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ABSTRACT 

This thesis is concerned with an experimental investigation of the behaviour 

of lapped joints in reinforced concrete. A review of existing literature highlights 

the need to establish the longitudinal strain distribution along lap joints. This has 

been achieved experimentally, with detailed strain measurements being taken using 

a technique of internally gauging the reinforcing rods. In some specimens, strain 

concentration gauges were installed at the tip of the lap to permit the acquisition of 

particularly localised information. Computer programs were developed to process 

the substantial amounts of data generated during the course of each test. 

Two series of tests were undertaken, both using axially loaded specimens, and 

dealing with tension and compression lap joints respectively. The laps ranged in 

length from 125 to 750 mm, and comprised bars of either 12 or 20 mm diameter. 

Transverse reinforcement was provided in two of the tension specimens. 

Greater emphasis was placed on the first series, with fifteen tension specimens 

being tested. Thirteen of these tests were each completed within a single day but, 

additionally, two long-term tests were undertaken. In the latter, a constant load 

was sustained for up to 81 days. The measurements clearly showed the changing 

behaviour of the specimens, first as transverse cracks developed and subsequently 

as failure of the lap joint was approached. The comprehensive analysis of the test 

results includes a comparison of the ultimate behaviour of these joints with existing 

design proposals and regulations. The detailed information provided by the strain 

measurements enables the justification of design assumptions regarding lap joint 

behaviour, and thus lends greater confidence to existing design regulations. 

The results from five compression specimens were analysed and compared with 

the tension tests. The significant contribution to force transfer made by the bearing 

of the free end of the steel against the concrete was evident. The specimens were 

loaded to the rig capacity without failing. 

Additional strain measurements were taken in one tension and one compres

sion specimen by casting embedment gauges within the concrete. These gauges 

were arranged to measure the circumferential strains in the specimen, and were 

complemented by strain gauges mounted on the surface of the concrete. The data 

thus obtained permitted a comparison of the bursting forces set up inside and 

outside the lap joints. 

The work showed that some aspects of lap joint behaviour require clarification. 

Suggestions for further work are included. 
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NOTATION 

Ac Area of concrete. 

Ae Area of engagement of one transverse rib. 

As Area of steel reinforcement. 

Atr Area of transverse reinforcement. 

al Height of longitudinal ribs. 

B Bond influence length. 

c Concrete cover. 

Ec Modulus of elasticity of concrete. 

E 8 Modulus of elasticity of steel reinforcement. 

Fb Longitudinal component of bond force. 

F0 Applied force. 

Fp Radial component of bond force. 

!bave Average bond stress between peak and trough steel strains. 

!be Bond stress at which the cover cracks. 

!bp Peak bond stress. 

!bs Bond stress. 

!bu Ultimate bond stress. 

fe Concrete stress. 

fet Ultimate tensile stress of concrete. 

feu Ultimate compressive stress of concrete cubes. 

f~ Ultimate compressive stress of concrete cylinders. 

fp Bursting stress generated by bond. 

fs Reinforcement stress. 

fsp Peak reinforcement stress. 

fst Trough reinforcement stress. 

jy Yield stress of steel reinforcement. 

fyt Yield stress of transverse reinforcement. 

z Number of longitudinal ribs. 

J Pitch of longitudinal ribs. 

K1 A constant in bond strength equation. 

Kd Modulus of displacement. 

Kpt A constant in relationship between peak and trough stresses. 

ktr Number of transverse ribs around bar perimeter. 

k1, k2 Constants in crack spacing equation. 

l Lap length. 

m Ratio of the elastic modulii (Es/ Ee)· 
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Save Average crack spacing. 

S L Lap joint spacing - centre to centre. 

SL Clear spacing between lap joints. 

Sr Spacing of transverse ribs. 

Sv Spacing of transverse reinforcement. 

T Tension force in steel reinforcement. 

u Perimeter of steel reinforcement. 

Xn Distance along specimen, at position 'n'. 

a Angle of inclination to bar axis of compressive force in concrete. 

ash Specific rib area. 

(3 Bond coefficient, dependent on bar type. 

f3r Angle between transverse rib and longitudinal axis of bar. 

€ave Average reinforcement strain. 

€c Concrete strain. 

€cave Average concrete strain along specimen. 

€n Reinforcement strain, at position 'n'. 

€8 Reinforcement strain. 

€save Average reinforcement strain along specimen. 

K A constant used in expressions for longitudinal stress distributions along lap 

joints. 

p Reinforcement percentage. 

¢> Diameter of steel reinforcement. 

~ Slip between steel reinforcement and concrete. 
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CHAPTER 1 

INTRODUCTION 

Recently a technique of mounting electric resistance strain gauges within steel 

reinforcing bars has been developed at the University of Durham (I,Z). While the 

concept of installing gauges in a duct milled along the length of the reinforcement 

was not original, the many advances in strain gauge technology and data acquisi

tion systems since the technique was pioneered now enables measurements to be 

taken with greater detail. The earliest account of the technique appears to have 

been that published by Mains in 1951 (J), and the idea has since been adopted by 

a number of researchers (4,5,6). 

The ability to accurately measure the strain distribution along the reinforce

ment means that the technique lends itself to a number of fundamental studies 

into the behaviour of reinforced concrete. It is particularly well suited to research 

into the bond between steel and concrete, as the steel's bond characteristics are 

maintained by internally gauging the bars. One aspect of bond research is the 

study of lap joints, in which the force is transferred between a pair of overlapping 

bars by bond. 

The continuity of reinforcement in concrete structures has traditionally been 

achieved using lap joints. Overlapping the steel offers an economical and simple 

solution to the problem of continuity, but care must be taken over the detailing of 

such joints to ensure the satisfactory performance and safety of the structure. 

Most of the bond in deformed reinforcing bars is developed by the bearing 

of the ribs against the concrete, with the wedging action of these ribs setting 

up radial forces around the steel. Hoop stresses are developed and longitudinal 

splitting cracks are formed when these stresses exceed the tensile strength of the 

concrete. In laps these cracks may extend rapidly along the joint, often leading 

to an explosive failure. Consequently, the strength of a lap is generally associated 

with bond strength, which in turn is related to the strain gradient in the reinforcing 

steel. 

Both the British (7) and the American (S) design codes assume a constant bond 

stress along the lap joint. The commentary to the American code (9) considers 

this value to be more meaningful in design, partly because standard bond tests 

determine the average bond stress over a length of reinforcement, and partly be

cause of the extreme variations in bond stress that exist near a transverse crack. 

Tepfers (IO), amongst others (ll), has reported the variation in bond stress that 
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exists along the lap, this increasing with lap length and being very pronounced 

at low loads. He also writes that 'to estimate the ultimate load of the splice it is 

important to know the distribution of bond stresses'. A detailed measurement of 

the longitudinal reinforcement strains would enable the determination of the bond 

stress distribution along the lap, and would demonstrate the manner in which the 

force is transferred from one reinforcing rod to the other. This investigation sought 

to further the understanding of both tension and compression lap joint behaviour 

by taking such measurements. 

There have been previous attempts to establish the strain distribution over the 

lap length. A summary of lap joint research which has involved a measurement of 

the reinforcement strains is given in Figure 1.1. Whilst the list does not claim to 

be exhaustive, especially as no foreign language literature has been scanned, it is 

believed that it gives a representative, and balanced, picture of previous work. 

Typically, fewer than twenty strain gauges have been installed in lap joints, 

at approximately 50 mm centres. The technique currently available enables the 

installation of about eighty gauges, with the use of strain concentration gauges 

permitting a minimum spacing of 2 mm. The technique clearly offers the potential 

for much greater detail than has previously been achieved. 

The table (Figure 1.1) includes some brief notes reflecting the purpose of the 

measurements in previous studies. The impression gained from the literature was 

that researchers have tended to use the measurements as a means of demonstrating 

the linearity of the ultimate strain distribution, thus justifying the assumption of 

a uniform ultimate bond stress over the lap length, or to corroborate their analysis 

or modelling of lap joint behaviour. 

It was believed that there remained a need to establish the precise nature of 

the strain distribution throughout the load range, and to assess the influence of 

variables such as bar diameter and lap length on the longitudinal strains. The 

measurement technique developed at Durham provided the means of achieving 

this. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Introduction 

The satisfactory performance of reinforced concrete structures depends upon 

the strength, and permanence, of bond between the steel and the concrete. The 

classical concept of bond has been as a shear force acting at the steel/ concrete 

interface (20). Force transfer between the two materials requires a stress to be 

generated at their interface; this stress is referred to as a 'bond stress' and is 

generally defined as the stress per unit area of the bar surface. Bond stress may 

be considered either in terms of the force transferred from concrete to bar, or as 

the rate of change of the steel stress along the bar, and in reinforced concrete there 

can be no bond stress unless the bar stress changes, and no change in bar stress 

without bc.md stress (20). 

Bond performance has received considerable attention, with one of the first 

series of tests being conducted by Duff Abrams (21 ) at the University of Illinois 

in 1913. He, however, wrote of earlier studies, beginning in 1876 with the work 

of Thaddeus Hyatt (who investigated the bond between concrete and iron bars). 

Abrams noted that this field of research had attracted increasing attention; by 

the first decade of this century numerous bond tests were being reported. One 

aspect of this bond research was the study of lap joint behaviour and, according 

to Tepfers (10), some of the earliest work in this field was being carried out by 

Scheit and Wawczinick in 1912 and by Amos in 1913. 

Following the introduction of deformed reinforcing steel in the 1930's, research 

into lap joints has generally been carried out using deformed reinforcement, and 

unless stated otherwise the rest of this review is concerned with the behaviour of 

such bars. 

Much of the bond strength of a deformed bar is provided by the mechanical 

bearing of bar ribs against the concrete. Initially there is some adhesion between 

the steel and concrete (on which a plain bar depends for its bond strength), but this 

breaks down at bond stresses of between 0.5 and 1.5 N /mm2 (ll). The subsequent 

bearing of the ribs leads to radial forces being set up in the concrete, and these are 

equilibrated by a hoop tension around the bar, as shown in Figure 2.1. Typically, 

bond failure of a deformed bar will be due to splitting of the concrete along the 

bar axis as the hoop tension forces exceed the tensile strength of the concrete. 

Consequently, research into the ultimate behaviour of lap joints has often been 
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concerned with splitting failures, seeking to identify factors which influence the 

magnitude of, and resistance to, splitting forces. 

More generally, researchers have been interested in determining the value of 

the bond stress at which failure occurs. To facilitate the evaluation of ultimate 

bond stresses in lap joints, it has often been assumed that a constant bond stress 

exists along the lap length. However, as early as 1945 Kluge and Tuma (12) were 

able to conclude from measurements of the steel strains (using a mechanical strain 

gauge) that peaks existed in the bond stress distribution at the free ends of lapped 

reinforcing bars. 

Early researchers were concerned with the arrangement of reinforcement in a 

lap joint. First Kluge and Tuma(1 2), and then Chamberlin during the 1950's(22 ,23), 

included a study of joints in which the lapped bars were either in contact or spaced. 

They agreed that the two methods of overlapping the steel gave comparable results. 

In 1955 Chinn, Ferguson and Thompson (24) recognised the importance of split

ting as far as lap strength was concerned, and sought to establish trends by in

vestigating a number of variables. The si.gnificance of factors such as bar size and 

lap length in the development of hoop forces around the lap, and the influence of 

cover, transverse reinforcement and concrete strength in providing resistance to 

these forces, was noted and paved the way for subsequent research. 

Much of the research into lap joints continued at the Center for Highway Re

search, at the University of Texas at Austin, with Ferguson, in particular, be

coming involved in a number of further studies (13 ,20). He carried out work with 

Breen (25) dealing with the performance of large diameter bars in lapped splices, 

and the need for longer laps as bar diameter increased was recognised. A lim

ited number of tests were also carried out to demonstrate the beneficial effect of 

transverse reinforcement on the strength and ductility of lap joints. The influence 

of both links and bar diameter were further investigated by Ferguson and Krish

naswamy (13), and the resulting design proposals permitted the use of large bars 

( 43 and 57 mm diameter) in lap joints, as long as transverse reinforcement was 

provided. Nonetheless, the American code(8) continues to prohibit the use of bars 

larger than 36 mm diameter in tension laps. 

An extensive study into the behaviour of lapped joints, conducted at the 

Chalmers University of Technology, was reported in 1973 by Tepfers(1o). A compre

hensive experimental programme was undertaken, permitting an empirical analy

sis of factors influencing lap strength. The nature of the force system along and 

around a lap joint was dealt with theoretically, and expressions thus derived were 

compared favourably with the experimental data. The work included an analysis 
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of the resistance provided by the concrete cover to splitting forces. In order to 

apply this theory to lapped bars, it was assumed that the radial forces around a 

lap would be double those around a single bar. This would appear to concur with 

a conclusion made by Roberts and Ho (26), at about the same time, that a lap was 

akin to a double-ended anchorage. 

These conclusions were only applicable to tension laps, as the force transfer in 

a compression lap is due to both bond forces and t~e bearing of the free end of 

the rods against the concrete. Pfister and Mattock (18) were the first to report the 

effect of end bearing in lap joints, following a study into the behaviour of com

pression laps in reinforced concrete columns, undertaken at the Portland Cement 

Association's laboratories in the early 1960's. They considered the effect of bond 

and of end bearing to be additive, though more recent work by Cairns and Arthur, 

at Glasgow University in 1976, has suggested that this is not the case (l 5,27). The 

latter also commented on the influence of the position of transverse reinforcement 

on compression lap strength, and suggested that links should be clustered at the 

lap ends where the splitting forces were most severe. 

The emphasis has, however, continued to be on the behaviour of tension laps. 

There has been an increased activity in lap joint and bond research over the 

last decade, with the first two issues of the Journal of the American Concrete 

Institute in 1979 being concerned with the interaction between steel and concrete. 

In 1982 a major international conference on bond was held at the Paisley Institute 

of Technology (28). Perhaps this increased interest in bond was precipitated by 

the American Concrete Institute publishing a paper on 'Opportunities in Bond 

Research' in 1970 (29). 

In 1977 Orangun, Jirsa and Breen (30) collated the results from a number of 

investigations to develop an empirical design equation for lap length. The key 

parameters included concrete strength, bar diameter and cover, with an additional 

factor making allowance for the benefits arising from the provision of transverse 

reinforcement. A particularly interesting conclusion from this work was that lap 

and anchorage lengths could be equated, which contradicted both Tepfers' and 

Roberts and Ho's findings. Reynolds (31) developed a new theory for the force 

system in the concrete around a lap based on this conclusion. This theory and 

Tepfers' earlier one will be described in section 2.3. 

Reynolds also commented on the inconsistencies in the existing design codes 

concerning links, and attempted to assess their contribution to lap strength exper

imentally at the Cement and Concrete Association. An equation for lap strength 

was derived, similar to that proposed by Orangun, Jirsa and Breen (30). Reynolds 
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suggested that for design purposes it was adequate to deal with anchorage forces 

rather than bond stresses. 

Another empirical formula, a 'mean prediction equation', was presented by 

Zsutty in 1985 (32). The equation was based on a simplified empirical relation

ship between ultimate bond strength and concrete strength, bar diameter and lap 

length. Additional factors were then included to allow for the influence of cover 

and transverse reinforcement. The prediction equation was favourably compared 

with Orangun, Jirsa and Breen's design proposals (30), and the mean value pre

diction was used as a baseline for subsequent comparisons between the 'standard' 

beams and other test series. Confidence in the equation was provided by its ability 

to forecast data not included in the original regression analysis with a coefficient 

of variation of under 10%. 

Recently, researchers have shown considerable interest in the behaviour of 

lapped joints subjected to non-monotonic loads (19•33•34). Particular attention has 

been focussed upon the effect of seismic loads at Cornell University by White, 

Gergely and others (35 •36). Under seismic conditions lap joints may be subjected 

to both tensile and compressive forces, and this ongoing work demonstrates a 

continuing interest in the behaviour of both tension and compression lap joints. 

2.2 Factors Influencing Lap Strength 

In general, the ultimate aim of lap joint research has been to define a lap 

length capable of transferring the steel stresses efficiently. For design purposes, 

it is preferable to determine a lap length rather than an average ultimate bond 

stress (30). Reynolds (31) argued that the concept of bond stress was itself unnec

essary in design, and proposed equations that dealt with the force which had to 

be developed over an anchorage, or lap, length. Nonetheless, design equations are 

generally based upon the assumption that the ultimate bond stress is constant 

over the lap. If this was valid it might be expected that, all else being equal, the 

strength of a lap would be proportional to its length. However, the inefficiency of 

an excessively long joint has long been recognised (12•18), and as a splice becomes 

increasingly inefficient, so the influence of its length on lap strength decreases. 

The relationship between the length and strength of a lap varies according to 

the diameter of the lapped bars. Tepfers (10) reported an almost linear relationship 

for bars of under 12 mm diameter, and a parabolic one for larger bars. The 

current British standard (7) tables lap length in terms of bar diameter, but Tepfers 

has commented that such a practice is unacceptable. This was prompted by the 

considerable scatter he observed when relating lap strength to the ratio of lap 
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length and bar diameter; a further scattering of the results was anticipated if the 

concrete cover was also varied in terms of bar diameter. In a previous investigation, 

Chinn and his colleagues (24) were surprised to find differences in joint strength 

when all the other parameters were equal in terms of bar diameter, and Tepfers' 

comments may help to explain this. 

It is well documented that the size and type of reinforcement used in a lap 

joint will influence its strength (ll). Bond stress may be thought of in terms of 

a shear force acting at the steel/ concrete interface, and so, for a given change of 

force along the bar, an increased steel surface area will result in a lower bursting 

force. If bars of mixed diameter are lapped, the design codes require the lap 

length to be based on the smaller rod (7,8), the size of which limits the force to be 

transferred. No tests appear to have been carried out on such laps. The American 

design code does not permit the use of bars larger than 36 mm diameter in tension 

laps, though Ferguson and Krishnaswamy (13) did find that such bars could be 

successfully lapped if transverse reinforcement was provided. 

In both tension and compression laps the surface characteristics of the reinforce

ment will affect the bursting forces, though the influence of the rod characteristics 

will be limited by splitting of the concrete around the lap (10). In general, better 

bond properties will be achieved by rods with a higher specific rib area ( O:sb) (11), 

which has been defined to be: 

where: 

<P 

ktr 

Ae 

f3r 

Sr 

z 

al 

J -

Diameter of steel reinforcement. 

Number of transverse ribs around the bar perimeter. 

Area of engagement of one transverse rib. 

(2.1) 

Angle between transverse rib and longitudinal axis of bar. 

Spacing of transverse ribs. 

Number of longitudinal ribs. 

Height of longitudinal ribs. 

Pitch of longitudinal ribs. 

Improved bond strength may be achieved by increasing the specific rib area, 

but the corresponding reduction in slip between the bar and the concrete may 

lead to a more brittle failure. There is also a play-off between the improvement in 

bond strength, and the increased bursting forces generated by a greater rib area. 

The optimum value of O:sb lies in the range 0.05-0.08, and as long as this value 

is kept reasonably constant, the rib height and spacing may be changed without 
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influencing bond behaviour (ll). It was concluded by Cairns and Jones <37) that 

the strength of a lap increases at approximately one fifth the rate of the specific 

rib area. This is in contrast to Tepfers' earlier comments that the two were not 

directly related (10). 

Skorobogatov and Edwards (38) found that the inclination of the rib face had 

little influence on lap strength, as long a~ it was greater than a minimum value of 

between 30 and 40°. This is because a crushed wedge of concrete develops ahead of 

the rib due to a high local compressive force, and thereby standardises the angle a 

at which the compressive forces act in the concrete. Cairns and Jones(37), however, 

did find that rib inclination had a slight influence on the ultimate strength of a lap. 

They also noted a difference in the bond strength of twisted bars and rods with 

crescent shaped ribs. In the former, the bond stresses around the circumference 

are equal. In the latter, peaks exist in the bursting force where the rib height is at 

its greatest, and thus the alignment of the ribs will influence the force distribution 

around the lap joint and may affect lap strength. It was concluded that the 

influence of rib geometry is as great as that of concrete strength, which is one of 

the key factors affecting bond strength (39). 

The tensile strength of the concrete is of major importance if failure is caused 

by splitting of the cover, but for design purposes it is more convenient to consider 

failure in terms of the concrete's compressive strength. The tensile strength has 

traditionally been equated to the square root of compressive strength <40), but a 

variety of equations have been proposed <41) and the apparent influence of the com

pressive strength on lap behaviour will depend upon the relationship chosen <37). 

In general, raising the concrete strength will increase the failure load, but above 

a certain value (Tepfers <10) suggested 70 N/mm2 ) the additional bursting forces 

associated with shrinkage of the concrete may reduce the ultimate bond strength. 

The distribution of bond stress along a lap joint is influenced by concrete 

strength, partly because slip of the reinforcement is dependent upon the extent of 

the localised crushing ahead of the ribs, and partly due to a weaker concrete being 

able to adjust better to differential strains (25). The inability of a stiffer concrete 

to distribute the effect of peak bond stresses has resulted in lower average bond 

stresses at failure<35). In a separate investigation, it may have reduced the distance 

over which force was transferred between lapped bars <14). 

A number of researchers (ll) have c~ncluded that their experimental results 

have indicated a certain 'plastification' of concrete under tension loading due to 

the formation of microcracks. The degree of plastification is influenced by the 

heterogeneity of the concrete, the specimen size and the strain gradient. Although 
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there is no generally accepted explanation for the phenomenon (11), the ability of 

the concrete to redistribute tensile stresses from highly to less stressed zones must 

be taken into account when analysing bond behaviour. It has been assumed that 

plastification will occur over a length varying from half to about three times the bar 

diameter, in analyses carried out by Eligehausen <42) and Tepfers <10) respectively. 

Lap strength will also be influenced by the concrete cover, with this providing 

a significant resistance to the splitting forces. A non-linear relationship between 

minimum cover and lap strength was reported by Roberts and Ho <26). They 

noted a 30% strength increase when the cover was increased from one to three 

bar diameters, and a further 10% improvement as the cover was raised to five bar 

diameters. 

The spacing between adjacent lap joints will affect the lap strength in a manner 

similar to cover, and these two factors were considered as a single parameter by 

Orangun, Jirsa and Breen <30) in their design proposals. If the spacing between 

neighbouring laps is too small then failure may occur along the plane of the bars, 

thus reducing the influence of cover and defining the failure mode. The relationship 

between side and bottom cover will also affect the nature of the specimen failure. A 

number offailure types have been identified (11) which are dependent upon whether 

longitudinal cracks develop in the side or the bottom cover. Three typical failure 

patterns are illustrated in Figure 2.2. It may be seen that the use of excessive 

cover to resist the bursting forces may result in cracks running diagonally through 

the bottom cover, a 'V-notch' type failure. An upper bound for cover has therefore 

been introduced in some of the design equations (30 ,31). 

It has been stated that the influence of cover becomes negligible once splitting 

cracks have formed <34). Subsequent resistance to failure may be provided by 

transverse reinforcement carrying the tensile forces across a longitudinal crack. 

The effects of links and cover are not additive <26), though for design purposes 

they have generally been considered to be so <30). The improvement in lap joint 

behaviour due to links has long been recognised, with a number of researchers 

reporting increased strength and ductility (ll). A detailed study into the benefits 

of links (31) showed that the most marked effect was on laps located in a zone of 

shear, whilst laps subjected to a constant moment showed only a small increase in 

strength, with the links not being fully used. 

The failure of compression splices has been attributed to the failure of the 

confining reinforcement at the lap ends. Consequently, it was suggested that links 

should be clustered at these positions (27). A similar distribution may be beneficial 

in a tensile splice, in which higher strains are found in the links at the lap ends <17
). 



Under a cyclic load, however, the links should be evenly distributed throughout 

the lap (35), as bond breakdown may move progressively away from the lap end, 

and therefore beyond any links positioned there. 

In conclusion, there appears to be a general agreement that lap strength is 

influenced by the following factors: 

i) Lap length (l). 
ii) Diameter ( <P) and surface characteristics of the lapped bars (typified by 

specific rib area, asb)· 

iii) Concrete strength (generally related to feu)· 

iv) Concrete cover (c), and spacing of the lap joints (SL)· 

v) Transverse reinforcement (as typified by area Atr, yield strength fyt and 

spacing Sv ). 

However, the importance attached to the individual parameters in equations for 

lap strength varies considerably (39), and perhaps this is a consequence of some 

equations being derived analytically and others empirically. 

The empirical approach favoured by Orangun, Jirsa and Breen (30) produced 

design proposals based on the results of numerous lap joint tests reported by vari

ous researchers. A non-linear regression analysis of the key parameters influencing 

lap strength yielded the following equation for ultimate bond stress (fbu): 

f = f7i (1.2 + 3c + 50</J + Atr fyt ) 
J bu V JC <P l 500sv<P (2.2) 

where: 

All units are pounds and inches. 

f~ Ultimate compressive stress of concrete cylinders. 

This approach certainly embodied the ideas which had been propounded re

garding lap joint behaviour. It also surmounted difficulties resulting from uncer

tainties about the relationship between bond and splitting forces, and about the 

degree of plastification of the concrete. Its purpose, however, was to be a de

sign equation and some of the analytical formulae tend to be more precise, with 

Tepfers (lO), for instance, developing separate equations for each of the possible 

crack patterns across a lapped section at failure. 

2.3 Analyses of the Ultimate Strength of Lap Joints 

Much of the analytical work on the ultimate strength of lap joints has been 

based on the bond behaviour of a single rod (10•31 •43). Therefore, in the first in-
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stance, it is necessary to consider the situation around a single bar when no trans

verse reinforcement is present. 

It has already been noted that the bearing of the bar ribs sets up compressive 

forces in the concrete, at an angle a to the reinforcement (Figure 2.1 ). These 

forces are balanced by a hoop tension acting around the bar, and bond failure of 

a deformed bar is often due to these bursting forces exceeding the tensile capacity 

of the concrete. Tepfers (44) modelled this situation by analysing a thick concrete 

cylinder loaded by internal pressure, with the wall thickness being equivalent to 

the concrete cover. He identified three different stages at which longitudinal cover 

cracks might form: 

i) Elastic stage: A splitting crack is initiated as the maximum tensile stress 

exceeds the tensile strength of the concrete. 

ii) Partly cracked elastic stage: Peaks in the tensile stress distribution exist 

in the vicinity of the reinforcing bar, and when the tensile capacity of the 

concrete is exceeded internal cracks are formed, radiating outwards from the 

rod. It was demonstrated analytically that if the cover/ diameter ratio is 

greater than 0.53 these cracks will not propagate immediately to the surface 

of the concrete, but create a partially cracked specimen. The bond forces 

are then transferred by the concrete teeth between the internal cracks to the 

uncracked part of the cylinder. The load carrying capacity of the cylinder 

is not exhausted until the internal cracks reach an 'optimum depth' (which 

is dependent upon cover and bar diameter) and then failure will occur as 

the maximum tensile stress exceeds the tensile strength of the concrete. 

iii) Plastic stage: The concrete is assumed to act plastically. Splitting ocurs 

when the tensile stress, uniform across the concrete cover, exceeds the ten

sile strength of the concrete. 

Tepfers developed equations for each of these stages, relating the bond stress 

at which the cover cracked (!be) to the tensile strength of the concrete (Jet), the 

cover (c) and the bar diameter ( ¢> ): 

Elastic stage: 

!b - __&_ ((c + ~)2- (~?) 
e- tan a (c + ~)2 + (~)2 

Partly cracked elastic stage: 

fet (c + ~) 
!be = 1.664 ¢> tan a 
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(2.4) 



Plastic stage: 

!be= 2 fct C 

<P tana 
(2.5) 

In reality, the elastic stage gives the load at which internal cracks form near 

the steel, and the partly cracked elastic stage gives the load at which the cracks 

propagate to the surface of the concrete. Tepfers' comparison of experimental 

results with the theoretical bond stresses calculated from equations 2.3-2.5 showed 

the test values to lie between the partly cracked elastic and the plastic stages. 

Consequently, when Reynolds (31) developed a theoretical lower bound for bond 

strength, it was based on the equation for the partly cracked elastic stage (2.4). 

Reynolds introduced a constant K1, which was dependent upon a and upon the 

relationship between the tensile (Jet) and compressive strength (feu) of concrete, 

and generalised Tepfers' equation such that: 

(2.6) 

He was able to demonstrate, by changing the equation into an expression for force, 

that this equation (2.6) was of a similar nature to that proposed by Orangun, Jirsa 

and Breen (30) for the A.C.I. code (equation 2.2), and by Los berg and Olssen (45) 

for the Nordic code. He recommended that equation 2.6 should be used as the 

basis for design, using a constant value of 0.2 Nt /mm for K1. This figure was 

shown to give a reasonable lower bound to results gained experimentally. 

Reynolds recognised a considerable variation in the allowance made for the 

contribution of transverse steel to anchorage strength in previous design propos

als (31), and so included an assessment of the influence of links in his experimental 

study. He considered the contribution to be equal to the force carried by trans

verse bars and noted that these bars did not necessarily reach their yield stress. 

Consequently, he suggested that for design purposes it was reasonable to assume 

a stress of 70 N /mm2 in the links and, by converting this additional anchorage 

force to bond stress, he was able to add the contribution of transverse steel to his 

basic equation (2.6). 

Reynolds' proposals have been adopted in BS8110:1985 (46), with the equation 

given in this standard for the design ultimate bond stress being: 

(2.7) 

The coefficient j3 is dependent upon bar type. The figure for a type 2 deformed 

bar (47) under tension is derived by assuming that ~ = 1 (giving j3 = 0.3 Nt /mm 
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from equation 2.6), and then making allowance for the presence of transverse steel 

to bring f3 up to 0.5 N! /mm. Whilst the handbook to the code (46) acknowledges 

that this is a rather simplistic approach, it is argued that refining equation 2. 7 to 

give a more realistic treatment of anchorage bond would add considerable compli

cation to the design procedure for little economic gain. 

In order to apply the aforementioned ideas for a single bar to a lapped pair of 

rods it is necessary to understand the force system around anchored and lapped 

bars. For a single bar the bursting force will be the same at all points on the rod 

circumference, if the rib area is constant. The relationship between bond stress 

(fbs) and the bursting pressure (fp) is based on the angle a which the compressive 

strut makes with the axis of the bar (Fig. 2.1), such that fp = fbs tana. This 

angle need not remain constant. It has been suggested by Eligehausen (42) that 

the ratio fp/ fbs varies from 0.5 to 1 as the bond stress increases and wedges of 

crushed concrete develop ahead of the bar ribs. 

Tepfers (IO) has proposed two possible force systems for laps which are illus

trated in Figure 2.3. The first, Type A, is simply the addition of two single bar 

anchorages. The bursting forces perpendicular to the lap axis would be double 

the value for a single bar, and this would result in lap strength being dependent 

upon orientation of the lapped bars. If this were the case, then, for instance, a 

lap joint in a slab with bars placed side by side would need to be twice the length 

of a similar joint with the bars placed one above the other. There has been no 

evidence in the literature that lap orientation has such a significant effect, and in 

a more recent publication (48) Tepfers appears to have favoured the second of his 

proposed force systems, Type B. 

In this system it is assumed that the displacement between the lapped bars will 

be twice the slip between each individual bar and the concrete. This may result in 

a breakdown of bond between the bars, thus leading to a reduction in longitudinal 

bond stresses in this area. In the extreme case, when the axial component of bond 

is totally lost, the compressive force between the bars may become perpendicular 

to the bar axis (a = 90°). As may be seen in Figure 2.3, such a system results in 

the bursting forces around a lap being twice as high as those around a single bar, 

and therefore Tepfers recommended that the equations derived for the bond stress 

which causes the cover to crack (equations 2.3-2.5) should be halved if they are 

applied to lap joints. 

However, it was established by Orangun, Jirsa and Breen (30), from a large 

amount of experimental data, that lap and anchorage lengths were equivalent. 

This contradicted Tepfers' findings, and an alternative force system, in which the 
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two lengths could be equated, was put forward by Reynolds (31 ). He argued that 

the area between the rods provided the shortest and stiffest route for force transfer, 

and thus attracted much of the force. This is equivalent to a reduced value of the 

angle a in the area, with the decrease .being just sufficient to ensure that the 

resulting distribution of bursting forces around a lap (Figure 2.3) is the same as 

that around a single bar. The proposals therefore agreed with the experimental 

evidence, and it is interesting to note that, for tensile loads, the most recent British 

Standard(?) equates lap and anchorage lengths. 

Although Reynolds and Tepfers have differing ideas concerning the magnitude 

of the bond stress at which the cover splits around a lap, they do agree that 

the bursting forces in the plane of, and perpendicular to, the lapped bars are 

equal. The longitudinal crack will therefore develop in the smaller of the horizontal 

and vertical covers. Laps may continue to sustain loads after the formation of 

splitting cracks, and so the equations for the bond stress at which this occurs do 

not necessarily give the ultimate bond strength. 

Tepfers (lO) identified six possible failure patterns which, like those shown in 

Figure 2.2, varied according to the section geometry. Separate equations were 

developed for each failure type. He assumed that the concrete behaved plastically 

in the failure zone, and thus an estimate for ultimate strength could be obtained by 

multiplying the area of the failure surface by the tensile strength of the concrete. 

If required, the contribution of transverse reinforcement carrying stresses across 

the cracks could be added to this estimate (49). The ultimate strength of the lap 

was determined by the failure pattern which offered least resistance to the splitting 

forces. 

The discussion to date has centred upon the stress distribution around a tension 

lap, but a similar sort of system might be expected around a compression lap. It is 

clear that end bearing affects the force transfer in such laps, and consequently any 

analysis should include this. Cairns (43) investigated the behaviour of compression 

laps, and developed an expression for their ultimate strength. He treated the 

components of stress due to bond and to end bearing separately, and then combined 

them to form his final equation. 

Compressive forces in the concrete parallel to the bar axis affect the bond 

behaviour of the reinforcement by restraining the growth of internal cracks. Cairns' 

analysis of the ultimate compressive bond strength of ribbed bars (43
) was based 

on the premise that bond failure was due to a breakdown in the bearing of the 

ribs. This mode of failure is characterised by the formation of shear cracks on 

an inclined surface passing through the top of the ribs, and explains the concrete 
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wedges which were seen to adhere to the bar ribs after failure of his compression 

laps. The stresses acting on a wedge of concrete ahead of a rib were determined 

theoretically, and an equation was developed which related the steel stresses to the 

bursting forces. He demonstrated that the ultimate bond strength was the sum of 

two separate factors, one which dealt with the relationship between the splitting 

and the confining forces in a specimen and the other, a 'non-bursting' component, 

which was dependent upon the strength of the concrete and the total area of the 

failure surfaces. The key parameters were shown to be the concrete strength, the 

surface characteristics of the reinforcement and the confining force. Cairns' tests 

on full-scale columns had shown the concrete cover to be split over the entire lap 

length before failure occurred, and so it was assumed that links provided the entire 

confining force. 

Cairns' experiments showed that when lapped bars fail in end bearing a cone 

of concrete is pushed out from the end of the rod. Consequently, he considered 

the stresses acting on such a failure cone, and showed that end bearing could also 

be thought of in terms of a 'bursting' and a 'non-bursting' component, related to 

the confining force on the cone and the concrete strength respectively. 

Although Cairns initially treated the two mechanisms of force transfer sepa

rately, in a compression joint both bond and end bearing will be active (27). The 

ultimate strength will not be the simple addition of equations derived for the two 

individual stress components because only a limited amount of confining force is 

available in a specimen, and so failure will depend on the relative value of the 

bursting forces associated with each. Since this varies according to the specimen 

characteristics, Cairns did not attempt a quantitative analysis, but instead demon

strated that the ratio of the confining force to the force developed by the bar was 

similar for both methods of force transfer. It was therefore possible to consider 

the ultimate compressive lap strength to be the sum of just three components: 

i) non-bursting component of bond. 

ii) non-bursting component of end bearing. 

iii) bursting component of bond. 

Two expressions were developed for the ultimate compressive lap strength, 

one being an upper limit in which the bursting forces were assumed to act over 

the entire lap length, and the other being a lower limit in which the forces were 

assumed to be concentrated at the lap ends. The results derived analytically 

compared favourably with those obtained experimentally, with the latter values 

lying between the upper and lower limits. 

15 



In spite of the two limiting conditions which make allowance for whether all 

the links, or just those at the lap ends, yield, it was assumed in the analysis that 

the total bursting force produced is the product of one rib's bursting force and the 

total number of ribs over the lap length. Implicit in this is the assumption that 

each rib exerts a similar bursting force, which seems unlikely from the measured 

distribution of bond stresses reported by Cairns (27) (see §2.4). 

It should be remembered that the analyses described for both tension and com

pression laps are concerned with the behaviour across the section, and therefore 

deal with a unit length, along which the bond stress is assumed to be constant. 

This length could be considered to be the entire lap length, but in reality the bond 

stresses may vary along the joint (11), and so to predict the ultimate lap strength 

a knowledge of the bond stress distribution is required. 

2.4 Stress Distributions Along Lap Joints 

It is often assumed that the bond stress is constant over the lap length at 

failure, and therefore, by implication, that the force is evenly transferred between 

the lapped bars (7,8). For design purposes this is usually adequate, particularly as 

standard bond tests (so) determine average bond stresses, but in reality variations 

do exist in the bond stress distribution, particularly at low loads (11). It would 

seem probable that it is the peaks in this distribution which cause splitting of the 

concrete cover. Authors generally quote the average bond stress which results in a 

splitting crack and, even allowing for some plastification of the concrete, this figure 

might be expected to be lower than the true value of bond stress which initiated 

splitting. It is clear that if the behaviour of lap joints is to be fully understood 

then the stress distributions along the lapped bars must be determined. 

This was first attempted in 1945 by Kluge and Tuma (l2) who, by providing 

small openings in the concrete, were able to measure the steel strain distribution 

with a mechanical strain gauge. Although the gauge holes would have undoubt

edly affected the local bond stresses, it was concluded that their presence did not 

adversely affect lap strength. Another unusual characteristic of the specimens was 

that the lapped bars were flanked by two continuous rods, and it was acknowledged 

that. the results might have been slightly different in the absence of these rods. The 

lap joint consisted of a pair of high yield deformed steel rods, of either half or one 

inch diameter, and had a length ranging from twenty to fifty bar diameters. 

The five inch gauge length of the mechanical strain gauge resulted in rather 

crude measurements but, nonetheless, it was established that peaks in the bond 

stress distribution existed at the free ends of the rods, with the bond stress then 
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generally decreasing over the lap length. In laps longer than forty rod diameters, 

negligible bond stresses were observed in the central portion of the lap, suggesting 

that such splices were inefficient. A comparison of the stress distribution for var

ious lap lengths showed that the peak bond stress at the free end of the lap was 

independent of variations in lap length or bar type. A linear relationship existed 

between this peak stress and the tensile stress in the continuing rod. In general, 

failure was attributed to yield of the reinforcement, though longitudinal cracking 

was observed in some specimens near the maximum load. In a complementary 

series of tests, in which the average bond stress at failure was determined, laps 

shorter than twenty rod diameters exhibited bond failure. A comparison of max

imum and average bond stresses along the lap showed that whilst the maximum 

value remained unaffected by changes in the lap length, higher average ultimate 

bond stresses were observed in shorter laps. 

Although longitudinal cracks were observed in these early experiments, it was 

Chinn, Ferguson and Thompson (24), almost a decade later, who initially exam

ined the phenomenon of splitting. They noted that longitudinal cracks generally 

propagated from transverse cracks, particularly from those at the lap ends, sug

gesting that splitting may be associated with the peak bond stresses found in 

this region. The lap was often able to continue transferring forces after the cover 

cracked. Consequently, the influence of splitting on the stress distribution is of 

interest. It was suggested in a report produced by the A.C.I. Committee 408 (20) 

that splitting could be one means by which some of the unnevenness in the bond 

stress distribution was smoothed out. 

Tepfers, as part of his extensive analytical and experimental study of lap joints, 

considered the longitudinal stress distribution in the steel (SI). He developed theo

retical expressions for the distribution which were then compared to values derived 

from the reinforcement strains measured in some of his specimens by electric re

sistance strain gauges. 

Tepfers based his theory on the slip at the steel/concrete interface, usmg a 

constant 'modulus of displacement' (I<d) to linearize the initial portion of the 

bond stress/ slip Ubs / tl) curve (Figure 2.4.1) such that: 

(2.8) 

It was assumed that the specimen behaved elastically, and the rate of change of 

bond stress was related to the difference in the steel and concrete strains, resulting 

in an equation of the form: 

(2.9) 
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The change in rod stress could be considered in terms of a bond stress: 

dfs _ ~ + 
dx -As Jbs 

as could the concrete stress around a lap (in which two bars are present): 

where: 

u 

dfc U 

dx = -As (fhsl + fbs2)· 

icl 
Subscripts 1, 2 refer to indi'.&al bars. 

Perimeter of steel reinforcement. 

As Area of steel reinforcement. 

fc Concrete stress. 

fs Reinforcement stress. 

(2.10) 

(2.11) 

Consideration of equilibrium conditions enabled the applied force to be related 

to the forces within the lap, and a relationship could thus be established for the 

stresses in the steel and the concrete. 

Tepfers analysed a lap comprising bars of similar diameter and placed the joint 

in a constant moment zone, which meant that the stresses at both ends of the lap 

were the same. It was assumed that transverse cracks had formed and were located 

at the lap ends, due to the sudden change in specimen stiffness. Second order 

differential equations describing both the concrete and the steel stress distributions 

were evolved from equations 2.9-2.11. These were solved by consideration of the 

boundary conditions: that there was zero concrete stress at the lap ends (due 

to the assumed transverse cracks), and that the steel stress was zero at the free 

end of the rods, and at a maximum where it carried the applied force across the 

crack. The resulting equations for the steel stress distributions were differentiated 

to give the bond stresses along each rod. The theoretical steel and bond stress 

distributions along the lap have been plotted in Figure 2.5. 

A plot of the stress distributions for one of the lapped bars revealed peak bond 

stresses at both ends of the lap. The curves (Figure 2.5), calculated for a typical 

range of reinforcement percentages (1-10%), presupposed that no cracks existed 

within the lap length. If transverse cracks did appear then the concrete stress 

would be zero at the crack position, and the steel and bond stresses could be 

determined by considering an infinite reinforcement percentage (p = oo ). This 

describes the situation which exists when there is no concrete area available to 

carry stresses, yet the bond between the bars is still active and maintains the 

constant modulus of displacement. Tepfers compared values for p = 1 and p = oo, 

and demonstrated that, for normal crack spacings (from 50-200 mm), the concrete 
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acting between the cracks had a maxim'\lm influence of under 5% on the tensile 

stresses, and under 20% on the bond stresses. He also argued that plastic behaviour 

of the concrete was likely to result in an equalization of local bond stress peaks, 

so reducing this last figure. 

The original stress equations were simplified by assuming that there was no 

interaction of the surrounding concrete (p = oo), giving the following expressions 

for the variation of steel and bond stresses along the lap length: 

where: 

_ !so (1 sinh K:X ) 
fs 1 - 2 - sinh(;1) 

(2.12) 

fs 2 = _fs_O ( 1 + _sl_·n_h K:;--X:-7"") 
2 sinh ( ;1) 

(2.13) 

( 
coshK:x ) 

sinh ( ;1
) 

(2.14) 

Subscripts: 0 refers to single bar outside the lap joint, 1 and 2 

refer to individual bars inside the lap. 

f-i!!i.. 
Modulus of displacement, generally taken as the secant modu

lus. 

A comparison of stresses calculated from these simplified expressions with those 

measured experimentally showed that in the early stages of a test the two values 

differed due to the involvement of the concrete between cracks. However, this 

discrepancy became less apparent as the concrete reached its final, closest, crack 

spacing and at medium loads the theoretical and the experimental distributions 

were similar. Longitudinal cracks formed in the concrete cover before the specimen 

failed, and the resulting changes in the bond stress/slip relationship rendered the 

analysis invalid. 

Tepfers observed, from pull-out tests~ that splitting of the concrete cover led 

to an equalization of bond stresses due to increased slip between the steel and 

the concrete (10). A limited measurement of the strains in the lapped bars showed 

the steel strain distribution to become increasingly linear as failure approached. 

Similar behaviour has been reported by other authors (16•
17

). 

There has been some concern (52) regarding the assumption of a linear bond 

stress/slip relationship (equation 2.8 and Figure 2.4.1 ). Tepfers argued that as the 

cover generally cracked at bond stresses of between 2.0 and 4.0 N /mm2 these values 
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represented an upper limit for the validity of the analysis. He commented that 

within this range the bond stress/slip curve for the Swedish Ks60 steel reinforcing 

bars used in his tests was linear. However, a 'realistic' bond stress/slip curve 

(Figure 2.4.2), derived by Eligehausen C42) for a similar analysis, is non-linear in 

the same range. 

In order to calculate the stress distributions along laps, Eligehausen solved a 

system of differential equations (similar to those derived by Tepfers from equa

tions 2.9-2.11) using an iterative technique to make allowance for non-linearities 

in the bond stress/slip curve. He also took into account the effect of the change 

in the ratio of the bursting force to the bond force. According to his finite ele

ment modelling of bond behaviour, this ranged from about 0.5, when the concrete 

between the ribs was undamaged, to about 1.0 as the crushed concrete wedges 

built up ahead of the steel ribs (Figure 2.4.2). This meant that although the 

bond stresses were reasonably constant over the lap length at maximum loads, 

the splitting forces increased considerably at the lap ends. He suggested that this 

would result in the development oflongitudinal cracks from the lap ends when the 

splitting force reached a critical level. The critical value is that which, according 

to the force distributions around the reinforcement (described in §2.3.), will result 

in splitting of the cover. 

This approach is similar to that adopted by Tepfers C48) for the estimation 

of the ultimate strength of the lap. Variations in the extent of splitting along 

the specimen resulted in the definition of three possible failure modes, in which 

the cover could be either completely, partly or not cracked over the lap length. 

The final bond stress distribution was either linear in regions where splitting had 

occurred, or could be determined using the simplified equations (2.12-2.14) if the 

cover was uncracked. The ultimate lap strength was estimated by considering the 

possible failure patterns, which are dependent on the section geometry (see §2.3 

and Figure 2.2), and using either an average or a peak bond stress as appropriate. 

The analytical work of Tepfers and Eligehausen has been restricted to the 

behaviour of tension splices, and to date, there appears to have been no theory 

established for the bond stress distribution in a compression lap. It was shown in 

measurements taken by Cairns (27) that considerable variation could be found in 

the bond stress along the lap, with a peak existing at the free end of a lapped bar 

due to end bearing. The absence of transverse cracks in a compression lap enabled 

some of the force to be transferred outside the lap joint. Cairns noted the presence 

of bond stresses over a distance of approximately three bar diameters beyond the 

lap end. The precise steel strain distribution was found to be dependent upon 

concrete stiffness and reinforcement percentage, tending to become more linear 
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over the lap length with a less stiff concrete and a higher ~'ntage of steel in the X 
specimen. It was clear from a distribution plotted for a tapiength of twenty bar 

diameters (Figure 2.6) that low bond stresses existed in the central portion of the 

lap, and since failure would be initiated at points of peak bond stress, this caused 

the ultimate average bond stress of the specimen to appear relatively low. 

2.5 Conclusion 

It was concluded by the A.C.I. Committee (20), which reported on bond stress 

research previous to 1966, that 'the development of an adequate bond theory 

depends on the establishment of the real bond stress distribution, the real splitting 

forces developed and what factors affect these two'. 

Much of the research into lap joints has been concerned with the phenomenon 

of splitting, and there is now general agreement about the key factors affecting 

lap strength, although the importance attached to each parameter does vary (39). 

The problem of longitudinal cracking has been dealt with both theoretically and 

experimentally, and results thus obtained have been favourably compared. There 

has, however, been some disagreement concerning the force distribution around 

the lapped bars, with different force systems being proposed by Tepfers (lO) and by 

Reynolds (31 ). Measurement of the circumferential strains in the concrete may help 

to resolve this problem. It might also clarify the uncertainty that exists regarding 

the changing relationship between bursting force and bond stress as the applied 

load is increased. 

Although a measurement of these strains is undoubtedly of interest, there is 

a greater need to deal with the first part of the A.C.I. 's conclusion, namely the 

establishment of the longitudinal bond stress distribution. Since Kluge and Tuma's 

early work (12), in which a five inch mechanical gauge was used to determine the 

reinforcement strains along tension laps, no experimental study has concentrated 

on this aspect of lap joint behaviour. More recently, researchers have demonstrated 

that the steel strain distribution becomes increasingly linear near ultimate loads, 

particularly if the cover cracks, and have consequently justified the use of average 

bond stresses in design codes. However, the existence of peak bond stresses was 

recognised by Tepfers (10), with one possible mode of lap failure being the rapid 

development of a splitting crack along the lap length. Although plastification of 

the concrete may help to distribute the effect of the peak stresses, the cracking 

of the concrete cover may be attributed to a peak, rather than an average, bond 

stress. It is of considerable interest to establish not only the value of the peak 

stress, but also the relationship between the peak and the average bond stresses, 
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if the use of an average bond stress for estimating the ultimate lap strength is to 

be justified. To date, strain measurements in lap joints (Figure 1.1) have been 

carried out using a gauge spacing in the order of 50 mm. There has consequently 

been insufficient detail in the measured distributions to determine the peak bond 

stresses with confidence. 

The effect of transverse cracking of the concrete within the lap has not been 

assessed experimentally, although Tepfers (48) did make provision for the develop

ment of such cracks in his derivation of equations which describe the steel and 

bond stress distributions. The influence of specimen characteristics such as lap 

length and bar diameter on these distributions have not been determined, and 

lap joints which comprise bars of different diameter appear to have been totally 

neglected in previous work. 

It is clear that to fully understand the behaviour of both tension and compres

sion lap joints the stress distribution along the lap length, and the factors affecting 

this distribution, have to be established. This can be best achieved experimentally. 
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CHAPTER 3 

STRAIN MEASUREMENTS 

3.1 Strain Measurements in the Reinforcement 

3.1.1 Strain gauging technique 

A number of techniques have been developed to determine the strain distri

bution along reinforcing bars in concrete. These include photoelastic investiga

tions (14), the use of the Moire method (6) and, more commonly, measurement by 

electric resistance strain gauges. Various researchers have attached such gauges to 

the surface of the steel to determine strains along lap joints (Figure 1.1), but the 

presence of gauges, and the associated waterproofing compounds and lead wires, 

must modify the bond characteristics of the rod. To overcome this Bernander (53) 

placed strain gauges on the side walls of a slot cut longitudinally along the bar, 

arguing that the small opening thus created on the circumference would have little 

effect on bond behaviour. Mains (J), in 1951, developed an alternative technique 

which left the perimeter of the rod intact, and was therefore more satisfactory for 

bond research. A reinforcing bar was cut in two axially, and up to twenty gauges 

were mounted in a groove milled in one portion of the bar. The two pieces were 

then tack welded together to re-create a complete rod. This technique has since 

been used by a number of researchers (4,5•6), and a similar method, which took 

advantage of the many advances in strain gauge technology in the 35 years since 

Mains' work, was developed by Scott and Gill (1,2). It was their technique which 

was employed in this research. 

This method of strain measurement was particularly suited to bond research, 

the use of electric resistance strain gauges enabling localised readings to be taken 

along the reinforcement, without changing the steel's bond characteristics. Since 

lap joints rely on bond to transfer the force between the overlapping bars it was 

important that the integrity of the steel/concrete interface was preserved. An ad

ditional benefit of internally gauging the rods was that, by providing an exit route 

for the lead wires within the steel, the surrounding concrete remained undisturbed. 

The strain gauged rods were formed by milling two reinforcing bars to a half

round and machining a longitudinal groove, 5 mm wide and 2.5 mm deep, in each. 

In the first six specimens this groove was stopped 5 mm short of the embedded end 

of the bar. It was felt that closing the groove in this manner would help to seal the 

gauge installation. This was later found to be unnecessary, and in the subsequent 
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specimens the groove ran the full length of the rod. Electric resistance strain 

gauges (3 mm gauge length, overall size 9 x 3.5 mm) were fixed in these grooves 

using a cyanoacrylic adhesive. Terminal strips, to which the leads were soldered, 

were glued alongside the gauges. Space limitations within the groove necessitated 

the use of very small diameter (0.224 mm) enamelled copper lead wires. The strain 

gauges were connected for quarter bridge operation, using a three wire, common 

dummy, arrangement. This wiring system, combined with a twin constant current 

energising circuit, was used to eliminate any change in resistance produced by 

thermal effects on the 3 m long lead wires. The gauge installation was protected, 

first with a polyurethane varnish and then, following the tacking down of the lead 

wires, with an acrylic solution. The gauge resistance, nominally 120 n, and the 

earth leakage (between the gauge and the reinforcing steel) were checked before 

joining the two half-bars with an epoxy resin, with this resin also serving to fill 

any remaining space in the groove. The .finished arrangement is shown in Figure 

3.1. 

The completed bar was placed in the test rig and subjected to strain cycling 

from zero to 500 microstrain, to minimise hysterisis and to check the gauge instal

lation. Confidence in the measurement technique was provided by the uniformity 

of the strain distribution along the rod at 500 microstrain. Slight deviations from 

the mean strain level were attributed to changes in the rod cross-sectional area. 

As a final part of the bedding-in operation the bar was loaded to either 10 or 

35 kN, depending on rod diameter, in increments of either 2 or 5 kN. The bar was 

then unloaded using the same increments. The strain measurements at each load 

value were recorded to enable the determination of the rod cross-sectional area 

(see §5.2.2). 

In order to ensure that the steel was not gripped at a gauge position during 

the bedding-in operation the rods initially extended beyond the gauge at the lap 

end, with the standard overall length being 2.6 m. Prior to casting, the bar had 

to be cut to the required length. The cut end of the rod was coated with both 

polyurethane varnish and an acrylic solution to ensure that the gauge installation 

was completely sealed. 

The reliability of the strain gauging procedure was good, with an overall gauge 

failure rate of under 3%. It was noted that specimens which were subjected to 

a sustained load were more susceptible to gauge failure, with some gauges failing 

during the course of a test. This may have been a consequence of the cyanoacrylate 

adhesive breaking down over a period of time. 
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3.1.2 Gauge layout 

The strain gauge layout varied slightly for each specimen, but each pair of 

lapped rods was gauged similarly. Up to 44 gauges could be installed in each rod, 

with all the lead wires coming out of one end. A typical layout is shown in Figure 

3.2. In general, the gauges were equally spaced over the central metre or so of the 

specimen, and bonded to alternate sides of the rod. A pair of gauges measured 

the rod strains out of the concrete, and thus provided a correlation with the load 

measuring instrumentation. Greater detail in the strain distribution was sought at 

the lap ends by a closer spacing of the gauges, and in some of the later specimens 

by the use of strain concentration gauges. 

3.1.3 Strain concentration gauges 

Strain concentration gauges, which consisted of five 1 mm gauge elements at 

2 mm centres, provided very detailed information at the lap ends (Figure 3.3). The 

gauge installation procedure was considerably complicated by the leads coming out 

to the sides of these gauges. These leads had to be insulated prior to being soldered 

to the terminal strips, which in this case were glued to the walls of the groove. 

It was clear that great care was required to ensure reliable results with the 

concentration gauges. In particular, the end elements of these gauges appeared to 

be prone to failure. These had performed well during the bedding-in procedure, 

but during the test indicated a strain that was atypical of the trend shown by the 

other four elements in the gauge. This may have been due to a failure in the bond 

between the gauge and the steel reinforcement, either caused by the ingress of 

moisture and consequent breakdown of the cyanoacrylate adhesive, or by damage 

which occurred as the rod was cut to its correct length. Increased experience in 

the installation of the concentration gauges seemed to alleviate the situation, with 

there being no recurrence of this problem in the later specimens. The loss of these 

few gauges did not detract from the value of the measurements. 

3.2 Other Strain Measurements 

3.2.1 Surface strains 

The average concrete surface strains were measured using a Demec gauge. It 

was decided that a 200 mm gauge length would give sufficient detail in these tests, 

and a single row of five or six (depending on the specimen length) Demec studs 

was glued centrally on each face of the specimen. 
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3.2.2 Embedment gauges 

Two specimens contained embedment strain gauges (12 mm gauge length, over

all size 30 x 9 x 2.5 mm) within the concrete to measure the strains around the 

reinforcement. There were three groups of gauges at 100 mm centres- one within 

the lap, one outside and one at the lap end. A single gauge was positioned on each 

face, midway between the bar and the concrete surface, using a grillage of fine 

wire, as shown in Figure 3.4. This was complemented by an electric resistance 

strain gauge (30 mm gauge length) attached, by epoxy resin, to the surface of the 

concrete immediately above the embedment gauge. The embedment gauges were 

restricted to one half of the specimen due to their potential behaviour as crack 

inducers, and to the disturbance caused by their presence in the concrete. 
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CHAPTER 4 

TEST SPECIMENS AND PROCEDURE 

4.1 Specimen Dimensions 

4.1.1 General 

Research into lapped joints has generally been carried out on beams subjected 

to a four-point loading system, with the joint lying in the constant moment zone. 

Cairns and Jones (37) have used axially loaded specimens, reinforced with two pairs 

of lapped rods to negate bending influences, and concluded that the results of such 

tests correlated well with those of beam tests. The availability of test rigs equipped 

to apply axial forces, in particular the Dartec testing machine, resulted in the use 

of axial specimens in this investigation. The cost of strain gauging the reinforcing 

bars meant that only a single pair of lapped rods was cast in each specimen. 

Two series of tests were carried out, the first dealing with tension laps and the 

second with compression laps. The tension series was divided into two groups: 

short term tension tests, comprising thirteeen specimens, and long term tests, 

comprising two specimens. The compression series consisted of a single group of 

five short term tests. Each of these groups was tested in a different rig, which led 

to some variations in the specimen lengths. This was 885 mm for the long term 

tests, 1000 mm for the compression tests, and 1500 mm for the short term tension 

tests. 

All the specimens were nominally 100 mm square. Previous work on axial 

specimens reinforced by a single continuous rod (54) had shown that with such a 

cross-section a considerable amount of information could be collected both before 

and after crack formation. The specimens were centrally reinforced with either 12 

or 20 mm diameter high yield steel rods (Torbar). The size of the larger rod was 

dictated by the tension rig which, with its loading limit of 100 kN, was unable 

to yield a bar larger than 20 mm diameter. Whilst a large variation in the rod 

dimensions would help to emphasise the influence of rod diameter, the use of too 

small a rod might result in the internal groove exerting an undue influence on the 

stresses. The 12 mm rod, which when gauged had a nominal cross-sectional area 

of 78% of a solid bar, was considered sat!sfactory. 

The lap joint was situated in the centre of the specimen, and varied in length 

from 125 to 750 mm. The typical specimen layout is illustrated in Figure 4.1. The 
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lengths were, in part, chosen to ensure that the lap joint would not be affected by 

the anticipated breakdown in bond at the specimen ends. The lap lengths were 

both above and below the minimum requirements of the design code in operation 

at the start of the work (SS)t. 

The specimens have been coded according to the variables. The first number 

refers to the lap length (mm). This is followed by the group letter- T for short 

term tension, D for long term tension and C for compression. The next numbers 

refer to diameters (mm) of the two lapped rods. A final letter in brackets may 

be used to differentiate between two specimens which are nominally the same (A 

or B), or to identify those specimens with either transverse reinforcement in the 

form of links (L) or embedment gauges (E). Thus specimen 125D12/12(L) refers 

to a 125 mm lap length in the long term tension group, the lap comprising a pair 

of 12 mm rods and being surrounded by links. A description of each of the twenty 

strain gauged specimens is given in Figure 4.2, and the following sections will give 

details relevant to each group. 

The measured specimen properties are tabled in Figure 4.3. The slight varia

tions from the nominal dimensions were due to tolerances in the specimen spec

ification. The areas of the two rods lapped in each compression specimen were 

equal because the shorter overall length of these specimens enabled a single length 

of reinforcement to be gauged and bedded-in, which could then be cut in half to 

form a pair of rods. 

4.1.2 Short term tension specimens 

The thirteen specimens in this group encompassed a wide range of variables. 

Lap lengths of 125, 250, 500 and 750 mm were used, and both 12 and 20 mm diam

eter rods were lapped. Embedment gauges were cast in one specimen to measure 

the circumferential strains in the concrete. In two of the later specimens trans

verse reinforcement was provided to help contain the splitting forces caused by 

the wedging action of the reinforcing bars. It was hoped that this would increase 

Clause 3.11.6.5 in CPllO (55) states, inter alia, that 'When bars are lapped, the length of the 
lap should at least equal the anchorage length (derived from 3.11.6.2) required to develop the 
stress in the smaller of the two bars lapped, except that for deformed bars in tension the length 
should be 25% greater than the anchorage length required for the smaller bar. The length of 
the lap provided, however, should neither be less than 25 times the bar size plus 150 mm 
in tension reinforcement nor be less than 20 times the bar size plus 150 mm in compression 
reinforcement'. Application of this code for a grade 30 concrete gave minimum values for the 
lap length required to develop the yield stress of the reinforcement ( 460 N /mm2

): these were 
594 and 991 mm when in tension or 394 and 657 mm when in compression, for the 12 and 
20 mm diameter bars respectively. The constraints of the tension test rig limited the applied 
load to 100 kN, and the lap length required to develop this force in a 20 mm rod was 686 mm. 
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the failure load and also reduce the rate at which the longitudinal cracks devel

oped. The positioning of the embedment gauges and the layout of the transverse 

reinforcement is shown in Figure 4.4. 

Three tests were included in which the lapped rods were of differing diameter, 

'mixed' laps. In the first of these (250T12/20(A)) the minimum cover to the two 

rods was unequal. In the subsequent two tests the joint was offset by 4 mm so 

that the minimum cover to each rod was the same. 

4.1.3 Long term tension specimens 

The two specimens in this group comprised a pair of 12 mm rods, lapped over a 

length of 125 mm. The first specimen (125D12/12(A)) failed just two days into the 

test, and it was clear that some modification to the specimens would be required if 

a load was to be maintained over a long period. Consequently two exploratory tests 

were carried out, using ungauged rods. The first used a crack-inducer to lower the 

load at which the first crack formed, hence reducing the likelihood of immediate 

failure. The second used links to contain the splitting forces, thus preventing a 

sudden failure. Both methods appeared to work satisfactorily, but it was felt that 

the specimen with the crack-inducer would have failed had longitudinal cracks 

developed. Consequently transverse reinforcement was provided in the second 

specimen to ensure that sustained loads could be applied (Figure 4.4). 

4.1.4 Short term compression specimens 

The compression tests were carried out in a strengthened version of the tension 

rig, with the modifications raising the rig limit to 300 kN. In order to determine 

whether lap failure might be anticipated four ungauged specimens were tested, in 

all cases lapping a pair of 12 mm rods. Three of the specimens had a nominal cross

section of 100 x 100 mm, the lap lengths being 30, 62 and 125 mm. The 62 mm 

lap failed, at 298 kN, but the other two joints showed no visible sign of damage at 

the maximum load of 300 kN. A fourth specimen, with a 70 X 70 mm cross-section 

and a 125 mm lap length, failed at 190 kN. However, failure was initiated at the 

ends of the specimen, rather than over the lap length. In order to prevent this 

type of failure in subsequent tests, the concrete was externally clamped at the 

specimen ends. The results from these pilot tests, discussed further in section 7.1, 

indicated that lap failure could not be guaranteed. It was therefore decided to 

restrict the tests to specimens which were comparable to those used in the tension 

series. The five gauged specimens were 100 mm square, with lap lengths of either 

125 or 250 mm. 
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Embedment gauges were cast around the reinforcement in one specimen. As in 

the tension series (Figure 4.4), these were placed at the end of the lap and 100 mm 

to either side of this position. Since failure of the specimens was not expected the 

presence of transverse reinforcement was deemed unnecessary. 

4.2 Concrete Mix and Casting 

A concrete mix was designed to have a 28-day cube strength of 30 Njmm2 

and a high workability, using 10 mm aggregate and a zone 2 sand. The mix had 

a water/cement ratio of 0.6, an aggregate/cement ratio of 5.5 and a coarse/fine 

aggregate ratio of 1.5. 

The arrangement of the reinforcement within the specimen is shown in Figure 

4.1. The rods were placed above each other in order to reduce the influence that 

any consolidation of the fresh concrete beneath the splice might have. This also 

helped with joint stability, though of much greater relevance in this respect was 

the clamping of the rods outside the mould. The reinforcement was tied in one or 

two places along the lap using fine wire. The concrete was placed in three layers 

of approximately equal depth. 

The concrete was cured for seven days under damp hessian, and was then 

stored in the laboratory. The short term tests were carried out at approximately 

28 days (Figure 4.3). Some three months· elapsed before the start of the long term 

tests in order to minimise creep and shrinkage effects during these tests. 

Test cubes and cylinders were cast with the specimen for the determination 

of the compressive and indirect tensile strength of the concrete. The results from 

these tests are included in Figure 4.3. It is clear from this table that the true value 

of the concrete's compressive strength was considerably higher than the design 

value of 30 N jmm2• The mean cube compressive strength of 52.3 N jmm2, with a 

standard deviation of 5.1 N/mm2, gave a characteristic strengtht of 43.8 N/mm2• 

The splitting tests on the cylinders yielded a mean indirect tensile strength of 

2.9 N jmm2 , with a standard deviation of 0.3 N /mm2 • Traditional empirical re

lationships express the concrete's tensile strength in terms of the square root of 

the compressive strength (40). An equation of this form was derived from the test 

t The characteristic cube strength is defined as that value below which 5% of all possible test 
results would be expected to fall (7). 
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results, giving: 

fct = 0.4 .fj::, ( 4.1) 

4.3 Test Procedures 

4.3.1 Short term tension tests 

These tests were carried out in a rig which had been built to load axial spec

imens to 100 kN (Figure 4.5). The specimen was loaded through the reinforcing 

steel, with the load being applied by a manually operated hydraulic jack and mea

sured by a flat load cell. The load cell output was displayed as a direct reading on 

a meter and sent to the data collection system as a voltage. 

The 12 mm rods were sufficiently flexible to allow the jack and the load cell 

to be placed co-linearly. However, the stiffer section of the 20 mm rods prevented 

this arrangement, and when these bars were tested the jack had to be displaced by 

20 mm. The provision of spherical seatings at the loading points permitted some 

rotation of the specimen in the rig. 

The loads were applied incrementally, the increment size varying between 0.5 

and 2 kN according to the strain changes and cracking taking place in the specimen. 

The load values and the strain gauge readings were recorded at each load stage. 

The loading was halted at 50 kN for the 12 mm rods, and at 100 kN for the 20 mm 

rods, unless the reinforcement had fully yielded or the specimen had failed earlier. 

Each test was completed within a day. 

The Demec readings were taken at r~gular intervals, typically 5 kN, and also 

after the formation of each crack. Safety considerations precluded the carrying 

out of these measurements at the higher load levels. 

4.3.2 Long term tension tests 

The Dartec servo-hydraulic testing machine, illustrated in Figure 4.5, was used 

for the long term tension tests. A feature of its control system allowed the appli

cation of sustained loads. The specimen was loaded through the reinforcing steel, 

at increments of 1 kN, until a crack formed. It was envisaged that the load would 

then be maintained at this level for a period of approximately three months. The 

first specimen, however, failed after just two days. The second test was halted 

after 81 days, due to failure of the Dartec test rig. 
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The load value and the strain readings were initially recorded at two-hourly 

intervals. In the second specimen these intervals were lengthened as the test 

progressed, until the data was scanned on a daily basis. The Demec readings were 

taken twice a week. 

4.3.3 Short term compression tests 

The compression tests were carried out in a modified, and strengthened, ver

sion of the short term tension rig (Figure 4.7). To obtain an exact reversal of 

the tension situation would have necessitated the application of loads through the 

reinforcing bars. This would have limited the loads in specimens reinforced by 

12 mm rods to approximately 70 kN, before the onset of yield in the steel. Con

sequently the first two specimens in this series, whilst being nominally the same, 

were subjected to different loading arrangements. It was demonstrated that loads 

of up to 300 kN could be applied through the concrete, and that the strain dis

tribution in the lapped region was similar in these two specimens, irrespective of 

the loading mechanism (see §7.2.1). This method of loading the specimens was 

adopted, with spherical seatings again being provided at the loading points. 

Strain and load measurements were taken at 5 kN increments. The Demec 

readings were taken every 15 kN, until 75 kN when a safety cage was placed 

around the specimen. The loading was halted at 300 kN, this being the capacity 

of the hydraulic jack, and each test was completed within a few hours. 
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CHAPTER 5 

DATA ACQUISITION AND ANALYSIS 

5.1 Data Acquisition 
c 

The numerous readings taken in the course of a test were recorded by a com-

puter controlled data collection system. This consisted of an Intercole Spectra-ms 

data logger linked to a Cifer microcomputer. The system is illustrated in Figure 

5.1. 

The logger was constructed in modular form, with separate modules existing for 

the microprocessor unit, the analogue to digital converter and the instrumentation 

amplifier. A further thirteen modules were available for the input wiring, allowing 

up to 208 channels of data to be scanned. 

Reed relay scanners were used to switch sequentially between the input chan

nels, with the input signal being measured by the instrumentation amplifier and 

the associated analogue to digital converter (ADC). The high speed at which the 

ADC operated enabled a digital integration of the data, which was of value when 

rejecting spurious signals. Numerous values of a contaminated signal were sampled 

over a period of 20 milliseconds. These values were then digitised and integrated, 

and since, over this period, the integral of a 50 Hz sinusoidal signal is zero, mains 

interference was effectively eliminated. 

The integration period influenced the scanning speed which, at 8 channels/ 

second, was low but adequate for the quasi-static conditions prevailing during the 

tests. This did, however, permit a sensitivity of ±1 microstrain for the data logger. 

The accuracy of the sytem was maintained by its twin constant current energising 

circuits which, combined with the three lead wire system, enabled the measured 

voltages to be independent of the resistance of the lead wires. The readings from 

the entire strain gauge installation were accurate to better than ±5 microstrain. 

It would have been possible to instruct the data logger from a standard key

board, via an RS232 link. However, greater flexibility could be achieved by the 

use of a supervising microcomputer, in this case a Cifer 2684. 

A port which was connected directly to the keyboard was available on the 

computer. This enabled simultaneous output from the keyboard to the data logger, 

the VDU screen and the interfacing software. The logger would only respond 

to commands commencing with ';', and so it was possible to communicate with 
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the computer without activating the logger. The software made use of this, and 

commands intended specifically for the computer began with a'*'· 

The interfacing program was developed as a series of FORTRAN subroutines. 

It enhanced communications with the data logger, with both the input and output 

becoming more comprehensible. More importantly, it introduced sophisticated file 

handling procedures, which were of particular value during the long term tests. A 

detailed description of this software has been published by its author (56). 

The test data was initially stored on a 5t inch floppy disk, using the Cifer's 

external disk drive. Following the completion of the test the data was transferred 

to a Perkin-Elmer 3230 minicomputer, using file transfer programs available within 

the University. The considerable power of this machine was thus available for the 

subsequent analysis of the results. 

5.2 Data Analysis Program 

5.2.1 General 

It was clear that computer programs were required to analyse the several thou

sand readings taken during each test. Two programs were written, in FORTRAN, 

to deal with the test results. 

The first program reorganised the original data, and put it into a form suitable 

for further computation. Surplus readings were omitted, and the strain data was 

modified by removal of any zero error. 'It was possible to use this program to 

output the strain values to the screen or the printer, but its main role was to build 

a data file which contained all the parameters required for subsequent analysis. 

These included all the specimen dimensions; thus one of its requirements was that 

it should determine the cross-sectional area of the rod (see §5.2.2). 

The second program undertook the preliminary analysis of the test data. It 

dealt primarily with the curve smoothing procedures, and the determination of 

the bond and concrete stresses, using techniques described in later sections of this 

chapter. These values were output either individually or in pairs (for instance 

bond/rod stresses), to the screen or to the printer. If graphic routines and curve 

fitting procedures were required for further analysis then the results could be 

output to another data file. 
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5.2.2 Determination of rod cross-sectional area 

It was necessary to determine the rod cross-sectional area which, due to man

ufacturing tolerances, deviated from its nominal value of 88 and 289 mr: for the 

12 and 20 mm rods respectively. On completion of the strain cycling procedure 

the rod was loaded incrementally, taking the steel strains to approximately 500 

microstrain, well within the elastic limit (see §3.1.1). The rod was then unloaded, 

using the same increments. The strain values at each load stage were recorded. 

The computer program used the method of least squares to fit a line to the 

stress/strain curve. A value for the Young's modulus of the rod was determined, 

using the nominal cross-sectional area, for both the loading and the unloading 

cases. The actual cross-sectional area was calculated by comparing the average 

of these two values with the Young's modulus of Torbar, which was determined 

experimentally to be 207 kN /mm2• The influence of the epoxy resin was neglected 

as its Young's modulus was, at 2.7 kN/mm2, two orders of magnitude below that 

of the steel. 

It was possible to carry out the same operation for individual gauges to evaluate 

the area at each gauged point along the rod. The coefficient of variation t of the 

area along the bar was typically under 5%, and reached a maximum of 10% in one 

bar. Although it was useful to be able to note the changes in the rod area, the 

additional complication introduced if these variations were incorporated into the 

computation was not justified. The average cross-sectional area for the rod was 

therefore used in the subsequent programs. 

5.2.3 Curve smoothing procedure 

All the specimens exhibited the presence of bending, characterised by higher 

strains on one half of the rod than the other. An attempt was made to reduce 

the influence of bending upon the strain distribution by using a curve smoothing 

procedure. 

A simple averaging technique was tried first, using the following equation to 

A measure of relative variation, defined as the standard deviation divided by the mean, and 
expressed here as a percentage. 
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smooth the distribution: 

1 ( (xn- Xn-1) ( En+1 - En-1)) 
Eave = -2 X En+ En-1 + ( ) 

Xn+1- Xn-1 
(5.1) 

where: 

Eave Average reinforcement strain. 

E Reinforcement strain, at positions 'n', 'n+1' and 'n-1'. 

x Distance along specimen, at positions 'n', 'n+1' and 'n-1'. 

This worked reasonably well, but suffered from the disadvantage that it was not 

possible to obtain an averaged value for the points to either side of a faulty gauge. 

Thus, for every defective gauge three averaged results would be lost. However, 

this technique proved to be a useful yard§tick by which to judge other procedures. 

The first trials were carried out using a single low-degree polynomial. Unfor

tunately, this method proved to be unreliable, with the fitted curve occasionally 

oscillating between the data points. Consequently, attention was focussed upon 

the cubic spline technique. This held considerable promise of success; cubic splines 

are capable of approximating a wider variety of curves than a single polynomial, 

and are quicker to evaluate (57). 

In this approximation the raw strain distribution was divided into a number 

of regions with common end-points, called knots, and then a cubic polynomial 

was fitted to the readings between each pair of knots. By keeping the first and 

second derivatives consistent at each knot, the individual curves could be joined, 

resulting in a single, continuous curve being fitted to the entire distribution. The 

algorithms required to apply this technique were available in the NAG subroutine 

library (58). It was found helpful to have the strain readings displayed graphically 

on the screen as the knot positions were defined. The user was thus able to check 

that each curve was acceptable before proceeding further. 

A typical result from the application of this technique is shown in Figure 5.2, 

which illustrates both the curve fitted through the raw data and the 'averaged' 

strains determined using equation 5.1. The positions of the user-defined knots 

are also shown (these exclude the knots automatically placed at the ends of the 

distribution within the NAG subroutine). In general, a single knot was placed 

where clear changes in the gradient of the original strain distribution existed, 

typically near the peaks and the troughs. The precise positioning of the knot was 

not critical and, for convenience, the knot was situated mid-way between adjacent 

gauges. On occasion, two knots, placed between separate, but neighbouring, pairs 

of gauges, were required to improve the fitted curve. Different knot positions 

could have been defined at each load stage, but in this work the knot positions 
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were generally maintained until the form of the curve changed. Although the 

above is a guideline to the positioning of the knots, the rules were not applied 

dogmatically, each case being judged on its own merits. 

A comparison of the cubic spline procedure with the averaging technique de

scribed earlier (equation 5.1) showed that values obtained by the two methods 

were similar, generally differing by under 10% (Figure 5.2). The spline technique 

required greater effort on the part of the operator, but enabled interpolation be

tween the strain gauged points, which was useful when strains at an ungauged 

position were required (for instance, in the evaluation of concrete stresses, §5.2.5). 

It also determined the first and second derivatives of the curve which permitted 

the bond stresses to be calculated. 

5.2.4 Determination of bond stresses 

In order to satisfy equilibrium conditions, a change in force along the reinforcing 

bar must be balanced by a corresponding bond force at the steel/ concrete interface. 

Consideration of this condition leads to the following equation for bond stress: 

where: 

!bs Bond stress. 

dT 
fbs = -

udx 

u Perimeter of steel reinforcement. 

dT Change in force over length dx of rod. 

(5.2) 

As long as the steel behaves elastically, the change in force may be considered 

in terms of a change in strain. Equation 5.2 may be re-written to give: 

fbs = Es As X de 
u dx 

(5.3) 

where: 

Es Modulus of elasticity of steel reinforcement. 

As Area of steel reinforcement. 

;~ Strain gradient. 

Thus, to obtain a value for the bond stress along the specimen it was necessary 

to determine the gradient of the strain distribution. It should be noted that 

equation 5.3 gives an average value of bond stress around the perimeter of the 

rod. The exact nature of the force system around a lap joint has not been resolved, 

although a variety of proposals have been put forward (see §2.3), and it was decided 

that an average value was satisfactory. 
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It was clear from the plots of the strain values along the specimen that there 

existed regions along which the strain could be seen to be varying linearly (Figure 

5.2). The first technique used for the calculation of bond stresses relied on the 

visual identification of the end points of zones of approximately constant stress. 

A linear regression procedure was applied to the strain data from within these 

regions, and an average bond stress calculated. This method was extremely time 

consuming, with the result that the calculations were only carried out for a limited 

number of load stages. It was therefore possible that some valuable data was 

being neglected, and consequently an alternative, more time-effective, technique 

was sought. 

The determination of strain gradients formed an integral part of the cubic spline 

curve fitting procedure, which enabled the easy evaluation of the bond stress at 

any point along the steel. However, the results indicated variations in the bond 

stress distribution where, previously, a constant bond stress had been assumed. 

There was concern that the apparent variation in bond stress was a feature of the 

curve smoothing procedure; as cubic polynomials were being fitted to the data the 

first derivative of the curve was constantly varying. To overcome this, a method 

of establishing regions of linearity was developed. 

Regions of constant bond stress were delimited by considering the second 

derivative of the spline function, which is related to the rate of change of the 

strain gradient. The value below which this derivative had to lie varied according 

to the maximum strain in the rod, and was defined so that the end-points chosen 

by the computer program were comparable to those obtained by eye. If the length 

of the zone exceeded 10 mm then the bond stresses therein were averaged. The 

computed regions of linearity have been included in the strain distribution plotted 

in Figure 5.2, from which it may be seen that the delineation procedure tended to 

err slightly on the side of pessimism. 

Another potential problem arising from the cubic spline procedure was that 

the calculated value of the peak bond stress could be curve fit dependent, because 

the gradient was being determined for single points along the distribution. In the 

region of the peak bond stress, the strain gradient tended to be varying sufficiently 

to remain unaffected by the delineation procedure outlined above. It was believed 

that greater confidence could be felt in the value of the peak bond stress if it 

could be established that this value was consistent over a length of rod. A suitable 

length was considered to be one gauge spacing, which lay within the range of half 

to three times the bar diameter over which, according to previous researchers (ll), 

plastic behaviour of the concrete could serve to equalise the peak bond stresses. 

The mean of the two highest values of bond stress at adjacent gauges was thus 
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taken to represent the peak bond stress. Although it is acknowledged that this 

figure will be slightly lower than the true peak, greater confidence was placed in 

a value which was representative of the situation between adjacent strain gauges 

than one determined for a single point on the distribution. 

The absence of strain concentration gauges in the earliest specimens created 

difficulties when trying to assess the bond stress at the tip of the tension laps. 

The strain measurements clearly showed the strain distribution tending to zero 

at the free end of the bar, and the results from the strain concentration gauges 

showed the distribution over the last 10 mm of the rod to be reasonably linear, 

particularly at higher loads. The bond stress was calculated by assuming a linear 

variation in strains from the value measured 10 mm from the lap end to zero at the 

tip of the lap. The values thus obtained compared favourably with the mean of the 

concentration gauge results. In order to standardise the bond stress calculations, 

this method of determining the bond stress at the lap end was adopted for all the 

speCimens. 

It is clearly apparent that the bond stress calculations involved more than a 

conversion of the first derivative of fitted curve into a figure for bond stress. The 

additional procedures outlined above were developed as a precautionary measure 

against the data being unduly curve fit dependent. The development of a computer 

based technique for the evaluation of bond stress enabled the processing of all the 

strain measurements, and thus made more information available than there may 

have otherwise been. 

5.2.5 Determination of concrete stresses 

The average concrete stress across a section was determined by equating the 

internal forces (those in the steel and in the concrete) to the external forces. 

While the steel was behaving elastically the force in the bar was proportional 

to strain and the force in each lapped rod could be evaluated from the averaged 

strains. The cubic spline procedure enabled the interpolation of the steel strain 

distribution, which was of value when estimating the force in the ungauged part 

of the rod. Such an estimation was necessary within the lap joint when the gauges 

were not directly opposite each other. 

In the two tension series the external forces were determined from the mean of 

the strains read by the external gauges. The applied load, as measured by the load 

cell, was used for the compression series as these specimens did not have external 

gauges. 
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The internal and external forces were balanced to give the average concrete 

force at a section. The concrete stress was thus calculated at each gauge position 

for all load stages. A warning was output next to the concrete stress value if the 

steel strain exceeded 1500 microstrain. 

5.2.6 Determination of slip 

Once the strain distribution along the reinforcement has been established, it is 

possible to estimate the slip between the steel bar and the concrete. The slip is the 

difference between the steel and concrete displacements over a given length, and the 

displacements may be calculated by integrating the respective strain distributions. 

Thus, for the length a - b, the slip at point 'b' may be determined from the 

following equation: 

(5.4) 

where: 

Llb Desired value of slip at point 'b'. 

Lla Known value of slip at point 'a'. 

As no measurements of slip were taken, point 'a' was always positioned at a 

trough in the steel strain distribution, where zero slip was assumed. The integrals 

of the strain distributions were determined numerically using the trapezoidal rule. 

The value of the reinforcement strain at the gauge position was obtained from 

the measurements. The concrete strain was estimated by assuming a typical 

Young's modulus of 27.6 kN/mm2 for the concrete, and thus converting the av

erage stress across the section into strain. Errors in the estimation of this strain 

were insignificant when calculating the slip near a crack, where the steel strains 

were much higher than the concrete strains. At the lap end, however, where the 

two strains were often very similar, the influence of the concrete strain was more 

significant. 

From the outset the calculations seemed fraught with danger, especially as 

to determine the slip at the lap end it was necessary to use the Demec results 

to estimate the displacement of the concrete across a crack. Consequently, the 

procedure was not incorporated in the main data analysis program, instead being 

carried out by hand on selected groups of data. 
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CHAPTER 6 

TENSION TEST RESULTS AND DISCUSSION 

6.1 Tension Test Results 

The test measurements clearly showed the distribution of strains along the 

lapped reinforcing bars. It was apparent from these results that some bending was 

present in the specimen. This was characterised by the strains in one half of the 

rod being slightly greater than the other,. Although the bending may have influ

enced the cracking pattern, its effect on the strain distribution was less significant, 

particularly within the stiffer section of the lap. As the strain distributions were 

of prime interest in this work, the curve smoothing procedure described in section 

5.2.3 was employed. Henceforth, it is implicit that any strains referred to have 

been subjected to this procedure. 

The steel strain distributions for each of the fifteen tension specimens are plot

ted in Figures 6.1.1 - 6.1.15. In general, the plots show the strains measured 

immediately following crack formation, and at the higher load stages. In the case 

of the two long term specimens, in which the load was maintained at a constant 

level, the plots show the variation in the reinforcement strains over a period of 

time. 

The manner in which the strains peaked at a crack, where the reinforcement 

carried the entire load, was evident. The situation around a single crack has been 

highlighted in Figure 6.2 in order to describe the relationship between the rein

forcement, concrete and bond stresses. It is clear that the concrete stress was 

negligible at the crack. To either side of this position, the concrete carried an 

increasing share of the load, reaching a maximum stress at the position which 

corresponded with the trough in the steel stress distribution. In the early stages 

of the test the steel and concrete strains would have been comparable at this po

sition, the bond between the two materials remaining unimpaired. Bond stresses 

were associated with the strain gradient set up on each side of the crack in the 

reinforcement. The steel strain distributions here were often linear, thus demon

strating the existence of zones of constant bond stress. Gross bond breakdown in 

the immediate vicinity of the crack resulted in negligible bond stresses, and caused 

the peak bond stress to be found a small distance away from the crack. 

The magnitude of the peak steel strain at a crack was dependent on the rein

forcement percentage. In those specimens reinforced by bars of similar diameter 

the peak strains at cracks outside the lap were therefore of similar magnitude. This 
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often resulted in the strain distribution being almost symmetrical about the centre 

of the specimen. In the mixed laps, different values of peak strain were associated 

with each rod, the values being dependent on the size of the reinforcement. The 

increased reinforcement area within the lap joint resulted in smaller peaks in this 

region, with the value of these peaks also being dependent on the position of the 

crack. In general, the steel strains in each half of the lap joint were lower in the 

terminating rod. This was particularly noticeable at the highest load stages. 

Negligible strain exists at the free end of a reinforcing bar in a tension lap joint. 

This was corroborated by the test measurements which clearly showed the strain 

distribution tending to zero at this point. This resulted in steep strain gradients 

being developed at the lap end, particularly if a crack formed just inside the lap 

region, as in specimen 750T12/12 Rod A. The nature ofthe distribution at the lap 

end depended, to a large extent, on the proximity of the neighbouring crack, and 

on the value of the reinforcement strain at this crack. A steeper gradient would 

therefore be expected for the smaller size reinforcement, in which the peak strains 

were higher. This was confirmed by the results from the tests on mixed laps. If no 

cracks developed near the lap ends, the distribution here could remain virtually 

unchanged as the applied load was increased. Such behaviour was measured by 

the concentration gauges in specimen 500T12/20. 

The measurements taken in the early specimens indicated a particularly sharp 

fall in the strains at the ends of the rods before crack formation. Strain concen

tration gauges were installed at the tip of the lap to investigate this effect, with 

a typical result being shown in Figure 6.3. Before cracking, the measurements 

demonstrated that the force was being transferred from one bar to the other over 

a remarkably short length of steel. 

The development of transverse cracks along the specimen considerably mod

ified the steel strain distribution. Before these cracks appeared the steel strains 

were constant along much of the specimen, as may be seen from the three typical 

precrack strain distributions illustrated in Figure 6.4. The form of this distribution 

was consistent for all the specimens, irrespective of lap length or bar diameter. 

It is clear from Figure 6.4 that the strain gradient, and hence the bond stress, 

was negligible over much of the specimen prior to crack formation. Breakdown in 

the bond between the steel and concrete was only observed at the specimen ends, 

where the reinforcement entered the concrete, and at the ends of the lap joint. 

The variation in the reinforcement percentage along the specimen resulted in 

a higher steel strain level outside the lap joint. Consequently, the first crack in 

each specimen generally formed out of the lap. On the two occasions when the 
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initial crack formed well within the lap joint, it was attributed to the crack being 

induced by tie-wire (500T20/20), or by an embedment gauge (250T20/20(E)). 

Development of microcracks within the concrete was associated with the ob

served breakdown in bond at the specimen ends. Consequently, the earliest crack 

often originated at the end of the debond zone, where high, localised, tensile 

stresses coincided with a weakened section. This was consistent with the findings 

of lllston and Stevens (59), who carried out tension tests on axial specimens. How

ever, the first crack in specimens subjected to four point loading typically develops 

at the ends of the lap joint, due to the discontinuity in specimen stiffness (I7,25). 

Such behaviour was not observed in the specimens tested here, with it being com

mon for the lap ends to remain uncracked until late in the tests. This may be a 

consequence of using an axial rather than a four-point loading system. 

In general, the cracks initially opened on just three faces of the specimen, 

putting the fourth into compression. In the specimens comprising a pair of 12 mm 

rods, the cracks were dominant on the A and C faces of the concrete (see Figure 

4.1 ). Although the Demec measurements showed the effect of bending to be most 

pronounced on these two faces, the data was insufficient to correlate the crack 

pattern with the bending. However, the greater number of cracks in those speci

mens reinforced by a pair of 20 mm bars enabled such a comparison to be made, 

with the magnitude and distribution of the bending forces being assessed from the 

Demec results. A consistent pattern to the cracking was only observed out of the 

lap joint. No trend was apparent inside the lap where, despite the differences in 

cover, the cracks initiated on any one of the four faces. 

In the early stages of the test the cracks generally dominated face A at the top 

of the specimen, and face C at the base. This was consistent with the distribution 

of the bending forces, which were initially greatest near the ends of the specimen 

due to the couples set up by curving the rods beyond the specimen ends (this 

enabled the load to be applied colinearly, see §4.3.1). The effect was less evident 

in specimens reinforced by 20 mm rods, in which the increased stiffness of the 

steel section required the offsetting of the hydraulic jack. The realignment of the 

specimen after the formation of cracks reduced the curvature of the rod outside 

the concrete, thus relieving the associated bending moment. 

Many of the cracks (78%) which followed this pattern reversed at some later 

stage in the test, thus opening on face C above the lap and face A below it. This 

was attributed to the effect of the couples induced in the specimen by the offset of 

the overlapped bars becoming more apparent. One failure characteristic was the 
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visible widening of cracks at the lap ends; since these were on opposite faces the 

specimen tended to hinge at these points. 

The majority of the cracks formed within the load range 10- 30 kN, with it not 

being unusual for several cracks to appear at the same load. Details of the applied 

load and steel strains at crack formation are given in Figure 6.5. The value of the 

strain subsequent to cracking is included in this table to illustrate the extent of 

the change in strains. At times, in the case of the 12 mm rods outside the lap, 

the steel yielded as soon as cracks formed. It may also be seen that the two sizes 

of reinforcing bar behaved differently, with more cracks and lower strains being 

observed for the 20 mm rods. 

The load in the short term tests was applied manually, and therefore crack 

formation was generally associated with a reduction in load. The frequent absence 

of such a fall was one manifestation of the gentle nature by which cracks formed in 

specimens reinforced by 20 mm rods. It appeared that these cracks were not open

ing fully until later in the test, when they often propagated around the specimen. 

A substantial rise in strains was noted as this occurred. 

The reinforcement strain at crack formation typically lay between 40 and 

175 microstrain (Figure 6.5). The lowest values of strains were often associated 

with some form of crack inducement, such as links or embedment gauges. Com

patibility of the strains across the specimen in the early stages of the test would 

result in similar strains being found in the concrete. Neville (41 ) has commented 

that a concrete strain ranging from 100 to 200 microstrain generally results in 

cracking. A favourable comparison between this and the measured range may be 

made if the effect of bending is taken into account. This would result in the peak 

strain across the section being higher than was measured by the gauges in the 

reinforcement. 

Some specimens developed cracks at much higher strains. Whereas a consistent 

pattern had been observed for the earlier cracks, the high strain cracks seemed to 

be specimen dependent. Many of the late cracks developed at the ends of the 

lap joint. These were probably a consequence of the bending forces set up in the 

specimen by existing cracks and by couples induced by the offset in the overlapping 

bars. Two of the high strain cracks may have been akin to Goto's (60) secondary 

cracks, which were the result of internal cracks reaching the surface. This type of 

behaviour was similar to that noted by Scott and Gill (54) in their tests on axial 

specimens. 
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The mean value of the strain at crack formation differed slightly for the two bar 

sizes. Excluding those cracks which developed at strains in excess of 175 micros

train, the average values for the 12 and 20 mm rods were 120 and 91 microstrain, 

with a standard deviation of 14 and 28 microstrain respectively. The overall mean 

of 97.6 microstrain agrees with the figure of 99.1 microstrain obtained by Scott (61) 

from tests on specimens reinforced by a single rod. In spite of a considerable range 

of results, particularly in the case of the 20 mm reinforcement, the strains at crack 

formation inside and outside the lap were similar, with overall averages of 95.0 

and 99.5 microstrain respectively. 

The concrete stress associated with these values of steel strain varied consid

erably, depending on the reinforcement percentage at the cracked section. Thus, 

whilst successive cracks generally formed at increasing values of steel strain, the 

value of concrete stress at crack formation could fall. The results agreed with 

Neville's (41 ) comment that it is a limiting tensile strain, rather than tensile stress, 

that determines the strength of concrete under static loading. 

Longitudinal splitting cracks developed in some of the specimens at higher load 

stages. These cracks were associated with high bond stresses, their presence being 

a clear sign of bond distress. The cracks tended to be found at peaks in the bond 

stress distribution, either at the lap end or adjacent to a transverse crack. 

Longitudinal cracks occasionally formed outside the lap, with these cracks be

ing peculiar to those specimens reinforced by 20 mm rods. The cracks extended 

to a maximum length of approximately 60 mm by the highest load stage. It was 

interesting to note that these splitting cracks generally formed on the B and D 

faces (Figure 4.1), and therefore not on the face with the least cover. Longitudinal 

cracking resulted in a flattening of the reinforcement strains at the crack position. 

This indicated a greater length of gross bond deterioration adjacent to the trans

verse crack. Although the immediate consequence of splitting was a slight fall in 

the bond stress, as further load was applied the peak bond stress continued to rise. 

Splitting cracks are generally associated with deformed reinforcement (ll). It 

was therefore intriguing to note the development of longitudinal cracks, near a 

transverse crack, over the plain mild steel corner bars which were used to locate the 

links in specimen 250T20/20(L). The splitting only occurred at one location, out of 

the strain gauged zone. This may have been a feature of the small (12 mm) cover 

above these bars. Alternatively, the bars may have created a plane of weakness 

along which splitting cracks associated with the 20 mm reinforcement chose to 

develop. 
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The development of a longitudinal crack at the end of the lap (rod B, specimen 

750T20/20) had a marked effect on the strain distribution, as may be seen in 

Figure 6.6. Splitting extended over a length of approximately 70 mm, between 

two transverse cracks, on face A of the concrete, the face with minimum cover 

and the nearest to the bar with the high,er bond stress. The crack resulted in an 

increased linearity of the strains, and a sudden fall in the bond stresses at the 

lap end. Thereafter, in spite of an increase in the applied load, the bond stresses 

remained stable. 

Although the formation of longitudinal cracks did not always result in failure of 

the specimen, failure was always associated with the rapid propagation of splitting 

over the lap length on the A and C faces of the concrete. On one occasion, 

a specimen (250T20/20(E)) failed whilst the strain gauges were being scanned. 

Successive gauges showed typical pre- and post-failure values. This demonstrated 

that failure occurred in less than t th second, the time taken to record two strain 

readings. The explosive nature of failure resulted in substantial pieces of concrete 

being thrown from the specimen, although the presence of secondary reinforcement 

helped to contain this spalling. Photographs ofthe failed specimens (Figures 6.7.1 

- 6. 7.3) illustrate the longitudinal cracks. It is clear from these photographs that 

failure was confined to a region delimited by the transverse cracks at the lap ends. 

The ultimate strain distribution over the lap length has been plotted in Figures 

6.8.1 - 6.8.6. These diagrams include the results from specimen 250T12/20(A) 

which, although it did not fail, was believed to have been loaded to near capacity. 

On occasion failure coincided with the development of transverse cracks at the 

lap ends, and the final strain distribution was not recorded. Unfortunately, this 

occurred with the three specimens comprising bars of 12 mm diameter which failed, 

and thus no detailed information regarding ultimate strains was available for these 

tests. 

It was clear from the strain measurements that the distribution over the lap 

length became increasingly linear as failure was approached. This was partly due 

to the dominating effects of the cracks at the lap ends. It was intriguing that cracks 

which had formed within the lap length had such little effect at high loads. The 

results suggested that bond stresses were being carried across the cracks within 

the lap, which would seem unlikely. It is more probable that, due to the severe 

bond breakdown adjacent to each crack, ,the reinforcement was unaffected by the 

concrete. The distribution would therefore be defined by the different levels of 

steel strain found to either side of the crack, rather than by the bond stresses. 
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The overall impression of the ultimate strain distributions was one of linearity 

(Figures 6.8.1 - 6.8.6). Such behaviour was consistent with the findings of previous 

researchers {1l). It should, however, be noted that the detail provided by these 

measurements showed that variations in the strain gradient still existed at failure. 

This will be discussed further in section 6.3.2. 

The capacities of the lap joints in the specimens were compared to values 

predicted using equations developed by Orangun, Jirsa and Breen (30) (equation 

2.2) and by Reynolds (31) (equation 2.6). The former has been put forward for the 

American Concrete Institute design recommendations. The latter has been used 

as the basis for the most recent British Standard (BS8110:1985) (46). 

A comparison of measured and predicted ultimate loads has been made in Fig

ure 6.9. The test results were generally lower than anticipated, due, in part, to 

the effect of crack-induced bending on the reinforcement strains. The true force 

carried by the steel was higher than was indicated by the applied load. This, com

bined with the varying capacities of specimens of nominally the same dimensions, 

made comparison difficult. However, some trends were clearly apparent. 

The specimens which failed did not meet the requirements of BS8110, with the 

20 mm rods not even being able to develop their yield stress. From the standpoint 

of ductility, not one of the lap lengths used here was satisfactory as failure was 

invariably both sudden and violent. The longer laps were able to carry a greater 

load, with the longest (750 mm) laps showing an ability to sustain a splitting crack 

within the lap length. The strength of a lap is often, usually implicitly, considered 

to be proportional to its length. This was not indicated by these results, and only 

the proposals for the American code (30) reflect such behaviour. However, making 

allowance for such non-proportionality renders equation 2.2 susceptible to errors, 

as it implies that a zero lap length can transfer force. 

These tests clearly demonstrated that lap joints comprising a pair of 12 mm 

diameter bars failed at a lower load. The change in the cover /bar diameter ratio 

of the specimens resulted in Reynolds predicting the capacity of the 12 mm laps 

to be slightly higher than the 20 mm lapped bars. This was not borne out by the 

measured maximum loads. A lower ultimate bond stress was observed in the larger 

rods, which may have been due to the slight decrease in cover. The failure load of 

the mixed laps showed the smaller of the lapped bars to be the more relevant. 

The values of ultimate load over-emphasise the benefits to be gained from using 

secondary reinforcement. Much of the apparent 45% increase in capacity may be 

attributed to the additional 40% in steel area provided by the mild steel corner 

bars which held the links in position. The assistance of these rods in carrying load 
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across transverse cracks resulted in a high maximum load. However, the ultimate 

bond stress was comparable to specimens without links. The British code, in 

agreement with numerous researchers (ll), suggests a more marked improvement. 

It would, however, be foolhardy to even attempt to draw conclusions on the basis 

of this single result. 

It is common for the value of the failure load to be based on a figure for ultimate 

bond stress. A comparison of the average bond stress along the lap joint at failure 

with the design proposals put forward by Orangun, Jirsa and Breen (30) and by 

Reynolds (31 ) was also undertaken. This will be discussed in section 6.3.2. 

6.2 Steel Strain Distribution 

6.2.1 Precrack strain distribution 

In the early stages of the test, before cracks formed, two regions of constant 

strain generally existed in each rod, one inside and one, at a slightly higher level, 

outside the lap joint. Although the presence of links, or embedment gauges, in 

the specimen often created small, localised peaks in the distribution, the overall 

pattern remained unchanged. 

The regions of constant strain were delimited by considering the rate of change 

of the strain gradient, a similar technique to that used to define zones of constant 

bond stress (see §5.2.4). The strain readings were averaged over a length in which 

the second derivative of the spline function remained below 0.01. This figure was 

chosen so that the lengths defined by the computer were similar to those previously 

defined visually. An average value for the reinforcement strain inside and outside 

the lap joint was thus determined for every rod. The difference between these 

two values was most pronounced at high precrack loads, and for larger bars. This 

suggested that the change in levels might be attributed to the variation in the 

reinforcement percentage along the specimen. 

In order to examine the influence of the change in steel area along the specimen, 

an equation for estimating the reinforcement strains was developed. Balancing the 

applied force with the stresses within the specimen gives: 

(6.1) 

Assuming a compatibility of strains across the section, and elastic behaviour, this 
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equation may be rearranged to give an expression for the steel strain: 

F0 (mp) 
€s=--

Es As (1 + mp) 
(6.2) 

where: 

Es Reinforcement strain. 

F0 Applied force. 

m Ratio of the elastic modulii ( ~: ). 

p Reinforcement percentage ( 1!" ). 
The assumption of strain compatibility was valid as long as the bond between 

the steel and the concrete remained unimpaired. Although the strains varied across 

the section, due to bending in the specimen, the average value determined by the 

Demec gauge was similar to that measured in the reinforcement. This may be seen 

in Figure 6.10, in which the average reinforcement and concrete strains along the 

specimens are compared. A least squares analysis of the data showed the Demec 

readings to be slightly higher, with the equation of the line of best fit being: 

€cave = 1.04 €save + 6.0 (6.3) 

where: 

16.0 :=:; €save :=:; 91.0. 

These results confirmed that it was reasonable to assume equal steel and con

crete strains within the specimen at low loads. 

The modulus of elasticity of the concrete was not measured. The traditional 

figure taken in short term tests for the modular ratio ( m) is 7 .5, and this value 

was used in the calculations. Thus the assumed Young's modulus of the concrete 

(Ec) was 27.6 kN/mm2• The mean value of Ec quoted in BS8110:pt.2:1985 (7) 

(Table 7.2) for concretes with a characteristic compressive strength of 40 N/mm2 

is 28.0 kN /mm2 , with the typical range of results being ± 6.0 kN /mm2 about the 

mean. Such a range might result in a variation in the predicted strains of up 

to ± 20% about the mean, for specimens with nominal dimensions. However, it 

has a much smaller effect on the ratio of the strain levels in/out of the lap joint. 

The absolute variation about the mean of this ratio is below 0.02. The elastic 

modulus of concrete is partly dependent upon the modulus of the aggregate (4l). 

It is probable that as the same aggregate was used throughout the test series, the 

range of Ec in these specimens, and the subsequent effect on the predicted strains, 

was considerably smaller than the previous figures suggest. 

The theoretical and measured reinforcement strains were initially compared 

on the basis of the ratio of the mean strain inside/outside the lap joint. The 
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breakdown in bond at the ends of the specimen meant that, on occasion, there 

was too short a length to average the strains out of the lap region with confidence. 

This resulted in the values from the two 750 mm laps (750T12/12 and 750T20/20) 

and from rod Bin the first of the long term specimens (125D12/12) being excluded 

from the comparison. 

The theoretical ratio of strains in/out of the lap, for specimens with nominal 

dimensions, were 0.95 for a pair of 12 mm bars, 0.86 for 20 mm rods and either 

0.96 or 0.84 in a mixed lap. The predicted figure varied slightly, according to 

the true specimen dimensions. The measured ratio was generally within 5% of 

the prediction, and the difference between the two values did not exceed 11%. 

The measured value remained stable throughout the precrack load range, thus 

as the load increased the difference in the strain levels became more apparent. 

These results indicated that the reduction in steel strain within the lap region is 

a function of the change in the reinforcement percentage. 

A plot of the measured strains in the reinforcement against those derived using 

equation 6.2 is shown in Figure 6.11. The two values agreed until approximately 

40 microstrain. Beyond this figure the experimental reinforcement strains became 

increasingly greater than the predicted figure. The pattern was similar for the 

two bar sizes, and for the strains inside and outside the lap joint. An improved 

agreement between the two values was noted when a similar analysis was carried 

out using a lower value for the concrete's modulus of elasticity (taking Ec to be 

24.0 kN/mm2). Nevertheless, the tendency of the measurements to be greater 

than predicted at higher strain levels was maintained. Such an effect would be 

anticipated if microcracking occurred in the concrete, which implied a gradual 

breakdown in the applicability of equation 6.2. However, the results showed that 

a reasonable estimate of the strains in the reinforcement may be made on the basis 

of strain compatibility across the specimen. 

A sharp fall from the average strain level was observed at the lap ends, with the 

concentration gauge results confirming that zero strain existed at the free ends of 

the reinforcing bars (Figure 6.3). The detail provided by the strain measurements 

enabled the estimation of the length of the transition from zero to the average 

strain level. A value of zero strain was assumed at the lap end in order to be able 

to fit a curve, using a cubic spline approximation technique, over the entire end 

region, and thus gain maximum information from this exercise. 

The distance at which the rod carried a certain percentage of the average strain 

was derived from the fitted curve. At the lowest load stages, when dealing with 

strains of below 20 microstrain, there was a considerable scatter of results. At 
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the highest precrack load levels the development of localised peaks in the strain 

distribution, and the consequent variation in strains along the lap length, made 

it difficult to estimate the relevant distance. The results from the lowest and the 

highest precrack load levels were therefore atypical of the trend, and were excluded 

from the subsequent analysis. Small variations from the mean strain level also 

influenced the estimate of the distance to 90 and 100% this value, and consequently 

these figures have not been presented. The distance required to develop up to 

80% of the average strain within the lap could be confidently pin-pointed, with 

consistent results being obtained. A plot of some typical results (Figure 6.12) 

shows that this distance remained constant for a given rod, irrespective of the 

applied load. The bond stresses were therefore continually increasing at the lap 

end. No upper limit to this behaviour was observed within the precrack load range. 

The consistent nature of the results enabled the distances estimated at the 

different strain levels to be averaged. The results thus obtained were subsequently 

ignored if their standard deviation exceeded an arbitrary 5 mm. This occurred in 

two specimens in whicl1 localised strain peaks developed early in the test: the first, 

250T20/20(L) rod A, due to the presence of links and the second, 250T20/20(E) 

rod A, due to the disturbance caused by embedment gauges. The failure of a 

gauge at the tip of the lap in specimen 500T12/12, rod B, created difficulties for 

the curve fitting procedures, as did the encroachment of the debond zone into 

the lap end in specimen 750T12/12, rod A. The analysis of these two specimens 

also yielded atypical figures. The results from the remaining thirteen specimens 

(twenty-six bars) are plotted in Figure 6.13. 

Although some scatter was apparent, the general pattern was unaffected by 

lap length, the position of the rod, whether the end of the internal groove was 

closed or open, or by the diameter of the continuing rod. Thus a 12 or 20 mm 

rod in a mixed lap behaved similarly to its counterpart in a lap joint comprising 

bars of equal diameter. This suggested that the distance over which strains were 

developed was not related to the continuing rod. Curves fitted through the mean 

of the points for the 12 and 20 mm bars demonstrated that a greater length of bar 

was involved in force transfer in the larger rod. 

The ratio between the average value for the 12 and 20 mm bars varied slightly 

over the percentage range, but typically lay between 0.63 and 0.73t, with the 

average ratio being 0.67. The ratio of the bar diameters was 0.6, and the results 

demonstrated that the length over which force was tnmsferred was a function of bar 

A value of 0.9 and 0.78 was recorded at 10 and 20% of the average strain respectively. However, 
the distances involved here were so small that these ratios were unlikely to be representative. 
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diameter. It is not possible to be more specific as many of the bond characteristics 

of Torbar, such as bar perimeter, rib spacing and rib dimensions, are themselves 

a function of bar diameter (62). Both bar sizes developed 60% of the average 

strain within one bar diameter of the lap,end, and approximately 80% within two 

diameters. 

The curvature of the strain distribution at the ends of the lap joints in the 

transition from zero to the average strain level (Figure 6.13) corresponded to vari

ations in the bond stress. The concentration gauges showed the strain distribution 

to be sensibly linear over the last 10 mm of the reinforcing bars (Figure 6.3). On 

the basis ofthe average strain distributions plotted in Figure 6.13, maximum bond 

stresses of 3.4 and 2.6 N/mm2 were developed in the 12 and 20 mm rods respec

tively. 

6.2.2 Transverse cracks and postcrack strain distribution 

It has already been noted that plateaux of constant steel strain were found 

along the specimen before crack formation. The form of the concrete stress distri

bution was similar to that of the reinforcement strain, in that regions of constant 

stress existed to either side of the lap. The steel strain distributions shown in 

Figure 6.4 have been replotted in terms of concrete stress, Figure 6.14. A slight 

peak in the distribution was noted at the tip of the laps where, although there was 

a reduction in concrete area, most of the strain was being carried by a single rod. 

In those specimens reinforced by bars of differing diameter, the stress increased 

along the lap joint due to the larger value of concrete stress associated with the 

smaller bar. At the ends of the specimen, in the debonding zone, the concrete 

stresses were low. 

The initial cracks generally formed outside the lap joint, where both the steel 

and the concrete strains were higher. It was unusual for the first crack to appear 

at a lap end, in spite of the localised peak concrete stresses found here. 

In general, the cracks propagated very rapidly across the concrete section, 

resulting in a sudden jump in the strain levels at the crack position (Figure 6.5). 

On occasion, however, a slight peak developed in the reinforcement strains before 

the crack reached the surface of the con.crete. The effect is illustrated in Figure 

6.15. The growth of such a peak was suggestive of a crack developing within the 

specimen. There was no evidence from the rod area calculations that the peaks 

were due to a local reduction in reinforcement cross-sectional area. The presence of 

a localised peak could be attributed to any one, or a combination, of possibilities. 

The crack might be initiated at the bar smface due to localised flaws such as tie 
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wires or poor compaction. Alternatively, the crack could be caused by the linking 

of a system of microcracks at the aggregate/ cement interface or by irregularities 

within the specimen such as embedment gauges or links. A further consequence 

of the links would be a reduction in the concrete area, and therefore a higher 

localised concrete stress. The results from the specimens including links showed 

their crack inducing properties, with lower loads and strains being recorded at 

crack formation (Figure 6.5). 

The formation of transverse cracks considerably modified the steel strain dis

tribution. The strains peaked at a crack, where the reinforcement carried most of 

the load, and fell to either side of this position. Consequently, as cracks developed 

along the specimen, the zones of constant strain shortened, and the distribution 

became a succession of peaks and troughs (Figure 6.1.1- 6.1.15). The maximum 

values of concrete stress coincided with the troughs in the reinforcement strain 

distribution. Later cracks tended to form at these well defined positions. 

Successive cracks usually developed midway between existing cracks, provided 

the steel strains at the adjacent cracks were similar. This was the system of crack 

formation suggested by Tepfers (Sl). However, if the neighbouring cracks exhibited 

very different strains, for instance if one was inside and the other outside the lap, 

then the trough, and hence the next crack, tended to be formed away from the 

midpoints. 

Other influences, such as the discontinuity in the specimen at the lap ends, or 

the weaknesses in the section introduced by using embedment gauges or links, also 

served to define the crack positions. Specimens which included such crack inducers 

exhibited the greatest number of transverse cracks. The number of primary cracks 

observed in each specimen, and the associated crack spacings, are tabled in Figure 

6.16. 

According to Beeby (63), the mean crack spacing in axially reinforced tension 

members may be predicted by an equation of the form: 

where: 

Save 

Cmin 

Average crack spacing. 

Minimum cover. 

Diameter of steel reinforcement. 

Reinforcement percentage. 

Constants. 
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The first component of this equation reflects the distance required for the 

transition from zero concrete stress at a crack to the general level of stress. This 

is considered to be proportional to cover. The second component was concerned 

with the ratio of the concrete area under tensile stress to the bar perimeter. This 

assesses the contribution of the bond stress found to either side of a crack. The 

combination of these two effects served to explain the greater number of cracks, 

and the smaller crack spacing, observed in specimens reinforced by 20 mm rods. 

One implication of the equation was that a smaller crack spacing should be 

observed within the lap joint, because of the increased reinforcement percentage 

in this area. An average ratio of 0.8 (standard deviation 0.2) was calculated for 

the crack spacing inside/outside the lap. However, for the purpose of the crack 

spacing calculations the ends of the specimen were considered to be equivalent to 

cracks. It was generally the case that the greatest crack spacing was found here, 

in the initial debond zone, and this may have exacerbated the difference between 

crack spacing in and out of the lap. The true ratio may have been nearer unity. 

A considerable variation in the spacing of cracks within each specimen was 

noted, and figures for the maximum and minimum observed crack spacings are 

included in Figure 6.16. A commonly quoted value for the ratio between maximum 

and minimu~ spacing is 2.0 (60•64). A greater variability of crack spacing in axial 

specimens has been noted by Beeby (65). Thus, the mean ratio of 2.5 observed in 

these tests did not seem unduly high. 

As the reinforcement carried the entire load across the transverse cracks, the 

peak strains would be expected to correlate with those measured by the strain 

gauges out of the concrete. The value of load carried by the steel, as determined 

from the strain measurements, was generally between 10 and 30% higher than 

the applied load. This was mainly due to crack induced bending, but the slight 

variations in rod area may have exacerbated the effect. Typical relationships 

between the applied and the measured load at a crack are shown in Figure 6.17. 

The comparison was not attempted for steel strains of over 2500 microstrain, 

when gross yield of the reinforcement occurred. It may be seen that the ratio 

between these two loads remained stable as the test progressed and the applied 

load increased. 

It was interesting to note that in the 20 mm rods, in the case of those cracks 

which formed at low strains, the steel initially carried less than the applied load. 

This was consistent with the gentle nature of crack formation in these specimens, 

which suggested that the crack had not fully developed. At some higher load 

these cracks suddenly opened fully, often propagating around the entire specimen. 

54 



Thereafter, the characteristic pattern of a higher than anticipated stress in the 

steel emerged. 

Figure 6.17 also includes a similar comparison carried out for the troughs in 

the distribution. In this case, the ratio between the apparent load in the steel 

and the applied load rose as the test progressed. This culminated in the entire 

load apparently being carried by the reinforcement at the higher load levels. The 

implication was that as the load increased there was a corresponding reduction in 

the stress carried by the concrete, which might have been expected as microcracks 

formed. Similar behaviour was observed for both bar sizes. The situation was 

analagous to that described by Tepfers(Sl) for an infinite reinforcement percentage, 

in which the concrete acted as an adhesive, yet carried no tensile force. 

Changes in strain distribution along the specimen were noted when the load was 

maintained over a period of time. The effect was measured in all the specimens as 

the Demec readings were being taken, which took approximately fifteen minutes. 

Creep of the concrete led to a slight equalisation of the bond stresses between 

the cracks, and to a noticeable increase in the strain values at the troughs. Such 

behaviour is apparent in Figure 6.17. 

The long term tests were carried out to ascertain the influence of sustained 

loads on the strain distribution. Only one of these specimens (125D12/12(L)) 

provided information on the postcrack strains. The other was concerned with 

the precrack behaviour, and the only effect of time was the encroachment of the 

debond zone into the specimen. 

The change in the value of strains at the peaks and the troughs over a period 

of time is illustrated in Figure 6.18. It was clear that the greatest change occurred 

in the initial stages of the test, over approximately the first week. A rise in the 

strains throughout the specimen was noted, which may have been symptomatic of 

the cracks developing to their fullest extent. Thereafter the peak values remained 

relatively stable, with the sole exception being the sudden rise observed at one 

position after 43 days. This was due to the crack extending around the specimen, 

for no obvious reason. The troughs, however, continued to change, albeit at a 

slower rate. It was unfortunate that the failure of the Dartec rig precluded the 

continuation of this test. A problem of this test rig was the tendency of an electrical 

spike to activate the trips, resulting in total loss of load. This occurred on a number 

of occasions during the test. On reloading, the specimen re-adopted its previous 

strain distribution. However, tripping of the Dartec appeared to affect specimen 

behaviour, as the values of strain found at the troughs in the distribution often 

changed more rapidly for a few days after the specimen had been reloaded. 
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It was clear that in both the short- and the long-term specimens the differ

ence between the peaks and the troughs in the strain distribution became less 

pronounced as the tests progressed. It has already been commented that, as this 

occurred, the situation in the specimen became analogous to that described by 

Tepfers (51) for an infinite reinforcement percentage. The measured strain dis

tributions were therefore compared to those predicted using Tepfers' simplified 

equations (2.12- 2.14). The equations were produced for bars of similar diameter, 

and consequently no comparison could be made for the mixed laps. 

In order to determine an appropriate value for the modulus of displacement 

(Kd), an attempt was made to establish the bond stress/slip relationship for these 

specimens. The results from the calculations were disappointing, with the consid

erable scatter of the results making it difficult to fit a straight line with confidence. 

Kd was therefore chosen to be 100.0 N /mm3 , which lay in the centre of the range 

suggested by Tepfers. It may be seen from Figure 6.19, in which the bond stress/ 

slip relationship has been plotted, that such a value for J{d was not unreasonable. 

Typical results from the comparison of the predicted and the measured strain 

distributions are shown in Figure 6.20. 

At low loads Tepfers' equations overestimated the strains, as the contribution 

of the concrete in carrying tensile force was neglected. In general, the predicted 

and measured strains compared most favourably once a close crack spacing had 

developed, by which stage the concrete played a minor role. The assumption of an 

infinite reinforcement percentage resulted}n the absence of troughs in the predicted 

distribution but, according to Tepfers (51 ), this would result in a maximum error 

of 5%. The theory also makes no allowance for the severe bond breakdown found 

adjacent to the transverse cracks. 

Tepfers' analysis was based on a lap joint with cracks at both ends, and the 

predicted curves naturally compared better when this was the case. In those 

specimens which had few cracks within the lap length, or in which the strains in 

the continuing rod were unaffected by cracks at the lap ends, Tepfers' analysis did 

not apply. The influence of bending in the test specimens, which caused higher 

strains than predicted at the cracks, caused further discrepancies. The plots (Fig. 

6.20) compare the measured and analytical values for linked specimens, in which 

the peak strains were comparable to those anticipated on the basis of the applied 

load. It is clear from these diagrams that a close correlation existed between the 

theoretical and the actual distributions. 

In spite of its limitations as a means of precisely describing the strain distri

bution, Tepfers' analysis was able to describe the peak strains which might be 
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expected at the crack position in the individual rods. In the load range between 

the formation of transverse cracks and the development of longitudinal splitting 

cracks the equations provide a valuable means of estimating the strains along a 

lap joint. 

6.3 Bond Stresses 

6.3.1 Bond stress distribution 

It has already been noted that before crack formation the strain gradient, and 

hence bond stress, was negligible over much of the specimen. Bond stresses only 

existed at the ends of the specimen, where the steel bars entered the concrete, and 

at the tip of the lap joint, where the strains fell sharply to zero. The bond stress 

distribution became more pronounced as cracks developed in the specimen. 

The bond stresses on each side of a crack were usually of the same order, with 

their magnitude being significantly influenced by the value of the peak rod stress at 

the crack. This is apparent from Figure 6.21, which tables both the rod stress at the 

crack following its formation and the bond stresses observed to either side of this 

position. Bond stresses were not calculated for rod stresses exceeding 310 N /mm2 , 

above which the steel stress/strain relationship became non-linear. The italicised 

figures in the table refer to those cracks which were unduly influenced either by 

the lap end or by neighbouring cracks. The former resulted in an artificial rise in 

the bond stress, due to the strain having to decrease to zero at the free end of the 

bar and the lap end thus defining the length over which the bond stresses could 

act. The latter led to a reduction in the bond stresses, due to the deterioration of 

the concrete which existed in the proximity of previous cracks. 

A typical bond stress distribution around a crack was shown in Figure 6.2. 

There was a complete breakdown in bond at the crack position, and peak bond 

stresses were observed adjacent to the crack. A region of constant bond stress was 

apparent to either side of the crack, represented by the linear distribution of steel 

strains. On the few occasions when this region of constant bond stress crossed the 

end of the lap, a situation which could only occur in the continuing rod, the bond 

stress remained unchanged. The bond stress decreased as the trough in the steel 

strain distribution was approached. 

The peak bond stress was compared to the average value determined over the 

length from the peak to the trough in the steel strain distribution. The comparison 

was made for all the bond stresses listed in Figure 6.21. The results were therefore 

independent of crack position. A clear relationship between the peak and the 
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average bond stress emerged, this is illustrated in Figure 6.22. The coefficient 

of correlation between these two stresse.s was 0.98t. A least squares regression 

analysis of the data yielded the following equation: 

fbp = 1.5 fbave + 0.02 (6.5) 

where: 

0.5 :::; fbave :::; 4.6. 

!bp Peak bond stress adjacent to a crack. 

!have Average bond stress between peak and trough steel strains. 

The peak was therefore typically 50% greater than the average value, with the 

standard deviation from the line of best fit being 0.6 N /mm2 . The relationship 

was clearest at lower bond stresses, with the distribution tending away from the 

line represented by equation 6.5 at higher values of bond stress. 

It was noted in section 6.2.2 that the ratio between the steel strains at the 

troughs and the peaks in the distribution increased as the load was applied. As

suming that the distance between the peaks and the troughs remained constant, 

which was generally the case, then the following equations relate the average bond 

stress to the peak rod stress: 

fbs = As (fsp- fst) 
fsp u dx fsp 

Rearranging this equation gives: 

where: 

fsp 

fst 

I<pt 

fbs = Kpt (l _ fst) 
fsp fsp 

Peak reinforcement stress. 

Trough reinforcement stress. 

Constant. 

(6.6) 

(6.7) 

Thus, an increase in the ratio between fst and fsp, corresponded to a decrease 

in the average bond stress/rod stress ratio. The relationship between the latter 

would seem to vary according to the ability of the concrete to sustain the high 

stresses associated with the troughs in the reinforcement strain distribution. 

As the peak and the average bond stresses next to a crack were related ( equa

tion 6.5), similar behaviour would be anticipated when comparing the peak bond 

The coefficient of correlation measures the degree of linear association between two variables. 
A value of +1 represents perfect positive correlation, -1 represents perfect negative correlation 
and 0 represents no correlation. 
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stress to rod stress. The relationships for the two bar diameters are plotted in 

Figure 6.23. Those results considered to be influenced by the presence of neigh

bouring cracks, or the lap end, have been excluded. It was not uncommon for the 

bond stresses found to either side of the crack to differ slightly, which led to two 

distinct bands of results for each crack. Although the figures showed considerable 

scatter, a consistent trend was apparent. 

In the first instance, an almost linear relationship existed between the two 

stresses. However, at higher rod stresses the relationship became increasingly 

curved. The two bar sizes exhibited similar behaviour. The figures determined 

for the individual bars in a mixed lap were the same as their counterparts in the 

other specimens. There was also no difference in the behaviour at cracks inside 

and outside the lap joint. 

A quadratic was fitted to both sets of data, using the method of least squares. 

The ratio of the values for the 12 and 20 mm rods varied slightly, according to 

position along the curve, but was approximately 0.62. This confirmed that the 

results were proportional to bar perimeter, as might be expected from the equa

tion for bond stress (equation 5.2). The results were consistent with the findings 

reported by Snowdon (66) following his extensive survey of the bond behaviour of 

a variety of reinforcing bars. 

The non-linearity of the bond stress/rod stress relationship was indicative of a 

breakdown in the peak bond stresses found at higher rod stresses. This may have 

been a sign of the concrete's inability to develop a greater stress, possibly due 

to the development of microcracks within the material. The increased plasticity 

associated with microcracking would result in the peak bond stress being carried by 

a greater length of rod. This would cause an apparent reduction in the peak bond 

stress/rod stress ratio. The flattening of the curves could also be attributed to the 

changing relationship between the peak and the trough reinforcement strains. 

The bond stress/rod stress relationship has been considered for cracks which 

formed in isolation. This provided an understanding of the bond stress distribution 

around a single crack. However, it was evident from the strain measurements 

that there was some interaction between neighbouring cracks. It is consequently 

of interest to gain an understanding of the influence lengths of the individual 

cracks, as represented by the distance required to transfer the stresses from the 

reinforcement into the concrete. The influence lengths of cracks which formed in 
...... --~ 

isolation, and (of the ends of the specimen, were estimated from the bond stress 
. ~ -···· 

results. 
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The situation at the ends of the specimen, just beyond the limits of the con

crete, in many respects resembled that at a crack. The entire load was carried 

by the steel reinforcement, and bond stresses developed in the area. This zone of 

bond breakdown thus illustrated the behaviour of the bond influence length in the 

absence of further cracks. 

The results from the long term tests, in which the full length of the specimen 

was gauged, are shown in Figure 6.24. These figures were typical of the tension 

specimens, and although there was a considerable scatter of results, a consistent 

pattern of behaviour was displayed by the individual rods. The most rapid break

down in bond occurred in the early stages of the test. This was followed by a 

sporadic lengthening of the debond zone, and a gradual rise in the average bond 

stress over this length. Maintaining the load over a period of time led to an in

creased length of bond breakdown, this corresponding to a reduction in the mean 

bond stress. 

It is clear from Figure 6.24 that the rate at which the bond influence length 

extended was dependent on the level of the peak rod stress. Cracking of the 

specimen raised the rod stresses to such a level that much of the influence length 

was developed at crack formation. Consequently, the effect of an increase in applied 

load was less apparent thereafter, as may be seen in Figure 6.1.1. This figure shows 

the slight extension of the influence lengths in specimen 125T12/12 as the load rose 

from 23 to 32 kN. The results from specimen 125D12/12 demonstrated that the 

length of bond breakdown also increased when the load was sustained over a period 

of time. The rate of change of the influence length decreased as the test progressed, 

with time taken for incremental extensions of 12.5 mm being approximately 1, 7 

and 53 days. 

The influence lengths did not appear to differ inside and outside the lap, al

though the different peak stresses associated with these regions might be expected 

to have a slight effect. The diameter of the reinforcing bars and cover dimensions 

appeared to be more significant. An equation relating the bond influence length 

(B) to the concrete cover (c), making allowance for bar diameter ( </>), was proposed 

by Scott (61 ) for specimens reinforced by Torbar: 

B c 7i = 4.45 ¢; - 4.14 (6.8) 

where: 

2.0 :::; ~ :::; 16.0 

An average value of the concrete cover ( 40 and 44 mm, out of the lap) gives 

an influence length of 95 and 146 for the 20 and 12 mm bars respectively, with 
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the ratio between the two being 0.65. Excluding the results from the mixed laps, 

the corresponding figures determined from these tests were 108, 170 and a ratio 

of 0.63. The predicted and measured ratios between the two bar/ sizes showed 

excellent agreement. The consistently higher values observed in these specimens 

may be due, in part, to the different methods used to establish the influence length. 

The influence length generally exceeded the closest crack spacing. Conse

quently, once a number of cracks had formed, the bond influence length became 

increasingly insignificant, and the bond stress distribution was predominantly in

fluenced by the position of the cracks. As these became closer spaced, the gross 

breakdown in bond adjacent to each crack resulted in lower bond stresses between 

the cracks. Peak bond stresses were observed at the lap end and adjacent to those 

cracks which remained unaffected by their neighbours. 

The value of the bond stress at the free end of the bars depended on the 

proximity of the nearest crack. If this was distant then the stresses could remain 

relatively stable as load was applied, with only small changes being observed as the 

test progressed. However, if the peak rod stress at a neighbouring crack increased, 

then the bond stress would also rise. The peak bond stresses along the specimen are 

discussed more fully in the next section, which deals with the ultimate behaviour 

of the lap joints. 

6.3.2 Ultimate bond stresses 

The ultimate steel strain distribution is generally considered to be linear and, 

by implication, the ultimate bond stress is assumed to be uniform over the lap 

length. The detail provided by the strain measurements (Figure 6.8) showed that 

variations still existed in the bond stress at failure. 

The variation in bond stress along the lap length was assessed by determining 

the mean and the coefficient of variation of the distribution for each rod. These 

values are tabled in Figure 6.25 for the highest load stages. In general, the co

efficient of variation was lowest for those specimens which failed. The exception 

to the rule was specimen 250T12/20(A), but this specimen was believed to have 

been close to failure. Similar calculations were undertaken for the lower load lev

els. These showed a reduction in the coefficient of variation of the bond stress as 

the applied load was raised. Increased microcracking of the concrete at the higher 

loads may help to distribute the effect of the peak bond stresses, thus increasing 

the linearity of the strain distribution. The magnitude of the coefficient of vari

ation was such that it warranted the consideration of peak bond stresses when 

dealing with ultimate behaviour. 
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Peak bond stresses were located either next to a transverse crack or at the lap 

end. It has already been noted that longitudinal cracks are associated with high 

bond stresses, and that the rapid growth of such cracks often resulted in failure of 

the lap joints. It is therefore of interest to consider the level of bond stress which 

results in splitting of the concrete cover. The values of this bond stress (!be) were 

normalised with respect to the tensile strength of the concrete Uct) in order to be 

consistent with Tepfers(44). They are referred to in terms of 'fct'· 

In general, longitudinal cracks formed at bond stresses within the range 1.8 

- 2.7 fct N/mm2
. The sole exception was the atypically high bond stress of 

5.1 fct N/mm2 observed at one lap end in specimen 250T20/20. With the ex

clusion of this figure, the ten longitudinal cracks which developed in specimens 

reinforced by a pair of 20 mm rods formed at an average value of 2.3 fct N /mm2, 

with a standard deviation of 0.3 fct N /mm2 . The measured values of bond stress 

which led to splitting of the concrete cover were therefore within the range 1.2 

- 3.0 fct N /mm2 derived from Tepfers' equations for a single bar (equations 2.4 

and 2.5). The lower of these values referred to a partly-cracked elastic section, 

the higher to a fully plastified section. It should, however, be noted that the 

bond stresses at the lap ends occasionally far exceeded the upper limit proposed 

by Tepfers, one being the value already noted at the end of specimen 250T20/20. 

This resulted in failure, but other specimens, notably 750T12/12 with a peak stress 

of 7. 7 fct N / mm 2 , developed high bond stresses at the lap end with no apparent 

distress. 

Tepfers' (44) suggested that the figur.es from his equations should be halved 

when dealing with lap joints, his argument being that the bursting foroj around 

a lap joint was double that around a single bar. This clearly is unnecessary, 

and the results therefore suggest that the total bursting force around a lap joint is 

similar to that around a single bar. There was no significant difference in the bond 

stress at which the cover cracked inside and outside the lap joint. The results thus 

agreed with the conclusions of Orangun, Jirsa and Breen (30), who equated lap and 

anchorage lengths. 

The development of a splitting crack within the lap length generally resulted in 

failure. Only one specimen (750T20/20) was able to sustain a longitudinal crack 

within the lap, and in this case the central portion of the lap remained unaffected 

by either the longitudinal splitting or the tranverse cracks which formed at each 

end of the joint. A zone of negligible bond stress thus existed over much of the 

lap. In two of the shorter laps (specimens 250T20/20(L) and 500T20/20), the 

bond stress rose at the tip of the lap in the few load stages immediately prior to 

failure. Since the stresses at the lap ends had previously been stable, it may be 
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that the effects of the dominant transverse cracks were only just reaching the free 

end of the rods. Consequently, by the time the peak bond stresses were sufficient 

to initiate splitting, the entire lap length was being used to transfer force. The 

specimens were therefore unable to resist the propagation of the splitting cracks, 

resulting in the characteristic 'zipper' mode of failure. 

The results from these tests suggested that the ability to withstand the effect 

of splitting is dependent upon the nature of the bond stress distribution over the 

entire lap. The average bond stress over the lap length is thus indicative of a lap's 

resistance to failure. It is therefore not unreasonable to use an average value of 

ultimate bond stress for design purposes. 

The average bond stress was usually highest in those specimens which failed. 

With the exception of the mixed laps, the ultimate bond stress in the individual 

rods of a specimen were similar. The longitudinal cracks developed on the A and C 

faces, those nearest to the individual bars. This implied that failure was initiated 

by just one of the rods. Thus, the higher of the values determined for each bar 

in a specimen was more relevant than the mean of the two figures. There was, 

unfortunately, insufficient information to be able to compare the results from the 

two rod diameters. The readings from the mixed laps, in which the bond stress 

for the 12 mm bar was higher, were an indication that higher bond stresses were 

associated with the smaller reinforcement. Further evidence of such an association 

is provided in Figure 6.7.3, in which it is clear that the splitting crack which formed 

on the A face (the nearest to the 12 mm bar) was more severe than the one found 

on the C face. 

It is common for the value of the failure load to be based on a figure for bond 

stress, the load being estimated by assuming a constant value of ultimate bond 

stress over the lap length. This is the approach favoured by BS8110 (7). The mean 

of the bond stresses calculated over the lap length, and the ultimate bond stress 

estimated on the basis of various design equations have been tabled in Figure 6.26. 

The ultimate bond stresses proposed in the British code appear conservative, 

with the smallest of the measured values being some 30% higher than required. 

This would be further emphasised if the partial safety factor of 1.4 was included. 

The conservatism was partly due to deformed rods in specimens without links 

having to be treated as if they were plain reinforcement. A more comparable 

result was obtained by the specimen which included secondary reinforcement. The 

assumption of a value of unity for the cover/bar diameter ratio (46) resulted in 

the code requirements not reflecting the variations attributed to the changes in 

specimen dimensions. 
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Reynolds' work (31 ) formed the basis of the British Standard, and it is therefore 

not surprising to note that the test values were higher than his proposals. The 

latter were, in turn, based on Tepfers' analysis of the bond stress required to 

cause longitudinal cracking of the conc~ete cover (44). Reynolds noted that his 

results lay within the range delimited by the values for a partly-cracked elastic 

and a plastic analysis (equations 2.4 and 2.5). It was therefore concluded that the 

former, the lower of these two values, could be used as a 'lower bound' for the 

bond stress which initiated failure. Although average values of bond stress were 

used by Reynolds, it would seem more appropriate to deal with the peak values 

which initiate the splitting cracks. It has been shown that the peak bond stresses 

measured in these test specimens lay well above the lower limit. Reynolds, by 

measuring average ultimate bond stresses , was consistent in his use of an average 

bond stress. It would seem to be implicit in this approach that some form of 

relationship existed between the peak and average values of bond stress. Although 

the detailed information provided by the strain measurements failed to show any 

correlation between the peak and the ultimate bond stress in these specimens, it 

has been noted that the average bond stress gives a useful indication of a lap's 

ability to resist failure. Consequently the average values produced by Reynolds 

are adequate for design purposes. 

A favourable comparison was made with the results from Orangun, Jirsa and 

Breen's multi-variable analysis (30). Their equation, based on the results from 

a number of sources, appears to reflect most accurately the results from these 

tests. However, once again, the beneficial effect of links was not apparent in these 

specimens. 

Although this series of one-off tests was not geared towards the production of 

design recommendations, it was encouraging to note the agreement shown between 

the test results and existing design proposals. One point which can be made on 

the basis of the correlation of the results from axial specimens with equations 

based on four-point bending tests concerns the design of lap joints in tension tie 

members. The commentary to the A.C.I. design recommendations (9) notes that 

the lapping requirements for such members were initially made excessively severe 

because of the lack of specific research data. It would appear that such caution is 

unnecessary. 

6.4 Embedment Gauge Results 

Embedment gauges were cast in the final tension test specimen to measure the 

circumferential strains around the lap joint (Figure 4.4). The technique of casting 
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the gauges proved successful, with just a single gauge giving dubious results. The 

internal readings were complemented by electric resistance strain gauges mounted 

on the surface of the concrete. The measured circumferential strains, at represen

tative load stages, are plotted in Figure 6.27. 

Before cracks formed, a small compressive strain was shown by most gauges. 

This was due to the effect of the Poisson's ratio of the concrete. The influence 

of a tensile bursting force was, like the bond stress, negligible. The embedment 

gauges typically showed a higher tensile strain than the surface gauges, which was 

attributed to their being closer to the reinforcing bar. Similarly, variations in the 

distance from the reinforcement accounted for some of the differences in the strains 

measured by individual gauges. In general, however, the strains measured on all 

four faces of the specimen were consistent, and the influence of the lap joint was 

not apparent. 

The crack-inducing properties of the embedment gauges have already been 

documented (see §6.1), and early cracks were observed at the gauge groups within 

and at the end of the lap. The strain readings subsequently appeared to be more 

affected by these cracks than by bursting forces, with the peak strains being ob

served on the uncracked face (face D, on both occasions). It seemed probable that 

some debonding of the embedment gauges occurred when a transverse crack ran 

along their length. As a consequence of the cracking, the gauges were of little 

assistance in establishing the strain distribution around a lap joint. 

The effect of distance from the reinforcement remained apparent after crack 

formation. Within the lap, the ultimate mean of the strains measured by the 

embedment and surface gauges was 305 and 183 microstrain respectively, at an 

average distance of 20 and 35 mm. Assuming a Youngs' modulus for the concrete 

of 27.6 kN /mm2 , these circumferential strains corresponded to a bursting stress of 

8.4 and 5.0 N/mm2. The bond stress in both bars was approximately 5.4 N/mm2. 

It is clear from Figure 2.1 that this (!bs) may be related to the bursting stress (fp): 

f~ = !bs tan a (6.9) 

The resulting values of a, 5 7° and 42°, corresponded to the typical figure quoted, 

45° (31). The higher strains measured near the bar was consistent with the concept 

of internal cracks developing near the reinforcement (60). It was possible that 

the embedment gauges, to a limited extent, served to bridge these cracks. The 

internal gauges would have exaggerated the strains; greater credence may therefore 

be attached to the latter value. This bridging effect, combined with the ability 

of concrete to redistribute the peak st;~sses, enabled the bursting force to be 

considerably higher than the tensile strength of the material. 
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The measurements taken outside the lap joint consistently showed a compres

sive stress acting around the reinforcement. This was initially attributed to Pois

son's effect. At the lowest load stages the circumferential and longitudinal stresses 

could be related by assuming a typical Poisson's ratio of 0.2 {7) for the concrete. 

As further load was applied, a greater proportion of the load was carried by the 

steel. A decrease in the circumferential strains, corresponding to the reduction 

in concrete stress, was anticipated. However, the circumferential strains became 

increasingly compressive. The bond stress remained consistently low, and the as

sociated bursting force had no apparent effect on the distribution. It is possible 

that the phenomenon was a symptom of the transverse cracks releasing shrinkage 

stresses which had been locked into the concrete. There is, however, no evidence 

to support this suggestion. 

The results from this single test were encouragmg m that the technique of 

measuring the circumferential strains proved successful. It was unfortunate that 

the readings were dominated by the effect of cracking, and that it was not possible 

to gain more information about the strain distribution around the rods. It is 

suggested that should the test be repeated, a specimen with a greater cross-section 

be used. This would help to prevent the formation of transverse cracks, and would 

enable a greater number of embedm.ent gauges to be cast within the specimen. 
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CHAPTER 7 

COMPRESSION TEST RESULTS AND DISCUSSION 

7.1 Compression Test Results 

A fundamental difference between this series and the earlier tension tests was 

that none of the gauged compression specimens cracked or failed. Consequently 

the available information pertained to pre-crack behaviour, and no data concerning 

the ultimate behaviour of compression lap joints was acquired. 

Some pilot compression tests were undertaken, loading four ungauged spec

imens up to the rig limit of 300 kN. Three of these specimens had a nominal 

concrete cross-section of 100 x 100 mm, the lap lengths being 125, 62 and 30 mm. 

Only the 62 mm lap failed, with an extre.mely violent failure occurring at 298 kN. 

The concrete cover split along the joint and transverse cracks, probably a conse

quence of bending, formed at the ends of the lap. It was not possible to determine 

the order of the cracks. Failure may therefore have been initiated either by excess 

bursting forces around the reinforcement or by bending forces in the specimen. 

The fourth test was carried out on a smaller 70 x 70 mm cross-section, using a 

125 mm lap length. This failed explosively at 190 kN but, in this case, the failure 

was attributed to longitudinal cracks developing from the ends of the specimen, 

rather than to splitting over the lap region. This type of failure was prevented in 

subsequent tests by external links clamped to both ends of the specimens. The 

pilot tests indicated that compression failure could not be guaranteed by 300 kN. 

The gauged specimens were therefore chosen to be comparable to those used in 

the tension series. 

The test measurements clearly showed the distribution of the reinforcement 

strains in the five compression specimens. The influence of bending was reduced by 

application of the cubic spline procedure (see §5.2.3) and the resulting distributions 

have been plotted in Figures 7.1.1 - 7.1.5. 

In the early stages of the test the strain distributions were of a similar nature 

to those measured before crack formation in the tension specimens (see §6.1). 

Levels of almost constant strain existed inside and outside the lap joint, and a 

breakdown in the bond between the steel and the concrete was observed at the 

ends of the specimen. The two rods in each lap behaved similarly, which resulted 

in the distributions being symmetrical about the centre of the specimen. 
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Within the lap joint, the strains in each of the reinforcing bars tended to 

equalise as close to the ends of the lap as possible. The transfer of force was thus 

concentrated near the ends of the lap, resulting in steeper strain gradients at these 

positions. This was consistent with the findings of previous researchers (1l). As the 

applied load rose, a greater length of reinforcement was required to transfer force. 

Thus, the steeper strain gradients at the ends of the bars affected an increasing 

proportion of the joint, and the strain distribution along the lap became more 

linear. 

It was clear from the strain measurements that the lengths of bond breakdown 

at the specimen ends were related to the applied load. However, the scatter of the 

results prevented any correlation of debond length and load. The encroachment of 

bond stresses into the specimen resulted in a shortening of the region of constant 

strain found outside the lap. The extreme situation, in which the debond zone 

reached the end of the lap joint before the maximum load of 300 kN, was noted 

in specimen 250C20/20(E). Localised peak strains observed at the end of these 

regions of bond breakdown were believed to have been a symptom of the damaged 

concrete found here. 

The most significant difference betwe~n these tests and the earlier tension spec

imens was probably the presence of strains at the free ends of the reinforcing bars 

in the compression laps. These strains were due to the bearing of the steel against 

the concrete. It was evident from the rising value of strain measured at this posi

tion that end bearing played a significant role in the transfer of force between the 

rods. A comparison of the strains developed in individual bars showed the values 

at the ends of the 12 and the 20 mm rods to be similar. This consistent level of 

strain implied that the force transferred by end bearing was proportional to rod 

area. In general terms, approximately 20% of the peak steel strain found in these 

specimens was developed within the first 10 mm of the lap joint. A slightly re

duced contribution was noted at the highest load stages, and the behaviour beyond 

300 kN is therefore uncertain. 

The strains developed at the lap end could be quite substantial. In one spec

imen (125C20/20) a peak strain of 370 microstrain was measured by the final 

concentration gauge element, 2 mm from the lap end. This corresponded to a 

stress of about 75 N /mm2 , and thus exceeded the ultimate uniaxial compressive 

stress of the concrete. The confinement of the surrounding cover, and of transverse 

reinforcement when this is provided, enables end bearing stresses of approximately 

three times the compressive strength of the concrete to be developed (ll). 
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Peaks in the strain distribution also existed just beyond the ends of the lap 

joint, in the continuing rod. These peaks, being located at the end of lengths of 

bond breakdown, may be partly due to localised cracking of the concrete. They 

were probably also a consequence of the additional forces set up in the concrete by 

the end bearing of the terminating rod. In the 125 mm lap joints, these peaks were 

found up to six bar diameters beyond the tip of the lap. These specimens clearly 

showed that the length of reinforcement involved in force transfer was not limited 

by the lap length. Up to 20% of the steel strains were transferred outside the 

lap joint in specimen 125C20/20 at 300 kN. Such behaviour was consistent with 

that reported by Cairns and Arthur (27), who noted a transfer of force occurring 

. between three and five bar diameters beyond the lap end. This is another way in 

which compression and tension laps differ; in the latter, transverse cracks at the 

ends of the joint delimit the transfer length. 

7.2 Steel Strain Distribution 

7.2.1 Comparison between loading methods 

The load in the tension tests was applied through the steel reinforcement. If 

this loading arrangement was to be duplicated in the compression tests, then yield 

of the steel would severely limit the maximum load. In order to take advantage of 

the compression rig limit of 300 kN, the specimen had to be loaded through the 

concrete. 

A comparison of the two loading methods was undertaken, with the first two 

compression specimens each being loaded twice: 

i) 250C12/12(A): The steel was loaded to 25 kN, this value being chosen to 

prevent yield of the reinforcement. The specimen was subsequently reloaded 

to 300 kN through the concrete. 

ii) 250C12/12(B): The specimen was initially loaded through the concrete, to 

300 kN. The load was then re-applied through the steel, the maximum value 

of 65 kN being defined by gross yield of the bar outside the concrete. 

The strain distributions along these two specimens are compared in Figure 7.2. 

In both cases the reinforcement strain at a given load was approximately 10% 

higher when the specimen was loaded through the steel. The results from the 

Demec readings indicated that the concrete strains were about 10% higher when 

the load was applied through the concrete. These generalisations were valid for 

both specimens, and were therefore unaffected by the loading history. 
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The difference in the strain distributions at the ends of the specimen illustrate 

another advantage of loading through the concrete. The length of bond breakdown 

in these regions was significantly affected by the loading arrangement. This was 

due to the relative dimensions of the steel and the concrete affecting the distance 

required to develop strain throughout the unloaded material. Reduced debonding 

was therefore observed when the load was applied through the concrete. 

It was thus established that the two methods of loading produced similar results 

and later specimens were loaded through the concrete. Subsequent discussion of 

the first two specimens will deal only with their behaviour when loaded in this 

manner to 300 kN. 

7 .2.2 Longitudinal strain distribution 

An estimate of the strains expected for different reinforcement percentages 

was made by assuming a modular ratio ( m) of 7.5, elastic behaviour for both 

materials and a compatibility of strains across the section. This last assumption 

was confirmed by comparing the mean of the Demec readings ( €cave) to the average 

of the reinforcement strains ( €save) for each specimen. The relationship is plotted 

in Figure 7.3. A least squares analysis of the data yielded the following equation 

for the line of best fit: 

€cave = 0.95 €save - 0. 75 (7.1) 

where: 

43.0 ~ €save ~ 314.0. 

The close correlation between these values demonstrated strain compatibility 

across the specimen, at low strain levels. 

The measured reinforcement strains were averaged over lengths of the specimen 

in which the bond was unimpaired. These lengths became shorter due to the 

growth of the debond zone out of the lap, and to the increasing linearity of the 

distribution within the joint. The comparison between the predicted and measured 

ratio of the strains inside and outside the joint could therefore only be carried out 

at the lower load stages. The values of the ratio thus obtained remained constant, 

and typically lay within 5% of the predicted values of 0.95 and 0.86 for the 12 

and 20 mm rods, respectively. The exception, specimen 250C12/12(B) rod B, was 

about 10% lower than expected which, although clear from the plot of the steel 

strain distribution (Figure 7.1.3), occurred for no apparent reason. 

It has been stated by previous researchers (1J) that the strain level inside a 

compression lap will tend to a higher proportion of the strain level found outside 
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the joint than those in a tension lap. The results from these specimens showed the 

ratio of the strains in/ out of the lap to be related to the reinforcement percentage, 

and therefore similar in both test series. However, bond stresses within the lap 

joint prevented the comparison being made for the entire range of loads, and the 

ratio may have changed by the ultimate strain levels. 

The above approach was also used to predict the level of strain which existed 

outside the lap at various load stages. The measured strains at the maximum 

load, 300 kN, exceeded the predicted values by over 50%. Some improvement in 

the comparison was achieved by taking the Young's modulus of the concrete as 

24.0 kN /mm2 . This raised the value of the estimated strain, and lowered the ratio 

of the strains inside/outside the lap joint. This choice of Ec also proved beneficial 

in the analysis of the tension results (§6.2.1 ). In this case, however, the predicted 

strains were still 30% awry. 

The typical relationship between the peak reinforcement strains at the start of 

the lap joint and the applied load is shown in Figure 7.4. The plots of the entire 

strain distribution showed these peak values to be representative of the average 

strain found outside the 250 mm laps (Figures 7.1.3 and 7.1.5). Figure 7.4 demon

strates that up to a strain of approximately 250 microstrain the measurements 

were consistent with figures anticipated from strain compatibility considerations. 

Beyond this level, the curvature of the relationship resulted in an increasingly poor 

correlation between measured and predicted strains. This behaviour was believed 

to be the consequence of a breakdown in strain compatibility, due to microcracking 

of the concrete. 

The relationship between applied load and strain at the free end of the lap 

has been included in Figure 7.4. The measurements were taken at the final gauge 

position, 5 mm from the free end of the bar, and are thus indicative of the contri

bution of end bearing to force transfer. It was clear that, within this load range, 

end bearing was proportional to load. 

It was evident from the strains measured at the lap end that, at a given load, 

end bearing was more active in the shorter laps. Typically, the end strain in the 

125 mm lap lengths was about 70% higher than in the 250 mm laps. However, this 

situation may change at ultimate loads. Cairns and Arthur (27) concluded that the 

contribution of end bearing to joint strength was not significantly affected by lap 

length. 

The relationship between the steel strain at the ends of the lap and the applied 

load also served to highlight the effect of time on the strain distributions. A sudden 

fall in the strain at the tip of rod B at 75 kN, whilst the Demec readings were 
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being taken, was observed in all the specimens. A less substantial reduction in 

strains was also noted in some specimens at 60 kN, the previous level of Demec 

measurement. Maintaining this level of load for a period of approximately ten 

minutes (the time taken to read the surface strains) clearly had a significant effect 

on the distribution in rod B, although rod A remained largely unaffected. The 

concrete stress calculations showed the concrete stress to fall outside the lap, and 

rise within it, over this period of time. ·The reverse effect would be observed in 

the reinforcement, thus within the lap joint the steel strains fell. This equalisation 

of the concrete stresses was most noticeable in the specimens comprising a pair 

of 20 mm bars, in which the stress difference in and out of the lap joint was 

greatest. The weaker concrete found at the top of the specimen, nearest the cast 

face, would result in the effect being most apparent in rod B. Similar behaviour 

was observed in specimen 250C20/20(E) at 190 kN, when electrical interference 

necessitated there-initialisation of the data logger. The load was held at this level 

for approximately 30 minutes, resulting in reduced strains within the lap for both 

rods. It would appear from this behaviour that long-term tests of compression lap 

joints would prove to be a fruitful area of further research. 

7.3 Bond stresses 

It was evident from the longitudinal reinforcement strains (Figures 7.1.1 -

7.1.5) that regions of bond stress extended from the lap ends and from the ends of 

the specimen. The subsequent discussion deals only with the former, as the latter, 

a feature of the bond breakdown near the loading point, were not pertinent to lap 

behaviour. 

Steeper strain gradients were generally found at the free end of the bar due to 

the equalisation of the steel stresses in the individual rods near the splice ends. 

The peak bond stresses were therefore located here. A secondary peak in the 

bond stress distribution existed at the lap end in the continuing rod, due to the 

different strain levels associated with the change in reinforcement percentage and 

end bearing effects. The form of this distribution was similar to that measured by 

Cairns and Arthur in their tests on compression lap joints (27) (Figure 2.6). The 

presence of peak bond stresses at the lap ends led to their recommendation that 

transverse reinforcement should be clustered at this position. 

As the applied load was increased there was a general rise in the level of bond 

stress inside the lap, with the zone of pea~ bond stress influencing a greater length 

of reinforcement. If the length of the regions of peak bond stress is considered 

in terms of the applied load, then these zones developed at a greater rate in 
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the 125 mm laps and in the laps comprising a pair of 20 mm rods. This would be 

expected as the bond stresses associated with each of these specimen characteristics 

would be higher at a given load. This behaviour resulted in an increasing linearity 

of the steel strain distribution, evidenced by the reduced coefficient of variation of 

bond stress along the lap at higher loads. 

The relationship between peak bond stress and peak rod stress has been plot

ted in Figure 7.5. The results were similar to those derived from the tension 

specimen data (Figure 6.23), the main difference being the level at which the peak 

bond stress stabilised. The influence of the bar diameter was less evident in the 

compression tests, the ratio between the bond stresses in the 12 and 20 mm diam

eter rods being approximately 0. 75. In spite of these slight differences the results 

demonstrated the bond behaviour in both test series to be consistent. 

The relationship between the peak (fbp) and the mean bond stress Ubave) along 

the lap length is shown in Figure 7.6. There was a clear correlation between the two 

stresses, with the relationship being independent of lap length and bar diameter. 

A least squares linear regression analysis yielded the following equation: 

/bp = 1.17 fbave + 1.47 (7.2) 

where: 

0.3 ~ /bave ~ 6.6. 

The effect of the constant was to emphasise the influence of the peak bond 

stress only at low loads. Thus, the peak/average bond stress ratio at average bond 

stresses of 1.0 and 6.0 N /mm2 was 3.6 and 1.4, respectively. This was consistent 

with the reduction in the coefficient of variation, and the extending influence of 

the peak bond stress, observed in these specimens at higher loads. 

The equation (7.2), and more specifically the value of the constant, was differ

ent to that determined for the tension specimens (equation 6.5 and Figure 6.22). 

However, in the tension specimens the data was concerned with the local variation 

of bond stresses found adjacent to a transverse crack, rather than with the entire 

lap length. Aspects of compression lap behaviour, for instance the lengthening of 

the region of peak bond stress and end bearing effects, were therefore not evident 

in the tension results. 

The average bond stress of approximately 6.0 N /mm2 developed along the lap 

in specimen 125C20/20 at 300 kN exceeded the ultimate bond stress quoted in 

BS8110 (7). This figure, calculated using 0.65~t, is 4.1 N/mm2
. The code 

BS8110:pt. 1:1985 (7), §3.12.8, table 3.28. The constant includes a partial safety factor of 1.4. 
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uses the same basic equation (equation 2. 7) to evaluate the average bond stress 

in a tension and a compression lap, the only allowance for the contribution of end 

bearing being the different value of the constant. 

Although none of these specimens were loaded to capacity, it was interesting 

to note that the peak bond stresses developed in the 20 mm diameter rods reached 

the value at which cracking ofthe concrete cover occurred in the tension tests (see 

§6.3.2). However, the peak values of about 2.1 fct N jmm2 were still considerably 

lower than the theoretical maximum level of stress which could be sustained by 

the cross-section. This was determined, on the basis of Tepfers' equations, to be 

approximately 9.0 N /mm2 if the concrete behaved plastically (equations 2.4 and 

2.5). 

7.4 Embedment Gauge Results 

The circumferential concrete strains were measured in the final compression 

test (250C20/20(E)). Embedment gauges were cast at the end of rod A, and 

100 mm to either side of this position. These were complemented by electric 

resistance strain gauges mounted on the surface of the concrete. This arrange

ment was similar to that used in the equivalent tension specimen (250T20/20(E) 

and Figure 4.4). The satisfactory performance of these additional strain gauges 

was maintained, with just a single gauge failure. The absence of cracking in the 

compression specimens enabled the results from the whole test to be considered. 

The circumferential strains measured at 100, 200 and 300 kN are plotted in Figure 

7.7. 

Although the embedment gauges consistently displayed a higher strain than 

their counterpart on the surface, the influence of distance from the reinforcement 

was not readily apparent around the compression lap. This differed from the 

situation in the tension specimens, in which the measurements indicated the cir

cumferential strains to be almost inversely proportional to the distance from the 

reinforcement (see §6.4). In the compression laps the concrete carried a greater 

load and thus the effect of Poisson's ratio was more significant. The resulting ten

sile strains would be almost constant across the specimen. However, the circumfer

ential strains attributed to the bond at the steel/concrete interface decreased with 

distance from the reinforcement. Thus, the difference between the embedment and 

the surface gauge readings became more pronounced as the load was raised. 

The strains resulting from Poisson's ratio effect were estimated by assuming 

a typical value of 0.2 for the ratio (7) and a Young's modulus of 27.6 kN/mm2 
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for the concrete. The longitudinal concrete strains were determined from the con

crete stress calculations. The circumferential strains corresponding to the resulting 

figures were estimated to be 57, 110 and 162 microstrain at 100, 200, and 300 kN. 

The strains due to the bursting effect of the bond stress were evaluated by 

assuming Ec to be 27.6 kN/mm2, and the angle of incidence of the bond forces 

to the reinforcing bar (a) to be 45°. At the maximum load of 300 kN the bond 

stresses within the lap joint were approximately 4.0 N /mm2 in each bar. This 

represented a circumferential strain of about 145 microstrain. 

The addition of the two components of circumferential strain resulted in an 

overall figure of 307 microstrain. This corresponded to a mean measured strain of 

279 and 222 microstrain in the embedment and the surface gauges, respectively. 

Removing the influence of strains due to the Poisson's ratio (162 microstrain) left 

values of 67 and 124 microstrain in the two groups of gauges. The ratio of these 

two figures, 0.54, compared favourably to the inverse of the ratio of the average 

distance of the gauges from the steel, 0.57. The results were thus consistent with 

the existence of two separate components of circumferential strain, only one of 

which was significantly affected by position from the reinforcement. 

The comparison was best undertaken within the lap, where similar strains were 

measured on all four faces of the specim<:;.n. The slightly higher readings from the 

embedment gauges on the A and C faces were attributed to the reduced distance 

from the bar. The measurements indicated that the bursting forces around the 

overlapping bars were similar to those around an individual rod. 

Out of the lap region, a greater scatter of results was observed, with the mea

surements from faces C and D being considerably higher than those taken on the 

A and B faces. Cairns (43) commented on the end-bearing in a compression lap 

pushing out a cone of concrete. Such a conical force system may have caused an 

imbalance in the strains around the specimen, clearest some distance beyond the 

end of the lap joint. This effect would have been most apparent on the C face. It 

does not, however, readily explain the different readings from the Band D faces of 

the specimen. It was unfortunate that the failure of an embedment gauge on face 

D prevented the confirmation of the trend shown by the surface measurements. 

The procedure outlined above was used to estimate the circumferential strains 

outside the lap at 300 kN. The predicted value of 318 microstrain corresponded 

to measurements of 297t and 155 microstrain for embedment and surface gauges. 

The latter figure was inexplicably low. 

The strain on face D was estimated by considering the pattern around the specimen shown by 
the surface gauges. 
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At the end of the lap, the gauges indicated lower strains on face A. This 

side of the specimen, being the nearest to the continuing bar (in which the bond 

stresses were low), would be expected to be the least stressed. Such behaviour 

was consistent with Cairns and Arthur's (27) observation that the first longitudinal 

crack in his compression lap joints formed over the discontinued bar. The small 

influence of the bond stress on face A implied that much of the circumferential 

strain may be attributed to Poisson's ratio effects. The embedment and surface 

gauges showed consistent results throughout the test, with the maximum strains 

being in the order of 60 micros train at 300 kN. This was considerably lower than 

anticipated and, most surprisingly, at a load of 100 kN the embedment gauges 

indicated compressive strains of about 40 microstrain. It appeared that some 

secondary effect, perhaps the release of shrinkage stresses, significantly affected 

the strains around the bar. 

The results from the remaining three faces were somewhat scattered, but the 

mean values of strain, 298 and 294 microstrain, lay within the estimated range of 

237-416 microstrain. These limiting values represented the difference between the 

bond stress at this position in the continuing and the terminating rod. 

The test measurements indicated that the circumferential strains were due to a 

combination of Poisson's ratio effect and bond stresses. It would appear that any 

analysis dealing with the ultimate bond stress in compression laps should make 

allowance for both effects. Hitherto the effect of Poisson's ratio has been neglected, 

but as none of these compression laps reached their capacity it was not possible 

to compare the ultimate strength of these specimens to predictions which omitted 

this influence. 

The mean strain measured on the surface of the specimen within the lap re

gion, 222 microstrain, corresponded to a stress of approximately double the tensile 

strength of the concrete if a value of 27.6 kN/mm2 was assumed for Ec. A higher 

value of strain, and hence stress, was measured by the embedment gauges. Thus, 

although longitudinal compression in the concrete resulted in additional circum

ferential strains, it seems to have increased the resistance to splitting cracks. 

The reduced influence of distance from the reinforcement on the circumferential 

strains suggests that the effect of cover will be less significant in compression laps. 

This agrees with the experimental findings of Leonhardt and Teichen, discussed 

in the C.E.B. report on bond behaviour {ll). 

It was shown in this test that, up to the limiting load of 300 kN, compara

ble stresses were found around the specimen in and out of the lap region. The 

additional 25% of reinforcement required by BS8110 (7) in a compression lap, as 
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compared to a compression anchorage, thus appears surprising. It was interest

ing to note that the American design recommendations (S) equates compression 

anchorage and lap lengths. Although this single test is obviously not sufficient 

to warrant a change in the design code, it could form the basis of some very 

interesting further work. 
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CHAPTER 8 

CONCLUSIONS 

8.1 Tension Specimens 

8.1.1 The technique of internally gauging the reinforcing bars proved a suc

cessful and reliable method of determining the longitudinal strain distri

bution. The use of strain concentration gauges enabled the acquisition 

of particularly detailed information from the tip of the lap joint. 

8.1.2 Before crack formation, regions of constant steel strain existed inside and 

outside the lap joint. The difference between these two strain levels was 

a function of the change in the reinforcement percentage. 

8.1.3 The precrack strain distribution tended to zero at the free end of the 

reinforcing steel. The length of the transition from zero strain to the 

average strain level inside the lap was dependent on the diameter of the 

terminating bar. Approximately 60% of the average strain had been 

developed within one bar diameter of the lap end, and 80% within two 

bar diameters. 

8.1.4 The steel strain at crack formation was similar for cracks which formed 

inside and outside the lap joint. The development of cracks was more 

dependent on the magnitude of concrete strain than on the concrete 

stress. 

8.1.5 The formation of transverse cracks in the concrete considerably modi

fied the steel strain distribution, with peaks being found at the crack 

positions. Although the strains still fell to zero at the lap end, the dis

tribution in this area became dependent on the proximity of the nearest 

crack. 

8.1.6 The individual bars in a mixed lap behaved in a similar manner to their 

counterparts in a lap comprising bars of equal diameter. 

8.1. 7 The greatest changes in the strain distribution in the long term test oc

curred over the first week. Once the transverse cracks had fully extended, 

the values of the peak strains remained stable. The strains at the troughs 

were still rising slowly when the test terminated after 81 days. 
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8.1.8 Splitting cracks were associated with peak bond stresses in the range 1.8 

- 2. 7 fct N /mm2• The bond stress which caused longitudinal cracking of 

the cover was similar inside and outside the lap joint. The bursting force 

around a lap may be equated to that around a single bar. 

8.1.9 No generally applicable relationship between the peak and the average 

ultimate bond stress over the full lap length was found. 

8.1.10 

8.1.11 

8.1.12 

8.1.13 

Although longitudinal cracks were initiated by a peak bond stress, the 

resistance to failure was partly dependent on the ability of the specimen 

to withstand their effects. The average value of the bond stress was 

indicative of such resistance; it is therefore not unreasonable to base 

design regulations on a mean figure. 

The shorter lap lengths failed at lower loads. These tests indicated that 

the strength of a lap was not directly proportional to its length. 

Laps comprising bars of 12 mm diameter failed at lower loads. The 

capacity of a mixed lap was determined by the smaller of the two bars. 

The results from these tests were favourably compared to existing design 

proposals (30•31 ) and regulations (7). The specimens which failed did not 

meet the requirements of the current British Standard, BS8110:1985. 

The agreement between these axial specimens and design equations based 

on beam tests showed that standard procedures may be used for the 

design of lap joints in tension ties. 

8.2 Compression Specimens 

8.2.1 No gauged compression specimen failed. Consequently the conclusions 

pertain to the behaviour of these specimens up to 300 kN. 

8.2.2 Different strain levels were found inside and outside the lap joint, with the 

ratio between the two being similar to those found before crack formation 

in the tension series. The strain levels along the specimen were a function 

of the reinforcement percentage. 

8.2.3 The bearing of the free end of the reinforcing steel against the concrete 

assisted in the transfer of force between the overlapping bars. Strains of 

up to 370 microstrain were measured in the steel close to the tip of the 

lap. The confinement provided by the cover to the reinforcement enabled 

the ultimate uniaxial compressive stress of the concrete to be exceeded. 
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8.2.4 The length of steel used to transfer force was not limited by transverse 

cracks at the ends of the lap joint. The tests showed that as much as 

20% of the stress could be transferred over a distance of up to six bar 

diameters beyond the lap end. 
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CHAPTER 9 

FURTHER WORK 

A substantial proportion of this work was directed towards furthering the un

derstanding of tension lap behaviour. The relative absence of work on compression 

specimens, both here and in general (ll), leaves considerable scope for future work. 

In particular, there is a need to extend the compression test series, using a testing 

machine with a capacity greater than the 300 kN rig available. The ability to fail 

a compression lap would help to define the applicability of the reported results. 

Both the tension and the compression test series were predominantly concerned 

with short-term loads. Maintaining the applied load for even the short period of 

time required to measure surface strains influenced the steel strain distribution. 

Although one long-term tension test was successfully completed, it is believed that 

further long-term tests would provide valuable data. This is particularly true in 

compression laps, as there appears to be no information available regarding their 

behaviour under a sustained load. 

Scope remains to investigate the influence of various loading histories, for in

stance cyclic or quasi-seismic loads, on the strain distribution along lap joints. The 

strains could also be measured in a different type of specimen. A similar, though 

more limited, programme of beam tests would provide a correlation between axi

ally loaded specimens and the work of previous researchers. 

The opportunities for further research are not limited to an extension of the 

experimental programme. The detailed information provided by the strain mea

surements offers a valuable means of testing the computer modelling of bond be

haviour. 

An attempt was made to measure the circumferential strains in two of the speci

mens, around one tension and one compression lap joint. The technique of casting 

embedment gauges into the concrete proved very successful although, unfortu

nately, the development of transverse cracks at the gauge positions caused severe 

problems in the tension specimen. The small amount of information gleaned from 

this test effectively left the distribution around a tension lap joint unmeasured. It 

would be of great interest, though considerably more complicated, to measure the 

strains around the perimeter of the reinforcement, and thus establish the nature 

of the force system around lapped bars. 
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There were no problems with transverse cracking when measuring circumfer

ential strains in the compression specimen, although further measurements are 

required to corroborate the results from this single test. In particular, the rela

tionship between the anchorage and the lap length required in compression has 

yet to be ascertained. This could, however, be achieved without the need for 

circumferential strain measurements. 

The overall impression is that the scarcity of the work on compression lap joints 

has left much to be done in this field. It is hoped that some of the questions left 

unanswered by the five specimens tested here will provide the impetus for further 

research. 
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Author Measurement technique Notes 

KLUGE & TUMA <12 ) 1945 Openings in concrete gave access to steel. Strains at 2.5 and Demonstrated existence of peak bond stress at lap end. This 

5 inch intervals measured by mechanical gauge. 26 specimens. value was independent of lap length. 

NILSON (5) 1971 Steel internally gauged. 23 e.s.r.g. at a spacing of about Measurements used to assess bond stress/slip relationship for 

25 mm. 2 lap joint specimens. a lapped bar. 

FERGUSON and Gauges mounted on bar surface. Typically, 16 e.s.r.g. at a Measurements showed an almost linear ultimate strain distri-

KRISHNASWAMY<13) 1971 spacing of about 75 - 225 mm. 32 specimens. but ion along laps comprising bars of 43 & 57 mm diameter. A 

steepening strain gradient was noted at the lap end. 

TEPFERS <10) 1973 Gauges mounted in slot cut into bar. Typically, 13 e.s.r.g. at a Measurements provided correlation with theoretical analysis. 

spacing of about 50- 200 mm. Only some of the 193 specimens An almost uniform bond stress along the lap was observed near 

were gauged. failure. 

BETZLE <14) 1976 Gauges mounted on bar surface. Typically, 8 e.s.r.g. at a Concentrations of bond stress and force transfer were observed 

' 
spacing of about 80 - 480 mm. 5 specimens. Complemented at the lap ends. The local bond/stress sl~p relationship was 

by photoelastic investigation. seen to vary along the lap. 

CAIRNS <15) 1976 Gauges mounted on bar surface. Typically, 9 e.s.r .g. at a The contribution of end bearing in compression lap joints was 

spacing of about 40- 200 mm. 4 gauged specimens. assessed. Noted transfer of force outside the lap, and a non-

uniform bond stress distribution along it. 

ORR <16) 1976 Gauges mounted on bar surface. Up to 16 e.s.r.g. at a spacing Ultimate steel strain distribution observed to be almost linear. 

of 114 - 152 mm. 4 specimens. Related steel stress at the lap end to the applied moment. 

THOMPSON et al< 17
) 1979 Gauges mounted on bar surface. Number of gauges varied. Below failure load, the bond stress distribution was similar in 

Generally around 15 e.s.r.g. per lap, at a spacing of about 40 each of six laps across a wide section. Near ultimate, cracking 

- 60 mm. 25 specimens. above the outer laps reduced the bond stress in these joints. 

Note: Other researchers (18 •19) have mounted electric resistance strain gauges ( e.s.r .g.) on the bar surface to relate the steel stress to the applied load. 

Fig. 1.1 Previous Strain Measurements in Lap Joints 



~ 

T 4 

T 

dT 

Fb 
Fp 

/ Fb71 
FP 

~ ~ 

-T + dT 

~ ~ 
Tensile force in the reinforcement. 

Change in tensile force. 

Longitudinal component of bond force. 

Radial component of bond force. 

ex : Angle of compressive force. 

Fig. 2.1 Forces in a Single Bar Anchorage 

Compressive struts 
in concrete. 

Hoop tension. 



Side split (s'L /c < 1.4) 

J- ~ /2 ·I 

c 

Face and side split (1.6 < S~ /c < 7.5) 

~/2 Sr. ~/2 

V-notch split (s'L /c > 8.0) 

s· L 

~ /2 Sr. 

c 
T 

s· L 

~/2 

Fig. 2.2 Typical Splitting Failure Patterns 

(Ferguson and Krishnaswamy (13
)) 

92 



~ 

Force systems 

45° 

Bursting forces (per unit length) 

t fp 0 
® 

2fp/tf- - 2fp/tf 
® 
'fp 0 

Distribution of bond stress 
around bar circumference 

m>. 
TEPFERS (A)(1o) 

45° 

f 2fp ftf 
® 

2fp ftf - - 2fp ftf 
® 
!2fp ftf 

m>. 
TEPFERS (8)(10) 

Fig. 2.3 Proposed Force Distributions Around Lap Joints 

45° 

t fp 0 
® 

fp0- -fp0 
' ® 

'fp 0 

fb/2 fb/2 

REYNOLDS (31) 



N~ 

E 
E 

' ~ 
(/) 
(/) 
Q) 

'-
+.> 
(/) 

-u 
c 
0 

(D 

N~ 

E 
E 

' ~ 
(/) 
(/) 
Q) 

'-
+.> 
(/) 

-u 
c 
0 

(D 

30 

25 

20 

15 

10 

5 

0 

(IQ) 
Ftg. 2. 4. 1 Typical bond stress/slip curves <Tepfers ) 

Kd= 500N/mm 3 K= 100N/mm 3 

I I d 2 f = 51.2 N/mm 
cu 

50N/mm 3 
2 f = 23.5 N/mm 

cu 

Results from pull-out specimens, 
50 mm anchorage Length. 

/ Swedish Ks60 steel, 12 mm dIameter. 

/ 
Variation of modulus of displacement IKdl shown 

0.00 0.25 0.50 0. 75 1. 00 
SlIp (mm) 

F t g. 2. 4. 2 Bond stress/slip and associated 
(42) 

bursting stresses(Eltgehausen ) 

6 1. 00 

f = 25. 0 N/mm2 
cu 

5 

/ 
0. 75 

4 / 
/ 

/ f If 
/ p ba 

3 ....... .,.,.. - .,- """ 0.50 

concrete transition concrete 
undamaged sheared off 

2 

~ ~ 
0.25 

0 0. 00 

0.00 0.25 0.50 0. 75 1. 00 1. 25 
Sl lp (mm) 

Fig. 2.4 Bond Stress/Slip Relationships 

94 

OJ 
c 
J 
(/) 
<+ 

:::J 
((} 

(/) 
..... 
J 
CD 
(/) 
(/) 

' o-
0 
:J 
a... 
(/) 
..... 
J 
Q) 
(/) 
(/) 



300 

N~ 200 
E 

' ~ 
(/) 
(/) 
(]) 
L 
.j..) 

(/) 100 

(]) 
(]) 
.j..) 

(f) 

0 

-260 

-260 
0 

~ -5 
N 

E 
E 

' ~ 
(/) 
(/) 
(]) 
L 
.j..) -10 
(/) 

'"'0 
c 
0 

(D 

-15 

FIg. 2. 5 

N.B. Plots are for a single Lapped bar 
Reinforcement percentage (p) varies 
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p = co 

10% 
5% 

Distance from lap centre (mm) 

1% 

Constants a 

Bar diameter 
Lap Length 

0 

Modulus of displacement 
Max. steel stress (at crack) 

16 mm 
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300 N/mm2 

Theoretical Steel and Bond Stress 
(51) 

Distributions (Tepfers ) 
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Lap length (L), 20 bar diameters 
Ultimate load. approx. 5450 kN 
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Bond Stress Distribution In a 
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T 
5.0 

l 

I· 5.0 ·I 

Rod diameter either 12 or 20 mm. 

Strain gauges. 

Lead wires 
& sealant. 

Fig. 3.1 Section Through Reinforcing Bar 
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co 
Dll 

~ 875 ·l 
~100•1• 290 ·I· Gauges at 20mm centres •I 

External ~ Face of 
gauges concrete See end 

----------, 
~-End Detail .........J r- Concentration I 

-~ gauges at I 
: f t tHH 2 mm centres.! 

I 
I I· 20 •1.. 15 ·I· 1 o .. 1 L _____________ ...J 

All dimensions mm 

Rod A: 250mm lap length, with concentration gauges. 

Rod 8: Gauged similarly. 

Fig. 3.2 Typical Strain Gauge Layout 





Fig. 3 . 4 Embedment Gauges 
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0 -g 

I· 550 •f• Varies: 885, 1000 or 1500 , I· 550 •I 
Lap length varies 

,!rom 125 to 7 sq., 
------- ~ 

- 1---------_r.:-:::-_:-_:-_:-_:-_:-_:-_::_ T_:-_-_-_-_-_-_-_::_ I -
I -------------------
Rod A Rod B 
(Bottom) Elevation (Top) 

Specimen length: 

Short term tension 1500 

Long term tension 885 

Compression 1000 

All dimensions mm 
Not to scale. 

Fig. 4.1 Specimen Layout 

I· 100 ·I 
Face A Face A is the 

T cast face. 
CD e ., 

0 
0 100 ~ t-.J CD 

1 
0 ...... / 0 LL. 

Face C 

View from the top 



Specimen Lap Rod 

length diameter 

(mm) (mm) 

A 

125T12/12 125 12 

250T12/12 * 250 12 

500T12/12 * 500 12 

750T12/12 * 750 12 

250T20/20 * 250 20 

500T20/20* 500 20 

750T20/20* 750 20 

250T12/20(A)t 250 20 

250T12/20(B) 250 20 

500T12/20 500 20 

250T20/20(E) 250 20 

250T20/20(L) 250 20 

500T20 /20(L) 500 20 

125D12/12 125 12 

125D12/12(L) 125 12 ' 

125C12/12 125 12 

250C12/12(A) 250 12 

250C12/12(B) 250 12 

125C20/20 125 20 

250C20/20(E) 250 20 

* Groove stopped 5 mm short of lap end. 

t Cover to 12 and 20 mm rods differed 

Fig. 4.2 Specimen Details 

102 

B 

12 

12 

12 

12 

20 

20 

20 

12 

12 

12 

20 

20 

20 

12 

12 

12 

12 

12 

20 

20 

Specimen Order 

length tested 

(mm) 

1500 10 

1500 3 

1500 1 

1500 2 

1500 4 

1500 5 

1500 6 

1500 7 

1500 9 

1500 8 

1500 14 

1500 12 

1500 13 

885 11 

885 19 

1000 17 

1000 15 

1000 16 

1000 18 

1000 20 



Specimen Rod Concrete Compressive Tensile Age at 

area dimensions strength strength test 

(mm2
) (mm) (N/mm2

) (N/mm2
) (Days) 

A B 

125T12/12 77.7 88.8 101 X 101 51.4 3.1 27 

250T12/12 96.7 80.2 103 X 100 51.2 2.6 29 

500T12/12 88.4 88.7 101 X 101 48.1 2.7 29 

750T12/12 89.2 105.1 103 X 100 50.1 2.8 30 

250T20/20 317.5 328.5 101 X 101 46.2 2.5 27 

500T20/20 308.6 296.5 102 X 101 48.8 2.3 27 

750T20/20 319.4 312.1 101 X 101 49.5 2.4 29 

250T12/20(A) 321.1 80.8 101 X 101 41.9 2.5 29 

250T12/20(B) 319.4 86.8 101 X 102 53.8 3.0 28 

500T12/20 295.8 87.8 101 X 102 49.3 2.8 29 

250T20/20(E) 261.6 272.6 101 X 102 55.3 2.8 28 

250T20 /20(1) 283.8 259.6 101 X 102 58.4 2.9 27 

500T20/20(L) 256.6 244.1 101 X 102 61.2 3.1 27 

125D12/12 84.5 81.4 101 X 102 47.0 3.0 140 

125D12/12(L) 67.2 91.5 101 X 102 60.8 3.6 100 

125C12/12 87.8 87.8 100 X 101 53.4 3.0 29 

250C12/12(A) 91.6 91.6 101 X 102 51.5 3.1 28 

250C12/12(B) 90.5 90.5 104 X 101 54.3 3.0 33 

125C20/20 309.6 309.6 101 X 102 60.4 3.2 29 

250C20/20(E) 314.3 314.3 101 X 100 54.2 3.0 27 

Fig. 4.3 Specimen Properties 
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Specimen 125012/12(L) 

I I I ~ I I [[!]] 
I. 255 

:· n.s •L• I: 375 :: 255 t!j 0 

Specimen 250T20 /20(L) 

I I liM II I I m 
l .I .t 

50 c/c 

::. .1. 250 .I t!j 250 275 450 275 0 

Specimen 500T20 /20(L) 

I I II .... II I 
l 275 

! .... ::50 ·1~1. 100 c/c .1 50 c/c~ I 
700 I 150 I I 

Specimen 250T20 /20(E) 

I I -
l 525 

t'oo •lj I 200 • ns 

Unks: 6mm diameter mild steel. 

6mm diameter corner bars, supporting 
links, not shown. 

I m 
250 .I t!j 00 

I rn 
J ~ 00 

All dimensions mm 

Not to scale 

Fig. 4.4 Link and Embedment Gauge Layout 
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Fig. 4. 5 Tension Rig 
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,.• .... ~ 

Fig . 4 . 6 Dartec Rig 
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Fig. 4.7 Compression Rig 
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ll. 

300 

Computed regions of Linearity 

Rod A, Specimen 500T20/20, 29.5 kN 

+• Positions of user-defined knots 

ll.1 Original data points 

•• Averaged data points 

400 500 600 700 
Distance from bottom of specimen (mm) 

Fig. 5.2 Example of Cubic Spline Curve Fit 
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2000 

1750(1) 
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Q) 
(() 

1500~ , 
Q) 

:J 

12503 
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0 
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1000~ 
Q) 

2.. 
v _L 750 

v 
0 

500 
1!1 

250 
6 t. oe~ vv o 

_d_ d~!j6ti~66 t. 6 6 6 6 6 6 6 6 6 6 6 6 6 6 
6 

0 

-250 -125 0 125 250 375 
Distance from Lap centre (mm) 

Steel Strain Distribution Specimen 125T12/12 

Key 

Rod Load 
A B (I:Nl 

t. t. 23.0 AI 
0 0 27.0 A2 
v v 32.0 83 

where a 

Bn a Before crack n 
An , After cracl: n 

Cracl: Load 
No. (I:Nl 

1 23.0 
2 27.0 
3 32.0 
4 32.0 



3000 

2750 + 

2500 t 
~ = 2250 

(1) 
(_ 
1-> 

~ 2000 
(_ 
() -

..§ 1750 c 
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~ 1500 c 
1-> 
(JJ 

-' 
Q) 1250 
(J) 
1-> 

U1 

1000 e. 

e. 

750 + b. 

500 + 

250 + 

0 

-500 

FIg. 

4 6 3 5 2 1 Crad: pos 1 t Ions 
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0 
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c 

c 
c Ill 

Ill 
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c 
0 

e. 0 
b. c b. Ill 0 

El 
b. c 0 

b. b. c 0 

c c 
c 0 c e. e. e. 

b. c e. Ct. 
c e. b. 

c e. b. 0 b. 
e. 

b. c c c 
c 1!1.6 

6 
c 

c c co e. b. 

1!1.6 
e. 

c e. 
b. 6 

0 6 b. 
6 6 e. 

6 "' 6 B e. c 
b. 6 e. 

e. 
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Distance from Lap centre (mm) 

6. 1. 2 SteeL Strain Distribution 
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0 + Q 
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e. El 
e. e. Iii 

Ill 0 
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e. 

+ 

+ 

+ 

250 375 500 

Specimen 250T12/12 

3000 

2750 

2500 

(/) 

2250~ 
(J) ,..... 

2000~ , 
Q) -

1750 :J 

3 -
1500q 

0 
(JJ 
C"t 

1250~ -
:J 
~ 

1000 

750 

500 

250 

0 

Key 
Rod Load 
A B Clc:Nl 

6 e. 25.5 A4 
c 0 40.0 85 

where a 

Bn , Before crack n 
An a After crack n 

Crack Load 
No. Clc:Nl 

1 24.0 
2 25.5 
3 25.5 
4 25.5 
5 42.0 
6 42.0 



-------- ----

5 I 4 2 3 Crack positions 

3000 3000 
I 

Key 
2750 -1- t 2750 I Rod Load v A B <kNI 

2500 -1- v + 2500 I 6 I:J. 22.5 A2 
v 

0 0 27.0 A4 
(f) I v v 40.0 v 

~ 2250 v 2250; 
('0 v (I) 

L 0 ,...... I whereo 1-> v v 
~ 2000 v v 

2000~ Bn • Before crack n 
L 

v 0 ., An , After crack n 
() v Q) 

- v v -
..§ 1750 0 v 1750 :J 

0 v 

c 0 3 Crack Load 
- - No. <kNI 

"-> 
~ 1500 v v v 

1500q 0 v v 0 v I 22.5 1-> v Cil 0 
(J) 6 0 (fl v v 2 22.5 6 v v rt 
-' rn 1250~ 3 24.0 (I) 1250 6 v v 

Q) v 0 [J -v v 4 27.0 1-> 0 6 0 v 2.. (f) v 
0 0 

v v 
v 0 0 5 35.0 

1000 v '0 v 1000 
6 6 v w v 0 

0 ov 
ciJICO 

0 
c c v :w 0 

750 -1- v 6 0 -1- 750 
6 c c co cD 6c 

c 6 0 c 6 I:J. v 
c cv 0 I:J. 6 

0 c c ~ I:J. I:J. 

500 -1- 6 6 c 0 D -1- 500 c 6 I:J. ~ 

V D 6 61!1 
6 6 I:J. I:J. I:J. 

250 -1- D 6 0 A -1- 250 v 6 A A 
&> 6 A A 

0 A A t&>d>tAtb. v A A A A A 
A ~ 

0 0 

-500 -375 -250 -125 0 125 250 375 500 
Distance from lap centre (mm) 

FIg. 6. 1. 3 SteeL Strain Distribution Specimen 500T12/ 12 



2 4 3 5 1 Cracl: positions 

3000 3000 
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v A B <I:Nl 
v 

2500-J.. 2500 ll. ll. 23.0 A2 
c c 34.0 AS v 
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(.. , An , After cracl: n 
0 v 

v v v Q) 

- v -
..§ 1750 c 1750 :J v v 

c El v v v v 
3 Crack Load ~c v v v v -- c El 1!1 - No. CkNl 

01 
~ 1500 v v [jJ 

1500q ll. 
ll. v 1 22.0 '"' v 0 

(/) 1!1 (/) 
2 23.0 c c v 

vv v v El rl 
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v v 3 26.0 
m v -ll. v CJ 4 30.0 '"' c c vv v CJ 
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v v 0 6 c c c CJ c v v EJD v 0 ll. 
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6 
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6 

"v H v 
~666~~~MMM~NN6NNN~~M~~a2H 

0 0 

-500 -375 -250 -125 0 125 250 375 500 
Distance from lap centre (mm) 

FIg. 6. 1 0 4 Steel Strain Distribution Specimen 750T12/12 
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I 7 2 6 1 4 3 5 8- -------- Crack positions 
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Specimen Crack number 
1 2 3 4 5 6 7 8 9 10 11 

125T12/12 23.0 27.0 32.0 32.0 
103 1509 117 1821 216 - - -

250T12/12 24.0 25.5 25.5 L 25.5 42.0 42.0 
- - 112 2089 123 971 120 1495 1301 - 571 -

500T12/12 22.5 22.5 L 24.0 27.0 L 35.0 
135 1375 117 652 122 1918 159 1087 701 1803 

750T12/12 22.0 23.0 26.0 L 30.0 L 34.0 L 
107 916 122 1497 121 725 231 1175 228 1099 

250T20/20 18.0 18.0 18.5 20.0 21.0 L 22.0 66.0 
- - - - 83 138 97 253 97 174 121 275 - -

500T20/20 16.0 L 16.0 20.0 20.0 L 23.0 29.0 29.0 66.0 

i 

44 173 64 289 95 119 91 278 125 562 129 565 - - - -

750T20/20 14.0 16.0 L 16.0 L 20.0 L 20.0 25.0 L 30.0 L 50.0 L 78.0 78.0 
59 261 49 222 57 143 69 201 111 428 98 298 138 299 392 680 1001 1484 1183 1375 

-"' ..., 
em 

250T12/20(A) 15.0 15.0 23.0 23.0 L 23.0 25.0 35.0 
- - 62 170 111 2360 96 546 - - 136 592 617 -

250T12/20(B) 18.0 L 20.0 20.0 20.0 27.0 38.0 L 38.0 ' 

56 408 - - 112 1437 69 425 109 419 1218 2569 1471 2100 

500T12/20 18.0 19.0 L 23.0 23.0 L 25.0 
- - 88 481 231 1636 125 530 118 521 

250T20/20(E) 12.0 L 12.0 15.0 19.0 19.0 23.0 23.0 23.0 
81 147 - - 88 227 67 303 77 464 - - - - 94 611 

250T20 /20(1) 10.0 18.0 L 18.0 22.0 27.0 27.0 27.0 27.0 L 40.0 63.0 

- - 114 136 111 188 79 317 132 330 136 190 - - 169 212 386 554 736 923 

500T20/20(L) 15.0 15.0 L 15.0 L 15.0 L 15.0 15.0 15.0 16.0 L 18.0 23.0 74.0 
- - 48 119 105 139 74 161 - - 60 111 51 109 86 163 68 323 - - 977 1186 

125D12/12 25.5 25.5 
- - - -

125D12/12(L) 19.0 19.0 19.0 
74 804 101 821 121 779 

KEY A 8 A: Load (kN) 8 : L - denotes crack within lap 

c 0 C : Pre-crack strain (rnicrostrain) 0 : Post-crack strain (rnicrostrain) 
~ ~- -~~ --

Fig. 6.5 Reinforcement Strains and Loads at Crack Formation 
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Specimen Failure Maximum Ultimate load (kN) 

load 

(Yes/No) (kN) 

125T12/12 Yes 32.0 

250T12/12 Yes 42.0 

500T12/12 No 40.0 

750T12/12 No 48.0 

250T20/20 Yes 66.0 

500T20/20 Yes 90.3 

750T20/20 No 100.5 

250T12/20(A) No 42.0 

250T12/20(B) Yes 42.0 

500T12/20 No 40.0 

250T20/20(E) Yes 52.0 

250T20/20(L) Yes 96.5 

500T20 /20(1) No 100.5 

125D12/12 Yes 25.5 

125D12/12(L) No 19.0 

British Code (BS8110:1985:§3.12.8)(7): 

F = 0.392 Ji;:1r ¢ l 

F = 0.7 Ji;:1r ¢ l 

BS8110 

13.2 

26.4 

51.2 

78.4 

41.8 

86.0 

129.9 

23.9 

27.0 

51.9 

45.8 

84.0 

172.0 

12.6 

25.7 

Reynolds 

31.6 

62.9 

122.1 

186.9 

54.4 

111.8 

168.9 

56.9 

61.6 

117.9 

59.5 

80.9 

152.9 

30.2 

42.2 

( without links) 

(with links) 

These figures exclude the partial safety factor of 1.4. 

Reynolds(31): 

/r (Atr l) F = 0.81 y Jcu (0.5¢ +c)+ 70 --;;;-

Orangun, Jirsa & Breen(30): 

O.J.&B. 

39.7 

67.2 

118.5 

175.4 

79.4 

130.5 

180.7 

60.8 

66.3 

115.0 

86.9 

132.5 

208.1 

37.9 

60.8 

F = 0.71 Ji;: (0.5¢ +c)+ 11.7¢2 Ji;: + 0.08 Ji;: fyt (A:: 
1
) 

Constants have been converted from imperial units. 

It is assumed that /~ = 0.8 VJ::,. 

Fig. 6.9 Ultimate Loads 
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Specimen No. of Average Maximum Minimum 

cracks spacmg spacmg spacing 

(mm) (mm) (mm) 

125T12/12 2 375 483 230 

250T12/12 4 300 410 205 

500T12/12 4 300 415 195 

750T12/12 3 300 c 440 150 

250T20/20 6 214 300 125 

500T20/20 7 214 425 115 

750T20/20 7 188 275 100 

250T12/20(A) 6 214 285 155 

250T12/20(B) 5 250 450 170 

500T12/20 5 250 350 150 

250T20/20(E) 8 167 240 100 

250T20/20(L) 8 164 265 80 

500T20/20(L) 10 136 240 100 

N.B. 'High strain' cracks have been excluded. 

Fig. 6.16 Crack Spacing 
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.-
""" CD 

Specimen 
1 2 3 4 

125T12/12 312. 377. 

2.6 4.5 9.0 5.6 

250T12/12 - 432. 201. L 309. 

- - - - 2.6 9.8 4.1 6.1 

500T12/12 284. 135. L 397. 225. L 

4.8 4.2 2.4 1.4 .4,.2 6.1 2.9 2.9 

750T12/12 190. 310. 150. L 243. L 

3.6 4.2 7.6 6.8 2.5 4.1 2.7 5.8 

250T20/20 - - 29. 52. 

- - - - 0.7 1.0 2.3 -

500T20/20 36. L 59. 25. 58. L 

1.2 1.7 2.4 2.1 0.8 0.6 1.8 2.4 

750T20/20 54. 46. L 30. L 42. L 

- 1.8 1.7 2.2 1.4 1.0 1.5 1.9 

250T12/20(A) - 35. 489. 113. L 

- - 1.2 1.9 - - 2.8 2.1 

250T12/20(B) 84. L - 297. 
. 

88. 

2.5 2.0 - - 4.7 5.4 3.9 5.0 

500T12/20 - 100. L 339. L 110. L 

- - 2.6 2.6 9.9 7.2 1.8 2.3 

250T20/20(E) 30. L - 47. 63. 

1.8 1.4 - - 2.1 1.7 3.1 3.1 

250T20/20(L) - 28. L 39. 66. 

- - 0.7 0.7 1.6 1.3 3.1 3.1 

500T20/20(L) - 25. L 29. L 33. L 

0.8 2.5 0.9 0.9 1.2 1.1 - -

125D12/12 - -
- - - -

125D12/12(L) 167. 170. 161. 

6.5 7.2 4.2 4.4 4.2 3.6 

Key A B A : Rod stress (N/rrun2 ) 

c D C : Bond stress below crack (N/rrun2 ) 
---

Fig. 6.21 Bond Stresses at Crack Formation 
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0.0 0.5 0.5 0.0 1.0 1.6 2.6 2.9 - - - - - -

B : L - denotes crack in lap Italics: bond stress 
D :Bond stress above crack (N/rnm2 ) influenced (see text) 
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Specimen Maximum Failure Mean bond Coefficient Peak bond 

load stress of variation stress 

(kN) (Yes/No) (N/mm2
) (%) (N/mm2

) 

A B A B A B 

125T12/12 32.0 Yes c Final strain distribution not recorded 

250T12/12 42.0 Yes Final strain distribution not recorded 

500T12/12 40.0 No 3.6 2.4 57 48 8.6 3.8 

750Tl2/12 48.0 No 3.5 3.1 77 73 10.5 8.5 

250T20/20 66.0 Yes 3.8 5.0 51 56 6.3 13.3 

500T20/20 90.3 Yes 3.6 3.6 22 47 6.2 6.7 

750T20/20 100.5 No 2.7 3.6 62 64 6.1 8.4 

250T12/20(A) 42.0 No 4.4 4.8 38 27 8.4 8.0 

250Tl2/20(B) 42.0 Yes 3.5 5.9 67 33 7.4 8.2 

500T12/20 40.0 No 2.5 2.7 47 55 4.4 6.3 

250T20/20(E) 52.0 Yes 4.2 4.1 35 37 6.5 5.6 

250T20 /20(1) 96.5 Yes 3.5 4.4 52 54 6.6 6.9 

500T20 /20(1) 100.5 No 3.5 3.5 61 61 7.1 5.8 

125D12/12 25.5 Yes Final strain distribution not recorded 

125D12/12(1) 19.0 No - - - - - -

Fig. 6.25 Bond Stresses at Maximum Load 
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Specimen Failure Maximum Ultimate bond stress (N /mm2) 

bond stress 

(Yes/No) (N/mm2
) 

125T12/12 Yes -

250T12/12 Yes -

500T12/12 No 3.6 

750T12/12 No 3.5 

250T20/20 Yes 5.0 

500T20/20 Yes 3.6 

750T20/20 No 3.6 

250T12/20( A) No 4.8 

250T12/20(B) Yes 5.9 

500T12/20 No 2.7 

250T20 /20(E) Yes 4.2 

250T20 /20(1) Yes 4.4 

500T20 /20(1) No 3.5 

125D12/12 Yes -

125D12/12(1) No -

British Code (BS8110:1985:§3.12.8)(7): 

fbs = 0.392~ 

fbs = 0.7~ 

BS8110 

2.8 

2.8 

2.7 

2.8 

2.7 

2.7 

2.8 

2.5 

2.9 

2.8 

2.9 

5.4 

5.5 

2.7 

5.5 

Constants exclude partial safety factor of 1.4. 

Reynolds(31 ): 

fbs = 0.25 ~ ( 0.5 + ~) + 22 ( ~t~) 
Orangun, Jirsa & Breen(30): 

Reynolds 

6.7 

6.7 

6.5 

6.6 

3.5 

3.6 

3.6 

6.0 

6.5 

6.3 

3.8 

5.1 

4.9 

6.4 

8.9 

(without links) 

(with links) 

O.J.&B. 

8.4 

7.1 

6.3 

6.2 

5.1 

4.2 

3.8 

6.5 

7.0 

6.1 

5.5 

8.4 

6.6 

8.1 

12.9 

II ( c) ~I<P II (!yt Atr) fbs = 0.22 y )cu 0.5 + "¢; + 3.72 y fcuz + 0.025 y feu Sv </J 

Constants have been converted from imperial units. 

It is assumed that f~ = 0.8 vr;;;. 

Fig. 6.26 Ultimate Bond Stresses 
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Fig. 7. 1. 4 Steel Strain Distribution Specimen 125C20/20 
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