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ABSTRACT

This thesis 1is concerned with calculations of the Auger
recombination rate in direct gap semiconductors. It is
composed of two parts: in the first and major part, the
calculation of the CHCC Auger recombination process in a
model of a quantum well heterostructure is considered; and
in the second part, the overlap integrals between the cell
periodic parts of the conduction band and heavy hole band
Bloch functions are calculated using a 15-band full zone
empirical R.p method. These overlap integrals are
important factors in determining the Auger rate involving
the recombination of electrons with heavy holes.

The calculation of the quantum well CHCC Auger
recombination rate differs from the bulk CHCC Auger
calculations because carriers trapped in quantum wells
reside within sub-bands associated with different bound
states of the wells. The gquantum well CHCC Auger
recombination rate is thus calculated by considering all
the possible intra and inter-sub~band carrier transitions
(Hereafter referred ¢o as bound-bound transitions }.
Processes in which the excited electron starts in a bound
state of the well but makes a transition to an unbound
state are also considered, and it is shown that although
these 'bound-unbound' transitions have customarily been
ignored, they can make a significant contribution to the
Auger rate. Simple physical descriptions are then used to
explain the relative importance of the processes, and
numerical results are presented for the Auger rate in
1.3 ym and 1.55 um InGaAsP/InP quantum well systems. In
these alloys it is found that the gquantum well and bulk
Auger rates are . very similar for the same carrier
concentrations, and similar approximations.

In the second part of this thesis conventional
approxlmatlons for estlmatlng conductlon band - heavy hole

w1th the wavevectors in the (001) dlrectlon, where the
discrepancy is much 1larger, showing that the usual
assumptions as to the dominant terms that appear in
effective mass rules, are 1ncorrect Also shown 1s the
underestlmatlon of the over] d. K.j
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FORWORD
Chapter one tries to put the calculation of guantum well
Auger recombination into perspective. It introduces Auger
recombination and then briefly reports the low threshold

current and temperature sensitivity of quantum well lasers.

Chapter two examines the various types of Auger
recombination which may take ©place 1in a gquantum well
heterostructure and the model which is used to describe
Auger recombination in this thesis. It also sets up the

basic elements of the formalism.

Chapters three and four give a detailed development of the

theory describing the guantum well model.

Chapter five presents the full numerical results for both
the bound-bound and bound-unbound processes and discusses
their interpretation in terms of simple physical models.
Thé results are then compared Qith the calculations of

other workers for both the bulk and gquantum well systems.

Chapter six 1is independent of the main body of work, the
calculations reported there being largely completed during
a twelve week spell at the British Telecom Research
Laboratories, Martlesham Heath. It is mainly
computational in nature, and deals with the overlap
integrals between the <cell periodic parts of the Bloch
wavefunctions, these 1integrals being of interest in both

the bulk and the quantum well calculation of Auger rates.
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CHAPTER 1 - AN INTRODUCTION TO AUGER RECOMBINATION AND
SEMICONDUCTOR LASERS

This chapter 1introduces Auger recombination in a quantum
well (QW) heterostructure. First Auger recombination in a
bulk semiconductor is discussed qualitatively, and its
dependence on carrier concentration, temperature, and band
gap 1s indicated. Lasing in a double heterostructure (DH)
laser is then briefly reviewed, and the functional
dependences of Auger recombination referred to above are
used to explain why this form of recombination has been
proposed as a possible reason for the high temperature,
temperature sensitivity of the threshold current in long
wavelength DH lasers. The various Auger processes
suggested to account for the high temperature threshold
current behaviour are then 1listed. Finally the QW laser
is examined wusing the concepts introduced during the
discussion  of the DH laser, and the reasons for
investigating Auger recombination in QW heterostructure

are made apparent.




1.1 AUGER RECOMBINATION IN BULK SEMICONDUCTORS

Auger recombination 1is one of a number of non-radiative
processes by which a conduction band electron and valence
band hole can recombine. 1In Auger recombination the
energy produced during the recombinaticn 1is given to a
third carrier, and the process may be accompanied by the
creation or annihilation of a phonon. Auger recombination
may proceed directly with an interband transition or
indirectly wvia an intermediate state such as a trap or

exciton.

In this thesis we shall be concerned mainly with the
direct process, not involving a phonon, in which two
conduction band electrons collide, with one being
promoted, and the other recombining with a heavy hole (the
so called CHCC process (ref 1.1)). This process is
illustrated in figure 1.1 along with other direct

processes such as the so called CHSH process.

The dependences of these direct processes on a) carrier
concentration and b) temperature and band gap are

discussed next.

For definiteness the direct CHCC érocess, not involving a
phonon, 1is 1initially considered. After applying momentum
and energy conservation to the collision and assuming non-
degenerate carrier concentrations thermalised within

bands, the rate of the illustrated 'forward' ©process



FIGURE 1.1

This figure shows schematically a selection of the direct band to band Auger processes not involving phonons.
It also introduces the state notation 1, 17, 2 and 2~ which will be used later.

CONDUCTION BAND CONDUCTION BAND CONDUCTION BAND

HEAVY HOLE BAND HEAVY HOLE BAND HEAVY HOLE BAND

LIGHT HOLE BAND LIGHT HOLE BAND IGHT HOLE BAND
SPIN SPLIT-OFF BAND SPIN SPLIT-0OFF BAND SPIN SPLIT - OFF BAND

CHCC CHSH CHHL



(Auger recombination) is found to depend upon the square
of the conduction band electron concentration n multiplied
by the heavy hole «concentration p. This is physically
reasonable since two electrons collide and a hole must be
present for recombination to occur. From the rate for the
forward process must be subtracted the rate of the reverse
process (impact ionization) to give the net rate at which
electrons are removed from the conduction band. But since
under high excitation conditions, such as those found in a
laser, the forward process greatly dominates the reverse
‘process, the net rate of recombination will depend on nzp
provided it 1is assumed that non-degenerate statistics are
still wvalid, and any screening effects of the extra
electrons are neglected. Similarly for alternative Auger
processes, such as the CHSH process (see figure 1.1),
where the -energy of the recombination is given to a
valence band electron, the rate at which electrons are

removed from the conduction band depends on npz.

Comparing these <carrier concentration dependences with
that of radiative recombination under non-degenerate
conditions (ie np) it is seen that the relative importance .
of Auger recombination increases with carrier
concentrations. The Auger recombination rate itself
increasing as the cube of the carrier concentration in
excited, undoped materials with equal concentrations of

electrons and holes.



The major part of the band gap and temperature dependences
of the CHCC Auger recombination rate R may be understood
by considering the probability of the dominant forward
process occurring. This is proportional to the probability
of the initial states containing electrons, muitiplied by
the probability of the final states being unoccupied by
electrons. Assuming again non-degenerate statistics and

carrier thermalisation

‘(EI'FC)/XBT -(Ez-f;)/xBl‘ (El,—l’v)/xBTC
Rae e e 1.1

where the energy subscripts correspond to the state
notation introduced in figure 1.1, the zero of energy is
taken as the bottom of the conduction band, T, is the
carrier temperature, xB is Boltzmann constant, fc andtJ
are the conduction and valence quasi-fermi levels
respectively, and the probability of the promoted or Auger
state being empty 1is taken as one since it is usually a
considerable energy from the band edge. Now maximising the
above subject to energy and momentum conservation, and

assuming parabolic bands gives

where Eg is the band gap and u is the ratio of the
conduction band effective mass to the wvalence band

effective mass. It follows

2 U Eg
R anp exp (— - )
1 +u xBT

4



More generally, other processes such as the CHSH processes

give

»~

R o exp (-aa_}:") 1.
; x, T
B ¢

where AE 1is the separation between the band extremities of
the bands in which the initial states for the forward
process reside, minus the separation between the band
extremities of the bands in which the final states of the
forward process reside, and o 1is a function of the
effective masses of the carriers involved. For a more
detailed treatment of these matters the reader is referred

to, for example, reference 1.2.



FIGURE 1.2

a) A simplified stylised diagram of the DH laser in the form of a Fabry-Perot
Cavity
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DH laser under forward bias.
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1.2 THE SEMICONDUCTOR DOUBLE HETEROSTRUCTURE LASER

1.2.1 LASING IN A DH LASER

In this section lasing in a DH laser is briefly reviewed,
the opportunity being taken to define those quantities
which will be used later in discussing QW lasers. For a

fuller discussion the reference is made to 1.3 and 1.4.

A diagram of the physical structure of a DH laser is shown
in figure 1.2. For 1lasing to occur, the increase in the
number of photons in the system due to the predominance of
stimulated emission over fundamental adsorption must be
greater than or equal to the photon 1losses from the
system. The factors controlling the photon population are
now discussed, and it is shown how the threshold condition
(defined as the condition where 1lasing just occurs) is

brought about in a DH laser.

The tendency of the number of photons in the system to
increase may be expressed as the product of two
qguantities, the optical gain and the optical confinement
factor. The optical gain g (an expression for which is
given later in section 1.3.1), 1is defined, for a given
frequency, as the incremental increase in photon flux per
unit flux. It depends on both the density of states for
the bands in which the involved carriers reside, and the
amount of population inversion. The dependence on
population inversion entering the expression for the gain

through a statistical factor which weights the transitions.



The optical confinement factor r is defined as the ratio
of the number of photons in the active region of the laser
(ie the region in which lasing takes place) divided by the
total number of photons in both the active and surrounding

cladding regions. It depends upon the device geometry.

The 1losses within the active region of the system are due
to 1) incomplete confinement, 2) incomplete reflection
at the Fabry-Perot faces, and 3) optical dissipation
losses. The optical dissipation losses can be further
categorised into a) free carrier absorption,vwhich depends
upon the number of free carriers present, b) scattering
losses which are due to irregularities in the boundaries
between different layers of the laser, and c¢) intervalence
band absorption which depends upon valence band structure,
the density of states for the valence bands and their
probability of occupancy. Later for reference purposes,
items 2) and 3) will Jointly be referred to as cavity

losses.

Requiring that a 1light wave makes a complete transversal
of the Fabry~-Perot cavity (see figure 1.2) without
attentuation (ie that the photon 1losses are exactly
balanced by the 1increase due to the predominance of
stimulated emission over fundamental absorption) gives the

standard threshold equation

- - -7
(gl Lo, (1 A)aC)LC

Rle e = 1 13



where a, represents the 1losses of the active region,
@ represents the 1losses in the sandwiching region, Lc is
the length of the Fabry-Perot cavity, and Rland Rzare
the reflectances of the Fabry-Perot faces. To achieve the
threshold for 1lasing, the amount of population inversion
within the system 1is increased until the optical gain is
sufficient to compensate for the photon losses. The
current required to do this is <called the threshold
current, and it must supply sufficient carriers to achieve
the threshold condition, 1in the presence of spontaneous

recombination, leakage currents, and non-radiative

recombination such as Auger recombination.

1.2.2 THE TEMPERATURE SENSITIVITY OF THE THRESHOLD

CURRENT IN LONG WAVELENGTH DH LASERS

In the 1long wavelength lasers now being considered for
optical telecommunication, it has been experimentally
observed that the temperature sensitivity of the threshold

current J may empirically be described by

1

- 2
J = Jo exp (To) 1.6

where Tz is the lattice temperature and T0 is an
empirically determined constant whose value decreases
abruptly above some T, o giving a rapidly increased
temperature sensitivity. Intervalence band absorption,
leakage currents, and Auger recombination have all been
suggested to explain this 1increase 1in the temperature

sensitivity of the threshold current.

8



Adams et al (ref 1.5) were the first to suggest that
intervalance band absorption may be responsible for the
high temperature threshold current behavior of l.6um DH
lasers. However, Henry et al (ref 1.6) have disputed this

with both theoretical and experimental evidence.

Several attempts have been made to implicate Auger
recombination in the temperature sensitivity of 1long
wavelength lasers. These have arisen because 1long
wavelength lasers may have a sufficiently small band gap
for Auger recombination to be significant at relevant
temperature and threshold carrier concentrations. Some
theoretical attempts to explain the threshold temperature
dependence of InGaAsP/InP DH lasers 1in terms of Auger
recombination, are due to a) Dutta and Nelson (ref 1.7),
who consider the direct CHCC process to be most
significant, b) Sugimura (ref 1.8), who considers the
direct CHSH processes to be most significant, and
c) Haug (ref 1.9) who considers the phonon assisted CHCC
process to be most significant. The large uncertainties
in the calculation of the Auger recombination rate (see
Chapters 2 and 6) allowing these several possible
mechanisms to be suggested but limiting definite

conclusions.



1.3 QUANTUM WELL LASERS

The refinement of MBE and MOCVD growth techniques has led
to the development of a laser structure in which the
thickness of the active region (as shown in Fig 1.2) 1is of
the order of 100A. The band edges of the heterostructure
have the appearance shown in Fig 1.3(a) and it seen that
the active region produces potential wells for both
electrons and holes which can confine the carriers. With
well widths of the order of 100A the energy associated
with the carriers motion perpendicular to the layer is
quantized (there are discrete bound states of the one
dimensional well) but free-particle motion remains in the
two dimensions of the plane of the layer. The result is a
set of sub-bands, each one corresponding to a different
quantised state. The density of states contributed by
each sub-band 1is that appropriate to two dimensional free
particle motion 1ie a constant for all energies within the
sub-band. The total density of states from all the sub-
bands in a well therefore has the step like form shown in
Fig 1.3(b). Because of the confining effect of the active
layer and the quantization of the states, the structure is
called a quantum well. In the context of semiconductor
lasers it is found that the quantum well density of states
(see Fig 1.3(b)) 1leads to a gain coefficient which is
superior to that for a simple three dimensional (bulk)

laser structure {such as DH).

10



FIGURE 1.3
This illustrates

a) the formation of sub-bands the band bending caused by excess carriers
being neglected.
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1.3.1 THE GAIN COEFFICIENT
The gain coefficient due to the ground electron and hole

sub~-bands of a perfect, undoped QW laser is

2
A

a8

r \/f- PRSI ~ /= Y\ la 12
— J{E (E_) -~ T (E_J)J)|M__|
L v v op

b
-

=] lm
[
°
~1

glw) = S
A

m

/e \
>~ \n, )

o)
(2]

=

where L 1s the width of a quantum well, fiw is the energy
of the involved photon, EA is the active region refractive
index, <¢ 1is the velocity of light, £ is thepermittivity
constant of free space, mO is the stationary mass of an

electron, m  is the reduced mass, (f (Ec)-f (Ev)) is a
statistical factor, £ being probability of a state being

occupied by an electron, and Mo is the optical matrix
P

element. . .
This may be compared with the gain coefficient of a

DH laser constructed of the same materials.

yol 1 (e YL (T gyt ; 2
g(w) = = c e w (m ) 2w (flz ) (hu-Eg)™ (£ (EC) £ (EV))IMOP‘]--B
n (o] [s}
A .
Here the (h w - Egﬁ mirrors the density of states of the

three dimensional system. The two dimensional system
with the constant density of states does not contain

this factor.

The optical gain <coefficient - —carrier concentration
relationships are found from the above by expressing the
statistical factors (f (Ec) - f (Ev)) in terms of carrier

concentrations. This may be done either using tables of

11



the Fermi-Dirac integrals such as those 1in Blake_more
(ref 1.10) or an appropriate analytical expression such as
that due to Joyce and Dixon (ref 1.11) {The Joyce-Dixon
approximation being an expansion of a quasi-fermi level as
a rapidly decreasing series 1in the ratio of the carrier
concentration to the degenerate carrier concentration. An
expansion which does not fail when the quasi-fermi level
is close to a band extremity.) Using the Joyce-Dixon
approximation, Dutta (ref 1.12) has calculated the maximum
gain coefficient against carrier concentration in a 200A
well by assuming all carriers remain in the ground
electron and hole sub-bands. These results are reproduced
in figure 1.4, and for this particular example the same
peak gain coefficient as a DH laser can be produced with a

lower carrier concentration in the equivalent QW laser.

As the well width varies, the carrier concentration - gain
cdefficient relationship in a QW laser.changes. This is
due to a) the variation of the density of states with well
width, and b) the dependence of the distribution of
carriers between sub-bands on well width. Taking these
into account and assuming perfect carrier thermalisation
between the sub-bands, Sugimura (ref 1.13) has calculated
the wvariation of maximum gain coefficient with well width
for various carrier concentrations in a 1.07 um

InGaAsP/InP QW system. Figure 1.5 reproduces these results,

12



FIGURE 1.4

This figures shows the relationship between the maximum gain coefficient and first sub-band
carrier concentration in a 1.3 um InP/InGaAsP 200A wide single QW laser at carrier temperatures
of 300K and 400K ‘
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FIGURE 1.5

This figure,which is due to Sugimura (ref 1.13),illustrates the variation in the maximum gain
coefficient - carrier concentration relationship with well width. It does this for a 1.07 upm
InGaAsP/InP QW system
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from which it may be observed that a) the gain coefficient
- carrier concentration relationship has a different form
for each well width, and b) the density of states in a QW
laser is always such as to require less population
inversion than in a DH laser to produce the same maximum

gain.

1.3.2 THE OPTICAL CONFINEHENT FACTOR

The dependence of the optical confinement factor on well
geometry and device structure 1is now examined. The
optical confinement factor of an isolated single QW may be
found using a similar treatment to that used for a DH

laser. (See for example ref 1.4).

The problem is simplified to some extent because it is
found for typical well dimensions that only the
fundamental TE mode exists (For example for 1.3 um
InGaAsP/InP laser only the fundamental mode is present
below an active region width of approximately 0.59 um, and
for a 0.9 um GaAs/GaAlAs laser below approximately
0.38 um). Further, the small width of the active region
allows the optical confinement factor, r , to be

approximated by
F=(;2_;2)_L_Y 1.9
2 1 2¢

where H, and Hl are respectively the refractive indices of

the active and surrounding regions. The validity of this

13



approximation depends on the refractive indices involved.
For the 1.3 um InGaAsP/InP system Sugimura (ref 1.14)
estimates that it is adequate below an active region width
of about 0.2 um, and for the 0.9 um GaAs/GaAlAs system
ref 1.4 may be used to estimate that it is adequate below
about 0.1 um. Using expression 1.9 it is seen that the
small width of the QW active region causes the optical
confinement of a single well QW laser to be very much
smaller than that for a comparable DH laser. This acts to
negate the advantage of high gain in a QW. However the
optical confinement can be improved considerably by
placing several wells together to form a multi-quantum

well system (MQW).

Strifer et al (ref 1.15) has shown that for the
GaAs/GaAlAs MQW system, a reasonable approximation to the
optical confinement factor 1is given by considering the
multi-well sysfem as a three region waveguide with

identical c¢ladding layers and a central region whose

thickness t, and average refractive index n are
average
given by
t =N,t, + Nt_, n = “ata” " Tp's"s
“Ata T TBTRY average t .10
where N, is the number of active layers of thickness t,

and refractive index n and NB is the number of barrier

AI

layers of thickness ty and refractive index n Then

Bo
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reducing the optical confinement factor found using these
guantities by the ratio of the combined total width of the
central active region to the <central passive region.
Sugimura (refs 1.13 and 1.14) has used this approximation
for the InGaAsP/InP system.

1.3.3 THE THRESHOLD CONDITION

The higher gain for a given carrier concentration, but
inferior optical confinement in a QW have consequence for
the threshold condition. It turns out that it is possible
to produce QW lasers with lower threshold current than
achieved with DH 1lasers. Indeed Tsang (ref 1.16) has
experimentally reported a threshold current density of
250A per cm 2 , which compares with typical DH threshold
current densities of around 1000A per cm 2. But because of
the smaller active region volume, this may involve a

higher threshold carrier concentration.

As 1indicated 1in the previous two sections a quantitative
prediction of the threshold current is a complex business
even if some simple assumption about the cavity losses is
made. The validity of such calculations (see for example
ref 1.12 and 1.13) must be further guestioned because of
the large uncertainties in the calculation of Auger

recombination rate.
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The best that can be reasonably done is to compare the QW
and the bulk Auger recombination rates under similar

approximations, for similar carrier concentrations, and

make a few semi-quantitative rather than precise
statements about the likely impor tance of Auger
recombination. To make a few observations on Auger

recombination it is worth anticipating the result from
Chapter 5 that the QW and the bulk CHCC Auger
recombination rates for the same carrier concentration are
similar, except in thin wells. Let us also assume that the
CHCC Auger recombination process 1is important and that
other 1loss mechanisms, such as leakage currents, can be
kept under <control. Then it 1is already clear that the
importance of Auger recombination will vary with well
width because of the variations 1in the gain - carrier
concentration relationship, optical confinement factor,
and cavity 1losses. Also the Auger recombination rate will
" be higher in a QW if the threshold carrier concentration
is higher. Finally Auger recombination will be much more
important in single isolateéﬁf?esers than multi-well

lasers, because of the lower optical confinement factor of

isolated single wells.

16



1.3.4 THE TEMPERATURE DEPENDENCE OF THE THRESHOLD CURRENT
As in DH lasers it has been observed experimentally that
the temperature dependence of the threshold current 'J!

may be expressed by

)

A major advantage of QW lasers over DH lasers is lower

r—-ilr—i
=

J = JO exp(
o

temperature sensitivity (ie higher To) for the threshold
current. To illustrate this the 0.85 um GaAs/GaAlAs QW
system is now first considered. 1In this system Auger
recombination is unlikely to be important because of the
system's large band gap. It has been suggested by
Hess (ref 1.17) that the low temperature dependence in a
QW can be explained by the smaller temperature
dependence of the quasi-fermi 1level 1in a QW and/or the
high carrier temperature. However because of the
uncertainties 1in the estiﬁation of carrier temperature due
to the phonon distribution function and scattering rates
not being well known, he was unable to decide between
the explanations. The quasi-fermi 1level argument is
essentially that the quasi-fermi level depends inversely
upon the degenerate carrier concentration and since this

3/2 ¢or  a bulk

goes as T for a QW structure and T
material, the threshold carrier concentrations (and hence
threshold current) in QW laser must change less rapidly

with temperature to maintain the same quasi~fermi level

separation.

17



For the 1.16 um InP/InGaAlAs multi-well 1laser Rezek
(ref 1.18) finds that the temperature sensitivity
increases at high temperatures ie TO‘} 150 for T, < 300K
and ?} =~ 60 for TQ > 300K. In this <case Auger
recombination may bhe responsible for this behavior because
the process is more probable in narrower band gap
semiconductors. It 1is thus of interest to study Auger

recombination in a QW system to try to understand the

temperature dependence of the threshold current.
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CHAPTER 2 — THE MODEL USED AND THE EARLY COMMON STEPS IN

THE QW AUGER RECOMBINATION RATE EVALUATION

This chapter examines the major approximations and
assumptions c¢f the direct band to band non-phonon assisted

CHCC calculations presented in Chapters 3 and 4.

2.1 THE SQUARE WELL MODEL OF A QW HETEROSTRUCTURE

Ideally the results of a large scale bandstructure
calculation should be used to find the carrier
wavefunctions, energy levels, and E-K (energy-wavevector)
relationships which are used to calculate the Auger
recombination rate. However such calculations are noct
well developed and in any case the results could not
easily be incorporated 1in a quantitative theory of Auger
recombination. Therefore a simple square well model is
used which is treated in the effective mass
approximation.: This has the additional advantage of
allowing physical 1insight into the important features of

the Auger recombination calculation.

2.1.1 THE CALCULATION OF ENERGY LEVELS

The QW system is made up of an active 1layer sandwiched
between two barrier layers of wider band gap
semiconductor. It is assumed that the heterostructure
presents simple square well potentials to the electrons
and holes as shown in figure 2.1. These potentials being

taken to be quite independent of the carrier wavefunction.
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FIGURE 2.1

This illustrates the square well potential model which 1s used. It also
defines two energies Econ and Evcon which will be used in later analyses.

Econ
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Effective mass theory is assumed to be valid and
effective masses are used which are appropriate to the
active layer. Alsc wavefunctions are taken as the
multiple of a cell periodic oscillating part and an

pe functicn part.

Q

envel

In this way the problem of motion perpendicular to the
layer reduces to the simple quantum mechanics problem of a
particle in a finite potential well. An example of the
treatment of which <can be found in Schiff 'Quantum

Mechanics' (ref 2.1). Here we simply present the results.

Figures 2.2 and 2.3 show the discrete states in the 1.3 um
and 1.55 um 'InGaAsP/InP systems as a function of well
width, Note, as the well width changes the gap between
the lowest allowed conduction band energy and highest
allowed heavy hole band energy is kept constant (to keep
the laser wavelength the same) by varying the active layer
alloy composition. Also for these <calculations the
conduction band discontinuity is always taken as twice the

valence band discontinuity.

For each bound state of the square well a sub-band occurs
by the inclusion of the kinetic energy due to motion in
the plane of the well. For example a carrier in the
lowest square well state of the c¢onduction band has a
total energy E where

g2

%
1 2m
c

22



1.4¢
(1.3 umj
continuum  of allowed perpendicuiar kinetic anergies
- mEy o E_D ¢ D v '.o—-—--. (D ¢ A o G=ED » D 0 cagl
1.2 et~y T "'\\\
=, S oy, §-§ e
\.\ %"aa.% Q'Q"Q-;.Q
\.Q‘Q.% ':ﬁ.-_-%,_._ -,
“.0 . -=--=-=a-_._.-._.-._..-.g
S 08
2 %r
™
(=]
2
s 0.6}
0.4}
0.2}
20
0.0 i .
-0.2¢-
o
well width {A)
-0.4%
wereeme  heavy hole sub—bands
— = — = light hoie sub—bands
- e oo cOnduction sub—bands
FIQURE 2.2

This figure shows how the allowed perpendicular kinetic energv levels in a
InGaAsP/InP OW heterostructure vary with well width when the band gaop between
the first conduction and the first heavy hole sub-bands is kept constant at
0.96 eV (~ 1.3 um), To do this the active laver composition is varied, and the
ratio of the conduction and valence band discontinuities is kept constant at
2:] =———- shows the heavy hole sub-bands, ——« — shows the light hole
sub-bands, and —+-——-—: shows the conduction sub-bands.
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As figure 2.2 but maintain a band gap between the first conduction and
first heavy hole sub-bands of 0.8 eV (~ 1.5 um). It is observed that below
114A a band gap of 0.8 eV cannot be maintained.



El being the 1lowest square well state energy and the
second term being the kinetic energy due to motion in
the plane of the well 1in which K, is the 1in-plane

%

wavevector and m . is the <conduction band effective

mass which is taken to be isotropic.

For the unbound states of the square well there are a
continuum of allowed energies, each state of the
continuum also leading to a sub-band when the motion

in the plane of the layer is included.

2.1.2 THE DENSITY OF STATES

Having considered the nature of the states of the guantum
well, the resultant density of states per unit energy is
now derived. Isotropic parabolic bands being assumed

throughout this derivation.

"Each sub-band corresponds to a state of the one
dimensional well and motion in the two dimensions éf the
well layer. Hence each sub-band contributes a density of
states per unit energy for a free ©particle in two
dimensions. Including a factor of 2 for spin, this 1is

given by

*
2D (27\')2 2m

o

27K, dK,, 2.2

where E is the energy, and m* 1is the sub-band effective

mass.
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Since ds(E),, is a constant, the density of states

D
i ume duetoall bound states ds (E
per unit wvol s ( DISCRETE %D
is found from this by multiplying ds(E%D by n, the

number of bound states contributing a sub-band at energy
E, and dividing by L, the width of the well

*

E = om 2.3
s ( DISCRETE )3D 2

7h°L
Also each unbound state of the one dimensional well
contributes a sub-band. The unbound states forming a
continuum with the (one dimensional) density of states per

unit length of the system (well+barriers) per unit energy

at energy Ecz, given by
* %
ds(E )=+ (% L 2.4
c2 T ﬁ2 (E _ 3
c2” c2’min
where ECZhﬁnls the energy of the top of the

well (barrier layef conduction band).

Hence the density of states per unit energy per unit
volume due to all unbound states is given by integrating

over all unbound states contributing a sub-band at energy E

E
PPN 1
ds(E). = . ._.(m) 4E . 2.5
3D, 52 2T \y2 (E .. - . . ) o2
c2 c2’min
Ec2'min
« 3/2
ds(E)3D=._l_2_(2L2‘_) (E - E p-0s % 2.6
27 h C< min
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2.1.3 THE CHANGES A BETTER BANDSTRUOCTURE WOULD MAKE TO

THE CALCULATED AUGER RATE

In the absence of better QW bandstructure the Auger rate
calculations which follow, can only give a semi-
quantitative indication of the CHCC Auger rate. However
it 1is possible to get some impression of the effects of

better bandstructure on the Auger rates,

Changing the energies of the bound sub-bands can cause
quite large changes in the Auger rate because the rates
depend exponentially on these energies. Non-parabolicity
in the E-K relations for the sub-bands can also have

significant effects.

The effect of non-parabolicity, which have not been
incorporated in this treatment, may be roughly estimated
by recognizing that it is most important for the promoted
Auger electron and describing the final state of this
electron using a larger effective mass. Dutta (ref 2.2)
has done this using a final state effective mass for the
promoted electrons which 1is twice the effective mass of
the other electron states. For a 200A thick well with a
carrier concentration of 10E+18 cm ° he finds that the
CHCC Auger rate for electrons and holes, which remain in
the first sub-bands, decreases by more than a order of
magnitude for the 1.55 uym InGaAsP/InP 1laser, and
significantly more than this for the 1.3 um InGaAsP/InP

laser.
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Better estimates of the effects of non-parabolicity in a
QW's are unavailable. However estimates for bulk DH
InGaAsP/InP lasers due to Haug (ref 2.3) suggest that non-
parabolicity may be even more important than indicated
above. Haug interpolates the 1InGaAsP bulk bandstructure
from Chelikowsky and Cohen 1InP and GaAs bandstructures
and then finds the Auger rate using a graphical method to
determine when energy conservation and wavevector
conservation are simultaneously satisfied. He claims
that the direct CHCC rate 1is more than four orders of
magnitude 1less than that calculated with parabolic bands.
The CHSH and phonon assisted CHCC rate are however
effected much less because of the smaller wavevectors

changes involved.

The failure to include an accurate bandstructure may
therefore present a serious short fall in the quantitative
accuracy of the calculétioné' presented 1in this thesis.
However the aim is to present trends rather than absolute
values. For this purpose the analytical approach allowed
by the simple model is more useful, provided there is an

awareness of possible inaccuracies.
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2.2 AN INTRODUCTION TO THE AUGER RATE CALCULATION

2.2.1 CHCC IN A QUANTUM WELL

In a ow heterostructure the calculation of Auger
recombination rates 1is more <complex than 1in a bulk
semiconductor because of the more complicated electronic

states of the well system,

The important types of direct, non-phonon assisted CHCC
processes which can occur in a QW are illustrated in
figure 2.4. They fall 1into two types. Those for which
all carriers taking place have an insufficient
perpendicular kinetic energy to escape from the well
(which we call bound-bound processes), and those where the
excited carrier has sufficient perpendicular kinetic
energy to escape from the well (which we call bound-
unbound processes). Processes in which the excited
carrier starts in a unbound state are unlikely because
there are very few carriers in the unbound states in the
model adopted. Chapter 3 analyses the bound-bound
processes and Chapter 4 analyses the bound-unbound

processes.

2.2.2 AN INTRODUCTION TO THE CALCULATION OF THE AUGER
RECOMBINATION RATE

To calculate the Auger recombination rate R the electron-
electron interaction between the colliding particles is

treated as the perturbation H" on the system which causes
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FIGURE 2.4

This illustrates the various types of CHCC direct band to band Auger recombination processes which can

take place ina QW heterostructure, introduces the numbering of sub-bands n =1, 2, 3 etc and defines

the notation of states. ie (1) and (2) are taken as the colliding electron states, (1°) as the heavy
hole state and (2°) as the promoted (Auger) electron state

bound processes bound-unbound processes

An example of a process An example of a process An example of a process
involving intra sub-band involving inter sub-band involving a bound to unbound
transition transition electron transition

?I

State wavevector
in the plane of
the well, ( K«Ky)




the excess number of carriers to recombine (see ref 2.4).

Fermi's Golden Rule gives

] |2
" > .
INITIAL sysTEM! D | ®FrmaL syster | O (E) 2.7

STATE STATE

R = 2r 5 P <9

=

where the summation is carried out over all combinations
of initial and final states, P is a statistical factor
included during the summation to weigh each transition
according to the probability of its initial and final
states being appropriately occupied, and

< H"|¢ > is the matrix

INITIAL SYS'I‘EMl FINAL SYSTEM
STATE STATE

element of the perturbing interaction H" .
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2.3 THE STATISTICAL FACTOR P

The statistical factor P determines the weighting (based
on state occupancy) given to each possible transition in
the Fermi Golden Rule summation (equation 2.7). It is
given by the probability of the correct state occupancies
for the forward process (electron and hole recombination)
minus the probability of the correct states occupancies

for the reverse process {(impact ionization).

0,0y, L, = f (El)fcn (Ez)fvn (El,) [1-f (E,.)]

2 1 2 1- cn,. 2 2.8

-ul- MR - Ml1-
[1 fvnl‘(El,,]~cn2’(E2,)[l fcnl(El,][l fcnz(Ez)]

where Ny s 0,y and n,. indicate the conduction (c) sub-
bands, and n . the valence (v) sub-band, fC(EC) determines
the probability of a state with energy E being occupied
by an electron, and ﬁ#gv) determines the probability of a

state with energy E, being occupied by a hole.

Using the approximations 1-Q,ﬁ 1 and l—ﬂ:ﬂ 1 give the
simplification
2.9

|4 ~
50,0 40, fcnl(El)fcnz(EZ)fvnl,(El’) - fcn (EZ‘)

Now before further progress can be made it is necessary to
assume a form for the distribution functions f. (E. ) and

fv(Ev). The following section discuss these.
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2.3.1 THE BOLTZMANN APPROXiHATION

During 1lasing the distribution functions will depend on
the device current, the device structure, interband
scattering, intraband scattering, the lattice temperature
etc. Here we assume that the distribution function
corresponding to each sub-band and unbound continuum of
states can be described by a quasi-fermi 1level and

Boltzmann statistics.

Assuming a Boltzmann distribution of carriers 1in an
operating 1laser 1is obviously suspect. However some bulk
semiconductor evidence does exist which indicates that it
is not too drastic a simplification. In an operating DH
laser the hole quasi-fermi level is above the top of the
valence band and therefore Boltzmann statistics are
adequate to describe holes. However, for conduction band
electrons the quasi-fermi level is within the conduction
band and Fermi-Dirac statistics are required. An
approximate eStimate of the"importance of using Fermi-
Dirac statistics in bulk material can be obtained from the
comparison by Takeshima (ref 2.5) of the variation with
temperature of the CHCC Auger lifetime using Fermi-Dirac
and Boltzmann statistics in n-type 1InAs. These results .
can be used to make rough estimates of trends in other
materials and suggest that the use of Boltzmann statistics
underestimates the CHCC Auger rate in GaAs with
n = 10E+18 cm™> T.= 300k by a factor of 3. The situation
is obviously somewhat different in a QW but is expected

that Boltzmann statistics will be reasonably adequate.
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4

Using Boltzmann statistics gives

“(E - rcn)/xBTc

f {(E) = e for E 2 E 2.10
cn cn

(E - fv )/xBT
a n ¢ for E<E 2.11
vn

L s}
~
3
~
[}

where E_, (Eyq) 1is the energy of the state at the bottom
(top) of nth conduction (valence) band, and fcn(fcv) are

the conduction (valence) quasi-fermi levels.

Substituting these into 2.9 gives

(-El+rcn -E2+ rcn +E1’-rvn ,)/XBTC (-EZ’*L ,)/xBTc
- 1 2 1 2
Pn a..n = e -e

1 MMt 2.12

Conservation of energy in the transition requires

Ef ' + E,' -E-E, =0 (see section 3.2) and Eq (2.12)
can then be written as
(Ep7E p-)/xpT -(ECZ’-txx,)/xBTc N, N, P,. N..
- 2 1 2 1 02
L - e & N..N. P N -1
120 - 01 "02 T01° "2°
2.13

where N, , N, , N,, and P, are the carrier concentrations in
each sub-band and Ny . No2 ' N,- and P, . are
the carrier concentrations under equilibrium conditions

in each sub-band.

31



N =N e 2.14

mc xBTc

(where Nc 5 , the effective density of
m h™ L

states per unit volume for the conduction band sub-bands)

Eq (2.13) becomes

) -(Ez,-Ecz,)&BTC Ny. [N N, P N
P=ce = NN P 5 -1 2,15
N, 0l ‘02 ‘o1- "2°

The equilibrium carrier concentrations for individual sub-

bands being given by

-(E - rﬁ/x T
N =N e ©P Be 2.16

and
2.17

where Pis the fermi level under equilibrium conditions,
* x.T
g * c
T h2 L
per unit volume for holes in sub-band n°. Thus Eq (2.15)

and Nvn’ is the effective density of states

can now be rewritten as

-(Ez,-ECZ,)/xBTc . (Ecl-Evl,)/xBTc —_— -(Ecz,-Ecz)/xB
e 27 [e 172°17 e
P = — e
N N N .. N,.

c c vl® 72 2.18
and to proceed assumptions are now made about Nl' Nz' Nz"
and P __.

1’
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2.3.2 THE NUMBER OF CARRIERS IN EACH SUB-BAND

In the most general form the formalism to be developed
allows the number of carriers in each sub-band to be
chosen to correspond to the best estimates of the carrier
distribution in a working device. This is achieved by the
choice of a separate quasi-fermi level for each sub-band
which has the implication that intra-sub-band scattering
is strong enough to maintain thermal equilibrium within a

particular sub-band.

However, in the calculations presented explicitly here we
choose to assume that electrons are thermalised between
all the conduction sub-bands, and holes are thermalised
between all the hole sub-bands. That 1is, for example
considering the <conduction sub-bands, we take all the

conduction band quasi-fermi levels to be equal

Pow =fn =T =Fe 2.19

Then the total number of conduction band electrons &§N is

- -]

*
N _1_;(2““: )e-(E-fC)/xBTC e
sub- 27 L h2
bands T 2.20
n cn
‘:‘-,‘:f-‘a ~ . ‘sgaar . © 3/2 - -
« a2 + BN L .1. 2mc » .2 '~%. s (E tt)/}SB’];e S o >
—‘2' 5 E” e dE
27 h
E
con
2,21
-(E_-P)/x,T | 2m, %,T 3/2 (E___- T
SN = ( TN o ©n ¢ B c) + 1 c B c) con ¢ Bec
c 4 2
n T h
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where Econ is the energy at the top of the well (see

figure 2.1).

and the number of electrons in a particular sub-band n’

is given by

N =N e-E ‘/XBTC SN 3/2 2. 23
n” c -E /x_T 2m” -E /x.T
(Eﬁ-ecn Bc+l C T o con B¢
e 4 2 "Bc
n h
Similarly for holes
= +Evn’/xBTc SN
Pn’x’ = Noxo © 3/2
_ +E /xBT 1 ZXST;’
Z N e B¢, 2 i 2.24
v 4 2
{ nx r h .

*Eycon’ *B" * 3/2 * 13/2 .3/ 2 {Eur O reTe
veon B ¢ ((mHH)/ +(mLH)/ +(ms) /e'(vwn /5 )

where x' denotes either a heavy hole or 1light hole sub-

band, x ranges over both heavy hole and 1light hole sub-

bands, )mgiﬂ. m;:ﬁ. and m—*s are respectively the heavy

A

el e nged - 1ighE Sholes -atid Bpin split-off bulk effective masass” ™
and As is the bulk I' energy separation between spin split 5

off and heavy hole bands. .
Figures 2.5 and 2.6 show how a concentration of 10E+18 ‘em

3
electrons and holes are distributed between the sub-bands
of 1.3 ym (figure 2.2) and 1.55 um (figure 2.3)
InGaAsP/InP QW lasers. For clarity only the population of

conduction band and heavy hole band sub-bands being shown.
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FIGURE 2.5

This figure shows respectively the electron and -hole populatioms in the
conduction (C) sub-bands and heavy hole (HH) sub-bands when 1018 electron cm’
and 1018 cm3 holes are injected into the active region of a 1.3 um InGaAs®/ InP
system. Boltzmann statistics and carrier thermalisation are assumed.
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As figure 2.5 but for the 1.55 um InGaAsP/InP system.



These populations are used in the evaluations of the Auger

rate.

For the bound-unbound calculations (Chapter 4) it is

helpful to recognise that

-(E ,- - E . )/%gT,

&~

and for both bound-~bound and bound-unbound calculations

that

o r— ! 2.26
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2.4 THE NATURE OF THE ELECTRON-ELECTRON INTERACTION
2.4.1 THE FORM OF THE MATRIX ELEMENT |
Using a Hartree-Fock Hamiltion and a Slater determinant
for the wavefunctions the matrix element of the electron-
electron interaction which appears in the Golden Rule
expression for the Auger rate (Eq 2.7) is
<‘\Ul(rlsl)w2(rzsz) - wl(rzsz)lbz (rlsl)lH"(rl,rZ)

2 2.27

M:

|¢1,(rlsl)w2,(r252) - wl,(rzsz)wz,(rlsl) >
Y 2

where H" is the electron-electron interaction which is
discussed in Sec 2.4.2, ¥; and V¥, represent the initial
states, wl, and Wz, represent the final states, and r and

s are the position and spin coordinates respectively.

Now defining

M 5<wl(rlsl)\b (r,s )IH"(rl,rz)Wl;(rlsl)wz,(rzsz) >

12 27272
2.29
= < wl(rzsz)wz(rlsl)IH"(rl,rz)]wl,(rzsz)wz,(rlsl) >
M, =< wl(rlsl)\bz(rzsz)lH"(rl,rz)|w1,(r232)w2,(rlsl) >
= <‘wl(r232)w2(rlsl)IH"(rl,rz)]wl,(rlsl)wz,(rzsz) > 2.30
and using spin orthogonality one obtains
2 2 2 2
= - !
o o] 7 = My, - My 1T M, [T e [y, “ .. 2.31
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2i§

2 2
M. | +|M21[ =M., -M

12 12 21

b = B, 17 !M21|2) 2.33

12!
where 2 is a function of the 1initial and final states
whose value is between 1 and 2. Now summing over the
initial and £final states we obtain a number for an
effective B. An indication of the size which can be
obtained by considering which transitions are most

probable. Appendix 1 concludes that Ky, = an

"l
transitions are important. Using this and the assumption
of electron thermalisation (see equation 2.19) the most
appropriate value for an effective B is seen to be one.
This may be interpreted physically by reference

to equations 2.29 and 2.30 as showing that collisions

between electrons of wunlike spin are more probable

than the analogous collisions for electrons of like spin.
Omitting B we have
2 2
M= (2 + 28 nq)IMI 2.34

where i = <4, (r oy DI Gy vy ey gae) > 2.3

In equation 2.34 one factor of 2 arises from 2.33, and the
other because the initial impacting electron can have two

values ie spin up or spin down. The §, s 1, prevents
1
overcounting (see Table 3.1) when the summation is later

made over sub-bands.
« - 3??"
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2.4.2 SCREENING
The form of the perturbing interaction is now considered.
In general the electron-electron interaction has the form
of a screened coulomb interaction which in q, w space can
be written as

H' = constant 2.36

2 .
e(q,w) q

where . (q,w) 1s the dielectric constant of the active

region. ¢ (gq,w) can now be <considered to consist of
two contributions. The first € INT being the intrinsic
dielectric constant of the semiconductor and the second

( gg(q,w)—l) being the susceptibility of the conduction
band electrons and valence band holes. The change in
due to the states occupied by carriers is neglected

because the <carriers occupy only a small part of the

Brillouin zone. Hence

elq,w) = € Tt (eglq,w) - 1) 2.37

IN

where most of the wavevector and frequency dependence is

in eg (q,w). Rewriting equation 2.37

e(q,w) = €INT Egs(q.w) 2.38
x (q,w)
where ¢ (q,w) =1 + 52— —and x = ¢ (q,w) - 1. 2.39
gs EINT g g
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A useful and accurate analytical expression for %éq,w) is
now given by the plasmgn pole approximation which
assumes that most of the screening 1is due to the
collective motion of electrons (ref 2.,6). It gives for an

isotropic, parabolic conduction band

1 w

(¢ (q,w)) =1+ —3——2——~——— 2.40
gs wo-w 2(q)
1
where
w 2(q) = w 2 + 4 Wwoow, tw 2
1 P 3 'cq F cq
2.41
oL 22,2 2
=, (1 +q /KF ) + LA

ﬁwcq being the conduction band dispersion relation,
th being the Fermi energy, KF being the Thomas
Fermi wavevector and wp being the plasmon angular

frequency at g=0. Considering both electrons and holes

to be present the parameters are modified in the following

way:
w 2 w 2(electrons) + w 2(holes) 2.42
o p p
2 2 2
Kp = L (electrons) + Ko (holes) 2.43
and
2
; Na 3
V. =73 2.44

* * %
(m c +Iﬁﬁ1+ mLH)

where m*C is the conduction band effective mass, mﬁu{is
the heavy hole effective mass, and me is the light hole

effective mass.
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Now for electrons we have

9
Nea <

w (electrons) = [ ~—oe 2.45
p £ m
INT c
and
* 1
m 2 3
2 1 2
K= 5 — G 2.46
T h~ INT

where N is the conduction band electron concentration.

Similarly for holes we have

%
p p 2
w_(holes) = i, _LH < 2.47
3 . * ] fr S
HH "LH
and
* 1
2( + ) 2 =
21
Ry" = — "M . M et (3.2 LR
2n” “INT i 2.48

where P and P are the «concentrations 1light holes and
LH HH

heavy holes respectively.

Hence 2.40 and 2.41 <can now be applied to the screening
the Auger electron-electron interaction. In ¢(gq,w), w is
determined by the energy exchanged between the
colliding electrons (hw) which is somewhat larger than the
band gap. Similarly g is given by the wavevector transfer.
SoconsideringlQE+18 carriers. cm’3 it is found that w > wl
(g and w > w for the typical semiconductor lasers used

P
for optical fibres. It thus follows

elq,») = EINT 2.49
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That 1is the frequency associated with the interaction is
toc high for the free carriers to respond as plasmons and

cause screening.

This (2.49) <contrasts with the customary treatment of
screening in Auger theory. Conventionally in narrow
bandgap materials the static 1limit (w = (0) has been

taken, giving the Thomas-Fermi expression when g is small,

&2 2.50
;(q,O) = EINT (—2 + l) .

This 1is an accurate approximation in the limit of very
narrow band gaps but unfortunately some authors (see
for example ref 2. 2) have carried it over to the larger
band gap semiconductors. Burt (2.7) was the first to
point out explicitly that this was a questionable
procedure. For the wider band gap semiconductors it being
more accurate | to assume there is no free carrier
screening. In this thesis therefore expression 2.49 is
carried from the bulk to QW's without any further comment,
further in applying 2.49 no account of the g dependence of

'E 1

INT the intrinsic dielectric constant is made.
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2.4.3 THE WAVBFUNCTIONS OF THE QUANTUM WELL AND THE AUGER
MATRIX ELEMENT

2.4.3.1 THE PARITY OF THE WAVEFUNCTION

The wavefunctions of the square well have either even or
odd parity about the well centre. This allows us to make
some conclusions about the matrix elements without
requiring the explicit forms of the wavefunctions. The

fourier transform of the electron-electron interaction is

3 1 o2 ic_{.(zl-rz)

e =< d¥y 2.52

~
3

e
CINT

el

Ity g, SINT (21)°

al

where it 1s assumed that the barrier regions have the same

dielectric constant as the well region. Substituting this
into the matrix element expressions gives
& ! ig...(g,,l-g,,z) iqz(zl-zz)

ane
pdid o
"INt (2m)° ¢

My =] ez (g, zy)

2
by-Cougrz 2y Conyyzy) d‘zﬂ"d“.zdi’l"d,?z"dZldzz

2.53

and

M,, = Yo (Prayr 2 Wa(prs,z.) Ji—— 14 e’ﬂp'(Eyl‘Eyz) e’qz(zl_zz)
21 L= 7re =t e "INT ("n)3 qz

2
‘i}l/‘(Buz’zz)‘bz/(glll)zl) dﬂlldqzdi)ﬂldénzdzldzz
2.54

where q, , PpPuw,, and p,,are respectively the crmponents
2 G| £"2

of qgq,

q L, and

, and r

2in the plane of the well, and q,, 2

ll

z, are respectively the components of q, Ly and L,

perpendicular to the plane of the well.
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First considering the direct term M,, and supposing that

wl(zl) and wl‘(zl ) have the same parity then we may

write
L L
5 =
“~ . L
* T1%
wl(zl)wr(zl) e dz1 = wl(zl)wl,(zl) cos q,z,dz,
L L 2.55
2 2 1
which 1is an even function of g,. Now since — 5 is also
qu *q
. . Z
an even function of q, we require the integral
L
2
- -iq_z
b, (2 )u,(2) e 7 da,
L
2

to be an even function of g, if 2.53 is not to vanish.

Hence if w2(22 ) and wz,(z7 ) have different parity the
integral
L
=
2
% -i.qzz2
v, (zz)wz,(zz) e dz,
L
2

will be odd in q, and the matrix element M, will be zero.

That is if wl(zl) and wlizl) have the same parity wz(zz)

and wz,(z2 ) are also required to have the same

parity if the matrix element is to be non-zero.

If Lpl(z1 ) and wyle ) have different parities then the

integral

L
—

2 .
+1q_2
* z"1
¢1 (zl)wl,(zl) e dzl

L

2

is o0dd in qz and wz(zq) and y ‘(22) must have different

2
parities for the matrix element to be non-zero.
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Table 2.1 summarizes the above argument for various
combinations of wavefunctions and considers both the
direct and exchange matrix elements.

For transition: between bound states the results can be

summarised by requiring 2n = 0,2,4, etc where n numbers

the sub-bands (see figure 2.2), and 4 indicates difference.

For transitions to unbound states, parity lowers the final

density of states available to the promoted Auger electron

by a factor of two.
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Eq = even function of gz

E: = even function of z

TABLE 2.1

Oy = odd function of gz

0; = odd function of z
INT = INTEGRAL

THE DIRECT TERM

THE EXCHANGE TERM
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2.4.3.2 THE FORM, NORMALISATION, AND ORTHOGONALITY OF THE
WAVEFUNCTION

BOUND STATES

For bound states the evanescent parts of the wavefunctions
are ignored. They being assumed to be small. We have

iszz iE"'E
) e

iK z -
(B(+)u (+)(r) o ZMm B(-)u (-)(r) .
m m

%
2

v () = A
o T

inside the well(0<z<L)

and wm(£)=0 outside the well

where u (r) is the periodic part of the Bloch function
(normalised to the unit cell). The (+) and (=) signs
indicate the dependence of the Bloch functions on the z
direction of momentum. knw 1is the two dimensional
wavevector in the plane of the well and p is the
correéponding two dimensional lposition vector. k _ is
the wavevector perpendicular.' to the plane of the well,
and as a simplification is given the value
appropriate to an infinite square well, %1 (n being a

positive integer). B is the normalisation constant

associated with the 2z dependent part of the wavefunction

5
(t)_—. ;é (1 2
B =+ Ve \I@ -37
CELL

and A is the area of the QW lavyer.
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UNBOUND STATES

The wavefunctions of carriers with sufficient
perpendicular kinetic energy to be not bound by the well
are found by matching the envelope parts of the
wavefunctions inside and outside the well at the
boundaries of the well. Assuming sinusoidial envelope
wavefunctions 1inside and outside the well region (see
figure 2.7), the usual boundary conditions give for the

case of even parity states.

K ,-L EZL
B‘cos( 5 )=A’cos(7 +<5) . 2.58

4

and

K . KL
K ,. B sin (23 L)= K A" sin|—2—+ 8 2.59
z2” ' 2 z ' 2

where A' and B' are the normalisation constants of the
wavefunctions outside and inside the well, § is a
phase constant, and Ez and Kzz‘ are the respective z
components of wavevector.

Squaring and adding Egs 2.58 and 2.59 gives

K. L K KL
" 'v )
B”" = A”" c052 ( ; + 6) + z 5 A~ si,n:Z (—g—- + 6) 2.60
K ..
z2
) —
2 2 Kz 2 KzL ~
3-2 = a2 +( ; 1) sin (-— + 5) 2.61
2 2
K ..
z2
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FIGURE 2.7

This figure shows the envelope parts of the unbound wavefunctions, the large
assumption that the corresponding cell periodic parts are the same both inside
and outgide the well, being made.




K’
Now, since 7 < 1, the second term is always negative

K
z2”
and the maximum value of A' is given by

KL
2 . 2 . -
A‘z = B” when sin (% + 0) = 0 2.62
also the minimum value of A' is given by
-2 -
2 2 z . 2 KzL

A°T = B~ 5 when sin —2——+ 6) = ] 2.63

K,,-

An expression for § can now be derived from the matching

conditions. From them

K_,.L KL KL
B~- cos( Zz ) = A” (cos f cos § - sin —;—- sin 6) 2.64
and
(Kzz,L) _ K L KL
Kz2‘ B sin 5 = KZA (s:.n —5— cos § + cos —— sin 6) 2.65
hence
K 2,L _ sin Ez L/2 + cos Ez L/2 tan §
K, ;- tan( > )=Kz — - 2.66
cos Kz 1/2 - sin KZ L/2 tan §
T
herefore B Kzz’ KzZ’L B
~ sin K L/2 + tan( )cosK L/2
z - 2 z
n
z
§ = arctan - 7 » Kzz’L = 2.67
cos K L/2 + =2 tan( )si.n K L/2
z ; 2 z
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Finally we need to derive an expression for B'. To do
this the -envelope part of the wavefunction is normalised

over the crystal z dimension 2%,

PIS] ol
=

JL

Choosing % large enough so that only the second term needs

e}
r|

to be considered

L
NG z
3 (1 + cos (2Kzz +28)) dz = %
L
2
_ 2
A,Z sin (2K z + 2§)
> z + _Z =k 2.69
2K
z L
2
and retaining only the dominant terms for large gives
1
= 2 2.
A 3 70

From which B’ can be found using equations 2.61, 2.67 and

2.70,

For the case of odd parity wavefunctions normalisation

follows in a similar fashion.
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ORTHOGORALITY

The neglect of the evanescent parts of bound state
wavefunctions means that the approximate bound
wavefunctions are not exactly orthogonal to the unbound
wavefunctions except for special cases, such as between
the nth bound state and a unbound state with perpendicular

wavevector K = %1 where n #m. This non-orthogonality

z2”
turns out not to be significant for the Auger
calculations but 1is <considered 1in more detail at the

appropriate time.

2.4.4 INITIAL STEPS IN THE EVALUATION OF THE MATRIX

ELEMENTS

The direct matrix element term 1is given by Egs 2.29 and

2.56 as
p=+o
z=1
i(K,,-K,,.).p iK ..z
_ 1 2078012/ B) 7 (4) (#) 21-%1
M12 = 23 e (Bl u) (51) e
p=- . _ -iK ..z -
z=0 + BE‘)ui’)(El) e zl 1)
ik .z -ik .z 2 1K, =K, .
(B§+)“§+)(£1’ 2 Bi-)“§ )(Eﬂ zl 1)E S 272
Nt |51 75!
'K -K *
(+) (+) R22% 0 (5) () o1 22’22)
(BZ’ u,. (52) e + BZ’ u, . (52)
1K .z K .2z
(+) (+) 22 (-) (=) 2222 3 3
(Bz u, (52) e + B2 u, (52) ) d , d’r,
2.71

49



L
(£) . . (x)y _ — . V% 1 )2
is given by B = — for bound
where B g V4 + 3 UNIT (ZL
states and by CELL
+ i § L
() B' % ‘ .
= —V
B 3 UNIT e even parity
CELL 2.9
or
+ 1 % L
(#) , : B % .
= + — odd parit
B U parity
CELL

for unbound states.

Taking the Fourier transform of the electron-electron

interaction (see 2.52) gives

2
4me 1 1 1 3
M = —_— — I ., I.. d q 2.73
12 EINT (2w)3 A2 q2 171 7272
with
I B e R S N A S N NS e
171 € e 1~ Y1~ M4
-1K .z * iK ,z
+ Bf:)ui,)(gl) e 2! 1) (B§+)u§+)(£1) e 1
() (-) “iK0%1\ 3 2.74
+ B1 u) (51) ) d I,
and
I TRy Kg-ma) Ry 79,2 ((4) (4) K%y
272~ By-Tupa(zy) e
1K ..z 1K .z
+ Bé,)ug,)(rz) e 22 2) (B§+)u§+)(£2) 222
-1K .z
- - 2.75
+ Bg )ué )(52) e 22 2) d3£2



Upon expanding I the first term is

171
N CO N I COL PN el'(E"fK"l‘*i")'El HE Kty 5
RS | ‘10 =1 € I
2.76
Now expanding the Bloch periodic parts in
a sum over reciprocal lattice vectors:
u(r) = —gl—— z .
v G c. e ¢.r
CELL reciprocal lattice G
vectors ' 2.77
Then writing d3£lEE dzgldzy gives the first term as
(+)* _(+) .
B1 Bl 5 5 C(+1,)* C("'l) e].(gl 51’+3"+9"1_c—;"1’)'31
VunIT g.g - 4
-l -,
CELL
](Kzl-Kzl’+qz+Gzl—Gzl’)zl dZ dz
€ B %%
2.78

Next carrying out the integral over B, gives

L
g+ g (+)
- - *
(ZTT)Z _]-,_V—__l__ E E é+1 ) Cé+l) 6(§"1-E"1+3"+g"1-9-"1‘)
UNIT 6.6 7 1
CELL

I(Kzl-Kzl‘+qz+Gzl—Gzl‘)
e dz
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Treating the other terms in Ill‘ in the same way

L
I = (Zw)2 =z §(K,,. -K.. .+q,.+G, . ~G..)
1’1 G G ~_!v1 —_-_Nl» ng _Hl _lir
-1 =1
*
[31(4‘) |(+) IR I T {1 i(K_1‘K_1/+q +G_1-G_1‘)
1 1 C\Tt 7= C\TL/ e Z1i Zi A Z1i Zi
i VUNI’I‘ ¢l Gl
CELL
(-)* _(-) .
B 8 (-17)* _(-1) I(Kzl’ K1%95%62) Gzl’)
fo o % e o
UNIT = =
CELL
(#)* _(-) .
U Y S PR S P A T R P TR 2.80
v far o e ©
UNIT = =
CELL
(- (+) :
Bi- B (-17y% _(v1) Kyt 179,701 G-
+ v CGl, CGI. e dzl
UNIT = =
CELL
or ‘
L )
2
= E - - -
1., = ) )> 8 (Kyyy ~Kuyy ~+Qu*CGuy ~CGuy o) 417,1,6,..Gp dz)
G, G,.
-1 -1
fo}
2.81

}
where { } has been introduced to simplify the

expressions. Treating I22‘ in a similar way
and substituting into M12 gives
2 6(_!_(3' 'Ejl +q,+Gyyy =Gy, )
M12 = iﬂe g—% z Z 2 Z 1 r ; 1 1 1’11391‘!91
INT A°, |Gl G1” G2 G2~ q

- 2
6(§_u29'Ev|2-3'|+9_1|2'c_|l2») 2 92¢9_ ,,_G_ d zl dzz d (ll_'dqz

2
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S Koy =Ky »+Kin =Ky u#Gryy <Gyyy o#G =Gy ) ( \’[
i} ey o i _Hr)‘ " on - gn St~
L 1 2 -2 ! ﬁl 2-: 11‘1170.:ﬁc 2°.2.G,.,G.) da_ dz

Z 2z -1 1 T2 =2 z
- -G
ll_<_"1 Evvl‘+§_||1 _vllal + qz L J L 2.82

Now since wavevectors of the states involved in the Auger

transitions are small compared to the reciprocal lattice
vectors the delta function argument will only

contribute if we choose

Enl—_c_llld = CIIZ-EHZA 2.83

Also because of the denominator in Eq (2.82) the terms with

Gy =Guy- =0 2.84

in the summation are dominant and to a good approximation

&*
all other terms can be neglected.

Similarly the terms which contribute most when the

integrals over z, and 2z, are carried out are those

1 2
for which GZl = G;ﬂ‘ and GZZ = GzZ“ So using

£l e - oV 2.85

g i - UNIT

CELL

a \1++

Yoy 4 2.86
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and similar definitions

++ -- -- + -
M, ..,
for 2,2 Ml,ll MZ,Z ’ Ml,l ’
+- -+ -+
M M and M we o i
29 ’ 1,11 272 e btain
B et | e ()
= _— SLE -K +K - - 272 d
12~ ¢ A ) R A 2 2\ ey
INT A J TR R T e z
2.87
where
Yo - )% -
Bit) Bf+) " gl Bi ) N
{1:1} = T HK_ K kg )+ MID, K LK +q )
UNIT : © “* - UNIT N
CELL CELL
SO
+ M. H(-K  -K ,+q_ ) + M ., H(K_, .+K_,+q_ )
VUNIT 171 1 1 z VUN[T 171 zl zl
CELL CELL
2.88
B(f)*s(+) B(:)wB(—)
. 2 2 ++ 2 2
A My, HOK oK ,.-q ) + — K| (K ,.-K__-q )
l UNIT - ' UNIT - - Ze B ®
CELL CELL
Bét)" () BS:)NB§+) .
+ — M H(-K .-K ,.-q_.) + -= M .., H(K _.+K _-q )
- o] 2 7
VUNIT 2°2 z2 z2 z VUNIT 272 z2 22 'z
CELL CELL
2.89
and
L . xL
Y7
ixz 2 sin 5= e
Hix) = e dz = = 2.99
X
Q
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From which {(2.87) the delta function

§(Kw

K- ~Ku; +Ku,. -K,, ) requires that in-plane momentum is

conserved. For wavevectors perpendicular to the plane ofthe
well however the dependence of the matrix element on these
wavevectors 1s more complex depending on the behaviour of

function H and on the overlap integrals between the

periodic parts of the Bloch functions involved.
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CHAPTER 3 - AUGER TRANSITIONS BETWEEN BOUND STATES

This Chapter extends the analysis of Chapter 2 and
specifically develops the theory for Auger recombination
transitions between bound states. First the matrix
element 1is examined and then the summation in Fermi's
golden rule 1is performed and an analytical expression for

the Auger recombination rate between bound states obtained.

3.1 MATRIX ELEMENT IN THE COMMON OVERLAP APPROXIMATION

The matrix element expressions 2.87, 2.88 and 2.89 may be
evaluated numerically. However, a simple analytical
expression in K (where K = |K,, -K,| ) is required if an
algebraic expression for the Auger rate between bound
states is to be obtained. Therefore we make the
approximation in the matrix element of neglecting*the
perpendicular wavevector dependence of the periodic parts
of the Bloch functions. This approximation being hence

forth be referred to as the common overlap approximation.

Taking in 2.86-2.89

+= W-+ - ++ -- 3.1
272~ 272 2°

[¢]
N

v
ro

P -+ 4 -- KL
Mpop = Mpep = Mpe = My T Mg Vhen gy
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the wavefunctions and the

an effective mass sum rule expression such as Beattie

from
 and Smith's (ref 3.1). Equation 2.57 gives
L
(£) 7. % L )2 and it follows that
B =+ Vgnrr \ZL
CELL
Lre (ZTT) N -
M = M = O(K., ,-Ku +Kn 4-K'I ) I 3'3
2 1 2 2 b
12 €INT BF A 1
where
- (2 2 1 sin n,m oz, sin n,.m oz iq,z, sin N,T 2, Sin gt 2
Ib “\L 2 L L ¢ L L
K +q e
W z 19,%; d
e dzldz2 q,
3.4
Ié being essentially the integral of the envelope parts of

coulombic interaction.
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3.1.1 AN EXACT ANALYTIC EXPRESSION FOR THE MATRIX ELEMENT
WITHIN THE COMMON OVERLAP APPROXIMATION
The integration in 3.4 w.r.t. g, can now easily be

performed using Jordans Lemma. One obtains

L z
_ . . 1 . .
. /%\2 r ki . Kz1 sin nlﬂ z1 sin nrn Zl r +Kz_ sin nzn z2 sin n
v - \T) \J K L L \J € L L
o o
dzzdz1
L L
2 K . . _ ) ' .
. (%) i z, sin nln zl sin nrn zl . Kz2 sin n,m z, sin Nz,
K L L L L
° 21 dz .dz
Z2%%1
3.5
Writing
sin n,mT z, sin n..T Z T T
2— L = - —_ - —_
T 2 2 I 2 = cos (n2 nZ’)L 2z, - cos (n2+n2,)L z, 36

2

and using Gradshteyn and Ryzhik (ref 3.2) (hereafter

referred to as G+R) page 196 eq 2.663.3

Z

1
- e+K22 sin n,™ z2 sin nz,n 22 dz2
K L L
o
+Kzl
m e T m
23 P 2 {K cos (nymnyg zp + ¢ (mpmny) 7]
K™ + (- (a,-n,.)) . T
L 2 72 sin (n2 n2’)L Zl}
r +Kzl
T e T ™
T - - 5 {K cos (n2+n2,)f 2+ T (n2+n2,)
K™ + (+ (n,+n..)) . i
= L 2 72 sin (n2+n2,)f zl}
[~ -
+ _m -K + K
2K 2 . 2 2K 2 - 2
_K + (‘E (nz-nz,)) 59 K™ + (f (n2+n2,)) 3.7




similarly

L
i e=K22 sin nzn 22 sin nz,n Y 4
K L L 2 2
)
I K cos(n,-n,.)ny| - — i -K cos(
x| - 5 cos(n,-n,.)w 5% — 2 cos(n,+n
| K +(E(n2-n2,)) K +(f(n2+n2,))
m B e-KZl T i i
- 5% - 5 {-K COS(“Q'“z')f z, * f(nz-nz,) sin E(nz-nz,) zl}
_K +(f(n2-n2,)) .
- -Kzl n
W e T T , T
* 3R ) { K cos(n2+n2,)f z) * E(n2+n2,) sin E(n2+n2,) zl}
K2+ (Z(a,+n,.))
_ L 2 2 .

3.8
Now writing A = (mp-ny,-)T , B = (n+n )T, and
L 2 2° L
in n, Tz sinn, T (n,-n,.)= z, - cos(a,+n,.)=~ z
sin a7z, sinn .7z i cos(n;-n; .0y 2, - coslny*+n, )T 2; 39
L L 2
gives
L
2 2K cos Az 2K cos Bz
I7 = (Z) L + cos(n,tn )l z L. 1
b L 4K 171771 71 A2+K2 BZ+K2
o
-Kz
-K K 1
+ cos(n,*n, .)= z + e
1771°°L "1 A2+K2 Bz+K2
- T -K cos AL K cos BL K(zl-L)
+ cos(nlinl,)f z, 5 5 + = 3 e dzl
AT + K B + K
3.10
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where first all +*he top and then all bottcocm signs are

taken. Finally from

cos nxXx cos mxdx = dn,m

T

and

cos nx cos mx dx = 1 n=m=20 : 3.12

Q
we det an exact expression within the common overlap
approximation (neglect of perpendicular wavevectors in the

periodic parts of the Bloch functions)

2 __TY_L‘ - ; +
- = (3)‘ Fg Slaprngl Ingmap | (L + Snytay L, 0)
b L Lol
NL | {
o 6|n1tnl,|,ln2+n2,|
R
-KL n,*n, . -XL a,*n, .
- K /4 e (<)Y VL e (b
* - 7 2 7 2
((nytn )T k2 AT+K B7+K
1
n,-n,. -KL n, *n. . -KL n, *n, .
L G SN S O N S WO TS €5 O B!
B 7 2 72
7.2 2 AS+K B +K
((nltnl,)L) + K
3.13
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3.1.3 ASYMPTOTIC EXPRESSIONS
Expression 3.13 is still too complex ¢to allow the
calculation to proceed analytically. Therefore further

approximations need to be considered.

In this section both large KL and small KL approximations
to 3.13 are considered. The small KL expressions obtained
are obviously suspect because of the condition in Eq (3.3)
ie the requirement for the common overlap approximation to
be wvalid. However they are still included because like
the 1large KL approximations they provide important checks
on the analysis in Chapter 4. The large KL and small KL
approximations are then both checked, because of their
importance, in a number of ways. These checks being
relegated to Appendix 2 because, although they are referred
to later during similar checks in Chapter 4, they may be

omitted on a first reading.

THE APPROXIMATIONS TO I,/

a) FOR LARGE KL

then 3.13 becomes

™
+ =
When KL >> (n1 Wﬁ )L , KL >> (Qz+n )

I
2°'L

Iy = =2 [dlnl'“l'l’l“z'“z"(1+6“1'“1"°)'5l“1+“1"'1“2'“z‘|'5‘“1'“

KL 1+

Imgtny-| + 5'“1*“1"’1“2*“2"] 3.14
which gives a simple expression for I, . The numerical
results from which are tabulated in Table 3.1 for
processes 1involving the first three heavy hole sub-bands
and the first three conduction sub-bands.
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b) FOR SMALL KL

Here Eq (3.13) can be rewritten as

1 —
- + — §|n tn_.|,[n,-n..| (1+8&n, #+n,.,0)
\A2+K2 { 4 171 2 2 171

K
_ - - n,*n, . n.-n..
¥ hd (+e KL(-1) 11 -1) (1+(-1) 22 }
C(a,+a, D 5K
1 L
M { tz Slmpzaglhingtn,.|
EE n,*n
—_ 4 -K - - n.-n,_..
" Ce eV Y Ly e e 2 2)}
o]
((nltnl,)%)b + K2
3.15

bl
From which when KL << 1, AZ= (n -n.ﬁ%and BZ2= (n +n,fV%re
2 7L 2 1R
much larger than K? except when n,-n,= 0 in which case
-1

the terms involving (A1+K2) dominate and

&

. a b 2 - KL myfn)
5 N _gk Sn)-ny.,0 + 4n 75 (e (1) b
n,¥n,. LK ((nltnl')f +K

3.16

Given additionally that nl—nr’= 0 then

2.2
- NI T LR .17

byt noen . 122)2 X )
2 27071 1
o T

K 3.18
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This (3.18), 1like 3.14, has a sufficiently simple form to
allow the calculation to continue analytically. But before
doing so however 3.14 and 3.16 are checked (see Appendix 2),
and compared to both the full expression (2.87-2.89), and

the common overlap approximation expression 3.13.
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3.1.4 COMPARISON OF THE COMMON OVERLAP APPROXIMATION
WITH THE FULL MATRIX ELEMENT EXPRESSION

Figures 3.1, 3.2, and 3.3 compare the above approximations
to the integral in 2.87 with the full expression. Fig 3.1
makes the comparisons for the important first sub-band
process. Fig 3.2 makes the comparisons for an example of
a processes where n, -n,- is odd, namely the process where
the <c¢olliding electrons are in the first conduction sub-
band, the promoted (Auger) electron 1is 1in the second
conduction sub-band, and the hole is in the second heavy
hole sub-band. And Fig 3.3 makes the comparisons for an
example of a process where n;-n is even and non-zero,
namely the process where the colliding electrons are in
the first conduction sub-band, the promoted (Auger)

electron 1is 1in the third sub-band, and the hole is in the

first heavy hole sub-band.

Anticipating the uncertainty in the factor multiplying
the wavevector dependence of the overlap integrals between
the periodic parts of the conduction and heavy-hole band
wavefunctions (see Chapter 6), figures 3.1, 3.2, and 3.3
plot the integral divided by this multiplying factor. The
size of which, when estimated conventionally (see for

example ref 3.1) varies slightly with well width.
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FIGURE 3.1

This figure compares the integral approximationms of section 3.1 with the full
integral expression in equation 2.87 with 2.88, 2.89 and 2.90, for the first
sub-band process (see insert) in a 1.3 um InGaAsP/InP QW system where the band gap
between the first sub-bands is kept constant at 0.96 eV, and K is taken
(anticipating 3.46) as . ,

(E.-E .. +E . -E )2mc (u+l)
cl “vl” c2 c2” h2 (2u+1)

——— 1indicates the full solution

— .— 1indicates the exact solution within the common overlap approximation
(ie expression 3.13)

_____ indicates the large KL approximation to 3.13 (ie %% from expression 3.14)

e indicates the small KL approximation to 3.13 (ie m from 3.18)

+0
1 1 {1'1}i2 ?? where B 1s the factor multiplying the
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80 : Miep Mo Mo A My
\
\ =
\ CONDUCTION
- I SUB-BANDS
1
1 .
' 2 E
1
60F \
\
\\ K.
\
Sor \ HEAVY HOLE
\ SUB-BANDS
\
\
40} \
\
\
\
S N USRS
3of N
20 F
Op
KL=1
‘ r'] L ] L R
0 20 40 60 80 100

WELL WIDTH(A)

U=



FIGURE 3.2

As figure 3.1 but for the
processes where the colliding
electrons are in the first
sub-band, the promoted (Auger)
electron is in the second sub-
band, and the heavy hole is

in the second heavy hole sub-
band. (see insert)

FIGURE 3.3

As figure 3.1 but for the
processes where the colliding
electrons are in the first
sub-band, the promoted (Auger)
electron is in the third
sub-band, and the heavy hole
in the first heavy houle
sub-band (see lnsert)

{ri}fa Z}dq‘
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The plots are for the 1.3 um InP/InGaAsP system in which
1GaAsP composition 1is varied so as to keep the band
gap between the first conduction and first heavy hole sub-
band constant at 0.96 eV. From these plots, and the
importance on statistical grounds of the first sub-band
process (see Section 2,3.2 and Chapter 5), it is
seen that the large KL, common overlap approximation (ie
expressions 3.14) gives reasonable results for well
widths of 608 and above. Therefore expression 3.14

is used for the remainder of the calculation.
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3.2 THE SUMMATION OVER ALL BOUND STATES
The Auger recombination rate was given in Chapter 2
(eq 2.7 ) as
2
R =L Topl<y

e
", < e 3.19
INITIAL SYSTEM D e rwaL systew ~ ) S(E)

STATE STATE

Using the statistical factor P given by eq 2.15 and the

matrix element from 2,34 where M is given by 3.3

T U L e'(Ez”Ecz')/"BTc Np-[ Ny Ny Py. Ny

b AJL R =
nlnla lS"liS."l‘ N

Myfg - KuyKiy- 3.20

tLme? 2 2(2n 2
2428 bre”) y2 p-2(2r ; - ) )
(2+28n,n,) (EINT) “arlp \ 2 ) S (Ko - Ry Koy Kug ) 8(Kyy K R pmKary ) 6CE)

where 'Ry' is the total bound sub-band to bound sub-band
CHCC Auger recombination rate per unit volume. Ny Nyualy v

and n,; are summed over all appropriate bound sub-bands.

Ky, . are summed, for each bound conduction sub-

band, over all wavevectors in the plane of the weil( and K.,

K+ Kuy and K

is summed, for each bound heavy-hole sub-band, over all

wavevectors in the plane of the well.

Converting the summations over &q' K"r, K"Z « and K”Z‘ to
integrals, and changing 6(§"1, —5,“ +K . -K . )
R 2
- - 9 : s Thy, +K,., - "
6(§I11/ §H1+I_<_"21 §|2 ) to (ZTT)L (S(I-Sul .E-( 'l IS 2 § i ) in the
normal way gives
2 2 N N N P N
R = Ll2m a(éme)l 2'/1 2 17 02 ) o321
b L LI ‘wr/ 2n®  § \Nm Noz For- Moz~
nﬁnz,



where

-(E,;E ,.)/x_ T
- 2 _ .2 _ 22 %c277 "
Q= (K DT (R KD e ¢

§(Ky, . =Kyy . +Kir, S(E)d K. 42 2, 42 3.22
(_,,1 E*1+§“2‘ EHZ)O(E)d Eﬁld gylgd K., d K,

2

These integrals are now evaluated.

In eq (3.22) carrying out the integral over K,, first gives
-‘y2

-(E ;'Ecz,)/x T

2 .2 2
Q= | M (KIS 7(K)e Be s a’k dz}s_..l, dz;(_..2 3.23
where 5 = ISlll —El!l; 3.24

Now expressing K in polars coordinates (K, 6 ), and K and
K, in cartesian coordinates (xl,,yl, respectively) with yl

and y being taken to lie along K we can write
2

’ 2
_ 2 ) . h
E, = E; * aK,, for i = 1,2, and 2” where a = e 3.25
c
and
E = E - uaKz where = /
1- v~ "~ w=m./m 3.26
Therefore
E,.. =E + a(K,,,+K,,.-K )2 = E + a(K+ )2
2‘ C2‘ _Hl _llz _Hlﬂ Cz/ a o IS!IZ
E,. - E = alx2+(k+v,)%) 27
2” c2” 2 2 3.
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Also

= - ~ - . 2 B 2 2 2
Ee1 Bea By Eep o luKi Kiy 4K Tk )
- . 2 2 2 3.28
AE + a(uKul, Koo Koy Ky )7+ K 7+ K,™)
where
AE = cl ECZ‘EVI'-ECZ‘ 3.29
Now
2 2 2
(Ko #By Koy T = KPR 20K Kur) = 2(Kery KD 3.30
2( ”2 nl‘)
therefore
-E = AE + a (u- 1)K"1, - Z(K..1 ”2) + Z(K,.1 1) - L)+ Z(K..2 "1,)
= AE + a (u*-l)l(,,1 + 2(5.(5"1,-5”2)) since K = 5"1-691‘
2
AE + « (u+1)(x1,+y1,) +2a K(yl,-yz) 3.31

and hence

-a(x§+(K+Y2)2)/xBTC

Q= Ml (RIT(K)e Slalur1)(xs.4yb) + 2aK(y, .y, )+2E)

Kd8dKdx, 1,dx dv2 3.32
The integration over 8 is trivial if - is taken to be
independent of 98, and gives

-a(x +(K+vq)2)/x T

v )
Q=2 | M2 ide ° Be slaturl) (x2eyl.)
BF b 1 1
3.33
+ ZuK(y 27Y, )+AE) Kdkdx, l,dxzdy,)
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The important contributions to the x, integral come from a
small region well away from the boundary of the Brillouin
Zone and therefore its limits can be extended to infinity.

Do so the integration over Xy becomes Guassian giving

2 a

Now the integral over x,ris considered.

4 Using

§(x-x.)
S(f(x))dx = Z

i ——FEET— with the i's as the roots of f£(x) 335
) dx|.

1

gives

S(a(u+l)x%, -'D)dx1 - .
J D /a2u+l)

where

- / D 3.37
xfi * a(u+l)

-D = a(u+1)yf, + 2aK(yl,-y2) + AE 3.38

and D > 0 otherwise = 0 since xf is real.
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Next considering the yl, integral, the <condition on D

limits the range of integration over ¥y D being positive

only when Yy lies between

T - ( o
-26K ¢ 4a"K (u‘*‘l) (AE - 2aKv.)

72
20 (p+1) 3.39

/o s
- =

Now using G+R page 81 eq 2.261

1 dy. . = en(-1)

ifD 1 fAGeD 3.40

and taking the principal value

: dy . = — 3.41
. J D /a(u+1) *
1

Combining the above

5/2 % 2
2w (xBTc) ’ 5 ~a(K+y,) /XBTc
Q= MBF(K)IbI(K) e KdKdy

03/2 (u+1)

2 3.42

The range of the Y, integration 1is specified by the

requirement that the limits on yf must be real. That is

AR K
y2>’y2m1'n’ 20K 2(u+l) 3.43
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Using the substitution u / (K+y, converts the Yy

integral to the form

exp- u /

tad
Rl
-3
0
= PR

. TRy,
min “2min

leaving

T x.T
_ B c 2 2 a AE (2u+l)K) 3.45
Q= — w2 (01} @ erte [ (55 » st Jeax 3
a” (u+l) B c

Now for typical semiconductor parameters the complementary

error function is highly peaked at

for 4E >> 0 3.46

In comparison MiF (K).If(K) is slowly varying and may be
taken outside the integral with it value at K = K, . The
remaining integral over K being then be carried out using

G+R page 651 eg 6.297.1

3
2 (p+l) (2u+1) LE
qQ = Ej (x. T ) =M (K )I (KO) exp ( £ ) 3.47

'7
o Bc (2u+1)° BF (u+l) x.T

Substituting this into 3.21 gives a analytical expression

for R
b
(2+28n.n )ea m *(x T )2 N N, N. P N
R = I 172 c "Bec u+l 27 1 2 1 02
b 202 7 - N, NP, N,
a0 - L7 elyr h (u+el)™ N ol "02 "ol "2
a,m,. 3.48
203 (20 -(2u+1) AE )
MB&(I\") -lb (Kq) exp ( G+ D) XBTC

and this may be checked by alternative derivations.
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CHAPTER 4 - AUGER TRANSITIONS IN WHICH THE PROMOTED (AUGER
ELECTRON 1S UNBOUND

This Chapter extends the analysis in Chapter 2
specifically for the CHCC Auger recombination processes
where the <c¢olliding electrons and hole are bound to the

well, but the promoted (Auger) electron is unbound.

4.1 THE MATRIX ELEMENT FOR THE BOUND TO UNBOUND TRANSITION
To make feasible the numerical calculations of the
summation in Fermi's golden rule an analytical expression
is required for the matrix element of the process where
all states, except the promoted (Auger) electron state,
are bound. To obtain such an analytical expression it is
necessary, as in Chapter 3, to neglect the perpendicular
wavevector dependence in the periodic parts of the Bloch

wavefunctions.

Neglecting the perpendicular wavevector depéndence of the
periodic parts of the Bloch functions gives from 2.87,

2.88, and 2.89 with 2.90.

M = (Anez) (ZW) 5(K K. +K K. ) 1° 4.1
= M Boary - "By 12" Ry .
12 BF AZ 1 1 ~'27 227 “ub

iq 2z

(a” sin K, ,z+a cos Kzzz) e ° 2 dz dzquz

2
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where origin 1is taken at one edge of the well and hence

K _.L K _.L

z2 N 22
5 and a B cos 2 4.3

a® = B” sin

when the promoted electron's envelope function has even

parity with respect to the <centre of the well, or

Kz .L Kz L
a’ = B® cos 2 and a = -B”° sin 5 4.4

when the promoted -electron's envelope function has odd

parity with respect to the centre of the well.

ﬁb is now evaluated, there being two possible approaches
to evaluating it. Either the ¢q, integral can be done
first, or alternatively the 2z, and 1z, integrals can be
done first. Doing the z, and zzintegrals first leaves a
tedious integra;ion over q, with a large number of terms.
But this rather defeats‘the object of having an analytical

approach, and therefore the q, 1integral is done first.

The q, integral is done by observing that gﬁhas poles
1

at q, = + |iK, with residues = +-—. Choosing -

- —2iK
suitable contours when z > zzand Z < zzthen gives
L
‘1
- o= (2 312 » KE T S *Rzg Wyt
ub L K e sin —""L Z]: sin L Zl e si1n T 22

o

+Kz1 Con,m n,.m -Kz n,m

4.5

{a cos gzz + 3 sin gﬂf} dzzdz

1



Next the 22 integrals are done using G+R page 196

eq's 2.664.1 and 2.663.3. Assembling the results of these

z, integrals, leaves(if A=(n{_" "(zz') , B=(r){37 + K,z,) )

- . (2)3/2 f x e-Kzl sin a7z sinn 7Tz 3( B, A
ub L K L L 2 K2+B K2+A y
o
a’ K K )
- 5= - dz
2 (K2+A K2+Bz 1
L
3/ _ . .
'+_(£) n eﬂ(z1 . KL sin nln z1 sin nl,ﬂ zl a (-K sin BL -B 'cos BL
L K L L 2 K2+BZ
o

, K sin AL -A cos AL)+ a’ (-K cos AL +A sin AL _ -K cos BL +B sin BL) dz
2 1

2.2 Zonl 2,52
L
. (2)3/2 * sin Eii z sin nLToz, a (ZK sin Bz, , 2K sin Azl)
L K L L 2 x2+32 K2+A2 4.6
)

+ 3 1
2 K2+A2 K2+B2 ] L.
The first two 2, integrals are then evaluated in a similar

. 2K cos Az 2K cos le
( ) dz1

manner. Taking the first one for example, we have using

)=z, - 1 cos(n,+n
L1 2 1

sinn, T2z sinn,.T Z
1 1 1 1

Lj 4.7
L L f

177 71

=1 cos{(n, -
7 1 %

and G+R page 196 eq 2.633.3

KL
iy (FIRST o l-e cos(n1 nl,)n l-e cos(n1+n1,)ﬂ
ub \INTEG

2
T2 2 .2
D) K+ ((ap+n 00

Kz + ((nl-n

5( B _, _A ) ) i:(x K __ _K )
2,02 12420 2 2,20 (2,52
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The third z integral {s evaluated using G+R page 140

1
eq's 2.533.2 and 2.533.4. It gives

Iub

(THIRD ) =(2) 3/2  ma 1 cos((nl-nl,)n+BL)-1 cos((n .-n))m+BL)-1

INTEGRAL/ \L 7 2.4 - * p
{(k°+8°) (nl-nl‘)f + B (nl,-n)f + B

cos((nl-nl,)n-Bl}l cos((nl+n1:)v+BL)-l
+ -

mw T
(n1+n1,)f - B (n1+nl.)f + B

 ra 1 cos((nl-nl.)ﬂ+AL)-l . cos((nl,-nl)ﬂ+AL)-l

2 .2, 4 i B
(K°+A7) (n1 nl‘)f + A (nl, n)E + A

cos((n1+nl,)n-AL)-1 cos((n1+n1,)n+AL)-l

+ -

T p
(n1+nl,)-ﬂ- - A (nl*'nl,)-l—. + A
xa” 1 s1n(AL+(n1-nl,)n) . 81n(AL-(n1~n1,)W)
2 .2, 4 T n
(K°+A") (nl nl‘)f + A (nl, nl)f + A
sin(AL+(nl+n1,)W) sin(-AL+(n1+n1,)ﬁ)
- T N T
(nj¢n 05+ A (nj+a;.0p - A
mat 1 sin(BL+(n1-n1,)ﬂ) . sin(BL-(nl-nl,)ﬂ
2 .2, 4 T m
(K"+B7) (nl-nl,)f + B (nl,'n )f + B

sin(BL+(n1+n1,)w) sin(-BL+(n1+n1,)ﬂ)

T kil
(nl+n1,)E + B (n1+n1,)E - B
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Now assembling, for future reference, I~ for the

ub
n = n.= 1l case »
-KL,, A . A
g i (3)3/2 . (I{ 1 (KL/2)sin(AL/2) . (l-e )(E-mnAL-icosAL)
w M K 1aZ4g? | r(248L) r(2-4L) k2?2
o, =0, ,=0,%1 Zn 2w + 4
1 1 2 TT2
-KL.,B . B
. 1 (KL/2)sin (BL/2) \ (l-e )(E-s1nBL - g cos AL)
2 .2 BL BL 2.2
B +K r(2+§-;) r(2 2Tr) KIZ. .l
n
-KL,,A .
(EY/Z a‘ 1{ 1 (KL/Z)COS(AL/2) . (l‘e )(]‘(" sin AL - CO0S8 AL - l)
L K 2 .2 AL AL 2.2
AT+K F(Z*ﬂ) I'(ZE';) KL .4

2
L

-KL.,B .
1 (KL/2) cos (BL/2) . (1-e )(E sin BL - cos BL - 1
a2ek? | r(2+2L) re2-BL g*L2
. 2w 2 5

m

+ 4

4.10
whichisa suitable expression with which to proceed with the

summation.

For other cases and a number of checks upon the above

the reader 1is refered to Appendix 3. Note, Appendix 3
is again referred to during the interpretation of the
results in Chapter 5 because the 1last of its checks

indicates the behaviour of I, at large and small K.
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4.2 THE SUMMATION OVER STATES

4.2.1 AUGER RATE EXPRESSION AND THE INITIAL INTEGRATIONS
IN K SPACE

As mentioned 1in Chapter 2 the Auger recombination rate is
found from a summation over all appropriate states. For
the processes considered here we are concerned with the
promoted (Auger) electron in wunbound states which are
described by a continuum of allowed perpendicular
wavevectors. The Auger recombination rate per unit volume

therefore becomes,

o 1o 5 5 e-(Ez,-Ecz,)/xBTc -(E e2-"E )/x T
ub A,L h nn X e

1 1’ 2 "1 "1’

nz KHZKHZ
N N 2 2
1 N_l_. EZ_ - 1) (2+26m)n, )(‘”"" ) Mi (_1912 P(KK L) 4.11
N \o1 o2 5 r\2 INT 2

'A—' G(EvllA'l£111+ISl|2 nz)s(Knla 1+,IS'12"1_(':2)6E

where K . has a continuum of values, and we have
22

substituted into the summation (2.7) suitable expressions

for the statistical factor P (2.15 with 2.25 and 2.26)

and matrix element M (see 2.34 and 4.1).

Converting the summations over 5,1, IS_,.l,, &'2' 5_,,2, , and Kzz'
to integrations in Ky &nrlﬂnz,ﬁnzqand E,- respectively
and changing &(K.gK, +KuzK,) O(K, 5K, +K.5K,)t0 %géx,l KB, K,

in the normal way gives

=2
&~

1

2

2y N

RubzAlL Zﬂa'(lenre) 2 (2 N o (Az) 0 4.12
LR INT/ N o1 Vo2
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where

e (K)I‘Z(K ) -(Ez,-Ecz,)/xBTc -(ECZ-Ecl )/xBTc
Q BF = “ub 2277 € e
( )6(E)ds,. (B ..) d2Ky,d Ky, 47K, d>
5 (B "Ry o - Ky (RIS (B p-) d Ry d Ry od Regd R dEpey 55
and where dsCON(ECZ,) is the density of suitable continuum
states per unit energy above the well edge. dSCON(Ecz‘)
being given by
¢
L 2m 1
ds . o = = (—) - 4.13
CON 2m hz : (ECZ’ Ec2'min

ie the one dimensional density of states per unit length
(see Section 2.1.2) multiplied by the system length
'29¢', and divided by 4. The division by four

occurs because of the symmetry reguirements placed on the
promoted (Auge;).state by Section 2.4.3.1 (only half the
states have the right symmetry to give a non-zero matrix
element), and because allowance for two spin states has

already been included in the matrix element expression

(see Section 2.4.1).

The first few integrations in the expression for R 4 follow

in much the same way as those in the bound state CHCC
-(Ez,-Ecz)/xBTc
case, e playing the same role as

-(E..-E ,)/x.T
e 27 clW7Be 444,
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The first difference of note comes from the condition that

the y-component of gqmust'be real. Again (cf Eq (3.43))

AE K
= - 1
2 = 2aK Z(Ll"’l) 4.14

+E ,-E

. but now AE (defined again by AE = Ecl <2

vl’—Ec2’) may
be negative. To interpret this physically the values of K
and Y, which allow y,-to be real must be considered. These
are shown in Figure 4.1 which also interpret particular
cases using E-K diagrams. Mathematically the significance

is that account must now be taken of the possible negative

values of the argument of the complementary error function

in
3 (x_T) -(E ..-E ,)/x,T
_m B¢ 2 2 ¢2” Tcl’""Be

Q - MBF(K)Iub(K,K,,Z,(Ecz,)) e

a” (u+l)
4.15
a AE (2u+l1) K
erfe ’xBTC (ZaK * ) 3 ) d8con Eep - KAKAE .
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FIGURE 4.1
This figure illustrates

(1) the allowed combinations of the parallel wavevector exchange K and the

state 2 wavevector parallel to K (ie YZ) for AE positive, AE zero, and
AE negative.

and (2) interprets some of these allowed combinations, which are peculiar to
the unbound process, on momentum-versas-energy diagrams

()

= illowed combinations

with QE=0

(2) Processes like

are now allowed



4.2.2 THE REMAINING INTEGRATIONS

Various alternative approaches to the integrals over K and
EcZ’ exist. These are now considered, and it is concluded
that while the most satisfactory approach is completely
numerical, various analytical approaches provide useful

. checks and insights.

Attempting to do the E,,- first (see Appendix 4)
immediately produces a difficult integral which can only
be done analytically when both M'BF(K)IL‘Ib(K' K.z.(Ecz,)) and ds.qy
(E.,) are assumed to be independent of ECT.This is obviously

an unsatisfactory basis on which to proceed, and therefore

the K integration is done first,

The approach adopted when the K integral is done first,
depends on AE through the complementary error function.
The influence of AE on the behavior with K of the
complementary error function 1is shown 1in figure 4.2.
When AE 1is positive the complementary error function is
highly peaked, and therefore the matrix element

M (K)I‘:b (K, K )} may, as in the bound-bound

BF "2 2-
calculation, be taken as slowly varying and removed from

the integrand with K=K = AE -Qﬂil—. When AE is zero or
) o (2u+l)

negative the complementary error function is not highly

A'(E
o

peaked in K and therefore the matrix element is not so
easily removed form the K integrand. The simplest

_ , . element
approach however is to assume that again the matrix can be
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FIGURE 4.2 _
. [a AE (2u+1) K)
The dependence of the complementary error function erfc{ —x;’l‘:(ﬁ + TS 2}

on AE and K. Diagrams (i) and (ii) for the 200A 1.3 um InGaAsP/InP system

are

(i) Plots erfc { } against AE and K and marks important K values

(ii) plots loglo {(erfc { }) against AE and K to AE + ve behaviour.

reference.

K=/&EA:_L
of 2”4.[

(a) (b) and (c) are schematic cross sections from (i) and are included for easy

Diagram (l)
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}

evaluated at some representative wavevector say K = Ky,
and removed from the K integrand. Alternative approaches
for the case of AE < 0, such as expanding the matrix
element MBF(K)I;b(K'K'Q’(Ecz‘)) as a power series in K and
then proceeding analytically, produce results so complex

that they provide no more insight than the numerical

approach.

Having done the K integrals analytically using the simple
approximation described above, the remaining E.yintegral
must then be carried out numerically if the Egydependence
of l\dBF(KJI;b(KOK.szCZ,)), both through K,Q'and Ko, is to be taken
into account. To proceed with the remaining Eyintegral
analytically, the matrix element must be removed from the
integrand. This is done by observing that the non-matrix
element part of the integrand peaks atAE = 0 because here
energy and in-plane momentum conservation allow
transitions between states which are near the band edges,
and therefore more 1likely to be populated with electrons
or holes as required. Unfortunately atAE = 0 there is no
complementary @rrer funclion dep@nddnce
clearly defined best choice as a result of the ‘A in
K space shown in figure 4.2(b). Therefore the resultant
analytical expression 1is inadequate for reliable results.
However, it is useful for chécking the numerical
calculation of both K and qdintegrals, and for deciding on
the most appropriate numerical approach to the
calculation. Thus for the remainder of this chapter the
analytical approach is discussed while in Chapter 5 the

complete numerical results will be presented.

83



4.2.3 THE K INTEGRAL WITH 4E POSITIVE

For AE positive the K integral may be carried out in the
same way as it was for the bound-bound transition
considered in Chapter 3. That is Mg (K)Igp (K, Kup ) is
assumed to be slowly varying in K space compared to the
highly peaked complementary error function, and :he
_integral in Eq (4.15) is evaluated by using a formula in
G+R (page 651 eq 6.297.1) or by the method of steepest

descents, giving

AE=0 /
3 2 -(E ,.-E . )/x_T
0 (x,T )° (u+l) 2 2 - c2” ¢l”" B¢
Q== B —= MBF(KO)Iub(KO.K,,z,(ncz,)) e
a (2u+l)
EcZ'min 4 16
(2u+l) AE *
(u+l) x,T
B'c dsCON(Ecz‘) dEcZ’
where K, is the value at which erfc { Ji.('AE +(2"*1’50}K
gl \ZK ~ (url) 2
peaks.

The condition for the peak in K space in the erfc function

of Eq (4.15) is

d 2 AE (2u+l1) 5) -
i |etfe /xBTc (2&K+ G 2)F 0 4.17

which gives

erfe |3 (AE , L2url) 5)= K2 | *pTe
xBTc 20K~ (u+l) 2 oa
a (-AE , 2u+l ) | 4.18

xBTc 2ax2 2(u+l)

a (AE . QusD) 5)2
2aKk  (p+l) 2

where the formula of Abramowltz and Stegun (thereafter

referred.o as A+S) page 298 eq 7.1.19 (ref 4.1)
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w+l 2 x?

S erf(x) = (-1 = W () e
dx J/r (m=0,1,2...)
and the Hermite polynomial QD(X) = 1 have been used.

B _ [AE (u+1) S i b
Now K = K = /7 (€75 satisfies the above to a good

. . . AE (2u+l)
- approximation provided (7 o+ D) is large so
C

AE  (2u+1 0 B
erfc xgT, (ur1)
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4.2.4 THE K INTEGRAL WITH AE ZERO OR NEGATIVE

When AE £ 0 the integrand is no longer highly peaked in K
space, however the approach described in Section (4.2.2)
is adopted. The matrix element is removed from the
integrand and a suitable <choice of K = K, in the matrix
element 1is anticipated. The following result is then used

to evaluate the integral for Q in Eq (4.15)

[o]

2 2
[1 - erf (gX - %) ]e-<g “u)X dx

-_1_2+
bg

when g2 =y 4.19

»xjo

(This result does not appear in G+R and is therefore

derived, in Appendix 4). Using 4,19 and taking
_ , a (2u+l) - _|.¢ AE . .
g = T 2D ! b = T 7o the expression for Q in
B¢ Bc
Eq (4.15) becomes
3 -(E -E )/x,T
L 2(u+l) 2 2 c2” el B¢
Q= — (x,T ) —_ Mo (K )IZ (R ,Kp .(E ,.)) e
a3 B¢ (2u+l)2 BF o "ub o 2 c2
AE=0 4.20

AEXBTc (2u+1) + 1\ ds (E

- — N 27 2°
o D) CON ¢ c

It now becomes necessary to estimate K,. Figure 4.2(c)
shows the dependence of the complementary error
function on K when AE < 0. Now by taking the gradient of
the argument of the complementary at K =/|§E|%§%T— (ie
when erfc(0)=1) and using this in an approximate way
to find the rate of change of the argument of the
complementary error function it is seen that the
complementary error is a good approximation to a step

function providingAE >> Xg T, .
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A convenient choice of K, is therefore

[BE| (usl)

J e 1) 4,21
When AE = 0 the choice of a suitable value of QJ becomes

. even more difficult. By comparison with numerical

calculation 1t has been found that the obvious choice,

Ko = 0, leads to a spurious emphasis in the integration of
this single point in K space. In fact a much better
choice is to take for 0 > AE > - xg T, ¢
x T
_ _ | "Bc (u+l)
K =K _fa (2u+1) 4.22

Here the thermal energy qu:replaces AE in recognition of
the fact that there +tends to be a blurring on energy
dependences by thermal effects. This it will be seen in

Section 4.2.5 produces surprisingly good results.
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4,2.5 DOING THE INTEGRATION OVER UNBOUND SUB-BANDS (THE
E.,. INTEGRAL) NUMERICALLY
To allow K in the matrix element ¢to be <chosen 1in

accordance with the estimates of K, 1in the previous

x_T
. . _ _] B (u+l) >
section (ie K = Ko :/—E--CZ;TT when 0/-z&E2-xBTC, and
- - [IAE] (u+l) - -
K = K_ =/73 (2L otherwise), and also to take into

account the E_,. dependence of Ku,. , the remaining E-
integral 1is done numerically. Figures 4.3 and 4.4 show,
for the 1.3 unm and 1.55 um InGaAsP/InP systems
respectively, the results of such numerical calculations
for the processes where all carriers but the promoted
(Auger) electron are in the first bound sub-bands. Also
shown, for comparison, are the full numerical results,

where both the K and Egzintegrals are done numerically.

From figures 4.3 and 4.4 it is seen that the agreement
between the approximate and full results is good. Also
good 1is agreement between the full results and similar

+1 K
approximate results where K 1is taken as &ﬂﬁhE%QQ%EE:TT .

Thus since both approximate calculations remove from the
integration a significant region of K space around K = 0
through the choice of K,,this region can not contribute
substantially to the integral. But it is precisely this
region of K space that is most sensitive to the lack of
orthogonality of the bound and unbound wavefunctions, and
therefore the lack of orthogonality must only have a minor
effect on the results. Hence it is established that the
lack of orthogonality is not a serious shortcoming in
applying the theory.
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FIGURE 4.3

- The variation with well width of the Auger recombination rate per
unit volume in the 1.3 ym InGaAsP/InP 1.3 pm system (constant band gap
between the first sub-bands) for the process where all involved atates

1 N except the unbound promoted (Auger) atate are bound and in the first
AUGER RATE sub-bands.
‘uﬂ'f‘)
..... indicates the calculation where the matrix elementiremoved
. R _ AE (I»N'l) > > -,
from the K|ln;egrand with Ko a (D) when 0 # AE AKBTC
’AE (u+l)
o= (1= = AE > AE < -
and Ko a o) E 0 or AE xBTc
Cad § o : :
— . —— indicates the same calculation as above but with
¢ = [TET e~ [%8Tc pet
o a (2u+l) a  2u+l

anticipates the results in Chapter 5, of the calculation

where both the K and Ec2’ integrals are done numerically
w3} \\\uithout removing the matrix element from the integrands
102 |
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1028, FIGURE 4.4

As figure 4.3 but for the 1.55 um InGaAsP/InP system
(constant band gap between the first sub-bands)
 AUGER RATE
(cmd V)
027}
1028}
1025}
1024}
‘p A A A A 4 3 e e A A A A Y
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4.2.6 DOING THE INTEGRATION OVER UNBOUND SUB-BANDS (THE
E _,. INTEGRAL) USING AN ANALYTIC APPROXIMATION
Neglecting, for the moment, the energy dependence of the

matrix element through K, and K it is seen that the

P
energy integrand 1is peaked at AE = 0 because here energy,
and parallel momentum conservation allow transitions
-involving states which are near the bound sub-band edges,
and these states are statistically more likely'to contain
the required <carriers. Figure 4.5 illustrates this peak,

and indicates its functional dependence in the energy

integrands 4.16 and 4.20.

The basis of an approximate analytical evaluation of the
Ec,+ integral is to evalute the matrix element at the
energy of this peak, and remove it from the EQI
integrand. The remaining integration can then be done

analytically.

Although the accuracy of this procedure 1is obviously
limited it 1is wuseful for checking the full calculation,
and for deciding the most appropriate choice of step

sizes, etc in the numerical integrations.
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FIGURE 4.5

This figure illustrates the AE = 0 peak in the non-matrix
element part of the energy integrand, and indicates its
functional dependence. In particular it indicates the

AE = 0 peak for the 200A 1.3 pm InGaAsP/InP system.
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Removing the matrix element from the integrands of 4.16

and 4. 20, substituting for dsggy (E ) and wusing
c2’
AE = E_,+E ,-E ;. -E ,. we obtain

~ . )
cl < | Ecl _ (u+1) (Ec2 Syl
L by u+l x, T
) Ii et )2 (wrl) & (2m) o2 Ig eu+l xBTc B c
Q 3 el TaR am\ 2/ TBRub e
c2 vl” el u zLc2‘
i+l x T
B c +E /x_T
LAE .+ (kT ) Sl el Be
(Ec”'- <2 min c2 B¢’ u+l
E .. . -
¢2”min
-DCZ’/XBTC (Ec2’-Ecl+Evl'_Ec2) dE
(E ,.-E % e’
E - -E c2” ¢2’min
c2 “v1’ el o
+Ec1/xBTC e—ECZ’/xBTc
e r dE . 4.23
(E ..-E L )E o c
LJECZ-Evl,-ECl c2” "¢2’min
Now simplifying this by substituting x = EcT'ECZ&mn
and using AE:ma.x: Ecl+Ec2—Evl-%Q’min
Cu o Ea aum BeaRar-
“2 2 (u+l) 2 /2m 3 2 2 G+ 1) XBTC utl xBTC
Q= 3 (XBTC) T2 2 (—5) MBFIub © e
a (2u+1) h y <
u Ec2‘m1'n X=AEmax * {(u+l) xBTc
eu+l XBTC e - dx
x2
—ECZ’min x=0 o ~x/x_T
+ EE:L +ECI/XBTC eXBTC € ° C(x-AE ) dx
*B'e (uel) € x% max
AE
max
- %Egiﬂiﬂ A -x/x.T
+E /x_T x,T B'c
cl" B¢ B e e
+ e e —r— dx
<
AE
max
4,24

The first of these integrals is then solved by expressing

it in terms of Dawson's integral. Putting
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and

%

¥ Gu+l)
Xx° = (—u XBTC) )4 4.27

Thus the first integral becomes

- u Ecl-ECZ’min

2 %
oo 2 (u+l) L/ 2m 2 .2 u+l  x,T
Use = 3 (5T 2 2( 2) "arlup © Be
o (2u+1) h AE 5
_ = u max
2u+l (ECZ Evl’) L y (u+1 Xl )
C Tuel X T (u+1) : Ble >
B¢ 2 ( x, T ) \[ e’ dy
u B¢
u Y= 4,28
2 5 - — (E ,-E . . )
Q T (x.T )2 (u+l) 2 gg) .2 12 . u+l cl T¢?2’min
lst a3 B c (2u+l)2 2 h2 BF "ub
C2ue1 BBy N
o \ 2
e WYL xgT, 2 (—<“+1’ x.T )
. H B¢
AE 1
u max %
+1 x_T U AEmax
S L 4,29
u+l XBTC

where F is Dawson's integral.

To check 4.29 G+R page 317 eg 3.381.1 may be used, it being
7
2 - =
remembered  that y(% , x ) = 2bret:dt =/Terf (x)
(o]
wherey is the incomplete gamma function. Alternatively

G+R page 315 eg 3.361.1 can be used*.

*Unfortunately, this second integral contains a misprint
in the 4th edition of G+R. 1In this edition the square
root sign should continue down to include the 'q'.
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The second and third integrals are evaiuated by
applying G+R page 317 eg 3.381.3. The complete result

from the evaluation of 4.24 being

& -( - 5
nz 2 (u+l) ) (Zm <2 2 { c2’min cl+AE ax)/ABTc
Q=3 (x,T)° ——== Z(F) w1 |e
= - o \hbl is) uw
a 2(u+l) N
3 AE_ P
(u+1) u max
1 xBIC ¥ u+l x_T
s B¢
1 (2u+1) -(Ec2‘min-Ecl)/xBTc 3/2 {3 AEmax
+ — (x.T ) =,
x,T (u+1) B 2 x,T
¢ AE AE ¢
__ max I‘(% max)}
!2 ’ X T
(xBTC) B¢ 4.30
. -(ECZ’min-Ecl)/xBTc (x.T )% F(% AEmax)
€ X3 c ! xBTc

Now this can be approximated. Considering the first term

F(X7) ~ for large X' (from table 7.5 A+S page 319)

1
2~

and for worst case here considered

~ 1.4 (L~2608 in 1.55 um InGaAsP/InP

system)
thus F(X) ~ 0.46 (from tables) whilez—l—;’“ 0.36

X

Considering the other terms

r(a, xm ~xrd7l X [1 + ;—i b ]

(from A+S page 263 eg 6.5.32)
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So with these approximations

-(ECZ-EVI‘)/XBTC

wz 3 % /2m 5 2 .2 (u+1)2 e
Q= 3 (XBTC) 2 (—2) MBFIub 2 %
a “ \h (u+1)" u (AE__ D7
max
(B g E 1) %7,
. 1 e .
2
(Quel) g )?
max
-ECZ-EVI‘)/XBTC
. (u+1) e -
(urD? (AE. )° 4.31
max

which simplifies further to the relatively simple

expression

From this the full numerical calculations can be checked
and optimised. Taking (MBFZ.ﬁb ) as constant in the full
numerical calculation the two methods can be made to
agree within about 10% which 1is as good as could be
expected in view of the above approximations, and we
now proceed to a discussion of the full numerical in the

next chapter.
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CHAPTER 5 - THE RESULTS

This chapter presents numerical results for the bound-
bound and bound-unbound CHCC Auger rate calculations, in
an isolated quantum well. It is concerned mainly with the
InGaAsP/InP system, but as shall be seen later reference
is made to the GaAs/GaAlAs system to assist in the
Aphysical interpretation of the numerical results.
InGaAsP/InP structures with emission wavelengths of 1.3 um
and 1.55 um are considered. The alloy composition of
InGaAsP being varied with well width to maintain a

constant emission wavelength.

The bound-bound and bound-unbound rates are examined, and
a physical interpretation of their important features is
given. The relative importance of the bound-bound and
bound-unbound Auger recombination in the 1.3 um and
1.55 um systems 1is then discussed, and comparisons are
made with bulk CHCC Auger calculations. Finally
comparisons are made with some other QW CHCC Auger

calculations.

5.1 THE PARAMETERS FOR THE InGaAsP/InP SYSTEMS
For the 1.3 um and 1.55 um InGaAsP/InP structures the
alloy composition is wvaried with well width to keep the

guantum well band gap constant.

The required variation is found using the alloy

composition dependences of the bulk InGaAsP parameters
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from Dutta and Nelson (ref 5.1), a finite square model to
determine the bound sub-band levels, and a constant ratio
of conduction band discontinuity to valence band

discontinuity of 2:1 (see ref 5.2).

Table 5.1 shows the variation of InGaAsP parameters with
:alloy composition, and figures 5.1 and 5.2 show resultant
variation of alloy composition with well width when the
energy separation between the first sub-bands 1is kept
constant at respectively, 0.96 eV (corresponding to the
1.3 um system), and 0.8 eV (corresponding to the 1.55 um
system). From the second of these figures it may be
observed that compositional constraints prevent 1.55 um

InGaAsP/InP systems being grown below about 1148,
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Table 5.1

This table shows the variation in Inl_x Gax Asy P
parameters with alloy composition y. The heavy hole band
effective mass, 1light hole band effective mass, intrinsic
dielectric constant, and the " band gap between the bulk
spin split - off and bulk heavy hole band 'dA', are found by
linear extrapolation between binary values. The " band
gap between the bulk conduction band and bulk heavy hole
band, and the conduction band effective mass are found by

more direct experimental methods, and the spin split-off

mass is given a value typical of binary compounds.

m = (1=y)[0.79x+0.45(1-x)] + y[0.45x+0.4(1-x)]

o}

o t

=1 = (1-y) [0.14x40.12(1-x)] + y[0.082x+0.026 (1-x)]
[o}

EIN;.= (1-y) [8.4x+9.6 (1-x)] + y[13.1x+12.2(1-x)]

Asp(ev) = 0.11+0.31y-0.09y

Eé(eV) = 1.35-0.72y-0.12y
mc+
—— = 0.080-0.039%y
o
mS
— =1.6
m

0.4526v

. . . T
requirement for lattice matching to InP x = 1-0.031y

+= taken from ref 5.1



FIGURE 5.1

.00 r This curve shows how the ratio of As to P in InGaAsP must
be varied with well width, to keep the separation between
the first conduction and first heavy hole bands constant

0 at 0.96 eV (this separation corresponding to the 1.3 pm

REl InGaAsP/InP system)
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FIGURE 5.2

1.00 r . As for figure 5.2, but with the first sub-bands
separated by 0.8 eV (corresponding to the 1.55 um
system) :
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5.2 THE BOUND-BOUND CHCC NUMERICAL RESULTS

Using the above parameters, figures 5.3 and 5.4 show
respectively for the 1.3um and 1.55 um systems, the
variation of the <combined bound-bound CHCC Auger rate
(that is the resultant of all bound-bound sub-band
transitions see equation 3.48) with well width. The
- figures assume carrier thermalisation, between bound and
unbound states, of 10E+18 conduction electrons cm-3 and of
10E+18 valence holes (light, heavy, and spin split-off)

-3
cm .

To assist in their interpretation, figures5.3 and 5.4 also
show some important contributions to the combined bound-
bound rate. The largest of these contributions is the one
where all the carriers remain in the ground electron and
hole sub-bands. This is to be expected because the ground
sub-bands have the largest populations of carriers. In the
other significant processes shown it should be noted that
the higher electron sub-bands act only as receivers for
the excited electron, they not being sufficiently
populated to play any other role. The variation of these
important individual contributions with well width is,
when the 1large KL matrix element approximation is used,
dependent  of well width only through the carrier
densities, and sub—-band energy levels (see earlier figures
2.3, 2.4, 2.6, and 2.7). The values of the contributions

shown decrease as higher bands move nearer in energy and
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ior " FIGURE 5.3
This figure shows the variation in a 1.3 um InGaAsP/InP system of the
combined (total) bound-bound CHCC Auger rate, and particular
contributions to this rate, with well width.. The convention used in
naming the particular contributions is shown in the insert.
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o5 FIGURE 5.4

As figure 5.3 but for the 1.55 um InGaAsP/InP system
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hence take a larger share of the available carriers. This
decrease 1s however tempered (except in the solely first
sub-band case) by reductions with well width in the size
of the activation energy AE = El+gZ-El,—E2,. The general
trend for the combined bound-bound rate 1is seen to be
downward with increasing well width. The Auger rate curve
iis, however, punctuated by discontinuities as extra
electron sub—-bands become bound by the well, and so are
available to act as receivers for the promoted (Auger)

electron.
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5.3 THE BOUND-UNBOUND NUMERICAL RESULYTS

Figures 5.5 and 5.6 show respectively the variation of the
first sub-band bound unbound CHCC Auger rate with well
width, in the 1.3 um and 1.55um InGaAsP/InP systems with
10E+18 thermalised carriers cm =~ . By comparing the
magnitude of the rate with that for the bound-bound
‘transitions we see that the first sub-band-unbound rate is
a significant component of the total Auger rate at small
well widths (< 100ffor .1.3um system). At these small well
widths it is found that the first sub-band-unbound process
is the only significant bound-unbound contribution. This
is because there are few carriers 1in the other bound
statés. At large well widths other bound-unbound processes
are comparable to the first sub-band contribution but then
the rate from each process and their combined effect are
small compared to the bound-bound rate. The important
features of the bound-unbound rate are 1) it is only
comparable with the bound-unbound rate in narrow wells,
and 2) it contains oscillations. A qualitative description
of these features is now given using the premise that the
statistically favoured AE=0 condition selects as dominant

transitions those involving the unbound sub-band with band

bottom corresponding toAE=0,
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This figure shows the variation,in a 1.3 um InGaAsP/InP system,
of the first sub-band bound-unbound CHCC Auger rate.
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1028 v FIGURE 5.6

As figure 5.5 but for the 1.55 pm InGaAsP/InP system
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The oscillations seen in Figs 5.5 and 5.6 are not
inconsistent with the assumption that the unbound state
sub-band is fixed by the AE=0 condition. On these grounds
we would expected minima to occur when the well width is

such that the unbound state perpendicular wavevector
7m 91

T L etc (see Appendix 3 with KL large ?)

7 o

r'l =

Unfortunately the graphs are not conclusive because the
"AE=0 peak in the InGaAsP/InP systems is not very sharp and
is not very good at picking out the transitions discussed

above.

The factors affecting the variation of the bound-unbound
rate with well width are :1) changes in the size of the
AE=O peak; 2) changes in the width of the A E=0 peak; 3)
the dependences of the effective density of states on well
width, 4) the factor of L which appears when the Auger
rate 1is expressed per unit volume rather than per unit
area; and 5) the general decrease in wavefunction overlap
between the bound and unbound states as the envelope
function of the wunbound state selected by the AE=0
condition gets a larger perpendicular wavevector and hence
more envelope function oscillations across the well. At
the end of the next section the relative importance of
these factors 1is investigated and it is shown that the
fifth factor accounts for most of the rapid decrease in

the results.
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It is interesting to note that the discontinuities
appearing in the bound-bound Auger rate vs well width
curve (Figs 5.3 and 5.4) do not have any counterpart in
the bound-unbound curve. The discontinuities come aboﬁt
because a new bound state is created in the important
region of space - that 1is, 1in the well where the
recombining carriers are localized. The new bound state
"is then available to receive the excited electron and can
make a significant contribution to the Auger rate.
However binding a new state has a negligible effect on the
continuum of unbound states, their density being
determined by the boundary conditions at the boundaries of
the infinite system. It should be noted that the total
number of states per unit volume does not change when a
new state 1is bound - only one state is bound but the

volume is infinite.




5.4 A TEST OF THE EXPLANATION OF THE NUMERICAL BOUND-

UNBOUND RESULTS USING THE GaAs/GaAlAs SYSTEM

PARAMETER REQUIREMENTS

The requirements for <choosing a set of parameters with
which to test the interpretation of the behaviour in Figs
&5 and 5.6 , are 1) they should give a sharp AE=0 peak,
and 2) they should give weight to large K transitions so

that the large K approximations will hold.

For the first requirement the choice of parameters is
suggested by the functional dependences indicated in
figure 4.5 , A sharp AE=0 peak can either be achieved by
increasing 'y ' the ratio of the conduction band mass to
the valence band mass, or increasing AE ¢ A%wgepends on
the difference between the effective band gap AEg, and the
effective conduction band discontinuity '%ﬁa;Ed"

Guidance upon the second requirement can be obtained from
expression in Appendix 4. Detailed examination of the
integrand shows that the integral is dominated by the
behaviour at large K if the quantum well energy gap is

large.
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GaAs PARAMETERS

Figures 5.7, and 5.8 show that the requirements needed to
test the numerical result against the premise afe
fulfilled in the GaAs/GaAlAs system, where the ratio of
the conduction effective mass to heavy hole effective
mass is taken as 0.067 to 0.45, the bulk GaAs band gap
-is taken as 1.42 eV, and the conduction band discontinuity
is 85% of the difference between the bulk GaAs band gap
and bulk GaAlAs band gap (ref 5.2). Figure 5.7 shows that
as required the AE=0 condition 1is defined by a sharp
peak in the GaAs/GaAlAs system. Figure 5.8 compares,
similarly to Figs 4.3 and 4.4, the full numerical
calculation of the bound-unbound Auger rate with the rate
when small K values are omitted, and hence shows that the
integral 1is dominated by the behaviour of the integrand at

large K.

THE INTERPRETATION OF THE GaAs/GaAlAs RESULTS

Figure 5.8 shows that the oscillations in the numerical
results are compatible with the premises, ie compatible
with the interpretation in Section (5.3) based on the
values of K for the unbound states involved in the
dominent transitions.

Further, numerical investigations have shown that, as
suggested earlier, the increased oscillation of the

unbound wavefunction defined by AE=0 accounts for most of

103



FIGURE 5.7
45 r —

As figure 4.5 but for the GaAs/GaAlAs system with a
200A wide well.
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FIGURE 5.8
100} e

As figures4.3 and 4.4 but for the GaAs/GaAlAs system.
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the rapid decrease in the rate. However even in the
GaAs/GaAlAs system the blurring caused by the width of the
AE=0 peak is still significant, and must be taken into

account to get good numerical agreement between the

[

approximation and the full the numerical results.

"However, with GaAs/GaAlAs parameters we have established
an interpretation of the numerical results, by showing
them to be consistent with a simple explanations in terms

of theAE=0 statistical peak.
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5.5 UNBOUND-UNBOUND PROCESSES

Because of the «carrier distributions assumed processes
other than where <colliding electrons and hole are bound
are unlikely on statistical grounds. Therefore unbound-
unbound processes have not been considered, they being

neglected as insignificant.

5.6 THE COMBINED RESULTS

Figures 5.9 and 6.10 show the variation of the combined
bound-bound, and first sub-band bound-unbound CHCC Auger
rate with well width in the 1.3 um and 1.55 um InGaAsP/InP
systems. First the relative importance of the first sub-
band bound-unbound rate in the 1.3 um system |is
explained. Then comparisons are made between QW results

and bulk CHCC Auger rate calculations.

5.6.1 THE RELATIVE IMPORTANCE OF THE FIRST SUB-BAND BOUND-
UNBOUND RESULTS IN THE InGaAsP/InP STRUCTURES

The relative importance of the first sub-band bound-
unbound result in the 1.3 um InGaAsP/InP system compared
to the 1.55 um InGaAsP/InP system is easily explained on

the basis of the discussion in the previous sections.

In the 1.535 ym system the well must be grown relativelywide
because of compositional constraints. Because the well is
relatively deep, many {(at least three) bound sub-bands are

always within the well. Consequently the similarities
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FIGURE 5.10
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FLGURE 5.9

. The variation of the combined bound-bound, and first sub-band
N bound-unbound CHCC Auger rate with well width in the 1.3 pm
. - InGaAsP/InP system. The bulk rate which shares most in common
*. COMBINED RATE with the QW calculations(ie that taken from ref 53)is also shown
1027 | N for comparison.
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between the first bound state envelope function and
envelope functions belonging to unbound states involved in
dominant transitions, are less than in the 1.3 um system.
Hence the first sub-band bound-unbound matrix elements are
generally smaller, and the first sub-band bound-unbound

rate less important than in the 1l.3um system.

5.6.2 COHPARISON OF THE COMBINED RESULTS WITH BULK CHCC
AUGER RATE CALCULATIONS

Several <calculations of the CHCC Auger rate in bulk
semiconductors exist. To make a sensible comparison with
the quantum well results we should consider those
calculations employing the same major assumptions and
approximations as this thesis - that 1is the use of
isotropic parabolic bands, and the evaluation the Bloch
function overlap 1integrals wusing Beattie and Smith's
effective mass sum rule (see next chapter). Figure 5.lI
compares some well known bulk results with the quantum
well calculation. It shows that the QW rate at
intermediate and wide wells 1is similar to the Dbulk
calculation it 1is most closely related to ie Haug et al
(ref 5.3). This similarity is now confirmed by reverting

to using just the first sub-band bound-bound results.
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A comparison of the QW results with various bulk calculations.
The parameters used are those of the 1.55 um InGaAsP/InP system.
Similar results have been obtained for the 1.3 pum InGaAsP/InP
system and for the GaAs/GaAlAs system.
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A SIMPLE COMPARISON: OF THE QUANYUM WELL AND BULK AUGER
RATES

In intermediate width wells reasonable guidance about the
size of the QW Auger recombination rate can be obtained
by considering just the first sub-band bound-bound
processes, and assuming all injected carriers reside in
the first electron and hole sub-bands. With these
iapproximations the ratio of the QW CHCC Auger rate %m}o
the bulk CHCC Auger rate R (due to Haug et al (ref

BULK

5.3)) can be shown to be

5
RQW - ofm 2p+l ( xBTc )
RouLx 8 ut+l E

where for convenience we define an activation energy 'E,'

by

It 1is seen that apart from a factor of the order of uq}ty
the ratio of the recombination rates is given by (;Ef).
) a
The ratio 1is small when Ea is mu¢h larger than x,T, .
However, it is in such circumstances that the Auger
recombination is negligible because the carriers cannot
obtain sufficient energy from thermal agitation to
participate 1in Auger recombination either in the bulk or a
quantum well. When Ea and x,T are of comparable size,
then the Auger recombination is significant and the rates

in a quantum well and in the bulk are the same order of

magnitude.
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5.7 THE SIGNIFICANCE OF THE RESULTS

Here some tentative conclusions about device optimisation
are made and we speculate about the temperature dependence
of the CHCC Auger contribution to the threshold current in

a quantum well laser.

Any conclusions about device optimisation for low
threshold currents will, in view of the approximations
(such as taking parabolic bands), and the uncertainties in
parameters (such as the overlap ;ntegrals between the cell
periodic parts of the Bloch functions) be qualitative
rather than quantitative. It only being meaningful to
base conclusions upon the comparison between the QW Auger
rate and a similarly calculated bulk rate. Assuming Auger
recombination makes a significant contribution to the
threshold current in bulk DH InGaAsP/InP 1lasers, then
InGaAsP/InP QW lasers with wide and intermediate width
wells must be designed to take full advantage of the lower
threshold carrier densities which the gain expression 1.7
allows. In particular the optical properties of the
system (such as optical confinement) should be optimised
so that the threshold «carrier concentration is low, and

hence Auger recombination is unimportant.
For narrow wells, in particular those where bound-unbound

transitions are important, any similar reductions in

threshold current density will have less effect, because
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the QW CHCC Auger rate for a given thermalised carrier
concentration, 1is significantly greater than the bulk CHCC

Auger rate.

The temperature dependence of the CHCC Auger contribution
~to the threshold current depends upon well width. The

var ious Auger recombination processes have different

exponential temperature dependences, and there 1is a
redistribution of carriers between sub-bands as
temperature and well width. Further investigations of

these dependences 1is identified as a area for future
work. However, one might expect, from the analytical
analysis of Chapter 4 (see in particular eg 4.32) that the
temperature dependence of CHCC Auger recombination will be

greater in narrow wells because of the exponential factor

in 4,32 is small. Interestingly the size of this
exponential factor depends on the conduction band
discontinuity.
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5.8 COMPARISON OF THE RESULTS WITH OTHER QUANTUM WELL
CHCC AUGER RECOMBINATION CALCULATIONS

Here two other calculations of QW CHCC Auger recombination
are briefly discussed. Dutta assumes that the <carriers
inveclved remain in the first electron and hole sub=-bands.
He has obtained independently an expression for the rate
~similar in many respects to the expression derived in this
thesis for the first sub-band rate in the 1large XL
approximation. Unfortunately his treatment of the matrix
element seems to contain an error in that a factor of
1/(2 n)z is missing from the transformation of
$ (51 +5§ -5‘1’ "E,Q, ) 8 (l& HE'Q 'IS_:II, "I_<_._2 ) to (%)28 (IS', ”&2‘[_(:',' 'K_ﬂz' ).
Heﬁce Dutta's equation A6 should contain a extra factor of
(24 )2. In one respect Dutta's calculations go beyond the
present work in that he allows (see ref 5.7) the
possibility of using Fermi-Dirac statisticsby solving part

of the summaton over first sub-band states numerically.

Chiu et al (ref 5.8) investigates CHCC Auger recombination
numerically. The paper does not contain any details of
the calculation and precise information upon the
approximations used has not been forthcoming, and it is
therefore difficult to make detail comments upon
Chiu et al's work. He does however find that the QW Auger
rate in a 2008 well at 300K is around two orders of
magnitude less than the bulk rate at 300K. A result which
is completely at variance with the calculations of this

thesis and those of Dutta.

110



REFERENCES FOR CHAPTER 5

5.1 Dutta N K and Nelson R J 1982 J. Appl. Phys 53 74.

5.2 Chin R, Holonvak N, Kirchoefer S W, Kolbas R M and

Rezek E A 1979 Appl Phys Lett 34 862.

5.3 Haug A, Kerkhoff D and Lochmann W 1978 Physica Status

Solidi (b) 89 357.

5.4 Beattie A R and Landsberg P T 1959 Proc. R. Soc. A249

16.

5.5 Haug A 1972 Theoretical Solid State Physics Vol 2

(Oxford: Pergamon).
5.6 Smith R A 1978 Semiconductors (Cambridge).
5.7 Dutta N K 1983 J. Appl Phys 54 1236.

5.8 Chiu L ¢ and Amnon Yariv 1982 IEEE J. Quantum

Electron QE-18 No 10 1406.

See also
Smith C, Abram R A and Burt M G 1985 Superlattices and

Microstructures Vol 1 No 2 page 119.

111



CHAPTER 6 - TBE. OVERLAP INTEGRALS BETWEEN THE CELL
PERIODIC PARTS OF THE WAVEFUNCTIONS WHICH APPEAR IN AUGER
CALCULATIONS

In this chapter it is shown how the overlap integrals
between the cell periodic parts of the wavefunctions which
appear in Auger calculations (see Chapters 3 and 4) may
~be evaluated wusing a 15 band K.p method. Unfortunately
-the results presented here are not yet at a stage where
they may be substituted in the expressions ~ of
Chapters 3 and 4. However even at this early stage it can
be seen that they represent significant modifications to
previous band to band Auger rate calculations both for the
well and the bulk. The overlaps obtained using the 15 K.p
band method differ considerable from conventional overlap
estimates but are in good agreement with results from a
pseudopotential method. Since these differences were first
noticed when preliminary estimates of the overlaps were
made for the (001) direction, the (00l1) results are
presented immediately after the K.p method has been
introduced. These (001) results are then Jjustified,
because their differences from conventional estimates of
the overlaps. Next the results for other directions are
considered, and the similarities between these results and
some obtained by a pseudopotential method are shown.
Finally to illustrate the difficulties in simply
substituting the overlaps discussed in this chapter into
the expressions of chapters 3 and 4 some results are

presented for non-parallel wavevectors.
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6.1 AN INTRODUCTION TO K.P THEORY

In this section we shall review,; for completeness and to
establish some notation, how within the one -electron
approximation and using the Hartree hamilton, an exact
matrix equation describing the one electron energies and
wavefunctions for the entire zone may be obtained, if

" sufficient is known about the zone centre states.

Using one electron Bloch wavefunctions an = o KF UnK(r)
one gets from the Schrodinger equation
= 6.1
HK UnK(r) EnK UnK(t)
where
He = e-lK'r H e+1K‘r 6.2

Now expanding the periodic parts of the wavefunctions in

. terms of the zone centre periodic parts qn (r), and using
(=]

orthonormality equation 6.1 becomes

P u_ () B U (x) Or =E . 6.3
m \JUNIT ) %o n
CELL
Expanding HK in terms of K gives
Zemn U (r)[H-iK.[r,H]-l z Kuk [ru,[r ,H}+...... ]
o 2 =X,y,2 v M 6.4
™o Junit ° t=x’ﬁ i .
CELL ¥

U (r) d3r = [
n T n

K
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which may now be simplified if the Hartree hamilton is
used.(iK .[r,H] becoming 2K.p , %!valnu[rvﬁﬂl, becoming
K2 (using Cardona atomic units, ref 6.2 ) and higher
commutators becoming zeroJ If other hamiltons are wused,
Kane (ref 6.1) shows the form of the commutators and
concludes that only minor changes to the results occur.
"One reason for this is that for the Hartree-Fock
hamilton at 1least iK.[r,H] has the same symmetry as
and is determined empirically. Here only the Hartree
hamilton with the addition of K independent spin orbit

interaction is considered
ie

HK = H + 2k.p + K2 6.5

where, using Cardona atomic units

H=- 9 + v(r) + —15 [ (vvaP).¢] 6.6

. ,
Hence combining 6.4 and 6.5 one gets a matrix equation (to
be discussed later) which allows the energy bands and
wavefunctions to be determined at any point in the zone if

sufficient information is available about the 2zone centre

energy eigenvalues and eigenvectors.
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6.2 THE (001) DIRECTION

6.2.1 THE 15*15 HAMILTON AND THE FITTING OF PARAMETERS
Initially equation 6.4 is solved for K values along the
(001) direction because this reduces, by symmetry
considerations, the amount of information needed about the
zone centre states. Cardona and Pollak (refs 6.2 and 6.3)
build this information up in a systematic way. Here only
the philosophy of Cardona and Pollak's approach 1is
outlined, For details of how particular matrix elements
are determined the reader is referred to the original
series of papers, by Cardona, Pollak, Broerman and

Higgenbotham (refs 6.2 to 6.5).

First Cardona and Pollak establish using only the symmetry
properties of the octahedral group the number and type of
zone centre states to be used. The zone centre states
used are " the irreducible representations
of the octahedral group which of course have the same
symmetry properties as the zone centre periodic parts of
the Bloch functions. An indication of which zone centre
states, need be considered, is then obtained by
considering the combinations of plane waves which have the

same symmetry properties as the periodic q% ,»+ The lowest
s

energy plane waves satisfying the symmetry requirements

are the 2 (o0,0,01, % [1,1,1), 2% (2,0,0], and
a a a

2 [2,2,0] waves. Now since the energy gap between the

a

%1 {2,0,0] and %1 (2,2,0] waves 1is large and from
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perturbation theory the amount of interaction between
states depends inversely on the energy gap separating
them, zone centre states corresponding to éﬂ [2,2,0] waves
and higher are neglected. The symmetries of the states
corresponding to the remaining waves are then found by
. considering the character tables for the plane waves.
Hence one gets an irreducible set of 15 zone centre states

as follows

lower lower (1) upper upper lower
> > >
|r2‘ ’ ‘225‘ >’ |r12‘ >! |225 ’ Irz‘ >) lxzs‘ >’ |YIS
i upper lower upper upper lower .
1Yy5- > [¥y62 > Ixq >0 X >0 2y >, Ty >, I} >
(2)
and |1"12 >

where TI,. 1is 1invariant under the zincblende symmetry
operations but changes sign under the remaining operations
of the diamond group, %.. transforms as xy, Fié)as‘f?
2 2 : (2) 22 , . ,
(x "=y "), 2Z as z, T as 3z -r“, and r_ 1is invarient
15 12 1
under the operations of the diamond group. Each basis
state must now arbitrarily be assigned a spin and phase,.
Spin .is assigned so that it is quantized in the (001) z

direction,

> 1> > >
6,1 > ilb> g > -ift>

s 1> = 14> ¢ Nd>=+it>
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and phase is assigned in order that the momentum matrix
elements in equation 6.4 are real, 1ie even-parity states
are taken as purely real and odd-parity states as purely

imaginary.

The Ge crystal potential is next turned on and the matrix
- elements for these states are determined. The diagonal
matrix elements are determined both experimentally by
cyclotron resonance and theoretically by 0.P.W and
pseudopotential calculations. During these determinations
of the zone centre diagonal matrix elements (ie Uﬂ> 's
energies) spin orbit interactions are ignored because they

are explicitly included in the hamilton to be solved. The

zone centre diagonal matrix elements used are then:

lower -
55+ 0.00

r;?‘“e‘ ~  0.0728

T'is ~ 0.232
(eigenvalues in rydbergs)

pUPPer ~ 0.571

rlover — _ g 966

1

Ty ~ 0.770
r,oPer ~ 1.25
r;E’Per ~ 1.35
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The sizes of the off diégonal matrix elements are found by
a mixture of experimental determination and band fitting
so that the resultant band structure agrees with non-zone
centre results, the number of parameters which must be
considered being considerably reduced by the application
of group theory. In the (001) direction the only non-zero

momentum matrix elements for states of the same spin are:

< r,1ower lower >

2i 55 - |p|F2, = P = 1.360
2i < r;‘;"’er' s > = q =1.070
2i <109 |p|r . > = R = 0.8049
2i < r;‘;‘,’erl | roEPeE > = P" = 0.1000
2i < r‘z“s"’erlplr;‘?we‘ > = P' = 0.1715
2i < r‘z‘gperlplrls > = Q' =-0.752
2i<F;gper|p!T12,> = R' = 1.4357
2i < r“Pper[ lr“pper > = P"™ = 1.6231
zi<r‘1‘PPer|p\rls> = T = 1.2003
2i < r}"“’e‘lp;rls > = T' = 0.5323
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States with opposite spins cannot interact except through

the spin orbit interaction. Those which do interact are:

Ge value GaAs value InP value
lower lower 1 1 | P 1
< l 1 B o e [ — § -— -
t Z)s ‘“so‘xzs $> 3 895- 3(0.0213) or 3(0;0213) or -3(0.0274)
- . . A i i 1
s s - 215 = X L WL
hvls ‘“50‘”15‘> i3 3(0.0265) or 3(o.ozes) or 3(0.0381)

and -equivalent by symmetry matrix elements. Hence along
the (001) direction with kx and ky equal to zero the
matrix can be seperated into two 15 by 15 blocks, and this
is the advantage of working in a high symmetry direction

such as the (001) direction.

Having found the parameters for Ge the matrix for GaAs or
InP is determined by the addition of an antisymmetric
potential V~ ﬁo the crystal potential of Ge. This is
equivalent to wusing the tetrahedral group to determine
which matrix elements are zero rather than the octahedral
grdup. The additional momentum matrix elements in the

zincblende structure are:

value in GaAs value in InP
- -, .lower — =
\IHSIVIFZS > =V, 0.12652 0.13973
. .lower, -, upper R = _
<r, v lr, > =y 0.24791 0.22161
<OVl > =yl - 0038210 0.26413
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"

= 0.12297 0.15348

rlslv |1*25 > v

<EPETVTIIIPPET > = vl =-0.34820 -0.28018
upper,, - .lower

<l > =y- = 0.0 0.0

"and the additional spin orbit interaction matrix elements

are:
value in GaAs wvalue in InP

- ,lower A"
» i > T e— = » °
<i225 HHSOILYlsi 3 0.00507/3 0.02922/3
~and similar. ( The sizes of these new matrix elements being
determined by fitting to known experimental GaAs and InP
energy gaps, details of which are given in refs 6.3, to

6.5.)

Having above discussed the size and the parameters of the
matrix equation 6.4. Fiqure 6.1 shows the complete 001
matrix which must be diagonalised to give the eigenvectors

required for the overlap integrals.
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The upper right hand corner of the hermitian 15 by 15 matrix when Kx and Ky

are zero.



6.2.2 THE RESULTS IN THE (001l) DIRECTION

The overlaps which are of interest for the CHCC Auger
process are those between the initial and final states of
the recombining electron. Since each eigenvector 1is
doubly degenerate because of spin, for each interaction
four overlaps need to be considered. However, because of
the way the matrix can be split into two 15 by 15 matries,
two overlaps are exactly zero, and the other two are
similar and may be found by solving the 15 by 15
matrices. The results shown are for one of these non-zero
overlaps, or at the risk being pedantic, are obtained by
squaring each overlap, dividing by two, and then taking
the square root (this operation being used to define a
‘quantity equivalent to the overlap integral originally

used by Landsberg]).

For wavevectors corresponding to the threshold condition
the conduction band - conduction band overlap is found to
be around 0.7 which agrees well with the usual

approximation of taking it as unity.

On the other hand the conduction band - heavy hole band
overlap does not agree well with the usual approximations
(refs 6.6 to 6.10). In figure 6.2 it is shown how the
modulus of the overlap between the zone centre conduction
band and the heavy hole band varies as the heavy hole
wavevector which is taken to lie along the (001l) axis is

increased. These overlaps are significantly smaller than
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FIGURE 6.2

This figure shows the variation in the modulus of the overlap integral between
the cell periodic parts of the conduction and heavy hole wavefunctions 'ICH"
as the heavy hole wavevector, lving in the (00l) direction, is increased

hhe conduction band wavevector being taken as zeroL



predicted by the usual effective mass sum rule overlap
estimates, and this has important consequences for
theoretical estimates of the CHC& Auger recombination
rate. At threshold for the CHCC process in GalAs and InP
the wavevector transfers are respectively 0.085 and 0.073
atomic units if parabolic bands are assumed. Thus it <can
- be seen from figure 6.2 that the overlap moduli along the
(001) direction are approximately 0.00011 for GaAs and
0.00@8 for InP. But using the effective mass sum rule
prescription of Beattie and Smith (ref 6.7) one finds the
overlap moduli to be 0.63 for GaAs and 0.63 for InP.
While using the AntonZcik and Landsberg prescription for
using the effective mass sum rule (ref 6.6) gives
threshold overlap moduli of 0.46 for GaAs and 0.42 for
InP. The size of the overlaps obtained from this
preliminary study are therefore two to three orders of
magnitude smaller than those customarily uséd. It 1is
therefore clearly necessary to show how the results were
checked and to investigate the discrepancies between them

and other estimates of overlap integrals (ref 6.11).
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6.2.3 CHECKING THE RESULTS

Apart from the obvious checks of the 15 band K.p results
against the published Ge, GaAs, and InP data from Cardona
and Pollak two further types of checks have been carried
out. These were the checking of 2zone centre zincblende
eigenvectors and matrix elements against first order
~perturbation theory expectations, and the application of
the effective mass sum rule (refs 6.6 and 6.12) to the
results. As will be seen later in this chapter these 'two
checks take on an importance beyond the simple
confirmation of the consistency of the 15 band
calculations. The first is of use 1in providing the
zincblende basis matrix elements for a comparison between
15 band results and those of the four band Kane model (ref
6.13) and the second {8 of use in showing the failure
of the Beattie-Smith and AntonZcik-Landsberg effective

mass sum rule approximations for the overlap integrals.

The zone centre, zincblende eigenvectors in the absence of
the spin orbit interaction are found by diagonalising the
matrix of the asymmetrical potential V  in the basis of Ge
zone centre states in the absence of spin interaction.
The machine output for the conduction band and heavy hole

band, zincblende eigenvectors in the Ge basis is

e >=|s>= lrim’*’r cond.Gals, _ 0.81|ir;?“’e"> +0.13|T3PPE™> 40,491 | r}PPET>

+0.301 rl‘w" >
6.8
PR XGaAs .,GaAs GaAs~,

_ lower D
15 * i¥]c = > where lx15 = o.91{x25, > +0.41 Lllxls >

+0.04] x‘z‘g?er>
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and these compare well with first order perturbation

theory estimates of

le>=|s>= 'rlower cond. Gadsy, _ 0.85ir ].ower5 +0.0 lrupper>

+0.42i |1 {PPE™> +0. 314 ri°“"‘-" >

6.9
‘ GaAs YGaA5'whpre Ix Gaﬁm>>_ 0. 88|Ylowen> +0. 4811

v 15 15 "15 257 ' 15

| JUpper:
+0.0 |X25 >

~From which the matrix elements of matrix 6.4 in terms of
the zincblende, zone centre eigenvectors 1in absence of
spin interaction, basis can now be found. Considering for
example a spin orbit interaction matrix element between

GaAs valance band states

GaAs” ! GaAs‘> {< ZGaAslzlower> < ZlowerlH ‘Xlower>
15 25 25
GaAs
+ <y lizyg
< iz iHlelower>}< xlov:rerIXGaAs> . { GaAslzlower> lower!H |1X >
15 25 15
GaAs | . . |2 Lo .
+<zig lizg > < IZ15!“5""‘15>} b lxlsl —

now using the previous values 4,; and Als for Ge spin

orbit interactions and the above expressions for

.F??“> gives
i <273 tug (XT3 > = -i6.116 x 1073

which again agrees with machine output.

The second category of checks on the 15 band K.p results
involves the application of the effective mass sum rule,

which may be written as

m=q’l m ) N2
rw |- (1 e 2 ) @ a0

Z (E (K) - E (K))
e T n
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where the Inm is thé overlap between eigenvector n and
another eigenvector m and the other symbols have their
usual meaning. This tests successfully the self
consistency of the eigenvectors and eigenvalues and if the
diagonalisation is working correctly it will always work
providing the g-g' 1is small enough for first order
~perturbation of the wavefunctions to work. The results
show that with the wavevectors of 1interest the wuse of
perturbation theory is questionable but more importantly
from the point of view of comparison with other overlap
estimates the contributions of the different I ,'s 1is not
as guessed in the Beattie-Smith and AntonZcik-Landsberg

estimates.
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6.2.4 COMPARISON WITH CONVERTIONAL ESTIMATES AND REASONS
FOR THE DISCREPANCIES

Effective mass sum rule estimates of conduction bana-
heavy hole band overlap depend on the assumption that this
overlap 1s the major contributor to the conduction band
mass (Beattie and Smith) or the major contributor to the
iheavy hole band mass (Antoncik and Landsberg). It is
found however that this 1is not the case. For instance,
for the <conduction band sum rule with K = 0.01, g = 0 and
g' = 0.001 atomic units, the retention of only the terms
involving the 1light hole and spin split-off valence bands
results 1in only a 3% error for GaAs and less than a 1%
error for InP, in estimating the conduction band effective
mass. While for the heavy hole band sum rule with
K = 0.05, g = 0 and q' = 0.001 the retention of only
contributions from the two bands in the lowest triplet of
the conduction band accounts for 99% of the contributions
to the heavy hole effective mass. These results are not
however too surprising in view of the fact that Kane's 4

band model gives the effective mass of the heavy hole band

with the wrong sign unless these higher bands are included.

In fact the 15 band K.p (001) results are readily
understandable interms of Kane's 4 band model andcorrections
thereto. Kane's 4 band model gives the zone centre
conduction band eigenvector and the heavy hole valence

band eigenvector as | S > and |X€§AS-+ in?AS t>, or |St>
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and | X?;As -fﬁ;As { > respectively. Hence the overlap
between them is zero due to spin. Now as can be seen from
the equationsé8,6.9and the matrix of figure 6.1 the 15 baﬁd
eigenvectors retain the same form as Kane's eigenvectors.
That 1s the heavy hcle eigenvector and the conduction
eigenvector do not mix directly because the spin orbit
“interaction does not couple them directly. Further
symmetry can be used to show that as the heavy hole
eigenvector 1increases, then the second order perturbaﬁion
(ie linear K) <coupling via lz§;§’or Izls> is also zero.
To illustrate this second point a matrix forﬁgtion of
Lowdin's technique may be used for folding down Kane's

extended hamilton matrix H (ref 6.1). This is now done.

Kane's extended hamilton matrix H is written

where A contains the interactions between the original 4
(8) states, B <contains the interactions between the new
additional states, and C contains the interactions between
the original and new states. (The states of A and B being
chosen so that the interactions in C are small compared to
the energy separations between states interacting in C.)

Multiplying the above matrix by S
I -A %

g lee I
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gives

0

Hence the eligenvectors UK can be found from

Ta-c T oy =0
K LS

where

sl ey, =

© 4w
jo=]
—

il E -E H'LK

the true eigenvalue  E in cE ! T+ being replaced by its
approximate value ie the appropriate diagonal element of
A. Now to get in CB! C* a linear term in K we must take
in a momentum matrix element as one off diagonal matrix
element and a spin orbit interaction matrix element as the
other off diagonal matrix element. But combinations of
this form can be shown to be zero using the symmetry
operations of the tetrahedral group. That is in the (001)
direction there 1is no 1linear K term in the overlap and
therefore the overlap might be expected to be small. Thus
it has been established that our directly obtained
overlaps are not incomparible with predictions obtained

directly from Kane's model.
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Now while considering the comparison of the preliminary
results with other estimates of the overlap integrals two
further estimates which are based upon Kane's 4 band model

should be mentioned.

The first of these 1is due to Takeshima, Sugimura, and
‘Dutta and Nelson (refs 6.8 6.9 and 6.10). Little
information is available about this estimate and in the
absence of further information it is suggested (ref 6;14)
that they may have obtained it by takingthe conduction
band - heavy hole band overlap they use as the average
Kane's conduction band -light hole band and conduction
band -héavy hole band overlaps.

12

1 , )
oyl ? = 3 L1<o @ 0,00 >+ [<o (o) |8, @) >

where

<9 (0], (K)>=0

and from ref .13

GaAs

GaAs
>
15 f

}¢L(1<)> = aL(K)!iST> +bL(K)|-(X 15

. ,GaAs
+ 1Y), )2> + cL(K)lZ

|6 (0)> = a_(0)]ist>

with to first order 1in K (reverting to Kane's units for

consistency with hispaper)
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and Ny a normalising constant)

' >42 2 szz 2 k% h thz
< - = = I oo 1 = ——
¢C(0)(¢L(K) 3 5 3 7m Ep vith E, —
E G
G
and therefore
" ‘2 = l _E_E -f—li
PcH 3 E. 2m

G

In the absence of any Jjustification for this (their
expression) the author <can Jjust assume that they are
trying to account in an arbitrary way for the mixing of
light and heavy hole bands caused by impurities within the
semiconductor. Some circumstantial evidence (ref 6.15)
existing that the size of the overlaps depends on impurity

concentration.

The second Kane related expression for the conduction band
- heavy hole band overlap is due to Beattie and Smith (ref
6.7 and 6.16). To derive it they assume that the system
is above threshold and that the eigenvectors are non-
parallel. They then give, wusing Kane's 4 band model, an
unweighted average over the angle betweenthe eigenvectors
of the overlap. This is obviously incomparable with the

15 band K.p (001) results but does indicate that a
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significant increase 1in the overlap is possible when one
moves away from the threshold condition. In section 6.3.3
the overlap for non-parallel wavevectors is investigatea,
and with this information and information about
wavevectors which are parallel but not in the (001)
direction it 1is hoped, that eventually from this work a
‘weighted average overlap can be obtained and substituted
into the threshold Auger results of Chapters 3 and 4. 1In
the next section initial <calculations towards this

eventual end are described.
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6.3 EXTENSION OF THE CALCULATION TO OTHER WAVEVECTOR
DIRECTIONS

6.3.1 EXTRA MATRIX ELEMENTS DEPENDENT ON Kx AND Ky

Using group theory the additional matrix elements which
appear when Kx and Ky are non-zero can be found.
Figure 6.3 shows these additional matrix elements. Their
‘sizes are again taken from Pollak, Higgenbotham and

Cardona (ref 6.4).

The presence of these extra matrix elements prevents the
splitting of the 30 by 30 matrix into two 15 by 15
matricies, and so it is this larger matrix which must be

diagonalised to find the overlaps.

6.3.2 RESULTS WITH THE WAVEVECTORS PARALLEL

Figures 6.4 and 6.5 show how the modulus squared of the
conduction band-heavy hole band overlap varies as the
heavy hole wavevector rotates between (001) and (011) in
the zy plane. The conduction band wavevector is set to
zero and to be consistent with section 6.2.1 the modulus
of the overlap squared is found by squaring each of the
four conduction band-heavy hole band overlaps (there being
four because the spin-orbit interaction splits each band
not in a symmetry direction into two bands) then adding
the squares and dividing by two. Also shown on the graphs
are pseudopotential calculations by Brand of the same

overlaps (ref 6.17 and 6.18).
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FIGURE 6.4

2 .

This figure shows, for GaAs,llcﬂl' as a function of 8, the angle the heavy

hole wavevector makes with the z axis in the yz plane. The conduction gand
i

e

wavevector is taken as zero, and the heavy hole band wavevector as 0.2 3
where a is the lattice spacing. The solid curve shows the 15 band K.p results

and the dashed curve shows nonlocal pseudopotential results.
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FIGURE 6.5
As figure 6.4 but for InP.



Rotation of the heavy hole wavevector has little effect
on the shape of the graphs. Further rotations in the zy
plane repeat, because of the crystal symmetry, the same
pattern, and rotations around the (001l) direction in the
Xy plane only modify the shown size of the overlap squared

for a particular angle to the (001) axis by a few percent.

Brand has found empirical fits to these results (ref
6.19). He shows that the curves shown in figures 6.4 and

6.5 may be fitted by

I%CKl,HKl,) =B sin2 46  with B= 0.683 from pseudopotentials

and 8= 0.625 from 30 band K.p.

@ being measured from the (001) axisand the heavy hole
waveveétor being taken as reasonably large . For smaller
heavy hole wavevectors the numerical results show the
relative size of the overlap in the (011) direction
increases. But this 1is not a serious problem and should
one wish to make the simplifying assumption that for a QW
grown on the 001 plane the conduction band wavevector is
exactly zero, then most of the integrals needed to
incorporate the above empirical expression into the

analytical calculations can be found in G+R.
Brand has also found an empirical fit for variation of the

peak overlap with heavy hole wavevector magnitude. The

peak overlap occurs midway between the (001) and (01l1l)
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directions. Figures 6.6 and 6.7 show how the size of this
peak overlap decreases with decreasing heavy hole
wavevector. Also shown on figures 6.6 and 6.7 is the
effect of taking a small anti-parallel conduction
wavevector. This more <closely mimics the threshold
condition and also gives a better fit to the empirical
- linear K relationship

_ . 2
I’(CKI,HKI,) = B(Kl Kl,)

(for which the coefficient g isvery different from the
coefficient which could be obtained from an application of

one of the effective mass sum rule estimations).
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2 .
as a function of the square of the

This figure shows, for GaAs, [ICH!
difference AK = 15 -K | between the heavy hole and conduction band

wavevectors, K  and K . The wavevectors are Eiken to lie midwav between
(001) and (0117 and are measured in units of =—. The solid curve shows the
15 band K.p results with K. = 0. The dotted-dashed curve shows nonlocal
pseudopotential results wi% The dotted curve shows the 15 band K.p

h K = 0.
= -0.05 (=).
h

K
results with Ec = 3 —CAnd the dag%ed curve shows the nonlocal
pseudopotential results wit Ec = -0.05 (i— .
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As figure 6.6 but for InP.



6.3.3 RESULTS WITH NON- PARALLEL WAVEVECTORS

In the results presented in this section the conduction
band wavevector 1is taken to lie along the (001) direction
with a small fixed magnitude, and the heavy hole
wavevectors which has a large fixed magnitude, is rotated
in between (00l1) and (011) in the zy plane. The modulus
isquared of the overlap is then plotted against the angle
which the heavy hole wavevector makes with the (001)
axis. Figures 6.8 and 6.9 show the behaviour of the
overlap modulus squared in GaAs and InP respectively and
compare the 15 band K.p results with pseudopotential
results. As with the parallel wavevector results the
agreement between the 15 band K.p and the pseudopotential
results is good and their sizes are considerably smaller
than predicted by conventional effective mass sum rule

estimates.

The next level of approximation after the effective sum
rule estimates, is to wuse the Kane's 4 band model to
estimate the overlaps. In Kane's 4 band model the
conduction band states|¢ca > and ‘¢m > with wavevector

along the (001) direction are of the form

|6 >=a I18$>+ b l(XGa'As - GaAS)//2f>+ c ]ZGaAS$>

ca

8 > = a fist> - b |(x524 4 iv5ahey vak> + ¢ _|zfERor >
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This figure compares the K.p (solid curve) and the pseudopotential (dashed

curve) results for |I 12 as a function of the angle 6 between the heavy
hole and conduction band wavevectors. The conductxo& band wavevector is
taken to be in the (001) direction and Eo be 0.015 [=}. While the heavy

hole band wavevector is taken as 0.15 GaAs parameters are used.
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FIGURE 6.9
As figure 6.3 but for InP.




¥ i

while the heavy hole states l¢Ha> and |¢HB> are given by

8y > = 13 4 19724y v2 17>

> = Kx(i;gAs - GaAs)/'/zé >

1 0a
where the primed quantities are given by
|t* > = cos 8/2|t > + sin 8/2|} >

|42 > = -sin 8/2|t >+ cos 8/2]4>

XGaés = (cos B)XGaAs - (sin 8)2 GaAs
15 15
GaAs” GaAs

Yis- = Yys

aAs

GaAs” . GaAs G
Z15 (sin S)X15 + (cos G)Z

Using these .in the same way as in early steps of Beattie

and Smith's 4 (8) band averageing procedure

cos 6/2 I(XGaAs cos 8 + iYGaAs } ZCaAs sin )1 >

loye == — 15
Ha /3 15
+ sin 8/2 IXigAS cos 8 + iY?;AS - Z?;AS sin 9)¢ >
2
and
in 67 As .
!¢HB > = - %EE 5/2 [(Xi;As cos 06 - iY?gAs - Z?? $ sin 8)1 >
2
+ %?_i §/2 I(X(l;gAs cos O - iYcl;gAs - Z?;As sin 9)¢ >
2
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- l 2 _ 512 . 119_\ 2(6)
1< ¢cBl¢HB'>| Ibc+VZc! sin (3jcos 3

1<é ¢

2 , 2 2 . 9 0
HB >1° = < cPcBMHa >|° = lbc + /7 cc| sin 2{-2-) cos LE-)

t giving the average overlap squared

ca

2 1 2
! = = ! I > 2l < > |
IICH'average 2 [2' < ¢ca'¢Ha v 2 d>ct’.tliinB l]
2 .
=% lbc + /2 ccl 51n2 8 6.10

which Beattie and Smith now average over 9. Here however
equation 6.10 is retained for comparison with the 15 band
K.p results..( The coefficients a.r b, and c_ being found
by solving Kane's (ref 6.13) cubic equation (10) exactly
using the zincblende parameters found during the checking
of the 001 results (see section 6.2.3).) The comparison of:
the Kane model predictions (from equation 6.l10) and with
the more exact 15 K.p results are shown in figures 6.10
and 6.11. These again show that the simpler estimate

of the overlap is inadequate.
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FIGURE 6.10

This figure shows |I 12 as a function of 6, the angle between heavy hol 2and
conduction band wavevectors. The conduction band wavevector K= 0,015|{—
is taken to liez%lOﬂg the z axis and the heavy hole wavevector K, is taken as
equal to 0.15 E—J. The solid curve shows the 15 band K.p results and the
dotted dashed curve shows the Kane 4 band results. The contributions to the
Kanes 4 band results are shown by the dashed curve (results for equal 'spin
indices') and the dotted curve (different 'spin indices'). GaAs parameters
are used,
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As figure 6.10 but for InP.



6.4 THE SIGNIFICANCE OF THE RESULTS FOR THEORETICAL AUGER
RATE CALCULATIONS

In view of the above results the usual procedure of
estimating the overlap integral squared at threshold,
using conventional methods, and then wusing this to
evaluate the Auger rate is obviously inadequate. Both the
:use of wavevectors corresponding to the threshold
condition and the size of the overlap integral‘found using

them are questionable.

Anisctropy destroys the condition that wavevectors should
be _exactly parallel at threshold. But even so the
comparative size (in some <cases bigger) non-parallel
wavevectors compared with the parallel wavevectors makes
it desirable to perform the whole Auger calculation
numerically to see if the threshold condition is in fact
strong enough to Jjustify 1its wuse. Assuming that it is
strong enough we are then left with the problem of finding

a sensibly weighted average overlap to use.

Conventional effective mass sum rule and 4 band Kane
derived overlap estimates do not agree with the more
accurate 15 band K.p or pseudopotential estimates. The
highly anistropic nature of these more accurate results
make estimating an average difficult. However from the
peak values of overlap squared it can be seen that such an
average 1is going to be around two orders of magnitude down

on conventional estimates. This supports the earlier
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criticisms of the effective mass sum rule estimates, and
also goes part way to explaining the present discrepancy
between the measured Auger recombination rate in p-type
InGaAsP and present theoretical predictions. Su et al
(ref 6.15) having reported a measured Auger rate an order
of magnitude lower than its predicted value by Dutta and
tNelson (ref 6.10), and Sugimura (ref 6.9). Using the 15
band overlaps changes this theoretical overestimate of
almost an order of magnitude into an underestimate of
around an order of magnitude, and therefore it seems
apparent that the simple treatment of Auger recombination
at present popularly used (see for example ref 6.10) is
not sufficient for reliable predictions of phenomenon,
such as the temperature sensitivity of a semiconductor

laser, which depend on a knowledge of the absolute size of

the Auger recombination rate. It becomes necessary to
consider for example the possible mixing, by
inhomogeneities (dopants, compositional fluctuations,

stains etc), of 1light and heavy hole band wavefunctions,
the differences between lattice and carrier temperatures,
and the correct (non-parabolic) band structure of the

semiconductor.
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APPERDIX 1 - THE THRESHOLD CONDITION FOR DIRECT BAND TO
BAND CHCC AUGER RECOMBINATION
During the discussion of non-parabolicity (see section

2.1.3) and the interaction matrix element

[

P [T N ’ L - » - - - -
<Orvtrian | VernaL > {see sections2.4.1 and 2.4.2)
SYSTEM SYSTEM
STATE STATE

- estimates of the most probable size of the in-plane
wavevectors are made. These estimates are based on the
sharp maximum in P {(subject to energy and momentum
conservation) which occurs because of its exponé&ials.
This sharp maximum is referredto as the threshold
condition for direct band to band CHCC Auger
recombination, and the size of the in-plane wavevectors
which correspond to it are found in essentially the same
way as the bulk (ref 2.4), except that an effective band

gap rather than the bulk band gap is used to define K;.
We have

-(E1° fc)/xBTc -(E,- fc)/xBTC +(E1,'fv)/XBTC -(EZ’-rc)/XBTc
P = e e - € Al.l

Neglecting the last term because EZ‘ is large one must

maximise
-(El-fc) - (Ez-fc) + (El,—fv) al.2

to get the maximum value of P. Expressing this in terms

of the magnitude of wavevectors in the plane of the well

Al



v

(using isotropic masses and parabolic bands)

bs]

_ he 2 2 2
4fc - rV - Ecl EC2+EV1’ '2—1? (K,,1+IQ1+UK”1,) Al.3
*
m
where u = —;2
P4y

From which it can be seen that for the most probable case
' the wavevectors must be parallel to each other. { The
parallel condition depending in particular on the
isotropic mass assumption.) The parallel wavevectors are
now related by writing K'l = aKnl, and K”2 = bK|Q,.

Hence energy conservation gives

Kiz‘ = (a2 + b2 + u)K”1,+KG2 Al.4
where
2m*c 2m*c .
= - - = Al.5
Kg (EC1+ECZ Evl, Ecz‘) h2 AE hz

and in-plane wavevector conservation (anticipating section

2.4.4) gives

Ky = (a +b + I)K”l’ Al.6

Combining Al.4 and Al.6

2
K
Kz - G A1.7
"1- 1 +2ab + 2a + 2b -y

A2



From which it follows that we must maximise

hz az + b2 +

+ 1 Al.S8
G 1+ 2ab + 23 + 2b - u

e 1 -

This is done by differentiation with respect to 'a‘' and

'b' and yields

= - = - = Al.g
Kiy uK”l,, K”2 uK“l’ and Ky - (2u+l)K”1,
which are the threshold wavevector relationships for

wavevector components in the plane of the well.

In general the size of the coefficients depend on the in-
plane E-K relationships used, but with isotropic bands the
major conclusions remain the same ie the wavevector
components in the plane of the well are similar for the
colliding electrons and small compared to the Auger

electron's in-plane wavevector.
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APPENDIX 2 - CHECKS ON THE BOUND-BOUND MATRIX ELEMENTS
CHECK 1 : DOING THE FIRST gz INTEGRAL APPROXIMATELY

a) FOR LARGE KL
-iK]Zl-Zzl ,
If KL >> 1 then in equation 3.5 e —»é 6(21-27)

giving

8 n.w n,.m n__m n_m
Iy >0 sin —— Z; sin

LK A2.2

sn T - - -
I, 2. [Sln SRR “2"(l+6n1'n1‘0)+51“1+“1‘l’1“2 "

KL A2.3

[n2+n2,| + 6|n1+n1,|,|n2-n2,]]

ie the same as 3.14

b) FOR SMALL KL

If KL << 1 then 3.5 may be approximated with K = 0. Hence

L L
b n,m n,.w n.m n.m
o XN . . . dz . <. . ~ .4
Ib 5 sin ——z, sin 3 zl 1 sin —— sin T ZZdZZ A2
KL
o o
m
I’:—G 6 A2.5
b K nl,nl, n2,n2,

which is as expected from 3.18.

A4

Tz Tz Tz Tz
(cos(nl nl’)L - cos(nl+nl,)L )(cos(nz-nz,)i—-cos(ninz,)z— dz



CHECK 2 : DOING THE z AND z; INTEGRALS FIRST
Considering for clarity, only the first sub-band process,

we have from G+R page 476 eq 3.892.1

iqzZ 2w L elqu/2
e sin T dz = T2 A2,6
“ B(2 + q,L/2m,2 - gqyL/2m)
(e}
iqu/Z
- L e - aA2.7
2 r2 + &by r2 - &b
27 27
where B = Beta function and r = Gamma function.

Using this to carry out the z1 and zz integrals

1 qu qu -2 A2.8
I," = AR {F(Z + 5;—) r¢(z - 5;—)} dqz .

Now for convenience introducing the variable X = q L/2
4

gives

I, " = L ————l;———— r(z+x) r(2-x) 2 dx A2.9
2T 2
KL 2
— ] + X
-0 2

to which approximatiomscan now be made

A5



THE LARGE KL APPROXIMATION
If KL >> 2m it is observed that {r(2+x) F(2-x)}-“ peaks at
X= 0 and is small outside the range -2 < X < 2. Using

this

-0

2
I,° = L (ﬁf—) {r(2+x) r(z-x)}'z dx A2.10

and using G+R page 656 eq 6.414.6

Ib' = —3—11:2- as expected A2.11
LK

THE SMALL KL APPROXIMATION ‘
If KL << 27 1is it observed that {r(2+x) 1‘(2—,‘<)}°2 is small
outside the range -2 < X < 2 and 1is approximately 1

inside the range. Hence

+2
- L 1 2 lm)
~ L = £ Al A2.12
Ib o7 - 3 ; dX % arc tam(KL
-2 (z_n v
I - =21 as expected A2.13

A6



CHECK 3 : OBTAINING THE LARGE KL RESULTS DIRECTLY FROM
2.87, 2.88, AND 2.89

2.87, 2.88 and 2.89 give when the perpendicular wavevector
dependence of the periodic parts of the Blochwavefunctions

are neglected

400

. 1 1 { H }
I, " = — 1-,1127,2f dq A2.14
b MBF K2 N qz?. z
k/-cn

Considering again just the first sub-band process

+

2
e 2 - Imy . - 2Zn H(- 2T
Ib (L>‘2H(qz) H(qz + L ) H(qz L )Y (2H( qZ) - H(qz + L_.)

2
- H(q, - L—“)) da,

where it is observed that as L -~ « the H's peak sharply at

the zero's of their arguments.

Multiplying this out and dropping terms such as

27 27 27
J_;H(qz + -LT-) Héqz) dq, and jH(qz * 1 YH( q, * 7 ) dq,

P

because they may be shown to be zero by complex

integration leaves

2
ol 2 =2 =2 2r, . =2 2n
Ib Kz (L) [4}1 (qz) + H (qz + f_) + H (qz - f—]dqz A2.16
+m
1 2 2 - _ xL/2
"=t =) 6H°(q ) dq_ where H(x) = H(+x) e A2.17
b 2 L z z .
K _ +ixL/2
- or H(x) = H(-x) e

a7



Now from 2.90

H(X) = em——it— aA2,18
(x) =75
and
4+
sin q,L 2
2 d - 27L as L > =
qz/z qZ
! ' A2.19
(from
+oo +oo +o0
. 2 "
sin Lx .o _ 1 - cos 2Lx dx = 1 . Cos ZLx ) .
7 7 X 2 2 2 7] 2 2
X + c x + cC X + cC X + cC
- - - A2.20
=T [1 ) e-ch] A2.21
c
> 27rL as ¢ > 0 ) A2. 22
Therefore
2
-al (2 A2.23
Ib > (L) .6.27L
K
Ib‘ = 2%— as expected ' A2.24
KL

A8



APPENDIX 3 - CHECKS ON THE EVALUATION OF THE UNBOUND
MATRIX ELEMENT

Several alternative routes may be taken between 4.6 and 4.13.

Here three types of check on the evaluation of {m, are
made. First it is indicated that Z integrals may be done
a.different way. Then it is shown that 4.10 tends, with
suitable modifications, to the approximate results of
Chapter 3. Finally 'y is also checked by side stepping
4.6, and doing the q, integral approximately. (The
approximations thus obtained then beingshown to be
consistent with approximations cbtained directly from 4.10

and 4.2.)

CHECK 1 : ALTERNATIVE MEANS OF DOING THE zy INTEGRALS

When n n = 1 in 4.6 the first two zy integrals may be

1 1
done using G+R page 478 eq 3.895.2 (with K# 0), and the
third may be done using G+R page 372 egs 3.631.1 and

3.631.8. Although the result of the third integration

3/2 e
1 (THIRD )= (g) atlL sin(BL/2)
ub” (

INTEGRAL L 1<2+32) 12 B(24BL/27),2-BL/27)
n1=n1,=1
. anL sin(AL/2)
(Kenly 12 B(2HAL/27) ,2-@L/2n)
. a’mL cos (AL/2) . a’rL  cos(BL/2)
(K2+al) 12 B(2+AL/2m), 2-AL/27) 2ep2 12 B(24BL/2m,2-BL/2)

where B=Beta function

A9



)

appears somewhat different to 4.9 it may be shown to be
identical to 4.9 either numerically, or analytically by

integrating G+R page 949 eq 8.381.4.

CHECK 2 - OBTAINING THE APPROXIMATIONS OF CHAPTER 3 FROM
I;, OF Eq 4.5

- By taking & =(%)5 and a = 0, giving the promoted (Auger)
electron the parity of the corresponding bound state, and

setting K . equal to its possible discrete values
Z

(ie T,2m 3w 4m  Sm etc) it is possible to show that
LL L L L
4.5 reduces to the approximate values of If in Chapter 3.

Apart from checking 4.5 these reductions have also been
used to check various computer programs and the

z, first approach to 4.2.

alternative zl, »

THE FIRST SUB-BAND PROCESS

When K 5 = % and KL is large the leading terms in 4.10 are
z

2
snf2 TL 1 1
Lub (L) 2 Tz " T A3.1

AlQ0



Considering again the first sub-band result but now with

KL << 1

ZA 1{_1_r RL/2 KL ] 5
W=\T) & iK ey 2 A3.
, L [ KL/2 gg]
L 2 LT(3)rd) 2

Because of the cancellation we go to the next order in the

exponential of the first part. Hence with the second part

neglected
el L[ me il A3.3
T @2 LT@r) 2 )
sl
Tub %

Again as expected from Chapter 3.

THE SECOND SUB-BAND PROCESS - WITH K - = %E AND
z

= K = K =1
Kzl z1” z2 L
Wwhen the promoted Auger state is given odd parity with
respect to the centre of the well then from both from 4.10

and the parity considerations of section 2.4.3.1 it is

seen that I is zero as hoped for.

all



THE THIRD SUB-BAND PROCESS - WITH Kz

K2;1

Taking KL >> 1

. [2¥
Iub_\ )

2
L

Il E]

- m
b= - —

2
LK

as required.

= Kzl‘ = KzZ

Al2

A3.4
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CHECK 3 - DOING THE FIRST q; INTEGRAL APPROXIMATELY

In this set of checks 4.6 is side stepped, and the

resulting approximations to I;b’ and conclusions about the
behavior of IL , are shown to be consistent with
u

expectations from both 4.10 and the alternative Zy, 2

first approach to 4.2.

a) LARGE K
Suppose K » » then 4.2 becomes (see for example check 1 of

Appendix 2)

3 nmnz n, 1Tz
. 355 27 . 2wz 1 . . 27z . 1-
Iub (L —Kz( a’ sin T sin I sin KzZ' dz + a sin T sin T

o) o
cos kzZZ dz)

Apply the trigonometrical product formulae

L
a2V 21 2 [Tk L2, (M
Iub (L) KZ 2( a” sin L co T ) zdz a” sin L Ccos -
o 0
+ Kz .z dz
L L 2
T (nfﬂ K%) n,.Jr
+ a sin = z sin{ —.= Bqlz dz + .2 . 1"
L L a sin I z 51n(T+K22)z dz)
o 0
A3.7
Now using G+R page 372 eq's 3.631.8 and 3.631.1
nlﬂT ) nliﬂ'

2)% L a“” COS(T"‘ Kzz')L/z + a sin T-Kzz')L/Z

1, == —=
ub (L K2 nl,‘n' nL,TT
12 B(2 +{— - K;9L/2m, 2 -(—-L— - Kzz')L/ZTr
. ‘nllﬁ ) / nrﬂ’
a sin{— + K _)L/2 - a” cos + K _JL/2
. T K ( 2L
12 B(2 + ‘T + Kzz,)L/zw, 2 -(-—L— + Kzz»)L/Zn .

Al3



which may itself be checked when n/ = 1 by again using G+R
page 372 eq's 3.631.8 and 3.631.1, but this time without
the trigonometrical product formulae.

Particular values of the Ij, are now considered and it is
found that because the unbound state (unlike the bound

" state) can choose its parity to suit the requirements of

the other states, I has non~-zZero values when
T u 2 4w 6m
K = K = K =7 and K== , ——~, == etc. Further when
z1 z1” 22 ‘- 2 L3 T 'L
K = K = K =T and K< =L then I‘, is non-zero, but
zl zl’ z2 L K22 L ub ’
57 7w 97

n K = K = K = 1 and Ry=2- —_ , — etc. then
when K | z1” 22 L z2 L 'L 'L te e
I- is zero.
u

These results are consistent with results obtained
directly from 4.10 and also not inconsistent with results
obtained by doing the z, , 2, integrals first. To see this
second point, the origin is placed at the centre of the

well to take advantage of the parity

+@ L
,13/2 dq, 2 2
Iub = i_) B - COSEZ].) cos q,z dzl
K + q,
. L - L
5 ] 2
cos — 2, cos K »29co8 q_ 2, dz
L L 2 22 “1 z 2 2 A3.9
2
then the z, and z, integrals are evaluated before the gq,
integral
2
} 2 3/2 . dqz 1 ., 9zL ) sin(7r+qZL/2} }sin(m -q,1/2)
I == B — sin + = +3
ub L kZ.+q 2 |9 2 2 (ZTT ) 2(21r )
*+q z T ta — "9
z L z L z
in (X KzZL qu) T K2 . qu) 0 (T4 Kz). . )
151“22 IO Wity NN Y I Uit " 7
7 Iix., - L A 2 T .g +
L z2 ~ 9 KL 22 T 9 L z2 4z
: L
R i &
+ = A3.10
2 m

- - K -q
L 22 Tzpagy



Now when K =%1 similar terms appear in both brackets

-
. 5+
anda non-zero I 1is expected. But when K .. = fl the
L
terms become less similar, and it becomes more difficult

to confirm the above conclusions about the bhehavior of 'y

b) SMALL K
Using the K = 0 approximation (see again appendix 2

check 1b) to do the first q, integral approximately

L L
a N3/ 2 . mz n,.n .
I;b = (f) - sin I sin T dz1 a” sin I % sin KzZ‘ z, dz2
0 L 0 A3.11
Tz
+ a sin - cos KzZ’ 2, d22
o

Now again using G+R page 372 egs 3.631.8 and 3.631.1

sin nl,n/g (a” sin K Z’L/Z + a cos KZZ‘L/Z)‘

'=1
Iub K 3 + ny - 3 - n 3+ n, ) 3 - no,)
r(.?.W)( )2(" 6F(2
So when Kzl’= T and Kz LR T etc. then Rm is non-
.1 Lt smo In .
zero, and when Kzl‘-f: and Kzz, 1 v T then Iubls

zero.

Again these results are both consistent with immediate
observations from 4.13 and not inconsistent with possible

interpretations of 4.27. That is interpretations where

small K selects small g, through the term and it is

K™ +q
observed that the second bracket of 4.48" is zero at a; =0
_ 3= 57 7m
when Kzz, T I etc.

AlS



APPENDIX 4 - PART 1 - DOING THE E _ INTEGRAL FIRST FOR
c

THE BOUND-UNBOUND CALCULATION

The integral to be considered is

o} -
J ) Y -
q = m (XBTC) \12 I’Z g (E+ ) -(ECZ'-bcl)/xBTC
2 “BF “ub S CON c2 min
a” (u+l)

° E<:2'm'n Ad.l
1
[ AE (2u+l) K
1 - > + -
{ c‘rfijTc (ZOLK (p+l1) 2 )}dEc.?' K dK
For the first part
-ECZ’/XBTC - - “Fe2 ’min/xBTc
dE ,. = x,T e
c2 Be A4.2

¢2“min-

For the second part the variable is changed to X where

+ - -
X = - o (Ecl ECZ Evl’ Ec.’Z’ . 2u+l E) ad.3
XBTc 20K u+l 2
So
X, T
E .. = 2aK Bey ,Qur RY Lo g g
c2 a (u+1) 2 cl c? vl Ad. 4
and
= a4.5
dEcZ‘ 2 Ja xBTC K dX

Alé6



Hence the second integral becomes

3
- ™ 2 2 *
= —— ’ " -
Qan 2, .\(XBTC) MBF Rm dSCON (“c2‘min) ( 2JQXBTC K
a (u+l)
o\E

c2“min

X _ ., (2u+1) % < T

a xBTc (u+1) R
e
-(E_y - E, -)/%gT Ad.6
e € erf(-X) dX KdK
Now using A+S page 304 egs 7.435 and 7.436 with
a = -2/ xgT~ K and b = -1 and evaluating between the
given limits, gives
= Ei (x,T )2 %2 I? ds (" )
nd 7 B’ MBr Tub “coN ‘Fe2’min
o (u+l)
(o]
2 a2u+l) 2
(aK® = —=—==K" - E , + E_,.)/x,T- B _
. (u+1) ¢z wiTiBe . (Eer-min ~ Ec1)/%8%c
2_ a(2u+l) 2
a ( AEmax 2u+l K)} (ak u+l K Ec2 * Evl‘)/xBTc
erf + = e
XBTC 2aK u+l 2
c o (AEmaX . 2U+1 5 _ )} KdK A4‘7
erte xBT 2aK p+l 2
C
where AEmax is defined for convenience by
A = - - 4.
bEmax Ecl * EcZ‘ Evl Ec2’min 4.8

ie the maximum AE for a given set of participating bound

sub-bands

al7v



)

Collecting all the terms together

3 -(E ... =E )/x,T
- I ( w2 T2 (et ¢2’min cl”" B¢
Q 2 \XBTC)ZMBF T 9%conEe2min ©
o (u+l)
(]
ete / 3 '(AEmax , (2u+D) 5)}
xBTC . 2ok (u+l1) 2 i
- 2 _u_ .
.. (ak 1 + EC2 Evl,)/xBT - Lo (AEmax ] K )
er xpT \ 2aK 2(u+l) _RdK
A4 .9
(this equation will be referredto in Chapter 5)
From G+R page 651 eq 6.297.1 the first part of A4.9
becomes
3 3
n (xBTc) 2 2 4 &t (D) (€ 9-min ~ Ee1’/*s7,
2 MBF ub CON "¢c2’min (2‘+1)2 =
o H 24.10

o (2u+1) AEmax
(u+l) X, T

B ¢
For the second part of A4.9, equation A4,23 can be
anticipated to give
- - T
1-3- (x.T ) M2 12 4s. (EF ) e Fez ~ Fo1 /T
2 ""B'c’ "BF ‘ub "TCON c2’min
a
21 Tmax A4.11
1 (u+1) u+l xpT :

T Quru

The full solution is therefore,
3

=T ()M 13 as (B . Feznin ~ B’
Q 3 ""B¢ BF “ub CCCON' c¢2’min

after some rearrangement

[

AE
(2u+1) max
1‘AEm3¥ /

x T 2
1. Bc- (u+l) s e (u+l) xBTC
H (2u+1)"u

a4.12

Als



whichcan now be used to optimise and check the numerical
integrations, and to check sections 4.2.3 and 4.2.4 of

Chapter 4.

From sections 4.2.3 and 4.2.4 we have

AE=0 -
3 (o1 )2 E w (Bepe m By
Q=" —Bc (u+1) W2 [P el %y T
3 (2u+1) BF “ub ° ¢
c2’min _ (Qu+l) (ECZ ) Evl’) s (&
(u+l) x5 T CON
dECZ’
2 3 =(EC2,‘ECZ)/XBTC (EC1+EC2-EV1,-EC2,) (2u+1) |
ME I e - (u+1)
BF “ub x,T
E0 Be A4 12
dsCON(ECZ,) dE _, -
. 2 ..
With d%DN and MéFIub constant the remaining %ﬁ,
integrals are now straight forward, and give after some
rearrangement
n3(x T )3 -(E ., “E . )/x,T
- B¢ M2 13 4 " ¢2’min cl’" B¢
Q 3 BF "ub “SCON ~c2min
_Emax 9 2u+l AE"max
1 x.T (u+1) (u+l) x_T A4.13
— e B¢ - — e B ¢
. (2u+1)“u

The same result as A4.1ll,
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ie

B
i) e

2
(v2-0%

o(yX + X dX

1 ) 1
20u-vD)  2/0 (Ve

A4,17
Now considering the 4 E negative case
2 2
1= [1 - o(gX - %)] (87X v iy
(o}
2 2
- [1 + 3(-gX + §)] L(87-wX” ¥ ax
[o]
A4.18
2 2
= __1__5___ + o(-gX + %) (8T ¢ ik
2(u-g")
o]
a4.19
Using A4.17
I 1 5=+ L = - L exp (-2(-bg + b¥u))
2(u-g°)  2(u-g%) 2/ (Vu-g)
2 2
Now take /17=g+<Ssou=g + 2g8 + §
1= G e TR exp (-2b8)
-8 A4.20
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APPENDIX 4 PART 2 - A USEFUL FORMULA FOR THE AE NEGATIVE
INTEGRATION IN PART 1
When 8E is negative a non standard integration result must

be used, and this is now derived.

From G+R we have the result
2 2
[1 - ¢ (yX + %)] A

1

= - _ exp [-2(By + 8/} Ad.14
2/ (Vu+y)
2 2 '
Now considering just e(Y -uX x dx and substituting
Yy = x2 o
2 @
1 (v2wy _ (Y WY
Ee dY = —
2(y7-u)
[o] o
- 2
- —L s u >y
2(y -u)
A4.15
- 1
2(U‘Y2)
thus
2 2
- et + ) e OTWXT vk

2(u-72)

|
IH

exp [ -2(8y - 8/W)]

=

270 (Vi)

Ad. .16
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1

1 -~
si-g-&-(l*'f—g‘) 286\1+%)exp(2b6)

I

2
= s, ¢ 1 2.2 0§ 2
' 2g6 (1-2g+7_2""\ Z—g-E 1 2b8 + 2b°3 "-g:#

48 /

' So letting § + 0

I:.L-.’.
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