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ABSTRACT 

2. 
This thesis is concerned with the use of L or square 

integrable functions as a representation of the electronic 
continua in ion-atom collisions. An exact representation of 
the continuum states is considered for comparison. The L~ 
functions are optimised in an attempt to remove some of the 
arbitrary features present in such calculations. 

The original work of this thesis is mainly concerned 
with the calculation of single electron processes in 
collisions between He·t.·-\" ions and neutral lithium atoms. The 
cross sections for single electron capture were calculated 
in a close-coupled approximation, using the semi-classical 
impact parameter method. A maximum of thirty-two atomic 
orbitals with plane-wave translational factors attached were 
centred upon the target and projectile. Satisfactory 
agreement with experimental data is obtained over the He·~+ 
laboratory energy range from 8 to 2000 keV. The results 
show the importance of the continuum over a restricted range 
of impact energies. 

The rest of the research is concerned with direct 
excitation and ionisation in the same collision system and 
results are given for He~~ laboratory energies between 20 
and 6000 keV. The calculations used a similar close-coupled 
approximation with up to sixty-five basis states. The best 
ionisation cross sections reproduce the experimental data 
apart from a normalization factor. The excitation results 
were more sensitive to basis set choice. 

The ionisation cross sections were also investigated 
using an exact representation of the continuum states, using 
the First Born Approximation and a t-matrix approximation in 
an attempt to improve upon the L2 results. 

The relationship between the present calculations and 
some previous methods are discussed and suggestions for 
future work are made. These are the first close-coupled 
estimates of ionisation for this sytem and show that 
contributions from target d- and f- states dominate the 
ionisation cross section around its maximum. 
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CHAPTER ONE 

.. 
Introduction 

1.1 Single electron processes in ion-atom collisions. 

The work presented in this thesis is concerned with the 

calculation of different electronic processes that an 

electron can undergo in a collision of a multiply charged 

bare ion with an atom. The atom will always be treated as 

an effective one electron system even in the many electron 

case. The active electron which we consider can undergo a 

variety of possible transitions. To illustrate these 

possibilities, let us denote the incident projectile ion by 

A and the target ion or atom by (B + e-), so that A and B 

represent a bare nucleus and possibly multiply charged ionic 

core respectively. In the collision between A and (B + e-) , 

we can list the following possibilities: 

A+ (B +e)~ A+ (B +e-), elastic; (1.1.1a) 

---7 A + (B + e-)*, excitation (1.1.1b) 

-7 (A+ e-) + B capture into the ground 

state (1.1.1c) 

1 



~ (A+ e-)*+ B, capture to an excited 

state (l.l.ld) 

• 
~ A + B + e , ionisation (l.l.le) 

In (l.l.la) there is no conversion of kinetic energy into 

internal energy and this represents elastic scattering. 

.. However, in (l.l.lb) the target is excited (an excited 

system will be hereafter denoted by a *) and this is known 

as direct excitation because there is no rearrangement of 

the particles during the collision. Processes (l.l.lc) and 

(l.l.ld) are electron capture processes, and are 1.n the 

class of collisions called rearrangement processes. They 

are also known as charge transfer or charge exchange 

processes. In the last process (l.l.le), the final state of 

the active electron is a continuum state and not a discrete 

bound state on A or B and this is the ionisation channel. 

If A and B are the same, the electron capture process 

is known as "symmetric", otherwise it is called 

"asymmetric". Also if there is a zero (or nearly zero) 

energy defect between the initial and final systems the 

process is called "resonant". If the energy defect is not 

zero the term "non-resonant" is used. For example the 

process 

+ +-
H + H(ls) ----"t H(ls) + H (1.1.2) 

2 



illustrates symmetrical resonance electron capture. 

However, the process 

• 
Hel.. + + H ( 1 s) -? He-r ( 2 s) + H + (1.1.3) 

is an example of asymmetrical (or accidental) resonance 

electron capture. 

1.2 Applications of heavy particle collisions 

The processes of charge exchange and ionisation have 

been the subject of much attention in recent years for 

several reasons. We shall now briefly discuss why this is 
l-t-

so with particular reference to the system He + Li, which 

is the focus of the present results in this thesis. 

There has been considerable interest over the last 

decade or more in obtaining laser action in the X-ray 

frequency region. Several schemes have been proposed. For 

example, McCorkle (1972) proposed to pass an ion beam 

through a thin target to produce the reaction 

+ +-
A + C ~ A + C* (1.2.1) 

Because of the large cross sections (which will be defined 

in the next section) for the selective production of 
+ 

inner-shell vacancies in the ions (or atoms), A , a 

population inversion could be achieved. However, a major 

difficulty of this scheme may be the extremely short 

3 
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lifetimes of the inverted population due to Auger processes. 

A different method was proposed by Vinogradov and Sobelman 

(1973) who considered using an electron capture reaction of 

the type 

-+-"' -rq-1 -+-
A + B --7 A + B (1.2.2) 

-r- "1 - I 
which preferentially leaves the A product ion in a 

highly excited state. This subsequently decays to the 

ground state with the emission of vacuum ultraviolet (VUV) 

or an X-ray photon. Indeed two astrophysicists, Silk and 

Steigman (1969) have shown that the reaction (1.1.2) with B 
-\-CJ 

= H and A a stripped metal ion, is a probable source for 

soft X-rays in the interstellar medium. 

The fundamental issue in the use of (1.2.2) to produce 

an X-ray laser is the specific choice of reactants. Other 

important considerations are the optimum collision velocity 

for producing a specific electronic level, the possible 

contamination of lower lying electronic levels that may 

preclude a population inversion, and whether or not the 

reaction can be realized experimentally. One of the first 

restraints to consider is the collision velocity. In 

general for high-velocity collsions, (V > 2 x 10 em/sec) the 
-+<f-1 

excitation of the A ion after electron capture tends to 

be spread over many electron levels (Guffey, Ellsworth and 

MacDonald, 1977). Thus the cross section for producing a 

specific electronic state is small, reducing the possibility 

of generating a population inversion. Also the charge 

4 
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transfer cross sections decrease rapidly with increasing 
-1--9 

collision velocity, even when the charge state of A is 

large . 

However even in the case of low velocity collisions 

there is another restraint upon the choice of collision 

partners. For the more highly charged ions and many 

electron atomic targets, the reactant state lies in the 

continuum of the ionization and electron capture process 

-rq ~'i-t 1+ 
A +B-7A +B +e (1.2.3) 

Hence there may not only be electron capture to high lying 
+-<q-1 

states of A via (1.2.2) but also population of low-lying 

states of the A+"!-! ion via (1.2.2), thus removing the 

possibility of a population inversion. Winter et al. (1977) 

have shown the importance of (1.2.3) for collisions of 

multiply charged ions with many electron targets such as Ne 

and Ar. Shipsey et al. (1978) after considering several 

systems using semi-empirical theoretical methods (Olson and 

Salop (1976)) were led to consider a serious calculation on 
2-t-

the He + Li system, using a molecular orbital approach at 

low velocities (V < 7 x 10 em/sec) and a classical method 

(Section 2. 4.1l) for V > 1 x 10 em/ sec. Their calculations 

indicated that for V < 6 x 10 em/sec the reaction 

1-+" +-*" -+-
He + Li ---7 He + Li (1.2.4) 

5 



preferentially + produces excited He n=3 states. This 

prediction was confirmed experimentally by Barrett and 

Leventhal (1981). 

Subsequent to the 
+* 

process (1.2.4), the He (31) state 

will decay directly into its ground state either with the 
0 

emission of a 256A (48.4 ev) photon or by cascading via the 
~ 0 

He+ (21) level with the emission of 1640A (7.6eV) and 304 A 

(40.8eV) photons. Further experimental and theoretical 

results concerning this feature will be presented in Chapter 

5. Details of some schemes for producing a soft X-ray laser 

can be found in Louisell, Scully and McKnight (1975) and ref-

erences therein. 

Another very important use of the reaction (1.2.4) is 

in plasma diagnostics in controlled thermonuclear fusion 

(Guffey et al. 1977). We will now briefly discuss some aspects 

of the fusion process and then mention the role of cross 

section calculations as a tool for unfolding the detailed 

confinement properties of fusion experiments. 

Most effort has been directed towards operating a 

fusion reactor in which a magnetically confined plasma is 

heated to a temperature at which fusion occurs, the 

subsequent energy being used to produce steam to generate 

electricity in steam turbo-generators. To bring this about 

requires very high temperatures, in order to overcome the 

Coulomb repulsion of the nuclei which are to be fused. This 

means nuclei with small charges must be used and the best 

isotopes for this purpose are those of hydrogen (deuterium, 

6 



D and tritium, T) . Deuterium occurs naturally in "heavy 

water", (D '2.. 0) and is obtained relatively cheaply from 

natural water sources. One of the major tasks has been 

concerned with confining the plasma, and one method is to 

use a combination of magnetic fields to confine the plasma 

in a torus. 

One attractive candidate for the fusion 

.. reaction is the so-called D-T reaction . 

4- 2-t-
D + T --7 ( He + 3. 52 Mev) + (n + 14.05 Mev) 

(1.2.5) 

The 3.52 Mev alpha particles remain in the fully ionised 

plasma where they lose their energy through collisions with 

other constituents. The neutron energy must be converted 

into heat by some process. One possible solution is to 

surround the reactor with a lithium blanket to trap the 

neutrons inside, and use heat exchangers to enable their 

kinetic energy to be used to heat steam. The advantage of 

this idea is that more tritium could be produced by the 

reaction 

6 Li + n 
lr 

~ He+ T + 4.80 Mev (1.2.6) 

6 
The Li isotope occurs in natural lithium ( 7.5%) and can be 

obtained fairly easily. As an idea of the temperatures 

required, 100 MW power station would need of the order of 10 

7 
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D T reactions per second, and this corresponds to a 
'8 

temperature of the order 10 K. 

For a magnetically confined plasma, the energy supplied 

to heat it is through a process called "ohmic heating", 

which comes from the toroidal current induced by the 

magnetic field. However above 2-3 Kev this method is 

ineffective and at higher energies the alpha particles from 

the D-T fusion reaction (1.2.5) cannot produce further 

heating. The most promising approach appears to be heating 

by neutral beam injection. This is a process whereby an 

intense beam of neutral D atoms (formed by a charge exchange 

reaction) is injected into the plasma (which it will not 

contaminate), through the confining magnetic field. 

The D atoms become ionised once inside the plasma, and 

thus become confined by the magnetic field, losing energy by 

collisions with the plasma constituents. The actual 

processes whereby the D atoms are ionised in the plasma are 

given below 

+ +-
D + D ~ D + D (1.2.7a) 

D + T+ -0' D 
+-

+ T (1.2.7b) 

D+ -t- -t-
D + -7 D + D + e (1.2.7c) 

T-t- -t-
D + -4- D + T+ + e (1.2.7d) 

e + D -0' 
-t 

+ 2e (1.2.7e) D 

The cross sections for the reactions (1.2.7a) to (1.2.7e) 

can be found from the measured cross sections for the same 

8 
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+ reaction in the H + H system, as they are the same at the 

same relative velocity. The most important of these 

ionisation reactions above are (1.2.7a) and ( 1. 2. 7b) which 

have cross sections of the order of 
-\$'" 'L 

10 em at beam 

energies of about 10 Kev. However at an average of 100 kev 

these same two processes have cross sections of the order of 
~\1- 1.... 

10 em and it is the ionisation reactions (1.2.7c) and 

(1.2.7d) which are more important with cross sections of the 
.--/6 2.. 

order of 10 em. The electron ionisation process (1.2.7e) 

is of little importance at the energies being considered. 

The production of the initial neutral D beam is done by 

accelerating a pulsed beam of D ions from an ion source, to 

about 100 kev. This is passed through a molecular deuterium 

ga5 (D '2--) or a metallic vapour target, where partial 

conversion to fast neutral atoms or molecules occurs by 

electron capture, for example 

-t-
D + D ~ 

2-

+ 
D + D 

'L 
(1.2.8) 

However, the cross section for this process at 100 kev is 

small and so neutralisation is not very efficient. An 

alternative is to use the "detachment" reaction 

D +D ~ D+-e. +D 
1.. '2-

(1.2.9) 

This has a larger cross section but the formation of the 

negative D beam is difficult. 

9 



The efficiency of such neutral beam heating is lowered 

by the presence of fully ionised impurity ions such as c b~ 

and 0 S-r-, in the plasma. Electron capture into highly 

excited, short-lived states of these impurity ions, such as 

~{- (9-1)+ -r 
X +H -)X +H (1.2.10) 

leads to radiative decay and a loss of power. 

Also the ionisation process 

X '7+ + H 
~-~- f" 

X + H + e (1.2.11) 

produces cold electrons which degrade the density and 

temperature distribution of the plasma. 

Another possible source of energy loss within the 

plasma is the process 

+- "f+ C.'t-t-1/+ 
H +X ----?H+X (1.2.12) 

l--+"' 
where X may be He or an impurity. The neutral H atoms 

escape the magnetic confinement and the increase of charge 

of X leads to further radiation power losses. It is clear 

that data for many atomic processes is required to improve 

the performance of a magnetically confined fusion system. 

For instance data is needed for the electron capture 

processes 

10 



2.1- +- -1-
He + H ~ He + H 

-r + 
He + H ~ He + H 

(1.2.13) 

(1.2.14) 

This is needed to gain a better understanding of the energy 

and particle loss mechanisms which are associated with alpha 

particle heating. This is expected to be the dominant 

heating mechanism on all reactor-sized fusion experiments. 

Therefore there is interest in diagnostic techniques that 

could provide quantitative information about alpha particle 

physics in the first generation of fusion experiments, such 

as JET and TFTR. One such proposed diagnostic is the use of 

a high energy (6 Mev) neutral lithium beam injected into the 

plasma (Post et al. 1981). The fast alpha particles could 

be neutralized and escape the plasma by double charge 

exchange with the neutral lithium in the beams, 

'2.. -t- '2- -1-

Li + H-e- ---7 Li + H-<L (1.2.15) 

The fast neutral helium atoms would be ionized in the 

detector and analyzed with energy sensitive detectors. 

However the expense and complications of the high 

energy lithium beam make other simpler techniques desirable. 

Plasma diagnostic techniques such as this are a vital 

area of magnetic fusion research. In fact it has been 

stated that the most impressive progress in the past twenty 

years in research in magnetic fusion has been in the area of 

diagnostics. 

11 



In general it is important to be able to measure the 

parameters of a plasma such as its density and temperature, 

the concentration of impurity ions, and the depth of 

penetration of the neutral beam used to heat the plasma, 

along with many other quantities. 

An example of electron capture and ionisation processes 

being used in plasma diagnostics is provided by Kislyakov 

and Petrov (1971) who have used 4 to 14 kev beams of 

hydrogen atoms as probes to investigate a plasma. From the 

attenuation of the beam and a knowledge of the cross 

sections for electron capture and ionisation for protons 

colliding with hydrogen, and for ionisation of hydrogen by 

plasma electrons, the path-averaged proton density in the 

plasma can be measured. It is also possible to study the 

Doppler-shifted radiation emitted by decaying hydrogen 

atoms, formed by electron capture from the hydrogen atom 

injected beam by plasma protons, in order to study the 

temperature of the plasma. This method can also be used for 

investigating impurities present in the plasma, and to 

exploit the full potential of this aproach, accurate cross 

sections for the (n,l) distribution will be essential. More 

comprehensive discussions of many points which have been 

mentioned concerning controlled nuclear fusion will be found 

in McDowell and Ferendici (eds.) (1980) .In conclusion we can 

say that a knowledge of the methods and cross sections that 

are to be presented in this 

12 



thesis have important pract1cal and, hopefully, peaceful 

applications. 

1.3 Cross Sections and frames of reference 

In this section we shall discuss the quantities which 

are calculated in the present work and the units of these 

quantities. In a collision between two "particles" (such as 

atoms or molecules etc.) the fundamental or characteristic 

quantity which is measured is called a cross sections, which 

is defined as follows: the cross section of a certain type 

of event in a given collision is the ratio of the number of 

events of this type per unit time and per unit scatterer, to 

the relative flux of the incident particles with respect to 

the target. The cross section as defined must be measured 

experimentally and we will now indicate how this is done. 

In Figure 1.1, we illustrate a simple experiment where 

an incident beam of particles, A, falls upon a target B 

after being collimated so that it is very nearly a parallel 

beam. Further we assume that the beam, A, is very closely 

monoenergetic. We now suppose that NA particles A reach the 

target per unit time. We denote by~the average density of 

particles A in incident beam and by u. their average 
L 

velocity with respect to the target B. Then the flux of 

incident particles relative to the target (that is the 

number of particles A crossing per unit time a unit area 

perpendicular to the beam direction and stationary with 

13 
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Figure 1.1 

Schematic diagrrum of a 

simp I e co I I is ion experiment . 

Pr 

Ce\liMC\ I: or 

SLi..I::.S 
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respect to the target) is given by 

~· 
A 

u.. 
L (1.3.1) 

where S is the cross-sectional area of the beam. We further 

assume that the target is thin to avoid multiple collision 

effects. Let nB be the number of particles B within the 

"effective" target volume interacting with the incident 

beam. If the target is a thin layer of thickness 1 then 

n ~ 5 L ___n._. B 
B 

(1.3.2) 

where ~ is the number of particles B per unit volume of the 
13 

1\ 

target and ..fL is the average surface density of the target 
B 

particles. 

If N is the total number of particles A which have 
!::o!: 

interacted per unit time with the scatterers, then under 

these assumed experimental 

proportional to the relative 

conditions, N ~ is directly 
t_-01:: 

incident flux J? and the number 
A 

0 of target scatterers. Therefore we have 
8 

(1.3.3) 

where the proportionality constant (for a given collision 

energy) is called the total cross section for the scattering 

of particle A by particle B. The quantity Cl' has units of 
l: ol::. 

area and can be thought of as an effective area which picks 

14 



up the incident beam, and is a measure of the strength of 

the interaction between the particles A and B, at the 

particular collision energy being considered. It is an 

intrinsic property of the quantum mechanical system (A + B) . 

The quantity u is 
~ot:: 

the total cross section for all 

possible collision processes which occur when particles A 

and B collide. That is to say, it includes elastic 

scattering 

A + B ~ A + B, (1.3.4) 

inelastic scattering 

A + B --7' A* + B* (1.3.5) 

where, as usual, a * denotes a possible change in the 

internal quantum state has occurred, and finally reactive 

scattering 

A+B _____.; C+D 

A + B --7 C + C + +C 
1 L n 

(1.3.6) 

(1.3.7) 

where in the final state two or more particles are produced 

which are different from A and B. 

The reactive processes (1.3.6) and (1.3.7) are called 

rearrangement collisions if they occur via the exchange of 

one or more elementary constituent particles. In the case 

15 



(1.3.6) where only two particles appear in the final state, 

it is termed a binary rearrangement collision. For example, 

a charge exchange process which involves the transfer of one 

or more electrons between two atomic cores is a binary 

rearrangement collision. Similarly the process of 

ionisation which occurs when an electron is ejected from a 

particle in the collision is a reaction collision. It is 

possible to introduce total cross sections for particular 

processes which we shall now proceed to do. 

In the case of elastic scattering we can define a total 

elastic cross section C'.c..L in an analagous manner to -6" in 

(1.3.3) 

where N 
e.L 

is 
l:o ~ 

elastically per 

t;, 1:: tel:. 

:::: o -€.. c rt:. n 
8 ~::.,.~:: rf\ (1.3.8) 

the total number of particles A scattered 

unit time. If the collison energy is such 

that only elastic scattering can occur then clearly 

However, in the general case when inelastic processes 

occur, we can define the total reaction cross section 

to include all such processes 

(1.3.9) 

We note at this point that the term "total" when applied to 

cross sections can have two different meanings. The 
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formally correct use 1s to distinguish between total cross 

sections and differential cross sections which will be 

discussed shortly. In the previous discussion we have used 

the term "total" in its correct sense. However, it is 

common to find the phrase "total cross section" applied to 

mean the total cross section for scattering into all 

possible states being considered, whilst "cross section" 

means the total cross section for scattering with one or 

some small number of states. 

So far the discussion has not included cross sections 

which give any information about the angular distribution of 

the scattered particles. These usually give a more detailed 

insight into the interaction between the two colliding 

particles. In order to analyze angular distributions, it is 

necessary to choose a coordinate reference system. The two 

most common frames used are the laboratory (Lab.) and centre 

of mass (CM) frame, often called barycentric system. The 

laboratory frame is such that the target B is at rest, 

whereas the centre of mass frame is that where the centre of 

mass of (A + B) is at rest. 

Let us work in the laboratory frame and considering 

elastic collisions, we denote by dN e. L the number of 

particles A scattered per unit time into solid angle d~L 

Which iS Centred abOUt the direction ( e 1 ¢ ) aS ShOWn in 
L L 

Figure 1.2. Provided we have a thin target 

~ L ( 
6

t.. r ¢ L ) J n 8 
A-

17 

(1.3.10) 



The quantity ~ ( eL, ¢) 
.e.L L-

is the laboratory differential 

cross section for elastic scattering. It is also written as 

b' (e ~~L) 
~l L 

Ja- ce , ~ ) 
-e... L- L L (1.3.11) 

Since § represents the relative flux of the projectile with 
A 

respect to the target, we can rewrite the definition 

(1.3.100 in the centre of mass frame as 

c-s-- ( e -tt' ) (£ n 
-e.l. C.fr1

11
C"'. l.A 8 

where 

d __IL c. r'Y\ 

l -
d CL 

- err. 

From equations (1.3.10) asnd (1.3.12) we see that 

(1.3.12) 

(1.3.13) 

~~~,tE\,)Pt.-1 d____n_L.::: 

d.JL.~..-

_:!_~ t. ( e (A'Y) 1 ? uY\) d 12.c. P\ ( 1. 3 • 1 4 ) 

J. .J2- c. >'Y] 

and that the total elastic cross section is 
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C)-
-e. l -s 

which is independent of the reference frame as any total 

cross section should be. In a similar manner, we can define 

differential cross sections for non-elastic scattering. 

1.4 Units for cross sections and other variables 

Throughout this thesis, unless otherwise stated, we 

shall use the atomic system of units. This is the system 

obtained by setting e = m = 1\ = 1 , where e and m 
-"!.. -e.. 

are the 

charge and rest mass of the electron respectively. Then in 

this system the unit of length is the Bohr radius, a 
0 

( = 
-8 

0.529 x 10 em) which is the radius of the first Bohr orbit 

of the hydrogen atom. 
'

The Bohr radius is given by a = n . 
o me...2-..... 

Similarly the units of velocity is the velocity of the 

electron in the first Bohr orbit of hydrogen, v 
"h 

0 

Setting e, m and n to one in the expression for the ground .... 
't 

state energy of the hydrogen atom, which is -m e , 
_.:!::....-... -n\..

in atomic units (a.u.). Therefore the atomic unit 

. -I g1ves 
1... 

of energy 

is twice the ionisation energy of the hydrogen atom, which 

is 2*13.6 eV = 27.2eV. 

In atomic physics cross sections are often expressed in 
'L 

terms of a 
0 

- 11- "1. 
(= 2.8 X 10 em) or in terms of na '1.. (= 8.8 X 

-I=!' 1. 
10 em ) . The units which will be 

c 

used throughout this 

thesis for cross sections, unless otherwise stated, will be 

19 



-I b ?.. 
10 em . 

It is convenient to measure collision energies in terms 

of kev, and to refer this to either the laboratory or centre 

of mass frame. The collision velocity will usually be in 

terms of atomic units though. If we denote the centre of 

mass energy by E , and the laboratory energy of A by 
C:H 

E 

(that is E F\ is 
L 

the kinetic energy of A in the laboratory 

frame) and similarly the laboratory energy of B by E , then 

it is straightforward to show that 

E 
L-

GM 

;:::: 
B 

L-

(1.4.1) 

where M and M are the masses of A and B respectively. 
Ft 8 

Equation (1.4.1) applies to ion-atom collisions if the 

electron mass is ignored. It is important to note that the 

laboratory energy depends upon whether A or B is at rest. 

Throughout this work we have used the convention that B 

is at rest, whilst A is moving. However, unless the meaning 

is clear, it is necessary to specify which of the colliding 

entities is the projectile and which is the target when 

considering laboratory energies. For example we shall use 

A. 
L 

the phrase "the 
4- ?..+ 

He laboratory energy" or "the 
4- ... -r 

He 

projectile energy" to indicate the same fact, that the 

is the projectile. Both these phrases are equivalent. We 

shall also use the unit of energy obtained by dividing the 

laboratory energy by the mass of the projectile. For 
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4- 2-T 
example taking the He mass in atomic mass units, (amu) as 

Lt 1..-l-
4, we can divide the He laboratory energy by 4 to obtain 

A 6 -I 
units of kev amu . We note that from (1.4.1) E~ = EL which 

HA Ms 
is proportional to the square of the relative velocity of A 

and B, and hence there is no need to specify that A is the 

projectile. For example, if the laboratory energy is 150 _, 
kev amu for A incident upon B, it is the same for B 

incident upon A. We also will make use of the fact that one 

atomic unit of velocity corresponds to a laboratory energy 

of 24.97 kev 

__ , 
amu 
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CHAPTER TWO 

Existing theory and applications 

2.1 Introduction 

Processes which involve electron capture or ionisation 

in ion-atom collisions has generated a vast literature in 

both review articles and text books, for example, McDowell 

and Coleman (1970) 1 Brans den (1983), Greenland (1982) 1 

Janev, Presnyakov and Sheve1ko (1985), Basu et al. (1978), 

Mapleton (1972). The present chapter is not intended to 

extensively review the subject or to mention every different 

approach to the problem of calculating charge transfer or 

ionisation cross sections. It is intended to mention some 

of the main aspects of the theory of electron capture and 

ionisation, which are relevant to the work in this thesis, 

and also illustrate briefly the history of the subject 

through attempts to improve upon previous calculations. 

We shall begin by briefly discussing the full quantum 

mechanical treatment of the electron capture problem and 

then discuss the semi-classical impact parameter 

approximation which is used extensively in theoretical work 

on ion-atom collisions, and which forms the basis for the 

results in this thesis. We shall then consider the use of 

the atomic orbital expansion method, and attempts to improve 
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upon this, by using various pseudostate expansions. 

Finally, we shall discuss the use of a completely classical 

model for calculating ionisation and charge transfer which 

has recently been applied to calculate cross sections for 

the same collision system that forms the basis for the 

present results in this thesis, namely the He + Li 

system. 

2.2 Quantum mechanical Formulation 

We shall begin by considering the single electron 

capture process 

A + (B + e ) -----7 (A + e ) + B (2.2.1) 

where A and B may represent singly charged ionic 

cores. As was stated before we shall suppose that A is the 

projectile ion and B is the target ion. The coordinate 

system which is to be used to describe the system is shown 

in Figure 2.1. In Figure 2.1, R denotes the position vector 

of A with respect 
~ 

to B, R is the position vector of B 
A 

with 

respect to the centre of mass of (A + e ) , R is the 
8 

position vector of A with respect to the centre of mass of 

- -' __,. 
(B + e ) . The vectors r and r are the position vectors of 

F\ 8 
....:. 

the electron with respect to A and B respectively, and r is 

the position vector of the electron with respect to the 

centre of mass of A and B. Finally, we let G be the centre 
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Figure 2.1 

Electron capture centre of 

mass coordinates. 



-
of mass of the whole system (A+ B +e). We shall use MR 

and M for the masses of A and B respectively, and let M be 
E -e_ 

the mass of the electron (we shall use M here for the 
-€. 

electron mass although it is equal to one in atomic units). 

Then the total mass of the system is 

M M + M + M (2.2.2) 
Pt B ~ 

The kinetic energy, T of the centre of mass of the system 
cfvl 

is given by 

-r 
CM 

:::. I '7..- M (2.2.3) 

where P is the magnitude of the linear momentum of the 
C.. I-t 

centre of mass in the reference frame. It is useful to 

separate out the centre of mass motion from the scattering 

problem and work in the frame where the centre of mass is at 

rest. Hence p and T (from 2.2.3) will be zero. Then in 
C.M CM 

the system described above, the point G in figure 2. 1 is 

chosen to be at rest. It is usual, in order to describe the 

dynamics of the system in the centre of mass frame, to 

choose 
__.. -" ~ 

one of three sets of coordinates, namely (r,R), ~ , 
!\ 

....lo __, _,. 

RA,)or(r , R ) . The centre of mass kinetic energy operator T 
8 s 

is now given by 

+ (2.2.4) 
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---' ~ ~ ----' __J 

P, P and P 
A B 

are momentum operators conjugateto R, R and 
P, 

R 

respectively, and similarly p, -" p and --' p are momentum 
f\ B 

operators conjugate 
~ 

to r, r and r respectively. 
A 8 

In 

equation (2.2.4), the various reduced masses are given by 

\""\ M B 
~ :::: 
~ 
r'\11 + M~ 

) 

0\ :::: 0'\-e ( N A+ Y'V\e,} 

Mf\ + HB +- 0(-Q.. 

f-Af'\ :::: 

f-As :::. 

M 
A 

r'l-\ s 

MBC fV\ +- 0\~l 
Pt ) 

M + MB+ 1"'\ (2.2.5) 
A -e. 

M (He .\- 1"'\ 
) 

A -e._' 

Nr:J + No. -t- ()\ 
._, -~ 

-:= "" Mr+ (2.2.6) -e. 
-----
0\ + NA -e.. 

= (YI Me 
-'2. 

"' + MB -€ 

In the general theory of collisions it is convenient to 

introduce the concept of arrangement channels (Bransden 

(1983), Chapter 4). In the centre of mass frame, the total 

Hamiltonian of the system, is written as 

H = H + V (2.2.7) 
d-.. d.. 

where the subscript ~ is variable and denotes a particular 

grouping of 

aggregates, i.e. 

the particles into single particles and 

different arrangements. We use H to 
o<. 

denote the Hamiltonian of the system when the separate 
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particles and aggregates are far apart and then vo<.. 

represents the interaction potential. Corresponding to each 

arrangement channel of H, denoted by o<, there are associated 

a set of channels. Each channel corresponds to a particular 

state of the system within each arrangement channel. 

In the case of the (A + B + e ) system, the arrangement 

channels to be considered are the direct arrangement 

channel, when centre A interacts with the (B + e system, 

and the rearrangement arrangement channel which corresponds 

to centre B interacting with the (A + e system. 

Henceforth we shall omit the word "arrangement" and refer to 

the direct and rearrangement channels. Ionisation will not 

be considered here as it is a three body arrangement channel 

and only two body arrangement channels are being discussed. 

Hence excitation occurs in the direct channel and charge 

transfer occurs in the rearrangement channel. In these two 

channels we shall use the coordinates, 
....:. ~ ~ _..\ 

( r , R ) and ( r , R ) 
B B P. A 

respectively to describe the scattering process. In the (A 

+ B + e ) system the total Hamiltonian is denoted by H. It 

is given by 

H = T + V (2.2.8) 

where T (the kinetic energy operator) was defined in 

(2.2.4). The potential energy operator V was given by 

v v + v + v (2.2.9) 
eF\ -eB fTB 
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V and V are the potentials between the electron and A 
~A e.13 

and B respectively and V is the potential between A and B. 
P~e 

If A and B represent bare nuclei, then these three 

potentials are simply Coulombic in character. We can now 

decompose the total Hamiltonian into direct and 

rearrangement channels and write 

H (2.2.10a) 

or H (2.2.10b) 

where d and r refer to the direct and rearrangement channels 

respectively. Then we have that 

and 

Similarly 

H 
( 

T + V-e. B 

v + v 
-e.. A AB 

T + V 
-Q..f\ 

and V = V + V 
( -e.B AB 

8 

(2.2.lla) 

(2.2.llb) 

(2.2.12a) 

(2.2.12b) 

We denote by if) (:t , :t' ) the asymptotic free state for the 
lrr. s e 

system being in the mth state in the direct channel. Thus 

(2.2.13) 
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where E~ are energy eigenvalues. In the same way we denote 
ft -l ~ 

by JC (r ,R ) the asymptotic free state for the system being 
f\ A t'l 

in the nth state in the rearrangement channel. Then 

The asymptotic state for the system being in 
;;:.e ___. 

state i in the direct channel is r (~,R) 
. e 'B 
\ 

given by 

_, ~ 

e._'l.,p(ik .. ~6) 

~ 

(2.2.14) 

the initial 

and this is 

(2.2.15) 

k. is the initial wave vector of A relative to the centre of 
I 

'B..J. 
mass of (B + e ) . The ,;... (r ) is the initial state r;· t; 

eigenfunction of the (B +e) system with eigenvalue ~-so 
I 

we have 

The total energy E. and 

'1.. 

~· == K· 
I 

I 

2ftP.;, 

B_, 
.t-V-e.s)¢crs):::= 

i 

f.. are related by 
I 

-t- ~ 

.[_ 

(2.2.17) 

The m
6 

and ~B in (2.2.16) and (2.2.17) have been defined in 

(2.2.6) and (2.2.5). We shall now consider direct channel 
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scattering, that is excitation processes. We denote the 

final asymptotic "free" state 1n the direct channel 
g p ~ ~ by (r,R ). This is given by 

..f. e, ra 

B _,. -' .J 'B ~ 

1: ...l 

({'B f<.B) - --e_)<,pC K ~· )¢'> Cr
8

) (2.2.18) f . 13 

} f 

~ 

where k . is the final wave 
\. 

vector of A relative to the 
f3 

centre of mass of (B + e ) . The function of ~ (~ 
.f B 

satisfies the equation 

Then 

(2.2.20) 

For direct scattering the probability of scattering from an 
B ~ 

initial state 'f:. to a final state fj is zero unless we are 
I + 

"on the energy shell", that is to say 

£f (2.2.21) 

For the direct process i -7 f the scattering amplitude is 

given by (McDowell and Coleman 1970) 
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23] 

d 

\d 
fr' 

(2.2.22) 

where T is the transition (T) matrix element for direct +; 
channel scattering between states denoted by i and f. The 

d 
T-matrix element T . is given by 

{-I 

(2.2.23) 

(+I 
i(. is the complete scattering solution corresponding to 

I 

initial state i, and satisfies the Schrodinger equation 

(2.2.24) 

The (+) denotes that outgoing boundary conditions are to be 

imposed. The differential scattering cross section in the 

direct channel is given by 

l rd "" \1-K.f- t" (K.·, K.r) 
f; '\ 

(2.2.25) 

IC 
I 

2 (2.2.26) 
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For the case of rearrangement scattering, corresponding to 

electron capture, we write the final asymptotic state as 
A 

.-> --' 
)C(r ,R ) This is given by 

t PI A 

(2.2.27) 

..-J 

where k 
f 

is now the final wave vector of the centre of mass 

of (A + e-) relative to B. 
~ -->. 

)( (r 
} A 

is the final state 

eigenfunction of the (A + e ) system and satisfies 

v 
.e. A 

) A __.. 
,y::_ U]-::= 

f A 
(2.2.28) 

where ~ is the final state energy eigenvalue of the (A + e) 
+ 

system. The total energy corresponding to the final state f 

is E and we have 
f 

The (Y} and 
A 

in 

(2.2.29) 

(2.2.28) and (2.2.29) have been given in 

(2.2.6) and (2.2.5) and are the reduced masses of A and e 
~ 

and B and (A + e ) respectively. Again it is necessary to 
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be on the energy shell and so 

E 
1.. 

E 
f 

E (2.2.30) 

Then the scattering amplitude for the rearrangement process 

i ~ f is given by (McDowell and Coleman, 1970) 

" ( K. 
I I 

(2.2.31) 

where T' is 
fl 

the T-matrix element for the rearrangement 

process i~ f and is given by 

A < X. 
-f 

v., \ ¥ 
I 

t +) 

) (2.2.32) 

The corresponding differential scattering cross section is 

given by 

r " ,.... \7.. \f (K. 1 K) 
.f; I f 

(2.2.33) 

(2.2.34) 

The total scattering cross sections for direct and 

rearrangement scattering are given respectively by 
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J 

5 

The asymptotic boundary conditions imposed 

scattering wave function 

spherically scattered waves 

c+ I 
~- corresponding 

I 

are given by 

(2.2.35) 

(2.2.36) 

upon the 

to outgoing 

"' ~ ~ ) [ ~ -e. X ( ; K .. f ) -r f cJ -e... X p i K 1Z] 2 • 2 • 3 7 ) 
I a 0'\. P ' s f"\B 

fY'\ I . ----
(>\I IZ 

B 

(2.2.38) 

Equation (2.2.37) corresponds to the direct (excitation) 

channel, with the first term being an incident plane wave of 
~ 

momentum K.. (with 11 1) • The second term represents 

outgoing spherical waves describing particle A scattering 

from the (B + e system which is in the mth level 
B~ 

represented by the eigenfunction f (r ) . 
M B 

Expression (2.2.38) corresponds to the rearrangement 

(electron capture) channel which has no incident plane-wave 

and this expression represents particle B scattering off the 

(A + e ) system which is in the nth level represented by the 

eigenfunction 

To solve 

A___. 
X (r ) • 

n A 
the scattering problem at low energies, the 

scattering wavefunction can be expanded using an atomic or 
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molecular orbital basis of wavefunctions, and after a 

partial wave decomposition is made, the problem is one of 

solving a set of coupled second-order differential 

equations. Alternatively, at high energies when \Tr C+?. T lS 

expected to be only weakly perturbed by the collision, the 

Born approximation or a distorted wave method can be 

employed, along with many other variations. However the 

full quantum mechanical treatment is impractical when the 

collision energy is in some intermediate region. The large 

masses of the two centres A and B however as compared to the 

electronic mass makes it possible to treat the internuclear 

motion classically due to the associated de Broglie 

wavelength being very small as compared to the typical 

atomic dimensions. The result is called the semi-classical 

impact parameter approximation and will be considered in 

more detail in the next section. 

2.3 The Impact Parameter Approximation 

2.3.1 The Impact Parameter Schrodinger equation 

In the previous section the quantum mechanical 

treatment of ion-atom collisions was considered and it was 

noted that this method was impractical to employ in the 

intermediate energy region. The use of the word 

intermediate is of course, arbitrary here but we can 

introduce the notion of a low and high energy region more 
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explicitly as follows. The laboratory energy of an ion or 

atom of mass M (in atomic units) on a stationary target is 
2 

E = 2 5 x M v keV where v is the laboratory velocity of the 

ion in atomic units. 

energy region as E 

Then it is reasonable to take the low 

'2. 
< 25 x M v keV and the high energy 

0 

1.. 
region as E >> 2 5 X M v keV where v is the Bohr velocity 

0 0 

mentioned in (1.4 ) . The intermediate energy region refers 

to some energy region in which neither a low energy 

approximation or a high energy approximation is adequate to 

describe the scattering solution. Generally the de Broglie 

wavelength for the motion of centres A and B must be very 

much smaller than some typical atomic dimension of the 

system in order that the paths of A and B can be considered 

as classical trajectories. In quantitative terms this means 

that the collision energy E must be such that 

-I 
E ~ eV amu (2.3.1) 

Also if E is much greater than the typical change in 

electronic energy which occurs during the collision, then 

the nuclear motion of A and B can be considered as being 

independent of the electronic motion. This independence of 

nuclear and electronic motion will generally be in assured 

if 

_, 
E ~ 100 eV amu (2.3.2) 
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For example consider a proton with a laboratory energy of 

1 keV. The associated de Broglie wavelength is 0.0027 a.u. 

which by conventional reasoning is justification for 

describing its path by a classical trajectory. All 

laboratory energies considered in the present work will be 
~I 

greater than 1 keV amu 

We shall now briefly derive the time dependent impact 

parameter Schrodinger equation, for the usual system 

consisting of the two centres A and B and a single active 

electron. The total Hamiltonian for this three body system 

is given by 

+ y (2.3.3) 

+V +V (2.3.4) 
-e.r3 fiB 

which comes from equations (2.2.4), (2.2.8) and (2.2.9). f'l 

is the reduced mass of A and B, and m is the reduced mass of 

the electron and the (A + B) system. (Equations (2.2.5) and 

(2.2.6)). Because the electronic mass is very small 

compared to the mass of A orB, we can put m ~m = 1 in 

atomic units. We now rewrite the Schrodinger equation 

(2.3.4) as follows 

-+-- lN (1<. ) 0 (2.3.5) 

where the electronic Hamiltonian H is given by 
-e..L 
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(2.3.6) 

_:,. _,. 
and f (R, r) is the wavefunction of the system. W(R) is a 

potential which is a function of R only, which we assume 

determines the relative motion of the two heavy particles A 

and B in all channels. For example it could be taken as the 

average static interaction potential in the incident channel 

so that 

5 (2.3.7) 

...... 
Unfortunately W(R) is far from unique in the three body 

problem. The nuclear motion will then be described by a 
-" 

wavefunction F(R) which satisfies the potential scattering 

equation 

a 
(2.3.8) 

In most cases of interest we ignore the initial binding 

energy of the electron in its initial state when calculating 

E so that 

2. "2. 1.. 

E. .- K.· +- £. ~ K· - I 0\1 (2.3.9) _... 
I I ---· 1. 

2f-A 2-fu. 

where v is the relative velocity of the centres A and B and 

K.is the wavenumber associated with the motion of A and B. 
I 
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We now write the wave function of the system j (R, ;) as 

the product of the nuclear wavefunction and a wavefunction 

for the electronic motion p(R,~) so that 

(2.3.10) 

Substituting for p(R,;) into (2.3.5) we find that 

(2.3.11) 

We approximate the nuclear wavefunction by 

(2.3.12) 

where 

~ 

S C R ) - J ~s (2.3.13) 

which is consistent with the nuclear motion being described 

by a classical trajectory and the integration in (2.3.13) is 
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along this trajectory. This trajectory can be written in 

terms of an impact parameter vector b and a parameter t as 

_, --" 

R == R(b,t) (2.3.14) 

The approximations defined by (2.3.12) and (2.3.13) are the 

starting point of the semi-classical eikonal approximation 

(Bransden, 1983) and F(R) in (2.3.12) is called the eikonal 

wavefunction. At sufficiently high energies (in fact as low 

as a few hundred eV for proton-hydrogen collisions) the 

heavy particle deflection is mainly into a forward cone of 

small angular width and the motion of centres A and B can be 

approximated closely by a straight line trajectory so that 

_, 
R + l 

a (2.3.15) 

The constant velocity vector is taken as parallel to the 

z-axis. This straight line trajectory case is consistent 
.... 

with the effective internuclear potential, W(R), being 
~ 

ignored, with the result that the wavefunction F(R) is a 

plane wave 

~ 

where z is the z-component of R. Using equation 
R_ 
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(2.3.16) 

(2.3.16) 



__,. 
for F (R) in equation (2.3.11) and since (A is a large 

parameter, then the first term in (2.3.11) is found to be 

much smaller than the second term, and hence is neglected. 

The result is that (2.3.11) reduces to 

(2.3.17) 

If we use (2.3.15) then we can rewrite (2.3.17) as 

(2.3.18) 

where ~ means differentiate with respect to time 
~f 

keeping 
~ 

r constant. We note that we have identified t here as the 

classical time as if it were a trivial matter. However 

(Weinberg 1962) has justified this point of view. Equation 

(2.3.18) is the time dependent Schrodinger equation or 

impact parameter Schrodinger equation which will form the 

basis for the calculations presented in this thesis. If we 

wanted to use non-linear trajectories for A and B then we 

would again omit the first term in (2.3.11) and obtain 

(2.3.18) but this time the trajectory is given by equation 
....J 

(2.3.14) as determined by the particular form of W(R) being 

used. Since we have defined the paths of the incident 

particle A relative to B by a classical trajectory there is 

now no possibility of interference due to exchange effects 

in the case of identical nuclei. However, Smith (1964) has 

shown these effects to be negligible for collision energies 
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above 15eV or so in the case of protons on hydrogen atoms. 

The coordinate system that has been defined by the 

impact parameter approximation is shown ln Figure 2.2 for 

the case when A and B move along straight line trajectories. 

In Figure 2.2 the parameter p determines the position of 

the origin 0 on the internuclear line AB; p is such that 

0 < p < 1 (2.3.19) 

Then 

_____::. ~ 

EO = pR (2.3.20a) 
~ ~ 

OA = ( 1 - p) R (2.3.20b) 

~ 

The quantity b is a two-dimensional impact parameter. r is 

used to denote the electronic coordinate, no matter where 

the origin 0 is located upon AB. For the eikonal 

approximation, which has been discussed in this section, to 

be valid the results should be independent of the choice of 

0 (i.e. the p parameter) provided it is reasonable. We now 

have a model problem to solve where the classically 

determined nuclear motion (external motion) is treated as 

providing a time dependent perturbation of the electronic 

motion (internal motion) treated quantum mechanically. In 

the next section of this chapter we shall consider how to 

solve the impact parameter equation (2.3.18). 
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Figure 2.2 

Impact parruneter coordinate system 

for straight I ine trajectories . 

....l. 

6 



2.3.2 Choosing the expansion functions 

In order to obtain an approximate solution of equation 

(2.3.18) it is usual to make an expansion of the total 

electronic wavefunction in terms of some finite basis sets 

about both centres A and B, with time dependent coefficients 

which are the occupation amplitudes for the states in the 

basis sets. The parameter which is usually used to decide 

upon the choice of basis states is 

(2.3.21) 

where v is the characteristic velocity of the electron in 
-€._ 

the initial target state and v is the incident projectile 

velocity. When ~<< 1 the electron will end to adjust 

adiabatically to the internuclear motion and a molecular 

type of expansion of a few strongly coupled states is 

appropriate. In this collision energy region both charge 

exchange and excitation are competing processes whilst 

ionisation is generally less important. For the case A>> 1, 

charge exchange is not important and only direct excitation 

and ionisation are the important channels. The appropriate 

expansion is now in terms of a large number of atomic type 

orbitals upon the target with only a few atomic orbitals 

upon the projectile (or even none at all) . In the 

intermediate energy region, however, the most suitable 

expansion is in terms of several atomic orbitals placed upon 
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each centre. There are no absolute criteria for the choice 

of the basis sets used in any expansion basis. However, the 

need for a basis which is computationally convenient is 

usually of paramount importance. There are some important 

restrictions which must be imposed upon any basis set 

however, if an accurate representation of the physical 

system is to be obtained. 

Firstly the initial channel of the system must be 

accurately contained in the basis so that the correct 

asymptotic behaviour for large negative times is guaranteed. 

Correspondingly the most important final channels must be 

represented as accurately as possible in the basis so that 

the asymptotic behaviour .at large positive times can closely 

match the actual physical system. However, it is possible 

to extract cross sections for states not actually 

represented explicitly in the basis set and this will be 

illustrated later in the thesis. 

The calculations made using the impact parameter method 

that will be considered in the present work all have as a 

starting point the following ansatz; 

8_, fl._:.. 
where the functions J (r, t) and JC (r, t) are the members of 

J 
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the basis sets to be employed upon the target and projectile 

respectively. Since the impact parameter equation (2.3.18) 

is to be solved for each value of b independently it is 

possible in principle for a different basis set to be used 

for different b values within a single calculation but this 

has not been done in the present work. 
t3 

For convenience the dependence of j ( :, 
j 

upon b has not been shown in (2.3.22) and will 

A_,. 
t) and )C.(r, t) 

I( 

only be shown 

if necessary to avoid confusion. The important question of 

the Galilean invariance of the impact parameter method will 

be considered next in this section. 

We shall chose an inertial frame with an origin at 0, 

as in Figure 2.2 and consider the asymptotic region as t ~~ 

for the case of a target centred expansion function. For 

the moment we shall ignore the possible effects of the long 

range Coulomb interaction upon the asymptotic region but 

shall return to it again in Section (2.3.3). Then for a 

target centred function the only perturbation in the 

asymptotic region is from the target centre B and equation 

(2.3.18) reduces to the following 

v (2.3.23) 
..e...6 

8_.. 
This is for the case when the expansion function j5 .(r, t) 

j 

is assumed to be an exact eigenstate of the unperturbed (B + 
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e system with eigenvalueAj. Because the time derivative 
--" __::. 

is taken with r fixed and not r this introduces the 
f, 

so-called plane-wave translational factor (PWTF) into the 
/f-,8-' 

solution. The correct form of y_(r, t) which is a solution 
J 

of (2.3.23) is then given by 

(2.3.24) 

This is a solution of (2.3.23) for t 4 +~and r << 
€ 

r 
A 

Similarly if we consider a solution of the unperturbed (A + 

e) system as t~ + oo and r << r then it is found that 
PI ~ 

I o l -v A c f t) :=: a ( 2. 3. 25) 
- .../"- t 
~t ~ K 

'(' 

A~ 
and the corresponding function JC (r, t) is given by 

A 
X (j. c. 1 

K I 

"-

A ~ ..J ~ 
== X." (fA ) -e. X p - I (~ 1:::: - ( l- p) V. v ( 2. 3. 2 6) 

,.... k .,_ '1.1..) 
-+-lct-p)" c. 

2 

A_,. 
where~ is the energy eigenvalue of the state )((r). 

K k A 
The results in (2.3.24) and (2.3.26) follow from the 

fact that the time derivative operator d can be written 

as follows 
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0 (2.3.27) ---

(2.3.28) 

'(/"1.1... __,~ . ( 1... '2.... The factors exp-1 -P v t + pv.r) and exp-1( ~(1-p) v t 
_, __, L ~ 

(1-p)v.r) in the expressions (2.3.24) and (2.3.26) are the 

plane wave translation factors. They are required to 

account for the fact that an electron is riding along with 

either centre A and B and if it is transferred from one 

centre to another it will acquire a momentum v due to the 

relative motion of A and B. They also ensure that the impact 

parameter formulation is invariant under a Galilean 

transformation, so that the probability amplitudes that are 

determined are independent of the choice of origin of 

coordinates. They were first recognised as necessary in 

electron capture theory by Bates and McCarroll (1958) in the 

formulation using molecular basis functions, and again by 

Bates (1958) in the case of an atomic basis expansion. 

The choice of the translational factors which account 

for the change of momentum of the electron in the 

rearrangement channels is not unique, except in the 

asymptotic region. Translational factors with more general 

functional forms can be used to try to allow for the fact 

that at small internuclear distances the electron is not 
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associated with either centre, as opposed to the case when t 

-7 + ~. 

The so-called switching functions are used to modify 

the usual plane wave translational factors to account for 

the adiabatic relaxation of the system at small internuclear 

separations. Newby (1983) investigated the system 

Lr '2.. -t- 4- --t-
He + H(1s) ~ He (n = 2) + H(1s) 

using a two state approximation. The general conclusion was 
lt £_-!-

that below impact energies (of the He ion) of 24 keV, the 

agreement with a two state calculation using the usual plane 

wave translational factor was very good. 

However, at higher energies the switching function 

calculations diverged rapidly from experiment and the plane 
4- "1---t' 

wave results (e.g. by a factor of about 100 at a H Q. impact 

energy of 200 keV) . All the present calculations in this 

thesis use the plane wave translational factors as defined 

by ( 2 . 3 . 2 4 ) and ( 2 . 3 . 2 6 ) . 

Finally, concerning the use of plane wave translation 

factors, we note that Greenland (1982) has shown how they 

arise naturally by solving the perturbed stationary state 

equations in the asymptotic region assuming straight line 

trajectories are used to describe the nuclear motion. He 

also showed how the factors are modified when a Coulomb 

trajectory is employed. 

At this point we shall briefly review the model that 
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has been used to represent the collision of two heavy 

particles in the single active electron approximation. The 

two nuclei are assumed to follow classically predetermined 

trajectories, and this produces a time dependent 

perturbation of the electron which is treated quantum 

mechanically. The appropriate ansatz is 

(2.3.22) but as yet the expansion functions 
PI_,. 

to be based 

thB ~ 
r·(r, t) 

J 

upon 

and 

X (r, 
K 

is to 

t) have not been defined completely. The main problem 

determine the unknown time dependent amplitudes b.(t) 
J 

and a (t) 
K 

in (2.3.22) and then to evaluate the cross 

sections. This will be the subject of the next section. 

2.3.3 Solving the impact parameter Schrodinger equation 

In this section we shall define the form of the basis 

functions that are used in the ansatz (2.3.22) in the 

present work. Then the equations which determine the 

occupation amplitudes in (2.3.22) (that is the quantities 

b.(t) and a (t)) will be described. 
J k 

Firstly we shall concentrate upon the form of the 

expansion functions used in (2.3.22) which are denoted by 
8 ..... A f. (r, t) and X (r,t). It has already been stated that 

J /( 
plane wave translational factors have been used throughout 

the present work (in Section 2.3.2) and hence from equation 

(2.3.24) and equation (2.3.26) the so far unspecified 

quantities are the functions given by 
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-I (2.3.29) 

and 

(2.3.30) 

These functions in equations (2.3.29) and (2.3.30) must be 

combined with corresponding plane wave translation factors 

to obtain the expansion states used in expression (2.3.22). 

Throughout the present work all the basis 

and 
A_. 

X (r ) 
K. A 

that have been used in 

B _,. 
functions ~ (r ) 

't". B 
J 

impact parameter 

calculations have been determined from a diagonalization 

procedure, which results in some important properties of 

these functions. At this point we will concentrate on the 
e..-l. 

target basis functions ¢ (r ) for convenience. The target 
j e 

Hamiltonian for the system (B + e ) is given by 

_, 
'2. 

v 
-e.£ 

(2.3.31) 

6_,. 
Then it is well known that if the states ¢ (r ) ( j = 1, ... , 

J. 8 
M) have been obtained from a diagonalization (variational) 
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procedure using H as the Hamiltonian, the following results 

are true (Weissbluth (1978)) 

< 
- B 
;6. cr~! 

j 

< 
- B -" \ ¢_ (( !/> 

J ( f3 

>-,_ 

J 

~ " I 
.).) 

r 
(; , , I 

J.) 
(2.3.32) 

(2.3.33) 

The results in equations (2.3.32) and (2.3.33) are true for 

1 < j < M and 1 < j' < M, and the usual Dirac notation is 

employed. We note that a bar is placed above any state 

which has been obtained from a variational procedure as 

described above. Similar results apply to the projectile 

basis functions which have been obtained from a 

diagonalization procedure using the Hamiltonian of the (A + 

e ) system 

H 
Pr 

v 
.eA 

(2.3.34) 

That is to say the following results are true 

.--A~ 

\-\~\X- (( 1/ 
n K I A 
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(2.3.36) 

In equations (2.3.35) and (2.3.36) we have l K <Nand l<K' 

< N. Some further useful results will now be given as they 

will be used later on in this section. We shall, at this 

point, take the origin 0 in Figure 2.2 to be the midpoint of 

AB. Then the parameter p = \;L in the expressions for the 

plane wave translational factors. We shall now consider a 
e~ 

target expansion state E. (r, t) from the ansatz (2.3.22), 
I 

.J 

which is of the form (see Equation (2.3.24)) 

(2.3.37) 

~? 
where the function ~ (r ) satisfies equations (2.3.32) and 'S· e 
(2.3.33). Then using equations (2.3.27), (2.3.32) and 

(2.3.33) it is straightforward to show that 

0 H 
B 

'a 
I-

)'=: > 
Y' 

~ e, 
'1 (f 'c)) (2.3.38) 

, I I 
J 

for l<j < M and l<j' <M, and H 8 is given by equation 

(2.3.31). In a similar fashion we can consider a projectile 

state from ansatz 
A_. 

(2.3.22), ~ (r, t), which has the form 

(see equation (2.3.26)) 
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A 
-y::_ 

K 

..... 
( ( t. 1 

I 

--Pt~ 
and where X<r ) satisfies equations (2.3.35) and (2.3.36). 

I( A 
Then using equations (2.3.28), (2.3.35) and (2.3.36) it is 

straightforward to show that 

A ....> 
(I' 

I 
\:: ) H 

...A.t 

where HA is given by equation (2.3.34) and we have l<K<N and 

l<K'<N. The results in equations (2.3.38) and (2.3.40) for 

expansion states which contain variationally determined 

wave functions 

variational 

-B 
and ( ¢. (~6 ) 

J 
energy values 

_P.._j 
jl(r )) and the corresponding 

I( A 
)., . and I: respectively) are 

j ~ 

analagous to equations (2.3.23) and (2.3.25) which only hold 

true for the case when exact eigenfunctions [and 

corresponding eigenvalues] are employed in the expressions 

for the expansion states. However (2.3.38) and (2.3.40) 

will turn out to be sufficiently strong enough conditions 

for the present discussion. 

The next part of this section will be based upon 

Shakeshaft (1975). Throughout the following discussion we 

shall use the notation that Shakeshaft used for convenience. 
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The model Shakeshaft considered was for proton-hydrogen 

scattering in the linear trajectory classical impact 

parameter formulation. The full Hamiltonian of the system 

is denoted by H(t). Then the time-dependent Schrodinger 

equation is given by 

We remember that 
a~ 

stands for~ 
~t 

in (2.3.41). 

(2.3.41) 

t'f' (t)> 

is the full electronic state vector for the problem, subject 

to a suitable boundary condition. We shall use~ to denote 

either the target proton (A) or incident proton (B) Let 

t ~ (t)>, where~ denotes A or B, be a normalized state 
Ko<. 

vector of the electron bound to proton in an unperturbed 

state K of the hydrogen atom. This state will hereafter be 
f> 

denoted by K~- Also let [p(t)> be the solution of equation 
l<o<. 

(2.3.41) which satisfies the boundary condition 

fS 
l t (t) > 

l(o< 

f3 c --7 ~ o6 ( 2. 3. 42) 

where ~ = + or -. The quantity to be determined is the 

transition amplitude for the electron to be in a final state 

f ' if initially it was in the state i~. This quantity is 
D\ 
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defined by 

-T 

< f ( f:;) 
fo<' 

p' l t) / 

td-. 

(2.3.43) 

We now make an approximation by replacing the exact solution 
~ 

/ ']! ( t) > by a trial solution The 
1\~ 

rp(t)>. 
J(o< A 

symbol 
I( of, 

denotes the fact that a particular quantity, X,is the trial 

approximation to the exact quantity X. 
"fJ / 'J! (t) > consists of 

1(0( 

a finite number, J, of normalizable basis vectors I !p. ( t) >, 
J 

where l<j<J, with time dependent coefficients (this is the 

same approximation as in the expression (2.3.22)). Now we 

suppose these time dependent coefficients are determined by 

solving the set of coupled differential equations formed by 
A f?> 

substituting ( ~ (t)> into the impact parameter Schrodinger 
l<.o< 

equation (equation (2.3.41)) and then projecting this onto 

every basis function, that is to say 

- C) ) (2.3.44) 

.fer a l \ 

l\f3 
Then if ljf(t)> satisfies the same boundary condition as 

Ko< 
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~ 
(~ (t)> the approximate transition amplitude is defined, in 

l(o<. 
analogy with (2.3.43) by 

,..._ fe><.l 1\ 
" -t 

A 
I' o( < p ( t;) p_ ( t I / 

to< I tol. 

(2.3.45) 

" ..\-
l ~ M < Ice:; I p' (t) / 

l::---7dl 
.fc;<.' fo(_ 

Now ideally one would like to choose an expansion basis for 

the /\f. (t) > functions so that as the basis is 
A.(-~ I J 
A, from expression (2.3.45) converges towards 

!o{ 

expression (2.3.43). However, if the trial vector 

does satisfy the same boundary conditions as 

enlarged, 

f o<.' 
A . from 

ro{ 

I p ~(t) > 
Ko< 

( g;~'(t) > 
K.o<. 

then 

not 
"..(- o(l 

A. as defined by expression (2.3.45) does not exist 
iol. 

in general, and therefore neither does the transition 

probability, ~ A" +. rl.. 
1 

I "2- For 
ro<. 

example if the boundary 

condition associated with the final state f o< 1 
, is not 

"'+ 
satisfied, then the quantity{< ¢ (t) / J?. (t)/1 tends to a 

-f"o( I I D( 

constant term plus a term which oscillates without limit as 

t ~~(Gallaher and Wilets (1968)). It is possible 

to obtain well-defined variational estimates of 

however 
-t_ cl.. I 

A for 
lo( 

arbitrary initial and final states by modifying the boundary 
~13 

conditions satisfied by the trial state vector l p (t)>. 
l<o< 

This modification will now be described. Let H (t) denote 
d. 

the Hamiltonian of the electron in the field of proton 
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alone, where the time dependence arises because the 

coordinate system used has its origin at the midpoint of the 

internuclear distance. We shall now introduce a set of 

"' orthonormal functions It (t) >, l<k<J I which are obtained 
ku<. 

from a diagonalizatin procedure so that the 

Hylleraas-Undheim theorem (Hylleraas and Undheim (1930)) 

" applies. This means that the expectation value < J?_(t)\ 
JcX " 

HoZ(t)\ f. (t)> 
jo(. 

is an upper bound to the jth energy level of 
1\ 

the hydrogen atom. That is to say IfF:_ (t) > is a trial 
I XJ u( 

approximation to the state vector )l. (t) > which represents 
jo< 

the jth state of the hydrogen atom. Then Shakeshaft proves 

that if the trial state vector satisfies the boundary 

conditions 

"' j ( t:) / ) ~b ~- oC (2.3.46) 
l(o( 

and the approximate transition amplitude is now defined by 

{\ .fo<.' 
then A. is a 

lo<.. 

variational as 
f:.;J 

and A. 
lol.. 

" < tb (t.) [ 
1 .{-o( I 

.f<><' 
variational estimate of A , . 

ro( 

used here means that the difference 

(2.3.47) 

The term 

" .foJ..I 
between A~o\ 

is a second order term in the differences 
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between the exact and trial wave functions. It is 

straightfoward to extend the analysis of Shakeshaft to the 

case where non-Coulombic potentials are involved as is the 

case in this thesis. We will now apply the results just 

obtained to derive the equations which must be solved in 

order to obtain the occupation amplitudes in expression 

(2.3.22). 

Firstly we recall that the equation to be solved is 

given by (see Equation 2.3.18) 

t) (2.3.48) 

.-l. 

Then we expand f(R,t) according to expression (2.3.22) where 

" we now use the symbol to denote that a function is 

obtained from a diagonalization calculation, so that our 

trial function f(r,t) is given by 
T 

H " a ~ 

~ 
~ ~ b· li::J I. ((I~) c r 1:::) 

I - j J 
T J=l 

N A 

+- L. q L t::) -:;:: 
K. 

K.~l 

We note that for convenience we do 

A. ...... 

K 
( y I c J 

not attach a 

the occupation amplitudes b.(t) and a (t), or 
J K_ 

dependence of the amplitudes and the functions, 
"A~ JC (r,t) upon the impact parameter, b. Then we 

I( 
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(2.3.49) 

" symbol to 

express the 
1\S_.~. 

f.(r,t) and 
J 

insert the 



trial function in expression (2.3.49) into the equation 

(2.3.48) and project this onto each function contained in 

the trial function. That is we obtain the set of coupled 

first order differential equations given by 

0 
(2.3.50) 

a (2.3.51) 

For convenience to avoid too many labels we have dropped the 

letters A and B from the functions in the trial function. 

After some simplification and using some of the previous 

results given in this section we obtain a set of 

differential equations which we give in matrix form as 

follows 

[ b(t) -t- (2.3.52) 

-\- H b Lt:.) (2.3.53) 
'-"'- '-"' 

where the symbol ~ denotes Hermitian adjoint. We can 
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combine expressions (2.3.52) and (2.3.53) into the compact 

form 

i S A (t) M A (t) (2.3.54) 

where 

( 
:I N 

) 5 
'V' '-"" 

V' N+ I 
\./' 

~ 

(2.3.55) 

M -
\ ~K 

K 

) 
~ 

\./"' 

H 
'-"" 

and I is the unit matrix. We also have 
'-"' 

f\ c t I ( 
~(I:)) 

a. (C. l 
v-

(2.3.56) 

The boundary conditions which must be imposed upon the 

amplitudes in solving equation (2.2.54) are 

(2.3.57) 

where index i corresponds to the initial state of the 

59 



(B + e) system. Fort~~ then the amplitudes become the 

transition amplitudes as defined by (2.3.47), that is 

_. 
b (b) (2.3.58) 
Jl 

which is the probability amplitude for finding the electron 

in state j of the (B + e ) system and when the initial state 

of the system was given by (2.3.57) above. Similarly the 

probability amplitude for finding the electron in the kth 

state of the (A + e ) system after the collision is given by 

(2.3.59) 

From the results given by Shakeshaft (1975) which have been 

discussed earlier in 

amplitudes 
~ 

b . . (b) 
Jl 

and 

this section, the probability 

in equations (2.3.58) and 

(2.3.59) are variationally correct amplitudes. We will now 

consider in more detail the matrices given in equations 

(2.2.52) and (2.2.53), which contain the matrix elements 

given below 

N. trc1 
J K 

(2.3.60) 
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\---\. Lt) 
J K 

IC tt-) 
jk 

K , (t) 
JK 

J l\~_.. (K 
J(:._ (v_t:) "t 

J ( ~ 

(2.3.61) 

- " 
I d- J rr) (~ t)Jf (2.3.64) 
dt-4 L I 

v- K 

The N matrix is known as the overlap matrix. The H and H 

matrices are known as the direct matrices, since they 

involve functions attached to only one centre, whereas the K 

and K matrices involve two centre integrals and are known as 

exchange matrices. 

Several important results can be derived for the set of 

equations given in equation (2.3.54). Firstly Green (1965) 
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has shown that since the Hamiltonian H is Hermitian this 
-e.\. 

implies that the trial function 
-\ j' (r,t) conserves 

I 
probability (the unitarity property) that is to say 

<p 
I 

(/ !::) 
I 1:£ 

I 

From this it can be shown that 

s ---
-t 

N H 

~ 

( '( 

and from this it can be shown that 

N 
- t 
I< K 

0 (2.3.65) 
I 

(2.3.66) 

(2.3.67) 

A further useful result of probability conservation is 

Greens unitarity relation (1965). 

-t 
p, s (2.3.68) 
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Probability conservation can also be expressed as the fact 

that 

N 

2 la. 
2 

( + ~) \ (2.3.69) 

This means no electron flux is lost during the collision 

process. The expressions in equations (2.3.66) to (2.3.69) 

are very useful in actual calculations and provide a check 

on the accuracy of the numerical procedures being used. 

Another very useful relation is due to the time 

reversal properties of the system. Green (1965) has shown 

'-
\ b '· c~ ) 1 

_jl 

and 

----

'1.. 
lb .. c+~)l 

'J (2.3.70) 

(2.3.71) 

Tai and Gerjuoy (1973) demonstrate that the use of d~tailed 

balance as given in equations (2.3.70) and (2.3.71) is a 

much more sensitive test of numerical accuracy than the 
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unitarity test given in equation (2.3.68). Unfortunately it 

is also more expensive in terms of computational time. 

Browne (1965) has also considered the question of detailed 

balance. 

We shall now give the expressions for the cross 

sections that are obtained from the transition amplitudes. 

The cross section for excitation of the jth state of the 

target is given by integrating 
.....\ '1-

\ b·.(b)[ ' 
.} I 

from expression 

(2.3.58), over all two-dimensional impact parameter space, 

that is 

d s _.:.. -' ["2. a-:. - dJo b .. ( b ) -
jl j' 

oC '2. 
~ 

1...11 fJJ, b [ b,. (b)\ (2.3.72) - jl 
0 

Similarly the cross section for capture into the kth state 

on the projectile is given by a similar expression (using 

(2.3.59)) 

...:,. 'L 
(b ) I 

(2.3.73) 

64 



The factors of 2n in expressions (2.3.72) and (2.3.73) are 

due to the azimuthal symmetry. 

Finally in this section we shall mention the role of 

the internuclear potential in the impact parameter 

approximation. It can be shown (Fennema, 1968) that the 

addition of an internuclear potential which is a function of 

R, the internuclear distance, only affects the phase of the 

transition amplitudes b .. (t) and a .(t). 
j I Kl 

Hence the total 

cross section for excitation and for capture will not be 
'2.. 

affected as they are calculated from I b . .(c>t>) I and 
\ J I 

(. 

~a _(e>t\)\ ' 
K., 

which are independent of the phase. However, it is possible 

(Bransden 1983) to calculate differential cross sections 

within the impact parameter aproximation and these will 

indeed be dependent upon the phase of the transition 

amplitudes, and hence the form of the internuclear potential 

that is used. Also the total elastic cross section will 

depend upon the internuclear potential as it is calculated 

from b (coO) -1 which is phase dependent. 

We have described the impact parameter approximation in 

this section which is the basic method used to obtain the 

cross sections presented in this thesis. In the next 

section we shall consider how the particular choice of basis 

set functions can be optimised to obtain cross sections 

which are close to the actual experimental cross sections. 
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L 
2.4 Atomic and related L expansion methods. 

2.4.1 Basic atomic expansion methods 

We have discussed in section 2.3.3 how the impact 

parameter approximation is formulated using an atomic basis 

expansion for the trial function, given by expression 

(2.3.49). This expansion is appropriate in the intermediate 

to high energy region where the electron will spend most of 

its time associated with one of the nuclear centres, A or B. 

One of the main problems in this formulation is the 

expensive computing time that is needed to evaluate the 

matrix elements and to solve the coupled differential 

equations which have been given in equations (2.3.52), 

(2.3.53) and (2.3.54). It is therefore, usual to try to 

select a small set of strongly interacting states, and this 

is called the close coupling expansion. To estimate how 

successful this expansion is in representing the 

wavefunction at a particular energy, it is usual to add or 

remove a small number of basis states and repeat the 

calculation to see if the cross sections change greatly. 

This gives an idea of the convergence properties of the 

particular basis set used. 

Therefore, it is clear that unless the continuum states 

of either particle A or particle B, or possibly both, are 

somehow represented in the collision, accurate cross 
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sections cannot be produced, for certain processes over 

specific energy regions. In the next section we shall 

discuss how this problem may be approached in a pragmatic 

fashion. 

However, it is clear that over certain energy regions, 

an expansion basis for the trial function which only 

includes atomic states with negative expectation energy 

values will not be adequate to obtain convergent cross 

sections if the continuum states of the true scattering wave 

function plays an important role in the collision process. 

l 
2.4.2 The L approach to representing continuum states 

The problem of describing the continuum in an atomic 

collision process is made difficult because of the fact that 

the eigenfunctions of the Hamiltonian operator which 

correspond to continuum states obey different boundary 

conditions to those eigenfunctions which describe the bound 

atomic states. The specification of these boundary 

conditions alone is not a trivial matter in the case of 

ionisation (see for example, Peterkop (1977)). 

However, since the physical requirements of the problem 

determine that the electronic wavefunction is at all times a 

normalizable quantity, we can suppose that we can describe 

the time evolution of the electronic wave function without 
~ 

leaving the Hilbert (L ) space of the problem. 

in the case refers to functions ~(R) such that 
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...... '2.. 
l X UZ) \ (2.4.1) 

where the integral in expression (2.4.1) is a Lebesque 
...\ 

integral. Then the function X(R) is called Lebesque 

square-integrable (Taylor (1983)). From now on we shall use 
1-

the phrase "an L function" to indicate that the function 

concerned satisfies expression (2.4.1). 

One should always be able to work totally in the 

Hilbert space of the problem and obtain physical results, 

within the restrictions of the model used to represent the 

physical system. 
"L 

The great advantage of using purely L 

functions in a collision problem is that it can be attacked 

using existing computational methods, designed for bound 

state problems, with relatively minor modifications to 

computer codes and this reduces the problem to a level where 

it is much more likely to be solved. Formally, of course, 
'1-

we may use any complete L basis, with which to expand the 

total wavefunction, but in practice we are restricted for 

reasons already given (see Section 2.4.1). 

The question of how to optimize this choice of 

truncated basis, and at the same time retain the most 

important physical properties of the system in order to 

produce reliable results, is one of the problems to which 

much of the work to be presented in this thesis has been 
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directed. If the initial model of the physical system is at 

all a reasonable one then it should be possible, ideally, to 

demonstrate how the results converge towards the correct 

values as the size of this truncated basis is increased, but 

this is a long and time consuming process. It is more 

prudent to try to use physical or intuitive approaches to 

the problem a priori to hopefully take into account the most 

important processes that occur during the collision event. 

The aim is to try to select a basis set with the view that 

it can both describe the corresponding regions of the L~ 

space for the wavefunction in the collision and is also of a 

convenient size for numerical computations to be performed. 

In the next section we shall consider some attempts that 

have been made to remove some of the typical ad hoc features 

of describing the continuum. 

1 
2.4.3 L expansions in electron-tom scattering 

~ 
The use of L states as a means of representing the 

continuum states of a system has a history extending back to 

the earliest days of quantum mechanics. One of the earliest 

calculations to make use of this approach was made by Hasse, 
~ 

1931. This was an example whereby an L function was used in 

an attempt to approximate the contribution made by the 

continuum to the polarizability of neutral helium and of the 
~ 

ion, Li . 

form of 

A variational principle was used to suggest 
~ 

the L pseudofunction which represented 
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continuum. 

In electron atom interactions, in particular, the 

effect of polarization must be included in the calculation, 

and is of particular importance at low collision energies. 

The influence of the long range polarization potential was 

investigated by Temkin (1957, 1960) in the so called method 

of polarized orbitals. This attempted to include both the 

effects of polarization and that of exchange in a relatively 

simple approximation (applied to e + H collisions). The 

effect of the distortion of the hydrogen in the ground state 

by the incident electron is accounted for by using 

perturbation theory to obtain the form of the distorted 

wavefunction, and then further approximations are made to 

obtain a tractable equation that can be solved, such as 

retaining only the dipole contribution to the polarization, 

and requiring that the polarization function vanishes when 

the incident electron is closer to the nucleus than the 

target electron. In effect an effective local potential is 

explicitly introduced as a model of the true optical 

potential acting in a single open channel. In the case of 

electrons incident upon a hydrogen atom, it was shown by 

Castilleja, Percival and Seaton (1960) that the 2p state 

accounts for about 66% of the total polarizability, while 

including all the discrete p states will give 81.4% of the 

total polarizability and hence the p continuum states are 

needed to account for the missing 18.6%. 

This suggests that in the usual close coupling 
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approximation for electron-hydrogen scattering (Bransden, 

1983) the results may converge rather slowly as the number 

of discrete states in the expansion basis is increased. One 

approach to this problem was suggested by Damburg and Karule 

(1967) 1 

fully. 

in order to represent the long range potential 
"2.. 

They showed that it was possible to add a single L 

function (or pseudostate) to the expansion basis so that the 

full polarizability was obtained. It was possible to obtain 

this function in closed form. For instance, in the case 

when only a single p state is retained in the expansion the 

pseudostate given by 

I ( '"2-

-;::: ('?:>'""2-/\'1-"') Y'(\.+Y")-e.-xrc-Y') 
2-

(2.4.2) 

accounts for the full polarizability, while if the 2p state 

is included in the basis as the only discrete state, then to 

obtain the full polarizability it is necessary to include 

the following pseudostate (which is orthogonal to the 2p 

state) 

(2.4.3) 

o.<1 bb V' c I+ l/7....) e.."f..fC-'(') 

Using a basis consisting of the ls and 2s hydrogenic 
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functions 

expression 

and the 2p and R 
3\ 

p type pseudostate in 

(2.4.3), Burkeetal. (1969) wereabletoobtain 

accurate values for the elastic differential cross section 

in the forward direction, where the long range polariztion 

potential is particularly important. Thus the p continuum 

has in some sense been effectively included in the 
'1.. 

calculation through the use of an L function. A method for 

constructing pseudostates which will account for the 

polarizabilities of many electron atoms has been given by 

Burke and Mitchell (1974). A similar approach has been 

previously described by Koker and Michels (1965). These 

approaches are based upon constructing a suitable 

variational principle from which the pseudostates are 

determined. The method starts by defining the dipole 

poarizability of an atomic system, in atomic units, as 

\<¢ 
b 

(2.4.4) 

E E K o 

where 

N 
0 

7... (2.4.5) 

where N is the number of electrons in the atom. In equation 
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(2.4.4) the summation and integration are taken over all 

states ¢ including the continuum, coupled to the ground 
k 

state ¢o by the dipole operator defined by expression 

(2.4.5). The polarized pseudostate f\: is defined by 

requiring that we can replace the summation and integration 

in (2.4.4) by a single term so that 

where 

and 

......... -- 2 < yJ 
D 

< ~p \ p f / 

< Jl5p 

where H is the atomic Hamiltonian. 

It can be shown that ~ is given by 
F 
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(2.4.7) 

(2.4.8) 



where ¢ is a solution 
p 

....-l/'2.. 

N 
-' l-z. 

(2.4.9) 

(2.4.10) 

and the factor N in equation (2.4.9) ensures that equation 

(2.4.7) is satisfied. To solve equation (2.4.10) the 

functional J is constucted where 

J - <. ~p c I H - ~ ~ \ ~Pte / (2.4.11) 

1... < ff~ I MlCJ \ p'a / 

This is stationary for small variations of the trial 
""".C 

function ~ about the exact solution of equation (2.4.10). 
f 

The trial function is constructed from an orthonormal basis 

7-- so that 
I 

N" 

' 
0\.X· 

I I 
(2.4.12) 

r:;::./ 

Variation of the coefficients q. leads to the equations 
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I'll 

L ( < X· \\--\ \ -x. > ~'. E ) Q. (2.4.13) 
J 'j 6 0 

.J ::=- I 

< x. \tv\ 
~ 

\ ~ / 
\ D 

for l < i < n. 
1./--t 

Equation (2.4.13) can be solved and the function ~ 
c p 

normalized correctly to obtain p , the trial pseudostate 
f 

function. By varying the parameters in the basis set 

used in expression (2.4.12), the 'best' polarized 

pseudostate can be determined. Other calculations based on 

the approach of optimizing the polarizability contribution 

of the expansion basis have been made by Geltman and Burke 

(1970) and Damburg and Geltman (1968). 

However desirable the optimization of the 

polarizability is, it is only one of the desirable features 

that a pseudostate expansion must have for representing the 

continuum and does not guarantee that other physical 

properties have correctly determined values. The 

optimization of the polarizability which depends upon terms 

of second order, as in equation (2.4.6), will tend to 

emphasize coordinte values in configuration space which are 

far from the nucleus, in contrast to the optimization of the 

energy of a bound state by the usual diagonalization 

procedure. This may in general be more sensitive to the 

regions of space closer to the nucleus. This is to say that 

the unperturbed atomic Hamiltonian operator, H and the 
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radial operator, r, will tend to emphasise different regions 

of the electronic distribution. 

Thus we may not in general expect that pseudostates 

obtained from optimizing the polarizability to be the most 

effective in a case when we expect the regions of space near 

the nucleus to be the most important. 

Another distinct possibility as to the choice of 

pseudostates has been investigated by Callaway and Wooten 

(1974), in the case of e + H scattering, using the 

algebraic variational method (Nesbet (1969), Harris and 

Michels (1969)). In particular they considered the 1s- 2s 

and 1s - 2p transitions between 10 eV and 12 eV and the 

1s-1s elastic transition between 10 eV and 30 eV. The basis 

set included the exact 1s, 2s, 2p and 3d hydrogenic states 

and seven pseudostates. The pseudostates channels were 

allowed to be open and the pseudostate parameters were 

chosen so as to avoid the introduction of unphysical 

pseudoresonances. These exist near the thresholds of the 

pseudostates. This is an unfortunate consequence of the 

fact that the discretization of the continuum leads to the 

inclusion of arbitrary positive energies in the problem 

which have no real physical significance. However, Callaway 

and Wooten employed four criteria in their attempt to 

optimize the basis set expansion, which will be discussed 

briefly. Firstly the exact 1s, 2s, 2p and 3d states were 

present. Secondly the 3s and 3p eigenvalues were closely 

approximated by two of the pseudostate energies. They also 
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demanded that the eigenphase sum, for L = 0 and an impact 

energy of 0.405 a.u., should equal or exceed the values 

given by Geltman and 

S-wave phase shifts 

Burke 

for 

(1970), and lastly that the 

L = 1 and impact energy of 0.245 

a.u. should equal or exceed those reported by Matese and 

Oberoi (1971). As they remark, a considerable arbitrariness 

still remained in the choice of pseudostates. The 

pseudostates included three with negative energies and four 

with positive energies. Their conclusions were that in 

general good agreement with other calculations was obtained, 

and also with experimental results for the 1s 2s cross 

section except for an impact energy of 0.39 a.u. 

So far we have briefly discussed some choices of 

pseudostates for electron-hydrogen collisions, based upon 

optimization of certain parameters. However, other choices 

are possible and the general conclusion seems to be that at 

low collision energies the use of a basis consisting of the 

lowest exact states (.e.g. 1s, 2s, 2p) supplemented by 

several pseudostates 

elaborate variational 

produces results very close to 

calculations. Further details are 

given by Callaway (1978). We will now concentrate upon the 

use of pseudostates in heavy particle collisions. 

2. 
2. 4. 4 Introduction to L methods in heavy particle 

collisions 

For almost two decades now calculations involving heavy 
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particle scattering have used the idea of augmenting a basis 

set consisting of bound states, representing the physical 

states of a system, in a trial function expansion similar to 

(2.3.22), by pseudofunctions intended to represent the 

continuum. In the following sections we shall briefly 

outline some of the main attempts to achieve the aims 

outlined in Section (2.4.1), namely to calculate cross 

sections close to the actual experimental data, using only a 

reasonable number of judiciously chosen basis states. The 

first calculation made in the impact parameter formulation 

which incorporated pseudostate functions was probably that 

of Gallaher and Wilets (1968)' in an investigation of 

proton-hydrogen collisions, and so we shall begin by 

discussing how they attempted to include the hydrogenic 

continuum in their calculation. 

2.4.5 Sturmian functions 

Gallaher and Wilets (1968) investigated proton-hydrogen 

collisions in the two centre expansion impact parameter 

approximation. The basis functions they choose, 

f (r),contained Sturmian functions, and had the following 
1'\LM 

form 

I -r S (..-) y (S ~) 
h"\. tf'"\ ( 

(2.4.14) 
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where S (r) is a radial function which satisfies 
Y\L 

1-. 
( -.!._ J --t "\. ( ""\_ 1-\) 

I- J (' 1- 2-- (' '-

and 

£ --
2(1-tl)"-

(2.4.16) 

The Sturmian functions defined by (2.4.15) form an infinite 
1.. 

discrete, complete L basis set. So, unlike the usual 

hydrogenic case, there is no continuum set of states. 

Equation (2.4.15) is similar to the usual Schrodinger 

equation except that the energy E 1.. is treated as a fixed 

parameter and it is the effective charge o< which acts as 
1\"(_ 

the eigenvalue. The necessary boundary conditions to be 

imposed upon S (r) are that it be zero at 
f\1. 

decay exponentially at infinity. By 

the origin and 

choosing E as in 
"t 

equation (2.4.16), the Sturmian functions are in fact scaled 

hydrogenic functions, that is 

5 (' ) not. 
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where R (r) is the usual radial hydrogenic function. The 
1\'( 

normalisation is chosen so that 

(2.4.18) 

V\-t....(Y) 

However the usual orthogonalisation condition has to be 

modified by the inclusion of the factor~, that is 
! 

It can also be shown that 

{_ +-I 

(2.4.20) 

and hence the first Sturmian function for each 1 value 

coincides with the corresponding hydrogenic function. 

We also note that the mean energy is given by 

-r + (2.4.21) 
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It can also be shown that the Sturmian functions are more 

compact than hydrogenic states in that 

<t ~.l \ f / (2.4.22) 
Y\'tM l (\ '\_M f\ ( -{ .f-1 ) 

whereas for hydrogenic functions 

<R \ 
Y\.'t. l. \ 

'I 

(2.4.23) 

Most of their calculations were carried out using the four 

Sturmian basis functions ls, 2s and 2p , on both centres. 

However in order to obtain some idea of the convergence 

characteristics of this type of basis they carried out 

selective tests with up to five states, one p state and one 

d state upon each centre. In order to test the 

effectiveness of their basis set, Gallaher and Wilets 

calculated the overlap of their basis set with the united 

+ atom He (ls) state. This is the ground state of the system 

formed when the two nuclear centres, A and B, are at zero 
+ 

separation. They found the overlap cf He (ls) with the 

first three Sturmian s states was 0.92, which compares with 
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0.76 for the overlap of + He ( 1 s) with all the discrete 

+ hydrogenic functions. Since the He (ls) state has zero 

overlap with the 2s Sturmian state, this demonstrates the 

ability of the Sturmian basis to include the hydrogenic 

continuum. However, there is a problem with the Sturmian 

basis connected with the calculation of the transition 

amplitudes at large values of t, which arises when 

projecting the basis functions onto exact hydrogenic 

functions, in accordance with the formula given in 

expression (2.3.45). The resulting transition amplitudes 

have oscillating components which do not vanish as t ~ ~ . 

Gallaher and Wilets succeeded in removing these, however, to 

produce constant transition amplitudes as t ~ ~ , which 

were variationally correct (Shakeshaft 1976). This will be 

discussed again in Section (2.4.6). Another problem with 

the eight state basis of Wilets and Gallaher, consisting of 

the ls, 2s and 2p , 
0 l 

Sturmian functions on each centre, is 

the fact that the strong degeneracy coupling between the 

true 2s and 2p states is not present because the 2s 

hydrogenic state is not represented exactly in the basis. 

This will affect both the 2s and 2p excitation and charge 

transfer cross sections. A comparison with experiment 

reveals that in general the eight state Sturmian basis is 

better than a purely hydrogenic basis of the same size, 

which consists of ls, 2s and 2p0\ states placed upon each 
I 

centre, especially for the 2p exchange cross section at 

incident proton energies between lkeV and 25keV. However a 
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very dramatic improvement is found for the total exchange 
0 

probability for 3 scattering, as a function of incident 

proton energy, which has been measured by Helbig and 

Everhart (1965). The eight state hydrogenic expansion 

produces a curve which is out of phase with experiment but 

the Sturmian basis produces a curve in excellent agreement 

with experiment at all laboratory energies between 1keV and 

100keV. This calculation therefore showed the importance of 

including the hydrogenic continuum, but larger calculations 

were needed to establish the convergence properties of the 

Sturmian basis functions, and we shall now describe some 

other investigations using these functions. 

An advantage of the Sturmian basis set over some other 

basis sets is that the difficult and time consuming exchange 

matrix elements, which have been defined by the equations 

(2.3.63) and (2.3.64), can be evaluated by solving a set of 

coupled differential equations, which are derived by using 

certain recurrence relations for the Sturmian functions. 

This fact has been employed by Shakeshaft (1975), who also 

investigated the proton-hydrogen collision system. His 

Sturmian basis was based upon the same choice of parameters 

as used by Gallaher and Wilets (1968), as given in 

expressions (2.4.15), (2.4.16) etc. Using a basis of up to 

ten Sturmian functions of s symmetry only on each centre, 

Shakeshaft obtained convergent results for the amplitudes 

for elastic scattering, 2s excitation and capture into 1s 

and 2s states, at an impact energy of 25keV and an impact 
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parameter of 1.0 a.u. This convergence includes the effect 

of the s continuum states 

inclusion of higher 

on both 

1 states 

centres only and the 

will change the final 

amplitudes. In further work using a Sturmian basis set, 

Shakeshaft (1976) used a two centre basis consisting of six 

s states and six p states centred about 

exact 1s and 2p hydrogenic states 

Sturmian basis and the 2s hydrogenic 

each proton. The 

were included in the 

state was closely 

approximated by an eigenvector of the diagonalized Sturmian 

s type basis set. However, the degeneracy between the 2s 

and 2p states was satisfied to within 0.6%. Reasonably good 

agreement was obtained between the theoretical and 

experimental cross sections for excitation of the n = 2 

level, and also for charge transfer into the 2s state over 

the impact energy range 15keV to 200keV. There was however 

a large disagreement of about 45% between the results of 

Shakeshaft and the results obtained by Cheshire, Gallaher 

and Taylor (1970), for the peak in the excitation of then= 

2 level. Cheshire et al. used a seven state basis upon 

each centre consisting of the exact ls, 2s and 2p 

hydrogenic states with the addition of an s and a p type 

pseudostate. Their results obtained using only the exact 

ls, 2s and 2p, states upon each centre were in better 

agreement with those of Shakeshaft than their pseudostate 

basis results. Shakeshaft attributed these differences to 

the fact that near the cross section peak for n = 2 

excitation, the ionisation cross section is also large and 
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the continuum states can be represented more accurately in 

his basis than in the basis of Cheshire, Gallaher and 

Taylor. This is because Shakeshaft's basis functions 

include more extended orbitals than those of Cheshire et al. 

for representing the continuum, and the electron flux will 

presumably be less likely to return back into the bound 

state during the collision from these extended orbitals, 

than is the case for the pseudostates used by Cheshire et 

al. 

Shakeshaft also considered the charge transfer cross 

section into the ls state, which agreed well with the 

results of Cheshire et al. at low incident energies but 

worsens slightly for increasing energies. Shake shaft 

explained this disagreement by noting that for high energies 

the second Born term is thought to be the dominant 

contribution to the cross section for charge transfer in the 

forward direction (see for example Shakeshaft and Spruch 

(1973), Dettmann and Leibfried (1969)), and this corresponds 

to the classical picture of the electron being scattered 
0 

twice through 60 , firstly towards the target proton and 

then by the target proton before emerging with the velocity 

of the incident proton. In this picture the electron is 

scattered into an intermediate continuum state which is 

formed from states with a large range of angular momentum 

values since the electron is scattered through a large angle 

into a small solid angle. Hence neither Shakeshaft nor 

Cheshire et al. can account precisely for this effect with 
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their limited basis sets (with only s and p angular 

momentum) but presumably Shakeshaft's basis represents the s 

and p subspace of the continuum states more effectively than 

does the basis of Cheshire et al. Shakeshaft also estimated 

the cross section for ionisation using a projection 

technique which we shall describe in the next section as it 

will be much used later on in the discussion of the present 

results obtained for this thesis. The results obtained by 

Shakeshaft for the probability of ionisation, using a trial 

wave function containing s states only at a single impact 

parameter, for a single energy, show that reasonable 

convergence is obtained when five or six wavefunctions are 

used on each centre. However, the convergence is not 

monotonic. 

Further calculations using a Sturmian basis have been 

made by Winter (1982), in a study of charge transfer in the 

collision systems 

..f- + "l--f-
H + H-e -7 H + He (2.4.24a) 

He 1-+ + H ~ He+ + H -t- (2.4.24b) 

The basis sets used consisted of between nineteen and 

twenty-four basis functions. The same approach was taken as 

in Shakeshaft (1975). That is to say the basis sets on each 

centre were diagonalized to produce approximate atomic 

states corresponding to each centre, and the occupation 
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amplitudes for these approximate states were used directly 

to obtain the physical cross sections. 

Firstly we consider the process given in expression 

(2.4.24b). 
c.r 1...+ 

At He impact energies of 20keV and 70 eV, the 

Sturmian expansion was used to obtain the total cross 

section for charge transfer into 
'\"" '2.-1-

all states of He and 

these were only about 9% lower than the corresponding 

results obtained using a molecular basis with plane wave 

translation factors by Hatton, Lane and Winter (1979) and 

Winter and Hatton (1980). Comparing the Sturmian results 

and those of Winter and Hatton (1980) the impact parameter 

dependence for the total electron transfer probability is 

also in similar agreement, especially near the peaks in the 

impact parameter dependence. The Sturmian result for the 

4- 1.--1" 
He energy of 20keV is also within 1% of the calculation of 

Kimura and Thorson (l98la) who used a ten molecular state 

basis with optimized translational factors. However, in the 

second reaction considered, given by (2.4.24a), the 

agreement is not so good. At a centre-of-mass energy of 

4keV the Sturmian basis results for capture into the H(ls) 

state are 7% below the result of Winter, Hatton and Lane 

(1980) and 6% above the result of Kimura and Thorson (1981q), 

for the same transition. However, at a centre-of-mass 

energy of 14keV, the Sturmian result for 1s capture is 28% 

above the corresponding result of Winter, Hatton and Lane 

(1980). This suggests, as noted by Winter, that the 

molecular state result has not converged, probably due to 
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the neglect of the continuum, as convergence tests of the 

Sturmian basis suggested that further additions to it would 

only slightly raise the capture cross section. 

A comparison can be made with an eight state bound 

atomic expansion used by Bransden and Noble (1981) and 

Winter (1980). This basis consisted of the exact 1s, 2s and 

2p ' atomic states placed 
o, I 

on both centres. Both eight 

state calculations were in excellent agreement with each 

<t-He 1-+ 
other for impact energies between 20keV and 200keV. 

Firstly, we compare the capture into all states for reaction 

(2.4.24b). The eight state results are about 10% below the 

Sturmian results 
4- "'.--t-

at He impact energies between 20keV and 

70keV but at 200keV the disagreement is about 41% due to the 

neglect of charge transfer states with n > 3. Bransden, 

Newby and Noble (1980) have estimated the contribution for n > 3 

using two-state calculations and their total result at 

200keV is within 7% of the Sturmian result. 

We now consider the second reaction (2.4.24a). At the 

lowest centre-of-mass energy of 4keV the eight state result 

for capture into all states is within 10% of the Sturmian 

result but at 14keV it is 50% below the Sturmian result and 

at 120keV it is 20% too low. This suggests that for 

reaction (2.4.24a) the continuum states have an important 

role to play. Bransden and Noble (1981) suggest an 

explanation for this as follows. In reaction (2.4.24b) the 
+ 

initial H(1s) state and the n = 2 states of He have the 

same energy, and are strongly coupled. Therefore the 
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influence of intermediate states, including continuum 

intermediate states, is expected to be small for energies 

near the cross section maximum. In contrast, in reaction 

(2.4.24a) the energy difference between the initial state He 

(1s) and the H(1s) state is large and hence the coupling 

will be weak and hence continuum intermediate states may be 

important even at low energies. The Sturmian results of 

Winter can also be compared to experimental results. For 

reaction (2.4.24a) total electron transfer cross sections 

have been measured by Peart, Grey and Dolder (1977) and 

Angel, Dunn, Sewell and Gilbody (1978). At centre-of-mass 

energies below 25keV the Sturmian basis results lie above 

the upper error bars of Peart et al. by up to 20%. However, 

between 40keV and 120keV centre-of-mass energies the 

Sturmian results are within the error bars of Angel et al. 

Cross sections for total electron transfer in reaction 

(2.4.24a) have been measured by Shah and Gilbody (1978) and 

Olson, Salop, Phaneuf and Meyer (1977) and the Sturmian 

basis results are in excellent agreement with experiment for 

't t..+ . He 1mpact energies between 20keV and 200keV. 

In this section we have discussed the attempts to 

represent the continuum by Sturmian functions and the 

general conlusion seems to be that possibly five or more 

Sturmian functions of a given 1 value are needed to obtain 

reasonable convergence and also to ensure the exact bound 

states are adequately represented, but that good agreement 

with experiment is possible for certain processes where the 
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continuum plays a role. 

However the Sturmian basis approach iS b~st applied 

to a system with a hydrogenic centre and subsequently we 

shall discuss various approaches to the more general 

problem. However, firstly we shall describe in more detail 

how unambiguous ionisation cross sections may be obtained 
1.... 

from an L basis set. 

2.4.6 Determination of ionisation cross sections from an L ~ 

expansion 

We start by using the fact that since the Sturmians 

basis functions overlap the hydrogenic continuum, then the 

trial function (see expression (2.3.49)), which is found by 

solving equations similar to equation (2.3.54), must contain 

some information about the ionised probability of the 

electron at some large time t. We suppose that the trial 
~ 

function 'f (r,t) has been expanded in a basis set, which 
I 

consists of states which have been obtained from a 

diagonalization procedure using the hydrogen atom 

Hamiltonian, as described in Section (2.3.3). These 

variationally determined states will be labelled as 

f (~, t) and 
K.o<., t '(" 

the result that 

hydrogenic state 

an upper bound 

-' 

from the Hylleraas-Undheim theorem we have 

f (~,t) is an approximation to the exact 
l(o<.,ty 

~ (r,t), with its variational energy being 
Kol.. 

to the corresponding exact energy of 

~ (r,t). The label K refers to the Kth atomic state of 
k~>~. 
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the hydrogen atom, attached to centre~ where «is either A 

or B. Hence we can write the trial function in the limit as 

t becomes infinite as 

M 

'1!-r ((- ~ ) "L lo. (~) P c r-, !:;) 
I j jBt tr J :;.( 

(2.4.25) 
t--J 

-\-- L: Cl. (t) ~ (r,t) 
I'-

~ f'l,h l£..C::.I 

(which is analagous to equation (2.3.49)), and where the 

labels A and B as usual refer to the projectile and target 

respectively. The summations in expression (2.4.25) are 

over all trial states included in the basis. We note that 

the label i which denotes the initial state of the system 

before the collision has been dropped for convenience in 

this discussion, but is contained implicitly in expression 

(2.4.25). For convenience we will now concentrate on the 

target centred part of expression (2.4.25) asking what is 

the probability of a transition into an exact final state 

p (r,t) after the collision? 
9~ 

The probability is given by the following expression 
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provided the limit in expression (2.4.26a) exists. 

Shake shaft (1976) shows that it does exist and that the 
I 

probability p is given by 
4B tY' 

I 

(2.4.26b) 

where the time dependence has been removed because of the 

modulus operation. We note that the probability in 

expression (2.5.26b) is that calculated by Gallaher and 

Wilets (1968). This is to be compared with the transition 

probability that would be obtained by using equation 

(2.3.58), for the transition into the final trial state 

~ (r,t) which is given by 
I 

(2.4.27) 

~ -" 
As Shakeshaft remarks, the quantity < f (r) I J:. (r) > is 

9!3 .JB,/:;y 
~ ~ to second order in the error in ~ (t,t) and it has 

u~IJ· L ;,e,t.r 
been stated already in section (2.3.3) that expression 

(2.4.27) is also a variational probability estimate. Hence 

it is not obvious which of the expressions (2.4.26b) or 

(2.4.27) provides the best estimate for the transition 

probability for a finite basis set. Evidently though both 
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expressions will give the same value as the size of the 

basis set is increased. We shall now consider expression 

(2.4.26b) again, which gives the probability for a 

transition into the exact final qth bound state on the 

target. 

We now calculate the sum of all such probabilities into 

all final exact target bound states, 

given by 

q(\ "l J~l 

'2. 
\lo.(Dll)\ l 

J 

~ (~,t) which will be 
96 

The summation 2:: is over all the exact target bound 

states. 

The total probability for the electron to be attached 

to the target, no matter what final state it is in, is given 

by 

M 
p 

B L (2.4.29) 

j:::-1 

and hence the probability that the electron is in the 

continuum states of the target after the collision is given 

by subtracting expression (2.4.28) from expression (2.4.29) 

to obtain 
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where P 
ie5h,S 

rewrite the 

is the target ionisation probability. We can 

term in brackets in expression (2.4.30), by 

using the completeness relation 

z_ 
~\\ \ 

....... 
c:d\ K (2.4.31) 

where 
_,. ~ 

lf(k,r)> is a suitably normalized hydrogenic 
A 

continuum state of the target centre B, and I is the unit 

operator. 

Then 

r_ 
j8 

f d~ 1 < l ( ~~1 ) I if, C r) > I~ 
B J s, tv 

(2.4.32) 

where in the second step we have used the result in (2.3.33) 

and thus we rewrite expression (2.4.30) as 
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M 

L \ ~ b. (o6) \ L--

3= l j s J 
(2.4.33) 

with r defined by expression 
.)f, 

(2.4.32). This is an 

important result as it relates the probability for 

ionisation to occur to the probabilities 1o (ro) which are for 
j 

transition into discretized pseudostates. p ' I 
I 51'- 8 

as 

defined relates only to the target and is therefore a 

measure of the direct ionisation probability. However, a 

similar analysis can be applied to the projectile transition 

amplitudes and it is straightforward to show that the 

corresponding probability for a transition into the 

continuum states centred upon the projectile, which are 

denoted by {~ ( K', "t, ) >, and are suitably normalized, will be 
PI 

given by the following expression 

N 

L. 

where a p¢) is obtained from equation (2.3.59) 
k 

defined by 

(2.4.34) 

and \ is 
I<~ 

I 
k:A l<fc~,r)lj (;;i')/J£_ (2.4.35) 

A kA 1 bv 

in analogy to expression (2.4.32). 
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Therefore the final result is that the total combined 

probability for a transition into a continuum state centred 

around either the projectile centre of the target centre is 

given by the expression 

N 

L 
K.-~ i 

+ 

M 1.. 

-t- L. r \b .. (~)1 (2.4.36) 
So jl 

j:::ol J;;;> 

We can interpret the expression (2.4.36) for the total 

probability of ionisation as follows. For a projectile 

centred state we have that ta \C. (o0) \1.- is the probability for a 

transition into the state denoted by K and must be 

multiplied by the corresponding probability that this state 

is in the continuum set of states centred upon the 

projectile, which is given by Similarly the 
1. 

probability (b. (oo) I for a transition 
l 

into a target state, 

denoted by j , must be multiplied by the corresponding 

probability that this state is in the continuum set of 

states centred upon B, which is given by ~ . The analysis 
.J~ 

above has been for the case of proton hydrogen collisionsbut 

it can be extended immediately to the cases where one or 

both centres represent an effective potential in which a 

single active electron is moving, which will be the basic 

system to be studied in this thesis. 
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We note also at this point that we shall call the cross 

sections obtained through the use of expression (2.4.36) the 

projected cross section. The projected cross sections will 

be determined in the same fashion as the usual cross 

sections, that is through the use of equations analagous to 

(2.3.72) and (2.3.73). Thus we can write that the total 

ionisation cross section, obtained from the probabilities in 

expression (2.4.36), is given by 

N t;;lJ 

b· 'L tl "' r f 
l.. 

o\b { 0'\ 2.. b [a. . Coo) [ 
K.A K1 

I< ::: I a 

N1 
CX> + 211. L I s b [b,.Cct::>)ll..db 

' js 
j=l 0 

jl 

N M 
L. ~A G'~ -t- L ( cr--d (2.4.37) 
K::;.l 1(, - JB s; 

j-=-1 

In the second line of expression (2.4.37) we use the fact 

that the quantities and as defined by expressions 

(2.4.35) and (2.4.32) are independent of the impact 

parameter, b. Then in the last line of expression (2.4.37) 

we have obtained the reaction cross section, , and direct 

cross section, as defined by expressions (2.3.72) and 

(2.3.73). Thus it is clear that the total ionisation cross 

section, as obtained from a two centre expansion, separates 

naturally into two distinct contributions. The first 

summation term in expression (2.4.37) is the contribution 

due to the projectile centred states and is usually called 
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charge transfer into the continuum (or CTTC) and this 

abbreviation will be used from this point. The second 

summation term in expression (2.4.36) is the direct 

ionisation cross section. 

Finally in this section we shall describe how other 

probabilities can be projected using formula analogous to 

expression (2.4.36). We return to expression (2.4.26b) which 

is the variational probability that the exact final bound 

state, denoted by J (~) 
'fB 

occupied and is given by 

for a target centred state, is 

M 

L '-1 b· (o<~) ( 
J 

(2.4.38) 
. 
) -r ( 

where we define 

.... { ,:r._ .... > { £... I< r (r) :r. rv-) 
~8 J B, t -r 

(2.4.39) 

Since J represents an exact bound state on the target, then 
/8 

expression (2.4.38) is analogous to the expression (2.4.33) 

for the direct ionisation probability, and we calculate the 

cross section for the transition into an exact final bound 

target state, denoted by J (r), as follows, 
'18 
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I 0'0:> M 
-~ 

2-11 !., dlo b z ncr . lb .. (otl) (2 (::) 

== 4B 8, ;B jl 
J"'l '-

1--'\ 
(2.4.40) 

::: 2 n, . d 
c:J:". 

j:=o.t gt )B jl 

where we have used expression (2.3.72) in the second line. 

We shall call the cross section, obtained for an exact final 

state 1: as in expression 
'le 

section for the state j (r) . .,6 

(2.4.40), a projected cross 

Similarly we can define the projected cross section for 

charge transfer into the exact state 

projectile centre as follows 

I ()0 N 
6 ;:. 2.n Jo oUo b L: n 

)p.., 
(;:..r SA 1 KA 

N 
-::: "2:: tl r 

1(::::( SA
1

t<.A- ~i 

§ (r) on the 
SA 

(ct (~)/?.. 
t<i 

(2.4.41) 

where we have used expression (2.3.73) in the last line, and 

where we define n as follows 
SA,KA 

n 
SA I K A 

(2.4.42) 

Thus we have obtained expressions for the cross sections for 

transitions into exact final states, representing both bound 

and continuum electrons, on both the target and projectile 

centres, in formula (2.4.37), (2.4.40) and (2.4.41). These 
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formula will be used extensiv~ly later on and therefore 

their derivation has b~en considered in detail. 
2 

Now we shall return to the discussion of L basis sets 

in the imFact parameter approximation, which can be applied 

in more general situations than the purely hydrogenic case. 

2.4.7 The united atom pseudostate method. 

The calculation of Cheshire, Gallaher and Taylor (1970) 

for the proton-hydrogen collision system has been mentioned 

in the previous section and we shall now describe it in more 

detail. Cheshire et al. based their choice of basis set 

upon the following considerations. Firstly to avoid the 

problems associated with the degeneracy of the 2s and 2p 

states (encountered in the Sturmian basis method by Gallaher 

and Wilets (1968))' the 1s, 2s and 2p states must be 

represented exactly to allow completely for the long range 

coupling. 

Secondly they reasoned that at small interproton 
~ 

separations intermediate states of the united atom He are 

formed and these should be adequately represented in the 

expansion basis. Finally, they selected the basis so that 

the time consuming exchange matrix elements (equations 

(2.3.63) and (2.3.64)) could be evaluated using the fast 

differential equation method of Cheshire (1967), which 

restricts the number of exponents which should be included. 

Due to computational limitations only a single 3s 
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pseudostate and a single 3p pseudostate could be included in 

the basis and these have the following radial wavefunctions 

respectively (using the notation of Cheshire et al.) 

The 

5 ( '(' ) 
l I 

5 ( (") 
'1..-t 

I~ ~ 
(£Gr::o/ 1 -:t-) e.xe(-'1)(\-tbV"~;:::.) 

15 s 

basis set consisting of the 1s, 2s, 3s, 2p 
'0 I I 

(2.4.43) 

and 3p 
o I (..,... 

states give the overlap integrals with the three lowest He 

states shown in table 2.1. 

The results in table 2.1 show that the pseudostate 

basis represents the united atom states rather better than 

the complete set of hydrogenic states and includes 

significant contributions from the hydrogenic continuum 

states. The total charge exchange cross section was 

computed by projecting the 3s and 3P pseudostates onto the 

exact bound states as described in section (2.4.6), and was 

in good agreement with the experiment of Bayfield (1969). 

However, the total charge transfer probability corresponding 
0 

to a scattering angle of 3 , although in agreement with the 

experimental data of Lockwood and Everhart (1962), at high 

incident proton energies (between 15 keV and 60 keV), was 

in worse disagreement at lower energies than the eight state 

101 



"' ) 
Table 2.1 

+ 
Overlap intergrals with the first three states of He 

N l "' >12 L I< He+ ( 1 s ) { ¢ >I LJ<.He+(.2.s) / p ns 
n.-= I ns n.,. I N 

1 0.70233 0.25000 

2 0.74227 0.56215 

3 0.9215 0.91509 

4 0.99227 0.98203 

5 a) 0.99699 0.99560 

H( oa ) 0.76 0.66 

N 
L / < He+ ( 2p) ! 
f\.:: I 

-------

0.55493 

0.86322 

0.96599 

0.96632 

0.70 

a) The last row corresponds to the complete set of hydrogenic bound 

states.N=1,2 corresponds to hydrogenic wavefunctions and higher 

values of N correspond to pseudostates. 

"') This table is reproduced from Table 1. in Cheshire et al .. 1970. 

1.-

¢ ns>f 



Sturmian results of Gallaher and Wilets (1968) near the 

cross section 

conclusion was 

pseudostates 

minima which is puzzling. 

that the inclusion of the 

The general 

3s and 3p 

improved the wavefunction and the cross 

sections derived from it when compared with available 

experimental data. 

We shall now return to the idea of relating the choice 

of pseudostates used, which must include the continuum to 

improve the convergence characteristics of a basis, to the 

eigenfunctions of the united atom limit of the collision 

system. Firstly, we consider the low impact velocity 

region. It is reasonable to expect that for such 

collisions, where the time for the projectile to cross the 

target atomic interaction region is large compared with the 

characteristic orbital period of the active electron in the 

target, a quasimolecule is almost adiabatically formed about 

the two centres of charge. Non-adiabatic couplings arising 

from the relative nuclear motion will cause excitation of 

the virtual molecule, leading to charge transfer and other 

excitation processes. In this region it is usual to try to 

represent the electronic distribution by a small set of 

strongly coupled molecular orbitals rather than to use 

atomic orbitals. Asymptotically, as the two collision 

centres move far apart, the molecular orbital must tend to 

an atomic orbital on one of the two centres (in the 

homonuclear case the limit is a linear combination of atomic 

orbitals on both centres). For vanishingly small 
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internuclear distances the united atom limit is approached. 

Usually the internuclear axis is taken as the axis of 

quantization and the system can be described in the 

coordinate system shown in figure 2.3, which is for the 

single electron system consisting of the particles ABe as 

in section 2.1. 

The total Hamiltonian of the system is given by 

H (2.4.44) 
~L 

where T is 
1'\\A c 

the kinetic energy operator associated with 

the nuclear motion, where 

where f is the reduced mass of the nuclei, 

and the electronic Hamiltonian H is given by 
-e.l 

v 
~e 

(2.4.45) 

(2.4.46) 

(2.4.47) 

where the electronic mass, m , has been ignored compared to 
-e.. 

the masses of A and B (see equations (2.3.5) and (2.3.6)). 
_::, ~ 

The adiabatic molecular orbitals ~(R,r) are defined as 
(I 

the bounded solutions of the eigenvalue problem 
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A 

Figure 2.3 

Molecular (adiabatic) coordinates for the 

system ABe . 0 is the centre of mass of AB. 

B 
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.... 
y) 

(2.4.48) 

The internuclear potential is a constant, for fixed R, so 

that the total energy E (R) 
(\. 

is the sum of V and the 
ftB 

electronic energy, that is 

E C ,::z) 
(\ (2.4.49) 

The system is symmetrical for rotations about the 

internuclear axis so that the angular momentum component 

along this axis, denoted by A, is a good quantum number. 

Due to invariance under reflections where 
~ ~ ~ _..l. 

(r~- r,R-7- R) 

the eigenvalues depend only upon t ~<. I . Two other 

quantum numbers must be specified to specify the molecular 

orbital. One way to choose these is to consider the united 

atom limit, (R--j-0) where the wavefunction becomes an atomic 

orbital described by three quantum numbers, n,!,m. In this 

unit ).. corresponds to m. Thus the orbitals can be labelled 

by the united atom quantum numbers, n, { and the symbols, 

c,n,& ... which denote (>./ = 0,1,2 .... This gives the 

notation for the orbitals as 1s~, 2p~, 2pn, etc. For 

more than one electron the total component of angular 

momentum along the axis is conserved and is denoted by?:" , Tf, 

A , • • • which represents /fA,·/ = 0, 1, 2, etc. As the 

internuclear separation tends to infinity then the molecular 

orbital tends to an atomic orbital (or a linear combination 
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of these) with quantum numbers {AI 
I I 

n -{' , and therefore a 

given molecular orbital can be designated either by its 

united atom limit n -l/>.1 or separated atom limit {>-/n 1
-<.

1
• If 

the two nuclei are the same then the system is invariant 
.J > 

under the transformation r ~ - r and the molecular states 

are labelled gerade (g) or ungerade (u) which denote even or 

odd parity solutions respectively. 

Now an important aid used for constructing the united 

atom basis set is the set of adiabatic potential energy 

curves which show E (R) as a function of R. This is called 
f) 

a potential energy correlation diagram which correlates the 

united atom limit with the atomic orbitals in the separated 

atom limit, (see Bransden (1983)). An important theorem 

(the non-crossing theorem) states that if j and k belong to 

the same symmetry class, the curves of E. (R) 
J 

cannot cross as R varies between 0 and ~ 

and E (R) 
k 

For a 

heteronuclear system this theorem requires two curves with 

the same [~/ may not cross (Von Neumann and Wigner, 1929). 

In the case of a one electron system, states with the same 

values of S and {A/ cannot cross, where S is a separation 

constant arising because of the extra symmetry of the 

problem. The scattering equations in the molecular basis 

can be set up (Bransden, 1983) and one obtains a set of 

coupled equations analagous to the atomic orbital coupled 

equations (Section 2.3.3). 

As in the case of the atomic orbital expansion, the 

matrix elements involving two molecular orbitals, denoted by 
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J and k, include a phase factor which depends upon the 

difference between the two adiabatic energy levels of the 

states in the matrix element. If this energy difference, 

E -E is large for all R then the two states will be only 
J K' 

weakly coupled. However, if the energy difference, E -E , 
j k 

vanishes for some particular R, they will in general be 

strongly coupled. For two states which have the same 

symmetry, and therefore obey the non-crossing rule 

previously mentioned, the energy curves can sometimes 

closely approach each other at what is called a 

pseudo-crossing, and the radial coupling between the states 

is large resulting in strong coupling between the two 

states. In selecting a molecular basis the main criteria is 

to choose a small basis set which consists of the most 

strongly coupled states as indicated by the appropriate 

correlation diagram. We shall now consider how an atomic 

orbital expansion can be selected also by considering the 

same correlation diagram. Fritsch and Lin (1982) based 

their so-called modified atomic orbital expansions, which we 

shall denote by AO+, upon this idea in order to investigate 

charge transfer in H+ +Hand He++ H ~collision system. In 
-t 

the case of H + H the largest basis set typically used 

consisted of the ls, 2s and states of both the 

separated atom limit and the united atom limit, which were 

placed upon both centres giving a total of sixteen states. 

This choice of basis both ensured that the eight state basis 

of Bransden and Noble (1982) was contained completely in it, 
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and also that the united atom orbitals to which the lowest 

+ 
molecular orbitals correlate for the H system were 

included. 

A similar basis chosen in the same fashion was also 
~ 

used for the study of the He + H system, that is it 

consisted of the separated atom and united atom 1s, 2s and 

2p
0 1 

states. Diagonalizing the two centre Hamiltonian for 
I ~ ~ 

the He + H system in the space spanned by the sixteen 

state atomic expansion produced correlation energy curves 

differing by less than 1% from the exact molecular orbital 

curves for all internuclear separations. The basis sets on 

each centre were subsequently diagonalized using the 

corresponding separated atom Hamiltonian to produce an 

orthogonalized pseudostate basis which contained both 

positive and negative expectation energies and thus included 

a contribution from the continuum states of both separated 
+ 

atoms, He and H . A similar procedure was applied to the 

+ 
basis for H + H collisions, with a subsequent partial 

representation of the continuum of the H atom on both 

centres. The 3d united atom orbital was also included on 

both centres to produce a twenty two state basis for some 

calculations. 
+ 

The results for 1s capture in H + H collisions were in 

agreement with the other pseudostate calculations of 

Cheshire et al. (1970), described previously in this 

section, and of Shakeshaft (1978) who used 68 orbitals 

derived from scaled hydrogenic basis sets, and also with 
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the experiment of McClure (1966). The sixteen state AO+ 

results for H(2s) capture oscillated around the ten state 

molecular orbital results of Kimura and Thorson (1981b) but 

the twenty-two AO+ results are in excellent agreement with 

the molecular results up to an impact energy of 50 keV, 

which indicates the effectiveness of the AO+ expansion 

because the 2s capture is a small process compared to the 1s 

and 2p capture at low energy and also because the 

calculation of Kimura and Thorson used sophisticated 

molecular translation factors. However, both these 

calculations overestimate the measured 2s transfer cross 

section at the highest energies, whereas Shakeshaft (1978), 

using sixty eight basis states, is in agreement with 

experiment. This indicates that the AO+ expansion must 

include a better representation of the n = 3 orbitals and 
+ + 

also of the continuum to obtain convergence. For H + He 

collisions the total transfer cross sections obtained from 

the sixteen state AO+ expansion are again in agreement with 

the ten molecular orbital calculation of Winter et al. 

(1980) for H+ impact energies between 1.5 keV and 8 keV and 

above this they are within 1% of the Sturmian expansion 

results of Winter (1981) previously discussed, which 

indicates that both the Sturmian expansion and the AO+ 

expansion are effectively accounting for the dominant part 

of the electronic wave function but by seemingly different 

+. 
means. Fritsch and Lin conclude that above an H 1mpact 

energy of 25 keV a better representation of the separated 

atom continuum may be needed to ensure that 
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convergence of their expansion. This is because the united 

atom orbitals included in the expansion give rise, after 

diagonalization of the basis on each centre, to high values 

for the positive energies in the pseudostate basis and thus 

the important low positive energy region is not represented, 

and this will be the important region for collision 

velocities > 1 a.u. 

2.4.8 The three centre expansion method 

So far we have only described how the impact parameter 

approximation has been used with expansion functions placed 

upon both the heavy particle centres throughout the 

collision process. However there is no reason in principle 

why other expansion functions should not be placed upon a 

third or more centres during the collision. This approach 

was considered by Anderson, Antal and McElroy (1974) for 

+ 
H + H collisions. Since the results of Gallaher and Wilets 

(1968) and Cheshire et al. (1970) had already shown the 

importance of the hydrogenic continuum and the united atom 

states in the charge exchange process it was decided to 

explicitly introduce united atom states into the expansion 

basis with the expansion states to be placed upon three 

centres. The formulation of the problem proceeds along 

similar lines to the two centre expansion as described in 

Section (2.3.3). The exact 1s and 2s hydrogenic states were 

placed upon each proton centre and the united atom He+(1s) 

state was placed upon the midpoint, 0, of the internuclear 

vector, AB, which is also the centre of charge of the system 
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as shown in figure 2.3. 

If the coordinate origin is taken as being at 0 then 

any expansion function placed upon centre 0 does not need a 

plane wave translational factor attached to it. In 

formulating the problem the expectation energy associated 

with the united atom orbital in the phase (see equations 

(2.3.37) and (2.3.39) is the usual eigenvalue associated 
+ 

with He (ls). However, the computational difficulties are 

greater than for the usual two centre expansion because 

three centre integrals have to be calculated, instead of 

only two centre integrals for the exchange matrix elements. 

+. . 2 d For H 1mpact energ1es between keV an 20 keV the five 

state three-centre expansion were almost identical to those 

from the fourteen pseudostate expansion of Cheshire et al. 

(1970), 
t> 

for the total charge exchange probability for 3 

scattering. The three centre expansion also gave the cross 

section for charge transfer into the 1s state at 10 keV as 

8. 6 n a 1.- compared to the experimental value of 8. 2 n a 1. and 
0 c 

the value of 3. 4 n a 1. which is obtained when the united atom 
() 

orbital is omitted from the expansion. However, not enough 

results were obtained to suggest whether the three-centre 

expansion converges more rapidly than the usual two centre 

pseudostate expansion. We shall now consider how the 

continuum is represented in the three centre expansion. It 

is clear that any orbitals placed upon the internuclear 

midpont in the three centre expansion cannot contribute to 

either the direct or exchange bound channels as t ~ ~ and 
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hence all the electronic flux into these orbitals can be 

considered as representing ionisation. We note, however, 

that the expectation energy of these orbitals does not have 

to be positive in order that they represent the continuum. 

However, if these same orbitals were placed upon either of 

the centres A or B, then because they would in general 

overlap with the bound states corresponding to that centre, 

the flux into these orbitals represents a combination of 

possible transitions. However the triple centre expansion 

may be able to represent processes that would otherwise 

require a much larger two centre expansion to model them. 

It is clear that in order to represent a single s state 

placed upon the internuclear midpoint requires many states, 

including angular momentum greater than zero, to be placed 

upon either nuclear centre. A similar point was made in 

Section (2.4.5). Further motivation for using three centre 

approach to represent the continuum through the use of 

united atom orbitals on the third centre was given by Antal, 

McElroy and Anderson (1975). They considered the use of 

correlation diagrams, as described in Section (2.4.7), and 

showed that the introduction of a single united atom orbital 

placed at the internuclear midpoint could dramatically 

improve the energy obtained (as a function of internuclear 

distance) for the H+ molecular ion as compared to a simple 
~ 

LCAO approximation which retains only the hydrogenic 1s 

function on both nuclear centres. They then proposed that 

the correlation diagrams suggest the major pathways that the 
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charge exchange reactions 

+ 
H + H(ls) -1 H(2s) + H -r (2.4.50) 

and + + H + H(ls) --'t H(ls) + H (2.4.51) 

proceed along, via intermediate united atom and molecular 

orbitals. Thus the three centre expansion as proposed by 

Antal et al. is closely related to the united atom approach 

of Fritsch and Lin which was described in Section (2.4.7). 

Lin, Winter and Fritsch (1982) investigated the three centre 
--r 

approach for H + H(1s) collisions using only the hydrogenic 

ls functions on the nuclear centres and the united atom 
-t

He ( 1s) state placed upon the internuclear midpoint, in 

order to assess the improvement this produces over the 
-r 

two-state approximation which neglects the He (1s) state. 

They also used a basis consisting of the hydrogenic 1s state 
-t 

and an orthonormalized He(1s) state placed upon each nuclear 

centre. The impact parameter probability distributions for 

charge transfer into the H(1s) state for all three basis 

+ 
sets were very similar at an H impact energy of 25 keV but 

the three centre expansion gave increasingly different 

results for small impact parameters (less than 1 a.u.) as 

the energy decreases. Since small impact parameters only 

contribute a small amount to the total integrated cross 

section then a more sensitive test is required to 
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differentiate between different theoretical models, such as 
0 

the 3 scattering data of Helbig and Everhart (1965) 

previously referred to. Both expansions which included the 

united atom orbitals gave very similar results and predicted 

the maxima and minima in the total charge transfer 

probability more accurately than the simple two-state 

approximation. The largest calculations so far attempted in 

the three centre approximation were made by Winter and Lin 

(1984) in a treatment of ionisation in low energy + H + H 

collisions. In particular they attempted to take into 

account the Wannier mechanism in which the electron will not 

be removed in a slow collision unless it is asymptotically 

at the point of unstable equilibrium between the colliding 

nuclei. That is to say the electron must move along the 

equipotential point 
+ 

(the internuclear midpoint for H + H 

collisions) as the two nuclei slowly separate in order to 

become free. The first order perturbation calculation, 

within a molecular basis, of Sethuraman, Thorson and Lebeda 

(1973) showed that gerade states have contributed less than 

+ 
0.2% to ionisation for H impact energies between 0.1 keV 

and 0.5 keV. Winter and Lin therefore mainly considered an 

ungerade basis expansion and found that the minimum size 

basis consisted completely of bound states as follows: 

all ungerade combinations of hyrogenic exact states up to 

n = 3 were used on each proton centre (i.e. a combined total 

of ten states on both centres) 

states with symmetry 2p o,, 
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the third centre at the internuclear midpoint. Therefore 

only the states upon the third centre could give any 

continuum contribution in the collision process. Winter and 

Lin checked the convergence of the expansion by the addition 

of further ungerade combinations of s and p states on the 

nuclear centres, A and B, with positive expectation energies 

such that they represented the low energy region of the 

continuum. At impact energies between 1.563 keV and 

these changed the maximum values of bP(b) (where 

the total ionisation probability at an impact 

11.11 keV 

P(b) is 

parameter value b) by about 15%. It was also found that a 

three centre expansion using gerade combinations of states 

was less reasonably converged with respect to the addition 

of similar s and p gerade combinations of states upon 

centres A and B, but the change in the gerade probability 

was only about 10% of the ungerade total ionisation 

probability at an energy of 11 keV. 

Thus the conclusion was that at these energies the 

bound united atom orbitals upon the equipotential point are 

the primary ionisation channels. Further tests, involving 

the addition of further p and f united atom states to the 

third centre suggested that the initial basis had converged 

to within 20% or so, as far as the ionisation probability 

was concerned. The final ionisation cross sections from the 

three centre expansion were an improvement over the existing 

pseudostate calculations of Fritsch and Lin (1983a) at the 

lowest energies where the experimental data for ionisation 
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of Fite, Stebbings, Hummer and Blackman (1960) is available. 

Fritsch and Lin used a two centre pseudostate basis with 

eight s and six p states upon each proton centre. They 

underestimate the lower experimental error limit by a factor 

of four, whereas this limit is "only" 46% above the value 

from the three centre expansion. At the highest energy 

considered, which is 15 keV, the three centre expansion is 

about 50% above the value of the two centre expansion but 

uncertainty in the normalisation of the experimental data 

available makes comparison difficult. However, this work 

shows that up to impact energies of 15 keV the fundamental 

ionisation mechanism is probably due to continuum states 

localized near the equipotential point and can be 

intrinsically represented by the three centre expansion 

whereas it is difficult to account for this using only a 

reasonably large two centre expansion. 

We have described in this section how the continuum may 

best be represented in the 

through the introduction 

low energy collision region, 

of a third expansion centre 

motivated by the Wannier approach to ionisation. In the 

next section we shall consider another approach motivated by 

the high energy behaviour of the ionisation and excitation 

cross sections. 
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2.4.9 Oscillator strengths and the dipole approximation 

close coupling method. 

In the previous section we have considered how an 

approach to the representation of the continuum is suggested 

in the low energy collision region through the use of 

wavefunctions attached to a third centre. However, for the 

case of intermediate and high collision energies another 

approach is more appropriate. In order to investigate this 

we shall initially consider the case of a bare ion of 

nuclear charge %, denoted by A~~, colliding with a single 

active electron atom, in a reaction of the type 

(2.4.52) 

where the target atom, B, is left in an excited state. In 

the usual impact parameter approximation the corresponding 

time dependent ion-atom interaction will be of the form 

(2.4.53) 

[ tct) - 1-e I 
_, ~ 

where r
6 

and R(t) are shown in figure (2.2) 

The relative velocity of A and B is V. The time 

dependent potential given by expression (2.4.53) can be 
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expanded as follows (Weissbluth 1978) 

oO 
----\ I 

'L 
v (f I R ( t)) ;:;::. - 1. y~ ? ( co5 LD) (2.4.54) B -L '(_:::.o rt+l 

7 

...:.. 
where r< is the smaller of the two quantities tR(t)/ and 

......> 

\ r 
8

\ , and r/ is the larger of the same two quantities. 

p (cos w) is the 
1.. 

Legendre polynomial of degree ~ and 

argument cos w, where w is the angle between the unit 

vectors in the 
.,...;. 

directions of R(t) and Since 

P (cos w) = 1 and P (cos w) = cos w then we can rewrite 
0 l 

expression (2.4.54) as follows 

__. _,. 
--:c. ( c.--oS ~ + .... ) V ( \'" B ,R.(l:1) ;::. -\"" y< (2.4.55) -R.U:: 7 17... 

> 

In the region of space where R(t) > r then the 
8 

expression (2.4.55) becomes 

...... .> ....\ v ( ( s I 1Ut.1) ::::. -l ( + '-B. J2. (~) -t .... ) (2.4.56) ---
R (1::) ~ 13 R < u 

Janev and Presnyakov (1980) have considered a model where 

only the first two terms in expression (2.4.56) are retained 

in the impact parameter approximation. The first term in 

expression (2.4.56) can be neglected as it depends only upon 
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the internuclear separation, R(t). 

For the case of excitation they retained only the 

initial and final states in the expansion basis. However 

for the case of ionisation they introduced a third state to 

account for the effect of transitions into the continuum 

through intermediate discrete states. The approximation 

based upon the second term of expression (2.4.56) is known 

as dipole-approximation close coupling (denoted by the 

initials DACC) theory. 

In the case of excitation from an initial s state, 

[ns>, into a final p state, !n'p >, or p state, 
o o I 

fn p >, 
I 

the following set of coupled equations are obtained for the 

corresponding occupation amplitudes which we denote by a, b
0 

and b · I , 

:::. :r... ~ ( b c..o s e --t 
- 0 R'l.. 

= 

\ Jb 1 ::;:. "l. }- 5 lrd1 e. X f ( i I.N t. ) C\ -Jf; f--."" 
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(2.4.58) 

(2.4.59) 

(2.4.60) 



where f 
0( 

between the 

is 

s 

::::: 6 
rz 

( f 
0\ 

the 

and 

/2.w 
\I 1.. 

' ) 

oscillator strength 

the p states and 

(2.4.61) 

(2.4.62) 

for the transition 

w is the energy 

difference between the s and p states involved. The 

quantities vt and b are defined in figure (2.2). The 

oscillator strength for the transition between an s and a p 

type state is given by the formula (Bethe and Saltpeter 

1977) 

2. 
r U>s e \ "s / \ (2.4.63) 

The coupled equations (2.4.57) to (2.4.59) are solved 

subject to the usual boundary conditions, a(- ) = 1 and 

b (-oo) = o. The solution is found by transforming to the 

new set of variables K. (t) = -ib. (t) /a (t) (Presnyakov 1964) 

and then solving 
l, l 

for the functions K .(t) by the method of 
t.. 

Vainshtein, Presnyakov and Sobel'man (1962). The resulting 

probability for the ns 0n'p transition is given by W(b) 

where 

w (b} :::::: w (b) 
C> 

-t (2.4.64) 
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w l b l ;::.. 
0 

w, (b) ;::: 

( J :u: f -;;. 
C> 

-.a 

c£J 

r ( JU: ::. 
I 

-rJ:> 

;;:;. 
(2.4.65) 

\b <..;-oD!\"2. ~ f, (2.4.66) 
I 

-\- \)"' +- ~\ 

l: 1.. 
~ I/ } ) ~~-y t. 5\.-, t 5 [ [>.:) 7- -!- ~ ( EL) J i-&-r (2.4.67) -R3 C> R. ..... (_eJ 

t ., ,,.., ' - ' ')_ 

:rH { ~ [ ( i) 
1- \ ~ r J JJ:' -r ~ } ) ( 2 . 4 . 6 8 ) U>S -r ----- R "'-(eJ 2 

R3 

The transition probability given by expression (2.4.64) has 

the important property that it is properly normalized and 

has non-singular behaviour as b ~ 0. Janev and Presnyakov 

introduced the scaling transformation 

b :;:: 'l>- J (2.4.69) 
v 

vt: -:::: t:.>. X (2.4.70) ----v 

and the dimensionless parameter ?> where 

(2.4.71) 

Then after integrating W(b) over all impact parameters the 
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following expression is obtained for the excitation cross 

section, o 
e. x.c 

(2.4.72) 

where 

oO 

b l f ) ::: ~ j J d J _f_c (-~-/ -~ -) _-r_P_I -( ~_'J -~ ~-)-
o 

(2.4.73) 

For values of p << 0.01, which corresponds to the region 

where the Born approximation is valid, the excitation cross 

section has the approximate form 

8't7 (0) 
y 

1. '2. 
\"' ( 1·4- v ) 

l-2:/.W 
(2.4.74) 

This expression for the excitation cross section can also be 

found from the general Bethe-Born theory (Landau and 

Lifschitz 1977). From the expression (2.4.77) it is found 

that the excitation cross section reaches its maximum for 

~ - 0.28 which corresponds to a collision velocity given r Mill(-

by 

\) ~ (2.4.75) 
rnax 

and the corresponding maximum cross section is given by 
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a-- ~ 6. 82- nc.t-
-Q_xc.1Mo...x --- ( 2. 4. 76) 

LD 

Thus the position of 
1/2.. 

v scales as % whereas the cross 
Max 

section maximum depends linearly upon ~. Janev and 

Presnyakov then proposed to calculate the ionisation cross 

section in a similar fashion to the excitation cross 

section. To do this they introduced the idea of a single 

pseudostate with an energy corresponding to zero, and an 

oscillator strength, f 
Ccnl:; 

equal to the total oscillator 

strength for transitions between the initial state of the 

system and the complete set of continuum states. 

is defined as follows 

where 
-> 

1/' (r) 
f\'S 

<>0 

- 3:._(£ -~;lf l<.y (_-:) 
3 } 0 Ep 

~ (~) is a suitably normalized continuum 
Ep 
is the initial state of the system. 

Thus f 
c.ont 

state and 

A further 

factor, S, is introduced here to allow for the fact that 

transitions into the continuum occur through higher 

multipoles than the dipole term in the potential and thus 

the important quantity is the effective oscillator strength, 

f I defined by 
-e.ff 

~ :;:. Sf (2.4.78) 

-e_ E f Gone 

This concept of an effective oscillator strength was first 
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introduced by van Regemorter (1962) in a perturbational 

approach to electron-atom collision. 

The numerical values of S and f have to be found by 
LoY\~ 

quantum-mechanical calculations, as shown in Vainshtein, 

Sobelman and Yakov, 1979. For the case of hydrogen we have 

f = 0.4350 and S = 1.5. Thus the same equations as were 
(._Df\t 

used in the case of discrete excitation can now be used to 

treat ionisation. The parameter A. given by expression 

(2.4.62) is now given by 

(2.4.79) 

where w, is the ionisation potential of the atom. The 
I., " 

ionisation cross section is given by the expression (2.4.72) 

with the appropriate values of ~ obtained from expression 
....... ~E: 

(2.4.71), that is 

:::. (2.4.80) 

Janev and Presnyakov used this method to calculate the 

ionisation cross section for the reaction 

t + ~ 
H + H (ls) --7 H + H + e (22.4.81) 

Their results were in reasonable agreement with experiment 

t-
for H impact energies between 5 keV and 500 keV except 
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around the cross section maximum. The theory consistently 

underestimated experiment because of the neglect of 

transitions into the continuum through intermediate discrete 

states. Janev and Presnyakov estimated the contribution of 

the two step processes represented by transitions from the 

1s state into the 2p state (the dominant excitation state) 

and then into either the s or d continuum states using the 

same dipole approximation close coupling theory and obtained 

the following expression for the total ionisation cross 

section 

(2.4.82) 

where the first term comes from transitions directly into 

the p pseudostate, and the second term represents the 

intermediate transitions contribution via the so called 

intermediate resonant state. The parameters 
"' ov' and B in 

lOY 

expression 

expressions 

(2.4.82) 

(2.4.62) 

are the quantities corresponding to 

and (2.4.71) for the ground to 

intermediate state transition. Similarly w , in expression 

{2.4.82) is the energy difference between the intermediate 

and ground states. The function D is defined as before by 

expression {2.4.73). The second term in expression {2.4.82) 

due to the intermediate state was found to contribute a 

maximum of 20% to the total cross section around the 

maximum. For v<<1 or v>>1 only direct transitions 
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represented by the first term are important. It was found 

that the inclusion of the intermediate state contribution 

improved the agreement of the theory with experiment for 

reaction (2.4.81). The inclusion of intermediate states 

other than the 2p state was estimated to contribute less 

than 5% to the total ionisation cross section. Encouraged 

by the initial good agreement of their method with 

experiment Janev and Presnyakov also used the intermediate 

state version of the DACC method to calculate the ionisation 
c+ 

of helium by bare ions, A , with nuclear charge 2<Z<32, and 

their results were again in good agreement with the 

experimental data of Hvelplund, Haugen and Knudsen (1980) 

and Haugen et al. (1982). However, similar DACC 

calculations for the ionisation of hydrogen by bare ions, 

A~+, with 2<Z<32, show significant disagreement by a factor 

of approximately two at the cross section maximum, when the 

data is plotted in a reduced representation (Janev and 

Hvelpund 1981) against the data of Shah and Gilbody (1981a, 

1981b, 1982). This disagreement occurs for ion impact 

energies of less than 200 keV/amu/Z in the reduced 

representation. However, in this region it is known that 

the capture into continuum states contributes significantly 

to the ionisation of hydrogen by protons (Shakeshaft 1978), 

and this is a process evidently not accounted for by the 

DACC method, but may be important in other collision systems 

also. This suggests that the close agreement of experiment 

with the DACC theory applied to the ionisation of hydrogen 
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by protons is somewhat fortuitous rather than being the 

result of any completely correct theory. The basic idea of 

the DACC method is however a very reasonable one, namely 

that the oscillator strengths for certain transitions should 

be used to select the pseudostate basis in order to 

calculate ionisation. This approach was considered in the 

work of Bransden, Noble and Chandler (1982) who investigated 
1-+ -t- .-r 

the collision systems He + H(1s) and H + He(1s). The 

pseudostates that were used in these calculations were based 

upon the pseudostates used by Callaway and Wooten in their 

investigation of electron-hydrogen scattering. These 

pseudostates were discussed in Section (2.4.3) and by 

correctly scaling the basis parameters they can be used on 

+ either the H centre or the He centre. Firstly we shall 

consider the results for 
-r 

the excitation of H(1s) by He 

impact. Bransden et al. used various basis sets on both 

atomic centres in order to estimate the region of validity 

of the DACC method. The smallest basis consisted of the 

hydrogenic 1s and 2p 
011 

states on the hydrogen target with 

no diagonal interactions, which is the starting point from 

which Janev and Presnyakov derive their DACC theory. The 

largest basis consisted of the Callaway and Wooten 

pseudostates placed upon the hydrogen target with the exact 
2--t" 

1s, 2s and 2p states upon the He projectile. 

The results for excitation of the n 2 states of 

hydrogen indicate that an approximation which retains only 
'2.+ 

the 1s and 2p target states is not accurate below He 
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impact energies of 1000 keV or so. This is well above the 

region where Janev and Presnyakov applied their DACC model 

for excitation. From an analysis of their own results, 

Janev and Presnyakov concluded that it was accurate to 

within a factor of two below the cross section maximum but 

should improve in the higher energy region. We shall now 

compare the DACC and close coupled results for excitation. 

From equation (2 .4.75) the cross section maximum in the 
"1...+-

DACC model for excitation of H(2p) by He occurs at a 

velocity given by 

v \. ~., 

where from equation (2.4.57) we find that 

,, 
Hence v = 1. 8 9 * ( 2 * 0. 7 4 5 x 0. 3 7 5) 1... = 1. 41 a. u. 

l'h 

(2.4.83) 

(2.4.84) 

which 

corresponds to an He~~ impact energy of 200 keV. Bransden 

et al. calculated that the H(2p) excitation cross section 

obtained by using the ls and 2p target basis (with no 
o, I 

diagonal interactions) and also using the Callaway-Wooten 

pseudostates 
-\E. 

5.2 x 10 em 

on the target 
'!.. -lb 

and 1. 67 x 10 

has 
"L 

em 

the respective values of 
1...-\-

at an He impact energy 
-lb 'Z. 

of 100 keV, and the corresponding values of 3.27 x 10 em 
_, {, 2.. 

and 2.15 x 10 em at an impact energy of 500 keV. These 

results show that the DACC approach for excitation may be 
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quite unreliable around the cross section maximum. The case 

of ionisation for the same reaction will now be discussed. 

The cross sections for the ionisation were obtained, from 

the basis consisting of the Calloway-Wooten pseudostates 

upon the target, by simply considering the flux into the 

positive energy pseudostates as representing ionisation and 

thus no projection method was used (as was described in 

Section (2.4.6)). The Callaway-Wooten pseudostate basis has 

two s states, two p states and a single d state lying in the 

continuum energy range (that is with positive expectation 

energies). In the spirit of the DACC approach the 

oscillator strengths of these states can be computed. The 

oscillator strength sum for transitions from the H(1s) state 

into all the p pseudostates is found to be equal to 0.996 as 

compared to the exact value of 1.000, as given by Cowan 

1982. The sum of the oscillator strengths for the p 

pseudostates lying in the continuum is 0.51 as compared to 

the exact continuum contribution of 0.44. Since the p 

pseudostate provides the largest contribution to the 

ionisation cross section this suggests that simply taking 

the flux into the positive energy p states as representing 

ionisation may be an overestimate of the true continuum 

contribution. 

Similarly the 

overestimate the exact 

positive 

continuum 

energy s 

oscillator 

pseudostates 

strength but 

this is only a small contribution to the total for all the s 

states and is probably not very important. However the d 
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pseudostates significantly overestimate the positive energy 

contribution although the total d state oscillator sum is 

equal to the exact value, the calcuated and exact values for 

transitions from the 2p state into the continuum being 0.41 

and 0.18 respectively. 

The results obtained by Bransden et al. for ionisation 

using this basis were in reasonable agreement with the 
~k 

experimental data of Shah and Gilbody (1981a), above He 

impact energies of 400 keV, where they overestimated 

experiment by about 25%. Below this energy charge exchange 

channels, which were not included, would reduce the cross 

section and improve the agreement with experiment. As 

stated previously in this section, the DACC results 

underestimate the experiment by about 50% at the maximum and 

approach the experimental data more slowly than the close 

coupled results as the collision energy increases. 

The general conclusion as far as ionisation is 

concerned is that the use of a relatively small basis with 

reasonably accurate oscillator strengths sums for certain 

transitions can produce ionisation cross sections of the 

correct order, while the DACC method is rather less 

successful, probably because of the neglect of transitions 

between states not included in the theory. 

In this section we have discussed how it is possible to 

base the choice of pseudostates, chosen to represent the 

continuum, upon the idea of either effective oscillator 

strengths (as in the DACC method) or by using oscillator 
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sums for certain explicit transitions to suggest whether the 

basis is a reasonable choice or not. These ideas will be 

reconsidered later in this thesis because the choice of 

pseudostates for the calculations to be presented was based 

upon a similar line of reasoning, and this section shows 

that there is some a priori justification for such a choice. 

In the next section we shall consider how ionisation cross 

sections have been calculated using a method which will 

provide further justification for one type of basis set used 

in the present calculations, separately from the results of 

this section. 

2.4.10 The single centre expansion and related approaches 

to the calculation of ionisation. 

In this section we shall discuss the use of certain 

basis expansions which have been designed specifically for 

the efficient numerical computation of ionisation of atoms 

by fully stripped ions. It is well known that for high 

collision energies the direct channels dominate the exchange 

channels and the cross sections for direct excitation and 

ionisation can be obtained using the Born Series expansion. 

This is discussed for example in McDowell and Coleman (1970) 

and by Inokuti (1971). We note that for very highly charged 

ions relativistic effects become important before the Born 

approximation is valid, except possibly for the excitation 

of low lying excited states. The fact that the direct 

channels only remain important for high collision velocities 

follows from the observtion that the exchange matrix 
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elements defined in expressions Section (2.3.3) contain the 

oscillatory factor exp(~iv.r) which will dramatically reduce 

their value for high values of v. Therefore it is 

completely reasonable to make an atomic expansion about the 

target centre only and to neglect all charge exchange 

channels in the usual impact parameter approximation. This 

type of expansion is called a one-centre expansion (which we 

shall denote by OCE) . Fitchard, Ford and Reading (1977) 

used an expansion of this type consisting of ten s states, 

eleven p states and seven d states, with expectation 

energies representing both bound and continuum states, 

centred 

colliding 

magnetic 

upon 

with 

the target in 

hydrogen atoms. 

calculations for protons 

When summed over all 

quantum numbers their final basis included 

fifty-three states on the target, which presented a 

formidable numerical calculation. However because there 

were no exchange matrix elements to compute they could solve 

the problem efficiently using their time-development 

U-matrix method, first 

subsequently by Shakeshaft 

sections were obtained by 

used by 

(1976). 

Zimmerman (1972) 

The ionisation 

and 

cross 

summing over all states except 

those that represented exact bound states, with the 

condition that bound states which were not well represented 

had small excitation cross sections. The fifty three state 

basis contained a total of twenty-two bound states and 

thirty-one states representing the continuum with all n = 2 

and n = 3 states represented. The ionisation results were 
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corrected to allow for angular momentum states with ~ > 2 by 

adding on the full first Born results obtained for all 

higher partial waves. 

The results obtained for n = 2 and n = 3 excitation 

were in excellent agreement with experiment for impact 

energies above 50 keV. The same conclusion applied to the 

ionisation results. It is no surprise that below 50 keV the 

OCE fails at this energy when we consider the results from 

the large two centre expansion of Shakeshaft (1978). 

Shakeshaft calculated that at this energy the total charge 
" - lb '-

exchange cross section is 9.2 x 10 em and the total 
~lb '2. 

excitation cross section is 11.0 x 10 em . The separate 

contributions from direct ionisation and from the charge 

exchange into the continuum process are estimated from 

figure 5 of Shakeshafts paper to be respectively 8.9 x 
-IE. '1... ..-lb 1. 

10 em and 7.0 x 10 em . Thus the exchange channels are 

effectively as important as the direct channels at this 

energy thus making the agreement of the OCE with experiment 

probably fortuitous as was the case with the DACC method 

described in the first section, for the same collision 

system, at low collision energies. For the case where the 

incident projectile has a much smaller charge, Z , than the 
A 

corresponding target nucleus, Z , K-shell hole production in 
B 

the target can be treated by using a large OCE in the 

projectile energy region v < 1, where v is the projectile 

laboratory velocity, as shown by Ford, Fitchard and Reading 

(1977). This was an extension of earlier work by Reading, 
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Ford and Fitchard (1976). Essentially the same approach was 

taken as in the calculation for proton-hydrogen collisions 

previously described. The incident projectile was taken as 

a proton and the target was a neutral atom with nuclear 

charge 13 to 30. The target pseudostates were formed z 
B 

by diagonalization of the target Hamiltonian in a basis set 

of functions of the type 

u. .t() 
J 

where ¢. 
..\ 

are equally spaced in the interval 0 to 2n and a 
Y\ 

is the Bohr radius of the hydrogenic atom of charge z . 
~ 

These functions can be shown to form a complete set. A 

large basis containing up to fifty four states with 

0 < t < 2 was used in the same U-matrix approach as in the 

previously proton-hydrogen calculation. However in this 

case only the first and second Born amplitudes were 
3 

calculated and for consistency only terms to order Z ~ were 

retained in the final expressions, as was done by Holt and 

Moiseiwitch (1968). The results for K-shell hole production 

in nickel, titanium and aluminium by protons were typically 

10% - 20% below experiment which could be due to uncertainty 

in the experimental normalization or due to the neglect of 

configuration-interaction wave functions. Ford et al. also 

concluded that they had calculated the ionisation 

contributions to an accuracy of 2% within the context of the 

independent particle model which they were using for the 
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K-shell. In an extension of the OCE approach, Reading et 

al. (1979) considered charge transfer by protons colliding 

with argon and fully stripped He, C and 0 ions colliding 

with copper. They demonstrated an important result 

concerning the continuum representation for the target atom. 

The charge transfer cross sections were obtained from a 

t-matrix approach using the solution of the Schrodinger 

equation from the OCE method, which is denoted by (r , t) . 

Then the Schrodinger equation is of the form 

__;, 

where u(r ) 
B 

is a single-electron Hartree-Fock potential 

representing the target atom, W(R) is some internuclear 
..>- --' 

potential function and V(r -R(t)) is the interaction between 
(l, 

the projectile and target electron. Equation (2.4.86) is 

solved up to the terms representing the second Born 

approximation by a time-development operator approach using 
-t__. 

only target pseudostates in the expansion for 'r' (r , t) . 
B 

The T-matrix for charge transfer into a projectile 

state rl. is then given by an expression of the form 
Tc.,-

f olb < ~ \ u c..-r + (2.4.87) 

-ell 

Reading et al. found that the charge transfer mechanism 

for K and L shell capture from target atoms with high 

nuclear charge by light ions was by a two stage process. 
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The target electron was initially excited into a target 

. ~ 
continuum state with an energy of approx1mately lv , where v 

~ 

is the projectile velocity relative to the target. Then the 

electron was captured by the projectile. If the 

diagonalization of the target basis states did not produce a 

pseudostate with an energy close to that needed in order to 

represent this process, then the important part of the 

continuum would not be well represented by that particular 

basis. As the size of the basis were increased the 

important energy region may or may not be well represented 

and convergence would be difficult to demonstrate. Reading 

and Ford (1979) however, had shown that it was possible to 

introduce the idea of energy intervals,6 , to be associated 
~ 

with each positive energy pseudostate. By using this 

concept in the charge transfer calculations Reading et al. 

showed that it was possible to obtain converged results, 

when only s and p states were retained in the basis. We 

shall return to the idea of finding an energy interval for 

each pseudostate in Chapter 5 when we discuss the basis 

states used in the present calculations. We note that in 

the work of Reading et al., because the important energy in 

the continuum is dependent upon the projectile velocity, the 

pseudostates used to represent this must also be 

recalculated for each projectile energy. 

These calculations were extended by Ford et al. (1979a, 

1979b) who studied inner-shell charge transfer and 

ionisation in proton-argon collisions in the impact energy 
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range 1 MeV to 12 MeV. This work showed that it was 

necessary to include d states in the target expansion to 

obtain agreement with experiment for charge transfer while 

the ionisation results were virtually unchanged. 

Subsequently Becker et al. (1980) investigated collisions 
1..-t £+ 

between He and C incident upon argon in the energy range 

1 MeV to 9 MeV and agreement with experiment was obtained 
~-~-

for K-shell ionisation and charge transfer by the C ions. 

Other calculations of this type were made by Ford et al. 
-\"" 1....-t :,-r 

(1981) for H , He and Li incident upon neon (0.4 - 4.0 
-\ .o- \ 

MeV amu ) and upon carbon (0.2 to 2.0 MeV amu ) . 

Reading et al. (1981) made an interesting improvement 

to their usual one-centre expansion method to allow for the 

effects of the charge exchange channels, in a method called 

the one and a half centre expansion (denoted by OHCE), which 

we shall describe as it is similar to the approach adopted 

in some of the present calculations to be discussed in this 

thesis. A trial expansion is made of the following form 

c. tl:: )f (1:) -y:c~ 1 t) (2.4.88) 
I( L. k 

where the first summation is of the usual form and is 

centred upon the target. The second summation includes 

pseudostates upon the projectile to represent the important 

charge exchange channels. The coefficients C (t ) 
K L 

are the 

unknown asymptotic occupation amplitudes for the charge 
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exchange channels, where t is some suitably large time 
L 

which determines the end of the collision. 

The functions f (t) are restrained to satisfy the 
I( 

initial and final conditions. 

) 

( 1:: 1 
L ) 

Otherwise the form of f ( t) lS 
k. 

dependent amplitudes a. ( t) and the 
J 

determined by applying the conditions 

..... 
< P. Cf",t) .-\o 

J at: ..... 
'(" 

(2.4.89) 

(2.4.90) 

arbitrary. The time 

coefficients c ( t) are 
K 

that 

::: o
1

fv-o.\\j.(2.4.91) 

and one of two possible sets of constraints: 

0 
(2.4.92) 

or 

bl 

f dJ:. 
:::: 0 (2.4.93) 

-~:- ... 
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Other constrations, apart from expressions (2.4.92) and 

(2.4.93) are possible. The use of expression (2.4.93) can 

be shown to conserve unitarity as in the usual two centre 

expansion and its use results in the unitary OHCE. 

However, the use of expression (2.4.92) will in general 

result in a violation of unitarity for the final set of 

amplitudes and it gives rise to the perturbative OHCE. The 

final set of equations that determine the amplitudes are of 

the form of the usual first order differential equations 

that determine a-(t) 
J 

coupled with algebraic inhomogenous 

equations for the c (t ) amplitudes. 
K. [.. 

The advantage of the 

OHCE method over a similar two centre expansion is that it 

has a numerical efficiency similar to the single centre 

expansion but should give improved results, although not as 

accurately as those obtained from the two centre expansion 

in general. It should also overcome the formal difficulty 

of the two centre expansion which occurs as the basis sets 

on both centres are increased in size. Because they will 

not be linearly independent for small internuclear 

separations, the solution for the corresponding occupation 

amplitudes will become ill-conditioned. To test the OHCE 

method Reading et al. investigated proton-hydrogen 

collisions below 50 keV, where Fitchard et al. (1977) have 

shown a single centre expansion fails as was discussed 

earlier in this section. A comparison of the OCE, the 

unitary OHCE and the perturbative OHCE was made using a 

basis consisting of eight s states, eighteen p states and 
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twenty seven d states on the target and the H(ls) state on 

the projectile. Both the unitary OHCE and perturbative OHCE 

were in reasonable agreement with each other and with 

experiment for impact energies above 15 keV for n = 2 and 

n = 3 excitation and also for ionisation except near the 

cross section maximum. At this energy there is also fair 

agreement with the large two-centre calculation of 

Shakeshaft for both excitation and charge transfer into 

H(ls), although the ionisation cross sections are above 

Shakeshaft's by a factor of 1.9 from the perturbative OHCE, 

and by a factor of 3.5 for the unitary OHCE. However for an 

impact energy of 100 keV the corresponding ratios are both 

equal to 0.85. The ratio of the OCE ionisation cross 

section to the result of Shakeshaft is a factor of 10 at 15 

keV and 0.92 at 100 keV. By comparison the first Born 

approximation of Bates and Griffing (1953) agrees with 

experiment only for impact energies above 60 keV. This is 

the energy at which Shakeshaft (1978) found the direct 

ionisation channel becomes more important than charge 

transfer into the continuum of the projectile. The 

conclusion is that the results of Reading et al. suggest 

their OHCE methods can be successfully extended into the low 

energy region where a priori justification is not evident, 

in a manner similar to the DACC method described in section 

(2.49), for the same collision system (H + H(ls)), but the 

final agreement with experiment is probably fortuitous. 

Reading et al. (1981) and Ford et al. (1982) used the 
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perturbative OHCE to investigate the ionisation due to 
1.. .,... -\- } '1.. +-

proton impact upon He and Li respectively. In the case 

of protons colliding with He a total of fifty-four target 

states were used with 0 <t < 2 and only the H(1s) state 

attached to the projectile. The total electron loss cross 

section, which is the sum of the calculated ionisation and 

charge transfer cross sections, was in agreement with 

experiment down to an impact energy of 80 keV. The 

comparison with the pure ionisation cross section obtained 

experimentally as the difference between electron loss and 

total charge transfer is less favourable possibly because 

the experimental charge transfer total is overestimated. 

However, the discrepancy could also be because the basis set 

used in the OHCE calculations was not large enough to ensure 

convergence, as it did not include states with values of 

angular momentum "L > 2. To try to understand these results 

Ford et al. (1982) studied the more asymmetric system 
-t" ..... , 1..+' 

H + Li using the perturbative OHCE method. 

In both calculations a total of fifty four target 

states with 0 < t < 2 were used although the distribution of 

states over was not identical. As in previous 

calculations only the H(1s) states was retained upon the 
-r 

target. The two electron Li system was replaced by a 

localised Hartree-Fock potential of the form 

(2.4.94) 
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This was used to obtain single electron probabilities which 

were consequently used in an independent electron model. 

The results for ionisation were in agreement with the 

experimental data of Sewell et al. (1980) except for the 

lowest impact energies below 100 keV where there are large 

experimental uncertainties. At E = 71keV amu the POHCE 

results were 28% below the Born ionisation results obtained 

with the same basis, (which included a contribution from f 

and g states). Again the experimental ionisation data was 

obtained as the difference between electron loss and 

electron capture. The agreement between the theoretical 

total capture cross section and experiment was particularly 

poor with theory underestimating experiment by almost a 

factor of two for impact energies between 70 keV and 

253 keV, which is qualitatively the same as the case for 
~ 

p + He previously mentioned. 

However, their results were in agreement with continuum 

distorted-wave results of Banyard and Shirtcliffe (1979). 

The important conclusion, as far as the present work is 

concerned, is that a large basis set centred upon the target 

is capable of producing ionisation cross sections in harmony 

with experiment, in the energy range where the Born 

approximation is not accurate, and where capture is an 

important process also. However, this type of expansion can 

fail as the collision energy decreases as in proton-hydrogen 

collisions, where the basis must be extended to the 

projectile centre, to obtain accurate ionisation results. We 
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shall reconsider this method in Chapter 5 where we shall 

compare it with other methods of calculating ionisation used 

in the present work. 

2.4.11 The classical method 

It is possible to consider the collision system as a 

collection of various particles which obey the classical 

equations of motion and then to solve these and extract 

cross sections for the various processes by examining the 

final state of the system. The initial problem is to 

construct an adequate classical representation of the 

initial quantum-mechanical state of the target atom. This 

can be done, in the case of a multi electron atom, by using 

an effective potential which reproduces the experimental 

energy levels for instance in a single electron model. This 

leads to a microcanonical ensemble of initial orbits from 

which the initial conditions are selected at random. The 

effective three particle system 

Hamiltons equations for the 

momenta. These equations are 

is then described using 

coordinates and conjugate 

solved and a statistical 

analysis applied to the state of the system at a large 

finite time to obtain cross sections for ionisation, charge 

transfer and excitation. Each collision corresponds to a 

trajectory and as the number of trajectories increases the 

accuracy of the cross sections, in the particular model, 

increases also. This is the basis of the Classical 

Trajectory Monte Carlo (CTMC) method. In the context of 

ion-atom collisions it was first considered by Abrines and 
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Percival (1966) for the proton-hydrogen system. The method 

has also been applied to fully stripped ions with 1 < z 36 

colliding with hydrogen. In the case of charge exchange, 

agreement with experiment was obtained in general when 

v < v < 2v where v is the collision velocity and v is the 
~ ~ ~ 

target electron velocity. The results for ionisation are 

also in agrement with experiment over a limited energy 

range. In order to understand the energy regions in which 

the CTMC method can provide reasonable results for both 

total and partial capture cross sections, and for ionisation 

also, a detailed comparison with the semi-classical impact 

parameter method has been made, for the particular system 
1~ 

He + Li. The CTMC method that was used is based upon 

Peach et al (1985). The results of these comprehensive 

calculations are given in Ermolaev, Hewitt and McDowell 

(1987) and Ermolaev, Hewitt, Shingal and McDowell (1987) and 

will be discussed in Chapter 5. It is possible that such 

investigations will establish the CTMC method as an 

alternative to quantal-based methods under certain 

conditions where accuracy is less important than savings in 

computer time and memory. This completes the discussion of 

some of the methods that have been used in describing 

collision processes and in the next chapter we shall 

consider the impact parameter method as applied in the 

present work. 
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CHAPTER THREE 

The two-centre pseudostate expansion method using the 

impact parameter formulation. 

3.1 Introduction 

In this chapter we shall discuss how the close-coupled 

equations given in section (2.3.3) were derived for the 

particular collision system that was studied in this thesis, 
1.+ 

that is the He + Li system, and also consider the various 

numerical methods that were used to obtain the solutions. 

We shall precede this by describing how the lithium atom was 

represented by a single active electron approximation for 

both the K-shell and L-shell calculations that have been 

performed. 

Firstly, however, we shall review the basic impact 

parameter formulation that has been used in the present 

calculations, and for convenience we shall collect together 

the important expressions that have been used. 

3.2 The impact parameter equations 

In the case of the single active electron approximation 

the impact parameter Schrodinger equation for the system 

comprising of the two heavy particles A and B and an 
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electron, e, has the form 

v 
-eA 0 (3.2.1) 

as described in section (2.3.1). The potential functions 

between each pair of particles are as yet unspecified. We 
_.. 

next make an expansion of ~(r,t) in terms of pseudostates, 

upon both centres A and B, where the pseudostates are 

obtained by a diagonalisation process using the isolated 

atom Hamiltonians corresponding to centres A and B which are 
1.-

given by H = -J_q_..+ V and H = -J. "1~+ V respectively. 
It '2. '~" ~fl ~ 1... r ~~ 

In figure 3.1 since we have taken the origin to be the 

midpoint of the internuclear distance between A and B, the 

factor p in figure 2.2 is i and the trial wave function 

~(r,t) has the following form 

t --'~t.) 
>("I 

as described in section (2.3.3.). 
- B ~ 
rl. ( r ) and r· ti J 

- ...l 

)Ur ) 
I< II 

are determined 

I -' --' -- v. Y' + l v 1.. c) 
'2. 

g 

Because the pseudostates 

from a diagonalsation 

procedure some important results are satisfied which have 

been given in expressions ( 2 . 3 . 3 8 ) , and ( 2 . 3 . 4 0 ) . We now 

define 
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A 

2 C\X\5 

Figure 3.1 

The coordinate system for straight I ine 

trajectories. 0 is the midpoint of AB. 



A 
X (./ 1=) ::: 

I 

-A _.> I '( t- -J v.-;. -t-l. ,,f2·t )) X < ( ) -e..x o L ~, 2. 
A T K 2.. 8 ,, (3.2.3) 

Then the form of the close coupled equations obtained by 
8 

A_. J. -' 
projecting each )C (r,t) and r(r,t) onto equation (3.2.1) is 

~ j 
given by expression (2.3.54) which is equivalent to the 

equation 

(~ K \/ l f1 (1:) 

~ I 
(3.2.5) 

where I is the usual unit matrix. The matrices N, H, K, H 
'--'- ""'"""'--

and K are defined by expressions (2.3.60) to (2.3.64). The 

column matrix A(t) contains the time dependent amplitudes . ..._... 

That is A(t) h ( 1:.) 
I 

(3.2.6) 
h (t l 
"' q l t: ) 

' 

There are two distinct problems therefore which must be 

solved in order to obtain the final amplitudes, namely the 

evaluation of the individual matrix elements of the matrices 

in expression (3.2.5) and then the solution of these 
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equations to obtain A(t). We shall now consider further the 

matrix elements and their evaluation. 

Firstly the overlap matrix elements, N . I 

jK 
can be found 

using expressions (3.2.3) and (3.2.4) and have the form 

N- ct-1 
JK 

No further simplification is possible to this form for N . 
.JK 

without making approximations. However, we note that in 

some calculations at low velocities it is possible to expand 

the oscillatory exponential term and retain only the first 

two terms. 

-and H .. 
.)!'. 

Next we consider the direct matrix elements, H. 
jK. 

Using expressions (2.3.38) and (2.3.40), (2.3.32) 

and (2.3.35) it is straightforward to show that the 

following results are obtained for these matrix elements: 

-H ' ( t) 
)I( 

\\- ( l:;) 
)IL 

(3.2.8) 

(3.2.9) 

These matrix elements cannot be reduced any further. We 

shall now consider the exchange matrix elements defined by 
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expressions (2.3.63) and (2.3.64). The exact form for K 

is given by 

k- ((:-) Jt_ 

B 

== < J . ( ~ t:) / H-«-'- - I)-
J ytv: 

f\ _;, 
X (-< t:)----, 

K_ I / (3.2.10) 

Using the expressions in Section (2.3.3), and in particular 

(2.3.28), it follows that this can be rewritten as 

k (t) -
JIL 

Similarly 

,....,l. ..... 

- &' ~ I l v. " "\. - I - A~ ' <_ '/> -U.,.. ) I -e ( -l. ~ · _,__ V c: l[ Y ( )'> 
j v 'L Vy;' ~A-\- lj.e;---1<.. 1~~,1(3.2.11) 

X -<C... x:f I ( A , - ~ ) t J 1<. 

(3. 2.11) i3 the exact form for K , but unfortunately it contains 
J I( 

several terms due to the kinetic energy and potential 

operators, and these are in general time consuming to 

evaluate. Also the potential operators are restricted to a 

certain form if the matrix element is to be evaluated using 

the fourier transform method of Sin Fai Lam (1967), which 
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was written as a computer program by Noble (1980). This 

will be discussed again later on in this chapter. 

Furthermore, for certain cases the potentials may not 

be in a suitable form for using in a calculation even though 

the wavefunctions are known. 

It is desirable therefore, to try to simplify the 

complicated form for K , given in expression ( 3. 2. 11) . 
JV.. -Pt~ 

Firstly if X (r ) 
k A 

is an eigenfunction of the projectile 

Hamiltonian then the following relation is true: 

V )...-A-" 
1-- -e..~ - X K X K ( (PI) 0 (3.2.12) 

-e 
Similarly if ¢.(~) 

J 6 
is an eigenfunction of the target 

Hamiltonian then it follows that 

I l. - e 
( - -q~ -r A· 1 ,.;, cf.) 

2 v- J rJ s 
- 6' 

- V ¢. c;;: 1 
~6 J p 

(3.2.13) 

Then using expressions (3.2.12) and (3.2.13) the exact form 

for K, can be rewritten as follows: 
JK 

Similarly 

(3.2.14) 

the exchange matrix element K, defined by 
jK 
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expression (2.3.64) can be rewritten in the following form, 

by using expressions (3.2.12) and (3.2.13), 

k. (t:-) 
jl( 

_A_. ·g ~ (3.2.15) 
= < c 1 v "- -r .L 1 x . c rA) I -e_- I · ,.. I ¢ ~ r ; ~ 

2.V: J J k e/ 

The potential operators do not therefore appear explicitly 

in the exact expressions forK. and K. given above. This 
Jl<-. ..)!'-

approach was used by Ermolaev, Noble and Bransden (1982) in 
....,.. -r 

calculations of charge exchange between Cs and Cs ions, 

where the wave functions were analytic Hartree-Fock orbitals 

obtained from Sachdeva and Puri (1976). However, we 

emphasise that the expressions (3.2.14) and (3.2.15) above 

are exactly equal to the expressions (2.3.63) and (2.3.64) 
_s_, -"!'\~ 

for the case where both P. ( r o. ) and X. ( r ) are 
j o k A 

only 

eigenfunctions of the isolated Hamiltonians as defined by 

equations (3.2.13) and (3.2.12). It follows that for the 
-~ f't 

case where either ~-(r ) or J. (~) is not an eigenfunction, 
J 8 K A 

then either equation (3.2.12) or equation (3.2.13) is not 
1.. 

satisfied exactly. For example an L pseudostate with a 

positive expectation energy can never satisfy an eigenvalue 

equation as it has the incorrect boundary conditions for 

r ~~. Subsequently since both (3.2.12) and (3.2.13) have 

been used in obtaining equations (3.2.14) and (3.2.15), for 

K- and K. , these matrix elements are approximations to the 
J I( J K 

exact values of K . and 
.JK 

K_ 
JK 

obtained from expressions 

(3.2.11) and (3.2.11a). However, it is clear that the form 
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of the matrix elements in expressions (3.2.14) and (3.2.15) 

are considerably simpler than those given in expressions 

(3.2.11) and (3.2.11a) as the former pair do not involve the 

potential operators V and V and hence are both easier to 
e.A -e.B 

program on the computer and also faster to evaluate. The 

price to be paid for this advantage is that there will be an 

uncertainty in the exchange matrix elements involving at 

least one pseudostate upon either centre, and therefore an 

associated error in all the amplitudes obtained from such a 

calculation. In order to test the effect of using the 

exchange matrix elements evaluated from expressions (3.2.14) 

and (3.2.15) some initial calculations were made using both 

of the forms for K , and K as given in expressions 
J I( .l K 

(3.2.14), (3.2.15), (3.2.11) and (3.2.11a). The results 

from these calculations will be discussed in the final 

chapter containing the results of the present calculations. 

In this section we have so far considered the form of 

the close-coupled equations and the matrix elements which 

are necessary in order to solve them. We shall conclude by 

describing the basis sets used 
..-.f>...l 
$2S' _ ( r ) and 

J 8 

-ft _,. 
X(r) needed in 

K. A 

in obtaining the pseudostates 

expression (3.2.2) for the 

trial function. It is both numerically and physically 

appropriate to use pseudostates constructed from basis 

functions which contain Slater-type orbitals (STO's) which 
(\ -o<.f 

have the general form r e Thus a typical pseudostate, 

denoted by 1/J has the following form 
/n-t f'V\ 
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The R (r) functions for given values of n and 
n~ 

by 

R (v! 
1\1.. 

N 

L. 

(3.2.16) 

are given 

(3.2.17) 

where C are coefficients. The Y (e,¢) functions are 
<1'>\ 

defined by ( fY\ 7/ o ) 

(3.2.18) 

where 

N I 
:::: 

fY\ J2 
(3.2.19) 

N -:;: 1 

~ -
L-

(3.2.20) 

The spherical harmonics Y ( e,,) are given by ( M >/ C>) 
1.r'l-; 

= 
r'h I1L... (\ • ~' 

(-1) [ ('2:( +I) (-(- 1'•\) 1 J P {US10) -e-
1 

--------------· ~ 
trn ('l+tl\) l 

{V\ 

where P (cose) are associated Legendre functions. 
<. 

(3.2.21) 

{Y\ 

The ( -1) 

phase factor is the same as in the Condon-Shortley phase 

convention. We note that since the initial state on the 

target, which is an s state, has a definite symmetry under 

reflection in the collision plane (the x-z plane in figure 
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2.2) only states with the same symmetry need to be 

considered in the calculation (Geltman, 1969). This is why 

the real spherical harmonics defined in expression (3.2.18) 

are chosen. For example, in order to represent a d state 

with { = 2, we only need to include pseudostates with the 

angular functions { 
'Lo 

'1 and ~ in the trial function. 
'2.1 '2.1... 

We note that the normalisation 

pseudo state 

and 

J 

_.. 
~ (r) require that 
/\1M 

~ '1... 

f t< (r) ( 'l- c::Vr --
f'.'L 

C> 

1. 

d ... n ..... y (~ 'I ) .-
{rl\ I 

oM ...fl 

conditions for the 

(3.2.22) 

(3.2.23) 

We can now write the real spherical harmonics as follows 

("' 

N M c P l CJo.3 e ) US3 (\'\ rj 
1.,.M "L 

where C is defined by 
till) 

L- (-I)M [ ('l,_'(_ +- l) 

4-n 

(3.2.24) 

(3.2.25) 

Thus we can write the trial pseudostates on centres A and B 

in the following form 

(3.2.26) 
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4 

.X ((") 
K 

(3.2.27) 

The radial wavefunctions have the form given in (3.2.17) and 

are expressed as follows 

(3.2.28) 

R {(fl' 

(114 ) ( < ) 
., I( A I( 

(3.2.29) 
f.- ( 

The angular functions in expressions (3.2.26) and (3.2.27) 

have the form 

== (3.2.30) 
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We have now given the form of the wavefunctions and the 

matrix elements used in the present calculations. In the 

next section we shall describe the form of the potential, 

V , used in equation (3.2.1) to describe the lithium target 
~e 

atom in the single active electron approximation. 

3.3 The single electron effective potential model 

The main calculations of this thesis are concerned with 

trying to model the collision process between a bare helium 

~+ ~ 
nucleus, He , and a neutral lithium atom, Li (1s 2s). This 

is a three electron problem and consequently very difficult 

to solve. In order to reduce it to a computationally 

efficient problem it is necessary to introduce some 

approximations in order to treat the Li target as a 

one-electron model problem, which still retains the 

important physical features of the original system. We 

shall now describe how this is done for the L shell of 
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lithium. The neutral lithium atom is represented by the 
'2.-

configuration Li(ls 2s) which represents a single valence 

electron orbiting two core electrons in the usual central 

field approximation. 

The ionisation energy needed to remove the valence 

electron is given by 

'l 
-ECls S) ( ... 2-5 ' ;- £ Is 2 S 1 (3.3.1) 

The ionisation energy needed to remove an inner core 

electron, weighted to allow for spin, is given by 

- E ( ls.._ 
l 
s ) ) (3.3.2) 

's ' -+~ ( E( IS')_S J 

lr 

The large difference between the first and second 

ionisation energies suggests that the valence electron 

interacts rather weakly with the core electrons because it 

will have a much more diffuse wavefunction than the inner 

core electrons which are more tightly bound to the nucleus. 

In particular if the physical features of the atom are 

mainly determined by the outer valence electron of lithium 

for a certain range of projectile impact energies then it is 

well known that some convenient approximations can be made. 
"2. 

We assume the Li(ls ) core electrons only contribution is to 
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produce a spherically symmetrical potential in which the 

outer valence electron moves and that this interaction 

depends only upon the coordinates of the valence electron 

and the point where the potential is evaluated, i.e. it is a 

local potential. 

This is in contrast to a non-local potential. The 

action of a non-local operator upon a wavefunction depends 

upon the value of the wavefunction at all points in 

configuration space. Because the inner core is a closed 

shell{l~1 configuration this potential is taken to be a 

spherically symmetrical potential which is a function only 

of the distance between the valence electron and the 

nucleus. The idea of using an effective one electron model 

for lithium was suggested by Seitz (1935) following the work 

of Prokofjew (1929). Prokofjew showed that this type of 

model was successful when applied to Na (the next alkali 

atom above Li). Inside the core region, in general, the 

wavefunction of a valence electron state will oscillate due 

to the high kinetic energy and this is partially cancelled 

by the strong attractive potential due to the nucleus. The 

oscillations may be viewed as a manifestation of the Pauli 

principle which requires the valence electron wavefunction 

to be orthogonal to the core orbitals. The net effect of 

the effective potential is to replace the oscillations by a 

smoother wavefunction which keeps the valence electronic 

charge distribution out of the core region (Abarenkov and 

Heine, 1965). 
2 

If we assume the (1s ) core electrons have the simple 
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wavefunction form 

¢ ( y I; (" (I ) 
(3. 3. 3) 

then it is straightforward to show that the potential 

experienced by another electron at a radial distance r in 

the field of this charge density, and of a point nucleus 

with charge ~, is given by 

(3.3.4) 

Potentials which are a more generalised version of (3.3.4) 

have been considered by Danielle (1979) and Klapisch (1967) 

for various systems. The form of this potential is suitable 

for use in the present calculations because it can be 

incorporated into the computer codes used for evaluating 

matrix elements. However, the addition of terms which 

correspond to polarization of the core electrons, for 

example, would be impossibe if it had the mathematical form 

v -:::: 
Po\ 

(3.3.5) 

where ()( d and r 
0 

are constants. 

The general form of the model potential which we have 

considered in the present work is given by 
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v t:, 
(3.3.6) 

r r 

where ~' 2 ' '2.. 
and are constants. This form of model 

potential can be used also to represent the K-shell 

electrons as well as the L-shell electron. These constants 

will be chosen in such a way that the basis sets constructed 

using V satisfy certain physical criteria appropriate to the 

physical model which V represents. This will be discussed 

in chapter 5. Model potentials of the form of (3.3.4) have 

been used in previous close coupled equations with success 

(Fritsch and Lin, 1983b). We shall now consider how the 

matrix elements required in the close-coupled equations are 

to be evaluated. 

3.4 The evaluation of the direct and exchange matrix 

elements. 

In the last section we considered the form of the model 

potentials that were used in the present work, and in 

Section (3.2) we considered the form of the wavefunctions 

that have been used. In this section we shall describe how 

the form of these potentials and wavefunctions allows the 

matrix elements defined in equations (3.2.7), (3.2.8), 
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(3.3.9)1 (3.3.11)1 (3.3.1la) 1 ( 3 . 3 . 14 ) and ( 3 . 3 . 15 ) to be 

evaluated in a numerically efficient manner. To begin with 

we shall consider the direct matrix elements as defined in 

expressions (3.3.8) and (3.3.9). It will be sufficient to 

consider the direct matrix element HjK as given in (3.3.8) 1 

as this will display all the numerical methods employed for 

the direct matrix elements. We shall begin by noting that 

if we included the internuclear potential V 1 then (3.2.8) 
AS 

reduces to a simple form due to the orthonormality of the 
_fl-l- _A-I. 

wavefunctions represented by X(r ) and X(r ) and the fact 
j fl t. " 

that V only depends upon the internuclear coordinates. 
f'IS 

That is to say we can write expression (3.2.9) as 

H.(~! 
JIL 

where 

(3.4.1) 

v 
RS 

~- is the usual Kronecker delta function. We shall 
JK. 

now concentrate upon the first term in expression (3.4.1) 

above. Using the form of the model potential for V 1 as .e.e 
given in expression ( 3.·3.' ) 1 and the form for the 

wavefunctions as given in expression (3.1.27) we can write 

this term as follows (where for convenience we have omitted 

the exp i ( ~j - 21< ) t factor) 
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p. < 
-A J - -c, -A ---' - X. ( r ! X Cr 11 >) 

JK. J A 
'e 

K 

-f>r _,. _-o<e, -A~ 

+ <:_ .X. . ({A I - :c "2.. -e. \x (<p.)> 
J 

re K 

(3.4.2) 
-A ....... _ -or

6 
~A ~ 

/ -+- < X. UA) \ - ~ -e. lx"- ({"fl) 
J ~ 

The form of the matrix elements defined in (3.4.2) can now 

be reduced by substituting the expression for the radial 

wavefunction given in (3.2.29). Thus we finally obtain the 

following expression for D. ; 
JK 
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It is apparent from expression (3.4.2) that D. 
)\(. 

D and 
K" ) 

hence this symmetry can be used to reduce the number of 

matrix elements that have to be calculated. From the 

expression (3.4.3) it is clear that there are three basic or 

primitive types of matrix element which were to be 

evaluated, which correspond to the three distinct terms in 

the effective potential. By combining the exponents for the 

terms involving r in expression (3.4. 3) it follows that the 

three basic types of direct matrix element that have to 

be evaluated are given by the three following expressions 

1 -:r., 
JK 

(3.4.4) 

The methods used to evaluate these primitive integrals are 

given in Appendix (Al). From the form of the separate terms 

in expression (3.4.3) it is clear that for certain values of 

j and k corresponding to different pairs of wavefunctions, 
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there will be primitive matrix elements which are 

duplicated, i.e. the same primitive matrix element will be 

needed more than once. This is because any two radial 

wavefunctions for a particular angular momentum are 

obtained from the same set of basis STO's and only the 

coefficients which multiply each STO are different. 

We shall show this by an example. We define the 

wavefunctions corresponding to two different sets of quantum 

numbers as follows 

(3.4.7) 

(3.4.8) 

We now consider the first term in the expression (3.4.2) 

which contains the contribution from the -~ 1 term in the 

effective potential. When the expressions (3.4.7) and 

(3.4.8) are substituted into this term we obtain the 

following result, which is equivalent to the first term in 

expression (3.4.3), 
N1. N1.' 

D - I z_ c. c -
(tt'tll\ )U\ ~ 1M 1) f~l 1:::.1 tltp r.'1.'~ (3.4.9) 

y. [ J d~ ,( (.- [ J (1, 0(( 
:<f A f ( ~A- I ~ fr J - f 1 (A -t. ~ -€ - 'i:t'J y ( & .<1 I rJ.. A)] 

1"' 13 -t'"'' ,-. r · 

Since the integral in is independent of the 
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parameters n and n' which represent the expectation energies 

of the states, then the same integral will be needed for all 

the different combinations of n and n' which are possible. 

In Appendix A.1 it is shown that the integral in 

in expression (3.4.9), which we shall denote by 

I 
r. , can be written as 

JK 

I 
I. 

(_r'\1."") ('\~~ .... I) 

II 
-r-t.. 

L. 
..... 

L.. f (. o\ I (\( ~~ 

(.I/ 
I( I( 

1.." M :> --(.. 

* ) y (&-fl. I jR) 
-(II ...... f1 

I I II (Y\ II ) . 
X ~\-L, fY'-, {.I (n I I... I 

~ 

(3.4.10) 

where R is the internuclear separation vector with polar 

angles ( ~~, ¢~) and we define 

+ 

n 1 -(. 1 

Therefore by substituting expression 

(3.4.11) 

(3.4.12) 

(3.4.10), for the 

integral ] in the expression (3.4.9), we obtain 

-' "D 
ll\ "-"" ) (" '-t/ M I ) 

~ L. 
t'' 



Now since the integral in expression (3.4.9) is 

independent of 
- ~ 

n and n', then the value of f 1 (0(., n, [ R\) as 
t..'' 

defined by expression (3.4.10) is also independent of n and 

n'. Therefore we only need to evaluate the function - ~ 
f (a<, n, [R\ ) for all the distinct combinations of the 

-t'l 

parameters -{ 11 , t>( and n which are allowed. The values of o<. 

-and n are determined from equations (3.4.11) and ( 3 . 4 . 12 ) 

while the values of { 
11 

are limited as shown in Appendix 

(A1) • 

Once these different function values have been 

evaluated it is then possible to perform the summation over 

p and q denoted by [ in expression (3.4.13), which 

combines the different function values with the correct 

coefficients corresponding to the different values of n and 

n'. Therefore in this manner we need to evaluate each 

I - ~ 
unique integral defined by f (~,n, !RI) only once because, 

t'' 
for given values of { and m, each pseudostate denoted by 

~ comprises the same set of STO's and 
1\1.~ 

only the 

coefficients are different. If, however, each pseudostate 

had been constructed from a different set of STO's the 

number of integrals to be evaluated corresponding to the 

functions f 1 (o(,~, ~~I) would have been much greater than in 
-t.'' l 

the present method. So far we have only considered the 

first term in expression (3.4.2 ) due to the Coulomb term in 

the effective potential but the remarks made following 

expression (3.4.8) apply equally to each term in expression 
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(3.4.2) in general, 
I ...->. 

provided the function f (~,n, IR)) is 
t." 

replaced by the corresponding function for that particular 

potential term. We also note that the same method is 

applied to evaluate the direct matrix elements H
J K 

as 

defined by (3.2.8), which contain the projectile-electron 

potential. 

We shall now describe how the exchange matrix elements 

were evaluated. We begin by considering the exchange matrix 

elements K. as defined in expression (3.2.11). This is the 
jK 

exact form of the exchange matrix elements, without 

approximation, in the case of a 

expansion. To be specific we consider 

K. (t) 
jK 

Q_'!(F'(.~t·-r It 
) K 

general pseudo state 

(3.4.14) 

In the general case we shall let j and k represent the 

quantum numbers (n{m) and (n'{'m') respectively, and the 

potentials V and V have been defined in Section (3.3) • 
.c.-A .ef> 

. ~B(r~) We shall write the wavefunct1ons represented by r and 
. B 

J -A..:.. 
)l(r ) as follows 

K 

~ 
~ - B ~ /'1.{,. Ab ~ (IJ _,. -<..p ¢ .cr8 ) -::: ' ((~) :::. L. 1 Y' "..(p '1 

l e~ 1!B) -e.-
J f\ '( M (\{._.f' 

P-;:.t 1.,. 
(3.4.15) 
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(3.4.15a) 

~ r (/&A 1 rj A ) . 
.(.m 

For convenience we shall write (3.4.15) and (3.4.16) as 

follows 

llb<-p 
( 
<-p 

(3.4.16) 

(3.4.16a) 

Upon substituting the expressions 
-A ~ 

upon X (r ) 
K A 

( 3 . 4 . 15) and ( 3 . 4 . 16) in to 

(3.4.14) and operating with the operator 

produces the following exact form for K , 
jl( 

BA 6A t3A 

K. (t) ::. [ A, -t- B. -1- c.. 
.)K JK jl( J K 

llPr 8~ 

t- f', +- F ~Pr +- 4, 
JK JK JK 

X .ex r, (_ >-. . - ~ K... It 
j 

In expression (3.4.17) the individual terms 

6A 

+- P. 
JK 

~A J (3.4.17) 

+ /-L 
JK 

are as follows 



eA 
D_ 

J K 

~t\ 

FJK 

BPI 
c; j K 

6 f\ 
N"- N.<-' 

:: L: 2: 
1'-=-1 ~ ::-t 

B fl 

N"l Nt., 

== I L 
f-::.1 <t ~ ( 

X < 

8 A 
N-t. Nt. t 

= L L 
f:: I '{2-l 

X < 

(3.4.21) 

(3.4.22) 

(3.4.23) 

h .. vtp C\ "'{'1 ( 
B 

~2. } 

R ~UP.>) 
- or"e, ,~ 4 A-
'1 (e p} \ -e__~ e. \V.(' \ R ~rAJ '!,( e il. ~A)) 

-<- 1!1' B --<-f 1'1\ f. -t9 -<.cr.' ' 
8 

b n-tp C\nt,._ll (t:313} (3.4.24) 

_or-8 
'~ ~ A -

6 - I -e.--'v·'j R { (() 7 I (BJl rr,q)/ R ( r B ) Y ( ~ , ¢
5 

) -e 
-cp {M f3 .(_"{ A i.MI 

(3.4.25) 
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In the expression for K 
~A ~A 

given in 
6A 

( 3 • 4. 1 7) the terms A , 1 
JK 

B, and C, are produced by 
Jl( )I( 

the -1 f):: operator in expression 
2 r s 1\ . 

(3.4.14). The term D. 1s 
) I( 

produced by the potential V 
"<A 

and 

the terms E _~ft 
JK 

6~ SA 
F. and G. 
Jf( JK 

are produced 
/3A 

term H, 
Jl( 

by the effective 

potential V 
-e.S 

The final is derived from the 

expectation energy £ term in expression (3.4.14). 

" 
It is 

clear that all of the expressions (3.4.18) to (3.4.25) are 

of the following general form 

8 A 
N-<. N-t, 

::: I I hn.<-p C\ I ( 7. (3.4.26) 

P::::: I "\:::ol 
(\ -<- I 

~f'i 
where X. represents any of these expressions. The 

JK. 

quantities represented by L"··} in (3.4.26) are all simple 

coefficients. The matrix elements represented by the 

quantities < > are all independent of the parameters n 

and n' 1 which represent the expectation energies of the 

wavefunctions denoted by j and k. This is an important fact 

which allows the calculation of the exchange matrix elements 

to be performed efficiently. This follows because of the 

expression (3.4.26) which we rewrite as follows 

XM 
(I\ { (\'\ ) ( 1'\ /{__I 11"'1 I ) 

g A 
N-t N<-' 

== Z L 
f:::-1 9:::::1 
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where C . I I 
( " -t ) (() (__ ) 

represents the coefficients { .. .. J in 

expression (3.4.26) and M ( { , m, p: -<. 1 
, m 1 

, q) represent the 

matrix elements in the same expression. The quantities 

M({;m,p:-<. 1 ,m 1 ,q) can be evaluated for all unique 

combinations of the parameters denoted by ((,m,p:{ 1 ,m 1 ,g). 
~A 

The final matrix elements denoted by X 1 can be 
t f\-i- ')'>) 1 C (I I-<-- f"" ) 

formed by combining the quantities M(t,m,p;~ 1 ,m 1 ,q) with the 

correct coefficients as in expression (3.4.27). In effect, 

for given values of the parameters (< ,m) and (-t'm') which 

are the angular quantum numbers of the two pseudostates, all 
BA 

the required matrix elements X 
(ft-{. M) Lt"\ 1-<.- 1

M I) 
for all the 

combinations of the parameters n and n' can be constructed 

from the same set of basic quantities denoted by 

M(~,m,p;t' ,m' ,q) in expression (3.4.27). This is analogous 

to the method employed in calculating the direct matrix 

elements discussed previously in this chapter. It also 

follows that if the pseudostates, which had the angular 

quantum number{, were composed of different sets of STO's 

rather than different combinations of the same set then many 

more basic matrix elements would have to be calcuated in the 

evaluation of the final exchange matrix elements (3.4.18) to 

(3.4.25). Therefore as in the case of the direct matrix 

elements it is a great advantage, in terms of computer time, 

to construct all pseudostates for a given value of the 

angular quantum number t, from the same set of STO's. It is 

-clear that the exchange matrix elements K, defined in 
JK 
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expression (3.2.11a) can be formed in precisely the same 

manner as the exchange matrix elements K . in expression 
.JK 

(3.4.17). For convenience we shall consider the exchange 

matrix element K which is defined, following expression 
kj 

(3.3.11a), as follows 

"K ct/ 
I(' 
J 

When the expressions (3.4.15) and (3.4.15a) 

(3.4.28) 

for the 

appropriate pseudostates are substituted into expression 

(3.4.28) we obtain the following exact form for K 

[ 
1\~ ~a A~ A6 

~ . { t I ::: A t- 6 . -1- c -r p 
K' s k"," I(J J IC 

J ) 

filS tt8 
(3.4.29) 

,..e, PI~ 1 + £ ' -r f +- c;- 1::, ' +- H 
k.) I<' I() ) 

J 

X ..12 X f _, ()!.·-~ ")t 

J "' 

The individual terms in expression (3.4.29) are as follows 

~ A 

Af> N-<.. N -t I 

A =- r. 2: h 
a. n'<./1 { 

l(< ({+I) -1\b (11.~-{ t-1))} (3.4.30) K.j 
P~l cr:::, '1-l-f' 2 -<.p p 

• ...), .!> 

X < ~ - _.v.r 8 
R ((A ) y ( & A I ?A ) I -e. R.. (rb ) y (11 , 18 ) / 

1'9 -tl I - -<..f 1../11\. B 
"" 1. 

21 f\ 
( 

e. 
f'-.'6 Nt H1..' 

(3.4.31) 
f,K. ~ ~ I b ( ~t-p ( A.b-(p -t- I) } 

J r~t I::, "{_P 0. n '<- 1''1 

Ft -; Q. f. e. 
X < fl.. a,) y (&Aif) e R ere) '/ {~B'~8))_ 1-1 -L', •. .J A 'l (B <.p -(II\. 
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1 _ Aa 
'1 K. 

J 

A~ 

\-l. 
lg 

e A 
N.._ N1_, 

= L_ Z 
f-:z-1 9= I 

x< 

e, A 
f..J(_ N <' 

r I 
f::::-1 j.::.r 

X < 

B f\ 
N-t N t' 

::: lL.. 
p:::-1 "l =-I 

X < 

(3.4.32) 

(3.4.33) 

(3.4.34) 

(3.4.36) 

(3.4.37) 
b .(- Aj} 

1'\'t p (\ "'-t'i 
,...J ~ i> 

A - ~ ~,v_, 

l R ((A)Y (f'JA' 1\) l e.- R_ (rf> J ~ (F)@, I f6B)) 
t'4 -t'~ { "Lf -(M 
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Due to the suitable choice of the form of the effective 

potential in v-e. B it is clear that the terms due to VeB in 
.--

the expressions for K 
Kj 

manner as 

potential terms can be absorbed into the radial wavefunction 

on centre B. That is to say all of the integrals to be 

evaluated in expressions (3.4.18) to (3.4.25) and 

expressions (3.4.30) to (3.4.37) can be obtained from the 

following basic integral 

(\ 

< ( ~ 
1?> 

A 
where 0 is one of the simpe radial operators 1~ t., ~ , 1, 

(A f11r 

The parameters n and n' are arbitrary integers or 1; 1 • 

rs 
are greater than zero, and ~ and ~ have arbitrary positive 

values. These integrals are evaluated using the Fourier 

transform method of Sin Fai Lam, (1967). Noble (1980) 

produced a program which calculated these plane wave matrix 

elements which was used previously by Ermolaev (1983) and 

Bransden et al. (1983), for example. In the Fourier 

transform method the integrals of the type shown in 

expression (3.4.38) are analytically reduced to a 

one-dimensional integral which is evaluated numerically 

using Gauss-Legendre quadrature. The reduction of the 
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plane wave matrix elements to one-dimensional form is rather 

tedious and details can be found in Noble (1980). 

This concludes the description of the direct and 

exchange matrix elements, and in the next section the 

solution of the close coupled equations will be considered. 

3.5 The solution of the close-coupled differential 

equations. 

3.5.1 Introduction. 

In the previous parts of this chapter, we have 

discussed the form of the equations which have been derived 

in the impact parameter approximation (Section 3.1) and the 

method used in evaluating the direct and exchange matrix 

elements (Section 3.4). In this section, we shall describe 

the numerical methods used, in addition to the calculation 

of the matrix elements, in obtaining the solution of the 

close-coupled differential equations. In addition we shall 

also briefly describe the computer programs that we used in 

the present work. 
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3.5.2 The calculation of the cross sections and numerical 

methods. 

The calculation of the cross sections is conveniently 

divided up into two stages. In the first stage the exchange 

matrix elements are calculated and stored on permanent disk 

files. Then in the second stage the direct matrix elements 

are calculated and the close-coupled differential equations 

are solved numerically. To begin with we shall describe the 

coordinate system to which we shall refer in the following 

discussion. The coordinate system has previously been given 

in Figure 3.1. The collision plane is defined by the z-axis 

and the impact parameter vector, b. Hence the pair of 

values denoted by (z,b) defines a unique point and therefore 

we shall be referring to the (z,b) grid of points. We note 

that we have the following relationships for the case of 

straight-line nuclear trajectories 
~ 

__,. 
~ 

R b + vt 
1.. "1- t.. 

R = b + (v t) 
~ J. 

b.v = 0 

z = vt 

where the quantities are defined in Figure 3.1. 

(3.5.1) 

(3.5.2) 

(3.5.3) 

(3.5.4) 

We shall now describe the evaluation of the exchange 

matrix elements defined by either the exact forms as in 

expressions (3.2.7), (3.2.11) and (3.2.11a) or by the 
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approximate forms as in the expressions (3.2.14) and 

(3.2.15). We note that the explicitly time dependent 

exponential phases were not included in the exchange matrix 

elements in the first stage, but were included in the second 

stage of the calculation for convenience. It is necessary 

to choose a specific set of z and b points to form a grid at 

which to calculate the exchange matrix elements during the 

first stage. Subsequently in order to obtain the 

probability amplitudes the differential equations are 

integrated for fixed values of the impact parameter, b, by 

moving along the z-axis. Hence it is necessary to be able 

to obtain accurately the exchange matrix elements at any 

desired value of z and not just the initial set of points. 

In the previous calculations at Durham (c. 1981-1983) a 

maximum of nineteen states were used in the expansion basis 

and it was possible to solve the resulting close coupled 

equations by using four point Lagrange interpolation to 

interpolate the exchange matrix elements. However, 

increasing the number of 

numerical instability and 

states lead 

this was 

to problems 

traced to 

of 

the 

interpolation procedure. Subsequently Ermolaev (198+) 

introduced the familiar Chebyshev interpolation method into 

the problem and this apparently solved the problem of the 

numerical instability sufficiently well to allow larger 

basis sets to be used. 

The Chebyshev system of interpolation is very effective 

because of its convergence propeties which are not shared by 
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equal interval Lagrangian interpolation (Fox and Parker, 

1968). The numerical formulae used in the present work are 

given in Appendix 3. To employ the Chebyshev interpolation 

scheme it is necessary to divide the z-axis, for each 

different value of b, into adjacent sectors with a specified 

number of points in each sector. The Chebyshev 

interpolation is then applied independently in each sector. 

This results in a specific set of z points at which the 

exchange matrix elements have to be evaluated, which are 

chosen to be the same for each b value. 

A substantial saving of computer time is made by using 

the fact that the exchange matrix elements at a negative z 

value are simply related to the exchange matrix elements at 

the positive z value corresponding to reflection through z = 

0. This can be expressed in the following relation, where 

M- represents either N_ , K. or K as defined in Section 
J14. JK JK. jl( 

3.2 

~ 

M. (- ~ ) -:;: H. ( -r ~ ') -r. IK. (3.5.5) 
J K jK. J 

where 

.(' -t-r"'' • { K + Ml<. 

-1. ~ 
(~I) J j -rk ::: ( -\) (3.5.6) 

J I 

~·and m. are the angular and magnetic quantum numbers 
J J 

associated with the pseudostate denoted by index j. Thus 

the z-axis is divided up into sections between a large 
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negative z value and z = 0. Once tte (z,b) grid has been 

established a~d the exchange matrix elements computed at all 

the grid points, the second stage of the solution can be 

started. 

In the first part of the second stage of the solution 

the direct matrix elements are calcualted on a certain grid 

of points. However, this is not the same grid of points 

that we used for the exchange matrix elements. From Section 

(3.4) we remember that the direct matrix elements were 

calculated as a product of functions of R and e~ (as in 

expression (3.4.13). The &~ dependent function is the well 

known Y ( e , 0) function and can be found for any e.., • The 
-{M fl.. ..._ 

R dependent function is more complicated and to save time it 

is evaluated upon a specified R grid determined by the 

Chebyshev interpolation method, which can then be applied to 

obtain the direct matrix element values at any value of R. 

A maximum value of the parameter R is chosen, R , and then 
M.£\l( 

it is subdivided into intervals between R and zero, with 
~AX 

a specified number of points in each interval. Then 

Chebyshev interpolation is applied to each interval 

independently. Since a ( z, b) grid point is defined by a 

corresponding (R,8) then it is now possible to obtain both 
~ 

the exchange and direct matrix elements, for the initially 

specified b values, at any intermediate z values. 

In the next stage of the solution the differential 

equations defined by equation (3.2.5) are solved. In 

practice we solve these equations in three distinct regions. 
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These regions correspond to four z values which we denote 

by z ' z ' z and z . 
1 EX 0 F 

In the first interval z = z to z = z ' the exchange 
r {E)( 

matrix elements are set to zero and as the exchange 

amplitudes are automatically zero (due to the boundary 

conditions) then only the target states are coupled. 

Thus at z = z the target occupation amplitudes are in 
fX 

general non-zero whilst the exchange amplitudes are 

identically zero. The values of z and z can be varied to 
I £.X 

check the dependence of the results. In the next interval 

z to z = z the full set of coupled equations are 
t"~ D 

from z 

solved. That is the exchange matrix elements are included 

and consequently the exchange occupation amplitudes will 

begin to increase. In the final interval from z = z to 
p 

z = z , once again the exchange matrix elements are set to 
f: 

zero and only the direct matrix elements are computed. Thus 

there is no coupling between the direct and exchange 

channels and these both evolve independently for z > z . In 
p 

practice z and z are both large negative values whilst z 
1- f x F 

and z are 
D 

both large positive values. The close coupled 

equations defined by equation (2.3.54) are complex and must 

be recast into a different form before they can be 

integrated. Equation (2.3.54) can be rewritten as 

-I 
-I s (F) M ( ~~ A- (c) (3.5.7) 

Thus A(t) can be separated into real and imaginary parts and 
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so also can the right hand side of equation (3.5.7) and so 

two real equations are obtained from each complex term. 

Hence the total number of coupled differential equations is 

double the number of elements of A(t), which is therefore 

twice the total number of channels in the calculation. The 

real set of equations are of the following form 

F ( t: (3.5.8) 

and are solved using the integrator which is called DE (the 

name of a computer subroutine) as given by Shampine and 

Gordon, 1975. This is a very powerful Adams' method routine 

which incorporates automatic selection of order and 

step-size. The accuracy of the solution is determined by 

two parameters RELERR and ABSERR. Firstly RELERR controls 

the relative error and ABSERR is an absolute error control. 

At each internal step in the DE code the attempt is made to 

control the local error of each component of the solution, 

Y (L) , so that 

jlocal error I < RELERR * Y(L) + ABSERR 
!... 

(3.5.9) 

The global error, namely the difference between the exact 

and computed solutions, should approximately satisfy this 

same criteria but is not guaranteed to do so. Another 

parameter controls the maximum number of steps which may be 

taken by the DE subroutine before it returns control to the 

user. This can be used to test whether the equations appear 

to be stiff or not. This means that the solution contains 
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both slow and rapidly varying components and the Adams' 

method is not the best approach to these problems. Using the 

DE routine the final amplitudes A(z) are obtained at z = z . 
F 

The final step is to obtain the cross sections, and this is 

done in two ways. Firstly we give the definition of the 

cross section that is used in practice, for the excitation 

or charge exchange channels. From expression (2.3.72) or 

(2.3.73) we have in general the exact expression 

Q, -
K1 

c ( b ) ) 
K. \ 

7.. 
(3.5.10) 

where c (b) 
k.i 

represents the occupation amplitude for 

excitation or charge exchange, at z z • 
f 

In expression (3.5.10) b is a cut-off beyond which 
M~X 

the contribution is negligible. We calculate c (b) at a 
Ka· 

finite number of b values between 0 and b We can then 

estimate ~ . by considering three adjacent b values at a 
K1 

time, fitting a parabola to the values of b(ck; (b)!~ and 

integrating analytically over this interval to get the 

contribution to ~ 
l<i 

b = 0 to b = b 

In the second method the interval from 

is again broken up into adjacent sections 

containing three b values. Two separate parabola are fitted 

to the three real and three imaginary values of the 

amplitudes, c (b) at the three b values. 
ki 

Interpolated 

values real and imaginary components of cKi (b) 

obtained at a specified number of equally spaced points in 

of the are 

the section and finally Simpsons' rule is applied to the 
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.,_ 
interpolated values of b\c (b)\ to get the contribution of 

k.l 

the section to the total cross section. Both methods should 

agree closely provided the variation of c . (b) with b is not 
f_l 

too extreme. 

The important unitarity relationship, as given in 

expression (2.3.68), is used throughout the integration 

procedure to monitor the progress of the calculation and its 

accuracy. We have found that satisfying the unitarity 

relationship does not guarantee that the coupled equations 

are solved correctly as it is possible to have certain 

errors in the computer codes which do not affect the 

conservation of unitarity. These problems will be discussed 

in the chapter containing the present results. We shall now 

describe the computer codes used in the present work. 

3.5.3 The computer programs for calculating exchange matrix 

elements. 

In Section (3.4) the method of evaluating the exchange 

matrix elements was described. Several computer programs 

were developed to calculate these matrix elements both in 

the exact form as defined by expressions ( 3 . 2 . ll ) and 

(3.2.lla), and also in the form which is an approximation 

when pseudostates, which are not suitable eigenfunctions, 

are used as in expressions (3.2.14) and (3.2.15). The 

important feature of the pseudostate basis sets used in the 

present calculations is that for a particular value all 

182 



the pseudostates are formed from the same set of STO's, and 

as explained in Section ( 3. 4) this results in some 

computational advantages. This feature was used in all the 

present programs to ensure that no matrix elements were 

evaluated more than once. A code called OQEX was used for 

calculating the approxiate form of the matrix elements 

(expresions (3.2.14) and (3.2.15)). For the case of the 

exact form of the matrix elements which use the potentials 

associated with both nuclear centres (expressions (3.2.11) 

and (3.2.lla)), three codes called SQOQEX, OQEX/F and OQEX/G 

were developed. In each of these codes pseudopotentials, 

with an arbitrary number of terms of the general form 
,. • O(r 

zr e (with n ~ -1), could be associated with both nuclear 

centres, although this feature was not fully utilised in the 

present work. The program SQOQEX was capable of calculating 

matrix elements between all combinations of pseudostates 

provided they were either s, p or d angular momentum 

pseudostates, on each centre. The program OQEX/F could 

calculate matrix elements between s states on one centre and 

either s, p, d or f states on the second centre. The 

programe OQEX/G could calculate matrix elements between s 

states on one centre and either s, p, d, f or g states on 

the second centre. Hence no program could calculate, for 

instance, the matrix elements between a p state on one 

centre and an f state on the second centre. This was 

because the necessary complicated expressions had not been 

obtained for the programming of these integrals in the 
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original work of Noble (1980) 1 and were not therefore 

readily available. This was one of the limitations upon the 

calculations which could be made in the present work. 

In Section (3.5.2) it was stated that the exchange 

matrix elements were reduced to one-dimensional integrals 

which were to be evaluated by numerical quadrature using the 

Gauss-Legendre method on the interval (0,1). This interval 

could be subdivided into a maximum of five subintervals and 

in each of these either 4, 8, 16, 32 or 64 quadrature points 

could be used. The choice of b and z grid points that were 

to be used was made prior to using the exchange codes. In 

almost all the calculations performed, thirteen impact 

parameters were used which covered the important region of 

space, up to a maximum value beyond which there was no 

contribution to the reaction cross sections. The z grid was 

typically chosen to consist of twelve intervals between z~-1o 

and l=- 0 and on each interval eight point Chebyshev 

interpolation was used. This resulted in a total of 

eighty-five different z points at which the exchange matrix 

elements were to be found for each different b value. At 

each ( Z 1 b) grid point a complete set of exchange matrix 

elements were output onto a permanent file, consisting of 

the real and imaginary parts of the matrices N(t), K(t) and 

K(t) as defined in expressions (2.3.60), (2.3.63) and 

(2.3.64) respectively. The input to each matrix element 

code consisted of the collision energy and the atomic masses 

of the nuclei, the effective potentials and the 
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wavefunctions on each centre, the z and b grid data and 

various control parameters for testing the output. Once the 

complete set of exchange matrix elements were on a file, the 

calculation of the final cross sections could begin and this 

will be described in the next section. 

3.5.4 The computer programs for calculating the cross 

sections 

The calculation of the cross sections was performed 

using computer programs based upon an initial code written 

by Dr. C.J. Noble. This was used in the work of Bransden et 

al. (1980). Subsequently it was developed by Dr. A.M. 

Ermolaev (Ermolaev, 1983). In the present work two basic 

codes were constucted from the original code. Apart from 

numerous additions to the original code a few errors were 

also found and eliminated, although not until after some 

calculations had already been completed, which delayed 

progress for some time. The basic cross section code used 

in the present work was called MQ2/NEW. After the first 

stage of the calculation, described in Section (3.5.3), a 

data file containing the information to be used is 

constructed so that both the first and second stages are 

consistent. The collision energy, nuclear charges and 

masses and the effective potentials used are read in first. 

Then the wavefunctions and data controlling the z and b 

grids is read in, along with data to control the calculation 
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and interpolation of the direct matrix elements. Other data 

includes the parameters for controlling the integration of 

the coupled equations and calculating the final cross 

sections. 

Data to control input and output is also read in. In 

the first part of the code all the information about the 

wavefunctions is set up. Then the z grid for Chebyshev 

interpolation is constructed. In the next part the 

geometrical fac~rs needed for construction of the direct 

matrix elements are set up. These factors are those which 

are d ( I 1 f/ t/ , d , l enoted by J e/n/,lfl//'~Jln Appen 1x A .. Then the radial 

integrals needed for the direct matrix elements are 

evaluated on a grid of points that are constructed for use 

with Chebyshev interpolation, as described in Section 3.5.2. 

The radial integrals are those denoted by -· f ( «, n, R) , 
..(. 

-l 
f ( c~.1 '{ n, R) 

.(, I 

-~ and f .c. (')1,n, R) in Appendix A.l. At this point the 

data for evaluating the radial matrix elements at any z 

value, for a given b value, is complete. 

A loop is now set up over all the b values. The next 

stage is to add to the exchange matrix elements, for the 

given b value, the remaining time dependent phase factors. 

All the exchange matrix elements for each z value are read 

in from a permanent file and multiplied by the energy 

dependent phase factors, exp ( i ( >.1·- f ) t) and exp ( i ( >. - £.) t) 
1(, IC. J 

as in expressions (3.2.11) and (3.2.11a). 

In the next stage the Chebyshev interpolation method is 

used to obtain the interpolation coefficients for each 
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exchange matrix element over the whole range of z values 

between z = z and z = z, and these coefficients are output 
tx P 

onto a negative file. This means that the complete set of 

exchange matrix elements and direct matrix elements can now 

be determined for any z value between z = z and z = z and 
1 F 

now integration of the coupled equations can begin. The 

initial conditions for the amplitudes are assumed to be such 

that at z = z the initial state has an amplitude of unity 
1 

and all other states have amplitudes equal to zero. The 

integration region between z and z is divided into three 
I. F 

regions as described in the previous section, and the 

amplitudes obtained at the end of the first region are the 

initial amplitudes for the integration across the second 

region. Similarly the output amplitudes at the end of the 

second region are the initial amplitudes for integration 

over the third region. The important output from this part 

of the program is the value of the left hand side of the 

Greens unitarity relation in expression (2.3.68). This 

should be identically equal to unity but will differ from 

this due to the error in the integration procedure. 

Depending upon the input data, this quantity was output 

after every ten calls to the subroutine which evaluates the 

right hand side of equation (3.5.7). 

One way in which the accuracy of the integration method 

-· could possibly be improved is to form the matrix -iS M in 

equation (3.5.7) and to interpolate upon this matrix as the 

integration proceeds (R. Shingal (1983)). In the present 
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code the separate matrices S and M are 
V' \./' 

interpolated 

separately and then the right hand side of equation (3.5.7) 

is formed. However this did not seem to affect the 

integration except at the lowest collision velocities 

considered in the present work. At the end of the 

integration in the third z region the amplitudes at z = z 
F 

are stored and the next b value is considered 

Finally after the amplitudes have been determined for all 

the b values, the cross sections are evaluated as described 

in the previous section. It is possible to extrapolate the 

amplitudes from the final z value z out to infinity. This 
f: 

had been discussed by Wilets and Gallaher (1966) and 

Cheshire (1968). However in the present work the value of 

z was chosen to be large enough so that the final cross 

sections had effectively converged. The details of 

numerical parameters such as the b grid and the z grid will 

be described in the chapter containing the present results, 

as they were varied for different calculations. Finally we 

note that two basic programs were constructed in the present 

work for integrating the coupled equations. The first, 

called MQ2, was for the case where the size of the expansion 

basis on each nuclear centre was similar and contained less 

than twenty-three states. A second program, called MOCF, 

was constructed which was used for the situation where less 

than ten states were on one centre with up to sixty five 

states on the second centre. Both programs used the same 

numerical methods. This concludes the description of the 
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coupled channel programs. In the next chapter we shall 

describe methods for representing the continuum by the use 
~ 

of wavefunctions which are not of the L type but satisfy 

the Dirac delta function normalisation conditions. 
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CHAPTER FOUR 

The First Born Approximation and the T-Matrix Method For 

Calculating Ionisation 

4.1 Introduction 

In the previous chapter a method for obtaining cross 
~ 

sections for positive expectation energy L states was 

described, and to some extent these states represent the 

continuum during the collision process. However, the 

continuum can also be represented using the true continuum 

states for a given potential which are wavefunctions which 

are normalised to a Dirac delta function. Typically this is 

done using the First Born Approximation (FBA) . A second 

method was developed in the present calculations and this 

will be referred to as the t-matrix method for ionisation. 

Both of these methods were investigated using similar 

computer programs and numerical methods, and hence they will 

be discussed together. 

Firstly we shall describe the t-matrix method for 

calculating ionisation. This will be in the usual single 

active electron approximation during a collision between two 

heavy particles A and B in the impact parameter 

approximation. The numerical methods used in the evaluation 

of the cross sections will be considered in the final two 
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sections of this chapter. 

4.1.1 The t-matrix for ionisation. 

In order to obtain a t-matrix element for ionisation we 

shall begin by considering the electronic Hamiltonian in 

equation (2.3.6), which has the following form 

(4.1.1) 

In the expression (4.1.1) v and V 
e.IO 

represent the usual 
-<2-f\ 

projectile and target interaction potentials with the 

electron, and W(R) is a function of the internuclear 

distance, R, only. Then the time dependent Schrodinger 

equation in the usual impact parameter approach is given by 

,_ 
( -! v ..... 

- V" 

which is analogous to equation (2.3.18). 

The ( +) index attached to 
+ ...... 

\TJ ( r, t) 
J. i e 

(4.1.2) 

indicates that 

outgoing boundary conditions are to be imposed upon the 

solution. The index (i) refers to the initial boundary 

conditions imposed upon the solution. The coordinate system 

which we shall use to describe the t-matrix formulation is 

shown in Figure 2.2. 

In Figure 2.2 we have the usual relationship 

.....l --> 

R = b 
-' +- v t: (4.1.3) 
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Since all of the present t-matrix calculations were made for 

the 
'2..+ 

He + Li (2s) system then we replace the potential V 
efl 

by its correct form which is as follows 

--" 
V ((A) 
~A 

(4.1.4) 

Furthermore we shall consider the function W(R) to be 

restricted to the following form 

(4.1.5) 

We shall now consider the final state of the electron which 
- -> 

we will denote by ~ 4 (re,t>. The (-) subscript indicates 
t 

that ingoing boundary conditions are to be imposed upon the 

wavefunction. The reason for this will be discussed later 

on in this section. The energy of the electron in this 

state is 
- ..J. 

The electron state f (r ,t) 
it 8 

represents a continuum 

state of the electron relative to nucleus B, and therefore 

corresponds to target ionisation. In the description of the 

ionisation process we can distinguish between various 

possibilities for the behaviour of the electronic 

wavefunction in the asymptotic region, which corresponds to 

We begin by considering Figure 2.2 and in the 

asymptotic region after the collision we define a parameter 

o< such that 
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(4.1.6) 

The three regions of o< given by o< < 1, o<. = 1 and o< > 1 

correspond to different asymptotic forms for the ejected 

electronic wavefunction, Salin (1969). For instance when 

~ > 1 and k ~ ~ the asymptotic form corresponds to an 

electron in the field of the combined charges of both 

nucleus A and nucleus B. This is the case when the ejected 

electron velocity, k, is much greater than the relative 

internuclear velocity, v. In the reverse situation, where 

v >> k the ejected electron will effectively see only the 

target potential, and this corresponds to the case when 

oZ < l. This is obviously the case for direct excitation 

when the final state of the electron is a bound state, and 

it is physically reasonable to expect that ionisation into a 

final state with a small positive energy should be analagous 

to this. 

In the calculations that are presented here, between 
~+ ~+ 

H~ and Li (2s), the lowest projectile velocity for H-e. 

which was considered was 0.63 (in a.u.) which corresponds 

to an incident energy of ~o keV. 

We shall now construct the t-matrix expression for 

ionisation. Firstly, we consider the asymptotic form of 

equation ( 4. l. 2) , as t --+ .,o , to obtain 
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I 

...1 
( y" t) 

8' (4.1.7) 

In equation (4.1.7) terms of order R~ have been neglected, 

and we have also used equation (4.1.6) with~< 1, and 

equation (4.1.5). 

The wavefunction ~jr ,t) represents the final state of 
IK El 

the ejected electron satisfying incoming 

conditions. This can be written as follows 

where 

::: 

-
~~(r ,t) satisfies the following equation 

1£. s 

(-!.. 
2. 

1... 
v...l 

Y" 

boundary 

(4.1.8) 

(4.1.9) 

The t-matrix for ionisation can then be defined as follows 

(4.1.10) 

where 
t ..:. 'f.(r ,t) 
I g 

is the complete wavefunction obtained from 

equation (4.1.2). We shall define the t-matrix element for 

some large finite time t = ~ , rather than at t = ~ so that 

..J 

b_(k.) 

_. 
( Y'e , 1::) (4.1.11) 
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The initial boundary condition placed upon 

~ == 
b -7 (:;;(\ 

~ - [ .~:; 

+...,~ 
p(r ,t) is that 

I ~ 

(4.1.12) 

where ~(r )e ' 
; 6 

represents the initial state of the 

system and t is some large negative time. Then it follows 
""' 

that expression (4.1.11) can be rewritten as follows 

(4.1.13) 

To obtain expression (4.1.13) we have used the fact that the 

following equation is assumed to be true 

(4.1.14) 

Then using equations (4.1.2) and (4.1.7) we can rewrite 

equation (4.1.13) as 
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+ ~ 
([; (r ,t) is on 
.L.,- 8 

In obtaining (4.1.15) we use the fact that 
"2 

L function and vanishes at r -7 o6, and integrate by parts to 
6 

cancel the 
'l. 

\} terms. It is possible to obtain a more 

general type of expression for the t-matrix in the spirit of 

the distorted wave method. 

Firstly we define a wavefunction 

..... 
+ lA (,cZ) 

with the iniital boundary condition 

- _... 
J:.. (r ,t) so that 

-' 8 
I( 

~ X : c ~, t) == j ~- er; 1 t. ) (4.1.17) 
{:; -t l::q ~ 

Then it is straightforward to show that (using (4.1.17)) 

-'> 

X (r ,1::1 
....> 8 
" 

(4.1.18) 

is a solution of (4.1.16). The expression (4.1.11) for the 

t-matrix is now replaced by the equivalent expression 

(4.1.19) 

It is then possible to rewrite expression (4.1.19) as 

. t;h 

- 7 Jf dt 
q 

(4.1.20) 
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where the following boundary condition is assumed 

< )( -1 ( ~ ( 1:- ) I 'J _-r ( ~ I t: ) > :::: 
k I ~~t 

q 

0 (4.1.21) 

Equation (4.1.21) follows from equation (4.1.18) and 

(4.1.14). Then, by using equations (4.1. 2) and (4.1.16), 

equation (4.1.20) can be written as 

x < (?)- c Y'_, c) f VJ:>.A 
L....J. ~I '-f'T 

/( 

-' t- _.., 
+ ~ ( ~) - u l R) I P.· (('8 { t- ) > 

(4.1.22) 

A further transformation of the expression (4.1.22) is 

possible by removing the internuclear potential from 

equation (4.1.2), which is rewritten as 

+ v 
-e.. A 

+ ~ (4.1.23) 
) _fl._. (('e, (:)-::.a 

I 

where 

+ 
':P. (4.1.24) 

The boundary condition (4.1.12) is now replaced by 
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+ 
_fL . ( (B t t ) 

I 
!I- (4.1.25) 

I 

Using expression (4.1.24) we can rewrite expression (4.1.22) 

as follows 

_. 
b' ( k ) 

The exponential phase factors have been rearranged for 

convenience in expression (4.1.26). If the function U(R) 

introduced into equation (4.1.16) is set equal to the 

internuclear potential function W(R), or set to be zero, the 

t-matrix element in expression (4.1.26) corresponds to the 

t-matrix elements defined by equations ( 11) and ( 6) 

respectively, as given by Salin (1969). The t-matrix 

element defined 
-l ... 

therefore (t · (I() I 
I 

by expression (4.1.26) is exact and 

should be independent of the functions 

defined by W(R) and U(R), because U(R) is arbitrary and can 

therefore be used to remove the W(R) dependence. This can 

be used as a check upon the accuracy of the t-matrix and 

will be considered further in the next chapter containing 

the results. 

The reason for applying the ingoing boundary conditions 

to the final continuum state, 
- ...l 

~ (r ,t), in expression 
lk' s 

( 4. 1. 2 6) has been described by Rudge and Seaton (1964) and 
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is analagous to the time-independent formulation of the 

ionisation t-matrix element. So far we have only considered 

the transition amplitude for direct ionisation, where the 

final state of the electron is a target continuum state. A 

transition amplitude, corresponding to a continuum 

electronic state upon the projectile, can also be obtained 

in a similar manner. In the calculations to be presented 

only target ionisation was considered, because of 

limitations upon the available computing time. 

We shall now describe how the ionisation cross sections 

are evaluated using the transition amplitude in expression 

(4.1.26). We begin by defining the final electron states 

defined by equation (4.1.9) to be normalized as follows 

< f:; 
K 

(4.1.27) 

....l 

Then using expression (4.1.26) to define t (I<) means that 

the probability of ionisation is given by 

f, 
IISVI 

f J~ (4.1.28) 

k 

This is the probability that the ejected electron 

1/ 
continuum state at the end of the collision. The 'K 

is in a 

factor 

is due to the normalization condition given in expression 

(4.1.27), and to the closure identity. To proceed we make a 
...l. 

partial wave expansion of the final states, ¢ (r) and write 
ii. 8 

(McDowell and Coleman (1970)) 
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1\ r-. 

PCCfi1f.l...() 

where 

+ 
' 
'I ') 

I< 

-t (4.1.29) 

(4.1.30) 

In expression (4.1.30) 6~ represents the effect of the 

non-Coulomb part of the potential, 
~ 

V ( r ) , 
eli'> .6 

in equation 

(4.1.9), in the presence of the Coulomb potential. The 

second term is the appropriate Coulomb factor for a 

potential which has the asymptotic behaviour 

(4.1.31) 

The functions ~ (r) are solutions of the radial Schrodinger 
k-t. e 

equation 

-
2 

v (() + -((_(+1)) u (y) 
~e B K~ B 

2-V""l. 

subject to the boundary condition 

u ((8) 
kt 

(4.1.32) 

(4.1.33) 

We now consider the transition matrix element defined by 
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expression (4.1.26). By using the partial wave expansion 

method and the definition (4.1.28), it follows that the 

probability of ionisation is given by 

P, 
I tiY\ (4.1.34) 

where 

The second 

expression (4.1.26), can be omitted from expression (4.1.35) 

as it cannot alter P, as defined by expression (4.1.34). 
16h 

We can rewrite expression (4.1.35) as follows 

x :r= Ct-) ~xp ( k .. t /1-) 
#.:.tt'\'1 (4.1.36) 

where 

< -- I t .... <4.1.37) 
ulct(re) y (Q/1 1 f., tv -r-wuZ)-uu<>...Q....,cr,t-r--

tM. '? (3 -e_ll\ 1 8 / 
re 

The evaluation of the matrix elements, I (t), will be 
1(-t.M 

described in the next section. 
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___. 
Because the integration over r

6 
is independent of R, 

the (W(R) - U(R)) term can be removed so that I (t) can be 
(1M 

written as 

I 
{- ...... 

--G-.,. ( ( ( t ) / 
t e 

-r (INLit.)- ucitn <LJ~~..1.:_~~> ~>'~~u~P.>,~ )1 4 ,.\~, ~::;> (4.1.38) 

r~ 

Because the wavefunction 
+-_._ 

.....-.Ll (r , t) is 
i ~ 

determined for a 

particular impact parameter and because of symmetry about 

the collision plane we can write the total ionisation cross 

section, using expression (4.1.34), in a similar manner to 

expression (2.3.72), and obtain 

f JJ, ~ J d ( ~2_ ) I t ( b I I< ) I '2. 

-l.o'>\ 
(4.1.39) 

where the explicit dependence of the t-matrix element upon b 

is shown. For convenience we shall often refer to the 

partial cross sections which are defined as follows 

To conclude this section we shall briefly discuss the 

motivation behind the t-matrix ionisation calculations. The 

first reason for using the expression (4.1.26) for the 

transition amplitude is that properly normalized continuum 
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functions can be used to represent the ionisation channels 
'L 

instead of an L representation. Therefore the ionisation 

process should be more accurately accounted for, at least 

over a certain range of impact energies. Another motive is 

that in principle information can be extracted from the 

t-matrix which is not in 

.f- ....l f (r ,t), 
i ft, 

in expression 

the wavefunction represented by 
-r~ 

(4.1.22), when W (r ,t) represents 
l; ~ 

an approximate solution to equation (4.1.2). This means 

that the t-matrix elements in expression (4.1.11) and 

P
+~ 

(4.1.22) are equal provided (r ,t) 
I e 

is the solution of 

equation (4.1.2, but l'f ' ' p+<~ any approx1mat1ons used in r 
I e 

,t) then the t-matrix elements will not be equal in 

general. The most obvious case is in the Born approximation 
f- ...l 

where 1T! (r ,t) 
J; e. 

is replaced by the initial boundary 

condition in expression (4.1.12), which 
tl, _, -·~-t 

is r (r ) e , . ,- e 
Then the ionisation transition amplitudes obtained from 

expression (4.1.15) will not be zero as opposed to those 

obtained from expression (4.1.11). Thus we may expect that 

for a reasonable approximation to 
+-~ 

\TJ. (r ,t), which :z:, e includes 

some L representation of the continuum, the expression 

(4.1.15) should provide a more accurate ionisation 

amplitude. 

We shall now consider how the approximation to 
-t-..A 

1D (r ,t) was obtained in the present work. 
I,' 8 

The method 

consisted of performing a large close-coupled calculation as 

described in Chapter 3. The basis set was chosen to provide 

an effective representation of the continuum using a 
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L 
completely L basis. During the solution of the 

close-coupled equations, the time dependent amplitudes a 
I< 

and b- in expression (3.2.2), were stored at a large number 
j 

of intermediate t points. This meant that the approximate 

trial solution, defined by expression (3.2.2) could be 

exactly reconstructed at each intermediate time. This 

provided the approximate solution of equation (4.1.23) which 

was used subsequently in the t-matrix expression (4.1.26). 

We shall now consider the numerical evaluation of the matrix 

elements defined in expression (4.1.37). 

4.2 The calculation of the t-matrix matrix elements in 

prolate spheroidal co-ordinates 

In this section we shall consider how the matrix 

elements needed for the t-matrix calculation are calculated. 

The matrix elements have the following form 

+- _. 
==- < vtl<-t £~) ~r"\c~s' 1, )! MU4) I __fl.; ue ,t)> (4.2.1) 

(6 

where m(r represents either the potential operator V as 
A ~~ 

defined in Section (2.2) or is the unity operator. The 

matrix elements are to be found in the space fixed frame as 

this was the frame in which the t-matrix equations were 

derived. The problem of evaluating the integrals in 

expression (4.2.1) is due to the fact that the function 

~ (~) is constructed numerically and not in the form of a 
l<.i 
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set of STO's. Hence the methods used in the close coupling 

calculations for evaluating the direct matrix elements 

cannot be applied to this case. However, the fact that both 
t--4 

the _fl_ (r ,t) . e, functions and the final state function are a 

combination of angular momentum eigenfunctions multiplied by 

radial functions can be used to reduce the three dimensional 

integral into a two dimensional numerical integration. The 

third integration can be performed analytically. The two 

dimensional integration method was used in the present work 

because it had been used extensively in other atomic 

collision problems. However, it is not claimed that it is 

the most efficient method as other integration methods were 

not used for comparison due to lack of time. To describe 

the evaluation of the integral in 4.2.1 we shall write it in 

full as follows, 

_ sF 

L.t Kt l r a) '1-t ~( Q~ I ¢!!> ) J V\\ l r Pr ) ( 4 • 2 • 2 ) 

r M - J Sf , >.. t 
~ x L. b. UJ [ R. uP.> ) >: ( e-~ ' c;ie.) e - ' j 

--, J (116>·{-< >·((~)·rml?.). . 
J- J G J J J 

In expression (4.2.2) the index SF denotes the fact that the 

angular functions are defined in the space-fixed frame. 

(The radial functions are invariant under rotation). The 

summation over j in expression (4.2.2) is over all the 

target expansion basis states used in the close coupled 

equations. We now rearrange the summation over j to collect 

all the terms with the same values of the quantities ({a)· 
) 

(m ) · together, followed by a further summation over all the 
' J 
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different combinations of ({" ), (m~). which are included in 
) ) 

the basis. This means that we obtain the following 

relationship 

M 

I 
J'='-' 

b. (t-) 
J 

In expression (4.2.3) the summation over {q~1is over all 

different combinations of the quantities ({
1

) (m
1

) which 

replace the previous labels (ie, ). ( m ) . . Also the summation 
) 6 J 

over w (q) is over all the values of (n ) . which are 
e. ) 

associated with the combination ((1)(mr). It is important 

to remember that the time dependent coefficients (b .(t)) 
J 

depend upon all three of the quantum numbers which define a 

state and this will be an important fact in the following 

discussion. Now since the matrix elements, M ( t) are 
I( 1.1\<\ 

evaluated at a given value of the time parameter, t, we can 

replace the summation over w(q) by a function which has to 

be evaluated at each time t. That is to say we have the 

following relationship 

F c re, , c. ) . 
i 

(4.2.4) 
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The function (F (r ,t)) has no explicit angular dependence 
"' e, 

and is a function of r with real and imaginary components. 
6 

Hence we have now replaced the integral in expression 

(4.2.2) by the following 

sF 
vth l ra) [ if ( 0r; t ~ ) ] 11t ('A- ) ( 4 • 2 • 5) -r-- (M ~F 

e. X L c '1 ( @-" ( ~ ) J ~ ( 18 I 1: ) 
~"" 'J -(., rio\, { 

initial expansion basis upon the target, For example if the 

represented by the summation over j in expression (4.2.2), 

contained s, p and d states then the summation over q in 

expression (4.2.5) would contain six terms with the 

following combinations of the quantities (~m_,); (0,0), 

( 1 I 0) 1 ( 1 I 1 ) I ( 2 1 0 ) 1 ( 2 1 1 ) and ( 2 1 2 ) • 

In order to evaluate the integral in expression (4.2.5) 

we must discuss the relation between the space-fixed and 

body-fixed frames of reference. The coordinate system to be 

used is shown in Figure 4.2. 

In Figure 4.2, the position of the nuclei are shown for 

some timet >o. The body fixed coordinates (x',y',z') rotate 

with the internuclear vector, R, during the collision. For 

t "7 - rb the ( x, y, z) and (x',y',z') coordinate systems 

coincide. In the integral defined in expression (4.2.5) the 

operator is a function of r only as it represents 
A 

either a Coulomb potential or is equal to unity and is 

invariant under rotation. We therefore need to consider the 

relationship between the spherical harmonics in the 
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Figure 4.2 

Space f i xed ( x , y , z ) and body f i xed ( x /, y / z /) 

f T d / . t f th r~s. hey an y ax1s are ou o e paper. 

B 

Figure 4.3 

Relationship between rotated coordinate systems 

and the Euler angles ~and p . ( o = 0 ) . 

X 

II z 

z z' ) 

,~ - v 
l 



space-fixed and body-fixed frames. In Figure 4.3 the 

rotation of one co-ordinate frame with respect to another 

defined by the two Euler angles ~ and f' is shown. The 

relationship between the spherical harmonics in the primed 

frame and the unprimed frame is given by 

I I 
D 

1 
( o<

1 
fo , () ) y ( e p ; 

1'\ M t111 1 ( (4.2.6) 

{_ 
D 1 ( o<., p, 0) are elements of the rotation matrix D { (Rose 

Ml""\ "-"' 

1957). The point (&,~) is the same point in space as 

(e',~') but is measured in the new unprimed coordinate 

system. By considering Figure 4.2 and Figure 4.3 the Euler 

angles for the system in Figure 4. 2 are ol.. = 0 and f3 = J + !1 , 
2 

where the nt~ term is needed to obtain the correct sense of 

rotation. Using equation (4.2.6) we can relate the space 

fixed and body fixed spherical harmonics as follows 

(4.2.6a) 

The angular variables (~,f) are used instead of (e, ~) for 
6 B 

convenience, in the space fixed frame. In order to relate 

the real spherical harmonics, which are used in the integral 

in expression (4.2.5), in the space fixed and body fixed 

frames we shall use the relation (Newby, 1983) 

(4.2.7) 
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where 

N I 
("1 

(4.2.8) 

TheN and N factors have been defined in Section ( 3.2 ) • 
11"1. tr.' -<. -< 

The quantities d. (~) and d , (~) are terms from the 
(1\ ' tY\ - I"' ,.., 

.{ 

Wigner reduced rotation matrices, d (~) (Rose 1957). We can 
V" 

now write the matrix element in expression (4.2.5) as 

follows 

M ( t 7 
J({r\\ 

::::. f~ 

(4.2.9) 

We can write this matrix element more conveniently as 

,v..'=-( ,.,..,,-=- .(_"} 
.t~ 

=L: I. I .-<.. 
JJ, (~)j:)" (f>) 

{~lk~ M
1::o 1111 ''-:: b I'\IIM 1"1 ""-, 
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f3,f 
~ I I II where the quantity M (k t; ,m ~ ,m 

'4 "'"9 ~ 
is defined as 

Thus from expression (4.2.10) we see that in order to obtain 

the space fixed frame matrix elements it is necessary to 

obtain the body fixed matrix elements, from expression 

(4.2.11), for all magnetic substates for given values of~ 

and <.( • In order to illustrate this we consider the case 

where the target centre expansion consists of an s and a p 

state and the final continuum state is an s state. Then we 

can write expression (4.2.5) as follows (where the notation 

should be clear) 

SF 
H Ct) 

l<.oo 

- .sF 
\.,{k:t L{i>) '1 lfv\((A") 

Dt> 

(4.2.12) 

+-- F -SF] -r U~ 1 c) Y. 
/1 I I 

Then using expression (4.2.7) we obtain 
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b "' 
8F sf 

M ell :::. cf:J cp) tf::J ( f ) N ( Kl l:::: : o I a I t>l o) 
Ot> <:>0 a a 

koo 
6F" 

rJ::> o C(6) 
I 

( K 1:: , 0 f C) I I I I) ) r}::J ( f> ) /'-1 
-t- <::>D 10 

- I . 
oa 

0 
cf:::,l 

-t cP l~) 
Oa /<::> 

( f.>) M 6F- ( I< t: , 
/0 I I 

0' 0 ) I , I ) 

0 I BF 
o

1 
o / 1 , a ) -/ rfJ Ot> 

( f>) J:', o I cp ! f1 (/('c' (4.2.13) 
I I I ' 

cf:J D (~) I 
(~) M eF ( K b ~ () () I 1

1 
t ) -t (]:::, I I c~ II - I I 

where we have used the notation in expression (4.2.11), and 

where the label q is replaced by the quantities ({ m ) which 
"i I 

it represents. Therefore, in order to evaluate the space 

fixed matrix elements M (t) we require the rotation 
-<_ KtM 

matrix elements D t (~) and the body fixed matrix elements 
('1.1>1 

of the form in expression (4.2.11). 
1_ 

To evaluate D (~) we 
M

1
M 

need the angle ~ which can be found using the relation 

{-> = ~ -t~ where Sis defined as (Figure 4.4) 
1-

(4.2.14) 

This defines~ for both positive and negative z values. We 

shall now consider how the matrix elements in the body fixed 

frame in expression (4.2.11) are evaluated. 

We shall begin by defining a new set of coordinates 

which will be used in the integration method. These 

coordinates are the prolate spheroidal coordinates which 

have been discussed by Morse and Feshbach (1953) and Arfken 

(1970). They are a set of orthogonal curvilinear 

co-ordinator defined by 
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Figure 4.4 

definition of angle ~ 

A 

b 

B 

z 

Figure 4.5 

The electronic coordinates in the body fixed fr~. 

·Angle pis found by projecting ron the x
1

y
1

- plane. 



Figure 4.5 

L 

I 

fZ 

( ( 
A-

( r 
A 

......\ 

shows the vectors r , 
A 

(4.2.15a) 

(4.2.15) 

(4.2.16) 

--"" -l 

r and R in the body 
B 

fixed frame and also the azimuthal angle, p . 
->. ~ J 

In the body fixed frame the vectors r , r and R have 
Jt 13. 

the same azimuthal angle, p For convenience we shall now 

use the angular variables (8,¢), which were previously 

denoted by (e',p'), in the body fixed frame as shown in 

Figure 4.5. Thus the integral in expression (4.2.11) that 

is to be evaluated has the form 

M 
EF 

BF 
symbol M are 

.(Cf lk..y 
where for convenience the arguments of the 

dropped. We can rewrite expression (4.2.17) by using the 

formula from expression (3.2.24) to give the following 

--
f'\ II II 

f (~, t-) NMI' c< ,....,,~ CU>I8) G6J~ ~- (4.2.18) 
~ ., '--q 

We now define angular factors so that 
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(4.2.19) 

d II - N II 
-(~M - M. 

c 
.{. M 1/ 

1 

(4.2.20) 

We also use the formula for the volume element in the 

prolate spheroidal co-ordinates 

R.'3> ( ~"-~'-) ol~ d'l_d~ (4.2.21) 
8 

Using expression 4.2.14 and 4.2.15 it follows that 

(4.2.22) 

Thus we can write expression (4.2.18) as 

form 

(4.2.24) 

It is straightforward to show that 
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" -f<:.• M/j. M 1/ 

I D 

( M ~ 1\'1. II l 11 fu• M' ::: M I( :1:- C) 

]:_ ) -::= 

¢ 1--11 ~ 
ty\1 ::::. M I( ::: 0 (4.2.25) 

The remaining double integration over the variables t and 

1 is relatively straightforward. The integral over the 

variable in the interval (l,oO) is transformed to the 

interval (O,o()) by the transformation 

(4.2.26) 

where y is the new integration variable and C is a constant. 

The integration over the new variable uses Gauss-Laguerre 

integration while Gauss-Legendre integration is used for the 

integration over the variable 1 Various relationships 

between the co-ordinates (r ,r , 17() 
A. f> r and the 

co-ordinates that are needed in the integrations are given 

in Appendix 4. We see that the evaluation of the matrix 

elements in expression (4.2.17) is therefore possible using 

two-dimensional numerical integration. In the next section 

we shall describe how the t-matrix cross sections were 

calculated. 
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4.3 The evaluation of the ionisation cross sections 

In this section we shall describe how the approximation 
-1- -' 

of the wavefunction, ~ (r ,t), 
,· I> 

in equation (4.1.35) is 

obtained. Next we shall describe the evaluation of the 

matrix elements I (t) in expression (4.1.37), and finally 
K1M 

the evaluation of the t-matrix element in expression 

(4.1.35). 

The 
.,.. ~ 

wave function .fl... ( r , t) 
I 0 

was obtained using the 

standard formulation of the close-coupled equations as 

described in Chapter 3. The actual basis set used consisted 

of target centred states only, so that the expression 

(3.2.2) can be replaced by the following expression 

When the coupled equations, analagous to equations (3.2.5), 

are solved, the internuclear potential is set to zero. This 

is why the wavefunction in expression (4.3.1) is denoted by 
+ ...... 

~.(r ,t), since it is the approximate solution of equation 
I B 

(4.1.23). The solution of the close-coupled equations 

proceeded in the same manner as described in section 3.5. 

However the subroutine DE, described in section (3.5.1) was 

changed so that the complex amplitudes, b·(t), in expression 
J 

(4.3.1) were output onto permanent files at a predetermined 
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set of z points. These sets of z points were chosen by 

dividing the z axis into sub-intervals and calculating a 

Chebychev interpolation grid within each interval to provide 

the total z grid. The z points were clustered about the 

origin, which is at the target centre, where the amplitudes 

tend to change most rapidly, and were spaced farther apart 

at the beginning and end of the z integration range where 

the amplitudes, b-(t) change more slowly with time. 
J 

In order to calculate the matrix elements defined by 

I (t) in expression (4.1.37), using the method described 
1.(_.-fM 

in Section (4.2), a program called 2DTMX was used. For 

convenience during a single run of the program matrix 

elements were evaluated for a range of k values and all 

values of m corresponding to a given value of { . A separate 

calculation was needed to produce matrix elements for a 

different 1 value. The program began by reading in data 

such as the impact energy of the projectile, the particle 

masses and the form of the potential V 
.et\ 

Chebychev interpolation procedure was also input, 

the basis set data relating to the states 

expression (4.3.1). Finally data defining 

Data for a 

as well as 

-- 15 ~ 
¢j (rg) in 

the final 

electron continuum states, including the { value and the 

number of k values was input. 

The functions U (r) , 
k.t.. 

in expression (4.1.33) were 

calculated previous to the matrix element calculation and 

subsequently read off a permanent file. For a given K and ~ 

value U (r) 
1(1.. 

was evaluated at 2900 r values between r = 0 
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and r = 113, as described in Appendix (A2) • Subsequently 

any intermediate values of 

Lagrangian interpolation. 

previously described meant 

~ (r) were determined by 5 point 
K.'\. +_,. 
The calculation of ~ (r ,t) as 

i s 
that the b-(t) amplitudes were 

J 
output on a specific grid of (b,Z) points and loops were set 

up over the same grid of points in the matrix element 

program. At each grid point the correct set of b. (t) 
j 

amplitudes were read in from a file. In the next section of 

code the body-fixed matrix elements were evaluated as 

described in Section (4.2), in a subroutine called DIRECT. 

The function F(r ,t) 
'1 B 

defined in expression (4.2.4), which 

was needed in the body-fixed calculation was conveniently 

determined by employing a Chebychev interpolation procedure, 

rather than explicitly calculating the function for every 

value of r that was needed. In both the numerical 

integrations, over the variables ~ and~ , in expression 

(4.2.23), an arbitrary number of quadrature points could be 

used to enable numerical checks of convergence to be made. 

A subroutine called ROTATE was entered next and the 

body-fixed matrix elements were rotated into the space-fixed 

frame as in expression (4.2.10). 

Finally the matrix elements are output onto a permanent 

file, prior to the cross section calculation. We shall now 

describe how the partial cross sections defined in 

expression (4.1.40) were obtained, using a program called 

TMX. In the first part of the program the impact energy, 

and data for performing the integration over the three 
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variables, b, K and tis input (see expressions (4.1.38) and 

(4.1.26) which contain the integrals). The matrix elements 

read in from a file consisted of the two components of the 

I (t) matrix element defined in expression (4.1.38), which 
k1,v,. 

we shall rewrite as follows 

I It! 
K1M (4.3.2) 

where 

- _J,.. 

/) (t) 
K.( M 

::: < L1 (( ) .L I v (( "'\ l -, -I. D 
K1. e '11 rot ( e8 '.,.,8 1 -e.A A; ____jL I ( rt! ,t)/( 4. 3. 3) 

"'e 

and 

5 (_t) = < 
I({M 

.f- -' 
l{ 1(1_ ( (8) '1-t::. & .6 I ?'>8 ) \ ____£L . ( ~ I t) / ( 4. 3. 4) 

fe 

D (t) and S (t) are the matrix elements read into the 
K.'\.r>\ 1<1t'l-t 

cross section program. The functions W(R) and U (R) are 

controlled by data read in by the next part of the program. 

Only matrix elements for a single ~ value are used in each 

calculation, and a loop over all the different m values is 

set up. The b and k values are also set up and then the 

first integration over the t variable, in expression 

(4.1.35) can begin. A subroutine WPHASE is called to 

numerically evaluate the time dependent phase factor in the 

integrand, which is given by 
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t 
o(ci-- j {w(~ 1 )- l{cf?.'))cU: 1 

tq 

(4.3.5) 

t is the initial time value as defined by expression 

(4.1.25). The variable t corresponds to one of the 

Chebychev grid points at which the matrix elements in 

expression (4.3.2) have been evaluated. We also note that 

as usual 

.. 
R I V 1. I: I 

~ 

'"" 
(4.3.6) 

The integrand in expression (4.1.35) can now be written as 

J Lt) F U::) (4.3.7) 

where 

fCI::-) = -e-

r'¥0:::) 
( D (c) -t-- (w(~)-u(,e.))S (t)) (4.3.8) 

K{.M J<.{M 

Y(t) and F(t) are evaluated at all the t points where the 

matrix elements have been evaluated. Two different methods 

were then used to perform the integration over t. In the 

first a third-order finite difference method due to Gill and 

Miller (1972) was used to integrate Y(t) between the two 
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limits t 
a 

This was available as a NAG subroutine. 

In the second method, the function defined by F(t) in 

expression (4.3.7) was divided into adjacent intervals 

containing a fixed number of t points. In each interval 

F(t) was fitted to a polynomial (for both real and imaginary 

parts) and then the final integrations in each interval were 

performed analytically as they had the following form 

t .. I l:: 1.. t- h ... '"2.... 

J ( c + c I:- +- c. 1::. +-. . . . ) (4.3.9) -e._ 
( .... 3 

t., 

In the present calculations a third or fourth order 

polynomial was used to represent F ( t) . This method was 

mainly used at the lowest impact energies where the 
iK"L'=/2. 

oscillatory factor e in the integrand was varying most 

rapidly, and also to check the accuracy of the first method. 

All the values of t (b,k) needed in expression (4.1.39) 
{IV\ 

were obtained in this manner. The final two integrations 

over the variables b and k in expression (4.1.39) were 

subsequently performed using the method of Gill and Miller 

previously referred to. In order to check the results a 

cubic spline interpolation method due to McCarthy and 

Stelbovics 

t (b,l() 
{1"1 

(1986) was used to interpolate the quantity 

prior to the integrations over b and k in 

expression (4.1.39) allowing a larger number of points to be 

used in the integration procedures. The same interpolation 

method was also applied to the integrand defined by Y(t) in 
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expression (4.3.7) to check how stable the initial 

integration over t was. The method of Gill and Miller was 

very useful as it provided an estimate of the error in each 

integral it was used for. 

We have now described all the methods for obtaining 

cross sections that were used in the present work and in the 

next chapter we shall discuss the results that have been 

obtained. 
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CHAPTER FIVE 

The Present Calculations and Results 

5.1 Introduction 

In the preceeding chapters the semi-classical impact 

parameter method was described in the form in which it was 

used in the present work. A new method for calculating 

ionisation using exact continuum states was also described 

in Chapter 4. In this chapter we shall describe the 

theoretical models used in the calculation of charge 
2.-t

transfer, direct excitation and ionisation in the He + 

Li(2s) collision system. We shall begin by describing the 

model used to calculate capture from the L shell of Li(2s). 

This is followed by a discussion of capture from the K shell 

of Li(2s) which is based upon the independent-electron model 

(IEM) of McGuire and Weaver (1977). Finally direct 

excitation and ionisation of the L shell of Li(2s) will be 

considered, using a different model to that for capture. In 

the case of ionisation results have also been obtained using 

the new t-matrix method. The possible relationship between 

the different types of basis set expansions used in 

investigating charge transfer and the direct reactions will 

be considered also. 

The present results will be compared to existing 

calculations and experimental data where available. A 
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comparison with recent detailed classical results from the 

CTMC method, which have been made over a similar range of 

energies to the present calculat~s, will also be 

undertaken. 

5.2 A description of the charge transfer models. 

5.2.1 The basis sets and pseudopotentials for capture from 

the L shell. 

In this section we shall describe the pseudopotential 

and the basis sets designed to investigate the following 

reaction 

L~ C 1 s 2.) 
(5.2.1) 

Ermolaev and Bransden (1984) had considered the same 

reaction using the semi-classical methods as described in 

Chapter 3. They included only physical bound states in 

their expansion basis (see expression 3.2.2). The 

conclusion was that such a basis could not reproduce the 

total charge exchange cross section in the range of impact 

energies between 30 kev and 200 kev. For instance at 100.2 

kev (lab) Ermolaev and Bransden obtained a total charge 
_li:. 'L 

transfer cross section of 26.9 x 10 em compared to the 

experimental result of McCullough et al. (1982) which is 
-\b "2.. 

10.2 + 0.4 x 10 em . The conclusion was that an extended 

basis set containing some representation of the continuum 
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states about one or either atomic centre was needed to 

improve the agreement with experiment. This was the 

motivation behind the present calculations. We shall now 

describe the basis set choice in more detail. 

The basis set used by Ermolaev and Bransden consisted 
-t-

o£ the n 2 and 3 states on Li and the n = 2, 3 and 4 
1..-1-

states on He (with the l = 3 states omitted). They 

obtained results which showed that the basis contains the 

bound states which are the most important over a large range 

of impact energies and therefore made a suitable initial 

basis for the present calculations. To extend the previous 

calculations the decision was made to add positive energy 
'1..+ 

pseudostates to the He centre, in addition to retaining 

the important physical bound states about each centre in the 

expansion basis. This was for the following· reasons. 

Firstly, such pseudostates could be used to extract 

+ 
information about capture into the high n states of He 

after the collision. This could not be done if pseudostates 
+ 

were added to the Li expansion centre. This meant that 

additional approximate methods for estimating the high n 

capture contribution could be avoided. A second 

consideration was one of computational convenience. It is 

more efficient (in computer time) to have a basis set 

distributed unequally between the expansion centres rather 

than one which is more equally distributed. We shall now 

describe how the basis sets were constructed upon each 

centre. 
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-t 
For the case of the Li centre the pseudopotential used 

-t" '2. 
to represent the Li nucleus and ls core electrons was the 

same as in the calculations of Bransden and Ermolaev and was 

originally derived by Danielle (1979). The pseudopotential 

method has previously been described in section (3.3). The 

form of the Danielle pseudopotential was as follows 

v ~ _, (5.2.2) 
L y-

where Q' = 2.92. 

The potential V~ was derived using a Restricted Ritz 

Principle (RRP) in the following manner. By choosing an 
-oN" 

initial ls state of the form ~~ = e a 2s state, 'fJ2..S, is 

formed which is orthogonal to it but contains 

underdetermined parameters. The potential is chosen to have 

the form shown in expression (5.2.2) with the 

parameter o undetermined. The expectation energy of the 2s 

state is then minimized by varying the parameters in both 

the wavefunction and the potential to obtain the best 

agreement with the experimental energy. A similar procedure 

is used for constructing p and d states except that the 

potential is fixed as the one obtained from the ~LS 

minimization. Higher s states can also be found in a 

similar manner. The Li(2s) and Li(2p) states obtained by 

Danielle using the RRP were included in the basis set. Two 

d states were also included in the basis set and were 

obtained in the usual manner by diagonalizing a two STO 
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basis using the Danielle potential to produce one state with 

the Li(3d) experimental energy and a positive energy state. 

A d state was used to represent the continuum because Born 

calculations (to be described in section (5.5)) had shown 

them to be more important than p or s continuum states in 

the energy range of interest. The basis set parameters used 

are shown in Table 5.1. The calculated bound state energies 

agree with the corresponding experimental energies to better 

than 0.8%. The calculated oscillator strength for the Li(2s 

-> 2p) transition is 0.625 compared to 0.788 given by Cowan 

(1981) for the same transition. The oscillator strength sum 

for transitions from the 2p state into all d states was 

found to be 1.08 which is close to the corresponding value 

of 1.16 given by Cowan, although the calculated Li (2p --> 

3d) oscillator strength is only 0.536 compred to 0.696 from 

Cowan. 

The continuum probabilities (described in section 

(2.4.6)) shown in table 5.1 indicate that in fact the 

positive energy d state represents both the continuum and 

the higher bound d states as it overlaps both significantly. 
2-+ 

We shall now consider the He basis set used for capture 

from the L shell. 

The He 1.+- basis set was constructed so that it 

represented the most important bound states and also 

satisfied certain oscillator strength sum rules. The basis 

was constructed by diagonalizing various s, p and d basis 

sets and then computing various oscillator strength sums to 

227 



Table 5.1 

Radial wavefunctions of the 32-state basis employed 

in the present L-shell capture calculations. 

+ 
Target centre (Li ). 

a 
State (r;l) 

2s 

2p 

3d 

4d 

). (n!) 

- 0.19762 

- 0.13131 

- 0.05559 

+ 0.01889 

a b 
q ( n I ) 

0.00 

0.00 

0.00 

0.55 

n. 
I 

0 

1 

1 

2 

3 

STO basis 

f>. 
I 

0.80864 

0.80864 

0.55179 

0.33388 

0.40200 

a) The 2s and 2p states are from Danielle (1979). 

The 3d and 4d states and energies A(n!) are obtained by 

diagonal izing the Harni ltonian 

from formula (5.2.2). using the STO basis sets given in the 

the last two columns of the table. 

b) The quantities 4 (n!) are determined according to 

expression (2.4.32) by the overlaps between the pseudostates 

(r;l) and the continuum of the Harni ltonian 

with V from eqn (5.2.2). 
L-

-.!. \12-""" VL-
2 



produce a final basis set which was consistent with these 

conditions. The parameters of the basis set are given in 

Table 5.2 along with the overlap of the basis with the exact 

n = 4 states which will be used in the results section. The 

oscillator strength sums are given in Table 5.3. Firstly, 

we note that the diagonalization of the s state basis 

produced a ls state which was retained for convenience in 

the oscillator sum calculations but was not used in the 

close-coupled calculations. This was because it had an 

energy of -2.0 a.u. and this is far below the energy of the 

initial Li(2s) state, -0.1976 a.u. so that the coupling of 

this state to the target states is very small compared to 

higher n states on the projectile. Ermolaev and Bransden 

had shown it was not important in the charge exchange 

process in the impact energy range being considered. A 

comparison of the calculated and exact oscillator strength 

sums in Table 5.3 shows that for each 1 value the basis 

closely reproduces the total sum for bound and continuum 

transitions (denoted by row (e)). The sums over the 

negative and positive energy states are also shown (rows (c) 

and (d)). In the s state basis the 4s state only has a 

4(4s) value of 0.26 and does not represent the continuum 

very well but since the exact 4s state contribution is only 

8% of the total oscillator sum it is not considered that the 

optimization of its calculated oscillator strength would be 

as important as the fact that it represented both the 

continuum and high n states to some extent. The p state 
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Table 5.2 

Radial wavefunctions of the 32-state basis employed 

in the present L-shell capture calculations. 

+ 
P r o j e c t i I e c en t r e ( He ) 

a 
State (~) 

2s 

3s 

4s 

2p 

3p 

4p 

5p 

3d 

4d 

5d 

6d 

- 0.50000 

- 0.22112 

+ 0. 17698 

- 0.50000 

- 0.22222 

- 0.11255 

+ 0.28752 

- 0.22222 

- 0.12467 

+ 0.01054 

+ 0.41104 

b 
q ( n I ) 

0.00 

0.00 

0.26 

0.00 

0.00 

0.01 

0.83 

0.00 

0.00 

0. 18 

0.92 

c 
<411nl > 

0.00 

0.00 

0.72 

0.00 

0.00 

0.91 

0. 19 

0.00 

1. 00 

-0.05 

-0.01 

0 

0 

1 

STO basis 

n o< 

0.60000 

1. 00000 

1. 00000 

1 0.50000 

1 

1 

2 

2 

2 

3 

3 

3 

1. 00000 

0.66667 

0.66667 

0.88270 

0.66667 

0.50000 

0.90000 

1.70000 

a) States (~) and energies £ (n!) are obtained by diagonal-

-izing the Hruni ltonian -.!. v'-+ \( with v = -"2./y- using the 
1. 

STO basis sets given in the last two columns of the table. 

b) The quantities { (~) are determined according to eqn (2.4.35) 

by the overlaps between the pseudostates (~) and the continuum 

of the Hami I toni an -~ \J 2- + V with V :=- 1. I y 
+ 

c) 141 > is the exact He (41) state. 



+ 
Table 5.3 Osci I lator strengths for same transitions in He computed using 

the 32-pseudostate basis (A032).Camparison is made with the exact 

hydrogenic values from Cowan (1981). 

Final 
state 

n = 1 

n = 2 

n = 3 

n 

c 

d 

e 

4 

Initial 
state 

2p 

ns 
a 

-0. 135 

0.000 

0.013 

-0. 1220 

0.0130 

-0.1090 

a: present calculations. 

b 

-0. 139 

0.000 
0.014 

-0. 1199 

0.0088 

-0.1111 

a 

0.000 
0.435 
0. 188 

0.623 

0.351 

0.975 

2s 

np 

b 

0.000 
0.435 
0. 103 

0.649 

0.351 

1. 000 

b: hydrogenic oscillator strengths from Cowan (1981). 
+ 

2p 

ncr 
a 

0.696 
0. 132 

0.828 

0.286 
1 . 114 

c: sum over negative-energy states of He of the 32-state basis. 
+ 

d: sum over positive-energy states of He of the 32-state basis. 
e: total of negative- and positive-energy states of the 32-state basis. 

b 

0.696 
0. 122 

0.928 

0. 183 
1. 111 



basis has a positive energy oscillator sum equal to the 

exact values and as the Sp state has a l (Sp) value of 0.83 

this suggests that it is a good representation of the p 

continuum. Finally the d state basis underestimates the 

negative state sum while the positive state sum is too big. 

However, since the positive Sd state overlaps strongly with 

the bound states its contribution to the positive energy sum 

includes a bound state contribution also which explains this 

effect. The basis set described above should therefore 

contain a reasonable representation of 
1...+ 

the important 

continuum states of He in terms of their oscillator 

strength sums. The n = 2 and n = 3 states are also well 

represented in terms of their oscillator strengths. Since 

the total oscillator sums are also almost exact then it 

follows that the higher n states are also well represented 

in terms of their oscillator sums. This was important 

because it implied that the contribution of these states to 

the charge exchange cross section could be extracted from 

the final cross sections witin a single calculation, rather 

than by some additional approximation, using the methods 

described in Section (2.4). This completes the description 

of how the L shell charge exchange basis was selected. A 

"L+ 
basis set contining twenty-three states on He and ten 

+ 
states on Li was also constructed in a similar manner with 

the main differences being that it contained p states with 

two positive energies and only a single positive energy d 
1..+ 

state on He . The results for this basis set will be only 
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briefly discussed in the next section and therefore it will 

not be considered any further. In the next section we shall 

describe the basis sets used to model capture from the K 

shell of Li(2s). 

5.2.2 K shell capture from Li and the Independent Electron 

Model. 

In this section we shall consider how capture from the 
1. 

K shell of Li (ls 2s) was calcuated within the framework of 

the Independent Electron Model (IEM). We begin by noting 

that the energy needed to remove the 2s electron from 

neutral Lithium is 0.1982 a.u. while the corresponding 

energy needed to remove a ls electron is 2.385 a.u. 

Therefore the core electrons in Li are very tightly bound 

compared to the valence electron and we shall ignore its 

effect upon the core. We then considered a 

one-active-electron model for the following process 

2+-
+- Li (IS) (5.2.3) 

In this model a pseudopotential with the following form was 

used to represent the interaction between the active 
+ 

electron and the Li (ls) core 

3.'$:S"Y" 

vK. -:::: 2 -e. ( I + 0.7_5 r-) (S".L..Lt-) 
y'" r 

This potential was constructed by diagonalizing a basis of 6 
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STO's with 1 0 with the requirement that the lowest 

eigenvalues corresponded to the lowest energy levels for 

'1.. 
single excitation of Li (1s ) . The same pseudopotential was 

then used in the usual diagonalization procedure to produce 

a set of 7p radial functions and 6d radial functions. The 

basis sets are given in Table 5.4. The eigenvalues for each 

{value spanned both the negative and positive energy regions 

and thus included a continuum contribution. 

The previous work of Ermolaev and Bransden had 
-t- 1... 

indicated that capture from the K shell of Li (ls was 

mainly into the + He ( 1 s) state. Therefore a basis 
-t" ..... ..... 

consisting of the He ( 1 S) t He (2s) and He ( 2p) states and a 

single positive energy s state was used on the He centre to 

represent the electron capture channels from the target 

represented by the pseudopotential in expression (5.2.4). 

Summing over all magnetic substates a total of thirty-eight 

target states and five projectile states were in the basis 

set. The parameters used in the construction of the basis 

are given in Table 5.4 and Table 5.5. Table 5.6 compares 

the energy levels of the lowest singly excited states of 
-f-

Li (1s nl) with experimental values. The 1s state obtained 

by using the potential (5.2.4) was in good agreement with 

the data of Herman and Skillman (1963) for the 1s state in 
'2.. 

Li(1s 2s) obtained using the modified Hartree-Fock-Slater 

method which includes a local exchange approximation in the 

potential. This is shown in figure 5.1. Because of the 

asymptotic form of the potential as r --> ~ corresponding to 
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Table 5.4 

Radial wavefunctions of the 43-state basis employed 

in the present K-shel I capture calculations. 

2+ 
Target centre (Li ). 

a 
State (nl) 

1s 

2s 

3s 

4s 

5s 

6s 

2p 

3p 

4p 

5p 

6p 

7p 

8p 

- 2.79869 

- 0.57216 

- 0. 12089 

+ 0.81270 

+ 3.96233 

+22.55621 

- 0.51097 

- 0.22556 

- 0. 10258 

+ 0. 10944 

+ 0.62460 

+ 2.08186 

+ 8. 15504 

b 
q ( n I ) 

0.00 

0.00 

0. 18 

0.94 

0.97 

1 .00 

0.00 

0.00 

0.04 

0.88 

0.96 

0 .. 97 

1.00 

STO basis 

n ~-
' 

0 2.66667 

1 2.66667 

0 2.00000 

1 2.00000 

0 1.50000 

1 1.50000 

1 1.33000 

2 1.33000 

1 0.88500 

1 1.70000 

2 1.77000 

1 1.00000 

2 1.00000 



Table 5.4 (continued) 

a 
State(nl) 

3d 

4d 

5d 

6d 

7d 

8d 

- 0.22234 

- 0. 12507 

- 0.06624 

+ 0.13274 

+ 0.93381 

+ 4.77532 

b 
q ( n I ) 

0.00 

0.00 

0.05 

0.93 

0.98 

0.98 

2 

2 

3 

2 

3 

3 

n 

STO basis 

~-1 

0.66667 

0.50000 

0.50000 

1.33333 

1.33333 

2.00000 

a) States (n!) and energies 'X (n!) are obtained by diagonal-

-izing the Harni ltonian -.!.. \71.+V with VK from eqn (5.2.4) 
"l. k: 

using the STO basis sets in the last two columns of the table. 

b) The quantities i (nl) are determined according to eqn (2.4.32) 

by the overlaps between the pseudostates (n!) and the continuum 

of the Harni ltonian with V from eqn (5.2.4). 
K. 



Table 5.5 

Radial wavefunctions of the 43-state basis employed 

in the present K-shell capture calculations. 

+ 
Project i I e cent r e (He ) . 

STO basis 
a 

State (nl) 
a 

f.(nl) 

1s - 2.00000 

2s - 0.50000 

3s + 0.62230 

2p - 0.50000 

b 
q ( n I ) 

0.00 

0.00 

0.56 

0.00 

n 

0 

0 

1 

1 

2.00000 

1 0 00000 

1.00000 

1.00000 

a) States (nl) and energies £ (nl) are obtained by diagonal izing 

the Hami I toni an with V::. -2 /r using the 

STO basis sets given in the last two columns of the tables. 

b) The quantities ~ (nl) are determined from eqn (2.4.32) 

by the overlaps between the pseudostates (nl) and the continuum 

of the Hamiltonian 1 \7
4 + Y with V =- -1-/r

L. 



Table 5.6 

A comparison of the experimental and calculated ionisation 
+ 

energies (IE) of Li (1snl) singlet states.The calculated 

va I ues were obtai ned by d i agona I i zing the Hami I toni an 

-I 'Y ... -+V using VK. from (5.2.4) in the finite STO 
1.. K 

basis sets in table 5.4 

Singlet State 

2 
1s 

1s2s 

1s3s 

1s2p 

1s3p 

1s4p 

1s3d 

1s4d 

1s5d 

a 
Exper irnenta I IE 

2.779 

0.5468 

0.2337 

0.4933 

0.2202 

0. 1241 

0.2224 

0. 1251 

0.0800 

b 
Calculated IE 

2.799 

0.5722 

0. 1209 

0.5110 

0.2256 

0. 1026 

0.2223 

0. 1251 

0.0662 

a) Exper irnental data from Ford et al. ( 1982) 

b) Calculated energies from Table 5.4. 
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Comparison of present Li (1s) wavefunction and 

Herman Skillman Li (1s) wavefunction. 

represents r "/}_<,-.) where 'f_fr") is the 
1~ IS 

1s state from the A043 basis ( Table 5.~) 

-------, represents r ~(r) where ~\r) is given by 
HF Hf 

Herman and Ski I lman (1963). 

------, represents 5 * ( 1 - VJ /w ) . The factor of 
f1s THf 

5 is for convenience. 



L..+ 
an electron in the field of Li this potential will only be 

close to the local Hartree-FocK potential for the ls state 

in Li(ls L 2s) over a limited region of r. This model of the 

K shell is only expected to be valid for low impact energies 

where the second K shell electron is not active. As the 

impact energy increases into the Mev region this electron 

must be taken into account and in our model this is 

represented by the reaction 

+ +L (5.2.5) 

In this case the electron on the target experiences a purely 

coulombic potential due to the target nucleus which is 

VII., 5 

I 
(5.2.6) 

The basis states for electron capture from the K shell 

corresponding to the potential (5.2.6) consisted of the 
'l..-f-

exact bound states on He with n < = 3 or n < = 2 and the 
1..-t"-

only target state was Li (ls). This gave a total of eleven 
,,.._.+-

states or five states respectively. Only the Li (ls) was 

included because of the large energy difference between the 
1...-\-- 1....1--

Li (ls) and Li (n = 2) states which means they are not 
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very important. The model which we have considered is 

essentially that obtained by writing the full Hamiltonian 
.-r ""L 

for the two electron system Li (1s ) in the approximate form 

and also 

approximation 

"L 

- -1 '7..:. +- yk 
2 r 

using a Hartree 

to represent 

wavefunction, Y, , as follows 
1-t G\(' 

(5.2.7) 

(unsymmetrised product) 

the target two-electron 

(5.2.8) 

We then performed two sets of calculations to obtain 

probability amplitudes corresponding to the choice of either 

(5.2.4) or (5.2.6) to represent the electron-target centre 

interaction. In order to obtain an estimate of 

single-electron capture in this model the transition 

probabilities obtained from the separate close-coupled 

calculations must be correctly combined (McGuire and Weaver 

c :t: 
(1977), Hansteen and Mosebekk (1972)). We write p and p 

I S IS' I 

to represent the transition probabilities (at a given impact 

parameter value, b) for the 1s electron for capture into any 

state and for ionisation respectively, obtained with the 

target potential in (5.2.4). In the same way we have the 

corresponding probabilities p 
c.. , and p.:r. for the 1s' 
Is I IS' 
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electron in the K shell, obtained with the target potential 

in (5.2.6). Then after integrating over all impact 

parameters and neglecting capture from the L shell the 

one-electron capture cross section is given by 

a-
c. 

In the 

00 

[ p ( c pi - '2-.11 J b J,b ( I - p 
IS 1 ;] - Is I IS 

0 (5.2.9) 

o(J <: c I. + '2. n J() b J-b [ ~ S I 
( l- p P,s )] 

IS 

case 
c 

where p
15 

<< 1, p.!. << 1, p c << 1 and p :r << 1 
IS lS 1 IS' 

then expression (5.3.7) reduces to 

00 
b 

c_ c. 
c :=. '2- 'r\ fa J..b c Pis + f Is I J c_ 

(5.2.10) 

c c - c-- + 6""" 
I.S IS/ 

where c and 6' 
1 are the single capture cross sections for 

IS lS 

the two distinguishable K shell electrons. In this 

approximation the second electron is allowed to undergo any 

transition and consequently the cross section (5.2.10) 

overestimates single-electron capture. This type of model 

2..+
has been successfully applied to collisions between He and 

Mg by Ermolaev (1987). In the IEM it is possible to 

estimate double-electron capture using the transition 

probabilities defined above. However, the experimental 

results of McCullough et al. (1982) and Sasao et al. (1983) 
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show this process is negligible compared to single-electron 

capture in the energy range that we have considered and we 

did not estimate it in the present model. Furthermore the 

work of Ghosh, Mandal and Mukherjee (1985) concerning 

double-electron capture in the same system suggests that 

electron correlation effects must be included explicitly in 

order to obtain agreement with experiment. These effects 

are not included in the model we have considered. This 

concludes the description of the basis sets used for charge 

transfer and we shall now describe the results obtained 1n 

the calculations. 

5.2.3 Numerical methods used in the capture calculations 

In the calculations made using the basis sets described 

in Section 5.2.2 there are several numerical problems to 

investigate. Firstly a suitable grid of z and b points must 

be chosen as described in Section 3.5.2. In the present 

calculations it was found that using thirteen impact 

parameter values, with 0.05 a.u. < b < 24 a.u., was 

sufficient for L-shell capture. All cross sections except 

the Li(2p) cross section had converged in this interval. A 

small correction was added to the Li(2p) result to allow for 

this, by fitting the Li(2p) transition probabilities to a 

simple exponential form for large b. The z grid for 

Chebyshev interpolation of the exchange matrix elements had 

been investigated previously by Ermolaev (1984). It was 

found that a grid consisting of twelve intervals between 

-55.0 a.u. and 0 a.u. with eight points in each interval was 
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satisfactory. A similar grid with up to fifteen intervals 

with eight point interpolation was used for the 

interpolation over R for the direct matrix elements, as 

discussed in Section 3.5.2. Using more interpolation points 

did not seem to greatly improve the results, while using 

much more computer time in the calculations. Tests were 

also made of the !-dimensional integration method for 

evaluating the exchange matrix elements as described in 

Section 3.5.3. Using more than sixty-four Gauss-Legendre 

points did not change the test results significantly and in 

general in the calculations sixty-four quadrature points 

were used in four intervals of sixteen points. For example 

for an impact energy of 125 keV lab. the total capture cross 

section (summed over all energies) computed using 64 and 128 

quadrature 
~[b 

16.919 X 10 

points 
~ 

were 

em respectively. 

-lb ~ 
16.626 x 10 em and 

In the case of the K-shell capture the impact parameter 

grid was reduced to the interval 0.04 a.~. < b < 6.75 a.u. 

and the exchange matrix elements were only calculated for 

values of z in the range -30 a.u. < z < 0 a.u. As described 

in section 2.3.3 the quantity defined in expression (2.3.68) 

was monitored during the calculation. It was generally 

found that unitarity could be conserved to within 0.001 or 

better. It was more difficult to satisfy unitarity at low 

energies or for small impact parameters, or when large basis 

sets were used on a single centre. However, by trial and 

error it was found that even when unitarity was well 
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conserved errors could be present in the computer programs. 

A better test of the present methods is provided by the time 

reversal properties of the impact parameter equations as 

described in Section 2.3.3. For one energy the complete set 

of amplitudes obtained by setting the initial channel to be 

each of the target states in turn was calculated. The 

relation defined by expression (2.3.71) was investigated 

using the 32 state L-shell basis for an impact energy of 65 

keV lab. For the case of the Li(2s -> 2p ) transition the 

I '2. I ! 1. .a 1S 1. p 1 and .a 2-p t'1.S 
I I I 

are 0.31767 and 0.31708, for values of 

an impact parameter value of 10 a.u. The corresponding 

values of 
I '1. 

lal.S ~J I 
'2. 

and Ia 1 are 0. 022691 and 0. 022689. 
I o Sda /15 

These results suggest that the coupled equations are solved 

accurately. We have also investigated the effect of 

changing the tolerances RELERR and ABSERR defined in section 

3.5.2 (see expression (3.5.9)). For the 32 state basis the 

total capture cross section (summed over all states) and the 

total direct reaction cross section (summed over all states) 
-\b 2. 

at 65 keV lab. were 25.128 x 10 em and 
.-lb 1.. -:s-

46.788 x 10 em respectively, for RELERR 10 and 

ABSERR 
-~ 

10 The corresponding values obtained for RELERR 

-~ -" -\b '2. = 10 and ABSERR = 10 were 25.126 and 46.791 x 10 em 

We also investigated the effect of including an 

internuclear potential function in the Hamiltonian defined 

in expression (3.2.1) in a consistent manner. Two different 

functions were used, namely W(R) = 2/R and W(R) = 0. The 

results were obtained using the 33-state basis set mentioned 
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in Section 5.2.1 using the exact exchange matrix element 

method. For an impact energy of 35 keV lab. the total 

capture cross section, summed over all states, for W(R) 
_(b ~ 

2/R and W(R) 0, was 73.286 x 10 em and 
_(b L 

73.284 x 10 em respectively. 

Some of these tests of the computer programs were made 

for most of the impact energies used and allowed several 

errors in the original programs to be eliminated. They were 

also made for several of the basis sets used and not just 

the 32-state basis. They also suggest that the changes made 

to the original programs to allow for the inclusion of the 

pseudostate basis sets in an efficient manner were also 

correctly done. Overall we feel that the present results 

should be accurate to better than 5 per cent maximum. We 

shall now consider the results obtained for L-shell capture. 

5.3 Present Results for L-shell Capture. 

In this section we shall present the results obtained 

for single-electron capture from the L-shell of Li using the 

basis set discussed in Section (5.2) in the energy range 

8-400 keV lab. Below 8 keV. numerical problems were 

encountered in the solution of the coupled equations with a 

large basis set. Above 400 keV. the L-shell gave a 

negligible contribution as compared to the K-shell, and was 

ignorred. In the energy region 1-64 keV. lab. previous 

quantal calculations exist for comparison. Quantal 
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calculations have been made with a molecular orbital (MO) 

basis expansion (Sato and Kimura (1983)) and also with a 

united-atom atomic orbital (AO+) basis (Fritsch and Lin 

(1983b)). 

The present calculations were designed to investigate 

the importance of the continuum in the charge transfer 

process and were an extended version of the work of Ermolaev 

and Bransden (1984) previously mentioned. Initially a 

33-state basis which included positive energy pseudostates, 

mentioned in Section (5.2), was used to compute charge 

transfer over the energy region 8-600 kev. lab In these 

calculations the exchange matrix elements were evaluated 

using the 

(equations 

approximate 

( 3 . 3 . 1 4 ) and 

method described 

( 3 . 3 . 15 ) ) . The 

in Section ( 3. 3) 

results w·ere 

disappointing because reasonable agreement with experiment 

was not achieved for energies above 65 kev. lab although an 

improvement over the results of Ermolaev and Bransden (who 

did not include the continuum) was obtained (Ermolaev and 

HewittJ1985). It was though that a different representation 

of the continuum could improve the results, and that was the 

reason for introducing the thirty-two state basis set 

described in Section (5.2). Subsequently an error was found 

and corrected in the computer program used to integrate the 

coupled equations (Section (3.5.4)) and the new 33-state 

results were less in agreement with experiment than the old 

results (with the program error). This result was found to 

be due to the approximations used in computing the exchange 
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matrix elements. Therefore the 32-state basis set results 

were obtained with the exact exchange matrix elements. The 

error in the computer program caused doubt about the results 

of Ermolaev and Bransden (1984) and Ermolaev and Hewitt 

(1985) and therefore we shall not discuss them explicitly. 

However, we essentially repeated the calculations of 

Bransden and Ermolaev by removing the positive energy states 

in the 32-state basis set to obtain a 20-state basis set 

containing only bound states and the results obtained will 

be discussed presently. We begin with the results obtained 

for capture from the L-shell. A complete set of partial 

cross sections for single-electron charge transfer computed 

using the 32-state expansion basis, is given in Table 5.7. 

All entries of Table 5.7 correspond to transitions between 

the basis states defined as in Table 5.1 and Table 5.2 

rather than to those between exact (physical) states of 

He Therefore a subsequent projection of the data onto 

the physical states is required as described in Section 

(2.4.6). The projected results were obtained in the 

following manner. c- (n1) denotes the cross section for a 

state defined in Table 5.2. Therefore the total bound state 

cross section is 

L c ( r1--t ;( 1- '1 t rJ1_ ) ) 

Cll' c n{ ) 
e Y1 r {' .. }4!- " .f--'1 (_.,_ 

where q(n1) are defined in Table 5.2. 

(5.3.1) 

The total projected cross section for capture into the 
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Table 5.7 
2+ + + 

Computed partial capture cross sections for He + Li (75) ~ He (nT) + Li 
-16 2 

(in units of 10 em) obtained using the 32-pseudostate basis (A032). 

E keV lab 

8.0 15.0 22.0 35.0 50.0 65.0 100.0 125.0 200.0 400.0 
State 

(nT) 
-

Ts 1. 50 1. 75 3. 12 1. 84 1. 05 0.505 0.370 0.241 0.0576 0.00480 

'3S 12.6 5.46 4.52 3.20 1. 06 0.395 0.215 0. 102 0.0270 0.00197 

4s 0.808 0.599 0.784 0.839 1. 56 1. 49 0.565 0.250 0.0423 0.00894 

Tp 7.05 4.45 5. 18 5.07 4. 10 3.38 2.47 1. 36 0.225 0.0234 

'3P 26.3 20.7 17.2 10.2 3.74 2.07 0.839 0.414 0.0741 0.00689 
4p 1. 56 3.00 3.09 4.51 5. 17 4.34 1 . 61 0.703 0. 134 0.0108 
'5j5 0.031 0.056 0. 171 0.202 0.720 2.73 5.25 4.26 1.24 0.0564 

'30 52.4 65.7 57.6 37.7 17.2 7.69 1. 44 0.515 0.0555 0.0027 
-:zra 2.93 6.24 8.02 7.63 5.37 3.06 0.750 0.295 0.0528 0.0020 
'5C 0.850 0.548 1 . 1 1 3.97 6.70 7.92 3.77 1. 73 0.240 0.0106 
'Sa 0.033 0.031 0. 0924 0. 149 0.295 1. 00 4. 18 6.75 2.53 0.037 



continuum states (CTTC) is the difference between the total 
-ca-r 

for all D' (nl) and ~ so that 
~·ot 

L ~en~) '1 C n-:t ) (5.3.2) 
a-U (rJ-() 

6); rro)~ilL 

Expression (5.3.2) corresponds to expression (2.4.34). The 

corresponding unprojected totals for capture and CTTC are 

obtained by using 

~ ~( !'\-t.) 
(5.3.3) 

ctl\ cn-t)) 

EC"'L) <a 

and 

L_ .,-Cn-L) 

<1.-U ( fl{.) ( 
(5.3.4) 

z ( t\1... ) / C:> 

~(nl) are defined in Table 5.2. Table 5.2 shows that the 

states with ~(nl) < 0 have very small or no overlap with the 

continuum and therefore c~ in (5.3.3) closely represents 
t~c 

capture into a set of physical states but spanning a smaller 

- t.-O.f Hilbert space than those represented by ~ . The projected 
tot 

and unprojected cross section sums are shown in Table 5.8. 

The 20-state basis set obtained by deleting all the positive 

energy states in Table 5.2 was also used in the same energy 

region and the results obtained are shown in table 5.9. 

This enables the effect of including the positive energy 
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Table 5.8 

Comparison of the ungrojected and projected total capture cross sections 
-16 2 

(in units of 10 an) obtained using the 32-pseudostate basis set. 

8.0 15.0 22.0 35.0 

a 104.3 107.3 98.7 70. 1 

b 1. 72 1.23 2. 16 5.16 

c 105.6 108.2 100.2 74.0 

d 0.44 0.37 0.67 1. 30 

E keV lab 

50.0 65.0 

37.7 21.4 

9.27 13. 1 

44.4 29.5 
2.55 5.06 

100.0 

7.69 

13.8 

12.4 

9.05 

125.0 200.0 

3.63 0.626 

13.0 4.05 

6.49 1. 26 

10. 1 3.41 

400.0 

0.0525 
0.1132 

0.0803 

0.0855 

a: Total capture cross sections computed as a sum of all the negative
energy state contributions ( see formula (5.3.3)). 

b: Capture cross sections into the projectile continuum computed as the 

sum of all the positive-energy state contributions (see (5.3.4) ). 

c : Total cross sections computed using equation (5.3.1) by projecting 

the projectile-centred part of the 32-state basis onto all bound states. 
d : Capture into the projectile continuum computed as a+ b- c 

(see formula (5.3.2) ). 



Table 5.9 

Partial cross sections for single capture into final n states for 
2+ -16 2 

He + Li col I isions (in units of 10 em) ,computed using the 

20-pseudostate basis set (A020).Comparison with the projected 

capture cross sections ,from Table 5.8, obtained with the 

32-pseudostate basis set (A032). 

E keV lab 

8.0 15.0 22.0 35.0 50.0 65.0 100.0 125.0 200.0 400.0 

n 

2 

3 

4 

a: 

b: 

c: 
d: 

e: 

1. 3 

94.4 

5.0 

100.4 

104.3 

105.6 

0.951 

0.963 

3.6 

96.5 

6.8 

106.5 

107.3 

108.2 

0.984 

0.992 

5.0 

83.7 

8.9 

97. 1 

98.7 

100.2 

0.969 

0.984 

6.5 

48.8 

13.4 

67.3 

70. 1 

74.0 

0.909 

0.960 

6.3 

24.4 

11 . 2 

41.2 

37.7 

44.4 

0.928 

1. 093 

4.7 

12.2 

7.8 

23.9 

21.4 

29.5 

0.810 

1.117 

0.85 

2.9 

2.9 

6.39 

7.69 

12.4 

0.515 

0.831 

0.41 

1. 25 

1 . 51 

3.04 

3.63 

6.49 

0.468 

0.837 

0. 13 

0. 19 

0.27 

0.569 

0.626 

1. 26 

0.451 

0.909 

a: Total capture cross sections computed from the 20-state basis set 

as the sum of alI the negative-energy state contributions. 

0.034 

0.075 

0.022 

0.0696 

0.0525 

0.0803 

0.867 

1. 328 

b: Total capture cross sections computed from the 32-state basis set as the 

sum of all the negative-energy state contributions(row(a) in Table 5.8). 

c: Total capture cross sections as estimated by projecting the 32-state 

basis onto all bound states centred on the projectile(row(c) in Table 5.8) 
d: Ratio of (a) to (c) . 

e : Rat i o of (a ) to ( b ) 



states in the basis to be explicitly investigated. 

We shall now compare the present results with those of 

Fritsch and Lin (1983b) who considered impact energies in 

the range 8-64 keV lab. Fritsch and Lin used a basis set 
-r 

consisting of all 19 n = 2, 3 and 4 He states and 21 states 

on the Li centre including 10 positive energy states. They 

estimated capture into states with n > 4 by close coupled 

calculations with a basis set contining the Li(2s) and 
..-r 

Li(2p) states along with the He n shell states. Only n = 5 

and separately n = 6 states were considered. Figure 5.2 

shows good agreement between their results and the present 

results corrected using the projection method (equation 

5.3.1) except at the high energy end of the interval. Data 

for their highest energy E = 64 keV. lab. can be compared 

with our cross sections at 65 keV. lab. 

They give the total cross section for capture into 
-lb '2-

n = 2 I 3, and 4 as 27.2 X 10 em and a correction to 
- tfe '--

account for omitted n > 4 states, as 11.6 X 10 em I the 
.--(b 1-

total being 38.8 X 10 em . Our values from Table 5.7 are 
_,.;, 1-

21 • 61 7.9, and 29.5 x 10 em , respectively, and they 

compare well, within a probable uncertainty of 20 per cent, 
_,, 7.. 

with the experimental value of 24.0 + 1 10 em measured at 

E = 66.7 keV. lab. (McCullough et al. 1982). At the lowest 

energy of 8 keV. lab. Fritsch and Lin obtained the cross 

section for capture into all states with n = 2, 3 and 4 as 

-'" 'l--

108.9 X 10 em compared to our corresponding value of 
...-l b 1.. 

104.6 X 10 em . 
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Key to Figure 5.2 

Cross sections for capture from the L-shel I 

2+ 
of L i due to He impact 

Theoretical cross sections 

M01 , Perturbed-Stationary State results 

of Sh i psey et a I . ( 1978). 

M02 11-state molecular orbital; ~xpansion, 

Sato and Kimura (1983). 

AO+ 40 state United Atomic orbital expansion 

of Fritsch and Lin (1983). 

0 20-state expansion , present work. 
3 

e 20-state expansion with 1/n correction 

, present work 

[J , 32-state expansion without applying 

projection method , present work. 

11 , 32-state expansion with projection 

correction applied, present work. 

+ , Classical Trajectory Monte Carlo (CTMC) 

results ( Ermolaev, Hewitt and McDowel I ,1987). 

, capture fran K-shel I obtained using 23-state 

expansion , present work. 

Experimental cross sections 

):( , optical data of Barrett and Leventhal (1981), 
+ 

for production of He (n=3) only. 

~ , optical data of Kadota et al. (1982a). 



Key to Figure 5.2 continued. 

f , charge state selection data of Murray et at. 

(1982),(fram a graph in their paper). 

~ , charge state selection data of McCul Iough 

e t a I . ( 198 2 ) . 

! , charge state selection data of Varghese et 

a I . ( 1985) . 

f , charge state selection data of DuBois and 

Toburen ( 1985). 
' ! 

~ , charge state selection data of Shah et at. 

( 1985). 



As was noted before the capture cross sections of 

Fritsch and Lin (1983b) include an AO -t- coupled-state 
-r 

contribution due to capture into 4f states of He . We 

estimated capture into 4f states by carrying out coupled 

state calculations with a basis set initially consisting of 
-r 

the Li(2s) state and the 4f states of He only. Then we 
-t" 

added the He(3d) states to the basis. For capture into the 

4f states Fritsch and Lin obtained the values 7.88, 5.74, 

-'" 1... and 1.60 x 10 em for E = 24, 32 and 64 keV. lab. 

respectively. 
-!

Retaining only the (4f) basis on He we found 

the corresponding values to be 12 • 1 1 15.3, and 
..,.I'=> 1-

7.76 x 10 em which are larger, especially at the highest 

impact energy. 
+ . 

Using a (3d+4f) basis on He we obta1ned 4f 
-lb 1.. 

capture cross section values of 11.5 and 6.89 x 10 em at 

32 and 64 keV. lab., which are smaller than the 

corresponding ( 4 f) basis values. The (3d + 4f) basis also 

produced 3d capture cross sections of 48.6, 14.5 and 
_,, L.. 

1.83 x 10 em compared to the corresponding 32 pseudostate 
-lb '1-

results of 57.7, 7.69 and 0.515 x 10 em at energies of 

35, 65 and 125 keV. lab. We also note that Fritsch and Lin 
- ,b '2... 

obtain a 4f capture cross section of 3.55 x 10 em at 8 

keV. lab. compared to our (3d + 4f) result of 
- (b '2.. 

2.52 X 10 em . These results suggest that for energies in 

the range 8 - 40 keV. a basis contining the (4f) or (3d + 

4f) states and the Li(2s) state is adequate to provide the 

4f capture cross sections. However, above 40 keV. lab. this 

may fail because of neglect of coupling to the target 
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channels which have the largest cross sections. We estimate 

the actual 4f capture correction to be less than 10 per cent 

of the total capture cross section over the energy range 

8 - 40 keV. This has not been included in our present 

tables and graph however. With this uncertainty in mind 

Figure 2 shows that there is excellent agreement between the 

present 32 state results corrected using the projection 

method (expression (5.3.1)) and the recent data from several 

experimental groups. In the following discussion we shall 

suggest that the importance of pseudostates in the basis may 

be chiefly limited to a particular energy interval. Table 

5.9 compares capture computed using 32-pseudostate and 

20-bound-state bases. It shows that both 32- and 20-state 

expansions agree remarkably well between 8 and 65 keV lab 

and reasonably for E > 200 keV lab. Earlier it was 

suggested (Ermolaev and Bransden 1984, Ermolaev and Hewitt 

1985) that the practical usefulness of the bound-state 

expansions was limited by the presence of the ionisation 

chanel. Table 5.9 shows that predictions of both expansions 

are significantly different in the specific energy range 

65-200 keV lab. It will be shown in section ( 5. 6) of the 

present work that this interval coincides with the energy 
1-t 

region where ionisation of lithium by the He impact is 

particularly prominent (the ionisation maximum is positioned 

at approximately 80 100 keV lab). Firstly we shall 

examine how estimates of cross sections for basis states not 

included explicitly in the calculations were obtained. 
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the 

A simple way of obtaining such corrections is to use 

' 2J 1;n rule (Oppenheimer, 1928) as was suggested, for 

instance, by Bransden et al. (1980). Assuming that the 

highest bound states present in the basis, have the 

principal quantum number n , then the correction for all 

states with n > n is written in the form 
0 

where S (3) 1.202 is the Riemann zeta function. Another 

method is to use the two-state approximation (Fritsch and 

Lin (1983b). Alternatively we can use the projection method 

which gives 

6. 0 (11.> Y) 0 ) (5.3.6) 

where 

c (f\) 

2 
6' Ct1-i.) ( <nt. In?( (5.3.7) 

all (A-t.) 

is the projected cross section for the exact state In> 

(equation (2.4.26b)). 

In the present work, the high-n corrections have been 

obtained in two different ways. Firstly we apply (5.3.5) to 
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the 20-state basis with n 
'3 

4. We use the following (1/n) 

approximation 

3 
0 ( 4-5) ~ ( ~ ILr) D ( 3 S ) 

and also (using equation (5.3.7)) 

which gives 

- ( t ~ 

{. or 9 0 ( -;s ) 

+ t. s :s 8 ( (J. "lt ... c- ( '+-r; +- c- ( ~d ) ) 

- ~- t62. ~(~p). 

(5. 3. 8) 

(5.3.9) 

(5.3.10) 

The term, -0.162~(4p), takes into account the fact 

that the ~(4p) cross section includes a contribution to 

A~(n>4) and this must not be counted twice. To calculate the 

high-n correction to the 32-state results we use the fact 
C-0{' 

that this must be the difference between ~ and 
ro\-

(5.3.3) and (5.3.1)) which can be written as 
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(5.3.11) 

- CJ_ ~~ 6""""(4--p) 

As shown in Table 5.10, at lowE, formulae (5.3.10) and 

(5.3.11) produce corrections which may differ from each 

other by a factor of ten or more. For E = 8 - 25 keV lab. 

(the region of a plateau in Figure 5.2, the n = 3 

contributions are particularly large and the principal 

assumption of the use of 5.3.10 is evidently violated. In 

the same energy region, as will be seen, the pseudostate 

basis where the n > 5 states are not represented accurately 

enough, underestimates, within the formula (5.3.11), the 

high-n correction to the total capture. This will be 

discussed in more detail presently when a comparison with 

optical data of de Heer and co-workers is made. 

For higher energies, E > 40 keV lab., the use of both 

(5.3.10) and (5.3.11) is more justified and both estimates 

agree well with each other. As Table 5.10 shows, the 

significance of this correction increases with energy and 

constitutes some 30 per cent of the total capture at 

E > 100 keV. lab. It is interesting to see in figure 5.2 

that the present data is very consistent: uncorrected (or 

un-projected) data for both 20- and 32-state bases, 

underestimates experimental cross sections whereas the 

corrected data brings theory and experiment together within 

a probable experimental error within the whole energy 

interval 8 - 400 keV lab. (an apparent disagreement at the 
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Table 5.10 

High-n corrections A~ to computed capture cross sections 
-16 2 

(in units of 10 em) obtained using the 20- and 32-state basis sets. 

High-n corrections Total cross sections 

b d e 
E (keV lab) 

a c 

8.0 

15.0 
22.0 
35.0 

50.0 

65.0 

100.0 
125.0 

200.0 

400.0 

20.7 

15.8 
18. 1 

22.3 

16.0 

10.3 

3.66 
1. 88 

0.337 

0.0246 

19.9 

19.0 
20.9 
20.5 

15.4 

10.3 

3.52 

1. 60 

0.332 

0.0206 

1.12 

1. 05 
1. 59 
4. 18 

6.75 

7.94 

4.50 

2.69 

0.596 

0.0229 

120.7 

122. 1 
114.9 

99.9 

56.4 

33.6 

9.77 

4.76 

0.875 

0.0919 

105.6 

108.2 
100.2 

74.0 

44.4 

29.5 

12.4 

6.49 

1. 265 

0.0803 

a: Equation (5.3.10) with partial cross sections computed using the 20-state 
basis. 

b: Equation (5.3.10) with partial cross sections computed using the 32-state 
basis. 

c: Equation (5.3.11) with partial cross sections computed using the 32-state 
basis. 

d: The swn of the 20-state total cross sections (row (a) of Table 5.9) plus 
the high-n correction (a) given above. 

e: The total capture cross section obtained by projecting the 32-state basis 
onto all the projectile bound states (row (c) in Table 5.9). 



high energy end of the graph i.e. for E > 200 keV lab., is 

entirely due to the K-shell effect which will be discussed 

in the next section) . 

Quantal partial cross sections C' (n, 1) for reaction 

(5.2.1) presented in Table 5.7 can be compared with the 

experimental 

'l..-1-

data obtained using optical methods. For 

He + Li, relevant results in the energy region of 12-150 

keV lab. have been obtained by de Heer and collaborators 

(Kadota et al. 1982a, 1982b, Boellard 1984). Capture cross 

sections~ (n,1) are related to the observed line intensities 

f>~ (nl -? n 1 l 1
) according to 

<-M 

cr(\ 11/ 
'- I 

where A 
1 

is the probability for an (nl7n 1 1 1
) transition 

f\~n -t../ 
per second and "(' is the life-time of the nl state. 

n"'(.. 
For 

electrical dipole transitions in one-electron ions these 

parameters are known and can be used in (5.3.12) to predict 

experimental capture cross sectins as derived from the 

observed emission. The first term in this equation contains 

the branching factor for transitions from the initial state 

(nl) and the sum gives the cascade correction to the 

observed intensity of the emission line. 

Equation 5.3.12 can be inverted thus giving emission 

~ (nl~n 1 l 1 ) in terms of the capture cross sections. For 
~t'Y\ 
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instance, 

c;- ( '2- f) --t- 6- ( 3 S'~ 

+~(3d) 
(5.3.13) 

+ a-~' ( f:'(<t-S) 1- ~ti-d)) 

where the coefficient 0.66 accounts for branching into the 

2p and 3p states from the higher-lying 4s and 4d states and 
'2..+-

the population of the n > 4 levels of the He ion is assumed 

to be zero. 

Kadota et al. (1982a) give equations (5.3.12) with 

numerical branching coefficients for specific capture cross 

sections and obtain, by using observed emission intensities, 

experimental values for partial capture cross sections 

6"' ( nl) , with nl 2p, 3p, and 4p as well as (3s +3d), 

(4s + 4d), and n > 4. 

The experimental partial capture cross sections should 

be compared with the theoretical data of table 5.7 only 

after the projection method has been applied to the 

theoretical data. The cross sections for capture into the 
-t-

2s, 3s, 2p, 3p, 3d and 4d He states are taken from Table 

5.7 without correction. The capture cross sections into the 

4s and 4p states are calculated using the data from Table 

5.2 and expression (5.3.7). We therefore obtained the 

following expressions for capture using the projection 

method: 
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(5.3.14) 

(5.3.15) 

~ (2p ---7 1s) is obtained from the 32-pseudostate basis, 
~ 

using expression (5.3.13), which gives 

+ ~(1,5) 

+- 6"""" c 3 ol ) 

Using the 20-pseudostate basis and assuming that ~ ( 4s) is 

negligible (Table 5.7 shows this to be justified) we obtain 

the corresponding expression 

== c (2-f') 

+ ~(3-d ) 

+- ~(:f:S ) 

-t 6 - .£ (, ~ C ;c{ ) (5.3.17) 

The case of n > = 5 was considered by using either the 1/n
3 
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method or the projection method. From expressions (5.3.8) 

and (5.3.10) we obtain, for the 20-pseudostate basis, 

C(n='lS)-

6. 6 s 1- a- C 3 s ) 

-t- 1 . 5 s 8 ( e . 9 1 '-E> ( <f p ) + ~(_ <t-d ) ) ( 5 • 3 • 1 8 ) 

For the 32-pseudostate basis we use expression (5.3.16) and 

(5.3.17) with n = 4 to obtain 

-t- Cl. ~2. ~(lt-d) (5.3.19) 

-ra.~<>~Csd) <J.a:sL.~csd.) 

The present results for the partial capture cross sections 

are given in tables 5.11, 5.12, 5.13 and 5.14. Table 5.15 

shows the normalised distribution for capture in the n 
+ 

shells of He . ~ (n = 4) was computed from expressions 

(5.3.14) and (5.3.15), while ~ (n > 4) was computed from 

expression (5.3.19). 

We begin by considering the n shell distribution in 

table 5.15. This shows the n = 3 shell is the most 
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Table 5.11 
+ 

Computed cross sections for the emission He (2p ~ 1s) and 
+ -16 2 

for capture into He (4P) (in units of 10 em ) 

s- (2p ~ 1s) 
(4p) ern 

E (keV lab) a b c 
-
8.0 74.3 73.5 1. 30 

15.0 79.9 81 . 1 2.50 

22.0 72.9 73.5 2.58 

35.0 51.3 49.6 3.76 

50.0 26.4 28.2 4.33 

65.0 14.0 15.3 3.71 

100.0 4.81 3.26 1. 53 

125.0 2.26 1. 37 0.737 

200.0 0.357 0.245 0" 156 
400.0 0.0324 0.0362 0.0110 

a: Calculated from formula (5.3.16) using the 32-state 
partial cross sections 

b: Calculated from formula (5.3.17) using the 20-state 
partial cross sections 

c: Calculated from formula (5.3.14) using the 32-state 
partial cross sections. 



Table 5.12 
+ + 

Computed capture into He (3s) + He {3d) and into 
+ + -16 2 

He (4s) +He (4d) (in units of 10 em). 

E ( kev I ab) 

8.0 

15.0 

22.0 

35.0 

50.0 

65.0 

3s + 

a 

67.2 

74.5 

64.6 

37.9 

18.9 

9. 13 

1. 88 

0.721 

0.090 

3d 4s 

b 

65.0 

71.2 

62.1 

40.9 

18.3 

8.08 

1. 65 

0.617 

0.083 

+ 4d 

c 

3.35 

6.55 

8.43 

8.06 

6. 18 

3.83 

1. 04 

0.425 

0.075 

100.0 

125.0 

200.0 

400.0 0.0068 0.0047 0.0066 

using the 20-state partial cross sections. 

using the 32-state partial cross sections. 

a: Computed 

b: Computed 

c: Computed from forrnu I a (5.3.15) using the 32-state 

partial cross sections. 



Table 5.13 
Computed total cagture cross sections into alI n > 4 states 

-16 2 
(in units of 10 em) using the 20- and 32- state basis sets. 

E (keV lab) a b 

8.0 15. 1 1.12 

15.0 13.3 1. 05 

22.0 15.9 1. 59 

35.0 20.7 4. 18 

50.0 15.3 6.75 

65.0 9.97 7.94 

100.0 3.57 4.50 

125.0 1. 83 2.69 

200.0 0.325 0.596 

400.0 0.0232 0.0229 

a: Computed from formu I a (5.3.18) using the 

20-state partial cross sections. 

b: Computed from formu I a (5.3.19) using the 
32-state partial cross sections. 



Table 5.14 
+ 

Partial cross sections for capture into n = 3 of He in 
2+ 

coli isions between He and Li (obtained using the 32-

pseudostate basis). The distribution in I. 
-16 2 

All corrections are in units of 10 em. 

E (keY lab) I = 0 I = 1 I = 2 Total 

8.0 12.6 26.3 52.4 91.3 

15.0 5.46 20.7 65.7 91.9 

22.0 4.52 17.2 57.6 79.3 

35.0 3.20 10.2 37.7 51 . 1 

50.0 1. 06 3.74 17.2 22 .. 0 

65.0 0.395 2.07 7.69 10. 1 

100.0 0.215 0.839 1. 44 2.49 

125.0 0. 108 0.414 0.515 1. 04 

200.0 0.0270 0.0741 0.0555 0. 157 
400.0 0.00197 0.00689 0.0027 0.0116 



Tab I e 5. 15 

The normalized n-shell distribution for single electron 
2+ 

capture cross sections in He + Li(2s) collsions computed 

using the 32-state basis 

E keV lab. 

8 

15 

22 

35 

50 

65 

100 

125 

200 

400 

n-she I I 2 

0.0809 

0.0573 

0.0828 

0.0934 

0. 116 

0.132 

0.229 

0.247 

0.223 

0.351 

A032. 

3 

0.864 

0.849 

0.791 

0.690 

0.495 

0.344 

0.201 

0.159 

0.124 

0.144 

4 

0.044 

0.0836 

0. 110 

0. 160 

0.236 

0.255 

0.207 

0.179 

0. 182 

0.219 

>4 

0.0106 

0.00975 

0.0159 

0.0564 

0. 152 

0.269 

0.363 

0.415 

0.471 

0.285 

_ cap 
The normalized distribution is obtained as 6'(n)/ 6 

tot 

~ (2) and 6' (3) are computed directly from Table 5. 7 . 

o (4) is computed using formulas (5.3.14) and (5.3.15). 

€'(n>4) is computed using forrrula (5.3.19). 



important up to an energy of 65 keV lab. Preferential 
+-

capture into the n = 3 state of He was first predicted for 

E < 8 keV lab, by Shipsey et al. (1978) using a MO model 

and, for higher impact energies E 8 - 40 keV lab, by 

Bransden and Ermolaev (1981) using a two-state AO model. 

The present close-coupled calculations show that even at 

E = 65 keV lab, the n = 3 contribution is expected to give 

almost 35 per cent of the total capture. For this dominant 

transition, the computed distribution, in 1, of partial 

capture cross sections is given in Table 5.14. As this 

table shows, with an exception of the lowest energy E = 8 

keV lab, the computed 1-distribut~n, for n = 3, is never 

close to the statistical (21 + 1) distribution. For 

energies E 35, 50, 65, and 100 keV lab, the computed 

ratios ~ are 
3<.. 

1:3.2:11.8;, 1:3.5:16.2; E)~'O 
1:5.2:19.5; 1:3.9:6.7, respectively. It is also 

interesting to compare the present quantal results with 

those obtained using the CTMC method described Ermolaev, 

Hewitt and McDowell (1987). The total capture results 

obtained from the CTMC method are shown in figure 5.2 and 

agree with the present results to within 30% in the energy 

range 50-200 keV lab. In the energy range 50 - 100 keV lab. 

the CTMC results for capture into states with n = 2,3,4 and 

n > 4 states also agrees with the corresponding quantal 

results to within t 30%. Similar behaviour has also been 

found for other systems (McDowell 1985). 

Figures 5.3 to 5.8 show an overall comparison of the 
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present quantal partial cross sections with the experimental 

data of Boellard (1984) and Kadota et al. (1982a). We have 

also included in the graphs the theoretical cross sections 
~ 

computed using the AO data of Fritsch and Lin (1983b). In 

Figure 5.3, both the partial 2p and the 2p emission cross 

sections are compared with the corresponding theoretical 

results. There is excellent agreement between the present 
+ 

data, the AO data of Fritsch and Lin, and both experiments 

in the whole energy range considered. The population of the 

2p level is largely due to cascade from n > 2, and this 

agreement indicates good accuracy of the n > 2 theoretical 

data 

For 2p capture, agreement with experiment is very good 

for E > 50 keV lab. At the high energy end of the interval 

considered by Fritsch and Lin, their data is in good 

agreement with the present results but for energies E < 50 

keV lab. their data lies below our cross sections with the 

experimental capture lying in between. It is worth pointing 

out that the small magnitude of the 2p capture makes it 

difficult to obtain with high accuracy both theoretically 

and experimentally. In fact below 50 keV lab. Kadota et al. 
-lb ~ 

can only estimate an upper limit of 5 x 10 em for 2p 

capture and the actual values they quote are probably not 

very accurate. The theoretical problems can be demonstrated 

by considering the 32- and 20-pseudostate results which show 

the effect of the positive energy pseudostates upon the 2p 

capture. At 50, 65, 100 and 200 keV. lab the 32-pseudostate 
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results are 

respectively. 

5. 19' 3.73, 

-1 b 1. 
4. 10' 3. 38' 2.47 and 0.225 x 10 ern 

The corresponding 20-pseudostate results are 
-/b '2 

0.675 and 0.108 x 10 ern This shows, in the 

energy region near 100 keV. lab, the effect of introducing 

the positive energy states in increasing the 2p capture. 

For the partial 3p capture, shown in Figure 5.4, the 

agreement between our results and experiment is good for 

energies up to E = 100 keV. lab but may show some divergence 

from the experiment at higher energies. The partial 4p 

cross sections (see Figure 5.5) agree in the interval 50 

100 keV. lab within an experimental uncertainty but differ 

outside the interval. It is interesting to notice that, for 

E < 50 keV. lab both experiments tend to group together. A 

similar tendency is also shown, at low energies, by the 

theoretical data though the latter are a factor of two to 

three lower than experiment. The agreement of the present 

data with the other results is satisfactory considering it 

is obtained from the projection method as in expression 

(5.3.14). 

The present 3s + 3d results (a dominant part of the 

+ 
total capture) and AO data are shown in Figure 5.6. They 

are in excellent agreement with experiment over the full 

energy range considered. For the 4s + 4d (see Figure 7), 

both theoretical sets agree with each other, but 

experimental data is higher by some 30 per cent than theory 

at the maximum and this discrepancy increases for energies 
-t 

E > 100 keV. lab. This could be because the He (4s) cross 
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section is obtained by the projection method which 

presumably underestimates the true cross section at high 

energies. 

Figure 5.8 presents estimates for the sum of all 

contributions to the total capture for n > 4 states. For 

E > 50 keV. lab theoretical and experimental data, including 

20-state capture cross sections, agree well. However, for 

lower impact energies, the theoretical data shows striking 

diversions. The 20-state data overestimate experiment, due 

to the overestimation, at low energies, of the high-n 

'3 correction by the 1/n rule. On the other hand, in our 

32-state basis, the pseudostate 4s (with £. ( ~5) = 

0.17698 a.u.) gives a reasonable estimate of the 4s 
'1... 

contribution, using -£ (4s) = 0. 72 E> (4s), but fails to 

accurately represent the Ss and 6s states omitted from the 

basis. Similarly the 4p and 5p states only have a small 

overlap with higher p states and also the 6d state lies 

almost entirely in the continuum. However, the 5d state 

does have a large overlap with the d states with n > 4. 

These conclusions are evident in expression (5.3.19) which 

shows that of the d states the 5d state has the largest 

coefficient. It is therefore not surprising that, since the 

positive energy He states do not give any significant 

contribution at the lowest energies (as shown in table 5.8), 

the projected -(;"'" (n > 4) sum (expression 5.3.19) is 

underestimated here. However, at higher energies their 

contribution increases and therefore the corresponding 
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projected c:r- (n > 4) sum increases. 

The two-state estimates of these terms by Fritsch and 

Lin (1983b)show that the corresponding contributions are 

relatively large at energies where the positive energy 

states in the 32-pseudostate basis give a much smaller 

contribution. The present results suggest that the 

extraction of the 0' (n > 4) capture total using the 

projection method, as in expression ( 5. 3. 14) , can be 

unreliable at impact energies where the continuum does not 

play an important role. 

The previous comparison with theory made by Kadota et 

al. (1982b) used the two-state (TS) capture cross sections 

of Bransden and Ermolaev (1981). Bransden and Ermolaev 

suggested that TS data would be accurate for E > E = 40 

keV. lab but overestimate cross sections for lower energies. 

The estimate of E was made using the Massey criterium 

V = V , where V was the velocity of the valence electron in 
-e... c. -€.. 

the target atom, for the velocities V of 
c. 

the projectile 

favoured by capture. In fact, within the interval 8 - 100 

keV. lab. considered by Bransden and Ermolaev (1981)' 

two-state calculations produced partial cross sections which 

were close to the experimental capture at the low-energy end 

but could be out as much as by factor of two at the 

high-energy end of the interval. This cannot be readily 

explained on the strength of simple energetics. 

The present results allow us to give a more precise 
1.+ 

analysis of the situation arising in the He + Li system at 
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intermediate energies. First we shall recall a discussion 

(Errnolaev 1984) of two-state (TS) and multi-state (MS) 

expansions for p + H. The earlier coupled-state MS 

calculations of capture (Shakeshaft 1976, 1978) had provided 

an accurate basis for a comparison of the two models. It 

turns out that for p + H both methods produce main partial 

capture cross sections which are very close to each other 

numerically at E < 100-200 keV. lab. For instance, at 

incident proton energies E = 15, 25, and 40 keV lab, in 
...-\b 1... 

units of 10 ern , the TS capture into H(1s) is 56.0, 27.6, 

and 11.2, respectively, to be compared with the MS values 

58.4, 30.4, and 11.9 of Shakeshaft (1978). For n = 2 

agreement is also good but it worsens more rapidly with 

increasing incident energy than for n = 1. In the latter 

case, TS gives 3.4, 2.7, and 1.95 for capture into H(2s) and 

2, 2 1 2.5, and 1.52 for capture into H(2p), at the same 

energies, whereas the MS values for H(2s) are 3.4, 4.22 and 

2.47 and those for H(2p) are 3.1, 1.74 and 0.72. Therefore, 

the main capture channels in p + H are not strongly coupled 

at intermediate impact energies. It was suggested by 

Errnolaev (1984) that a similar situation may exist in other 

systems. 

The present work confirms that this is also the case 

for 
2-t- . 

He + L1. In both systems, the TS and MS results for 

the dominant transitions agree well with each other within a 

wide range of intermediate energies where capture is large 
£__-\-

and ionisation is not very significant. For He + Li, it is 
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particularly so for capture into the n = 3 shell. However, 

for higher energies where the ionisation channel becomes 

important, this agreement between the two-state and 

multi-state models is less good. 

Similarly, we have found, for the dominant n = 3 

transition, that the 1-distributions of partial cross 

sections obtained earlier by Bransden and Errnolaev {1981) 
'2.-t-

for He + Li, are in a good correspondence with the present 

multi-state results for energies well below the ionisation 

maximum at 80 keV. lab. For instance, at E = 8 keV. lab the 
-Lb 1.. 

two-state 1-distribution, in units of 10 ern , is 9.1, 31.8 

and 59.7 for 1 = 0, 1, and 2, respectively, to be compared 

with 12.6, 27.3 and 52.4 of the 32-state calculation. For 

E = 22.0 keV. lab the two-state distribution is 5.60, 18.1 

and 47.7 to be compared with the 32-state result: 4.52, 17.2 

and 57.6 respectively. This seems to lend some additional 

support to the suggestion of Kadota et al. {1982b) that, at 

E = 20 keV. lab the population of the n = 3 level is even 

more selective than that predicted by the TS model. For 

higher energies, this correspondence between the TS and MS 

models becomes poorer, particularly for 1 = 2. AT E = 100 

keV. lab, the two-state distribution is 0.35, 0.80, and 4.20 

to be cornapred with 0.22, 0.84 and 1.44, respectively, of 

the 32-state calculation. 

We can make some further comments upon the effect of 

incuding the continuum in the calculations upon the charge 

exchange cross sections by examining the impact parameter 
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distribution of the impact parameter weighted transition 

probabilities denoted by bP(~ Figure 5. 10 shows the 

distribution of the partial wave contributions to capture 

into bound states and to ionisation on the projectile. The 

bound state sums are calculated using the following 

expression 

c. 
{ ( b) 

N 
p (6)(t~ 1 cr\-t)) 

cr11-l (5.3.20) 

where N denotes that the probabilities pP_(b) are obtained 
!nt.) 

from either the 20- or 32-pseudostate calculations. The 

ionisation probability sums are obtained by using the 

expression 

- 2_ 6 (5.3.21) 

In (5.3.20) and (5.3.21) the summations over (nt) include 

all the terms corresponding to the angular momentum i. In 

Figure ( 5. 9) the sums of the separate partial wave 

contributions to capture and ionisation are shown at 

E = 100 keV. lab. Figure (5.10) show the result of 

including the pseudostates upon the capture probabilities. 

The p-state capture distribution is pulled in towards the 

origin and its maximum is increased in size, while the 

d-state capture distribution is increased in magnitude 

everywhere. Figure (5., ) shows that the total ionisation 

distribution has a maximum in the region where the 
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32-pseudostate capture distribution has a minimum which is 

not present in the 20-pseudostate capture distribution. 

Similar conclusions can be made about the corresponding 

distributions at E = 125 keV. lab. The 32-pseudostate total 

capture probability shows a minimum due to the p-state 

distribution being pulled in towards the origin and this is 

not reflected in the 20-pseudostate data. A similar effect 

is present at higher energies but at lower energies the 

pseudostates on the projectile are less important and do not 

cause a significant redistribution of the probabilities. 

The result is very interesting because the impact parameter 

distribution provides a much more sensitive test of the 

theory than the total integrated cross sections. The effect 

of adding £-states to the projectile basis is not known, as 

far as the impact parameter distribution is concerned and 

would be interesting to investigate. 

5.4 Present Results forK-shell Capture 

We shall now discuss the single-electron capture from 

the K-shell of Lithium using the model described in section 

5.2.2. 

The present calculations of single-electron capture 

using expression (5.2.10) have been carried out in the 

energy range from 50 keV. lab up to 2 MeV lab. The various 

expansion basis sets used to obtain the separate transition 

probabilities have been described in Section 5.2 and the 
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results are presented in tables 5.16 and 5.17. Capture 

cross -~ sections D 
1 

, which represent capture of the outer 

electron in the model, were obtained using the 

23-pseudostate expansion at all energies, while the 

43-pseudostate expansion was used only for energies E > 300 

keV. lab This was because of numerical problems at lower 

energies which caused a violation of 
c 

cross sections ~ which represent 
I' 

unitarity. Capture 

capture of the inner 

electron of the model, were obtained using the 5-state basis 

at 50 and 100 keV. lab and then wth the 11-state basis at 

the remaining energies. It can be seen that a low E, 

c ,- constitutes only a small fraction of 
~ I 

I 

~c 
I 

due to the 

difference in the binding energies for the two electrons in 

the model (-4.5 and -2.8 a.u. respectively) . As the 

collision energy increases, both electrons in the model 

become energetically more equivalent, and at E = 2 MeV. lab 
, 

the capture cross sections for electrons 1 and 1 are 

practically the same. 
+ 

Table 5.17 confirms that capture into He (1s) is by far 

the dominant process. For E = 300 keV. lab the capture of 
+ 

either electron 1 or 1 into He (nl), with nl = 1s, 2p and 

2p, represents 95.5, 1.8, and 2.2 per cent of the total 

respectively. With impact energy E increasing, capture into 

n = 2 becomes more significant. Still, for the highest 

energy considered, E = 2 MeV lab, the corresponding values 

are 70.3, 12.3, and 1.9 per cent, respectively. We shall 

now consider the capture of the outer electron in the model, 
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Table 5.16 
2+ 

Quantal cross sections for single-electron capture by He fram the 
+ 2 

K-shell of the I ithium ion Li (1s ) using the basis set in Tables 5.4 

and 5.5 with the effective potential in (5.2.4). 

E (keV lab) 

50.0 

100.0 

300.0 

600.0 

1000.0 

2000.0 

(a) 

(b) 

(a) 

(b) 

(a) 

(b) 

(c) 

(a) 

(b) 

( c ) 

(a) 

(b) 

( c ) 

(a) 

(b) 

( c ) 

1 s 

0.396 

0.395 

0.733 

0.768 

0.728 

0.746 

0.780 

0.308 

0.335 

0.331 

0. 114 

0. 117 

0. 115 

0.0187 

0.0164 

0.0149 

2s 

0.00031 

0.00183 

0.0009 

0.0028 

0.0156 

0.0170 

0.0189 

0.0252 

0. 0411 

0.0399 

0.0156 

0.0233 

0.0231 

0.00349 

0.00370 

0.00324 

2p 

0.000034 

0.00531 

0.0017 

0.0148 

0.0081 

0.0302 

0.0232 

0.0124 

0.0080 

0.0086 

0.0073 

0.0024 

0.0035 

0.00122 

0.00038 

0.00051 

Sum of partial 
cross sections 

0.396 

0.402 

0.736 

0.786 

0.752 

0.793 

0.822 

0.346 

0.384 

0.379 

0. 137 

0. 143 

0. 142 

0.0234 

0.0205 

0.0186 

a: Partial cross sections obtained fram two-state (TS) calculations. 

b: Partial cross sections obtained fram 23-state calculations. 

c: Partial cross sections obtained fram 43-state calculations. 



Table 5.17 
-16 2 

Partial cross sections (in units of 10 ern) for single-electron capture 
2+ + 2 

by He from the K-shell of Li (1s ) in the Independent Electron Model. 

E (keV lab) 

50.0 

100.0 

300.0 

600.0 

1000.0 

2000.0 

(a) 

( c ) 

(a) 

( c ) 

(a) 

(b) 

( c ) 

(a) 

(b) 

( c ) 

(a) 

(b) 

( c ) 

(a) 

(b) 

( c ) 

TS 

0.395 

0.0127 

0.768 

0.069 

0.746 

0.780 

0.289 

0.335 

0.331 

0.225 

0. 117 

0. 115 

0. 106 

0.0164 

0.0149 

0.0208 

Ts 

0.00183 

0.00003 

0.0028 

0.0031 

0.0170 

0.0189 

0.0014 

0. 0411 

0.0399 

0.0062 

0.0233 

0.0231 

0.0081 

0.00370 

0.00324 

0.0030 

'3S Tp 

0.00115 0.00531 

0.00083 

0.0012 0.0148 

0.0033 

0.0168 0.0302 

0.0088 0.0232 

0.0005 0.0019 

0.0890 0.0080 

0.0517 0.0086 

0.0005 0.00079 

0.0816 0.0024 

0.0713 0.0035 

0.0014 0.00062 

0.0191 0.00038 

0.0161 0.00051 

0.0008 0.00043 

Sl..lln of-par ITa I 
cross sections 

a 

0.402 

0.0138 

0.786 

0.073 

0.793 

0.822 

0.293 

0.384 

0.379 

0.232 

0. 143 

0. 142 

0. 116 

0.0205 

0.0186 

0.0250 

e 

0.403 

0.0138 

0.786 

0.073 

0.801 

0.826 

0.293 

0.423 

0.402 

0.232 

0. 179 

0. 173 

0. 116 

0.0289 

0.0257 

0.0250 

f 
Total 

0.417 

0.859 

1 0 119 

0.634 

0.289 

0.0507 

2+ + 
a: Partial capture cross sections ~c for He + Li obtained with the 23-state basis. 

1s 2+ + 
b: Partial capture cross sections ~c. for He + Li obtained with the 43-state basis. 

1s 2+ 2+ 
c: Partial capture cross sections IS'c l for He + Li using 4- and 11- state basis sets. 

1s 
d: Sum of negative-energy state contributions to total capture. 

e: Projected total capture cross section (using formula (5.3.1)). 

f: Sum of cc. and ~c. (from 43- and 11-state results except for E= 50 C\X\d 1oo ¥.."€.V \o.b ·) 
1s 1s' 



which corresponds to using the potential (5.2.4) to 

represent the target centre. jhis was investigated using 

various basis sets to find if the continuum played an 

important role during the collision. The dominant ls 

transition is described quite well by the TS model, as Table 

5.16 shows. 

The TS model gives also a very good 2s capture but the 

TS cross sections for the 2p capture are much more variable. 

Table 5.16 also shows the effect on the capture channels of 

including the positive energy pseudostates on the target. 

In general although the partial capture cross sections from 

the 23- and 43-pseudostate calculations are altered, the 

combined sum is very stable with a maximum change of 10 per 

cent at the highest energy, E = 2 MeV. Since the total 

positive energy cross section obtained from the 

43-pseudostate basis 
- L b 

lab is 0.127 x 10 

(for target states only) at E = 2 MeV 

capture value of 

ern compared 

-l" 0.0186 X 10 ern 

to the total electron 
2-

this suggests that the 

coupling between the charge exchange channels and the 

continuum is rather small even when ionisation is the 

dominant process. 

It also appears that capture into n > 2 states of 
+

He (n) is negligibly small at low energies but increases 

with E and at E = 2 MeV lab partial cross sections for 

capture into n = 1' 2, and n > 2 are 0.0149, 0.0038, and 
_tt. 7... 

0.0071 X 10 ern where the projection method has been 
--t- - s 

applied to the He ( 3 s) cross section. If we apply the 1/n 
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correction from formula (5.3.5) at this energy with n = 2, 

the total obtained for 
-lb '2... 

0.0023 x 10 em , which 

~c-(n > 2) is 

considerably 

total from the projection method. 

0.616 t (n = 2) = 

underestimates the 

Figure 5.11 gives the overall comparison of the present 

calculations with the experimental data of McCullough et al. 

(1982), Shah et al. (1985) Sasao et al. (1986a) and Dubois 

and Toburen (1985). The agreement with Shah et al. (1985) 

appears to be very good in the interval considered, 

particularly for low collision energies. 

For E = 300 keV. lab, the computed total capture is 
_lb 1... 

1.12 x 10 em to be compared with the experimental value 
-t'- 1.. 

of 0.939 + 0.062 x 10 em . However at the highest energy 

of E = 2 MeV. lab considered, the computed capture is 0.051 
-{b '2.

x 10 em to compare with the experimental value of 0.030 ~ 

0.003 
-{b '1-

x 10 em (interpolated using experimental values at 

E = 1892.0 and 2188.0 keV. lab). It appears that the 

experimental capture of Shah et al. (1985) lies consistently 

lower than the computed cross sections, the difference being 

particularly marked at the highest energies. Some of this 

difference can be traced to the use of expression (5.2.10). 

In Table 5.1~ the total capture from the K-shell has been 

computed as the sum of the capture cross sections for the 

outer and inner electron according to (5.2.10). Ford et al. 

(1982) discuss, in the case of capture by protons from the 

K-shell of ionic lithium Li -r, the difference between using 

expression (5.2.9) and (5.2.10). They find that in the 
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Key to Figure 5.11. 

Single-electron capture from the K-shel I of Li 
2+ 

in He + Li col I isions. 

Theoretical cross sections. 

--- -rs one-active electron approximation using 

the two-state expansion ,projected total 

from present work (Table 5.16). 

e 23-state expansion for E < 300 keV lab. and 

43-state expansion forE >~i 300 keV lab., 

(projected totals) , present vvork(Table 5.17). 

• , 32-state projected total L-shel I capture 

for comparison , present work. 

---- o , IEM total for two active electrons obtained 

using ( 5. 2. 10) , ( Co I umn (f) , Tab I e 5. 17) . 

+ , Classical Trajectory Monte Carlo method from 

Ermo I aev, Hewitt and McDowe I I ( 1987). 

0 , CDNdata of Ghosh et al. (1985), n <= 3 total. 
3 

• , CDNdata of Ghosh et al. (1985), with 1/n 

correction. 

~---~ EA, eikonal approximation , Eichler and Chan 

( 1979). 

-- -- CPB, Coulomb Projected Born approximation , 

La I e t a I . ( 198 2 ) . 

. Experimental cross sections for single electron 
2+ 

capture from Li by He 

4 , McCullough et al. ( 1982). 

y, DuBois and Toburen (1985). 

~ , Shah et al. (1985) 

f, Sasao et al. (1986a) 



-i 
energy range from 70 to 400 keV. amu expression (5.2.10) may 

overestimate capture by up to 15 per cent. In the present 

case it appears that a similar correction improves the 

agreement of the present results with the available 

experimental data other than those of Sasao et al. (1986a). 

We have obtained an estimate of this correction using the 

A043 basis set for the outer electron probabilities, and a 

basis set consisting of 49 states for the inner electron 

proabilities, described in the next section. This basis 
.;

contained only a single projectile centre state, He (ls). 
'2...-1-

For the He impact energy of 2 MeV lab. the capture cross 

section for the inner electron obtained using the 11-state 
-lb '1. 

basis and the 49-state basis are 0.0208 x 10 em and 

-'" L.. 0.0182 x 10 em respectively. This shows that the 

inclusion of 47 target centres states only decreases the 

capture cross section by some 12 per cent. At 600 keV lab. 

the same capture cross section computed using the 11- and 
..-1"' 1.. 

49-state basis sets in units of 10 em has the values of 

0.225 and 0.217 respectively. This shows the projectile and 

target excited states are not coupled very strongly. Using 

A043 and the 49-state basis set and the expression (5.2.9) 

for combining the probabilities, rather than (5.2.10) we 

find that, at 2 MeV lab., the outer electron capture cross 
-l'- '1. 

section is reduced from 0.0257 to 0.0230 x 10 em , while 

for the inner electron the capture is reduced from 0.0182 to 
-lb 1... 

0.0156 x 10 em . Therefore the total capture cross 

section is reduced by some 12 per cent from 0.0439 to 
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_{b 

0.0386 X 10 

experimental 

'2.. 
em , compared to the interpolated Shah et al. 

-(b "l.. 

results of 0.030 + 0.003 x 10 em . The 

calculated value should also include a small contribution 

from capture into higher projectile states from the inner 
~lb 1.. 

electron and this is about 0.0042 x 10 em (from the 

11-state basis). Hence the best theoretical result is still 

about 30 per cent too high at 2 MeV lab. At 300 keV lab. 

the theoretical results obtained from the 43- and 11-state 

basis sets, using expression (5.3.10), overestimates the 

experimental value by some 16 per cent. It appears that the 

IEM model we have used may in general overestimate the 

experimental results, but these are subject to the 

possibility of a 20 per cent renormalization factor due to 

the uncertainty in the Lithium vapour density. Therefore 

any final conclusion is difficult. Sasao et al. agree 

qualitatively with Shah et al. at lower energies but 

generally, for single capture, their results appear to 

displ&~a difference dependence upon EasE increases, and at 

E = 1640 keV. their result is only 50% of that obtained by 

Shah et al. 

Figure 5u also shows the eikonal approximation (EA) of 

Eichler and Chan (1979), the Coulomb projected Born 

approximation (CPB) of Lal et al. (1982), and the data of 

Ghosh et al. (1985), who used the continuum distorted-wave 

approximation (CDW) • (Numerical data for the EA and CPB 

curves shown in Figure '5.11 have been taken from figure 1 of 

Sasao et al. 1986b). Ghosh et al. (1985) computed both 
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single-electron and two-electron capture for the energies 

E = 800 to 2000 keV. lab, using the CDW model and electron 

transfer probabilities obtaind from the independent-electron 

model of McGuire and Weaver ( 1977) . For single-electron 

capture, Ghosh et al. directly computed partial cross 

sections, with n = 1,2, and 3, and corrected them by using 
'3 

the 1/n rule. There is a good correspondence between the 

present IEM results and the data of Ghosh et al. at 

E = 2 MeV. lab. They obtain the values of 0.0252 and 
~ ~ -\b 

0.0386 x 10 em for capture into He (ls) and for capture 

into all states respectively. The present values, from 
-lb '1.. 

table 5.17, are 0.0357 and 0.0507 x 10 em respectively, 

subject to the use of expression (5.2.10). The present 
-t-

computed value obtained for He (1s) capture, using the 43-

and 49-state basis sets and expression (5.3.9), is 
_(b 1. 

0.0289 x 10 em and this compares very well with the CDW 
-lb 1. 

value of Ghosh et al. of 0.0257 x 10 em This agreement 

worsens rapidly as the impact energy E decreases and, for 

example, at E = 1 MeV 
1-

lab the CDW capture is 
-lb 

0.370 X 10 em to be compared with the experimental value 
-1'- 1. 

of 0.216 + 0.014 x 10 em (Shah et al. 1985) and with the 

-I" "2... 
quantal vaue of 0.289 x 10 em . 

It also appears that estimates of Ghosh et al. (1985) 

for the n = 1 and n = 2 cross sections are much larger than 

those obtained in the present work, particularly at the 

lowest energy, E = 800 keV. lab. 
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5. 5 

5. 5. 1 

L1' 
The Calculation of the Ionisation of Li by He 

The ionisation basis sets. 

We have now completed the discussion of single-electron 

capture from lithium and presently we shall consider 

ionisation of Li. Firstly it is necessary to describe the 

new model of Li(2s) that was constructed to describe this 

process and why it was different to that described in 

Section ( 5. 2. 1) • 

The two centre thirty-two state basis expansion, which 

has been described in Section (5.2.2) is only expected to be 

useful for calculating charge transfer cross sections in the 

L..+ 
He + Li(2s) system. The cross sections for charge 

exchange into bound states can be calculated and the basis 

will also allow an estimate of the CTTC process referred to 

previously in Section (2.4), because of the positive energy 

pseudostates on the 
1...-t"-

He centre, which overlap with the 

continuum states. However direct ionisation will be very 

poorly represented because there is only a single positive 

energy d state on the Li centre. A comparison of the 32 

state ionisation cross section with those from the CTMC 

calculations of McDowell (1985p) revealed that the classical 

results for ionisation were substantially larger than the 

quantum mechanical values for energies less than 100 keV. 

lab. 

This suggests that direct ionisation is important in 

this energy range as well as at higher energies when the 
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Born approximation is valid. We also expect that the direct 

excitation cross sections of the bound states in the 

32-pseudostate basis are likely to be inaccurate at low 

energies because of the neglect of couplings to the target 

states omitted from the 32-state expansions. 

The problem of the calculation of ionisation can be 

approached from two different viewpoints. Firstly one can 

add more states which represent the continuum about both 

centres, to the original 32 state basis. This would result 

in a very complete description of the collision process and 

should provide accurate cross sections for both the direct 

and CTTC ionisation channels. This method is justifiable a 

priori and the interpretation of the final cross sections is 

relatively straight forward. However it would result in an 

unreasonable amount of computational time being used to 

calculate the corresponding exchange matrix elements. There 

may also be numerical problems solving the larger set of 

coupled equations. For these reasons we decided upon a 

second approach, which is sufficient for large impact 

energies but is less justified at the lower impact energy 

range. In this approach we expanded the total wavefunction 

about the Li centre using a large basis containing positive 

and negative energy pseudostates, and use only a single 
~~ 

state upon the He centre. This single state will provide 

some approximation to the charge exchange channels and may 

have some effect on the direct channels. At large impact 

energies when the first Born approxiation is valid (and 
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where charge exchange is negligible compared to excitation) 

we expect this basis set to provide the correct cross 

sections for the direct channel processes with the only 

limitation being the accuracy with which the bound states 

and the continuum states of the Li atom are represented by 

the basis states in the expansion. 

However, as the impact energy decreases and the charge 

exchange channels become important we suspect that the 

simplified model will become less accurate. This approach 

shall be called the Extended One Centre method (EOCM) as 

distinct from the previously described two centre basis set 

expansions. We can justify the EOCM a posteriori by 

comparison with other calculations and experimental data and 

this will be done in the next section. Firstly the EOCM 

basis expansion will be considered in detail. 

5.5.2 Calculation of 54 state basis set 

The calculation of the large basis set on the Li centre 

using the model potential of Danielle (1979) from expression 

(5.2.2) was not followed in the present work. We recall 

that the Danielle model potential was obtained 

simultaneously along with the corresponding wavefunctions to 

form a consistent model of the Li atom. We have modified 

this approach 

Firstly, in 

for several reasons to be given below. 

Chapter 2 it was shown that it is desirable to 

use basis sets which result from a single diagonalization 

(unrestricted Ritz principle) in order to retain the 

important second order characteristics of the coupled 
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equations solution. We also need the s type pseudostates to 

reproduce several negative and positive energy eigenvalues 

from this diagonalization procedure to span the bound and 

continuum states. However, if set of six s type STO's (for 

example) is diagonalized using the Danielle model potential 

given in (5.2.2), the second lowest eigenvalue corresponding 

to the energy of the Li(2s) state is usually found to be 

below the experimental value of -0.1982 a.u. 

The STO parameters were selected to give reasonably 

small positive eigenvalues but were not optimized in any 

other manner. From the well known Hylleras-Undheim theorem 

(1930) this result implies that the upper bound to the 

second lowest eigenvalue of the Danielle model potential is 

lower than the experimental value and the corresponding 

state is unlikely to represent the Li(2s) state accurately. 

Therefore the model potential parameters were changed so 

that the second lowest eigenvalue was equal to the 

experimental value for a particular basis set, using the 

unrestricted Ritz method. In the same spirit as the 

Danielle approach the same form was retained for the model 

potential. The new potential is given below 

VC'f)- -1 
(" 

(5.5.1) 

This potential was used to determine all other states for 

all values of l (i.e. no angular dependent model potentials 

were used in the calculations). The s basis STO's which 
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were used to construct the pseudostates are given in Table 

5.18 with the corresponding eigenvalues. By construction 

the Li(2s) energy is reproduced. The energy of the Li(3s) 

pseudostate, -0.0731 a.u., is close to the exact value, 

-0.0742 a.u. However the last Li s pseudostate with a 

negative eigenvalue will represent the higher bound states 

and some of the continuum states because of its small 

negative energy. The lowest eigenvalue produced is -1.88 

a.u. and this represents an unphysical fictitious state for 

the Li valence electron with an energy that is not 

physically observable. Because of its large negative energy 

this state would not be expected to couple strongly to any 

other states in the expansion in the ionisation calculation. 

Also it would not have any physical interpretation at large 

time values as its overlap with the continuum and physical 

bound states is zero. Therefore we have neglected this 

state in all subsequent calculations. 

Once the model potential form has been established 

which produces an Li(2s) energy in agreement with 

experiment, a basis of seven p typeSTO's was diagonalized. 

The criteria for the choice of pseudostates was based on the 

previously discussed idea of obtaining the correct 

oscillator strengths for certain transitions. The 

oscillator strengths for all the p states were found using 

the previously determined Li(2s) state as the initial state. 

By adjusting the STO parameters a set of p type 

pseudostates was found which included one with an energy 
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Table 5.18 

Radial wavefunctions of the 54-state basis employed 

in the present L-shell ionization calculations. 

+ 
Target centre (Li ) . 

a a 
State (nl) A(nl) 

2s - 0. 1982 

3s - 0.073 

4s - 0.00034 

5s 0.278 

6s 1.342 

2p - 0. 1306 

3p - 0.0514 

5p 0.043 

5p 0.281 

6p 0.893 

7p 2.629 

8p 9.45 

b 
.£(nl) 

0.253 

0.818 

0. 103 

0.955 

1. 570 

2.821 

11.72 

- c 
q ( n I ) 

0.00 

0.00 

0.37 

0.94 

0.95 

0.00 

0.01 

0.76 

0.95 

0.97 

0.98 

0.96 

0 

1 

0 

1 

0 

1 

1 

2 

2 

1 

2 

1 

STO basis 

n ~ . 
I 

0.50462 

0.50462 

0.80864 

0.80864 

1. 05 

1. 05 

0.635 

0.635 

0.86164 

0.86164 

1. 90 

1. 90 

2.40 



Table 5.18 continued. 

+ 
Target centre (Li ) continued 

a a 
State (n!) }dnl) 

3d 

4d 

5d 

6d 

7d 

8d 

4f 

5f 

6f 

7f 

- 0.0556 

- 0.0312 

- 0.0144 

0.0385 

0.239 

1. 009 

- 0.0312 

- 0.0129 

0.0419 

0.225 

b 
"€(nl) 

0.057 

0.285 

1. 174 

- c 
q ( n I ) 

0.00 

0.00 

0.066 

0.91 

0.96 

0.98 

0.00 

0. 10 

0.94 

0.98 

n 

2 

3 

2 

3 

2 

3 

3 

4 

5 

4 

STO basis 

~. 
I 

0.265 

0.265 

0.450 

0.450 

1. 0 

1. 0 

0.25 

0.60 

0.70 

0.90 

a) States (nl) and energies A(n!) are obtained by diagonal i-

-zing the Harni ltonian -l..Y'--t-V 
1. 

with V from eqn (5.5.1) 

usinh the STO basis sets in the last two columns of the table. 

b) The energies are determined by the method of Reading et al 

(1979) using equations ( 5. 5.~ ) . 

c) The quantities ~ (n!) are determined from eqn (2.4.32) 

by the overlaps between the pseudostates (n!) and the continuum 

of the Hamiltonian - 1 V"l.-+ Y ,with V from eqn (5.5.1) 
1 



which is close to the experimental Li(2p) energy of -0.13025 

a.u. The second restriction was that the oscillator 

strength sum for all transitions into positive energy p 

pseudostates, from the Li(2s) state, should be close to the 

value given by Cowan (1981) for the Li(2s-> p continuum) 

oscillator strength sum. The Li(2s -> 2p) oscillator 

strength was calculated and initially this was not 

satisfactorily close to the experimental value so the 

process of finding an s type basis and a p type basis as 

described above was 

agreement was found. 

repeated until 

Once the p 

a more reasonable 

pseudostates were 

determined a d type basis was diagonalized and the 

oscillator strengths from the Li(2p) state into all the d 

states were found, with the usual restriction that the 

lowest eigenvalue be close to the correpsonding experimental 

value and also that the positive energy d psedostates have a 

total oscillator strength close to the value from Cowan 

(1981) for the Li(2p -> d continuum) oscillator strength. In 

the same manner an f state basis was constructed so that it 

reproduced 

transitions 

the hydrogenic 

from the H(3d) 

oscillator strength 

state, when the 

sum for 

oscillator 

strength from the Li(3d) state into the f states was 

calculated. This is justified because the Li states for 

high 1 are almost hydrogenic in character. Table 5.19 shows 

that there is a good correspondence between the present 

values and those from Cowan (1981), obtained by using the 

Hartree-Fock method, for the most important oscillator 
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Tab I e 5. 19 Oscillator strengths for some transitions in Li 

using the 54-pseudostate basis. Comparison with the values 

f ram Cowan (1981) obtained using the Hartree-Fock method. 

In it. 
state 

Final 
state 

n = 2 

n = 3 

n = 4 

n = 5 

c 

d 

e 

L i (Ts) 

L i ( np) 

a 

0.817 

0.020 

0.837 

0.313 

1 . 15 

-

-

b 

0.788 

0.003 

0.803 

0.318 

1.12 

L i (Tp) 

L i (ns) 

a 

-0.248 
0. 116 

0.030 

-0. 102 

0.0097 

-0.092 

-

b 

-0.263 
0. 120 

0.013 

-0. 119 

0.023 

-0.09 

L i (Tp) 

L i (no) 

a 

0.628 

0. 129 

0. 131 

0.888 
0.222 

1 . 11 

b 

0.693 

0. 128 

0.048 

0.940 

0.222 

1 . 16 

a: Present calculation using the A054 basis. 

L i ('30) 

L i ('nT) 

a 

1 . 018 

0.340 

1. 358 

0.049 

1 . 41 

b: Computed using the Hartree-Fock method , from Cowan (1981}. 

c: Swn over negative energy states of the A054 basis. 

d: Swn over positive energy states of the A054 basis. 
e: Total of (c) + (d) . 

*) Hydrogenic oscillator strengths. 

computed 

* } 
b 

1. 016 

0. 156 

1. 303 

0.098 

1.40 



strengths and oscillator sums in Li. We also find the 

lowest experimental energies for single excitation of Li(2s) 

are well reproduced as shown in Table 5.20. 

Table 5.20 includes values of the energies 

for the positive energy pseudostates only. 

e , defined 
1<-t 

The e Ki.were 

suggested by Reading et al. (1979) as a test of the accuracy 

of a basis set in representing the continuum. The e K.1. are 

associated with 'effective' widths which were computed using 

the method suggested by Reading et al. (1979) ~nd were 

obtained from the formula 

where N was determined from 
K~ 

- '2-
2 Nl(<(. (5.5.2) 

where j (kr) and '\ (kr) 
{_ {. 

are the usual spherical Bessel 

functions (Weissbluth (1978)). R ( r) is the radial 
K't 

wavefunctioncorresponding to the pseudostate with energy 

The success of this method is based upon the fact 

that, over a limited region of r , the pseudostate R (r) 
K-t. 

and the exact continuum state with the same energy differ 
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Table 5.20 

Comparison of the calculated and experimental 

energies for single excitation of Li(nl). 

Va I ues of the Reading et a I . parameters e for 
I('(. 

the positive energy states are also given. 

State (nl) 

2s 

3s 

5s 

6s 

2p 

3p 

4p 

5p 

6p 

7p 

8p 

3d 

6d 

7d 

8d 

a) b) 
Experimental Calculated 
energy level energy 

-0.19814 

-0.07418 

-0.1302 

-0.0572 

-0.0556 

-0. 1982 

-0.073 

0.278 

1.342 

-0.1306 

-0.0514 

0.043 

0.281 

0.893 

2.629 

9.45 

-0.0556 

0.0385 

0.239 

1 .009 

a Experimental energy levels . 

c.) 

-e. K{. 

0.253 

0.818 

0. 103 

0.955 

1. 570 

2.821 

11 . 72 

0.057 

0.285 

1.174 

b Computed energies using the A054 basis set. 

c Computed values of -€:J({.using eqn. (5.5.i-). 



only by a normalization factor N as shown by Reading et al. 
Kt 

(1979). The e can be defined as follows 
K.{. 

I 

2. (5.5.4) 

For an ideal basis then we expect that 

E (<.) 
k 

'L 

(5.5.5) 

but this will be violated in the case of a finite L basis. 

The results in table S.10 show that the A054 basis does not 

satisfy the Reading et al. criteria (5.5.2) very closely (eK~ 

was not computed for f states in A054). 

The effectiveness of this basis set in representing 

ionisation will be described in connection with the Born 

approximation in the next section. 

Ionisation of the K-shell was also considered using 

various basis sets. The 43-pseudostate basis used to study 

capture of the outer electron from the K-shell, as described 

in Section 5.2.2, included a total of 21 positive energy 

pseudostates which provided an estimate of ionisation from 

the same capture calculatins. Therefore no further 

pseudostate basis sets were constructed for the outer 
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electron. This basis set will be denoted by A043. The 

basis sets used to study capture of the inner electron in 

the K-shell contained no continuum contribution and a new 

basis set was used for the ionisation calculations. 

According to the corresponding potential (5.3.4) the target 

states in this basis are purely hydrogenic in character. 

The basis STO parameters were chosen therefore so that 

certain exact oscillator strength sums were reproduced by 

the basis states. The basis parameters are given in Table 

5. 21. The oscillator strength sums for the transitions 
2-+ 2. .of"" 

Li (ls - > s continuum), Li (2p - > p continuum) and 
1.-t" 

Li (2p - > d continuum) obtain with the basis were 0.448, 

0.183 and 0.0095 respectively, compared to the exact values 

of 0.435, 0.183 and 0.008 (where the positive energy states 

represented the continuum) . 

The corresponding sums for transitions into all the s,p 

and d bound states (represented by the negative energy 

states) were -0.119, 0.551 and 0.928 to be compared with the 

exact values of -0119, 0.565 and 0.928 respectively. This 

basis contained a total of 49 states on the target and the 
-r 

important He ( 1 s) capture channel was added to the 

projectile to improve the convergence of the basis, making a 

total of 49 states in all. This will be denoted by A049. 

The total K-shell ionisation cross section, for single 

electron loss, represented by 
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Table 5.21 

Radial wavefunctions of the 49-state basis employed 

in the present K-shell ionization calculations. 

2+ 
Target centre (Li ). 

a 
State (nt) 

1 s - 4.50000 

2s - 1.12500 

3s - 0.49992 

4s - 0.26475 

5s + 0.09097 

6s + 1.06088 

7s + 4.48378 

8s +26.68722 

2p - 1. 12500 

3p - 0.50000 

4p - 0.28080 

5p - 0.16886 

6p + 0.06017 

7p + 0.76235 

8p + 3.43550 

9p +16.66553 

b 
q(nl) 

0.00 

0.00 

0.00 

0.01 

0.59 

0.93 

0.96 

0.97 

0.00 

0.00 

0.00 

0.01 

0.59 

0.92 

0.97 

0.98 

n 

STO basis 

0 3.00000 

0 1.50000 

1 1.50000 

0 1. 95000 

1 1. 95000 

2 1. 95000 

0 1. 00000 

1 1.00000 

1 1. 50000 

1 1. 00000 

2 1. 00000 

1 0.87000 

2 0.87000 

3 0.87000 

1 3.30000 

2 3.30000 



Table 5.21 (continued) 

a a 
State (nl) A(nl) 

b 
q ( n I ) 

3d - 0.50000 0.00 

4d - 0.28125 0.00 

5d - 0. 17948 0.00 

6d - 0.08875 0.07 

7d + 0. 19129 0.89 

8d + 1.25244 0.97 

9d + 4.66288 0.99 

10d +17.44786 0.99 

STO basis 

n 

2 1.00000 

2 0.75000 

3 0.75000 

4 0.75000 

5 0.75000 

2 3.30000 

3 3.30000 

4 3.30000 

a) States (nl) and energies A (n!) are obtained by diagonal i-
1... 

-zing the Hami I toni an --!.."'!tV with V from eqn (5.2.4) 
~ ~ ~ 

using the STO basis sets in the last two columns of the tables. 

b) The quantities ~ (nl) are determined from eqn (2.4.32) 

by the overlaps between the pseudostates (n!) and the continuum 

of the Hami I toni an 

+ 
P r o j e c t i I e c en t r e ( He ) 

State (nl) (nl) q ( n I ) 

1s -2.00000 0.00 

+ 

,with VK. from eqn (5.2.4). 

STO basis 

n 

0 2.00000 

The He (1s) state is the exact eigenfunction. 



[_', +-( \ :s '2. ) 

(5.5.6) 

was obtained using formula analagous to ( 5 . 3 . 8 ) , with the 

cross sections obtained from A043 and A050. 

In the final states of the present calculations a large 

basis set was constructed using the 32 state basis (from 

Section 5.2) designed for charge transfer, and A054. This 

basis set consisted of the complete set of 23 projectile 

centred states (with the parameters in Table 5.2), together 

with a shortened form of A054 obtained by deleting the 3s, 

4s, 6s, 3p, 6p, 7p and 8p states in Table 5. 18. Also the 
+ 

He ( 1 s) state in A054 was omitted from the final basis. The 

total number of target states used was 42 and hence this 

large basis set contained 65 states in total, and will be 

denoted by A065. The resultant close-coupled calculations 

were made, for numerical reasons, using the code of Shinga1 

(1987). The A065 basis is expected to be superior to the 

A054 basis at low energies where capture is an important 

process. The results from the A032 basis show that at 

E = 300 keV. lab the total capture cross section, after 
-lb 1.. 

projection, is 0.89 x 10 em . The projected ionisation 

cross section obtained from a basis similar to A054, but 

which contained 50 states with 0 < = 1 < = 3, and used by 
.-lb 'L 

Ermolaev and Hewitt (1985), was 21.9 x 10 em. Therefore 

A054 and A065 should be almost equivalent as far as 

ionisation is concerned at this energy where capture is not 
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very important. This suggests that we can consider the 

impact energies to divide up into two regions, E > 200 keV. 

lab and E < 200 keV. lab, where a single centre expansion 

and a two centre expansion respectively are needed to obtain 

accurate ionisation results. We shall now describe the 

results for ionisation obtained with these basis sets. 

5.6 Ionisation and Excitation Results 

In this section we shall describe the results that have 

been obtained for single-electron ionisation and direct 

excitation in collisions 
2-\-

between He particles and the 

lithium target, 

Ll (2-SJ (5.6.1) 

(5.6.2) 

using the various basis sets described in Section 5.5. 

Ionisation of the L-shell was initially investigated in 

the First Born Approximation (FBA) using the pseudostate 

basis A054 and the exact continuum states of the potential 

(5.2.2). The FBA is obtained by replacing the wavefunction 
+ ~ 

ill (r ,t) in equation (4.1.24) by the initial state and by 
l; B 

setting the distorting potential ~(R) to zero. Expression 
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(4.1.35) is then used to obtain the FBA transition 

amplitudes). The internuclear potential V.J (R) does not 

contribute due to the orthogonality of the initial and final 

states. The final state of the ejected electron is 

-" represented by~ (r). For the case where the exact continuum 
K<- ~ 

states of the target potential are used as final states from 

(4.1.32), then equation (4.1.40) is used to obtain the final 

partial cross sections, denoted 

different final angular momentum, 

by 
f~f\ . 

~ , correpond1ng to 
-(. 

In the case where the final states are the pseudostates 

of the A054 basis, the integral over energy in expression 

(4.1.40) is replaced by a summation over the final states, 

weighted with the correct projection factors from Table 

5.18, according to the second term in expression (2.4.37). 

Therefore the FBA partial cross section in this case can be 

written as 

< 
- FB 
~ = I J bdt"t\b~l(b L. \ "2.-. -2 fJ c.· \ a (J. C) J -(m 1 

t.. 
0 J 

where 

c. 
J < ('i\ 

-£3 
where n<.(r') is the initial state and r, s 
the pseudostates from the A054 basis. 

(5.6.3) 

(5.6.4) 

-£ 
rl. (~r ) I. represents 
·.~ e J-,M 

The FBA has been evaluated for the case of the exact 
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continuum wavefunctions for 0 = { < = 6, and for the A054 

basis set as in expression (5.6.4) and the results are 

compared in Figure 5.12. There is very good agreement 

between both sets of results above E = 100 keV lab. Below 

this energy the smaller partial wave contributions show less 

agreement than the larger ones. At E 40 keV lab. the sum 

over partial 
_ll> '1.. 

10 em and 

3 gives 
f E:>A 

6---, = 46.0 X 
sp"' r waves with 0 < = 1 < = 

-F8Pt -l~ 1.. 
6' = 42.5 x 10 em . However if the 

Sp cl f 
pseudostate basis set is used without using the projection 

method, as in (2.4.37), and ionisation is estimated by 

simply summing over the positive energy contributions, the 
_,.(, 1.. 

corresponding FBA results is 43.1 x 10 em. At E = 3000 

keV lab. and 
~ FI3A 
~ have values of 1.33 and 1.14 x 

-1"' '2. 
.5 f'el f 

10 em respectively, while the unprojected pseudostate sum 

-'"' 1... is 1.22 x 10 em . In general the result of projecting the 

A054 basis onto the continuum is not very different to the 

unprojected method, in the FBA, and A054 should provide a 

good representation of the target continuum over a wide 

range of impact energies when it is used in the 

close-coupled method, which we shall denote by CC. 

The single-electron cross sections have been obtained 

using the CC method with A054, for 22 < 10000 keV lab., and 

with A065, for a shorter interval 22 < E < 1000 keV. We 

used two independent codes to calculate exchange matrix 

elements and solve the problems code CI (the recent codes) 

and code CII (Shingal 1987). 

Calculations with A054 were carried out using both CI 
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Key to Figure 5.12 

2+ 
Ionisation in He + Li coli isions. 

First Born partial cross sections for Li (2s -> ct) 

transitions (t < - 4). 

, FBA obtained by using exact contlnuwn states 

and expression (4.1.40). 

----- FBA obtained by using expression (5.6.3) and 
2 

the L pseudostate basis A0~4.The 1-4 states 

~re an additional set, not included in A054. 



and CII to confirm the consistency of our numerical results. 

In the case of A065, only CII was used. 

Table 5.22 gives selected quantal results for two 

energy regions, (a) E < 200 keV. lab, and (b) E > 600 keV 

lab. The total ionisation cross sections were obtained as 

sums of the partial 1-wave contributions after projection 

onto the continuum, that is 

::::. 

where -a 1!> 
P:t. 

+ 
are 

C""f'TC. 

(5.6.5) 

rPI 
CTT<;;: 

contributions due to direct 

ionisation (DI) and capture into the projectile continuum 

(CTTC) . In equation (5.6.5) the summations are extended to 

all states of the basis on each centre. 

Figure 5.13 presents a set of ionisation curves in the 

form of a product Q = E ~(E) against log E. Each curve has 

been obtained by summing the computed partial cross sections 

with -(. ~ 3. In the range 20 < E < 200 keV. lab, the best 

result is given by A065 A054 overestimates ionisation, 

particularly at low energies. This is due to neglect of the 

coupling to the charge exchange channels in A054. For 

energies below E = 100 keV. lab, the FBA cross sections 

greatly exceed the values predicted by the coupled channel 

models. In the region E > 200 keV lab. the best result is 

generally given by A054 because the 65-state basis contains 

only a truncated set of the target states. The difference 

between A054 and A065 is small if E < 300 keV. lab but it 
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Table 5.22 Close-coupled (CC) and First Born (FB) partial cross 
2+ -16 **2 

sections for L-shell ionization in He + Li collisions (in units 10 em 

E(keV lab) 0 

40.0 

65.0 

80.0 

100.0 

150.0 

200.0 

600.0 

1000.0 

2000.0 

3000.0 

0.58 

0.83 

0.90 

0.51 

0.44 

0.40 

0.54 

0.38 

0.21 

0. 14 

Close coupled 

1 

1. 09 

1. 90 

3.58 

6. 13 

3. 18 

2.24 

0.94 

0.75 

0.51 

0.39 

2 

3.27 

5.63 

6.68 

6.71 

7.75 

6.90 

1. 96 

1. 23 

0.63 

0.42 

First Born 

3 0 1 2 

a) 
A. Low energy region 

1.78 5.63 5.56 21.8 

5.09 4.70 3.72 16.6 

6.67 

7.83 

7.80 

7.58 

B. High 

1. 89 

0.91 

0.38 

0.23 

4. 15 

3.60 

3.25 

2.91 

2.50 

14.2 

11 . 8 

8.20 

6.27 

b) 
energy region 

2.57 

2.00 2.27 

0. 66 1. 14 

0. 41 0. 84 

0.21 

0. 14 

0.52 

0.38 

2.00 

1 . 21 

0.60 

0.41 

3 

13.0 

10.5 

9.06 

7.55 

5. 19 

3.92 

1. 07 

0.64 

0.32 

0.21 

4 

3.68 

3.02 

2.57 

2. 11 

1. 43 

1. 08 

0.22 

0. 14 

0.06 

0.04 

5 

0.97 

0.76 

0.64 

0.52 

0.35 

0.26 

6 

0. 16 

0. 12 

0.099 

0.080 

0.054 

0.041 

a) CC cross sections computed using the A065 basis ; FB cross sections 

computed with a numerical integration over the energies of the target 

continuum states (equation (4.1.40)). 

b) CC and FB cross sections computed using the same 54-pseudostate basis. -
FB results computed using expression (5.6.3). 
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Key to Figure 13 

L-shell ionisation.Piots of the energy- cross 

sect ion product , Q ... E c:::i"" (E), against log E 

for the sum of partial cross sections with I <- 3. 

FB FB resu Its obtai ned by sunmi ng 67 ~from 
(4.1.40), using exact continuum states . 

FB ..._ - FS 
, FB results obtained by sunming ~from 

(5.6.3) , using the A054 basis. 

~ 0, tvvo-centre A065 expansion and forrru.la (5.6.5). -· ----- ~ 

, EOCM A054 expansion and formula (5.6.5). 

, SCE A053 expansion and formula (5.6.5). 

, extrapolation of A065 results to higher values 

of E ( E > 200 keV lab.) using (5.6.10). 



increases with E and at 1 MeV lab. A065 underestimates 

ionisation by some ten per cent (the part of the A65 curve 

forE> 200 keV. lab is not shown in figure 5.13). For 

E > 1 MeV lab, the A054 curve approaches a first Born curve. 

We note that the high E limit of A054 is FB and not the 

exact FB. This is because in both cases the same 53-state 

target-centred set has been used. Also shown in figure 5.13 

is the result of using A053 which is identical to A054 
+ 

except that the He (1s) state is omitted from the basis and 

this does not produce a significant change in the results. 

We shall now examine a semi-empirical method for combining 

the A065 and FB results to produce a single ionisation curve 

at all energies. We shall begin by considering an approach 

which starts with a one-centre model instead of the exact 

two-centre problem. We note first that if E is large 

enough, the CC cross sections are close to the FB cross 

sections. In the latter case, we have to deal with a 

one-centre expansion which can be handled numerically with 

the required acuracy. In Figure 5.13, the 'exact' curve FB 

has been obtained using the exact continuum states for the 

target for 1 < 3 and therefore its only defect is the 

omission of 1 > 3 states at high energies (within the 

potential model method) . 

The second curve, FB, has been obtained using equation 

(5.6.3) and the target centre states of the finite basis 

A054 and therefore requires a correction. In the two-centre 

case, if E is not too high, we can treat A065 as an exact 

281 



basis and A054 as an approximate one which needs a 

correction. A065 is exact in that it has a very good 

representation of the target continuum for 1 < = 3 for 

E < 200 keV. lab, and also includes the most important 

target bound states with 1 < = 3. Its only defect is the 

omission of states with 1 > 3 on the target. Therefore A065 

will ultimately need to be corrected to allow for this, but 

it should be a small correction. It includes the most 

important projectile states also with ~< = 2. 

We can consider the differences 

II 

f:.. 
L L 

-C' FB 
L 

- f8 
<:::> 

L 

£ < 2... 0 0 ¥.-e v- t~ ~- ( 5 • 6 • 6) 

E / 2 ~ o I( -e. V 1 "~ ( 5 • 6 • 7 ) 

where an 'infinitely' large and a finite bases are used, 

respectively. We may say that ~ I 
L. and ~::," 

l do not vanish 

because of the coupling which exists between the channels, 

due to the difference between the close-coupling method and 

the First Born Approximation. Ideally the A065 results 

should converge to FB at high energies but this does not 

happen because the basis is not complete. However at 

E = 200 keV lab. we can assume it is complete (for 1 < = 3 

only on the target). 
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One can match 

writing 

/ 
!::, and 

(.. 

D 

I/ 
6 at E 

L 
200 keV. lab by 

(5.6.8) 

Using Table 3, one finds for E = 200 keV lab, that 

c o.:t-13 
a 

The 'Best' CC ionisation curve 

(5.6.9) 

oc. 
C \vhich includes the 

L 

'finite-basis' correction, is then obtained by extrapolating 

formula 5.6.8 to values of E higher than 200 keV. lab. In 

this manner we obtain the following 

z (5.6.10) 

c 
Cl 

In equations (5.6.9) and (5.6.10) all data relate to 

the sum over the first four partial waves with 1 < = 3. 

The other correction we can apply to the data is due to 

the partial waves with 1 > 3. 

This high-1 correction has been obtained in the 
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following way. Let us write for a CC partial cross section 

with angular momentum ~ as follows 

FB 
}-( (EJ Q" 

{. 

(5. 6.11) 

In (5.6.11) the function )((E) represents an average 

account of including the coupling between the target centre 

states, and it is reasonable to estimate it by the following 

expression 

}-[(E) 

The total ionisation cross section is then given by 

}-[(E) L (') FB 
'( 

-<.::;.4-

(5.6.12) 

(5.6.13) 

The relative ~rtance of high-1 contributions was discussed 

within the FB approximation, by McGuire (1971) who followed 

an earlier work by Merzbacher and Lewis (1958). Using a 

semi-classical criterion McGuire found that some 15 partial 

waves had to be retained in the expansion though only the 
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first seven waves were practically important in a wide range 

of energies. In the present calculations summarized in 

table 5.23, we have used a total of seven waves with 0 < = 1 

< = 6. Therefore, the corrective term in (5.6.13) contained 

only three high-1 partial FB cross sections (for g-, h-, and 

F5 j'hi is less than 10 per 

of the correction term 

i- waves). Above E = 150 keV. lab 

fB 
cent of o-- d and the exact form 

Sp ~ 

(5.5.11) is therefore not very important. We shall 

now consider the K-shell ionisation results. In the present 

CC calculations of single-electron ionisation from the 

K-shell of Li, we have used the independent -electron model 

(IEM) described in Section (5.2.2). 

The AO bases which have been employed in these 

calculations were A043, as described in Section (5.2.2), for 

the outer electron, and A049, as specified in Section 

(5.6.1), for the inner electron. The final cross section 

was obtained by adding the separate cross sections according 

to formula (5.2.10). We note that there was a contribution 

+-
to the A043 ionisation total from the He (3s) pseudostate, 

after the projection method was used. We did not project 

the K-shell target ionisation cross sections onto the 

continuum because the projection factors were usually very 

close to the ideal values of 0 or 1, for the negative and 

positive energy states in both basis A043 and A049. 

Furthermore, the ionisation of the K-shell is far less 

important than that of the L-shell at all energies. We have 

also computed the FBA for ionisation of the outer electron 
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Table 5.23 

The First Born (FB) and close-coupled (CC) calculations of 
2+ 

single-electron ionization in col I isions of He ions with the 
-16 2 

Li target. All cross sections are given in units of 10 em 

First Born Close Coupled Total 

b) 
cross 

d) E 54 65 a) 
(keV lab) spdf ghi spdf spdf spdf spdf }( (E) section 

20 45.25 2.97 46.48 7.45 
c) 

40 45.97 4.82 42.53 15.53 6.72 6.72 0. 146 7.42 

65 35.52 3.90 31.86 23. 10 13.45 13.54 0.379 14.93 

80 30.65 3.31 27.29 25.63 17.83 17.83 0.582 19.76 

100 25.84 2.71 22.93 25.45 21. 18 21 . 18 0.820 23.40 
150 18.45 1. 84 16.48 21.29 19.00 19.00 1.030 20.90 

200 14.46 1. 38 12.77 16. 10 17. 10 17.00 1.183 18.73 

300 10. 18 0.92 9.20 11.06 - 11 . 65 1. 145 12.71 
600 5.53 0.46 4.87 5.33 - 5.89 1.066 6.39 

1000 3.53 0.27 3. 10 3.26 - 3.65 1. 036 3.94 
2000 1. 90 0. 14 1. 65 1. 72 - 1. 95 1.027 2. 10 
3000 1. 33 0.094 1 . 14 1.18 - 1. 36 1. 024 1. 45 
6000 0.708 0.046 0.609 0.621 - 0.723 1 .021 0.770 

10000 0.425 0.028 0.379 0.381 - 0.427 1. 005 0.453 

a) Computed using equation (5.6.10) 
b) Computed using equation (5.6.12) 
c) For E = 22 keV lab. 
d) Computed using equation (5.6.13) 



in the K-shell, using the exact continuum states of the 

appropriate potential model (5.2.4). The FBA results were 

obtained for 0 < = 1 < = 3. The f states contributed less 

than 3 per cent to the total for impact energies in the 

range 40 - 6000 keV lab. and higher 1 values were therefore 

neglected. The present results are shown in table 5.24. At 

the highest energy of E = 6 MeV, where the Born 

approximation is most valid, the values for the projected 

and unprojected A043 target ionisation cross section are 
-lb ~ 

0.0713 and 0.0688 x 10 em respectively. The FBA value 
-lb ~ 

using the exact continuum is 0.0535 x 10 em . In contrast 

to the case for the L-shell the FBA results lie below the CC 

results at high energies. The CC results indicate that 

target continuum states with high energies contribute 

significantly to ionisation. At E = 6 MeV lab. the (8p) and 

(8d) states, which have energies of 8.1 and 4.8 a.u. 

respectively, contribute 9 and 10 per cent of the total 

target ionisation in A043. A similar situation is also 

found in the case of the A050 basis where the (8p) and (9d) 

states, with energies 3.4 and 4.7 a.u., contribute 24 and 10 

per cent of the total ionisation cross section respectively 

at E = 6 MeV lab. 

It is possible that, since such a large range of 

continuum energies contribute to the total ionisation, the 

use of only a small number of pseudostates to span these 

energies could lead to a larger error in the cross sections 

than in the L-shell calculations. The agreement between the 
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Table 5.24 
A comparison of the K-shel I ionization cross sections obtained 

using the close-coupled (CC) and First Born (FB) methods 
-16 2 

in the Independent Electron Model (in units of 10 em). 

a b 
First Born Close-coupled 

E(keV lab) ( 1 s ) ( 1 s ) ( 1 s ' ) Total 
c 

300.0 0. 163 0.0602 0.0158 0.0750 
600.0 0. 177 0. 144 0.0463*) 0. 190 
800.0 0. 149 *) 0. 164 0.0554 0.204 

1000.0 0. 159 0. 150 0.0588 0.209 
2000.0 0. 111 0. 137 0.0733 0.210 
3000.0 0.0861 0. 114 0.0627 0. 177 
6000.0 0.0535 0.0713 0.0402 0. 111 

* ) 
Interpolated cross sections. 

a) FB results are summed over 1=0,1,2 and 3 .. 

b) 11s> and 11s' > are states in the model which are 

occupied by the outer and inner K-shell electrons, 

with the binding energies -2.799 a.u. and -4.5 a.u., 
respectively. 

* ) 

c) Total cross section obtained as s~ of 
as in expression (5.2.10). 

c.. c 
b + " 1 L 1s s 



FBA and CC results is therefore quite reasonable. 

In Figure 5.14, we compare our results with the 

available experimental cross sections (Shah et al. (1985), 

Sewell et al. (1980)). We shall note that the K-shell data 

of Shah et al. (1985) have been extracted from the measured 

total ionisation cross sections. The ionisation data of 

Sewell et al. (1980) shown in Figure 5.14 is that for 
+- 1..-1-

p + Li ' appropriately scaled to represent He + Li . This 

invoves multiplying the cross sections by 4 and the 

corresponding proton impact energy by 4 also to allow for 
'L-t" 

the different charge and mass ratios of p and He 

Figure 5.15 gives an overall comparison of 
1.-+'" 

single-electron ionisation in He + Li collisons in terms 

of the product E (E) as a funcion of log E. A large part 

of the cross section, even in the MeV range, is due to the 

L-shell ionisation. The curve L is the 'best' ionisation 

curve obtained from formula (5.6.13) which includes the main 

CC contribution from the L-shell as well as corrections 

described earlier. The curve L + K is a sum of curve L and 

the total K-shell contribution obtained from table 5.24 

(column c) which is curve CC in figure 5.14. 

Figure 5.15 shows that for low energies, E < 125 keV. 

lab, there is a reasonable agreement between the quantal CC 

and CTMC results. In the same energy region, the FBA 

differs sharply from the CC and classical data and 

overestimates ionisation at E < 100 keV. lab. The present 

Born results from the L-shell lie somewhat lower than 
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Key to Figure 5.14. 

K-shell ionisation.Piots of the energy- cross 

sect ion product I a ... E <J' (E) I against log E 

Theoretical results forK-shell ionisation. 

• , A043 expansion results with projected 
+_ 

contribution from He (3s) state. 

-----, swn over FB results cs:--<. , obtained for 
101"1 

outer electron only , with exact continuwn 

states for potential from (S.2.4). 

+ , Classical Trajectory Monte Carlo results for 

IEM model (Ermolaev , Hewitt, McDowel I and 

Shingal 1987). 

~ , IEM total obtained from the A043 expansion 

and the A049 expansion , using (5.2.10). 

Experimental data . 

~ , SEG , Shah et al. (1985) , extracted from 

total ionisation cross section. 

scaled data of Sewel I et al. (1980) for 
+ + 

single ionisation of Li by H . 
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Key to figure 5.15 

2+ 
Single-electron ionisation in He + Li col I isions. 

Comparison of theory and experiment in terms of the 

product Q- E cr (E). 

Theoretical results. 

----_.~F-e> , FB results obtained by adding 
1. 

5: for all 
101'\ 

0 <- I <- 6 for the L-shell , present work. 

M£;
1
----0---- , McGuire (1971), FBA resul,t, including the 

L-and K-shel i contributions. 

p J --------, Peach (1965) , FB results for the L-shell. 

L 1 8 best L-she I I curve obtai ned from the present 

work using expression (5.6.13). 

L+K..~---0---· curve L corrected for the K-shell contribution 

from Table 5.24. 

+ , Classical Trajectory Monte Carlo results for 

IEM model {Ermolaev , Hewitt, McDowel I and 

Shingal 1987). 

Experimental results. 

~ , DuBois (1985) 

~ , Shah et al. (1985) 

~ , scaled data for e + Li col I isions from 

Jalin et al. (1973). 



respective cross sections of Peach (1965) but agree better 

with her revised calculations (Peach 1986, private 

communication) . The results of Peach are for the L-shell 

only. For higher energies, the classical cross sections are 

considerably larger than those of the quantal CC and FBA 

methods. In the MeV-range, our L + K curve agrees very well 

with earlier IEM First Born calculations of McGuire (1971). 

His cross sections as well as ours include the K-shell 

contribution. The numerical method of McGuire (1968) is 

closely related to the present exact FBA cal~ions rather 

than to the pseudostate expansion method. 

obtain his effective potential for the 

McGuire choose to 

single active 

electron model by approximating the 

potential by a sequence of straight 

Herman and Skillman 

lines (Herman and 

Skillman 1963). There is also a variation in the form of 

the independent electron model used in his calculation. 

This may explain the small difference between the cross 

sections obtained by us and by McGuire for high E. 

The ionisation cross sections for reaction (5.6.1) were 

recently measured by DuBois (1985) 

66.8 < E<266.8 keV. lab. (scaled 

mass of 4 a.u.) and by Shah et 

in the energy interval 

for a projectile with a 

al. (1985) in a wider 

interval 88 < E < 5800 keV lab. Figure 5.15 shows that, 

except for the lowest energy E = 66.8 keV lab where the 

experimental cross section is larger than ours by a factor 

of two, there is an excellent agreement between our results 

and the data of DuBois (1985). However DuBois states that 
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his ionisation results may be uncertain to within a factor 

of two, although it is more probable that the accuracy is 

within 50 per cent. The error bars in figure 5.15 show 

experimental reproducibility only for the DuBois data. 

The smallest experimental uncertainty of his data is 

for E = 200 keV. lab. where the experiment gives 19.3 ~ 1.1 

em to be compared with the quantal cross section of 
_,(, "1... 

18. 7 x 10 em . The shape of the ionisation curve reported 

by Shah et al. (1985) is very similar to that of the 'best' 

theoretical curve L + K, in the whole energy range, but the 

theoretical cross sections lie below the measured cross 

sections just outside the experimental uncertainty. The 

disagreement with the data of Shah et al. (1985) could be 

due to the normalization procedure they have applied to 

their measurements which produces an uncertainty of 20 per 

cent and this is shown in Figure 5.15 by the error bars. A 

slightly larger value would greatly increase the agreement 

with theory. Shah et al. suggested that the disagreement 

between their data and the FBA results of McGuire (1971), 

which agree rather well with the present results at high 

energies, was due to the use of the approximate Li(2s) 

wavefunction in his calculation. It is doubtful whether 

this is the case and also whether it could explain the low 

energy difference between L + K and the Shah et al. data. 

For example at 88 keV, which is near the maximum in our 

computed ionisation cross section, the present value 
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obtained by interpolation from 
~lh 1.. 

10 em to be COffiPllEd to 40.5 x 

the L + K curve is 21.3 x 
-lb 1... 

10 em as measured by 

Shah et al. The difference in the Born approximation 

between the exact results, FB, and the projected A054 basis 

results, as discussed earlier in this section was only 8 

percent at E = 40 keV. for the 1 < = 3 total. It lS 

considered unlikely that an average correction to allow for 

the pseudostate nature of the A065 basis will increase the 

present CC result by more than 10-15 per cent therefore. At 

E = 40 keV lab. the projected partial cross sections for the 

CTTC contribution to expression (5.6.5), corresponding to 

1 = 0,1 and 2 (obtained from the A065 basis) are 0.304, 4.84 
-l~ 1.. 

and 2.54 x 10 em respectively. This suggests that if f 

pseudostates were included in the projectile centre basis 

they would not contribute significantly to the ioni5Qb"on total. 

However we have not been able to carry out extensive 

calculations involving larger projectile basis sets. Figure 

5.16 summarises the present cross sections. it is seen that 

the CTTC contribution closely follows the shape of the 

target ionisation contribution but is reduced in magnitude. 

This is not the case in, for example, the resonant p+H(1s) 

system as shown by Shakeshaft (1978). In that case the CTTC 

and target ionisation contributions have well defined 

separate maxima at impact energies of 45 and 70 keV lab. It 

is possible that the distinction between these two processes 
1..-1-

in the non-resonant system of He + Li is not so clear. It 

is also seen that the total n > = 4 excitation cross section 
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Key to figure 5.16 
2+ 

Comparison of theory and experiment for He 

co I I i s i on s . 

Theoretical results for total capture. 

+ Li 

• , 32-state projected total charge transfer. 

+ , Classical Trajectory Monte Carlo total charge 

transfer (Ermolaev, Hewitt and McDowel I 1987}. 

Experimental results for total capture. 

~ , Kadota et al. (1982a) 

t ,Shahetal. (1985) 

Theoretical results for direct excitation. 

o , present results for swn of Li(2p) and 

Li(3d} excitation cross sections 

E----, present results for swnof Li(n=4) and 
} 

Li(n=5} excitation from A065 expansion. 

Experimental results for direct excitation. 

~ , swn of Li(2p} and Li(3d} cross sections 

from Kadota et al. ( 1982c}. 

Theoretical results for ionisation. 

• total ionisation from curve L+K in 

Figure 5.15 , present results. 

------ , capture into projectile continuwn obtained 

from A065 expansion . 

-------, target ionisation obtained as difference 

between total ionisation and capture into 

projectIle continuwn 

e , Classical Trajectory Monte Carlo results 

( Ermo I aev, Hewitt and McDowe I I 1987}. 

s~c;) -----, Shah et al. ( 1985) 

D_~ t , DuBois (1985} 

W tR,.') - 0\.(R.) -::. 2. I R . 



is of the same size as the total ionisation cross section 

and both are much smaller than the combined Li(2p) and 

Li(3d) excitation cross sections. As in the case of the 

relatively small Li(3d) excitation cross section this 

suggests the cross sections for the states with small 

negative or positive energies are more difficult to 

determine accurately and that a small bias in the basis in 

favour of the negative energy states could result in an 

underestimation of the ionisation cross sections. 

Due to the uncertainty associated with the DuBois data 

at low energies it is difficult to make a definitive 

comparison with the present result. However, the present 

curve L + K does agree remarkably well with the scaled data 

for ionisation of Li by e of Jalin et al. (1973) at high 

energies. The scaling procedure is to multiply the cross 

sections by 4, while multiplying the electron energies by 

the factor of 4 x 1836 to allow for the charge and mass 
2~ 

ratios of e and He The simple scaling method only 

applies in the Born approximation and is invalid at the 

lower experimental energies. 

Considering the uncertainties which have just been 

described it is rather remarkable that many features of the 

experimental curve SEG, shown in figure 4 in a wide range of 

E, can be explained in terms of the present quantal model. 

In the region E < 1150 keV lab. which includes the 

ionisation maximum atE= 100 keV lab., SEG shows a steep 

rise. In this region, coupling between all the channels is 
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strong and both DI and CTTC give sizeable contributions 

(separate DI and CTTC contributions to the total ionisation 

are shown in Figure 5.16). At higher energies there is a 

plateau region, 150 < E < 800 keV lab, where the coupling 

becomes weaker and where the CC cross sections converge to 

the Born result. This region is followed by a relatively 

short interval, 800 < E < 1500 keV. lab, where SEG is close 

to a linear function of log E (a nearly asymptotic region 

for the L-shell ionisation). For E > 1500 keV lab, where 

the K-shell gives an increasing contribution, a steeper rise 

of the curve SEG is recorded again. 

Figure 5.16 also shows the CTMC results for ionisation. 

These were obtained using a form of the IEM to include the 

K-shell effects. The L-shell data was computed using an 

almost identical potential model to that used in the present 

quantal calculations in expression (5.5.1). The results 

agree in general with experiment except for E < 100 keV. lab 

but contain statistical uncertainties of some 10 per cent at 

low energies, rising to 30 per cent for the highest energies 

and they also have considerable scatter so that the 

agreement may be fortuitous. 

We shall now describe the results obtained for 

excitation in the present calculations. 

The close coupled calculations of ionisation using A054 

and A065 also give cross sections for direct excitation of 

the low-lying final states nl included in either target 

centre set. 
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In Table 5.25 we list cross sections for direct 

excitation (5.6.2) of the 2p, 3p, 3d, 4d, and 4f final 

states of Li, computed for energies from 22 keV. lab to 10 

MeV lab. 

The A054 calculations show that the 2s - > 2p 

transition in Li has a large cross section (of the order 
-14- 1.. 

10 em ) which peaks at an energy about 100 keV. lab 

whereas transitions to higher np (n > 3) states have a very 

small probability. 

Figure 5.17 presents a summary of theoretical results. 

A comparison is made with the experimental data (Kadota et 

al. 1982c) for the 2p - > 2s emission and 2s - > 2p 

excitation. There is an excellent agreement between the 

quantal and experimental cross sections. We note that the 

optical method used by Kadota et al. (1982c) directly 

determines the cross section for the 2p - > 2s emission. 

Experimental cross sections for the 2s - > 2p excitation are 

then obtained from the emission data by subtracting the 

cascade contribution. The cascade correction is 

mainly due to the primary excitation of the 3d level in the 

neutral lithium and is given (Kadota et al. 1982c) as 

( \,0 +- 0-~J E)' (3d.----)'2.p) 
-e.'"'"' (5.6.14) 

assuming that Born cross sections for the e + Li collisions 
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Table 5.25 Computed close-coupled target excitation cross sections 
* 2+ 

for some transitions Li(2s) 0 Li (nl) caused by He ion impact. 
-16 2 

All cross sections are in units of 10 em 

E ( keV I ab) 

22.0 

40.0 

65.0 

80.0 

100.0 

150.0 

200.0 

300.0 

600.0 

1000.0 

2000.0 

3000.0 

6000.0 

10000.0 

Basis 

a 
b,c 

a 
b 

a 
b,c 

a 
b 

a 
b,c 

a 
b 

a 
c 

a 

a 
c 

a 
b 

a 

a 

a 

a 

2p 

54.2 
48.5 

68.9 
78.5 

77. 1 
85.0 

82. 1 
86.8 

86.0 
90.9 

87.3 
86.7 

78.8 

65.7 

41.2 

27. 1 
29.2 

14.7 

10. 1 

5.25 

3.21 

Final state (nl) 

3p 

5.59 
1. 52 

4.47 

3. 18 
4.93 

2.90 

2.69 
5.96 

2.26 

1. 79 
4.07 

1. 38 

0.80 
1. 17 

0.51 

0.27 

0.18 

0.091 

0.055 

3d 

22.3 
3.80 

12.3 
8.85 

6.82 
10.8 

5.80 
11 . 1 

5.49 
10.6 

5.85 
8. 18 

5.85 

4.67 

2.48 

1.44 
1.66 

0.68 

0.44 

0.213 

0.126 

a) CC calculation using the A054 basis 

4d 

14.2 
2.38 

7.29 
2.46 

3.39 
2.94 

2.25 
2.60 

1 . 51 
2. 11 

1. 19 
1. 39 

1.17 

1.13 

0.63 

0.36 
0.38 

0.165 

0.106 

0.050 

0.029 

4f 

6.42 
1. 84 

5.01 
1. 27 

3.53 
1.49 

3.28 
1 .65 

3.03 
1. 99 

2. 19 
1. 38 

1. 20 

0.78 

0.23 

0.096 
0.092 

0.0354 

0.0208 

0.0096 

0.0056 

b) CC obtained using the A065 basis(for alI transitions except 2s->3p) 

c) CC calculation using the 33-pseudostate basis A033 (section 5.2.1) 

only for the 2s -> 3p transition. 
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Key to Figure 5.17 

2+ 
Direct excitation of Li(2s) by He impact.Cross 

sections for Li(2s -> 2p) and Li(2p -> 2s) transitions. 

Excitation of Li(2s -> 2p). 

Theoretical results 

~ , 20-state (A020) results, present work. 

)( , 32-state (A032) results, present work. 

e , 54-state (AOS~) results, present work. 
I 

o , 65-state (A065) results, present work. 

• I FB results I present work . 

Exper imenta I data for L i ( 2s -> 2p) exc i tat ion . 

V' I Kadota et al. (1982c). 

Experimental data for L i ( 2p -> 2s) emission. 

CJ I Kadota et al. ( 1982c) . 

Scaled e + Li data. 

----- experimental data of Leep and Gallagher (1974). 

0 , FB calculation by Vainshtein (1966) , (cited 

by Moiseiwitch and Smith (1968) ). 

• , FB ca I cu I at i on by Mathur e t a I . ( 1971 ) . 



can be used for estimates in the present case. 

correction appears to be generally adequate for 

This 

high 

energies but may have to be re-examined for E < 200 keV. 

lab, using more realistic ion-atom theoretical results. 

A comparison of the 2s - > 2p cross sections shows that 

even at E = 22 keV. lab where capture and direct excitation 

are comparable, the A054 and A065 bases give excitation 

cross sections which differ from each other no more than by 

some 12 per cent. This is a surprising result because the 

projectile sets are competely dissimilar in these two cases. 

A similar conclusion follows from a comparison of the 

results from the A032 and A020 basis sets described in 

section (5.2.1), which demonstrates the effect of 

introducing projectile continuum pseudostates. It appears 

that coupling between the main excitation channel and 

capture channels is relatively weak even at low E. 

On the other hand, coupling between states centred on 

the target appears to be much stronger. The basis A032 

described in Section (5.2.1) could approximately be obtained 

from the A065 basis by deleting a total of 14 negative 

energy states and 19 positive energy states from the target 

centre. Figure 5.17 shows that this truncation produces 

changes of about 25 - 30% in the 2p excitation especially 

around the maximum in the cross section. The FBA results 

for 2p excitation have also been computed and compare well 

with similar calculations as the energy increases. 

Experimental data is also available for excitation of 
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the 3d state. 

The experimental cross sections of Kadota et al. 

(1982c) are compared with the quantal results in Figure 

5.18. For slow collisions with energy below 80 keV. lab, 

A065 is better than A054, particularly for energies as low 

as E = 22 and 40 keV. lab. Figure 5.18 shows that A054 

overestimates the 2s - > 3d cross section by a factor of six 

at E = 22 keV lab and by a factor of two at E = 40 keV. lab. 

Figure 5.18 shows that the cross sections ocmputed 

using A032 are consistent with the present results obtained 

with A065 and that, at low energies, the enlarged basis A065 

brings the cross sections closer to the experimental values. 

For higher energies, near the 3d excitation maximum at 125 

keV. lab, both the A032 and A065 bases overestimate 

experiment by some 40 per cent. This is larger by a factor 

of two than the experimental uncertainty. For energies 

higher than 80 keV. lab, there is excellent agreement 

between the quantal cross sections obtained with the A054 

basis and data of Kadota et al. (1982c). 

The cross sections for excitation of higher states are 

small and are therefore difficult to calculate accurately. 

The Sd and Sf states of our basis overlap with higher-lying 

bound states so that they represent, effectively, all bound 

states lying above n = 4. An inspection of the results for 

n = 4, and 5 (1 = 2, and 3) presented in Table 5.26, shows 

that cross sections for the n > 4 excitation computed with 

A054 are apparently too large if E < 100 keV. lab. It may 
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Key to Figure 5. 18. 

2+ 
Direct excitation of Li(2s) by He impact. 

Cross sections for Li(2s ->3d) excitation and 

Li (3d-> 2s) emission. 

Experimental data 

[J , Li(3d -> 2s) emission , Kadota et al. 

( 1982c). 

Theoretical results for L i ( 2s - > 3d) exc i tat ion. ' 

):( , 32-state (A032) results, present vvork. 

• , 54-state (A054) results, present vvork. 

0 , 65-state (A065) results, present vvork. 



Table 5.26 
2+ 

Computed cross sections for He ion impact excitation 

of the n=4,5 (d,f) states in Li. All cross sections are in 
-18 2 

units of 10 em. 

E (keV lab) 40.0 100.0 

Final 
state a b a b 

(riT) 

4d 7.3 2.5 1 . 51 2. 11 

5d 38.9 4.5 15.6 7.5 

4f 5.0 1. 27 3.0 2.0 
5f 9.3 1. 57 7.0 4.4 

a Calculated using the A054 basis 

b Calculated using the A065 basis 

300.0 1000.0 

a b a b 

1.13 1. 32 0.37 0.38 
1. 62 1. 57 0.44 0.44 

0.80 0.60 0.085 0.092 
1. 63 1.16 0. 135 0. 146 



probably cast a doubt on the quality of the A054 basis, 

particularly, near the ionisation threshold. In order to 

assess the properties of the basis we shall consider 

relevant oscillator strength sums listed in Table 5.19. For 

the sums of the 2p - > nd and 3d - > nf transitions, the 

negative energy states of A054 give 0.89 and 1.36 to be 

compared with the exact values (Cowan 1981) of 0.94 and 

1.30, respectively. This suggests that A054 is adequate, 

within a few per cent error, for calculating excitation 

cross section for transitions to d and, even, to f states. 

The reason for enlarged excitation cross section is the 

strong coupling between charge exchange and excitation 

channels at low energy. Table 5.26 shows that the omission 

of the corresponding n = 2, and 3 states from the projectile 

centre set is responsible for this effect: the cross 

sections are reduced considerably if these projectile centre 

states are included (as in the case of A065). We have now 

completed the description of the coupled-channel results and 

shall consider next the t-matrix results for ionisation of 

the L-shell. 
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5.7 The t-matrix calculations and results for ionisation. 

5. 7.1 Numerical methods. 

The t-matrix theory has been discussed in chapter 4. 

In this section we shall discuss the numerical details of 

the calculation of the ionisation of the L-shell of Li by 
2..-t 

He impact. This will allow a comparison with the results 

presented in section 5.6. The first part of the calculation 

was to obtain an approximation for the function which is 

used in (4.1.35). This was obtained by solving the 

close-coupled equations as formulated in Chapter 3, using an 

expansion basis which consisted of the fifty-three target 

states defined in section (5.5.2) for A054. This basis is 

+ 
given in table 5.18. The He (1s) state was omitted from the 

A054 basis. This was because it had been found that the 

inclusion of this state did not make a significant 

difference (see Figure 5.13). This corresponds to the 

expansion shown in expression (4.3.1). The solution of the 

close-coupled equations was accompanied by the output of the 

corresponding transition amplitudes (defined by the b· (t)) 
J 

in expression (4.3.1) at a total of 127 intermediate values 

of z between z = -70.0 a.u. and z = +70.0 a.u., as described 

in section 4.3. 

I (t) in (4.1.37) 
)({M 

The evaluation of the matrix elements 

could then begin using the methods 

described in section 4.2. It was necessary initially to 
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'2.. 
choose a set of values of k /2 which represented the ionised 

electron energies in expression (4.1.34). The initial 

choice consisted of fifteen values between 0.05 and 2.0 a.u. 

as the primary A054 calculations had shown that this was the 
1.... 

most important range of energies for ionisation, using L 

pseudostastes. 

The two dimensional integration method that was used 

was tested using various numers of quadrature points in the 

Gauss-Legendre and Gauss-Laquerre integrals and initially 25 

points were used in both integrations. 

However this combination of parameters was found to 

produce some uncertainty in the final amplitudes. This was 

due to some uncertainty in the numerical integration over 
'L 

k /2 in (4.1.34) and also because of some uncertainty in the 

matrix elements in (4.1.37). It was found that it was 
'1.. 

necessary to reduce the upper limit of the k /2 integration 

to 1.0 a.u. to get a smoother integral (it often contained 

some structure) and to increase the number of points to be 

twenty-five in the Gauss-Legendre and forty in the 

Gauss-Laguerre quadratures. The b grid used for the 

numerical integrals over bin (4.1.40) was the same as in 

the original close-coupled calculation and contained either 

twelve or thirteen b values between 0.05 and 24.0 a.u. The 

above parameters were used for all the partial waves 

(0 < = 1 < = 3) of the final state electron. The 

corresponding cpu time needed to obtain a comp\de set of 

partial wave results for one impact energy from the t-matrix 
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codes was approximately 21 hours on the Newcastle Amdahl 

5860 or about 60 hours on the Durham Amdahl 470/VS. To this 

must be added the cpu time for the initial coupled-state 

calculations, which decreased with increasing energy, but 

was of the order of 20 to 40 per cent of the t-matrix cpu 

time. The length of these calculations suggests that it 

would be worthwhile to investigate other methods of 

calculating the t-matrix matrix elements. 

It is possible to make a check of the t-matrix codes by 

calculating the transition amplitudes defined by (4.1.35) 

for a final state which is identical to one of the states in 

the initial close-coupled expansion. The coupled-equations 

defined by expression (3.3.5) for the case where there are 

no projectile expansion states can be written as 

(5.7.1) 

which has the solution 

Jt R (1::: i 
Q (5.7.2) 

where A ( t=t ) defines the initial condition. The 

transition amplitudes from this expression are equivalent to 

those obtained from using expression (4.1.15) provided the 

.;, + ..... 
y. (r,t) 

' 11, 

wave function is replaced by the close-coupled 

solution obtained from (5.7.1) and the final state is one of 

the same close-coupled states (except the initial state 
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because we have used (4.1.14) to get (4.1.15)). Tests were 

made to check that the computer codes could satisfactorily 

confirm this. For example consider the four 1 = 3 states in 

the close-coupled expansion. The values obtained from the 

initial close-coupled solution and the amplitudes obtained 

from expression (4.1.15) are given in table 5.27 and the 

agreement is very good in general. This is also a check 

that the initial solution of the coupled equations which 

produces the amplitudes is accurate. 

During the evaluation of (4.1.40) the upper limit of 
l. 

the k /2 integration was varied to test how the integral 

converged. It was found that changing the limit from 1.0 

a.u. to 0.65 a.u. produced less than 5 per cent difference 

in the results. The effect of changing the upper limit of 

the t integration in expression (4.1.35) was also studied 

but no significant effect was found and an upper limit 

corresponding to z = + 70.0 a.u. was sufficiently accurate. 

The codes used for the FBA calculations were developed from 

the t-matrix codes and were known to also provide results in 

excellent agreement with independent results of Peach (1986) 

for ionisation of the L-shell for 0 ~ { ~ 3. We shall now 

describe the results obtained using the t-matrix method. 

5.7.2 The t-matrix ionisation results. 

The present results are shown in Table 5.28 and in 

Figure 5.16. Three different choices of the function (W (R) 

- U(R)) as defined in expression (4.1.35) were used as given 

below 
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Table 5.27 

A comparison of the transition rumpl itudes obtained 

from the t-matrix method and the values obtained 

from the original close-coupled solution. 

a) b) 
State ( n lm) t-matrix Close-coupled 

rump I i tude amp I i tude 

4f0 -0.04005 ' -0.00783~ -0.03985 ' -0.00758 t. 

4f1 0.09022 -0.02799~ 0.09029 -0.02792 ~ 

4f2 0.01060 0.06887~ 0.01061 
' 

0.06881~ 

4f3 -0.01582 
' 

0. 01196 ;_ -0.01583 ' 0.01198~ 

6f0 0.08348 ' 
-0.12366i. 0.08370 ' -0.123631.-

6f1 0. 14401 0. 07602 ~ 0. 14377 
' 

0. 07610 (.. 

6f2 0.00034 0.08157~ 0.00043 0. 08164l.. 

6f3 -0.02485 0.02353~ -0.02485 ' 0. 02350 ~ 

a) Computed using equation (5.7.2) 

b) Obtained from solution of the close-coupled 

equations in (5. 7 .1). 



1=0 

1=1 

Table 5.28 A comparison of the partial ~ve t~trix results 

with the corresponding FBA and close-coupled results for ionisation. 

40 

a 1.81 

b 

c 

d 

1. 78 

0.289 

1.74 

a 7.20 

b 7.20 

c 
d 

0.945 

1. 25 

65 

1. 34 

1. 35 

0.283 

0.983 

7.38 

7.29 

0.755 

1. 55 

100 

1. 14 

1.12 

0.213 

0.664 

5.08 

5.09 

1. 28 

1. 55 

150 

1. 23 

1 . 21 

0. 157 

0.653 

3.39 

3.39 

1.12 

1. 51 

E keV lab 

200 600 

1. 16 

1. 16 

0.672 

2.40 

2.39 

1.42 

0.765 

0.757 

0.687 

1.19 

1 . 19 

1. 35, 

a t~trix results with ( VV(R) - U(R) ) = 2 I R 

1000 

0.524 

0.511 

0.437 

0.903 

0.903 

0.983 

2000 

0.280 

0.273 

0.220 

0.566 

0.566 

0.624 

-R 
b t~trix results with ( VV(R) - U(R) ) = 2 * ( 1 - e ) I R 

c A065 basis results for projected direct ionisation only. 

d A054 basis results for ionisation forE < 200 keV lab only. 

FBA results from expression (~.1.~0) using the exact continuum 

states for E > 200 keV lab. 

6000 

0.0975 

0.0951 

0.0730 

0.240 

0.240 

0.282 



Table 5.28 continued . A comparison of the partial wave t~trix 
results with the corresponding FBA and close-coupled results for 

ionisation. 

40 

a 14.8 

b 14.2 
1-2 

1=3 

c 1.97 

d 5.24 

a 22.6 

b 30.0 

c 1.78 

d 7.29 

65 

17.8 

17.9 

3.71 

7.91 

29.6 

40.5 

5.09 

12.0 

100 

12.6 

12.6 

4. 16 

7.83 

26. 1 

36.9 

7.83 

15.4 

150 

9. 17 

9.22 

4.00 

6.28 

19. 1 

25.5 

7.80 

12.8 

E keV lab 
200 600 

6.67 

6.69 

4.81 

13.6 

17.2 

7.58 

9. 18 

2.29 

2.30 

2. 17 

2.47 

2.48 

1. 32 

a t~trix results with ( VV(R) - U(R) ) = 2 I R 

1000 

1. 37 

1. 37 

1 . 31 

1.15 

1.15 

0.791 

2000 

0.673 

0.673 

0.661 

0.447 

0.447 

0.396 

-R 
b t~tr1x results with ( VV(R) - U(R) ) = 2 * ( 1 - e ) I R 
c A065 basis results for projected direct ionisation only. 
d A054 basis results for ionisation forE < 200 keV lab only. 

FBA results from expression ( ~.t.~o) using the exact continuum 
states for E > 200 keV lab. 

6000 

0.224 

0.224 

0.221 

0. 131 

0. 131 

0. 132 



l-__l ( R I - L\(R.) 2... (5.7.3) 
1Z 

w (IZ.) \A CR) :::: 2 ( 
_R 

) (5.7.4) -e. 

IZ 

(5.7.5) 
w (f( l u (II.) := a 

Formula (5.7.4) has been used by Reading et al. in their 

investigation of charge transfer using a similar t matrix 

formulation as described in Section 2.4.10. Both (5.7.3) 

and ( 5. 7. 4) have the property that for R - > M the potential 

in the matrix element (4.1.35) falls off faster than 1/R, 

assuming condition (4.1.6), that is 

(5.7.6) 

Figure 5.16 shows that the results are rather dependent upon 

the choice of (W ( R) - U(R)) and that they are in general 

well above the close-coupled results. The partial wave 

results in Table 5.27 show that the results for 1 = 0, 1, 2 

and 3 are very similar when using either (5.7.4) or (5.7.5). 

The 1 = 3 total is the dominant contribution in the total 

cross section as in the close coupled results. The reason 

that the use of (5.7.5) gives different cross sections is 

because they do not obey (5.7.6), and the amplitudes 

(4.1.35) have not converged in the integration over t. The 
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results seem to be independent of the form of (W(R) - U(R)) 

for a reasonable choice. 

There are several possible reasons for the above 

results. Of the assumptions made in calculating the 

amplitude (4.1.35) probably the least justified is in the 

approximation to the total wavefunction from equation 

(4.1.23). This was replaced by the solution of a large one 

centre expansion (OCE) with the neglect of the projectile 

centre. It was hoped initially that the large OCE could 

effectively reproduce the total wavefunction (including the 

charge exchange channels) for some interval around t = 0. 

Then if the major contribution to (4.1.35) came from the 

same interval the use of the OCE would be a reasonable 

approximation to the wavefunction in (4.1.23). However from 

table 5.27 it appears that even when the total capture is 

small compared to the direct excitation and ionisation cross 

sections, and presumably the OCE is a good approximation to 

t- .... 
-----'2... ((@., l:) the 

I 
t-matrix total still differs considerably from 

the A054 and A065 target ionisation totals. One reason 

could be that the final continuum states used in (4.1.35) 
7.. 

with the corresponding integration over K/2 in (4.1.39) 

provide a better representation of the continuum than the 

pseudostates used in the initial close coupled expansion but 

the agreement between the exact and pseudo state 

representations of the continuum in the FBA, as shown in 

Figure 5.12, would suggest this is not the case, even for 

the 1 = 3 states. 
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As discussed in Section 5.6, we expect this difference 

in representation to lead to an increase of only some 10-15 

per cent, in the computed cross sections, provided there are 

no other approximations made. The present t-matrix results 

are however a factor of more than two greater than any close 

coupled results near the ionisation maximum. 

Another assumption in deriving (4.1.35) is using 

(4.1.16) to obtain the final continuum states. The 

close-coupled results from the A054 basis and the A065 basis 

had shown thay the dominant contribution to the positive 

energy cross sections is from states with energies less than 

0.7 a.u. and the same is true of the t-matrix results, for 

impact energies below 600 keV. lab. An electron energy of 

0.7 a.u. corresponds to an electron velocity of v = 1.18 

a.u. The corresponding 
1.+ . 

impact energy of an He 1on with 

this velocity is 139 keV. lab. This suggests that the use 

of (4.1.16) may only be justified for impact energies above 

140 keV. lab or some slightly higher energy. At lower 

energies the incident projectile may screeen the ionised 

target and the ejected electron will see some 5cr~~ned 

potential. This is one of the main problems in ionisation 

calculations. Unfortunately we have not been able to make 

calculations using final wavefunctions other than those 

obtained from (4.1.16). 

In general the t-matrix results agree better with 

experiment than with the close-coupled results at impact 

energies below 600 keV lab., and converge towards the Born 
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results (for the same final continuum states) at higher 

energies. However if the experimental data is renormalized 

to agree with the supposedly more correct ionisation curve 

at high energies, discussed in Section 5.6, this would spoil 

the agreement of the t-matrix and experiment at lower 

energies. Hence there is some doubt as to the best 

theoretical data near the ionsation maximum, and this could 

be resolved by new experimental results we feel. 

5.8 Remarks on the present methods. 

In this section we shall make some comments upon the 

relationship between the present calculations and some of 

the methods described in Chapter 2. In Section 5.3 we have 

seen that there is agreement between the present results and 

the AO+ results of Fritsch and Lin (1983) for electron 

capture from the L-shell of lithium. In the AO+ method the 

basis sets used contained STO's with a range of exponential 

decay parameters from 0.352 to 3.80 on the Li centre, in 

order to optimise the United Atom (UA) energies. The 

increased nuclear charge of the UA is the reason for the 

large decay parameters. In the present method we have found 

it necessary to include STO's with exponential decay 
2.-t-

parameters between 0.5 and 1.7, on the He centre. For the 

p and d states decay parameters which were larger than the 

304 



r/n hydrogenic values were needed in order to obtain the 

correct oscillator sums. This reflects the fact that 

although both methods are trying to take the continuum into 

account by apparetly different methods they have in common 

the need to include larger decay parameters than is the case 

in a purely bound state calculation. This is also the case 

in the present calculations for ionisation from both the L-

and K- shells. 

The present A054 basis for L-shell ionisation and the 

AOSO and A043 basis sets used for K-shell ionisation were 

similar to the OHCE method of Reading et al. (1981, 1982a,b) 

as described in Section 2.4.10. The present results were 

obtained with unconstrained projectile time dependent 

amplitudes whereas the OHCE projectile amplitude was 

constrained to have the form of a Heaviside function O(t) 

with the discontinuity at T = 0, in the case of the p + H 

system. We can now compare the results from our A054 basis 

with the OHCE method. Figure 5. 1'\ shows that for a 

particular value of b and an impact energy of 100 keV. lab 
-r 

the actual unconstrained form of the He (1s) is not of the 

Heaviside form but rather of the form of a sharp peak 

centred upon T = 0. At B = 300 keV. lab the corresponding 

projectile amplitude is slightly more like a Heaviside 

funcion. This suggests that the OHCE method may not be very 

sensitive to the actual form assumed for the projectile 

amplitude b(t) as Reading et al. obtained good agreement 

with experiment. We cannot make any more general comments 
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Key to Figure 5.19 
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The probabi I i ty la<zll for the valence 2s electron in 
I 

+ 
Li to be captured into the 1s state of He as a 

function of z = vt.Computed using the A054 basis set 

for an impact parameter b = 1.5 a.u. 

(a) E = 100 keV lab. (b) E = 300 keV lab. The point 

z = 0 corresponds to the point of closest approach. 



however but we can say that for the special case where the 

projectile amplitude is constrained to be identically zero, 

this is equivalent to the A053 basis (i.e. the OCE) . The 

ionisation results from A054 were not very different from 

the A054 results for ionisation and therefore it may be that 
'Lf 

for the case of He + Li interactions there is little 

advantage between the OCE, the OHCE and the A054 type 

expansion. From previous experience it is evident that it 

is difficult to make more general conclusions than this, but 

possibly the OHCE is useful in systems which are more nearly 

symmetrical than those which are not. 

In the present calculations we have used basis sets 

constructed in the spirit of the DACC approach (Section 

2.4.9). The results we have obtained for varous 

single-electron processes show that this is a reasonably 

effective manner in which to include the continuum states in 

a basis set expansion. However, the success of this method 

should be judged when it is applied to other systems. 

Another method based upon the selection of oscillator 

strengths is suggested in the work of Hermann and Langhoff 

(1983). They have considered the Stieltjes-Chebyshev 

representation which provides a Gaussian quadrature scheme 

of the bound and continuum states, thus generating an 

optimal represen~tion of these states. Such states have 

been generated in the present work but unfortunately some 

preliminary calculations were not successful due to 

computational problems. It remains to be seen if such 
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states can be successfully employed in coupled-channel 

calculations. 

In the comparison between the quantal and classical 

calculations, discussed in this chapter, it has been found 
-I 

that in the intermediate energy range 12.5 keV amu to 500 _, 
keV amu the agreement is of the order of 30 per cent for 

total capture cross sections, and n-shell distributions, 

while the classical method is about a factor of twenty times 

as fast. This could be an important factor in subsequent 

calculations. A lengthier discussion of the two methods is 

given in Ermolaev, Hewitt and McDowell (1987). 

We have described the main calculations that have been 

made to investigate the role of the continuum in single 

electron processes. However the present method is not 

limited but could be applied to two-electron processes which 

are currently being investigated (Shingal, Bransden and 

Flower, 1987). In some early calculations the method of 

Burke and Mitchell (1974) (in Section 2.4.3) was used to 

obtain a pseudostate basis to represent the continuum in p + 

-H collisions using a two electron model (Shingal, 1983). 

However, it was found that the results were more sensitive 

to the form of the initial H wavefunction than to the 

inclusion of the continuum and therefore the pseudostates 

were not retained in the calculations. 

In the final chapter we shall make some final comments 

upon the results presented in this chapter. 
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CHAPTER SIX 

Conclusions 

6.1 Discussion of results 

The suggestion that is made in this thesis is that 

reasonably accurate results can be obtained for various 

single electron processes in ion-atom collisions by using a 

small number of states, chosen to represent certain physical 

criteria. In particular the continuum states can be 

represented by choosing pseudostates which satisfy certain 

oscillator sums. This is just one of the many possible 

approaches to this problem as shown in Chapter 2. We 

consider that this idea has been reasonably justified by the 

results in Chapter 5. ~r5tl) we can consider the charge 

exchange results for capture from the L-shell in reaction 

(5.2.1). Table 5.9 has shown the direct effect of including 

states which represent both the continuum and high n states, 

to a bound state basis set. The largest effects are found 

in the energy region above 40 keV. lab. This coincides with 

the region where ionisation is significant, and coupling 

between the charge exchange and projectile continuum states 

is therefore relatively important. The continuum states 

were added to the projectile centre in these calculations. 

However, both the direct and CTTC contributions have 
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maxima at similar positions and it is possible that the same 

results would be found by adding pseudostates to the target. 

For E > 200 keV. lab capture from the K-shell is the 

dominant process. The present results extend the previous 

close coupled calculations of Ermolaev and Hewitt (1985) to 

E = 2 MeV lab and reproduce the experimental behaviour of 

the cross section. For K-shell capture the continuum states 

(upon the target) have been seen to be less important than 

in the case of L-shell capture, and the K-shell capture 

cross sections appear to converge more readily than the 

L-shell results. The reason for this is presumably due to 

the large energy defect between the initial and final 

states. 

The ionisation results we have presented are the first 

close coupled calculations for reaction (5.6.1) and there 

are several important conclusions to be made. Firstly we 

have confirmed the prediction of Ermolaev and Hewitt (1985) 

concerning the importance of both the d and £-state 

contribution to the target ionisation total for impact 

energies in the range 65 200 keV lab. As predicted by 

Ermolaev and Hewitt, the inclusion of charge exchange 

channels does not greatly alter their relative importance. 

However this has made the accurate calculation of the 

ionisation cross section much more difficult because of the 

number of states involved and the computational difficulties 

this produces. We have also shown that the CTTC 

contribution is always much less important than the direct 
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ionisation total, in contrast to the case for p + H(1s) for 

example. We believe that the best ionisation cross sections 

we have determined (using the close-coupled and FBA results) 

are accurate and do not anticipate that further calculations 

would show more than about 15 per cent difference around the 

maximum. Only accurate measurements could confirm this but 

they are difficult to perform. 

The excitation cross sections for reaction (5.4.2) have 

been more difficult to determine than was originally 

thought. The results for Li(2s ~ 2p) excitation show that 

coupling between the target states is more important than 

the influence of the charge exchange channels and the A065 

and AOS~ basis sets differ by less than 15 per cent over all 

impact energies. However the Li(2s~ 3d) cross section 1s 

much more sensitive to the choice of basis set and good 

agreement with experiment is found only for E > 100 keV lab. 

Excitation of states with higher n values is also sensitive 

to the inclusion of the charge exchange channels. 

The t-matrix results for ionisation reported in Section 

5.6 are not very conclusive. They suggest that more 

complete calculations using two centre expansions are 

necessary in order to see if any improvement over the 
l 

present L expansion methods is obtained. This would be an 

interesting subject for further study. However, the results 

do not change the previous conclusions made in this section 

concerning the ionisation cross sections. 

We shall conclude by making some comments upon the 
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motivation for the basis sets used in the calculations. 

Apart from investigating the role of the continuum in ion 

atom collisions,. we were interested in trying to find the 

most efficient way to perform the calculations while 

obtaining results of a reasonable accuracy. That is why we 

tried to use a relatively small basis set for the capture 

calculations. We also tried to use a basis for the 

ionisation results which would be efficient computationally 

and also physically, which was the motivation for the A054 

type basis set. However, we found this was justifiable 

mainly for the K-shell calculations and less so for the 

L-shell. 

The conclusion we make is that the methods that have 

been discussed in this thesis should be extended to other 

collision systems to see their effectiveness, and that for 

certain processes a high degree of accuracy can be expected. 

The least certain aspect of the present results is in the 

IEM model for the K-shell which shows the need for more 

investigation of the correlation effects present. 
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APPENDIX Al 

Evaluation of the direct primitive matrix elements in 

the space fixed frame. 

The primitive integrals to be found have the form given 

in expressions (3.4.4), (3.4.5) and (3.4.6). In order to 

demonstrate the numerical methods we shall consider the 

three following integrals 

\ - r.. s d( r- ~ <. - a(y'" '1 { o, ¢) ~ ( e-, ¢] _r. :::. C. A\.\) 
Jl< I {·M. -( ~ ~ ....sl 

) J I< K IR.-v-

~ ....l 

1. .:. r'l - r>J.'('- - _(fjR.-r-( 
- -~ Jdi Y ~ Y (tJt'f>) Y (9 1 rJ) -e. 

1. j" - (A\.1-1 
l -(. M. t M 

4 ....!o J .J 1(. 1(. 
~~-v-1 

-l ~ 

!I (\ - o(-r' 1 {" 1 f) '1 ce, ¢)-e. -""lR.-Y"'I 

1jl(. -:::. - ?.3 J J,; r"' -e -!. • (\\ • '( v\.1 
\.A\.3) 

J J k 1(: 

The coordinate system which is used in the expressions 

(Al.l), (Al. 2) and (Al. 3) is shown in figure Al.l. 

The polar angles (8,¢l) refer to the polar angles 
....1. 

of r 

in the (x,y,z) coordinate system . Similarly the polar 
..J. 

<e ,~). angles of R in the (x,y,z) system are defined by 
R., R 

The angular functions Y (8,~) have been defined in the 
if\\ 

space fixed frame, as in section 3.2. In order to evaluate 

Al.l we use the formula (Weissbluth 1978). 

oO ..(, 

==- l_ L_ ~tn 
{:::o 1"\'='--<.. 1.{-t\ 

where as usual r< is the smaller of the two values J R and 
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r and r is the greater of the same two values. Then we ) > 
can write I.1 as follows: 

jl< 

t:>O 

-4-nt. I-- } (A l. S) 
1 i~o 1.1.~1 

X 

0 (' -<. -t I 

> 

Thus we can separate out the term from expression Al.S which 

contains the dependence upon\R\ and this term is 

-I 
{)I) 

- o( (" 1\-t- "l 

f r-{ J (o( r'\ R_) d..- ' ~ (AI. b) I I < 
1.. 0 

('-1.+1 

R > 
t'\ tl. -IX~ ..(. 

..( oO r 4r 
r'\+ 1 _ o("' 1 

;;;: ( -E.- ( + R. J d.r r -4t. -R-<- ,.., C) ..(, -t t 
ll.. (" 

Expression A1.6 can readily be evaluated. 

The summation over ~in expression Al.S is limited by 

the fact that the integral over d~ vanishes unless the 
r 

following condition is obeyed 

t--< 
J j( 

The integral over dJt can be written as 
r 

(At.":1-) 

3({ { -<. ) ==)rd 4 '1lG,p)Y(9,"')'1le1 !1.) 
J• 1 f'\1\j· t ,, I ~ K 1 I r\1\ 1 T _, 7" 

.... r- "\. 'lk . < At \.(t'l 

J ) I< /11.. 
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and then combining Al.7, Al.8 and Al.5 we have an expression 
1 

for I as follows 
jl( 

I-' 
JK 

1. 
(Al.9) 

We shall now consider the evaluation of I · as defined by Jl( 

expression Al.2. In order to reduce it to a suitable form 

the expansion series by Watson (1966) is used where 

~ .... 
-ol~-r-1 ob 

-e. I (2i.+l) I k (or I _I I ( o {' ) P c if5 p1 
tit- ;1 {+! > <.+1 > "t 

{;: 0 -IS F:: -' -1 2 and cos<~) ::: r.R ). 

rtz. lA t · I o) 

K (~w) and I (~w) are modified Bessel functions and w 
{+I -<. -tl 

l. 2. 
represents r or R. We use the following results 

K I ( rw 1 
-<.+_ 

z 

I ('5~) 
'( +.!. 

l. 

s 
(-I) ( -(_ + s ) ~ :: 

(ALII) 

(AL.l2l 

The expansion 

.[1.t'l~~ -<. .s=so (!-s)~ s! ('2¥f)s-

..,. <-I ) -< + 1 -e- ~w .L .s == 
0 

(-(. + .s) ~ / [ s 1• ( '! - s) ! ( 2 llr.l )s J z.:n lf w ] ) 
of P (cos J!>) is given in Weissbluth (1978) 

{ 

== 

when Al.lO and Al.l3 are substituted into Al.2 we finally 

obtain 

oO 

- -c Lt-n L 
1. 

I 

JR 

<AJ.llr) 

I <or) 
~ t- I 

2 



1. The form of I. as given in A.14 is similar to the form 

I 
I . 

Jl( 
as 

follows 

)I(.. 

given in A1.9 and we have the final form of I7 JK 

-1.. 
where we define the function ft (~,¥,n,R) by 

I 

_Jii: 

o< .-- I -
J( 

-
2 

k (c)'~) 
-(-+I 

2. 

of 

as 

('"'I. I f,) 

The integrals in expression Al.lS can readily be evaluated, 

by using expressions Al.ll and Al.l2. In order to find I? 
JK 

as defined in expression A1.3 we use the result 

(Al. l1-) 

which follows from A1.2 and A1.3. 

Thus combining Al.lS and A1.17 we obtain 

--
')( ~ ( <j M j -<..1(, M K "'( th ) 

(AI . \ 8) 

-3 <.. 
:f'l (o(l b' 1 r\ I f2._ J [_ 'j ~ 

M~--(. {W\ 

q(l· M• ....... vlv\.i A._
1

,_.,.\ .) J r J 1 .. 11: 1 r• J 
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APPENDIX A2 

The Chebychev interpolation method 

In this appendix we shall state the Chebychev 

interpolation formulae as used in the present work.The 

same method was used in solving the close-coupled 

equations Section (3.5.2)) as in evaluating the 

t-matr ix elements ( Section (4.3)). The Chebychev 

po I y nom i a I of order N , for ( - 1 < "' x < - 1 ) , i s 

given by the formula 

N I! 

f ( X ) ;.:. L- c. I ( )< ) 

N 
r r 

(":::. 0 
( A2. 1 ) 

where 
1/ 

that the first and means I as t t e rms a r e 

m.tltipl ied by 0.5. The coefficients cr are determined 

by 
N It 

2 2 f(x ) T (x ) 
N l(:::o I< r k 

(A2.2) 

where f(x) is the function which to be inteprolated 

upon.The XI< are given by 

and I Cl<) is given by 
r 

( 
_, 

-((X) ::=. C.(::,.5 y- .. c.-oS X) 
( 

In order to transform to another interval given by 

( a < - y < - b ) we use the formula 

X =-

b- q 
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APPENDIX A3 

The numerical solution of the Schrodinger equation forth~ 

case of the continuum states. 

In this appendix we shall indicate hOVII the differential 

equation of the general form given in (4.1.32) was 

solved , that is to say 

(-.!. d '1. - ~ 'l. -+- v (') + {. ( (-+I ) ) I....\ ( () := () ( A3 . 1 ) 
2. J,--'1. 1... 2.,....,_ K<-

~ere V(r) is given in general by expression (3.3.7). 

Firstly we expand the general form of the potential as a 

polynomial in r 
' 

so that 
oO J-1 

v ("f) ::. L_ V, (" 

j:::o J 

Then we write the solution U (r) as 
(.C. 

1.. -t \ 
::. r 

and substitute (A3.2) and (A3.3) into (A3.1) . By 

(A3.2) 

(A3.3) 

equating the coefficients of the powers of r as usual 

we obtain recurrence relations for the coefficients 

This means we can obtain the solution U <v-)out to a 
K{ 

value of r = 0.5 . for example.Then the equation (A3.1) 

can be written as 

I 

'j2 

~ere 

.... '1.. ~~ .J 1. -t ( '2.. v + 1. e. ) j ~ 0 

'j 
I 

r 1 

-::: fCf') 
) 

I 
::::: f (r) 
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and this can be solved by using the subroutine DE as 

described in section (3.5.2).This solution must be 

normalised to have the as~totic behaviour defined 

by expression {4.1.33).This can be done using the 

method described by Cooper (1962).The results of this 

method were checked by solving (A3.1) by the Numerov 

method . The solution was normalised by using the 

method described in Cowan (1981). 
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APPENDIX A4 

Expressions useo in the numerical integration of the 

body-fixed integrals in terms of the prolate spheroidal 

co-ordinates (~,~,¢). 

In Chapter 4 the two dimensional integration method was 

described for evaluating the t-matrix matrix elements. In 

this Appendix we shall give the relationships between 

various quantities in the body-fixed frame and in the 

(~,~~¢> co-ordinate system. In Figure A4.1 the co-ordinate 

system for describing the one electron system is shown. 

The prolate spheroidal co-ordinates are defined as 

follows 

~ 

1 

tf 

Then 

- ' ( (A + (" ~) -I< 

= I ( (A - ' 2>} -l:t 
( az.; (Yiutho\ af\j\. ~) 

::. R (~- ll 1 

'1. 
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~ ¢ ~ 2TT (A4. 3) 

(A4. 4) 

(A4. 5) 



It is straightforward to obtain the following 

relationship 

c.. os e
8 

:: (A4. 6) 

:: 
1- J '1"1..-

[ ( ~ "1.- I) (I-'\ I 
(A4. 7) 

Therefore we can express a function of r and e in terms of s 8 

\ and fl. . 

C.o- ord.~l\o...'c~.s "' 

A 0 

e 
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