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ABSTRACT 

THE DETECTION OF HYDROGEN INDUCED CRACKING IN WELDED AND SEAMLESS 
STEEL PIPES USING ACOUSTIC EMISSION AND ULTRASONIC TECHNIQUES 

George Alan Raine, F.Inst. NDT. T.Eng (CEI) 

The detection and location of hydrogen induced cracks in steel pipes 
is unreliable and time consuming because of the unpredictable nature 
of the defect and the lack of sensitivity of conventional non 
destructive testing techniques. 

Determination of the susceptibility of steels to the formation of 
hydroger. induced cracking by attack from a sour gas environment has 
always been based on laboratory testing of small samples where th~ 

samples are subjected to attack from all sides. This is unrealistic 
compared to the in-service situation and a single sided exposure test 
is more realistic. 

In this thesis the subject literature is reviewed. Experiments on 
small samples show that seamless steel is the least susceptible to 
hydrogen induced cracking, whereas electric welded unidirectionally 
formed pipe is the most susceptible. The susceptibility of submerged 
arc welded pipe depends on the metallurgical form of the pipe but is 
always less susceptible than the electric welded pipe. 

Ultrasonic techniques have been used to detect the location of 
hydrogen induced cracks but manual techniques are labour intensive and 
unreliable. 

Four complete pipes were subjected to a sour gas environment from one 
side, one of which was seamless and one electric welded. These pipes 
were monitored using a passive non destructive testing technique, 
acoustic emission. 

A mechanised ultrasonic scanner was used to examine the last two pipes 
found to be susceptible to cracking using a specially selected 
ultrasonic transducer. 

The acoustic emission data collected was used to detect and locate 
areas of high acoustic activity produced by the formation of hydrogen 
induced cracking. 

These areas were examined metallographically and shown to include 
several forms of hydrogen induced cracking. 

The mechanised ultrasonic technique failed to detect near surface 
('1 mm) cracks, but was able to resolve mid wall affected areas. 

The seamless steel pipe was unaffected, whereas the electric welded 
pipe was severely affected by the sour gas environment. 

The automatic welded pipes suffered varying degrees of attack. This 
supports laboratory based experiments on small samples reported 
previously by other workers. 
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CHAPTER 1 

INTRODUCTIOI\ TO THE MECHAI\ISNS OF HYDROGEN IKD~-C£D CRACKING 

Transmission pipelines are used for the carriage of gas and petroleum 

products at high pressures and as long as the pipeline material has 

sufficient resistance to corrosion and the tra~s~itted material is 

correctly treated failure should not occur. During the life of the 

pipeline the condition of the transmitted material may change and its 

severity of corrosion may increase. 

The main cause of this change is the hydrogen sulphide which, when its 

partial pressure exceeds 0.05 psia and the total pressure exceeds 

65 psia, the gas or oil carrying product changes its classification 

from sweet to sour. The effect of the hydrogen sulphide is increased 

by the presence of water and salt, and it has been noted that water 

must be present before cracking can occur(l ,2). 

Gas supplied from offshore wells normally is salt bearing and due to 

condensation of the moisture from the gas also carr-twater, satisfying 

the necessary conditions. The condensation of the hydrogen sulphide 

and the water produces hydrosulphuric acid, resulting in cracking. 

Hydrogen induced cracking is not a predictable type of defect in that 

it is not always located at one particular position in the pipeline 

i.e. at the weld line, or the six o'clock position and it can occur 
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anywhere along the length or the circumference of the pipeline. 

However, recent tests have suggested that in very high yield steels 

preferen~ial attack will occur near the seam weld heat affected zone. 

Although the phenomenanis classed as hydrogen induced cracking it is 

also described in the following terms:-

Hydrogen induced cracking (HIC) 

Hydrogen induced blister cracking (HIBC) 

Blisteric5 

Blister crack array 

Hydrogen pressure cracking (HPC). 

It has tbe following features:-

1) The cracks are parallel to the surface. 

2) The parallel cracks are often linked together in the form of 

ste;s. 

3) It tends to occur at the sites of inclusion clusters such as 

elongated sulphide or aluminates, and in areas of 'hard' 

metallurgical structures such as martensite or bainite. 

4) It can occur in the absence of stress and under compressive 

stress. 

5) It has been suggested that it generally affects steels with a 

yield strength less than 5.50 MPa. 

6) It was also suggested that hydrogen induced cracking resulted in 

delamination, porosity and leakage rather than catastrophic 
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failure. The results of recent tests on X7U pipeline steel have 

beeL catastrophic failure. 

The reaso~ for the interest in this mode of failure is that at present 

2300 miles of under sea pipe have been in service since 1967 using 

steel grades X52-X65, although since 1975 all of the steels have been 

X60-X65 and represent 90% of the total length of pipe in service. 

Since l9~i failures of pipelines have occurred(3, 4 ), but the failure 

of a sub~arine pipeline in 1972(5 ,6) increased attention to this form 

of failuie. Although fourteen examples of failures have been 

reported(3 ,4,5,6,7), it is interesting to note that seven of the 

failures occured in unidirectionaly rolled non-heat-treated steels 

i.e. electric and spirally welded pipe. 

These failures occurred in steels which had both high and low strength 

values having various metallographic structures varying from 

ferrite/pearlite to heat treated controlled rolled structures. 

Examination of the failures showed elongated planar cracks parallel to 

the surface associated with lenticular manganese sulphides, oxide 

clusters and areas of lamination. In some cases these planar cracks 

were co~~ected by stepwise cracks linking the various layers and 

propagating through the pipe wall, leading eventually to failure. An 

example of stepwise cracking is shown in Figure l. HIC failures and 

damage have only been recorded in welded pipeline steels of the 

submerged arc, electric resistance and spiral welded type, but have 

never been recorded in seamless pipe(B), this may be due to the 

production process of the seamless pipe being a forging hotwork 
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process and producing a preferential form of non-metallic inclusion 

and metallurgical structure. 

At the present time the common test applied to pipeline steels for the 

evaluation of resistance to sour gas has been single-sided immersion 

tests, followed in some cases by a simple fo~ of ultrasonic scan. 

The initial tests were based on the BP/Cotton tests(9), but because of 

the number of variations which have been produced having various 

specimen configurations and environmental conditions, it was thought 

that there was a need for a standard test. A NACE(lO) task group was 

formed to produce a standard test(ll) which could be applied to all 

steel types which could possibly operate in a sour environment. 

This and other tests are laboratory based tests and only cover a very 

small area which is the same philosophy that is used for mechanical 

testing. In the case of mechanical testing the samples are always 

selected from standard locations in the pipe, plate, casting forging 

or component that is to be tested so that results can be related back 

to a standard. However, as has already been stated earlier, HIC is 

not a predictable defect and thus these laboratory tests only give an 

indication of the susceptibility of the steel. What is required is a 

macro test and an evaluation technique which can be applied during 

this test which can detect the initiation of the HIC, the location and 

the rate of growth with time in terms of both area and through wall 

propagation. 
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A mechan~sed ultrasonic scanner having the correct scanning pattern, 

probe ty?e, level of sensitivity and resolution and the ability to 

store an~ analyse the data will give the rate of growth with time buc 

only if it is located in an area which is known to have HIC or which 

is known to be susceptible to HIC. Not all ultrasonic systems are 

suitable for this purpose and have to be carefully selected and 

evaluate~ in terms of the above, i.e. resolution and sensitivity and 

also if :o be used repeatedly on the same sample, reproducj~ility. 

In order to detect the initiation of HIC, a more global macro 

techniqc~ would have to be used, such as acoustic emission, which 

would de:ect the acoustic emissions transmitted through the steel from 

crack ti? opening during the formation of HIC. Acoustic emission 

could also be used to locate the area of emissions and measure the 

rate of increase in acoustic activity during a test. 

This comnination of a mechanised ultrasonic scanning system and au 

acoustic emission system used during a sour gas test on full size pipe 

would produce more information than a single-sided smallscale 

laboratory test. 

Mechanism of Hydrogen Induced Cracking 

In any gas or oil pipeline operating in a sour environment the 

hydrogen sulphide reacts with any water present and hydrolyses, 

forming a weak hydrosulphuric acid: 
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H S ~ HS- + H+ 2 ~ 

H2S ~ 2tr+ + s2-

Reactions then take place between these ions and the steeJ to form 

corrosion and ferric ions at the anode sites 

Fe -.. Fe2+ + 2e 

These electrons combine with the hydrogen ions to form atomic hydrogen 

which migrates into the steel: 

2rr+ + 2e -.. 2H 

Fe2+ + s2- -.. FeS 

The atomic hydrogen then precipitates at voids to form molecular 

hydrogen in the steel, resulting in high pressure at these 

sites(l2). It is these sites which cause propagation of the HIC in 

the steel matrix. These sites may take many forms but are mainly 

associated with inclusions, shrinkage voids and laminations produced 

during the production process and surrounded by voids. Keisling(l3) 

describes the preferential inclusion type resulting in void formation. 

Although all inclusions and discontinuities are possible sites for the 

initiation of HIC, the more angular and sharp edged are preferable, 

i.e. the elongated Type II manganese sulphides and aluminates compared 

with the lenticular globular sulphides or rare earth treated steel 

types. This may give one of the reasons for the non susceptibility of 
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seamless pipe. Carbide cementite-matrix metallographic structures 

provide ~ore resistance than banded or controlled rolled structure§. 

As stateJ earlier, hydrogen induced cracking may take two forms. :-ne 

most co!D.li'ilon method of propagation is in a linear manner, while the 

other is a more dramatic stepwise cracking propagation through the 

pipewall. Central segregation normally found in the plates produced 

from the top portion of ingots or found in the majority of 

continuously cast steels produces bands of non-metallic and elonga~ed 

bands of untempered martensite and bainite which are ideal sites f~r 

HIC propagation and thus can form extensive lamellar cracking. 

e. I e"" 'L" \ 
Stepwise cracking is a separate phenomenon and finitel/'analysis has 

been applied to determine the stresses and strain produced around tne 

sites during the development of these stepwise cracks(l 4 ). The 

results of the analysis produced the following deductions about the 

mechani~ of hydrogen induced cracking: 

1. The formation of molecular_hydrogen produces pressure and results 

in the separation between the inclusions and the metallurgica~ 

structure accompanied by plastic deformation of the crack tip. 

2. These plastic regions become embrittled by the hydrogen. 

3. The cracks propagate through this embrittled region in a 

direction normal to the tensile stress (i.e. normal to the planar 

HIC). 

7 



Three examples of the creation of stepwise cracks are shown in 

Figure 2. 

Present Test Procedures 

The present test procedures are based on small laboratory samples 

typically 20 rnrn x 100 mrn x 6t (plate thickness) and these are immersed 

in de-aerated hydrogen sulphide saturated svnthetic sea water for 

96 hours. The samples are then sectioned at the quarter, half and 

three-quarter position along the axis of the sample and any cracks 

present are measured on three metallographically prepared surfaces. 

This is the basis of the BP/Cotton test. After metallographic 

examination the susceptibility of the steel is presented in terms of 

ratios of total lengths and widths of HIC and the length and width of 

the sample. 

Three crack indices are determined: 

a) Crack length ratio (CLR), representing the total crack length in 

the rolling plane. 

b) Crack thickness ratio (CTR), representing the amount of cracking 

in the through thickness direction of the plate or pipe. 

c) Crack sensitivity ratio (CSR), derived from the product of (CLR) 

and (CTR) and representing the crack area. 
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These three crack indices are represented in Figure 3. Various 

modifications have been made to this test, in some cases side coating 

of the samples has occurred and the use of more severe testing 

conditions have been applied as improved steels having greater 

resistance to HIC have been developed. Twenty-seven varieties of the 

BP/NACE test have been produced by various oil and gas companies, all 

having different acceptance criteria, and because of this NACE have 

produced a standard test(l5), which can be used for comparison 

purposes only, as acceptance or rejection criteria are not included. 

In all cases the results of a company's test can only be compared with 

their o~u results on other steels, as any variation in the test piece 

preparation, the conditions of the test, and the form of evaluation 

can completely alter the final result obtained. 

NACE Test 

The NACE test requires samples to be removed from the pipe with the 

longitudinal axis of the specimen parallel to the longitudinal axis of 

the pipe. If welded pipe is used, the specimen should also be 

parallel to the weld. Weld area samples are removed perpendicular to 

the weld. The specimens are 100 mm long by 20 mm wide and must be 

from the full thickness of the pipe. For each pipe, three specimens 

are removed. If the pipe is welded, one is from across the weld and 

the remaining two at 90° and 180° away from the weld. If the pipe is 

seamless the three samples are taken 120° apart around the 

circumference. The specimens are then immersed in the NACE solution 
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of synthetic seawater saturated with hydrogen sulphide at a pH in the 

range of 4.8 - 5.4 for 96 hours. At the completion of the test the 

samples are sectioned and examined transversely microscopically and 

their CSR, CLR and CTR ratios determined. 

Other Test Methods 

No matter which test is used, the HIC severitv still has to be 

assessed and the method normally applied is metallographic. The first 

main problem, is that the HIC occurs randomly, so that in some cases 

the sections may more or less severe defect areas in 

relation to the remainder of the sample. The other problem is that, 

depending on the crack separation criteria used, different values of 

crack sensitivity ratio (CSR) are obtained, Figure 4(16). 

Ultrasonic techniques have also been used as an aid to metallography 

in order to determine both those areas affected by HIC and to ensure 

that sections are selected from the worst areas. The technique has 

also been used in its own right as a replacement for metallography and 

results have been compared with both CLR and CSR. The results are 

shown respectively in Figures 5 and 6(17) and although the 

relationship between CLR and areas defined by ultrasonics is quite 

good, the results for CSR show a large amount of scatter and suggest a 

critical value of CSR has to be achieved before any ultrasonic data 

is obtained. 
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An example of the results obtained using attenuation techniques(l8) is 

shown in Figure 7 where a C-scan presenta:.ion is produced with time. 

One further problem that affects the res~lt of the smallscale test is 

the orientation of the sample itself. Work carried out by 

Kowaka et al(l 9 ) has shown that crack susceptibility in samples 

sectioned parallel to and examined in the rolling direction, is 

greater than those taken transverse to the rolling direction. The 

location of the samples is shown in Figure H and it would appear that 

the orientation of the samples, together with that of the rolling 

direction and the preferred orientation of the non-metallic 

inclusions, plays an important role in the final result obtained. 

There have been many comments made on the attributes and value of the 

smallscqle test, but the general comment is that whereas it would 

appear that the single-sided test is more representative of service 

conditions, the results obtained suggest that the uncoated specimen 

overestimates the HIC susceptibility of the steel whereas the coated 

specimen underestimates HIC susceptibility(2D). Results showed that 

crack lengths obtained during standard HIC tests were double those 

obtained during single-sided fullscale tests(21). 

The point has also been made(22) that the hydrogen content of the mid 

wall in a real situation will only be half that of the affected 

surface because of differences at the outer wall, whereas in a fully 

immersed test a state of hydrogen equilibrium will be produced 

throughout the specimen. Figure 9 illustrates this effect and shows 
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that a single-sided tested specimen is as close as possible to actual 

pipe conditions. 

The Effect of Metallurgical Variations on HIC Susceptibility 

Metallurgical variations such as steel production route, forming and 

heat treatment all have some effect on the HIC susceptibility 

properties of steel. 

Production Route:-

The two main production routes of ingot and continuously cast steel 

both affect the production of HIC in relation to the most susceptible 

areas in the final rolled product. The shape, in terms of length and 

width of the initial ingot, determines the freezing rate and thus 

dendrite formation. It also determines the final metallurgical 

structure and preferential segregation pattern. These are important 

factors in that they affect the location of and number of the 

non-metallics in the ingot. These create sites for HIC formation and 

the creation of hardened m~ crtstructures such as martensite or 

bainite leads to areas where crack propagation and growth may occur. 

The top centre core of fully killed ingot steels have always been 

known for their high degree of segregation whereas the bottom core of 

negative segregation is completely opposite. Similarly, the rim of 

the ingot near the skin is known to be relatively free of adverse 

inclusions and hard crack forming metallographic structures. Thus, 

sampling plays an important part when identifying the most 

12 



susceptible areas( 7 ) and Figure 10 illustrates the location of these 

areas(23 ). Figures ll and 12 also demonstrate the points made above 

relating to ingot bottom and edge location. Tnese findings were also 

confirmed by other workers(2 4 ) who also selec~ed their samples from 

these susceptible areas. It has been suggested that only submerged 

arc welded (SAW) pipe produced from the bott~ of the ingot will be 

HIC free(B) and that pipe areas opposite the ~o~eld from the top third 

of the ingot will be the most susceptible to EIC. The effect reduces 

as the pipe body approaches the weld. (This will only apply to pipe 

produced from plate rolled length for length or for pipe produced from 

coiled strip rolled directly from the slab stage i.e. electric welded 

or spirally welded pipe.) If, on the other hand, the plate had been 

cross rolled from slab, then the most susceptible areas would reach 

from opposite the weld up to the weld area but would not extend along 

the total length of the pipe. The effect will decrease towards the 

ends. Because of this variability it has been suggested that samples 

are taken at 120° to each other from the end of the pipe to attempt to 

resolve this problem especially if the rolling direction is not 

known(25). 

Continuous casting practice tends to produce a line of central 

segregation concentrating sulphides and other non-metallic inclusions 

in a band. The width of this can vary depending on the speed of 

casting, cooling rate affecting the solidification pattern and the 

tundish deoxidation additions. If these conditions are incorrect then 

hard metallographic structures may also form caused by high 

proportions of alloying additives. If ideal conditions occur then 
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this WQ;_;~j produce a very acceptable product and is to be 

recommen..:ed(2 6 ,2 7 ). On the other hand there may be a predominance of 

linear cracking compared to stepwise cracking. Small ingots hav~ been 

used in :he forging and tyrecord industry for many years to produ~e 

high qua~ity steel free from harmful segregation patterns(28,29) a~d 

seamless tube tends to be produced from small ingots which may be one 

of the reasons why they tend to have a low susceptibility to 

HIC(l2 ,llr ,30). Samples of linepipe examined have shown greater 

susceptijility to HIC in the centre of a 2-4 m plate than in the 

quarter ~idth location( 3l). Whereas other workers have confirmeci 

this, th~y found that the location varied from the ingot top to t~e 

ingot bo:tom when calcium additions were made to the steel(32). ~Qe 

effect of calcium additives is to modify the inclusions and reduce 

harmful segregation patterns. The stage following that of castilli is 

deoxidation and this can take place in the ladle or in the 

ingot/co~cast stage by deoxidant injections. Fully killed steels are 

those de~xidised using silicon or aluminium, whereas semi-killed dre 

those classed as ladle balanced where the deoxidation practice is 

performe~ in the ladle. There appears to be a higher sensitivity to 

HIC in fully killed steels than semi killed steels. The result of 

fourteec samples of both steels subjected to BP solution confirmec 

this(?) and a good correlation was obtained with aluminium conten:, 

thus giving an indication of the level of deoxidation. 

The predominant inclusions in fully killed steels are aluminate and 

Type II manganese sulphides which tend to be formed because the 

sulphides are the last to solidify and are caught between the grain 
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boundaries and dendrites. Thev form thin films which elongate during 

rolling and result in thin sharpended inclusions. The inclusions in 

the semi killed steels are primarily silicates, globular Type I 

sulphides and formable duplex sulphide silicates. 

The degree of susceptibility to HIC of fully killed steels as compared 

to semi killed steels is shown in Figure 13(23) and Figure 14(17). 

Note that rimming steel which is a soft and ductile clean steel, free 

from deoxidants has a low susceptibility even though produced from a 

undirectional rolling production route. 

The production route and the deoxidation practice chosen are the 

overq tl;·"'<,) factors in the type of non-metallic inclusions produced in 

the final product, whether it be welded pipe seamless tube or plate 

to be used in further fabrication. 

Many pipes which have failed because of hydrogen induced cracking have 

been subject to both optical and scanning electron microscopy 

investigations e,l2,21,29-36). 

The common findings of all of these examinations were as follows: 

1. Type II elongated sulphides were predominant in all of the failed 

tubulars. This suggests that steels having these present have a 

greater susceptibility to HIC then those steels containing the 

lenticular Type I sulphides. 
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2. Steel having elongated thin oxides and sulphides present sites 

for crack propagation which then follow lines of stress to 

join up the independant inclusions. 

J. Inclusions containing alumin <,), calcium and silicon (i.e. the 

constituents of fully killed steels), promote the formation of 

HIC. 

4. Voids or cracks produced around non deforming non-metallics(l3) 

act as sites for molecular hydrogen. 

5. Examination of fracture surfaces showed a predominance of 

elongated manganese sulphides, glassy silicates and aluminates. 

6. Subsurface aluminO> clouds were located in pipe produced from 

continuously cast stee1(37). 

The above suggests that if very low sulphide content steels could be 

produced HIC could be eliminated. As this is not always possible, the 

elimination and reduction of elongated sulphide inclusions would 

improve the steel susceptibility to HIC. This can be achieved by 

modifying the shape of the sulphides by the addition of rare earth 

metals such as cerium,Figure 15(38). Although the reduction and the 

modification of the sulphides decreases the susceptibility it will 

only be limited if aluminate and glassy silicate inclusions are still 

present. Thus an effort is required to reduce these levels also. 
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One problem does arise if HIC prevention is being attempted by 

examining the pipe, tube or plate before use. Whereas alumina 

clusters or large areas of non-metallics can be detected using 

ultrasonic techniques, sulphides are completely homogeneous with the 

steel and are invisible to ultrasound(39). Many techniques have been 

used to determine inclusion content using ultrasound based on an 

attenuation measurement or noise level techniques but none have been 

conclusive. ASTM performed a number of 'round robin' tests on h::?h 

quality ball bearing steels( 4 0) and BSC( 4 1, 4 2) repeated a number of 

tests on tyre cord steel but were not able to define levels of 

attenuation that could be correlated with results obtained from 

sulphur printing or metallographic inclusion assessments. 

Before leaving the subject of steel production routes and the 

susceptibility to HIC, the final stage of the rolling or forming 

process must be discussed. The mechanical properties required for a 

plate may be produced by rolling the plate to the required dimensions 

and the~ subjecting the plate to a heat treatment process such as 

normalising or quenching and tempering. An alternative method is to 

roll the plate to some fixed reduction ratio and then hold the 

partially reduced plate until the temperature is reduced sufficiently 

such that the plate can be finally rolled at a temperature between 

700-950°C. This is known as controlled rolling and produces a 

'stiffer' plate than that produced by conventional rolling practices. 

The controlling factors are the reduction ratio and the hold 

temperatures used. 
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If the plate is subjected to a normal rolling practice then steel will 

be deformed at high temperatures i.e. 1000°C and the steel will flow 

around the 'hard' non-metallics i.e. aluminates or glassy silicates. 

This will not produce any voids to act as nucleation sites. Under 

controlled rolling conditions the steel is finish rolled at much lower 

temperatures which does not allow the steel to flow around the 

non-metallics. Two routes can then be followed. Either the brittle 

non-metallics fracture, leaving voids or voids are produced at either 

end of the non-metallics producing sites for molecular hydrogen to 

propagate. 

Controlled rolling also tends to produce elongated Type II manganese 

sulphides(7) which increase the sensitivity to HIC(30). Thus 

normalised and quenched and tempered steels should have a better 

resistance to HIC(21). 

The above argument may contain the reasons why more failures of pipes 

occur in welded pipe than seam~ess as controlled rolled plate is being 

increasingly used for the production of pipe, whereas seamless pipe 

production is a forging process. Forging the pipe from blooms at high 

temperatures (1300°C) with resultant high finishing temperatures of 

about l000°C allows the steel to deform much more easily. 

Investigations carried out on hot strip showed it to have even higher 

susceptibility to HIC than controlled rolled plate and a greater 

tendancy to stepwise cracking(3D). The reason for this could not be 

explained but it is thought that it could be caused because of the 
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unidirectional rolling route a~d the higher reduction ratio used when 

rolling the slab to thin strip which could be in the order of 20:1 

inducing stresses on any non-metallic present and the adjacent 

material. This could also be t~e reason for the number of HIC 

failures occuring in electric ~lded and spirally welded pipes. 

The structure produced by these routes will be metallographically 

different. The normalised pip~ and seamless type have a more uniform 

structure producing greater resistance to HIC, whereas the controlled 

rolled and coiled strip may ha7e a predominantly orientated grain 

structure prevalent to crack propagation. 
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CHAPTER 2 

NON-DESTRUCTIVE TESTING TECHNIQUES FOR THE LOCATIO!\ AND DETECTION OF 

HYDROGE~ INDUCED CRACKING 

The preceeding sections have described the hydrogen induced cracking 

problem and have sho~~ that, because of factors such as the production 

route, the deoxidation practice carried out on the steel and the 

rolling direction of the semi-finished product, HIC will appear to 

occur randomly. Thus selection of samples and performance of 

laboratory tests may not predict the susceptibility of the material or 

indicate the rate of growth of hydrogen induced cracks. When a pipe 

or pressure vessel is placed in service the problem is even more 

accentuated and techniques such as repeated checking of one particular 

area using ultrasonics is a regularly used technique. It has been 

suggested that there is no other cost effective method( 4 3). The 

previous sections describing the laboratory tests have indicated that 

ultrasonic techniques have been used and are able to detect HIC. This 

is acceptable if the area that is affected is known, and from then on 

a piece of plant from that area can be monitored using a mechanical 

scanning device. There has been some development of these scanning 

devices but the results obtained are variable and in some cases do not 

produce the data in an easily usable fashion. Part of this thesis 

will describe the evaluation of such ultrasonic mechanised scanners 

and report the results of investigations using such a scanner. Remote 

global monitoring, if it could be used, would be able to detect areas 
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of initiation of HIC and locate the position that ultrasonic 

techniques could be applied. One such technique is acoustic 

emission. 

ACOUSTIC EMISSION 

Acoustic emmision is a passive non destructive testing technique. 

Whereas the majority of techniques interrogate the defect, acoustic 

emission relies on the defect produci~ a signal which can be 

detected. This suggests that AE will only detect growing defects such 

as propagating cracks, but this is not so. Defects produci~ such 

emissions are known as primary sources, but secondary sources can also 

be produced and detected. These secondary sources can be caused by 

adjacent fracture faces rubbing together or crushing corrosion 

products. It is usually quite easy to differentiate between a primary 

and secondary source as the former has a high amplitude and fast rise 

time and short duration, whereas a secondary source has low amplitude, 

slow rise time and long duration. Acoustic emission is known by many 

terms such as: 

stress wave emission 

micro seismic activity 

emission 

elastic waves 
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acoustic emission 

and is described as the phenomenon when a rapid release of energy from 

an isolated source generates a transient elastic wave within a 

material(44 ). This rapid release of energy can be produced by crack 

growth or plastic deformation in the material. The wave generated 

will then travel through the material, the distance will depend on the 

attenuation of the wave by the material, until it is detected by a 

transducer coupled to the material Figure 16. This transducer will be 

a piezo electric transducer of a known frequency which will respond to 

the wave producing a weak electrical signal. Although the technique 

has been known for a long time AE was not used in NDT until the 1950's 

and 1960's( 45) but since then it has been used to monitor spot 

welding(~6, 4 7), leak detection(4S-51), loose part detection(52-54), 

bearing inspection( 55 -5 8 ) tool wear(59-61), ceramic testing(62-6 4 ), 

fibre reinforced plastic vessels( 65 - 67 ), composite structures(68,69), 

pressure vessels(7°-73), pipelines(7 4 ) and offshore 

structures(7 5- 88 ). 

Standards have been written so that acoustic emission can be applied 

reliably in the majority of the above applications(89-91). This was 

done because initial claims that the technique could detect locate, 

identify and determine the increase of the rate of growth of flaws 

were in some cases unfounded. It is now accepted that the technique 

can detect flaws but cannot identify them. 
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AE is able to detect microscopic and submicroscopic changes and 

because of this can be used to monitor changes other than flaw 

detection, that may be occurring within the material. Such changes as 

creep, strain hardening and phase transformation may be studied in 

this manner. 

The greatest advantage that AE has is that it is able to locate 

structural discontinuities or flaws without using some scanning or 

grid pattern examination of the structure. The other main non­

destructive testing techniques such as radiography, ultrasonics, 

magnetic particle inspection and eddy currents will only give 

information about a structure at one particular site and that 

information will be limited to the technique used. Radiography will 

only provide information on embedded defects, while magnetic particle 

inspection and eddy currents are limited to surface breaking flaws. 

Depending on the procedure used, ultrasonics can give localised 

information on either embedded or surface breaking flaws. When 

applied correctly, AE can provide information on embedded or surface 

breaking flaws, although there is a limitation that if the flaw is 

embedded in very thick material, problems on acoustic location may 

occur. Nevertheless, the technique has been used on pressure vessels 

having wall thickness of 100 mm(92), AE can provide complete 

information in real time on the flaw location and initiation over the 

entire volume of the structure. When an acoustic emission pulse is 

produced, the signal is amplified and the waveform captured for 

analysis Figure 17. The waveform shown in the figure is known as an 

event, the total time that the event exists is called the duration. 
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The time taken from the first cycle cutting a predetermined threshold 

to maximum amplitude of the signals is called the rise time. The 

number of cycles cutting the threshold level are classed as ringd~wn 

counts. Thus each event can be analysed in terms of rise time 

amplitude, duration and counts, and discrimination can be made between 

primary and secondary emissions from this data. The value of the 

threshold level is important in eliminating noise originating fron 

bubbling or the passing of gas or liquid through a pipeline. 

A computerised system is usually required to analyse the large amount 

of data produced during monitoring and this is used to produce 

activity histograms from each transducer, listing plots of event6, 

amplitude distribution and location plots. Large numbers of 

transducers can be used together; up to 144 have been used on the 

monitoring of the domes on blast furnaces stoves(93). To use these 

transducers, geometric configurations have to be used, and these nay 

be cylindrical or multiple arrays. 

The cylindrical array comprises four sensors arranged as in Figure 18 

with a circumferential spacing of 90°. This form of array deals vell 

with a cylindrical form and combines versatility with transducer 

economy. It can detect and locate a defect within a cylindrical array 

but can also locate sources within and outside the boundaries of the 

array. There is a limitation to the distance between the sensors 

because of signal loss due to atenuation, and the longitudinal spacing 
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is twice the circumference of the cylinder, whereas in the y direction 

sources can be located upto 3.25 times the circumference. 

The multi triplet set is shown in Figure 19 and is made up of 

interlocking triangular arrays. 

An algorithm is used to locate an event with the array using the t.;t 

values (the differences in arrival times from the source) from the 

three sensors in the array. If more than one array is hit, the one 

with the smallest range of t.;t is used, thus producing a greater 

location accuracy. The maximum error introduced on location is about 

5% of the longest side. The triangular array arrangement may produce 

locations which are outside of the arrays because of ambiguous t.;t 

values, the multi triplet array algorithm will always return the 

location of the source within the triangle. 

Once a source of activity has been located, it can be monitored and a 

record of maximum amplitude, duration rise time and counts can be 

made. Analysis of this data gives an indication of the activity of 

the source. A record of events against time is shown in Figure 20 and 

an example of a location plot is shown in Figure 21. 

It is only recently that large computerised systems have been 

available and the majority of investigations were carried out using 

simple AE systems with up to three transducers. Early work on the 

detection of stress corrosion cracking(l02) clearly detected increased 

activity in terms of cumulative counts until the pipe failed and an 
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increase in the number of events when leakage was detected Figures 22 

and 23. 

Although AE has been used to detect leaks in pipelines both within 

nuclear installations on the secondary and primary cooling loop(94,95) 
J 

a larg~ 9 Km pipeline(96) and to detect flaws in pressure vessels 

during hydro or pressure testing( 97 , 98 ) until recently it had never 

been successfully used to detect hydrogen induced cracking in 

pipelines or pressure vessels. Initial trials were performed by a 

major oil company on a pressurised pipe but were not successful. 

The mecha~ism of HIC described earlier involves atomic hydrogen 

migrating to voids around non-metallics caused by lack of formation of 

the non ~etallic and already stressed. This produces molecular 

hydrogen and introduces even greater pressure, eventually leading to 

crack propagation through the steel. Such a process is ideal for 

detection by acoustic emission, which relies on crack extension 

emitting waves of mechanical energy due to the release of elastic 

energy stored at the crack tip. This mechanical energy is transformed 

to electrical energy at the site of an acoustic emission transducer. 

Chapter 4 will describe an acoustic emission technique that will 

detect the initiation and location of HIC. 

Acoustic emission technology can be applied in a number of ways during 

the investigation of HIC. 
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a) Detection of micro cracking and macrocracking. 

b) Separation of diffusion controlled crack advancement from 

incremental stable crack advancement in burst activity. 

c) Definition of primary and secondary incubation times for cracking 

processes. 

d) Time resolved records of crack advancement activity. 

e) Definition of the optimum time to stop and test prior to 

failure. 

f) Determination of performance of on-line real time monitoring of 

full scale structures to establish level of HIC activity and 

determination of areas where damage is occurring. 

It is hoped to illustrate some of these applications through the 

investigations carried out. 

Ultrasonic Testing 

Whereas acoustic emission has been described as a passive inspection 

technique, ultrasonics is the complete opposite and relies on the 

interrogation of a material and the interpretation of the response to 

determine the integrity of that material. The ultrasonic technique 

uses the piezo electric effect, to convert high frequency voltage 
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pulses into ultrasonic ~aves ~hich then propagate into the material 

under test until they are reflected, converted or diminish in 

intensity with distance. In the case of normal probes and transducers 

these waves are normal to the crystal surface(99 ,100). The ultrasound 

then travels through the material and is reflected from the opposite 

face to that of the transmitting face and returns to the transducer 

where it is converted back to an electrical signal. The time between 

the transmission pulse and the received pulse can be measured and is 

called the transit time. This method, using both intensity and 

transit time, is called pulse transit tim~ or pulse echo and is one of 

the oldest ultrasonic techniques in use. It had been used since the 

first world war(l 0 l) for locating objects under water such as 

submarines or icebergs, but it was not until 1940(102) that its 

application to non-destructive testing was recognised as a technique 

for the location of flaws. 

The pulse echo technique can be applied in many ways, but the two most 

common are those using longitudinal and transverse waves. Hydrogen 

induced cracking is a lamellar defect located parallel to the pipe 

surfaces although these lameller cracks can combine to form step wise 

cracks. For the detection of the most common form of hydrogen 

cracking a normal pulse echo technique is suitable but it may also be 

possible to detect the step wise cracking using a shear wave 

technique. 

The pulse echo technique can be applied to any object having parallel 

faces. That is why it is applied especially in the steel industry for 
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the inspection of semi finished products such as steel blooms, billet, 

plates aod forgings(l 03 ). Depending on the thickness of the material 

and its metallurgical condition(l 04 ), probes of varying diameter and 

frequency can be used. The probe or transducer selected depends on 

two main parameters, the wave length of the sound produced and the 

near zone of the probe. The wave length gives some guidance to the 

resolution of the transducer, i.e. the limiting detectable defect size 

and a rule of thumb guidance is that the resolution of a transducer is 

equal to half the wavelength value. So from the formula 

c c velocity of sound 

f frequency 

For C ~ 6000 m/s for longitudinal waves and a 4 MHz transducer 

c 

f 

6,000 

4 
1.5 mm 

Theoretically that transducer should be able to detect a defect 

0.75 mm diameter. 

The bearr which emerges from a transducer into a medium of infinite 

length can be separated into two zones, one of which the near zone has 

a length N. The length of the near zone depends on the diameter of 

the transmitter, the wavelength of the ultrasonic radation, the 

frequency and the speed of the ultrasonic energy in the medium. 
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0. 25 o2 f 
N 

v 

0.25 o2 o2 
N 

A 4A 

When N near zone A wavelength 

D diameter of the transducer e.g. 24 mm 

Therefore, N 

24 X 24 

4 X l. 5 

N 96 mm 

In this area of the sound beam it is difficult to perform defect 

sizing. Krautkramer(l0 4 ) has produced a relationship between distance 

in terms of near zones, amplitude of defect echo and ratio of defect 

to transducer diameter which is used to determine the size of defects 

located. This AVG diagram also known as DGS (Distance, Gain, Size) is 

used to size defects in plate, castings and forgings although the 

relationship only becomes linear after a distance of one zone is 

reached. 
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The other main parameter is the dead zone of the transducer which is 

related to the ringing time of the crystal selected. Depending o& the 

damping used in the construction of the transducer the crystal could 

ring continuously. The use of a damping medium such as calcium 

tungstate not only directs the sound into the material to be tested 

but also damps the crystal and reduces the ringing time, consequently 

reducing the size of the dead zone. This dead zone can be up to ~2 mm 

in lengt~ in which no defects can be detected. One solution to t~is 

problem is the use of twin crystal transducers, one crystal acting as 

a transmi~ter and the other as a receiver. If these transducers can 

be set ba.::k from the probe housing face, the dead zone is reduced a.nd 

also the defect search area will be outside the near zone of the 

transducers. This technique is used to detect small defects in thin 

section plates. 

Figures 25 and 26 show examples of the separate A-scan ultrasonic 

traces produced by a single crystal transducer and a twin crystal 

transducer using a stand-off. 

A transducer had to be selected to detect hydrogen induced cracks that 

had high sensitivity and good near surface resolution. Transducer 

suppliers produce DGS diagrams for specific transducers and several 

were ex~ined(l05) but none met the requirements thought to be 

necessary, namely that of being able to detect a l mm diameter hole 

3 mm from the outside surface of the pipe. Thus sensitivity curves 

had to be produced of the type described by Raine(l0 6 ) to determine 

the most suitable probe type Figures 27-29 • Twin crystal probes 
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have been used to detect laminations in plates 7 mm thickness(l07) 

with success, using small diameter focussed probes and it was thought 

that this would be the correct transducer to be used to detect 

hydrogen induced cracking. Earlier references have stated that the 

use of attenuation techniques would give an indication of the presence 

of hydrogen induced cracks, but it has already been stated that these 

should b€ associated with non-metallic inclusions. Investigations 

have bee~ carried out in the past with little success(l 08) and it was 

suggested then that the volume or area of inclusions present was more 

important than the number and that a minimum value had to be present 

before a relationship began to exist (17). Attenuation techniques 

were suggested as a method for the selection of steels for sour gas in 

order to determine their freedom from sulphide inclusions but 

investigations carried out by BSC( 4 1) revealed that even extreme 

sulphide segregation in steel did not produce definitive indications 

so that this technique could not be used prior to service. Thus, it 

was suggested that pulse echo ultrasonic techniques using a twin 

crystal high frequency small diameter probe should be used for the 

detection of hydrogen induced cracking. 

Because hydrogen induced cracking occurs around the whole 

circumference and along the length of the pipes, it would be very 

labour intensive manually to scan ultrasonically the whole surface 

area of the pipe. Trials carried out in the past have shown that it 

takes two man-days to examine 1 metre of 500 mm ~meter pipe affected 

with hydrogen induced cracking. There is thus a need for a mechanised 
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ultrasoni~ scanner to be used to scan the circumference of the pipe in 

such a manner as to cover effectively the whole area of the pipe 

surface. During this scanning, a large volume of data will be 

collectec and this will require storage in such a manner that it can 

be retrieved for viewing and analysis. The majority of mechanised 

ultrasonic scanners have been developed for the examination of welds, 

with one exception, a unit developed by Det Norske Veritas(l09) from a 

system produced by the Danish Welding Institute (SVC)(llO,lll). Other 

mechanised scanners have been produced by Ultra Image(ll2) and 

RTD(ll3), Voest Alpine(ll 4 ) South West Institute(ll5) and others(ll6) 

for the inspection of welds. Ultra Image, RID and SVC have also 

developed instruments to scan pipework and perform corrosion mapping. 

It was concluded that corrosion mapping was not too dissimilar to the 

detection of wall thinning caused by the presence of lamellar defects 

such as hydrogen induced cracking and it was decided that this route 

should be investigated in order to define a mechanised scanner which 

would have the following attributes. 

(a) The scanner should have a variable scanning pattern in the 

longitudinal and transverse direction in terms of incrementation 

of the scanner and variable scanning speed. 

(b) It should have good reproducibilty and be able to return to the 

same detection point repeatedly. 
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(c) It should have the capability of storing all of the data in its 

base form, suitable for further analysis in order to use a 

variable sensitivity threshold. 

(d) It should be able to produce in real time, an image of the data 

beiQg collected by the ultrasonic transducer and give an 

indication of the rate of growth of the defect in terms of 

increased area and through wall penetration. 

(e) The transducer used should have the sensitivity and resolution 

which would enable it to detect lamellar hydrogen induced 

cracking before it penetrates further than half the through wall 

thickness. 

In Chapter 3 a number of mechanised ultrasonic scanners are 

evaluated and one selected for use on the pipes selected for sour 

gas evaluation. Its effectiveness in meeting the above 

criteria is examined. 
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CHAPTER 3 

EVALUATIO~ OF MECHANISED SCfu~~ING SYSTE~~ TO DETECT LOCATE AND 

CHARACTERISE HYDROGEN INDUCED CRACKING 

The hydrogen induced cracks are usually laminar and are interlinked by 

stepwise cracking. Whereas stepwise cracks are difficult to detect, 

they can be located using shear wave 45° angle probes, but the 

examination is very laborious and requires skillful ultrasonic 

operators, the detection being made more difficult because of 

interference by the laminar cracking. The laminar hydrogen induced 

cracks can be detected more easily using compression probes which can 

be scanned over the surface quite quickly, but because of the large 

areas involved in pipe inspection, and the time required to delineate 

the defects, the task is still time consuming. The practical 

requirement is for a mechanised ultrasonic scanner which can scan the 

total circumference of the pipe with the required scanning resolution 

to detect hydrogen induced cracks and using a selected transducer with 

the required sensitivity, can detect the defect. It should have 

sufficient near surface resolution to locate defects near to the outer 

surface of the pipe. 

The object of this section of the study was to examine a limited 

number of ultrasonic units which combined the use of mechanised 

scanners and a circumferential tracking system which enabled an area 
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of the pipe surface to be scanned, the hydrogen induced cracking t~ be 

detected and located and to produce an image of the data collecte~. 

MECHANISED SCANNING SYSTEMS 

There are few non dedicated mechanised ultrasonic systems, the 

majority being produced for a specific purpose to a strict 

specification, designated by the end user. There are available 2 

limited number of mechanised systems developed to detect the onse: of 

corrosion in pipework. It was decided to examine these systems tc see 

if they met the criteria specified in Chapter 2. 

The systems quoted were those produced by Ultra Image, RTD, SVC aL: 

the DNV adapted SVC unit. The difference between these latter twc is 

that the DNV system was specifically adapted for use underwater for 

the examination of risers and pipelines, and used a specially adap~ed 

mechanised scanner that had a pivoting scanning arm and a magnetised 

probe holder to cope with undulating pipe surfaces. Another feat~re 

of this system was that it utilised a non contacting focussed probt 

fixed 10 mm away from the surface of the pipe; the basic SVC systen 

using a contact probe and a scanner to be used for above water use 

only. 

Although Chapter 2 specified the minimum requirements of a mechanised 

ultrasonic scanner, because the equipment would be needed to operate 

on a large diameter pipeline a more restricted specification was 

required. This is given in Table I. The above scanners were 
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investigated using this specification to compare their relative 

properties. 

ULTRA IMAGE 

The Ultra Image mechanised ultrasonic scanning unit was designed as a 

modular system, based on four modules consisting of: 

a) A mauual scanner which is attached to a band which encircles the 

pipe diameter, Figure 30. 

b) A data acquisition unit which recorded the data collected from 

the scanner transducer with locations identified by the scanner's 

optical encoders. The data can be stored in memory and can then 

be transferred to floppy disc for permanent storage. The data 

can be manipulated, processed and analysed with this unit. 

c) A digital pulser probe receiver unit converts the analogue data 

to digital for rapid acoustic data recording. 

d) A data presentation and video module displays the analogue A-scan 

of the pulses received as described in Figure 25 and is also used 

to display the resultant C-scan of the pipe area scanned. A 

typical C-scan of three flat-bottomed holes, l mm, 2 mm and 3 mm 

diameter is shown in Figure 31. This being a plan view of the 

flat bottomed holes viewed from the top of the sample 
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A Schema t ::c of the unit is shown in Figure 32. 

RTD PRIMS-.:-.AN 

The RTD P~imscan is based on their girth weld inspection system, the 

Bandscan, consisting of four modules: 

a) A fc:ly automated ultrasonic probe scanner able to scan in both X 

and ~ direction around the pipe, producing positional feedbacK 

usi::r,; optical shaft encoders and having a scanning increment of 

1 lllE: minimum in both the X andY directions, Figure 33. 

b) A ba~ic ultrasonic module used to collect the A-scan data depth 

location which is transferred in its analogue form to an X-Y 

recorder, together with the scanner positional information. 

c) An X-Y plotter which produces a pseudo 3D format, Figure 34. 

d) A co~trol unit for the mechanised scanner. 

SVC P-SCA.:'i 

The SVC P-scan is a fully computerised modular mechanised ultrasonic 

system which consists of: 
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a) A fully mechanised ultrasonic scanner capable of scanning in both 

the longitudinal and transverse direction, using mechanised 

encoders to give location information. The scanner is able to 

carry both gap scanning and contact scanning transducers, 

Figures 35 and 36. 

b) A p~lser receiver unit converting the analogue data to digital. 

c) A microprocessor unit for storage of data prior to manipulation 

and analysis. 

d) A dual cassette unit for the master and storage tapes. 

e) Twin visual display units producing the A-scan presentation and 

the P-scan presentation (Projection Image Scanning). The P-scan 

is a C-scan image of the area scanned and a side view of the 

image showing the location of the defect with depth, Figure 37. 

This system has been fully described by Iverson(llD) and 

Neilson(lll). 

f) A scanner control unit. 

The whole system in use is shown in Figure 38. 

DNV CORROSCAN 

This unit is an adaption of the P-scan as it has been specially 
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developed for use underwater for the detection of corrosion in 

pipelines and risers. The electronic units are the same as for the 

P-scan but the scanner is a new development, Figure 39, having an 

independe~t power source to be used underwater and a pivoting arm to 

cope with the possible undulations on the pipe surface, Figure 40. 

The system also uses a focussed non-contacting probe as shown in 

Figure 4l although during the evaluation a contact probe was used. 

EVALUATIO~ OF THE SCANNING SYSTEMS 

The most important item in any mechanised ultrasonic scanner is the 

transducer selected to detect the defect. No matter what form of 

advanced manipulation or analysis of the data is used, if the initial 

data is poor or sub-standard due to the fact that the transducer does 

not have the near surface resolution or sensitivity to enable 

detection of the defect, then enhancement will still not reveal the 

defect. ~etallurgical investigations have suggested that a 3 mm disc 

would be the equivalent to a laminar hydrogen induced crack that could 

be tolerated to exist in a steel pipeline, any cracking smaller than 

Cl. ~c:.e.pt-
this would be acceptabl~~when they exist in a cluster. It was then 

essential to select the correct transducer which would enable the 

detection of a 3 mm disc at the midwall location. 

In order to comply with this requirement a twin crystal focussed 

transducer was selected, the focal point being at the midwall position 

or in the area of interest. Three transducers were acceptable for 

this purpose. The Krautkramer MSEB4H had a focal length of 6-10 mm 
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and thus could be used on a 12.5 mrn wall thickness pipe; the MSEH4T 

was an immersion probe, suited for use with mechanised systems, which 

had a focal length of 4-6 mrn, and finally the SE!:I5KF3, usually used 

for thin ~all thickness measurement, which had a focal length of 3 mm. 

It is essential that this parameter is known as a very small spherical 

reflector delivers a maximum echo when focussed and thus extra 

amplification of the echo may be required to permit efficient 

detectioc of defects located outside the position. DGS diagrams for 

the transducers are shown in Figures 42-44 showing the focal point and 

the ability to detect a 3 mm disc. 

These probes were used where possible with the above scanners during 

the evaluation. A 600 mm diameter 12.7 mm wall thickness pipe was 

used during the evaluation. Slots and notches, 1 mm, 2 mm and 3 mm 

width and diameter respectively were machined in the inner surface at 

1 mm increments from 3 mm from the outer surface to 6 mm from the 

outer surface (Figures 45-46, Table 2). 

The four mechanised scanners were then used to examine the pipe over a 

number of runs and the results are presented in Tables 3-1.5" and 

Figures 47-62. 

RESULTS 

As can be seen from the results, not all of the transducers were used 

with all of the mechanised scanners. 
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The Ultra Image scanner and electronics were designed to operate only 

with a single crystal transceiver and thus could not be used with any 

of the twin crystal focussed transducers, with the result that 

although the minimum size flat bottomed holes and notches could be 

detected, all of the depth measurements were overestimated. 

The DNV Corroscan was developed for underwater application and the 

transducer holder was designed onlv to be use~ with the 

MSEB4T transducer. During the evaluation it ~o·as not able to detect 

the 1 mm flat bottomed holes or notches, possibly because of the lower 

frequency, i.e. 4 MHz compared with the Ultra Image 8 MHz probe. 

The Primscan was used with all three transducers and the SVC P-scan 

was evaluated using the MSEB4T and the SEB5KF3. 

DISCUSSIO~ 

The results show that all of the mechanised scanners were able to 

detect a 3 mm hole at a minimum distance of 3 mm from the outer 

surface of the pipe using all of the various transducers, although 

there was a variation in the ability of the systems to detect the 1 mrn 

flat bottomed holes. 

The Ultra Image system using the single crystal 8 MHz transducer was 

able to detect all of the flat bottomed holes and notches, but because 

of a wide initial transmission pulse, it was difficult to accurately 

measure the transit time to the flat bottom hole echo which created an 
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inaccuracy when measuring depths. Figure 63 shows the transducer 

characteristics in relation to depth showing no resolution belo~ _ mm 

because of the transmission pulse width. 

The Primscan system was not able to detect any of the 1 mm diame-:.::r 

flat bottomed holes even though the characteristic curves for th~ 

transduc~rs show they are able to detect holes of that dimension. The 

SVC P-scan and the DN\1 corroscan also had difficulty detecting t:-,-:: 

1 mm flat bottomed holes. This suggests that although the transc~cers 

are capa":.le of detecting these small holes, the electronic equiprr•.:::Jt 

does not have the capacity to resolve them. This is a function c~ the 

amplifier bandwidth. High frequency amplifiers of the broad ban: 

type, 1-lO MHz range, have the advantage that short pulse transd~2ers 

having wide frequency bands pass through with little distortion. But 

the amplifier noise limits the amount of amplification available. 

This noise is proportional to the square root of the amplifier ~d 

width so that a narrow band width permits higher amplification auj low 

noise. The short pulse results in a shorter decay time between tie 

pulses resulting in better resolution. Thus a wide band width 

amplifier will produce better resolution, whereas the narrow ban~width 

will give better amplification. It would appear that both the 

Primscan and the SVC systems have narrow band width amplifiers w2~reas 

the Ultra Image is known to have a band width of 1-10 MHz. Both 

systems produced better results with the SEB5KF3 transducer in terms 

of determining the depth below the surface, this is as expected as the 

transducer was of a higher frequency, i.e. 5 MHz instead of 4 MHz. 
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In terms of detection and resolution all of the mechanised scanners 

were capable of detecting hydrogen induced cracking but some of the 

practical problems precluded some of them from use. 

The Ultra Image scanner was manually operated and did not have 

automatic indexing, relying on total 'colouring in' of the video 

monitor to ensure full coverage of the pipe section. This made the 

scanning rate very slow and uneconomic. The unit could only be used 

with a single crystal transducer which had a dead zone of 3 rom and 

finally did not have automatic acoustic coupling, couplant having to 

be applied to the surface prior to inspection. 

The Primscan unit did not have any storage capacity for data 

collected to be used in post test analysis. Interpretation of data 

was difficult due to the pseudo 3D print-out and the scanning speed 

was slow. All measurements of defect depth had to be performed 

manually from the X-Y recording. 

The D.N.V. Corroscan had been developed for underwater application and 

was purpose-built for this application having a separate power supply 

for the scanner, which only moved in one direction, thus making it 

impossible to return to its original index point. 

The s.v.c. P-scan with the Corroscan software had a fully mechanised 

scanner able to move in the clockwise anti clockwise and transverse 

directions. It had automatic couplant control and was able to carry 
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the twin crystal transducer. The computer had data storage facilities 

for post test analysis and threshold levels could be adjusted after 

the test and the data reanalysed. A permanent copy of the data could 

be produced with direct readout of the penetration of the hydrogen 

induced crack. 

A final check was performed on a test block as shown in Figure 64 and 

the resul::s compared with a C-scan image produced using a 10 MHz 

focussed ~robe scanning the plate in an immersion tank, Figures 65 and 

66. The noles appear to be rectilinear because of the stepped 

scanning increments. 

The s.v.c. P-scan mechanised system using the Corroscan software was 

thus the unit selected for examination of the pipes subjected to a 

sour gas environment in that it was able to characterise the area of 

hydrogen induced cracking by producing C-scan images of the areas 

affected and measurements of propagation through the pipe wall 

thickness. 
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CHAPTER 4 

EXPERIMEXTAL PROCEDURE FOR THE EXPOSURE OF PIPE STEEL TO A SOUR GAS 

ENV IRONM:::SI 

Materials 

Four pipe sections 48 inches long were prepared for the 

investigctions, details of the pipe dimensions and chemical analyses 

are give~ in Table l~. It should be noted that one of the pipe 

sections selected was of seamless pipe. This sample was chosen as it 

is generclly thought that pipe produced by the seamless route is less 

susceptiole to hydrogen induced cracking than welded pipe because the 

pipe fo~ing process is complete at a higher temperature producing 

less elongated non metallic inclusions and a more uniform 

metallographic structure. 

All of the pipes were cleaned and degreased prior to testing. The 

sections were then installed vertically and end caps attached using 

rubber seals to facilitate removal of the end fixtures and 

acousticclly isolate the sample. The pipes were then filled to 36" 

with the recommended NACE solution of 5% sodium chloride NaCl and 0.5% 

acetic acid CH3 COOH to give an initial pH value of 4.8-5.4. Hydrogen 

sulphide H2 S was then bubbled into the pipe at a rate of lOOcc/minute 

to obtain saturation producing a pH value of less than 4. These are 

the same conditions that small scale NACE samples are subjected to, 

except that all sides of the samples are affected which would be an 
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unreal situation. The pipes were then left under test for at least 96 

hours as per the NACE requirements. No pressure was exerted in the 

pipe sample. 

The experimental system is shown in Figure 67 and it can be seen that 

this is a fair representation of what would occur in a real situation 

and not the unrealistic aggressive conditions applied during small 

scale laboratory trials. It can also be seen that the hydrogen 

content determined at the centre of the pipe wall will only be half 

the value found at the surface in contact with the sour gas 

environment because of escaping hyd roge;1 f ro;:n the outs ide surface 

which would not be in the case of the immersed sample. Other 

workers(2l ,22) had concluded that pipe samples exposed to hydrogen 

sulphide from both surfaces suffered greater damage from hydrogen 

induced cracking than those exposed from one side only. Thus the 

experimental procedure selected for the laboratory trials simulated 

more closely actual field conditions and also assisted the use of the 

acoustic emission technique. 

ACOUSTIC EMISSION PROCEDURE 

A Dunegan/Endevco model 1032D acoustic emission system was used during 

all of the tests. The system had 32 channels available and with the 

1032D computer was able to perform two dimensional locations of the 

sources of acoustic energy and record all of the acoustic tests on 

floppy diskettes. Two location algorithms were used during the test. 
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Cylindrical location was used on the first pipe and the remainder ~ere 

monitored using an interlocking triangular method called 

multi-triplet. The two configurations are shown in Figures 68 and 69. 

The difference between the two algorithms is that with a cylindrical 

array am~iguous results may be obtained producing locations which may 

be outside the triangular array, with the multi-triplet algorithm the 

locatioc will always be returned within the triangle. 

The two figures 68 and 69 show the sensor location and the 

correspouding computer projection of the pipe sections, four sensors 

being attached to each pipe. A sensor preamplifier combination ~as 

used to give a frequency range of 100-350 KHz and the sensors were 

mounted on the pipe section using magnetic clamps. Because of a lack 

of knowledge it was not known what the amplitude threshold of the 

hydrogen induced cracking would be so that a low threshold of 30 dB 

(reference 0 dB = l microvolt at the sensor) was used during the 

tests. This low threshold caused a large amount of data to be 

recorded which required filtering increasing post-test analysis time. 

A typical example of unfiltered data is shown in Figure 70 showing the 

locatioc of windows required to analyse extraneous noise. The windows 

were arranged to cover 10% of the surface area and include a minimum 

of 10 events. All four parameters of rise time, amplitude, duration 

and acoustic emission counts were measured and the values used to 

filter extraneous noise such as bubbling from the remaining incoming 

data. An example of post analysis filtering is shown in Figure 71. 
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The procedure in the experiment was to install the sensors just below 

the liquid level and as near to the base as possible and measure the 

attenuation in the material to ensure adequate coverage by the 

sensors. In this case because of the small size of the sample, i.e. 

48" long by 12" diameter this was not a problem. 

The velocity was measured and a simulated source was used to determine 

the location accuracy, Figure 72. Passage of an inert gas was then 

used to simulate the bubbling noise which would occur during the test 

and the parameters measured. The experiment then commenced using the 

hydroge~ sulphide gas. 

Pipe Test Section 1 - Automatic Welded Mild Steel Pipe 

Figures 73-80 are the computer plots from the acoustic emission data 

collected during the testing of pipe section 1 and as can be seen a 

large amount of data was collected using four discs. With acoustic 

emission it is always preferable to collect all the data, then discard 

that which is unnecessary during analysis. Figure 73 shows the first 

unfiltered location plot revealing a heavily concentrated C shaped 

area of acoustic activity in the centre of the plot. The left hand 

bottom corner of the plot has a medium density area of activity just 

slightly more dense than the activity in the remainder of the pipe. 

This was background noise generated by the hydrogen sulphide gas 

bubbling into the pipe. Figure 74 shows the same location plot after 

applying the window technique analysing the data within the windows to 

characterise the data and using the software package to remove the 
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extraneous noise. The concentrated area in the centre of the pipe 

location plot remained showing that it was valid data. Seventeen 

hours later the central area of activity had decreased leaving two 

areas at the extreme ends of the 'C' with some increase in general 

noise, Figure 75. Three hours later the central active source had 

increased its activity together with a build up of the background 

noise, Figure 76. 

Thirteen hours later the central area of the pipe was still emitting 

acoustic events but the remainder of the 'C' area had virtually 

disappeared, Figure 77. This suggests that once the hydrogen cracking 

had occurred the stress concentration around the crack tip had bee~ 

relieved preventing further emissions and new areas of cracking had 

appeared creating the latter areas of acoustic activity. At this 

stage the experiment was halted and the test pipe drained and 

ultrasonically examined. The s.v.c. Corrosan was not available for 

this first experiment so that ultrasonic examination had to be applied 

manually. Two areas produced laminar indications and these were 

identified for subsequent metallographic examination. Further areas 

which indicated acoustic activity but did not produce ultrasonic echo 

responses were also identified together with areas having no acoustic 

activity present, Figure 78. 

Figures 79 and 80 reveal the amplitude distribution plot obtained from 

the two areas of high acoustic acitivy. These showed an amplitude 

range of 40-50 dB for area SO and 40-55 dB for area Sl. A history 

plot of event rate for the first ten hours of the test is given in 
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Figure 81 and shows an event rate of 3 events/minute for some periods 

of time, and if this is compared to the history plot of amplitude 

against time, amplitudes of 60 and 70 dB can be seen, Figure 82. At 

the latter stage in the experiment a second array of sensors Sl was 

placed on the area of suspected cracking and the location plot 

produced from this array is shown in Figure 83. This was produced at 

the same time as the location plot in Figure 77. The two amplitude 

history plots are shown in Figures 84 and 85, the amplitude history 

plot for array Sl being the more concentrated. The event rate for 

both these arrays is much greater than that measured at the beginning 

of the test suggesting that crack growth was continuing and that the 

steel was highly susceptible to hydrogen induced cracking, Figures 

84(a) and 85(a). 

Monsanto Chemical Company have an evaluation criteria which they place 

on metal pressure vessels under test. Two of the criteria are that 

there should be no high amplitude events greater than 65 dB and that 

the event rate should not increase during a test. If the criteria had 

been applied to this test then extreme cracking would have been 

predicted. 

The areas identified after the ultrasonic inspection were removed for 

metallographic examination. 

The general structure was that of ferrite and pearlite grains 

containing numerous non metallic inclusions, the majority being 

manganese sulphide. Four main types of defects were located. A 

central laminar crack was detected in area SO, Figure 86, and these 
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cracks ~re associated with transgranular non-metallic inclusions, 

Figure 87. The second type of cracking located in areas of high 

acoustic activity but which did not produce an ultrasonic response is 

shown in Figure 88. This crack was within 1 mm from the inner wall 

surface and would probably not have been detected solely by 

ultrasonics because any echo response would have been confused by the 

backwall echo. There were a number of these cracks and they lay in a 

band 0.41 mm to 1.27 mm from the inner wall surace. An area of 

banding can also be seen at the top of the metallographic section. 

The third type of defect located was classical stepwise cracking, 

Figure 89. This again was close to the inner surface. 

A fourth type of defect was located in the area Sl, and although this 

being mainly parallel to the surface, it also propagated to the inner 

wall, Figure 90. This crack was 3.81 mm long and 2 mm from the inner 

wall. One of the planar defects was 7.7 mm long and 1.27 mm from the 

inner wall and had not been detected by manual ultrasonic inspection, 

which suggests that either the far wall resolution was not adequate to 

separate the defect echo from the back wall or the defect was missed 

during the scanning pattern. 

Sections removed for examination from areas which did not give 

acoustic emission indications revealed no crack areas. 
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Pipe Section 2 - Seamless Steel Pipe 

The multi-triplet array was used on pipe section 2, manufactured from 

seamless steel material. This pipe was tested for 200 hours because 

over the first 100 hours there were no positive areas of acoustic 

activity. Figure 91 shows the unfiltered location plot and as can be 

seen the acoustic activity was of very low level and diverse with no 

dense clusters apparent, similar to the effect produced by the 

bubbling of the hydrogen sulphide gas. The same software filter used 

during pipe l test was applied and virtually removed all traces of 

acoustic activity, Figure 92. An amplitude distribution plot for the 

pipe section revealed a range from 35-45 dB, the majority of events 

having amplitudes in the 35 dB region, Figure 93. 

Careful ultrasonic examination of the pipe surface revealed no 

evidence of cracking. Because of the lack of hydrogen induced 

cracking, it was decided that an extensive metallographic examination 

should be performed. Sections were removed from around the whole 

circumference and apart from internal corrosion, no deterioration of 

the pipe was noted. The material had a much finer grain size than 

Pipe 1 and a lower population of non metallics, no elongated 

inclusions being present in the samples examined, Figures 94 and 95. 

The fact that the pipe was seamless rather than welded is the reason 

for the lack of attack by the sour environment confirming the evidence 

of earlier work referred to in Chapter 1(12,14,30). 
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Pipe Section 3 - Automatic Welded Mild Steel Pipe 

Because of the uncertainties produced during the examination of Pipe 

Section 2, the procedure for Pipe Section 3 was slightly altered. The 

mechanised ultrasonic scanner was used to examine the whole area of 

the pipe prior to the test to see if there was any evidence of 

lamination or large non-metallic inclusions present. The pipe was 

then subjected to the same environment as the previous two pipes. 

Figures 96 to 98 show the location plots for the test pipe. Initially 

the plot revealed scattered diverse acoustic activity with only a 

small number of clusters being detected by the computer. After 

applying filters only two regions remained. The two areas opposite 

being produced from the same source. A series of location plots 

produced from the pipe nine days later produced the same indications 

even after filtering, Figures 99-101. 

The mechanised ultrasonic scanner was used to examine the pipe and 

produced indications in the same area as the acoustic emission events, 

Figure 102. Metallographic sections were removed in an attempt to 

validate the ultrasonic and acoustic emission indications. 

A large sub surface crack was revealed, Figure 103, propagating 

towards the surface of the pipe in a stepwise manner similar to that 

detected in pipe section 1. Clusters of non-metallics could be seen 

associated with the stepwise section of the crack, Figure 104, and 
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fine cracking could be seen at the tip of the main crack, Figure 105. 

The structure was heavily banded, Figures 105-107. 

Pipe Section 4 - Electric Welded Steel Pipe 

Pipe section 4 was electric welded pipe known to be susceptible to 

hydrogen induced cracking. The pipe was scanned prior to commence~ent 

of the ex~eriment using the mechanised ultrasonic scanner, and thi~ 

revealed no internal discontinuities. 

The pipe became active soon after the commencement of the test and 

produced ~ide areas of acoustic activity even after filtering. 

Figures 108-110, a further four discs were filled with data and after 

filtering extensive areas of high acoustic activity could be seen, 

Figures 111-119. Because of the large amount of acoustic activity the 

experiment was stopped after 96 hours and the pipe scanned using the 

mechanised ultrasonic scanner. 

The ultrasonic data produced is shown in Figure 120, confirming the 

presence of defects from the areas of acoustic emission. Several 

areas which had emitted a large number of events did not reveal any 

ultrasonic discontinuities, but as earlier pipe tests have revealed, 

this could be due to near surface laminar cracks. 

Metallurgical sections were removed from areas showing acoustic 

activity, some of which had been confirmed by ultrasonic examination. 

Further sections were removed from those areas not showing any 

acoustic activity. 
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Gross examples of hydrogen induced cracking were revealed, in one case 

delamination of the pipe had occurred, Figure 121. This section also 

revealed the presence of vertical sulphide stress corrosion cracking 

propagating from the inner pipe wall. These cracks had been produced 

from the internal stresses caused by gross lamellar hydrogen induced 

cracking. 

One of the areas of hydrogen induced cracking detected was a duplicate 

of the area detected in pipe sections 3 and l, confirming that these 

defects detected had indeed been hydrogen induced cracks. 

All of the control metallographic samples removed were free from 

defects. 
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CHAPTER 5 

COMMENTS 

By subjecting four types of pipe to a sour gas environment and 

monitoring the pipe sections with an acoustic emission system, it has 

been demonstrated that acoustic emission has been able to detect and 

locate areas of acoustic activity that were confirmed by ultrasonic 

and metallographic examination to contain hydrogen induced cracks. 

Areas of acoustic activity that on examination by ultrasonics did not 

produce defect indications were shown also to contain hydrogen induced 

cracks, but these were within 1 mm from the inner surface of the pipes 

c;;.,rri!"t"" 
and probably outside the limitations of resolution of1dynamic or 

manual ultrasonic examination. There were no instances of areas 

examined metallographically that revealed hydrogen induced cracking 

that had not been detected by acoustic emission or ultrasonic 

examination. It is also true to say that all areas examined that did 

not indicate acoustic activity were shown to be free from hydrogen 

induced cracking. 

The initial experiment on an automatic welded steel pipe 1 revealed in 

location plots, Figures 73-80, that the acoustic emission system did 

detect large areas of acoustic activity, but it was only after 

applying a technique to analyse the various clusters that it was 

possible to determine that some areas were different to others and 

were a source of background noise, caused by bubbling of the hydrogen 

sulphide gas through the pipe. Once this was identified it was 

possible to measure 
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the various parameters such as amplitude, rise time and duration and 

by applying these in the form of a software filter, remove this 

extraneous noise. This filter was then applied to each new disc of 

data obtained from the test. 

The hydrogen induced cracking signals had amplitudes in the range 

40-55 dB with short rise times and duration typical of a primary 

source, as indeed crack propagation is, whereas bubble noise is a 

secondary acoustic source and had long duration and rise times. It 

was these factors that enabled analysis and filtering to be performed. 

More information is required to characterise fully the hydrogen 

induced crack source in acoustic emission terms, and it has been 

stated recently "that acoustic emission is one technique where the 

practical application development and use are in advance of the 

fundamental research(ll,93). 

Location plots were produced during all of the trials for each pipe 

but there are limitations in the accuracy that can be obtained. A 

common figure quoted is that acoustic emission can locate to within 

100 mm of the defect source, but this depends on the acoustic 

measurement of the transducer position and the algorithm used to 

locate the source. The majority of algorithms have been produced from 

flat plate analysis, whereas in the majority of cases they are applied 

to curved surfaces producing inaccuracies. In this case it was hoped 

to produce locations to within 7.5 cm2 of the hydrogen induced 

cracking site, considering the above errors involved in the locating 

ability of the acoustic emission system. In fact, results obtained 
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showed that the accuracy was within 6.5 cm2 (l square inch). 

Detection was the main objective of these trials but the location 

plots proved invaluable a~ the metallagraphic examinations became more 

extensive. 

During pipe experiment l the concentrated 'C' broke up and became more 

diffuse suggesting comple~ion of hydrogen indu~ed cracking in that 

particular area and a relief of local internal pressure. As the 

experiment continued other areas became active, suggesting new growth 

and cracking, which indicate that acoustic emission can be used for 

recording the progress of cracking. The pipe was subjected to no 

other form of internal pressure except the static head of the NACE 

solution and any residual stress remaining fro~ forming and 

fabrication, so that no secondary emissions were expected from the 

hydrogen induced cracking due to fracture faces fretting together or 

corrosion products being crushed. Thus once cracking had completed 

its growth cycle there was no reason for further activity to be 

expected from that source. This is a point to remember during large 

scale long term tests, that active sites can become quiet. 

The microphotographs produced from the pipe revealed hydrogen induced 

cracking in the pipe section. It was always thought that hydrogen 

induced cracking would __ occur in the central band of the pipe walls, in 

areas of central segregation where the steel would be more susceptible 

to the presence of manganese sulphides and other non metallic 

inclusions producing sites for nucleation and growth of the hydrogen 

induced cracks. In fact, most of the cracks were found within 1 mm 
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from the inner pipe wall, the majority being 1::1ithin 

0.5 mm. This would account for the difficulty in detection 

encountered when using the ultrasonic techniques. This depth of 

defect corresponds to a through wall of 7.8% which in certain material 

types could be classed as critical. 

This m<t'-'3 make invalid the suggestion that by applying mechanised 

ultrasonics as a method of condition monitoring to pipeline or plant 

susceptible to hydrogen induced cracking, advanced warning of failure 

would be obtained. 

The crack shown in Figure 90 was 3.81 mm long and 2 mm from the inner 

wall, equivalent to a 32% through wall crack. If the pipe had been 

subject to any form of internal pressure, failure would have occurred. 

Fortunately this defect was detected by manual ultrasonics, giving 

some confidence to the requirements originally specified of being able 

to detect a 3 mm defect at the mid-wall location. 

A central laminar hydrogen induced crack was also located, Figure 86, 

using manually applied ultrasonics. This was a classical hydrogen 

induced crack, located in the mid-wall, the tips of the cracks 

associated with lenticular non metallics. Four types of hydrogen 

induced cracks were detected in the pipe section examined, the three 

described above, two laminar at the inner surface and mid-wall, one at 

the inner surface but also propagating in a stepwise manner to the 

surface, and finally stepwise cracking formed by linking up of short 

laminar cracks, Figure 89. 
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The steel itself was subject to heavy banding and clusters of 

elongated non metallics, making it readily susceptible to attack and 

the production of hydrogen induced cracking. The location of the 

cracking did not suggest that the location could have been predicted. 

Acoustic emission of the welded steel pipe l proved to be an effective 

and sensitive method of hydrogen induced cracking detection, detecting 

the cracks, at what appeared from metallographic investigation, at an 

early stage of growth. The acoustic emission detected these areas of 

acoustic activity at an early part of the test. Properly 

instrumented, a pipeline could be monitored using this applicatioc. 

As can be seen from the results of welded steel pipe l, the hydrogen 

induced cracks occurred randomly, and if ultrasonic or metallographic 

examination had been applied in the conventional manner of a grid 

pattern, the cracking could have gone undetected and produced a false 

indication of the condition of the pipe. This argument also applies 

to the selection and use of coupon testing, where the result will 

depend on the site chosen for examination. Acoustic emission in this 

case has proven to be an effective volumetric test. 

The results of the seamless pipe 2 were very convincing even though no 

acoustic emission activity was detected. The pipe material was 

seamless steel and the literature survey(8 ) had predicted that 

seamless pipe was not susceptible to sour gas attack and the 

initiation of hydrogen induced cracking. The test was extended from 
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the initial 100 hours by a further 200 hours because no significant 

acoustic activity had occurred; still with no response from the pipe, 

Figure 92. The amplitude distribution from the pipe showed only low 

amplitude values of around 35 dB's, lower than that obtained from the 

hydrogen induced crack signature, Figure 93. An extensive 

metallurgical examination was carried out on the pipe section 

revealing a fine grained clean steel structure with no evidence of 

hydrogen induced cracking, although internal corrosion had taken 

place. 

The main differences between pipe sections l and 2 were the fact that 

pipe section 2 was produced from seamless steel and was much cleaner 

and fine grained. 

The lack of acoustic activity from the pipe was confirmed by the 

results of the metallurgical investigation. 

The results from the automatic welded pipe 3 were again different from 

those of the two previous pipes. Only two regions of activity were 

noted during the whole test. As before, because the acoustic activity 

produced was small the test was extended, monitoring on a limited 

basis. The same two regions remained active, Figures 99-101. The 

pipe had been fully examined using a mechanised ultrasonic scanner 

prior to the test and no defects had been detected. Post test 

examination of the pipe revealed an area of cracking in the same area 

as the acoustic emission system had predicted, Figure 102. 

Metallographic sections were removed from the pipe in the area 
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predicted by the mechanised scanner and in other areas. Hydrogen 

induced cracking of the type seen in pipe section l was revealed in 

Figure l03. There was some discussion as to whether the defect could 

have bee8 a sub-surface lamination which had propagated during the 

test, but the pretest ultrasonic examination had shown that the pipe 

was defect free proving that the defect had occurred during the attack 

from the sour gas environment, and the usefulness of pretest 

scanning. 

Pipe section 4 had been produced from electric welded pipe known 

because of its directional production route to be susceptible to 

attack from hydrogen induced cracking. This pipe started to emit 

acoustic emission signals from the commencement of the test, resulting 

in the production of a large amount of data, Figures 110-119. 

Filtering of the data showed tht the acoustic activity and presumably 

the severity of the cracking was increasing. The test was halted and 

the pipe section ultrasonically examined resulting in large areas of 

cracking being located, Figure 120. 

The worst example of hydrogen induced cracking was revealed during the 

metallurgical examination of this pipe, that of a complete 

delamination of the pipe wall, Figure 121, an extreme form of hydrogen 

induced cracking. In the same sample evidence of sulphide stress 

corrosion cracking was found propagating at 90° to the inner surface. 

The use of a mechanised ultrasonic system prior to and after the 

testing of the pipes proved useful in that it was possible to compare 
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the numb€r of defects produced during the experiment. In both 

instances when it was applied the pipes were defect free before the 

experiment and thus helped to confirm that the one defect produced 

during pipe test 3 was a hydrogen induced crack. The limitations of 

the ultrasonic technique were also illustrated by the number of near 

surface hydrogen induced cracks revealed by metallographic examination 

from areas having a high level of acoustic activity. These were not 

detected by either manual or mechanised scanning of the pipes and 

would not have been detected if ultrasonic examination had been the 

only dete2tion method used to locate the hydrogen induced cracks after 

the pipes had been subjected to the sour gas environment. 

Metallurgical sectioning alone would probably have missed a number of 

these cracks and could possibly have missed all of them depending on 

the frequency of sampling. 
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CONCLUSIOKS 

l. It has been demonstrated that acoustic emission can be used to 

detect and locate hydrogen induced cracking in full size pipe 

sections. 

2. Acoustic emission showed that it could tell the degree of 

severity of attack by hydrogen induced cracking on the pipe 

section, where and when it was occurring in real time. 

3. Acoustic emission showed its ability to detect and locate 

hydrogen induced cracking at an early stage (cracking near the 

inner surface). 

4. A software filter was successfully used to identify extraneous 

noise caused by bubbling of the hydrogen sulphide gas and filter 

it from the acoustic emission emanating from the hydrogen induced 

cracks. 

5. The acoustic emission data produced from the pipe was identified 

as hydrogen induced cracking following metallographic 

sectioning. 

6. The hydrogen induced cracking occurred near to the inner surface 

of the pipe sections, as it would in a real situation rather than 

in the case of coupon testing when the sample is subjected to the 

environment from all sides. 
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7. The near surface (l mm or less) hydrogen induced cracks were not 

detected by either manual or mechanical scanning techniques, 

probably because of lack of far distance resolution suggesting 
pro C.."'-c\ .... ('11..!.' !i~'Lc\ h Q. r"-

that ultrasonil 'i'cannot be relied upon to give an early 

indication of hydrogen induced cracking attack. 

8. The hydrogen induced cracking was associated with non metallic 

inclusions and occurred in areas of central segregation in pipe 

sections. 

9. The acoustic emission data together with the metallographic 

evidence suggests that the seamless steel pipe offers the 

greatest resistance to sour gas attack. 

10. The acoustic emission data with metallographic evidence suggested 

that the el~ric welded pipe offered the least resistance to the 

sour gas emission, producing delamination of the pipe wall. 

11. Stress corrosion cracking was found to occur in areas of pipe 

subject to heavy attack by hydrogen induced cracking. 

12. Acoustic emission has proved to be a reliable form of volumetric 

non destructive testing that can be applied to large sections of 

pipe, relative to the normal coupon size, in order to detect and 

locate areas of high acoustic activity caused by the initiation 

and growth of hydrogen induced cracking. 
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TABLE I 

ULTRASONIC SCA~NER REQUIREMENTS 

Scanning ~echanism 

Remote Operation 
Forward and Revers~ Strokes 
Minimum Scan Increment 2 x 2 mm (x x y) 
Minimum Scan Width 300 mm 
Maximum Scan Time 60 mins/band 
Universal probe holder to accept Krautkramer MSEB4T, 

and SEB5kF3 
Low probe wear rate 
Acoustic coupling via thin (0.25 mm) water gap 

Ultrasonic Performance 

Display 

Minimum near surface resolution 3 mm 
Single or twin crystal probe operation 
Bandwidth I - 10 MHz 
PRF to give I pulse/mm at maximum scan rate 
Depth measurement to + 0.5 mm 

C-scan mapping of corroded areas, approximately A4 
size with minimum resolution 2 mm x 2 mm 
Data display during scan to monitor performance 
Depth information in zones according to material thickness 
Identification of minimum depth of cracking in given area 



IDENTIFICATION 

I 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 

TABLE 2 

DIMENSIONS OF ARTIFICAL DEFECTS IN THE TEST PIPE 

i\RTIFICTAL DEFECTS TN TEST SAMI'J.F: 

TYPE OF DEFECT 

Flat Bottom Hole 
Flat Bottom Hole 
Flat Bottom Hole 
Axial Notch 
Axial Notch 
Axial Notch 
Flat Bottom Hole 
Flat Bottom Hole 
Flat Bottom Hole 
Axial Notch 
Axial Notch 
Axial Notch 
Flat Bottom Hole 
Flat Bottom Hole 
Flat Bottom Hole 
Axial Notch 
Axial Notch 
Axial Notch 
Flat Bottom Hole 
Flat Bottom Hole 
Flat Bottom Hole 
Axial Notch 
Axial Notch 
Axial Notch 

CONFIGURATION AND DIMENSIONS, mm 

- ------ --·-

Diameter 0 I .0 
Diameter 0 2.0 
Diameter 0 3.0 
Length 20.0 Width I .0 
Length 20.0 Width 2.0 
Length 20.0 Width 3.0 
Diameter 0 1.0 
Diameter 0 2.0 
Diameter 0 3.0 
Length 20.0 Width I .0 
Length 20.0 Width 2.0 
Length 20.0 Width 3.0 
D i arne t e r 0 I . 0 
Diameter 0 2.0 
Diameter 0 3.0 
Length 20.0 Width I .0 
Length 20.0 Width 2.0 
Length 20.0 Width 3.0 
Diameter 0 1.0 
Diameter 0 2.0 
Diameter 0 3.0 
Length 20.0 Width 1.0 
Length 20.0 Width 2.0 
Length 20.0 Width 3.0 

REMAINING WALL THICKNESS, mm 

--~--- --------------------

3.0 
3.0 
3.0 
3.0 
3.0 
3.0 
4.0 
4.0 
4.0 
4.0 
4.0 
4.0 
5.0 
5.0 
5.0 
5.0 
5.0 
5.0 
6.0 
6.0 
6.0 
6.0 
6.0 
6.0 



TABLE 3 

RESULTS OBTAINED WITH THE ULTRA IMAGE SYSTEM 

MINIMUM D=:.?TH MEASURED ON TEST SAHPLE 

EQUIPMENT : ULT~4 IMAGE 

PROBE+ SERIAL : 0.25" ¢ 8MHz GD 

DEFECT TY'?;.:: : FLAT BOTTOM HOLES 0 ;:- P l A MIZ.T& R. q; ;.... ..... .'i 

I 
I 

DEFECT ! 0 
DEPTH converted from i/1000" [(J IclPlS 

NO i j_ l NOMINAL ACTUAL 
RUN No 

I f'\-\ MS i I il.l-1.8, 

1 j 1. 0 3.0 3.25 I 4.47 

I 7 " 4.0 4.01 5. 18 

13 " 5.0 5.49 
I -

19 " 6.0 5.97 -

2 2.0 3.0 3.23 4.27 

8 " 4.0 4. 12 4.98 

14 " 5.0 4.98 5.89 

20 " 6.0 6. 10 -
3 3.0 3.0 3. 13 4.27 

9 " 4.0 4. 12 4.78 

15 " 5.0 5.03 5.79 

21 " 6.0 6. IS 6. 91 

-



TABLE 4 

RESULTS OBTAINED WITH THE ULTRA IMAGE SYSTEM 

MINIMUM DEPTH MEASURED ON TEST SAMPLE 

EQUIPMENT : ULTRA IMAGE 

PROBE+ SERIAL : 0.25" 0 8t-D-Iz GD 

DEFECT TYPE : NOTCHES C F w· I o TI-l vv M"" .s 

I I DEPTH f'lrDS 

DEFECT I w 
No. 

I NOMINAL ACTUAL 
t"'\M:l 

4 1.0 3.0 3.05 

10 4.0 4.04 

16 I 5.0 5.08 

22 6.0 5.97 

5 2.0 3.0 3.08 

1 I 4.0 4. 14 

I 7 5.0 4.98 

23 6.0 6.22 

6 3.0 3.0 3.33 

12 4.0 4. 19 

18 5.0 5. 13 

24 6.0 5. 92 

RUN NO. 

I. I -1.8 

4. 27 

5. I 8 

5.99 

6. 71 

4.27 

5. 18 

5.69 

7. II 

4.27 

5. 18 

5.79 

6.50 



TABLE 5 

RESULTS OBTAINED WITH THE D.~.V. CORROSCAN 

MINIMUM DEPTH MEASURED ON TEST SA!-fPLE 

EQUIPMEKT: CORROSC~~ U/W 

PROBE A.\"D SERIAL; MSEB4T 

DEFECT TYPE: FLAT BOTTOM HOLES 0 ;:: D; t:lfll;;,.r~~ ~ ..., ..., s 

: 

I 

DEPTH DEFECT I f/J llrlS 
i 

! ACTUAL! NO. NOMINAL RUN NO. 
I 7. 2 i 8 9 i 24 I 25 24.5 

I 
i tvll-1~ 

i I 

I 
1 1.0 3.0 

I I 

3.25 6.2 I * I * * * * ! 

I 
I 

I 
I 

II I 
I 

7 4.0 4.01 * * I * * * * 
I 

I 

I 13 II 5.0 I 5.49 * 
I 

* * * * * 
! I 

19 : II 6.0 5.97 * * * * * 
I 

* 
2 ; 2.0 3.0 3.23 4. 2 4.2 3.8 4.2 4.2 3.6 

' 8 II 4,9 4.12 5.2 5.2 4.8 4.8 4.8 5.2 ! 

I 14 II 5.0 4.98 5.6 5.6 

I 
5.6 5.8 5.8 5.8 

I 20 II 6.0 6.10 6.4 6.4 6.4 6.6 6.6 6.8 I 

I 

I 
3 3.0 3.0 3.13 4.4 4.2 I 4.2 4.2 4.2 3.8 

9 II 4.0 4.12 4.4 4.4 I 4.4 4.8 4.2 4.4 
II 

I 

I 
15 ! 5.0 5.03 5.8 5.8 I 6.2 Error 5.6 5.4 

I 
I I 

I 
I 

21 II 6.0 6.15 6.2 6.2 i 6.2 6.2 5.6 5.8 
I I 

I 
I 

! 

' II ,_, 
I 

I , • 

( ~· ' 
. i, 



TABLE 6 

RESuLTS OBTAINED WITH THE DNV CORROSCAN 

MINIML~ DEPTH MEASURED ON TEST S~~LE 

SQUIPMENT : CORROSCAN U/W 

PROBE + SERIAL : MSEB4T 

DEFECT TYPE : NOTCHES C! r w I D"i"t-1 Wio'>.-S 

DLPTH mms 
DEFECT w 

NO 
NOMINAL ACTUAL RUN NO 

M M,S' 

24 25 24.5 

4 1.0 3.0 3.05 * * * 
10 L..O 4.04 * * * 
16 5.0 5.08 * * * 
22 6.0 5.97 * * * 

5 2.0 3.0 3.08 4.2 4.2 3.6 

1 1 4.0 4. 14 4.8 4.8 5.2 

17 5.0 4.98 5.8 5.8 5.8 

23 6.0 6.22 6.6 6.6 6.8 

6 3.0 3.0 3.33 4.2 4.2 3.8 

12 4.0 4. 19 4.8 4.2 4.4 

18 5.0 5. 13 Error 5.6 5.4 

24 6.0 5.29 6.2 5.6 5.8 



TABLE 7 

RESULTS OBTAINED WITH THE PRIMSCAN SYSTEM 

MINIMUM DEPTH MEASURED ON TEST SAMPLE 

EQUIPMENT : PRIMSCAN 

PROBE + SERIAL : MSEB4H (B) 

DEFECT TYPE : FLAT BOTTOM HOLES OF CiANb7E~ ¢ """"J' 

DEPTH mrns 

DEFECT 0 
NO NOMINAL ACTUAL RUN NO 

M 10'\ j 

39.4 39.5 

1 1.0 3.0 3.25 * * 
7 " 4.0 4.01 - -

13 " 5.0 5.49 - -

19 " 6.0 5.97 - -
2 2.0 3.0 3.23 * 3.2 

8 " 4.0 4. 12 - -
14 " 5.0 4.98 - -I 

20 " 6.0 6. 10 - -

3 3.0 3.0 3. 13 3.2 3.0 

9 " 4.0 4. 12 - -
15 " 5.0 5.03 - -
21 " 6.0 6. 15 - -



TABLE 8 

RESULTS OBTAINE!) 1-:ITH THE PRIHSC:.t....~ SYSTEM 

MINI~ruM DEPTH MEASURED ON TEST SAMPLE 

EQUIPMH-1 PRIMSCAN 

PROBE Ah~ SERIAL MSEB4T 

DEFECT TYPE FLAT BOTTOM HOLES o,: DiAMiiTb_ll 9J ~""J' 

DEPTH nuns I 
DEFECT NO. 0 RlJN NO. I NOMINAL ACTUAL I 

tv\ "" s 18.3/18.6 i 
I 
I 

I I. 0 3.0 3.25 * 
I 
I 
I 

7 I .0 4,9 4, 91 -

13 I. 0 5.0 5.49 -

19 I .0 6.0 5.97 + 

2 2.0 3.0 3.23 4.0 4.0 

8 2.0 4.0 4. 12 -
14 2.0 5.0 4.98 -
20 2.0 6.0 6. 10 6.2 

3 3.0 3.0 3. 13 3. 5-4. I 3. 7 

9 3.0 4.0 4. 12 -

15 3.0 5.0 5.03 -

21 3.0 6.0 6. 15 6.2-6.4 

* Not detected 

Not tested 

+ Detected but not sized 



I 

TABLE 9 

RESULTS OBTAINED WITH THE PRIMSCAN SYSTEM 

MINIMUM DEPTH MEASURED ON TEST SAMPLE 

EQUIPMENT PRIMSCAN 

MSEB4T PROBE &~D SERIAL 

DEFECT ITPE NOTCHES c.;~ w; o ·r~ w """"' s· 

DEFECT NO. w 
NOHINAL ACTUAL 

M M l 

4 1.0 3.0 3.05 

10 1.0 4.0 4.04 

16 1.0 5.0 5.08 

22 1.0 6.0 5.97 

5 2.0 3.0 3.08 

I 1 2.0 4.0 4. 14 

17 2.0 5.0 4.98 

23 2.0 6.0 6.22 

6 3.0 3.0 3.33 

12 3.0 4.0 4. 19 

18 3.0 5.0 5. I 3 

24 3.0 6.0 5.92 

Test not performed 

DEPTH Pl'!l s 

RCN 

18.4/18.5 

4.0-4.4 

-
-

6. 1-6.2 

3.5-3.9 

-

-

6.0-6.3 

3.3-3.5 

-

-
5.9-6.1 

NO. 



TABLE 10 

RESULTS OBTAINED WITH THE PRIMSCAN SYSTEM 

MINIHUM DEPTH MEASURED ON TEST SA.hfl'LE 

EQUIPMENT: 

PROBE + SERIAL: 

DEFECT TYPE: 

DEFECT NO f/J 

l 

7 

13 

19 

2 

8 

14 

20 

3 

9 

15 

2 I 

PRIM SCAN 

SEB5KF3 (A) 

Flat Bottom Holes 1.!-\!-f)lo.-~kr lfJ""-""S 

DEPTH mms 

NOMINAL ACTUAL RUN NO 
MMS 1 1. l - 1 1. 6 

1.0 3.0 3.25 * 
1. 0 4.0 4.01 * 
l .o 5.0 5.49 * 
1.0 6.0 5.97 * 
2.0 3.0 3.23 3.5 

2.0 4.0 4. 12 4.3 

2.0 5.0 4.98 4.8 

2.0 6.0 6. 10 5.7 

3.0 3.0 3. 13 3.5 

3.0 4.0 4. 12 4.3 

3.0 5.0 5.03 4.7 

3.0 6.0 6. 15 5.8 



TABLE 11 

RESULTS OBTAINED WITH THE PRIMSCAN SYSTEM 

EQUIPMENT: PRU1SCAN 

PROBE + SERIAL: SEB5KF3 (A) 

DEFECT TYPE: 

I r DUTH 

I 

I lllDS 

DEFECT NO ! w 
i 

NOMINAL ACTUAL RUN NO 

l 
; MM~ 1 1. 7 - 11.9 

! 4 I 1.0 3.0 3.05 3,6 
I 10 4,0 4.04 -

16 I 5.0 5,08 4.7 
I 

22 I 6.0 5.97 I -

5 2.0 3.0 3.08 3.5 

11 4.0 4. 14 -
17 5.0 4.98 5.0 

23 6.0 6.22 -

6 3.0 3.0 3.33 3.7 

12 4.0 4. 19 -
18 5.0 5.13 5.0 

24 6.0 5.92 -



TABLE 12 

RESULTS OBTAINED WITH THE P SCAN SYSTEM 

MINIMUM DEPTH MEASURED ON TEST SAMPLE 

EQUIPMENT: ABOV'E WATER CORROSCAN 

PROBE + SERIAL: MSEB4T No I 

DEFECT TYPE: FLAT BOTTOM HOLES oF Oi AMI;T£ R \.V;...M s 

! DEPTH nuns 

DEFECT 
CJ RUN NO NO NOMINAL ACTUAL 

M""'.S I. 2/ I . 3 I. 4/ I. 5 14.0/14. I I .0 1.1 Average 

I I .0 3.0 3.25 * * 5.8 6.6 * 
7 II 4.0 4.01 * * * * * 

13 II 5.0 5.49 * * * * * 
19 " 6.0 5.97 * Error * 7.2 * 
2 2.0 3.0 3.23 4.2 4.4 4.4 4.4 4.4 4.36 

8 2.0 4.0 4. 12 4.8 4.8 4.4 5.4 5.2 4.92 

14 " 5.0 4.98 5.4 5.4 4.4 5.8 5.8 5.36 

20 " 6.0 6. 10 6.4 Error 6.2 6.4 7.2 6.55 

3 3. 0 3.0 3. 13 4.4 4.2 4.4 4.4 3.6 4.22 

9 II 4.0 4. I 2 4.4 4.4 4.4 4.6 4.4 4.4 

15 " 5.0 5.03 4.8 4.8 4.4 5.4 5.4 4.96 

2 I II 6.0 6. 15 5.8 Error 5.4 7.2 6.2 6. I 5 



TABLE 13 

RESULTS OBTAINED WITH THE P SCAN SYSTEM 

MINIMUM DEPTH ~~ASURED ON TEST SAMPLE 

EQUIPMENT : AWS CORROSCAN 

PROBE + SERIAL MSEB4T No 1 

DEFECT TYPE : NOTCHES os=- w1oT~ wr.. .... ~· 

' 
DEPTH rrnns 

RUN NO 

DEFECT w NOMINAL ACTUAL 1.2/1.3 1.4/1.5 14.0/14.1 1 .0 I 1.1 AVERAGE I NO I VALUES MM.S i 
4 1.0 3.0 3.05 5.2 4.8 4.4 5.2 I :s .4 

I 
10 4.0 4.04 5.2 4.8 4.8 5.4 i 5. 4 

16 5.0 5.08 5.8 5.8 4.8 6.2 I 6.2 

22 6.0 5.97 6.6 Error 5.6 7.2 7.2 

5 2.0 3.0 3.08 4.2 4.4 4.2 4.4 3.8 4.2 

11 4.0 4. 14 4.4 4.4 4.2 4.8 4.6 4.5 

17 5.0 4.98 5.2 4.8 4.6 5.6 5.6 5.05 

23 6.0 6.22 5.8 Error 5.4 6.6 6.4 6.05 

6 3.0 3.0 3.33 4.2 4.2 4.4 4.4 3.6 4. 15 

12 4.0 4. 19 4.2 4.4 4.4 4.8 4.4 4.5 

18 5.0 5. 13 4.8 4.4 4.4 5.4 5.2 5.0 

24 6.0 5.92 5.4 Error 4.8 6.2 1 5.8 5.6 



TABLE 14 

RESULTS OBTAINED WITH THE PSCAN SYSTE~ 

MINIMUM DEPTH MEASURED ON TEST SAMPLE 

EQUIPMENT: ABOVE 1-IATER CORROSION 

PROBE & SERIAL: SEB5KF3 

DEFECT TYPE : FLAT BOTTOM HOLES 0 F D; Ri"16 T,; R.. ¢ 1--\ ...... s 

DEPTH mms .. 
I DEFECT 

! 
0 

l ACTUAL 

I 

NO ! RUN No ; 

I ' NOMINAL 
""'""i I 

i 
15.0 I 16.0/ i I ! 16. I 

: i 

I 1.0 3.0 3.25 * 4.4 

7 II 4.0 4.01 * 5.4 : 

13 .. 5.0 5.49 * * i 
19 II 6.0 5.97 * * i 

I i 
I ! 

2 2.0 3.0 3.23 4.4 4.4 

8 II 4.0 4. I 2 5.4 4.4 

14 II 5.0 4.98 6.6 4.4 

20 II 6.0 6.10 8.6 5.4 

3 3.0 3.0 3. 13 4.4 4.2 

9 II 4.0 4. I 2 4.8 4.4 

15 II 5.0 5.03 5.8 4.4 

2 I II 6.0 6. 15 6.8 5.2 



TABLE 15 

RESULTS OBTAINED WITH THE PSCAN SYSTEM 

MINIMU~ DEPTH MEASURED ON TEST SAMPLE 

EQUIPMENT: AWS CORROSCAK 

PROBE & SERIAL : SEBSKF3 

DEFECT TYPE: NOTCHES oF WI OTH W ~-'\""' ~ 

DEFECT NO. w 
NOMINAL ACTUAL 

M""' ~ 

4 I .0 3.0 3.05 

10 4.0 4.04 

16 5.0 5.08 

22 6.0 5.97 

5 2.0 3.0 3.08 

II 4.0 4. 14 

17 5.0 4.98 

23 6.0 6.22 

6 3.0 3.0 3.33 

12 4.0 4. 19 

18 5.0 5. 13 

24 6.0 5.92 

DEPTH rnms 

15.0 

4.4 

5.6 

6.2 

8.2 

4.4 

4.8 

6.2 

7.2 

4.4 

4.8 

5.4 

6.2 

RUN NO 

16.0/16. I 

4.2 

4.4 

4.6 

6.4 

4.2 

4.4 

4.4 

5.4 

4.4 

4.4 

4.4 

4.6 



TABLE 16 IKtORMATIO~ 0~ THE FOUR PIPE TEST SECTIONS TESTED 

Description; 

Nominal Diameter: 

Wall Thickness: 

Length: 

Test i n g T i ::-·:= : 

Macrohardness: 
(average) 

Microhardness: 
(average) 

AE Activity : 

UT Method: 

UT Indications: 

Metallography: 

Microstructure: 

Chemical Analysis 

Pipe Section 

I 
2 
3 
4 

Pipe I 

Welded 

12 inches 
(30.48 ern) 

0.265 inches 
(6. 731 nun) 

48 inches 
(121.92 em) 

200 hours 

114 BHN 
(67 RB) 

147 VHN 
( 140 BHN) 
(77.6 RB) 

Concentrated 

Manual 

Strong Agree­
ment with AE 

HIC Cracks 
Verified 

Banded with 
NMI's 

c 
0. 21 
0.26 
0.26 
0. 21 

s 
0.023 
0.020 
0.038 
0.032 

Pipe 2 

Seamless 

12 inches 
(30.48 em) 

0.260 inches 
(6.604 nun) 

48 inches 
(121.92 ern) 

200 hours 

143 BHN 
(78 RB) 

155 VHN 
(147.5 BHN) 
(80.2 RB) 

Sparse 

Manual 

No Detected 
Defects 

No Cracks 
Detected 

Banded and 
Clean 

p 

0.01 I 
0.005 
0.010 
0.014 

Mn 

0.50 
0.55 
0.02 
I. 19 

Pipe 3 

Welded 

12 inches 
(30.48 em) 

0.405 inches 
(10.287) 

48 inches 
(I 21 . 9 2 em) 

12 mo::thc: 

N/A 

N/A 

Clustered 

Computerised 

Initial Pipe 
Scan Acquired 

H.I.C. Cracks 
Verified 

Banded 

Si 

0.05 
0.05 
0.06 
0.04 

Cr 

0.05 
0.02 
0.03 
0.02 

Pipe 4 

Electric welded 

12 inches 
(30.48 ern) 

0.250 inches 
(6.35 mm) 

48 inches 
(121.92 ern) 

9~ hours 

K/A 

K/A 

Concentrated 

Computerised 

Strong Agreement 
with AE 

H.I.C. Cracks 
Verified 

Banded 

Cu 

0.02 
0.01 
0. 17 
0.02 

Nb 

0.002 
0.002 
0.002 
0.002 

Ni 

0.01 
0.01 
0.05 
0.01 
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Sta e 1 

Void fonnat ion 

A 
· I Plastic ~---
§:*& d!fonna- .. ~ '! 
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B 

A The case of direct linkage between closely 
spaced crack sites. 

B Creation of small cracks by the interaction 
of two main cracks. Joining between main 
crack and a small crack takes place by 
Mechanism A. 

C Creation of small crack 1n front of main 
crack. 

SCHEMATIC REPRESENTATION-OF StEPWISE CRACKING PROCESS 
AFTER IKEDA ET AL 

FIG. 2 
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96 h 

2 50 h 

Steel 3 
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FIG. 7 



Examination surfaces of Specimen X are x-y surfaces 
those of Specimen Y are x-z surfaces and those of 
l are y-z surface 

Specimen X is machined from the centre of plate 
~hickness 

a "' 130 mrn 
b • t7 mt:1 

' c • 10 Dr. 
RD 

\ 

z 19 

'L__~========~::.._j__j 
a 

TEST SPECIME~ FOR THE EXAMINATION OF THE INFLUENCE OF 
SAMPLING METHOD ON HIC 

AFTER KOWAKA ET AL 19 

FIG. 8 



(a) Standard 
Specimen 

C - Hydrogen content 

Co - Hydrogen content at a corroded surface 
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C/Co • .. H ... 
0 

f « 

(b) Side Coated 
Specimen 

(c) Single Surface 
Testing 

(d) Actual Pipe 

Assumed diffusion coefficient£ 3.13 x 10- 7 cm2 /s 
Test duration 96 h 

ESTIMATED HYDROGEN DISTRIBUTION IN THE CROSS SECTION OF 
VARIOUS SPECIMEN CONFIGURATIONS 

AFTER TAIRA AND KOBAYASHI 10 

FIG. 9 
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n -killed steel 0. 12 

Si-Al-killed 0. 17 
steel 

Semi-killed 0. 18 
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- --

Si Mn s Cu Ni Cr Mo Nb Al 

0.27 1.41 0.005 0.25 0. 18 - - 0.036 0.035 

0.26 1. 23 0.011 - - 0. 15 0. 041 - 0.008 

0.028 0.85 0.020 - - - - - -

lOOr-----------------=-----------==~ 

~ 80 ., 
::> 

,.., 
,Q 

• 60 .. ... 
• 
~ 40 
• 
~ 

u 

~ 20 
0 

~t-Al-tilled sttrl 

.... ·-----. 
Al-killed stu\ 

se~i-k11ltd sttel 

rtni~h1ng te~per1ture of rolling (·c) 

COMPARISON OF THE SUSCEPTIBILITY TO HIC 
BET~EEN SEMI-KILLED AND Al KILLED STEELS 

AFTER NAKAI ET ~ 17 

INCLUSIONS 

-Iype.Il 
Mn s Al 2 03 

-lype il 
Mn s Al 2 03 

-type C. 
MnS Silicates 

FIG. 14 



CSR 

200 

160 

120 

80 

40 

I 
High levels 

of elongated MnS 

-

-· 
·•. ,4' 

I --
Partial modification ~----- ---------~ 

with REM 

0 msx.. -----Complete modification 
with REM 
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AIR 

ELECTROLYTE 
(NACE Solution) 

The Mechanism of Sulfide CorroSion Cracking <SCC): 

(1) When there is ana~\.JE?OVS solution, H/5 is ionized in it. 
H

2
S- 2H++S- (inaqueous solutioo) 

(2) Fe in steel is ionized and dissolved in the solution (anodic reaction). 
Fe- Fe2+ + 2e- (into aqueous s:.>lution) 

(3) H+ ions combine with electrons ard thus in atomized form the 
h~rogen migrates into the steel (cathodic reactiOn). 

H+t e-- H (actually a multi-stage process) 

Figure 16 Representation of HIC ~lechanism Showing an Acoustic Emission Sensor Attach­
ed to ~est Piece for Observation. 



3WI! 3d013/\N3 ~0 ON3 

- 3Wil ~NISSO~J 010HS3HH11S'I1 

z 
0 
....... 
<t: :z 
~ 

:ll:::a:w 
<(~:::!: 
~0;::-----

....J 
UJ 
> 
UJ 
....J 

0 
_J 

0 
:I: 
U') 
UJ 
a: 
:J: 

T 

:z 
0 

~ 
a: 
::::l 
Cl 
...J 
<: 
z 
(.!) 

3VJI1 )(V3d --~-r-- ------t---t------
(/) 

UJ u.J 

en~ 
a: t-

------- ------------3~'Wil ~NISSOt:IJ 010HS3tJHl !SHI~ --------------

. 
f 
0 

'""' Ql 
> :: 
Ql ...... 
0. e 

..-I 
Cll 



.. 
' 

(a) STRUCiURE 

y ~ 0 
L ~ 
'z \ 

\ 
\ 
\ I \ t I 

\ I w1o> c,4 I \ 
I \ 

I \ 
-L/. \ I 2 

- f- e 
I 

LONGITUO~ OrS'iJ..NCE 

Figure _18 

--------------ti~L')HG I TUOIN.t.L. 

• I 
(b} DISPLAY-

• ! 

Cylindrical Array. 

2 

~ 
I \ 

I \ 
I \ 

\ I 
J J 1 
I \ I c,, \ 

.3C; c. I 
\ I 
\ I 
\ I 
~ 
3 

(He IC:~T l zL 

SPACING 

0 
I 

I 
I 

I 

J 
- I 

X= CIRCU~FERENCE:c 

L ~ 6=C 

Cylindrical Array Unwr~pped. 



0 
(0,0) 

' 

2 
(10,0) 

Yh~ structur~ ~lth 
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The display layout with array nurnbers, sensor nurnbers, and se~sor 
coorcHnates. Note that the S8111e sensor aay eppear at different 
locations ln different arrays. Only the sensors and events will 
appear on location plots; there will be no lines or numbers. 

Figure 19 
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Figure 30 
Ultra Image Manual Pipe Scanner 

Figure 3 1 
C-scan presentation of 1 mm, 2 mm and 3 mm flat 
bottomed holes produced by the Ultra Image Scanner. 
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Figure 32 

3 •;,· A-SC AN CRT 

15" 1 6v, · 1 20" DEEP 
35 LBS MA X. 

MIC ROPROCESSOR AND 
MEMOR Y BOARDS 

SC ANNER · API'ROX 10 LBS 

Ultra Image Me chanis ed Ul trasoni c Scanning System . 



Figure 33 
Primsc an Automated Ultrasonic Probe Scanner. 



Pipe Axis 

Figure 34 

Pseudo 3D format produced from the Primscan mechanised 

ultrasonic system 



Figure 35 
Pl an v iew of t he S.V.C. Mechanised Scanner . 

Figure 36 
Side view of the S.V.C. Me chanised Scanner. 



Figure 37 
C-scan image pr odu ced b y t he S. V. C. P s can unit . 



Figure 38 
P scan system ~n operation 

Figure 39 
D.N.V. under water s canning system 



Figure 40 
Scanning unit ~n use under water 
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Figure 64 Reference Block for Ultrasonic Testing (Unit:mm) 
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Figure 65 ~-scan Image of Reference Block 

(Transducer : lOMHz-1/4"0-l.S"F) 
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Figure 67 Schematic Rep resentation of Testing Apparatus for 
HIC Under a h'ct, Sour Environment (S c ale l: lO). Legend of 
Labels Shown in the Figur e Ar c Listed in the fol-
loving P<Jgc . 



Character Identification 

A Hydrogen Sulfide (H
2
S), Technical Grade UN 1053 

8 · Regula tor 

C Flow Meter 

D Clear, Plastic Tubing for H
2

S Tubing 

E Clamps for Hose and Fittings 

F Top End Plate 

G Top Rubber Seals 

H Pipe Test Section 

I Pipe Test Section Wall Thickness 

J Bottom Rubber Seal 

K Bottom End Plate 

L Magnetic AE Sensor Clamps (4 TYP), AE Sensors (4 TYP), & 

AE Sensor Lines (4 TYP) 

M Preamplifiers (4 TYP) & Coaxial Lines (Leading to Acoustic 
Emission Data Acquistion System) (4 TYP) 

N Solution Level 

0 Area of Pipe Test Section Containing Wet, Sour Solution 

P H
2

S Extraction Line 

Q Metal Block for Providing Rigid Seal 

R Break/Seal in Extraction Line for Maintaining Water Level 

S Water 

T Scrubber 

U Exhaust Line Leading to Vent Hood 

V Positive Pressure Maintained 



Chsrocter Xdentificotion 

W H
2

S Bubbles 

X Cas Flow Direction 

Y Area Covered by Acoustic Emission 
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Figur e 70 
Computer source ind i cation before filter ing 



Figure 71 
Computer source indication after filteri ng 



Figure 72 
Location plot produced from a simulated source 



19.BB 
x· 

COORD .. ·.' 
·~ 

-·· .· 

v 

~ ~-/. . :: ;!1fi. . . 
.~ , .·:,: ;, '·; ':" ~:n ....... ~· . ·- ··~.;r.L' 

; 
''· 
. '· -r..: 

X 

-19.00 
B.BB X COORD 36.00 

rJLTER: 
riLE: SOURGAS1 

roR SET< S l B 
1ST SOUR GAS EXP. 

LOCATION 
12/00/82 17:31:27 [:[ 

figure 73 
TncheS:1. 

Cnfiltered Cylindrical Location Plot of Pipe Test Section 1 (Dimensions: 



j 

X 

a 
a:: 
0 
0 
u 

X 
a::­
Olfl 
L..-

:::r-­
ON 

C:(T) 
u .. 
01'­
...J-

N 
CD 

' CD 
(S) 

' N 

til 
c:c: 
Ct.;> 
:::a:: 
Q:;:l 

0 
.. til 

a:: 
w .. 
o-w 
-i...J 

I.... I... 

u 
UJ .,.... 
0 

c: 
0 .,.... 
.... 
u 
(li 

v. 

'-
0 

..., 
0 

....... 
c. 

c: 
0 ...... 
.... 
r:: 
u 
q -

....... 
r;: 
u ...... 
I.-. 

"':) Vl 
:::: (11 

.£: 
...... v 
:>. c: 
u 

::, c 



F"ILTER: RtiOA 
F"lLE: SOURGAS2 

1 ':1. oe +---L- ..L ___ __.. ___ ""'-+ 

COORD 

'!' 

-19.00 

.. . 
.... 
~ ', 

e.ee 

)( 

LOCAl lOti 
12/13,82 10:09:07 

X 

.r ... 

~ 
·' .. 

l( 

)( COORD 36.09 
F"OR S£ T! S l 0 
USE 2ARRAYS t{ 

rigt~re 75 Cylindrical Location Plot of Pipe Test Section l, Filtered, Disc 2 (Di-
mensions: Inches). 



fiLTER: RNDA 
rll[: SOURGAS3 

19.B0 

COORD 

y 

-19.99 

)( 

..... 

0: 0 ,, .~: .: §>..~. 
.. ·~ ~·1 

~jf::~~·'.:).'L '. ::_,:·~· ·<~:i·~: 

~ 
~ . ~ -

)( 

·,..., ,. 

.·, 

·I 

,. ~ .: L;:' 

X 

0.00 >< COORD 
LOCATION 

12/l)/82 13:07:04 
fOR SrT<Sl 0 
NO LOCKOUTS 

36.90 

C[ 

Figure 76 Cylindrical Location Plot of Pipe Test Section l, Filtered, Disc 3 (Di­
mensions: Inches). 



f'ILT(R: RN[iA 
f'ILE: SOURGAS4 

19.00 

COORD 

~: ·). •. ' ~ v 

'( 
·~-1~ ;! : ,!.'' :-. 

~-'. 

r 
'· 

)( 

-19.00 
e.0e 

LOCATION 
12/14/82 10:07:26 

J .,· .. 

X 

'': ; ~: -~: :~··:> 
: "'= .T~-

: .. -~-'~:;,';/If::'';: '. 

t ~-

.: ~~· :· 

·., r '.' ·.··, ...-.·--. ..:; 
l : 

X 

X COORD 
fOR SET<S> e 
NO LOCKOUT 

36.00 

t:[ 

Figure 77 Cylindricnl Location Plot of Pipe Test Section I, Filtered, Disc 4 (Di­
mensions: Inches). 



riLTER: RNDA 
riLE: SOURGASl 

19.130 

COORD 

y 

-19.00 

O
Weld & 

HAZ 
(UT & AEl 

B.BB 

-x, 

LOCATION 
12/08/82 17:31:27 

X 

p Sl(UT&AEl 

' : ........ ~ ,. 
JEJ iA£ only) 

.!)I'~ • 

~IUT&AEI 

·,!,. 

··­, . . 
:( 

X (•••:•PO 
roR S(T(S) 0 
1ST SOUR GAS E~P. 

36.00 

t'f 

Figure 78 Cylindr1cal Location Plot of Pipe Test Section 1 Showing Areas of Ultra­
sonic Indications and Regions Removed for Metallographic Examination. (Dimensions: 
Inches) 



1Bo.oe+---~----~---J----~----L---~----~--~----~--~ 

LOG 
[V[NTS 

1 ft ee f f f f I II I I IIIII I 'I 1 1 1 1 f 1 f I i i 

0.00 
rJLIER: Cll96. 
F"ll(: SOURGASI 

A DB 
DirF"[RENTIAL DISTRIBUTION fOR SET<Sl B 

12/08/82 17:31:27 lST SOUR GAS EXP. 

109.89 

Cf 
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Figure 86 
Laminar hydrogen induced crack detected in 
area SO x 100 

Figure 87 
Non metallic inclusions associated with the 
crack x 400 



Figure 88 
Near surface crack located within 1 mm of the 
inner surface. x 10 



Figure 89 
Classical step wise hydrogen induced crack revealed 
near to the surface x 100 showing extreme banding. 

Figure 90 
Hydrogen induced crack located in area Sl x 10 



Figure 91 
Multi Triplet Location Plot of Pipe Section 2 , 
Unfiltered 
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Figure 103 
Micrograph of near surface defect located near to the 
inner wall of the pipe x 100. 



Figure 104 
Non metallic inclusions associated with the step w1se 
section of the crack x 200. 

Figure 105 
Fine cracking revealed of the extremity of 
the crack x 500 



Figure 106 
Meta11ographic section of p~pe section 3 showing 
extent of banding x 200 

Figure 107 
Meta11ographic section of pipe section 3 showing 
the extent of the banding x 100 
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Figure 117 Disc 4 Pipe 4 Final Fi ltcr 
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Figure 121 
Delamination of the pipe wall and stress corro sion 
cracking detected in the pipe section 4. 




