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We investigate methods of selecting complete, redshift 
limited samples of QSOs, based on broadband search techniques 
applied to COSMOS machine measurements of UK Schmidt photographic 
plates, In particular we discuss the ultra-violet excess (UVX) 
technique, employed to compile unbiased samples of low redshift 
<z<2.2) QSO candidates. Using both conventional and multi-object 
spectroscopy, we have obtained slit spectra for 450 faint 
(17.5<8<20.9) UVX stellar images, of which 200 are QSOs. The 
resulting QSO catalogue is therefore amongst the largest and 
faintest of its kind yet produced. From the QSOs observed in the 
survey, we confirm that the number magnitude relation, n(B), for 
low redshift (z<2.2) QSOs exhibits a steep power law slope 
(dlogn/d8=0.86) at bright magnitudes (17.5<8<19.5), with a sharp 
turnover to a much flatter slope (dlogn/dB=0.35) at fainter 
magnitudes (19.5<8<20.9). Such behaviour in the n(8) relation 
thus precludes a pure density evolution model from being an 
adequate representation for the evolution of the QSO luminosity 
function (LF). On explicit calculation of the QSO LF in discrete 
redshift intervals, we find that this evolution can, most simply, 
be parameterised by a pure luminosity evolution model in which 
the luminosities of QSOs increase as a power law with look-back 
time. The form of the QSO LF itself is best represented by a 2 
power law function which, at z=O, is similar in shape and number 
to the Seyfert galaxy LF. QSQs observed in the spectroscopic 
survey are also used to provide estimates for ~(r), the 2-point 
correlation function, employed to investigate the spatial 
clustering of QSOs. We find that, at small comoving separations 
(r<10h- 1 Mpc), QSOs exhibit strong clustering. The amplitude of 
this clustering appears to be stronger than that observed for 
galaxies but not as strong as that observed for Abell clusters. 
At large scales (r>50h- 1 Hpc) the lack of clustering evident in 
the QSO correlation function places strong constraints on the 
homogeneity of the universe. From a study of the clustering 
properties of the UVX sample as a whole we find that, on the 
plane of the sky, UVX stellar objects are significantly 
anti-correlated with respect to galaxies in clusters. This 
observation is explained by postulating that dust, lying in 
foreground clusters of galaxies obscures the QSOs situated behind 
these clusters at distances implied by a cosmological 
interpretation of the QSO redshift. Only A8 =0.2 mag. of dust 
absorption is required to produce the observed anti-correlation. 
Broadband colour techniques have also been extended to search for 
QSOs at high (z>2.2) redshifts. From the surface densities of 
QSOs found in these searches, we tentatively conclude that, if 
significant absorption by dust at high redshifts can be ruled 
out, the rate of luminosity evolution observed for UVX (z<2.2) 
QSOs is slowing down at z ~ 2.5. A physical model in which QSOs 
are long lived, gradually dimming in luminosity from their epoch 
of formation at z>2.2, to become Seyfert galaxies at the present 
day, is shown to be compatible with the above observations. 
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CHAPTER ONE 

INTRODUCTION 

In the twenty years since the identification of the first 

quasi-stellar object (QSO) by Maarten Schmidt (1963), a great 

deal of study has been devoted to understanding the nature of 

these most extraordinary objects. Much of the motivation for 

such study rests on a cosmological interpretation of their high 

redshifts, making them the most luminous and distant objects in 

the universe. As such, analysis of their clustering and 

evolution makes it possible tQ investigate the nature of the 

universe at early epochs and affords an opportunity to understand 

the physical processes which are responsible for the spectacular 

properties that QSOs exhibit. 

As QSOs exhibit a wide range in their observed properties, a 

statistical approach will be followed in this thesis to establish 

the clustering and evolutionary properties of the QSO population 

as a whole, rather than as individual (and perhaps 

unrepresentative) objects. The purpose of this introduction will 

be to present the motivation for the work contained within this 

thesis by summarising briefly previous results obtained from the 

statistical analyses of QSO catalogues, highlighting those areas 

where this thesis may contribute further to our understanding of 

the QSO phenomenon. 



Because QSOs form such a small fraction of the stellar 

images at high Galactic latitudes, typically less than 1% at B = 

16 mag., with this proportion only rising to 5% at B ~ 20 mag. 

(Woltjer and Setti 1982), the success of any statistical analysis 

of the optically selected QSO population is wholly dependent on 

the technique used to identify the QSOs from amongst the plethora 

of ordinary Galactic stars. Therefore, the slow progress that 

has typified statistical studies of these QSOs is perhaps best 

understood with reference to the manner in which successive 

selection techniques have come into and gone out of favour and 

the limitations imposed by such techniques. 

Even prior to the identification of the star-like radio 

source 3C273 as the first QSO (Schmidt 1963), it had been noted 

that, besides their unusual radio properties, these 'radio-stars' 

exhibited much bluer colours (U-B < -0.4) than ordinary Galactic 

stars (Matthews and Sandage 1963). As a consequence, 

ultra-violet excess (UVX) soon became an additional criterion for 

isolating QSO candidates originally selected from radio source 

cat~logues (Ryle and Sandage 1964). In the course of these 

searches UVX 'stars' were identified which had no radio emission 

(Sandage and Veron 1965), Many of these 'radio-quiet' objects 

were subsequently found to have the same highly redshifted broad 

emission line spectra as their 'radio-loud' counterparts. Indeed 

Sandage (1965) went on to demonstrate that the 'radio-quiet' QSOs 

formed a large fraction of all faint (B < 19.0 mag.), UVX stellar 

images at high Galactic latitudes and, as a result, greatly 
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outnumbered (by at least 10:1) the QSOs with radio emission. 

Although the UVX technique subsequently proved a popular 

method of selecting candidate QSOs (see eg Braccesi et al. 1970), 

it suffered from two drawbacks. Firstly, large amounts of 

telescope time were required to obtain redshifts for the QSOs and 

to reject the not inconsiderable number of Galactic stars. 

Secondly it soon became clear that the UVX technique was 

systematically biased against finding high redshift Cz > 2.2) 

QSOs (Sandage 1972). 

At about this time the first objective prism plates were 

being successfully used in detecting QSOs from their broad 

emission lines (Hoag and Schroeder 1970). As redshifts were 

readily obtainable from the photographic plates and there was no 

systematic bias against non-UVX objects, the focus of attention 

changed from UVX to slitless spectroscopy as the favoured QSO 

technique. For the next few years this technique flourished, 

producing many QSO catalogues (Hoag and Smith 1977, MacAlpine et 

sl. 1977). However, it also became clear that the objective 

prism technique was subject to numerous, complicated selection 

effects which could be invoked (Clowes 1981) to account for 

puzzling differences in the QSO surface density found between 

different catalogues selected using this technique. In 

particular slitless spectroscopy is critically dependent on 

seeing (Sramek and Weedman 1978) and biased towards selecting 

QSOs in particular redshift ranges where the observed wavelengths 

of broad emission lines make them easily visible on the 

photographic emulsion used (Clowes and Savage 1983). These 
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selection effects thus rendered such QSO catalogues unsuitable 

foe statistically based studies into the clustering and evolution 

of QSOs (Smith 1981), although they still provide one of the most 

efficient ways of 

absorption line QSOs 

lenses (Chen 1984). 

searching for unusual QSOs, such as broad 

(Hazard et al. 1984) and gravitational 

More recently the advance in machine 

measurement of objective prism plates has led to automated search 

procedures for QSOs being adopted (see e.g. Clowes et al. 1984), 

but their success in yielding catalogues with well defined 

selection criteria has yet to be firmly established. 

In recent years, therefore, attention has switched back to 

the UVX technique, with Veron (1983) convincingly demonstrating 

that the vast majority (>95%) of all low redshift QSOs (z < 2.2) 

can be selected with an appropriate choice of UVX criterion (see 

figure 1.1). Many new catalogues of UVX objects have therefore 

been compiled (Formiggini et al. 1980, Usher 1981), although the 

. prohibitive amounts of telescope time required to obtain spectra 

for large numbers of faint objects have led to few having 

complete spectroscopic coverage, The notable exceptions are the 

surveys of Schmidt and Green (1983), Marshall and his 

collaborators (1983b,1984) and Mitchell et al. (1984). Even so, 

these catalogues only contain information for ~ 200 relatively 

bright CB < 19.8 mag) QSOs in total. 

However, with the advent of multi-object spectroscopy, 

spectra can now be obtained for large numbers of faint objects 

quickly and efficiently, The compilation of a large, faint QSO 

catalogue in this manner forms the basis for much of the work 
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presented in this thesis. For the reasons discussed above we 

choose to select our QSO candidates using the UVX technique. The 

application of this technique to COSMOS machine measurements of 

UK Schmidt photographic plates is described in chapter 2. 

Subsequent spectroscopic observations, carried out using the 

multi-object facility presently available at the Anglo-Australian 

Telescope (AAT) are detailed in chapter 3. The resulting QSO 

catalogue, containing ~ 200 QSOs to a limiting magnitude of B ~ 

'21.0 mag., is amongst the largest and faintest of its kind yet 

produced. The following sections will demonstrate the role of 

such a survey in the context of the evolutionary and clustering 

studies of QSOs. 

1.3 QSO Evolution 

As with most other classes of astronomical object, the 

evolutionary time-scale for QSOs is so long that we can not hope 

to observe individual QSOs evolving directly. We must therefore 

derive constraints on the form of the evolution through 

s-tatTstrca1--an-a-tys-t-s- of large-QSO cat-a-logues._ 

The fact that QSOs evolve within a framework of a Friedmann 

universe has long been established. Number counts, NC<B), for 

optical QSOs were shown early on to exhibit much steeper slopes 

(e.g. dlogN/dB = 0.75 from Sandage and Luyten 1969) than those 

predicted for a non-evolving population (dlogN/dB ~ 0.35, Schmidt 

1978). Such results have been criticised on the basis that the 

sample size used to derive the evolution was small (Setti and 

Woltjer 1973) and/or subject to subtle selection effects (Hawkins 
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and Stewart 1981), However, larger samples (see e.g. Schmidt 

and Green 1983) and due consideration of the selection effects 

(Wills 1983), confirm that strong evolution does occur in the QSO 

population. The nature of this evolution is, how&ver, far less 

well known and is one of the fundamental goals in the statistical 

analyses of QSO catalogues. 

The form of this evolution is essentially determined by 

establishing the shape of the QSO luminosity function (i.e. the 

space density of QSOs as a function of magnitude) and obtaining a 

parametric representation for its change in shape or position 

with redshift. This is, however, no mere exercise in statistics 

as this evolution can provide fundamental insight into the 

physical mechanisms that are responsible for the QSO phenomemon 

(Cavaliere et al. 1985) as well as establishing the evolutionary 

link between QSOs and other active galactic nuclei (see e.g. 

Weedman 1986) 

Various·models for QSO evolution are illustrated in figure 

1.2 (taken from Koo 1986). Pure density evolution (POE), first 

proposed to explain the evolution · seen in the radio QSO 

population (Schmidt 1968) and later adopted for optically 

selected QSOs (Schmidt 1970), involves a uniform shift in the 

luminosity function (indepe~dent ·of magnitude) towards higher 

densities at higher redshifts. Such an evolution can, therefore, 

be strictly described in terms of there being more QSOs in the 

past, with their numbers typically increasing with redshift as a 

power law (1+z) 6 or as an exponential in look back time r, 

exp(Sr), see Schmidt (1972). 
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Mathez (1976), however, showed that pure luminosity 

evolution (PLE) provided an equally good fit to the data for 

optical QSOs, and this form of evolution has recently come much 

into favour (Marshall et al. 1984). In this model, the 

luminosity function again preserves its shape but shifts towards 

brighter magnitudes in the past. As such this parameterisation 

could represent the gradual dimming of long lived QSOs (Marshall 

1985) or the statistical properties of an ensemble of short lived 

QSOs (Koo 1986). 

Recently, more complex evolutionary forms have been 

proposed. Following models for radio source evolution (Peacock 

and Gull 1981), Schmidt and Green (1983) proposed luminosity 

dependent density evolution (LODE). In this case the amount of 

density evolution is dependent on the luminosity of the QSO with 

the brightest QSOs evolving the fastest. Koo (1986) has also 

provided another variant, namely luminosity and density evolution 

(LDE). Here the luminosity function preserves its shape but 

moves both in luminosity and density space. 

---

From figure 1.2 it can easily be seen that all ~hese 

different forms of evolution appear very nearly identical if the 

constructed luminosity function is close to a power law. Indeed 

Longair and Scheuer (1970) have demonstrated that POE and PLE are 

entirely equivalent for a pure power law luminosity function. 

Unfortunately, the data previously available for optically 

selected QSOs revealed just such a power law (Marshall 1985) and 

consequently discrimination between the various evolutionary 
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models was impossible using solely QSO catalogues limited at 

bright (B < 20) magnitudes (Marshall et al. 1984). However, the 

turn-over in the number magnitude counts for QSOs, indicated by 

the low surface densities found by Koo and Kron (1982) at faint 

magnitudes (see figure 1.3), argues strongly for a feature in the 

luminosity function (Marshall et al. 1983b) and that the 

evolution can not be modelled by POE (Cavaliere et al. 1983). It 

is indeed unfortunate that this break should manifest itself at 

magnitudes where 

to this thesis, 

spectroscopically 

feature in the 

explicitly, and 

there has been such a scarcity of data - prior 

there were, in total, less than 40 

confirmed QSOs with B > 19.8 mag. As such any 

luminosity function could not be determined 

any preferred evolutionary .form could only be 

derived using an ad hoc represent~tion of the luminosity function 

at low luminosities (Marshall et al. 1983b). 

It is clear, therefore, that the large, faint (B < 21.0 mag) 

UVX QSO survey presented in this thesis provides a unique 

opportunity to calculate directly the QSO LF at these low 

luminosities- and- thus_ he~p _ to ~iscrim~nate between the 

evolutionary models proposed. The results of such an analysis 

are presented in chapter 4. 

- 8 -



100 

10 
... 
I -~ Cl) 
't1 

0" 1 rn --Pl v -z 
.1 

.01 

16 18 20 22 24 
B 

Figure 1.3 Integral NC<B) counts for spectroscopically 
confirmed QSOs. A denote surface densities 
obtained from the survey of Schmidt and Green 
(1983), • Marshall et el. (1984) and 

• Koo and Kron (1982). 



1.4 050 Clustering 

a) 3D Clustering 

The study of the clustering of QSOs affords not only the 

opportunity to investigate the nature and environment of QSOs 

themselves but also the possibility of using QSOs as probes to 

test the structure of the universe at epochs unobservable with 

galaxies (e.g. Oort et ttl. 1981). 

Such studies are, however, critically hampered by the lack 

of redshift information for QSOs. As a result of the extremely 

low surface density of QSOs at bright magnitudes, meaningful 

results on the clustering of QSOs at cosmologically interesting 

scales (i.e. < 100h-i Mpc i, the scales at which we observe 

galaxies and clusters of galaxies .to be strongly clustered at the 

present day, Peebles 1980, Bachall and Soniera 1983) can only be 

obtained from surveys limited at faint (B < 20.5) magnitudes. 

Until this thesis no UVX selected QSO catalogue contained 

spectroscopic information to this depth (see e.g. Marshall 1985) 

and thus most of the work on QSO clustering had centred on 

catalogues produced from objective prism surveys-(bsiner- -r981,--chu­

and Zhu 1983). Although this has revealed some interesting 

groupings of QSOs (Webster 1982a), the inaccuracy of the 

redshifts obtainable from prism spectra effectively invalidates 

the results of any clustering studies at scales less than 

50h-tMpc (Savage et ttl. 1985). Moreover, careful account has 

srhroughout this thesis, h will be used to denote Hubble's 

constant H0 in units of 100 km s-iMpc-i 
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also to be taken of the complicated redshift dependent selection 

effects inherent in slitless techniques, before reliable 

information can be extracted from clustering of prism selected 

QSOs at the largest scales. 

Indeed, knowledge of the 3D clustering of QSOs is so poor 

that Webster (1982a) found it 'hard to overstate' the case for a 

large, complete and unbiased QSO sample with which to tackle this 

problem. As such, the large QSO catalogue presented here is 

ideally suited to this task. In chapter 5 we therefore report on 

a 3D correlation analysis of this catalogue, providing the first 

detailed results on the clustering of QSOs at scales less than 

50h- 1 Mpc In addition, such an analysis will provide an accurate 

indication of the structure of the universe at large scales (). 

100h- 1 Mpc) from the form of the QSO correlation function at these 

separations. 

b) 2D Clustering 

1~ the absence of reliable redshift information, much 

attention has been focussed on the 20 clustering of QSOs on tne 

sky. In particular, this has provoked much speculation about the 

cosmological interpretation of the QSO redshift (see Field, Arp 

and Bachall 1973 for a lively discussion!). Sce'pticism has been 

fuelled by observations that 

a. High redshift QSOs are found preferentially close to low 

redshift galaxies CArp 1970, Arp 1981). 
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b. QSOs with discordant redshifts appear to be clustered on the 

sky, often in striking collinear associations (Arp and Hazard 

1980). 

The significance of these groupings is, however, difficult 

to assess. Some claims for a high statistical significance CArp 

1981) have been criticised for their a posteriori reasoning and 

inconsistent statistical arguments (Webster 1982b). 

However, a more rigorous application of statistical 

techniques has also yielded apparent support for QSO/galaxy 

associations (Seldner and Peebles 1979), although subtle biases 

in the catalogues used may account for their result (Nieto and 

Seldner 1982). 

In contrast, strong evidence for QSOs being situated at the 

distances implied by a cosmological interpretation for their 

redshifts has come from Stockton (1978) and Yee and Green (1984). 

Both find faint galaxies preferentially associated with low 

redshift QSOs. 

In chapter 6 ~e therefore re-test for discordant redshift 

associations using similar techniques to those employed by 

Seldner and Peebles (1979) but with the unbiased UVX and galaxy 

catalogues produced from machine measurement of photographic 

plates. Moreover, with the results of the spectroscopic survey 

performed on a sub-sample of the UVX catalogue, we will be able 

to define precisely the contamination by Galactic stars of such 

catalogues and thus quantify any effects seen. 
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1o5 OSOs at High Redshift 

Until now we have centred our discussion on the clustering 

and evolution of low redshift QSOs, primarily because we have 

been concerned with the implications of the large UVX QSO 

catalogue compiled in this thesis. However, study of low 

redshift QSOs has an important part to play when we consider the 

evolution of high redshift QSOs. 

Obtaining the correct form for the evolution of QSOs at low 

redshift forms an integral step in addressing the study of the 

QSO 'cut-off' i.e. determining the redshift at which this 

evolution slows down, stops or reverses sign. The problem of the 

QSO 'cut-off' is probably one of the most important in cosmology, 

pointing, as it does, to to an ~poch of formation for OSOs and 

possibly galaxies themselves (Sandage 1972). Establishing the 

existence of this 'cut-off' is, however, critically dependent on 

on the selection effects present in searches used to find high 

redshift QSOs. 

I-n- the- ear-l-Y- L9_Z0s th_$_ _!tcarcity of QSOs with redshifts 

greater than 2. 5 P.rompted many authors (see e.g. Sandage 1972) 

to consider the possibility of a redshift cut-off in the 

distribution of QSOs beyond z=2.5. The discovery within a few 

months of each other, of two radio QSOs 3 at redshifts of 3.40 

(Carswell and Strittmatter 1973) and 3.53 (Wampler et 81. 1973)' 

largely put paid to such speculations and highlighted the 

shortcomings of the UVX technique then in use for QSO detection. 

Subsequent work involving extensive searches of objective prism 
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plates revealed many further QSOs with 3.0 < z < 3.3 (Osmer and 

Smith 1977). These QSOs were found in sufficient numbers to 

prompt Osmer (1980) into claiming that the density of QSOs 

between 1.9 < z < 3.2 was consistent with an extrapolation of 

Schmidt's (1970) pure density evolution law derived at low 

redshifts. 

Although OQ172 (Wampler et al. 1973) remained the highest 

redshift QSO for ten years, during this period there was some 

reluctance to accept that a QSO cut-off had been found. This was 

because many of the searches for high redshift QSOs had been 

conducted using IIIaJ (blue sensitive) photographic emulsion, 

whose use was known to be biased against detecting high redshift 

QSOs (Smith 1978). Osmer (1982) concluded, however, that this 

cut-off was likely to be reai when he discovered no higher 

redshift QSOs on searches of objective prism plates taken on red 

sensitive IIIaF emulsion. Futhermore he postulated that, for 

bright QSOs, the form of the cut-off was indeed dramatic, 

-~c~uaing within the narrow redshift range 3.2 < z < 3.5. However 

-- -----the- recent i-n-crease_ in_ tbe __ n~!!'ber of different methods- used in 

the search for high redshift QSOs (e.g broadband colours, Koo and 

Kron 1982, proper motion studies, Kron and Chiu 1981) have 

produced results which challenge the abrupt nature of this 

'cut-off', pointing instead to a more gradual fall-off in the 

numbers of QSOs beyond a redshift as low as 2.5 (see e.g. Koo 

1986). Such conclusions are corroborated by the results of 

recent, conventional prism surveys for high redshift QSOs (Hazard 

and McMahon 1984). In addition, the recent discoveries of 
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several QSOs with z > 3.5 (PKS2000-330 z = 3.78 Peterson et al. 

1982, DHM0054-284 z = 3.61 Shanks et al. 1983b, 00055-2659 z = 
3.67 Hazard and McMahon 1984) indicate that the 'cut-off' can not 

occur as rapidly beyond z = 3.5 as was first thought. 

It is the nature of this 'cut-off' that is central to the 

problem of the QSO formation epoch. Consequently the task of 
' 

finding yet higher redshift QSOs is secondary to that of 

determining at which redshift the evolution of QSOs begins to 

show significant deviation from that observed at low redshift. 

It is this course that will be followed in chapter 7, when we 

will compare the surface densities of high redshift QSOs, 

detected using new broadband techniques, with those predicted 

(rom extrapolations of the evolution determined in chapter 4 for 

the UVX (z < 2.2) QSOs. 

Throughout the previous sections we have emphasised the 

statistica-l nature of t·he- analysis whicb wi 11 be undertaken in 

the following chapters. Howeve-r-,--as· ·atressed--at·the-beq-inn-i-ng-of- --- _ 

this chapter, one of the fundamental goals in QSO research is to 

obtain a better physical understanding of the processes that 

govern the QSO phenomenon. In chapter 8 we therefore conclude 

this thesis by considering the results presented in the previous 

chapters in terms of a coherent physical model for QSOs. In 

doing so we will attempt to reconcile our results with 

predictions from theoretical studies. Future observations and 

possible developments in QSO research are also discussed. 
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CHAPTER TWO 

MEASUREMENT OF PHOTOGRAPHIC PLATES 

2.1 Introduction 

Despite its nonlinearity and low quantum efficiency when 

compared to modern 20 electronic detectors, the photographic 

plate is still unrivalled in its panoramic capabilities. Indeed 

the image content of photographic plates is so high that the 

objectivity and speed with which they can be measured using 

modern machines are essential for exploiting their potential to 

the full. As we will see in this chapter, machine measurement 

does, however, introduce many problems of its own. These have to 

be recognised and carefully a~counted for befor• reliable 

inferences can be drawn from the data produced by such 

measurement. 

In this chapter we will describe the reduction techniques 

as~ociated with the COSMOS machine measurements of UK Schmidt 

~ ~phot-ograph-i~c--plates-.--- The~ a,ta~- and galaxy catalogues - thus 
--- -- -~---- -------

produced will form the basis of the work in the following 

chapters. 

2.2 Photographic Material 

All the photographic plates used in this work were taken 

with the 1.2m UK Schmidt Telescope (UKST) at Siding Spring. 

Table 2.1 contains a complete listing of the plates which are 

generally of good quality (evidenced by the A and B grades given 
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Plate Field RA(1950)Dec Date Emulsion Filter Exp. Grade 
Name Taken Time 

(minutes) 

J3721 SGP QQh 5 Jo -28" 03' 4/11/77 IIIaJ GG395 80 A 
J1921 SGP 00 54 -28 03 25/11/75 IIIaJ GG395 60 B 
B3499 SGP 00 53 -28 03 15/08/77 I IaO GG385 60 A 
U2639 SGP 00 53 -28 03 28/09/76 I IaO UG1 180 A 
U6380 SGP 00 53 -28 03 25/09/80 IIIaJ UG1 180 A 
V3.1&75 SGP 00 53 .. 28 03 9/08/77 I I aD GG495 60 A 
R2775 SGP 00 53 -28 03 29/09/80 127··04 RG630 90 A 
!6427 SGP 00 53 ---28 03 29/09/80 IV-N RG715 90 A 
J6124 QSN 01 12 -35 00 12/07/80 IIIaJ GG395 65 A 
J1862 QSC 01 39 -55 00 26/10/75 IIIaJ GG395 56 B 
J1891 QSD 02 00 ~so oo 07111175 IIIaJ GG395 65 A 
U3487 QSD 02 00 -50 00 13/08/77 I IaO UG1 90 A 
J2672 QSF 03 44 -45 00 28/10/76 IIIaJ GG395 70 A 
U8226 QSF 03 44 -45 00 12/11/82 IIIaJ UG1 130 A 
J7674 QNB 10 40 00 00 17/04/82 IIIaJ GG395 55 B 
J9133S QNB 10 40 00 00 27/03/84 IIIaJ GG395 60 A 
U7714 QNB 10 40 00 00 26/04/82 IIIaJ UG1 120 B 
V7769 QNB 10 40 00 00 20/05/82 I I aD GG495 60 B 
J5701 QNY 12 30 00 23 21/02/80 IIIaJ GG395 65 A 
U5707 QNY 12 30 00 23 25/02/80 IIIaJ UG1 180 B 
U9216 QNY 12 40 00 00 24/04/84 IIIaJ UG1 180 A 
J9108 QNA 13 40 00 00 7/03/84 IIIaJ GG395 60 A 
U7715 QNA 13 40 00 00 26/04/82 IIIaJ UG1 120 A 
J3390 QSM 22 03 -20 00 17107177 IIIaJ GG395 70· A 
U1736 QSM 22 03 -18 55 5 I 08 /_75 103a0 UG1 90 A 
J3585 QSI 22 32 -40 00 16/09/77 IIIaJ GG395 75 A 
U7120 QSI 22 32 -40 00 7/08/81 IIIaJ UG1 120 B 

Table 2.1 UKST Photographic Plates 



to them by the UKST unit). The optical configuration (spherical 

mirror and corrector) of the UKST allows plates to be taken with 

a large unvignetted field of view (5°x5° ). The plates taken 

represent a number of high Galactic latitude (b1 ! > 45°) fields 

spread widely over the sky, affording not only the opportunity to 

makes tests on the large scale isotropy of the Universe, but 

also, from a purely practical point of view, allowing follow up 

spectroscopy to be obtained for at least one of the fields at any 

time of the year on the Anglo-Australian Telescope (AAT). 

Since many fields either fall on non-standard (i.e. non 

sky-survey) centres or the plates taken in different passbands 

for the 'same' field do not share exactly the same centre, the 

fields are assigned the names listed in the second column of 

table 2.1. These names will be used throughout the thesis, 

although, apart from the SGP (i.e. South Galactic Pole) field, 

the names are of historic importance only. 

The emulsion-filter combinations used to obtain the U,J,V,R 

and I plates produce different passbands to those normally 

encountered in the standard Johnson (1963) UBVRI system (see 

figure 2.1). As a result we may expect the calibrated magnitudes 

for both stars and galaxies obtained here to show significant 

discrepancies from those quoted in the Johnson system. To avoid 

confusion later, we set out here the definitions of the magnitude 

systems to be used in this thesis, which will differ for stars 

and galaxies. 
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The magnitudes for stellar images on the JVRI plates have 

been calibrated using standard photoelectric, electronographic or 

CCD star sequences quoted in the Johnson BVR and Kron-Cousins 1 

systems with no prior correction for the passband used. 

Similarly, no passband correction has boon applied to the variety 

of U magnitude systems (i.e. Johnson, photographic and CCD) in 

which the calibration standards for the U plates were measured. 

The resulting calibrated stellar magnitudes will therefore be 

referred to in lower case e.g. ubvri, to illustrate clearly 

their non-standard nature. However, transformation between b and 

Johnson B magnitudes (using measurements of the IIaO B plate on 

the SGP) will be considered in chapter 2.5 as will the relative 

calibration of the different u magnitudes obtained. 

Galaxy magnitudes (only calibrated on J plates) were 

zero-pointed using photoelectric and CCD measurements which, in 

contrast to the procedure followed for the stellar calibration, 

had previously been converted to the Schmidt J passband. 

Calibrated galaxy magnitudes will therefore be given the 

designation bJ, to differentiate them clearly from the stellar b 

magnitude system. 

Most fields are covered by at least one pair of U and J 

plates, enabling the construction of UVX catalogues on these 

fields. In addition to U and J plates, the SGP ·field is also 

covered by V, R and I plates, allowing the compilation of 

catalogues based on other broadband colour combinations. On the 

SGP it is also possible to check the accuracy of the photometry 

using the 2 U and 2 J plates taken on this field. The B plate on 
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the SGP, 83~99, will also be of use when, as indicated above, ue 

come to consider the transformation from the b magnitude system 

usod here to the more standard photoelectric B band (see chapter 

2.5). Two fields (QSC and QSN) only have a J plate available. 

These fields are still useful for providing the galaxy catalogues 

used in the cross-correlation analysis of chapter 6. 

The COSMOS measuring machine is basically a computer 

controlled, high speed microdensitometer. Full details of its 

operation are given in MacGillivray and Stobie (1985) and only a 

brief discussion of its relevant features will be entered into 

here. 

Like all microdensitometers, COSMOS measures a photographic 

plate by recording the amount of light transmitted through the 

emulsion from a focussed microspot. COSMOS then digitises this 

information into one of 256 transmission (T) levels. This 

transmission value is subsequently converted into relative 

intensity (I) using the log T v log I 'characteristic curve' 

derived for the plate from measurements of the step wedge 

provided on each UKST photographic plate. Unlike most other 

microdensitometers, however, COSMOS uses a flying spot in a 

raster scan, the consequent gain in speed allowing the 

unvignetted area c~ 25 deg2 ) of a UKST plate to be· measured in 

3.5 hours with a pixel size of 16gm. Unfortunately, the flying 

spot has a large halo associated with it. This considerably 

reduces the dynamic range of the COSMOS machine, the implications 
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of which will become apparent when we come to discuss the 

calibration of the stellar magnitudes in chapter 2.4.4. 

At present COSMOS operates in two modes. Mapping mode (MM) 

records the transmission value for every pixel on the measured 

area and is used primarily where complex image processing is 

needed (e.g objective prism plates, dense star clusters). All 

plates in this thesis have, however, been measured using the 

threshold mapping mode (TM). TM is similar to MM but only those 

pixels whose intensity is greater than a specified percentage (f) 

above a fitted background (sky) intensity Cinhy) are recorded. 

These pixels are then processed in an off-line pattern analyser. 

which joins pixels together belonging to the same image and 

calculates a set of parameters for each image. These parameters 

are listed in table 2.2. As one of these parameters, the machine 

magnitude (mcos) of an image containing i pixels is defined to be 

mcos = -2.Slogi(I,-Islq) • . . ( 2 . 1 ) 
1 Is ll y 

The calibration of this machine magnitude is carried out later 

using standard star or galaxy sequences (see chapter 2.4). 

Use of a percentage cut ( 

than an arithmetic cut to define the threshold level CithPo•) is 

strictly correct if, as is believed, emulsion sensitivity 

variations and vignetting are the principal sources of sky 

backg!ound variations (Shanks 1979). 
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1 X - Unweighted Position 

2 Y - Unweighted Position 

3 Xo 1 n 

5 Yo 1 n 

7 Area - in pixels 

8 Tot n 

9 magnitude - see equation (2.3) 

11 X - Intensity Weighted Position 

12 Y - Intensity Weighted Position 

13 Semi Major Axis ) 
) 

14 Semi Minor Axis ) - Unweighted 
) 

15 8 - Orientation ) 

16 Semi-major axis ) 
) 

17 Semi-minor axis ) - Weighted 
) 

18 8 - Orientation ) 

Table 2o2 COSMOS Image Analysis Parameters 



The details of the COSMOS measurements for all plates used 

in this thesis are given table 2,3, Image analysis marks the 

final stage of the COSMOS measurement procedure, However, the 

data is still in a relatively unsophisticated form and has to 

undergo a number of reduction procedures before it can be used in 

astronomical applications, This is left to the individual for 

completion and the description of the procedures followed will 

form the basis of the next section. 

2.4 Reduction of COSMOS data 

2.4.1 Bright Images 

The COSMOS images analysis software can not deal with very 

large C> 1 arcminute) images (e.g. stars or galaxies brighter 

than approximately 10th magnitude, globular clusters), breaking 

them down into a mosaic of smaller images. Areas including such 

objects are therefore removed from the COSMOS data and take no 

further part in the data reduction or subsequent statistical 

analysis. Each plate has, typically, 4 or 5 such holes 'drilled' 

in it (see e.g. figure 6.1). 

2.4.2 Star-galaxy Separation Techniques 

In addition to the automatic discrimination between stellar 

and galaxian images, various combinations of the COSMOS 

image-analysis parameters can be used to provide a powerful check 

on the quality of the data obtained from the machine measurement 

process. The methods employed here are based on the work of 

MacGillivray et al. (1976) and Shanks et al. (1980) and utilise 
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Plate Date Percentage mil~ y 

Measured Threshold Cut 

J3721 11/09/79 7 22.651 

J1921 5/08/80 7 
83499 30/04/84 10 
U2639 26/04/80 8 
V3475 30/01/80 10 
R2775 11/08/80 7 
!6427 22/04/83 5 
J6124 12/06/82 10 22.90 
J1862 15/01/84 7 21.80 
J1891 3/12/83 7 2 2. 102 

U3487 18/12/83 7 
J2672 1/07/84 7 2 2. 1 01 

U8226 21/07/84 7 
J7674 5/05/84 15 2 2. 2 01 

J9133S 19/01/85 7 21.80 1 

U7714 7/04/84 7 
V7769 18/02/84 15 
J5701 5/02/82 7 22.20 1 

U5707 31/12/84 7 
U9216 6/01/85 7 
J9108 16/02/85 7 22.55 
U7715 25/03/84 7 
J3390 14/10/82 7 22.15 1 

U1736 6/10/82 7 
J3585 30/06/84 7 21 . 9 01 

U7120 19/07/82 35 

1 Zero point from Metcalfe (private communication) 
2 Zero point from Ellis (private communication) 

Table 2 .. 3 Details of COSMOS Measurements 



the image magnitude (m), area (A) and width (a). The parameter a 

is defined to be the standard deviation of a Gaussian fitted to 

the central intensity and area at threshold of the image. From 

the parameters listed in table 2.2, it can be calculated as 

follows: 

Vt I a = 0.302 A 
log( (I ... -I.h )/Ish .f) 

. . . ( 2 . 2 ) 

where a is given in pixels. 

Regardless of whether or not star-galaxy separation was 

required, the log A v m and a v m diagrams were first used to 

check the quality of the data on each plate. This was done by 

plotting these diagrams for the images in each of 9 small ( ~ 1 

sq. deg.), well separated areas over the plate. Any shift 

observed for the stellar/galaxian locus in log A v m or a v m 

between these areas would then form a strict indication of poor 

quality data. arising either as a result of non-uniformities in 

the plate itself (e.g. emulsion variations) or in the 

measurement process (e.g. defocuss_i_ng)_, see Shanks ( 1979). On 

any plate displaying these non--un1formities,- t·h-e- usa-b-l-e- area -was-

cut down until no shifts were observed over the remaining 

measured area. 

Three plates (J7674, U7714 and U7120) used in this thesis 

displayed such shifts. On J7674 the non-uniformity was removed 

by deleting the easternmost and southernmost 1° strips, and the 

removal of a 2° wide strip from the western edge of U7120 

accounted for the non-uniformity seen over this plate. However, 
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so much of U7714 was affected by these shifts that no reasonably 

sized area (i.e. < two thirds of the measured area) could be 

removed to leave a uniform distribution of objects. The poor 

quality of the data on this plate thus prevented the QNA field 

from taking part in the 2D clustering analysis discussed in 

chapter 6. However, since no shifts were observed over the small 

area in which the stellar calibration sequence and spectroscopic 

observations lay, this field is still included in the discussion 

of the UVX survey in chapters 3, 4 and S. 

Having followed the above procedure to remove any existing 

gradients, star-galaxy separation was then carried out using log 

A v m and a v m plots for the images in a central 1 sq. deg. 

area on each COSMOS J plate listed in table 2.1. Typical 

diagrams used to define the discrimination lines are given in 

figure 2.2. The tight stellar locus is clearly visible in these 

plots, with the extended galaxian images lying above the locus 

affording a straightforward separation of the stars and galaxies 

by the solid line. At bright magnitudes (bJ < 19.0 mag 

·cal-cul-ated- us-ing--appropr.iate_ z_e_rJ)~~oi._n~ -_~ee table 2. 3-) log A v 

m was used as the discriminator between stars and galaxies. At 

fainter magnitudes log A v m becomes less reliable, and a v m is 

used down to _a faint limit of bJ = 21.0 mag. Care was taken to 

ensure that both methods gave the same star and galaxy densities 

in the magnitude range where they overlapped. Visual checks 

confirmed the reliability of these automatic procedures: even at 

bJ = 21.0 mag, the misclassification of stars as galaxies or vice 

versa was never found to be more than 10%. Since, even on a 
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visual inspection, stellar and galaxian images may become 

difficult to distinguish at bJ ~ 21 mag on a UKST plate, this 

percentage has been checked (and subsequently verified) on the 

SGP from a visual inspection of the deeper AAT plate J1888 

(Stevenson 1985). 

2.4.3 Plate Matching 

Typically, a COSMOS measurement for a sky-limited UKST plate 

contains information for several tens of thousands of stars and 

galaxies. To obtain colours for all these objects it is 

therefore necessary to follow a procedure which automatically 

matches the images from different plates. 

The procedure used here is identical for all fields on which 

plates have been matched. Using the J plate as a 'master', a 

transformation is found between the COSMOS X and Y coordinates 

for ~ 30 bright (13 mag < B < 15 mag) stars on the plate and 

those for the same stars on a plate which is to be matched to it. 

This transformation consists of shift and rotation parameters and 

normally gives residuals of 10 20 ~m (~1") between the 

positions for the stars on the two plates used to define the 

transformation. The coordinates for each image on the J plate 

are then calculated in the frame of the second plate, and if an 

image is found on this latter plate within a tolerance of 3 

arcseconds from the transformed J plate X and Y positions it is 

paired to the one on the J plate. Image parameters for the 

second plate are written to tape alongside those for the J plate. 

However, the XY position and star-galaxy separation parameters 
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remain as defined on the J plate. If more than one image is 

found Yithin the tolerance region then the nearest image is 

matched. 

In this way 95% of all images were paired to the J plate 

down to the corresponding limit of the plate used in the matching 

process (e.g. U < 20.75 mag, V < 20.5 mag, R < 20.0 mag and I < 

18.5 mag). Once the magnitudes on the respective plates have 

been properly calibrated (see folloYing sections), colours for 

stars and galaxies can simply be obtained by subtracting the 

different magnitudes for each matched image. 

2.4.4 Stellar Calibration 

Because COSMOS has a limited dynamic range, the machine 

magnitudes for even relatively faint stars (b < 20.0 mag on a sky 

limited IIIaJ plate) will be saturated and not form a linear 

relationship with photoelectric magnitude. Calibration of the 

stellar magnitudes is therefore achieved by fitting a smooth 

polynomial to the relationship betYeen photoelectric and COSMOS 
-

magnitudes for standard stellar sequences on- eadi f1e1d-. --Details 

of the stellar calibration on all fields are summarised in table 

2.4, and representative calibration curves for U and J plates on 

the fields used in the spectroscopic survey are shown in figure 

2.3. On all spectroscopically surveyed fields, accurate B 

photoelectric, electronographic or CCD photometry exists to at 

least B = 20.0 mag. The B photomet?y on three of these fields 

(SGP, QNB and QNA) goes as deep as B = 21.0 mag, the faint limit 

of our spectroscopic survey. To maintain consistency from 
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Field Plate 

SGP J3721,J1921 
83499 

QSD 

QSF 

U2639,U6380 

V3475 

R2775 

16427 

J1891 

U3487 

J2627 

U8226 

Source of 
Calibration 

Hawkins (1981) 

Cannon (1974) 
Hawkins (1981) 
SGP1: U8V Relation 

Hawkins (1981) 
SGPG2: U8V Relation 

Hawkins (1981) 

Hawkins (1981) 

Reid & Gilmore (1984) 

Savage 

Savage 

Metcalfe 

Metcalfe 

Number Magnitude Symbol 
of Stars Range 

28 13.75<8<22.45 • 

27 
6 

11 

20 

18 

73 

37 

37 

6 

10.20<U<17.50 • 
19.29<U<20.29 D 

16.14<U<20.60 

13.20<V<21.14 

12.73<R<19.75 

10.79<1<18.33 

11.20<8<19.27 

9.44<U<19.55 

18.28<8<20.40 • 

QN8 J7674,J913lS Metcalfe 
Peterson 

2 

7 
4 

19.64<U<20.32 • 

15.62(8(19.46 • 
15.79<8<21.23 c 

QNY 

QNA 

QSM 

U7714 

V7769 

J5701 

U5707,U9216 

J9108 

J3390 

U1736 

Metcalfe 
Metcalfe: U8V Relation 

Metcalfe 

Metca!_f e 

4 
1 

7 

7 

15.77<U<18.17 • 
U=18.97 • 

15.28<V<18.37 

12.28<8<20.18 • 

snanks­
Metcalfe 

s- --1-6. 49-<8·<-t-9. 90 a-
6 12.73<U<18.49 • 

Peterson 4 

Tritton et al. (1984) 13 
Tritton & Morton (1984) 25 
Metcalfe 1 

Tritton et al. (1984) 11 
Tritton & Morton (1984) 21 

19.42<8<21.46 • 

10.35<8<19.62 • 
14.97<8<19.84 0 

8=20.01 ~ 

10.37<U<19.99 • 
12.72<U<19.85 c 

Note: Name quoted without reference indicates Private Communication 

1 Symbols refer to those plotted in figure 2.3 

Table 2.4 Stellar Calibration Details 
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end points of the polynomial fit. 
a) SGP and QNY fields. 
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field-to-field, all b stellar magnitudes were calibrated using 

standards given in the Johnson B system. Although standards were 

quoted directly in this passband for the electronographic 

sequence of Hawkins (1981) on the SGP and the photoelectric 

sequences of Shanks (private communication) on the QNY and 

Tritton et al. (1984) on.the QSM fields, B magnitudes obtained 

from the CCD sequences of Metcalfe and Peterson (both private 

communication) required transformation to the Johnson system 

using the following relation (Walker 1984): 

B = Bcco .+ 0.078(8-V)cco mag (2.3) 

While B-V CCD colours were only available for stars on the QNB 

field, the resulting colour term was so small ( B-V ~ 0.6 mag for 

stars on the QNB) that equation (2.3) could be approximated on 

the other fields to 

B = Bcco + 0.05 mag (2.4) 

without significant loss of accuracy. 

On those {iefds TQ-sF-. --aNY--and-- QSM->- wher_e th~_photometry did 
------------

not extend to the faint limit of the spectroscopic survey, the 

calibration polynomials were extended beyond the faintest 

standard to the survey magnitude limit. This was done by placing 

a 'pseudo-calibration' point at B > 21.0 mag (triangles in figure 

2.3) at a position based on a continuous extrapolation of the 

polynomial defined at brighter magnitudes by the standard 

sequence. These extrapolations never exceeded 0.8 mag and while 

we concede that COSMOS still suffers significant non-linearities 
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even at faint magnitudes (see e.g. Fong et al. 1983), it is 

unlikely that errors greater than ± 0.2 mag will be introduced by 

this procedure. We fully recognise, however, the absolute 

necessity to obtain further faint B photometry on these fields. 

Two fields (QSF and QNA) have no bright (B < 18.0 mag) 

standard stars for calibration. A crude extrapolation to 

brighter magnitudes was attempted by assigning magnitudes 

(crosses on relevant calibration curves in figure 2.3) to bright 

stars (B < 16.0 mag) from the length of their diffraction spikes 

using the relation given in the UKST handbook. Although this 

method is extremely unsatisfactory, accounting as it may for the 

anomalous n(m) counts seen at bright magnitudes on the QNA field 

in chapter 3.4, it does not significantly affect the magnitudes 

_ol ~~0~ found in the spectros~opic survey, as only 2 surveyed 
- -- --

QSOs (both on the QNA field) have magnitudes brighter than -~lie-

brightest standard available. 

While the B photometry on these fields is generally good, 

the corresponding U photometry is of a much poorer standard. 

Although good photoelectric and CCD U seque-n-cesao-extst- on- -some 

survey fields (e.g QSM and QNY see table 2.4) they do not extend 

to the faint magnitudes required by the spectroscopic surveys (u 

< 20.75 mag). On other fields the standards are either too 

bright (e.g. SGP) or too few in number (e.g. QSF) to provide 

reliable calibration. In some cases (e.q. QNA) no U sequence 

exists at all. To achieve a form of calibration for the u 

magnitudes two methods were therefore employed. The first method 

made use of the UBVR relation (hence referred to as such in table 
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2.4) for Galactic stars and hence could only be used on the SGP 

field where such multi-colour information was available (although 

a more approximate form of this method involving only UB and V 

colours was used to give an additional point on the QNB U 

calibration curve). 

The method involved estimating U magnitudes for the stars in 

the Hawkins' (1981) SGP1 and SGP2 sequences. This was done by 

first selecting those stars that appeared to be main sequence on 

the basis of their B-V and V-R colours (thus guarding against the 

inclusion of extremely metal weak subdwarfs). These stars were 

then assigned U-B colours using the standard U-B:B-V relation for 

main sequence stars in the Johnson system (Johnson 1963). The 

resulting U sequence was then used to calibrate the COSMOS 

_ m~gn~t~~~~-o~ U2639 and U6380. 

As a check of this method crude spectrophotometry of the UVX 

objects in the bright survey was carried out as follows. From 

the sky-subtracted, fluxed and air-mass corrected spectra for the 

QSM and SGP UVX survey objects (see chapter 3.2) an approximate u 

, spectral. magnitude (u~ p. c ) was derived using--the-- tot-a-l- -counts--

in the spectra between 3SOOA and 4000A (I37so) thus: 

u•P·•c = -2.Slog(I37so) . • • ( 2 • 5 ) 

Since accurate U photoelectric photometry is available to U 

= 20.0 mag on the QSM field (see table 2.4 and above) a 

zero-point convert! ng spectral maqn.i tude into COSMOS calibrated 

magnitude was determined from the survey objects on the QSM 
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field. This zero-point was then added the 'spectral' magnitudes 

for the SGP objects to give a 'pseudo' u magnitude. Agreement 

between this magnitude and the U2639 calibrated magnitude was 

found to be good (figure 2.4) confirming the accuracy of the 

stellar calibration in U on the SGP at the ± 0.2 mag level down 

to u = 18.5 mag. 

For those fields on which U and J plates alone existed (and 

indeed for the ONB field at U > 19.0 mag), the lack of additional 

colours prohibited the method above from being applied. In these 

cases the u magnitudes were calibrated so that the mean u-b 

colour of the blue Galactic star population remained constant 

with b magnitude i.e ensuring that the locus for blue Galactic 

stars formed a horizontal line in the u-b v b diagram (see figure 

--2-.-S>. ___ 'fjl~s __ all anomalously blue stellar objects could be 
-

selected using a constant u-b cut, regardless of b magnitude. --

This, of course, will only give a relative calibration in u, and 

so, if possible, a zero-point for the u calibration was obtained 

from the bright standards in the field. In figure 2.3 the values 

used- -to -•-1 i-ne-arise-! the- -u_,b __ v _b __ d_i ag_r:_~J!l are shown as crosses with 

the actual sequence stars signified by filled circles. 

The assumption of a constant u-b v b relation has also been 

employed ·by a number of other authors (e.g. Hewett et al. 1985, 

Marano et al. 1986) in the search for UVX objects. Such a 

constant relation is observed on the OSM field (see figure 2.5), 

where deep U (U < 20.0 mag) photometry does exist, thus providing 

good justification for this technique. Moreover such a constant 

relation is also seen on the SGP field (where u magnitudes were 
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calibrated using the UBVR relation), Both these observations 

vindicate the assumption of a constant u~b colour for blue 

Galactic stars in the magnitude range 18 mag < b < 21 mag, used 

to calibrate the u magnitudes on the other fields, 

Calibration of the !6427 plate on the SGP was achieved using 

a sub-beam prism sequence (Reid and Gilmore 1984) based on the 

Kron-Cousins band (I~c ), Later this calibration was checked 

using data from a CCD I~c frame taken on the AAT (Couch, private 

communication). From figure 2.6 we can see that, despite a small 

zero~point shift (0.2 mag), the magnitude scales agree well, with 

arms scatter of ±0.1 mag, The stellar magnitudes on the SGP 

plates V3475 and R2775 were calibrated using the .electronographic 

sequences in Hawkins (1981). 

U and J plates on two other fields (QSD and QSI) used for 

the 20 clustering analysis alone were also calibrated. On the 

QSD field unpublished U and B photoelectric sequences compiled by 

Dr. Ann Savage were used, with suitable extrapolation to faint 

magnitudes using the methods described above. Unfortunately, no 

stellar sequences exist in either U or B on the QSI field. A 

relative calibration between the u and b magnitudes was first 

achieved by 'linearising' the u-b v b diagram on this field as 

described above. A zero-point for the b magnitude system was 

then chosen to give agreement between the surface densities of 

UVX objects found on the QSI field and those on other fields in 

the range 18 mag < b < 20.5 mag. 
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2.4.5 Galaxy Calibration 

In the range 16 mag < bJ < 21 mag, the magnitudes produced by 

COSMOS for galaxies are linear with calibrated magnitudes to 

within ±0.2 mag (MacGillivray and Dodd 1982). Calibrated galaxy 

magnitudes may therefore be calculated from the COSMOS magnitude 

by the addition of a constant zero-point term. Estimation of the 

zero-point can be achieved by comparing the photoelectric 

magnitudes for those galaxies on the measured area with accurate 

photometry to their COSMOS magnitudes. In this work calibration 

of the galaxy magnitudes is only carried out on the J plates used 

for the cross-correlation analysis in chapter 6. The galaxy 

magnitude in the I I I aJ passband ( bJ ) is given by 

bJ = me o s + 51 og ( lp 1 • I 14 . 9) +. mg 11 y mag ( 2 • 6 ) 

where the first term on the right hand side of equation (2.~) is 

given by equation (2.1) and the second corrects the sky magnitude 

(the third term) from magnitudes per pixel into magnitudes per 

square arcsecond. lpt• is the pixel width in the COSMOS scan and 

14.9 the UKST plate scale in microns per arcsecond. For all UKST 

plates measured here lp 1 " = 8 pm 0 We note that from the 

definition given in equation (2.6), the value of mskr is only 

strictly valid within the context of the machine measurements 

discussed here, and is not necessarily a true mskr. 

Table 2.3 lists the values for mukr on all plates which the 

galaxy catalogues will be used. Most plates have been calibrated 

previously - the values of Metcalfe were obtained from CCD 

observations on the South African Astronomical Observatory (SAAO) 
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1m Telescope, and that of Ellis from a similar observation on tho 

AAT. The plates on which mu~y has been directly determined in 

this work are given below. 

a) J9108 

CCD observations of four galaxies on this plate have been 

made in the Bcco passband by B.A.Peterson. To convert their 

magnitudes into the bJ passband we use equation (2.4) together 

with 

bJ = B - 0. 2 3 ( B- V) mag . . . ( 2 . 7 ) 

This is the relation given by Kron (1978) , although it is only 

strictly valid for stars. However, in the absence of an explicit 

relationship for galaxies it should suffice to an accuracy of ± 

0.1 mag. 

The subsequent calibration is shown in figure 2.7a, where 

the calibrated COSMOS magnitudes, bJ, using an mll~)' = 22.55 mag, 

show a tight ±0.15 mag, scale-free (45°) relation with those 

derived from the CCD observations. 

b) J6124 

A small part (0.5 sq. deg.) of the measured area on this 

plate overlaps with that on J1681. Since a value of mllhy= 22.05 

mag is already known for the latter plate (Stevenson 1985), 

calibration of the galaxy magnitudes on J6124 was achieved by 

comparing COSMOS magnitudes for the galaxies on the overlap area 
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(see figure 2.7b). Once again we see a relation with very little 

scatter(± 0.15 mag) about a 45° line, and mn~Y~ 22.9 ± 0.1 mag. 

c) J1862 

No galaxy photometry was available on this field so an 

approximate mo~y was chosen to give agreement between the galaxy 

number magnitude, n(m), counts on this field and those on the 

SGP. 

2.5 Discussion of Passbands 

In later chapters we will need to compare surface densities 

for our QSOs with those found from other sources. To do so we 

require a transformation from o~r b magnitudes for QSOs to 

Johnson B quoted by most other authors. While such 

transformations do exist for Galactic stars (Blair and Gilmore 

1982), QSOs have quite different spectra which may give rise to 

significantly different colour equations. Using COSMOS 

measurements of 83499 and J3721, an equation relating band B 

magnitudes can, however, be determined quite directly. This is 

possible because the passband defined by the IIaO/GG395 emulsion 

filter combination used to take the B plates is much closer to 

Johnson B than that obtained from the IIIaJ/GG395 combination 

used to produce J plates. A QSO sample already exists on the SGP 

(Clowes and Savage 1983) selected from a visual inspection a UKST 

objective prism plate. The calibrated magnitudes (hereafter 

referred to as b11oo) for all QSOs on the B plate in this sample 

with b11ao < 20.0 mag (this being the plate limit of B3499) and z 
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< 2.2 (to avoid possible colour terms-- see chapter 7.2) were 

compared to their corresponding magnitudes on the IIIaJ plate 

(brxxaJ ), both sets of magnitudes having been calibrated from the 

Hawkins' (1981) olectronographic sequence. The result is 

displayed in figure 2.8 with the dotted line adopted as the 

relation between bx 1 x "J to bx 1 a o , namely: 

bx I a 0 ;:,: b1 1 1 a J - 0 , 1 5 mag • 0 • ( 2 0 8 ) 

To convert this into B we use the following from Blair and 

Gilmore (1982) 

B = b1 1 a o + 0 . 11 ( B- V) mag 0 0 • ( 2 . 9 ) 

Again this is only strictly valid for Galactic stars, but, in 

this case, the correction is so small that QSOs (B-V ~ 0.2-0.3 

mag, see e.g figure 7.2) should not be expected to show 

significant deviations from this relation. For all future use we 

therefore adopt the following relation (accurate to the nearest 

0.05 mag) to convert b magnitudes to the Johnson B passband: 

B = b - 0.10 mag • • 0 ( 2 • 1 0 ) 

We also note that the u magnitude calibration described in 

the previous section was not carried out in a consistent fashion 

from field-to-field. We may therefore expect u magnitude systems 

on each field to have different zero-points. We will, however, 

wish to compare UVX limits from field-to-field in the 

spectroscopic surveys. We therefore obtain an approximate 

relative u zero-point across the survey fields by normalising the 
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u-b colours so that the locus of blue Galactic stars in u-b v b 

(see figure 2.5) lies at the same u-b colour for all fields as it 

does on the SGP field. Because much of the u calibration was 

achieved by straightening out the stellar locus in U··b v b, this 

normalisation should be more or less independent of the b 

magnitude at which it is carried out. However we chose to carry 

out this normalisation in the range 19 mag < b < 20.5 mag, this 

being the magnitude interval in which the bulk of the QSOs were 

observed in the spectroscopic surveys. We thus arrive at the 

following corrections: 

QSF: u' = u - 0.2 mag C2.11a) 

QNB: u' = u - 0.3 mag (2.11b) 

QNY: u' :: u - 0.2 mag (2.11c) 

QNA: u' = u - 0 0 1 mag (2.11d) 

QSM: u' = u - 0.3 mag (2.11e) 

where the primed and unprimed indices refer to the corrected and 

original u magnitudes respectively. All figures in this chapter 

have been plo~ted in the original system, but unless otherwise 

indicated, all future u magnitudes and u-b colours quoted will be 

the corrected colours. We stress, however, that this is merely a 

relative calibration for comparative purposes between fields in 

the UVX survey alone, and, as such, should not be used as an 

indication of the true U-B colour from which it may show 

significant discrepancies. The comparison between u-b and U-B 

colours for QSOs is postponed until spectroscopic information is 

available to identify precisely the content of the UVX sample 

(see chapter 3.4). 
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2.6 Consideration of Errors 

As this 

techniques, 

thesis 

it is 

is based 

vital that 

on broadband colour selection 

due consideration of the errors 

inherent in the magnitudes used to derive such colours is taken 

into account. The rms scatter of the photoelectric standards 

about the calibration curves in figure 2.3 may be used to 

estimate their size, but since many of the fields have very few 

such standards (especially at the faint end - where errors are 

likely to be at their largest), we prefer the more detailed 

approach given below. 

Since the SGP is the only field on which we have two pairs 

of U and J plates, we can begin this study by computing the rms 

scatter in the u and b magnitudes .for stars between each matched 

U and J pTa-te -pafr -orr -t-his-field. -From--this- we wi 11 b~ ~b_le_ to 

derive errors in the u-b colours on the SGP and, by comparison 

with the u-b histograms for stars on this and on other fields, 

devise a procedure to obtain similar errors in u-b in these other 

fields. The matched pair of U plates on the QNY field can 

subsequently be used to verify the consistency- of--tnrs-pr-o-c·edure .-

We plot in figure 2.9a histograms for Ab = Cbt,2t-b372t) in 

0.5 mag intervals from b372t = 17.0 mag to b312s = 21.0 mag. In 

table 2.5 we give the rms scatter (a) in Ab for each of these 

intervals. Since J3721 is a better quality plate than J1921 we 

may expect that the errors associ~ted with b magnitudes on J3721 

alone will be no larger than a//2. This gives a error of, at 

most, ±0.18 mag even in the faintest magnitude bin. Of course, 
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Magnitude Range b1 9 2 1 - b3 7 2 1 u2 6 3 9 -u6 3 a o u6 3 a o - b3 1 2 1 U, 7 o 1 -U9 2 1 6 

17.0 - 17.5 0.18 0.15 0.16 0.22 

17.5 - 18.0 0.20 0.15 0. 18 0.21 

18.0 - 18.5 0.19 0.18 0.19 0.17 

18.5 - 19.0 0.23 0.20 0.22 0.23 

19.0 - 19.5 0.20 0.24 

19.5 - 20.0 0.20 0.27 

20.0 - 20.5 0.23 0.25 

20.5 - 21.0 0.25 

Table 2.5 Dispersion in magnitudes from Plate Pairs 

Magnitude Range SGP QSF QNB QNY QNA QSM 

17.0<b<17.5 0.20 0.15 0 .. 20 0.20 0.10 0.15 

1 7 ~ 5 < b <-1-8 • 0 o-. 20 o-.-t5 o. 2-0- 0-.20 0.10 _0_. 20 

18.0<b<18.5 0.20 0.15 0.20 0.20 0.10 0.25 

18.5<b<19.0 0.20 0.15 0.20 0.15 0.15 0.30 

19.0<b<19.5 0.20 0.15 0.25 0.15 0.15 0.30 

19.5<b<20.0 0.25 0.20 0.25 0.20 0.20 0.25 

20.0<b<20.5 0.25 0.20 0.20 - IL-20- - o~ 2 o - - -o-. 3 o -

20.5<b<21.0 0.30 0.25 0.25 0.25 0.25 

Table 2.6 HWHM of Blue Stellar Peak in u-b distribution 



this is only a relative error in the magnitudes defined by 

COSMOS. Absolute error will depend on the accuracy of the 

calibration. It would be ideal if this process could be carried 

out down to a similar magnitude limit with the two U plates 

available on the SGP, thus obtaining an estimate for the error in 

u-b colour down to the magnitude limit of the faint spectroscopic 

survey Cu < 20.7 mag). Unfortunately, U2639 was taken on IIaO 

emulsion and consequently does not go very deep. However, we may 

still obtain an upper limit for the error in the u magnitudes 

derived from U6380 at bright magnitudes. In figure 2.9b, ~u 

Cu2,3.-u,3ao) is plotted in 0.5 mag bins from u,3ao = 17.0 mag to 

u,3ao = 20.0 mag. Beyond u,3ao = 19.0 mag the spread in ~u 

increases dramatically as the bright plate limit on U2639 comes 

into play. Table 2.5 therefore lists the rms scatter in ~u down 

to t-hi-s magni-tude 1 i-m-i t-, -wi-th the errors -in u, 3 a o bei n_q n_o 

greater (and probably significantly smaller - due to the much 

inferior quality of U2639) than %0.16 mag at u = 19.0 mag. The 

size of the errors in u-b colours for the SGP can therefore be 

directly assessed to a magnitude limit of b. = 19.0 mag by 
- -- ---

combining the errors in the u and b -magnitudes a-er-ivea- -above. 

Table 2.5 gives the error derived in this fashion for a star with 

u-b = 0.0 mag at the b magnitude quoted, although the errors for 

UVX QSOs Cu-b < -0.3 mag) will be slightly smaller. We therefore 

derive an upper limit to the size of the error in u-b at b = 19.0 

mag to be ~ ±0.20 mag. 
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To obtain errors on u-b colours at fainter limits we note 

that, for b < 19 mag, the half width half maximum (HWHM) of the 

blue peak (calculated on the blueward side of the peak) in the 

SGP stellar u-b histogram (figure 2.10), is approximately equal 

in size to the error in u-b for the magnitude bins down to b = 
19.0 mag (see table 2.6). This equality is not surprising since 

it reflects the fact that the intrinsic distribution of u-b 

colours for Galactic stars has a sharp cut-of£ blueward of u-b ~ 

0.0 mag, with the spread in colours to the blue merely reflecting 

the measurement errors. Such a cut-of£ arises because the 

spectral sequence of normal Galactic stars from A to M undergoes 

a minimum in u-b colour c~ -0.05 mag) for stars of spectral type 

F (Allen 1973). Metal-weak subdwarfs, white dwarfs and QSOs 

will, of course, constitute an intrinsically bluer population 

than this 1 imft- but- any error estimated from t-he- HWHM- of the- blue 

peak will serve as a useful upper limit to the size of the 

errors. In table 2.6 we therefore list errors derived in this 

fashion for all the other 5 survey fields. We see that the 

errors in u-b vary remarkably little over the magnitude range 17 
-- --

mag < b < 21 mag, ranging from ~ ±0. 20 mag at b = 17.0 -mag to ~- -

±0.30 mag at b = 21.0 mag. 

To ensure that the errors derived in this fashion are still 

true reflections of the real errors involved, we used the two U 

plates that have been measured on the QNY field to estimate the 

error associated with the u magnitudes on this field. From 

figure 2.9c and table 2.5 we arrive at an error ~ ±0.2 mag for 

the faintest u magnitudes. This is not incompatible with the 
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error derived from the u-b distribution on the QNY field (see 

table 2.6). Indeed, this would imply an error= ±0.15-0.20 mag 

in the J magnitudes at 20.5 mag < b < 21.0 mag - equal to that 

derived directly on SGP plate J3721. 

We therefore conclude that the errors in the machine 

measured stellar magnitudes and colours are small, although we 

stress the need for additional calibration. As such, samples of 

objects selected by their broadband colours from COSMOS machine 

measurements of photographic plates can be accurately defined and 

are therefore well suited to spectroscopic analysis. 
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CHAPTER THREE 

SPECTROSCOPIC OBSERVATIONS OF UVX CATALOGUES 

3.1 Introduction 

In chapter 1 the power of the UVX technique in finding 

complete samples of low redshift (z < 2.2) QSOs was demonstrated. 

We now describe spectroscopic observations of UVX catalogues 

produced from the COSMOS machine measurements of UKST plates 

detailed in chapter 2. 

Two separate spectroscopic surveys were carried out: an 

initial, bright (b < 19.0 mag) survey undertaken using 

conventional spectroscopic techniques to assess the success of 

the UVX technique in detec-ting QSQs, and a further, much larger 

faint (b < 21.0 mag) survey carried out when fibre optic 

spectroscopy became available at the AAT. 

_ 3~2 The Bright UVX Survey 
-- ---~ --- -- ----

3.2.1 Observations 

COSMOS machine measurements of the UKST plates J3721 and 

U2639, J5701 and U , and J3390 and U1736 were used to define a 

sample of UVX objects on the SGP, QNY and QSM fields 

respectively. Small areas on each of these fields were then 

selected for spectroscopic study (see table 3.1), two areas on 

the SGP and one each on the QSM and QNY fields. The area at the 

centre of the SGP field was defined to overlap with that of the 

AAT plate J1888, and the QSM area was chosen to include the area 
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Name Limits of Area Area Covered Mag. Limits U-B limit 
RA(1950) -> RA(~950) Dec(1950)-)Dec(1950) (sq. deg. ) 

(h m s) (h m s) (o • " ) (o • ") 

SGP centre 00 51 43.0 00 5!7 40.2 -27 21 46 -28 40 26 1. 61 17.S<b<19.0 u-b<-0.35 

SGP faint 00 46 j6.7 01 Q1 30. 0 -26 04' 30 -28 43 46 8.17 18.5<b<19.0 u-b<-0.50 
I 

QSH centre 21 59 31.5 22 05 10.0 -18 34 OS -19 21 24 1.30 17.S<h<19.0 u-h<-0.50 

QSM bright 21 58 40.5 22 ps 10.6 -18 00 03 -20 01 so 7.72 17.5<b<18.5 u-b<-0.50 

QNY bright 12 28 26.9 12 ·38 55.6 +01 34 08 -02 10 01 10.06 17.5<b<19.1 u-b<-0.65 

Table 3.1 Bright UVX Survey: Areas Chosen and Selection Criteria Applied 



surveyed by Morton and Tritton (1982), hereafter MT. On all of 

these areas, with the exception of the central SGP, the criterion 

for inclusion in the UVX sample was set to u-b < -0.50 mag (this 

became u~b < -0.65 mag on the QNY field due to a revision of a 

zero-point, see Boyle et al. 1985). The area at the centre of 

the SGP plate was defined to have a less strict UVX criterion 

(u-b < -0.35 mag) than the other areas. At higher Galactic 

latitudes the contamination of the UVX sample by Galactic stars 

at a given u-b limit is expected to be smaller than that at lower 

Galactic latitudes. Thus, on the SGP, we could afford to relax 

the UVX criterion and still be left with a manageable number of 

stars to observe. Moreover, this was the UVX criterion used to 

define the UVX sample in Shanks et al. (1983c) and so was 

included here to allow us to esti.mate directly the percentage of 

QSOs in the UVX sample use-d in.that paper. The UVX-and limiting 

magnitude criteria for each spectroscopically surveyed area are 

also given in table 3.1. 

The UVX objects in the samples defined above were observed 

by Tom- Shanks- -and Ft-ed- Stevenson _dur_ing_ 14__-1_3_ Apri! and 20-22 

August 1982 on the 3.9m Anglo-Australian Telescope using the IPCS 

detector and RGO spectrograph operated at low dispersion (156 

A/mm) with a 2 arcsecond slit. This gave a resolution of 4A over 

a spectral range of 3400A - 7200A. The integration time for each 

object <~ 3000 sees at b = 19.0 mag) was sufficient to obtain 

approximately 100-150 counts per channel in the objects' spectra. 

Good signal-to-noise (5/N~10) was required in order to identify 

the narrow absorption lines in the spectra of the Galactic stars 
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and to ascertain whether any of the 'featureless' spectra were 

produced by unusual objects e.g. BL Lacs. The spectra were 

reduced on the SERC STARLINK VAX system at the University of 

Durham using the SPICA software package. The wavelength 

calibration was carried out using standard Cu-Ar arc spectra 

taken between -each survey object during the observing run, and 

fluxing of the resultant sky-subtracted, wavelength calibrated 

spectra was achieved using the spectra of white dwarf standards 

COke 1974) taken throug·hout the nights of the observing runs. 

Spectroscopic observations of a few objects in the survey were 

also carried out by Dr. Arp on the 2.5m telescope at Las 

Campanas and by Drs de Ruiter and Zuiderwijk at La Silla with the 

2.2m telescope (see references below). 

3.2.2 The Catalogue 

In table 3.2 and figures 3.1, 3.2 and 3.3 we present the UVX 

catalogue in full. Table 3.2 lists, area by area, the objects in 

the catalogue together with their (1950) positions, magnitudes, 

u-b colour, spectroscopic identification and a reference to a 

note if the object is of particular interest. The positions 

quoted are based on COSMOS machine measurements converted to R.A. 

and Dec. using standard astrometric procedures, and are accurate 

to 1 arcsecond. Where an object had been observed previously, 

its original identification, and, for a OSO, the original 

determination for its redshift is given. All the QSO redshifts 

quoted are based on measurements from slit spectra. 
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SGP Centre 

Name Position b u-b 
RAC1950) Dee<1950) 

(h m s) (o • ") 

51 00 53 34.6 -28 40 08 17.72 -0,53 

52 00 54 28,6 -28 35 57 18.82 -0.36 

SJ 00 56 23,5 -28 37 54 

54 00 55 25.1 -28 32 13 

55 00 55 38.5 -28 28 23 

"!: 

18.01 -0,39 

17.56 -0.55 

18.87 -0.35 

. 56 00 54 49.0 -28 25 20 18.87 -0.44 

57 00 54 25.6 -28 25 28 18,00 -0.37 

58 00 57 07.5 -28 10 16 18.90 -0.40 

59 00 56 25.9 -27 58 44 18.85 -0.71 

510 00 56 20.6 -27 56 52 18,79 -0,35 

511 00 54 27.0 -27 52 51 17.76 -0.38 

512 00 54 05.1 -27 51 34 17.55 -0.42 

513 00 53 34,1 -27 53 00 18.92 -0.55 

514 00 55 09,7 -27 44 40 18.77 -0,39 

515 00 54 06.4 -27 33 36 18.92 -1.20 

516 00 54 46.9 -27 28 25 18,77 -0.68 

517 00 54 40.0 -27 26 54 17.55 -0.38 

518 00 51 46.8 -28 11 52 18,97 -0,68 

St9 00 51 59,2 -27 48 56 18.80 -0.41 

520 00 52 52.3 -27 27 16 17.65 -0.37 

I 
Idepti f ieation 

stk F6 (A9) 
I 

S~ FS (F7) 

st.k FS <F2> 
stk F7 (AS) 

I 

osO z=0.648±0,001 

stk F4 (A4) 

Star G2 (F2) 
I 

Star F3 CAS) 
I 

star AS (AS) 
I 

Not observed 
' st4r GO (AS) 

~ FS CFO) 

Star G2 CF2) 
I 

osq z=2.186±0.003 

I 
oso z=1.26? 

sJ FS CFO) 

No~ observed 
i 

QS~ z=2.30 

S~ F8 (F7) 

Star GO (F6) 
i 

Table 3,2 Bright UVX Survey: The Cata~ogue 

Notes/Reference 

Hgll(2798), 4612A 
[NeV](2973~4900 

*0111(3133)\ 5207A 

NVC1240) 3950A 1 
SIV(1400) I4468A 
CIV(1549l 14929A 

Clll(1909) I4308A 2 

cs 

SGP Faint 

Name Position 
RA(1950) Dec(t950) 

(h m s) (o • ") 

b u-b 

Rt 01 00 33.1 -26 tO 31 18.70 -0,98 

02 00 59 27.7 -26 25 06 18,93 -0.84 

P3 00 57 57.4 -26 26 OS 

04 00 55 15.8 -26 13 30 

N5 00 52 58.2 -26 26 26 

TT6 00 49 22.3 -26 17 08 

18,69 -0,75 

18.57 -0.55 

18.62 -0.58 

18.54 -o.5o 

U7 00 47 54.1 -26 47 55 18,79 -0,83 

vs 00 47 07.2 -26 47 21 18,64 -0.77 

SS9 00 59 39.4 -27 02 06 18,88 -1.10 

L10 00 53 38.5 -27 09 10 18.55 -1.13 

M11 00 52 32.0 -27 06 38 18.65 -0,90 

Z12 00 57 56,7 -27 29 46 18.90 -0,78 

C15 00 53 05.1 -27 16 39 18.60 -0.58 

E16 00 51 38.1 -27 26 26 

D17 00 51 26,3 -27 35 00 

W18 00 48 56,4 -27 29 52 

X22 00 47 49,6 -27 59 36 

Y24 00 49 10.1 -28 08 53 

J26 00 56 14.2 -28 40 34 

18.90 -0.90 

18.72 -0.72 

18.85 -0.51 

18.52 -0.94 

18.87 -0.66 

18.75 -0.79 

128 00 55 39.9 -28 41 20 18.70 -0.55 

H29 00 51 21.8 -28 39 57 18.65 -0,79 

Identification 

QSO z=2.54 

OsO z=2.11 

White Dwarf DA 

White Dwarf DA 

Star 

Star 

Notes/Reference 

Arp 

cs 

Arp 

Arp 

Arp 

z 

050 CT 

Star z 

QSO 3 

QSO z=1.040±0.002 CIJI(1909) 3872A 4 
Mgll(2798) 5717A 

White Dwarf DA 

OSO z=1.20 

Star G2 (GO) 

QSO z=0.65 

Star 

Star 

QSO z=2.12 

Star 

White Dwar-f DA 

Star 

QSO 

z 

Arp 5 

z 

z 
cs 

z 

z 
CT 

Table 3.2 contd. Bright UVX Survey: The Catalogue 



OSH Centre ONY Bright 

Name Position b u-b Identif~cation Notes/Reference Name Position b u-b Identification Notes/Reference 
RA(t950) DecC1950) Rl(1950) Dec(1950) 

(h 111 s) Co . ") (h m s) Co . ") 

T6 22 02 41.8 -19 12 25 18.57 -0.54 Star F8 CF2) 
1A 12 37 35.3 -01 07 so 18.98 -0.52 Not Observed 

T8 22 04 32.2 -19 11 39 17.88 -o.87 OSO z=1.067 SBTP 
18 12 36 02.8 -01 23 08 19.08 -o.n 

T18 22 02 35.6 -18 32 00 18.81 -0.71 OSO z=1.808 SBTP 
I 

2A 12 32 18.4 -01 43 26 18.86 -0.95 star F8 C?> I 
T22 21 59·39.8 -19 11 38 18.83 -o.64 Star GO CA8) 

2B1 12 35 47.4 -01 55 44 18.29 -1.31 White Dwarf DG CDC?) 6 
T25 21 59 36.7 -18 57 30 18.59 -o.s1 Star G2 (GO) 

I 3B1 12 30 40.2 -01 11 53 18.97 -o.S7 Not Observed 
T26 22 00 47.7 -19 00 03 18.80 -o.65 Star F8 (A6) 

Star FS (FO) 
3C 12 28 39,8 -02 00 31 18.98 -0.76 QSO z=0,274 de Ruiter 

T28 21 59 52.7 -18 53 52 18.83 -o.69 
SAl 12 37 32.6 -00 20 34 18.53 -0.84 White Dwarf DG 

T31 22 01 16.8 -18 34 15 18.38 -0.75 OSO z=1.829:0,001 SiiVC1400) 3961A 
I *CIV(1549) 4349A SB1 12 36 59.0 -00 22 11 19.08 -0.58 Not Observed 

NIII(1750) 49SOA 
*CIII(1909) 5397A set 12 36 02.5 -00 24 14 17.58 -1.49 star de Ruiter 

SEA 12 37 23.9 -00 49 19 19.06 -1.01 Not Observed 
OSH Bright 

SEB 12 37 25.9 -00 54 18 18.73 -1.01 QSO z=0.819±0.004 Hgll(2798) 5108A 
Name Position b u-b Identification Notes/Reference NeV(2973) 5412A 

Rl(1950) Dee(t950) OIIIC3133) 5678A 
(h m s) (o . ") 

501 12 36 22.2 -00 43 03 18.68 -1.12 Not Observed 

At.t 22 OS St. 7 -20 01 28 17.95 -0.86 QSO z=1.711±0.003 CIVC1549) 4206A 
CIII(1909) 5169A 

6C 12 32 56.1 -00 25 11 19.08 -0.75 Not Observed 

6A1 12 32 32.1 -00 13 52 18,86 -1.19 QSO z=1.890:0,003 Lya(1216l 3517A 
A2.1 22 03 07.9 -20 01 36 18.26 -0.58 Star f'? CA6) NVC1240) 3592A 

SiiVC1400) 4043A 
A3,1 21 59 23.9 -19 26 17 18.18 -0.52 QSO z=1.17J SBTP CIVC1549) 4468A 

A7.1 22 08 09.2 -18 02 38 18.46 -o.S2 Star F8 CFO) 

A7.2 22 OS 29.1 -18 26 56 18.10 -0.54 
Table 3.2 contd. 

Star F6 (AS) 
Bright UVX Survey: The catalogue 

I 

A9,1 21 59 15.9 -18 13 48 18.30 -0.64 Star F8 CA6l 

Table 3.2 contd. 
i 

Bright uvx SUrvey: The catalogue 



ONYBright 

Name Position 
RA(1950) Dec(1950) 

(h m s) Co • •> 
b u-b 

7A 12 31 so.5 -oo 22 04 19.01 -o.s1 

7B 12 29 14.3 -00 44 25 18.98 -D.42 

7c 12 29 21.1 -oo 53 28 19.05 -o.87 

9A 12 38 34.9 00 39 23 18.41 -1.11 

lOA 12 33 43.0 00 20 23 18.36 -D.98 

13A 12 36 38.1 01 28 42 17.82 -1.60 

1381 12 38 45.5 01 15 58 19.01 -1.24 

13Cl 12 37 37.3 01 07 57 18.35 -1.03 

13D 12 36 41.5 00 51 57 19.09 -0.91 

1481 12 32 45.9 01 33 07 18.89 -o.92 

1SA 12 31 27.5 01 25 22 18.95 -o.s8 

158 12 30 46.3 00 45 09 19.06 -0.53 

14Al 12 34 38.9 01 39 31 19.03 -0.91 

14A2 12 34 39.8 01 39 30 19.43 -0.57 

ldentif ~cation Notes/Reference 

Not O~rved 

QSO z=t:-362~0.001 CIV(1549) 3660A 
CIII(1909) 4509A 

White tarE DA 

0S0 z=11.245~.003 CIVC1549) 348SA 
CIIIC1909) 4279A 

Not O*rved 

QSO z=L 80~0. 002 

Not ObServed 

SIVC1400) 3953A 
CIV(1549) 4356A 
Clll(1909) 5356A 

QSO z=0'.627:t0.001 CII(2326) 3780A 
I Hqll(2798) 4555l 

*0111(3133) 5142A 

QSO z=01.722±0.001 Mgii(2798) 48181 
I 0111(3133) 5399A 

Table 3.2 contd. Bright UVX Survey: The catalogue 

Notes 

1. 514 shows 
shortward of 
emission line. 
proximity to a. 

no Lya emission. The deep absorption trough 
the NV emission may well have absorbed the Lya 
This QSO is also interesting heca.use of its close 

faint cluster of galaxies <see chapter 3.2.4). 

2. We regard the redshift determination for this object as being 
very tentative. Unfortunately the strongest emission line in 
this spectrum occurs at the blue cut-off in the sensitivity of 
the IPCS tube. If we take the wavelength of this line to be 
3512A, then identifying the line as CIV would give a redshift for 
QSO of 1.27. This is in fair agreement with the determination of 
z=1.26 from the emission feature at 4308A attributed to CIII 
(~1909). This QSO was also selected by Clowes and Savage (1983) 
but they failed to derive a redshift from its objective prism 
spectra. 

3. UVX object estimated, from its objective prism spectra. to 
have a 75% chance of being a QSOs by Dr. Clowes. 

4. The CIIIJ emission line in LlO is heavily cut by absorption 
so the estimation of the emission line redshift is taken from the 
observed wavelength of the Mgll emission line. 

5. The redshift of this QSO is' determined from only one. 
peculiar emission line. 

6. Although 281 does not have as broad Ca H & K absorption lines 
as the other DG white dwarf (SAl) we still identify it as a white 
dwarf on the basis of its continuum slope. There is also the 
possibility that it could be a DC type white dwarf. 

Arp - Arp (Private Communication) 

CS - Clowes and Savage (1983) 

de Ruiter - de Ruiter (Private Communication) 

58TP- Savage,8olton,Tritton and Peterson (1976) 

CT - Campusano and Torres (1983) 
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Ordinary Galactic stars are given an approximate stellar 

type. This was estimated from the equivalent widths of the HP, 

Hr and Ha absorption lines in their spectra when compared to the 

same lines in the spectra of standard stars {see figure 3.4) 

taken during the observing runs. Types are also assigned to 

white dwarfs found in the survey by referring to standard white 

dwarf spectra found in Oke {1974) and references therein. 

The IPCS spectra for the QSOs and white dwarfs in the 

various UVX samples are plotted in figure 3.1, the abscissa being 

the wavelength in angstroms and the ordinate representing an 

arbitrary flux scale. Poorly subtracted night sky lines are 

indicated by black dots. As an illustration, at the foot of 

figure 3.1, we also display spectra which are typical of the 

Galactic stars found in the survey. In figure 3.2 we present 

photographs of the objective prism spectra for each object in the 

UVX sample. For the UVX objects on the SGP the results of a 

machine scan m~de by the COSMOS measuring machine of their 

objective prism spectra (kindly made available to us by Dr. 

Clowes) are shown in figure 3.3. In the machine scanned spectra, 

intensity is plotted linearly against distance (channel number) 

along each spectrum. To convert the channel number to wavelength 

the following relation may be used: 

A = 1313 + 3119 ( 2.167 - 0.016X )-o.a333 • • • ( 3 • 1 ) 
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where A is the wavelength in angstroms and X is the channel 

number as plotted on the diagram. For instance, 3500 A is 

situated at channel number 40, 4000A is situated at channel 

number 61 and 5000A at channel number 84. 

The presentation of the different spectra together is 

intended to help in the identification of various types of UVX 

objects from either their appearance to the eye, as used in 

'eyeball' searches for QSOs (Clowes and Savage 1983, hereafter 

CS), or from machine measurements of prism plates used in 

automated QSO detection (Clowes et al. 1984, Hewett et al. 1985). 

We must stress, however, that in no way did the appearance of an 

object's spectrum on the objective prism plate influence our 

decision to observe it spectroscopically. We merely observed all 

the UVX objects within our selected areas regardless of what they 

looked like on the objective prism plate. In some cases, where 

observing time was limited, not all the objects in a given sample 

were observed spectroscopically (see table 3.2 for precise 

details). However, those objects that were observed were simply 

selected at random from the parent sample. Thus we were sure not 

to exclude any particular class of QSO that, while exhibiting 

UVX, did not possess prominent emission lines. 

For all but one QSO (515 - see note 2 following table 3.2) 

in the survey, two or more emission lines could be identified in 

the slit spectrum. For all these objects, therefore, an 

unambiguous redshift determination was possible. The redshift of 

each QSO was found by comparing the wavelength ratio of two 

emission lines in a QSO spectrum with the rest wavelength ratio 
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of pairs of common QSO emission features such a Lya/CIV, 

CIV/CIII] etc. The agreement between the values for the observed 

and rest line ratios had to be 0.5% or better (corresponding to a 

maximum allowed shift of az/z = 0.01 in the redshifts obtained 

from the separate emission lines) before the line pairs were 

positively identified, and thus a redshift assigned to the QSO. 

The emission line redshift for each QSO is the mean of the 

redshifts of the individual emission lines, the error quoted 

being the standard error on this mean. 

For some QSOs, in addition to the emission lines used to 

derive the redshift, other lines in the QSO spectrum could be 

identified, but were too heavily cut by absorption or too weak to 

make a reliable determination of the emission wavelength 

possible, and so give an accurate ~edshift. Such lines are still 

marked on the slit spectra, but are indicated by an asterisk in 

table 3.2. 

3.2.3 Stellar Content of Catalogue 

As we can see from table 3.2 all of the non-emission line 

objects picked up by the UVX technique are Galactic stars. Based 

on their hydrogen line strength, they mostly have late F/early G 

spectral types. With apparent magnitudes in the range 17.5 mag < 

b < 19.0 mag, for the SGP field at least, they will lie 4-12 kpc 

from the Galactic plane and we may expect them to be population 

II subdwarfs. To investigate their metal poorness we assigned 

each star a spectral class based on the equivalent widths of 

their Ca II H and K lines, these being the only metal lines 
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easily detectable in our low resolution spectra. The resulting 

spectral types (see the values in parentheses following the 

Balmer line spectral classification in table 3.2) are generally 

found to be much earlier than those based on the hydrogen lines 

and we conclude that the stars are indeed mostly metal weak 

subdwarfs. It is not possible, however, to explain their excess 

ultraviolet colours solely 

Sandage (1969) showed that, 

on the basis of the metal weakness. 

even for a star with zero 

metallicity, the u-b colour is only reddened by 0.3 mag. Thus 

these late F/early G stars should have a u-b colour no bluer than 

u-b ~ -0.2 mag. The most likely explanation of the subdwarfs' 

apparent. UVX colours is that they have been accidentally 

produced, with the ±0.20 mag rms errors in our u and b magnitudes 

scattering metal-weak subdwarfs i~to the UVX region. This, of 

course, assumes that our (u-b) colours are approximately on the 

same zero-point as those quoted in the Johnson system. As 

discussed in chapter 2.S we have no reason to believe a priori 

that this is so, but the analysis of the u-b colours for QSOs 

discovered in the faint spectroscopic survey (see chapter 3.4) 

will demonstrate that this is not an unreasonable assumption. 

One of the Galactic stars, 59, deserves further mention. 

Although it was typed AS by Boyle et aJ, (198S), subsequent 

analysis of its spectrum has revealed the presence of the Hel 

lines at AA4168,4388 and 4471A, thus assigning it an even earlier 

spectral type of BO-BS from a comparison with the standard 

stellar spectra in Jacoby et aJ. (1984). ·This is by far the 

earliest spectral type found for a star in the bright s~rvey (it 
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is certainly the only object to exhibit He lines) and its 

classification is supported not only by its extreme u-b colour 

but also by its b-v colour which is significantly bluer than 

those of other stars~ Its faint apparent magnitude (b = 18.85 

mag) and early spectral type combine to place it at a great 

distance from the Galactic plane, thus making it a Population II 

star. The only likely Population II stars to be assigned a 

spectral type of B are blue stragglers and blue horizontal branch 

(HB) stars. Since it is well established from studies ·a£ 

globular clusters that blue stragglers only comprise a very small 

fraction (<1%) of the halo star population, much smaller, indeed, 

than HB star contribution to the halo population, we conclude 

that 59 is most likely to be a HB star. We note that the absence 

of variability seen in 59 (bHzt.-b372t = 0.1 mag) does not 

preclude it from being such, as B stars lie well away from the 

instability strip on the HB. The absolute magnitude for such a 

star is Ma = + 1, thus putting it 30kpc distant from the Galactic 

plane. 

The remaining Galactic star population consists of white 

dwarfs. Seven were found in this survey (two DG and five DA) and 

they comprise ~10% of our UVX sample. Assuming absolute 

magnitudes of Ha = +11 for DA white dwarfs and Ma = + 14 for DG 

white dwarfs (Allen 1973), such objects in our survey will be at 

distances of between 100pc (for the DG white dwarfs) and 350pc 

(for the DA white dwarfs) from the sun. Two of the DA white 

dwarfs observed in this survey (M11 and J26) exhibit unusual 

Balmer line profiles. We tentatively suggest that the triplet 
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structure 

field, i.e. 

seen is caused by line splitting in a strong magnetic 

the Paschen-Back effect. From Garstang (1977) we 

estimate that the size of the magnetic field required to produce 

the observed splitting is ~ 5 x 106 Gauss (5 HG) and 7 HG in J26 

and H11 respectively. 

In the literature there are only 15 known 

dwarfs, representing just 1% of all 

spectroscopically surveyed (Liebert et 81. 1985), 

magnetic white 

white dwarfs 

all of which 

have field strengths greater than ~ 5 MG. Were these two objects 

in our survey confirmed to be magnetic white dwarfs it would 

indeed be a remarkable result, as not only do they represent 25% 

of our white dwarf sample, though admittedly statistics are poor, 

but also their fields' strengths are as low as any that have 

previously been measured. We tentatively conclude that there may 

be a large population of white dwarfs with magnetic fields of the 

order of a few megagauss which have either previously escaped 

detection in the bright magnitude limited surveys (Liebert et 81. 

1983 conclude that this is indeed possible) or which only become 

numerous at faint magnitudes. 

3.2.4 QSO Content of Catalogue 

Several interesting QSOs discovered in the survey also merit 

detailed discussion. One such object is the QSO 514. On the 

direct, IIIaJ AAT plate of this area (J1888) two faint (B~22 mag) 

galaxies are clearly visible a few arcseconds away from the QSO 

(see figure 3.5). Because of the high redshift of the QSO 

(%=2.19), it is unlikely that the galaxies are physically 

- 47 -



Figure 3.5 The appearance of S14 on the AAT plate J1888. 



associated with the QSO. A simple consideration of the surface 

densities of QSOs at b < 19 mag and galaxies at b < 22.5 mag, 

reveals that if QSOs and galaxies are distributed independently 

over the sky, the probability of finding such a chance 

superposition is only ~ 4%. One possible explanation, if the 

superposition of the QSO and the galaxies is not a statistical 

fluke, is that the QSO is being lensed by the galaxies. 

At the foot of the QNY sample in table 3.2 we also list two 

UVX objects (14A1 and 14A2) that, while outside the survey limits 

and thus not included in the complete sample, were a pair of UVX 

objects observed spectroscopically to check if they formed an 

interesting grouping such as a QSO cluster or a gravitational 

lens. The objects are only separated by 15 arcseconds on the 

sky, have similar u-b colours, ~nd they turned out to have 

extremely similar spectra. Both QSOs show one strong emission 

line (displaced by 200A between the two spectra). We attribute 

the emission to Mgii (A2798) from the appearance of weaker lines 

seen in both spectra. This gives 14A1 a redshift of 0.63 and 

14A2 a redshift of 0.72. Whether or not these QSOs are located 

in the same supercluster structure (see e.g. Oort et 81. 1981) 

is, however, open to debate as their comoving spatial separation 

is 200h-' Mpc (qo=~), somewhat larger than the currently accepted 

sizes for galaxy superclusters. In spite of this, this pair 

merit further observation especially to investigate the 

possibility of common absorption line systems and the appearance 

of absorption line systems in the high z QSO at the emission line 

redshift of the lower redshift QSO (Shaver and Robertson 1983). 
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3.2.5 Comparison of QSO search techniques 

Two of the fields observed in this survey have been searched 

for QSOs by other authors. Campusano and Torres (1983), 

hereafter CT, have compiled a UVX catalogue of stellar objects on 

the SGP based on searches of Maksutov Schmidt plates. QSOs on 

the SGP field have also been found by CS from a visual inspection 

of an objective prism plate. Savage and Bolton (1979), hereafter 

SB, also used this technique, in conjunction with a UVX 

criterion, to find QSOs on the QSM field. In addition MT found a 

number of QSOs in a small area (0.31 sq. deg.) on the QSM field 

as part of a complete obj•ctive prism/spectroscopic survey of all 

stellar objects in this field down to B = 20.0 mag. ·We now 

compare the success rates for finding QSOs between these searches 

and the UVX technique employed here. 

CT detected 4 out of the 13 QSOs found here on the SGP using 

their UVX technique. This success rate agrees well with their 

estimate of their survey's completeness at B < 19.0 mag of 

between 30% and 50%. Conversely, of the 28 QSOs confirmed by 

slit spectroscopy listed in their paper, 17 were outside our 

survey regions, 7 were outside the magnitude limits used to 

define our samples, while the remaining 4 were those picked up in 

common between the two surveys. 

On the SGP central area our UVX technique found both z < 

2.2, b < 19.0 mag QSOs found by CS over that area and in addition 

~icked up 2 more QSOs (SS and S14) that were not discovered in 

the objective prism search. While SS shows a reasonably 
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featureless objective prism spectrum, ·st4 has a strong emission 

feature visible in its objective prism spectrum (see figure 3.2). 

It thus appears that it must have been inadvertently missed in 

the original visual search of CS. In the SGP faint sample we 

found that CS detected 6 out of the 9 UVX QSOs contained in that 

sample. Two of the QSOs missed (Z12 and E16) do exhibit 

conspicuous emission lines in their objective prism spectra but 

the other QSO (R1) has a featureless objective prism spectrum. 

On the QSM field we discovered no new QSOs in the small area 

surveyed by MT. In this area MT found 4 QSOs (all fainter than 

our bright survey magnitude limit), 2 more than had been found by 

SB on the same area. Although the numbers involved were small, 

MT proposed that, on the basis of their survey, the SB QSO 

catalogue appeared to be incompl'ete. Over a larger area on the 

QSM field we also find that the SB catalogue is incomplete. We 

found an extra 2 QSOs - one in the central area (T31) and one in 

the bright sample (A1.1) - over and above the three QSOs found by 

SB. Although T31 exhibits an unremarkable objective prism 

spectrum A1.1 has a conspicuous emission feature in its objective 

prism spectrwn and must have been accidentally overlooked in the 

objective prism search. Indeed, it has already been noted that 

the number densities in the SB catalogue are low compared to 

other ~atalogues (Veron and Veron 1982). 

From the comparisons with the QSO catalogues of CT, CS, and 

SB we see that, within the magnitude limits used to define our 

survey, we detected every low redshift <z<2.2) QSO that had 

previously been found by these authors, in addition to doubling 
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the number of QSOs known on these areas. This provides excellent 

evidence that the UVX technique is considerably more complete 

than many methods previously used to search for low redshift (z < 

2.2) QSOs and establishes UVX surveys from machine measurements 

of photographic plates as an extremely important method in QSO 

search techniques. As many of the QSOs in the CS and SB 

catalogues were found using an independent search technique (e.g. 

objective prism) to UVX, we may have an indication that our UVX 

survey is relatively complete for z < 2.2 QSOs. However, subtle 

selection effects amongst optical selection techniques (e.g. 

weak lined, low redshift QSOs may be non-UVX) may conspire to 

reduce the independence of such search techniques. 

With the vast increase in QSO statistics afforded by the 

faint UVX survey (see chapter 3:4) we will, however, be able to 

demonstrate much more accurately the true level of incompleteness 

in our UVX survey. 

It would appear that the 'eyeballed' catalogues made from 

objective prism plates are substantially (at least 50%) 

incomplete and it will be interesting to see whether the machine 

selection of emission line objects from objective prism plates 

such as the Automated QSO Detection (AQD) of Clowes et 8J. (1984) 

will remove this incompleteness. 
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3.2.6 Surface Density of UVX objects 

In table 3.3 we present the overall numbers and surface 

densities for the various types of objects found in the UVX 

survey. Table 3.3 lists, for each magnitude bin, the area 

covered by the spectroscopic search, the number of UVX objects, 

the number for which slit spectra were obtained and the numbers 

of stars, QSOs and white dwarfs identified from the slit spectra. 

These numbers are then given as surface densities wheri due 

account has .been taken of the objects not observed 

spectroscopically. Table 3.3 can be summarised by the following 

points: 

1. With a u-b < -0.50 mag criterion our UVX sample between 17.5 

mag < b < 19.0 mag contains ~pproximately 40% QSOs, 50% Halo 

Stars and 10% white dwarfs, the surface density of QSOs being 

1.70 ± 0.42 per square degree. 

2. With the less strict criterion of u-b < -0.35 mag, we find 

that the percentage of QSOs in the UVX sample drops to ~ 20% 

while the surface density of QSOs increases to 2.75 ± 1.23 

per square degree. We note, however, that with this UVX 

cut-off the percentage of QSOs in the faintest 18.5 mag < b < 

19.0 mag bin is much higher ( ~ 36%). At yet fainter 

magnitudes the suggestion is that significant numbers of QSOs 

may also be contained in this u-b range. 
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u-b < -0.50 SGP and QSM fields 

Magnitude Limits Area Numbers Surface Densities 
(per square degree) 

uvx Obs'. Halo QSOs WDs uvx Halo QSOs WDs 
stars stars stars stars 

17.5<b<18.0 9.33 4 4 2 2 0 0.43 0.22 0.22 0.00 

18.0<b<18.5 9.33 6 6 4 2 0 0.64 0.42 0.22 o.oo 

18.5<b<19.0 9.47 32 32 16 12 4 3.38 1. 69 1. 27 0.42 

Totals 42 42 22 16 4 4.45 2.33 1. 70 0.42 

u-b < -0.35 SGP field 

Magnitude Limits Area Numbers Surface Densities 
(per square degree) 

uvx Obs'. Halo QSOs WDs uvx Halo QSOs WDs 
stars stars stars stars 

17.5<b<18.0 1. 62 6 5 5 0 0 3.70 3.70 0.00 o.oo 

18.0<b<18.5 1. 62 2 2 2 0 0 1. 23 1·. 2 3 0.00 0.00 

18.S<b<19.0 1. 62 12 11 7 4 0 7.41 4.72 2.69 0.00 

Totals 20 18 14 4 0 12.35 9.65 2.69 0.00 

'Objects with spectroscopic confimration 

Table J.J Numbers and Surface Densities of Objects in the Bright UVX Survey 



Further consideration of the QSO surface densities found in 

this. survey will be postponed until the next chapter when we can 

incorporate the results from the faint survey described in the 

following sections. 

The number density of UVX white dwarfs in the SGP and QSM 

fields is found to be 0.4 ± 0.2 per square degree for 17.5 mag < 

b < 19.0 mag. Previously, Sandage and Luyten (1967) found a UVX 

white dwarf density of 0.6 per square degree down to a magnitude 

limit of 8=17.75 mag (see Green 1980 for a discussion). The 

surface density of white dwarfs found is th~refore in reasonable 

agreement with this previous observation. 

3.3 The Faint UVX Survey 

3.3.1 The FOCAP System 

The success in detecting complete redshift limited samples 

of QSOs from the bright UVX survey encouraged us to embark on a 

much fainter and more comprehensive spectroscopic survey of UVX 

objects. The primary motivation for such ~ survey arose from a 

desire to obtain a complete QSO catalogue suitable for. 

statistical analysis at fainter magnitudes than had hitherto been 

possible. As stressed in chapter 1. large samples of 

spectroscopically confirmed QSOs at B > 20.0 mag are essential in 

order to distinguish between the various forms of QSO evolution 

postulated and to establish the shape of the QSO luminosity 

function. 
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Of course, the prohibitive amounts of telescope time 

required to obtain spectra for such large numbers of faint 

objects would render such a survey impractical were conventional 

spectroscopic techniques to be employed (the reader is referred 

to the amount of time required to complete our bright UVX survey 

at b < 19 mag). The introduction of the Fibre Optic Coupled 

Aperture Plate (FOCAP) system at the AAT has, however, 

revolutionised faint object spectroscopy, allowing spectra for up 

to 50 objects to be obtained simultaneously over a wide 40 

arcminute diameter field of view. FOCAP is discussed in detail 

by Gray (1984) and Ellis et aJ .. (1984) and only brief details are 

given here. Basically FOCAP consists of a brass aperture plate 

and a fibre optic bundle. Holes are drilled into the brass 

aperture plate at the precise pos~tions <~0.5") of the objects to 
I 

be observed. These holes can then be 'plugged up' with the ends 

of the fibre optic bundle that are mounted in brass ferrules, the 

collinear arrangement of the other fibre ends forming the 

entrance slit to the spectrograph. The aperture plate is then 

secured onto the telescope at the Cassegrain focus and up to 50 

objects can be observed simultaneously for every fibre 

bundle/spectrograph combination used. 

FOCAP therefore provides the first opportunity to obtain 

spectra for large numbers of faint objects quickly and 

efficiently. 
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3.3.2 Observations 

Samples of UVX objects were selected in 40 arcminute 

diameter areas from the COSMOS machine produced catalogues on six 

high Galactic latitude fields. The fields. chosen included the 

SGP, QNY and QSM fields used in the bright survey plus three new 

fields QSF, QNB and QNA, all selected because of their high 

Galactic latitude and the availability of good, deep U plates. 

Different U plates from those employed in the bright survey were 

used to select the UVX sample on the SGP and QNY fields in these 

observations. U6380 on the SGP extended ·to significantly fainter 

magnitudes than U2639 (see chapter 2.6) and· U9216 is of a 

superior grade to U5707 (see table 2.1). These later plates were 

not available when the bright UVX survey was undertaken. The UVX 

criterion on each of these six fi~lds was chosen as close as 

possible to the locus of Galactic stars (dashed lines in figure 

2.5), thus ensuring that aa many UVX QSOs as possible were 

selected whilst keeping the contamination by ordinary Galactic 

stars to a manageable level. 

The faint magnitude limit (b ~ 21.0 mag) for the survey 

objects was chosen to give approximately 40 - 50 UVX objects in 

the 40 arcminute diameter FOCAP area, ideally matching the number 

of UVX ~bjects to the number of fibres available, when due 

account is taken of ~5 sky dedicated fibres in each FOCAP 

observation. The UVX criteria, magnitude limits and field 

centres for all FOCAP fields are given in table 3.4. 
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Field RA (1950) Dec Magnitude uvx 
Limit Limit 

SGP1 QQh 56• 29•.1 -28°48'58" 18.0 < b < 21.0 u-b < -0.30 

SGP2 00 49 39.4 ·-29 21 44 18.0 < b < 21.0 u-b < -0.30 

SGP3 00 52 34.0 -28 35 58 17.0 < b < 21.0 u-b < -0.30 
(b-v < 0.20) 

QSF1 03 40 31.5 -45 04 15 17.0 < b < 21.0 u-b < -0.40 

QSF2 03 44 54.1 -46 04 20 17.0 < b < 21.0 u-b < -0.40 

QNB1 10 39 s 7. o· 01 30 41 17.0 < b < 21.0 u-b < -0.50 
(b-v < 0.20) 

QNB2 10 41 25.0 00 57 24 17.0 < b < 21.0 u-b < -0.50 
(b-v < 0.20) 

QNY1 12 33 50.3 -00 38 18 17.0 < b < 21.5 u-b < -0.45 

QNY2 12 35 23.8 00 17 56 17.0 < b < 21.5 u-b < -0.45 

QNA1 13 36 03.6 00 23 13 17.0 < b < 21.5 u-b < -0.30 

QSM1 22 06 56.9 -19 26 23 18. a· < b < 20.75 u-b < -0.50 

QSM2 22 07 00.6 -20 OS 33 17.0 < b < 20.75 u-b < -0.50 

Table 3.4 Faint UVX Survey: Field Centres and Sample Criteria 



Additional survey objects were also chosen from their 

anomalous b-v colours on two fields (SGP and QNB). Objects were 

selected at random from a sample of stellar images defined by the 

criteria listed in table 3.4. This extra sample was chosen for 

two reasons: firstly to see if any high redshift QSOs (z > 2.2) 

could be picked up and secondly to find any z< 2.2 QSOs which may 

have been scattered out of our UVX sample by photometric errors. 

Two fields (QNY and QNA) were nominally surveyed to b = 21.5 

mag. While neither of the J plates on these fields are complete 

beyond b = 21.0 mag (see chapter 3.4e), this limit was chosen to 

obtain spectra for a few ( ~ 3 - 4 per field) extremely blue (u -

b ~ -1.0 mag) objects at very faint magnitudes. 

In all, twelve FOCAP fields ~ere observed at the AAT on the 

nights of 23 September 1984, 20-22 February 1985, 18 April 1985 

and 18 July 1985. The equivalent of four clear nights was 

obtained from these six allocated. As before we used the IPCS 

with the RGO spectrograph operated at 156Amm·i. The wider 

diameter (400#m) fibres were used to observe the survey objects. 

These fibres have the advantage that, in any conditions other 

than those experienced in excellent seeing (i.e. in conditions 

where the seeing is > 2") their efficiency is higher than that of 

the smaller diameter (200#m) fibres. Since the effective slit 

width at the entrance to the spectrograph is dictated by the 

diameter of the fibres, the larger fibres do have the 

disadvantage that the resolution of the system is 

this case to 15A. However, we are concerned 

identifying and obtaining redshifts for broad 
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objects and the decreased resolution was not considered to be too 

great a drawback. Based on the results of the bright survey, 

where integration times of 3000 sees were sufficient to obtain a 

S/N of ~ 10 for b ~ 19.0 mag objects, we estimated that 8000 sees 

would be long enough to give a S/N ~ 4-5 forb= 21.0 mag QSOs, 

taking into account the overall transmission (70%) of the FOCAP 

system (Gray 1984). This reduced S/N was considered high enough 

to identify the broad QSO emission lines. On all but four FOCAP 

fields this integration time was achieved (see table 3.5). As a 

result the sample on the QNA1 field was restricted to b < 20.5 

mag. Another of these fields (QSM1) was limited to b < 20.75 mag 

anyway because of the U plate limit. However, on two of the 

shorter exposure fields (SGP1 and QSF1) we appeared to have no 

problem in identifying faint QSOs _(i.e. there is no fall of£ in 

their surface density beyond b ~ 20.5 mag - see appendix B) and 

we consider them to be complete to b = 21.0 mag. That good 

signal-to-noise is obtained on these fields despite their short 

integration times, may well be the result of the good seeing 

conditions prevalent during these exposures. 

3.3.3 Data Reduction 

Reduction of the data was carried out using the SPICA 

software package on the Durham University node of the SERC 

STARLINK VAX system. ·With data obtained from FOCAP observations 

it is first necessary to select the ~ 40 - 50 spectra from the 

IPCS data. The IPCS introduces significant S-distortion into 

many of these spectra, causing each spectrum to lie over several 
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Field Date Seeing Integration Time 
Observed (arcsec) (seconds) 

SGP1 23/09/84 1.5 5851 

SGP2 23/09/84 2.0 9000 

SGP3 18/07/85 2.5 9000 

QSF1 20/02/85 0.8 6000 

QSF2 21/02/85 3.5 4250 
22/02/85 1.5 5558 

QNB1 21/02/85 3.5 4217 
22/02/85 2.0 6000 

QNB2 20/02/85 1.5 9000 

QNY1 20/02/85 3.5 8000 

QNY2 22/02/85 2.0 8750 

QNA1 18/04/85 3.7 5340 
18/07/85 3.0 2305 

QSM1 23/09/84 1.5 6000 

QSM2 18/07/85 4.0 9000 

Table 3.5 Faint UVX Survey: Observational Details 



cross-sections in the IPCS data frame. The spectra were 

therefore extracted from the data frame using the FOLLOW and 

EXTRACT programs written by R.M. Sharples. FOLLOW uses a 

polynomial fit to define the shape of each spectrum from the 

co-added object frames for each FOCAP field. Two cross-sections 

either side of each fitted line were EXTRACTed and summed to give 

the individual spectra. 

Extracted spectra were then wavelength calibrated using the 

Cu-Ar, He and Hg arc spectra taken after every 3000 second 

integration on the survey fields. For each fibre field it was 

found that the ar.c lines shifted by .half a channel or less 

throughout the observation (see table 3.6). In addition the 

fibre to fibre sensitivity did not change by more than 5%, as 

esti~ated from the 3 - 5 sky offset frames taken during each 

FOCAP observation (see figure 3.6). Thus each arc, sky offset 

and object frame could be co-added within any particular FOCAP 

observation, with wavelength calibration and sky subtraction 

being carried out using the co-added frames. Normally ~ 15 arc 

lines would be used to define the wavelength calibration 

polynomial. The wavel~ngths of the lines extended from 3650A (Hg 

arc) to 7227A (Cu-Ar arc). Residuals for these lines in the fit 

were never more than 4A. The accuracy of the calibration was 

checked from the wavelengths of the night sky lines ~5577 and 

~6300, which were always found to be within ±3A from their true 

position. The sky offset frames were used to normalise the 

transmissions of the individual fibres in the object frame, 

whereupon sky subtraction could be achieved using the 4 - 10 
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Arc ).6678 ).5876 ).3889 
Number (Channel No.) (Channel No.) (Channel No.) 

1 124.5 396.2 832.6 

2 124.0 395.8 832.6 

3 124.4 396.0 832.8 

Table 3.6 Shifts in He Arc Lines during FOCAP Observation of SGP3 

Name RA (1950) Dec b u-b 
(h m s) (o , ") 

QNY1:04 12 33 24.2 -00 54 56 19.48 -1.01 

QNY2:04 12 35 25.5 00 21 08 20.00 -1.02 

QSM2:45 22 06 49.5 -20 13 15 20.01 -1.17 

Table 3.7 Survey Objects Located on fibres with Poor Transmission 

Magnitude Rang·e Number Observed Number Unidentified 
(Classes: 0?, NL?, CONT,?) ' 

17.0 < b < 18.0 29 0 

18.0 < b < 19.0 67 0 

19.0 < b < 19.5 57 0 

19.5 < b < 20.0 72 5 

20.0 < b < 20.5 105 12 

20.5 < b < 21.0 127 25 

Table 3.8 Magnitude Distribution of Unidentified 
Objects in Faint UVX Survey 
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Figure 3.6 Normalised fibre transmissions for sky offset frames 
taken during FOCAP observation of the SGPJ field. 



sky-dedicated fibres in this frame. 

3.3.4 The Catalogue 

Appendices A,B,C and D contain the faint UVX survey in full. 

Spectra for all emission line, bright (b < 20.5 mag) Galactic 

stars and unidentifed objects are plotted in appendix A. The 

spectra presented are not fluxed, thus facilitating the 

identification of lines at the extreme blue or red ends of the 

IPCS spectra. The wavelength scale is plotted in angstroms, 

while the 'counts' ordinate is, in fact, plotted in units of 0.1 

counts. The names for the objects represent the FOCAP field in 

which it was found, followed by the fibre number in that field. 

Three survey objects (see table 3.7) fell on fibres where the 

transmission was so low that the ·spectra of the objects were 

degraded to the extent where identification was impossible. 

While their UVX colours makes them strong QSO candidates, these 

three objects are ignored in any further analysis. A 

representative sample of sky subtracted sky fibres are plotted at 

the foot of appendix A to illustrat~ the success of the sky 

subtraction and the level of noise associated with the spectra. 

Appendix B lists details for all the emission line objects (QSOs 

and narrow line objects). Data for each object is provided in 

the following columns: 

1. Name: See text above 
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2. R.A. and Dec.: 1950 coords, accurate to 1" 

3. b: Calibrated COSMOS magnitude 

4. u-b: Colour obtained from calibrated COSMOS magnitudes 

5. ID: Identification of object. 

a. Q - QSO with broad emission lines 

b. BQ Broad absorption line QSO 

c. NL - Narrow emission line object 

6. z: Emission line redshift, determined for all spectra in an 

identical fashion to that indicated in chapter 3.2.2. The 

error (derived from the rms spread in the emissio-n redshifts 

for each line) ranged between 0.001 and 0.005 for redshift 

class 1 and 2 objects. 

7. Class: Goodnass of Redshift 

1. Certain redshift - Two or more strong lines identified in 

the spectrum. 

2. Probable redshift - Usually obtained from one strong line 

and additional weaker lines. 

3. Uncertain redshift - Only 1 strong line seen or weak 

lines alone visible. 
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These are only general guidelines to the redshift 

classification, as the shape of the emission lines and 

surrounding continuum also provides many clues as to the 

likely redshift of the QSO even when only one strong line 

is visible (e.g. broad Fell emission around the Mgll 

1 i ne). 

8. Lines: Emission lines identified in the spectrum, with 

measured wavelength (in Angstroms) 

Details for the non-emission line objects are given in 

appendix c. Columns 1. - 5. are the same as for appendix B, 

with the identification of the objects falling into one of four 

classes . 

. 1. WD- White Dwarf, as identified from its broad absorption 

lines. Apart from two rare DAB white dwarfs found on the QSF 

field (QSF2:1 and QSF2:7), all white dwarfs identified were 

of the DA type. 

2. B,A,F,G - Approximate stellar type (based 

series line strengths and reference to 

spectra in Jacoby et al. 19'84). 

on the Balmer 

standard stellar 

3. BIN - Binary Star (see below) 

4. '-' Faint stellar objects not classified. While the 

stellar absorption features of Cali H and K, G band and 

Balmer series are seen in these faint stars, the poor S/N 

obtained at these faint magnitudes (b > 20.5 mag) precludes 
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the assignment of reliable spectral types to these objects. 

Appendix D contains a list of all those objects that remain 

unidentified in the faint UVX survey, usually due to poor SIN. 

Columns are as for appendices B and C with identification as 

follows: 

1. 0? -Possible QSO 

2. NL? Possible narrow emission line object 

3. CONT - Objects with no recognisable absorption or emission 

features. This class is only assigned to objects with 

sufficient signal-to-noise in their spectra to allow them to 

be easily distinguishable from ordinary Galactic stars. 

4. ? - Insufficient S/N to attempt any classification 

Table 3.8 presents the numbers of these unidentified objects in 

the survey as a function of magnitude. 

3.3.5 Content of Stellar Catalogue 

In table 3.9 we present the surface densities in each field 

for the various types of Galactic stars listed in ~ppendix C. 

For consistency from field-to-field we ignore the objects picked 

up in the b-v selected sample on the SGP and QNB fields. From 

this table we see that, as in the bright survey, most of the 

Galactic stars found are halo stars, ·outnumbering the white 

dwarfs by 10:1. 
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SGP QSF QNB 

Magnitude Halo WD Total Halo WD Total Halo WD Total 
Range Stars Stars Stars 

17.0<b<17.5 1.4 1.4 11.4 11.4 

17.5<b<18.0 7.1 7.1 2.9 2.9 

18.0<b<18.5 1.9 1.9 7.1 7.1 5.7 5.2 

18.5<b<19.0 3.8 1.0 4.8 4.3 1.4 5.7 7.1 7.1 

19.0<b<19.5 3.8 1.0 4.8 1.4 4.3 5.7 

19.5<b<20.0 10.5 10.5 2.9 2.9 4.3 4.3 

20.0<b<20.5 8.6 1.0 9.5 5.7 5.7 11.4 7.1 7.1 

20.5<b<21.0 30.5 11.4 22.9 

b<20.5 28.6 2.9 31.4 30.0 11.4 41.4 38.6 38.6 

QNY .QNA QSM 

Magnitude Halo wo· Total Halo WD Total Halo WD Total 
Range Stars Stars Stars 

17.0<b<17.5 5.7 5.7 11.4 11.4 

17.5<b<18.0 2.9 2.9 1.4 1.4 

18.0<b<18.5 4.3 4.3 5.7 5.7 12.9 12.9 

18.5<b<19.0 1.4 1.4 11.4 11.4 

19.0<b<19.5 2.9 1.4 4.3 17.1 5.7 22.9 14.3 "14.3 

19.5<b<20.0 2.9 2.9 5.7 5.7 12.9 12.9 

20.0<b<20.5 4.3 4.3 25.7 25.7 2.9 2.9 

20.5<b<21.0 15.7 

b<20.5 25.7 1.4 27.1 54.3 5.7 60.0 61.4 61.4 

Table 3.9 Surface Densities (per square degree) for 
Galactic Stars found in faint UVX survey 



All Fields 

Magnitude Halo White Total 
Range Stars Dwarfs 

No. Surf at.:~ No. Surface No. Surface 
Density Density Density 

(/sq deg) (/sq deg) (/sq deg) 

17.0<b<17.5 17 5.4 0 0.0 17 5. 4. 

17.5<b<18.0 10 3.2 0 0.0 10 3.2 

18.0<b<18.5 25 6.0 0 o.o 25 6.0 

18.5<b<19.0 21 5.0 1 0.2 22 5.2 

19.0<b<19.5 23 4.3 7 1.7 30 7. 1 

19.5<b<20.0 29 6.9 0 0.0 29 6.9 

20.0<b<20.5 32 7.6 5 1.2 37 8.8 

20.5<b<21.0 67 21.3 

b<20.5 157 38.3 13 3.1 170 41.4 

Table 3.9 contd. Surface Densities (per square degree) for 
Galactic Stars found in faint UVX survey 



A total of 13 (b < 20.5 mag) UVX white dwarfs were detected 

in this survey, giving an average surface density of 3.1 ± 0.9 I 

sq. deg. However, eight of these white dwarfs were found on the 

QSF field alone. Thus the surface density on the QSF field (11.4 

I sq. deg.) is significantly in excess of that determined over 

the other five fields (1.4 ± 1.1 I sq. deg.). It is unlikely 

that this anomalous density can be attributed to a redder UVX 

criterion on the QSF field, as the QSF limit is similar to those 

on the other fields. We therefore conclude that this enhanced 

density of QSOs on the QSF field is likely to be real. The white 

dwarf population on the QSF field is also ano~alous in one other 

respect. Two white dwarfs on the QSF2 field (QSF2:1 and QSF2:7) 

exhibit broad Hei A4471 absorption, in addition to the broad 

absorption lines of the Balmer series. Both these objects belong 

to the rare, DAB class of white dwarfs. 

With apparent magnitudes in the range 19.0 mag < b < · 20.5 

mag, the white dwarfs discovered in our faint survey lie at 

distanc~s between !::: 300 - 800 pc from the sun. Thus the enhanced 

surface density of white dwarfs on the QSF field is unlikely to 

signify a 'white dwarf cluster' as such, since even if the 

cluster extended over the full 25 square deqrees of the Schmidt 

plate, its anqular size would only correspond to a distance of !::: 

30 pc, some 10 times less than its line of siqht extent. We 

note, however, that the distances for the white dwarfs are based 

on the assumption of an averaqe luminosity of Ma = + 11 for the 

DA and Ma = + 10.5 for the DAB white dwarfs respectively. 

Increased SIN will be needed on many of these white dwarf spectra 
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before more accurate luminosities can be defined and thus the 

possibility of a 'white dwarf cluster' firmly ruled out. 

However, it is difficult to understand why there should be an 

enhanced density of the UVX white dwarfs in the direction of the 

QSF field (111 = 250°, b11 = -50°) when many other fields (e.g. 

QSM, QNB and ONA) in the UVX survey have similar Galactic 

latitudes. Indeed the OSF field is closer to the Galactic 

anticentre than any of the other survey fields. The white dwarf 

population on this field thus remains an enigma. 

Although many of the white dwarf spectra obtained in this 

survey have considerably poorer S/N than those obtained in the 

bright survey, we again note that a surprisingly large fraction 

(SGP1:13, OSF1:2 and OSF1:14) appear to exhibit the same 

splitting in their Balmer lines as did the white dwarfs (M11 and 

J26) in the bright survey. As before, we tentatively interpret 

this to be due to the presence of a magnetic field with a 

strength of a few megagauss. The high percentage of such white 

dwarfs in our faint surv~y (despite the decreased resolution in 

this survey) reinforces our conclusions on the nature of these 

objects reached in chapter 3.2.3. We stress, however, that such 

conclusions are still tentative and increased signal-to-noise 

will be required on many of these spectra before the magnetic 

properties of these white dwarfs can be firmly established. 

The survey will, of course, be substantially incomplete for 

the other types of Galactic subdwarfs and cooler white dwarfs 

(e.g. DF, DG etc.), most of which will have redder colours than 

the UVX limits used in the survey. This is evidenced by the 
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numbers of Galactic stars picked up with such colours in the b-v 

selected sample on the SGP and QNB fields. We can however 

establish that, even in our survey, significant numbers of early 

type (B/A) stars are found at high Galactic latitudes (there may 

indeed be more B stars than we can identify, as the 

signal-to-noise obtained in most of the faint stellar spectra 

prohibits the identification of the weak He! lines). As 

discussed in the case of 59, such objects are likely to be blue 

HB stars at large distances from the Galactic plane ( ~ SOkpc for 

SGP3:14). For these stars there is also the possibility that 

they may be white dwarfs with weak absorption lines and therefore 

much closer. However, in the faint survey many of the objects 

assigned a spectral class of A or B were found in the b-v 

selected samples on the SGP ~nd QNB fields (e.g. SGP3:14, 

QNB2:12) and hence have u-b colours incompatible , with their 

being white dwarfs (e.g. SGP3:14 u-b = -0.14 mag c.f. DA white 

dwarf U-B = -0.8 mag). The strong Balmer limit seen in many of 

these objects (see spectra of QNB2:12) also precludes them from 

being (hot) white dwarfs. We note in passing, that although 

provisionally typed as a B star, ~NB2:12 has an unusual spectrum. 

The width of the Balmer series lines and the size of the Balmer 

jump are consistent with it being a late B/ early A star. 

However, QNB2:12 also exhibits the Hell ~4200 line, usually only 

seen in 0 stars. This is all the more unusual when we consider 

that it does not show any trace of Hel lines we might expect to 

see if it were a 0/B star with anomalously strong H lines. 
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We conclude therefore that significant numbers of field HB 

stars (along with perhaps some considerably more exotic 

varieties) do exist at substantial distances from the Galactic 

plane. Further investigations of their properties will~ however, 

have to wait until increased resolution and/or better 

signal-to-noise are obtained for their spectra. 

Five objects in the survey are listed as having no 

identifiable emission or absorption line features. These objects 

may belong to the BL Lac ~lass but again increased 

signal-to-noise and higher resolution is also needed on their 

spectra. 

Three other stars deserve special mention, namely QSF1:35, 

QNB2:27 and QSM1:10. These sta~s exhibit a composite spectrum: 

at wavelengths greater than 5500A their spectra exhibit the broad 

TiO bands (115862, 6159) characteristic of M stars, while at 

shorter wavelengths they display blue spectra characteristic of 

either F stars (e.g. QSM1:10) or an almost featureless continuum 

(as in the other two cases), similar to those found in very ho_t 

stars. Such spectra are thought to be caused by binary systems 

where the light from the two stars involved, usually a: late-type 

dwarf and a early-type star, combine to give the unusual spectrum 

seen. Ferguson et al. (1984) also find a number of such objects 

in their UVX survey, although the cool companion is normally 

earlier than spectral type M. 
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3.3.6 Content of Emission Line Catalogue 

In all, 169 QSOs with broad emission lines have been 

identified, with class 1 or 2 redshifts obtained for 85% of the 

sample. 

Five of these QSOs were identified as belonging to the broad 

absorption line (BAL) class of QSOs (as defined by Weymann and 

Foltz 1983). Thus BAL QSOs represent ~3% of all QSOs identified 

in this survey. This number agrees well with other estimates of 

the frequency of BAL QSOs: Weymann et al. (1981) estimate that 

BAL QSOs constitute between 1 - 10% of the QSO population and 

Hazard et al. (1984) arrive at a similar figure of between 3 

10%. The percentage found by Hazard et al. (1984) was derived 

for QSOs with higher redshifts (2 •. 2 < z < 2.4) and brighter 

magnitudes (B < 18.5 mag) than those in our survey (z < 2.2, B < 

20.9 mag). Thus we find no support for the claim by Hazard et 

al. (1984) that BAL QSOs are found preferentially at higher 

redshifts and higher luminosities, although we do note that, 

within our own survey, the BAL QSOs were found prefer~ntially at 

bright magnitudes (only one was identified with b > 20.0 mag). 

However , we recognise that the lack of faint BAL QSOs found in 

our survey may merely be due to the lower S/N at faint magnitudes 

preventing their identification here. Moreover, our figure for 

the number of BAL QSOs is likely to be a lower estimate, as some 

BAL QSOs may fail the UVX criteria when a broad absorption trough 

is present in the U band (the BAL QSO SGP3:3S has an anomalously 

'red' UVX colour- see chapter 3.4d- for precisely this reason). 
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If confirmed, the redshift for the BAL QSO QNB1:49, z = 
0.49, will be the second lowest yet seen for this particular 

class of QSO, being at a much lower redshift than PG0946+301, 

z=1.216 (Wilkes 1985), currently the second lowset redshift BAL 

QSO, and much closer to the redshift of the lowest PG1700+518, 

z=0.288 (Wampler 1985). At present the redshift of QNB1:49 is 

based on the identification of the strong emission line seen as 

Mgii with a weaker Hell feature seen redward of this emission 

line. The discovery of such a low z BAL QSO would have important 

consequences for the evolution and nature of the BAL phenomenon 

in QSOs (Turnshek et 41. 1985), but further comment is 

judiciously postponed until a red spectrum is obtained for 

QNB1:49 to identify further lines. 

In addition to the broad emission line QSOs, a further 23 

narrow emission line objects were identified. All these objects 

are at low redshifts (z < 0.42) and hence have low luminosities 

CMa > -21.0). These objects have also been detected in other UVX 

or broadband surveys for QSOs (Koo 1983, Marano et 41. 1986) and 

are identified as galaxies with bright nuclei, giving them a 

stellar appearance on the photographic plate. Indeed only 3 of 

the emission line galaxies found in our survey show extended 

structure on a close visual inspection of the relevant J plate. 

Their increasing prominence in the UVX sample at fainter 

magnitudes and their relatively red UVX colours are general 

features of this population (Koo 1986) which is well reflected in 

this survey (see table 3.10). No further identification of the 

type of nucleus is attempted as most classification schemes rest 
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u-b colour 

Magnitude <-.8 -.75 -.65 -.55 -.45 -.35 Total 

19.0<b<19.5 0.6 0.6 

19.5<b<20.0 0.6 0.6 

20.0<b<20.5 0.2 0.2 0.3 1.0 1.7 

20.5<b<21.0 0.3 1.0 1~3 1.1 1.9 5.6 

b<21.0 0.2 0.3 1.2 1.6 2.3 2.9 8.4 

Table 3.10 Surface Densities (per square degree) for Narrow 
Emission Line Objects discovered in faint UVX survey 



on the strengths of such lines as Ha and [NIIJ A6583 (Osterbrock 

1984), well beyond the wavelength sensitivity of this survey. We 

do note, however, that the relative weakness of the HP line in 

SGP1:10 makes it a likely Seyfert II type nucleus - one of the 

most distant yet discovered (see Veron-Cetty and Veron 1984). 

From their weak UVX colours it is clear that the survey will be 

substantially incomplete for such objects and, as such, no 

further statistical analysis of their properties is made. 

However, their effect on 2D clustering studies of the UVX sample 

is discussed further in chapter 6. 

As indicated in chapter 3.2.5 a number of the fields in this 

survey have been searched by other authors for QSOs. A complete 

list of those QSOs found in the faint survey that have been 

previously listed as candidate or spectroscopically confirmed 

QSOs is given in table 3.11. Within the magnitude limits of our 

survey areas we find that we missed no QSOs found by other 

authors, whether selected by UVX, objective prism or even radio 

observations. The increasing incompleteness of the CS sample at 

faint magnitudes (b > 19 mag) is amply demonstrated in table 3.12 

where we present, as a function of magnitude, the percentage of 

UVX QSOs found in our SGP survey fields (both bright and faint 

surveys) also detected by CS. 

We also plot, in figure 3.7, the u-b v z relation for all CS 

QSOs for which we have a broadband u-b colour from the COSMOS 

measurements. From this we see that every low z (z < 2.2) QSO 
,r 

d~tected by the emission line search of CS is also contained 

within our UVX sample on the SGP. 
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This Survey Other Surveys 

Name ID z Ref. Method Spectroscopic z 
Confirmation? 

SGP1:03 QSO 0.662 CT uvx NO 

SGP1:25 STAR CT uvx NO 

SGP1:45 QSO? 1.366 CT uvx NO 

SGP2:01 QSO 2.370 cs 0/P NO 1. 68• 

SGP3:02 QSO 2.181 cs 0/P NO 

SGP3:10 QSO 2.350 cs 0/P YES 2.29 

SGP3:14 STAR cs 0/P NO 

SGP3:21 STAR CT uvx NO 

SGP3:23 QSO 1. 574 cs 0/P NO 

SGP3:25 QSO 1.338 cs 0/P NO 1. 35• 

SGP3:27 QSO 1.920 CT uvx YES ? 

SGP3:48 QSO 2.097 CT uvx NO 

SGP3:49 QSO 1. 402 CT uvx NO 

QSM1:19 QSO 1. 940 SB uvx NO 1. 97• 

QSM1:26 QSO 1. 525 SB uvx NO 1. 55• 

QSM1:38 QSO 1.285 S'B uvx YES 1. 282 

QSM2:07 QSO 1.098 SB uvx NO 1.11• 

QSM2:09 QSO 2.577 SB RADIO YES 2.555 

QSM2:22 QSO 2.062 SB uvx YES 2.070 

QSM2:27 CONT SB uvx NO 0. 065* 

QSM2:31 QSO 1.978 SB uvx NO 0. 98• 

*Redshift estimated from Prism Spectrum 

Table 3.11 Survey QSOs Previously Detected in other Surveys 
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Figure 3.7 u-b v z for Clowes and Savage (1983) QSOs on SGP. 



Magnitude Limit Number of QSOs %age 
on SGP 

Picked up Also selected 
in uvx surveys by cs 

18.5 < b < 19.0 16 9 56 

19.0 < b < 19.5 9 3 33 

19.5 < b < 20.0 8 1 12 

20.0 < b < 20.5 16 1 6 

20.5 < b < 21.0 11 0 0 

Table 3.12 Completeness of Clowes and Savage (1983) Sample 



Table 3.12 and figure 3.7 provide further evidence for the 

completeness of our UVX technique. However, to obtain an 

accurate estimate for the precise level of completeness, we must 

consider the many subtle selection effects to which our UVX 

survey may be prone. 

3.4 Completeness of UVX Technique 

a) UVX Limit 

One of the most straightforward ways to lose QSOs from a UVX 

survey is to set too blue a UVX limit, thereby missing those QSOs 

that exhibit only a moderate UVX. It is well known (e.g. Veron 

1983, see figure 1.1) that QSOs exhibit a tight U-B v z relation, 

with their U-B colours reddening significantly in the ranges 0.6 

< z < 0.8 and z > 2. For 0.6 < i < 0.8 this reddening is due to 

the appearance in the B passband of the broad Balmer continuum 

emission feature at 30UOA in the QSO rest frame (Grandi 1982). 

Such an effect has been cited (Wampler and Ponz 1985) as being 

responsible for the low numbers of QSOs found at 0.6 < z < 0.8 in 

major UVX surveys (Schmidt and Green 1983). At z > 2.0 the Lyman 

alpha forest becomes increasingly prominent in the U passband, 

thus decreasing the flux at these wavelengths and once again 

reddening the QSO (see chapter 7). 

In r8d~o selected QSOs there should be no selection effect 

operating to systematically bias the optic8l U-B colours towards 

any particular colour. Thus the U-B v z relation obtained by 

Veron (1983), see figure 1.1, for radio as well as optically 

selected QSOs should represent the intrinsic U-B v z distribution 
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for QSOs, and, as such, may be used to estimate the 

incompleteness in our survey due to the UVX limits applied. To 

do so we plot, in figure 3.8, the individual field u-b v z 

relations for QSOs with redshift classes 1 and 2 (thus excluding 

QSOs whose redshifts could be completely wrong) found in our 

surveys. The u-b colours plotted are those obtained after the 

re-zero-pointing procedure carried out for the u magnitudes in 

chapter 2.5. As all the u-b colours on different fields will 

therefore be on the same zero point relative to one another, we 

can combine the u-b v z plots to give the composite diagram 

(figure 3.9) for all redshift class 1 and 2 QSOs in the survey. 

In these diagrams filled circles represent QSOs with b < 20.0 

mag, and open circles those with b > 20.0 mag. Similarly, filled 

and open squares represent b~ight and faint 8AL QSOs 

respectively. 

On inspection of figures 3.9 and 1.1 we note how closely our 

u-b v z relation follows the U-8 v z relation found by Veron 

(1983). Indeed, from such a comparison we also note that our u-b 

colour appears to be on approximately the same zero-point as the 

Johnson U-8 colours plotted by Veron (1983). The well defined 

nature of this relation augers well for the accuracy of the 

stellar calibration techniques employed in chapter 2. In 

particular, the observation that the u-b colours of faint QSOs 

show no systematic shift with respect to those for the brighter 

QSOs confirms that our method of u calibration by straightening 

the u-b v b locus for Galactic stars (see chapter 2.4.4), has not 

introduced significant magnitude dependent errors. 
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Having established that our colours are sufficiently 

accurate to give the Veron (1983) U-B v z rel~tion for QSOs, we 

may use this relation to determine the completeness of our survey 

in the following manner. At each redshift we estimate the number 

of QSOs that would be found redder than the survey limit on each 

field, assuming that the U-B colours of QSOs form a Gaussian 

distribution about the mean U-B v z Veron (1983) relation. The 

standard deviation of this Gaussian is taken to be 0.25 mag, 

arising from the combination of the intrinsic scatter in QSO 

colours about this relation (±0.15 mag as estimated from the plot 

of Veron 1983) and the errors in our u-b colours (found to be ~ 

±0.20 at b = 20.0 mag, see chapter 2.6). We also assume that the 

u-b colours derived from the re-zero-pointed u magnitudes (see 

chapter 2.5) are equivalent to the U-B colours given by Veron 

(1983). In table 3.13 we give the percentages of QSOs thus lost 

to the UVX sample as defined on each 'field in 0.1 redshift 

intervals. At the foot of table 3.13 we also give the total 

percentage of z < 2.2 QSOs lost on each field by summing over all 

redshift bins at z < 2.2, using the observed n{z) relationship 
--- ---

(see figure 4. 7) to normalise the percentage fosses--ln--frid1v-i1tua-t-

bins. Similarly the percentage of z < 2.2 QSOs lost to the 

entire sample is deter~ined by normalising the total percentage 

losses on each field to the number of FOCAP areas observed on 

that field. 

From table 3.13 we note that, while at specific redshifts 

(e. q. 0.6 < z < 0.8) on particular fields (e.g. QNB and QSM) 

losses due to the 'blue' uvx criterion can be quite large c~ 
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z U-B Percentage of QSOs Redder than UVX limit 

(Veron SGP,QNA QSF QNY QNB,QSM Total 
Relation) < -.3 < -.4 < -.45 < -.5 

0.15 -.90 1 2 3 5 2.8 

0.25 -.85 1 3 5 8 4.2 

0.35 -.80 2 5 8 12 6.8 

0.45 -.75 3 8 12 16 9.8 

0.55 -.70 5 12 16 21 13.5 

0.65 -.60 12 21 27 34 23.5 

0.75 -.65 8 16 21 27 18.0 

0.85 -.70 5 12 16 21 13.5 

0.95 -.75 3 8 12 16 9.8 

1. OS -.80 2 5 8 12 6.8 

1.15 -.85 1 3 5 8 4.2 

1. 25 -.90 1 2 3 5 2.8 

1. 35 -.90 1 2 3 5 2.8 

1. 45 -.80 2 5 8 12 6.8 

1. 55 -.75 3 8 12 16 9.8 

1.65 -.70 5 12 16 21 13.5 
-~ - -- ----

--- ---- --- -

1.75 -.80 2 5 8 12 6.8 

1. 8.5 -.85 1 3 5 8 4.2 

1. 95 -.90 1 2 3 5 2.8 

2.05 -.80 2 5 8 12 6.8 

2.15 -.75 3 8 12 16 9.8 

2.25 -.so 21 34 42 50 36.8 

%loss z < 2.2 2.9 6.9 9.9 13.8 8.4 

Table 3.13 Losses on each Field due to UVX Criterion Applied 



20-30%), averaged over all fields these losses become quite 

small, although still redshift dependent. As a result of the UVX 

limits applied, we therefore estimate our survey to be ~ 8% 

incomplete for z < 2.2 QSOs. 

b) Variability 

Most of the U and J plates used to define the UVX samples in 

the faint survey were taken at least a year apart (see table 

2.1). Thus variability may cause a QSO to fail the UVX criteria 

if, for example, it was undergoing a brighter phase when the J 

plate was taken. Because the cs sample will not be 

systematically biased against variable objects, we chose to 

estimate the percentage of variable QSOs from this sample. A QSO 

was defined here to be variable if the difference it its b 

magnitudes, as determined from J3721 and J1921, was greater than 

2.5 times the rms -scatter in stellar magnitudes between these 

plates at the b:s 7 2 t magnitude of the QSO (see table 2.5). 

Although we note that a larger percentage of QSOs are likely to 

- --- exh-ib-i-t--vat"-iab-i 1-i-ty -at levels __ sroaj_l,_~~ than ± 0. 50 mag, at such 

levels the effect of variability will become indistinguishable 

from the rms errors encountered in our colours, the losses for 

which have already been accounted for above. Moreover, we may 

also find that more QSOs are variable at the 2.5a level if we 

were to inspect many more, different epoch plates. However, the 

problem here is to determine how many QSOs are lost to the UVX 

sample because they have varied significantly -over the time 

interval between which the relevant U and J plates were taken, 
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and, as such, the use of only two J plates to estimate this 

fraction is justified. QSOs thus identified as variables (all 

have Ab > 0.50) are listed in table 3.14. They comprise less 

than ~5% of the CS sample which fall on the measured areas of 

both J plates. On average, variabilty is just as likely to 

manifest itself by making the OSO bluer rather than redder from 

the definition of our colours. We therefore conclude that, at 

most, variability will account for 2-5% incompleteness in the 

survey. From the small numbers involved it is impossible to tell 

if variability is magnitude dependent, but no strong evidence for 

this has been found in any of the more comprehensive studies of 

variabe OSOs (see e.g Usher et 81. 1983). 

c) Misclassification of Stellar I~ages 

All objects in each FOCAP area were visually inspected on 

the corresponding J plate before the spectroscopic observation. 

Over the entire magnitude range, only 3 - 5 % of all stellar 

images had been misclassified as galaxies, with only a slight 

magnitudes ( ~ 5 - 10 %at 20.5 mag < b < 21.0 mag). Inspection 

of the corresponding U plate on each field revealed no trend for 

this misclassification to occur preferentially amongst UVX 

objects. 
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Name 

CS46 

CS126 

CS137 

19.87 

20.09 

18.79 

bt 9 2 t 

20.38 

19.51 

17.60 

Ab a 

-0.51 2.6 

0.58 2.5 

1.19 5.0 

Table 3.14 Variable QSOs in Clowes and Savage (1983) Catalogue 



d) BAL QSOs 

In figure 3.8, we note that, on the SGP, the BAL QSO SGP3:13 

(open square) exhibits an anomalous u-b colour with respect to 

the well defined u-b v z relation seen on this field. This is 

due to the appearance, in the U passband, of the absorption 

trough associated with CIV A1549 emission. The anomalous 

reddening which results thus implies that a number of BAL QSOs 

may be missed in a UVX survey when such a broad line falls in the 

U band. To estimate the percentage of QSOs thus lost from the 

survey we must first estimate the true percentage of BAL QSOs 

amongst normal QSOs. We note that the three BAL QSOs observed 

with 1.8 < z < 2.2 in the UVX survey (filled squares in figure 

3.9) exhibit the same u-b colours as normal QSOs and we may 

therefore assume that the ratio ot such BAL QSOs to normal QSOs 

seen within this redshift range ( ~ 5%) is close to the true 

value (although we concede that some QSOs with extreme BAL 

properties may still be missed). At worst, we assume that all 

BAL QSOs (representing ~ 5% of the QSO population) will be missed 

- --iri-tne-uvx-survey--bet-wee-n-Fed-shifts_ of _l._J_(_z_~ _!..__7~ i.e. when 

broad CIV absorption is present in the U band. At lower 

redshifts it is unlikely that any further BAL QSOs will be missed 

as, of the two broad emission lines visible in the optical at 

these low redshifts (CIII] and Mgll), only Mgll is seen to have 

associated broad absorption, and even then it is only rarely seen 

(see e.g. Wampler 1985). 
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We conclude, therefore, that even if we have missed the bulk 

of the BAL QSOs in the redshift range 1.3 < z < 1.7 this will 

only account for ~ 1% of all QSOs seen in the survey at z < 2.2. 

e) Plate Limit 

In figure 3.10 we plot the number magnitude, n(m), counts 

for stellar images in u and b for each of the fields used in the 

spectroscopic survey. The u counts are plotted using the u 

magnitudes before they were re-zero-pointed (see chapter 2.5). 

~ith the exception of the QNA field, all counts show the same 

steady increase at least up to the magnitude limits used in the 

faint spectroscopic survey (dotted lines in figure 3.10). The 

fact that all plates, exhibit the same general n(m) relation at b 

< 21 mag and u < 20.7 mag as the ·sGP, therefore provides good 

evidence that each plate is complete up to the magnitude limit of 

the survey. At the very least the smooth nature of these counts 

implies that the feature seen in the QSO n(m) counts at b ~ 19.5 

mag (chapter 4.2) can not be attributable to the plate limit on 

any of the -fTe-las--usea-1-n th-e---spect-roscopic _s_urv_ey_. ___ _ 

The anomalous form of the u and b n(m) counts on the QNA 

field may be more the result of poor calibration at bright 

magnitudes (see chapter 2.4.4) than incompleteness at faint 

magnitudes. However, particular attention will be paid to the 

QSO n(m) counts on this field in chapter 4.2 to ensure that they 

do not exhibit significant differences from those observed on 

other fields. 
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f) QSOs with weak lines· 

Although we have obtained sufficient signal-to-noise at the 

b = 21.0 mag faint limit to identify unambiguously the strong 

lined QSOs (see e.g. the spectrum of SGP2:11, b = 20.98 mag), we 

may wonder whether faint QSOs exist with weak lines that have 

proven difficult to identify. We can obtain an upper limit to 

the number of such QSOs in our survey as follows. From table 3.8 

we note that only 10% of all survey objects with 20.0 mag < b < 

20.5 mag and 20% with 20.5 mag < b < 21.0 mag remain without a 

positive identification. Thus the numbers of QSOs with weak, 

unidentified emission lines in the spectroscopic survey can 

amount to no greater fraction than this. As we shall see in 

chapter 4.2, such losses can ~ot account for the break in the 

observed QSO n(m) counts beyond b ·~ 19.5 mag. 

g) 'Non-stellar' QSOs 

It is well established (see e.g. Veron 1983) that low 

redshift, low luminosity QSOs may exhibit extended structure (due 
~---

to the increased visibility of the-unaerlyfng~hos-t~galaxy)--on- -a----

photographic plate which would cause their exclusion from a 

survey, such as ours, based on the selection of UVX stellar 

objects. We concede that our survey could also suffer from this 

selection effect. However, most of the conclusions arrived at in 

chapters 4 and 5 will be largely independent of the consideration 

of z < 0.5 QSOs, i.e. those QSOs which might appear extended on 

a UKST plate. 
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h) Low Luminosity QSOs 

It has been suggested (see e.g. Marshall 1985) that as QSOs 

become intrinsically fainter the background light from their host 

galaxies becomes progressively more and more dominant, with the 

result that, at sufficiently faint magnitudes, Ma > -23, QSOs may 

become non-UVX. 

If this was a strong effect we would expect to see this 

reflected in figure 3.9, with the open circles (b > 20.0 mag 

QSOs) showing a systematic redward (upward) shift in u-b with 

respect to the filled circles (b < 20.0 mag QSOs) in the u-b v z 

diagram. As this seems not to be the case we conclude that such 

an effect is not large and does not result in significant losses 

of QSOs from our survey, although'· as we shall see in chapter 4, 

conclusions regarding the evolution of the QSO luminosity 

function do not depend on such faint QSOs. 

In this section we have considered a number of possible 

selection effects to which our UVX survey may be susceptible. 

- ----From- t-hose-t-hat---a-r-e --dire.c.tly _q_\H~_ntifiable (e.g. 
-- -- - -- ----- ------

UVX limit, 

misclassification, varibility and BAL QSOs) we conclude that this 

survey is unlikely to be more incomplete than ~ 15%. This 

precise fraction will be slightly redshift dependent with 

relatively more QSOs being lost in the redshift ranges 0.6 < z < 

0.8 and 1.6 < z < 1.8 (due to UVX criterion) and 1.3 < z < 1.7 

(due to BAL QSOs being missed). Other biases, which are less 

directly quantifiable, either have little effect on the 

properties of QSOs observed in our survey (e.g. reddening of low 
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luminosity QSOs) or will have no significant influence on the 

conclusions derived in the following chapters (e.g. loss of low 

redshift extended QSOs). 

3.5 Conclusions 

In this chapter we have demonstrated the power of the UVX 

technique in the detection of low redshift QSOs when applied to 

machine measurements of photographic plates. The enormous 

advance in spectroscopic techniques represented by the FOCAP 

system at the AAT has enabled the potential of the UVX technique 

to be realised to the full. The large QSO catalogue produced 

exhibits a high level of completeness (85%), greater than that 

observed_ in other catalogues, particularly those selected by 

objective prism searches. Our QSO catalogue is therefore ideally 

suited for the statistical analysis which will form the basis of 

our next two chapters. 
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CHAPTER FOUR 

THE EVOLUTION OF QSOs AT z < 2.2 

4.1 Introduction 

The increase in QSO statistics which our surveys afford is 

easily seen in figure 4.1, where we have plotted the Hubble 

diagram for all QSOs obtained from complete spectroscopic surveys 

of UVX catalogues. The open circles represent the data for QSOs 

observed in the surveys listed in table 4.1 and the filled 

circles denote the QSOs observed in our survey. We see that the 

bulk of the QSOs discovered in our UVX survey lie 1-2 magnitudes 

fainter than those previously observed. As stressed in chapter 

1, it is at precisely these mag~itudes where the QSO number 

counts may first begin to show significant deviations from their 

pure power law behaviour established at bright magnitudes. Such 

a result would, in turn, imply that discrimination between the 

various evolutionary models introduced in chapter 1 may be 

possible. 

In the light of this, the statistical analysis presented 

below will be divided into two different approaches. 

1. Establishing the form of the QSO number magnitude, n(m), 

relation down to B = 20.9 mag, thus verifying the reality or 

otherwise of the break proposed in the n(m) relation at B ~ 

20.0 mag. 
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Figure 4.1 Hubble diagram for all spectroscopically observed 
QSOs in complete UVX surveys. 



Reference Magnitude Area Searched Number of 
Limits (square degrees) QSOs found 

Schmidt and Green (1983) B < 16.16 10716.0 116 

Mitchell et t!il. (1984) B < 17.25 108.6 14 
B < 17.65 87.3 18 

Marshall et t!il. (1983b) B < 18.25 37.2 ·20 

Marshall et t!il. (1984) B < 19.80 1. 72 35 

Table 4.1 Previous UVX Surveys With Complete Spectroscopic Coverage 



2. Explicit calculation of the QSO luminosity function (LF) as a 

function of redshift. In particular, -__ the determination 

of the QSO LF at the faint absolute magnitudes represented in 

our deep survey will help in the discrimination between 

models proposed for the evolution of the QSO LF. 

These two topics will be covered in separate sections and we 

begin with the number magnitude counts. 

4.2 The Number Magnitude Relation 

4.2.1 Normalisation 

The spectroscopically observed areas in our survey 

constitute only a small part of the entire measured area on the 

plates over which the UVX catalog~e was defined. We therefore 

wish to ensure that, on each Schmidt field, the surveyed regions 

do not exhibit anomalously low or high surface densities of UVX 

objects in comparison with the rest of the measured area. 

Because we- are primarily interested in the 'normalisation' of the 

QSO surface density across each field we first redefine our UVX 
-

sample in order to obtain minimal con-tamination- -frcrm-- Ga-la-ct-ic-

stars. - Further motivation for reducing this contamination will 

be encountered in chapter 6 when we investigate the 20 clustering 

properties of the UVX samples. 

achieved is detailed below. 

The method by which this is 

In figure 4.2 we plot the u-b histograms for the stars and 

QSOs discovered in each of the faint survey fields. With the 

exception of the QSM (b < 20.75 mag) and QNA (b < 20.5 mag) 
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Figure 4.2 u-b histograms for QSOs and Galactic stars observed 
in the faint UVX survey. Dotted lines indicate the 
additional contribution from z > 2.2 QSOs and white 
dwarfs in the QSO and star histograms respectively. 
a) SGP, QSF and ONB fields. 



... 
u g 
:z: 

... u 

i :z: 

... 
u 

J 

QN'! 

-1 -.5 0 
u-b 

QNA 

10 

QSOs 

6 

' 
2 

0 
-1.5 -1 -.5 0 

u-b 

QSY 

o~~~~~~~~~~~ 

-1.5 -1 -.5 0 
u-b 

25 

20 Stars 

... 15 ID 

i 10 

5 

0 
-1.5 -1 -.5 

u-b 

25 

Stars 

... 15 ID 

1 :z: 10 

5 

0 
-1.5 -1 -.5 

u-b 

--

Stars 

-1 -.5 
u-b 

Figure 4.2 continued b) QNY,QNA and QSM fields. 

0 

0 

0 



fields, the histograms plotted include all stars and QSOs with b 

< 21.0 mag. The dotted lines in these plots represent the 

additional contribution from white dwarfs and z > 2.2 QSOs in the 

stellar and QSO histograms respectively. From these histograms 

we see that, whereas the bulk of the Galactic stars were 

discovered with u-b colours within 0.1 - 0.2 mag of the UVX limit 

(solid line) on each field, the majority of the QSOs lie with u-b 

colours much bluer than this limit. Jhis separation in u-b 

colour between the two classes of object allows us, from visual 

inspection of the histograms, to redefine the UVX criterion 

(dashed line in figure 4.2) on each field so as to minimise the 

contamination by Galactic stars whilst retaining the vast 

majority of QSOs. The efficacy of these new 'restricted' UVX 

limits are clearly illustrated in .table 4.2, where we see that, 

in the surveyed areas, the Galactic star contamination has 

dropped from 55% to 25% with the introduction of the new 

'restricted' UVX criteria, whilst a large fraction of the z < 2.2 

QSOs (85 - 90%) have been retained. 

- -·- -- --- -I-n_. tab-le. 4-.-3 .we-compare_ the. _$J,JJ""fac_e_densi ty o_f ___ _i:_h_e objects 

thus redefined as UVX in the areas surveyed with FOCAP to those 

found over the matched area of the U and J plates on each field 

observed in the faint spectroscopic survey. The surface 

densities are compared over the magnitude range 18 mag < b < 21 

mag (the faint limit becomes b < 20.75 mag on the QSM field), 

this being the interval over which the ·vast majority of the QSOs 

were found in the faint survey. Because of the strong gradients 

seen in the distribution of UVX objects over the QNA Schmidt 
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Surface Densities 
(per square degree) 

Field UVX Limit Magnitude Limit Survey Area Whole Plate 

SGP < -0.5 18.0 < b < 21.0 60.0 51.2 

QSF < -0.6 18.0 < b < 21.0 50.0 53.5 

QNB < -0.7 18.0 < b < 21.0 47.2 44.4 

QNY < -0.65 18.0 < b < 21.0 41.4 38.6 

QSM < -0.7 18.0 < b < 20.75 38.6 35.8 

Table 4.3 Comparison of UVX Surface Densities 



field (see e.g. figure 6.1), comparison of the UVX star 

densities on this field was not attempted. We see that in 

general the surface densities of UVX objects in the FOCAP areas 

are approximately the same as those observed over the whole 

measured areas. Although there may be a slight trend in some 

fields (in particular the SGP) towards a higher surface density ( 

= 5 15%) in the surveyed areas we choose not to correct for 

this, as not only is this a relatively small effect but it may 

well compensate (at least in terms of number density) for those 

QSOs lost from the UVX survey by the 10 

noted in the last chapter. 

4.4.2 Surface Densities 

15% incompleteness 

In table 4.4 we give, field by field, the numbers and 

surface densities for the QSOs observed in the spectroscopic 

surveys in 0.5 magnitude bins between 17 mag < b < 21 mag. We 

exclude any QSO with z > 2.2 from this table , to ensure we only 

obtain surface densities for QSOs for which the UVX technique is 

~ -~complete-.-- ALI. FOCAP _fjelds_ b~VJ!~-b~en __ in_c:_o_Eporated in this table, 

along with the three bright survey areas (SGP centre, QSM bright, 

QSM centre) for which we have complete (or near complete) 

spectroscopic identification. We have included the QNA field in 

this analysis, although we have previously noted that the 

calibration for stellar magnitudes at b < 19 mag on the field may 

be significantly in error (see chapter 3.4). However, this area 

represents only 1 out of the 12 FOCAP fields and its inclusion 

makes no significant difference to the results obtained. 
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Magnitude 
Range 

17.0<b<17.5 

17.S<b<18.0 

18.0<b<18.5 

18.S<b<19.0 

19.0<b<19.5 

19~5<b<20.0 

20.0<b<20.5 

20.5<b<21.0 

SGP 

6 

7 

7 

QSF 

2 

2 

6 

16(18) 12(13) 

11(13) 7(8) 

QNB · QNY 

1 

2 

4 

5 

4 

1 

5 

4 

7 

9(11) 9(12) 

QNA 

2 

4 

3 

QSM 

2 

3 

3 

2 

5 

6 

4 

Total 

2 

4 

13 

22 

31 

48(51) 

40(48) 

Numbers in parentheses include contribution from Q? objects. 
tNumber for magnitude range 20.5 mag< b < 21.0 mag. 

Table 4.4a Numbers for z < 2.2 QSOs 

Magnitude 
Range 

17.0<b<17.5 

17.5<b<18.0 

18.0(b(18.5 

18.5<b<19.0 

19.0<b<19.5 

SGP QSF 

2.66 2.86 

6.67 4.29 

19.5<b<20.0 6.67 8.57 

20.0<b<20.5 15.24 17.14 

QNB . QNY QNA 

1.43 

2.86 
~ -- --

5.71 

7.14 

5.71 

1. 43 

5.71 11.43 

7.14 8.57 

20.5<b<21.0 10.48 10.00 12.86 12.86 

QSM 

2.86 

1.15 

1. 50 

Total 

0.17±0.12 

0.56±0.28 

1.83±0.51 

7.14 7.38±1.33 

8.57 11.43±1.90 
(12.14±2.23)2 

(5.71)t 11.43±1.90 
(13.51±2.10)2 

b(20.5 31.24 32.86 22.85 21.24 25.71 24.08 26.31±1.90 

'Surface Density Quoted for magnitide range 20.5 mag< b < 20.75 mag 
2 Surface Density Including Q? Objects 

Table 4.4b Surface Densities (per square degree) for z < 2.2 QSOs 



Moreover, the surface densities of QSOs found on this field at b 

< 20.5 mag (the magnitude limit of the QNA field) are in good 

agreement with those obtained on other fields. 

At b < 20.5 mag the mean QSO surface density over all fields 

is 26.3 ± 1.9 per square degree, the error representing the rms 

field-to-field variation in this mean. Although inhomogeneity in 

the QSO surface density from field-to-field may arise in our UVX 

survey because of the poorly defined (in absolute terms) UVX 

limit applied on each field, the fact that we have complete 

spectroscopic identification for the UVX sample thus selected has 

allowed us to put strict limits on the amount to which this will 

affect the numbers of QSOs found in each field (see chapter 3.5). 

As such, we view the agreement found between the QSO surface 

densities on each field as good evidence for the large scale 

homogeneity of the QSO distribution over the sky. This is in 

contrast to claims put forward by other authors (see e.g. Arp 

1984) that the surfac~ density of QSOs can vary by as much as 

400% over different areas of the sky. 

as filled dots in the number magnitude, n(m), diagram presented 

in figure 4.3, the error bars representing either the rms 

field-to-field variation in the surface density or In (where n is 

the number of QSOs contributing to the surface density value at 

that point), whichever is the larger. 
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We note that in composing this diagram the b magnitudes for 

the survey QSOs have been converted into the Johnson B magnitude 

system using equation (2.10) to enable comparison with the counts 

of UVX QSOs found from the other complete spectroscopic surveys 

(see table 4.1), also shown in figure 4.3. 

The solid line in figure 4.3 represents the Braccesi et al. 

(1980) power law relation found to reflect accurately the UVX QSO 

n(m) counts at bright magnitudes (B < 20.0 mag). In differential 

form it can be expressed as follows: 

log (N(B)) = 0.864 (B - 18.31) (4.1) 

where N(B) is the number of UVX QSOs per square degree in a 0.5 

mag bin centred on B. Table 4.5 gives the QSO surface densities 

determined explicitly from this relation and compares them with 

those observed in our survey. From figure 4.3.and table 4.5 we 

note the following. 

At bright magnitudes (B < 19 mag) our counts are in good 

agreement with the values of Marshall et al. (1983b,1984) and 

Mitchell et a1. (1984), following the- --Bracces] --et- -ai.-- (-1-980-)--

relation. As we go to fainte~ magnitudes (B ~ 19.5 mag), 

however, discrepancies arise' between our observations and those 

of Marshall et a1. (1984). Furthermore the observed surface 

density at B = 19.65 mag lies Sa (4a if 10% incompleteness is 

assumed) from the power law slope. In the magnitude range of 

interest here (19. 5 mag < b < 20.0 mag) all fields are covered by 

accurate photoelectric photometry, and there should be no 

problems identifying oso-s in the spectroscopic survey, as all 
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Magnitude N(m) observed 
Range 

17.4<8<17.9 0.17±0.12 

17.9(8(18.4 0.56±0.28 

18.4<8<18.9 1.83±0.51 

18.9(8(19.4 5.24±1.12 

19.4<8<19.9 7.38±1.33 

19.9(8(20.4 11.43±1.90 

20.4(8(20.9 11. 43±1. 90 

'Worst possible case' (see text) 

19.7(8(20.2 

20.2<8<20.7 

14.28±2.62 

15.89±2.47 

'Flattest Slope' (see text) 

19.4(8(19.9 

19.9<8<20.4 

20.4(8(20.9 

7.38±1.33 

12.14±1.90 

13.51±2.10 

N(m) predicted 

0.27 

0.73 

1. 97 

5.32 

14.38 

38.88 

105.14 

26.12 

70.63 

10.01 

24.32 

59.02 

Significance 
of Discrepancy 

0.83a 

0.61a 

0.27a 

0.07a 

5.26a 

19.70a 

49.32a 

4.52a 

22.16a 

1.98a 

5.46a 

21.67a 

Table 4.5 Comparison of Number Counts-wlth-- --- - ----
8raccesi et al. (1980) power law relation 



objects with b < 20 mag will have signal-to-noise in their 

spectra greater than 10. We therefore view the observed 

discrepancy as highly significant. In addition, the discrepancy 

between our value for the QSO surface density at B = 19.5 mag and 

that of Marshall et al. (1984) is all the more significant when 

we consider that, using essentially identical search techniques 

as those employed here, Marshall et al. (1984) obtained a UVX 

(U-B < -0.4) sample which contains 95% QSOs at B = 19.8 mag. 

Were we to obtain such a minimal contamination from Galactic 

stars we would lose about 30% of the QSOs. If we do not accept 

the hypothesis that the area surveyed by Marshall et al. (1984) 

has an anomalously high QSO surface density (see above) then 

either the B photometry of Marshall et al. (1984) is incorrect 

and they are surveying to ·fainter _magnitudes than they believe or 

many of the objects identified as QSOs in their survey are in 

fact simply Galactic stars. Unfortunately, no spectra have been 

published to enable this hypothesis to be tested. 

At the faintest magnitudes the observed surface densities 

_ beg.i.n _to __ sho.w~ ~gr.:os~~_de~Jatipns _ f_r_om the Braccesi et al. ( 1980) 

relation, but agreeing well with the counts found for z < 2.2 

QSOs by Koo (1986). At B = 20.15 mag the surface density is a 

factor of four down on that predicted from the extrapolation of 

the 0.86 power law and at B = 20.65 mag a factor of 10. We 

regard the surface density in the· range 19.9 mag < B < 20.4 mag 

to be secure as not only have the b magnitudes in 8 of the 12 

FOCAP fields been calibrated using accurate photoelectric 

photometry down to the magnitude limit of this bin (the QSO 
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surface density in these 8 fields alone is 12.5 ± 2.7 per square 

degree, not significantly different from that observed over all 

fields), but the objects here are sufficiently bright to enable 

the vast majority of all QSOs to be identified (with a S/N = 7 

for 9000 seconds). 

However, as an example of what little effect possible errors 

will have on these discrepancies let us consider a 'worst 

possible case' in which we correct for all inaccuracies in such a 

way as to make the observed values in these faint bins as large 

as possible. From table 4.5 we see that, even allowing for 15% 

incompleteness, including all the dubious (Q?) QSOs and 

brightening the magnitude limit up by = 0.2 mag (the size of the 

rms error in our b magnitudes at this limit), the surface 

densities in the faintest bins are still factors of 2 - 5 lower 

that those predicted from the power law relation • 

. It may be that the slope derived for the power law relation 

by Braccesi et al. (1980) is too steep at 0.86, although we note 

th~the values found by other authors allow for very little 

freedom 
-- ~ - ----

fn --changinq--tlle--sfope. --we--can; -howev·er,- -make 

independent estimation of the reality of any break by deriving 

the slope of the power law n(m) relation at bright magnitudes 

using our survey data alone. Moreover, we take the flattest 

possible slope that could be drawn through the surface densities 

found in our four brightest bins. This gives a relation of the 

form: 

log (N(B)) = 0.77 (B - 18.45) • • • ( 4 • 2 ) 
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The comparisons between the predictions for the surface densities 

at faint magnitudes from equation (4.2) and those observed are 

given at the foot of table 4.5. We see that, even with the 

inclusion of the Q? objects, the observed surface densities at B 

> 19.9 mag are still 2 - 5 times lower than predicted. 

We conclude, therefore, that the low QSO number counts at B 

> 19.5 mag seen in our survey are consistent with the break in 

the power law form for the n(m) counts first suggested by the 

observations of Koo and Kron (1982). We note that Braccesi et 

81. (1980) have explicitly demonstrated that, for a pure density 

evolution (POE) model (see chapter 1), the n(m) relation for UVX 

(z < 2.2) QSOs is a pure power law from the very brightest 

magnitudes (B ~ 14 mag) to magnitudes fainter than B = 22.0 rna~. 

The deviations from such a power iaw behaviour observed in both 

our survey and those conducted by Koo and Kron (1982) and Koo 

(1986) thus imply that PDE is not an adequate parameterisation 

for the evolution of the QSO LF. As such we can deduce 

indirectly that the QSO LF must exhibit a feature at 

- -- corre·spondi:nq-ly-fai-nt -abso~lu.te_ mag.ni.t_ud.§:!_S ___ (~!lY~! i~~e et 81. 1983) 

and that this feature can be used to trace the form of QSO 

evolution. We now go 

e~olution by explicitly 

on to investigate the nature of this 

determining the QSO LF in discrete 

redshift intervals from our data. 
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4.3 The QSO Luminosity Function and its Evolution 

4.3.1 Calculation of Absolute Magnitude 

The 1 u minos i t y fun c t i on , ~ ( M8 , z ) , for any class of 

astronomical objects (in this case QSOs) simply expresses their 

space density as a function of absolute magnitude, Ha, and 

distance (in this case represented by their redshift, z). From 

Schmidt and Green (1983) the absolute magnitude for a QSO can be 

calculated as follows: 

Ma = B- 5logdL+ 2.5 (1 + a)log(1 + z) - 25 (4.3) 

where dL(z) is the luminosity distance for a QSO at a redshift 

z. In Friedmann cosmologies this can be expessed (Weinberg 1973) 

as 

dL = _c_ (zqo+(qo-1)(/(1+2qoz)-1)) qo > 0 
Ho qi 

(4.4a) 

= cz/Ho ( 1 +z/2) qD : 0 • • • ( 4 • 4 b ) 

Ideally we would like to measure the QSO's absolute 

--lnagrrltude -at --the same-wavelenq_th _in_t_he_r~~i;._!r~m~-~~_each QSO. 

In practice, however, we observe QSOs in a fixed passband over a 

wide range in redshifts and so this is generally not possible. 

The third term on the right hand side of equation (4.3) therefore 

represents the magnitude (or k) correction resulting from the 

change in the observed wavelength back to the fixed rest 

wavelength for each QSO. The form of this correction is based on 

an assumed spectral energy distribution for QSOs of fv • v« 

derived from observations of optically selected QSOs by Richstone 

- 89 -



and Schmidt (1980). After Richstone and Schmidt (1980) we take a 

= -0.5. No correction has been made for emission lines, broad 

absorption lines or other deviations from a pure power law 

behaviour (see e.g. Grandi 1982). At redshifts z < 2.2 such 

effects give rise to less than ~0.1 mag variation in the B 

magnitude for QSOs, as explicitly calculated in Marshall et al. 

1983b and Veron 1983 (see also chapter 7). These effects are 

therefore small when compared to the uncertainties regarding the 

spectral index for QSOs. For example, it is quite common for 

QSOs to have a spectral index as steep as -1.0 (see Richstone and 

Schmidt 1980r, and thus, with the assumption that a = -0.5, the 

magnitude assigned to such a QSO at z = 1.5 will therefore be in 

error by 0.5 mag. The effect which the resulting uncertainty in 

the k-correction will have on the evolution derived for the QSO 

LF will be discussed in chapter 4.3.4. 

Comp~red to these uncertainties the size of the correction 

for Galactic obscuration is small. All QSOs observed in this 

survey are located above a Galactic latitude of of b11 = 45°. 

-rh-e- -two -most -commo_nl_y ___ u_~@d _1~~~ __ (or absorption within our own 

Galaxy are 

Aa = 0.12 (cosec b11 -1) b11 < 50° 

= 0 

from Sandage (1973) and 

Aa = 0. 2 cosec b1 1 • • • ( 4. s.c) 

(4.5a) 

(4.5b) 

given by de Vaucouleurs and Buta (1983). Both these laws give 

rise to relative differences across our survey fields of less 
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than 0.1 mag. Bearing in mind the small size of these 

corrections (and uncertainties regarding their form see e.g 

Burstein and Helles 1982) we make no correction for obscuration in 

our Galaxy. 

4.3.2 Derivation of the QSO Luminosity Function 

Although many sophisticated statistical 

developed over the years to determine the 

evolution with redshift (e.g. the C-method of 

techniques have 

QSO LF and its 

Lynden-Bell 1970 

and the applications of maximum likelihood techniques by Marshall 

et al. 1983b), they have mainly been born out of the necessity to 

obtain information from small samples of QSOs. Indeed, Schmidt 

and Green (1983) have noted, that with sufficient numbers of 

QSOs, it would be straightforward to construct the LF at any 

given redshift by simply 'reading off' from the Hubble diagram 

(figure 4.1) the distribution of QSOs, n(B,z), in a horizontal 

redshift strip thus: 

n(B,z)dBdz = t(Me ,z)dMadV • • • ( 4 • 6 ) 

where dV is the comoving volume element. 

However, Schmidt and Green (1983) found that the Hubble 

diagram then available had ~nly patchy coverage, especially in 

the region B > 18 mag, z < 1.8, and they had to construct a LF 

based on an initial assumption about the form of the evolution. 
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Now that we have 'filled up' this region with QSOs from our 

surveys, (see figure 4.1), we can approach the problem of 

constructing the LF using the simple method which Schmidt and 

Green (1983) were frustrated in applying. 

From equation (4.6) we have that the LF can be obtained from 

observations of n QSOs as follows: 

t ( Ma , z) = ( V£ ) - 1 8 ( Mi - Ma ) • • • ( 4 • 7) 

where v. is the accessible comoving volume as defined by Avni and 

Bachall (19aO>. This estimator was introduced as a more natural 

way of combining data from surveys with different magnitude 

limits, redshift limits or conducted over separate areas of the 

sky. v. is simply the total volume within which a QSO, selected 

from any of the surveys making up the QSO catalogue, could have 

been observed over all surveys in the catalogue. As such it does 

not assume any 8 priori knowledge of the particular survey in 

which the 050 originally appeared and thus makes more efficient 

use of the data to hand (Avni and Bachall 1980). For a catalogue 

consisting oi -m~ -different ____ surv-ey·s,- ea-ch -obs-erved -over- -w.-- -

steradians and to an apparent limiting magnitude B1t•••, v. is 

given by 

v. = ~ w. /4x I dV/dz dz .... . . • ( 4 • 8 ) 

where the integration is performed over the redshift range 

for the particular bin of interest, unless z ••••• , given by 

· B1 , • , • -51 ogdL ( z ••• , • ) + 2 • 5 ( 1 +a) 1 og ( 1 + z ••• , • ) -2 5 =M8 (4.9) 

- 92 -



is less than the upper limit of the bin, in which case 

integration proceeds up to z •• x ••• When z •• x.• is less than the 

lower limit of this bin the contribution from this integral to 

the summation in equation (4.8) is zero. In principle the value 

of z •• x,. can be found from equation (4.9) by iteration. It was 

found, however, that substitution for dL (z) using equation (4.4) 

yielded an equation that was difficult to iterate and a much 

easier iterative formula was obtained with an expression for 

dL (z) given by Terrell (1977): 

dL ( Z) = cz [ 1 + Z (1-qo ) J . . . ( 4. 10) 
Ho (/(1+2qo z)+1+qo z) 

In equation (4.8) the comoving volume, dV/dz, of a shell at 

redshift z, width dz, can be obtained from Phillipps et al. 

(1978) to be: 

dV/dz =~~£2 (z)g(z)(1+z)3 •·• • ( 4. 11) 

where 

--~~ - ~ - ~ ( Z-)- ~=- cf&._(_z_)j_(1 f_Z )~ ___ _ (4.12) 

is the angular diameter distance, and 

g ( z ) = c I ( Ho ( 1 + z ) 2 I ( 2 Qo z + 1 ) ) (4.13) 

is the derivative of proper distance with respect to redshift. 
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4.3.3 Results 

The QSO LF was calculated at intervals of 1 magnitude in 

four separate redshift bins for the following combinations of 

surveys: 

a. Those fields in our bright and faint spectroscopic surveys 

which were used to derive the n(m) relation in chapter 4.2 

(i.e. all FOCAP fields and the SGP centre, QSM bright and 

QSM centre fields in the bright survey). The dubious QSOs 

CO? objects in the faint survey) were not included in the 

derivation of the LF, it having been checked explicitly that, 

even with their inclusion, no significant change was observed 

in the LF. As many of these objects may well not be QSOs it 

was thought best to exclude them from the analysis. QSOs 

with redshift class 3 were, however, included in the 

estimation of the LF. From the n(z) distributions for the 

faint survey QSOs both with and without the inclusion of the 

redshift class 3 objects (see e.g. figure 4.7) we see that 

the uncertain redshifts are not preferentially assigned to 

one particular redshi ft raruje: -and- -a-1-thouqh - --ind-i-vi-d-ua-1-

redshifts may be incorrect the overall effect does not 

seriously bias the redshift distribution. 

b. As above but with the inclusion of the Marshall et 81. 

(1983b,1984) QSOs. 
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c. As case b) but incorporating the Schmidt and Green (1983) 

QSOs. As the Schmidt and Green survey was conducted at such 

bright apparent magnitudes, the majority of the QSOs found 

therein are at low redshifts. This survey will therefore be 

strongly subject to the selection effect mentioned in chapter 

3.5g, namely that low redshift, low luminosity QSOs may 

appear non-stellar on photographic plates and are therefore 

rejected from a UVX stellar sample. Indeed Schmidt and Green 

(1983) themselves concluded that such a selection effect did 

play a strong part in the selection of their catalogue. To 

account for this we reject all QSOs in the Schmidt and Green 

(1983) catalogue with z < 0.55 ( i.e. the extent of our 

lowest redshift bin and the redshift beyond which galaxies 

are unlikely to be recognis~d on Palomar Sky Survey plates) 

and Ma > -24. This is the magnitude which Peacock et al. 

(1986) conclude marks the transition between host galaxy 

types for.QSOs, with QSOs fainter than Ma = -24 lying in 

spiral galaxies (and therefore easier to see as extended 

objects) and those brighter lying in elliptical galaxies (and 
- -. ------

consequently more difficult to detect-as-exterrde·d---sour~esh 

d. The restricted Schmidt and Green (1983) catalogue as 

described above and the Marshall et al. (1983b,1984) surveys. 

The redshift bins in which the LFs are calculated were 

formed by merely splitting the redshift range over which the UVX 

technique is complete into 4 bins of equal width in redshift. 

Although dependent on precisely which combinations of catalogues 
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were chosen, this division was made to obtain approximately equal 

numbers of QSOs in each redshift interval, averaging out at ~ SO 

for combination b. 

·The LFs calculated for an Einstein-de Sitter universe in 

which Ho =SO km s- 1 Mpc-t are plotted in figure 4.4. This value 

of H0 was used to facilitate comparison with other authors who 

most frequently use this value for Ho in the determination of 

their LFs. The lines plotted in figure 4.4 represent the LFs 

predicted from the evolutionary model which will be derived in 

the following section. For the present, however, they may be 

used as fiducial marks with which to compare the LFs derived from 

the various combinations of surveys a - d. 

From Marshall (198S) the error bars (a) on the estimates of the 

LF can be expressed as 

a = o:v; 2 )' (4.14) 

They were found to be an accurate reflection of the 

uncertainties involved in the calculation of the LF when the QSO 

catalogues were split into two and errors derived from the rms 

variation in the values for the LF in each half. 

1 • 

From figure 4.4 we immediately note the following points: 

There is good agreement between the 

different surveys in the magnitude 

overlap. 
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2. As indicated by the break in the n(m) counts the LF does 

indeed exhibit a feature at faint absolute magnitudes. 

Evidently this fe~ture is only clearly apparent when our 

faint QSO surveys are included. Although there may be a 

slight indication of a turn-over in the QSO LF in the lowest 

redshift bin from the surveys of Marshall et al. (1983b,1984) 

and Schmidt and Green (1983) alone, it is not reproduced at 

higher redshifts. Not only does the inclusion of the QSOs 

from our surveys make such a feature visible in all redshift 

bins, but it also defines the LF for at least two magnitude 

bins fainter than this feature for 0.55 < z < 2.2. Thus this 

turn-over in the steep power law from the LF at bright 

absolute magnitudes is confirmed by QSOs with apparent 

magnitudes at least as bright .as b = 20 mag, the magnitude to 

which our survey should represent a complete sample with 

accurate B calibration. This is consistent with the break in 

the QSO n(m) counts observed at B ~ 19.5 mag for our data. 

With this feature the general form of the QSO LF appears to 

be, at its s~mplest, a two power law model, with a steep 

slope at bright magnitudes and a much flatter one at faint 

magnitudes. 

3. By tracking the movement of this feature with redshift, we 

note that the evolution of the OSO LF appears to manifest 

itself predominantly as a uniform shift towards higher 

luminosities in the past, with no corresponding shift in 

density space. As such, it is most similar to the pure 

luminosity evolution (PLE) described in chapter 1. 
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4. The conclusions reached in 2 and 3 above are unaffected by 

the possible biases in the UVX selection technique described 

in chapter 3.5g and 3.5h. Firstly, even ignoring the LF for 

QSOs at 0 < z < 0.55 (see chapter 3.5g), the two power law 

form for the LF and its luminosity evolution is still well 

represented in the three higher redshift bins. Secondly, PLE 

and the bent LF are still readily apparent when we discount 

all QSOs with Ma > -23 (see chapter 3.5h). Indeed, if 

anything, the space densities of the faint (-21 < Ma < -23) 

QSOs in the 0.55 < z < 1.1 redshift bin may even be slightly 

higher than those of their brighter (Ma < -23) evolutionary 

equivalents (under the assumption of PLE) in the higher 

redshift bin~. 

Using the b) combination of surveys (thereby retaining 

information on the bright end of the QSO LF, whilst excluding the 

'incomplete' Schmidt and Green survey), we plot in figure 4.5 the 

effect of varying Qo on the shape of the LF. We see that the 

choice of qo does not significantly alter the pure luminosity 

evolution derived for the QSO LF. 

4.3.4 Parameterisation of the QSO LF and its Evolution. 

From the appearance of the LFs in figure 4.10 we choose to 

parameterise the QSO LF as a two power law function which we may 

express as 

~(Ma ,z) = ~·dex(0.4(M• (z)-M)(P+1)) • • • ( 4 • 1 5 ) 
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The index P (the slope of the LF) assumes one of two values 

depending on whether M (the absolute magnitude for the QSO) is 

greater than or less than M• (z). We also, however, test a model 

in which the LF is represented by a single power law. ~· is the 

normalising factor in this equation and will be expressed in 

terms of number mag- 2 (comoving Mpc)- 3 • M• (z) represents the 

position of the break and its evolution with redshift is assumed 

to be purely in the direction of increasing luminosity towards 

higher redshift. To facilitate comparison with other commonly 

used parameterisations for PLE (see e.g. Mathez 1976 and 

Marshall et al. 1983b) we choose two models whose dependence on 

redshift can be expressed in the following manner: 

1. As a power law with redshift 

(4.16a) 

with L• (z) and L3 being the luminosity equivalents of M• (z) 

and M3 • In terms of magnitudes this becomes: 

M• (z) = -2.5kL log(l+z) + Ma • • • ( 4. 16b) 

This power law form is representative (Marshall 1985) of a 

homologous evolution i.e. one in which all QSOs are in the 

same evolutionary state, dimming or brightening without a 

characteristic time scale. 

2. As an exponential in look back time (T) 

' 
C4.17a) 

where, from Sandage (1961), T can be expressed as a fraction 
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of the Hubble time in a qa=~ Universe as follows: 

T = 1 - 1/(1+z)-t.s •.. (4.17b) 

Again expressing this in magnitudes (4.17a) becomes: 

••• (4.17c) 

We may interpret this exponential form as evolution with a 

characteristic time scale (e.g. 1/T), such as is obtained 

(Cavaliere et al. 1985) when the rate at which the QSO 

evolves is dependent on its. luminosity. 

Parameterising the LF and its evolution thus, we have four 

free ~arameters, namely M3, kL and two for P: t• being 

determined from the normalisation of the counts (there will only 

be two free parameters in the case of the single power law LF 

model - P and kL ). To obtain the best estimates for these 

parameters we proceed as follows. Firstly, using initial 

estimates for the values of P, M3 and kL, we predict the numbers 

of QSOs expected in each bin of the luminosity function, n(Ms ,z), 

for a particular combination of surveys. This can be found using 

a generalisation of equation (4.6) e~q. 

n.(Ms ,z)dBdz = t(Ms ,zHHMs ,z)(dV/dz)dMdz • • • • • ( 4 • 1 8 ) 

where Q(Ms ,z) is the fractional area of sky over which QSOs with 

absolute magnitudes Ms and redshifts z could be observed over all 

the surveys used (see Marshall et al. 1983b). The normalising 

constant t• is obtained from 
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t• = Ne • • • ( 4 • 1 9 ) 
Jfi(MB ,z)/t•dBdz 

Ne being the total number of QSOs in the surveys. By then 

comparing the numbers predicted to those observed ·in each 

magnitude and redshift bin used to calculate the LFs, we can 

compute a X2 statistic ( employed here to maintain consistency 

with the binning procedure used to derive the LF in the previous 

section) for the particular choice of parameters used. The 

parameters can then be varied to give the smallest x2 value, 

these 'best-fit' values being quoted with errors corresponding to 

the amount by which these individual parameters can be varied 

before we can reject the fit at the 95% confidence level. 

While we were able to obtain 'best-fit' values for M&, kL 

and the slope· of the LF at faint magnitudes from our survey 

alone, we have too few QSOs in our survey with absolute 

magnitudes brighter than the break in the QSO LF to permit an 

accurate determination of the slope here. We therefore fixed the 

value of this slope to be that obtained by Marshall (1985) from 

analysis of the Schmidt and Green (1983) and Marshall et al. 

(1983b,1984) surveys. 

Table 4.6 gives the resultant best-fit values, together with 

their errors (where applicable), for the parameters determined 

from the x2 analysis for a qo = ~ universe. The probability that 

the fit is acceptable (i.e. PC>x2 )) to both the LFs derived for 

our survey QSOs alone (i.e. those used to obtain the best fit 

parameters in the first place) and the LFs determined from the 

QSOs in survey combination b is given in the last two columns of 
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Model 8 kL t• M• P( >l2 ) 
(a) (b) 

qo =0. 5 

exp(kL t) -3.6 -1.2 4.9 1.1 x 1 o- 6 -21.0 0.0029 4. 4 x 1 o- 6 

(1+z) 11 -3.6 -1.2±0.2 3.7±0.1 1. s x 1 o- 6 -21. 4±0. 2 0.39 0.089 

Single Power -2.4 3.9 o. 3 x 1 o- 6 -21.4 1. 1 x 1 o-,. 1 . 1 x 1 o- 9 

Law 

LDDE -5.7 -3.7 2.18 4. o x 1 o- .... -26.0 1. o x 1 o- 6 1. 9 x 1 o- 9 

qo =0. 1 

exp(kL t) -3.5 -1.3 5.8 4.1 x 1 o- 7 -21.2 0.0041 3. 8 x 1 o-' 

(1+z) 11 -3.5 -1.1±0.2 ·3.9±0.1 6. 1 x 1 o- 7 -21.9±0.1 0.23 0.11 

Table 4.6 'Best Fit' Parameters for Evolutionary Models 



table 4.6. From table 4.6 we note that the single power law 

model and the exponential evolution law can both be rejected at a 

high level of confidence (errors are not quoted on the 'best-fit' 

parameters in these cases as the 'best-fit' parameters are 

themselves rejected at the 95% confidence level). This latter 

result confirms the unacceptability of the exponential luminosity 

model first remarked upon by Marshall (1985) from consideration 

of the QSOs in the Schmidt and Green (1983) and Marshall et al. 

(1983b,1984) surveys. However, the power law luminosity 

evolution model is found to be a good fit to the data and, in the 

spirit of this analysis in which we accept the simplest model to 

fit the data, is considered as our standard evolution model 

(SEM). 

Similar results are obtained ~hen we consider the evolution 

of QSOs in a Qo = 0.1 universe (see foot of table 4.6). Again 

the exponential model is rejected at a high level of confidence, 

while the power law PLE model is consistent with the data. 

We note that the form of this evolution remains unchanged 

under the assumption of a different value for a, the spectral 

index of the QSO. The magnitude of a QSO at any redshift, M(z), 

exhibits the same log(1+z) dependence on spectral index as it 

does for evolution. Thus the only effect that a specific 

increase in the value for the spectral index will have on the SEM 

will be to decrease the value of kL by the same amount. 
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As a check on the consistency of the SEM we use equation 

(4~6) to predict the n(m) and n(z) relations based on this model. 

The n(m) counts discussed in chapter 4.2.2 are reproduced in 

figure 4.6, but this time the solid line represents the SEM 

predictions. We see an excellent fit to the counts at all 

magnitudes 14 mag < B < 22 mag. In the very faintest bin the 

model appears to predict too low a surface density when compared 

to the Koo (1986) value. However, Koo (private communication) 

concedes that this point may be an overestimate. In fairness, we 

must also concede that the actual slope for the faint end of the 

QSO LF may be steeper than the value derived here as a result of 

incompleteness in our survey at faint magnitudes. In deriving 

these number counts we have assumed that the QSO LF continues 

smoothly on, with slope IJ = -1 •. 2, beyond the faintest absolute 

magnitudes observed here (Ma = -21). Under such an extrapolation 

of the LF we predict that at faint apparent magnitudes (B > 24 

mag) the bulk of the objects contributing to the counts of low 

redshift (z < 2.2) QSOs will be just such faint objects, more 

akin to the Seyfert galaxies and low luminosity active galactic 

nuclei (LLAGNs) seen at low redshift. The justification for such 

a smooth extrapolation of the QSO LF to faint magnitudes arises 

not only from our 'simplest possible model' ethic but also, as we 

shall see in the following section, from the shape of the Seyfert 

and LLAGN LF which displays such a smooth form to magnitudes as 

faint as Ma ~ -12. 
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We also note that the SEM predictions ·are consistent with 

the observed n(z) distributions for both redshift class 1 and 2 

QSOs (figure 4.7a) and all redshift class QSOs (figure 4.7b) in 

our survey. The absence of low redshift (z < 0.4) QSOs can 

therefore be explained as a natural consequence of the sharp 

break to a flat slope at faint absolute magnitudes seen in the 

QSO LF and the fast rate witnessed for the evolution of this LF. 

4.3.5 Comparison with the Seyfert and Galaxy Luminosity Functions 

It has long been known (see e.g. Weedman 1976) that QSOs, 

Seyfert galaxies and LLAGNs exhibit a continuous range in their 

observed properties (e.g. luminosities, line widths) and that 

the 'botanical' distinction between QSOs and other forms of 

active galactic nuclei (AGNs) merely arose because QSOs exhibited 

stellar images while AGNs were observed in galaxies. Now that 

deep CCD imaging of QSOs has revealed extended structure (see 

e.g. Malkan 1984) around many low redshift (z < 0.5) OSOs, even 

this distinction is beginning to be eroded. However, the 

evolutionary link between Seyferts and QSOs has been more 

difficult to establish with so few high redshift~ QSOs being 

observed at the luminosities of low redshift Seyferts. With our 

faint survey we may go some way towards resolving this problem. 

To d~ so, we first evolve our QSO LF back to z = 0 and 

compare its form (solid line in figure 4.8) with those for LFs 

derived from observations of Seyferts and other LLAGNs. Weedman 

(1986) has derived a composite LF for the nuclear magnitudes of 

active galactic nuclei culled from a variety of sources and 
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encompassing a wide range (-12 < Ma < -24) in magnitude. The 

final form of the average LF given explicitly in Weedman (1986) 

is plotted as the dotted line in figure 4.8. In addition the 

dashed line in figure 4.8 represents the parameterisation of the 

Seyfert LF (again in terms of nuclear magnitudes) obtained by 

Marshall (1986) from observations of Seyferts in the CfA survey. 

Bearing in mind the considerable uncertainties in the estimation 

of Seyfert LFs (e.g. problems in deriving nuclear magnitudes 

from subtraction of the galaxian component), we view the observed 

agreement in density and shape between the LFs determined 

explicity for Seyferts and that LF extrapolated from the 

observations of our QSOs as highly suggestive that Seyferts and 

LLAGNs are the evolutionary equivalents of QSOs at the present 

day. Whether Seyferts and LLAGNs. represent the end-points of 

long lived QSOs or the present day population of a short lived 

QSO phenomenon is a more subtle distinction, which we shall 

discuss further in chapter 8. 

We also note how similar the shape of the QSO LF is to that 

obtained for cluster galaxies. It is well kno~n (~ee e.g. Abell 

1975) that the LF for galaxies in rich clusters is well 

represented by a two power law function (i.e. the form used here 

to describe the QSO LF) and does not obey the standard Schec~er 

(1976) form. Godwin and Peach (1977), with later corrections by 

Metcalfe (1983), find the LF for galaxies in the Coma cluster to 

follow a steep <P = -2.6, in the notation employed here) slope at 

bright magnitudes, flattening out to a slope of p = -1.4 beyond 

Ml = 20. The values of these parameters are remarkably 
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similar to those found for the QSO LF, although the space density 

of galaxies is ~ 100-1000 times that observed for QSOs (Koo 1986, 

Marshall 1986) 

Because the galaxy luminosity function is calculated using 

extended magnitudes while the QSO LF is derived from nuclear 

magnitudes, the observed agreement in shape may be viewed as 

somewhat fortuitous. However, there is some evidence from deep 

CCD imaging studies of QSOs (Gehren et al. 1984) that the nuclear 

luminosities of QSOs (LNuc) may be closely related to the 

luminosities of their extended components (LsxT) in the form 

LNuc/LsxT ~ 2. In such a case the observed agreement between the 

shapes for the galaxy and QSO LF would assume a greater 

significance, possibly suggesting that the mechanism whereby, at 

any particular epoch ·only a small ·fraction of galaxies ~ave been 

'triggered' to form QSOs, occurs relatively independently of 

magnitude. Further discussion of the implication of such an 
I 

observation must, however, wait until any relationship between 

LNuc and LaXT is more firmly established. 

4.3.6 Comparison with Other Parameterisations 

a) Pure Density Evolution 

Although we have discounted this form of evolution in 

chapter 4.2, it is instructive to compare the n(m) predictions 

for z < 2.2 QSOs in a POE model in which the LF assumes the two 

power law form derived above. To obtain the steep slope at 

bright magnitudes we require a density evolution of the form (see 

e.g. Marshall et al. 1984): 
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~ ( Ma , z ) = ~ ( Ma , 0 ) eX p ( 1 4 • 8 'l' ) . • . ( 4. 20) 

The predicted n(m) relation for the two power law LF is 

shown in figure 4.9 and once again we see that the high number 

counts predicted beyond B = 19.5 mag rule out this model. 

Moreover, we note that the n(m) counts predicted using our two 

power law LF still exhibit the same steep power law behaviour at 

all magnitudes, whatever other parameterisations for POE (e.g. 

density increasing as a power law with redshift) are chosen. 

b) Pure Luminosity evolution 

PLE has most recently been championed by Marshall et al. 

(1983b,1984) and Marshall (1985). However, as has been made 

clear from previous sections, their information on QSOs did not 

extend to sufficiently faint maqnitudes to pick up the break in 

the QSO LF. To arrive at the low counts seen by Koo and Kron 

(1982), they merely assumed that the QSO LF had an epoch 

dependent cut-off (L.,n) at faint luminosities below which no 

QSOs existed. However, from the differential n(m) counts plotted 

in figure 4.10, we can see that such a parameterisation is far 

too 'brutal' in that it predicts no QSOs at all fainter than B ~ 

21.0 mag. Its predictions do not, however, look nearly as bad 

when plotted on an integral n(m) diagram - see figure 6 of 

Marshall et al. (1984)! The only model parameter obtained here 

that we can directly compare with those given in Marshall et al. 

(1983b,1984). and Mars\lall (1985) is kL. For model G of Marshall 

(1985) (q0 = 0.5, a = -0.5), kL = 3.2 ± 0.1. lower than our 

value of 3.7 ± 0.1, and hence less evolution is required by 
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Marshall (1985) to fit his data than is necessary here. This 

difference may, in part, be attributable to the inclusion of the 

bright QSOs in the Schmidt and Green (1983) catalogue by Marshall 

(1985) in his estimation of kL. From figure 4.5 we note that, 

although statistics here are poor, at the brightest magnitudes 

the LFs show marginally less evolution than at the fainter 

magnitudes where we determined our evolutionary parameters. 

Their inclusion in the derivation of the evolutionary parameters 

for the QSO LF by Marshall (1985) may well have influenced the 

values of kL obtained. 

c) Luminosity Dependent Density Evolution 

This is the form of evolution advocated by Schmidt and Green 

(1983). To test its applicability to the data, we use their HH5 

model (i.e. the evolutionary model obtained for a qa = 0.5 

universe with the assumption that the surface density of QSOs at 

B = 21 is 50 per square degree). The zero age LF was taken to be 

t(Ma ,O)=t• (dex(0.4(M-M• )(a+1))+dex(0.4(M-M• )(8+1))) .•• (4.21) 

where a= -5.7, 8 = -3.7, M• = -26 and t• = 4 x 10-tt Mpc- 3 mag-t 

gave the best re presentation to the binned LF given in Schmidt 

and Green (1983). The evolution with redshift is parameterised 

as follows: 

t(Ma ,z) = t(Ma ,O)exp(k(-20.12-MaT)) . • • ( 4. 22) 

where k=2.18 forM < -20.12 and k=O forM > -20.12. We compare 

the predictions of this model to the observations by the X2 test 
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(see table 4.6) and by plottinq out the LFs explicitly (see 

fiqure 4.11). In both cases we see poor aqreement, althouqh 

admittedly the bulk of the discrepancies occur for the faintest 

bins. In fairness to Schmidt and Green (1983) we should really 

re-compute the parameters for their model usinq the new faint 

data at our disposal. However, we may wonder about the necessity 

to parameterise the LF in this more complex manner when a much 

simpler PLE model has already been shown to be a perfectly qood 

fit to the data. It appears that Schmidt and Green (1983) chose 

LODE to reflect the dependence of <VIv ••• > (see Schmidt 1968), 

obtained for QSOs in their survey, on absolute maqnitude (QSOs at 

briqhter maqnitudes had ·hiqher <VIV ••• > values). However 

<VIv ••• > is merely an indicator of evolution and does provide 

information a priori on the for~ this evolution takes. Indeed, 

Petrosian (1973) has demonstrated that <VIv ••• > increases with 

absolute maqnitude for many forms of POE, where no luminosity 

dependence exists. We therefore see no need to invoke LODE with 

the data on QSOs presently available. 

d) Density and Luminosity Evolution 

We find no indication from our data to suqqest that the LF 

also evolves in the sense of decreasinq density toward hiqher 

redshift as found by Koo (1983). 
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We conclude, therefore, that out of all the possible 

parameterisations considered for the evolution of the QSO LF, the 

PLE model proves to be the simplest one which still gives a good 

fit to the observations. Density evolution is strongly ruled out 

as it predicts far too many QSOs at faint magnitudes, and more 

complex forms are unnecessary to describe the data. 

----- -----------
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CHAPTER FIVE 

THE SPATIAL CLUSTERING OF QSOs 

5.1 Introduction 

As discussed in chapter 1. previous attempts to study the 

physical clustering of QSOs have been thwarted by poor statistics 

or inaccurate redshifts. Our large, spectroscopically surveyed 

QSO catalogue therefore provides an opportunity to tackle the 

problem of QSO clustering more effectively than has hitherto been 

possible. 

5.2 Estimation of f(r) 

ln this analysis we shall em~loy the statistic most commonly 

used to study the clustering of galaxies (see Peebles 1980 and 

references therein) and QSOs (Osmer 1981, Chu and Zhu 1983), 

namaly the two point correlation function. f(r). The correlation 

- function can be defined (Peebles 1980) through the joint 

- ~-- -pro.Dabil-ity ---- ~---~- ----~----- ------

8P(r) = n2 (z)[1+f(r))8Vt 8V2 (5.1) 

of finding a pair of objects (in this case QSOs) in the comoving 

volume elements 8Vt8V2. separated by comoving distance rat 

redshift z. where the space density of QSOs is n(z). As QSOs are 

observed 

comoving 

unchanged 

over a wide range of redshifts, we choose to work in a 

coordinate system in which distances will remain 

with epoch. For a random spatial distribution the 
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number of QSOs in any comoving volume element (8V) will be given 

by n(z)8V. Thus ~(r) will be positive at scales where QSOs are 

clustered amongst themselves, zero where QSOs are randomly 

distributed with respect to one another and negative where they 

exhibit anti-clustering. 

Before we can find an estimator for ~(r) we must first 

establish a method for calculating the comoving distance, r, 

between QSOs observed at redshifts z. and z2 and separated by an 

angular distance 9. In standard Friedmann cosmologies it has 

long been known (Sandage 1961) how to calculate such distances in 

the limit of small redshift separations, ~z. or small angular 

separations, ~9, e.g. 

r = c/Ho s~9 at constant z (5.2a) 

r = c/CHo (1+z) )~z at constant 9 ... (5.2b) 

s = ( zgo + (go -1 ) (I ( 1 + 2go z) -1 ) ) Qo > 0 (5.2c) 
(1+z)qi 

= z(1+z/2) Qo = 0 . . . (5.2d) 
(1+z) 

where s is the dimensionless comoving coordinate. However sttch 

approximations do not hold in the case of QSOs where ~z is large. 

Osmer (1981) has therefore devised a method to calculate the 

distances between QSOs separated by arbitrary large redshifts or 

angular distances. In d~ing so, he utilises the expression given 

by Weinberg (1973) for transforming from one coordinate system to 

another in the Robertson-Walker metric. 

X'=X+a{/(1-kX2 )-[1-1(1-ka2 )](X.a/a2 )} • • • ( 5 • 3 ) 
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where X' and X are the comoving vectors to a particular QSO from 

the transformed and original origins respectively. The 

transformation vector a is expressed in the frame of the 

transformed coordinate system and k is the curvature term in the 

Robertson-Walker metric (k=l,0,-1 for q0 <0.5, 0 or > 0.5 

respectively). 

The problem of finding the distance between two QSOs simply 

reduces to the task of transforming from the coordinate system in 

which we observe the QSOs to one in which one QSO in the pair 

lies at the origin. The distance is then given by the magnitude 

of the transformed vector X', when X is the coordinate vector of 

the second QSO in the original system. 

As demonstrated by Osmer (19~1), the simplest way to use 

equation (5.3) is to locate each pair of QSOs in the observer's 

(x,y,z) coord.inate frame at (O,O,st) and (s2sin8,0,s2cos8), where 

s is given by equation (5.2c or d) and the subscripts refer to 

the individual QSOs in the pair. The transformation vector 

therefore has components (O,D,st) and, from equation (5.3) the 

transformed vector X' becomes: 

X' = ( s2 si n8, 0, s2 cos8) + C ( 0, 0, -si ) ( 5. 4a) 

C = (/(1:tsJ)+s2/stcos8-s2/sicos8/(1±si)} qo ~ ~ 

C - 1 qa = ~ • • • ( 5. 4c) 

(5.4b) 

The distance between the QSOs, r, is then found from the 

magnitude of the vector X': 

r = c/Ha J ds//(1-ks2 ) • • • ( 5 • 5 ) 
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For q0 =~ the equations (5.4a,c) and equation (5.5) reduce to the 

standard Euclidean cosine rule: 

•.• (5.6) 

Using the above method to calculate distances between QSOs 

an estimator for ~(r) can be defined as follows (Peebles 1980): 

~ ( r) ;:: N, • /Ne R - 1 (5.7) 

Nee is merely the number of catalogue QSO pairs found at 

separations r-~r/2 to r+~r/2. NeR is the number of QSO/random 

point pairs found (after appropriate normalisation for the 

respective numbers of objects in the QSO and random point 

catalogues and correction for double pair counting) over the same 

range in separations. The latter catalogue was obtained by 

randomly distributing points on the plane of the sky over the 

surveyed areas, with redshifts assigned to each QSO, by random 

selection from the observed QSO n(z) distribution (figure 4.7). 

The smooth n(z) distributions for the survey QSOs illustrated in 

that figure indicate that the QSO catalogue is not seriously 

biased towards particular redshift ranges. Such a biased 

distribution could have occured had either the UVX technique been 

seriously· incomplete .Csee chapter 3.4a) or had a large number of 

QSOs been preferentially assigned the incorrect redshift from a 

single line identification. As this appears not to be the case 

our QSO catalogue is well suited to this clustering analysis. 
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While the overall n(z) distribution may be smooth, we note 

from figure 5.1 the apparent 'clumpiness' of the redshift 

distribution for QSOs on individual fields. In particular, we 

observe several 'clusters' of QSOs i.e 3-4 QSOs with similar 

redshifts ( Az < 0.1) separated by a few arcminutes. A good 

example of such a 'cluster' is to be found on the QNY2 field. 

The 4 QSOs (QNY2:07,15,21 and 22) which make up this group all 

have redshifts in the range 1.95 < z < 2.03 and are separated by 

less than 20 arcminutes on the sky. 

in figure 5.2. The following 

Their spectra are re-plotted 

analysis will ascertain the 

significance of such associations. 

In our estimation of ~(r) from the catalogue QSOs, 

'cross-FOCAP field' pairs have only been taken into account when 

the FOCAP fields lie on the same gchmidt fields. The different 

Schmidt plates on which the survey areas were defined lie at 

least 25 degrees away from each other, corresponding to 

separations of 100Qh-tMpc at z = 1.5 (qo = ~). However ~(r) will 

not be calculated for distances greater than this value. 

5.3 Results from the faint QSO survey 

We now calculate ~(r) for the QSOs in our faint survey using 

the method defined above. In doing so we will explicitly take 

into account the dependence of f(r) on the cosmological model 

,chosen by calculating the correlation function for both a closed 

(qo = ~) universe and an open (qo = 0.1) universe. 
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Figure 5.1 Number redshift relation for QSOs (all redshift 
classes) on individual fields in the faint 
spectroscopic survey. 
a) SGP. QSF and QNB f~elds. 
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Figure 5.1 continued b) QNY, QNA and QSM fields. 
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Figure 5.2 An unusual QSO grouping. Spectra of 4 QSOs discovered 

on the QNY field within a 20 arcminute.radius. 



Initially we determined ~(r) using only the QSOs with 

0.4<z<2.2 and redshift classes 1 and 2. The lower limit of z = 

0.4 was imposed to avoid the strong discontinuity seen in the 

n(z) distribution (figure 4.7). Thus the smoothed fit to this 

distribution used in the construction of the random point 

catalogue could be approximated by a straight line. It was 

found, however, that ~(r) was insensitive to small changes in the 

fit, as more complex polynomials used to define the n(z) relation 

between 0.4<z<2.2 (and even O<z<2.2 when the two lower redshift 

QSOs were included) made no significant change to f(r). 

Moreover, the inclusion of redshift class 3 objects, 

originally excluded for fear that their uncertain redshifts may 

be preferentially assigned towards one particular redshift range, 

thus biasing f(r), also made no significant difference to the 

estimate of f(r). This is demonstrated explicitly in figure 5.3, 

where the estimate of ecr) (calculated for a Qo = ~ universe) is 

plotted both with and without the inclusion of redshift class 3 

objects. Henceforth, estimates of f(r) will include all classes 

of redshift (by rejecting redshift class 3 QSOs we might equally 

well be biasing ecr) against redshift ranges in which QSOs have 

only one strong line visible in their IPCS spectrum). Using the 

QSO sample thus defined we plot ecr) for a Qo=0.1 universe in 

figure 5.4. 

Table 5.1 lists the number of QSO pairs on which 

estimates of f(r) were based. In this analysis 

the above 

f(r) was 

calculated in logarithmic bins over the scales th-'<r<1000h-tMpc. 

The e~ror on our spectroscopic redshift (Az ~ 0.003), however. 
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Figure 5.3 Correlation function, f(r), for QSOs in the 
faint UVX survey, calculated for a qo = 0.5 
universe. Solid line indicates predicted 
galaxy f(r) at z=l.S. 
a) Redshift classes 1 and 2 only. 
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Figure 5.3 continued b) All redshift classes. 



Qo =0. 5 Qo =0. 1 

r Number of ~(r) Number of ~(r) 
(h- 1 Mpc ) QSO pairs QSO pairs 

2.2 1 3.84 1 7.58 

4.5 5 2.52 1 0.68 

8.9 5 0.65 6 1.17 

15.8 10 -0.33 8 0.35 

22.4 16 0.23 5 -0.40 

28.2 23 0.30 6 0.12 

35.5 27 0.06 15 0.24 

44.7 28 -0.28 19 0.30 

56.2 59 0.13 36 -0.33 

70.8 60 -0.05 24 -0.06 

89.1 68 -0.08 40 0.01 

112.2 75 -0.12 56 -0.09 

141.3 104 0.03 50 -0.04 

177.8 114 -0.04 72 -0.07 

223.9 151 Q.07 91 -0.04 

281.8 150 -0.10 99 0. _11 

354.8 165 -0.12 139 -0.04 

446.7 172 -0.15 160 -0.16 

562.3 198 -0.12 159 -0.16 

707.9 240 -0.01 195 -0.10 

891.3 249 0.03 203 0.02 

Table 5.1 Pair Counts and ~(r) Estimate for Open and 
Closed Models (all redshift classes included). 



represents a fundamental limit for the accuracy of the distances 

calculated between QSOs in the catalogue (~5h-tMpc). Although we 

have plotted the correlation function at smaller values than 

this, because of the noise at these small separations, any 

conclusions drawn from the form of s(r) at small scales will only 

involve the total number of pairs seen at separations less than 

10-15h-tMpc. 

The error bars plotted in figures 5.3 and 5.4 are derived 

from 

/c1+s<r>>IN.: 

1/JNee 

s(r) > 0 

((r) < 0 

(5.8a) 

(5.8b) 

representing the statistical significance of the fluctuations 

from the Poisson hypothesis for ((r). The validity of these 

error bars were checked by ensuring that they were of the same 

magnitude as those defined by the variation in the values for 

s(r) derived from North and South Galactic latitude subsamples 

(plotted in figure 5.5 for a qo=~ universe). 

5.4 Discussion 

We now discuss the main features of the correlation 

functions derived in the previous section, commenting in turn on 

3 different scale lengths in s(r). The scale lengths quoted will 

refer explicitly to the estimate of s(r) in the qo=% model, the 

equivalent separations in the q0 = 0.1 model being some 50% 

larger. 
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Figure 5.4 Correlation function, s(r), for QSOs in the 
faint UVX survey, calculated for a Qo = 0.1 
universe. Solid line indicates the predicted galaxy 
f(r) at z=1.5 All redshift classes included. 
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Figure 5.5 a) ~(r) calculated in a qa = 0.5 universe for 
the north Galactic latitude subsample of 
the faint UVX QSO survey. 
Solid line indicates the predicted galaxy ~(r) at 
z=1.5. 
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Figure 5.5 b) f(r) calculated in a qo = 0.5 universe for 
the south Galactic latitude. subsample of 
the faint UVX QSO survey. 
Solid line indicates the predicted galaxy f(r) at 
z=1.S. 



a) r < 1 Oh- 1 Mpc 

As these are the scales at which we observe galaxies to be 

strongly clustered at the present epoch, we first compare the 

amplitudes of the galaxy and QSO correlation functions within 

this range. 

The galaxy correlation function has a well established power 

law form below 5h- 1 Mpc which can be represented by (Peebles 1980 

and references therein): 

~(r) = ((r/ro )h)-t.a ••• (5.9a) 

ro = 4h- 1 Mpc • . . ( 5. 9b) 

This function reflects the clustering of galaxies in regions 

where the over density of matte.r has become so high ( 8p/ p ~ 1) 

that they have ceased to take part in the general expansion of 

the universe and have become bound unit~. Above 5h- 1 Mpc a break 

to an even steeper power law is clearly seen in the galaxy 

correlation function (see Shanks et 6J. 1983a). Such a feature 

implies that density inhomogeneities on these scales have not 

become bound units and are, in the main, still expanding with the 

Hubble flow. In this 'linear' regime the correlation function 

will be given by 

~(r) • (rh)-C3+n) ••• (5.10) 

where n is the power of the spectrum of mass density fluctuations 

(Peebles 1980). In a hierarchical clustering model the value of 

n is reflected in the slope of the correlation function in the 

bound regime e.g. (Peebles 1980) 
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~ ( r ) « r- ( 9 + 3 n ) I ( 5 + n ) a: r- t • 8 • • • ( 5 • 1 1 ) 

Equation (5.11) therefore suggests a value of n = 0. Certainly n 

is unlikely to be less than -1 (otherwise the break in ~(r) would 

not be so conspicuous). We therefore take n = 0 in equation 

(5.10) to provide a useful upper limit to -the amount of 

clustering at large scales. 

Because scales smaller than the break at 5h- 1 Mpc are no 

longer expanding freely with the universe, we can not directly 

compare the QSO and galaxy correlation functions at the same 

comoving separations. We therefore evolve the galaxy correlation 

function back to z=1.5 (corresponding to the average QSO redshift 

in our survey) and perform the comparison at that epoch. The 

form of this evolution is, howeve~, dependent on the cosmological 

model adopted and so we will consider separately the open and 

closed universe models adopted here. 

i) Closed, qa =~ 

In a closed universe, 'seed' perturbations continue to grow 

gravitationally from decoupling until the present epoch. In 

terms of proper distance the break scale in the correlation 

function will therefore evolve as (Peebles 1980) 

ro ( t ) « t 2 1 ' (5.12) 

where r is the slope of the galaxy correlation function and t is 

the age of the universe Ct=1-t, where t is given by equation 

(4,17b)). By ensuring that the break still occurs at an 
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amplitude of ~=1, we obtain, in comoving coordinates the galaxy 

correlation function at z = 1.5:. 

s(r) ~ 4(rh)-t.a 

~(r) ~ 10(rh)- 3 

r < 2.7h- 1 Mpc 

r > 2. 7h- 1 Mpc 

(5.13a) 

(5.13b) 

The solid lines plotted in figures 5.3 and 5.5 correspond to 

this correlation function. Because of the noise in the QSO 

correlation function at these separations, we choose not to draw 

conclusions from the comparison of the general form of these 

correlation functions but rather from the comparison between the 

observed and predicted number of pairs for the QSO and galaxy 

correlation functions respectively. 

For a population of objects . with a correlation function 

~(r), Peebles (1981) has shown that, at scales less than r. the 

fractional nQmber of pairs. 8N/n, expected in ex~ess of that for 

a uniform (Poisson) distribution is given by: 

,. 
8N/N = 3/r3 Jf(r')r' 2 dr' . . . (5.14) 

0 

At scales <10h- 1 Mpc, the number of galaxy pairs thus 

predicted for the correlation function given by (5.13) can be 

compared in table 5.2 to the number of QSO pairs actually 

observed. From this we see that, in a closed universe at least, 

QSOs are more strongly clustered than galaxies at the 2.7a level. 

Moreover we note that the average value for the galaxy 

correlation function at these scales (also 9iven in table 5.2) is 

well below that observed for QSOs. These conclusions are 
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Observed Predicted 
Galaxy Cluster 

No Stable Stable at 
Regime r < 10h-tMpc 

Model Scale N,. r N,.,. ~e a o N •• ~~~a I Nc c ~c 1 us Nc c ~c 1 u,. 

qo =. 5 <10h- t Mpc 4.6 11 1. 39 4.9 0.06 83.3 17.1 22.8 3.96 

qo =.1 < 15. 8h- t Mpc 7.8 16 1.05 9.2 0.18 

Table 5.2 Correlation Function Comparison 



relatively independent of the break scale chosen. Even with the 

break in the galaxy ~(r) at 10h-!Mpc (see Peebles 1980 and 

references therein), only 5.2 QSO pairs would be expected in our 

survey on the hypothesis that QSOs cluster like galaxies, still a 

2.5a discrepancy from the observed value. 

ii) Open, Qa=0.1 

In an open universe, growth of the initial perturbations 

from decoupling stops by a redshift of z = 1/(2qa-1), which, for 

a Qa=0.1 universe, will occur at a redshift of 4. Thus the 

non-linear regimes which we observe today will have been 'frozen 

in' at the same proper diameters since that epoch. In comoving 

coordinates this will result in the size of the break between 

non-linear and linear regimes incieasing with redshift as (1+z). 

It is, however, difficult to see how such a large break scale 

(12.5h-!Mpc comoving) could arise at z = 1.5 in the standard 

gravitational instability model dicussed here. Indeed, the break 

scale length currently observed in the galaxy correlation 

function has been used as an argument against a low Qo universe 

(Peebles 1980). The following treatment must therefore be viewed 

as purely empirical, with the predictions providing a useful 

upper limit on the number of QSO pairs expected at small 

separations in an open universe. 

In proper coordinates, the density in the non-linear regions 

will stay constant with redshift while the background density 

will increase as (1+z) 3 • The amplitude of ~(r) in comoving 

coordinates will therefore decrease as (1+z)!· 2 and the galaxy 
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correlation function at z = 1.5 will be given by: 

~(r) - 9(rh)- 1 • 8 

~(r) = 180(rh)- 3 

r < 12.5h- 1 Mpc. 

r > 12.5h-tMpc. 

(5.15a) 

(5.15b) 

As distances are ~ 50% larger in a qo = 0.1 universe 

compared to those in an Einstein-de Sitter universe, we choose to 

compare the predicted number of QSO pairs from equation (5.15) 

with those observed in the first four bins plotted for ~(r) in 

figure 5.4, corresponding to scales < 15.8h- 1 Mpc. At these 

scales we once again find moderately significant (2.2a) evidence 

that QSOs are clustered more strongly than galaxies, with the 

average value for the galaxy ~(r) being well below that observed 

for QSOs. 

We note that Shaver (1984) has also calculated ~(r) for 

those QSOs with accurate spectroscopic redshifts in the 

Veron-Cetty and Veron (1984) catalogue. While the correlation 

function presented there is extremely noisy, it appears (from 

inspection o£ Shaver's figure 2) to be in qualitative agreement 

to that found here. Although Shaver (1984) concludes that the 

amplitude of the QSO ~(r) is indeed consistent with the present 

day galaxy correlation function it appears that he has not taken 

into consideration the dynamical evolution of the galaxy 

correlation function discussed here. 

We can also compare the amplitude of the QSO ~(r) to that 

obtained from the Abell cluster correlation function (Bachall and 

Soniera 1983): 
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~(r) = 360(rh)- 1 • 8 (5.16) 

Unfortunately, both the form of this correlation function and its 

evolution are subject to strong uncertainties. In particular, 

the nature of the evolution is critically dependent on which 

scales we may consider to be 'stable' at the present epoch. We 

therefore attempt to predict the form of the cluster correlation 

function at z = 1.5 for the closed model only, merely as an 

illustration of the approximate numbers we may expect to see wer~ 

QSOs to cluster like Abell clusters of galaxies. Any conclusions 

drawn from this analysis will therefore be extremely tentative. 

We consider two cases for the evolution of the cluster 

correlation function in a closed universe. Firstly, all scales 

are assumed to be still expanding _with the universe (i.e. in the 

linear regime). ~(r) will therefore retain the same form at z = 
1.5 as it does at the present day. The numbers of pairs and the 

average value for ~(r) predicted from such a model are, however, 

much larger than the numbers of QSOs observed (see table 5.2) and 

it appears that we can rule out this model at a high level of 

significance. A more realistic approach, however, will be to 

assume that clusters have begun non-linear collapse below at 

!.east some small scale. Guided by the shape of the galaxy 

correlation function it would appear that a choice of 10h-sMpc 

for this scale would not be unreasonable. The correlation 

function will then evolve in the same manner as the galaxy 

correlation function in the qo=~ universe detailed above. The 

cluster correlation function at z = 1.5 will therefore be given 

by: 
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~(r) = 120Crh)- 1 • 8 r < 5.4h- 1 Mpc 

~(r) = 910(rh)- 3 r > S.4h- 1 Mpc 

•.. (5.17a) 

•.. (5.17b) 

From table 5.2 we see that a much reduced number of pairs is 

now expected, although there is still a 2.Sa discrepancy with the 

observed number of pairs. This illustrates well the strong model 

dependence on the form of the cluster ~(r) at z = 1.5. 

From the amplitude of the QSO correlation function at scales 

< 1Qh- 1 Mpc we tentatively conclude that QSOs are more strongly 

clustered than galaxies. While uncertainties still exist over 

the precise form and evolution for the Abell cluster correlation 

function, we also conclude, albeit even more tentatively, that 

QSOs do not cluster as strongly as rich clusters. Further 

observations will be necessary beiore these conclusions can be 

based on a firmer footing. It is interesting to note that Yee 

and Green (1984), from direct imaging of low redshift QSOs, find 

QSOs preferentially associated with small clusters or groups of 

galaxies and not in the field or in large, Abell-type clusters. 

The amplitude of our QSO correlation function may then be 

providing us with information on the environment of QSOs, in turn 

indicating the scale (i.e 'local' galaxy or 'external' cluster) 

of the effects necessary to. initiate the QSO phenomenon. We 

discuss this more fully in chapter 8. 
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In contrast to the relatively high amplitude of the QSO 

correlation function observed at small scales above, ~(r) for 

QSOs in the range 1Qh-i <r<SOh-iMpc is close to zero. However, 

within this range considerable structure may exist in the 

correlation function. 

Comparison between the number of QSO pairs observed at these 

separations and the numbers predicted from the cluster 

correlation function yields no additional information on the 

similarity or otherwise of the QSO ~(r) to the cluster ~(r). For 

example 136 pairs would be expected in our survey at separations 

< SOh-tMpc on the assumption that QSOs clustered like Abell 

clusters (with an assumed break a~ 10h-iMpc) whereas 116 were 

observed, a discrepancy of only 1.6a. 

We do note however that we find no evidence for strong 

clustering on the scales at which we observed the apparent QSO 

'clusters' commented on in chapter 5.2. In particular, of the 

group of 4 QSOs on the QNY2 field discussed there, only 2 

(QNY1:20 and QNY1:25) are observed at separations (r = Sh-iMpc) 

where we find a signi~icantly positive value for the QSO ~(r). 

The separations between the other members of this 'group' are 30 

40h-tMpc, where no strong clustering is observed in the QSO 

~(r). Many such QSO clusters, which appear remarkable on first 

inspection, may therefore be simply chance associations. 
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Although the average value of ~(r) at these scales may be 

close to zero, we can not rule out the fact that there could be 

significant structure over small ranges in separation within this 

region. In particular, we note that the QSO ~(r) may exhibit 

(although at present seen at low signal-to-noise) a 

characteristic 'trough-peak-trough-peak' relationship over·this 

range. Such recurrent behaviour in the amplitude for the 

correlation function is most naturally predicted for baryon 

dominated universes (Peebles 1981) and not for universes 

dominated by weakly interacting particles (Peebles 1982). This 

is because, unlike the particle case where all fluctuations up to 

the Jeans mass scale are damped .prior to the epoch when the 

relevant particles decouple form the photons, in baryon dominated 

universes damping only occurs fo~ perturbations smaller than the 

Silk mass scale. B~tween this and the Jeans mass scale 

perturbations oscillate acoustically until the baryons decouple 

from the radiation, giving rise to 'peaks' in ~(r) at scales 

determined by the cosm~logical model. 

It is interesting to note that such peaks are also observed 

in the galaxy correlation function of Shanks (1986) at scales of 

28h- 1 Mpc and 56h-t Mpc. Any feature observed at these scales 

will still be taking part in the general expansion of the 

universe, and so its comoving scale length will remain unchanged 

with cosmic epoch. Thus the identification of such peaks in the 

QSO ((r) would riot only suggest a· baryon dominated model, but 

also provide a powerful qo test as the difference between QSO 

separations calculated in open Cqo = 0.1) and closed (qo = 0.5) 
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models amounts to some 50% at z = 1.5. If confirmed, the 

appearance of the 'peaks' at~ 30h-iMpc and SSh-iMpc in the QSO 

s(r) for a qo = ~ universe (i.e. at the sames scales as in the 

galaxy s(r)) would therefore indicate a closed universe. However 

many uncertainties still exist. In particular, biasing (Kaiser 

1984) would almost certainly be required to enable these 'peaks', 

observed to have s(r) ~ 0.1 in the galaxy correlation function. 

to be observable in the QSO s(r). Further comment is therefore 

postponed until increased signal-to-noise is available on the 

estimates of the oso s(r) at these scales. 

At these scales s(r) is compatible with a Poisson process, 

providing strong evidence for the homogeneity of the Universe at 

high redshifts. This confirms the more tentative results of 

Osmer (1981) and Webster (1982a) who also found no significant 

clustering of QSOs at these large separations. It is interesting 

to note that we find no evidence for clustering at scales ~ 

100h-tMpc and, as such, groups of QSOs seen at these scales (e.g. 

Oort et al. 1981, Webster 1982a) are unlikely to be 

representative of the clustering properties of the QSO population 

as a whole. We note in passing that the zero amplitude for the 

QSO s(r) at these scales is consistent with the homogeneity of 

the QSO n(m) counts observed over our survey fields in chapter 

4.2. 
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The homogeneity discussed above is only strictly valid to 

within the noise level on our estimates for g(r) at these large 

scales. Futher observations will be necessary to set stronger 

constraints on the homogeneity of the universe, and, as such, may 

reveal features in the correlation function at small amplitude 

corresponding to large scale fluctuations in the early universe 

e.g. Jeans scale (see Peebles 1980). 

5.5 Conclusions 

We have seen how the QSO correlation function can be used as 

a powerful probe of the structure of the universe at large 

redshifts. Convincing evidence has been found for the 

homogeneity of the universe at scales greater than 5Qh- 1 Mpc. 

Although as yet based on a relatively small number of QSO pairs, 

we also conclude that, at small scales (r < 1Qh- 1 Mpc), QSOs 

appear to cluster more strongly than galaxies and less strongly 

than rich clusters but, especially in the case of clusters, any 

conclusions drawn are also strongly dependent on the cosmological 

model adopted and evolution assumed for the correlation 

functions. Further observations are therefore required to 

increase the numbers of surveyed QSOs suitable for clustering 

analysis. Such an increase would help to drive the noise down on 

the estimates -of f(r) at all scales, thus achieving better 

discrimination between the predictions of the galaxy and cluster 

correlation functions at small scales, and obtaining verification 

for other low S/N features in the QSO correlation function. 

Moreover, it would also enable calculation of the QSO f(r) at 
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discrete 

affording 

redshift intervals between 0 < z < 2.2, thereby 

an explicit demonstration of the evolution of the QSO 

correlation function. 
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CHAPTER SIX 

TWO DIMENSIONAL ANALYSIS OF QSO CATALOGUES 

6.1 Introduction 

In the previous chapters we have used only a small fraction 

of the UVX sample (i.e. that part for which we have 

spectroscopic information) to study the clustering and. evolution 

of QSOs. However, the spectroscopic surveys confirmed that the 

UVX sample does indeed contain a large fraction of QSOs and, in 

applications where redshift information is not essential, the 

large UVX samples can be used to provide a statistically powerful 

basis from which to investigate many important features of the 

QSO population. 

One such application is the objective assessment of the 

significance of associations seen between high redshift QSOs and 

low redshift galaxies. Such observations have fuelled 

speculation about a non-cosmological interpretation for the QSO 

redshift (see chapter 1). As exemplified by Nieto and Seldner 

(1982), the success of any statistical approach is dependent on 

the unbiased nature of the QSO and galaxy catalogues employed. 

As such, our large, machine measured UVX catalogues are ideally 

suited to this task. 

In this chapter, therefore, we apply standard statistical 

techniques to the UVX samples and galaxy catalogues obtained from 

COSMOS machine measurements in order to investigate the 

clustering properties of UVX objects amongst themselves, and with 
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respect to galaxies. For comparison, the clustering properties 

of catalogues of emission line objects are also analysed. 

Initial results from these clustering studies have previously 

been reported in Shanks et al. (1983c) and Boyle et al. 

(1983,1984). 

6.2 Statistical techniques 

6.2.1 The 2-point Cross-correlation Function 

F~llowing Seidner and Peebles (1979), we use the 2-point 

cross-correlation function to investigate QSO/galaxy 

associations. As pointed out by Seidner and Peebles (1979), the 

method has the advantage that statistical tests of such 

associations are possible even ~ith incomplete QSO samples. The 

2-point cross-correlation function is obtained from suitable 

galaxy and QSO catalogues by firstly centring on catalogued QSOs 

and making counts of galaxies in annuli (radius 8, width 49) 

around each one in turn (N9 (8)). Secondly, the total number of 

galaxies expected on the basis of a Poisson model in each annulus 

is computed (Nr (9)), using a random catalogue (containing 

typically 10 times as many points as the galaxy catalogue) 

normalised to the average density of galaxies used in the 

correlation analysis. Because the random catalcigue is 'laid 

down' over precisely the same area over which the galaxies were 

selected, any 'hol~s· (see chapter 2.4.1) in the galaxy catalogue 

are naturally taken into account. The 2-point cross-correlation 

function, Wq 9 (8), is then defined by 

Wq 9 (9) = N9 (9)/Nr (8) - 1 (6.1) 
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The normalising constant, -1, ensures that Wqg (8) is zero on 

the Poisson hypothesis, positive if QSOs cluster around galaxies 

and negative is there is an avoidance of galaxies by QSOs. 

Since Wqg (8) depends only on the number of QSO-galaxy pairs, 

ideally Wqg (8) should be the same whether we centre on QSOs and 

count galaxies or vice versa. However, since the construction of 

the UVX catalogue involves the measurement of 2 plates, rather 

than the single plate measurement required for the galaxy· 

catalogue, any gradients on the plates used to compile the 

catalogues are twice as likely to be introduced into the UVX 

sample as into the galaxy sample. In addition, the subjective 

selection of emission line objects may also introduce gradients 

into the catalogues produced from visual inspection of objective 

prism plates. We therefore choose the objects in the UVX or 

emission line catalogues as centres, since any gradients in the 

population of objects chosen as centres will not affect the 

cross-correlation result (Seldner and Peebles 1979), as long as 

the distribution of objects to be counted around these centres 

(i.e. galaxies) is uniform. However, subsequent study of the 

UVX objects in the 'restricted' (see chapter 4.2.1) samples has 

revealed no strong gradients in their distribution across any of 

the fields used in the cross-correlation analysis, see e.g. 

figure 6.1. Indeed, the only UVX field (QNA) that did exhibit 

any non-uniformity was rejected from inclusion in this study (see 

chapter 2.4.2 and figure 6.1). As such we could afford to 

replace UVX objects with cluster galaxies as centres when the 

latter were used in the cross-correlation analysis, since, by 
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their very nature, c)uster galaxies 

non-uniformities over the plate. 

will 

6.2.2 The 2-point Auto-correlation Function 

exhibit strong 

To analyse the clustering of QSOs. amongst themselves we 

employ the 2-point auto-correlation function, Wqq (8). An 

estimator for this function can be defined as follows (Shanks 

1979): 

Wq q ( 8 ) = Np ( 8 ) IN. ( 8 ) - 1 • • • ( 6 • 2 ) 

where Np (8) is the total number of QSOs found in half annulus 

bins of width A8, distance 8 away from each other QSO in the 

sample and N. (8) is the number of objects found in these bins 

from a random distribution of obj~cts. Approximately 10-20 times 

as many random points as QSOs were chosen to estimate Wqq, N. (8) 

being normalised using the respective number of objects in each 

catalogue. This correlation function is extremely sensitive to 

small gradients in the data set used (Shanks 1979). 

6.3 Data 

6.3.1 The Combined Data Set 

Table 6.1 lists all fields used in the. clustering 

together with the catalogues available on each field. 

analysis 

UVX and 

galaxy catalogues were obtained from a total of 7 of these fields 

on which UK Schmidt U and J plate pairs have been measured by 

COSMOS. Five of these fields were covered in the faint 

spectroscopic survey the additional survey field (QNA) was 
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Field UVX Sample Emission Line Catalogue 

SGP YES Clowes and Savage (198J) 

QSN NO Savage et al. (1984) 

QSC NO Chen (1984) 

QSD YES Savage and Bolton (1979) 

QSF YES 

QNB YES 

QNY YES 

QSM YES Savage and Bolton (1979) 

QSI YES 

Table 6.1 QSO samples used on fields in 20 correlation analysis 

.. 
Name b u-b z 

0154-512U 17.66 -0.47 1.660 

0155-495 18.68 -0.26 1.298 

0155-501U 19.01 -1.19 1.978 

PKS0203-520 17.57 -1.14 1. 42 

0203-497U 17.59 -0.71 1. 42 

PKS.0208-512 17.12 -0.51 1.001 

0213-484 17.99 -0.34 0.169 

Table 6.2 Spectroscopically Confirmed 
QSOs on QSD field 



excluded because gradients in the U plate on this field (chapter 

2.4.2) gave rise to large variations in the UVX surface density 

over the matched U and J plate area (see figure 6.1). 

J plates alone on a further two fields (QSN and QSC) were 

used to provide the positions of faint galaxies, with which 

catalogues of emission line objects already available on the 

fields could be cross-correlated. Emission line catalogues also 

existed on three of the UVX fields (SGP,QSM and QSD) on which a 

similar analysis could be carried out. 

6.3.2 The UVX Sample 

Whilst machine based UVX samples are unbiased, they suffer 

from the disadvantage that, without spectroscopic observations, 

the amount of contamination by Galactic stars and even galaxies 

is unknown. Since Galactic stars are distributed randomly 

amongst themselves (Shanks 1979) and with respect to galaxies, 

contamination of the UVX sample by Galactic stars will only serve 

to reduce any non-Poissonian result seen for the UVX/UVX or 

UVX/galaxy associations. More importantly, however, 

contamination of the UVX sample by galaxies will greatly affect 

any clustering results as normal galaxies are not only strongly 

clustered amongst themselves but also many compact blue galaxies 

(which can form a considerable fraction of the UVX sample, see 

chapter 3.6) may exhibit a marked anti-correlation with respect 

to clusters of galaxies (Fairall 19.76). It is therefore vi tal to 

ensure that the contamination by objects other than QSOs 

(especially galaxies) in the UVX sample is kept to a minimum. 
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Fortunately, in this case, the fact that many of our UVX fields 

intended for use in the clustering analysis have already been 

observed spectroscopically allows us to do just that. 

The contamination of the UVX sample by Galactic stars on 5 

out of the 7 fields (SGP,QSF,QNB,QNY and QSM) can immediately be 

reduced by using, as a UVX criterion, the 'restricted' u-b limits 

derived in chapter 4.2.1 on these fields. These limits were 

chosen to cut the contamination by Galactic stars in th& UVX 

survey from 55% down to 25%. Most of the remaining contaminating 

stars are white dwarfs and early type stars with u-b colours 

approximately equal to the mean QSO u-b colour. Thus further 

reduction of the stellar contamination would require UVX limits 

so blue that a great many QSOs (~50%) would also be lost from the 

UVX sample. As it stands, the restricted UVX criteria defined on 

these five fields selects 85% of all the UVX QSOs (see table 

4.2). Knowledge of the precise level of contamination by 

Galactic stars further allows us to make direct quantative 

comparisons between the r&sults obtained for the UVX sample and 

those obtained for the emission line catalogues, whose 

contamination is also known (see chapter 6.3.4). 

The other two UVX fields (QSI and QSD), were not included in 

the spectroscopic survey and so we do not know directly the level 

of ~oritamination of UVX samples on these fields. The UVX 

criterion on the QSD field was therefore. chos&n to give a similar 

surface density of UVX objects at b=20.0 mag to that found on the 

five survey fields. Although B photometry on the QSD field was 

not·available to as faint magnitudes as on the survey fields (see 
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chapter 2.4.4), we can confirm (see table 6.2) that the UVX 

sample defined for the correlation analysis on this field 

contains all the spectroscopically confirmed low redshift (z < 

2.2) QSOs (Savage et al. 1985) listed in the emission line 

catalogue of Savage and Bolton (1979). We do note, however, that 

a number of z < 2.2 objective pri~m QSO candidates (5 out of 26) 

in the Savage and Bolton (1979) catalogue have u-b colours 

significantly redder than our UVX limit on this field. 

Originally this was thought to be due to large errors in our 

colours on this field and so QSD was not included in our faint 

spectroscopic survey. However, de Ruiter (private communication) 

finds that, on obtaining slit spectra for these objects, they are 

either misidentified Galactic stars or high redshift (z > 2.2) 

QSOs. 

As discussed in chapter 2.4.4 the calibration on the QSI 

field is poor. The UVX limit chosen here is dictated by the 

method chosen to calibrate the b magnitudes on this field. 

Finally, table 6.3 gives the u-b limits and ~urface densities for 

the UVX samples on all 7 fields. 

In addition to removing most. of the Galactic stars, the use 

of the more severe 'restricted' UVX criteria in this analysis 

also removes.all but two (QSF1:33 and QNY2:39) of the compact, 

narrow emission line galaxies identified in the UVX spectroscopic 

survey down to a magnitude limit of b=20.75 mag. One of these 

galaxies (QNY2:39) has a u-b = -1.81 mag, a value so blue that we 

can set a lower limit for all the UVX samples of u-b > -1.75 mag, 

which will remove such objects whose u-b has arisen from 
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Area Surface Density (/square degree) 
Field (sq. deg.) UVX limit b < 20.00 b < 20.75 

SGP 11.33 < -0.5 13.2 31.1 

QSD 18.29 < -0.15 11.1 21.1 

QSF1 21.29 < -0.55 13.1 30.5 

QNB2 25.40 < -0.25 11.5 25.4 

QNY1 9.01 < -0.60 13.3 23.8 

QSM 16.74 < -0.70 14.4 26.7 

QSI 12.96 < -0.10 10.3 26.4 

1 UVX limits slighty different (0.05 mag) 
to the restricted limits defined in section 4.2.1. 
2 UVX limit employed on J9133S to give same surface 
density as restricted UVX limit on J7674 (see chapter 4.2). 

Table 6.3 UVX Star Surface Densities 



misclassification of the image on the J plate, without removing 

any QSOs from the UVX sample (the bluest QSO QNB2:01 has a u-b = 
-1.63 mag). The removal of the narrow emission line galaxies in 

this manner, by setting both a red and a blue limit for the UVX 

sample, will therefore ensure that any clustering seen between 

the UVX objects and the galaxy sample is not due to the 

contamination of the UVX sample by such compact galaxies. 

From the complete UVX catalogue we defined two sub-samples. 

One sample (hereafter referred to simply as the UVX sample) 

contained all UVX stars with 18 mag < b < 20 mag, while a faint 

UVX sample contained all UVX stars with 18 mag < b < 20.75 mag. 

The bright magnitude limit of b = 18 mag was chosen because, 

while only one QSO was observed in the faint spectroscopic survey 

with b < 18 mag, a large number of stars were. The faint 

magnitude limit of b = 20.75 mag was decided upon to prevent 

contamination of the UVX sample by the significant number of UVX 

emission line galaxies observed beyond this magnitude limit (see 

chapter 3.3.6) which could not be removed by using the 

'restricted' UVX limits described above. 

Plots showing the XY distribution of the objects in the UVX 

and faint UVX samples on all fields are shown in figures 6.1 and 

6.2. The extent of these plots represent the measured areas of 

the J plates on each field. The dashed lines signify the areas 

over which the clustering analysis took place. In most cases 

this area corresponds to the overlap between the U and J plates 

on the respective field, although in the case of the QSI field 

the clustering analysis took place over the smaller area, chosen 
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to be free of the gradient detected on U7120 (see chapter 2.4.2) 

As also discussed in chapter 2.4.2, J7674 (the J plate used for 

the spectroscopic survey on the QNB field) exhibits gradients 

over ~ one third of its measured area, cutting down the usable 

area on this plate. However, an additional J plate on the QNB 

field, J9133S, which became available arter the spectroscopic 

survey had been made, exhibited no such gradients and was 

therefore included in the correlation analysis in place of J7674. 

Figure 6.1 also displays the UVX sample at b < 20.0 mag on 

the QNA field. The large gradients across this field are clearly 

reflected in the anomalous distribution of UVX objects, 

demonstrating why this field was not considered in the clustering 

analysis. 

6.3.3 The Galaxy Sample 

The complete galaxy catalogue consists of all galaxies 

brighter than ~ = 20.0 mag over all fields listed in table 6.1. 

In addition we also selected a sub-sample of 'cluster' galaxies. 

This was done to establish the source of any clustering seen. 

The cluster galaxies were selected from the main galaxy catalogue 

using an algorithm written by Dr. P.R.F.Stevenson based on the 

multiplicity technique of Gott and Turner (1977). The 

application of thls algorithm to COSMOS data is fully detailed in 

Stevenson (1985). Galaxies found in groups of 5 or more, where 

the density of galaxies within the group was greater than 8 times 

that of the average galaxy density over the whole plate, were 

taken to be cluster members. The magnitude limit of the cluster 
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galaxy sample was chosen to be bJ = 20.16 mag (see Stevenson 

1985). With this technique 10% of galaxies were identified as 

belonging to clusters. Figure 6.3 displays the cluster galaxy 

sample over all seven fields. 

6.3.4 The Emission Line Sample 

The five catalogues of emission line objects used in this 

analysis are listed in table 6.1 above. All catalogues were 

obtained from visual searches of UK Schmidt objective prism 

plates. Full details of the compilation of these catalogues are 

given in the references listed. The RAs and Decs listed for the 

objects on these fields were transformed to the XY coordinate 

system in which the corresponding J plate was measured using the 

standard astrometric programs available on the SERC STARLINK VAX 

system at the University of Durham. The nearest stellar image 

(within a tolerance of 10 arcseconds) on the J plate was then 

identified as being the emission line object. This removed any 

emission line object identified as a galaxy, which may have 

biased the correlation analysis (see chapter 6.3.2), and those 

objects which lay in holes 'drilled' in the COSMOS data (see 

chapter 2.4.1). The distribution of the emission line objects 

thus included in the clustering analysis are shown in figure 6.4. 

On all but one field the clust~ring analysis was performed over 

the whole measured area of the J plate. The exception, the QSM 

field, is where the objective prism plate is centred 1 degree 

north of the J plate centre, and the area chosen for the 

clustering analysis is shown by dotted lines in figure 6.4. 
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6.4 RESULTS 

6.4.1 The Cross-correlation Function 

The cross-correlation functions for the galaxy/emission line 

pairs, w •• (8), is shown in figure 6.5. In this (as in all future 

cases) the cross-correlation functions for each individual field 

are displayed in the upper of the 2 diagrams in the figure, with 

the pair-weighted average cross-correlation function plotted 

below. Error bars are not displayed on the individual field 

cross-correlation functions, but those shown on the combined 

function are calculated from the rms field-to-field variation on 

w •• (8). These errors will be subject to errors themselves, but 

their true magnitude can best be estimated from the general trend 

of the error bars plotted on the diagrams. 

We see in figure 6.5 a somewhat surprising result. Although 

at low signal-to-noise (1.5 a) the correlation function is not 

positive (as it would be if the high redshift QSOs were truly 

associated with the low redshift galaxies), nor is it zero (as we 

would expect if QSOs were randomly distributed with respect to 

' galaxies). In fact, it is slightly negative, although admittedly 

at a much lower significance level than was first reported by 

Shanks et al. (1983c) using the Clowes and Savage (1983) emission 

line catalogue on the SGP. While it was suspected by Shanks et 

al. (19~3c) that cluster galaxies may be responsible for the 

observed anti-correlation, was never explicity demonstrated 

there. As we now have many more Schmidt fields (and therefore a 

much larger galaxy .catalogue in total), we may test this 

hypothesis directly by using the large sub-sample of cluster 
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galaxies selected from the galaxy catalogue. The 

cross-correlation function for the cluster galaxy/emission line 

pairs, Wee (9), is plotted in figure 6.6 and we see a striking 

anti-correlation between the galaxies which are cluster members 

and emission line objects, the result being significant at the 

2.Sa level. The level of anti-correlation is Wee (8) = -0.3 at 

scales< 4 arcmin. At the largest scales (9 > 20 arcmin.) the 

results are consistent with a Poissonian process. Therefore, the 

anti-clustering that was reported for the emission line 

catalogues for the SGP and QSM fields in Boyle et 81. (1983) is 

confirmed with the addition of a further three fields. The 

number of pairs at each angular separation that go to make up the 

estimate of Wee (8) are given in table 6.4, along with the 

value of We• (8) itself. 

The anti-clustering is not caused by the merging of images 

in the measurement process. Although merging of images by the 

COSMOS machine does occur, it only does so at angular separations 

of less than 30 arcseconds, see. Phillipps et 81. (1981). 

However, as pointed out in Shanks et 81. (1983c), this 

anti-clustering result could be due to a selection effect 

inherent in the detection of emission line objects from visual 

inspection of obje.ctive prism plates. For example, QSOs may be 

more likely to be rejected in regions where there is a high 

density of galaxies, for fear that their emission line spectra 

might merely be the result of overlapped gal~xy spectra. 
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8 We: u ( 8) w., t ( 8) We: a ( 8) 
(arcmin) Np w Np w Np w 

0.90 31 -0.25 79 -0.20 8 -0.43 

1.18 42 -0.37 112 -0.20 16 -0.33 

1. 53 101 -0.11 236 -0.01 24 -0.41 

2.00 155 -0.16 382 -0.03 48 -0.29 

2.61 234 -0.27 583 -0.13 85 -0.26 

3.40 447 -0.16 1000 -0.11 163 -0.16 

4.43 913 -0.10 1760 -0.07 295 -0.11 

5.77 1504 -0.01 3180 0.01 480 -0.12 

7.52 2461 -0.03 5163 -0.03 867 -0.06 

9.80 3864 -0.08 8491 -0.04 1396 -0.10 

13. 3'6 5242 -0.12 11205 -0.07 2028 -0.06 

16.39 8265 -0.06 17539 -0.04 3060 -0.03 

20.12 12471 . -o. as 26249 -0.03 '4465 -0.04 

24.68 17767 -0.06 38429 -0. 0.3 6841 0.00 

30.29 26600 ~o.o3 56828 -0.01 9775 -0.01 

Table 6.4 Pair count and Estimates for Wc:u ~ Wc:t and Wet 



However, in our UVX sample no such selection. effect will 

operate. To test the reality of the anti-clustering result, we 

therefore performed the above analysis on the machine based UVX 

samples. We first calculated Wu 9 (8), the galaxy/UVX 

cross-correlation function, over all 7 fields. The result is 

plotted in figure 6.7 and, although negative, is not 

significantly different from zero. Thus the anti-clustering 

result found by Shanks et al. (1983c) for the galaxy/UVX pairs is 

not reproduced at the same level on the othe~ fields. We do 

note, however, that, even with a revised UVX criterion and a 

brighter magnitude limit for the galaxies, we still find that the 

SGP exhibits the largest anti-correlation of all the fields 

(filled circles in figure 6.7a). But, more expediently, if we 

once again restrict our attention to the galaxy cluster members 

and compute the cluster galaxy/UVX cross-correlation function, 

WeuC8), we find the much more significant result plotted in 

figure 6.8. We see a significant C2.7a) anti-correlation with an 

amplitude of Weu (8) = -0.22 at scales < 4 arcmin, thus confirming 

the anti-clustering in the cluster/UVX -pairs seen on the SGP,OSM 

and ONY fields reported by Boyle et al. (1984). We also.compute 

Wet (8), the cluster galaxy/faint UVX cross-correlation function. 

From figure 6.9 we see that it is similar to Weu, but has a 

reduced amplitude of Wet ~ -0.12. The number of pairs, together 

with the values of Weu (8) and Wet (8), are also given in table 6.4 

for each angular separation plotted in figures 6.8 and 6.9. 
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To ensure that this anti-clustering result with clusters is 

not merely attributable to some poorly understood bias in the 

selection of cluster galaxies, or, indeed, to some artefact in 

the COSMOS measurement process, we introduced a control sample of 

faint (b < 20.25 mag), ordinary Galactic stars (0.0 mag < u-b < 

0.5 mag) which could be cross-correlated with the cluster galaxy 

sample. The result, We• (8), is illustrated in figure 6.10. The 

Poissonian result for stars at all scales indicates that the 

anti-clustering seen between cluster galaxies and UVX objects is 

likely to be real. Amongst ·the individual field 

cross-correlation functionsplotted, we also present Wcs (8) for 

the QNA field (inverted open triangles in figure 6.10). The QNA 

field consistently gives the largest non-zero value for We• (8) 

and thu• amply demonstrates why this field was not considered for 

the correlation analysis. 

We now compare the amplitudes of cluster/emission line and 

cluster/UVX cross-correlation functions. We know that the UVX 

sample is contaminated by stars at the 25% level. These stars 

are distributed randomly with respect to the cluster galaxies and 

serve to reduce the cluster/UVX cross-correlation function by 25% 

over what would have been expected had the UVX sample been 

entirely composed of QSOs. Thus the real level of 

anti-correlation between cluster galaxies and QSOs with b < 20 

mag will be nearer Wcq ~ -0.3. As determined from table 3.12, 

the average limiting magnitude for the emission line catalogues 

used in this analysis is b ~ 20 mag. Since the contamination of 

the emission line catalogues by stars is < 5% (Savage et al. 
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1985), it can be seen that the amplitudes of Wcu and We• are 

entirely consistent with a 30% deficiency of bright (b < 20 mag) 

QSOs within 5 arcmin of cluster galaxies. For fainter QSOs (b < 
20.75 mag) there is only a drop of 15% in the QSO density within 

similar angular separations from cluster members. A possible 

explanation for this discrepancy is given in chapter 6.5. 

6.4.2 The Auto-correlation Function 

The auto-correlation functions for the emission line 

objects, w •• (8), the UVX samples, Wuu (8), and the Galctic stars, 

w •• (8), are displayed in figures 6.11, 6.12 and 6.13. Table 6.5 

lists the numbers of pairs found and the auto-correlation 

function estimate at each angular separation for the functions 

plotted in figures 6.11 and ,.12. We see that, while the 

emission line objects show a small positive correlation, it is at 

a very low level of significance. Indeed, the UVX objects show 

no correlation amongst themselves at all, exhibiting the same 

random correlation as the Galactic stars. This is in contrast to 

the clustering shown to exist in the UVX sample for the SGP 

(Shanks et 81. 1983c) and for the combined SGP, QSM and QNY 

samples (Boyle et 81. 1983). Thus the inclusion of further 

fields and a more accurately defined UVX sample (mad~ possible by 

the spectroscopic observations) has removed any apparent 

clustering seen. 
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8 w •• ( 8) Wu u ( 8) 
(arcmin) Np w Np w 

0.75 0 1 -0.68 

1.05 0 8 0.38 

1. 49 3 0.21 7 -0.40 

2.10 9 0.45 30 0.11 

2.97 18 0.41 47 0.04 

4.19 36 0.20 118 0.02 

5.92 55 -0.08 241 0.09 

8.37 124 0.09 439 0.07 

11.82 259 0.18 882 '0. 06 

16.70 446 0.03 1610 0.03 

23.59 926 0.11 3091 0.02 

33.31 1758 0.11 5689 0.02 

47.06 3178 0.08 10562 0.03 

Table 6.5 Number of Pairs and estimates for w •• and Wuu 



6.5 Discussion 

6.5.1 The Dust Model 

The simplest explanation of the observed anti-correlation 

between cluster galaxies and QSOs is that dust lying in 

line-of-sight clusters obscures the QSOs lying behind them at the 

distances implied by a cosmological interpretation of their 

redshifts. If we are to accept this explanation we must consider 

a number of points. Firstly, how much absorption is needed per 

cluster to explain the level of anti-correlation observed ? 

To calculate this we assume that QSOs are cosmologically 

distributed with an n(m) relation of the form: 

n((B) • 10°· 168 (B < 20 mag) 

n (<B) • 1 0° · 3 2 8 ( B > ·2 0 mag) 
I 

(6.3a) 

(6.3b) 

These relations are obtained from a smooth . fit to the 

integral n(m) counts for UVX QSOs plotted in figure 6.14 (this is 

just the integral form of the differential UVX QSO n(m) counts 

presented in figure 4.3). If each galaxy cluster has associated 

with it an absorption of A8 magnitudes, then it can easily be 

shown that, by comparing the surface density of QSOs behind 

clusters (Nb ) with the average surface density of QSOs over the 

whole measured area (Nq ) the QSO/cluster cross-correlation 

function will be given by 

••• (6.4a) 

where 
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... (6.4b) 

N, being the true density of QSOs in the absence of obscuration, 

and Ac the area of the plate covered by detected clusters. 

Typically, the clusters selected here only cover ~ 10% of the 

plate and so we may approximate equation (6.4a) to: 

• • . ( 6. 4a' ) 

Thus the cross-correlation function can be given in terms ~f the 

absorption As as: 

Weq = dex(dlogn(<B)/dB As) - 1 • • • ( 6 • 5 ) 

This represents a much simpler determination of Aa than that 

made by Shanks et 81. (1983c). There, the fraction of cluster 

galaxies contributing to the anti-clustering result was unknown 

and had to be estimated by indirect means. 

Thus from (6.4a') and (6.5) we have that, with Weq = -0.3 at 

b < 20 mag for both the UVX stars and emission line objects, the 

extinction per cluster is As ~ 0.20 mag. Similarly, for the 

faint UVX sample, the average amplitude of Wet =- 0.15 also 

gives an ~ ~ 0.20 mag. Although both values for the amplitudes 

of the bright and faint UVX/cluster cross-correlation functions 

are subject to substantial errors the decrease in amplitude from 

Weu to Wet is consistent with the flattening of the integral UVX 

QSO counts beyond B ~ 20 mag. 
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In this determination of Aa we have only considered the loss 

of QSOs by dimming. In the UVX samples QSOs will also be 'lost' 

behind clusters through reddening. However, the magnitude of 

this effect is so small in comparison to the dimming effect of 

dust that it can safely be neglected in the estimation of Aa. 

This can easily be seen from the following demonstration. 

Extinction in u-b will amount to be approximately 0.18Aa (Mihalas 

and Binney 1981) which, for the case in consideration here, will 

be at most 0.035 mag (the true value of Aa can only be less than 

0.20 mag if reddening is included). From figure 3.8 we see that, 

for all the fields observed in the spectroscopic survey, the 

restricted u-b limits lie on average ~ 1a away from the mean u-b 

colour for UVX QSOs (a being the standard deviation in the u-b 

colours for z < 2.2 QSOs, which is of the order 0.30 mag). 

Assuming a normal distribution for the u-b colours for QSOs we 

see that less than 3% of the QSOs will be lost by reddening. 

Thus the effect of reddening is an order of magnitude less than 

that of dimming. 

The value for Aa differs from that derived in Shanks et al. 

(198Jc) and Boyle et al. (1983,1984). The discrepancy from 

Shanks et al. (1983c) arises because of the more direct method 

used to determine Aa in this analysis which does not rely on the 

value of w .. " • The high value quoted for w .... ' of 0.25 1.0 in 

Shanks et al. (1983c) was responsible in part for the high valu.e 

of Aa derived there. The overestimation of A a in Shanks et al. 

C1983c) was also partly due to the low value adopted for the 

slope of 0.6 for the QSO number counts which, now better 
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information is available, has been revised to a more accurate 

value. The lower value assumed for the slope of the n(m) counts 

also led to the overestimation of Aa in Boyle et al. (1983,1984). 

The large spread in the u-b colours for QSOs ( ~ 0.3 mag) 

implies that a classic test to detect extinction by dust, namely 

the reddening of QSOs, will not be sensitive to an extinction as 

small as A(u-b) ~ 0.035. In fact, with 25% contamination of the 

UVX QSOs by Galactic stars, this effect will be reduced even 

further to A(u-b) ~ 0.025. Indeed, tests to look for reddening 

have produced no significant results. The result. of one such 

test is plotted in figure 6.15. Here we have computed the 

average u-b colours for the UVX objects in the cluster/UVX pairs 

at each particular angular separation. This was then subtracted 

from the mean u-b colour for all UVX objects in the field and the 

result, A(u-b), plotted as a function of angular separation of 

the cluster galaxy/UVX pair. The noise on the values for A(u-b) 

is so large that no significant reddening with decreasing angular 

separation is observed. 

The avoidance of galaxy clusters by QSOs may also be 

reflected in the distribution of QSOs amongst themselves, making 

them appear clustered. Such an effect was noted by Masson (1978) 

who suggested that 'regions of incompleteness' in the 4C radio 

catalogue were responsible for the observed clustering between 

catalogue members (Seldner and Peebles 1979), an effect analogous 

to Bahinet's principle in optics. We must ascertain, therefore, 

whether the size of such an effect in the dust model is 

compatible with the zero (but noisy) amplitudes for w •• and Wuu. 
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In the simple 2-dimensional model of Shanks et al. (1983c), 

background QSOs are obscured by foreground clusters (whether 

detected or not by the multiplicity technique) distributed on the 

plane of the sky over a fractional area, 1-Au, we have 

Wq q = A 2 Au ( 1-Au ) . . . ( 6 . 6 ) 
( 1 + AAu )2 

where A = 1/(1 + Wcq) - 1. As demonstrated by Phillipps (1985) 

Wqq has a maximum value at 

Wqq = A2 /4(1+A) ••• (6.7) 

which, for Wcq = -0.3, is equal to 0.032. Consequently the zero 

amplitude observed for the correlation function is perfectly 

consistent, within the errors, to that expected on the basis of 

the dust model. 

The intrinsic spatial clustering of QSOs, as inferred from 

the high amplitude of ~(r) found for the UVX survey QSOs in the 

previous chapter, will also contribute, in projection, to the 

amplitude of Wqq. Since the evolution of the QSO correlation 

function with redshift is unknown, the most direct way to 

estimate Wqq from ~(r) i.e. Limber's formula (see Phillipps 

1978), ~an not be employed as it involves explicit use of the 

evolution of ~(r). We can, however, make an order of magnitude 

estimate for the contribution of ~(r) to Wqq by the following 

approach. There is a well defined scaling relation for galaxies 

between the amplitude of the galaxy correlation function , w(8), 

and the depth of the galaxy s·ample for which it was calculated 

(see Stevenson 1985). The greater the redshifts to which the 

- 149 -



galaxy sample extends, the more washed out in projection the 

intrinsic clustering amongst galaxies becomes, and the lower the 

amplitude of w(8). From the relation derived in Stevenson 

(1985), the amplitude of w(8) for a B = 25.0 mag limited galaxy 

sample will be ~ 0.004 at 5 arcminutes. From our UVX survey we 

know that the average absolute magnitude for QSOs selected by the 

UVX technique is M8 ~ -24.0. This is some 4 - 5 magnitudes 

brighter than the absolute magnitudes for a typical (M•) galaxy. 

Therefore, a QSO sample limited at b = 20-21 mag will extend to 

approximately the same average depths as a galaxy sample limited 

at b = 25.0 mag. From chapter 5 we know that the amplitude of 

f(r) for QSOs is ~ 10 times that for galaxies and thus th~ 

contribution of the intrinsic clustering of QSOs to Wqq at 5 

arcminutes will be only Wqq ~ 0.0~. Even if QSOs clustered as 

strongly as rich clusters (20f(r)e•l ), no detectable effect w6uld 

be produced in the current estimate of Wqq. 

Evidence for dust in clusters has been produced by a number 

of other authors. First Zwicky (1957) and then Karachentzev and 

Lipovetskii (1969) found evidence for dust in clusters of 

galaxies by counting the numbers of distant and extremely distant 

clusters as a function of angular separation from nearby clusters 

in the Zwicky catalogue. From this result Karachentzev and 

Lipovetskii (1969) estimated an extinction of Aa = 0.20 mag per 

cluster. More recently Bogart and Wagoner (1973) inferred an 

extinction of Aa = 0.5 mag per Abell cluster when performing a 

similar analysis with different richness classes of clusters in 

the Abell catalogue. 
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6.5.2 The Ejection Model 

Another model which could account for the deficiency of QSOs 

close to galaxies is one in which QSOs are ejected from galaxies 

in such a way as to leave them at large distances from their 

parent galaxy. We consider this model as unlikely for the 

following reasons: 

a. It does not naturally explain the decrease in amplitude of 

the UVX/cluster cross-correlation function beyond b = 20.0 

mag. 

b. It does not naturally explain why the effect is seen only in 

cluster& Indeed it would seem more difficult to eject QSOs 

from the large gravitational potential well in clusters than 

from 'isolated' field galaxies. 

c. There is now no excess seen at any scale in the cluster/UVX 

correlation function, which, in Shanks et aJ. (198Jc),·was 

cited as a possible characteristic distance to which the QSOs 

were shot out of the galaxy. 

d •. Finally, ejection models were originally suggested to account 

for the proposed excess of QSOs around galaxies. If we were 

now to favour the ejection· hypothesis it would be on 

precisely the reverse observation - a somewhat unsatisfactory 

state of affairs. 
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6.5.3 Implications of the Dust Model 

If we model the absorption of Aa magnitudes within each 

clus~er as a uniform sphere, radius R, of dust grains, then its 

mass can be obtained from (Martin 1978): 

M = 2x10s s Aa (R/1Mpc. )2 Me (6.8) 

where we have assumed the grain parameters of specific density (1 

g cm- 3 ) and radius (0.1 #m) to be the same as for silicate grains 

in our own galaxy (Martin 1978). 

From the results of the cross-correlation analysis we take 

the average angular extent of this dust absorption to be 4 

arcminutes. At the average redshift, <z> = 0.15,· for clusters in 

the b < 20.16 mag sample, this _corresponds to a characteristic 

linear radiUS Of 50nh-SkpC for the absorption effect due to the 

dust grains. With an absorption of 0.2 magnitudes associated 

with each cluster, we therefore estimate the mass of dust to be 

1(!)SOh- 2 Me. Although this represents a small fraction of the mass 

·contained in luminous material (1011 h- 2 Me) within each cluster, 

we may wonder whether this mass of dust is compatible with the 

conditions of high density and temperature known to exist inside 

rich clusters. 

We can answer this question by fi.rst considering a simple 

order of magnitude calculation. Within the central megaparsec of 

the Coma cluster estimates of the mass in luminous material, 

10s 2 h- 2 Me, (Metcalfe 1983), and the mass of the hot (101 K) gas, 4 

x 1os:•h- 512 Me (Lea et aJ. 1973) combine to give a 
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luminosity-to-gas ratio of 0.025h'. Assuming the same 

luminosity-to-gas ratio in the clusters detected by the 

multiplicity algorithm, we obtain an estimate of 4 x 1012 h- 5 ' 2 M. 

for the amount of gaseous material in these clusters. With a 

gas-to-dust ratio similar to that seen in our own galaxy (100:1) 

we arrive at a dust mass of 4 x 1010 h-'' 2 M. within the central 

megaparsec (2 x 1010 h- 5 ' 2 M. within the central 0.5 Mpc if mass 

profile of MC<r) • r is assumed). 

While this simple estimate is certainly compatible with the 

dust mass derived from the absorption, we could ask how correct 

is the assumption that the gas-to-dust ratio in these clusters is 

the same as that in our own galaxy, given that the dust can 

readily be destroyed by sputtering in rich clusters. From X-ray 

observations of rich clusters ·such as Coma we know that the 

intra-cluster gas is hot C108 K) and estimates of its mass (Lea et 

al. 1973) give a density (within the central 0.5 Mpc) of 1Q- 3 h0 • 5 

cm- 3 • From Margolis and Schramm (1977, hereafter. MS), the 

lifetime of a dust grain against sputtering CA.) is dependent on 

both gas density (n) and temperature (T): 

A. = 2 X 101 D (1 o- 5 em- 3 /n) ( 106 /T )0 • , yr • • • ( 6 • 9 ) 

Thus a dust grain in Coma has a lifetime only ~ 2 x 

107 h0 ·'yr. In the clusters used in this analysis, however, the 

densities and temperatures are much lower. From above, the 

density of gas within our clusters will ben~ 10- 4 h0 • 5 cm- 3 and 

the temperatures can be estimated from their observed velocity 

dispersions c~ 300 km sec-t - Shanks private communication) to be 
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T ~ 107 K. This will give lifetimes of ~109 h0 • 5 yr for grains in 

our clusters 50 times longer than those in the Coma cluster. 

Following MS the equilibrium density of dust grains Pd can then 

be given by: 

(6.10) 

where td is merely the grain lifetime in units of the Hubble time 

and r, the dust creation rate, is also given in units of the 

Hubble time. From MS typical estimates of rare ~ 0.03h- 1 p, •• , 

where p, •• is the gas density within the cluster. Using equation 

(6.10) we therefore find that the gas to dust ratio in our 

clusters can be expressed as 

p, •• I Pd ~ J x 1 o- 3 h- 3 , 2 (6.11) 

With a suitable value for h ( ~ 0.5) our initial assumption of a 

gas to dust ratio in these clusters of 100:1 is thus vindicated. 

Although very much an order of magnitude calculation, we have 

shown that the amount of dust necessary to produce 0~2 magnitudes 

of absorption in B can indeed survive in these clusters. 

However, the dust model could still be ruled out on the 

grounds that the integrated effect of dust in all clusters may 

produce prohibitively large cosmological effects. 

As an example, the presence of dust will make galaxies 

appear fainter than they really are and so values of qo obtained 

from the Hubble. diagram will be underestimated by an amount: 

(dqo )dust = 2.8x103 (A/1 mag Mpc-i )h-t (6.12) 
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where A is the absorption due to dust in magnitudes per 

Megaparsec (from MS). Equation (6.12) is only strictly valid for 

uniformly distributed dust, but it will provide a useful order of 

magnitude illustration for the limits on the amount of 

intergalactic dust tolerated by present observations. We 

therefore estimate A by simply distributing out the dust in each 

cluster uniformly over all space. The local space density of 

these clusters (2 x 10- 4 h3 Mpc- 3 ) thus gives A= 3 x 10- 5 h mag 

Mpc-i and so (Aqo )dust 0.08, a negligibly small effect. 

Moreover, we note that our averaged value for the extinction due 

to cluster dust is well below the upper limits quoted by other 

authors from studies of extinction, reddening and the spectra of 

distant galaxies and QSOs. To date, the most stringent upper 

limit on the amount of intercluster dust comes from Crane and 

Hoffman (1973). They used a A- 4 extinction law applied to the 

reddening of elliptical galaxies to estimate that the effect of 

dust could amount to no more than A= 2 x 10- 4 h mag Mpc-i, an 

order of magnitude greater than that found here. 

Dust will also have an effect on the evolution of the 050 LF 

discussed in chapter 4. At high redshifts cosmological effects 

will become important and so the simple treatment followed above 

will no longer apply. From Ostriker and Heisler (1984), the mean 

absorption suffered by a QSO at a redshift Z, Am(z), for an 

unevolving population of absorbers, can be expressed as follows: 

Am(z) = 0.4noa(c/Ho)Ae[(1+z)2· 5 -1] ••• (6.13) 

where no and a are the space density and cross-section of the 
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absorbers (in this case clusters) involved. We find that this 

amount of absorption implied by equation (6.13) merely 

necessitates an increase in kL from 3.7 to 4.0 in the standard q0 

= 0.5 evolution model of chapter 4. The n(m) and n(z) 

predictions for such a model are illustrated in figure 6.16. At 

low redshifts, therefore, the dust model does not require major 

revisions of our luminosity evolution model. However, we will 

see in the next chapter that this is not necessarily the case at 

high redshifts. 

Although we fully recognise the naivety of this model, we do 

not feel justified in constructing a more complex one when many 

of the parameters of this model remain so ill-defined. In 

particular, the assumption that the clusters are unevolving is 

almost certa~nly unrealistic. 

6.6 Conclusions 

We have found that emission line objects and complete 

samples of UVX objects are anti-clustered with respect to 

galaxies in clusters at angular separations less than 4 arcmin. 

Results from the UVX and emission line auto-correlation studies 

and the reddening of UVX objects close to clusters have proven 

inconclusive. 

We propose that the most likely explanation for the 

anti-correlation result is that dust associated with clusters of 

galaxies in the line-of-sight obscures the QSOs lying behind them 

at cosmological distances. 
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From the amplitude of the cluster galaxy/QSO 

cross-correlation function, we derive a value of Aa = 0.2 mag for 

the amount of absorption associated with each galaxy cluster. 

This is in good agreement with previously determined values. 

The amount of dust necessary to produce the absorption seen 

is quite small, toto Mo/cluster. The dust has no appreciable 

effect on the Hubble diagram or the evolution of low z QSOs, and 

is well below-current observational upper limits on the amount of 

intergalactic dust. 
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CHAPTER SEVEN 

THE EVOLUTION OF QSOs BEYOND z = 2.2 

7.1 Introduction 

As discussed in chapter 1, the form of QSO evolution at high 

redshifts, in particular the nature of the QSO 'cut-of£', has 

long been the source of much intensive study. However, to 

establish the reality of such a 'cut-of£', we require both an 

accurate model for the evolution of QSOs at low redshift and an 

unbiased method of detecting high redshift QSOs. In this chapter 

we th~refore consider both these aspects in our discussion of the 

evolution of QSOs at high (z > 2.2) redshift. 

We first describe techniques devised to select unbiased 

samples of QSOs with z > 2.2. Such techniques are based on 

broadband methods similar to the UVX technique used at low Cz < 

2.2) redshift, but utilise additional information either in the 

form of further broadband colours (obtained from the inclusion of 

V,R and I plates in addition to the U and J plates used 

previ~usly) or from inspection of spectra on objective prism 

plates. 

Surface densities of high redshift QSOs found from these 

searches can then be compared to ~hose predicted from 

extrapolation of the evolutionary model proposed for low redshift 

(z < 2.2) QSOs in chapter 4. From such a comparison, constraints 

on the decrease in numbers of high redshift QSOs can be obtained • 
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7.2 The Colour of z > 2.2 QSOs 

We begin our description of the broadband techniques used 

here to select high redshift QSOs, with a discussion of the 

colours of such objects. We have predicted the colours of high 

redshift QSOs analytically, by redshifting a composite QSO 

spectrum through the UK Schmidt passbands (see figure 2.1) and 

computing the observed colour. The composite spectrum used is 

plotted in figure 7.1. The long wavelength (A > 1200 A) part is 

taken from the observations of Richstone and Schmidt (1980), with 

the spectrum at wavelengths shorter than this value being 

obtained from the spectra of high redshift (z > 2.8) QSOs plotted 

in Osmer and Smith (1976). 

As indicated in chapter 2.2 the ubvri system, in which 

stellar magnitudes are quoted throughout this thesis, was 

calibrated using standards quoted in Johnson and Kron-Cousins 

magnitude systems with no prior correction to the Schmidt 

passbands. Thus the predicted colours of high redshift QSOs 

based solely on the above computation, will exhibit zero-point 

shifts with respect to the colours obtained for stellar images in 

the ubvri system employed here. Zero-points for the predicted 

eolours were therefore obtained by normalisation to the ubvri 

colours for th~ low redshift (z < 2.2) Clowes and Savage (1983) 

OSOs found on the measured area of the SGP UJVR and I plates. In 

figure 7.2 we plot the predicted u-b, b-v, v-r and r-i colours 

(solid line) for QSOs with z < 4. Also plotted are the Clowes 

and Savage (1983) QSOs (filled circles) used to zero-point these 

colours. The spread in colours observed for the Clowes and 
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Figure 7.1 Composite QSO spectrum used to predict colours 
of high redshift (z > 2.2) QSOs. 
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colour-redshift relations in figure 

combination of the intrinsic spread 

properties coupled with the error in 

machine measurement (see chapter 2.6) 

mag) about the predicted 

7.2 will represent a 

in the QSOs' spectral 

colours obtained from 

In figure 7.2 we note that the reddening in the u-b colour 

index beyond z=2.2 is due primarily to the depression in the 

continuum bluewards of the Lyman a line (see figure 7.1) being 

redshifted into the u band. This decrease in flux is caused by 

the large number of Lyman a absorption lines (the Lyman a forest) 

seen shortward of Lyman a emission at 1216A blending together and 

thus depressing the continuum at these wavelengths. The increase 

in u-b index is also due, in part, to the broad Lyman a line 

appearing in the J passband at z > 2.2. The relative 

contribution of each of these effects to the reddening of QSO u-b 

colours at z > 2.2 is also demonstrated in figure 7.2. The 

dashed line in figure 7.2 indicates the colours for QSOs with no 

Lyman a emission and we see that, while the u-b colour is 

slightly different for such QSOs, it still reddens as 

dram~tically as for QSOs with strong Lyman a, indicating that the 

principle cause of the reddening is the Lyman a forest. 

The reddening in the b-v index by more than 1.0 mag at z > 

2.9 occurs for precisely the same reasons - namely, at these 

redshifts, the Lyman a forest now becomes redshifted into the b 

band, while the Lyman a emission line appears in the v band. In 

contrast, the v-r and r-i colours stay ·reasonably constant (0.3 

mag < v-r < 1.0 mag, -0.4 mag < r-i < 0.4 mag) with redshift. 
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The implications that these changes in colour have on the 

detection of high redshift QSOs are illustrated in figures 7.3 

and 7.4 where we plot various colour-colour diagrams for a sample 

of stellar images (18 mag < b < 20 mag) on the SGP and the 

predicted colours for QSOs respectively. We see that, in the 

range 2.2 < z < 3.0 the predicted colours of QSOs lie in the 

Galactic star locus for all colour combinations plotted. 

Although photometric and intrinsic variations in the spectra of 

QSOs will cause some QSOs to lie outside the Galactic star locus 

at these redshifts, we can confirm that many QSOs with 2.2 < z < 

3.0 have colours indistinguishable from Galactic stars on 

inspection of figure 7.5. Here we have re-plotted the Clowes and 

Savage (1983) QSOs on the same colour-colour planes as for the 

Galactic stars and theoretical redshift tracks in figures 7.3 and 

7.4, with the dashed lines in figure 7.5 representing the 

Galactic star locus in each colour-colour diagram. 

Even though the best discrimination from the colours of 

Galactic stars is obtained for the Clowes and Savage (1983) QSOs 

Call have z < 3) on the u-b/b-v diagram, at least 7 out of the 16 

z > 2.2 QSOs in this sample would not have been detected in a 

survey which selected QSOs on the basis on their anomalous 

broadband u-b/b-v colours.. It is interesting to note that Koo 

and Kron (1982) select high redshift Cz > 2.2) QSOs from 4m 

telescope plates using the U-J/J-F diagram, which is similar to 

the u-b/b-v diagram plotted here. Koo (1986) acknowledges that 

their survey may be incomplete for z > 2.2 and estimates this 

incompleteness at 20%. 
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At z >. 3.0 the reddening in the b-v index for QSOs once 

again takes the predicted colour-colour locus for such high 

redshift QSOs away from that of the Galactic stars. The best 

discrimination between the colours of Galactic stars and those 

predicted for QSOs can be achieved using the b-v/v-i 

colour-colour plot. This is because the largest contaminant in 

any sample of stars with red b-v colours will be the late-type K 

and M stars. Since these stars have redder V-R ( ~ 1.0 mag) and 

R-1 (also~ 1.0 mag) colours (Johnson 1963) than those predicted 

for high redshift QSOs, by taking the largest possible baseline 

in these colours (v-i), we should be assured of obtaining the 

best separation from Galactic stars. Although we concede that 

the sizeable spread ( ~ 0.30 mag) seen in QSO colours about the 

predicted colour-redshift relat~ons in figure 7.2 could degrade 

the discrimination provided on the b-v/v-i diagram, we conclude 

that, even with such a large spread, a considerable fraction 

()75%) of z > 3.5 QSOs will exhibit anomalous colours with 

respect to normal Galactic stars on this diagram. 

Using the results obtained in this chapter for the colours 

of high redshift (z > 2.2) QSOs we now go on to describe two 

techniques designed to select QSOs in the redshift range 2.2 > z 

> 3.0 and z > 3.5. 
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7.3 The Search for Intermediate Redshift (2.2 < z < 3.0) QSOs 

As shown in the previous section broadband colours alone can 

not be used to select complete samples of QSOs in the redshift 

range 2.2 < z < 3.0. A method has therefore been devised by 

Shanks et al. (in preparation) which uses additional information 

from objective prism plates to compile unbiased QSO samples at 

these redshifts. 

The technique is fully detailed in Shanks et al. (in 

preparation) and so only a very brief description will be given 

here. The method rests on the belief that, in all QSOs, the 

Lymana/NV emission line is sufficiently broad to be identified on 

an objective prism plate when redshifted into the wavelength 

region over which the relevant phQtograhic emulsion is sensitive. 

At the magnitude limit of the search employed here (b = 19.5 

mag), all lines with an equivalent width greater than 100A should 

be easily identified on a good 'seeing' IIIaJ objective prism 

plate (Clowes and Savage 1983). Since the smallest measured 

equivalent width for a Lymana/NV emission line in the 

spectroscopic surveys was ~200A, all QSOs which exhibit Lymana/NV 

should, in principle, be detectable. The spectra for all stars 

with 18.5 mag < b < 19.5 mag are then visually inspected on a 

IIIaJ objective prism plate and those objects with strong 

emission are selected. Knowing that the u-b colour of QSOs 

reddens dramatically after z = 2.2, high redshift QSOs can be 

identified from their non-UVX colours and a redshift assigned 

from the identification of the emission line as Lymana. 
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Two objective prism plates have been searched in this manner 

(UJ3682P CSGP) and UJ2460P (QSM)) by Dr. Shanks and Alison 

Broadbent, a summer student at the University of Durham. Full 

details of these searches appear in Shanks et al. (in 

preparation) and only the results directly relevant to the 

problem of the redshift cut-off will be quoted here. 

Over the 11 square degree area searched on the SGP objective 

prism plate, Miss Broadbent identified 13 emission line objects 

with red colours, 7 in the redshift range 2.2 < z < 2.5 and 6 

between 2.5 < z < 3.0. By comparing the surface densities of 

QSOs in the redshift region in which the UVX and objective prism 

techniques overlap, we conclude that the search is probably 75% 

complete, 6 out of the 8 z > 1.8 QSOs found in the UVX surveys 

having been re-discovered in the objective prism search. Tom 

Shanks found eight 2.2 < z < 2.5 and three 2.5 < z < 3.0 QSOs on 

a 5.7 square degree area searched on the QSM field. As above 

comparison with known UVX, z > 1.8 QSOs on this area revealed 

that the search was approximately 40% incomplete, although this 

estimate is based on a small number of objects (3 detections out 

of 5 possible). 

This method will, of course, not identify high redshift QSOs 

that exhibit UVX. The numbers of such objects ·can. however, be 

deduced from the spectroscopic survey as follows. We found 8 UVX 

QSOs with 2.2 < z < 2.5 and 2 with 2.5 < z < 3.0 in the survey, 

representing approximately 5% and 1% respectively of the total 

UVX QSO population. Between 18.5 mag < b < 19.5 mag the UVX QSO 

density is ~ 8 per square degree (see chapter 4.2.2) and 
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therefore the corrections to be applied to the surface densities 

of high redshift QSOs are 0.35 per square degree for UVX QSOs 

with 2.2 < z < 2.5 and 0.08 for UVX QSOs with 2.5 < z < 3.0. 

Combining the results of the searches on the SGP and QSM fields, 

we thus arrive at surface densities of 1.7±0.4 and 0.9±0.3 per 

square degree for 2.2 < z < 2.5 and 2.5 < z < 3.0 QSOs 

respectively, when due account is taken of incompleteness and UVX 

high redshift QSOs. These values will be discussed further in 

chapter 7.5. 

7.4 The Search for High Redshift (z > 3.5) QSOs 

As demonstrated in chapter 7.2, the reddening in the b-v 

index predicted for high redshift Cz > 3.5) QSOs enables such 

objects to be selected on the basis of their anomalous colours 

with respect to ordinary Galactic stars. Samples of high 

redshift QSO candidates have therefore been compiled on the SGP 

field using the colour selection criteria indicated by dashed 

lines in figure 7.3. Selection by colour alone, however, still . 
leaves many Galactic stars in the sample (scattered into the 

sample through photometric errors, variability etc.) and the 

samples were reduced further by inspection of objective prism 

plates (both IIIaJ and IIIaF) to rem6ve all candidates with 

stellar or featureless spectra. 

This broadband technique has already proved successful in 

detecting DHM0054-284 (Shanks et al. 1983b), a QSO with z = 3.61. 

The colours for both this QSO and for the z = 3.67 QSO 

(00055-2659) found by Hazard and McMahon (1984) on the SGP are 
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illustrated (open circles) in figure 7.2. While DHM0054-284 was 

originally selected on the basis of its anomalous position in the 

b-v/v-r diagram (as indicated by the dashed lines on this 

colour-colour diagram in figure 7.3) and 00055-2659 was found 

from an objective prism search, both are easily distinguishable 

from stars on the b-v/v-i diagram (large circles), occupying the 

same region of this colour-colour plot (see figure 7.3). From 

the colour-redshift diagram in figure 7.2, we also see that both 

objects exhibit colours close to those expected from the 

composite spectra modelling (although only when the variation in 

Lyman limit systems is taken into account -see below). We note· 

that 00055-2659 was not selected in our original survey of the 

SGP area as a candidate high redshift QSO since one of the 

criteria employed in that s~arch was that high redshift 

candidates had to have u magnitudes fainter than the U plate 

limit (i.e. u > 20.5 mag= u-b > 1.5 mag). We expected that if 

they existed, high redshift QSOs would exhibit a strong Lyman 

limit system (see e.g. Tytler 1982) and consequently very little 

fltix would be observed in the U passband. This is certainly the 

case with DHM0054-284 but 00055-2659 does not show as strong a 

Lyman limit .. The dramatic effect of even a small variation in 

the Lyman limit is illustrated in figure 7.2. The solid lines 

represent the colour redshift relations for a QSO with a strong 

Lyman limit (F(lc,1z) = 0) whereas the dotted lines indicates 

those for a QSO with a weaker Lyman limit (F(lc,1z) = 
0.5F(l>,1z )). The wide range in the u-b colours for the two 

types of QSO at z > 3 therefore makes the u-b colour a poor 

discriminator for high redshift QSOs~ Removing the u magnitude 
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criterion in the original survey allowed 00056-264 to be easily 

selected as a high redshift candidate (although anything is easy 

in hindsight). 

The implication is that a survey which selects off all 

stellar images in the region of the b-v/v-i plane indicated by 

the dashed line in figure 7.3 will contain a number of extremely 

high redshift (z > 3.5) QSOs, if, indeed, they exist. However, 

there are too few complete samples of high redshift (z > 3.5) 

QSOs with which we can assess the completeness of this technique, 

and until spectroscopy can be obtained of some of our candidates 

selected in b-v/v-i, the success rate of this technique is also 

unknown. Certainly the two z > 3.5 QSOs already known to exist 

on the SGP can readily be distinguished from the bulk of the 

Galactic stars using this method. 

7.5 The Redshift Cut-off 

7.5.1 Constraints from Broadband Searches 

We now compare the observed surface densities of high 

redshift QSOs with those predicted from extrapolations of the 

evolutionary model obtained at low · redshift. The surface 

densities of high redshift O.SOs found using the techniques 

described in the previous sections are presented in table 7.1. 

The surface density for 3.5 < z ~ 4.0 QSOs is based on the two 

QSOs found on the SGP at these redshifts. While not intended to 

represent a secure surface density it may be compared to those 

predicted from models for illustrative purposes. We also give in 

table 7.1 the surface densities predicted from 3 different 
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Surface Densities (per square degree) 
Magnitude and Redshift 

Ranges Observed Predicted 

A B c 

18.4 < B < 19.4 

2.2 < z < 2.5 1.7±0.4 1.4(0.66) 1.1(0.54) 1.4(0,66) 

2.5 < z < 3.0 0,9±0.3 2,8(0.88) 0.8(0.24) 2.0(0.60) 

17.9 < B < 19.9 

3.5 < z < 4.0 0 .18? 4.0(0.3) 0.2(0.01) 0.4(0.02) 

Table 7.1 Surface densities for High Redshift QSOs 

<L. /La > a. Contribution to X-Ray Background 
(percentage) 

A B c 

·1. 6 X 1 o- 4 o.s 78 53 60 

8.0 X 1 o- s 1.2 19 14 15 

Table 7.2 X-Ray Background 



extrapolations of the standard luminosity evolution model for a 

q0 =~ universe proposed in chapter 4.3.4. The extrapolations are 

as follows: 

A. Continuous evolution model rate of evolution at high 

redshifts (z > 2.2) same as that for low redshifts. 

B. No evolution model - evolution ceases beyond z = 2.2 and the 

QSOs with z > 2.2 remain at same luminosity and number 

density as those at z = 2.2. 

c. Composite evolution mod.el - rate of evolution same as that at 

low redshifts for z < 2.5 (as model A), after which evolution 

ceases (as model B). 

The numbers in parentheses are 

densities if the evolution derived 

proposed in chapter 6 (i.e kL dust= 

correct. 

the corresponding surface 

for the obscuration model 

4.0, Aa = 0.2 mag) is 

Of course, much more sophisticated extrapolations than these 

(i.e. ones in which the evolution changes sign etc.) can be 

constructed. As we shall see below, however, the observations do 

not merit such accurate modelling. 

On first inspection of table 7.1 it appears that we can 

clearly rule out model A as its predictions become more and more 

discrepant with increasing redshift, predicting 3 times as many 

QSOs as are observed in the redshift range 2.5 < z < 3.0, giving 

a surface density of 4 QSOs per square degree (corresponding to 
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100 over a Schmidt plate) in the range 3.5 < z < 4.0, 18.4 mag < 

b < 19.4 mag. Indeed, it would appear that the form of the 

evolution must change quite soon after redshifts of z ~ 2.2-2.5, 

as model B is the only one which gives good agreement with the 

observations, particularly in the redshift range 2.5 < z < 3.0. 

When possible obscuration by dust is taken into account, 

however, we see a very different story. In this case model A 

provides a much closer fit to the data, although we note that the 

numbers in the lowest redshift bin are discrepant. This result 

is in qualitative agreement with that of Ostriker and Heisler 

(1984) who argued that small amounts of dust alone could be 

sufficient to explain the lack of high redshift QSOs, although we 

note that such a model predicts too few QSOs at intermediate 

redshifts. 

Of course the obscuration model could be discounted on the 

grounds that it may produce too much reddening in high redshift 

QSOs. At z = 3.6, Am(z) = 1.5 mag and objects are reddened by 

Ea-v ~ 0.4 mag. Thus the intrinsic b-v colours of the two high 

redshift QSOs observed on the SGP will be bluer than their 

obs~rved b-v colours by this amount. As their b-v colours are 

already somewhat bluer than those predicted, any further 

de-reddening will only serve to increae this discrepancy. Thus 

the colours of such QSOs do place constraints on the amount of 

dust absorption at high redshift and further, more accurate, 

measurements of the colours of high redshift QSOs may help to 

rule out such a model. 
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Even ignoring the presence of dust, the inferences drawn 

from the comparison of the observed and predicted surface 

densities are dependent on the supposition that high redshift 

QSOs look like their low redshift counterparts, and thus would 

have been found with the selection techniques whose use is 

justified on their success at low redshifts. However, most 

mechanisms (see e.g. Osmer 1982) that have been invoked to 

account for changes in the spectra for QSOs at high redshift 

(e.g. disappearance of emission line region, QSOs shrouded by 

material) require significant changes either internally to the 

QSO or in the surrounding intergalactic medium. As such, both 

imply evolution in an even more direct manner than that derived 

from the study of the statistical properties of the QSO 

population as a whole. 

7.5.2 Constraints from the X-Ray Background 

The diffuse X-ray background may als~ be used to derive 

contraints on the numbers of QSOs at high redshift, since 

integrated X-ray luminosity of all QSOs predicted at high 

redshifts can not exceed the observed X-ray background. The 

X-ray background is particularly relevant in the light of the 

work above as X-rays observed •t energies greater than 1 keV will 

have been unaffected by dust and unequivocal constraints may be 

obtained. From Schwartz (1979), the observed X-ray background 

intensity at 2 kev is 5.84 keV cm- 2 s-tsr-tkev-t. The 

contribution from QSOs (I.,q) to this background can be expressed 

as follows (from Marshall et Bl. 1983a): 
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00 'Z.~a..-. 

I,. ' q = c ( L .. ) H L~ ( z' L) dzdL ... (7.1) 
4JtHo Lo (1+2qoz) 0 ·' (1+z) 2 +« .. 

"-..;.,0 

where <L .. /Lo > is the average value for the ratio of X-ray 

luminosity to optical luminosity for radio-quiet QSOs and a .. is 

the slope of the X-ray spectrum at 2keV. Their values quoted in 

Zamorani et al. (1981) are 1.6 x 10- 4 and 0.5 respectively. Both 

these values are, however, extremely uncertain. <L~~ /Lo > for 

optically selected QSOs is based on few objects (see Zamorani 

1983) and consists mainly of non-detections of these objects at 

X-ray wavelengths. Correspondingly, the value of <L .. ILo> could 

be much lower (by as much as 50% from an inspection of figure 4 

in Zamorani 1983), thereby reducing the contribution of QSOs to 

the X-ray background. In addition, recent values for the mean a. 

for QSOs have been given as high as 1.2 (Elvis et al. 1985) based 

on a re-examination of Einstein data. This revision will again 

reduce the contribution from QSOs to the observ~d X-ray 

background. 

With these uncertainties in mind we calculate the percentage 

of the X-ray background due to QSOs with z < 4 for models A, B 

and C of chapter 7.4.1 ~sing two sets of parameters for <~fLo> 

The results are presented in table 7.2. All QSOs 

brighter than a present day value of Ma = -15 were assumed to 

contribute to the X-ray background, thus including the low 

luminosity active galactic nuclei and Seyfert galaxies. Because 

of the flatness of the QSO luminosity function fainter than Ma = 
-21.5, decreasing this minimum magnitude to Ma = -21 only 

decreased the contributions given in table 7.2 by, on average, 
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5%. Similarly, revising the value of kL = 4, to account for 

obscuration by dust increased the percentage quoted in table 7.2 

by ~ 5%. 

We see from table 7.2 that uncertainties in the X-ray 

spectrum for QSOs do not permit us to put constraints on the 

evolution of QSOs at high redshift. Even allowing for the ~ 30% 

contribution from galaxy clusters and BL Lacs (Schmidt 1986) we 

see that only model A exceeds the X-ray background and then it is 

only for one particular choice of parameters. Indeed, the 

contribution from QSOs may be very low indeed for a different set 

of parameters. As such, more accurate data is needed on the 

X-ray spectra of QSOs before the X-ray background can be used to 

set limits on the evolution of QSOs at high redshift. 

' 7.6 Conclusions 

We have de~onstrated that broadband techniques are 

successful in detecting high redshift QSOs, although estimates of 

their success rates and completeness at the highest redshifts 

will have to wait until more spectroscopic information is 

available. Surface densities of high redshift QSOs selected 

using these broadband techniques have been compared to those 

predicted from extrapolations of the evolutionary law derived 

previously for low redshift QSOs. If significant obscuration by 

dust could be ruled out, the low surface densities for QSOs at z 

> 2.5 indicate that the rate of evolution of the QSO population 

is 'slowing down' in the range 2.2 < z < 2.5. However, small 

amounts of dust could wholly account for the low surface 
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densities observed. Unfortunately, constraints on the numbers of 

QSOs at high redshifts are not possible from observations of the 

X-ray background, as the X-ray spectra of QSOs are not yet 

sufficiently well defined. 
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CHAPTER EIGHT 

DISCUSSION AND CONCLUSIONS 

8.1 Introduction 

In previous chapters we have presented results on the 

clustering and evolution of QSOs obtained from statistical 

analyses of QSO catalogues. In this chapter we summarise these 

results, interpreting them in terms of physical models for QSOs 

derived from theoretical considerations. We attempt to reconcile 

any models thus favoured with other observations of QSOs, in 

particular those that are non-statistical in nature. Future 

observations, which may contribute further to our understanding 

of the physical processes that go~ern the QSO phenomenon, are 

also suggested. 

8.2 Theoretical Considerations 

Since we will be discussing our results in the context of 

theoretical models for QSOs, we begin with a brief summary of the 

work in this field. As remarked on by Rees (1984), the basic 

theory for the energy production in QSOs has undergone few 

changes since QSOs were first discovered some twenty years ago. 

The high luminosities (104 • < L < 1048 ergs s-t) and rapid 

variability (over timescales less than 1 day in some cases) have 

led to the generally accepted conclusion that the energy source 

in QSOs is gravitational in origin, with material accreting onto 

a compact ·object. The best candidate for such an object is a 
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black hole, as it almost certainly represents the inevitable 

evolutionary outcome for any such compact system (Rees 1984). 

Many origins have been suggested for the gas supply to the 

central black hole, e.g. stellar debris arising from tidal 

disruptions or stellar collisions in a dense star cluster 

surrounding the black hole (McMillan et 81. 1981, Duncan and 

Shapiro 1983), or from inte~ons with other galaxies (Stockton 

1982). 

The luminosities obtainable from such processes are given by 

(Duncan and Shapiro 1983): 

. • • ( 8 • 1 ) 

where Mh is the matter accretion rate on the black hole and e the 

efficiency of the conversion of ~vatational energy into 

luminosity. Taking e = 0.1, this being fractional gravitational 

binding energy for matter at the inner edge of the accretion disk 

(Shakura and Sunyaev 1976), we find that accretion rates of 0.1 -

10 M. yr-t are required to power luminous QSOs. Both stellar 

collisions and galaxy mergers are probably capable of supplying 

these fuel input rates (see McMillan et 81. 1981 and Stockton 

1982). 

Other mechanisms for the means of energy production in QSOs 

have also been proposed. In particular, models in which a 

rotating Kerr black hole taps its spin energy to produce the 

observed luminosity (Blandford and Znajek 1977), have received 

much attention. However, it appears unlikely that such 

mechanisms are capable of supplying the energy source for 
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luminous QSOs (Cavaliere et al. 1983), but gain increasing 
I 

importance at Seyfert luminosites. 

We will therefore take as our working model a scenario in 

which the energy production in QSOs is dominated by the release 

of gravitational energy in an accretion disk surrounding a black 

hole. Material can be supplied to the accretion disk either as 

the result of local effects, such as debris from stellar 

collisions or by external effects i.e. an interaction or merger 

between galaxies. While we recognise that the above picture is 

perhaps over-simplified, we note that Rees (1984) has stressed 

how little is still known about the physical processes occurring 

in QSOs, emphasising that the basic model adopted above still 

provides the 'best-bet' after some 20 years of research. 

8.3 The Luminosity Evolution of QSOs 

In chapter 4 we demonstrated that the statistical evolution 

of the QSO LF could be parameterised by a uniform shift towards 

hiq.her luminositie.s in the past, with no corresponding increase 

in the density of QSOs. There are at least two possible 

interpretations of this parameterisation: 

a. The form obtained reflects the evolution of individual, and 

therefore long lived, QSOs. 

b. The parameterisation represents the evolution in average 

luminosity for successive generations of short lived QSOs. 
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The true interpretation may, of course, be more complex than 

the alternatives proposed here, but it will be of profound 

physical importance to establish which is closer to reality. 

We first consider alternative a). The long QSO lifetimes 

(from z = 2.2 to z = 0 represents 4 x 109 h- 1 yr in a q0 =~ 

universe) imply that interactions, with their relatively short 
. ~~ 

timescales ( ~ 107 yr, see Stockton 1982), are unlikely~the fuel 

supply in such QSOs. However, such long lifetimes are consistent 

with models in which the fuel supply to the black hole is 

dominated by gas from stellar collisions (Duncan and Shapiro 

1983). Moreover, these models also predict a power law evolution 

with time in the gas supply rate to the QSO Cih « tn ),·which, by 

equation (8.1), would give rise to the same power law evolution 

in the QSO luminosity (L « tn) as inferred from our study of the 

QSO LF in chapter 4. Typical values for n are ~ 2 (McMillan et 

Bl. 1981), close to the value of n = 2.5 we obtain from our 

standard evolution model in a qo=% universe. 

In this long lived model Seyfert galaxies could then be 

interpreted as the end points of QSO evolution, where the gas 

supply rate has dwindled almost to exhaustion. One important 

consequence of the assumption that QSOs are long lived (to be 

discussed later) is that only the fraction of galaxies that we 

observe today as Seyferts (0.1-1%, as determined from the Seyfert 

and galaxy luminosity functions~ see chapter 4.3.6) have ever 

exhibited QSO activity in the past. 
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Within this basic model, the real situation is likely to be 

more complex. In particular, alternative energy generating 

mechanisms (e.g spin energy) may compete with those that are 

gravitational in origin at low, Seyfert-type, luminosities, 

slowing down the rate of luminosity evolution in such objects. 

The effect on the QSO LF would then be to cause the faint end of 

the LF to steepen at low redshifts (Cavaliere et 81. 1985) as 

more and more QSOs 'pile up' at faint luminosities. Cavaliere et 

81. (1985) demonstrate that the effect is small and it will 

require further observations of faint, B > 20 mag, QSOs before 

the LF is sufficiently well defined at these luminosities for 

such an effect to be detectable. 

Such considerations, however, do not change the basic 

assumption that QSOs are long "lived. We now go on to discuss 

whether such an assumption is consistent with other observations 

of QSOs. 

The lifetime for a QSO which radiates at its Eddington 

luminosity (i.e. t.he luminosity at which radiation pressure 

balances the gravitational force), L&dd, is given by CRees 1984): 

. . . (8.2) 

For a QSO to be long lived ( ~10t 0 yr) it must therefore radiate 

below its Eddington luminosity, which, from Rees ·(1984) can be 

expressed as: 

L& d d = 1 • 3 x 1 04 6 Ma ergs s- t • • • ( 8 • 3 ) 

where Ma is the mass of the black hole in units of 101 M.. A 
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'typical' M• (M8 = -26) QSO at z = 2.2 has a luminosity, L, given 

by (Marshall et al. 1984) 

L = dex[0,4(89.82-M)] • • • ( 8 • 4 ) 

of 2 x 10~ 6 ergs s-t. The QSO descnbed above will therefore 

radiate at sub-Eddington luminosities for a black hole of mass 

greater than 2 x 108 Me ~ The mass of this black hole will, of 

course, be steadily increasing as it accretes gas. From equation 

(8.1), the gas supply necessary to attain a luminosity of 2 x 

10~ 6 ergs s-t wlll be ~ 3 Meyr-t (e = 0.1). As more and more 

matter accretes onto this black hole, it will continue to 

increase in mass, finally ending up (assuming the model of 

McMillan et al. with Mh « t- 2 from z = 2.2, after initial 

constant phase lasting ~ 108 ye_ar) with a mass of 0,5 - 1.0 x 

109 Me. This is just below the upper limits of 109 -10t 0 Me derived 

for the masses of black holes in QSOs from X-ray variability 

studies (Zamorani et al. 1984). Light travel time arguments 

(Rees 1984) give an upper limit to the mass of any compact object 

observed to vary over a time scale of t seconds as follows: 

Ma = t/(500 seconds) • • • ( 8 • 5 ) 

Thus the tirnescales of < 105 sees seen by Zamorani et al. (1984) 

place tight constraints on the massive black holes required by 

this long lived model. The prediction of 0.5 - 1.0 x 109 Me is, 

however, born out by the observations of Ulrich et al. (1984). 

From an analysis of the variability in the IUE spectrum of NGC 

4151, they estimate the mass of the compact object at the centre 

of this Seyfert galaxy to be 0.5 - 1.0 x 109 Me. 
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We conclude, therefore, that alternative a) is not 

inconsistent with current theoretical predictions and other 

observations of active galactic nuclei. We note, however, that 

the masses of the remnant black holes in such a model are large 

and if variability time scales over periods of less than an hour 

are observed then this model will have to be re-considered. 

What, then, of alternative b? At first sight, the short 

lifetimes (~ 107 yr) inferred (Longair and Riley 1979) for the 

radio emission in double lobed radio QSOs might imply that the 

optical properties are also short lived. However, such short 

lifetimes imply that, with ~ 1000 generations of QSOs since z = 
2.2. every galaxy at the present day has undergone QSO activity 

for~ 107 -108 yr during its life. Assuming that energy is derived 

gravitationally, accretion rates ~f 0.1 - 1 M. yr-t, would imply 

that massive black holes (107 -10•M. )t will reside in all galaxies 

at 'the present epoch. In the centre of our own galaxy, at least, 

this appears not to be the case. While a compact object . may 

exist here (Lo et al. 1985), lastest estimates of its mass are 

only~ tOnK. (Allen and Sanders 1985). 

Conclusive evidence for massive black holes in other 

galaxies from studies of radial velocity measurements (Sargent et 

al. 1978) or surface brightness profiles (Young et al. 1978) is 

difficult ·to obtain as the resolution of such studies are 

t We note that independent arguments by Rees (1984) and Soltan 

(1982) also give remnant masses of 109 M. and 107 -tO•M. for long 

and short lived QSOs respectively. 
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critically limited by 'seeing'. As demonstrated by Dressler 

(1980) the evidence for the massive black hole at the centre of 

M87 is dependent on structure within the central 20pc. Such 

resolution is only attainable with the Hubble Space Telscope 

(HST). 

We conclude that the necessity to have massive black holes 

in the centrea of most galaxies makes the short lived QSO model 

less consistent with the observations than the simpler, long 

lived interpretation for the statistical evolution of the QSO LF. 

However, since it is clear that estimation of the mass of compact 

objects at the centres of galaxies and QSOs is crucial to our 

understanding of how QSOs evolve, we may therefore hope that the 

proposed observations to determine such masses with the HST will 

prove invaluable in this respect. · 

A critical test of pure luminosity evolution that can also 

be carried out with the HST is to establish whether significant 

numbers of low redshift Cz<2.2) QSOs exist at B > 25 mag. 

According to PLE, such objects will be the luminous, evolved 

counterparts of the faint (Me ~ -12), nearby (z ~ 0.01) galactic 

nuclei observed by Filippenko and Sargent (1985) to have broad 

QSO-like components in their emission line spectra. 

Consequently, if no z<2.2 QSOs are found at B = 25 mag this will 

imply a cut-off in the LF at faint magnitudes in the redshift 

range 0.5 < z < 2.2 that is not observed in the present day 

Seyfert LF (see figure 4.8), and thus that the 'conservation of 

number' implicit in the PLE hypothesis does not hold. 
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Up until now we have been concerned with interpreting the 

optical properties of QSOs in terms ·of a physical model for the 

QSO phenomenon. Although not explicitly dealt with in previous 

chapters, how then do we explain the radio properties of QSOs in 

terms of our long lived model for QSOs? We have already 

mentioned the fact that the lifetime for radio emission from QSOs 

is likely to be much less than that we infer from the optical 

properties of QSOs. Moreover, there are further problems in 

integrating radio QSOs into the evolutionary scenario described 

above, in that luminosity dependent density evolution derived for 

the radio QSO population from statistical studies (Peacock and 

Gull 1981), is at variance with the PLE model favoured here for 

optically selected QSOs. 

To reconcile the observed properties of radio QSOs and 

optical QSOs we need to establish whether or not these properties 

in individual QSOs are correlated. However, Peacock et al. 

(1986) conclude that the data available at present is 

irisufficient to establish any such correlation (or lack of it) 

and they stress. the importance of obtaining complete radio 

coverage (down to sub-mJy flux levels) on optical surveys of QSOs 

limited at faint magnitudes. In this respect radio observations 

of the QSOs found in our faint UVX survey will be particularly 

useful. Indeed the areas over which we obtained spectroscopic 

identifications (i.e. the 40 arcmin FOCAP fields) are ideally 

matched to the 'field of view' of the C array on the Very Large 

Array (VLA). Radio observations can therefore be carried out on 

~ 15 optically selected QSOs simultaneously. Thus integration 
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times sufficient to reach sub-mJy level can be obtained, whereas 

previously the low surface density of bright (B < 20 mag) QSOs 

permitted only brief 'snapshots' of single QSOs if one wished to 

obtain complete radio coverage for an optically selected sample. 

8.4 QSOs at High Redshift 

As discussed in chapter 7, results regarding the evolution 

of QSOs at high redshift have proven somewhat inconclusive. If 

we can discount the effect of dust at high redshift (see below), 

the observed surface densities of high redshift (z > 2.2) QSOs 

are consistent with the luminosities of QSOs ceasing to increase 

beyond a redshift of z ~ 2.2-2.5 and remaining constant up to a 

redshift of 4, a period of 4 x 101 h Gyr. This is in qualitative 

agreement with the short ( ~ to•· yr), constant luminosity phase 

predicted by the theoretical models in whch the black hole is 

fuelled by debris from stellar collisions (see e.g. McMillan et 

81. 1981), discussed in chapter 8.2. However, further 

spectroscopic surveys of high redshift QSOs are needed to enable 

explicit construction of the QSO LF at high redshifts and thus 

track evolution in a similar manner to the procedure followed for 

the UVX QSOs. 

At present, probably the best way to provide such catalogues 

will be based on the selection procedures combining broadband 

colours and objective prism searches described in chapter 7. In 

particular, if several Schmidt plates can be obtained for every 

passband in a particular area, the errors associated with the 

Schmidt magnitudes can be driven down to a level where colour 
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selected samples of anomalous objects will contain minimal 

contamination from Galactic stars. However, no matter how 

accurate they may be, broadband surveys for high redshift QSOs 

are always open to criticism on the grounds of incompleteness. 

Such objections can only be removed by spectroscopically 

surveying all stellar images in a magnitude limited sample. 

Unfortunately, to obtain sufficiently large surface densities for 

high redshift (z > 2.2) QSOs (50 per square degree) to construct 

an accurate LF, such a survey would have to extend to B ~ 23 mag, 
' where the surface density of Galactic stars is ~ 1000 per square 

deg~ee. While, at present, such observations of large numbers of 

extremely faint objects are clearly out of the question, current 

advances in new multi-slit spectrographs (e.g. the Low 

Dispersion Slit Spectrograph), _coupled with the development of 

new, large format CCD detectors by Tektronix, make such surveys 

an exciting prospect. for the future. 

As a tailpiece to this section we consider the problem of 

dust associated with galaxy clusters invoked in chapter 6 to 

explain the observed anti-correlation of QSOs with respect to 

galaxy clusters. If we ever wish to ascertain the true evolution 

of QSOs at hig~ redshifts, it is vital that any significant 

effect due to dust be either quantified or, better still, ruled 

out. To d~ so, we require some independent method of estimating 

the amount of dust present in clusters. Perhaps the most 

encouraging prospect is to look for thermal emission from dust in 

clusters as observed by IRAS. While the sensitivity of IR~S is 

still too low to detect dust from the more distant clusters, it 
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may be present in nearby clusters. In addition, since the effect 

of dust is expected to be at its strongest for the highest 

redshift QSOs, further observations of their broadband BVRI 

colours may help to rule out significant reddening (and thus 

large amounts of intervening dust) at these high redshifts. 

8.5 QSO Clustering 

We choose to end this discussion of our results by 

concentrating on the property of the QSO population which perhaps 

holds the greatest potential for future investigation, namely the 

clustering of QSOs. 

We have already demonstrated in chapter 5 that the QSO 

correlation function is a ~owerful diagnostic tool for 

ascertaining the structure of the universe at large scales. 

Strong constraints have been placed on the homogeneity of the 

universe at scales > 100h-tMpc. In addition, low S/N features 

have been identified which,. if confirmed with further 

observations, may not only provide evidence for a baryon 

dominated universe, but also afford a test for Qo. 

However, it is not only in its role as a probe of the 

structure of the universe that the clustering of QSOs is of 

fundamental importance. At th~ smallest scales the amplitude of 

the QSO correlation function may reveal vi tal clue·s to their 

environment and consequently to the mechanisms giving rise to the 

QSO phenomenon. 
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As shown in chapter 5, QSOs do indeed exhibit strong 

clustering at scales C 10h- 1 Mpc. Although further observations 

are required to determine accurately the amplitude of this 

clustering, at present it appears that QSOs cluster more strongly 

than galaxies but less strongly than rich clusters of galaxies. 

We view it as highly significant that numerous studies (e.g. 

Weymann et 41. 1978, Yee and Green 1984) involving direct imaging 

of low redshift QSOs and their cross-correlation with galaxies 

find that, while QSOs do not inhabit the richest of clusters 

(Abell class 1 and greater), they are found in small compact 

clusters whose central densities are at least as high as those 

observed in the richest of clusters (Yee and Green 1984). As 

discussed before, the assumption that QSOs are long lived implies 

that only 0.1-1% of all galaxies have ever undergone QSO 

activity. We may therefore expect that the conditions which give 

rise to QSOs are extremely selective. As QSOs require both 

massive black holes and large stockpiles of energy close to this 

source, we may therefore expect QSOs to form only in the centres 

of the strongest density inhomogeneities in the 

which we see today as these compact clusters. 

far from the only implication that can be 

observation that QSOs are found in small, 

Stockton (1982) cites the existence of close, 

early universe, 

However, this is 

drawn from the 

dense clusters.· 

and therefore 

possibly interacting, companions to QSOs in these tight groups as 

a mechanism for fuelling QSOs. While mergers are unlikely to be 

capable of fuelling QSOs over the timescales (1010 yr) required by 

the long lived scenario favoured above, we note that Stockton 

(1982) based his conclusions on observations of radio QSOs, 
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which, as discussed above, do exhibit differ~nces in their 

evolution from their optically selected counterparts. 

A scenario in which, as the result of a merger or an 

interaction between galaxies, radio QSOs are merely rejuvenated 

optical QSOs could be invoked to reconcile the observed 

properties of radio QSOs with those of optically selected QSOs 

(e.g. short/long lifetimes, elliptical/spiral morphology) but 

such a model will remain speculative until further observations 

are made. 

There are two possible ways in which future work into the 

environment of QSOs can be directed. 

1. More direct imaging of distant QSOs in the range 0.5 < z < 

1.0. Many scenarios requiring some form of density evolution 

in the QSO population predict (Stocke and Perronod 1981) 

that, at these redshifts, QSOs will be found in richer 

clusters than they are presently observed in at lower (z < 

0.5) redsh'ifts. Galaxy counts around Seyferts should also be 

made, since, under the PLE hypothesis, Seyferts are merely 

evolved QSOs. · Comparison of the galaxy clustering around 

Seyferts may then be compared to that around QSOs at z ~ B.S 

to determine any evolution in the environment of QSOs at low 

redshifts. Futhermore, similar studies should also be 

carried out around the broad line radio galaxies, since they 

may be interpreted as the evolutionary counterparts of the 

radio QSOs. Establishing the link between the environments 

of these two different classes of object might then, by 

- 187 -



association, similarly establish an environmental (and 

perhaps evolutionary) link between radio-quiet and radio-loud 

QSOs 

2. More spectroscopic observations of UVX catalogues using FOCAP 

to drive the noise down on the amplitude of the QSO 

correlation function at small scales. 

8.6 Coda 

In this chapter we have attempted to draw together all the 

various results presented in this thesis, interpreting them in 

terms of a coherent physical model for QSOs. In doing so, it is 

clear that, while much of the observational and theoretical work 

is compatible, many problems have jet to be resolved. We find 

that the results obtained from our statistical approach can be 

interpreted in terms of a model for optically selected QSOs in 

which th~y are long lived, having formed prior to redshifts of 

2.2, and dim gradually in luminosity until the present epoch, 

possibly fuelled by mechanisms internal to the host galaxy (e.g. 

debris from stellar collisions). 

Within this simple picture the real situation is undoubtedly 

more complex, in particular we still have to explain the role of 

radio QSOs and other subsets of the QSO phenomenon (e.g. BL 

Lacs, BAL QSOs) which this particular statistical approach has 

prevented us from investigating closely. 
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However, with the advance in modern astronomical 

instrumentation represented by the advent of multi-object 

spectroscopy, large ceo detectors and the imminent launch of the 

HST, we are surely on the verge of a new era in QSO research. 

Properly used this new technology can only lead us to ·a better 

understanding of the QSO phenomenon and the role it plays in the 

universe. 
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APPENDIX B 

FAINT UVX SURVEY: CATALOGUE OF EMISSION LINE OBJECTS 



Name H,A, (1950) Dec, b u-·b ID z Class Lines 

SGP1:03 00h 57' 01". 9 -28° 35, 42" 19.45 -0.53 Q 0.662 2 Mgii 4650 
SGP1:04 00 56 18.1 -28 45 53 19.91 ··0. 91 Q 1.740 2 SiiV 3850 

CIV 4240 
CII I? 5200 

SGP1:05 00 57 07.2 .,28 38 11 20.63 -0.60 Q 0,454 3 Mgii 4073 
[NeV](3426) 4971 

SGP1:06 00 5'/ 20,3 -28 37 40 20.90 -0.88 Q 1.564 2 CIV 3971 
CII IJ 4900 

SGP1:07 00 56 12.5 -28 43 26 20.11 -0,65 Q 0,818 1 Mgii 5088 
SGP1: 10 00 55 49.0 -28 32 08 20.86 ~o. n NL 0.426 1 [OII] 5303 

H.B 6912 
[OIIIJ(4959) 7062 
[OIII](5007) 7135 

SGP1: 16 00 56 18,0 -28 41 44 20.48 .. 0.58 Q 0. 965 3 Mgii 5500 (Q?) 
SGP1: 17 00 55 42.9 -28 41 20 20.09 -1.31 Q 1.278 1 CIV 3531 

CIII] 4354 
Mgii 6363 

SGP1:20 00 56 34.5 -29 OS 30 19.87 -1.54 Q 1.334 1 CIV 3611 
CII I] 4461 
Mgii 6533 

SGP1:21 00 56 51.9 -29 04 10 20.47 -0.54 Q 2.170 2 NVe 3900 
CIV 4910 

SGP1:22 00 56 51.8 -29 01 46 20.79 -0.81 Q 1.281 3 CIV? 3531 
CII I] 4350 
Mgii? 6380 

SGP1:31 00 57 30.5 -28 48 50 20.28 -0.49 Q 0.692 1 Mgii 4719 
[AriV](2855) 4825 
Fe I I( 2950 )& 5000 
Hei1(3203) 5411 

SGP1:39 00 55 19.1 -28 52 38 20.70 -1.27 Q 1.388 1 CIV 3700 
CIII] 4558 

- B1 -



Name R.A. (1950) Dec. b u-b ID z Class Lines 

SGP2:01 00h 48"' 52':.1 -29° 07, 20" 19.93 -0.68 Q 2.375 1 Lya 4106 
NV 4187 
SiiV 4694 
CIV 5227 

SGP2:06 00 49 31.4 -29 18 so 20.18 -1.39 Q 1.631 1 CIV 4075 
CIII] 5020 

SGP2:11 00 so 12.9 -29 07 30 20.98 -0,93 Q 1.976 1 Lya 3616 
NV" 3700 
CIV 4612 

SGP2: 13 00 49 37.9 -29 08 38 20.31 -1.01 Q 0.578 2 Mgii 4415 
[AriV](2855) 4520 
[AriV](2869) 4550 

SGP2:14 00 so 11.8 -29 03 56 20.46 -1.08 Q 1.619 1 CIV 4061 
CI II J 4993 

SGP2: 16 00 50 28.2 -29 07 42 20.22 -0.51 Q 0.852 2 CIIIJ? 3520 
Mgii 5182 
Feii<2950)0 5450 

SGP2: 18 00 49 41.5 -29 06 34 20.41 -1.02 Q 0.466 3 Mgii 4085 
Ha 6002 
(z=1.140? CIII]/Mgii) 

SGP2:19 00 so 05.8 -29 OS 36 18.97 -0.73 Q 1.605 1 CIV 4037 
CII I] 4971 

SGP2:20 00 49 27.5 -29 31 18 19.45 -0.58 Q 0.601 2 Mgii 4482 
Feii<2950)0 4680 
[NeV](3426) 5471 
[OII] 5970 
Ha 6563 

SGP2:25 00 49 42.1 -29 34 08 20.76 -0.63 Q 1.868 2 Lya" 3487 
CIV 4442 

SGP2:27 00 49 47.8 -29 35 26 20.86 -0.48 Q 1.920 3 SiiV 4061 
CIV 4500 
CII I] on sky? 

SGP2:34 00 48 28.2 -29 21 15 19.83 -0.64 Q 1.602 3 CIV 4030 
SGP2:36 00 48 48.6 -29 21 38 20.83 -1.16 Q 1.756 2 CIV 4275 

CIII] 5250 
SGP2:38 00 48 16.3 -29 15 29 20.36 -0.31 NL 0.086 1 [OII] 4054 

[OIIIJC3727) 5438 
Ha 7125 

SGP2:39 00 48 26.4 -29 18 15 19.13 -1.01 Q 0.428 1 Mgii 4010 
H8 6950 

SGP2:40 00 50 27.5 -29 32 34 20.91 -0.37 NL 0,396 1 [OII J 5195 
[OI II] 6975 

SGP2:44 00 so 38.3 -29 22 35 20.37 -1.09 Q 1.800 1 SiiV" 3920 
CIV 4620 
OIIIC1665) 4665 
NIIIC1750) 4896 
CIII] 5340 

SGP2:45 00 49 51.1 -29 20 34 20.64 -0.34 NL 0.111 1 [OII] 4136 
H8 5145 

SGP2:46 00 50 35.8 -29 37 02 20.37 -0.97 Q 0.917 3 Mgii 5364 
SGP2:47 00 50 36.9 -29 29 13 18.92 -0.51 Q 0.830 1 Mgii 5120 
SGP2:48 00 49 46.2 -29 21 40 19.77 -1.34 Q 1.852 1 Lya 3475 

SiiV 3987 
CIV 4425 

- 82 -



Name R.A. (1950) Dec. b u-b ID z Class Lines 

3GP3:02 00h 52" 16". 1 -28°32'31" 20.46 -0.58 Q 2.181 1 Lya 3869 
SiiV 4462 
CIV 4926 

3GP3: OS 00 51 23.0 -28 26 23 20.56 -0.60 Q 2.110 1 Lya 3780 
NV 3861 
SiiV 4367 
CIV 4840 

3GP3: 09 00 51 52.4 -28 22 28 19.57 -0.51 Q 2.133 2 Lya 3815 
CIV 4847 

3GP3: 10 00 52 38.9 -28 23 46 19.34 -0.33 Q 2.350 1 Lya 4076 
CIV 5169 

3GP3: 18 00 53 37.1 -28 30 12 19.97 -0.79 Q 1.029 1 CII I] 3875 
Mgii 5674 

3GP3: 19 00 52 33.8 -28 30 45 20.37 -1.47 Q 0.779 1 CII 4143 
Mgii 4973 

3GP3:20 00 53 33.8 -28 36 49 20.76 -1.48 Q 1.306 1 CIV 3573 
CI II] 4400 
Mgii 6445 

SGP3:22 00 52 51.8 -28 37 02 20.60 -0.17 NL 0.130 3 [OII] 4720 
SGP3:23 00 51 21.7 -28 39 57 18.65 -1.16 Q 1.574 1 CIV 3990 

CII I] 4909 
SGP3:25 00 51 39.5 -28 46 47 19.40 -1.33 Q 1,338 1 CIV 3651 

CII I] 4462 
Mgii 6543 

SGP3:27 00 53 30.9 -28 36 26 19.05 -0.84 Q 1.920 1 Lya 3554 
NV 3623 
SiiV 4100 
CIV 4523 
CIII] 5570 

SGP3:31 00 53 18.3 -28 51 19 19.59 -0.75 Q 1,706 1 OIV(1406) 3801 
CIV 4191 
Heii(1640) 4425 
CIII] 5166 

SGP3:34 00 53 37.0 -28 43 11 19.27 -1.00 Q 1.933 1 Lya 3590 
NV 3637 
SiiV 4109 
CIV 4537 

SGP3:35 00 53 17.1 -28 38 36 20.31 -0.30 BQ 1.498 1 CIV* 3878 
CIIIJ 4758 

SGP3:37 00 53 18.3 -28 51 19 19.32 0.80 NL 0.130 3 [OII J 4210 
SGP3:38 00 52 51.4 -28 53 34 19.14 -0.82 Q 0,636 1 Mgii 4576 

Feii(2950)* 4819 
[OII] 6105 

SGP3:39 00 53 18.2 -28 40 23 20.86 -0.67 Q 0,639 1 Mgii 4587 
Fe I I( 2500 )• 4120 

SGP3:48 00 52 22.0 -28 48 10 20.47 -0.90 Q 2.097 1 Lya 3772 
NV 3836 
SiiV 4344 
CIV 4797 

SGP3:49 00 52 18.0 -28 47 34 19.49 -0.99 Q 1.402 3 CIII] 4586 

- B3 -



Name R,A, (1950) Dec. b u-b ID z Class Lines 

;}SF1:01 03h 39=> 26°, 2 -45°05'53" 19,09 -0.80 Q 2.268 1 Lya 3975 
SiiV 4575 
CIV 5062 

QSF1:03 03 39 18.1 -45 02 07 20.86 -0.95 Q 1.072 2 CII I] 3955 
Mgii 5798 

QSF1:04 03 39 47.4 -45 08 15 19.92 -0.72 Q 2.049 1 Lya 3707 
SiiV 4269 
CIV 4723 

QSF1:05 03 39 03.8 -45 02 51 20.98 -0.55 NL 0.346 3 [OI I] 5016 
QSF1:07 03 41 50.7 -45 17 41 20.16 ~0.62 Q 1.615 1 SiiV 3661 

CIV 4051 
CIIIJ? 4992 

QSF1:09 03 41 06.4 -45 20 50 20.56 -0.43 Q 0.550 1 Mgii 4362 
HeiH3203) 4950 

QSF1: 10 03 40 10.3 -45 10 20 19.78 -0.43 NL 0.312 1 [OI I] 4890 
(OIIIJ(5007) 6569 

QSF1:11 03 40 57.8 -45 12 06 19.37 -0.43 NL 0.182 1 [OI I] 4405 
H8 5746 
[OIII](4959) 5862 
[OIIIJC5007) 5918 

QSF1: 12 03 40 33.9 -45 21 29 20.12 -0.49 Q 2.212 1 Lya 3905 
NV 3982 
CIV 4975 
CIIIJ 6131 

QSF1:16 03 40 45.8 -45 13 03 20.99 -0.64 Q 2. 000 . 1 Lya 3648 
CIV 4640 
HeiiC1640) 4920 

QSF1 :17 03 39 48.1 -44 52 00 20.57 -0.74 Q 1. 745 2 crv 4250 
CIIIJ? 5146 
CIIJ? 6520 

QSF1: 19 03 39 42.4 -44 58 51 20.48 -0,78 Q 1.146 1 CIII] 4097 
Mgii 6010 

QSF1:22 03 39 49.4 -44 52 27 20.65 -0.48 NL 0.360 1 [OII] 5068 
[OIII](5007) 6809 

QSF1:29 03 41 43.9 -45 04 26 20.97 -1.12 Q 0.566 2 Feii(2500)• 3950 
Mgii 4382 

QSF1:30 03 42 07.2 -44 56 18 20.47 -0.55 Q 0.569 2 Heii(2512) 3953 
Mgii 4390 

QSF1:31 03 42 00.9 -45 10 55 19.95 -0.95 Q 0.397 2 Mgii 3910 
QSF1:32 03 41 41.0 -45 10 41 20.33 -0.71 Q 1. 311 3 CII I] 4416 

err 5371 
QSF1:33 03 42 11.5 -44 56 38 20.66 -0.59 NL 0.182 1 [OII] 4405 

[OIII](4959) 5866 
[OIII](5007) 5913 

QSF1:34 03 40 50.1 -45 05 27 19.26 -0.67 BQ 2.004 1 Lya 3649 
NV 3732 
SiiV 4204 
CIV 4660 

QSF1:36 03 42 13.5 -45 03 04 18.87 -0.75 Q 1.700 1 crv 4185 
CIII] 5152 

QSF1:37 03 41 11.9 -44 46 19 20.37 -0.62 Q 0.957 1 CIII] 3732 
Mgli 5480 

QSF1:40 03 41 32.7 -44 58 14 18.92 -0.97 Q 1.662 1 CIV 4122 
CII I] 5084 

- B4 -



Name R,A, (1950) Dec, b u·-b ID z Class Lines 

QSF2:03 03" 44" 29':. 7 -45° 52, 47" 20' 03 -0,82 Q 1,871 3 NV 3567 
SiiV 4024 
CIV 4447 

QSF2:05 03 45 34.2 -45 47 51 20.31 -0,57 Q 2,494 1 Lya 4246 
CIV 5400 

QSF2:09 03 43 33,2 -46 03 45 20.58 -0.81 Q 1.589 1 CIV 3949 
CII I] 4895 

QSF2:15 03 44 32.2 -46 10 21 20.46 ~0.66 Q 1.082 2 CII I] 3959 
Mgii 5846 

QSF2: 16 03 44 01.2 -46 01 03 19,52 -0,66 Q 0,592 3 Mgii 4453 
H~? 6506 

QSF2: 17 03 46 23.0 -46 12 01 20,51 -0,64 Q 2,213 1 Lya 3904 
CIV 4982 

QSF2:18 03 45 12.1 -46 13 51 19,75 -1.54 Q 1.699 1 CIV 4183 
CIIIJ 5151 

QSF2:20 03 46 05.6 -46 19 14 20.95 -0.66 NL 0.103 3 [OII] 4110 
QSF2:26 03 46 20.2 -46 15 25 20,72 -0.58 Q 2.118 1 Lya 3790 

NV? 3868 
CIV 4831 

QSF2:28 03 44 20,7 -46 21 03 19.78 -1.02 Q 2.015 1 Lya 3660 
CIV 4678 
CIII] 5755 

QSF2:29 03 45 13.8 -46 19 54 20.07 -0.83 Q 1.984 1 Lya 3629 
CIV 4622 

QSF2:30 03 44 00.0 -46 13 52 19.62 -0.59 Q 0.844 1 Mgi I 5159 
Feii(2950)* 5450 

QSF2:31 03 44 53.9 -46 17 04 20.06 -0.70 Q 0.906 1 CII I] 3634 
CII 4441 
Mgii 5325 

QSF2:35 03 45 19.3 -46 23 44 19.34 -0.54 Q 0.743 2 [MgVIIJC2632) 4581 
Mgii 4886 

QSF2:36 03 44 36.1 -46 17 26 20.52 -0.68 Q 2.293 1 Lya 3996 
CIV 5117 

QSF2:39 03 45 55.7 -46 04 37 20.07 -0.56 Q 1.329 3 CII I] 4454 
QSF2:42 03 46 26.2 -46 11 21 20.07 -0.41 Q 1.351 3 CIV 3629 

CIIIJ 4495 
QSF2:44 03 45 45.5 -46 04 22 20.47 -1.03 Q 0.490 2 Mgii 4181 

Heii(3203) 4760 

- BS -



NamD R.A. (1950) Dec, b u-b ID z Class Lines 

QNB1:08 10h 39=' 21". 4 +01 ° 47 '22" 20.16 -0.64 NL 0.202 1 [OII] 4475 
H8 5845 
[OIII](4959) 5970 
[O!II](5007) 6019 

QNB1:10 10 39 03.2 +01 31 56 20.90 -1.19 Q 1.704 2 CIV 4189 
CIIIJ? 5162 

QNB1: 16 10 38 56.6 +01 36 13 20.31 -0.28 NL 0.236 1 [NeV](2973) 3672 
[NeiiJ(3063)? 3777 
[NeV](3426) 4232 
[OII] 4611 

QNB1:20 10 40 32.3 +01 24 33 20.86 -0.55 Q 2.503 1 Lya: 4258 
NV 4340 
SiiV 4907 
CIV 5432 

QNB1:22 10 40 17.4 +01 28 46 19.91 -1.11 Q 1.426 3 CIV 3763 
CI II J 4621 

QNB1:24 10 40 14.5 +01 23 06 20.66 -1.13 Q 0.700 2 Mgi I 4727 
Feii(2950)" 5011 

QNB1:26 10 40 40.0 +01 17 54 19.82 -1.55 Q 1.917 1 Lya: 3548 
NV 3615 
SiiV 4048 
CIV 4519 

QNB1:28 10 40 40.5 +01 21 25 20.53 -0.81 Q 1.494 1 CIV 3860 
CIII] 4766 

QNB1:32 10 39 21.8 +01 21 50 20.56 -0.70 Q 0.505 3 Mgii 4211 
Heii(3203) 4810 

QNB1:34 10 39 56.5 +01 15 45 18.45 -1.45 Q 1.398 1 CIV 3717 
NIII](1750) 4196 
CII I] 4564 
Hgii 6725 

QNB1:38 10 39 59.7 +01 17 50 18.90 -0.76 BQ 2.109 1 Lya: 3772 
NV 3852 
SiiV 4355 
CIV 4818 
CIII] 5950 

QNB1:43 10 40 10.2 +01 33 33 20.25 -1.59 Q 1.845 1 SiiV 3978 
CIV 4407 
CII I] 5388 

QNB1:44 10 40 21.9 +01 47 25 20.26 -0.78 Q 0.500 3 Hgii 4197 
QNB1:49 10 40 18.0 +01 33 21 19.53 -0.94 BQ 0.493 2 Hgii 4191 

He I I( 3203) 4779 

- B6 -



Name R.A. (1950) Dec. b u-b ID z Class Lines 

QNB2:01 10h 41° 13<'.1 +01° 05' 48" 19,07 -1.63 Q 1.253 2 CIV 3493 
err IJ 4296 

QNB2:02 10 40 29.7 +01 10 04 19.18 -0.95 Q 0,730 3 Mgii 4841 
QNB2:06 10 40 35.6 +01 06 41 20.68 -1.01 Q 0.493 2 Mgii 4177 
QNB2 :07 10 40 47.5 +00 59 06 19.61 -0.42 Q 0.627 2 Mgii 4552 
QNB2: 15 10 41 26.6 +01 06 40 18.88 -0.79 Q 1.697 1 CIV 4180 

CII I] 5154 
QNB2:17 10 41 16.7 +01 11 08 20.94 -0.69 NL 0,305 3 [OII] 4864 
QNB2:23 10 42 21.6 +00 53 10 20.00 -0,92 Q 1.166 1 CIII] 4138 

Mgii 6055 
QNB2:24 10 41 43.2 +00 53 10 19.25 -0.61 Q 0,192 1 H~ 4876 

H8 5799 
[OII I]( 4959) 5911 
[OIII](5007) 5973 

QNB2:25 10 41 49.1 +00 56 42 19.36 -1.16 Q 1,324 1 CII I] 4424 
Mgi I 6520 

QNB2:28 10 41 28,4 +00 56 46 20.91 -0,98 Q 1,194 1 CIIIJ 4188 
Mgi I" 6175 

QNB2:36 10 40 19.5 +00 48 50 20.53 -1.05 Q 2.116 1 Lya 3882 
CIV 4834 

QNB2:40 10 42 19.1 +00 44 01 20.39 -1.00 Q 0.857 2 CIII] 3543 
Mgii 5200 

QNB2:42 10 41 49.7 +00 43 28 20,84 -1.20 Q 0.600 3 Mgii 4477 
QNB2:45 10 42 00.0 +00 47 47 20,74 -1.37 Q 1.253 2 CII I] 4301 
QNB2:46 10 41 07.0 +00 45 52 20.19 -1.08 Q 1.145 2 CII 4990 

Mgii 6000 
QNB2:47 10 41 06.0 +00 43 23 20.66 -0,54 NL 0.080 3 [OII] 4025 
QNB2:50 10 41 47.7 +00 51 44 20.45 0.07 NL 0.060 1 [OII] 3961 

H,B 5153 
[OII I]( 4959) 5261 
[OIII](5007) 5307 
Ha 6957 

- B7 -



Name R,A, 0 950) Dec, b u-·b ID z Class Lines 

QNY1:02 12h 3~ 1Jt>, 7 -ooo 52' 35" 20,07 -1,42 Q 1,471 1 CIV 3830 
CII!] 4713 

QNY1:06 12 33 19,7 -00 55 18 19,44 -1.19 Q 1,470 1 CIV 3828 
CIIIJ 4713 

QNY1:07 12 33 35,1 -00 34 44 20,40 -0,55 NL 0,308 3 [OI I] 4875 
QNY1:08 12 33 34,9 -00 42 56 19,86 -0.60 Q 1.874 3 CIV 4451 
QNY1:09 12 33 28,6 -00 36 04 20,87 ··L26 Q 1,097 3 CI II J 4003 

Mgi Io 5850 
QNY1:13 12 32 56,1 -00 25 10 19,03 ··0, 73 Q 1, 579 1 CIV 4000 

CIIIJ 4918 
QNY1:17 12 34 16,0 -00 42 55 19,00 -1,11 Q 1,545 2 CIV 3943 

NII I (1750) 4450 
CII I]o 4860 

QNY1:24 12 34 59,5 -00 36 19 20.66 -1.05 Q 0,788 2 Mgii 5002 
QNY1:25 12 34 16.0 -00 40 39 20.88 -1.24 Q 1,437 1 CIV 3776 

CII I] 4650 
QNY1:26 12 34 12,1 -00 36 40 20,50 -0.50 NL 0.135 3 [OI I] 4230 
QNY1:28 12 34 54.1 -00 27 44 20.78 -1.46 Q 2.193 1 Lya 3882 

SiiV 4473 
CIV 4943 

:QNY1:29 12 33 54.1 -00 37 27 21.32 -0.88 NL 0.179 3 [OII] 4394) 
QNY1:30 12 34 07.6 -00 33 24 19,55 -1.17 Q 10 792 1 SiiV" 3910 

CIV 4324 
QNY1:31 12 34 23,1 -00 24 37 20.00 -1.46 Q 1.686 1 SiiV 3759 

CIV 4161 
CII IJ 5125 

QNY1:32 12 34 02.8 -00 20 53 20.82 -0.67 NL 0,445 3 [OIIJ 5385 
QNY1:36 12 33 57.9 -00 36 30 20.91 -0.85 Q 1.784 2 CIV 4309 

SiiV 3900 
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Name R.A. (1950) Dec. b u-b ID z Class Lines 

QNY2:02 12h 35° 543,5 +00° 35, 35" 20.14 -0.86 Q 0.976 1 CIIIJ 3767 
Mgii 5534 

QNY2:05 12 35 39.1 +00 31 45 19.33 -0.51 Q 1.847 2 NV 3530 
CIV 4415 
CIIIJ 5430 

QNY2:0? 12 35 ?.4.5 +00 36 14 20.01 ·~1. 05 Q 1.948 1 Lya 3600 
NV 3681 
5iiV" 4140 

QNY2:09 12 35 04.5 -:-00 31 57 20.98 -0.96 Q 0.822 3 Mgii 5097 
QNY2:10 12 34 28.9 +00 31 07 20.13 -0.94 Q 1.581 1 CIV 3996 

CII I] 4930 
QNY2: 12 12 35 22.6 +00 25 45 21.33 -1.03 Q 1.188 3 CIII] 4176) 
QNY2:14 12 35 07.7 +00 33 57 20.00 -1.03 Q 1.873 1 Si IV" 4050 

CIV 4456 
CIII] 5479 

QNY2:15 12 34 39.2 +00 28 29 20.44 -1.05 Q 2.003 1 Lya 3650 
NV 3730 
CIV 4649 

QNY2:16 12 35 20.2 +00 33 07 20.97 -1.58 Q 0.866 2 Mgii 5221 
Fe I I( 2950 ) .. 5500 

QNY2:19 12 35 22.8 +00 17 28 20.92 -0.79 Q 1.122 1 CI II] 4050 
Mgii 5937 

QNY2:21 12 34 34.9 +00 19 59 19.20 -1.13 Q 2.003 1 Lya 3650 
NV 3730 
SiiV 4185 
CIV 4644 

QNY2:22 12 34 30.6 +00 13 09 20.09 -0.61 .Q 2.038 1 Lya 3701 
CIV 4701 
CIII] 5794 

QNY2:25 12 34 23.3 +00 10 12 20.62 -1.51 Q 1.854 1 CIV 4415 
CIIIJ 5456 

QNY2:26 12 35 33.6 +00 14 14 21.19 -1.09 Q 0.526 3 Mgii 4269) 
QNY2:27 12 35 55.0 +00 OS 52 20.13 -0.79 Q 1.568 1 CIV 3972 

CIII] 4909 
QNY2:29 12 36 10.7 +00 04 48 19.28 -0.82 Q 0.870 2 Mgii 5232 
QNY2:32 12 36 06.8 +00 10 33 19.95 -0.50 Q 1.610 1 CIV 4050 

CII I] 4974 
QNY2:37 12 34 39.4 +00 06 51 20.11 -0.45 Q 0.943 1 CII I] 3712 

Mgii 5430 
QNY2:39 12 35 09.9 +00 01 17 20.29 -2.01 NL 0.169 1 [Oil] 4345 

HP 5702 
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Name R,A, (1950) Dec, !-, u-b ID z Class Lines H 

QNA1:04 13~ 3 5° 165
• 3 +00° 32 '07" 20 ''77 ··0, 70 NL 0,336 3 [OII] 4985) 

H.B 6496 
[OI II ](5007) 6092 

QNA1:18 13 36 23.4 +00 42 31 19,76 -0,88 Q 1,940 1 NV 3640 
SiiV 4129 
CIV 4553 

QNA1:20 13 36 30,8 +00 37 34 19,11 -0,73 Q L 152 1 CII I] 4103 
Hgii 6028 

QNA1:21 13 36 25,5 +00. 26 42 20.27 -0,61 Q 1,648 1 CIV 4102 
CII I] 5050 

QNA1:25 13 36 30,4 +00 24 57 21,20 -0,37 Q 2,242 1 Lya 3946) 
CIV 5018 

QNA1:27 13 36 3L2 +00 25 23 20,08 -1,27 Q 1.050 1 CIII] 4102 
Mgii 5747 

QNA1:28 13 35 49,5 +00 31 25 19.24 -0,86 Q 2.153 1 Lya 3842 
NV 3910 
SiiV 4414 
CIV 4883 

QNA1:30 13 36 06.3 +00 38 45 21.28 -1.48 Q 2.103 1 Lya 3777) 
NV 3848 
SiiV 4358 
CIV 4805 

QNA1:35 13 35 54.8 +00 32 45 20,18 -1,08 Q 1,014 1 CIIIJ 3845 
Mgii 5635 

QNA1:41 13 37 05.4 +00 25 33 19.83 -0.80 Q 2,122 1 Lya 3796 
NV 3876 
CIV 4883 

QNA1:42 13 37 11.8 +00 24 57 19.94 -0.77 Q 1.859 3 CIV? 3587 
err r J 4430 

QNA1:44 13 36 33.0 +00 10 48 19.85 -0.63 Q 2.023 2 Lya 3662 
CIV 4675 
CIII] 5773 
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Name R,A, (1950) Dec. h u-b ID ?. Class LineR 

QSl'11:01 22h 06° 51". 5 -19° 09, 27" 20,59 -0.77 Q 1.829 3 CIV 4382 
CI I I]o 5383 

QSM1:03 22 06 30.4 -19 27 16 19.79 -0.78 Q 2,076 1 Lya 3737 
CIV 4769 
CII I] 5872 

QSM1:15 22 07 06,6 -19 10 59 19,64 <>0 0 87 Q 2.171 1 Lya 3858 
SiXV 4420 
CIV 4908 

QSM1:19 22 08 14.0 -19 26 46 19.83 -0.81 BQ 1.930 1 NV 3628 
SiiV 4102 
CIV 4542 
CII I]o 5590 

QSM1: 21 22 08 08.2 -19 35 08 20.62 -0.87 Q 0.488 3 Mgii 4150 
QSM1:25 22 07 40.9 -19 38 51 20.13 -0.63 Q 1.128 3 CII IJ 4073 

Mgii 5956 
QSM1:26 22 08 03.6 -19 27 37 18.51 -0.63 Q 1.520 1 CIV 3906 

CIIIJ 4806 
QSM1:31 22 07 15.0 -19 38 32 20.51 -1.06 Q 1. 748 1 CIV 4253 

CII I] 5250 
QSM1:34 22 06 31.1 -19 44 21 19,95 -0,52 Q 0.591 1 Mgii 4441 

[NeVJ(2972) 4737 
QSM1:35 22 07 40.6 -19 40 01 20.73 -0.79 Q 1.123 1 CIII] 4043 

CII 4940 
Mgii 5949 

QSM1:36 22 07 11.4 -19 30 44 19.36 -0.99 Q 1.119 1 CIII] 4041 
Mgii 5934 

QSM1:38 22 05 59.3 -19 40 14 18,15 -1.07 .Q 1.285 1 CIV 3535 
CI II J 4632 
CII 5308 
Mgii 6400 
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Name R,A, (1950) Doc. b u-b ID z 

QSM2:03 22h 06° 14". 8 -20° 19, 03" 19 0 85 -0.84 Q 0.682 
QSM2:07 22 06 15,6 -19 59 04 18.86 ~0,79 Q 1.578 

QSM2:08 22 05 51.7 -20 01 30 18.04 -1.24 Q 1.711 

QSM2:09 22 06 07.0 -·19 58 44 17.93 -0,52 Q 2.577 

QSM2:18 22 07 29.0 ~20 05 17 20 0 2./ -0,89 Q 2.454 

QSM2:22 22 07 58,3 -20 08 37 19.13 ~1.50 Q 2.062 

QSM2:31 22 07 36.2 -19 56 37 20.11 -1.20 Q 1.978 

QSM2:32 22 07 09.7 -20 06 14 20.44 -0.95 Q 1.515 

QSM2:34 22 08 04.8 -19 52 36 20.03 -0.62 Q 1.708 

QSM2:36 22 07 11.0 -20 04 09 20.20 -1.10 Q 1.070 

QSM2:44 22 07 40.4 -19 49 05 20.23 -1.57 Q 0.452 

Wavelengths adopted for standard lines are as follows 
(taken from Lang 1980): 

Lya 1216A, NV 1240A, SiiV 1400A, CIV 1549A, 
CIII] 1909A, CII 2326A, and [Oil] 3727A. 

Feii lines from Grandi (1981) 

• Redshift not determined using this line 
? Possible Emission Feature 
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Class Unf!R 

2 Mgii 4706 
1 CIV 4000 

CII I] 4914 
1 CIV 4198 

CIII] 5168 
1 Lya 4350 

CIV 5S3G 
1 Lya 4200 

SiiV 4835 
CIV 5353 

1 Lya 3720 
NV 3801 
SiiV 4296 
CIV 4733 

1 Lya 3630 
SiiV 4160 
CIV 4612 

1 CIV 3895 
CII I] 4801 

1 CIV 4194 
CII I]" 5160 

1 CIII] 3951 
Mgi!0 5795 

2 Mgii 4062 



APPENDIX C 

FAINT UVX SURVEY: CATALOGUE OF GALACTIC STARS 



Name R.2L (1950) Dec. b u-b ID 

SGP1:02 00h 57° 24'~, 0 -28•41'16" 20,87 -0,48 
SGP1:09 00 55 45.5 -28 43 49 19.94 -0.42 F 
SGP1:11 00 58 48,1 -28 39 29 20,74 -0.45 
SGP1:12 00 55 52.6 -28 48 04 18.83 -0,32 F 
SGP1:13 00 56 14 0 1 -28 40 36 18o75 -0,65 WD 
SGP1:14 00 56 14 0 4 --?.8 40 03 20.60 -0039 
SGP1:15 00 55 3908 -28 41 20 18070 -0,30 F 
SGP1:18 00 55 33,0 -29 03 44 20o65 ··0 0 30 
SGP1:19 00 55 47o5 -29 04 37 19o56 -0.93 A. 
SGP1:25 00 55 37 0 1 ~28 56 17 18.40 -Oo41 F 
SGP1:26 00 55 17.7 -28 57 51 19o97 ·-0 0 52 F 
SGP1:27 00 56 5605 -28 59 23 20.99 -0039 
SGP1:28 00 57 21.4 -28 57 28 20.33 -0042 G 
SGP1:29 00 56 51.2 -28 57 53 20.78 -0.39 
SGP1:32 00 56 3906 -28 51 53 20o21 -0046 F 
SGP1:33 00 57 55.6 -28 43 31 20.60 -Oo41 
SGP1:35 00 57 31.6 ·-28 55 52 20.86 -0.46 
SGP1:36 00 56 22.4 -28 58 08 19.91 -0.35 F 
SGP1:37 00 57 40.3 -28 46 42 20.71 -0.38 
SGP1:38 00 56 2704 -28 56 36 19.08 -0.33 F 
SGP1:40 00 55 24o4 -28 35 16 19.94 -0.37 G 
SGP1:41 00 55 35.0 -28 33 19 19.87 -0.35 F 
SGP1:42 00 55 3408 -28 37 37 20.57 -0.40 
SGP1:43 00 55 0606 -28 53 13 20.50 -0.39 F 

SGP2:02 00 48 59.0 -29 06 30 19.40 -0.43 F 
SGP2:03 00 48 47o6 -29 06 06 2.0 0 08 -0.33 G 
SGP2:04 00 48 45.2 -29 11 28 20o94 -0.45 
SGP2:05 00 49 2207 -29 17 18 19o18 -0.45 A' 
SGP2:07 00 49 29.0 -29 20 10 20.72 -0.57 
SGP2:08 00 49 05.5 -29 15 09 20.97 -0.70 
SGP2:09 00 48 52.6 -29 17 27 20o74 -0.36 
SGP2:10 00 50 00.4 -29 10 16 20.31 -0.45 F 
SGP2:15 00 49 31.8 -29 11 59 19.97 -0.65 F 
SGP2:17 00 49 38.3 -29 20 30 20.41 -0.80 F 
SGP2:24 00 50 00.4 -29 31 32 20.71 -0.57 
SGP2:28 00 49 59.1 -29 33 40 20.78 -0.37 
SGP2:49 00 49 47.0 -29 40 04 20.51 -0.31 
SGP2:31 00 48 45.6 -29 25 59 19.14 -0.47 WD 
SGP2:32 00 48 11.7 -29 23 36 19.94 -0.34 F 
SGP2:35 00 48 11.8 -29 20 08 18.06 -0.36 F 
SGP2:37 00 48 44.5 -29 25 39 18.60 -0.44 F 
SGP2:41 00 50 27.7 -29 16 31 20.91 -0.31 
SGP2:42 00 50 04.6 -29 17 53 18.79 -0.30 G 
SGP2:43 00 50 15.4 -29 35 34 19.90 -0.47 G 
SGP2:50 DO 50 36.1 -29 14 49 20.14 -0.38 F 
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Name R o A o (1950) D0c, b u··b 

SGP3:01 0 0h 51 D 5 7"o 0 -28°36'18" 19o42 -0,31 F 
SGP3:07 00 52 15,6 -28 21 41 18o52 -Oo51 F 
SGP3:08 00 51 41,5 -28 20 04 20.17 -0.36 WD 
SGP3:12 00 52 48o9 -28 33 39 20.44 -0031 F 
SGP3:14 00 53 0507 -28 21 14 19051 -0.14 A 
SGP3:15 00 52 3306 --28 16 17 20o21 -0038 F 
SGP3:17 00 53 20o6 -28 31 27 20,47 -0,21 F 
SGP3:21 00 51 22,2 "28 44 44 18,54 0.07 F 
SGP3:24 00 51 15' 2 -28 39 46 20031 -Oo14 F 
SGP3:26 00 51 41,8 -28 37 50 19,71 0.60 F 
SGP3:28 00 53 54,8 -28 38 43 20,89 -0037 
SGP3:29 00 51 21,4 -28 34 58 20,48 -0,31 F 
SGP3:32 00 53 15' 6 -28 52 58 20.98 -0,41 
SGP3:33 00 53 04.7 -28 44 46 19.76 -0.33 F 
SGP3:36 00 53 31.4 -28 39 38 20.58 -0.43 
SGP3:41 00 51 42.5 -28 49 25 20.18 -0.37 F 
SGP3:42 00 53 58.3 -28 33 48 19,68 -0.32 F 
SGP3:45 00 52 35.7 -28 19 49 20.87 -0.65 
SGP3:46 00 52 10.1 -28 48 23 20.41 -0,51 
SGP3:50 00 52 22.1 -28 45 28 20.54 -0,41 
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Name I·LA. (1950) Dec. b u-b ID 

QSF1:02 03h 39° 47". 9 -45° 10'22" 20.26 -0.56 WD 
QSF1:08 03 41 29.1 -46 16 11 20.96 -0.41 
QSF1:14 03 40 06.0 ~45 23 06 19.29 -0.61 WD 
QSF1:18 03 40 58.3 -44 51 18 18.55 -0.41 F 
QSF1:20 03 40 15 0 4 -44 59 49 20.17 -0.64 WD 
QSF1:21 03 39 33.0 ~45 00 24 17.94 -0.64 A 
QSF1:24 03 40 13. 4 -45 01 38 20.42 -0.40 G 
QSF1:25 03 40 12.7 -45 02 40 20.66 -0.45 
QSF1:26 03 40 35.0 -44 44 39 20.79 -0.53 
QSF1:27 03 41 16. 1 -45 10 19 18.12 ~·0.48 F 
QSF1:35 03 41 56.7 -45 00 49 20.16 -0.52 BIN 
QSF1:39 03 41 38.8 -44 52 52 20 010 -0.45 F 
QSF1:41 03 41 09.0 -44 49 15 19.63 -0.43 F 
QSF1:42 03 40 26.9 -44 59 00 20.28 -0.56 WD 
QSF1:43 03 41 09.7 ~44 59 30 18.25 -0.50 F 
QSF1:44 03 41 26.2 -44 57 11 20.43 -0.65 WD 

QSF2:01 03 45 10.6 -45 48 51 18.55 -1.34 WD(DAB) 
QSF2:06 03 45 56.1 -45 55 48 19.92 -0.40 F 
QSF2:07 03 44 00.7 -45 58 41 19.21 -0.97 WD(DAB) 
QSF2:08 03 44 05,8 -46 06 31 20.91 -0.66 
QSF2:11 03 44 26.8 -46 04 31 18.02 -0.43 B 
QSF2:13 03 44 32.3 -46 07 22 18.96 -0.49 F 
QSF2:14 03 43 30.4 -46 10 30 17.02 -0.56 F 
QSF2:19 03 45 17.8 -46 09 37 18.27 -0.45 F 
QSF2:21 03 45 08.9 -46 10 29 17.51 -0.65 A 
QSF2:22 03 45 11.7 -46 11 52 18.35 -1.20 F 
QSF2:23 03 45 48.8 -46 14 11 !'7.92 -0.42 G 
QSF2:27 03 43 57.1 -46 17 38 17.60 -0.41 F 
QSF2:33 03 44 23.1 -45 54 40 19.19 -0.93 WD 
QSF2:34 03 45 57.9 -46 18 32 19.06 -0.46 F 
QSF2:37 03 45 33.0 -46 04 49 20.54 -0.44 
QSF2:38 03 46 11.8 -45 57 25 20.47 -1.03 F 
QSF2:40 03 46 01.3 -46 05 39 18.85 -0.46 F 
QSF2:43 03 45 45.5 -46 04 22 17.53 -0.40 F 
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Name :R.A. (1950) Doc. b U·-b ID 

QNB1:01 1 011 3 9° 1 7". 8 01° 33' 0?" 18.70 -·0. 51 F 
QNB1:03 10 39 39.2 01 32 30 18.88 -0.15 A 
QNB1:04 10 39 28,6 01 46 1S 18.30 -0.33 A 
QNB1:05 10 39 11.8 01 37 16 17.54 -0,69 F 
QNR1:06 10 39 25.3 01 35 21 20,77 -0.58 
QNB1:07 10 39 44.3 01 30 02 20.65 -0.63 
QNB1:09 10 39 52.7 01 29 45 20.21 ·- 0. 8 3 G 
QNB1:12 10 39 12.0 01 23 06 18.81 -0.46 F 
QNB1:14 10 39 10,1 01 42 48 19.22 ~0.?.1 A 
QNB1:15 10 39 02.6 01 25 16 17.23 -0.56 F 
QNB1:17 10 38 59,4 01 27 51 17,04 -0,53 F 
QNB1:19 10 39 10.8 01 23 26 20.36 -0.25 A 
QNB1:21 10 40 42,9 01 28 38 20,83 ·~0.57 
QNB1:25 10 40 48.8 01 28 32 18.07 ~0.51 F 
QNB1:27 10 40 20,0 01 29 12 20,88 -0.81 
QNB1:29 10 40 20,8 01 27 29 20.92 -0.67 
QNB1:30 10 40 54,9 01 18 49 20.86 -0.64 
QNB1:31 10 40 16.4 01 18 42 17.15 -0.54 F 
QNB1:33 10 39 07,3 01 18 07 20.15 -0.52 F 
QNB1:35 10 40 24.9 01 13 36 17.02 -0.53 F 
QNB1:36 10 40 19.6 01 12 51 20.26 -0.30 
QNB1:42 10 4 0 15 0.3 01 43 00 20.80 -0.69 
QNB1:45 10 40 14.5 01 41 55 17.29 -0.59 F 
QNB1:47 10 40 10.3 01 32 18 17,96 -0.60 F 
QNB1:48 10 40 23.1 01 35 54 17.37 -0.74 F 
QNB1:50 10 40 12.3 01 43 40 19.77 0.07 F 

QNB2:03 10 40 24.1 01 09 10 18.45 -0.51 F 
QNB2:04 10 40 28.7 00 58 30 20.77 -0.70 
QNB2:08 10 40 27,8 01 00 39 20.62 -0.54 
QNB2:09 10 40 45.8 01 01 51 17.04 -0,62 F 
QNB2:10 10 41 36.8 01 08 22 18.54 -1.07 A 
QNB2:11 10 41 51,8 01 15 06 19.99 -0.53 F 
QNB2:12 10 41 46,6 01 15 54 18.88 0.01 B 
QNB2:14 10 42 19.3 01 08 15 20.82 -0,66 
QNB2:16 10 42 32.2 01 06 44 20.16 -0.66 F 
QNB2:18 10 42 06.4 01 04 55 18.28 -0.51 F 
QNB2:19 10 41 33,1 01 03 26 18.30 -0.56 F 
QNB2:20 10 42 06.9 01 00 30 20.12 -0,67 F 
QNB2:21 10 41 40.0 00 56 02 19.83 -0.47 F 
QNB2:22 10 42 23.1 00 56 11 20.51 -0.54 
QNB2:27 10 42 22.3 00 55 45 20.91 -0.98 BIN 
QNB2:29 10 41 52.4 00 59 38 19.94 -0.52 F 
QNB2:30 10 41 03.3 00 52 46 18.68 -0.59 F 
QNB2:31 10 40 24.3 00 54 54 18.77 -0.42 A 
QNB2:32 10 40 44,8 00 54 16 20.28 -0.16 F 
QNB2:33 10 40 24.7 00 45 14 20.37 -0.38 F 
QNB2:34 10 41 10.9 00 55 33 20.08 -0.58 G 
QNB2:35 10 40 42.4 00 53 41 20.94 -0.52 
QNB2:39 10 40 54.0 00 50 15 18.77 -0.81 F 
QNB2:43 10 41 19.9 00 42 16 17.43 -0.51 F 
QNB2:44 10 42 15.6 00 52 01 20.82 -0.55 
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NaMe R.A. (19S0) Dec. b u-b ID 

QNY1~03 12h3J0 10",0 ··00" 53'32" 1'1. 13 -0.55 B 
QNY1:10 12 33 27.6 -00 34 40 17.03 -0.53 F 
QNY1~15 12 33 19.0 -00 24 D9 17.14 -0.47 F 
QNY1:18 12 34 55.8 ~DO 38 17 18.27 -0.49 A 
QNY1~20 12 34 36.5 -00 36 47 2D.94 -0.46 
QNY1:21 12 34 17.3 -DO 44 48 17.70 ··0. 50 F 
QNY1~22 12 34 49.7 ·-00 39 53 19o39 -0045 F 
QNY1:23 12 34 3004 ··DO 43 57 17o93 -Oo5Ll F' 
QNY1:34 12 34 0802 -·00 2? 18 21. DO -0058 
QNY1:35 12 34 08 01 --00 27 43 20067 -0.45 

(QNY1:37 12 34 0406 -DD 49 38 21o23 -0079 -·) 

QNY1:38 12 33 45o6 -00 55 50 20o98 -0,56 
QNY1:41 12 34 2300 -00 46 04 17.41 -0.52 F 
QNY1:44 12 33 51.1 -00 45 25 18.18 -0064 F 

(QNY2:01 12 35 27.7 00 19 53 21.26 -Oo78 -) 

QNY2:06 12 36 03.5 00 35 12 19o20 -1 0 11 WD 
(QNY2:D8 12 35 13 0 2 00 31 01 21.02 -0.52 -) 
QNY2:13 12 34 36.2 OD 33 37 19.69 -Oo47 F 
QNY2: 17 12 34 13. 8 00 14 19 19.95 -0.45 F 
QNY2:18 12 35 44.7 00 15 46 20.13 -0.48 F 

(QNY2:20 12 34 07.3 00 17 56 21. 18 -0.74 -) 
QNY2:23 12 35 33,6 00 14 14 18.49 -0,46 F 
QNY2:31 12 36 01.2 00 04 22 20070 -0054 
QNY2:33 12 35 59.7 00 07 32 20.19 -0.51 F 
QNY2:34 12 35 5606 00 12 02 20.91 -0.88 

(QNY2:35 12 36 17.9 00 08 35 2.1 . 31 -1.21 -) 

QNY2:36 12 36 08.0 00 10 53 20.94 -0.71 
QNY2:40 12 35 09.9 00 01 17 21o00 -0.54 
QNY2:41 12 35 41.6 00 02 33 18.54 -0.47 F 
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Name R o A o (19SO) Doc, h U··b XD 

QNA1:02 13h 35° 48~ 6 00°21'39" 20.33 -0031 l"' 
QNA1:05 13 36 01.5 00 21 21 19.07 -0053 F 
QNA1: 06 13 35 10.5 00 14 34 20.34 -0.33 
QNA1:09 13 35 22. 4 00 19 32 19.96 -0.39 A 
QNA1:10 13 36 04. 8 00 08 00 19.48 -0.65 t-JD 

(QNA1:11 13 35 53.5 00 08 32 21.34 -0.44 -) 
(JNA1:12 13 35 55.7 00 09 18 20.01 -·0 0 3 9 F 
QNA1:13 13 35 12. 8 00 08 37 19,/rl -0.30 HD 
QNA1:14 13 35 42.9 00 16 30 20.31 -0.35 
QNA1:17 13 36 11.6 00 04 53 19.13 -0.33 F 
QNA1:19 13 36 39,6 00 31 27 19.75 -0.30 F 
QNA1:23 13 37 01.2 00 34 51 19.27 -0.34 F 

(QNA1:26 13 36 29.2 00 33 25 20.60 ~0.35 -) 

QNA1:29 13 35 54.7 00 26 00 20.50 -0.51 
QNA1:32 13 35 40.8 00 30 31 19.44 -0.32 F 
QNA1:33 13 35 38.0 00 36 38 19.35 -0.33 G 
QNA1:34 13 35 31.8 00 29 31 19.11 -0.35 F 

CQNA1:37 13 36 00.6 00 32 54 21.28 -1.48 -) 

QNA1:40 13 36 34.6 00 16 13 18.05 -0.38 F 
(QNA1:43 13 36 08.1 00 11 39 20.68 -0.40 -) 

QNA1:46 13 37 16. 8 00 20 30 19.47 -0.37 F 
QNA1:48 13 36 08.1 00 20 30 18.41 -0.31 F 
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Name l-L A. (19~)()) Dec. h u-·b ID 

QSM1:02 22h 06° 01". 6 -19°20'5~" 19,06 -0.59 F 
QSM1;04 22 05 36.3 -19 31 30 19,64 -0.52 F 
QSM1:05 22 06 44. 9 -19 19 49 19.46 -0,63 F 
QSM1:06 22 07 36,4 -19 14 05 20,52 -0.57 
QSM1: 0'/ 22 06 ?.:L 8 ··19 18 46 18,88 -0.54 A 
QSM1~08 ?./. 07 1 9 0 1 . ·19 16 47 19,96 -1 '11 F 
QSMt:09 22 06 15 0 6 -19 09 56 18.88 -·0 0 81 f 
QSM1:10 22 07 18 0 3 -19 10 56 19o90 -·0 0 66 BIN 
QSM1:11 22 07 3004 -19 1 r· .) 01 19o16 -0060 F' 
QSM1:1?. 2?. 06 43o5 ~19 13 09 19o43 -0,69 F 
QSM1:13 22 06 21.2 -19 24 28 19o66 ~Oo61 F 
QSM1 : 17 22 06 35o2 ··19 09 28 18006 -0058 A 
QSM1:18 22 07 5008 -19 26 05 18o39 -0.61 F 
QSM1:20 22 08 12 0 2 -19 22 07 18.99 -0061 F 
QSM1:23 22 07 04.4 -19 40 43 18.52 -0.62 F 
QSM1:27 22 08 07.3 -19 28 25 18.26 -0.53 F 
QSM1:28 22 07 32o4 -19 53 59 20.74 -0.86 
QSM1:29 22 01 27.9 -19 26 18 18 0 35 -0.69 F 
QSM1:33 22 07 51.8 -19 24 38 18.80 -0.64 F 
QSM1:39 22 07 11.5 -19 44 50 19,07 -0.55 F 
QSM1:40 22 07 45,4 -19 10 13 19,04 -0.67 F 
QSM1:41 22 06 20.0 -19 39 17 18o49 -0051 F 
QSM1:43 22 OS 4700 -19 36 43 19.24 -0.70 F 
QSM1:44 22 06 44' 4 -19 44 33 19.46 -0.58 F 

QSM2:01 22 05 50,5 -20 12 50 18.49 -0,57 F 
QSM2:02 22 07 02.1 -20 22 15 1.8 . 8 9 -0.72 F 
QSM2:04 22 07 22.4 -20 20 15 20.50 -0.69 
QSM2:05 22 06 14. 8 -20 19 03 18.42 -0.74 A 
QSM2:06 22 06 06.6 -20 20 27 19.67 -0.59 F 
QSM2:10 22 05 58.1 -20 00 46 17.23 -0.75 F 
QSM2:11 22 05 53.9 -19 55 23 17.26 -0.68 F 
QSM2:12 22 06 10.9 -19 58 53 17.42 -0,57 F 
QSM2:15 22 06 46,3 -20 09 13 18.35 -0.65 F 
QSM2:17 22 08 22.0 -20 10 00 19.23 -0.54 F 
QSM2:19 22 07 07,8 -20 06 44 18.21 -0.54 F 
QSM2:21 22 07 46,3 -20 06 35 19.33 -0.80 F 
QSM2:24 22 07 51.9 -20 03 08 18,96 -0.51 F 
QSM2:25 22 07 13.3 -20 10 34 18,94 -0.59 F 
QSM2:26 22 07 35.2 -20 09 15 19,94 -0.52 F 
QSM2:29 22 07 32.4 -20 02 19 17.65 -0.61 F 
QSM2:30 22 07 24.8 -20 01 07 17.50 -0.65 F 
QSM2:35 22 07 21.4 -20 DO 19 18.31 -0.53 F 
QSM2:38 22 06 35.8 -19 50 16 19.93 -1.03 F 
QSM2:39 22 06 28,7 -19 53 00 20.13 -0.68 F 
QSM2:40 22 06 43.9 -20 DO 53 19.75 -0.75 F 
QSM2:41 22 06 56.5 -19 58 44 19.33 -0.56 F 

- C7 -



APPENDIX D 

FAINT UVX SURVEY: CATALOGUE OF UNIDENTIFIED OBJECTS 



Name R o A o (1950) D8Co b U··h XD 

SGP1:23 00h 56° 41".1 -29D 07 1 36" 20079 -0035 Q'? 
SGP1:34 00 57 27.0 -28 48 51 20,76 -Oo32 ? 
SGP1:45 00 55 15o2 ··28 39 22 20o34 -1.29 Q? 
SGP2:21 00 49 10 0 2 -29 31 31 20079 -0.40 ? 
SGP2:23 00 49 01. 4 -29 38 55 20072 -0.48 ? 
SGP2:26 00 48 55 0 '1 -·?. 9 37 51 20027 -0035 CONT 
SGP2:30 00 48 3005 -·2 9 22 J4 20027 ··0 0 41 Q? 
SGP3:03 00 52 24o2 -28 27 39 20o94 -0068 Q? 
SGP3:04 00 51 5802 ~28 38 45 20097 -0,54 ? 
SGP3:06 00 52 16.5 -28 36 08 20.90 -0.60 ? 
SGP3:13 00 52 4300 -28 33 40 20099 "'Oo46 NL? 
SGP3:16 00 53 37.9 ~28 26 54 20.09 -1.19 CONT 
SGP3:44 00 52 26.9 -28 47 11 20.41 -Oo52 ? 
SGP3:47 00 52 0208 -28 50 08 20.90 -0.55 ? 
QSF1:13 03 40 05.0 -45 12 03 20.89 ~0.50 ? 
QSF2:02 03 45 14.5 -45 47 47 20.30 -0.49 Q 
QSF2:10 03 43 14 0 4 -46 00 47 20.69 -0.42 ? 
QSF2:24 03 45 41.7 -46 16 02 20.48 -Oo44 Q? 
QSF2:32 03 44 45.7 ~46 14 43 20.85 -0053 Q? 
QNB1:02 10 39 46.2 +01 37 43 20.92 -0.73 Q? 
QNB1:11 10 39 09.6 01 26 34 20.73 -0.53 ? 
QNB1:39 10 39 18.2 01 13 19 20.79 -0.59 ? 
QNB1:41 10 39 56.5 01 34 15 20.79 -0.56 ? 
QNB1:46 10 39 5501 +01 48 05 20.98 ~1. 01 Q? 
QNB2:38 10 40 42.1 DO 54 42 20.81 -0.81 ? 
QNB2:48 10 41 03.5 00 42 11 19.94 -0.80 ? 
QNB2:49 10 41 13.3 00 42 00 2.0. 11 -0.16 ? 
QNY1:11 12 33 36.0 -00 31 33 20.98 -0.90 Q? 
QNY1:12 12 33 57.2 -00 33 03 20.89 -0.53 Q? 
QNY1:14 12 33 50.8 -00 42 52 20.98 -0.90 Q? 
QNY1:33 12 34 28.2 -00 21 27 19.98 -0.46 Q? 
QNY1:39 12 34 16.7 -00 46 56 20.23 -0.50 ? 
QNY1:40 12 33 52.4 -00 54 18 20.70 -0.91 ? 

(QNY1:42 12 34 06.3 -00 48 39 21.07 -0.76 Q?) 
QNY2:28 12 35 56.2 00 03 01 19.51 -0.52 ? 
QNY2:42 12 35 43.5 +00 00 21 20.82 -0.60 Q? 
QNY2:44 12 34 43.6 00 02 23 20.66 -0.51 ? 
QNA1:07 13 35 43.5 00 19 52 20,49 -0.55 ? 
QNA1:16 13 35 38.3 00 05 36 20.18 -0.57 ? 
QNA1:38 13 36 02.4 00 20 48 20.09 -0.41 ? 
QSM1:14 22 07 00.9 -19 07 42 19.97 -1.47 CONT 
QSM2:28 22 07 32.4 -19 53 59 20.74 -0.86 ? 
QSM2:37 22 06 38.5 -19 47 20 20.00 -1.23 CONT 




