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COMPOSITE MODELS OF WEAK GAUGE BOSONS 

Neil Alexander Speirs 

ABSTRACT 

Composite models of quarks, leptons and weak bosons are reviewed. 

It 1s shown that they can reproduce the low energy results of the 

Standard Weinberg-Salam Model of electroweak interactions. The 

consequences of assuming composite W and Z bosons are examined and 

many new particles are predicted, including excited W and Z states and 

their pseudoscalar partners. Estimates of the masses and decay widths 

of these particles are given. It is also shown that coloured weak 

bosons may exist 1n the energy range 100-200 GeV. 

The decays of a composite Z boson are studied in detail using 

both a potential model and an effective Lagrangian approach. It lS 

found that the width 1s likely to be significantly different from that 

of the elementary Z of the Standard Model. In particular there are 

additional contributions to the decays Z -~ qqg and Z -~ ggg which are 

likely to affect the total Z width by an appreciable amount. The 

decay of the Z into hypercoloured particles is also examined and it is 

found that the width is likely to exceed greatly the current 

experimental bound. 

It 1s concluded that the W and Z bosons are likely to be 

elementary particles because if they were composite their decay widths 

would be much greater than is found experimentally, unless of course 

their internal dynamics are quite unlike the model which has been 

employed. 



CHAPTER 1 THE STANDARD MODEL 

1 . 1 Introduction 

It has been discovered that all the interactions so far observed 

1n nature can be explained by four fundamental forces. These are the 

strong and weak nuclear forces, electromagnetism and gravity. These 

forces act between quarks and leptons which are currently believed to 

be the fundamental building blocks of matter. In Table 1.1 a list of 

elementary particles together with some of their quantum numbers 1s 

given. In this chapter the main results of the successful "Standard 

Model" of these interactions are described as a prelude to the 

introduction of composite models in chapter 2. 

1.2 Gauge Theories 

Recent developments in particle physics have revealed the 

relevance of gauge invariance in describing the electromagnetic, 

strong and weak interactions. Gauge theories have become important 

for two reasons. The first is that gauge theories are renormalizable 

- that 1s to say the divergences which occur 1n higher order 

calculations can all be removed in a well defined way. The second 

reason 1s the great success of one particular gauge theory, namely 

Quantum Electrodynamics (QED) [1.1]. The QED prediction for the 

anomalous magnetic moment of the muon is in agreement with the 

experimental result to within 1 part in 105 . 

QED describes the electromagnetic interaction of spin 1/2 

fermions with a spin 1 photon. The Lagrangian for QED is given by 



TablP 1,1 

Elementary particles and some of their Quantum Numbers 

Quarks 

d (down) 

u (up) 

s (strange) 

c (charm) 

b (bottom) 

t (top) 

Leptons 

e (electron) 

v (electron neutrino) 
e 

~ (muon) 

v (muon neutrino) 
~ 

T (tau) 

v (tau neutrino) 
T 

Gauge bosons 

-y (photon) 

± W ,Z (weak bosons) 

gi (i=1, ... 8 gluons) 

Spin 

1/2 

1/2 

1/2 

1/2 

1/2 

1/2 

1/2 

1/2 

1/2 

1/2 

1/2 

1/2 

2 

Baryon 
Number B 

1/3 

1/3 

1/3 

1/3 

1/3 

1/3 

0 

0 

0 

0 

0 

0 

0 

0 

0 

Lepton 
Number L Charge Q 

0 -1/3 

0 +2/3 

0 -1/3 

0 +2/3 

0 -1/3 

0 +2/3 

-1 

0 

-1 

0 

-1 

0 

0 0 

0 ± 1 10 

0 0 



L I 1 1 \ 
\I. 'I 

where w 1s the fermion field, A 1s the photon field and F 1s the 
~ ~v 

electromaqnetic field strenqth tensor defined by 

F 
IJV 

a A 
p v a A v p 

( 1. 2) 

The Lagrangian (1 .1) is invariant under global (position independent) 

phase transformations 

w -7 exp (-ia) w ( 1 . 3) 

However, it 1s not essential to require that a be fixed uniquely at 

all points of space and time. In fact the Lagrangian (1 .1) 1s 

invariant under local (position dependent) transformations 

1p -7 exp (- ia ( x) ) w ( 1 . 4) 

where a now depends on position provided that A transforms as 
I.J 

A -7 A + (1/e) a a(x) (1.5) 
I.J 1.1 I.J 

which is the usual gauge transformation for the electromagnetic vector 

potential. 

Requiring local gauge invariance has the consequence of 

restricting the coupling of the photon to fermions to be of the above 

minimal form i.e. the second term in (1.1) with no form factors or 

derivative terms. In addition, local gauge invariance forbids the 

inclusion of a mass term for the photon of the type m2A AI.J. The 
1.1 

impressive success of QED suggests that this 
. . gauge 1nvar1ance lS an 

important property of the theory so it is natural to attempt to 

describe the strong and weak interactions in this way too. 
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In one is dealing with the simple gauge symmetry of an 

Abelian u ( 1) group (1 .4) with constant generators. Quantum 

Chromodynamics (QCD) 1s the theory of the strong interaction 

[1.2, 1.3] and 1s described by an SU(3) qroup called "colour". The 

quarks lie in the fundamental triplet representation of this group. 

There are eight group generators Ta (a=1,8) which lie 1n the adjoint 

representation and can be expressed as traceless 3 x 3 matrices. The 

a T form a Lie algebra 

where the f b are the structure constants of the algebra. a c 

The basic Lagrangian of QCD is 

L 

( 1 . 6) 

( 1. 7) 

where q 1s a quark field of mass m, Ga (a=1,8) is an octet of 
IJ 

massless vector gauge bosons called gluons, Ga is the gluon field 
IJV • 

strength tensor and g is the strong coupling constant. Since SU(3) is 

a non-abelian group, the gauge transformations are more complicated. 

The QCD Lagrangian (1.7) is invariant under the infinitesimal gauge 

transformations 

a q -7 (1 + ia (x) T ) q 
a 

Ga -~ Ga - (1/g) o aa-
IJ IJ IJ 

if the field strength tensor is given by 

It can be seen from (1.9) that the gluon kinetic energy term 

4 

( 1 . 8) 

( 1 . 9) 



contains self coupling is 

a consequence of the non-abelian nature of the gauge group and shows 

that QCD is very different from the Abelian QED. 

The strong coupling g depends upon momentum in a well defined 

2 way. The coupling "constant" as= g /4n is said to "run". At two 

different momentum scales Q2 and ~ 2 one finds 

( 1 . 10) 

where p0 = 11 - 2/3 NF and NF is the number of fermions. 

In the analogous formula for QED one has 

( 1 . 11 ) 

Superficially the formulae (1.10) and (1.11) appear very similar. 

However, the s1gns in the denominators are important since for QCD if 

2 2 2 
NF ~ 16 then p0 > 0 and as(Q ) < as(~ ) for Q > 

QCD lS known as asymptotic freedom since as(Q 2) 

enables sensible perturbative calculations to be 

However, ( 1. 11 ) gives a(Q2) > 
2 

a(~ ) for Q 2 
> ~ 

2 

does not diverge 'l 2 untl Q ~ 1056 (GeV) 2 which 

~ 2 . This property of 

-~ 0 as Q2 -~ oo and 

performed at high -2 !:J . 

Notice that in QED a 

is not something to 

worry about since one expects quantum gravity effects to modify the 

theory long before these energies are attained. One can also re-

express as ln terms of a momentum scale for the colour force 

4n 
( 1 . 12) 

5 



where "2 -··c " 
2 

tJ exp J.S found to be [1.4, 1 .S] 1n Lhe ld.nye 

200-400 MeV. Like QED, QCD has been successfully confronted by 

experiment though not to the same sort of accuracy. 

It was hoped that weak interactions could also be described by a 

qau9e theory. However, in the case of the weak force, the postulated 

vector bosons have to be massive because of the short J:ange of the 

interaction, yet gau9e invaTiance forbids an explicit mass term of the 

form m2A AIJ. 
IJ 

Hence if weak interactions are to be described by a 

gauge theory, a more subtle method of introducing the vector boson 

mass must be found. 

1.3 Spontaneous Symmetry Breaking and the Standard Model 

The existence of massive vector bosons indicates that if weak 

interactions have a 9auge symmetry, then it must be broken. The 

symmetry breaking could be described simply by adding non-gauge 

invariant pieces such as a mass term to the Lagrangian. 

Unfortunately, this destroys some of the favourable features of the 

ori9inal gauge theory, notably its unitarity and renormalizability. 

Alternatively, the gauge symmetry can be broken by the method of 

"spontaneous symmetry breaking" which gives masses to the vector 

bosons but maintains the important properties of the theory. The idea 

is to construct a theory with a La9rangian which is exactly symmetric 

with respect to the group transformations but which gives rise to a 

non-invariant ground state. The non-invariance of the ground state 

(or vacuum) leads to a well defined pattern of symmetry breaking 

effects. 

Glashow initially [1.6] and later Weinberg [1.7] and Salam [1.8] 

6 



proposed that an SU(2) x U(1) gauge group could describe both the weak 

interaction and QED. This theory which uses the Higgs spontaneous 

symmetry breakdown mechanism [1.9] was subsequently shown by t·Hooft 

[1 .10] to be renormalizable. 

The Lagrangian of the Weinberg-Salam SU(2) x U(1) gauge theory 

with four vector bosons coupled to an SU(2) doublet of complex scalar 

fields is 

L = (D,~) t (D~~) - V(~t~) - 1/4 Wa W ~v - 1/4 B B~v 
.. IJV a ~v 

( 1 ' 1 3) 

where wa (a=1,3) lS the field strength tensor for the SU(2) gauge 
~v 

fields wa and B lS the tensor for the u ( 1 ) group. The "covariant 
~ IJV 

derivative" of the scalar field tp lS defined by 

(o + igT /2 wa + ig· 1/2 B ) tp 
IJ a ~ ~ 

(1.14) 

where Ta are the three Pauli matrices. The coupling constants g and 

g· correspond to the SU(2) and U(1) groups respectively. 

potential V(~t~) 1s taken to be 

The scalar 

where /.. > 0 

t 
V(~ ~) 

so that V is bounded below. 

( 1 . 15) 

If ~ 2 > 0 then V has a 

minimum t at tp ~ = 0 and the ground state is invariant under the gauge 

group. 'f 2 t 2 However, 1 ~ < 0 then V has a minimum when ~ ~ = v /2 where 

2 
-j.J /f... When the particle content of the theory is computed with 

this vacuum, it is found that three of the scalars have become the 

longitudinal components of the gauge bosons which have acquired 

masses. One writes 

7 



tp (X) ( 1 0 1 6) 

such that w ·vacuum v! 12 AS AhmrP Then the covariant derivative 1n 

(1.13) g1ves 

(DlP)t(DIJlP) 
IJ 

Now define 

where tan8w 

112 (o h)(ol-lh) + 112 (gv/2) 2 (w 1 w
1

1-1 + w2 w 1-1) (1.17) 
IJ IJ IJ 2 

+ 1/2(v/2) 2[(gW3 -g·B )(gw
3
1-1-g·BIJ)] +higher order terms 

IJ IJ . -

( 1 . 18) 

g· fg. Equation (1.17) now yields 

1/2(o~Jh)(o~Jh) + M~(w+~Jw+~J + w-~Jw_~J) + M~(zl-lz~.~) (1 .19) 

+ higher order terms 

By compar1ng (1.17) and (1. 19) it can be seen that three of the gauge 

bosons have acquired mass whilst the fourth is massless. 

( 1. 20) 

Associating the massless boson A with the photon gives the relations 
IJ 

e = g sinew= g·cossw ( 1. 21) 

The existence of the massless gauge boson indicates the preservation 

of an unbroken U(1) symmetry as required by QED. 

Fermions are introduced into the Standard Model in left-handed 

weak doublets and right-handed singlets of the SU(2) weak isospin 

8 



group. For example with leptons v and e one has e 

where e
1 

~ 1/2 (1 - 1 5le, eR ~ 1/2 (1 + 1 5 le are left and right handed 

components respectively at momenta >> m . e 

group is often labelled with a subscript L. 

For this reason the SU(2) 

The fermions also have a 

U(1) weak hypercharge quantum number Y and after symmetry breaking the 

combination 

Q-·1/2(t
3

+Y) ( 1. 22) 

remaJ.ns unbroken where t
3/2 is the diagonal generator of the SU(2) 

group. Q is identified with the electric charge - the quantum number 

of the unbroken electromagnetic U(1). 

The SU(2) x U(1ly Lagrangian for quark and lepton interactions 

with the gauge bosons is 

L ( 1 . 2 3) 

where L denotes a left handed fermion (quark or lepton) doublet and R 

denotes a right handed fermion singlet. The charged weak current J.s 

of the form 

(1.24) 

The corresponding neutral weak current J.s of the form 

9 



From the vector-axial structure of the charged weak current, one 

obtains 

( 1 . 2 6) 

where GF 1s the Fermi weak coupling constant which is the effective 

coupling of a pointlike (low energy) four-Fermi interaction. 

(1.21), (1.26) and tx = e2/4n one obtains 

[ 
rra 

1 1/2 37.3 

~ == j == GeV 
!2G sinew sinBW F 

and consequently 

Mw 74.6 
Mz = GeV 

cosBW sin28w 

Measurements of . 2 
s1n Bw give a world average [1.11] 

. 2 
Sln BW 0.218 :1: 0.010 

Using 

( 1. 27) 

( 1 . 28) 

( 1 . 29) 

which leads to Mw = 80 GeV and M
2 

= 90 GeV. Radiative corrections 

[1. 12] 1ncrease these estimates to give 

M = 82 :1: 2.4 GeV Mz = 93 ± 1.6 GeV ( 1. 30) w 

These vector bosons have been discovered at the CERN pp collider 

[1.13, 1.14] with the latest values for the masses given by [1.15] 

Mw 81.5 ± 1.0 ± 1.5 GeV ( 1 . 31 ) 

M2 92.4 ± 1.1 ± 1.4 GeV 

which are in excellent agreement with theoretical predictions. The 

10 



parameter g which specifies the relative strengths of the neutral and 

charged weak interactions is given by 

~ ( 1. 32) Q 
2 2 

Mz cos aw 

and has been measured experimentally [ 1. 16, 1. 17, 1. 18] to have the 

value 

Q = 1.02 ± 0.02 ( 1 . 3 3) 

In the Lagrangian (1.23), a fermion mass term was excluded by 

gauge invariance because the left and right-handed fermions transform 

differently under SU(2)
1

. One attractive feature of the Weinberg-

Salam Model is that the Higgs doublet which generates the masses of 

the weak bosons is also sufficient to give masses to the quarks and 

leptons. This is achieved by introducing into the Lagrangian, Higgs-

fermion couplings of the form 

L = -G 
e 

( 1 . 34) 

where ~(x) 1s given by (1.16). After spontaneous symmetry breaking 

one obtains 

L = -Gev (eLeR + eReL) 

12 

Ge (eLeR + eReL) h 

12 

If G is chosen such that m = G v/12 then e e e 

L = -m ee - (m /v) eeh e e 

11 

( 1 . 3 5) 

( 1 . 36) 



so that an electron mass term has arisen The additional Higgs-

fermion coupling must be very small since v = 246 GeV but since G 
e l .-_.J 

arbitrary, the mass of the electron is not predicted. Since all 

fermion masses are generated in this way, each mass stems from a free 

coupling parameter in the theory. Notice that because of the form of 

the Higgs doublet with the upper component being zero there is no mass 

term for the neutrino. When one generates the quark masses the upper 

member of the doublet gains its mass from a new Higgs field 

( 1 . 3 7) 

which transforms in the same way as ~ under SU(2). 

In conclusion, the Standard Model of weak interactions based on 

an SU(3) x SU(2) x U(1) gauge theory is in impressive agreement with 

low energy experiments. Nevertheless this theory does have some 

theoretical difficulties and much arbitrariness. These problems and a 

possible solution are discussed in the following chapter. 

12 



CHAPTER 2 COMPOSITE MODELS 

2.1 General Remarks 

The Standard Model described in Chapter 1 has been remarkably 

successful in its explanation of low energy experimental results. 

However, there are several questions which the Standard Model does not 

and cannot answer. There is a proliferation of parameters which is 

theoretically unsatisfactory. The quark and lepton masses are 

proportional to the coupling constant between fermions and Higgs 

scalars and cannot be calculated a priori. In addition, there is no 

convincing explanation for the different orders of magnitude of the 

masses in different generations. The number of generations is 

undetermined by the theory and there 1s no indication why left-handed 

particles should be placed 1n SU(2) doublets and right-handed 

particles 1n SU(2) singlets. The quantisation of electric charge in 

units of 1/3 e is mysterious if one believes that the Standard Model 

is the fundamental theory. 

The Higgs sector which generates the masses of all particles 

including the W and Z bosons is often viewed as being the least 

appealing feature of the Standard Model. There is no experimental 

evidence to support the case for a fundamental Higgs scalar and such a 

particle could have a mass anywhere between 10 GeV and 1 TeV. 

One final complaint is perhaps the most important. 

problems are all either unanswered questions or a 

The previous 

matter of 

aesthetics. However, the "naturalness" problem does not fall into 

either of these categories. This problem occurs because elementary 

scalar particles acquire enormous masses due to heavy fermion loops, 

13 



(see Figure 2.1), unless the parameters of the theory are very finely 

tuned. 

Attempts to extend the Standard Model in order to answer some of 

these questions include Left-Right Symmetric Models [2.1], Grand 

Unified Theories [2.2], Technicolour [2.3], Supersymmetry [2.4] and 

Compositeness [2.5]. For example, one way to solve the naturalness 

problem is to invoke supersymmetry. This theory has a symmetry 

between bosons and fermions so that every fermion has a supersymmetric 

bosonic partner and vice versa. The contribution to the loop diagrams 

from a fermion and its superpartner will be proportional to the mass 

difference between them and so need not be large. 

In composite models, the "naturalness" problem can be solved 

either by supposing that W's and Z's are composite and have masses 

generated by their bound state dynamics, whereupon elementary Higgs 

scalars need not occur, or alternatively by observing that the Higgs 

boson may itself be a composite object made of fermion-antifermion 

constituents. 

The alms of composite models are as follows. 

a). To explain the charge and colour pattern of the fermions within 

each generation. This property will follow from the quantum numbers 

of the constituents. 

b). The quark and lepton masses and also the Kobayashi-Maskawa mixing 

angles [2.6] should be calculable dynamical parameters of the theory. 

The pattern of the masses among and between generations should follow 

from the dynamics of the bound states. 

c). To solve the "naturalness" problem. 

It is usually supposed that quarks and leptons are bound states 

14 



Figure 2.1 

f 

H H 

Contributions to the Higgs mass from heavy fermion loops. 
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nf several constituents which can either be fermions alone or both 

fermions and bosons. Examples of such models are given in Sections 

2.4 and 2.5. The constituents must be bound together by a very strong 

and presumably confining force. This new force is commonly called 

"hypercolour" and is usually supposed to be a non-abelian confining 

gauged force like colour. The constituents carry a new hypercolour 

quantum number but composite particles are hypercolour singlets. The 

size of the composite bound state quarks and leptons will be 

determined by the hypercolour confinement scale A 
''H· The present 

experimental limits (see Section 2.3) indicate 1/AH ~ 10- 18m 1.e. 

AH ~ 100 GeV. The hypercolour binding is usually considered to be 

analogous to the confining colour force in QCD. Of course this is not 

the only way to bind the quark and lepton constituents. Indeed it is 

not absolutely certain that the laws of ordinary quantum mechanics 

hold true at such small distances. However, it will be assumed 

throughout that such drastic modifications are not needed, even deep 

inside quarks and leptons. 

If quarks and leptons are composite, one may ask whether any of 

the gauge bosons might also be composite. Photons and gluons are 

massless which is a consequence of their interactions being exactly 

gauge invariant. If they were composite, one would expect terms 

0(1/AH) to induce a small mass in the corresponding boson. No such 

mass is observed for the photon and a gluon mass would result in the 

breakdown of confinement. This leads one to conclude that photons and 

gluons are probably elementary. 

However, the situation with the massive Wand z particles 1s 

quite different. In the Standard Model the weak interaction symmetry 

16 



is spontanPOtlsly broken by the Higgs merhanism which results in the 

gauge bosons acquiring a mass. Alternatively, it could be that the 

weak interaction is merely a residual effect and the SU(2) symmetry 1s 

only global. The weak bosons would be composite objects and play a 

roll analogous to that of the g, w mesons in QCD. If this is the 

case, one expects AH to be of the order of 100 GeV which is the energy 

scale of the Fermi coupling constant. 

2.2 Quark and Lepton Masses and Chiral Symmetry 

A theoretical difficulty of compositeness is that the masses of 

the quarks and leptons are all very much smaller than the hypercolour 

confinement scale AH. This 1s contrary to the natural view that bound 

states should have masses of the order of the scale of the binding 

force. For example in QCD the masses of the lightest hadrons are of 

the order of a few hundred MeV and the colour confinement scale Ac is 

about 200 - 400 MeV. 

Two mechanisms which use symmetry arguments have been suggested 

to explain the near masslessness of composite fermions. The first 

scheme requires the introduction of spontaneously broken 

supersymmetry. Supersymmetry operators transform bosons into fermions 

and the charges which generate the transformations carry fermionic 

quantum numbers. Hence spontaneously breaking supersymmetry will 

produce massless Goldstone fermions. All the quarks and leptons may 

then be interpreted as being massless Goldstone fermions which acquire 

masses through breaking of the supersymmetry. 

The second mechanism for producing nearly massless composite 

fermions does not require supersymmetry but uses chiral symmetry. 
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Chiral symmetry is the separate con~crvation of left and right handed 

gauge invariance and is broken by a mass term in a Lagrangian of the 

form 

( 2. 1 ) 

Hence one can 

force a set of composite fermions to be massless by imposing the 

following two conditions on the underlying interactions. 

1). The interaction must have a chiral symmetry which prevents mixing 

of left and right handed composite fermions. 

2). The interactions do not cause the chiral symmetry to be 

spontaneously broken. 

The first condition is satisfied if the hypercolour interactions are 

gauge invariant and so is not a strong constraint. However, the 

second condition which requires that the chiral symmetry is not broken 

spontaneously is non trivial and may impose strong constraints on the 

hypercolour interactions. 

The most straightforward way to obtain chiral symmetry for 

composite states is to impose it at the constituent level. However, 

this does not guarantee an unbroken symmetry for the composite quarks 

and leptons. For example in QCD with almost massless quarks, chiral 

symmetry is broken spontaneously leaving massive fermions (the 

nucleons) and light pions which are the almost massless Goldstone 

bosons. Clearly the dynamics of the hypercolour force must differ 

considerably from QCD in this respect. 

It has been found by t'Hooft [2.7] that to have an unbroken 

global chiral symmetry imposes non trivial constraints on the 

18 



underlying theory_ The t'Hooft conRistency conditions are based upon 

the fact that theories possessing global chiral symmetries have 

Green's functions with anomalous divergences which could break the 

symmetry. The anomaly [2.8, 2.9] arises because of the short distance 

behaviour of triangle graphs with fermion loops (see Figure 2.2). 

Defining the three point function 

= Jrr ct 4 xieiqixi<OIT(Ja(x 1 )J~(x2 )J~(x3 )i0> i 

where J is a global symmetry current then it follows that 
11 

( 2. 2) 

(2.3) 

where AJ 1s a constant determined by the representation of the 

fermions to which J couples (see Figure 2.2). Writing J in terms of 
11 11 

left and right handed components of the fermions in the theory one 

obtains 

( 2. 4) 

The t'Hooft condition which must necessarily be satisfied if chirality 

is not to be spontaneously broken is that for all currents J 
11 

( 2. 5) 

where AJ in the preon theory is computed for all possible global 

symmetry currents and (AJ)bound states is calculated only in terms of 

the massless excitations which are supposed to result from the 

binding. 

Some insight into the condition may be obtained [2.10, 2.11] by 
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Figure 2.2 

The anomaly from the triangle graph between three global currents 

connected by a fermion loop. 
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considering the form of r <3. t 2 2 2 2 At this point r a. ::: !]_ = [J- q ., •;_ 'J 

contains terms with AJ/q 
2 singularity which must be reproduced when an 

calculating r in terms of bound states of the theory. The 

singularities must be a consequence of massless particles in the bound 

state spectrum. If there is spontaneous breakdown of the symmetry 

associated with J~ then AJ is related to the coupling of the resulting 

Goldstone boson to the two remaining currents. This is the case in 

QCD where one uses the anomaly to compute the rate for 0 
1T --1 

However, if the symmetry associated with J remains unbroken, then 
~ 

there must be massless fermionic bound states which contribute to the 

singularity with the same residue AJ as in the preon case. This is 

precisely the condition given by (2.5). There are three 

possibilities: 

1). Chiral symmetry is completely broken. 

2). Chiral symmetry remains unbroken so composite massless fermions 

may be present. 

3). Chiral symmetry is partially broken. This allows both massless 

fermions and scalars to be formed. 

Unfortunately the constraint discussed above is only strong for case 2 

and so a particular model cannot be discarded solely becuase it fails 

to satisfy the t'Hooft anomaly conditon. 

2.3 Experimental Bounds on Compositeness 

One can extract information about the compositeness of quarks and 

leptons from low energy data by consideration of precisely measured 

parameters, rare processes, anomalous processes and also by looking 

for new particles. The effective Lagrangian of quarks and leptons 
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must reproduce the Standard Model except for terms A I 1 I A \ 
V\ 1( ''HI. The 

anomalous magnetic moment of the electron has been measured very 

accurately by experiment and has been calculated to high precision in 

QED. One has [ 2. 12, 2. 13] 

and ~g < 5 x 10- 10 . One expects 
e 

~g "' A e 

m e + B 

( 2. 6) 

( 2. 7) 

where A and Bare constants. However, if it is chiral symmetry which 

causes the electron to be almost massless, then A 0 [ 2 , 1 4 , 2 . 1 5] and 

2 the first correction is of order (me/AH) . 

the bound AH > 22 GeV. A similar 

[ 2. 12 r 2. 13] using ~g < 3 X 10-8 yields AH 
1.1 

If B ::: then one obtains 

calculation for the muon 

) 580 GeV. 

If quarks and leptons are composite, a sign of this at low 

energies ( «AH) is an effective four fermi interaction [2.16] 

( 2. 8) 

This effective Lagrangian describes rare processes such as 1.1 -7 eee, 

+ - + + + -K
1 

-7 1.1 e , K -7 H 1.1 e and 1.1N -7 eN. Experimental limits give 

bounds on AH) 100 TeV if C=1 [2.17]. However, without knowledge of 

the hypercolour dynamics, no quantitative value of C can be given. It 

may be that the small overlap of the fermion wavefunctions causes c to 

be very small and removes the above constraint on AH. 

Proton decay will be a consequence of compositeness if quarks and 

leptons are composed of the same constituents. Processes such as 
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uu -) ae+ will result in the proton lifetime 

( 2. 9) 

+ 0 The experimental limit on the proton lifetime from the decay p -~ e rr 

lS 

Anomalous 

years [2.18] and so one requires either 

or that C is very small or zero. 

+ -contact interactions such as e e -> 
+ -

e e , 
+ -

IJ IJ I qq 

etc. should have values of C of order 1 if the interactions do not 

involve a change of flavour. + -Experimental data from e e annihilation 

at PETRA produces the bound AH) 500 GeV [2.19]. 

Perhaps the most convincing way to demonstrate compositeness is 

to find new particles which do not fit the Standard Model. If the 

weak bosons are composite, in addition to the quarks and leptons, one 

expects new scalar bosons and possibly also coloured partners for the 

W's and Z's. The properties of such particles are discussed in 

chapter 4. In addition to these particles one might observe excited 

states of quarks and leptons. The current bounds on excited electrons 

and 
+ -

muons comes from the e e annihilation experiments PETRA and PEP 

[2.20] and are 

a2 + b2 
< ( 330 GeV) - 2 

a2 + b2 
< (58 GeV)- 2 (2.10) 

* where a and b are the coupling strengths in the gauge invariant l 11 

vertex 

2m * l 

( 2. 11 ) 

Recently, excited leptons were used as an explanation for the large 
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number + -of 1 1 1 events observed during the 1983/84 run of the CERN pp 

collider [2.21, 2.22]. In this run, three out of thirteen Z decays 

* into leptons also emitted a hard photon and the decay z -~ 1 l -~ ll1 

was proposed as a possible mechanism for an excited lepton 

[2.23, 2.24]. However, the latest run of the collider has failed to 

find any ll1 events [2.25, 2.26] and the ratio (Z -~ 11,)/(Z -~ ll) is 

of the order of a few percent in accordance with the prediction of the 

Standard Model for the bremsstrahlung rate. Hence there are no 

experimental signs of excited leptons. Signatures for the decay of 

excited quarks (starks) have been discussed by De Rujula et al. [2.27] 

but again there are no experimental signs of these particles. 

In summary, there is currently no experimental evidence for 

compositeness but bounds on the scale of an underlying force are 

somewhat uncertain and not particularly strong. It is difficult to 

say more than that AH > 100 GeV. The remainder of this chapter is 

spent discussing some of the simple composite models which have been 

proposed. These fall broadly into two classes: models with fermionic 

and bosonic constituents are described in section 2.4 and models with 

fermionic constituents only in section 2.5. It should be emphasised 

that none of these models is very convincing and they are not serious 

candidates for a final theory. 

2.4 Models with Fermionic and Bosonic Constituents 

In models where quarks and leptons are comprised of a fermion and 

a boson, these constituents can be combined in a straightforward way. 

If the hypercolour group is SU(NH) then the fermion can transform as 

an N and the boson as an N or vice versa. Hypercolour singlet quarks 
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and leptons can then always be made since N x N = 1 + (N2- 1). Hence 

the number of hypercolours is undetermined in these models and the 

underlying symmetry group is taken to be SU(N,,) x SU(3)~ x U(1l~~· 
n ~ ~~ 

The most simple assignment of quantum numbers to give one family 

of fermions 1s that used 1n the haplon (from the Greek "haplos" 

meaning simple) model [2.28] i.e. 

Spin Charge Colour Hypercolour 

a 1/2 1/2 N 

1/2 -1/2 N 

X 0 1/6 3 N 

y 0 -1/2 N 

where a, ~ are Dirac spinors carry1ng SU(2) quantum numbers and the 

scalars x, y carry colour and lepton number. The first generation of 

hypercolour singlet quarks and leptons are composed of haplons bound 

in the following way: 

v e (ay) 1 

e = (~y)1 

u = (ax) 3 

d = (~X) 
3 

In this scheme, the fermions do not carry colour. However it is 

easy to re-assign the quantum numbers so that most or all of the 

constituents are colour triplets i.e. 

Spin Charge Colour Hypercolour 

a 1/2 1/2 3 N 

~ 1/2 -1/2 3 N 

X 0 1/6 N 

y 0 -1/2 3 N 

or 
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Spin Charge Colour Hypercolour 

a 1/2 1/2 3 N 

~ 1/2 -1/2 3 N 

X 0 1/6 3 N 

y 0 -1/2 3 N 

Additional generations can be constructed by giving the scalars x and 

y a generation index, or they may be interpreted as radially excited 

bound states of the first family. 

The above class of models lS particularly convenient for a 

composite description of the weak bosons. Weak interactions can be 

visualised as proceeding through diagrams of the type shown in Figure 

2.3. Since the QHD Lagrangian is invariant under the interchange of a 

and ~. one can identify weak isospin with the SU(2) subgroup contained 

within the U(2) symmetry. The W± and w3 are the bound states a~, a~ 

and 1//2 (au - ~~). The w3 mixes with the photon to produce a z (see 

chapter 3). One can also construct an SU(2) isosinglet particle given 

by w0 
= 1//2 (au + ~~) but this has not been observed by experiment 

and so presumably must be much heavier than the W and z. This 

particle is discussed in more detail in subsequent chapters. It 

should be emphasised that in this scheme, weak interactions are not 

described by a gauge theory but only by an effective theory. The 

masses of the weak bosons are not generated by spontaneous symmetry 

breaking thus removing the need for Higgs scalars. 

One problem 1n the haplon model, and indeed 1n many other 

composite models, is the parity violation in weak interactions. If 

the hypercolour gauge group is SU(NH) then one would expect parity to 
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Figure 2.3 

e d 

w 

11 a a u 

The weak interaction e v -~ W -~ ud in the Haplon model. 
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be conserved. Its violation may be related 1n some way which is not 

yet understood to the fact that the fermions are much lighter than the 

hypercolour scale AH. Alternatively it may be that only left handed 

fermions bind in the above fashion and right handed objects are either 

elementary or are constructed in a different manner. 

Other composite models with a fermion and a boson as the 

fundamental constituents have much the same general form as the haplon 

model described above but with different specific details 

[2.29, 2.30, 2.31, 2.32]. The haplon model is very convenient to use 

when discussing composite weak bosons s1nce the structure of the weak 

force 1s particularly simple in this scheme. For this reason and for 

the sake of definiteness, the haplon model will commonly be used as an 

example model in subsequent chapters. 

2.5 Models with Fermionic Constituents Only 

In these models quarks and leptons are made of three constituent 

fermions bound by a hypercolour force. The hypercolour gauge group 

must be SU(3) since N x N x N will form a hypercolour singlet only for 

the value N = 3. Hence the full underlying symmetry is given by 

SU(3)H x SU(3)c x U(1)EM' In the rishon (=primary in Hebrew) model 

[2.33], all quarks and leptons in a generation can be built from just 

two fermionic constituents. 

T 

v 

Spin 

1/2 

1/2 

Charge 

1/3 

0 

Colour 

3 

3 

Hyper colour 

3 

3 

The first generation of quarks and leptons are built from these 
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constituents 1n the following \>lay 

+ TTT vvv e v e 

u TTV d VVT 

a TVV u VTT 

v vvv e TTT e 

In this scheme, the weak interactions are residual hypercolour 

forces operating at short distances between bound state objects. The 

force is analogous to the residual colour force acting between two 

colourless hadrons. The weak bosons can be thought of as bound states 

An example of weak 

boson exchange in the rishon model is shown in Figure 2.4. It can be 

seen that weak boson exchange is much more complicated that in the 

haplon model of the previous section. However, this is equivalent to 

+ + w1 = ( e1 v e) , ( u1 d1 ) , etc. , and as the force binding the preens into 

quarks and leptons is very strong, the W may be effectively a fermion-

antifermion bound state just as it is in the haplon model. 

An entirely different composite model with three fermionic 

constituents factorises the colour, flavour and generation number 

[2.34, 2.35, 2.36, 2.37]. In the Standard Model one can distinguish 

three types of symmetry - the weak interaction gauge symmetry 

SU(2)Weak' the colour gauge symmetry SU(3)C and a symmetry between 

generations SU(N)F. Thus for three generations one has the symmetry 

SU(2)W x SU(3)C x SU(3)F. It is possible to build a model where each 

constituent carries one of the above symmetries. The SU(2)W 

constituents are called "weakons", the SU(3)C constituents "chromons" 

and the SU(3)F constituents "familons". The quarks and leptons of the 

first generation are given by 
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v v_ 
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Figure 2.4 

- u T-T v 

T 

The weak interaction e v -1 W ~ ud in the Rishon model. 
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11 = ( Wu , C' . . F 
1
. ) r -1 · 

c. 1 
.l 

where 1 runs over the colours red, green and blue. Notice that 

because leptons are colourless, a leptonic chromon c0 must be 

introduced. The weak bosons are fermion-antifermion (wW) bound states 

in this model. Notice that in all the schemes discussed, the weak 

bosons can be considered to be made from a fermion-antifermion pair so 

that the haplon model [2.28] serves as a general example of composite 

weak interactions. 

The models which factorise colour, flavour and generation number 

have many problems - for example, one has no knowledge of the binding 

between the constituents or whether photons and gluons are bound 

states. Models of this type cannot be ruled out but they are far from 

satisfactory at present and shall not be considered further. 
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CHAPTER 3 THE INTERNAL STRUCTURE OF WEAK BOSONS 

3.1 Introduction 

In the past, short range forces have been found to be a 

consequence of the substructure of the interacting particles. For 

example, molecular and Van-der-Waals forces are residual 

electromagnetic forces arising from the polarisation of the electronic 

substructure of neutral atoms. Similarly the short range nuclear 

force has turned out to be a remnant of the underlying colour force 

between the hadrons' constituents (the quarks). The colour neutral 

hadrons are polarised and the nuclear force is the observed result. 

The only short distance interaction which is not known to be due to a 

residual force between constituents is the weak interaction. In this 

case the force is mediated via elementary gauge bosons (W's and Z's) 

which acquire mass by the Higgs spontaneous symmetry breakdown 

mechanism discussed 1n chapter 1. Because the gauge bosons are 

massive, the force only operates at short distances ~ n/~c. 

Since theW's and Z's have the masses and decays predicted by the 

Weinberg-Salam SU(2) x U(1) theory they are generally supposed to be 

elementary structureless, particles. Nevertheless it is possible that 

SU(2) x U(1) is merely an effective theory which describes only the 

low energy properties of some more fundamental hypercolour theory. In 

chapter 2 it was noted that several composite models of quarks and 

leptons also contained composite weak bosons. 

and leptons are related to the Fermi scale of 
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If the radii of quarks 

(300 GeVJ- 1 ~ 10- 17 cm, 



it is natural to assume that W bosons will have a similar s1ze. .,-&. 
.l.L 

one believes that the weak force is a residual interaction of a 

hitherto undetected force, then the short range nature of the weak 

interaction would arise because quarks and leptons are hypercolour 

singlets but with radii of about (1 TeV)- 1 . This interpretation of 

weak interactions changes the status of theW and z. They become 

1 h 1 1 
. PC 

1 mere y t e owest y1ng J = bound states of the quark and lepton 

constituents and hypergluons are the new fundamental gauge bosons. 

The SU(2) x U(1) electroweak theory is only an effective theory which 

works at distances greater than the hypercolour confinement scale 

When one describes the weak interactions as an effective theory, 

it seems natural to look for parallels with the strong nuclear force 

and attempt to apply the ideas used in QCD. One such idea which will 

be used extensively is the application of "vector dominance" 

[3.1, 3.2] in weak interactions. 

3.2 Vector Dominance and its Applications 

In QCD, an interesting and useful feature of photon-hadron 

interactions is that they are very much like hadron-hadron 

interactions. This is because of vector dominance of electromagnetic 

interactions, the photon-hadron coupling proceeding through the vector 

mesons V = g,w,~ etc. (see Figure 3.1). The amplitude for the process 

1A -~ B can thus be written in the form 

( 3. 1) 
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Figure 3.1 

L 
v B 

A 

Vector dominance of the process ~A -t B. The photon interacts via the 

lightest vector mesons g,w,~ etc. 
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where T are the on-shell vector meson scattering amplitudes 'VA-7B 

the coupling constants f~ 1 can be measured in the annihilation process 

of Figure 3.2. 

The cross section for the processes of Figure 3.2 into a final 

state F, neglecting interference between vector mesons, is given by 

+ -
o ( e e --> F) 4

'" ~ [:J [ ~]-,-s---:-:~-:-=-~-B'-:-m-~o-r-~-2 ( 3. 2) 

where r~ is the total width and B~ is the branching fraction to the 

final state F. In the narrow width approximation one obtains 

+ - 4TTN ~ [ ef.v-]2 o(e e -7 F) = ... ( 3. 3) 

so that, v given BF, measuring o enables fv to be deduced. The decay 

width into lepton pairs can then be computed using 

[~r 
v 

(3.4) 
3 

The results obtained for the lowest lying vector meson (g) are 

f = 4.91 * 0.20 and hence r = 7.1 * 0.5 keV [3.3]. 
Q Q 

This decay 

constant is often expressed in terms of the dimensional quantity 

FV = mylfv whereupon FQ = 0.16 * 0.01 GeV. 

One can attempt to describe the weak interactions in the same 

way. Composite w·s and z·s are the lowest mass vector bosons and play 

the same role as the g mesons of QCD. Concentrating attention on the 

haplon model [2.28] of section 2.4, the weak interaction is carried by 

the two fields a and ~. These fields form a global SU(2) isovector 
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Figure 3.2 

v 
F 

e 

Vector dominance in e+e- annihilation. The photon-meson couplings f~ 1 

can be deduced by measuring the cross-section o(e+e- -7 F). 
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triplet 

r 

u~ 

= 1//2 (au 

l u~ 

aa1 1 
J 

( 3. 5) 

Before mixing, M(W+) = M(W ) = M(W3) as there is exact isospin 

symmetry but since the Z particle has a larger mass than the W, one 

requires that 3 the W boson and the photon must mix [3.4, 3.5, 3.6] 

somewhat 1n analogy with Q- 1 mixing in QCD (see Figure 3.3). The 

strength of the w3 - 1 transition ~W is directly related to the 

electroweak parameter sin2aw by [3.6] 

( 3. 6) 

where g lS the W-fermion coupling constant, which is related to the 

2 2 Fermi coupling by GF = /2g !BMW so that 

Mw = 
-5/4 -1/2 

2 GF g = 123g GeV ( 3. 7) 

and from [3.6] 

M2 = M;/(1 A2) z w (3.8) 

AW is determined by the W decay constant FW which is defined by 

analogy with the g
0 decay constant F above by 

Q 

e 
= ( 3. 9) 

Hence 

( 3. 10) 

If one constructs a non-relativistic bound state model of the 
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Figure 3.3 

Ap u I d 
~(-----

-----
u 1 d 

'Aw a. p 
--~t; ..__ --

a p 

0 p 

Photon - bound state mixing. In QCD the degree of mixing is given by 

models w3
-y mixing causes the Z to be ).. 2 = 1/260. 

Q 
In composite 

heavier than theW. )..~ ~ sin2BW ~ 0.218. 
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weak bosons the decay constant FW can be expressed approximately ln 

terms of its wave function. One has [3.7] 

12 INH INC 
[ [(a .. a .. - B .. 8 .. ) w.(x) 

.LJ .L) . 1]" 1] 
i j 

( 3 11 ) 

where i,j are hypercolour and colour labels respectively and ~(x) is 

the co-ordinate space wavefunction describing the haplons in a W 

boson. Combining equations (3.10) and (3.11) gives 

( 3. 12) 

so that with (3.6), (3.9) and (3.12) 

( 21 ) IN IN (2/M~) 1 / 2 m(O) e g C H --w "' ( 3. 13) 

This important result relating sin2ew to the bound state wavefunction 

at the origin will be used extensively ln chapters 4 and 5. 

In the rest of this chapter, it will be demonstrated that 

composite weak bosons, in conjunction with other quite natural 

assumptions, can reproduce the low energy behaviour of the Standard 

Model weak current. 

3.3 Universality of the Weak current 

Several aspects of bound state models can be derived from a local 

current algebra of weak currents [3.8]. The weak isospin charges F~ 
J. 

(i=1,2,3) obey the algebra 

[ F~, F~ ] 
1 J 

(3.14) 

Suppose that these charges can be written as integrals over charge 

w densities F0i(x) i.e. 
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J F~i (x) a\ ( 3. 15) 

and suppose 1n addition that these local charge densities obey at 

equal times the local current algebra 

( 3. 16) 

This algebra need not be satisfied if quarks and leptons are not 

point like. However, it is satisfied in the haplon model where 

currents are bilinear in cr and ~. Consider now the matrix elements of 

the left-handed weak neutral current F~ 3 (x) between left handed quark 

and lepton states. Weak isospin algebra requires a universal 

normalization at t=O 1.e. F (0) = F (0) = F (0) = 1 etc. where t is 
e ~ v 

the momentum transfer. Suppose that one uses the W-dominance 

approximation where weak boson exchange is dominated by the lowest 

lying W pole. One has 

( 3. 17) 

where ff fw 1s the W-fermion coupling constant and f is one of the 

fermions e-, v , ~-, v etc. Using Ff(O) = 1, one finds 
e IJ 

( 3. 18) 

so that the W bosons couple with the same strength to all quarks and 

leptons. Hence the universality of weak interactions results from W-

dominance of the weak current. 
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':\,4 F.ffective T.aqranqians and W-Dorninance 

In order to see how composite models reproduce the low energy 

features of the Standard Model. [3.4, 3.5, 3.61. such as the structure 

of the weak neutral current and the Weinberg mass relations (1.27) and 

(1 .28), consider first of all a model without electromagnetism. The 

lowest mass vector bosons form an isovector triplet (W+, W , w3) 

coupled to the left-handed weak isospin current. 

mass excitations, one has the effective Lagrangian 

where m1 ~ MW±' J~ = El~t/2 L = 1/2 (v 11~v 1 
isotriplet vector boson field. 

Neglecting higher 

( 3. 19) 

Now switch on electromagnetism and consider photon interactions 

with composite quarks and leptons. It has been shown in section 3.2 

how, in QCD, photon-hadron interactions proceed via the lowest mass 

vector bosons - g,w,~ etc. One can repeat this vector dominance for 

the hypercolour force and suppose the photon-quark (lepton) 

interactions proceed via the lowest lying vector mesons of QHD in what 

has come to be called "W-dominance" [3.9]. In the neutral current 

sector, the isovector w3 and the lowest lying isoscalar boson 

dominate. In the Lagrangian formalism one has 

L (3.20) 

where A1 is the w3-photon mixing and J~ = J 
13 . 

1 ~ 

In addition to the above terms, one must cater for SU(2)
1 
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isoscalar bosons which couple to the isodoublet fermions via an 

isoscalar current and also for right-handed bosons. None of these 

ctirrents has yet been observed and it is convenient to describe their 

effective interactions by a single heavy neutral isoscalar boson Y of 

mass m2 > > m.1. 

current Lagrangian 

This introduces an additional term into the neutral 

( 3. 21 ) 

Combining (3.19)-(3.21) and adding an electromagnetic self interaction 

kinetic energy term, one has for the neutral current 

L - 1/4 F FIJV - 1/4 w3 w31-1v + 1/2 2 w3w31..l 3 i..J = m1 g1W~/1 i..JV i..JV IJ 

+ "1 [ - 1/4 (F w3~-.~v + w3 Fi..Jvl 
i..JV i..JV 

IJ 
- g1A1l1 ] 

- 1/4 WO W01Jv + 1/2 m~W~WOIJ 0 IJ 
IJV - g2Wl2 

+ "2 [ - 1/4 (F W01Jv + wo FIJV) - IJ ] (3.22) i..JV IJV g2AIJJ2 

In order to find the physical masses and couplings arising from 

this Lagrangian, one uses the propagator matrix formalism 

[3.10, 3.11, 3.12] to diagonalize equation (3.22). Following [3.9] 

one obtains 
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') 

- 2 Leff 2 (,>.,1g1J1 + ,>.,2g2J2)£. (3.23) 
q 

f 
2 2 I 2 m. m~ 

l ,>.,1g1 ·--~-J + ,>.,2g2 
t. 

J2 
J 

+ 2 M2 b2 2 M2 1 2 2 
q m1 - 1 m2 - M 

1 1 1 

2 2 r ,>.,1g1 
m1 

J1 + ,>.,2g2 
m2 

J2 + 2 M2 b2 2 2 2 2 
q m1 - M2 m2 - M 

2 2 2 

with 

1 - 2 2 
t:. ,>.,1 - ,>., 

2 

[ 
4 4 r/2 

b. 2 m1 2 m2 
t:. + ,>.,1 2 M?)2 

+ ,>.,2 2 M?)2 l 
(m1 (m2 

l l 

The mass eigenvalues are 

M = 0 
"Y 

M2 M2 ( 1/2!:.) [ 2 - ,>.,2) 2 ,>.,2) - r (3.24) z - 1 m1 ( 1 2 + m2 (1 1 

M2 M2 (1/2!:.) [ 2 - ,>.,2) 2 - ,>.,2) + r J - = m
1 

( 1 + m
2

(1 y 2 2 1 

where 

Clearly the first term in (3.23) corresponds to photon interactions 

and so one must insist that 

(3.25) 

If one identifies the electromagnetic current JEM = J 1 + J
2 

= J 3 + JY 
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2 2 
,.., VI ,.:t +-h~-1- \ / ., yu-=J // C"lll"'\1 .... .-..~r\ ("< 

m1 m2 U..liU .._•uppVU\......::.J ~-i.lU '-' 1\ • ' uuu ' ' .l 

'l 
.!. e ') 2 ( ,J3 ') L J~M I· ------- F1 ;.. 

eff 2 2 2 M. q q 
"I 

2 (Jy + 2 M2 
F2 

where 

1.e. 

q 
2 

2 M2 Mz 1 

M2 M2 = = y 2 

F2 g~/(1 = 1 

F2 2 
'12 I ( 1 2 

. 29 s1n 1 

. h2 s1n 92 

2 2 
e 2 9 1 

- 2 1eff = -2 3EM + , 2 
q 1 - "1 

+ higher order terms 

2 as q -~ 0. 

m~/(1 

2 m2/(1 

A 2) -
1 

+ A2) 
2 

+ 

4--hr..YI 
L..JlL·iJ 

· 2 0 EM 2 
Sln u 1J ) 

sinh292JEM)2 (3.26) 

A2) 
1 + O(A4) (3.27) 

A2) 
2 + O(A4) 

+ 0(A4, 21 2) m1 m2 (3.28) 

+ O(A4, 2 2 
m1/m2) 

(3.29) 

(3.30) 

( 3. 31) 

Hence the low energy neutral current behaviour of the Standard 

Model has been reproduced by equation (3.31) to leading order 
. 2 1n A 
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and 2 2 m1;m
2 

if one associates the Weinberg angle Bw with s1 in ( 3. 29) . 

Note that equation (3.27) becomes the Weinberg mass relation (1.28) in 

lowest order 2 2 in ~ and (m./m~l , and will reproduce the Standard 
I £. 

Model if m1 << m2 . 

One can also obtain these results by the more intuitive approach 

of summing Feynman diagrams which will be described 1n the next 

section. 

3.5 The Effective Lagrangian from Feynman Diagrams 

The Feynman diagrams for the electromagnetic and weak neutral 

current are given in Figure 3.4. The full Lagrangian for these 

interactions is then [3.13] 

2 1eff 
[ 

gwi .(3)2 
[ 

9Yi j (Y) 2 - = J + 2 2 2 2 i q - ~i l q - m . 
Yl 

[ 
2 2 

l + D(q2) [ "' mwi . ( 3) 
[ "' mYi . (Y) ( 3. 32) gwi~wi 2 2 J + gYi~Yi 2 2 J 

i q - m . i q - m . 
Wl Yl 

where are the w1-fermion couplings and ~Wi the non-renonnalized 

w.-photon couplings, and similarly for Y .. 
l l 

2 D(q ) denotes the photon 

propagator and represents the diagrams of Figure 3.5. Summing the 

contributions from these diagrams yields 

1 
-2 + 

q 
[ :>:imf _q_2 ___ m_2 :>:im~ + :>:imf ] 

1 

] ] 2 + higher order terms (3.33) 
q 
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Fioure 3.4 

w 

~-----A A~----~ 
.------~r ... ---<...._ ____ ~ 

0(q2) 

The weak neutral current between composite quarks and leptons. 

is the photon propagator. 
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Figure 3.5 

+ 
- 2. - 2. A.1m1 A.,m, 

w'11) 
+ 

,.. to) w 
+ + 

- lJ) w 
+ + 

The full photon propagator O(q2) given by the infinite sum of diagrams 

with w3 and w0 insertions. 
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r "'2 2 X.m. "l -1 

I. 
1 [ 

l l 

J 
(3.34) ::: ·- ---

2 i 2 2 
q q - m. 

J. 

where the index i runs over all w·s and Y's. Introducing renormalized 

couplings the neutral mass eigenvalue equation 

is obtained by setting the denominator of (3.34) equal to zero i.e. 

2 
q == 0 or 

2 m. 

q 

1 1 
2 

One obtains for (3.32) as q
2 -~ 0 

2 Leff(q 
2 

-~ 0) (e2/q2) 2 
+ Gw [ (J3 ,,2 = - JEM - ;:)w 

+ Gy [ (Jy - s2 2 
+ Cy 

2 
y JEM) JEM 

EM J 3 + JY so that where J = 

[ AWi9Wi = [ AYigYi = e 
i i 

and 

Gw 
2 2 

- [ 9w· IInw· 
i 1 .l 

s2 (e/Gwl [ 
2 

- gwixwilmwi w 
i 

] 

~ 
2 2 2 54 - (e /Gwl [ xwil~i - w 

1 

and similarly for Gy, Sy and Cy. 

( 3. 35) 

J ) 2 + cw 
2 ] JEM EM 

(3.36) 

(3.37) 

(3.38) 

Equation (3.36) can now be expressed in terms of Standard Model 
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parameters_ OnP has, using the charged current normalisation 

where 

Q 

2 2 ( 1 1 Q l [ sw + ( Q - 1 l ( 1 - sy l J (3.40) 

If one uses W-dominance in the above equations and considers the 

contribution from only one massive isovector boson, then Gy = 0, 

From (3.39) it is clear that 

the Standard Model low energy Lagrangian has been reproduced and the 

Weinberg mass relations (1.27) and (1.28) are obtained from (3.38) and 

(3.35) respectively i.e. 

2 /2g /8GF and 2 2 ( . 2 ) mz = mw/ 1 - s~n ew ( 3. 41) 

These relations have been derived independently of the isoscalar 

contribution so long as it is small. However, since the value of Q is 

known from experiment to be (see chapter 1) Q = 1.02 t 0.02, it 

follows from (3.40) that GY < 0.04GW. Approximating to the case of 

one isovector and one isoscalar boson and assuming gW = gy one obtains 

the bound my > 405 GeV. However, gy may be smaller than gw thereby 

relaxing the bound on my. If gw = xgy then one has my > 405/x GeV. 
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3.6 ThP Si7e of thP WPinbern Anale 

3 From (3.9) and (3.25) the magnitude of W -photon mixing lS given 

by 

2 2 2 
>--w = e /g e 2 /f~ ~ . 2a 0 218 .. - s1n W ~ . (3.42) 

This is a very large amount of mixing [3.14] by comparison with the 

analogous situation 1n QCD where one has ~-g0 transitions with 

However, there are two reasons for thinking that 

this sort of value for >--w is not unreasonably large. 

Firstly consider duality applied to QCD, which is the hypothesis 

that the peaks in the cross section for e+e- -) hadrons due to vector 

meson resonances can be averaged to approximate the annihilation 

+ - -cross-section into free quark pairs o(e e -) [ qq ). One obtains the 

relation [3.15] 

0 = 

where eQ is the quark 

the mass of resonance 

2 4rrcr 

3s 

2 
2 

v(3 - v ) 
2 3eQ B(s - 4m ) 

2 

(3.43) 

charge in units of e, m is the quark mass, M. 
J 

is 

J and v = ( 1 - 4m2/s) 1/2_ Using equations ( 3. 4) 

and ( 3. 9) one finds from (3.43) 

where 6m ~ M' - M 
Q Q 

relation [3.16] 

2 
1\ 

Q 
(3.44) 

In the QHD case one obtains the corresponding 
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(]. 45) 

where <Q> 2 is the average value of the charge of the constituents 

which equals 1/2 in the haplon model and 6m ~ M~ - Mw JS the mass 
" " 

difference between the W and its first excited state. Taking for 

example 

6m = 660 GeV. 

level spacinq 

and the large 

and requiring yields 

It follows that for a hypercolour force with a large 

compared to ~ , one expects 

experimental value of sin2aw 

3 the W -1 coupling to be big 

is not so surprising. 

Secondly one can use the W wavefunction to define a radius rw for 

the particle i.e. 

( 3. 46) 

-1 
From equation ( 3. 13) with Nc = NH = 3 one obtains Mw ~ 1. 4 rw. This 

sort of correspondence between the size and Compton wavelength of a 

particle is just like that found ln QCD where for example the pion and 

rho mesons have radii ~ 1fm ~ 1/M ~ 1/AQco· One can conclude that the 

value of sin2aw is not abnormally large although this explanation 

relies on being able to treat all these particles as non-relativistic 

bound states. However, since both of these arguments indicate that 

sin2aw is expected to be big because of the large mass scale, one need 

not be so unduly concerned that A2 >> A2 . w Q 

3.7 The Z Wavefunction 

particles form an exact global SU(2) weak 

isospin symmetry if one ignores the electromagnetic interaction. 

However, when the w3 mixes with the photon to form a Z, the symmetry 

is no longer exact and the Z is not a pure isovector state. The 
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extent of the breaking of the SU(2) symmetry is clearly related to the 

amount of w3
-1 mixing which is determined by ~w ~ sinew. In order to 

determine the isovector and isoscalar components within the Z it can 

2 be seen from (3.31) that at low values of q , the weak neutral current 

Lagrangian is of the form 

(3.47) 

where J( 3) and J(Y) are isovector and isoscalar currents respectively. 

It 1s straightforward to show that the same result is true for 

q2 -~ M2 and so in the haplon model the Z-wavefunction may be regarded z 
as being of the form [3.17] 

z 
cosBw sinBW 

(aa - ~~) + ---- (aa + ~~) (3.48) 
12 12 

This result will be exploited in Chapter 5 when calculating decays of 

the Z into isoscalar gauge bosons. 

3.8 Conclusions 

It has been shown in this chapter that composite models in which 

the weak bosons are bound states can be made to emulate the features 

of the Standard Model at low energies. If one accepts theW-dominance 

hypothesis which claims that weak interactions are governed 

2 predominantly by single W exchange for low q , then the Weinberg mass 

relations, the universal couplings of w·s to all fermions and the 

structure of the weak neutral current arise quite naturally from a 

model with a global SU(2) symmetry. It is necessary in these models 

to associate the Standard Model Weinberg angle sin2aw with the degree 
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3 of W -photon mixing but, as was seen 1n section 3.6, the magnitude of 

this parameter is not implausible. 
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CHAPTER 4 A SPECTRUM OF COMPOSITE STATES 

4.1 Introduction 

It has been shown in the previous chapter that it is possible to 

construct composite models of quarks and leptons in which the W and Z 

bosons are bound states of preons which m1m1c the Standard Model 

behaviour at low energies. One of the expected consequences of 

composite W's and Z's is that there may be a rich spectrum of new 

bound states with masses of the order of MZ. If the constituents of 

the weak bosons are two charged and hypercoloured fermions, which is 

the case in the haplon model [2.28] of Section 2.4, it is natural to 

expect the W's and Z's should have isovector spin 0 partners and 

associated neutral isoscalar states. If the scale of the confining 

hypercolour force AH is not much greater than MZ, then radially and 

orbitally excited states should also be present at energies somewhat 

greater than Mz. In addition, if the constituents of the weak bosons 

transform as triplets under SU(3) of colour, then one expects colour 

octet W's and Z's to be present with masses in the range 100-200 GeV. 

In sections 4.2, 4.3 and 4.4, predictions are made for the masses and 

leading order decay widths of spin 0 and excited states in various 

models. In section 4.5, coloured bosons are discussed and the results 

of the chapter are summarized in section 4.6. 

4.2 The Masses of Composite Weak Bosons 

The masses of mesons and baryons in QCD have been described with 

great success by invoking the similarity of the spin interactions in 
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QCD and electromagnetism [4.1]. Weak bosons are the mesons of QHD and 

estimates of the masses of new particles can be made by applying the 

same techniques to the hypercolour force. In the calculation of the 

masses and widths of new particles it will be assumed that a composite 

Z and its partners can be treated to a reasonable approximation as 

non-relativistic bound states. This 1s not a very accurate 

description of the states since the binding energy 1s not necessarily 

small compared to the effective mass of the constituent preons. 

However, in QCD this sort of approximation has given fairly accurate 

results, even for the very light quark bound states such as g, w and ~ 

[4.2] and it seems reasonable to hope that the predictions obtained 

here should hold to better than an order of magnitude. 

The spectrum of states predicted is shown in Figure 4.1 and has a 

similar form to that of the familiar bound states of heavy quarks. 

The first prediction concerns the spin 0 partners of the w·s and z·s 

[4.3]. The new charged states have the same mass as the neutral 

particle since it cannot mix with the photon which has spin one. 

These particles must be heavier than 15 GeV otherwise the charged 

bosons would have been observed in + -
e e annihilation experiments 

[ 4. 4] . They will couple very weakly to quarks and leptons since 

chiral symmetry suppresses the vertex to be O(Mf/Mw). In addition, 

they cannot decay into gluons and hypergluons which are isosinglets. 

The precise form of the hypercolour binding potential VH(r) is 

unknown but it is required to be confining with VH(r) ~ r as r -~ 

and 1n addition must have the correct asymptotically free behaviour 

for r -~ 0. The Richardson parameterization [4.5] generalised to an 

SU(NH) hypercolour potential has these properties and will be used 
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Col oure d boso ns 

The particles expected in a model where W's and Z's are made of 

charged, coloured and fermionic constituents (not to scale). 
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i- p 

where 

f(t) 

2N, 
n 

11NH - 2N~N~ 
L. 1' 

- 1 - 4 r dq 

J1 q 

-qt 
e 

[ 
IIHr - ~-~~_Hr I 1 

- 1\H r -

( 4 . 1 ) 

( 4. 2) 

and NF is the number of preon flavours which lS taken to be two ln all 

calculations. The Richardson potential depends only upon the 

hypercolour scale so there are only two free parameters which need to 

be determined. These are 1\H and the effective constituent mass m 

attained by the preens. In order to determine them, the radial 

Schrodinger equation 

-m1 [ d_2_ + 
dr2 

2 d 

r dr 

is solved with l 

] R(r) - [ 
1(1+1) l 

Enl - VH(r) - 2 R(r) = 0 
mr 

0 and two constraints are imposed. 

1). Mw = MSpin Averaged+ Hyperfine Splitting. 

( 4. 3) 

The contribution of the spin-spin hyperfine interaction to the masses 

of the bosons is treated perturbatively and is given by 

H ( 4. 4) 

-1 where V 5 ( r) is the short range r term in the potential ( 4. 1) . (The 

scalar confining part of the potential does not contribute to the 

hyperfine splitting). Since 
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( 4. 5) 

where S = S1 + S~ is the total spin of the boson, the mass splitting 
I t:.. 

between the S = 1 and S = 0 states will be 

( 4. 6) 

where the expectation value of a function g(r) is defined to be 

2 2 < g(r) > = J~ dr g(r) r Rn1 (r) ( 4. 7) 

N2 - 1 6n I f' ' ( i\Hr) \ Mw= 2m - E -
H ( 4. 8) 10 

6m2 \ I 2NH (11NH - 2NCNF) r 

where ' 3/3r. Notice that from (4.2) f, ' is always negative. -

2). The normalization of the 1S radial wavefunction must give the 

correct amount of w3- 1 mixing (see Section 3.2) i.e. 

. 49 s1n W ( 4. 9) 

Using Mw = 80.9 ± 1.5 GeV, sin2
BW = 0.218 ± 0.010 and e/g ~sinew one 

obtains the bounds 

6 2 6 3 7.14 x 10 ( IR 15 (0) I NCNH ( 8. 75 x 10 (GeV) ( 4. 10) 

Solving the Schrodinger equation (4.3) for the R15 (r) wavefunction and 

E10 eigenvalue and imposing (4.8) and (4.10) determines m and i\H 
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exactly. The range of values which m and ~H are displayed in 

Table 4. 1. The values of AH are much lower than the bound AH > 1 TeV 

deduced from the four fermi interaction (see section 2.3). However, 

it has been suggested by Visnjic [4.6] that the physical scale of 

compositeness could well be an order of magnitude lower than this 

because the strength of the effective four fermi interaction must be 

much less than unity if approximate chiral symmetry is to be preserved 

so that the fermions have masses very much less than AH. An 

alternative approach is to assume that the fermions and weak bosons 

have different compositeness scales with Af >> AW. This idea was 

proposed by Renard [4.7] to explain both the weak coupling of W's to 

quarks and leptons and also the large degree of mixing between the w3 

and the photon which manifests itself in the high value of AW = sinBW. 

The range of masses of the spin 0 partners of W and Z are shown 

in Table 4.2. It can be seen that the different spin states are 

unlikely to be degenerate 1n mass and suggests that perhaps the 

effects of such pseudoscalars may soon be evident in e+e- annihilation 

experiments. 

There are no clear experimental bounds on the mass of a spin 0 

isoscalar boson (U). However, the production of such a particle was 

offered as an explanation of the radiative decays + -
Z -~ e e 'Y and 

+ -Z ~ 1.1 1.1 'Y [2.21, 2.22] at an anomalously high rate. The idea 

involved the radiative decay Z -~ U1 followed by U -~ 1+1-. In 

[4.8, 4.9] the U had a mass of about 50 GeV whilst in [4.10] M
0 

~ M
2

. 

The experimental bound from 

MU > 46.7 GeV [4.11]. 

+ -
e e annihilation experiments is 

The experimental determination of the value of g 1.02 ± 0.02 
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Table 4.1 

Ranges of AH, m and E10 which give the correct W mass consistent with 

equation (4.10). 

2 (GeV) 3 
Constituent Energy 

NH Nc IR 15 (0) I AH GeV Mass m GeV E10 GeV 

2 6 3.57x10 ~ 4.37x10 6 138 - 147 133 - 140 199 - 214 

2 3 6 1 .19x10 - 1.46x106 67 - 72 78 - 82 97 - 107 

3 
6 2.38x10 - 2.91x10 6 112 - 12 ·j 1 H - 122 162 ~ 177 

3 3 7.92x105 - 9.71x10 5 61 - 67 76 - 80 83 - 94 

4 
6 ~ 2.18x106 99 - 107 105 ~ 111 141 154 1. 78x10 ·-

4 3 5.94x105 - 7.28x105 56 - 61 72 - 76 73 - 82 

Table 4.2 

Spin averaged masses, Hyperfine splittings and pseudoscalar masses 

obtained with the parameter ranges of Table 4.1. 

2 

2 3 

3 

3 3 

4 

4 3 

MSA GeV 
10 

65 - 66 

57 - 59 

66 - 66 

66 - 68 

67 - 68 

70 - 71 

60 - 66 

82 -- 87 

58 - 62 

54 - 59 

52 - 57 

41 ~ 46 

60 

15 - 21 

0 - 0 

19 - 23 

22 - 28 

24 - 29 

36 -· 40 



constrains an 5=1 isoscalar to have either a very large mass or a very 

small coupling (see section 3.5). There are no entirely satisfactory 

explanations of why this particle should be so much heavier than the 

Z. In the analogous QCD case, the isovector Q and isoscalar w are 

almost degenerate in mass. The large mass difference is usually 

attributed to hypergluon annihilation effects. However, there is a 

second possibility if the constituents of theW and Z are scalars. In 

this case the W particles are P-waves and so have an antisymmetric 

spatial wavefunction. Bose statistics requires that the total 

wavefunction be symmetric. Hence the isospin wavefunction must be 

antisymmetric but an isoscalar state has a symmetric isospin 

wavefunction and so no such state with a low mass can exist. The 

drawback to this idea is that if the boson constituents have spin 0 

then the value of the W wavefunction at the origin is zero in a non 

relativistic approximation since theW is a P-wave. However, the 

wavefunction is proportional to sin2BW and so the large magnitude of 

this parameter must stem solely from relativistic corrections to the 

value of the wavefunction. This seems unlikely and the most common 

view is that weak bosons are made from fermionic constituents. 

4.3 Excited States 

Turning now to radially and orbitally excited states of weak 

bosons, one can estimate their masses by extending the method used in 

the previous section to predict the pseudoscalar masses. For radial 

excitations, since m and AH have been fixed, it is straightforward to 

compute the energy eigenvalue E20 the spin averaged mass M~~ and the 

R25 (r) wavefunction. The hyperfine splitting is then calculated from 
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Pqnation ( 4- 6) to give and states. 

results are shown in Tables 4.3 and 4.4 for various values of Nc and 

NH_ It can be seen that in all cases the masses are much heavier than 

those of the ground state particles. 

The masses of the first orbital excitations (P-waves) can be 

calculated by noting that for a vectorlike potential one obtains 

contributions to the particle masses [4.12, 4.13] 

(213m2 l < 
2 ( 4. 11 ) mH 'il VH(r) > 

mso = (312m2) < VH(r)lr > ( 4. 12) 

2 
< V" (r) - VH(r)lr ( 4. 13) mT ( -1 lm ) > H 

where mH , m
50 

and mT are the mass shifts generated by the hyperfine, 

spin orbit and tensor forces respectively. Using the short distance 

part of the Richardson Potential one has 

2 
< f' ' ( /I.Hr) I r > ( 4. 14) mH = 2c/3m 

2 
< f(/I.Hr)lr 3 - f'(/I.Hr)lr 2 > ( 4. 15) mso = 3cl2m 

2 3 3f'(/I.Hr)lr2 + f ' ' ( /I.Hr ) I r > ( 4. 16) mT = clm < 3£(/I.Hr)lr 

where ' a1ar and -

N2 - 1 6n H ( 4. 17) c = 
2NH ( 11NH - 2NCNF) 

In addition to these effects there is also a contribution to the spin-

orbit force from the long distance confining scalar potential which is 

the hyperchromic analogue of the Thomas precession term in atomic 

physics. The contribution from this term is [4.12, 4.13, 4.14] 

( 4. 18) 
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Table 4.3 

Radially excited wavefunctions and energy eigenvalues obtained us1ng 

the parameters of Table 4.1. 

2 (GeV) 3 
Energy 

NH Nc IR2S(O)I E20 GeV 

2 6 2.90x10 - 3.48x10 6 436 - 465 

2 3 5 8.69x10 - 1.05x10 6 269 - 292 

3 1. 87x10 6 - 2.34x106 364 - 396 

3 3 5.77x10 5 - 7.20x105 218 - 243 

4 6 1.40x10 - 1. 72x10 6 321 - 350 

4 3 4.17x10 5 - 5.24x106 188 - 208 

Table 4.4 

Predicted hyperfine splittings and masses of radially excited spin 0 

and spin 1 states. 

2 

2 3 

3 

3 3 

4 

4 3 

MSA GeV 
20 

301 - 316 

231 - 242 

268 - 285 

203 - 215 

248 - 263 

186 - 196 

43 - 47 

56 - 62 

40 - 44 

35 - 39 

36 - 40 

26 - 29 

63 

269 - 281 312 - 328 

189 - 196 245 - 257 

238 - 252 278 - 296 

177 - 186 212 - 225 

221 - 233 257 - 273 

167 - 174 192 - 203 



where VL(r) is thR linPar confining term in the hypercolour potential. 

For 

total 

the 
2 Richardson potential (4.1) one has v1 (r) =cAr so 

The full expression for the particle masses is 

m( 25+11J) <S S > + <1 S> <T> =roSA+ mH 1· 2 mso · + mT 

that in 

( 4. 19) 

(4.20) 

where m5A is the spin averaged mass; <S 1.s2> = 1/2 (S(S+1) - 3/2) and 

<T> =- <L.s> 2 - 1/2 <1.5) + 1/3 <1 2> <s 2> I (21+3)(21-1) (4.21) 

For the P-wave 1=1 states one obtains 

3 1/4 2 1/3 (4.22) m( P0 ) = mSA + m - mso - mT H 

m(3P1) roSA + 1/4 mH mso + 1/6 mT (4.23) 

m(3P2) mSA + 1/4 mH + mso 1/30 mT (4.24) 

1 3/4 (4.25) m( P 1) = mSA - mH 

The energy eigenvalues E21 , SA the spin averaged mass M21 and the 

R21 (r) wavefunction are calculated in the same way as for the radial 

excitations. The results for the P-wave particles are shown in Tables 

4.5, 4.6 and 4.7 for various choices of NC and NH. The pattern of the 

masses is similar to that in the P-wave charmonium states in QCD. A 

typical mass spectrum taking NC = NH = 3 is shown 1n Figure 4.2. 

These results differ from those of Grosser et.al. [4.15] who obtain an 

inverted spectrum of P-states 1.e. 3 the P2 state is the lightest. 

However they assume a very small hyperfine splitting between the S-

wave states which has the effect of emphasizing the long range scalar 
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Table 4.5 

Orbitally excited wavefunctions, energy eigenvalues and spin-averaged 

masses obtained using the parameters of Table 4.1. 

NH Nc IR' (0)1 2 
2P 

(GeV) 5 E21 GeV MSA 
21 GeV 

2 1.38x1010 - 1.86x1o 10 350 - 375 217 - 226 

2 3 1.81x10 9 - 2.53x10 9 213 - 232 175 - 182 

3 6.64x109 - 9.66x109 293 - 319 197 - 208 

3 3 9.06x10 8 - 1. 38x109 173 - 194 158 - 166 

4 4.05x10 9 - 5.62x109 258 - 281 185 - 194 

4 3 5.52x10 8 - 7.96x108 150 - 166 148 - 154 

Table 4.6 

Contributions to P-wave mass splittings from hyperfine, spin-orbit and 

tensor interactions given by equations (4.11) - (4.19). 

2 4 - 5 3 - 3 58 - 63 

2 3 7 - 7 21 - 23 79 - 88 

3 4 - 5 6 - 6 55 - 61 

3 3 4 - 5 11 - 13 48 - 56 

4 4 - 4 6 - 6 49 - 54 

4 3 3 - 3 8 - 9 37 - 41 
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Table 4.7 

Predicted masses of orbitally excited states given by equations (4.20) 

- (4.25) using the mass splittings of Table 4.6. 

3 
m( P 

1 ) GeV 
3 

m( P2 ) GeV 
1 

m ( P 
1

) GeV 

2 192 - 199 225 - 235 219 - 228 214 - 223 

2 3 109 - 109 169 - 176 195 - 204 170- 177 

3 168 - 177 202 - 213 202 - 213 194 - 205 

3 3 120 - 123 156 - 163 169 - 178 155 - 163 

4 158 - 165 188 - 198 190 - 199 182 - 191 

4 3 120 - 123 146 - 152 156 - 163 146 - 152 
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Mass Figure 4.2 

(GeV) 2,5 
1 

200 

2 1So 13P. 
J. 

1'R 
150 1'R 7 

100 z 

50 

The predicted mass spectrum of isovector states in a model with 
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part of the potential. HPnre mso is negativP in their calculations 

3 3 3 and so they obtain m( P
2

) < m( P
1

l < m( P
0

). 

4.4 Decay Widths of New States 

The states whose masses were calculated in sections 4.2 and 4.3 

were all isovectors and, in consequence, will not decay into pure 

isoscalar states because of isospin symmetry. Hence the leading order 

decays of these 3 3 states are PJ -f Z'( and P
1 

--> hh'( where h 1s a 

hypergluon. The hypergluons will fragment into quarks and leptons and 

will eventually form hadrons. In order to obtain an estimate of the 

decay rates, the standard leading order, non relativistic bound state 

quarkonia decay formulae are generalised to an SU(NH) hypercolour 

force (see [4.16] for the quarkonium non-relativistic bound state 

formalism). Although the use of perturbation theory is questionable 

for the large values of aH, it would be very suprising if higher order 

contributions were to conspire to change the widths by orders of 

magitude. One has for an SU(NH) hypercolour force [4.17] 

(N2 - 1) Nc 
2 

[ 
2348 - 317u 2 

r( 3P 
aHa 

I R' (OJ 1
2 --) hll''() H 

1 
NH M4 2P 

3 4 lT 

l (4.26) 

and [ 4. 18] 

r( 3P -1 Z'() ( 1 I 9 l 
3 . 2 

II 1
2 = cxw s1n Bw J 1 

(4.27) 

where w is the photon momentum and 

(4.28) 

Notice that the radiative decays to Z'( are suppressed by 
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because the Z has only a small isoscalar component (see section 3.7). 

decay 

The values of these widths are shown in Tables 4.8 and 4.9. 

3 P
1 
-~ hh1 contributes appreciably to the width of the 

The 

axial 

vector state. A characteristic feature of all these decays 1s the 

emission of a photon. Two events with a photon balanced by missing 

energy have been detected by UA1 [4.19] in the 1983/84 run of the CERN 

collider. However, these isovector particles cannot be made by gluon 

fusion since gluons are isoscalar and so cannot be easily produced. 

The situation is entirely different for any isoscalar particle in the 

100 - 200 GeV energy range since they can be produced from gluon 

fusion. Unfortunately such a particle would also be able to decay 

into hypergluons and so would have such a ~road width that it could 

not be observed as a single particle. 

4.5 Coloured Bosons 

It 1s possible that the constituents of W's and Z's carry colour 

quantum numbers as well as charge and hypercolour. In this section it 

will be assumed that the haplons a and ~~ which bind to form weak 

bosons, are colour triplets under SU(3)C 
1 

. o our Because the W's and 

Z's have a large mass and are very tightly bound, QCD, which is an 

asymptotically free theory at sufficiently small distances, is just a 

weak perturbation at ranges of the order of 1/AH which are very much 

less than typical QCD distances (0(1/Ac)). Hence the haplons can form 

colour octet W's [4.20, 4.21]. The mass splitting between these 

states can be estimated by considering the colour force between 

haplons 
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Table 4.8 

Radiative decay widths of composite P-wave states given by equations 

(4.27) and (4.28). All widths are given in MeV. 

I I 1
2 3 3 3 

NH Nc 1 r( P0~z..,-l r( P 1 ~z..,-l r( P
2

-7Z..,-) 

2 -4 1.21x10 - 1.37x10 -4 80 - 94 270 - 320 180 -

2 3 -4 2.64x10 - 3.10x10- 4 0.2 - 0.2 63 - 76 210 -

3 -4 1.50x10 - 1.80x10 -4 35 - 45 160 - 200 160 -

3 3 3.24x10 -4 - 3.82x10 -4 1 . 8 - 2. 1 38 - 48 78 -

4 1.99x10 -4 - 2.17x10 -4 24 - 33 110 - 150 120 -

4 3 -4 3.98x10 - 4.84x10 -4 2.2 - 2.6 25 - 31 48 -

Table 4.9 

The decay width in MeV for 3P ~ hh..,- g1ven by equation (4.26). 
1 

2 1 . 61 - 1 . 65 24.3 - 29.0 

2 3 1 . 89 - 1. 94 41. 5 - 51 . 9 

3 0.90 - 0.92 10.0 - 12.3 

3 3 0.89 - 0.93 11 . 3 - 15.7 

4 0.62 - 0.63 5.4 - 6.3 

4 3 0.57 - 0.60 5.2 - 7.0 
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v nn 
'C'"' 

(4.29j 

Singlet 

Octet 

where T. are SU(3) generators and R 1s the radius of the bound state 
1 

W's and Z's. Hence one has 

M (Singlet) = M0 - 4/3 a5 <1/R> 

M (Octet) 

whereupon 

(4.30) 

If <1/R> ~ ~H then for values of ~H between 100 and 500 GeV, one 

expects coloured weak bosons in the range 100-180 GeV. 

are expected to be almost degenerate in mass because the z8 does not 

mix with either a photon or a gluon. However, the coloured isoscalar 

states can m1x with gluons and so are expected to be heavier than w8, 

z8 . The presence of coloured bosons necessarily demands that there be 

colour octet leptons [4.21]. This is because colour singlet leptons 

are made from one constituent of the W (an a or ~) and a scalar y (see 

section 2.4 for details). If a, ~ are SU(3) triplets then y must be 

in the conjugate 3 representation and hence octet (ay) and (~y) states 

can be formed too. The same argument does not hold for the quarks 

(ax) and (~x) since the scalar constituent x need not carry colour. 

However if it did there would be exotic colour sextet quarks formed. 

Coloured gauge bosons have been used to explain the "monojet" and 

"W + jet" events detected at the CERN collider [4.19, 4.22]. The 

monojets occur when an energetic jet is found in one half of the 
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detector with no observed particle balancing its momentum in the other 

half. In a coloured boson scenario this could be due to the 

production and decay of a Zn. 1.e. Zn -~ Zq -~ vvq so that only one 
0 0 

final state jet will be observed. Similarly W~ -~ Wtg can account for 

theW plus jet events. However, there are many other interpretations 

and the Standard Model itself can provide possible explanations for at 

least some of the events [4.23, 4.24]. 

4.6 Summary 

The hypothesis that the W and Z particles are composite implies 

the existence of many more states. A degenerate pseudoscalar 

isotriplet is predicted at a mass of about 20-40 GeV. Orbital 

excitations of W and Z should occur in the 100-200 GeV mass region 

and, because they are isovectors, their preferred decays are into 

photons. The radial excitations are expected to have higher masses 

because the 15 - 25 mass splitting is found to be large. The only 

experimental information on the masses of the isoscalars is the bound 

3 on the s
1 

state from measurements of Q. Spin 0 isoscalars and their 

coloured partners have been introduced as a possible explanation for 

the anomalous events observed at the CERN collider [4.8, 4.9, 4.10, 

4.25] 

Coloured constituents of w·s and z·s imply coloured partners for 

the bosons in the 100-200 GeV mass range and also coloured leptons. 

These coloured particles have also been used to try and explain the 

strange collider events. However, there is no really convincing 

evidence that any of these explanations involving new bosons is 

correct. 
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In conclusion, although many new states are predicted if the weak 

bosons are composite, there is no experimental evidence to indicate 

their presence. 
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CHAPTER 5 THE WIDTH OF THE Z IN COMPOSITE MODELS 

5.1 Introduction 

It has been shown in Chapter 4 that one can attempt to find 

compositeness by looking for new particles. In addition one might 

also be concerned that anomalously large contributions from a 

composite Z may add to the Standard Model decays and might exceed the 

present experimental bound on the width. In this chapter this 

question 1s examined in detail and a comparison is made between the 

theoretical predictions and experimental results. It is necessary to 

begin with a summary of the results of Z decays predicted by the 

Standard Weinberg-Salam Model of weak interactions. 

5.2 Standard Model Z Decays 

The leading order decays of the Z in the Standard Model are into 

- + - -fermion antifermion pairs qq, l 1 and vv (see Figure 5.1). The width 

is given by [5.1] 

r(z -~ ff) = 12 [ 1- 4:: ]1/2 
z 

( 5. 1) 

where m is the mass of the fermions and Nc = 3 for quarks and for 

leptons. The parameters a and bare defined by 

b _ T~ ( 5. 2) 
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Figure 5.1 

f 

z 

f 

Standard Model decay of the Z into fermion-antifermion pairs. 
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where T~ is the third component of WP.ak isospin and Qf 1s the charge 

of the fermions 1n units of e. It follows that for left-handed 

fermions one obtains 

f 

u,c 

t 

d,s,b 

v e'v!J,vl 

e , IJ ,T 

using a top 

This gives a 

correction is 

given by [5.2] 

Qf T3 
f 

2/3 1/2 

2/3 1/2 

-1/3 -1/2 

0 1/2 

-1 -1/2 

quark mass of 

total Z width 

z -~ qqg (see 

4a
5 

r<z-~qq) 

3n 

r<z -~ qq) log e: 4as [ 2 

3n 

a b r (MeV) 

1/2 - 4/3 . 2 
s1n sw 1/2 321 

1/2 - 4/3 . 2 
s1n sw 1/2 104 

-1/2 + 2/3 
. 2 

s1n aw -1/2 411 

1/2 1/2 182 

-1/2 + 2 . 2 
s1n aw -1/2 93 

40 GeV, 
. 2 

0.218 and Mz == 94 GeV. s1n aw = 

of 2.8 GeV. The most important radiative 

Figure 5.2). The width for this decay is 

2 
1T 

[ 

2 € 3 
1 og -- + - ( 1 - 2 e: ) -

1 - € 2 6 

1 € l + -(5 + 3e:)(1 - 3e:) + 2 Li
2
--

4 1 - € 

3 5 
-I log e: I + 
2 4 

2 

: + dog ' + z, ] 

( 5. 3) 

+ higher order terms 1n e: 

where Li 2(z) = - J~ dt (1/t) log(1 - t) and e: is the minimum energy 

fraction which can be carried by the gluon. Taking e: = 0.1, one 

obtains r(Z -~ qqg) ~ 150 MeV i.e about 5% of the total z width. z 

decays into gauge bosons take place only via the loop diagams of 
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Figure 5.2 

z 

z 

q 

g 

q 

q 

g 

Leading order Feynman diagrams for the decay Z -~ qqg in the Standard 

Model. 
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Figure 5.3 and they are all very much suppressed. Their widths are 

[ 5 . 3] 

r(Z -~ ggg) ~ 3.4 x 10- 5 GeV 

r(Z -~ gg1) ~ 1.1 x 10-? GeV ( 5. 4) 

r(Z -~ 111) ~ 1.4 x 10- 9 GeV 

5.3 Anomalous Decays into Gauge Bosons 

It has been pointed out by Renard [5.4] that in models where the 

Z is made of light , charged and coloured fermionic preons, its decays 

into gauge bosons Z -~ ggg, gg1 and 1ll could be anomalously large. 

The diagrams giving the additional contributions to the width, which 

are shown in Figure 5.4, couple the gauge bosons to a preon loop. 

Using the haplon model of section 2.4 and the standard quarkonium non-

relativistic bound state decay formulae [4.17] applied to QHD, one 

obtains for the decay widths [5.4] 

80 2 
2 3 IR 15 (0) I . 2 r(z -~ ggg) = NCNH (w - 9) as s1n aw ( 5. 5) 

243w M2 z 

16 2 
2 2 IR1S(O)I 

cos
2

aw r ( z -~ gg1l = NCNH (w - 9) as a ( 5. 6) 
8h M2 

z 

2 

r(z -~ 1nl 2 3 IR 15 CO) I 2 ( 5. 7) = NCNH (w - 9) a cos aw 
18TT M2 

z 

where the preons a and ~ have charges 1/2 and -1/2 respectively in 

units of e. The factors involving sin8W and cos8w arise because the 

final states are all purely isoscalar whereas the Z wavefunction is 
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Figure 5.3 

g 
z 

g 

g 

z 

Leading order Feynman diagrams for the decay Z -~ ggg in the Standard 

Model. 
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Figure 5.4 

z 

Anomalous contributions to the decays Z ~ qqq, 991 1 111 where the Z 

is made of coloured fermionic constituents. 
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predominantly isovector [3. 17] as was seen in section 3.7. The 

magnitude of these widths are given in Table 5.1 and a comparison with 

the Standard Model values of section 5.2 shows that the above 

contributions constitute by far the most important terms. 

Unfortunately the decays still represent only a small fraction of the 

total width and so cannot easily be detected by experimental 

determination of the Z width. One consequence of the extra diagrams 

is that production of Z's will be enhanced by the mechanisms gg -~ Zg 

and gg -j Z-y. These effects have been investigated by Renard [5.5] 

and Leurer et al. [5.6] but without the isospin suppression factors. 

In addition to the above decay channels, there are also possible 

+ -enhancements in the modes Z -~ l 1 -y, qq-y and qqg. Renard [5.4] has 

suggested that the latter decay Z -~ qqg might substantially increase 

the width of the Z. The additional composite model diagram is that of 

Figure 5.5 and occurs because parity violation in the Z's coupling 
to preons is assumed to be the same as that in fermion couplings. This 

++ enables it to decay through a 1 component(~~.Of course the z cannot 

decay into two real gluons, the 1++ component being forbidden by Bose 

statistics (Yang's theorem [5.7]) and 1 by charge conjugation. The 

aim of this section is to try and quantify this observation, using 

simple potential models and various rough bounds on the mass of the 

next radially excited Z' state [5.8]. 

One obtains [5.9] for the diagram in Figure 5.5 

( 5. 8) 

where NF is the number of quark flavours into which the Z will decay. 

It 1s assumed throughout that NF=5 since the decay into ttg is much 
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Table 5.1 

The widths r(Z -+ ggg, gg1, llll for an elementary and composite Z. 

r(Z -~ ggg) (GeV) 

r(Z -+ lll) (GeV) 

Standard Model 

3.4 X 10-S 

1.1 X 10-? 

1.4x10-9 
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Composite Model 

6.1 X 10- 2 

6.3 X 10- 3 

4.2 X 10- 6 



Figure 5.5 

g 

z 

q 

Additional diagram for a composite Z -~ qqg coming from the 1++ 

component of the z. 
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reducec'l by phase space~ R2P(r) is the derivative of the radial 

wavefunction in the 1++ state. . I . f 2 . 2 Agaln t1e suppress1on actor s1n BW 

occurs because qqg is a purely isoscalar state. Although this 

wavefunction is not known, 3 the magnitude of the W -1 mixing (see 

Figure 3.3) relates the S-wave radial wavefunction at the origin to 

the Weinberg angle BW as was shown in chapter 3. 

(3.13) yields 

so one needs to determine the ratio 

K -

Combining (5.8) - (5.10) one obtains 

= N 

3 2048a
5 

F 27M4 
z 

Squaring equation 

(5.9) 

(5.10) 

l (5.11) 

where m is the effective constituent mass of the preons and £ is the 

binding energy of the bound state: £ =2m- MZ. To estimate £and K, 

the results of Tables 4.1 and 4.5 can be used. Values of r obtained 

in this way are given in Table 5.2. 

Alternatively, one can take the effective potential between the 

preons to be of the form 

(5.12) 

with v > -2 to keep r 2R(r) non-singular at the origin. Then in the 

WKB approximation [5.10] the energy eigenvalues are [5.11] 
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Table 5.2 

Values of r(Z -~ qqg) uslng equation (5.11) and Tables 4.1 and 4.5 to 

estimate the binding energy e and K defined by (5.10). 

2 3 

3 3 

4 3 

K 

0.058 - 0.059 

0.047 - 0.050 

0.042 - 0.045 

e (GeV) r(Z -~ qqg) GeV 

87.9- 97.5 0.75- 0.78 

74.7 - 85.5 0.67 - 0.75 

66.8- 75.4 0.63- 0.72 
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E 
2q -vq [ A(v) (n + l/2 - 1/4) ]2vq > 0 ( " 11\ 

nl = ~ m v \...., • , • ., I 

lf31 2qm-vq [ A(v) (n - q/2(1 + v - 21) ) ]2vq -2 < v < 0 

• 
where q - (2 + v)- 1 and 

2vhr r (3/2 + 1/v) 2lvl/rr r ( 1 - 1/v) 
A(v) - A(v) - ( 5 . 14) 

r(1/v) r(-1/2 - 1/v) 

Introducing the mass difference between the Z and its first radially 

excited state, 

6M - Mz - Mz = E20 - E10 (5.15) 

then e: = E10 is given by 

(3/4)2vq 
e: = 6M 

(7/4}2vq - (3/4}2vq 
v ) 0 (5.16) 

( 1 - p )2vq 

= 6M -2 < v < 0 
(2 _ p)2vq _ ( 1 )2vq - p 

where p _ 1/2(1+v}(2+v)- 1. f3 can now be written in terms of v and 

f3 = (6M) 1/2q mv/2 [A(v)]-v [ (7/4}2vq (3/4)2vq ]-1/2q v > 0 

= (ilM)1/2q mv/2 [l(v)]-v [ (2-p)2vq (1-p}2vq 1-1/2q _2 < v < 0 

Similarly, to evaluate K one uses [5.11] 

1! ]2 d (mE )(mE )1+1/2 
( 21 + 1 ) ! ! dn n1 nl 

v > 0 (5.17) 

q 
[ 

1 ! q q ( 21 + 1 ) ]2-d 
== (mE l ( m I f3 I ) q < 21 + 1 l 

r[q(21 + 1) + 1] dn nl 
-2 < v < 0 
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giving 

K 

t.M 3(4v - 6)q 
[ (7/ 4)2vq _ (3/ 4)2vq 1-1 

r1 .. .!., ?)a m4' ..... - • 

t.M 
qq(6+v)+1 [r(q)/r(3q + 1)]2 A(v)-2vq 

4m 

X [ (2 _ p)2vq _ (1 _ p)2vq 1-1 

Thus e and K depend only upon t.M and v. 

v > 0 

[ 

2 - q/2(v - 1) 

- q/2(v + 1) 

-2 < v < 0 

( 5. 18) 

]2vq-1 

The next stage of the calculation involves trying to estimate 

bounds for t.M. The results of Table 4.4 give values for t.M ranging 

between 114 and 178 GeV. In models where w·s and z·s have right-

handed couplings, it seems likely that M~ ~ Mwr the mass of the 

lightest right-handed vector boson. The experimental limit from ~ 

decay is ~r > 400 GeV [5.12], giving t.M ~ 305 GeV. As a third 

alternative, one can use the W-dominance of the weak current. 

Demanding that the low energy coupling relations be satisfied by the 

W-dominance model with two W bosons gives [3.13] 

::: Charged Current ( 5. 19) 

::: Neutral Current (5.20) 

Electromagnetic Current (5.21) 

where Aw 1s theW - ) mixing and gw the W-fermion coupling. In 
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addition duality [3.16] giv~s 

AwMw = A~w (5.22) 

Introducing X = gW/gW I 

(5.19) - (5.22) imply 

r 3 - cr + (1-c)/x = 0 (5.23) 

The experimental values~= 80.9 ± 1.5 GeV , sin2ew = 0.218 ± 0.010 

imply c = 1.062 ± 0.085. Solutions of (5.23) within these bounds are 

shown in Figure 5.6. If Wand W' couple with the same strength i.e. 

lxl = 1, then apart from the solution with Mw ~ Mw which is rejected 

as it would mean that there was little binding energy and almost a 

continuum of W and Z states, one needs ~ > 820 GeV and 6M > 725 GeV 

Only if the W' is very weakly coupled can it have a low 

mass. Finally, it is noted that no other W or Z particles have been 

detected at the CERN collider, though there may possibly be structure 

in the 130- 150 GeV mass region [4.22]. In conclusion, it seems 

unlikely that 6M < 40 GeV. Fortunately, as will be seen, these bounds 

are not critical for the decay estimates. 

More important is the value of v in the potential. This can be 

estimated very approximately by making a comparison of the Z with the 

QCD charmonium system. A good description of these states has been 

obtained using potentials of the form 

V(r) = -a/r + br (5.24) 

where a= (4/3)a
5 

~ 0.51 and b ~ 0.17 (GeV) 2 is the string tension, 

which is related to the slope of the Regge trajectory a by [5.13] 
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Fiaure 5.6 

I Mw (GeV) 

( =1-0265 

10 
-1·5 -1·0 -o·S 0 0·5 1·0 1·5 

X 
The mass of the excited W' boson as a function of its coupling 

(gw =xgw) to satisfy equation (5.23) for various values of c. 
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b = 1 I ( 2rra' ) (5.25} 

Since radial and orbital excitations have comparable masses, 
') ') 

a ~ 1/(M'~ - M~} giving 

(5.26) 

It is thus convenient to introduce the dimensionless ratio of the 

potential parameters 

b 
y = (5.27} 

It is found that for charmonium y ~ 0.083. For the Z, a and b are 

estimated by finding the value of ~ needed to generate the spectrum of 

Z states with v = -1 and +1 respectively. It is found that y = 0.073 

for ~M = 100 GeV, 0.108 for ~M = 500 GeV and 0.122 for ~M = 1 TeV. 

Using instead the Richardson Potential [4.5] of (4.1} and the values 

for ~M from Table 4.4 with Nc=3, y ranged between 0.073 and 0.091 (see 

Table 5.3}. All these values are very similar to those for charmonium 

which suggests that with appropriate scaling, the shape of the 

effective potential which binds the preons is not very different from 

the QCD potential. Furthermore, it is known that for charmonium the 

power v, arising from the combination of powers in (5.24} is v ~ 0 

[5.11]. This is because confinement precludes the wavefunction 

penetrating very far into the large r region where the br term 

dominates. This seems likely to be a feature of any model in which 

the constituents acquire large effective masses through confinement, 

so one expects that probably v ~ 0 for the Z system too. 
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Table 5.3 

Values of y defined by equation (5.27) using the values of ~M obtained 

from Table 4.4. The parameters a and b are the appropriate terms in 

the Richardson potential specified by (4.1) and Table 4.1. 

2 

3 

4 

3 

3 

3 
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y 

0.073 - 0.075 

0.083 - 0.088 

0.088 - 0.091 



In Figure 5.7 the results on the width of Z -~ qqg v1a the 

diagrams of Figure 5.5 from equation (5.11) are shown as a function of 

~M for various possible values of v. It can be seen that for any 

~M > 40 GeV and v ) 0 one has r ) 0.3 GeV. 

little importance but r increases with v. 

The value of AM is of 

It is hard to see how a 

confining potential can have a negative value of v and the comparison 

with charmonium suggests that v ~ 0 is quite likely. It is possible 

however that v > 0 if MZ < AH whereupon the effects of confinement may 

be more significant than 1n charmonium. Notice that the values of r 

in Table 5.2 obtained from (5.8) and (5.13) and the data from Tables 

4.1 and 4.5 using the Richardson Potential (4.1) correspond to values 

of v in the range 0.4 ~ v ~ 0.6. 

5.4 Experimental Results 

The latest experimental bound on the Z width is [1.15] 

r = 2.7 ~ ~:~ GeV UA2 (5.28) 

which is not necessarily in disagreement with the results of the last 

section although a composite Z would produce an increased fraction of 

three jet events. An indirect determination of the Z width using 

production rates and assuming a Standard Model width for the W gives 

[1.15] 

r < 3.3 * 1.3 GeV (5.29) 

It can be seen from these values that v cannot be close to 1. One may 

conclude that in decays of the Z, there should be at least a small 

rise in the branching ratio into three hadronic jets. 

92 



...... 
II 

;.;, 

0 'a ... - •z:s 
l!l -... 

The decay width r(z -~ 

0 
II 

? 

qqg) 

;e; 

via Figure 5.5 
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by equation 

(5.11) as a function of the mass difference ~M = Mz- Mz for different 

effective potentials. Note the insensitivity of r to the value of ~M. 
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The corresponding leptonic decay Z -~ 

+ - -r(z -~ e e y) = r(Z -~ qqg) ---,-
3

"' 5 keV 
16NFaS 

* + -
1 y -~ e e 1 has a width 

(5.30) 

so this mechanism certainly could not account for the anomalously high 

+ -rate of Z -~ 1 1 1 events (0(25%)) observed during the 1983/84 run of 

the CERN collider [2.21, 2.22]. In fact any model in which the 

constituents carry colour as well as charge will find it hard to 

explain how these events can provide such a substantial contribution 

to the total width (see [5.14] for a summary of the interpretations of 

However, more recent runs at CERN suggest that 

the l+l-y rate may not be such a large fraction after all 

[2.25, 2.26]. In this case the Standard Model bremsstrahlung width of 

about 1 MeV may be sufficient to explain the data, possibly with a 

very small contribution from (5.30) too. 

5.5 Effective Interactions 

An alternative method of calculating the widths of composite 

particles is to regard their decays as effective point interactions 

* (see for example [5.15]). Hence the decay Z -~ g g -t ggg can be 

treated as if it proceeded through the diagrams of Figure 5.8 and 

* z -~ g g -t qqg through Figure 5.9. One is treating these 

interactions in the same sort of way that weak interactions were 

originally formulated at low energies in terms of a pointlike four 

fermion vertex. This is a good approximation for weak interactions 

because the masses of the propagating W and Z bosons are much larger 

than the centre of mass energies in the decays. In the case being 

94 



P,a. 
z--..!---~ 

z 
P,o. 

r
13

,T, e 

z P a 
I 

Figure 5.8 

q2''' ( 

q1,P I b 

q
3
.o, d 

q
3
,o, d 

Diagrams for the decay z -~ ggg via an effective Zgg vertex. 
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Figure 5.9 

p,a. 
z 

Diagram for the decay Z -7 qqg via an effective Zgg vertex. 
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considered here this condition is not satisfied s1nce one assumes 1n 

these models that AH is of the order of M2 . However, it is useful to 

compare the results obtained from this method with those from non-

relativistic potential models s1nce one can be more confident of the 

results if the two methods are in agreement. 

One requires the interaction term to be invariant under SU(3)C 

since this is assumed to be an exact gauge symmetry. Because the 

overall dimension of the Lagrangian is (mass) 4 one looks for terms of 

lowest dimension n so that the dimensional constant behaves like A4-n 

[5.16]. The operator of lowest dimension (dimension 6) in an 

effective Lagrangian to describe such an effective interaction for 

* Z -~ g g is 

( 5. 31 ) 

where z and Ga are the usual gauge boson field strength tensors. 
~v ga 

One estimates C ~ g;/A~ by dimensional analysis and since there must 

* be two gluon couplings within the Zgg vertex. In the following 

calculations it is assumed that s1nce changing c is 

equivalent to varying AH so that no generality has been lost. The 

tensor a is defined in the usual way to be 
~v 

a = i/2 [ 1 , 1 ] = i/2 (1 1 - 1 1 ) 
~v ~ v ~ v v ~ 

( 5. 32) 

a is selected 1n preference to momentum operators so that the 
1-JV 

dimension of the operator is as low as possible. Using (5.31) one can 

* derive the vertex factor V for z -~ g g via Figure 5.8a 

v (5.33) 
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The amplitude for the above process can now easily be written down 

using standard Feynman rules [5.17] 

( 5. 34) 

+ similar terms from Figures 5.8b and 5.8c 

Squaring this amplitude 1n the usual way gives 

(5.35) 

2 2 [ 10(x + y + z) + 7/2(xy/z + xzjy + yz/x) + 5(x IY + x /z 

where 

y - (5.36) 

and E. are the final state gluon energies. Note that x + y + z = 1 so 
l 

that IMI 2 is a function of x and y only. The double differential 

decay width for three massless final state particles is given by [5.2] 

= (5.37) 
dx dy 

In order to prevent infra-red divergences, a cutoff e lS imposed on x 

and y so that 

- 2e (5.38) 

- X - E 
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where E 1s the minimum fraction of the total energy carried by a 

gluon. Integrating (5.37) with respect to x andy using the limits 

given in (5.38) yields the following expression for r 

r(z -7 gggl 

2 3 + [- 41/4 + 18£ + 15E /2- 5E ] log ((1 - 2£)/E) 

1-E l + 12 I 2E ds [ log ((s- E)/£) ] I s (5.39) 

One obtains the values of rasa function of AH shown in Figure 5.10 

for various values of E. It can be seen that if AH is of the order of 

MZ or is given by the values obtained in Table 4.1 then r takes large 

values in this calculation. 

* -In the calculation of the width for Z -~ g g -7 qqg the amplitude 

can be written down using (5.31), (5.33) and the usual Feynman rules 

(5.40) 

Squaring (5.40), averaging over initial spins and summing over final 

states yields 

( 5. 41) 
z 

In the same way as the previous calculation using equation (5.37) for 

the doubly differential decay width and integrating x and y between 

the limits given in (5.38) gives 
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Figure 5.10 

1~------~------~-----.------.------, 
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The decay width r(Z -7 ggg) via the diagrams of Figure 5.8 as a 

function of the 

energy cutoff e:. 

hypercolour scale AH for different values 

2 cis taken to be (g
5

/AH) and a5 = 0.14. 
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r ( z qqg) NF 
8a~ 5 [ 11/9 19£/3 29£ 2/3 + 5£ 3 

-) Mz - + -

4 
/\H 

[ 2/3 2£ 2£ 2 4/3£ 3 ] log ( ( 1 2::)/c) (5.42) + - + -

The results for rasa function of /\Hare displayed in Figure 5.11 

(with N =5) and again it can be seen that with the assumed value for 
F 

C (based on dimensional arguments) the widths are similar to those 

obtained from the potential model calculation. This gives one some 

confidence to calculate the corresponding decays into hypergluons by 

these methods. 

5.6 Hypergluon Decays 

In addition to the decays of sections 5.3 and 5.5, a composite z 

will have new decay modes into hypergluons - the gauge bosons of the 

hypercolour force. These new decays include Z -+ hhh, hhy and hpp 

where h is a hypergluon and p 1s a preon. The hypergluons and preens 

will fragment into quarks and leptons and will eventually form 

hadrons. The intention of this section is to show that the partial 

width of the Z into these channels seems almost certain to be so large 

that this type of model can already be ruled out by the current 

experimental bound on the Z width. 

In order to estimate hypergluon decay widths, non-relativistic 

bound state models are used, with the confining Richardson Potential 

given by equation (4.1). This potential has the advantage of having 

only one free parameter /\H (since NF is fixed to be 2 in the haplon 

model). Clearly this is an inadequate description of the Z system and 
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Figure 5.11 
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0
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01
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The decay width r(z -~ qqg) via Figure 5.9 as a function of the 

hypercolour scale ~H for different values of the energy cutoff E. C 

2 is taken to be (g5 ;~H) and a
5 

= 0.14. 
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may not g1ve a very good approximation. However, nne can obtain some 

feeling for how close this approach is likely to come to the correct 

answer by considering analogous decays in QCD i.e. to,~ -~ ggg Tn 

this case the potential is given by 

8rr 

[ 
f(i\crl l V(r) :::; 1\c 1\ r -

.3.3 - 2N c 
1\cr F 

( 5. 43) 

and the width is c;iven by 

80 
2 

2 3 
I R15 (0) I 

r ( w --t ggg l (rr - 9) us 
M2 81rr 

( 5. 44) 

Ul 

where 2 IR 15 (0) I 1s the value of the wavefunction at the origin 

squared. This is obtained by solving the Schrodinger equation (4.3) 

with the potential (5.43) with NF = 3. Note that because of 

confinement the gluons fragment into hadrons but will not form jets 

because the energy 1s so small. Th ~SP decays could be quite a 

substantial fraction of the 3~ width since each gluon can fragment 

to form a n meson although the Zweig allowed w --7 3n 11 fall apart 11 

decay shown in Figure 5.12 is presumably the dominant decay of thew. 

The results are shown in Table 5.4 for values of 1\c within the 

commonly accepted range and are to be compared with the experimental 

widths for w, ~ ...J7 n rr 1'1:' of 10 a.Nt o·6MeV [ 3. 3] so that when allowance is 

made for Figure 5.12, the approximation seems to hold to within a 

factor of about 2 or 3. 

Returning to the Z decays, one uses the non-relativistic bound 

state quarkonia decay formulae [4.17, 5.8] generalised to an SU(N
8

) 

hypercolour t'orce a.nd applied to preons with zero current rna:3:3:3es to 

obtain 

103 



Figure 5.12 

11 

1T 

TT 

The "fall apart" decay w --7 3rr which is expected to be the dominant 

contribution to the total w width. 

104 



Table 5.4 

The g]uon decay width of thew given by equation (5.44) for various 

values of "c· 

"'c MeV r(w -~ ggg) MeV 

200 0.051 2.8 

250 0.076 6.8 

300 0. 107 15.0 
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2 (N2 - 4) (N~ 1 ) 2 
-- I R1S (0) I 2 H l ' 2 r(z -~ hhh) (n - 9) 

N2 
NCaH 2 s.1n sw 

9TI Mz H 
( 5. 45) 

2 
2 

(N2 - 1 ) 
2 IR 15 (0ll

2 

28 r(z -~ hh-y) (n - 9) H 
Nc ( 5. 46) ::: aH a cos w 2 

9n NH Mz 

? 
I R, (0) 1

2 4m2 
32 

2 
(N~ - 1 ) 

2 :i ' 2 r (z -~ hpp) (n - 9) H 2P 
log NCNFaH 

M4 
s.1n 8w 2 2 

31T NH 4m - M2 z 
( 5. 47) 

where 

2 
12rr 

aH(q ) 
+ q2//\~) 

(5.48) 
(11NH- 2NCNF) log ( 1 

and NF = 2 in the haplon model. The value of the wavefunction is 

related to the magnitude of W--y mixing by (5.9). Hence, following the 

method described in section 4.2 and using the bound (4.10) one can 

solve the Schrodinger equation (4.3) and for given values of NH and NC 

the value of /\H in (5.48) is determined. This fixes the coupling aH 

1n (5.48) and hence r can be calculated from (5.45) - (5.47). The 

results are displayed in Table 5.5. The possible ranges of /\Hand r 

stem from the uncertainty in (4.10). The hypercolour factor (dabc) 

automatically ensures that r(z -~ hhhl is zero for an SU(2) 

hypercolour force. However, for all values of the parameters it can 

be seen that the sum of the widths r(Z -~ hhh) and r(Z -~ hp~) is more 

than an order of magnitude greater than the amount allowed by 

experiment (see (5.28) and (5.29)). 

One might query the validity of these results by arguing that the 
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Table 5.5 

The hypcrgluon decay widths of the Z given by equations (5.45) 

(5.47) for various values of NC and NH. aH 1s g1ven by equation 

(5.48) and the values for AH are taken from Table 4.1. All widths are 

.i.n GeV. 

NH Nc rrz -7 hhhl rrz --1 hh-y) r(z -7 llPPl 

2 0 - 0 6. 1 -- 9.5 6.8 X 103 - 1. 2 X 104 

2 3 0 - 0 2.4 - 5. 1 6.2 X 103 - 1. 7 X 104 

3 204 - 396 1.4 - 2.3 7.0 X 102 - 1 . 2 X 103 

3 3 44 - 83 0.5 - 0.8 460 - 820 

4 87 - 167 0.5 - 0.9 161 - 285 

4 3 19 - 33 0.2 - 0.3 99 - 169 
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large vallJE'~~ of ('IH 2nd the limited phase space available 

hypergluon jets make the leading order perturbation theory invalid. 

However, it would be remarkable if higher order contributions 

conspired to reduce the magnitude of the width by a substantial 

amount. Even fixing to be as low as 0.5 leads to very large 

contributions to the total Z width (see Table 5.6). In addition there 

lS the evidence of the QCD result which encourages one to believe 

these results to better than an order of magnitude. 

Using the effective Lagrangian techniques to evaluate hypergluon 

decay widths, one simply replaces as by aH and the colour factor 12 by 

2 1 l I 2 ( 5. 39) and the 2 
1 l I 4 in NH(NH - 1n colour factor 2 by NC(NH -

(5.42) to obtain widths for Z -~ hhh and z -~ hpp. The results are 

displayed in Figures 5.13 and 5.14 with aH = 0.5 and NC = NH = 3 for 

various values of the cutoff E. The values obtained easily exceed the 

experimental bounds on the Z width ((5.28) and (5.29)) if AH is of the 

order of M2 . 

It should be stressed that the results obtained in this chapter 

can only be valid for AH 0 O(Mzl· In this case one can reasonably 

expect that the chiral symmetry preserving mechanism (see section 2.2) 

only effects the quarks and lepton masses but not that of the Z. This 

1s not the case when AH >> M2 when the mechanism which keeps the 

composite particles unnaturally light may also suppress their decay 

widths. 

5.7 Summary 

It has been seen that the decay width of the Z will be enhanced 

relative to the Standard Model value of 2.8 GeV in composite models 
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Table 5.6 

The hypergluon decay widths of the Z fixing aH 

(5.45) - (5.47). All widths are in GeV. 

r(z --t hhhl r(z --t hh-y) 

2 0 - 0 0.053 - 0.065 

2 3 0 - 0 0.053 - 0.065 

3 2.0 - 2.5 0.063 - 0.077 

3 3 2.0 - 2.5 0.063 - 0.077 

4 3.8 - 4.7 0.066 - 0.081 

4 3 3.8 - 4.7 0.066 - 0.081 
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Figure 5.13 

1 5~0----~10~0----1~5~0--~2~00~--~2~50~--~300 
AH (GeV) 

The decay width r(Z -) hhh) as a function of the hypercolour scale AH 

for different values of the energy cutoff E. C is taken to be 

2 
(g8/AH) , cxH = 0.5 and NH = 3. 
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Figure 5.14 

0·151::-0 --~10~0--~1570 -------;2~0A0 ----;2\t='50;:;----=;;.300 
A" (GeV) 

The decay width r(Z -~ hpp) as a function of the hypercolour scale AH 

for different values of the energy cutoff £. C is taken to be 

2 
(g5/AH) , aH = 0.5 and Nc = NH = 3. 
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where the scale of the hypercolour force h.H. is of the order of M_. In z. 

particular the decays into ggg and qqg are enhanced and could provide 

one of the first signals of compositeness. However, in models of this 

kind, decays of the Z into hypergluons have such large widths that it 

seems likely that they can already be ruled out from the experimental 

bounds on the total Z width. 
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CHAPTER 6 CONCLUSIONS 

The Standard Weinberg-Salam Model described in Chapter 1 was used 

to successfully account for low energy (<< 100 GeV) electroweak 

interactions of particle physics. With the advent of the CERN pp 

collider, the model has been tested at higher energies and its correct 

prediction of the masses of the W and Z bosons has been verified. The 

only events which do not appear to fit this Standard Model are the so 

called "monojet" and "isolated like-sign dilepton" events detected by 

UA1 although explanations within the Standard Theory have been 

postulated and in any case the status of these events is uncertain. 

+ -The initial excess of Z -t e e 1 events which encouraged physicists to 

explore beyond the Standard Model has not been confirmed. 

Compositeness of quarks, leptons and weak bosons is one possible 

way of going beyond the Weinberg-Salam Model both to account for 

observations and to answer questions which it cannot explain. These 

questions include the pattern of charge and colour exhibited by the 

fermions, the relationship between their masses and the reason for the 

occurrence of three or more generations. However, as yet there is no 

experimental evidence in favour of compositeness and as was shown 1n 

Chapter 2 the bound on the scale AH of any such substructure is at 

least 100 GeV. 

The composite models proposed so far fall into two classes 

those with purely fermionic constituents and those including both 

fermions and bosons. In such models the quarks and leptons are 

composite whilst gauge bosons i.e. the photon and the gluons remain 

elementary. In many schemes the weak bosons are composite too. In 
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Chapter 3 it was demonstrated that by using the ideas of W-) mixing 

and W-dominance of the weak current, one could reproduce the Weinberg 

mass relations and the observed structure of the weak neutral current 

1n agreement with the Standard Model. In addition, the universal 

couplings of W's to fermions could arise from the weak isospin current 

algebra. 

In Chapter 4 some of the consequences of assuming composite W's 

and z's are examined. Many additional particles are predicted 

including excited Wand Z bosons and their pseudoscalar partners, and 

the dominant decay modes of these states are studied. One cannot rule 

out compositeness merely because these particles have not yet been 

seen. However, spin 0 isovector partners of W, Z ought, if they 

exist, to be discovered in e+e- annihilation experiments in the energy 

range which will become available at SLC and LEP within the next few 

years. If the boson constituents are coloured there should be colour 

octet partners of W and Z, colour octet leptons and possibly colour 

sextet quarks too. There is at present no experimental evidence to 

suggest the existence of any of these particles. 

In Chapter 5 the decays of a composite Z boson are examined in 

detail. It 1s found that the width is likely to be significantly 

different from that of the Standard Model elementary Z. In particular 

the decays Z -~ qqg and Z -~ ggg are likely to affect the total Z 

width by an appreciable amount. However, the Z may also decay into 

hypergluons (h) which are the gauge bosons of the hypercolour force 

binding the constituent preons (p). Although there is much 

uncertainty in estimating the hypercolour coupling aH potential 

models and an effective Lagrangian approach both give very large 
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widths for Z -~ hpp and Z -~ hhh. For this reason, composite models 

where the scale AH 1s of the order of M2 are 1n conflict with 

experiment unless the dynamics oE the hypercolour force 1s completely 

different from that of the hadronic QCD bound states. 

Given that hadronic masses are of order Ac (the scale of the QCD 

colour force) it is difficult to see why M2 should be very much less 

than AH. It 1s of course possible that only the quarks and leptons 

are composite but the weak gauge bosons are elementary despite their 

finite mass. In this case there are fewer difficulties for theories 

with AH greater than or equal to 1 TeV because the fermions can be 

light as a result of chiral symmetry. 

The conclusion of this analysis is that it seems more likely that 

the W and Z bosons discovered at the CERN p~ collider are elementary 

and that the Standard Model unification of electromagnetic and weak 

interactions 1s correct. It has been shown that a wide variety of 

composite models for the W and Z bosons are incompatible with current 

experimental knowledge. 
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