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ABSTRACT 

This study aimed to investigate the response of lentil genotypes 

to different water regimes, providing guide lines, through partitioning 
the variation, for a selection program for adaptation to irrigated 

conditions. The research was divided into two main areas; 1) The 
overall variation in the crop was partitioned into genotypic, 

environmental and genotype-environmental components in an analysis of 

adaptation over seasons, irrigation regimes and locations; 2) The 

genotypic variation was partitioned into its various genetic components 

in an inheritance study using the diallel mating system. 

Pronounced progress should be expected from selection for number 

of pods/plant, 100 seed weight and straw yield/plant traits, which 

showed high estimates of h2 b , C.G.V. and G.S. The two former traits .s 
correlated strongly and positively with seed yield, which allowed their 

use in indirect selection for seed yield. The 35 genotypes used in 

this study showed wide genetic diversity, allowing selection of high 

yielding genotypes under irrigation. Environmental variation in water 
supply, temperature and soil type was found to exert a profound effect 
on variation in characters measured. This suggests the possibility of 

raising yield levels through improved management practices. In this 

study, irrigation repeated twice increased seed yield by 19% over no 
irrigation, at the same location, and increased the yield by 300% in 

comparison with a dry location. Seed protein quality was influenced by 

environments and genotypes. Electrophoretic studies showed that the 

number and position of the bands could be used to identify genotypes. 

Four genotypes showed response to irrigation and could be 

recommended as promising entries. An anatomical study showed that 

large air spaces formed in the roots of a responsive genotype-, which 

could be used as a selection criterion for positive response to 

irrigation. 

Seed yield/plant exhibited 31.8% heterosis and showed a 

predominant role of non-additive genetic variance. Due to the 



i i 

significance of the non-additive effect, the superior F
1

's may be 

expected to throw out desirable transgressive segregants, provided that 

the complementary genes and epistatic effects included in the 

non-additive component are coupled in the same direction to maximize 

seed yield. Five F') crosses showed superiority in seed yield and SCA 
'-

effects. These crosses should be carried forward in lentil breeding 

programs. 
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CHAPTER I 

INTRODUCTION . 

l. History and taxonomy 

Lentil (Lens culinar1s Medik.) is one of the oldest crops 
cultivated by man. Lens is a latin word that describes exactly the 
shape of the seed of the cultigen which nowadays botanists call Lens 
culinaris, following the name given it in 1787 by Medikus, a German 
botanist-physician (Cubero, 1981). 

Lentils have been found at Mureybit in Syria and at Hazilar in 
Turkey from levels dated by c14 at 8500-7500 and 7000-6500 B.C. 
respectively. Lentil seeds have been discovered in Egyptian tombs of 
the 21st dynasty (2400-2200 B.C.), and the preparation of lentil soup 
is depicted in a fresco of the time of Ramses I II ( 1200 B.C.). The . 
Egyptians mentioned lentils in texts going back to c. 1085 B.C., and it 
seems that lentils were well appreciated as they \'Jere bartered for 
Lebanese cedar wood and offered as presents to the gods. The ancient 
Egyptians esteemed it highly and cultivated it carefully o.nd 
extensively. This has led to the suggestion that it was introduced 
into Palestine and neighbouring lands from Egypt. The Romans, as is 
evident from a passage in Martial, regarded it as an Egyptian food 
plant (Cubero, 1981). In addition, it is also the first legume to be 
mentioned in the Bible, appearing in Chapter 25 of th~ Book of Genesis 
in the familiar story of Jacob and Esau and the mess of pottage. They 
are also listed in the Koran (Second Surah, Al-Baqarah) as one of the 

products of the earth which the Jews asked Moses to request from God, 
following the period in which manna and quails \'Jere the only food 
available to them. 

The genus Lens Miller (self-pollinated) belongs to the order 
Rosales sub-order Rosinae, Family Leguminosae and sub-family 
Papilionoideae. Within the Papilionoideae, Lens holds an intermediate 
position between the genera Vicia and Lathyrus, but it is closer to 
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Vicia (Cubero, 1981). Lens montbretii has recently been transferred to 
Vicia montbreti_i (Ladizinsky and Sakar, 1982). There has been a recent 
taxonomic revision of the genus Lens Miller, this reclassification 
being based on the crossing relations and chromosome pairing in the F1 
generation. It is now considered to have only two species h· culinaris 
and L. nigricans, both with the chromosome number 2n = 14. L. 

culinaris consists of three sub-species; (i) h· culinaris culinaris 
(cultivated), (ii) h· culinaris orientalis and (iii) h· culinaris 
odemensis; and Lens nigricans contains two sub-species; (i) L. 

nigricans nigricans, (ii) h· nigricans ervoides (Ladizinsky et ~·· 
1984). F1 hybrids within these species have various degrees of 
fertility, but between the species attempts at hybridization result in 

pod abortion. Embryo culture has now been emp 1 oyed to produc{:· 
vegetatively normal hybrids between the two species, h· culinaris ssp. 
cul inaris and h· nigricans ssp. ervoides (Cohen et ~·, 1984). In 
particular combinations, fertile hybrids were also produced which gave 
reasonably fertile F2 plants (Ladizinsky et ~., 1985). Ladizinsky and 
co-workers excitingly concluded that from a plant breeding perspective 

the genus Lens may be considered as a single gene pool. Thus any of 
the variability within the genus may be used by breeders to improve the 
cultivated lentil. The species h· culinaris spp. culinaris is usually 
divided into two cross-compatible groups; (i) microsperma , with small 
rounded seeds, 2-6rJill in diameter, yellow or orange cotyledons, and a 
testa of various colours from pale yellow to black; (ii) macrosperma, 
with large flattened seeds which normally have yellow cotyledons and a 
pale green testa, which can be speckled. Plants of the latter group 
have a more robust vegetative structure than the microsperma and have 
larger leaflets and pods (Cubero, 1981). 

2. Distribution and world production 

Lentils are grown in different agro-ecological conditions in the 
world. They are grown in low elevation areas in Syria, Jordan, Iraq, 
Lebanon, Cyprus, Turkey and other countries which experience a 
Mediterranean climate of cold, wet winters followed by hot dr·y summers. 
Lentils are also grown in high elevation areas such as the Anatolian 

plateau in Turkey and the high plateaux in North Africa, where the crop 
is normally sown during early spring on conserved soil moisture, 
avoiding the cold winter. Severely cold winters are also responsible 
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for spring sowing in Idaho, Oregon and Washington states of USA, the 
western provinces of Canada, the Central plateau and n:ountainous 
northern regions of Iran, and the ceritral and eastern areas of 
Afghanistan. In the Indian subcontinent lentils are grown during the 
winter on the soi 1 moisture conserved during the preceding monsoon 
season. If water is available, the crop may be given om: or two 
irrigations. In the Nile Valley in Egypt and northern Sudan, lentils 

are essentially an irrigated crop grown during winter (Ibrahim et ~·, 
1979 and Salih, 1979). In certain tropical countries such as Colombia, 
Ecuador and Ethiopia, they are successfully grown at higher altitudes. 
Production in Ethiopia takes place at altitudes up to 2700m (Westphal, 
1974). 

With this wide distribution of lentils around the world, the crop 

also has sizeable differences in production. World production 
increased from 1,127,000 metric tons in 1974 to 1,538,000 metric tons 
in 1984, an increase of 36.5%. The area also increased from 1,838,000 
ha in 1974 to 2,320,000 ha in 1984, an increase of 26.2%. While Asia 
produces 81.9% .of the world production, Europe produces 5.6%, North of 
America 5.1%, Africa 4.8%, South of America 2.0% and USSR 0.7% (F.A.O., 
1984). Lentils represent about 3% of the total world area sown to 
pulses (dry beans, dry peas, fababeans, chickpeas, pigeonpeas, cowpeas, 
vetch and lupins). However, the lentil area,· as a percentage of the 
total pulse area, is much higher in several individual countries, such 
as in Jordan, where lentils comprise 75% of the total. Other countries 
with similarly high percentages include Syria (51%), Turkey (28%), Iran 
(24%), Bangladesh (20%) and Lebanon (18%) (F.A.O., 1977). The areas 
where lentils are most important are generally those ·with the lowest 

yields. The average yield in Asia for the three year period 1980-1982 

was only just over half the yield in North America; 597 kg/ha compared 

with 1099 kg/ha. 

3. lentil production and problems in Egypt 

In Egypt, lentils are considered the most important food legume 
crop after faba bean. The cultivated area in 1960 was 20,400 ha 

yielding an average of 1,490 kg/ha. The area and seed production were 
stable until 1974-76. However, from 1977, the area and seed yield has 
decreased annually; the percentage decreases in the area were 19%, 41% 
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and 75% in the years 1977-78, 1978-79 and 1979-80. Also, the seed 
yield/ha declined by 11%, 20% and 27% in the same years. The reduction 
in the area was continuous and reached 76.4% in 1983. Consequently, 
seed production decreased to only 7,200 metric tons in 1983, and this 
amount represents only about 9% of the consumption of lentil in Egypt, 
which was 80,000 metric tons in 1981. Because of the production 
shortfall, the Egyptian government increased the amount of lentil 
imported from 4,000 metric tons in 1970 to 75,000 metric tons in 1983 
to compensate for the deficit. The increasing cost of these imports 
averages about 14 millions U.S. dollars per year (28 million Egyptian 
pound), (the second conference of ARC in Egypt, 1984). 

Several factors have contributed to the decrease in yields and 
area of cultivation for 1entil in Egypt. Prior to the building of the 
Aswan High Dam in Egypt, lentils were grown on moisture left by the 
annual flood of the Nile without extra irrigation. After the 
completion of the dam, irrigation became widely available, but the 
lentil land races are unadapted to it. Most lentil introductions into 
Egypt have come from ra i nfed areas, and they are a 1 so i 11-adapted to 
irrigation. A report of food legume improvement in Egypt summarized 
the problems of lentil in Egypt (the second conference of ARC in Egypt, 
1984). The major problems were, (i) the inexperience of farmers in 
growing ientil under irrigation, (ii) the lack of response of the 
widespread lentil cultivar (Giza 9) to irrigation. The report 
concluded that irrigation is the major factor in lentil production in 
Egypt, and it recommended 1-3 irrigations for lentil under Egyptian 
conditions. Rizk et £1. (1984) described future work needed to improve 
lentil production in Egypt. They mentioned that there is a need to 

develop new varieties with early maturity, high yield and good seed 
qua 1 ity; and emphasized the importance of screening breeding 1 i nes and 

introductions for adaptation to irrigation. 

4. Response to irrigation 

Almost all the physio-chemical processes of plants are adversely 

affected by moisture stress (Slatyer, 1969; Hsiao, 1973) and therefore 

crop yields are at a maximum when plants never experience water 

shortage or stress during their growth and development. Lentils are 
known to use adequate moisture as luxuriantly as wheat or other cereals 
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Field estimates of the consumptive use of water for lentils have been 

made for different parts of Egypt and for North India. El-Gibali and 

Badawi (1978) estimated the consumptive use of lentil for Lower, Middle 

and Upper Egypt at 365, 364 and 391 mm respectively. In India Saraf 

and Baitha (1979) computed the water requirement of the lentil crop 

under different irrigation treatments. The water requirement ranged 

from about 155 ·to 214 mrn in sandy 1 oam soil. 

Various authors have emphasized that inadequacy of soil moisture 

is one of the major limiting factors to yield in lentils in different 

season and on different soil types. Many workers studied the agronomic 

methods of irrigation and they have indicated that the crop responds 

favourably to irrigation. 

In India, lentil is generally grown as a rainfed crop in most of 

the lentil growing areas. In the absence of stored moisture or winter 

precipitation, the crop responds very well to supplemental irrigation. 

Saxena and Yadov, (1976) Mehrotra et ~· (1977); Bisen et ~· (1980); 

Verma and Kalra (1981) and Singh et ~· (1981) found that two 

irrigations gave higher seed yield than one irrigation or no 

irrigation. Saraf and Baitha (1979) mentioned that seed yield of 

lentil increased by 52% with an increase in the water supply from 115 

mm to 228 mm. 

In the areas with a Mediterranean-type environment, like Syria, 

lentils are usually grown in regions of low annual rainfall. A good 

rainfall distribution during the growing season can give high yields. 

However, the distribution is sometimes such that all the precipitation 

occurs in a few heavy rains. This can cause water-logging in lentil 

fields. In Syria, Saxena and Wassimi in 1980 studied the effect of 

soi 1 moisture content of eight 1 enti 1 genotypes under two moisture 

regimes (i) rainfed i.e. 240 mm rain over the whole season; (ii) two 

supplemental irrigations after termination of the rain. They reported 

~ that grain yield increased with increasing moisture supply, from 

9. 9g/50cm row segments to 16.5 g/50cm, by 60%. The same trend was 

obtained by Abdel-Rahman et ~· in 1980 in Egypt, who found that 

irrigation every 20 days gave a higher seed yield than irrigation every 

40 or 60 days. Also, in Dongola and adjoining areas of northern Sudan, 
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where irrigated lentils are grown, irrigation at a frequency of every 

seven days ha~ been found necessary to obtain high yields (Salih, 

1979). 

Plant growth in species such as lentil is physiologically more 

sensitive to moisture stress than others (Salter and Goode, 1967). 

Therefore, researchers concerned with the response to irrigation of 

lentils must consider the timing of the irrigation carefully. 

Pre-flowering (branching/maximum vegetative) and pod filling are 

critical stages for moisture, and in conditions of insufficient soil 

moisture, an irrigation at these stages increased seed yield (Oastane 

et ~·, 1971; Yusuf et ~·, 1979; Singh et ~·, 1979; Saraf and 

Baitha, 1979; Verma and Kalra, 1981). Irrigation at pod formation is 

much more important than in the pre-flowering stage (Mehrota et ~., 

1977). In India, greater yield responses were found with three 

irrigations applied at seedling, branching and pod development stages 

than from three irrigations at seedling, branching and flowering 

(Dastane et ~·, 1971; Yusuf et ~·, 1979). Two irrigations at the 

pre-flowering stage (vegetative phase) and at the pod filling stage 

gave the highest seed yield (Saraf and Baitha, 1979; Bisen et al., 

1980; Verma and Kalra, 1981 and Nema et .!!_., 1984). The same trend 

has been found by Panwar and Paliwal (1975); Saxena and Yadav (1976); 

Ojha et .!!_. (1977), who mentioned that the pre-flowering and pod 

filling stages were the most critical growth stages for application of 

irrigation. In addition, Panwar and Paliwal found that irrigation at 

both these stages increased the yield to 100% of the unirrigated check. 

In other legume crops, the seed yield increased with the frequency 

of irrigation. In faba bean (Vicia faba L.), increasing the frequency 

of irrigation throughout the growing season or irrigation late in the 

growing season (pod filling) increased seed and straw yield (Krogman et 

.!!_., 1980). Singh et .!!_. (1978) obtained the highest pea (Pi sum 

sativum L.) seed yield with two irrigations when applied at 

pre-flowering and pod deve 1 opment stages. Also, irrigation increased 

pea yield by 78% (White et .!!_., 1982). Twogood and Davis (1979) 

reported that irrigated green bean (Phaseolus vulgaris L.) plots 

produced more than twice the yield of unirrigated plots. Seed yield of 

bean increased from 851 kg/ha with 350mm to 1050 kg/ha with 530mm rain 

(Frizzone et .!!_., 1982). The response of different growth stages of 
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soybean (Glycine max (L.) Merr.) to irrigation has also been studied. 

Seed yield reductions are greatest with moisture stress during late 

pod-development and pod-fill (Lewis, 1981 and Kanemasu, 1981), and 

irrigation at these stages increase seed yield (Brady et ~·, 1974; 

Constable and Hearn, 1980 and Drummond et ~·, 1983). Rahman et ~· 

(1983) found that irrigation at the pre-flowering stage is important 

and gave the highest grain yield of chickpea (Cicer arietinum L.). He 

mentioned that seed yield was depressed by about 30~6 when irrigation 

was given at the flowering stage. 

Irrigation, as well as a heavy rain, can cause flooding which 

leads to deficient aeration as a result of saturation of the soil 

displacing the soil air. The low solubility and slow diffusion of 

oxygen in water drastically reduces its supply to the roots (Kramer, 

1983). This effect increases in heavy clay soil or when a soil water 

table is high. 

Anaerobic conditions reduce gas exchange and result in decreased 

oxygen and increased carbon dioxide concentration in the soil 

(Yelenosky, 1964). However, it appears that under field conditions 

root growth is more likely to be limited by a low concentration of 

oxygen than by a high concentration of carbon dioxide (Kramer, 1983). 

Injury from flooding has been discussed by many workers. Wilting 

is likely to be the first symptom, which is generally assumed to result 

from decreased water absorption caused by a sudden increase in root 

resistance in the water-saturated soil (Kramer, 1940a). Kramer 

attributed the increased root resistance to the toxic effect of high 

carbon dioxide, while Hunt et ~· (1981) attributed it to ethylene 

produced in the soil and the plant. Sojka and Stolzy (1980) reported 

that oxygen deficiency in the soil causes closure of stomata. There is 

evidence that products of anaerobic respiration, such as ethanol, 

aldehydes and lactic acid, accumulate in the roots of flooded plants 

and presumably cause injury (Crawford, 1967; Bolton and Erickson, 

1970; Hook et ~., 1972; Francis et ~·· 1974). However, Jackson et 

al. (1982) found that the concentrations of ethanol occurring in 

flooded plants are not toxic and concluded that it probably does not 

cause injury in this way. Compounds such as methane, sulphides, 

reduced iron, and other minerals also accumulated in flooded soil and 

causedinjury to roots. 



8 

There are wide differences in tolerance to anaerobic condition 
between species. Plants native to wet habitats tolerate long periods 
in saturated ~oil, but some other crops s~ch as corn, wheat and barley 
are quickly injured or killed. However, adaptations of roots under 
oxygen deficiency conditions has been found in wheat ( Erdmo.nn et a l., 
1986) and in corn (Kramer, 1983). 

One of the principle rlant adaptations to oxygen deficiency under 
saturation conditions is modification of root structure in anaerobic 
condition (Kramer, 1983). Plants native to wet conditions, such as 
rice, contain extensive air spaces that form continuous passa~e "''ays 
from shoots to roots. This tissue, called aerenchyma, is usually 
regarded as an important adaptation that improves the oxygen supply to 
roots growing in poorly aerated soil. Williams and Barber (1961) 
showed that the chief function of aerenchyma is provision of anchorage 
with the smallest possible amount of living, oxygen-consuming tissue. 
Its function is still under discussion (Crawford, 1983). Roots of 
mesophytes, such as wheat and corn, also develop large air spaces when 
grown in anaerobic media. Usually, these air spaces are formed 
lysigenously by breakdown of masses of cortical cells, leaving 

spoke-like strands of living cells extending from the outer cortex to 
the endodermis (Drew et .!!_., 1980). Anatomical parameters under oxygen 
deficiency hiive been studied in Corn (Drew et al., 1980) and in \•Jheat 
(Erdmann, 1986), whereas no such work exists in lentil. 

5. Lentil seed quality 

As lentil is an important traditional dietary i~em throughout the 
Middle East, quality evaluation is considered an important objective in 
lentil breeding. Protein content, cooking time and seed dehulling are 

three of the most important quality characters in the crop. On 

average, lentils provide more than twice the amount of dietary protein. 
of cereals (Pellet and Shadarevian, 1970) and their protein content is 
comparable to that of faba beans, and higher than chickpeas (Abu-Shakra 
and Tannous, 1981). 

The lentil protein content has been estimated by some workers. In 
early Russian reports it was revealed that the protein content varied 
little across locations, but varied from 27.5-31.7% between 
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varieties (Burulina, 1930). When a world collection of 1688 accessions 

of lentil was tested for seed protein, a range of 23.4-36.4% was found 

(Hawtin et ~·~ 1977). More recently Erskine and Witcombe (1984) found 

a greater vari abi 1 ity for protein content, ranging from 18.6-30.2% 

amongst 1853 lentil accessions of the germplasm collection at ICARD.A .. 

Lentil seed protein was not markedly affected by irrigation at any 

stage (Panwar and Paliwal, 1975; Abdel-Rahman et ~·· 1980; Eweida et 

~ .• 1980 and Saraf and Baitha, 1982), but was influenced significantly 

by location effects (Erskine et ~., 1985). 

In addition to the total level of protein in lentil seeds, the 

amino acid content of the protein is very important in its nutritional 

quality. To improve the nutritional value of lentil seed meals the 

levels of the sulphur amino acids need to be increased. This objective 

may possibly be achieved by breeding. For breeding programs to be 

successful, the varietal differences and the influence of the 

environment on protein quality must be established. In such a study, 

electrophoresis may be a useful technique. 

The term electrophoresis is used to describe the migration of a 

charged particle under the influence of an electric field. Under 

conditions of constant velocity the driving force on the particle is 

the product of the effective charge on the particle and the potential 

gradient and this is ba 1 anced by the frictional resistance of the 

medium (Andrews, 1986). Electrophoretic methodology was introduced by 

Smithies (1955) who used starch gels as an electrophoretic medium, but 

this has been largely replaced following the introduction of 

polyacrylamide gel electrophoresis (PAGE) (Davis, 1964; and Ornstein, 

1964). The application of these methods to botanical work and 

collections of appropriate recipes have been reviewed by Sha\'/ (1965) 

Makinen and Brewbaker (1967) and Nelson (1967). 

There are currently three different geometrical forms in which 

PAGE is carried out, namely on horizontal slabs, vertical slabs, or 

vertical cylinders (rods) of gel. Each has its advantages and 

disadvantages. However, a major advantage of. slab gels is that a 

number of samples can be run side by side under identical conditions 

and compared without ambiguity. This is particularly useful in 
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screening procedures where a large number of samples must be examined 

and compared (Andrews, 1986). 

Many different methods have been used to solubilize the 

constituent lipids and proteins including solvents containing phenol, 

acetic acid, or high levels of urea, but a large proportion of recent 

procedures employ detergents. These include non-ionic detergents like; 

Lubrol W, Brij 35, and the Tween and Triton detergents, cationic 

detergents such as cetyl trimethyl-ammoni urn bromide ( CTAB) and 

cetylpryridinium chloride (CPC), and anionic detergents such as 

deoxycholate (DOC) and sodium dodecylsulphate (SDS). Clearly it is 

beneficial if the solubilized material can then be utilized directly 

for further analytical procedures. Not only can this often be done, 

but when ionic detergents are used most proteins are then separated by 

PAGE according to molecular size (Andrews, 1986). 

Andrews (1986) summarized the factors which should be considered 

when deciding whether to use detergents and which ones to use. Some 

detergents, such as SDS, are usually regarded as more strongly 

denaturing than others (e.g. Lubrol PX). In most cases (particularly 

if a reducing agent is present to break disulphide bonds) SDS falls 

into the category of a strongly denaturing detergent and gives rise to 

essentially random coil configurations. 

The use of SDS-PAGE and its theoretical background of molecular 

weight measurements has been discussed by Andrews (1986), who described 

the advantages of this method. The apparatus required is readily 

available in most laboratories and is inexpensive. The procedure is 

straightforward and highly reproducible, and results can be obtained 

within a few hours using only a few micrograms of material. As with 

other PAGE methods, in many cases the sample need not be totally pure. 

The degree of purity required depends largely upon the sample being 

studied and the ease with which the component of interest can be 

identified on the final gel pattern. Due to the benefits of this 

method, it has become one of the most widely used for measurement of 

protein molecular weights. 

Cooking time is one of the most important aspects of cooking 

quality. Normally dry legume seeds require a long cooking time. 
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Lenti 1 s are quicker to cook than faba bean or chickpeas and good 
cooking lentil seeds are sold at a higher price than those with poorer 
cooking quality (Abu-Shakra and Tannous, 1981). 

The cooking process makes hard seeds soft by improving the 
plasticity of the cell wall, thus facilitating cell expansion and 
reduction of intercellular adhesion. Lentil seeds which are difficult 

to cook are thought to be influenced by the presence of insoluble 
pectins in the middle lamella of the cell wall. Large amounts of 
insoluble calcium and magnesium pectates are formed in the middle 
lamella of the cell walls when the seeds are rich in Ca and Mg or when 
the cooking water is rich in these elements (Abu-Shakra and Tannous, 
1981). The importance of adequate levels of both major and trace 

elements in affecting the cooking quality of lentils has been 

emphasized by Wassimi et ~· (1978). In particular, high levels of 
potassium and sodium, together or separately, in the seed were 
associated with shorter cooking times. In another study, the major 

significant correlation obtained was between cooking quality and (Ca 2+ 
+ + Mg 2 )/P content (Bhatty, 1984). A further review of the influence of 

mineral ions on cooking time in lentil is given by Summerfield and 
Mueh 1 bauer ( 1982). The need for a rapid and repeatab 1 e method for 
screening for cooking quality has been highlighted by Abu-Shakra and 
Tannous (1981). Suitable procedures have been developed at !CARDA 
(Erskine et ~., 1985). 

Erskine et al. (1985) found differences between locations in 
cooking time, but the range in cooking time was greater between 
genotypes than locations. 

In many countries of the world, grain legumes are initially 
processed by removing the hull (seed coat) and splitting the seed into 
its dicotyledenous components (Siegel and Fawcett, 1976). In the 
Middle East, lentils are a major constituent of two common dishes named 
'koshari' or 'mujaddarah' (lentil and rice) and lentil soup. 
Decorticated dry seeds are usually used in the preparation of these 
dishes. 

Removal of the hull (dehulling) results in a reduction of fibre 

and tannin content in the seeds (Deshpande et ~., 1982a) and an 
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improvement in appearance, texture, cooking quality (Kon et ~-· 1973) 
and functional .properties, palatability and digestibility of the seeds 
(Deshpande et ~., 1982b). 

There are two main types of lentil marketed, large-seeded and 
small-seeded types. The large seeded are usually marketed whole, 
undehulled, while small-seeded genotypes are graded, dehulled and split 
before marketing. Within the limits of size of small-seeded lentils 
(2.5-4.5 mm in diameter), the larger the seed, the lower is the 
percentage loss during decortication. In a study at !CARDA, seeds with 
an average size of 4 mm lost an average of 8.19% of their weight during 
dehulling. This rose to 9.8% for seeds with a mean diameter 3 mm, 
representing a loss equivalent to about U.S.$6 per tonne. The larger 
seeds also conunand a higher price than the smaller seeds (Erskine et 

~·' 1985). 

6. Variance components, heritability and genetic advance 
from selection 

Effective selection is dependent on the existence of genetic 
variability. The extent of the genetic variability in a specific 
breeding population depends on the germplasm included in it and its 
selection history (Hallauer, 1981). In investigations with lentil 
accessions, a wide range of variation for yield, yield components and 
other lentil characters was observed (Malhotra et ~· (1973); Sharma 
and Kant (1975); Kant and Sharma (1975); Tiwari and Singh (1980); 
Prem Sagar (1980); Solh and Erskine (1981); Sindhu and Misra (1982) 
and Sinha and Chowdhary (1984)}. 

Various authors have emphasized the utility of estimates of 
variance components, as a basis for predicting the response of 
quantitative characters to selection in plant breeding. Selection in a 
given population is based on the phenotypic value of individuals while 
only a portion of the phenotypic value is transmitted to the following 
generation. Thus, it is of primary importance to know the relative 
magnitudes of the different components of the phenotypic value. The 
phenotypic expression of a character can be considered as the sum of a 
genetic effect and a deviation attributable to environment and 
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interaction between the genotype and the environment i nvo 1 ved. Wright 
(1921, 1935) considered the genetic variation to consist of three 
components: 

a) additive genetic variance (o 2A). 

b) variance due to dominance deviations from the additive 
scheme (a 2

0). 

c) Variance due to epistatic deviations from the additive 
scheme (o 2

1). 

Estimates of variances due to the different sources of variation 
contributing to differences between individuals as described above are 
important for. plant breeders to develop their breeding strategies. 
Comstock and Moll (1963) outlined three advantages of knowing the true 
magnitudes of genetic variation: 

a) over estimation of genetic variation would in some cases lead 
to investment of time and effort not justified by the real 
potential for improvement of genetic stocks employed. 

b) Optimum procedures may vary significantly, depending on the 
magnitude of genetic variances. 

c) There is a danger that sound breeding programs may be 
abandoned prematurely or unwisely because of results that are 
disappointing relative to unwarranted expectations based on 

erroneous estimates of genetic variance. 

In general, the different procedures suggested by plant breeders 

for partitioning the phenotypic variance of quantitative characters in 
a population carry the following biological assumptions : (1) normal 

diploid behaviour at meiosis~; (2) no maternal effects; (3) absence of 
multiple alleles; (4) linkage equilibrium; (5) random selection; (6) 
no epistasis. However, under certain circumstances, models are 

available in which one or more of these restrictions may be eliminated 
{Sprague, 1966). These procedures have been discussed by Anderson and 
Kempthorne (1954); Griffing (1956a, 1956b); Hayman (1958, 1960); 
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Kempthorne and Curnow (1961); Crumpacker and Allard (1962); Cockerham 
(1963); Gardner (1963); Matzinger (1963); Sprague (1966); Dudley 
and Moll (1969) and Mather and Jinks (1971). 

Knowledge 

attributes has 
of the heritabi 1 ity of 

been useful as a tool 
quantitatively 
for improving 

inherited 
selection 

efficiency. Progress under se 1 ect ion in breeding programs depends on 

the magnitude of heritability for the trait under selection. Estimates 
of genetic variance and phenotypic variance are used by plant breeders 
to estimate heritability. 

The heritability concept and its implications in plant breeding 

have been discussed by several workers (Burton, 1952; Warner, 1952; 
Hanson, 1963; Robinson, 1963; Dudley and Moll, 1969 and Falconer, 
1981 ) . 

The phenotypic expression of any particular character can be 
visualized as the sum of a general population mean, a genotypic effect, 
an environmental effect, and an interaction effect. Allard (1960) 
explained the importance of these factors when heritability has been 
estimated. Also, Robinson (1963) stated that heritability estimates 
must be treated with some caution because they depend on the choice of 
plot size, planting density and number of replications. Since an 
estimate of heritability is as restricted in its application and since 

a ratio is not as informative as a knowledge of its two components, he 
questioned whether there was value in estimating heritability. 
However, he stated that a meaningful estimate of heritability is of use 
in estimating expected progress when pursuing the programme, and it is 
also a very useful concept in determining the relative importance of 
genetic effects which may be passed on to offspring, even in cases 

where it would be difficult to extrapolate to other populations. 

The variance components method proposed by Comstock and Robinson 
(1948, 1952) has been used extensively in estimating heritabilities. 
This method could be applied to either genetically different cultivars 
or families from a given generation. The major problem encountered in 
using the variance components method to estimate heritability is that 
the estimate of additive variance so obtained is quite likely to 
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contain fractions of epistatic variances and genotype-environment 
interactions which, if present, would inflate the estimate. 

As soon as heritability is estimated for a quantitative trait in a 
population, the question is raised as to what progress would be 
expected under selection in that population. The estimate of such 
progress is called the genetic advance. Falconer (1981) defined the 
expected genetic advance from selection as the products of selection 
intensity, the estimate of phenotypic standard deviation and the 

heritability estimate. Expected genetic advance has been estimated by 
most authors who have investigated heritability of quantitative 
characters. 

Comstock and Robinson (1952) stated that the essential aspects of 
most, if not all, breeding programs are : (1) selection within a base 
population of genetically variable individuals or families, and (2) 
utilization of the selected material for the creation of new 
populations to be employed either as potential new commercial varieties 
or as the base for a new eye 1 e of se 1 ec t ion. It is apparent that 
genetic advance under selection, as represented by improvement in the 
genotypic value, in the new population as contrasted to the base 
population will depend on (1) the amount of genetic variability, that 
is, the magnitude of the differences in genotypic value among different 
individuals (or families) in the base population, and (2) the magnitude 
of the masking effect of the environmental and interaction components 
of variability on the genetic variability. A third factor, the 
intensity of the selection that is practised, will also influence the 
rate of genetic advance under selection. Burton (1952) emphasized the 
importance of using the genetic coefficient of variation, together with 
heritability estimates. He mentioned that both gave the best picture 
of the genetic advance to be expected from selection. Therefore, 
Johnson et ~- (1955) in their studies in soybean have found that 
heritability value along with the genetic gain is more useful than the 
heritability estimates alone in predicting the resultant effects of 
selecting the best individuals. 

In the literature of lentils, some workers studied the genetic 
variation in only one location. In this situation, Johnson et al. 
(1955) reported that serious misjudgements may arise because the 
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genotypic variance estimated on the basis of a single location also 
includes the variance due to genotypic-environment interactions, and 

the conclusions based on the inflated estimates of genotypic variance 
may not hold good at other locations. 

Allard (1960) stated that genotypic values must be measured with 
reference to some particular group of environments, usually the ones 
occurring over a period of years at a number of locations within some 
comparatively homogeneous geographical area. Experimental measurements 
of genotypic values, no matter how extensive (within practical limits), 
can only sample the population of environments occurring within this 
grographi ca 1 area. Hence the p 1 ant breeders must usually be satisfied 
with an attempt to identify the effect of the environmental components 

that are likely to be important in determining the agricultural value 
of genotypes, for example, soil fertility, rainfall, and temperature. 
In practice, these items are usually identified with years and 
locations. 

Comstock and Robinson (1952) and Johnson, Robinson and Comstock 

(1955) also emphasized the importance of evaluating the interaction 
between the genotype and the environment. It is clear, therefore, that 
the evaluation of strains under diverse conditions of environment 
provides sound estimates of genetic variability which exclude the 
effects of year-environment interactions. 

A genotype-environment interaction analysis was undertaken with 30 
varieties of lentils under three environments (sowing dates) by Pandey 

et ~· in 1982, who mentioned that the differences due to varieties, 
environments and environment-varieties were highly significant. The 
component analysis revealed a higher value for the genotype-environment 
interaction component than for the genotypic component, indicating a 
major effect of the environment on the evaluation of genotypes for seed 
yield per plant. 

In lentils, widely varying estimates of heritability, variability 
and genetic advance for different characters have been reported. A 
summary of literature on broad sense, narrow sense heritability, 
phenotypic and genotypic coefficient of variation are given in Tables 1 
and 2. 



Table 1 Estimates of heritabilit~Y.for lentil characters 

Seed Seed No. of No. of No. of Average Plant No. of Time to Time to 
Population yield yield/ pods/ seeds/ seeds/ seed height branch1 flow. mat. Reference 

( kg/ha) plant plant plant pod weight plant 

40 strains - 97.3 97.3 - - 94.6 55.6 48.4 95.8 - Singh and Singh, 1969 

47 promising lines: Malhotra ~ ~-, 1974 

g-e interaction included - 48.8 43.5 - - 47.2 61.5 26.1 

g-e interaction excluded - 2.2 18.7 - - 40.9 34.6 7.1 

45 cultivars 46.9 21.9 45.0 52.7 73.6 94.9 - - - - Muel bauer, 1974 

11 cultivars 30.5 - 39.7 - 15.8 74.6 23.1 -3.7 - - Lal and Chandra, 1978 -.....! 

63 cu1tivars : 1978 - 99.0 79.8 - - 91.1 36.1 86.1 - - Pandey ~ ~-, 1980 

197 9 - 72.7 91.2 - - - 70.8 

23 F4 Bulks + 3 cultivars 57.0 42.0 80.0 - - 75.0 83.0 - 74.0 96.0 Prem Sagar, 1980. 

h z of 3 F 6 : cross 1 - - - - -n.s 
0.0 0.0 - 3.0 0.0 Haddad et ~- , 1 982 

2 - - - - - 32.0 24.0 - 38.0 25.0 

3 - - - - - 5 .'() 8.0 - 10.0 0.0 

Range of 8 F2 crosses = - 24-65- 19-71 18-65 1 9-91 62-85 33-78 28-95 - El-Hady, 1983 

h2 b. s 
h2 n. s - 4.5-55.5 3.7-45.9 2.5-81 - 5.1-7 2 2.3-35.5 6.4-23.4 11-85.8 

F 2 eros s : ht. s - 2.0 - - - 60.0 47.0 - 64.0 46.0 Sakar, 1983 

F 2 cross : h2 
n.s - 17.0 - - - 62.0 43.0 - 56.0 39.0 

F 4 cross : hl,. s - 39.0 - - - 80.0 48.0 - 76.0 59.0 

24 genotypes ·5o.o - - - - 98.0 - - - - Erki ne ~ ~-, 1985 

All these studies were carried out at one location except MaP1otra et ~-· (1973)and Erskine et ~ .• (1985), that were at 3 locations. 



Table 2 Estimatesofphenotypic and genotypic coefficient of variation for lentil characters 

Biolog. Seed Seed No. of No. of Average Plant :No. of Time to Time to 
Population yield yield/ yield/ pods/ seeds/ seed height branch./ Flow. Mat. Reference 

(kg/ha) (kg/ha) plant plant pod weight plant 

40 strains G - - 79.0 82.5 - 41.0 9.3 22.7 8.6 - Singh and Singh, 1969 

47 promising lines: Malhotra et a1. 1973 

g-e interaction G - - 30.9 27.1 - 14.8 12.6 14.4 
included 

g-e interaction G - - 6.5 18.!: - 14.3 9.8 8.6 
excluded 

11 cultivars p 29.0 53.9 - 40.~: 8.7 20.3 13.7 26.7 - - La 1 and Chandra, 1978 
CXl 

II II G 4.8 29.8 - 26.1 0.44 2.4 3.9 0.99 

63 cu1tivars:l978 p - - 30.4 26.5 - 13.9 16.7 62.6 - - Pandey et ~-· 1980 
II II II G 30.1 23. i' - 13.1 15.5 58.1 

63 cultivars:1979 p - - 23.7 44.4 - - 21.8 II 

II II II G 20.2 40.5 - - 15.4 

23 F4 bulks + 3 p 15.5 26.6 32.6 26.3 - 26.6 10.1 - 3.5 5.3 Prem Sagar, 1980 
culti vars 

G 13.4 20.0 21.2 23.6 - 23.1 9.2 - 3.0 5.2 

P : Phenotypic coefficient of variation 

G : Genotypic coefficient of variation 
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The range of broad sense heritability for seed yield (kg/ha) was 
from 30.5-57% with an average of 46.1%. The broad sense heritability 
of biological yield (kg/ha) ranged from 28.4-71% (Lal and Chandra, 1978 
and Prem Sagar, 1980); the average of this character (49.7%) was lower 
than the value for seed yields (kg/ha). Seed yield per plant had a wide 
range of broad sense heritability of 2-99% with an average of 51.2%. 
This wide range of heritability may be due to the nature of populations 
used for estimation. The lowest broad sense heritability was estimated 
from only the F2 generation of one cross (Sakar, 1983), whereas the 
highest value was obtained from 63 cultivars (Pandey et ~., 1980). 
Also estimates of broad sense heritability are strongly influenced by 

environments (seasons and locations). For example, Pandey et ~· 
(1980) found that the broad sense heritability of seed yield per plant 

was 99% in one season, but this decreased in the subsequent season to 
72.7% with the same material. Malhotra et ~· (1973) showed the effect 
of genotype-environmental interaction on heritability and genetic 
variation estimates. They found that the mean of broad sense 
heritability of seed yield per plant was 48.8% (average of 3 
locations), but when they eliminated the effect of 
genotype-environmental interaction, the heritability value decreased to 
only 2.2%, and the coefficient of genetic variation decreased from 
30.9% to 6.5%. 

The narrow sense heritability of seed yield per plant also varied 
greatly. In a study of El-Hady (1983) the narrow sense heritability of 
yield per plant ranged from 4. 5-55. 5%; it was above 50% for only one 
cross and lower than 50% for seven crosses. Also, a low narrow sense 
heritability of yield per plant (17%) has been found (Sai<ar, 1983). 
These low narrow sense heritability values were probably due to 

dominance effects. 

The range of phenotypic coefficients of variation for seed yield 

(kg/ha), seed yield per plant and biological yield per plant were 

27-54%, 24-29% and 16-29% with averages of 40.3%, 28.9% and 22.3%, 
respectively. Whereas genotypic coefficients of variation ranged from 
20-30%, 20-30% and 5-14% for seed yield per plant, seed yield (kg/h) 
and biological yield (kg/h), with averages of 36.3%, 24.9% and 9.1%, 
respectively. 
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Heritability estimates varied across characters. The ranges of 
broad sense heritability for days to flowering, days to maturity, seed 
weight, plant height and number of pods per plant were; 28-96, 59-96, 

19-98, 23-85 and 19-97 with averages of 73.6%, 67%, 65.2%, 64.2% and 
61.6%, respectively. Number of branches per plant, number of seeds per 
pod and number of seeds per plant had generally lower broad sense 
heritability values ranging from 26-86, 16-74 and 18-65 with averages 
of 56.2%, 44.7% and 38.7%, respectively. The highest value of narrow 
sense heritability was for days to flowering (45.4%), whereas the 
lowest value was for branches per plant (12.3%). Haddad et ~·, (1982) 

found low narrow sense heritability (including zero values) for days to 
flowering and maturity and plant height in two crosses, with sizeable 
dominance effects of these characters. In comparison, the third cross 
showed higher values of narrow sense heritability with more additive 
genetic variation. For seed protein content and cooking quality, 
Erskine et !]_., (1985) found that broad sense heritability-of these 
characters were 71% and 82%, respectively. 

Genetic advance in percentage of mean for different characters is 
given in Table 3. The highest percentages of genetic advance were for 
pods per plant and seed yield per plant, with averages of 66.6% and 
65.9% respectively. These characters had also the highest values of 
coefficient of genetic variation (Table 2), whereas time to flowering 
and plant height had low estimates of genetic advance and coefficient 
of genetic variation. 

7. PhenotYPic and genotYPic correlation and selection criteria 

Knowledge of the magnitude and type of relationships between plant 
characters has theoretical and practical implications in plant 
breeding. For example the correlation between complex characters of 
low heritability, such as yield, and less complex characters which may 
have much higher heritabilities, would benefit the breeder to the 
extent that it may be easier to se 1 ect for the comp 1 ex character 
indirectly by practising selection on the highly heritable characters. 
In fact, in some cases it might be possible to achieve more rapid 

progress under selection for a correlated response than from selection 
for the desired trait itself (Falconer, 1981). Graf.ius (1956) 

considered that the response to direct selection for yield has often 



Table 3 Genetic advance in % of mean for lentil characters 
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been found to be slow because of the 1 ow heritabi 1 ity of yi e 1 d. He 
emphasized that selection for yield should be based on the other 
characters which are relatively simply inherited and associated with 
yield (indirect selection). 

The genetic relationship among quantitative characters is of 
considerable interest to plant breeders. Falconer (1981) stated three 
reasons for determining such relationships, which were: (a) to 
determine the changes brought about in a given character when selection 
is practised on another character; (b) to study the genetic causes of 
correlation thr.ough the pleiotropic action of genes; and (c) to examine 
the relationship between a metric character and fitness of that 
character in a natural population. The phenotypic correlation is a 
linear combination of genetic and environmental correlations. However, 
the contributions which genetic and environmental correlations make up 
to the phenotypic correlations is variable depending on the magnitude 
of the heritabilities of both characters. 

Adams (1967) stated that the attainment of characteristic form and 
function in a crop plant depends upon a chain of interrelated events 
which are sequential in time, gene regulated at critical sites and 
times, and subject to the modifying influences of nongenetic forces. 

Moreover, these events do not occur haphazardly, but follow an 

integrated pattern. He stated that seed yield is an obvious example of 
integration in which the components of seed yield are to some extent 

interdependent in their development. 

The correlations between quantitative traits in lentil have been 
estimated by many workers including; Singh and Singh (1969), Singh et 

~· (1970), Malhotra et ~· (1973), Tikka et ~· (1973), Dixit (1974), 
Muehlbauer (1974), Singh and Singh (1975), Singh and Dixit (1976), 
Chandra and Lal (1977), Wilson (1977), Narsinghani et ~· (1978), 
Nandan and Pandya (1980), Todorov (1980), Chauhan and Sinha (1982), 
Basant et !]_. (1983), El-H~dy (1983), Erskine (1983), and Erskine et 
al. (1985). In summary, radically different coefficients of 
correlation have been found between the same characters in these 

different studies. For ease of discussion the interrelationships 
between characters have been classified into four groups (i) 
relationship between seed yield, on the one hand, and yield components, 
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such as number of pods per p 1 ant, number of seeds per pod and seed 
weight, on the other hand; (ii) relationship between seed yield on the 
one hand and between morphological and phenological characters such as, 
plant height, number of branches per plant, days to flowering and days 
to maturity, on the other hand; (iii) relationship between seed yield 

and seed quality characters such as protein content and cooking 
quality; (iv) relations between yield components, phenological and seed 
quality characters. 

The relationships between seed yield and yield components were 
studied by most of the authors mentioned above. In general, strong 

positive correlations were found between seed yield and number of pods 
per plant. The Phenotypic and genotypic correlations between both 

characters were ranged from 0.61-0.95 and from 0.63-1.0, respectively; 
within 45 lentil lines, pods per plant only accounted for 45% of the 
observed variation in yield (Muehlbauer, 1974), and it was 49.3% in 
another study (Basant et ~., 1983). Positive correlation was shown 
between seed yield and seeds per pod, however, in path analysis, seeds 
per pod had a positive direct effect on the seed yield (Basant et ~., 
1983). Zero or negative correlation coefficients have been reported 
between seed yield and average seed weight (Singh and Singh, 1969; 

Muehlbauer, 1974 and Basant et ~·, 1983). The negative association 
may be due to a lack of sufficient yield compensation for fewer 
seeds/pod and fewer pods/plant in large seeded types (Muehlbauer, 
1974). 

Seed yield had a positive and significant correlation with plant 

height (Malhotra et ~·, 1973 and Narsinghani et ~·, 1974). The 
coefficients varied from 0.23 to 0.71 for phenotypic correlation and 
from 0.003 to 0.96 for genotypic correlation. The relationship between 

yield and time to flowering varied between investigations. On the one 
hand, Singh and Singh (1969) found strong negative phenotypic and 
genotypic correlations with seed yield (-0.50 and -0.58, respectively). 
Whereas the relations were found positively and significantly 
correlated with seed yield by others (Narsinghani et ~·, 1978 and 
Tikka et ~., 1973). Again, both positive and negative correlations 
have been reported between seed yield and time to maturity (Narsinghani 
et ~., 1978 and Basant et ~., 1983). The relationship between number 
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of branches per plant and seed yield was positive and significant 
(Singh et ~., 1970 and Tikka et ~., 1973). 

The relationships between seed yield and seed quality characters 
have been studied by Todorov (1980) and Erskine et ~· (1985). 
Contrasting positive and negative correlations between seed yield and 
cooking quality have been reported by Erskine et ~· (1985) and Todorov 
(1980), respectively. However for the relationship between seed yield 
and seed protein content both studies showed negative correlations. 

The relationships between all the previously mentioned characters 
are labyrinthine in complexity, particularly because the studies 
conducted in different places on different material usually for only 
one season show contrasting results. The relationship of pods per 
plant with other characters are summarized because of its major 
importance and constant strong association with seed yield. The 
relationship between other characters are mentioned as necessary during 
the results and discussion section. 

Number of pods per plant exhibited a strong negative relationship 
with seed weight and had phenotypic and genotypic correlation values of 
(-0.63) and (-0.64) respectively (Singh and Singh, 1969), (-0.39) and 
(-0.37) (Narsinghani et ~., 1978). Pods per plant 'lias positively 
correlated with plant height, number of branches per plant and days to 
maturity (Singh and Singh, 1969; Singh et !}_., 1970; Tikka et !}_., 

1973; Narsinghani et !}_ .• 1978 and Basant et .!]_., 1983). Pods per 
plant showed -strong negative phenotypic and genotypic correlations 
with time to flowering (Singh and Singh, 1969), but Tikka et al. (1973) 
and Basant et !}_. (1983) found positive and significant correlations 
between both characters. 

8. Adaptability and phenotyPic stability 

The seed yield of lentil was closely related to total seasonal 
moisture supply in Northern Syria (!CARDA annual report, 1984). 
However, because the rainfall, and thus soil moisture content, varies 

from location to location and from season to season, it is difficult to 
demonstrate the significant superiority of any variety when compared 

over a series of environments and years. The genotype-environment 
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interaction usually causes the relative rankings of varieties to differ 
(Eberhart and Russell, 1966). Since little additional progress can be 

expected in reducing genotype-environment interaction by the 
stratification of environments (Allard and Bradshaw, 1964), other 
methods need to be investigated. Any such method aims to rank 
varieties for stability. 

The existence of interactions between genotypes and environmental 
factors has long been recognised, the earliest reference, which 
precedes the analysis of variance, being Fisher and Mackenzie (1923). 
In considering the manurial responses of different potato varieties 
they concluded that 11 the yields of different varieties under different 
manurial treatments are better fitted by a product formula than by a 

sum formula. 11 The methods used here foreshadowed those developed many 
years 1 ater, but were apparently camp 1 ete ly forgotten. Sprague and 
Federer (1951) separated out the effects of genotypes, environments and 
their interaction by equating the observed mean squares in the analysis 
of variance to their expectations on the random model. This approach 
emphasized the overall importance of the genotype-environment 
interaction, but did not fix interest on the response of individual 
genotypes to a set of environments. Many others followed this method 
including Miller, Williams and Robinson (1959); Miller, Robinson and 

Pope (1962). However, Plaisted and Peterson (1959) computed an 
analysis of variance for each possible pair of genotypes in turn in 
order to find an estimate of the interaction due to every paired 
combination. The mean of the interaction variances associated with an 
individual genotype was then taken as a gauge of its contribution to 
the overall genotype-environment variance. 

The next development in the analysis of genotype-environment 
interaction was to focus on the response of individual genotypes to 
environments, and can be described as the identification of patterns of 
response across environments. It is, of course, basic to this approach 
that underlying patterns do exist which reflect heritable differences 

between genotypes. This technique was applied by using the linear 
regression, and used first by Yates and Cochran (1938), who showed that 
regressions accounted for a large part of the interaction, but their 
ideas were not really taken up until Finlay and Wilkinson (1963) 
rediscovered the same method and used it for an analysis of adaptation 
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in a barley trial. This method has subsequently been developed into a 
powerful and informative method of genotype-environment analysis 
(Eberhart and Russell, 1966; Perkins and Jinks, 1968; Breese, 1969). A 
basic objective of this technique is to identify systematic variation 
in performance, and it can be very informative where 
genotype-environment interactions have high linear association with 

environmental index (Byth et ~·, 1976). 

This linear relation usually accounts for most of the variation 
over environments of a genotype and as a result it is possible to 
predict its phenotype under further re 1 a ted en vi ronmenta 1 conditions 
(Breese, 1969; Jinks and Perkins, 1970). 

The statistical validity of these methods has been questioned by 
Freeman and Perkins (1971), because the yields of separate varieties 

(y) are not statistically independent of the mean yield of all the 
varieties (x) when the mean yield of all the genotypes at a site is 
used as the environmental index. But Freeman stated that if the model 
is fixed and that inferences are only made about the particular set of 
environments and genotypes samp 1 ed, then the method is va 1 i d. S i nee 
the independence of the y variable from the x increases with the number 
of genotypes under test, the use of many genotypes will partially 
circumvent the criticism. Fripp and Caten (1971) and Eberhart, Penny 
and Harrison (1973) mentioned that the criticisms of non-independence 
have prompted the use of independent physical and biological measures 
of the environment. Another problem with this approach, as pointed out 
by Freeman and Perkins (1971), is that the x variate in the regression 
is subject to error, but Hill (1975) reported that this problem is 

probably not serious when large numbers of genotypes are used. 

Some biological criticism has also been levelled at the joint 
regression analysis because the underlying response of genotypes to 
changes in an environmental factor may be non-linear (Knight, 1970 and 
Witcombe and Whittington, 1971) and efforts to force such patterns into 
a linear straitjacket can lead to erroneous conclusions. Given that 
joint regression analysis is a totally empirical method, it does, 

however, have a safety valve in the test of adequacy of the linear 
model. If the response of genotypes to one environmental factor is 
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non-linear or equally if there is variation over environments in more 
than one factor, then the model will prove unsatisfactory. 

The application of genotype-environmental interaction parameters 
has been reported to be useful also for measuring of the stability by 

various workers ( Immer, Hayes and Powers, 1934 and Horner and Frey, 
1957). Some stability parameters are obtained from the regression 
approach. Thus, Finlay and Wilkinson (1963) used the regression 
coefficient as a measure of stability. Eberhart and Russell (1966) 
also used the regression coefficient as a first measure of stability 
but go further and regard the sum of squared deviations as a second 
measure. 

The application of this technique in lentils has been used by some 
workers; Malhotra et ~- (1971); Mehra and Pahuja (1979); Sagar and 
Lal (1980); Pandey et ~· (1982) and Ahmed and Pandey (1983). 

9. Genetic analysis by the diallel system 

In any plant breeding program, the aim of selection is to identify 
superior genotypes which will transmit their desirable characteristics 
to future generations. Hence any overall genetic evaluation which is 
useful in identifying in the early generations the crosses of potential 
va 1 ue is of cons i derab 1 e va 1 ue. The approach re 1 i es on the fact that 
estimates of genetic parameters allow the choice of parental material 
showing non-allelic interaction. In subsequent generations 
transgressive segregants may be produced from this material for the 
characters under selection (Lupton and Whitehouse, 1957). 

Several mating systems can be employed, but two, which offer both 
a systematic experimental approach and also an overall genetic 
evaluation in the early generations following crosses between inbred 
genotypes, are the test-cross analysis (Jinks, Perkins and Breese, 
1969) and the diallel cross (Hayman, 1954a and b; Jinks, 1954). The 
test-cross analysis requires fewer crosses than the diallel. Two 
tester inbred genotypes are crossed with the remaining n inbred lines 
in the test population, giving 2n crosses, whereas in the diallel 

analysis, n (n-1) crosses are needed between n parents. However, the 
test-cross analysis requires that the two tester genotypes are the 
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extreme selections from the population under test. If the two testers 
are not extreme selections and have the same allele for loci 
controlling the character under analysis, then additive and dominance 
effects will be underestimated. In the present study yield was the 
primary selection criterion. However, it was decided to study the 
inheritance of other characters of potential importance in indirect 
selection for yield, based on response to irrigation. It was not 
possible to find two tester genotypes which were extreme for all the 
characters under consideration, so this precluded the use of the 
test-cross analysis. 

The diallel cross mating system was first discussed by Schmidt 
(1919), and the application of diallel-cross technique for evaluation 
of quantitative variability in self-pollinated crops was developed by 
Hayman (1954), Jinks (1954) and Griffing (l956a, b). 

Sprague and Tatum (1942) defined the terms general and specific 
combining as follows; the term •general combing ability• is used to 
designate the average performance of a line in hybrid combination, and 
the term •specific combining ability• is used to designate those cases 
in which certain combinations do relatively better or worse than would 
be expected on the basis of the average performance of the lines 
involved. 

Griffing (1956b) was concerned with the definitions of general and 
specific combining ability when the testing procedure utilizes a 
diallel crossing system. He stated that the proper interpretation of 
the genetical parameters from the diallel analysis depends on the 
particular diallel method, the assumptions regarding the experimental 
material, and the conditions imposed on the combining ability effects. 
In this respect, four different experimental methods of diallel cross 
were suggested by the author. These methods vary with inc 1 us ion or 
absence of parental inbreds and/or reciprocal F1•s and with sampling 
assumptions (models). Following the classification of Griffing 
(1956b), the four possible diallel crossing methods are : (l) parents, 
one set of F1s, and reciprocal F1 •s are included (all P2 combinations); 
(2) parents and one set of F1•s are included but reciprocal F1•s are 
not (1/2 P(P+l) combinations); (3) one set of F1•s and reciprocal F1•s 
are included but not the parents (P(P-1) combinations); and (4) one set 
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of F1 's but neither parents nor reciprocal F1 's are included 

(l/2P(P-l)). For each method, there are two alternative models 

depending on whether the genotypes are assumed to be (a) a chosen or 

fixed set and cannot be regarded as a random sample from any population 

(Model 1), or (b) a random sample from a population about which 

inferences are to be made (Model II). These four different diallel 

crossing methods with two different models for each, result in eight 

different situations, each requiring different analysis. 

Several other methods of diallel cross analysis have been 

developed (Jinks and Hayman, 1953; Hayman, 1954; Jinks, 1954; 

Allard, 1956; Kempthorne and Curnow, 1961, Fyfe and Gilbert, 1963). In 

the early 1950's, Jinks and Hayman, from the Biometrical Genetics Unit 

of the University of Birmingham, published a series of papers on the 

analysis and interpretation of data from diallel crosses. Hayman 

extended the statistical analysis by subdividing the interaction term 

into three subcomponents. At the same time, he and Jinks were 

developing a theory for interpreting diallel statistics in terms of 

gene frequencies and gene effects. The Jinks-Hayman ( 1953) di a 11 e 1 

analysis of parental and F1 generations from a set of diallel crosses 

appeared to provide a rapid evaluation of the genetic relationships 

among a number of parents. This method thus seemed to offer promise in 

identifying parents whose hybrids are most likely to respond to 

selection (Crumpacker and Allard, 1962). This analysis includes 

parents and one or both sets of F1 crosses. Thus, with respect to 

Griffing's classification of diallel crossing techniques, it is 

applicable to both experimental methods I and II. 

The diallel analysis procedures have been used to obtain 

information concerning the inheritance of quantitative traits, and for 

the prediction of segregation in the F2 and later generations. The 

Hayman-Jinks analysis makes the following genetic assumptions : (1) 

homozygous parents; (2) diploid segregation; (3) no reciprocal 

differences; (4) gene frequen~s equal to 0.5 at all segregating loci; 

(5) genes independently distributed between the parents (no-linkage); 

(6) no epistasis (no non-allelic interaction); and (7) no multiple 

all e 1 es. 
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With lentil, assumptions 1 and 2 are the usual ones and could be 
assumed from its history of self-pollination. The last five 

assumptions are not so easily accepted and they are difficult to 
evaluate independently. They are tested by the analysis as the null 
hypothesis. Hayman (1954, 1957) developed two methods for testing some 
of the assumptions mentioned above. He stated that he could always 
detect epistasis, and multiple allelism in the absence of epistasis, 
and when both of these factors are absent gene correlation may be 
exposed. Hayman (1954b) showed that multiple allelism is unimportant 
until the F2 generation. Nevertheless it was felt that the diallel 
cross mating system and its analysis offered the best properties for a 
genetic evaluation of early generations of an underexploited crop 

species with a view to identifying promising crosses. 

The application of diallel crosses in lentils has been given by 

some workers; Malhotra et ~· (1973); Singh et ~· (1975) and Goyal et 
~· (1977). But two only are available. Malhotra et ~· (1973) found 
that general combining ability effects were more important than 
specific combining abi 1 ity effects for a 11 the characters studied. 
Graphical and component analyses indicated partial dominance for seed 
yield, partial to no dominance for pod number, partial dominance for 
days to flower, over-dominance for plant height and partial to over 
dominance for secondary branches. The combining ability, graphical and 
component of variance analyses suggested predominance of additive gene 
action for the characters excepting plant height, where non-additive 
gene action was more pronounced. 

Singh et ~· (1975) studied 15 one-way diallel crosses for primary 
and secondary branches, pods/plant, 100-seed weight and grain yield in 
lentil. They observed significant variance due to hybrids for all the 
characters, but variance due to hybrids vs parents (heterosis) was 
significant only for grain yield, pods/plant and secondary branches. 
Of the 15 crosses, 3 exhibited significant heterosis over the 
mid-parent and superior parent for yield as well as for pods/plant and 
secondary branches. For a 11 the characters genera 1 combining abi 1 i ty 

and specific combining ability variances were observed to be important. 
They suggested that selection of superior segregants should be based on 
the number of secondary branches during the early stages of growth and 
on pod number per plant at the time of maturity. 

* * * * * 
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The problem of adaptation to different soil moisture regimes, 
particularly in Egypt, has been highlighted already. This study aimed 

to investigate the response of lentil genotypes to different water 
regimes to provide guidelines, through partitioning the variation, for 
a selection program for adaptation to irrigation conditions. The 

research was divided into two main areas; l) The overall variation in 
the crop was partitioned into genotypic, environment and 

genotype-environment components in an analysis of adaptation over 

seasons, irrigation regimes and locations. 2) The genotypic variation 
was partitioned into its various genetic components in an inheritance 

study using the diallel mating system. 

These investigations were planned to provide estimates of expected . 
response of yield to selection either for seed yield per se, or for 
indirect selection for other traits associated with yield. 
Additionally, many agronomic and quality characters were studied to 
monitor indirect effect of selection for yield on these traits. 
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CHAPTER II 

MA1ERIALS AND MEtHODS 

1. Plant materials 

Thirty five genotypes of lentil, selected from the international 
germplasm collection at !CARDA, primarily on the basis of diversity of 
origin and agronomic characteristics, were included in this study. 
However, amongst these genotypes, three 1 ines were chosen on account of 
their known positive or ~egative·response to irrigation. Family 370, a 
new Egyptian line, and FLIP 84- 1 L produced high yield under 
irrigation in Egypt; therefore they were considered responsive to 
irrigation. The third genotype was the local Egyptian cultivar Giza 9, 
which showed n_o response to irrigation. The origin, the international 
legume lentil number (ILL) and some other characters of the genotypes 
are given in Table 4. 

2. Experimental procedures 

2.1 Description of trial sites and environments 

A study of the adaptation to moisture supply requires testing 
under different water levels, hence, experiments were conducted in 
three contrasting rainfed locations in Syria and Lebanon, spanning the 
range in rainfall found in the main production areas in the Middle 
East. 

These locations were: (i) Tel Hadya, the !CARDA farm, in North 
Syria with long-term average seasonal rainfall of 350nm; ( ii) Breda 
(the dry site, with an average rainfall of 250mm) in North Syria; 
(iii) Terbol in the Biqa•a Valley in Lebanon, the cold wet site with an 
average rainfall of 550mm. A summary of the location data is given in 

Table 5. 

To extend the range of moisture supply at one location, three 

water regimes were used at Tel Hadya. Accordingly, there were five 



Table 4 Descri~tion of the genot,r:~es 

Genotype ILL* Country of Plant Flower Seed Cetyl edon 
origin height earliness size colour Comments 

Giza 9 784 Egypt Tall Early Small Red Local cultivar 
Family 370 5486 " Tall Early Small Red Selection from local material 
Family 130 813 " Very tall Very late Very sma 11 Yellow Selection from local material 
Selaim 1861 Sudan Short Medium Very sma 11 Red Loca 1 cult i var 

1693 Ethiopia Short Early Very small Red 
1983 " Short Early Very sma 11 Red 

40 Syria Tall Medium Small Red 
241 " Tall Medium Medium Yell ow 

Local large 4400 " Tall Medium Large Yell ow Selection from local material 
Local small 4401 " Tall Medium Small Red 
Jordanian loc. 4354 Jordan Short Medium Medium Yellow Local cultivar 
76TA66005 5562 " Tall Early Medium Yellow Selection from local material 
78S26003 5583 " Medium Medium Medium Yellow 
7BS26004 5584 " Medi urn Medium Medium Yell ow 
76TA6608B 5572 Iran Tall Medium Small Red w 357 Algeria Short Medium Small Yellow - w 

4349 USSR Very tall Very late Large Yell ow Selection from local material 
121 Turkey Tall Late Very small Red -

74 TA161 5516 II Short Very late Medium Red Selection from local material 
Lenka 5480 Czechoslovakia Very tall Late Medium Yell ow 
Okula 5481 . Very tall Very late Large Yell ow 
74TA276 5527 Hungary Tall Medium Large Red Selection from local material 
74TA212 5519 Greece Tall Very late Small Yellow " II II 

274 . Tall Very late Small Yell OW 

355 Mexico Tall Ver~ late Large Yellow Promising line in Ethiopia 
358 II Tall Ear y Very small Red " " " 

Precoz 4605 Argentina Medium Early Large Red Promising line in Pakistan 
Pant.L,406 2501 India Short Early Very small Red 

2526 .. Short Early Very small Red 
2573 .. Short Early Very small Red 

74TA264 5523 Australia Tall Medium Large Yellow Selection from local material 
FLI P84- IL 5674 lea rda Tall Late Large Red Selection from Icarda cross 
FLIP84-27L 5699 .. Tall Early Medium Yell ow 
FLI P84-67L 5737 " Tall Early Medium Yellow 
FLIP84-78L 5748 " Tall Early Large Yellow 
* International Legume Lentil collection number at !CARDA. 
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Table 5 Summary of the location data 

Description Tel Hadya Breda Terbol 

Latitude 35°55'N 35°55'N 33°55'N 
Longitude 36°55'E 37°l0'E 36°00'E 
Altitude (sea level, m) 362 350 950 
* Soil classification Crumsol Soil Reddish Brown 
Long term average rainfall (mm) 342 283 551 
Seasonal rainfall 1984-85 373 277 489 

(mm) 1985-86 316 218 396 
Date of planting 1984-85 28 Nov. 21 Nov. 18 Nov. 

1985-86 5 Dec. 28 Nov. 25 Nov. 

* Soil classified according to USA system. 
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environments which varied in moisture supply. These environments were 
as follows: 

(T1) Tel Hadya rainfed only. 

ii (T 2) Tel Hadya under rainfed +one supplementary irrigation with 
50mm at pre-flowering stage. 

iii (T3) Tel Hadya under rainfed + two supplementary irrigations 
(50mm/each) at pre-flowering stage and at pod fil"ling stage. 

iv (Br) Breda rainfed only. 

v (Ter) Terbol rainfed only. 

These five environments were used in two growing seasons 1984-85 and 
1985-86 and the water supply for all environments is shown in Table 6. 
Air temperature and rainfall distributions for two growing seasons at 
all locations will be presented with the results. 

2.2 Field processes 

At Breda and Terbol, randomized complete block designs were used 
with 35 genotypes with three replications. At Tel Hadya, a split-plot 
design was used with three replications; the three water regime 
treatments were in the main-plots and the 35 genotypes were in 
sub-plots. In all experiments, the sowing was done at the recommended 
crop density with intra-row spacing of 2cm with 25cm between rows and 4 
meter long rows. A sowing depth of 4-6cm was maintained at all sites. 
Dates of sowing are given in Table 5. No inoculation was used in any 
of the trials, and nodulation was adequate throughout. Fertilizer at 
50 kg P2 o5;ha was added to all experiments and 30 kg N/ha was used at 
Tel Hadya and Breda only (Terbol already having a high nitrogen 
status). At all locations, fertilizers were added to the soil prior to 
planting. In all experiments, herbicide mixtures of Pronamide (trade 
mark, Kerb, marketed by Rohm and Haas Co.) and Cyanazine (trade mark, 
Bladex, marketed by Shell Research Ltd.) were both used at 
pre-emergence at the same rate of 1 kg/ha against broad-leaved weeds. 
Thereafter, hand-weeding was undertaken as necessary. Furrow 



Table 6 
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Water supply of the environments during lentil 

growing period (22 Oct. - 2 June) for two seasons 

Water supply (mm) 

Environments 1984-85 1985-86 

T. 346 306 
I 

T2 396 356 

T3 446 406 

Br 253 203 

Ter 433 358 
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irrigation with gated pipes system \'las used at Tel Hadya with 
hydrometer to control the amount of water for each experimental plot. 
The irrigation systems have been described· by Hagan et ~· (1967). 

At harvesting 30 pods from every experimental plot were collected 
at random, then the central 3m 2 of plots was pulled by hand, placed in 
cotton sacks, dried in the sun, weighed, then threshed by machine and 
the clean seeds weighed. 

2.3 Laboratory techniques {seed protein quality and content, cooking 
time and dehulling characteristics) 

Seed protein content, cooking time and a dehulling test for all 
experimental plots in five environments were all analyzed at ICARDA•s 
Quality Laboratory in the 1984-85 and 1985-86 seasons. Investigation 
of the effect of environmental conditions on seed protein quality was 
carried out by gel-electrophoresis at the Science Laboratory of Durham 
University, Botany department, England during October-November, 1985. 

For seed protein content (N x 6.25), samples were analyzed for the 
test after grinding 20g seed in a U.D. cyclone sample mill fitted with 
a l.Omm screen. Testing for protein was carried out on a Neotec model 
5Q A51A analyzer, which uses the principle of near-infrared reflectance 
spectroscopy. As a check, every tenth sample was a 1 so ana lysed by a 
rnacro-Kjeldhal procedure (AACC, 1969) using 0.5/g/sample. Data for 
protein are reported on an 11 as is 11 basis with respect to moisture 
since this is the state in which lentils are traded and used by the 
consumer. ~loisture content was determined by drying· a 2g sample of 
ground lentils at 130°C for 65 minutes, cooling and weighing. Moisture 
was very consistent and the range was from 9.0 to 9.5% with a mean of 
9.27% (Erskine et ~., 1985). 

Seed protein quality 

A study of the total storage protein in lentil seeds as affected 
by irrigation and environmental conditions was made for 35 genotypes at 

5 environments by the polyacrylamide gel electrophoresis technique 

according to the method of Davis (1964) and Ornstein (1964). 
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A seed sample of 20g/genotype was selected from every 
environmental treatment at random. Any off-type seeds were discarded 
from the sample and one seed was chosen at random to represent the 
population. Seed coat was removed, then the cotyledons were cracked 
and 10 mg seed meal was extracted in 0.2 M Chilled Tris/HCl buffer (pH 
6.8), in the ratio rate of 1 : 5 (W/V), containing 10% (W/V) Sucrose 
and 2% (W/V) SDS. The crude extract was centrifuged for 3 minutes at 
500 r.p.m. and the clear supernatant was separated and 10 ~1 

Mercaptoethano 1 was added, then the extl~act used for e 1 ectrophoreti c 
analysis. 

The analysis was done by SDS/poly acrylamide-gel electrophoresis 

in slab gels using a Pharmacia GE-4 slab gel apparatus. A few drops of 

bromophenol blue were added to the upper electrode compartment and the 
crude extract loaded on top of the gel in the wells using a 10 ~1 

syringe with a long needle. Gels were run at room temperature 
(20-25°C) initially at 15mA for 30 mins. then at 30mA at constant 
current. The run was terminated as the tracking dye reached the bottom 
of the gel. 

Following electrophoresis, the gel was incubated in the staining 
solution overnight, then removed to the destaining solution until 
photographed. The position of each band was calculated as an Rf value, 
relative to the Bromophenol Blue (BPB) front (Rf = migration distance 
of the band/migration distance of BPB). Each gel was dried between two 
sheets of uncoated cellophane in a gel drier. The following chemicals 

were used to prepare the gel and solutions: 

Separating gel: 

The 17% (W/V) separating gel contained in a total volume of 59.5 

ml, the following: 

1. Acrylamide stock 
30g acrylamide plus 135 mg N, N, N methylene bis 
acrylamide (BIS) and distilled water up to 100 ml. 

2. 1M Tris/HCl buffer (PH 8.8) with distilled water 
up to 1000 ml. 

25 ml 

22.5 ml 
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3. Distilled water (degassed) 

4. 1% (W/V) ammonium persulphate (freshly prepared) 

5. 10% (W/V) sodium dodecyl sulphate (SDS) 

6. N, N, N', N' tetramethyl ethylene diamine (TEMED) 

Spacer gel 

1. Acrylamide stock 
30g acrylamide plus 435 m9 bis and distilled 
water up to 100 ml 

2. IM Tris/HCl (PH 6.8) 

3. Distilled water (degassed) 

4. 1% Ammonium persulphate (freshly prepared) 

5. 10% (W/V) SDS 

6. TEMED 

Development buffer 

Glycine 
Tris 
SDS 
Distilled Water up to 1000 ml 

141 9 

30 9 

10 9 

(This solution was diluted 10 times before using) 

Staining solution 

Coomassie blue 
Methanol 
Acetic acid (glacial) 
Distilled Water up to 1000 ml 

0.5 9 

500 ml 
70 ml 

9.9 ml 

1. 5 ml 

0.6 ml 

20 JJl 

3 ml 

2.5 ml 

13.8 ml 

0.5 ml 

0.2 ml 

10 ~1 



Destaining solution 

Methanol 
Acetic acid 
Distilled Water up to 1000 ml 

40 

500 ml 
70 ml 

The chemicals used in this study and their suppliers are listed in 
Appendix Table 6. 

For measuring cooking quality, 6-8 g of seeds were boiled to 
softness in 100 ml water using a Labconco Crude Fibre Digestion 
apparatus (Erskine et ~., 1985). The progress toward cooking could be 
followed through the glass of the Bercelius beaker. The boiling liquor 

darkened in colour and froth developed. Ruptured seed coats sometimes 
separated. To establish the stage of cooking, after 15 minutes 5 seeds 
were removed from the beaker and pressed by the finger to test the seed 
consistency. When a 11 5 seeds were soft, more seeds were tested for 
softness until it had been verified that 80% of seeds were cooked. If 
the tested seeds were not soft, the sampling was repeated every 2 
minutes until cooking was complete. Prior to measuring cooking 
quality, the lentils had been stored for approximately 2 months at room 
temperature (22-23°C). Relative humidity at that time of year 
(June-October) in Northern Syria is very low (30-40%), and the storage 
conditions used were unlikely to lead to increased cooking time 
(Jones and Boulter, 1983). 

To test the dehulling characteristics, 200g seeds from every 
experimental plot were sieved with 5, 4.5, 4 and 3.5mm sieves for small 
and medium seeded genotypes and with 6, 5, 4.5 and 4mm sieves for large 
seeded genotypes. Then, lOg of seeds are taken from the larger 
fraction. The production model of the Tangential Abrasive Dehulling 
Device (TADD), complete with a 12-sample plate which allows up to 12 
different samples of grain to be dehulled simultaneously, was used 
(Reichert et ~., 1985). 

Because different seed sizes require different treatments, 
genotypes were classified into three groups; small seeded with 100 
seed weight up to 3.9g, medium seed size, from 4-4.4g and large seeded 
with a seed weight of more than 4.5g. Samples of small seeded, medium 
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size and large seeded genotypes were applied in the machine for 25, 20 
and 15 seconds, respectively, using the automatic timer. After 
dehulling for the appropriate time, the dehulled seeds were removed 
from the sample cups using the vacuum aspirator. This device 
simultaneously collected and cleaned the dehulled grain, removing any 
residual fine material that had not escaped under the sample cups. The 
dehulled and non-dehulled seeds were weighed and then the percentage of 
dehulled seeds was calculated as: 

percentage of dehulled seed =weight of dehulled seed (g) x 100 
weight of seed sample (lOg) 

2.4 Root system and structure study 

In order to study variated differences in root morphology and 
anatomy under anaerobic conditions, two genotypes were selected, viz, 
74TA264 and ILL 121. Sixty seeds of each genotype were sown in 20cm 
diameter plastic pots at the rate of 10 seeds/pot, in the greenhouse of 
the Botanic Garden in Durham University during November 1986. Oxygen 
deficiency was induced by flooding of heavy clay soil (treatment W), 
allowing the comparison of oxygen free (treatment D) with well-aerated 
soil, Levi ngton peat based soil. For every genotype, three pots were 
subjected by treatment (W) and three to treatment (D). The pots of (W) 
were irrigated every day until saturation, while pots of (D) were 
irrigated as required. All pots were grown at 18-22°C in 16 h. days. 

Eighteen days after sowing, seedlings were removed from the soil 
carefully avoiding damage in roots, which were washed in water then 
photographed. Cross sections of about 40 JJm thick were taken from 
roots using a rotating razor blade, 2cm below the root tip. Sections 
were examined using a Nikon Diaphot fluorescence microscope with 
non-fixed fresh sections stained with Calcofluor M2R and illuminated 
with ultra-violet light. Photographs were taken on Kodak Technica.l Pan 
film (125 ASA), processed according to the manufacturer•s instructions. 
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2.5 Genetic anaJl-sis by diallel tech_11igue 

The parents used in this study were selected from the 35 genotypes 
detailed in Table 4. Eight genotypes (parents given in Table 7) were 
chosen on the basis of predicted response to irrigation, but care was 
taken to ensure a wide genetic base. 

The 28 possible crosses were made between the eight parents (p = 

8) to complete the half dialle·t mating system (P(P-1)/2), excluding 
reciprocals (Table 8). These crosses were made both in the plastic 
house and at !CARDA, Tel Hadya farm, in 1984-85 to ensure adequate 
hybrid seed supply. The hybridization method is described in 
Muehlbauer and Slinkard (1981). 

At maturity, the hybrid pods of each cross were harvested 
separately, then threshed by hand. The seeds of each cross were 
divided to two groups; the first one, not less than 15 seeds, was 
grown at Shaubak in Southern Jordan in June 1985, to produce F2 seeds. 
The second set was fumigated with phostoxine for storage. In September 
1985, the F1 plants, at Shaubak, were harvested then threshed. 

In December 1986, the parents, F1 and F2 generation were sown at 
Tel Hadya in a completely randomized block design with two 
replications. Each replicate consisted of 64 lines (28 F1's, 28 F2's 
and 8 parents) distributed at random. The field processes were 
identical to that mentioned in section 2.2. However, due to limitation 
in the number of F1 seeds and to ensure crop plant density, the row 
lengths for the F1 generation varied depending on seed availability per 
cross. These lengths ranged from 30cm with 15 seeds (the minimum/plot) 
to l26cm with 63 seeds (the maximum/plot). Plastic sticks marked each 
end of F1 rows and a black seed genotype (ILL2526) was sown in 
remaining ends of the row as a common competitor to, and the marker of, 
F1 plants under study giving the crop density of 200 plants/m2 • This 
experiment was irrigated twice as in environment T3. 

At harvesting, 30 pods from every plot were collected at random, 
then the middle 15 plants from each plot were pulled by hand and put 
together in a cotton sack, dried in the sun, weighed, then threshed by 

hand and the clean seeds weighed. 
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Table 7 Parental lines in the diallel 

Parent Country of 
Selection origin Comments 

Giza 9 Egypt Loca 1 variety. 
2 Family 370 Egypt Egyptian selection, high yield 

in Egypt. 
3 78S26004 Jordan Adapted to dry conditions in 

Tel Hadya. 
4 Precoz Argentina High yield in Syria and early 

maturity. 
5 Pant.L,406 India High yield in India and early 

maturity. 
6 FLI P84, 1-L !CARDA Hybridization line, high yield 

in Egypt. 
7 ILL 274 Greece High protein content. 
8 ILL 121 Turkey High protein content. 
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Table 8 Description of crosses made in_l984-85 

Cross No. Female parent X Male parent 

2 
2 3 

3 4 

4 5 
5 6 

6 7 

7 8 

8 2 3 

9 2 4 

10 2 5 
11 " 6 L 

12 2 7 
13 2 8 

14 3 4 
15 3 5 
16 3 6 
17 3 7 
18 3 8 
19 4 5 
20 4 6 
21 4 7 

22 4 8 
23 5 6 

24 5 7 

25 5 8 

26 6 7 

27 6 8 

28 7 8 



45 

3. Data measured 

Yield component characters are measured on 10 individual plants 
selected at random from each plot. But, because phenotypic plasticity 
of lentil is high, the use of individual plants to represent the 
population leads to high experimental error. Aristarkhova and 
Voluzneva (198i) found that yield-related characters in lentil cannot 
safely be characterized on the basis of averages calculated using 
samples of only 10 plants. Accordingly, the yield component characters 
were calculated in the basis of the average of all plants in each plot. 
However, plant height and number of branches per plant still had to be 
measured on 10 random plants from each plot. 

The following characters were estimated throughout: 

1. Biological yield (kg/ha). 
2. Seed yield (kg/ha). 
3. Straw yield (kg/ha). 
4. Biological yield per plimt in grams (g). 
5. Seed yield per plant (g). 
6. Straw yield per plant (g). 
7. Harvest index (%). 
8. Number of pods per plant. 
9. Number of seeds per pod. 

10. 100-seed weight in gram (g). 
11. Plant height (em). 
12. Number of branches per plant. 
13. Time to flowering (days). 
14. Time to maturity (days). 
15. Seed protein content(%). 
16. Cooking quality (minutes). 
17. Dehulling (%). 

Plant height was measured from ground level to the apex of the plant. 
Number of branches per plant included primary and secondary branches. 
Both characters were measured during the pod-filling st~~e. Time to 
flowering was recorded by calculating the time from the first day of 
soil wetting sufficient for germination to· when 50% of the p 1 ants in 
the plot started to flower. Time to maturity was also cale~:Jl.ated as 
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number of days from this date to when 90% of the pods in a plot were 
mature (when foliage colour became yellowish, lower leaves on stem 
started shedding and pods and seeds hardened). To calculate number of 
seeds per pod, the 30 pods collected at harvest from every plot were 
threshed by hand and then the number of seeds counted; then the number 
of seeds per pod was calculated from the number of seeds of 30 pods. 
An average of two counts of 100 seeds are taken from each plot at 
random to calculate 100-seed weight. At harvesting, the number of 
plants in each plot was counted. Biological yield, seed yield and 
straw yield per plant were calculated as follows : Biological yield per 
plant = Biological yield per plot/number of plants per plot, Seed yield 
per plant = seed yield per plot/number of plants per plot and stra\'t 
yield per plant = (biological yield per plot - seed yield per 
plot)/number of plants per plot. Number of pods per plant was 
calculated by the formula = (seed yield per plant x 100/100 seed 
weight)/number of seeds per pod. Harvest index was calculated as : 
(seed yield per plot/biological yield per plot) x 100. Seed protein 
content, cooking time and dehulling percent were estimated as described 
in 2.3. 

4. Statistical analyses 

The plot mean for each character was used for statistical 
analysis. Data was analysed on a VAX/VMS computer at ICARDA, using the 
CRISP package. There was cold damage to genotype Family 370 at all 
locations and on 21 experimental plots at Tel Hadya, due to the early 
frost which occurred in the 19'84-85 season. Therefore, Family 370 was 
ignored in both seasons and the 21 plots were esti·mated as missing 
data. The statistical analysis was carried out as follows: 

4.1 Environmental trial 

4.1.1 Analysis of variance and estimation of genetic components 

The analysis of variance was performed for each environment in 
every year separately with a randomized complete block design (Snedecor 

and Cochran, 1967). Then Bartlett•s test was used to examine the 
homogeneity of error variances of each environmental trial before 
combining them (Gomes and Gomes, 1984). Since we obtained homogenous 

error variances, a combined analysis of variance of two years was 



Table 9 Form of variance analysis and mean squares expectations 

Mean 
Source rr. F. square Expectation of mean square 

Years y-1 

Environments E-1 
- . -- --. -·· 

Environments - years (E-1)(y-1) 

Reps. in environments and years Ey(r-1) -+=> ....... 

Genotypes g-1 Ms a 2e+ro 2 E +ry cl E+rE0
2 +rEYo2 g g y g gy 

Genotype-year ( g-1) (y-1 ) M4 o2e+ro2 +rEo2 gEy gy 

Genotype-environment (g-1)(E-l) M3 2e 2 + 2 o +ro E ryo E g y g 

Genotype-environment-year (g-1 )(E-1 )(y-1) M2 2e 2 o +ro gEy 

Pooled error Ey ( r-1 )( g-1 ) M1 o2e 
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applied by split-split plot design using a fixed model (genotypes fixed 

and environments random). The genotypic mean square was tested against 
pooled error. ·The expectation of mean squares were derived ft·om the 
plot data (Table 9), then equated to the observed values to estimate 
the components of variance. 

In Table 9, g, r, E andy are numbers of genotypes, replicates, 

environments and years, respectively and ~e is pooled error variance, 

o2g : genotypic variance, o2gE : variance due to genotype-environment 

interaction,o 2 gy : variance due to genotype-year interaction and o 2 gEy 

: variance due to genotype-environment-years interaction. 

These variance components were estimated by the following 

formulae (Miller et ~·· 1959): 

Genotypes (ozg) = 

Genotypes - years (o 2gy) = 

Genotype-environment (o2gE) = 

Genotype-environment-year (o 2 gEy) = 

Pooled error (o 2 e) = M1 

M5+M2-M3-M4 

rEy 

r 

The importance of genotypic component of variance in relation to 

phenotypic variance (overall variance o2ph) was assessed as broadsense 

heritability (h 2b.s.) (Allard, 1960) as: 

o2ph = ozg + oagE + ·~ + ~ + o2e 
E y Ey gEr 

h2 = ~ b.s. 
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The coefficient of variation was estimated by using the formula 

suggested by Burton (1952) as: 

Genetic coefficient of variation (G.C.V.) = (genetic variance)t . 100 

overall mean 

The genet.ic advance under selection was calculated by using the 

method suggested by Allard (1960) as: 

I 

Gs = K ( a 2 ) 2 h 2 
· ph · b.s. 

With Gs represents the expectation of genetic advance under selection. 

It measures the difference between the mean genotypic value of the 

selected genotypes, and the mean genotypic value of the original 
I 

genotypes. ( o2 ph) 2 or oph is the phenotypic standard deviation of 

the mean character of the original genotypes and h2b is the broad . s. 
sense heritability. Whereas K is a selection differential (Allard, 

1960). In the present study K value is considered to be 2.06. 

4. l. 2 Estimation of phenotypic and genotypic correlations 

Covariance estimates obtained by the analysis of covariance 

between each pair of traits, fo 11 owed the same form as the analysis of 

variance in Table 9. Then the phenotypic and genotypic correlations 

were calculated as follows: 

Phenotypic correlation {rph) = Ml.2 
1 

[(Ml)(M2)]2 

Where M1. 2 is the phenotypic mean product between pairs of traits 1 
and 2, M1 and M2 are the phenotypic mean squares of the two traits, 

respectively. 

Genotypic correlation, (rg) = 0 2g 1 • 2 

where o 2 
91

.2 is the genetic covariance between two characters and o 2
91 

and o 2
92 

are the genotypic variances of the two traits respectively. 

(Bliss et ~ ., 1973). 



50 

4.1. 3 Stability analysis 

The plot data was used for statistical analysis. Genotype, Family 
370 was discarded from this analysis because it was omitted in the 
first season trials due to cold damage, and an equal number of 
genotypes at all environments in all seasons is required in this 
analysis. 

Stability parameters suggested by Eberhart and Russell (1966) were 
calculated. The stability analysis was made in two ways; firstly with 
6 environments; T1, T2 and T3 in each year separately to study the 
genotype-irrigation interaction. The second stability analysis was 
made using all environments, T

1
, T2, T

3
, Breda, and Terbol in each year 

(10 environments) to study the adaptation of lentil under different 
agro-climatic environments. 

The linear regression technique developed by Finlay and Wilkinson 
(1963) was also used to describe various types of variety adaptability 
to the irrigation and range of environments. To evaluate the 
efficiency of the regression analysis for genotype-environment 
interaction, the linear proportion of variance accounted for by 
regression was estimated by the following formula (Fripp and Caten, 
1971): 

lOOL 
L+nl 

where L is the difference between the mean square of heterogeneity of 
regression and the pooled mean square, and nl is the difference between 
the mean square of the deviations from regression and the pooled mean 
square. 

Another approach, which is useful also to investigate the 
interaction effect was used. This was the simple expedient of the 
variance of individual genotypes over environments. This variance was 
calculated with the mean over replicates and measures the variability 
of performance of genotypes (Erskine, 1979). 

In addition to previous approaches and to evaluate the genotypes 
for drought resistance under water stress conditions the drought 
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susceptibility index was used. The calculation of this index was made 
according to Fischer and Maurer (1978) using their formula as follows: 

where Yd is variety yield under stress condition, Yp is potential yield 
under non stress condition, Sis susceptibility index and Dis drought 

intensity. 0 is calculated as l - (Yd I Yp) where Yd and YP are the 
average yields over all genotypes tested under stress and non stress 
environments. 

4.2 Genetic analysis by diallel (parents and Fl and F2 generations) 

4.2.1 Analysis of variance and combining ability analysis 

The plot mean was used for statistical analysis. The analysis of 
variance for the completely randomized block design was performed for 
each character in each of the parents, parents with F1

1 s and parents 
with F2

1 s generations separately. Differences between the genotypes 
were tested using the error mean squares. 

When the analysis of variance showed significant differences 
between genotypes over replications, general combining ability (GCA) 

and specific combining ability (SCA) variances and effects for the 
eight parental genotypes and their crosses were estimated according to 
Griffing 1 s (1956b) combining ability analysis method 2, model I, using 
the computer program 11 0iall 12 11 for each of parents and one set of F1 
and parents and one set of F

2 
generations separately.· In this model, 

genotypes were considered fixed (fixed model). The analysis of 
variance and the expectations of mean squares for this model are shown 
in Table 10. 

4.2.2 Estimation of heterosis and inbreeding depression 

The heterosis and inbreeding depression were calculated by the 
following formulae: 

Heterosis = Fl - Mid parent x 100 
Mid parent 
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Table 10 Analysis of variance for general .and specific combining 
ability and expectations of mean squares for the 

assumptions of method 2, model I 

Source of variance 

General combining ability 

Specific combining ability 

Error 

D. F. 

P-1 

P ( P-1 ) 
2 

m 

Expectation of mean squares 

a2e + P + 2 a2 g 
p - 1 

Where a2g, a 2s and a 2e were the general, specific combining abilities 

and error variances respectively for crosses amongst P parents. 
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Useful heterosis = Fl better parent x 100 
better parent 

Inbreeding depression Fl - F2 X 100 

Fl 

A test of significance for the F1 cross mean from the mid-parent 
values was conducted by the following "t" value as suggested by Wynne 
et al. (1970). 

t = ( F
1 

. . - MP .. ) I ( 
8
3 a 2e)! 

lJ 1 J 

Where : 

Flij =the mean of the ijth F1 cross. 

MP.. = the mid parent value for the ijth cross. 
lJ 

0
2e = estimate of error variance. 

A "t-test" was used to examine if F2 cross means were 
statistically different from F1 values according to the following 
formula suggested by Al-Rawi and Kohel (1969). 

Where : 

F2 = the mean of the F2 cross. 

Fl = the mean of the F1 cross. 

o 2eF 1 = estimates of F1 error. 

o2eF = estimates of F2 error. 2 
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4.2.3 Estimation of genetic components 

The variance components were calculated from both the Griffing and 

the Jinks-Hayman diallel analyses. In the first, variance components 

were calculated according to the method described by Kempthorne and 

Curnow (1961). In the latter method (Jinks-Hayman), variance 

components were estimated according to the formula proposed by 

Crumpacker and Allard (1962). Assuming the model is adequate, the 

components of variance were calculated for the two methods of analysis 

from the expectation shown in Table 11. 

Narrow sense (h2 ) n.s. and broad sense (h 2b ) heritabilities were . s. 
estimated from the Griffing analysis, as described by Kempthorne and 

Curnow (1961), as follows: 

h2 = 2 o2gca/[ ( 2 a zgca + o2sca) + o2E] 
n.s. 

h2 = (2 azgca + ozsca)/[(2 azgca + azsca) + oZE] 
b.s. 

While in the Jinks-Hayman analysis, only narrow sense heritability 

was calculated; the method followed that used by Mather and Jinks 

(1971); i.e. 



Table 11 Expectations of the variance components from the Griffing and the tlinks-Hayman dialle1 analyses 

Variance component . Griffing Jinks-Hayman 

GCA.MS-Error MS 
General combining ability variance (a 2 gca) (No. of parents +2) 

Specific comllining ability variance (a2 sca) SCA.MS-Error MS 

Additive variance (a 2 A) 2a 2 gca 1/4 D 
(J1 
(J1 

Non-additive variance (a 2 NA) a 2 sca l/4(Hl- F) 

Genetic variance (a 2 G) a 2A + a 2 NA 1 /4 (D+H1-F) 

Environmental variance (a 2 E) Error MS Error MS 

Phenotypic variance (a 2 ph) a 2G + a 2E 1/4 (D+H1 -F)+E 
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CHAPTER III 

RESULTS AND DISCUSSION 

1. Genetic variation in lentil genotypes 

The individual analysis of variance for each environment in every 
year showed significant differences among the genotypes with respect to 
all the characters studied. Since Bartlett•s test indicated the 
homogeneity of experimenta 1 errors across a 11 environments, combined 
analyses of variance for five environments were made for each year 
separately. Then, a combined analysis of variance for 14 characters 

across all ten environments was made over the two years. 

The analysis of variance in the seasons 1984-85 (Table 12) and 
1985-86 (Table 13) showed highly significant differences between all 
sour.ces of variance, environment, genotype and genotype-environment 
interaction. But for most traits, the variance due to environmental 
effect was greater than the variance of either genotype or 
genotype-environment interaction, because the water supply differed 
radically over the five environments. The highly significant 
genotype-environment interaction variances for all characters reflect 
the differing performance of genotypes depending on water supply. 

Similarly, the combined analysis over both years showed that all 
sources of variance for the main effects (Genotypes (G), Years (Y) and 
Environments (E) and first order interactions (Y - E, Y - G and G - E) 
were highly significant (Table 14). The relative magnitudes of these 
various sources of variance will be discussed later in this chapter and 
discussion will now continue on the genetic variance. 

Estimates of the components of variance of phenotypic and 
genotypic effects over two seasons are shown in Table 15. The relative 
magnitude of the components of variance of i) genotype-environment 

interaction, ii) genotype-year interaction, and iii) 
genotype-environment-year interaction in comparison to overall 
phenotypic variance are presented as three ratios in Table 15 for the 
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14 characters. The range, mean, coefficient of genetic variation, 
broad sense heritability and expected genetic advance from selection as 
a percent of the mean are given for each trait in Table 16. The 
interpretation of these genetic parameters will be discussed for every 
group of traits as follows: 

1.1 Yield characters and harvest index 

In this section the following characters related to yield are 
discussed : biological yield/plant, seed yield/plant, straw yield/plant 
and harvest index. 

Straw yield per plant had the widest range, followed by biological 

yield per plant then seed yield per plant, with mean values of 2.43, 
3.65 and 1.22g respectively. The genetic variance component comprised 
the major proportion of the phenotypic variance component for the four 
yield characters. Seed yield had the lowest broad sense heritability 
(76.4%) among these traits. Straw yield had a high heritability 
estimate (82.1%) because of the lower magnitude of its interaction 
variance components in comparison to the other two characters. Also, 
straw yield per plant had a relative higher coefficient of genetic 
variation and consequently higher genetic advance than biological and 
seed yield per plant. Harvest index had the highest heritability 
(95.3%), but a lower coefficient of genetic variation than straw yield 
thus a lower expected genetic advance. 

Moderate broad sense heritability for seed yield per plant has 

been reported by Pandey et ~., 1980 (h2b.s. : 72.7%) and El-Hady, 1983 
(h 2b : 65%). Prem Sagar (1980) found broad sense heritability for . s. 
biological yield was 71%. These estimations were comparable with broad 
sense values estimated in this study. The broad sense heritability of 

harvest index was estimated by Prem Sagar, 1980 (h 2b.s. : 73%). 

1.2 Yield component characters 

The number of pods per plant, number of seeds per pod and 100 seed 
weight were studied as yield component characters. Number of pods per 
plant showed a wide range of 9.74 - 32.96 compared with the range of 
1.1 - 1.9 and 1.99- 6.55 for number of seeds/pod and 100 seed weight 



Table 12 Mean squares for combined (pooled) analysis of variance for 14 lentil 

Source of variance D.F. 

Environment (E) 4 

Genotype (G) 33 

G - E 132 

Pooled error 330 

characters in 1984-85 season 

Biological 
yield per 

plant 

** 352.72 

** 16.32 

** 2.08 

1. 27 

Seed 
yield per 

plant 

** 43.91 

** 1. 91 

** 0.30 

0.18 

Straw 
yield per 

plant 

** 147.88 

** 10.32 

** 1.16 

0.61 

*, **Significant at 0.05 and 0.01 level of probability, respectively. 

Harvest 
index 

* 0. 0126 

** 0.0505 

** 0.0045 

0. 0021 

(.]"! 

00 



Table 12 (continued) 

Source of variance D. F. 

Environment (E) 4 

Genotype (G) 33 

G - E 132 

Poo 1 ed error 330 

No. of pods 
per plant 

** 13802.81 

** 627.93 

** 1 21 . 73 

69.75 

No. of seeds 
per pod 

** 0.157 

** 0.990 

** 0.035 

0.023 

100 seed 
weight 

** 5. 31 

** 25.07 

** 0.130 

0.027 

P1 ant 
height 

** 3446.17 

** 198.74 

** 15.87 

6.29 

No. of 
branches 
per plant 

** 1219.83 

** 62.61 

** 9.19 

3.73 

(.}1 

\.0 



Table 12 (continued} 

Source of variance D.F. 

En v i ro nm en t ( E } 4 

Genotype (G) 33 

G - E 132 

Pooled error 330 

Time to 
flowering 

** 
2,166.65 

** 
541 . 02 

** 
9.30 

0.57 

Time to 
maturity 

** 
3,718.34 

** 
512.95 

** 
13.91 

2.46 

Seed protein 
content 

** 
24 3. 60 

** 
21 .45 

** 
0. 949 

0.484 

Co.oking 
time 

** 
995.38 

** 
765.96 

** 
20.08 

2.29 

Dehulling 

** 
4,570.11 

** 01 
0 

447.26 

** 
85.51 

12.09 



Table 13 Mean squares for combined (pooled) analysis of variance for 
14 lentil characters in 1985-86 season 

Source of variance 

Environment (E) 

Genotype (G) 

G - E 

Pooled error 

D.F. Biological 
yield per 

plant 

** 4 161.73 

** 34 4 .l 0 

** 136 0.55 

340 0.33 

**Significant at 0.01 probability level. 

Seed 
yield per 

plant 

** 14.10 

** 0.64 

** 
0.08 

0.04 

Straw 
yield per 

plant 

** 81.25 

** 3.37 

** 0.35 

0.20 

Harvest 
index 

** 0.0289 

** 0. 0590 

** 0.0027 

0. 001 5 

0"'1 



Table 13 (continued) 

Source of variance 

Environment (E) 

Genotype (G) 

G - E 

Poo 1 ed error 

No. of pods 
D.F per plant 

** 4 5853.13 

** 34 293.50 

** 136 37.31 

340 19.12 

No. of seeds 
per pod 

** 0.325 

** 0.996 

** 0.037 

0.020 

100 seed 
weight 

** 7. 01 

** 23.69 

** 0.14 

0.03 

Plant 
height 

** 4590.05 

** 163. 98 

** 14.1 3 

8 41 

No. of 
branches 
pet plant 

** 753.90 

** 18.83 

** 4.00 

2.23 

0"1 
N 



Table 13 (continued) 

. 
Source of variance D. F. 

Environment (E) 4 

Genotype (G) 34 

G-E 136 

Poo 1 ed error 340 

Time to 
flowering 

** 11808.93 

762 .2~ 

** 10.64 

1.23 

Time to 
maturity 

** 18982.12 

** 688.54 

** 12.01 

3.39 

Seed 
protein 
content 

** 
38.80 

** 16.21 

** 2.03 

0.36 

Cooking 
time 

** 
596.52 

** 800.35 

** 8.59 

0.84 

Dehu11ing 

** 
7922.09 0'1 

w 

** 1872.23 

** 238.59 

57.71 



Table 14 

Source of 
variance 

Reps. in 
environment 
Year ( Y) 

Environment (E) 

y - E 

Genotype (G) 

y - G 

G - E 

Y - E - G 

Pooled error 

Mean squares for combined (pooled) analysis of variance over two seasons of 1984-85 

and 1985-86 for 14 lentil characters 

B i o 1 ogi ca 1 Seed yield Straw yield Harvest No. of pods No .of seeds 100 seed 
D. F. yield pe!r plant per plant index per plant per pod weight 

per plant 

20 3.18 0.35 1.47 0.003 140.98 0 .01'2. 0.084 
** ic':ft * ** ** ** ** 1 185.53 48.90 43.93 0.458 16016.21 0.453 l . 679 
** ** ** ** ** ** ** 4 437.70 48.87 195.48 0.038 15769.06 0.378 11 . 97 9 
** ** ** ** ** ** * 4 72.39 8.69 31.65 0.003 3626.83 0.085 0.360 
** ** ** ** ** ** **' 33 17.21 2.08 12.16 0.107 770.31 1 .873 48.66 
** ** ** ** ** ** ** 33 3.33 0.49 1. 62 0.004 1 53.66 0.121 0.218 
** ** ** ** ** ** ** 132 1.67 0.186 1.04 0.004 81 .80 0.043 0.195 

** ** ** ** ** 132 0.98 0.188 0.48 0.003 77.52 0.030 0.072 

660 0.80 0.11 0. 41 0.002 44.58 0.021 0.031 

* **Significant at 0.05 and 0.01 level of probability, respectively. 

Q) 
.j::o 



Table 14 (continued) 

Plant No. of Time to Time to Seed Cooking 
Source of variance D.F height branches flowering maturity protein time· Dehulling 

per plant content 

Reps. in environment 20 64.74 21 . 05 2.02 20.17 2.47 3. 77 77.91 

** ** ** ** ** ** ** 
Year (Y) 1 3093.64 507.72 171307.01 123895.39 342.60 284.71 388212.27 

** ** ** ** ** ** ** 
Environment (E) 4 7302.13 1359.06 10322.98 16376.14 168. 21 1516.62 8679.65 

** ** ** ** ** ** ** 
y - E 4 620.39 587.44 3281.79 5787.80 112.59 87.70 3525.87 0"1 

c..n 

** ** ** ** ** ** ** 
Genotype (G) 33 337.39 65.56 1249.94 1172.19 34.1 5 1529.32 1668.59 

** ** ** ** ** ** ** y - G 33 29.94 16.30 41 . 54 48.80 3.94 23.96 706.84 

** ** ** ** ** **' ** 
G - E 1 32 16.67 8.10 9. 31 13.32 1.68 14. 97 1 94.97 

** ** ** ** ** ** ** 
Y - E - G 1 32 1 3.17 5.0 10.41 12.64 1.35 1 3. 17 1 34. 26 

Poo 1 ed error 660 7-.28 2.97 0. 90 2.86 0.42 1. 56 35.05 
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Table 15 Estimates of pheno!.iQj_c_io 2 ph)and genotypic (o 2 g) variance components 

and ratio of genotype-environment (aZgE), genotype-year (dgy) and 

genotype-environment-year (aZ gE'Y) to phenotypic variance 

for 14 lentil characters 

Character o2 ph o2g o 2 gE/E 02 gy_/y_ a 2 gEy_/Ey_ 
0 2 pn 0 2 ph 0 2 ph 

Biological yield/plant 0.57 0.44 0.04 0.14 0. 01 

Seed yield/plant 0.07 0.05 0.00 0.1 5 0.04 

Straw yield/plant 0.41 0.33 0.05 0.09 0.01 

Harvest index 0.004 0.003 0.01 0.01 0.01 

No. of pods/plant 25.68 20.41 0.01 0.10 0.04 

No. of seeds/pod 0.062 0.058 0.01 0.05 0. 01 

100 seed weight 1.62 1.61 0.00 0.00 0.00 

Plant height 11 . 25 10.13 0.01 0.05 0.02 

No. of branches/pi. i.96 1.54 0.05 0.08 ,-, ,-,A 
U.U't 

Time to flowering 41 . 67 40.32 0.00 0.03 0.01 

Time to maturity 5.74 4.09 0.00 0. 21 0.06 

Seed protein 1.19 1.00 0.06 0.07 0.03 

Cooking time 50.98 50.12 0.00 0 .01 0 .01 

Dehu11 ing 55.62 30.05 0.04 0.34 0.06 
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Table 16 G~notypic range, mean, coefficient of genetic variation (CGV) 

heritability (h 2b.s) and expected genetic advance from 

selection (GS%) of 14 lentil characters 

Character Genotypic Mean C.G.V h 2 b. s 
range 

Biological yield/plant 2.07 - 5.08 3.65 18.2 76.7 

Seed yield/plant 0. 77 - l. 61 1.22 18.9 76.4 

Straw yield/plant l . 26 - 4. ll 2.43 23.8 82.1 

Harvest index l 9. 51 - 40.09 34 17. 2 95.3 

No. of pods/plant 9.74 - 32.96 22.65 20.0 79.5 

No. of seeds/pod l.l - 1.9 1.45 16.6 92.9 

100 seed weight l . 99 - 6.55 4.05 31.4 99.3 

Plant height 25.5 - 41.5 33.22 9.6 90.1 

No. of branches/pl. 5.4 - ll. 7 7.42 16.7 78.5 

Time to flowering ll 7 - 137 126.25 5.0 96.8 

Time to maturity 157 - 178 166.91 1.2 71.3 

Seed protein 22.1 - 26.9 24.73 4'.0 83.5 

Cooking time 25.2 - 48.5 36.12 19.6 98.3 

De hulling 37.2 - 75.0 57.31 9.6 54.0 

GG% 

32.8 

34.0 

44.4 

34.5 

36.6 

32.9 

64.4 

18.7 

30.5 

l 0. 2 

2. l 

7.6 

40.0 

14.5 
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respectively. The variance component due to the three interaction 

effects for pods/p 1 ant was represented by 15% avera 11 phenotypic 

variance, whereas this estimate was only 7% and almost zero (0.7%) for 

number of seeds/pod and 100 seed weight traits, respectively. These 

results obviously indicate that number of pods/plant was much more 

influenced by environment and year effects than the other two 

characters. 100 seed weight, which was unaffected by environment or 

year factors, had the highest estimates of coefficient of genetic 

variation (31.4) and broad sense heritability (99.3%) among the 

components characters. These high values make the expected genetic 

advance estimate for this character very high (64.4%). Amongst the 

other two yield components, the number of pods/plant was more affected 

by environmental variation (year, environment) than seeds per pod, but 

both characters had lower heritability and coefficient of genetic 

variation than 100 seed weight. 

Broad sense heritabilities estimated in this study were in 

agreement with the estimates found by many workers. Broad sense 

heritabilities of number of pods per plant were 79.8% and 71%, 

calculated by Pandey et ~· (1980) and El-Hady {1983), respectively. 

Number of seeds per pod had a broad sense heritability value of 73.6 

(Muehlbauer, 1974); this value was less than the value estimated in 

this study. Many researchers have found high broad sense heritability 

for average seed weight. The heritability values ranged from 91% to 

98% (Singh and Singh, 1969; Muehlbauer, 1974; Pandey et ~., 1980; 

El-Hady, 1983 and Erskine et ~·· 1985). Lal and Chandra (1978) found 

the genetic advance of number of pods per plant was 32.9%. 

1.3 Morphological characters 

Plant height and number of branches per plant had wide and narrow 

ranges among all characters studied, (25.5 - 41.5 and 5.4 - 11.7 

respectively). The broad sense heritability was greater for plant 

height (90.1%) than for number of branches/plant (78.5). The 

differences in these heritability values were due to the high estimates 

of interaction variance components in number of branches/plant (17%). 

This indicates that this character was more influenced by changes in 

environment and season than plant height. The coefficient of genetic 

variation was low for plant height (9.6) and moderate for number of 

branches per plant (16.7) compared with other traits. 
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Broad sense heritability of plant height was found to be high by 

Prem Sagar (1980) and El-Hady (1983). Their estimates of heritability 

were 83% and 85%, respectively. El-Hady (1983) estimated a broad sense 

heritability of number of branches per plant, in irrigated lentil in 
Egypt, of 78%, which is equal to the heritability estimate in this 

study. Estimates of genetic advance for plant height in previous 

studies varied from n to 30% with an average of 18.4% which is 
comparable with genetic advance calculated for plant height in this 

study. 

1.4 Phenological characters 

The ranges 

characters were 
of days to 
117-137 and 

50% flowering and days 
157-178, respectively. 

to maturity 

The variance 
component due to genotype-environment effect was very low for both 

characters. The genotype-year interaction variance component was equal 
to only 3% of the overall phenotypic variance for time to flowering, 
whereas this ratio was greater, at 21%, for time to maturity, 

indicating that this character was much more influenced by seasons than 
time to flowering. These phenological characters had the lowest 

coefficient of genetic variation values of all the characters measured. 
Time to maturity also had a relatively low broad sense heritability 

(71.3%) and it had the lowest genetic advance estimate (2.1%) among all 

characters, 
heritability 

10.2%. 

whereas time to flowering had a higher broad sense 
(96.8%), but also a low genetic advance percentage of 

Singh and Singh (1969) and El-Hady (1983) obtained high values of 
broad sense heritability for time to flowering, 95.8% and 95% 

respectively, in agreement with the results in this study. For time to 

maturity, broad sense heritabi 1 i ty ranged from 1 ow va 1 ues of 46% and 

59% (Sakar, 1983) to a high estimate of 96% (Prem Sagar, 1980). The 

heritability estimation of time to maturity in this experiment was 

within the range of those values. In previous studies, Singh and Singh 

(1979) and Prem Sagar (1980) reported that the genetic advance of time 

to flowering was low, again in agreement with this study. 
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1.5 Seed quality characters 

Seed protein content, cooking time 
varied ranges of values. Amongst these 
the character most influenced by 

and dehull i ng characters had 

characters seed dehulling was 
seasons. The genotype-year 

interaction variance component represented 34% of phenotypic variance 
for dehulling, whereas this ratio was 7% and 1% for seed protein and 

cooking time respectively. Accordingly, the broad sense heritability 

was relatively low for dehulling (54%) and higher for both seed protein 

(83.5%) and cooking time (98.3%). Low estimates of coefficient of 
genetic variation were obtained for seed protein and dehulling, but the 
value was moderate for cooking time. Hence, the expected genetic 
advance was higher for cooking time (40%) than for seed protein (7.6%) 

and dehulling (14.5%). 

Erskine et £.l. (1985) found that the broad sense heritability of 
cooking time (82%) was higher than in protein content (71%), in 
agreement with the results of this study. 

There are highly significant differences among genotypes averaged 
over the environments for all characters in this study. There were 

also highly significant genotype-environment interactions which 
revealed that the performance of the genotypes in this study varied 
with different water levels. Thus these experiments make it clear that 

there are opportunities for improving 1 en til characters by se 1 ection 

within the population. 

Estimates of broad sense heritability showed that 100 seed weight, 

cooking time, time to flowering, harvest index, number of seeds per pod 
and plant height had high values of )90%. Other characters had 

moderate heritabi 1 ity va 1 ues, except dehu 11 i ng which had the 1 owes t 
broad sense heritability estimate. The magnitudes and trends of 
heritability and genetic advance estimates are comparable to those 
previously reported in lentil. 

Heritability is useful for comparing traits with respect to their 

usefulness as aids to selection. The genetic advance from selection 

depends on the heritability estimate, the magnitude of phenotypic 
variance and the proportion selected (Burton, 1952). In order to 
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determine the validity of selection, expected genetic advance should be 
obtained. 

In addition, Johnson et .!}_. (1955) stated that heritability 
estimates together with genetic gains are more useful than the 

heritability values alone in predicting the resultant effect of 

selecting the best individuals. In this study, time to flowering, 
which had a very high broad sense heritability (96.8%) had a very low 

genetic advance (10.2%) because its coefficient of genetic variation 

was low (5.0). In comparison straw yield per plant, which had a lower 

heritability (82.1%), had a high genetic advance percentage of 44.4% 
due to its high coefficient of genetic variation (23.8%). 

The 100 seed weight trait was found to be the most heritable and 

stable character. It was relatively uninfluenced by environment or 
season and had the highest coefficient of genetic variation, broad 

sense heritability and genetic advance amongst all characters studied. 
Also, straw yield per plant and number of pods/plant had moderate 
values of coefficient of genetic variation with high to moderate values 
of heritability and high values of genetic advance. 

On the basis of the relatively high heritability, coefficient of 

genetic variation and genetic advance, pronounced progress should be 

expected from selection for 100 seed weight, straw yield per plant and 

number of pods/plant. Moderate progress from selection between 
genotypes should be expected with seed yield per plant, biological 
yield per plant and harvest index. However lower genetic advance 
should be expected from selection between genotypes for time to 

maturity, seed protein and dehulling. 
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2. Inter-relationships between characters 

Associations between plant characters are of value in breeding 
programs helping in their planning and evaluation. The matrices of 

both Phenotypic and genotypic correlation coefficients between 14 
lentil characters are presented in Table 17. 

In general, the genetic correlation coefficients were slightly 
higher than, but in the same sign as, the corresponding phenotypic 
coefficients indicating that significant phenotypic correlations were 
largely due to genetic causes. Many reports provide evidence of the 
comparatively higher value of genotypic than phenotypic correlations 
{Singh and Singh (1969) and Singh et ~- (1970) in lentil and Johnson 
et ~- (1955) in soybean). 

Throughout the remainder of this section references will be made 
to genotypic correlations in order to avoid unnecessary repetition. 

Seed yield per plant correlated positively and significantly with 
harvest index, number of pods/plant, 100 seed weight and cooking time, 
but was negatively and significantly correlated with number of 
seeds/pod. The correlation coefficient values between seed yield and 
other traits were 1 ow in magnitude and non-significant. The 
correlations between seed yield and each of the following characters, 
straw yield/plant, plant height and time to flowering were intermediate 
in magnitude and non-significant, but may be referred to as positive 
relationships. 

The positive correlations between seed yield per plant and harvest 
index and number of pods/plant are comparable to those previously 
reported for 1 en til. Tej i nder Singh ( 1977) found a strong positive 

correlation between seed yield per plant with harvest index, and Singh 
and Singh (1969), and Tikka et ~- (1973) reported that number of pods 
per plant is one of the most important components determining seed 

yield per plant in lentil. 

A positive correlation between seed yield per plant and seed 

weight has bee~ found in lentil by Singh and Singh (1975) under Indian 
conditions and also by El-Hady (1983) in irrigated lentil under 



Table 17 Phenotypic (rph) and genotypic (rg) correlations for 14 lentil characters grown under 
different \'Jater -supply in two seasons 

------------------------------------------------------- ---------------

Biological yield/plant rph 
rg 

Seed yield/plant rph 
rg 

Straw yield/plant rph 
rg 

Harvest index rph 
rg 

No .of pods/plant rph 
rg 

No .of seeds/pod rph 
rg 

1 00 seed weight rph 
rg 

Plant height rph 
rg 

No.of branches/plant rph 
rg 

Time to flowering rph 
rg 

Time to maturity rph 
rg 

Protein rph 
rg 

Cooking time rph 
rg 

Seed Straw HarvestNo.of No.of 100 
yield/ yield/ index pods/ seeds/ seed 
p 1 • p 1 • p 1 • pod weight 

Plant No.of 
height bran

ches/ 
pl. 

0.57** 0.94**-0.46** 0.13 -0.64** 0.65** 0.72** 0.27 
0.55 0.94 -0.51 0.06 -0.70 0.70 0.77 0.26 

0.25 0.44** 0.67**-0.47** 0.41* 0.24 0.07 
0.23 0.45 0.65 -0.51 0.42 0.27 0.04 

-0.76**-0.13 -0.54** 0.60** 0.75** 0.32 
-0.78 -0.19 -0.59 0.63 0.78 0.32 

0.59** 0.18 -0.31 -0.58**-0.22 
0.62 0.19 -0.32 -0.63 -0.24 

-0.12 -0.27 -0.13 0.17 
-0.11 -0.29 -0.15 0.18 

-0.83**-0.53** 0.24 
-0.85 -0.56 0.28 

0.59**-0.26 
0.61 -0.29 

-0.11 
-0.17 

Time Time Prot- Cook- Dehul-
to fl. to nat. ei n i ng 1 i ng 

time 

0.54** 0.68** 0.46** 0.5-6**"0;44** 
0.57 0.74 0.53 0.60 0.50 

-0.27 -0.10 -0.01 0.37* 0.15 
-0.29 -0.12 -0.02 0.41 0.20 
0.76** 0.84** 0.55** 0.49** 0.45** 
0. 80 0. 91 0. 64 0. 53 0. 50 

-0.91**-0.88**-0.57**-0.23 -0.28 
-0.96 -0.93 -0.61 -0.24 -0.34 
-0.33 -0.35* -0.15 -0.26 -0.04 
-0.37 -0.40 -0.18 -0.27 -0.04 
-0.24 -0.42* -0.16 -0.41* -0.35* 
-0.24 -0.44 -0.19 -0.45 -0.37 
0.26 0.48** 0.17 0.95** 0.35* 
0.27 0.49 0.18 0.96 0.37 
0.62** 0.74** 0.52** 0.54** 0.34* 
0.65 0.80 0.58 0.56 0.36 
0.37* 0.20 0.23 -0.33 0.09 
0.40 0.21 0.26 -0.38 0.10 

0.92** 0.59** 0.19 0.24 
0.95 0.63 0.20 0.27 

0.59** 0.40* 0.35* 
0.64 0.42 0.40 

0.15 0.14 
0.17 0.19 

0.25 
0.27 

'-J 
w 
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Egyptian conditions. However, some other researchers found negative or 

no correlation between both characters (Singh and Singh, 1969; Singh 

et ~., 1970; Muehlbauer, 1974 and Tejinder Singh, 1977) in lentil. 

An explanation of the significant and positive correlation between seed 

yield and 100 seed weight obtained in the present study should be 

attempted. The 34 genotypes in this study can be divided, on the basis 

of 100 seed weight, overall environments and years, into four groups; 

(l) 100 seed weight less than 3g (7 genotypes), (2) 3.1 - 4g (9 

genotypes), (3) 4.1 - 5g (ll genotypes) and (4) above 5.lg (7 

genotypes). These four groups produced average seed yield/plant of 

0.90, 1.27, 1.37 and 1.27g respectively. The average numbers of 

pods/plant for these groups were: 22, 24, 23 and 18 respectively. 

These data indicate that the increase of 100-seed weight increased 

number of pods/plant and thus seed yield for the first three groups. 

In comparison, low yield in group 4 was due to fewer pods/plant and 

fewer seeds/pod in relation to the large seeded types (above 5.lg/l00 

seeds). Consequently, a significant and positive correlation between 

seed y~fld and seed weight occurred in this study, but it was not high 

in magnitude. 

The positive and significant correlations between seed yield and 

both 100-seed weight and number of pods/plant, in addition with the 

high heritabilities of these traits, suggests the use of these two 

characters in indirect selection for seed yield. 

In order to compare the efficiency of indirect selection through 

selection for 100 seed weight or for number of pods/plant, the ratio of 

expected response was calculated according to the following formula 

suggested by Falconer, 1981; CR /R = rg /(ixhx/iyhy), where R is 
X X xy X 

the direct response of the seed yield, if the selection was applied 

directly to it, and CR is the correlated response of the seed 
X 

yield/plant resulting from selection applied to the other trait, rgxy 

is the genotypic correlation coefficient between seed yield and the 

other trait, ix and iy are the respective intensities of selection for 

yield and the other trait, hx and hy are the respective heritabilities 

for yield and the other trait. 
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The ratio was 0.55 if indirect selection was applied to 100-seed 

weight, whereas it was 0.69 if selection was performed on number of 
pods/plant. These results indicate that improving seed yield by 

selection for pods per plant should be more efficient than selection 
for seed weight. Malhotra et .!!_. (1973) also reported that maximum 

weight should be given to pod number and cluster number during 
selection for high yielding lines in lentil. It should be mentioned, 
however, that counting the number of pods on a plant is a more 

laborious operation than measuring its seed yield. 

Biological yield and straw yield/plant shows similar relationships 

with other characters. Both traits had strong positive correlations 
with 100 seed weight, plant height, time to flowering, time to 

maturity, protein, cooking time and dehulling per cent and strong 

negative correlations with harvest index and number of seeds/pod. 

The correlation coefficient between straw and biological yield/plant 

was 0.94, unsurprisingly high in view of the fact that most of the 
biological yield is straw. 

Although the correlation between seed yield and straw yield was 

not significant, it was positive and was 0.25 and 0.23 for phenotypic 
and genotypic correlation respectively, revealing that it is possible 
to select for high seed yield and straw yield plants. Erskine (1983) 
found the genotypic correlation between seed yield and straw yield was 

0.76. 

The relationships among the three yield components, number of 

pods/plant, 100 seed weight and number of seeds/pod, showed no 

association between number of pods/plant with either of the other 
components. Moreover, there was a strong negative corre 1 ati on 

between 100 seed weight and number of seeds/pod. These results 

indicate that it would be difficult to achieve a response to selection 

for high levels of these two characters simultaneously. 

Number of pods per plant was correlated negatively with time to 

flowering, indicating the possibility of selecting for earliness and 

high number of pods. Singh and Singh (1969) also found strong negative 

correlation between time to flowering and number of pods per plant. 
Number of seeds per pod showed significant negative correlations with 
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plant height, time to maturity, cooking time and seed dehulling 
percent. Basant et ~· (1983) also found negative correlation between 
seeds/pod and time to maturity, and seeds/pod was unrelated with most 
other characters. 100 seed weight was strongly correlated with cooking 
time, plant height, time to maturity and dehulling. These results 

agreed with those previously reported in lentil. 

Number of branches per plant (primary and secondary branches) was 

only correlated, negatively, with harvest index and 100 seed weight. 

Its correlation coefficient with seed yield/plant was very low in 
magnitude. Tejinder Singh (1977) found that number of primary and 

secondary branches had negative direct effects on seed yi e 1 d. She 

observed that a bushy plant type results in relatively more plant dry 

matter than seed yield, and hence lower harvest index. She suggested 
it would thus be desirable to develop varieties with less branching to 
allow better light penetration through the plant canopy fOl~ good pod 

formation. In the present investigation, the results indicate that it 

is possible to select for high seed yield/plant with a reduced number 
of branches/plant. 

Some other correlations were positive and relatively large. These 
were: plant height with time to flowering, time to maturity, protein, 
cooking time and dehulling. Also, time to flowering and time to 
maturity were strongly correlated together and both characters were 

positively correlated with protein. 

No relationship was detected between seed quality characters, 

protein, cooking time and dehulling, but high biological yield and 

straw yield per plant correlated positively and significantly with 

these traits. 

The similarity in the signs and magnitudes of phenotypic and 

genotypic correlations indicated that visual selection of characters 
positively correlated with seed yield was of value in identifying high 

yielding genotypes. 

The results suggested that selection for medium-large seeded 
genotypes and high number of pods per plant would be an efficient 

method for improving seed yield. 
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3. Exploitation of the genetic variation in response to irrigation 

The combined analysis of variance (Table 14) showed that all 
sources of variance were highly significant, indicating the importance 
of genotype, year, environment and genotype-environment and 
genotype-year interactions as factors affecting the lentil under 
different water supply regimes. The relative size of the variance due 
to these various factors differed from trait to trait. 

In this section, the variation due to each factor and its effect 
on different lentil characters will be presented to direct a lentil 
breeding programme for response to irrigation. 

3.1 Variation between genotypes 

As the results in Table 14 showed there were highly significant 
differences among the genotypes, for all characters, when tested 
against pooled error, and when tested against genotype-environment and 
genotype-year interactions. These results confirmed the presence of 
substantia 1 differences among genotypes for a 11 characters. 

The average performances of the 34 genotypes, over a 11 
environments and years, for 17 lentil characters are given in Table 18. 

The average seed yield over all genotypes, environments and years 
was 1707 kg/ha. The highest yielding genotypes were FLIP84-67L, ILL241 
and FLIP84-27L with no significant differences between them, followed 
by 74TA264. These genotypes have average 100 seed weights between 4 to 
5g. In comparison, the lowest seed yield was obtained from genotypes, 
ILL1983, Pant.L,406 and ILL2573, which have 100 seed weight of less 
than 2g. Inde;d no small seeded genotypes (less than 2g/l00 seeds) 
showed superiority of seed yield (kg/ha). However, several large 
seeded genotypes a 1 so produced 1 ow yi e 1 d, such as Oku 1 a ( 6. 04g/ 1 00 
seed) which yielded 1099.3kg/ha. 

The high yielding genotypes' showed also high biological and straw 

yield. ILL241, 74TA264 and FLIP84 -67 L gave the highest biological 

yield of above 6100 kg/ha. The average harvest index for these 
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Table 18 The overall means of 34 genotypes evaluated in 5 environments in two seasons 

Genotype Seed yield Biological Straw yield Seed yield Biological Straw yield Harvest Pods 
kg/ha yield kg/ha /plant yield/plant /plant index /plant 

k /ha 
Giza 9 1855.24 5430.46 3575.22 l. 33 3.85 2.52 0.36 24.82 

Family 130 1432.53 5046.36 3613.84 1.14 4.00 2.85 0.29 29.05 

Selaim 1793.41 5306.85 3513.44 1.08 3.15 2.08 0.35 19.45 

ILL 1693 1283.41 3257.66 l 974. 26 0.90 2. 31 1 . 41 0.39 1 9.01 

ILL 1983 1071.97 2890.19 1818.22 0.76 2.07 1 . 31 0. 38 19.44 

ILL 40 1842.29 5214.23 3371 . 95 0.23 3.48 2.25 0.36 21 . 71 

ILL 241 2242.41 6492.57 4250.15 1.46 4. 21 2.75 0.35 32.96 

SLL,ILL 4400 2080.39 6007.41 3927.02 l. 61 4.53 2.93 0.36 23.03 

SLS, ILL 4401 1769.83 4970.83 3201 .0 1.23 3.42 2.19 0.36 23.04 

Jord. Loc. 2010.32 5340.0 3329.69 l. 51 3.97 2.45 0.38 27.80 

76TA6600S 2143.80 5597.87 34 54 .07 1.46 3. 77 2.32 0.38 25.28 

78526003 1956.07 4960.37 3004.30 1.36 3.41 2.05 0.40 29.11 

78526004 2025.04 5403.70 3378.67 1.50 4.02 2.53 0.39 29.93 
76TA66088 2153.26 ,5724.36 3571 . 09 1 . 43 3. 77 2. 34 0.38 27.01 
ILL 857 2135.33 5703.52 3568.19 1.48 3.93 2.45 0. 38 25.29 
Laird 1242.13 577.32 4528.20 1.01 4.69 3.67 0. 21 14.38 
! LL 121 1 362.93 5358.66 3995.73 0.99 3.84 2.85 0.27 23.70 
74TA 161 1018.66 5373.15 4354.49 0.97 5.08 4.11 0.20 14.55 
Lenka 1282.12 4580.05 3297.93 0.95 3.36 2.41 0. 28 16.52 
Oku1 a 1099.30 5268.20 4168.91 0. 77 3.75 2. 98 0. 20 9.74 
74TA 276 2001.92 5536.62 3534.70 l. 53 4.18 2.65 0.37 24.47 

74TA 212 1614.90 5655. 31 4040.41 1.29 4.38 3.09 0.28 24.68 

ILL 274 1603.89 5628. 1 2 4024.24 1.18 4.07 2.89 0.28 23.53 

ILL 355 1308.39 4880.19 3571 .80 1.01 3.72 2. 71 0.27 14.28 
ILL 358 1844.19 4655.82 2811 . 63 1. 27 3.19 l. 92 0.40 25.51 

Precoz 1527.55 3929.91 2402.36 1.22 3.11 1.89 0.39 16.69 

Pant.L,406 1144.60 2929.80 1785.21 0.82 2.07 l. 26 0.40 22.38 

ILL 2526 1352.32 3423.96 2071.64 0.88 2.25 1 . 37 0.39 21.30 

ILL 2573 1150.46 3046.06 1895.60 0. 77 2.07 1. 29 0.38 20.68 

74TA264 2138.39 6242.78 4104.40 1. 51 4.35 2.84 0.34 23.32 

FLIP 84,1-L 1 970.81 5728.29 3757.48 1.35 3. 91 2.56 0.34 23.77 

FLIP 84,27-L 2200.66 5851.27 3650.62 1.49 3.96 2.47 0. 38 26.07 

FLIP 84,67-L 2349.17 6163.33 3814.1 7 1.50 3. 97 2.46 0.38 27.18 

FLIP 84, 78-L 2015.87 55 93.52 3577.65 1.48 4.09 2. 61 0.36 20.35 

5E± 84.52 208.39 156.62 0.09 0.23 0.16 0.01 1. 72 



Genotype 

Giza 9 

Family 130 

Se1a im 

ILL 1693 

ILL 1983 

ILL 40 

ILL <41 

SLL,ILL 4400 

5L5,ILL 4401 

Jord. Loc. 

76TA66005 

78526003 

78526004 

76TA66088 

ILL 857 

Lafrd 

ILL 121 

74TA 161 

Lenka 

:>kula 

74TA 276 

74TA 212 

ILL 274 

ILL 355 

ILL 358 

Precoz 

Pant. L,406 

ILL 2526 
ILL 2573 

74 TA264 

FLIP 84,1-L 

FLIP 84,27-L 

FLIP 84,67 -L 

FLIP 84, 78-L 

· 5E~ 

Seeds 
/pod 

1. 67 

1. 6 7 

1 . 73 

1. 73 

1.85 

1.68 

1.13 

1.11 

1. 67 

1. 31 

1. 37 

1.06 

1.07 

1.44 

1. 37 

1.10 

1 .61 

1. 56 
, '0 
I ,'-t(. 

1. 29 

1.16 

1.42 

1 .40 

1. 22 

1.69 

1. 52 

1. 80 

1.85 

1.88 

1.15 

1. 53 

1. 34 

1. 30 

1. 32 

0.04 

Table 18 (Continued) 

100 seed 
weight 

3.33 

2.43 

3.30 

2.76 

2. 1 3 

3.46 

4. 09 

6.55 

3. 2 9 

4.28 

4.30 

4.48 

4.76 

3.68 

4.39 

6.37 

2.65 

4.23 

4.08 

6.04 

5.48 

3.59 

3.58 

5.83 

3.02 

4. 97 

2.07 

2.28 

1. 99 

5.82 

3.83 

4. 41 

4.38 

5. 70 

0.05 

Plant 
height 

31.88 

37.67 

31 .04 

28.65 

26.26 

31 . 6 7 

31.99 

35.82 

31.58 

33.40 

33.09 

32.66 

31.59 

34.18 

33.12 

41.50 

35.22 

33.38 

38.41 

36.04 

32.45 

35.18 

35.24 

35.43 

32.90 

30.86 

26.78 

31.38 

25.52 

36.85 

34.24 

33.13 

33.64 

36.81 

0. 70 
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Branches 
/plant 

9.54 

7.25 

8.41 

7.20 

6.64 

8.52 

9.39 

7.74 

8.18 

7.01 

6.23 

6.20 

7.52 

6.72 

6.95 

6.20 

9.54 

11 .69 

5.38 

5.88 

7.57 

10.27 

9.71 

6.06 

6.93 

7.05 

6.17 

6.76 

6. 90 

6.62 

8.14 

6.04 

5.99 

5. 81 

0.45 

Days to 
flow. 

125.30 

137.07 

125.13 

118.40 

11 9. 63 

125.10 

128.37 

126.33 

124.50 

123.00 

120.03 

123.00 

122.40 

123.37 

122.27 

136.16 

134.20 

139.50 

130.99 

137.43 

124.00 

136.20 

135.30 

134.37 

122.23 

116.53 

119.40 

122.20 

119.20 

126.80 

128.87 

120.47 

119.93 

121. 7C 

0.25 

Days to 
mat. 

165.77 

174.71 

164.30 

156.30 

158.14 

164.94 

168.61 

168.93 

164 .47 

164.53 

165.4 7 

164.13 

163.97 

162.49 

165.17 

176.92 

173.36 

178.26 

173.55 

177.50 

166.24 

174.44 

173.97 

176.00 

162.87 

159.02 

160.37 

158.37 

156.79 

168.69 

167.73 

163.79 

163.13 

172.'"13 

0.44 

Seed prot
ein content 

24. 57 

25.87 

24.96 

24.27 

23.23 

24. 55 

24. 37 

24.48 

24.86 

24.27 

23.28 

23.96 

24.28 

25.81 

24.39 

24.55 

25.94 

26.45 

26.94 

25.39 

25.37 

26.45 

26.19 

25.7 2 

24.26 

24.77 

23.28 

24.06 

22.12 

24.24 

23.54 

25.27 

25.32 

23.70 

0. 17 

Cooking 
time 

2 9.4 3 

27.4 9 

31 . 70 

27.14 

27.22 

31 . 7 4 

33. 24 

48.63 

32.53 

36.47 

36.93 

41 . 3 7 

40.33 

33. 7~ 

38.17 

47.07 

25.98 

35.23 

39.33 

46.53 

46.82 

34.64 

33.03 

46.83 

37.03 

45.07 

26.07 

25.24 

25.37 

45. so 
36.02 

35.77 

37 .81 

42.50 

0.32 

Dehull ing 

53. 91 

52.02 

56.24 

53.99 

52.86 

57.66 

59.58 

69.07 

57.46 

56.12 

63.03 

56.31 

64.68 

4 9.60 

58.89 

75.04 

61.17 

60.57 

53.51 

55.26 

51 . 59 

64.77 

62.32 

55.91 

55.54 

50.26 

53.55 

37.22 

56.51 

72.85 

41 . 32 

58.33 

59.46 

61.91 

1. 53 
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genotypes ranged from 34-38%. The genotypes 78526003, ILL358 and 

Pant.L,406 gave the highest harvest index ratios, of 40%, among all 

lines, but their yields were not high. In comparison, Laird, 74TA161 

and Okula gave the lowest harvest index ratios of 20-21% and, 

therefore, produced the highest straw yield (kg/ha). These genotypes 

showed the same trend for their per plant seed, biological and straw 

yields as in their yield per unit area (Table 18). 

The average seed yields and straw yields (kg/ha) in this study 

were higher than those previously reported in 1 en til. The mean seed 

yield and straw yield of 24 genotypes grown in Tel Hadya (Syria) and 

Terbol and Kfardan (Lebanon) were 1223 kg/ha and 3166 kg/ha, 
respectively (Erskine,l983), compared to 1707 and 3381 kg/ha in this 

study. 

Genotype ILL241 exhibited the highest number of pods per plant (33 

pods) among all genotypes. In comparison, Okula and Laird produced 9 
and 14 pods/plant and ranked last. The average number of pods/plant in 

this study was 23 pods. This mean value with the overall mean of seed 

yield/plant in this study was lower in magnitude than those found in 
the literature. This was due to the fact that the estimation of those 

traits in this study was done on crop density, and not on the basis of 

individual spaced plants as in most previous studies in lentil. 

The genotypes varied widely in plant height, number of branches 
per plant, time to flowering and time to maturity as showing by their 

mean values presented in Table 18. 

The overall mean of seed protein content was 24.7% giving a 
protein yield of 422 kg/ha. There were consistent differences between 
genotypes in protein content, but only a small range of 22.1 to 26.9%. 

Four lines exhibited a protein percentage above 26%, these being 

74TA16l, Lenka, 74TA212 and ILL274. Erskine et ~· (1985) also found 
differences between 1 en til genotypes for protein content and these 
averaged 27% with 330 kg/ha protein yield. 
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The overall mean time for cooking was 36.1 minutes. The large 
seeded genotypes took a longer time to cook than small seeded entries. 

Laird and ILL4400 which had the highest seed weight took the longest 
time to cook, with 47.1 and 48.6 minutes respectively. In contrast, 

the quickest genotypes to cook were small seeded entries such as 
ILL2526 (25.2 min.). These results agreed with those of Erskine et al. 
(1985). 

The results in Table 18 showed consistent differences between 
genotypes in dehulling percent. In general the large-seeded genotypes 
dehulled more easily than small seeded ones and thus large seeded lines 

had higher dehulling percent values. However, there were consistent 

differences between genotypes within each group. For example, in the 
large seeded group, Laird and 74TA264 had average seed weights of 6.37 

and 5.82g/100 seeds respectively and exhibited dehulling percentage of 

75 and 73%. In comparison, ILL355 and Okula also had high 100 seed 
weight of 5.83 and 6.04g, but their dehulling percentages were only 56 

and 55%. Similar differences were observed in small seeded genotypes; 
ILL121 (2.65g/100 seed) exhibited 62% dehulling seeds, while ILL2526 

(2.28g/100 seed) showed a dehulling percentage of only 37% and was the 
lowest recorded value among all genotypes. 

These results confirmed that there were intergenotypic differences 

in the ease of removing the seed coat and splitting the seed into its 
dicotyledonous components (dehulling). The degree to which seeds are 
able to resist splitting'is at least partly related to seed morphology 

and anatomy (Reichert et ~., 1984). The very poor dry-dehulling 
characteristic. of some cowpea varittties was observed by Dedah and 

Stanley (1979a, b), who suggested that varieties with thick, smooth 

seed coats (highly organized palisade cells) dehulled more 
satisfactorily than those with thin, rough seed coats (amorphous seed 

coat structure). Reichert et ~- (1984) observed that a black-eyed 
cowpea which had somewhat thicker seed coat also had a higher dehulling 

efficiency than did the brown cowpea variety. Another relevant 

morphological aspect is the large cavity between the cotyledons of 
kidney beans (Bourne, 1967), probably responsible for the total 

splitting of the seeds of this crop during dehulling (Reichert et ~ .• 

1984). 
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It is worthwhile noting that ILL2526, which had the lowest 

dehulling percent among all genotypes in this study, is a black seed 

coat genotype. Because lentils with black seed coats are generally 

high in tannin content (Vaillancourt and Slinkard, 1983), consequently 

the high content of tannins may have caused difficulty in removal of 

the seed coat. 

In general the results indicated that the genotypes differed. 

significantly in seed yield and all other characters, reflecting the 

presence of wide genetic diversity under different water supply 

regimes. These results, with the high genotypic variance for seed 

yield, allow selection for higher-yielding genotypes under irrigation. 
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3.2 Seasonal effects 

Rainfall and air temperature and their distribution during the 
crop growth periods of 1984-85 and 1985-86 seasons at the three 
locations are presented in Figures 1 and 2. The mean performance for 

17 lentil characters, over all genotypes and environments are given in 

Tab 1 e 19. The mean performances, over a 11 genotypes, for a 11 

characters at the five environments in these two seasons are shown in 
Table 20. 

In general, the mean performances decreased in the second season 

for all characters, except plant height, time to flowering, time to 
maturity and cooking time (Table 19). These revealed that the growth 

conditions were more favourable in the first season. 

The season 1984-85 was wetter at all sites than the following 
season with 373 and 316mm rain received in the two seasons respectively 

in Tel Hadya. Terbol and Breda received 433 and 253mm of rainfall in 
the first season, whereas in the same period in the second season they 
received 358 and 203mm of rain respectively (Figure 1). Consequently 
the yield characters, as well as most of the other characters, 

decreased in the second season in Tel Hadya and Breda, but not in 
Terbol. For example, seed yields at Breda and Tel Hadya (unirrigated) 

were 599 and 2195 kg/ha in 1984-85 (Table 20), but in the following 
season the trial means had dropped to 531 and 1931 kg/ha respectively, 

representing declines in yield of 11 and 12%. 

Seed yield (kg/ha) was closely related to seed yield/plant. 

Except, in the second season, at Terbol where there was the highest 
seed yield/plant, but a lower seed yield (kg/ha) than in Tel Hadya. 

This was due to low number of plants/plot at Terbol, resulting from an 
early dry spell of l8mm after sowing (during November 1985) compared 

with 70mm during November 1984 (Figure 1) which reduced germination. 

Although biological yield (kg/ha) was not affected significantly 

by season, harvest index decreased in the second season because of the 
increase of straw yield and decrease of seed yield {kg/ha) (Table 19). 
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Table 19 Seasonal effect on the performance of 17 lentil 

characters over all genotypes and environments 

Character 

Seed yield kg/ha 
Biological yield kg/ha 

Straw yield kg/ha 

Seed yield/plant 

Biological yield/plant 

Straw yiel~/plant 

Harvest index 

Number of pods/plant 

Number of seeds/pod 

100-seed weight 

Plant height 
Number of branches/plant 

Time to flowering 

Time to maturity 

Seed protein content 
Cooking time 

Dehulling 

1984-85 

1 797. 17 

5018.39 

3221.22 

1.44 

4.07 

2.63 

36 

26.6 

1.43 

4. 1 

31.5 

8. 1 

139.2 

177.9 

25.3 
36.7 

76.8 

1985-86 

1615.98 

5155.83 

3539.85 

1.00 
3.22 

2.22 

32 

18.7 

1.47 

4.0 

35.0 

6.7 
113.3 

155.9 

24.2 

35.6 

37.8 

SE± 

109.07 

305.30 

198.38 

0.05 

0.17 

0.11 

0.3 

0.95 

0.01 

0.01 
0. 21 

0.35 

0.07 

0.35 

0 013 

0.10 

0.41 



Table 20 The overall means for 17 characters of lentil grown at five environments in two seasons 

1984 - 85 season 1985 - 86 season SEt * 
Character 

Seed yield kg/ha 

Biological yield kg/ha 

Straw yield kg/ha 

Seed yield/plant 

Biological yield/plant 

Straw yield/plant 

Harvest index 

No. of pods/plant 

No. of seeds/pod 

100-seed weight 

Plant height 

No. of branches/plant 

Time to flowering 

Time to maturity 

Seed protein content 

Cooking time 

Dehulling 

Tel Hadya Terbol Breda Tel Hadya 

T1 T2 T3 (Ter) (Br) T1 T2 T3 

21 95 

6042 

3847 

l. 66 

4.64 

2325 

6526 

4202 

l. 81 

5.14 

2809 

7880 

5070 

2 012 

5.97 

2.98 3.33 3.85 

36.7 35.7 36.4 

30.9 32.9 37.8 

1.43 1.47 1.45 

4.08 4.04 4.20 

33.8 35.5 36.9 

10.1 10.5 11.2 

13501 13702 137.1 

172.4 174.8 177.9 

26.30 26.26 25055 

37.17 36.74 38094 

80.68 78.40 75.88 

1057 

3051 

1994 

1.17 

3.42 

599 

1593 

993 

0.44 

1.19 

1 938 

582tl 

3891 

l.l 0 

3.33 

2011 

6457 

4446 

l. 13 

3.65 

2124 

6744 

4620 

1.19 

3. 81 

2.25 0.75 2.23 2.52 2.62 

34.4 37.3 33.8 31.6 32.0 

23.6 7.9 19.9 20.5 20.1 

l . 43 1 . 37 l . 51 1 . 53 l . 50 

3.;'5 4.37 4.01 3.96 4.25 

28.4 22.8 36.5 40.6 37.2 

5.2 3.6 7.1 7.6 7.0 

146.9 139.7 110.6 112.8 112.3 

188.1 176.4 153.8 156.9 161.1 

22.60 25.83 24.75 24080 23.50 

31.36 39.01 34.76 35081 38.62 

65.88 83.25 36.41 34.07 29.37 

* SEA, Standard error to compare environments in the same level of year. 
SEB, Standard error to compare years in the same level of environment. 

Terbol Breda 

(Ter) (Br) 

Overall 
mean 

A B 

1476 

5108 

3632 

532 1706057 90063 135089 

1642 5087011 274009 391.54 

llll 3380054 191.66 262018 

l. 23 

4023 

0035 

1.07 

l. 22 

3065 

3001 0072 2043 

29.3 3207 34.00 

26.5 6.4 22065 

1.40 1.43 1.45 

3059 4022 4005 

3706 2305 33022 

704 203 7042 

13001 10007 126025 

17203 13504 166091 

24004 23066 24073 

32003 36073 36012 

36081 52034 57031 

Oo08 

0024 

0016 

009 

1.66 

0 0 01 

0004 

1.20 

0062 

0 018 

0059 

0 .. 20 

0029 

l. 33 

0009 

0027 

0 019 

008 

1.77 

0.02 

0004 

l. 09 

0066 

0018 

0063 

0022 

0028 

l. 26 

1.0 
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Interestingly, however, the rainfall distributions of the two 

years differed with only 14rnm being received during April to May 1985 

(Figure 1), in contrast to 52mm in the corresponding period in the 
following year at Tel Hadya, with the result that irrigation during 

this pod-filling period led to a response in yield of 28% in 1984-85 

and a lower response of only 10% in 1985-86. 

The 1984-85 season was colder than the following season at all 

locations {see Figure 2). This resulted, in general, in less 

vegetative growth as indicated by average plant height of 31.5cm in the 

first season comparing with 35cm in the second season (Table 19). 

However, at Tel Hadya and Breda, in 1984-85, the temperature was below 

zero for only about two weeks during the end of vegetative growth 

period (Figure 2). This caused little cold damage. In comparison, at 
Terbol the temperature decreased to below zero during vegetative growth 

for a period of about 13 weeks (Figure 2). This long period of low 

temperature at Terbol reduced the plants growth and final seed yields. 
In the second year the minimum temperatures were much higher than in 
the first year. The plant height in the first season was only 28.4cm, 
but it increased to 37.6cm in the second year and also number of 
branches/plant increased from 5.2 to 7.4. Consequently, the seed yield 

increased from 1057 kg/ha in the first season to 1476 kg/ha in the 
second season, representing an increase in yield of 40% (Table 20). 

The most dramatic effect of year was on time to flowering, time to 
maturity and dehulling percent. The overall mean of time to flowering 

and maturity in the second year were earlier than in the first! year by 

26 and 22 days, respectively. These differences can be attributed to 
temperature differences between years, because the temperature affects 

not only the rates but also the duration of many processes that affect 

plant growth (Summerfield, 1981). The reduction of air temperature 

(<l0°C) caused delayed flowering and extended crop duration in lentil 

(Wilson, 1977). 

The dehulling percentage in the first year was 76.8 (over all 

genotypes and environments); in comparison, this percentage decreased 
in the second year to only 37.80%. This result revealed that the 
season had a major influence on seed dehulling. Cooking time decreased 
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in the second year, indicating the presence of a year effect on cooking 

time. Bhatty et ~· (1983 and 1984) also reported that location and 

season of growth had a major effect on the cooking quality in lentil. 

The significance of genotype-year interactions (Table 14) 

indicated that there were changes in the relative rankings or 

magnitudes of differences among genotypes over years. An interesting 

example of this interaction was for Family 370 (the Egyptian line) 

which was completely killed by frost damage in the 1984-85 season, but 

survived in the second season. 

Large genotype-year interactions are common in varietal trials. 

As an example, Rasmussen and Lambert (1961) found the variety-year 

component was more than four times as large as the variety-location 

component in barley trials over four years at eight locations in 

Minnesota. This is because the year effect includes fluctuations in 

weather, such as amount and distribution of rainfall and temperature, 

which are unpredictable. In this case, Allard and Bradshaw (1964) 

emphasized the importance of testing a set of genotypes in a series of 

locations over a series of years. 
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3.3 Environmental effects 

The environmental effects represented high proportion of variation 

for seed yield, biological yield and straw yield/plant, accounting for 

45%, 61% and 68% of the overall variance, respectively (Table 14). 
These effects were also high for plant height, number of branches per 

plant, cooking time and number of pods per plant and ranged from 44% to 

64% of the overall variance. In comparison, the environmental effect 

represented a small amount of the overall variance for other 

characters. For example, it was 12.5% for number of seeds/pod, 18.9% 

for 100 seed weight and 2.2% for seed dehulling (but it was also highly 

significant). These results indicated that there were fluctuations in 
the environmental conditions throughout the experiments. 

In this section the comparisons between environments will be made 

in two ways; firstly across locations by comparing the trait 
performances in Tel Hadya, Terbol and Breda locations and secondly 
comparing the trait performances between irrigation regimes T1, T2 and 
T3 at Tel Hadya (effect of irrigation). 

3. 3. 1 Effects of location 

The overall means for 17 characters at the three locations; Tel 

Hadya rainfed (unirrigated) (T1), Terbol (Ter) and Breda (Br) are shown 

in Table 21. 

The performances of most characters were higher in Tel Hadya than 
in other locations, indicating the superiority of Tel Hadya. The mean 

seed yi e 1 d across the three 1 ocati ons was 1300 kg/ha. The mean seed 
yield at individual locations varied by an order of three from 566 

kg/ha at Breda to 2066 kg/ha at Tel Hadya, emphasizing the contribution 
of environmental variation to total variability. The superiority of 

seed yield at Tel Hadya was due to a higher performance of its yield 

components; number of pods/plant and number of seeds/pod. 

Biological yield and straw yield had a similar trend among 

locations to seed yield kg/ha and thus the harvest index was also 
higher at Tel Hadya than at other locations. 



Table 21 

Cha rae ters 

Seed yield kg/ha 

Biological yield kg/ha 

Straw yield kg/ha 

Seed yi el d/pl ant 

Biological yield/plant 

Straw yield/plant 

Harvest index 

No. of pods/~lant 

No. of seeds /pod 
100 seed weight 

Plant height 

No. of branches/plant 

Time to flowering 

Time to maturity 

Seed protein content 

Cooking time 

Oehu11 i ng 

The location mean and standard error of 17 lentil characters over years at 

Tel Hadya rainfed (Tl), Terbol (Ter) and Breda (Br) 

Location 
Mean + S.E.-

Tl Ter Br 

2066.31 1266.57 565.58 1299.49 . 64.08 

5935.01 4079.56 1617.51 3877. 36 193.81 

3868.70 2812.99 1 051 . 94 2577.88 135.52 

1. 38 1.20 0.39 0.99 0.06 

3.99 3.83 1.13 2.98 0.17 

2.60 2.63 0. 74 1. 99 0.12 

35.2 31.9 35.0 34.03 0.6 

25.4 25.1 7.2 19.21 1.18 

1.47 1.41 1.40 l. 43 0.01 

4· .05 3.67 4.29 4.00 0.03 

35.1 32.7 23.2 30.33 0.85 

8.6 7.4 3.0 6.32 0.44 . . 
122.9 138.5 120.2 1 27. 1 9 0.13 

163.1 180.2 155.9 166.40 0.42 

25.5 23.3 24.7 24.53 0.104 

36.0 31.7 37.9 3 5. 18 0.20 

58.6 51.4 67.8 59.23 0.94 

1.0 
()"I 
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Tel Hadya produced the tallest plants among locations with an 

average of 35.lcm, comparing with 32.7 and 23.2cm at Terbol and Breda 

respectively. Also the number of branches/plant was higher at Tel 

Hadya. These results revealed that the vegetative growth was better at 

Tel Hadya and reflects the presence of the appropriate growth 
conditions at this location. Breda (the dry site) produced the 

earliest plants in flowering and maturity, the brevity of the 
intervening period reflecting the water stress which severely reduced 
the length of the life cycle of plants. 

Differences between locations for seed protein existed but with a 

narrow range of 23.3-25.5%. There was also a significant effect of 
location on cooking time and dehulling percent. The seeds from Terbol 
cooked quickly but had the lowest dehulling percent of 51.4%. 

3.3.2 Effects of irrigation 

A perusal of the data in Table 20 indicates that two irrigations, 

at pre-flowering and pod-filling stages, significantly increased most 

of the characters studied. 

The mean seed yield across the three irrigation treatments, T1 , T? 
I L. 

and T3, over years, was 2234 kg/ha with the range of 2066 kg/ha in T1 
(unirrigated) to 2467 kg/ha in T3 (two irrigations). Irrigation at the 
pre-flowering stage increased seed yield by 5% over the control (T1), 

whereas irrigation twice (T3) increased seed yield kg/ha by 14% and 19% 

over one irrigation and no irrigation treatments respectively. These 

results indicated that seed yield increased with more frequent 

irrigation. 

Irrigation also increased the dry matter accumulated in the 

plants. Straw yield kg/ha increased by 12% with one irrigation and 25% 
with two irrigations over the no irrigation treatment. Because seed 

and straw yields were increased by irrigation, biological yield was 

also increased from 5935 kg/ha in T1 to 7312 kg/ha in T3 representing 
an irrigation response of 23%. Similarly, the mean values of seed 

yield, straw yield and biological yield per plant in T3 significantly 

exceeded the corresponding values in T1 and T2. Although seed yield 

was increased by irrigation, harvest index decreased as shown in Table 

20. 
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The increase in seed yield with irrigation was mainly attributed 

to an increase in the yield components. The mean number of pods per 
plant, over years, was 25 and 29 for T1 and T3 respectively, the last 

representing an irrigation response of 16%. Number of seeds per pod 

and 100-seed weight increased by 1% and 4%, with double irrigation, 
over the unirrigated treatment. Irrigation at the pre-flowering stage 

significantly increased plant height and number of branches per plant, 
while there were no significant differences between T2 and T3 for these 

characters. These results revealed that application of two irrigations 

enhanced reproduction growth and yield components rather than the 
vegetative growth of plants. 

There were significant differences between irrigation treatments 

for time to flowering and maturity. Irrigation at pre-flowering 
prolonged the vegetative growth period and thus delayed the flowering 

and maturity by 2 and 3 days respectively. Application of two 

irrigations prolonged the maturity by 7 and 4 days comparing with no 

irrigation and pre-flowering irrigation treatments respectively. 

One i rri gat ion at the pre-flowering stage did not affect seed 
protein content, since protein percentages in both T1 and T2 were 
25.53%, while double irrigation significantly decreased seed protein to 

24.52%. However seed protein yield (kg/ha) increased by 15% in T3 over 
T1 due to the increase in seed yield. Irrigation at the pre-flowering 
stage did not influence cooking time, whereas irrigation two times 
increased the time required to cook the seeds from 36 minutes in T1 to 
39 minutes in T3• Dehulling percent significantly decreased with 

increasing irrigation frequency. Tl produced the highest dehulling 
percent of 58.6, which was reduced to 56.2% in T2 and to 52.6% in T3. 

The results showed that seed yield increased with increase in the 
frequency of irrigation or increase in water supply (from location to 

location). Irrigation increases the availability of water in the soil 

profile to the plant and thereby enhances almost all physio-chemical 

processes in plants that ultimately contribute towards additional seed 
production. This is well illustrated by characters such as number of 
branches per plant, plant height, number of pods per plant and 100 seed 
weight. Though grain yield varied, Verma and Kalra (1981) observed 
higher uptake of nitrogen and phosphorus under irrigated lentil. They 
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attributed that to increased availability nutrients in the soil 

associated with improved absorbing and assimilation capacity of a 
vigorous crop as compared with a crop ill-affected by water stress. 

Two irrigations, at pre-flowering and pod filling stages, were 

definitely superior in increasing seed yield as compared with one 

irrigation at the pre-flowering stage or with no irrigation. Panwar 

and Paliwal (1975), Singh et ~- (1981) and Singh et ~- (1983) also 
obtained higher yields of lentil with irrigation at pre-flowering and 

pod filling stages. However, Panwar and Paliwal (1975) reported that 

if only one irrigation was available, irrigation at the early pod 

filling stage was the most productive. 

Relationship between environmental seed yield and water supply 

In order to explore the relationship between seed yield and water 
supply at all environments studied, the linear regression and linear 
correlation between average seed yield (kg/ha) and the amount of water 

received (rainfall or rainfall + irrigation) at every environment were 

calculated and are shown in Figure 3. 

In general, the seed yield increased with water supply as 
indicated by the high linearity and the high correlation coefficient of 

0.94 between both factors. However, the distribution of environments 
around the regression line (Figure 3) indicated that the yield at 

Terbol was not as strongly related to water level as it was for Tel 
Hadya and Breda. 

The accumulated results confirmed that the en vi ronmenta 1 water 
supply (rainfall and irrigation) was the major factor influencing seed 

yield at Tel Hadya (T1, T2 and T3) and at Breda, while at Terbol the 

altitude (i.e. temperature) was more important than rainfall. 

Erskine et ~- (1985) also found the average seed yield kg/ha of 
24 lentil genotypes was greater at Tel Hadya (in Syria) than at Terbol 

and Kfardan (in Lebanon). They reported that the low temperatures at 

Lebanese sites reduced early growth and final seed yield. 



cu 
.s::. 

" en 
,:,t 

"C 

~ 
>-

"C 

~ en 

2800 

2400 

2000 

1600 

1200 

800 

400 

99 

y = -1370 + 9.4x 

r = 0.94** 

lj86 

•eras 

200 260 320 

•T3a6 

• Teras 

• Teras 

380 440 

Precipitation ( rainfall +irrigation} mm 

Figure 3. linear regression between seed yield,(kg/ha) and 
amount of water received at five environments in 
two growing seasons. 

** 
linear correlation coefficient (r) excluding Ter. 
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100 

3.4 Genotype and environmental_variation in seed __ QEOtein quality 

The results of SDS-acrylamide gel electrophoresis used to 
investigate the differences between genotypes and the effect of 
environments on lentil seed storage protein are presented below. The 

ana lyses were made for 34 genotypes, one genotype per ge 1 s 1 ab. Every 

slab contained five tracks representing the five environments; T1, T2, 
T 3, Br and Ter. The comparisons between genotypes and environments 

were made on the basis of the positions of the protein bands. 

The results showed wide differences between genotypes in number 

and position of the bands. Number of bands ranged from 9-21. Genotype 

78526003 exhibited the largest number (21 bands), while FLIP84- 67 ·L 

had the lowest number of 9 bands (Table 22). 17 bands were the most 
common number of bands, being found in 6 entries. 

The position of bands also varied between genotypes as indicated 

by their Rf values presented in Table 22. The bands at Rf 0.48, 0.56, 
0.72 and 0.78 were the most common bands since they exhibited the 
highest frequencies among all other bands, whereas the band at Rf 0.34 
was present in only four genotypes. 

The effect of environments was detected when band presence at 
positions differed from environment to environment. The results showed 

that nine genotypes showed differences in band position due to 
environment. 5yri an Loca 1 5ma 11 and Jordanian Loca 1 showed the same 

influence, which in irrigation at pre-flowering stage in Tel Hadya (T2) 

resulted in the absence of a band at Rf 0.51 (Figure 4.A). The bands 

at Rf 0.40 for genotype ILL 121 were absent in T1 and T2 environments. 

In ILL 857, the band at Rf 0.35 changed its position with the band at 

Rf 0.38 in environment T2 (Figure 4 B). The variation in genotype 
78526003 is shown in Figure 4 C. An extra band at Rf 0.70 appeared in 
T1 and T3 environments. 

Another form of variation appeared in Precoz where the bands 
around Rf 0.46 at T1, T2 and T3 in Tel Hadya were less intense than the 

same bands at Breda and Terbol. These protein bands in this genotype 

seems to be affected quantitatively by local conditions at Tel Hadya. 

Its bands at Breda and Terbol showed similar variation (Figure 4 D). 



Table 22 Relative frequencies of the observed bands 

Rf {0.00) 
Genotype 

.34 .36 .39 .40 .42 .44 .46 .48 .• 51 • 54 . 56 . 58 . 61 .62 .65 .68 .72 .74 .76 .78 .80 .82 .84 .86 .88 ,90 .92 .94 .96 ·28 ·9.9 
Giza 9 X X X X X X X X X X X X X X X X X X 

Fam. 130 X X X X X X X X X X X X X X X X X X 

Selaim X X X X X X X X X X X X X X )( X X 

Ill 1693 X X X X X X X X X X X 

Ill 1983 X X X X X X X X X X X X X X X . 
Ill 40 X X X X X X X X X X X X X X X 

Ill 241 X X X X X X X X X X X X X X 

Sll X X X X X X X X X X X X X X X X 

SlS X X X X X X X X X X X X X X 

Jord. loc. X X X X X X X X X X X X X X X X X 

76TA66005 X X X X X X X X X X X X X X X 

78S26003 X X X X X X X X X X X X X X X X X X X X X X 

78S26004 X X X X X X X X X X X X X X X X X 

76TA66088 X X X X X X X X X X X X X X X X 

~ '-' \~'-' 7 ~?/) / .. -.(._;...;.\_~ 
~·.<.u"~, 

Ill 857 X X X X X X X X X X X X X X X X X X 

laird X X X X X X X X X X X X X 

Ill 121 X X X X X X X X X X X X X X X X X 

74TA161 X X X X X X X X X X X X X X X X X X X 

0 

lenka X X X X X X X X X X X X X X X X X X X X 

Okula X X X X X X X X X X X X X X X X X 

74TA276 X X X X X X X X X X X X X 

74TA212 X X X X X X X X X X X X X X X X 

Ill 274 X X X X X X X X X X X X X X X X X X 

Ill 355 X X X X X X X X X X X X X X X X X 

Ill 358 X X X X X X X X X X X X X X X X X X 

Precoz X X X X X X X X X X X X X X X 

Pant.l,406 X X X X X X X X X X X X X X 

Ill 2526 X X X X X X X X X X X X X X 

Ill 2573 X X X X X X X X X X X X X X X 

74TA264 X X X X X X X X X X X X 

FLIP 84 ,1-l X X X X X X X X X X X X X 

FLIP 84,27-l X X X X X X X X X X X X X 

FLIP 84,67-l X X X X X X X X X 

FLIP 84, 78-l >: X X X X X X X X X X X 

J ---- ---
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Figure 4 

Banding patterns of storage proteins from lentil seeds grown 

at five different environments in 1984-85 season. 

Tracks 

T1 Tel-Hadya, rainfed only (346mm water) 

T2 Tel-Hadya, rainfed + irrigation at pre-flowering 

stage (396mm) 

T3 Tel-Hadya, rainfed +irrigation at pre-flowering 
and pod.,. filling stages ( 446mm) 

Br Breda, rainfed only (253mm) 

Ter Terbol, rainfed only (433mm) 

Genotypes 

A SLS 

B ILL857 

c 78526003 

D Precoz 

E Lenka 
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The genotypes; Lenka, FLIP 84-27L and FLIP 84-67L exhibited the 

complex influence of environments as the differences between 

environments, in each genotype, caused changes in more than one band. 

In Lenka, the protein bands were the same as in T2, Breda and Terbol, 
while in T3 an extra band appeared at Rf 0.36 and in T1 an extra band 

was detected at Rf 0.68. In addition the band at Rf 0.40 changed its 

position to Rf 0.37 (Figure 4 E). For FLIP 84-27L, each of T2 and 
Terbol showed variation in band position and similar changes were 

observed in other environments. FLIP 84-67L showed different bands 

position at T3 and Breda, while T1, T2 and Terbol showed the same 

bands. 

The results indicated that in most cases the changes occurred in 

high molecular weight bands at Rf 0.35-0.40. Out of nine genotypes 
affected by environment, six genotypes were influenced by time of 

irrigation. Irrigation at the pre-flowering stage (T2) changed the 

band positions for three genotypes, two genotypes were affected by the 

non-irrigated treatment (T1) and one genotype was affected by 
irrigation at the pod-filling stage (T3). Also, protein bands were 

influenced by environmental effects at both Breda (Br, the dry site) 

and Terbol (Ter, the wet site). 

The results revealed wide differences between genotypes in number 

and position of protein bands. Gatehouse et ~· (1980) confirmed the 
presence of genetic variation in protein quantity in faba bean. They 

found a variation of nearly two-fold in the vicilin-legumin ratio among 

five varieties and also showed different patterns of legumin bands 

between genotypes. This difference consisted of an extra band at 

slightly higher molecular weight in two genotypes. 

The results showed that each genotype had a different number or 
position of bands. Therefore, these banding patterns could be used to 

identify varieties especially on bands with low molecular weight 

(Rf>0.40). 

Little information is available in the direct effect of 

environments on storage protein quality. However, Manteuffel et al. 
(1976) found the proportion of legumin to vicilin in faba bean, which 

may contain up to four times as much legumin as vicilin (Wright and 
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Boulter, 1972) may depend on the environment. On the other hand, 

Gatehouse et ~· (1980) found no variation in protein quality, between 

four faba bean entries, due to environments, although they did not 
describe the prevailing environmental conditions. 

The environments in this study represented a wide range of water 
supply regimes. They also included different timings of irrigation. 

Since all plant processes take place in what is effectively an aqueous 
medium, and since water is involved as a transporting agent or as a 

reactant in many of these processes, it is not surprising that water 
uptake can have profound effects on most plant growth processes. 

In general there appears to be a reasonably clear dependence of 

the growth rate of developing tissues and organs on protein synthesis, 

and a close association between protein synthesis and RNA (ribonucleic 
acid) content, and between RNA and DNA levels (deoxyribonucleic acid) 

(Woodstock and Skoog, 1960, 1962; Williams and Rijven, 1965). 

From the known effects of water on rate of plant development, it 

can be expected that there will be associated effects on many aspects 
of protein synthesis. Some researchers observed interruption of 

protein synthesis and proteolysis when water stress is imposed (Chen et 

~., 1964, Shah and Loomis, 1965). Few studies of the effects of water 

stress on nucleic acid metabolism have been made (Gates and Bonner, 
1959; Gardner and Nieman, 1964; Shah and Loami s, 1965). However 
these results referred to decreasing DNA content or its increasing rate 

with water stress. Also, the association between RNA and protein 
levels was found to be closely linked in stressed leaves in wheat 
plants (Williams and Rijven, 1965). In faba bean, the onset of storage 
protein synthesis has been shown to follow a period of rapid synthesis 

of both DNA and RNA (Millerd and Whitfield, 1973, Manteuffel et ~·, 

1976). 

A frequently observed effect of stress is the appearance of high 
levels of free amino acids, especially proline and amides (Kemple and 

Macpherson, 1954; Chen et ~., 1964). Barnett and Naylor (1966) 

investigated this phenomenon and found that although amino acids were 
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continually synthesized during water stress in Bermuda grass (Il_nodon 

dactylon (L.) Pers.) protein synthesis was inhibited and protein levels 

decreased. 

The accumulated information referred to above indicates that there 

is a relationship between water and the protein synthesis which may 

explain the differences in protein quality due to environments observed 
in the present study. 

However, the present results must be considered as an initial 

observation of storage protein quality affected by location and 

irrigation in lentil. More work is needed to understand these 

relationships and the genetic control of the protein synthesis. From 

such knowledge it may be possible to advise plant breeders of a more 

viable strategy for breeding for improved protein quality in lentil. 
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3.5 Genotype-environment interaction 

As shown in Table 14, the genotype-environment interaction 
variances were highly significant for all characters, indicating its 

importance as a source of phenotypic variation. Clearly there were 

changes in the relative rankings or magnitudes of differences among 

entries over environments. In this section the genotype-environmental 
interaction will be investigated in two parts Firstly, 

genotype-irrigation interaction and secondly, the phenotypic stability 
in lentil. 

3.5.1 Genotype-irrigation interaction 

The data from irrigation treatments at Tel Hadya (T1, T2 and T3) 

in two seasons (6 environments) were used to study the 

genotype~irrigation interaction effects. 

The analyses of variance are presented in Table 23. The genotype 

and irrigation variances were highly significant for all characters. 

Also, the genotype-irrigation variance was highly significant for all 
characters. This satisfied the basic requirements for this study. The 

genotype-irrigation sum of squares were partitioned into two orthogonal 

items, the first one being genotype-irrigation interaction (linear) 

which is due to differences between the fitted regression lines. The 
second portion was the deviation from regression (pooled deviation) 

which measured the accumulated deviations of the observed values around 
these fitted lines. In Table 23, both genotype-irrigation (linear) and 
pooled deviation mean squares were significant for all characters, when 

tested against pooled error, except biological yield/plant, straw 

yield/plant and number of branches/plant which had non-significant 
pooled deviation. 

When both items are significant, Hill (1975) stated that 

genotype-environment (linear) should be re-tested against deviation 

from regression to determine whether it accounts for a significant 

proportion of the genotype-environment interaction variance. 

Consequently, the genotype-irrigation (linear) mean squares were 

tested against pooled deviation mean squares. The results showed that 



Table 23 Pooled anal~sis of variance for 17 lentil characters under irrigation 

Mean square 

Source of variation D. F. Seed Biological Straw Seed Biological Straw Harvest No .of 
yield yield yield yield/ yield/ yield/ index pods/ 
kg/ha kg/ha kg/ha ~lant ~1 ant ~1 ant ~1 ant 

** ** *'* ** ** ** ** ** Genotype 33 1445620 9017350 5711170 0.58 5. 77 4.14 0.02 206.05 
** ** *'* ** ** ** ** ** Genotype-irrig. + 170 198573 1 201 61 0 611028 0.27 1.60 0.65 0.001 95.05 

irrig. ** ** ** ** ** ** ** ** Irrigation(Linear) 1 16679500 88029400 36962800 30.29 174.53 60.59 0.09 10416.2 
** ** ** ** ** ** ** il:* 

Genotype-irrigation 33 205678 1212080 535666 0.145 1 .137 0.664 0.0013 51 . 53 
(Linear) ** ** ** * ** * Pooled deviation 136 75666 560635 362022 0 .. 074 0.438 0.210 0.0007 29.72 

Poo 1 ed error 396 53166 324766 18028·~ 0.055 0.412 0. 206 0.0005 21 . 57 

* ** , Significant at 0.05 and 0.01 level of probability, respectively. 

No .of 100 
seeds/ seed 

eod weight 

** ** 0.37 10.23 
** ** 

0.02 0.04 

** ** 0.22 2.08 

** ** 0 
0.04 0.05 ""-J 

** ** 0. 0116 0.02 

0.0069 0.01 



Table 23 (continued) 

Plant No. of Time to Time to Seed Cooking Dehull ~ ng 
Source of variation D. F. height branches/ flower- maturity protein time 

plant ing 

** ** ** ** ** ** ** Genotype 33 1 00. 81 27.15 277.76 238.44 5. 94 34 7. 94 445.36 

** ** ** ** ** ** ** Genotype-irrig.+irrig. 170 10.36 6.03 185.72 108.05 1.70 6.18 666.94 

** ** ** ** ** ** ** Irrigation (Linear) 1 874.52 607.45 31037.71 17611.91 194.74 439.27 104703.9 

** ** ** ** ** ** ** Genotype-irrig. (Linear) 33 9.15 7.58 13.07 15.07 1.03 2.76 164.26 0 
co 

** ** ** ** ** ** 
Pooled deviation 136 4.30 l. 23 0.76 l. 91 0.45 3.83 23.93 

Poo 1 ed error 396 2. 91 l. 36 0.26 0.94 0.16 0.60 12.72 

*, ** Significant at 0.05 and 0.01 level of probability, respectively. 
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genotype-irrigation (linear) was significant for all characters, except 
straw yield (kg/ha) and cooking time (Table 23). These results 

indicated that the linear components were more important than 
non-linear components for most characters. 

Another approach was used to examine the relative importance of 
linear and non-linear components. The overall efficiency of the 
regression analysis in accounting for the genotype-irrigation 

interaction was measured as the linear proportion of variance accounted 
for by regression. The results of this test are given in Table 24. In 

this table, the linear regression portions were high for all 

characters, 

the lowest 

characters 

except 

L.P. V. 

also 

straw yield (kg/ha) and cooking time which showed 

values of 66.2% and 40.1% respectively. These 

had insignificant genotype-irrigation (linear) 
other hand, the three characters which showed 

non-significant pooled deviations, had the highest L.P.V. values. 
These were biological yield/plant, straw yield/plant and number of 

branches/plant (Table 24). These results revealed that the 
genotype-irrigation interaction variance could be attributed to the 
1 inear component for all characters except straw yield {kg/ha) and 
cooking time. These results confirmed the results mentioned above. 

variance. On the 

The importance of both linear and non-linear components were 

reported by Malhotra et ~· (1971) and Pandey et ~· (1982) in lentil 
and Jinks and Stevens (1959) and Bucio-Alanis (1966) in other crops. 

Prem Sagar and Lal (1980) found that most of the genotype-environment 

variation in lentil could be attributed to the linear components. 

However, Malhotra et ~· (1971) found both linear and non-linear 

components of variation were significant, but the former was higher in 

magnitude. 

In general, the above results show that the regression lines could 

give nearly perfect description of performances of entries for 

different traits in the different irrigations. Because the main 
objectives of this part of the study was the response to irrigation, 
the regression slopes are of great interest. 
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Table 24 The linear proportion of variance (L.P.V.%) for 17 

lentil characters under irrigation 

Characters 

Seed yield kg/ha 

Biological yield kg/ha 

Straw yield kg/ha 

Seed yield/plant 

Biological yield/plant 

Straw yield/plant 

Harvest index 

No. of pods/plant 

No. of seeds/pod 

100 seed weight 

Plant height 

No. of branches/plant 

Time to flowering 

Time to maturity 

Seed protein content 

Cooking time 

Dehulling 

L. p. v. ~' 

87 .14 

79.00 

66.16 

82.45 

96.44 

99.14 

80.00 

78.61 

88.07 

75.91 

81 . 7 5 

100.00 

96.1 9 

93.60 

74.75 

40.06 

93.11 
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The simplest approach is regression of individual entry mean trait 

on the mean of all entries at each irrigation level. The 

interpretation of the slope parameters by Finlay and Wilkinsor. (1963), 

in which the slope parameters or stability index is used as a relative 

comparison 

compelling. 

am9ng entries, is straightforward and intuitively 

Consequently, the regression analyses were rnade and the 

1 inear regressions used as a measure of the response of genotypes to 

irrigation. 

Because seed yield and seed protein are the most important traits 

in lentil, these characters will be demonstrated. The average 

performances (x) of the 34 genotypes along with their regression 

coefficients (b), deviation from regression coefficient (S 2d) and 

coefficient of determination (R 2 ) for seed yield/plant and seed protein 

content are pres~nted in Tables 25 and 26. 

3.5. 1.1 Seed yield response to irrigation 

The mean yield of 34 genotypes across irrigation regimes ranged 

from 0. 94 to 1. 96g ( 1432 to 2972 kg/ha) with an overa 11 mean of 1 . 5 

g/plant across irrigations and years (Table 25). The highest yielding 

five entries were SLL, 74TA276, Jordanian local, 78526004 and 74TA264 

with differences between them non-significant. The regress 10n 

coefficients (b) of individual entries ranged widely from 0.14 to 1.90. 

The significance of the individual regression coefficient of every 

genotype was examined against their standard errors using the t-test. 
' 

Only two genotypes had regression coefficients significantly greater 

than unity; they were 74TA264 (b = 1.90) and FLIP 84•27L (b = 1.22). 

On the other hand, seven genotypes exhibited regression coefficients 

significantly below 1.0. 

Conventional computation of the F-ratios for every genotype was 

used to test the significance of e·ntry deviation from regression 

(Eberhart and Russell, 1966)~ ,The results showed that only five 

entries had deviations from regression values significantly different 

from zero (Table 25). Tne coefficients of determination (R 2 ) of 

individual genotypes ranged widely from 0.23 to 0.98, but most of these 
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Table 25 The average eerformances of 34 1 entil genoty~es for 

seed ~ield/elant 

Mean seed Regression Deviation Coefficient 
No. Genotype yield/plant coefficient from of 

regression determination 
(X) (b) (5 2 d) { R2 ) 

Giza 9 1 . 58 1.09 0.72 
2 Fam. 130 1 . 41 0. 73 0. 76 
3 Selaim l. 31 1.13 0.88 
4 ILL 1693 1.14 0.62* 0. 90 
5 ILL 1 983 0. 94 0.25* 0.48 
6 ILL 40 l. 53 0.85 0.93 
7 ILL 241 1.82 1.18 0.86 
8 5LL 1 . 96 1.63 X 0.68 
9 5L5 l. 53 1. 22 X 0.53 

10 Jord.loc. 1. 87 1.17 X 0.56 
11 76TA66005 1.77 1.17 0.82 
12 78526003 l. 67 1.18 X 0.66 
13 78526004 1.86 0. 76 X 0.33 
14 76TA66088 1. 70 1. 33 0. 94 
15 ILL 857 1.80 1.29 0. 95 
16 Laird l. 37 1.07 0. 69 
17 ILL 121 l. 22 o. 70 0.58 
18 74TA161 l. 25 1.08 0.96 

19 Lenka l. 20 0. 92 0.75 

20 Okula 1 fV") 
I .VL 0.56* 0.77 

21 74TA276 1. 93 1.45 0.83 
22 . 74TA212 1.61 l. 70 0.88 

23 ILL 274 1.49 l. 31 0.84 

24 ILL 355 l. 27 0. 75 0. 94 
25 ILL 358 1. 53 0.63* 0. 95 

26 Precoz 1.42 0.67 0.52 

27 Pant.L,406 0.99 0.42* 0.60 
28 ILL 2526 1.09 0. 14* 0.23 
29 ILL 2573 0 0 91 0.45* 0.80 
30 74TA264 1.84 1. 90* 0.88 
31 FLIP 84, 1-L 1.66 1.23 0. 91 
32 FLIP 84,27-L 1 . 81 1. 22* 0. 98 
33 FLI P 84 , 6 7- L 1. 76 1.15 0.88 
34 FLIP 84,78-L 1.80 1.09 0.89 

Grand mean 1 . 50 
* Denotes genotypes had a significant regression coefficient greater 

or less than 1.0 
X Denotes genotypes had a deviation from regression significantly 

different from zero 
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values were above 0.75. The high R2 values was another indicator that 

the linear component represented a high portion of genotype-environment 
interaction for most genotypes. 

The 34 genotypes were classified into four groups according to 

their regression coefficients, then four genotypes were chosen to 
represent these groups. These genotypes were ILL 241, Laird, ILL 358 

and 74TA264. The linear relationships of these individual genotypes 

and environmental means are shown graphically in Figure 5, where the 
abscissa is the environment mean yield and the ordinate is the yield of 
individual genotypes. The dotted line represents the population mean 
(the overall mean of the 34 genotypes) which has a regression 
coefficient of 1.0. 

The first group of genotypes was represented by the genotype 

ILL241. This genotype had a regression coefficient of unity (b = 

1.18). Its seed yield/plant was above average yields in all irrigation 

treatments and seasons. Consequently this genotype may be considered 
to be adapted to all environments, and thus it has a general 
adaptability (Finlay and Wilkinson, 1963). 

Another group of genotypes was represented by Laird. This 
genotype also had a regression coefficient of unity (b = 1.07), but 
produced a seed yield per plant which was below average, indicating 

that it is poorly adapted to all environments. 

The third genotype chosen was ILL 358, that exhibited little 
change in yield despite large changes in the environments. Its yield 

in T1 in 1986 (the lowest yielding environment) was 1.38 g/plant, while 
in T3 in 1985 (the highest yielding environment) it also produced a low 

yield of 1.96 g/plant. As shown in Figure 5, this genotype produced an 

above-average yield in low yielding environments, but was insensitive 

to environmental change. Its regression coefficient (b = 0.()3) was 

significantly less than unity (Table 25). This genotype could be 
classified as specifically adapted to low moisture environments 

(unirrigated). 
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74TA264, Y = -1.01 + 1.90x 
ILL24l.Y= 0.05+1.18x 
laird, Y = -0.23 + 1.07x 
I LL 358, Y = 0. 59 + 0. 63x 

---- Population mean 

1.1 1.3 1.5 1.7 

II I l 
Tl T2 T3 Tl T2 

8686 86 85 85 

1.9 

Environmental mean (g/plant) 

1 

2 

3 

4 

2.1 

Figure 5. Regression lines, showing the relationship of individual 
yields of four genotypes and population mean of 34 genotypes 
of lentil grown at three different irrigation regimes in 
two years. 
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The genotype 74TA264 is typical of genotypes that are very 
sensitive to change in the irrigation level. This entry produced a 

seed yield per plant of only 0.98 g in the unirrigated treatment in 
1986 (the low yielding environment) but with two irrigations in 1985 
(the high-yielding environment) it produced a seed yield of 3.0 g/plant 
(Figure 5). Thus, under two irrigations conditions, it becomes one of 
the highest-yielding genotypes. Therefore, 74TA264 can be described as 
being specifically adapted to irrigation and is characterized by a 
regression coefficient significantly greater than unity (b = 1.90) 
(Table 25). 

Another demonstration of the behaviour of all the genotypes can be 
achieved by plotting the regression coefficients and the genotype mean 

yields over all environments together as coordinates in a 
two-dimensional scatter diagram (Finlay and Wilkinson, 1963). This 
diagram is presented in Figure 6. Each genotype is represented by its 
number. The position of this number indicates the type of adaptability 
and the average yi e 1 d performance of each genotype. The genotypes 
ILL 241 (no. 7), Laird (16) ILL 358 (25) and 74TA274 (30) have been 
labelled individually to allow direct comparisons between these 
genotypes in both Figures 5 and 6. 

The distribution of entries (Figure 6) showed that there were 
distinct differences between the genotypes in their regression slopes. 
16 genotypes exhibited both regression coefficients not different from 
unity (b = 1.0) and yields greater than the population mean. This 
group included 12 genotypes originating from Syria, Jordan and Lebanon, 
such as Syrian locals and Jordanian locals and some selections from 
them. This result is to be expected because they were bred under 
rainfed conditions which were markedly different from season to season. 
Thus they have wide adaptability. The Egyptian local cultivar 11 Giza 911 

was in this group, confirming that it was unadapted to irrigation. 

Nine genotypes were considered poorly adapted to all environments. 
Two genotypes in this group were from the Nile Valley; Family 130 (an 
Egyptian accession) and Selaim (the Sudanese local cultivar). This 
group also contained those genotypes with the highest protein content 

ILL 121, IlL 274 and 74TA161. 
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Figure 6. Adaptation of seed yield showing mean yield/plant and regression 
coefficients for 34 genotypes. Points on the figure are 
indicated by the serial number of genotypes (as' presented in 
Table 25). 
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The third group of genotypes which were adapted to the unirrigated 
treatment (dry conditions) contained 7 genotypes. Five genotypes in 

this group had very small seed size (three Indian and two Ethiopian 

lines). In contrast, as is evident from Figures 5 and 6, genotype ILL 

358 (no. 25) showed a high mean yield (above-average yield) with least 

response (b = 0.63) to variation in irrigation. Exploitation of this 
genotype would prove to be useful under dry conditions (unirrigated). 

It has been recently released as a cultivar for dry rainfed conditions 
in Ethiopia. 

In contrast, as is evident from Figures 5 and 6, out of 34 

genotypes only two entries exhibited a positive response to irrigation, 

viz 74TA264 (no. 30) and FLIP 84-27L (no. 32). Both genotypes gave 

high mean yields with a large response to irrigation, especially 

74TA264 which had the greatest slope of 1.90. Their exploitation would 

prove to be very useful under irrigated conditions. 

It is difficult, clearly, to identify differences between 
geographical groups of genotypes. However, it seems that no Egyptian 

or Sudanese genotypes (Nile Valley lentil genotypes) showed a specific 

response to high irrigation levels. On the other hand, most small 
seeded and very early genotypes, originating from India and Ethiopia 
were adapted to unirrigated environments, possibly avoiding water 

stress by their early flowering and maturity. 

3.5.1.2 Seed protein content response to irrigation 

Seed protein content ranged from 22.8 to 27.3% with an average of 
25.2% for the 34 genotypes. The differences between genotypes were 

highly significant indicating that there was wide genetic variation in 
protein percentage (Table 23). 

Thirty genotypes exhibited regression coefficients which did not 
differ significantly from unity. The genotypes Jordanian Local and 

FLIP 84-27L had regression coefficients below 1.0, while ILL 121 and 

FLIP 84-lL exhibited regression coefficients significantly greater than 

1.0 (Table 26). The coefficients of determination (R 2 ) were high for 

most genotypes and only six entries showed R2 below 0.60. This 
confirmed the possibility of using individual regression slopes to 
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Table 26 The average ~erformances of 34 1 ent il genoty~es for 
seed ~rotein content 

Regression Deviation Coefficient 
No. Genotype Mean coefficient from of 

regression determination 
( -i} (b} (2_2d) ( R2) 

Giza 9 24.96 0.87 0.88 
2 Fam. 1 30 26.04 1 .40 X 0.58 
3 Selaim 25.51 0.88 X 0.68 
4 ILL 1693 24.72 0.63 0.75 
5 ILL 1983 24.06 0.74 0.92 

- -

6 ILL 40 25.03 1. 26 0.96 
7 ILL 241 24.71 l. 70 X 0.92 
8 SLL 24.71 1.12 0.98 
9 SLS 25.30 0. 81 0.80 

10 Jord. lac. 24.78 0.52* 0.71 
11 76TA66005 23.77 l. 24 X 0.68 
12 78526003 24.51 0.92 X 0.75 
13 78526004 24.74 0.54 X 0.32 
14 76TA66088 26.20 0.82 0.86 
15 ILL 857 24.93 0.78 0.88 
16 Laird 24.71 0.93 0.78 
17 ILL 1 21 26.16 1 .62* 0.95 
18 74TA161 26.91 1. 95 X 0.73 
19 Lenka 27.33 1.20 X 0.74 
20 Okul a 25.48 1.12 X 0.80 
21 74Tl\276 25.84 0. 77 0.73 
22 74TA212 26.64 1.25 0.93 
23 ILL 274 26.60 1. 71 X 0. 91 
24 ILL 355 25.92 0.88 0.82 
25 ILL 358 . 25.15 0.63 X 0.54 
26 Precoz 25.68 0.36 X 0.26 
27 Pant.L,406 24.00 0.44 0. 51 
28 ILL 2526 24.55 0.64 X 0.36 
29 ILL 2573 22.81 0.95 0.85 
30 74TA264 24.52 1.17 X 0.74 
31 FLIP 84, 1-L 23.97 1 .83* 0. 94 
32 FLIP 84,27-L 26.04 0.43* 0.72 
33 FLIP 84,67-L 26.04 0.56 0.67 
34 FLIP 84, 78-L 24.25 1.33 0.96 

Grand mean 25.19 
* Denotes genotypes had a significant regression coefficient greater 

or less than 1.0. 
X Denotes genotypes had a deviation from regression significantly 

different from zero. 
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represent 
significant 
Table 26. 

the response of genotypes. However, 14 genotypes had 
non-linear components as indicated by their S2 d in 

The relationship between environment means and individual 
genotypes is presented graphically in Figure 7, selecting a 
representative of each of four groups based on mean yield and response 
slope. Also, the distribution of all genotypes on the basis of their 
regression coefficients and their means is shown in Figure 8. The 
order of environments in respect of their averages of protein content 

(environmental mean) was inversely related to their average seed 
yield/plant. T3 in 1986, which showed a high environmental mean for 
seed yield had low average protein percent, and was named the 

low-protein environment. T1 in 1985 which had low seed yield produced 
high average protein percent, and was named the high-protein 
environment. 

Genotype 76TA66088 always produced above-average protein 
content over irrigation regimes and years, indicating that ii possesses 
a general adaptability and average stability (Figure 7). This group 
inc 1 uded 13 genotypes, a 11 of which produced protein 1 eve 1 s above the 
overall mean (Figure 8). The genotypes Selaim and Family 130 

are included in this group. Five entries in this group also showed 
general adaptability in seed yield/plant, these being numbers 9, 14, 
21, 22 and 33. 

Conversely, the genotype Laird produced below average seed protein 

content in all irrigation regimes and years. 
showed relatively little change in protein 
irrigation level. Consequently Laird could 

poorly adapted to all irrigation levels 
distribution of genotypes in Figure 8 showed 
this group. Most genotypes which exhibited 

Furthermore, this entry 

despite changes in the 
be considered as being 

in this respect. The 
that 17 entries were in 
genera 1 adaptability or 

response to two irrigations in seed yield showed poor adaptation to all 
irrigation levels with respect to protein content such as Giza9, SLL, 

ILL241 and 74TA264. 
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Figure 7. Regression lines, showing the relationship of individual 
seed protein percent of four genotypes and population 
mean of 34 genotypes of lentil grown at three different 
irrigation regimes in two years. 
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The third group of genotypes included only Jordanian Local and 

FLIP84-27L, both of which had low regression coefficients. As shown in 
Figure 7, FLIP84-27L produced a high protein content of 26.8% in the 
low-protein environment (T3, 1986). However, it was insensitive to 
envi ronmenta 1 change as its protein content in the high-protein 

environment (T1, 1985) was only 25.2%, reflecting its small regression 
slope of 0.43. Although both genotypes showed the same adaptability to 

irrigation change with respect to their protein contents, their 
distribution in Figure 8 shows that FLIP84-27L is more interesting due 
to its high mean protein performance. 

The fourth group of genotypes contained ILL121 and FLIP84-1L and 
is represented in Figure 7 by ILL121. This genotype had below-average 

stability and was very sensitive to change in irrigation level. It 
produced a protein content of 23.4% at T3 in 1986 (the lowest protein 
environment), but its protein content increased to 28% at T1 in 1985 
(the highest protein environment). Therefore this entry was unstable 
and considered especially adapted to high-protein environments. The 
general picture of these genotypes in Figure 8 showed that FLIP84-1L 
(No. 31) yielded a mean protein content below the population mean, 
whereas ILL121 (No. 17) produced a mean protein percent greater than 
the population mean. 

The results showed that the behaviour of genotypes with respect to 
seed protein was inversely related to their behaviour for seed 

yield/plant. Environments promoting high seed yield induced low mean 
protein content as expected, due to the negative relationship between 

seed yield/plant and seed protein content. Because we are interested 
in determining genotypes performing we 11 under i rri gati on, FLI P84-27L 
and Jordanian Local, which produced a high seed protein content in two 
irrigation environment (T3, 1986), probably become more important than 
other genotypes, with respect to protein content. Consequently, these 
entries could be exploited under irrigation for their high seed protein 

content. 

Response of other characters to irrigation 

As shown in Table 23, seventeen characters were measured and 
tested for adaptability, but only the two most important characters 
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have been presented. However, three other traits, viz time to 

flowering and maturity and 100 seed weight were also most interesting. 

As would be expected, the very early genotypes tend to be 
specially adapted to dry (unirrigated) condition. Six out of seven 

entries which showed specific adaptation to the unirrigated environment 
were very early in flowering and maturity. These were: ILL1693, 
ILL1983, ILL358, Pant.L,406, ILL2526 and ILL2573, and their time to 
flowering and maturity ranged from 111-119 days and from 155-161 days 
respectively. In comparison, the genotypes adaptated to irrigation 
flowered at 119 to 124 days and matured at 164 to 168 days. 

All genotypes that adapted to dry conditions, except Okula, had a 

small seed size of 2-3 g/100 seeds with an average of 2.5g/l00 seeds, 
whereas the genotypes specifically adapted to irrigation had large 
seeds of 4.4-5.8 g/100 seeds with an average of 5.lg. 

The adaptation of small seeded genotypes to dry conditions is 
predictable because short duration cultivars may by maturing rapidly 
avoid substantial stress. As Summerfield (1981) pointed out, such a 

drought avoidance strategy may explain why small-seeded lentil 
cultivars were considered to be more tolerant of drought than large 
seeded types. 

It was also interesting that the genotypes which showed general 
adaptability for seed yield contained a wide range of maturity and seed 
size, some having a high mean of seed yield. 
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3.5.2 Root system and structure under irrigation 

The two genotypes selected for this investigation, 74TA264 and 
ILL121 showed different responses to irrigation as indicated in 
adaptation analyses (see section 3.5.1.1). These different responses 
were confirmed by the linear regression slopes and correlation 
coefficients between their yields and irrigation levels (Figure 9). In 
addition, the genotype 74TA264 exhibited the maximum response in seed 
yiel·d to irrigation, while ILL121 was the least responsive genotype to 
irrigation as shown in the following table. 

Genotype Season Seed yield/plant (g)* Increase or Average decrease 
over T1(%) over 

Tl T3 years 

74TA264 1984-85 I. 69 3.00 77.5 
68.9% 

1985-86 0.98 l. 57 60.2 

ILL 121 1984-85 I. 78 l. 58 -11 . 2 
-19.0% 

1'985-86 I . 01 0. 74 -26.7 

*Average of 3 replicates 

The morphology of root systems of the genotypes in both anaerobic 
soil (W) and in well-aerated soil (D) is shown in Pl'ate 1. Little 
difference was detected in root growth of ILL121 under the two 
treatments employed. In both treatments the root lengths were the 
same, only slightly increased root branching (laterals) occurring in 
treatment W. The genotype 74TA264, under anaerobic conditions showed 
a remarkably short root length with a large number of shallow laterals 
compared with its root system development in well-aerated soil. 

The anatomy of roots for both genotypes under W and D conditions 

is illustrated in Plate 2. Microscopic examination showed that there 
were no anatomical differences in root structures of either ILL121 or 
74TA264 in well-aerated soil (D). Under anaerobic conditions (W), 
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levels of 74TA264 and ILL 121 grown under irrigation 
at Tel Hadya in 1984-85 and 1985-86. 



Plate 1 

Differences in root system of two genotypes grown 

in a well-aerated and anaerobic soils environment 

Genotypes: 

ILL 121 

74TA264 

Soil conditions: 

D = well-aerated 

W = Anaerobic 
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Plate 2 

Fluorescence micrographs of root structures of two lentil genotypes grown in 

well-aerated and anaerobic soils environment. 

Genotypes: 

= ILL 121 

2 = 7 4TA264 

Soil conditions: 

0 = well-aerated 

W = anaerobic 

A = the air spaces formed in the root cortex of 74TA264 under oxygen deficiency 

(anaerobic condition). 

Magnifications: 

0. 1 and 2 = 

W. 1 and 2 = 

241 

386 
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ILL121 also did not show any difference in its root structure, whereas 
in 74TA264 air spaces were well developed in the root cortex (Plate 2, 
A). 

The results showed that both genotypes had a 

and morphology under normal soil conditions, 

deficiency only 74TA264 formed cortical air 

improving its internal aeration. 

similar root anaton~ 

while under oxygen 

spaces (aerenchyma), 

Metabolism in roots of plants grown under well-aerated conditions, 

unadapted to oxygen deficiency, continuously depends on supplies of 

oxygen from the soi 1. Low concentrations of di sso 1 ved oxygen at the 
root surface (only 0.01-0.03 atm) are often adequate for root 
metabolism (Greenwood and Goodman, 1971 and Armstrong and Gaynard, 
1976). Under anaerobic conditions, root growth and function, for 
unadapted plants, are inhibited with adverse effects on shoot 
development (Yu et ~., 1969 and Purvis and Williamson, 1972). In 

adapted plants adventitious roots, modified by the presence of air 

spaces formed by the co 11 apse of ce 11 s in the cortex, grow from the 
base of the shoot (Jackson, 1955; Kramer, 1951). 

This anatomical adaptation is particularly important to the 
continued growth or survival of plants in anaerobic conditions (Drew et 

~., 1980), because aerenchyma is usually regarded as an important 
adaptation that improves the oxygen supply to roots growing in poorly 

aerated soil. 

The anaerobic conditions reduced the root penetration of 74TA264 

as shown by its short roots compared with those in well-aerated soil. 

However, this genotype compensated by developing a large number of 
shallow laterals under anaerobic conditions, in the surface layer of 

soil which became drier and better aerated than the deep layer, 
reducing the influence of oxygen deficiency. A number of studies of 

pot-grow fababeans have shown that water regime can have dramatic 
effects on root distribution (Jones, 1963 and El-Nadi et ~., 1969). 
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3.5.3 Phenotypic stability 

In this section the seed yield data from five environments (T 1, 

T2, T3 , Ter and Br) in 1984-85 and 1985-86 were used for stability 

analysis. The analysis of variance of seed yield per plant is 

presented in Table 27. 

The genotype-environment mean square was highly significant 

indicating that genotypes differed markedly in response to 

environmental change. The genotype-environmental (linear) sum of 

squares was a large portion of genotype-environmental interaction. 

Although pooled deviation variance was highly significant, the 

genotype-environment (linear) variance was more than three times 

greater than pooled deviation variance. These results indicated that 

the linear component was the more important component of the 

genotype-environmental interaction. 

The individual mean seed yield (x) for the 34 genotypes along with 

their regression coefficients (b), deviation from regression 

coefficients (S2d) and coefficients of determination (R 2) are given in 

Table 28. Seed yield per plant averaged from 0.76 to l.6lg. Nine 

genotypes had regression coefficients significantly different from 

unity, and all of these entries exhibited deviation from regression 

equal to zero. Seven of the same genotypes had a similar· regression 

slope (b t- l) in the earlier analysis (Table 25). Also most of these 

nine genotypes had high R2 values. 

The remaining genotypes (25 entries) exhi·bited regression 

coefficients equal to unity, and out of these entries nine genotypes 

had significant S2 d (Table 28). These nine entries also showed 

relatively low R2 estimates. Five of these nine entries had sho\'m 

significant S2 d in the earlier analysis (Table 25). 

The responses of these genotypes to the environmental change are 

shown graphically, according to Finlay and Wilkinson {1963), in Figures 

10 and ll. In view of the overall similarity of these results to the 

analysis discussed earlier (3.5.1.1), we will discuss them briefly. 
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Table 27 Pooled an_aJ..l::sis of variance for_seed 
yield/plant of 34 lentil genotypes_grown 

under five environments in two years 

Source of variation 

Genotype 

Genotype-environment + environment 
Environment (Linear) 
Genotype-environment (Linear) 
Pooled deviation 

Pooled error 

D. F. 

33 

306 

1 

33 
272 

660 

Mean square 

0.694** 
0.376** 

93.042** 
0.182** 

0.058** 
0.036 

*, ** Significant at 0.05 and 0.01 level of probability respectively. 
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Table 28 The average performances of 34 lentil genotypes grown at 
five environments in two years 

* 

X 

No. Genotype 
Mean seed 
yield/plant 

Regression 
coefficient 

Deviations 
from 

regression 
( S2 d) 

Coefficient 
of 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 
13 

14 
15 

16 

17 

18 

19 

20 

21 

22 

23 
24 
25 

26 

27 

28 
29 
30 
31 

32 

33 
34 

Giza 9 

Fam. 130 
Selaim 
ILL 16 93 
ILL 1983 

Ill 40 

ILL 241 

SLL 

SLS 

Jord. 1 oc. 

76TA66005 

78S26003 

78S26004 
76TA66088 
Ill 857 

Laird 

Ill l 21 

74TA161 

Lenka 

Oku1a 

74TA276 

74TA212 

ILL 274 
ILL 355 

ILL 358 

Precoz 

Pant. L ,406 

ILL 2526 
ILL 2573 
74TA264 
FLIP 84,1 -L 

FLIP 84,27-L 

FLIP 84,67-L 
FLIP 84, 78-L 

Grand mean 1.22 

(X) 

1 . 33 
1.14 
1.08 
0. 90 

0.76 

l. 23 

1.46 

l. 61 

l. 23 

l. 52 

1.46 

l. 36 

l. 50 

1.43 
1.48 

1.02 

0.99 

0.97 

0.95 

0. 77 

l. 53 

1. 29 

1.18 
1. 01 

1.27 

l. 22 

0.82 

0.88 
0. 77 

l. 51 
l. 35 

1.49 

1. 50 
1.48 

(b) 

0.95 
0. 91 
0. 90 
0.74* 
0.48* 

0. 91 

1. 25* 

l. 38 

1.09 

1.23 

1.20 

1.10 

1.03 
1.17 

1. 20 

1.02 

0.78 

0.93 

0. 91 

0.71* 

1. 35* 

1.33 

1.16 

0.86 

0.88 

0.85 

0.56* 

0.49* 
0.54* 
1 .46* 
1.18 

1.17 

1.12 
1.16 

X 

X 

X 

X 

X 

X 

X 

X 

X 

de t e rm i n a t i o n 
( R2 ) 

0.82 
0.92 
0. 90 

0. 90 

0.69 

0.95 

0.95 

0. 79 

0. 73 

0.80 

0.92 

0.80 

0.69 

0.95 

0.96 

0.80 

0.83 

0.93 

0. 90 

0.88 

0.92 

0.79 

0.85 
0.96 

0. 94 

0. 75 

0.81 

0.62 
0.85 
0.88 
0.96 

0. 91 

0. 91 
0. 90 

Denotes genotypes had a significant regression coefficient greater 
or less than l .0. 
Denotes genotypes had a deviation from regression significantly different 

from zero. 
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Figure 10. Regression lines, showing the relationship of individual 
yields of four genotypes and population mean of 34 
genotypes of lentil grown at five different levels of 
water supply in two years. 
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The genotype FLIP84-67L gave seed yields/plant greater than the 
environmental mean in all environments. The low variance estimate of 
this genotype of 0.418 reflected the low variability of its performance 
over environments. The results of this genotype indicated that it 

could be considered a most stable genotype. Other stable genotypes, 
were nos.: l, 6, ll, 14, 15, 25, 31, 32 and 34 (Table 28 and Figure 
11 ) . 

Conversely, 74TA16l gave a seed yield below average yields in all 

environments (Figure 10). Its variance over environments was also low 

(0.281). Furthermore, this genotype had a regression coefficient of 

unity (Table 28). Consequently this entry can be considered to be 

poorly adQpted to all environments. This group included Family 130 (an 

Egyptian line), Selaim (the Sudanese local cultivar), ILL121, Lenka and 

ILL355. 

Genotype 74TA264 showed again specific adaptation to the high 

yielding environments (two irrigations). Consequently this genotype 
showed the highest variance value of 0.732. This group included also 
ILL241 and 74TA276 and a 11 these three entries had b values greater 

than l (Figure 11). 

Six genotypes exhibited regression coefficients of less than unity 
and low average yield (Figure 11). These genotypes are represented, in 
Figure 10, by ILL2526. This genotype also exhibited low variance 
estimate of 0.118 over environments. Consequently, these genotypes can 

be considered specifically adapted to dry conditions (as at Breda). 

Another approach to analyze adaptation was used for these 
genotypes which showed adaptation to dry conditions in the stability 

analysis. This test is the drought susceptibility index (Fischer and 

Maurer, 1978). This index was calculated for these six genotypes(group 

1) in addition to the other four genotypes (group 2) which represented 

different adaptation types. The results are given in Table 29. 

The rankings of susceptibility indexes (S) are exactly the reverse 

of those derived from relative yield (Yd/Yp) under drought. Values of 
S probably represent a precise comparison of drought susceptibilities. 

ILL2526 had the lowest S value, confirming its adaptability to dry 
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conditions, whereas 74TA264 exhibited the largest value, reflecting its 

lack of adaptation to dry conditions. Comparing the two groups, 
genotypes of group 1 had average seed yields/plant in the dry 
environment of 0.29g and their mean S was 0.93, while group 2 had a 
seed yield of 0.39g with a mean S value of l .0. 

FLIP84-78L and FLIP84-67L produced high yields in the dry site, 

but they showed susceptibility to this condition, reflected in their 

highS values (Table 29). In comparison ILL2526 had the lowest S value 

and the highest Yd/Yp ratio; also its yield, in Breda, was relatively 
high and ranked third. These results confirmed the adaptation of this 

genotype to dry conditions. 

The importance of linear regression has been emphasized by many 

workers. Finlay and Wilkinson (1963) used simple linear regression as 

a measure of phenotypic stability to describe varietal adaptability to 
a range of environments. Eberhart and Russell (1966) emphasized the 
need to consider both the linear (b) and non-linear (S 2d) components of 

genotype-environment interactions in judging the phenotypic stability 

of a genotype. Breese ( 1969) and Pa rod a and Hayes ( 1971) emphasized 

that the 1 inear regression should simply be regarded as a measure of 
the response of a particular genotype, whereas the deviation around the 
regression line should be considered as a measure of stability. 

Recently, Lin et ~· (1986) reported that the deviation from 
regression component does not represent the genotype's stability as 

stated by Eberhart and Russell (1966). They mentioned that the 
deviation from regression indicates no more than how good is the fit, 

but has no direct bearing on the genotype's stability. A poor fit, 

i.e., R2 is small or S2d is large should be taken as an indication that 

the use of the regression model to estimate stability is not adequate. 

Accordingly, the genotypes which showed significant S2d, most of 

which also had small R2 , were indicated in each character and were not 

used in regression analysis. 

Study of genotype-environment interaction has 1 ed to 

identification of stable genotypes which could be used in future 

breeding programmes. It was possible to judge the phenotypic stability 
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Table 29 Seed yield/plant at the dry environment (Br, 1986) 

and at the wet environment (T3, 1985) for 10 lentil 

genotypes with their drought susceptibility index (S) 

and relative yield (Yd/Yp). 

Seed yield Seed yield 
Genotype at Breda at TJ s 

( y d) (Yp 

1. ILL 1693 0.25 1 .48 1.00 

2. ILL l 983 0.33 1. 21 0.87 

3. Okul a 0. l 5 1.43 1.07 

4. Pant. L~06 0.32 1.40 0. 93 

5. ILL 2526 0,42 1.12 0.75 

6. ILL 2573 0.25 l. 20 0. 95 

7. 74TA264 0.37 3.00 1.05 

8. FLIP 84,67-L 0.43 2.36 0. 98 

9. FLIP 84,78-L 0.53 2.25 0. 92 

10. ILL 161 0.24 1.83 1.04 

Group 1 genotype 1-6 

Group 2 genotype 7-10 

Yct/Yp 

0.17 

0.27 

0.11 

0.23 

0.38 

0. 21 

0.12 

0.18 

0.23 

0.13 
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of the 34 genotypes of lentil included in this study using the 

definition of the term "stability". Consideration was also given to 
the mean performance and the linear response of the individual 
genotypes. 

In contrast, genotypes FLIP84-67L, FLIP84-27L, FLIP84-78L and 
ILL857 were found to be the most stable and high yielding genotypes. 
These genotypes can be recommended for planting under the varying 
annual rainfall conditions of the Mediterranean area. According to 
Eberhart and Russell (1966), Syrian Local Large (SLL), Syrian Local 

Small (SLS) and Jordanian Local were considered unstable genotypes as 
they showed high deviation from regression. 

The environments included in this study varied widely in rainfall, 

ranging from 203mm to 446mm, as well as in temperature and soil type, 

and thus produced wide variation in seed yield. This variation allowed 
a comparison between genotypes and allowed selection of some entries 

adapted to drought condition. The results showed that the absolute 

plant yield under water stress is a poor estimate of drought 

resistance. Yield under stress is affected by genotypes yield 

potential (Fischer and Maurer, 1978). Also, yield under stress alone 
is not a reliable selection criterion because the genetic component of 

variation relative to the environmental component of variation in 
yields is usually low under stress (Frey, 1964; Johnson and Frey, 1967 

and Dady et ~·· 1973). The use of a susceptibility index circumvents 
the problem of disassociating the effect of drought resistance from 
that of potential yield on the performance of a genotype under stress. 

Consequently, this method in addition with stability analysis can allow 
reliable prediction of drought resistant genotypes. 

ILL2526 showed adaptation to dry conditions and ex hi bi ted the 

lowest index of susceptibility. This genotype could be recommended for 

cultivation in dry areas and use in a hybridization programme as a 

source of drought tolerance. 
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4. Genetic analysis of variation between crosses 

As a preliminary to the genetic analyses of the F1 and F2 data, 
analyses of variance were made to determine the significance of 
differences between the genotypes studied. The analyses of variance 
were performed firstly on the 8 parents, secondly on the 8 parents and 
their 28 F 1 crosses and finally on the 8 parents and their 28 F 2 
crosses for 10 characters. Analyses of variance were also undertaken 
for the F1 and F2 crosses separately. In each case, F values were 
highly significant, indicating that genetic variation exists and that a 
genetic analysis could be appropriately undertaken for all variables. 

This section will include the following sections : (1) performance 
of parental lines, (2) study of the heterosis of F1 hybrids, (3) 
combining ability analy~is (by Griffing's method), (4) Jinks-Ha.Yman 
analysis, including graphical analysis and (5) prediction of the 
promising genotypes and crosses for future generations. 

4.1 Performance of parental lines 

The mean values over replications of the eight parents are given 
in Table 30. The results presented show highly significant differences 
among parental genotypes for biological yield/plant, seed yield/plant, 
straw yield/plant, number of pods/plant, number of seeds/pod, 100 seed 
weight, plant height, time to flowering, time to maturity and seed 
protein. 

The genotype FLIP84- 1 L ranked first for seed· yield/plant and 
second for biological yield/plant and straw yield/plant, whereas parent 
ILL274 had the highest values of biological yield/plant. The genotype 

Pant.L,406 from India gave the lowest values for most of the characters 
amongst the parents. 

ILL274 gave the highest mean number of pods/plant, but it had a 
moderate 100 seed weight. FLIP84--l L which had a moderate number of 
pods/plant, was ranked first for 100 seed weight. The high seed yield 

potential of this parent is probably due to its superiority in seed 

weight. 



Table 30 Mean Qerformance and standard errors of eight ~arents for 10 characters 

Biologi- Seed Straw No. of No. of 1 00-seed P1 ant Time to Time to Seed 
Parents cal yield yield/ yi e 1 d/ · pods; seeds; weight height flower- matuJ~- protein 

/plant plant · plant plant pod . ing i ty 
(g) (g) (g) (g) (em) (days) (days) % 

Giza 9 2.73 1.13 1. 60 18.5 1 . 76 3.50 39.4 111 . 5 160.5 23.90 

Family 370 2.70 0.83 1.87 17. 5 1 . 50 3 .1 3 37.5 101 . 0 157.0 24.50 

78526004 3.1 7 l. 30 1.87 26.1 1 . 02 4. 96 37.2 107.0 l 56. 5 23.80 
--' 

w 
Precoz 2.90 1.27 1.63 18.0 1.62 4.52 36.0 99.5 142.5 24.70 -...J 

Pant .L406 1. 27 0.60 0.67 15.7 l. 70 2.17 28.9 103.5 146.0 23.15 

FLIP 84, 1-L 4.20 1.53 2.67 20.7 1.28 5.81 42.0 109.0 162.0 23.35 

ILL 274 4.33 1.23 3.10 26.1 l. 37 3.48 45.5 124.0 166.0 24.20 

ILL 121 2.93 0. 93 2.00 21.1 1. 56 2.84 44.7 125.5 164.5 25.05 

Mean 3.03 1.10 l. 93 20.44 1.48 3.80 38.86 110.13 1 56. 88 23.61 

SE± 0.78 0.37 0.44 6.06 0.17 0.13 2. 95 1.13 3.14 0.36 
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The genotype Precoz ranked first for earliness in both flowering 

and maturity. Genotype ILL12l ranked last to flower, but ILL274 and 

ILL12l were latest to maturity. The two Egyptian lines Giza9 and 

Family 370 displayed low to moderate values for most characters, except 

for the number of seeds/pod, where Giza 9 ranked first. The highest 

level of seed protein content was found in the late-maturing genotype 

ILL12l, which also produced a low seed yield/plant. 

Although information of the kind given in Table 30 is of some help 

to plant breeders when choosing parents, it tells nothing about their 

performance in hybrid combination nor the extent to which characters 

highly expressed in different parents can be brought together in the 

offspring. For example, if attempts are made to raise seed yield by 

combining the large seed of "FLIP 84- I L" and the high seeds/pod of 

"Giza9", it is very likely that a biological limit would be reached so 

that some other character, perhaps number of pods per plant would be 

reduced. Because of these limitations, there is little prospect of 

discerning which pairs of cultivars will combine advantageously without 

actually making the crosses. However, if information could be obtained 

about the genetic system controlling these characters it would be 

easier for the plant breeder to predict the potential performance of 

certain cultivars or crosses in later generations, from their 

performance in the F1 and F2 generations. 
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4.2 Heterosis 

Heterosis in the F1 generation was 

characters viz; biological yield/plant, 
yield/plant, number of pods/plant, number 

studied for 10 lentil 
seed yield/plant, straw 

of seeds/pod, 100 seed 
weight, plant height, time to flowering, time to maturity and seed 

protein. Heterosis and inbreeding depression results are summarized in 
Table 31. 

4.2.1 Yield characters 

The yield characters, i.e. biological yield/plant, seed 

yield/plant and straw yield/plant will be presented and discussed 

together. 

The hybrid values, expressed as superiority of F1 crosses over the 
mid-parent values, were significant for all characters. The hybrid 
advantage for seed yield/plant, which was 31.8% over all crosses, 
showed the highest value among all these traits (Table 31). Heterosis 
value was 24.8% and 23.7% for biological yield/plant and straw 

yield/plant, respectively. The useful heterosis, expressed as 

superiority of F1 over the better parent in to the cross, was 13.6% for 

seed yield/plant. This value also exceeded that estimated for 

biological yield/plant (9.3%). No heterosis over the better parent was 

observed for straw yield/plant. 

The average heterosis over crosses belies the variation between 
individual crosses. The heterosis for each cross was calculated on the 

basis of mid-parent value, higher parent involved in the cross and 

inbreeding depression effect. The number of crosses showing 

significant heterotic and inbreeding effects is presented in Table 31. 

The numbers of F1 hybrids significantly exceeding the mid-parent 
were 12 for each of biological yield/plant, seed yield/plant and straw 

yield/plant. However, out of those F1 crosses which exhibited 
heterosis, 10 crosses showed significantly useful heterosis for 

biological yield/plant and 7 crosses for seed yield/plant and straw 

yield/plant. The heterosis values over the mid-parent ranged from a 



Table 31 . Average performance of parents (Fo), Fl, F2 generation, and overall heterosis measured as deviation of Fl 
hybrids from mid parent (MP) and better parent (BP) values and inbreeding depression of 10 lentil characters 

r Generation 
mean F1 

F2 

( 1 ) 
Heterosis % -{ 

( 2) 

Inbreeding (3) 
depression 

No.of F1 's {MP 
significantly _ 
exceeded GP 

No. of crosses 
significantly 
exhibited 
in breeding 
depression 

Biological 
yi e1 d/ 
E1 ant 

3.03 

3. 77 

3.63 

** . 24.8±8.35 

9.3±5.99 

3. 7 ±7. 53 

12 

10 

Seed Straw No. of No. of 
yi e1 d/ yield/ pods/ seeds/ 
E1ant E1ant ~1 ant EOd 

1.10 1. 93 20.4 1. 476 

1.46 2. 31 28.7 1 .496 

1.36 2.27 28.0 1 .495 

** ** *"k 
31 .8±10.66 23.7±7.68 40.3±10.66 1. 3±1. 56 

** 
13. 6±7 .04 ---- 26. 3±8.11 ---

6. 9±7. 91 1 . 7 ±_7. 70 2.4+8.99 0.1 ±2. 76 

12 12 11 1 

7 7 10 0 

0 

*,**Significant at 0.05 and 0.01 level of probability, respectively. 
(1) (Fl - MP)/MP X 100 (2) (Fl - 8P)/BP X 100 (3) Fl - F2/Fl X 100 
---Not calculated since Fl value was less than MP and/or gp values. 

100 seed Plant Time to Time to Seed 
weight h~ight f1 oweri ng maturity protein 

3.80 39.9 110.13 156.88 23.61 

3.52 39.5 1l0. 04 158.62 23.45 

3.40 39.8 109.14 158.52 23.62 

--- 1. 6±1. 76 -0.1±0.67 

--- --- --- --- ---

3.4±1.80 -0. 76.±2 .06 0.8±_0.82 0.1 +0. 27 -0.7 ±_0. 7 2 

2 6 8 4 0 

0 2 1 l 0 

0 0 2 0 0 

.+::o 
0 
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lowest negative value of -34.1% up to 107.2% for biological 

yield/plant, from -30.7% to 110.5% for seed yield/plant and from -31.6% 

to 104.7% for straw yield/plant. In comparison, the ranges of useful 

heterosis were (-44.3% to 86.1%), (-36.6% to 78.9%) and (-35.5% to 
78.5%) for those characters, respectively. 

Of the seven F1 crosses which showed useful heterosis for 

seed/yield plant, three involved the parent 78S26004; these being 
78S26004 x Precoz, 78526004 x Pant.L,406 and 78526004 x ILL121 (Table 

33). In three other crosses, ILL121 was involved as a common parent; 
these were: Giza9 x ILL121, 78S26004 x ILL121 and ILL274 x ILL121. 

Data presented in Table 33 show that parents 78526004 and ILL121 had 

the highest F 1 array means among a 11 the parents. The same trend 
occurred for the other two yield characters. ILL12l which was involved 

in four crosses and 78S26004, involved in three crosses, showed 

significant useful heterosis for biological yield/plant. In straw 

yield/plant, each of 78526004 and ILL121 involved in three crosses 

showed significantly useful heterosis. The data in Tables 32 and 34 
show that the array means of ILL12l and 78526004 were ranked second and 

third respectively in both biological and straw yield/plant. The four 
F1 crosses, which showed significant useful heterosis for seed 

yield/plant, also showed heterosis for biological and straw yield per 

plant. 

Inbreeding depression, estimated as the average percent decreases 

of the F2 from the F1 were 3.7%, 6.9% and 1.7% for biological 
yield/plant, seed yield/plant and straw yield/plant, respectively. 

However these estimates were not significant. Although the numbers of 
individual F2 crosses showing inbreeding depression were 12, 14 and 13 

for these three characters respectively, in only one F2 cross for each 

character did inbreeding depression reach the level of statistical 

significance. Comparing the three yield traits seed yield/plant, which 
exhibited the greatest amount of heterosis, showed the most inbreeding 
depression. A similar observation was reported by El-Hosary (1981) and 

Nassib (1982) in faba bean crosses. They found significant heterotic 

effects and 
yield/plant. 

highly significant inbreeding depression for seed 
Nassib (1982) pointed out that the significant inbreeding 

depression indicated that observed heterosis in F1 'sis real. 



Table 32 Mean performance, over replicates, of parents and their arrays of 8 x 8 dial1el crosses 

for biological yield/plant in F1 and F2 generations 

Parent Giza 9 Fam. 370 78526004 Precoz Pant.L,406 FLIP84,1-L ILL 27 4 ILL 121 Array 
mean 
( F l ) 

-
Giza 9 2. 73 4. 03* * 2.30 3. 97* * 3. 73** 3.17 3.70 4.60** 3.53 

Fam. 370 2.77 2.70 4.1 3* 4. 23* * 2.30 2. 73 4. 90* 3. 27 3.54 

78526004 2.37 3. 37 3.17 4. 63* * 4. 60** 4.40 3.67 5. 90** 4.10 
--' 
~ 

Precoz 3.83 4.37 5.27 2. 90 2.33 2.34 4. 27 4. 50** 3.65 N 

Pant .L ,406 2.00 2.50 3.20 3.07 1. 27 2.43 3.17 2. 57 2.80 --
FLI P84, 1-L 2.87 3.57 4. 73 5.57 3.07 4.20 4.33 3.73 3.42 

ILL 274 4. 27 4.07 4. 00' 3.47 6.10 4.33 4.33 5.6 3** 4.25 

ILL 121 3.63 2.10 2.40 2.70 2.70 3.73 5.63 2. 93 4.14 

Arraymean (F2) 3.06 3.18 3.56 3. 90 2.74 4. 01 4.28 3.23 

The diagonal values (underlined) represent the parent means. 

F1 means are above~diagonal values and F2 means below diagonal values. 

Array means include parental means. 

*,** F1 crosses exhibited significant heterosis. over ~1P and BP, respectively. 



Table 3 3 Mean performance, over replicates, of parents and their arrays of 8 x 8 diallel crosses 

for seed yield/ plant in F1 and F2 generations 

Parent Giza 9 Fam. 370 78526004 Precoz Pant.L406 FLIP 84, ILL 274 ILL 121 Array 

1-L mean 
( F 1 ) 

Giza 9 1.13 1 .60* 0.87 1. 37 1. 73** 1.10 1.17 1. 83* * 1. 35 

Fam. 370 1.03 0.83 1. 67* 1 .80* 0.93 1.07 2.14** 1.23 1.41 

78526004 0.90 1.17 1. 30 2 .00* * 2 .00* * 1.03 1.37 2. 33* * 1. 57 
~ 

~ 

Precoz 1.57 1.77 1.87 1.27 1.03 0. 97 1.57 l . 57* 1.45 w 

Pant. L406 0.83 0.97 1. 30 1.13 0.60 0.97 1.17 1 .10* 1.19 

FLIP 84, 1-L 1.00 1. 50 l. 70 1.80 1. 37 1. 53 1.63 l. 30 1.20 

ILL 274 1.63 1.50 1.47 1. 37 2.50 1 . 63 1. 23 2. 20* * 1. 56 --

ILL 121 1.27 0. 73 0.87 0.60 1.07 l. 30 2.20 0.93 1. 56 

Array mean (F2) 1.17 1.19 1. 32 1.42 1. 22 1.48 1.69 1.12 

- The diagonal values (underlined) represent the parent means. 

F1 means are above diagonal values and F2 means below diagonal values. 

- Array means include parental means. . 
*,* * ~ crosses exhibited significant heterosis Qver MP and BP, re~pectively. 



Table 3 4 Mean performance,over replicates, of parents and their arrays of 8 x 8 diallel crosses for 

straw yield /plant in F1 and F2 generations 

Parent Giza 9 Fam. 370 78526004 Precoz Pant.L406 FLIP 84, ILL 274 ILL 1121 Array 
1-L Mean 

( Fl ) 

Giza 9 1.60 2.37* 1 . 43 2. 60* * 2.00* 2.07 2.53 2. 77* * 2.17 

Fam. 370 1. 73 1.87 2 .47** 2.43* 1. 37 1.67 2.76 2.03 2.12 

78526004 1.47 2.20 1.87 2.63** 2. 60** 3.37* 2.30 3.57** 2.53 ~ 
~ 

Precoz 2.27 2.60 3.40 1.63 1 . 30 1.47 2.70 2. 93* * 2.21 

Pant.L406 1.17 1.53 1. 90 l. 93 0.67 1.47 2.00 1.47 1. 61 

FLIP 84, 1-L 1.87 2.07 3.03 3.77 l. 70 2.67 2.70 2.43 2.23 

ILL 274 2.63 2.57 2.53 2.10 3.60 2. 70 3.10 3.43** 2.69 
-

ILL 121 2.37 1. 37 L53 2.10 1.63 2.43 3.43 2.00 2.58 --

Array mean ( F 2) 1.89 1. 99 2.24 2.48 1.77 2.53 2.83 2.11 

- The diagonal values (underlined) represent the parent means. 

- F1 means are above diagonal values and F2 means below diagonal values. 

- Array means include parental means. 

*,** F1 crosses exhibited significant heterosis over MP and BP, respectively. 
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Variable inbreeding depression can be observed when comparing F1 
array means with their res pee t i ve F 2 values for all of those three 

characters (Tables 32-34). For example, the ILL12l F1 array mean for 

seed yield/plant was 1.56 (Table 33), this decreased to 1.12 in the F~ 
(_ 

generation accounting for approximately 28% inbreeding depression on 

average. In comparison, the array mean of Precoz was 1.45 in the F1 
and l .42 in the F2, indicating about 2% inbreeding depression only. 

Variable degrees of heterosis have been found for seed yield in 

lentil. Goyal et ~· (1976) found that heterosis over the better 

parent was 146%, while Singh et .!],. (1975) found values ranging from 

42% to 267%, and El-Hady (1983) reported values between 20% to 257%. 

Conversely, Singh and Jain (1971) did not find heterosis over better 

parent and El-Hady (1983) found negative heterosis of -9.72% in one 

cross (Giza9 x Family 370). 

4.2.2 Seed yield components 

The heterosis of the characters, the number of pods/plant, the 

number of seeds/pod and 100-seed weight will be presented and discussed 

together as yield component characters. 

Highly significant average heterotic effects expressed as percent 

increase of the F1 hybrids over the average of the parents were found 

for number of pods/plant (40.3%) (Table 31). Useful heterosis was also 

exhibited for number of pods/plant, the value of 26.3% being highly 

significant. Low percentage heterosis was found for number of 

seeds/pod (1.3 ± 1.56) and no heterosis was shown for the 100-seed 

weight trait. 

With respect to the heterosis of individual crosses, out of 28 F1 
hybrids, 11 cross combinations exhibited significant heterosis over the 

mid-parent for number of pods/plant. Only one cross showed significant 

heterosis over the mid-parent for number of seeds/pod and two crosses 

for 100 seed weight. Amongst yi e 1 d components, usefu 1 heterosis was 

seen only in the number of pods/plant where in 10 F1 crosses it 

significantly exceeded the better parent. 



Table 35 Mean performance, over replicates, of parents and their arraysof 8 x 8 diallel crosses for 

number of pods/plant in F1 and F2 generations 

Parent Giza 9 Fam. 370 78526004 Precoz Pant.L406 FLIP 84, ILL 274 ILL 121 Array 
1-L Mean 

( F~ ) 

Giza 9 18.45 28.64** 14.20 22.69 32.56** 19.96 22.49 33.60** 24.07 

Fam. 370 19.78 17.47 30.81 29. 72** 19.78 20.17 39.19** 29.56* 26.92 

78526004 18.15 20.14 26.05 37.57** 48.30** 21 .15 28.77 49.02** 31.98 

Precoz 40.77 32.15 35.46 17.98 24.97 15.77 30.08 32.47** 26.41 .+>-
0'> 

Pant.L406 14.90 20.32 25.15 25.14 15.71 22.06 .27. 44 24.38 26.90 

FLIP 84, 1-L 19.25 26.46 31.53 32.93 38.25 20.71 29.39 22.91 21 . 52 

ILL 274 32.07 33.70 21 . 17 26.42 63.86 35.18 26.07 45.52** 31.12 

ILL 121 27.60 17.41 17.87 12.43 23.07 28.23 44.35 21 . 11 32.32 
--

Array mean ( F 2) 23.87 23.43 24.44 27.91 28.30 29.08 35.35 24.01 

- The diagonal values (underlined) represent the parent means. 

- F1 means are above diagonal values and F2 means below diagonal values. 

- Array means include parental means. 
- -

*,** F1 crosses exhibited significant heterosis 0ver MP and BP, respectively. 



Table 36 Mean performance, over replicates, of parents and their arra~of 8 x 8 diallel crosses 

for number of seeds/pod in F1 and F2 generations 

Parent Giza 9 Fam. 370 78526004 Precoz Pant-L~06 FLIP 84, ILL 274 ILL 121 Array 
1-L mean 

( Fl ) 
-

Giza 9 1. 76 1. 72 1. 68* 1.63 1.67 1.59 1.60 1. 61 1.66 

Fam. 370 1. 72 1.50 1.48 1. 70 1. 57 1. 58 1.64 1.47 1. 58 

78526004 1.48 1.45 1.02 1.12 1.10 1.15 1.09 1.17 l. 23 ~ 
........ 

Precoz 1.54 1.45 l . l 9 1.62 1. 52 1.49 1.27 l. 52 1.48 

Pant .L406 1.86 1.65 1 . 59 1. 62 1. 70 1. 57 1. 59 1.82 l. 57 

FLIP 84, 1-L 1.45 1.68 1.20 1. 35 1.49 1.28 1.41 l. 65 1.47 --
ILL 274 1. 57 1. 35 1. 52 1. 43 1.40 1. 23 1. 37 1.47 1.43 --. 
ILL 1 21 1. 53 1. 50 1. 33 1.64 1.80 1.45 l. 39 1. 56 l. 53 

Array mean ( F 2) 1. 61 1.54 1. 35 1.48 1.64 1.39 1.41 1. 53 

- The diagonal values (underlined) represent the parent means. 

- F1 means are above diagonal values and F2 means below diagonal values. 

- Array means include parental means. 

* F1 crosses exhibited significant heterosis. 



Table '37 Mean performance, over replicates,of parents and their arra~of 8 x 8 diallel crosses for 

100-seed weight in F1 and F2 generations 

Parent Giza 9 Fam. 370 78526004 Precoz Pant L406 FLIP 84, ILL 274 ILL 121 Array 
1-L mean 

( Fl) 
-

Giza 9 3.50 3.36 3.68 3.67 3.21 * 3.48 3.45 3.39 3.47 

Fam. 370 3.05 3.13 3.70 3.58 3.01 * 3.35 3.34 2.86 3.29 

78$26004 3.37 3.88 4. 96 4.78 3. 77 4.28 4.44 4.10 4. 21 .j::>. 
00 

Precoz 2.53 3.90 4.43 4.52 2. 81 4.10 4.19 3.20 3.86 

Pant. L406 3.02 2.88 3.25 2.78 2.17 2.84 2. 75 2.49 2.88 

FLIP 84, 1-L 3.67 3.39 4.44 4.08 2.49 5.81 3.99 3.44 3. 91 

ILL 274 . 3.30 3.32 4.75 3.67 3.08 3.80 3.48 3.32 3.62 

ILL 1 21 3.05 2.84 3.75 2.96 2.60 3.30 3.59 2.84 3. 21 

Array mean (F2) 3.19 3.30 4.10 3.61 2.78 3.87 3.62 3.12 

- The diagonal values (underlined) represent the parent means. 

- F1 means are above diagonal values and F2 means helow diagonal values. 

- Array means include parental means. 

* F1 crosses exhibited significant heterosis. 
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Those hybrids with significant useful heterosis for seed yield 
also showed significant heterosis for number of pods/plant. However, 
three crosses exhibited useful heterosis for number of pods/plant and 

did not reach the level of significance for useful heterosis of seed 
yield/plant (Giza 9 x Family 370, Family 370 x Precoz and Precoz x ILL 

121) (see Table 35). These results indicate that heterosis for other 
characters does not always allow prediction of the degree of heterosis 
for yield. This is perhaps due to the inconsistent contribution of 
yield components to overall yield in different crosses as reported by 

Singh and Singh (1973) in green gram. 

The average values of inbreeding depression were 2.4%, 0.1% and 
3.4% for no. of pods/plant, no. of seeds/pod and 100 seed weight, 

respectively. Only one F2 cross showed significant inbreeding 
depression for number of pods/plant. 

Variable degrees of heterosis for yield component characters were 

also reported in lentil (Singh et ~·, 1975 and Goyal et ~·, 1976). 
Singh and Jain (1971) found that heterosis for seed yield was 

associated with heterosis in the yield components. 

4.2.3 Plant height 

The average heterotic effect expressed as percent increase of the 
F1 hybrids over the parents was 1.6%, but this was not significantly 
greater than zero. The inbreeding depression value was negative 
(-0.8%) (Table 31) but not significantly less than zero, reflecting the 
negligible heterotic effect in this character. 

With respect to individual heterosis, out of 28 F1 crosses, 6 
crosses showed significant heterosis expressed as percent increase 

above the mid-parent. In comparison, only two crosses exhibited 
significant useful heterosis; these hybrids were Family 370 x Precoz 
and 78S26004 x Precoz. The plant heights of those crosses were 41.7 em 

and 42.3 em, respectively (Table 38). 

Out of eight crosses exhibiting no heterosis only one cross showed 
significant negative inbreeding depression, which means that the F2 
value exceeded that for its respective F1 cross. 



Table 38 Mean performance, over replicates, of parents and their arrays of 8 x 8 diallel crosses 

for plant height in F1 and F2 generations 

Parent Giza 9 Fam. 370 78526004 Precoz Pant."L406 FLIP 84, ILL 274 ILL l 21 Array 
1 -L mean 

( F 1 ) 
-

Giza 9 39.4 35.6 33.6 42.4* 37.1 35.3 40.0 42.0 38.2 

Fam. 370 40.8 37.5 40.0 41 . 7** 34.0 39.9 42.1 43.8 39.3 

78526004 37.7 36.3 37·. 2 42.3** 35.5 40.1 35.6 40.5 38.1 

Precoz 34.0 41 .. 1 43.8 36.0 37.4* 32.7 42.2 47.4* 40.3 (J'1 

0 

Pant.L406 35.2 36.5 38.6 40.7 28.9 37.7 41 .4* 40.4 36.6 

FLIP 84, 1-L 42.2 38.6 41.7 42.6 36.6 42.0 42.5 38.6 38.6 

ILL 274 35.7 40.9 39.2 40.7 39.5 42.5 45.5 44.2 41.7 --
ILL 121 43.8 34.5 41.9 44.4 40.9 38.6 44.2 44.7 42.7 

Array mean (F2) 38.6 38.3 39.6 40.4 37.1 40.6 41 .0 41.6 

The diagonal values (underlined) represent the parent means. 

F1 means are above diagonal values and F2 means below diagonal values. 

Array means include parental means. 

* * * F1 crosses exhibited significant heterosis over MP and TIP, respectively. 
' 
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Negative heterosis of plant height was reported by El-Hady (1983) 

and Goyal et ~· (1976), who noticed no significant heterosis for plant 
height in ten lentil hybrids. 

4.2.4 Phenological characters 

Time to 50% flowering and time to 90% maturity were used as 

criterion for earliness in this study, and will be discussed together. 

The average of time to flowering of the F1 hybrids was 110.0 days 

compared with 110.1 days for time to flowering in the parents (Table 

31). The heterosis value was not significantly different from zero 

(-0.1%), but was negative in sign. No heterotic effect was detected in 
time to maturity. 

Eight crosses showed significant heterosis over the mid-parent 

(negative values) for time to flowering and four crosses for time to 
maturity. In comparison, only one hybrid (Giza 9 x 78526004) exhibited 

significant useful heterosis for both characters. This cross flowered 

at 103.7 days (Table 39) and matured at 152.8 days (Table 40), being 

3.3 and 3.7 days earlier in flowering and maturity respectively than 

the earlier parent, 78526004 (better parent). 

Inbreeding depression was positive but not significant, being 
0.8% and 0.1% for time to flowering and time to maturity, respectively. 

These values reflected the low heterotic effect for flowering and 
complete absence of heterotic effect for maturity. However, in the F2 
generations two crosses (78526004 x Precoz and Precoz x Pant.L,406) 

flowered earlier than their F1 's (Table 39), showing significant 

inbreeding depression. 

El-Hady (1983) also found a negative heterosis value of -6% for 
time to flowering in lentil. Mak and Yap (1977) reported no heterosis 

for time to flowering in long bean (Vigna sesguipedalis Fraw). 

4.2.5 Seed protein 

No overall heterotic effects were observed for this character on 

the basis of either mid-parent or better parent. The inbreeding 



Table 3~ Mean performance, over replicates, of parents and their arrays of 8 x 8 diallel crosses for 

time to flowering in F1 and F2 generations 

Parent Giza 9 Fam-370 78526004 Precoz Pant.L,-406 FLIP84,1-L ILL 274 

Giza 9 

Fam. 370 

78526004 

Precoz 

Pant .L 406 

FLIP 84,1 -L 

ILL 274 

ILL 121 

Array mean (F2) 

111.5 

104.5 

103.5 

106 

110 

110.5 

114 

117.5 

109.7 

103.3* 

101 

101 

103 

108 

110 

111 

107 

105.7 

103.7** 

104 

107 

103.5 

110.5 

11 2 

111 

113.5 

107.8 

108 

104 

110 

99.5 

102 

102.5 

103.5 

101 . 5 

102.7 

- The diagonal values (underlined) represented the parent means. 

114 

104.5 

111 

113 

103.5 

104 

113 

115 

108.3 

- F1 means are above diagonal values and F2 means below diagonal values. 

- Array means include parental means. 

*~**F1 crosses exhibited significant heterosis over MP and BP, respectively. 

114.5 

105.5 

111 . 5 

103.5 

111 . 5 

109 

116 

1 21 

110.6 

114* 

103.7* 

115 

101 . 5* 

115.5 

116 

124 

1 21 

114.2 

ILL 1 21 

116.5 

105* 

113. 5* 

111 

104* 

1 21 

122.5 

125.5 

115.3 

7\rray 
mean 
( F 1 ) 

110.7 

103.9 

109.5 

106.3 

l 09.6 

111.6 

114 

114.9 

U'1 
N 



Table 4·0 Mean performance, over replicates, of parents and their arrays of 8 x 8 diallel crosses for 

time to maturity in F1 and F
2 

generations 

Array 
Parent Giza 9 Fam. 370 78S26004 Precoz Pant.L,406 FLIP84,l-L ILL 274 ILL 121 mean 

( F l ) 

Giza 9 160.5 155. 2* 152 .8** l 59.5 l 57 160 1 59. 5* 161. 5 l 58.3 

Fam. 370 158.5 157 1 55. 5 1 55 153 156. 5 160.8 1 58 156.4 -
78S26004 154 154.5 156. 5 155.5 l 54. 5 161 160 1 61). 5 157 c..n 

w 

Precoz 156 155.5 156.5 142.5 158.5 161 163. 5 163. 5 157.4 

Pant.L,406 153~ 5 152.5 156 156.5 146 157. 5 1 58 156. 5 l 55. 1 

FLIP 84, 1-L 160 157 156.5 161 156.5 162 162.5 163 160.4 -
ILL 274 163 158 159.5 160.5 162 161 . 5 166 161. 5* l 61. 5 

ILL 121 163 157 158 164 1 58. 5 164 165 164. 5 161 . l ---

Array mean (F2) 158.6 15£.3 156.4 156.6 l 55. 2 159.8 161 . 9 161 . 8 

- The diagonal v·alues (underlined) represent the parent means. 

F1 means are above diagonal values and F2 means below diagonal values. 

- Array means include parental means. 

*,** F1 crosses exhibited significant heterosis over MP and BP, respectively. 



Table 41 Mean performance, over replicates, of parents and their array of 8 x 8 diallel crosses for seed 

protein in F1 and F2 generations 

Parent Giza 9 Fam. 370 78S 26004 Precoz Pant. L,406 FLIP 84,1-L ILL 274 ILL 1 21 Array 
mean 
( F 1 ) 

Giza 9 23.90 24.32 23.58 24.15 23.25 23.05 22.90 23.80 23.62 

Fam. 370 24.70 24.50 24.20 24.95 23.80 22.90 23.58 24.35 24.08 
--' 

78$26004 24.25 24.60 23.80 22.70 22.95 23.55 22.50 23.58 23.36 
()1 

~ 
---

Precoz 22.90 24.25 23.20 24.70 21 . 65 23.40 24.90 25.20 23.96 

Pant. L, 406 23.95 25.50 23.40 22.90 23.15 21 .05 22.90 22.50 22.66 

FLIP 84, 1-L 25.10 22.45 22.30 23.50 22.95 23.35 22.55 23.95 22.98 

ILL 274 23.15 23.30 23.30 23.70 22.90 22.60 24.20 24.35 23.49 

ILL 121 23.20 24.60 23.60 25.10 21 .80 24.00 24.10 25.05 24.10 

Array mean (F2) 23.89 24.24 23.56 23.78 23.32 23.28 23.41 23.93 

-The diagonal values (underlined) represent the parent means. 

- F
1 

means are above diagonal values and F2 means below diagonal values. 

-Array means include parental means. 
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depression value was negative (-0.7%), but not significantly different 

from zero (Table 31). 

Mak and Yap (1977), in long bean, found no significant heterosis 

for seed protein on the basis of the average of F1 's over the mean of 

the higher parent, but heterosis in individual crosses varied 

considerably from -51% to +48%. 
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4.3 Combining ability __ analysis (Griffing'_?. diallel analysis) 

The analyses of general combining ability (GCA) and specific 

combining ability (SCA) were made by the method of Griffing (1956) as 
method 2, model I. The results of these are presented in Table 42. 

The mean squares of GCA were significant for all characters in 
both F1 and F2 generations, except for number of pods/plant in the F2 
generation. The mean squares of SCA were also significant for all 

characters in both generations, except for plant height and number of 
seeds/pod, which had a non-significant effect of SCA in both F1 and F2 
generations. These results indicate the importance of both GCA and SCA 

mean square for all characters except number of seeds/pod and plant 
height. 

It is useful to examine the relativE importance of specific 

combining ability because significant variation due to SCA may indicate 

the need to isolate certain parents and perform a more thorough 
comparison of their performance and that of their hybrid progenies. In 
the comparison of relative importance of specific combining ability, 

Griffing ( 1956b) recommended that the average of the squares of SCA 

effects should be compared with the average of the squares of GCA 

effects. Many researchers have used comparisons of mean squares as a 
method of assessing the importance of different types of combining 
ability. However, this practise always results in an 

under-estimatation of the importance of SCA. In this regard, Baker 
(1977) recommended the use of components of the mean squares, not the 

mean squares themselves, when comparing GCA and SCA. Also, Sokol and 

Baker (1977) suggested the use of the ratio of SCA to GCA sums of 
squares (SCA(SS)/GCA(SS)) as an indicator of their relative importance. 

It should be remembered that, in inbred lines, the variance of 

general combining ability is equal to the additive variance in the base 
population and the variance of specific combining ability is equal to 

the non-additive variance. Gilbert (1958) suggested that the GCA of 
the parents may provide a good prediction of how hybrids will perform, 
because the GCA effects may be less subject to environmental influence, 

and thus provide a better indicator of a hybrid's long-term performance 
than the performance of that hybrid itself. An estimate of how well 



Table 42 Mean squares for combining ability analysis, general ( 0
2 gca) and specific (0

2 sca) combining ability 

variance components, the ratio of SCA and GCA sum of squares and the coefficient of determination (R 2 

for lentil cnaracters in an 8-parent diallel cross 

Biological yield Seed yield Straw yield Number of pods Number of seeds 

D.F per plant per plant per plant per plant per pod 

Fl F2 Fl F2 Fl F2 Fl F2 F 
l F2 

** ** * ** ** ** ** ** ** GCA 7 2.03 2.69 0.17 0. 31 1.11 1. 25 112.10 115.33 0.161 0.12 

** * ** * ** * ** * (J1 

SCA 28 0.80 0. 81 0.18 0.15 0.28 0.32 68.66 98.78 0.016 0.013 '-I 

Error 35 0.30 0.43 0.07 0.08 0.11 0.17 27.38 53.61 0.0214 0. 015 

o2 gca 0.12 0.19 0.0 0.016 0.08 0.093 4.34 0.0 0.0145 0.010 

o2 sca 0.50 0.39 0.12 0.073 0.17 0.15 41.28 45.17 0.0 0.0 

SCA(SS~ 
GCA(SS 1 .-58 1. 21 4.27 1. 94 1.02 1.02 2.45 

Rz 0.54 0.71 0. 31 0.58 0.66 0.74 0.45 0.48 l.OO 1.00 

* **Significant at 0.05 and 0.01 level of probability, respectively. 



Table 42 (continued) 

100-seed Plant height Time to Time to Seed protein 
weight flowering maturity 

OF 
Fl F2 Fl F2 Fl F2 Fl F2 F 

l Fz 

** ** ** ** ** ** ** ** ** ** GCA 7 2.09 2.09 43.36 29 .. 23 148.49 183.28 67.67 78. 31 2 .L 75 1 . 0418 

** ** ** ** ** ** * ** SCA 28 0.15 0. 21 7.34 8.95 1 9. 96 11.25 11.25 10.35 0.5441 0.7023 
-' 

Error 35 0.03 0.01 5.18 5.94 2.22 1.44 2.09 2. 61 0. 27 99 0.2303 
U1 
OJ 

o2gca 0.20 0.188 3.60 2.03 12.85 17.14 5.64 6.80 0.1895 0.0812 

0
2sca 0.12 0.195 0.0 0.0 17.75 10.41- 9.16 7.74 0.264 0.472 

SCA{SSi 
GCA(SS 0.28 0.40 - - 0.54 0.26 0.67 0.53 1. 001 2. 696 

R 2 0.82 0.73 0.93 0.83 0.68 0.82 0.66 0. 73 0.74 0.39 
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GCA estimates will predict hybrid performance is given by taking the 

GCA sum of squares as a per cent of the total sum of squares for 

genetic variation (additive and non-additive variation) among the 

progeny in a diallel cross (Baker, 1977). This ratio is equivalent to 

a coefficient of determination (R 2) corresponding to the correlation of 

hybrid performance with the average of parental GCA's. The ratio of 

SCA (SS)/GCA (SS) and the values of (R 2) were calculated to determine 

the relative importance of both GCA and SCA (Table 42). 

Two other tests can be used to compare the importance of both GCA 

and SCA. The first, the relative importance of general and specific 

combining abilities in determining performance in hybrid combinations, 

can be assessed by the ratio 2 a 2gca/(2 a zgca + a 2sca) (Baker, 1978). 

The estimates of the GCA variance component ( a 2gca) and the SCA 

variance component ( a 2 sca) are given in Table 42. The closer the 

ratio is to un.ity, the greater the predictability based on general 

combining ability alone. The second test is the correlation 

coefficient between the general combining ability values of individual 

parents, which are presented in Table 43, and the parental mean 

demonstrated in Table 30. The results of those two tests are presented 

in Table 44. 

The estimates of gene1~a1 combining ability component of variance 

azgca) and specific combining ability component of variance (a 2sca) 

are presented in Table 42. They were used to estimate the additive 

( a2A) and non-additive ( a 2NA) components of variance, phenotypic 

( a2ph) and genotypic ( a 2g) variance components as described by 

Griffing (1956b). These estimates together with environmental variance 

(a 2E) are given in Table 45. 

The results showed that the parameters varied from character to 

character. Relatively low value of SCA (SS)/GCA (SS) and the high 

values of R2 occurred with the following characters; 100 seed weight, 

number of seeds/pod, plant height, time to flowering and time to 

maturity (Table 42). These traits also had a higher additive component 

of variance (a 2A) than non-additive component of variance ( a 2NA) 

(Table 45). These results indicated that additive gene action plays 

the predominant role in the genetic control of these characters, 



Table 43 

Parent 

Giza 9 

F .370 

78S26004 

Precoz 

Pant.l406 

FLIP 84, 1-l 

Ill 274 

Ill 121 

S.E. 
F1 

Fz 

Biological 
yield per 

plant 

Estimates of GCA effect of 8 parents for 10 lentil characters measured in F
1 

and F
2 

generations 

(ranks in parenthesis) and their standard error* 

Seed 
yield per 

plant 

Straw 
yield per 

plant 

Pods 
per 

plant 

No. of 
seeds per 

pod 

100 
seed 

weight 

Plant 
height 

Time to 
flowering 

Time to 
maturity 

-0.15 (6) -0.04 (6) -0.11 (6) -3.07 (7) 0.16 (1) -0.10 (5) -1.08 (6) 0. 64 ( 5) 

0.48 (5) 

-5.86 ( 1) 

0. 24 (5) 

0.54 (5) 

-1.61 (3) 

-0.43 (7) 

-0.15 (6) 

-0.33 (6) 

0 .·35 ( 3) 

0.02 (4) 

-0.03 (4) 

0.26 (3) 

-0.88 (8) 

-0.63 (8) 

-0.08 (5) 

0. 48 ( 2) 

0.59 (1) 

0.91 (1) 

0. 36 ( 2) 

-0.27 (5) 

0.16 

0.19 

-0.1 2 ( 5) 

-0.02 (5) 

-0.14 (6) 

0.15 (1) 

0.02 (4) 

0.04 (4) 

0.09 (3) 

-0.23 (8) 

-0.14 (6) 

-0.13 ( 7) 

0.17 (2) 

0.13 (2) 

0.31 (1) 

-0. 31 ( 7) 

-0.12 (7) 

-0. 2o (6) 

0.20 (3) 

0.00 (4) 

-0.07 (5) 

0.17 (3) 

-0.65 ( 8) 

-0.50 (8) 

0. 04 ( 4) 

0.31 (2) 

0.46 (1) 

0. 60 ( 1 ) 

0.10 (3) 0.26 (2) 

-0.18 (8) . -0.09 (5) 

0.08 0.10 

0.08 0.1 2 

-2.74 (7) 

-0.89 (4) 

-3.19 (8) 

4.02 (1) 

-1.53 (5) 

-1. 24 ( 6) 

0.44 ( 4) 

-1 . 08 ( 5) 

0.53 (3) 

-4.89 (8) 

1 . 64 ( 2) 

3.34 (3) 

7.21 (1) 

3. 80 ( 2) 

-2 .3i' (6) 

1. 55 

;~. 1 7 

0.13 ( 2) 

0.08 (2) 

0.04 (3) 

-0.26 (8) 

-0.16 (8) 

0.01 (5) 

0. 00 ( 5) 

0.08 (2) 

0.14 (1) 

-0.04 (6) 

-0.10 ( 7) 

-0.06 (7) 

-0.08 (6) 

0. 04 ( 4) 

0.03 (4) 

0.07 

0.04 

-0.24 (6) 

-0.28 (6) 

-0 .1 9 ( 5) 

0.64 (1) 

0. 64 ( 1 ) 

0.31 (3) 

0.20 (3) 

-0.70 (8) 

-0.70 (8) 

0.49 (2) 

0.54 (2) 

0.02 (4) 

0.11 (4) 

-0.38 ( 7) 

-0.36 ( 7) 

0.07 

0.03 

-0.80 (6) 

-0.35 (5) 

-1.23 (7) 

-1.35 (7) 

-0.26 (5) 

0.75 (3) 

0.33 (4) 

-3.42 (8) 

-3.04 (8) 

0.02 (4) 

l. 08 ( 3) 

2.35 (2) 

l. 76 (2) 

3.07 (1) 

2 .16 ( 1 ) 

1.01 

0. 72 

-3.78 (2) 

-0.78 (4) 

-1 .53 (3) 

-4.06 (2) 

-6.33 (1) 

-1 .01 (3) 

-1 .48 ( 4) 

1.09 (6) 

0. 98 ( 6) 

4.57 (7) 

5.33 (7) 

5.39 (8) 

6.33 (8) 

0.67 

0.36 

-1 . 66 ( 3) 

-1.13 (4) 

-1.56 (4) 

-2.26 (2) 

-2.76 (2) 

-3.71 (1) 

-3.51 (1) 

2.14 (6) 

1.69 (6) 

3. 37 (8) 

3.79 (8) 

2. 94 (7) 

3.49 (7) 

0.65 

0.48 

* F1 estimates are above the F2 estimates in each cell in the table. 

Seed 
protein 

0.11 ( 4) 

0.16 ( 3) 

0.46 (2) 

0.49 (1) 

-0 .18 ( 6) 

-0.12 (5) 

0.39 (3) 

0.15 (4) 

-0.74 (8) 

-0.38 (7) 

-0.53 (7) 

-0.39 (8) 

-0.04 (5) 

-0.20 ( 6) 

0. 53 ( 1) 

0.30 (2) 

0.16 

0. 14 

0'1 
0 
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Table 44 The ratio 2o 2gca/(2o2§ca+o2 sca) and the correlation coefficient (r) 

between general combining ability values and the parental 

means in the F1 and F2 generations for 10 lentil characters 

r 
Characters 

Biological yield/plant 0.32 0.49 0.77* 0.89** 

Seed yield/plant 0.00 0. 31 0.36 0.72 

Straw yield/plant 0.49 0.55 1.00** 0.89** 

No. o f pods I p 1 ant 0.17 0.07 0.66 0.46 

100 seed weight 0.77 0.66 0. 94** 0.95** 

No. of seeds/pod 1.0 1.0 0.52 0. 54 

Plant height 0. 77 0.57 0.87** 0.97** 

Time to flowering 0.59 0.77 0.95** 0.97** 

Time to rna turi ty 0.55 0.64 0.89** 0.90** 

Seed protein 0.59 0.25 0.96** 0.81** 

* **Significant at 0.05 and 0.01 level of probability, respectively. 



Table 45 Estimates of the variance comeonents for 10 lentil characters calculated from Griffing's diallel 

analysis method in the Fl and F2generations 

Biological Seed Straw No. of No. of 100 Plant Time to Time to Seed 
yiel'd/ yield/ yield/ pods/ seeds/ seed height flower- matur- protein 
Elant El ant El ant El ant EOd weight ing i tL 

o2A Fl 0.24 0.0 0.16 8.68 0.03 0.40 7.20 25.70 11 . 28 0.38 

F2 0.38 0.04 0.19 3.32 0.02 0.38 4.06 34.28 13.60 0.16 

0
2 NA F1 0.50 0.12 0.17 41.28 0.0 0.12 2.16 17.75 9.16 0.26 

F2 0.39 0.07 0.15 45.17 0.0 0.20 3.01 10.41 7.74 0.47 

a2G Fl 0.74 0.12 0.33 49.96 0.03 0.52 9.36 43.45 20.44 0.64 
0'1 

F2 0. 77 0.11 0.34 48.49 0.02 0.58 7.07 44.69 21 . 34 0.63 N 

a2E F1 0.30 0.07 0.11 27.38 0.02 0.03 5.18 2.22 2.09 0.28 

F2 0.43 0.08 0.17 53.61 0.02 0.01 5.94 1.44 2. 61 0.23 

o2ph F1 1.04 0.19 0.44 77.34 0.05 0.55 14.54 45.67 22.53 0.92 

F2 1.20 0.19 0. 51 1 02.1 0 0.04 0.59 13.01 46.13 23.95 0.87 

ozA : Additive variance, a2NA : non-additive variance, a2 G : genetic variance, a2 E : environmental variance, 

o2ph: Phenotypic variance. 
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providing confidence that the GCA's of the parents will give a fairly 

reliable prediction of hybrid performance. The high ratio of 2 

cr2gca/(2 ~2gca + 6
2 sca) for these traits (Table 44) also confirmed the 

above results. 

Biological yield/plant, straw yield/plant and seed protein 
exhibited higher values of SCA (SS)/GCA (SS) than the characters 
mentioned above (Table 42). However, for these last three characters, 

the ratios of SCA(SS)/GCA(SS) were, in most cases, near unity. In 

addition, R2 values were not low, and in some cases were high (0.71 for 

biological yield/plant in F2 and 0.74 for straw yield/plant in the F2 
and protein in the F1 generation). The results suggest that for those 

traits additive and non-additive effects have equal importance. 

On the other hand, seed yield/plant and number of pods/plant 
showed different results. Both characters exhibited the highest values 
of SCA (SS)/GCA (SS) among all characters coupled with low estimates of 
R2 , that indicates the predominant role of non-additive gene action in 
the genetic control of these two traits. The ratio 2 0 2gca/(2 ~2gca + 

6 2 sca) (Table 44) confirmed the earlier results for all characters. 

The correlation coefficient estimates (Table 44) showed a strong 

correlation between general combining ability effects and parental 

means for most characters, indicating that parental means provided a 

good prediction of general combining ability and hence hybrid 
performance. Number of pods/plant did not exhibit high values in both 
generations and seed yield/plant showed high correlation in the F2 
generation (0.72), but was not significant. Also, number of seeds/pod 
did not show significant correlation between general combining ability 

effects and parental means in both generations. 

The additive component of variance was higher in magnitude than 
the non-additive component for 100 seed weight, number of seeds/pod, 

plant height, time to flowering and time to maturity in both F1 and F2 
generations and straw yield/plant in the F2 and seed protein in the F1 
generations (Table 45). The traits biological yield/plant and seed 

yield/plant in both generations and straw yield/plant in the F1 
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generation had higher non-additive component values than additive 

component estimates. In general, these results also agreed with those 

mentioned above. 

A predominant role of additive component gene action has been 

found in lentil for number of seeds/pod and seed size (Goyal et ~l., 

1977) and time to flowering (Malhotra et ~., 1973). 

The different va 1 ues of additive and non-additive component of 

variances affected the estimates of heritabi 1 ities among characters. 

Table 46 presents the estimates of broad sense (h\.s.) and narrow 

sense (h 2 ) heritabilities in the F1 and F2 generations for all the n.s. 
characters studied. 

The traits which had highly additive component values gave high 

estimates of broad and narrow sense heritabilities. These were: 100 

seed weight, plant height, time to flowering and time to maturity in 

the F1 and F2 generations and seed protein in the F1 generation. The 

estimates of heritabilities for number of seeds/pod were less than 

the expected values due to the high environmental variance (error 

variance) for this trait (Table 45). 

In comparison, the traits which had high non-additive component 

values showed lower estimates of broad and narrow sense heritabilities 

than other characters. 100 seed weight gave the highest narrow sense 

heritability in the F1 generation (b1 = 72.7%), whereas seed 
n.s. z. 

yield/plant gave the lowest value of (b = 0.0) among all n.s. 
characters. 100 seed weight character was also less influenced by 

environment, environmental variance for this trait representing only 

5.5% and 1.7% from phenotypic variance in the F
1 

and F
2 

generations, 

respectively. For comparison, these ratio was 36.8% and 42.1% for seed 

yield/plant in the F1 and F
2 

generations, respectively (Table 45). 

It should be emphasized here that, since the parents of this 

diallel cross were not randomly selected, the above conclusions must be 

confined to the eight parent a 1 1 i nes and their crosses used in the 

present investigation. 



. Table 46 

h2 F 
b. s. 1 

F2 

h 2 F n.s 1 

F2 

Estimates of broad (h 2 b ) and narrow (h2 ) sense heritabilities calculated from Griffing's diallel . s . n. s . 

Biological 
yield/ 
plant 

71.2 

64.2 

23.1 

31.7 

analysis method for 10 lentil characters in the F1 and F2 generations 

Seed 
yield/ 
plant 

63.2 

57.9 

0.0 

21.1 

Straw 
yield/ 
plant 

75.0 

66.7 

36.4 

-37.3 

No. of 
rods/ 
plant 

64.6 

47.5 

11.2 

3.3 

No. of 
s~eds/ 
pod 

60.0 

50.0 

60.0 

50.0 

100 seed 
weight 

94.6 

98.3 

72.7 

64.4 

Plant 
height 

64.4 

54.8 

49.5 

31.2 

Time to 
flower

ing 

95.1 

96.9 

56.3 

74.3 

Time to 
maturity 

90.7 

89.1 

50.1 

56.8 

Seed 
protein 

69.6 

25.4 

41.3 

18.4 

"" (.J"I 
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4.4 Jinks-Hayman analysis method 

1 

The use of another type of diallel analysis, that described by 

Jinks and Hayman (1953) in addition to the Griffing's analysis, would 

give additional genetic information. Therefore, it has also been used 
in the present study. 

In order to determine the validity of the genetical parameters and 

interpretations, tests of the hypothesis were made according to the 

method of Hayman (1954). 

Testing the validity of hypotheses 

Several assumptions are made when the diallel analysls of Jinks 

and Hayman is used. These are (1) homozygous parents; (2) diploid 

segregation; (3) absence of reciprocal differences; (4) gene 
frequencies equal to 0.5 at all segregating loci; (5) genes 
independently distributed between the parents (no ·linkage); (6) no 
epistasis (absence of non allelic gene interaction) and (7) no multiple 

alleles. 

Failure of one or more of these assumptions invalidates the 
genetic analysis. 

In this study, assumptions 1 and 2 were valid since lentil is a 

diploid, self-pollinated crop. Other assumptions were tested together 
in two tests conducted on two generations (the F1 and the F2) in this 

study. 

The first test was the analysis of variance for W -V 
r r 

(parent-offspring covariances - array variances). In this test, the 

va 1 ues of W -V over arrays are expected to be consistent and the F 
r r 

value over arrays of the analysis of variance of Wr-Vr is expected to 
be non-significant for an additive-dominance model with independent 

gene distribution. 

The second test of the assumptions was the regression coefficient 

(b Wr/Vr) of the parent-offspring covariances (Wr) on the array 
variances (Vr). The linear regression coefficient should be 
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significantly different from zero but not significantly different from 

unity if all the assumptions are to be met (Jinks and Hayman, 1953). 

F values of the analysis of Wr-Vr and the regression coefficients 

(bWr/Vr) for the ten characters involved in the present study in both 
F1 and F2 generations are shown in Table 47. As mentioned earlier, the 
non-significance of the F values and a non-significant deviation of 
regression coefficient from b=l indicates the adequacy of the 
additive-dominance model with independent gene distributions. 

The results in Table 47 showed that only the traits 100-seed 
weight, no. of pods/plant and time to maturity in both F1 and F2 
generations, and time to flowering in the F1 generation completely 

fulfilled the assumptions of the two analyses. 

On the other hand, other traits failed to meet the assumptions due 

to either the significance of F values and/or insignificant differences 

of the regression coefficient (b Wr/Vr) from zero and/or their 
significant differences from unity. These traits were biological 

yield/plant, seed yield/plant, straw yield/plant, no. of pods/plant, 
seed protein content and plant height in both F1 and F2 generations and 

time to flowering in the F2 generation. These characters appeared to 

suffer from failure of one or more of the basic assumptions required 
for an additive-dominance model. 

For such failures, Hayman (1957, 1963) recommended that it is 

desirable to eliminate separately the epistatic parent(s) (the 
parent(s) corresponding to the maximum and minimum Wr-Vr value), then 

re-analyze the data. He pointed out that this will restore the 

rectilinearity of the Wr/Vr graph. This suggestion was implemented for 

the characters which showed failure of the assumptions outlined above. 
However, it only worked successfully for the character time to 
flowering. For time to flowering, it was clear that array parent 
Precoz was an epistatic parent; it had the minimum Wr-Vr value 
(Appendix Table 4) and its array ranked first in earliness (Table 39). 

The removal of the array of Precoz in the F2 generation improved b 
Wr/Vr from 0.213 to 1.34 and it became close to unity and highly 
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Table47 F value of the analysis of variance of W -V and regression 
r r 

coefficient (b) of Wr on Vr in the F1 and F2 generations 

Fl F2 
Character 

F value bWr,Vr F value bW , V r r 

Biological yield/plant 5. 03+ 0.04** 0. 54 0.31* 

Seed yield/plant 0.0003 0.08* 12.81 + 0.65° 

Straw yield/plant 0.10 0.1 4* 0.06 0 0.62 . 

No. of pods/plant 1. 32 0.09* 1 9.4 + 0.08** 

100-seed weight 2.04 1.12 1. 51 1.09 

No. of seeds/pod l. 50 0.67 0.26 1.11 

Plant height 0.56 0.67° 0.30 0. 75 0 

Time to flowering: 

{ 1 ) All parents 1.47 1.11 0.07 0. 21° 

{2) Parent 4 excluded 0.06 0. 96 4.18 1. 34 

Time to rna turi ty 0.12 0. 92 0.04 0. 97 

Seed protein 6.01+ 0.42** 0.05 0.07** 

* ** ' Significant different from unity at the 0.05 and 0.01 probability levels, 
respectively. 

+ 

0 

Any significant F value indicates failure of one or more of the assumptions 
underlying the analysis for a particular character. 

Not significantly different from unity am from zero. 
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significantly different from zero and thus fulfilled the required 
assumptions for this character. Also, this parent was eliminated in 
the F1 generation (see Appendix Table 3). 

For other characters showing failure of the assumptions required 
for the genetic analysis, the removal of a parent(s) which showed 
epistasis was 'attempted but it was unsuccessful in correcting such 
failure in most cases. These results indicated that the failure of the 
genetic assumptions in these characters may not be due only the 
presence of epistasis but could be due to one or more other factors, 
such as gene interaction or unequal distribution of positive and 
negative alleles at the loci under consideration. The tests which have 
been used in this study, es pee i ally the regression of Wr on Vr, 1·1i 11 
only be able to detect epistasis in the absence of any correlation of 
gene frequences in the parents of the diallel, and it is not possible 
to differentiate between the effects of epistasis and gene interaction 
{Nassar, 1965). 

Therefore,.the genetic analysis was continued forward only for the 
characters 100-seed weight, number of seeds/pod, time to flowering and 
time to maturity. As other characters did not fit the assumption of an 
additive-dominance mode 1 with independent gene dis tri but ion, further 
genetic analysis of these traits would not be reliably performed. Most 
of those characters which showed failure of the assumptions also 
demonstrated the importance of specific combining ability. These 

demonstrated the presence of non-allelic interaction (epistasis) on the 
genetic systems of those traits, because the specific combining ability 
is associated with non-allelic interaction (Jinks, 1954). 

It should be emphasized here that the genetic components estimated 

by the Griffing method and presented in Table 45 were calculated 

assuming no epistatic effects. In the presence of epistasis, the 
expectation for 0

2gca would be = ! a 2A + ! a 2 AA + ; a 2 AAA 
(Matzinger and Kempthorne, 1956). Such a situation would result in 
different variance component estimates from those mentioned in Table 11 

(see materials and methods). 
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Since the method of analysis was described in detail by Jinks and 
Hayman (1953), a summary with a brief interpretation of the estimates 
of genetic and environmental parameters and ratios is given in Table 

48. The use of second-degree statistics allowed estimates of the 
genetic and environmental variance components to be made of the four 
characters mentioned above (Table 49). 

100 seed weight 

The additive genetic component D was highly significantly 
different from zero (Table 49) in the F1 and F2 generations. The 
dominance components of variation (H1 and H2) were also highly 
significant in both generations. These results indicated that both 

additive and dominance effects were important; however, the D values 
were relatively larger than those of H1 and H2, indicating that the 
additive effect was more important than the dominance effect for the 
genetic control of seed weight in this study. These results were in 
agreement with results obtained by Griffing's method, where the 
additive components were higher than non-additive components in both 

generations. 

The H2 value was smaller than the H1 value in both generations, 
indicating that the positive and negative alleles at the loci were not 
equal in proportion in the parents. H2/4H1 value was less than 0.25, 
being 0.16 in both generations, supporting the view that for seed 
weight, in this study, there were unequal proportions of genes with 

positive and negative effects distributed among the parents. The 
significant and positive values of F supported these results and 
suggested that the frequencies of dominant genes exceeded the 
frequencies of recessive genes in the parents. Estimates of F, H1 and 
H2 were larger in the F2 than in the F1 generation. This is to be 
expected because the F2, unlike the F1, is a segregating generation. 

Another parameter that gives a good indication of the equality of 
distribution among the parental lines of dominant versus recessive 

j_ j_ 

alleles is the ratio [(4DH1) 2 + F/(4DH1) 2 
- F]. If this value exceeds 

1, it is an indication of more dominant than recessive genes among the 
parents. This value was 2.92 for the F1 and 2.56 for the F2 generation 

in this character. 



Table 48 

Parameters 

F 

E 

(4DH 1 )~+F 

(4DH 1 )~-F 
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Jinks-Hayman's (1953) diallel analysis parameters and ratios 

and their interpretation 

Interpretation 

The component attributable to additive gene actions. 

The component attributable to dominance effects (in 
the absence of dominance H1 = 0). 

This value should be the same as H1 when ~ = v = 0.5 and 
the interpretation is the same as H1 
This estimate indicates the square difference of mean 
performance between hybrids and parents (if it is large 
and significant it indicates the existence of differences 
between hybrids and parents). 

The sign and magnitude of F is an indicator of the 
relative frequencies of dominant and recessive alleles 
in the parents. A positive value indicates an excess 
of dominant alleles and a negative value indicates an 
excess of recessive alleles. 

The conventional experimental error from the analysis 
of variance. 

An estimate of the mean degree of dominance over all loci. 
This ratio measures average value of ~v over all loci. 
It has a maximum of 0.25 when ~ = v = 0.5. An unequal 
distribution of positive and negative alleles causes 
this ratio to be less than 0.25. 

The ratio of the total number of dominance to recessive 
genes at all parents. This ratio gave good indication 

of the equality of distribution of dominance versus 
recessive genes among the parents. 
This ratio provides an approximate number of genes or 
groups of genes controlling the character. 



Table 49 

D 

SE± 

Hl 

SE± 

H2 

SE± 

h2 

SE± 

F 

SE± 

E 

SE± 

(H1/D) ~ 

H/4H1 

KD/KR+ 
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Estimates of components of variance, their ratios and standard 

errors (SE) for 4 lentil characters in the F1 and F2 generations 

from an 8-parental diallel cross in lentil 

No .of seeds/pod 100 seed weight Days to flowering Days to maturity 

Fl F2 Fl F2 Fl F2 F1 F2 

** ** ** ** ** ** ** ** 0.038 0.044 1 . 41 9 1 .433 89.93 90.70 70.18 69.66 

0.007 0.004 0.054 0.054 6.84 4.23 3.00 3.05 
** ** ** ** ** ** 0.011 0.013 0.614 0. 934 66.86 38.59 57.21 47.82 

0.015 0.009 0.126 0.125 16.60 10.1 9 6. 92 7.05 

* ** ** ** ** ** ** 0.014 0.019 0. 381 0. 610 51 .24 31 .43 26.90 23.07 

0.013 0.008 0.109 0.109 14.62 8. 98 6.02 6.13 

** ** * 0.021 0.006 0.229 0.490 0.278 0.028 8.39 7.13 

0.009 0.005 0.073 0.073 9.88 6.07 4.04 4.11 
** ** ** ** ** -0.027 -0.001 0. 914 1 .011 37.81 34.05 78.92 67.79 

0.016 0.091 0.129 0.128 24.32 10.15 7.12 7.25 

** ** * * 0.021 0.015 0.028 0.014 2.215 1 .442 2.035 2.606 

0.002 0.001 0.018 0.018 2.44 l. 50 1.00 1.02 

0.53 0.55 0.66 0.81 0.86 0.65 0.90 0.83 

0.32 0.35 0.16 0.16 0.19 0~20 0.12 0.12 

0. 21 0. 97 2.92 2.56 1.65 1.81 4.30 3.85 

h 2/H 2(K) 0.60 0.30 0.38 0.80 0.005 0.001 0. 31 0. 31 

= ( 4DH1 )~ + F 
(40Hl)~ -F 

*,**Significant at 0.05 and 0.01 level of probability, respectively. 
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The overall dominance effects of heterozygous loci (h 2 ) were 
positive and highly significant in both F1 and F2 generations, 
indicating that dominance due to heterozygosity was prominent in this 

trait. 

I 

The value of (H 1 /D)~ is an estimate of the mean degree of 
dominance over a 11 1 oc i. With no dominance this va 1 ue is expected to 
equal zero; with average partial dominance the value is expected to 

fall within the range of 0-< 1, with complete dominance this value 
should equal 1 and with over-dominance it should be >1. For 100 seed 
weight, these values were 0.66 and 0.81 in the F1 and F2 generations 
respectively, indicating partial dominance. 

The ratio h" /H2 estimates the number of genes (K) or groups of 
linked genes showing some degree of dominance. In this study, 100 seed 
weight involved one gene or group of linked genes. It should emphasize 

here that this estimate will be under-estimated if the dominance 
effects of the genes affecting the character are not equal in size and 
direction, or if the distribution of the genes is correlated. 

The estimates of the environmental variance (E) 
significant in both F1 and F2 generations, indicating that 
in this study was not influenced by environmental factors. 

were not 
seed weight 

Narrow sense heritability was estimated following the method used 
by Mather and Jinks (1971). For 100 seed weight this heritability was 
75% and 70% in the F1 and F2 generations, respectively. These high 
values were due to the high estimates of D and the low values of E. 

These heritability va 1 ues were approximately equal to those estimated 
by the Griffing method (Table 46). This indicates that 100 seed weight 

was a highly heritable character in the present study. 

The relative values of (Wr + Vr) over arrays indicate the relative 
number of dominant to recessive alleles in the parents of the arrays. 
By comparing the (W + V ) va 1 ue for each array with the mean of the 

r r 
common parent ( comparing W ri + V ri with Pi) we can see whether the 
distribution of dominant to recessive alleles is correlated with the 
phenotypes of the common parents. This correlation will be negative if 



174 

the parents with a high performance have the lowest values of W . + V . 
r1 rl 

i.e. contain most dominant genes, and positive if the reverse is true. 
Hence, we can deduce whether or not the increasing or decreasing 
alleles are dominant alleles. Therefore the order of dominance of the 
parents determined by the value of W + V (arranged in descending 

r r 
order from most dominant to most recessive alleles) and descending 
order of pa renta 1 means were ca 1 cu l a ted and presented in Table 50 
together with the correlation coefficient between parental mean 
performance and the values of Wr + Vr. 

For 100 seed weight, the order of parental means showed that 
parents 3 {78526004) and 6 (FLIP84 -1 -L) had the highest array values, 
whereas parents 5 (Pant. L ,406) and 8 (ILL 121) gave the 1 owest array 
values in both F1 and F2 generations. The parental arrays which 
possessed the most dominant alleles were for parent 1 (Giza9) and 2 
(Family 370) in the F1 generation and parent l and 5 in the F2 
generation. On the other hand parents 4 (Precoz) and 6 (FLIP84 -1 L) 
had the most recessive alleles in both generations. The correlation 
coefficient between parental means and their order of dominance were 
0.64 and 0.90 in the F1 and F2 generations respectively. Because these 
correlation values were positive, the dominant genes act to decrease 
seed weight and accumulation of recessive genes in the parents produced 
increased seed weight. 

The graphical analysis provides information on some important 
points (Mather and Jinks, 1971). Firstly, it supplies a test of 
adequacy of the genetical model, as previously discussed. In the 
absence of non-allelic interaction and with independent distribution of 
the genes among the parental inbreds, Wr is related to Vr by a straight 
regression line of unit slope (bWr/Vr = 1). If the model is adequate, 
a measure of the average degree of dominance is provided by the 
departure from the origin of the point where the regression line cuts 
the W axis. With complete dominance, the regression line with b = l 

r 
would pass through the origin. In the case of over-dominance, the 
regression line would cut the Wr axis below the origin, and with 
partial (incomplete) dominance the line would cut the Wr axis above the 
origin. If dominance is absent, the points would cluster about the 
position where the slope of the parabola is +1 (Hayman, 1954; Jinks, 
1954 and 1955). 
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Table 50 Parental order of means (OR1) and parental order of dominance 

(OR2) and correlation coefficient (r) between Vr + Wr and 

observed parental mean for F1 and F2 generations 

Character r 

No. of seeds/pod Fl 12584673 12867435 0.1 9 

F2 51284763 72561843 -0.27 

100 seed weight Fl 36471285 12385746 0.64 

F2 36742185 51827346 0.90** 

Time to flowering Fl 87613542 25431687 0.96** 

F2 87615324 42351678 0.90** 

Time to maturity Fl 78614325 76812354 -0.83** 

F2 78614325 32768514 ' -0.65 

*, **Significant at 0.05 and 0.01 probability level, respectively. 

- The order of mean of time to flowering and time to maturity 
characters are in order of earliness. 
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Secondly, the relative order of points along the regression line 
indicates the distribution of dominant and recessive genes among the 
parents. The points nearest the origin stem from the arrays of the 

parents with the most dominant genes and the points furthest from the 
origin stem from arrays derived from parents with most recessive genes. 

The regression coefficients for the 100 seed weight character are 
summarized in Table 47, and W/Vr graphs are presented in Figure 12. 
The V /W regression coefficient was equal to unity; b = 1.12 ± 0.11 

r r 
in the F1 and b = 1.09 ± 0.10 in the F2 generation. In both 

generations the regression coefficients were significantly different 
from zero, indicating the adequacy of the additive-dominance model. In 

both generations the regression lines intercepted the Wr axis above the 
origin indicating partial dominance and thus confirmed the ratio of 

j_ 

(H1/D) 2 obtained in genetical analysis. The position of the array 
points on the regression line indicated that parents 6 (FLIP84-1L) and 

4 (Precoz) possess the most recessive alleles, whereas parent 1 (Giza9) 
seems to carry most of the dominant alleles in both generations. 
Parent 6 occupied the far end of the regression line in both 
generations, while the change in positions of parents 2, 3 and 5 from 
the F1 to F2 generation indicates that those parents seem to have 
dominant and recessive genes more or less in equal proportion in the 

two generations. 

The order of dominance for this character confirmed that parent 
FLIP 84-1 L carried the most recessive genes in both generations. The 
correlation between parental order of means and order of dominance was 
positive (Table 50), indicating that recessive genes act towards 
increasing seed weight. 

Number of seeds per pod 

The results presented in Table 49 show highly significant 

differences for the estimates of the additive component of variation (D 
values) in the F1 and F2 generations, indicating that genetic 
differences exist among parents. The dominance components of variation 
(H1 and H2) were not significantly different from zero in both 
generations (except H2 in the F2 generation). These results confirmed 
the evidence that the genetic system controlling number of seeds per 
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Figure 12. Vr, Wr graphs for 100 seed weight in the F1{A) and F2{B) generations from 

a diallel cross in lentil. 
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pod was largely additive. These results agreed with the results 

obtained from the Griffing analysis (Table 42), where the estimates of 
non-additive components were zero in both F1 and F2 generations and 
confirmed the evidence that additive effects predominantly control 

this character. 

The crude estimate of frequencies at non-additive loci (Crumpacker 
and Allard, 1962) can be obtained from the ratio of H2/4H1. In this 

character equal distribution of positive and negative alleles occurred 

among the parents. An insignificant F value supported this result. 

Narrow sense heritability was 56% and 50% for this character in 
the F1 and the F2 generations, respectively. These values were 

approximately equal to those estimated by the Griffing method (Table 
46). The narrow sense heritability was not very high because of the 

relatively high estimate of error variance in this trait. However, 

these heritability values were above 50% in both generations. 

Time to flowering 

The results presented in Table 49 (excluding parent Precoz) show 

that both additive (D) and dominant (H1, H2) components of variation 
were highly significantly different from zero in both the F1 and F2 
generations, indicating the importance of both additive and dominant 

gene action in controlling earliness in lentil. However, the D values 

were higher in magnitude than the H1 and H2 values, suggesting greater 

importance of additive effects than dominance effects. These results 

agreed with the results obtained by the Griffing analysis. 

The values of F were highly significant and positive in both 

generations, indicating a preponderance of dominant alleles controlling 

this character. The value of K0/DR being >1 supported the results 
mentioned above, i.e. that more dominant than recessive alleles were 

present in the parents. This finding caused the estimate of H2/4H1 to 

be less than 0.25. 

The estimate of number of gene groups (K) was very low in both 
generations. These underestimated values occur because the dominance 

effects of the genes affecting this character were not equal. The 
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l. 
average degree of dominance (H1/D) 2 was less than one in both 
generations, revealed partial dominance. Days to flowering was not 
influenced by environmental factors due to insignificant (E) estimates 
in both generations (Table 49). 

The order of parental means of the F1 and F2 generations for time 
to flowering were similar (Table 50). Those were 87613542 in the F1 
generation and 87615324 in the F2. These are arranged in descending 

order, meaning that parents 8 and 7 were latest and parents 2 and 4 

were the earliest. On the other hand, the orders of dominance of those 
parents were also almost similar in both generations (Table 50) and 
showed that the arrays of parents 2 (Family 370) and 4 (Precoz) had the 

most dominant alleles, whereas parent arrays 7 (ILL274) and 8 (ILL121) 

carried the most recessive alleles. 

Because the correlation coefficients between the parental order of 
dominance and parental means were positively highly significant, the 
recessive genes were mostly positive, i.e. acting towards delaying 
flowering. Conversely, the dominant genes caused increased earliness. 

The narrow sense heritability for this character was 69% in the F1 and 

77% in the F2 generation, indicating that this trait is highly 

heritable. The high narrow sense heritabilities were obtained also by 

the Griffing method and therefore supported these results. 

The graphical analysis for time to flowering was presented by two 

graphs in each generation. The first graph (A) included all the 

parents, whereas the graph (B) excluded parent 4 (Precoz) which showed 

epistasis. 

In the F1 generation (Figure 13), although the two tests of the 
hypothesis (Table 47) were acceptable, parent 4 was removed to keep the 

same population in the F1 as in the F2 and make interpretation 
comparable for both generations. 

In Figure 13 (A), the regression line cut the W axis below the r 
origin and the intercept was negative (-2.28), indicating 

overdominance. Removal of parent 4 (Figure 13 (B)) changed the 
position of regression line which was relocated above the origin, 

indicating partial dominance. This is explained by the particular 
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Figure 13. Vr. Wr graphs for days to flowering in the F1 generation from a diallel cross in lentil. 
(A) all parents included. (B) epistatic parent 4 is excluded. 
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Figure 14. Vr, Wr graphs for days to flowering in the F2 generation from a diallel cross in lentil. 
(A) all parents included. (B) epistatic parent 4 is excluded. 
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combination of dispersion and unidirectional dominance as well as the 
existence of epistatic effects which inflates (H 1/D)t seriously and may 

easily turn partial dominance into apparent over-dominance (Hayman 

1957). The intercept in Figure 13 (B) is positive indicating partial 

dominance and the regression coefficient (0.96) significantly differed 
from zero, but not from unity, indicating the adequacy of the model. 

In the F2 generation (Figure 14 (A)) the regression line (b=0.21) 

differed significantly from unity, indicating the presence of 

epistasis. Exclusion of array 4, which had the lowest value of W -V r r 
(Appendix Table 4) removed the epistatic effect and the regression line 

(Figure 14 (B)) became equal to unity (1 .3). The intercept was 

positive and the regression line cut the Wr axis above the origin, 

indicating partial dominance. 

In both generations, the distributions of array points along the 
regression line were similar and parents Family 370 (2) and Precoz (4) 
carried the most dominant genes as mentioned before. These parents, 

Family 370 and Precoz, were also good combiners and they ranked first 

and second for GCA as shown in Table 43. 

Time to maturity 

The additive component (D) was highly significantly different from 

zero (Table 49). The dominance components (H1 and H2) were also highly 
significant, but lower in magnitude than the additive component values 

in the F1 and F2 generations. These results indicate the importance of 
both additive and dominance effects, with greater importance of 

additive effects in controlling time to maturity. 

H1 values were higher than H2 values in both generations causing 
the ratio of H2/ 4H1 to be less than 0.25, indicating unequal gene 
frequences over all loci. The significance ofF values supported this 

finding. As the sign of F was positive, dominant alleles were more 

frequent than recessive alleles. The ratios of K0/KR were 4.30 and 
3.85 in the F1 and F2 generations, indicating that they were more 

dominant than recessive alleles among the parental lines. The degree 
of dominance estimated by (H 1/D)t revealed partial dominance. h2 value 
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was significant only in the F1, suggesting that dominance due to 

heterozygosity was more prominent in the F1 generation. The ratio of 

h2 /H 0 suggested that at least one factor (K) controlled this character. 
£.. 

Time to maturity in this study was influenced by environmental effects, 

as shown by the significant (E) value in both generations. The 

narrow sense heritability for this trait was 55% and 61% in the F, and 
I 

F2 generations, respectively. All these results were in complete 
agreement with the results obtained by the Griffing analysis. 

The order of parental means was exactly the same in both 
generations, being 78614325 (Table 50). However, the order of 

dominance was different in the F1 and F2 generations. The sign of 
correlation between order of dominance and order of parental means was 

negative in both generations, but only significant in the F1 
generation. The negative correlation indicated that the dominant genes 

act toward increasing days to maturity and recessive genes in the 
parents act in decreasing days to maturity, i.e. inducing earliness. 

The graphical analyses are given in Figure 15. The regression 

coefficients (bWr/Vr) were not different from unity in both generations 
indicating the adequacy of the genetical model. In both (A) and (B) it 

was clear from the position of array points that array parent 4 

(Precoz) was extremely recessive compared with other parents; Parent 5 

(Pant.L,406) was the second most recessive one. The array means of 
those parents for time to maturity were, 157 and 155 days in the F1 and 

157 and 155 days in the F2 (Table 40) indicating little difference 
between them. In addition, both parents had the highest values of 

general combining ability amongst parents for this trait (Table 43). 

These results suggested that Precoz and Pant.L,406 could be used 

as sources of earliness in maturity in a lentil breeding program. 

Here it should be emphasized again that throughout this study a 
given (fixed) set of genotypes was investigated. The estimates of 
genetic components of variation (0, H1, H2, ... ) from this experiment 

characterized those genotypes involved in the present study only. 
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Figure 15. Vr, Wr graphs for days to maturity in the F1{A) and F2(B) generations 
from a diallel cross in lentil. 
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4.5 Prediction of promising genotypes and crosses for future 

generations 

Prediction of the potential of crosses for producing superior 
progenies can be made on the basis of the genetic information provided 

by the various analyses presented earl·ier in this chapter, in 
conjunction with the estimates of the specific combining ability 

effects involving each F1 and F2 mean performance for all characters in 
Tables 51 to 60. 

For seed yield per plant, the results indicated that the largest 
portion of genetic variability for this character was due to 

non-additive variance. Also, the poor correlation between general 
combining ability effects and parental mean indicated that we can not 

use the performance of parental means to predict their general 
combining ability. In addition, narrow sense heritability of this 

trait was low. Therefore, selection for seed yield may be difficult in 
the present sample of the parents and their intercrosses. 

Because the specific combining ability was a major effect, in 

addition to the presence of overdominance (as indicated by the negative 
intercept values, not tabulated), this character was affected by 

non-allelic interaction, which is always associated with the presence 
of SCA and over-dominance (Jinks, 1954). It is thus possible that 
estimates of non-additive components include a substantial proportion 
of epistatic effects, besides dominance effects. Therefore, the 
superior F1 's are expected to throw out desirable transgressive 
segregants, provided that the desirable complementary genes and 

epistatic effects are coupled in the same direction to maximize seed 

yield. 

The seven crosses which exhibited useful heterosis, also had high 

SCA effects (Table 51). Most of these crosses maintained their 

superiority in the F2 generation. In addition to those crosses, hybrid 

Pant.L,406 x ILL274 produced the highest seed yield in the F2 
generation (Table 33), and it also had the highest SCA effect value 

(Table 51). These crosses are an immediate source of transgressive 

segregants. 



Table 51 Estimates of specific combining ab·ility (5CA) effects for seed yield per plant in the F1 and F2 

generations from an 8-parent diallel cross in lentil* 

Parents Fam. 370 78526004 Precoz Pant. L406 FLIP 84,1-L ILL 274 ILL 121 

Giza 9 0.35 -0.61 -0.01 0.62 -0.11 -0.30 0.39 

-0.01 -0.30 0.30 -0.21 -0.35 0.1 5 0.29 

Fam. 370 0.17 0.40 -0.1 9 -0.16 0.66 -0.22 

0.01 ().51 -0.06 0.17 0.03 -0.25 

78526004 0.43 0.70 -0.36 -0.29 0. 71 

0.46 0.12 0.22 -0.16 -0.27 

Precoz -0.16 -0.33 0.02 0.04 

-0.13 0.24 -0.33 -0.61 

Pant.L406 -0.06 -0.11 -0.15 

0.04 1.03 0.08 

FLIP 84, 1-L 0.25 -0.05 

-0.14 0.02 

ILL 274 0.59 

0.78 

* F1 and F2 data are in the first and the second row, respectively. 
5.E. of the difference between effects of two crosses having one parent line in common is 0.35 for F1 •s 
and 0.37 for F2's. 
S.E. of the difference between effects of two crosses having no parent line in common is 0.33 for F1 's 
and 0.35 for F2 's. 
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Table 5Z Estimates of specific combining ability (5CA) effects for biological yield per plant in the 

F1 and F2 generations from an 8-parent diallel cross in lentil* 

Parent Fam. 370 78526004 Precoz Pant. L406 FLIP 84,1-L ILL 274 ILL 121 

Giza 9 0.72 -1.50 0.54 l. 16 -0.21 -0.34 0.78 

0.03 -0.72 0.50 -0.44 -0.68 0.29 0.83 

Fam. 370 0.32 0.80 -0.28 -0.64 0.86 -0.55 

0.18 0.94 -0.03 -0.08 0.00 -0.79 
78526004 0. 71 1. 52 0.53 -0.88 1. 58 

1.49 0. 31 0.74 -0.42 -0.85 

Precoz 0.36 ~ 1 .06 0.10 0.56 

-0.06 1.33 -1 . 20 -0.79 

Pant. L406 -0.21 -0.15 -0.52 

-0.28 2.33 0.10 
FLIP 84, 1-L 0.22 -0.15 

-0.55 0.03 
ILL 274 1. 08 

1.05 

* F1 and F2 data are in the first and the second row, respectively. 
5.E. of the difference between effects of two crosses having one parent line in common is 0.74 for F1 •s 
and 0.88 for F2•s. 
5.E. of the difference between effects of two crosses having no parent line in common is 0.69 for F1 •s and 0.83 for F2•s. 
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Table 53 Estimates of specific combining ability (5CA) effects for straw yield per plant in the F1 and F2 

generations from an 8-parent diallel cross in lentil* 

. 
Parents Fam. 370 78526004 Precoz Pant.L406 FLIP 84,1 -L ILL 274 ILL 121 

Giza 9 0.37 -0.89 0.55 0.53 -0.10 -0.04 0.39 

0.04 -0.43 0. 21 -0.23 -0.34 0.14 0.59 

Fam. 370 0.16 0.40 -0.09 -0.48 0.20 -0.33 

0.20 0.43 0.03 -0.25 -0.03 -0.54 

78526004 0.27 0.82 0.89 -0.59 0.88 

1.03 0.20 0.52 -0.27 -0.58 

Precoz -0.20 -0.73 0.09 0.52 

0.07 1.09 -0.86 -0.17 

Pant. L406 -0.15 -0.03 -0.37 

-0.31 l. 30 0.02 

FLIP 84, 1-L -0.03 -0.10 
-0.41 0. 01 

ILL 274 0.49 

0.73 

* F1 and F2 data are in the first and the second row, respectively. 
5.E. of the difference between effects of two crosses having one parent line in common is 0.45 for F1 's 
and 0.55 for F2's. 
5.E. of the difference between effects of two crosses having no parent line in common is 0.42 for F1 's 
and 0. 52 for F 2 ' s . 
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In view of this it may be desirable to treat the advanced 
generation of these seven crosses as separate populations. 

The genetic analysis of biological yield per plant showed the 
importance of both GCA and SCA. The additive genetic component 

represented 32% and 49% of the genetic variance in the F1 and F2 
generations respectively and the correlation between GCA effects and 

parental mean were high in both generations. That indicates the 

possibility of using the general combining ability effect and parental 

means to predict prom1s1ng crosses. This trait also exhibited 
significant heterosis. Parent ILL274 was ranked first in both F1 and 

F2 generations as the best general combiner (Table 43), and also 

produced the highest array means (Table 32). These results may provide 

evidence that the parent I LL27 4 may be i nvo 1 ved as a common parent in 
any breeding program to improve biological yield/plant. 

The F1 crosses which exhibited useful heterosis also showed high 
SCA effect values. Three of these crosses showed high estimates of SCA 

effect in both generations. These were: Giza9 x ILL121, 78526004 x 

Precoz and ILL274 x ILL121 (Table 52). Cross Pant.L,406 x ILL274 gave 

the highest value of SCA effect in the F2 generation. These four 
crosses appeared to be the best ones in terms of their future potential 

for producing transgressive segregants. 
great genetic advance in this character 

sense heritability of 32% between crosses. 

However, we cannot expect 

due to the moderate narrow 

The results of straw yield per plant showed that parents Giza9 and 
Family 370 gave low straw yield in both generations, while parent 

ILL274 gave the highest straw yield in both generations (Table 34). 
Also, this parent maintained its superiority in GCA effect in both 
generations (Table 43). The genetic analysis and correlation 

coefficient between parental order of means and order of GCA effect of 
parents indicated that the importance of both additive and non-additive 

effects of this trait and the performance of the parents give a good 
prediction of their GCA effects. Therefore using the parent ILL274 as 

a common parent in the cross combinations will be useful in improving 
straw yield. 
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Because some crosses exhibited useful heterosis in this character, 
accordingly some of these crosses had high 5CA effects and can be 
selected as being promising. These are: Giza9 x Precoz, 78526004 x 
Pant.L,406, 78526004 x FLIP84- l L, 78526004 x ILL12l and ILL274 x 

ILL121 in the F1 generation. Other promissing crosses are those of 
Pant.L,406 x ILL274, Precoz x FLIP84- l L and 78526004 x Precoz and 
ILL274 x ILL 121. These crosses had the highest SCA effect in the F2 
generation. These crosses could provide the potential in a 
hybridization program to improve straw yield. Also, in this character, 
as in biological yield/plant, the expected genetic advance will not be 
great due to the moderate narrow sense heritability for straw yield. 

Number of pods per plant is a yield component character, along 
with 100 seed weight and number of seeds/pod. The phenotypic 
correlation between seed yield/plant and number of pods/plant was 0.91, 
while it was -0.31 with number of seeds/pod and 0.34 with 100 seed 
weight. This indicates that number of pods/plant is the most important 
yield component character in this study and causes the major effect on 
seed yield/plant. 

The results accumulated for number of pods/plant showed that gene 
action was mainly non-additive as indicated by the value of the ratio 
2 cr 2gca/(2 cr 2 gca + o2 sca) and the non-significant correlation 
coefficient between parental mean and GCA effect of the parents (Table 
44). 

The regression V /W was very low and did not significantly differ 
r r 

from zero and was significantly different from unity in both F1 and F2 
generations (Table 47). These results gave confidence that gene 
interaction played a significant part in determining the cont1·ol ·of 

this character. As a result transgressive segregation can occur and 
selection for maximization of this trait in an early generation should 
be made. However, because of the low heritability estimates for this 
trait (b = 11% in the F1 and 3% in the F2 generation), selections n.s. 
must be evaluated in a progeny test. 

The following combinations exhibited heterosis and high SCA (Table 
54) and therefore may be recommended for improving number of 
pods/plant. They are: 78526004 x Pant.L,406, 78526004 x ILL121 and 



Table 54 Estimates of specific combining ability (SCA) effects for number of pods per plant in the F1 and F2 

generations from an 8-parent diallel cross in lentil* 

Parents Fam. 370 78$26004 Precoz Pant. L406 FLIP 84,1 -L ILL 274 .ILL 121 

Giza 9 5.74 -13.61 0.15 9.84 1.06 -4.64 6. 01 

-0.60 - 3.90 16.75 -9.20 -5.96 1 . 29 6.39 

Fam. 370 0.82 5.0 -5.11 -0.91 9.89 -0.21 

-1.45 8.58 -3.33 1. 70 3.37 -3.35 

78526004 7.94 18.50 -4.85 -5.44 14.34 

10.23 -0.17 5.10 -10.83 -4.56 

Precoz 0.44 -4.96 1.14 3.06 

-2.14 4.53 -7.54 -11.96 

Pant.L406 1.17 -1.67 -5.19 

9.76 29.81 -1 .40 

FLIP 84, 1-L 4.09 -2.86 

0.02 2.64 

ILL 274 11 . 53 

13.1 9 

* F1 and F2 data are in the first and the second row, respectively. 
S.E. of the difference between effects of two crosses having one parent line in common is 7.02 for F1 •s 
and 9.82 for F2•s 
S.E. of the difference between effects of two crosses having no parent line in common is 6.62 for F1 •s 
and 9.26 for F2•s. 

~ 



Table 55 Estimates of specific combining ability (SCA) effects for 100 seed weight in the F1 and F2 

generations from an 8-parent diallel cross in lentil* 

Parents Fam. 370 78$26004 Precoz Pant. L406 FLIP 84, 1-L ILL 274 ILL -121 

Giza 9 0.16 -0.45 -0.12 0.43 -0.49 -0.06 0.28 

-0.01 -0.52 -0.92 0.47 -0.12 -0.06 0.17 

Fam. 370 -0.25 -0.04 0. 41 -0.44 0.01 -0.07 

-0.06 0.40 0.27 -0.45 -0.08 -0.10 
78526004 0.24 0.25 -0.43 0.20 0.25 

0.11 -0.18 -0.23 0. 51 -0.02 

Precoz -0.39 -0.28 0.28 -0.32 

-0.22 -0.15 -0.12 -0.36 

Pant.L406 -0.53 -0.1 5 -0.01 

-0.84 0.18 0.17 

FLIP 84, 1-L -0.10 -0.26 

-0.34 -0.37 

ILL 274 0.10 

0.36 

* F1 and F2 data are in the first and the second row, respectively 
S.E. of the difference between effects of t\-10 crosses having one parent 1 ine in common is 0.22 for F1 's 
and 0.16 for F2's. 
S.E. of the difference between effects of bto crosses having no parent line in common is 0.21 for F1 's 
and 0.15 for F2 's. 

1.0 
N 



Table 56 

Parents 

Giza 9 

Fam. 370 

78526004 

Precoz 

Pant L406 

FLIP 84,1-L 

ILL 274 

Estimates of specific combining ability (SCA) effects for number of seeds/pod in the F1 and F2 

generations from an 8-parent diallel cross in lentil* 

Fam. 370 78526004 Precoz Pant L406 FLIP 84, 1-L ILL 274 ILL 121 

0.00 0.29 -0.03 -0.06 -0.02 0.01 -0.08 

0.06 0.03 -0.08 0.11 -0.06 0.04 -0.12 

0.18 0.13 -0.08 0.06 0.14 -0.14 

0.08 -0.08 -0.02 0.25 -0.10 -0.06 

-0.12 -0.21 -0.04 -0.08 -0.10 

··0 .14 0.12 -0.03 0.27 -0.04 

-0.06 0.03 -0.17 -0.02 

-0.02 -0.04 0.01 0.11 

0.04 0.08 0.20 

-0.04 -0.15 0.14 

0.03 0.16 

-0.08 0.02 

0.00 

-0.06 

* F1 and F2 data are in the first and the second row, respectively. 
S.E. of the difference between effects of two crosses having one parent line in common is 0.20 for F1 's 
and 0.17 for F2's. 
S.E. of the difference between effects of two crosses having no parent line in common is 0.19 for F1 's 
and 0.16 for F2's. 

<.0 
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ILL274 x ILL121 in the F1 generation and Giza9 x Precoz and Pant.L,4u6 
x ILL274 in the F2 generation. 

The results of genetic analysis for 100 seed weight indicated a 
simple additive gene action system with partial dominance. The 
graphical analysis and the order of dominance indicated that parent 
FLI P84 - l L contained most recessive genes. 
second highest general combiner (Table 

This parent was also the 
43). The correlation 

coefficient between parental order of means and order of dominance 
revealed that the recessive genes act towards increasing seed weight. 

The accumulated results coupled with the high estimates of narrow 
sense heritability for this trait, suggest that parental means for 100 
seed weight are a good guide to their potential in hybrid combination. 
Breeding by classical methods, such as pedigree method, can be 
advocated to fix the additive variation for 100 seed weight. 

The results of genetic analysis for number of seeds/pod showed the 
importance of GCA and the relatively high D values compared with the 
insignificant H1 and H2 values. These results, in addition to the 
ratio 2 o 2gca/2 o 2 gca + o 2sca = 1, indicated the predominance of 

additive genetic components of variance for this character. 

The array means (Table 36) indicate that when improving number of 
seeds/pod the parents Giza9 and Pant.L,406 should be involved in the . 
cross combination as a common parent. These parents also had the 
highest GCA effects in both generations (Table 43). Their crosses; 
Giza9 x Pant.L,406 and Pant.L,406 x ILL121 in the F2 generation yielded 
the highest number of seeds/pod (means of 1.86 and 1.80 respectively) 
and,also had high SCA effects (Table 56). 

The genetic control of plant height was mainly additive, as 
indicated by the ratio of 202gca/202gca +02sca,but exhibited some 
non-additive effects (dominance). The existence of non-additive 
effects, specially in the F2 generation, resulted in a moderate narrow 
sense heritability estimate of 31.2% in the F2. The results also 

showed strong positive correlation between GCA effects and parental 
means (Table 44), suggesting that we can confidently select the parents 

having the highest GCA according to their performance. 
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Parents ILL 121 and ILL274 had the highest array means (Table 38) 

and also exhibited the highest GCA effect values (Table 43) in both 

generations. Therefore, these two parents (ILL121 and ILL274) could be 

usefully involved in any cross combinations as a parent to increase 

plant height. 

This character showed negative inbreeding depression (Table 31), 

since the average of the F2 was higher than the F1 mean. In fact the 

F2 mean value should be intermediate between the mid-parent and F1 mean 

values. However, epistasis could be the cause of this F2 deviation 

from the expected va 1 ue. The presence of non-additive genetic effect 

in the F2 may be seen as supporting this assumption. An alternative 

cause of inbreeding depression could be that maternal effects are 

involved (Falconer, 1981). This assumption cannot be tested here 

because only a half of diallel set was used and reciprocal crosses were 

not made in this study. 

The hybrid crosses which showed high performance in the F2 should 

be exploited. The tallest crosses in the F2 generation were Giza9 x 

ILL 121, 78S26004 x Precoz, Precoz x FLI P84- l L, Precoz x ILL 121, 

FLI P84 - l · L x ILL274 and ILL274 x ILL 121 (Table 38). These crosses 

also showed high SCA effects (Table 57). Four crosses in which they 

were involved produced the highest seed yield and also the highest 

straw yield per plant; they were 78S26004 x Precoz, Precoz x FLIP84-

l L, FLIP84- l L x ILL274 and ILL274 x ILL 121. 

Results for time to flowering showed that Family 370 and Precoz 

were the earliest arrays in the F1 and F2 generations (Table 39). 

These arrays carry the most dominant alleles for this character, as 

shown in Table 50 and Figure 13, 14, and occupied the first and second 

positions as general combiners in both generations (Table 43). The 

hybrid cross between both parents should have been the earliest cross. 

However, this did not occur and the cross between these two parents had 

an undesirable SCA effect (+3.85, Table 58). Such effects could be 

due, in part, to the existence of non-allelic interaction correlated 

with the epistatic parent Precoz. However, these two parents resulted 

in the earliest F1 and F2 hybrids with other parents. Of the six F1 



Table 57 

Parents 

Giza 9 

Fam. 370 

78526004 

Precoz 

Pant. L406 

FLIP 84, 1-L 

ILL 274 

Estimates of specific combining ability (5CA) effects for plant height in the F1 and F2 

generations from an 8-parent diallel cross in lentil* 

Fam. 370 78526004 Precoz Pant. L406 FLIP 84,1 -L ILL 274 II_L 121 

-2.49 -3.42 3.19 2.07 -3.18 -t1. 7 6 0.52 

3.29 -0.83 -5.07 -0.55 2.33 -4.85 2.85 

2 . 1 7 ~. 77 -1 . 71 0.70 0.66 l. 55 

-1.79 2.47 1.18 -0.78 0.84 -5.96 

3.37 0.79 l. 95 -4.88 -0.71 

4.15 2. 31 l. 30 -1 .88 0.47 

0.59 -2.61 -0.44 4.09 

3.82 l. 61 -0.97 2.38 
1.57 2.99 1.27 

-0.98 l. 24 2.19 
0.65 -4.03 

0.1 3 -4.22 
-0.76 

0.70 

* F1 and F2 data are in the first and the second row, respectively. 
5.E. of the difference between effects of two crosses having one parent 1 ine in common is 3.05 for F1

1 s 
and 3.27 for F2 1 S. 
S.E. of the difference between effects of two crosses having no parent line in common is 2.88 for F1

1 s 
and 3.08 for F2

1 s. 

1.0 
0'1 



Table 58 Estimates of specific combining ability (SCA) effects for time to flowering+ in the F1 and F2 

generations from an 8-parent diallel cross in lentil* 

Parents Fam. 370 78526004 Precoz Pant.L406 FLIP 84,1 -L ILL 274 ILL 121 

Giza 9 -1 . 59 -6.18 1. 35 4.30 2.70 -1 . 27 0.40 
-1 . 56 -4.81 2.49 1. 64 -0.31 -1.1 6 1. 34 

Fam. 370 0.58 3.85 1. 30 0.20 -5.03 -4.60 
-3.06 3.74 3.89 3.44 0.09 4. 91 

78S26004 4.78 2. 73 1.13 1.15 -L 17 

1. 99 4.14 3.19 -2.16 -0.66 
Precoz 8.0 -3.60 -9.07 -0.40 

0.44 _, . 51 -4.86 -7.86 

Pant. L406 l. 35 1.88 -10.45 
-4.86 -0.21 0. 79 

FLIP 84, 1-L 0.28 4.45 

0.34 4.34 

ILL 274 2.48 
-0.01 

* F1 and F2 data are in the first and the second row, respectively. 
S.E. of the difference between effects of two crosses having one parent line in common is 2.00 for F

1
's and 

1.61 for F2's. 
S.E. of the difference between effects of two crosses having no parent line in common is 1.88 for F

1
's and 

1.52 for F2's. 
+ Negative values desirable. 

\.0 ..__. 
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crosses and four F2 crosses which exhibited the highest 5CA, four F1 
and three F2 crosses had Precoz and Family 370 as common parents (Table 
58). 

Because the genetic system controlling this character was mainly 
additive with minor, but significant, dominance effects, one would 
expect that the good arrays will maintain their supermacy in later 
generations. Therefore Family 370 could be used in building up 
breeding materials responsive to selection for earlines, while crosses 
such as Family 370 x ILL121, Precoz x ILL274 and Giza9 x 78526004 could 

provide great potential in a hybridzation program for earliness. 

The results of time to maturity in Table 40 showed that arrays 
Pant.L,406, Family 370, Precoz and 78526004 were the earliest. The 
rankings of GCA of these parents were Pant.L,406 followed by Precoz, 
Family 370 and 7856004 with the same order in both F1 and F2 
generations (Table 43). The order of dominance (Table 50) and 
graphical analysis revealed that parent Precoz was the most recessive 
followed by Pant.L,406. Because the genetic correlation between order 
of dominance and order of means was negative, both Precoz and 
Pant.L,406 are superior parents in selection for earliness. 

Genotypic correlations between time to flowering and time to 
maturity were positive and high (rg = 0.66 in both F1 and F2 
generations), suggesting that selection for earliness in maturity can 
be made indirectly through selection for earliness in flowering. 

The genetic analysis showed the importance of both additive and 

non-additive variance for seed protein content. However, the additive 
component of variance was higher in magnitude than the non-additive 

component of variance in the F1 generation, while the reverse 
prevailed in the F2 generation (Table 45). This result was confirmed 
by the estimates of (2 a 2 gca/2 azgca + a 2sca) and narrow sense 
heritability, which were higher in the F1 than in the F2 generation. 

This character showed negative inbreeding depression in the F2 
generation (Table 31). The inbreeding depression may be due to 
epistasis effects or maternal effects, as discussed in plant height. 



Table 59 Estimates of specific combining ability (SCA) effects for time to maturity+ in the F1 and F2 

generations from an 8-parent diallel cross in lentil* 

Parents Fam. 370 . 78526004 Precoz Pant.L406 FLIP 84, 1-L ILL 274 ILL 1 21 

Giza 9 -1 . 64 -4.57 3.28 2.23 -0.62 -2.34 0.08 
1.44 -3.16 0.04 -1 . 71 -0.41 0.49 I). 7 9 

Fam. 370 0.01 0.63 0.08 -2.27 0.78 -1 . 57 

-0.46 1 . 74 -0.51 -1 . 21 -2.31 -3.01 

78$26004 0.66 1.11 1. 76 -0.47 0.46 
2.64 2.89 -1 . 81 -0.91 -2.11 

Precoz 6.23 2.88 4.61 4.58 
5.59 3.89 1.29 5.09 

Pant.L406 0.83 0.11 -0.97 
0.14 3.54 0. 34 

FLIP 84, 1-L -1.24 -0.32 
-2.16 0.64 

ILL 274 -3.04 
-0.46 

* F1 and F2 data are in the first and the second TOW, respectively. 
S.E. of the difference between effects of two crosses having one parent line in common is 1.94 for F1

1 s and 
2. 1 7 for F 2 1 s. 
S.E. of the difference between effects of two crosses having no parent line in common is 1.83 for F1

1 s and 
2. 04 for F2 1 s. 
+ Negative values desirable. 

__. 
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Transgressive segregation may occur because of presence of 

epistasis and selection for maximization of this variable in early 

generations should be made. However, because of the low heritability 

estimates, selections must be evaluated in progeny tests. 

Cross combinations; Giza9 x FLIP84 -1 L, Family 370 x Pant.L,406 

and Precoz x ILL121 may be recommended for improving seed protein. 

These crosses had the highest protein content level (Table 41) and also 
had the highest SCA effects (Table 60). 

It should be emphasized that those crosses which had the highest 

protein content produced the lowest seed yield per plant, as shown in 
Table 33. This may be due to a negative, or lack of, correlation 

between seed yield and seed protein content. Therefore, these crosses 
could be used where a high level of seed protein is the main objective, 

or they may be used, in later generations, as a source of high protein 

in hybridization programs. 

However, when two characters are negatively correlated, the 
breeder should use special breeding programs to break linkage. One 

such approach is to intercross segregating populations; another may be 

the use of mutagenesis. 



Table 60 Estimates of specific combining ability (SCA) effects for seed protein per cent in the F1 

and the F2 generations from an 8-parent diallel cross in lentil* 

Parents Fam. 370 78526004 Precoz Pant L406 FLIP 84,1- L ILL 274 ILL 121 

Giza 9 0.14 0.05 0.05 0.97 -0.1 3 -0.78 -0.45 

0.33 . 0.50 -1.12 0.45 1. 61 -0.52 -0.98 

Fam. 370 0. 31 0.49 0.47 -0.64 -0.45 -0.25 

0. 51 -0.11 1.67 -1 . 37 -0.71 0.09 

78526004 -1 "11 0.26 0.66 -0.89 -0.41 

-0.54 0.18 -0.91 -0.09 -0.30 

Precoz 1.61 -0.06 0.94 0.67 

-0.59 0.02 0.04 0.93 

Pant L406 -1.29 0.07 -0.90 

0.00 -0.24 -1 .84 

FLIP 84, 1-L -0.49 0.34 

-0.53 0.37 

ILL 274 0.25 

0.28 

* F1 and Fz data are in the first and the second row, respectively. 
S.E. of the difference between effects of two crosses having one parent line in common is 0.71 for F1 •s 
and 0.64 for F2's. 
S.E. of the difference between effects of two crosses having no parent line in common is 0.67 for F1 •s 
and 0.61 for F2•s. 

N 
0 
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CHAPTER IV 

GENERAL DISCUSSION 

Since quantitative characters are controlled by both genetic and 
environmental effects, a progeny variance estimated from a single 
selection in one year contains interaction variance in addition to the 
true genetic variance, inflating the estimation of genetic variance 
(Allard, 1960; Johnson et ~· 1955). In this study, the experiments 
were conducted across very diverse conditions at five environments in 
two years. Thus, the components of variance due to 

genotype-environment, genotype-year and genotype-environment-year 
interactions were estimated and removed from the estimate of the 
genetic variance component. Therefore, the data provided improved 
estimates of genetic variance. 

The results showed that number of pods per plant had a high 
genotypic variance and potential genetic advance, and in addition had 
strong positive phenotypic and genotypic correlations with seed yield. 
Variation in number of pods was thus largely responsible for the 
considerable variation in seed yield. Consequently this character may 
be useful for indirect selection for seed yield/plant. 

The absence of strong negative phenotypic and genotypic 
correlations between seed yield and seed protein content indicated the 
possibility of selecting for high yield and protein simultaneously 
amongst these genotypes. The close relationship between seed size and 
cooking time eliminates the need for screening early generation lentil 
genotypes for cooking time, since for all practical purposes the 
cooking time was predictable on the basis of seed size. Selection of 
the early generation genotypes for quality then becomes simply a matter 
of determination of seed size and protein content, which were found to 
be highly heritable characters in this study. 

There was a strong positive correlation between seed size and 
dehulling percent. However, the results showed a wide range of 
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dehulling percent within each of the macrosperma and microsperma 
genotypes. The 1 ow heritability and genetic advance of this trait in 
addition to its high genotype-environment and genotype-year interaction 
variances increase the difficulty for its use in selection. 

Much work is needed to investigate the relationships between the 
dehulling ability and tannin and lignin contents in lentil seeds and 
also to study the inheritance of these characters. Also, there is a 
need to study the relationships between the variation of dehulling and 
seed characters (such as seed shape, seed coat patterns and co 1 our) 

which may help the lentil breeder in screening for high dehulling 
genotypes. 

The main objective of lentil breeding programs is to increase seed 
yield. A neglected aspect of the crop's improvement is its straw 
yield. The straw is very important to farmers in the Middle East as a 
livestock feed, and sometimes the sale price of lentil straw is as 
large as that of the seed (Nordblom and Halimeh, 1982). 

In this study thephenotypicand genotypic correlations between both 

seed and straw yields were positive (rph = 0.25, rg = 0.23). These 
relationships jndicate the possibility of selecting for a high 
performance of both characters. The indeterminate growth habit of the 
lentil allows the number of reproductive nodes to be proportional to 
the size of the vegetative frame and, hence, straw yield (Erskine, 
1983). Therefore, selection for seed yield will not reduce straw 

yield, but may increase it. 

As Allard (1960) mentioned 'If the breeder wishes to exercise 
control over some particular components of environments, he can design 

experiments to identify and measure such specific components of 

environment and their interactions with genotype.• 

In this· study environments differing widely in water supply 
(irrigation and rainfall) were employed, in order to identify their 
effect on lentil characters. 

(as in Egypt, Sudan and 

Since lentils are grown under irrigation 

elsewhere) an understanding of the 
genotype-irrigation interaction is of particular value in enabling an 

efficient breeding strategy to be formulated. 
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The predominance of environments as a source of variance for seed 
yield and most other characters in these experiments may be due to the 
breadth of environments sampled, representing differences mainly in 

water supply levels and partially in temperature and soil types, 
employed in this study. The magnitude of environmental variance, 
however, also suggests the possibility of raising yield levels through 
improved management practices, especially irrigation. The average seed 
yield with two irrigations (total of 446 mm water) was higher by 19% 
than the yi e 1 d with no i rri gati on ( 346 mm), and was more than three 

times as great as that with 248 mm water. 

Genotypic effects were highly significant and high. The genotypes 
used in this study showed wide genetic diversity, allowing selection 
for higher-yielding genotypes under irrigation. As there are more than 
5,000 accessions of lentil in ICARDA germplasm collections, there is 

considerable scope for selection. Such germplasm evaluation must be 
made under irrigated conditions. 

Genotype-environment interaction is another important source of 
variation for seed yield. Hill (1975) reported that the presence of 
genotype-environment interactions automatically implies that the 
behaviour of the genotype in the trial depends upon the particular 
environment in which they are grown. Thus the performance of any one 
of the genotypes relative to the remaining genotypes grown in the same 

environment will be unique. 

The results revealed differences between the highland and lowland 
environments which showed that altitude (i.e. temperature) was more 
important than rainfall in adaptation (at Terbol). In order to select 
for wide adaptation, it will thus be important to test in both 
highland and lowland environments, rather than confining selection to 

either. 

The linear regression technique was used to describe the behaviour 
of genotypes over a range of environments. The regression analyses of 
genotype-irrigation and genotype-environment interactions showed that a 
large portion of variation in seed yield per plant was due to linear 
regression on environmental means. Four genotypes exhibited response 
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to irrigation, these being; 74TA264, 74TA276, FLIP84-27L and ILL 241. 
These genotypes could be recommended as promising genotypes under 
irrigated conditions. Consequently, these entries will probably be 
used in lentil breeding programs in Egypt and Sudan as introductions 
and parents in the crossing block. 

Also, a considerable range of variation in stability was noted 
amongst genotypes under different environments. The results showed 

that several genotypes were stable and had high seed yield/plant. 
However, FLIP 84-67L had the highest seed yield among those entries and 
therefore it can be recommended as a most stable genotype under rainfed 
conditions. 

All genotypes which showed response to irrigation were 
medium-large seeded types, whereas the genotypes which exhibted 
adaptability to dry conditions were very small seeded. Also, the 
former genotypes showed high yield and possessed favourable rooting 
characteristics. These results, in addition to the positive 
correlation between seed size and seed yield, are an interesting 
discovery for countries such as Egypt and Sudan, where only sma 11 
seeded genotypes are grown. Also, in lentil breeding programmes in 
these countries selection is practiSed for small seeded and very early 
types, discarding large seeded lines~ so that much potentially valuable 
material may have been lost in this way. 

Two reasons are given for growing solely small seeded lentil in 
these countries; firstly because temperatures rise quickly during March 
(the period of reproduction growth) early maturing genotypes are 
preferred, and secondly, the people are used to consuming small-seeded 
lentils. 

The results in this study indica ted that genotypes adapted to 
irrigation were not late maturing types, but matured only 8 days later 
than the very early genotypes. The second reason for preferring small 
seeds is also invalid, since large seeded lentil is now imported into 
Egypt and is available in the market. 

Consequently, the evaluation of new medium-large seed size and 
early maturing introductions under irrigation in both Egypt and Sudan 
will be a very desirable objective. 
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The morphological and anatomical adaptation to irrigation in roots 

observed in this study might be used as a preliminary seedling 

selection criterion in screening for response to irrigation in lentil 

breeding programmes. Further screening of additional irrigation 

responsive lines and irrigation ill-adapted lines is required to test 
the method. Irrigation-responsive genotypes are particularly valuable 

when irrigated lentils are grown in a heavy clay soil with a high 
watertable as in Egypt. Under this environment the use of lentil 

genotypes, which can adapt their root structures and systems, is very 
important for yield improvement. 

The technique used for the morphological and anatomical screening 
in this study is simple, easy, inexpensive and effective for screening 

large numbers of accessions in a short period. There are also some 

other techniques which can be used to induce anearobic conditions 
(oxygen deficiency), such as growth of plants in nutrient solution, 

either aerated or nitrogen-flushed, (Wiedenroth and Erdmann, 1985 and 

Erdmann et ~., 1986) or growth of plants in sand media flooded with 
water or nutrient solution (Erdmann et ~·, 1986). Other techniques 
for studying roots subjected to oxygen stress have been described by 

Drew et ~· (1980). 

Further investigations are needed to identify the most effective 
combination of physiological mechanisms that may suit a particular 

irrigation environment. Also more work is needed to improve resistance 

to diseases under irrigation, especially root-rot which is common under 

irrigation in hot countries. In addition, genetic studies are needed 
to investigate the inheritance of root system characters under 

irrigation (root length, branching, shoot/root ratio). 

The study of heterosis indicates the percentage increases of the 
F1 over mid-parent or the better parent and thus helps in selecting out 
the best crosses. Rejection of crosses showing no heterosis would 

enab 1 e the breeder to concentrate on fewer more productive crosses, 
which would be helpful in building useful breeding materials especially 

if resources are limited. 

The degree of heterosis in this study varied from character to 

character, the highest value being 40.3% (over mid-parent) in number of 
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pods per plant. The results indicated that number of pods per plant 

influenced hybrid vigour in seed yield. 

Despite the presence of heterosis in lentil, it cannot be 

exploited commercially because artificial hybridization is technically 

difficult. Assuming a male sterility mechanism will be discovered in 

lentil and the technical problems of cross pollination solved, hybrid 
lentil could be produced from inbred lines derived from parents such as 

those showing high SCA effects in this study. Alternatively, hybrids 
could be developed using recurrent selection (Hull, 1945) to make 

efficient use of inbred lines showing high SCA effects. 

Despite the importance of heterosis, it fails to identify the 

possible causes for the superiority of hybrids. Studies on combining 

ability, on the other hand, provide information on the overall gene 

action controlling quantitative characters and helping the breeder in 
the choice of appropriate parents. 

This fact leads to the importance of using diallel analysis 

techniques. As outlined by Jinks (1954) and Hayman (1954 a,b) the 

diallel analysis attempts to partition phenotypic variation into 

genotypic and environmental components and to further subdivide 
genotypic variation into its additive and dominance components. These 
values can be used to draw inferences about the genetic system. In 

addition, the diallel is a systematic method for identifying those 
parents and hybrids that have superior combinations of the characters 
of interest. This information is required because the breeding methods 
employed for maximum genetic improvement of qualititive traits are 
dependent upon the types and relative amounts of genetic variability 

for those traits in the population of interest. 

The use of three diallel analysis techniques in the present study 
allowed comparison of results obtained from each method and increased 
confidence in the results. Since the parents and F1 and F2 crosses in 
this experiment were grown under irrigation, the results provided 

information on the genetic system in these lentil populations in 
response to irrigation. Because one of the main objectives in this 

study was to identify lines with potential as parents, method 2 for 

combining ability analysis was used. 
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The present study showed that the diallel cross analysis provided 

an overall genetic and performance evaluation. It has also provided 
useful information about the relative importance of general and 
specific combining ability. In addition it provided information on the 
genetic identity of the characters under investigation, on 

dominance-recessive relationships and on genetic interaction. 

The results showed insignificant correlation between parental 
means and general combining ability values for seed yield per plant. 

This indicated that the performance of the parents ~ se is not 

necessarily a good indicator of their combining ability in later 

generations for this trait. However, the genotypes 78526004, ILL274 

and ILL 121 may be recommended as parents for the improvement of seed 

yield. On the other hand, the results indicated that both Egyptian 

genotypes; Giza 9 and Family 370, are not good combiners for seed yield 

per plant. 

The additive variance, which is the variance of breeding values, 
is the most important component since it is the chief cause of 
resemblance between relatives and therefore the chief determinant of 

the observable genetic properties of the population and of the response 
of the population to selection (Falconer, 1981). Consequently a 

knowledge of the additive variance is important because it assists in 
defining appropriate breeding methods. 

As the results showed, 100 seed weight, number of seeds per pod, 
time to flowering and time to maturity character had a large additive 

component. Therefore, all methods of breeding and selection are 
appropriate and should be effective to the improvement of these traits. 

For seed yield per plant and the remaining characters in this study, 
the non-additive component was more important. 

Variation due to non-additive gene action in seed yield could be 

exploited in hybridization programmes. Consequently, the five F~ 
L 

crosses which showed superiority 

be carried forward. These being 

74TA26004 x Pant.L,406, ILL274 

in seed yield and SCA effects should 

Giza 9 x ILL12l, 74TA26004 x Precoz, 
x ILL121 and Pant.L,406 x ILL274. 
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Appendix Table l. Array covariance (Wr), variance (Vr) and their 

differences for 100-seed weight in the F1 and F2 

generations from an 8-parent diallel cross in lentil 

Parents 

l. Giza 9 0.1414 

2. Family 370 0.1557 

3. 78526004 0. 382 9 

4. Precoz 0. 6457 

5. Pant.L, 406 0.4986 

6. FLIP 84, 1-L l . 01 00 

7. ILL 274 0. 5871 

8. ILL 121 0.4529 

Intercept 0.155 

b=l.ll6±0.ll 

v 
r 

0.0245 

0.0786 

0. 240 

0.4429 

0.2286 

0.8086 

0.3000 

0. 2371 

w -v r r 

0.1169 

0.0771 

0.1429 

0.2029 

0.2700 

0.2014 

0. 2871 

0. 2517 

0.1543 0.1243 

0.3729 0.1700 

0.5414 0.4014 

0.6623 0.5829 

0.1286 0.1243 

l. 13 0.9486 

0.4229 0.260 

0. 3071 0.1586 

0.089· 

b ;::: 1 .086 ± 0.095 

W -V r r 

0.0300 

0.2029 

0.1400 

0.0814 

0.0043 

0. 1814 

0.1629 

0.1486 
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Appendix Table 2 Array coval'iance (Wr), variance (Vr) and their 

differences for no. of seeds per pod in the F1 and F2 

generations from an 8-parent diallel cross in lentil 

Parent 

l. Giza 9 

2. Family 370 

3. 78S26004 

4. Precoz 

5. Pant.L,406 

6. FLIP 84 ,1-L 

7. ILL 274 

8. ILL 1 21 

Intercept 

b 

w 
r 

0.0043 

0.0114 

0.0300 

0. 0371 

0.0414 

0. 0371 

0.0342 

0.0314 

0.0078 

v 
r 

0.0029 

0.0086 

0.0529 

0.0386 

0.0443 

0.0300 

0.0357 

0.0343 

0. 668 ± 0.16 

W -V r r 

0.00143 

0.00286 

-0.0229 

-0.0014 

-0.00286 

0.00714 

-0.00142 

-0.00286 

w 
r 

0. 0271 

0.0143 

0.0357 

0.0343 

0.0243 

0.0243 

0.0057 

0.0286 

' 
-0.0015 

v 
r 

0.0229 

0. 0171 

0.0386 

0.0257 

0.0243 

0,0243 

0. 0114 

0.0214 

b = 1 . 11 ± 0. 26 

W -V r r 

0.0042 

-0.0028 

-0.0029 

0.0086 

0.00 

0.00 

-0.0057 

0.0072 
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Appendix Table 3 Array covJriance (Wr), variance (Vr) and their 

differences for time to flowering in the F
1 

generation from an 8-parent diall el cross in lentil 

All parents included Parent 4 eliminated 

Parehts 

l. Giza 9 32.57 25.94 6.67 32.56 28.88 3.68 

2. Family 370 4.66 1.85 2.81 5.69 2 .16 3.53 

3. 78526004 24.33 17.55 6.78 29.48 20.43 9.05 

4. Precoz 6.92 23.71 -16.79 

5. Pant. L~06 6.59 23.70 -17.11 14.52 25.48 -10, 96 

6. FLIP 84,1-L 50.74 32.25 18.50 42.88 25.24 17.64 

7. ILL 27 4 68.70 63.12 5.58 54.81 43.76 11 .05 

8. ILL 121 67.45 63.41 4.04 70.85 71 . 1 2 - 0.27 

Intercept -2.278 6.116 

b = 1.11 + 0.23 b = 0. 96 ± 0. 19 
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Appendix Table 4 Array cov1riance (Wr)• variance (Vr) and their 

differences for time to flowering in the F2 

generation from an 8-parent diallel cross in lentil 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

All par~nts included Parent 4 eliminated 

Parents 

Giza 9 40.76 

Fami 1 y 370 22.58 

78526004 30.54 

Precoz 4.40 

Pant. L;l06 58.57 

FLIP 84, 1-L 52.48 

ILL 274 57.01 

ILL 1 21 66.07 

Intercept 33.09 

b = 0.213 ± 0.45 

v 
r 

23.21 

l 5. 21 

21 . 64 

3.50 

22.29 

35.91 

40.28 

62.36 

w -v r r 

17.55 

7.37 

8.90 

0.90 

16.28 

16.57 

16.73 

3.71 

40.09 

20.91 

27.02 

32.35 

44.79 

44.88 

49.26 

4.038 

b = 1 . 34 ± 0. 33 

24.49 

16.37 

21 . 81 

1 R, 56 

29.22 

25.24 

36.74 

W -V r r 

15 .60 

4.54 

5. 21 

13.79 

15.57 

19.64 

12.52 
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Appendix Table 5 Array covariance (Wr)' variance (Vr) and their 

differences for time to maturity in the F1 and F2 

generations from an 8-parent diallel cross in lentil 

Parents 

1. Giza 9 7.23 

2. Fami 1y 370 15.15 

3. 78526004 15.44 

4. Precoz 47.27 

r: Pant. L~06 i 5. 20 J, 

6. FLIP 84, 1-L 9. 71 

7. ILL 274 6.96 

8. ILL 121 8.02 

Intercept 

b = 0. 919 : 0.11 

8. 91 

5.44 

9.41 

46.34 

16.98 

5.46 

6.32 

7.48 

3.407 

w -v r r 

-1 . 68 

9. 71 

6.03 

0.93 

-1.78 

4.25 

0.64 

0.54 

w 
r 

26.04 

12.29 

4.99 

45.15 

24.06 

11.29 

11.78 

10.07 

14.03 

3.93 

3.11 

41 . 39 

22.28 

8.07 

7.25 

11 . 00 

4.687 

b = 0.974 ± 0.13 

w -v r r 

12.01 

8.36 

1.88 

3.76 

l. 78 

3.22 

4.53 

-0.93 
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Appendix Table 6 Chemicals and supplier Companies 

Chemical Company 

Ammonium persulphate 

Acetic acid 

Methanol 

N, N, N, methylene-bis-acrylamide 

(BIS) 
~ ~ 

N, N, N, N, tetramethyl ethylene-

diamine (TEMED) 

Sodium dodecyl sulphate (SDS) 

Acrylamide 

Coomassie brilliant blueR 25° 

Glycerine 

Trizma base [ tris (hydroxy methyl) 

ami no methane ] 

L-1 eucyl-B.-naphthyl amid · HCl , 

puriss, CHR, A.R. 

BDH Chemical Ltd., Poole, 

Dorset, U.K. 

II 

II 

II 

II 

Sigma Chemical Company, 

Poole, Dorset, U.K. 

II 

II 

Koch-Light Laboratories 

Ltd . Co 1 n brook. 




