
U; x H onto an open set in X. Suppose this were not so. Then, for
each neighbourhood N of zero in U2, there would exist u,u'€@ N and
h,h'e H such that ¥>(u).h = (P(u').h' though h#h', and then we would
have hh'_l#e,\JeN and ?ﬂtﬂ.hh'_lé @ (N). Since this would be

true for all such neighbourhoods N of zero, we would be able to
construct sequences (ui : 1€ N) and (ui : 1ieIN) in H such that
(’p(ui).hi = Y)(ui')’ such that hi#e for all i, and such that the
sequences ((,O(ui) : 1€ N) and ((P(ui‘) : 1eN) would converge in X
to x. By (iii), a subsequence of (hi : ie N} would converge to

some element of H and, by the continuity of the action of H on X,
this elcment would stabilize x and so would be the identity clement

¢ of H. Thus there would exist positive integers 1 such that hie Vg'
But then for these values of i, we would have hi#e and

Q(ui’hi) = Q(Ui',e),

contradicting the fact that e|uU, x V, is injective. It follows that

2

there exists a neighbourhood U3 of zero in U2 such that e U3 X H 1s

a diffeomorphism from U, x H onto an open subsct of X. Thus for

3
all xeX there exist an open neiphbourhocod UX of zero in some Banach
space and a smooth map Py - Ux-—QX mapping zero to x with the property
that the map from U, x I to X sending (u,h) € UX x H to Y?X(u).ll 1s
a diffeomorphism onto an open subset of X.
. _ . P N . ) .

Define vV, pqu(UX). I'hen V, is an open neighbourhood of p(x)

in X/H. The map PP, ¢ UX-—>X/H is continuous, injective and open,

and is thus a homeomorphism onto Ve {where X/H is given the quotient

topology). There is then a unique smooth structure on VX such that
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PP, is a diffeomorphism from U, onto Voo lLets @V —X be the
composition s = (Q e (p tpx)_l. Then s is smooth and pes  is the
identity map on VX. If x,y€X and VX and Vy intersect, then pos.

is a smooth map from the open set v. o Vy in Ve to the open set fo\ V. in
Vy’ where VX and Vy are given the smooth structures defined above,
pes_ has inverse posy, and the map defined by pes between the under-
lying topological spaces is the identity map. Thus the smooth structures
on V_ and V_ are compatible. It follows that there is a unique smooth
structure on X/H such that the open sets v, are open Banach submanifolds
of X/H for all xeX. This smooth structure on X/H has the property

that p : X=¥X/H is smooth and has smooth local sections around every
element of X/H. This smooth structure is the unique smooth structure
with this property, since if X/H is given two such smooth structures,
then the identity map between the underlying topological spaces factors
locally as the composition of a smooth local section and the smooth
projection, and is thus smooth and has a smooth inverse. Conditions
(i), (ii), and (iii) for the action of H on X follow immediately

from the existence of a smooth structure on X/i with the above property.

Corollary 3.2

Let X be a connected Banach manifold and let H be a compact
Lie group acting smoothly and freely on X (on the right). Then the
quotient space X/H may be given the structure of a smooth Banach
manifold with the property that the projection map p : X-—X/H is
smooth and has smooth local sections around every clement of X/H.

We must verify that the action of H on X satisfies conditions
(i), (ii) and (i1ii) of the theorem. But, for all x €X, the derivative

at the identity element e of the map from H to X sending h€H to x.h



defines a continuous linear injection from T_H onto a finite dimen-
sional subspace of TXH, and this injection is necessarily an
isomorphism onto a closed subspace of T X which splits in T X. Thus

{1) and (11) are satisfied. (iii) is satisfied since H is compact.

Let G be a Banach Lie group and let H be a compact Lie sub-

Corollary 3.3

group of G. Then G/H may be given the structure of a smooth Banach
manifold in such a way that the projection map p : X—»X/H is smooth
and has smooth local sections around every element of G{H. If H is
normal in G, then the group operations on G induce smooth group
operations on G/H, giving G/H the structure of a Banach Lie group,
and if G acts smoothly on a Banach manifold X and if the subgroup H
acts trivially on X via the action of G, then the action of G on X-
defines a smooth action of G/H on X.

The existence of the required smooth structure on G/H follows
{f'rom the previous corollary. The smoothness of the group multipli-
cation p : G/H x G/H—>G/H follows from the fact that p factors
locally as j} = pep 0(51 X 52), where p : G =3 G/H is the smooth
projection, where u : G x G—G is the group multiplication on G

and where S and s, are smooth local sections of p. The smoothness of

2
the map sending an element of G/H to its inverse follows from a

similar local factorization, as does the smoothness of the action of

G/H on X.

Let i : Y—3X be an injection of Banach manifolds. We say
that Y is a locally closed submanifold of X if and only if for all

y €Y there exist a Banach space S, a closed subspace Sl of S, an
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open neighbourhood N of zero in S and charts 6 : N—X and
P Nf\S1 = Y mapping zero to y with the property that g[N N S i°?o

Corollary 3.4

Let X be a connected Banach manifold and let H be a Ranach Lie
group acting smoothly and freely on X. Let Y be an H- invariant

locally closed submanifold of X. If X/H admits a smooth structure
with the property that the projection p : X=?X/H is smooth and has
smooth local sections around every element of X/H, then Y/H admits

a smooth structure with the property that the projection p Y : Y~=Y/H
is smooth and has smooth local sections around every element of Y/H.
Then Y/H is a locally closed submanifold of X/H.

Proof

We must show that if the action of H on X satisfies conditions
(i), (ii) and (iii) of theorem 3.1, then so does the action of H on Y.
For all yeyY, TyY is a closed subspace of TyX containing the closed
subspace Zy of TyX tangent to the orbit of H containing y. Since Zy
splits in TyX, there exists a continuous projection —r : Tan-)Zy
Then TT TyY is a continuous projection of TyY onto Zy hence Zy splits
in TyY' Zy is also closed in TyY since it is closed in TyX. Thus
the action of Il on Y satisfies conditions (i) and (ii). Condition (ii1i)
is also satisfied. Hence Y/H has a unique smooth structure such that
the natural projection Y  Y/H is smooth and has smooth local scctions
around every element of Y/Il.

Since Y is a locally closed submanifold of X, there exists a
chart 8 : N~»X, where N is a neighbourhood of zero in TyX, such that
8 maps zero to y and Ole)TyY : Nr\TyY'—iY is a chart for 7. Let Sy
be a closed complement of Zy in TyX. Then SyeryY is a closed
complement of Zy in TyY. By definition of the smooth structures on

X/l and Y/H it follows that if N is chosen sufficiently small, then



pe?o INI'\Sv is a smooth chart for X/H and pe 8 le\TyYf\Sy is a

smooth chart for Y/H.

X/H.

Thus Y/H is a locally closed submanifeld of
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Chapter III

ELLIPTIC REGULARITY THEOREMS

31. Introduction

In this chapter, we give a proof of general elliptic regularity
theorems for linear elliptic differential operators with smooth
coefficients.

Let 1T'l :131—9DL TT2 : E2 —M be smooth vector bundles
over a compact manifold M. A linear map L : C°°(E1)——5C°°(E2) is said
to be a differential operator of order not exceeding m with smooth
coefficients if and only if there is a smooth vector bundle morphism
T : Jm(El)-—iEz, where Jm(El)——)M is the bundle of m-jets of sections
of E1—+1W, such that

Ls = T °jm(s)
where Jm : C°°(El)-—>C‘”(Jm(E1) ) is the m-jet extension map (see
ZFalais, R.S., 1968; chapter §7). Let Tr : T*M-—->M denote the co-
tangent bundle of M. L determines a map c’m(L) : TT*El-—)TT*EZ as
follows: let ewoeT*M and @ € El satisfy

T (w) = 'Trl(e) = X

so that (w,e) represents an element of the pullback TT*E1 of E1 by

M T*M—dM, choosc T&cC *(M) and séC”(El) such that df(x) =
and s(x) - ¢, then define
o (L) (w,e) = = L (") (x).
m m!

It may be verified that CTHJIJ) is well-defined, homogeneous of degree
min Q , and that L — G}n“J is linear in L (see LFalais, R.S., 1968;
chapter _217). The map o‘m(L) DT YEy —)Tl‘*E2 is referred to as the

leading symbol of L. L is said to be elliptic if and only if the map

e > c:n(L) (e, e)

is an isomorphism from the fibre of T *E, over co to that of T *E,
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over (w , for all non-zero w € T*M.

It is well-known that if L : Cco(El)—a C°°(E9) is a linear

&

elliptic operator of order not exceeding m with smooth coefficients,

2

if s : M—E, is a section of E,~» M, and if u;elqr (E,), then

[ 3 &

se:Li(El), and that L extends to a Fredholm operator

2 2 .
Lo L E)=r, (8)

for all integers k. We shall show that the analopgous results hold
for the operator

. P p
Lo Lk(El)-—-)L (E

k-m

5)

in the case where p € (1,00), and for the operator

k, e K-m, &

L:Cc™ (El)—)c (E.)

2

in the case where k 2 m and o< €(0,1). 1In the special case where

L : C®(M)—>C M) is a linear elliptic differential operator of
even order with smooth coefficients acting on the ring C®(M) of
smooth functions on M, the above results are stated in Zzubin, T.,
1982; p.8§7 where a proof is indicated, using results contained in
éﬁorrey, C.B., 196@7 and in Lﬁers, L., John, F. and Schechter, M.,
196£7. Here we give an alternative proof, valid for linear elliptic
differential operators with smooth coefficients of arbitrary order
acting on sections of vector bundles over a compact manifold.

The proof given here uses the theory of pseudodifferential
operators. The class of pseudodifferential operators used is that
defined in éfohn, J.J. and Nirenberg, L., 196§7 and 1ﬁbrmander, L.,
19627. This class was historically the first class of pseudo-
differential operators to be considered, and is the most suitable for
our purposes.

I

A smoothing operator k : C El)——9C°°(E2) on C°°(E1) is

defined to be a linear operator which extends to a linear operator

k :& (El)_’ C°°(E2)



mapping the space 5; '(El) of distribution-valued sections of

E.—> M to the space C®®(E.) of smooth sections of the vector bundle
p

1 2

E, = M. The distribution kernel of k is then smooth. A parametrix

f a linear elliptic differential operator

jas}
(@]
=5}

E,) is a linear operator with the property that

PL - T : c”(El)-—> c“(El)

LP - T : c”(EZ)——)c“(E )

2
are smoothing operators. If Py and P2 are parametrices of 1, then
P1 = PlLP2 - Pl(LP2 - 1)
= P2 + (PlL - 1) P2 - Pl(LP2 - I)

and the linear operator

2-1)

(PlL - 1) P2 - Pl(LP
is a smoothing operator. Thus any two parametrices of L differ by
a smoothing operator. It is a well-known result that if

Lo C‘o(El) —3> C®(E,) is a linear elliptic differential operator

2
of order m with smooth coefficients, then L has a parametrix

P C°°(E2)——9(3°°(E1) which is a pseudodifferential operator of

order -m in the class of pseudodifferential operators that we are
considering, The required results in the Li case follow from the fact

that P extends to a continuous linear operator

2 2
Py o (E) 2L (E)).

This result is proved using Fourier transform methods stemming from
the Plancherel theorem, which states that the Fourier transform,
acting on functions fromfmn to R, defines an automorphism of Lz(jRn).
In order to obtain elliptic regularity results in the Lﬁ case for

p€(l,00) and in the Ck‘okcase for k 2 m and X €{(0,1), it is sufficient

to show that P extends to continuous operators



. (P (E —-\p?
P by pEp) = LBy,

Ck—m,u k=

P (E2)—-5 C (£

1)'

There is a class of linear operators acting on functions from
R" to R which is closely related to the class of pseudodifferential
operators. This is the class of singular integral operators defined
by Calderon and Zygmund. 1In a series of papers, these authors prove

n

that a singular integral operator H : C;°(}{ ) —> ¢ ®(R" ) extends to

continuous linear operators

o LD (RY) — Lﬁ(m“> (K %0, p € (1,00),

k,o¢
loc

k, =

n
0 Cloc

(R") = ¢""(R") (k 2 o,%€(0,1) ).

In the case when H is translation-invariant, the result for the P
norm is the well-known Calderon-Zygmund inequality. The result for
the ¢2*™ norm is also well-known. The results for more general
singular integral operators, not necessarily translation-invariant,
can be proved from the translation-invariant case using expansions in
spherical harmonics.

The proof of the required continuity results for pseudo-
differential operators is obtained by showing that, locally, such
an opcrator is a sum of products of singular integral operators, in
local coordinates, and other well-behaved translation-invariant
operators. Then the local results are pieced together using a
partition of unity argument.

in B2, we present a summary, without proofs, of the theory
of singular integral operators due to Calderon and Zygmund. In
83 we summarize the invariant definition and properties of the class
of pseudodifferential operators studied in iﬁdrmander, L., 19657.
None of the material in these two sections is new. 1In 84, we develop

the local theory of the continuity, in Sobolev and H8lder norms, of



pseudodifferential operators defined on Euclidean space. In 85, the
continuity, in Sobolev and HYlder norms, of pseudodifferential

perators on sections of vector bundles over ccmpact manifolds is

deduced from the local theory presented in 84, and the required elliptic
regularity results (theorems 5.2 and 5.3) are deduced.

An alternative proof of the boundedness of classical pseudo-
differential operators in Sobolev Lﬁ norms for k € Z and for p
satisfying 1 ¢ p <eoo is to be found in chapter IV of LEoifman, R.
and Meyer, Y., 197§7 employing methods pioneered in iaalderon, A.P.
and Zygmund, 19537. This proof uses the Marcinkiewicz interpolation
theorem (see chapter V of lgtein, E.M. and Weiss, G., 19727. The
principles of this proof have been employed by Muramatu and Illner

p

to derive Sobolev Lk estimates for more general (non-classical)

classes of pseudodifferential operators (see éfllner, R., 19757).
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[§%]

Singular Integrals on Euclidean Space

We give an account of the main results of lEa]deron, A.P., and

Zygmund, A., 195&7 and iﬁalderon, A.P. and Zygmund, A., 19517.

rals P C%(RT ) 2 0 P(RT )

Vo ~ 7 I's -
! n and Zygmund stud arals P R
: o}

cron and 2y udy singular inte

_ X -y P (y)

€0+ fx -y
Ix-yl >¢

where Jﬁl : R x Sn—1 — ([ is a smooth function satisfying
() x,zdzr = 0
Sn—l

, n . n-1
for all xeR , where dz' is the volume measure on S . Every such

singular integral operator may be expressed in the form

g
| ¥l

A —
where yo 1s the Fourier transform of 99 and where W :]Rn X Sn 1—% d:

P (x) = (2ve) ™" J e iX"ga.)(x, ) t?’(i )d§

is a smooth function with the property that

n

Conversely every smooth function w: R xS _1-% € with this

property arises from a singular integral operator in this way. WO is

referred to as the symbol of P.

if f]_ and its derivatives of all orders are bounded on R x Sn--l

then the singular integral operator P determined by f). as above defines

bounded linear maps

p: tP(wr") - 2wy,
k k

o

P cp) = %)
o) R

R
for all non-nepative integers k and for all p and o satisfying
1< p<oe and 0 € x < 1, where By denotes the ball of radius R about

the origin in r" .



- We now discuss the above results in more detail.

Theorem 2.1

Let _(1 : ®Y x Sn—l-a € be a smooth function with the property

Jal(x,z')dz' = 0
Sn—l

OO( n

for all x € R, and let P : C, (R ) = ¢ (®") be the singular

that

integral operator determined by_(l , defined by

~ lim X -y ¥ (y)
PYAX) B E%oi[ !)(X’lx —y]) n dy
Ix - yli>¢

Then there exists a smooth function wd : R x Sn—l—§d:, the symbol

of P, such that

pP(X) = (ZW)_nJ‘eiX'Ew(x, ?(f)df,

——E )

15
A

where o is the Fourier transform of P defined by

é (f) = jc-j.x.§¢(x) dx.

o R’ x s" 1—5 € has the property that

J wi(x, §1) dY' = o0

n-1
S

for all x R . Conversely, given a smooth function € : R x Sn_1

with this property, there exists a smooth function [ ) : RrR” x Sn—1

satisfying

Q(X1Z') dZ' = O
Sn—1

for all x€ R" , such that & is the symbol of the singular integral
operator P determined by jﬁl as above.

‘ 2 (x,7') and its decrivatives of all orders are bounded on

R" x Sn’] if and only if @ and its derivatives of all orders are

bounded on MW" x Sn~1, where w (x, ') is the symbol of the singular
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integral operator P determined by ¢ as above.
Proof
We sketch the proof. For more details sce LEalderon, A.P.

and Zvomund . A
Zygmund ;A

., 19577 and /Stein, F.M. and Weiss, G., 1972;
chapter 1V/. 1In particular the latter has a well-written account of
the definition and properties of spherical harmonics.

n n-1 . . .
We expand [} : R x S - € in spherical harmonics.

Let

m= 0O

(= 4
NGz o= 5 2_ an (Y, (27
J

where Yo is a spherical harmonic of degree m and where

— > &
(ij :m,j €EZ, m o, 1 J & dm)

. . . 2, _n-1
is an orthonormal basis of the Hilbert space L (Sn ). One can show

that the partial derivatives of .(l (x,z') with respect to z' of all

n—

orders are bounded on R" x S ! if and only if for all non-negative

integers k 2 0 there exist constants A_ independent of x such that

\1rV18

Z 1+ m)%a . x0%¢<a
J

o m] K

Thus if jﬁl is smooth then the expansion of f). in spherical harmonics
converges rapidly. Let
P = oy ( X~ J ZCANN
mj ?’ £ o+ m] X -y | x - ‘n
lx—gl)e X Y

We claim that there exists a constant b,m such that

-n ix.E 5 A
P = (2m) x"ﬂfe Yo (T?T) ® (%) af.

To show this, define tempercd distributions ij tS( mn) > @€ and

K s(R" ) > € for all § satisfying 0 ¢ § < %n by

mj b



K () - f v X\ L,
mj £$0+J J \gya / 'Xln
x| ?¢&

(where S(R') denotes the class of smooth rapidly decreasing test

. n
functions on R ). Then

I 2 T

where K . f=?9 is the convolution of the distribution K . and the test
mj mjJ

function 99 . Hence
A A A
(ij @ ) = Ixm‘]. © -

By the Fourier inversion formula we see that it suffices to show

,. £
w5 5= ¥ (i),

Ty . L2( R") for all § satisfying 0 < § < Un,

that

Now K .. € LYE(R
mj 8
hence ?mja € CO(]Rn )+ LZ( ]Rn). Moreover it can be shown that the

Fourier transform of the function

X -n + §
Y . | x
'“"(tx|> |

is of the form

¥
VI (Tﬂ')

for some function % . But &njﬁ is a distribution which is homo-

€

A
geneous of degree -n + § in | x|, hence ij 5 is homogeneous of

degree - & in I E’ . Thus
JUN E
Knjs = ¥ w5 |8 ij(Tﬂ—)

for some constant Y One can evaluate X’m 5 by applying ijS

'

to the test function
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to show that

m c . .
I (%m +0) )

§ —m ooy /2
= 2" i Tr
¥ m$ ! M sn s m-8) ) |
- - g : L n - ,? A s
But kmjg - I\Ej in S'( R ) as 8 - 0, hence hmJS —_> ij in

st (R as B - 0, by the continuity of the Fourier transform on

the space of tempered distributions. It follows that

A 13
g (85 Y Yy (TT)

and hence that

§

, -n ix. ¥ ~
pmj?z(uv) mee YmJ. ~l—§—]—5a(§)d§,

where
y _ym TT"/z f1 {%m)
m P Cin + m) )
Define
g /
w (x, §') = Z Z Xmamj (x) mJ(E)
m= o0 J
Then
, Lo\ -N ix.§ A3 ~
P o (27r) jc w (x, )Sl)?(f)dg-
n,, n,.
since Y . 0(m~ /z) and x;;l = 0(m /z) we sece that jﬁl and all its
n-1

derivatives are bounded on R x S if and only if @ and all its

n-1

derivatives are bounded on R x S The theorem follows directly

from this.

An important example is provided by the Riesz operators
Rj : Cgo(lgl)—? COO(IJ]), where j takes integer values from 1 to n.

The Riesz operators are defined by



“ln + 1) 890+J n+1y”J’ J
Ix~yl e | - v

\_:U
\S
E:
It
:11

The Riesz operators have the property that

(R\jso)/\ (%) = i é; Q(E)

From this it follows that

R\ij ;a - RkRj ¥

>
(Ryo) = R. of = Rl( :f
b\, J J aX J .
I k
When n = 1 the Riesz operator Ry is the Hilbert transform
H cg”( R) = C®(R) defined by

A classical theorem, due to M. Riesz, states that the Hilbert

transform extends to a bounded linear map
i P — Fim)
(for a proof, see appendix A). This theorem is the basis of the
proof of the following theorem, due to Calderon and Zygmund.
Theorem 2.2 (Calderon-Zygmund)

-1
Let (L €Cc*®(Rx 5"y and suppose that

J L,y dy' = o
n-1
S

for all xe€R". TFurther suppose that !al and its derivatives of all

orders are bounded on R x Sn*l. Then the singular integral operator

P : Cgo(]Rn) —3¢®(R" ) defined by
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_lim X -y (y)
PI(p(X) - [\ Q<X’ ]x—y[) IX‘ n

£ 30+
Jlx—y))g

extends to bounded linear maps

n n r n
I Lk(:m ) — Lk(.m )

for all non-negative integers k and for all p satisfyinp 1 € p<oe.

Proof

First we show that P is bounded on LP( R") whencver p satisfies

1 < p<oe and ) is odd, that is

Jﬂl(x, -z') = - jﬁl(x, z'),

In this case

r
P = ?J\ - n(x, z") Hz'PdZ
g

where

1 lim (x - sz2')
”z' Sa B E-bo+J\ s ds
[si2>¢

for all z'€f§k4} It follows from M. Riesz' theorem on the bounded-

p

ness of the Hilbert transform on L (‘m") and from Fubini's theorem

that there exists a constant Cp such that

b, @lle € ¢ le |l p
where ||?>”Pdcnotes the 1P norm of 99 . llence
||P§a]|p Sym ”_()_ "ocp vol(s"™h) “ £ ||p
by the integral form of Minkowski's inequality, where

” ﬂ”o: SUP‘{ |n(x,z')|; x€R", 7' € Sn—l} .

This proves that P is bounded on P (R" ) when j)_ is odd.

To prove the result when f). is even, that is

n

) = ¢ (R

) defined above.



Since
Z:IRJ.(RJ.c,o) = - @

for all @€ ¢ R" ) it follows that
[+ ]

One can show that Pe Rj is a singular integral operator with odd

kernel, either directly or by observing that if

T A
) (%) d
T ;

— € is the symbol of P, then W is smooth and

Pp(x) - (21r)“”JeiX'3 w (x,

where O : Iflx Sn—1
- A

PR, @ = (2y) " Jel—"'gw ].(x, l—;—) o §)df

where CL)i . R x Sn—1 is defined by

(%)

w (x, §1) = —iw(x,f')§'j

for j =1, ..., n. Note that

wj(xy_}-') B —w] (X,E')’

since
W (x, -§) - wix,§),

and thus
w.(x,g')df' - 0.
%n—l :J

By theroem 2.1 it follows that U)j is the symbol of a singular

integral operator with odd kernel. Thus Pe Rj is a singular integral

v

operator with odd kernel. The boundedness of P on P R") then follows

P, ..n

from the boundedness of Pe® Rj and RJ on L" (R ).
The boundedness on Lp(IRn) of a singular integral operator

whose kernel is neither even nor odd follows by expressing the kernel
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as a sum of an even kernel and an odd kernel and applying the above

results.
Define P : e (R = ¢T(R") by
_ lim X -~y g ()
P] So(x) B £+0+J nj(x’ \x -y ) |x - yln dy
Ix-yl>¢ ’
where
®
KAl {x, z') = jﬂl (x, z')
J dx.
J
Then
d g dgo
P 3%, :Pjso+PbX

J

Since P and Pj are bounded on Lp(imn) it follows that P is bounded

on LP(R"). By induction P is bounded on Li(jmn) for all non-negative

1 |

integers k.

When k = 0 and j)_ (x, z') is independent of x this result is
known as the Calderon-Zygmund inequality (see éﬁalderon, A.P. and
Zygmund, A., 195§7, Lgtein, E.M. and Weiss, G., 1972; chapter V£7,
Zﬁers, L., John, F. and Schechter, M., 1964; pp.224, 245-2597 of
lﬁorrey, C.B., 1966; pp.55—6£7)0

The corresponding thcorem for HYlder spaces is the following
classical result.

Theorem 2.

3
Let JP).G Coo(:mn X Sn_l) and suppose that

J D(X’ y') dy' = o0
n-1
S

n
for all x€R". Then the singular integral operator P : Cgo(ﬁfw-e Cao(ﬂ? )

defined by
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lim r X -y ©(y)
» ~Alv) = X - o\ i .
P (o (x) eao-»J N T -~ dy
Ix-y|>€ Y

extends to bounded linear maps

ook, k,
P : cO (BR) —3C (BR)

for all non-negative integers k, for all o satisfying 0 < < < 1
and for all R > 0, where BR denotes the ball of radius R about the
origin in R .

When k = 0 and _() (x, z') is independent of X, the result is
classical and proofs may be found in 1§ers, L., John, F. and
Schechter, M., 1964; pp.223, 244-245)/, (/Morrey, C.B., 1966;
pp.50—5§7 and lﬁalderon, A.P. and Zygmund, A., 19517. The result
in the general case follows by a straightforward adaptation of the
proof in the case when fl(x, z') is independent of x or by expanding
j~l in spherical harmonics as in theorem 2.1 and proving that each

k oa(

term in this expansion is bounded on C ' BR) and then using the

rapid convergence of the expansion.

Calderon and Zygmund have considered versions of the above
theorems when the assumption that the kernel of the singular integral
operator is smooth is relaxed (see Zfalderon, A.P. and Zygmund, A.,

19597 and Lfalderon, A.P. and Zygmund, A., 1957/).
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83. Pseudo-Differential Operators on Manifolds

In this seétion, we study the properties of pseudo-differential
operators on smooth manifolds. There are several definitions of
pseudo-differential operators in the literature (see, for example
iiohn, T.J. and Nirenberg, L., 19627, éﬁdrmander, L., l96§7,

Lﬁalais, R.S. et al, 1965; chapter XV;?, where they are referred to as
Calderon-Zygmund operators, iﬁdrmander, L., 19617, Zztiyah, M.F. and
singer, 1.M., 19687, /Nirenberg, L., 1970/, /Wells, R.0., 1973/). We
adopt here the definition due to HYrmander in his paper "Pseudo-
differential operators', zﬁbrmander, L., 19627, This definition has
the advantage of defining pseudo-~differential operators invariantly
on smooth manifolds, without reference to local coordinates. If a
pseudo-differential operator is defined in this way on open sets in
R then it can be shown that it is the sum of a pseudo-differential
operator in the sense of Kohn and Nirenberg Ziohn, J.J. and
Nirenberg, L., 19627 and a smoothing operator. HYrmander's paper

can thus be regarded as giving a proof of the invariance of pseudo-
differential operators defined in the sense of Kohn and Nirenberg
under change of coordinates, modulo the smoothing operators. The
Calderon-zygmund operators of Palais and Seeley as defined in

chapter XVI of "Seminar on the Atiyah-Singer index thecorem'

Lﬁalais, R.S. et al, 19627, defined on smooth manifolds and vector
bundles, are the pseudo-differential operators of HYrmander
Zﬁdrmander, L., 19627.

In proving the continuity properties of pseudo-differential
operators when extended to Sobolev and HBlder spaces, we shall relate
pseudo-differential operators to the singular integral operators of
Calderon and Zygmund. For this purpose, some of the later definitions

(such as in Lﬁdrmander, L., 19617, iKtiyah, M.F. and Singer, I.M.,



196§7, Zﬁirenberg, L., 19797 or LWells, R.O., 19727) of pseudo-
differential operators are less suitable.
We shall state in this section the definition of a pseudo-

1 P AA.dA d.:
S D YHHDOUL, UlbLUsS pPoudu—ul

differential operator and i

operators on open sets 1in ﬂ{], smoothing operators, the composition

of pseudo-differential operators, the adjoint of a pseudo-differential

operator, pseudo-differential operators acting on sections of vector

bundles, clliptic pseudo-differential operators and their parametrices.
Let M be a smooth manifold. We recall the definition of a

bounded subsct of the Frechet space C*®(M). A subset B of C® (M)

is bounded if for cvery compact set K € M and for every differential

operator L with smooth coefficients, there is a uniform bound for

\Lfl on K whenever f&€ B. We can now give Hbrmander's invariant

definition of a pseudo-differential operator on a smooth manifold

(see [ﬁdrmander, L., 196§7).

Definition 3.1

A pseudo-differential operator P on a smooth manifold M 1is a
continuous linear operator.

P i CY (M) —>C (M)
such that there exists a strictly decreasing sequence (Sj T g =0,1,2,...)
of" recal numbers converging to - e0 as j— ee such that for all
f e C;”(M), for all g € Cc% (M) with g real-valued and dg#0 in the

support of f, and for all X > 0, there is an asymptotic expansion

p. -3
N prelt ey > Py (f,) N
j=0

with the property that for every integer N > 0 and for every compact
set G of real-valued functions g € C®(M) with dg#0 in the support

of f, the error



0
ja—

N v -1 —{r i \ - {0 N j\
A (e he Pife )\g‘) - Z VJ- tr,g) >\ o)
J=0
belongs to a bounded set in C®?(M) whenever ge G and A2 1. If

Poi 0,we say that P is of order s_, and if all Pj vanish identically,
the order is defined as - oo,
It follows from this definition that Pj(f,g) is a positively
homogeneous function of g of degree S5 Thus
oo
e_i)‘g P(feng) -~ Z PJ. (£, A 2),

j=0

We define the symbol GEJf}g) of P to be the formal sum

o0

D A
j=0

In his paper lﬁbrmander, L., 19637, HYrmander studies the
action of pseudo-differential operators on smooth functions whose
support is contained in the domain of a coordinate chart on the
manifold, oblaining an expression for the symbol in local coordinates,
and uses it to study the properties of pseudo-differential operators.
The following theorems characterize the local behaviour of pseudo-
differential operators (see Lﬁbrmander, L., 1965; lemma 2.3 and
theorems 3.3 and 3.7 and proposition 3.;7.

Theorem 3.2

Let M be a smooth manifold of dimension n, and let
P ; Céx’(M)'—i C % (M) be a pseudo-differential operator on M. Let
(~2 be an open subset of M and let x 1l - R" be a chart giving
local coordinates x on_(l . For every f € Cgo(M) with

supp f < ﬂ

define Pe _() xR 3R by

b (x, ¥) - e—ix.f P(feix'? )



and let

R [ -]
X,>\§)~Z pfj(x, 2%
J=0

be the asymptotic expansion of pp as A — +oo , where pf,_j (x,5 ) is
homogenecous cf degree S in ¥ . Then Pe is smooth, and the asymptotic
expansion of pf(x, E), and all its derivatives, in the variable § is
uniformly asymptotic in x for all x belonging to some given compact
subset of () . Thus for all multi indices e and )8 and for all

compact subsets K of n , there exists a constant C «, RHK such that

o N-1 SN- lﬁ‘
=0

whenever x € K and IE( 2| , and also

P(fu) - (zv)‘”JeiX'Epf(x,E)G (3) d¥.

Thecorem 3.3 !
Let {) be an open set in R” and let q: () xR 9 R be a

smooth function with an asymptotic expansion

00
qlx, )\E ) ~ Z qj (x, N%)
Jj=0
in A , for >\ > 0, where qJ. ig positively homogeneous of degree
> and smooth in ﬂ x (RN {0} ), such that, for all multi-
indices of and ﬁ and for all compact subsets K of ﬂ , there

exists a constant Co‘,ﬁ,K such that
N-1 Sy~ ]ﬁ\

‘a::éi(q(x,E) - Z q; (x,E )) <

= Ca(,ﬁ,K ‘E,
J=0

whenever x € K and ‘\f] »1. Then we can define an operator
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o :c (1=
by the identity
Qu = (2m) " J\eix.E q (x, §) 7(%) ay

and Q : Cgo(.f1 ) = ¢ ()_) is a pseudo-differential operator
with symbol

Jox}

- _ (-1) = ® e ihx
o, () = 2 T dp gyl T d, (fe
oy ) .
where
Ex = grad g (x)
and

hX (y) :g(y)~g(x)'<Y‘X’§X>.

If qj(x,f ) = 0 for all j, then Q is a smoothing operator

Qu(x) :J- K(x,y) uly) dy,
0

where K & C°°(_(1_x f)_) is given by the identity

K(x,x-y) = (27) 7" \[ eiy-§ q(x, §) d¥ .

Also given a strictly decreasing sequence s. which converges
. . n
to ~o0 as j 00 and smooth functions q; : (L x (m Moy )R
such that qj (x, %) is positively homogeneous of degree Sj in ¥,

then there exists a pseudo-differential operator

Q:cy ()=

where

Qu = (2yw) " j eix.f q(x, ¥ ) G (%) dag

and where g : [} x R 3 R is smooth and has an asymptotic expansion

q(X’>\E)~X qJ(X9>\§)

J=0



for X\ > 0, which satisfies the conditions stated at the beginning

of the statement of this theorem. This pseudo~differential operator

Q is unique up to a smoothing operator on (l .

Let M be a smooth manifold and let/p be a smooth measure

on M. We define a pairing
Covud v c®m ® ¢ = R

by the identity

{g, f‘> = hy gf dp

A continuous linear map P : C;o(M) - C®(M) is referred to as a
smoothing operator if there exists a smooth function

oD
K: C (Mx M)~ R such that

(Pf) (x) = { K, £)
where

KX MR oy B Kix,y).

Theorem 3.4

Let M be a smooth manifold of dimension n and let
P : CZ?M) —» C **(M) be a smoothing operator. Then P is a pseudo-
differential operator whose symbol vanishes everywhere.

Proof

It is sufficient to prove that for all functions 90 fY/ € CO M,

the smoothing operator y:PyV is a pseudo-differential operator. But,
by employing a partition of unity subordinate to a locally finite
covering of M by domains of coordinate charts, it suffices to prove
the result when supp (o € U and supp \ € U! where x : U—-)]RN AND

y ¢ u! —ﬁiRn are coordinate charts. Then if Q = o Py, we have

Quix) = J Kix,y) uly) dy
UY
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where K @ U x U' = R is smooth and has compact support in bo
B ‘ . o0 e = <o
variables. Thus if fé& C0 (M) and g € CT (M) and if dg # 0 on

supp I, we have

e—i)\g Q(feixg) __J K(x,y) £ly) e1')\(g_z(y)~g(x))dy_
Ul

Let

-V

K byK

and

“0”2 _ Z Gi.

K=1

Then \\G|‘2 # 0 on supp f, by assumption, and

n
A Gpeine) _ix-J Ky f (y) S ¢ béy oA (ely)-e(x)) g
e k-1 g
Ul
! o ° [ KLuyIfy) o ) iMely)-gta)
2 2\ e ® : '
K=1

on intcprating once by parts. If we continue integrating by parts in
this way, we obtain

. . i A (gly)-g(x))
-1 A A | Lxey) o iA(e(y)-g(x))
TS '
U'
where m is a positive integer and L is a polynomial in a finite number

of derivatives of the functions K, f and g. L has compact support

contained in the support of K. It follows that

e‘“‘g Q(fei>g> O

as AN > +oo , for all non-negative integers N, and moreover, if B
is a compact subset of C®®(M) and dg # 0 on supp f for all g€ B, then

there is a constant C such that for all geB
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st Ag Q(fei)\g) C>\—N

for all X\ 2 1. " Thus Q = Y’FD\P' is a pseudo-differential operator.

Hence P is a pseudo-differential operator.

The next theorem, expressing the pseudolocal character of P,
is immediate from theorem 4.5 of Zﬁdrmander, L., 19627.

Theorem 3.5

Let M be a smooth manifold of dimension n, and let

OO oo . .
P : CO (M) = C (M) be a pseudo-differential operator. If
f e C:(M) and g € C™(M) and if

supp T N supp g = @

then gPf : Cga(M) - c®m) is a smoothing operator.

The next two theorems are theorems 4.3 and 4.4 of Lﬁdrmander, L.,
19627. The asymptotic expansions are due to éﬁohn, J.J. and Nirenberg, L.,
19627 (sce also Lﬁalais, R.S. et al, 1965; chapter XV£7, Lﬁdrmander, L.,
19617 and iﬁirenberg, L., 19797).

Theorem 3.6

Let M be a smooth manifold, let P : C:°(M) — ¢®®(M) and
Q : Cg°(M) — ¢ *(M) be pseudo-differential operators of order s
and t respectively and let f & C;°(M). Then

QfP : C7 (M) = c =)
is a pseudo-differential operator of order not exceeding s + t. 1In
particular if P : C:(n ) = ¢ ({)) and Q : C:(n )—c¢” (L)
are pscudo-differcntial operators on an open set Ial in m”, and if

fec;“(ﬂ)and if

Pu = (2m) " Jcix'E p(x,¥) U(¥) d§,

P(x,3) ~ ipj(x,§ ),
J



Qu = (o) " T P.lx'§ n(:«',E) /!3 (f\ dE

S N L ~1

j
Q(X,Ev) -~ zqk(x’\g)’
K
Ru = QfPu = (ZTT)_H\I eix.§ rix, t) f (%) a% ,
T‘(X)S) ~ er(xys)y

where pj(x, %), qk(x,'f) and ri(x,E ) are positively homogeneous in ¥,

then we have an equality of formal sums

Theorem 3.7
Let M be a smooth manifold. To every pseudo-differential
operator P : C;n(M) - €% (M) of order s, there is one and only one
pseudo~differential operator tP : C;o(M) — C% (M) of order s, called
its adjoint, such that
< Pu, \./) = < u; th >
if u, v € Cgo(M). In particular, if P : Cgo(_fj_) =)L) is

. . . n .
a pseudo-differential operator on an open set _(l in R , and is

given by the identity

Pu = (ZTT')_nJ\ eix"§ p(x,¥) T (§) a¥ ,
p(x,§)~ ?pJ(le)’
om0 F et 3o a,
t t
plx,§) 2; pk(x.f),

where Pﬁ(x,f ) and tpk(x,§ ) are positively homogenecous in ¥ , then

we have an equality of formal sums

. e

! I~
t -
pk(X,z ) = 2; = B«‘ 5 p:(x, - ¥).

“ o | x Yy J
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We can define pseudo-differential operators acting on sections
of vector bundles over a smooth manifold. Let M be a smooth manifold
and TTl : E — M and TF2 : F — M be smooth vector bundles over M.

A continuous linear operator P : Cgo(E) - C°°(F) is a pscudo-
differential operator if for all smooth sections fG:CZ°(E) and smooth
functions g € C® (M) with dg # 0 on supp f, there is an asymptotic

expansion

R D A RUNSING
j=0

which is uniformly asymptotic for all g belonging to any given
compact subset of CCO(M), exactly as in the definition of pseudo-
differential operators acting on smooth functions. All the results
stated so far go over without change, when applied to pseudo-
differential operators acting on sections of vector bundles.

Let M be a smooth manifold and let TTi tE-M and T, F M
be smooth vector bundles over M. Let  : T*M N~ M — M be the co-
tangent bundle over M with the zefo section removed, and let

T*E -~ T*M N M and w*F -~ T*M N M be the pullbacks of E and F.
Then there is a correspondence ©~ which assigns to a pseudo-
differential operator P : C;” (E) = C™(F) or order s, a homomorphism
6 (P) : r *E = w*F of vector bundles over T*M~M such that if

w € T*MN M and A > 0, then
S
o((P) (Aw) = A% (P) (w),

6 (P) is referred to as the leading symbol of P (or is often simply
referred to as the symbol of P}). & (P) is defined as follows. Let

m € M, let e & Em, the fibre of E over m, and let w € Tm*M ~ {O} .
Choose f € Cgo(E)andggecco(M) such that dg # 0 on supp f, and such

that f(m) = e and dg (m) = &3 . We then have an asymptotic expansion



SAEpret A ~ Y P.f,g) N\ 7
J=0
Define
6 (P {e) = P _(f,g) (mj

We claim that & (P) is well-defined, independent of the choice of f
and g. To verify this, it is sufficient to consider the case when
the support of  is contained in the domain of a coordinate chart
n . . .
x :{) > m of M. But then therc are uniquely defined functions
Py ()L x ( RUS {O} ) = R, where pk(x,E ) is positively homogeneous
of degree S in ¥ such that we have an equality of formal sums
AN LY o .
_ (-1) = . ihx
Z P\J-(f,g) = Z _:(—l— b; pk(x,fx) Bz(fe ),
J «,K :

where Ex = grad g (x) and

h (y) = gly) - g(x) - <y—x,§x>

(see iﬁdrmander, L., 1965/, theorem 4.2), but then
Po(f,g) (m) = fpo(x, grad g(x) ).

This shows that & (P) is well-defined.

Definition 3.8

l.et M be a smooth manifold, lct TTl : L - M and TT2 : T > M be
smooth vector bundles over M, and let P : C;o(E) - C®(F) be a pscudo-
differential operator. P is an elliptic pseudo-differential operator
if and only if, for all mé M and coeT;M‘~M, the homomorphism

6 (P) (w) : E —>F

of vector spaces is an isomorphism (i.e. & (P) is an isomorphism of
vector bundles over T*M\M).

A very important property of elliptic pseudo-differential
operators on smooth manifolds is the existence of a parametrix,

guaranteed by the next theorem (see lﬁﬁrmander, L., 19627, theorem 4.8
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or éﬁirenberg, L., 19797, p.157).
Theorem 3.9

Let M be a smooth manifold, let Trl : E— M and TFZ : F -9 M

1 ] ' 1 11 ax S PR T, - T ~ Q2 \

be smooth vector bundles over M, and let P : C7 {Ej — C 7 (F) be an
elliptic pseudo-differential operator of order s. Then for every
=

f € N M), there exists a pseudo-differential operator

Q : CS’(F)-—% C%(E) of order -s such that for any opcn set U in M

on which f is identically equal to 1, the operators
(ofr - DU : cZ(Elu) = ¢ (E]u)
(PFQ - 1)U : cF (FlU) — = (F|U)
are smoothing operators. In particular, if M is compact then there

exists a parametrix Q : C:o(F) — C®(E) of P such that the operators

QP - I and PQ - I are smoothing operators.
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§4. Pseudo-Differential Operators on Euclidean Space

In this section, we study some of the properties of pseudo-

. . . n . C o
differential operators on open sets in R . We degin by establishing
a convenient notation and using it to reformulale some of Lhe standard

. . . . n
properties of pseudo-differential operators on open sets in R . The
rest of the section is devoted to showing that if p : Cgo(jﬂl ) —> Coo(fﬁl )
is a pseudo-differential operator of order M, defined on an open set
n . ) .
f ) of R, and if f,g € CO (jﬁl }, then gPf extends to continuous

linear operators

pPf Lﬁ(m”) —>Lg_m (K"), 1 < p<oo , ke 7z,

k-m, ot

k’c’(( (]Rn), 0 ¢x < 1, k 2 max{m,0).

gPf : C R') > ¢
First we make a number of definitions. Except for the definition of

m . C . —.
ji (jal ), all the following definitions are taken from éNlrenberg, L.,
1970/ or /H¥rmander, L., 1967/.

Definitions 4.1

Let £) be an open set in R" and let m be a real number. We
denote by s"( L) the set of all p E c™( () x R") such that for
every compact set K C_(1. and for all multi indices o and_[a , there

exists a constant Co(’)B K such that

EARIEICA SR (v 18] "R

(:d,jB,K

We denote by 2{'“(_(1,) the subset of Sm(jnl) consisting of all

P € §n(jf) ) which possess an asymptotic expansion

oo

p(x, %) ~ Z p.(x,%)

j=0
as l}"% oo, where pj is homogeneous of degree Sj in § , with the
property that if ’7 : R —9_[5,17 is any smooth function that vanishes
in a neighbourhood of 0 and is identically equal to 1 outside some

compact set in Igl, we have that
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N-1
S
N
P, ) - S () pix, 8 € s ().
J=1
Given p € Sm(_fl ) we define a linear operator

mfar T . r*ool f\ Yoo w f‘wl f\\ o A1 [T oo
PAH,0) U [N S 2 B SR W Vol oA Ry Lne ddentlity

p(x,D) u = (21T)—n‘f eix.f plx, §) 0 (5 ) d¥%.

Given a strictly decreasing sequence mj converging to - oec as
j=> oo and given p € fgn(fﬁl ) and q; € s,
we write
prqJ-
J
if for all N2 0

P - Zq~€SmN

J .
J<N
Also if p € Eim(_() ), we write
p"‘ij
J

to denote the asymptotic expansion of p in functions positively

homogeneous in g .

Letjﬁl be an open set in r" and let P : Cg°(_(1 ) —> Cco(jﬁl) be
a continuous linear operator. Then P is a pseudo-differential operator
in the sense of HBrmander (iﬁdrmander, L., 19627) if and only if for

every f € Co (L)), there exists Pp € E:nw f‘l ) such that

P (fu) = (x,D) u.

Pg
Also P is a pseudo-differential operator in the sense of Kohn and
Nirenberg (lﬁohn, J.J. and Nirenberg, L., 19627) if and only if there
exists p € Zm(ﬂ ) such that

Pu = p(x,D} u.
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We may express the asymptotic expansions of compositions and
adjoints of pseudb—differential operators, due to Kohn and Nirenberg,
as follows. Let pé Zm,(n ), q € Zmz(ﬂ ) and let P = p(x, D),
Q = gq{(x, D) be the corresponding pseudo-differential operators, and
let f € C;p(_rl ). Then there exist symbols r € ZZIH"FIHL and
tp eZm, such that

QfPu = rix, D) u,
tPu = tp(x, D) u,
and r and tp have asymptotic expansions

INEY "
i, 81~ 2L 3T 0, 3) D (Fp(x, §) ),

Y] 3
1=
“pix, B~y 10(" : B;p(\, -5

-
Tndeed, if p € 5" ( iﬁl ) and ¢ € Sml(jﬁi ) then QfP = r(x, D) and
tP = tp(x, D) for some r € 5"+ mi(fﬂi ) and tp € Sm'(jﬁl ) and r
and tp have asymptotic expansions as above (see Zﬁérmander, L., 19617
or /Nirenberg, L., 19797).

Let (mj) be a strictly decreasing sequence of real numbers

ma

converging to - oo and let qj € 59 (jﬁl ). Then there exists
p E Smo(jfl_) such that

p o~ 2 aj

n n
If qJ. GZ ‘](ﬂ ), then p € Z O(n ). Also, given p € Sm(n ),
p(x, D) is a smoothing opcrator if and only if p~ 0 (see iﬁdrmander, L.,
19617 of Lﬁirenbcrg, L., 19797 for proofs).
Note also that if p € Sm(}f]), then p(x, D)} is translation-
invariant if and only if p(x, ¥) is a function of § alone. For if
we define ¢, : c™(R") = c®(R") by the identity

( ﬁ:hu) (x) = ul(x - h)



then
(v, wh (%) - ISy
hence
T ;1 pix, V)T ho= p(x + h, D)
so that
p{x + h, D) - p(x, D) =0
and thus
plx + h,-f) - plx, £) - o.
We write p(D) = p(x, D) whenever p is translation-invariant, and we

then have that
A
(p D) W) =p (¥F) 0.

n

Given a pseudo-differential operator P : CS°(I{ ) = Cco(}gl) and

functions f, g € C;o(ﬁf)), we wish to know when the pseudo-differential
oo n oo n . .

operator pPf : 5 (R ) > C (R ) extends to a continuous linear

operator between Sobolev or HBlder spaces. First we will prove a

number of lemmas in preparation for the study of this question.

Lemma 4.2

Let Y,ELI (B™) and let P : c®(R") = c®(R") be the linear
loc 0

operator defined by the identity

Pu = ?9 * u

where ?7* u denotes the convolution of 9” and u. Then, for all
f,g € Cg°( Rr"), for all non-negative integers k, for all p elﬁl oo ) and
for all K€ zﬁ} 1), gPf extends to continuous linear operators

n p

” ( ]Rn)

opf @ LP (R

) —> L.
k

s

=29 n).

k, ot !
aPf : (R = ¢ PN (R

Proof

Given f,gc-c;"( Rr"), let

R = sup {lx -y|l: x€supp g, y € supp f ¥

33



and let v € cS‘(:mn) be a smooth function with compact support with
the property that 7 (x) = 1 for all x satisfying |x| & R. Then, for
all uec>(R")

gP(fu) = gl@*(fu) ) = p( (@) * (fu) ).

Thus it suffices to prove that PO : C :mn) extends to

continuous linear operators

. P n N P n
Pyt L (R ) I (RY),

P KRR — B (D

),

where YV = MP  and P u = VY *u. But ‘YfELl( R") and thus by Young's

theorem on convolutions

I & wlle < vl el e
Also

ﬁ
"b-p (VEw Yy = % 37 w
for all multi indices}g , hence

Iy % wll e vl liell e

Thus P extends to a continuous linear operator

R s PN ¢ P n
P : Lk(]R )—)Lk(]R ).

Also

swp L ¥rul NV o [ ol
hence Py extends to a continuous linear operator
]

P KRY —cfr").

For u & C ™ ]Rn) let

sup

lul = syem"
Then if v = ~Y+u
Jvix + ) - veo) $flv<y)| | ulx + h - y) - ulx - y) | dy
€ 0T luty \\V”L.
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hence
[v] . & 1wl ”\{/”L'

and thus

lVeowl = ¢ “V”L' ||w“C°<
Il Y°u«\\ck,«x < “"V”L\ ”U"“Ck,o(

hence N extends to a continuous linear operator

PO : Ck,o(( ]Rn) - Ck’o((]Rn).

Lemma 4.3

Let {) be an open set inR'. Let P : c®( ()= c®())
be the translation-invariant linear operator

Pu = p(D) u
where pGSm' (n ), and let Q : C:’(ﬂ) — ¢ ) be the linear
operator

Qu = q(x,D) u

where qe §n1(jw_). Then

R = r(x,D)u,
where r st ™)) and
rix, §) = q(x, %) p (}).
f peS UL ) and qeF "2 (L), then rey M M2 () ).

Morcover, if gPf and gQf extend to continuous linear operators

k-

gPf : (L) = 1d (), (Vk 2L,
[

; . 1P p >

eof : LP( M) = Lk_Ll(ﬂ), (Vk 2L,

for all f,g,GCSo(_f),), then gRf extends to a continuous linear

operator

erf : P((L) =P (1) (VkrL)

, + L,. similarly if gpf and

for all f,gE‘C‘:(ﬂ ), where L = L

gQf extend to continuous linear operators
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gpf:ck""(ﬂ)—acl""r’“(ﬂ), (Vk>L),
i k, o . k-L_ , I‘L\
gof : ¢V (- e ), (vk2L),

for all f,g 6C8°(_(1 ), then gRf extends to a continuous linear
operator

R () s b)), vk
for all f,gficgp(jﬁl ), where L = L, + Ll.

Proof

It 1s immediate that

QPu = r(x,D) u
where

rix, §) = a(x,§) p (¥)
and that if pGSm'( ﬂ) and qGSm2 ({)) then res™ ~ ml(ﬂ)
and that if pe} ™ (ﬂ ) and qezml(ﬂ ), then re 3 My ml(ﬂ ).
Thus it only remains to check that gRf extends to the given linear
operators between Sobolev and HHlder spaces, for all f,g QCZO(_(l ).
Choose h € C:(ﬂ ) such that h =1 on Supp g and define
T : C:(n ) = ¢y ﬂ ) by the identity

T = thzP,

Then T = t(x,d) for some te s+ * ml(_() ) and

. o
e B~ E 3T (R0 g )) 3. (h(x)z p (%))

[ ¥

~ g(x) q(x,8) p (§)

by the asymptotic expansion of Kohn and Nirenberg (cf. the remarks
after definitions 4.1).

er -1 (L) =2 ™))
is a smoothing operator, and hence gRf - Tf extends to continuous

linear operators

ng—Tf:Li(n)‘?Cooo(ﬂ),

ng—Tf:Ck’«(ﬂ)—}Cgo(Q).



But Tf = (gQh) (hpPf), hence Tf extends to the required linear

operators between-.Sobolev and HBlder spaces, and hence so does gRf.

The next result i1s taken from igtein, E.M. and Weiss, G., 1972;
theorem IV.4.£7 (but note that the authors adopt a different definition
of the Fourier transform from that adopted here).

Lemma 4.4

Let s € (0, %) and let u ::m“\~{o\-énz be the function

u(x) = ’X!s—n‘

A
Then the Fourier transform u of u is given by

WP o=y [§]7°

where s
"’zsl—'(ﬁ)
= M 27 ————
¥ s (n - s
—) .
Proof
Let ?9 € Cgo(ﬁRn) be identically equal to 1 on a neighbourhood
of 0. Then u = U, ouy, where u, = ?au and u, = (1 -Yo)u, u € Li(imn) and

A A
u, € Ll(jmn). Then u, € CO(Imn) and uIG ﬁz(]Rn), using the Plancherel
A % n .
theorem. lence uéel (R'). But u is homogeneous of degree s - n,

loc

AL . . .
hence u is a tempered distribution, homogeneous of degree -s. Hence

WE =y (¥

for some constant Y s Now if e €S( R") is a rapidly decreasing test

function, then
A
Cu,ed = <4, e) .

Let

Then
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hence
n,i P s—n . IXI'L \ "
(2) EX R ) ~s  =%[§]
dx - XS l}l e dg
and thus
o roe y e
" s-n -Y%r n-1 -5 Yr* n-1
(27 ) C0n-1 J T e r dr = Y W, j Y e Y dr
o) c
where Coryd,is the volume of the unit (n - 1) - sphere. Hence
n Ky B n-3
3 5 -1 S ) = - n-s
. 2 1 > _ 1
(247) % 2 F( > Y. 2 [N ( . )
hence
=
n —
X . - T [ 28 P ( 2

Lemma 4.5

Let s be a positive real number, let ‘7 : If]—9 16,l7 be a smooth
function which is identically equal to 0 in a neighbourhood of 0 and
is ddentically equal to 1 outside a compact set, and let
z_, ¢ Cgo( R") = c®( R™) be the translation-invariant pseudo-

differential operator defined by the identity

2w (5) = M E) T¥I 0 (D),

Then for all funCtionS‘fﬁlngo( Rn), gZ_Sf extends to continuous

linear operators

. P p n
pz_f ¢ LI{R)—aL (R),

by n

pz_ £ o (BN~ (RN

for all pe[f,OO) and 0\616,1), and for all non-negative integers k.

Proof

It suffices to consider the case when s € (0, =), since for all

ol s

s€ (0,0 there exists an integer m such that



and then
Z u

where

{(Qu)

=i

RS

ol

m
Qu

3iv

= O™ EY )

and if gQf extends to the required continuous linear operators

between Sobolev and HYlder spaces for all f}g;ecé”(jmn), then so does

gZ_Sf by Lemma 4.3. Thus we now restrict ourselves to the case where

s €(0, % ).

Let

defined by

Cy (})

cz(S)

Then

2 (RN {O} - R and S 1¥1\ {o} - R be the functions

5] 7°,
(1 - ($)) %]

-S

T)(E) FE17° = ¢, - ¢y,

) n
since s { =

c, €L

(1 + |¥] %)

ioc ( ") and has compact support. Hence
0
1CIELZ(]RH)

A
for all k, and hence c, = YH where

¢1€Li(19)

for all k, by the Plancherel theorem. Thus by the Sobolev embedding

theorem

7, €

Also c,

?Dt(x)

Y s

by Lemma 4.4.

596 Liloc(]R).

1

= ¥, Ix
2 o ()

n

(R).

A
= 90' , where

1 s—n
| ,

- f%(ll ; s‘>

Since s > 0

n
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Hence
w € Lioc (IQW)

where ?p = ?91 - 991 . But then
Z_Su = ?9 *u

where ?,* u is the convolution of 99 and u. Hence gz Sf extends

to the required continuous linear operators between Sobolev and

HYlder spaces, for all f,ge Cg°(imn) by Lemma 4.2.

l.emma 4.6
Let m be an integer, let ‘q . )" —)16, l7 be a smooth function
which is identically equal to 0 in a neighbourhood of 0 and is

identically equal to 1 outside a compact set, and let

oo n

n . . .
7 + C®(R ) ™ C (IR ) be the translation-invariant pseudo-

m [+

differcential operator defined hy the identity

(zw (¥ = n () JETT ).

Then for all functions f,;zeCé”(iRn), mef extends to continuous

linear operators

mef:Lp(Rn)—)Lp (RY), (Vk>m)),

k k-m

1

gs_f RN = e

(R, (YK 2m)

for all pe(l,00) and o €(0,1).
Proof
It suffices to consider the cases m € {-1, o, l} , since 1if

m # 0 then




and it p0 T cxtends Lo the required continuous operators between
>y

Sobolev and HYlder spaces, Tor all f,gG&CSc( mn), then so does

gsz for all meZ , by Lemma 4.53.
Ifm-0
~ A N
(zgw)” (§) = u(f)—(l-v(}))u(}).
But sincec 1 - n (}) is a smooth function with compact support, the
last term is a smoothing operator, hence

Zou = U - 99 * U

1

N . .
for some 776(&”( R ), hence QZOf extends to the required continuous

Lincar opcrators, for all f, gge(k)( mn), by Lemma 4.2.

Next we consider the case m = -1. Note that
A
b .
< (Z~l u) (§ ) = 1 Ej (Z_l 1,1)A - —'7( E) (—i SJ
DX ' ) B3
J
But
N A
-1 §J u = (R. w

[f J

. n, . .
where 1<j : Céﬂ( ng) - Coo( I ) is the Riesz transform

[ () N

R = e’ PV, VR

uly) dy.

et n+1

T2 [x - vyl

Let cj r' N $0Y > R be the function defined by

s,
1%

1
( 1) and has compact support.  licnce

¢ (5) o u_w?(}{))

»

Then ¢. e 1.7
N loc

— _
(1« 55T c € (WY,

A
and hence Cj - Gy, where

.

.2 n
. €L
FQJ Lk (RrR)
for all k, by the Plancherel thecorem. Thus by the Sobolev embedding

theorem

al



Thus

) (Z_lu) = _Rj u -+ YQJ u
o X
J
Let I, géCgo( Tl“\n) hen
)
(gZ_1 (fu) ) = a g Z_1 (fu) - gR. (fu) =+ Q(P % (fu) ).
dx O X J J

Now 5Jg) Z_4 f extends to continuous linear operators

P n p n
(bjg) z_f o (R =1 (R,
& =
(d8) z_yf : O RY - O mY
= 1 n D, n %o n
by Lemma 4.5. Also 99j eLloc { R} hence if T : CO (R)—=>C (R)

is defined by

Tu = y’j #ou

then gTf extends to continuous lincar operators
orf : 1X (®M) = 1P (r™
k k
k,

o n)

o 2 O T (RN = ON( R

by Lemma 4.2, By the theorems of Calderon and Zypmund (theorems 2.2

and 2.3) the Riesz operators extend to continuous linear operators

. .p n P n
RJ. PL (R) 2L (R,
R, o RN = S RY).
Hence
(gz . (fu) ) <A [Jul
% -1 \ P p,k ‘ ‘ LP
J k k
L
| S
X . k, e C
J C
for some constants Ap i and Ak Hence gZ 1f extends to continuous
) ’ -

linear operators



"k +1
flz_lf Ck,ok(mn)_)clwl,“(mn)’
Tor nll pell,o0), all «€1(0,1) and for all non-nepative integers k
Finally we consider the case m = 1.
A A
(zu) =3 [S] 0 (E)
n ) A
-5 n(‘i)(if»(-i S, ) u
: J |51
J=1
n a " ~
:(Z (RJU))—(l—’)(f))‘§‘u(f).
0%

A
Now (1 - ’V) 0P )‘§l = P(E) for some PECM(RH), as before.

Hence
0 e
Zu = Z (R].u)—$0*u.
. bx. *
J=1 J
If T Cgo( R = c®(Rr") is defined by

then for all f,g GC:( ]Rn), pTf extends to continuous linear operators

. P n P n

n
orf 2 KO RY) o SO (R

and bj ° Rj extends to continuous linear operators

d . ¢ R. : P (r")— Lﬁ_ (]Rn),

J J k 1

n
die° R : O R > -l =< (R
J J

Hence ngf' extends to continuous linear operators

. P n p n
gz = L (R) =1L, (R,

I

gZJf : C(’“(]Rn) -"ick_l’

T



for all pe(l,oe), all o« € (0,1) and for all positive integers k.

Lemma 4.7
Let n_ be an open set in lﬂn, let me R and let
p o () =« RN\ {0} ) O R be a smooth function with the property
that for all multi indices e and compact subsets K of _n , there
exists a constant ¢ (1 + | %) )"
) l\
for all xeK and § # 0. Then if m + j £ -n, the function

A _Q X ]Rn —> R defined by the identity

Ax,2) = (2m) " J ozl p(x, §) d}

is continuous and given multi indices e and }3 with ]}8‘5: J and

of
a compact subset K of ﬂ , then @ < bpz Al{x,z) i1s continuous and
bounded for all (x,z)€ K xR, Let P : C;°( fﬁi ) —> ¢ (Nl ) be the

continuous linear operator defined by the identity
- i A
Pu(x) = (2v) " J~ elx'} pix, T) u (§ ) d§ .

Then

Pui{x) = J\ A(x,z) u (x - z) dz

if m + j € -n, and hence gPf extends to continuous linear operators

SR ¢ p
ppC s 1y (1) —> b, SORY

gPf Ck’“(n ) — Ck+j"x(n)

for all f,gécgo(ﬂ ), all péi_l_,m), all real numbers 0(615,1) and
all non-negative integers k.

Proof

Let m + j €< -n, and let K be a compact subset of {1 . The
integrals defining A and all its derivatives % p,) . A with }3 J

arc absolutely and uniformly convergent for (x,z)€ K x R" and the




integrals are continuous functions of x and z. Also

(2r) ™" \y el X § p(x, 3 ) ( J‘ e—i(x—z)'E u(x - z)dz) dy
\[\A(X.Z) u (x - 2) dz.

Given f,ge(?-;o( ﬂ ), we see that

Pu(x)

pP(fu) (x) = \f B(x,z) u (x - z) dz
where
B(x,z)}) = f(x) A (x,z) g (x - z).
B(x,2) has compact support in x and z and all partial derivatives
bo; B}Z B with LBI £ j are continuous and uniformly bounded. It
follows easily, using integration by parts, that gPf extends to the

required continuous linear operators.

Corollary 4.8

Let Jﬁl be an open set in R, let pE s™ (_()_) and define

P = p{x,D). Ifm+ j< -n then gPf extends to continuous linear
operators
F . 1P p
gpf L (1) =g o (1),

+
apf 2 (N ) = K ))
for all I,p Czo(.(]_), all p éT,OO) all a.eléa,l) and all non-
negative integers k.
Lemma 4.9
. n n
Let fﬁl be an open set in R and let g : O x (R ~fo} ) 9w
be a smooth function such that g(x, ) is positively homogeneous

of degree 0 in f , and let ‘n N 16,i7 be a smooth function

which is identically equal to O on a neighbourhood of 0 and is identi-

95

cally equal to 1 outside a compact set, and let Q : Cgo(_(1 ) = Coo(Jﬁl )

be the pseudo-differential operator defined by



— 130 , A
ouw - (2" J x5 q(x,f)‘r) ($) % (%) ax.
Then for all functions f,p €c, (jAL ), £0f cxtends to continuocus linear
operators

oQf (jﬁl - Ip !’) ),
o0f Ck’o‘ (ﬂ ) = Ck’m ( ﬂ )

L’—

96

for all pef{l,eo), for all ®€ (0,1) and for all non-ncgative integers k.

Proof
Let
plx, ) = <1~v)(§))q(x,§)

and

Then Tor all multi indices & , all compact scts K of ) and a1l

m € R there exists a constant C . such that
oA ,k,m
= m
v (¢ < C 1+ )
B>:P(\’S) o, K,m ( ;’§I'

Thus gPf extends to continuous linear maps
et 2 b (V)= (),
ng:Ck’o‘(Q)%Cr ()
for all pe(l,oe), all &€ (0,1) and all non-negative integers Kk,

by Lemma 4.7. But

0 Q, - P

where Q, is the singular integral operator

()OU (Err)_” J oix'} gix, \3) /L\l (S) (JS .

Hence Q_ extends to continuous lincar operators

0 Lp ( mn) - L£ ( mn)’

"0 k
k k n
. Ty —> ’
QO : Lloc( ﬂ( ) L]o (IR)

for all pe(l,o0), all K€ (0,1) and all non-negative integers Lk, by

the thecorems of Calderon and Zypgmund (theorems 2.1, 2.2 and 2.3).



Hence gQf extends to the required continuous linear operators between

Sobolev and Hdlder spaces ,

We are now ready to prove the main theorem of this section.

Theorem 4.10

Let n_ be an open set in ]R”, let meZz , let pezm(ﬂ ) and
let P : CZO(_(l ) > C°°(_(1 ) be the pseudo-differential operator
defined by

Pul(x) = p(x,D) u = (o) " \Y eix'i p(x, %) u (g ) df .

Let f,gG:CO (Jﬁl Y. Then gPf extends to continuous linear
operators

aPf Ll fh) ) —> LE_m( (ﬁl) , V< p <oo [k 2 max(m,0)

k
o _
pPf: Ck’ ()= Ck m, & (Kﬁl ), 04LA<1, k 2max(m,0)

Proof

Lct the asymptotic expansion of p(x, §) be

{x, )

\ <
pix, $) 2.0

)
where pj(x, £) is positively homogeneous of degree SJ in S ;S5 < m.
Let '7 : HJ1—3_£6,17 be a smooth function which is identically equal
to 0 in a ncighbourhood of 0 and is identically caual to 1 outside a
compact sct. Define smooth functions qj : Sﬁl x (RY N {()} )2 IR
by the identity

¥
q.(x, §) - p.lx, ——)
J J (%)
S
and define ry €S N (j/) ) Tor all positive integers N by the identity
. N-1

N (x, ) - plx,3) —‘7 ()" 2{: pj(x,i )

J-0

and let RN = rN(x,D). Also let Zs : Cso(Sﬁl Y = Coo(_(l } be the

translation-invariant pseudo-differential operantor defined by the

identity



(z u) :Y}(E)H]_Sa

and let Qj : C:o(n ) -—-)Cw( { )} be the pseudo-differential

operator defined by the identity

Q]-u (x) = (2ﬂ)~nJ’\eiX'§qi(x,S) ‘r)(§)3(§)d§

for cach non-negative integer j. We have shown that if f,g GCZO (n ),

then gZSf, g},ij and gRNf‘ extend to continuous linear operators

Q,Zf:Li(Q)‘*)Lp

> 5
Kem ({)), mez, 1< ploo , k2 max(m,0),

. k, k-m, . .
gz £ 0N () > T )), mez, 0<¢ <1, k2 max(m,0),

. . P ) p .
gz £ L (D)—) Lk(Q)’ s€ 0, 1< p<€oe , k2 0,

pz 02 O = L), s <o, 04, w20,
. D P
co.f 1 () =il ((V), 1 ¢pcoo , k2 0,
00;f O () — (D)), 0 <x <1, k2 0,
~ . P P - 2
gRNf Pl (O) —‘)LiwL(-' . st L< -n, 1< p<oe, k 2 0,

gRN'f : Ck’“(ﬁ)-’éckﬂ"%(n), syt L< -n, 0 <x< 1, k2 0,

by Lemmas 4.6, 4.9 and corollary 4.8. Moreover

N-1

R E 0. 7 A -
l Z A 75: .~m 7m ! RN

o L

where Sj -~ m< 0 for all j. By Lemma 4.3, 8z,

Z f extends to
j~m m

continuous lincar opcrators

g7 z f Lﬁ(ﬂ)—»L{?_m(f)), 1 < ptoo , k> max (m,0).
A -
gz s 1 0% K™, o<t k2 max(m,0)

for all f,geco (Q) and since ZS n Zm 1s a translation-invariant
J

pseudo~differential operator, gQJ ZS Zm f extends to continuous
Jjm

linear operators

98



P p p .
gojls z T Lk((7 )_%‘1<— (()'), l<p<oo, k 2 max(m,0),
Kk Kk—m, o
QQJiS —m m ’ ‘(> )™ C ’ (f1 ), 0<X< I, k2 max(m,0)
The result follo on choosing N sufficiently large

We can extend the action of pscudo-differcntial operators to the
dual spaces of the Sobolev spaces. We recall that if k is a non-

positive integer and 1 < p< oo, then we define

Ly = k()

-k

™
for all open sets_() injmn, where L:k (IAI )* is the dual space of

LP (.(l), and where p' € (1, oo ) satisfies the identity

-k

Note that by HUlder's incquality and by the Riesz representation

theorem,
D)y = (L

so that the definition is consistent when k = 0.

Theorem 4.11

Let ﬂ be an open set in r" , let meZ , let p€ Zm(n ) and
et P o C:o( jﬁl ) —> Coo( £~2 ) bc the pscudo-diffTerential operator

defined by

Pu(x) - plx D) u (o) " \[ eiX'E p(x,i ) i (%) d¥ .

Let f,p € C:>(£“l). Then gPf extends to a continuous linear operator

gPf : Li (!Nl ) —> LE—m (KA) ), 1€ ples | k€ Z

Proof

If k 2 max(m,0), then thc result follows from the previous

96
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. ) t . .
thecorem. I k 2 min(m,0) then f Pp cxtends to a continucus linear

operator

o -k
where

% %l:l.
Put then

(£'pp)e = plper

. ot . . .
and hence the dual of £Pg 1s a continuous lincar operator

L’tP-::'I' : {P (ﬂ ) — Lk -m (Q )

It
and if u € C:o(jﬁl ) then tP*(j {(u) ) = Pu where j : CO (f) -5113 (2)
is the natural embedding. Since the image of j is dense in LL (jﬁl) it
follows that gtP*f is the unique continuous extension of gPf to
(KAZ). {t remains to consider the cases 0 £ k€ mand m £ k £ 0.

In thesc cases, let r € z:k (Xﬁ2) be defined by

r(E) - (B e hE"
where 'n ;)" - / _/ 1s a smooth function which is identically
cqual to 0 in a ncighbourhood of 0 and is identically equal to !
outside a compact subset. Note that r( §)> 0 for all e Rr"
Define also g € z{m—k (I)}) by the identity

Then
p (x, D) = q (x, D) r (D)
and if h € C:’(f7 ) and h =1 or supp g then the lincar opcrator
£(x) p(x,0) £(x) - g(x) q(x,0) h(x)% r(d) £ix)
is a smoothing operator, by the asymptotic cxpansion of Kohn and
Nirenberg. Thus since h(x) r(D) f(x) and g{x) g(x,D) h(x) extend to

continuous linear operators



Lol

h(x) r(D) £(x) : P (Q)—ng (),

o(x) q(x,D) hix) : Lg (Iﬁl) — P ((ﬁ) )

“Kk—m

it follows that gPf extends to a continuous linear operator

ng:Li(D)"Ip (1)

“K-m

when 0 € K< morm< k €0,




Lan
82}

Some Elliptic Regularity Results

In this secction, we prove some clliptic regularity rcsults
concerning linear elliptic diffzrential operators with smooth
cocfficicnts. The theorems follow immediately from the following
theorem on the continuity of pseudo-differential opcrators on compact
manifolds.

Theorem 5.1

Let M be a compact smooth manifold, let o E M and

TKZ: F — M be smooth vector bundles over M and let P : C°°(E)—% CQO(F)
be a pseudo-differential operator of order not exceeding m, for some

m € Z . Then P extends to continuous lincear operators

Pl () » LD (my, 1¢ ploo , kewzm,
k k—-m
kK, & k-m, e

P :C (E) = ¢ (F), 0 < = < 1, k 2 max(m,0).

By using a partition of unity subordinate to a finite cover
of M by coordinate neighbourhoods in M over which the vector
bundles  and F are trivial, 1t suffices to show that F)V> extends to
the required continuous linear operators between Sobolev and H8lder
spaces whenever P M- R is a smooth function with its support in
the domain of somc coordinate chart x :1’1 -3 m" over which the bundles
I and F are trivial. Let “f’ be a smooth function whose support
is contained in f). and which is identically equal to 1 on the
support of w . Then the operator

(L -y P ¢ =)
is a smoothing operator, hence it suffices to show that the pscudo-
differential opcrator

VP el ) » T )

cxtends to continuous linear operators



Ve sy I P, 01, 1< <o ez
VP :.ck""(lzzlﬂ ) — ck‘m’“(F(ﬂ ), 0< o< 1, kymax(m,0).

But this follows immediately from the corresponding results for
S e . N . .n .. o
pseudo-differential operators defined on open sets in |’ (theorems 4.10

and 4.11).

Thcorem 5.2
Let M be a compact smooth manifold, let Tn i E— M and
TTi: I — M be smooth vector bundles over M and let L : C°°(E) —)C‘”(F)

be a lincar elliptic differential operator of order m with smooth
coefficients. Let f be a section of 71, : F — M and let u & ggv'(E)
be a wecak solution of the cquation

Lu = f,

If p is a rcal number satisfyinpg 1 < p<Leo, K is an integer and

b) ) ) . . .
f € L{ (F), then u € L%em (E). If o« is a real number satisfying
A <A =
- S - S o kyo o e
0 < &< I, k is a non-negative integer and fe C (F), then
u € Cka"m’c‘ ().

Proof

Let P : Co(F) —> c®(E) be a parametrix for L. Then

u = PLu + Ku = Pf + Ku
wherc K : i; "(E) —> C®°(E) is a smoothing operator. But P extends
to continuous linear operators

1

D
k+m(E)’

P : LE(PW —> L

k, &

0:C (1) = /M Ry

from which the result follows immediately.

Let M be a compact smooth manifold, Iet/Ll be a smooth measure

on M, let I : E =M bec a smooth vector bundle over M, and let



Rl m 1. N - 4- AR SIS . _ S
JS €C (E*®FL*) be a smooth section of E¥@ E* which restricts to
a positive definite symmetric bilinear form on each fibre of E. We

define an inner product on sections of E by

(c., ¢ ) - ( Zg (e ., e ) dum.
l i 4

L’ 2 Jl\’l ’ J
A lincar differential operator I : C°°(E)-a Cco(E) is self-adjoint
if and only if

([,CL, c,) - (Cl, Le,_ ).

The results of lodge theory for self-adjoint elliptic differential
operators apply to the Sobolev spaces Li(E) for p satisfying 1 < p< oo |
and are given in the following theorem.

Theorem 5.3

Let M be a compact smooth manifold, let TTl : E— M and

T, ¢ F ~—>M be smooth vector bundles over M and let L : € (E) ~» ¢ (F)

<

be a linear clliptic differential operator with smooth coefficients
of order m. If Kk is an integer and if p satisfies | < p< e, then the
cxtension

p
k-m

o L%Z(E)"%L (F)

of L to LE(E) is a Fredholm operator. If k2 m and 0 < &« < 1, then
the extension

k, o

Lo:cC () —> KM ™

. oy \
of 1. to C (E) is a Fredholm operator.
Moreover if

OO

(e s o)t CT(E) xC®E)D R

is a smooth inner product structure of F and L : COO(E) - C°°(E) is

a self-adjoint elliptic differential operator with smooth coefficients
of order m, then the index of the Fredholm operators

L tPE) — P (1),
k Ik-m

k, o

L :C (£) = ™ % ()




is equal to zero and there exists a pseudodifferential operator
G CT(EY—> C%(E)

of order -m such that if 0 : CT(E) = ¢ T(E) is the projection

) - {fe€ec™w) e - oF,

r - LG = 1 - GIL. = Il

Proof

Let P : C®(E) = ¢ ¥(E) be a pseudodifferential operator of
order -m which is parametrix of L. Then LP - I and PL - I are
smoothing operators, hence

I

R
WP by
o

(F) — 1_,£_m(13:)

P

pr— 1 ¢ L)y = P
k k
LP - T MR () = ™ %y
PL— T s 0% = O
are compact operators. IHence
Lo LpE) LY ()
Lo ) = KT

are Fredholm operators, thus proving the first part of the theorem.
Let L : C (E) = C (E) be self-adjoint with respect to the

given inner product structure. Let %11'(E) be the orthoponal
»K

complement of H(E)} with respect to the inner product structure. Then

I,E(I::) OE) @ v (1)

D, k

and

o - i . P - P
vp)k(L) = image { Lo oLy, () — Lk(L)}

since H(E) is the orthogonal complement of the image of L, using



the fact that L is self-adjoint. Then

Ljvr (B) : v. (E) >V ()

), Kk p,k P, k-m

is continuous and bijective and hence has a bounded inverse, by the

Banach isomorphism theorem. Define G : Lroe) > Lﬂ(E) by

R—m
G lJ{(}z‘.) - 0
G !\/ L , -l
p k-m(E) = (L |vp) L(E) )
Then
I -LG = I-GL = H.

Since H is a smoothing operator, G is a parametrix of L. But any
two parametrices of L differ by a smoothing operator, hence G is a

pscudodifferential opcrator of order -m.
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AN INEQUALITY FOR TFUNCTIONS ON RIEMANNIAN MANIFOLDS

Q1. Introduction

In this chapter we prove an inequality (thcorem 3.3) satisfied
by continuous functions f : MR on a compact Riemannian manifold M.
Given £ : M >R and given mL, m, € M, lct/P ¢ ( m m2) denote
the infimum of the inteprals of f with respect to arclength taken
over all piecewise smooth paths from my to m, - Also let d(ml, mz)
be the distance from m, to m, defined using the Riemannian metric
on M. Theorem 3.3 states that if dim M < p< oo and if K € (0, 1)
is defined by

dim M
b

< = 1 -

then

oA
Poplmps my) S K Gdm, m) )£

where KP is a constant depending only on p and the Ricmannian geometry
of M, and whecre “fIlp is the LP norm of £ with respect to the
Riemannian volume measure on M.

In section 82, we shall study tubes about length minimizing
pgeodesics in a compact Riemannian manifold, in preparation for
section 83. 1In section 83 we shall prove the main result (theorem 3.3)
and deduce from it a result (corollary 3.4) which applies when the
manifold M is noncompact. We shall show how the Sobolev embedding theorem
for the embedding of a Sobolev space in a liBlder spacce may be deduced

from theorem 3.3.




8o, Geodesic Tubes about Length Minimizing Geodesics

In this sebtion, we use compactness arguments to show that,
piven a compact Riecmannian manifold M, there exists a positive
constant R such that, for any length minimizing geodesic

¥ 15, E7 —>» M, the geodesic tube of radius R about Y is embedded
in M. R is independent of the choice of minimizing geodesic. Further-
more, we may choose R such that, on considering the exponential map
as a diffeomorphism from the tube of radius R about the zero section
of the normal bundle of ¥ to the geodesic tube of radius R about )
the derivatives of the exponential map and its inverse both increase
the lengths of tangent vectors by a factor of at most 2.

First we prove a topological lemma. A continuous map f : X —Y
between topological spaces X and Y is said to be locally injective if,
for all x € X, there exists a neighbourhood U, of x such that f U,
is injective.

Lemma 2.1

Let £ : X ~—>Y be a continuous map from a topological space X
to a Hausdorff topological space Y, and let K be a compact subset of X.
Supposc that £ : X =Y is locally injective and that flK:K—Y
is injective. Then there‘exists an open neighbourhood U of K such that
flU :U—=—=Y is injective.

For all x € K, there exists an open neighbourhood U, of x such
that f' U, is injective. For all y € K~ U it follows that
fly) # f(x) (since T IK is injective) and hence that there exist open

neighbourhoods V of x and W of y such that
X X,y

» 3

f(vx’y) N f(wx,y) = ¢

(since Y is Hausdorff). Since K is compact, there exist Yyser+r ¥, €K

such that K C Ux u W_, where
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n
W= W
i=1 Y4
Let
n
7 = U N \Y
e = U VY
L— L 1

Then x € V., V. a U and
X X

> X
f(Vg) N TW) = ¢
et N_ =~ U v W_ . Then N_ is an open ncighbourhood of K. 1If z € V_, W & N_
x X X X - X x
and f(z) = flw), then w ¢ Wx’ hence w € Ux’ and thus z = w, since

f‘ Ux is injective. Since K is compact, there exist Xqs eees X

such that K ¢ Vv, where
m

v = U Vv
i=1

Let

Then N is an open neighbourhood of K. If 2 € V, w € N and f(z) = f(w),
then z = w. Thus if U = VO N, then U is an open neighbourhood of K

and fl U is injective.

Theorem 2072
el M be a compact smooth Ricmannian manifold. Given any pcodesic
¥ LE, E7—$IW, let Ny '—)Zﬁ; 97 denote the normal bundle of ¥ with

its canonical flat Riemannian metric, let BRNX.denote the tube

BN - fxeny x| ¢r}
of radius R about the zero section of Ny, let exXpy N y —> M denote
the exponential map of y , and let exXpy TNy — TM denote its
derivative. Then there exists a constant R, independent of the choice
of geodesic, with the following property: if Yo 15, 27 ~> M is a

length minimizing geodesic in M, then



exp I BRN'g : BRNX — M

is a diffeomorphism onto its image, and if Z e TyN¥ for some

V€ BNy, then

sz $ Neoy. 2zl €2 Mz

Proof

Let
stMo o= fxem |l x( =1%
and define a map E : STM Xy ™ -2 M in the following manner. Let

X € 5t M and Y & T M. Then Y = Yo+ Y, where Yy is a scalar multiple

of X and Y, is perpendicular to X. Let vy : 15 l7 —» M be the geodesic

X (t)y = exp tYl

(recall that M is compact, and hence geodesically complete), let
q = ¥ (1), and let Vv e TqM be the vector obtained from Y, by parallel
transport along Y . Then define

E(X,Y) = equv.

Also, for all X € STmM, define Ex : TmM —> M to be the map sending
Y eThM to B(X,Y) € M. Note that if Y is a scalar multiple of X,
then the derivative of E at Y is an isometry.

Let K be the subset of STM Xy TM consisting of all elements
(X,Y) such that Y = AX for some real number X > 0, and also such
that

Y : 16, l7-$ M:trPexpty

is a length minimizing geodesic from Y (0) to Y (l). K is a closed
subset of STM x, M. If (X,Y) € K, then Ny Il € diam (M). Since M
ig compact, K is also compact. Also if (X,Y) € K, then the derivative

of E_at Y is an isometry. Hence there cxists a neighbourhood Uy of K

such that if X,y € 1w, if ][ x || = 1, if (x,v) € u, and if

z € T,T M, then
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where EX* 2 TT M f% TM is the derivative of EX. In particular, if
(X,Y) & Ul’ then the derivative of Ex at Y is an isomorphism.

Now define £ : STM Xy ™ —> ST™M x M by

FIX,Y) (X, E(X,Y) ).

The derivative of f at (X, Y) & STM x_ TM is an isomorphism if and only

M

1f the derivative of Ey at Y is an isomorphism. In particular, if

(X, Y) € U then the derivative of [ at (X, Y) is an isomorphism,

19
hence ‘ Uy is a local diffeomorphism, by the inverse function theorem.

By definition of E, if (X, Y) €& K then

(X, Y} = (X, exp ¥Y).
llence if (Xl’ Yl) € K and (X2, Y2) & K and if
(X, v = (X, ¥,)
°n therc ists ; - 3 7 ’ T M. Also X, = X_ =
then there exists m € M such that Xl’ Kz, Yl, \2 & lmﬂ Also Xl kz X
ome : N Y = 4 X for s >
for some X & T M. Then Y, A X and v, }J\ for some A ,/U 2.0,

and the geodesics

X/l = /0, /> Mt exp_tY,

N o = 15, lT-A M: te expmtvz
are length minimizing geodesics satisfying y l(1) = ¥ 2(1). It follows
that Yy o= Y, Thus we have shown that f ‘ K is injective,

Now f ] U, is a local diffeomorphism and f l K is injective, hence

there cxinbs an open neiphbourhood U of K, contained in U such that

I b
T \ U is a diffcomorphism, by thc previous lemma.  Then if

X, ve toa, | Xl = L, (X, Y) €U and if 7 € T,T M then

sz lhs e 2 ¢ 2 0zl

Using the compactness of K, it follows that there exists R> 0
such that if (X, Y)¢ STM Xy T, if Y = Yy Y, where Y, is parallel to
X and Yo is perpendicular to X, if (X, Yl) € K, and if \\Yz H <R,

then (X, Y) € U. We claim that R is the required constant.



Let y : _/_6, b) > M be a length minimizing geodesic para-
meterized by arclength, and let r: Ny — 15, 97 be the normal
bundle of Y - Letm= Yy (0) and let X = X'(O). Then X € STM.

+

Define P : Ny — T M hy
[ m d
v (V) = 9r (V) X + TIW)

where T : Ny — TmM is the map sending V € Ny to the vector
T(V) in Tml\'l obtained from V by parallel transport along Yy from
Y (7w (V) ) tom, Then v 1s an isometry from N  onto its image

in T M, and if Vv € BRNY , then (X, v{(Vv) ) e U, and also
exp o V. = E(X, W (V) ).

lHence eXp ¢ l BRNX : BRNy——)M is a diffeomorphism onto its image

in M with the required properties.




33, An Inequality concerning Functions on Riemannian Manifolds

In this section, we consider the following situation. Let M be
a compact smooth Riemannian manifold of dimension n, and let p be a
real number satisfying n < p <oo . We show that there exists a
constant Kp’ depending only on p and the Riemannian geometry of M
such that for all continuous functions £ : M — R, and for all
my, m, € M, the infimum M f(ml’ m2) of the integrals of f with
respect to arclength along all piecewise smooth paths from my to m

2

satisfies

ol
Mplmps my) & KAy, my) ) ) ol b
where f is the LP norm of I, d{m,, m.) is the Riemannian distance
P 1 2
from my to My s and

dim M

X =1 >

Those cases of the Sobolev embedding theorems dealing with embeddings
of Sobolev spaces into ck spaces or HYlder spaces follow easily from
this inequality.

In what follows, we regard R" as the Cartesian product

Null ¢ 1}

in R" by Bn—l. The volume of Bn_] with respect to the Euclidean

n n-1

R x R"71. We denotc the unit ball {uemr

mctric is given by
n
vol (Bn_l) = -———;E;:i—
MG
The main thecorcem of the scction will follow from a l.emma conccrning
the behaviour of functions defined on cones in Euclidean space.
Lemma 3.1

Given §>0, L >0, let [Nc R" be the cone defined by

M -f{e e Uxr"" )yl < ew}

and, for all u & Bn_l, let ¢, ¢ 16, 17-—9rﬂ be the ray defined by



c (1) = (Lt, eltwn

u
. n . n-1
{on regarding R as the Cartes:ian product R x R ). Let

p € (n, o), let f € Lf( r ), and let

Id

1 : r L
e [ (L et )
3 o) B_ O

-1 . .
be the mean value, taken over B , of the integrals of lf | with
respect to arclength along the rays c. Then

ok

r £ Kp,n,i L II f ”T’,P
where
o - 1 - =
Do
where

el (L HE dx)%

and where

P“'I

L 1. P -
LG ey rew f (1+enw)ie f, ) ©
Bn‘l

N =
psn, & T p—n

is a constant depending on p, n and E .

since ¢°( [7) is dense in P [7), it suffices to prove the
inequality for all f € (M ). Let @ 15, l7 X Bn_l —afﬁ be
the map defined by

?9 (t, u) = (Lt, € ltu).

Let dx be the volume form on :mn and let du be the volume form on

Bn—l . Rn—l. Then

50'.': dX = L ( alt)n—l dt/\dU-
Also

“ e/ ()| - L+ £2x12)% ,



hence

I-=

T

rE L1t erar) (@t dtada
[0,]»B"

A

E_(Z__QJ A_‘(?,Lt)\‘n(l+52“})%—(Y*¥)§0*ix
[0,11xB

NEIDIE (J e >%
£ == L. A
0 C e [ fopl e

T " Pl"ltll’

B NCEID IR s G
= b (] )

by HBlder's incquality, where

Cp ne,l *J ( E_Lt)(l—n)q (1 +22L12) ? dx
/6,17 x 8"}

Pl

and where ¢ satisfies

-:-l- + = 1.

1
q

Hence

L

P

CP ne Ll © J\ L (¢ Lt)(n—l)(lnq)(l + gzuz) 2 dt A du
i’(—) , l—/_ x BI]~ 1
i

[
L(eL)(”“")““‘) J L(““””“q)dtJ (L e2d®) " au
n-1

© B

Le,(n-1)(t-q) . a
L (2%) (1 + Ezug) * du,
n-1

(n-1)(1-g) + 1
B

provided that

(n - 1) (1 -q) +120.

But

q-1=



hence

(n - 1) (1l -¢q) +1 =1~ -

Since p > n,

(n-1)(l-gq)+120

as required. llence
pn [l ol P
. - p-! p _§; 2, 2¢p-1)
Comnr = L7 e T (5 )| L (rew) 50T
vy = Br\- ]
Thus
P2t ’ n
) n. - re - -t
IR =) AR P
CP:'\,F_,L B L e P_n' B"-I .

llence

Tel ol "NFln,

Corollary 3.2

Given £ >0, L >0, let T < R" be the tube
o= {(w,y)e ]Rx]Rn—1 : weéa, 2£7, ﬂyll&g_l_}

about ZE, 2&7 of radius el , and let P be the set of pieccewise

1 1

smooth paths c : E)-, _1_7—-) T from (0, 0) € R xR to (2L, 0) e R xR

which are contained in T. For any continuous function f : T 5 R, define

{
m(f) = tnf {J If(c(t) )| et at:oce p}
o .

m(f) is the infimum of the integrals of [f] with recspect to arve-
length along all paths belonging to P. Let p € (n,® ). Then there

exists a constant Kp n, £ depending only on p,n and £ such that if
b b



f : T =R is a continuous function on T, then

Yo
: o 5
m(f) < Kp,n,e L \[ lf | ¥ dx >
T

where o €(0, 1) i1is defined by

n
oL = 1 - b

Proof

Let ::mn-—7 R" denote the reflection defined by

wilw, v) = (2L - w, y)

for all (w, y) € R ximn-l, and let " ¢ R" be the cone defined by

Mo e O L7 xRyl € ew)

Then Ve T and ([ )< T. For ue Bn_1 let ¢, ¢ 16, 177~5Y1 be

b

the ray defined by

c,(t) = (lt, g Ltu)
(on regarding R" as the Cartesian product R ximn_l). Then the
. B - -1 — A . .
product path vy Ty ( Ticu) consisting of c, followed by T <,

reversed is a piecewise smooth path from (0, 0) to (2L, 0) (via

( L, £_L u) ), and if ' : TR is continuous and
1 {
/
Te T *“‘T:I“I AR A (0]} at ) au,
vol(B ) Bn—l

o

then

M (ry £ g ‘

Ko Lr—%( (JP |¥|de)3+ (L(m m"otxyp )
$ KP»ME L« (Jr‘ux(f‘) H:IPOLx) ’

¢ Kone L“( JT lHPoLx)VP

A

by the previous lemma.




Using this corollary, and using properties of geodesic tubes
about length minizing geodcsics, we may prove the main theorem of
this section.

Theorem 3.3

Let M be a compact Riemannian manifold of dimension n (possibly

with boundary). For all continuous functions f : M — R, and for all

mys m, € M, let /Jf(ml, m2) denote the infimum, over all piecewise
smooth paths c : 1;, 971—9 M from m, to Mg of the integrals
b
[T (e (t) )l e/ e dt

a
of |f| , with respect to arclength, along c. Then, for all
p € (n,oe), there exists a constant Kp, depending only on p and on
the Riemannian geometry of M, such that if f : M= MR is a continuous

function on M, then

oA

Mg tmps my) &k (dmpy my) 0 e

for all my, m € M, where oL € (0, 1) is defined by

2

&« - 1 - B
P,

, with respect to the

where d(ml, m,) is the distance from m, to m

Riemannian metric, and where
i

-
”f” M,p (\JAM [£] P d (vol)

First, we restrict our attention to the case when ¥ M = @.
Then there exists a constant R such that, for all length minimizing
geodesics ¥ : Z;, 97-—3 M, the exponential map

eXp y ’BRNX : BRN¥-$M
is a diffeomorphism onto its image, and such that if z € TVN'X for

some V € BRNY , then



1y ”
I

7/ H RS “ exp . Z H < 2 l!z H
(here BRNB' is the tube of radius R about the sero section of Ny
consisting of all vectors of length not exceeding R in the normal
bundle Ny —> 15, 27 of Y ). This follows from theorem 2.2.

et diam (M) be the diametcer of M, and let

2R
diam (M) ,

Let m,, m. € M and let Y Z6,6:7 — M be a length minimizing

1 2
geodesic from m; to m, parameterized by arclength (such a geodesic
always exists, since M i1s compact, and since we are restricting our
attention to the case when M is without boundary). Let

Tt Ny = Lﬁ,q:7 be the normal bundle of y . Then the tube T of
radius % 6§ about thc zero section of Ny is contained in BRN-X .

Let P be the set of piecewise smooth paths v : 15, 17 —> T in the tube T
from exp,y_l(ml) to exp y —l(mz). T has a natural flat Riemannian
metric and is isometric to the corresponding tube in =", By the

corollary Lo Lhe previous Lemma, if g : T >R is a continucus function

on T and if

|
m(g) = inf J lf(v (t) )‘Hv' (t)[] dt : vep
(=]

is the infimum, taken over piecewise smooth paths in T from

4

arclength along the curves, then

(m]) to exp ;L(m ), of the integrals of |[g| with respect to

exp 5

’ o i P
) & K _—
mip) S I\p,n,s_ ( 2 ) (’\[ 2] P ax >
T

’ . .
where K is a constant dcpending only on p, n and ¢ . But

p,Nn,¢

CXPy lT : T — M increases the length of tangent vectors to T by a

factor of at most 2, hence




M (m1, m?) S 2m (feexp)

iy
oA P
, 7 -3 P
? l\P,n,(& ('E—) \(‘ If‘°eXp' dx
T
)

/ ¢ ™ \/P

1 X \*/
S L i u\ml, mz) ~ P
’ I\b,n,i.( 2 ) kJ [£] d(VOU)

M

« v
. -1 P
I\p<d (m, , mZ)) J 1£1P d (vol)
M

where

) n+l- ot
K = 2 <
P p>n, g .

Here we have used the fact that

lax] ¢ 2" | exp o, * d (vol) |

where d (vol) is the volume measure on m and dx is the volume measure
on T. This fact follows from the fact that if Z € TVNY for some

Ve BRNY , then

N

:_". ” Z H > u CXpy .,

I

The constant Kp depends only on p, n, R and diam (M), and thus only on
p and on the Riemannian gcomctry of M. Thus we have proved the
theorem in the case when 3 M = 4.

Now suppose that 3 M # @. First note that if we prove the
thcorem for one particular Riemannian metric on M, then the result
holds for any Riemannian metric on M.

Let jl M >y and j2 MM, be diffeomorphisms of M onto
disjoint copies My and M, of M. Let 2M be the smooth manifold
obtained from the disjoint union of My and M, by identifying jl(m) € My
and with

(m) e M, for all m € 3 M. Let p : M, v M, —>2M be the

Jo 1

identification map, and let i; : M —> 2M and i2 : M —> 2M be the

maps il = p°,jl and i, = pe j2' Then 2M is a compact smooth manifold



without boundary, i, : M —2M and 1, : M — 2M are embeddings of M in 2M,
AL

<

UM = i](M)lJ iQ(M) and il(M)lﬁ iZ(M)?? d M. We have a smhoth involution

T : 2M —=> 2M defined by the property that T:oil = 1, and T °i2 = il'
Given a smooth Riemannian metric g, on 2M, we obtain a smooth

T -invariant Riemannian metric g on 2M by defining

o= Algg v TE o)

Then there exists a unique smooth Riemannian metric on M such that
il and i2 are isometric embeddings.

We have a piecewise smooth map p : 2M — M sending il(m) and i2(m)
to m, for all m € M. Then il )y : 2M — 2M is a piecewise smooth map
whose image is contained in il(M) and which preserves the lengths of

piecewise smooth curves. Let my, m, € il(M)' Suppose that y is a

length minimizing geodesic from my to m,. Then i1 o Pey is a path

from m, tom with the same length as y , and is thus also a length

2

minimizing geodesic from m; to m,, - Thus i] °eyey = Y , unless both

my € il(BhU and m,, & i, (2aM), in which casc eithcriH'uv ey =Y

1
or i, eV ey =T ey . Thus any two points in il(M) may bc joined
by a length minimizing geodesic lying wholly within il(M)' If

f : M—>R is continuocus, then fsyp ¢ 2M~> R 1s continuous, and we

have already shown that

P {.v(ml’ m,) & Kp (d (m, s m2)> (J‘ \few] P d (vol))
2M

for somc constant Kp depending only on the Riemannian geometry of 2M.
Thus :

/
. P
P oplm, my) s 2" Kp(d(ml, mg))d [ |£] P 4 (vol))

J M »

Hence the theorem is true when 3dM # @ also.
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One may easily deduce part of the Sobolev embedding theorems
from this theorem. For let M be a compact n-dimensional manifold,

let p € (n,ee), and let f be a ¢l function on M. If we define

!

y /T o\

it = i’ d(vol)/
I p (J . |

then therc exists a point m € M such that
If(m)l S vol( P 1§ “

Let g = \df \. Then g is continuous, and if my, m, €M, then

\f(ml) = (m,) \ S }Jg (m; ,m,)

K, (d (mymy) | e ,

for some constant Kp depending only on p and on the Riemannian
geometry of M, where

dim M
p

o = 1 -

and where)ug : M x M-SR is the function defined in the previous

theorem. Applying this result with my = m, we obtain

S”P l £ ‘ $ vol(m)” n f” K (diam(M) )“ \‘df‘lp

e, Il £l

where Cp is a constant depending only on p and on the Riemannian

. P . .
geometry of M, and where || . ” p,1 is the L, -norm. Since cl(M) is

1

dense 1in Li(M), it follows that we have a continuous embedding

Lq([\*l) s (),
Also

sup lf‘(ml) - f(mz)
m1¢m2 (d _ ) =

[ar Il
el



and thus we have a continuous embedding

%

LlP(M)C-—) c® % ()
where c°’ ot(M) is the HBlder space with exponent o € (0,1) given
by
< = 1- dim M
p

There is an analogue of theorem 3.3 when M is not compact.

Corollary 3.4

Let M be a Riemannian manifold of»dimension n. For all
continuous functions f : M =» R, for all bounded domains D in M
and for all my ,m, € D, let /U f,D(ml’mz) denote the infimum, over

all piecewise smooth paths c¢ : Lg, 97——9 D from my to m, of the

integrals

|£ e () )| He(t)flat
a

of |f| , with respect to arclength, along c. Then, for all

p € (n,o2) and for all bounded domains D and Dy satisfying

D eint D,

there exists a constant Kp D.D depending only on p, on the Riemannian
’ s l

geometry of M and on the domains D and Dy such that if f : M= R

is a continuous function on M, then

ol
M og,p (mpamy) & Kp,D,D1 (d (m,my) ) || £ Dy +p

for all m; sm, € D, where o € (0, 1) is defined by

= 1 - -—
A b ,

where d(ml,mz) is the distance from my to m, with respect to the

2

Riemannian metric on M, and where

)
L

: ; P 1
Il £l b, I£] P d(vel)
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As in the proof of theorem 3.3 we may assume that @ M = @,
Then there exists a smooth function }, Tt M- 15, i? such that
?9 has compact support contained in Dy and $>El on a neighhourhoaod
of D. By Sard's theorem, there exists a regular value t of @ in
the open interval (0, 1). Then ?9-1( Z?, £7 } is a compact manifold

with boundary. The result then follows from theorem 3.3.

An alternative proof of corollary 3.4 not involving Sard's
theorem could be constructed as follows. If M is a smooth Riemannian
manifold (possibly noncompact) we could apply theorem 3.3 to compact
geodesically convex sets in M with smooth boundary. By a well-
known theorem of J.H.C. Whitehead, the interiors of such sets form
a base for the topology of M. The domain D in the statement of
corollary 3.4 may be covered by a finite number of compact geodesically
convex balls with smooth boundary which are contained in the interior
of the domain Dy. By the Lebesque covering theorem, there exists

S$ > 0 such that if m,,m, & D then either my and m, both belong to
one of these geodesically conhvex balls or else d(ml,m2 ) A S . 1If
d(ml,m2)<: S then the required inequality follows from theorcm 3.3 applied
to the geodesically convex ball containing my and m, . If d(ml,mz)z ®

then we can find a finite sequence of points of D whose first member

is my and whose last member is m, with the property that any pair of

2
successive members of the sequence is contained in one of the geo-

desically convex balls. One can then bound /h’f D(ml’mZ) in terms
b

of ”<f” Dysp as required.
An examination of the proof of theorem 6.3 shows that if M is
a sufficiently well-behaved Riemannian manifold, such as a symmetric

space, then it is in principle possible to find an upper bound on the
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constant Kp by studying the properties of geodesic tubes about length

minimizing geodesics using Jacobi fields.
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Chapter V

PRINCIPAL BUNDLES AND CONNECTIONS

37, Introduction

In this chapter, we give an account of Ehresmann connections
on a principal bundle and of the action of principal bundle auto-
morphisms on such connections, in preparation for subsequent chapters.
This account 1is based to some extent on £Ztiyah, M.F., Hitchin, N.J.
and Singer, I.M., 197§7 and Lﬁourguignon, J.~-P. and Lawson, H.B.,
19817.

In 32 we review the construction of fibre bundles associated
to a given principal bundle =r: P —» M as described in, for example,
chapter 9 of Lzuslander, L. amd MacKenzie, R.E., 19697. Two such
associated bundles of particular importance are the adjoint bundles
P x ad G—>»Mand P x Ad g ~? M, where G is the structural group of
T : P— M and E] is the Lie algebra of G. We shall denote
P XadG by Gp and P x Adg by gp. It is easily seen that each
fibre of Gp-3M acts on the corresponding fibre of any fibre bundle
associated to qr: P ~» M. An important general principle is the
following: given some structure on the fibre F of some fibre bundle

T Fp—>M associated to qp: P —» M, where this structure is

invariant under the action of G on F, then we may define a correspond-
ing structure on every fibre of the map T, Fp—»M in a canonical
way, and moreover this structure is invariant under the action of
each fibre of Gp ~—» M on the corresponding fibre of e+ Fp -5 M.
For example, this structure on F may be a group structure on F, a
Riemannian metric on F, a vector space structure on F, a Lie algebra
structure on F or a vector space norm on F. Using this principle,

we shall show that if G and M are compact, then any biinvariant



Riemannian metric on M determine a canonical biinvariant distance
function on CO(Gp) and canonical norms on the Banach spaces ey g;ﬂ,
Lq(gp), Co(gp ® T+*M) and Lq(gp ® T*M), where q satisfies

1 £ g <o0. Moreover these canonical norms are invariant under the
action of CO(Gp) on these Banach spaces. We shall make use of this
property in chapter VI. There appears to be no obvious analogue

of this result which applies to the Sobolev spaces Ls(g p) and
Lg(gp ® T*M) when k # O.

In 83 we define Ehresmann connections and holonomy groups
and review their basic properties. This material is standard.

In 84 we define principal bundle automorphisms and study their
action on connections. We show that the stabilizer of a smooth
Ehresmann connection in the group of smooth principal bundle auto-
morphisms is naturally isomorphic to the centralizer of the holonomy
group of the connection (theorem 4.2). This result has been used
in studying the singularities in the moduli space of instantons
over a 4-manifold that play an important role in the proof of
Donaldson's theorem on the intersection form of a smooth 4-manifold
(see Zﬁonaldson, S.X., 19827).

In 85 we show that given two Ehvesmann connections a)l and w,

on the principal bundle =1 : P —>»M, then their difference w, - Ww

may be identified with a section of the vector bundle g P ® T*M — M.

We shall then show that if ~ : P =—» P is a principal bundle auto-
morphism and if ” ” is the canonical norm on Co(gp & T*M) or

L9 Qp ® T#M) then

""} fw - W, | - - w, ”

{(Lemma 5.1). We also prove a theorem (theorem 5.2) which relates
the distance between two principal bundle automorphisms RS and 'ifz

evaluated at the endpoints of a piecewise smooth curve in M to the

integral of [i?‘l*ou - ¥ _ *us| along the curve, for any Ehresmann

&
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connection ¢ on the principal bundle. We shall make use of this
result in chapter VI.

In 86 we review the well-known construction whereby, given an
Ehresmann connection ¢ on a principal bundle 1 : P — M we may
split the tangent bundle TE - E of an associated fibre bundle
E — M into the Whitney sum of the vertical bundle VE = E and a
hérizontal bundle HE —» E, where VE consists of all vectors tangent
to the fibres of E — M. This enables us to define the covariant
D®s : TM —> VE of a section s : M —>»E of E ~»M with respect to
the given connection in the obvious way. If E—»M is a vector
bundle then we may use this construction to define the covariant
differential d ®s : M—> E ® TN of a section s : M —>E of

E = M. Given a smooth connection > we shall define a first order

differential operator

X% c®(p) 2 c™(gp @ )

and a fibre bundle morphism

B: c™(gp) —>c™(End (§p ® THn)
with the properties that
XUA¥) = Frw -0
X exp ¥) =B (§) a*°F
for all principal bundle automorphisms =¥~ and for all § eC”(gp),
where
exp C“(gp) —> C”(Gp)
is the exponential map. The reason for introducing these operators is
that in chapter VI we shall express the equations governing the action
of principal bundle automorphisms on connections in terms of
and B and by examining the form of these operators we may use the
results of é?alais, R.S., 196§7, which we have summarized in

chapter II, in order to deduce smoothness results for the action of



Banach Lie groups of principal bundle automorphisms on the appropriate
Banach spaces of connections.

In section 87 we review the basic formalism of the covariant
exterior derivative, covariant codifferential and covariant Hodge-
de Rham Laplacian as developed in lgtiyah, M.F., Hitchin, N.J. and
Singer, I.M., 197§7 and in lﬁourguignon, J.-P. and Lawson, H.B.,

19817/.
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82. The Adjoint Bundles

In this section, we summarize first the construction of fibre
bundles associated to a given principal bundle. We apply this
construction to define the adjoint bundles IT_. : Gp = M and

TrAd : gp —3» M of a principal bundle TIT: P —M with structural
group G whose Lie algebra is 9 . It is shown that, given a
biinvariant metric on G, the biinvariant distance function on G
resulting from this Riemannian metric determines a distance function
on each fibre of TTad : Gp —>» M, and hence determines a biinvariant
distance function, the canonical distance function, on the group
CO(Gp) of continuous sections of T .q * CP ~—» M. Similarly, the
G-invariant norm on Ea resulting from the Riemannian metric on G
determines a norm on each fibre of TrAd : 9 P = M, and hence determines
norms, the canonical norms, on the vector spaces Co(gp) and Lq( g p)
of continuous sections and LY sections respectively of TrAd : g p—N
for all g € lf,co); also, given a Riemannian metric on M, the
invariant norm on g determines norms on each fibre of 9p ® T*M ~» M,
and hence determines norms, the canonical norms, on CO( 9P ® T*M) and
Lq( 9 P ® T*M). The norms on Co( g P, Lq(gp), CO( g p & T*M) and
Lq(gp ® T*M) are shown to be invariant under the adjoint action of
c®(Gp) -

Let 7 : P —> M be a smooth principal bundle with structural
group G, acting on P on the right. Let F be a smooth manifold on
which G acts smoothly, with action 8 : G~ Diff(¥). Then we can
construct a fibre bundle TTG : Px _F -»M with fibre F associated

%]

to the principal bundle T : P~ M. The total space P x 6 F of this

fibre bundle is defined to be the quotient space of P x F by the

equivalence relation ~ , where

.y L £) ~ (p, 8 (y) )
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for all pe P, yeG, f eF. Let [5, f7 € P x 0 F denote the

equivalence class of (p, f) € P x F. The projection TTG : P ox o F —M

is defined by

T /fp. £ ) = T (P)
o et
and each element p of P determines a diffeomorphism P N T -1 (m) — F,

where m =TT (p) and
v, ()= f
for all f € F. If y €& G then
- :Q. N
Y.y Vo

since
-1
v NV, TS VAP RS LI - PL I GO I VAD P
P-Y p-¥
The structural group G acts on P on the right and on F on the

left. Amap B : P~>T% is said to be G-equivariant if and only if

By h = e y)Bm

for all p € P and Y € G. There is a bijective correspondence between

sections of T)"g : P x o F —»M and G-equivariant maps ﬁ : P-—>F,
This correspondence sends a section s : M—> P x 6 F to the

G~equivariant map

p oV (s(T(p) ),

This correspondence sends c¥ sections of P X g F to G-equivariant Ck
maps from P to F.

Suppose that (F,)o) is a metric space with distance function
P FXF =R (we refer to such a function as a 'distance function'
rather than as a 'metric' in order to distinguish between 'distance
functions' and 'Riemannian metrics'; note however that a Riemannian
metric on F determines a distance function on F, the distance between
two points of F being the infimum of the lengths of all piecewise smooth

paths joining these points, assuming that F is connected). The distance

function‘/o : Fx F-)R is G-invariant if and only if
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Lo ly) i, 0 (y)f) = p (f,f)
for all f..f. e Fand yw € G, If p: F x F-9R is a G-invariant
1°72 6 L
distance function, then for all m € M there is a unique distance

function /o m on the fibre 'IT';1 (m) of TFG 1 P x o F—3M over m

with the property that

P m (el, 82) = ( vp (el), v (e2) )

P

for all e €, G‘Trgl(m) and for all p € T _l(m), where

x)p : T gl(m) ~—> F is the diffeomorphism determined by p.

If M is compact, then we obtain a distance function)g on

CO(P X o F), the space of continuous sections of Tre ¢ P x 0 F—~> M

by defining

~ sup
P spssy) = oy oy (sp(m)y s, (m) ).

If sl,SZGCO(PxeF) and if 6, :P—Fand &, : P—3F are the
corresponding G-equivariant maps, then
-~ © _ sup
P sy, s,) = peP (67, (P), G, (p) ).
A special case occurs when the fibre F of the fibre bundle is
a normed vector space on which G acts as a group of vector space
automorphisms preserving the norm l.‘ . Then there is a unique norm
|.) m on the fibre TT;l(m) of Myt Px o F -—»M over m € M such that
let, = 1», (]

for all e eTT;l(m) and p € TT—l (m), where l)p CIT ;%m)-—i F is the
isomorphism determined by p. If M is compact, then we have a norm
!f.,) on C°(P x o F) defined by

Usll =suwp [stm] _
meM *

If ¢ : P =»F is the G-equivariant map determined by the section

s : M—»P x o F, then

sl = s lem].
peP



If we are given a smooth measure A oOn M, then, for all o €& /T, oo )

L

we may define the norm “ n q on LY

sy = J ls m] d/’>/$
M °

Now consider the case when F1 and F2 are smooth manifolds with

(P x o F) by

smooth actions 8, : G = Diff (Fl) and 8, : G = Diff (F_.), and let

2

P F, —F, be a G-equivariant smooth map ( 2 is G-equivariant

if and only if 92(’( )°§o = 50091 (y ) for all Y € G). Then
(p induces a smooth fibre bundle morphism (PP : P x 91 F, = P x 0, Fy.
We apply these general results to the bundles P x ad G and

P x Ad g , where 9 is the Lie algebra of a compact Lie group G with
a biinvariant Riemannian metric, G being the structural group of a
smooth principal bundle “n'A: P —» M over a compact Riemannian manifold
M. The adjoint action

ad : G =>» Diff(G)
of G on G is the map sending Yy € G to the inner automorphism
/6 —> 2(/8 Y_l of G. We denote the manifold P x aq © by Gp.

Gp is the total space of a smooth fibre bundle Trad : Gp = M. The
adjoint representation

ad : G = Aut (Q)
of G on 9 is the map sending Y € G to the derivative Ad(y ) : 9—9 9
of ad(y) : G=—»G at the identity element of G. We denote the
manifold P x Ad g by 9 P- g p is the total space of a smooth
vector bundle TrAd : 9 p — M. We denote the fibre of T,y * CP -~ M
over m € M by Gp[m].

The biinvariant Riemannian metric on G determines a biinvariant
distance functionf : G x G—=>R. It also determines a norm [.} on
9 invariant under the adjoint representation of G. Also the
Riemannian metric on M determines a smooth measure)J on M, the

volume measure on M.
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Proposition 2.1

Let the principal bundle T : P — M, the structural group G,
the adjoint bundle TT_4 : GP — M, and the biinvariant distance function

P 1 GxG—=>R on G be as above.

-1 —
Then, for all m € M and for all p e 7T (m), Gp / m_/ is a
P ifm_7 to G determined by p is an

isomorphism of lLie groups. These group operations on each fibre of

Lie group and the diffeomorphism from G

T

o

ad GP-—9 M induce a corresponding group structure on the space

c G —™ M.

G,.. ) of continuous sections of T1 :
ad P

P
For all m € M, there is a unique distance function
Pt GP me;7 X Gp me_?-—e:m with the property that, for all
p € Gpl—m;7, the isomorphisms from Gpl—m_7 to G determined by p is an
isometry of metric spaces. £ is then a biinvariant distance function

on the Lie group GP /m/. The biinvariant metric on G thus determines a

distance function/2 on CO(GE,) defined by

A N sup
P lspsy) = BB o (s (m), sy(m) )
and if 6‘1 : P = G, 0'2 : P — G are the G-equivariant maps
corresponding to Sy ¢ M —> GP and S, ¢ M - GP’ then
-1 -1
6, p.y ) = Yo, Py

and similarly fOPCT'Z, and

sup

(Slysz) = pep

(6 ,(p), 52(p) ).
The distance function )3 on CO(GP) is biinvariant, and thus the group

. . A .
operations on the metric space (CO(GP),Jo ) are continuous.

Proof

Letm € M, letp € 17T -l(m) and let v b : Gplfm_7 — G be the
diffeomorphism determined by p. Then
% -+ = ad o V
p-y”™ (v ) P
for all y € G, hence V e V -1 : G—» 6 is an inner automorphism

p.y" p
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of G. Thus there is a unique group structure on ng—m;7 such that
Py Gp Z_m;7;=% G is an isomorphism of Lie groups for all
p € ﬂ'—l(m). We have already seen that there is a well-defined distance
function /Drn : Gp [m] x Gp [_m_]-—)]R such that vp : Gp [m]—-) G
is an isometry of metric spaces for all p e TT_l(m). Since
L G x G—=> R 1s biinvariant and since P P 1 Gp [mj—)G is a Lie
group isomorphism, it follows that/om : Gp [_m_] X GP [m]-—-)]R is
also biinvariant.

The map & : P —» G is G-equivariant with respect to the adjoint
action of G on G if and only if

se.¥ -y emEy

and we have already seen that

~ _ sup
P (51’52) = peP ( O’l(p), G“Z(p) )

where 6‘1 and 0"2 are the G-equivariant maps from P to G
corresponding to sy and Sye It remains to show thatﬁ is bi-
invariant and that the group operations on the metric space

(o} A . . . A
(C (Gp),/o ) are continuous. But the biinvariance of/o is an

immediate corollary of the biinvariance of P for all m € M. But

then

A
/0 (51)82) =

|
wn
[
n
[
n
no
-
n
—
n
[\
n
N
~

u

0
0o
-

n
s

Tor all sections S158, € CO(Gp), hence the map sending s to s.-1 is an

isometry of (Co(Gp),; ). Also if Sl,Sz,S’ s’ € c (Gp), then

1,72
A y ’ A 7 / A ’
\< Id
P (sls1 » 8,8, ) p(sls1 s $,8) ) + P (5251, S,8, )
< A A / /’
£ (sl,sz) + P (s1 ,52 )

hence the map (s,s”) +» ss” is a continuous map from CO(Gp) X CO(GP)

to c° (Gp). Hence the group operations on (CO(GP),JS ) are continuous.




We refer to the distance function )3 : CO(Gp) X Co(Gp) - R,

defined in the above proposition, as the canonical distance function

(or canonical metric) on CO(Gp) determined by the biinvariant Riemannian

metric on G.

Proposition 2.2

Let the principal bundle Jr: P —» M, the Lie algebra g of

the structural group, the adjoint bundle T gp —> M, the

Ad
invariant norm | .| on 9 » and the Riemannian volume measure M on
M be as above.

Then, for all m € M and for all p € TT-l(m), gp[mj is a Lie
algebra and the vector space isomorphism from gp[mj to g defined
by the element p of P is an isomorphism of Lie algebras. The Lie
bracket on each fibre of TrAd : 9 P — M induces a corresponding
Lie bracket on the space c® [gpj of continuous sections of

T, : p—mn

For all m M there is a unique norm |.[ on gp L[] with
the property that, for all p € Qp [m], the isomorphism from
gp [m_] to 9 is an isometry of normed vector spaces. ] .} -

determines a norm ). ] on c® ¢ gp) defined by

lall = sup ]a(m)lm

me M
and if &« : P~ 9 is the G-equivariant map corresponding to
a : M"‘)Qp , then
=< (p.-¥1) = Ad (y)X (p)
and

Il all = sw | x(p)] .
peP

The Lie bracket is a continuous map Co(gp) X Co(gp) - Co(gp).

For all q Eﬁ,w) we have a norm [|. || q on L4 (gp) defined by

Nally - (fM la(m)lﬁidf)k”
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and if q,r,s € iT, oo ) and
1 1 1
Z 4 = - =
q r s

then the Lie bracket on each fibre of 71T,  : C]P —» M induces 1

N

continuous bilinear map L9 ( ng x L' ( gp) — 1® (gp).

Proof

The proof is analogous tc¢ that of the previous proposition, with

the exception of the last part, which follows from HBlder's inequality.

We refer to the norm ll.ll on C0 (E}p), defined in the above

proposition, as the canonical norm on c® ( E}p) determined by the
biinvariant Riemannian metric on G. We refer to the norms ). |\

on Lq( 99 ), for any g € 1—1_, oo )}, as the canonical norms on = ( gp )

determined Yy the biinvariant Ri@mannian m2tric oa G and the smooth
measure on M. If this measure is the volume measure of a given
Riemannian metric on M, we refer to l\.ll 4 as the canonical norm on
Lq { E]p ) determined by the biinvariant Riemannian meiric on G and
the Riemannian metric on M.

For all ¥ 10 Y , € G, the exponential map exp :g—b (> satisfies

Ad( o 1) (exp ¥ ,) = explad( Yy ;) ¥ ,)

and is thus G-equivariant and so induces a smooth fibre bundle morphism
expy, : EBF, —» G,. Also we have a smooth fibre bundle morphism
Ad, @ G, —> End (QP ), induced by Ad : G — End (g ).

Proposition 2.3

Let the principal bundle -1 : P — M, the structural group G

with Lie algebra E} , the adjoint bundles TT G, > M and

ad *
a1 Ad :E}p ~> M, the biinvariant distance function
P CO(GP) X CO(GP)-—9 R on CO(GP), and the canonical norms

2

It. 1] and ‘l"‘o on CO(E}P ) and Lq(53F>) respectively be as above.
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Then the map exp : E} — G induces a smooth fibre bundle
morphism exp, Ea p — GP' This in turn induces a continuous map

© (E}P ) = CO (GP) between metric spaces, and if a € c® (E}P)
and if e is the identity section of c° (GP)’ then

~

p lexp a, ¢) =llall

The adjoint representation Ad : G —> End (Ea ) induces a smooth
fibre bundle morphism Ad, : G - End (E3F>). This in turn induces

adjoint representations

CO(GP) c Co(gp ) = CO( 9p ) @ {s,a)r>» Ad(s)a,

G)xL gp)-a Lq QP : (s,a)—> Ad(s)a
If s : M- GP is a section of GP-—a M and if a : M —>Eap is a section

of gp-) M, then

Il ad (s) a|) Il all

Il allg

I Ad (s) allq

for all q G.ZT’°° ). Thus the canonical norms of CO( E}P ) and
q . . . o
( E}F>) are invariant under the action of the group C (GP).

Proof

The continuity of exp : CO(E?F’ ) = CO(GP) and
Ad CO(GP)—) End (c° (gp ) ) follow by elementary compactness
arguments. If |[.]| m is the canonical norm on the fibre
E}P "m_/ of EHF’—Q M over m € M and if p  is the canonical distance
. . o)
funiction on the fibre GP-L m_/ of GF,—a M over m, and if a € C (E}p), then

P m (expP (a (m) ), e (m) ) = l a(m)\ o’

hence
A
P (expa, e) = | all
Also if s € ¢° (GP), then
| ad, (s (m) ) a (m)] o= bam]

hence

lad (s) a|| = I al



for all g 6[.1-,00),

Finally we consider the bundle 9? ® THM —> M.

Proposition 2.4

Let the principal bundle 47 : P —» M over the Riemannian
amnifold M, the structural group G with Lie algebra 9 , the adjoint
bundles ‘)Tad 1 Gp —> M and T['Ad : gp ~> M, the invariant norm |. |
on 9 , and the norms |.|] o On the fibres gp [ m_] of gp e
be as above.

Consider the vector bundle gp ® T*M — M. The fibre of this
bundle over m € M is isomorphic to the vector space L(TmM, gp [mj)
of linear transformations from the tangent space T M of M at m to the
fibre gp [m_] of Bp —>» M over m. This vector space has a norm

|- " defined by

lSIm = sup{‘SX’m:XETmM, I xi=1}

for any S € L(TmM, gp [m] ). If/} is the volume measure of the

Riemannian manifold M, we may define norms | . || and |. “q on

Co(gp® T*M) and Lq( 9 p ® T*M) respectively, for all g € [1_, oo }, by

R L

(J' |z m] ¢ dj,)‘/q“

The smooth bundle morphism Adp : Gp —> End ( 9 p) induces a smooth

el

bundle morphism Adp : Gp - End ( g p ® T*M), and hence induces
continuous adjoint representations
c(ep) x co(gp ® 1) —» C°( 9 p®THM) & (s,T)d Ad(s)T,

c®(op) x LI G p®TH) —> LUGp @ THM) : (5,T)¥P Ad(s) T .
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Then
s Tl = el

Iadts) Til,= 11wl

for all g € /T, 0@ ). Thus the cancnical norms of CO( gpﬁ T*M) and
. . s o
Lq'( gp ® T#M) are invariant under the action of the group C (Gp).
Proof
The proof is exactly analogous to that of the previous

proposition.

We refer to the norms " N ana |}. ﬂ g on ¢ 9 p® T*M)

and LY( gp ® T*M) as the canonical norms determined by the biinvariant

Riemannian metric on G and the Riemannian metric on M.
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§s. Connections and Holonomy

This section is a review of basic facts about Ehresmann
connections on principal bundles and their holonomy groups. See
L;mbrose, W. and Singer, I.M., 195;7 or iiobayashi, S. and Nomizu, K.,
1963/ for more details.

Let Tr: P — M be a smooth principal bundle with structural
group G whose Lie algebra is Ea . A tangent vector to P is vertical
if and only if it is annihilated by the derivative T, : TP — TM of
T . There is a canonical mapping

éa —» vertical vector fields on P
sending a & g to the vector field & {(a) on P whose value G‘F(a)
at p € P is tangent to the curve t v+ p.exp ta at t = 0. The map
ar®» G (a) is a Lie algebra homomorphism. & (a) is referred to as

the fundamental vector field on P determined by a.

An Ehresmann connection &b : TP —9}3 on qr: P—>Mis a
1-form on P with the following two properties:

(i) WwW(6e _ (a) ) =a for all p € P and a e-ga ,

1o

ot
ve

(i1) Ryew=Ad (y Dews for all yeG,

where Ri,UJ is the pullback of ¢ under the map R : PP

Y
mapping p to p.y .

A tangent vector to P is horizontal if and only if it is
annihilated by o : TP — 9 . If VP and HP are the subbundles of TP
consisting of all vertical and all horizontal vectors respectively,
then TP decomposes as a Whitney sum

TP = VP @ HP.

A piecewise differentiable curve in P is horizontal if and only if all
tangent vectors to the curve are horizontal. If ¢ : Zfo,t1_7-—§ M is
a piecewise smooth curve, and if p € P satisfies 1r (p) = c(t_ ), then

@]

there is a unique piecewise smooth horizontal curve 3; = _Eo,t ;7-—9 P
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such that Cp (to) =p. If y € G, then

Gy (B = (5, 1))y

Let h : TP — HP be the projection onto the horizontal bundle
HP over P whose kernel is the vertical bundle VP. The curvature
F . /\2TP - 9 of wo 1is the g—valued 2-form on P defined by

F™ (X,Y) = dw (hX, hY)

for all vector fields X and Y on P. F“ has the following two
properties:

(1) FUJ(X, Y) = 0 if either X or Y is vertical,

(ii) R* F = Ad( X-1)° F for all y € G.

Y
Given a point p € P, the holonomy bundle attached to p, B(p),

is the set of all points of P which may be joined to p by a piecewise

smooth horizontal curve in P. The holonomy group attached to p, H(p),

is a group of all y €G such that p.y € B(p). The null holonomy

group attached to p, Ho(p), is the subgroup of H(p) consisting of

all y € H(p) with the property that p may be joined to p.y by a

piecewise smooth horizontal curve in P whose image under TI is a

null-homotopic loop in M. 1If ¢ : lfo,t1_7-—9 M is a loop in M

beginning and ending at 7T (p), then ye€H(p) is said to be generated

by ¢ if and only if the horizontal lift E; : Zfb,tl_7-—7 P of ¢ beginning

at p ends at p.y . If cq and ¢, are loops in M beginning and ending at
T (p) and generating the elements Y1 and ‘{2 respectively of the

holonomy group H(p) attached to p, then the product loop ¢y *c, (c1

followed by c2) generates Yy 5 Y1 € H(p). 1If ¢ is a loop based

at IT (p) generating y € H(p) and if 7 € G, then ¢ generates

i -IY'q € H(p.7 ). If o 1¥0’t1;7'—9 M is a piecewise smooth

curve which lifts to a horizontal curve in P from q to p for some

p,q €P and if c is a loop in M based at TT(p) generating y €H(p),

then the loop Cy ¥ o ¥ 061 (cO followed by ¢ followed by y reversed)

generates the same element Y € H(qg).




Theorem 3.1

Given a smooth principal bundle —r : P — M with structural
group G and given a smooth Ehresmann connection on -+r: P - M, the
holonomy bundle B(p) is a smooth immersed submanifold of P, the
holonomy group H(p) is an immersed Lie subgroup of G with identity
component H (p), and TTIB(p) : B(p) = M is a smooth principal

bundle with structure group H(p) (Ho(p) is the null holonomy group).

Theorem 3.2 (Ambrose-Singer holonomy theorem)

Let 1T: P — M be a smooth principal bundle with structural
group G, and let 9 be the Lie algebra of G. Let w : TP 9 be a
smooth Ehresmann connection on -f : P — M. For all p € P, let
F)(p) be the subalgebra of Ea generated by all F® (X, Y), where

Fw

is the curvature of <& and where X and Y run through all pairs of
tangent vectors to P at ail points of B(p), the holonomy bundle
attached to p. Then the subgroup of G generated by F,(p) is the

null holenomy group Ho(p) of ¢ attached to p.

An Ehresmann connection on a principal bundle is said to be

irreducible if and only if the holonomy group attached to any point

of P is the whole structural group of the principal bundle =y : P = M.

las
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84, Principal Bundle Automorphisms

In this section, we define principal bundle automorphisms and
present some of their properties. In particular, we examine the
action of Fv-inr-ipo'l bundle

Let -1 : P — M be a smooth principal bundle with structure

group G whose Lie algebra is E; . A principal bundle automorphism

~3 : P =P is a fibre-preserving G-equivariant diffeomorphism of

P (i.e.

T (F(p) ) = T(p)
and
\P'(F.x') = ¥ (p).Y

for all p € P and y €G). The set of all principal bundle auto-
morphisms of T : P —3 M is in bijective correspondence with the
set of all G-equivariant maps from P to G, where the group G acts
on G by the adjoint action (recall that~: P — G is G-equivariant

if and only if

vy = ¥yl vey

for all p € P and Y €G). This correspondence maps the principal
bundle automorphism ﬂE’: P — P to the map ”#’: PG with the property
that

’Y(p) =p. Yip)
for all p € P. If Y: P = P is Ck for some non-negative integer k,
then so is "} : P — G.

Let ‘V{: P — G and ’Y;: P - G be G-equivariant maps
corresponding to principal bundle automorphisms fP]: P — P and

in: P — P, Then

YooYW, @ = Xy Y, ()
N, ) Y, ()
p .YV, )Y, ().

fl

I



Thus if the space of G-equivariant maps from P to G is considered as
a group under the operations of pointwise multiplication and
inversion of maps, then the above correspondence is a group 1so-
morphism from the group of Ck principal bundle automorphisms on

T : P ~> M to the group of Ck G-equivariant maps from P to G. But
this latter group is isomorphic to the group of Ck sections of the
adjoint bundle TTad : Gp — M whose total space Gp is P x ad H.
Thus the group of Ck principal bundle automorphisms of Tr: P— M
is isomorphic to the group Ck(Gp).

Given y € G, let R P = P denote the map sending p € P to

¥
p.Y - Given a € 9 , let 6 (a) be the fundamental vector field on P
determined by a, and let 6}3“” denote the value of & (a) at p€ P.
If ﬂ?: P — P is a principal bundle automorphism, then
?’ RY = RY‘Y

Also the flow of & ({a) is given by

(p, t) P p. exp ta.
It follows that the flow of & (a) commutes with W¥: P — P, and
hence

Y. o (a) = 6 (a).
Thus 1f w : TP —2 g is an Ehresmann connection on =1t : P — M,
then so is 'y““w :if a€9 , then

(¥rw) (6(a) ) = cw (¥, 6 (a))

€

( 67 (a) )

and if Y €G then
RY‘,.‘ Y 7€w _ ?7\‘ R ; w

- oad (y HeViw .

Given YE€G, let L -1, : TYG —59 be the derivative at y of

Y
. . -1
the map L - : G > G multiplying elements of G on the left by ¥

14



148

and define

§ (X) = 1 Y-1 « X

for all X € T ¥ G. The map § TG —» 9 is aa-valued l-form on G,

the Maurer-Cartan form on G.

Lemma 4.1

Let 97 : P — M be a smooth principal bundle with structure
group G whose Lie algebra is 9 . Let § : TG - 9 denote the
Maurer-Cartan form on G. Let ‘I?: P — P be a differentiable
principal bundle automorphism and let °J: P — G be the corresponding
G-equivariant map with the property that fI’(p) = p. Yi(p) for all

p € P. Let Y, : TP ~> TG be the derivative of Y} . Then, for all

X € TpP,
Froo (X) = ad (Vip) D) + & (Y, X)).
Proof
Let ¢ : (-&, €) —> P be a short curve with tangent vector

X € TpP at t = 0, where p = ¢c(0}). Let g :'j?(p). Then, by Leibnitz!'

rule,

\_'E*x:;—t C(t) .V (e (t) ))

t=0

SRy X m (P Y (Ve T e o) )))

hence

We now describe the stabilizer of a smooth Ehresmann connection

under the action of the group of smooth principal bundle automorphisms.



Theorem 4.2

Let T : P — M be a smooth principal bundle, with structural
group G whose Lie algebra is g . Let w: TP—59 be a smooth Ehresmann
connection on qr : P —» M and let Stab{w) be the stabilizer of o 1in
the group of smooth principal bundle automorphisms. Then Stab(ws) is
isomorphic to the centralizer in G of the holonomy group of w attached
to any point of P.

Proof

Let Y : P — P be a smooth principal bundle automorphism
and let "¥: P = G be the G-equivariant map corresponding to ﬁI?,

where iE?(p) = p. ¥ (p) for all p € P. Now if X € TP is vertical, then

YTrow (X) = w(X),
Since TP decomposes as the Whitney sum of its vertical and horizontal
subbundles with respect to ¢ , a necessary and sufficient condition
for'SP'to belong to Stab(w) is that jP’*C*)(X) = 0 for all X € TP
satisfying c0(X) = 0. But if w(X) = 0 then

Ve lx) = ¢ (Y, 0
by lemma 41 . Thus ¥ € Stab(w) iff

Y. (X) = 0

for all X € TP satisfying w (X) = 0. This condition is satisfied if
and only if W : P — G is constant along all piecewise smooth curves
in P which are horizontal with respect to the connection < . Thus
" belongs to Stab(w) if and only if Y : P G is constant along
all the holonomy bundles attached to points of P.

But if y €G and if R P — P is the map sending p to p.y ,

Y

then the smooth maps R P = P for all y € G permute the holonomy

Y
bundles of the connection w, this action of G on the set of holonomy

bundles of the connection «w is transitive, and

Ry = ad (y )Y



Hence if \+’ is constant on one of the holonomy bundles in P of the
connection w , then “%’ is constant on all of these holonomy bundles.
Let pe€ P. Then f§’e Stab(ew) 1if and only if ’Y/ is constant on the
holonomy bundle attached to p. It follows that Y is determined uniguely
by its value " (p) at p. Thus we have a monomorphism from Stab(w)
to the structural group G mapping ¥ : P = P to N (p), where

Y : P — G is the G-equivariant map corresponding to f%?.

We recall that if y € G then y Dbelongs to H(p), the holonomy
group of <« attached to p, if and only if p.¥y belongs to the holonomy
bundle of w attached to p. Thus if W e Stab(w) and if Y € H{p),
then

VYip.Yy) = Wip)
and thus

y Twmy = V).
Hence ~W(p) belongs to the centralizer of the holonomy group of O
attached to p. Thus the image of the monomorphism from Stab(cw ) to G
mapping "F: P — P to W(p) is contained in H(p). It remains to
show that if y belongs to the centralizer of H(p) in G, then
there exists W € Stab(co ) such that Wip) =y where WY : P G
is the G-equivariant map corresponding to .

Let y belong to the centralizer of H(p) in G. For all
p, € P, there exists Y, €6 such that p. Y]Vbelongs to the holonomy

bundle of w» attached to py- Define
i) s ¥ T YY)
Y : P 9 G is well-defined since y centralizes H(p): if p-Y 4 and
P-Y 5 belong to the same holonomy bundle of <« then so do p and
p. xle_l’ hence )’2)’1—1 € H(p), and hence

Yoy, = ¥ (YL Y Y2 Y, )Y

=K;]YY1.



Using the fact that we have a smooth fcliation of P by the holonomy
bundles of the connection w , we may easily show that Y : P—> G
is smooth. Thus we have an isomorphism from Stab(<¢r ) onto the

centralizer of the holonomy group of the connection < attached to p.




85. Connections and Canonical Norms

In this section, we review facts about the adjoint bundles
Gp —¥ M and gF)——)DIassociated to a smooth principal bundle
T : P—M cover a compact manifold i with compact s
G whose Lie algebra is E; . We then show that the difference of
two Ehresmann connections determines a section of gp ® T*M — M, where
gp —>» M is the adjoint bundle with total space P x Adg , where

Ad : G —$'Aut(£3) is the adjoint representation of G. Denote by

.1} and . Il q the canonical norms on C°( 9 p® T*M) and 1.9¢ gp ® T+M),

for q € /1,00 ), determined by a given biinvariant metric on G and

a given Riemannian metric on M. We shall show that if’oo:l and(’J.)2
. . . . 1 L

are continuous connections and if ‘g?: P — P 1s a C principal

bundle automorphism, then

—

W, -, = “Y*wl' “2002”
Similarly,
“wl"wznq: H“.‘I’wl“\lfwg

if Wy - w , € L9 9 p & T#il). We shall then obtain results

q

comparing principal bundle automorphisms along curves in the total
space P of the principal bundle P which are horizontal with respect
to some Ehresmann connection on P .

We recall that the group of Ck principal bundle automorphisms
is isomorphic to the group of Ck sections of the bundle Taq ° Gp = M
whose total space Gp is P X,q C- Also, given a biinvariant Riemannian
metric on the structural group G, determining a distance function
P 1 6xG6G—>R on G and a G-invariant norm [.] on 9 , there is
for all m € M, a unique distance function Pt G x G =R on the
fibre Gp[fh_? of Gp over m, and a unique norm }.1mon the fibre
9? ,fm]@ T;;I\I of gp ® T*M— M over m, with the property that

-1 . .
every p € T "{m) determines an isometry from Gp[vm_7 to G, and from



T*M to q @ T¥M (where the norm on ® T+M is the usual
9 P[m-] @ m .- m ( v g i
norm
s = sup { IsX) : X eTMand|X| =17}
obtained when we regard 93 TI’-T'*II\I as the space of linear transformations

from T, M to 9 ). We recall that the canonical norms “ .l and

.1 g " e 9 p @ T*M) and L% 9p ® T*M) are then defined by

Tl = sw [T
me M
l/‘lz
g
“"C H1 = J l T (m) Im d(volume)
M

The adjoint representation Ad : Gp [m__?-—) Aut gp [m_J7 induces

continuous maps

c® (ep) x ¢ (Gp@® 1) > (Jpe@ ),

o}

¢® (gp) x L (QPQT*M)—%Lq (gp® 1),

for g € 1_1-, oo ), which are linear over sections of g p ® T —2 M.
The norms }}. )| and |f. “q on ¢° (g p ® T} and 19 ¢ 9 p® T
are invariant under this adjoint action (see proposition 2.4).

Let T : TP~ 9 be a g—valued I-form on P. -~z 1is said to be
horizontal if and only if ~£ (X) = 0 for all vertical tangent vectors
X € TP (a tangent vector to P is said to be vertical if and only if

it is tangent to the fibres of T : P —= M and is thus mapped to zero

under the derivative of TT: P = M). “© is said to be G-equivariant

if and only if
% —1‘

where R * = is the pullback of = under the map R

¥ P — P sending

y '
p to p.y for all p€ P and y € G.
let T : TP 9 be a horizontal G-equivariant g—valued 1-form

on P. Then, for all p € P, there is a unique well-defined linear
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map T p : TmM - g , where m = T (p), such that

for all X € T P, where v : TP — TN is the derivative of T : P — M.
If R y + TP ~ TP 1s the derivative of R Y P = P, then
< (T, X)) = =% (T, R, X
Thpy T To.y w0y
= T (RX . X)
= Ry ©(X)
-1 '
= Ad (y ") ©(X)
~1.~ i
= Ad(y )T p (T, X).

Thus, for all vector fields Y on M, the map sending p € P to

A

Tp (Y )) is a G-eguivariant map from P to g and thus determines

T (p

a unique section of T, gp —> M. Thus every horizontal,

d
G-equivariant 9 -valued l1-form T : TP — 9 determines a unique
section of 9p ® T*M —H M, which we also denote by ~ on identifying
sections of this bundle with the corresponding 1-forms on P.

if ). q 1S the norm on the fibre of gp ® ¥ —» M over

m € M, then, for all p € TT_l(m) and for all X e TpP,

e ] £ |J~m| [T, x]

for all horizontal G-equivariant 9-—va1ued l1-forms on P.

Lemma 5.1

Let T : P —3 M be a smooth principal bundle over a compact
manifold M with compact structural group G whose Lie algebra is 9
let Gp = P x 4G and gp = P x Adg be the total spaces of the

adjoint bundles T ad P Gp = Moand T 99 - M. For all m € I,

Ad
let |.] m be the norm on the fibre of 9p® T#M — M over m € M

determined by some biinvariant Riemannian metric on G and some

Riemannian metric on M, and let |} . | and | . ”q be the corresponding
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canonical norms on C° ( 9p® T*M) and 14 ( 9p® T*M) for g € _/_T, oo ).
Let ool : TP = g and (AJ2 : TP = 9 be continuous Ehresmann
connections on T : P — M and let fi?: PP be a C1 principal bundle
automorphism of 7 : P —> I,
Then CL)l - CL)2 : TP = E; is a continuous horizontal G-equi-
variant E}—valued 1-form on P, and thus determines a uniqgue continuous

section of the vector bundle 99® T*)N ~» M, which we also denote

by w; - (,02. ? determines a C1 section of Gp —> M. Then

| e, - Trw, || = e, - w, |

and

| %=, - Y*wzuq Nl - wznq.

Proof

The fact that w, -, is horizontal and G-equivariant follows
from the definition of an Ehresmann connection. The final statement
of the lemma follows from the invariance of Il . || and || .}l g under

the adjoint action of CO(Gp), provided that we can show that

Yrw, - ¥rw, = ad (¥ e, -y

where the right hand side of this identity should be interpreted as

the image of the section Y—l of Gp => M and the section UJl - o 5

of Qp ® T*M —> M under the adjoint action. But if

¥ ) = p. YV ()

for some G-equivariant map ’\{f : P—>G, then

~F oy (p) = Ad (V(p)7H) oo , )+ L V. (p)

v (p)lx

TG —> TG is the derivative of L : G — G sending

where LX"" : ¥

2€Gto yB , by Lemma 4.1. Thus

A (WP (o] - o).

Vo, - Tro,

2

The result follows using the correspondences between G-equivariant



maps Y : P = G and sections T;’ of G, and between horizontal

G-equivariant E} ~valued 1-forms on P and sections of 23‘369 T*M.

Let p€ P and let ¢ : 1;, g7-—a M be a loop beginning and
ending at m, where m = T (p). Let T : 1;, 973—9 P be a 1lift of ¢
beginning at p which is horizontal with respect to a C1 Ehresmann
connection < . Then

T (b) = p- Y
for some Y & G. The image of (p, w ) under the natural projection

PxG-—-Px G is an element hol(c) of Gp 1fm_7. hol(ec) 1is

ad
independent of the choice of p € Tr_l(m), The elements of G_ / m /

p L T
of the fcrm hol(c) form a subgroup Holm(c~>) of Gp L_m_7 identitied
with the holonomy group of the connection W .

Theorem 5.2

Let T : P—3> M be a smooth principal bundle over a compact
Riemannian manifold M with compact structural group G whose Lie
algebra is E} . lLet o : G x G—> R be the distance function of
a given biinvariart Riemannian metric on G, and let

: — / - - . « - .
P Gp / m_/ x Gp / m_/ —> R be the corresponding distance function

on the fibre Gp lsm_/ over m & M of the adjoint bundle Cp = M, where
G, = P x G. Let |.]| be the norm on the fibre
P ad m

QP /m/ ® T;M over m ¢ M of the bundle 99®T*M—9 M where
EaFF P X 44 EB .

Let ov : TP-?EH be a C1 Ehresmann connection on T: PN,
and let Holm(cu ) denote the holonomy group of ¢ generated by loops
based at m € M. Let jpi : P—P and TEE : P— Pbt:C2 principal
bundle automorphisms. Let ¢ : 1;, §7-—9 M be & piecewise smooth curve

in M parameterized by arclength s, and define A : M— R by

Am o= p (¥ @Y, ()
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Then
rb
]A(C(b)) _A(c(a))ls J ) Iifloo —'I/ZLW | o(s) ds.

Further, if c : Lg, E?-—é M 1s a piecewise smooth loop beginning
and ending at m and generating the element h of the holonomy group

Holm(CAD) of c© , then

— - b :
P 0T mF,m Y mE m ) 4J VAP ds,
a

c(s)

Proof

Since/on]is biinvariant and | .| o is G-invariant
-1
Am) =p (¥ () F m), em )

where e is the identity section of Gp — M, and

% * -1 #
H’i w - s "wlc(s) :Iﬂf , ¥, v -wlc(s)

il

‘(i/lg_/g—l)*w - wlc(s)

it suffices to prove the theorem when 7;%1 =\ and Ai?g = e.
Let © : 15, 97 — P be a 1ift of ¢ : éf, 973—6 M which is

horizontal with respect to ws . Let ”+’: P — G be the G-equivariant

function defined by

Y = b Vi)

for all p € P. Llet 7 : /a, b/ —> G be defined by
M (s) = V(T (s))

and let C : /a, b/ = P be defined by
~ -~

c (s) = ¢ (s)-"‘) (s).

Then
Ts) - Yo T s).

—~ A
Thus the tangent vectors ¢' and ' to ¢ and ¢ are related by

o (s) = “ﬂ?*’Z' (s)



where ‘ﬂ?* : TP = TP is the derivative of ¥ . Thus

A

w (c'(s) ) = (Frw) (¢ (s) )

el e o

WwWiicr'c

T o e -
since

wo(e'(s) ) = 0.

But by Leibnitz' rule

A

c' (s) = Ry (g)s © (s) + &gy (@ (M (s)))

where Q : TG —59 is the Maurer-Cartan form on G and where 0—8

is the map sending an element of E} to the value at C(s) of the
corresponding fundamental vertical vector field. Hence
A
wic (s)) = & (M(s) ).
Thus

$(Mis)) = T (e ().

But
e CRNCORDTS BRSSO B o -
hence
e |
(M (b, <a))$J (M (s) )| ds
P, T . "
b
e | e e
a
But
P MB), M ta)) = p (W) ), ¥ (€ (a) )
hence

l A (cb) -Alcta)) | = ’/0 (Y(c(b)),e) - p (y(cla)), e)l
< p iy le (b)), ¥Yicla) ) )

b
< J l Y e T l o(s) 95
a
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If in addition ¢ : /a, b/ -— M is a loop generating h € Holm( w )
where h = hel(ce) {c {a)j,¥ )€ P x G under
the natural projection P x G — Gp, then

M) = Y (c (b))

= WY (a). Y )

y @y

and

3
o
1l
o
o

1]
d
[
.
©

as reguired.
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S6. Covariant Derivatives of Sections of Fibre Bundles

In this section, we show that, given a smooth fibre bundle

Fp — M associated to a smooth principal bundle T: P — M, and

given a smooth connection w on T : P -— M, we may define, for any
C" section s : M - Fp of Fp —> M, the covariant derivative
D®s ¢ T —>TFp of the section s. The image of D @s is contained in the

vector bundle VFp over Fp consisting of all vectors in TFp which

are tangent to the fibres of Fp — M. We first consider the covariant
derivative of sections of the adjoint bundle Taq @ 6P M, where G
is the structural group of ~ar : P—> M and Gp = P X4 G. Let 9 be
the Lie algebra of G and let 9p =P x Adg . The Maurer-Cartan form
¢ : TG —9g induces a fibre bundle morphism Q P : VGp ’*gp, and the
composition @ P° DY of the covariant derivative D“’}T{ 1 TN — VGp
of some C1 section i/of Gp — M with Q- P defines a gp—valued 1-form

xw( \I/) on M. We show that if ‘Qe Cl(Gp) corresponds to a
principal bundle automorphism ’\1/: P — P, then '.)Cw(?) corresponds
to the horizontal G-equivariant g—valued I-form r#w - w . We define
the covariant differential d“’s of a section s of a vector bundle
associated to - : P -—» M. We then show the existence of a fibre
bundle morphism B : 9 P =3 End (9 P = T*M) such that, for all

}6 cl( gp),

X%exp ) = B (F)a”§

where exp : Cl( 9p)-—) Cl(Gp) is induced by the exponential map
exp g - G, and where d°F is the covariant differential of
Also we show that there exists a neighbourhood of the zero section
of 99 such that if ¥ belongs to this neighbourhood, then B( ¥ ) is a
section of Aut (9 p ® T#1). Then we compare the covariant derivative
operators with respect to different connections on the principal

bundle 7 : P — M.



Definition
Let p : E —M be a smooth fibre bundle and let p, : TE — Tl

be the derivative of p. The vertical bundle VE —3 1 of E — M is

Lthe fibre bundle over M defined by

VE={ X e7TE: p, (X) =0 }
(we shall also regard VE as the total space of a vector bundle over E
whenever appropriate).

1f : E. —> M and : E, — M are smooth fibre bundles over
P 1 Po 2

M, and if ;9: E; = E is a smooth fibre bundle morphism, we

2

—> VE,. to be the restriction of the derivative

define \7?9 : VEl 5

fD* : TE; —> TE, of fa to VE, .

Let -7 : P — M be a smooth principal bundle with structural
group G. Let F be a smooth manifold on which G acts smoothly on the
left with action @ : G — Diff(F). Llet TTQ : Fp — M be the fibre

bundle with total space Fp = P x _ F associated to —r: P — M by the

e
action @. ILet TF be the tangent bundle of F and let T@ : G ~> Diff(TF)

be th

D
n

mooth

left action sendin

1 o Y& G to the
ding ¥ G to T

derivative
TS (y) : TF = TF of O(y) : F>F. Then \Fp =31 is a fibre bundle with
fibre TF and total space VFp = P x To TF associated to T : P—> N
by the action Te.
Now let w: ’I‘P—ag be a smooth Ehresmann connection on
I : P — M, where Ea is the Lie algebra of the structural group G.
€O determines a splitting of TP as a direct sum
TP = VP @ HP
of vector bundles over P, where
P ={xetr: w0 = 0}.
Let VbP and HpP denote the fibres of VP and HP respectively over p € P.

For all y € G, let Rx . ¢ TP —> TP denote the derivative of the

smooth map R y PP sending p to p. Y .
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Then
v P = R_. VP
Py Y* p
H P = R_,, HP
p-y Y* p
The derivative T, : TP — TM of gy : P — I restricts to an

isomorphism

P : HP T M.
L1 [ Hy . - ()

If Fp — M is the fibre bundle with total space P x o F

associated to —r: P — M by the smooth left action 6 : G —»Diff(F),
then the natural projection
(p, ) [, £/
from P x F to Fp determines, for each f € F, a map ep P — Fp
sending p to ZE, 27. The derivative Cpy TP — TFp of ep satisfies
Tr@* L

and thus e,  maps VP into VFp. Then

£
ef°RY :ee(){_l)f ,
hence
re ® Rys = Sy hr
Then
-1 H P = R HP
Co(y hyex (HpP) Cpw Ry o (HP)
= e , (H p).
= o

Hence there is a well-defined subbundle HFp of TFp with the property
that if x = ZE, £7 for some p € P and f € F, and if Hpr is the fibre
of HFp over x, then

HF = ep, (HP).

Since TT alP : HpP ——alhplis an isomorphism, where m = T (p),
and since

Tr e:’: efv‘: = TT W



it follows that

e IHP . HP —HF
p p X

£ P

and

F T M
T s lHXrP HFp = T

are both isomorphisms, and we have a splitting of TFp as a direct
sum

TFp = VFp © HFP .

Definition

Let TTe : Fp — M be a smooth fibre bundle associated to a
smooth principal bundle 7r: P —» M with structural group G by a
smooth left action @ : G = Diff(F) of G on F. Llet wd be a smooth
Ehresmann connection on P with horizontal bundle HP — P.

Let e TP —3 TFp be the derivative of the map e P —>Fp

f*

sending p € P to the image of (p, f) under the natural projection

P x F —3Fp, for all f € F. Then the horizontal bundle HFp — Fp is

the subbundle of the tangent bundle TFp —» Fp with the property that
if x = ef(p) then the fibre H Fp of HFp over x € Fp is given by

HXFp = ep (HPP)'

The vertical projection pry TFp — VFp is the projection mapping

the tangent space T Fp of Fp at x onto the vertical subspace VXFp,
w . . 1 .
the kernel of pry, at x being H Fp. Given a C" section s : M —3Fp of

Fp = M, the covariant derivative D%®s : TM - VFp of s is the map

w w
D7s = pr es,

where s, : TM =3 TFp is the derivative of s.

Now suppose that 'ﬂ"1 : E1 —> M and TT2 : E2 — 1l are smooth

fibre bundles associated to the principal bundle =<7 : P—3M, and that

O is a smooth Ehresmann connection on =r : P —3 1. Suppose also



that 22N E, —E, 1s a smooth morphism of fibre bundles over M

induced by a smooth equivariant map @ Fp —F, between the fibres

F, and F_, of T E, =2 M and TT2 : E, = M. If pr;J: TE, — VE

1M 1 1

TE, — VE, are the vertical projections, and if

e VE1 —> VE2 is the restriction of the derivative
?OP* : TEl'—é TE, of Y?P to the vertical bundle, then

e P s Voo
since 99P* maps the horizontal bundle of E, to that of EZ' Hence the

covariant derivatives of a given section s : M ——iEl and of FQP’ © s

satisfy

w

D (yPOS):pP\‘;o}OP*oS*

\Y P e D S.

Thus the correspondence sending a section of a fibre bundle associated
to a given prircipal bundle to its covariant derivative with respect
to some Ehresmann connection on the principal bundle is functorial
with respect to morphisms of fibre bundles induced by eguivariant
maps between their respective fibres.

We recall that, given a fibre bundle TTQ P Fp—3» M associated
to a principal bundle -1 : P —> M with structural group G, there is
a natural bijective correspondence between sections of Tre : FP > M
and G-equivariant maps from P to the fibre F of LI FP‘~9 M.

Lemma 6.1

Let TTe : FP-—a M be a smooth fibre bundle associated to a
smooth principal bundle -+ : P-—a M with structural group G. Let
(v be a smooth Ehresmann connection on Tr : P — M. Let

)JP . 2 TF = TFP be the derivative of the map )JP i F— FP from
the fibre F of 77 P FP - M into Fp mapping f € F to the image
A (p, f) of (p, f) € P x F under the natural projection

>\:PxF-—>Fn, for all p € P,
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Let s : M — Fp be a C1 section of Fp —» M, and let
s : P ~3>F be the corresponding G-equivariant map from P to F. If
p€P, if m= TT (p), if X € T M and if X is the horizontal 1ift of

X to T_P, then
p

Proof

s and g are related by the identity
A
s(Tr(p) ) = S () = : :
p) ) /UpS(p Nps, s (p))

We recall that e, : P — Fp is the map sending p ¢ P to N(p, ),
for all f €& F. Let N\, : TpP © T.F = Tpr be the derivative of

A  at (p,f), where x = )\(p,f), and let e : TpP — TXF be the

£ P
derivative of ee at p. Then, for all (Yl’ Y2) e TpP o TfF,
Mo (YY) = eg, (X)) e ML (V)
Thus
s, (X) = (sem), (X
=, K5 )

il

€ ou (X) t M Sw (x).
~_ A~
But e., X € HFp and /Up* s, (X) & VFp, hence

D7s (X) = prys, (X)

~

A
/L}p* S, (X).

we recall that if TTé : Fp —M 1is a smooth fibre bundle
associated to the principal bundle 9T : P — M with structural group G,

where Fp = P x F, and where 6 : G = Diff (F) is a smooth left

e

action on the fibre F of -T Fp — M, then the vertical bundle

4]
VFp = M of Fp —» M is a fibre bundle with fibre TF associated to

T : P—? M by the action Te : G —> Diff (TF), where Te(y ) ¢ TF —> TF
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is the derivative of 8(y ) : F— F. In particular, if T,q @ PN
is the adjoint bundle, Gp being given by Gp = P x ad G, then the
vertical bundle VGp =M of Gp —>» M is the bundle with fibre TG
associated to T : P —3 M by the action T(ad) : G —» Diff(TG).
The adjoint bundle TrAd : 9 P — M is the vector bundle whose fibre
9 is the Lie algebra of G, where 'TTAd : 9 p— M is associated to
I : P —> M by the adjoint representation Ad : G — Aut (9 ) of G.
The Maurer-Cartan form ¢ : TG —» 9 on G is the 9 -valued 1-form
mapping X € Ty G to LX”l* X € 9 , for all Y € G, where

TG — TG is the derivative of the map L G-~ G sending MEG

by -1 -1

to 7—17) . One may easily verify that § : TG —)9 is G-equivariant,
where G acts on TG by the left action T(ad) : G—»Diff(7G) and on g
by the adjoint representation G —% Aut(g ). It follows that Q
induces a smooth fibre bundle morphism § p : VGp = gp.
Let e : TP — 9 by a smooth connection on T : P —3 M. Let
? : M =3 Gp be a C1 section of Mg ° Gp — M, and let
D w’?‘ : TM — VGp be the covariant derivative of ’i’ . We may compose
D “¥ with § P : VGp = gp to obtain a map
pe 2’V : TM")QP.
It may easily be verified that this map is a morphism of vector bundles
over M, and thus determines a c° section xw(?) : M—?gp @ T of
Qp @ T#*M ~3 M. We shall show that if YG Cl(Gp) corresponds to
a principal bundle automorphism 'f: P — P, then DCU('If)e Co(gp ® 1)
corresponds to the horizontal G-equivariant 9 -valued 1-form
\_P*(,u -w on P.
Theorem 6.2
Let Tr: P—> M be a smooth principal bundle with structural
group G whose Lie algebra is 9 - Let T _ ¢ Gp >N and
TTM:QP-}I\I be the adjoint bundles with total spaces Gp = P x og C and

= . ) : D> ) ! ! ] i
gp P x Ad 9 Let o TF 9 be a smooth Ehresmann connection
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on T : P— M and let "} : P — P be a C1 principal bundle automorphism
of 9 : P—3 M, identified with the section " € Cl(Gp) of Gp — M.
Let DY ¥ : TM — VGp be the covariant derivative of Y , and let

XU (¥) €cO(f p® THM) be defined by

XTg) - g7 ¥
where § p : VGp ~? E}p is the map induced by the Maurer-Cartan form
Q : TG —3.9 on G. Then xw( 'I/) is the section of Co(g p® THM)
determined by the horizontal G-equivariant Q—Valued 1-form 'Y*w - w
on P.

Proof

? determines a G-equivariant C1 map \l/: P = G such that
X (p) = p.YW D)
for all p € P. Given p € P, let Mp : G = Gp be the map sending
Y € G to >\(p, Y ), where )\ : P x G —Gp is the natural projection.
Let m € T (p), let X € TmM, and let 3: € TpP be the horizontal 1ift
of X. Then
¥ ) (xX) = LoV (X
by the preceding lemma.
Let /Dp :9-) 9 p be the map sending a 69 tc the image
of (p, a) under the natural projection from P xg onto gp Then
bp o pp, - Fpe [
by definition of Q p- Hence

X“¥) x) $r (p Ve (X) )
/'ini (¥, X.

Now consider the horizontal G-equivariant G-valued 1-form T,

1

where

T sYrw -



Now

Thus

¢ (v,X) = Tt®X

and hence
w N - - _ ~
X5 = poFrw-w) ®
showing that X *(~}) is the section of gp ® T\ ~> M determined by

the horizontal G-equivariant 9—V'alued I-form Y*w -w.

We see that, given a smooth vector bundle p : E —> M associated
to the principal bundle =91 : P — M, and given a smooth Ehresmann
connection‘cu on T : P~> M, each section s : M —>»E has a covariant
derivative D®s : TN ~—> VE. We now show how to define the covariant
differential of s : M = E. There is a natural smooth isomorphism
YV:E ® E ~VE of vector bundles over M such that if (X,Y) € E @ E
then PV (X,Y) is tangent to the curve

tkH X + tY
at t = 0. It follows that for all C1 sections s : M -3 E of E there
is a C:L map d“s : T™M — E such that

p¥s = VY (s,

a%s).
d“s is linear on each fibre of TM —>M, and may thus be identified

with a smooth section of the vector bundle E @ T*M —» M. Cne may

easily verify that



d  (fs) = fd“s + s ® df

for all sections s, $15 S, of E and for all Cl functions f on .

w . . Cn .
d s 1s the covariant differential of s.

We now consider the composition of the map
exp : Cl( gp) ) Cl(GP ), induced by the fibre bundle morphism
exXp, 9? — Gp determined by exp : 9 — G, and the differential

operator X » mapping sections of Gp = M to sections of

Bp ® T%M —» i, defined above.

Theorem 6.3

Let Tr: P — M be a smooth principal bundle with structural
group G whose Lie algebra is g . Let LR — i and
ar Ad Qp-} 3 be the adjoint bundles with total spaces
Gp:andGand 9;: : PXAdg . lLet TP—%g be a smooth
Ehresmann connection on 1 : P — M. Let exp : Cl( g p) Cl(Gp)
and  OC* Cl(Gp) = Op ® T¥i) be defined as above.

Then there exists a smooth morphism B : gp — End (Qp & T=M)
of fibre bundles such that

o
x (exp ¥ ) = B( ? ) (dOJE )

for all 5 € 01(9 p), where dwf € Co(g p® T*M) is the covariant
differential of § .

Let |. | m be the norm on the fibre gpi—m_7 of gp =3 N
over m & M determined by a given biinvariant metric on G, and let
i(G) be the injectivity radius of G. If the section § e ¢ g p)

satisfies
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for all m € M, then B( 3 ) is a section of thc bundle
Aut( g P & T+M)— M of vector bundle automorphisms of

O . .
gp ® T ~—=> M. If 0 € C (8p) is the zero section, then B(0)

is the identity automorphism of 9 p ® T > M.

Froof

We recall that if expp : 9? —> Gp is the fibre bundle

morphism induced by exp : 9 —> G, then

Dw(expp°§ ) = \T(expp) Dwf

by the functorality property of the covariant derivative. Thus

i

(78]
X (exp ¥ ) @p (p ™ (expp}' ) )

@ (Vv (exp_) D™
P e pP D § )
= @P(V (expp) VY ( },dw} ) )

where WV : Qp & 9 p— \79 p is the natural vector bundle

isomorphism defined above. Thus we may define
BY I = $pvew) v (7M.

c -7 — o
Let a gpi m / for some m € M and let Y = e_\pp a. Then the

maps

Qpl_m_7-9 Vaep : b vi(a, b)
\7aep -V ¥ Gp : A \’(expp) A
\f'pr—')Bp . ox = $p )

are linear. Hence B( f ) is linear. If [a[ . < 1(G), then

\’(expp) ‘ v, gp is an isomorphism from v, 99 onto V v GP,



B(a) : gp /m7 & TN 9p [ m /7 & TH

is an automorphism of vector spaces whenever a| - < 1(G).

Let 6 : G ~—~— Diff(F) be a smooth left action of the structural
group G of 77 : P—> M on a smooth manifold F and let Trg : Fp =2 M
be a fibre bundle with fibre F and total space P x 0 F associated
to 77 : P> I by the action 6. Then there is a natural fibre

bundle morphism
ep GPXM Fp — Fp

which is induced by the map from G x F to F sending ( vy , f) to
6( y )f. 8p in turn induces a left action of C‘o(Gp) on Fp mapping

'g_/‘é C“(Gp) to the diffeomorphism ¥ H2 ? .x, where

Vo o= Qp('Ir(‘IT (x) ), x)

]

for all x € Fp. A smooth section } of gp—) M then determines

a vertical vector field = ( } ) on Fp whose flow is given by
(x, t) P (exp t) ). x.

The map e , sending smooth sections of gp ~» M to vertical
vector fields on fibre bundles associated to some given principal
bundle is natural with respect to those fibre bundle morphisms that
are induced by smooth G-equivariant maps between the fibres of the

bundies.

171



Theorem 6.4
Let 7T : P— M be a smooth principal bundle with structural

group G whose Lie alpebra is EB . Let 7T Gp — M and

ad

T AQ - E3F>-$ M be the adjoint bundles, with total spaces P x 2d

and P x Ad E} . Let 8 : G = Diff(F) be a smooth left action of

G on F and let TTQ : Fp = M be the fibre bundle with total space
. o

Fp = P x o F- Given } € C (gp), let o&x( }. ) be the value

at X € Fp of the vertical vector field « (Y ) on Fp whose flow

is given by
(2, t) P (exp £t} ) . x.

Let T : TP = Ea be a smooth Ehresmann connection on =T :

and let T : TP -» 9 be a smooth horizontal G-equivariant 9 -valued

1-form on P. Then, for all sections s : M — Fp of TrO : Fp— 1l

and for all vectors X € TmM,

[SJe of w ~
\ (T (X))

N oo . .
where ¢ (X) € C ( E}Fﬁ is the image of X under the vector bundle
A ”~
morphism T : TM = Ea P corresponding to T

Proof

TP = VP and

First we compare the vertical projections pry;

o
pry oo — VP. For all a érE} , let d“p(a) be the value at

p € P of the fundamental vertical vector field ¢ (a) on P determined

J

by a. Then, for all ¥ € TpP,

(2% . -
pry’ (V) = o (e (¥))
and hence
Wi . W .
pry, (Y) = pr; (Y) + O‘p (7T (Y) ).

But the principal bundle =T : P = M may itself be regarded as a

fibre bundle with fibre G associated to -r : P = M by the left
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o0
action of G on G by left multiplication. Thus C (Gp) acts on P on
the left, and any section Y of E}p > M determines a vertical

-

vector field ox( E) on P, and it is easily seen that

N
O (T ) = o (T, V)]

P p *
where TT'* : TP —> TM is the derivative of -7 : P —> 1. Hence
A
we T B (7S] ) .
P (Y) = pry; (Y) To<p("t’/('ﬂ’* Y) )
and thus
w A
pt:*'v(Y) = pry (v) - o(p (T (T, Y) )

where prg’: TP —3> TP is the horizontal projection on TP determined
by t . But the derivative of a fibre bundle morphism induced by

a G-eguivariant map between the fibres of the bundles has the
property that it maps the horizontal bundle of one bundle onto the
horizontal bundle of the other, and it also maps the vertical vector
field X (§ ) on one bundle to that on the other. Hence

w w T R
PTy ¢ TFp — TFp and pry ¢ TFp —> Trp satisty

w+T w N
pr, (z) = pry (z) - «, (T o Z) )
for all Z € TXFp, and hence
T w A
pry, (z) = pTy, (z) X (’C.(TT'Q* zZ) ).

Then, for any Cl section s : M — Ip of 'Tre : Fp— M, and for any
vector X € TmM, we have

w ..T w +T
D s (X) = pry T s

I
o
n
e
+
2

n

Corollary 6.5

Let 9T : P—> M be a smooth principal bundle with structural

group G whose Lie algebra is fa . Let TTq] : Gp —> i and

C

P

=~

j3}
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‘H’Ad : 9 p > M be the adjoint bundles, with total spaces

Gp = and G and gp =P X Adg . For any smooth connection
on 471 : P —> M and for any differentiable section s of

w , w
v g ¢ Gp M, let X (s) denote the section Q p eb s of
Ea p & T*M —> M, where D%s ¢ M - VGp 1s the covariant derivative
of s and @ p : VGp — EB;: is the fibre bundle morphism induced by
the Maurer-Cartan form § TG E; . Let C be a horizontal
G-equivariant Ea -valued l-form on P, corresponding to a section
PN
T of 9p® T*M —> M. Then

Wt w

RO
X (s) = 22X (s) + ad (s )T -T.
Proof
By the preceding theorem, we must show that

2 ix 12 x) LT x
$p (o< ) (T0)) =ad stm™HT () - T ()

for all XZGTTmM. It is thus sufficient to show that
-1
$p ot ) (T)) = adsm™ ) § -3

for all § € gp _/_—m_7, the fibre of gp —> il over m. But

o ¢ s (m) ( § ) = g% (( exp t§ ) s(m) exp (—t? ) )

t=0

hence

' a -1
QP(O(S(m) (f) I (s(m) (exp t?) s(m) exp(—ﬂ') \

£=0

+ g% (exp(—ti ))

= aqf(s(mfl(exp t} ) s(m))
t=0

t=0

- ad (sm™H Y - %

by Leibnitz' rule, as required.

Now let us consider the case when TT‘G : Fp = M is a vector
bundle with fibre F associated to the principal bundle TT: P—> M

by the representation 6 : G =2 Aut(F). The representation @ determines



a representation 6 :EH —> End(F) of E} which induces a smooth
morphism 5p : EB p~— End(Fp). If § DM Ea p is a section of
Ea pand s : M- Fp is a section of Fp, we shall denote'gp(z )s

by ?.s. if Vv: Fp @ Fp —>VFp 1s the natural isomorphism, then

°<s«m(§ ) = v (s (x), § .s (x)).

If follows that if W : TP E} is a smooth connection on
I : P—> M and Tt : TP-> EB is a horizontal G-equivariant
E} ~valued 1-form on P, then

e # w -
d s = d s + ¥.s

for all differentiable sections s : M—> Fp of Fp = M, where
A . . .
T M Qp @ 7#M is the section of 9p® T#M — il determined
N A

by ¥, and where ( “T.s) (X)= T(X) . s for all vector fields
X on M.

Theorem 6.6

Let 7T : P~—> M be a smooth principal bundle over a compact
Riemannian manifold M with compact structural group G whose lie

algebra is Ea . Let 8 : G ~— Aut(F) be a representation of G as a

group of isometries of a normed vector space F. Let 1 0’ E— M

be the vector hundle with total space E = P x o F. For all m € M,
let l.l q b€ the norm on the fibre E 1fm_7 of"ﬂ'e : E~»M over m
determined by the norm l ., on F.

Let OV TP—%Ea be a C1 Ehresmann connection on 7T : P - M,
and let HOlm(CD) denote the holonomy group of ¢w generated by loops
based at m € M. Let } : M—>E be a C1 section of 175: E—> M and
let ¢ : 15, §7-*$ M be a piecewise smooth curve in M parameterized

by arclength s. Then

b
Mc(bn[ - Vc<anl %[ a7 e (s)) ds
c(b) cla) a c(s)
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Furthermore if ¢ : /a, 97 —» M is a piecewise smooth loop
beginning and ending at m and generating the element h of the holonomy

group Holm(cd ) of & | then

| r
(3 m - Y| ¢ J | a8 e (s) ) ds.

Proof

Let © : LZ, E7 —> P be a lift of ¢ : LE, 27-—9 M which is
A
horizontal with respect to w . Let ¥ : P — F be the G-equivariant

map correspondirg to § : M —> E. Then

,\ ’
4 §(c(s>)‘ - ‘(d‘”;) (d%f—))\
c(s)
¢ ey
c(s)
since c¢ : LE, 97-—3 M is parameterized by arclength. Hence
A A
RIS ch(a)]: |3 @] ‘I}W(a”]!
oA A |
S 13 Emy - ¥ G|
b
S ‘du§l ds
a c(s)

as required, If c : 15, E7-—$ M is a loop bascd at m, generating

h € Holm(Cd ), then

lh'l,E_‘}Im - \?(E’(b))— ¥ a))

N
Q.
1
ey
[oN
0n

as required.
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37. The Covariant Exterior Derivative and Codifferential

In this section, we review the definition and properties of
the covariant exterior derivative, covariant codifferential and
covariant Hodge-de Rham Laplacian. The material is all standard,
and is to be found in lﬁtiyah, M.F., Hitchin, N.J. and Singer, I.M.,
197§7, égourguignon, J.-P. and Lawson, H.B., 19817, lgourguignon, J.-P.
and Lawson, H.B., 19827.

Let Ty * F ~ M be a vector bundle associated to a principal
bundle =T : P —> M over a compact Riemannian manifold M with
structural group G whose Lie algebra is g . Let co: TP —+9 be
a sufficiently differentiable Ehresmann connection on qr : P —» M.
We have seen that w determipes a differential operator

“ ., Cl(E) — CO(E ® T*M), where a“s M- E® T*M is the covariant

d
differential of s : M —> E with respect to o, for all s € Cl(E).
Let <.,.? :E®E —»R be a smooth inner product structure
(i.e. an inner product defined on each fibre of Ty @ E—>M by a
suitable smooth section of E*@® E*). We say that the connection
preserves the inner product structure (.,.)' on -TrE : E~»M if and
only if

d < S sz> = <dwsl, sz> + < Sqs dws2> s
where (eLQ '\7 . e2> = < e €, }7] for all e1®7) & cO(E ® T*M)
and e, € CO(E).

For all non-negative integers p, let the covariant exterior

derivative

a® ;. clE @AP ) > CE® AP e
be the differential operator defined by

dw(s ®T’):dws/\’)’} +s®d‘r)

1
for all s € C'(E) and W]GCl( N P r¢M). If 6 is an E-valued differential
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form on M and 7’ is a differential form on M, then

deg@

w o
d (9/\50) :dQAsp + (=1) GAd?.

However (dw)2 # 0 in general. In fact, if W is a C1 Ehresmann

connection on the principal bundle T : P —» M associated to

TrE : E ~® M, then the curvative F : /\ZTP -Qg of w> determines a
9p-va “ -

p-valued 2-form F on M, where gp = P x Ad 9 . But for all m € M,
the fibre gp [mJ of gp =3 M over m is a Lie algebra acting
naturally on the fibre E [-m_] of E ~—>»M over m. This action defines

a bilinear map

c0(9 p) x (&) = c%(r)
and thus determines bilinear mars

Co(gp ® A ) x P (E® A%y = O @ AP

for all non-negative integers p and q, mapping ( § Q'r}l, s QT) 2) to
0 0 0
( §.s) ® (M, AN ,) forall Fec (Qp), s €c (8), N1 € c ( APrsm)
0 0 0

and %, € C (Adrsm). 1f 0 e ¢ (Qp® APr*m) and pec” (£ @ A %o,
we denote the image of (9, P ) under this bilinear map by €A P . It
is well-known that

a®d%e - r" A0

. . [71) 0 & 2

for all E-valued differential forms © on M, where F ~ €C (9 P A “T*M)
is determined by the curvature of W .

We now suppose that { , > : E®E -3 R is a smooth inner product

structure on the vector bundle I, : E~> M over the compact Riemannian

E
manifold M and that this inner product structure is preserved by the
connection () on the associated principal bundle I : P —» M. The

Riemannian metric on M determines an inner product structure on

/\pT*M: if (d‘l, ceay é'n) is an orthonormal coframe on M, then

G_JA./\G-J -1

1 p J1 Jp € dim M

is an orthonormal basis of sections of /\p T*M —> M over the domain



of definition of the coframe. If eléb “1 and 6269‘92 are sections

of E® AP T*M — M, we define
8N @M, = e, Y NN,y

This defines a smooth inner product structure on E @& /\p T*M ~—> M.

Given E-valued p-forms 6, and 6, on M, we define
(91, 92) :IM <91, 92 Y d(vol)

where the integral is taken with respect to the Riemannian volume
measure on the compact manifold M.

Let M be oriented, let n be the dimension of M and, for all
integers p satisfying 0 € p € n, let

w2 N\ Pram = A " Pray

be the Hodge star operator. If 171 and '72 are p-forms ou M then

(71’72):JM"]1A*772 - fM M,A*0,.

The Hodge star operator from A Pray to /\n—pT*M satisfies

#x = (-DPP P 1r c @M € E® A PrHM, we define *(e ®7 ) to be

e ® *77 .

The codifferential § : Cl(/\pT*M) - /\p'lT*M) is defined

by
n(p+1)+1

Sn:(—n *(1*n

for all ¢t p-forms 7 on M.

We may define the covariant codifferential

$“: cliz@ A Prwm) — z® A Plrom)
with respect to the connection ¢« by

3% = (- L @ g
for all E-valued p-forms 6. It may be verified that

(@0, ) = (o, 8%

179
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for all E-valued p-forms 6 and E-valued (p + 1l)-forms Y’ on M. The

covariant Hodge~de Rham Laplacian

0

A” . % ® APTa) = ®(r ® APrem)

(&” is an elliptic operator which is self-adjoint with respect to

the inner product ( R ) on E-valued differential forms. If @ is an

1
o

E-valued differential form on the compact manifold M then A” 6
if and only if d* 0 = 0 and $%@ = 0.
Let «v be a smooth connection on U : P - M and let ~C be a

ga p-valued l-form on M determining a horizontal G-equivariant

E; -valued l-form on P which we also denote by ¢ . If s : M—E

is a section of E =) M, then

d s = d s + 7.s
where T .s is the image of ~ ® s under the natural action
ap ®E — E of the bundle gp of Lie algebras on the vector bundle E.
It follows that
Wi

d 0 = a¥e +T AW

and

g 4
Sw+ 0 - Sw o+ (_l)n(p+1)+1 *(TA* Q)
for all E-valued p-forms 6.

The Lie bracket on CO( gp) determines a bilinear map

% 9 p® AN Pray) x c°(990/\qT*M) —> ¢ Q p ® AP 9ruy)
mapping ( E_LO M ;231')2) to Egl’ §2] Q('YII’\T] 2) for
all §,, ¥, ec’ e, M,€ %t APra) and n, € 9 A Aram)
If 6, € % Dp® APram) and 0, € e 9p® A9r#M), we denote
the image of (91, 6,) under this bilinear map by [91,92 . One may

verify that
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B pg+l
(o, 92] = (-1) (e, 91]
and that if in addition ¢q = p then
[91, *32] = - [o,, *91].
Thus if 8 is a E}p-valued p-form on M, then

8, * @ = 0
[ ] °

In particular if ¢ 1is a gp-valued 1-form on M, then
§“" v = 8%y - ([T, *T])

= 8‘”*:

w+T of the connections &y and

The curvatures F* and F
w + are related by the identity

wi e

F S F® + da%®x +1/2t"'5)"5],'
The curvature F of «ws satisfies the Bianchi identity
a®r® - o

The connection ¢ is said to be a Yang-Mills connection if its

curvature satisfies the Yang-Mills equation
S”F® = O
Using the Bianchi identity we see that this condition is equivalent
to the condition
ATFZ= 0O
(i.e. the curvature of ¢ is harmonic). Yang-Mills connections

are critical points of the Yang-Mills functional

YM(es ) = (F, F) =J ||F||2 d(vol).
M

If } is a differentiable section of gp =) M, we have
seen that
(exp § e - w = B(Y) (d“’g )
where B : 9 p —> End( 9 p ® T*M) is a smooth fibre bundle morphism

mapping the zero section of Ea P > M to the identity section of
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*
End ( 9p® T*M) —> M, and where {exp § ) <o is the pullback of o

by the principal bundle automorphism determined by exp Y (see

*
theorems &.2 and 6,3). Thus if w, = (exp t¥) «w , then
d"‘)t i w
- | - 4%t
£=0

We collect together some of the above facts in the following
proposition.

Proposition 7.1

Let 'TT'I3 : E—»M be a vector bundle associated to a principal
bundle = r : P — M over a Riemannian manifold M with structural
group G whose Lie algebra is g - letGp=Px G and gp = P x Adg
Let ¢ be a smooth connection on TT : P~ M, let F be the
curvature of w , let T be a differentiable gp—valued 1-f0rm on M,
let f be a differentiable section of E;pr—é M, and let @ be an

E-valued p-form on M. Then

(1) d®d®e = F¥®A o,

(ii) a%rFr*® = o,

(iii1) d*" T e = d%s +~aA o,

(iv)  §«*T o~ $@0+ (-1)"P (2w,

(v) FOYT - Fw v a%y + 5[ ],
(vi) Sw"t't: = Sw"c

(vii) £ (exp t¥) w - 4%
£=0

If M is compact and E has an inner product structure invariant with
respect to the connection w , then
(viii) (d ¥ , 8) = (@, 80

for all E-valued p-forms 6 and E-valued (p - 1)-forms ¢ ,
(ix) A” s elliptic, where

Aw _ Sw d(.ﬁl +dw 8(:4
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x (@, 076) =(a%, 6)
for all E-valued p-forms 6 and ¢ on M,

(xi) A6 =0 if and only if d“ 9 - §* ¢ - 0.
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BANACH MANIFOLDS OF AUTOMORPHISMS AND CONNECTIONS

31 . Introduction

In this chapter, we study the action of various Banach manifolds
of automorphisms of a principal bundle —=t: P — M on the corresponding

spaces of conncctions on that bundle. We define Li,#k, Ck and

le, & . . <y O
22 A to be the spaces of LE connections, C.k connections and Ck’

C
connections respectively on T : P —> M. These are affine spaces
modelled on the corresponding Banach spaces of sections of the vector
bundle gp ® T*M, where 9p is the adjoint bundle of -7 : P — M.
When p(k + 1) > n, where n is the dimension of M, we define Li+l é}’,
Ck+l§§, and Ck+1’c‘§; to be the corresponding Banach Lie groups of
principal bundle automorphisms.

We show that Lﬁ+1 ?; acts smoothly on ﬂijﬂz when p(k + 1) > n
(theorem 2.1) and that if ﬁ;’is a principal bundle automorphism which
maps an lE connection ¢ to anothcr qz connection ji?*og and 1if
§£> corresponds to a continuous section of the adjoint bundle Gp
which is differentiable almost everywhere on M then i@”é ﬁz+1 t;
(theorem 2.2). These results are stated in lﬁhlenbeck, K.K., 19827,
where they are proved in the cases kK = 0 and k = 1. Similar results

I !
are proved for the action of 5\+l§;’ on C{/Q‘ and for the action of

Cl”l’u% on A

Our main result of this chapter is theorem 3.2 where it is
shown that if the base manifold M and the structural group G are
compact, if pk > n, if (oui c LF{A :1e N) and (’\Ifi € L'JliL]tg/ 1€ W)
are sequcnces of conncctions and autemorphisms respectively, if the
scquences (CL)i) and (ﬂ?i*CL)i) converge in Li)@‘ and if the scquence
of automorphisms converges on some fibre of the map 1 : P —» M, then

. . > .
the sequence ( £i) of automorphisms converges in L{ l,ég . Similar
<




k and HUlder spaces. From this result we

results are proved for C
shall deduce that the topological spaces Lﬁ#& /Li+1§; , Ckﬂ# /Ck+1€§
and Ck’afﬂ' /Ck+1’f%y are Hausdorf{f (theorem 4.1). Also the
stabilizer of any connection in LE;Q*, Ck,ér or Ck’°$4' is a compact
subgroup of Li+1§;_, Ck+]§§/ or Ck+1’d‘t3/ respectively (theorem 4.2).
The above results will be used in chapter VIII, where we shall
prove various slice theorems for the action of automorphisms on
connections.
In 85 we consider various properties of the covariant differential

withr espect to a given connection, considered as a map between Banach

spaces of sections of the appropriate vector bundles.
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§2. Basic Properties of the Action of Automorphisms on Connections

In this section, we shall study the action of principal bundle
automorphisms on Ehresmann connections on a smooth principal bundle

a compact manifold with compact structural group. The group

ovel
Cwﬁ(, of smooth principal bundle automorphisms acts on the space
¢ A of smooth Ehresmann connections on the right, sending (w ,*Ic)
to W *ew , the pullback of w by {f , for all w €& C™4& and

Ye C“% . Let k be an integer. We shall define, for all

P

K connections and if also

p E_ZT,OO), the space Li}%’ of L
, . . : p P L
p(k + 1) > dim M we shall define the group L] é; of Ly, principal
bundle automorphisms and show that the action of C°°§§‘ on C*A  on
. . . p p
the right extends to a smooth right action of Lis1 E; on Lk'Ar
{provided that p(k + 1) > dim M). 1If k is non-negative and if
ol € (0, 1), we shall define CkA , and Ck+1§ , Ck’uA and Ck+1’°( (3/
similarly and show that CkJrl Z;,{ and Ck+1’°‘9' act smoothly on CkA/
Kkyot . . .
and C ‘;Q respectively on the right. We shall then show that if
fP': P — P is a continuous principal bundle automorphism satisfying
certain mild differentiability conditions, then fE’e L§+ltg, provided
that TE’ maps some element of LEJA/ into Li,ﬁr (where p(k + 1) > dim M)},
’ﬂ?‘e Ck+1T%’ provided that " maps some element of Ckﬁr into Ck}¥ s

and that [ € Ck+l’d

{3’ provided that Y maps some element of Ck’OZAr
. k, e . . . .
into C Ak . Finally, we shall obtain a theorem which will enable
. . p k+1
us to prove results concerning the action of Lk+113.’ C é;
1 .

ck* ’°‘§; on Li)ﬁ—, ij¥- or ck’*}%/ respectively for large k from
similar results for small k by a 'bootstrap' procedure using induction
on k.

Throughout this section, 1 : P~—>M will be a smooth principal
bundle over a compact smooth manifold M with compact structural
group G whose Lie algebra is 9 , and ‘n’ad : Gp —> M and Tr/\d : gp S M

will be the adjoint bundles, with total spaces Gp = P x G and

ad
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BP:PXAdg'

We have seen that G-equivariant horizontal 9 -valued 1-forms
on Tr: P =% M are in natural bijective correspondence with sections
of the vector bundle gp® T*M —» M over M. Thus ifw_ : TP - g

~ g

and w2 : TP = 9 are Ehresmann connections on 7T : P —» M, then

their difference ¢, - O , may be identified with a section of

1
9 p® T*M — M, and conversely if o : TP —» 9 is an Ehresmann
connection on =r : P > M and if ~ : M — 9p® T*M is a section
of 9 ® T*M —> M, then we may construct an Ehresmann connection on
T : P~> M, denoted by w + T , such that the I-form ( w + T ) - 03

on P corresponds to the section - of gp ® T*M —> M. Thus the
space C A of all smooth connections on -7 : P —> M may be
regarded as an affine space modelled on the Frechet space c®( g p®T*M).
We have seen also that the group C“% of smooth principal bundle
automorphisms of -1 : P — M may be identified with the group C°°(Gp)
of smooth sections of T, q @ P> M

Definition

For all integers k and for all p € /1,00 ), define LEA/, the

P

K connections on qr : P—> M, to be the completion of

space of L

C”A with respect to the metric on C™# defined by a norm on

c% gp @ 1*M) generating the Lﬁ topology. If in addition
p(k + 1) > dim M, define IJ£_+1§ , the group of L{:+1 principal bundle

automorphisms on =1 : P -~ M to be the subset of the group of con-
tinuous principal bundle automorphisms identified with the Banach
manifold L£+1(Gp). Similarly, for all non-negative integers k and

for all ot € (0, 1), define CkAf and Ck’“A' to be the completions

of COOA with respect to the metrics defined by Ck and Ck"’< norms on

c % Qp@T*M). Define also Ck§ and Ck’u(‘;/ to be the subgroups

of the group of continuous principal bundle automorphisms identified

k,ot

with the Banach manifolds Ck(Gp) and C (Gp) respectively.
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The group operaticns on the Banach manifolds Ip §E (for
. k Kk,
plk + 1) > dim M), C §§ and C g; (for o € (0, 1) ) are smooth

by the results proved in lfalais, R.S., 196§7 (see theorem 1I.2.6).

A

) ] . . s y P
The Lie algebras of these groups are identified with L 4 I(Ej P)’
C (E} and C (ia P) respectively and the exponential maps

P p k k k,e
Lk+1(9 )-—>1k+l% (QP)—> c (%/ and cl¢ 9}3)——)0 (‘3

are smooth.

Let OUO be a smooth connection on Ir: P —>M. For all integers k
and for all p € 1?; oo ), every element of Lﬁjé— may be expressed
uniquely as worT for some 7:67L£(E3 PQb T*M), and similarly for
A and O

We have seen that if QJO is a smooth connection, then

'\l/*wo -, = —DCWOC’\I/>

for all differentiable principal bundle automorphisms iE}:ID——al%
where DCfdois the first order non-linear differential operator defined
in section V.6 (see theorem V.6.2). We have also seen that there
exists a smooth fibre bundle morphism B : E} p -2 End(Ea P ® T*M)
such that

“* (enp §) = B(E)dS
for all differentiable sections ? of E}P ~3 M. B maps the zero
section of Eap*—a M to the identity automorphism of E;P & T=M. Also
if G is given a biinvariant Riemannian metric determining a canonical
c®-norm I Al on c%( 53 P) and if the norm ” E” of } e c°f 5313) does
not exceed the injectivity radius of G, then B( ¥ ) is a vector bundle
automorphism of EBP & T*M (see theorem V.6.3).

Let W TP-QE} be a smooth connection on 1 : P— M, let
v be a scction of 9[) & T*M — M and let ’Y: P—>P be a
differentiable principal bundle automorphism of T : P —? M. We

have seen that

5 —1
Yrlw, + ) -F *w, = MY )T



on regarding 'Y as a section of . G, =) (see the proof of
& & ad P b

V.5.1). Thus
— Wo —

Tl w, + T ) = aFh T s X,

Theorem 2.1

Let TTr : P—30M bc a smooth principal bundle over a compact
smooth manifold with compact structural group. For all non-negative
integers k, for all p € 11,00 ) satisfying p(k + 1) > dim M, and
for all oc € (0, 1), the right action of the group ng of smooth
principal bundle automorphisms on the space CMA of smooth connections

on 17 : P — M extends to smooth right actions
p P
L A ox Ll % LA
k k+1 - k
C X C ? C A’ s
Ck,a\! « Cl(+l,o(§ RN Ck,o(A/

Proof

Consider the action of L£+l§/ on L{ZA' Given an open neigh-
bourhood of the zero section in Lk+1( QP ), any element 'f of
Li 1 may be expressed as Y: '\1/0 exp§ , where \?o € ng
‘g € L ap and }‘ i1s contained in the given neighbourhood of the

< ; . ! . ;P p : it
zero section. Also the map exp : Lk+1( gp ) —> L]ng 1s a chart
for Li” % when restricted to some neighbourhood of the zero section.
The map from L A/ to itself sending (v to e s smooth, hence
it suffices to verify that the map from LPA/ X L BP } to Lp
sending (& , } ) to (exp § )*wo 1is smooth. By the remarks above,

it suffices to verify that the map

w
(T, )= adlexp ( -3 ) +_X,o(exp}’

from L ( QP & T+M) x L QP to LE( QP R T+=M) is smooth.
¢ > 0, there exists q &€ _/_T,cx:) such that

1 1 k

Tmn < 3 < dimwm

ke ]

90



- : : p q g )
Then we have a smooth Sobolev embedding Lk+1(2313)g_)Lk(_ p), the
map from L E]P) to L ( E}P ® T+*M) sending } to d”'e S is smooth,

and the map from Lp gp ® T*M) x L;q( gp) to LE( 9P® T*M) sending

ry [T.2.7, where

5 =

( ﬂ ; 7 ) to RB( \77 is smoocth b
E}F,—% End ( E]P @ T*M) is the fibre bundle morphism with the

property that

wWeo
X (expJ) = B(})d °F

Composing these smooth maps, we see that the map from Lp E}]P
Lp E}F)qg T*M) sending ? to :I; (exp E ) is smooth. Similarly

- - 3 b P ) 1
the map from Lk(g; P & T=M) x Lk+1(£; P) to Lk(g} PQQ T*M)} sending
(T, } ) to Ad(exp (- } ) ) is smooth, again using the Sobolev

embedding theorem and corollary II.2.7. Thus the map
wD
(T,Y ) Adlexp (=3) ) + X “(exp J)

- p p p Y G o "
from 1, (gp ® T*M) x Lml(g o) to Lk(g p ® T#M) is smooth. Thus

the action of LP

s C§ on LE}&/ is smooth whenever p(k + 1) > dim M and

k> 0. If p(k + 1)> dim M and k = 0, then the same argument applies
on replacing ﬁk(q} p) by CO(EB P) and using corollary I11.2.7 again.
An analogous argument again using corollary 1I,2,7 shows that

the actions of Ck+l§§ and Ck+1’a(gi on C%‘b and Ck’f/$' respectively

are smooth ,

Theorem 2.2

Let ¢ : P——2 M be a smooth principal bundle over a compact
smooth manifold M with compact structural group G whose Lie algebra
is 9 , and let I, : G, => M be the adjoint bundle with total
space G, = P x 4G, Let ﬂp’: P — P be the continuous principal
bundle automorphism corresponding to a continuous section of

GP —» M that is differentiable almost everywhere on M.

-
e}
ct
e
en
(e}
jab]

3 e ~ T
non-ncgative integer. Then



(i) if p € [T, 00) satisfies p(k + 1) > dim M, if w € 1P A and
. ) P ) P
if frw e LI{A, then Y e LG
. : k . .k _ k+1
(i1) 4if wGCA« and if ‘?*w € c"A , then ?6C %,
(ii1) if o € (0, 1), if w € ™% and if Yrrw € %A

then "Pé Ck'+l’ i g

Proof

Choose a biinvariant Riemannian metric on G. Then
\I/ = (exp § )‘Yo, whe?e '\:ko : P-— P is a smooth principal bundle
automorphism, and where § is a continuous section of the adjoint

bundle 1T : qP —> M whose canonical C0 norm does not exceed
~

Ad
the injectivity radius of G. It is sufficient to prove the theorem
when ’\PO is the identity automorphism of P, since ‘Y*w € Li A’,
Ck)Q( or C]{’D‘A if and only if (’?‘yo_l)*w € LiA/, Ck or
Ck’“A/ respectively. Let w = w o T where w o is a smooth

connection. Then

T ortw ) - adTThe « XPod

- Adfexp (-F) ) + B( 3

) dwor

wo . . . (@]
where DX ®and B are defined above. Since the canonical C norm
of } is strictly less than the injectivity radius of G, B( } ) is

a vector bundle automorphism of gp ® T*M (see theorem V.6.3). Thus

-1

d¥°§ =B(} )7 (F*w - adlexp(-§) ) (w-c ) ).

We prove the theorem by induction on k. Suppose k = O.

o -1

§ € C (Qp), hence both B( E ) and Ad(exp (-¥) ) belong to

c®(End ( ep ® T*M) ). Thus if &5 and ‘g:/*w belong to LpAr for
some Pp €_/_T,oo ) satisfying p 2 dim M, then dw"g € Lp(g p ® THM),
and hence ¥ e Lli(g p) and Y€ LI;LOS(; if co and Y *ws belong to
COA , then dw°§ e ¢ 9P ® T*M) and hence E € Cl( 9 p) and

’}]_-/6 Clg . This proves (i) and (ii) when k = 0. If ¢u and ’If'*oo

belong to CO’“A , then w and Y.y belong to COA/ and E € Cl( 91’)’



and thus E e 27 gp). Then B(¥ )_1 and Ad(exp (-%) ) belong

Oy R

o

to C (End ( gp ® T1#M) ). Thus dw°§ belongs to ¢ 7 99 ® T*M),
1

and hence }6 C*"x(g p). This proves (iii) when k= 0. We now

use the induction hypothesis to prove the theorem when k > 0.

Consider case (i) when k > 0. We have Sobolev embeddings

P q p q
Lk)A( < Lk-lA and Lo 39—5 Ly S , where q € [i, oo ) may be chosen

to satisfy

1 1

1 k
P dim M < q

dim M ,

<

Then ¢ and ?*w belong to Lg_1A , and hence ? € LE? , by the
induction hypothesis. Thus ‘S € LE ( gp). It follows that B(} )“1
and Ad(exp (- %) ) belong to LE(End ( GP ® 71#M) ). Hence

w )

d OE € LE( gp ® T*M), by corollary IT1.2.7 and thus E € L}<+l( gp).

Hence 'Y € L%?Jd(; This proves (i), The proof of (ii) and (iii)
2 .

is analogous.

Theorem 2.3

Let - : P ~»M be a smooth principal bundle over a compact
smooth manifold M with compact structural group. Let ((,ui : 1 € N)
and (jpi : 1 € N) be sequences of connections on 9T : P —> M and
continuous principal bundle automorphisms of T : P — M respectively.
Let k be a non-negative integer. Then
(i) if p € /T, 00) satisfies p(k + 1) > dim M, if w, € Li A

and \_I/i € Li-l-l , if the sequences (w .) and ("\[/i"-‘u.) i)

converge in LF(A to > and & respectively, and if the

sequence (‘I/i) converges in Ck§ to '}P , where ‘I/e Ckg ,

P . )
then Y € Lk+1 , ("}i) converges to Y in Lk+l§« , and

’\I‘*w:;,



(ii) if k > 0, if p,q € /1, e ) satisfy p(k + 1) > dim M, gk > dim M,
. P .
q2p, if w, € LEA and 'yi [ Lk+1§ » if the sequences (W ;)
and (Y *wo i) converge in LF(A to w and W respectively and

: : 4 e T, g v
AN . P 4+~ S A AL, 2 M
if the sequence (‘Pl ) cenverges in ]_,k } ¢ wliere Y < er k& [

then Y € Li;l s (‘?i) converges toY in L‘i+1§ , and
YV ¥ = co s

(11i) if w. € Ck/& and 'Yi € Ck+1§ , if the sequences (wi)
and (ﬂ?i*ooi) converge in Ck}$ to w and o respectively and
if the sequence (ﬂ?i) converges in Cklg to'ﬂ? , where
*I/e Ckg , then YE Ck”’g s (‘I/i) converges to'I" in
Ck+l§ , and ¥, - O,

(iv) if € (0, 1), if w, € %A and V. e ck”""(; , if the

k,

) o
sequences (wi) and (Yi*oo i) converge in C A’ to (w and

—

@ respectively and if the sequence (fki) converges in Ck’°‘§;
to ¥ where e ck""fg , then Ve ck”’dl; , (F)
converges to Y~ in Ck+l’dg , and Y Fos = G
We claim that, without loss of generality we may assume that

'I/‘i = expfi and ¥ = expi , where Ei and 3 are differentiable

sections of TTAd : E};)-é M for all i € N and where the canonical c°

norms of § and § i determined by a given biinvariant metric on G

do not exceed some constant which is strictly less than the injectivity

radius of G. For since (ﬂp&) converges to"V in the c® topology in

all cases (i), (ii), (iii), and (iv), it follows that if a smooth
principal bundle automorphism TE”O is sufficiently close to'ﬂ?‘in the
c® topology, then there exist differentiable sections ? ; of

LLUVEE E} P > M for sufficiently large i, that are bounded in the

canonical €% norm by some constant strictly less than the injectivity

radius of G, such that ‘\Ifi‘\ko—l = exp§ i and the conclusions of
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the theorem hold for the sequence (’Yi) it they hold when the

: . _ -1, .
sequence (“Ifi) is replaced by the sequence (’\Yi\PO } in the
statement of the theorem. Thus we may assume that Y'i = exp}'i,
’\If = exp 3 and that the canonical c®-norms of fl and '5' are bounded
by a constant strictly less than the injectivity radius of G.

If w is a smooth connection, then

a5 =B} 7 (Fyre, - adlexp (=) ) (w0, - w RN

Also let ‘7 be the section of gp ® T*M — M defined by

TS - adlexp ((F)) (Lo - w ) ).

m = B(Y )
By corollary II.2.7 it follows that ’V] € Li( gp ® T*M) in cases
(i) and (ii), 7 € ck(g p ® T*M) in case (iii) and

ot
”f) € Ck’ (gp ® T*M) in case (iv). It Tollows also that
w s . D . . .

(d °§i) converges to M in the L%{ norm in cases (i) and (ii),
(dw°f .) converves to V) in the Ck norm in case (iii) and (dw°§ )

i i

. k, o . . Wy
converges to M in the C norm in case (iv). But (d Ei)
converges to d‘.»"f in Li-l( gp ® T*M) in cases (i) and (ii),
ke

(dw"‘ .) converges to d®es in C< l( ® T*M) if k> 0 in

i P

cases (iii)} and (iv}, and (dw°f i) converges to dw‘g in Lil( 9 p® T*M)

for all r € (1,00 ) if k= in cases (iii) and (iv). Hence ‘v) = d“°§

in all cases. Thus Y e L{;l § and ({/i) converges to \P in the
. . . }
L{‘;l topology in cases (i) and (ii), \_Pe ChLl and (‘}J__’i) converges
L 1
to ¥ in the Ck+l topology in case (iii), and Fe C{+1’°( g and

=<
(‘I/i) converges to ¥ in the Ck+1’

topolopgy in case (iv). Then
Q = Y *wo by the continuity of the actions of the appropriate

groups of principal bundle automorphisms on the corresponding spaces

of connections.
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83. A Convergence Criterion for Principal Bundle Automorphisms

In this section, we give a condition for a sequence of principal

k k, o

bundle automorphisms to converge in the groups of P C or C

k+1°
principal bundle automorphisms of a smooth principal bundle over a
compact manifold with compact structural group, in terms of the
action of the automorphisms on connections.

Let 7 : P = M be a smooth principal bundle over a compact
smooth manifold M with compact structural group G whose Lie algebra
is E} s let G be given a biinvariant Riemannian metric, and let M
be given a Riemannian metric. Let Trad : Gp ~—» M and TrAd : E} p M

be the adjoint bundles associated to T : P~ M with total spaces
GP = P x ad G and -E)P = P x AdE] .

We recall that the biinvariant Riemannian metric on G determines
a biinvariant Riemannian metric on each fibre of Trad : Gp~—> M
which in turn determines a distance function on this fibre. We let
P o ¢ OGP me_7 x Gp é—m;7—*]R denote this distance function on the

fibre G, / m 7/ of 7T

G, -> M over m € M. We recall also that
P - ad P

the biinvariant metric on G deltermines a G-invariant norm on Ea which
in turn induces norms on the fibres of TrAd : E} P - M and
E} p @ T*M — M. We let ). n denote both the norm on the fibre
Ea p / m_/ of TrAd : Ea p -> Mover m € M and also the norm on
E} p [ihtj769 T;M. The canonical distance function
— 0 0 o . o
2+ C(Gp) x C(Gp) = R on C (Gp), and the canonical C” norms [l « }{

on CO(EaP ) and CO( E]fg ® T*M), and the canonical P norms

Nl p on 1P gp ) and LP( QP @ T*M) for p € /1, 00 ) arc defincd by

s F LW, - S (),

méM

I

“‘7 “ msgl?w ’ ’v (m)l m ’

/P
( jl\ ‘ m l vo

i
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— . . . . )
, may be regarded as a biinvariant distance function on C Q ,
g

on identifying Co§ and CO(Gp), and the canonical norms on €°( g Pl

o g . . .
c( g p ® T*M), LP( g p) and LP( 9 p ® T*M) are invariant under

: 0o Cy oo = T s s e - s .
the action of C L’g,_ {see propositions V.2.3 and v.2.4). Thus if wo 1

and oo belong to COA , the space of continuous connections on

0o

9T : P — M and if ’f&clg/ , then

ITrw e, |- ) w

L - el

and if W, and w, belong to LPA for some p € L-l_, oo ) satisfying

p > dim M and if Ye Llil?/ , “hen

g, - ¥ o, ) - e, - w,|

o’

Lemma 3.1

Let T : P ~—>M be a smooth principal bundle over a compact
manifold M with compact structural group G whose Lie algebra is g
Let T, 4" Gp — M and TrAd : gp —> M be the adjoint bundles with
total spaces Gp = P x ad G and 9]) =P x Ad 8 . Let M be given a
Riemannian metric and let G be given a biinvariant Riemannian metric,
determining a distance function S on the fibre Gp [—mj of

T

ad Gp = M over m € M and determining canonical norms || . ]} on
e 9p ® T*M) and “ | b on LP( gp ® 71*M), where dim M < p < o0

Given a compact subset K of M, let

P L E) = SE e (F ), m) )

for all ’?l,'g_-/é € CO§ . Then there exists a constant Ap, depending
only on p and on the Riemannian geometry of M, such that
(i) if wecAh , ¥, ¥, e clg and m e K, then

BT, sp (X ), W, m) 4 [[ ¥ e - x| (dian k),

. 5 5
(i1) if we—LlAf "yl’Yz € Lll? and m € K, then

- . %
P ) S p (T m, Wy ) s Al e - rw e (diam 07,
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where
dim M
o(—_1_F
Proof
0
Since the smooth connections arc dense in € }% and Lp,A' y

the smooth principal bundle automorphisms are dense in Clei and ﬁiq; ,

and since C1§; and ﬂ;g. act continuously on Co/yf and LPA respec-
tively, one may assume that @ , XE'] and TI’Z are smooth. By
theorem v.5.2, if c : ZE, 97 —» M is a piecewise smooth curve para-

meterized by arclength s, c¢(a) = m and c(b) = m', then

P (¥ ), ¥y ) - p (F (), T, (m) ) & J fle (s) ) ds

C

where

fx) = | (W -, ) 0],
and hence

P @)W, ) € p (¥ (m),E,(m) )+ polmm)

and

—~ sup \
P K(ﬂ?l,ip”z) S-/)m(ﬁpi(m),ﬁz'z(m) ) o+ e K /Jf(m,m ),

where /Jf(m,m') is the infimum of the integrals of f with respect to

arclength along all piecewise smooth curves from m to m'.

If we c°A and'\fl,\]?2 '3 01{3 , then ¥i*w - ¥ o

c 9 p® T*M), and

FO€ ||t T ||

and thus
Pemmn) S| Tt - ¥oreo || dist (mm')

and hence

P L) S p 0 m T m) s | fee = W% Il (diam k).

Also it follows from theorem IV.3.3 that there exists a constant Ap

depending only on p and the Riemannian geometry of M, such that
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oK

H

v
v o(my, m) £ A ( l' f(X)p d(VOl)\ f (dist (m, _m_'))
/ T 4 & P \ J

M

ot

€ T e - W Il (dist (mumt) )

and hence

—

PE LT ¢ p (T, W m ) apFteo - B o [ (diam )

Theorem 3.2

Let qr : P — M be a smooth principal bundle over a compact

smooth manifold M with compact structural group G. Let Gp [m_] be

the fibre over some given m € M of the adjoint bundle TMoq PN

with total space Gp = P x G. Let (w ;0 i€ IN) be a sequence of

ad

connections on T : P -> M and let (‘}Ifi : 1 € N) be a sequence of

continuous principal bundle automorphisms of T : P—> M with the

property that the sequence (’Ti(m) : 1 N) converges in Gp L_m_/.

Let Kk be a non-negative integer. Then

(1)

(ii)

if pe/T,o0), if p(k+ 1) > dim M, if W, € L,  and

D . .
Yi € LLJrlS_ , and if (w i) and (Ti*w i) converge in L{ZA"
to @ and Gy respectively then (}Pi) converges in Lil S_ to ? ,

for some’}[’ﬁ LE+1§ , and "_\P*(p =W,

. Kk T k+1 .
if w,ec A and '}L/i € C (; , and if (e ;) and (’Yi*wi)
converge in CkAr to w and w respectively, then (‘}F’i)

converges in Cl{+1§ to ¥ for some W€ Ck+1% , and

~pren =,

.. . . < 1
(iii) if o(€(0, 1), if w. € cl’“A and “I/i € c“l"’g , and

. . Kk —
if (oo i) and (Yi*w i) converge in C Y%A to s and oo
respectively, then (?i) converges in ClHl’u? to '_‘P for some

YE Cl(+].,ot§ , and Y*w _ {:‘-)

oK
[



200

Proof

The proof is by induction on k First consider the case kK = 0.
If w; e LP}¥ and j?i € L§}¥ , where p > dim M, then for all positive

“'\I’J‘*wi - ¥t | p =l - (Yi\‘Pj_l)*wi”p

clwi-will,+lw, - @Ew, ||,
= Jw; -l Il T e - T Il

Thus if the sequences (

. P
i) and (jP}'-uo:i) converge in L # ,

then

S?»Jmauwi_wjllp; 1J‘>+oo”’y w’—\l} M'HP_O

and hence

lim

1,J'~)+oo“?j*w i 7 ?i*w i “ p = 0.

But by the previous lemma there exists a constant Ap depending only

on p and the Riemannian geometry of M such that

BT € py (i muT ) apll Tt s BTy [ {diam M)
where

o~ = 1 - dim M
P

But the sequence (j?i(m))converges, hence

1li

im
9 v P (Fym, ¥ ) ) =0

and thus

1lim

i,j2 +o0 P(‘Ti’vj) = 0

But C ?; is complete, hence there exists 1£>e COQ; such that the
sequence (W) converges to ¥

Then ‘_\I/e Lpl?. and ('\Ei) converges



n
to ¥ in L*L %_ by theorem 2.3. This proves (i) when k = 0. The
proof of (ii) when k¥ = 0 is completely analogous to that of (i) when

k = 0. To prove (iii) when k = 0, note that if (

:i,) and (\F; F o .)

i

-

)

W

converge in (‘,O’“,A:_ then (‘\_‘1_}1) converges tc ¥ in Cl% for some
Ve le'} (by {ii) with k = 0).  Thus (’?i) converges to ¥ in
Co’m(;' , and hence Y€ Cl’“g and (’Yi) converges to W in
Cl’v % by theorem 2.3. This proves (iii) when k = 0.

We now prove (i) for k > 0 using induction on k. Suppose the
result is true for k - 1. Let p € _/_T,OO) satisfy p(k + 1) > dim M.
Then there exists q € LT,OO } such that

1 1 1 k
P =~ dim N < q < T .

Then there exists a Sobolev embedding L%:A, " qui—lA’ . If the
sequences (w i) and ('fi*(/o i) converge in LEA' , then they converge

in L?{_]A» , hence the sequence (‘?i) converges to ¥ in L?\S/ for
some Ye L?,g , by induction. Then, by theorem 2.3,?6 L£+1? R
the sequence (\Fi) converges to ¥ in L}l)wlg» and Y*w = (s . This

proves (i). (ii) and (iii) are proved similarly using induction,

again by theorem 2.3.

Corollary 3.3

Let =ar: P-— M be a smooth principal bundle over a compact
smooth manifold M with compact structural group G. Let (e ;0 i€ W)
be a sequence of connections on Tr : P — M and let ('i/i : 1€ N) be
a sequence of principal bundle automorphisms of =t : P—% M. Let K
be a non-negative integer. Then
(1) ifpe [T,0e), if p(k+ 1) > dim M, if w € LhA-, if

;€ LE+1§ , and if the sequences (w i) and (\_Fi*ooi)

. ) -~ .
converge in LlA’ to ¢« and > respectively, then a subsequence
N

D
of ("Pi : 1€ IN) converges 1in L,}H_sz to \P ; for some



)ye Li+1 s and ’y*w = L:) [

(ii) if w. € A, ir Y. € ck”z‘i , and if the sequences (o)
andfzi*co i) converge in Ck}¥ to w and @O respectively,
then a subsequence of (fyi © 1 & N) conver
Y, for some Y€ Ck+1§ , and Vregy = >,

(iii) if o€ (0, 1), if w, e JO%A, ir Y, € ck*l""tg , and
if the seqguences (v i) and (jPi*(Agi) converge in Ck’otAr to

W and (o respectively, then a subsequence of (jPi 1€ W)

1
converges in Ck+1’°‘§r to Y , for some \_I/e C(+l’a§ ,
and }P“"w = (:’

Proof

In all cases, we may suppose that‘ﬂ?i is continuous for all i.
Since the structural group of -t : P-— M is compact, for any given
fibre of 1 : P — M there exists a subsequence of (j21 1€ NWN)
converging on that fibre. By theorem 3.2, this subsequence has the

required properties.
i

Lemma 3.1 has an analogue for sections of vector bundles

associated to a given principal bundle.

Lemma 3.4

Let 91 : P - M be a smooth principal bundle over a compact
Riemannian manifold M with compact structural group G whose lie
algebra is 9 . Let 8 : G = Aut(F) be a representation of G as a
group of isometries of a normal vector space F. Let Tyt E — M be

the vector bundle associated to 41T : P —> M with total space

E=Px _, F. For all mé&M, let |.| n be the norm on the fibre E thlj7

2]
of Tr9 : E—=> M over m determined by the norm |. ] on F. For all

> .
compact subsets K of M let the c® norms and LI norms of C° sections and

Lp sections respectively of T : P — M over K be defined by

202
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IIEIIK!CO = S l f (m)l m

me k

)
p ‘P
“ E” K’LP + (I | § (m)l d(vol) )
K m

for all p satisfying dim M < p <L oo,
Then there exists a constant Ap, depending only on p and on the
Riemannian geometry of M such that

(i) if W C%# ,‘E € Cl(E) and m € K, then
NS0 o € 13l ol a® 5], o (aiam )

(ii) if we LPA | ¥ e I"(E) and m € K, then
w . o
I|§“ K, c° S l'g(m)l o +Apnd E‘\IW,LP (diam K)

where

dim M
p

K = 1 -

Proof

It sulfices Lo verify that the inequalities are satisfied when
cw  and f are smooth. By theorem V.6.6, if ¢ : /a, 97-—5 Mis a
piecewise smooth curve parameterized by arclength s, c(a) = m and

c{(b) = m, then

\\'S(m')lm, - \f(m)lm \ < J ld“’}[ o(s) ds-

C

Let £ : M ~> R be defined by

fm = | d°F m] .

Then

sup

“?” K CO S lz(m), m + m'€e K }'/f(m;m')

where/ﬁzf(m,m') is the infimum of the integrals of f with respect to

arclength along all piecewise smooth curves from m to m'. But
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pemm) £ a3 | o dist (mm)

and
oA,
/uf(m,m’)$AP||dw§” w, P (dist (m,m') )

by theorem IV, 3.3, and hence

||5]|K’Co ‘;(m)l ot ” a“s Il - (diam K) ,

(7% l . oA
Sl Sl o ARTT a0

, L
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84. Further Properties of the Action of Automorphisms on Connections

In this section we investigate the consequences of corollary 3.3
for the action of the various groups of principal bundle automorphisms
on the corresponding spaces of connections on a principal bundie over
a compact manifold with compact structural group. It is shown that
the quotients of the various spaces of connections by the action of
the corresponding groups of principal bundle automorphisms are
Hausdorff, and that the stabilizer of any connection in these spaces
is a compact subgroup of the appropriate group of automorphisms and
it contains a subgroup naturally isomorphic to the centre of the
structural group of the bundle. It is shown that the subset of each
spacc of connections consisting of those connections whose stabilizer
is the centre of the gstructural group form an open subset of the space
of connections. We shall also consider the action on the spaces of
connections of the subgroups of the corresponding groups of principal
bundle automorphisms consisting of those automorphisms which fix the
fibre of the bundle over some given element of the base space.

Theorem 4.1

Let =T : P —> M be a smooth principal bundle over a compact
smooth manifold M with compact structural group. Let k be a non-
negative integer. Then, for all p € [T,OO) satisfying p(k + 1) > dim M
and for all o € (0, 1), the quotients L%ZA’ /L{Lﬂ? , C]{A/ /Ck+1§/
and Ck’uA/ /ClHl’d?/ of the spaces L%:A" c A and Ck’“A/ of
connections on T : P -» M by the corresponding groups of principal
bundle automorphisms are Hausdorff.

Proof

If ~ is an equivalence relation on a topological space X,
then X/~ 1is Hausdorff if and only if R is closed in X x X, where

R= {(x;,@)e XxXx:x, ~x_}.
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Thus Lf,Ar/LF+1‘§;‘jS Hausdorff if and only if R is closed in
< <
L{:Ar X LEA’, where
R = { (oo, Q) LiZAr x LlpAf 3 \_? € L%)ng such that
L

T -}
Let (w00 ) belong to the closure of R. Then there exists a sequence

o P
(uai . ie W) in Lk)%‘ and a sequence (.

. . »
i i€ WN) in Lk+11%» such

that (aJi) converges in qz}#f to (v and (1;}* aai) converges 1in

Li Xk»to o . By corollary 3.3, a subsequence of (iP} : i€ IN)

converges in Lﬁ+1§3_ to ff'é L§+1€; , and 3?*(«) = & . .lence

(o, 53) € R. Hence R is closed in Lﬁ)*’ X %Z/N', and thus

Li/%’/Lﬁ+1§;, is Hausdorff. Similarly Ck}¥’/8{+1§? and Ck’d}%’ /Ck+1f*£;

are Hausdorff.

Theorem 4.2
Let T: P —>M be a smooth principal bundle over a compact
smooth manifold M with compact structural group. Let k be a
non-negative integer, let p € 11} oo ) satisfy p(k + 1) > dim M, and
let « € (0, 1). lLet L.})ng s Ck+l§ and CIH]"O(% be the groups
of principal bundle automorphisms acting on the corresponding spaces
L£,4/, Ck;A/ and Ck’°>4r of connections on - : P > M. Then,
(i) if co € L) A, then the stabilizer of w in L&l(} is
compact,
(i1) if w eCkA/ , then the stabilizer of &3 in CIHI% is
compact,
(iii) if we ™A , then the stabilizer of  in cl”l’“ffé,
is compact.
Let w e Lp,dr and let (‘?i : 1€ WN) be a sequence of principal

k
bundle automorphisms in LF+1E3- such that_g?i*cu =0 . By
c



N
jen]
~]

corollary 3.3, there exists a subsequence of (}Pi : 1 € IN) converging

. p -~ AT n D . T —_ - =T . . - .

in L1{+1 %_ to Y€ L]ng’ s, and Y* g = o . Thusy belongs to

the stabilizer of o> . Thus the stabilizer of (s is a compact

subgroup of L%)_Jrlg . This proves (1). (ii) and (iii) are proved
S

similarly.

Let G be the structural group of <qr : P—> M and let Z(G) be
the centre of G. 1If y € Z(G), then y defines a smooth principal
bundle automorphism of 7 : P —» M mapping p to p.y . Thus we have
natural smooth embeddings Z(G) & Llpuls. (where p(k + 1) > dim M),
7(G) = Ck% and Z(G) € Ck’dg (where o € (0, 1) ) for all non-
negative integers k. Moreover if ¥ € Z(G) and if ‘?: P—> P is the
principal bundle automorphism sending p € P to p.y , then ¥*wo = o

for all W€ C°®A , and hence for all € L%)Ar , WE C"A and
A

W € ck""ﬁv . Define

p _ (D

ha G, -t Gz,

Ck B Cl{ oy f
K, =g,

kky ot lk, ot

c® %o:c’ fg/z(c),

p k+1 k+l,=t .
Lis1 o’ C go and C %o are smooth Banach Lie groups
acting smoothly on the spaces LEA/ , Ck/# and Ck’d}\/ respectively,
by corollary 11.3.3. Define L%zAvo , CkA«O and Ck’“A/o to be the
subsets of LEA/, CkA/ and Ck’“ﬁ’ respectively consisting of
A
. . Do . o) k+1
connections on T : P — M whose stabilizers in Lk+1 , C % and
1 . .
Ck+ ' § respectively are the subgroups of these groups corresponding
p k+1 k+l, e
to the centre Z(G) of G. Thus Lk+1 go , C go and C %o
act freely on L%ZAO s CkAfo and Ck’dﬁo respectively.
Lemma 4.3

Let G be a compact Lie group and let N be a closed normal

subgroup of G. Then there exists a neighbourhood U of N such that if H



is a subgroup of G and H € U then H € N.

Proof

Without loss of generality, we may assume that N is the trivial
group consisting of the identity element of G, for otherwise we may
apply the theorem to the subgroup HN/N of G/N. Choose a biinvariant
Riemannian metric on G and let U be the ball of radius %i(G) about
the identity element e, where i(G) is the injectivity radius of G.
1if Y€EU and y # e, then there exist a e TeG and t € R, where }Jal =1

and 0 < t < %1(G), such that Y - exp(ta). Then there exists ne N

such that
i(G) i(G)
n+ 1 § t < n

It follows that n2 3 and

¥i(g) & FIJ—}Ti(G) 4 nt < i(G),

-~

and thus XI] does not belong to U. It follows that if H is a subgroup

of G satisfying H<€ U then H = fe} , as required.

Theorem 4.4

et 97 : P— M be a smooth principal bundle over a compact
smooth manifold M with compact structural group G. Let k be a non-
negative integer, let p € Zi) oo ) gatisfy p(k + 1) > dim M, and let

ol € (0, 1). Let Li A’O y CkAro and Cl{,qu be the subsets of

LﬁjA’, Ck/# and Ck’fjk respectively consisting of all connections
whose stabilizer in LE+1t§ , Ck+1C§ and Ck+1’°‘f§ respectively is the
subgroup corresponding to the centre Z(G) of G. Then Li )Lb , Ck °
and Ck’%}§o are open sets in qzlkz, Ck}#* and Ck’TA/ respectively
containing all smooth irreducible connections on T : P —> M.

Let Z(G)M denote the trivial fibre bundle M x Z(G) — M. The

inclusion Z{G) “>» G induces an inclusion Z(G)M*;a Gp of fibre bundles
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over M, where Gp = P x ad G. Suppose that we L X¥ or
ck’°7# and that f&”: F — P is a continuous principal bundle
automorphism stabilizing « , identified with a section'ﬂ?éco(Gp) of
Gp —» M. GSuppose that ‘g}(m) € Z{Gj v for some m € M. Let;ifo be

the principal bundle automorphism corresponding to the element of

Z2(G) defined by'j?Tm). Then ﬂPB also stabilizes w and j?o(m) :iE’(m).
But then ﬁl?o =, by lemma 3.1, and thus j? belongs to the sub-
group of the group of principal bundle automorphisms corresponding

to Z(G). We deduce that if‘ﬂ?: M —> Gp defines a principal bundle
automorphism of -7 : P —> M stabilizing some connection on <T:P — M,
and if Y is not a member of the subgroup of CO(Gp) corresponding to
2(G), then N (M) and 2( G) are disjoint subsets of Gp.

Let U be an open neighbourhood of Z(G) in G with the property
that if H is a subgroup of G satisfying H < U then H « Z(G) (such a
neighbourhood U exists by the previous lemma). We may choose U such
that U is invariant under all inner automorphisms of G. Then U
determines an open neighbourhood V of Z(G)M in Gp such that if H is
a subgroup of CO(Gp) consisting of sections of V—» M then
He 'z (6),).

Let cu € Lﬁ/% . If the stabilizer of w in LE+1C3_ corresponded
to a subgroup of Lp (Gp) consisting of sections of V ~> M, then it
would correspond to a subgroup of L§+1(Z (G)M) and hence the stabilizer
of «w> would be the subgroup of Lvp (Gp) corresponding to Z(G). Thus

ws € LpA— N Lp Ao if and only if there exists ¥ e LD and

k+1
m € M such that ¥ (m) € Gp\V.
Let we LﬁA* belong to the closure of Li}b’\ LiAro . Then
. ) P P
there exists a sequence (Ca)i : ie N) of elements of Lk)& N Ly ﬁ&b
converging to e ., Then there exist a sequence (ﬂ?i : i€ IN) of elements

of Ip ]_z; and a sequence (mi : 1 € N) of elements of M such that



* o= . NV, 1 . :
Yi w 5 wland? ) € Gp By corollary 3.3, a
. D
subsequence of (Ti : i e N} converges to ’Ye L]k+l€3 and ?*N =W,
and this subsequence may be chosen such that (m]. : 1 € N) converges
tome& M, since M is compact. But fhpn’ﬁ?(m\e FP\ V, cince the

chosen subsequence converges uniformly to?k’. Thus o € LP/$‘~ LiﬁLo
Thus Ll A‘\ L %— is closed, and hence LE Ao is open in IﬁA’ .
Similarly C A}o and Ck’d/#' are open sets in Ck/#, and Ck’“j#/
regspectively.

By theorem V.4.2, the stabilizer of a smooth connection is
isomorphic to the centralizer of the holonomy group of the connection.
It follows that the stabilizer of a smooth irreducible connection is

) . - | < )
isomorphic to Z(G). Thus li AO , C(A«O and CI\’D‘AO contain all

smooth irreducible connections on T : P — M.

Theorem 4.5

Let 9T : P - M be a smooth principal bundle over a compact
smooth manifold with compact structural group. Let k be a non-negative
integer, let p € _/_-l-, oe ) satisfy p(k + 1)> dim M and let <€ (0, 1)
Let L]IZ A'o ’ CRA’O ’ Ck’“Ao ’ L]IZA%O ’ Ck+l§,o l\+l o«%/o
be defined as above. Then
(i) ,ﬁ” acts smoothly and freely on L}ZA'O on the right,

i A /Lh]go is Hausdorff, and if ( ; : i€ W) is a

sequence 1in L}: )4'0 s (Yi : 1 € N) is a sequence in L.}z+l‘%_0

and if the sequences (w0 i) and (o i"{/i) converge in LﬁAfo

to o and Co respectively, then the sequence (fi) converges

to ¥, for some YWe L}z+1§° ,and wo ¥ - &,

.. I A .
(11) C{le o acts smoothly and freely on CkA‘O on the right,

k K4
C Ao /C“lgo is Hausdorff and if (o i ie W) is a

. k .
sequence 1n C Ao , (’_,‘_Di : 1 € N) is a sequence in C %o



and if the sequences (w .} and (w . .\ .) converge in
- L L
1 -~ L
C{A'o to w and w respectively, then the sequence (’Yi)

k -—
converges to, for some te C&,+1§O , and w ? = D,

..... k+l, ot . o o J e )
{(1i1) C ’ kzoacts smoothly and freely on C Ao on the right,

Kk, L+l 00 . . . Lo .
C Aa /C go is Hausdorff, and if (v i 1€ IN) is a

]

. k, o . . . ¢ o
sequence in ¢’ )40 , (‘Yi : 1€ N) is a sequence in C +1, Z%/o

and if the sequences (@ i) and (oo i"g:/i) converge in

Cl(, OLAO to (o and @ respectively, then the sequence (“Pi)

— 1 —_
converges 'to',‘P for some Y€ C<+1,ok§o , and OOY = W

Proof

The action of Lp

P . Y
l{+1§o on Ly ,¢bo is well-defined and smooth

by corollary 11.3.3, it is free by the definition of L‘}on . Suppose

that (o ;) and (W i.‘yi)converged in LEAD to w and w but (‘fi)

did not converge to the unique ?6 L§+l\%ro with the property that

w .{f: IR (such a? exists by corollary'3.3). Then there would

exist a neighbourhood N of ?P in P and a subsequence of
k+1 o
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(¥, : i€ N) with the property that . #¢N. But then by corollary 3.3,

some subsequence of this subsequence converges to some '}E‘O € L%le %o
A%

and w .},PO = (o , which would imply that \P‘o =Y . But this is a

contradiction. Thus if (wi) and (w i'\Fi) converpge, then so does

) . . P P L
(I/i). It follows immediately that Lk Aa /I.,k+l o 1S Hausdorff.
This proves (i). The proofs of (ii) and (iii) are similar.
p m  k+l m K+1, e m .
Choose m€ M and let Ll<+l , C §/ and C %, denote

the subgroups of iy s Ck+l and Ck+l’°( consisting of those
k+1
principal bundle automorphisms of 4 : P-—> M which restrict to the

identity automorphism on the fibre of ~41r: P — M over m.



Theorem 4.6
et Tr: P —> M be a smooth principal bundle over a compact
smooth manifold with compact structural group. Let Ik be a non-negative
integer, let p € _/_T,oo ) satisfy p(k + 1) > dim M and let o € (0, 1).
| k p kk
Let m € M and let L{:A' , C{A , C ’QA , L{Z-lg’,m’ C&+1§/m and
clerlye \%m be defined as above. Then
(1) L};lg m acts smoothly and freely on LEA’ on the right,
D ) m . . . Lo .
LkA’/L]wlgr is Hausdorff, and if (cu ;i d € WN) is a
sequence in P A (¥. : ie& IN) is a sequence in LP ™ and
k i ktl
if the sequences (oui) and (o i.‘I’i) converge in LE:A* to wo
and w respectively, then the sequence ('fi) converges to the
unique \PE L{:_lfi}m such that CD.Y: oo,
(ii) C](Jr1 ™ acts smoothly and freely on CI% on the right,
k k+le m . : o .
cA /C C& is Hausdorff and if (w ; 1 ie W) is a
. . k]
sequence 1in ledb , (\_Fi : i € N) is a sequence in C<+1@m

Ik
’Yi) converge in C A«

to to and o respectively, then the sequence (“Ifi) converges

and if the sequences (w i) and (W i

' £ . T - -,1{“'1 m N - . . ~T7 -~
to the unique W€ C % such that W .Y = ,

(1ii) Cl{+1’“§ M acts smoothly and freely on Ck’a;db on the right
Ck’“Ar /le"’(f& M Js Hausdorff, and if (wi 1 1€ IN) is
a sequence in Ck’“/ﬁf s (‘k‘ : i €EN) is a sequence in C]{+1’°‘§ n
and if the sequences in (s i) and ( w i.\Ifi) converge in
Ck’“A to «w and <o respectively, then the sequence ('fi)
converges to the unique W€ Ck+1’“ Lo&m such that Y = (o .

LE+1 fgm, Cl{+1§—m and Ck+l’°( q/m act freely on the appropriate

spaces of connections, by lemma 3.1. The convergence of the sequences
(ﬁ?}) of principal bundle automorphisms follows immediately from

theorem 3.2.
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85. Analytical Properties of the Covariant Differential

In this section, we shall study some properties of the
covariant differential d% mapping sections of a vector bundle
E -2 M to sections of E @ T*M — M, where ¢ is a smooth connection
on a principal bundle -1 : P-~>» M to which E — M is associated.

We shall prove a priori inequalities for the map d’  and deduce

+1 lk+1, 0%

P (E) and C

e
X .1k
that d maps Lk+1

spaces of Lﬁ(ls ® T*M), CE ® T*M) and cX'® (E @ T#M) respectively,

(E), Ck (E) onto closed sub-

where p(k + 1) > dim M.

principal bundle

i : P P
We have seen that the group Lk+1§; of L

P

K connections on

automorphisms acts smoothly on the space L£}$- of L

M P > M whenever p(k + 1) > dim M. The Lie algebra of

] Is
map from Lﬁ+1§; to Li)@/ sending'i? to ﬂ?’*ug is smooth and its

P . Cps . p P »
Lk+113' may be identified with L{+1(E3 p). For any ¢ E L A, the

derivative at the identity may be identified with the map from

LE+1( gp) to Li( gp ® T*M) sending }'6 L&l(gp) to dwf (see
proposition V.7.1(vii) ). Similar considerations apply to the actions
of Ck+l§;‘ on (924/ and of Ck+1’.(§§ on Ck’oﬁAr . The theorems
proved in this section will thus be applicable to the study of these
actions.

Let w s TP —» E} be a smooth Ehresmann connection on a smooth
principal bundle 41 : P—> M over a compact smooth manifold M. Then
for all vector bundles E-—% M associated to ~r : P —M, for all
differentiable sections § of E - M and for all connections w3 on

T : P2 M
a”’F - dw”g + TAY

where T2 = ( - . The map

q%e . Ll

D P s
ky1(B) ™ Lp(E & T¥)

is a continuous linear map. Also if p(k + 1) > dim M and k> 0
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there exists q € ZT,OO) such that

1
dim M

1
q

1
75
and gk » dim M. Then there is a continuous Sobolev embedding

i’ () LE(E)

e+l
and a continuous bilinear map

P q P ,
1)(gp ® ) x LHE) = L (B ® THM)

sending ( T, § ) to "C"} , where gP = P x Adg . Hence
the map

w

d Lﬁ+1(E) - P ® TeM)

K
is a continuous whenever p(k + 1) > dim M and k = 0. The continuity
of this map when p > dim M and k = 0 is proved similarly, as is the
continuity of the maps

w : Ck+1

d (E) = (£ & 1*m)

a®@ L% ) = % E e .

Theorem 5.1

Let 1 : P —> M be a smooth principal bundle over a compact
smooth manifold M with compact structural group G whose Lie algebra
is E} . Let E~> M be a vector bundle associated to T : P —> M.

Let o ¢ TP -—)9 be an Ehresmann connection on -7 : P—> M
and let § : M — E be a continuous section of E —> M which is
differentiable almost everywhere. Let k be a non-negative integer, let
p e_[f,oo ) satisfy p(k + 1) > dim M and let <o(€ (0, 1). Then
(i) if w€ L’ A and if d”F € L(E ® T*M), then ¥ e Ly, (E) and

there exists aconstantkﬂ?,) 0, independent of E , such that

PPN G P I 1 B

et



™o
@3]

(ii) 1f we A and if d¥F € (£ ® T#M), then Fe ¢(p)
and there exists a constant K _, > O independent of § , such
that

w)
< < : i + \
ll|| E H c}g—rl = }\w \.! d X “ Ci; H E “Co / )

Cey S o ke, &< . kel o0
(i1i) if w € o A and if a“’}’ € C (E &® T*M) then Y € C (E)
and there exists a constant K., > 0, independent of E , such

that

A P TR 1 I

Proof

Let 00() : TP — Ea be a smooth connection and let
Then
O (79
CL © § = cL E — A E
There are continuous bilinear maps

p
k

P

L (Gp @ 1) x L) = e e e

L(Qp ® TM) x CU(E) = L (E @ T*M)

el Op ® 1) x e = e @ T

™ gp ® M) x %) > T @ THM)

where gk > dim M, by corollary 11.2.7., fThus if gk ? dim M, if

q N 3 p a2 w e +
3erl®, if welPA andifd” % € P2 ® THM), then

“o P

d k+1

I e LP(E & T*M), and hence T el

K (E). Furthermore there

exist Kl »> 0 and K2 > 0 such that

Il s b (D™l +HEl )

<K (L7 o rhalleomwell AT )

Hence there exists a constant K., depending on ¢ but independent of

3’
§ , such that



LA IR HRY)

Sk

hs ) )
Similarly, if § € CN(E), if o€ LA and if a5 € h(r ® Tom),

1

then E € Lk+1(E) and
X
; + 151 )
IEl o sk G ES o
for some constant K., depending on ¢ but independent of § ; if

3
! k
Yec® if wec A and if d¥F e C(E® THM), then

Ye " E) and

Ul e < b (WTEN e+ U8 k)
C

k o . k .
for some constant KS; if Ye c (E), if we€ ¢ ’é}%’ and if

i“ ¥ e ™ (5 ® M), then ye b

eI eree € Ko (BdZF ] e + 1S )

(E) and

for some constant KS' It follows that (1) and (ii) are satisfied

when k = 0. To prove (iii) when kK = 0, we observe that Y € Cl(E)

1,

and a fortiori Y € Co’u\(E). It then follows that § € C (E) and

the required inequality is satisfied, proving (iii) when k = 0. (ii) and

(iii) for k> 0 follow from the case k = 0 by induction on k, using

the a priori estimates derived above.

We now proceed to prove (i) by induction on k. 1f plk+ 1)> dim M

and k ? 0 then there exists q € LI, oo ) satisfying

1 1 1

q 2 p ~ dim W
and gk > dim M. If wé€& LﬁA— and dw}' € L';(E ® T#M), then
w € L€_1y$ and dbdf € LE—I(E ® 71+#M), and furthermore there

exists KA > 0 such that

| oL'”’}Iqu,

K-1

S K+|( OLw§“L4;



By the induction hypothesis, ¥ & Lg(E) and there exists K. > 0,

depending on e but independent of § , such that

10,

b)
Hence S € L1

B3I

as required.

Combining this theorem with lemma 3.4 we obtain the following

Tl

(E) and

¢ kg (Hd™EN o +1 TN

K

K+\

<(K + 0 K, K¢ )“oLwH] P+

analogue of theorem 3.2.

Theorem 5.2

Let T

smooth manifold M with compact structural group.

kg (A8l o +1 5l

N

KR co

: P -> M be a smooth principal bundle over a compact

smooth vector bundle associated to T : P — M.

Let

and let }:

: TP > 8 be an Ehresmann connection on T

M-—> E be a section of E~>» M. Let m €& M,

Let E —> M be a

P> M

Let k be

a non-negative integer, let p € ZI,CD ) satisfy p(k + 1) > dim M and

let X € (o0,

(i) if w€L A and Je€ L]

1).

Then

K e ? 0, independent of § , such that

S0 e s Koo (Nd7FIe #1001

ktl

(E) then there exists a constant

!
(ii) 1if w € C;& and § € C “(E) then there exists a constant

K., 2 0 independent of § , such that

(M

kel, ok

R i, ot .
(iii) if we ¢ }* and } €& C 7’ (E) then there exists a

constant Ka)

> 0 independent of E , such that

>

S“<:ou ( “ CL}U E “(:‘< * “g (o l"”') >
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Proof

Since pik 1) > dim M, there exists g > dim M satisfying
1 5 1 k

q 7 p dim M

By the Sobolev embedding thecorem, there exists Ky > 0, independent

of E and @5 , such that

L8 1l o ¢ K Hotw‘illl_,:< |

By theorem 5.1 and lemma 3.4 there exist constants K, and Kegs

independent of ¥ , such that

IS e <k, (N5l F IS )

LK+|

”SHCo < K3 ( HOLMEHL%‘F IE(M3\M>

Combining these inequalities, we see that

51, S (K PRI p KK (5],

P
LK‘H

thus proving {(i). The proofs of (ii) and (iii) are similar.

Corollary 5.3

Let TT': P — M be a smooth principal bundle over a compact
smooth manifold M with compact structural group. Let E —> M be a
vector bundle associated to T : P— M. Let W : TP Ea be an
Ehresmann connection on I : P —> M.

Let k bc a non-negative integer, let p€ 1?} oo ) satisfy
p(k + 1) 2 dim M and let o € (0, 1). Then

(i) if i € IﬁAf then the continuous linear map



w B
d o P

: P
k+1(L) — LI;(E ® T*M)

(E) onto a closed

>
has finite dimensional kernel and maps Li+l

subspace of LE(E ® 1=M),

(11) if w € Ck}# , then the continuous lincar map

w : Ck+1

d () = e @ T1em)

l,
has finite dimensional kernel and maps C\+1(E) onto 1 closed
K ,
subspace of C (E @ T*M),

1 .
(111) if w8 € C(’O)Q , then the continuous linear map

> ]{+]_’O¢

]
d : C (E) — c{’d (E @ T*M)

ki1, ot

has finite dimensional kernel and maps ¢t (E) onto a closed

y X

(E @& T*M),

subspace of c’
Proof

Let m€ M and let X be the subspace of Li+ (E} consisting of

1

all T € Li (E) satisfying the condition } {m) = 0. X has finite

+1
) . ) p ) ) w .

codimension in Lk+1(E)’ thus it suffices to show that d (X) is

a closed subspace of LE(E @ T*M) and that d°°! X is a monomorphism.

X is a Banach space, hence in order to show that a® (X) is closed it

is sufficient to show that the map

Al x:x2d*®
is an isomorphism of normed vector spaces. Thus it is sufficient to
verify that

(d

@I a® = x

is bounded. But by the previous theorem

Hle ¢ Mol 75N e

for all § € X (since §J (m) = 0). Thus (d™] X)7 is bounded, and

by
hence d Q’(X) is closed. Thus d O’(L}ll(E) } 1s closed in Li(E @ T*M).

This proves (i)}. The proofs of (i1i) and (iii) are similar.
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Chapter VII

A GENERALIZATION OF [HODGE THEORY

81, Introduction

Given a smooth vector bundle over a compact Riemannian manifold
and given a connection on this bundle we obtain results for the co-
variant Hodge-de Rham Laplacian, acting on differential forms with
values in the given vector bundle. These results generalize the
results obtained by Hodge in his theory of harmonic differential
forms on a compact Riemannian manifold.

We first outline the main results of Hodge theory. Let M be
a compact Riemannian manifold of dimension n and let d and § be
the exterior derivative and codifferential respectively, acting on
differential forms on M. The Hodge-de Rham Laplacian A is defined
by

A = $d + db
The vector bundle /\jT*M — M has a natural inner product structure
<., 0> A Jray ® /\jT*M SR,
determined by the Riemannian metric on M, for all integers j
satisfying 0 $j € n. Then A is a self-adjoint elliptic differen-

5 .
tial operator of order 2. Define an inner product (. , .) on L°( /\JT*M)

by

('7),§) = j <7))§>d(vol)

for all j-forms 77 and }§ on M. Then
(L7, 3) = (M, A%,

Mso if 7 is a j-form and C is a (j + 1)-form, then
(dv,S):(n,SI).

Thus

(A7,§> = (d'»?,d}) " (817,8‘5)
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for all j-forms " and E on M. Thus if " € Li( A\JT*M) then
A"? = 0 if and only ide) = 0 and S'r] = 0.

The Laplacian defines Fredholm operators

12 (A 2 J
JARE Lol A a2 LA TR

of index zero, and if w € Lgao ( AJ T*M) is a current with the

property that Aue Li( A\ JT#M) for some k € Z then we€ leHo( /\‘] T*M)

<

(see 1Warner, F.W.; 1971, chapter 27 or LWells, R.0., 1973; chapter i7).

Let HY(M) be the space of harmonic j-forms, defined by

Bl (M) = [fv}ec‘”( A Jdrem) bmo = o).
Using the above results, one may show that

2

POA JTa) = wlon @ A GF LA T )

2 j 2
(Lk+2( NS = d(Lk+l

j~1 2 j+1
(A J7 ) )+ S (Ll{+]( A Jtram) )
for all k € Z. We deduce that every smooth j~form ‘7 on M is uniquely

expressible in the form
'7 = S + do 4+ S/B

for some harmonic j-form E .and for some smooth (j - 1l)-form o( and

(j + 1)-form }g . Let
G2 Co (A Ty = (A T
be the unique linear map with the properties that G‘q = 0 if

'V) € H‘j(M), and if "") € A4 (c™ ¢ N\ J'T*M) ) then G1I is the unique

element of A (C“(/\ ‘jT*M) ) satisfying A(G'r) ) = ‘V) . Let

H: C®(A Iray — wd(m)
be the orthogonal projection with kernel A (c™ ( A\jT*M) ) and image
HJ(M). Then

I- A G=1-GA = H.

Using the regularity results described above together with the Banach



linear maps
G LECA ) 12 o A Jps)
Ik k+2 ’

) . )
L (A Jrem) — nd(m).

—

The results of Hodge theory may be extended to differential forms
on M with values in some smooth vector bundle E — M over M. A smooth
connection ¢ on E — M and an inner product structure on E — M
preserved by this connection determine a covariant exterior derivative

w . . . w .
d , a covariant codifferential 9 and a covariant Hodge-de Rham
Laplacian £\ , all acting on E-valued differential forms on M. All
the results described above have obvious analogues with two exceptions.
While it is true that

A” (2 e A Jpspy ) = 4

2 J= Lo
lk+2 (Llul(E ® A T*M) )

2

k+l(E @ /\ J+1T*M) )

+ Sw(L

it is in general no longer true that this sum is direct. This is a
2 .
consequence of the fact that (d “*)% £ 0 in general. Thus though

every smooth E-valued j-form 'q on M is expressible in the form
7 = S + dwtx + b‘f}g

for some E-valued j-form _S satisfying ZX“’S = 0 and for some
smooth E-valued (j - 1)-form o and (j + l)—form‘fg , 1t is no
longer true that this decomposition of 77 is unique.

One may extend these results to Sobolev spaces and Hlder
spaces using the regularity results of chapter I1II. Let k € Z and
let

1< p<coo

w
Then A defines a Fredholm operator
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o> P -
IR Y

>

B
T

—

of index zero. Moreover if u is an E-valued current with the

o .
Y] (v & N “]T""M)

w P
Fal < L E &
R A A

pronerty that A u € L
r I J l(

(£ & A JramM) then

s

)
where k€ Z and p € {l,o0 ). Similarly if k € Z satisfies k 2 0 and
. w .

if o € (0, 1), then A defines a Fredholm operator

k, ot

Aw . Ck+2,°‘ (E % A JT’"‘M) __9 C (F. @ /\ JT*M)

of index zero. Moreover if u is an E-valued current with the property

2% (LeN THM).

that Awu € Ck’“ (E ® /\ ‘jT*M) then u € CkJr
In this chapter we shall relax the condition that ¢4 be smooth.

Instead we shall demand that @ be an Lﬁ connection on E — M where

ke Z and p € (1,00) satisfy the condition p(k + 1) >» n, where n is

the dimension of M, and where also p 2 2 in the case where k « 0

(note that this last condition follows immediately from the condition

plk + 1) > n when n 2 2). Let p' € (1, o0 ) be the exponent conjupate

to p, defined by the condition that

T =

Then we shall show that A% defines Fredholm operators

N 1_,2”(}3 ® A JTHM) - Lf_l(lz ® A Jrm)

for all L€ Z and q € (1, o) satisfying the conditions

1ok o1 L 1k
P n - q n =~ p n
(theorem 3.4). Moreover if u € L8k+1(E ® A\ JraM) and
[~ : .
A ue L?—I(E N JT*M) then u € L?+1(E 2} /\JT*M) (theorem 3.5).

From these results we shall deduce results corresponding to results
in the theory of harmonic forms on a Riemannian manifold described
above (theorem 4.1). We shall also prove analogous results when ¢

k,eX

is a C connection for some integer k 2 1 and for some o« € (0, 1)

(theorem 4.2).
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82, Lemmas concerning Maps between Sobolev Spaces

We study the linear maps between Sobolev spaces of sections of
vector bundles ) —» M and E2 —» M over a compact manifold M induced
by a vector bundle morphism 6 € Lﬁ(Hom(El,Ez) ), where K 2 0 and
p(k + 1) > dim M.

Lemma 2.1

Let T, : E, > M and 'ﬂ'2 Pk, —» M be smooth vector bundles
over a compact smooth manifold M of dimension n. Let the non-

negative integer K and the real numbers p and ¢ satisfy

-~ 3

l<p<.o°

jal

and let 6 € H{

(Hom(El, E2) ). Let ( € Z and q,r € (1,00 ) satisfy
1
- -£

to 8 ¢ f provided that

-k &L ¢ Kk,

1 L 1 k

r " n 2% T on,
1_251_(_1__11
q n p
Proof

First note that

Of—
e o



and thus the condition

is automatically satisfied when

L> 0. similarly

1 1 1 k
¥ 2 gty T ow
1 k
b4 5 T 5
and thus the condition
1oL g1k
n p n

is automatically satisfied when [ & O.

Note that if

L S S
r n ~p n
then L >o.
First consider the case when L = 0 and
[
1 n p n ,
Choose s € (1, 09) such that
1 k - L 1 L+ 1
-

and s 2> r.

This is possible since

%—]<;L<L;1—£,
L; 1 - S o ’
%-R;L<1,
%_I{;L<%.

Then 9 € Li(Hom(

El’

Ez) ) by the Sobolev embedding theorem.

Moreover
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r £ q, r & s and

L « |

n

n |
==
|
S
=

L+t L
i €) * (r n _-E) " n <

and thus the evaluation map defines a continuous bilinear map

O | =
<

q - i S : T . r -
LYE,) x L (Ilom(Ll, EZ) ) "')LL(E )

LB x Ly 2

by theorem II.2.4, part (i). This proves the theorem when L 2 0 and

>

S =

L.
r

t 1
no T p

Next we prove the theorem when [ » 0 and
1 L k

P

(we have already seen that this equality implies that L > 0 given
that the hypotheses of the lemma are satisfied). Then

A
q n P n

and hence qL » n. Now 6 € Li(Hom(El, E,) ) by the Sobolev embedding

theorem, and the evaluation map defines a continuous biliear map

L9

LED x L’;(Hom(E

r
b Ey) ) = L(Ey)

by theorem IT.2.4 part (ii). This completes the proof of the lemma
when L2o.
We prove the lemma when U <€ 0 by duality. Let g' and r' be the

exponents conjugate to g and r respectively, defined by

L
q qv -9
1 + l’ = 1.
r r
Then
1 1
T v tw o LA
1 (- L) 1 k
¢ T Tm *P T on



Let ' € Li(Hom(E2*, El*) ) be the section of Hom(Ez*, El*)-—e M which

is dual to the section @ of Hom(E], EQ) —3> M on each fibre of these

vector bundles. TFrom what we have already proved we see that @' defines
n ! '
a bounded linear map from LiL(Eq*) to L?L(El*). The Banach space dual

0'* of ' thus defines a bounded linear map from L%(El) to Lt(Ez), by
duality. But 6'* and © coincide on Coo(El). Thus @ = 0'* by definition

of 9. Thus proves the lemma when L < 0.

Lemma 2.2
Let LIS E, = M and ‘ﬁ;: E, = M be smooth vector bundles
“
over a compact smooth manifold M of dimension n. Let the non-negative

integer k and the real numbers p and § satisfy

1.Sp<0°

1
0$£€ < -
l < k + 1 _ €
I n

E.) ). Let L eZ and q,r € (1,90 ) satisfy

1’ 72

and let 6 € Li(Hom(E

1
-

1
<5 - ¢

. . r .
Then 8 defines a compact linear map from L?+1(E1) to L (E,) sending

f e’ El) to 9 e f provided that

-k-1¢L & k,

L.
r

0L
5
N
—
|
——
2|
i
=
~—

First we prove the result when L2 0 and



n

m
—

—
n
3
>

As in the proof of the previous lemms we may choose

that
1 k - L Lyl
P n < 5 < n .
and s > r. Then 6 € Li(Hom(E1, E2) ) by the Sobolev embedding theorem.
Now
L+ 1
T 5 ~ &8 720
hence
1 1 1 L 1
g " n g a5 "¢
Also
1 L 1 1 1 L
—+—___£ = — = = 4 =
q n S r S n

> 0
since s > r and L2 0. Clearly

1 1
= < = < 1

O |

hence there exists t € (1,9 ) such that t > r and

L
o - &

Q=
ni—

B R G
n t q

since

L1

1
T

we have a compact embedding

q : t

Lot (B &2 L OBy
by the Rellich-Kondrakov theorem. Also the evaluation map defines a
continuous bilinear map

t, .. S r,..
Ly (Ey) x Ly(Hom(E,, E,) ) — LL(EZ)

17 72
by theorem II.2.4 since s > r, t > r and

1 1 L 1
PR -

n



Next we prove the theorem when [ = 0 and

O A
I n P n'

1
i ¥

L+l

By

—~

Then 6 € LF(Hom(EL, E.) ) by the Sobolev embedding theorem.

l k + 1
p n

+ £

< 0

and hence we have a compact embedding

q;. No
L (Ll)c>§ C (Ll)

by the Rellich-Kondrakov theorem. Also the evaluation map defines a

continuous bilinear map

0 r . ! ro
C (El) x L (Hom(Ll, Ez) ) —> L (Ez).

Thus @ defines a compact linear map from L9

L l)

Next we prove the theorem when L > 0 and

k
n

8 €L (Hom(E,, E,) ) by the Sobolev embedding theorem.

L 1 72
D T S N A R
n r n n
1 k + &
T p n t e
< o0

and thus there exists t € (1, oo} such that

L N AP
q n t n
>

and t r. Then we have a compact embedding

4 £
L (B e L{(E])

by the Rellich-Kondrakov thecorem. Also the evaluation map defines a

to LY(E,).

<

Now

~—

4o -
Lo

Now
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- . D
Cconctinuous oliiincail’ idp

Loy x L:(Hom(El E,) ) => L (E,)

L T2 2
by theorem 1I.2.4, since t > r and £t L > n. Hence @ defines a
compacl linear map from L?+1(El) to Li(E2)= This completes the
proof when [ 2 0.
We prove the lemma when | < 0 by duality. Let q' and r' be the

exponents conjugate to g and r respectively, defined by

.:_l'.,*.l'_—_]_,
q q
1,1
1 r

Then
1 1
a|:?v-£)
Lo, Lely 1k
q' n “ p n

*) ) be the section of Hom(E. *, E. %)~ M which

Let 0' e LP(Hom(E, *, E ) )

k 2

is dual to the section 8 of Hom(El, EZ) —3 M on each fibre of these
. . r'
vector bundles. 9' defines a compact linear map from L L(EO*) to

q' o Jof e -1 e q o
L_L_l(E1 ). Thus @ defines a compact lincar map from LL+1(L1) to

r .
LL(EZ)’ by duality.

Corollary 2.3

Let T El-—a M and qr, : E2 —> M be smooth vector bundles

1

over a compact smooth manifold M of dimension n. Let k be a non-
negative integer and let p € Zil oo ) satisfy pk 2 n. Let 9 & Li(ﬂom(El,Ez) ).

Then 8 defines a compact linear map from L?+1(E1) to Li(EZ) sending

q(EI) to @ ° f provided that (€7 and q € (1,00 ) satisfy

L
-k -1% L € Kk,

feL



K 1 L
- = [ S — &
n

5=
+-
[

, Tt

-~

n q

T =
R
o]

where p' is the exponent conjugate to p, defined by

Proof

This follows immediately from the previous theorem on

taking € = 0.




85. Continuity of some Differential Operators between Soholev Spaces

SR 5=

In this section we study the covariant exterior derivative,
codifferential and Hodge-de Rham Laplacian, with respect to a not
necessarily smooth connection, of differential forms with values in
some vector bundle.

Let T : E=>M be a smooth vector bundlc associated to a
gsmooth principal bundle - : P — M over a compact Riemannian
manifold M with structural group G whose Lic algebra is Ea . Let

Trad : Gp ™ M and TrAd : E}p — M be the adjoint bundles, with
total spaces Gp = P x ad G, Qp = P x Adg . Let Jr: E —>M be given
a smooth inner product structure < . , .7 : E® E R which is
preserved by every connection on JF : E — M arising from an Ehresmann
connection on A : P = M.

Let w1 : TP—-»Q and W, TP — 9 be Ehresmann connections
on TT : P — M. We have seen that the covariant exterior derivatives
clo°“7 and do°t7 and the covariant codifferentials Scd“7 and

ghalyq of an E-valued differential form 'v on M satisfy

e S e

[0 4t
S uol‘q - S '17 +(—__,)n(_deﬁ nt+y * (~ A ¥ 7))
where T M —>gp & T*M is the gp-valued l-form on M corres-
ponding to w 5 Odl {see proposition V.7).

Proposition 3.1

Let M be a compact Riemannian manifold of dimension n and let
the vector bundle AT : E — M, the principal bundle 7 : P — M and
the covariant exterior derivative and covariant codifferential of
E-valued differential forms with respect to connections on 1T : P = M

be as above. Let k be a non-negative integer, let p & Zﬁ; oo ) satisfy

D

p(k + 1) > n and let Lﬁ)@* be the space of L,

connections on T : P —> M.

[\

[
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Let L E€Z and q € (1, @) satisfy the conditions
- k-1 ¢ L ¢ Kk,

B }T < 1 , k + 1
! n ,

Lok
p n

Hal NS
—
—
—

where p' is the exponent conjugate to p, defined by

Then the covariant exterior derivative d and the covariant

codifferential % define bounded linear operators

L, q B j % S j+1~
d : Lul(L @ A YT*M) — LL(L A AN T*M)

Sw . Lq+l(E ® /\ J+1r1‘.;¢l\,]) N L(E,(E ® /\JT*M)

L
for all o € LEA/ . If U\)l, S 5 € LEA then the linear
operators
a®r _a L‘E+1(E ® A Jrm) o Lz e A e
g7t - g LC'{'+1(E ® /\‘j+11‘='~‘1\‘1) - 9 & At

are compact.

Proofl

The second part of the proposition follows from corollary 2.3

and the fact that

On applyinpg this result when w, =w and when @, is a smooth connection

we obtain the first part of the proposition.




[\S]
(5]
N

Lemma 3.2

Let M be a compact Riemannian manifold of dimension n and let
the vector bundle 17 : E —> M, the principal bundle T: P> M
and the covariant exterior derivative and covariant co-differential of
E-valued differential forms with respect to connections on TT : P— M
be as above. Let k be a non-negative integer, let p € _[I,cc}
satisfy p{k + 1})> n and lct LE)A' be the space of Li connections on

TTor P M. Lot W, w, el A

Let § € 16,0° ) satisfy the conditions

1
& =z
0$E<
1 k+1 0
< - 13

and let Le 7Z and q,r € (1,900 ) satisfy

)=

q

L
oLy ok
r n D n
1L PR k + 1
q n p' n ,

where p' is the exponent conjugate to p, defined by

% + %' = 1.
wz wy w,_ w[ - . -
Then d - d and by -5 define bounded linear operators
w, (2 . .q : J " r. j+1 .
d - d LL-G»l(E & /\ T*M) — LL(E ® A T*M)

il ? - b\" . q n j+1r By r n j o9
by $ DL (B @AY TR S L (@ A TTH).
Proof

This follows immediately from lemma 2.2.
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Lemma 3.3

Let M be a compact Riemannian manifold of dimension n and let
the vector bundle T : E — M, the principal bundle 1T : P = M and
the covariant exterior derivative and covariant codifferential of
E-valued differential forms with respect to connections on T : P &M

be as above. Let k be a non-negative integer, let p € Li, oo) satisfy

P

k connections on

plk + 1)2 n and let Lﬁ)&f be the space of L

T P M. Let @, OUZGLDA/.

k

Let § € Zﬁ} oo ) satisfy the conditions

< 1
0 g{n’
—1—<k+1—€,
n

and let L& 7z and q,r € (1, @) satisfy

T
q n

-k ¢ L € &k

bty 1k

r n “ p n ,

}._}S}_'+l§

q n P n

where p' is the exponent conjugate to p, defined by

(K} (7]
Then d* - 4"  and S *- & ' define bounded linear operators

X Lo . .
-t -a ' LqL(E ® A JTm) — L‘;(E ® A Vs,
S(Jr_ _ Swl . LCl['(E ® /\ J+1T*M) - Li(E @A 'JT"’M).
Proof

This follows immediately from lemma 2.1.




We recall that if W ig a connection on 17 : P —= M then the

. . w . .
covariant Hodge-de Rham Laplacian & with respect to o« 1s the
elliptic differential operator acting on E-valued differential forms
defined by

A® = 57 LT + AT

.

Theorem 3.4

Let M be a compact Riemannian manifold of dimension n and let
the vector bundle T+ : E — M, the principal bundle —r : P — M
and the covariant Hodge-de Rham Laplacian of E~valued differential
forms with respect to connections on Tr : P —> M be as above. Let
k be a non-nepgative integer, let p € (1, 00 ) satisfy p(k + 1) > n

and in the case when k = 0 let p also satisfy the condition p 2 2.

p

K connections on 7 : P— M and let

Let Li,ﬂk be the space of L
we A
Let | e Z and q € {1, 00) satisfy the conditions
-k <Ll £ k

Lok oL oL 1k
P n n ~ p' n

where p' is the exponent conjugate to p, defined by

1
p
Then the covariant Hodge-de Rham Laplacian defines a Fredholm linear

operator

w : .
. q n J P q 0 J o
A Lo (B @ AT = L) (B @ A\ JTH)

of index 0.

Proof

(48]
First suppose that s is smooth. Then A is a self-adjoint

elliptic differential operator and defines a Fredholm operator



A9 m @ Adran o LY (B e AT
U+ L N L—1L e

of index 0, using theorem I1I1.5.3.

Now consider the casc when w€ LE}# but s 1is not necessarily
smooth. The operators
w
d LCL’+1 E® A Jren) —-’)L /\J” T#*M)

s° e A ) = L T@/\JTI\

§« - LE+1(E @ AJdrm) — LqL E® A I )

) 3 .
d :ilece A 1T*M)——)LCE LE® A JTam)

are bounded by proposition 3.1, and moreover, in each of these four

[#1]

Wo °

w
cases, the operator d - d or 8“,-« S is compact, where

w is any smooth connection. Thus

o . .
A LE LB A JTEm) L‘Ewl(EQ A JTem)

is bounded, provided that L and q satisfy the hypotheses of the
theorem, and also

[VN]

A - a7 LE+1(E®/\‘JT*M - 9 E® AJdrm)

(e 1

is compact, using the fact that

o A o (5% 5 ) § (A d) ¢ (L) 87 (7

w
It follows that A is Fredholm, being the sum of a Fredholm operator

and a compact operator. Also

o %)
index ¢\ = index O °

= 0.

Theorem 3.5
Let M be a compact Riemannian manifold of dimension n and let the
vector bundle %? : E —M, the principal bundle T : P — M and the

covariant Hodge-de Rham Laplacian of E-valued differential forms with

238

)
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respect to connections on T : P — M be as above. Let k be a non-
negative integer, let p € (1,e0) satisfy p(k + 1) > n and in the case
when k = 0 let p also satisfy the condition p 2 2. Let LE #¥ be the
space of Li connections on TT : P —= M and let w € Lg A

Let [ & Z and q € (1, ®0 ) satisfy the conditions

-k & L £ Kk,

where p' is the exponent conjugate to p, defined by

1

l— -+ ..]; — ]
PP

s p' T Jr* - q n J M)
If v € L_kHV(L® A CYTHM) and A -7 € LL_J_(E ® A YT*M) then

me IJT+1(E ® A Jrm).

Proof

Let w be a smooth connection on =17 : P — M. There exists a

real number g satisfying the conditions

o<g<%

L |

-

k + 1
n

1
i;(
First we show that if me€ Z and r,s € (1,ee ) satisfy the conditions

-k € m sl

1 1
= - — <
E < = S

N

1

Sle—

< - n 1 _m <
S n r n

N

1

S
. r . S . .

and if Me€L (E® AJTM) then nerL, ESA JreM). By proposi-

tion 3.1 and lemma 3.2 it follows that

Aw Awo e LS (E @ /\ j T*M)
n-e

m-1

using the fact that



N—Swo)OLw-f %wo(dw—rl_wb) N (al,w—(l(wo)gwi-iwo(gu‘ Swo)

AN-AO:(g

But Aw?) € L;_](E @ /\J'I‘*M) by the Sobolev embedding theorem,

slhce

S

1 L el _nm
q n S n
s

. wD
S (@ A But A7 is an elliptic

e
Hence A\ ! € L
differential operator with smooth coefficients, hence ‘Y) € L:Hl(E@ /\‘jT*M)
by the elliptic regularity theorem III.5.Z.
By iteration it follows that if 'v? € L;+1(E X A J"I“"-‘M) for some
mé€& Z and r € (1, o0) satisfying
~k ¢ m <L

l_ksl_ﬂs Lk
q n r n n

1
p 1

then M € L:Hl(E ® /\JT='=M) for all s € (1,00 ) satisfying

gl om0k
S n P

O
]
/

{note that if ¢ <€ r we have an embedding

[ S SvE

r T J % 5 'J TV
I,,m+1(E @ A THM) Lm+l(E ® A JT*M)

and thus the result follows trivially in this case). The theorem is
the case when [ = -k follows directly from this result.
Now let meé Z and r,s € (1, 0@ ) satisfy the conditions

-k + 1 SmSL

R L L e
n S r n
}__._‘74_1__25.1_ k
q n ~ r n p' n
I e A
q n S n P n,

We shall show that if T) e L;(E S A ‘]T"‘-‘M) then ‘y) € L;-H(E ® A ‘JT*M).

Using proposition 3.1 and lemma 3.3 it follows that if M € L;(E ®/\JT*M)




then
w W, r J .
A M -0 M € L [ (E® AT
But Au-r) € Lr]r;—'l(E ® A Jrem) by the Sobolev embedding theorem.

2

8 “Wo I 9 ‘j'“,‘:\,/ +- ]r (R jv‘*,
Hence A 7) € Lm_l(n ® A “T#M) and thus '7 € .Jm_kl\}:.. ® A UT*M)
by the elliptic regularity theorem ITT.5.2.

Now let us suppose that n > 1 and that | 9 -k. Letme Z
satisfy

~k+1 € m <

and suppose that ‘r)e L:;(E AN Jpa1) for some t & (1,00 ) satisfying
the condition

m - ] S ..L. 4 l_(.
n ! n

o
ol
=

Then there exists s € (1,00 ) satisfying the conditions

L _
Lol _m-o1 1k
q n s n n ,
1« 4 1
g n ,

since n > 1 und

L- -1
1. (m )<_1__£
q n - q

1
<lo- 5.

But we have seen that if 'r) € LIE(E @ AN JT”-‘M) then 7) ¢ L;(E ® /\JT*M)

and hence 7) € L:;Hl(E @ AN ‘]T*M), where r € (1, 02 ) is defined by

1

1
s n

, .
Iterating this procedure, we see that if 7) € 1481(+1(E A JT*M) then

there exists r € (1, e ) such that

C
O | kK
q r n

b og
n n

1
5!

and ) € LfH(E ®/\‘]'l‘*M). Rut we have seen that this implies that



el 1(E® AJdTeM) as required. This completes the proof of the
) 7\ !
theorem when n > 1.

It only remains to prove the theorem when n =1 and L% - k.

But then

L
¢

since p',q € (l,o0), L ,kez, L £ k and

% - L ¢ ,o+ ko

Without loss of generality, ¢ may be chosen such that ¢ also

satisfies the condition

o+ 1

T—

Suppose that m € Z satisfies
-k +1 £ m & L

and that n € L;(E ® N Jr#M) for some t € (1, 00) satisfying the

condition

- - ¢ L (m - 1) £ L + k.

1 —
fe ~ t ~ )'

22

Then there exists s € (1, @) satisfying the conditions

T e R

Ol

<€

vl

S j \ r j ot
Then ‘q € Lm(E ® /\JT%M) and hence n € Lm+1(E ® A JT'-I\’[) where
re€ (1, o0) satisfies

1 1
—>§+l—£



1 1
= - L = =
3 L ¢ = mo <

As before, if 'r) € L‘lel(E ® A JT*M) then m € LILH(E® N X T+M) for

some r sabisfying the condition

1
q

and hence M € I'2+1(E® A JT*M).  This proves the theorem when n = 1.

Corollary 3.6

Let M be a compact Riemannian manifold of dimension n and let
the vector bundle 77 : E—% M, the principal bundle 7T : P — M and
the covariant Hodge-de Rham Laplacian of E-valued differential forms
with respect to connections on 1T : P — M be as above. Let k be
a non-negative integer, let p € (1, o0 ) satisfy p(k + 1) 2> n and in
the case when k = 0 let p also satisfy the condition p 2 2. Let
Lﬁ}% be the space of Li connections on qr : P —> M and let

well A

k

Let p' € (1, o0 ) he the exponent conjugate to p, defined by

e T2
o

If me P (E® A JT*M) and A'm = 0 then e’ (@ AJra).
-k+1 17 ’y} k+1

Proof

Take q = p and [ = k in the above theorem.




84, Covariant Hodge Theory with respect to Non-Smooth Connections

In this section we derive properties of the covariant Hodge-
de Rham Laplacian with respect to a connection that is not necessarily
smooth, considered as a mapping hetween Sobolev spaces of differential
forms with values in a given vector bundle over a smooth manifold.
These properties generalize properties of the Hodge-de Rham Laplacian
acting on differential forms defined on a compact manifold which form
the basis of Hodpe's theory of harmonic differential forms.

Theorem 4.1

Let M be a compact Riemannian manifold of dimension n and let

T : E —> M be a smooth vector bundle associated to the smooth

principal bundle 17 : P —> M. Let 7 : E — M have a smooth inner
product structure which is preserved by every connection on T : E —2 M
arising from an Ehresmann connection on - : P — M. Let k be a
non-negative integer, let p & (1, o) satisfy p(k '+ 1} > n and in the
case when k = 0 let p also satisry the condition p 2 2. Let w be an
Lﬁ connection on T : P = M. Letd ™, S and A" denote the
covariant exterior derivative operator, the covariant codifferential
operator and the covariant Hodge~de Rham Laplacian respectively with
respect to the connection w

Let Lle Z and q € (1, %) satisfy the conditions

-k &L €k,

1

t

<

Sie—

k
+ —
n

Sl=

1 ¢ L
p q

b

where p' is the exponent conjugate to p, defined by

1 + l, = 1,
p >

—
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Define

W) - { metl ;@ At A%n <o)

(ker A )j,q,LH. XL‘Y?F ["CLIH_(F ® A Jepap) &W—vi - 0} ,
(ker 4 )j,q,L-é-l. = {T] € L(E+-1(E® /\jT*I\‘I) : du"? = O}’ ,
(ker 8% 0 L1 - {neil, e A Jpan) 8“17 =0},
(im A7 )j,q,\.-l = {Aw’r) " € Li+1(E® A jT*M)} )
na® g =Ty s metlee AT
(im §*“ )j,q,L—l = g“‘,q BR: Li(E ® N I Ly }

Then

(1) HJ(E) is finite dimensional,

(ii) (ker £§A )j,q,L+1 = HJ(E),

(iii) Li_l(EQ Adrany = W) e (in A )5,

(iv) (ker [gn )j,q,L+l = (ker a )j,q,L+1 N (ker Sv; )j,q,L+l,

() Gm AT, - Gma® SRR D

Proof

(1) follows immediately from the fact that
w . .
. P Jors p J

VANE Lk+1(E ® A UT*M) > LIHI(E@ N\ UT*M)

is Fredholm (see theorem 3.4), and (ii) follows immediately from
corollary 3.6.
Let q' be the exponent conjugate to g and let

.19 (5 J Q' Jops
(vye) LL_l(E® A YT*M) x L-\,+1(E®/\ I*M) -> R

be the pairing induced by the inner product structure on T : E—3 M

and the Riemannian metric on M. Note that
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H(E) ¢ C{E®A J‘I‘*M) by the Sobolev embedding theorem, since
p{k + 1) > n Thus

( m n o\ _ r I 2y o1

v , ] { 7 j i l ] Lvua g

M
Jip , J : w
for all € H'(E). If men (E) N (im A ). then there
7 Jseqsl-1

exists § € Ly (E & A JT#M) such that ‘7] = A”% . Then

q
L+l

("),V])

(”, AT )

= A“’»] , )
= 0
(78]
since A is self-adjoint. Thus n = 0. Hence
w]’ o 1 « =
H'(E) A (im A )j,q,t—l ={o} .
Also (im llu )j qsL-1 is closed and has finite codimension, since
w, q " J g q > j‘:
A .LL+1(E ® A M) = LL_l(L®/\ T*M)
is Fredholm. Also (ker éfﬂ )j ', -Lil is the annihilator of
w
{(im A ). since A" is seif-adjoint. Thus
J’q)L_la
w ) e
codim(im A )j,q,L—l - dim(ker A )J,q',-L+l
= dim 1 (R)
by (ii). Thus
L E®AYM) - HI(E) @ (im A ),
1-1 Jsa,t-1.

This proves (iii).
We observe that

A

P n 2 p' n

if p and k satisfy the hypotheses of the theorem. 1If n 2 2 this is
a consequence of the condition p(k + 1} > n. If n = 1 and k > 0 then

the above inequalities follow immediately. If n = 1 and k = 0 then



the result is true by hypothesis. By the Sobolev embedding theorem

there exist embeddings

p o ‘j"v‘r 2 v kj"z’:'
Ly, (B @ A ST < L)(E @ A 1)

l:i(E ® A M) o IIZ (£ @ A Jram).

k+1
If € (ker ZSUl ). then elfj(F) and hence € L2(E @ A JT*M)
" Jra, Ll ki ) ne b '
Then
) w s wJ w
0=(A M, )=, d7n )+ (5§ -7,8 ")
and hence
w w
d M = S m =o.
Thus
w . «J [P
(ker A )j,q,k+l C (ker d )j,q,L+l N (ker $§ )J’,CI,L+1-

The reverse inclusion is trivial. This proves (iv).

Clearly

) w ) w . w
(im A )j,q,L—l L (im d ),j,q,L-l + {im  $ )j,q,L—l .

Thus in order to prove (v) it suffices to show that

w

. . w
(1m d )\jaqyl-‘l C (lm A )\j’q’(——l’
w . s
(im 705 g € Um &5
. w . h . . Au .
But (im A )j,q,L-l is the annihilator of (ker )j,q',—L+1 since

Fay is self-adjoint. Thus it suffices to show that (im d )j q,L-1
sYsL —

and (im $7 ) annihilate 1 (£). But if § e LdE ® A I ram)

Jsq,L-1
and % € 1 (E), then
@“¥ .My -5, §)
=0
. e A (e J+1. Jiey -
by (iv). Similarly if Y€ LE® A r=M) and n € H'(E) then
C 875, m)-(5,a%y)

= 0.

it




Let the compact Riemannian manifold M, the vector bundle
T : E— M and the principal bundle =r: P —> M be as in the
above theorem. Let k be a non-negative integer let p € (1, Go )
satisfy plk + 1) > n and let « he an LE connection on T ¢ P = M,

befine
‘J n 'L — (= r y \jm*, . — \_] nl
wEy=), - iner m@AJra) ¢ (4,7) =0 forall Yen ()}
for all m € Z and r &€ (1,90 ) satisfying

-k =-1< ms k+ 1,

1 k41 < 1 m < 1 N k + 1
p n r n p' n
Since
H‘j(E) 4] (Hj(E)'L)r’m = 0
and since
codim (H‘j(E)L)P’m = dim ()

it follows that

L;(E N JT*M) = H‘j(E) @® (H‘j(E)_L )

r,m.
Let Le Z and q € (1,90 ) satisfy

-k ¢ L s x

1ok g1 b1k

p n q n p' n
Since

(im A" )iqu-l © () (e)* Jqint
and

codim (im A )j,q,L—l

i1t follows that

; w - ot
(im A Vivqot-1 = WE )



Since

(1 Aw ) = H‘j(F)
lker )q,L+1 B .

if follows that

w . .
1J + . W L o -L)
A | e AL L L PRI LD

is a bijection, and is thus an isomorphism of Banach spaces, by the

Banach isomorphism theorem. Define

¢ il @ AT > P (@ A T

]
k k-

by the properties

e \ ) = o,
w i i bl J 4. -1
G l (- (g) )p',—k—l (A l (- () )p',—k+1) .
Then
w J - A _ J + -
¢ adwt = calwl®T e

and hence GuJ restricts to a bounded linear map

w Jop . J s
G Ll e AT L?+1(I; ® A Jrmm).

We refer to G® as the Green's operator of the covariant Hodge-de Rham

(7]
Laplacian & . Define

u® P (@A ) > 1P L (E® A Jors)

-k-1 K~
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. N .
to be the projection mapping with kernel (1 (E) )p/ kel and image nd(g).
, ~k-

Then H “’ restricts to a compact linear operator
.W . r v J * r 4 J"*
H pLo(BE@ A TTHM) > L (B @ A M)

for all me€ Z and r € (1,oe )} satisfying the conditions

-k -1 %4 m< k+1,

1 _ ¢ L .m . l'.+
p n r n ~ p

We see that

-
I
o
3
i
T
-3
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i p' - lj' % Y
for all m € Lt (E & A “T*M) and
(%)

(1-c2 A I)n =u"n
Cor - P Jrpsey
for all me Ll  (E® A JTEM) .

We can obtain results similar to those above when & is a

k, ot

C connection on T : P — M.

Theorem 4.2

Let M be a compact Riemannian manifold of dimension n and let the
vector bundle T : E -3 M, the principal bundle 1 : P — M and the

inner product structure on F : E —> M be as in the previous theorem.

Let k be a strictly positive integer, let oK € (0, 1) and let w5 be

k, ot .
a ¢ connection on T P-= M.
The covariant Hodge-de Rham Laplacian A~ defines Fredholm
operators

~ . p o J.r-,l,- p 3 J B
ANEE: LL+1(L® A JT*M) — LL_]_(E @ A UT*M)

A7 BB e A dran > VP e A e

of index zero for all p € {1,000 ) and for all L,m € Z and Jj3 € (o, 1)

satisfying

1<m +/3 S Kk o+,
If me LIjk«Ll(E@ N JT*M) for some q € (1,92 ) and if

o ' .
A'me 1t m& A Jrem) then m € 1} (E® A Jrem), where L

satisTies the condition above. If mne L? +1(E ® A JT#M) and

k
" _ .

A M € " LR (r & A JTaM) then 7 GCm+1’ﬁ , where m and B
satisfy the conditions given above. The Green's operator

¢ 19 m® Adram) = LY (E e A JTem)

~k-1 -k+1
restricts to bounded linear operators

“w P e Jr p Jorw
G : LL-I(L ® N “T*M) — LL+1(E @/\ T*M),

o™ ™LA E @A dran o ™R EeN ),



[\
wl
—

where | , m and }3 satisfy the conditions given above. Also
_ . . w .
"R Ee A dt -l @ A7 ™ m e At )

wherc

<+1, 0t

e - { med E@ A o ATm -0}

Morcover

N (cm”’ﬂ(ﬁe/\‘j'r*rw)) = a” (Cm’ﬂ(E oA )y 4 87 (cm’ﬁ(Ec&/\_j*lT*M) )

where these spaces are considered as subspaces of Cm—l”ﬁ (E 8’/\JT*M).
Proof
wc
Let 000 be a smooth connection on 7 : P = M. A defines
Fredholm operators between Sobolev and HBlder spaces by theorem 1I1.5.3.
w o
Also A A defines compact operators between the Sobolev and
w
HYlder spaces under consideration. Thus & defines Fredholm operators
between these spaces.
1f me 19 (E®AJITM) and Aw € 12 (E® A JITHM) then
omeE tn ]
M€ I,,Iz+1(E ® A JT*M) by theorem 3.5. If Aw'v e LR EOA Jrem
then Zlhln € L£_1(E ® A JT*M) for all r € (1, e0 ) and hence
-7 GL;+](FIQ9 N JreM).  On choosing r sufficiently large we see that
mE€ ™R (r ® A Jpu) by the Sobolev embedding theorem. Then
w w _ :
(A - &A% )m e (" LA G ® A Jrsm).
i _ .
Since A 'y) € Cm 1”3 (F, @/\ JT*M) 1t follows that
“o

Ame ™ 1A (£ ® A JrM) and hence that ” € ™LA (p @ Adren).

By the previous theorem

Lfl(E ® A jT"-‘M) = HJ(E) @ A" (Li(E@/\ jT"'-‘I\‘I) ).

N EEepiray) a ML mepdtay = a7 (™ me At )

by the result proved above, hence

2

L7 (E@A sy a ™R (@ A drem)

Cm—l ,ﬁ (E ®/\ 'j'['*M) —

W) @ AT ™A mepT ).



ro
an
o

We deduce that

[#%)

G "R Ee ATy = MR @ A Jrem)
is bounded. The final statement of the theorem follows from the
«w ot

~ . e o m,et e i—],.g~ e . m, o RS T
fact that d (C (B /7y ¢ ™M) and @& (C (g0 @/\” T*M) )

annihilate HJ(E), as in the proof of the previous theorem.
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Chapter VIII

SLICE THEOREMS AND REGULARITY THEOREMS

§1. Introduction

This chapter contains Lhe slice theorems and the repularity
theorems towards which we have been working.

Let 7 @ P—>M be a smooth principal bundle over a compact
Riemannian manifold of dimension n with compact structural group G.
Let k be a non-negative inteper and let p satisfy the conditions
1 € p¢oo and p(k + 1) > n. Let p also satisfy the condition p 2. 2

in the casc when k = 0.

P

- ine LP : :
In chapter VI we define Lk+lt§ to be the group of all Lk+l

principal bundle automorphisms of TI : P —> M, we also defined

Frel
L _ . p m o p
and given m ¢ M we defined Lk+IC§— to be the subgroup of L, ;i

p (;O to be the quotient LE+1§;_/Z(G) where Z(G) i1s the centre of G,

consisting of those automorphisms which fix the fibre of 1+ : P 2> M

: s fi p - e p :
over m. We defined Lk)Af to be the space of all Lk connecticns on

tr : P — M and we defined L£‘2¥b to be the subset of Lﬁ)ﬁ’ consisting
of thosc connections whose stabilizer in LE+L(%’ is 2(G). We prove that
b P . SR P p m
Lk+1zg o acts smoothly and freely on Lk/%'o and that Lk+l§2, acts
smoothly and freely on LE‘A(.

We use theorem TT1.3.1 to prove a slice theorem (theorem 2.3)

. 7 p p p p m . .

which states that Lk}&/o/Lk+1 gio and Lk’Ar/Lk+lf%/ admit unique

differentiable structures such that the projections
p p |
Ly, = Lk)AVo/Lk+1§§ 0
p p p m
by Ay - Lk!xVLk+1§;

are smooth and admit smoothk local sections. Analogous results are

k+l, o . .
+L principal bundle automorphisms on Ck’

proved for the action of C
connections, wherc k is an inteper satisfying k 2 1 and where o satisfies

04 < 1.



A weakened form of the slice theorem (theorem 2.2) is proved

P

K connection then there exists a
2

which states that if w is an L
. P L . .
smooth commection o & and an LP'] principal bundle automorphism
- AT L

such that

%tﬁo ( iIk *FOJ - W, ) =0

where Sboo is the covariant codifferential operator with respect
to the connection w . This result has applications in proving the
regularity results of B3.

In 83 we prove various regularity theorvems for Yang-Mills
connections (theorems 3.1, 3.2 and 3.3). In 84 we give an informal
discussion on how these results may be extended to Yang-Mills-Higgs

systems.

N
po1



82, Slice Theorems for Connections

We use the results of chapter VII to prove a theorem (theorem 2.
which will be useful in proving elliptic regularity results. Then
we shall prove a slice theorem (theorem 2.3) for the action of
principal bundle automorphisms on connections.
Lemma 2.1
Let v : P => M be a smooth principal bundle over a compact
Riemannian manifold M of dimension n, let «w> be a connection on
m P> M and let FE — M be a smooth vector bundle associated to
m : P> M with a smooth inner product structure preserved by the
connection W . Let k be a non-negative integer and let p satisfy the
conditions 1 & p<&oe gnu]PG90>n, and in the case when k = 0 let p
also satisfy the condition p 2 2. If «ws 1is an Lﬁ connection then
Li(E ® T=M) decomposes as the direct sum
D6 ® 1) = im 4 ® ler §°
of the image of
w P

d : L

](+1(E) — LIU(E & T*M)

Ik

and the kernel of

§¢ 1P @ ) > 1D (1),

Moreover the image of d* is closed and the kernel of d*’ is finite
dimensional.
Similarly if « satisfies 0 € x < 1 and if k is strictly

positive then Ck’“'(E ® T*M) decomposes as the dircct sum
Ck’d (E ® T*M) = im d* @ ker Sw

of the image of

a® ey o o m e T

and the kerncl of

S«» . Ck,“

k-1, =

(E ® T*M) —> C (E).

[h]

2)

o



. W . w .
Moreover the image of d is closed and the kernel of d 1s finite
dimensional.
Proof

Let &> bhe an LE connection. By theorem VII.4.1 it follows that

o) = n%m) @ im A%
w
= HO(E) @D im S
where
Oy L Py LA
HO(E) = { s €1y ((E): ATs = 0)

HO(E) is finite dimensional by theorem VII.4.1. Let

c® 1P o@® —)L{;

k-1 (E)

1
w -
be the Green's operator of A (see 84 of chapter VII). Then,

since

it follows that
) wd w
AT GCPsT = %

If —qeLﬁ(EQ T+M) and if
a“ gv Sw‘r) - 0
then Slﬁq = 0, since G w is injective on the image of Scu and
w .. . . w . w
d is injective on the image of G . Also if '7 = d s then
dewa_? :dewAwS

since

Now

- d M'ch Saa
hence

Li(E ® T*M) ~> Li(E ® T#M)



o
[l
0

. o . IR
is a bounded idempotent linear map whose kernel is ker 5 and

(48]
whose image is im d . It follows immediately that

. (W
L{?(E & T*M) = im dwe ker $
A
and that im a% is closed. The kernel of d% 1s HO(E) by
theorem VII.4.1l and is thus finitce dimensional.

Ik, . .
The proof of the lemma when woe ¢ /# is exactly analogous,

using theorem VII.4.2.

Let G be the structural group of the principal bundle 1! P - M,
let Ea be the Lie algebra of G and let EB P="x E} . A given
biinvariant metric on G determines an inner product structure on ga P
and thus determines the codifferential Sw acting on gp—valued
differential forms.

Theorem 2,2

Let -~ : P— M be a smooth principal bundle over a compact
Riemannian manifold M of dimension n with compact structural group.
Let k be a non-negative integer and let p satisfy the conditions
1 € pc<oo and p(k + 1) > n, and in the case when k = 0 let p also
satisfy the condition p 2 2. Let o be an LE connection on

I : P M. Then for all ¢ > 0 and for all neighbourhoods of
the didentity in the proup LE+1C§ of L£+1 principal bundle auto-

morphisms there cxist a smooth connection QJO on T: P> M and

P

a1 princiapl bundle automorphism ~~ : P — P, contained in the
2

an L

given neighbourhood of the identity in LE+1 ég, such that

| o = we il < €
| L‘i

and



Similarly if ot satisfies 0 < A < 1 and if k 2 1 and if ¢o
. Ik, ot . .
is a C connection, then, for all £ > 0 and for all neighbourhoods
. . . Kkil, . .
of the identity in C Z% there exist a smooth connection w and
ncinal bundle automornhism contained

in the piven

neighbourhood such that
“(/‘)__LA-,o HCK»OL <E

and
SNOCY*W“U"D):O.

Proof
t } D £ 1 let HO( )" be th
Let e« be an Lk connection and let | E} P e e
§ . 0 LW P
orthogonal complement of the kernel H ( gp) of d in Lk+1( g P).
Consider the map
Su @ o 1. p ® .
@  ker H (Qp) - LI((Q P T*M)
defined by

»
Sp("’c, E) = (exp S) (w+"c3—w
where ker Scu is the kernel of

p p
Lk(gp® M) = Lk-l( BP).

By theorem Vv.7.1, part (vii), the derivative D;o of 1 at the origin

o«

5

is piven by
D?o("(f,}): x +d“%

and is thus an isomorphism. Thus fo is a diffeomorphism from a

neighbourhood U x V of the origin in ker Sh,ﬂi HO(EJ p) to a neigh-

P

bourhood of the origin in Lic

for Banach spaces. Given any neighbourhood of the identity in Lﬁ+1 §§
we may choose V sufficiently small such that exp(V) is contained in
the given neighbourhood of the identity. Since Coiﬁr is dense in

qz)ﬂf, there exists a smooth connection w such that
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(Ea p ® 1#M), by the inverse function theorem



g
1
t
©
Ia)
faal

and such that

w-w, e @ (VUxV),

Let
oS - We :P(T, E)
Then
bw (w - exp(—f)*wo) =0
Let ), = (cxp § )*es . Then
(exp § )x 577 = §9 ((exp § )* ¢ )

for all T € Lﬁ

( ep ® T#*M), and hence
Sw‘(wl-wo): O-

Thus

1)

SO (wimwo )

w ¥
% ° ( ’EP W - W, )
= O
by theorem V.7.1, part (vi), where ¥ = exp} .

. Ik, o& . .
The proof when «ws is a C’ connection is exactly

analogous.

In chapter VI, section B4, we identified the centre Z(G) of the

structural group G with a subgroup of Lﬁ-rlg and of ClHl’uS} , and

we defined

P _ b
Lk-o-l g o = Ll(—vl% /2(G),
+1. 0
Clul, E}O _ Ck”"“@ /2(G) .

and
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We saw that L{Z+1§O and C}Hl’d %o act smoothly on LE A and
Ck’df¥ respectively and we defined Li,A , and Ck’d)Q'O to be

the subsets of LE}& and Ck’df%* consisting of all connections on
which L§+1E;° and Ck+]’d‘§;C)act freely. We showed that qzﬂra and
Ck’d/&/ , are open subsets of Lﬁ/&‘ and Ck’a)¥' containing all smooth
irreducible connections on <r : P —3» M (theorem VI.4.4).

Also given m € M we defined Lﬁ+1t%_m and Ck+1’a gi ™ to be the
subgroups of L£+l g; and Ck+l’a(f3’ consisting of all automorphisms of
T : P > M which fix the fibre of m: P—> M over m. We showed

that L&Ll %m and Ck+.].,°‘§m act freely on L{zA’ and Ck’dA' (see
theorem VI.4.6).

Theorem 2.3

Let T : P-—> M be a smooth principal bundle over a compact
Riemannian manifold M of dimension n with compact structural group.
Let m € M. Let k be a non-negative integer and let p satisfy the
conditions 1 € p<ee and p(k + 1) > n, and in the case when
k = 0 let p also satisfy the condition p 2 2. Let LE+1€i(f Lﬁ,A/O

p m P . P 8] P A p fit
and Lk+1 ?; be defined as above. Then Lk}Qro/Lk+1§; o and Lk}&—/Lk+l€;

admit unique differentiable structures such that the natural projections
p p p
Lk“A'o - LkA’o/Lk+l§/o’
p p P m
A - L1<A’/Lk+1§

are smooth maps between Banach manifolds and admit smooth local sections.
Similarly if k 2 1 and if o« satisfies 0 < o < 1 then

Ck’qA O/Ck+l,d?o and Ck’“A /Ck+1’d § M admit unique differentiable

structures such that the natural projections

Ck,“}&’()_a Ck,é}%_o/ck+l,m é?

0]

Ck’ﬁ/& - Ck’éﬁx /Ck+l,G§; m

are smooth maps between Banach manifolds and admit smooth local sections.



Proof

We must check that the conditions of theorem II.3.1 are satisfied.
: Cy p P p .
Tirst sitder P . t € . g entr
First consider Lk’&o/llulg o Let w LkAQ, The centre z|( a )
of the Lie alpgebra of the structural group may be identified with a
subalgebra of the Lie alpebra L 9 p) of leg corresponding to

the identification of Z(G) with a subgroup of Lk+1g/' The kernel of

o -
a® ) 9 p) = L Gp @ 1)

is z( 9 ), sihce & € LEAO. Let

. P p
) L'k+1 § 0 - Lk o

be the smooth map sending the coset Z(G).'SE' to Yw . The
derivative of 6 at the identity sends S + z(g ) tod Y for all

E € L gp) by theorem V.7.1, part (vii). By lemma 2.1 we
see that the derivative of 8 at the identity maps L (gp)/z( 9 )
isomorphically onto a closed complemented subspace of the tangent
space to Ll[zAro at e . Thus the first two conditions of theorem II.3.1
are satisfied.

If((pi : 1 € N) is a sequence in LEA,O, ti,f(‘i/i : 1€ W) is
in 1P £ the sc ¥

a sequence in Lk+1§ and if the sequences (w .) and (w i i)

converge 1in I{ZA— then the sequence 'i/ ) converges in IE+1 by

theorem VI.4.5. This verifies the remaining condition of theorem II.3.1.

- ) . 4P P : . reduire
From thcorem II.3.l1 we deduce that LkA 0/Lk+l io admits the required

differentiable structure.

m

The proof for IpAr / is similar, using theorem VI.4.6,

l<+1
the fact that d (Lk+1(9 p) ) is a closed complemented subspace of

LE( gp ® T1*M) (by lemma 2.1) and the fact that

{EG L]Hl(gp) : }(m) O}

is a closed subspace of [lu] g p) of finite codimension (since

Il

plk + 1) > n).



k,= K, o ) .
The proof when WE ¢’ }4 _or  w € ot /A- is exactly
o )

analogous.

We have used the elliptic regularity results of chapter VII to
prove that conditions (i) and (ii) of theorem I1.3.1 are satisfied.
The proof that (iii) is satisfied stems ultimately from thkzorem VI.3.2

{or corollary VI.3.3). 1In fact condition (iii) of theorem II.3.1 is

p k+1 k+1, o
k+1? ¢ or ¢

. . [} k, =
morphisms on manifolds of Lﬁ, ¢ or ¢

satisfied by the actions of groups of L auto-
connections respectively,
provided that k is a non-negative integer and p and e satisfy

1 $p<oe , 0 <€o¢ £ 1 and plk + 1) 2> n. Moreover if the relevant
group acts freely then condition(i) of theorem II.3.1 is satisfied

in these cases by corollary VI.5.3. It follows that in order to

preve a slice theorem for the action of a group of automorphisms

on some Banach manifold of connections in any of the above cases it
suffices to verify that the action of the group of automorphisms is
free and that the image under d% of the Lie algebra of the group of
automorphisms is complemented in the tangent space to the manifold

of connections. In some cases it may be possible to prove this by
methods other than by using elliptic regularity. In particular if

p = 2 then the above theorem follows from corollary VI.3.3 and

theorem VI.5.3, without the need to use any elliptic regularity

results at all, since every closed subspace of a Hilbert space has

a closed complement.
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33, Regularity Theorems for Yang-Mills Connections

We prove regularity theorems for Yang-Mills connections on
principal bundles over compact Riemannian manifolds.

Let 1T : P —> M be a smooth principal bundle over a compact
Riemannian manifold M of dimension n with compact structural group G
whose Lie algebra is E} . Let G be given a biinvariant Riemannian
metric, determining a smooth inner product structure on the adjoint
bundle Qp — M, where 9P = P X g, § . This inner product
structure is preserved by all connections on TIr: P - M, and it
determincs the covariant codifferential acting on gp—-valued
differential forms.

Let o be an LP connection, where k is a non-negative integer,

k

where p satisfies 1 € p &oe and where p satisfies p > 2 in the
case when k = 0. We recall that by theorem 2.2 there exists a

smooth connection w and an L£+l principal bundle automorphism

jp’: P —» P such that

th’r e
Y O
’\C CAD (A }

We recall that a Yang-Mills connection &5 on 4r: P > M

. . (74 ) . . . .
is a connection whose curvature F satisfies the Yanpg-Mills equation

ng-w:o

if CAJO 1s a smooth connection with curvature FO then

w
F* :%+wi°1 +Z[Tu@]
(7S]
_ " _1
= F o+ d T %[ vx ]
where v = w - w s by proposition V.7.1, using the fact that

d x =d " + [v,x].

o

)]



a8
o
<

Thus if ¢ is a Yang-Mills connection and if -~ satisfies the

condition

where T = W - W o for some smooth connection CD(D, then
oY) ] w o
AN T = 3 S [.‘C) © ] - 8 l:o .
Theorem 3.1
Let =1 : P~ M be a smooth principal bundle over a compact
Riemannian manifold M of dimension n with compact structural group.
Let the structural pgroup of the principal bundle be given a biinvariant

Riemannian metric. Let k be an integer satisfying k 2 2 and let p

satisfy the conditions 1 ¢ p< oo and p(k + 1) 2 n. If ¢ is an

1P

K connection on MW : P — M satisfying the Yang-Mills equation,

p
k+1

such that P *¢» is smooth.

then there exists an L principal bundle automorphism ~f: P — P

Proof

Tn view of theorem 2.2, it suffices to prove that if e« is an
LE connection satisfying the Yang-Mills ecquation and if w o is a smooth

connection such that

§7° (w-ws) =0
then ¢» is smooth. Let =~ = w - w - From the remarks above
we see that Tée Lﬁ(E} p ® T*M) satisfies the equation
w _ | w _ g
AP~ =3 5[~ ,<1-% F,
where FO is the curvature of u)o. Let ¢ satisfy the conditions
1
< =
0 < ¢ =

l k + 1




[N
jop]
o)

and define q € (1, o) by

1
g

Then

P
Tl
1
S
N——
L.
S
T
1
S
N
l
oy
St
H
"S5 =
o —
3| —
t
e
=S+
N

Using the Sobolev embedding theorem, theorem 1I.2.4 (the Sobolev

multiplication theorems) and the condition p(k + 1) > n, we deduce that
- b
[, ~] F eTk13®ATB1)

(see lemma VII.2.2). Hence

“lw e] -r) el ,G @ 1EM)

by proposition VII.3.1. Thus A ~© € Lk 2(9 ® T*M) and hence

T e Lk(99® T*M) by theorem VII.3.5.

If we iterate this procedure a finite number of times we see
that w 1is an LE connection for some g satisfying the conditions

1 £ g<ee and gk> n. But then
/ q -
}2[1:,1'] - F €L (QGDTM)

w q q -
hence A~ € I..k__l(ap® T*M), and hence TEL 9P® T*M) by

theorem VII.3.5. By induction on k it follows that ¢ is smooth.

Theorem 3.2

Let TF : P —> M be a smooth principal bundle over a compact
Riemannian manifold M of dimension n with compact structural group.
Let the structural group of the principal bundle be given a biinvariant

Riemannian metric. Let p satisfy the conditions 1 <& p 4o  and



o]
)]
~J

2p > n, and in the case n = 2 let p also satisfy the condition p >

RIS

If w idis an LY connection on v : P —» M satisfying the Yang-Mills

P
1
equation (weakly), then therc exists an Lg principal bundle automorphism

W : P — P such that ¥y is smooth.

Proof

In view of theorem 2.2 it suffices to prove that 1f W 1is an
L? connection satisfying the Yanpg-Mills equation and if u)o is a

smooth conncction such that

Swo(w_wo> = 0O

then «w 1s smooth. let v = w - W 0"

Note that
2 L o¢ g,
D n

when n > 3 this is a consequence of the condition 2p > n. When

n = 2 this is a consequence of the condition p > % . When n = 1
this is a consequence of the condition p > 1. Also since 2p > n it
follows that

-1

<

2 1 ]
— — + —
p p n .

Hence there exists q satisfying the conditions 1 < g < p and
1

2 1 1 1
s ¢ = = 4 =
p g S }

By thcorem 11.2.4 (the Sobolev Multiplication theorems) it follows
that
v 7 v q 2 3
Wt 7 - F o€ 1(Gp ®A TTE)
“ q
A e (9 p ® T*M) by proposition VII.3.1, since W is a
Yang-Mills connection. Hence =~ € L(;( 9 p® T*M) by theorem VII.3.5.

But 3q > n, hence ¥ is smooth by the proof of the previous theorem.




Theorem 3.3
Let T : P — M be a smooth principal bundle over a compact
Riemannian manifold M of dimension n with compact structural group.
Let the structural group of the principal bundle be given a biinvariant
Riemannian metric. Let & be a conhection on TT : P -3 M with the
following properties:
(1) is an LP connection for some p satisfying the condition
n < p 4o

(ii) e  1s an L? connection for some g satisfying the condition

1 - =

1

q =

(iii) @ satisfies the Yang-Mills equation (weakly),

{(iv) there exists a smooth connection w such that
%wo (&*‘Wo) =0

Then ¢ is smooth.

Proof

First we show that <« 1s an L? connection. If q 2 p this is

trivial. Otherwise p 2 2. Let § satisfy the conditions

]
< el
0 £ < no,
1 1
P <w TE o
1 1
- - £ >
q E’p
and let
1 _ 1 _s
r q
If v =w - w o then

r 2
“Lee] - 7, el (Gp®A T 1im)
by lemma VII.Z2.2, where FO is the curvature of w - Hence

s7 sl %] - r,) € 150 Qp ® A 2 )
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by proposition VI1.3.l. Hence T € Ll,:( g? ® T*M) by theorem VII.3.5.

By a finite number of iterations of this procedure we see that

T € LIE( 9p ® T#M). Since p 2> n it follows that -~ € LE( 9 P & T=M)

for all k, by induction on k as in the conclusion of the proof of

thecorem 3.1.




84. Repularity of Yang-Mills-Hipgs Systems

We give an informal discussion of regularity theorems for
Yanp-Mills~Higps systems corresponding to the results proved in 83,

Let 7 : P — M be a smooth principal bundle over a compact
smooth Riemannian manifold M of dimension n with compact structural
group G, and let G be piven a biinvariant Riemannian metric. Let

Ea be the Lie algebra of G and let E}F)—e M be the adjoint bundle

of qr : P—> M, where Bp: PXAdg - Let LM be a smooth
vector bundle associated to ¢ : P = M and let €. , > :E®E OR
be a smooth inner product structure on E which is preserved by all
connections on TT : P —3 M,

Let e be a connection on 7 : P— M and let § M E
be a section of v : E ~> M. The Yang-Mills-Higps equations are
the Fuler-Lagrange equations for the functional

Ices, §) =J (<R, &) +qd“8,d 8 ) - V(I81)) dp
M

where‘/u is the Riemannian volume measure on M, where T is the
curvature of <« and where V{ 'él' ) is an even polynomial in I@I
In the standard Higgs model, as used in the Salam-Weinberg unification

of the electromapnetic and the weak forces, the potential V is given by
X 2 2\ >
V((I1gl) == (l&]"-c*)
{p ]

for some constants X and ¢ in order to induce spontaneous symmetry
breaking in the quantum ficld theory with the above Lagranpian via
the Higgs mechanism (of course quantum field theories occurring in
nature are formulated in the first instance in Minkowski space-time
rather than on a Riemannian manifold). Here we shall allow V to be
arbitrary, subject to constraints on the degree d of the polynomial

vl ).

The Yang-Mills-Higgs ecuations have the form



aw{:—w :J(@lew-@))
AP +ud)=0

where

jrE® (E® TH1) — 9 po® 1M
is a smooth vector bundle morphism and where Ui @ ), the
derivative of V( l@, ) with respect to @ , 1s a polynomial of
degree d - 1.

We recall that if p(k + 1) > n then the group L£+1§— of
Li.;»l principal bundle automorphisms of 711 : P —> M acts on L?’(E)
on the left for all [ satisfying 0 £ L £ k + 1. If & 1is an
I{: connection, @ is an Lﬁ section of E - M and («w , § ) satisfies
the Yanp-Mills-Higgs equations then so does ( Y*w)"lf'cjé ) for all
L{;l principal bundle automorphisms ’?: P—> P.

I1f the degree d of the potential V( | ] ) does not exceed 4,
then onc can prove regularity theorems for Yang-Mills-Higgs systems
exactly analogous to theorems 3.1, 3.2 and 3.3 for Yang-Mills
connections. For instance suppose that «w is an Lﬁ connection and
that é is an LIF; section of E ~3 M, where k is an integer satisfying
k 2 2 and where p satisfies 1 & p<eos and p(k + 1) 2 n, where n
is the dimension of M. Suppose also that there exists a smooth
connection wo such that

ST (w-w,) =0,
Let © = w - oo . The Yang-Mills-Hipggs equations have the
form
A~ = j (D edTd)+38 [, ]-Fo |
Aw § = U( @)

where F_ is the curvature of w - Let € satisfy the conditions



T
N

Then
u q ¥
A N - F)) € Ll ,(6g,®T5H)

as in the proof of theorem 3.1. Now dwé € Lﬁ_l(li ® T*M) by
proposition VII.3.1, hence

ji(P@®ard e Lq_g( g p ® TM)

k
by lemma VII.2.2, since é@ € LE(E) and p(k + 1) > n. Hence
Aw—t & Ll((_z( HP ® T*M). Also the degree of U ( § } does not
exceed 3 and since p(k + 1) > n it follows that U ( § ) € LE:—Z(E)’
- . . w q
by two applications of lemma VII.2.2. Thus A @ €L, ,(E). Hence

By iterating this procedure a finite number of times we see
_ q . oy g
that T € Lk( gp ® T*M) and P € Lk(h) for some q € (1,00 )
satisfying gk > n. As in theorem 3.1, one may easily show that
q " q i . .
~© € Lk+1( Bp ® T*M) and § € Lk+1(E) and hence show by induction

that T+ and @ are smooth. Thus we can prove the analogue of

theorem 3.1 for Yanpg-Mills-Higgs systems the degree of whose potential

docs not exceed 4. Similar analogues of 3.2 and 3.3 may be proved.
When the depree d of the potential exceeds 4 the hypotheses of

these rcgularity theorems must be strengthened. In addition to the

condition p(k + 1) 2 n in the above proof we must also require that p

be sufficiently large in order that U may map Lﬁ(E) to L} _(E) for

k~2

some ¢ satisfying

0o

X%l
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1 1 1 1
- > = > = - =
P ¢ p n

It is sufficient to require that

i k - 2

kol B
l

ol o

S~

> @-n (-

0 1l \

by the Sobolev embedding and multiplication theorems. Thus we require

that

P ( ot d i 2 ) > n

in order to show that an Li Yang-Mills-Higgs system with d > 4 and

k 2 1 may be transformed to a smooth Yang-Mills-Higgs system by an

LE+1 principal bundle automorphism, where p must also satisfy the

condition p > % in the case when n =2 and k = 1.
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Chapter IX

COVARIANT DERIVATIVES AND HOLONQOMY
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Let T : P =M be a smooth principal bundle over a Riemannian
manifold M and let ¢© Dbe an Ehresmann connection on  TT @ P —> M
whose holonomy pgroup is compact. In theorem 2.1 we shall show that,
given m € M, there exists a constant Lcu,m such that every element of
the holonomy group of ¢ may be generated by a loop based at m of
length not exceeding LuJ’m. In essence, the proof is by showing
that every element of the holonomy group of O is generated by a
loop hased at m which is a concatenation of lassos and their reversals,
where the lassos are taken from a finite set of one-parameter families
of lassos which gencrate the Lie algebra of the holonomy group of o
The existence of such a set of one-parameter families of lassos is
guaranteed by the Ambrose-Sinper holonomy theorem.

We give two applications of this theorem in 83. We show that,
given any continuously differentiable section of a vector bundle
associated to M : P ~>» M there exists a covariantly constant section
whose distance from the given section is bounded by some constant
multiple of the supremum of the magnitude of the covariant derivative
of the given section (theorem 3.1). A similar result (theorem 3.3) is
proved for principal bundle automorphisms.

The main problem is, of course, to estimate L The proof

w . m

of theorem 2.1 shows the existence of L, m but provides no effective
’

means of calculating it in general. Indeed one can easily visualise

pathological examples of connections where the stalks of the lassos,

whose existence is guaranteed by the Ambrose-Singer holonomy theorem,

wander around the base manifold of the bundle in a complicated manner.



However if one imposes suitable restrictions on the curvature tensor
of the connection and its covariant derivatives it may be possible to

estimate L, n For example one could place restrictions on the
3

)
)

. nv
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curvaturc so thatl the holonomy gioup was pgen
arbitrarily small neighbourhood of some piven point. An interesting
problem might be to study the Levi-Civita connection on a Riemannian
manifold in this way.

82, The Length of Loops generating the Holonomy Group

In this section we prove a theorem which provides an upper
bound on the length of loops required to generate any element of the
holonomy group of a smooth Ehresmann connection on a principal bundle

T : P> over a compact Riemannian manifold M, provided that the
holonomy group 1s a compact subgroup of the structural group.

Theorem 2.1

Let « be a smooth Ehresmann connection on a smooth principal
bundle T : P = M over a Riemannian manifold M with the property
that the holonomy group of w 1is compact. Let m € M. Then there
exists a constant LO,’m, depending on o and m, with the following
property: pgiven any element of the holonomy group attached to some
element of the fibre of T: P— M over m, there exists a piecewise
smooth loop, of length not exceeding LM)’m, beginning and ending at m
which generates the required element of the holonomy group.

First we introduce some terminology. A piecewise smooth curve

in M is a piecewise smooth map c¢ : 15, 97‘—¢ M. A piecewise smooth
path in M is an equivalence class of piccewise smooth curves in M
where two curves are cquivalent if and only if each is a repara-
meterization of the other. A loop based at m € M is a path beginning

and ending at m € M. Given paths in M, represented by curves

27"
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A !
and ¢, is the path represented by the curve ¢ % oc, 1:. 137—5 M, where
(Cl C?) \ igy 57 - C] ’
(c1 * 02) \ L‘_', 1_7 = C,
Given a path, represented by the curve ¢ : 16, l_/' — M the reversc
c € of c is represented by the curve ¢ € 1(7, _1_7 — M defined by

¢ () = e(l - t)

for all t € /0, 17.

Now consider curves in the structural pgroup G of 7 : P —> M.
i J’, (-8 ,& ) > G and r PR (- £ ,& })— G are continuously
differentiable curves in G then the product curve ¥ .¥y : (- s, £ )G

-
and the inverse curve ¥y, : (- ¢ , £) —>G are defined by

(Xl'X'l-)Lt) = Xltt)XL(t)
¥, ) = v
for all t € (- 5, €). Let a be the Lie algebra of G. If
Y (0) = ¥,(0) = e, where e is the identity element of G and if
X1 and X2 are tangent to ¥, and ¥, at t = 0, then X1 + X2 is tangent
to  ¥,.¥. at t =0 and -X; is tangent to \(l" at t = 0. Let us also
define a curve

comm ( ¥, , ¥ ) : (-% , & )—>C

by the conditions that

comm (1 y) ®) = 4 (VE) ¥, (JEY ¥, (V&) £, (JT)
when 0 < t < 2_1 and
comm (¥, Y(b) = o (EY % (7E) v, () o, (1)

when - € ¢t < 0. If Y, and ¥, are continuously differentiable,

if



X‘ (O) = Kl (O) = €,

and 1if X] and X, are the vectors in E} tangent to vy, and Y, at

£ = 0 then comm( ¥, , ¥+ ) i& continuously differentiable and [Xl’ X2]
is tanpent to comm( ¥, , ¥, ) at t = 0.
Let m,m' € M and let ¢ be a piccewise smooth path from m to m'.

We define a one-parameter family of lassos based at m with stalk ¢

and vertex m' to be a family { )\t : LE (-¢€, ¢ )} of loops
based at m with the property that there exists a one-parameter family
{ bt e (- €,% )} of loops based at m' such that

t Lt €
% =z b o

c ¥ c *c N

where the family of {(;;} satisfies the following conditions: ¢ is
the constant path at m' and the paths ct arc represented by a family
of curves ct : 15, 17-—5 M with the property that the map from
(- 2,% ) x 16, 17 to M sending (t, u) to ct(u) is pilecewise smooth
and the map from (- ¢ , € ) to G sending t to the clement of the
holonomy group of 3 generated by Ct is continuously differentiable.

Let { ct :t € (-¢8,t )} be a onc-parameter family of loops
based at m with the property that q generates the identity element of
the holonomy group Hp of w attached to p, where p is an element of the
fibre of T : P—> M over m. We say that {ct :te (-, ¢ )}
generates the short curve ¥y : (- § , ¢ ) — Hp if and only if X/(t)
is the element of Hp generated by ct for all t € (- £, € ). Under these
circumstances we say that { ct}- generates X € l% b where X is the
element of the Lie algebra F’p of the holonomy group Hp which is
tangent to y : (- & , &€ )—> Up at t = 0.

Let {clt 1t € (- ¢, ¢ )} and { c2t tte(-¢,%t ) be
onc-paramcter families of loops based at m gencerating curves

7, (-¢, 8 )— Hp and YI:(— T, ) “p respectively whose
tangent vectors at t = 0 are X4 € Fﬁ}) and X, € F7p' Then the one-
t t

parameter families {Cl % ¢, te(- %, ¢ )} and



{ clﬁ : bt e(-8 , ©) generate curves Yo 7, ¢ (-¢€,&)—>1
and vy, (- 8,8 )™ Ilp, and hence generate Xl + \u) € Fj b and

. . 2
_Xle 6p respectively. We see that if t 2 0 then comm( Y, y Y2 (t )

t . t ., tée | te—
o Ve _! we cg i Cl

2. .
and comm ( ¥, , Yo ) (-t7) is generated by

et Lt te
“o Ty T Ty

We now proceed with the proof of the theorem. Let p be an
element of the fibre of 1 : P = M over m, and let B‘p be the
holonomy bundle of the connection ws attached to p. By the Ambrose-
Singer holonomy theorem there exist Zpi €B_ :1=1, ..., d} and

p
vectors U, € TpiP, v, € TpiP such that the Lie algebra Fﬁ p of the
holonomy proup Hp of ¢> attached to p is generated by
{ Fw(Ui A Vi) t1=1, ..., (1} , where F(» A 2 TP > ga is the
curvature of &2 . Expressed peometrically, this implies that there
exist one-parameter families { )Y E tte (-8 ,¢ )} of lassos with
vertices ‘n‘(pi) such that the elements {Xj e K p i=1, ..., d }
gencrated by the {)\E.} form a set of generators for Fj P’ Let
Y ;¢ (- & ,& ) — My, be the curve generated by the one-parameter
family iAtj_ tte (-€, & )} of lassos. Let L; be an upper bound

on the length of the lassos in
fa" ste-e,e),i=1,...,d}.

We may construct a basis (Yj : g =1, ..., r) of the vector
space Fﬁ D whose clements are (iterated) Lie brackets of elements of
the set { Xi =1, ..., d} . The vectors YJ are tangent to
continuously differentiable curves jB i (-5 ,%) > Hp at t = 0,
where the curves i}gj =1, .., r} are constructed out of the curves

{y’i s 1= 1, ..., CL} using the operation comm defined above.



Since every element of the image of }31 for j = 1, ..., r may be

generated by a concatenation of lassos in

{)\ti;te(—g,t),izl, .., d ¥

and their reverses, and since the length of these lassos does not

exceed LL’ 1t follows that there exists a constant L, such that,

2
given t € (- § , &) and an integer j in the ranpe I & j ¢ r, we
can find a loop ctj based at m of length not exceeding L2 which
generates /3 J.('t).

Define a continuously differentiable map

?:(—s,g)r—a H,

sending (tl, ceey ) to }?1(t1) R ¢Bl"(tr)' The derivative of

?9 at the origin is an isomorphism since { YJ g =1, ..., r-& is
a basis of F\ p. Thus the image of @ contains an open neighbourhood
of the identity, by the inverse function theorem. But every element

of the image of ?9 is generated by a concatenation of r loops based

at m, each of length not exceeding L2. Thus there exists a neighbourhood
N of the identity in Hp such that every element of N is generated by

a loop based at m of length not exceeding rL, .

Since “p is compact, there cxists a positive integer k such that

cvery clement of the identity component of “p igs of the form X’k for
some y € N, and thus may bc generated by a loop of length not cxceeding
erZ. Also HPhas finitely many components. Thus we may find
representatives hl’ cey hm in each coset of the identity component.
Then there exists Lo such that hl’ Ceey hm may all be generated by a
loop of length not exceeding LS' Since every element of HPis of the
form hi.y for some hi and for some eclement ¥ of the identity

component, every element of HPmay be generated by a loop of length

1+ 3 1 o] oA
not exceceding L‘u,m, where

= krl.n + L=
< fv)

w ,m




280

Nofe that 1f the holonomy group of w 1s not compact then for
all m € M and for all compact subsets K of the holonomy group attached
to some clement of the fibre of v: P —> M over m there exists a
constant I, K such that every element of k may be generated by a

,M

loop of length not exceeding L For as in the above proof

w,m, K’
we sec that there exists a neighbourhood N of the identity in the
holonomy group and a constant L' such that cvery element of N may
be generated by a loop of length not exceceding L'. The required

result follows easily on noting that K is covered by a finite

number of translates of the neighbourhood N.
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3. Further Inequalities for Sections of Fibre Bundles

We present two theorems in which theorem 2.1 of the previous

section is applied to prove inequalities satisfied by sections of some

fibre bundle associated to a given principal bundle.
Let H be a compact Lie group and let H —dEnd(V) be a repre-
sentation of H. Let . , . > be an H-invariant inner product on V.

i

Let vV be the subspace on which i acts trivially and let vy be its

orthogonal complement. Then there cxists a constant X  such that

| Vl < >\ hS:F;{ hov - v

for all v e VOL

For let S be the unit sphere in VJL . Then
. S -9R is continuous, where

i _sup L
fv) = hen | h.s v |

since H is compact. Moreover f{v) » 0 for all v € S hence there
. S -1 . .
exists a constant A such that f(v) 2 % , $ilnce S 1s compact.
This is the required constant.
We rccall that if @ 1s a smeoth connection on a principal
bundle TJT: P —» M over a Riemannian manifold M and if the holonomy
group of' w 1is compact then for all m € M there exists a constant

L such that every element of the holonomy group of e attached

w,m

to an clement of the fibre of =7 : P—» M over m may be gcnerated
by a loop based at m of length not exceeding Lcu,m’ by theorem 2.1.
Theorem 3.1
Let ar : P-—>M be a principal bundle over a Riemannian manifold
M whose diameter diam(M) is finite. Let 0 be a smooth Ehresmann
connection on T : P —% M whosc holonomy group is compact. lLct me M
and let L be an upper bound on the length of loops based at m

o, m

required to gecnerate the holonomy group of <wO .
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let 0, : E — M be a vector bundle associated to TT7: P = M
with fibre v, and let V be given an inner product invariant under the

action of the structural group of T : P —> M. Let | . “ denote the

~

canonical €7 norm on C (E) and on ¢ (£ & T*M) determined by the inner
product on V and the Ricmannian metric on M. Let vy be the subspace

of V on which the holonomy group 1M of w acts trivially and let N

be a constant such that

sup
[vl € N he“l | hov = v |

. A . . 1 .
for all v e VO . Then for all € sections g @ M— E of o B2 M

there exists a scetion 6, ¢ M — E such that
A~ = O
Gy ~
and

|6 -0 \l' NN me+(ﬁm-CM))HoLwo'”'

Proof

Let | .1 m bc the norm on the fibre of T, : E — M over m
determined by the inner product uvn V. Let p be an element of the
fibre of 1 : P — M over m and let 3% bc an element of the holonomy
group H of ¢o attached to p. Then there exists a loop ¢ : LB’L;7 - M
basced at m of length not cxceeding Lu),m and parametcrized by arclength s

which penerates ¥ . Then

| #.6(m) - 6Cm) ], sLloLwc'} ds

¢ Lgom 1d7s

by theorem V.6.6. But there exists e, € TT Il(m) such that Y -€, = ¢,

for all y €1 and such that & (m) - e, is orthogonal to the sub-

~1 . oo
space of T, (m) on which Il acts trivially. Then

| & tm) = e, | < N S;PIX,G‘(M) - & (m)
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But since Y .e_ = e_ for all € H there cxists a unique section
y % o )

) . - - o — { — The
6, ¢ M — E such that d 6‘0 = 0 and J‘O(m) = e - I'hen

We -6, 1} & l a(m) -o’o(f‘M\M ¥ dioe (M) ” olwg—atwyoh

S( }\Lw.mﬁ—(kLM(M‘))l\A'wdn

by theorem VI.3.4.

One can also combine the inequality
%)
|etm)y - s tmr ] S XN Loy m ™ el

with the inequalities stated in theorem VI.5.2, provided that in

casc (i) of vI.5.2, p and k satisfy the stronger condition pk > dim M.
A result for principal bundle automorphisms corresponding to

thecorem 3.1 will be proved using the following lemma.

L.emma 3.2

Let G be a compact Lie group with a biinvariant Riemannian

)

metric whose distance function is P G x G—>R. Let Il be a closed
subgroup of G and let C(I1) be the centralizer of H. Tor all y € G

define

wt
Py, CCRY) = ecewy £ DT,

Then there exists a positive constant A such that

POy, COHYY S A 30 p( Wk )

Proof
Let E} be the Lic algebra of G, let

VO = {<X € Ea : Ad(h—l) X = X for all h e H-}

L
and lct A be the orthogonal complement of Ve We have scen that

there exists a constant A\ such that

I x] ¢ > hS:pH | Adh™h x - x



for all X & VQL

Also given § » 0 there exists 8 > 0 such that

| X - vy € (1 4+ 8) P (exp X, exp Y)

whenever | X| < § and |v] < § Thus if X € VOL' and
[ X | ¢S then
x|l <« (1 +g) ]f:Tl (h—1 (exp X) h, exp X).

Now supposc that y € G and that -
0 <« p (y,c(u))<g,
Since H is compact, there exists an element -voe C(H) such that
PY,M,) =LY, c(H1)
Then

o(ym;',e) = ply, cCH))
since/p 1s bhiinvariant. But then

minimizing geodesic of length strictly less than S  whosc tangent

vector at e is orthogonal to the tangent space v, to C(H) at e. Thus

Yﬂ;i: exp X

for some X € VéL satisfying | x] < 6 . Then

1l

P lexp X, e)
| xI
(1 + &) A

P Ly, cn)

I

sup -1

[

< (1+g )X °UP

-1 -1 -1
g iy hm Ly

sup -1

g(l+£)>\ hen (th "y h,y ).

Define £ : G N C(H) = R by

-1
_sup 2Pty h,Y )
e ) = yen 5 (x5 cD )

f is continuous since H is compact. Also we have just shown that

-1
¥, is joined to ¢ by a length

-1 -1
he i (h "y M, ¥, )

284



|
fiy ) > T g

whenever p (Y , C(H) )< S . Since G i1s compact there exists a

constant A such that

and such that f{ Y ) > A-J for all Y satisfying

P Ly, cun) 2 %§

sup

-1
Py ,cu) ) § A hen P U ¥ b))
for all ¥ € G.

Let TFr : P -> M be a smooth principal bundle with compact
structural group G. Let G be given a biinvariant Riemannian metric
with distance function p : G x G = R. We recall that this determines

. . . . -1 .
a biinvariant distance function Pt 7 (m) x 1T ad {(m) >R

-1
d

ad

on the fibre TT a (m) of the adjoint bundle TIT ad Gp - M over m

for all m € M, where Gp = P x ad G. This distance function has the
property that the group isomorphism from G to uﬂ_ad—l {(m) determined by

any element of Tr : P — M is an isometry. If M is compact then the

canonical distance function j; : CO(Gp) X CO(Gp) — R 1is defined by

AT, Y ) = 2 P (i WG () )

Theorem 3.3

Let T : P~ N be a smooth principal bundle over a compact
Riemannian manifold M with compact structural group G. Let G be given
a biinvariant Riemannian metric with distance function P G xGR,
determining the canonical distance function g : CO(Gp) X CO(Gp) —2 R

on CO(GP), where Tqu : Gp =» M is the adjoint bundle with total space
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Gp = P x G. Let Jl.10 be the canonical norm on ¢°f C]p ® M),

jen

a

where is the Lie algebra of G and g =P x g .
ey 9 s the Lie alg a P P x Ad

et a0 be a smooth connection on Tr : P —> M with compact
holonomy group !l attachced to some clement p of the fibre of T : P =M
over m, for some m € M. Let A be a constant such that

sup

/o(y , C(H) ) & A hel y= (h_ly h, ¥ )

for all y €& C. Let Lo om be an upper bound on the length of loops
based at m required to generate the holonomy proup of ¢

If ﬂ? is a C1 principal bundle automorphism then there

exists a principal bundle automorphism SE; stabilizing «w such that
T ¢ ¢ L
P (¥ ,‘lfo) S ALt diam{(M) )

Proof

Let h € H and let c : 15, L_7 —> M be a loop based at m generating

h of length not exceeding Lw m which is parameterized by arclength s.

Let °¢ : P = G be the unique C1 function with the property that

N+ () = p VY (p)

for all p € P. Then

£ A (p) h, Y <p)>~<f | T ¥ - | ds

*
S A - o ll
by theorem vV.5.2. Then
s ~1
P (Wp), cay ) € a PH 5 (W (p) Y (p) )
~ B
My m [ *eo - coll
hence there exists % € C(H) such that

P (ViphMm ) € A, | T*eo-coll

3

By theorem V.4.2 there exists a principal bundle automorphism ﬁEﬁo P>



which stabilizes e such that

Then

(8]

p(Yim, ) <

and hence

p YY) ¢,

3

by lemma VI.3.1.

Moy o T w0 —w |l

+ diam (M) ) )| f{f Yoo - w ”

-
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Appendix A

THE HILBERT TRANSFORM

The Hilbert transform HE : R —» R of a measurable function

f @ R—> R is defined by

Lim £{t)

Hf (x) = L1
™ £ 0+ x - t

[x-tl> ¢

whenever this principal value exists. We give a proof, derived from
éfaldcron, AP, 19697, of a theorem due to M. Riesz, which states
that the Hilbert transform is bounded on LP(R") for all p satisfying
] & pe oo

Theorem (M. Riesz)

The Hilbert transform defines a bounded linear map

n: PRy —aPir)
for all p satisfying 1 € p < oo .

First we show that if 1 < p & 3 then there exist positive
constants cy and oo depending on p, such that if w = u + iv is a
complex number satisfying u 2 0, then

\v P ¢ clup - czRe(wp)

(where we define (re’®)P = PP por all p € R and for all 6 satisfying

- T < @ <77 ).
It suffices to verify this inequality when |w | =1, by

homogeneity. Since 1 & p £ 3 there exists § satisfying

0 < S £ Tz; such that
- 310
})-'—2—<2 "Sy
™ T
Pl = 8) > — +§ .

If \w|] =1 and



Y — C . [ A 1/
s TH - | darg W} o« /2
then
. 3
v o+ § <« arg(wp) 5 0 - S

\v | P < o-c, (Re wp)
where

R S

2 sin §
L P .
since |v] < 1 and

- Re W > sin &
Iffwl= 1 and

% + S L oargw ¢ BT - §

then
vi P+ el re (wP) < +c
IVl , R
and
uP? > (sin § )P,
Thus
P 2]
| v | +c, Re (wp) < clu
where
1 + Con
¢, =
(sin §)P

_ . P
ju ¢, Re (w')

for all complex numbers w = u + iv satisfying u P
lLet £ & C;o(ﬁi) be a non-negative function.
function F on the upper half complex plane by

. [»7a)
F(z) = LJ £E) gt
'l z - t

oo

0, where 1 < p< 3.

Define an analytic

2389



Flx + iy) = ulw, y) + ivix, y)
. . . -2 ] 2 )
Tor some harmonic functions u : R, —3 R and v : R - R . If
z = x + iy then

|
1T

ulx, y) _I_ yr(f;) -
Tr -t} 4y s

Note that u(x, y) 2 0 for all x and for all y > 0.

Applying the inequality derived above we see that

O ©0
| vix, )| P ax ey u(x, y)¥ dx - ¢ Re F(x + iy)P
- 0o - 00

when y > 0 and 1 < p < 3. Using the fact that f has compact support,

we sec that F(z) = 0(|z]) and hence F(z)p = O(Ile) as z> o 1in the
upper half plane. Thus the integrals of F(z)p around the semicircles
2 = Re'? 4 iy, where 0 & @ $ 7 , converge to zero as R > + 00,
Thus
p=)
J‘ Fix + iy)P dx = o
~ oo

foer all y > 0 by Cauchy's theorem, since ¥(z)P has no poles in the

upper half plane. It follows that

oo

vix, y dx ¢ ¢y u(x, )p dx
l P | yIP dx

- oo

Now u( y) is equal to the value at x of the convolution k
of k and T, where
)/

1 y
Y -r‘— X2 4 y2

290
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But
oo oo
\ky(x)[ dx = k (x) dx = 1
hence
o0 o0
ulx, v) Pax < J lf(x), Pax
- oo oo

for all y > 0, by Young's thcorem on convolutions. Hence

r~e° e
J | v (x, ¥) ,p dx £ <y lf(x)\ P ax.

Now

o

i

HE (%) L —————-—f(t)’ — f(x) dt + £ -_) dt
™ v -t X - t
bx-tl <1 Ix-tl 21

L. -]

1 lim (x - t) (L)
Ty (x = t)" + vy

=~ Oo
. Lim (x, y)
= 04 vix, y).
By Fatou's lemma
00 o0
\[ \ Hf(x)l Pax = yE;g+ | vix, y)) P ax
- oo - o0

DO
lim inf , p
€ o I Jvie, y) [ 7 ax

oo
lf(x)l P ax
-~ o0
for all p satisfying 1 < p € 3 and for all non-negative f € C;p(Ii). To
extend this result te general f € C;p(ﬂ%) we observe that for all €2 0

P

there exist non-negative functions fl’ f, e C;‘(DI) such that f = f1 - fz and

e, o el S HEn e



where !!f![ is the LP norm of f. on applying the above result to

P

fl and f2 we sce that

,lel’p R | R O |
LT R VY N R PS A

< C(Hfllp + £ )

) : .
where ¢F = ¢y But g 2 0 is arbitrary, hence

Hf < cllf
Waell cclien
for all f € C;o(]?) and p satisfying 1< p< 3. Hence H is bounded

on LY (R ) when 1< p<4 3. Since H is self-adjoint, H is bounded

[

on Lp(l?) when < p &oo | by duality.

In zaalderon, A.P., l96§7 it is asserted that v(x, y) - Hf in
the above proof is the convolution of f with an integrable function.

However

, _ 1 lim y  f(t) dt
vix, y) - Hf(x) = RT L0

and the function

is not an integrable function of x in a neighbourhood of zero. Fatou's
lemma has been uscd in thc above proof to overcome this difficulty.

The theorem may also be deduced as a corollary of the
Marcinkiewicz interpolation theorem (sce lgtein, E.M. and Weiss, G.,

1972; pp.183-1887).
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