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ABS'l'RAC'r 

This thesis is concerned with calculations of the Auger 
recombination rate in direct gap semiconductors. It is 
composed of two parts: in the first and major part, the 
calculation of the CHCC Auger recombination process in a 
model of a quantum well heterostructure is considered~ and 
in the second part, the overlap integrals between the cell 
periodic parts of the conduction band and heavy hole band 
Bloch functions are calculated using a 15-band full zone 
empirical K.p method. These overlap integrals are 
important factors in determining the Auger rate involving 
the recombination of electrons with heavy holes. 

The calculation of the quantum well CHCC Auger 
recombination rate differs from the bulk CHCC Auger 
calculations because carriers trapped in quantum wells 
reside within sub-bands associated with different bound 
states of the wells. The quantum well CHCC Auger 
recombination rate is thus calculated by considering all 
the possible intra and inter-sub-band carrier transitions 
(Hereafter referred to as bound-bound transitions ) • 
Processes in which the excited electron starts in a bound 
state of the well but makes a transition to an unbound 
state are also considered, and it is shown that although 
these 'bound-unbound' transitions have customarily been 
ignored, they can make a significant contribution to the 
Auger rate. Simple physical descriptions are then used to 
explain the relative importance of the processes, and 
numerical results are presented for the Auger rate in 
1.3 ~m and 1.55 ~m InGaAsP/InP quantum well systems. In 
these alloys it is found that the quantum well and bulk 
Auger rates are very similar for the same carrier 
concentrations, and similar approximations. 

In the second part of this thesis conventional 
approximations for estimating conduction band - heavy hole 

with the wavevectors in the (001) direction, where the 
discrepancy is much larger, showing that the usual 
assumptions as to the dominant terms that appear in 
effective mass rules, are incorrect. Also shown is the 
underes.timat-ion of the oy~lf,~:~E> integrals b.¥ the 4 ll$a•J\EI·- ,, •. p 
~~-eli·p~~f _-: .. ~H:'haily tlt~ $·.~~~;~i·~~fca-nce o.f t:ffe r.~sul~$: -ts 
a~:sc-ii~rae.a'. -
· ·-:~ ~- - · :. ·•· ·.:t.t: >•·r~: .::~-:~ 
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FORWORD 

Chapter one tries to put the calculation of quantum well 

Auger recombination into perspective. It introduces Auger 

recombination and then briefly reports the low threshold 

current and temperature sensitivity of quantum well lasers. 

Chapter two examines the various types of Auger 

recombination which may take place in a quantum well 

heterostructure and the model which is used to describe 

Auger recombination in this thesis. It also sets up the 

basic elements of the formalism. 

Chapters three and four give a detailed development of the 

theory describing the quantum well model. 

Chapter five presents the full numerical results for both 

the bound-bound and bound-unbound processes and discusses 

their interpretation in terms of simple physical models. 

The results are then compared with the calculations of 

other workers for both the bulk and quantum well systems. 

Chapter six is independent of the main body of work, the 

calculations reported there being largely completed during 

a twelve week spell at the British Telecom Research 

Laboratories, 

computational 

Martlesham Heath. It is mainly 

in nature, and deals with the overlap 

integrals between the cell periodic parts of the Bloch 

wavefunctions, these integrals being of interest in both 

the bulk and the quantum well calculation of Auger rates. 
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CHAPTER 1 - AN IBTRODUCTION TO AUGER RECOMBIRATIOR AND 

SEMICONDUCTOR LASERS 

This chapter introduces Auger recombination in a quantum 

well (QW) heterostructure. First Auger recombination in a 

bulk semiconductor is discussed qualitatively, and its 

dependence on carrier concentration, temperature, and band 

gap is indicated. Lasing in a double heterostructure (DH) 

laser is then briefly reviewed, and the functional 

dependences of Auger recombination referred to above are 

used to explain why this form of recombination has been 

proposed as a possible reason for the high temperature, 

temperature sensitivity of the threshold current in long 

wavelength DH lasers. The various Auger processes 

suggested to account for the high temperature threshold 

current behaviour are then listed. Finally the QW laser 

concepts introduced during the 

laser, and the reasons for 

is examined 

discussion 

using 

of the 

the 

DH 

investigating Auger recombination in QW heterostructure 

are made apparent. 



lol AUGER RECOMBINATION IN BULK SEMICONDUCTORS 

Auger recombination is one of a number of non-radiative 

processes by which a conduction band electron and valence 

band hole can recombine. In Auger recombination the 

energy produced during the recombination is given to a 

third carrier, and the process may be accompanied by the 

creation or annihilation of a phonon. Auger recombination 

may proceed directly with an interband transition or 

indirectly via an intermediate state such as a trap or 

exciton. 

In this thesis we shall be concerned mainly with the 

direct process, 

conduction band 

not involving a phonon, in 

electrons collide, with 

which two 

one being 

promoted, and the other recombining with a heavy hole (the 

so called CHCC process (ref 1.1)). This process is 

illustrated in figure 1.1 along with other direct 

processes such as the so called CHSH process. 

The dependences of 

concentration and 

discussed next. 

these direct processes on a) carrier 

b) temperature and band gap are 

For definiteness the direct CHCC process, not involving a 

phonon, is initially considered. After applying momentum 

and energy conservation to the collision and assuming non

degenerate carrier concentrations thermalised within 

bands, the rate of the illustrated 'forward' process 

2 



E 

FIGURE 1.1 

This figure shows schematically a selection of the direct band to band Auger processes not involving phonons. 
It also introduces the state notation 1, 1', 2 and 2' which will be used later. 

CHCC 

Cora.JCTION BAND 

HEAVY t-O..E BAND 

LIGHT t-O . .E BAND 

SPIN SPLIT- a=F BAND 

CHSH 

C()t-.l)LCTION BAND 

HEAVY Hl..E BAND HEAVY tUE BAND 

LIGHT tUE BAND IGHT I-O_E BAND 

CHHL 



(Auger recombination) is found to depend upon the square 

of the conduction band electron concentration n multiplied 

by the heavy hole concentration p. This is physically 

reasonable since two electrons collide and a hole must be 

present for recombination to occur. From the rate for the 

forward process must be subtracted the rate of the reverse 

process (impact ionization) to give the net rate at which 

electrons are removed from the conduction band. But since 

under high excitation conditions, such as those found in a 

laser, the forward process greatly dominates the reverse 
') 

process, the net rate of recombina~ion will depend on n~p 

provided it is assumed that non-degenerate statistics are 

still valid, and any screening effects of the extra 

electrons are neglected. Similarly for alternative Auger 

processes, such as the CHSH process (see figure 1.1), 

where the energy of the recombination is given to a 

valence band electron, the rate at which electrons are 

removed from the conduction band depends on np 2 • 

Comparing these carrier concentration dependences with 

that of radiative recombination under non-degenerate 

conditions (ie np) it is seen that the relative importance 

of Auger recombination increases with carrier 

concentrations. The Auger recombination rate itself 

increasing as the cube of the carrier concentration in 

excited, undoped materials wfth equal concentrations of 

electrons and holes. 

3 



The major part of the band gap and temperature dependences 

of the CHCC Auger recombination rate R may be understood 

by considering the probability of the dominant forward 

process occurring. This is proportional to the probability 

of the initial states containing electrons, multiplied by 

the probability of the final states being unoccupied by 

electrons. Assuming again non-degenerate statistics and 

carrier thermalisation 

-(E- f)/x T 
2 c B 

e 1.1 

where the energy subscripts correspond to the state 

notation introduced in figure 1.1, the zero of energy is 

taken as the bottom of the conduction band, ~is the 

carrier temperature, xB is Boltzmann constant, f andf 
c v 

are the conduction and valence quasi-fermi levels 

respectively, and the probability of the promoted or Auger 

state being empty is taken as one since it is usually a 

considerable energy from the band edge. Now maximising the 

above subject to energy and momentum conservation, and 

assuming parabolic bands gives 

1.2 

where E is the band gap and ~ is the ratio of the 
g 

conduction band effective mass to the valence band 

effective mass. It follows 

2 R a n p exp (- ~ 
1 + ;.J 1.3 



More generally, other processes such as the CHSH processes 

give 

R a exp (- a 1.4 

where ~E is the separation between the band extremities of 

the bands in which the initial states for the forward 

process reside, minus the separation between the band 

extremities of the bands in which the final states of the 

forward process reside, and a is a function of the 

effective masses of the carriers involved. For a more 

detailed treatment of these matters the reader is referred 

to, for example, reference 1.2. 

5 



FIGURE 1. 2 

a) A simplified stylised diagram of the DH laser ~n the form of a Fabry-Perot 
Cavity 

b) 
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lo2 THE SEMICONDUCTOR DOUBLE HETEROSTRUCTURE LASER 

le2el LASING IR A DB LASER 

In this section lasing in a DH laser is briefly reviewed, 

the opportunity being taken to define those quantities 

which will be used later in discussing QW lasers. For a 

fuller discussion the reference is made to 1.3 and 1.4. 

A diagram of the physical structure of a DH laser is shown 

in figure 1.2. For lasing to occur, the increase in the 

number of photons in the system due to the predominance of 

stimulated emission over fundamental adsorption must be 

greater than or equal to the photon losses from the 

system. The factors controlling the photon population are 

now discussed, and it is shown how the threshold condition 

(defined as the condition where lasing just occurs) is 

brought about in a DH laser. 

The tendency of the number of photons in the system to 

be expressed as the product of two 

optical gain and the optical confinement 

increase may 

the quantities, 

factor. The 

given later 

frequency, 

unit flux. 

the bands 

amount of 

optical gain g (an expression for which is 

in section 1.3.1), is defined, for a given 

as the incremental increase in photon flux per 

It depends on both the density of states for 

in which the involved carriers reside, and the 

population inversion. The dependence on 

population inversion entering the expression for the gain 

through a statistical factor which weights the transitions. 

6 



The optical confinement factor r is defined as the ratio 

of the number of photons in the active region of the laser 

(ie the region in which lasing takes place) divided by the 

total number of photons in both the active and surrounding 

cladding regionso It depends upon the device geometryo 

The losses within the active region of the system are due 

to 1) incomplete confinement, 2) incomplete reflection 

at the Fabry-Perot faces, and 3) optical dissipation 

losses. The optical dissipation losses can be further 

categorised into a) free carrier absorption, which depends 

upon the number of free carriers present, b) scattering 

losses which are due to irregularities in the boundaries 

between different layers of the laser, and c) intervalence 

band absorption which depends upon valence band structure, 

the density of states for the valence bands and their 

probability of occupancy. Later for reference purposes, 

items 2) and 3) will jointly be referred to as cavity 

losses. 

Requiring that a light wave makes a complete transversal 

of the Fabry-Perot cavity (see figure 1.2) without 

attentuation (ie that the photon losses are exactly 

balanced by the increase due to the predominance of 

stimulated emission over fundamental absorption) gives the 

standard threshold equation 

(gr-raA - (1-r)a )L 
c c 

e 

7 

= 1 1.5 



where aA represents the losses of the active region, 

a represents the losses in the sandwiching region, Lc is 
c 

the length of the Fabry-Perot cavity, and R1 and ~are 

the reflectances of the Fabry-Perot faces. To achieve the 

threshold for lasing, the amount of population inversion 

within the system is increased until the optical gain is 

sufficient to compensate for the photon losses. The 

current required to do this is called the threshold 

current, and it must supply sufficient carriers to achieve 

the threshold condition, in the presence of spontaneous 

recombination, leakage currents, and non-radiative 

recombination such as Auger recombination. 

1.2.2 THE TEMPERATURE SENSITIVITY OP THE THRESHOLD 

CURREN'I' IN LONG WA VELENGTB DB LASERS 

In the long wavelength lasers now being considered for 

optical telecommunication, it has been experimentally 

observed that the temperature sensitivity of the threshold 

current J may empirically be described by 

1.6 

where T~ is the lattice temperature and T is an 
0 

empirically determined constant whose value decreases 

abruptly above some T~ , giving a rapidly increased 

temperature sensitivity. Intervalence band absorption, 

leakage currents, and Auger recombination have all been 

suggested to explain this increase in the temperature 

sensitivity of the threshold current. 

8 



Adams et al (ref 1. 5) were the first to suggest that 

intervalance band absorption may be responsible for the 

high temperature threshold current behavior of 1.6~m DH 

lasers. However, Henry et al (ref 1.6) have disputed this 

with both theoretical and experimental evidence. 

Several attempts have been made to implicate 

recombination in the temperature 

These have 

sensitivity of 

Auger 

long 

lasers. arisen because long wavelength 

wavelength 

for Auger 

temperature 

lasers may have a sufficiently small band gap 

recombination to be significant at relevant 

and threshold carrier concentrations. Some 

theoretical attempts to explain the threshold temperature 

dependence of InGaAsP/InP DH lasers in terms of Auger 

recombination, are due to a) Dutta and Nelson (ref 1.7), 

who consider the direct CHCC process to be most 

significant, b) Sugimura (ref 1.8), who considers the 

direct CHSH processes to be most significant, and 

c) Haug {ref 1.9) who considers the phonon assisted CHCC 

process 

in the 

Chapters 

to be most 

calculation 

2 and 

mechanisms to be 

conclusions. 

significant. The large uncertainties 

of the Auger recombination rate (see 

6) allowing these several possible 

suggested but limiting definite 

9 



lo3 QUANTUM WELL LASERS 

The refinement of MBE and MOCVD growth techniques has led 

to the development of a laser structure in which the 

thickness of the active region (as shown in Fig 1.2) is of 

the order of lOOA. The band edges of the heterostructure 

have the appearance shown in Fig 1.3(a) and it seen that 

the active region produces potential wells for both 

electrons and holes which can confine the carriers. With 

well widths of the order of lOOA the energy associated 

with the carriers motion perpendicular to the layer is 

quantized (there are discrete bound states of the one 

dimensional well) but free-particle motion remains in the 

two dimensions of the plane of the layer. The result is a 

set of sub-bands, each one corresponding to a different 

quantised state. The density of states contributed by 

each sub-band is that appropriate to two dimensional free 

particle motion ie a constant for all energies within the 

sub-band. The total density of states from all the sub

bands in a well therefore has the step like form shown in 

Fig 1.3(b). Because of the confining effect of the active 

layer and the quantization of the states, the structure is 

called a quantum well. In the context of semiconductor 

lasers it is found that the quantum well density of states 

(see Fig 1.3(b)} leads to a gain coefficient which is 

superior to that for a simple three dimensional (bulk) 

laser structure (such as DH). 

10 



FIGURE l. 3 

This illust-rates 

a) the formation of sub-ban~ the band bending caused by excess carriers 
being neglected. 

CONDUCTlON BAND 

VALENCE BAND 

b) the density of states for unit energy 
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1.3.1 THE GAIR COEFFICIENT 

The gain coefficient due to the ground electron and hole 

sub-bands of a perfect, undoped QW laser is 

7 
g(w) 

1 1 
- C E W 

0 

') 

I e \ ~ 

\mo) 
(E ) -

v 
f (E ))iM ~-

v op 
l 0 7 

where L is the width of a quantum well, ~w is the energy 

of the involved photon, nA is the active region refractive 

index, c is the velocity of light, s is thepermittivity 
0 

constant of free space, m is the stationary mass of an 
0 

electro-n, m i.s the reduced mass, (f ~,(Bc)-t·:Jiv)) is a r . . 
statistical factor, f being probability of a state being 

occupied by an electron, and M is the optical matrix 
op 

Pl~mE!nt. 
be· compa.r·ed with the gain Th1s may coe.tt ic i.erlt ot :a 

DH laser constructed of the same materials. 

=-

2 3/2 
1 (e )2 

1 ( mr ) ~ - -- (hw-Eg) (f 
c E w m 2rr h2 

nA o o 

g(w) 
1 ( E ) - f ( Ev) ) I M I 2

1 8 c op • 

Here the (h w 
!,. 

- Eg? mirrors the density of states of the 

three dimensional system. The two dimensional system 

with the constant density of states does not contain 

this factor. 

The optical gain coefficient carrier concentration 

relationships are found from the above by expressing the 

statistical factors ( f (Ec) - ·f (Ev)) in terms of carrier 

concentrations. This may be done either using tables of 

11 



the Fermi-Dirac integrals such as those in Blake,:more 

(ref 

that 

1.10) or an appropriate analytical expression such as 

due to Joyce and Dixon (ref 1.11) .(The Joyce-Dixon 

approximation being an expansion of a quasi-fermi level as 

a rapidly decreasing series in the ratio of the carrier 

concentration to the degenerate carrier concentration. An 

expansion which does not fail when the quasi-fermi level 

is close to a band ex tr emi ty .) Using the Joyce-Dixon 

approximation, Dutta (ref 1.12) has calculated the maximum 

gain coefficient against carrier concentration in a 200A 

well by assuming all carriers remain in the ground 

electron and hole sub-bands. These results are reproduced 

in figure 1.4, and for this particular example the same 

peak gain coefficient as a DH laser can be produced with a 

lower carrier concentration in the equivalent QW laser. 

As the well width varies, the carrier concentration - gain 

coefficient relationship in a QW laser changes. This is 

due to a) the variation of the density of states with well 

width, and b) the dependence of the distribution of 

carriers between sub-bands on well width. Taking these 

into account and assuming perfect carrier thermalisation 

between the sub-bands, Sugimura (ref 1.13) has calculated 

the variation of maximum gain coefficient with well width 

for various carrier concentrations in a 1.07 \.lm 

InGaAsP/InP QW system. Figure 1.5 reproduces these results, 

12 



FIGURE 1. 4 

This figures shows the relationship between the maximum gain coefficient and first sub-band 
carrier concentration in a 1.3 ~m InP/InGaAsP 200A wide single QW laser at carrier temperatures 
of 300K and 400K 
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FIGURE 1.5 

This figure,which is due to Sugimura (ref 1.13),illustrates the variation in the maximum gain 
coefficient - carrier concentration relationship with well width. It does this for a 1.07 \-lDl 

InGaAsP/InP QW system 
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from which it may be observed that a) the gain coefficient 

carrier concentration relationship has a different form 

for each well width, and b) the density of states in a QW 

laser is always such as to require less population 

inversion than in a DH laser to produce the same maximum 

gain. 

1 o 3 o 2 THE OPTICAL CORFIIIERER"I' FACTOR 

The dependence of the optical confinement factor on well 

geometry and device structure is now examined. The 

optical confinement factor of an isolated single QW may be 

found using a similar treatment to that used for a DH 

laser. (See for example ref 1.4). 

The problem is simplified to some extent because it is 

found for typical well dimensions that only the 

fundamental TE mode exists (For example for 1.3 ~ m 

InGaAsP/InP laser only the fundamental mode is present 

below an active region width of approximately 0.59 ~m, and 

for a 0.9 ~m GaAs/GaAlAs laser below approximately 

0.38 ~m). Further, the small width of the active region 

allows the optical confinement factor, r , to be 

approximated by 

(
- 2 

r = n2 
1.9 

where n2 and n1 are respectively the refractive indices of 

the active and surrounding regions. The validity of this 
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approximation depends on the refractive indices involved. 

For the 1.3 ~m InGaAsP/InP system Sugimura (ref 1.14) 

estimates that it is adequate below an active region width 

of about 0.2 \1m, and for the 0.9 ~ GaAs/GaAlAs system 

ref 1.4 may be used to estimate that it is adequate below 

about 0.1 \.1m. Using expression l. 9 it is seen that the 

small width of the QW active region causes the optical 

confinement of a single well QW laser to be very much 

smaller than that for a comparable DH laser. This acts to 

negate the advantage of high gain in a QW. However the 

optical confinement can be improved considerably by 

placing several wells together to form a multi-quantum 

well system (MQW) • 

Strifer et al (ref 1.15) has shown that for the 

GaAs/GaAlAs MQW system, a reasonable approximation to the 

optical confinement factor 

multi-well system as a 

identical cladding layers 

thickness t, and average 

given by 

n 
average 

= 

is given by considering the 

three region waveguide with 

and a central region whose 

refractive index n are average 

I. 10 

where NA is the number of active layers of thickness tA 

and refractive index nA, and NB is the number of barrier 

layers of thickness ~ and refractive index n B" Then 

14 



reducing the optical confinement factor found using these 

quantities by the ratio of the combined total width of the 

central active region to the central passive region. 

Sugimura (refs 1.13 and 1.14) has used this approximation 

for the InGaAsP/InP system. 

1.3.3 THE THRESHOLD CONDITION 

The higher gain for a given carrier concentration, but 

inferior optical confinement in a QW have consequence for 

the threshold condition. It turns out that it is possible 

to produce QW lasers with lower threshold current than 

achieved with DH lasers. Indeed Tsang (ref 1.16) has 

experimentally reported a threshold current density of 

em 2 250A per 

current 

which compares with typical DH threshold 
2 

densities of around lOOOA per em • But because of 

the smaller active region volume, this may involve a 

higher threshold carrier concentration. 

As indicated in the previous two sections a quantitative 

prediction of the threshold current is a complex business 

even if some simple assumption about the cavity losses is 

made. The validity of such calculations (see for example 

ref 1.12 and 1.13) must be further questioned because of 

the large uncertainties in the calculation of Auger 

recombination rate. 
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The best that can be reasonably done is to compare the QW 

and the bulk Auger recombination rates under similar 

approximations, for similar carrier concentrations, and 

make a few semi-quantitative rather than precise 

statements about the likely importance of Auger 

recombination. To make a few observations on Auger 

recombination it is worth anticipating the result from 

Chapter 5 that the QW and the bulk CHCC Auger 

recombination rates for the same carrier concentration are 

similar, except in thin wells. Let us also assume that the 

CHCC Auger recombination process is important and that 

other loss mechanisms, such as leakage currents, can be 

kept under control. Then it is already clear that the 

importance of Auger recombination will vary with well 

width because of the variations in the gain - carrier 

concentration relationship, optical confinement factor, 

and cavity losses. Also the Auger recombination rate will 

be higher in a QW if the threshold carrier concentration 

is higher. Finally Auger recombination will be much more 
well 

important in single isolatedA lasers than multi-well 

lasers, because of the lower optical confinement factor of 

isolated single wells. 
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lo3o4 THE TEMPERATURE DEPENDENCE OF THE THRESHOLD CORRERY 

As in DH lasers it has been observed experimentally that 

the temperature dependence of the threshold current 'J' 

may be expressed by 

A major advantage of QW lasers over DH lasers is lower 

temperature sensitivity (ie higher T ) for the threshold 
0 

current. To illustrate this the 0.85 ~m GaAs/GaAlAs QW 

system is now first considered. In this system Auger 

recombination is unlikely to be important because of the 

system's large band gap. It has been suggested by 

Hess (ref 1.17) that the low temperature dependence in a 

QW can be explained by the smaller temperature 

dependence of the quasi-fermi level in a QW and/or the 

high carrier temperature. However because of the 

uncertainties in the estimation of carrier temperature due 

to the phonon distribution function and scattering rates 

not being well known, he was unable to decide between 

the explanations. The quasi-fermi level argument is 

essentially that the quasi-fermi level depends inversely 

upon the degenerate carrier concentration and since this 

goes as T for a QW structure and T3/ 2 for a bulk 

material, the threshold carrier concentrations (and hence 

threshold current) in QW laser must change less rapidly 

with temperature to maintain the same quasi-fermi level 

separation. 
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For the 1.16 urn InP/InGaAlAs multi-well laser Rezek 

(ref 1.18) finds that the temperature sensitivity 

increases at high temperatures ie T
0 
~ 150 for T 2 < 300K 

and T ~ 
0 

60 for T
2 

> 300K. In this case Auger 

recombination may be responsible for this behavior because 

the process is more probable in narrower band gap 

semiconductors. It is thus of interest to study Auger 

recombination in a QW system to try to understand the 

temperature dependence of the threshold current. 
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CHAPTER 2 - THE MODEL USED ARD THE EARLY CORMON STEPS IN 

THE QW AUGER RECOMBINATION RATE EVALUATION 

This chapter examines the major approximations and 

assumptions of the direct band to band non-phonon assisted 

CHCC calculations presented in Chapters 3 and 4. 

2ol THE SQUARE WELL MODEL OF A QW HETEROSTRUCTURE 

Ideally the results of a large scale bandstructure 

calculation should be used to find the carrier 

wavefunctions, 

relationships 

energy 

which 

levels, and E-K (energy-wavevector) 

are used to calculate the Auger 

recombination rate. However such calculations are not 

well developed and in any case the results could not 

easily be incorporated in a quantitative theory of Auger 

recombination. 

used which 

Therefore a 

is treated 

simple square well model is 

in the effective mass 

approximation. This has the additional advantage of 

allowing physical insight into the important features of 

the Auger recombination calculation. 

2.1.1 THE CALCULATION OF ENERGY LEVELS 

The QW system is made up of an active 

between two barrier layers of 

layer sandwiched 

wider band gap 

semiconductor. It is assumed that the heterostructure 

presents simple 

and holes as 

square well potentials to the electrons 

shown in figure 2.1. These potentials being 

taken to be quite independent of the carrier wavefunction. 
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FIGUR£ 2. 1 

This illustrates the square well potential model which ~s used. It also 
defines two energies E and E which will be used ~n later analyses. 
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Effective mass theory is assumed to be valid and 

effective masses are used which are appropriate to the 

active layer. Also wavefunctions are taken as the 

multiple of a cell periodic oscillating part and an 

envelope i=.,'f""\ ......... ;1""\'P"\ part. J.. Ul1"- \-...&.V.I.& 

In this way the problem of motion perpendicular to the 

layer reduces to the simple quantum mechanics problem of a 

particle in a finite potential well. An example of the 

treatment of which can be found in Schiff 'Quantum 

Mechanics' (ref 2.1). Here we simply present the results. 

Figures 2.2 and 2.3 show the discrete states in the 1.3 ~m 

and 1.55 ~m InGaAsP/InP systems as a function of well 

width. Note, as the well width changes the gap between 

the lowest allowed conduction band energy and highest 

allowed heavy hole band energy is kept constant (to keep 

the laser wavelength the same) by varying the active layer 

alloy composition. Also for these calculations the 

conduction band discontinuity is always taken as twice the 

valence band discontinuity. 

For each bound state of the square well a sub-band occurs 

by the inclusion of the kinetic energy due to motion in 

the plane of the well. For example a carrier in the 

lowest square well state of the conduction band has a 

total energy E where 

2m 
c 
* 

2.1 
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This figure shows how the allowed perpendicular kinetic energy levels in a 
InGaAsP/InP ~W heterostructure vary with well width when the band gao between 
the first conduction and the first heavy hole sub-bands is kept constant at 
0.96 eV (- 1.3 lJm). To do this the active layer composition is varied, and the 
ratio of the conduction and valence band discontinuities is kept constant at 
2:1- shows the heavy hole sub-bands,---- shows the light hole 
sub-bands, and-·-·--· shows the conduction sub-bands. 
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As figure 2.2 but maintain a band gap between the first conduction and 
first heavv hole sub-bands of 0.8 eV (- 1.5 ~m). It is observed that below 
114A a band gap of 0.8 eV cannot be maintained. 



E
1 

being the lowest square well state energy and the 

second term being the kinetic energy due to motion in 

the plane of the well in which K,. is the in-plane 

wavevector and m • is the conduction band effective 
c 

mass which is taken to be isotropic. 

For the unbound states of the square well there are a 

continuum of allowed energies, each state of the 

continuum also leading to a sub-band when the motion 

in the plane of the layer is included. 

2.1.2 THE DENSITY OP STATES 

Having considered the nature of the states of the quantum 

well, the resultant density of states per unit energy is 

now derived. Isotropic parabolic bands being assumed 

throughout this derivation. 

Each sub-band corresponds to a state of the one 

dimensional well and motion in the two dimensions of the 

well layer. Hence each sub-band contributes a density of 

states per unit energy for a free particle in two 

dimensions. Including a factor of 2 for spin, this is 

given by 

ds(E) 
2D 

00 

0 

-h2:~) 
2m 

2oK,.dK,. 2.2 

where E is the energy, and m* is the sub-band effective 

mass. 
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Since ds (E) 2D is a constant, the density of states 

due to all bound states per unit volume ds(E 
DISCRETE 

is found from this by multiplying ds (E }., 
~D 

by n, 

number of bound states contributing a sub-band at energy 

E, and dividing by L, the width of the well 

ds(E ) 
DISCRETE 3D 

= 
* nm 

2 
nh L 

2.3 

Also each unbound state of the one dimensional well 

contributes a sub-band. The unbound states forming a 

continuum with the (one dimensional) density of states per 

unit length of the system (well+barriers) per unit energy 

at energy Ec 2 ~ given by 

where E 2 ~ . is 
c m1n 

the 

l 

(Ec2~ - E 2~ . )2 c m1n 

energy of the 

well (barrier layer conduction band). 

2.4 

top of the 

Hence the density of states per unit energy per unit 

volume due to all unbound states is given by integrating 

over all unbound states contributing a sub-band at energy E 

E 

ds (E) 3D = 2:h2 ~TI (~~ ) 
* * lzj ___ 1 ___ -rl,.. dE 2. 5 

'2 c2 ~ 
(Ec2~ - E 2~ . ) c m1n 

* 3/2 

ds(E)3D = 2> (~~) 
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2 o 1 o 3 THE CHANGES A BE'r'I'ER BANDSTROCTORE WOULD MAKE TO 

THE CALCULATED AUGER RATE 

In the absence of better QW bandstructure the Auger rate 

calculations which follow, can only give a semi-

quantitative indication of the CHCC Auger rate. However 

it is possible to get some impression of the effects of 

better bandstructure on the Auger rates. 

Changing the energies of the bound sub-bands can cause 

quite large changes 

depend exponentially 

in the Auger rate because the rates 

on these energies. Non-parabolicity 

in the E-K relations for the sub-bands can also have 

significant effects. 

The effect of non-parabolicity, which have not been 

incorporated in this treatment, may be roughly estimated 

by recognizing that it is most important for the promoted 

Auger electron and describing the final state of this 

electron using a larger effective mass. Dutta (ref 2.2) 

has done this using a final state effective mass for the 

promoted 

the other 

electrons 

electron 

which is twice the effective mass of 

carrier concentration 

states. For a 200A thick well with a 

of 10E+l8 cm- 3 he finds that the 

CHCC Auger rate for electrons and holes, which remain in 

the first sub-bands, decreases by more than a order of 

magnitude for the 1. 55 ~m InGaAsP/InP laser, and 

significantly more than this for the 1.3 ~m InGaAsP/InP 

laser. 
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Better estimates of the effects of non-parabolicity in a 

QW's are unavailable. However estimates for bulk DH 

InGaAsP/InP lasers due to Haug (ref 2.3) suggest that non

parabolicity may be even more important than indicated 

above. Haug interpolates the InGaAsP bulk bandstructure 

from Chelikowsky and Cohen InP and GaAs bandstructures 

and then finds the Auger rate using a graphical method to 

determine when energy conservation and wavevector 

conservation are simultaneously satisfied. He claims 

that the 

magnitude 

The CHSH 

direct CHCC rate is more than four orders of 

less than that calculated with parabolic bands. 

and phdnon assisted CHCC rate are however 

effected much less because of the smaller wavevectors 

changes involved. 

The failure to include an accurate bandstructure may 

therefore present a serious short fall in the quantitative 

accuracy of the calculations· presented in this thesis. 

However the aim is to present trends rather than absolute 

values. For this purpose the analytical approach allowed 

by the simple model is more useful, provided there is an 

awareness of possible inaccuracies. 

26 



2o2 AN rRTRODUCTION TO THE AUGER RATE CALCULATION 

2o2ol CBCC IN A QUANTUM WELL 

In a QW heterostructure the calculation of Auger 

recombination rates is more complex than in a bulk 

semiconductor because of the more complicated electronic 

states of the well system. 

direct, non-phonon assisted CHCC The important types of 

processes which can occur 

figure 2.4. They fall into 

in 

all carriers taking place 

a 

two 

QW are illustrated in 

types. Those for which 

have an insufficient 

perpendicular kinetic energy to escape from the well 

(which we call bound-bound processes), and those where the 

excited carrier has sufficient perpendicular kinetic 

energy to escape from the well (which we call bound-

unbound processes). Processes in which the excited 

carrier starts in a unbound state are unlikely because 

there 

model 

are very 

adopted. 

processes 

processes. 

and 

few carriers in the unbound states in the 

Chapter 

Chapter 

3 analyses the bound-bound 

4 analyses the bound-unbound 

2.2.2 AN IBTRODUCTION TO THE CALCULATION OP THE AUGER 

RECOKBIRATIOR RATE 

To calculate the Auger recombination rate R the electron

electron interaction between the colliding particles is 

treated as the perturbation H" on the system which causes 

27 



FIGURE 2.4 

This illustrates the various types of CHCC direct band to band Auger recombination processes which can 
take place in a QW heterostructure, introduces the numbering of sub-bands n = l, 2, 3 etc and defines 
the notation of states. ie (1) and (2) are taken as the colliding electron states, (l~) as the heavy 
hole state and (2') as the promoted (Auger) electron state 
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the excess number of carriers to recombine (see ref 2.4). 

Fermi's Golden Rule gives 

R 2;r ~ p I< I II I >l 2 ) 
h 1 ¢INITIAL SYSTEMIH ~FINAL SYSTEM ; c(E 2.7 

STATE STATE 

where the summation is carried out over all combinations 

of initial and final states, P is a statistical factor 

included during the summation to weigh each transition 

according to the probability of its initial and final 

states being appropriately occupied, and 

<~INITIAL SYSTEM j H" i<t>FINAL SYSTEM> is the matrix 

STATE STATE 

element of the perturbing interaction H" • 
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2.3 THE STATISTICAL FACTOR P 

The statistical factor P determines the weighting (based 

on state occupancy) given to each possible transition in 

the Fermi Golden Rule summation (equation 2.7). It is 

given by the probability of the correct state occupancies 

for the forward process (electron and hole recombination) 

minus the probability of the correct states occupancies 

for the reverse process (impact ionization). 

f (E
1
)f (E

2
)f (E 1 ~) [ 1-f (E 2 ~)J cn1 cn2 vn 1 ~ cn 2 ~ 2.8 

- [ 1-f (E 1 ~)] f (E 2 ~)[ 1-f (E
1
)][ 1-f (E

2
)] 

vn 1 ~ cn2 ~ cn1 cn 2 

where and indicate the conduction (c) sub-

bands, and n 1 ~ the valence (v) sub-band, f (E ) determines 
c c 

the probability of a state with energy E being occupied 
c 

by an electron, and f ( E ) determines the probability of a 
v v 

state with energy E being occupied by a hole. 
v 

Using the approximations 

simplification 

1-f ~ 1 
v 

and 1-f ~ 1 
c 

give the 

2.9 

Now before further progress can be made it is necessary to 

assume a form for the distribution functions fc: (Ec ) and 

f (E ) • The following section discuss these. 
v v 
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2o3.1 THE BOL~ZMANN APPROXIMATIOR 

During lasing the distribution functions will depend on 

the device current, the device structure, interband 

scattering, intraband scattering, the lattice temperature 

etc. Here we assume that the distribution function 

corresponding to each sub-band and unbound continuum of 

states can be described by a quasi-fermi level and 

Boltzmann statistics. 

Assuming a Boltzmann distribution of carriers in an 

operating laser is obviously suspect. However some bulk 

semiconductor evidence does exist which indicates that it 

is not too drastic a simplification. In an operating DH 

laser the hole quasi-fermi level is above the top of the 

valence band and therefore Boltzmann statistics are 

adequate to describe holes. However, for conduction band 

electrons the quasi-fermi level is within the conduction 

band and Fermi-Dirac statistics are required. An 

approximate estimate of the · importance of using Fermi-

Dirac statistics in bulk material can be obtained from the 

comparison by Takeshima (ref 2.5) of the variation with 

temperature of the CHCC Auger lifetime using Fermi-Dirac 

and Boltzmann statistics in n-type InAs. These results 

can be used to make rough estimates of trends in other 

materials and suggest that the use of Boltzmann statistics 

underestimates the CHCC Auger rate in GaAs with 

n = 10E+l8 
-3 

em Tc= 300k by a factor of 3. The situation 

is obviously somewhat different in a QW but is expected 

that Boltzmann statistics will be reasonably adequate. 
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Using Boltzmann statistics gives 

f (E) = e en 

and 

f (E) = e 
vn 

-(E - f )/xBT 
en c 

(E - f )/xBT 
vn e 

for E > E 
en 

for E < E 
vn 

2.10 

2.11 

where Ecn (Em ) is the energy of the state at the bottom 

(top) of nth conduction (valence) band, and r ( ., ) are 
en ev 

the conduction (valence) quasi-fermi levels. 

Substituting these into 2.9 gives 

(-E
1
+T -E2+f +E

1 
... -f )/xBT (-E

2 
... +f )/xBTe 

en1 en
2 

vn
1

... e ~n2 ... P = e -e 
nl}12,nl';nz... 2.12 

Conservation of energy in the transition requires 

+ E 2 '- E1 - E2 = 0 (see section 3.2) and Eq (2.12) 

can then be written as 

- (E2;Ee2 ... ) /xB T e 

e 

-(E 
2 

... - f )/xBT 
e en

2
... e (Nl ~Pl ... N02' _ \ 

~01 N02 POl' N2... ) 

2.13 

where N1 , N2 , N2 , and P 1 are the carrier concentrations in 

each sub-band N 02 ... and P 01 ... are 

the carrier concentrations under equilibrium conditions 

in each sub-band. 
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Using 

-(E - f )/xBT 
N = N 

en en e e n e 

* m xBTc 
(where Nc e = 

IT li2 L 
states per unit volume 

Eq (2.13) becomes 

- ( E 2"'- E e 2 "' ~B T e 
p = e 

2.14 

the effective density of 

for the conduction band sub-bands) 

2.15 

The equilibrium carrier concentrations for individual sub-

bands being given by. 

and 

- (E - f ~/x T 
N = N e en B e 

on e 

p "' on 

+(E ,. -f)/xB\ = N .vn 
"' e vn 

where f is the fermi level 
* 

2.16 

2.17 

under equilibrium conditions, 

and Nvn· 
~ xBTe 

is the effective density of states = 
11' 1i2 L 

per unit volume for holes in 

can now be rewritten as 

sub-band 
, 

n • Thus Eq (2.15) 

e-(Ee2"'-Ec2)/xBTe) 

-1 

2.18 

and to proceed assumptions are now made about N
1

, N
2

, N
2
,., 

and P 
1
, 
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2.3.2 THE NUMBER OP CARRIERS IN EACH SOB-BAND 

In the most general form the formalism to be developed 

allows the number of carriers in each sub-band to be 

chosen to correspond to the best estimates of the carrier 

distribution in a working device. This is achieved by the 

choice of a separate quasi-fermi level for each sub-band 

which has the implication that intra-sub-band scattering 

is strong enough to maintain thermal equilibrium within a 

particular sub-band. 

However, in the calculations presented explicitly here we 

choose to assume that electrons are thermalised between 

all the conduction sub-bands, and holes are thermalised 

between all the hole sub-bands. That is, for example 

considering the conduction sub-bands, we take all the 

conduction band quasi-fermi levels to be equal 

2.19 

Then the total number of conduction band electrons &N is 

c5N 

c5N 

= ~ 

sub-

n 

+ 1 ,. 
E 

con 

(~ 
n 

00 

J 
E 

en 

* 1 1 (2mc ) -(E-fc)/xBTc 
-- -- e dE 2'1T L 112 
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2.21 
(E - f ~ T 
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where E is the energy at the top of the well (see 
con 

figure 2.1). 

Hence 

f /x
8

T 
c c 

e 
oN 

2 * 3/2 

+.!..(~xT) 
4 TT h2 B c 

- (E ) /xBT 
con c 

e 
2.22 -E lxBT 

en c 
e 

n 

and the number of electrons in a particular sub-band n' 

is given by 

N ~ 
n 

Similarly for holes 

+E ~/xBT 
p ~ N vn c 

~ = ~ e 
n x vx 

1 

~ 

nx 

eN 
3/2 

2.23 

-E /xBT con c 
e 

eN 
2 T . 3/2 +E /xBT 

N vn c ! ( Xgc) 2.24 e + 
v 4 1T h 2 

where x' denotes either a heavy hole or light hole sub-

band, x ranges over both heavy hole and light hole sub-

bands, \..,.,..._) ~ 1 JB!s 1 and m•8 a.s;e ~;espec.t.ively the he,avy 

. ' ... ~ ~-\.,PttS\'f!;..: lftrht ~"l·th ·4affi!· -iJ.bi-t~c- sol!t-~ff bulk 11!"1'1'-f!i!·C"ti '0'~ m~·Jr:t!!lilijCII.r--... , 
and 6s is the bulk r energy separation between spin split 

off and heavy hole bands. 
Figures 2.5 and 2.6 show bow a co-nc:el\t.tation 0f 1GE+l8 

electrons and holes are distributed between the sub-bands 

of 1.3 u m (figure 2.2) and 1.55 ].lm (figure 2. 3) 

InGaAsP/InP QW lasers. For clarity only the population of 

conduction band and heavy hole band sub-bands being shown. 
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3 conduction (C) sub-bands and heavy hole (HH) sub-bands when tol8 electron em 

and tol8 cm·3 holes are injected into the active region of a 1.3 \lm InGaAsP/InP 
system. BoLtzmann statistics and carrier thermaL i sat ion are assumed. 
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These populations are used in the evaluations of the Auger 

rate. 

For the bound-unbound calculations (Chapter 4) it is 

helpful to recognise that 

2.25 

and for both bound-bound and bound-unbound calculations 

that 

2.26 

35 



2o 4 THE NATURE OP THE ELBC"rRON-BLBcrRON :nri'BRACTION 

2 o 4 o 1 T11B POBM OP THE MATRIX ELEIIE!ft 

Using a Hartree-Fock Hamiltion and a Slater determinant 

for the wavefunctions the matrix element of the electron-

electron interaction which appears in the Golden Rule 

expression for the Auger rate (Eq 2. 7) is 

.M. = < l/11 ( r 15 1 )ljJ 2 ( r 2 5 2) - lj; 1 ( r 2 5 2) tP2 ( r 15 1) I H" ( r 1 'r 2) 

12 2.27 

ltJi1~<r1s1)1J12~<r2s2) - w1~<r2s2)1JI2~<r1s1) > 
12 

where ~· is the electron-electron interaction which is 

discussed in Sec 2. 4. 2, tJ1 1 and w2 represent the initial 

states, w 1 ~ and tJ~ 2 ~ represent the final states, and r and 

s are the position and spin coordinates respectively. 

Now defining 

M12 = < tp1 (r1s1)1j12(r2s2)!H"(r1,r2)jtp1;.(r1s1)1Ji2~<r2s2) > 

M21 = < 1)11 (rlsl)1j12(r2s2)jH"(r1,r2)!1J11~(r2s2)1j12~(r1s1) > 

= <1Ji1(r2s2)1j12(rls1)!H"(r1,r2)j1j11~(r1s1)1j12~<r2s2) > 

and using spin orthogonality one obtains 

36 
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2.32 

2.33 

-
where s is a function of the initial and final states 

whose value is between 1 and 2. Now summing over the 

initial and final states we obtain a number for an 

-effective B. An indication of the size which can be 

obtained by considering which transitions are most 

probable. Appendix 1 concludes that 

transitions are important. Using this and the assumption 

of electron thermalisation {see equation 2.19) the most 

-
appropriate value for an effective S is seen to be one. 

This may be interpreted physically by reference 

to equations 2.29 and 2.30 as showing that collisions 

between electrons of unlike spin are more probable 

than the analogous collisions for electrons of like spin. 

Omitting S we have 

2.34 

where M '""~ 1111( .. 1)11J3 Cr2 )1'H"(rpr2)1111 1 ,..(r 1?~-2~~~r2.) >" --·. < .. 
• •• . . • ..... · • • j· • . 

In equation 2.34 one factor of 2 ~rises from 2.33, and the 

other because the initial impacti.ng electron can have two 

values ie s:pin up or &pin dGwn. "the 15 , n 2 prevents 
nl 

overcounting (see Table 3.1) when ·the summation is later 

made over sub-bands. 



2.4.2 SCREENING 

The form of the perturbing interaction is now considered. 

In general the electron-electron interaction has the form 

of a screened coulomb interaction which in q, w space can 

be written as 

H" constant = 
e:(q,w) 2 

q 

2.36 

where E (q ,w) is the dielectric constant of the active 

region. t: (q,w) can now be considered to consist of 

two contributions. The first e: 
INT 

being the intrinsic 

dielectric constant of the semiconductor and the second 

( t:g (q,w)-1) being the susceptibility of the conduction 

band electrons and valence band holes. The change in e:INT 

due to the states occupied by carriers is neglected 

because the carriers occupy only a small part of the 

Brillouin zone. Hence 

t:(q,w) = e:INT + (e:g(q,w) - 1) 2.37 

where most of the wavevector and frequency dependence is 

in t:g (q,w}. Rewriting equation 2. 37 

x (q,w) 
where e: (q,w) = 1 + ~g __ and '" 

gs e:INT -g 

38 

= s (q,w) - 1. 
g 

2.38 

2.39 



A useful and accurate analytical express ion for ~ q, w) is 

now given by the plasmon pole approximation which 

assumes that most of the screening is due to the 

collective motion of electro~ (ref 2.6). It gives for an 

isotropic, parabolic conduction band 

-1 
(E (q,w)) 

gs 
= 1 -t-

w 
p 

2 2 
w - w

1 
(q) 

where 

2 2 4 2 
w1 (q) w +- w WF + w 

p 3 cq cq 

h w being 
cq 

hwF being 

2 
(1 w 

p 

the 

the 

Fermi wavevector 

+ q 2/~ 2) 2 
+ w 

cq 

conduction band 

Fermi 

and 

energy, 

w being 
p 

2.40 

2.41 

dispersion relation, 

KF being the Thomas 

the plasmon angular 

frequency at q=O. Considering both electrons and holes 

to be present the parameters are modified in the following 

way: 

and 

2 2 
w = w (electrons) + 

2 w (holes) 
p p p 

~2= 2 2 
~ (electrons) + Ky (holes) 

w 
cq 

2 3 

+ ~H + m;:H) 

2.42 

2.43 

2.44 

where m* 
c is the conduction band effective mass, mHH is 

the heavy hole effective mass, and mLH is the light hole 

effective mass. 
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Now for electrons we have 

and 

w (electrons) 
p 

* m 
2 1 c 

Kf = 2-..,-
TT h-

.., 
'- ? e (JTT-N) 

EINT 

2.45 

1 
3 

2.46 

where N is the conduction band electron concentration. 

Similarly for holes we have 

2.47 

and 

2(~H + ~H) 2 
1 

') 1 
(37T2 (P HH + p ·) )3 ~'- = e .., h 

2TT"" EINT LH 
2.48 

where p and p are the concentrations light holes and 
LH HH 

heavy holes respectively. 

Hence 2.40 and 2.41 can now be applied to the screening 

the Auger electron-electron interaction. In t: (q,w), w is 

determined by the energy exchanged between the 

colliding electrons (hw) which is somewhat larger than the 

band gap. Similarly q is given by the wavevector transfer. 

So consider inglOE+18 carriers em -J it is found that w > w 
1 

(q) and w > w for the typical semiconductor lasers used 
p 

for optical fibres. It thus follows 

2.49 
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That is the frequency associated with the interaction is 

too high for the free carriers to respond as plasmons and 

cause screening. 

This (2.49) contrasts with the customary treatment of 

screening in Auger theory. Conventionally in narrow 

bandgap materials the static limit {w = 0) has been 

taken, giving the Thomas-Fermi expression when q is small, 

2.50 

This is an accurate approximation in the limit of very 

narrow band gaps but unfortunately some authors (see 

for example ref 2. 2) have carried it over to the larger 

band gap semiconductors. Burt (2.7) was the first to 

point out explicitly that this was a questionable 

procedure. For the wider band gap semiconductors it being 

more accurate to assume there is no free carrier 

screening. In this thesis therefore expression 2.49 is 

carried from the bulk to QW's without any further comment, 

further in applying 2.49 no account of the q dependence of 

'£INT' the intrinsic dielectric constant is made. 
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2c4o3 TBB WAVEFUMCTIONS OF TBE QUANTUM WELL AND TBE AUGER 

MATRIX ELEMENT 

2.4.3.1 THE PARITY OF THE WAVEFUBCTION 

The wavefunctions of the square well have either even or 

odd parity about the well centre. This allows us to make 

some conclusions about the matrix elements without 

requiring the explicit forms of the wavefunctions. The 

fourier transform of the electron-electron in~eraction is 

2.52 

where it is assumed that the barrier regions have the same 

dielectric constant as the well region. Substituting this 

into the matrix element expressions gives 

and 

e:J 1 4 :r 
~ -(-)3 2 

INT 2rr q 

2.53 

ig_ ... (~,1-1?.."2) 
e 

2.54 

where q, , and ~ .. 2 are respectively the cnmponents 

of g, ~ 1 , and Ez in the plane of the well, and qz, z 1, and 

z~ are respectively the components of ~, El, and Ez 

perpendicular to the plane of the well. 
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First considering the direct term M12 and supposing that 

and ,1. ( z 
+'1~ 1 

have the same parity then we may 

L 

1 2.55 
2 2 

1 
which is an even function of qz. Now since 2 2 is also 

q,. +q 

an even 

i 
. z 
1ntegral function of qz we require the 

-2 
to be an even function of qz if 2.53 is not to vanish. 

Hence if ~ 2 (z 
2 

integral 

L 
+-

2 

J 
L 
2 

and ~ 2 ~ (z 2 ) have different parity the 

will be odd in qz and the matrix element M12 will be zero. 

That is if ~ 1 (z 
1

) and 1jJ 1 ~(z 1 ) have the same parity 1jJ
2 

(z 2) 

and ~ 2 ~(z 2
) are also required to have the same 

parity if the matrix element is to be non-zero. 

If 

integral 
L 

is 

+z 

J 
2 

odd 

and wl~(zl ) have different parities then the 

in and w
2 

(z':') and w (z ) must have different 
.:. ·2~ 2 

parities for the matrix element to be non-zero. 
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Table 2.1 

combinations 

summarizes the above argument for various 

of wavefunctions and considers both the 

direct and exchange matrix elements. 

For transitions between bound states the results can be 

summarised by requiring ~n = 0,2,4, etc where n numbers 

the sub-bands (see figure 2.2), and ~indicates difference. 

For transitions to unbound states, parity lowers the final 

density of states available to the promoted Auger electron 

by a factor of two. 

44 



'1'1\BLE 2.1 Ez = even function of z E~ = even function of qz 

0 ~A ~ • f z ~ ~ ~unct1on o z = odd function of qz 

IN.l' = INJ.'EGRAL I 
mE orREcr TERM I ' THE EXCHANGE TERM 

--~~~~~~~~~~~ ~--~~~~~~~~~ 11 :lst:2nd:Jrd: RESULT ' 1 :lst:2nd:3rd: RESUL1 

Ez 
I 

: E,: 
I 
I 

:Ez 
I 
I 

:o"' 
I 
I 

:o.l. 
I 
I 

:o.: 
I 
I 

:oL. 
I 
I 

:oz 
I 
I 

:o.! 
I 
I 

:o.: 
I 
I 
I~ 
lt.z 
I 
I 

:E.~ 
~ 
I 

: E.z 
I 
I 

:E.z 
I 
I 

:oz 
I 

~; // ~ i-jjiNrjiNrjiNrjj __ i j ~ i ~/j ~ i ~-jjiNrjiNrjiNrj 
:E:: :Ez :Et"1 :~:E>i : 1 E~ :Ez"":Ex. Ez :£.r. :~:~ ----E.: 

102: 
I 
I 

:E.:-
1 
I 

:E~ 
I 
I 

:E..: 
I 
I 

:oz 
I
I 

:Ez 
I 
I 

:o.-:: 
I 
I 

:o.l 
I 
I 

:oz 
I 
I 

:Ez 
I 
I 

:oz 
I 
I 

:o.r 
I 
I 

iOz 

1 I I I I 
I I I I I 

: Ez :oz : E.-1 :&, :0 . ..1 
I I I I I 
I I I I I 

:oz :Ez :Ey :E<i :Oc, 
I I I I I 
I I I i i 

: E.z : Ez : E,, : Oq : E.1 
I I I I I 
I I I I I 

: 8.z : E:z ' : E" :o./ : E" 
I I I I I 
I I I I I 

: Ez :o.= : E" :o"' :a.., 
I I I I I 
I I I I I 

:o:: :Ez E.,. :o"' :o., 
I I I I 
I I I I 

:Ez. :E..: E., :E.~ :E~ 
I I I I 
I I I I 

:oz :o."! E.g :c., : Eq 
I I I I 
I I I I 

:oz :E~ Eq :Eq :oq 
I I I I 
I I I I 

:oz :oz ,E~ :Eq :E~ 
I I I I I 
I I I I I 

:Ez :oz :Eq :o., :o'i 
I I I I I 
I I I I I 

:oco; :o:r. :Eq :E., :Ec.· 
I I I I I 
I I I I I 

:oz : Ez : &, :o.,. :o~ 
I 

I I 

: :oz 
I I 
I I 

i ~E~ 

I 
I 

:o.z 
I 
I 

io7-
' 

I 
I 

:Eq 
I 
I 

IE~ 
I 

I 
I 
I 
I 

II 

zero 

zero 

zero 

zero 

zero 

zero 

zero 

zero 

I 

:oz 
I 
I 

:E2 
I 
I 

:Qc 
I 
I 

:oz 
I 
I 

:oz 
I 
I 

:Ez 
I 
I 

:o.z 
I I 
I I 

: :o" 
I 
I 

''0 
11 z 

I 
I 

:oz 
I 
I 

:Ez 
I 
I 

:Ez 
I 
I 

:E:t 
I 
I 

:o:t 
I 
I 

:Ez. 
I 
I 

:Ez. 
I 
I 

:oz 
I 
I 

:Ez 
I 

:oz 
I 
I 

:o;z 
I 
I 

:oz 
I 
I 

:Ez 
I 
I 

:oz 

I 
I 

:Ez 
I 
I 

:oz 
I 
I 

:E-z 
I 
I 

:Ez 
I 
I 

:Ez 
I 
I 

:oL 
I 
I 

:Ez 
I 
I 

:o.z 
I 
I 

:oz 
I 
I 

:oz 
I 
I 

: E:z 

I 
I 

:oz 
I 

I I 

~o~ iEz 

Ez 

I 

:Ez. 
I 
I 

I I 
I I 

:E~ :o"' 
I I 
I I 

:E'i :E., 
I I 
I I 

:E., :o9 
I 
I 

:E.., 
I 
I 

:E., 
I 
I 

:~ 
I 
I :&, 
I 
I 

:Ect 
I 
I 

:~ 

I 
I 

:E .. 
I 
I :a., 
I 
I 

:Eo;· 
I 
I 

:a.. 
I 
I 

:o'i 
I 
I 

:~ 
I 
I 

:Ev 
I 
I 

:E<t 
I 
I 

:o., 
I 
I 

:oc; 
I 
I 

,Er, :E'i 
I 
I 

I 
I 

:Eel 
I 
I :o., 
I 
I 

:E9 
I 
I 

:o9 
I 
I 

:o9 
I 
I 

:E<f 
I 
I 

'Q-, 

I 
I 

:O<t 
I 
I 

:a.. 
I 
I 

:Oc; 

iOz i jE~ iEq i0" 

zero 

zero 

zero 

zero 

zero 

zero 

zero 

zero 



2o4o3o2 THE FORM, NORMALISATIONv AND ORTHOGONALITY OF THE 

WAVBFUiiCTION 

BOORD STATES 

For bound states the evanescent parts of the wavefunctions 

are ignored. They being assumed to be small. We have 

and 1jJ ( r} =0 outside the well 
m-

( ) ( ) -iK z j K, . p 
+ B - u - ( r) e zm ) e - -

m 2.56 

inside the well(O<z<L) 

where u ( ;) is the periodic part of the Bloch function 
m 

(normalised to the unit cell} • The (+) and (-) signs 

indicate the dependence of the Bloch functions on the z 

direction of momentum. k .. is the two dimensional 

wavevector in the plane of the well and 2 is the 

corresponding two dimensional position vector. k zm is 

the wavevector perpendicular to the plane of the well, 

and as a simplification is given the value 

appropriate to an infinite 
n'lf 

square well, ~ (n being a 

positive integer). B is the normalisation constant 

associated with the z dependent part of the wavefunction 

B{±) = + i ~ 
VUNIT 

CELL 
(
_1 )~ 
2L 

and A is the area of the QW layer. 
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UIIBOORD STATES 

The wavefunctions of carriers with sufficient 

perpendicular kinetic energy to be not bound by the well 

are found by matching the envelope parts of the 

wa,lefunctions inside and the well at the 

boundaries of the well. Assuming sinusoidial envelope 

wavefunctions inside and outside the well region (see 

figure 2.7), the usual boundary conditions give for the 

case of even parity states. 

B~ cos (Kz~~L) =A~ cos (K~L + a) 2.58 

and 

2.59 

where A' and B' are the normalisation constants of the 

wave functions 

phase constant, 

outside and 

and K and 
z 

components of wavevector. 

Squaring and adding Eqs 2.58 and 

- 2 
'I .., 

? ( K"L a)+ 
K 

B~._ A~"'" - "-
z 

= cos -2- + 2 
Kz2~ 

A'2 ( 

-- 2 
K - 1) B~2 +(~ . 2 

s1n 

Kz2~ 

46 

inside the we 11 , a is a 

Kz 2 ~ are the respective z 

2.59 gives 

A~ 
. 2 ( KZL 

s1.n -
2

- + a) 2.60 

K L o)) (++ 2.61 



FIGURE 2.7 

This figure shows the envelope parts of the unbound wavefunctions, the large 
assumption that the corresponding cell periodic parts are the same both inside 
and outside the well, being made. 

.b 
l 

B -· cos 
A~ cos (i( z + <S) 

Kztzl,_ --------z-

f 



- 2 
Kz 

Now, since ----2 < 1, the second term is always negative 
Kz2 .. 

and the maximum value of A' is given by 

~2 
A 0 

also the minimum value of A' is given by 

- 2 
K 

z 
---2 
K ,., .. 

z"" 

when sin2 (K~L + o) = 1 

2.62 

2.63 

An expression foro can now be derived from the matching 

conditions. From them 

K L K L ) 
=A .. (cos ~ cos 5 - s1n ~ sin o 2.64 

and 

( K 2 .. 1) 
(sin 

K 1 K 1 o) K A .. z z 2.65 Kz2 .. B" sin z
2 

= -2- cos 0 + cos s1 n z 2 

hence 

(Kz2 .. 1) ("in K 1/2 + cos K 1/2 tan :) K 
z z 

2.66 Kz2" tan == 
2 z K 1/2 K 1/2 tan cos - s1.n z z 

Therefore 
Kz2" (K 2 .. 1) K 1/2 + tan z

2 
cos K 1/2 

z z 
n z 

0 = arctan 2.67 
Kz2" ( K 2 .. 1) 

K 1/2 + tan T sin K 1/2 
z z 

n z 
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Finally we need to derive an expression forB'. To do 

this the envelope part of the wavefunction is normalised 

over the crystal z dimension 2~. 

L 
9. 

2 (' 

? J 2 K
22

,z dz + A' 2 I 2 - ,., 
B'- (K '" + o) dz ' cos cos = '2 2.68 

J~ 
z 

0 2 

Choosing ~ large enough so that only the second term needs 

to be considered 

~ 

1 
- z + A'2 [ 
2 

(1 + cos (2K z + 28)) dz = ~ 
z 

sin cz"K z + 281 z 
~ = 

2K 
z 

2 
and retaining only the dominant terms for large gives 

A' =If 

2.69 

2.70 

From which B' can be found using equations 2.61, 2.67 and 

2.70. 

For the case of odd parity wavefunctions normalisation 

follows in a similar fashion. 
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ORTBOGORALITY 

The neglect of the evanescent parts of bound state 

wavefunctions means that the approximate bound 

wavefunctions are not exactly orthogonal to the unbound 

wavefunctions except for special cases, such as between 

the nth bound state and a unbound state with perpendicular 

wavevector 

turns out 

m;r = 
L 

to 

where n =I= m. This non-orthogonality 

be significant for the Auger 

calculations but is considered in more detail at the 

appropriate time. 

2.4.4 INITIAL STEPS IN THE EVALUATION OP THE MATRIX 

ELEMENTS 

The direct matrix element term is given by Eqs 2. 29 and 

2.56 as 
p=+oo 
z=L 

p=-oo 
z=O 

( (+) (+) iKz2 ... z2 
B2 ... u2 ... <::2) e 

( (+) (+)( ) 
iK ,z 7 z.~.. -

B2 u2 ~2 e 

* 
(-) (-) 

+ B2 ... u2 ... <:_:2) 
e -iKz2 ... z2) 

(-) (-) 
+ B2 u2 (~2) 

e -Kz2z2) d3 3 
~1 d ~2 

2.71 
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where B (±) 

states and 

B(±) 

or 

is given by 

by 

-
+ 

B' J, - v2 e 
2 UNIT 

CELL 

B' ~ 
Z VUNIT 

CELL 

l 

for unbound states. 

B(±) = + 

], 

0 ( 1 )
2 

UNIT 2L 
for bound 

CELL 

2:. L 
" L 

even parity 

2.72 

rr 
-+- 1. z L 

e odd parity 

Taking the Fourier transform of the electron-electron 

interaction (see 2.52) gives 

4rre 
2 1 1 J 1 d3_g_ H12 =-- 2 Il~l I2~2 

EINT 3 A2 (2'11') q 

2.73 

with 

2.74 

and 

2.75 



the first term is 

i (~"1 ~K,1 ... +~,). El 
e 

i(Kzl-Kz1_.+qz)zl 3 
e d ~1 

2.76 

Now expanding the Bloch periodic parts in 

a sum over reciprocal lattice vectors: 

u(r) 
1 

=r-
VCELL 

i 
G • l l • CG e rec1proca att1ce 

G.r 

vectors 2.77 

3 2 Then writing d .£
1 

- d ~l dzJ, gives the first term as 

(+)* (+) 
Bl B1 i (!1 -!1..-+_g_,+~ .. 1 -~ .. 1 ... ) . £.1 

VUNIT 
CELL 

e 

i(Kzl-Kzl_.+qz+Gz1-Gz1_.)zl 2 
e d £.1 dz 1 

2.78 

Next carrying out the integral over E 1 gives 

(+)., (+) 
B1... Bl 

VUNIT 
CELL 

L 

J ~ ~1 ... ~1 
0 
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i(K 1-K 1 ... +q +G 1-G 1 ... ) z z z z z 
e dz 1 

2.79 



Treating the other terms in r
11 

~ in the same way 

L 

11'1 = (2•)2 J 
r (+)* (+) i (K_, -K_, ~+q +G_,-G_, ~) B, B, I I 1 .... \_._ ... ( + l) 

l 
J. J. \ T L J •• GL GL Z GL GL 

VUNIT 
CG1 ~ CG1 e 

CELL 

(-)* (-) i(K 1 ~-K 1
+q +G 

1
-G 1 ~) Bl Bl (-1~)* ( -1) z z z z z 

+ CG1~ c~1 e 
VUNIT 

CELL 

(+)* (-) i(-K 
1

-K l~+q +G 
1

-G 1 ~) Bl ~ B1 (+1~)* (-1) z z z z z 
+ CGl~ CG1 e 

VUNIT 
CELL 

(-)* (+) 
;(K l,+K l+q +G 1-G 1'} B1 ~ B1 (-1~)* (+1) z z z z z d 

+ cgl ~ c~1 e ~ 
VUNIT 

CELL 

or 
L 

1 
where { } has been introduced to simplify 

expressions. Treating a similar 

and substituting into M12 gives 

2 
4rre 

=--
e:INT 
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2.80 

the 

way 



'1 
4rre"" 2rr 

A 

Now since wavevectors of the states involved in the Auger 

transitions are small compared to the reciprocal lattice 

vectors , the delta. function argument will only 

contribute if we choose 

2.83 

Also because of the denominator in Eq (2.82) the terms with 

0 2.84 

in the summation are dominant and to a good approximation 

• all other terms can be neglected. 

Similarly the terms which contribute most when 

integrals over z1 and z 2 are carried out are those 

for which Gzl = G zl ~ and Gz 2 = G zr· So using 

(+()-:: (+l) r c c 
g_l ~1 ~l 

CELL 

++ 
t-1

1 
, 

1 
say 
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and similar definitions for 

M+- , M -+ and M-+ we obtain 
2'2 1~1' 2~2 

00 

2 
4rre 2-rr 
----;;-
EINT A~ 

,s(!~·"l-~"1 ·~·z--S·zl ~ 
0-oo 

where 

M 1 ~ 1 ' 
+-

M 1 ~ 1 ' 

-~-~-" 1-~---~--.. -1-1-:::-2-.... -. -q-z-:::-2 {1 , l J {z ~ , z} 

2. 8 7 

(-)>'< (-) 
Bl ~ Bl 

H(K 
1

-K 1 ~+q ) + N
1

, ... , H(K 
1 
~-K 

1
+q ) 

z z. z VUNIT z~ z z 

+ 

{ r, z} = 

+ 

and 

ll(x) 

(+)>'< (-) 
Bl, Bl 

VUNIT 
CELL 

J (+)': (+) 
B2' B2 

l VUNIT 
CELL 

(+)''' (-) 
B2, B2 

VUNIT 
CELL 

L 

J 
l) 

+-
H(-K ~1 1 ~ 1 

++ H(K M2'2 

IXZ 

e dz 

CELL 

(-)>'< (+) 

) 
Bl, Bl 

-K +q + zl zl' z VUNIT 
CELL 

(-)>'< (-) 

) 
B2 ~ B2 

-K -q + z2 z2' z VUNIT 
CELL 

xL 

2 
xL 2 

stn - e 
2 
X 
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-+ 
~1 1 ~ 1 

~~ ') ,, 
~ L 

-+ 
rlz '2 

H(Kzl_+Kzl+qz)} 

2. 88 

H(K ) 'l,-K 'l-q 
z~ z- z 

H(K ').+K 
7

-q )} 
z~ z_ z 

2. 89 

2. 90 

dq 
z 



From which (2.87) the delta function 

o (~ "l" -~"l +!,2- -!, 2 ) requires that in-plane momentum is 

conserved. For wavevectors perpendicular to the plane of the 

well however the dependence of the matrix element on these 

wavevectors is more complex depending on the behaviour of 

function H and on the overlap integrals between the 

periodic parts of the Bloch functions involved. 

55 



REFERENCES FOR CBAP'f'ER 2 

2.1 Schiff L I Quantum Mechanics 3rd. edition 

2.2 Dutta N K 1983 J. Appl. Phys 53(3) 1236. 

2.3 Sugimura A 1981 IEEE J. Quantum Electron. QE-17 627 

2.4 Landsberg P T 1965 Lectures in Theoretical Physics, 

Boulder Vol. 8A Ed. Brittin W E. 

2.5 Takeshima M 972 J. Appl. Phys 43 4114. 

2. 6 Abram R A, Chi Ids G, and Sciunderson P 1984 J. Phys. \..: 

Vol 17 6105. 

2.7 Burt M G 1981 J. Phys C: Solid State Phys. 14 3269. 

2.8 Haug A 1983 Appl. Phys. Lett 432(6) 512. 

2. 9 Brand S and Abram R A 19-84 J. Phys. C: Solid State 

Phys., 17 L571-L574. 

56 



CHAPTER 3 - AUGER TRANSITIONS BETWEEN BOUND STATES 

This Chapter extends the analysis of Chapter 2 and 

specifically develops the theory for Auger recombination 

transitions between bound states. First the matrix 

element is examined and then the summation in Fermi's 

golden rule is performed and an analytical expression for 

the Auger recombination rate between bound states obtained. 

3.1 MATRIX ELEMENT IN THE CORMOR OVERLAP APPROXIMATION . 
The matrix element expressions 2.87, 2.88 and 2.89 may be 

evaluated numerically. However, a simple analytical 

expression in K (where K = I !--.-
1
, -;,

1 
I ) is required if an 

algebraic expression for the Auger rate between bound 

states is to be obtained. Therefore we make the 
,. 

approximation in the matrix element of neglecting the 

perpendicular wavevector dependence of the periodic parts 

of the Bloch functions. This approximation being hence 

forth be referred to as the common overlap approximation. 

Taking in 2.86-2.89 

3.1 

3. 2 
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from an effective mass sum rule expression 

and Smith's 

( +) ~ B - = + I VUNIT 
CELL 

H12 = 

2 
4rre 

where 

(ref 3. 1) • Equation 

( ~L ) ~ and it follows that 

s1n n
1

rr z
1 

s1n n 1 ~rr z 1 
L L 

such as Beattie 

'} c:; 
4-•..JI gives 

3. 3 

s1n n2rr z2 s1n n~ z2 
L L 

3. 4 

r~ being essentially the integral of the envelope parts of 
b 

the wavefunctions and the coulombic interaction. 
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3o L 1 AN EXACT ANALftiC EXPRESSION FOR THE MATRIX ELEMENT 

WITBIR THE COMMON OVERLAP APPROXIMATION 

The integration in 3.4 w.r.t. q z can now easily be 

performed using Jordans Lemma. 
1 

'b • afj rr -Kz
1 

s1n n
1

rr z
1 

sjn 

K e 1 

1 

at 1 +Kz
1 

s1n n
1

rr zl s j n 
1T + - e 
K 1 

Writing 

cos 

One obtains 

zl 
n 

1
,rr z 

l r +Kz 

1 

Jo 
e 

1 
n

1
,rr "rj -Kz 

e 
1 

zl 

- cos 

2 

2 
s j n n21T z2 s 1 n n;t 

1 1 

dz 2dz
1 

2 sJ n n
2

rr z2 s 1 n nz-rr --
1 1 

dz
2
dz

1 

3.5 

3.6 

and using Gradshteyn and Ryzhik (ref 3.2) (hereafter 

referred to as G+R) page 196 eq 2.663.3 

sin n 2rr z
2 

sjn n2 ~rr z
2 

dz
2 

1 1 

+Kz
1 

{K cos , G e (nz+nz~)i 1T 
(n'J+n'1~) 2K 

7 
zl + -

•rl] 
2 1 ~ "-

1T 
(n2+nr)) K- + (-

s j n ( n 7 +n., ~ )f: 1 
- L.. 

[~, + ~n2+n 2 ,)/] "[ -K J iT +- + -2K 
2 <[ (n2-n2~))2 2K 

K + (~ 
3. 7 59 1 

z'1 
"-

z2 



similarly 

L 

11 
-Kz sin n21T z2 s1 n n2 .. rr TT 2 - e z2 K L L 

{ -K 

Now writing A = (l"h -n2"') .::_ ... L , B 

dz
2 

= (n + 
2 

s 1 n 

n )2:. , and 
2"' L 

s1n n
1

rr z
1 

s1n n
1 

.. rr z
1 

L L 
= 

cos(n
1

-n
1 

.. )i z
1 

- cosCn 1+n
1 

.. )f z
1 

2 

gives 

2K cos 

:; cos ( nl ±n 1"' )-L1T z 1 (_:!_2 + --i-z) e- Kz 1 
A2+K B +K 

- ( + )" ( -K cos AL K cos BL ) e K(z 1-Ll 
dz

1 zl + +cos n1-n1 .. L 
A2 + K2 

") 
+ K2 B-
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where first all ~he top and then all bottom signs are 

takeno Finally from 

TT 

~ cos nx cos mxdx 
'TT 

= on.m 2 

and 

nx cos mx dx = rr 

n = m ::;t: 0 3.11 

n m 0 3.12 

we get an exact expression within the common overlap 

approximation (neglect of perpendicular wavevectors in the 

periodic parts of the Bloch functions) 

6ln
1

:tn
1
.1, ln

2
-n

2
.j (1 + on

1
:tn

1
.,0) 

A2+K2 

rrK/4 
+ ----------~----
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3 e 1. 3 ASYMPTOTIC EXPRESSIONS 

Expression 3. 13 is still too complex to allow the 

calculation to proceed analytically. Therefore further 

approximations need to be considered. 

In this section both large KL and small KL approximations 

to 3.13 are considered. The small KL expressions obtained 

are obviously suspect because of the condition in Eq (3.3) 

ie the requirement for the common overlap approximation to 

be valid. However they are still included because like 

the large KL approximations they provide important checks 

on the analysis in Chapter 4. The large KL and small KL 

approximations are then both checked, because of their 

importance, in a number of ways. These checks being 

relegated to Appendix 2 because, although they are referred 

to later during similar checks in Chapter 4, they may be 

omitted on a first reading. 

THE APPROXIMATIONS "1'0 Ib' 

a) FOR LARGE KL 

When KL >> (n 1+n,.}~, KL >> (n +n )2!. then 3.13 becomes 
1 L 2 2"' L 

[oin1-n1 .. 1, in2-n2 .. 1 (l+on1-n1,.,o)-oln
1
+n

1 
.. 1, ln

2
-n2 .. i-oln

1
-n

1 
.. 1, 

ln2+n2 .. 1 + clnl+nl .. l 'ln2+nz .. l] 3.14 

which gives a simple expression for Ib . The numerical 

results from which are tabulated in Table 3.1 for 

processes involving the first three heavy hole sub-bands 

and the first three conduction sub-bands. 
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SD.ft stJB-IAIII)8 

N1 Nl' N2 N2 I I~4t) 
1 1 1 1 3 
1 1 1 2 0 
1 1 1 3 -1 
1 1 2 1 0 
l l 2 2 2 
1 1 2 3 0 
1 l 3 l -1 
l 1 3 2 0 
l 1 3 3 2 
l 2 1 1 0 
1 2 l 2 2 
l 2 1 3 0 
l 2 2 1 2 
1 2 2 2 0 
l 2 2 3 l 
l 2 3 1 0 
l 2 3 2 1 
1 2 3 3 0 
1 3 1 l -1 
1 3 1 2 0 
1 3 1 3 2 
1 3 1 1 0 
1 3 2 2 1 
1 3 2 3 0 
1 3 3 1 2 
1 3 3 2 0 
1 3 3 3 0 
2 1 1 1 0 
2 1 1 2 2 
2 1 1 3 0 
2 1 2 1 2 
2 1 2 2 0 
2 1 2 3 1 
2 1 3 1 0 
2 1 3 2 1 
2 1 3 1 0 
2 1 3 2 1 
2 1 3 3 0 
2 2 1 1 2 
2 2 1 2 0 
2 2 1 3 1 
2 2 2 1 0 
2 2 2 2 3 
2 2 2 3 0 
2 2 3 1 1 
2 2 3 2 0 
2 2 3 3 2 
2 3 1 1 0 
2 3 1 2 l 
2 3 1 3 0 



2 3 2 1 1 
2 3 2 2 0 
2 3 2 3 2 
2 3 3 1 0 
2 3 3 2 2 
2 3 3 3 0 
3 1 1 1 -1 
3 l l 2 0 
3 1 1 3 2 
3 1 2 1 0 
3 1 2 2 1 
3 1 2 3 0 
3 1 3 1 2 
3 1 3 2 0 
3 1 3 3 0 
3 2 1 1 0 
3 2 1 2 1 
3 2 1 3 0 
3 2 2 1 1 
3 2 2 2 0 
3 2 2 3 2 
3 2 3 1 0 
3 2 3 2 2 
3 2 3 3 0 
3 3 1 1 2 
3 3 1 2 0 
3 3 1 3 0 
3 3 2 1 0 
3 3 2 2 2 
3 3 2 3 0 
3 3 3 1 0 
3 3 3 2 0 
3 3 3 3 3 



b) FOR SMALL KL 

Here Eq (3.13) can be rewritten as 

I- ~T t + Z,_, oin 1 ±n 1 ~1, in 2 -n 2 ~1 O+cn 1 ±n 1 ~,0) 

-+ 

+ 

rrK 
4 

{ 
rrL 

+-4 

(-1) yn2,) }) 

3.15 

From which when KL << 1, A2= (n -n ~and B2= (n +n ,~are 
2 2' L 2 2 ~ 

much larger than K2 except when ~ -n2,= 0 in which case 

the terms involving (A1 +K2 )-! dominate and 

Given additionally that n -n = 0 then 
1 1~ 
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rrK 
4 

...... ) } 

-KL n1 ±n 1 ~ } 
(e (-1) -1 

3.16 

3.17 

3.18 



This (3.18), like 3.14, has a sufficiently simple form to 

allow the calculation to continue analytically. But before 

doing so however 3.14 and 3.16 are checked (see Appendix 2), 

and compared to both the full expression (2.87-1.89), and 

the common overlap approximation expression 3.13. 
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3olo4 COMPARISON OF THE COMMON OVERLAP APPROXIMATION 

WITH TBE FULL MATRIX ELEMENT EXPRESSION 

Figures 3.1, 3.2, and 3.3 compare the above approximations 

to the integral in 2.87 with the full expression. Fig 3.1 

makes the comparisons for the important first sub-band 

process. Fig 3.2 makes the comparisons for an example of 

a processes where n -n ~ 
1 1 is odd, namely the process where 

the colliding electrons are in the first conduction sub-

band, the promoted (Auger) electron is in the second 

conduction sub-band, and the hole is in the second heavy 

hole sub-band. And Fig 3.3 makes the comparisons for an 

example of a process where n1 -n( is even and non-zero, 

namely the process where the colliding electrons are in 

the first conduction sub-band, the promoted (Auger) 

electron is in the third sub-band, and the hole is in the 

first heavy hole sub-band. 

Anticipating the uncertainty in the factor multiplying 

the wavevector dependence of the overlap integrals between 

the periodic parts of the conduction and heavy-hole band 

wavefunctions (see Chapter 6), figures 3.1, 3.2, and 3.3 

plot the integral divided by this multiplying factor. The 

size of which, when estimated conventionally (see for 

example ref 3.1) varies slightly with well width. 
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FIGURE 3.1 

This figure compares the integral approximations of section 3.1 with the full 
integral expression in equation 2.87 with 2.88, 2.89 and 2.90, for the first 
sub-band process (see insert) in a 1.3 ~m InGaAsP/InP QW system where the band gap 
between the first sub-bands ~s kept constant at 0.96 eV, and K is taken 
(anticipating 3.46) as 

~cl - Evl' + Ec2- Ec2') 

2

::c ~~:!:) 
where \.1 

m 

m 

* 
c 

* 
v 

indicates the full solution 

indicates the exact solution within the common overlap approximation 
(ie expression 3.13) 

-----indicates the large KL approximation to 3.13 (ie ~~from expression 3.14) 

-····· .... indicates the small KL approximation to 3.13 (ie IT from 3.18) 
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FIGURE 3. 2 

As figure 3.1 but for the 
processes where the colliding 
electrons are in the first 
su~-band, the promoted (Auger) 
electron is in the second suh
band, and the heavy hole is 
in the second heavy hole sub
band. (see insert) 

riGURE 3. 3 

As figure 3. 1 but for the 
processes where the colliding 
electrons are in the first 
sub-band, the promoted (Auger) 
electron is in the third 
sub-band, .:md the heavy hole 
in the first heavy hule 
sub-band (see insert) 
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The plots are for the 1.3 ~m InP/InGaAsP system in which 

InGaAsP composition is varied so as to keep the band 

gap between the first conduction and first heavy hole sub-

band constant at 0.96 eV. From these plots, and the 

importance on statistical grounds of the first sub-band 

process (see Section 2.3.2 and Chapter 5), it is 

seen that the large KL, common overlap approximation (ie 

expressions 3. 14) gives reasonable results for well 

widths of 60X and above. Therefore expression 3.14 

is used for the remainder of the calculation. 
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3o2 THE SOMMATION OVER ALL BOUND STAT~S 

The Auger recombination rate was given in Chapter 2 

( eq 2. 7 ) as 

2n 7 

R = h ~PI< ~·INITIAL SYSTE~' H"! 'VFINAL SYSTEM >I- S(E) 3. 19 

STATE STATE 

Using the statistical factor P given by eq 2.15 and the 

matrix element from 2.34 where M is given by 3.3 

where 'Rb' is the total bound sub-band to bound sub-band 

CHCC Auger recombination rate per unit volume. 

and n 1 are summed over all appropriate bound sub-bands. 

15 .. 1 , 15_N2, and ~, 2 .. are summed, for each bound conduction sub

band, over all wavevectors in the plane of the well, arid ~., .. 

is summed, for each bound heavy-hole sub-band, over all 

wavevectors in the plane of the well. 

Converting the summations over ~~.1 , ~"1'' ~ .. 
2 

, and 

integrals, and 

0(K -K +K -K 
-"1'' -"1 -"2' J'2 

normal way gives 

changing 
A 

to 

2 2 
4 ( 

4 ne ) 1 

. EINT (2rrl 

67 

-~ "1 +~ "2" 

K 
-"2" 

to 
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where 

3.22 

These integrals are now evaluated. 

In eq (3.22) carrying out the integral over K first gives 
~ "2' 

2 2 2 o ( E ) d ! d !511 1 .. d ~" 2 
3.23 

where K = K -K . 
-" 1 -" 1 .. 

3.24 

Now expressing K in polar s coordinates (K, e ) , and ~ 
1 

.. and 

~2 in cartesian coordinates (x 1 .. ,y
1 

.. respectively) 

and y being taken to lie along K we can write 
2 -

and 

2 E. = E . + aK 11 • 
1 c l 1 

for 

= E K
2 

vl .. - J.Hl "1 .. 

Therefore 

= 1,2, and 2 .. where a = 

where J.l 
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Also 

· K2 ( K )2 K 2 2) 
= tJE + a(u ''1 ... - ~''1+· ... ''2-K...!'l~ + 1 + K2 

3.28 

where 

3.29 

Now 

.2 2 2 2 
(~"1+~,2-IS'l"J = K,l+K,2+K,l .. + Z(fS,l·~'2) - 2 (fS,l.K..!.'l) 3.30 

-z (~"2. ~.!' 1") 

therefore 

-E = ~E + a 
2 

(u-l)K,l .. - 2(fS,l.K..!'2) + 2(~"l'K.!!l .. ) + 2(IS•z·IS•t .. ) 

s1 nee K = ~ .. 1 -fS, 1 .. 

3.31 

3.32 

The integration over e is trivial if M BF is taken to be 

independent of e, and gives 

J 2 2 -a(x2+(K+y2)
2

)/xBTc 2 " 
Q 2rr MBF(K)I~(K)e 6(a(u+l)(x1 .. +yi .. ) 

3.33 
+ 2aK(y

1 
.. -y 2 )+~E) KdKdx

1 
.. dy

1 
.. dx

2
dy

2 
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The important contributions to the x2 integral come from a 

small region well away from the boundary of the Brillouin 

Zone and therefore its limits can be extended to infinity. 

Do so the integration over x2 becomes Guassian giving 

+a> 

1. 3.34 

Now the integral over x1·is considered. Using 

<X> 

1. 8(f(x))dx 
8(x-x.) 

= I l 

l l!!l. with the i's as the roots of f(x) 
3

•
35 

l 

gives 

<X> 

1 
-<X> 

8{a(~+l)x}. - D)dx1 = · 1 

JD ja(~+l) 
3.36 

where 

3.37 

- D 3.38 

and D > 0 otherwise = 0 since xl" is real. 
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Next considering the y
1

• integral, the condition on D 

limits the range of integration over Y(· D being positive 

only when Yr lies between 

-2aK ±)4a.2K
2 4u(~,i+l) (t,E ~ 2aKy

2
) 

2a(~J+l) 

Now using G+R page 81 eq 2.261 

J -1 
dv. = i.JD ·1 i Ja(\l+l) 

~n(-1) 

and taking the principal value 

J 1 Tf 

ja(~J+1) 

Combining the above 

3.39 

3.40 

3.41 

3.42 

The range of the y2 integration is specified by the 

requirement that the limits on y, must be real. 
J. 

LlE 
2aK 

K 
2(\l+l) 
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Using the substitution u 

integral to the form 

00 

~ J. •K+v . 
- m1n · 2mJn 

leaving 

2 
exp-u 

converts 

(K+v~ . ) 
· LmJ n 

Q = B c M"" (K)I• 
rr3 x: T j ., 2 

0 2 (~+ 1 ) BF b 
( K) e rf c [; aT ( ~ + ( Zu + 

1 ) K ) K d K 
x

8 
c 2aK 2(u+1) ' 

the Yz 

3.44 

3.45 

Now for typical semiconductor parameters the comple~~ntary 

error function is highly peaked at 

K = K 
0 

6E (u+1) 
a. (2u+1) 

for ilE >> 0 3.46 

In comparison M2 (K). Ib-2 (K) is slowly varying and may be 
BF 

taken outside the integral with it value at K = K0 The 

remaining integral over K being then be carried out using 

G+R page 651 eg 6.297.1 

(2u+l) 
( u + 1 ) 

L.E ) 
xB Tc 3.47 

Substituting this into 3.21 gives a analytical expression 

for R 
b 

u+ 1 
2 

( 2u+ 1) 

and this may be checked by alternative derivations. 
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CHAPTER 4 - AUGER TRANSITIORS IR WHICH THE PROMOTED (AUGER 

ELECTRON IS UIIBOOIID 

This Chapter extends the analysis in Chapter 2 

specifically for the CHCC Auger recombination processes 

where the colliding electrons and hole are bound to the 

well, but the promoted (Auger) electron is unbound. 

4.1 THE MATRIX ELEME~ FOR THE BOUND TO UIIBOURD TRANSITION 

To make feasible the numerical calculations of the 

summation in Fermi's golden rule an analytical expression 

is required for the matrix element of the process where 

all states, except the promoted (Auger) electron state, 

are bound. To obtain such an analytical expression it is 

necessary, as in Chapter 3, to neglect the perpendicular 

wavevector dependence in the periodic parts of the Bloch 

wavefunctions. 

Neglecting the perpendicular wavevector dependence of the 

periodic parts of the Bloch functions gives from 2.87, 

2.88, and 2.89 with 2.90. 

4.1 

r = (~t[ I 
n

1
rr nl,rr j qzzl n2rr 
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1
- e s1n L z2 ub L K2 2 L 

+q2 v 

(a, K22 z+a cos K22 z) 
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where origin is taken at one edge of the well and hence 

K .. L 
a .. • B' . Z2 s1n ---z--

when the promoted 

K .. L 
and a m B' cos _!1__ 2 

electron's envelope 

4.3 

function has even 

parity with respect to the centre of the well, or 

K .. L K .. L 
a .. = B ... cos Zl and a • -B' sin z~ 4.4 2 2 

when the promoted electron's envelope function has odd 

parity with respect to the centre of the well. 

I' is 
ub 

now evaluated, there being two possible approaches 

to evaluating it. Either the integral can be done 

first, or alternatively the z1 and z 2 integrals can be 

done first. Doing the z 1 and ~integrals first leaves a 

tedious integration over qz with a large number of terms. 

But this rather defeats the object of having an analytical 

approach, and therefore the qz integral is done first. 

The qZ' integral is done by observing that I~bhas poles 

at + iK, with residues 1 Choosing · ~ = == +-. 
-2iK -

suitable contours 

L 

. (2)3/2 I ... = -
ub L J 
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l 'TT +Kz 1 
+ - e 
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2 
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-Kz 
'IT 1 K e 
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1 < z
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zl 
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sin ~ z 1 e sin 
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-Kz 
2 

e . nl,1T 1 
s1n ~ z 1 z 

75 1 {a cos Kzl+ a' s1n Kz 2z} dz 2dz 1 
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Next the z
2 

integrals are done using G+R page 196 

eq's 2.664.1 and 2.663.3o Assembling the results of these 

z 2 integrals, leaves (if A\'!= - rc,2) , Ba(¥' + tc,2) ) 
L 

I~b . m3'2 I 
Jo 

3~ +Kz 1 ·m 0 

1T 

K e e 

-K sin AL -A cos + 
K2+A2 

-Kz 
1T 1 - e 
K 

a"' ( K 
- Z K2+A2 

-KL sin n1rr zl sin nl,.1T zl [t (-K L L 

AL) a"' (-K cos AL +A sin AL +-
2 K2+A2 

sin n1rr z1 sin n
1

,.rr 

L L 

The first 

s i n BL - B . cos BL 
K2+B2 

-K cos BL +B sin BL~dzl 
K2+B2 

manner. Taking the first one for example, we have using 

sin n1rr z1 sin n1 .. rr z1 4.7 
L L 

4.8 
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The third z 1 integral is evaluated using G+R page 140 

eq's 2.533.2 and 2.533o4o It gives 

, (THIRD ) (2) 3/2 [ 1ub INTEGRAL = L -

77 
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Now assembling, for future reference, I ~ for the 
ub 

1'\ =- 11'=- 1 case 

I"' 
ub 

n1=n1 ... =n2=l ~
( KL/2) sin (AL/ 2) + _< _l-_e_·_KL_)_(~:;:;.-~s=-i-nAL __ -~:..:...._o_s_A_L_) 
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211' 211' -2- + 4 
1T 

-KL B B 
(1-e )(K:sinBL - K cos 

K2L2 
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(!. ~/ 2 a~ ~ {-1- [(KL/2) cos(AL/2J + 
L} K A2+K2 r( 2+AL) f(Z-AL) 

211' 211' 

1T ·KL A 
(1-e )(K sin AL -

K2L2 --r + 4 
1T 

cos AL - l) J 

__ 1_ [{KL/2) cos (BL/2) + 

B2+K2 f(2~) f(2- 8L) 
. 211' 211' 

-KL B 
(1-e )(K sin BL -

K2L2 
-2- + 4 

1T 

cos 

4.10 

which~a suitable expression with which to proceed with the 

summation. 

For other cases and a number of checks upon the above 

the reader is refered to Appendix 3. Note, Appendix 3 

is again referred to during the interpretation of the 

results in Chapter 5 because the last of its checks 

indicates the _behaviour of I~b at large and small K. 
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4.2 THE SUMMATION OVER STATES 

4.2.1 AUGER RATB EXPRESSION ARD TBB IBITIAL IBTEGBATIOHS 

IR K SPACE 

As mentioned in Chapter 2 the Auger recombination rate is 

found from a summation over all appropriate states. For 

the processes considered here we are concerned with the 

promoted (Auger) electron in unbound states which are 

described by a continuum of allowed perpendicular 

wavevectors. The Auger recombination rate per unit volume 

therefore becomes, 

4.11 

where K has a continuum of values, and we have 
Z2" 

substituted into the summation (2.7) suitable expressions 

for the statistical factor P (2.15 with 2.25 and 2.26) 

and matrix element M (see 2.34 and 4.1). 

Converting the summations over !S, 1, ~ .. 1 .. , ISJ, 2 , ~. 2 .. , and Kz2, 

to integrations in ~, 1, ~"1'''~"2. ,~,. 2,,and Ec 2 .. respectively 

and changing o(~,r~'l+f&,plf.2) o(~,r~· 1 +~"2'112 )to (~~·l·~ .. t~2;-!"t 

in the normal way gives 

2 2 
R = _1_ 21T 4. (41Te) 

ub A.L ~ EINT 
Q 4.12 
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where 

-(E.,~-E .,~)/xBT 
<. c... c 

e 

and where dsCON (Ecz~) is the density of suitable continuum 

states per unit energy above the well edge. ds CON(E cz~) 

being given by 

1 4.13 
(E 2~-E z~ . ) c c m1n 

ie the one dimensional density of states per unit length 

(see Section 2.1.2) multiplied by the system length 

'zt', and divided by 4. The division by four 

occurs because of the symmetry requirements placed on the 

promoted (Auger) .state by_ Section 2.4.3.1 (only half the 

states have the right symmetry to give a non-zero matrix 

element), and because allowance for two spin states has 

already been included in the matrix element expression 

(see Section 2.4.1). 

The first few integrations in the expression for Rub follow 

in much the same way as those in the bound state CHCC 
-(Ez~-Ec2)/xBTc 

case, e playing tpe same role as 
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The first difference of note comes from the condition that 

they-component of ~~must be real. Again (cf Eq (3.43)) 

y ~ llE 
2 2aK 

K 
4.14 2(]..1+1) 

but now llE (defined again by t-.E = E 1 +E 2 -E 1 ~-E ..,~)may c c v c~ 

be negative. To interpret this physically the values of K 

and y 2 which allow ~,to be real must be considered. These 

are shown in Figure 4.1 which also interpret particular 

cases using E-K diagrams. Mathematically the significance 

is that account must now be taken of the possible negative 

values of the argument of the complementary error function 

in 

4.15 
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FIGURE 4. 1 

This figure illustrates 

(1) the allowed combinations of the parallel wavevector exchange K and the 
state 2 wavevector parallel to K (ie Y2 ) for 6E positive, 6E zero, and 
6E negative. 

and (2) interprets some of these allowed combinations, which are peculiar to 
the unbound process, on momentum-verses-energy diagrams 

(I) 

' \ 

I 
I 

= allowed combinations 

--K 

with AE-tve 

(2) Processes 1 ike 

I 

'-~ 

-K 

with ~E:O 

_, 

are now allowed 

-K 



4.2.2 TBB RBMAIHIRG IRTBGRATIOHS 

Various alternative approaches to the integrals over K and 

Ec 2, exist. These are now considered, and it is concluded 

that while the most satisfactory approach is completely 

numerical, various analytical approaches provide useful 

checks and insights. 

Attempting to do the Ec 2, first (see Appendix 4) 

immediately produces a difficult integral which can only 

be done analytically when both ~tK) I~b(K, K,~Ec2')) and dScoN 

(Ec 2 ~ are assumed to be independent of Ec 2,. This is obviously 

an unsatisfactory basis on which to proceed, and therefore 

the K integration is done first. 

The approach adopted when the K integral is done first, 

depends on 6E through the complementary error function. 

The influence of 6 E on the behavior with K of the 

complementary error function is shown in figure 4.2. 

When 6E is positive the complementary error function is 

highly peaked, and therefore the matrix element 

MBF (K)I~b (K,K .. 2 .. ,(Ec2' )) may, as in the bound-bound 

calculation, be taken as slowly varying and removed from 

6E (u+l) When dE is zero or 
a. (2u+l) • 

= the integrand with K=K 
0 

negative the complementary error function is not highly 

peaked in K and therefore the matrix element is not so 

easily removed form the K integrand. The simplest 
element 

approach however is to assume that again the matrixAcan be 
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FIGURE 4.2 

The dependence of the complementary error function erfcf/; a 
1 

{ ~ + ( 2 ~+ 1 ) !
2 

\1 t, ~Tc 2aK (~+1) /J 
on ~E and K. Diagrams (i) and (ii) arc for the 200A 1.3 ~m InGaAsP/InP system 

(i) Plots erfc { } against ~E and K and marks important K values 

Cii) Plots log
10 

(erfc { }) against ~E and K to ~E + ve behaviour. 

(a) (b) and (c) are schematic cross sections from (i) and are included for easy 
reference. 
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ie 
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Diagram (ii) 

(c) 
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evaluated at some representative wavevector say K = K0 , 

and removed from the K integrand. Alternative approaches 

for the case of llE :os;;;; 0, such as expanding the matrix 

element MBF (K) I~b (K,K , 2 , (E c2 .. )) as a power series in K and 

then proceeding analytically, produce results so complex 

that they provide no more insight than the numerical 

approach. 

Having done the K integrals analytically using the simple 

approximation described above, the remaining ~tintegral 

must then be carried out numerically if the ~ependence 

of M (KJ r (K0 ~. lE 
2 

.. }), both through TLtand K
0 

, is to be taken 
BF ub '1:' c -'"'1 

into account. To proceed with the remaining ~integral 

analytically, the matrix element must be removed from the 

integrand. This is done by observing that the non-matrix 

element part of the integrand peaks at4E = 0 because here 

energy and in-plane momentum conservation allow 

transitions between states which are near the band edges, 

and therefore more likely to be populated with electrons 

or holes as required. Unfortunately at~ = 0 there is no 
Cc.rmp(.e.,.en·t.-.r)' e.-t-t:r i'ontt:-l•c;i-1 c/..-ru.., .. -l.flnc-R 

clearly defined best choice as a result of the in 
1\ 

K space shown in figure 4.2(b). Therefore the resultant 

analytical expression is inadequate for reliable results. 

However, it is useful for checking the numerical 

calculation of both K and ~iintegrals, and for deciding on 

the most appropriate numerical approach to the 

calculation. Thus for the remainder of this chapter the 

analytical approach is discussed while in Chapter 5 the 

complete numerical results will be presented. 
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I 

4o 2.3 TBB K IftBGltAL WID 41 POSI'I'IVB 

For ~E positive the K integral may be carried out in the 

same way as it was for the bound-bound transition 

considered in Chapter 3. That is MSF (K)I~b (K,Kut•)J is 

assumed to be slowly varying in K space compared to the 

highly peaked complementary error function, and the 

integral in Eq (4.15) is evaluated by using a formula in 

G+R (page 651 eq 6.297.1) or by the method of steepest 

descents, giving 
t.E=O 

~3 (x T )
2 

(u+l) 1 2 2 ( (-Q "' - B c ~;;;...._;...;..,2 MBF ( K )I b K , K" 
2

.. t. 2 .. ) ) a3 (2u+l) o u o c 

E 2" . c m1n 
(2u+l) 

- (u+l) 
e 

where K0 is the value at which erfc 

peaks. 

4.16 

The condition for the peak in K space in the erfc function 

of Eq (4.15) is 

which gives 

(~+ 2aK 
(2u+l) 
(IJ+l) 

(l ---
(2u+l) K K 2 B c 

) 

x T 

(IJ+U 2 "' /Tf e 

( 
t. E + ~( .;;..:2u;;..,+~l..;..) ~2 )

2 

2aK (u+l) 

( cr= (-t.E 2u+l ) ) J x8Tc ZaK2 + 2(u+l) 

where the formula of Abramowitz and Stegun (thereafter 

referreJ ':.o as A+S) page 298 eq 7 .1.19 (ref 4.1) 
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dm+l 
--

1 
erf(X) = 

dXm+ 

2 

/TI 
H (X) 

m 
(m=O,l,2 ••• ) 

and the Hermite polynomial ~(X) = 1 have been used. 

6E 
Now K = K 0 = a 

(]1+1) 
(2]1+1) satisfies 

t.E (2]1+1) 
C u+ 1) 
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4 o 2 o 4 TBB K IR'!'BGRAL Wift LlE ZBllO OR NBGATIVB 

When 6E ~ 0 the integrand is no longer highly peaked in J( 

space, however the approach described in Section {4.2.2) 

is adopted. The matrix element is removed from the 

integrand and a suitable choice of K = K0 in the matrix 

element is anticipated. The following result is then used 

to evaluate the integral for Q in Eq {4.15) 

00 

1 [ b J -(g 2
-u)x

2 

0 

1 - erf ( gX - ii) e dX 

= _1_ + b 
4g2 g 

= u 4.19 

(This result does not appear in G+R and is therefore 

derived, in Appendix 4- ) • Using 4.19 and taking 

=} x:Tc' 
(2~+1) 

b = -1 x:Tc • liE 
the expression for Q in g 

2(~+1) 2et 

Eq (4.15) becomes 

It now becomes necessary to estimate K0 • Figure 4.2(c) 

shows the 

function on 

the argument 

dependence of the complementary error 

K when ~E < 0. Now by taking the gradient of 

!liE! ~+1 
of the complementary at K = ~ 2u+ 1 { ie 

when erfc(O)=l) and using this in an approximate way 

to find the rate of change of the argument of the 

complementary error function it is seen that the 

complementary error is a good approximation to a step 

function providing.6E >> x8 Tc. 
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A convenient choice of K0 is therefore 

K = 
0 

I £\E I ( j.J + 1) 
a (2u+l) 4.21 

When 6E = 0 the choice of a suitable value of K becomes 
0 

even more difficult. By comparison with numerical 

calculation it has been found that the obvious choice, 

K0 = 0, leads to a spurious emphasis in the integration of 

this single point in K space. 

choice is to take for 

K = K = 
0 

(lJ+l) 
(2JJ+l) 

In fact a much better 

4.22 

Here the thermal energy xB~ replaces 6E in recognition of 

the fact that there tends to be a blurring on energy 

dependences by thermal effects. This it will be seen in 

Section 4.2.5 produces surprisingly good results. 
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4. 2 o 5 DOIRG THE IlftEGRATIOR OVBR OIIBOUIID SUB-BANDS (THE 

Eel' IR'.rEGRAL) NUMERICALLY 

To allow K in the matrix element to be chosen in 

accordance with the estimates of Ko in the previous 

section (ie K = K 
~XB\ (]..1+1) when 

0 -a (2]..1+1) 

K K 
I6E I (lJ+l) 

otherwise), and = = (2)..1+ 1) 0 a 

0~ 6E~-xBTc' and 

also to take into 

account the Ec 2, dependence of K t, 2, , the remaining Ec2' 

integral is done numerically. Figures 4.3 and 4.4 show, 

for the 1.3 \.1 m and 1.55 \.1m InGaAsP/InP systems 

respectively, the results of such numerical calculations 

for the processes where all carriers but the promoted 

(Auger) electron are in the first bound sub-bands. Also 

shown, for comparison, are the full numerical results, 

where both the K and ~integrals are done numerically. 

From figures 4.3 and 4.4 it is seen that the agreement 

between the approximate and full results is good. Also 

good is agreement between the full results and similar 

approximate results where K . - l&~"fc )..1+ 1 1s taken as fb'" a "-r(-211-,+-1~) 

Thus since both approximate calculations remove from the 

integration a significant region of K space around K = 0 

through the choice of K
0
,this region can not contribute 

substantially to the integral. But it is precisely this 

region of K space that is most sensitive to the lack of 

orthogonality of the bound and unbound wavefunctions, and 

therefore the lack of orthogonality must only have a minor 

effect on the results. Hence it is established that the 

lack of orthogonality is not a serious shortcoming in 

applying the theory. 
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,.,23 

0 10 40 eo 10 100 120 

FIGURE 4. 3 

The variation with well width of the Auger recombination rate per 
unit volume in the 1.3 ~m InGaAsP/lnP 1.3 ~m system (constant band gap 
between the first sub-bands) for the process where all involved 11tates 
except the unbound promoted (Auger) state are bound and in the first 
sub-bands. 

-----indicates the calculation where the matrix element& removed 

140 

f h . . flE ( ~ + 1 ) 0 '>. A '>. 
rom t e K lntegrand Wlth Ko = a (2~+1) when ,. uE ,. -:lBTc 

lt:.E I ( IJ+ 1) and K. = - -- l'IE > 0 or l'IE < -x T 
o a {21J+l) Be 

- indicates the same calculation as above but with 

110 

K 
0 

1M 

AEI (IJ+l) 

a- <2~•1> 
'X T 

+I__!__£~ 
a 2~+1 

removing the matrix element (rom the integranda 
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1o25 
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FIGURE 4.4 

As figure 4.3 but for the 1.55 ~m InGaAsP/InP syt1tem 
(constant band gap between the first sub-bands) 
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4 o 2 o 6 DOIRG TBB IftBGBATIOR OVER UIIBOORD SOB-BANDS ('ftiB 

B c 
2 
~ IftBGRAL) OSIRG AH AIIALftiC APPROXIIIATIOR 

Neglecting, for the moment, the energy dependence of the 

matrix element through K0 and K" 2 ~ , it is seen that the 

energy integrand is peaked at ~E = 0 because here energy, 

and parallel momentum conservation allow transitions 

involving states which are near the bound sub-band edges, 

and these states are statistically more likely to contain 

the required carriers. Figure 4.5 illustrates this peak, 

and indicates its functional dependence in the energy 

integrands 4.16 and 4~20. 

The basis of an approximate analytical evaluation of the 

Ec
2

' integral is to evalute the matrix element at the 

energy of this peak, and remove it from the E~· 

integrand. The remaining integration can then be done 

analytically. 

Although the accuracy of this procedure is obviously 

limited it is useful for checking the full calculation, 

and for deciding the most appropriate choice of step 

sizes, etc in the numerical integrations. 
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0 6 

~ t.(.;<J ~(K-~.f'czbJ 
• 10S5 ( cgs on its I 

t 0, 

0 4 

0·3 

0·2 

0·1 

from eq. 4 · 16 

from eq.4 .16 

ellp ~ C.§-n::G:/ 
u-ti \sT, · 

I 
t.lsCON(Ecz-) ""fc .- Eci'rnin 

{___/ 

from eq. 4. 20 

eJ~r-tcr-E~ I) 
x8T, 

00 0·2 ()-4 (~6 0·8 1·0 

.6 E=O 
1·2 

FIGURE 4.5 

This figul'e illustl'ates the t.E = 0 peak in the non-matrix 
element part of the energy integrand, and indicates its 
functional dependence. In particular it indicates the 
t.E = 0 peak for the 200A 1,) ~m InGaAsP/InP system. 

------- -----·-----4E=O 

I' /----cz 
(G:z--~zmin) 

---Air -- -- --{ __ 

1-4 1·6 

( Ectmin- Ecz' )(ev) 



Removing the matrix element from the integrands of 4.16 

and 

tJ. E = 

Q 

Now 

4. 20, substituting for ds CON (E and using 
c2 ... 

we obtain E_
1

+E ,.,-E 1 ... -E ,., ... 
~ c~ v C-

[ u Eel 
(2)..1+1) 

(E _t;' ) 

c2 '"'v1-'' 

3 ).1+1 xBTc 
(u+l) iT ( )2 

3 xBTc ( 2).1+ 1 )2 ~ (2m )
1 

2'TT h2 
~2 rf. 

BF ub 
e).l+l xBTc 

e 
a 

simplifying 

+E 
1
/x T 

c B c 
e 

(E ,., ... -E 
1

+E 
1 

... -E 
2

) 
c... c v c 

--------.,..- dEc 2 ... 
(E 2 ... -E 2 .... ) c c m1n 

[ 4.23 

UEc2-Ev1_.-Ecl 

this by substituting x = E ~-E c2 c2 'min 

and using 6 E = E 
1 

+E 2 -E 1-E 2 ... · max c c v c m1n 

2 
'lT 2 

Q 3 (xBTc) 
a 

2)..1+1 
+ xBTc ()..1+ 1) 

t em)' 2 2 [ - ( u~ 1 ) ()..1+1) 
2 Z h2 MBF 1ub e 

(2).1+1) 
E 2 .... x=6E ).1 c m1n 

1.0 
max 

u+1 xBTc e 

-E 2 .... c m1n 00 

+Ecl/xB Tc xBTc 

lE 
e e 

00 

e 
2 

X 

max 

Eel 2)..1+1 Ec2-Ev1' 

xBTc jl+ 1 X T 
B c 

e 

+-).1- X 

( ).1+ 1) xBTc 
e dx 

~ 
X 

-x/xBTc 
e (x-tJ.E ) dx 

2 max 
X 

dx ] 
4.24 

The first of these integrals is then solved by expressing 

it in terms of Dawson's integral. Putting 

2 
y 
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gives 

dx ( 11 + 1 ) x T dy 
11 B c 

and 

~ 

( (w+1) x T) y 
ll B c 

Thus the first integral becomes 

2 
)2 IT 

(xBTc 01st 3 
a 

- 211+1 
w+1 

e 

e 

(11+1) 

(211+1) 2 

(E c2 -Ev 1 ~) 

xBTc 

Cw+1) 
2 (2f.1+1) 

~ 2 (( 11 +1) X T) 
11 B c 

where F is Dawson's integral. 

4.26 

4.27 

E 1-E 2~ . _ll_ c c m1.n 

u+l xBTc 

y=(11~1 

.J 
"+

11
1 (E 1-E ~~ . ) ... c c"'- m1n 

4.28 

4.29 

To check 4.29 G+R page 317 eg 3.381.1 may be used, it being 

21 e-'
2

dt = fi'erf (xi 

whereY is the incomplete gamma function. Alternatively 

remembered that Y(!.s 
2 , X = 

G+R page 315 eg 3.361.1 can be used*. 

*Unfortunately, this second integral contains a misprint 
in the 4th edition of G+R. In this edition the square 
root sign should continue down to include the 'q'. 
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The second and third integrals are evaluated by 

applying G+R page 317 eg 3.381.3. The complete result 

from the evaluation of 4.24 being 

1.; 
~ (2~ ,~ 2 2 
' ' I M...,FI L .. , 11 .. 1 o uu 

r -(E z~ . -E 1 +~E )/xBT c m1n c max c 
e 

l ~ ~ liE ~) 2 ((\.1+1) xI) F (..J:_ max) 
\.1 B c \.1+1 xBTc 

{ 
~E 

(xBTc)3/2 r(1· X ~ax) 
liE liE B c 

_ max r(~. ~)} 
(x T ) 2 xBTc 

- ( E 2 ~ . - E 1 ) / xBT B ~ M ~ 
+ e c m1n c c (x T )2 r(~ max 

B c ' xBTc 

1 (21.1+1) 
+ -- ....,----,--XB\ (]..!+1) 

-(E 2 ~ . -E 1 )/xBT c m1.n c c 
e 

4.30 

Now this can be approximated. Considering the first term 

F (X~) - 2~~ for large X' (from table 7. 5 A+S page 319) 

and for worst case here considered 

, -
( 

]..! 
X = ].!+1 _, 1. 4 (L - 260A in 1.55 ~m InGaAsP/InP 

system) 

thus F(X") - 0.46 (from tables) while 2~~- 0.36 

Considering the other terms 

1 -X" rCa, X 11) - x"a- e .......... ·] 

(from A+S page 263 eg 6.5.32) 
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So with these approximations 

+ 

1 

(u+l) 
2 

(2lJ+l) 

-(Ec2-Evl~)/xBTc 
e 

u ( 6E ) 
2 

max 

which simplifies further to the relatively simple 

expression 

1 
-(E _,-E l~)/xBT c.. v c 

e 

ll ( t.E ) 2 

max 

4.31 

4.32 

From this the full numerical calculations can be checked 

and optimised. Taking (M8F 2 .r~b) as constant in the full 

numerical calculation the two methods can be made to 

agree within about 10% which is as good as could be 

expected in view of the above approximations, and we 

now proceed to a discussion of the full numerical in the 

next chapter. 
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CBAP'I'ER 5 - TBE RESOL'I'S 

This chapter presents numerical results for the bound

bound and bound-unbound CHCC Auger rate calculations, in 

an isolated quantum well. It is concerned mainly with the 

InGaAsP/InP system, but as shall be seen later reference 

is made 

physical 

to the GaAs/GaAlAs 

interpretation of 

system to assist in the 

the numerical results. 

InGaAsP/InP 

and 1.55 l-1 m 

structures with emission wavelengths of 1.3 l-Im 

are considered. The alloy composition of 

width to maintain a InGaAsP being varied with well 

constant emission wavelength. 

The bound-bound and bound-unbound rates are examined, and 

a physical interpretation of their important features is 

given. The relative importance of the bound-bound and 

bound-unbound Auger recombination in the 1.3 l-Im and 

1.55 l-Im systems 

made with bulk 

comparisons are 

calculations. 

is then discussed, and comparisons are 

CHCC Auger calculations. Finally 

made with some other QW CHCC Auger 

5.1 THE PARAMETERS POR THE InGaAsP/InP SYSTEMS 

For the 1.3 l-Im and 1.55 l-Im InGaAsP/InP structures the 

alloy compqsition is varied with well width to keep the 

quantum well band gap constant. 

The required variation 

composition dependences of 

95 

is 

the 

found 

bulk 

using the alloy 

InGaAsP parameters 



from Dutta and Nelson (ref Sol), a finite square model to 

determine the bound sub-band levels, and a constant ratio 

of conduction band discontinuity to valence band 

discontinuity of 2:1 (see ref So2)o 

Table Sol shows the variation of InGaAsP parameters with 

·alloy composition, and figures S.l and S.2 show resultant 

variation of alloy composition with well width when the 

energy separation between the first sub=bands is kept 

constant at respectively, 0.96 eV (corresponding to the 

1.3 ~m system), and 0.8 eV (corresponding to the loSS ~m 

system). From the second of these figures it may be 

observed that compositional constraints prevent l.SS ~m 

InGaAsP/InP systems being grown below about 114~. 
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Table Sol 

This table shows the variation in In Ga As P 
1-x x y 1-y 

parameters with alloy composition y. The heavy hole band 

effective mass, light hole band effective mass, intrinsic 

dielectric constant, and the r band gap between the bulk 

spin split- off and bulk heavy hole band •A', are found by 

linear extrapolation between binary values. The r band 

gap between the bulk conduction band and bulk heavy hole 

band, and the conduction band effective mass are found by 

more direct experimental methods, and the spin split-off 

mass is given a value typical of binary compounds. 
t 

mHL 

m 
0 

= (1-y} [0.79x+0.45(1-x)] + y[0.45x+0.4(1-x)] 

m 
0 

= (1-y} [0.14x+0.12(1-x)] + y[0.082x+0.026(1-x)] 

(1-y) [8.4x+9.6(1-x)] + y[l3.lx+l2.2(1-x)] 

+ 
t.~P(eV) = 0.11+0.3ly-0.09y 

+ 
E'(eV) = 1.35-0.72y-0.12y 

g 

m t 
c 

O.OB0-0.039y = m 
0 

m 
s 

1.6 = m 
0 

t 
requirement for lattice matching to InP x = 

t= taken from ref 5.1 

0.4526v 
l-0.031y 
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the first conduction and first heavy hole bands constant 
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InGaAsP/InP system) 
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As for figure 5.2, but with the first sub-bands 
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system) 

~ 

200 220 240 260 

WELL \\'IDni tAJ 



So 2 THE BOORD-BOORD CBCC NmlBRICAL RBSOL2'5 

Using the above parameters, figures 5.3 and 5.4 show 

respectively for the 1. 3 lJ m and 1. 55 j.lm systems, the 

variation of the combined bound-bound CHCC Auger rate 

(that is the resultant of all bound-bound sub-band 

transitions see equation 3.48) with well width. The 

·figures 

unbound 

assume carrier thermalisation, between bound and 

-3 
states, of 10E+l8 conduction electrons em and of 

10E+l8 valence holes (light, heavy, and spin split-off) 

-3 em 

To assist in their interpretation, figures5.3 and 5.4 also 

show some important contributions to the combined bound-

bound rate. The largest of these contributions is the one 

where all the carriers remain in the ground electron and 

hole sub-bands. This is to be expected because the ground 

sub-bands have the largest populations of carriers. In the 

other significant processes shown it should be noted that 

the higher electron sub-bands act only as receivers for 

the excited electron, they not being sufficiently 

populated to play any other role. The variation of these 

important individual contributions with well width is, 

when the large KL matrix element approximation is used, 

dependent of well width only through the carrier 

densities, and sub-band energy levels (see earlier figures 

2.3, 2.4, 2.6, and 2.7). The values of the contributions 

shown decrease as higher bands move nearer in energy and 
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hence take a larger share of the available carriers. This 

decrease is however tempered (except in the solely first 

sub-band case) by reductions with well width in the size 

of the activation energy ~ = E 1 +~ -E 1 ~-E 2 ~. The general 

trend for the combined bound-bound rate is seen to be 

downward with increasing well width. The Auger rate curve 

is, however, punctuated by discontinuities as extra 

electron sub-bands become bound by the well, and so are 

available to act as receivers for the promoted (Auger) 

electron. 
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5. 3 TBB BOOIID-OIIBOURD ROMBRICAL RBSOL'I'S 

Figures 5.5 and 5.6 show respectively the variation of the 

first sub-band bound unbound CHCC Auger rate with well 

width, in the 1.3 ~and l.SS~m InGaAsP/InP systems with 

10E+l8 
. -3 

thermalised carr1ers em By comparing the 

magnitude of the rate with that for the bound-bound 

transitions we see that the first sub-band-unbound rate is 

a significant component of the total Auger rate at small 

well widths (< 100~ for .l.3flm system). At these small well 

widths it is found that the first sub-band-unbound process 

is the only significant bound-unbound contribution. This 

is because there are few carriers in the other bound 

states. At large well widths other bound-unbound processes 

are comparable to the first sub-band contribution but then 

the rate from each process and their combined effect are 

small compared to the bound-bound rate. The important 

features of the bound-unbound rate are 1) it is only 

comparable with the bound-unbound rate in narrow wells, 

and 2) it contains oscillations. A qualitative description 

of these features is now given using the premise that the 

statistically favoured AE=O condition selects as dominant 

transitions those involving the unbound sub-band with band 

bottom corresponding to6E=O. 
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The oscillations seen in Figs 5~ and ~6 are not 

inconsistent with the assumption that the unbound state 

sub-band is fixed by the AE=O condition. On these grounds 

we would expected minima to occur when the well width is 

such that the unbound state perpendicular wavevector 
7rr 
L 

9rr 
L etc (see ~ppendix 3 with KL large ?' • I o 

Unfortunately the graphs are not conclusive because the 

· 6E=O peak in the InGaAsP/InP systems is not very sharp and 

is not very good at picking out the transitions discussed 

above. 

The factors affecting the variation of the bound-unbound 

rate with well width are :1) changes in the size of the 

6E=O peak; 2) changes in the width of the ~E=O peak; 3) 

the dependences of the effective density of states on well 

width, 4) the factor of L which appears when the Auger 

rate is expressed per unit volume rather than per unit 

area; and 5) the general decrease in wavefunction overlap 

between the bound and unbound states as the envelope 

function of the unbound state selected by the 6E=O 

condition gets a larger perpendicular wavevector and hence 

more envelope function oscillations across the well. At 

the end of the next section the relative importance of 

these factors is investigated and it is shown that the 

fifth factor accounts for most of the rapid decrease in 

the results. 
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--------------------------------- -----

It is interestimg to note that the discontinuities 

appearing in the bound-bound Auger rate vs well width 

curve (Figs 5.3 and 5.4) do not have any counterpart in 

the bound-unbound curve. The discontinuities come about 

because a new bound state is created in the important 

region of space that is, in the well where the 

recombining carriers are localized. The new bound state 

is then available to receive the excited electron and can 

make a significant contribution to the Auger rate. 

However binding a new state has a negligible effect on the 

continuum of unbound states, their density being 

determined by the boundary conditions at the boundaries of 

the infinite system. It should be noted that the total 

number of states per 

new state is bound 

volume is infinite. 

unit volume does not change when a 

only one state is bound but the 
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5o 4 A TEST OF TBE EXPLMIA~ION OF TBB NUMERICAL BOORD

UIIBOURD RESUL'rS OSIRG TBE GaAs/GaAlAs SYS'l"£11 

PARAMETER REQOIR.BIIEiftS 

The requirements for choosing a set of parameters with 

which to test the interpretation of the behaviour in Figs 

~5 and ~6 , are 1) they should give a sharp 4E=O peak, 

and 2) they should give weight to large K transitions so 

that the large K approximations will hold. 

For the first requirement the choice of parameters is 

suggested by the functional dependences indicated in 

figure 4.5 A sharp ~E=O peak can either be achieved by 

increasing 1 ~ 1 the ratio of the conduction band mass to 

the valence band mass, or increasing ~E • ~E depends on 
max max 

the difference between the effective band gap ~Eg, and the 

effective conduction band discontinuity 1 E ,-E '. 
c2mm cl 

Guidance upon the second requirement can be obtained from 

expression in Appendix 4. Detailed examination of the 

integrand shows that the integral is dominated by the 

behaviour at large K if the quantum well energy gap is 

large. 
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GaAs PARAIIBftRS 

Figures 5.7 , 

test the 

fulfilled in 

and 5.8 show that the requirements needed to 

numerical result against the premise are 

the GaAs/GaAlAs system, where the ratio of 

the conduction effective mass to heavy hole effective 

mass is taken as 0.067 to 0.45, the bulk GaAs band gap 

is taken as 1.42 eV, and the conduction band discontinuity 

is 85% of the difference between the bulk GaAs band gap 

and bulk GaAlAs band gap (ref 5.2). Figure 5.7 shows that 

as required the ~E=O condition is defined by a sharp 

peak in the GaAs/GaAlAs system. Figure 5.8 compares, 

similarly to Figs 4.3 and 4.4 , the full numerical 

calculation of the bound-unbound Auger rate with the rate 

when small K values are omitted, and hence shows that the 

integral is dominated by the behaviour of the integrand at 

large K. 

THE r..rBRPRETATIOH OP TBB GaAs/GaAlAs RESULTS 

Figure 5.8 shows that the oscillations in the numerical 

results are compatible 

with the interpretation 

values of K for the 

dominent transitions. 

with the premises, ie compatible 

in Section (5.3) based on the 

unbound states involved in the 

Further, numerical 

suggested earlier, 

unbound wavefunction 

investigations have shown that, as 

the increased oscillation of the 

defined by ~E=O accounts for most of 
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the rapid 

GaAs/GaAlAs 

~E=O peak 

decrease in the rateo However even in the 

system the blurring caused by the width of the 

is still significant, and must be taken into 

account to get good numerical agreement between the 

approximation and the full the numerical resultso 

However, with GaAs/GaAlAs parameters we have established 

an interpretation of the numerical results, by showing 

them to be consistent with a simple explanations in terms 

of thedE=O statistical peak. 
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5o 5 UIIBOORD-OIIBOOIID PROCESSES 

Because of the carrier distributions assumed processes 

other than where colliding electrons and hole are bound 

are unlikely on statistical grounds. Therefore unbound-

unbound processes have not been considered, they being 

neglected as insignificant. 

5.6 THE COMBINED RESULTS 

Figures 5.9 and 5.10 show the variation of the combined 

bound-bound, and first sub-band bound-unbound CHCC Auger 

rate with well width in the 1.3 ~m and l.ss ~m InGaAsP/InP 

systems. First the relative importance of the first sub-

band bound-unbound rate in the 1.3 ~m system is 

explained. Then comparisons are made between QW results 

and bulk CHCC Auger rate calculations. 

5.6.1 THE RELATIVE IMPORTANCE OF THE FIRST SUB-BAND BOUND

UNBOUND RESULTS IN THE InGaAsP/InP STRUCTURES 

The relative importance of the first sub-band bound

unbound result in the 1.3 ~m InGaAsP/InP system compared 

to the 1.55 ~m InGaAsP/InP system is easily explained on 

the basis of the discussion in the previous sections. 

In the 1_. 5.5 ~ m system the well must be grown relatively wide 

because of compositional constraints. Because the well is 

relatively deep, many (at least three) bound sub-bands are 

always within the well. Consequently the similarities 
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between the first bound state envelope function and 

envelope functions belonging to unbound states involved in 

dominant transitions, are less than in the 1.3 ~m system. 

Hence the first sub-band bound-unbound matrix elements are 

generally smaller, and the first sub-band bound-unbound 

rate less important than in the l.~m system. 

5.6.2 COMPARISON OP THE CORBIRBD RBSOL~ WI~ BULK CBCC 

AUGER RATE CALCOLATIOBS 

Several calculations of the CHCC Auger rate in bulk 

semiconductors 

the quantum 

exist. To make a sensible comparison with 

well results we should consider those 

calculations employing the same major 

that 

assumptions and 

of approximations as 

isotropic parabolic 

function overlap 

effective mass sum 

compares some well 

well calculation. 

this thesis is the use 

bands, and the evaluation the Bloch 

integrals using Beattie and Smith's 

rule (see next chapter) • Figure 5.11 

known bulk results with the quantum 

It shows that the QW rate at 

intermediate and wide wells is similar to the bulk 

calculation it is most closely related to ie Haug et al 

(ref 5.3}. This similarity is now confirmed by reverting 

to using just the first sub-band bound-bound results. 
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A SDIPLB COM PARI SOB' 01" 'l'BE QOAlft"UM WBLL AIID BULK ADGER 

RAftS 

In intermediate width wells reasonable guidance about the 

size of the QW Auger recombination rate can be obtained 

by considering just the first sub-band bound-bound 

processes, and assuming all injected carriers reside in 

the first electron and hole sub-bands. With these 

·approximations the ratio of the QW CHCC Auger rate R
0
Jo 

the bulk CHCC Auger rate RBULK (due to Haug et al (ref 

5.3)) can be shown to be 

9./rr 2).1+1 
8 ).1+1 

where for convenience we define an activation energy 'Ea' 

by 

It is seen that apart from a factor of the order of unity 

the ratio the recombination 
( x8T,) 

of rates is given by E . 
a 

The ratio is small when E is much larger than X BTc • a 

However, it is in such circumstances that the Auger 

recombination is negligible because the carriers cannot 

obtain sufficient energy from thermal agitation to 

participate in Auger recombination either in the bulk or a 

quantum well. When E a and x8 T, are of comparable size, 

then the Auger recombination is significant and the rates 

in a quantum well and in the bulk are the same order of 

magnitude. 
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So 7 TBB SIGRIPICARCB OP TBB RBSOL~ 

Here some tentative conclusions about device optimisation 

are made and we speculate about the temperature dependence 

of the CHCC Auger contribution to the threshold current in 

a quantum well laser. 

Any conclusions 

threshold currents 

about 

will, 

device optimisation for low 

in view of the approximat~ons 

(such as taking parabolic bands), and the uncertainties in 

parameters (such as the overlap integrals between the cell 

periodic parts of the Bloch functions) be qualitative 

rather than quantitative. It only being meaningful to 

base conclusions upon the comparison between the QW Auger 

rate and a similarly calculated bulk rate. Assuming Auger 

recombination makes a significant contribution to the 

threshold current in bulk DH InGaAsP/InP lasers, then 

InGaAsP/InP QW lasers with wide and intermediate width 

wells must be designed to take full advantage of the lower 

threshold carrier densities which the gain expression 1.7 

allows. In particular the optical properties of the 

system (such as optical confinement) should be optimised 

so that the threshold carrier concentration is low, and 

hence Auger recombination is unimportant. 

For narrow wells, in particular those where bound-unbound 

transitions are important, any similar reductions in 

threshold current density will have less effect, because 
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the QW CHCC Auger rate for a given thermalised carrier 

concentration, is significantly greater than the bulk CHCC 

Auger rate. 

The temperature dependence of the CHCC Auger contribution 

to the threshold current depends upon well width. The 

various Auger recombination processes have different 

exponential temperature dependences, and there is a 

redistribution of carriers between sub-bands as 

temperature and well 

these dependences is 

width. Further 

identified as a 

investigations of 

area for future 

work. However, one might expect, from the analytical 

analysis of Chapter 4 (see in particular eg 4.32) that the 

temperature 

greater in 

in 4.32 

exponential 

dependence of CHCC Auger recombination will be 

narrow wells because of the exponential factor 

is small. Interestingly the size of this 

factor depends on the conduction band 

discontinuity. 
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5o 8 COIIPARISON OP TBB RBSOL2'5 WITH Oi'BBR QOAftOM WBLL 

CBCC AUGER RBCOIIBDIATIOR CA.LCOIATIOIIS 

Here two other calculations of OW CHCC Auger recombination 

are briefly discussed. Dutta assumes that the carriers 

involved remain first electron and hole sub-bands. 

He has obtained independently an expression for the rate 

similar in many respects to the expression derived in this 

thesis for the first sub-band rate in the large KL 

approximation. Unfortunately his treatment of the matrix 

element seems to contain an error in that a factor of 

1/(2 ;r)2 is missing from the transformation of 

A ·.2 to c2;r1 a (;
1 
+~2 -~,, -~,2, ) • 

Hence DUtta's equation A6 should contain a extra factor of 

(2n ) 2 • In one respect Dutta's calculations go beyond the 

present work in that he allows (see ref 5. 7 ) the 

possibility of using Fermi-Dirac statisticsby solving part 

of the summaton over first sub-band states numerically. 

Chiu et al (ref 5.8) investigates CHCC Auger recombination 

numerically. The paper does not contain any details of 

the calculation and precise information upon the 

approximations used has not been forthcoming, and it is 

therefore difficult to make detail comments upon 

Chiu et al's work. He does however find that the OW Auger 

rate in a 200~ well at 300K is around two orders of 

magnitude less than the bulk rate at 300K. A result which 

is completely at variance with the calculations of this 

thesis and those of Dutta. 
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CBAP'l'BR 6 TBB OVERLAP INTEGRALS BB"l'WEBB TBB CBLL 

PERIODIC PARTS OF TBB WAVBPURCTIORS WHICH APPEAR IN AOGBR 

CALCOLATIORS 

In this chapter it is shown how the overlap integrals 

between the cell periodic parts of the wavefunctions which 

appear in Auger calculations {see Chapters 3 and 4) may 

be evaluated using a 15 band K.p method. Unfortunately 

presented here are not yet at a stage where the results 

they may 

Chapters 

be substituted in the expressions of 

3 and 4. However even at this early stage it can 

that they represent significant modifications to 

band to band Auger rate calculations both for the 

be seen 

previous 

well and the bulk. The overlaps obtained using the 15 K.p 

band method differ considerable from conventional overlap 

estimates but are in good agreement with results from a 

pseudopotential method. Since these differences were first 

noticed when preliminary estimates of the overlaps were 

made for the (001) direction, the (001) results are 

presented immediately after the K.p method has been 

introduced. These (001) results are then justified, 

because their differences from conventional estimates of 

the overlaps. Next the results for other directions are 

considered, and the similarities between these results and 

some obtained by a pseudopotential method are shown. 

Finally to illustrate the difficulties in simply 

substituting the overlaps discussed in this chapter into 

the expressions of chapters 3 and 4 some results are 

presented for non-parallel wavevectors. 
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6ol AN IRTRODOCTION TO KoP THEORY 

In this section we shall review, for completeness and to 

establish some notation, how within the one electron 

approximation and using the Hartree hamilton, an exact 

matrix equation describing the one electron energies and 

wavefunctions for the entire zone may be obtained, if 

sufficient is known about the zone centre states. 

Using one electron Bloch wavefunctions ~nK 

one gets from the Schrodinger equation 

where 

- -il\4 H +iK.r H = e e 
K 

-i.Kr = e U nK ( r) 

6.1 

6.2 

Now expanding the periodic parts of the wavefunctions in 

terms of the zone centre periodic parts u (r), and using 
roo 

orthonormality equation 6.1 becomes 

~JUNIT 
CELL 

Expanding HK 

}k~r 
m JUNIT 

CELL 

U (r) HK U
0 

(r) d3r =cE 
m "" nK 

0 0 

in terms of K gives 

Urn (r)[H-iK.[ r,Hl-t ~ 
o ~=x,~z 

v=x,y,z 
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which may now be simplified if the Hartree hamilton is 

used.(iK. [r,H] becoming 2K.p, ± K1JK)r1J,[r~,H]], becoming 
7 

K- ( using Cardona atomic units, ref 6. 2 ) and higher 

commutators becoming zero.) If other hami 1 tons are used, 

Kane (ref 6.1) shows the form the commutators and 

concludes that only minor changes to the results occur. 

One reason for this i_s that for the Hartree-Fock 

hamilton at least iK. [r ,H] has the same symmetry as 2K.p 

and is determined empirically. Here only the Hartree 

hamilton with the addition of K independent spin orbit 

interaction is considered 

ie 

2 
~ = H + 2~.p + K 

where, using Cardona atomic units 

H = - '7
2 + V(r) + l [ (llV"'P) .6] 

~ 2 

6.5 

6.6 

Hence combining 6.4 and 6.5 one gets a matrix equation (to 

be discussed later) which allows the energy bands and 

wavefunctions to be determined at any point in the zone if 

sufficient information is available about the zone centre 

energy eigenvalues and eigenvectors. 
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6.2 THE (001) DIRECTIOR 

6.2.1 THE 15*15 HAMILTON AND TBE FITTING OF PARAMETERS 

Initially equation 6.4 is solved for K values along the 

(001) direction because this reduces, by symmetry 

considerations, the amount of information needed about the 

zone centre states. Cardona and Pollak (refs 6.2 and 6.3) 

build this information up in a systematic way. Here only 

the philosophy of Cardona and Pollak's approach is 

outlined. For details of how particular matrix elements 

are determined the reader is referred to the original 

series of papers, by Cardona, Pollak, Broerman and 

Higgenbotham (refs 6.2 to 6.5). 

First Cardona and Pollak establish using only the symmetry 

properties of the octahedral group the number and type of 

zone centre states to be used. The zone centre states 

used are ·the irreducible representations 

of the octahedral group which of course have the same 

symmetry properties as the zone centre periodic parts of 

the Bloch functions. An indication of which zone centre 

states, need be considered, is then obtained by 

considering the combinations of plane waves which have the 

same 

energy 

are 

symmetry properties as the periodic UL • 
"b IS 

plane waves satisfying the symmetry 

The lowest 

requirements 

the 2rr [0,0,0], 2rr [1,1,1], 2rr [2,0,0], and 
a a a 

2rr [2,2,0] waves. Now since the energy gap between the 
a 
21T [2,0,0] and 2rr [2,2,0] is large and from - waves a a 
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perturbation theory the amount of interaction between 

states depends inversely on the energy gap separating 

them, zone centre states corresponding to ;rr [2,2,0) waves 

and higher are neglectedo The symmetries of the states 

corresponding to the remaining waves are then found by 

considering the character tables for the plane waves. 

Hence one gets an irreducible set of 15 zone centre states 

as follows 

I r lower > I 2 lower > I r o) > I 2upper > I rupper > I xlower > I > 
2"' I 25"' I 12"' • 25 • 2"' I 25"' I Yts 

I. Yupper > I Ylower > I > I upper > 1 > I rupper > I rlower > 
25"' I 25"' ' xlS I x25"' I 

2 1s ' 1 ' 1 

I (2) 
and r 12 > 

where r2 .. is invariant under the zincblende symmetry 

operations but changes sign under the remaining operations 
( 1 ) r::;'o 

of the diamond group, Zzs"' transforms as xy, r 12 as., 3 

( x 2 
- y 2 

) , Z 
1 5 

as z , r i; ) as 3 z2 - r 2 , a n d r 
1 

i s i n v a r i en t 

under the operations of the diamond group. Each basis 

state must now arbitrarily be assigned a spin and phase. 

Spin is assigned so that it is quantized in the (001). z 

direction, 

6 1 t > = It> zl 

6 It>= ill-> 
y 

&It>=!+> 
X 

~I~>=- I~> z 

6'y!J>= -ilt> 

{ i~>=+lf> 
X 
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and phase is assigned in order that the momentum matrix 

elements in equation 6o4 are real, ie even-parity states 

are taken as purely real and odd-parity states as purely 

imaginary. 

The Ge crystal potential is next turned on and the matrix 

elements for these states are determined. The diagonal 

matrix elements are determined both experimentally by 

cyclotron resonance and theoretically by O.P.W and 

pseudopotential calculations. During these determinations 

of the zone centre diagonal matrix elements (ie Um 's 
0 

energies) spin orbit interactions are ignored because they 

are explicitly included in the hamilton to be solved. The 

zone centre diagonal matrix elements used are then: 

r
lower 
25 ~ 

~lower 
1 2 ~ 

rupper 
1 

rlower 
1 

r 12 ~ 

rupper 
25 

rupper 
2~ 

0.00 

0.0728 

0.232 

(eigenvalues in rydbergs) 

0.571 

0.966 

0.770 

1. 25 

1. 35 
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The sizes of the off diagonal matrix elements are found by 

a mixture of experimental determination and band fitting 

so that the resultant band structure agrees with non-zone 

centre results, the number of parameters which must be 

considered being considerably reduced by the application 

of group theory. In the (001) direction the only non-zero 

momentum matrix elements for states of the same spin are: 

2 . < flower I I flm•er > 
~ 25 ~ p 2 ~ - p = 1. 360 

2. < flower I I T' > 
~ - 25 ~ I p " 15 - Q = 1. 070 

z· -- f1owerl If > ~' 25~ p 12~ = R = 0.8049 

2 . <flower I I fupper > - P" = 0.1000 ~ 25~ p 2~ 

. < fupperl lflower > P' = 0.1715 2 ~ 25 ~ p 2 ~ -

2. < fupperl If > 
~ 25~ p 15 - Q' =-0.752 

. < fupperl I" > 2 ~ 25~ p 1 12~ = R' = 1.4357 

2 . < fupperl I fupper > - p"' = 1. 6231 ~ 25 p 2 ~ 

2. < fupperl If > 
~ 1 p 15 = T = 1. 2003 

z· <flower I If > 1 1 P. 15 
= T' = 0.5323 
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States with opposite spins cannot interact except through 

the spin orbit interaction. Those which do interact are: 
Ge value GaAs value InP value 

< t zloweriH lxlowerJ > =- _31 615~ D __ 31(0.0213) or 
25 I 50 25 " 

and equivalent by symmetry matrix elements. Hence along 

the (001) direction with kx and ky equal to zero the 

matrix can be seperated into two 15 by 15 blocks, and this 

is the advantage of working in a high symmetry direction 

such as the (001) direction. 

Having found the parameters for Ge the matrix for GaAs or 

InP is determined by the addition of an antisymmetric 

potential v- to the crystal potential of Ge. This is 

equivalent to using the tetrahedral group to determine 

which matrix elements are zero rather than the octahedral 

group. The additional momentum matrix elements in the 

zincblende structure are: 

value in GaAs value in InP 

< r lv-lrlower > 
15 25 

== v-
l = 0.12652 0.13973 

< r~owerlv-lr~pper > ==v =-0.24791 -0.22161 
2 

< r~~werlv-lr~ower > == v-
3 = 0.38210 0.26413 
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0.15348 

-0.28018 

0.0 

·and the additional spin orbit interaction matrix elements 

are: 

value in GaAs value in InP 

< Z 1 ower f I H I . y ~ > 
25.. SO 1 I 5 

t. 
=-

3 
= 0.00507/3 0.02922/3 

and similar. (The sizes of these new matrix elements being 

determined by fitting to known experimental GaAs and InP 

energy gaps, details of which are given in refs 6.3, to 

6. 5 .) 

Having above discussed the size and the parameters of the 

matrix equation 6.4. Figure 6.1 shows the complete 001 

matrix which must be diagonalised to give the eigenvectors 

required for the overlap integrals. 
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6.2.2 THE RESULYS IN THE (001) DIRECTIOB 

The overlaps which are of interest for the CHCC Auger 

process are those between the initial and final states of 

the recombining electron. Since each eigenvector is 

doubly degenerate because of spin , for each interaction 

four overlaps need to be considered. However, because of 

the way the matrix can be split into two 15 by 15 matries, 

two overlaps are exactly zero, and the other two are 

similar and may be found by solving the 15 by 15 

matrices. The results shown are for one of these non-zero 

overlaps, or at the risk being pedantic, are obtained by 

squaring each overlap, 

the square root (this 

quantity equivalent to 

used by LandsbergJ. 

dividing by two, and then taking 

operation being used to define a 

the overlap integral originally 

For wavevectors corresponding to the threshold condition 

the 

be 

conduction 

around 0.7 

band - conduction band overlap is found to 

which agrees well with the usual 

approximation of taking it as unity. 

On the other hand the conduction band - heavy hole band 

overlap does not agree well with the usual approximations 

(refs 6.6 to 6.10). In figure 6.2 it is shown how the 

modulus of the overlap between the zone centre conduction 

band and the heavy hole band varies as the heavy hole 

wavevector which is taken to lie along the (001) axis is 

increased. These overlaps are significantly smaller than 
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FIGURE 6.2 

This figure shows the variation in the modulus of the overlap integral between 
the cell periodic parts of the conduction and heavy hole wavefunctions IIcHI' 
as the heavv hole wavevector, lving in the (001) direction, is increased 
(the conduct jon band wavevec tor -being taken as zero). 



predicted by the usual effective mass sum rule overlap 

estimates, and this has important consequences for 

theoretical estimates of the CHCG Auger recombination 

rate. At threshold for the CHCC process in GaAs and InP 

the wavevector transfers are respectively 0.085 and 0.073 

atomic units if parabolic bands are assumed. Thus it can 

be seen from figure 6.2 that the overlap moduli along the 

(001) direction are approximately 0.00011 for GaAs and 

0.0~8 for InP. But using the effective mass sum rule 

prescription of Beattie and Smith (ref 6.7) one finds the 

overlap moduli to be B.63 for GaAs and 0.63 for InP. 

While using the Anton~cik and Landsberg prescription for 

using the effective mass sum rule (ref 6.6) gives 

threshold overlap moduli of 0.46 for GaAs and 0.42 for 

InP. The size of the overlaps obtained from this 

preliminary study are therefore two to three orders of 

magnitude smaller than those customarily used. It is 

therefore clearly necessary to show how the results were 

checked and to investigate the discrepancies between them 

and other estimates of overlap integrals (ref 6.11). 
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6.2.3 CHECKING THE RESULTS 

Apart from the obvious checks of the 15 band K~p results 

against the published Ge, GaAs, and InP data from Cardona 

and Pollak two further types of checks have been carried 

out. These were the checking of zone centre zincblende 

eigenvectors and matrix elements against first order 

perturbation theory expectations, and the application of 

the effective mass sum rule (refs 6.6 and 6.12) to the 

results. As will be seen later in this chapter these two 

checks take on an importance beyond the simple 

confirmation of the consistency of the 15 band 

calculations. The first is of use in providing the 

zincblende basis matrix elements for a comparison between 

15 band results and those of the four band Kane model (ref 

6.13) and the second ie of use in showing the failure 

of the Beattie-Smith and Anton~cik-Landsberg effective 

mass sum rule approximations for the overlap integrals. 

The zone centre, zincblende eigenvectors in the absen'e of 

the spin orbit interaction are found by diagonalising the 

matrix of the asymmetrical potential V in the basis of Ge 

zone centre states in the absence of spin interaction. 

The machine output for the conduction band and heavy hole 

band, zincblende eigenvectors in the Ge basis is 

lc > = ~~ > = lr~ower cond.GaAs> = O.Bllir~?wer> +0.13lr~?per> +0.49ilr~pper~ 

+0. JOi I r iower '> 
6.8 

I H > J XGaAs ·yGaAs > I GaAs> ! lower = 15 + 1 15 where x15 = 0.91 x25 , > +0.41 ili~15 > 

+0.04IX~~per> 
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and these compare well with first order perturbation 

theory estimates of 

lc > = \S > = lriower cond.GaA~ = 0.85jir~?wer> +0.0 lr~~per> 

+0.42ilr~pper> +0.3lilriower > 
1 " q 

!, l-l_ > = ,l_x_G
1
a
5
_A 5 +YG

1
_ ~~ where I, X 

1
G

5
_ aAs> = 0 _ RR I X ~~er> +0 4Ri I i X' _> -

- J --,--zs- ----,---Is 

0 0 1 Xupper> 
+ ' I' 25 

From which the matrix elements of matrix 6.4 in terms of 

the zincblende, zone centre eigenvectors in absence of 

spin interaction, basis can now be found. Considering for 

example a spin orbit interaction matrix element between 

GaAs valance band states 

. < 2GaAstl IXGaAs~> = [< 2GaAs 12 tower> < 2 lower
1
H IXlower> 

1 15 Hso ts 15 ' 25 25 Y 25' 

< ZGaAs I' Z > 
+ 15 L 15 

<' . 7 I H I xlower>J < xlower I GaAs> {.r ZGaAs I z lower>< z lower 'i H I i.X > 
' 1 ~15 Y 25' 25.. x15 + ' 15 25' 25 Y 15 

+ < z~;Asliz 15>< iz 15 1Hy\ix 15>} < ix 15 1x~~~ 
now using the previous values ~ 25 and ~ 15 for Ge spin 

orbit interactions 

1 rGaAs> gives 
t 15 

and the above 

which again agrees with machine output. 

expressions for 

The second category of checks on the 15 band K.p results 

involves the application of the effective mass sum rule, 

which may be written as 

(E (K)- E (K)) 
m n (t + : ) 

n 
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where the I is the overlap between eigenvector n and 
nm 

another eigenvector m and the other symbols have their 

usual meaning. This tests successfully the self 

consistency of the eigenvectors and eigenvalues and if the 

diagonalisation is working correctly it will always work 

providing the q-q' is small enough for first order 

. perturbation of the wavefunctions to work. The results 

show that with the wavevectors of interest the use of 

perturbation theory is questionable but more importantly 

from the point of view of comparison with other overlap 

estimates the contributions of the different Inm's is not 

as guessed in the Beattie-Smith and Anton:cik-Landsberg 

estimates. 
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6o2a4 COMP~SON WITH CONvBHYIORAL ESTIMATES AND RBASORS 

FOR TUB DISCRBPARCIBS 

Effective mass sum rule estimates of conduction band-

heavy hole band overlap depend on the assumption that this 

overlap is the major contributor to the conduction band 

mass (Beattie and Smith) or the major contributor to the 

·heavy hole band mass (Antoncik and Landsberg) . It is 

found however that this is not the case. For instance, 

for the conduction band sum rule with K = 0.01, q = 0 and 

q' = 0.001 atomic units, the retention of only the terms 

involving the light hole and spin split-off valence bands 

results in only a 3% error for GaAs and less than a 1% 

error for InP, in estimating the conduction band effective 

mass. While for the heavy hole band sum rule with 

K = 0.05, q = 0 and q 1 = 0.001 the retention of only 

contributions from the two bands in the lowest triplet of 

the conduction band accounts for 99% of the contributions 

to the heavy hole effective mass. These results are not 

however too surprising in view of the fact that Kane's 4 

band model gives the effective mass of the heavy hole band 

with the wrong sign unless these higher bands are included. 

In fact the 15 band K.p (001) results are readily 

understandableinterms of Kane 1 s 4 band model and corrections 

thereto. Kane's 4 band model gives the zone centre 

conduction band eigenvector and the heavy hole valence 

band eigenvector as I s ~ > and 
1
xeaAs + iYGaAs t >, or Is t> 

15 15 
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and 1 X GaAs 
15 

· faAs ~ > 
-l 15 respectively. Hence the overlap 

between them is zero due to spin. Now as can be seen from 

the equations6.8,6.9and the matrix of figure 6.1 the 15 band 

eigenvectors retain the same form as Kane's eigenvectors. 

That is the heavy hole eigenvector and the conduction 

eigenvector do not mix directly because the spin orbit 

interaction does not couple them directly. Further 

symmetry can be used to show that as the heavy hole 

eigenvector increases, then the second order perturbation 

(ie linear K) 

To illustrate 

coupling via I zlo~~,. or 
25 

this second point a 

jz
15

> is also zero. 

. f ul . f matr1x or~at1on o 

Lowdin's technique may be used for folding down Kane's 

extended hamilton matrix H (ref 6.1). This is now done. 

Kane's extended hamilton matrix H is written 

where A contains the interactions between the original 4 

(8) states, B contains the interactions between the new 

additional states, and C contains the interactions between 

the original and new states. (The states of A and B being 

chosen so that the interactions in C are small compared to 

the energy separations between states interacting in C.} 

Multiplying the above matrix by S 

(

I 

s -
-1 ..... 

-B c 
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-------------- - ----

gives 

(H-E) S 

0 ) 
Hence the eigenvectors UK can be found from 

~ (A - CB -
1 c•) . U = 0 

JK K 
K 

where 

the true eigenvalue E in = 1 "' CB C* being replaced by its 

approximate value ie the appropriate diagonal element of 

A. Now to get in CB 1 C* a linear term in ~ we must take 

in a momentum matrix element as one off diagonal matrix 

element and a spin orbit interaction matrix element as the 

other off diagonal matrix element. But combinations of 

this form can be shown to be zero using the symmetry 

operations of the tetrahedral group. That is in the {001) 

direction there is no linear K term in the overlap and 

therefore the overlap might be expected to be small. Thus 

it has been established that our directly obtained 

overlaps are not incomparible with predictions obtained 

directly from Kane's model. 
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Now while considering the comparison of the preliminary 

results with other estimates of the ove(lap integrals two 

further estimates which are based upon Kane's 4 band model 

should be mentioned. 

The first of these is due to Takeshima, Sugimura, and 

Dutta and Nelson (refs 6.8 6.9 and 6.10). Little 

information is available about this estimate and in the 

absence of further information it is suggested (ref 6.14) 

that they may have obtained it by takingthe conduction 

band heavy hole band overlap they use as the average 

Kane's conduction band -light hole band and conduction 

band -heavy hole band overlaps. 

where 

and from re£ l.~l3 

j¢ (O)> =a (O)jist> 
c c 

with to first order in K (reverting to Kane's units for 

consistency with hispaper) 
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a ~KP 26
/N L 3 L 

(P =- i (~) < sj lzGaAs > b.= Jfli 
m Pz 15 ' , 2 2 

4ffi c 

< xGaAs I av P av P I Y~1 aA5. s > 
15 ax r - aY x 

and N1 a normalising constant) 

h2 
E with E 

2m p p 
= 

and therefore 

' 12 I <PeR 

E ~2 
1 __.£ 11 

3 EG 2m 

In the absence of any justification for this (their 

expression) the author can just assume that they are 

trying to account in an arbitrary way for the mixing of 

light and heavy hole bands caused by impurities within the 

semiconductor. Some circumstantial evidence (ref 6.15) 

existing that the size of the overlaps depends on impurity 

concentration. 

The second Kane related expression for the conduction band 

heavy hole band overlap is due to Beattie and Smith (ref 

6.7 and 6.16). To derive it they assume that the system 

is above threshold and that the eigenvectors are non-

parallel. They then give, using Kane's 4 band model, an 

unweighted average over the angle betweenthe eigenvectors 

of the overlap. This is obviously incomparable with the 

15 band K.p (001) results but does indicate that a 
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significant increase in the overlap is possible when one 

moves away from the threshold condition. In section 6.3.3 

the overlap for non-parallel wavevectors is investigated, 

and with this information and information about 

wavevectors which are parallel but not in the (001) 

direction it is hoped, that eventually from this work a 

weighted 

into the 

the next 

average overlap can be obtained and substituted 

threshold Auger results of Chapters 3 and 4. In 

section initial calculations towards this 

eventual end are described. 

131 



6. 3 EftERSION OF TBB CALCULATION '1'0 O"rBBR WAVEVBC'l'OR 

DIRBC'l'IOBS 

6.3.1 EXTRA MATRIX BLBMERTS DBPEBDBBT ON Kx AND Ky 

Using group theory the additional matrix elements 

appear when Kx and Ky are non-zero can be 

Figure 6 0 3 shows these additional matrix elements. 

which 

found. 

Their 

sizes are again taken from Pollak, Higgenbotham and 

Cardona (ref 6. 4) • 

The presence of these extra matrix elements prevents the 

splitting of the 30 by 30 matrix into two 15 by 15 

matric:,i:es, and so it is this larger matrix which must be 

diagonalised to find the overlaps. 

6.3.2 RESULTS WITH TBB WAVEVECTORS PARALLEL 

Figures 6.4 and 6.5 show how the modulus squared of the 

conduction band-heavy hole band overlap varies as the 

heavy hole wavevector rotates between (001) and (011) in 

the zy plane. The conduction band wavevector is set to 

zero and to be consistent with section 6.2.1 the modulus 

of the overlap squared is found by squaring each of the 

four conduction band-heavy hole band overlaps (there being 

four because the spin-orbit interaction splits each band 

not in a symmetry direction into two bands) then adding 

the squares and dividing by two. Also shown on the graphs 

are pseudopotential calculations by Brand of the same 

overlaps (ref 6.17 and 6.18). 
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This figure shows, for GaAs,IICHJ~ as a function of 8, the angle the heavy 
hole wavevector makes with the z axis in the yz plane. The conduction band 
wavevector is taken as zero, and the heavv hole band wavevector as 0.2(

2
"') 

where a is the lattice spacing. The solid curve shows the 15 band K.p ~esults 
and the dashed curve shows nonlocal pseudopotential results. 
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Rotation of the heavy hole wavevector has little effect 

on the shape of the graphs~ Further rotations in the zy 

plane repeat, because of the crystal symmetry, the same 

pattern, and rotations around the (001) direction in the 

xy plane only modify the shown size of the overlap squared 

for a particular angle to the (001) axis by a few percent. 

Brand has found empirical fits to these results (ref 

6.19). He shows that the curves shown in figures 6.4 and 

6.5 may be fitted by 

rtcK 1 ,HK 1 ~) = B sin 2 48 with B= 0.683 from pseudopotentials 

and B= 0.625 from 30 band K.p. 

9 being measured from the (001) axis and the heavy holn 

wavevector being taken as reasonabLy large. For smaller 

heavy hole wavevectors the numerical results show the 

relative size of the overlap in the (011) direction 

increases. 

one wish 

grown on 

exactly 

But this is not a serious problem and should 

to make the simplifying assumption that for a QW 

the 001 plane the conduction band wavevector is 

zero, then most of the integrals needed to 

incorporate the above empirical expression into the 

analytical calculations can be found in G+R. 

Brand 

peak 

peak 

has also found an empirical fit for variation of the 

overlap with heavy hole wavevector magnitude. The 

overlap occurs midway between the (001) and (011) 
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directions. Figures 6.6 and 6.7 show how the size ofthis 

peak overlap decreases 

wavevector. Also shown 

effect of a 

with decreasing heavy bole 

on figures 6.6 and 6.7 is the 

small anti-parallel conduction 

wavevector. 

taking 

This more ~losely mimics the threshold 

condition and also gives a better fit to the empirical 

linear K relationship 

rt CK 1 , HK 
1 

~ ) = B ( K 1 - K 
1 
~ ) 2 

(for which· the coefficient B is very different from the 

coefficient which could be obtained from an application of 

one of the effective mass sum rule estimations). 
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6 o 3 o 3 RESULTS WI~ NON- PARALLEL WA VEVECTORS 

In the results presented in this section the conduction 

band wavevector is taken to lie along the (001) direction 

with- a small fixed magnitude, and the heavy hole 

wavevectors which has a large fixed magnitude, is rotated 

in between (001) and (011) in the zy plane. The modulus 

squared of the overlap is then plotted against the angle 

which the heavy hole wavevector makes with the (001) 

axis. Figures 6.8 and 6.9 show the behaviour of the 

overlap modulus squared in GaAs and InP respectively and 

compare the 15 band K.p results with pseudopotential 

results. As with the parallel wavevector results the 

agreement between the 15 band K.p and the pseudopotehtial 

results is good and their sizes are considerably smaller 

than predicted by conventional effective mass sum rule 

estimates. 

The next level of approximatio~ after the effective sum 

rule estimates, is to use the Kane's 4 band model to 

estimate the overlaps. In Kane's 4 band model the 

conduction band states 1 cp cCt > and 1 cpcB > with wavevector 

along the (001) direction are of the form 

I > I. s ' > b I CxGaAs - t.YclSaAs,V/zt> + cc I zGlaAS s i > cp = a t " + 15 " .. CCl C C 
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K.p (solid curve) and the pseudopotential (dashed 
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hole and conduction band wavevectors. The conductio~ band wavevector is 
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hole band wavevector is taken as 0.15 {;-}. GaAs parameters are used. 
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while the heavy hole states I q,Ha > and I4>H.a > are given by 

I4>Ha >"' l<x~~s + iY~~9 )'/h t'> 

I > ~xGaAs _ . YGaAslv' 12 .a,' > 
lj>HB = 1\ 15 l. 15 

where the primed quantities are given by 

It~>= cos 9/2lt >+sin 9/21~ > 

,.~>=-sin 9/2lt >+cos 9/21~ > 

X~~s# = (cos 9)X~~8 
- (sin 9)Z~;As 

GaAs ~ GaA 
yl5~ = y15 s 

ZGaAs~ = (sin 9)XGaAs + (cos 9)ZGaAs 
15 15 15 

Using these . in the same way as in early steps of Beattie 

and Smith's 4 (8) band averageing procedure 

14> > = ~ 9/2 ICXGaAs cos 9 + iYGla5As 
Ha iZ 15 

ZGaAs s1.n 
15 

e )t > 

sin 9/2 I GaAs ·yGaAs GaAs . a), > 
+ X 9 + 1. Z s1.n • - 15 cos 15 - 15 

li. 

and 

I > - -
sin- 6}2 ! ( GaAs ·yGaAs ZGaAs . e)t > 

~ - X cos 6 - 1. 15 s1.n 
"'HB - 15 15 li. 

cos 9/2 I (XGaAs 9 ·yGaAs ZGaAs Sl.·n e)~> 
+ - 15 cos - l. 15 15 

fi 

136 



thus 

= I< ¢ I .P >1 2 = I b + 12 c 12 
cB Ha c c 

sin ~)cos t) 

giving tffe average over lap squared 

I r I 2 = .! [z ~~ < ,~, II ,~,H >12 + z ~~ < ,!. I ,~, > '] 
CH 1average 2 't' ca 't' a - 't' ca 't'HB 1 

6 .I 0 

which Beattie and Smith now average over e. Here however 

equation 6.10 is retained for comparison with the 15 band 

K.p results. ( The coefficients a , b , and c being found c c c 

by solving Kane's {ref 6.13) cubic equation (10) exactly 

using the zincblende parameters found during the checking 

of the 001 results (see section 6.2.3).) The comparison of· 

the Kane model predictions (from equation 6 .lO) and with 

the more exact 15 K.p results are shown in figures 6.10 

and 6.11. These aqain sho\tl that the simpler estimate 

of the overlap is inadequate. 
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This figure shows IICHI
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as a function of 8, the angle between heavy hoL7 2and 
conduction band wavevectors. The conduction band wavevector K = 0.015~_!) 
is taken to lie 2~1ong the z axis and the heavy hole wavevectorcKH is take~ as 
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dotted dashed c~rve shows the Kane 4 band results. The contributions to the 
Kanes 4 band results are shown by the dashed curve (results for equal 'spin 
indices') and the dotted curve (different 'spin indices'). GaAs parameters 
are used. 
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6o 4 THE SIGRIPICARCE OF TBE RESULTS FOR THEORETICAL ADGER 

RATE CALCULATIONS 

In view of the above results the usual procedure of 

estimating the overlap integral squared at threshold, 

using conventional methods, and then using this to 

evaluate the Auger rate is obviously inadequate. Both the 

use of wavevectors corresponding to the threshold 

condition and the size of the overlap integral found using 

them are questionable. 

Anisotropy 

be exactly 

comparative 

destroys 

parallel 

the condition that wavevectors should 

size (in 

at threshold. But 

some cases bigger) 

even so the 

non-parallel 

wavevectors compared with the parallel wavevectors makes 

it desirable to perform the whole Auger calculation 

numerically to see if the threshold condition is in fact 

strong enough to justify its use. Assuming that it is 

strong enough we are then left with the problem of finding 

a sensibly weighted average overlap to use. 

Conventional effective mass sum rule and 4 band Kane 

derived overlap estimates do not agree with the more 

accurate 15 band K.p or pseudopotential estimates. The 

highly anistropic nature of these more accurate results 

make estimating an average difficult. However from the 

peak values of overlap squared it can be seen that such an 

average is going to be around two orders of magnitude down 

on conventional estimates. This supports the earlier 
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criticisms of the effective mass sum rule estimates, and 

also goes part way to explaining the present discrepancy 

between the measured Auger recombination rate in p-type 

InGaAsP and present theoretical predictions. Su et al 

(ref 6.15) 

of magnitude 

·Nelson (ref 

having reported a measured Auger rate an order 

lower than its predicted value by Dutta and 

6.10), and Sugimura (ref 6.9). Using the 15 

band overlaps chan9€s this theoretical overestimate of 

almost an order of magnitude into an underestimate of 

around an order of magnitude, and therefore it seems 

apparent that the simple treatment of Auger recombination 

at present popularly used (see for example ref 6.10) is 

not sufficient for reliable predictions of phenomenon, 

such as the temperature sensitivity of a semiconductor 

laser, which depend on a knowledge of the absolute size of 

the Auger recombination rate. It becomes necessary to 

consider for example the possible mixing, by 

inhomogeneities (dopants, compositional fluctuations, 

stains etc), of light and heavy hole band wavefunctions, 

the differences between lattice and carrier temperatures, 

and the correct (non-parabolic) band structure of the 

semiconductor. 
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APPBRDIX 1 - TBB THRESHOLD CONDITION POR DIRECT BARD TO 

BARD CBCC AUGER RBCOMBIRATIOR 

During the discussion of non-parabolicity (see section 

2.1.3) and the interaction matrix element 

< lj!INITIAL 
SYSTEM 
STATE 

I.,..,,,, 
I t1 i 1J!FINAL > (see sections2.4.1 and 2.4.2) 

SYSTEM 
STATE 

estimates of the most probable size of the in-plane 

wavevectors are made. These estimates are based on the 

sharp maximum in P (subject to energy and momentum 

conservation) which occurs because of its expon~ials. 

This sharp maximum is referredto as the threshold 

condition for direct band to band CHCC Auger 

recombination, and the size of the in-plane wavevectors 

which correspond to it are found in essentially the same 

way as the bulk (ref 2.4), except that an effective band 

gap rather than the bulk band gap is used to define K4 • 

We have 

- (E - f ) /x T 2 c B c 
e 

- ( E 2 ~- rc ) I XB T c 

- e Al. 1 

Neglecting the last term because E 2 ~ is large one must 

maximise 

to get the maximum value of P. Expressing this in terms 

of the magnitude of wavevectors in the plane of the well 

Al 



(using isotropic masses and parabolic bands) 

where \J 

* m 
c 
~ 

~H 

Al. 3 

From which it can be seen that for the most probable case 

the wavevectors must be parallel to each other. ( The 

parallel condition depending in particular on the 

isotropic mass assumption.) The parallel wavevectors are 

now related by writing K 
"l 

= aK 
"1~ 

Hence energy conservation gives 

2 2 2 
(a + b + )J)K111 ~+KG 

where 

* 2m 
t.E c 

7 

and K 
"2 

Al.4 

Al. 5 

and in-plane wavevector conservation (anticipating section 

2.4.4) gives 

K,2~ = (a + b + l)K, 1 ~ Al. 6 

Combining A1.4 and A1.6 

2 
K 2 

G Al.7 K"l~ l + 2ab + 2a + 2b - )J 

A2 



From which it follows that we must maximise 

2 r - r c v 

h2 
- Ec2- - - K - 2m~ G 

Al. 8 

This is done by differentiation with respect to 1 ai and 

'b' and yields 

Al. 9 

which are the threshold wavevector relationships for 

wavevector components in the plane of the well. 

In general the size of the coefficients depend on the in-

plane E-K relationships used, but with isotropic bands the 

major conclusions remain the same ie the wavevector 

components in the plane of the well are similar for the 

colliding electrons and small compared to the Auger 

electron's in-plane wavevector. 
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APPBRDIX 2 ~ CBBCKS OR TBB BOORD-BOORD MATRIX ELEMERTS 

CBBCK 1 g DOING TBE FIRST qz INTEGRAL APPROXIMATELY 

a)FOR LARGE KL 

g~v~ng 

L 

I ~ 
b 8n 1 

= 12/ 0 

. n 1rr . n 1 ~rr . n 2 ~n . n2n 
s~n ~ z 1 s~n -r-- z 1 s~n -

1
---z 2 s~n -r-z 1 o(z 1-z 2)dz

1
dz

2 
A2.1 

~ln-nl~l' ln2-n2~l<l+onl-nl~o)+6lnl+nl~l 'ln2-n2~1-olnl-nl~l' 
A2.3 

ie the same as 3.14 

bJFOR SMALL KL 

If KL << 1 then 3.5 may be approximated with K = 0. Hence 

A2.4 

A2.5 

which is as expected from 3.18. 
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CBBCK 2 : DOIRG TBB z1 AND z2 IRTBGRALS FIRST 

Considering for clarity, only the first sub-band process, 

we have from G+R page 476 eq 3.892.1 

L iq L/2 

1 
iq z 

2 L z 
z 1T 

dz 
e 

e s~n - = 
L 12 B(2 + qzL/21T,2 - qzL/21T) 

iq L/2 
L 

z 
e = -2 f(2 + ~) f(2 - ~) 

21T 21T 

where B = Beta function and r = Gamma function. 

Using this to carry out the z and z integrals 
1 . 2 

+co 

I~ 1 
b = -co 

1 q L q L -2 

{
f(2 + __ z __ ) f(2 - __ z __ )} dq 

21T 21T z 

Now for convenience introducing the variable X = q L/2 
z 

gives 

Ib ~ =1- (;,) -(K-1)-~ -+ X-2 

-oo 2rr 

{r(2+X) f(2-X) }-
2 

dX 

to which approximaticnscan now be made 

AS 

A2.6 

A2.7 

A2.8 

A2.9 



' TBB LARGE KL APPROXIMATION 

If KL >> 2n it is observed that {r (2+x) r(2-;<)} -z peaks at 

x"' 0 and is small outside the range -2 < x < 2. Using 

I ~ ~ 

b 

-CD 

and using G+R page 656 eq 6.414.6 

I ~ ~ 

b 
as expected 

THE SMALL KL APPROXIMATION 

A2 .10 

A2.11 

If KL << 21T is it observed that {r (2+x) r(2-x)}- 2 is small 

outside the range -2 < x < 2 and is approximately 1 

inside the range. Hence 

I ~ ~ 

b 
~r.J+2 

-2 

I ~ ~ r. d - - as expecte 
b K 

A2.12 

A2.13 

A6 



CHECK 3 : OBTAINIRG THE LARGE KL RESULTS DIRECTLY PROM 

2.87, 2.88, AND 

2.87, 2.88 and 2.89 give when the perpendicular wavevector 

dependence of the periodic parts of the Blochwavefunctions 

are neglected 

A2.14 

Considering again just the first sub-band process 

I ~ ~ _!_1 (~)l(2H(q )-H(q 
b K L z z 

+ 2rr) _ H(q _ 2rr)) (lH(-q ) _ H(q + 2rr) 
L z L z z L 

' -co A2.15 
- H(q - 2rr)) d 

z 1 qz 

where it is observed that as L -+ co the H's peak sharply at 

the zero's of their arguments. 

Multiplying this out and 

l~;(q + Zn) Htq ) dq 
z - L z z 

-.>4 

dropping terms such as 

and l;(q + 2n)H(-q + 2-rr) 
_.,.. z L z L 

because they may be shown to be zero by complex 

integration leaves 

I ~ ~ _!__J+oo (3. )2 
b K2 L 

-oo 

A7 

+ 2;r) + H2 (q _ 2rr)] dq 
L z L z 

where H(x) = 

or H(x) = 

-ix.L/2 
H(+x) e 

+ixL/2 
H( -x) e 

dq 
z 

A2.16 

A2.17 



Now from 2.90 

H (X) 

and 

(from 

+oo 

xL 
= s~n 2 

x/2 

J . 2 
s~n Lx dx 

2 2 
X + c 

-CD 

Therefore 

dq ~ 2rrL as L ~ oo 
z 

+co 

J 1 - cos 2Lx dx = 
2 2 

X + c 

-oo 

rr [1 _ e -2Lc J =-
c 

+ 2rrL as c ~ 0 ) 

I ~ 

b 
as expected 

A8 

A2.18 

A2.19 

+oo 

· jc2 1 2Lx2) dx cos 
2 2 

+ c X + c 

-oo A2.20 

~2.21 

A2.22 

A2.23 

A2.24 



APPDDIX 3 = CBBCU 011 'rBB !VALOA'fiOR OP TBB OIIBOOIID 

IIAftiX BLBIIBift' 

Several alternative routes may be taken between 4.6 and 4.13. 

Here three types of check on the evaluation of ~b~ are 

made. First it is indicated that z1 integrals may be done 

a different way. Then it is shown that 4.10 tends, with 

suitable modifications, to the approximate results of 

Chapter 3. Finally I~b is also checked by side stepping 

4.6, and doing the qz integral approximately. (The 

approximations thus obtained then beingshown to be 

consistent with approximations obtained directly from 4.10 

and 4. 2 .) 

CHECK 1 : ALTERNATIVE MEARS OF DOING THE zt INTEGRALS 

When n = n = 1 in 4.6 the first two z1 integrals may be 
1 1~ 

done using G+R page 478 eq 3.895.2 (with K -t- 0), and the 

third may be done using G+R page 372 eqs 3.631.1 and 

3.631.8. Although the result of the third integration 

sin(BL/2) 
12 iH2~L/2rr) ,2-(BL/2n)) 

arrL sin(AL/2) 

a~rrL cos (AL/2) 
+ (K2 +A 2) 14 .f( 2-t{c\L/2rrl, 2~L/2rr )) 

+ 
(K2+A2) 12 "S(2#.L/2rr) ,2-IJ\L/2m) 

a~rrL co•(BL/2) } + 
12 ~(2~BL/2rr),2-iBL/2TI)) K2+B2 

where ~=Beta function 

A9 



appears somewhat different to 4.9 it may be shown to be 

identical to 4.9 either numerically, or analytically by 

integrating G+R page 949 eq 8.381.4. 

CHECK 2 - OBTAINING THE APPROXIMATIONS OF CHAPTER 3 FROM 

I~b OF Eq 4. 5 

-- (12 ~ By taking a-- ) and a = 0, giving the promoted (Auger) 

electron the parity of the corresponding bound state, and 

setting K 
z2 ~ 

equal to its possible discrete values 

( ie E,2rr, 31T, 4rr 
L L L L 

Srr 
'-L 

etc) it is possible to show that 

4.5 reduces to the approximate values of ~ in Chapter 3. 

Apart from checking 4.5 these reductions have also been 

used to check various computer programs and the 

alternative z 1 , z 2 first approach to 4.2. 

THE FIRST SUB-BAND PROCESS 

When K = ~and KL is large the leading terms in 4.10 are 
z2... L 

rrL 
-2 
2K 

Hence the expected result is obtained ie 

AlO 

A3.1 



Considering again the first sub-band result but now with 

KL << 1 

i KT. /? 

Lrc2)r C2) 
Kl j1 
2 

+ L 

4'TT2 

A3.2 

[ 
KL/2 KL J 

rO)r(t) + 2 

Because of the cancellation we go to the next order in the 

exponential of the first part. Hence with the second part 

neglected 

2 
I ~b::!: ~ 
u L 

~ """ 1T lub--
K 

'TT 
K 

1 [ KL/2 
K2 r c 2 )r c 2) -

Again as expected from Chapter 3. 

THE SECORD SUB-BARD PROCESS WITH K = 2'TT AND - z2~ L 

K =K =K =.!. 
zl zl~ z2 L 

When the promoted Auger state is given odd parity with 

A3.3 

respect to the centre of the well then from both from 4.10 

and the parity considerations of section 2.4.3.1 it is 

seen that I~ is zero as hoped for. 

All 



THE THIRD SUB-BARD PROCESS - WITH Kz2.~ =~'IT MID 

Kzl = Kzl# = Kz2 

Taking KL >> 1 

iT 
It.ih~- -2 

LK 

as required. 

iT 
=-

L 

r-KL/2 L 2. 
2 1 1 -r~~r ~, 

Al2 

r 7 1\ 
lrK2~ 2 d J 

\ iTl r 
A3.4 

A3.5 



CBBCK 3 - DOING TBB FIRST q;a. INTEGRAL APPROXIMATELY 

In this set of checks 4.6 is side stepped, and the 

resulting approximations to I~b' and conclusions about the 

behavior of I' , are shown to be consistent with 
ub 

expectations from both 4.10 and the alternative z1 , z2 

first approach to 4.2. 

a) LARGE K 

Suppose K ~ oo then 4.2 becomes (see for example check 1 of 

Appendix 2) 

Apply the trigonometrical product 

1 

1 

1 · l 1f'Z a Sl.U -
1 

cos kzfZ dz) ( 

formulae 

L 

I~b ~m~ :; tU a 
. 2 7TZ 

s1.n {
nl"r 

co --- K,i) zdz 1 a 1 1 

. n
1 

,1Tz 
Sl.U --

1 

A3.6 

+ K .. )z dz Z2 

. 2 -;r • ( n r1T K .) d 
a s1.n 

1 
z s1.n L.- z1Jz z 

Now using G+R page 372 eq's 3.631.8 and 3.631.1 

+ 

a"' cos(L ·• Kz%)1/2 + a sin L- Kz2)1/2 

--------------~-----------
[ 

n 1'1T n l'rr 

nr1T nt'rr 
12 B(2 +(-

1 
- l<z.:.:)L/2w, 2 -(- - K ,)1/2TI 

J: L zz 
n ,TI 

a sinC-1- + K .•)1/2 -
1 Z2 

ny-rr 
12 B(2 + (- + 

1 

zz K )L/2 J 

A3.7 

A3.8 



which may itself be checked when n{ = 1 by again using G+R 

page 372 eq's 3.631.8 and 3.631.1, but this time without 

the trigonometrical product formulae. 

Particular ·--,·--- -.1:: J...l...- ,..,. 
Vd.l.Ut:::::> UL l..llt::: .l.ub are now considered and it is 

found that because the unbound state (unlike the bound 

state) can choose its parity to suit the requirements of 

the other states, 

K = K = 
zl zl~ 

K K = , = 
zl zJ 

when K 
zl = K 

I' is zero. 
ub 

'IT 

Kz2 
-= L 

K = 'IT 

zl L 

= K 
zl~ 

I• has non-zero values when 
ub 

K -= 21T ' 41T 61T and etc. Further -, -i2 L L L 

and \j= 
31T then I, is - non-zero, 
L ub 

1T and 51T 71T 91T etc. = - ~=1 , -
z2~ L L L 

These results are consistent with results obtained 

when 

but 

then 

directly from 4.10 and also not inconsistent with results 

obtained by doing the z1 , z2 integrals first. To see this 

second point, the origin is placed at the centre of the 

well to take advantage of the parity 

~ + K -L z2 qz 

1 
+-

2 

s1n 

TT 

L 

2 dqz 21~ co,{EzJ co' qzzl dzl 
K + q 

z -L 
1 

A3.9 

integrals are evaluated before the q2 

A3.10 
K 2 - q 

z z Al4 



Now when K =~ similar terms appear in both brackets 
z2~ L 

and a non-zero r· is expected. 
ub 

B h Srr h ut w en Kz 2 ~ = L t e 

terms become less similar, and it becomes more difficult 

to confirm the above conclusions about the behavior of I' ub 

b) SMALL K 

Using the K = 0 approximation (see again appendix 2 

check lb) to do the first qz integral approximately 

L 
1TZ1 1T ~ ~ ~ . -- a s~n - z2 stn 

L L 
~ 

Kz2 z2 cr 1 1
ub = L K o ''

0 

L 

0

1·' {j sin -L-zl dz
1 

0 A3.11 

i 1TZ2 

cos Kzl~ z2 dz 2} a stn 
L 

Now again using G+R page 372 eqs 3.631.8 and 3.631.1 

cos Kz2 .L/.2) . 

3rr =-
L L 

7rr 
'L then I' is ub 

zero. 

Again these results are both consistent with immediate 

observations from 4.13 and not inconsistent with possible 

interpretations of 4.27. That is interpretations where 

small K selects small qz through the 1 term and it is 
2 2 

observed that the bracket 
K +qz 

second of 4.48 is zero at qz .:: 

when K 
3rr Srr 7rr etc. = - -· zl~ L L L 

AlS 

0 

dz
2 



APPERDIX 4 - PART 1 = DOING THE E IR'l'EGRAL FIRST FOR 
c2' 

THE BOUBD-ORBOUND CALCOLA.'!'IOII 

The integral to be considered is 

co "" ') 

(E' 2' . ~" 
1c2'min 

rr..J(xBTc) ') 2 -(Ec2'-Ecl)/xBTc 
Q = M;F I~b ds CON ? 

a- (IJ+l) 

{1 
For the 

00 

1 
E , , . 
c~ m1.n 

-~rf~ (tiE -- + 
XB c 2aK 

first part 

e c m1.n 

0 

(2\l+l) ~)}dE ? , K dK (IJ+l) ~ C-

xBTc e 
-E 2 , . /xBT c m1.n c 

For the second part the variable is changed to X where 

-j-a (Eel+ 
E - E l' - E 1 , 21J+l ~) X 

c2 V C-= + 
xBTc 2aK IJ+l 

So 

(~ (2\l+ 1) ~) Ec2~ = 2aK T X + + ... 
+ Ec2 - Evl' (j..!+l) .... cl 

and 

Al6 

A4.1 

A4.2 

A4.3 

A4.4 
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Hence the second integral becomes 

X (2\.1+1) K -2aK + x T 
a x8 T c ( lJ + l ) 2 B c 

e 
A4.6 

Now using /1_ +S page 304 eqs 7.435 and 7.436 with 

a = -21a x8Tc' K and b = -1 and evaluating between the 

given limits, gives 
00 

3 
( ,2 2 1·2 

(E+ 2' ·1 rr 
ds CON Q2nd = 2 xBTc' MBF 

a ( u+ 1) ub c m1n 

0 

( 

2 a(2u+1) K2 _ E 

e
(aK - (u+1) c2 + Ev1~)/xBT~ (E E )/x T 

- c2~min - cl B C 
- e 

2 a(2u+1) 2 

{ ( 
C.E 2 1 K ~ (aK - )..1+1 K - Ec2 + Evl~)/xBTc 

erf _a_ ~ + u+ -
2 

e 
~Tc 2aK u+l 

{ 
a ( C.Emax 2u+l K )~ erfc ---- ----- + ----· - - K KdK 

x8Tc 2aK u+1 2 

A4.7 

where ~E is defined for convenience by 
max 

~E = E l + E 2 ~ - E 1 - E z~ · max c c v c m1n 
A4.8 

ie the maximum 6E for a given set of participating bound 

sub-bands 

Al7 



Collecting all the terms together 

( 

-(E 2 ~ . - E 1)/xBT c m1n c c 
e 

(this equation will be referredto in Chapter 5) 

From G+R page 651 eq 6.297.1 the first part of A+.q 

becomes 

3 3 . 
n (xBTc) 2 2 + (~+1) 

2 M::-F I .ub ds ( E 2 ~ . ) ? 
a -~ CON c m1n ( 2 ~+ 1 )-

e 

For the second part of A4.9, equation A4.23 

anticipated to give 

6E 
max 

A4.9 

A4.10 

A4.11 

The full solution is therefore, after some rearrangement 

e 

A4.12 

Al8 



whichcan now be used to optimise and check the numerical 

integrations, and to check sections 4.2.3 and 4.2.4 of 

Chapter 4. 

from sections 4.2.3 and 4.2.4 we have 
t:.E=O 

= 1T3 (xBTc)2 (u+l) [j 
Q 3 (Zu+l) 

a 

(Ec2' - Eel) 

xBTc 

c2'min (2,+1) (Ec2 - E 1') 
'"' v d (E ) ( u+l) __ x_B_T,_c ___ 5 CON c2' 

e 

dEc2' 

00 

A4. 12 

dsCON(Ec2') dEc2' 

With dsCON and ~F I~b constant the remaining Ec2' 

integrals are now straight forward, and give after some 

rearrangement 

E 
max 

.. xBT 
e c 

The same result as A4.ll. 

Al9 

- ( E 
2

, . - E 1) I xBT c m1n c c 
e 

2u+l 
(u+l) 

e 
t:.E J max 
X T 

B c 
A4.13 



ie 

2 2 
+ !) e(y -u)X X dX 

X 

1 
2 

2(p-y ) 

1 
exp [ -2(Sy T s/U)] 

Now considering the 6E negative case 

0> 

I: l 

00 

= 1 +J z<u-l) 

2 2 
¢(-gX + £) e(g -u)X X dX 

X 

Using A4 .1 7 

I 
1 

exp (-2(-bg + b~)) 
2/i7 ( /i7-g) 

Now take Iii' = g + 8 so u = g
2 

+ 2g8 + 8
2 

1 
I=----

(2gc+o2) 
~-1~-- exp (-2bo) 
2Cg+o)c 

A21 

A4.17 

A4.18 

A4.19 
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APPBRDIX 4 PART 2 - A USEFUL FORMULA FOR TBB AE NEGATIVE 

IRTBGRATION IN PART 1 

When ~E is negative a non standard integration result must 

be used, and this is now derived. 

From G+R we have the result 

00 

1 = 
2/i7 (/~+y) 

Now considering just 

v = x2 

00 

1 2 
1 (y -).l)Y dY 
2 e 

thus 

-2-( \.l.....;~;;...y_,.2-) - J 0 ( yX 
B 

+ -) 
X 

1 

2 2 
(y -).l)X 

e 

=-
u'U </i7+y) 

A20 

exp [ -2(Sy + s/i7)] 

and substituting 

X dX 

exp [ -2(Sy - S/il)) 

A4.14 

A4.15 
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I 1 ~ 1 A ( 2b~) 
~ 2go (1 + __ u ) ~ 2go \1 + ~) exp - u 

2g g 

.., .., 1 
I=-

2go .... ) - 2~6 ( 1 - 2bo + 2b""o ... 

I -

So letting o -+ 0 

1 b 
I=-+-4l g 

A22 

A4o21 

.... 1 
J 

A4.22 

A4.23 




