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ABSTRACT 

This thesis is concerned with the use of L-squared or 
square integrable functions in electron atom scattering at 
intermediate energies, and tests the success of various 
L-squared approximations in model problems of electron 
hydrogen atom scattering. The representation of part or all 
of the wave and Green's functions by a set of L-squared 
pseudostates, and the associated occurrence of unphysical 
pseudoresonances at the pseudostate thresholds is discussed. 

The original work of this thesis is in two parts. In 
the first, a model coupled channel problem is considered in 
which an L-squared optical potential is used to represent 
the effect of additional (Q space) channels on the first (P 
space) channel. A method of Bransden and Stelbovics used 
successfully for a two channel problem is extended to the 
case of several channels. Numerical results are presented 
for the cases of two and three channels and the success of 
the procedure is assessed. The rest of the research 
presented here concerns the use of the Schwinger variational 
method in a restricted model of electron hydrogen atom 
scattering in which all states are assumed to be spherically 
symmetric. The method is used succe·ssfully to solve coupled 
channel problems using L-squared pseudostates to represent 
the s-wave continuum. The origins of the pseudoresonances 
that occur in these problems are investigated and a method 
of removing pseudoresonances before T matrix elements are 
calculated is considered. 

The limitations and instabilities of the Schwinger 
method when applied to the full model problem with different 
representations of hydrogen states in the trial and Green's 
functions are investigated, and various modifications are 
considered in attempts to stabilise results where necessary 
in these more general cases. 
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CHAPTER ONE 

INTRODUCTION AND BACKGROUND THEORY 

1.1 Introduction 

This thesis is concerned with the study of L-squared 

methods in electron atom scattering theory at intermediate 

energies. Intermediate energies are considered to be the 

range of incident electron energies starting at the 

threshold for ionisation of the atom and continuing until 

the· first Born approximation (described in section 1. 2) is 

applicable. For the present purposes the lower part of this 

range, in which simplifying assumptions made at higher 

energies cannot be applied, is considered, and the 

discussion is restricted to elastic scattering and 

excitation to low lying levels. The approximate methods 

under consideration are tested in simplified model problems, 

based on electron hydrogen atom scattering, for which exact 

solutions are known. "L-squared methods" refer to methods 

making use of L-squared or square integrable functions. For 

example, an L-squared or Lebesque square integrable function 

in coordinate space ¢ (f) obeys: 

is bounded 
(f.l.l) 
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A finite set of L-squared functions is used to 

diagonalise an operator L which may model part of or all of 

an atomic or molecular Hamiltonian 

::: 

(1.1. 2.) 

n = dimension of the space, E~ is an eigenvalue. 

In these methods the L-squared functions used are 

usually real for simplicity, 

atomic boundary conditions 

functions are then used to 

and 

at 

obey, for 

r ~ 0. 

example, the 

The L-squared 

model the atomic/molecular 

solutions which do not necessarily vanish as r~~, over a 

finite range of coordinate space. 

In the rest of this chapter, the ·main features of 

electron hydrogen atom scattering theory are introduced, 

along with various topics and methods that are referred to 

in the rest of the thesis. An indication of the extension 

of the theory to many electron atoms is given. Various low 

energy methods for calculating scattering data are briefly 

mentioned as L-squared methods in the guise of pseudo-atomic 

states and optical potentials are used successfully in this 

energy region, and extension of these ideas to intermediate 

energies together with necessary modifications of resulting 

unphysical behaviour form the motive for the work of this 

thesis. A review of work published on low energy and higher 

intermediate energy methods is, however, not attempted. 

In chapter two, the L-squared discretisation of 

electronic continua is discussed in more detail, and the 
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ideas are applied to a model coupled channel problem in 

chapter 

rest of 

three, using 

the thesis is 

an L-squared optical potential. 

concerned with the use of 

The 

the 

Schwinger variational method in a model problem of electron 

hydrogen atom scattering, referred to throughout as the 

"Poet" problem. The model is a restricted one in which all 

non zero angular momentum terms are ignored: the system is 

considered to be spherically symmetric and is equivalent to 

using only s waves in the expansions of the wavefunction and 

the electron interaction potential. The model was 

considered by Burke and Mitchell (1973) and solved exactly 

by Poet (1978). The Schwinger principle is used to solve 

pseudostate coupled channel problems using purely L-squared 

trial functions, and its flexibility is used in attempts to 

remove unphysical structure introduced by the use of 

(L-squared) pseudostates. The Schwinger variational 

principle is introduced in chapter four, which also contains 

a short summary of aspects of the Poet problem not discussed 

in other contexts. Chapter five details the present work 

using the Schwinger principle, which was carried out in 

collaboration with Mr. R. Hewitt. The more general theory 

described in chapters one and two is discussed in detail as 

it is applied to the specific model problems considered in 

chapters three and five. Possible future work is considered 

in chapter six. 
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1.2 Electron Atom scattering 

1.2A Introductory Theory 

We consider electron hydrogen atom scattering, treating 

the proton as infinitely massive. Relativistic effects are 

not considered as they are negligible at the energies under 

consideration. Atomic units are used throughout, the 

following quantities being unity: 

11 = m6 = e = I - 1 
I 

(1.2.1) 

me = mass of electron 

e =electronic charge (e = e*//4n~; e* in S.I.units) 

a 0 = first Bohr orbit of hydrogen atom. 

-I 
The fine structure constant~ = (137.0388) 

Cross sections in chapters three and five are given in 

units of rr a~. 

We consider time independent wavefunctions: time 

dependence is discussed for example by Bransden (1983). We 

describe initial and final states of the scattering system 

for a given total energy E in terms of reaction channels. 

For example, the initial state may consist of a free 

electron and a (neutral) hydrogen atom in a 1s state, with 

- 4 
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no interaction between them: the ls channel. After the 

collision, the final state may be the same, in which case 

elastic scattering has occurred, or the hydrogen atom may 

have been excited to a different state, in which case 

inelastic scattering has occurred, the final channel being 

labelled by the state of the hydrogen atom. The labelling 

also describes the final state (direction) of the scattering 

electron although this is often kept implicit for simplicity 

of notation. Energetically accessible channels are 

described as open, the rest as closed. If ionisation occuri 

the channel labelling is performed as if the two electrons 

were distinguishable. The work of this thesis does not 

concern ionisation, but excitation at energies where 

ionisation is possible. The generalised experimental setup 

by which this scattering may be realised is described by 

Bransden (1983) and for example, may consist of a low 

density collimated electron beam incident on a low density 

atomic target, the assumptions being that the beam electrons 

do not interact with themselves, and that only one collision 

occurs per scattering electron (the actual experimental 

conditions for electron hydrogen scattering are more 

complex, but do not concern us here). 

The Schrodinger equation for the electronic system is: 

(H = 0 
(1.2.2) 

J{' signifies 
' 

the outward scattering solution and 
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corresponds to an incident channel i and outgoing waves in 

all channels: ~·describes the scattering system and in the 
• 

time dependent formulation corresponds to the incident 

channel at times well before the collision. ~- corresponds 

to an incident channel i and incoming waves in all channels: 

in the time dependent formulation f.- corresponds to a final 

channel i at times long after the collision. The ionisation 

threshold is at E = o. 

The probability of finding the state j in the 

(I}:+ state I, is the scattering matrix element SH . 

(integration over coordinate space) 

s .. 
~~ 

= ~ .. 
JL 

-+ 2iT. 
J' 

(t.l..~) 

The delta function part of S H corresponds to no 

interaction, and the scattering is described by the T 

matrix: 

f .. 
JL = -rr&CE--f·)T. 

' J J c. 
(J.2..lt) 

El here is the total energy in each channel. The ~ function 

ensures energy conservation and the energy labelling will 

therefore now be dropped. 

section ~i may be written: 

/ :::: 
b·· 

J L 

- 6 
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~k: is the energy of the scattered electron in channel i: 

.l l~ + E · 
2. ' ' 

= J.Llt-S: :; E 
l. K.j I.. j 

tj is the hydrogen atom energy level in channel j. 

In terms of the beam experiment, the cross section is 

the total number of electrons scattered per unit incident 

flux (the wave function is normalised such that d~,M~ is a 

particle density). The differential cross section 

d 6·· /d.n· giving the number of electrons scattered J• J 
at a 

particular solid angle is proportional to the square of the 

T matrix element. This emphasizes the fact that the 

labelling j here includes angular information about the 

final direction of the scattered electron as well as the 

quantum numbers of the target atom. Electrons are spin ~ 

fermions and the system has different spin states: symmetric 

s = 1 (triplet) and antisymmetric s = 0 (singlet). For an 

unpolarised beam, cross sections are averaged over initial 

states and summed over final states: 

b·· ~ ~j 5JJl. 5 .!. I T:-(£ s=o)/z. + ~ / T-(£ s:/){
2

} 
JL 4rt, t. R· J 2 it Jl J 4 JL J 

l 

(1.2 .. "1) 

The wave function obeys the relation (1.2.8), as 

described by Bransden (1983). 

(t.t.S) 
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1.2B Structure of The Wave Function 

The Hamiltonian H for the systemis symmetric 

1-{ 

( r. 1.n 

V0 (r) = -1/r Coulomb interaction between an electron and 

the proton. 

I .L 
V(l£i-ftl) 

: ic•rp :. - :. 

f[. .. [tl r;L r> r. " (us e, .,_) 
n :o > 

v(r 11.) is the Coulomb repulsion between the electrons. 

(r<)is the (lesser)of r and r 
( r>) (greater) 1 z. • 

~11 is the angle between E• and E~ 

Pft(x) are Legendre polynomials as described by, for 

example, Abramowitz and Stegun (1972) 

For elastic scattering and excitation, it is useful to 

rewrite the Hamiltonian as in (1.2.10) 

H.= - .L \7' 7. 
l. VJ 

( l.l./0) 

Ho is the hydrogen atom Hamiltonian for rLI together with a 

free particle Hamiltonian for f 1 , 
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V(-E 1 ,-E 1 ) = Vo (r 1 ) + v(r,~.) : a short range potential as i.-'>oO. 

For distinguishable particles, this identifies the particle 

with coordinates .r; as the scattering particle. The 

Hamiltonian may also be written symmetrically in terms of 

two Coulomb Hamiltonians and a long range interaction 

potential v(r 1 ~ ), as discussed by Peterkop (1977) and 

Geltman (1969). 

.: 0 

L I 0 f\ ( r ) ~ t\~ ( r:.') -: a J ( r ~ ~I ) 

t\ (l.t.llb) 

The ¢~ are hydrogen functions and the prime on the sum 

indicates that integration over the positive energy 

continuum is included. "n" used here is a shorthand way to 

represent all three quantum numbers n 1 m for the bound 

states, and the vector k for the continuum states. 

·C: _J.Il. 
J I;~- 1.."" 

In the continuum, ~t are diverging or converging Coulomb 

functions. 
17( Ct) 

The YJ 
t\, 

Because of the 

form a complete set. 

Pauli · · 1 cvt. must pr1nc1p e, F be either 

symmetric or antisymmetric, according to the total spin of 

the electrons (since electrons are fermions, the overall 

wavefunction must be antisymmetric): 

.s r! Cs) 
= (-I ) (, ( [2. J ~ ) 

(r.Ln) 
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This syrnmetry/antisymmetry may be included explicitly or 

implicitly. 
'f: t(s) 

, may be expanded in terms of the ¢t. 

r. :t C.s) - f.s) lim 2_'2_' ~"'" ¢,:\r.> @_;r[&) X. + = r...,o• ( E t i e. - E,. - fa ) ( ' 

(1.2..1}) 

This is a unique expansion with the a~~ determined by the 

Schrodinger equation (1.2.2). here corresponds to the 

initial channel, a bound hydrogen state times a positive 

Coulomb function then symmetrised/antisymmetrised. The a~~ 

here are syrnmetric/antisyrnmetric in m and n. Peterkop 

(1977) showed that for pure Coulomb interactions the am~ 

include a logarithmically diverging phase due to the long 

range potentials. For the present purposes it will be 

assumed that at large distances the potentials are screened 

by the other atoms in the target and experimental set up, 

and the a~~ are well behaved. The exact Coulomb case is 

considered by Peterkop (1977). The expansion (1.2.13) is 

mainly used for determining the singular properties of other 

expansions which can be more easily approximated 

practically. The continuum functions 01 are chosen for 

(U t Cs) 
I: as .. converging waves do not contribute to the 

asymptotic form of the continuum integral for the scattering 

amplitudes 5 + (to be defined) , as discussed by Bransden 

(1983) and Peterkop (1977), and vice versa for 

- 10 



<f1Hs) 
The boundary conditions on I, (~, ,f~) are: 

( I. 1..14<~.) 

There is a similar expression, multiplied by (-l)s, for 

It is assumed in (1.2.14a) that ionisation is 

possible. The are scattering amplitudes for 

excitation into each channel: the spherical waves vanish for 

closed channels. 

I f.t) 

01.. b . 
-""' :: 

J f ±fs1 

ln. n·~ ({.) 

(1.1.11tb) 

There is an additional phase factor in the ionisation 

channels: in the pure Coulomb case this is logarithmic. In 

the screened case it does not occur. The first term is the 

unperturbed incident channel for (1.2.10). 

There are three main practical ways of expanding the 

wave function. In the first, the symmetry/antisymmetry is 

kept implicit. 

(I. LIS) 

The F Hl .. may be expressed in terms of the a 4m by 

comparison with (1.2.13). For excitation: 

11 



b ~k .. r; 1: tltJ ,.. ;J .. ~r. 
lim - -t (s) . e -" , + 1\~ { !i) e F (lj) 

I\ C. -:. r, r, _, g:) n -

· f < E 
" n [ 

0 I E .. > E 
(t.2.1') 

(The boundary conditions are similar for the ionisation 

channels when E > 0 to give (1.2.14a)). 

(1.1.17) 

The bound state terms vanish as r. ~ oo. The F tes(k' r ) ., ,.,- I_, 
contain singularities which combined with the choice of 

diverging/converging wave preserve the correct boundary 

conditions. -ptCsl the "";: become For non-singular ~ highly 

oscillatory as rJ."i' ~ and the integral vanishes. 

The other two expansions used practically are chosen so 

that singularities do not so appear and the boundary 

conditions are included straightforwardly. The first of 

these finds a solution to (1.2.2) treating the electrons as 

distinguishable and adds the syrnrnetrised/antisyrnrnetrised 

solution afterwards: this takes advantage of the symmetry of 

the Hamiltonian . 

( 1.2../8) 

lUn 
r,-Joo 

c::; rfi. f ) l. ." 1..,. r. f t ,.. 
"' L y.;11 lrL. r. e. . (r,) 

fl I II< 
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.. -
" 

(I.Ll"~) 

The • g . are exchange scattering amplitudes where the atomic 
·~ 

and scattering electrons have swapped over. Rather than use 

an expansion of the type (1.2.15) for Cf!t and achieve 

(1.2.19b) through singular terms, an expansion of the form 

(1.2.20) is used: 

( •. 2.. '20) 

The pt .. and Gs 
" 

are not uniquely defined by (1.2.20). As 

described by Peterkop (1977), a unique choice is made by 

requiring the pt ,.. and Gt 
" 

to be orthogonal to all 

states ¢ .. ; of lower energy. In terms of the equivalent 

equation to (1.2.13), where here the a''"" are not 

syrnrnetric/antisyrnrnetric in m and n 

= 

(I. 'Z.t/) 

Thus for continuum energies €~ discrete singularities do not 

appear in F! (E or G!(f) and asymptotic behaviour of 

- 13 



(1.2.20) is restricted to F,.~(:r,) as r;-,~ and G! (~ ... ) as r~.~o0. 

We then have the boundary conditions for the excitation 

arnpli tudes : 

0 

0 

. E < f 
I t\ 

E,. "> f 

(r.1.1Z.C.) 

€,,{- £ 

t" > E 
Ca :t.lz.b) 

Similarly, all the ionisation channel boundary conditions 

are contained in the F; , (;-, ) for r,..., tJO and G ~' (E~) for 

(0 tlsl 
r 1 ~ o0 • Taking the complete solution i, , we have: 

(1.1.2}) 

The scattering amplitudes are: 

= 
(l.t.1lt) 

The third expansion is to include exchange effects 

explicitly in the problem and define solutions (1.2.25). 

= c:; 1 
( F t(s) r~,: (- )s¢ ~ F trsl ) 

L 1\ r.r.) \jJ" (~) + -( II (~ ) (I ( _r, ) 
1'1 

(l.t.lS') 
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r t fs} r_ (r) 
" - f. t fs) ,.. e '""" r * . (r) 

ftt - -r 
(l.t.HL) 

Although (1.2.26a) relates the solutions, ~t and G; are not 

considered separately in practical calculations. The F}($1crl 

should of course, be orthogonal to all states ¢: of lower 

energy, so that all asymptotic behaviour is contained in 

F tr'1 
II 

(1.2.25) forms the basis of the approximate 

expansions used in the work of this thesis as the boundary 

conditions for F * r,1 (r) are most simply adapted into the 
n 

Green's function methods used. In chapter three and parts 

of chapter five the exchange processes are ignored for 

simplicity while various methods are tested. 

1.2C The Lippmann Schwinger Equation 

Writing the Hamiltonian as in (1.2.10) we can find 

unperturbed solutions for H0 : 

: 0 
(1.1.17..} 

We define 

(1.l.27L) 

The Green's function for H0 may be constructed: 

( '· 2. 28a.) 

- 15 



--

= 

2 

(1 ttY' 

_2. L' -4-Tt 
r\'\ 

(!)+ 0.7 I 
:t 'k ... I r.~~·j 

"" (~) {~ l e - . - "' -
1:.-r.'l 

(J.Z..Ub) 

In (1.2.28b) and henceforth throughout the limit as 

E ~ o• is assumed wherever E + i€ occurs. The formal 

solution for 
(LI jf.S) • 
I, l.S then 

(JIIJ 

:: )f cb_r;' dl_r/ G: (~Jr.,[,',~);.') 
0 

(l.l..llc) 

Using the Green's function in operator form 

G- s: = 
• ( E.~it: ~ HJ 

c 1. 2. u.L l 

<LI, t (SJ • This is the Lippmann Schwinger equation for I< 

The Lippmann Schwinger equation is the basis for the 

Schwinger variational method, introduced in chapter four and 

used extensively in chapter five. 

The boundary conditions for p~t{j) as 
• 

r, ~ oo are built 

in, most obviously for excitation: 

- 16 



:: 

1 ~- r; I I r, 
(1.2.21) 

e iS the ang~e between f I and !/ o 

By considering (1.2.28c,d) as r,->oe, the excitation 

scattering amplitudes are: 

(1.2..30) 

~ ~ has magnitude k"' and points in the direction of ;-, . 

Geltmann (1969) points out that the integrand of 

( 1. 2. 30) is a sharply vanishing function of !-.' as r,' -~ oo , 

justifying the use of (1.2.29). For closed channels km 

becomes imaginary and the terms become exponentially 

vanishing functions of r 1 • The ionisation amplitud5appear 

in a similar way although (1.2.29) is not directly 

applicable, as described by Geltman (1969). In terms of the 

T matrix 

2 
_ f tul 

- I L • = 
"'• 

(1.1. ~I) 

Using (1.2.28d) the t operator t I~;:> I ct~tfsl = V L ~- > may be • 

defined. 

= 

:: v 
(l.l.H) 
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As r 
1 

_., oo , the exchange terms in <J-':tls\ 

• ensure that the 

boundary conditions are obeyed, as discussed by Geltman 

(1969), although this is not obvious from inspection. It is 

necessary to include the continuum terms in the 

representation of the Green's function, as these are the 

only terms that do not automatically vanish as r ~ -7 oo • In 

chapter five, a different form of the Lippmann Schwinger 

equation is used: 

"\ s ~ tiSl 
+{-I;~~ r,:~,1~) 

(1.1.~~ 

0 
·~.ft .. r: 

( ) e -· -· l ~~ + )fJ.~r.'rlJr..' Uot{~~~~~~J~L 1 ~1 ) 

A interchanges r,' and I r ,_ . 

{ ( Vr[.'J fi') -(-IY( E- H)A) 

This is identical to (1.2.30) for exact wavefunctions 

X.,..<r;., ,;:~. >. 

:: 0 

(r.t.ncJ 

Ct.t·l~J) 

The importance of keeping the continuum terms in the 

representation of the Green's function is now to improve the 

- 18 



accuracy of the wave function. An alternative Green's 

function, not discussed here, uses a sum of two Coulomb 

Hamiltonians as the unperturbed state, and can be useful for 

discussions of ionisation, although the resultant scattering 

amplitudes cannot be used to represent elastic scattering, 

as the contribution to this from electron proton interaction 

is included in the homogeneous term. As discussed by 

Geltman (1969), for electron hydrogen atom scattering, in 

other respects the simplest case of electron atom 

scattering, (1.2.30) contains an undefined integral over~· 

in the threshold limit km = 0 due to the degeneracy of 

hydrogen atom energy levels. This does not occur for more 

complex atoms or in the case of the Poet model problem 

considered in chapter five as there is no such degeneracy. 

Brief Summary Of The Born Series And Approximation, 

Following Bransden (1983). 

The Lippmann-Schwinger equation may be extended by 

substitution within itself. (1.2.28d) may be rewritten: 

{ ri{5
) > = I :X,> ~ &: V{:Xi) ~ Go!v~.tV{ r~i/SJ > 

' 
(I. t .Jh) 

= { I + i c &~i: v ) j } I :x, I 
;,~, 

Oo • 

= L {Got V) J Goi 
~ J:. 

( 1. 2.34c) 

= ( l-&
9
tvt'&.t = (E!it·H)-' 

(l.l.~S) 

- 19 



(1.2.35) is the Born series for the Green's function Gt, and 

(1.2.34c) is the Born series for the wave function. The 

convergence of (1.2.35) is not guaranteed (for bound states 

of a system for example it diverges). The successive Born 

approximations are to truncate the Born series at successive 

terms, starting with I F.te&l > ~ I -:iii >. The results are used 

in the T matrix elements (1.2.31). the first Born 

· t · b t · t t I v > for I w, 141 > and approx1ma 1on sus 1 u es ~, i; is justified 

at high energies as the second term in the Lippmann 

Schwinger equation involves integrating over a rapidly 

oscillating function and tends to vanish. 

1.3 Brief Review of Scattering Methods 

1.3A Low Energy Methods 

The functional I defined by (1.3.1) is stationary about 

the solutions 
w_tr.s) 
r. and the errors in the scattering 

amplitudes are to second order in 6lf/ if I = 0, provided 

trial functions with the correct form of boundary conditions 

(1.3.2) are used, as may be shown to follow from the work of 

Kohn (1948). 

(1.3.1) 

Trial functions 
w tl$1 (J/ 
I" + /).r are used . • 

(I. }.Zc.) 

(I.).U) 
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- & .. Lt) ( C.S) ,.. ,.. 

J". (r1 ) = ni. lf.) 
~~~ . 

(l.l.t.c.) 

The trial functions are appropriately 

symmetrised/antisymmetrised. In (1.3.2b) it is assumed 

ionisation is not possible for simplicity. For the exact 

solution when ionisation is possible the ionisation boundary 

conditions should be included. Setting I = 0 then gives a 

variational method for the scattering amplitudes. Using an 

expansion of the form (1.2.25) with unknown functions 

- (.J) 
F~ (5,) reduces (1.3.1) to an infinite set of coupled 

- (J} integra differential equations for the F~ 

0 (f.~.)) 

(1.3.3) may, of course, be obtained straightforwardly from 

the Schrodinger equation for the exact solutions. For low 

energy scattering where only a few channels are open the 

close coupling method may be applied, or Kohn and Hulthen 

type variational calculations may be performed on (1.3.1). 

These variational calculations and the types of trial 

functions used are described in detail by Nesbet (1980), and 

a brief description of the Kohn method for single channel 

scattering is given at the end of this section. A review of 

variational methods is also given by Callaway (1978). With 

appropriate trial functions these methods are equivalent to 

the close coupling methods summarised below. 

The close coupling method for low energy electron atom 
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scattering is based on the fact that ~I = 0 to first order 

in A'P provided conditions (1. 3. 2) are obeyed. The basic 

form of the close coupling method uses a truncated expansion 
curn 

of the form (1.2.25) as £.,;: 

t>J 

= (I + (-I )sA J 2. ¢,JryJ F;. (~n 
n .. o 

(1.3.4) 

(1.3.3) then becomes 

S J. .J r t 0 ~J!i ) ( H - £ ) Y;', ~, ( !:"• J rz ) = 0 j n = 0 1 l, ... ,N c ) 
I. 3 .s 0 

Integrating over the angular variables leaves a series of 

radial equations. The system is in an eigenstate of total 

orbital angular momentum L and component M, spin S and 

parity rt. The Hamiltonian and T matrix are diagonal in 

these quantities. The angular momentum quantum numbers of 

the target and the scattering electron in channel i are 

respectively 1, ,m, and L,, M,. The angular parts of the 

expansions (1.3.4) are grouped as in (1.3.6) 

~($) = 
t, i 

x. LM . 
lS 

l· L · ., ' 

r..rn ::. 
LIV\ 

11;, L;, Lj 

( j•",.N) 

Y 
LP-A 

)( ,i ,L, {e.,$,, el J 4) 
(l.~.~) 

is a radial hydrogen function . 

a simultaneous eigenfunction of the total 

orbital angular momentum and component, and the orbital 

angular momentum of the target and scattered electrons. 

(I.~- 7 ) 
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are spherical harmonics and the coefficients are 

Clebsch Gordan coefficients, as described by Bransden (1983) 

for example. 

is conserved. 
(1.3.9) 

(1.3.8) places restrictions on the L,. Using the expansion 

in (1.2.9) for the potential V(r,L ), the equations (1.3.5) 

become 

2. I"' 'l. 

-'- 1' 2. ) F. (r) 
T" 2. /C. M 17\ • 

-In (1.3.9) F.a: 
11\v 

L.t!t 
F .• 

n.,t. .. ,L .. ,• 
( r) • 

t.J -

=- ? { W"'/r) ~ ,(r-) 
.l~O 

+ (-1)
5 SJ.r' k111/G r') ~Jr')} 

• 

The direct and 

(1.3.'1) 

exchange 

kernal potentials w. 
"'I 

and K~ are of short range: details 

are given by Percival and Seaton (1957). 

r. (r) 
M& {I:~~& . s&n( R_. r- L~) 

'),..t !tiL II 1 

0 ; €.,. >£ 
(1.),10) 

The radial expansions of unperturbed solutions e'~·r 

using Bessel functions and Legendre polynomials are 

described by Bransden (1983) and Joachain (1983). The 

boundary conditions are correct to within a constant in each 
L ns 

angular momentum channel. The T ll .. ,t.,,L,..,i. sum (with 
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appropriate angular factors) to give the Tm~' as described 

by Percival and Seaton (1957). The individual radial T 
t. ns 

matrix elements T t L • 
"""' ., ~.c.. 

may be defined using the Lippmann 

Schwinger equations for the F~~ in a similar way as 

described in section 1.2B, to within appropriate factors of 

k_, ki according to the normalisation adopted. This is done 

for the Poet model problem in chapter five. In many 

practical calculations, real solutions are defined: 

The 
L11.S 

t/·-~ '--1'- ~' . 
,.,~ 

reaction or K matrix, 

._ · K~: us( ~ .. r- L:rr)}; Erw~<f 
Ct.3.Job) 

form the elements of the 

from which the T matrix and the 

(unitary by definition) S matrix· may be formed (see for 

example Bransden 1983). Calculations are now all real, but 

K-matrix elements for all the open channels are needed to 

form the complex arid unitary S matrix. The direct numerical 

solution of (1.3.9) has been discussed by Burke and Seaton 

(1971), Crees et al. (1978) and Rowntree et al. (1976). The 

R matrix method which matches logarithmic derivatives of a 

trial function of convenient form and the asymptotic 

function, as discussed by Burke and Robb (1975), or a 

variational method with algebraic trial function described 

by Callaway (1978, 1980), can be used. 

The most straightforward close coupling calculations 

use only open channels in the expansion (1.3.4): the "static 

exchange" model for example includes only the hydrogen 

ground state for elastic scattering. These are feasible 
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calculations for low energies when only a few channels are 

open and are accurate for interactions in which the included 

channels contribute the bulk of the scattering amplitudes, 

but can converge slowly as more closed channels are added to 

(1.3.4). For example, 18% of the hydrogen atom dipole 

polarisability comes from continuum p states and will not be 

accounted for as the number of bound states included is 

increased. The method is improved by the addition of 

L-squared pseudostates to the expansion to represent the 

closed channels. These may be non-hydrogenic functions plus 

additional scattering functions, the target pseudo-functions 

-R•L diagonalising the target Hamiltonian: 

- (- ~ G ( L +l) ~ f t" ~ n' ~ / ~""' €.,.,~ < r Rn,t- -+ :::. 
b'- -l. rt 

Ct. !o .II) 

These functions have energies E"L ~ E." by the Rayleigh 

Ritz principle, which may be negative or positive. The 

representation of continuum functions by L-squared functions 

is discussed in chapter two. A few well chosen pseudostates 

of this form can improve low energy close coupling results 

greatly: an example is the work of Burke et a1. (1969) on 

accurate results for the elastic differential cross section 

for electron hydrogen scattering. The more general form of 

practical low energy expansion includes the open channels 

explicitly and uses algebraic L-squared functions to 

represent the closed channels: details are given by Nesbet 

(1980). 
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M 
N 

= (I + {-IJ 5A J L ¢nC~) Sr~) +Lc,~(!iJ'i) 
n=o ~·I 

(I.~.Jt) 

The should be orthogonal to the open channel space or 

can be made so (Burke and Taylor 1966). Using the Kohn 

variational principle, as described by Gailitis (1965) and 

Burke and Taylor (1966), (1.3.1) becomes a mixed set of 

integro-differential and algebraic equations. A projection 

operator formalism due to Feshbach (1958, 1962) may be 

employed to reduce (1.3.1) using (1.3.12) to a finite series 

of coupled equations, using an optical potential. This is 

discussed for a model problem in chapter three. The 

projection operator P projects out the open channel space 

N 

p c;:rs) = 
tr ~ 

( r +{-1'/A)Z ¢"{~1 ~c~) 

For example, for N = 0 

p- P,+~ -P.I;. 
(/.l.IJL) 

As shown in chapter three, the Schrodinger equation becomes 

( PH P + V, - E ) P cfs = 0 

v, :: -PHQ QHP 
Q(H -E)Q 

(u.Jn 
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The closed space is represented by the optical potential v,, 

and (1.3.9) is solved with additional potential terms due to 

v, . v, is represented approximately by diagonalising the Q 

space Hamiltonian QHQ on the basis ~ , determining the c; 

and giving an L-squared representation of the Q space 

Green's function. This is discussed in chapter two and is 

valid for low energy scattering where the Q space is all 

closed. A general survey of these methods and low energy 

scattering in general has been given by McDowell (1976). As 

incident energies increase, more and more channels become 

open, (1.3.9) becomes more cumbersome, and some of the 

difficulties arising in the intermediate energy region 

discussed in sections 1.3B appear, although the continuum 

remains closed. 

Kohn Variational Principle (Single Channel), following 

Bransden (1983). 

We define I [ 1.1 
0 (J.:ur) 

L = 
J.} U ur1 - U {r) + k. t. 
rJ...r~ -rt 

(rr) ::.. .:f. (r) + D.f. (r) I fv the true solution. 

J.Jr) "' .s ~(kr- 1.5) -t- i( ~ ( 1t. r - ~.!! ) . i<. ~ : I< t -4 6 kL r-, <P 
.. t a. 

The real K matrix problem is illustrated for a single 

channel problem. The Kato identity is: 

Cu.10 
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Thus 6 (I + kKL) = 0 to first order in 6 f~,.. 

w 

J, ( r-) = .Z ct. Y,:Cr1 
'=· (I.~ .17) 

c, and K~ are unknown. 

The Y; are L-squared functions which vanish at infinity. 

The Kohn variational principle (Kohn 1948) sets: 

"di = 0 
JC· c. 

= -R 
Applying the Kato identity to the result, an improved 

approximation to Kt is 

(I. }.1 1) 

The Hulthen (Hulthen 1944) principle replaces (1.3.18b) by 

This also sets bK~ = 0 to first order. 

(U.to) 

Spurious numerical 

singularities can occur with the Kohn principle, as the c; 

may become infinite for certain values of k&. The inverse 

Kohn principle uses the boundary conditions (1.3.21) and may 

be used if the Kohn principle does not converge. 

(U.ll) 

Ways of predicting and avoiding spurious singularities have 

been discussed by Takatsuka and Fueno (1979). 

28 -



More Complex Atoms 

The general methods outlined so far in this chapter can 

be applied in principle to electron scattering by more 

complex atoms containing M electrons. However, spatial and 

spin components of the wave function do not conveniently 

break up into separate symmetrical/antisymmetrical types. 

Overall antisymetric sums of products of various 

spatial/spin functions must be formed. Atomic wave 

functions (see for example Condon and Odabasi 1980) 

~m (1,2 ... ,M), fully antisymetric and including spin terms 

are used in expansions instead of hydrogen functions for the 

P space channels, and each combination of a ¢fr\ and a 

function FM(M+l), which includes the spin dependence of the 

scattering electron, is then fully antisymmetrised. The Q 

space part of the expansion may be represented by similar 

sums of closed channels and pseudostates, or by the linear 

combination (1.3.22). 

No 

= Z ci- ~ (r,7., ... }Mtl) 
t=o 

The ~~ 
~ 

are predetermined fully antisymmetrical 

(1.3.22.) 

(M+l) 

electron wave functions, orthogonal to the P space. They 

can be expressed as combinations of Slater determinants of 

one particle orbitals. These "configurations" can then be 

used to diagonalise the Q-space Hamiltonian, a process also 
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known as a configuration interaction calculation. A 

systematic procedure for determining the ~ allowing for the 

distortion of the target due to the perturbing effect of the 

scattering electron has been described by Mittleman (1966) 

and further developed by Nesbet (1975, 1980). 

1.3B Intermediate Energies 

The intermediate energy range is considered to start at 

the ionisation threshold (E = 0; 0.5 au or 13.605eV incident 

electron energy for atomic hydrogen) and continue to 

energies where the first Born approximation is valid. These 

energies vary from system to system and cannot be specified 

quantitatively. Also, the convergence at the Born series to 

its first term at high energies has not been proved 

analytically for atomic systems. The Born approximation 

cannot give inelastic differential cross sections at large 

angles and elastic differential cross sections in the 

forward direction. 

For the lower end of the intermediate energy range, it 

is desirable to extend the methods of section 1.3A, with 

suitable modifications, to calculate elastic and excitation 

cross sections, as the higher energy approximations 

mentioned at the end of this section are not valid. The 

disadvantage, apart from increased complexity of the 

equations and potentials wm.,Km~ , is that not all open 

channels can be represented explicitly so that the boundary 
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conditions (1.3.2) guaranteeing first order accuracy are not 

all fulfilled. Straightforward close coupling results are 

likely to be poor as no contributions from the continuum 

(part of which is open) are included. For example, Kingston 

et al. (1976) calculated 1s-2s-2p close coupling cross 

sections for electron hydrogen atom scattering at energies 

up to 300eV. The elastic cross section was given badly as 

long range contributions from the continuum were missing. 

However, for higher energies the long range 1s-2p coupling 

was fully taken into account and 2s-2p terms were also 

reasonable. For these cross sections results were poor up 

to SOeV but improved at higher energies, although angular 

correlation between the scattered electron and subsequently 

emitted photon after 1s-2p excitation was not well 

represented (Williams 1981). 

The use of pseudostates can, as before, improve 

results, but judicious choice must be made as convergence 

with additional pseudostates is not regular. Burke and Webb 

(1970) carried out close coupling calculations on electron 

hydrogen atom scattering for incident energies up to SOeV 

with 1s-2s-2p states and additional 3s, }~ pseudostates with J+ 
eigenenergies at the ionisation threshold. The pseudostates 

changed results (improved them) dramatically, but the 

convergence with respect to choice and additional numbers of 

pseudostates was not investigated. Burke and Mitchell later 

investigated this for the "Poet" model problem (see chapter 

four) and found unphysical structure appeared in the T 
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matrix elements around each pseudostate threshold. 

Subsequent work by Callaway et al. (1976) for incident 

energies up to 54eV with eight pseudostates agreed well with 

experiment away from the pseudothresholds. Fon and 

coworkers (1981) calculated elastic scattering cross 

sections for electron-hydrogen, helium and neon scattering 

using a pseudostate expansion and the R-matrix method. 

Pseudoresonances occurred at pseudothresholds, which were 

removed by a T matrix averaging process of Burke, Berrington 
r 

and Sukumar (1981) discussed in later chapters. The ( 

generalised pseudostate and optical potential methods have 

similar problems, as part of the Q-space is open, and the 

discrete L-squared Green's function gives rise to false 

resonances at the pseudostate eigenvalues. 

The investigation of methods of removing false 

-pseudo-structure whether from "pseudo-atomic" states Rn~ or 

optical potentials diagonalised on an L-squared basis, to 

allow the systematic but manageable extension of the series 

expansion techniques to intermediate (up to 54eV) incident 

energy excitation studies, together with the use of the 

Schwinger variational method to try and circumvent these 

problems, makes up the discussion and work of this thesis. 

Methods discussed in chapter two where the whole wave 

function rather than just Q-space has been replaced by an 

L-squared diagonalisation have achieved success for elastic 

scattering but are numerically unstable for inelastic 

scattering. 
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Higher Intermediate Energies 

At incident electron energies above 54eV various 

methods have been used successfully in electron atom 

scattering. These have been reviewed by Bransden and 

McDowell (1976) and a few examples are given here. The 

optical potential method has been used with only channe~ of 

interest for excitation retained in P space, and the Q space 

Green's function expanded in terms of a Born series of free 

particle Green's functions, only one or two terms being 

retained. At higher energies, exchange kernals may be 

neglected (Mittleman and Pu 1962, Bransden and Coleman 1972) 

and the "second order potential" is simplified. The closure 

approximation replaces the integral over the continuum in 

this second order optical potential by an average value, 

further simplifying the problem. Cross sections have been 

calculated for elastic scattering of electron by hydrogen 

and helium by Winterset al. (1973, 1974), comparable with 

the eikonal-Born series work of Byron and Joachain (1973, 

1974, 1977). Other methods used with success for higher 

intermediate energies include extensions of the first Born 

approximation, semiclassical methods, and distorted wave 

methods (in which increasingly sophisticated uncoupled 

solutions of the elastic scattering equation are used in the 

equations for inelastic scattering to get aproximate 

solutions: see for example Bransden 1983). The use of many 

body theory applied to electron atom scattering has been 

described by Bransden and McDowell (1976). 
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CHAPTER TWO 

THE L-SQUARED DISCRETISATION OF ELECTRONIC CONTINUA 

2.1 Introduction 

2.1A General Introduction 

L-squared representations of wave functions and 

associated spectral resolutions have been used to avoid, to 

differing extents, part or all of the usual specifications 

of channels and asymptotic forms in scattering problems and 

photoabsorption studies. In this chapter, theoretical 

methods of L-squared discretisation and equivalent 

quadrature are introduced. In section 2.2, certain cases of 

one particle Hamiltonians for which finite basis approximate 

L-squared solutions can be directly related to the exact 

solutions are discussed. Sections 2.3 and 2.4 give examples 

of how the methods are applied in cases where the exact 

solutions are not known and the L-squared discretisation is 

applied numerically, the methods of section 2.3 being 

directly relevant to the work of this thesis. It should be 

noted that while the exact cases of section 2.2 treat 

relatively simple one particle Hamiltonians and use 

systematic series of well known basis functions to give 

reasonably straightforward analytic analyses, the general 
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L-squared wave functions used to discretise many electron 

atomic and molecular continua in the cases discussed in the 

latter sections are usually the results of configuration 

interaction calculations, using Slater determinants composed 

of atomic/molecular orbitals expanded in the L-squared 

basis, with additional functions included to represent, 

where applicable, polarisation and other relevant effects. 

These more complex cases do not always give single smooth 

quadratures. Section 2.4 describes one method of extracting 

physical information in these cases, and in chapter three a 

method of forming systematic quadratures from the initial 

discretisation is investigated. 

2.1B Theoretical Introduction Following Reinhardt (1979) 

The eigenfunctions of an electronic Hamiltonian H form 

a complete set, allowing H to be expressed in terms of its 

spectral resolution or eigenfunction expansion (within a 

subspace defined by a single non-degenerate symmetry): 
()10 

H ~ 2/f:>E,<)L(I 
t 

+ ) clE / 1 '-!1£/) / <. r(e:') 1 
Q (2..1.1) 

J?: > are orthonormal bound state eigenfunctions and I~ (E.')> 

are orthonormal continuum eigenfunctions. The continuum is 

assumed to start at E' = 0 for convenience. 

H l<;f > :: E-1 W> 
' ' 

J 

( 1. I. '2a) 

H I Sfi(E ; > = E I Cf(£) '7 < Cf(E) 1 CftE' J > -:. s ·c E- [') 
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The normalisation is such that 
00 

+ r J.t.' f rre) > < r;J(E'J I ::. 

Q 

(z..l.lt) 

The exact wavefunction for a system may be written in 

terms of the eigenfunctions I 'I(> and 15"(E') >. 

coo 

I J'r£) > = 2. { (/{ > < Cf;' I f(£) > 4- r cL£' { )£'(£') > ( ~(£')/ frEJ> 
l Q 

(l.l, ~) 

A finite L-squared calculation with basis ¢, 
1 

i. = I, .. ,N 

diagonalises the matrix representation fi~l of H yielding a 

set of approximate eigenfunctions 

E ~tJ} ;j=l, .•• ,N 
J 

< ¢· l H 10· )-
' II 

-
I lfl.,,> with eigenvalues 

" 

J 

J ill_'"ll ( 
.J 1 {j J~ 

(z.U) 

Within the subspace defined by the L-squared basis, the 

spectral resolution of H may be written as: 

- { yo ~1 I E ~N1 ( r.'~l I z r t?.~' > E~~, < cp'~' 1 H = ~ + 
J J " 

I ~ ~ 

E';'<.o €'"'1 i > 0 
(1.u·) 

We expect the first sum to correspond to the bound 
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state sum in (2.1.1) and the second sum to approximate the 

continuum integral in some way: the continuum is considered 

to have been discretised by the use of the L-squared basis, 

hence the term "L-squared discretisation". As the size of 

the basis is increased to infinity, the representation 

becomes complete for functions with the correct boundary 

conditions. The second sum in (2.1.5) is interpreted as a 

numerical quadrature of the continuum integral. For 

example, for an arbitrary function 1J( >, the matrix element 

<YIHI~> may be formed: 
., 

<.XIHIX/ .. ~ <xt~>£,(~/X) + (J::/ft-E'ICfr£'>)E'<<ffE'>/X) 
c 

0 (1...1. ~) 

The continuum part of (2.1.6) may be evaluated 

numerically: 

oO 

<xI ~<LE'I rrE.'>>E'< Cf/(E'li:X)'""' . 
0 J 

(t.l-7) 

wJ and Ej are appropriate weights and abscisae. If 1X > is 

well represented in the finite L-squared basis, an 

approximation to the continuum part of (2.1.5) would be 

cO 

.. 
( 1-1.8) 

The use of the L-squared basis can be considered as a 

numerical "equivalent quadrature" with b 
. (~) 

a SC1SSae EJ and 

weights w'~, (eq) defined such that (2.1.9) is obeyed. 
J 
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Over a limited range of coordinate space depending on 

the size and complexity of the basis l ~;, >, we expect 

(2.1.10) to hold, as exemplified by the work of Hazi and 

Taylor (1970) for some model potentials, with numerically 

integrated exact solutions, and Bassichis et al. (1975). 

w'u) 
r. ) 

J 

{t. I .10 J 

2.2 The Exact L-sguared Treatment 

For certain Hamiltonians, detailed comparison between 

exact continuum scattering solutions and finite L-squared 

basis approximate solutions is possible. Heller, Yarnani, 

Reinhardt and co-workers (1973, 1974, 1975) used a 

systematic approach to illustrate the mathematical sense in 

which the square integrable functions approximate the 

scattering solutions, and Broad (1978, 1982, 1983) has 

further developed and refined their methods. Stelbovics and 

Slim (1986) have also performed a detailed analysis of a 

model problem involving a separable potential. The crux of 

the analysis in each case is that an L-squared basis must be 

found in which the infinite matrix representation of the 

Hamiltonian H is tridiagonal, leading to an analytically 

soluble three term recursion relation. Finding such a basis 
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is tantamount to solving the original Schrodinger equation 

exactly, and indeed the specific examples for which the 

analysis has been carried out are all Hamiltonians with 

known solutions. These Hamiltonians together with the 

corresponding basis sets and polynomial solutions of the 

recursion relations are shown in table 2.1. However, the 

fact that the links between the approximate finite basis 

solutions and the exact solutions are so direct helps 

justify and gives confidence in the use of finite L-squared 

bases in situations where the exact solution is not known. 

On a slightly different track, the "J matrix" method (to be 

discussed in section 2.4) of Heller and Yamani (1974), 

further developed by Broad (1978, 1982), gives exact 

solutions of model problems that uniformly approximate the 

physical Hamiltonians under consideration. 

The following discussion is generalised and assumes the 

L-squared basis functions to be orthogonal. This condition 

may be relaxed in certain cases to tridiagonal overlap, as 

in the case of the Laguerre/Slater basis used for the 

kinetic and Coulomb Hamiltonians, and the Stelbovics and 

Slim (1986) model problem. In these cases, a mapping taking 

the continuum from (0,~) in energy E to (-1,1) in a variable 

x(E) leads to a recursion relation of the form found more 

directly below, with off diagonal energy dependence factored 

out. Appendix 1 summarises the principles of Gaussian 

quadrature relevant to the discussion, and Appendix 2 

reproduces the main points of the analysis for the 
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TABLE 2. I 

Examples of solved Hamiltonians (bases are given to within a 
normalisation constant). 

(a) Radial kinetic energy (Heller and Yamani 1974, 
Yaman i and Fishman 1974) 

H :: 

( i ) 

The p 
n 

.. ULtl) 

are Gegenbauer polynomials. 

( L .. !Ia) 

Slater I Laguerre 
basis 

( i i ) L n { ). ~ r'"l) ; n • 0 J 1, l,. .. Oscillator basis 

( b ) 

( c ) 

( d ) 

The p are Laguerre polynomials. 
n 

Cou I omb llami It on ian (Yamani and Fishman 1974 
Yam an i and R e i n h a r d t 1 9 7 5 ) 

L{ l+l) ... --- z. 
2 ra. r 

The S I a t e r I Lague r r e b a s i s i s used . 
The p are Pollaczec polynomials (Z > 0) 

n "Extended Pollaczec polynomials" (Z cO) 

Radial Harmonic Oscillator (Broad 1982) 

H = .. ' { Ltl) 

The oscillator basis is used. 

Morse Os c i I I a tor (Broad 1982) 

H = 

A Slater I Laguerre basis is used after a coordinate 

transformation. Broad expressed the p for (c) and 
n 

(d) in terms of hypergeometric functions. 

(e) Model With Separable Potential (Stelbovics and Slim 1986) 

The Slater I Laguerre basis is used. The p are I inear 
n 

combinations of Chebyschev polynomials (all polynomials 

are described in the references and by Abramowitz and 

Stegun (1972)). 



particular example of the s-wave kinetic Hamiltonian and the 

Laguerre/Slater basis, as this type of basis is used in 

later chapters. 

2.2A Exact Regular L-squared Solution 

An infinite L-squared basis ~¢ .. \ is complete for 

functions regular at the origin, so the regular solution 

of the Schrodinger equation (2.2.1) may be expressed in the 

form ( 2. 2. 2) . 

) -~ 0 
(t. L.l) 

n ::o 
{ 1. '1. z) 

Equation (2.2.1) is solved as: 

- -~ Jr r/Jr,Jr) L ( H -E) ~ t (E) at fr) = 0 
0 nco 

(l.l.3) 

Due to the tridiagonal nature of the Hamiltonian matrix 

(2.2.4), equation (2.2.3) is reduced to the tridiagonal 

recursion relation (2.2.5) 

H IY\" = f r~-r ¢,,Jr) H 0" (r) 
('1.2.'t) 

<f+ (E) 
Mtt 

(t.l.fca.) 

(~.l.-"b] 

Equation (2.2.5b) is the boundary condition choosing the 
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solution 'fA..t . The m depend~nt parts of the ~(E) are thus 

the Sturm sequence orthogonal polynomials p~(E) generated by 

(2.2.5) as described by Wilkinson (1965) and in Appendix 1. 

p_, (E) = 0; Po (E) = constant, chosen for convenience to be 

unity. 

For Hamiltonians which do not support bound states (for 

example the radial kinetic energy, the repulsive Coulomb 

Hamiltonian), the normalisation of ~·(E,r) can be defined 

in terms of the requirement (2.2.7) 
0'0 

s lE 'l+(EJr) f:fCEJ r') = & (r-r') 
Q 

In terms of the infinite basis, this may be 

('1. .l.7) 

rewritten as 

(2.2.8) which, on taking matrix elements becomes (2.2.9) 

OtJ -

2_ 0n ff) 0,Jr') { tlE I Cf.r£) lz. p/f) p~~·ff) = ~ c r-r-') 
(1,.1.8) 

"" 
~ cLE I Cfot(E)(t p~'(EJ ft~'(EJ = ~nfl' 
o (l.1.n 

The positive weight function e (E) for the Pn(E) on the 

integral (O,oo) obeying (2.2.9) may thus be related to 'f.+(E), 

and the normalisation of e and the p .. (E) is fixed by (2.2.9) 

Cl.l.fo) 

In the Slater/Laguerre case, the interval is (-1,1) and the 

recursion relation for the ¢R must be made use of. (2.2.9) 

and (2.2.10) are replaced as described in Appendix Two. 
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If the Hamiltonian supports bound states (for example 

the attractive Coulomb Hamiltonian) the continuum states can 

be analysed separately in the same way. Yamani and 

Reinhardt (1975) have extended the analysis to cover the 

bound states in the Coulomb case, and Broad (1982, 1983) 

generalised the method to all attractive tridiagonal 

Hamiltonians. With bound states ~ (r), equation (2.2.7) 

becomes 
.... 

2 Cf{ r.-) Cf.rr'> 
" 

+ I oLE ~ + { E J () t + (£, ,. ) ::: d(r-r') 
• 

(1. 2 .II) 

The terms in the bound state sum are -2ni times the residues 
(/)+ t• 

of the integrand f~~~.(E,r) ~ (E,r'), which consists of poles 

at the bound state energies E~ in the negative energy 

region. In terms of the L-squared expansion, (2.2.11) 

becomes 

(t..Z.I1.) 

(2.2.12) is the replacement for (2.2.9). 

The interval has been extended to include the bound 

state energies, and the extended negative energy weight 

function consists of poles at these energies. The 

sign f indicates that -2ni times the sum of the residues 

at these poles is taken. As described by Yamani and 

Reinhardt (1975) and Stelbovics and Slim (1986) 1 in 

particular cases the coupling strength of the attractive 
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potential term places restrictions on the magnitude of the 

otherwise arbitrary L-squared scaling parameter A when bound 

states are included, in order for the weight function to 

remain positive definite. 

2.2B Approximate (Finite Basis) Regular Solution 

Using an L-squared basis of N terms to represent the 

cu• wCr~l+ wave function i,.. by a pseudostate I A. corresponds to 

truncating the Hamiltonian matrix at H..,_,.~-• 

:::. 

n~o 

( 2 .1.1~) 
Ill- I 

~ o1.r ~Mr1 (H -f) Z_ ujNlt ~ 
T

11 
( £) Y{ (;) :: 0 

f\ :o 
0 

In a finite basis, limiting the ,Hamiltonian to tridiagonal 

form is no great restriction: the standard method of 

diagonalising a hermitian matrix is to employ a Householder 

tridiagonalisation as the first step, as described by 

Wilkinson (1963). (2.2.14a) is anN x N matrix eigenvalue 

problem: 

= 0 {
UJfN)t } r ( £) - " 

(j/ (til .. 
= In (f) 

The truncation implies the additional boundary condition 

(2.2.15) 

(H~-IN-1- E) ~-~N)(tE~ 
J 

f :: 0 
(1.1.10 
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The 
l/.}C•M rft (E) may therefore still be written in terms of 

1\ 
the 

p~(E) provided (2.2.16) holds: 

(:Z.l.ld 

Thus the N eigenvalues of the Hew> are the zeros of the 

orthogonal polynomial of degree N generated by (2.2.16). 

For Hamiltonians that do not support bound states, these 

energies are the abscissae of an N point Gaussian quadrature 

with weight function ~ (E) and Gaussian weights 

'") w. 
J 

j=l, ••• ,N. 

orthogonal: 

• 

The pseudostates 

n: • 

& j' I c c E~') I\ w f l ) -I 

(t.t.l7) 

(t.l.l'i) 

The Christoffel formula, as described by Szego (1967) 

was used in (2.2.18). If the pseudostates are normalised to 

unity, we may write: 

(LJ(IV) .-
{- ( f ~II)) 

n ~ 
= 

(l.t.l1) 

The equivalent equation to (2.2.7) is the unity operator 

within the finite L-squared subspace 
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N-1 ~-1 

-- Z L 

n•o (1.%.10) 

((2.2.18) and (2.2.20) are modified in the non-orthogonal 

case: see Appendix Two). 

Broad (1982) has generalised these results for 

Hamiltonians that support bound states in analogy with 

Weyl's (1910) theory on the finite interval, also described 

by Brandas and co-workers (1975). Following the work of 

Atkinson (1964), he introduces an angular parameter~ into 

the truncation boundary condition and defines a non 

decreasing weight function ~~l(E), which may be used over 

the energy range (--,~), in terms of partial sums of the 

positive Christoffel weights w~' ( ~ ) . Given certain 

conditions, these weight functions converge with increasing 

N to a unique~ independant weight function (2.2.21), and 

the negative 

steps in 

. 
1 

rN1 
energy e1genva ues E ~ 

the _/...,l (E) 
VI f converge 

( ~ ) and corresponding 

to the bound state 

eigenvalues Eb, and steps in the weight function ~(E). 

(1.2.11) 

The step-like O(:N1(E) and negative energy solutions 

(]) (N) t IHl r (E.J r) provide a representation of the negative energy 
- t( .. 

spectral resolution. The rest of this discussion will 

assume this occurs for simplicity and will continue to be 
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based on positive energies, the ~ specification being 

suppressed. 

The exact continuum solution and the pseudostate 

solution may be compared. 

= 
lho 

,.,_. 
= <:::" (w~') ~~ P (E~~)) 0 (r) 

L J " ~ (I 

ll:o 

r_ +(£'~') 
0 J -( w~_,) ) ,,1 f. C-t-H IN! ) 

(E. J r 
R J 

~ L ~ +{ £:') fn { ~"1) ~{r\ 
1\:tJtt 

J 

If, as is usually the case, the ~~(r) are only large at 

large r for large n, the pseudostate is equal to the 

continuum state multiplied by a normalisation constant 

within a limited range of coordinate space of interest 

(specifically within the space of the first N V1 (r)), 
1\ 

demonstrating the experience of Hazi and Taylor (1970) and 

Bassichis et al. (1975). Thus a matrix element Mi• 

represented by a spectral decomposition followed 

quadrature representation. 

M£, = < f{ O(H)/ c) 

= < f I toLE I f:_fre) > O(E) < ~"(E) I i > 
N 

~ < f 12 w!~~' 
J 

J 9:_ .. (. £tJ/O (tj') ( ~· ( E;'){ i / -e ( E:'tJ 
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(2.2.23c) is exact for <ii~(E)>O(E) <.~+(E)! i>/e(E) is a 

polynomial in E of degree 2N-l or less. 

t./•1 , -I 

<5122 

(2.2.23c) and (2.2.23d) are exactly equal if lf> and li> are 

express6ble entirely in the finite L~ basis. The equivalent 

(Wl quadrature weights w. (eq) are given by (2.2.24). 
J 

'to~\ VJ. 
J 

r. (N)-+ rltJ)t !I 

( £ '~) ) ( £~) r') ::::: 
P. ~J r fl. JJ 

(l.l.14) 

(2.2.23), (2.2.24) hold for the tridiagonal ~ater/Laguerre 

basis. 

An immediate application of these results is the 

photoionisation cross section of atomic hydrogen, for a 

dipole ( P- ) transition between a ground state f;,. and a 

continuum state. 
(]Jfo l l 

(The TR. (E ~ ) here are solutions of the 

Coulomb Hamiltonian) 

(J.J.z~) 

47 



Results can be very accurate as ~I~,> spans a finite range 

of electron configuration space. Yamani and Reinhardt 

(1975) produced cross sections correct to 6 significant 

figures using a 15 state basis. 

Thus, for smooth operators O(H) the finite L-squared 

approximation yields a Gauss quadrature approximation to M5, 

for lf>, li> contained within the basis, and an 

approximation to the quadrature for more general functions 

lf>, li>. For scattering purposes, a representation of the 

Green's function is required. Unfortunately the Green's 

operator O(z,H) is not smooth. The pseudostate/quadrature 

representation yields (2.2.26). 

<: f I ( z - f(~' t 1 I c./ 

N 

L 

The bound state poles and positive branch cuts have 

been replaced by a set of N poles, which give unphysical 

pseudoresonances in, for example, T matrix elements at 

positive energies z close to the E~1111 

J 
There are various 

ways of removing the positive energy poles and putting back 

the continuous structure, and discussion will be deferred 

until consideration of the soluble exact case has been 

concluded. It is assumed that if the energy region of 
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interest contains bound states, the basis is large enough to 

represent these to the desired accuracy. 

2.2C A Second Solution and The Exact Green's function 

Since the ¢~ are regular at the origin, the irregular 

solution ~~ to (2.2.1) is not expandable in the basis. 

Instead, a regular solution of the inhomogeneous equation 

(2.2.27) is formed. 

{Z.t.t'7) 

For an orthogonal basis ¢" = ¢v.. • 0 is determined by 

requiring ~· to asymptotically tend to Y'/, using the Green • s 

function ( 2. 2. 2 8) . 

(z..l.ZII} 

W ( If:, tt;) is the Wronskian of the regular and irregular 

solutions. 

'J: (E,r) = 
II. 

r <>:.is the ((lesser))of rand r•. 
greater 

- w -2. ~~(E) 

In terms of the infinite L-squared basis: 
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co -. - .. 2_ Y: (E) 0,/r) 'l;. (EJr) :. 

"'" 
( l. 2. 30) -. 

the ~~, The 5';: obey the same recursion relation as with a 

different boundary condition: 

H m, "'" <f,_)£) + (H.'" - E) r..·rE) +H .. , •. , ~-:(E) ~ 0 
if'll~l 

(2.. 2. 314) -
H.,, Cf{E) + (Ho.,-E) r.,~{£) = y 

(z.2.31A) 

Broad (1978,1982,1983) wrote them dependent parts qm(E) of 
-~ 

the ~(E) in the form (2.2.32) 

CL.(E) ~ P ~>LE' ~(E') p .. (£') 
( E/- £) 

(2..2.32) 

P stands for a principal value integral over the positive 

energies E 1 • 

He then used the fact that (p~(E 1 ) - p~(E))/(E 1 -E) is a 

polynomial in E 1 of degree less than n to write q,. (E) in 

terms of a quadrature: 

--
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The fact that p n (E ;" 1 
) = 0 has been used. 

The Green's function may be written in terms of the 

infinite series of L-squared functions: 

.: i_ i ¢. rr 1 0 .. 1r' ) ~ J. f' Y.:' 'rt') 'f.. 'rE· J 
11 • ., "'4.a ( e ~il.- E') 

: 
""• n'co c 1.l-31t) 

The Green's function G+(n,n',E) may be written in terms of 

its spectral decomposition as in (2.2.34) or in terms of the 

-. c;;• and 'f.. using a greater than, less than prescription, as 

described by Heller (1975) and Broad (1978,1982,1983). 

2. 

w 
("1.2. 3>) 

This form avoids the problems of singularities inherent in a 

quadrature representation of (2.2.34) and has been used by 

Heller (1975) to calculate atomic (hydrogen) 

polarizabilities, for example, the ground state 

polarizability (2.2.36): 

2< r-Uje 

The spectral decomposition form of the Green's function does 

not require knowledge of the Wronskian W and has been given 

an exact quadrature representation by Broad (1982, 1983) 

G t (",f\'J E.) ~ t cl.f' e(£') ptl(£') Pn•(£') 
1 ( E + L1 - E'} 

( t.1.)7} 
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(2.2.37) is modified by multiplication by a function of E in 

the non-orthogonal case: see Appendix Two. 

The principii[ part of the integral can be written in 

terms of a quadrature of degree N where N > n,n'. For 

continuum energies E, the singularity may be subtracted off 
-, 

leaving a correction term proportional to if, (E) : 

...... 

: 

(1\1) 

w. , 

-t J,E I ~(E.') ( p.JE') Pll· (~') - p.JE) '".(£)) 
1- ( £ - E') 

+ p .fiE' e(E') p/£) p,.)f J 
t (E-€') 

~ 

+ p)E) p,J£ ){P {J.£' efr='J - 2 w'~' } 
· t ( E - E') • ( & - £"!''\ ,)., • I 

pn(£) p".{E) ~/£) 
pN(E) 

' + (N') ( ) The positive energy pseudoresonances 1n G n,n',E 

IN) 
near E = E~ are removed by the subtraction term. At 

points IUl far away from the E~ , the subtraction term is much 

less important as q 0 (E) and qot~ (E) become closer. This is 

the basis of one of the methods of removing false 

singularities discussed in section 2.3. 

The exact Green's function in this form is obviously 
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most useful in practical calculations in which, by suitable 

choice of the L-squared basis scaling parameters, only a few 

terms in the n,n' expansion need be retained, the rest being 

orthogonal to the states lf>, li> in the matrix elements: 

Heller's calculations of ground state hydrogen 

polarizabilities only needed a few terms retained; when he 

added a polarisation potential a larger number was needed. 

In (2.2.38) the number N must be greater than both n 

and n' for G+(n,n',E) to be exact. A truncated series for 

the Green's function may be identified with the finite basis 

Green's function if the number of terms N retained is used 

+ for the quadrature in all the G (n,n'E); O<n,n'<N-1. 

:: p JtLE' (f I Cfl~_+re'J'/( f._t(E')/ i )' 

( E - £') 

- i-d.E '<. f 1{ 1 'P,JE'J) (~{eJl- ~~J l ~rt)'> ( rtcE>I }li > 
t ( E - F:') 

+ 

(f( c_f)E))(f,_(E)/i)' flHtJ 
e(E) P~(£) 

The quadrature is exact for lf>, li> contained within 

the finite basis. Other subtractions for E>O are possible, 

and can be useful in the more general case when the exact 
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solutions are not known and the finite basis eigenfunctions 

are found numerically. Two examples are presented. 

The princip~L value integral will require a 

""~~~) } 
(E.- f1'') 
( t. t. ·'<!) 

cutoff. 

This method has been used by Winick and Reinhardt (1978). A 

subtraction used by Bransden and Stelbovics (1984) and 

Bransden and Plummer (1986 and chapter three) leaves an 

analytic form for the principo~ value integral. 

~ ~ <. f I ~,.,'tc::'~ 1f> ( ~(tl)t(E:~') I i) . IV
1 

.. ~t.(l(~)~!l ~£))(1:!Elli) 
JR~ (f/(E-H)-'Ii) ?- (E f;u,) 

"'"' 

(1.1.41) 

In the cases where the exact solution is not known, it 

is assumed that the basis is large enough to represent the 

lf>, li> states, and quantities involving ~·(E 1 r) are 

calculated by interpolation from the pseudostates 

r. ,.,1 
.. ( Eta~., ,r). · · · f · b t th Th1s requ1res 1n ormat1on a ou e 

A. ~ 
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(unknown) equivalent weights: methods of finding these 

weights, of "refining" initial discretisations in complex 

calculations, and of making use of the unsubtracted Green's 

function in energy regions where it is valid are considered 

in the rest of this chapter. 

2.3 Exact Solution Not Known I 

The direct relationships between the pseudostate and 

exact solutions in section 2.2, together with the numerical 

findings of Hazi and Taylor (1970) and Bassichis et al. 

(1975), are used to justify the application of equivalent 

quadrature ideas in the general case as described in section 

2.1B. Without knowledge of the equivalent weights, however, 

the discretised spectral resolution of the Hamiltonian is 

restricted to the approximate evaluation of matrix elements 

of the form (2.3.1), where 1i> and 1f> are well represented 

in the finite basis and O(E) is a smooth function of energy. 

('2..3.1.,.) 

z f r L 
j z I 

r:{~(~~~)) > o (£';)) < Ya{r£r) r, / 
(2..3.1b) 

The accuracy of (2.3.1b) can be tested by checking 

convergence with increased basis size N, and with varied 

input parameters in the L-squared functions. In this 
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section a method of finding the equivalent weights 

numerically which is used in the next chapter is described, 

together with extrapolation methods designed to extract 

useful information from the unsubtracted finite basis 

L-squared Green's function. In particular, the T-matrix 

averaging technique of Burke, Berrington and Sukumar (1981) 

is described attempts to find systematic alternatives 

which remove false structure in the formulation of the 

scattering problem rather than after the on-shell T-matrix 

elements have been constructed form the bulk of the work of 

this thesis. In section 2.4, other L-squared techniques are 

briefly reviewed. The method of moments allows physical 

data to be extracted from L-squared discretisations of 

complex many electron Hamiltonians which are not smooth 

enough for reliable equivalent weights to be found directly, 

and the J-Matrix method is an extension of the work of 

section 2.2 allowing additional model potentials to be added 

to the soluble Hamiltonians. These soluble problems can be 

extended to multichannel scattering, with separate 

discretisations in each channel. 

Another use of L-squared discretisations not discussed 

here is the rotated coordinate method (McCurdy and Rescigno 

1980), whereby a coordinate rotation into the complex plane 

shifts the positive pseudostate poles from the real axis, 

allowing use of the unsubtracted approximate Green's 

function at real energies. This has been applied to the 

calculation of bound free (photoabsorbtion) transition 
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amplitudes by, for example, Johnson and Reinhardt (1983). 

2.3A Heller Derivative Method 

In his thesis, Heller (1973) suggested that the 

equivalent weights w~u) (eq) = w~1 /~(E'r' ) for an L-squared 

discretisation could be directly calculated by considering a 

function JCu) ( { ) which smoothly interpolates the ordered 

(increasing) abscissae E ~,., 
• (or if a coordinate 

transformation has been made) in the sense (2.3.2). 

:: 

(1..~.1.) 

In terms of the f '"n ( { ) , Heller's conjecture is: 

tw 1 
WjCtq): 

A first orientation to understanding this is gained if 

we suppose the abscissae E £_N 1 

J 
are the mesh points of a 

trapezoidal rule, in which case the corresponding equivalent 

weights are, apart from the first and last, given by (2.3.4) 

::: 

(x.~.4) 

The conjecture (2.3.3) may be demonstrated explicitly 

for the Chebyschev polynomials resulting from the s wave 

radial kinetic energy diagonalisation (see for example 

Appendix Two), as they exhibit a simple closed relationship 

interpolating the abscissae as functions of their number. 

Yamani and Reinhardt (1975) have demonstrated the validity 
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of the conjecture numerically for several known weight 

functions. Broad (1978, 1982) has shown that the rule holds 

asymptotically at large N for all the classical orthogonal 

polynomials, and by a 

particular functional 

reasoned 

form for 

argument 

1
(~1 

the 

proposed a 

in terms of the 

functions pA(E) and q~(E), Heller's original conjecture not 

uniquely defining the interpolating function. For cases 

where the exact solutions are not known, provided the 

numerically obtained abscissae vary reasonably smoothly, 

numerical differentiation may be used to find the equivalent 

weights, which provide the normalisation factors relating 

the L-squared pseudostates to the unknown continuum 

solutions over the coordinate space range covered by the 

L-squared basis. The subtraction terms in the expressions 

(2.2.40, 2.2.41) for the L-squared Green's function may then 

be calculated by interpolation. This method is used 

extensively in the next chapter. Another numerical method 

for calculating equivalent weights, Stieltjes imaging, is 

discussed in section 2.4A in the context of the method of 

moments. 

2.3B Extrapolation Methods and T Matrix Averaging 

An alternative to making use of exact or inexact 

knowledge of the quadrature weights to remove unphysical 

poles in the Green's function is to make use of the fact 

that at energies away from these poles the unsubtracted 
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L-squared sum should be a reasonable approximation. Methods 

making use of this fact were developed by Schlessinger and 

Schwartz (1966, 1968), and McDonald and Nuttall (1969) and 

Doolen et al. (1971), for elastic scattering. 

T~~.(E) = 

T (E) :: ~ T(2} 
z~ E 

T (z) = 
Ct.l.Sb) 

Here TR(E+i~) is the off shell T matrix element for 

elastic scattering at energy E. V is the full potential for 

the scattering system including exchange where relevant. 

The on shell element is the limit as E ~ tk~. 1k> is the 

unperturbed state with scattering particle incident 

energy ~koz.. 1 ~~ (E') > are the regular solutions for the 

whole scattering system, fully discretised to give the 

approximate pseudostate Green's function, with false poles 

• • ""
1 h f at cont1nuum energ1es Ej , by t e use o versions of the 

Kohn variational principle. For s wave elastic electron 

hydrogen scattering (the "Poet" problem), Schlessinger 

(1968) calculated elements (2.3.5a) below the elastic 

scattering threshold where there were no false poles and 

used a square root uniformisation and numerical rational 

fraction analytic continuation to the appropriate on shell E 

+ iE limit. Schlessinger was unable to calculate amplitudes 
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above the ionisation threshold because of numerical 

instabilities in the rational fraction continuation, 

although 

proposed 

more sophisticated 

by Reinhardt (1973). 

techniques have since been 

The McDonald/Nuttall/Doolen 

method, applied to the equivalent problem in elastic 

positron hydrogen scattering was to take values of T~(z) at 

complex energies z close to the desired scattering energies 

but far enough away from the spurious poles of the 

approximate Green's function. Extrapolation to the real 

axis was then achieved by fitting to a polynomial. S wave 

elastic scattering amplitudes were successfully calculated 

by Doolen et al. (1971) but further work by Winick (1976) 

showed that for higher partial waves. the errors introduced 

by the extrapolation rapidly became larger than the T matrix 

amplitudes. In each of these cases, separate extrapolations 

have to be made for each on shell incident energy fk~. 

Burke, Berrington and Sukurnar (1981) introduced an 

averaging technique for the on shell T matrix element. They 

performed elastic scattering calculations on a two channel 

model, both exactly and by representing the effect of the 

second channel on the first by an optical potential (to be 

discussed in chapter three) involving an unsubtracted 

L-squared discretised second channel Green's function. The 

method used for solution was the R matrix expansion method 

described for example by Burke and Robb (1975), which 

allowed scattering solutions at complex energies. The real 

and imaginary parts of the on shell T matrix elements were 
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fitted to polynomials at various positive values of Im(~k~), 

and these "average" curves were extrapolated back to the 

real axis. The pseudoresonances introduced by the false 

poles in the Green's function became noticeably smaller and 

tended to vanish as Im(~k 1 ) was increased, as expected and 

the fitting process could be unambiguously applied. This 

averaging technique gave very close results to the exact 

case, and Burke, Berrington and Sukumar showed that in the 

limit of the number of L squared functions becoming infinite 

the complex energy averaging process led directly to the 

correct real axis 

found that averaging 

real ~k 1 axis gave 

on shell T matrix elements. They also 

T matrix values calculated on the 

reliable estimates of the correct 

values, despite the much greater pseudo-resonant structure 

and ambiguity in where to fit the polynomials. They then 

suggested that this real axis averaging could be extended to 

problems where calculating complex energy on shell T matrix 

elements is difficult, and presented some calculations for 

electron scattering from CIII in which channels of interest 

had been retained and the rest of the continuum had been 

diagonalised on an L-squared basis. This real axis 

averaging process provides a blanket method of removing 

unphysical structure from an on shell T matrix calculation, 

whatever the cause of the unphysical structure provided 

where it occurs is known, with only one real and imaginary T 

matrix fitting for all of the incident energy range. It is 

somewhat arbitrary in that, if the pseudothresholds 
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reasonably span the energy range of interest, it assumes 

that very short energy ranges of the unaveraged T matrix 

element between pseudostate thresholds, or at either end of 

a group of them, are accurate enough to fit the averaging 

polynomial. Burke's, Berrington's and Sukamar's theoretical 

justification in the limit of infinite L-squared functions 

also strictly applies to averaging above the real axis. 

However, their final results were smooth and accurate, and 

in further applications by Callaway and Oza (1983) it gave 

smooth and reasonably accurate results. Callaway and Oza 

solved the s-wave electron hydrogen scattering "Poet" 

problem, diagonalising the target electron spectrum on a 

finite basis, and treating the resulting pseudostates as 

scattering channels. This gave rise in the spin zero case 

to unphysical pseudoresonances in the on shell T matrix 

elements at the pseudostate threshold energies. T matrix 

fitting to polynomials was performed away from these 

energies. The accuracy of their averaged results depended 

somewhat on a judicious choice of pseudostates, but overall 

they achieved accuracy of 3% for elastic scattering and 8% 

for inelastic (ls-2s) scattering compared to Poet's (1978) 

exact results, although the wrong choice of basis and 

averaging polynomials can give worse results. In chapter 

three, the Heller derivative method is shown to be an 

efficient and systematic method of removing pseudoresonances 

in Burke's, Berrington's and Sukumar's two channel model, 

and extension of the method to more channels is considered. 
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In chapter five, systematic methods of removing 

pseudoresonances in the formulation of the pseudostate Poet 

problem are considered: although subtractions smooth the 

individual channel Green's functions, the use of 

pseudostates as scattering channels gives rise to threshold 

structure which is not so easily removed. 

2.4 Exact Solution Not Known II 

2.4A The Method of Moments 

The method of moments makes use of the fact that 

L-squared approximations (2.3.lb) to matrix elements of the 

kind (2.3.la) may be calculated to a required convergence 

and then uses these reliable elements to form a new smoother 

quadrature to which the Heller principle or Stieltjes 

imaging (discussed below) may be applied to extract new 

equivalent weights. The method has been successfully 

applied to the calculation of photoionisation cross sections 

and photoabsorption dispersion profiles for various atoms 

0 \1 
and molecules, for example He , Ne , H&, Ar~ , writing the 

full electronic wavefunctions in L-squared bases, as 

reviewed by Reinhardt (1979). All these calculations depend 

on knowing the oscillator strength distribution (2.4.1). 

ol f(E j = 2_ J, &(f- EJ 
( 
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(1. 4. I ) 

J¢rgr> is the ground state and p. is the dipole operator. 

As H ~1gr> spans a finite range of configuration space, it 

can be well represented by an adequate L-squared basis. 

Moments (2.4.2) of the distribution (2.4.1) are calculated 

using the finite L-squared distributiOn (2.4.3). 

('2..1t.2.) 

J J(E) 

(j~gr> is the approximation to the ground state used.) 

Negative moments are taken as only two positive moments 

exist, although Johnson et al. (1977) proposed a method 

involving positive moments which may in certain cases be 

less cumbersome than the present method. The stability of 

the low order moments can be checked with respect to varying 

L-squared basis parameters and against various dipole sum 

rules that can be stated in terms of the moments. For 

example, S(-2) = ~(O), the static dipole polarizability, and 

S(O) is equal to the number of electrons in the absorbing 

system. 2n moments are extracted, where usually 2n << N, 

the size of the L-squared basis: if 2n~N the original 

discretisation is recovered. These are then used to find 
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the weights and abscissae E~1 of a basis independent n 

point Gauss quadrature exact for polynomials of degree less 

than ( 2n-l) in I /E, with positive definite weight 

function E' (E) = df (E) /dE. Langhoff and co-workers (1973, 

1974, 1976, 1977) have extensively developed the technique 

of Stieltjes imaging to extract accurate 

distributions from the integral (2.4.4) 
'\ s d.f(E) ::. L w~A., 

J 

~·· 

Stieltjes imaging uses the boundary 

interpolate the weight function (2.4.6) 

representation (2.4.4) of S (0) . 

no.r 

w~~~) 
J 

J_ 
l 

~z 
j: I 

w~"' 
J 

oscillator strength 

(t.l#.~) 

property (2.4.5) to 

from the histogram 

(1. If. f.) 

The Stieltjes technique has been refined with the use 

of continuous (Chebyschev) distributions by Langhoff, Sims 

et al. (1976) and Langhoff and Corcoran (1976). 

Where only small numbers of moments are available, fine 

resonant structure cannot be built in, as the moment process 

is a smoothing operation. However resonance widths can be 

calculated directly using a moment technique, as pointed out 

by Hazi (1978). 
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1 ~~ > is the L-squared resonant wavefunction and 1 ~t > is 

the full scattering solution for the background continuum. 

Hazi used the fact that good approximations to 1 ~~ > and 

E~u may be obtained from stabilisation calculations as 

described by Hazi and Taylor (1970). Diagonalisation of the 

projected Hamiltonian with projection operator (2.4.8) 

yields a set of pseudostates with a width strength 

distribution (2.4.9). 

p :: 
( l..4.i) 

(t.4.~) 

Moments of this distribution may be taken, and basis 

independent quadrature weights and abscissae found, the 

Stieltjes or Heller method then being used to extract the 

distribution \(E). 

Moment Technique Applied to Scattering 

Winick and Reinhardt (1978) have calculated elastic 

scattering amplitudes for positron hydrogen atom scattering 

using the moment technique. Rather than use the L-squared 

unsubtracted Green's function in the expression for the off 

shell T matrix element (2.3.5), they use the moment 

technique to extract the positive definite weight function 
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(2.4.10). 

~~ cz 1 : <:: " I V t V u rz. 1 V I k '> 

(t.4.10) 

Aproximate moments of ek(E) were formed using the L-squared 

basis: 

s (-~) = 

(1.~.11) 

2n converged moments were used to generate a Gauss 

quadrature with weights w~' 
J 

'" l and abscissae E. 
d 

In the 

case of scattering it was found that the cumulative ... 
d . t . b . <" lftl 1S r1 ut10n L W. . ~ 

varied by several orders of magnitude , .. 
over a small range of energy, and the Stieltjes technique 

was not reliable. The Heller method was successfully used 

to extract E' (E ~' (the abscissae are by definition evenly 

spaced in the interpolation variable j and were found to be 

reasonably smooth) . The new basis independent quadrature 

was used to represent the Green's function, knowledge of the 

equivalent weights allowing singularities to be subtracted 

off, by interpolation of the e (E :"1 
) 

II 

fR e 1 C E +' t:) = ( k I V I k. ) ~ ~ w '~ \ 
(- (E-! f.:"') 
J" ' 
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= 

(1.Ct.IU) 

The principaL value integral was taken to a cutoff 

EMA~ • Calculations of s,p,d,f partial cross sections in the 

intermediate energy range up to 34eV were made, giving a 

converged elastic cross section, although the total cross 

section was less well converged. For each partial wave, 

Winick and Reinhardt made calculations with between 40 and 

100 basis functions, from which - 16 moments were extracted. 

The disadvantage of the method of moments applied to 

scattering is that the and E~" 1 

' 
are dependent on the on 

shell energy rk~, so that for every scattering calculation a 

new set of moments needs to be constructed and analysed, 

which is a time consuming procedure. For applications to 

inelastic scattering, the positive definiteness of the 

weight function e(E) is not guaranteed. 

2.4B The J-Matrix Method and Multichannel Scattering 

The J-Matrix method was introduced by Heller and Yamani 

(1974) to extend their exact L-squared representation of the 

kinetic Hamiltonian to include model potentials, extended by 

Yarnani and Fishman (1974) to cope with angular momentum and 

Coulomb scattering, and may be used to extend all soluble 

Hamiltonians. Starting from the solved Hamiltonian Ho , 
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successive approximations to a Hamiltonian H are obtained by 

solving for the model Hamiltonian H~: 

t11n'::o ('2...4.13) 

The model problem can be shown to have a real solution 

of the general form (2.4.14): 

(2..4-.14) 

The problem becomes an (N+1)x(N+1) matrix equation for the 

unknowns a~, t, which in some way uniformly approaches the 

exact problem as N is increased. Heller (1975) and Broad 

(1978) have found Green's functions and quadratures for the 

solution of the HN problem. Broad (1982) has also noted 

that the L-squared matrix of H~ can be brought into infinite 

tridiagonal form (for finite N) by applying a Householder 

reduction, described by Wilkinson (1965), in reverse order, 

so that the results of section 2.2 apply. He also noted 

that information about the phaseshift due to the model 

potential may be extracted from finite basis representations 

of HN using his spacing functions for Heller's derivative 

rule. 

The infinite L-squared basis method can be extended to 

the treatment of multichannel close coupling problems, as 

considered by Heller and Yamani (1974) and Broad and 
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Reinhardt (1976). Formally, the wave function in the 

scattering coordinate is written in terms of an L-squared 

sum for each target channel. Heller and Yamani used the 

same· type of L-squared basis for diagonalising the target 

Hamiltonian and for the scattering function expansions in an 

electron hydrogen scattering calculation, the finite number 

of channels and target pseudostates N defining the 

truncation limit for the channel potentials. 

Pseudoresonances appeared at the target pseudostate 

thresholds, but became smaller as N was increased. Broad 

and Reinhardt (1976) extended these schemes to the general 

LS coupled electron atom collision problem using 

configuration interaction numerical diagonalisations for the 

target pseudostates, and calculated H- photodetachment cross 

sections. The Laguerre/Slater one particle Coulomb 

Hamiltonian equivalent quadrature was used to give an 

approximation to the electron photodetachment cross section. 

Broad (1985) has applied this quadrature to calculations of 

two photon ionisation of hydrogen, extrapolating finite 

basis calculations to the complete basis limit. All these 

calculations involve using either an infinite basis or an 

equivalent quadrature representation for each channel. The 

possibilities of extending equivalent quadrature ideas to 

cover more than one channel are considered in the next 

chapter. 
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CHAPTER THREE 

OPTICAL POTENTIALS IN AN L-SQUARED APPROACH TO THE SOLUTION 

OF COUPLED CHANNEL SCATTERING EQUATIONS 

3.1 Introduction 

The use of an optical potential is a means of 

including the effect of ignored channels in a coupled 

channel scattering calculation. Following Feshbach (1958, 

1962), a projection operator Pis introduced to project out 

the channels of interest from the full wave function F. P 

and the associated operator Q are defined such that (3.1.1.) 

holds: 

J Q P = PG. = 0 
(J .1.1 ) 

In practical calculations where the wave function 

is expanded in terms of a truncated set of target states 

multiplied by scattering functions and a set of L-squared 

pseudostates, and p projects onto the target 

state/scattering function expansion, these conditions may 

still be imposed, as described by Burke and Taylor (1966). 

The Schrodinger equation (3.1.2) may be written in 

the form (3.1.3): 

(H-E) C P +G.) rp = 0 
( ),1. '2.) 
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P(H-E)PJV = -P(H-E)Qf' = -T'HQ)V 

G ( H- £)G. :f = - G. C H-E) P f = - Q H P f 
().1.3<~.) 

P[ H - PH G. t G H P - E] P f.:: 0 
Q(H-£)Q 

( 3. Dl.) 

The problem is reduced to one in the projected 

space with the optical potential (3.1.4) representing the 

rest of the space 

: -PHG. I QHP 
Q(H -E)Q 

G•a is the Q-space Green's function. 

G + Q = i cLE I l ¢Qt£')) ( ~ G.(E')/ 
(E ... i.t -E') 

(_l.!.Ct) 

( l.IS) 

The I ¢Q(E') > are within the Q space and are 

normalised to a Kronecker delta or a Dirac delta function 

according to whether they are bound or continuum states. To 

find an expression for G•Q, the Q space Hamiltonian may be 

diagonalised in terms of a set of L-squared functions. The 

initial representation of the Green's function is then 

N 

- +61 G 
().I.C ... ) 
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< 'IV) I 
~., 

J 
¢HQ - E :IV) { t-C7t.'N' > 

.J J = 0 

< lt7i '"'' l 'en > ~ .. , jJj'= 1)2}"~1 w t9. :=. .I 
~I ~ J.) 

( ),l.l.b) 

Following from the discussion of the previous 

chapter, -~e. G may be interpreted as a quadrature 

representation of G.s if all the continuum Q space channels 

are closed. If some of the Q space continuum channels are 

open, spurious poles must be removed (it is assumed that any 

bound states within the energy region of interest are well 

represented by the L-squared pseudostates) . The fundamental 

reason for employing an optical potential formalism is that 

a substantial part of the cross section is due to direct 

coupling between the channels of interest. It follows that 

the Green's function representing the Q subspace need be 

calculated to a lower degree of accuracy than would be the 

case if the total space were being approximated by an 

L-squared expansion or otherwise. Burke, Berrington and 

Sukumar (1981) introduced their T matrix averaging technique 

described in section 2.3B to deal with Q space poles. This 

chapter describes an alternative approach which is not based 

on calculation of elements away from the real axis, and 

attempts to use the equivalent quadrature ideas of chapter 

two to remove poles directly from the Q space Green's 

function. Section 3.2 contains a resum~ of the work of 

Bransden and Stelbovics (1984) on Burke's, Berrington's and 

Sukumar's two channel model and details further 
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investigation by myself of equivalent quadrature techniques 

applied to this model. Section 3.3 considers the case where 

the Q space involves more than one channel, and the initial 

diagonalisation of its Hamiltonian does not, as noted in 

chapter two, lead to a straightforward smooth quadrature. 

3.2 The Two Channel Model Problem 

3.2A Theory, and the Work of Bransden and Stelbovics (1984) 

The problem posed by Burke et al. (1981) is that 

of two coupled s-channels in which the first channel is 

treated explicitly (P-space) and the second (Q-space) 

channel is described by an optical potential represented on 

an L:!l. basis. The channel functions F 1 ( r) satisfy (3.2.1) 

(~ - V .. (r) + ~~ ) ~ (r) :: V,'l (r) ( (r) 
d..rl. 

( 3.1.1") 

( of!. - vl.t (r) ~ k~ ) F2 (r) :; 'v{J r) F, {r) 
rJ.x1. (J.2.Jb) 

The notation of Burke et al. (1981) is used and 

the equations are written in configuration space. However 

in specific numerical calculations the corresponding 

momentum-space formalism (see for example, Bransden 1983) 

was employed and the coupled-channel or single-channel 

T-matrix equations were solved using the programme package 

developed by McCarthy and Stelbovics (1983). 
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In this package the momentum space Lippmann Schwinger 

equations for the t operator (described in section 1.2C) are 

converted into matrix equations by representing the integra~ 

as numerical quadratures, and the on shell values of the T 

matrix elements are taken after solution, as detailed by 

McCarthy and Stelbovics (1983). 

The potentials V~ are of short range and = v~., 

The inelastic threshold is taken to be at k 1

1 = ~, so that 

().1.1.) 

Representing the effect of the second channel on the first 

through the optical potential W(r,r'), we find F 1 (r) 

satisfies 

"" :: )cir' W(r
1
r') F;(r'l 

0 

with the boundary condition 

F . t.. + £('-,) e~k.r , ( r) ..,. S 1ft .,...,r J "' 
CJ.l.lt) 

and both the elastic and inelastic cross sections can be 

obtained from the amplitude f(k 1 ) as indicated in chapter 

one. The optical potential can be expressed in terms of the 

Green's function GQ, by 

V {r) Cx ~ ( k. 1. • r r') Vl,(r'J 
12. I J J 

Cs.t.S .. ) 
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0" (r) 011 r'J 
(lt, ... ~s!) 

.... 

1 
k 1 is expressed in terms of k~ 

I 

functions ~(r) and ¢<s,r) are bound 

through 

state 

0.1.5 b) 

( 3 o 2 o 2 ) o The 

and continuum 

solutions, respectively, of the homogeneous equation, 

obtained from (3o2ol~) by setting the right-hand side zero:-

(3.l.() 

with, for s~ > O, 

-1/ , ( ( '\ (ft 5) .z. .S tA't .S I i Oa. J 

( 3. 1. 7 ) 

The normalisation is: 

< >?} ( s) I ¢ ( s' ) / ::: & {s ,_- s' 1.) 

= 

The bound state functions P~, corresponding to eigenenergies 

- s~ vanish at large values of r, exponentially. For 

convenience in what follows, potentials V~~ which do not 

support a bound state are considered, but no problems are 

encountered if bound states ¢1\ exist. In the absence of 

bound states the Green's function G0 becomes: 

76 



0 

The identity 

= 0 
0 

(2} ( .s .1 r) {2} ( s J r') 

( k.t- .s~) 
1-

is used to write Re G Gl as, for k ~ >D. , k ~ > 0 

J k.~ < 0 
(~.2..'ta.) 

(.U./0) 

_ fc{~t. eJ(sJr) 0csJr')- ~' ((}(&.~,,-) 00.~.r') 
0 ( b.~ - 5' ) 

n.z.u> 
while for k 1 < 6. 

I 
k 1.. < 0 l. , we retain Re G 19 in the 

unsubtracted form (3.2.9b). 

The numerical evalution of the exact expression 

( 3. 2. 9b) for k ,2. < 6 , or ( 3. 2. 11) for k ,'t. > 6 proceeds by the 

introduction of mesh points si and corresponding integration 

weights w.C1 , 
' 

so that with N points and weights the 

unsubtracted form (3.2.9b) becomes 

N 

/R e. G 61 (It,~ i r, r') : ~ w, e-t ({) (J,,r) ¢CJ;J') 
J ( < 0 

( It: - Sl ) 
(J. t.rz. ... l 

The subtracted form (3.2.11) becomes 
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The function ¢<s,r) is approximated over a finite 

region of r by linear combinations of N normalisable 

functions (for example Slater functions, Gaussian functions 

and so on) u, (r). Taking the linear combinations 

PJ 

~ C·· U.(r) 
L II" " 

c~.z.11) 

the coefficients can be found by requiring that the 

Hamiltonian 

( 3.l.l't) 

is diagonal on the finite basis of functions 
,.., 

~ cLr e~ fr) Hu e~ (r) 
0 c~:z..Js) 

We order the eigenvalues so that 5, ... > s • , all i. The 

normalisation of the functions t3,<r) is 
.... 

Q 

For a 

= J 0. 
Jt. 

(~.!.1&) 

sufficiently large set of functions U; , the 

function ~ represents the function (/) ( s, r) over a finite 

range of r, in the sense that 

where N is a normalisation factor, 

1978; Hazi and Taylor 1970). 

(,,:2..17) 

(Bassichis et al. 1975, 

Since only one channel has been diagonalised in 

the L-squared basis, it is assumed that the equivalent 
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quadrature ideas can be applied directly to the problem, and 

that the s6fJ. vary smoothly with i so that the Heller 

derivative method can be used to give the equivalent weights 

w~ . We set 
0 

(J.1.l8) 

The spectral resolution of Re G~ on the finite 

basis of the N functions e. is then 
' 

O.t.l'f) 

To calculate Im GQ from (3.2.9a) and Re GQ from 

(3.2.11) the function ¢ (k a. , r) is required. This is 

calculated approximately by interpolation from the set of 

quantities ~ = (l!J0 )~. which are known at the points s,. 

Thus (3.2.11) becomes 

1\) 

IRe G: 91 ( k.t j rJ r') ~ L k 
Gdr) 6Jr') - wt< s:" !2)A(klJr) 0A{tz.,,r1 . 1\ >0 

( k: -st ) J . 
(ZI 

(J.2.tO.J 

and (3.2.9a) becomes 

( :l.t.lt>l.) 
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The w.«t are calculated numerically, treating i as • 
a smooth variable: 

w~ = :. 15· "ds· ' -' • ~i 
(3.1.ll) 

The calcuated Green's functions are smooth and 

contain no poles. 

Bransden and Stelbovics (1984) presented cross 

sections for this model calculated exactly and in the 

L-squared formulation. They used various non-orthogonal 

bases for the Uj (r), and found no particular advantage 

attached to any of them. They presented results for a 

Slater basis (3.2.22), optimising the exponential parameter 

below the inelastic threshold where the phase shifts obey a 

minimum principle, as described by Bransden (1983), although 

the variatkn with this parameter was not great. 

U r jp- o<r 
j (r) .: u 

( l.l.U) 

They found that the elastic (P-space) results were 

given to good accuracy by the L-squared method, as expected 

since the optical potential is only contributing to a small 

proportion of the cross section. The reaction cross 

sections for transitions from P space to Q space, the 

totality of which are derived from the optical potential, 

were of lesser but reasonable accuracy. The results 

converged slowly with basis size, and the Heller 

prescription removed pseudoresonances. 
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3.2B Further Investigation of The Two Channel Model 

My initial task was to repeat the work of Bransden 

and Stelbovics (1984) using an orthogonal basis. This 

simplifies the numerical diagonalisation of the Hamiltonian 

from the form (3.2.23a) to the form (3.2.23b). 

He. 
-" 

= A· S c-, - -'" 
c J.t.U-.) 

H c- ~ ~· c;, = -tJ ' -

{lj\nn' = ( U"IHu(U",> 

f ~ } ""' == < U" I Un,) 
c is the ith eigenvector of basis function coefficients. 

The basis chosen was the Slater/Laguerre basis (3.2.24) 

j: 11 21 ••• ,rJ 

(.3, 2. t't&) 

L1 ~) (x) is an associated Laguerre polynomial as described in 
~~· 

Appendix Two and by Abramowitz and Stegun (1972). 

() 

81 



This basis is a linear combination of Slater terms 

and should result in identical eigenvectors to those found 

by Bransden and Stelbovics (1984) after diagonalisation of 

the Hamiltonian. The numerical work involved construction 

of the Hamiltonian matrix in the basis (the kinetic part is 

done analytically see Appendix Two) and subsequent 

diagonalisation to form eigenvalues and vectors, and 

construction of Heller weights and (analytic) momentum space 

matrix elements of the P-space and optical potentials to run 

in a version of the McCarthy and Stelbovics (1983) coupled 

channel programme. The weights w ~ were calculated using 
• 

both prescriptions in (3.2.21), the latter form proving the 

most stable. The potentials examined are shown in equation 

(3.2.25) 
_r-

~.(r) .. v (() .: 
J1. 

-1.5e./r 

.. V (r) ::: 
Lt 

- 0.1~ e.- r 
(.3.1.1.5) 

The parameter ~ was optimised below the inelastic threshold 

at a value ~ = 2 and results for the L-squared method are 

shown in table 3.1. As expected, they are the same as those 

of Brans den and Stelbovics (1984). Convergence with 

increased basis size was slow, as eigenvalues tended to 

cluster below the inelastic threshold and high above it, 

with very few eigenvalues in the intermediate energy range 

of interest; samples of eigenvaluesare given in table 3.2. 

A refinement to the method above the inelastic 

threshold was then considered. The Green's integral 
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K**2 

0.2 

0.4 

0.6 

0.8 

1 0 0 

1 0 2 

I . 4 

1 0 6 

1 0 8 

2.0 

2.2 

2.4 

2.6 

2.8 

3.0 

3.2 

3.4 

3.6 

3.8 

4.0 

TABLE 3. 1 

Elastic (E) and reaction (R) cross sections computed from 
Equations (3.2.1). The models employed are defined in the text. 

Exact Results L-Squared Method 

N 5 N = 10 15 

E R* E R* E R* E R* 

I 3. 8 7 I 3. 8 7 1 3 0 8 7 1 3 0 8 7 

6.271 6 0 2 71 6.271 6.271 

3.875 3.875 3.875 3.875 

2.534 1.441 2.515 1.587 2.522 1.453 2.522 1.457 

1.925 0.609 1.929 0.634 1.926 0.625 1.926 0.615 

1.527 0.384 1.527 0.435 1.528 0.397 1.928 0.390 

1.250 0.272 1.248 0.231 1.251 0.282 1.251 0.276 

1.049 0.204 1.047 0.231 1.050 0.212 1.050 0.209 

0.8969 0.160 0.8966 0.169 0.8981 0.169 0.8979 0.164 

0.7787 0.129 0.7796 0.129 0.7797 0.136 0.7795 0.133 

0.6844 0.107 0.6861 0.103 0.6856 0.110 0.6851 0.108 

0.6079 0.091 0.6099 0.087 0.6087 0.099 0.6086 0.095 

0.5448 0.077 0.5467 0.077 0.5457 0.083 0.5454 0.080 

0.4919 0.066 0.4934 0.069 0.4927 0.074 0.4924 0.069 

0.4471 0.058 0.4482 0.063 0.4476 0.065 0.4476 0.060 

0.4086 0.051 0.4095 0.057 0.4090 0.057 0.4091 0.053 

0.3754 0.045 0.3761 0.052 0.3758 0.049 0.3759 0.048 

0.3464 0.041 0.3470 0.047 0.3469 0.043 0.3468 0.044 

0.3210 0.037 0.3214 0.043 0.3216 0.038 0.3213 0.039 

0.2985 0.033 0.2988 0.039 0.2992 0.034 0.2987 0.036 

R* : Reaction cross sections are *10 

At om i c u n i t s ( de t a i I e d in chap t e r I ) a r e used t h rough o u t . 



TABLE 3. 2 

2 
Eigenvalues s for the Green's function (3.2.19/20) 

N = 5 N = 10 N = 15 

0.0335 0.0113 0.0059 

0.0283 

0.0599 0.0726 

0.1631 0.1433 

0 . .2259 0.3426 0.2470 

0.3947 

0.7584 0.6428 0.6042 

0.9057 

1.1589 1.3523 

2.2325 2.1187 2.0451 

4.1764 3.1942 

5.2979 

10.6225 9.9615 9.7982 

41 . 504 22.573 

92.579 

Units are as in table 3.1. Eigenvalues are given 
to four decimal places. The models and parameters 
used are given in the text. 



(3.2.11, 3.2.20a) was transformed using a variable x: 

x. = (/t'l-Al) 
(lr."" +)-'") J 

k~ .. 'Al. (l+.x:) 
(1-.J.) I 

With respect to x the new eigenfunctions are: 

I 

J 
f r1x. 0r,:Jr) -g(1-,r') = 

,:x:.~ 
r s ~ -At) -!.{ d~· : " w. ~ -~ 

" rst t ).
1

) 
I 

IJ 
~~ 

Formally there is no difference between 

(3.2. H) 

c ).l.'l7!.) 

(J.2..2.7c.) 

the two 

methods, but suitable choice of the parameter A~ might allow 

for more stable numerical differentiation and interpolation. 

Equation (3.2.21) may then be rewritten as 

N :: L ( I - ::1=;.) ( e dr) 

The momentum space matrix elements of 

subtraction term are interpolated as: 
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JC'" ~ (~t~ -X) 
(l~L~).'-) (J.t.'t'\) 

Representative results are shown in table 3.3 for 

\ '1. 1. the case A = k 1 • This has the advantage of placing ¢(k1 ,r) 

in the middle of the interpolation range, although a 

different value \1 
of "" should be used to calculate cross 

sections at energies just above threshold where k: ~ 0. 

Results are as good as before, and slightly better in the 

range k,~= 2.0- 4.0. Calculated weights w6~. 2k: /(l-x 61.) 

were slightly different to those calculated as w.~ , showing • 
the limitations of the numerical differentiation, but 

remained constant as k: varied. 

A final test was to use the values of elements of 

¢ (x,,r) with a standard numerical integration programme. 

This method in effect tests the smoothness of the equivalent 

quadrature as further interpolation is required for values 

of ¢(x,r) at the points needed by the routine. No 

particular advantage arose, the number of points and 

interpolations required making the programme longer to run 

than using the direct L-squared sum. Some representative 

results are shown in table 3.4. 

3.3 More Than One Q-Space Channel 

The work of this section has been published by 

Bransden and Plummer (1986). There is no difficulty in 
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K**2 

0.2 

0.4 

0.6 

0.8 

1 . 0 

1 . 2 

1 . 4 

1 . 6 

1 . 8 

2.0 

2.2 

2.4 

2.6 

2.8 

3.0 

3.2 

3.4 

3.6 

3.8 

4.0 

TABLE 3.3 

Elastic (E) and reaction (R) cross sections computed from 
equations (3.2.1). The models employed are defined in the text. 

Exact Results L-Squared Method 

N 5 N = 10 15 

E R* E R* E R* E R* 

1 3. 8 7 1 3. 8 7 1 3. 8 7 13.87 

6.271 6.271 6.271 6. 2 71 

3.875 3.875 3.875 3.875 

2.534 1.441 2.492 1.659 2.536 1.512 2.526 1.407 

1.925 0.609 1.931 0.651 1.924 0.609 1.926 0.593 

1.527 0.384 1.523 0.423 1.527 0.383 1.528 0.374 

1.250 0.272 1.248 0.295 1.250 0.272 1.250 0.270 

1.049 0.204 1.047 0.209 1.049 0.206 1.049 0.204 

0.8969 0.160 0.8973 0.150 0.8973 0.161 0.8970 0.160 

0.7787 0.129 0.7803 0.119 0.7790 0.130 0.7791 0.128 

0.6844 0.107 0.6865 0.098 0.6851 0.105 0.6848 0.106 

0.6079 0.091 0.6098 0.084 0.6086 0.088 0.6081 0.090 

0.5448 0.077 0.5462 0.074 0.5453 0.076 0.5448 0.076 

0.4919 0.066 0.4928 0.067 0.4923 0.065 0.4921 0.065 

0.4471 0.058 0.4473 0.061 0.4472 0.056 0.4472 0.057 

0.4086 0.051 0.4084 0.055 0.4088 0.048 0.4087 0.050 

0.3754 0.045 0.3750 0.049 0.3756 0.044 0.3755 0.045 

0.3464 0.041 0.3459 0.043 0.3468 0.035 0.3465 0.040 

0.3210 0.037 0.3205 0.038 0.3214 0.033 0.3210 0.036 

0.2985 0.033 0.2980 0.034 0.2984 0.030 0.2985 0.033 

R* Reaction cross sections are *10 

Units are as in Table 3.1 



TABLE 3.4 

Elastic (E) and reaction (R) cross sections computed from 
Equations (3.2.1). The models employed are defined in the text. 

K**2 Exact Results L-Squared Method 

N 10 N = 1 5 

E R* E R* E R* 

0.2 1 3. 8 7 13.92 1 3. 8 7 

0.4 6.271 6.295 6.273 

0.6 3.875 3.893 3.876 

0.8 2.534 1 . 4 4 1 2.542 1 . 4 86 2.536 1 . 4 40 

1 . 0 1 . 92 5 0.609 1 . 93 2 0.636 1 . 9 2 9 0.599 

1 . 2 1 . 52 7 0.384 1 . 5 34 0.397 1 . 52 8 0.388 

1 . 4 1 . 2 50 0.272 1 . 25 7 0.279 1 . 2 52 0.270 

1 . 6 1 . 049 0.204 1 . 056 0.209 1 . 050 0.207 

1 . 8 0.8969 0. 160 0.9041 0. 161 0.8981 0. 160 

2.0 0.7787 0. 129 0.7861 0. 1 2 8 0.7799 0. I 2 9 

2.2 0.6844 0. 107 0.6918 0. 105 0.6852 0. 109 

2.4 0.6079 0.091 0.6150 0.090 0.6088 0.092 

2.6 0.5448 0.077 0.5516 0. 077 0.5454 0.078 

2.8 0.4919 0.066 0.4981 0.067 0.4928 0.066 

3.0 0.4471 0.058 0.4530 0.059 0.4480 0.057 

3.2 0.4086 0.051 0.4140 0.048 0.4096 0.051 

3.4 0.3754 0.045 0.3806 0.040 0.3765 0.045 

3.6 0.3464 0.041 0.3516 0.036 0.3475 0.040 

3.8 0. 3210 . 0. 037 0.3256 0.034 0.3221 0.038 

4.0 0.2985 0.033 0.3025 0.031 0.2990 0.036 

R* Reaction cross sections are *10 

Units are as in Table 3. 1 



extending the L-squared method to the case in which (N-1) 

coupled channels are treated explicitly and the N~ channel 

is taken into account by a matrix optical potential, but 

considerable difficulties arise if it is desired to account 

for more than one channel implicitly through the optical 

potential. We now describe these difficulties and explore 

an example in which two channels contribute to the optical 

potential acting in a third channel. 

3.3A The theoretical model 

The optical potential 

We consider the system of coupled channel 

equations (3.3.20) for the case N > 2. 

N 

(~ + R~ J ~ (r) ::. L v~/r) r-; (r) J= 11 Z)···Jt-J 
J..r'l. 

j: I 
(.~.~.1) 

The potentials Vi.j are again of short range with 

= v .. 
J• 

The inelastic thresholds are at 

"- · > 6. · so that: u,+l (, I 

0.~.1.) 

The optical potential W(r,r') which represents in channel 1 

the effect of the remaining (N-1) channels can be 

represented as 
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N 1\J 

w (r-,r'):: L. 2.. 'ft~(r) G-~j (~~ ~ rJr') vj,(r') 

' = z j=1 
D.~. 3) 

where G e is the outgoing Green's function for the 

Hamiltonian ~ 9 , with elements 

H~. 
~J 

= 

(.U.~) 

The channel function F 1 (r) is determined from the optical 

potential as the solution of the equation 

DO 

= ~ W C rJ r') F. (r') d.r' 
0 

(J.~ .s) 

subject to the boundary condition 

The Green's 

(l.'!>.,) 

function G e can be constructed from the 
= 

solutions of the Q space Schrodinger equation 

N 

2 ( H ~ + S
1 

) ¢j {SJ i) ::: 0 
~::.l. 

(3.~.7) 

These solutions can be classified as follows with respect to 

the energy, s1.: 

All channels j ~ 2 are closed. Bounded solutions 

0. ( s", r) may exist at energies s&. = s:. 
J 

(b) ~L > sa > 6, 

Channel 2 is open and the remainder are closed. 
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There is a unique regular solution such that 

¢/sJr)- 0 J j );3 

('3. 3. 5 ) 
where 

J ~ 2 

(3.~.~) 

with the normalisation 

i r ¢/s .. r) ¢j {s~ rl J..r ::. 

js 2. a 
(3.3.10) 

In this energy interval the J channels from j = 2 

to j = J + 1 are open, correspondingly there are J 
Jn 

independent regular solutions ~j (s,r) of equations (3.3.7) 

with n = 1,2 ..• J. The boundary conditions can be 

conveniently specified in terms of eigenphaseshifts ~' n = 

1,2, ... J and a real orthogonal 

follows: 

0 

J x J matrix R (s), as 
I'\ I"' 

j: 2.)3 ... T+l 
J ) 

.. J+l 
J J > 

( 3. :?, .II) 
'J' . 

Writing the independent solutions ~j A(s,r) as column 
~J'o 

vectors, ~ (s,r) and using the orthogonality relations 

:: RfZT:: I 
::r = 

(3.3.12.) 

where ~T is the transpose of ~' the normalisation conditions 
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are found to be 

(3.3. 13) 

Th 1 . n( lti f e so ut1ons ~ are, o course, orthogonal to the bounded 

solutions and the solutions in each of the other energy 

intervals. 

The Green's function 
e 

G.. is then easily written 
'J 

down in terms of these solutions. We have 

2_ ¢;."" (r) e}j ,n(r 1 ) 

M ( lz.,'- - ,S ~) 

+ 
f-70 

+ 

(3.3./4) 

This expression is the generalisation of equation (3.2.5b). 

The imaginary part of ga at an energy between the thresholds 

at ~~ and 6. 1 .,.
1 

is of the form 

1 

-n .2_ (2) ~ "( ~.~ r ) ¢j r fl ( v., /'') 
1\: I 

(3.~.15) 
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and contains a contribution from each of the J degenerate 

solutions. 

The L~ representation of G 

To illustrate the problems that arise in 

attempting to represent G ca. in a finite basis of L7... 

functions, it is sufficient to consider two Q space channels 

and to employ potentials which do not support Q space bound 

states, in which case 

= ¢.; C5J 1) ~ (sJ r'J 

~I 
( k_ 2. - .s') 

I 

+ 

(3.).1() 

0 

--

:: 

t\.' (3.?>.17) 

In evaluating the real part of the GG numerically 

subtractions can be made to avoid the singularities. For 

example if ~1 < k~ < b 1 the first integral on the right hand 

side of (3.3.16) can be expressed as 
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eJ,rs J r) 0 ~ ( sJr') - }· ¢, ( kiJr) ~J (l,,,r') 
( ~.t - slt.) 

(3.3.18) 

and When k 
1

1 
> A • the d · t 1 · ( 3 3 16) b ~~ secon 1n egra 1n . . can e 

treated in a similar way. 

As in section 3.2 the Q space Hamiltonian can be 

diagonalised on a finite basis of functions, ~~. In the 

present case these functions have two components e",j(r); 

j = 2,3 and 

3 ~ 

2 ) .& e .,/rl 1-/j~ e .,,Jrl .:: 

0 

( 3.}./1) 

The discrete eigenvalues s~ are non-degenerate and the 

(unsubtracted) real part of the Green's function is 

approximated.by 

IV 

IRe G ~ ( k.' ; r; r') = 2_ en, /r) e n,j (r') 

( P.ll. - s; ) 

In the single channel case, the eigenvalues 

smooth sequence in terms of n. 

s" n 

(3.?>.20) 

formed a 

In the two channel case, they no longer form this 

smooth sequence. The reason for this can be seen as 
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follows. We introduce a parameter A by replacing V ij in 

( 3 0 3 0 4) by 

V .. (\ ,..\ = V:J· Cr) ~;J· + (t- ~.J.) .A V~J·(r) 
"J 1\ J J .. 

(J.J.21) 

When A = 0 the coupling between the channels in (3.3.4) is 

removed. In this case, each of the Q space channels 

contributes independently to the optical potential (3.3.3), 

and each contribution can be calculated as in section 2.2. 

This means that (for ~ = 0) the sequence of eigenvalues sft 

in the two channel case splits into two, each of which is a 

smooth function of n. The first sequence 
(f) 

s (\ spans the 

interval starting at the lower inelastic threshold, 

~ 
1 

< s 2. < o0 while the second sequence s /Jl 

"' 
starts at the 

second threshold and spans the interval 6.,_ < s'" < oo • The 

corresponding eigenfunctions e (l) 

and 
".J 

approximate the 

elastic scattering wave functions in the two Q space 

channels, and 

e Cl1 
= 0, 1\,L 

each 

= 0, 

has 

e (J.) 

Cl,l 

one 

:/: 0 • 

component: :1: 0' 

The association of the sequences of eigenvalues 

with one or other of the inelastic cuts along the real axis 

persists as A is increased from zero, provided).. is small 

enough so that AV•j (i ~ j) can be treated as a small 

perturbation.· In fact the eigenvalues s ~fl) , f" = 1, 2 vary 

smoothly with ~ and for finite ~ each sequence s~ and (II 

s" 

remains a smoothly varying function of the index n. This 

suggests that, for not too large A , one sequence can be 
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associated with the integration along the cut from 6,tooo 

and the other with the integration along that from 61. to o0 , 

with corresponding approximate weights 

'IAl 
WI\ = 2 s '~' a ( s ,,. )r\ ) I ~ n . If this is the case, the Green's 

function can be approximated by 

2 (f") ~~ ,J~·-br-)~ /y~) 1tl 
IRe G: ( k,t; r.) f, I) i I efi,Jr) e A,J(r'J -lNn.(J'r1-6,;fo{l}; {k,Jr) 0; P..,lr')fll{lz.,) 

:: 

( k t. - s '141 3. ) 

" 1'4=1 I PI 

(3.~.11a.) 

1 

lm G ~ ( k,t; r, I r, ') -TIL !VA,tf-11(~ ¢A ';J' ( -::: 
i J r) j 

1 

{ ~I I r/) t_ f' kl ) 
~J 

f""' 
Co.) .lH) 

where e,.(k, ) = 1, k~ >b~ ; er(k 1 ) = 0 otherwise, and where 
A, Cf<) 

~(k 1 ,r) is interpolated from the set of 
Y' 

functions ~ ( s'fl1 

su, II 
, r) 

= N ( s tt-tl 
n li\ 

given by 

~,,..., 

~ .(r), where the renormalisation factor N~ 
1\'" 

is 

The expressions (3.3.21) and (3.3.23) reduce exactly to the 

approximation of section 3. 2 when A = 0, and should be 

accurate for sufficiently small A· As in the single channel 

case the subtractions ensure that no spurious resonances are 

encountered, without having to continue into the complex 

energy plane. 

3.3B Numerical Examples 

As a numerical example, the potentials in three 
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coupled channels were taken to be 

-2.0 
-I"' 

_,. 
VII = e /r; v.~ = v~. = -0.25 e 

v.) = v~, = -0.125 e-~~"' 

v "LZ. = -1.5e-'"/r; vn = -1.0 -t·~r- I e r 

v 1~ = v 31. = -).1.5 - O·S' r 
e ' 0 ~ ~ ~ I 

The thresholds were chosen to be b-1 = 0. 75 and /:jt. = 1. 0. 

There is nothing significant in the particular strengths and 

ranges chosen; similar results are obtained with different 

strengths and ranges. 

To form the discrete basis of functions the 

functions e~~.;~. (r) were represented as 

'lf>\ 

e .en = ~ c(. U · (r) 
Ill .. AI~ ~I <l 

t=• 
(3.~.-z.S") 

with 

and 

(3 . ) . 1...., ) 

The scale parameters ~, were chosen, so that on 

diagonalising HQ the eigenvalues spanned the energy interval 

z. 
of interest, which was taken to be 0.2 < k 1 < 4.0. 

In principle, the size of the basis set should be 

increased until convergence is obtained. In practice we 
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employed bases of 10,15 or 20 functions, which we know to be 

adequate for the uncoupled Q space problem with A= 0. 

A great many numerical experiments were carried 

out, varying the scale parameters o<;. and testing various 

methods of numerical interpolation to obtain the 

tf..A# lpll 
functions p. and r.v ... • The results are illustrated in tables 

3.5 to 3.7, where a comparison is made with the direct 

numerical solution of the equations using the programme of 

McCarthy and Stelbovics (1983). 

In table 3.5 we show the results of the uncoupled 

Q space problem (A= 0). As expected from section 3.2, 

accurate results were obtained for the elastic scattering 

cross section and for the reaction cross section. In tables 

3. 6 and 3. 7 A has been increased to 0. 3 and to 1. 0 

respectively. It is seen that even for A = 1 the results 

are good over all of the energy range for elastic 

scattering, but the more sensitive reaction cross section is 

given poorly near to k~ = 1.0 and also near to k: = 1.6 . 

Although these results are encouraging, the chief 

defect of the procedure is a certain lack of stability 

against varying the scale parameter. This can be seen by 

comparing the results of tables 3.7 and 3.8. The results of 

table 3.8 differ from those of table 3.7 in that two scale 

parameters were used, one in each channel, chosen so that 

the sets 
(I) 

of eigenvalues s n 
(2.1 

and s " overlapped as little 

as possible. The resulting reaction cross section is given 

well for energies up to the threshold 61, but poorly for 
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TABLE 3. 5 

Elastic (E) and reaction (R) cross sections computed from 
Equations (3.3.1). The models employed are defined in the text. 

()..= 0.0. of= 3.0) Basis of 15 vectors 

K1**2 Exact Results L-Squared Method 

E R* E R* 

0.2 19.97 19.97 

0.4 9.479 9.480 

0.6 5.950 5.951 

0.9 3.536 0.568 3.535 0.566 

1 . 1 2.766 0.354 2.766 0.355 

1 . 2 2.480 0.301 2.480 0.303 

1 . 4 2.040 0.227 2.040 0.232 

1 . 6 1 . 7 1 8 0.] 7 7 1 . 7] 8 0. 1 80 

1 . 8 1. 4 74 0. 1 45 1 . 4 7 5 0. 146 

2.0 1.283 0. 1 2 2 1 . 2 84 0. 1 2 3 

2.2 1. 131 0. 100 1 . 1 3 2 0.] 06 

2.4 1 . 00 7 0.086 1 . 007 0. 092 

2.6 0.9042 0.075 0.9049 0.078 

2.8 0.8177 0.067 0.8187 0.068 

3.0 0.7445 0.060 0.7452 0.062 

R* Reaction cross sections are *10 

Units are as in Table 3.1 



TABLE 3.6 

Elastic (E) and reaction (R) cross sections computed from 
Equations (3.3.1), The models employed are defined in the text. 

(),= 0.3, o{ = 3.0) Basis of 15 vectors 

K1**2 Exact Results L-Squared Method 

E R* E R* 

0.2 19.98 19.98 

0.4 9.498 9.498 

0.6 5.981 5.980 

0.7 5.047 5.045 

0.9 3.505 0.666 3.514 0.673 

1 0 0 3.099 0.461 3 0 10 8 0.459 

1 0 1 2.754 0.400 2.767 0.365 

1 0 2 2.470 0.338 2.480 0.325 

1 0 4 2.033 0.252 2.033 0.286 

1 0 6 1. 713 0 0 1 9 5 1.713 0.213 

1.8 1 0 4 71 0 0 15 7 1 0 4 7 5 0 0 15 2 

2.0 1 0 2 81 0 0 129 1 0 2 8 3 0 0 1 36 

2.2 1 0 1 2 9 0 0 109 1.130 0 0 1 1 7 

2.4 1 0 005 0.094 1 0 00 8 0.097 

2.6 0.9031 0.081 0.9045 0.084 

2.8 0.8171 0.070 0.8180 0.075 

3.0 0.7440 0.061 0.7444 0.068 

3.2 0.6812 0.055 0.6814 0.060 

3.4 0.6269 0.049 0.6270 0.052 

3.6 0.5793 0.044 0.5796 0.046 

3.8 0.5375 0.040 0.5379 0.040 

4.0 0.5005 0.037 0.5010 0.036 

R* Reaction cross sections are *10 

Units are as in Table 3. 1 



TABLE 3.7 

Elastic (E) and reaction (R) cross sections computed from 
Equations (3.3.1). The models employed are defined in the text. 

(~ = 1.0, o( = 2.7) Basis of 15 vectors 

K 1 * * 2 Exact Results L-Squared Method 

E R* E R* 

0.2 20.00 20.00 

0.4 9.829 9.829 

0.6 5. 7 41 5.742 

0.7 4.861 4.862 

0.8 4.097 0.456 4.085 0.498 

0.9 3.523 0.521 3.522 0.515 

1 . 0 3.080 0.510 3.112 0.324 

1 . 1 2.742 0.398 2.771 0.405 

1 . 2 2.460 0.342 2.467 0.288 

1 . 4 2.025 0.260 2. 019 0.274 

1 . 6 1.707 0.203 1 . 7 1 7 0. 1 40 

1 . 8 l . 4 65 0. 166 1 . 4 66 0.165 

2.0 1.276 0. 1 39 1.280 0.127 

2.2 1 . 1 2 6 0. 1 1 4 1 . 1 2 8 0 . 1 1 3 

2.4 1 . 00 3 0.097 1 . 003 0. 102 

2.6 0.9005 0.084 0.9013 0.087 

2.8 0. 814 7 0.075 0.8158 0.075 

3.0 0.7419 0.067 0.7427 0.067 

3.2 0.6796 0.057 0.6803 0.058 

3.4 0.6254 0.051 0.6262 0.051 

3.6 0.5781 0.046 0.5788 0.046 

3.8 0.5364 0.042 0.5369 0.043 

4.0 0.4995 0.038 0.4997 0.040 

R* Reaction cross sections are * 1 0 

Un i t s are as in Table 3. 1 



TABLE 3.8 

Elastic (E) and reaction (R) cross sections computed from 
Equations (3.3.1). The models employed are defined in the text. 

<A= 1 . 0' o( = L 1 . 0' o(J = 2.4) Basis of 1 5 vectors 

K1**2 Exact Results L-squared Method 

E R* E R* 

0.7566 4.435 0.208 4.433 0.205 

0.7688 4.337 0.319 4.335 0.319 

0.7857 4. 198 0.413 4. 1 9 8 0. 411 

0.8123 4.016 0.480 4.019 0.476 

0.8504 3.785 0.518 3.791 0.509 

0.9049 3.499 0.520 3.508 0.519 

0.9773 3. 1 7 5 0.503 3.212 0.385 

1. 025 2.991 0.460 3.051 0.598 

1 . 05 7 2.880 0.430 2.864 0.598 

1.122 2.677 0.384 2.652 0.538 

1. 1 81 2.508 0.352 2.474 0.526 

1 . 260 2.314 0.315 2.308 0.319 

1 . 3 7 6 2.069 0.270 2.087 0.285 

1 . 4 7 8 1. 890 0.234 1.877 0.363 

1 . 656 1 . 6 3 2 0. 191 1 . 6 36 0.177 

1 . 82 9 1 . 4 3 5 0. 16 2 1 . 4 54 0.188 

2.019 1 . 2 61 0. 1 36 1 . 2 57 0. 184 

2.396 1. 005 0.098 1. 010 0.092 

R* Reaction cross sections are * 1 0 

Un i t s are as in Table 3. 1 



higher energies. In principle, whatever the scale 

parameters (in reason) the basis set could be increased to 

obtain convergence. However, numerical problems were 

encountered in diagonalising ~Q for much larger sets and 

although, no doubt, these numerical problems could be 

overcome, the method loses its simplicity, and makes an 

extension to realistic problems more difficult. 
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CHAPTER FOUR 

THE SCHWINGER VARIATIONAL METHOD AND THE POET MODEL 

PROBLEM 

4.1 The Schwinger Variational Method 

This section introduces the Schwinger variational 

method in terms of one particle radial single channel 

scattering, for simplicity. The method depends on the use 

of the Lippmann Schwinger equation (see section 1.2C) to 

provide different expressions for T matrix elements, and 

formally may be generalised straightforwardly to many 

coordinate problems where target coordinate(s) and angular 

momentum have not been integrated over, using adequately 

complex trial functions and full enough representation of 

the required Green's functions. The work of chapter five on 

the use of the method for the Poet model problem and its 

coupled channel approximations exemplifies these 

generalisations. The Schwinger variational method is 

discussed by Joachain (1983), Bransden (1983) and in more 

detail by Nesbet (1980). We consider a Hamiltonian H(r) 

made up of an unperturbed Hamiltonian H0 (r) with known 

solutions, and a short range potential V(r), which may 

include 

kernel. 

implied integration over 

w~ 
The regular solutions r 

Lippman Schwinger equations (4.1.1) 
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(4 .I. I ) 

The asymptotic boundary conditions for outward (+) and 

inward (-) scattering are included in the Green's functions 

as described in section 1.2C. 

radial solutions ¢(E) are real. 

The regular unperturbed 

HI ({r(E)) :: f I )Vt(~)/ 

1-t I yj(£) > = E I ¢t£) / 

(4./.lb) 

(4.1.2.c.) 

G +(E r r 1):: 2._ (Xt.,r<){ jt(E,r;)~~ ¢(£)~)} 
0 J J w ( ¢ J ¢:&) 

(4. /. 2.J.) 

~(E,r) is the irregular solution of the unperturbed 

Schrodinger equation. W is the Wronskian of¢ and~-

The ¢ , ¢::r may be normalised such that W = 

convenience. The T matrix element may be written 

± T :: - < ¢(£) t v t r +(£) / ~ - R. 

-1 for 

(4. I. 3«'-) 

Using (4.1.1) and (4.1.2c) the T matrix element may be 
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rewritten as in (4.1.3b,c) 

..LT 
2. < f(£) I - V 

(4.1.;}b) 

:. < <f (£) I v I 0 (E)> = - s 
c4.Uc.) 

The expressions (4.1.3) are hermitian. They imply 

(~.I. ft.) 

The Schwinger variational principle in its bilinear form is 

written 

(~.1. 5) 

Variation of !Vl~) and 4(1},.-1 about the exact values leads 

to the expression (4.1.6) to first order in 3ft. 

b (iT) = - ( ~IV I & fV4- > - < S r-1 VI f1 > 
- < ~ -I -V + v & : V I b q; + > -( b Cf- 1- V + V Cr.~ V I ff + / 

- -< arf- rv:{ 1 ¢>- C1-6:v)1 )V+->} 

- t(¢1- {Cf/-UV -VG.-+)}V! ~Y-'~> 

~ 0 (~.u) 

The Lippmann Schwinger equation is reproduced and b <±T) = 0 

for variation about the exact wave functions I ~t/. The 
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Schwinger variational principle may 

fractional form: 

lT = 
2. 

< Cf ... I v ! ¢ ') < ¢ I v l ~P)' 
< Cf/- I -V t V G.+ V I f t 7 

also be stated in 

( 4. '· 7) 

This form may be achieved by replacing I Cfl! > ~ Ail 'f! > in 

(4.1.5) and varying with respect to the A~. It may also be 

seen to be stationary by varying 1ri> in (4.1.7). 

There are various advantages in using the Schwinger 

principle rather than, for instance, the Kohn principle. 

The asymptotic boundary conditions for the problem are built 

into the Green's function + 
G. , and the trial wave 

functions ~~~ > need not include them: the trial functions 

always occur matched against the short range potential V, 

and may be expressed in terms of L-squared functions which 

adequately represent the trj> over the range of V once the 

stationary value has been found. The fractional form 

(4.1.7) is also independent of the normalisation of the 

trial function. We now illustrate the method used in 

chapter five for finding the stationary value. We write: 

.:: 

(ft.l.8) 

llfj,/ are real L-squared functions. 
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{//-" (!/ + 
In this single channel radial case T (E,r) = T (E,r). In 

more general problems variation and I r; > is 

performed separately. For multichannel problems the c · are 
~ 

also labelled by channel as will be described in section 

5.2. 

{T ~ F = R (c;) S (~) 
T(~) 

(~.1.10) 

Since the normalisation of 1~: > is arbitrary we may impose 

a limitation on (4.1.10). We may require 

-R= -S =T 
(~.1.11) 

( ~ .I. IZ.S.) 

(4.1.12a) may be rewritten: 
N 

{ < r/J I V l Cft 7 + 2 c J < ~ I -V + V c;: V l ~ > } 
,j=l 

-1- { < ~ IV I$> + 1_ cj <. tf1 ( .. V + V G: VI Cfj >} 
J =I 

= 0 ; t:IJ'J., ... ,I\1 (l.f.l.llb) 

The two halves of this expression are identical (in the more 

general case (4.1.12b) splits into two separate equations 

for the two sets of constants £t). In matrix form, we have 

(4.1.12c). 

R + D c = o 
(4-.1.(2. t.) 
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{ R}. -- (, 
<~IV/¢> 

= i D \ .. = J~ 
The matrix problem (4.1.12c) is soluble for non singular D 

= (4-.l.l~) 

F = R + o-' R - = -

-= 2_z¢1VIr;:7t ~-'lzj < ~I vI 0 7 
tj (4.,1.1~) 

For the more general case, the equivalent results are 

R. +De =0 
-- 4 = -" -

a and b label the channels and the t process includes 

complex conjugation. 

Not imposing (4.1.11) is equivalent to choosing the 

value of one of the c;. For example (4.1.12c) becomes 

R :=. Q c:<(C) = 

o( (C) C :: D- 1 R - - (q..1.rO 

Choosing a value of c
1 
fixes d(S) and the factor 1/~ 

appears in the expressions for the ci • This then cancels 
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out in the expression (4.1.9) which reduces to (4.1.14) as 

the approximation to iT. The linear method chooses ~ = -1 

and is more straightforward to use as F = -R = -5 = -T after 

the matrix inversion has been accomplished. 

The stationary value found using 1~: >is equivalent to 

finding the exact T matrix element for a Hamiltonian H = H0 

+ V, as 'described for example by Adhikari and Sloan (1975). 

(4.1.17) 

This may be seen as the t operator for F may be written: 

~ = - z¢1t 1¢> 

6 == - ? V I ~ / 1~ -I 1 ~j < ({1 IV 
4J 

t obeys (4.1.18b) which is the exact t operator equation for 

the Hamiltonian H 
'- - ;. C ;:; V + V Go t 

('l-.1.18b) 

= t 

We also have v lff. > 
" 

= v If'%>. 
' 

As the basis extends to 
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completeness V-9 V. In various tests of one dimensional 

problems solved approximately in a restricted space using a 

finite set of L-squared basis functions, either expanding 

the full Green's function or the potential in the basis, 

Schneider (1985) found the Schwinger method (i.e. solving 

for a model separable potential V) to be the most reliable 

giving results closest to the exact solution. 

The disadvantages of the Schwinger variational 

principle are that it is not a minimum principle (although 

neither for example, is the Kohn principle) and that the 

method requires calculation of Green's function matrix 

elements, which can be time consuming. For physical 

problems, this is especially problematical as continuum 

states need to be included in the Green's function. This is 

investigated in terms of the Poet model problem in chapter 

five. For single channel scattering, Takatsuka, Luchesse 

and McKoy (1981) have related the Schwinger variational 

principle to the Kohn variational principle when the same 

trial function is used in both: the Schwinger principle 

gives a more accurate result corresponding to the Kohn 

principle combining the basic trial function with the higher 

order function resulting from one iteration of the Lippmann 

Schwinger equation. The Schwinger principle also appears 

ostensibly more flexible as the choice of trial function 

does not imply a particular approximation to the Green's 

function for the problem, although complications arise which 

are discussed in chapter five. 
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Relationship With The Second Born Approximation 

If the unperturbed wave function ¢ is used as a trial 

function the expression for the T matrix element is 

JT 
2.. 

.,.. < 0/Vl~><..¢/VI~> ........ 

( ef IV I {J 7 ( I + ( 0 IV G: VI fJ > + ... ) 
<.¢/VI (!J) 

(~.1.1%) 

Thus the Schwinger principle is equivalent to the second 

Born approximation at this level of accuracy. (4.1.19a) in 

general is often more accurate than the second Born 

approximation though this is not guaranteed. Altshuler 

(1953) performed tests of the Schwinger method for the 

static s-wave hydrogen potential (i.e. no exchange), using 

the full method in one dimension and (4.1.19b) in three 

dimensions, finding (4.1.19b) superior to the second Born 

approximation. Moise~vitsch (1973) for example, has related lw 
the Schwinger principle to the theory of Pad~ approxirnants. 

Applications Of The Schwinger Principle 

Maleki and Macek (1980) formulated the Schwinger 
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principle for electron ion scattering and applied it 

successfully to a single channel model problem involving a 

Yukawa potential (the wave functions for which have been 

used as trial functions in configuration interaction 

calculations incorporating screened potentials). A great 

deal of work has been performed by McKoy (M), Watson (W), 

Luchesse (Lu), Takatsuka (T), Lee (Le), Marco (Ma), Gibson 

(G), Lima (Li), and Rescigno (R). The Schwinger method has 

been applied with success to low energy electron-atom, ion 

and molecule scattering in the static exchange approximation 

(W M 1979, W Lu M R 1980, Lu M 1979, 1980, Lu W M 1980, 

Maleki 1984) and, using a modified form of the Schwinger 

principle discussed in section 5.6, electron-atom and 

molecule scattering beyond the static exchange approximation 

but still at low energies as all open channels need to be 

included in the Green's function for the problem (T M 1981, 

1984, Li G T M 1984, G Li Ma T M 1984). 

Luchesse, Takatsuka and McKoy (1986) have presented a 

review detailing their use of the Schwinger principle and 

various variational principles derived from it in electron 

molecule collisions and molecular photoionisation. L W M 

(1980) presented an iterative approach in which the basis 

set in the Schwinger trial function was augmented by the 

solutions to the model problem H, producing a higher order 

model t operator for which solutions were found. This 

process could be continued until convergence was achieved, 

but was somewhat time consuming, involving a variational 
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stationary value calculation for each iteration. T M (1980) 

and Li T M (1981), presented a series of variational 

functionals ("C" functionals) related to the Schwinger 

principle, some of which had also been suggested by Kolsrud 

(1958) and Moe and Saxon (1958), which were also applied to 

the static exchange approximation for electron molecule 

scattering. Moiseiwitsch (1982, 1983) has related the 

Schwinger variational principle to a linear algebraic 

equations method developed by Eisner and Seaton (1972): the 

Green's integral in the Lippmann Schwinger equation is 

written as a numerical quadrature, resulting in a set of 

linear equations, equivalent to using the Schwinger 

variational principle with an appropriate trial function. 

The method was applied to static exchange and 1s - 2s close 

coupling cross sections for electron hydrogen atom 

scattering. Luchesse (1986) 

variational method with the 

methods in a coupled channel 

(1957) and modified by Fels 

compared a Kohn type 

Schwinger and "C" functional 

model problem due to Huck 

and Hazi (1972). The model 

involves two distinguishable particles, one moving in an 

infinite square well, and the other free, interacting with 

separable potentials in two or three channels, with only 

s-wave scattering included. Other channels were represented 

by an L-squared optical potential and the testing energy was 

kept low enough for these channels to be closed. The 

Schwinger type methods gave faster convergence than the Kohn 

type method, with little to choose between the Schwinger and 
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"C" functional methods. The tests did not include 

indistinguishability. Finally Brendle et al. (1983) have 

applied the Schwinger method to heavy particle scattering. 

All these applications involve a limited number of exact. 

open channels and calculations at low energies. In chapter 

five the Schwinger method is applied to excitation above the 

ionisation threshold in the Poet model problem. 

4.2 The Poet Problem 

The Poet problem was introduced in chapter one and is 

considered theoretically in the next chapter. The model 

ignores angular momentum and the degeneracy of the hydrogen 

atom energy levels, but retains an infinite series of 

discrete bound states and an ionisation continuum. Thus, 

ways of modelling continuum effects for intermediate 

scattering energies may be investigated in this less complex 

case, in particular the use of pseudostates. 

Poet's Aproach 

The approach used by Poet (1978) is radically different 

to the methods considered so far, and is similar to that of 

Temkin (1965). The restriction to s states replaces the 

electron interaction potential with the first term in its 

Legendre polynomial expansion, and Poet solved the resulting 

separable partial differential equations using sums (and 
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integrals) over known free particle and Coulomb functions. 

( J..t. 
4- rf..t 

~ 
2 - [) r (s) 

0 - - ::: r; ~ ~ 
d.('- r:JJ;. t. r;_ (r;Jr~..) .I 

( r:J..t r}} 2. -E) y;rs) 
0 ~ ~ ~ -t ... - Cr;Jfi.) :: 

J J.J;_ l J.r.t. r, 

r.;;(.s) 
rr.J~1 :: (l)s'f(J.) 

- c.;.~fi) 
('+.2.1) 

The boundary conditions as r, rJ. -?/ ~} and those 

defined by the symmetry/antisymmetry of <pfS) at r, = r& 

allow the coefficients in the sums to be calculated using an 

interpolation method. Essentially exact results for elastic 

and 1s 2s scattering were presented for low and 

intermediate incident energies up to .- 30eV. 

The generalisation of this approach to more complex 

systems (for example, including angular momentum states, 

complex atoms) was considered by Poet (1980) who attempted 

to solve the same model problem using a coupled partial 

differential equations approach, as a starting point to 

include angular momentum. The method produced results close 

to the exact ones but as the size of the problem increases 

with each electron the method is limited to cases with up to 

two or at most three active electrons. Further work by Poet 

(1981) on the same model, using a coupled channel approach 

in which continuum functions were treated numerically over a 

finite region of configuration space where exchange is 

important, and solutions were matched to asymptotic 
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(exchange free) solutions, gave rise to pseudoresonances at 

the discretised "continuum" energies. 

Callaway and Oza (1984) extended Poet's (1978) method 

to calculate the total cross section for the model, and 

approximate ionisation cross sections calculated from 

pseudostate calculations compared favourably with bounds 

given by the exact method. 

Pseudostates and The Poet Problem 

Burke and Mitchell (1973) added pseudostates 3s, 4s, Ss 

to a 1s-2s basis and produced elastic and 1s-2s singlet 

scattering cross section in the incident energy range 10 -

30eV. Pseudoresonances appeared at each pseudothreshold, 

fairly broad especially for inelastic scattering, with 

structure below and above the threshold. Burke and Mitchell 

noted that away from the pseudoresonances the results 

converged quickly with added pseudostates, and that cross 

sections averaged over the pseudothresholds exhibited an 

oscillatory convergence. On later comparison with Poet's 

results, the pseudostate calculations were seen to be a good 

improvement on 1s-2s-3s close coupling calculations away 

from pseudoresonances: for elastic cross sections where 

pseudoresonances were less pronounced the calculations with 

positive pseudostates were very close to the exact results 

away from the thresholds. The further work of Callaway and 

Oza (1983), using the algebraic variatonal method (Callaway 
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1978) to solve the coupled equations has been described in 

the discussion of T matrix averaging in chapter two. Their 

conclusions are considered in the next chapter. Increasing 

the basis size (Oza 1984) narrowed the pseudoresonances and 

gave converging results, although a judicious choice of 

short range behaviour, and the 

the most effect in improving 

pseudostates, to represent 

averaging polynomial had 

accuracy. In the next chapter we attempt, using the 

Schwinger principle, to remove pseudoresonant behaviour in a 

systematic way before the calculation of T matrix elements. 

110 



CHAPTER FIVE 

The Schwinger Variational Method Applied to The "Poet" 

Model Problem 

5.1 Introduction 

The problem considered is a restricted model of 

electron hydrogen atom scattering in which it is assumed 

that the coordinate wavefunction is spherically symmetric 

with respect to both projectile and target electron 

positions. Thus all non zero angular momentum terms are 

ignored: the target electron occupies "s" states only, and 

the Coulomb interaction between the electrons is replaced by 

the leading term in its Legendre polynomial expansion. We 

may write the Schrodinger equation for the system as 

where 

" H :: 

E is 

V
0
(r) 

=- 0 

E J.,& I J..• + ,_ dJr, ... + r if ... - Voff"r) - V.cr.,J 

the energy of the system 

I --.: .... 

> 
, r < is the greater 

lesser 

- v.cr;,rl) 

of r, and r.z.. 

( S". 1.1) 

i denotes the incident channel and s denotes the total 
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electron spin. 

We include the spatial symmetry/antisymmetry of the solution 

explicitly and write 

= 

(5. l.tc.) 

(LI.l.b) 

The ¢ffl are hydrogenic states ( ¢~(r) = r x R~ 0 (r)) with 

associated energies £~, and the prime denotes that the sum 

includes integration over the continuum. The scattering 

solutions ~~have boundary conditions: 

( t+1.s 
:;- . (r) ---? 

"'' r~o 
0 

(I-t} .s L - I I ( 
J" M ~ ( rl -> L R 4 s ~ ~ i. r . 0' In 

r JJ "" 

0 

+ 

. £( £ 
J "' 

(s. I. :; ) 

_cf•)' 
The J~i should also obey certain orthogonality conditions as 

considered by Peterkop (1977) and in chapter one to give a 

unique solution. 

In practical calculations it is usually assumed that 

the trial functions are flexible enough for these conditions 

to be modelled by the variational procedure and arise 

"automatically" in the determination of the wave function 

coefficients. The matter is considered and tested in 
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section S.SA. 

The problem may now be rewritten as 

where 

.1. r/} 
+ :z. ;;; .... 

A interchanges r, and r~ . 

Equation (5.1.4) has a formal solution: 
oc 

.: .. sr ,/.r,' dr,, G:·· ( £; r,, r.', r., r,') 

(S'.I.4) 

0 

'){{ (Vcr;~fi') -(-l)sHA) ¢~~)/r.' 1 r/)} 
( s .... n 

G:
1 

is the Green's function for the unperturbed Hamiltonian H0 

r:::::;' • 
L (/JM (() 0 ... (!';') 

"' 
()oO 

a'•} (E r. r.'' = 
.jlfll J IJ I ) 4 r cU.' sink'r. .si.tt k'r,' 

rt ( 1 C E • f,..) •~L -fl.'~) • 

:. 

(f.1.7L) 

($".1.8) 
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Substituting (5.1.7) into (5.1.6), letting r -2> oa 
I and 

comparing with (5.1.2b) and (5.1.3), we see that the 

. ,s . 
T-matr1x element T~~ may be wr1tten: 

Oo 

T;. = - 2 Jf cLr; Jr.. :f .. lr., r. l ( V Lr,, rLl ·(-I)' AA) ~"(~,r.l 
• 

: 

- R . Pic, 

(), 1.1 .. ) 

Using (5.1.5) and the fact that 
1•1 I.) e 

Go = (G. ) we may also 

T t. express 111 , as: 

~~sL ~ - L { < ~"'r-u J V -{-1 l5 HA [ ¢:)1 > 
- <.~-IS I (V .(.I)' HA) G:·· ( v -M H A) I¢;'">} 

Cf.I.H) 

1\ 

- 2 < ¢ ;ls ( v -(-I) s H A { X, ) 

~ -s M~ 
(f.l.1c.) 

( f.J.IO) 

gives the Schwinger variational functional for when 
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rf\.''-H Pc: (r, J r 1 ) is replaced by an L squared trial function and 

the stationary value found. 

With the definition of the T matrix (5.1.3), the cross 

section (without spin factor t or ~ ) is 

:: 

(f. I. I\) 

Using an alternate real K matrix formulation, (5.1.3) 

becomes 

_rf+U 
J . (r) 

fiil& 
0 

0 

Schwinger expressions may be found for 

,._ f' t•l 
principle value Green's function uo = R 6 G0 • 

of open channels 

i ~-' ( I~ + <- ~-' ) -' k 
- -

f. > E PI 

E <Em 
(S".I.Itl 

using the 

Over a matrix 

( S".I.IJ) 

Our investigation concerns the use of different trial 

functions and approximations to the Green's function G
(U 

in 
0 

the Schwinger principle. Section 5.2 details our successful 

use of the principle to solve the coupled channel problems 

with pseudostates of Burke and Mitchell (1973) and Callaway 

and Oza (1983). Section 5.3 describes our attempts to 

remove the pseudoresonances inherent in these problems by 

modification of the Green's function, and how the success of 
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this procedure is masked by the instabilities encountered 

when the Schwinger principle is applied to the full Poet 

problem without explicit full representation of the 

continuum. The latter sections describe our investigations 

of these instabilities and our attempts to remove them by 

vanbus modifications of the principle. 

5.2 The Pseudostate Coupled Channel Problem 

5.2.A Theory 

In this further restricted model the infinite number of 

bound and continuum hydrogenic states of the target electron 

is replaced by a finite set of L-squared functions, after 

the manner described in chapters one and two. A set of 

target pseudostates may be found by selecting M component 

Slater functions ~j and constructing 

M 

Rn(l) ::: z ? j (r) ajn. 
I 

J :I 

J 

I • '> I J. > 0 "'J .. J J 

(s-.2.1) 

The aj~ are determined by the requirements 

0 
(r.1.1A.) 

0 
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The first N of these functions may be chosen as the 

target basis. Proper choice of the ~j(r) allows the lowest 

hydrogen eigenstates to be included exactly, while the 

positive energy states represent the continuum as considered 

in chapter two and by Hazi and Taylor (1970) and Bassichis 

et al. (1975). 

The coupled channel wavefunction is then defined as 

N 

2 RnJr..) I~:~(~) 
ai= I 

f H-)S 
(r1 -";> 0 111"6 ,....., 0 

-
&"M 

+ f s_ ~l""r 
.:f ~~~J(r) { ~:' siht~~r e ·E >E "'• ~ 

~ ' 
m~ r-HO 

0 ·E(l 
~ {;I 

(S'.l.Ct) 

The incident channel i should be included in the -~'+l5 pseudostate sum. ~; must obey the equations 

= 0 
0 

J m:l1 11 •• JN 
(r.t.S4) 

Equations ( 5. 2. 5)- are a set of coupled equations for the 
_r.I~)S 

J . (r, ) : 
""' 

IV co 

: L f J.t-1 R."(ri){ (V(r,/,1 -f-I)JHA)R)~)J:·:;r.)} 
M=l 

0 

n2 11 11 •••• W 
(1".1 . .rL) 
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They may be solved using the Green's functions 

o'+l ( E · r r') = J 01\ I J 

Formally 

In terms of 
d\(~J 

Yi. , 

:. 

-

~{r-r') 

(!.2..7·) 

0 ,.,., 0 

· n-1 2 IV 
I • .) I" •• I 

{5'.2.8) 

011 

+ {S rJ.r.'rlr;' &:·~( E.j r,~~'Jral~') (v(r.;r.·) -?1r Hft) ¢~':.~r.') 
Q ' 

().2.1) 

N 

= L R.JrL) f<-,J~') ~::• (E; r.~r;') 
n •• 

c s.Uo) 

-~ The coupled channel T matrix element T~• may thus be written 

(!.2_11) 
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-s s 
Tg~ only has physical meaning as an approximation to T~• 

when the target states in channels m and i are exact 

hydrogen functions, and as discussed by Burke and Mitchell 

(1973) and Callaway and Oza (1983), away from the 

pseudothresholds. As in the general Poet case, a Schwinger 

-, 
variational principle for T~• may be formed using equations 

(5.2.11) and (5.2.9). This principle is a restricted form 

of the general principle (5.1.10) in which G~ is replaced by 

-,~ G0 in the denominator, and the trial function is of the form 

IV NTA. 

~ L rz~ (~) cj"' ejJr,) 

(s. utl 

The NTR scattering trial functions 6J~ in each channel 

represent the As discussed in chapter four, one 

advantage of the Schwinger principle is that they may be 

L-squared functions and need not obey the long distance 

boundary condition for the 

The method requires construction of the following 

matrix elements: 

: numerator elements 

< It~ ( ·~) e) r.) I v -~I r H A I R ~I (rL ) eJ/ ~/ ~ ) > 
: non ~reen's denominator elements 

(S".Z.U~l 
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-2 o<l'l\ ~ < RJr.l 8~/lil IV-fWHA/R,...(IJ.)Ji.nkl>or.)(Rr.t(rJsV11(,r. /V-f-1) 1HA /R;I'iJGj'i'rr.)') 
1:1 

o(ll'l :: { 
0

1 E'>€ 
'1\ 

E < -E,.,. 

imaginary Green's matrix elements 
(!.2..nc.) 

The real Green's elements are most easily constructed 

using the spectral form of the Green's function ij'~ .... 

(P represents a princip4l value integral.) 

As well as using the Schwinger variational principle to 

solve for the complex T matrix elements, we also solved for 

the real K matrix elements by ignoring the imaginary terms. 

A T matrix was then constructed from the K matrix of open 

channels (including elements K~~ for unphysical open 

channels). In the coupled channel problem the two methods 

gave identical results. An S matrix of open channels formed 

using the complex method was always unitary to within 4-5 

decimal places. 

5.2.B Initial Investigations 1s-2s-3s Close Coupling 

We initially considered the 1s-1s static exchange case 

discussed by Moiseiwitsch (1983) and the 1s-2s and 1s-2s-3s 

coupled channel results of Burke and Mitchell (1973) in 

order to test the basic method and also different ways of 
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representing the Green's functions Matrix elements 

(5.2.13) were formed analytically apart from the energy 

integral in each Green's function which was performed using 

standard Gaussian quadrature rules and also by the use of an 

L-squared equivalent quadrature on the Slater-Laguerre basis 

described in chapter two and Appendix Two. The principal 

value integrals for the open channels were effected by a 

subtraction of the kind discussed in chapter three. 

(i) Numerical Method 

For open channels: 

at c £. r r') "' 
.J"" J J 

This may be rewritten: 

+ ~ )C 

n 

- sift k .. r ~,;J.,.r') 
iz_L) 

-
b.~ > 0 

J 1\ 

Jthtr .1iNl"lr•) 
) 

( 5.l.IH) 

The integral is split into two, from (0, k~) and from 

(k", oo), and the following transformations used: 

~(X) .:: i k" ( I + x.) 0~ ~~~ f\ 

R.'cx.) = 2 ft." kl\~ k ~ oO 

(I - ~) 
~ X $. J - I ( S'.1.1S') 

A Gauss Legendre quadrature is then used for the 

integrals. An advantage of this method is that, taken on 
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its own, the subtraction part of the integral sums exactly 

to zero if the same rule is used for both integrals, since 

Gauss Legendre quadrature ab scissae are evenly distributed 

and the corresponding weights are symmetric about x = 0. 

0 

For closed channels (k~ < 0) the subtraction is not 
" 

required. A channel independent transformation for the 

whole range was used, and a Gauss Legendre quadrature 

performed 

k c 
).. ( I + ,i.) 0 ~ p_ $ 00 - I ~ Y- ~ 

( I -.x.) {~.Z.I7) 

A was chosen to give a reasonable range of k values: a 

maximum Gaussian k value of k = 77.5 (ik:l. = 3000) was 

generally used. 

(ii) L-sguared Method 

As detailed in chapter two and Appendix Two, the 

kinetic Hamiltonian is exactly soluble in an infinite series 

of Slater-Laguerre functions, and the equivalent quadrature 

representation with a finite basis has known 

· h I ·1· t' t t The Green's funct1'on -~ we1g ts norma 1sa 1on cons an s. g·~ 

was represented by such a sum of NL basis functions, the 
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subtraction terms in the open channels being interpolated 

from the matrix elements equivalent to (5.2.13) of the 

L-squared eigenfunctions 0~(r) (these functions should not 

be confused with the hydrogenic functions 0~(r)). 

a,., ( E · r r' ) 
.j o" I J 

/R - r •1 ( E . r r, ) e j Of\ J J 

k.: > 0 
(S"-2.1&) 

(iii) Comparison 

In comparing the results for static exchange, ls-2s, 

and ls-2s-3s scattering using the two representations of the 

Green's function, the numerical method was most stable. 

Examining Green's matrix elements (5.12.13d), convergent 

results were obtained using 40-60 points in the Gauss 

quadrature for each integral. For the equivalent quadrature 

method to give comparable results a greater number of 

L-squared functions were required and no advantage was 

gained. It was initially hoped that the number of L-squared 

functions required would be relatively small, so that this 

method would be more efficient. For the infinite series 

with eigenvalue k (see Appendix Two for precise 

definitions) : 

= 
IWI=• 
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X111 (r) is.Ci Sl~i;.er-Lagu~rre basis function. 

For the finite series: 
N .. 

I - N C~J L c,.JkJ X,,Jr) ~ sin~r 
11'1: I 

<S.l.IU) 

The higher order functions X~(r) are only large for large r. 

Depending on the potential parameters (determining how fast 

the potentials decayed) and the scaling parameter in the 

Slater-Laguerre functions, different large numbers (between 

50-150) of L-squared functions were needed to give 

convergent Green's matrix elements, and the L-squared method 

was dropped in favour of the numerical method. 

Using the numerical method, the Moiseiwitsch (1983) 

static exchange, and 1s-2s and 1s-2s-3s coupled channel 

results of Burke and Mitchell (1973) were reproduced. 

Diagonalisations were carried out using a complex 

eigenproblem routine in the NAG library. We achieved 

converged cross sections using trial function~ of the form 

e .. (r) ::. e.rr-1 ::. r nl e- )..J i 
". '> I >...)o J J = IJ lr .. NT~ 

J ~ , J ~ JL J 

rs.z. 20) 

and NTR > 10. Table 5.1 compares our converged 1s-2s-3s 

results with those of Burke and Mitchell. We then 

investigated the use of the Schwinger method for the coupled 

channel approximation to the Poet problem with positive 

pseudostates, as considered by Callaway and Oza (1983). 
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TABLE 5.1 

1S-2S-3S CLOSE COUPLING 

CROSS SECTIOi\S (SINGLET S=O) 

ENERGY 1 s- 1 s 1S-2S lS-35 

BM SCH BM SCH BM SCH 

0.5 0.3052 0.3068 0.0419 0.0419 0.0146 0.0146 

0.605 0.2034 0.2035 0.0584 0.0585 0.0184 0.0184 

0.72 0.1432 0.1442 0.0511 0.0513 0.0151 0.0151 

0.85 0.1133 0.1137 0.0396 0.0398 0.0114 0.0114 

1 . 0 0.0959 0.0964 0.0297 0.0297 0.0084 0.0084 

1 . 1 2 5 0.0873 0.0877 0.0238 0.0237 0.0066 0.0066 

13M : B u r k e & M i t c h e I I ( 1 9 7 3 ) 

SCH : Present Work 

Atomic units (as described in chapter one) are used in all tables. 
Cross sections include the appropriate statistical spin factor. 
Energies shown are incident electron energies. 



5.2.C The Positive Energy Pseudostate Problem 

The form and pseudostate energies of two bases of 

Callaway and Oza (1983) that we examined are shown in table 

5.2. Basis B includes the ls and 2s states exactly, and two 

further short range orbitals are added. This basis gave 

Callaway and Oza the most accurate ls-ls and ls-2s cross 

sections of those they considered, after T-matrix fitting. 

The unfitted results contain a pseudoresonance 

approximately in the middle of the incident energy range we 

are considering, making it useful for further investigation. 

Basis D contains the ls, 2s and 3s states exactly, and has 

also been previously used by Huck (1957). Also shown in 

table 5.2 is an eleven state basis used in section 5.5. 

It was found that the Slater functions ej were not 

sufficiently flexible to give converged results in this 

problem: the large numbers (NTR~ 20) required meant that 

the resulting N~xNTR~ matrix was too large to be accurately 

diagonalised. The addition to the expansion in the open 

channels of asymptotic terms (5.2.21) improved the results 

considerably. 

j: tJTR+l ; '( >0 
(5".2.1.1) 

Converged results with NTR ~ 13, or 15 trial functions per 

open channel were found. Since the Schwinger principle does 

not require the trial function to have the correct 
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TABLE 5.2 

PARAMETERS AND ENERGIES OF THREE PSEUDOSTATE BASIS SETS 

BASIS SET 

B 

D 

G 
(M 1 2) 
( N 1 1 ) 

j 

1 
2 
3 
4 
5 

1 
2 
3 
4 
5 
6 
7 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
1 1 
1 2 

1 
1 
2 
2 
1 

1 
1 
2 
1 
2 
3 
1 

1 
1 
2 
1 
2 
3 
1 
2 
3 
4 
1 
2 

t. 
J 

1 . 0 
0.5 
0.5 
1 . 0 
1 . 5 

1 . 0 
0.5 
0.5 
1 I 3 
113 
113 
0.2 

1 . 0 
0.5 
0.5 
113 
113 
113 
1 . 5 
1 . 5 
1 . 5 
1 . 5 
0. 1 
0. 1 

e 
j 

-0.5000 
-0.1250 
-0.0261 
0.3405 
3.1337 

-0.5000 
-0.1250 
-0.0556 
-0.0312 
-0.0086 
0.0979 
1.0198 

-0.5000 
-0.1250 
-0.0556 
-0.0312 
-0.0197 
-0.0122 
0.0210 
0.1213 
0.3800 
1.0562 
3.1989 

(15.76) 

(e + 0.5) 
j 

0.0000 
0.3750 
0.4739 
0.8405 
3.5337 

0.0000 
0.3750 
0.4444 
0.4688 
0.4914 
0.5979 
1.5198 

0.0000 
0.3750 
0.4444 
0.4688 
0.4803 
0.4878 
0.5210 
0.6213 
0.8800 
1.5562 
3.6989 

U n i t s and s ym b o 1 s a r e a s d e s c r i be d i n t a b I e 5 . 1 a n d i n 
the text. Energies were calculated accurately to eight 
significant figures and are shown to four decimal places 
for convenience. The last column shows the pseudothresholds 
in terms of the incident electron energy, for reference to 
later figures. 



asymptotic form, it was decided that the improvement was due 

to the use of oscillatory functions. More flexible trial 

functions (5.2.22) were introduced, all matrix elements 

still being formed analytically with the exception of the 

Green's integral. 

a .. (r] 
\,)JCo 

::. { .s~{.,(Hif,(r-) 

CA1 ( «H I k; I r) 
( 5. 2.11.) 

It was found that Callaway and Oza's results were reproduced 

using 10-12 or more such functions per channel over a wide 

choice of input parameters. 

For solving the coupled channel problem this would seem 

satisfactory, but for our further investigation into 

possible removal of pseudoresonances before construction of 

the T matrix, the explicit inclusion of pseudochannel energy 

dependence in the ~~ resulting in matrix elements (5.2.13) 

that are intrinsically not smooth over the pseudoenergies 

with respect to incident electron energy, is self defeating. 

Further investigation showed that efficiently converged 

results were possible as long as oscillatory functions were 

used in the physical channels. Since we are concerned with 

excitation in the intermediate energy region, we kept the 
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oscillating functions for the negative energy channels and 

used Slater trial functions for the positive pseudostates, 

choosing cosine functions for the gji with J .. = 0 
0111~ • Results 

were not affected by further suppression of pseudochannel 

dependence of input parameters, resulting in the form 

(5.2.23): 

8;.(r) = [ j f. '- o 
' 

J E.~ > 0 

(5. 2.l3) 

11-14 such functions per channel produced converged results. 

Table 5.3 compares our results with Callaway's and Oza's, 

and figure 5.1 shows elastic and 1s-2s cross sections before 

and after T matrix fitting for basis B in the spin zero 

case. As described by Callaway and Oza, the coupled channel 

method gives results indistiguishable from Poet's (1978) in 

the spin one case, but gives rise to visible 

pseudoresonances in the spin zero case. 

The triplet case may be expected to be simpler to solve 

than the singlet case, as the antisymmetry of the spatial 

wave function restricts the strength of the interaction 

between the electrons, and associated distortion and 
(? 

excitation processes, as they are kept apart by the Pauli 

principle. After T-matrix fitting, all of the Callaway and 

Oza bases gave elastic cross sections correct to within 3% 

and 1s-2s cross sections correct to within 8% of Poet's 
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TABLE 5.3 

(i) S = 1 Data (Basis D) 

Cross Sections 

Energy 

0.605 

0. 7 2 

0.85 

1 . 0 

1.125 

1 . 2 5 

1 . 5 

1 . 7 5 

2.0 

Energy 

0.605 

0.72 

0.85 

1 . 0 

1 . 1 2 5 

1 . 25 

1 . 5 

1 . 7 5 

2.0 

1 s - 1 s 

CO SCH 

2.3005 2.3005 

1. 8336 1. 8336 

1. 4607 1 . 4607 

1.1587 1.1587 

0.9750 0.9750 

0.8330 0.8331 

0.6310 0.6310 

0.4972 0.4972 

0.4037 0.4037 

ls-3s 
(*lOE-2) 

CO SCH 

0.024 0.024 

0.052 0.052 

0.076 0.076 

0.092 0.090 

0.098 0.099 

0. 101 0.098 

0. 100 0.099 

0.093 0.093 

0.084 0.084 

CO: Callaway and Oza (1984) 

SCH : P r e s en t Wo r k 

Units are as in table 5.1. 

ls-2s 
(*JOE-l) 

CO SCH 

0.035 0.035 

0.048 0.048 

0.055 0.055 

0.058 0.058 

0.057 0.057 

0.056 0.055 

0.051 0.051 

0.046 0.046 

0.041 0.041 

2s-3s 

CO SCH 

0. 134 0. 1 34 

0. 102 0. 102 

0.073 0.073 

0.052 0.052 

0.041 0.041 

0.033 0.032 

0.022 0.022 

0.016 0.016 

0.013 0.013 

\Vhere indicated, cross sections should be multiplied 
by the appropriate factor of 10. 



TABLE 5.3 

(ii) S = 0 Data (Basis B) 

Cross Sections 

ENERGY 1 s - 1 s 

CO SCH 

0.605 0.2501 0.2501 

0.63 0.2320 

0.72 0.1926 0.1926 

0.85 0.1724 0.1724 

1 . 0 0.1340 0. 1 340 

1.125 0.1131 0.1131 

1 . 25 0. 1 001 

1 . 5 0.0866 0.0866 

1 . 7 5 0.0772 0.0776 

CO : C a I I a w a y a n d 0 z a ( 1 9 8 4 ) 

SCH : Present Work 

Cnits are as in table 5.1. 

1s-2s 
(*10E-1) 

CO SCH 

0.307 

0.247 0.247 

0.307 

0. 149 0. 149 

0. 14 7 0. 14 7 

0. 140 

0. 12 3 0. 12 3 

0.083 0.084 

0.055 0.055 

Wh e r e i n d i c a t e d , c r o s s s e c t i on s s h o u 1 d be mu 1 t i p 1 i e d 
by the appropriate factor of 10. 
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FIGURE 5.1 

CROSS SECTIONS AGAINST INCIDENT ELECTRON ENERGY FOR BASIS B. 

Models are as described in the text. Units are as described in 
Tab I e 5. 1 . 

(i) lS- IS Cross Sections 
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S = 0 The points are unaveraged results. The lines are the 
averaged results. Trial I Green's function positive pseudostate 
thresholds in the range are marked (see Table 5.2). 
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CROSS SECTIONS AGAINST INCIDENT ELECTRON ENERGY FOR BASIS B. 

Models are as described in the text. Units are as described in 
Table 5.1. 
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results for the singlet case, although basis B gave better 

results, the elastic cross section being indistinguishable 

from Poet's and the 1s-2s cross section being good to within 

3%. As noted by Oza (1984), the pseudothreshold structure 

gets narrower as more positive pseudostates are used in the 

basis. Having found the Schwinger method a good one for the 

coupled channel problem, our further work concerns the 

attempted elimination of pseudoresonances for the singlet 

case. 

5.3 Beyond The Coupled Equations Elimination of 

Pseudoresonances 

We can consider the coupled channel problems as 

Schwinger variational principles for the Poet problem in 

which the pseudostates used in the trial function and the 

approximation to the Green's function G~lcoincide : our 

original aim in using the principle was to expand the 

representation of the Green's function and investigate the 

origin of the pseudoresonances. We hoped to remove 

pseudoresonances by smoothing out the matrix elements 

(5.2.13) with respect to incident electron energy before 

solving for the T-matrix elements. Since our choice of 

trial function ensured that in the energy region of interest 

the numerator and non Green's denominator elements were 

smooth as required, this involved smoothing the Green's 

elements: although the Green's function ~~, is 
0 

continuous 
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with respect to incident energy as it passes across a 

threshold, its derivatives are not, as detailed in figure 

5.2. This is to be contrasted with the smooth behaviour of 

G~'. One possibility that was considered was to apply a 

fitting procedure to the matrix elements (5.2.13d) away from 

the thresholds, and comparison tests between matrix elements 

containing 
-rt-1 1-e-J 
Go and G

0 
are detailed below. Investigation of 

the effect on the cross sections of this approach was 

hampered by an unexpected phenomenon that has severely 

limited our use of the Schwinger principle beyond the 

coupled channel problem. The resulting T-matrix elements 

contain false resonances that are not related to the Green's 

function but occur numerically in the solution of the 

stationary value problem. These resonances appear and 

disappear as different trial functions are used, and badly 

affect the convergence of the T matrix. They seem to occur 

in more complicated problems: there are no false resonances 

in the coupled channel case which is essentially a one 

coordinate problem with all target electron information 

supplied, and in the more general problems they do not occur 

if electron exchange is ignored except in a few very complex 

cases. In the exchange case, these resonances do not appear 

if the trial function target expansion contains all of the 

states used in the Green's function. Illustrative results 

appear below and in section 5.4. 

In the rest of this chapter, the results displayed were 

obtained by the complex T matrix method unless explicitly 
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FIGURE 5.2 
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Behaviour Of Coupled Channel Green's Function G 
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FIGURE 5.2 
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The continuum Green's function G varies smoothly. The 

_+ •4 0 + 
behaviour of G does not match that of G close to the 

' 0 0 

thresholds, as shown by the broad pseudoresonant structure 

of the T matrix elements around them. 



described as otherwise. The K matrix method was always more 

unstable, containing false resonances in virtually all 

cases, and giving unconverged results whether a matrix of 

open trial function channels or of channels common to both 

the trial function and .Green's function was used. This 

might be expected as T matrix elements formed using the K 

matrix method require solution of the stationary value 

problem for several channel combinations, and numerical 

errors are compounded. Similarly the open channel S matrix 

formed using the complex method was generally only unitary 

to within about a factor of ten in these more general 

problems. 

A. Illustration of false resonances 

Our first tests beyond the coupled channel problem 

in the involved using 

Green's function 

different pseudostate 

and trial function, 

pseudoresonances would be suppressed. 

expansions 

in the hope that 

It was found that 

results did not quickly converge, as false resonances were 

introduceq. This is illustrated in figure 5.3 where the 

elastic cross section for a basis B trial function and basis 

D Green's function is shown for various values of NTR. 

Basis D pseudoresonances appear just outside the range of 

energies shown. A false resonance with NTR = 10 vanishes 

for NTR = 12 and a smooth cross section results. However, 

increasing NTR to 14 brings in further false resonances 

130 



0.26 

0.24 

0.22 

0.20 

0.18 

0.16 

0.14 

0.12 

0.10 

0.08 

0.06 

0.04 

0.02 

0.00 

FIGURE 5.3 

CROSS SECTIONS AGAINST 1\CIDE~T ELECTRON E~ERGY 

TRIAL FCNCTION BASIS B, GREEN'S FUNCTJO~ BASIS D ELASTIC 
CROSS SECTIONS 

Models and symbols are as described in the text. Units are 
as described in Table 5.1. 
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The line shows the exact results. Trial (T) and Green's (G) 
function positive pseudostate thresholds in the range are 

marked (see Table 5.2). 
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CROSS SECTIONS AGAINST INCIDENT ELECTRON ENERGY 
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The line shows the exact results. Trial (T) and Green's (G) 
function positive pseudostate thresholds in the range are 

marked (see Table 5.2). 



which upset the convergence. Further increase and variation 

of input parameters did not recover the smooth curve which 

would appear to be due to a fortuitous choice of trial 

function. The 1s-2s cross section remained unstable and 

unphysical for all values of NTR. Other tests with a basis 

B Green's function and basis D trial function gave 

unconverged inelastic cross sections and elastic cross 

sections with false resonances although there was a vague 

resemblance to the basis B close coupling results. The 

false resonances did not occur in the non exchange case 

where results were convergent. Figure 5.4 shows cross 

sections without exchange for basis B close coupling and for 

a basis D trial, basis B Green's function. The similarity 

between the two sets of results suggests if the trial 

function approximately "contains" the Green's function, then 

additional terms are "ignored" by the method and the close 

coupling results are reproduced. This is investigated 

further in section 5.4 and also appears true for the 

exchange case when the Green's function is exactly contained 

in the trial function. The case of a basis B trial function 

and basis D Green's function without exchange also produced 

convergent results, with basis D pseudoresonances still 

present, but smaller in size. 
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CROSS SECTIONS AGAINST INCIDENT ELECTRO:"~ ENERGY : NO EXCHANGE 

Models and bases employed are as described in the text. Units are 
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B. Removal of Pseudoresonances Use of Exact Green's 

Function 

The rest of this section considers the removal of 

pseudothreshold structure from matrix elements (5.2.13d) of 

the basis B coupled channel problem. The subsequent 

automatic removal of pseudoresonances from the resulting 

cross sections is displayed in terms of the non-exchange 

case, which is in general not susceptible to the appearance 

of false resonances as exemplified above. 

(i) Matrix Elements 

Our first test was to replace the imaginary part of the 

. _,+1 .. 
Green's funct1on G0 with the imaginary part of GG. 

I r f+\ 

m ll o 

= 

Wo 

= .. L 2 ~;' R, (r._] R, (~'J .s
4

vn [~ r. sCQ\ f ~ r;' 

CS'.!U) 

(E is assumed positive, F(K ,r,) are standard Coulomb 

functions.) 

Above the ionisation threshold, a smooth change in the 

Green's function G';' with increasing incident electron 

energy is replaced in ~~ by a series of continuous but not 

smooth steps as each positive channel becomes open. For 

I G""l m o we used seven negative energy hydrogen states and 

132 



performed the continuum integral numerically using a 40 

point Gauss quadrature and a routine of Bardin et al. (1972) 

for the Coulomb functions. A selection of sample matrix 

elements of the form (5.2.13d) for both cases are shown in 

figure 5.5. Although the two sets of matrix elements are 

similar away from the pseudoresonance, they are not in a 

uniform manner that is easily modelled. This means that a 

fitting process applied to the pseudostate matrix elements 

away from threshold would seem to be at least as arbitrary 

as one applied to the T-matrix elements, and probably more 

so, as the fitting has to be done for a large number of 

matrix elements which cannot all be examined graphically to 

achieve the best fit. 

We then considered matrix elements for a 1s-2s-3s trial 

I f • ~ function and the "complete" Greens unct1on G0 , taken to be 

made up of seven negative energy s states and a numerically 

integrated 36 point continuum with a cutoff above the range 

of incident energies of interest. Open channel 

integrals were performed as a series of quadratures between 

the continuum integration points, with up to 90 points in 

total. Closed channel -~ g •• integrals were performed as 

before. Sample elements for the non exchange case are shown 

in figure 5.6, with similar conclusions to be drawn about 

the possibilities of a fitting process. However, as noted 

by Oza (1984) as the number of positive pseudostates 

increases the pseudoresonances become narrower, and a 

fitting procedure might seem more appropriate with a larger 
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MATRIX ELEMENTS (5.2.130) AGAINST INCIDENT ELECTRON ENERGY 

Models, symbols and bases used are as described in the text. Units 
are as in Table 5.1. 
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FIGURE 5.6 

MATRIX ELEMENTS (5.2.130) AGAINST INCIDENT ELECTRON ENERGY 

Models, symbols and bases used are as described in the text. Units 
are as in Table 5.1. 
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FIGLRE 5.6 

MATRIX ELEMENTS (5.2.130) AGAIJ\ST INCIDENT ELECTRON ENERGY 

Models, symbols and bases used are as described in the text. Units 
are as in Table 5.1. 
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FIGURE 5.6 

~MTRIX ELEMENTS (5.2.130) AGAINST INCIDENT ELECTRON ENERGY 

Models, symbols and bases used are as described in the text. Units 
are as in Table 5.1. 
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basis (the full Green's function used here is in effect 

equivalent to a pseudostate basis too large for practical 

application, and gives smooth results), although conversely 

more matrix elements would need to be averaged. We did not 

pursue this matter as our attention was diverted by the 

problem of false resonances, but the cross sections for the 

non exchange case discussed below show that the use of a 

smoothed Green's function removes pseudoresonances in 

principle. At the time of writing, McCarthy, Hewitt and 

Bransden are applying these ideas to adapt a coupled 

channels with distorted waves momentum space method of 

McCarthy, Mitroy and Stelbovics (1986) solving the 

Lippmann-Schwinger integral equation for the Poet problem. 

(ii) Cross sections 

In figures 5.7 and 5.8 we present results without 

exchange. Figure 5.7 shows the effect on the basis B 

coupled channel cross sections of using the full imaginary 

Green's function. Figure 5.8 shows a calculation using a 

ls-2s-3s trial basis and the full Green's function G~, 

together with a calculation using the same trial function 

and a basis B Green's function G1
•

1
• Here the cross • sections 

are completely smooth, and the idea of a smoothing process 

seems justified. Unfortunately, Poet did not provide exact 

non-exchange cross sections for comparison. Table 5.4 

indicates variation with increased numbers of scattering 

trial functions eji for this case. 

Although these results show that smoothing the Green's 

134 



0.7 

0.6 

0.5 

0.4 

0.3 

0.2 

0. 1 

0.0 

FIGCRE 5.7 
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in Table 5.1. 
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CROSS SECTIONS AGAI~ST INCIDE~T ELECTRO~ ENERGY : NO EXCHANGE 

Models and bases used are as described in the text. Units are as 
in Table 5.1. 
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FIGURE 5.8 

CROSS SECTIONS AGAINST INCIDENT ELECTRON ENERGY : NO EXCHANGE 

Models and bases used are as described in the text. Units are as 
in Tab I e 5. 1 . 
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FIGURE 5.8 

CROSS SECTIONS AGAINST INCIDENT ELECTRON ENERGY : NO EXCHANGE 

Models and bases used are as described in the text. Units are as 
in Tab I e 5. 1 . 
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NTR 

10 

1 1 

1 2 

1 3 

14 

15 

1 6 

NTR 

10 

1 1 

12 

14 

16 

TABLE 5.4 

CONVERGENCE TESTS: 1S-2S-3S TRIAL BASIS WITH 
"FULL" NUMERICAL GREEN'S FUNCTION ( EXCHA.J~GE 

IS NOT INCLL~ED IN THE CALCULATION) 

ENERGY 0.7 

lS-lS 

0.4145 

0.4177 

0.4186 

0.4184 

0.4186 

0.4184 

0.4178 

ENERGY 1.3 

lS-lS 

0.1836 

0.1843 

0.1843 

0.1843 

0.1843 

CROSS SECTIONS 

1S-2S 
(*JOE-l) 

0.0978 

0.0935 

0.0941 

0.0937 

0.0936 

0.0933 

0.0933 

CROSS SECTIONS 

1S-2S 
(*JOE-l) 

0.0353 

0.0350 

0.0350 

0.0350 

0.0350 

(Cnits and symbols are as described in table 5.1 
and in the text. ~ere indicated, cross sections 
should be multiplied by the appropriate factor of 
10. ) 



FIGURE 5.9 

CROSS SECTIONS AND MATRIX ELEMENTS (5.2.13D) AGAINST INCIDENT ENERGY 

Models, matrix elements and symbols are as described in the text. 
Units are as in Table 5.1. 
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function removes pseudoresonances, it is not a practical 

process in conjunction with the Schwinger method, due to the 

problem of false resonances. Using a basis B trial function 

complicates the problem enough to introduce false resonances 

and non-convergence in the non-exchange case, and in the 

exchange case false resonances obscure the smoothing process 

entirely. Figure 5.9 shows sample results with exchange for 

the full Green's function and a single channel ls trial 

function. 

In this and other exchange cases, smooth matrix 

elements do not lead to smooth cross sections. The false 

resonance structure varied with the number and input 

parameters of the e .. used. 
J~ 

5.4 Investigation of False Resonances 

5.4A Occurrence of False Resonances and some limitatiomof 

the Schwinger Method 

In order to avoid confusion with pseudoresonances, 

several tests were made of the Schwinger method with a 

Green's function containing exact negative hydrogen 

f nctl.'ons· ls 2s ns n / 7 and var1.'ous trial bases. u '- ••. '~' 

Without exchange, smoothly decaying cross sections were 
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found. With exchange, the following rule emerged: false 

resonances occurred if the Green's function basis contained 

more information than or different information from the 

trial function basis. If the trial function contained all 

the states included in the Green's function, the results 

converged on the coupled channel results for that Green's 

function, as suggested in section 5.3A. An example shown in 

figure S.lOa is for a ls-2s-3s Green's function with a basis 

D trial function, superimposed on ls-2s-3s close coupling 

results. Also shown are two cases of false resonance. 

Figure 5.10b shows the combination of a single channel 1s 

trial function and a ls-2s Green's function, and figure 

5.10c shows sample results for a 7 state Green's function 

and a 1s-2s-3s trial function. In each case the position of 

the false resonance varied with the number and input 

parameters of functions ~4 used. Sample matrix elements of 

the form (5.2.13) were smooth in all cases . 

On a different track, investigations (performed by R. 

Hewitt) of close coupling Schwinger calculations using up to 

seven s states gave results that converged at values close 

to the 1s-2s-3s results (section 5.2B, Burke and Mitchell 

1973). This shows the importance of represen~ing the 

continuum states, as these results are not close to the 

exact results (Poet 1978), and also indicates that sevens 

states are adequate to represent the negative energy part of 

h I f • ft-} t e Green s unct1on G
0 

as in section 5.3. Also, some 

investigation by R. Hewitt at low incident energies showed 
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CROSS SECTIONS AGAINST INCIDENT ELECTRON E~ERGY 

Models and bases employed are as described in the text. Cnits are 
as in Table 5.1. 
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FIGURE 5. 1 oc 

CROSS SECTIONS AGAINST INCIDENT ELECTRON Er\ERGY 

Mode Is and symbols are as described in the t ex t . 
Cn its are as in Table 5. 1 

Elastic Cross Sections: ls--3s t r i a I basis, ls--7s Green's function. 
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FIGURE 5. 1 oc 

CROSS SECTIO:"JS AGAINST I~CIDENT ENERGY 

Mode I s and symbols are as described in the text. 
Cnits a r e as in Table 5. 1 

I s- 2 s Cross Sections: ls--3s t r i a I basi s. ls--7s Green's function. 
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that false resonances did not seem to occur below the 

inelastic threshold, and that the K matrix method gave the 

same results as the T matrix method in this region, although 

this behaviour was not investigated fully as we were 

concerned with the intermediate energy range. The rest of 

this section concerns our analysis of a possible method of 

removing false structure. 

5.4B "t" Variational Principle 

In an attempt to remove the false resonant structure 

from the T matrix, we considered a method proposed by 

Takatsuka and McKoy (1981) which was claimed to remove 

spurious poles from Schwinger-type principles. In our 

principle the final approximation to the T matrix element 

iT:"' may be written: 

.c. 2_ < :xb/ V f ~ /(g-·J~j < 7'j' IV I Xa I 
iJ 

v = 
s 1\, 4 V- (-I) H,.. 

I~ > represents the trial function R"" (r2) e.,.'\ (r, ) ' i running 

over both indices m and n 

G~ . stands here for either the Poet Green's funct1on or 
0 

approximation used for it. 

the 

Following Takatsuka and McKoy, we introduced a 
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parameter t and found the stationary value for the 

functional (5.4.2) requiring equality of the three terms at 

the stationary value. 

- r < ~.fe) IV I x~ >< :t.~l VI ¢{1-_reJ) 

<¢(f)l{-V • VG:V +tV/Y£><'f.IV}/¢.'~l> 
~h ~4 

(.r.~.2) 

rlttlS 
The exact wave function I r4lt)> obeys equations (5.4.3) 

d'tls 
and differs from the Poet wave function I !i/d. > by a constant 

factor JC.t: 

(5. 4.3c.) 

We note also: 

I gJ~~u/ ~ ( ;r:+c:) 7( 1 +t<:tb IV l f!~+)Jr~:)>)w 1 

rr. 4. 3J.) 

.)(~ = 

(S.4.3eJ 

In the original "t" principle, the T matrix element is 

rewritten in terms of the new stationary value 
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.l Ts = - < J; b I V I ¢' ~+l.s / 
2.. ba. 

: ~ J(b 1 v I ~(H16) 7· 
( I + t < )("( V I {1}:~1(t:) 7) 

-
""' F"'Q, 1.1"\ 

(I - C ~!,a) 
(5. ft. 4l 

~Gl = 2. <(~blv I rt /(~:;)~j < ~l v !Xa. > 
'j 

D 
J { ~4 ~ ~ = < Y[ J vI ~0.) 

( S'. 4.S) 
--

Takatsuka and McKoy also presented a generalised "t" method 

in which g was channel independent. The following arguments 

also apply to this model (details are in Appendix Three). 

Our tests showed that the t-method gave exactly the same 

results as the basic Schwinger method, and mathematically we 

find the two expressions for the T matrix to be identical. 

Further consultation of the literature showed that the same 

conclusions had already been drawn by Abdel-Raouf (1984), 

but the following analysis was performed independently. 

We wish to show that: 

X(c) == 

(1-t. ~\Ia.) 
- ,.,_.,. = X(o) J 

(~.4.t) 
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J X (t:) 
J): 

Since D B~' 
:; .... : ""' 

= 

= 

(5.4.8) becomes 

:: 

Thus for F 11 , -:/: J/ t, 

-The case F11 ., 

- ' ( J.. - ) - ... , 
- D~ - ~"& Q~. = D& d); - - ' 

-2. 

:: - ~ .. 

cs.4.7) 

(!;.4.8) 

(~_ft_q) 

(S".lt.IO) 

(S.V,../1) 

(S".~.IZ.) 

1/t corresponds to Fb~~ ~, and applies 

when singularities appear in the calculated T matrix 

elements. These may be genuine resonances, or, as argued by 

Abdel-Raouf (1984), spurious singularities related to those 

obtained by the corresponding Kohn variational principle. 

Our false resonances are not singular and their structure is 
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in any case preserved in the "t"-method as our analysis 

shows. 

In their reply to Abdel-Raouf, Takatsuka and McKoy 

(1984) suggest an alternative expression for xt which, due 

to the inexactness of the variational method, may not be 

= l It, and thus may eliminate some spurious 

singularities. This does not help our work as our false 

resonances are not singular, and once again the expression 

for the T matrix elements remains independent of t away 

from the singularities. In terms of the Schwinger method, 

we may write: 

V J )(G.) = { V - V G~+l V - t V l X A')< _1 b { V J I {J~r{t) ) 
( S".l;.l3) 

< ~b IV - ~ Gr~+l VI$:;:)> :. <:td V LXa.>( It f: <:Xbl VI _e:~~) >) 

= < X!o I V- V G.+ VI¢~~·~)) 
~~ ... 1 iJ l:Xa.> 

( S'.~ .l't) 

((.4.1.)) 

The alternative approximation to the T-matrix element 

is 

: ~"' s"Q. 
G ~ ~b-~ B a. 

Again, 
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d. X (t) 
- 2. 

dl 

:: 0 
(S. 4 .17) 

The two t methods only differ from the t = 0 cases at 

singularities in X(t) and x, (t). Thus they are not useful 

in removing false structure in X(O) and X1 (0), as the only 

different results they can give are singularities. 

The use of (5.4.18) as an expression for was 

tested as (5.4.19) only holds formally for the exact 
••ls 

wavefunction I qftl. >. 

X 2. ( o "J = ~0. S .... 
G_.. ri' rz 
_b = _II. 

(S". ~.18) 

(s.4.1'1) 

However, in all tests using the T matrix method, the 

expression u ~, .... = sb ... I cg:~-· gQ.) was very close (within three 

to four figures in both real and imaginary parts) to unity 

for the ls-ls and ls-2s T matrix elements over all the 

energy range, and did not affect the cross sections. For 

the higher channels, agreement was not always so good, and 

142 



TABLE 5.5 

SAMPLE VALUES OF u 
ba 

BASIS B CLOSE COUPLING (NTR = 1 4) 

ENERGY b a Re(U ) Im(U 
ba ba 

0.6 1 1 1 . 0 7 10E-8 

0.6 2 1 1 . 0 6 10E-6 

0.85 1 1 1 . 0 5 10E-5 

0.85 2 1 1 . 0 4 10E-3 

1 . 3 1 1 1 . 0 5 10E-6 

1 . 3 2 1 1 . 0 5 10E-5 

BASIS B TRIAL, BASIS D GREENS (NTR 1 4 ) 

ENERGY b a Re ( U ) Im(U 
ba ba 

0.6 1 . 0 4 10E-5 

0.6 2 1 1 . 0 3 10E-3 

0.96 1 . 0 4 10E-6 

0.96* 2 1 1 . 0 4 10E-3 

1.25* 1 I .0 4 IOE-4 

1 . 2 5 

Re (U ) 
ba 

Im(U ) 
ba 

* 

2 1 1 . 0 3 10E-4 

The number of decimal places to which the 

value is exactly 1.0 is shown. 

The modulus of the value rounded up to the 

next power of 10 is shown. 

A false resonance occurs at this energy 

with the basis functions used. 

) 

Energies are shown as described in table 5.1. Other units 
are dimensionless. Symbols are as described in the text. 



the K matrix method for the coupled channel problem was 

slightly destabilised here. Tests were made on the coupled 

channel problem~ the ls trial, ls-2s Green's problem of 

figure 5.10b, and on problems using combinations of bases B 

and D for trial bases and the Green's function. Some sample 

values of Ub~ for the T matrix method are shown in table 

5.5. 

5.5 Modifications of the Schwinger Method 

The rest of this chapter concerns various modifications 

we made to the Schwinger principle in order to try and 

improve on results beyond the coupled channel problem. In 

this section, two methods of limited success are detailed. 

Section 5.6 applies a variational principle used with 

success at low energies to the present intermediate energy 

problem. 

5.5A Use of an Orthogonalised Trial Function 

rAfr)S 

The trial functions ~~(r 1 ,r&) we have used so far 

retain a degree of non-uniqueness, as there is the 

possibility of them containing the rearranged system which 

we include explicitly in the exchange terms. As described 

by Peterkop (1977) and in chapter one, double counting may 
t~)S 

be avoided by making the scattering functions £, orthogonal 

to all hydrogen functions ¢" with energy ~"' < t. Pl. • In the 
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case of our method, we have so far assumed that this would 

occur "automatically" as the coefficients c .. 
Jl 

were 

determined, provided a reasonable variety of trial functions 

were used, and in the coupled equations case convergent 

results were obtained. As the more general case was not so 

convergent, owing to the false resonances, we thought it 

worthwhile approximating the orthogonality condition more 

explicitly. We changed the form of the scattering trial 

functions so that they were orthogonal to all the trial 

function target pseudostates of lower energy. 

e .. (r) ~ J~ 8 .. (I\ - ~ <. R l 8 .. ) R (i) .~~ ) L II\ J t- , 
FYI<. i, 

( S.S. I) 

R~(r) = trial function hydrogen/pseudo state. 

This would not eliminate false resonant ; entirely, as 

shown by the most simple case of a single channel ls trial 

function and a ls-2s Green's function, which would be 

unaffected by the process. 

In practice, we found that energy independent sine and 

cosine type trial functions were required in the positive 

pseudochannels, as purely S.T.O. based trial functions were 

reduced to zero by the subtraction process. The close 

coupled results were not seriously affected by the change, 

and some comparisons of convergence for basis B are shown in 

table 5.6. More general tests showed that false resonances 

were not eliminated by this procedure, which made little 
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NTR 

7 

8 

9 

10 

1 1 

] 2 

NTR 

7 

8 

9 

10 

1 1 

1 2 

13 

14 

TABLE 5.6 

CO~~ERGENCE COMPARISON: STANDARD METHOD 5.2 (S) 
AND METHOD 5.5A (P) FOR BASIS B CLOSE COUPLING 

ENERGY 0.7 

CROSS SECTIO\IS 

1S-1S 1S-2S 

s p s p 
(*10E-1) 

0.207 0. 195 0.259 0.277 

0.206 0. 1 8 8 0.271 0.258 

0.206 0.206 0.272 0.266 

0.206 0.206 0.271 0.271 

0.206 0.206 0.272 0.272 

0.206 0.206 0.272 0.272 

ENERGY 1.3 

CROSS SECTIONS 

1S-1S 1S-2S 

s p s p 
(*10E-1) (*lOE-1) 

0.972 0.805 0.] 03 (). 107 

0.959 0.913 0.117 0. 106 

0.961 0.960 0. 115 0.119 

0.960 0.961 0. 1 16 0. 119 

0.968 0.965 0. 1 1 4 0. 1 1 5 

0.964 0.965 0. 1] 5 0. 115 

0.964 0.965 0. 115 0. 115 

0.965 0.965 0. 11 5 0. 115 

(Units and symbols are as described in table 5.1 and 
in the text. Wnere indicated, cross sections should 
be multiplied by the appropriate factor of 10.) 



difference to the results, but were sometimes narrowed or 

appeared in different places. Shown in figure 5.11 are 

cross sections with and without orthogonalisation for a 

1s-2s-3s Green's function and a 1s-2s trial function. 

Convergence was not affected, being good away from false 

resonances but unreliable owing to the possibility of them 

appearing. Also shown in figure 5.11 are results using a 

basis B trial function and a 1s-2s-3s Green's function using 

both methods. The results are smooth apart from a very 

narrow false resonance, and follow fairly closely the 1s-2s 

close coupling results. Further tests, with m ~ i in 

(5.5.1) gave unstable results for NTR ~ 16 as if too much 

information had been removed from the trial function. 

5.5B Method of R. Hewitt 

This method attempts to relate the positive channel 

pseudostates Rf\.(r) (E.,.> 0) to the Coulomb functions F( K ,r) 

and modify the Green's function G~' to relate it to the Poet 

Green's function G~ , hopefully removing pseudoresonances in 

the process. Following the discussion of chapter two, we 

may write, over a limited range of coordinate space: 

.LK 2 ~E 
J 2. f>l m 1 N~~~. a constant. 

This method supposes that the real continuum part of the 

Green's function G'~"' .. 
OD 

C tl )< F C K, rJ F (K1 ~') Pfcf.t s~~ r, ..rU..t r:' 
R"' ~ 

11 
( 2.CE-tKt) -t') 
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CROSS SECTIONS AGAINST INCIDENT ELECTRON ENERGY 

Models and bases employed are as described in the text. Units are 
as in Table 5.1. 
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CROSS SECTIONS AGAINST INCIDENT ELECTRON ENERGY 

Models and bases employed are as described in the text. Units are 
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may be written as -K.,~~lll 

lR G'+) 2_ 
g 

) J•K r (I'- J (,) F (K,d ph imv- s""£r' .;'\ - ; Etil >o .;'\ e. • ') Tt1. 
0 2 CE-fxo.J-r/ Itt 

k"'- ~"' 
& 

~ .2_ ~. N~ R,.cr.JR 111(r.'J)J.r,.sl...tu'..t~r'Sm(E,t);f.•o 
"" 0 

(S.!". 3b) 

P represents a princip~~ value ingegral. We have assumed 

F(K,r) does not vary greatly over the range 

:. 

( 5.~.4) 

The integral over q is then performed numerically using 

a single Gaussian quadrature transformation of the form 

(5.2.17). ~m is found as follows. In our pseudostate 

"target" expansion, we have replaced the continuous spectrum 

(5.5.5a) with the sum (5.5.5b) 
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0 

Thus we may require in the present method: 
K"'+b<~ 

~ r Ix 1 { F (K) > ( f="~<) I 
"' j rc 

K.CI- ~<=I 
& 

R,..• ~ ... 

~ ~ N~ lrz .. ><rz.,!Sot~ 

J Er~~>O 

i.e. 
(S. S. Ca.) 

'/~ 
11\ 

= 2 N~ -T( 

(.r.s:C~) 

We found Nr~~ numerically using the Coulomb function 

generator routine mentioned in section 5.3 and requiring: 

0 

(5. f. 7~Lo) 

Similar numerical equalities, for example (5.5.7b), gave 

consistent results. 

coo ' 

N .. } J.r R,Jr) F { l<m,r) 
r 

0 0 

(s. r. H) 

The positive imaginary part of the Green's function is 
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: 

F C !{, ~) f= lr<,t') .s·~'I_J<ij r, .s~Jlb.t_J<.'l r;' 
J/k.'-K ... ) 

(S.S. 8) 

( S'. $'. "i) 

The bar over ~~ is there because in the uppermost 

imaginary pseudochannel ( '"R\+ 6(11/2) is replaced by k if 

0<1:\ +I\,/ 2) > k. The final result is to replace (k Iii' 
) -, with 

~~Q (E) in the positive channels in the expression for Im 

G~> The negative energy Green's channels remain the same 

as in G
1

~ for both real and imaginary parts. 

Results for the method were disappointing. Sample 

matrix elements were still found to have discontinuous 

derivatives with respect to incident electron energy at the 

pseudostate thresholds, and pseudoresonances still appeared 

in the cross sections despite being "hidden" in the 

formalism. With exchange, false resonances appeared in all 
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cases and distorted the curves further. Shown in figure 

5.12 are cross sections without exchange using a basis B 

trial and Green's function. Also shown are cross sections 

found using an eleven pseudostate Green's function basis G 

(see table 5.2) and a 1s-2s-3s trial function, where 

pseudoresonances are much smaller and narrower. This agrees 

with the findings of Oza (1984) and our own work in section 

5.3 that pseudoresonances become less apparent as the number 

of pseudostates in the Green's function increases. 

5.6 Method of Luchesse and McKoy 

The major drawbacks in applying the Schwinger principle 

to the Poet problem are that firstly, the continuum states 

of the hydrogen atom need to be represented in the Green's 

function, and secondly, false resonances obscure the results 

if the Green's function contains more information than the 

trial function. Luchesse and McKoy (1979) and Takatsuka and 

McKoy (1984) in their work on low energy electron atom 

scattering and electron molecule scattering, proposed a new 

principle which avoided this problem at low energies. This 

principle can be adapted into our formalism to be tested at 

intermediate energies, both in the general case and in the 

pseudostate coupled channel problem where it can be applied 

exactly. 

A projection operator (different in form to the 

Feshbach projection operators mentioned in chapter three) is 
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FIGCRE 5.12A 

CROSS SECTIONS AGAINST I!'ICIDENT ELECTRON ENERGY: NO EXCHA.NGE 
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FIGURE 5.128 

CROSS SECTIONS AGAINST INCIDENT ELECTRON ENERGY: NO EXC~~GE 

Models and symbols as described in the text. Units as in Table 5.1 

ls-2s-3s trial basis, basis G Green's function (positive 
pseudothresholds in the range are marked). 

0.50 II 

II 

0.4~ 
II 

II 
II 

0. 40 II 

0.3~ 

0. 30 

0. 2'5 

0.20 

0. 1~ 

0.10 

( i) IS - IS Cross Sections 

II 

II 

II 

II 
II 

all 
II 

II 
II 

II 

• 
II 

II 
II 

• • • II 

, " ·1 I I I 
0.00 U-~~----~--L---~----~~----~----~L-----~_j 

0.6 0.8 1.0 1.:1 1.~ 1.6 1.8 

ii) IS- 2S Cross sections 

0. 03~ II 

0.030 

II 

O.O.?S II 

II 

0.020 

11 

0.010 

o.oos II II 
II 

II II II 
II • 

I I I I. 
0.000 UL~~----~--J----L------~------J-----~L-----~~ 

1.] 1.8 
0.6 0.8 1.0 1.6 



defined as 

J PN: p 
"'"'' 

P projects onto the target coordinate (r&) and contains the 

incident channel. 

We operate with P on the Lippmann Schwinger equation 

(5.6.2) 

+ &:~' c v -t-1 r H A ) l {lJ;~JJ / 
(f.'. t) 

(X.) 
' 

G :·l p ( v -01 r A A ) J {lf;+' s / 

n-.,_3) 

G(tJ r 
" = 

1"\:1 ( 5". r.. 4) 

(5.6.3) implies the T matrix elements may be rewritten: 

I T .s 
- 2 ..fi = 

(L6..S") 

As it stands, this term canhot replace (5.1.9b) in the 

Schwinger principle as the first term is not hermitian, and 

variation 
nt'+lJ 

of JU< does not recover the projected 

Lippmann-Schwinger equation. To recover the unprojected 

part of d<;>l 
0 ' 

the following Schrodinger equations are 

considered. 
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({. " 7) 

(5.6.7) may be rewritten: 

--
a. r v -t-1 )s A A) P l Ptl.f / -- a. H o P I ¢'t' > 

= (). ( v - (-I) s H A ) p I ~tJ / - a. p ( v -(- I) s H A) I #'.~' j / 

(S.,.g) 
A 1\ 

The identity PHo = H
0

P has been used. 

( s-. 6. , ) 

Using (5.6.8), the T matrix element may be written: 

- ± T :~ = < g) ;-)J I i 1 (V - t I) J H A) p + p { v -~I) sA A) } 

-i i P( H +~l)sHt) +(H ~r-IYHA)Pj 

+ J_ (H d-I).SH.A) -(V -fi)SM{) &~'P(V-ti)1 H~) I !Ji':flJ~ 
"1. Ill. .!V' / 

Cs. ,.to ) 

Choosing the parameter a = V~ recovers the original 

functional when P = 1, and (5.6.10) may be used as the 

denominator in a Schwinger type variational principle. 
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This method was tested using the Schwinger principle 

for the coupled channel problem, with (5.6.1) replaced by 

No 

P = L /Rrn'>(/Z~J 
(S".,.II) 

replaced by and trial functions of the form 

(5.2.12) are used. Equation (5.6.9) is replaced by 

(5.6.12): 

It should be noted that in manipulating the equivalent of 

equations (5.6.6-8) multiplication on the left by a function 

< Rnl is implicit. It was found that as long as P contained 

all the open channels for the problem, the new principle 

gave correct converged results. That is to say, for a 

particular N
0

, the Luchesse-McKoy principle gave correct 

results, including "below threshold threshold structure", 

,for incident energies up to the threshold for the (No + 1) 

channel. Above this energy (i.e. not all open channels are 

included in P) the results did not converge and were 

inaccurate. Sample results for basis B are shown in figure 

5.13 and table 5.7. The first three states are included in 

P. Both T matrix and K matrix (using a matrix of channels 

common to the trial function and G~)P ) methods give the same 

results. Table 5.7 shows that convergence below the 

threshold is slightly faster in the full Schwinger method, 

and that above threshold the new method does not converge. 
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NTR 

7 

8 

9 

1 0 

1 1 

1 2 

NTR 

7 

8 

9 

10 

1 1 

1 2 

1 3 

14 

TABLE 5.7 

COi'IVERG ENCE COMP AR I SON : STANDARD METHOD 5 . 2 ( S ) 
A:'iD METHOD 5.6 (M) FOR BASIS B CLOSE COUPLING 

ENERGY 0.7 

CROSS SECTIONS 

1S-1S 1S-2S 

s M s M 
(*10E-1) 

0.207 0.224 0.259 0. 130 

0.206 0.204 0.271 0.281 

0.206 0. 207 0.272 0.264 

0.206 0.206 0.271 0.271 

0.206 0.206 0.272 0.271 

0.206 0. 206 0.272 0.271 

ENERGY 1.3 

CROSS SECTIONS 

1S-1S 1S-2S 

s M s M 
(*JOE-l) (*JOE-l) 

0.972 0.695 0. 103 0.279 

0.959 1 . 1 8 0. 11 7 0.098 

0.961 0.879 0. 11 5 0. 150 

0.960 0.888 0.116 0. 145 

0.968 0.819 0. 11 4 0. 160 

0.964 0.786 0. 1 15 0. 169 

0.964 0.809 0.115 0. 163 

0.965 0.694 0.115 0. 193 

(Cnits and symbols are as described in table 5.1 and 
in the text. Where indicated, cross sections should 
be multiplied by the appropriate factor of 10.) 



This is perhaps to be expected, as if not all the open 

-~P 
channels are contained in Go , a complex term is being 

replaced by a real term and information is lost. As a check 

on this, we tried including the full imaginary part of G~1 

above the fourth threshold. This also gave unstable 

results, equivalent to the K matrix method when a matrix of 

the four open channels was formed. This matrix is 

inherently wrong, as the modified Lippmann Schwinger 

equation from which the elements are formed does not include 

the fourth channel. However, for energies below the (Np+l) 

threshold, the method is a good one, and also time saving, 

as fewer matrix elements (5.2.13d) need to be calculated 

and, as shown in figure 5.14, several of the matrix elements 

equivalent to (5.2.13c) vanish. This is obviously useful if 

the basis has some high energy pseudostates, like for 

example, the fifth state of basis B, which is above the 

energy range of interest. 

We also performed tests on this method for the full 

Poet problem, using a projected Green's function of up to 

seven exact s states. The above results suggested the 

method was likely to be unstable in the intermediate energy 

range where some continuum channels are open, and this 

proved to be the case for the inelastic cross section and 

the K-matrix method generally. Judicious choice of the 

combination of trial function and Np did give reasonable 

results for the elastic cross section at lower energies 

using the T matrix method. Figure 5.15 shows the elastic 
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FIGURE 5.14 

Matrix Elements for The Method of Section 5.6 

Notation is as in the text. 

We consider matrix elements: 

(I f\ ,... < Rfl\(rl.) ejll/fi) I H" - f( PHo +H.P) - v + ( PV +VP) 

(a) If m, m ""'N 

recovered. 

(b) lf m_. N 
0 

0 

The e l erne n t i s : 

(c) If m, m > N 
0 

We have: 

t-(~l)s ( HA -FHA - HAp) I Rl\\'(1;) ed'lt/0 > 
P = 1 and the original matrix element is 

m > N , then 
0 

f\ 

< tz"'r~) e .jno.(rt) 1 i H91 rzCl1t1 e J'lll'lr;) > 

= 0 since m I m'. 

then P = 0 



cross section found using a basis B trial function and N 0 = 

4. The convergence at lower energies, though not as good as 

in the coupled channel case, is to two figures. However, 

given a particular trial function, the number N0 must be 

large enough to give reasonable results above the ionisation 

threshold but not so large that the "projected" Green's 

function contains much more information than the trial 

function; for example, with a basis B trial function, N0 = 3 

and No = 7 gave unphysical, unconverged results throughout. 

Basis D with N~ = 6 and 7 gave reasonable elastic cross 

sections up to an incident electron energy of 0.75 a.u. 

We conclude that the method would be a useful one at low 

energies when only a few channels are open, as found by 

Luchesse, Takatsuka and McKoy, but has limited applicability 

in the intermediate energy range as too much information is 

lost from the Green's function and not replaced. 
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FIGURE 5. 15 

CROSS SECTIONS AGAINST INCIDENT ELECTRON ENERGY 

Models and symbols as in the text, units as in Table 5.1. 

Elastic Cross Sections: the points 
operator method, the lines 
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FIGURE 5.15 

CROSS SECTIONS AGAINST INCIDENT ELECTRON ENERGY 

Models and symbols as in the text, units as in Table 5.1. 

Elastic Cross Sections: the points 
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CHAPTER SIX 

FUTURE WORK 

Notation in sections 6.1 and 6.2 is as in chapters 

three and five respectively. 

6.1 The L-Squared Optical Potential 

The perturbation approach used in section 3.3 in the 

three channel problem gives stable results for the elastic 

channel, for which the optical potential only contributes to 

a small proportion of the cross section. 

inelastic scattering the equivalent 

numerically unstable, with respect to 

However, 

quadrature 

varying 

for 

is 

input 

parameters, as a representation of open Q space channels, 

although a fortuitious choice can give reasonable results, 

as exemplified in table 3.7. Some extra points to note 

about the wide range of tests of the method carried out are 

that results tended to be more stable at higher incident 

energies (k~ ~ 3.2), and that, as exemplified in table 3.8, 

if parameters were chosen so that a reasonable number of 

eigenvectors lay in the range ~. > k~ < ~L (where there is 

no "splitting" of equivalent quadrature) stable inelastic 

results were given reasonably accurately up to the threshold 

where both Q space channels became open. 
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I mention these points at this later stage as they 

corroborate work by Stelbovics and Slim (1987), who, after 

reading the present work (Bransden and Plummer 1986), 

extended their (1986) separable potential model problem to 

two channels and compared an approximate finite basis 

L-squared solution with the exact infinite basis solution. 

They found that if the channels were coupled the equivalent 

quadrature gave accurate converged results for energies up 

to the threshold where both channels became open: above this 

energy, rather than the finite basis eigenvectors splitting 

into two sets, each eigenvector represented a weighted 

average of the two solutions ¢n, n = 1,2 at that energy, and 

not knowing these weights, they failed to get converged 

results. Thus, in this energy range the finite basis 

requires two weights at each eigenvalue to relate it to the 

exact solution, rather than one as we had assumed, the extra 

degree of freedom hopefully explaining the numerical 

instability. Stelbovics and Slim also found that at higher 

energies the coupling became less important and their finite 

basis results showed better convergence. Possible future 

work on our three channel model problem would be to verify 

these points more exactly and, although testing with several 

different routines and forms of interpolation has already 

been carried out, use a more sophisticated numerical 

differentiation and interpolation routine, such as that of 

De Blase et al. (1985) to try and separate numerical 

instability from the theoretical instability predicted by 
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Stelbovics and Slim. If the equivalent quadrature optical 

potential model is to be extended to cover several channels, 

more investigation of the "double equivalent quadrature" 

found by Stelbovics and Slim, and presumably higher order 

such quadratures is needed to give accurate open Q space 

results. However, as noted in section 3.3, the usefulness 

of the optical 

simplicity which is 

needed to extract 

method of moments 

potential procedure is its relative 

lost if complicated procedures are 

the equivalent weights (for example the 

is inappropriate for the present 

calculation as, for each energy, separate moment 

calculations would have to be performed for each discretised 

momentum space potential matrix element, these elements 

also not necessarily being 'positive definite). The method 

as it stands is, though, good enough to represent the effect 

of the Q space channels on P-space channels, in the present 

model giving reliable elastic cross sections over all the 

energy range. 

6.2 The Schwinger Method 

We have shown the Schwinger variational method to be a 

useful one for calculating coupled channel cross sections at 

incident energies up to ...,.. 54 eV or more. The programmes as 

we used them take about 200 - 300 seconds of c.p.u. time for 

a. 5 channel (e.g. basis B) calculation and up to 1000 

1400 seconds for a 7 - 9 channel calculation on the Durham 
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University Amdahl 470/V8 computer, the main time consuming 

part being calculation of the Green's matrix elements of the 

type (5.2.13d) 0 The programmes have not been fully 

optimised, and repeat certain operations as they assume the 

Green's and trial function bases to be different: with 

suitable modifications together with the use of the method 

of section 5.6 the c.p.u. time required can be reduced. For 

calculations with, say, nine or more channels investigation 

of an alternative, more stable matrix inversion routine 

would prove useful. Our further investigations have shown 

up the limitations of the extended Schwinger method: further 

investigation of the links between the Kohn principle and 

the Schwinger principle with trial functions as used here in 

multichannel formulations is required if "false" resonances 

are to be made predictable in terms of Kohn principle false 

resonances. The work of section 5.3 shows that smoothing 

unphysical structure from a pseudostate Green's function can 

lead to a smooth T matrix element, and although the 

Schwinger method is not at present a practical one to 

investigate this further, Hewitt, McCarthy and Bransden are, 

at the time of writing, adapting the momentum space 

formulation of the coupled channel Lippmann Schwinger 

equations for the T matrix to extend this work without 

bringing in false resonances, as mentioned earlier. In 

general, theTmatrix averaging process remains at present the 

most straightforward way of removing pseudoresonant 

structure. This process assumes pseudostructure to be 
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localised and distinct so that fitting may be done away from 

regions where it occurs, and accuracy is basis dependent. 

Callaway (1985) has presented excitation cross sections for 

the full electron hydrogen atom scattering problem using an 

eleven state basis with seven pseudostates and T matrix 

averaging over pseudoresonances, which need experimental 

verification to test the procedure. T matrix averaging does 

not indicate how the pseudostate model gives rise to false 

structure. Investigations of the kind described here are 

important in leading to a greater understanding of the 

problem, and desirable because removing unphysical structure 

"at source" should, once perfected, give a better 

description of the processes occurring and also be more 

reliable. 
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APPENDIX ONE 

Brief Summary of Gauss Quadrature, and Orthogonal 

Polynomials 

The properties of orthogonal polynomials are described 

in detail and proved by Szego (1967). A system of 

polynomials p~ (x) of degree n in xis orthogonal on the 

interval (a,b) with respect to a positive weight function 

~(x) > 0 if 

fl> J' c I! 

) J~ ~ex:) pftoc> f> 01 Cx.1 = ~ J.(ct(JG)) Pnf>;.) Pm(x) = 0 J 
Vllofl\. 

1)1. 

JC:ca. 

ecx) ~ ~o{(JG) 
J-.Jt. 

The moments ~j must exist: 

(A 1,1) 

b • 

~j = SJ...x. ~(JC) .)(.
4 

, jc o.~r,1., ... 
(Al.l) 

CL 

The weight function e (x) determines the p "- (x) up to a 

constant factor in each polynomial. For suitably 

standa~dised polynomials as detailed by Abramowitz and 

Stegun (1972) 

b 

~ J._.~ € (JC) pn ~(JC) = h 11 

·h &.~o 
1 1\1 ft (,0.\.3) 

For the purposes of chapter two, the normalisation is as 

considered by Szego (1967) and h~ is set to 1 for each 

polynomial (requiring Po (x) = 1 then defines the 

normalisation of the weight function). The polynomials have 
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the "Sturm sequence property" and obey a three term 

recurrence relation. 

The n zeros of p,.(x) are in 

are denoted b ''" y X~ I i = 

I then 

b n 

) J..x. e(JC) fcS-) ::: L 
'"' 4. 

the interval 

1' ... n and (1\1 

x, 

w~n) f ( .i~)) .. 

, p_,OG1 :: 0 

(a,b). 

< '"' XL 

~'!_ hil-l (A1.4) 

If these 

lp) 

< • • • < X" 

(Al.S') 

In (A1.5), f(x) is a polynomial of degree less than or equal 

to 2n-1. The Christoffel weights w~' are positive, and 

" 
= 2 p ~ (xtr') 

""~ (AI.&) 

The quadrature may be used to approximate integrals when 

f(x) is not a polynomial. 

The p,.(x) may be found from the weight function e(x) to 

within a constant by orthogonalising the non negative powers 

of x with respect to it. The weights and abscissae (zeros 

of p~(x)) for ann point quadrature may also be found from 

the first 2n moments ~ j • 

.. 
s rLJc. ~(Jc) JC j 

a. 

:: 

f\ 

~ 'IJ ~A) { Jef~l) J 
L , ~ ; j=O,~l, ... } lo-1 

(At. 7) 

The analysis in section 2.2 requires finding suitable weight 

functions e(x) from the Sturm sequence recursion relations. 

161 



APPENDIX TWO 

Laguerre/Slater L-Squared Treatment 

Of The S Wave Kinetic Hamiltonian 

(E -H)~ (E,r) ~ 0 ~(E,r) _..., 
0 r...., o 

H = - ,)_v.. 
2J..r"' (At.l) 

We use the basis 

(/Jr.(r) >..r -~ Ll•> (~r) :: e 1 ; n.:o,l,2, .... 
(1'\+1) n 

(A l.l) 

L (I) 
V\ 

(x) are standard generalised Laguerre polynomials, as 

described by Abramowitz and Stegun (1972). 

.. C AZ.3!.) 

lfo~\ II + 
X. "' (.x;) 

r~~~ L'd' 
( C1( + I - .>C ') L 1\ rx) + n f\ (JC) = o 

The ¢nhave tridiagonal overlap, following from properties 

(A2. 3bc) . 

(A2.4-) 
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We write the Schrodinger equation in the form: 
01> 00 

~ oLr ¢n (r) ( E -H) L Cf;, (£) (2} ~"~ (r) :: 0 
J n.:O),Z, .... 

0 llll•o 
(A l.S') 

Using (A2.3db), we have 

<.¢ 1(2}M)(~1 ~t:)-A1X
1

( 
~ "' ll z::- OR It\ 

CAZA) 

p 

2 r' { (E ~ r) ( 2 ~~~"'- ~A,Itl·l- atl,PI+I) - ~t ~~"} 'f,.,_{f) : 0 ; II a 0
1
1
1

2, ..• 

; fl::(),l,l. .. 

(A'L.7/,) 

.)( = 
(E. - r; . E .: X ( 1 ~ l') 

) 

(£-rf) 8 ( \ - x) 

-1~ X. (. .... 

Writing 'f._ (E) as Cf' (x) we have 
"' ~ 

2 :J:. 'f (JC) 
1\ c;:. H (y_ ) - ~-' tr.) :: 0 J " ::. 0 J I) l I • • • • 

(" l.~ ... ) 

0\2.'\b) 

This is the recurrence relationship for the Gegenbauer 

polynomials C r..r~ (x) with Df = 1 in this case. C 
111 

(x) 
1'\ = ul\ 

(x), a Chebyschev polynomial of the second kind. The 

relationship (A2.9a) is also obeyed by Cheby.schev 
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CD 

polynomials of the first kind but (A2.9b) is not: these are 

used as direct representatives of the solutions q"' (x) 

described in section 2.2. Details of these polynomials are 

in Abramowitz and Stegun (1972). The standard polynomials U~ 

(x) are: 

J 

S oL JC. ( I - .X. .. ) v~ U n (X:. ) U 1\, (X) = ~ ~ C\ n • 

_, 

The weight function e(x) may thus be written 

e ex) : l ( "')''' - 1-.x. 
Tt 

The solution ~(E,r) may be shown to be 

.., 
= L ~ (~) U,Jx) ~"[r"'J 

From (A2.10c), we have 

The orthogonality relations are 

< ~ (E'' J I ~(E) > = s (£- f I) 

I 
at1 

(Al.IOb) 

lAl./Oc.) 

tit'= E 
(.A 2. .lie) 

(A l.l(b) 

(A1.12) 

(Al.lh.) 

SJ.E f{(JEJr) ~(E.Jr') • L ¢. (r) <1 .. (r') [Joo ei:J;' ('i,.)"' u.r ~ l u ,,.1x1 = &tr- r') 
1"\JI\:o ... , 

(A1.13b) 

(A2.13a) follows from the completeness relation for the 
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orthogonal polynomials U~(x): 
01> 

L '<.':(.>C.) ~"&(X:) U ,J:x.) U" (x' J = ~ ( :~..- x') 
1\~o cAl.l4-) 

(A2.13b) may be seen to be true by multiplying by 

(22 ( r) «l.(r 1 ) and integrating over r and r 1 
0 ( ¢,J r) 

1'1\ I:\ ~· 
= (m+1) 

<Z>rn ( r ) I r ) o 

We now consider the finite basis approximate solution 

N-1 

= 2 ~w( x;>ll) ¢~(r) 
1'\:ro 

; ~(U( ~~b') : r;:~;:¥.rl) u,~;') 
(A2. .IS) 

We require U (x~) = 0. Thus: 
N ' 

< A2.1b~~..) 

e'~' = (I i ) 
I. n: -fS+il 

For a normalised solution 

--
fol·l ill •I 

:-. 2 L < (t)f\ I 0"' f U n(.x.~" 1 ) U J:i.'tJ c;:lrl) Q UJ(W) 
c:~:-~ .. ,l r ("~'> 

0 ' (I <./'" J 

IV -I z 
(AZ.I7) 

Reference to the Christoffel Darbaux relation appropriate to 

the Gegenbauer/Chebyschev polynomials (Szego 1967) shows: 

w-r 

L u (.:c'~l) u (x.'ll'} 
f\ ~ " ~ 

:: (wtr' ~ 6j 
n:o (Al-18) 

The ween 
!. 

are weights for an N point quadrature over (-1,1) 
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~I with weight function e(x) and abscissae x, 

we may write 

(~l 11 
~ (.)G't) I = 

From (A2.18) 

Multiplication by {Z)~(r) ~.(r') and integration over r and 

r' shows that (A2.20) is the unit operator in the finite 

L-squared subspace: 
N 

N-1 N-1 ·~I 
:: 2_ L (/;" (r) ~"(r'J L w~'"(~) U,.t:c7'>~.lx~~ 

I JJG '•l 1\oo f\1:0 J=l Jc:•.)C. 
J 

(Al..JO) 

Comparing exact and approximate solutions: 

~ 

+ L. 
(Al.ll) 

For matrix elements with functions <fl contained within the 

finite basis, the exact solution is proportional to the 

approximate solution. 

[pftll fiJ)) 

10 (:>-j 
l. 

:: 

'flo c J:.'r' ) 

:: 

w'~' 
J 

vv~1{et:E) 
On.n) 

We also note the following expression for the Green's 

function: -G ) r cLE' Cf." (E') Cf..,{t.'J C f\J"~ E = J ~ .. (fl-i.(-€.') 

I 

= ScL>=' e f.:xnfE' ft U,JlC') Un,(X:'J 

- I J..Jt ( E 1-((. - E' ) 
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= _, 

I 

1. (I- J() r ~' efJC') Unt.¥J Un,~'J 
). _

1 
( X t-i.t - JC') 

The unsubtracted finite basis Green's function is 

G"' ( E J ,..J r}) ~ i"' t·• ~n{r-) 0,.Jr'l G N ( fl, fi'J ~:) 

PJ 

= 
L w ~, u,. r.X.~lJ ul\.ti~' J 
J=r (X - .X~ 1 ) (Al.l4-) 

Heller's principle (see section 2.3A) may be proved for the 

case of the s-wave radial kinetic Hamiltonian. 

We also have 

-= rt . e!)l) 
-- ..St.b\ • 
( p,J+·f) >I 

(A 2. 7.5) 

fill) 

.X: • = 
J 

cl., X. c 1f0l) I 
J. I Oil t"'.. j = 

CA2..1.6) 

We note 

r
l.n . 
~ J 

On.'l..7) 
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The general Coulomb case including angular momentum is dealt 

with as referenced on table 2.1. Board (1983) treats the 

Coulomb Green's function. 

Kinetic Hamiltonian Using Basis of Chapter Three 

I '" ') L (:X:) 
I· I 

L
( \)-1) 

(x') 
m-1 

'I-1 

l
(V) I '<; 

(:Y:) ~ - L 
I-1 

I'll~ I 

L
Cv1 

(X.) 
m-1 

Using the basis (3.2.24a),(3.3.26) the kinetic Hamiltonian 

matrix elements 

; j ~ j' 

= 
. ' I 

I J ~J 

( A2 .2'l) 
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APPENDIX THREE 

The Generalised "t" Method 

Notation is as used in section 5.4.B. This method was 

stated by Takatsuka and McKoy (1981) in terms of their "C" 

functional formulation. The method is stated here in terms 

of the Schwinger principle, but the analysis applies to the "C" 

functional methods. 

A basis I :ic~>, I ,~,r••s> l.' S ~ formed by unitary transformation 
~ 

of the physical channels J ~i. >, I CJ~s >. The basis 

diagonalises the operator (V-vG';'v) : · 

< p;-;-IJ / v - v G:·) v I .¢:·Is ) = aD<&< ¢:lj I v-v c::' i] I JZ5:IJ;> 
(A.J.J) 

The Schrodinger equation for ~;
1

then implies 

(Jl.).'t) 

The generalised t operator X is formed 

t X 
{A3.3) 

For the exact functions, 

= V /:f.tJ<) I ---------------------
(1- t ('$:~I v l ~HI>) 
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X ~ = ( I - c ( X 4>4 I v I If ;tl s > } - I 
CAL4t.) 

(A3.4b) is rewritten 

-
= VJJC"''/ 

CAl.S") 

In forming (A3.5) property (A3.2) was used. 

A diagonal functional is then formed which is 

stationary about 

G :~ :: L < ~ cl I v I f/( / ( ~ ~ r ',j < ~ I v I X a > 
£J 

(A l. 7) 

G~ is found by diagonalisation of the physical channel 

functional gt .... 

9:b = Z <:x~/Vt(j{>(/Jt)~~<~lv{Xb> 
ij 

CAl.&) 

The unitary matrix transforming IX,>, I~'> into l~d), 

1¢;'•) is the matrix of eigenvectors of g:b , and the G!J 

are the eigenvalues, as described by Takatsuka and McKoy 

(1981). We then have as our approximation to < -X4 IV I f!];• > 
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The T matrix elements are found using the unitary 

transformation. We now show that this method is also 

independent of t. 

(A).IO) 

:: 

:: _ e- bt r~6r' 2 ~~ ~~t r~ tr' B; 
"( 

= 

:: since G~ is diagonal. 
::::s 

Thus z~d is independent of t. 

(A"!I.\2.) 

We assume the unitary transformation is independent of t, as 

the condition for the unitary transformation (A3.1) does not 

involve t. 

Numerically, 

diagonalising g~ . 
<>b 

the unitary matrix is calculated by 

t Although the eigenvalues G~J will depend 

on t, the matrix of eigenvectors should be t independent; 

any t dependance is a measure of numerical inaccuracy. 

171 



!.)(Q( > ::. L c.-(4 { :!\ £) J C.cq, #- function of t. 

(A~.I~) 
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