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Heavy Quarkonium and QCD 

Anthony W Peacock 

Abstract 

The sensitivity of the charmonium and bottomonium spectroscopy to the 

short distance part of the interquark potential is critically re-examined 

using the latest data. We confirm that the data cannot accommodate a QCD 

scale parameter ( AMS ) smaller than about 150 MeV I whereas we find no 

constraint on Ia rger values of the scale parameter I contrary to a previous 

analysis. The effects of dynamical heavy quark masses in the loop correction 

to the perturbative potentia I is studied in detail and the effective four quark 

theory with a massive charmed quark is found to give an accurate description 

of the perturbative potential for quarkonia of mass up to about 250 GeV. 

Predictions for the heavy quarkonium system of toponium are found to be 

very sensitive to the behaviour of the short-distance region of the potential 

and it is argued that the experimenta I determination of the mass and e + e­

decay width of the 15 and 25 toponium resonances (of mass around 80 GeV) 

with accuracy anticipated at the forthcoming e +e- colliders should enable 

the QCD scale parameter to be determined to within ± 100 MeV. 

The hadronic decays of the lowest 5- and P-wave states of charmoniu m and 

bottomonium are examined in the light of recent experimental determination. 

All but the individual P-wave decays in charmonium can be adequately 

accounted for using reasonable values of the strong coupling constant and 

we are led to believe that the discrepancy lies with wavefunction corrections. 
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CHAPTER 1 

INTRODUCTION 

1 • 1 Preamble 

The history of particle physics has continually involved revealing 

new layers in the substructure of matter, which began with the 

discovery of atoms as the basic elementary constituents of chemical 

compounds and has led us to believe that at the current limits of 

resolution all matter is constructed of point-like spin 1/2 quarks 

and leptons. In addition, interactions between these particles -

strong, weak and electromagnetic forces (neglecting gravity which 

is a small effect at current energies), all appear to be described 

by gauge theories and mediated by spin-1 gauge bosons. The gauge 

bosons of the Standard Model of interactions SU( 3)c x SU( 2)L x U( 11y, 

have all now been observed (although indirectly in the case of the 

strong force mediating gluons) thus lending support to the theoretical 

prejudices in favour of gauge theories. 

The list of quarks and leptons is shown in Table 1. 1 I although the 

existence of the top quark is not yet established with absolute 

certainty I its discovery is confidently expected and indeed there 

is some evidence [ 1] for a top quark to exist in the mass range 30 

< mt < 50 GeV. 

In the next three sections we briefly discuss the ideas behind the 

gauge principle and the behaviour of the coupling constant in the 

electromagnetic and strong forces. 
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.,-
QUARKS LEPTONS "l Flavour Mass(GeV) Q Mass(GeV) Q 

Down,d 0.008 -1/3 e 0.0005 -1 i 
Up,u 0.004 +2/3 ve 0 0 i 
Strange,s 0.15 -1/3 l--1 0.105 -1 i 
Charm,c 1.5 +2/3 v~ 0 0 

I 

Bottom,b 4.9 -1/3 t 1.8 -1 
Top,t ? +2/3 vt 0 0 i 

Table 1.1 Masses and charges of the presently known quarks 

and leptons. 
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It is a property of all the gauge theories embodied in the Standard 

Model that there are unknown parameters that must be determined 

experimentally and in Section 1. 5 we discuss the problems inherent 

in making a meaningful determination of the coupling in the strong 

force. As a possible testing ground for the ideas behind the strong 

force we consider heavy quark-antiquark bound states in Section 

1. 6. We motivate a non-relativistic description of such states and 

briefly discuss the interquark potential in Sections 1. 7 and 1. 8. 

Spin Dependent forces are analysed in Section 1. 9 and the extent 

to which heavy quark-antiquark bound states are able to restrict 

the form of the interquark potential is reviewed in Section 1. 10. 

1. 2 The Gauge Principle And Electromagnetism 

The basis of the gauge principle, upon which all the components 

of the Standard Model rest, is the invariance of the fundamental 

Lagrangian under various local field transformations. These 

"symmetries" lead to conserved currents and thus to conserved 

charges, for example, the electric charge. The Lagrangian for a 

non-interacting spin 1/2 fermion liJ of mass m is; 

.- u -
L = ~ 'ljTy U d ljJ - m\IJIII ( 1.1) 

The Euler-Lagrange equations for this Lagrangian lead to the familiar 

Dirac equation 

iyuauw - mliJ = o ( 1.2) 

This Lagrangian is invariant under the global phase transformation 

ljJ ~ exp(ia)lj.J ljJ ~ exp(-ia)~ (1.3) 

and this leads, via Noethers Theorem, to the conserved current 

J. = ',\Jy ljJ u u 
( 1.4) 
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The invariance under a global phase transformation implies that the 

phase, a , is unmeasurable and can be specified arbitrarily. A more 

general invariance occurs if the phase is allowed to vary at each 

space-time point. i.e. a + Cl(x) . Lagrangians invariant under 

such a space-time dependent transformation are said to be locally 

gauge (or phase) invariant, and differ from eq. { 1.1) in that an 

extra vector field must be introduced, resulting in a Lagrangian 

that describes spin 1/2 fermions interacting via the exchange of 

vector gauge bosons, i.e. Quantum Electrodynamics (QED). 

where 1.IJ is the fermion field, Au is the gauge boson or photon 

and Fuv is the electromagnetic field strength tensor defined by 

( 1.6) 

and e is the electric charge of the fermion. The Lagrangian of eq. 

( 1. 5) is invariant under the local transformation 

1.jJ-+ exp(ia(x) )l.jJ 

if Au transforms as 

Au -+Au + (1/e>aua(x) 

which is the usual gauge tranformation of the electromagnetic 

potential. The form of the fermion-photon coupling term is 

restricted by the fact it must exactly cancel the- unwanted term 

generated by the local gauge transformation. The 

represents the kinetic energy of the photon and it is a direct 

consequence of local gauge invariance that a mass term for the 

u photon m2 AuA is not allowed. 

- 4 -
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The success of QED and the natural way in which both the photon-

fermion coupling and masslessness of the photon arise suggests that 

local gauge invariance is a fundamental property and leads us to 

attempt descriptions of the strong and weak forces in a similar way. 

1. 3 The Strong Interaction 

Quantum Chromodynamics (QCD) has now become widely accepted 

as the underlying theory of hadronic physics, and as such is an 

unquestionable ingredient of the Standard Model. The gauge 

transformations of QED, exp( i a J, form a unitary Abelian group 

U( 1), and it is believed that QCD is based on the unitary non-abelian 

group SU( 3) of colour, in which, unlike the single generator of c 

QED, QCD now has 8 generators and consequently 8 vector fields 

( gluons) which mediate the interaction. The quarks of the strong 

interaction lie in the triplet represenation of SU( 3)c and the gluons 

lie in the adjoint. The QCD Lagrangian is; 

( 1.9) 

where g is the strong coupling constant. The Lagrangian is invariant 

under local gauge transformations of the form 

(1.10) 

where q is a quark of mass m and where the eight generators of the 

group Ta(a=l,., 8) form the SU( 3) Lie Algebra 

abc c 
if T ( 1.11) 

The gauge fields a 
Gu , in analogy to the photon field Au of QED, 

transform as a consequence of the local gauge invariance 

(1.12) 
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and the gluon field strength tensor has to have the form 

( 1.13) 

As a result of the non-abelian nature of the group, (i.e. ~be 1- o), 

there are triple and quartic gluon interactions in the Kinetic energy 

term. Another way of expressing this is that in QCD the gluons 

carry the colour charge through which they couple to one another, 

unlike QED where the photon has zero electric charge. One direct 

consequence of these gluon self interactions is the different behaviour 

of the quark-gluon coupling in QCD as compared to the electron-

photon coupling in QED. 

1. 4 The Running Coupling Constant 

In QED, the electron-photon coupling, as depicted in Fig 1. la, is 

determined in terms of the bare charge of the electron, e, that 

appears in the QED Lagrangian of eq. ( 1. 5) or equivalently the fine 

structure constant, a :: e 2 1 41T • However, higher-order vacuum 

polarisation corrections to this vertex, Fig 1. lb, tend to shield the 

bare charge of the electron, and a calculation of such diagrams gives 

the leading behaviour for a as 

+ •• .] (1.14) 

where Q2 is the momentum of the photon and IJ is the arbitrary 

normalisation point at which a has been measured. It is convenient 

to define a as the value of the photon-electron-electron coupling 

in the limit of zero photon momentum when the electrons are on their 

mass shells 

a = a (m 8
2

) 
EM 

1/137 ( 1.15) 
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Fig 1. la 

Fig 1. 1b 

at 

The electron-photon vertex. 

+ + . . . . . 

Higher-order vacuum polarisation corrections to the 

bare vertex of Fig 1. 1a. 
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Higher-order corrections produce a whole series of [ln(Q2/J,J 2]n 

terms to leading order which can be resumed 

for Q2 » m2 • Thus the coupling in QED is not a constant at all e 

( 1.16) 

but depends upon the energy of the photon, Q. As Q2 increases, 

the photon sees more and more of the bare charge resulting in an 

increase of the coupling. The bare charge is thus ultraviolet 

divergent and it would seem that a breakdown of perturbation 

theory in QED is inevitable for large enough Q2 , however, gravitational 

effects will have modified the theory long before such a large Q2 

is reached and in fact a 10% effect would require Q2 "" 1056 GeV, 

well out of the practical range. 

Considering the equivalent gluon-quark coupling in QCD, Fig 1. 2a, 

which is again determined in terms of the bare coupling, g, that 

appears in the QCD Lagrangian of eq. { 1. 9), or Cl5 = g 2 /q 1T • 

Higher-order corrections to the bare vertex, Fig 1. 2b, now include 

gluon self-interaction terms and calculating such diagrams, analogously 

to QED we find that the coupling of the gluon-quark vertex becomes 

where b
0 

is a calculable constant and J.J is again the arbitrary 

normalisation point at which a 5 is measured. Summing the 

leading log terms gives 

- 8 -
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Fig 1. 2a 

af 

+ 

Fig 1. 2b 

q q 

The quark-gluon vertex. 

+ + ..... 

Higher-order corrections to the bare vertex of Fig 1. 2a 

including gluon self interaction terms. 
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Again the coupling in QCD depends upon the energy of the gluon, 

Q, however the precise dependence is controlled by the value of 

b
0

• In QED, the equivalent to b
0 

is a negative quantity resulting 

in an ultraviolet divergent bare charge. However, in QCD, extra 

positive contributions to b arise due to gluon self interactions that 
0 

are not present in QED. The value of b
0 

is found to be, 

b
0 

; (11/6)Nc - (1/3)nf 

where NC is the number of colours ( =3), and nf is the number of 

quark flavours that can contribute to fermion loops in the first 

diagram of Fig i. 2a. Thus we see that as long as nf < 16, then 

b
0 

> 0 and it follows that <Xs (Q 2 ) + 0 as Q 2 + oo , which is the 

opposite behaviour to that of QED. This property of the coupling 

( 1.19) 

in QCD is known as asymptotic freedom and is one of its most appealing 

features, implying that at very short distances coloured objects appear 

to be free. The discovery that QCD had this property is one of 

its major successes and offers a theoretical justification for the 

phenomenologically successful parton model. At large distances, 

or small Q 2 , the coupling becomes large and we enter the regime 

of non-perturbative hadronic physics and although it is still a matter 

of conjecture whether this property leads to confinement, it offers 

an explanation for the non-observation of free quarks. 

It is convenient to introduce a parameter A at this stage which 

parameterizises the Q 2 dependence of the coupling constant, 

A2 ; u2 exp(-2rr/<X5 <u 2 )b
0

) ( 1. 20a) 

from which we can write, using eq. ( 1. 18), 

(1.20b) 
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The parameter 1\ of eq. ( 1. 20b}, now appears as a fundamental 

parameter, in much the same way as the fine structure constant 

aEM , is for QED. Both quantities are not predicted by the 

theory but must be determined experimentally. The scale parameter 

fl. is introduced essentially due to the fact that there is no obvious 

definition for JJ in eq. ( 1. 17} . In QED, JJ is chosen as the electron 

mass and corresponds precisely to the region where the coupling 

is small and perturbation theory is expected to be reliable and 

readily accessible to experiment. However in QCD, this lower 

energy limit is excluded as a possibie definition, as it is where 

the coupling is large and perturbation theory breaks down. Thus 

if QCD has a fundamental scale parameter we must consider how 

to obtain its value. Although such an evaluation may at first 

sight seem simple, in that all we need do is consider an observable 

process with a well defined momentum scale, Q, from which we 

can determine the coupling. Then from eq. ( 1. 20b) we can simply 

read off II. • However there is an ambiguity in the definition 

of the coupling constants, which in turn leads to problems in 

the precise definition of II. when the perturbative calculation 

of a quantity in QCD is considered. This is known as the 

Renormalisation Scheme dependent problem. 

1. 5 Renormalisation Scheme Dependence 

In order to determine the value of the QCD scale parameter II. , 

we are restricted to use perturbation theory in order to calculate 

QCD predictions for a particular process. We write the predictions 

for an observable R as 

N 
R = a ( l + r a + r a + ••• ) , N > 0, 

1 2 
( l. 21) 
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and r 
1

, r 21 etc., are calculable higher order 

coefficients. In calculating these coefficients, divergences occur 

in the integrations over momenta flowing in closed loops of Feynman 

diagrams, There are a number of well established methods of dealing 

with such divergences. They essentially consist of identifying the 

source of the infinities and separating them out from the rest of the 

terms. Then by suitably defining a coupling constant in such a way 

that the infinities are either removed or absorbed in the definition, 

a finite answer remains. 

For example, in the calculation of the quark-gluon vertex that was 

considered in Section 1. 4, the higher-order corrections shown in 

Fig 1. 2b, induce ultraviolet divergences due to the integrations of 

momenta flowing in closed loops. To control these divergences an 

ultraviolet momentum cutoff K is introduced in the integrals and in 

terms of K the coupling is, 

asiO') = as[ -\~:bo1n %:) + (~:b0in %:) 
2 

+ ••• J , 
where <X 5 is defined from the bare coupling of the Lagrangian. 

Eq. ( 1. 22) has no meaning as it diverges for K ~ oo • However, 

if we assume that we know the coupling <X 8 (Q 2 ) at Q 2 = J,J 2 , 

... J . 
then both a

8 
and K of eq. ( 1. 22) can be eliminated to give the 

result in eq. ( 1.17). It is essentially the fact that we have 

introduced the couple a 8 ( JJ 2 ) which removes the divergence. 

- 12 -
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There are in fact, an infinite number of such ways in which the 

divergences can be removed, leaving an arbitrary finite remainder 

and which lead to different values of ri in eq. ( 1. 21). Some of the 

more frequently used schemes of dealing with the divergences are 

outlined below: 

(a) Minimal Subtraction Scheme [ 2] 

In this scheme the loop integrals are evaluated in n-dimensions 

and it is found that the divergences appear as singularities 

of the form 1 /(n-4) and hence only appear in 4-dimensions. 

These terms are separated and dropped. On returning to 

4-dimensions the result is finite and a MS ( Q 2 ) along with ~s 

are defined. 

(b) Modified Minima I Subtraction Scheme [ 3] 

Again the loop integrals are evaluated in n-dimensions and, 

in addition to the singularities, factors of ,q,n4TT and YE (Euler's 

Constant), which appear as artifacts of the calculation, are 

also dropped. The scheme defines a Ms<Q 2 l , along with l\Ms 

(c) Momentum-space Schemes [4] 

The coupling in this scheme a MoM<Q
2 l is defined as the value 

of the three gluon-vertex (or quark-quark-gluon vertex) 

when the invariant masses of the particles are -Q 2 • a MOM< Q2 l is 

not related to any physical process and practical calculations 

in this scheme prove to be very difficult. 

The coupling between any two schemes are related by a perturbative 

expansion 

a 
2 

a (1 + ca l 
1 1 

( 1.24) 
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where the coefficient c is known for any two of the three schemes 

shown above. From eq. ( 1. 24) it is clear that the value of r 1 in 

eq. ( 1. 21) will depend on the particular scheme being used, and 

if this is the only coefficient known, we cannot be sure which scheme 

best approximates the true value of the physical quantity. It follows 

then, that there is an ambiguity in the precise definition of the 

fundamental scale parameter relevant for a physical process. 

We further note that if none of the higher coefficients for a physical 

' process ara known then A is arbitrary up to a resealing I\ + I\' =x/1. 

Introducing a rescaling of A in the leading order equation for the 

coupling eq. ( 1. 20b), is only manifest as a higher order effect, and 

can be absorbed into the unknown coefficient r 1• 

The Renormalisation Scheme dependent problem we have discussed 

here, resulting in an ambiguity of the physical value of A • is 

essentially due to the fact that we have been limited to a truncated 

perturbation expansion with which to confront a physical process. 

The renormalisability of QCD ensures that the prediction for a 

physical quantity does not depend on the particular scheme 

provided we calculate to all orders, implying that a single value of A 

should result no matter what scheme is used. However, such a 

calculation to all orders is impossible in a finite amount of time, so 

the problem remains. 

There are many physical processes from which the value of A can 

be extracted, and an extensive review is given in ref. [ 20]. 
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Some examples are the ratio of hadronic to muon pair-production 

total cross-sections in e + e- annihilations and a study of the QCD 

corrections to the lowest-order expressions for parton densities 

within hadrons for both deep inelastic scattering and lepton pair­

production experiments. In each process a quantity R, of the form 

eq. ( 1. 21), relevant to the physical observable is calculated to at 

least next-to-leading order of QCD for a variety of schemes, in 

order to analyse the relevance of the Renormalisation scheme 

dependence problem for the particular process. 

The accuracy to which the value of the coupling constant, <Xs , 

relevant to a process and scheme, can be determined is dependent 

upon the accuracy to which the observable R is obtained experimentally. 

In fact, it can be seen from eq. ( 1. 20b) that extreme accuracy of cx8 

is required if an accurate determination of A is to be achieved, 

due to the exponential sensitivity between the two quantities. 

The processes analysed in ref. [ 20] typically indicate values of cx 8 

around 0. 2 and lead to the fact that the range, A = 0. 2-0.5 GeV, 

will satisfy most determinations, although no single value is entirely 

consistent with all processes. To study in detail the accuracy to 

which the value of the QCD fundamental scale parameter, A , can 

be determined, we consider systems of heavy quark-antiquark pairs, 

bound by the QCD force and which are readily accessible to accurate 

experimental observation. The relevant calculable quantity, R, to 

this system is the interquark potential describing the binding force 

between the quark pair, from which cx8 can be obtained. However, 

we first consider the properties of the bound-state system itself. 
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1. 6 Heavy Quarkonia 

Initially the underlying quark picture of strongly interacting particles 

was viewed as a convenient mathematical tool with which to classify 

the large spectrum of these particles found in accelerator experiments 

in the 19501s and 19601s, and up until November 1974 all particles 

could be explained in terms of 3 quarks (u, d, s) where the only 

allowed combinations are of three quarks (qqq) to form baryons or 

a quark and an antiquark {qq) to form mesons. 

The discovery of a new particle in e +e- collisions at the Stanford 

Linear Accelerator and its simultaneous observation at the Brookhaven 

AGS in collisions of 28 GeV protons on a beryllium target; 

SLAC + ,II + - + -e e- ~ ~ ~ hadrons,e e,~ ~ 
( 1.25) 

BNL p + Be ~ J + anything 

~ +-e e ( 1. 26) 

heralded the beginning of a new era in particle physics and was to 

firmly establish the existence of quarks as constituents of matter. 

The new particle, which has become commonly known as the J I \IJ 

was seen as a very sharp resonance at a mass of around 3.1 GeV 

and was immediately recognised as being exceptional due to its very 

small width of 67 keV. (A 3 GeV state would, a priori, be expected 

to have a width of some hundreds of MeV). Also, by increasing the 

beam energies at SLAC, a second resonance was observed at a mass 

of around 3. 7 GeV within a few weeks of the first discovery, and 

named ¢' 
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Many possible explanations of these states immediately followed, 

however their properties could all be understood in a rather natural 

manner if one assumes that these particles are bound states of a 

new heavy quark, the charmed quark. The production mechanism 

at SLAC then implies that both these states are vector mesons 

with the same quantum numbers as that of the photon, see Fig 

1. 3. 
PC --

Since no narrow J = 1 resonances were found below the 

J I llJ it is identified as the ground state and the l!J' as its first 

excited partner. 

Such a charmed quark (of charge +2e/3) had been postulated 

some years previously by Glashow, lliopoulous and Maiani [ 5], 

in order to suppress strangeness - changing weak neutral 

currents, and carried a new quantum number, C for charm, 

which like strangeness, would be additively conserved in strong 

and electromagnetic interactions. 

The startling property of the J I llJ was its extreme narrowness 

which, with hindsight, can be understood in analogy with the 

suppressed decay of the <I> particle, a bound state of a strange 

and anti-strange (ss) quark, into non-strange hadrons. On 

grounds of phase space alone, it should be energetically more 

favourable for the ell to decay into three pions, composed of up 

and down quarks only, than for it to decay into two Kaons, each 

containing a strange quark. Yet experimentally it is found 

f(<!> + 3TT) 
f <!> + KK) 

1 

5 
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Fig 1. 3 

] I \II 

The production mechanism for the J I w resonance 

produced in e + e- colliding beam experiments, via a 

hadrons 
e•e-
IJ+ IJ-

virtual photon. The J/ q, then decays into leptons or 

quarks (which subsequently form hadrons in the final 

state). 
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Motivated by this suppression, the OZI rule [6] was proposed 

which states that decay processes with disconnected quark lines 

between initial and final states are suppressed in comparison to 

those with connected quark line diagrams, These two decay 

modes of the ¢are shown in Fig 1. 4. In the context of QCD, 

the OZ I suppression can be viewed in terms of the reduced rate 

at which the quark-pair annihilate to form a multigluon intermediate 

state, as in Fig 1.4a, compared to the rapid creation of a quark­

pair from the vacuum, as in Fig 1. 4b. 

The equivalent diagrams for the decay of the J I IV are shown 

in Fig 1. 5. By the OZI rule, the decay in Fig 1. Sb is favoured, 

however, this channel is forbidden by energy conservation as 

both the J I IV ( 3. 1) and IV' ( 3. 7) lie below the threshold for 

the production of particles with open charm, i.e. 2M0 = 3. 75 

GeV. Fig 1. Sa is therefore the only allowed hadronic decay and 

its suppression results in a long lifetime or equivalently a narrow 

width for the J I IV . In fact, the suppression is greater than 

seen for the 4> due to the fact that the charm quark is heavier 

than the strange. Asymptotic freedom then tells us that the J I IV 

couples less strongly to gluons than the 4l. 

a5 <rnw> < a5 <m¢> (1.28) 

The interpretation of the J I ljJ and IV' as bound states of a 

charm quark and anti-quark pair leads to clear experimental 

predictions, as other states should be expected. 

Indeed further states have now also been discovered by studying 

the decays of these resonances produced in e +e- collisions. The 

analysis of the cascade decays 
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Fig 1. 4a OZI rule suppressed decay mode of ¢l -+ 3TI 

s 

r/J-=----
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Fig 1. 4b OZI rule allowed decay mode of ¢l -+ K+K-
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+ -e e 

and the inclusive photon spectrum 

~~ + y + anything 

led to the discovery of cc X states as well as llc and n~ which 

are interpreted as the P wave states and S wave spin-singlet 

partners to the J I w and \)>~ respectively, and indeed the 

discovery of these states has confirmed the interpretation of the 

spectroscopy in terms of qq bound states. 

The cc or charmonium spectroscopy of states below threshold 

for DO pair production is shown in Fig 1. 6a. Heavier states are 

also observed but decay very rapidly and have broad widths, 

characteristic of the fighter hadrons. The decay products of 

these heavier states are particles containing a single charmed 

quark plus another lighter quark, as seen by the decay in Fig 

1. Sb. Such hadrons carry the charm quantum number and can 

only decay weakly into normal hadrons. As such these particles 

provide a good testing ground for the weak interactions. 

In Fig 1. 6b, the charmonium spectrum can be compared to that 

( 1.29) 

( 1. 30) 

of positronium, the bound state system of an electron and a 

positron. Apart from the difference in energy scales, the two 

spectroscopies are seen to be very similar, again providing strong 

evidence for believing that charmonium results from the binding 

of a heavy quark and anti-quark pair and leads us naturally to 

try and apply a non-relativisitic potential model description of 

such states. 
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Fig 1. Ga 

Fig l.Gb 

The observed charmonium spectrum. The transitions 

and states shown have all be observed. Another state 

is expected 1P
1
(JPC:: 1+-) and awaits discovery. The 

threshold for D+D- decay is indicated and the particles 

below this cannot decay into charmed mesons. The 

states with J PC:: can be directly produced by e + e-

colliders. 

The positronium spectrum, labelled in the conventional 

. 25+1 spectroscopic manner L J where S, L and J are the 

total intrinsic spin, orbital and total angular momentum 

+ -
of each e e state respectively, in the non-relativistic 

classification. 
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To justify such a treatment we note that the observed spectrum 

in charmonium is similar to what would be expected from a non-

relativistic analysis and also that the mass of the charmed quark 

is large compared to the typical hadronic energy scale. To see 

this more clearly we consider the Fourier Transformation of the 

running coupling constant, eq. ( 1. 20), into co-ordinate space, 

a 8 (r) = 2n/(b0~n(l/A2r2)) 

-1 
The typical hadronic length is of the order 1 fermi ::: 5 GeV , 

to which we associate an energy scale being that for which the 

coup! ing becomes of order unity, 

This is equivalent to saying that quarks inside particles of 

dimensions 1 fermi will typically have a momentum of about 200 

MeV. The non-relativistic approximation is then valid provided 

the mass of the system is large compared to this momentum scale 

( 1. 31) 

( 1. 32) 

which for charm, m = 1. 5 GeV, should be a reasonable approximation. c 

In 1977, following the discovery of the charmonium system, similar 

narrow resonances in the mass range 9. 5 - 10. 5 GeV were observed, 

and attributed to the bound states of a still heavier bottom quark, 

of charge _e /3. This system appeared in direct analogy with 

the charmonium spectrum and is shown in Fig 1. 7 for those 

states below the open flavour threshold, although again higher 

mass broad states have also been identified. As the mass of this 

bottom quark, mb = 5 GeV, is much heavier than that of the 

charm quark, a non-relativistic treatment should be even more 

appropriate for bottomonium. 
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The observed bottomonium spectrum. The dotted levels 

denote the spin-singlet S waves, which along with the 

1 
P 1 states have not been observed. Only those states 

below open flavour threshold are shown. 
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The mass spectrum of charmonium and bottomonium, collectively 

known as heavy quarkonia, can be computed in the non-relativistic 

approximation using Schrodinger's equation and as such provides 

an ideal testing ground for the quark model and the strong 

interaction which binds these systems together. 

1. 7 Non Relativistic Quantum Mechanics 

On the basis of the previous discussion it would be hoped that 

a good description of the charmonium and bottomonium spectroscopies 

is possible in terms of the Schrodinger equation. 

Neglecting spin-dependence until Section 1. 9, we write the 3-

dimensional Schrodinger equation for a qq pair as 

2 

- ~U 7 2 \f'(r) + [v(r) - En~ '!'(.r:) == 0 

where u is the reduced mass of the systerh ( =m I 2), r is the q 

( 1.33) 

relative quark separation '¥ ( r) is the Schrodinger wave function, 

V( r) is the interaction potential between the quark and antiquark 

and En~ are the allowed eigenvalues giving the possible masses 

of the qq bound states. Although we have kept the constant 

h in eq. ( 1. 35), in all that follows we shall use natural units with 

11=c=l 

For a central potential, the angular dependence of eq. ( 1. 33) 

can be eliminated by writing 

where Rnt(r) is the radial wavefunction and Y£m ( 8 , <t> ) are the 

spherical harmonics. The radial equation is then 
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- 1 (ct 2 2 ct ) I i r i + 1 j' 
-2 d- 2 +- ~ R (r) -IE - V(r) -

2 
R n(r) 

u r r or 1 n£ L n£ wr n~ 0 ( l. 36) 

and the radial wavefunction is normalised such that 

( 1. 37) 

Then for an input potential V( r), the solution of eq. ( 1. 36) gives 

the mass of the state 

( 1.38) 

Obviously, the main problem now in making a quantitative analysis 

of the heavy quarkonia spectroscopy is the choice of interaction 

potential, V( r). So far this potential has not yet been computed 

from first principles and so we must rely upon models which 

incorporate as many QCD features as possible. 

1. 8 The Quarkonium Potential 

Before we discuss specific models of the quarkonium potential, 

we first consider constraints that the observed quarkonia 

spectroscopies of Fig 1. 6a and Fig 1. 7, impose on the form of 

the potential. In positronium, the form of the interaction potential 

underlying the spectroscopy is of the pure Coulomb-type, V( r) "' 

1/r, in which neglecting fine structure effects the 2S and 1 P 

levels are degenerate. Likewise for an Oscillator potential, V(r) "" 

r 2 , the 1 P level is predicted to be exactly midway between 2S 

and 1S levels. In the spectroscopies of charmonium and bottomonium, 

the P wave level is found to be neither degenerate with, nor exactly 

midway between, the s-wave levels, indicating that the quarkonium 

potential has a form somewhat intermediate between the 1/r Coulomb 

and the r 2 Oscillator potentials. 
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A wide variety of quarkonium potentials have been proposed in 

order to describe the binding force between the quark and 

antiquark in charmonium and bottomonium. They essentially fall 

into two classes: 

1. QCD-Iike Models 

This class of model is motivated by the known value of the 

potential energy of two infinitely heavy (i.e. static) colour 

sources in a colour singlet state, separated by a distance, 

R. For single gluon exchange, which is the first-order 

calculation, the static qq potential is 

V{r) .-v 
r<<A 

and corresponds to a static Coulomb field at short distances, 

see Fig 1. 8a. We see that due to the logarithms introduced 

by the running coup I ing constant of ( eq. 1 . 31) , that the 

QCO Coulomb field is not as singular as the pure Coulomb 

( 1. 39) 

field of QED. At large separations, when the coupling becomes 

strong and perturbative theory is no longer valid, the colour 

lines of force extending between the two sources couple 

together as a consequence of the gluon self interactions, see 

Fig 1. Bb, and we find: 

V( r) r...~ Kr 
r>>A 

, In this class of models the behaviour of the potential at 

intermediate distances is chosen ad hoc. 

The simplest choice for a potential of this type was first 

introduced by the Cornell Group [ 7] 
4 Cts 

V(r) = - - + br 
3 r a 8 = constant 
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Fig 1. 8a 

Fig 1. Sb 

Short-distance field configuration of the qq potentia I 

showing the Coulomb-type interaction motivated by 

single gluon exchange. P denotes the momentum of the 

quark (or antiquark) in the bound state. 

-P 

The large distance expected field configuration of the 

qq potential showing the linear increase of binding 

energy with separation. This picture is motivated by 

the self coupling of the colour flux lines of force due 

to gluon exchange. 
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More sophisticated models have been proposed which incorporate 

the running of the coupling constant as well as next-to-leading 

order calculations for the static qq potential [ 8]. 

2. Empirical Models 

Models without any theoretical bias have been proposed to 

empirically describe quarkonia spectroscopy. A celebrated 

example is that due to Martin [ 9], 

0.1 
V(r) = A + Br 

although many others exist. 

( 1. 42) 

We plot in Fig 1. 9 a variety of quarkonium potentials resulting 

from a fit to data. The potentials are seen to essentially agree 

in the range 0.1 < r < 1 fermi, where neither limit of QCD-

Iike models applies. The presently known charmonium and 

bottomonium data do not constrain the form of the potential 

at larger or smaller distances, but simply demonstrate the 

consistency of QCD-Iike models with experiment rather than 

prove their existence. 

1. 9 Spin Dependent Effects 

First-order relativistic corrections to this non-relativistic 

approximation result in spin dependent forces which induce, for 

example, a separation of the triple P wave levels, and remove 

the degeneracy of the singlet and triplet S wave states. If in 

the non-relativistic approximation the mass of a level is predicted 

to be at ml, then after including 0( v 2 /c 2 ) corrections the mass 

becomes dependent on the spin configuration and can be written 
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A comparison of a variety of quarkonium potentials 

which successfully describe cc and bb spectra. The 

quarkonia states are shown at their mean square radii. 

This figure is adapted from a figure in ref [ 14] . 
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2S+l 
m( L ) 

J 
m + m <S .S > + m <L.S> 

L H 1 2 SO 

+ mT<r.S 1 r.S
2

- (l/3)S
1
.s

2
> (1.43) 

where s1, 5 2 refer to the spin operator of each quark and L is 

the orbital angular momentum operator between the quarks. The 

correction terms are written in direct analogy to these calculated 

for positronium [ 10], but modified such that the relevant 

interactions between magnetic fields and magnetic dipole moments 

refer to the qq system. The quantities mH, m50 and mT represent 

hyperfine, spin orbit and tensor interactions respectively and 

depend upon the specific form of the quarkonium potential (see 

Ref [ 11]), and for a calculation in perturbation theory also depend 

upon the non-relativistic wave function of the Schrodinger equation, 

eq. ( 1. 36). In order to determine the importance of such effects 

to the form of the short-distance region of the potential we 

consider quantitative estimates of these splittings in presently 

known and in any heavier quarkonium system that may be found. 

Consider first the hyperfine force represented by mH and which 

removes degeneracy between the triplet and singlet S wave states. 

This force is due to the interaction between the spins of the two 

quarks and as such is considered to be of short-range. Choosing 

the interquark potential to be the Cornell type of eq. ( 1. 41) with 

which to make predictions we find the hyperfine splitting to be 

[ 12] 

3 
Ll(ns 

1 

where R (0) is the value of the radial n - S wavefunction at ns 

the origin. In charmonium the 1S hyperfine splitting between 

the IV and Tlc is predicted to be 
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( 1.45) 

which compares favourably with the experimental splitting of 116 

MeV. In bottomonium eq, ( 1. 44) predicts 

6m b 32 MeV 
h.f.s. ( 1. 46) 

and for a quark qq system of mass around 80 GeV predicts 

6mh f (80 GeV) ~ 15 MeV 
. . s. ( l. 47) 

These splittings are somewhat over-estimated since the Coulomb 

type singularity of the Cornell potential should be softened by 

logarithmic corrections arising from the running of the coupling 

constant in the one gluon exchange interaction. However it can 

be seen that this effect reduces considerably with increasing 

quark mass. 

Indeed it will be essentially impossible to resolve this "' 10 MeV 

splitting in the forthcoming toponium experiments. 

Consider next the fine-structure splitting repesented by m50 . 

The total effect on the I P state (neglecting tensor interactions) 

is 

6m 
f.s. 

In going from the cc to the bb system, the splitting scales like 

the square of the quark velocity in the ground state [ 13] 

&nb 
f.s. 

6m c 
f. s. 
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where the quark velocity. v 2 
, is written in terms of the average 

q 

total kinetic energy, <T> = <r dV /dr>( 1 /2) available to the quarks 

as, 
v~ = 1- [1 + <T>/2mc~ - 2 ( 1.50) 

Experimentally it is found 6 mf = 141 MeV and . s. 6 m = 42 f.s . 

Mev and using the potential of ref. [ 14] the quark velocities are 

v c 2 = 0. 23 and v b 2 = 0. 08 checking the consistency of eq. 

{ 1. 49). Estimating that for a heavy qq system of mass around 

80 GeV v 2 (m = 80 GeV) = 0. 01, ... , 0. 02 then by scaling we q 

find 

6m (80 GeV) ~ (5 - 10) MeV 
f. s. 

( 1. 51) 

again beyond the resolution of forthcoming experiments. We thus 

conclude that in order to explore the short-distance behaviour 

of the quarkonium potential, below that which has already been 

fixed by charmonium and bottomonium, it is sufficient to analyse 

only the spin-averaged quarkonia data, in which spin-dependent 

corrections are eliminated. 

To obtain the spin-averaged result we multiply each state of a 

given orbital angular momentum multiplet by its degeneracy and 

average over all possible state. For example, in the charmonium 

1 S state we write 

3mw + mTl 
4 

where m5 is the non-relativistic result. 
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1 . 1 0 Preview 

It is the aim of this work to consider the extent to which heavy 

quarkonia are able to test the theory of the strong interactions 

(QCD) which binds quarks into hadrons, and to make a meaningful 

determination of A , the fundamental scale parameter of the 

theory. 

In order to do this we consider a QCD-Iike interquark potential 

which incorporates the next-to-leading order calculation for the 

static qq perturbative potential, valid at short distances, and 

fit to the cc and bb data for various values of A • Any constraint 

imposed on the value of A , by the data. can then be obtained 

by comparing the potential resulting from the fit with the short 

distance perturbative behaviour as a function of A • 

It has been shown [ 14] that although cc and bb data do not 

determine a preference for the QCD form, they do impose a lower 

bound on A • A conclusion of A > 0.1 GeV is found by the 

following argument. The next-to-leading calculation is assumed 

to be reliable in the region r < r , where r A = 0. 1. For A = 0.1 
0 0 

GeV, the regions determined by the data and for which the calculation 

is assumed to be reliable, overlap for 0.1 ~ r ,{, 0. 2 fm, and 

as the data demand a slope almost double that predicted by QCD, 

values of A "'0. 1 GeV are rejected. A similar analysis [ 15] 

including the fact that small deviations in the perturbative result 

are allowed due to higher order corrections, concludes A > 0. 15 

GeV. Thus it appears the sensitivity to A only arises if we 

require the potential to approximate the perturbative behaviour 

at short distances. 
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To increase the sensitivity to fl. and indeed pin down a specific 

value, the experimentally constrained region of the potential must 

be extended to shorter distances such that a greater degree of 

overlap, with the perturbative result, can be considered. 

It is well known [ 14, 16] that toponium spectroscopy, the bound 

states of the heavy top quark-antiquark pair, is sensitive to the 

short distance region of the potential. We see in Fig 1. 10 the 

probability distributions u 2 (r) for the 15 state of toponium of 

mass 80 CeV compared to the equivalent distributions in charmonium 

and bottomonium. As expected the toponium system should be 

able to probe more deeply into the short-distance region (where 

QCD perturbation theory is relevant) and indeed will constrain 

the quarkonium potential down to distances of r "' 0. 2 GeV- 1 

We study the sensitivity that hypothetical toponium data should 

impose on the value of fl. by making predictions for the data 

sample and including errors that are expected from future e + e­

experiments. The effects of relativistic corrections can be 

suppressed by omitting cc data from the analysis. 

The structure of this work is as follows. In Chapter 2 we discuss 

the details of the next-to-leading order perturbative QCD potential 

that we use in our analysis, and examine the effect of heavy quark 

loops (me, mb ~ 0). Chapter 3 describes how we incorporate 

the intermediate and long-distance contributions into the potential 

in such a way that A.r:ffi is constrained only by the short distance 

behaviour of the perturbative contribution to the potential and 

discuss the results of confronting this potential to the cc and 

bb data. 
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Probability distributions u 2 (r) for the lS states of 

toponium ( m15 = 80 GeV) bottomonium and charmonium 

to show the extent to which a toponium system, of this 

mass, should be expected to probe the short-distance 

region. 
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We examine the sensitivity to the value of fiMs and obtain 

consistent comparisons with other potentials that have been used 

to describe cc and bb data. In Chapter 4 we discuss toponium 

expectations and predictions and the accuracy to which experimental 

information on toponium will be able to determine the value of AMs • 

In Chapter 5 we return to the analysis of the cc and bb spectroscopy 

and discuss hadronic decay widths of S and P wave states in the 

! ight of recent measurement and notice that wavefunction distortion 

effects seem to be important for light P wave decays. Chapter 

6 contains a summary and our main conclusions. 
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CHAPTER 2 

The Perturbative Potential 

Our objective is to study the constraints imposed on the QCD 

perturbat ive potential by heavy quarkonia data. We must therefore, 

critically review the short-distance static potential between a colour-

singlet pair of colour triplet sources, calculated at the next-to-

leading order in QCD perturbation theory, and examine the region 

of its validity. First, in Sub Section 1, we discuss the perturbative 

potential in massless QCD and estimate the errors that may arise 

from higher order corrections. Then, in Sub Section 2, we study 

the effects of massive quark loops. 

2. 1 • 1 Perturbative Potential In Massless QCD 

The QCD perturbative expansion for the static potential [ 17] should 

be valid at small enough interquark separation since, due to asymptotic 

freedom [ 18], the effective coupling constant decreases with decreasing 

r. The finite part of the one loop contribution to the static potential 

has been calculated by several groups [ 19] in pure gauge theories 

and by Billoire [ 8] who includes massless quark loop contributions. 

The potential in momentum space, where the coupling constant is 

renormalised in the modified minimal subtraction (MS) scheme, and 

where there are nf massless quarks can be expressed as: 

V('q) 

( 2.1) 
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with 

a - CLs(IJ.)MS/'TT 
( 2. 2) 

Tp 1/2 l ( 2. 3) 

Cp 4/3 Colour Factors ( 2. 4) 

CA 3 ( 2. 5) 

The coup ling, a is renormalised in the modified minimal subtraction s 

(MS) scheme [ 3] and 1-1 is the unit of mass introduced in the dimensional 

regularision [2]. 

It is a straightforward procedure to make the appropriate 3 dimensional 

Fourier Transform (See Appendix A) to express the potential in co-

ordinate space 

V(r) 

with 

bo 

A 

YE 

-'TTCp a [l + a(b0 in IJ.r +A) + O(a 2 )] 
r 

11 
6CA-

2 
)nfTF 

boYE 
31 

+ )"?CA-
5 
9nfTF 

ro 

I e-t ~nt dt 0.5772 ••• 
0 

The renormalisation group improvement of this equation amounts 

to recognising that there is an invariance of eq. (2.6) to a change 

of scale 1-1 such that under this change the coupling will satisfy 

the renormal isat ion group equation ( R G) 

with 
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2. 1. 2 

which, neglecting the 0(a 2 ) term, has an exact solution expressed 

by: 

(2.12) 

This equation defines the lJ - independent QCD scale parameter 

We have thus specified the perturbative potential in co-ordinate space 

for nf flavours of massless quarks, eq. (2.6), totally defined in 

(nf) 
terms of the constant i\MS However, to make a meaningful 

determination of 1\ , by confronting the perturbative potential to 

data, we need to consider the effects of higher-order corrections. 

Higher Order Correct ions To Perturbative Potential 

The two crucial questions that we need to consider are up to what 

distance r and with what accuracy is the truncated expansion of the 

perturbative potential in massless QCD eq. ( 2. 6) valid? These 

questions are intimately related to the problem of choosing a good 

renormal isation scheme in which to formulate the problem as dis cussed 

in the introduction [20]. We need to look at the O(a 2 ) terms of eq. 

( 2. 6) and decide on a criterion to determine the maximum value of 

r to which we should believe the perturbative expansion, beyond 

which the 0(a 2 ) terms may cause a breakdown in the perturbation 

series. 

Here we adopt the conservative approach of Ref. [21]. Given a 

perturbation expansion for a physical quantity, R:-

R ( 2.13) 
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where Na(w) = Na (w)/n is a natural expansion parameter in large 
s 

N theories [ 22] with N = 3 for QCD, then if there is no a priori 

reason to expect this series to breakdown, we can assume that 

there exists an optimal scale ~OPT at which the coefficients of the 

series satisfy 

lck(~oPT) I < K = 0(1) for k=l, ..• n. ( 2.14) 

In practice however, only the first coefficient c 1 will be known, and 

in such a case the first guess w1 for the optimal scale is [23] 

The RG invariance of the physical quantity R relates the first and 

second coefficients at the two scales by: 

bl 
c2 <~opTl - Nb c1 <~pTl 

0 

Our assumption (2.14), and noting that b 1 /Nb
0

"""' 0.5 for nf = 4, 

implies that the fractional error of the estimate 

is given by 

The important observation here is that the choice ( 2. 15) does not 

introduce artificially large corrections so long as there exists an 

optimal perturbation expression satisfying ( 2. 14). 

We would like to apply the above argument to the special case in 

hand, where the perturbative potential eq. ( 2. 6) is the physical 

quantity under consideration. We have 

Vp (r) 
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( 2.18) 
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Where we have chosen lh such that the next-to-leading order 

coefficient vanishes 

1 
~1 = ~ exp(-A/b0 ) , (2.20) 

and that the fractional error from higher order terms is 

( 2. 21) 

The factor K is of order 1 and, lacking more information, we take 

K = 1. With the large colour factor ( N2 = 9) already included, this 

choice may seem rather conservative but in confronting the perturbative 

potential, determined totally by the value of A to data any constraint 

or conclusion drawn should not be expected to depend on this value 

of K, as it determines an upper limit to the fractional error expected 

from higher order corrections. However, lacking a calculation of 

the coefficient c 2 ( l-l) of the expansion, K = 1 must seem the most 

reasonable choice. The only available perturbation series to three-

loops in QCD are those of unphysical quantities; the RG functions 

in the MS scheme [ 24], an effective change in a special momentum 

(MOM) scheme [ 25] and its 8 function [ 26]. In all these perturbation 

series the factor K is less than unity for moderate values ( 51 0) 

The perturbative potentia I of ( 2. 19) only gives a good approximation 

to the full quarkonium potential for those values of r for which the 

fractional error, given by eq. { 2. 21) is small. To determine a 

criterion that restricts the perturbative potential to a region of 

space within which the fractional error does not become unacceptably 

large we plot the fractional error as a function of r i\MS in Fig. 

2. 1. 
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The fractional error in the perturbative potential 

(calculated from eq. (2.21) with K=1) as a function of 

r A for A = A~:> = 0. 2 GeV. The plot is essentially 

the same for other values of A . The m = 1. 5 GeV c 

curve is calculated using eq. (2.35) in the place of eq. 

( 2. 8) • 
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Thus, for example, we expect VE to be within 10% of the true 

potential for values of r satisfying 
(4) 

r!t- 5 0.08 . 
MS 

We see from this that potentials with small values of A~) 
MS 

should 

( 2. 22) 

be expected to be valid over quite large regions before the perturbative 

expression is destroyed by these corrections. 

An estimate of the magnitude of higher order corrections must be 

implicit in any confrontation of perturbation theory predictions with 

experimental data, and if in the case of quarkonium there is to be 

any meaningful constraints to be put upon V ( r) by the data, then 
e 

there must be some degree of overlap between the region over which 

the expression for V ( r) is taken to be valid and the region relevant 
e 

to the data. However, we cannot conclude that a certain value of 1\ 

is favoured by the fact that a phenomenologically successful potential 

has the correct r-+ o behaviour, if the potential deviates too much 

from the perturbat ive form, for that value of 1\ , within its expected 

region of validity. Conversely, it is unjustified to rule out a value 

of !\ by requiring the exact onset of the perturbation potential as 

r is decreased below a certain value, as even at very short distances 

we must allow for changes in the potential arising from possible 

higher order corrections. In order to make an objective judgement 

of how a phenomenological potential reproduces the desired perturbative 

form for a given value of 1\ , we shall make use of the error estimate 

eq. ( 2.21) with K = 1 in the short distance region specified by the 

inequality ( 2 .22). 

- 46 -



2. 1. 3 Two Technical Notes 

We consider here two technical, but general, remarks of the 

d eterm in at ion of the Q CD scale parameter, !\ 

i. 

ii. 

(nf) 
For a given value of AMS , eq. (2.12) determines the trajectory 

The trajectory, or the value of et a t a c e r ta in 
s 

value of lJ , is calculated very efficiently by using an iterative 

solution as follows [ 2 7) . 

a (Ill 

with 

F(x) lim F (n) (x) 
n-+«> 

where 

X I 

b1 

(nf) 
ln(ll/A!-i.S l + b1 

(2.23a) 

(2.23b) 

(2.23c) 

F(n) (x) = [1/x + ln(1 + 1/F(n-1 l(x))]-1 for n=2 1 3 ••• 

(2.23d) 

This iterative solution converges very rapidly for small x. 

(nf) 
In the literature there often appears another definition of J\MS 

namely, 

with 

a(-w) 

A' := 1\.:._:n£) 
MS 

2 2b
1
£n£n(-w /!\') 

1 + b~.Q,n(-w/1\') 

Although the two definitions of!\ eq. (2.12) and eq. (2.2LJ) 

are formally equivalent in the next-to-leading order, they lead 

to numerically different values of the !\ parameter for a given 

value of the strong coupling constant, at a given scale. 
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2. 2. 1 

Due to the exponential sensitivity of fl on the coupling constant, 

the numerical difference may be significant. We choose the 

definition of eq. { 2 .12) because it is identical to the numerical 

solution of the RG equation in the next-to-leading order. 

Numerical solutions of the RG equation is often the only 

practical way of obtaining the running coupling constant in 

the wider range of renormalisat ion schemes, including all mass 

dependent schemes. 

Heavy Quark Loop Effects 

It is well known that quark masses can be neglected in loop corrections 

to the static potential when [ 28] 

( 2. 25) 

is satisfied, whereas the effects of heavy quark loops are neglected 

when [ 29] 

( 2. 26) 

The systems that we shall ultimately be confronting our potential 

against, are charmonium, bottomonium and eventually toponium 

{mt= 40 GeV) whose lowest lying 15 states are sensitive to the 

. 1/2 -1 
potential in the regron around <r 2 > = 2.2, 1.1 and 0.35 GeV 

respectively. For the three quarkonium systems, we show in Table 

2.1 the sensitivity that the respective 15 states have to charm, 

bottom and top quark loop effects. 

The first row of Table 2.1 indicates the bb and tt spectroscopies 

probe regions where 

m~<r 2 > = 0(1) 

and hence we must include the effects of massive charmed quark 

loops in their description. 
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,-----m-~-<-r_2_>--+--1-:-~-9-+--2-~-~-2- I Q: :rl 
I 1 

121 30.3 ! ! 
3.06 

7744 1936 196 

Table2.1 Sensitivity of 15-state to heavy quark loops. 
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-
The sensitivity to bottom quark loops is only seen in tt, although 

even here the effects appear to be small and we shall discuss them 

later in the chapter. Top quark loops are too heavy to have any 

effect on the spectroscopies and essentially totally decouple. We 

shall first consider, quantitatively the effect of charmed quark loops 

in the perturbative potential. 

2.2.2 Charm Quark Loop Effects 

Such effects were first investigated in Ref. [ 15]. The perturbative 

potentiai in massive quark theory has an identical form to eq. 2. i 

except that now there is an extra term, the vacuum polarisation 

function, which explicitly depends on the quark masses. In 

momentum space the potential is written as: 

V(1j) ~ - 4n'cF~' { 1 + a[c,(~~tn*: + ~~l 

(2.28) 

The vacuum polarisation function: 

F (x) -3lnx + § - ~x - ~ n-2x) h ln [~:ij (2.29) 

! 
with h = ( 1 +4x) z, completely determines the mass dependence in the 

one loop order. The limiting behaviour of small and large quark 

masses of this function is: 

F(x) = for X )) 1 (2.30a) 

F(x) for x << 1 {2.30b) 

The large logarithms induced by treating heavy quarks in loops of 

eq. ( 2. 30) shows that the minimal subtraction scheme is not well 

suited for treating such effects. 
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The 3 dimensional Fourier Transform of the potential to co-ordinate 

space (See Appendix A) can be performed using the approximation 

for the vacuum polarisation function of: 

F(x) ~ - ~ ~n(x + e-5/3) 
3 

which is accurate to within 5% over the whole range of x values 

(0 ~ x ~ oo). In co-ordinate space the potential is then found to 

( 2. 31) 

have an identical form to eq. ( 2. 6) except that the coefficient A now 

becomes a function of m r , 
q 

A(r) 

where Ei(-x) is the exponential integral 

Ei (-x) 

00 

J 
dt -t te 

X 

( 2. J2) 

(2.33) 

For mqr «1, the factor in the square bracket in eq. ( 2. 32) reduces 

to -S/6 reproducing eq. (2.6) in the massless theory. However, for 

m r»1, the square bracket diverges logarithmically signa II ing the q 

breakdown of infra red decoupling in the MS scheme. This divergence 

however has a simple solution. We notk::e that provided we stay in 

the region where the condition 

~ 
r~Irlb >> 1 (2.34) 

is satisfied, then we can use a 4-flavour effective light quark theory 

[ 30 ] ( nf = 4), thereby neglecting bot tan and top quark loop effects 

totally. We have seen already that condition ( 2. 34) will hold at least 

down to a quarkonium system of mass around 80 GeV. The coefficient 

( 2. 32) becomes: 

Where b
0 

is given by eq. (2.7) with nf = 4 and we have set 
(2.35) 

m = m = m = 0. The expression for the potential (2.19) remains u d s 

valid but where now the scale is chosen to be: 
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1 w = - exp(-A(r)/b0 ) 
1 r (2.36) 

The fractional error in the perturbative potential can still be estimated 

from eq. ( 2. 21) provided that effects of bottom quark loops are 

neglected. The result as a function of fl. r is also shown in Fig. 2.1, 

where we see that the error is less than 10% provided. 

(4) 
rA- < 0.07 . 

MS 
( 2. 3 7) 

Effective Quark Theories 

The use of effective light particle theories as an approach to taming 

the logarithmic divergences introduced by calculating in the MS scheme 

results in the division of the full QCD theory into a number of effective 

Q CD theories, each labelled by the number of flavours and related 

by the matching conditions [ 31], which in the MS are written as: 

(2.38) 

Using this idea of the effective theory, allows us to form nf = 3, 4, 5 

and 6 - flavour theories each being related by a matching of the 

running coupling constant at a quark threshold. 

Each effective nf - flavour theory is determined by keeping only the 

(nf) 
first nf quarks and finding A- through the condition 

MS 

(2.39) 

For example, using AMS(
4

) = 0.2 GeV and with m d = 0, m = 1.5, 
U, , S C 

[ 
(3) (4) (5) (6) l 

11Ms I 
11Ms I 

11Ms I 
11Ms (0.25 1 0.2 1 0.13 1 0.06) GeV 

(2.40) 
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which with b
0

(nf) and b 1(nf) given by eq. (2.7) and eq. (2.11) 

respectively, determines the trajectory a(nf)(W) versus w • In s 

Fig. 2.2, we show the flavour dependence of J\MS as a function of 

the 4 flavour effective theory. 

The use of effective theories in QCD now allows us to consider the 

sensitivity of the perturbative potential to charm quark loops. We 

calculate V_ (r) in each of the following effective theories:­
~ 

i. 4 flavour, using J\~) = 0.2 GeV and m = 1.5 GeV 
MS c 

ii. 4 flavour, using J\~) = 0. 2 GeV and m = 0 GeV 
MS c 

iii. 3 flavour, using 
( 3) 

0.25 GeV 
AMS 

= 

In each case we take m = md= m = 0 and only consider the region u s 

of Ve(r) which will be most sensitive to the 15 state of toponium, 

-1 
0. 2 $ r $ 0. 5 GeV . The resulting potentials from each approach 

are compared in Fig. 2. 3. In practice setting me= 0 does not have 

a large effect on the toponium predictions as we see that the 25-15 

energy difference for a toponium system around 80 GeV will only be 

increased by 5 MeV on taking m = 0 rather than m = 1 .5 GeV. c c 

Alternatively, by requiring a given 25-15 energy difference, setting 

me= 0 will decrease the value of A;;,) by about 20 MeV. The effective 

3 flavour theory matches the two 4-flavour theories at different points 

due to the change in scale introduced by including the charm quark 

mass, but we expect it to become increasingly less accurate at shorter 

distance due to the neglect of heavy quark effects. 
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-> 
Ql 

l!J --~~ -< 

Fig 2. 2 

0·6 

0·4 

0·2 

0·2 0·4 

A(~ (GeV) 
MS 

Or6 

Flavour dependence of AMS as a function of the 4-

flavour effective theory. The effective theories are 

related by eq. ( 2. 38) assuming me = 1. 5 GeV I mb = 5 

GeV I mt = 40 GeV. 
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---

-1~--~------~--------~------~-----

0.2 

Fig 2. 3 

( 3) 
AM'S = 0. 25GeV 

0.5 

The behaviour of the perturbative potentia I for J\~: > = 0. 2 

GeV using an expanded scale to show the differences 

resulting from setting me = 0 and from changing nf = 'I 

to nf = 3 effective theory. The errors are calculated 

using eq. (2.21) with K=1. 

- 55 -



2.2.4 

We could have also used 5-flavour or 6-flavour effective theories to 

calculate the perturbative potential in this region by simply keeping 

5 or 6 quarks in eq. ( 2. 32), but we cannot expect the results to be 

in any way meaningful due to large logarithms. We shall consider 

next analysing the errors introduced by working in the effective 

theory, and also how to include bottom and top quark loop effects 

without logarithmic divergences. 

Bottom Quark Loop Effects 

In dealing with the heavy quark loop effects of bottom, and indeed 

top, we have already noted the inherent failure in the MS scheme 

calculation due to the presence of large logarithms in eq. ( 2. 32) in 

the regions r 2 m2 b»1 and r 2 m2 t>>1. In these regions we would expect 

the heavy quarks to decouple from the theory and indeed the infra 

red decoupling theorem [29] tells us that there always exists a 

renormalisation scheme in which the perturbation series, at a given 

mass scale, is insensitive to the physics at higher energies. Momentum-

space subtraction (MOM) renormalisation schemes are the most natural 

examples of this category, where the only errors we need worry about 

are simply higher order corrections, unlike the effective flavour theories 

where heavy quark contributions and a truncation of the series for 

the matching condition are additional errors. Although we encounter 

more sources of error working in the MS effective theories, we need 

only work with mass-independent renormalisation schemes, whereas 

the price we must pay for a manifest decoupling of heavy quarks is 

that the renormalisation group equations ( RG) become mass dependent 

and need to be solved numerically. 
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2.2.5 

To determine the effects of bottom quark loops, we must calculate 

the full massive perturbative potential in this MOM scheme and by 

comparing this result to that obtained from each of the effective nf -

flavour theories calculated from eq. ( 2. 32), we are able to study 

quantitatively, the region of validity of each effective theory. 

Perturbative Potential In MOM Scheme 

In Perturbation Theory, the renormalised coupling constant in two 

different renormalisation schemes are related to each other by a 

perturbation expansion. Specifically, the relation between the 

coupling constant in the MS and MOM schemes is written in then-

loop order as: 

where the coefficients 
(k) 

c MOM depend in general upon the gauge 

parameter and the dimensionless ratio of quark masses and the 

renormal is at ion point, ~ . However, the next-to-leading order 

coefficient 
( 1) 

c MOM is only known for a particular MOM scheme 

defined at the symmetric Euclidean point of the gluon-ghost-ghost 

vertex in the Landau gauge [ 321. The coefficient is written as: 

(2.41) 

( 1) 
c MOM (2.42) 

where F(x) is the vacuum polarisation function given by eq. (2.29). 

Using this, we see that in the MOM scheme, the perturbative potential 

is written in an identical form to eq. ( 2. 6) but where A is now r 

and ~ dependent, and where we have kept only next-to-leading 

order terms. 

A (2.43) 
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Here AM 5 (r) is given by eq. (2.32) with the sum taken over all 

flavours (nf:: 6). From eq. ( 2.43) we see immediately that the large 

logarithms in AM 5 (r) and F(x) when mqr»1 exactly cancel up to 

terms of the form Q.n(-ur) and indeed the heavy quark behaviour of 

-2 
this equation is ( m r} in accordance with the decoupling theorem 

q 

[29]. The optimisation of the full theory is carried out just as in 

eq. ( 2. 19), with the subscript replacement MS-. MOM, however as 

AMOM is now dependent on the scale u also, we need to solve 

0 (2.44) 

to obtain the optimisation scale, u1 , which has to be done numerically. 

The scale dependence of the coupling constant a (Jh) is governed 
s r01 

by the RG equation ( 2. 10) but where now the coefficients b
0 

and b
1 

depend on the dimensionless ration m I lJ 
q 

with 

and 

with 

( mq 11 2 nf 
bo W ) --6 CA - ~ TF L 

MOM 3 q=1 
-

Bo(X) = 1- 6x + 12x2Q,n[h + 11 
h h - 1J 

-0.4557x + 0.26995 
x 2 + 2.1742x +0.26995 

1 [ 32] 

(2.45a) 

(2.45b) 
h = ( 1 + 4x)! 

(2.46a) 

(2.46b) 

The trajectory a
5

(-u)rvo-1 versus -u in the full theory is determined 

by noting that for u »mt the S function in the MOM and MS (nf= 6) 

schemes becomes identical and that the couplings in each are related 

by a shift in the momentum scale [ 33] 

as<~>MoM = a~ 6 ) (~e-t) __ 
MS 

with [32] 
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We have determined the trajectories in the effective theories as 

discussed in Section 2.2.3 and each is compared in Fig 2.4. However 

we should note that both the solution of the RG equation and the 

solution to find the optimisation scale \.1 1 must be done numerically 

in the MOM scheme. These numerical tasks make working in this 

scheme too time consuming for practical interest. The most sensible 

approach to obtain a suitable workable potential, is to compare each 

of the effective theories in turn with the full theory and determine 

the best approximation in the region of intere-st. The predictions 

of the effective nf-flavour theories normalised to that of the full 

theory are shown in Fig 2. 5. We see that the effective theories 

which include heavy quark loop effects, nf= 5 and nf= 6, deviate 

considerably from the full theory due to the large logarithms in the 

region r 2m 2 >>1. The error bars are an estimate of the higher-order q 

correction terms in the MOM scheme given by (2.21) and with K=l. 

To decide which of the effective theories is the best approximation 
( 4) 

to the full theory we consider Fig 2.1, where for AMS = 0.2 GeV, 

we should only believe the perturbative potential so long as 

or r < 0. 5 GeV-l. Toponium systems of mass around 80 GeV should 

-1 
be expected to probe down to ·distances of r ,..._, 0. 2-0.3 GeV , so 

if data is to impose any constraint over the perturbative potential 

in its region of validity, we need to have the most accurate description 

possible at least over the region 

0.2 < r < 0.5 (2.48) 

From Fig 2.5 we see that the potential calculated in the nf= 4 effective 

theory with !\~) = 0.2 GeV gives the best approximation to the full 

theory in the region 

0.08 $ r $ 0.5 Gev-1 , (2.49) 
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12 

10 

-:1 -

(4) 
(AM'S ,mc,mb,mt )= (0.2,1.5,5,40)GeV 

MS : n f = 3 -----
4---
5=·~·~ 

6--

1 10 100 1000 

~{MOM) or ~e-t {'MS) in GeV 

Fig 2.4 The trajectories a
8 

versus u or u exp(-t) (see eq. 

( 2. 47)) for the MOM scheme and the effective nf-f1avour 

theories in the MS scheme. All the curves correspond 

to taking ( A~:> ,me, mb, mt) = ( 0. 2, 1. 5, 5, 40) GeV. 
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- 0.9 
L. -

Fig 2.5 

MS: nt = 3 -------
4---
5=·-·--
6---

0.1 
-1 

r (GeV ) 

\ 
\ 
\ 
\ 
\ . 
\ . 

1 

The perturbative potential in the effective nf-flavour 

theories renormalised in the MS scheme normalised to 

the perturbative potential of the full theory renormalised 

in the MOM scheme for ( A~~), me~ mb, mt) = ( 0. 2, 1. 5, 

5, LJO) GeV. Theerrorbarscorrespondtoeq. (2.21) 

with K=l. 
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which includes the entire range of the perturbative potential that 

can be constrained by heavy quarkonium data. Indeed to feel the 

effects of bottom quark loops a quarkonium system would have to 

-1 
probe the short distance region r < 0.08 GeV In Fig 2.6 we plot 

<r 2 >1 for the 15 state against a quark mass m of the system, and 
q 

masses of m >250 GeV would be required before such effects could q 

be observed. Such quarkon ium systems would instantly decay via 

weak interactions and cannot be observed [ 34, 12]. 

In conclusion, we have examined the form of the perturbative potential 

both in mass less QCD and including heavy quark loop effects and 

have estimated the magnitude of higher order correction terms in 

both. We have found that the effective 4-flavour theory with a 

massive charm quark gives the best description of the short distance 

potential for any for seeable heavy quarkon ium phenomenology. We 

now proceed to investigate how this short distance perturbative result 
(4) 

governed by the value of A = AMS can be incorporated into a functional 

form for the full interquark potentia I. 
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~A 
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~ 
'V 

0·1 

Fig 2.6 

mq {GeV) 

The mean square radius of the 15 state of a quarkonium 

system versus the quark mass m , in the region relevant 
q 

to the short distance form of the potential. 
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CHAPTER 3 

The Quarkonium Potential and Fits to Charmonium 

and Bottomonium Data 

The QCD perturbative potential given by eq. ( 2. 19) was shown in 

Chapter 2 to be adequately described by a 4-flavour effective theory 

with massive charm quark loops, however this potentia I was only 

shown to be valid for small quark separations. In Fig 3.1 we show 

its form in the short distance region. to a maximum value of r = r - c 

determined by the condition 

for various values of . For smaller values of !\ = Aii l the 
MS 

perturbative form is expected to be valid over a larger regi>n of r 

and vice-versa. The error bars on the f\ = 0.2 GeV potential, in 

Fig. 3.1 correspond to the fractional error due to the possble 

higher order corrections which we estinated and showed in Fig 2.1 

as a function of r A. As mentioned in the Introduction, we can only 

expect charmonium and bottomonium data to probe distances greater 

than 0. s Gev - 1 ( 0.1 fm). If this data is to put any constran t of the 

perturbative potential there must be some degree of overlap between 

( 3. 1) 

the regions constrained by QCD and that by data. With this in mild, 

we would only expect charmonium and bottomoni.Jm to be sensitive 

to values of !\ less than about 0. 2 GeV. 

Our perturbative quarkonium potential is only relevant to the short 

distance region so we consider next how to incorporate this into a 

phenomenological-potential which covers the entire interval o<r< co 

without losing the perturbative behaviour at small r. 
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0 

/\ =/\~ 
- MS 

/\=0.5 

/\=0.1GeV 

1\ =0.2 

0.2 0.1. 0.6 0.8 
-1 r (GeV ) 

1 

The perturbative potential V (r) for various values 
E 

of 1\ = /\~) in the region of r/\ ~ 0.1 where it is MS 

expected to be valid. The uncertainty 6 V , given 
Q 

by eq. (2.21) is also shown for the A= 0.2 GeV 

potentia I. 
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3. 1 The Quarkonium Potential 

We seek a phenomenological potent ill which embodies the short distance 

perturbative behaviour (such that it lies within the perturbative error 

corridor for r f\ <0.1) and yet has a sufficiently flexble form so that 

its behaviour in the region r /1 >O. 1 does not constrain the value of A 

strongly. Both these conditions are crucial for a meaningful 

determination of f\ t . We follow Ref. 15 and use a parameteric form 

as follows 

We shall describe each element of the full quarkonium potential below. 

1. V L ( r) is the dominant piece at large distances and is responsible 

for the confining nature of the potential. It is usual to assume 

t 

I inear confinement 

VL(r) = ar 

where a is the slope and is related to the Regge slope by a = 

( 2 1Ta' ) -
1. It has been shown that [ 36] linear confinement is 

the strongest allowed on grounds of the potential must be a 

monotonically increasing, concave function of the separation 

r. In fact, later in Chapter 4 we consider fitting with r 1 

confinement, and its effect on the determination of A . 

( 3. 2) 

( 3. 3) 

For example the A parameter in the phenomenologically successful 

potential due to Richardson [ 35] is unrelated to our A~) silce 

its value is determined by the shape of the potential in the 

intermediate region where the perturbation expansion is not 

expected to work well. 
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2. The 'intermediate' component v1(r) is included solely to give 

sufficient flexibility at intermediate values of r, to be able to 

3. 

fit the quarkonia data, as well as ensuring that V(r) approaches 

the perturbative form at short distances and retains the confining 

behaviour imposed by the large distance V L (r) term. We take 

v1 (r) 

where c 1, c 2 and r
0 

are free parameters to be determined by 

fitting to the data. However, we also investigate to see whether 

our results dependent upon this specific parametric form by 

repeating the analysis including a term c~r 2 in the expansion 
~ 

o f eq . ( 3 . 4) . 

The perturbative potential V E ( r) given by eq. ( 2. 19) has a 

singularity (Landau ghost} at 

Ill [b~ lbl/b~ = A-
2bt 

( 3. 4) 

( 3. 5) 

where the next-to-leading order running coupling constant a (u) s 

as defined by eq. ( 2. 12) or eq. ( 2. 23), blows up. To obtain 

the short distance component of the full potential V , we regularise s 

the perturbative potential v e by a shift in the argument of as as 

follows 

v5 (r) 

with 

= 

where the functi>nal form of <X 5 (1l)Ms is stll defined by eq. 

(2.12) or eq. (2.23). The shift Ill-+ ii1 has the effect of 

removing the singularity to infil ite quark separation so that 

V s remains finite and approaches zero at large distances. 
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In Fig. 3.2, we plot a typical quarkonium potential and separate 

out the individual components for A = 0.2 GeV, and also plot 

the perturbative potential. The singularity can be clearly seen 

and occurs at r A ::: 0. 3. 

In summary, all three components of the phenomenologk:al quarkonium 

potential eq. ( 3. 2) are regular in the entire interval 0 < r < oo 

V s dominates at short, and V L at large, distances and all three 

components are important in the intermediate region probed by 

charmonium and bottomonium spectroscopy. The potential depends 

on 5 parameters, A in V s' a in V Land c 1, c 2, r 
0 

in VI' These 

parameters together with the heavy quark masses t whkh set the 

scale of their respective heavy quarkonium spectrum, are to be 

determined by fitting to the available (and forthcoming) data o 

For a meaningful determi'lation of A =. A~) the quarkonium potential 

V(r) is required to reproduce its perturbative form V e(rL in the 

region where the perturbative expansion is expected to be valid, say 

r < r , where we define r by eqo ( 3o 1). Deviations can occur in c c 

this region due to the v1 + Vl component and due to the regularisation 

of V to form V (See Fig 3o 2). In Chapter 2 we estimated the error e s 
£1 V (r) in V (r) which may be expected from higher order e e 

corrections, eqo ( 2 o 21) with K =1. 

t As discussed in Chapter 2, only the charmed quark mass is needed 

for the loop corrections to V e ( r). The sensitivity of the spectrum 

to the actual value used in the loop corrections is found to be very 

weak and we fix it to be 1o5 GeV independent of the value of me 

determined by the fit to the charmonium data. 
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A typical quarkonium potential, V(r) and its components 

for fl.= 0.2 GeV : V(r) = v5 + v1 + VL. We require 

V(r) to lie within an error corridor about the perturbative 

potentiaiV (r)intheregionofr;:Jr (withr fl. =0.1). e c c 

The error defined by eq. ( 2. 21) is shown at r = r c' 
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Thus for any given phenomenological potential V(r), a quantitative 

measure of its validity in the short distance region can be taken to 

be 

~ 

Xv 

with rn = nrc/10. When considering the value of X~ we should note 
_2 

that it is proportional to K and that we have arbitrarily set K of 

eq. ( 2. 21) equal to unity. 

Before we consider confronting data with our model of the quarkonium 

potential, two filal comments about its form are in order. Since we 

require our potential to have the short-distance perturbative form, 

we do not allow an overall constant term in the potentia I. It is known 

[14, 15] that the major effect of an overall shift in the potential can 

be compensated for by a change in the quark mass. Since the heavy 

quark masses (me, mb and mt) are taken as free parameters, the 

effect of a constant term can be regarded as a trivial shift of the 

quark masses. However, the constant term V does affect the level 
0 

spacings so we need to investigate its inclusion in our potential eq. 

( 3. 2). We show later in this Chapter that small values of V 
0 

are 

preferred. We shall also briefly discuss the correlation between the 

slope, a, of the long distance linear confiling part of the potential 

(VL = ar) and the value of V
0

• In Chapter 4 we also consider if the 

possibility of determining 1\ from toponium data is sensitive to the 

inclusion of V • 
0 

The second remark concerns a general property of the quarkonium 

potentia I. It has been shown [ 36] that the potential must be a 

monotonically increasing, concave functi>n of the separation r. That 

is: 
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dV > O 
dr 

and 

We do not impose these constraints on our parametrization of the 

potential but check, a posterori, that the potential resulting frcm 

a fit to quarkonia data has these properties. We found that the first 

( 3. 8) 

condition is always satisfied by a given best fit parameter set, however 

the second condition was only occasionally violated slightly and then 

only in fits to both charmonium and bottomonium data for the smallest 

-1 values of A ~ 0.1 Gev and at large values of r (r ,..J 3.5 GeV ) and 

is entirely due to the intermediate part of the potential v1(r). We 

should not worry too greatly over this violati>n as at these small 

values of A the overall fit to data is bad and the parameters c 1, c 2, 

and r 
0 

of v1 are having to do a lot more work to produce any sort 

of fit resulting in unphysical behaviour at the large distance end 

where the effects of VI are small anyway. 

In the next section we shall consider the charmonium and bottomonium 

data and the structure of the fits using our quarkoniJm potential 

ofeq. (3.2). 

3. 2 Description of Charmonium and BottomoniJm Data 

Only toponium will be heavy enough a system to probe the short 

distance perturbative behaviour of the potential and we do not 

expect charmonlum or even bottomonium data to put strong constrailts 

on the value of A . Rather we use the data to obtain satisfactory 

phenomenological potentials at various values of A with whi:h to 

confront toponium data when it becomes available. 
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The fine and hyperfine splittings of toponium states were estimated 

in Section 1. 9 of Chapter 1 are shown to be of order 10 MeV [ 14] and 

as such are beyond to resolution of presently foreseeable experinents. 

We therefore perform an analysis using spin-averaged quarkonium 

levels, avoiding the added complications of the Lorentz-transformation 

character of the potential. 

The charmonium and bottomonium data [ 37] set that we use is shown 

in Table 3. 1 where we only list the spin averaged result. There are 

a few comments we should make about this data set before proceeding. 

We do not include the 2S charmonium level in the fit due to its proximity 

to the open flavour threshold and due to mixing effects resultilg in 

it having a fairly large width. The P level is calculated as the spin 

averaged centre-of-gravity of the three 3P J levels and we neglect 

possible hyperfine splitting from the unobserved 1P 1 level. It is 

commonly assumed that the hyperfine interaction is predominantly 

of short range, so its effect on P and higher waves is small and as 

the observed triplet states are weighted three times heavier than the 

singlet. 
c. of g. = m + m /3 

- lP H 

1 
P

1 
=: m - 3m /4 

lP H 

where m1p is the true centre of gravity and mH is the hyperfine 

force, then it seems justified to ignore these effects although we 

take the error to be lOMeV on this state and keep in mind the 

(3.9a) 

(3.9b) 

general tendency to cause the true centre of gravity to be less than 

3 that of the P J levels. In the bottomonium spectrum only the triplet 

S levels have been observed and the hyperfine splittings for 
3 
S - 1s 

are required to obtain the centre-of-gravity for these three levels. 

Theoretical predictions on the T-llb mass difference are spread 

- 72 -



between 30 and 100 MeV [ 12] I however most refined QCD estimates 

favour lower values based again on the hyperfine force being short 

range and essentially dependent on the value of the wavefunction 

at the origin. We use the following predictions 

3 2 I 16 , 11 MeV ( 3.10) 

for the 15 1 25 1 3S levels respectively I to determine values for the 

centre-of-gravity. Again we neglect P wave hyperfine splittin gs and 
3 

simply use the weighted average of the observed three P J levels. 

The observed ratios of the leptonic widths are included in the fits 

by using 

fee<nS) 

ree<1S) 

where R ( 0) is the value of the n-5 wave radial wavefunction at ns 

the origin. We choose to fit to ratios of leptonic widths rather than 

to the absolute widths since the latter have large first order QCD 

corrections [ 38] 

ree<nS) 

which are essentially cancelled in the ratio. However, for each fit 

we present r ee calculated from the formula ( 3. 12) by using 

Cls<2mq>Ms· 

( 3.11) 

(3.12) 

The energy level spectrum for both charmonium and bottomonium are 

normalised with respect to the lowest 5 state. The parameters me 

and mb ensure that the lowest level is then exactly reproduced by 

the potential in the fitting procedure. 

(4) 
For various fixed values of A = AMS we vary the reman ilg 4 

parameters of the potential (given by eq. (3.3) and eq. (3.4) and 

the external heavy quark masses to obtain the best x<~ fit to the 

q uarkonia data, simultaneously requiring the potentia I to approxinate 
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its perturbative short distance form by including eq. (3.7) in X;~· 

X2 = X2 + X2 
(3.13) data V 

As V(r) is varied to obtain the optimum fit, we need to repeatedly 

solve the radial Schrodinger equation, eq. ( 1. 33), to find its energy 

levels and wavefunctions corresponding to the observed charmonium 

and bottomonium states. We use the matrix inversion method of 

Ref. [ 39], described in Appendix B. Here the Schrodinger equation 

is reduced to a matrix equation, using the finite difference approxination 

for the derivatives, and solved to obtain eigenvalues and eigenvectors 

corresponding to energy levels and wavefunctions respectively. We 

test the method for efficiency and accuracy using both the Coulomb 

and 3~imensional oscillator potentials, as described in Appendix B. 

3. 3 Fitting to Charmonium and Bottomonium Data 

Using the above data and fitting procedure we consider two series 

of fits. Firstly we fit to a combined cc and bb data and then to the 

bb alone. The detailed results to A = 0.2 and A = 0.4 GeV are 

given in Table 3.1 and in Fig. 3. 3. We show X~ as a function of A 

and also plot the components of the total x~ coming from the quarkonia 

data and from the short distance perturbative region. We see that 

for both data sets there is a marked increase in X~ , particularly 

in x~ , for A ~ 0.15 GeV, as in this region of A it becomes 

increasingly difficult to obtain a good approximation to the perturbative 

form over its region of validity which due to the smallness of A extends 

well into the region determined by the data. This puts on a quantitative 

footing a result originally given by Buchmuller and Tye [ 14], namely 

that low values of A are ruled out due to the conflict between the 

slope of the perturbative potential and the one required by the data 

in the 0. 1-1fm ( 0. 5-5 GeV- 1) region. 
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-..J 
(.1'1 

cc data: 

m(lS) 
m(2S)-m(1S)* 
m(1P) -m(1S) 
r2;r1 
r1• 

bb data: 

m(1S) 
m ( 2S) -m (lS) 
m(3S) -m(1S) 
m ( lP) -m (lS) 
m(2P) -m(lS) 
r2;r1 
r3;r1 

r1• 

a 
X data 
X~ of Eq. (3.8) 

parameter 
I values 

Table 3. 1 

- -cc + bb data fitted Only bb data fitted 

Data A=0.2 X a A=0.4 X a A=0.2 

3068 ± 2 3068 0 3068 0 
595 ± 2 609 - 596 -
457 ± 10 426 9.6 423 11.3 

0.43 ± 0.06 0.49 1.1 0.47 0.3 
4.75 ± 0.51 4.35 - 4.81 -

9452 1 2.5 9452 0 9452 0 9452 
567 ± 3 571 1.9 568 0.1 569 
900 ± 2.5 902 0.8 903 1.6 902 
448 ± 2.5 446 0.8 447 0.3 446 
809 ± 6 790 10.3 795 5.4 790 

0.44 ± 0.03 0.39 3.1 0.39 2.4 0.38 

0.33 ± 0.03 0.32 0.1 0.31 0.5 0.31 

1.22 ± 0.05 1.05 - 1.13 - 1.07 

27.8 21.9 

1.7 1.2 

me (GeV) 1.36 1.58 -
IDb (GeV) 4.79 4.99 4.82 
a (Gev2) 0.22 0.18 0.21 

c1 -1.12 -1.35 -1.55 

c2 1.19 1.15 1.40 
r 0 (Gev- 1> 0.70 0.57 0.63 

-~--

The optimum fits to quarkonia data (and the perturbative 

potential) for 1\ = ~) = 0.2 and O.IJ GeV. The masses 

m (nl) are given in MeV and leptonic widths, f n = fee< ns l in 

keV. The data marked by * are not used in the fit. 

X a A=0.4 

0 9452 
0.7 566 
0.9 902 
0.3 447 

10.4 797 
3.7 0.39 
0.2 0.30 

- 1.17 

16.2 

2.4 

-
5.04 

0.16 
-2.54 
0.92 

0.36 

X a 

0 
o.o 
0.5 
0.1 
3.1 
1.9 
1. 3' 

-
' 

6.9 

0.2 



60 00----~------~ 

0.1 

Fig 3.3 

a) Fit to cc and bb b) Fit bb alone 

0.2 

2 
X total 

0.3 OL. 0.5 01 02 0.3 

A~~ (GeV) 

x2 as a function of A obtained by fitting (a) the cc 

and bb quarkonia data, and (b) the bb data alone. The 

total X2 includes a component X~ (given by eq. (3. 7)) 

which is a measure of how well the potential reproduces 

the perturbative potential in the short-distance region. 

Note that the optimum solution changes discontinuously 

from one family of solutions of parameters (c 1, c 2 , r
0

, 

a, mq) to another at a certain value of !\. 
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As A increases from 0. 15 GeV, the experimentally constrained region 

of the potential separates from the perturbative region and not 

surprisingly, we see X~ as defined by eq. ( 3. 7) plays a negligible 

role in the fit. The component of x'" from the quarkonia data, Xdata , 

is essentially independent of A , the slight decrease being due to 

the fact that the 2P bb state becomes better fitted for large values 

of A • The discontinuities in Fig 3. 3 are due to the parametric form 

used for VI' eq. (3.11L and is a result of a switch from one family 

of solutions to another, in order to follow the contour of lowest values 

of x'". In following a particular family of soluti:>ns, sudden jumps 

in the parameter values occur at the discontinuities, and indk::ates 

that better fits to the data can be produced for a different parameter 

family. We have repeated the fits using a extra parameter, c 3 in v1 
v

1
(r) = r(c1 + c 2r + c 3r .. )exp(-r/r0 ) ( 3.14) 

and it is found that the x .. profile is smoothed out, but the discontinuity 

structure is still present. We find that many more fits must be performed 

in order to determine the different families of solutions and the position 

of the discontinuities due to the introduction of this extra parameter. 

The structure of the fit is unchanged and we conclude that there 

is little sensitivity to the parametric form of the intermediate potential 

that we have used, either in eq. (3.11) or eq. (3.111). Thus apart 

from the constraint A " 0.15 GeV, we conclude that A is not determiled 

by bb and cc data t. 

t The rise in X .. at larger A shown in the fit of Ref [ 15] is attributed 

to the inclusion of the observed leptonic width of the bb 15 state in 

the fit and in particular to fittilg it with eq. ( 3.12) without the first-

order QCD correction. 
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3. 4 Other Quarkonium Potentia Is 

In this Section we consider some of the other phenomenological 

q uarkon ium potentials that have been proposed to describe the cc 

and bb data. To obtain a consistent comparison, we use each of the 

potential forms in turn to fit to the quarkonia data listed in Table 

3. 1. 

3. 4.1 The Mart in Potentia I [ 40] 

This potential was originally motivated by the apparent 

logarithmic behaviour expected in the region sensitive to the 

data. Such potential behaviour predicts that the level 

spacings of a qq system are strictly independent [ 41] of the 

mass of the quark and is consistent with the apparent equality, 

m(T') - m(T) = m(W') - m(W) ~ 0.6 GeV (3.15) 

The form of the potential is taken to be 

V(r) = A + Brv 

and the parameter v is small such that the r-dependence 

is essentially logarithmic, 

V(r) ~ v ~nr 

The optimum fit is shown in Table 3.2 and corresponds to 

the parameter values 

A = -6.00, B = 5.78, v = 0.118 

me = 1.43, ~ = 4.83 in GeV units. 

(3.16) 

( 3.17) 

(3.18) 

As this potentill is purely phenomenological we cannot compare 

its short distance behaviour with that expected from perturbative 

Q CD, however, it helps to identify the region sensitive to 

cc and bb data. We see from Table 3.2 that it does not 

achieve a satisfactory description of all the bb data also. 
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3.4.2 The Richardson Potential [ 35] 

Richardson proposed an economical potential which depends 

only on a single parameter AR , and is constrained by 

asymptotic freedom, in the guise of single dressed gluon 

exchange at short distances and linear quark confinement 

at large distances. In momentum space the potential takes 

the form 

4 12iT 1 1 
3 33-2nf q~ ln(1 + q~/~) · 

(nf == 4) ( 3.19) 

With this form we obtain the excellent fit to the quarkonia 

data shown in Table 3. 2 for the parameter values, 

J\R = 0.375 GeV, me = 1.50 GeV, inb = 4.91 GeV • 

However, this potential is not constructed to reproduce the 

two-loop perturbative form and hence the parameter has little 

to do with the perturbative QCD scale parameter A = A~:) , 

which determines the short distance behaviour and which 

(3.20) 

we are ultimately trying to measure. Indeed, the value of J\R 

is determined from the data by the intermediate and long­

range behaviour of the potential and not by its short distance 

behaviour. However, it is worth noting that this one-parameter 

potential form gives an exceptionally good fit to the cc and 

bb data (See Table 3.2). 

3.4.3 The KUhn-ono Potential [42] 

A potential based on the second-order perturbative fonn in 

the massless 4-flavour effective theory was considered in 

Ref. [ 42]; 

V(r) 

with 

f(r) 

2YE + 53/75 

f(r) 

ln[1/(J\r)~ +b) , 
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Where the parameter b is introduced to avoid the Landau 

!\ - fl,(nf) • . singularity. Here = MS deftned tn eq. (2.2LJ) and is 

( 4) 
very closely related to our QCD parameter AMS which is 

defined in eq. (2.12). In eq. (3.21) massless charm quark 

loops are considered which, as discussed in Chapter 2, cause 

a downward shift of above 20 MeV in the value of A when 

fitted to the same data. The opt in urn fit to the data usi1 g 

the potential ofeq. (3.211 is shown in Table 3.2 for A = 

0. 2 and for A = 0. LJ GeV and the corresponding parameter 

values are given in Table 3. 3. We see that the excellent 

descriptions of the data can be found, provided that the 

regularisation parameter b is allowed to take arbitrary 

values t. The approach of the Kuhn-Ono potential to the 

perturbative potential at short distances is relatively slow 

due to the large value of the regularisation parameter b and 

also to the presence of the constant term, c, in the potential. 

The x~ values are shown in Table 3.2 and, though large, 

are acceptable. However, as A is decreased below 0. 1 S 

GeV, the value of X~ increases rapidly, as in Fig 3. 3, 

confirming once again that the cc and bb data cannot 

accommodate a short distance potential with A $ 0.15 GeV. 

All the above potentials are compared in Fig 3.LJ. As expected 

they have a common slope in the regbn sensitive to the cc 

- -1 
and bb data, 0. 5 < r < S GeV . At short distances both 

our potential and the Kuhn-Ono potential behave roughly 

t Ref [ LJ2] advocates a value of b = 20 and fixed. We find with b = 20 

that = 8LJ.3 for A= 0.2 GeVand Xdata = 630 for A = O.LJ GeV. 
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00 
f-' 

cc data: 

m(lS) 
m(2S)-m(lS) * 
m(1P)-m(lS) 
r2;r1 
r1• 

bb data: 

m(1S) 
m(2S)-m(lS) 
m(3S)-m(1S) 
m(1P) -m(1S) 
m(2P) -m(lS) 
r2;r1 
r3;r1 
r1• 

X data 

X a v 

Table 3. 2 

Martin Richardson Ktlhn-Ono, A=0.2 

X a X a X a 

3068 ± 2 3068 0 3068 0 3068 0 
595 ± 2 615 - 588 - 596 -
457 ± 10 441 1.4 423 11.5 429 7.7 

0.43 ± 0.06 0.39 0.5 0.44 0.0 0.42 0.1 
4.75 ± 0.51 4.34 - 4.63 - 3.65 -

9452 ± 2.5 9452 0 9452 0 9452 0 
567 ± 3 575 7.6 569 0.6 572 2.9 
900 ± 2.5 913 28.2 899 0.0 901 0.3 
448 ± 2.5 413 190.0 451 2.1 444 2.9 
809 ± 6 800 2.3 805 0.4 804 0.7 

0.44 ± 0.03 0.50 4.4 0.41 1.1 0.43 0.2 
0.33 ± 0.03 0.34 0.1 0.28 2.2 0.29 1.7 
1.22 ± 0.05 0.69 - 1. 32 - 1.12 -

235 17.9 16.4 

- - 25.9 

- -- -- ----- ------ - --- -------- -- -- --- -----

The optimum fits to the quarkonia data using various 

potential forms. The masses are given in MeV and 

the leptonic widths, f 0 = fee(nS) in keV. The data 

marked by * are not used in the fits. 

-- -

Kllhn-Ono, A=0.4 

X a 

3068 0 
593 -
427 9.1 

0.42 0.0 

3.94 -

9452 0 
570 0.8 
901 0.2 
446 0.6 
806 0.3 

I 

0.42 0.2 
0.29 1.7 I 

I 

1.22 - I 

13.0 

22.4 

--



A 

(GeV) 

0.2 

0.4 

Table 3. 3 

a 

(GeV)-f 

0.67 

0.70 

b 

238 

499 

c 

(GeV) 

-0.41 

-0.81 

(GeV) 

1. 22 

1.41 

lllb 
(GeV) 

4.66 

4.83 

The parameter values corresponding to the fits shown 

in Table 3. 2 for the Kuhn-Ono potentia I form of eq. 

(3.21). 

- 82 -



N ~ 

Fig 3.4 
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( Aa8) (J) A 

Quarkonia potentials, obtained by fitting various 

phenomenological forms [given by eqs. (3.16), (3.19) 

and (3.21)] to the cc and bb data of Table 3.1, compared 

with the potential of eq. (3.2) for two representative 1\ 

values. 
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as the two-loop perturbative potential. The Richardson 

potential with AR = 0. 375 GeV gives the most sin gular 

behaviour at short distances, but it is not too different from 

the two loop potential with A~) = 0.5 GeV around r = 0.1 
MS 

GeV- 1. At large distances (r ~ 5 GeV- 1), the linearly rising 

behaviour of our potential and that of Richardson is clearly 

seen. We consider next the inclusion of a constant term V 
0 

in the potential of eq. ( 3. 2). 

3.5 Including A Constant Term In The Quarkonium Potential 

Using a fixed value of A = 0.2 GeV, we consider the quantitative 

effects of a constant term in the quarkonium potentia I, by repeating 

the fits to cc and bb data, the results of which are shown in Table 

3. 4. The procedure was to fix the parameter 'a' at a specific value 

and allow the other parameters (c 1, c2, r 
0

, me, mb, V 
0

) to vary and 

reach the minimum in x.a , then to repeat the analysis for other values 

of 'a'. We see a definite correlation between the slope, a, and the 

value of V
0

• Acceptable fits only occur for slopes a~ 0.2 GeV 2 and 

values of V 
0 

around zero. 

The parameter a describes the expected QCO structure of the potential 

at large quark separations, as seen in Section 1. 8 and Fig 1. 8b, and 

characterises a linear energy density between the quark and antiquark. 

A qualitative argument in favour of values of a ~ 0. 2 GeV 2 comes from 

the experimental relation between the mass M and orbital angular 

momentum L of systems consisting of light quarks 

L = canst. + ~'M2 

(3.22) 

where the Regge slope ~, appears to be 

(3.23) 
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Table 3. 4 

a vo 

(Geva) GeV 
xa 

0.35 -0.41 98 

0.33 -0.40 74 

0.31 -0.35 54 

0.29 -0.26 41 

0.27 -0.20 34 

0.25 -0.10 33 

0.23 -0.04 30 

0.21 0 29 

0.19 0.11 27 

0.17 0.19 24 

0.15 0.22 46 

I 
0.13 0.23 92 

The optimum fits to cc and bb data for 1\ = 0. 2 for 

different fixed values of the slope, a, defined by 

V L = ar, but with a constant term V 
0 

included in the 

potential as a free parameter. 
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in a wide variety of circumstances. To obtain [ 43] a connection 

between a' and 'a' we imagine two massless quarks to be connected 

by a 'string' of energy density 'a' per unit length. For states of 

zero angular momentum the string is stationary, however higher 

states correspond to rotations of the string about its centre with the 

ends moving at the velocity of light. Each point along the string 

then has a local velocity determined by its distance from the centre 

of the string. Relating the orbital angular momentum and mass of 

the string, we find L = M2 /( 2 n a.J{) or, 

a = l/2na' ~ 0.18 - 0.20 GeV 2 

consistent with values obtained in fits to quarkonia data. Indeed, 

from the phenomenological potential of the Cornell Group [ 7] 

V(r) 
K 

= - - + ar 
r 

the best fit ( x~ata = 65. 3) to the combile cc and bb data has 

K = 0.47, a= 0.19 GeV, me= 1.32 GeV and mb= 16.75 GeV. ·The 

success of the Buchmuller - Grunberg - Tye potential [ n] can also 

be attributed to its large-distance behaviour being dete(mined by 

( 3. 24) 

( 3. 25) 

the Regge-slope. If, for instance, one chooses a larger value of a 

(a> 0.2 GeV 2 ) then a negative V
0 

is required in an attempt to 

compensate for the rapid rise of the stored energy as the quark 

separation increases through the region sensitive to the cc and bb 

data. We are lead to conclude here that small values, consistent with 

zero, of V 
0 

are preferred by the data. 
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CHAPTER 4 

Toponium 

Toponium, in analogy with charmonium and bottomonium, is the name 

given to the spectroscopy of particles containing t and t quarks 

bound together. but as the top quark is very much heavier than 

either that of the charm or bottom quarks, the toponium spectrum 

is expected to be much richer than either those of charmonium or 

bottomonium. However, as the top quark has not yet been definitely 

observed any discussion of toponium must be purely theoretical. 

For any general potential the WKB approximation [44] can be used 

to show that the number of narrow toponium S states below the 

threshold for pair production of T(tq) mesons is [45, 13] 

fmt)+ 
n:: 3.8l~ . 

Taking mt = 40 GeV we anticipate about 10 narrow toponium S states. 

Our main objective in this Chapter is to see the additional constraints 

that toponium data (when they become available) can impose on the 

short distance behaviour of the potential, and specifically to see 
(4) 

how accurately the value of A = AMS can be determined. With 

this in mind we shall first consider the toponium predictions using 

the potentials discussed in Chapter 3. 
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4.1 Toponium Predictions 

The predictions for the S states of the toponium spectrum are shown 

in Table 4.1 for the quarkonium potentials with A = 0. 2 and A = 0. 4 

GeV that were determined by the fit to the cc and bb data listed 

in Table 3. 1. For comparison we also show the predictions of the 

'Martin' and 'Richardson' potentials of eq. ( 3. 16) and eq. ( 3. 19) 

and give value of <r 2 >t for each state which indicates the region 

of the potential probed by that state. We see that the level spacings 

of the higher radial excitations (n>J) have little dependence on the 

choice of potential since they are sensitive to the region of the 

potential already constrained by the cc and bb data. The observation 

of these higher excited states is still important in order to check 

the flavour independence of the potential, however the decreasing 

separation between the higher excited states will make them much 

more difficult to resolve experimentally [ 13, 46]. 

For a toponium system of mass m15 = 80 GeV, it seems that the data 

which is most sensitive to the form of the short distance potential 

are the lowest lying states, namely the 15, 25 and 1P levels. It 

is indeed fortunate that it is precisely these states that are easiest 

to measure [ 13], (provided the toponium mass is less than about 

80 GeV) . Other quantities in the spectrum which may be sensitive 

to the short distance behaviour are the leptonic widths given by 

eq. ( 3. 12) and the ratio of widths eq. ( 3. 11), and in Table II. 2 we 

show toponium predictions for five different values of A = A~) using 

three possible toponium masses, m( 15) = 60, 80 and 100 GeV. We 

see that the predictions exhibit a strong A dependence. In Table 

4. 2 and in the following, r ~O) stands for the 'virtual photon contribution' 

to the leptonic width of the triplet n5 states 
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CD 
1.0 

m(lS) 

GeV 

60 

80 

100 

Table 4.2 

A 

GeV 

0.1 

0.2 

0.3 

0.4 

0.5 

0.1 

0.2 

0.3 

0.4 

0.5 

0.1 

0.2 

0.3 

0.4 

0.5 

Mass differences in MeV r<o> 
1 

2S-1S 3S-1S 1P-1S 2P-1S J<eV 

603 945 458 853 2.58 

652 997 517 913 3.35 

679 1025 550 945 3.82 

707 1051 582 975 4.26 

752 1090 627 1017 4.73 

603 954 473 863 2.65 

670 1028 548 945 3.54 

708 1069 590 990 4.09 

746 1108 630 1033 4.60 

802 1162 681 1090 5.08 

610 964 492 877 2.79 

694 1059 583 978 3.78 

741 1112 633 1034 4.40 

787 1163 680 

I 

1088 4.96 

851 1229 735 1158 5.45 

I 

Predictions for the properties of toponium that are 

most sensitive to the value of A =, ~) shown for 

various values of the toponium mass, m(IS), and 

various values of A • The potential is obtained 

by fitting to the cc and bb data as in Table 3. 1. 

r<o> I r<o> 
2 3 -- --

r<o> r<o> 
1 1 

0.53 0.32 

0.46 0.27 

0.43 0.24 

0.40 0.22 

0.37 0.20 

0.50 0.32 

0.42 0.26 

0.40 0.23 

0.37 0.21 

0.35 0.19 

0.46 0.30 

0.39 0.24 

0.36 0.22 

0.34 0.20 

0.34 0.18 



n 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

Table4.1 

<ra>~s En+1-En in MeV 

(GeV)-1 A=0.2 A=0.4 Richardson i"iartin 

0.35 670 746 987 

0.82 358 363 372 

1.32 224 221 228 

1.89 157 161 170 

2.43 130 135 140 

2.88 118 121 120 

3.23 111 111 108 

3. 71 105 104 98 

3.88 100 98 91 

4.16 

Predictions for the toponium S states obtained using 

potentials that describe cc and bb data. We have 

taken m( IS) = 80 GeV. 
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298 

215 

170 
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r<D> 
n 

including first order QCD corrections given in eq. ( 3. 12). The true 

leptonic width. including the effects of the Z boson contributions, 

is then trivially obtained from r ~O) once the Z boson mass and 

couplings are accurately measured [ 13]. From Table 4. 2 we see, 

as A grows from 0.1 too. 5 GeV, that both the 25-15 and 1P-1S 

mass differences increase, and that r i0 > grows, whereas the ratios 

r< 0> ;r<0> and r< 0>;r<O) decrease. 
2 1 3 1 

( 4. 2) 

In Figs 4. 1, 4. 2, 4. 3 we show the predictions for m( 25) - m( 1S), riO) 
(0) (0) • 

and r 2 ;r 1 respectively, over a wide range of m( 15) values, 

that were obtained from our potential with f\ = 0. 2 and f\ = 0. 4 

GeV, together with those we have obtained using the 'Martin' and 

'Richardson• potentials, in Chapter 3. It should be noted that the 

w' - J/1!1 mass difference shown in Fig II. 1 and the J /tP and T 

leptonic width data shown in Fig 4. 2 were not included in the fits 

as explained in Chapter 3. Nevertheless, all the potentials 

give satisfactory descriptions of the cc and bb data with the exception 

of the large discrepancy in the T leptonic width predicted by the 

Martin-type potential (see Fig 4. 2), although this should not be too 

worrying as the overall fit to the Martin potential is bad for bb as 

seen in Table 3. 2. 

For higher mass quarkonium states we see from the figures that the 

predictions of the different potential models are very clearly 

distinguished. The Richardson potential predicts a rapid growth 
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Fig 4. 1 

(J\c3~) (SL)W-(SZ)W 

-
~ 
~ 

o­
lD-

lf) 

0 
N 

~ -E 

The predictions of the 25-15 mass difference for A = 0. 2 

and A = 0. 4 GeV (solid lines), compared to that of 

the Martin and Richardson potentials as a function of 

the toponium mass. The w' - J/ljJ and T' - T 

mass differences are also shown. The former has not 

been used in the fit. 
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Fig 4. 2 
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The leptonic width f{8-+ 'y'-+ e+e-) as a function 

of the toponium <6> mass. fee is given by eq. {4.2); 

the contribution of the virtual Z is omitted. The observed 

\jJ and T leptonic widths are also shown, the latter 

multiplied by 4. These data have not been used in the 

fits. 
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The ratio of the toponium 2S to lS leptonic widths as 

a function of the toponium mass; the ratio is expected 

to be essentially free from uncertainties due to QCD 

corrections. The ratios obtained from cc and bb data 

are also shown. 
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of the 2S-1S mass difference and of the leptonic width with increasing 

quarkonium mass, whereas the Martin potential predicts a decrease 

of these quantities. The potentials whose short distance behaviour 

is controlled by two-loop perturbative QCD give intermediate 

predictions, reflecting a milder short-distance behaviour as 

compared to that of Richardson•s potential but more singular than 

the Martin form (see Fig 3. 4). 

A further point to notice in the predictions for toponium is that the 

curves in Fig 4. 2 for the leptonic widths include the first order QCD 

correction factor of ( 1 - 16 a5 /3 1T }, in eq. ( 3. 12) . This large 

correction (about 27% for r ee (T) ) means the leptonic width 

predictions may be unreliable. For instance, by simply replacing 

the corrections factor by the positive-definite term ( 1 + 16 a
5 

/3 Tr ) -
1 

makes the A = 0. 4 GeV prediction for r i0 l agree with theT -+ e + e -data 

(see Fig 4. 2). Such ambiguities in r ~ 0 > are largely cancelled in 
1 

the ratio of branching fractions shown in Fig 4. 3 and so r 2;r 1 rather 

than r 1 should be used to probe the short distance part of the potential 

and hence to determine 1\ 

We consider next the extent to which the prospective toponium 

measurements will be able to determine the QCD parameter 1\ • 

4. 2 Determination of 1\ 

Our aim is to determine the constraints imposed on the short distance 

region of the potential and for this purpose we assume a toponium 

mass of m( 1S) = 80 GeV, and include 1dummy 1 toponium data in the 

fit which could be obtained at the forthcoming e + e- coiliders. To 

be precise the toponium 1data 1 are taken to be the values predicted 

by our potential, shown in Section 4. 1, but with statistical errors 
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corresponding to those expected to be achieved at LEP I as estimated 

by the LEP study group [ 13]. We consider two sets of toponium 

'data' to be included in the fits. These are the central values 

predicted by our II = 0. 2 and II = 0. 4 GeV potentials given in Table 

3. 1. 

For II = 0. 2 GeV we have 

m (2S) - m(1S) 670 ± 20 MeV (4.3a) 

r<O>;r<O> 
2 1 

0.42 ± 0.06 ( 4. 3b) 

and for II = 0.4 GeV 

m (2S) - m(lS) = 746 ± 20 MeV (4.4a) 

r <o> ;r <o> 
2 1 0.37 ± 0.06 . (4.4b) 

Here we have taken a 20 MeV error t on the mass difference and a 

15% error on the ratio of leptonic widths as anticipated [ 13] to be 

relevant to the forthcoming experiments. The absolute measurement 

of the mass may have a systematic error of about 1 00 MeV but 

fortunately this is not relevant to the measurement of the mass 

difference. To determine II we then combine the toponium 'data' 

of eq. (4.3) and eq. (4.4) with the cc and bb data listed in Table 

3. 1 I and perform a fit to the combined data as a function of A in 

exactly the same way as explained in Chapter 3, including also a 

fit to the perturbative potential over its region of validity 1 (see eq. 

( 3. 7)) . The top quark mass is fixed in the fit by requiring m( 1 S) 

= 80 GeV. The resulting fits due to the inclusion of the toponium 

'data' of eq. (4.3) and eq. (4.11), are shown by the dashed curves 

in Fig 4. 4. The solid curve, upon which the dashed curves are 

superimposed, corresponds to that of Fig 3. 3a resulting from a fit 

to cc and bb data alone. 

t The expected experimental accuracy assumes a luminosity of 0. 4 pb - 1 

at nine different energies in the resonance region, see Ref [ 13]. 
- 96 -



so 1: I 
I\ I \ I I 

'~ \ 
\ I I 
\ + tt ( 1\:: 0· 4) 1 I \j \~ I I 

ri 
\ I I 

\:' \ I I :\ 
\~ \ I I 

I 
~ \ 

+ tf (A= 0·2} I ,~ \ 
~ \ i 

/·\/ \ I 
\ I I \ I I N \ 

X \ I I 

\ I I 
I I \ I I .. _.v I .. ,.'\' / / ,_., 

/ 

' / ~ / ..,.. 

-
--- CC+ bb 

- ' -~ --- - -- cf + bb + t t 
................. + tt ( ree) 

- · -· -·-·- + tf ( 1P-1S ) 

10~~--~--~--~--~--~ 
0 0·1 0·2 0-3 0·4 0·5 0 ·6 

A'~ ( GeV) Fig 4. 4 
MS 

- 97 -



Fig 4. 4 The effect of including toponium 'data' in the fit to 

determine A . The continuous curve is the x2 profile 

obtained by fitting to cc and bb as presented in Fig 

3.3a. The dashed curves show the effect of including 

the toponiu m 'data' of either eq. ( 4. 3) or eq 0 ( 4. 4) o 

These 'data' are the predictions of our A = 0.2 and A 

0. 4 GeV potentia Is and so give zero additional x2 

contributions at these values (as indicated by the solid 

dots). The dotted curve shows the effect of including 

f 1 ( 
0

) = 3. 54 ± 0. 35 KeV in the fit rather than the 

ratio of ( 4. 3b) o The dot-dashed curve shows the 

improvement obtained by including, in addition, the 

1 P-15 mass difference of 548 ± 20 MeV. 
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We notice that the dashed curves meet the solid curve at A = 0. 2 

GeV and 1\ = 0. 4 GeV, corresponding to the points where the 

toponium 'data' predictions of eq. ( 4. 3) and eq. ( 4. 4) are made. 

As noted in Chapter 3, the solid curve in Fig 4.4 has a discontinuity, 

close to A = 0. 4 GeV, due to a switch from one family of solutions 

to another, by following the contour of lowest values of X" • It 

is perhaps unfortunate that we have chosen to make a toponium 

prediction so close to the discontinuity at A = 0. 4 GeV, and not 

in a more continuous part of the curve where only a single family 

of solutions is present. However, as the two dashed curves are 

essentially identical we conclude that there is little sensitivity to 

the change in the family of solutions introduced by passing through 

the discontinuity. Indeed we found that only a single family of 

solutions is necessary for the dashed curves, until the X". value 

becomes very much larger than those at the minima. For these very 

large values of X" many families of solutions seem to be present and 

essentially indistinguishable. 

;t 

If one allows X" values up to Xmin + 3 then we see that these 

toponium data should be able to determine A = A~) to an accuracy 

of just less than ± 100 MeV, and we find that it is essentially the 

mass difference 'data• which determines A • while the ratio of leptonic 

widths gives only a weak constraint on its value. These conclusions 

can be anticipated from Figs 4.1 and 4. 3 due to the fairly large 

errors in the 'data' of eq. (4.3b) and eq. (4.41>) covering a wide 

region of predictions. However, the expected accuracy [ 13) of the 

'data' for r i0 > is 10% and from Fig 4. 2 we see that the width is more 

sensitive to A than the ratio. 
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Indeed, if instead of using the ratio of leptonic widths we use the 

absolute value r i0
> with this error in the fit, and the mass 

difference, and if the prediction eq. (3.12) can be taken at face 

value, then the X~ versus A profile is shown by the dotted curve 

in Fig 4. 4 and we see A is determined to within ± 85 MeV using 

the above criterion. However from eq. ( 3. 12) we note that the first-

order QCD corrections to the leptonic width are -16 a
5

/ 3 1r relative 

to unity and so we can expect higher-order corrections of order 
2 

( 16 a i 3 1r ) which at the scale of toponium mass are of the order 

4%. It is clearly important to reduce the theoretical uncertainty in 

eq. ( 3. 12) so that the measurement of r {0
> can be reliably incorporated 

into the fit and hence the determination of A can be improved. 

We also studied the possible improvement in the determination of A 

if the 1P toponium state was observed, for example via, 

2S + lP + y + lS + y + y 

Fitting now to the 25-15 and 1P-15 mass differences both with an 

error of ± 20 MeV and to the absolute leptonic width r {0 > results 

in a X2 versus A profile shown by the dot-dashed curve in Fig 

4. 4, and leading to a determination of A to within about ± 75 MeV. 

Summarising these results for toponium data at A = 0. 2 we have 

where 

cc + bb + ttl 1 ) -
cc + b6 + tl( 2) -
cc + b6 + tt( 3) -

A ±100MeV 
A ± 85 MeV 
A ± 75 MeV 

ti data set 1 contains 25-15, ~~oy r.to> 
tl data set 2 contains 25-15, r;co) 1 

1 

tt data set 3 contains 25-15, lP-15, r.(o! 

We studied the dependence of our determination of A to relativistic 

corrections by repeating the above procedure of fits omitting cc 

data. We include additional toponium 'data', predicted from the A 

= 0. 2 CeV best fit potential to bb data alone of Table 3. 1, and 
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fit to only bb and tt 'data'. The tt 'data' used in the fits are: 

m - m 669 ± 20 MeV 
2S 1S (4.7a) 

r?(o);r1(o) - 0.44 ± 0.07 ( 4. 7b) 

3.44 ± 0.34 (4.7c) 

m - m = 542 ± 20 MeV 
1P 1S ( 4. 7d) 

The results of these fits are shown in Fig 4. 5 and are found to give 

almost identical results to those of eqs. ( 4. 6), indicating that such 

corrections are small. The tt 'data' curves in Fig 4. 5 are superimposed 

on that of Fig 3. 3b, which corresponds to the fit to bb data alone. 

We have also checked to see whether the determination of A is biased 

by the parametric form used in the intermediate part of the potential. 

First we fitted the data of eq. ( 4. 6a) by adding one more parameter 

c 3, into eq. ( 3. 14) and found essentially the same X2 versus A 

profile as that shown in Fig 4. 4. Next we studied the effect of 

including an overall constant term V in the potential. Repeating 
0 

the fit to cc and bb data with V , we make tt predictions from the 
0 

optimum fit. We then repeat this analysis changing the long distance 

confining potential from the linear form VL = ar to the form VL = 

a / r. The results are summarised in~ Table 4. 3 which shows four 

different fits to the cc and bb data using the two different forms 

of V L. We see that the ti" predictions are dependent on the choice 

of parametrization to varying extents. Firstly we notice from the 

value of X~ that a quar:konium potential with a square root confining 

part is unable to adequately approximate to the perturbative form 

in the short distance region, although including a constant term 

V does make a significant improvement. 
0 
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Fig 4.5 The effect of including toponium 'data' in the fit to 

determine 1\ and at the same time omitting any 

relativisitic dependence by fitting only to bb and tt 

'data'. The continuous curve is the X2 profile obtained 

by fitting to bb data alone as presented in Fig 3. 3b. 

The dashed curve shows the effect of including the 

toponium 'data' of eq. (4.7a) and eq. (4.7b), the 

dotted curve includes the 'data' of eq. (4. 7a) and eq. 

( 4. 7c) while the dot-dashed includes the 'data' of eqs. 

( 4. 7a), ( 4. 7c) and ( 4. 7d). All 'data 1 values are 

predictions from the 1\ = 0. 2 GeV potential for bb 

data alone. 
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Table 4. 3 

a Vo Mass d:i.ff. 
2 x;z 

GeV units GeV 
X data v 

2S-1S 

0.22 

0.18 

0.65 

0.65 

- 27.8 1.7 670 

0.22 21.1 2.2 692 

- 12.6 25.7 880 

-0.22 14.8 9.6 780 

Fits to the cc and bb data and the perturbative potential 

for A = 0. 2 GeV using two different forms of the 

confining potential VL, in each case for V 
0 

= 0 and 

for the value of V 
0 

which gives the optimum fit. The 

other parameters (a, c1, c 2 , r 
0

, me, mb) are also 

varied to their optimum values. The predictions for 

the mass differences and leptonic widths of the low 

lying toponium levels are also shown for m( IS) = 80 GeV. 

(MeV) r(OJ 
1 

r (OJ I 

2 ' 

1P-1S keV r j"l I 

548 3.54 0.42 
I 

548 3.26 0.46 
I 
I 

725 4.64 0.36 I 

646 4.27 o. 38 I 



The reason is that a confining term V L = a /r gives an appreciable 

contribution to the intermediate and short distance regions with the 

consequence that the low lying toponium levels are very sensitive 

to the introduction of V 
0

• Indeed we conclude that toponium data 

could not reliably determine A if the quarkonium potential 

incorporates a V L = a /r component. 

We believe that the linear confining form V L = ar is appropriate, 

not only because it has less influence on the short distance and 

intermediate form of the potential, but also because it is consistent 

with the expectations of the string model, which we derived in the 

Section 3. 5. We also note that there is much less sensitivity to the 

introduction of V 
0 

if the linear confining term is used. Repeating 

the combined fit to the data of eq. ( 4. 6a) shown as the dashed curve 

of Fig II. 4 for V 
0 

= 0, but now leaving V 
0 

as a free parameter we 

found very similar X :a profiles with minima at the same values of A 

We conclude the determination of A is not influenced by the 

parametric form of the intermediate potential or whether V is 
0 

included provided long distance linear confinement V L = ar is used. 
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CHAPTER 5 

Quarkonium Decays 

In the previous chapters we have analysed how QCD constrains the 

quarkonium potential in its short-distance regime, and by fitting 

to the available cc and bb data, as well as demanding the perturbative 

form, we obtained satisfactory potentials for a variety of values of 

A:: A~) 
MS . We also discussed how toponium data, when eventually 

available, will be able to distinguish between the wide variety of 

phenomenologically successful potentials and should indeed be able 

to determine the value of A , due to the enormous variety of 

predictions made for physically measurable quantities of a heavy 

quarkonium system. However, all potentials considered, produce 

essentially equally good fits to the cc and bb data and, as can be 

seen in Fig 3.4, have a common slope in the region 0. 5 < r < 5 GeV- 1. 

We should therefore expect that predictions made for physical quantities 

in the cc and bb system should be reasonably independent of the 

potential and compare favourably against experiment. Specifically 

in this Chapter, we discuss hadronic decay widths of S and P wave 

states in the cc and bb spectrum in the light of recent measurements. 

Predictions for these quantities were among the earliest made for 

QCD [ 47, 48] however, for several of the states no accurate 

experimental evidence has been available to test them, until 

recently. 

5. 1 Charmonium S-Wave Decays 

We shall consider the lowest S wave multiplet of charmonium ( \IJ, llc ) 

and the production of non-charmed hadrons as a result of their decay. 
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The decay, 1IJ - hadrons, has been carefully studied and agrees 

well with experimental values for a. 8 ~ 0. 2. The mechanism proposed 

in QCD for such a decay is depicted in Fig 1. Sa where the cc pair 

first annihilate to produce gluons, the gluons then produce light 

quarks and antiquarks which in turn fragment into the familiar 

hadrons. The decay must proceed in this way as it is energetically 

impossible for these low lying bound states of cc to form charmed 

mesons by the creation of a light qq pair. 

If the coupling constant a. is small then lowest order perturbation s 

theory should suffice. In this approximation it is supposed that 

the gluons are quasi-free, i.e. that no three gluon vertices are 

present, then the 1jJ decays into three gluons while the singlet, T1c 

decays into two. The decay widths are [ 48] 

a.3 
f(\ll ~ 3g) = 40 (rr2 - 9) -~ I Rs(O)j2 

8111" M 

8 a.2 
f<nc + 2g) = 3M; I Rs(o)j2 

Where Rs(O) is the value of the radial wavefunction at the origin 

and M is the mass of the state in each case. The wave-function 

dependence of these equations can be cancelled by expressing one 

width in terms of the other 

f<nc + 2g) ~ 97.5 <
0

"
2

> f(\IJ + Jg) 
<ls 

The 1IJ width [ 49] is about 45 KeV and for a.8 ~ 0. 2, we have 

reasonable agreement with the Crystal Ball value [50] of r ( nc ~ 

( 5 .1) 

( 5. 2) 

( 5. 3) 

all)= 11.5 (+4.5,-4.0) MeV. In writing eq. (5.3) possible wavefunction 

distortion due to initial gluon exchanges as well as relativistic 

corrections cancel. 
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However, by calculating these wavefunctions using the potentials 

discussed in earlier chapters, these effects can be investigated. In 

Table 5. 1 we list the resulting numerical solutions for the wave-

function at the origin for a variety of potentials, and in Fig 5. 1 we 

show the pseudoscalar, Tlc hadronic width in lowest order as a 

function of a
8 

from eq. ( 5. 2). We observe that a choice of as "'0. 2 

accounts for the experimental width, although the uncertainty is 

large. Values of as "'0. 2 are also consistent with those obtained [51] 

from three-gluon jet and deep inelastic analyses as well as seen in 

the perturbative potential of Chapter 2. Predictions from all the 

potentials are fairly similar and our first conclusion is that from a 

phenomenological standpoint the lowest-order result describing hadronic 

decays of charmonium S waves is satisfactory, at least within a factor 

of 2. Wavefunction distortion, relativistic wave-function corrections 

and ultraviolet renormalisation effects do not seem to be large. 

However, a quite different result is found for P wave charmonium 

decays. 

5. 2 Charmonium P-Wave Decays 

Due to hyperfine splitting the IP level of charmonium is composed 

of the 3 levels. XJ with J = 0, 1, 2 shown in Fig 1. 6a. We consider 

the states X0 , X2 which to first order both decay into two gluons. 

The widths are given by [ 48, 59]. 

/ 

128 a~ I r<x2 ~ 2g> = -s- M4 l R~<o> 2 

where Rp(O) is the derivative of the P wave radial wavefunction at 

the origin. In eq. (5.5), the wavefunctions and their distortions 

cancel out, and including one loop corrections, eq.(S.S) becomes [52] 
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r---

Table 5.1 

Potential f\=0.2 
I 

f\=0.4 
I 

Richardson\ -~ Martin i 
1 -~ --~---- -1 Charm 

I 
i 
I 

I Rg(O) 12 (GeV 3
) 0.698 0.90 I 0.88 0.857 

IR;(O) 1
2 (Gev 5 ) 0.065 0.092 I 0.11 0.081 

I 
<R8 1riRp> 2 (GeV 5 ) 4.844 4.172 i 

3.76 4.385 I 
I 

I 
). 
I 
i Bottom I 

IRs(Ol 12 (GeV 3
) 5.447 6.273 3.99 7.267 

IR;(ol 12 (GeV 5
) 1.511 1.665 1. 34 1.652 

<R8 1riRp> 2 (GeV 5 ) 1. 24- 1.177 1. 37 1.167 

Square of the S-wave and derivative of the P-wave 

radia I wave-function at the origin along with transition 

matrix elements for x -+ ( lS lY • The wave-functions 
2 

are computed using the potentials in Chapter 3 with 

parameters chosen according to the best fit to the 

spin-averaged data. 
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successful potentials. The experimental width is 
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ilia -+ 2g J 
rrx

2 
-+ 2gl 

with as = 0. 2. This ratio can be determined from experimental 

data with the minimum of theoretical assumptions 

Uxo + 2g) 
rrx

2 
-+ 2gl 

~ f(Xo -+ \)Jy) B(X2 + \)Jy) 1 - B(Xo -+ \)Jy) 
rrx

2 
+ I)Jy) srx

0 
-+ I)Jy) 1 - B(X

2 
-+ WY> 

The ratio of radiative widths should be [53] nearly the ratio of phase 

space factors [54] and taking the branching fractions from the Particle 

Data Group [ 37] we obtain 

+3.6 
7.2 

-1.8 

agreeing well with eq. ( s. 6). Considering the separate p-wave 

decay rates of eq. (5.4) and eq. (5.5) we show in Fig 5.2 predictions 

for the lowest order X2 hadronic width, using values taken from 

Table 5. 1 I as a function of as. 

There is now considerable experimental evidence for a very broad X2 • 

Firstly I from the Crystal Ball [55] radiative decay analysis 

f(X +all) = 2.7 ± 1.0 MeV 
2 

under the assumption that r (X >< 0. 5 MeV. Also from the CERN 
tot 1 

I SR formation experiment [56] I (which used an antiproton beam 

incident on a gas-jet target) a value 

~ 3 MeV 
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a function of a 5 • It is seen that only largea
5 

:! 0. 5 

can possibly account for the large experimental width. 

More realistic values of a 5 :! 0. 2 predict the width to 

be an order of magnitude smaller than the experimental 

value. 
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was directly measured. Finally the branching fraction B( X2 + \)Jy) 

= 0.155 ± 0.018 together with the computed radiative widthff(X
2 

+ l)Jy) "' 

0. 59 ± 0. 06 MeV yield the value 

f(X +all) = 3.8 ± 0.8 MeV 
2 

Subtracting the computed radiative width from these determinations 

[eqs. (5.9), (5.10) and (5.11)] gives the hadronic width 

f(X
2 

+ 2g) "' 2.6 MeV 

Then from Fig 5.2, we observe that only a very large a 8 "'0. 5 could 

possibly account for the large experimental X2 width and that more 

realistic values of et 8 "' 0. 2 predict the width to be an order of 

magnitude smaller than the experimental value. 

The effect of radiative one-loop corrections is to reduce the X2 width 

[57] and cannot explain this discrepancy. Moreover, since the ratio 

f(X + 2g)/f(X + 2g) 
0 2 

comes out nearly correct we can infer 

that there is no special enhancement of the X2 width due to 

interference with possible nearby 2 ++ glueball states etc. 

Because of the ratio of X0 to X2 widths is correctly predicted 

whereas individual rates are poorly predicted, we are lead to the 

( 5.11) 

( 5. 12) 

conclusion that a distortion, or relativistic effect, in the wavefunction 

is involved 

r The estimate of the radiative width comes from the potentials shown 

in Table 5. 1, where the average value is taken for the four potentials 

and the uncertainty is reflected in the number quoted for r ( x
2 

+ all) • 

Relativisitic corrections are expected to be small in calculating this 

transition rate [53] since both the wavefunctions have no nodes. 
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Before trying to estimate these effects we consider how well the 

equivalent quantities in the bottomonium spectrum are predicted 

using the values in Table 5. 1. 

5. 3 Bottomonium P-Wave Decays 

We expect that at least relativistic corrections in the bb spectrum 

should be fairly small and that the lowest-order decay widths, eq. 

( 5. ~) and eq. ( 5. 5), should be a reasonable approximation. The 

observed [ 37] branching ratio of X2 is B( X
2 

-+ Ty ) = 0. 200 ± 0. 0~4. 

Now, reliable theorietical predictions for the radiative decay widths 

can be obtained by inserting the matrix elements of Table 5. 1 into 

the expression 

f(X -+ (1S)Y) 
2 

where eq = -1 I 3, is the charge of the quark and k is the photon 

energy, which neglecting recoil of the 15 state in the decay, is 

(5.13) 

taken as the mass difference between the two states, i.e. k = 455 MeV 

[37]. Eq. (5.13) then yields r<x
2

-+ Ty)= 42 ± 3 KeV from which we 

obtain 

f(X -+all) = 210 ± 50 keV 
2 

subtracting the radiative width gives 

(5.14) 

f(X
2 

-+ 2g) = 168 ± 50 keV ( 5 • 15 ) 

Using the lowest order theoretical predictions for this decay eq. ( 5. 4) 

and the a. 5 = 0. 2, we obtain 

176 r<x -+ 2g) = 
[

160 

2 142 
175 

keV 
keV 
keV 
keV 

(f\=0.2) 
(l\=0.4) 
(Martin) 
(Richardson) (5.16) 

We see that agreement between (5.15) and (5.16) is quite satisfactory 

showing that the corrections are indeed small in bb. 
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3 
As only the triplet s1 ( T ) of the S-wave multiplet in bb has been 

observed, the equation for the pseudoscalar component, llb , hadronic 

width eq. ( 5. 2) cannot be tested, although values of a 8 :e 0. 2 give 

good agreement with the triplet three-gluon width of eq. ( 5. 1). 

5. 4 Branching Ratio Predictions 

An alternative way of presenting the X2 decay results in charmonium 

and bottomonium is by a calculation of the observed branching ratios. 

By doing so we directly compare an experimental value to a quantity 

depending on the wavefunctions and the strong coupling constant. 

We express the branching ratio in terms of the radiative decay rate 

and the decay into 2 gluons 

and use eq. ( 5. 4} and eq. ( 5. 13). To obtain the theoretical prediction 

we average over the predictions for each potential and take 

We then compare with the value measured for charmonium; 

B(X + ~) = 0.155 ± 0.018 (experiment) 
2 0.52 ± 0.08 (theory,as=0.2) 

a = 0. 2. s 

In order to obtain the experimental branching ratio as must be 

taken to be approximately as :e 0. 5. 

Comparing eq. ( 5. 17) with the value measured for bottomonium, 

again using a
5 

= 0.2, we obtain 

B(X 2 + Ty) = 0.200 0.044 (experiment) 
0.206 0.030 (theory,as=0.2) 

We see here a striking agreement for radiation from the b quark. 
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We have thus observed that the X2 --? gg decay rates of eq. ( 5. 4) 

seem to be correctly predicted in the lowest order for a variety of 

quarkonium potentials if the quarks are very heavy or, in the case 

of charm, if ratios like X0 /X 2 are considered. However, the individual 

charmed X2 decay into two gluons is considerably underestimated, 

and we are led to conclude that the problem probably lies in corrections 

of the charmonium wavefunction. 

5. 5 Wavefunction Corrections 

These effects can be considered to be of two types, distortion and 

relativistic corrections. Wavefunction distortion effects are seen to 

arise in the complete one-loop-correction result [58] for the X2 width 

where a gluon exchange between the initial c and c quarks contributes 

a large term proportional to the inverse of the quark velocity. Such 

terms cancel in the ratio f(X
0

)/f(X 2 l1 although for the individual 

widths it is believed that they factorise into the wavefunction 

normalisation causing changes in the wavefunction. 

Relativistic corrections are of two types, spin-dependent resulting 

in a splitting of the degeneracy in a level, and spin-independent, 

due to a truncation of the full relativistic Hamiltonian to a non-

relativistic form. We shall consider an estimate of these spin-

independent corrections. The full Hamiltonian can be written as: 

f(-V 2 )~ + V(r)~ = M~ 

where relativistically 

non-relativistically: -m 
and m is the quark mass. A next-to-leading order expansion of 

(5.12a) yields 

2m - V2 - 1 V2 2 
-m -(-) 4m m 
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and an estimate of the error in truncating ( 5. 23) to the first term 

in \/ 2 
, is obtained by considering the parameter 

where 

d = 1 
4m 

<( ENR - V ( r ) ) 2 > 

<ENR - V(r)> ( 5. 24) 

( 5. 25) 

The parameter d, depends inversely on the quark mass and we should 

expect smaller values for heavy systems. In Table 5. 2 we show this 

parameter for a variety of states and as expected only charmonium 

states should have some relativistic dependence. In an effort to 

make a quantitative estimate of this effect on the S and P wave 

functions at the origin we notice that in eq. ( 5. 23) if we include 

the next-to-leading order term, then we can still use the non-

relativistic treatment provided that the quarkonium potential is 

replaced by the effective potential 

(E - V(r)) 2 

Veff(r) = V(r) - _N_R ___ _ 
4mq 

where ENR is the binding energy of the non-relativistic treatment. 

Using this effective potential, where V( r) is our quarkonium potential 

with II. = 0. 2 and 0. 4 GeV, we predict the values of the square 

of the S-wave and the derivative of the P-wave radial wavefunctions 

at the origin that are shown in Table 5. 3. For cc, we see that the 

value of IRs( 0 >1
2 

is increased by about 45% which is still consistent 

with a value of cx 5 ~ 0. 2 needed in eq. ( 5. 2) to agree with the 

experimental value. Also I R~(O)j 2 
is increased by 60% offering 

some hope of improving the agreement between the calculated rate 

of eq. (5.4) and the experimental value eq. (5.12) for reasonable 

values of <l 5 • 
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Table s. 2 

State Expansion Parameter 
--~-

cc 1S 0.135 

1P 0.102 

bb 1S 0.057 

1P 0.028 

I 
! 
I 

tt 1S 0.020 ! 
I 

lP 0.005 I 
_j 

The relativistic expansion parameter, d, for the lowest 

S- and P-wave states of heavy quarkonium systems 

( mt = 40 GeV). The appropriate value of d, defined 

in eq. ( 5. 24), is obtained by averaging over the 

predk:tions using several different phenomenologk:ally 

successful potentials. 
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r 
! r- . 

r I Potential {\=0.2 {\=0,4 

I 
~-- I 

Charm 

I I 
I IRs<Ol 12 (GeV 3 ) I 1.02 1.286 ! I 

i 

! 

IR;(o) 12 (GeV 5 l 0.106 0,144 

Bottom i 
I 

IRs< o l 12 (GeV 3 ) 6.265 7.355 I 
I 
I 

I 
I R~(O) 12 (GeV 5 ) 1.806 1.991 _! 

Table 5.3 Square of the S-wave and derivative of the P-wave 

radia I wave-function at the origin using the effective 

potential eq. ( 5. 26) where V(r) is that of eq. ( 3. 2), 

with A = 0. 2 and 0. 4 GeV. These values are to be 

compared with those in the first two columns of Table 

5. 1. 
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In bb, jR
5
(0}j

2 andjR~(O}j 2 
are increased only by 16%and 19% 

respectively which, as expected, are a lot smaller than for cc and 

leave our conclusions unchanged. 
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CHAPTER 6 

Summary and Conclusions 

The aim of this work has been to consider the extent to which the presently 

known, and future, heavy quarkonium spectroscopies test the perturbative 

QCD prediction for the interquark potential, and specifically to determine 

constraints imposed by the data on the value of the QCD scale parameter, A. 

The procedure has been to develop a quarkonium potential which in the 

short-distance region is constrained by the perturbative behaviour (consistent 

with the asymptotically free property of QCD), which has long distance 

linear confinement and which has a flexible form at intermediate distances. 

Then by fitting to the quarkonia data for various fixed values of A, and 

comparing the resultant potential with that expected from perturbative QCD 

at short distances, constraints on the value of A are determined. 

In Chapter 2, we studied the next-to-leading order QCD perturbative 

prediction for the potential, both in the massless theory and including the 

effects of heavy quark loops. We found that working in the MS scheme 

produced logarithmic quark mass divergences which however could be 

neglected in effective light flavour theories provided we work in regions 

far away from the divergences. The effects of heavy quark loop effects 

are best seen working in the MOM renormalisation scheme in which the heavy 

quarks decouple, and. we found that over the entire region of sensitivity 

to any foreseeable heavy quarkonium system, an effective 11-flavour theory 

with massive charm quarks gives the best description of the perturbative 

potential. 
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A realistic quarkonium potential was developed in Chapter 3 which embodies 

the short distance perturbative behaviour and yet has sufficient flexibility 

in the region unconstrained by the perturbative result, to be able to fit 

the data. Using the framework of non-relativistic quantum mechanics to 

fit the cc and bb data, we found that the data do not constrain the value 

of A = A~:) , apart from requiring A ? 150 MeV. We tested this conclusion 

by changing the parametric form, at intermediate distances of the potential, 

and also by including a constant term V0 and found similar results. Indeed 

small values of V0 consistent with zero were preferred by the data provided 

a linear confining term was included in the potential. 

Predictions for the properties of higher mass quarkonium states are found 

to be quite sensitive to the value of A , and in Chapter q, we compared 

predictions for two values of A with those obtained from a Richardson -

[ 35] and a Martin - [ qo) type potential. The predictions that we emphasised 

are those expected to be measured rather accurately, m( 25) -m( 15) and 

r (2S + e+e-) ;r (lS + e+e-), in the forthcoming toponium studies at LEP 

[ 13] , and elsewhere. Assuming the predictions corresponding to a given 

value of A to be sample 'data', we investigated how well toponium 

measurements will be able to determine A • Using three different data 

sets listed in eq. ( q, 6), with statistical errors expected in the forthcoming 

experiments, we found that at the least we should be able to determine 

to within ±100 MeV, if A is in the region 0.2-0.5 CeV. This constraint 

on A was found by only including the m( 25)-m( 15) mass difference and the 

ratio of leptonic widths of these states whose value is rather insensitive 

to the value of A. This situation could be improved by replacing the ratio 

of leptonic widths, with the absolute width r (ls + e+e-),which is expected 

to be measured to 10% accuracy. Including this 'data' would enable A to 

be determined to ±85 MeV, however higher-order QCD corrections, indicated 
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in eq. ( 3. 12) for r (ls -jo e+e-) , need first to be ·computed to ensure that 

the theoretical predictions are reliable. We also considered including P­

wave 'data' and found that A could be determined to within ±75 MeV, 

although such data may take a long time to collect experimentally. 

We returned to cc and bb specroscropy in Chapter 5 and analysed the 

hadronic decays of the lowest 5 and P wave states using predictions from 

the potentials that were developed in Chapter 3. The relevant quantities 

to determine the hadronic decay widths are the values of the radial 5-state 

wavefunctions and derivative of the P-state wavefunction at the origin, 

as indicated by eqs. (5.1), (5.2) and (5.4). We found, for reasonable 

values of a5 ~0.2 , that the lowest-order QCD prediction for the cc 15-

singlet hadronic decay, eq. ( 5. 2), accounts well for the experimental 

value, as seen in Fig 5.1. However, eq. (5.4), for the decay of the X2 In 

cc can only account for the experimental result if a
5 

~ 0. 5, as can be seen 

from Fig 5. 2. As ratios of hadronic widths like X/X 2 , which are independent 

of wavefunction effects, are correctly predicted we concluded that the problem 

lies with wavefunction corrections. An estimation of the spin-independent 

relativistic corrections to the wavefunction indicated an increase in I R~(O) J2 

of 60%, offering some improvement in the discrepancy between the experimental 

and theoretical values. 

We conclude finally, that in order to probe the perturbative region of the 

interquark potential, a heavy quark bound state system is required and 

that the experimental determination of the mass and e + e- decay widths of 

the 15 and 2S resonances of such a system (assuming a mass around 80 

GeV) with accuracy anticipated at the forthcoming e +e- resonances should 

enable the QCD scale parameter to be determined to within ±1 00 MeV. 
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APPENDIX A 

Fourier Transform of the Perturbative Potential 

0 ur objective here is to determine the Fourier transform of the QC D 

pertu rbative expansion for the static potentia I given, in massless quark 

theory, by eq. ( 2.1) or with the inclusion of heavy quarks loops, by 

eq~ 0~28). 

We shall first consider eq. ( 2. 1) for massless quark loops. 

1. The Fourier transformation of the potential V(q) reads 

1 00 

= 
2

TI 2 r J
0 

dq sin(qr)qV(q) 

where r =lrl and q =I ql . Reading from eq. (2.1) we see that 

the q-dependence essentia I results in terms of the form 

qV(q) = : +y tnq 
q q 

where 
X = 

neglecting higher-order terms. 

Defining the Fourier sine transform as 

00 

g(r) f
0 

dq sin(qr)f(q) ; r > 0 
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then useful transformations are: 

f (q) g(r) 

1/q 1Tj2 

-n/2(yE + Q,nr) 

-nEi(-r/a) 

where YE is Euler•s constant and Ei( -x) is the exponentia I integral. 

Using the tranformation (A4a) and A4b), then eq. (2.1) can be 

written, 

w hie h proves the result of eq. ( 2. 6). We consider next eq. ( 2. 28) 

where heavy quark loops are included. 

2. The additional q-dependence of eq. ( 2. 28) over that of eq. ( 2 .1) 

is through the vacuum polarisation term, eq. (2.29). We only need 

concentrate on this term as the rest of the analysis follows that of 

the massless case. We have noted that an accurate approximation 

to the vacuum polarisation is given by eq. ( 2. 31 ),, over the whole 

range of x, and so we can then write, 

F(x) ~ - ~ Q,n(x + e-5/3) 
3 

- - Q,n(m2/q2) - Q,n(1 + q2e-5/3;m2) __ 3q___ 3 q_ 

Using transformations (A4a) and (A4b) for the first term of eq. 

(A.6) and (A4c) for the second term, we find 

F.T. 

which proves eq. ( 2. 32). 
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APPENDIX B 

Numerical Solution Of The 3-Dimensional Schrodinger Equation 

To analyse quarkonia data via non-relativistic quantum mechanics 

one must solve Schrodinger•s equation for a spherically symmetric 

potential, and in general this task must be performed numerically. 

The basic strategy, after reducing the 3-dimensional problem to a 

radial equation, is to map this radial dimension into a finite region 

and by using a finite difference approximation for the relevant 

derivatives convert this into a matrix equation whose eigenvalues 

and eigenvectors can be found using well established computer library 

routines. We examine the accuracy of this method of solution by 

comparing numerical solutions with the analytical solutions that exist 

for the Coulomb and 3-dimensional Harmonic oscillator potentials. We 

first of all consider the method of solution. 

B . 1 Reduction to a Matrix Equation 

In 3-dimensions the Schrodinger equation is written in the form 

where 

- ~u V' 2 'l'(rl + [v<rl - E J 'l'(r) = 0 

u is the reduced mass of the system 

!: is the relative co-ordinate ( r = I !.I ) 
'I' ( r l is the 3-dimensional wavefunction 

E is the energy eigen value 

V( r) is the central, velocity independent potential 

and 1'\ = c = 1 . 
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We wish to describe charmonium, bottomonium and toponium states 

of the form qq, that is states containing a quark and antiquark of 

the same species. Hence the reduced mass is given by 

2\.l :: mq 

The 3-dimensional equation ( B 1) is easily converted to a single co-

ordinate radial equation by recognising that the interaction potential 

depends on the radial dimension, r. Reducing the 3-dimensional 

w avefunction 

lj'(r) 

where R(r) [or u(r)] is the radial wavefunction and Y£m(8,¢>) are 

the spherical harmonics. 

In terms of u(r}, (81) reduces to 

d u + m ( E - V ( r )} - 2 u ( r ) 2 [ £(£+1 '1 
d? q r 

where u( r) is normalised such that 

00 

J u 2 (r) dr 
0 

1 

and vanishes for r at zero and infinity. 

0 

At this point it is convenient to make the following substitution, 

A = m E q 

which simplifies eq. (83) to 
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(82) 

(83) 

(84) 

(BSa) 

(BSb) 

(86) 



The numerical methods require that the region from zero to infinity 

in r be mapped into a finite interval in order to obtain a matrix 

equation. This is accomplished by the following substitution: 

1 
t = (l + r/r ) 

0 

where the dimensional constant is chosen to be r = 1 GeV- 1. The 
0 

transformation to 't space• involves first derivatives which are 

eliminated by the replacement 

¢(t) :: tu(t) 

The resulting equation and boundary conditions now read 

¢(0) = ¢(1) = 0 

In this form, the equation can be easily transformed into a matrix 

equation by dividing the range oft from zero to one into n+2 points, 

a distance of h = 1/( n+l) apart, and labelled by the subscript j. The 

boundary conditions are trivially given by 

<Po = <Pn+l = 0 

and we use the following finite difference expression to approximate 

the second derivative in eq. (B. 9a) 

Although a lower order expression exists, it implementation would 

require a very large number of points to obtain accurate answers. 

The use of eq. (8.11) requires the additional input of <l>-1 and <!>n+2 

to fully define the second derivative within the range of t. These 

(87) 

(88) 

(89a) 

(89b) 

(810) 

(811) 

values are found by using the symmetry of u( r) and our transformation 

equations, and can be seen to correspond to negative values of r. 
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To obtain the symmetry of the radial wavefunction we note that in 

order for eq. (B. 3) to be extended to negative r, V( r) must be an 

even function of r. This leads to the fact that the eigenfunctions 

of the Schrodinger equation will have a definite parity 

£-t-1 
u(-r) = (-1) u(r) (812) 

Employing the transformation equation, eq. (B. 7), we find 

m_ 1 = <-1>£~ 1 + o<h 2 ) (813a) 

£+1 
~n+2 = (-1) ¢n + O(h 3 ) (813b) 

The errors of 0( h 2 ) and 0( hl) respectively in the above two equations 

are due to the approximations introduced when going to negative values 

of r, from positive values, through the transformation equations. 

Since u( r) behaves as a power of r at the origin, it is important that 

it is accurately predicted by (B. 13b}. However, the exact behaviour 

at large r is unimportant as it is lost in noise about zero. 

Our Schrodinger equation is now represented by a complete set of 

equations in j, where j = 1, .... , n, 

12h
2 G . ~ + -- 4 4>(Jh)- A~·= o 

( ih) J (814) 

with the auxiliary and boundary conditions given by eqs. (B. 1 0), 

(B. 13a) and (B. 13b). This set of equations is now linear in ~j and 

can be written as the matrix equation; 

S<f> = 0 

where S is an nxn band symmetric matrix (i.e. s.. = 0 for I i- j I > 2) 
IJ 

(815) 

and ~ is an n-dimensional column vector. All the boundary conditions 

are contained in S. However, eq. (B. 1 5) is not a true eigenvalue 

equation, as its j- th diagonal element behaves like: 

12h2 

30 + (jh) 4 4>(jh) - A (816) 
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To set eq. (8.15) in a form (A- ,\I)~= 0 we therefore need to 

remove the coefficient 12h 2 /(jh) 4 which is done, while maintaining 

the symmetry structure of the matrix, by considering the diagonal 

matrix K such that k .. = j2 . We then write 
JJ 

S¢ = 0 = (KSK)(K- 1¢) 

The j-th diagonal elements of the matrix ( h 2 I 12) KSK can then be 

written as 

¢(jh) -A. 

leaving us with a true eigenvalue problem 

Ax = ,\x 

with 

(817) 

(F\18) 

(Bl9a) 

(819b) 

The eigenvalues and eigenvectors are then obtained from eq. (B. 19) 

using standard library routines for matrix problems as outlined below. 

B. 2 Calculation Of The Eigenvalues And Eigenvectors 

The eigenvalues of the matrix A are obtained in a two step process. 

First, the band five symmetric matrix is reduced to tridiagonal form 

by a series rotations in such a way that there are no non-zero elements 

generated outside the band for each rotation. This procedure is known 

as Given's method [60] although a modification by Schwarz [61] is 

used and maintains the band character in general. Once the matrix 

is in tridiagonal form the eigenvalues are then easily obtained [ 60]. 

Let T be the tridiagonal symmetric matrix and we wish to solve the 

characteristic equation for .A. 

det(T - ,\I) 0 
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Let P ( A ) denote the determinant of the leading principal minor of 
r 

T-Al. Thus 

(B2J) 

Defining P 
0

( A ) =1, then by inspection P 1 ( A ) = d 1- A and expanding 

P r( A ) by its final row, we obtain a recursion formula which eventually 

yields P ( A), the characteristic polynomial n -

(B22) 

Using eq. (B. 22) we can evaluate the numbers P (A ) , .. , P ( A ) o n 

for some value of A . The Sturm sequence property [ 60] then tells 

us that the number of agreements in sign of successive members of 

the sequence { P r( A)} is equal to the number of eigenvalues strictly 

greater than :A. • Thus the number of eigenvalues in a specific 

interval [ \, >..
2

] can be determined and by bisection of this 

interval, any given eigenvalue can be determined to prescribed 

accuracy. 

The process of inverse iteration [ 60] is used to obtain the eigenvectors 

and also to increase the accuracy of the eigenvalues. We consider 

for the nxn matrix A that there exist n linearly independent eigenvectors 

~1 , ~2 , ••• , ~n' then an arbitrary vector y can be written as a sum 

over these, in the form 
n 

y = r cixi 
i=l 

Multiply y by (A- ql)- 1 gives 
n 
r 

i=l (Ai - q) 

By choosing q to be near an eigenvalue, then after several iterations 

of this equation, y approaches the corresponding eigenvector. 
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B. 3 Accuracy of the Matrix Technique 

In order to test the accuracy of the procedure, we consider two 

potentials with behaviours which more than span the quarkonium 

potential we consider. Namely the Coulomb and the 3-dimensional 

oscillator potentials, for which analytic solutions exist for eigenvalues 

and eigenvectors of the Schrodinger equation. We calculate several 

of the lowest lying S and P wave energy levels and wavefunctions, 

for a variety of quark masses and test the accuracy of the results 

against the choice of dimension of the matrices. We give results for 

n=49 and n=99, where we would expect the latter to give more accurate 

predictions. 

B. 3. 1 Coulomb Potential 

The potential has the simple form V(r) = -1 /r resulting in 

an energy level structure dependent upon the principal 

quantum number, n, 

E = -m /4n 2 
n q (B25) 

having set 1'l = c = e = Z = 1. Of particular relevance in the 

calculation of quantities like the ratio of leptonic widths of 

two levels in the charmonium system is the value of the S 

wavefunction at the origin. For the Coulomb potential the 

first three S wave radial wavefunctions are expressed as: 

(0) 1.5 .; 
R1s = mq I 2 (B26a) 

(B26b) 

(B26c) 

We show in Table B 1 the comparison of theoretical and 

calculated values for the first five S and first five P wave 

energy levels and also the first three S wave radial wavefunctions 

at the origin. - 135 -



The calculation is done first with n=99 and then with n=49 

to investigate the errors introduced by the matrix method. 

The quark masses that we have used are relevant for the 

charmonium and bottomonium spectroscopy and we also 

anticipate a toponium spectrum for a top quark mass of 110 

GeV. For this potential all but the lowest lying S states of 

toponium are accurately predicted, signalling that for these 

states even a matrix of 99 x 99 is insufficient in size which 

is due to the singular behaviour of the potential at the origin. 

It is precisely this short distance singular region which is 

most sensitive to these lowest lying toponium S states. 

Increasing the size of the matrix A proves to be very 

impractical as the time taken for the routine, which determines 

the eigenvalues of a tridiagonal matrix, is approximately 

proportional to n 3 , where n is the dimension of the matrix. 

However, we do not expect QCD-Iike potentials (which 

incorporate softening logarithmic terms) to be as singular 

as the Coulomb potentials as r.- o, and so more accurate 

predictions are obtained for the same size of matrix. 

B. 3. 2 3-Dimensional Harmonic Potential 

The potential has the simple form V(r) = r 2 /ll giving an energy 

level structure dependent upon both the principal quantum 

number, n, and the orbital angular momentum,-"., 

En-". = (2n - i - 1/2)//m q (B27) 

Again for the first three S wave radial wavefunctions evaluated 

ar r = o, we have the analytic result; 
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lm 0.75 

( 
2
;) 2/n 

(828a) 

2/n 
(B28b) 

(B28c) 

A comparison of the analytic and computed values is shown 

in Table 8 2. In contrast to the Coulomb potential, the 

predictions for the toponium spectroscopy are very accurate 

due to the fact that the oscillator potential is finite at r = 

o; and indeed for all three quark mass values the predictions 

shown in Table 82 differ by less than 0. 5% from the theoretical 

results. 

As the work in this thesis requires a substantial amount of computing, 

in that a single fit to quarkonia data using a potential with a number 

of free parameters requires of the order of a few thousand solutions 

of the Schrodinger equation, matrices of dimensions greater than 99 

x 99 prove to be too time consuming, as noted earlier. Indeed from 

the predictions in Tables 81 and 82, we see that for the states and 

mass range that we will be interested in, a matrix of dimensions 49 

x 49 is adequate and sufficiently economic although specific predictions 

for quantities requiring only a single solution of the matrix equation 

were performed with n=99. 
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Table 8.1 

~--------·- - -·- -~--

! ITL = 1.5 G=V 
! y j 

_____ ] _________ _ 

lTlq = 5 G=V _ 

Exact n=49 n=99 , Exact n=49 n=99 I Exact 

' E1s -0.375 -o.37495 -o.37SO i -1.25 -1.248 -1.2495 -10.0 

E2S -.09375 -.09379 -.09357 -D.3125 -0.3123 -0.3124 -2.5 

E3S -.04166 -.04201 -.04170 i -D.1389 -0.1389 -D.1389 1 -1.111 

-.02344 -.02264 -.02361 -.07813 -.07828 -.07813! -o.625 
i 
! 

Ess -.01s 
i 

-.01926 -.01682 1 -.OS -.0511 - .OS(U) J -0.40 
l 
i 1------------------,-----------------r-----
! 

E1p -.09375 -.09377 -.09375 -0.3125 -D.3125 -0.3125' -2.5 

rtq = 40 G=V 

n=49 n=99 

-9.351 -9.792 

-2.418 -2.474 

-1.007 -1.103 

-0.6148 -0.6217! 

-0.3948 -o.3983! 

-2.5(D) -2.5 

E2P -.04166 -.04186 -.04169 , -.1389 -.1389 -.1389 ! -1.111 -1.1114 -1.1111! 

E4P 

RlS 

-.02344 -.02351 -.02358 . -.07813 -.07826 i -.07813 i -o.625 -0.6251 -o.625 

! -.015 -.01936 -.01656 ' -.05 -.0510 - 05005 i - 40 • l • -.4001 -.40 

-.0104 

1.299 

0.4593 

0.25 

0.03199 -.0099 ! -.03472 
j 

1.295 1.297 17.9057 

0.4580 0.4585 t 2. 7951 
! 

0.2456 0.2502 l 1.5215 
I 

-.03724 

7.7918 

2.7583 

1.5015 

I 

-.03494 j -.2778 
I 

i 
I 

7.8532 i 178.9 
I 

2.7774 i 63.25 
I 

1.5119 i 34 4 
I o 

-.2779 

140.5 

52.4 

28.9 

Predk:tions for the Coulomb potentia I for a variety 

of quark masses, showing the sensitivity to the 

dimensions of the matrix , and compared to the exact 

analytic value. 
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r;::' 
! 

8 2s 

E3s 

E4s 

E5s 

---~1 

E1p 

E2p : 

E3P 

E4p 

E5P 

R1s 

I R2s 
I 

i R3s 
!_ 

Table B. 2 

mq = 1.5 GeV mq = 5 GeV mq 40 ~~~ 
------- ---- ~-!-----

Exact n=49 n=99 Exact n=49 n=99 Exact n=49 
---~--

1.2247 1. 224 7 1. 224 7 0.6708 0.6708 0.6708 ' 0.2372 0.2372 

2.8577 2.8575 2.8577 I 1. 5653 1.5652 1.5652 0.5534 0.5534 
I 

4.4907 4.4886 4.4906 2.4597 2.4590 2.4596 0.8696 0.8695 

6,1237 6.1141 6.1231 3.3541 3.3512 3.3539 1.1859 1.1853 

7.7567 7. 7233 7.75441 4.2485 4.2389 4.2479 1. 5021 1. 5005 

I 
J_ ------- ---------- - ---------

2.0412 2.0412 2.0412 1.1180 1.1180 1.1180 0.3953 0.3953 

3.6742 3.6735 3.6742 I 2.0125 2.0123 2.0125 0. 7115 0. 7115 

! 
5.3072 5.3030 5. 3070 I 2.9069 2.9056 2.9068 1.0277 1.0275 

6.9402 6,9231 6.9391: 3.8010 3.7963 3. 8013 1. 3440 1. 3431 

8.5732 8.5170 8.5694 4.6957 4.6801 4.6947 1.6602 1.6577 

1.0399 1.0402 1.0399 ' 1.6334 1.6342 1.6335 3.5624 3.5674 

0.3677 0.3678 0.3677 1 0.5775 0.5781 0.5776 ' 1.2595 1.2636 

0.2388 0.2374 0.2374 0.3751 0.3732 0.3729. 0.8181 0.8169 
---- ----- -- ----------~-----

Predictions for the 3-dimensional Harmonic Oscillator 

potential for a variety of quark masses, showing the 

sensitivity to the dimension of the matrix. and compared 

to the exact analytic value. 
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0.2372 

0.5534 

l 
0.8696j 

1.1858; 

1. 5020 i 

--· 

0.3953 

0. 7115 

1.0277 

1.3439 

1.6600 

3.5635 

1.2604' 

0.8140 

' --- ------ ~ 



APPENDIX C 

Computer Program listing 

We reproduce a listing of the computer program used in this work. The 

program uses the methods developed in Appendix 8 to solve the Schrodinger 

equation for a given input potential, which as seen in Chapter 3 contains 

5 variable parameters that can be adjusted in order to obtain optimum 

agreement with quarkonia data values. A minimising routine is used to 

obtain the fit parameters by minimising the value of x2 as defined in eq. 

( 3. 13). Comment cards within the program describe the details. 

c 
c 
c: 
c 
c 
c 
c 
c 
c 
c 
c 

c 

c 

*** 
IHHf 

******************************************************** 
* * * * 
* 

TO SOLVE THE SC:HROOINGER EQUATION FOR A 
GIVEN INTERQUARK POTENTIAL AND OBTAIN 
A FIT TO THE QUARKONIA DATA 

* * * * * ******************************************************** 

MINIMISING ROUTINE WHICH CALLS A SUBROUTINE FCN AND 
MINIMISES THE VALUE OF F WITHIN FCN 

CALL MINTSD 
STOP 
END 
SU~Rti1UJfNE FCNbN~A~,G.~,x,IFLAGl 
IM~L C REAL*v .A H,u -' 
COMMON/ABCD/PI 1 XH,EUL.XLAM,8ETA0,BETA1.BLER,NF,VQ 
DIMENSION A<5 Y9' DAt99J EC99J,E2!90) 1 ~Cl~l,WU(l0l VECC 00

' ,Dr 
AJO> INT<99> 1 W6Rvcloool Bf3 99> 1 AP<5, 0Y>,RADL<0:200~,ST<e~ 

DIMtNSION AU(6 3l,QMAS~<6 fo> UDATA~!6),QERR!l6l,YTHE0!2~> 
DIMENSION X<30~ 6<30) VRG~(99~,VRG2(40J,VR61(40l ERR0R(40) 
DIMENSION VRG4<~9> 1 VRG6<40J~ABJ<20'&WF<40> 1 WD<40~,WS<60' DATA ST/l.OD-Olrl.UD-02,1.0u-03,l.Ou-04,1.UD-05,1.0D-06/ 

*** QUARKONIA DATA VALUES 
DATA QOATA/3.663D+00,3.068D+00,0.457D+00,0.432D+00,9.452D+OO 
A~0.56?D+90~9~~00Q+00,0~~48Q~09,0.§09D+OOI0.43?Q+00,0.328D+OO, 
Ab.OD+Ul u.oo!~D+U0,3.4~~D-uo,u.54L4D+OO .1D-U6/ 

DATA QE~R/~ D -~ ~ D )~ l) D -~ - - '0+0! ~ ~o ~-J~ ~ D 0~ 
AZ.5D-o3~i-~6-;~;~~6-;~~6.t~D~g8;g:g3D+o8:~:iD~o~:~· -J~, 
AQ,OZOD+uOL0.343~D-06rO.OZOD+OO,U.12D-06/ 
IF<IFLAG.~T.l>GOTO lUlO . 
EUL=0.5772D+OO 

*** QCD SCALE PARAMETER <XLAM> 
><LAM=O. ZOD+OO 
~~~~l.OD+00/1.37D+02 

F'I=3.1415926D+OO 

- 140 -



BETA0=(33.0-2.*NF>I6. 
BETA1=<153.-19.•NFl/12. 
BLER=<BET~O+Cl.0/3.0>>•EUL+C93.0/37.0>-<5.0/6.0> 

C *** OIMENSIUN OF THE MATRIX <KO> 
KQ=49 
XH=l.O/(KQ+l.O> 
XH2=XH**2 
CALL SUB1<VRG1 1 ERROR,VRG6> 
CALL SUB4<VRG4l 

1010 CONTINUE 
CALL SUB3<VRG3,VRG4,X> 

C *** EVEN NAN = P-WAVES ODD NAN = S-WAVES. 
DO 1000 NAN=1,6 ' 

N=KQ 
IA=5 
IXB=3 
M1=3 
MB1=1 
EPSl=O.OD+OO 
LMBl=-1 
LWORK=lOOO 
NA=KQ 
IAA=;. 
MAl=~ 

C *** X(l) =CHARM QUARK MASS 
C *** XC2) = BOTTOM QUARK MASS 
C *** X<7> = TOP QUARK MASS 

c 
c 

11) 

20 

30 

IF<CNAN.EQ.l>>THEN 
MB2=2 
MM12=2 
UM=X<l> 
ELSE IFCNAN.EQ.Z>THEN 
MBZ=l 
MM12=1 
UM=X<l> 
ELSE IFCNAN.EQ.3>THEN 
MB2=3 
MM12=3 
UM=X<2> 
ELSE IFCNAN.EQ.4>THEN 
MB2=2 
MM12=2 
UM=X<2> 
ELSE IFCNAN.EQ.5>THEN 
MB2=2 
MM12=2 
UM=X<7> 
ELSE IF<NAN.EQ.6>THEN 
MB2=1 
MM12=1 
UM=XC7> 
END IF 

*** TO DETERMINE THE BAND FIVE SYMMETRIC MATRIX A 
*** <ONLY THE UPPER TRIANGLE ELEMENTS ARE GIVEN> 

DO 10 J=3,KQ 
A<1fJ>=XH2*<J*(J-2>>**2/12 

CONT NUE 
DO 20 J=2,KQ 

A<ZfJ)=-4*XH2*<J*<J-1>>**2/3 
CONT NUE 
IF<<NAN.EQ.Z>.OR.<NAN.EQ.4>.0R.<NAN.EQ.6>>THEN 
A<3,1>=<29*XH2/12>+<UM*<VRG3C1))+(2/CK0**2>>> 
A<3,KQ>=<31*XH2*K0**4/12>+CUM*<VRG3CKQ))+2*K0**2> 
DO 30 J=2,KQ-1 
PU=J•XH 
QU=l-PU 
~~~fi~~~*XH2*J**4/2+CUM*<VRG3CJ))+(2*<PU/QU>**Z>> 

ELSE IF<<NAN.EQ.l>.OR.<NAN.EQ.3l.OR.CNAN.EQ.5> >THEN 
A<3,1>=<31*XH2/12>+<UM*<VRG3<1>>> 
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A<3 KQl=<Z9*XH2*<K0**4l/12l+CUM*CVRG3CkQll) 
DO ~9 J=Z,KQ-1 
PU=J*XH 
QU=l-PU 

A<3fJ)=(5*XH2*J**4/2J+CUM*<VRG3(Jl ll 
29 CONT NUE . 

END IF 
C *** ROUTINE TO TRI-DIAGONALISE THE BAND FIVE MATRIX A 

CALL F01BWF<N,M1,A,IA,DA,El 
DO 100 L=l KQ 
E2<L>=E<L~**2 

100 CONTINUE 
C *** ROUTINE TO FIND EIGENVALUES OF TRIDIAGONAL MATRIX 
C *** DIAGONAL ELEMENTS ARE IN DA 
C *** OFF-DIAGONAL ELEMENTS ARE IN E 

CALL FOZBFF<DA,E,EZ,N,MBl,MBZ,MM12,EPS1,X02AAFCXl. 
AEPSZ,IZ,R,WUl 

DO 710 JJJ=l,MB2 
QMASS<NAN,JJJl=RCJJJl/UM+Z*UM 

710 CONTINUE 
IFCCNAN.EQ.Zl.OR. CNAN.EQ.4l .OR.<NAN.EQ.6l lGOTO 2001 
DO 700 III=1,MB2 
IFAIL=l 
D(1)=-1.0D+OO 
DO 11 J=3,KQ 

AP<1,Jl=XHZ*CJ*CJ-2ll**2/12 
11 CONTINUE 

DO 21 J=Z,KQ 
AP<2,Jl=-4*XHZ*CJ*CJ-1ll**Z/3 

21 CONTINUE 
IF<<NAN.EQ.2l.OR.CNAN.EQ.4) .OR.<NAN.EQ.6) lTHEN 
APC3,1l=<29*XH2/12l+CUM*<VRG3C1ll+(2/(kQ**Zl)) 
AP<3lKQl=C3·1*XH2*k0**4/12l+<UM*<VRG3CKQll+2*KO**Zl 
DO 3 J=Z,KQ-1 
PU=J*XH 
QU=1-PU 
APC3fJ>=5*XH2*J**4/Z+CUM*<VRG3CJ> l+<2*CPU/QU>**2>> 

31 CONT NUE 
ELSE IFCCNAN.EQ.1l.OR.CNAN.EQ.3J.OR.<NAN.EQ.5llTHEN 
APC3,1l=C31*XH2/12l+CUM*<VRG3<1>>> 
APC~~KQ>~<~~*XH2*<K0**4l/12>+CUM*CVRG3CKQ>>> 
DO ~~ J=,,kU-1 
PU=J*XH 
QU=1-PU 

APC3,Jl=<5*XHZ*J**4/2l+CUM*CVRG3<Jlll 
32 CONTINUE 

END IF 

C *** TO FIND THE EIGENVECTORS OF THE INITIAL MATRIX 
C *** THE EIGENVECTOR IS OUTPUT IN VEC 

RMU=R<III> 
CALL FOZSDFCNAfMAl,LMBl,AP,IAA,B,IXB,.TRUE.,1.0D-04,RMU,VEC,D,INT, 
~wORK,LWORK,IFA Ll · 

RNMU=RMU+Dl30> 
DO 95 K=l.KQ 
WT=K*XH 
RADL<K>=VECCKl*K**Z/Cl-WTl 
IFCABSCRADLCK>>.LT.1.0D-25>THEN 
RADLCK>=O.OD+OO 
END IF 

95 CONTINUE 
IOUT=O 
DO 800 N=1,10 

150 CONTINUE 
RADL<O>=O.OD+OO 
RADL<KQ+1l=O.OD+OO 

C *** TO RENORMALISE THE WAVEFUNCTION *** 

XSIMP=O.OD+OO 
LSIM=1 
DO 200 M=l,KQ+l 

TR=M*XH 
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IFAC~3+LSIM 
IF<CM.EQ.Ol .OR.<M.EQ.KQ+ll lTHEN 
IFAC=l 
END IF 
XSIMP=XSIMP+IFAC•<RADL<M>*<l-TRl/TR**2l**2 
LSIM=-LSIM 

200 CONTINUE 
XSIMP=XSIMP•XH/3 
IF<IOUT.EQ.llGOTO 220 
IF<IOUT.EQ.ZlGOTO 888 
IF<XSIMP.GT.l.OD+OO>THEN 
GOTO 210 
ELSE IF<XSIMP.LT.l.OD+OOlTHEN 
~sy~=lzo 
END IF 

210 CONTINUE 
nn ~nn J=1 vn 
-~Afi~iJ>=~AbCcJ:/l.OD+Ol 

300 CONTINUE 
GOTO 150 

ZZO CONTINUE 
IFCXSIMP.LT.l.OD+OOlTHEN 
DO 400 K=l,KQ 

RADLCKl=RADL'Kl•<N+ll/N 
400 CONTINUE 

ELSE IFCXSIMP.GT.l.OD+OOJTHEN 
DO 410 K=l KQ 

RADL<Kl=RADL<Kl•<N-ll/N 
410 CONTINUE 

GOTO 801 
END IF 

800 CONTINUE 
801 rL1NTINU~ 

PM=N-1.tD+OO 
IOUT=2 
DO 950 N=1,5 
ZMAX=PM+ll.OD+OO•ST<N> 
DO 900 YK=PM,ZMAX,ST<N> 
GOTO 150 

888 CONTINUE 
IF<XSIMP.LT.l.OD+OO>THEN 
DO 910 K=1 KQ 

RADL<K>=RADL<K>•<YK+STCN)l/YK 
910 CONTINUE 

ELSE IF<XSIMP.GT.1.0D+OO>THEN 
DO 920 K=l KQ 

RAOL!K'=RlDL<K>•<YK-ST<Nl'/YV 
920 CONTINUE 

GOTO 949 
END IF 

9QO CONTINUE 
949 CONTINUE 

PM=YK-ST(Nl 
950 CONTINUE 

AQ<NAN,IIIl=RADL<KQl+CRADLCKQ:-RADLCKQ-lll 

700 CONTINUE 
2001 CONTINUE 
1000 CONTINUE 
C *** TO CALCULATE THE RUNNING COUPLING CONSTANT FOR CC,BB,TT. 

GG2=BETA0**2/BETA1 
GG4=<GG2/2l**<1./GG2l 
GG5=BETA0**2*DLOG<<2•X<7ll/XLAMl 
GG6=BETAO**Z*DLOG<<2•X<1Jl/XLAM> 
GG7=BETA0**2*DLOG<<2•X<2ll/XLAM> 
GG8=BETA1•DLOG<2./GG2> 
PP=BETA1/CGG6+GG8' 
QP=BETA1/CGG7+GG8l 
XS=BETA1/(GG5+GG8l 
WF<l>=PP 
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845 
846 

,-. 

741 
740 

c 

7:30 

DO 845 Jl<= 1.t 40 
WFCJK+1l=P~/Cl.+PP*OLOG<<WFCJKl+1l/WF<JKlll 
IFCABSCWFCJK+ll-WFCJKll.LT.l.00-04lTHEN 
P 4 = WF < J K + 1 l 
GOTO 846 
END IF 

CONTINUE 
CONTINUE 
WDCll=QP 
DO 847 Jl<=l.t40 
WD<JK+ll=Q~/Cl.+OP*DLOG<<WDCJKl+ll/WD<JKlll 
IF<ABS<WD<JK+ll-WO<JKll.LT.l.OD-04lTHEN 
P6=WDC JK+1 l 
GOTO :348 
END IF 

CONTINUE 
CONTINUE 
WS( 1 l ='<5 
DO ::;:::::: Jl<= 1, 60 

WS<JK+ll=XS/Cl.+XS*DLOG(CWS<JKl+ll/WS<JK)' l 
IFCABSCWS<JK+ll-WS'~Vll.LT.l.OD-04lTHEN 
P::::=WS<JK+l l 
GOTO :34 
:::f'JD IF 

C::II'HINUE 
COI'HINUE 
APC=BETAO*PI*P4/BETA1 
APB=BETAO*PI*P6/BETA1 
APT=BETAO*PI*P8/BETA! 

¥¥* ARRAY YTHEO DEFINES THE PREDICTIONS OF THE SCHRODINGER EQ. 
YTHEO<ll=QMASS<1,2l-QMASS(l,ll 
YTHE0<2l=QMASSC1,ll 
YTHEOC3l=QMASSC2,ll-QMASSC1 1 ll 
YTHEOC4l=CAQ<1,2l*OMASSC1,1 1 /CAQ<1,1l*OMASS<l,Zlll**Z 
YTHEOC5l=QMASSC3,1l 
YTHEOC6l=QMASSC3,2>-QMASS<3,1l 
YTHEOC7l=QMASSC3,3>-QMASS<3,1) 

~f~~s~~~:a~:§§~~·1~=8~~§s~~·l~ 
YTHEOC10>=<AQ<3,~>*0MASSC3,f>ICAQC3,1>*0MASSC3,2l>>**Z 
YTHEOC11>=<AQ<3,3l*OMASS<3,1l/CAQ<3,1l*OMASS<3,3>>>**2 
CORC=1.-16*APC/\3*PI> 
CORB=1.-16*APB/C3*PI> 
CORT=1.-16*APT/C3*PI> 
YTHEOC12>=QMASS<5,1l 
YTHEOC13>=QMASSC5,2>-QMASS<5,1l 
YTHEOC14>=C4.*EMA*A0<5,1l/C3.*0MASS<5,1lll**2*CORT 
YTHE0<15>=QMASSC6,1l-QMASS<5,1l 
IF<IFLAG.EQ.3>THEN 
PRINT I ( I I OLAMDA QCD= I I D 15. 6) I , ){LAM 
PRINT' (I 'OC MASS=' I ,015.6> I ,}~(1) 
PRINT I ( I I OB MASS= I I , 015. 6) I }~ ( 2) 
C•R• I NT I ( I I (J(•l = I I D 11=: ,~ ) I v ( ·-=· t 
1 • ·• • , ._1 • -' , I\ ·-• } 

PRINT I ( I I OC2= I I , D 15. 6) I '){( 4) 
PRINT' (' 1 ORO='' ,D15.r~.) 1 ,~<(5) 
PRINT' (I 1 0AA= I I 015.6) I ,){(tS) 
PRINT' (I 1 0T MASS=' I ,01'5.6> I ,><17) 
0~RJ~9 +~i!Jk0

5vTHEO<JK> 
FORMAT<I6,D2 .10> 

CONTINUE 
END IF 

*** ARRAY ABJ CALCULATES CHI**Z FOR QUARKONIA DATA 
F=O.OD+OO 
DO 730 LMN=Z, 12 

ABJ<LMN>=<<YTHEO<LMN>-QDATA<LMN))/QERR<LMN))**Z 
CONTINUE 
DO 6:30 LMN=2 12 
F=F+ABJ<LMN~ 

CONTINUE 
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632 
631 

c 

IF< I FLAG-. EQI. 3 >THEN 
DO 6:31 LMN=·2:, 12: 

PRINT 632,LMN 1 QDATA<LMNl,QERR<LMNl ABJCLMN> 
FORMAT <I6,3Dl5.&l ' 

CONTINUE 
PRINT' (I 'OCHI**2 FROM QUARKONIA=' I ,D15.6l I 9F 
END IF 

CALL SUB2<VRG6 VRG2 Xl 
*** ARRAY BZ CALtULATts CHI**Z FOR POTENTIAL AT SHORT DISTANCES 

BZ=O.OD+OO 
DO 725 N=1 10 
BZ=BZ+<<VR~1(Nl-VRG2<Nll/ERRORfNl l**2 
~~~J~~UE 
IF<IFLAG.EQ.3lTHEN 
PRINT'(' 'OCHI**Z FROM POTENTIAL=' ·~D15.6l I ,BZ 
PRINT' (I 'OTOTAL CHI**Z=' I ,01:=: •. '~.) I ,t-
F'RINT' (' '0 R vs PHENOM. CHI••Z' I) I 
DO 728 N=lr10 
QM = 0 • 01 D+(HJ 
YAF=N*OMn<LAM 
E~INT_7~9~YAF~VRG1<Nl ,VRGZCNl ,<'VRG1(Nl-VRG2!Nll/ERROR(N)l**2 
t- URMA 1 \ 4U 15. r;. l 

CONTINUE 
END IF 
RETURN 
END 

C *** SUB1 CALCLATES REGULARISED AND UNREGULARISED SHORT DISTANCE 
C *** PART OF THE POTENTIAL 

SUBROUTINE SUB1<VRG1,ERROR,VRG6l 
IMPLICIT REAL*8 <A-H,O-Zl 
COMMON/ABCD/PI,XH,EUL XLAM BETAO,BETA1 BLER NF KQ 
DIMENSION A1R!40> 1 Q1Af40l,ALPHA<40l,VR&t<40~,E~ROR<40l,FXC40l DIMENSION VRG6!40;,FY<40> 
ISTEP=500 
DO 100 N=1,10 
JSIM=-1 
TOT=O.OD+OO 
AXH=O.OlD+OO 
PU=N*AXH/XLAM 
~<MC= 1. 5D+OO 
VEX=5.0D+00/6.0D+OO 
ZMC=XMC*EXP<VEX> 
BEG=ZMC*PU 
FIN=3.0D+01 
AH=<FIN-BEGl/ISTEP 
DO 200 IA=1,ISTEP+1 

Q=BEG+<<IA-1>•AHl 
IFAC=:::::+JSIM 
IF ( < I A. EQ. 1 l . OR. < I A . EQ. I STEP+ 1 l l THEN 
IFAC=1 
END IF 
TEG=EXP ( -Q > /I:J 
TOT=TOT+IFAC•TEG 
JSIM=-JSIM 

200 CONTINUE 
TOT=TOT*AH/3 
A1RCN>=BLER+CLOG<XMC*PU>13.0>+TOT/3.0 
Q1A<N>=EXPC-A1R<Nl/BETA0>*<1.0/PU> 
BB2=BETA0**2/BETA1 
BB4=<BB2/2l**<1./BB2> 
ZLO=BETAO**Z*LOGCCQ1A<Nl/XLAM>+BB4> 
ZLl=BETAO**Z*LOGCQlACNl/XLAMl 
ZL2=BETA1*LOG<2./BB2l 
XX=BETA1/CZL1+ZLZ> 
FX ( 1) =X~< 
DO :300 JK= 1, 40 

FXCJK+ll=XX/(1.+XX•DLOG<<FX<JKJ+1l/FXCJKlll 
IFCABS<FX<JK+1l-FX<JKll.LT.l.OD-04lTHEN. 
CZ=F}« JK+1) 
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GOTo-~01 
END IF 

300 CONTINUE 
301 CONTINUE 

RHO=BETAO*C2/BETA1 
ALPHA<N>:=PI*RHO 
VRGl<N>=-4*ALPHA<Nl/(3*PUl 
ERROR<N>=<3*ALPHA<Nl/Pil**2*VRG1<Nl 
YY=BETA1/CZLO+ZL2l 
FY<l>=YY 
DO 305 JK=1,40 

FYCJK+ll=YY/(l.+YY*DLOG<<FY<JKl+ll/FY<JKl l l 
IF<ABS<FY<JK+1l-FY<Jkll.LT.l.OD-04lTHEN 
C4=FY(JK+1) 
GOTO 306 
END IF 

305 CONTINUE 
:;:06 CONTINUE 

PFR=BETAO*C4*PI/BETA1 
VRG6<N>=-4*PFRI<3*PUl 

100 CONTINUE 

,-· 
·-· 
c 

END 

*** SUB2 CALCULATES THE TOTAL INTERQUARK POTENTIAL TQ BE 
*** COMPARED AGAINST TrlE PERTUBATIVE POTENTIAL 

SUBROUTINE SUB2<VRG6,VRG2,Xl 
IMPLICIT REAL*8 <A-H,O-Zl 
COMMON/ABCD/PI,XH,EUL 1 XLAMrBETAOrBETAl,BLER,NF,KQ 
DIMENSION VRG6<40),VRG2<40J,X(30J 
DO 100 N=1r10 
BXH=O.OlD+uO 
PU=N*m<HIXLAM 
VRG2<Nl=VRG6<Nl+X<6l*PU+PU*(X(3l+PU*X(4ll*DEXP<-PU/X(5ll 

100 CONTINUE 
END 

C *** SUB3 CALCULATES THE TOTAL INTERQUARK POTENTIAL TO 
C *** SCHRODINGERS EQUATION WITH. 

SUBROUTINE SUB3<VRG3,VRG4,Xl 
IMPLICIT BEAL*8 <A-H,O-Z> 
COMMON/ABCD/PirXH~EUL~XLAM~BETAOrBETAl,BLER,NF,KQ 
DIMENSION XC30J VHG3<99) VHG4<99J 
DO 100 N=1,KQ ' ' 
PU=N*)<H 
QU=1-PU 
RAB=QU/PU 
IF<<RAB/X(5ll.GT.1.0D+02lTHEN 
A2=>< < 6 l *f;~AB 
ELSE IF<<RAB/XC5ll.LT.9.990D+01lTHEN 
A2=X<6l*RAB•RAB*<X<3l+X(4l*RABl*DEXP<-RAB/X(5l l 
END IF 
VRG3<Nl=VRG4CNl+A2 

100 ~~~TINUE 

C *** SUB4 CALCULATES THE TOTAL SHORT DISTANCE POTENTIAL TO 
C *** LARGE DISTANCES. 

SUBROUTINE SUB4<VRG4> 
IMPLICIT REAL*8 <A-H,O-Z> 
COMMON/ABCO/PI XH,EUL XLAM BETAO BETA1 BLER NF KQ 
DIMENSION A1RC~9l,Q1Af99l,lLPHA<~9>,X<~Ol,V~G4f99),FX<60l 
ISTEP=500 
DO 100 N=1,1<Q 
JSIM=-1 
TOT=O.OD+OO 
PU=N*XH 
QU=l-F'U 
XMC=1.5D+OO 
VEX=5.0D+00/6.0D+OO 
ZMC=XMC*EXPCVEX) 
BEG=ZMC*OU/PU 
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200 
25() 

:~:(l(l 

301 

100 

F'-t N=3. OD-iiOl 
f!Jf~o~oo~66HEN 
GOTO 250 
END IF 
AH=<FIN-BEG)/ISTEP 
DO 200 IA=l,ISTEP+l 

Q=BEG+<<IA-ll*AH> 
IFAC=3+JSIM 
IF< ( I A. EQ. 1 > . OR. < I A. EQ. I STEF'+ 1 ) l THEN 
IFAC=l 
END IF 
TEG=E)<P < -Q) /Q 
TOT=TOT+IFAC•TEG 
JSIM=-JSIM 

CONTINUE 
Tt:tT=IOT*AH/:~: C:uNT NUE 
RAE:=QU/PU 
A1R<N>=E:LER+<LOG<XMC*RABJ/3.0>+TOT/3.0 
QlA<N>=EXPC-AlR<N>!BETAOl*(l.O'RAB> 
~Bi~~~~~9!!i'~~~'~B2> 
7Ll=BETAO**?*tLnGcrntA'N'I~LA~l+BB4'' ZLZ=BETA 1 *LOG ( 2:: ?BBZ) '. '. . . . .. ' ' 
XX=BETA11<ZL1+ZL2l 
FX ( 1 > =){){ 
DO 300 Jl<= 1, 60 

FVCJK+l)=XX/(1. +Y~*DLf.iGC<FXIJK'+l>'FVCJK))) 
I~ ( ABS {F)< C JV+i ~ -~~( CJF:-.; J. LT. i. O:b-'J4JT(.:!E:N 
C2=Fi<(JK+1) 
GOTO 301 
END IF 

CONTINUE 
CONTINUE 
RHO=BETAO*C2/BETA1 
ALPHA<N>=PI*RHO 
VRG4<N>=-4*ALPHACN>I<3*RAB> 
CONTINUE 
END 
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Example : 

We reproduce the output from a sample fit to the ce and bli 

Table 3.1. The total X2 is eplit into contributions from the 

quarkonia data values and from the fit to tbe perturbative 

form of the potential,as indicated by eq.(3.13),aod we 

indicate the x2 contribution from each point in the sum of 

eq.(3.7) for X~ .we also make tt predictions for m(lS) • 80 GeV 

in numbers 13,14 and 15. These corresoond to m(2S) - m(1S), 

f
1 

and m(1P) - m(1S) reapectively,as shown in Table 4.2. 

LAMOA QCO= 0.2000000+00 
C MASS= 0.1366200+01 
B MASS= 0.4788360+01 
~;~ -R- 1 t,;~q;B!8l ~.._._ - • 1 ·-·- ·-·"t 
RO= 0.6975430+00 
AA= 0.2162930+00 
T MASS= 0.4051690+02 

1 0.60962140670+00 
2 0.30679~65550+01 
:3 0. 426509127 6n+OO 
4 0.49427289140+00 
5 0.94519989270+01 
6 0.57136666160+00 
7 0.90289769180+00 
8 0.44561030050+00 
9 0.79017079140+00 

10 0.38681827990+00 
11 0.31914725690+00 
12 0.80000986310+02 
13 0.66939494030+00 
14 0.35416520310-05 
15 0.54786845940+00 

~ 8:~8,888B!8A 8:f88888B=8f 
4 0.4320000+00 0.6000000-01 
5 0.9452000+01 0.2500000-02 
6 0.5670000+00 0.3000000-02 
7 0.9000000+00 0.2500000-02 
8 0.4480000+00 0.2500000-02 
9 0.8090000+00 0.6000000-02 

10 0.4390000+00 0.3000000-01 
11 0.3280000+00 0.3000000-01 
12 0.8000000+02 0.1000000+00 

CHI**Z FROM QUARKONIA= 0.2771140+02 
CHI**Z FROM POTENTIAL= 0.1639760+01 
TOTAL CHI**2= 0.2935110+02 

8:$I~~$1B:;81 
0.1077200+01 
0. 1:342970-0~· 
0.2118640+01 
0.1343460+01 
0.9137060+00 
0.9848310+01 
0.3025480+01 
0.8707900-01 
0.9729060-04 

R VS PHENOM. CHI **Z 

§:i~§§§§~!§s :§:~8l~~~tii§l :§:~~21iiti!§l §:~}~~~G:§t 
0.2000000+00 -0.1698970+01 -0.1720750+01 0.4687440-01 
0.2500000+00 -0.1491920+01 -0.1501130+01 0.7478950-02 
0.3000000+00 -0.1352900+01 -0.1342930+01 0.7601100-02 

8:~688888:88 =8:lrs~?iB:8l =8:lrl~§~Bt8l 8:~~o1~rB~8o 
0.4500000+00 -0.1130180+01 -0.1030340+01 0.4432970+00 
0.5000000+00 -0.1091060+01 -0.9528130+00 0.6889610+00 
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