

Durham E-Theses

An investigation of anisotropic magnetic properties of rare earth iron boron alloys

Hawton, M. J

How to cite:

Hawton, M. J (1987) An investigation of anisotropic magnetic properties of rare earth iron boron alloys, Durham theses, Durham University. Available at Durham E-Theses Online:
http://etheses.dur.ac.uk/6758/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-profit purposes provided that:

- a full bibliographic reference is made to the original source
- a link is made to the metadata record in Durham E-Theses
- the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.
Please consult the full Durham E-Theses policy for further details.

An Investigation of Anisatropic Magnetic
 Properties of
 Rare Earth Iron Boron Alloys.

M.J.Hawton

Physics Department
Durham University

Thesis submitted for the Degree of Doctor of Philosophy

The copyright of this thesis rests with the author. No quotation from it should be published without his prior written consent and information derived from it should be acknowledged.

Abstract

The work contained in this thesis was carried out by the author between 1983 and 1987 while a student in the Physics Department at Durham University. Work carried out in collaboration with other parties is clearly acknowledged at the appropriate point.

It is a most remarkable thing. I sat down with the
full intention of writing something clever and
original; but for the life of me I can't think of
anything clever and original - at least not at this
moment.

Jerome K Jerome(1943).

Abstract

In 1983 Sumitomo in Japan and General Motors in the USA both announced the production of new 'super magnets' based on a rare earth iron boron $m i x t u r e$. The Sumitomo magnets are based on an intermetallic compound with a composition $\mathrm{Nd}_{\approx} \mathrm{Fe}, 4 \mathrm{~B}$. This thesis describes an investigation towards understanding the reason why permanent magnets made from this material have such favourable magnetic properties.

A description is given of a new type of torque magnetometer designed to operate within the bore of a superconducting solenoid to make measurements at a field high enough for this type of material. The construction and testing of the instrument are described.

Results are presented of uniaxial magnetocrystalline anisotropy values calculated from torque measurements and also of magnetisation measurements for $R_{z} \mathrm{Fe}_{14} \mathrm{~B}, \mathrm{R}=\mathrm{Nd}, \mathrm{Ho}, \mathrm{Gd}$ and Dy from 4.2 K to room temperature. The basal plane anisotropy calculated from torque measurements for $\mathrm{Gd}_{2} \mathrm{Fe}_{4} \mathrm{~B}$ from 100 K to 300 K is also reported. These anisotropy results are related qualitatively to the crystal structure and electronic structure of the rare earth ions.

Observations of regions of uniform magnetization, domains, within the material are also described, and the movement of the boundaries between such domains, domain walls, under varying magnetic fields. These movements charactarise the material and help in understanding the processes involved in making a magnet resistant to demagnetisation.

From the observation of equilibrium domain wall patterns domain wall energies and domain wall thicknesses have been calculated.

Aknowledgements

Space doesn't permit me to mention all by name but

I would like to thank the members of the Physics Department for allowing me the use of the Departmental facilities.

I would like particularly to thank W.D.Corner for h1s patient supervision and encouragement, and all other members of the Solid State Group (past and present) for all help given and time taken in discussion..

The help of all the technical staff in the department is gratefully acknowledged, particularly that of John Scott for his assistance with the superconducting magnet.

The help of Rex Harris and Stewart Abell and the gang at Birmingham must also be mentioned, for use of crystal preparation facitities and provision of samples.

The work was carried out during an SERC studentship, which is gratefully acknowledged. Hellum for the magnet and funds for travelling and an additional studenship came from the EBC through the Concerted European Action on Magnets (CEAM) - without this financial support the work would have been much more restricted. Discussion with other collaborators within CEAM was invaluable and Dominic Givord was also very kind in providing single crystal samples grown at the Lab. Louis Neel in Grenoble.

But finally and most importantly my thanks must go to my wife Dorothy without whose patience (sometimes), understanding(at times) and love(at all times) I would never have had a chance to start, let alone finish, this work.

Contents

Title page 1
Abstract 2
Aknowledgements 3
Contents 4
Figures 9
Tables 12

1) Introduction to magnetism 13
1.1 Magnetism and units 13
1.2 Solid state micro-magnetism 14
1.2.1 Diamagnetism 14
1.2.2 Paramagnetism 15
1.2.3 Cooperative magnetism 18
1.2.3.1 Exchange interaction 18
1.2.3.2 Ferramagnetism 19
1.2.3.3 Anti-ferromagnetism. 21
1.2.3.4 Ferrimagnetism \& helimagnetism. 21
1.2.4 Magnetocrystalline anisotropy 23
1.2.4.1 Single ion model 25
1.2.4.2 Two ion model 25
1.2.4.3 Conduction electron model. 25
1.2.5 Magnetostriction 26
1.3 Solid state macro-magnetism 27
1.3.1 B-H loop. 27
1.3.2 Domains. 29
1.3.2.1 Domain wall energy 32
1.3.2.1 Domain structures in uniaxial 34
1.3.2.2 Domain movements 35
1.3.2.3 Domain observation. 35
1.3.3 Bulk Andsotropy 38
1.3.3.1 Shape anisotropy. 38
2) Introduction to rare earths. 39
2.1 Introduction. 39
2.2 Physical properties of the metals 39
2.2.1. Magnetic structures. 41
2.3 Rare earth transition metal intermetallics. 45
2.3.1. Rare earth nickel systems. 45
2.3.2. Rare earth cobalt systems. 46
2.3.3. Rare earth iron systems. 46
2.4 Preparation and purification. 47
3) Rare earth based permanent magnets 48
3.2 Rare earth cobalt magnets. 48
3.3 Rare earth iron magnets. 50
3.3.1. Introduction. 50
3.3.2. Crystal structure. 50
3.3.2.1. $\mathrm{R}_{1+\mathrm{a}} \mathrm{Fe}_{4} \mathrm{~B}_{4}$. 50
3.3.2.2. $\mathrm{R}_{2} \mathrm{Fe}_{14} \mathrm{~B}$. 51
3.3.3. Intrinsic magnetic properties. 56
3.3.3.1. Spontaneous magnetization. 56
3.3.3.2. Magnetocrystalline anisotropy. 56
3.3.3.3. Magnetostriction. 57
3.3.4. Extrinsic properties. 57
3.3.4.1. Domain studies. 58
4) Sample preparation 59
4.1 Starting materials. 59
4.2 Cutting and polishing. 60
4.2.1 polishing. 62
4.3 Setting and aligning. 62
4.4 Hydrogen decrepitation. 64
4.4.1 Single crystal separation? 64
4.4.2 Powder production. 66
5) Equipeent used 68
5.1 Torque magnetometer. 68
5.1.1 Introduction. 68
5.1.2 The magnet (DUCHESS) 69
5.1.3 Description of the magnetometer. 70
5.1.4 Construction of the apparatus. 74
5.1.5 Electronics and control. 77
5.1.5.1 Computer interface 79
5.1.6 Measurement procedure. 80
5.1.7 Calibation. 82
5.1.8 Accuracy. 83
5.1.8.1 Field measurement and stability 83
5.1.8.2 Temperature measurement and stability 83
5.1.8.3 Angular measurement. 84
5.1.8.4 Torque values. 85
5.1.9. Performance 86
5.2 Optical domain observation 88
5.2.1 Introduction. 88
5.2.2 The microscope. 88
5.2.3 Experimental detall. 89
5.3 Vibrating sample magnetometer. 90
6) Results and analysis 91
6.1 Magnetisation measurements. 91
6.1.1 $\mathrm{R}_{2} \mathrm{Fe}_{\mathrm{i}_{4} \mathrm{~B}} \mathrm{crystals}$ and aligned powder. 92
6.1.2 Rare Earth iron magnets. 99
6.1.3 Terbium. 100
6.2 Anisotropy measurements. 102
6.2.1 $\mathrm{RzFe}_{14} \mathrm{~B}$ crystals and aligned powders. 102
6.2.1.1. $\mathrm{Nd}_{3}, 7 \mathrm{Fe}_{14} \mathrm{~B}$ ingot and powder. 102
6.2.1.2. $\mathrm{Ho}_{2} \mathrm{Fe}_{14} \mathrm{~B}$ ingot and powder. 107
6.2.1.3. Gdare,aB single cyrstal 109
6.2.1.3.1 Uniaxial anisotropy. 109
6.2.1.3.2 Basal plane anisotropy. 112
6.2.1.3. $\mathrm{Dy}_{2} \mathrm{Fe}_{14} \mathrm{~B}$ single cyrstal. 115
6.2.2 Rare Earth iron magnets. 117
6.2.3 Terbium. 118
6.3 Domain observations. 119
6.3.1 In zero field. 119
6.3.2 Under applied field. 123
7) Conclusions and suggestions for further work. 125
7.1 Instrumentation. 126
$7.2 \mathrm{R}_{2} \mathrm{Fe}_{14} \mathrm{~B}$ anisotropy. 127
7.3 Magn. processes in rare earth iron magnets. 130
Alphabetical List of References 132
Appendicies
1 Modifications to Duchess A1. 1
A1.1 Modifications to cyostat. A1. 1
A1. 2 Other modifications. A1. 5
2 Computer Programs. A2.1
Introduction and short description. A2. 1
General BBC programs. A2. 1
Torque magnetometer programs. A2. 2
Data utility programs (BBC). A2. 2
Data processing programs (MTS). A2. 3
Listings of computer programs. A2. 4
LAUE. BBC A2. 4
CRYSTAL. BBC. A2. 8
MUTUAL. BBC. A2. 15
TORQUE. BBC. A2. 18
FIT. BBC. A2. 26
TORCALC. BBC. A2. 29
ROTHYS. BBC. A2. 31
SKETCH. BBC. A2. 37
HP. BBC. A2. 44
CONV. PAS A2. 52
FIT. PAS. A2. 58
FIT. FOR A2. 76
GRAPH. PLOT. A2. 79
GHOST. FOR. A2. 90
3 Switched mode power supply. A3. 1
A3. 1 Specifications. A3. 1
A3.2 Circuit description. A3. 1
4 Relay board for Minicam interface. A4. 1
5 RS232 Multiplexor for BBC micro. A5. 1
A5.1 Introduction. A5. 1
A5.2 Design and circuit description. A5. 2
6 Relatr between Fourier and Doring anisotropy const. A6. 1
7 Torque curve slopes and Doring anisotropy const A7. 1
8 Shear correction to torque curves A8. 1

Figures

1.1 Different forms of magnetic ordering. 20
1.2 Origin of the RKKY interaction. 22
1.3 Magnetisation in ferro and ferrimagnets. 24
1.4 Typical hysteresis loop. 28
1.5 Movement of four moments under an increasing field. 28
1.6 Examples of domain patterns. 30
1.7 Domain boundary wall (Kittel 1949). 33
1.8 Bitter pattern formation. 36
2.1 Close pack structures in rare earths metals. 40
2.2 Magnetic structures in rare earth metals. 43
3.1 $\mathrm{R}_{1+e} \mathrm{Fe}_{4} \mathrm{~B}_{4}$ looking down the c -axis. 51
$3.2 \mathrm{R}_{1+}{ }_{\mathrm{a}} \mathrm{Fe}_{4} \mathrm{~B}_{4}$ from (110). 51
3.3 Stucture of $\mathrm{Nd}_{2} \mathrm{Fe}_{4} \mathrm{~B}$ 53
3.4 Local enviroments of atoms within the $\mathrm{KD}_{2} \mathrm{Fe}_{14} \mathrm{~B}$ structure. 55
4.1 Laué photograph of $\mathrm{Gd}_{2} \mathrm{Fe}_{1} \mathrm{~A} \mathrm{~B}$ along C axis 61
4.2 Simulated Laué pattern along caxis. 61
4.3 Mould for setting powders in electromagnet. 63
4.4 Mauld for setting powders in solenoid. 63
4.5 Region of parallel grains in commercial $\mathbb{H d}_{15} \mathrm{Fe}_{7 \rightarrow} \mathrm{BBe}_{\mathrm{B}}$ ingot. 65
4.6 Annealed commercial ingot. 65
5.1 Configuration of magnetometer colls. 71
5.2 Simulation of magnetometer pickup. 72
5.3 Effect of solenoid on pickup. 73
5.4 Details of torque magnetometer head. 75
5.5 Photograph of magnetometer head. 76
5.6 Block diagram of magnetometer electronics. 80
5.7 Pickup in the cross coils. 81
5.8 Ratio used for angular correlation. 81
5.9 Difference between sample and measured temperature. 84
5.10 Effect of NdFeB ingot sample on pickup. 84
5.11 Dependence of pickup on $D C$ current. 86
5.12 Torque exerted by terbium sample at 12.5 T and 268 K 86
5.13 Temp dependance of K , of terbium measured at 12.5T. 87
5.14 Microscope stage for magnet. 89
5.15 Sample setup for domain observation. 89
6.1 Magnetisation of nickel at 12.5T. 92
6.2a $\mathrm{Nd}_{1}{ }_{7} \mathrm{Fe}_{14} \mathrm{~B}$ magnetisation. 93
6.2b $\mathrm{Ho}_{2} \mathrm{Fe}_{14} \mathrm{~B}$ magnetisation. 94
6.2c $\mathrm{Gd}_{2} \mathrm{Fe}_{4} \mathrm{~B}$ magnetisation. 95
6.2d $D y z \mathrm{Fe}_{1}{ }_{4} \mathrm{~B}$ magnetisation. 96
6.3 Sintered magnet magnetisation. 99
6.4 Terbium magnetisation. 100
6.5 Torque curves of $\mathrm{Kd}_{1} \rightarrow \mathrm{Fe}_{14} \mathrm{~B}$ powder. 103
6.6 Tilt angle in $\mathrm{Hd}_{1} \rightarrow \mathrm{Fe}_{14} \mathrm{~B}$ powder. 104
6.7 Anisotropy constants of $\mathrm{Nd}_{1}, 7 \mathrm{Fe}_{14} \mathrm{~B}$. 105
6.8 Torque curve of $\mathrm{HO}_{2} \mathrm{Fe}_{14} \mathrm{~B}$ ingot. 107
6.9 Tilt angle in $\mathrm{Ho}_{2} \mathrm{Fe}_{14} \mathrm{~B}$. 107
6.10 Anisotropy constants of $\mathrm{Ho}_{2} \mathrm{Fe}_{14} \mathrm{~B}$. 108
6.11 Uniaxial anisotropy constants of $\mathrm{Gd}_{2} \mathrm{Fe}_{14} \mathrm{~B}$. 110
6.12 Torque curve of $\mathrm{Gd}_{2} \mathrm{Fe}_{4} \mathrm{~B}$ around a axis. 111
6.13 Torque curve of $\mathrm{Gd}_{2} \mathrm{Fe}_{1} \mathrm{~B}$ around c axis. 113
6.14 Basal plane anisotropy constant of $\mathrm{Gd}_{z} \mathrm{Fe}, 4 \mathrm{~B}$. 114
6.15 Torque curves of $\mathrm{Dy}_{2} \mathrm{Fe}_{4}{ }_{4} \mathrm{~B}$ 116
6.16 Anisotropy constants of $\mathrm{Dy}_{2} \mathrm{Fe}_{14} \mathrm{~B}$. 116
6.17 Torque curves of sintered magnet. 117
6.18 Dependance of anisotropy constants on cobalt. 117
6.19 Domain pattern observed in $\mathrm{Nd}_{15} \mathrm{Fe}_{7 \rightarrow} \mathrm{~B}_{\boldsymbol{e}}$ ingot. 119
6.20 Domain pattern in $\mathrm{Dy}_{2} \mathrm{Fe}_{14} \mathrm{~B}$ compared with model. 120
6.21 Domains in $\mathrm{Nd}_{2} \mathrm{Fe}_{, 4} \mathrm{~B}$, surface perp. c axis. 121
6.22 Domains in $\mathrm{HO}_{2} \mathrm{Fe}_{1} \mathrm{~B}_{\mathrm{B}}$, surface perp. C axis. 121
6.23 Domains in $\mathrm{Gd}_{2} \mathrm{Fe}_{14} \mathrm{~B}$, surface perp, c axis. 122
6.24 Domains in $\mathrm{Dy} \mathrm{FF}_{14} \mathrm{~B}$, surface perp. c axis. 122
6.25 Domains in $\mathrm{Nd}_{15} \mathrm{Fe}^{2} 7 \mathrm{BB}_{6}$ under applied fields. 125
A1.1 Original design of Duchess cryostat tail. A1. 2
A1.2 Present design of Duchess cryostat tail. A1. 3
A3.1 Circuit diagram Switched Mode Power supply. A3. 3
A4.1 Circuit diagram Relay Board. A4.2
A5.1 Circuit diagram RS232 switch A5. 3
A8.1 Moment in a sample under an applied field. A8.1

Tables.
2.1 Crystal structure of rare earth metals at 0K. 40
2.2 Magnetic structure and Stevens factors of rare earths 42
2.3 Curie temp, of rare earth nickel intermetallics. 45
2.4 Curie temp. of rare earth cobalt intermetallics. 46
2.5 Curie temp. of rare earth iron intermetallics. 47
3.1 Bond lengths in $\mathrm{Id}_{2} \mathrm{Fe}_{14} \mathrm{~B}$. 53
3.2 Intrinsic magnetic properties of $\mathrm{R}_{2} \mathrm{Fe}_{14} \mathrm{~B}$. 57
4.1 Samples used for this work. 67
5.1 Range resistances 79
6.1 Calibration factor for Duchess VSM 91
6.2 Domain wall energies and thicknesses in $\mathrm{R}_{2} \mathrm{Fe}_{14} \mathrm{~B}$. 123

Chapter 1: Introduction to magnetism.

1.1 Magnetism and Units.

Although magnetism is an old branch of science, having not only been investigated around 3000 years ago in Greece, but also having technological importance from the time the first plece of magnetite was suspended to show the direction of North, it is still an area where much research is still being done to fully understand the processes invalved, both on an atomic and macroscopic level.

Magnetism is now generally accepted to be the additional interaction between two charges both moving with respect to the observer, above the electostatic force experienced when the charges are at rest. This force can be considered in terms of magnetic fields originating from moving charges, which can be superimposed and affect the motion of any other moving charge. This field was long considered to be due to magnetic poles, the existence of which was postulated long before the existence of electric charges. The search for the magnetic monopole has however yet to yield proof of the existence of such a pole.

Maxwell's equations, which described the interaction of electric and magnetic forces are now over 120 years old, and form a solld basis for a general understanding of magnetism. However understanding of the interactions which take place within solids, although completely described by Maxwell, are not simply analysable.

The development of quantum mechanics at the beginning of the century shed new light on the interactions which give rise to co-operative magnetism (see section 1.2.3).

Throughout this thesis S.I. units are used, and the Sommerfeld(1948) convention is used. That is the induction B in a medium is given as:

$$
\begin{equation*}
\mathbf{B}=\mu_{0}(\mathbf{H}+\mathbf{M})=\mathbf{B}_{0}+\mu_{0} \mathbf{K}(\mathbf{T}) \tag{1.1}
\end{equation*}
$$

the volume susceptibility is given as the ratio of the magnetization over the field which produced it:

$$
\begin{equation*}
\mathbf{k}=\mathbf{M} / \mathrm{B}_{0}\left(\mathrm{~J} \mathrm{~T}^{-2} \mathrm{~m}^{-3}\right) \tag{1.2}
\end{equation*}
$$

and the mass susceptibility as:

$$
\begin{equation*}
X=\mathbf{k} / \rho\left(J \mathrm{~T}^{-2} \mathbf{k g}^{-1}\right) \tag{1.3}
\end{equation*}
$$

both of which are tensor properties.
The torque on a dipole in a fleld is given as: Torque $=$ moment \times field, i.e.:

$$
\begin{equation*}
T=V M \times B_{o}(\mathbf{M}) \tag{1,4}
\end{equation*}
$$

1.2. Solid State Micro-Magnetisi

1.2.1. Diamagnetism

Diamagnetism is the reduction of the induced field below that of free space by the presence of a medium. The diamagnetic susceptibility is generally small ($k \simeq-10$ J $T^{-2} \mathrm{~m}^{-3}$) and independent of temperature. Although all materials can be said to exhibit diamagnetism, it is swamped in materials which are paramagnetic or exhibit co-operative magnetism. This means that
it is observed best in inert gasses, or other materials with a large gap between occupled full orbitals and empty ones.

It can be considered to be due to precession of the electronic orbitals around the nuclei. This can be calculated classically using Larmor precession theory (Kittel 1976) or quantum mechanically (van Vleck 1932), the result in both cases is the same:

$$
\frac{-N 2 e^{2}\left\langle r^{2}\right\rangle}{6 \mathrm{~m}}
$$

where N is the number of atoms per unit vol, Z the number of electrons per atom, e the electron charge, $\left\langle r^{2}\right\rangle$ the mean square distance of an electron from the nucleus and m the mass of an electron. As the factors in (1.5) are all positive ,the diamagnetic susceptibility will always be negative.

A special form of diamagnetism is superconductivity where the field is totally expelled from a material, i.e $\mathbf{M}=-\mathbf{H}$

1.2.2. Paramagnetism.

For low fields or high tempratures many materials have been observed to obey the Curie Law:

$$
\begin{equation*}
\mathbf{k}=C / T \tag{1.6}
\end{equation*}
$$

where C is known as the Curie constant, or the Curie-Weiss Law:

$$
\begin{equation*}
\mathbf{k}=C /\left(T-\theta_{\mathbf{D}}\right) \tag{1.7}
\end{equation*}
$$

where θ_{p} is the paramagnetic Curie temperature, and may be either positive or negative.

The Curie law can be deduced either classically (Langevin 1905) or quantum mechanically (Brillouin 1931). In the classical treatment the material is considered to consist of an array of non-interacting dipoles, which are aligned by the external field, but are randomized by the thermal energy. Application of Maxwell-Boltzmann statistics gives the result:

$$
\begin{align*}
M & =M_{o}\left(\operatorname{coth}\left(\mu B_{0} / k T\right)-1 /\left(\mu B_{0} / k T\right)\right) \\
& =M_{0} \&\left(\mu B_{0} / k T\right) \tag{1.8}
\end{align*}
$$

where μ is the moment of each dipole, M_{o} is the total moment of all the dipoles if aligned, T is the temperature, k is Boltzmann's constant and $\mathcal{A}(x)$ is known as the Langevin function.

For Bo/T small this approximates to the Curle Law form (1.6):

$$
\begin{equation*}
\mathbf{M}=M_{0} \mu B_{0} / 3 \mathrm{kT} \tag{1.9a}
\end{equation*}
$$

or $\quad k=M_{o} \mu / 3 k T$

The classical result (1.8) has been shown to apply to superparamagnetism, where small ferromagnetic particles have an effectively continuous range of dipole orientations.

Weiss (1907) suggested inclusion of interaction between dipoles, which could be considered as an internal field within the material, known as the Weiss field. This leads to a result in the form of the Curie-Weiss Law(1.7).

A quantum mechanical treatment of the same phenomena has to consider quantization of the component of total atomic angular momentum, J along the aligning field direction. The loss of degeneracy imposed by the external field results in a splitting of the energy levels from the free atom model,

The splitting for a field of about 1 Tesla is usually much smaller than both the thermal energy at room temperature and the gap between states of different J.

Brillouin's treatment yields the expression:

$$
\begin{equation*}
M=\mathbb{M} g \mu_{b} B(J, y) \tag{1,10}
\end{equation*}
$$

where g is the Lande g factor:

$$
\begin{equation*}
g=1+\frac{J(J+1)+S(S+1)-L(L+1)}{2 J(J+1)} \tag{1.11}
\end{equation*}
$$

μ_{0} is the Bohr magnetron:

$$
\begin{equation*}
\mu_{b}=e \mathrm{~h} / 4 \pi \mathrm{~m} \tag{1.12}
\end{equation*}
$$

($h=$ Planck's constant) and $B(J, y)$ is known as the Brillouin function:

$$
\begin{equation*}
B(J, y)=(1+1 / 2 J) \operatorname{coth}[y(1+1 / 2 J)]-(1 / 2 J) \operatorname{coth}(y / 2 J) \tag{1.13}
\end{equation*}
$$

For small fields or high temperatures (1.10) approximates to:

$$
\begin{equation*}
\mathbf{M}=\mathbf{K} \mathbf{g}^{2} \mu_{n}^{2} J(J+1) B_{0} \tag{1.14}
\end{equation*}
$$

3 kT
which has the Curie Law form. At low temperatures and high field the full shape of the Brillouin function has been observed (Henry 1952). As with the classical derivation, the inclusion of interactions between atoms is required to produce an equation of the form of (1.7).

1.2.3 Cooperative magnetism.

1.2.3.1 Exchange Interaction.

As discussed in section 1.2 .2 inclusion of an internal field or magnetic interactions between atoms can give rise to the Curie-Weiss law. It can also give a description of spontaneous magnetization in ferromagnetic materials where the moments can be considered to arise from localized moments. However the size of the internal field required to produce a Curie temperature of the same magnitude as those found in ferromagnets is about 1000 times the value of B observed in actual ferromagnets, in other words the magnetic interaction between atoms is about 1000 times smaller than is required by the theory.

It appears therefore that the interaction must originate elsewhere and Heisenberg (1928) was the first to give an explanation in terms of the so called exchange interaction. This originates in the overlapping of regions of charge density when two wave functions are considered together. As electrons are fermions this means that the combined wave function of two electrons must always be anti-symmetric. This leads to an effective coupling between the spatial and spin wave functions, if one is symmetric the other must be anti-symmetric and vice-versa. The Coulomb interaction between electrons leads to an energy difference between symmetric and nonsymmetric spatial wave functions due to their relative compactness and this in turn leads to the so called exchange interaction between the spins. The energy of this exchange interaction is given by the Heisenberg expression,

$$
\begin{equation*}
\Delta E=-2 \sum J_{1 j} S_{i} \cdot S_{j} \tag{1.15}
\end{equation*}
$$

where $J_{i, i}$ is the exchange constant, given by

$$
\begin{equation*}
J_{i j}=\langle i j| H|j i\rangle \tag{1,16}
\end{equation*}
$$

where H is the Hamiltonian of the electron-electron and electron-nuclei interaction.

1.2.3.2 Perromagnetism

A ferromagnetic material is usually divided up into volumes which are spontaneously magnetized. The magnitude of this magnetization decreases as the Curie temperature is approached. In a ferromagnet at $T=O K$ all the spins are aligned in one direction (see fig 1.1). The moment can arise either from localized electrons, as in the rare earth metals where $4 f$ electrons are unpaired, or conduction electrons, as in the transition elements where the 3d electrons are delocalized. Both types of ferromagnetism can be treated as though there was a large internal field, which produces an energy difference between states of differing spin(e.g. Crangle 1977). As discussed above (1.2.3.1) the fields required to produce a large enough splitting could not arise purely from magnetic interaction, and the exchange interaction is thought to be the origin of this energy gap. For ferromagnetic ordering the sign of $J_{1 s}(1.16)$ must be positive.

Calculations of $J_{i s}$ in particular cases show that this also is often not large enough to account for the ferromagnetic ordering. In these cases a more complex interaction than direct exchange interaction is involved. In insulating ferromagnets superexchange(Kramer 1934) is involved. This is the interaction between two local moments separated by a non magnetic ion. Spins on the magnetic ions are coupled to the non-magnetic ion. This gives a preferredspatial distribution of spin on the intervening non-magnetic ion which, although not giving rise to a net moment on the ion itself, interacts

1

\uparrow

ANTI-FERROMAGNETIC

FERRIMAGMETIC

Fig 1.1 Different forms of magnetic ordering.
with the magnetic ion on the other side to produce a prefered spin orientation. In conducting magnets where unpaired states exist below the Fermi level which are localized within the ions and little direct exchange is possible the RKKY process (after Ruderman and Kittel 1954, Kasuya 1956 and Yosida 1957) is the accepted explanation. In this model the coupling with conduction electrons near the Fermi energy produces a preferred positioning of the wave functions of electrons with one spin direction around an ion, and a equally 'unpreferred' positioning of electron with opposite spin. The addition of these wave functions leads to a spatial spin distribution spreading out from the magnetic ion (see Fig 1.2). This type of interaction is relatively long range and highly dependent on the separation of the magnetic ions. The resultant indirect coupling between the localized moments may give rise to ferromagnetism.

1.2.3.3 Anti-ferromagnetisn.

If the sign of the Heisenberg exchange integral (1.16) is negative then coupling between adjacent ions gives rise to alternate spin directions. (see Fig 1.1). The result is no bulk magnetisation. Alternatively there may be strong positive coupling within sub lattices, but weak coupling between sublattices, leading to two sub-lattices within a crystal with opposing moments. Anti-ferromagnetic ordering was proposed by Neel(1936) and neutron diffraction confirmed its existence in 1950. Anti-ferromagnetism may revert to ferromagnetism at high field, or low temperature. The temperature at which the anti-ferromagnetic ordering ceases is known as the Heel temperature.

1.2.3.4. Ferrimagnetism and Helinagnetism.

Anti-ferromagnetism can be seen as a special case of ferrimagnetism when the moments on the sub-lattices are equal. If they are not then this gives

a) Conduction electrons near the Fermi surface are positioned at preferred position around a magnetic ion
b) The wave functions in a) summed to give the spin density distribution around a magnetic ion.

Fig 1.2 Origin of the RKKY interaction.
(after Crangle 1977)
rise to a total resultant magnetisation, equal to the difference in the moments. The dependence of spontaneous magnetization on temperature can take a variety of forms depending on the Curie temperatures of the two sub lattices, and may have compensation points where the magnetic moments on the two sites are equal and cancel (see fig 1.3).

The coupling between atoms may also result in more complex magnetic structures where moments align at an angle to each other. The result may be an overall magnetic moment or not. An example is Helimagnetism (see fig 1.1) where the moments lie in a helix. Many other complex forms of ordering have been observed, and these tend to occur in rare-earth alloys. This is thought to be due to the influence of separation on the RKKY exchange interaction (see sect 1.2.3.2)

1.2.4. Magnetocrystalline Anisotropy.

In ferro and ferrimagnetic material the directional dependence of the orbital overlap gives rise to preferred directions along which the moments will tend to align. These minima in the angular dependence of magnetisation are known as easy directions. To force the moments to another direction requires additional energy. The angular distribution of this energy has the same symmetry as the crystal structure and is generally described by phenomenological constants based on power series of the major spherical harmonics. These series are dependent on the crystallographic point group(Doring 1958). Analogous expressions are also possible using a different basis. Fourier or harmonic analysis is possibly a better model, allowing better comparison with theoretical predictions(Birss and Keeler 1974) and Legendre polynomials are another possibility. Conventions are still being suggested (Volkov 1981) and as there is no consensus as to the best, the expressions of Doring are used in this thesis.

Fig 1.3 Magnetization in Ferro(A, B) and Ferri($\mathrm{C}-\mathrm{H}$) magnets.

Various models have been proposed for the origin of the magnetocrystalline antsotropy which have been shown to apply to a greater or lesser extent to different materials.

1.2.4.1 Single Ion Model.

In this model, otherwise known as the crystal field model, the crystalline structure forces a prefered orientation on the electronic charge distribution around a single magnetic ion. As this charge distribution is governed by the spatial component of the wave function, this in turn is coupled to the crystalline lattice. The spin-orbit interaction discussed in section 1.2.3.1 means that the spin, that is the moment of the ion, will be coupled to the crystal lattice.

This model is probably dominant in materials where the moments are localised and the fons are well separated, for example in magnetic insulators and in rare earths, where the $4 f$ orbitals are deep within the ion and therefore overlap very little.

1.2.4.2 Two Ion Model.

In the same way that the dipole coupling between moments is anisotropic, the exchange interaction was also shown to be anisotropic by van Vleck(1937). Th1s anisotropy can be compared with the classic dipole-dipole interaction, and is found to drop off much more rapidly with separation of the dipoles. This model can be important in $4 f$ magnetism as a contribution to the overall anisotropy.

12.4.3 Conduction electron nodels.

In a material where the magnetisation arises from conduction electrons, then the coupling of the wavefunctions with the crystal have to be considered. An analogy to the single ion model in localized magnetization is
possible by considering the influence of the crystal potential on the freeelectron wave function. This potential gives rise to a band structure which $1 s$ orientation dependent. The spin-orbit coupling for these Bloch states then introduces a directional dependence to the magnetization.

Models of this type have been applied qualitatively to 3d magnetisation (e.g.Mor1 et al 1974).

1.2.5. Magnetostriction

The change in direction of magnetisation within a material causes a change in crystal lattice constants, this effect is known as magnetostriction. It is usually described in terms of constants related to direction cosines with respect to the major crystallographic axes. This change in lattice constant and the elastic constants of the material contribute to the magnetoelastic energy.

1.3 Solid State Macro-Magnetism.

1.3.1 B-H loop

Most magnetic materials possess no overall moment until placed in a field. As the field is increased ($O A$ in Fig 1.4) the moment increases until it reaches a saturated value (M_{s}), further increases in the applied field result in an increase in the induction but not in moment. On decreasing the field (AB in fig 1.4) the moment will also decrease but when the field is zero a positive moment will remain, called the remnance (M_{r}), or remanent induction (B_{R}). On increasing the applied field in an opposite direction ($B C$ in Fig 1.4) the induction will be reduced to zero at a applied field $H_{c e}$ and the moment at a field $H_{c m}$, known as the coercive field or coercivity, Further increasing the applied field (CD in Fig 1.4) results in the moment again increasing to the saturated moment. Reducing the field and increasing it again in the initial direction (DEFA in Fig 1.4) returns the material to it's initially magnetized state. The outside loop (ABCDBFA) is known as the hysteresis loop. This loop is symmetrical about the origin and usually highly reproducible after a few cycles. Each time the loop is traversed an amount of energy proportional to the area of the loop is absorbed by the material.

Materials in which the loop area is small are called soft. The three important magnetic characteristics of soft materials are their susceptibility, saturation magnetisation and the area of the hysteresis loop, either given by quoting the remanence or the coercivity.

Materials in which the loop area is large are called hard. The two important magnetic characteristics of a hard material are the coercivity and the 'energy product', (BH) max (fig 1.4B). The values of B and H corresponding to (BH) max define the optimum working point for a permanent magnet.

Fig 1.4 Typical Hysteresis loop.

a)

c)

b)

d)

Fig 1.5 Movement of four moments under an increasing field.

Other properties such as temperature and chemical stability, mechanical hardness, etc. obviously play a part in full characterisation and comparison of magnetic materials for commercial purposes.

1.3.2. Domains

The shape of the hysteresis loop provides a puzzle. It has long been known that magnetic moments were sub microscopic in origin. In this case why do they not all allgn to produce a saturated moment when a small external field is applied to the sample? Early investigators proposed a form of molecular friction which prevented moments from turning readily. Ewing(1890) showed qualitively that the shape of the bysteresis loop could be explained without introducing the idea of friction, in terms of the effect of moments on their neighbours. For example a group of four moments would react to increasing field as shown in Fig 1.5. In the unmagnetised state (a) the M and S poles are close to each other to produce no external field. As the field is increased the moments first rotate so as to retain the structure of the group (b), this corresponds to the initial reversible part of the magnetization curve (Oa in Fig 1.4). On further increasing H two of the moments swing round to face the opposite direction (c), giving a large increase in M for small H (ab in Fig 1.4). This part of the curve is not reversible and, in the model, reducing the field does not initially let the moments swing back. Finally increasing the field further pulls the moments completely into line (bA in Fig 1.4). In practise a much larger number of moments is involved and the situation a lot more complex.

Weiss(1907) suggested that ferromagnetic materials are divided into regions which are each saturated by the internal field within the material and have a uniform magnetisation within each region. These regions are called domains. In the demagnetised state the domains are so arranged to give zero

Fig 1.6 Examples of domain patterns.
net magnetization. This has since been validated by observation of the domains (e.g. Williams, Bozorth and Shockley 1949).

Lifshitz and Landau(1935) considered domains in terms of minimisation of magnetostatic energy and Heel (1944) developed the idea further.

The domain structure can best be understood in terms of the total magnetic energy of the material. This can be expressed in terms of the Gibbs function for the material:

$$
\begin{equation*}
G_{T}=G_{E}+G_{A}+G_{M}+G_{\sigma}+G_{W}+G_{B}+G_{O} \tag{1.17}
\end{equation*}
$$

where G_{E} : Exchange energy;
G_{A} : Anisotropy energy;
G_{m} : Internal magnetostatic energy;
Go : Magnetoelastic energy;
Gw : Domain wall energy;
G_{B} : External Magnetostatic energy;
Go : Other energy terms.
The first four terms in the equation (1.17) are neglecting the material within the domain wall which is considered separately as the fourth term. Solving this equation to find the minimum of the Gibbs free energy is not usually possible in any but the very simplest case, but it is possible to use the equation to show that an observed or postulated domain structure is a local minimum and to compare it with other structures. In this way it can be shown that domain formation is often energetically favoured. The equation also helps to understand the type of structure expected in a qualitative manner.

In a ferromagnet the exchange term will tend to align the moments within a domain, and produce a uniform magnetisation. The anisotropy term means that, except in high field, this magnetisation will tend to lie along an
easy direction. A single domain can be thought of as a volume with a free pole density at the surface. The magnetostatic term is large if there is any surface or domain wall where there is a large free pole density. This leads to closure domain structures (see $F i g 1.6 \mathrm{~d}$) and, as the magnetisation is restricted to a limited number of easy directions, allows only certain domain wall orientations.

The magnetoelastic term has an influence on the type of domain wall in highly magnetostrictive materials. The origin of the domain wall term is discussed further in the next section. It is considered to have an energy per unit area. The ratio of the domain wall term to the magnetostatic term In general influences the size of the domains. The external magnetostatic term is the interaction with an applied field, and accounts for the domain wall movements.

1.3.2.1. Domain Yall Energy

The structure of a domain wall can be very complex, especially in materials with more than one type of magnetic atom and more than one lattice site. Let us consider, however, the simplest model involving only one type of magnetic ion in one crystal site in a magnetically uniaxial crystal (see Fig 1.7). The change in magnetisation direction generally takes place gradually through the domain wall thickness with the spins rotating within the plane of the wall as required to minimise magnetostatic energy. This thickness is determined by the balance between the anisotropy energy and the exchange energy. If two spins are misaligned by an angle $\delta \boldsymbol{f}$ then the increase in exchange energy, following from (1.15), is

$$
\begin{equation*}
\delta G_{E}=J S^{2} \delta \delta^{2} \tag{1.18}
\end{equation*}
$$

Fig 1.7 Domain Boundary Wall (Kittel 1949)

If we assume that is is a constant through the wall, and that the rotation takes place over steps the total increase in exchange energy is given by

$$
\begin{equation*}
\Delta G_{E}=\left\|J S^{2} \delta\right\|^{2}=J S^{2} \pi^{2} / H \tag{1.19}
\end{equation*}
$$

as the total rotation in a uniaxial wall must be π.
Considering only the first term in the anisotropy energy (A6.1), the tatal anisotropy energy in the wall is given by

$$
\Delta G_{A}=\sum_{n=0}^{N} k_{1} \sin ^{2}(n * \pi / H)
$$

where k is the microscopic anisotropy constant. If the wall is thick enough to be considered uniform then this can be approximated to an integral and solved to give:

$$
\begin{equation*}
\Delta G_{A}=N k_{1} / 2 \tag{1.21}
\end{equation*}
$$

Summing (1.19) and (1.21) and minimising the free energy gives:

$$
\begin{array}{ll}
& \mathrm{H}=\mathrm{S} \pi\left(2 \mathrm{~J} / \mathrm{k}_{1}\right) 1 / 2 \\
\text { and } & \Delta G=S \pi\left(2 \mathrm{~J} \mathbf{k}_{1}\right) 1 / 2
\end{array}
$$

where ΔG is the increase in Gibbs free energy due to the wall. It is interesting to note that the anisotropy and exchange contributions to the total domain wall energy are the same.

1.3.2.2. Domain Structure in Uniaxial Systems.

In uniaxial systems there are only two allowed orientations for the magnetisation within a domain. In a thin film with the easy axis perpendicular to the film the zero field domain structure is a series of band domains of equal thickness(1.6a). Minimising the surface free pole magnetostatic energy and domain wall energy (γ) gives a relationship between the thickness of the bands (W) and the film thickness (D) (Kittel 1976):

$$
\begin{equation*}
W=\left(D \gamma / 0.135 \mu_{0} M_{\infty}^{2}\right) 1 / 2 \tag{1,23}
\end{equation*}
$$

Under an applied field the bands with magnetisation along the direction of the field broaden at the expense of the opposing domains, which thin and break leaving bubble domains (1.6b).

In the case of a 'thick' film or a slab this thin film model, with only flat 180° walls is not valid as the energy is reduced by sloped walls which allow the free poles to be distributed through the sample. This model (Fig 1.6e) gives a domain width at the surface independent of the thickness of the block(Bodenberger and Hubert 1977):

$$
\begin{equation*}
\mathrm{W}_{1}=\beta 4 \pi \gamma 10^{7} / \mathrm{M}^{2} \tag{1.24}
\end{equation*}
$$

The factor β is a 'correction factor' which depends on the geometric structure and was found to equal 0.31 ± 0.02 for SmCos.

1.3.2.3. Domain Movement

The form of the hysteresis curve is determined by the domain structure within a material. In general the changes in magnetisation can be understood as resulting from either the movement of domain walls so that one domain grows at the expense of another, the creation or destruction of domains, or the rotation of the magnetisation of a domain. The latter is generally important only at high fields, and the first two determine the magnetic properties of the material for most purposes.

Domain walls move in steps rather than continuously, although the size of the steps are so small that sensitive readings are required to separate them (Barkhausen 1919). Movement of one domain wall will cause a change in the enviroment of the surounding domains and may cause a 'domino' effect, so the measurement of Barkhausen jumps places a maximum on the amount of material which is reversed in one wall movement. The domain wall may stop at a number of different types of 'pinning sites', for example small holes, inclusions, dislocations, grain boundaries etc.

Creation of a domain requires overcoming an energy barrier, as a small domain will have a large domain wall energy for the reduction in magnetostatic energy, conversly a domain will disappear rapidly when it gets below a certain critical size.

13.2.4. Domain Observation

A number of techniques have now been developed for observing domains, but until comparatively recently the method suggested by Bitter (1931) of allowing small magnetic particles to move freely over the surface and observe where they came to rest was the only method commonly used. In the standard method a magnetic colloid, or ferrofluid is spread over the surface. Where domain walls reach the surface the leaked magnetic field is large and the particles are attracted to these domain walls. If the
attraction is large enough to overcome the Brownian scattering of the particles a pattern develops. The pattern can be directly observed, or the fluid dried off and the pattern observed under a scanning electron microscope.

An extension to this wet Bitter method is the dry Bitter method (Hutchinson et al 1965), where a ferromagnetic material is evaporated onto the sample surface in the presence on a inert gas. The particles produced by the evaporation depend primarily on the gas pressure, and the patterns so produced can be examined in the same way as for the wet Bitter method. Recently (Szewczyk et al 1983) particles for the dry Bitter method have been produced by cooling a mixture of Oxygen and Helium. The solid oxygen produced is paramagneticand Bitter patterns are observed.

If the particles in the ferrofluid are small enough and the field gradients above the surface not too large, then the wet Bitter method may be used for dynamic observation of domain wall movements. If the particles are to large then the fluid becomes unstable in the fleld gradients and the colloid settles out at the domain wall boundary, not moving with the domain wall.

Fig 1.8 Bitter pattern formation.

With an applied field domain contrast can be obtained in the Bitter patterns, as the field above one domain will differ in magnitude from that above another (Fig 1.8 b).

Direct optical methods using polarised light can also be used for domain observation, a beam of light reflecting from the surface of a material will have its polarisation changed dependent on the relationship between the miagnetization and the direction of polarisation of the light. This is termed the Kerr effect. Unlike the Bitter technique where generally domain wall contrast is used, in the Kerr effect only domain contrast is obtained.

In transparent magnetic materials, e.g.garnets, a similar method can be used to observe domains, as the polarisation of the transmitted light will be affected in the same way although in this case by the internal field and not the stray fleld. This is called the Faraday effect.

Magnetostrictive effects can also be used to observe domain patterns. In very highly magnetostrictive materials the pattern can be observed optically by the wrinkling of the surface. In other materials X-ray topography can be used to image the domain pattern(e.g. Tanner 1976), relying on the sensitivity of topography to detect the small changes in lattice constant.

Electron Microscopy can also be used directly, as electrons have a magnetic moment. Transmission electron microscopy gives direct observation of domains, the non-scattered electrons being deflected by the internal magnetic fields in the materials. Scanning electron microscopy can also be used, where either the depth of penetration of an angled beam depends on the magnetisation of the domain as the electrons are bent in the field, giving contrast, or the effect of the stray field on the secondaryelectron emission is used to image the domain walls.

1.3.3. Bulk Anisotropy

Ideally a single crystal sphere should be used for measuring anisotropy. However this is not always possible, and allowances should be made for poor alignment of powdered or other multicrystalline samples and anisotropy due to the shape of a sample.

1.3.3.1 Shape Anisotropy.

A magnetised material in an external field will itself produce a field which should be considered when the field applied to the magnet is calculated. If the object is not spherical then the amount of magnetostatic energy in this demagnetising field will depend in the direction of magnetisation. This shape anisotropy can be calculated either by integrating the total energy of the magnetostatic field over all space or integrating the energy released when the object is assembled, already magnetised, from infinity.

Chapter 2: Introduction to rare earths.

2.1 Introduction.

Rare Earth metals are so called due to the resemblance of their oxides to other metal oxides, known as the 'common earths'. The group, which appears In the third column of the periodic table, consists of yttrium (at. no. 21), scandium (39), lanthanum (57) and the lanthanides(58-71). Despite the name the rare earths are not especially rare, the rare earth content of most rocks being from 1 part in 10^{4} to 1 part in 10^{7}. Exploitable ores yield rare earth mixtures with local variations in the relative abundances of the constituents, scandium being the only rare earth which is found on its own.

2.2 Physical Properties of the Metals.

The group is notable in its uniformity in chemical behaviour, rare earths replacing each other in crystal structures with little strain to the lattice. This is due to the similarity in the external electronic structure of the elements. After lanthanum the extra electrons start filling the $4 f$ shell, which is compact and shielded from forming any chemical bonds by the more extensive $6 s$ and $5 d$ levels. The extra nuclear charge as the series is traversed is only partially shielded by the extra $4 f$ electrons, leading to a reduction in metallic radius, the so called lanthanide contraction (see table 2.1).

With non metallic elements and in solution the rare earths form primarily trivalent compounds, although cerium will donate its single $4 f$ electron to form tetravalent compounds and europium and ytterbium will form divalent compounds due to their nearly half complete and nearly complete $4 f$ shell respectively.

Rare		Lattice Constants. (*)			Metallic
Earth	Crystal				Density
Metal	struct.	ao	Co		kgm ${ }^{3}$

Sc	hcp (a)	3.3088	5.2680	1.6406	2989
Y	hcp	3.6482	5.7318	1.8012	4469
La	dhcp(c)	3.7740	12.171	1.8791	6146
Ce	fcc (b)	5.1610	-	1.8247	6770
Pr	dhcp	3.6721	11.8326	1.8279	6773
Hd	dhcp	3.6582	11.7996	1.8214	7008
Pm	dhcp	3.65	11.65	1.811	7264
Sm	rhomb(d)	3.6290	26.207	1.804	7520
Eu	bcc	4.5827	-	2.0418	5244
Gd	hcp	3.6336	5.7810	1.8013	7901
Tb	hcp	3.6055	5.6966	1.7833	8230
Dy	hcp	3.5925	5.6501	1.7740	8551
Ho	hcp	3.5778	5.6178	1.7661	8795
Er	hcp	3.5592	5.5850	1.7566	9066
Tm	hcp	3.5375	5.5540	1.7462	9321
Yb	fcc	5.4848	-	1.9392	6966
Lu	hcp	3.5052	5.5494	1.7349	9841

Table 2.1 Crystal structure of rare earth metals

Fig 2.1 Close packed structures in rare earth metals.

2.2.1. Magnetic Structures.

The rare earth metals show a legion of different magnetic structures, due to the long range oscillatory nature of the RKKY interaction and interplay with the crystal field and magnetoelastic energies. These magnetic structures are summarised in Table 2.2 and Fig 2.2. The Curie temperatures are typically an order of magnitude lower than those of the 3d itinerant electron ferromagnets, showing the comparative weakness of the indirect exchange interaction.

The magnetic anisotropy of the rare earth ion is due mainly to the crystal field interaction with the $4 f$ orbitals (see section 1.2.4.1). This is dependent on the multipole moment of the ground state rare earth ion, and Stevens(1952) demonstrated how operator equivalents could be derived from appropriate angular momentum operators with the correct symmetry by means of multiplicative factors. These Stevens Factors give a qualitive tool to understanding the type of magnetic ordering each rare earth ion will have In a given environment.

The light rare earths tend to align antiferromagnetically, the exception being promethium where there is some evidence of ferromagnetism (Koehler et al. 1972). The double hexagonal close-packed structure gives two inequivalent sites, with local hexagonal and cubic symmetry.

In neodymium and praseodymium the moments in the hexagonal layers align ferromagnetically with the moments lying in the layers, the Stevens' α_{J} Factor is negative, while moments in alternate layers align in opposite directions. At a lower temperature the moments in the cubic layers align antiferromagnetically, the moment being again within the layer.

In samarium, with a positive Stevens' α_{J} factor, the moments align along the c axis. Again moments in the hexagonal layers order ferromagnetically within the layers. The rhombohedral crystal structure gives a stacking sequence $H H C H H C H H C .$. and the pairs of hexagonal layers align together. Moments in alternate pairs oppose each other.. At a lower temperature moments in the cubic layers align antiferromagnetically within the layers, the moments also lying along the c-axis.

Rare		Magnetic	Héel/		Stevens' Factor.	
Rarth	Crystal	Ordering	Curie			
Hetal	struct.	Structure*	Temp.	α_{3}	BJ	γ_{J}
La	dhep	Supercond.	$T_{\text {c }} \simeq 5 \mathrm{~K}$	0	0	0
Ce	fcc	none		-5.71	63.5	0
	dhep	AFM ${ }^{1}$	12.5K	"	"	*
Pr	dhep	AFM 2	25K	-2.10	-7.35	61.0
Hd	dhep	AFM ${ }^{\text {a }}$	7.5/19K	-0.643	-2.91	-38.0
Pm	dhep	FH 4	98K	0.771	4.08	60.8
Sm	rhomb	AFM 4 -	13.8/106K	4.13	25.0	0
Eu	bcc	helix 5	90.5K	0	0	0
Gd	hep	FM $C^{6} 1$	293K	0	0	0
	\cdots	FH cone ${ }^{\text {m }}$	232K	"	\cdots	-
Tb	hcp	helix 7 g	230K	-1.01	1.22	-1.12
${ }^{\circ}$	"	FM b \gg	こ220K	-	-	-
Dy	hcp	helix ${ }^{1} 9$	176K	-0.635	-0.592	1.03
	n	FM b ${ }^{1}$	$\simeq 87 \mathrm{~K}$.	"	"
Ho	hcp	helix ${ }^{\circ}$	133K	-0.222	-0.333	-1.30
	a	cone ${ }^{\text {c }}$	$\simeq 20 \mathrm{~K}$.	"	"
Er	hcp	sin CAM sa	80K	0.254	0.444	2.07
	"	hel/CAM $=$	52K	-	n	*
"	*	cone 9 +	20K	"	"	-
$\underset{N}{T m}$	hcp	sin CAMrod	56K	1.01	1.63	-5.60
	"	FI sq CAMc	32-40K	*	"	
Yb	fcc	?	?	3.17	-17.3	148.0
Lu	hcp			0	0	0

* $F M \equiv$ fer $\begin{gathered}\text { magnetic, } A F M E a n t i F M, ~ F I \equiv f e r r i m a g n e t i c, ~ C A M E c ~ a x i s ~ m o d u l a t e d . ~\end{gathered}$ superfixes: letters refer to Fig 2.2, numbers to references below.

References: Cooper (1972), Sinha(1978), 'Wilkinson et al. 1961, ${ }^{2}$ Cable et al. (1964), 3Johansson et al. (1970), 4Koehler et al. (1972). EMillhouse and McEwan(1973), ©Cable and Vollan(1968), ${ }^{7}$ Koehler(1967).
EKoehler et al. (1967), ЭHabenschuss et al. (1974), Brun et al. (1970).

Table 2.2 Magnetic Structures and Stevens' factors of rare earth metals.

a) Nd, Pr.
b) Sm .
c) square CAM, Tm .
d) sine CAM, Br, Tm.
e) Helical plus square CAM, Br. f) Helical cone, Ho, Br .
g) Helical, Tb, Dy, Ho. h) FM cone, Gd. 1) FM c-axis, Gd.
j) FM basal plane, Tb, Dy.

Fig 2.2 Magnetic Structures in rare earth metals.

Europium has a $2+$ ground state, due to the extra stability of the half filled $4 f$ shell. This larger ion then packs with a lower packing fraction and has a body centred cubic crystal structure. It orders magnetically with a helical structure, with the axis of the helix along a cubic axis. Gadolinium orders ferromagnetically with the easy direction moving from the c axis at higher temperature down towards the basal plane and then back towards the c axis as the temperature decreases. The anisotropy is weak, reflecting the symmetry of the half full 4 f orbitals, and this behaviour is due to higher order exchange anisotropy terms.

Terbium, dysprosium and holmium form helical phases, with the moments within the basal plane, reflecting the negative sign of α_{J}. At lower temperatures they order ferromagnetically, the moments remaining in the basal plane, except for holmium where the ferromagnetic transition does not take place. The α_{J} of this ion is much smaller than the other two. Instead the moments tilt slightly out of the basal plane giving a ferrimagnetic structure. Application of a moderate field (Koehler et al. 1967) in the basal plane induces the ferromagnetic phase.

Erbium orders with the moment along the c axis, α_{s} is positive, with a c axis modulated (CAM) structure. The modulation is sinusoidal at high temperatures, but squares up as the temperature decreases. At the same time a component of the moment in the basal plane appears (the magnitude of α_{J} is only a little larger than holmium which orders helically. At lower temperatures still the c axis modulation disappears and the moments order ferrimagnetically in a cone structure.

Thulium has the same CAM structure at high temperature and this squares up to give a ferrimagnetic ordering (4 one way, 3 the other) at low temperature.

2.3 Rare earth - Group VIII transition metal intermetallics

The rare earths form an increasing number of intermetallics with the 3d metals as this series is traversed. The crystal structures and magnetic ordering found are set out briefly in this section. For more detall see Wallace(1973) or Kirchmayr(1979).

2.3.1 Rare earth nickel intermetallic compounds.

As Table 2.3 shows there are no binary rare-earth nickel intermetallic compounds with ferro or ferrimagnetic ordering at room temperature.

The moment of the strongly electopositive nickel is reduced to zero by the filling of the 3d band by electrons provided by the rare earth. The $4 f$ electrons on the rare earths then order at a lower temperature than in the pure metal

Rare Barth	R3 ${ }^{[1}$ orthorhombic	$\mathrm{R}_{7} \mathrm{II}_{3}$	RH1 ortho- rhombic	$\begin{aligned} & \mathrm{R} \mathbf{I I}_{2} \\ & \text { cubic } \end{aligned}$	R RH_{3} hex- rhamb.	$\mathbf{R 2}_{\mathbf{I}} \mathrm{H}_{7}$ rhomb/ hezag.*	RIIs hexag.	R2 $_{\text {His }}^{7}$ hexag.
La			HK	HM		\cdots	MM	
Ce		HM	HM	HM		r 48 FI	HM	48 FI
Pr	2 af	HM	22 F	MK	20 F	$\mathrm{m}^{\text {8 }}$ (FI	MM	85 FI
Id	15 AF		28 F	16 F	27 F	m87 Fs	13 F	87 FI
Sm			45 F	21 F	85 F	m	25 F	186
Eu								
Gd	100 AF		71 F	85 F	116 FI	m118 Fi	33 F	205 Fx
Tb	62 AF		52 AF	45 F	98 FI	${ }^{m 101 ~ F I ~}$	27 F	178 Fs
Dy	35 AF	RESH_{5}	62 F	30 F	69 Fs	$\mathrm{m}^{\text {m }}$ (Fs	15 F	168 Fs
Ho	20 AF		37 F	22 F	66 FI	$\cdots 70$ Fs	23 F	162 FI
Br	7 AF	13 F	13 F	21 F	64 FI	r70 Fi	13 F	166 Fs
Tm	12 F		8 F	HM	. 43 FI		22 F	152 Fx
Yb								<20 Fı
Lu			HM	HM			HR	

Table 2.3 Curie and Néel temperatures for rare earth nickel intermetallic compounds.

[^0]
2.3.2 Rare earth cobalt intermetallic compounds.

As can be seen from Table 2.4, the light rare earth cobalt intermetallics tend to have ferromagnetic ordering whereas the heavy rare earths have ferrimagnetic ordering. The ordering temperatures increase with increasing cobalt content, and the last two in the series, $R \mathrm{CO}_{5}$ and $\mathrm{R}_{2} \mathrm{Co}_{17}$ have Curie temperatures approaching that of cobalt (>1350K). In addition these compounds have hexagonal structure, and this gives the possibility of strong uniaxial anisotropy. $\mathrm{Sm}_{\mathrm{m}} \mathrm{CO}_{5}$ and $\mathrm{Sm}_{2} \mathrm{Co}_{17}$ are the basic components in cobalt based rare earth magnets.

Rare Barth	$\mathbf{R}_{3} \mathbf{C o}$ ortho- rhombic	R4COs hezag.	RCO_{2} Cubic	RCO_{3} hex- rhomb.	$\mathrm{R}_{2} \mathrm{CO}_{7}$ rhomb/ hexag.	RCOs hexag.	$\begin{aligned} & \mathrm{R}_{2} \mathrm{Co}_{17} \\ & \text { rhomb/ } \\ & \text { hexag. } \end{aligned}$
La					m	840 F	
Ce				78 F	\cdots	737 F	m1080 ${ }^{\text {F }}$
Pr	7 F		50 F	349 F	n	912 F	r1170 F
Hd	14 FI		120 F	395 F	n	910 F	r1155
Sm			240 Fr		m	1020 F	${ }^{\prime} 1190$ Fi
Eu							
Gd	127 FI	230 FI	408 FI	612 FI	r 775 Fx	1008 FI	m1210
Tb	82 FI	55 FI	250 FI	506 FI	$r 717$ Fx	980 FI	m1185
Dy	45 FI		155 FI	450 FI	r	966 Fı	m1165
Ho	24 FI	$44 F \mathrm{~F}$	95 AF	418 Fi	r670 Fx	1000 FI	n1180
Br	7 F	25 Fs	40 FI	401 FI	r	986 FI	m1180
Tm	5 F		25 Fx	370 Fi	r	1020 Fx	-1185
Yb - -							
Lu							n1210 F

Table 2.4 Curie and Neel temperatures for rare earth cobalt intermetallic compounds

* n - hexagonal, r - rhomb., m - mixed.

2.3.3. Rare earth fron intermetallic compounds.

Binary intermetallics with iron are fewer than with cobalt. Only four structures are observed. The important $R C O s$ has no iron analogy, and the Curie temperatures of the light rare earth $\mathrm{R}_{2} \mathrm{Fe}_{7}>$ are only up to 395 K .

Rare Barth	RFe_{2} cubic	RFe_{3} hex- rhomb.	$\mathrm{R}_{6} \mathrm{Fe}_{23}$	$\begin{aligned} & \mathrm{R}_{2} \mathrm{Fe}_{17} \\ & \text { rhomb/ } \\ & \text { hexag. } \end{aligned}$
La				
Ce	235 F			m70 F
Pr				${ }^{*} 282$
Id			492	r 327
Sm	700 FI	651		r395
Eu				
Gd	782 Fr	728 Fx	468	m472
Tb	705 Fs	648 FI	574	${ }^{\text {m }} 408$
Dy	638 FI	600 FI	524	r363
Ho	614 FI	567 Fi	501	H325
Er	596 FI	553 Fi	493	r310
Tm	610 FI	539 FI	475	$\bigcirc 271$ F
Yb				
Lu	610 F	529	471	${ }^{-100 ~ F}$

Table 2.5 Curie and Néel temperatures for rare earth iron intermetallic compounds

* n - hexagonal, r - rhomb., m - mixed.

2.4 Preparation and Purification of Rare Earths.

Rare earths occur in nature as ore containing a mixture of rare earths. Cerium is the most abundant, followed by lanthanum, neodymium and then praseodymium. Preparation is either by reduction of a salt and purification of the metal, or by purification of the salt and then reduction to produce the pure metal. In practice highest purities are obtained by a combination of salt and metal purification. Impurities can greatly affect the physical properties, in particular transport properties, and many older magnetic measurements show effects of impurities.

Rare earths can be purified by fractional distillation and zone refining, to reduce the lattice impurities, and electrotransport to reduce the interstitial impurities. (Beaudry and Gchneidner 1978)

Large single crystals have been grown by "strain annealing" to allow recrystallization, zoning, Czochralski and Eridgman methods. Crystals with dimensions of 1 to 2 cm have been grown for most rare earths.

Chapter 3: Rare Earth based Permanent Kagnets.

3.1 Introduction.

Magnet development began around the century, but although extensively used in motors and generators, permanent magnet performance has only just begun to compete with the power of electromagnets. Magnets were first made from carbon steel, addition of cobalt improved the performance somewhat, but increased the price substantially. The development of an alloy of iron, aluminium, nickel and cobalt and subsequent manufacturing processes to obtain grain orientation and precipitation hardening meant that by the mid 1950's the microstructure had been essentially optimised and little further progress was possible with these weakly magnetically anisotropic materials.

Strnat and co-workers(1967) first showed the promising properties of RCOs intermetallic compounds for permanent magnets, and over the next ten years a lot of research went into producing magnets based on SmCO_{5} and $\mathrm{Sm}_{2} \mathrm{Co}_{17}$.

Sagawa et al.(1984) and Croat et. al.(1984) bothannounced the stabilisation of a rare earth iron intermetallic phase suitable for permanent magnet production by the addition of boron.

3.2 Rare earth cobalt magnets

As shown in section 2.3.2., there exist intermetallic compounds at the cobalt end of the iron-cobalt system which have Curie temperatures in excess of 1000 K and hexagonal crystal structure. Compounds containing the light rare earths order ferromagnetically, whereas the rare earth and cobalt sub lattices oppose each other in compounds containing the heavy rare
earths. The basic structure is the RCos_{5}, and the $\mathrm{R}_{2} \mathrm{Co}_{17}$ as well as the $\mathrm{R}_{2} \mathrm{Co}_{7}$ cells can be derived from the RCO_{5} unit cell by alteration in stacking order and replacement.

The hexagonal crystal structure gives the possibility of a uniaxial anisotropy, but unfortunately the crystal field parameters give only samarium with a positive magnetocrystalline anisotropy amongst the ferromagnetic light rare earths. Er, Tm and $Y b$ have reduced saturation moments due to ferrimagnetic ordering. Samarium is not the commonest rare earth, but it is available in sufficient quantities for the present magnet demand.
$\mathrm{SmCos}_{\mathrm{s}}$ magnets are therefore the simplest rare earth transition metal magnets and account for the bulk of such magnets presently produced. The normal production process consists of producing a powder, either by milling an ingot or co-reducing, and then sintering the powder to produce the magnet. Increasing the cobalt content and a suitable heat treatment produces "precipitation hardened" magnets, a fine platelet structure of SmCo_{5} and $\mathrm{Sm}_{2} \mathrm{Co}_{17}$. The larger cobalt content of $\mathrm{Sm}_{2} \mathrm{Co}_{17}$ should give a higher saturation magnetisation than the SmCos, but the cobalt sublattice has a negative anisotropy which competes with the rare earth sub lattice leading to ferrimagnetic ordering. However the platelet structure gives an improvement in the permanent magnet properties over $\mathrm{SmCos}_{\mathrm{s}}$

Traces of other materials are also included in commercial magnet processing.

3.3 Rare earth iron magnets

3.3.1. Introduction

Cobalt is expensive and also limited in the areas of the world where it can be mined. Samarium is also one of the more expensive rare earths.

However the iron analogue to RCO_{5} does not exist and even if it were to be produced as a metastable phase the Curie temperature would probably be too low. $\mathrm{R}_{2} \mathrm{Fe}_{17}$ intermetallics do exist, but they have low Curie temperatures and the rare earth anisotropy is not strong enough to overcome an unfavourable 3d anisotropy.

It was therefore realised that any magnet must be based on a ternary rare earth iron compound. Such a compound should have a high uniaxial anisotropy, i.e. It can not be cubic, and a high Curie temperature. So far the only compounds to fit the requirements have been those of the type $\mathrm{R}_{2} \mathrm{Fe}_{14} \mathrm{~B}$. This structure is described in section 3.2.2.2., and a large part of the experimental work described in this thesis has been in measuring magnetocrystalline anisotropy in this material. The structure of $\mathrm{R}_{7}+\mathrm{aFe}_{4} \mathrm{~B}_{4}$ is also described in section 3.2.2.1., as this occurs in conjuction with the main phase and may play an important role in the coercivity mechanism.

3.3.2. Crystal Structure

3.3.2.1. $\mathrm{R}_{1+\mathrm{CF}}^{4} \mathrm{FB}_{4}$

This interesting structure was first described by Braun and coworkers(1982) and then later investigated by Givord et al(1985) It consists of a series of columns constructed of iron tetrahedrons linked along opposite edges. These columns are connected together by boron atoms to form a square 'honeycomb' (Fig 3.1). The cells are filled by stacks of rare earth ions, the repeat being only weakly linked to the repeat distance in the iron lattice. This is described in terms of two tetragonal lattices with different c parameters. For example for neodymium the iron sublattice has
$a=7.117{ }^{\circ} \mathrm{A}, \mathrm{c}=3.502^{\circ} \mathrm{A}$ and the neodymium sublattice $\mathrm{has} \mathrm{a}=7.117 \mathrm{~A}^{\mathrm{A}} \mathrm{A}$ and $\mathrm{c}=$ 3.897 'A. This leads to a repeat every 8 neodymium ions and a 'superlattice' with c~57 ${ }^{\circ}$ (see fig 3.2).

Different rare earth ions with other radil give different c parameters for the rare earth sublattice and the weakness of the linkage between the lattices leads to a different number of rare earth ions before the structure repeats. This gives different superlattice sizes and also to a different value for ϵ, which defines the rare earth : iron ratio.

Fig $3.1 \mathrm{R}_{1+\pi} \mathrm{Fe}_{4} \mathrm{~B}_{4}$ looking down the
c - axis (after Givord et al 1985)

ONd
o Fe

- B

P1g $3.2 \mathrm{R}_{1+\mathrm{FFe}}^{\mathrm{A}} \mathrm{B}_{4}$ from (110)
(after Givord et al 1985)

3.2.2.2. $\mathrm{ReFe}_{2} / \mathrm{B}$

The structure of $\mathrm{R}_{2} \mathrm{Fe}_{14} \mathrm{~B}$ (see Fig 3.3) was first solved by Herbst et al.(1984) and the results have been confirmed by other investigators (Givord et al. 1984, Shoemaker et al 1984). The tetragonal unit cell contains 68 atoms, with 2 different rare earth sites, and six different iron
sites. The local symmetry was investigated using the program included in Appendix 2 and some pictures generated are included in Fig 3.4. These are based on the positional parameters of Shoemaker et al. for $\mathrm{Na}_{2} \mathrm{Fe}_{14} \mathrm{~B}$. The numbering of Shoemaker 16 also adopted for the discussion that follows.

The structure consists of an approximately triangular network of Nd , Fe , and B ions on the $z=0$ and $z=0.5$ planes. Above and below these planes are buckled planes of Fe ions, made up of nets of hexagons and triangles. The hexagons sit over the $N d$ ions, so that both rare earth sites have a $C N$ of 20 with the six surrounding ions in the $z=0$ plane, six in each hexagon above and below and an $\mathrm{Fe}(4)$ ions on each side, positioned about half way between the rare earth planes. The $N d(1)$ and $N d(2)$ sites differ only in their neighbours in the $z=0$ plane, vis a B, two $F e$ and three $N d$ for Hd (1) (fig 3.4a) and two B, two Fe and two Nd for Nd(2)(fig 3.4b).

The boron ion sits at the centre of triangles in the planes above and below, and therefore in a triangular prism. This is contorted by the closeness of a $N d(1)$ ion, which opens up one side of the prism(fig 3.4c).

The $F e(4)$ ion mentioned above has $a C J$ of 14 , with the two $F e$ hexagons above and below it, where it is completing the close pack layer for both layers!, and the rare earth ions also centred in these(fig 3.4d).

The $F e(1)$ ion in the $z=0$ plane has a $C M$ of $12+2$. It is in the centre of four Nd ions in the $z=0$ plane, with two B ions completing the hexagon, but really too far away to be considered touching. Above and below are two pairs of triangles from the Fe nets. (fig 3.4e). The Fe ions within the networks take on a variety of variations on an icosahedron, depending on their relationship to the tons in the $z=0$ plane (fig $3.4 \mathrm{f}, \mathrm{g}, \mathrm{h}, \mathrm{i})$.

Ino Hd atom at $0,355^{7}, 0,357,0,5$
Pig 3.4a Id (1)

The, Batom at $8,877,0.877,8,5 ;$
Fig 3.4c B

The Fe atom at $0,0,5,0$
14 neigh. viewad from $(3,-3,1)$
Fig 3.4e Fe(1)

Fig 3.4b Fd (2)

The Fe atom at $0.818,6,182,9.254$,
14 naigh. uiewed from $(3,-3,1\rangle$.
Fig 3.4d $\mathrm{Pe}(4)$

The Fe atom at $0,724,8,932,6,628$,
Fig 3.4f $\mathrm{Fe}(2)$

Fi8 3.4 g Fe (3)

Fig 3.4i Pe (6)

Fig 3.4h $\mathrm{Fe}(5)$

Fig 3.4 Local environments of atoms within the $\mathbb{N d}_{2} \mathrm{Fe}_{14} \mathrm{~B}$ structure

An interesting point of the structure is that despite some local similarity of environment with the rare earth environment in the CaCus related structures, the rare earth anisotropy is primarily opposite in sign to the anisotropy of the RCO_{5} series. Point charge calculations made by Cadogan and Coey(1984) showed that this behaviour was explicable in terms of a single ion model for anisotropy. However the spin reorientation observed in
$R_{2} \mathrm{Fe}_{14} \mathrm{~B}, \mathrm{R}=\mathrm{Nd}$, (Yamada et al 1986), Tm and Er(Hirosawa et al 1985), Ho and Pr (Grossinger et al. 1986) and Yb (Meyer (to be pub.)) can only be explained in terms of exchange anisotropy (Sankar and Narasimhan 1986) or higher order crystal field terms.

3.3.3. Intrinsic Magnetic Properties

3.3.3.1. Spontaneous Magnetisation

Magnetisation measurements have been reported for members of the $\mathrm{R}_{2} \mathrm{Fe}_{14} \mathrm{~B}$ series by many authors, using both vibrating sample magnetometer and Faraday balance methods. Table 3.2 contains this information compiled by Buschow (1986) for single crystal samples where available and for aligned powders where not. Older reports tended to underestimate the magnetisation due to the presence of non magnetic phases.

The Curie temperatures are all in the range 515-660K with most lying close to 600 K . These are some 200 K higher than the equivalent $\mathrm{R}_{2} \mathrm{Fe}_{17}$. The ferrimagnetic ordering of the heavy rare earths can be seen in the lower Js and also in an increase in $J s$ between 4.2 K and room temperature. This effect (see sect 1.2 .3 .4) is due to the localised rare earth moment falling off more rapidly than the iron moment. As the iron has the larger overall moment this results in a rise in Js and there exists no compensation point (e.g.Fig 1.3C)

3.3.3.2. Magnetocrystalline Anisotropy

Values for the anisotropy constants for most $\mathrm{R}_{2} \mathrm{Fe}_{14} \mathrm{~B}$ compounds are given in Table 3.2. These are average values from the literature. They have been derived from magnetization measurements using either from the difference in area between curves along an easy or hard direction, by measuring the anisotropy field where the easy and hard curves meet and calculating the
anisotropy or by using a singular point detection method. For $N d_{1, ~} \mathrm{Fe}_{1,4} \mathrm{~B}$ some values from torque measurements have also been included. The spin reorientation mentioned in 3.2.2.2. is seen in the change of sign of K_{1} between 4.2 K and room temperature in $\mathrm{Ho}_{2} \mathrm{Fe}_{14} \mathrm{~B}$ and $\mathrm{Nd}_{2} \mathrm{Fe}_{14} \mathrm{~B}$.

			Roo	Temper	ure	At	uid	1 lm
	Density		Js	K_{1}		Js		
	$10^{3} \mathrm{kgm}^{-3}$	K	T	$\mathrm{MJ} \mathrm{m}^{-3}$	MJIm	T	MJ m ${ }^{-3}$	MJ m ${ }^{-3}$
Y	6.98	571^{F}	1.36	1.06	0	1.55	0.80	-
La	7.39	$516^{\text {F }}$	1.38	-	-	1.48	-	-
Ce	7.78	533 F	1.16	1.7	-	1.49	1.8	-
Pr	7.45	565%	1.41	5.6	-	1.84	24	-
Nd	7.59	$588{ }^{\text {F }}$	1.59	5.0	0.66	1.86	-16	28
Sm	7.76	$618^{\text {F }}$	1.49	-12	0.29	1.66	-26	-
Gd	7.88	$660^{\text {F }}$	0.84	0.67	-	0.90	0.65	-
Tb	7.92	629 ${ }^{1}$	0.62	5.9	-	0.66	6.9	-
Dy	8.05	593Fr	0.67	4.5	-	0.57	3.8	-
Ho	8.09	$574{ }^{\text {F }}$	0.85	2.5	-	0.57	-1.1	4.4
Er	8.23	$557 \% 1$	0.95	-0.03	-	0.66	-1.4	-
Tm	8, 20	$540^{\text {F }}$	1.10	-0.03	-	0.94	-3.6	-
Lu	8.41	539	1.17	-	-	1.45	-	-

Table 3.2 Intrinsic magnetic properties of $\mathrm{R}_{2} \mathrm{Fe}_{14} \mathrm{~B}$ (after Buschow 1986).

3.3.3.3. Magnetostriction

Few measurements on magnetostriction have been reported in this class of material. Ibarra et. al.(1986) made measurements on polycrystalline samples of $R_{2} F_{i, 4} B$ ($=H d_{1} H o, D y$ and Y) and concluded that the rare earth ion dominated the magnetostrictive behaviour. They were also able to observe an anomaly at about 150 K in $\mathrm{Kd}_{1, ~} \mathrm{Fe}_{1} \mathrm{~B}$ and 100 K in $\mathrm{Ho} \boldsymbol{1}_{4} \mathrm{Fe}_{14 \mathrm{~B}}$ corresponding to the spin rearientation transition.

3.3.4, Extrinsic Properties.

The coercivities of magnets of this class vary enormously, this is probably due to the complex structure of the intergranular material, with a legion of phases. These range from a liquid sintering phase, the $R_{1+e} \mathrm{Fe}_{4} \mathrm{~B}_{4}$ phase, a so-called Nd-rich phase, Nd oxide and α iron. How these phases interact
with the $\mathrm{R}_{2} \mathrm{Fe}_{14} \mathrm{~B}$ phase, isolating the exchange interaction from one grain to the next and possibly locally influencing the intrinsic magnetic properties of the matrix phase has not been very well studied. Microstructure studies, combined with magnet charactarisation and local domain observation are required to complete the picture.

3.3.4.1 Domain Studies.

Many studies have been made of the domain structures in sintered magnets in zero field (e.g. Zhau T. et al 1986, Livingston J.D. 1985) and under applied field (Li and Strnat 1985, Durst 1987) and also on thin slices with Lorentz TEM. (Suzuki T. and Hiraga K. 1986).

On pole faces closure spikes and a large number of multidomain grains visible even at remnance after saturation.

On side faces during demagnetization (ABC in Fig 1.4) spike domains are observed to start at grain boundaries and grow into the grains, this growth being smooth and reversible. Durst noted that there was a tendancy for these spikes to appear in conjunction with relatively large areas of non magnetic phases, in particular $\mathbb{I d}$ oxide and the $R_{1+\pi} F_{4} B_{4}$ phase. He concludes that the demagnetising field of the magnetic void is a major factor in influencing the coercivity. Li and Strnat also observed that some grains completely reversed their magnetisation at larger demagnetising fields.

Suzuki and Hiraga observed a smooth movement and bowing of domain walls. They also noted that a domain wall in their thin sample was pinned in the region of a triple junction of grain boundaries.

There is some controversy as to whether processes observed on the surface and in thin films represent a true picture of the bulk magnetisation processes. This is particularly the case at pole faces. On side faces the observations should be more representative.

Chapter 4: Sample Preparation.

4.1 Starting Materials.

Samples used for measurement came from a variety of sources.
Powder of composition $\mathrm{Hd}, \mathrm{s} \mathrm{Pe}_{7 \rightarrow} \rightarrow \mathrm{Be}_{\boldsymbol{e}}$, prepared by Rare Earth Products, from Roger Coe at Lucas, Solihull. This was aligned and used for anisotropy measurements (gamples N1, N2).

Commercial cast ingot of the same composition as the powder, also cast by Rare Earth Products, was obtained from Dr. R. Harris at Birmingham University, Department of Metallurgy and Material Science. This was used for a lot of the domain studies (samples $N 3, N 4, N 5$).

Sintered magnets were also supplied by Dr. R. Harris and by Dr. A. Clegg from Sunderland Polytechnic Magnets Centre. These were used for torque measurements in collaboration with Mr. I. Coulson of Sunderland Polytechnic (sanples $\$ 1, \$ 2, \$ 3$).

Single crystals of $\mathrm{Gd}_{2} \mathrm{Fe}_{14} \mathrm{~B}$ and $\mathrm{Dy}_{2} \mathrm{Fe}_{14} \mathrm{~B}$, grown from high purity starting materials were supplied by Dr. D. Givord at the Laboratoire Louis Meel, Grenoble. These were used for domain studies and for torque measurements (samples 01,02,03 and 61-64).

Finger ingots of $\mathrm{Nd}_{1}, 7 \mathrm{Fe}_{4} \mathrm{~B}$ and $\mathrm{Ho}_{2} \mathrm{Fe}_{4} \mathrm{~B}$ were made from high purity starting materials (Rare earth 99.99\%, Iron 99.99% and Boron 99.8%) using an induction furnace. They were melted in a copper cold boat under a purified argon atmosphere. The ingots were turned and remelted to improve homogeneity. They were then wrapped in tantalum foil, sealed in a silica glass bomb under an argon pressure of 250 mmHg at room temperature and annealed for 45 days at $1000^{\circ} \mathrm{C}$ to induce grain growth and try and ensure a single phase.

The $\mathrm{Ho}_{2} \mathrm{Fe}_{4} \mathrm{~B}$ ingot produced consisted of a single phase ingot, with a grain size of less than $150 \mu \mathrm{~m}$ in all parts of the ingot.

It was intended to make an ingot of composition $\mathbb{N d} \mathrm{Fe}_{14} \mathrm{~B}$ but an arithmetic error resu_lted in a composition of $N d_{, ~}^{7} \boldsymbol{F e}, 4 \mathrm{~B}$. This finger was multiphase, with a large amount of α iron in the lower half of the ingot. This was verified by microprobe analysis. It is assumed that the iron had not dissolvedin the melt during the ingot production. No other phases were observed in the sections.

These ingots were used for domain studies and for anisotropy measurements (samples H1-H5, H5B and N6,N7,N8).

A reference nickel sample was cut from some a high purity nickel button which had been melted in an induction furnace and quenched by switching the furnace off. This gave a fine grained sample (sample HI).

4.2 Cutting and polishing.

Single crystals were aligned using back reflection Laue photography, the pictures obtained (e.g. Fig 4.1) were compared with computer simulations generated on a BBC micro (e.g. Fig 4.2). The program (see app. 2) calculates the position of spots but makes no allowances for intensity. It was sufficient to check the symmetry of reflections and then study individual spots to ensure the correct orientation had been found.

The crystals were mounted on a goniometer using a conducting glue made from perspexdissolved in acetone mixed with graphite powder. Silver loaded conducting paint was applied to the joint. When the correct crystallographic direction had been found the sample could be transfered onto a specially constructed table in a spark erosion machine and wire knife used to cut slices perpendicular to the x-ray beam. These slices were polished (see below) before disks were cut from them by spark erosion. The size of the disk cut depended on the size of the crystal. (see Table 4.1).

Fig 4.1 Laue photograph of $\mathrm{Gd}_{\mathrm{z}} \mathrm{Fe}_{14} \mathrm{~B}$ along a axis (63)
gadoliniun iron boride

Tetragonal axx index: 5,4 . 5 n to screen, $C=12.14, ~ A=8.74$

Fig 4.2 Simulated Laue pattern
(spots corresponding to those on Fig 4.1 have been darkened)

In this way disks of $\mathrm{Gd}_{2} \mathrm{Fe}, 4 \mathrm{~B}(63)$ and $\mathrm{Dy}_{2} \mathrm{Fe}_{14} \mathrm{~B}(\mathrm{DY})$ with the a axis perpendicular to the plane of the disk and a disk of $\mathrm{Gd}_{2} \mathrm{Fe}, 4 \mathrm{~B}$ (64) with the c axis perpendicular to the plane of the disk were cut.

Sintered samples were cut in the same manner($\$ 1, \$ 2, \$ 3$), the alignment being done by reference to the die shape and the known field direction during aligning. Disks were cut of a size to give reasonable torques.

The $H o \approx \mathrm{Fe}_{1} \mathrm{~B}$ finger was found not to contain any grains of a large enough size to allow a single crystal to be cut. However the piefeiled growth direction was found to be along the c axis which meant that parts of the
ingot were well aligned as far as this axis went. A section was chosen by polishing cut surfaces and examining the magnetic domain structure and a disk was cut with the c axis in the plane of the disk(H3). Similarly a disk was cut from the $\mathrm{Nd}_{2} \mathrm{Fe}_{14} \mathrm{~B}$ ingot. (M8). The nickel sample(NI) was cut at a randon orientation.

4.2.1 Polishing

Samples for domain observation were polished using diamond paste. They were first flattened with emery paper, finishing with 1200 grade. Then they were polished with 6 micron, 1 micron and finally $1 / 4$ micron diamond paste. It was found that no further polishing was required and a sample polished with Syton (a suspension of alumina in a mild chemical etch) showed the same domain pattern as when finished with $1 / 4$ micron diamond polish.

Care had to be taken to polish for a sufficiently long time (about an hour) at each grade, as the emery paper and the coarser paste pulled out the softer intergranular phases.

Etching a polished sample with 50% nitric acid in ethanoic acid indicated that there was little surface strain as the polished surface took much longer to etch that the ingot surface and the etching started along the grain boundaries.

4.3 Setting and aligning.

For the compositions where no single crystal material was available aligned powder samples were made.

Samples were made from the Rare Earth Products powder, a sample produced by filing the $H_{2} \mathrm{Fe}_{14} \mathrm{~B}$ ingot and one from filing the top half of the Nd, $\rightarrow \mathrm{Fe}_{1,} \mathrm{~B}$ finger, where no free iron was observed in a section.

These were set in fibre-glass resin using moulds made from polytetrafluoroethane (PTFE). Two moulds were made, one to allow setting in an electromagnet(Fig 4.3)($H 4, H 5, H 5 B$ and $M 6, N 7$) and the other to allow setting in the superconducting solenoid (Fig 4.4) (NI, N 2).

Fig 4.3 Mould for setting powders in electromagnet.

Fig 4.4 Mould for setting powders in solenoid.

The principle was the same for both, that is a slice of PTFE with holes reamed in it was sandwiched firmly between two other pieces of PTFE. While filling the slice could be held firmly against the lower piece and then the upper piece could be placed on top as a lid and secured in place. The natural self lubrication of the PTFE meant that the disk shaped samples produced could be easily pushed out of the dies.

The electromagnet mould was made of two disks of PTFE with a central disk with holes reamed in it as a die. These were held in a large screwing clamp, with two concentric screw threads.

The solenoid mould was made of a brass cylinder split down the centre with PTFE slices sandwichedin it. While filling the lower half could be held in a pair of clamps and then when filled was held together with two screws. It could be lowered into the centre of the magnet at the end of a stainless steel tube in a simple holder.

4.4 Hydrogen Decrepitation

4.4.1 Single crystal separation?

Following discussion with I.R.Harris in the University of Birmingham and with reference to his work on the samarium cobalt system (e.g. Kiavanash and Harris 1984,1985) he suggested that there was a possibility of breaking up large grain ingots of the neodymium iron boride to produce single crystals for intrinsic magnetic property measurements. An attempt was made to produce single crystals of $\mathrm{Md}_{2} \mathrm{Fe}_{14} \mathrm{~B}$ large enough to be used for torque measurements by hydrogen decrepitation. This was the preliminary study carried out at Birmingham, which was later followed up by more extensive study of hydrogen decrepitaton of the ingot (Harris et al 1985) and magnet production (McGuiness et al 1986).The base material for this was the cast ingot material of commercial composition(N3). This had a variation of grain size from an average grain width of $20 \mu m$ near the surface to $50 \mu \mathrm{~m}$ through

CHA: BAMFLEE FFEFAFATION.
the material(Fig 4.5), but there was no conclusive evidence of grain growth. On exposure to hydrogen at 1.0 bar for 16 hours the material was cracked but retained its integrity. It was left in hydrogen for 100 hours and on handling broke into a coase powder with some lumps up to 5 mm in size. These lumps were however badly cracked and no use as single crystals.

It was concluded that the heat treatment did not produce very good crystals due to the inclusions of a secondary phase. It is also suggested that the hydrogen decrepitation proceeds most rapidly within this secondary phase and therefore was able to attack the as cast ingot rapidly due to the interconnected network structure but took longer for the hydrogen to migrate through the matrix phase in the annealed sample.

Hydrogen decrepitation may possibly be a route for separating single crystals in some materials but in this material the damage produced by the hydrogen attacking inclusions in the crystals rendered the samples useless.

4.4.2 Powder production

In view of the spectacular disintegration of the commercial ingot and attempt was made to produce a powder from the high purity fingers of $\mathrm{Kd}_{1}, 7 \mathrm{Fe}_{14} \mathrm{~B}$ and $\mathrm{HO}_{2} \mathrm{Fe}_{1,} \mathrm{~B}$. These were exposed to hydrogen at 2 bar for 48 hrs but showed no signs of cracking. This is taken as further evidence to suggest that the hydrogen attacks the rare earth rich phase in the commercial ingot. It was concluded that there was little or none of this phase in the high purity ingots.

A powder was therefore produced with a mechanical filing with a clean file. Half of the powder was set immediately (HA, NG) while half was annealed at $1000^{\circ} \mathrm{C}$ for 2 hours to remove any strain introduced by the filing process before setting ($H 5, H 5 B, N 7$). The powder produced had a particle size of $10-20 \mu \mathrm{~m}$. These particles are magnetically attracted to form agregates of about $500 \mu \mathrm{~m}$ and it was not possible to measure the particle size very accurately.

	compostion		alss grams	Wsaeple \#weight	setting field/T	shape	diametar日	thickness ©	orientation (disk plane)
01	Dysferab	multigrain	-	-	-	polished	surface		
02		multigrain	=	-	-	polished	surface		perp (001)
03	$\mathrm{OH}_{2} \mathrm{Fe}, 4 \mathrm{~B}$	single crystal	0.01474	-	-	disk	1.8	0.76	perp (100)
61	6dzFelab	single crystal	-	-	-	polished	surface		
62	6d2Fela ${ }^{\text {B }}$	single crystal	-	-	-	polished	surface		perp (001)
63	6idzFeiab	single crystal	0.03035	-	-	disk	2.20	1.1	pepp (100)
64	6d2Fe, 8 8	single crystal	0.02364	-	-	disk	2.13	0.85	perp (00)
HI	$\mathrm{HO}_{2 \mathrm{Fe}}^{148}$	annealed ingot	-	-	-	polished	surface		
H2	$\mathrm{HO}_{2} \mathrm{Fe}_{1} \mathrm{~A}_{8}$	annealad ingot	-	-	-	polished	surface		perp (001)
H3	$\mathrm{HO}_{2} \mathrm{Fa} 14 \mathrm{~B}$	aligned ann, ingot	0,06314	-	-	disk	3.6	0.81	
H4	$\mathrm{HO}_{2} \mathrm{Fe}, 4 \mathrm{~B}$	pouder in resin	0.10039	30.0	0.7	disk	-5	-3	
H5	HozFeial	annealed powder/resin	0.11365	42.53	0.7	disk	-5	± 3	
H5B	$\mathrm{HO}_{2} \mathrm{Fe}_{14} \mathrm{~B}$	annealed pouder/resin	0.11377	42,53	0.7	disk	s5	± 3	
HI	99,99\% Mi	multigrain	. 07823	-	-	disk	3.6	0.93	
$N 1$	Ndisferıle	pouder in resin	0,065	24.3	5.07	disk	25	=2	
H2	Ndisferıle	pouder in resin	0.068	24,9	10	disk	: 5	± 2	
43	Ndisferibe	cast ingot	-	-	-	polished	surface		
M4	Ndisfeirde	cast ingot	-	-	-	polished	surface		perp (001)
15	Ndisfeiz8e	annealed cast ingot	-	-	-	polished	surfate		
N6	Nd. 7 Fe 148	pouder in resin	0.10267	30.81	0.7	disk	-5	-3	
N7	N $\mathrm{C}_{1} .7 \mathrm{Fe} 148$	annealed pouder/resin	0.11827	44.38	0.7	disk	:5	± 3	
$N 8$	Nd..pFerab	annealed ingot	0,08315	-	-	disk	4	0,95	
\$1	High coerc	ivity conm, elagnet	0.06689	-	-	disk	3.7	0.91	perp easy,
\$2	54 coball s	sintered magnet	0.02229	-	-	disk	2.18	0.91	perp easy,
\$3	l08 cobalt	sintered agnet	0.02177	-	-	disk	2,20	0,85	perp easy,
11	terbiua	single crystal	0.08412	-	- .	sphere	2.7	-	perp (1000)

Table 4.1 Samples used for this work.

Chapter 5: Bquipment used

5.1 Torque Magnetometer.

5.1.1 Introduction

Torque magnetometry is a powerful technique for analysing the magnetocrystalline anisotropy of ferromagnetic materials. If the magnetic energy is anisotropic then choice of a suitable crystallographic direction means that the magnetic energy it can be expressed as:

$$
\begin{equation*}
E=E_{I}+E_{A}(\theta, \varnothing) \tag{5.1}
\end{equation*}
$$

where E_{I} is the isotropic term and $E_{A}(\theta, \mathbb{F})$ is generally expressed in terms of phenomenological constants (sect 1.2.4), θ and are the usual spherical harmonic coordinates. If the sample is placed in an external magnetic field then it will experience a torque which depends on B_{A}.

If the sample is free to rotate around the x axis then the torque will be given by

$$
\begin{equation*}
T=\delta\left(E_{A}\right) / \delta \theta \tag{5.2}
\end{equation*}
$$

evaluated in the direction that the moment lies. This direction can be calculated by using equation 1.4 to give the angle between the moment and the external field.

Similar, if more complicated, expressions to 5.2 can be written down if the sample is free to rotate in other directions and from these the full shape of E_{A} can be calculated.

In order to measure the magnetocrystalline anisotropy of rare earth alloys high fields are required to move the moment appreciably away from the easy axis and explore more of the magnetic energy suface. The Durham University Central High Field Superconducting Solenoid (DUCHESS) was used to provide a field for these measurements. In order to use a solenold for torque measurements a new type of instrument had to be developed, and this is described in this section and in less detail in a paper by Hawton and Corner(1987). During the investigation modifications of a general nature were made to the solenoid temperature control, field ramping and field measurement systems. Details of these are included in Appendix 1.

5.1.2. The Magnet (Duchess).

The Duchess is a magnet wound of Hiobium-Titanium and Miobium-Tin and built by Thor Cryogenics. It provides a steady field of up to 13 Tesla when immersed in liquid Helium at atmospheric pressure, with a field uniformity of 0.5×10^{-4} over a cylindrical region of length 30 mm by 20 mm diameter. The power for the magnet is provided by a Thor 6010 power supply, which is controlled by a Thor 2020 electronic programmer. The magnet is wound in 8 sections, each of which is protected by having a low resistance short connected in series with it against damage should the magnet become normal at a high current. The reversion of the magnet from a superconducting to a normal state causes a rapid loss of field and boil off of helium and is termed quenching. Equipment operating in the solenoid, particularly if containing fine windinge, must be protected in the event of such a quench. The maximun allowable rate of current change in the magnet (ramp rate) is determined by the heat dissipated in the normal part of the windings which are 'Type II' superconductor and hence consist of regions of superconducting and normal material. The field/temperature stability of the superconductor determines the heat dissipation rate for any field and for the Duchess this
means a rate of 0.25 Tesla per min. up to 5 Tesla and 0.06 Tesla per min. from 5 Tesla to 13 Tesla. This gives a minimum time of 2% hours to ramp up to full field.

The bore of the magnet is 45 mm , and within this fit a set of VSM coils, immersed in the liquid helium, and a gas flow cryostat which is able to control the sample temperature between 4.2 K and 400 K at the bottom of a sample tube with an internal diameter of 24.7 mm and a length of 1.5 m . The cryostat takes liquid from the helium bath within which the magnet is immersed and this belium flows through a brass sintered plug set in a copper block. The block has a carbon-glass resistance thermometer embedded in it and a heater attached to warm the helium flow. A Thor 3030 controller is used to keep this block at a constant temperature. The warmed Helium then flows up through the sample tube at slightly below atmospheric pressure, a vacuum pump sucking through a needle valve and another needle valve in the liquid tube control the rate of helium flow. The quality of the temperature control depends on the thermal mass of the instrument in the tube. With the torque magnetometer insert described below good control below 25 K is obtained in about 10 mins and in about khour at room temperature. This difference is probably due to the variation in density of the helium, and therefore its usefulness as a heat transfer medium.

5.1.3. Deacription of the magnetometer

The present design bears some similarities to previous designs used to measure induced torques (Verge et al. 1977) and de Haas van Alphen oscillations (Vanderkooy 1969). A much more rugged construction was required for the high torques to be measured as well as the abllity to measure over a rotation of at least 180 degrees. At the time of construction it was believed to be the only instrument designed to measure such torques in a
solenoid but since its construction an instrument has been described which was designed with the same alm although the solution adopted is completely different and consists of a pulley system to transfer the torque to an external sensor situated on top of the solenoid. 0tani et al 198?,

The Duchess is solenoidal, with access and field along the same axis. This geometry is not compatible with conventional types of torque magnetometer consisting of a sample suspended between the poles of an electromagnet with either a mechanical or an electromagnetic system to produce a countertorque. In these systems either the measuring assembly or the magnet is rotated to measure the dependence of the torque on angle (see Pearson 1979).

end view of cross coils.

Fig 5.1 Configuration of magnetometer colls.

The Duchess torque instrument was designed with the constraints imposed by the sample space in mind. There are also no mechanical linkages, all connections being electrical. The measuring part of the instrument consists of a pair of coils wound on one former with the planes of the coils at right angles to each other. The sample is fixed in the centre of these
cross coils. This assemblage is free to rotate around an axis through the intersections of the coils (fig. 5.1). Two coils which are wound concurrently are located above and below these cross coils. An alternating current is passed through these outside coils and the alternating e.m.f.'s picked up by the two cross colls are analysed to give a measurement of the angular position of the sample.

Fig 5.2 Simulation of magnetometer pickup.
a) configuration for calculation.

$$
\text { 1) } a=8.7, b=5.4, r=11.1, b=42 \text {, }
$$

i1) $h=25$, i11) $h=17$
iv) $h=17, r=4.9$

The separation of the outside pair of coils is chosen to be small enough to ensure adequate pick-up by the cross coils while being large enough for the dependance of pick-up on angular position to be nearly sinusoidal and therefore to permit unambiguous measurement of angle.

Analysis of the pick-up in free space for this geometry was done using numerical integration on a micro (see App. 2) to determine the optimum spacing for the coils and typical results of these are given in fig 5.2. On the basis of these it was concluded that the coils could be positioned close to the cross coils without any loss of resolution. However there is a large difference between the pick-up in free space and in the solenoid (Fig5.3). The solenoid consists of a series of concentric conducting tubes culminating in a large superconducting shield, and it was found in practice that the separation had to be larger than for free space.

The final choice of separation was based on experiment as the effect of the large number of coupled
 inductances was difficult to calculate.

Fig 5.3 Pickup in Duchess and Newport electromagnet

Direct currents are passed simultaneously through the two cross coils and varied under microcomputer control. The interaction of this current in these coils with the field of the superconducting magnet provides the counter-torque to balance the magnetic torque the sample experiences as the moment is pulled away from the easy direction. The torque is calculated as

$$
\begin{equation*}
\text { Torque }=B\left(I_{A} \mathbb{H}_{A} \operatorname{Area} A \sin (\theta)-I_{B} \mathbb{N}_{B} \operatorname{Area}_{B} \cos (\theta)\right) \tag{5.3}
\end{equation*}
$$

where H_{1} is the number of turns on coil 1 , I_{1} is the current flowing in coil 1 and Area. is the cross sectional area of coil 1.

The cross colls were made as large as possible within the limited space available in order to reduce the ohmic heating to a minimum for a given counter-torque. The use of two coils makes the instrument usable over a full rotation and allows the total heat dissipated by the coils to be kept constant while the counter torque is varied.

5.1.4. Construction of the apparatus.

The instrument described here (see fig 5.4 and 5.5) allows torques of up to 0.3 Mm to be measured with a minimum resolution of $10^{-6} \mathrm{Mm}$. This range is determined by the space available in the cryostat and the mechanical construction of the magnetometer head. Larger torques would be difficult to obtain in the restriced space but use of finer wiring and more sophisticated bearings could lower the minimum resolution.

The cross coils consist of 140 turns each of 38 SWG enamelled copper wire, wound in slots in a cylindrical cloth Tufnol former, 19 mm in diameter and $13 m m$ thick. The coils were wound at the same time with alternate layers interleaving to keep them the same size and allow good thermal contact.

1) Thin walled tube
2) Thermocouple
3) Slots for wires
4) Tufnol housing
5) Tufnol former
6) A.C. coils
7) Sample
8) Cross coil
9) PTFE bearing
10) Hole for wiring
11) Heater

Fig 5.4 Details of magnetometer head.

The $A C$ colls are wound on slots in the Tufnol housing, at a distance of 415mm from the centre of the cross coils. They consist of 600 turns each of 42 SWG copper wire. Small slots are also milled down the length of the housing for wiring to the coils to prevent rubbing on the sample tube during insertion. The centre of the housing is drilled out up the whole length to allow a smooth flow of helfum.

A $\mathrm{Au}(0.07 \%)$ Fe/chromel thermocouple mounted just above the sample measures the sample temperature, which differs by up to 5 K from the cyostat set point due to the heat dissipated in the cross coils. An auxilliary heater is mounted in the bottom of the housing in addition to the cryostat heater. This is used to speed up sample changing when working at low temperatures and to reduce the heat leakage to the hellum bath when working at elevated temperatures.

The complete magnetometer head, see fig 5.4 and $F i g 5.5$, is mounted on the bottom of a 19 mm diameter thin walled (.3mm) stainless steel tube, which gives a rigid, easily removable construction to facilitate sample changing. The top of the tube has a brass coupling with a 10 pin metal in glass seal with the wiring to the heater and the coils on one side and a pass through glass to metal seal for the thermocouple leads. A 25mm KF flange on the top allows connection for the helium flow.

5.1.5. Blectronics and Control.

The AC coils are driven by a Feedback VPO602 oscillator through a Quad 50B power amplifier. The frequency used 18 about 2.4 kHz . The oscillator also provides the reference signal for the lock-in amplifier.

The $D C$ for the cross coils is provided by a small dual power supply which is voltage programmable. This is based on a switching regulator design and details are given in Appendix 3. The programming voltage comes from a digital to analogue (D to A) converter and the current is reversed using micro controlled relays. The D to A converters and the relays are contained In a Minicam interface. Details of this interface and also the design of the relay board are given in Appendix 4. The DC current passes through a choke to reduce the amount of high frequency interference from the switched mode power supply reaching the lock-in signal amplifier and to avoid the effective short circuiting of the $A C$ e.m.f. picked up in the cross coils by smoothing capacitors in the final stage of the power supply. These chokes are driven at a fraction of their maximum rating to prevent variations in the susceptibility of their cores with core flux from affecting their impedance and therefore causing the $A C$ voltage, as measured by the lock-in amplifier, to be dependant on the $D C$ current.

The DC current flowing in each coil is measured using a Weston 6400 digital voltmeter to measure the voltage across a shunt. The shunt value can be selected for the required torque range, the same switch also switches load resistors in series and in parallel with the DC power supply to reduce the maximum current to the cross coils. Shunts, load resistors and effective current ranges are given in Table 5.1. The use of external shunts means that one voltmeter can be used to measure currents in both coils without disturbing the system.

The $A C$ is measured by connecting it, through a capacitor of $8 \mu \mathrm{~F}$, to an EG\&G 5206 lock-in amplifier, which has an input impedance of 10 MQ . The capacitor prevents the lock-in amplifier from being subjected to the full output voltage of the D.C. power supply. The lock-in amplifier is set to
extract that part of the induced $A C$ e.m.f. which is out of phase with a reference signal from the oscillator.

Range Selector	Shunt Resist.	Series Resist.	Load Resist.	Haximin Current
High	0.075Ω	0.0Ω	0.0Ω	1.0 A
Medium	1Ω	150Ω	100Ω	100 mA
Low	10Ω	$1,8 \mathrm{k} Q$	100Ω	10 mA

Table 5.1 Range resistances.

5.1.5.1 Computer interface

The instruments are all interfaced with a a BBC model B micro computer. Ideally the interfacing should be as shown in Fig 5.6 , that is with all the instruments connected to an IREE488 bus and then an RS232 connection for the further transfer of data. Unfortunately the instruments available did not all have IEEE488 interface and in some that did there was not a full range of facilities so that they could better be controlled through an RS232 link. In order to do this an RS232 multiplexor was designed and built (Appendix 5). The lock-ins, a Thurlby 1905 voltmeter connected to the thermocouple, and a Clearway node are connected to the multiplexor. The Clearway ring is a local area network installed in the Solid State laboratories. During the experiment this network connects the BBC to an IEBE488 controller to which are connected the Minicam interface and Weston voltmeter. The choice of communication system was based primarily on the available instruments.

Programmes have been written to allow the magnetometer to take a fully automated torque curve. The field and temperature have to be set manually and the range of torque chosen by the experimenter. A full 360 degree rotation in both directions with readings every 10 degrees takes about 20 minutes.

Fig 5.6 Block diagram of axial torque magnetometer.

5.1.6. Measurement Procedure.

To calibrate the angular measurement a complete 360 degree run is done firat with no sample in the instrument. As the only torques are then those of the cross coils, the angular position can be calculated and related to the $A C$ e.m.f. picked up in the coils (see Fig 5.7). The ratio of these e.m.f.s is used for this correlation in order to give a good correlation for all angles (see fig 5.8) and partly to correct for any changes in the resistance of the coils during runs at different temperatures. Resistance changes will affect the $A C$ current flowing in the $A C$ coils, but as the impedence of the measuring instrumentation is large the change in resistance of the cross coils has little effect. However there is some slight dependence of the pickup on temperature, probably due to resistance changes in the sample tube and copper shield, which results in errors of up
to 0.5° in the angular correlation at extremes of temperature. To prevent this for more accurate measurement a series of correlation runs must be done, for example every 50K. These correlations are used during subsequent runs to calculate the angle from the e.m.f's picked up.

A sample is then placed in the instrument and a choice is made of the amplitude of rotation each way, around which angular position, and how many readings are to be taken. The range selected and the current required must also be chosen and this determines the maximum torque that can be exerted and the resolution. If too high a current or range is chosen then the errors in the angular correlation are amplified whereas too low a range may result in the instrument being unable to turn the sample against the torque exerted by the sample. The measurement is then done automatically. The torque is calculated during the run and can therefore be plotted

Fig 5.7 Pickup in the cross coils

Fig 5.8 Ratio used for correlation
straight out, while both the calculated torque and the 'raw' measurements are stored on disc so that subsequent recalculation of the torque is possible with other correlation data. The programs for this are included in Appendix 2.

As mentioned above the $B B C$ is connected to a Clearway ring through one port of the RS232 multiplexor. This gives it access to the plotter and a printer as well as to the University mainframe. The mainframe allows rapid analysis of the data collected using standard routines. These were used to extract the normal anisotropy canstants. A least squares fitting routine was written using the minimization algorithm E04FDF from the Numerical Algorithms Group (NAG) suite of subroutines to fit a Fourier series to the data. From these Fourier coefficients the anisotropy constants can be calculated (Appendix 6). The orthogonality of the Fourier coefficients gives a much more sturdy program than direct fitting of anisotropy constants. The programs used are included in Appendix 2.

5.1.7. Calibration.

The sample needs no calibration against a standard sample, as the torque is measured directly as the interaction of known current passing round a coil In a known uniform field (sect 5.1.3). The cross section of the colls was measured using an integrating fluxmeter and a Bell gaussmeter. This was also compared with a 20 turn coll wound carefully on a cylindrical former so that the area was known to better than 0.5%. The difference from the value given by the fluxmeter was about 2% and as this was within the expected accuracy of the analogue integrating fluxmeter the value obtained using the 20 turn coil as a standard was used for the torque calculations. Linearity of the integrating fluxmeter was also checked and found to be better than 0.5\%

5.1.8.Accuracy

5.1.8.1. Field measurement and stability

The field is measured by measuring the current in the leads to and from the magnet and relating this to the field by a factor given by the manufacturer and checked by M. A. Chaudri (1983). Measurement of the voltage across the solenoid connectors allows the current flowing in the leads to be accurately matched to that in the solenoid to better than 1 part in 10^{-4}. The uniformity of the field is described in section 5.1 .2 and the decay is less than 1 part in in 10^{-4} per hour. All measurements were made in persistant mode when there is no fluctuation in the field intensity

5.1.8.2. Temperature measurement and stability

The temperature is measured at a position above the sample. This thermocouple is measuring the temperature of the helium after it passed the sample. A test was done to check that this temperature was indeed the same as the sample temperature. A series of measurements with a differential thermocouple, one junction strapped to the sample and the other on the normal thermocouple was performed. Over the region investigated, between 15 and 165 K , the error in the measured temperature was up to 2.5 K . However the average magnitude of the error was only around 0.5 K and there was no systematic deviation in the temperature measured (see fig 5.9), the average error being $0.12 \mathrm{~K} \pm 0.12 \mathrm{~K}$.

Fig 5.9 Temperature Error

Fig 5.10 Bffect of 0.93 g soft
$\mathrm{Kd}_{75} \mathrm{Fe}_{7 \rightarrow 7} \mathrm{~B}_{\mathrm{E}}$ sample on pickup ratio.

5.1.8.3. Angular Heagurenent.

The accuracy of the angle measured determines the accuracy of the torque measured. Checks were made on the independance of the AC pickup on other factors.

As pointed out in section 5.1 .6 the temperature of the $r i g$ has a small effect on the calculated angle. This was allowed for by taking a series of correlation runs through the temperature range.

The sample may be assumed to have some effect on the mutual inductance of the coils, acting as a core for the 'transformer'. The significance of this effect was tested by inserting a large 0.93 g soft $\mathbb{N d i s} \mathrm{Fe}_{7 \rightarrow \mathrm{Be}}$ ingot sample into the rig while this was held at a constant angle and watching the effect on the pickup. Although the pickup varied by up to 10%, the ratio did
not vary by more than 2% (e.g. Fig 5.10). This gave an error of up to $1^{\text {. }}$ in the angular measurement. This was in itself not very satisfactory but the ingot sample used for these tests had ten times the mass of any sample used for the measurements. Horeover the ingot sample had a large inftial susceptibility and the measurements were carried out on a lab bench, i.e. in zero field; in the solenoid at high fleld the suceptibility of the samples measured would be at least an order of magnitude less. These two arguments suggest that errors from the sample would be expected to be less that 1/100th degree.

The effect of the do current on the pickup was also investigated and was found to be up to 0.6%, but more normally around 0.2%. This is probably the largest error in the angular determination and gives an error of up to 0.3°, but more normally 0.1°. It is probably due to high frequency interference penetrating the choke from the power supply and shows no systematic nature(see Fig 5.11).

5.1.8.4 Torque Values.

The accuracy of the torque values depends on the angular correlation and on the accuracy of measuring the current. The angular measurement may be up to 0.3° out, which means that if the sample has caused a deviation of, for example, 10° then the calculated torque may be up to 3% in error. However this is a random scatter and not systematic.

The measurement of the current passing in the coils is prone to an error of typically 0.1% due to the accuracy of the voltmeter, however the resultent counter-torque is calculated as a difference of two torques (sect 5.1.3) and this can typically multiply the error by 10 . Therefore errors of the order of 1% are to be expected. If the current is very low for the range setting then the voltage measured by the Weston voltmeter will be correspondingly low and the error in the measured current will increase.

5.1.9. Performance

The final check on performance must come from the measurement of the anisotropy on a known sample. For this a Terblum single crystal sphere was used. This sphere had been grown by D. Fort at the University of Birmingham and had been used by Corner et al.(1985) for measurements on conflicing Rare Earth anisotropies using the high field facilities in the Laboratoire Louis Neel , Grenoble. The sample was very strongly anisotropic and could not be turned more than about 20° from the easy direction without the glue becoming unstuck. A typical intercept of the torque curve with the easy axis is given in Fig 5.12, along with a straight line fit. From the slope of the torque curve K_{1} can be calculated and this was compared with the values obtained by Corner et al.(1985)(Fig 5.13). It was concluded that the values were in reasonable agreement below about 150 K . Discussion of the difference at higher temperature can be found in chapter 7..

Fig 5.11 Dependance of pickup on

Fig 5.12 Typical Tb torque curve. DC current in coil

Fig 5.12 Temperature dependance of K_{1} in Tb .
5.2 Optical Domain Observation.

5.2.1 Introduction

In order to study the magnetisation processes in $\mathrm{R}_{2} \mathrm{Fe}_{14} \mathrm{~B}$ it was decided to study the surface domain patterns using a ferrofluid to reveal the domains, as describe in section 1.3.2.4, and an optical microscope to observe them. This had the advantage of simplicity of sample preparation, and allowed rapid observation of moving domains, as the contrast obtained with the ferrofluid is far greater than with the Kerr effect allowing short exposure times and even recording on video film.

5.2.2 The Hicroscope

A Vickers metallurgical microscope was used. This was adapted to hold either a low intensity video camera or a 120 film cassette for still photography. A green filter (M173584) was used and a range of objective lenses from an X10 air lens with a H.A. of 0.25 to a $X 80$ oil immersion lens with a N.A. of 1.32.

Abstract

A microscope stage was constructed (see Fig 5.14) which allowed two translational movements and one rotational. This replaced the standard stage, but allowed the focus knob of the microscope to be used. It was made of non-magnetic brass and designed to fit between the pole pieces of an Oxford Instruments $1 \%^{\prime \prime}$ water cooled magnet. Special pole pieces were constructed for this magnet with parts of the pole tip removed to allow the objective to get close to the sample while this remained in the region of maximum field. This introduced a large inhomogeneity into the field, but meant that continuous applied fields of up to 1.25 Te la could be obtained.

5.2.3 Experimental Detail.

The sample was first polished (section 4.2 .1) and then mounted on the stage with a strong adhesive. A ferrofluid was made of fine particle magnetite in petroleum ether with Sonsperse 3000 as surfactant. A drop of this fluid was dropped onto the sample and then this was covered with a small $5 m m$ disk made from microscope cover slide. The domain pattern was then either observed directly with an air lens, or an oil immersion lens was used, the cover slide keeping the oil and ferrofluid separate (Fig 5.15).

Fig 5.14 Microscope stage for magnet.

Fig 5.15 Sample set-up for domain observation with ferrofluid.

5.3 Vibrating Sample Magnetometer

A vibrating sample magnetometer (VSM) was used to measure the moment of the samples in order to apply the shear correction(Appendix 8) to convert the measured field angle to the angle of the moment from the easy axis.

This VSM was designed by S.R.Hoon to operate both in an electromagnet split pair and in the DUCHESS. The instrument and its automation is described by Willcock(1985) and also by Lambrick(1986). The signal induced by a vibrating nickel reference sample is compared with that induced by the sample to be measured vibrating at the same frequency and in the same position with respect to the pick-up colls and the moment is calculated from the ratio. Corrections are needed for the diamagnetic moment of the sample holder, and values obtained by Lambrick and Hoon(1987) were used.

The temperature is measured with a $0.07 \% \mathrm{Au}-\mathrm{Fe} / \mathrm{Chromel}$ thermocouple, using liquid nitrogen as a reference. Values measured by Lambrick and Hoon(1987) were fitted to give a straight line fit above 77 K and a quadratic below 77K. This gives:

Temperature $/ \mathrm{K}=77.4+48.075$ * Voltage $/ \mathrm{mV}$... above 77.4 K
and:

Temperature $/ K=77.4+48.075 * V o l t a g e / m V-9.3926 * V o l t a g e / m V^{2}$
... below 77.4K.

Chapter 6: Results.

6.1. Magnetisation Measurements.

These were done with a vibrating sample magnetometer (see section 5.3). The coils mounted in the sample space were used in preference to those in the hellum bath.

The signal derived from a reference sample(MI) was measured first to give a calibration for the instrument when measuring samples of this size.

A calibration factor was calculated at three temperatures, using the diamagnetic signal of the sample holder measured by Lambrick and Hoon (1987) of $-3.82 \mu \mathrm{VT}^{-1}$ and values for magnetisation of Nickel from Crangle (1977) (see Table 6.1).

The difference in the values for different temperatures was within the experimental error and the error in the value used for the magnetisation of nickel, so a calibration factor of $0.000812 \mathrm{~J} / \mathrm{T} / \mathrm{mV}$ was taken, independent of temperature. This implies that any effects due to changing resistance of tubes and radiation baffles must be small. The magnetisation of nickel as a function of temperature calculated using this factor is compared with the three calibration points in fig 6.1.

Terperature. Kelvin	Signal nY	Corrected Signal n 7	Magnetisation Hickel * $\mathrm{Jkg}^{-1} \mathrm{~T}^{-1}$	Calibration. Pactor $\mathrm{JT}^{-1} \mathrm{~m}^{-1}$
4.2	5.59	5.638	58.6	0.0008131
77	5.567	5.624	58.4	0.0008123
293	5.262	5.31	55.1	0.0008118

Table 6.1 Calculation of calibration factor for Duchess VSM using cails in sample space and nickel reference disk(N1) of 0.07823 g (see Table 4.1).

[^1]

Fig 6.1 Magnetisation of nickel(NI) at 12.5 T .

6.1.1. R2Fen R_{B} crystals and aligned powders.

Magnetisation of single crystals of $R_{2} \mathrm{Fe}_{1}, \mathrm{~B}, \mathrm{R}=\mathrm{Dy}, \mathrm{Gd}$ ($03,63,64$), aligned powders of $\mathrm{HO}_{2} \mathrm{Fe}_{14} \mathrm{~B}(\mathrm{H} 4, \mathrm{H}, \mathrm{H} 58)$ and $\mathrm{Hd}_{1,7 \mathrm{Fe}_{14} \mathrm{~B}(M 6, M 7)}$ and multigrain samples of $\mathrm{Ho}_{2} \mathrm{Fe}_{14} \mathrm{~B}(\mathrm{H} 3)$ and $\mathrm{Id}_{1}, 7 \mathrm{Fe}_{1} \mathrm{~B}(48)$ were measured at 12.5 Tesla. The results are given in Fig 6.2.

The measurements are all with the easiest direction within the plane of the disk aligned with the field direction

For the $\mathbb{N d}, \rightarrow F e, a B$ samples the results are compared with other workers in Fig 6.2a. The three sets of readings obtained are essentially of the same shape but have different absolute magnitudes due to the uncertainty in the

Fig $6.2 \mathrm{a} \mathrm{Nd} \mathrm{I}_{,} \mathrm{FFe}_{14 \mathrm{~B}}$ magnetisation

Fig 6.2b $\mathrm{Ho}_{2} \mathrm{Fe}_{14} \mathrm{~B}$ magnetisation.

Fig 6.2c $\mathrm{Gd}_{2} \mathrm{Fe}, 4 \mathrm{~B}$ magnetisation

Fig 6.2d $\mathrm{Dy}_{2} \mathrm{Fe}_{14} \mathrm{~B}$ magnetisation
amount of material set within any one sample. Powder was mixed in a known ratio with epoxy and this was then divided between the sample moulds, leading to a large uncertainty in the amount of powder in each sample. Comparison with the magnetisation of the ingot was used to recalculate the amount of material in each specimen for anisotropy measurements.

Comparison of the magnetisation with other workers shows a lower temperature coefficient, although the actual values are quite similar. This is probably due to the presence of a significant quantity of free iron, which has a magnetisation of $221.7 \mathrm{JT}^{-1} \mathrm{~kg}^{-1}$ at 4.2 K , which drops by 2% to $217.6 \mathrm{JT}^{-1} \mathrm{~kg}^{-1}$ at room temperature. This is much less than the 15% fall observed by Givord et al(1984b) and the 13% observed by Sagawa et al(1985) for $N d_{2} \mathrm{Fe}_{4} \mathrm{~B}$. In the samples measured here the magnetisation fell by 8\%between 4.2 K and room temperature.

For the $\mathrm{Ho}_{2} \mathrm{Fe}_{14} \mathrm{~B}$ samples the results are compared with other workers in Fig 6.2b.

The ingot (H3) compares well with the results of Hirosawa et al(1986) at low temperatures. The magnetisation at room temperature is closer to that observed by Sagawa et al(1985) and 7\% larger than that observed by Hirosawa et al(1986). The value observed by Abache and Oesterreicher(1985) measured on aligned powder is some 20% lower than the value we observe. The powdered sample (h4) follows a similar temperature dependence to the ingot, but 11\% larger. This is again due to the uncertainty in the amount of powder in the sample.

The annealed powder samples (H5, H58) show a larger magnetisation at low temperature which falls off slightly up to about 80 K and then rises becoming almost flat again by room temperature. Both samples behaved similarly. It is clear that some reaction took place during the annealing
process. The sample had already been annealed in ingot form for 45 days at the same temperature, so the short 2 hour anneal of the powder was not expected to have any effect.

The shape suggests that two other magnetic phases may be present, one with a Curie or Meel temperature of about 120 K and one with a large Curie temperature (>> 300 K). It is however difficult to suggest what these may be, as all known holmium-iron intermetallics order ferrimagnetically with Curie temperatures $325-614 \mathrm{~K}$ (Table 2.5). Another possibility is a subtle phase change quenching the Ho moment at low temperature. Further investigation would be required to explain these curves.

The $\mathrm{Gd}_{2} \mathrm{Fe}_{14} \mathrm{~B}$ crystals $(63,64)$ showed a slight decrease in magnetisation with increasing temperature, fig 6.2c. The results for both samples are essentially identical, reflecting the weak anisotropy. The low temperature value compares well with that of Boge et al(1985) and Hirosawa et al(1986), all the values being within 1% of each other. The room temperature value was similar to that of Sagawa et al(1984) and lay half way between those of Boge and Hirosawa but only 1.5% different from each. The value of Abache and Oesterreicher(1985) was another 2\% lower than that of Boge et al.

The magnetisation measured on the $D y \approx F e, a B$ crystal (D3) (see fig 6.2d) increased in temperature in a form similar to the holmium samples. The results are similar to those of Hirosawa et al(1986). The room temperature result of Sagawa et al(1984) is some 10\% lower.
6.1.2. Rare earth iron magnets.

VSK - magnetisetion mesureaents Sintered egrati	- VSM - Duchese - Belonce - Couleon
4th lerch 1997 saple 10 $0^{\circ} 9$ Fitd 1012.570010 Mose litio v. 9.9 98:	
Magnetizetion (J/t/kg)	

Three sintered samples (\$1, $\$ 2, \$ 3$) with increasing cobalt content were measured at 12.5 Tesla and the results are compared with results from a balance at $1.75 \mathrm{Tesla}(\mathrm{Coulson}$ 1987) in Fig 6.3. Both sets of readings were taken with the aligning field along the easy direction.The magnetisation at 12.5 T is significantly higher than those measured at a lower field. This may be due either to a poor alignment of the grains within the

Fig 6.3a Magnetisation $\mathrm{Hd}_{75} \mathrm{Fe}_{7}>\mathrm{Be}_{6}$ magnet.

YSH - megnetiestion meseurmente Sinterod angnete.	- YSH - Duchase - Belenoe - Coulson
Fsh Mrech 1980 Prold 1072 cos sen pese 10.02230010 Dete iit 10.18 .16	
Hegres izer 1 on ($\mathrm{N} / \mathrm{T} / \mathrm{kg}$)	

Fig 6.3b Mag. 5\% cobalt magnet.

	4 VSN - Duchase - Belence - Coulson
Megnes izes ion (W/T/tg'	

Fig 6.3c Mag. 10\% cobalt magnet.
magnet, meaning that the resultant moment is lowered at a low field, whereas the larger field is able to pull the moment away from the easy direction within a misaligned grain, or due to hysteresis in the magnetisation loop meaning that saturation is not being reached by 1.75 T .

6.1.3. Terbium.

The magnetisation of a terbium sphere(TI) was measured at 12.5 Tesla and compared with the spontaneous magnetisation measured by Corner (1985). The results are given in Fig 6.4.

Fig 6.4 Magnetisation of terbium

A simple theory in terms of equating the magnetic energy associated with the applied field with the kinetic energy at each temperature suggests that the Curie temperature should be shifted by a temperature given by:
or

$$
\begin{equation*}
\mathbf{k} \cdot \Delta T=\mu, B \tag{6.1}
\end{equation*}
$$

where μ_{J} is the magnetic moment along the J direction, J is the angular momentum quantum number, g is the Lande g factor, μ_{m} the Bohr magneton and k is Boltzmann's constant.

For terbium $\mathrm{L}=3, \mathrm{~S}=3, \mathrm{~J}=6$ giving $\mathrm{g}=3 / 2$ and therefore $\Delta \mathrm{T}=82 \mathrm{~K}$ at 12.5 T . This is the right order of magnitude, as the data suggests an increase of about 100 K in the observed Curie temperature. At temperatures below the Curie temperature the alignment is better and the number of effectively available states decreases so that ΔT reduces to zero at $0 K$.

6.2. Anisotropy Measurements.

Torque curves were measured on samples using the instrument described in section 5.1. The information obtained was transfered to the University Amdahl mainframe. It was corrected for the shear correction (Appendix 8) and a $\sin (\theta)$ term which is similar to the side pull term in a conventional torque magnetometer and arises due to the sample not being positioned exactly on the rotation axis of the instrument. These corrections were done while fourier coefficients were fitted and anisotropy constants were calculated from these fits. The values obtained depended on the number of anisotropy constants fitted, and for different samples a number of constants was chosen to give a good fit while not including spurious data. The criterion used was the smoothness of the temperature dependence of the constants.

6.2.1. R $\mathrm{R}_{2} \mathrm{Fe}_{4} \mathrm{~B}$ crystals and aligned powders.

6.2.1.1 $\mathrm{Id}_{\mathrm{r}}^{\boldsymbol{7} \mathrm{Fe}, 4 \mathrm{~B}}$ ingot and powders.

Torque curves were measured on samples of powdered NdFeB and a least squares fit was made to extract the anisotropy constants. Bxamples of these torque curves are shown in fig 6.5. They have been corrected for side pull and plotted against the angle of the moment within the sample, the latter being calculated using the magnetisation measurements reported in section 6.1 on the assumption that the torque is due to the total moment measured. At high temperatures, above about 250 K , there is no observable deviation from a simple uniaxial anisotropy, with a $\sin ^{2}(\theta)$ torque curve. Below this temperature a kink begins to develop around the easy direction (c axis) and this kink continues to increase in size until at about 130 K the kink has a stationary point and then below this a maximum and minimum. This means that there are two easy directions, one on either side of the c axis,

AIOM (2.2) - zorque meseuremente arneslod NoF ob povider (N7) it 115 K	- Corrected lorque - Fir so cor. Torqua

Fig 6.5 Torque curve of $\mathrm{Nd}_{1,7 \mathrm{Fe}_{14} \mathrm{~B}}$
corresponding to an easy cone system. The angle of the cone can be easily read off and is plotted in figure 6.6.

The curves were fitted using the least square method to an expression including two anisotropy constants the result being indicated by the full lines in Fig 6.5. As it can be seen the fit is not very good at low temperature, the sharpness of the kink in the torque curve which develops below about 130 K is not fittable with the restriction to two fourier coefficients. Addition of higher coefficients improves the fit, but the quality of the rest of the data results in a larger scatter of calculated anisotropy coefficients.

The first anisotropy constant can also be derived from the slope of the torque curve at the $\theta=0$ direction or, in the case of an easy cone system, the first two anisotropy constants can be derived from the slope of the torque curve at the easy direction and the cone angle (see appendix 7). This is on the assumption that any further anisotropy constants are small and insignificant.

Fig 6.6 Tilt angle measured on torque curve of $\mathrm{Nd}_{1,7 \mathrm{Fe}_{14} \mathrm{~B}}$

Fig 6.7 Anisotropy constants from torque curve of $\mathrm{Nd}_{1}, \neg \mathrm{Fe}_{1}{ }_{4} \mathrm{~B}$

This graphical method was used for the torque curves measured on sample N6. Results for anisotropy constants derived from torque curves measured on the samples NI, H_{6} and $N 7$ (see Table 4.1) are given in Fig 6.7. The shape of the curves are similar, but they vary considerably in magnitude. This is due mainly to the quality of the samples.

The errors originate in a number of ways:
a) None of the samples are single phase which means that the shear correction for the angle, based on the total magnetic moment, is incorrect. In this material at around 10 Tesla the angle between the measured angle and the moment is about the same as that between the moment and the easy direction. This means that any error in the moment contributes directly to the error in the anisotropy. Any other phases present also contributeto the error due to the error in the actual amount of the $\mathrm{Hd}_{2} \mathrm{Fe}_{1} \mathrm{~B} \mathrm{~B}$ phase. The other phases are estimated to be up to 20% of the material giving an error of up to 40%.
b) The powder is not single phase, and the grains were very small in the material, this means that the powder probably contains particles with more than one grain within a particle. The annealed powder is more likely to contain single grain particles.
c) The powder may not be completely aligned, due in part to the shape of the powder grains which were very angular and therefore not very free to rotate against each other.
d) Within a set aligned powder sample there is texture, adding a shape anisotropy which it was not possible to calculate and allow for
e) The non orthogonality of the anisotropy constants means that a relatively small error may result in a larger reduction in one constant and an increase in the other

With these errors in mind these results can only be taken as an approximation to the values, showing the trends but not the absolute values.

6.2.1.2 HozRe, B ingot and powders.

Torque curves on samples $H 3$ and $H 4$ were analysed to extract anisotropy constants. H5 and H58 were not included due to the uncertainty in the results of the annealing (see section 6.1.1).

The curves observed for $H o F e B$ were essentially the same as those observed for $\mathbb{N d F e B}$; a kink developed below about 70 K and this became acute enough to cause an easy cone below about 42 K . An example of a torque curve is given In Fig 6.8 and the angle of the cone measured from the torque curves is given in Fig 6.9. This only rises to a maximum cone angle of about 20°, somewhat less than the angle of 27° observed for $\mathbb{H A F e B}$.

The curves were analysed by the least squares method and also graphically, all the results are included in Fig 6.10. At low temperatures the least squares method didn't fit the curves near the easy axis very well and the graphical result are more accurate. The values for the powder sample(H4) agree well with the ingot sample.

Fig 6.8 Torque curve of $\mathrm{Ho}_{2} \mathrm{Fe}_{14} \mathrm{~B}$

Fig 6.9 Tilt angle of $\mathrm{Ho}_{2} \mathrm{Fe}_{14} \mathrm{~B}$

Fig 6.10 Anisotropy constants from the torque curves of HozFe, $A \mathrm{~B}$.
K_{1} is almost constant from room temperature down to about 100 K , below this it reduces rapidly and below 42 K becomes negative, ending up with a negative value at 5 K of about 40% of 1 ts room temperature value.
K_{2} is about 25% of K_{1} at room temperature but increases with decreasing temperature. This differs slightly from the behaviour in the case of NdFeB Where the value of K_{2} at room temperature is very much less than K_{1} The good agreement between powder and ingot gives some confidence in the values. The same types of errors as for the NdFeB sample are possible but with the provision that the powder was single phase, no other phase was observed under the microscope, and as the ingot had much larger grains than the $\mathbb{H A F e B}$ sample most particles may be expected to be single grains. The room temperature results obtained by Sagawa(1985b) is some 15\% larger than those measured here and the value of Yamauchi et al(1986) at 4.2 K is also about 15% larger in magnitude than the graphically calculated values (see Fig 6.10). These results were obtained from magnetisation curves on single crystals.

6.2.1.3 GdzFeraB single crystal.

6.2.1.3.1. Uniaxial Anisotropy.

Measurements on sample (63) were made with the field at 5 Tesla and at 12 Tesla. The torque curves were all smooth with no sign of higher order terms. when plotted against the momen't angle they appear sinusoidal (e.g. Fig 6.12) with measurements being taken over about 180°, even near the hard direction. These were fitted with one anisotropy constant and with two, the fit appeared good in both cases and the two constants are plotted in Fig 6.11 .
K, increases with temperature, up to 300 K the highest measured. At higher field there is an upturn in K_{1} at temperatures below 80 K . This may be due

Fig 6.11 Uniaxial anisotropy constants from torque curve of $\mathrm{Gd}_{\mathrm{a}} \mathrm{Fe}_{14} \mathrm{~B}$

Fif 6.12 Torque curve of $\mathrm{Gd}_{\mathbf{2}} \mathrm{Fe}_{14} \mathrm{~B}$ perp a axis
to the separation of the coupling as observed by Franse et al(1987) when studying ferrimagnetically aligning compounds of the same structure in fields up to 40 Tesla. With this in mind the low field values (5 Tesla) have been taken as the more accurate.

K2 is relatively small, around $-5 \mathrm{~J} / \mathrm{kg}$, and appears to be constant over the range studied.

Boge et al (1985) noted a similar rise in K_{1} between 4.2 K and room temperature, although they measured a value some 10% lower than measured by the torque curves. Yamauchi et al(1986) measured a value some 20% larger than ours at low temperature.

6.2.1.3.2. Basal plane Anisotropy of $\mathrm{Gd}_{2} \mathrm{Fe}_{14} \mathrm{~B}$

From a single crystal sample a disk was cut at right angles to the c axis to allow measurement of the basal plane andsotropy. No other crystals were obtained from other materials to allow comparison. As the basal plane anisotropy is much smaller than the uniaxial anisatropy the torque curves measured had more serious correction neccessary before the basal plane anisotropy could be extracted.

The instrument was also run at a much lower current to measure the much smaller torques involved.

The correction terms allowed for were:
a) The side pull term in the form of Asin $(\theta+B)$
b) The effect of uniaxial anisotropy due to the not quite perfect cutting of the crystal disk (the value measured suggested an error of about 0.4° from the c-axis). This was just in the form of $A_{2} s i n^{2}\left(\theta+B_{2}\right)$. The low value of K_{2} measured and reported in sect. 6.2.1.3.1. justifies this simple correction for the off perfect cutting.
c) The hysteresis of the instrument, probably due to the springiness in the wires. In Fig $6.13 a$ this is clear as the two curves lie one above the other. Comparison with measurements made without a sample, but rotating through the same angle showed that this 'springiness' was a constant once the instrument had rotated more than a certain amount. In practice this was allowed for by discarding the data from about 100° to about 200° and splitting the measurements into two sets of data, one for the forward direction and one for the reverse direction. These were then fitted independently and the results plotted together.

Fig 6.13a Torque curve of $\mathrm{Gd}_{2} \mathrm{Fe}_{14} \mathrm{~B}$ perp c axis

Fig 6.13b Torque curve of $\mathrm{Gd}_{2} \mathrm{Fe}_{14} \mathrm{~B}$ with fitted curve
d) The usual shear correction (Appendix 8) to the angle of the moment inside the sample, although in this case the correction was small. It should be noted that as the basal plane is hard and the measurements were made at 5 Tesla, the moment was canted at about 10 degrees to the basal plane while the measurements were made. This sounds quite a long way but as K_{3} is of the form:

$$
\begin{equation*}
B=\quad \ldots .+K_{3} \cos (4 \phi) \sin ^{2}(\theta)+\ldots \tag{6.1}
\end{equation*}
$$

this gives an error of less than 4% in the measured anisotropy.
The values for K_{3} are plotted in figure 6.14 below.

Fig 6.14 Basal plane anisotropy constant from torque curve of $\mathrm{Gd}_{2} \mathrm{Fe}_{14} \mathrm{~B}$

Measurements could only be made down to about 100 K , below this the noise on the data became unacceptable, it is not clear whether this was due to an increase in the stiffness of the wiring or due to freezing of some ail or grease on the bearings. Whatever the reason the results below this temperature were not of a good enough quality to be confidently fitted, especially in view of the large number of corrections neccessary. There appears to be a reduction in K_{3} above 200 K , It is not clear whether there is a peak at this temperature as the data is obviously subject to scatter of the order of 20%.

6.2.1.4 $\mathrm{Dy}_{2} \mathrm{Fe}_{1}$ a B single crystal.

The torque curves measured on sample (03) were very different from those measured on the $\mathrm{Gd}_{2} \mathrm{Fe}_{14} \mathrm{~B}$ sample due to a much larger anisotropy and a smaller moment. These combined to make it difficult to pull the moment far out of the easy direction, even at 12 Tesla. The moment was pulled about 30 to 35 degrees from the easy direction. The curves were analysed on the assumption that the total moment of the sample, measured with the VSM, behaved as a single moment and only one anisotropy constant was fitted. Although a second anisotropy constant improved the fit (see figure 6.15) the value of the second constant cannot be relied on, due to the high anisotropy, meaning that the sample is unlikely to remain single domain a long way from the easy direction, neither are the two sublattices likely to remain antiparallel.

The results of the fits are given in figure 6.16, these are also compared with values from Sagawa(1985b) and Yamauchi et al(1986). These values are slightly lower than the values measured here.

AIOn 12.2 - torgue meteuramenta 0 ffe 031 © 83	- Corrected Torque - Fir io cor. Torque

Fis 6.15a Torque curve of $\mathrm{Dy}_{2} \mathrm{Fe}_{14} \mathrm{~B}$.
fitted with one const.
Fis 6.15a Torque curve of $\mathrm{Dy}_{2} \mathrm{Fe}_{14}$
fitted with one const.

Fig 6.15b Torque curve of $\mathrm{Dy}_{2} \mathrm{Fe}_{14} \mathrm{~B}$. fitted with two const.

6.2.2. Rare earth iron magnets.

Torque curves were measured on a series of magnets with varying cobalt content. The samples were in the form of disks cut from sintered magnets with the aligning direction within the plane of the disk. These were measured from 10 K to 370 K . For analysis and more details see the PhD Thesis of I.Coulson, Sunderland Polytechnic (1987/88).

An example of the torque curves measured is given in Figure 6.17 and the dependence of anisotropy on cobalt concentration in figure 6.18.

There is an initial increase in the anisotropy with cobalt addition, possibly due to the increased Curie temperature then a decrease with increasing cobalt concentration.

Fig 6.17 Torque of a sintered magnet.

Fig 6.18 Dependance of anisotropy on Cobalt conc.

6.2.3. Terblum.

An example of the torque near the easy direction on a pure terbium sphere is given in figure 5.12, the temperature dependence of the anisotropy is given in figure 5.13, compared with values obtained by Corner(1985) from magnetisation measurements.

The values agree well between 50 K and 150 K .
Below 50K there is a difference in the way the curves approach the $T=0 K$ axis. The difference may be due to error in the values. Those of Corner at low temperature are obtained by extrapolating magnetisation measuraments to higher field. Those from the torque measurements also have an angular correction amounting to about 30% of the signal, so any error in the mass Will be increased to 1.5 X the error and any error in the moment by $X 0.5$. The slope was measued to better than 4% so the total error in the andsotropy should be about 6\%.

Above 150 K the anisotropy measured by Corner rapidly drops off while there is a larger 'tail' on the curve measured by the torque magnetometer.This is due to the increased moment at high field (see section 6.1.3) which causes an increase in the anisotropy. This results in the zero field anisotropy measured by Corner dropping to zero at 240 K while at 12.5 Tesla the anisotropy does not fall to zero unt1l about 350K.

Using the anisotropy measured in sect 6.2 . values for δ are calculated and included in Table 6.2.

Rare Earth	Domain Spacing $W_{1} / \mu \mathrm{m}$	Saturat. Magn. $\sigma_{m} / \mathrm{JT}^{-1} \mathrm{~kg}^{-1}$	Density	Wall Energy. 	Anisot. Const. $\mathrm{K}_{1} / J \mathrm{Kg}^{-1}$	Wall Thick. \& / nm.
Hd	0.78	169	7590	0.033	630*	5.4
Dy	4.35	70	8050	0.035	570	6.1
Gd	2.64	87	7880	0.032	102	31
Ho	1.50	86	8090	0.019	280	6.5

Table 6.2 Vall energy and wall thickness calculated from domain spacings and magnetisation and anisotropy measurements.

* Taken from Yamada et al(1986).

Except for the gadolinium compound where a small anisotropy gives a larger wall thickness, the domain wall thicknessess calculated are small, of the order of 10 cell widths, so that a simple model of domain wall with smoothly rotating moments is not very good.

6.3.2. Domain patterns under applied field.

Using commercial ferrofluids, e.g. Ferrofluidics 809, it was possible to observe static domain walls. There was a tendency however for the particles to settle at the domain wall position and not move with the domain wall, leaving 'ghosts'. Using a more stable fine grain ferrofluid it was possible to watch domains moving under applied fields. This fluid was also made using a high boiling petroleum ether as solvent and this meant that the fluid evaporated very slowiy and observations could be made over a long time period.

Within grains the domains moved smoothly until pinned by inclusions or grain boundary imperfections. As the field was increased main domain walls disappeared but spike domains remained which shrunk with increasing field
finally dissappearing into the inclusion or grain boundary. On decreasing the fleld domains reappeared spontaneously, the position not necessarily being the same as that at which the last domain disappeared. The behaviour for all the samples was similar, with only variations in the magnitude of the fleld necessary to remove the domain pattern.

An example is given in figure 6.25 , on a sample of commercially cast ingot. In the field of view are two regions, one with the easy direction nearly in the plane of the surface on the right and one with the easy direction more nearly perpendicular to the surface on the left.

In figure 6.25 a the applied field is low, the domains are nearly evenly spaced and the ferrofluid settles on the domain walls giving domain wall contrast. Between $6.25 a$ and 6.25 c the increasing field causes the domain walls to move within the grains, but the intersection with the grain boundary does not move. As the field increases the non uniformity of the field results in a vertical component to the field which gives a domain contrast, both types of contrast are visible in fig 6.25 c . On further increasing the field (6.25 d) domains of reversed magnetisation from the bulk begin to disappear, at this point it is also clear that there is some coupling between the grains, even through a large grain boundary layer, as domains tend to remain at the same point on both sides of a such a boundary layer. The domains in the left hand half of the sample have not moved up to this field. On increasing the field these domains begin to move (6.25 e to 6.25 h), but even with the maximum field which can be applied by the electromagnet there still remains a large number of domain walls observable within this region.

On decreasing the field the domains in the left hand region move smoothly back(fig 6.251, 6.25j) and at a lower field than that at which they disappeared the domains in the right hand half begin to reappear (Fig $6.26 k, 6.251$). It is not possible to suggest any preferable sites for reappearing domains from our observations, the only point to note is the difference in the shape from the last domains to disappear. The reappearing domains are rounder in shape, showing that they move rapidly from their initial appearance to occupy a large volume. The disappearing domains are long and thin, occupying as little volume as possible while maintaining their 'pinning' sites at the grain boundaries.

Reversing the field (Fig 6.25m - 6.25p) gives very similar domain patterns (c.f. fig6.25a-6.25d) and suggests again that there is some influence of the grain boundary on the domain pattern.

Chapter 7: Conclusions and Suggestions for Further Vork.

7.1 Instrumentation

Abstract

A novel torque magnetometer designed to operate within the confines of a solenoid has been described in chapter 5 . This instrument has been built and it has been shown that the problems inherent in this type of instrument can be overcome. The viability of such an instrument for measuring torques within a solenoid has been shown by performing measurements on terbium where the anisotropy had been previously measured. The instrument is a direct reading instrument and doesn't rely on comparison with standards. The standardisation is on voltmeters and ammeters which can be easily calibrated.

Abstract

In constructing such an instrument care has to be taken to ensure independance of the alternating e.m.f picked up and used for the determination of angle from the current providing the counter torque. The correlation between the e.m.f. picked up and the angle has to be determined with the instrument in position in the solenoid and at the measuring temperature to prevent unacceptable errors from image effects. Care is also required in the measurement of the temperature of the sample at high torques as heat dissipation in the counter-torque producing coils cannot be ignored.

The actual instrument described was tailored to make measurements on the anisotropy of rare earth based materials with correspondingly large torques. Being designed to operate in the Durham University Superconducting Solenoid it is able to make measurements in fields of up to 13 Tesla and at temperatures of 4.2 K to 400 K . The instrument is able to measure torques of
up to 1 Nm at full field and also down to a resolution of $10^{-5} \mathrm{Nm}$. The maximum dimension of the sample is 7 mm in any direction. By variations in the detailed design instruments could be made on the same principle to cover a larger range of torques. The lower limit of sensitivity is determined by the type of bearings used and the maximum torque measurable by the heat dissipated in the counter-torque producing coils. The present instrument approaches the maximum torque measurable, but at a price of resolution at high sensitivities. An instrument with a number of ranges could be built by constructing interchangable heads, the basic electronics remaining the same. As calibration is only on the current measurement there would be no problem of recalibration on changing heads.

7.2 Rare Earth Iron Boron Anisotropy

Some measurements have been made of the anisotropy of $\mathrm{R}_{2} \mathrm{Fe}_{14} \mathrm{~B}, \mathrm{R}=\mathrm{Id}, \mathrm{Ho}, \mathrm{Gd}, \mathrm{Dy}$ alloys using high field torque magnetometry. The results confirm the anisotropy measured using magnetisation curve analysis by other workers At room temperature neodymium, the only light rare earth studied, showed ferromagnetic ordering while the heavy rare earths, gadolinium, dysprosium and holmium showed ferrimagnetic ordering. This fits into the pattern found with all rare-earth iron intermetallic compounds.

The gadolinium compound showed the weakest anisotropy, about 20% of that shown by the other compounds. This therefore sets a maximum on the contribution from the iron anisotropy. The anisotropy of the gadolinium ion must be a lot weaker than that of the other ions. As the gadolinium ion has a spherically symmetrical unperturbed ground state and therefore has no possible contribution from single ion exchange terms as the ion is

1sotropic if not perturbed, it also suggests that the majority of the anisotropy in the other compounds originates from crystal field effects on the rare earth tons.

As the two ion anistropy will be present in all the compounds it is difficult to distinguish this from iron lattice anisotropy. The increasing anisotropy between 4.2 K and room temperature suggests that there is some two-ion contribution from the gadolinium at 4.2 K which reduces the total anisotropy, and that this falls off more rapidly than the anisotropy due to the 3d magnetism and therefore causes an increase in the overall anisotropy The easy axis of magnetic anisotropy at room temperature was the c axis in all four cases. As the other three rare earths, excluding gadolinium, have negative Stevens' α_{J} factors (Table 2.2) it is not surprising that they should have the same easy axis.

The neodymium and holmium compounds both show a spin reorientation from an easy c-axis ferromagnetic state at high temperature to an easy cone ferromagnetic state at low temperature. The study of the anisotropy shows that this reorientation is a second order effect due to the weakening of the first anisotropy constant, K_{1}, as the temperature is decreased. This weakening begins to be observable some 50 K above the spin reorientation temperature.

The origin of this reorientation, whether due to the dominance of higher order crystal fields at lower temperature or due to the difference between the temperature dependence of the crystal field anisotropy and the exchange anisotropy is not clear. The local situation of the rare earth ion in the structure (see Fig3.4a and b) is not simple, with two different sites, both with 20 nearest neighbours, consisting of six neighbours in the same plane,
a tilted hexagon of iron ions above and below and one interplanar iron ion (Fe(4)) in the centre of each hexagon. At low temperature the higher order crystal field terms will play a more important role than at higher temperatures as they fall off more rapidly with temperature than the first order term. These higher order terms are also short range and therefore determined more by the local environment than the extended crystal field. This means that these terms are therefore the most affected by the complexity of the local rare earth environments and most difficult to estimate by point charge models.

It would require more detailed anisotropy measurements, particularly of K_{2} and higher anisotropy constants as well as a theoretical study of the expected behaviour of this structure to determine the real cause of this spin reorientation. The samples used in this study were not of a good enough quality to enable these measurements to be made, and highly perfect single crystal samples would be required of all the materials. In particular it would be interesting to look at the basal plane anisotropy which it has only been possible to measure for the gadolinium compound so far as no other suitable single crystals were available.

It would also be interesting to look at materials with a positive α, s Steven's Factor. It would then be possible to investigate the competition of the expected negative rare earth anisotropy with the positive iron anisotropy. The erbium compound is a particularly interesting possibility where, if the spin reorientation observed in neodymium and holmium compounds is due to higher order crystal terms, it may be possible to observe a tendency to weaken the negative andsotropy at low temperatures.

7.3 Magnetisation Processes in Rare Barth Iron Boron Magnets

The study of domains in large grained and single crystal samples has shown classical uniaxial domain patterns. Similar structures were observed in the four different intermetallics studied, although the scale was related to the anisotropy Gadolinium with the weakest anisotropy had domain structures on a larger scale than the other compounds.

The structures observed under zero field conditions were equilibrium structures. A fine grained ferrofluid in a non volatile solvent makes dynamic observations of domain walls possible. Under an applied field the domain walls moved freely within the bulk of the grains although some interaction with grain boundaries was observed.

On saturating the material, in the case of $\mathbb{H d F e B}$ ingot with a field of around $400 \mathrm{kAm}^{-1}$ quite considerably less than the coercivity of up to $1000 \mathrm{kAm}^{-1}$ obtained with magnets produced from this material, the reverse domains were squeezed to extinction. When the field was removed new domains appeared at places other than those from where the last domain disappeared.

The high coercivity possible with this class of material must therefore be due to the microstructure induced by powdering and sintering the material. The coercivity depends on the magnetic isolation of grains and the suppression of nucleation sites, or areas of grain boundary where reverse domains can escape the grain boundary walls, as any domain wall once free in the grain will rapidly traverse the whole grain and reverse its magnetisation.

Abstract

Calculation of domain wall energies and widths showed narrow walls, of the order of 7 to 8 cell units. These walls might therefore be easily pinned at any small non magnetic precipitate which could be induced within the material, or at any inhomogeneities near the grain boundary layers. This fuels the debate as to whether the magnetisation is determined by true nucleation processes or by trappped domains in the grain boundary region. It might be of interest to see if any correlation is possible between the domain wall width and the coercivity to help understand this mechanism.

Further samples could be studied in single crystal form, although the processes observed in all those studied were so similar that no additional information should be expected for magnetisation processes. Energies and widths for domain walls could be obtained for the other compounds in the series.

Domain studies using other methods would be more appropriate for studying sintered magnets. The Bitter patterns are not very good on sintered material as the fluid particles tend to migrate to the pores or grain boundaries after a couple of sweeps of the field. The Kerr effect would be more appropriate. Transmission electron microscopy, and x-ray topography if good enough crystals can be grown, could be used to investigate the interaction of domains with imperfections and boundaries.

References

Abache C. and Desterreicher H. J.Appl. Phys. 574112 (1985)
Barkhauson H. Phys. Z. 20401 (1919)
Beaudry B.J.and Gschneidner K.A., Handbook on the Physics and Chemistry of the Rare Earths, ed. Gschneidner K.A. and Eyring L. (North Holland 1979)

Birss R.R. and Keeler G.J. Phys. Stat. Sol. (B) 64(1) 357-366 (1974)
Bitter F. Fhys. Rev. 381903 (1931)
Bodenberger R. and Hubert A. Phys. Stat. Sol. (A) 44 K7-11 (1977)
Boge M., Coey J.M.D., Czjzek G., Givard D., Jeandry C., Li H.S., and Odden J.L.
Solid State Commun. 55295 (1985)
Braun H.F., Pelizonne M., and Yvon K. Proc. of the Int. Conf. on Transition Metal Compounds, IIB 11 (Grenoble 1982).

Brillouin L, "Die Quanten Statistik" (Springer, Berlin 1931)
Brun T.O., Sinha S.K., Wakalayashi N., Lander G.H., Edwards L.R., Spedding F.H.
Fhys. Rev. B1 1251 (1970).
Buschow K.H.J. Mat. Sci. Reports 1 1-64 (1986)
Cable J.W., Moon R.M., Koehler W.C. and Wollan E.O.
Fhys. Rev, Letter 12553 (1964).
Cable J.W. and Wollan E.O. Fhys. Rev, 165733 (1968).
Cadogan J.M. and Coey J.M.D. Fhys. Rev. B30 7326 (1984).
Chaudri M.A. FhD Thesis (Durham University 1983)
Cooper B.R. in Magnetic Froperties of Rare Earth Metal, ed R.J.Elliot (Plenum, London, 1972)

Corner W.D., Paige D.M., Hawkins R.D., Fort D. and Jones D.W.
J. Magn. Magn. Mat. 5189 (1985)

Coulson I. private communication (1987).
Craik D.J. and Tabble R.S. "Ferromagnetism and Ferromagnetic Domains".(1965)

Crangle J. "The Magnetic Properties of Solids" (Edward Arnold, London, 1977) Croat J.J., Herbst J.F., Lee R.W. and Pinkerton F.E.
J. Appl. Fhys. 552078 (1984)

Doring W. Ann. Physik Z 102 (1958)
Durst. K.D. presented at CEAM meeting, Dublin. (1987).
Ewing J.A. "Magnetic induction in iron and other metals"
Franse J.J.M. presented at CEAM meeting, Dublin. (1987).
Givord D., Li H.S., and Moreau J.M. Solid State Commun. 50497 (1984)
Givord D., Li H.S. and Perrier de la Bâthie R. Sol. State Comm.51 857 (1984b)
Givord D., Moreau J.M., and Tenaud P. Solid State Commun. 55303 (1985).
Grössinger R., Sun X.K., Eibler R., Buschow K.H.J. and Kirchmayer H.R.
J. Mag. Mag. Mat. 5855 (1986).

Habenschuss M., Stassis C., Sinha S.K., Spedding F.H.
Phys. Rev. B10 1020 (1974)
Harris I.R. Noble C. and Bailey T. J. Less Common Metals 106 L1 (1985)
Hawton M.J. and Corner W.D. J.Fhys E:Sci Inst. 20406 (1987).
Heisenberg W. Z. Fhys. 49619 (1928).
Henry Phys. Rev. 88559 (1952)
Herbst J.F., Croat J.J., Pinkerton F.E. and Yellon W.B.
Fhys. Rev. B29 4176 (1984)
Hirosawa S. and Sagawa M. Solid State Commun. 54335 (1985).
Hirosawa S., Matsuura Y., Yamamoto H., Fujimura S., Sagawa H. and Yamauchi H.

$$
\text { J. Appl. Phys. } 59873 \text { (1986). }
$$

Hutchinson R.I. J. Sc1. Inst. 42885 (1965)
Ibarra M.R., Algarabel P.A., Alberdi A., Bartolome J. and del Moral A. presented at MMM conference Baltimore (1986).

Johansson J., Lebech B., Nielsen. M., Bjerrum-M@ler H., Mackintosh A.R.
Fhys. Rev. Lett. 25524 (1970)

Kasuya T. Frog. Theor. Fhys. 1645 (1956).
Kianvash A. and Harris I.R. J. Mat. Sci. 19353 (1984)
Kianvash A. and Harris I.R. J. Mat. Sci. 20682 (1985)
Kirchmayr H.R. and Poldy C.A. In Handbook on the Physics and Chemistry of the Rare Earths, ed. Gschneldner K.A. and Eyring L. (North Holland 1979)

Kittel C. 1949 Rev. Mod. Fhy. 21541
Kittel C. "Introduction to Solid State Fhysics" 5th Edition
(Wiley, New York 1976)
Koehler V.C. Cable J.W., Wilkinson M.W. and Vollan B.O.
Phys Rev 151414 (1961)
Koehler W.C. in Trans. Am. Cryst. Ass. ed. H.G.Smith 353
(Polycrystal Book Service, Pitsburgh, 1967)
Koehler W.C., Cable J.W., Child H.R., Wilkinson M.W., and Wollan E.O.
Phys. Rev, 158450 (1967)
Koehler W.C., Moon R.M., Child H.R. AIF Conf Froc 101319 (1972)
Kramer M. Fhysica 1, 182-192 (1934)
Lambrick D.B. FhD Thesis (Durham University 1986).
Lambrick D.B. and Hoon S.R. personal communication (1987).
Langevin P. Annls. Chim. Fhys. 570 (1905)
Li. D. and Strnat K.J. J.Appl. Phys. 574143 (1985).

Lifshitz E. and Landau L. Fhys. Zeits. d Sowjetunion 82153 (1935)
Livingston J.D. J.Appl. Fhys. 574137 (1985).
McGuiness P.J., Harris I.R., Rozendaal E., Ormerod J. and Ward M.
J. Mat. Sci. 214107 (1986)

Millouse A.H. and Mc.Ewan K.A. Sol. St. Comm. 13339 (1973)
Moriya T. and Kawabata A. J. Fhys. Soc. Jap. 84639 (1973)
Weel L. Ann. Phys. 5232 (1936)

Neel L. J de Fhys. et rad. 5 241-251, 265-276 (1944)
Otani Y., Miyajima H. and Chikazumi S. Jap. J. Appl. Phys. 26623 (1987). Pearson R.F. in "Experimental Magnetism" ed. Kalvius and Tebble
(John Wiley and Sons, New York 1979)
Ruderman M.A. and Kittel C. Fhys. Rev. 9699 (1954)
Sagawa M., Fujimura S., Togawa M. and Matsuura Y.
J. Appl. Fhys. 552083 (1984)

Sagawa M., Fufimura S., Yamamoto H., Matsuura Y. and Hiraga K.
IEEE Trans Magn. MAG-20 1584 (1984b).

Sagawa M., Fujimura S., Yamamoto H., Matsuura Y. and Hirosawa S.
J. Appl. Fhys. 574094 (1985)

Sagawa M. J. Magn. Soc. Japan. 225 (1985b).
Sankar S.G. and Narasimh K.S. J. Magn. Magn Mat. 54-57 530 (1986)
Shoemaker C.B., Shoemaker D.P. and Fruchart R. Acta Cryst. C40 1665 (1984)
Sinha S.K. In Handbook on the physics and chemistry of Rare Earths, ed Gschneidner K.A. and Eyring L.R. (North Holland, 1978)

Sommerfeld "Elektrodynamik" (1948) - translated as
"Electrodynamics" (Academic Press, New York 1952)
Stevens K.W.H. Froc. Phys. Soc. 465209 (1952)
Strnat K., Hoffer G., Olson J., Ostertag W. and Becker J.J. J.Appl.Fhys. 381001 (1967).

Suzuki T. and Hiraga K. J. Mag. Mag. Mat. 54-57 527 (1986).
Szewczyk A., Plotrowski K. and Szymczak R. J. Phys. D. 16687 (1983)
Tanner B.K. "X-ray Diffraction Topography" (Pergammon Press 1976).
van Vleck J.H. "The Theory of Electronic and Magnetic Susceptibilities"
(Oxford University Press 1932)
van Vleck J.H. Fhy. Rev. 52 1178. (1937)
Vanderkooy J. J.Phys. E:Sci Inst 2718 (1969).

Verge C., Altounian 2. and Datars W.R. J.Fhys. E:Sci Inst 1016 (1977).

Volkov V.M., Kustov E.F., Makietov T.K. and Steczko G.
Phys. Stat. Sol. (B) 104649 (1981)
Wallace W.E. Rare Earth Intermetallics (Academic Press, London, 1973).
Weiss P. J. de Phys. 6 661-690 (1907)
Wilkinson M.K., Child H.R., McHargue C.J., Koehler W.C. and E.O. Woolan,
Phys. Rev. 122 1409.(1961).
Willcock S.H.M. PhD Thesis (Durham University 1985)
Williams H.J., Bozorth B.M. and Shockley W. Phys. Rev. 75155 (1949)
Yamada O., Tokuhara H., Ono F., Sagawa M. and Matsuura Y.
J. Mag. Mag. Mat. 54-57 585 (1986).

Yamauch1 H., Yamada M., Yamaguchi Y. and Yamamoto H.
J. Magn. Magn. Mat. 54-57 575 (1986).

Yoshida K. Fhysics Review 106893 (1957)
Zhao T, Jin H., Deng J., Wu F., Song J. and Shi Y.
J. Mag. Mag. Mat. 54-57 573 (1986).

Appendix 1.Modifications to Duchess

A1.1 Alterations to the cryostat and temperature controller.

During the investigations a leak in the central sample tube of the Duchess meant that this had to be replaced. The opportunity was taken to replace the copper block on the bottom and improve the temperature control. The original design is shown roughly in Figure A1.1, and the present design is shown in figure A1.2. The original design suffered two drawbacks.
i) After a period of operation of the cryostat for about three days there was a tendancy for the flow of Helium to drop, and eventually for it to be 1mpossible to get any flow.
11) The heater coil burnt out on a number of occasions, and replacement required not only dismantling the croystatic vessels to get access to the sample tube, but also winding a new heater in a groove with the Helium inlet tube across it. With the old heater 300 K was the maximum that could be achieved.

These were solved in the present design:

1) The removal of the loop below the bottom of the copper block removed a condensation trap. The flow of helium to this point meant that this was always very cold. Any air or other vapour which got into the system and condensed was trapped and frozen at this point plugging the pipe. It was then almost impossible to remove. Any appreciable helium flow induces in the opposite direction to try and warm this tube went was straight back towards the liquid helium reservoir and the offending plug would be frozen further up the tube.

Fig A1.1 Original heater block design.

FigA1.2 Present Heater Block

The new design removes this trap and leaves the lowest point within the copper block. This can be warmed directly by the electric heater on the block and a small flow of helium from the reservoir will drive the gas off up the sample tube. There have not been any problems with plugging from this cause since the modification.
ii) The heater block is bolted onto the bottom of the copper block. There is also a spare heater in the event of one burning out during a run. This heater is more easily replaced (although the cryostatic containers still need to be dimantled!. It is constructed with motor vehicle exhaust putty as insulator for the non-inductively wound constantan coil. This convenient form of fire clay is easily painted on during winding and forms a good high temperature insulator to hold the windings. It is however dificult to remove and is best used in places where the whole heater can be replaced. With this temperatures around 400 K can be obtained, limited by the increased boil off of hellum due to heat leaks across the inner vacuum space and by the construction of the torque insert.

A trip was designed for the heater circuit which plugs into the temperature controller. The trip works by comparing the voltage and current across the heater coil and tripping when the resistance rises above a preset value. Unfortunately this trip does not work with the present constantan heater, as the resistivity of constantan does not alter sufficiently before it burns out. A second trip was therefore also installed, which works on a copper constantan thermocouple sandwiched between the heaters and trips a relay if the temperature rises above a preset value. This trip is a standard temperature controller available from RS.

A1.2 Other modifications.

1) Three carbon film resistors in parallel were added at the bottom and top of the magnet. These are just used to check on the temperature of the magnet during cool down or after a short period of idleness. Three resistors are used on a triple fail safe theory, as cycling between room temperature and 4.2 K can cause resistors to fail.
2) Leads were connected up to the terminals of the magnet, through three large resistors in parallel. When the magnet current is altered (ramping) it takes a considerable period of time for the magnet to reach equilibrium due to its very large inductance.

This causes two problems. The current is used as a measure of the field and uncertainly in the actual current in the magnet is therefore an error in the field. Secondly the magnet can only be placed in persistant mode when the current has stabilized and a large error in current can cause a quench efther going into persistant mode or coming out of it.

A meter in the power supply measures the voltage at the power supply terminals, but this also includes the voltage drop down the leads carrying the energising current to the magnet. The leads to the magnet terminals allow direct measurement of the voltage across the magnet, and when this is zero then the current in the magnet is the same as that in the power supply.

These are also useful to indicate whether the superconducting switch is normal or superconducting when the magnet is taken out of persistant mode as a slight voltage across the terminals is always present when the switch is normal.
3) A Hall Probe was installed in the space below the variable temperature insert. This allows for a measure of the field during ramping. This was installed for use in conjunstion with the VSM, to allow readings to be taken during ramping.

Appendix 2: Computer progams used

This appendix contains listing of the more important programs used during the work for this thesis. The programs for the micro are written in BBC Basic (B). Those for the mainframe, an AMDAHL 5020 with an MTS operating system are written in PASCAL $(P$ (for use with the PASCALJB compiler) or FORTRAN (F) (For use with the FORTRAHVS compiler).

These programs are all stored on a tape registered as MJH1 at Durham University Computing Centre under the names given in the titles. *FS can be used to retrieve them.

General Programs

1) LAUE.BBC(B) - this is a program written to calculate the position of spots on a back scatter x-ray photograph from the crystal parameters and the alignment. Although it does no form factor and therefore intensity calculations it was found to be useful in aligning the samples.
2) CRYSTAL.BBC (B) - this is a program to draw on the screen the local enviroment of an atom within a tetragonal crystal system. It could be easily adapted for another system. The lattice constants are in line 350 and the number of atoms - 1 in line 390. The atom positions are given in cell coordinates from line 3230.
3) MUTUAL.BBC(B) - this calculates the mutual induction of the coil system In free space as a function of angle for a given coil size and separation. It is a simple finite element calculation and takes a long time for the micro to do. It was used during development of the instrument.

Torque magnetometer programs (BBC).

1) TORQUE.BBC (B) - this is the control program for the instrument, which controls the current in the coil, and calculates the torque as it goes. The data is stored on disk and the screen lists the data as it is collected.

Abstract

2) PIT.BBC(B) - this calculates a fit to a reference run without a sample to give an angular correlation flle used by TORQUB.BBC and TORCALC.BBC. It takes as input the data file produced by TORQUE.BBC.

Abstract

3) TORCALC. $B B C(B)$ - this recalculates the torque from the raw voltage and current data stored by TORQUE.BBC and a correlation from FIT.BBC. It is useful if a better reference is done after some data is collected.

Abstract

4) ROTHYS.BBC(B) - this calculates the rotational hysteresis in a torque curve, either by straight line fits or by a sixth order polynomial fit to sets of points along the curve. In tests the results only differed by a few percent.

Data Utility Programs (BBC).

1) SKETCH.BBC (B) - this sketches the data on the screen.
2) HP.BBC(B) - this plots the data on a Hewlett Packard plotter.

KRRMIT is used to transfer the data from the BBC to the University AMDAHL mainframe machine for curve fitting. The description of this program and copies are available from the Lancaster University Computing Centre.

Data processing programs (MTS).

1) COMV.PAS (P) is used to convert the transfered BBC data files to MTS text files that could be read easily on the MTS system. This means that a BBC data file can be directly transmitted to the mainframe.
2) FIT.PAS (P) is a program written to perform a least squares fit on the experimental data. The program includes the facility to test the routine with simulated experimental data with random Gausian noise. The program calls various subroutines from the MAG suite of subroutines. (main program is in flle TFIT.PAS on the tape, other files \%included are also required).
3) FIT.FOR(F) This is the interface for the HAG least squares routines. It sets up a datablock then calls the routines. There is also a subroutine (LSFUN1) which is required by the least squares subroutine and contains the function to be fitted.
4) GRAPH.PLOT (P) This is a flexible plotting routine to plot the data and or the fits. It uses the GHOST80 suite of plotting subroutines. These are written in FORTRAN77 and are all declared as external fortran routines at the beginning of the program, even though they are not all used by the program. A number of the procedures used are also used in FIT.PAS and so are not included in this listing. (main program is in GRAPH.PAS on the tape, other files \%included are also required).
5) GHOST.FOR(F) This is just a series of fortran routines which were written to enable PASCAL procedures to call GHOST80 subroutines with strings as parameters. This means that all the GHOST80 routines can be accessed from PASCAL.
```
Listing of LAUE.BBC at 22:28:07 on MAY 12, 1987 for CCid=PHP7
    REM Laue back reflection photograph simulations.
    REM
    REM For Cubic. Tetragonal and hexagonal systems.
    REM
    REM M.J.Hawton Durham Univ. 1985/6.
    REM
    MODE 0
    Sk i p=FALSE
    REM
    PROCAskinput
    REPEAT
        IF NOT Skip PROCAskplane
        ON ERROR GOTO 260
        IF NOT Skip PROCPlotscreen
        ON ERROR GOTO 2300
        Skip=FALSE
        REPEAT
            PRINT TAB(40,0)" press P:new plane, C:hard copy, Q:quit"
            REPEAT:AS=GET$
                    UNTIL A S="q" OR A S="Q" OR A S="p" OR A S="P" OR A S="C" OR A S="c"
                    IF AS="c" OR AS="C" THEN PROCHardcopy
            LNTIL AS<>"c" A\D AS<>"C"
        NTII AS = "q"OR AS="Q"
    E\\D
    :
    Sk ip=TRUE:GOTO 110
    :
    DEFPROCPlotscreen
    PROCPrintscreen
    FOR Xd%=-Max% TO Max%
        FOR Yd%=-Max% TO Max%
            FOR Zd%=()TO) Max%
                BCC_cond=(Xd%+Yd}%+\textrm{Zd}%)/2=(\textrm{Xd}%+\textrm{Yd}%+\textrm{Zd}%)\textrm{DIV
```



```
                    FCC_cond=FCC_cond AND (Yd%+Zd%)/2 =(Yd%+Zd%)DIV2
                    Hex_cond=(-.\d%+Yd%+Zd%)/3=(-Xd%+Yd%+Zd%)DIV3
                    IF Group$="Simple cubic" THEN PROCP1ot(Xd%,Yd%,Zd%)
                    IF Group$="BCC"AND BCC_cond THEN PRCCP10t(Xd%,Yd%,Zd%)
                    IF Group = "FCC" AND FCC_cond THEN PROCP1ot(Xd%,Yd%,Zd%)
                    IF Group$="Hexagonal" AND Hex_cond THEN PROCHexplot(Xd%,Yd%,Zd%)
                    IF Group $="Tetragonal" THEN PROCTetplot(Xd%,Yd%,Zd%)
            NEXT:NEXT:NEXT
        ENDPROC
440:
450
460 DEFPROCPrint
470 *FX7,7
480 *FX5,2
490 *FN8,7
500 *FX6,0
510 CHAIN "P.NEWDUMP"
520:
530 :
540 DEFPROCAskinput
550 CLS:PRINT"Laue Patterns":PRINT"................,
560 INPUT""Distance to screen is ","(in cm.)";D
570 MaxPhi=ATN(10/D)
580 Xscale=0.0144:Yscale=0.0138
```

```
    590 Ncentre=610:Ycentre=505
    600 Xwidth=430: Ywidth=450
    610 PRINT''Thich crystal group"
    620 PRINT"(S=Simple cubic,F=FCC, B= BCC,H=Hexagonal,T=Tetragonal)"
    630 Endproc=FALSE:REPEAT:AS=GETS
    640 IF AS="F".OR A S="f" THEN Group $="FCC":Endproc=TRUE
        IF AS="B" OR A }$="b" THEN Group S="BCC":Endproc=TRU
        IF AS="S" OR AS="s" THEN Group$="Simple cubjc":Endproc=TRUE
        IF A }$="H"OR AS="h" THEN Group S="Hexagonal":Endproc=TRUE
        IF AS="T" OR A$="t" THEN Group$="Tetragonal":Endproc=TRUE
        IF NOT Endproc THEN VDU?
        UNTIL Endproc
    lF Group$="Hexagonal" OR Group$="Tetragonal";INPUT"" C=";C;" A=";A
    ENDPROC
    .
    DEFPROCAskplane
    INPUT","lndicies of normal plane are",'"H";H:INPUT"K";K
    IF Group$="Hexagonal" THEN l=-(H+K): PRINT "l=";l
    INPUT"L";L
    INPUT"'What is the maximum index?","(suggest not > 7)";Max%
    PRINT,""Do you want to see indicies for each point(y/n)":AS=GETS
    Prompt=FALSE:IF AS="Y" OR AS="y" THES Prompt=TRLE
    :
    REM Calculate indicies and rotate if X=Y=0 as algorithm relies on the
    REM component of the perp. vector not parrallel to 0,0,1
    REM All indicies are made to 'pseudo-cubic' indjcies
    \%=H:Y%=人:Z%=1
    Rotate=FAlSSE
    OK=FALSE:IF Group$="Hexagonal" THEN OK=TRUE:X=H:Z=(k-I)/SQR(3):Y=L*A/C
    IF OK:IF }X=0\mathrm{ AND Y=0 THEN Rotate=TRLE:Spare=Z:Z=Y:Y=X:X=Spare
    OK=FALSE:IF Group S="Tetragonal" THEN X=H:Y=K:Z=L*A/C:OK=TRLE
    IF OK:IF X=0 AND Y=0 THEN Rotate=TRLE:Spare=Z:Z Y Y:Y=X:X=Spare
    ()}=\textrm{FALSE
    IF Group$<>>"Hexagonal" ANDGroup$<>"Tetragonal"ANDX%=0 ANDY%=0:OK=TRUE
    IF OK :Rotate=TRUE:Spare= Z%:Z%=Y%:Y%=X%:X%=Spare
    ENDPROC
    :
    :
    DEFPROCPrintscreen
    CLS
    MOVE Xcentre+1,Ycentre+1
    FOR 1%=-1 TO 1 STEP 2:FOR J%=-1 TO 1 STEP 2
        DRAW 1%+Xcentre, 1%*J%+icentre
1030 NEXT :NEXT
1040 MOVE Xcentre+Xwidth, Ycentre+Ywidth
1050 FOR 1%=-1 TO 1 STEP 2
1060 FOR J%=-1 TO 1 STEP 2
1070 DRAW 1%*Xwidth +Xcentre,l%*J%*Ywidth +Ycentre
1080 NEXT:NEXT
1090 PRINTTAB(0,0);"Laue back reflection from ";H;" ";K;" ";
1100 IF Group$="Hexagonal" THEN PRINT;I;" ";L ELSE PRINT;L
1110 PRINTTAB(0,31);Group$;" max index:";Max%;", ";D;"cm to screen";
1120 IF Group$="Hexagonal" OR Group$="Tetragonal":PRINT;", C=";C;", A=";A;
1130 ENDPROC
1140 :
1150 :
1160 DEFPROCP1ot(Xd%,Yd%,Zd%)
```

```
L.isting of LAUE.BBC at 22:28:07 on MAY 12, 1987 for CCid=PHP7
1170 IF Rotate THEN Spare%=Zd%:Zd%=Yd %:Yd%=\d%:Xd%=Spare%
1180 ModNd=FNIMod(. .d%, \d%,Zd%)
1190 IF ModNd=0 THEN ENDPROC
1200 Xdot.Xd=FNIDOt (X%,Y%, Z%,Xd%,Yd%,Zd%)
1210 ModX=FNIMod(X%,Y%, 2%)
1220 lF (ModX*ModXd)>1E-20 THEN CosPhi=(XdotXd;(ModX*ModXd))
1230 1F (ModX*ModXd)<=1E-20 THEN CosPhi=SGN(X%*Xd%)
1240 IF CosPhi>1 THEN CosPhi=1
1250 IF CosPhi<-1 THEN CosPhi=-1
1260 Phi=ACS(CosPhi)*2
1270 Deltheta=0
1280 IF Phi>Pl/2:Phi=Phi-PI:Deltheta=Pl:IF Phi>PI/2:Phi=Phi-PI:Deltheta=0
1290 IF ABS(Phi)}>\textrm{MaxPhi OR ABS(Phi)<1E-5 THEN ENDPROC
1300 Alpha=XdotXd/(ModX*ModX)
1310 . \b=Xd%-Alpha*X%
1320 Yb=Yd%-Alpha*Y%
1330 Zb=Zd%-Alpha*Z%
1340 NdotXb=FNRDot( - Y%,X%,O,Xb,Yb,Zb)
1350 ModXb=FNRMod(Xb,Yb,Zb)
1360 ModN=FNIMod ( - Y%, X%,0)
1370 IF (ModN*ModXb)>1E-20 THEN CosTheta=NdotXb/(ModN*ModXb)
1380 IF (ModN*ModXb)<=1I:-20 THEN CosTheta=SGN(Yb*.*%)
1390 IF Cos`heta>1 THEN CosTheta=1
1400 IF CosTheta<-1 THEN CosThe ia=-1
1410 1F Zb<>0 THEN Theta=SGN(Zb)*ACS(CosTheta)+Deltheta
1420 IF Zb=0 THEN Theta=ACS(CosTheta)+1)eltheta
1430 PROCP1otpoint
1440 ENDPROC
1450 :
1460 :
1470 DEFPROCP1otpoint
1480 R=D*TAN(Phi)
1490 is=R*SJN(Theta)/Iscale
1500 is=R*COS(Theta)/Y'scaje
1510 lF ABS(Xs)>Xwidth OR ABS (Ys)>lwidth THEN ENDPROC
1520 Xs=Xs+Xcentre
1530 Y's=Ys+Ycentre
1540 PLOT69.Xis.Y's
1550 PRINT TAB(40,0)" ";
1560 PRINT TAB(40,0);\d%;" ";Yd%;" ";
1570 IF GroupS="Hexagonal" THEN PRINT;Id;" ";
1580 PRINT;" ";Zd%;
1590 IF NOT Prompt THEN ENDPROC
1600 PRINT;" - any key to continue"
1610 REPEAT:AS=INKEY$(1):PLOT70,.\s,\s:Now=TIME:REPEAT:UNTIL TIME >Now+10
1620 PLOT69,Ns, Ys :Now=TIME:REPEAT:LNTIL TIME>NOW+10:UNTIL. A }<<>"
1630 PLOT69,Xs,Ys
1640 PLOT69,Xs-,Ys
1650 ENDPROC
1660 : ir
1670 :
1680 DEFFNRMod(X,Y,Z)=SQR(X*X+Y*Y+Z*Z)
1690 DEFFNIMod (X%,Y%,Z%)=SQR(X%*X%+Y%*Y%+Z%*Z%)
1700 DEFFNRDot(X,Y,Z,X1,Y1,Z1)=X*X1+Y*Y1+Z*Z1
1710 DEFFNIDot(X%,Y%,Z%,X1%,Y1%,Z1%)=X%*X1%+Y%*Y1%+Z%*Z1%
1720 :
1730 :
1740 DEFPROCHexplot(Xd%,Yd%,Zd%)
```

Listing of LAUE.BBC at 22:28:07 on MAY 12, 1987 for CCid=PHP7

```
1750 |d=-(Xd%+Yd%)
1760 IF ABS(Id)>Max% THEN ENDPROC
1770 Zd=(Yd%-1d)*0.577.35
1780 Yd= Zd%*A C
1790 \lambdad=\d%
1800 PROCRP1ot(.Xd,Yd,Zd)
1810 ENDPROC
1820
1830:
1840 DEFPROCTeiplot(Xd%,Yd%,Zd%)
1850 Xd=Xd%:Yd=Yd%:Zd=Zd%*A/C
1860 PROCRP1ot(Xd,Yd,Zd)
1870 ENDPROC
1880 :
1890 :
1900 DEFPROCRP1ot(Xd,Yd,Zd)
1910 IF Rotate THEN Spare=Zd:Zd=Yd:Yd=Xd:Xd=Spare
1920 ModXd=FNRMod(Xd,Yd,Zd)
1930 IF ModXd>Max%+1 OR ModXd=0 THEN ENDPROC
1940 XdotXd=FNRDot(X,Y,Z,Xd,Yd,Zd)
1950 ModX=FNRMod(X,Y,Z)
1960 IF (ModX*ModXd) <1E-20 THEN CosPhi=(XdotXd/(ModX*ModXd))
1970 IF (ModX*ModXd)<=1E-20 THEN CosPhi=SGN(X*Xd)
1980 1F CosPhi>1 THE\ CosPhi=1
1990 1F CosPhi<-1 THEN CosPhi=-1
2000 Phi=ACS(CosPhi):2
2010 De]theta=0
2020 1F Phi>Pl:2:Phi=Phi-Pl:Deltheta=Pl:IF Phi>Pl 2:Phi=Phi-pl:Deltheta=0
2030 IF ABS(Phi)>MaxPhi OR ABS(Phi)<1E-5 THEN E\DPROC
2040 Alpha=\dot.dd/(Mod.**ModX)
2050 Xb=Nd-Alpha*..
2060 Yb=Yd-Alpha*}
2070 Zb=Zd-Alpha*Z
2080 NdotXb=FNRDot( Y, X,0,Nb,Yb,Zb)
2090 ModXb=FNRMod(Xb,Yb,Zb)
2100 ModN=FNRMod(-Y,N,0)
2110 1F (ModN*ModNb)>1E-20THEN CosTheta=NdotXb/(ModN*ModXb)
2120 IF (ModN*ModXb)<=1E-20 THEN CosTheta=SGN(Yb*X)
2130 IF CosTheta>1 THEN CosTheta=1
2140 IF CosTheta<-1 THEN CosTheta=-1
2150 1F Zb<>0 THEN Theta=SGY(Zb)*ACS(CosTheta)+Deltheta
2160 1F Zb=0 THEN Theta=ACS(CosTheta)+Deltheta
2170 PROCP!otpoint
2180 ENDPROC
2190
2200 :
2210 DEFPROCHardcopy
2220 Yscale=0:0170:Xscale=0.0101
2230 Xwidth=580:Ywidth=350
2240 INPUT ','What is the title";Titles
2250 Prompt=FALSE:PROCPlotscreen
2260 PRINT TAB(40,0)" M.J.Hawton 1986"
2270 PRINT TAB(10,3);Title\
2280 PROCPrint
2290 ENDPROC
2300 REPORT:PRINT;" at line ";ERL
2310 STOP
```

```
    REM Program to plot local envjroments
    REM of ions in a tetragonal crystal structure.
    REM
    REM M.J.Hawton
    REM
    MODE 1
    PROCSetup
    prócindicies
    PROCOptions
    REPEAT
        PROCScreen
        PRINTTAB(28,0);"R - redraw":PRINTTAB(28,1);"P - printer"
        A $=GET$
        IF AS="p" OR A = "p" THEN PRINTTAB(28,0);" ":PRINTTAB(28,1);"
        IF A$="R" OR A ="r" THEN PROCDirection:Redraw=TRLE ELSE PROCOptions
        UNTIL FALSE
    .
    DEFPROCSetup
    VDU19,0,0,0,0,0:VDU19,1,1,0,0,0:VIDU19,2,3,0,0,0:VDU19,3,7,0,0,0
    BG=2:REM Background colour
    AT=3:REM Atom colour
    LI=0:REM line colour
    Printer=FAlSE:Cs=64:REM Sections of circle
    MNPT"Do you want to take a hard copy";AS
    IF AS="Y" OR AS="Y" THEN Printer=TRUE
    \s=1:\min=350:\max=1200: \min=130: \max=900
    REM Stretch in X direction for hard copy.
    IF Printer THEN Xs=1.108:Xmin=320:Xmax=1090:Ymin=130:Ymax=900
    la=0.5:Ax=120:Ay=650:Af=1.3:Nd= - 16:Yd=16:REM Ax is positioning
    Sx=30:Ls=2.0:Lsy=50:Sy=200:Has=10:REM Scale positioning
    DIMCs(Cs-1).S%(Cs-1),S(Cs-1),C(Cs-1),L(2),X(2),Y(2),Z(2),Min(2),
            Max(2), Bou%(2)
    Step=2*P1/Cs:FOR N=0 TOCs-1:C(N)=COS(N*Step):S(N)=SIN(N*Step):NEXT
    X(0)=1:X(1)=0.6:X(2)=0
    Y(0)=0:Y(1)=0.3:Y(2)=1 :REM default directions
    A=8.8:C=12.19:L(0)=A:L(1)=A:L(2)=C : REM lattice constants
    Fact=1.3:REM Factor for nearest neighbour criteria
    Fact2=1.1:REM Factor for drawing nearest neighbour lines
    Nearest=-1
    Number %}%=6
    DIM Type%(Number%),Pos(Number%,2),Scr(Number%,2)
    DIM Order%(Number%), Near%(Number%), Neigh%(Number%)
    DIM Sep%(Number%), Bound%(Number%,2), Size(Number%)
    ENDPROC
    DEFPROCIndicies
    FOR N=0 TO Number%
        READ Type%(N),Pos(N,0),Pos(N,1),Pos(N,2)
        lF Type%(N)=0 THEN Size(N)=0.5 ELSE Size(N)=0.1
        lF Type%(N)=1 THEN Size(N)=0.2
        NEXT
    ENDPROC
520
5 3 0 ~ D E F P R O C O p t i o n s
535 Redraw=FALSE
540 PROCC1s:PRINTTAB(0,3)
550 Ce11=FALSE:Connect=FALSE:Conne ar=FALSE
560 INPUT""Do you want the whole cell drawn";AS
```

```
Listing of CRYSTAL.BBC at 22:14:26 on MAY 12, 1987 for CCid=PHP7
570 1F AS=""" OR AS="Y" THEN Ce 11=TRLE
580 Atomfo= 1:IF NOT Cell THEN INPLT''Which atom do you want";Atonf/c
590 INPLT'"Do you want the neighbours connected","together";AS
600 1F AS="y" OR AS=" "" THEN Connect=TRLE
610 lF NOT Cell THEN INPUT,"Do you want this atom connected to its",
                "neighbours";A$:1F A $="y"OR A ="Y" THEN Connear=TRUE
    PROCDirection
    ENDPROC
6 4 0
650 DEFPROCDirection
660 INPUT '"Viewed from which direction"'"(l,J,K)";Di,Dj,Dk
665 PRINT '"Thank you":VDU7
670 Dx=A*Di:Dy=A*Dj:Dz=C*Dk
6 8 0 ~ 1 F ~ D x = 0 ~ A N D ~ D y = 0 ~ A N D ~ D z = 0 ~ T H E N ~ 7 4 0 ~
690 IF Dx=0 AND Dy=0 AND Dz<>0 THEN X (0)=1:X(1)=0:X(2)=0:Y(0)=0:Y(1)=1
                                    Y(2)=0:Z(0)=0:Z(1)=0:Z(2)=1:GOTO 740
700 R=SQR(Dx *Dx +Dy*Dy +Dz*Dz):R 3=Dx*Dx+Dy*Dy:R 1=SQR(R3)
710 X(0)=-Dy/R1:X(1)=+Dx/R1:X(2)=0
720 1F Dz<>0 THEN R2=SQR(R3+R3*R3/(Dz*Dz)):Y(0)=-Dx/R2:Y(1)=-Dy/R2
                    :Y(2)=R1*R1/(Dz*R2) ELSE Y(0)=0:Y(1)=0:Y(2)=1
730 Z(0)=Dx/R:Z(1)=Dy/R:Z(2)=Dz/R
740 FNDPROC
7 5 0
760 DEFPROCScteen
780 IF Cel1 THEN PROCDrawce 11
790 1F Atonf%:=0 AND Atomfo<=\umber% THEN PROCDrawatom(Atonf%)
800 ENTPRROC
810
820 DEFPROCNeigh
830 FOR Nu=0 TO Number%:PROCNear(Nu)
840 \eigh%o(Nu)=0
850 FOR Nu2=0 TO Numbercm:1F Near%(Nu2) THEN Neigh%(Nu)=Ne igh%(Nu)+1
860 NEXT:PRINT "Atom ":Nu:" has ";Neigh%(Nu);" neighbours.":NEXT
870 E.7DPROC
880
890 DEFPROCPosn(I, J,K)
900 X=Xs*((X(0)*L(0)*I+X(1)*L(1)*J+X(2)*L(2)*K)*Scale+Xmin-Xzero)
910 Y=(Y(0)*L(0)*I+Y(1)*L(1)*J+Y(2)*L(2)*K)*Scale+Ymin-Yzeto
920 ENDPROC
930
940 DEFPROCPosat(N)
950 X=\s*(Scr(N,0)*Scale+Xmin-Xzero)
960 Y=Scr(N,1)*Scale+Ymin-Yzero
970 ENDPROC
980
990 DEFPROCScr(N%)
1000 Scr(N%,0)=(X(0)*L(0)*Pos(N%,0)+X(1)*L(1)*Pos(N%,1)+X(2)*L(2)*Pos(N%,2))
1010 Scr(N%,1)=(Y(0)*L(0)*Pos(N%,0)+Y(1)*L(1)*POs(N%,1)+Y(2)*L(2)*Pos(N%,2))
1020 Scr(N%,2)=(Z(0)*L(0)*Pos(N%,0)+Z(1)*L(1)*POs(N%,1)+Z(2)*L(2)*Pos(N%,2))
1030 ENDPROC
1040
1050 DEFPROCDraw( S,I , J,K)
1060 IF I=0 THEN PROCDraw( S, 1, J,K)
1070 IF J=0 THEN PROCDraw( S,I,1,K)
1080 IF K=0 THEN PROCDraw( S,I,J.1)
1090 PROCPosn(1,J,K):PROCCircle(S,X,Y):ENDPROC
1100 ENDPROC
1110
```

```
1120 DEFPROCDrauat(N):PROCPosat(N)
1130 PROCCircle(Size(S).S,Y):ENDPROC
1140
1150 DEFPROCCircle(R,X,``)
1160 LOCAL N%:GCOL 0.AT:R=R*Scale
1170 FOR N%=0TOCs-1:C%(N%)=X+Xs*R*C(N%):S%(N%)=Y+R*S(N%):NEXT
1180 FOR N%=0TOCs - 4 STEP 2:MOVEX,Y:PLOT4,C%(N%),S%(N%)
                            :PLOT85,C%(N%+2),5%(N%+2)
1190 NEXT:MOVEX,Y:PLOT4,C%(Cs-2).S%(Cs-2):PLOT 85,C%(0),S%(0)
1200 GCOL 0,LI:MOVE C%(0),S%(0)
1210 FOR N%=1TOCs-1:DRAW C%(N%),S%(N%):NEXT
1220 DRAW C%(0),S%(0):ENDPROC
1230
1240 DEFPROCConnect(N1,N2)
1250 GCOL 0,LI
1260 PROCPosn(Pos(N1,0),Pos(N1,1),Pos(N1,2)):MOVE X,Y
1270 PROCPosn(Pos(N2,0),Pos(N2,1),Pos(N2,2)):DRAW X,Y
1280 ENDPROC
1290
1300 DEFPROCConat (N2,N1)
1310 LOCAL X1,X2,Z,F:GCOL O,I.I
1320 PROCPosat(N1):NOUE X,Y:X1=X:Y1=Y:PROCPosat(N2)
1.30 X=X-X1: Y=Y'\1:Z=(Scr(N2,2)-Scr(N1,2))*Scale
1340 F=Size(N2)*Scale/SQR(X*X+I*Y+Z*Z)
1350 PLOT1, X*(1-.\s*F),Y*(1-F)
1.360 E\DPROOC
1370
1380 DEFPROCDrawcel1
1.390 Xf=0:Yf=0:Xf 2=0: Yf 2=0
1400 FOR D%=0 TO 2:Xf=Xf+ABS(X(D%)*I(D%)):Yf=Yf+ABS(Y(D%)*L(DF))
1410 IF S(DF
```



```
1430 NEXT
1440 Scale=(Xmax - Xmin), Xf:Sc=(Ymax - Ymin) Yf
1450 IF Sc:Scale THEN Scale=Sc
1460 Xzero=\f2*Scale:Yzero=Yf 2*Scale
1470 PROCScr(0):N2%=0:Zmin=Scr(0,2)
1480 PROCC1s:La=1.5:PROCAx is
1490 PRINTTAB(0,31);"Lnit cell viewed from (";Di;",";Di;",";Dk;").";
                                    TAB(0.0)
1500 FOR N1=1 TO Number%:PROCScr(N1)
1510 IF Scr(N1,2)<Zmin THEN Zmin=Scr(N1,2):N2%=N1
1520 Order%(N1)=-2:.NEXT
1530 Order%(N2%)=-1:Fi%=N2%:N 3%=N2%
1540 REPEAT:Zmin=999999999:FOR N1=0 TO Number%
1550 IF Order%(N1)<>-2 THES 1570
            IF Scr(N1,2)<Zmin THEN Zmin=Scr(N1,2):N2%=N1
            NEXT:IF N2%<>-1 THEN Order%(N3%)=N2%:N 3%=N2%:Order%(N2%)=-1
    UNTIL Zmin=999999999
    N=Fi%:REPEAT: PROCDraw(Size(N),Pos(N,0), Pos(N,1),Pos(N,2))
        IF Connect THEN PROCNear(N):PROCConnectnear(N)
        N=Order%(N)
    UNTIL N=-1
    ENDPROC
    DEFPROCDrawatom(N%)
    LOCAL N1%,N2%,N3%,D%
    IF NOT Redraw THEN PROCNear(N%): PROCListnear(N%)
```

```
1680 PROCScr(N%)
1690 N2%=:N%:Zmin=Scr(N%,2): \min2=Scr(N%,0):Ymin2=Scr(N%,1)
1700 Smax2=Scr(Nc,0) : Ymax2=Scr(No,1)
1710 Near%(NF)=TRLE
1720 FOR N 1%=0 TO Number%
1730 IF NOT Near%(Ni%) THEN i850
1740 FOR [DF=0 TO )
1750 IF NOT Bound%(N1%,D%) THEN 1770
1760 IF Pos(N1%,D%)<0.5 THEN POS(N1%,D%)=POS(N 1%,D%)+1
                                    ELSE Pos(N1%,D%)=Pos(N1%,D%)-1
1870 IF Sc<Scale THEN Scale=Sc
1880 Xzero=Smin2*Scale:Yzero=\min2*Scale
1890 Order%(N2%)=-1:1,im=N2%:N3%=N2%
1900 REPEAT
1910 Zmin=999999999:FOR N1%=0 TO Number%
```



```
1930 IF Scr(N1%,2)<Zmin THEN Zmin=Scr(N1%,2):N2%}=\textrm{N
940
1950
1960 PROCCl
1970 PRINTTAB(0,30);"The "::PROCPT(N%)
1980 PRINT "atom at ";:PROCPP(NF,0):PRINT;".";:PROCPP(N%,1)
                            :PRINT:".": PROCPP(N世, 2):PRINT:".";
1990 PRINT";Nearest;" neigh.. viewed from (";Di;",";Dj;",";Dk;").";
2000 PRJNT TAB(0.0):PROCAx is
2010 N1%=Fi%:REPEAT
2020 PROCDrawat(N1%)
2030 IF (NOT Connect AND NOT Connear) OR
            (Connect AND NOT Connear AND N1%=N%) THE\ 2090
    IF Order%(N1%)=-1 THES 2090
    \2%=N1%:REPEAT:N2%=Order%(N2%)
            IF (NOT Connear AND N2% =N%) OR
                    (NOT Connect AND N2%<>N% AND N1%<>N%) THEN 2080
2070 IF FNSep(N1%,.N2%)-(Size(N1%)+Size(N2%))*1000000<Ave*Fact 2
                    AND NOT Boundary PROCConat(N1%,N2%)
            UNTIL Order % (N2%)=-1
        N1%=Order%(N1%)
    UNTIL N1%=-1
    FOR N1%=0 TO Number%
        IF NOT Near%(N1%) THEN 2170
        FOR D%=0 TO 2
            IF Pos(N1%,D%)<0 THEN Pos(N1%,D%)=Pos(N1%,D%)+1
            IF Pos(N1%,D%)>=1 THEN Pos(N1%,D%)=Pos(N1%,D%)-1
            NEXT
        NEXT
    ENDPROC
2190
2200 DEFPROCPT(N%)
```

```
l.isting of CRYSTAl..BBC at 22:14:26 on MAY 12. 1987 for CCid=PHP7
2210 IF Type%(NO)=0 PRINT "Nd":ELSE II Type%(N%)=1 PRINT "Fe";
                                    El.SE PRINT "B":
2220 ENIPPR(OC
2230
2240 DEFPROCPP(N%,DF):Pos%=Pos(N%,DF)*1000+0.5:PRINT;Pos%/1000;:ENDPROC
2250
2270 DEFPROCAx is
2280 GCOL O.Li
2290 PROCPosn(0,0,0):Xz=X:Yz=Y:MOVE Ax, Ay
2300 PROCPosn(La/L(0),0,0):DRAW Ax+X-Xz,Ay+Y-Yz
2310 MOVE Ax+Af*(X-Xz)+Xd,Ay+Af*(Y-Yz)+Yd:VDU5:PRINT "X":VDU4
2320 MOVE Ax,Ay:PROCPosn(0,La/L(1),0):DRAW Ax+X-Xz,Ay+Y-Yz
2330 MOVE Ax+Af*(X-Xz)+Xd,Ay+Af*(Y-Yz)+Yd:VDU5:PRINT "Y":VDU4
2340 MOVE Ax,Ay:PROCPOsn(0,0,La/L(2)):DRAW Ax+X-Xz,Ay+Y-Yz
2350 MOVE Ax+Af*(X-Xz)+Xd,Ay+Af*(Y-Yz)+Yd:VDL5:PRINT "Z":VDU4
2360 MOVE Sx,Sy:PLOT1,Lsy,0:MOVE Sx,Sy
2370 PROCPosn(0,0,Ls/L(2)):DRAW Sx+X-Xz,Sy+Y-Yz:PLOT1,Lsy,0
2380 MOVE Sx+0.7*Lsy,Sy:DRAW Sx+0.7*Lsy,Sy+(Y-Yz)/2-20
2390 MOVE Sx+0.7*Lsy,Sy+(Y-Yz)/2+20:DRAW Sx+0.7*Lsy,Sy+(Y-Yz)
2400 MOVE Sx+0.7*Lsy-16,Sy+16:DRAW Sx+0.7*Lsy,Sy:DRAWSx+0.7*Lsy+16,Sy+16
2410 MOVE Sx+0.7*Lsy-16.Sy-16+Y-Yz:DRAW Sx+0.7*I.sy.Sy+Y-Yz
:DRAWS x -0. 7'1.sy+16.Sy-16+Y-Yz
2420 \MOE Sx+20.Sy+(Y-Yz):2+16:\DC5:PRINT"0.2nm":\TLf
2430 E\DPROC
2440
2450 DEIPPROCCIs
2460 CLS:COIOUR LJ:COIOLR 128+BG:GCOI. O.BG:MOVE 0.0:MOVE0.1024
    PLOT85.1280.1024:MOLE 0,0:NOVE1280,0:PlOT85,1280,1024
2470 GCOL 0,Ll:MONE 10,1018:VDL5:PRINT"Siructure of Nd"::PLOT 0,0, -16
                    PRINT"2"::PLOT 0,0,16:PRINT"Fe"::PLOT 0.0.-16:PRIXT"14";
                            PLOT 0,0,16:PRINT"B.";:\DC4,23,1,0;0;0;0:
2480 ENDPROC
2490
2500 DEFPR(OCConnectnear(N)
2510 LOCAL M:FOR M=0 TO Number%.
2520 1F Near%(M) AND NOT (Bou%(0) OR Bou%(1) OR Bou%(2))
                                    THEN PROCConnect(N,M)
2530 NEXT
2540 FNDPROC
2550
2560 DEFPROCOrder(N%)
2570 LOCAL N1%,N2%,N3%,N4%
2580 FOR N1%=0TONumber%:Near%(N1%)=0:Order%(N1%)=N1%+1
                                    Sep%(N1%)=FNSep(N%,N1%)
        FOR N2%=0 TO 2:Bound (N1%,N2%)=Bou%(N2%): NEXT
    NEXT
    Fi%=0:IF N %=0 THEN Fi%=1
    N4%=-1
    REPEAT
        Max%=Sep%(Fi%):N1%=Fi%:N2%=-1:N 3%=Order%(Fi%)
        REPEAT
            IF Sep%(N3%)>Max% THEN Max%=Sep%(N3%):N2%=N1%
            N 1%=N 3%:N 3%=Order%(N3%)
            UNTIL N }3%=-
        IF N2%=-1 THEN N1%=Order%(Fi%):Order%(Fi%)=N4%:N4%=Fi%:Fi%=N1%
                                ELSE N1%=Order%(N2%):Order%(N2%)=Order%(N1%)
                            :Order%(N1%)=N4%:N4%=N 1%
        UNTIL Order%(Fi%)=-1
```

```
Listing of CRYSTAL.BBC at 22:14:26 on MAY 12, 1987 for CCid=PHP7
    2710()rder%(X%)=1Fi%:Order%(Fi%)=\4%
    2720 PRI\T "At Two Time=":TIME
    2730
    2740 End=FALSE:N3%=1:N1%=Order%(X%):Ave=Sep%(N1%):Near%(N1%)=TRLE
    2750 REPEAT
    2760 IF Sep%(N1%)<Ave*Fact THEN Ave=(Ave*N3%+Sep%(N1%))/(N3%+1)
                                    Near%(N1%)=TRLE:N \ % = N 3%+1 ELSE End=TRUI:
277() N1%=Order%(N1%)
2780 LNTIL End
2790 ENDPROC
2800
2810 DEFPROCNear(N%)
2820 LOCAL N1%.N2%
2830 FOR N1%=0TONumber%:Order%(N1%)=-2:Near%(N1%)=0:Sep%(N1%)=FNSep(N%,N1%)
2840 FOR N2%=0 TO 2:Bound%(N1%,N2%)=Bou%(N2%):NEXT:NEXT
2850 Fi%=0:IF N%=0 THEN Fi%=1
2860 Min%=Sep%(Fi%):N1%=Fi%:REPEAT:N1%=N1%+1
2870 IF N 1%=N% THEN 2890
2880 IF Min%>Sep%(N1%) THEN Min%=Sep%(N1%):Fi%=N1%
2890 UNTIL N1%=Number%
2900 Ave=Sep%(Fi%):Near%(Fi%)=TRLE:Order%(N%)=Fi%:N 2%=1:N 3%=Fi%:End%=FALSE
2910 REPEAT:Fi%=-1:REPEAT:Fi%=Fi%+1:UNTLL Fi%<<<N AND NOT Near%(Fi%)
2920 Min%=Sep%(Fic;):N1%=Fi%:REPEAT:N1% =N1每+1
```



```
                                    THEN Min%=Sep%(N1%):Fi%=N1%
                LNTlL N10}=Numberc
        IF Min% Ave*Fact THEN Ave=(Ave*N2%+Min%);(N2%+1):Order%(N3%)=Fi%
                                    \Near%(Fi%)=TRLE:N2%=N2%+1:N 3%=Fi% ELSE End %=TRLE
        LNTIL End%
    Vearest=N2%:Order%(N3%)=-1
    I:\DPROC
    DIEFPROClistnear(NC.)
    PROCCls
    1F Printer THEN VDL2
    PRINTTAB(0,3) "Nearest nejghbours of ";:PROCPT(N%)
            :PRINT" atom (";Atomfo;")."
    3040 N1%=0:PRINT '" l J Sepn."'
3050 REPEAT
        PRINT:N1%:")":TAB(5);:PROCPT(N%):PRINT;"(":N%:")":TAB(12);
        PROCPP(N%,0):PRINTTAB(18):: PROCPP(N%,1):PRINTTAB(24);:PROCPP(N%,2)
        PRINTTAB(30);((Sep%(N%)+50) DIV 100)/10000
        N%=Order%(N%):N1%=N1%+1:LNTIL N%=-1
    PRINT',
    IF Printer THEN VDCB
    PRINT"PRESS A KEY TO COMTINE";:AS=GETS:VDU'7:PRINT" - THANK YOU ";
    lF Printer THEN VDL'2,12,3
    ENDPROC
    DEFFNSep(N1%,N2%)
    LOCAL J,M1%,Sepn:Sepn=0:Boundary=FALSE
    FOR M1%=0 TO 2:Bou%(M1%)=FALSE:Sep=ABS(Pos(N1%,M1%)-Pos(N2%,M1%))
        IF Sep>0.5 THEN Bou%(M1%)=TRUE: Boundary=TRUE:Sep=1-Sep
        J=L(M1%)*Sep:Sepn=Sepn+J*J:NEXT
    =1000000*SQR(Sepn)
3220
3230 REM Nd f sites
3240 DATA 0,0.26984,0.26984,0, 0,0.73016,0.73016,0
```

I.isting of CRYSTAL. BBC at 22:14:26 on MAY 12, 1987 for CCid=PHP7


```
1.isting of MCTUAL.BBC at 22:29:08 on MAY 12, 1987 for CCid= PHP7
```

```
REM Calculation of the angular dependance
REM of the mutual inductance of a
REM circular and a square coil
REM - the square coil inclined at an
REM angle Phi from the normal to the
60 REM circular coil
70 REM
00 REvi M.j.Hawton Durham Sept 84
90 REM
100 MODE 0
110 Open=FALSE:ON ERROR GOTO 310
120 PROCOpenfile
130 PROCDraw
140 PROCAsk
150 PROCInit
160 FOR Angle=0 TO 360 STEP Step
170 Phi=Angle*PI/180
180 PROCCalc(Phi)
190 Fact=1:Prefix $=""
200 IF ABS(M)<1 THEN Fact=1E-3:Prefix$="milli"
210 IF ABS(M)<1E-3 THEN Fact=1E-6:Prefix$="micro"
220 JF ABS (M)<1E-6 THE\ Fact=1E-9:PrefixS="nano"
230 IF ABS(M)<1E-9 THEN Fact=1E-12:Prefix S="pico"
240 PRINT#File,Angle.M
250 MF}=\textrm{M}/(\textrm{Fact*}1\textrm{E}-3):\textrm{M}=\textrm{MF}/\mp@code{1E
260 PRINT"Angle=":Angle;"\ut. Ind.=";M:" ";PrefixS;" Henrys"
270 NEKT
280 CLOSE#Fi]e
290 END
300 :
310 1F Open ClOSE#File
320 REPORT:PRINT" at line ":ERI.
330 END
340:
350 DEFPROCInit
360 N%=N%*4
370 DIM cos(N%),sin(N%)
80 delta=2*P]/N%
.390 FOR 1%=1 TON%
400 Theta=delta*(l%
410 cos(1%)=COS(Theta):sin(I%)=SIN(Theta)
420 NEST
4 3 0 ~ E \ D P R O C ~
440:
450 DEFPROCDraw
460 PROCTitle
470 MOVE950,10:DRAW 950.990
480 MOVE 800,950:DRAW 1150,950:DRAW 1030,650
490 DRAW 750,650:DRAW 870,950
500 MOVE 890,650:DRAW 890,630
510 MOVE 700,800:DRAW 1280,800
520 MOVE 1090,800:DRAW 1280,870
530 MOVE 700,200:DRAW 1200,200
540 MOVE 1150,200
550 FOR Phi=.1 TO 6.3 STEP . 1
560 Y%=100*SIN(Phi)
570 X % =950+200*COS(Phi)+Y%/3
580 Y%=200+Y%
```

```
    590 DRAW N%,Y%:NEXT
    600 WOVE 950,200:DRAW 780.240
    610 MOVE 665,95:DRAW 1235.305
    620 MOVE 665,695:DRAW 1235,905
    630 MOVE 1182,838
    640 FOR PHI=0.5 TO 1.3 STEP 0.1
    650 N%=1090+100*COS(PHI):Y%}=800+100*SIN(PHI
    660 DRAW X%,Y%:NEXT
    670 MOVE 1130,840:DRAW 1170,755
    680 MOVE 820,930:DRAW840,950:DRAW840,930
    690 MOVE 975,240:DRAW975,760
    700 MOVE 960,220:DRAW 975,200:DRAW990,220
    710 MOVE 960,780:DRAW 975,800:DRAW990,780
    720 MOVE 962,220:DRAW 975,202:DRAW988,220
    730 MOVE 962,780:DRAW 975,798:DRAW988,780
    740 MOVE 780,820:DRAW7 80,800:DRAW800,820
    750 MOVE 790,825:DRAW830,925
    760 PRINTTAB(50,4);"a"
    770 PRINTTAB(46,12);"<----b-.->"
    780 PRINTTAB(54,24);"r"
    790 PRINTTAB(60,17);"h"
    800 PRINTTAB(74.8):"Phi"
    810 PRINTTAB(0.4)
    820 EXDPROC
    830 :
    8 4 0 ~ D E F P R O C A s k ~
    850 lNPCT "width(a)(nm)=";a:a=a 1000
    860 1NPLT ,'"width(b)(mm)=";b:b=b, 1000
    870 INPLT ',"Turns=":Turns1
    80 lNPLT \cdots"separation(h)(nm)=":h:h=h/1000
    890 INPLT , "radius(r)(nm)=":r:r=r/1000
    900 INPLT `'"Turns=";Turns2
    910 PRINT#File."a="+STRS(a)+",b="+STRS(b)+",h="- STRS(h)+".r="+STRS(r)
    920 PRINT#File, 1."Angle"," ","Pickup"
    930 INPUT ,""Steps for the","integration (3-20)=";N%;,
    940 PRINT#File,STRS(N%)+" int. steps"
    950 INPUT ,"Size of angular step in Phi (deg)";Step
    960 ENDPROC
    970):
    980 DEFPROCOpenfile
    990 PROCTitle
1000 REPEAT
1010 INPLT"What file for storage"""(* for catalogue)";Files
1020 1F FiJeS="*" THES "CAT 0
1030 IF FileS="*" THES *CAT 2
1040 UNTILFileS<>"*"
1050 File=OPENOUT(File$)
1060 Open=TRUE
1070 PRINT#File,"Calculation of Mutual Inductance"
1080 ENDPROC
1090:
1100 DEFPROCTitle
1110 CLS:PRINT"Mutual Inductance"
1120 PRINT"--.---.-.-..........,',
1130 ENDPROC
1140 :
1150 DEFPROCCalc(Phi)
1160 M=0
```

```
1170 CosPhi=COS(Phi):SinPhi=SIN(Phi)
```


1190 FOR $A=-a \quad T O+a \operatorname{STEP} 2^{*} a$
1200 FOR $B=-b+d e 1 B / 2$ TO b STEP delB
1210 FOR I\%=1TON\%
1220 PROCCaleR
1230 IF $A=-a$ THES $M=M-r * d e l B * d e l t a * \sin \left(1 m_{0}\right) / R$
$1240 \quad$ IF $A=a$ THEN $M=M+r^{*} d e l B^{*} d e l t a * \sin \left(1 \sigma_{6}\right) / R$
1250 NEXT:NEXT:NEXT
$1260 \mathrm{~B}=\mathrm{b}$
1270 FOR $A=-a+d e 1 A / 2$ TO a STEP delA
1280 FOR $1 \%=1$ TON\%
$1290 \quad$ PROCCalcR
$1300 \quad \mathrm{M}=\mathrm{M}+2{ }^{*} \mathrm{r} * \cos (\mathrm{I} \%) * \operatorname{CosPhi} * \operatorname{del} 1 * \operatorname{delta} / \mathrm{R}$
1310 NEXT:NEXT
$1320 \mathrm{M}=\mathrm{M}^{*} 1 \mathrm{E}-7$ *Turns ${ }^{*}$ *Turns 2
1330 ENDPROC
1340 DEFPROCCa 1 cR
$1350 \mathrm{R}=\mathrm{SQR}\left((\mathrm{h}+\mathrm{A} * \mathrm{SinPhi})^{\wedge} 2+(\mathrm{B}-\mathrm{r} * \cos (1 \%))^{\wedge} 2+\left(\mathrm{A}^{*} \operatorname{CosPhi}-\mathrm{r} * \sin (1 \%)\right)^{\wedge} 2\right)$
1360 ENDPROC
1370 :

```
I.isting of TORQUE.BBC at 22:50:26 on MAY 12, 1987 for CCid=PHP7
    10 REM ATOM torque measurements
    REM
    REM
    REM M.Hawton (Durham July 1985)
    REM
    MODE }
    PROCSetup
    PROCProgram
    Finished=TRUE
    PRINT
110 *FX2,0
120 *FX3,0
130 ON ERROR GOTO 200
140 IF Turn=0 THEN Turn=5
150 FOR Angle=Turn TO 0 STEP - 10*SGN(Turn)
160 Ang=(Angle+720) MOD 360
170 IF Ang>5 PROCCurrent(Setcurrent,Ang)
180 NEXT
190 FOR Ang=15 TO 45 STEP 15:PROCCurrent(Setcurrent,Ang):NEXT
200 ON ERROR GOTO 240
210 *FX2,0
220 *FA3,0
2.30 PROCClose
240 IF NOT Finished REPORT:PRINT;" at line ";ERL
250 PROCCom(1,"Thank you for using this experiment")
        :PROCCom(2,"I'm now relaxing")
255 1F Finished FOR Sound= 1 TO 20:SOUND 1.-15.105,2:SOUND 1,-15,100,2
        :SOLND 1,-15,95,2:NEXT
260 1F Rereads%<<>0 PROCCom(3, "Broodeal reread "+STRS(Rereads%)+" times")
270 \DL 28,0,24,39,0
280 END
290
300 DEFPPROCSetup
310 DIM Val(10).One(3).Rat(360)
320 VDL28,0,24,39,9
330 Wobbles=0:IEEEMini=6: lEEEWeston=9:?&FE62=3:BD=2:REM BD=No of brookdeals
340 Switch%=0:Rereads%=0:ReadBs=5:REM Brookdeal readings
350 Finished=FALSE:Title$="":ReadWs=3:REM Weston readings
360 ON ERROR GOTO 110
370 Fileopen=FALSE:O1dangle=0:Turn=0
380 PROCTitle:INPLT'What is the title of the run";Title$
390 PROCTitle
400 I NPUT"What current setting (up to 4000)"; Setcurrent
410 DIM Shunt(1):1XPCT""What is the shunt range","(H, M or L)";ShS
420 IF ShS="H"OR ShS="h" THEN Shunt(1)=0.0740:Shunt(0)=0.0749
        :Sh$="High power"
430 IF Sh $="M"OR Sh S="m" THEN Shunt(1)=0.9886:Shunt(0)=1.0789
        :Sh$="Medium pow."
440 1F Sh $="L"OR ShS="1" THEN Shunt(1)=10.076:Shunt (0)=10.031
        :Sh$="Low power"
450 IF Sh$<>"Low power" AND ShS<>"Medium pow." AND Sh$<>"High power"
        THEN GOTO 410
460 PRINT ""Are you using a solenoid or split pair","(S/P)":AS=GET$:VDU7
470 IF A $="P" OR A$="p" THEN Pair=TRUE ELSE Paim=FALSE
480 IF Pair THEN PROCCom(7,"Split Pair") ELSEPROCCom(7,"Solenoid")
490 PROCIEEE
500 ENDPROC
510:
```

```
520 DEFPROClnst
530 1F Pair THE\ PROCRelay(-1):PROCRelay(-2):PROCRelay(8)
    ELSI: PROCRelay(1):PROCRelay(2):PROCRelay(-8)
540 PROCCom(1,"Setting up Minicam")
550 FOR Ang=30 TO -0.001 STEP - 15:PROCCurrent(Setcurrent,0):NEXT
560 PROCCom(1,"Please switch on Power Supply")
565 INPLT"How long do you want me to wait(mins)"," ":Mins
570 S$='Waiting "+STRS(Mins)+" mins.":PROCCom(2,S$)
580 PROCCom(7."Thank you, l'll do it all now"): PROCDelay(6000*Mins)
585 FOR Sound= 1 TO 20:SOLND 1,-15,105,2:SOUND 1,-15,100,2:NEXT
590 PROCCom(1,"Setting up Brookdeal")
600 FOR I=1 TO BD:PROCBd(I):PROCSendb("H 1;Y 0;D 0;M 0;O 0,0;F 1;T 6")
            :PROCSendb("A1 0;S 4;X 1;L 7;W 1"):NEXT
610 PROCCom(1,"Setting up Weston")
620 PROCSend('W', "SOMODOT1")
630 PROCCom(1,","):PROCSet
640 PROCRelay(-2-4*Pair):PROCSwitch
650 ENDPROC
660 :
6 7 0 \text { DEFPROCYesNo}
6 8 0 ~ P R I N T " ( p l e a s e ~ a n s w e r ~ Y ~ o r ~ N ) " ,
690 PROCCom(2, 'Waiting for vous reply")
700 REPEAT:AS=GETS:LNTIL AS="Y" OR AS="Y"OR AS="n" OR AS="N"
710 IF AS="n" OR AS="N" THEN NO=TRLE :Yes=FALSE ELSE Yes=TRLE : No=FALSE
720 PROCCom(2,"")
70 ENDPROC
740 :
750 DEFPROCDelay(D%)
760 PROCCom(3, "Waiting patiently")
770 D%=DF+TIME:REPEAT LNTIL TIME>DF
780 PROCCom(3.**)
7 9 0 ~ E N D P R O C ~
800 :
810:
8 2 0 ~ D E F P R O C S w i t c h ~
830 PROCCom(2,"Switching Minicam Relays")
840 S$="DA1,42,"+STRS(Switch%)
850 PROCSend("M",S$)
860 PROCCom( 2, "*)
870 ENDPPOC
880
890 DEFPROCBd(1):?&FE60=2*I-1:ENDPROC
900 :
910 DEFPROCRelay(N)
920 JF N>0 THEN Switch%=Switch%%OR 2^(N-1)
                            ELSE Switch%=NOT(NOT(Switch%) OR 2^(-1-N))
930 ENDPPROC
940 :
950 DEFPROCCurrent(Mag,Ang)
960 ]F ABS(FNMod(Oldangle-Ang+180)-180)>20
            THEN PROCCom(22,STRS(Ang)+" more than 20 degrees from")
                        :PROCCom(23,STRS(Oldangle)+"-press a key to cont.")
                            :SOUND 1,-15,60,100:A $=GETS
970 Turn=Turn+FNMod(Ang-Oldangle+180)-180
980 PROCCom(2,"Setting current")
990 Xc%=Mag*COS(RAD(Ang+180))
1000 Yc%=Mag*SIN(RAD(Ang+180))
1010 PROCRelay(-4*SGN(Yc%)): PROCRelay(-5*SGN(Xc%)):PROCSwitch
```

```
1020 PROCSend( "M", "DA1. 16."+STRS(ABS(Xccom))
1030 PROCSend("M". "DA1.17."+STRS(ABS(YC%)))
1040 Oldangle=Ang
1050 PROCCom(2,"."): PROCCom(6."Current angle set at "+STR$(Oldangle))
1060 E.\DPROC
1070 :
1080 DEFPROCReadM(Ad%)
i090 PROCCom(2,"Reading Minicam a-d number "+STRS(Ad%))
1100 AD$="Ad 1, "+STR $(Ad%)
1110 PROCSend("M",AD$)
1120 PROCCom(2,"")
1130 ENDPROC
1140 :
1150 DEFPROCTit1e
1160 VDU28,0,24,39,0:CLS
1170 PRINTTAB(0,4);:VDU1 31,157,132,136
                                    :PRINT" ATOM (2."+STR$(BD)+") torque measurements"
1180 L%=LEN(Title$): PRINTTAB(0,5);:VDU131,157,132:PROCSp(17-L%/2)
                    :PRINT;Title$
1190 PROCCom(6,"")
1200 E\DPROC
1210 :
1220 DEFPROCSend(AS.SS)
1230 LOCAL Ad%,BS
1240 ?&FE6()=0
1250 BS=LEFTS(AS , 1)
1260 IF B }$="M"OR B $="m" THEN AdCo=32+IEEEMini
1270 IF BS= "W" OR BS="w", THEN Ad % = 32+1EERWe st on
1280 IF BS="P" OR BS="p" THEN Ad c
1290 VDL[2.1.27.21
1300 PRINT "WS":CHRS(Ad}\mp@subsup{\sigma}{c}{}):".":S
1310 VDL6.3
1320 IF Ad%<< 36 THEN PROCReply(AS)
1330 ENDPROC
1340 :
1350 DEFPROCReply(AS)
1360 LOCAL Ad%,B S,Name $
1370 ?&FE60=0
1380 B S =LEFT $(AS, 1)
1390 IF BS="M" OR B }$="m" THEN Adm=64+IEEEMini : Name S="Minicam"
1400 IF BS="W" OR B ="w" Ad %=64+IEEEWeston:Name S="Weston"
1410 IF BS="T" NameS="Thurlby":*FX156,20,227
1420 PROCCom(3."Waiting for reply from "+Name$)
1430 IF BS< "'T" VDL'2.1.27.21:PRINT "RS";CHRS(Ad%);:VDL6.3 ELSE ?&FE60=2
1440 *FX2,1
1450 A=GET:ReplvS=`":REPEAT
1460 IF A}<>10 AND A<>21 THEN Reply $=Reply $+CHR$(A)
1470 A=GET:UNTIL A=13
1480 ?&FE60=0:*FX15,0
1490 *FX2,2
1500 IF BS ="T" THEN *FX156,8,227
1510 PROCCom( 3,""):ENDPROC
1520 :
1530 DEFPROCSendb(S$)
1540 LOCAL AS,A,I
1550 *FX2,2
1560 VDU2:FOR I=1 TO LEN(S$):VDU 1,ASC(MID$(S$,I,1)):NEXT:VDU1,13,3
1570 PROCCom( 3, "Waiting for reply from Brookdeal")
```

```
L.isting of TORQLE.BBC at 22:50:26 on MAY 12, 1987 for CCid= PHP7
1580 AS="":Replys=0:*FS2,1
1590 REPEAT:A=GET
1600 IF A=13 OR A=44 THES Replys=Replys+1:Val(Replys)=VAL(AS):AS=\cdots"
                                    :ELSI: AS=AS+CHRS(A)
1610 LXTIL A=42
1620 *FX2,2
1630 PROCCom( 3."*)
1640 ENDIPROC
1650 :
1660 DEFPROCIEEE
1670 ?&FE60=0
1680 *FX6,10
1690 PROCReset("03*")
1700 *FX3,7
1710 VDU27:PRINT"CN";
1720 *FX3,0
1730 ENDPROC
1740:
1750 DEFPROCPrinter
1760 REM Set up clearway to Printer
1770 ?&FE60=0
1780 *FX6.0
1790 PROCReset("20-")
1800 ENDPROC
1810 :
1820 DEFPROCReset(SS)
1830 *FX7,7
1840 *FX8,7
1850 *FX156,8,227
1860 *FX5.2
1870 *FX2.2
1880 VDL2,21,1,2
1890 PRINT;STRINGS(64.(CHRS(13)):"N!!!!!!!!!!!":S$
1900 PRIXT:"Y":
1910 YDL6.3
1920 *FX2,1
1930 REPEAT:AS=IAKEYS(4):LNTIL AS=""
1940 *FX2,2
1950 ENDPROC
1960
1970 DEFPROCCom(N.C§)
1980 LOCAL X,',L%,X%
1990 VDL28.0.24,39,0
2000 L%=LEN(CS ): X=POS:Y=\POS:NG=19-L%:2
2010 PRINT TAB(0,N);" ";:PROCSp(X%)
2020 PRINTCS;:PROCSp(38-N%-L%)
2030 PRINTTAB(X,Y)"";
2040 VDU28,0,24,39,9
2050 ENDPROC
2060 :
2070 DEFPROCSp(N)
2080 LOCAL N1
2090 FOR N1=1 TO N:PRINT" ";:NEXT
2100 ENDPROC
2110 :
2120 DEFPROCSet:PROCCom(2,"Phasing Brookdeal"):FOR l=1 TO BD:PROCBd(I)
                                    :PROCSendb("A2 1"):PROCSettle:PROCSendb("A2 1"):PROCSettle
                                    :PROCSendb("A1 1"):NEXT:ENDPROC
```

```
Listing of TORQLE.BBC at 22:50:26 on MAY 12. 1987 for CCid=PHP7
```

2130 READEFPROCSEt:FOR I=1 TO BD: PROCBd(1):PROCSendb("A1 1"):NEXT: FNDPROC
2140 :
2150 DEFPROCSETtle
2160 LOCAL SI:FOR SI=0 TO 1
2170 PROCCom(2, 'Waiting for Brookdeal (0 settle")
: End=TIME FNT ime:REPEAT: UNTII TIME $>$ End
2180 REPEAT:PROCSendb("Z"):LXTIL (Val(1) MOD 64)DIV $32=1$
2190 NEXI
2200 ENDPROC
2210 :
2220 DEFFNTime: PROCSendb $(" T "):=3^{\wedge}(\operatorname{Val}(1)$ MOD 2$) * 10^{\wedge}(2-\operatorname{INT}((\operatorname{Val}(1)+1) / 2))$
. $5^{\wedge} \operatorname{Val}(2){ }^{} 1200:$ REM Calculates settle time (sec/100)
2230 :
2240 DEFFNSens: PROCSendb ("X"):Fact=1/(10^Val(1)):PROCSendb("S")
$:=$ Fact ${ }^{\wedge} 5^{\wedge} \operatorname{INT}(((\operatorname{Val}(1)+2) \operatorname{MOD} 3) / 2) * 2^{\wedge} \operatorname{INT}(((\operatorname{Val}(1)+1) \mathrm{MOD} 3) / 2)$
* $10^{\wedge}(-\operatorname{lNT}(($ Val $(1)) / 3)):$ REM Calculates sensitivity/Volts
2250 :
2260 DEFPROCReadb(N)
2270 LOCAL Va, BI: PROCCom(2 , "Reading Brookdeal")
2280 Pause=FNTime*.8:Start=TIME+Pause/2
2290 REPEAT
2300 REPEAT: PROCSendb ("Z"):UNTIL (Val(1) MOD 64)DIV $32=1$
$2310 \quad$ Next $=$ TIME Pause:Va=1:OI=(Val(1) MOD 32)DIV 16
$2320 \quad \mathrm{X}=0: \mathrm{Y}=0$: Sens=FNSens
2330 REPEAT:UNTIL TIME>Start
$2340 \quad$ FOR BI=1 TO N
$2350 \quad$ PROCSendb ("Q1"): $\mathrm{X}=\mathrm{Val}(1)+\mathrm{X}$
$2360 \quad \mathrm{Y}=0$
2370 IF TIME $>$ Next PROCSendb("Z"):Va=Va*((Val(1) MOD 64) DIV 32)
$: O l=O 1+(($ Val (1) MOD 32) DIV 16$): \mathrm{Next}=\mathrm{TlME}+$ Pause
2380 NEXT
2390 PROCSendb("Z"):Va=Va*((Val(1) MOD 64) DIV 32)
: O) $=01+($ (Val(1) MOD 32) DIC 16)

2410 IF $(V a \ll 1)$ OR (Ol $<>0$) THEN Rereads $\%=$ Rereads $\%+1$
2420 UNTIL $(\mathrm{Va}=1)$ AND $(\mathrm{OI}=0)$
2430 PROCCom (2,"")
2440 ENDPROC
2450 :
2460 DEFPROCReadu(${ }^{2}$)
2470 LOCAL Count, l:Volts=0
2480 PROCCom(2, "Reading Weston")
2490 Count $=0$: REPEAT
2500 FOR I=1 TO N
$2510 \quad$ PROCReply ("W")
2520 Left=1:BS=":AS=MIDS(ReplyS,Left.1):REPEAT:BS=BS+AS
: Left=left+1:AS=MIDS(Reply\$.Left,1):UNTIL AS=","
$2530 \quad$ Volts $=$ Volts $+\operatorname{VAL}(B \$)$: NEXT
$2540 \quad$ Volts $=$ Volts/(N*1000)
2550 Ill ${ }_{0}=$ Switch $\% / 128$
2560 Current=Volts/Shunt (II 1\%)
2570 Count=Count+1:UNTIL Count>10 OR Volts $<>0$
2570 Count=Count
2590 ENDPROC
2600 :
2610 DEFPROCOpen
2620 IF Fileopen THEN ENDPROC
2630 REPEAT

```
l.isting of TORQUE.BBC at 22:50:26 on MAY 12, 1987 for CCid= PHP7
    2640 INPLT 'What file for data storage","(type * for catalogues)";files
    2650 PRINT:IF FileS="*" THEN *CAT 0
    2660 LNTlL Files...".
    2670 F%%=OPENOUT(":0."+Fi]eS):Fileopen=TRLE
    2680 REPEAT:INPCT "Which file has correlation data",
        "(type * for catalogue)":Cors:PRINT
        IF Cor$="*" THEN *CAT 0
```



```
2710 INPUT 'What sample";Samples
2720 INPUT "What temperature (Kelvin) ";Temp$
2730 lNPUT "What field (Tesla)";Field
2740 INPUT 'What is the date";Date$
2750 INPUT 'What is the TC resistance(ohms)";Ress
2755 INPUT "What is the needle valve flow";Flows
2760 INPUT "What is aux heater voltage(volts)";Heaters
2770 PRINT#F%,"ATOM (2."+STR$(BD)+") - torque measurements"
2780 PRINT#F%,TitleS,6,"Rotation/Degrees","","Torque","AX pickup/mV",
    "BX pickup/mV","A current/A","B current/A","Thermocouple/mV"
2790 PRINT#F%,Date$,"Sample is "+Sample$,"Temperature is "+Temp$+"K"
2795 PRINT#F%,"Field is "+STR$(Field)+"Tesla","Correlation file "+Cor$,
                                    "Data file "+File$
2800 PRINT#F%,Sh$+".current="+STRS(Setcurrent)
2810 PRINT#F%,"Temp. Cont.="+Res$+"ohms(lle flow="+Flows+")."
2820 1F VAL(HeaterS)<>0 THEN PRINT#FG, "Aux heater at "+Heaters+"Volts."
2830 PRINT "Any comment ..."
2840 REPEAT:INPUT COMS:PRINT&F%,ComS:LNTIL ComS=.*
2850 ENDPROC
2860
2870 DEFPROCClose
2880 IF Fileopen=FALSE THEN ENDPROC
2890 CLOSE#F%
2900 DRIVE 0
2910 Fileopen=FAl.SE
2920 E\DPROC
2930
2940 DEFPROCReadC
2950 Cor%=OPENIN(Cor$)
2960 FOR 1%=0 TO 359:INPLT#Cor%,I:Rat(1%)=1:NEXT
2970 FOR 1%=0 TO 3:INPLT#Cor%,1:One(1%)=1:NEXT
2980 ClOSE#Corc:ENDPROC
2990 :
3000 DEFPROCReadT
3010 REPEAT:PROCRepJy("T"):LNTIL LEN(ReplvS)=10
3020 TC=VAl.(MIDS(ReplyS,2.8))
3030 ENDPROC
3040 :
3050 :
3060 DEFPROCProgram
3070 @%=&20207
3080 PROCOpen
3090 PRINT "Do you want a details run?(Y/N)":A$=GET$:
    IF A$<>"N"AND AS<>"n"AND A$<>"Y" AND AS<>"y" THEN VDU7, 7, 7:GOTO 3090
3100 1F AS="N" OR AS="n" THEN Centre=0:Range=360
3110 IF AS="Y" OR AS="y" THEN INPUT"Centred around what angle(deg)";Centre
3120 IF A S="Y" OR AS="y" THEN INPUT'With what angular range(deg)";Range
3130 Centre=(((Centre+540)*1000) MOD 360000)/1000 - 180
3140 Start=Centre-Range/2-90:Endturn=Centre+Range/2+90
3150 INPUT"What angular step size(deg)";Step
```

 3160 Stread=Centre-Range:2-Step*2.5: Endread=Centre+Range/2+Step*2.5
 3170 PROCInst:PROCReadC:Control=FAl-SE
 3180 PROCCom(8."Angle Actual Torque ")
 3190 PROCCom (1 , "Taking readings")
 3200 CLS: FOR Angle \(=0\) TO Start-Step STEP SGN(Start-Step)*10
 : PROCCurrent(Setcurient, Angle): NEXT
 3210 FOR Angle=Start TO Stread STEP SGS(Step)*10
 : PROCCurrent(Setcurrent, Angle): NEXT
 3220 For $\%=1$
3230 FOR Angle=Stread TO Endread+Step/2 STEP Step:PROCReading(Angle): NEXT
3240 FOR Angle=Endread+10 TO Endturn+10 STEP SGN(Step)*10
: PROCCurrent (Setcurrent, Angle): NEXT
3250 FOR Angle=Endturn TO Endread STEP - 10* $\operatorname{SGN}($ Step $)$
: PROCCutrent (Setcurrent, Angle) : NEXT
3260 For\%=-1
3270 FOR Angle=Endread TO Stiead-Step/2 STEP - Step: PROCReading (Angle) : NEXT
3280 FOR Angle=Stread TO 0 STEP SGN(-Stread)* 10
: PROCCurrent(Setcurrent, Angle): NEXT
3290 ENDPROC
3300
3310 DEFPROCRead
3320 PROCReadT: PROCCom(7 , "Thermocouple reading $=$ " + STRS(TC))
3.30 PROCRelay (8):IF BD=1 PROCRelay (-1): PROCSwitch:PROCBd(1):PROCSettle
$3340 \mathrm{JF} \mathrm{BD}=2: \operatorname{PROCSwitch}: \operatorname{PROCDelay}(50)$
3350 PROCReadw(ReadWs):AC=Current
3360 IF $\mathrm{BD}=2: \operatorname{PROCBd}(2)$ ELSE $\operatorname{PROCBd}(1)$
3370 PROCReadb (ReadBs) : $A \mathrm{D}=\mathrm{X}$
3380 PROCRelay (-8):IF BD=1 PROCRelay(1): PROCSwitch: $\operatorname{PROCBd}(1)$
: PROCSettle: PROCReadu(ReadWs): BC=Current
3390 IF $\mathrm{BD}=2: \mathrm{PROCSwitch}$
3400 PROCBd (1)
3410 PROCReadb(ReadBs): $B X=X: I F B D=2 \quad \mathrm{PR}$ (CReadw(ReadWs): $B C=C u r r e n t$
$3420 \mathrm{IF} \mathrm{ABS}(\mathrm{AX})=1 \mathrm{AND} \operatorname{ABS}(\mathrm{BX})=1$ THEX
PROCCom(2."Strange readings from Brookdeal")
: PROCCom(6,"-press a key to continue"): SOUND1, -15.70,50:A=GET
3430 IF Pair $\mathrm{XX}=\mathrm{AX}: \mathrm{AX}=\mathrm{BX}: \mathrm{BX}=\mathrm{XX}$
$3440 \mathrm{Phi}=\left(45^{*} \mathrm{SGN}(\mathrm{BX}) *(\mathrm{AX}<0)-135^{*}(\mathrm{BX}<0)-45^{*}(\mathrm{ABS}(\mathrm{AX})>\mathrm{ABS}(\mathrm{BX}))\right.$
*SGN(AX)*SGN(BX)+360) MOD 360:REM Calculates quadrant for Phi
3450 Ratio=(AX/BX):IF ABS (Ratio) >1 THEX Ratio=1/Ratio
3460 Sign=($($ Phi NOD 90$)=45) * 2+1: S l o p e=S i g n * S G N(R a t i o)$

: REM Calculates rough value for Phi from resemblance to SIN curve
3480 IF Pair Phi=((Phi* $100+27000)$ MOD 36000) / 100
3490 Cusp=FALSE
3500 FOR $1=0$ TO 3
$3510 \quad 1 F \operatorname{ABS}\left(45+90^{*} \mathrm{I}=\mathrm{Phi}\right)<45$ THEN Side=Phi-One (1):Near=1
$: \mathrm{IF}\left(45+90^{*} \mathrm{I}-\mathrm{Ph} i\right) *($ One (I) -Ph i $)<0$
THEN Phi=2*One (I)-Phi:Side=Phi-One (I)
3520 NEXT
$3530 \mathrm{P} \%=1 \mathrm{NT}(\mathrm{Phi}): \mathrm{X} 2=\mathrm{P} \%: \mathrm{Y} 2=\mathrm{Rat}\left(\mathrm{P} \%_{0}\right):$ PROCInc
3540 1F (X1-One (Near) $) *(X 2-$ One (Near) $)<0$ THEN PROCCusp:REM at cusp
3550 REPEAT
3560 IF (Y2-Ratio)*(Y1-Ratio) >0 AND (Y2-Ratio)*Slope<0 PROClnc
3570 IF (Y2-Ratio)*(Y1-Ratio) >0 AND (Y1-Ratio)*Slope>0 PROCDec
3580 IF (X1-One (Near))*(X2-One (Near)) <0 THEN PROCCusp:REM at cusp
3590 UNTIL (Y1-Ratio)*(Y2-Ratio)<=0 OR Cusp
: REM now betwe en consecutive points
3600 IF NOT(Cusp) THEN $\mathrm{Phi}=\mathrm{FNMod}(($ Ratio-Y1)/(Y2-Y1)+X1)
3610 ESDPROC
3620 :
36.30 DEFPROCInc: X1=. \2:Y1=Y2:IF X 1:359.9 THEN X }1=
3640 PC=(P%+1) MOD 360: }22=1%/IF:IF X2<0.01 THEN X2=36
3650 Y2=Rat(P%): ENDPROC
3660 DEFPROCDec: \2=\1:Y2=Y1::1F X2<0.01 THEN X2=360
3670 P%
3680 :
3 6 9 0 ~ D E F P R O C R e a d i n g (A n g l e) ~ (~) ~
3700 Angle=FNMod(Angle)
3710 IF Wobbles>0 Swing=Angle+5*Wobbles+5:FOR Su%=1 TO Wobbles
: PROCCurrent(Setcurrent,Angle):Swing=(ABS(Swing-Angle)-5)*-1^Sw%*-1
*For%+Angle:PROCCurrent(Setcurrent,Swing):NEXT
3720 PROCCurrent(Setcurrent,Angle)
3730 PROCRead
3740 Torque=Field*(AC*0.0261*SIN(RAD(Phi))-BC*0.0253*COS(RAD(Phi)))
3750 IF AC<>0 THEN Ang]=DEG(ATN(BC*0.0253/(AC*0.0261)))
ELSE 1F Angl>180 Angl=270 ELSE Angl=90
3760 IF AC<0 THEN Angl=Ang1+180
3770 Angl=((1000*Ang1+360000)MOD 360000)/1000
3780 PRINT;TAB(3);Ang1;TAB(13);Phj:
3790 acm=\&20810:PRINT:TAB(27):Torque:
3800 % %=890A
3810 PRINT\#F%,Phi.Torque, A\, BX,AC, BC,TC
3820 ENDPROC
3830 :
3840 DEFFNMod(N):=((N*1000+1080000) MOD 360000)/1000
3850 :
3860 DEFPROCCusp : REM tests if at cusp.
3870 1F (X1-One(Near))*Side>0 THEN X S=\1:Y 3=`1 ELSE X 3=X2:\ 3=`2
:REM Choose side
3880 Cusp=TRLE
3890 Phi=FMMod((Ratio-Y3)*(One(Near)-\3):(1-I3)+N3):REM Linearly interpolated
3900 ENDPROC

```
```

I_1sting of FIT.BBC at 22:25:06 on MAY 12, 1987 for CCid=PHP7
10 RLM Curve fitting to angular correlation measurement
20 REM
Produces correlation file for P.TORQLE
) REM
RE\ - M.J.Hawton Durham 1985
MODEO
Finished=FALSE
PROCSetup
PROCOpen
PROCFit
PROCOut
Finished=TRUE
IF NOT Finished REPORT:PRINT " in line ";ERL
ClOSE\#File in%
CLOSE\#Fileout%
PRINT "(";TIME/100;"sec) ";
END
:
DEFPROCSetup
Filein%=0:Fileout%=0:TIME=0
ON ERROR GOTO 120
DIM X(10),Y(10,2),A(10,2),M(7,7),YI(6,2),S(1, 1, 360), ch%(900),One(3)
FOR l=0 TO 10:X(1)=-100:Y(1,1)=1:Y(1, 2)=1:NEXT
Ones=0:(CLS :PRINT "Curve fitting program","
ENDPROC
:
DEFPROCOpen
PRINT"From which file (* for catalogue)"
REPEAT:INPLT Files
IF FileS="*" THEN *CAT O
1F FileS="*" THEN *CAT 2
LXTll. Files:%"*"
PRINT"From P.ANGLE or P.TORQLE (A or T)":AS=GETS:Angle=TRLE
:IF AS="t" OR AS="T" THEN Angle=FALSE
Filein%=OPENIN(File\$)

```

```

 PTR#File in%=PTR#File in%-1
 ,
 PRINT "What file for the output"," F.File - Curve fit"
 PRINT " R.File - ratios"," C.File - correlation file"
 PRINT " (" for catalogue)"
 REPEAT:INPUT "File=",Files
 IF File$="*" THEN *CAT 0
 IF File $="*" THES *CAT 2
 LNTIL FileS<<"*"
 Fileout%=OPENOUT("F."+FileS)
 ENDPROC
 :
 DEFPROCFit
 PRINT '"(";TIME/100;"sec) Fitting . . ."'
 FOR A%=-180 TO 180
 PROCfit(A%,+1,6)
 NEXT
 FOR B%=180 TO -180 STEP - 1
 PROCfit(B%,-1,6)
 NEXT
 ENDPROC
 :
 DEFPROCRange(P%,Q%,R%)
    ```

570 FOR S \(\%=1\) TO 6:REPEAT
\(580 \quad \mathrm{IF} \mathrm{ABS}(X(\mathrm{~S} \%)-\mathrm{P} \%)=180 \mathrm{THFX} X(\mathrm{~S} \%)=\mathrm{X}(\mathrm{S} \%)+360 * \mathrm{SGN}(\mathrm{P} \%-\mathrm{X}(\mathrm{S} \%))\)
590 LNTII. ABS \(\left(X(S \%)-p F_{F}\right)<=180: N F X T\)
600 REPEAT
610 IF \(Q \%_{0}^{*} \mathrm{X}(3)<\mathrm{Q} \%^{*} \mathrm{PO} \%\) OR \(\mathrm{Q} \%_{\%}^{*} \mathrm{X}(4)=\mathrm{Q} \%^{*} \mathrm{P} \%\) THEN PROCLoad
620 REPEAT
IF \(\operatorname{ABS}(X(1)-P \%)=180\) THEX \(X(1)=X(1)+360 * \operatorname{SGN}(1-X(1))\)
UNTL ABS \((X(i)-i \%)<=i 80\)
UNTIL \(Q \%_{0}^{*} X(3)>Q \%^{*} P \%\) AND \(\left(\%_{\%} * X(4)<Q \% * P \%\right.\)
ENDPROC
670
680 DEFPROCf it (E\%, F\%,G2\%)
\(690 \mathrm{IF} \mathrm{F} \% * \mathrm{X}(3)<\mathrm{F} \% * \mathrm{E} \%\) OR \(\mathrm{F} \% * \mathrm{X}(4)>\mathrm{F} \% * \mathrm{E} \%\)
PROCRange ( \(\mathrm{E} \%, \mathrm{~F} \%, \mathrm{G} 2 \%\) ) : PROCSolv (G2\%, 1, 2 )
\(700 \mathrm{~S}((\mathrm{~F} \%+1) / 2,0 .(\mathrm{E} \%+360) \mathrm{MOD} 360)=\mathrm{FNY}(\mathrm{E} \%, \mathrm{G} 2 \%, 1)\)
\(710 \mathrm{~S}((\mathrm{~F} \%+1) / 2,1,(\mathrm{E} \%+360) \mathrm{MOD} 360)=\mathrm{FNY}(\mathrm{E} \%, \mathrm{G} 2 \%, 2)\)
720 ENDPROC
730 :
740 DEFPROCLoad
750 FOR U\% \(=10\) TO 2 STEP - 1
\(760 \quad \mathrm{~S}(\mathrm{U} \%)=\mathrm{X}(\mathrm{U} \%-1): \mathrm{Y}(\mathrm{U} \%, 1)=\mathrm{Y}(\mathrm{L} \%-1,1): \mathrm{Y}(\mathrm{U} \%, 2)=\mathrm{Y}(\mathrm{U} \%-1,2)\)
770 NEXT
780 1F NOT EOF\#Fileinc AND Angle
THEN IXPCT\#Fileinc, \(\mathrm{X}(1), \mathrm{Y}(1,1), \mathrm{Y}(1,2)\), AA. BB
785 1F EOF\#Filein \({ }^{2}\) OR Angle ELSE \(1 N P C T=F i l e\) inct. \(A, B B, Y(1,1), Y(1,2), A C, B C, T T\) : IF AC \(<>0\) THEN \(\mathrm{X}(1)=\operatorname{DEG}\left(\mathrm{ATN}\left(\mathrm{BC}^{*} 0.0253 /\left(\mathrm{AC}^{*} 0.0261\right)\right)\right)\) ELSE \(1 F X(1)=180\) THE \(X(1)=270\) ELSE \(X(1)=90\)
786 IF EOF\#File in\& OR Angle ELSE JFAC<0 THEX \(X(1)=X(1)+180\)
787 1F EOF\#File inc OR Angle ELSE \(\mathcal{X}(1)=(1000 * X(1)+360000) \mathrm{MOD} 360000) / 1000\)
790 PRINT:" ": X (1):
800 ENDPPKOC
810
820 DEFPROCSOLN (N2\%, Z1\%, \(22 \%\) )

840 FOR \(1 \%=1\) TO \(N 2 \sigma_{6}:\) FOR \(\mathrm{J} \%=1\) TO \(\mathrm{N} 2 \%: \mathrm{M}(1 \%, \mathrm{~J} \%)=\mathrm{X}(1 \%)^{\circ}(\mathrm{J} \%-1):\) NEXT: NEXT
850 FOR \(1 \%=N 2 \%-1\) TO 1 STEP \(-1:\) FOR \(\mathrm{J} \%=\mathrm{N} 2 \%\) TO \(\mathrm{J} \%+1\) STEP -1
\(860 \quad \mathrm{MI}=\mathrm{M}(\mathrm{I} \%, \mathrm{~J} \%) / \mathrm{M}(\mathrm{J} \%, \mathrm{~J} \%): \mathrm{FOR} \mathrm{K} \%=1\) TO \(\mathrm{N} 2 \%\)
\(: \mathrm{M}(\mathrm{I} \%, \mathrm{~K} \%)=\mathrm{M}(\mathrm{J} \%, \mathrm{~K} \%) * \mathrm{MI}-\mathrm{M}(\mathrm{I} \%, \mathrm{~K} \%):\) NEXT

880 FOR \(Z \%=Z 1 \%\) TO \(Z 2 \%: A\left(1, Z \sigma_{6}\right)=Y 1(1, Z \%) / M(1,1): N E X T\)
890 FOR J \(\%=2\) TO \(.22 \%:\) FOR \(1 c_{c}=1\) TO \(\mathrm{j} \%-1\)
\(900 \quad\) FOR \(Z \%=Z 1 \%\) TO \(Z 2 \%: Y 1(J \%, Z \%)=Y 1(J \%, Z \%)-\mathrm{V}(\mathrm{J} \%, 1 \%) * A(1 \%, Z \%): N E X T\)
\(910 \quad\) NEXT:FOR \(Z \%=Z 1 \% \mathrm{~J}(\mathrm{Z} 2 \%: \mathrm{A}(\mathrm{J} \%, \mathrm{Z} \%)=\mathrm{YI}(\mathrm{J} \%, \mathrm{Z} \%) / \mathrm{M}(\mathrm{J} \%, \mathrm{~J} \%)\) : NEXT: NEXT
920 ENDPROC
930 :
940 DEFPROCOut
950 PRINT , ""(";TIME/100:"sec) Saving curve fits in F.";Files
960 FOR D\%=1 TO C\%-1:BPLT\#Fileout\%, ch\% (D\%) : NEXT
970 FOR A \(\%=0\) TO 359
980 PRINT\#Fileout\%,A\%,S(0,0,A\%),S(1,0,A\%),S(0,1,A\%),S(1,1,A\%):NEXT
990 CLOSE\#Fileout\%
1000
1010 PRINT "(";TIME/100;"sec) Calculating ratios"
1020 FOR \(\mathrm{A} \%=0\) TO \(359: \mathrm{S}(0,0, \mathrm{~A} \%)=(\mathrm{S}(0,0, \mathrm{~A} \%)+\mathrm{S}(1,0, \mathrm{~A} \%)) /(\mathrm{S}(0,1, \mathrm{~A} \%)+\mathrm{S}(1,1, \mathrm{~A} \%))\)
1030 IF ABS \((S(0,0, A \%))<1\) THEN \(S(0,1, A \%)=S(0,0, A \%)\)
\(\operatorname{ELSE} S(0,1, A \%)=1 / S(0,0, A \%)\)
1040 NEXT
```

Listing of flT.BBC at 22:25:06 on MAY 12, 1987 for CCid=PHP7

```
1050
1060 PRIMT "(";TIME/ 100 ;"sec) Finding cusps in curve"
1070 FOR ACo \(\quad\) TO \(358: F i n d=F A L S E: I F A B S(S(0,1, A \%))>A B S(S(0,1, A C-1))\) Find=TRLI
\(1080 \quad\) IF Find \(A N D \operatorname{ABS}(S(0,1, A \%))>\operatorname{ABS}\left(S\left(0,1, A \sigma_{+}+1\right)\right)\) Find=TRLE ELSE Find=1:ALSE
\(1090 \quad 1 F\) Find \(A N D \operatorname{ABS}(S(0,1, A \%))>0.85\) THEN PROCFind1(A\%)
1100 NEXT
1110
1120 PRINT "(";TIME, 100 ;"sec) Saving ratios in R.";Files
1130 Fileout\%=OPENOUT("A."+File \(\$\) )
1140 FOR D\%=1 TO C\%-1:BPUT\#Fileout\%, ch\% (D\%) : NEXT
1150 FOR A \(\%=0\) TO 359 :PRINT\#Fileout \(\%, A \%, S(0,1, A \%), 0,0,0\) :NEXT
1160 CLOSE\#Fileout\%
1170
1180 PRINT "("; TIME/100;"sec) Saving correlation file C.";Files
1190 Fileout\%=OPENOUT("C."+FileS)
1200 FOR A \(\%=0\) TO 359 :PRINT\#Fileout \(\%, \mathrm{~S}(0,1, \mathrm{~A} \%):\) NEXT
1210 FOR A \(\%=0\) TO 3:PRINT\#Fileout\%, One (A \(\%\) ): NEXT
1220 ENDPROC
1230 :
1240 DEFPROCFind1 ( \(1 \%\) )
1250 FOR \(W \%=1\) TO \(5: \mathrm{X} \%=1 \%+\mathrm{W} \%-3: \mathrm{X}(W \%)=\mathrm{X} \%: \mathrm{Y}(\mathrm{W} \%, 1)=\mathrm{S}(0,0, \mathrm{X} \%): \mathrm{NEXT}\)
1260 One (Ones) =FNZero(I\%):PRINT One (Ones):Ones=Ones +1 : ENDPROC
1270
1280 DEFFNZero(I\%)

1300 REPEAT: \(\lambda=\lambda+\) De \(1: \\) ew \(=\) FNY \((\lambda, 5,1)\)
\(1310 \quad 1 F\) Last \(<\) New De \(1=\mathrm{De} 1^{*}(\) New \(-\mathrm{SG} N(\) New \()) /(\) Last - New \()\) : Last \(=\) New
1320 UNTJL ABS (De1)<0.0001
\(1330=\mathrm{X}\)
1340 :
1350 DEFFNT (X.K \(5,2 \%\) )
1360 LOCAL Ji, L

- SPOOL
```

Listing of TORCALC.BBC at 22:35:21 on MAY 12, 1987 for CCid=PHP7
10 REM Recalculate torques
20 REM
30 REM M.J.Hawton Ianuary 1986
40 REM
50 MODE O
6 0 ~ C L S : P R I N T " R e c a j c u l a t e ~ T o r q u e s " ~
70 PRINT'
80 PRIVT
90 REM Torque formula
100 Torque\$="Fie1d*(AC*0.02537*SIN(RAD(Phi))-BC*0.02664*COS(RAD(Phi)))"
110 Open=FALSE
120 ON ERROR PROCError
130 REPEAT
140 REPEAT
150 End=FALSE
160 PRINT "From which file (or *N for catalogue)?"
170 INPUT FileS
180 IF File $="*0" OR File$="*" THEN *CAT 0
190 lF File$="*1" THEN *CAT
200 IF File$="*2" THEN *CAT 2
210 IF File $="*3" THEN *CAT 3
220 LNTIL FileS<>"*" AND FileS<>"*1" A\D FileS<>";2"
 AND FileS<<>* 3" A\D FileS<***"
 File=OPENIN(FileS)
 PRINT "lnto which file"
 l\PCT Fileouts
 Fileout=OPENOUT(Fileout$)
Open=TRLE
FieldFound=FALSE
REPEAT
char=BGET\#File
PTR\#File=PTR\#File-1
IF char=\&40 THEN PROCInteger
1F char=\&FF THEN PROCData
If char=\&00 THEN PROCString
IF char < <\&40 AND char <>\&FF AND char <>\&\&O AND NOT EOF\#File
THEN PROCHex
IF EOF\#File THEN PRINT ,'"End of file",', End = TRUE
UNTIL End=TRLE
PR(OCExit
DEFPR(KCInteger
l\PUT\#File,ln%
PRIMT:"Integer":TAB(20);1n%
PRINT\#Fileout,In%
ENDPROC
DEFPROCString
INPUT\#File,In\$
PRINT InS
lF RIGHT$(ln$,5)="Tesla" AND LEFT$(In$,9)="Field is "
THEN Field=VAL(MIDS(In$,10,LEN(In$)-14)):FieldFound=TRUE
PRINT\#Fileout,ln\$
ENDPROC
:
DEFPROCHex
ln=BGET\#File
PRINT;"Hex found ";-1n;" (Decimal:";In;")"

```
```

L.isting of TORCALC.BBC at 22:35:21 on MAY 12, 1987 for CCid=PHP7
560 F.\DPROC
570
50
IF NOT(FieldFound) THFN INPCT "What is the field ";Field
Endoffile=FALSE
PRINT ","Calculating Torque using:","" Torque=":Torques".".":
PRINT\#Filenut."Torque recalculated using", Torques
Count=-1
Count2=1
REPEAT
Phi=FNIn
Torque=FNIn
AX=FNIn
BX=FNIn
AC=FNIn
BC=FNIn
IF NOT(Endoffile) THEN PROCOut
Count=Count+1
PRINT ; ~Count;
IF Count>14 THEN Count=-1:Count2=Count 2+1:PRINTTAB(Count2);
UNTIL Endoffile
ESDPROC
DEFPROCOUT
Torque=EVAL(Torque$)
 PRINT#Fileout, Phi, Torque.A., BX,AC, BC
 ENDPROC
 :
 DEFFNIn
 LOCAL &
 IF NOT EOF#File THLN INPGTFFile,N ELSE Endoffile=TRLE:X=0
 =\
870
80 DEFPROCEryor
890 REPORT
900 PRINT " at line ";ERL
910 IF ERR=199 THEN PRINT "Hit any key to continue":A$=GETS
:PTR\#File=PTR\#File+256:(GOTO 270
920 IF Open=TRUE THEN Cl_OSE\#File:CLOSE\#Fileout
930 PROCExit
940 -
950 DEFPROCEx it
960 IF Open=TRUE THEN CLOSE\#File:CLOSE\#Fileout
970 PRINT"press Y to continue"
980 PRINT" N to return to menu"
990 PRINT" Q to quit"
1000 Awn$=GET$
1010 1F Awn \$="Y" OR Awn \$ = "y" THEN GOTO 60
1020 IF Awn\$="N" OR Awn $="n" THEN CHAIN "$.MENU"
1030 VDU26:CLS
1040 END

```
```

Listing of ROTHYS.BBC at 22:32:46 on MAY 12. 1987 for CCid=PHP7

```
```

 10 RLa
 20 REM
 30 REM
 40 REM
 50 REM
 60 REM
 70 VDU3, 15
 &O MODE 7
 90 PROCSetup
 100 PROCProgram
110 Finished=TRUE
120 1F NOT Finished THEN PRINT"Last error was ";
:REPORT:PRINT;" at line ";ERI.
130 PROCClose
140 VDU28,0,24,39,0
150 END
160 :
170 DEFPROCSetup
180 VDU28,0,24,39,9
190 Fileopen=FALSE:Title$="":Title 2$=""
200 Finished=FALSE:Straight=FALSE:Out=FALSE:First=TRLE
210 Poly=FALSE:Print=FALSE
220 ON ERROR GOTO 120
230 PROCTitle
240 DIM X(200),Y(200),M(6.6),A(6),YI(6)
250 E.DDPROC
260:
270 DEFPROCTitle
280 VDU28,0,24,39,0
290 CLS
300 PRI\TTAB(0.4)::\DL131, 157,132,136:PRINT" Rotational Hysteresis Calc"
310 PRINTTAB(0,5);:\DC131, 157,132:PROCSpace(17-LEN(Tit1eS)/2):PRINTTTitles
320 PRINTTAB(0,6)::VDL131.157,132:PROCSpace(17-LEN(Tit1e2$)/2):PRINTTitle2S
330 VDL28,0,24,39,9
340 PRI\TTAB(0,0);
350 ENDPROC
360 :
370 DEFPROCSpacebar
380 LOCAL AS
390 *FX21.0
400 PRINT'"Press the space bar to continue"
410 REPEAT:AS=GETS:LXTIL AS=" "
420 PRINT "Thank you",,
430 EVDPPR(C
4 4 0 :
450 DEFPROCPrinter
460 *FX6,0
470 PROCReset ("20-")
480 ENDPROC
490 :
500 DEFPROCReset(S$)
510 *FX7,7
520 *FX8,7
530 *FX5,2
540 VDU2,21,1,2
550 PRINT;STRING\$(64,CHR $(13));"N!!!!!!!!!!!!";S$
560 PRINT;"Y";
570 VDU6,3

```
```

 580 * FX2.1
 590 REPEAT:AS=|NKEYS(2):LYTII. AS=".
 600 *FX2,0
 61" E.DPPROC
 620:
 630 :
 6 4 0 ~ D E F P R O C S p a c e (N)
 650 LOCAL Ni
 660 N1=1:REPEAT:PRINT" "::N1=N1+1:UNTlI, N1>N
 6 7 0 ~ E N D P R O C ~
 680 :
 6 9 0 \text { DEFPROCOpen}
 700 IF Fileopen THEN ENDPROC
 70 REPEAT
 720 INPUT "Which file is data stored in"'"(type * for catalogue)",';Files
 730
 TFFile$="*"
 7 5 0
 760 File=OPENIN(Files)
 770 Fileopen=TRUE
 780 1F Print THEN VDU2
 790 l\PLT#File,TitleS,Tjtle2S
 800 PROCTjtle
 810 PRINT "From data file: "+Files
 820 REPEAT:PRINT'יDO you want a straight line fit (Y/N)";
 830 AS=GETS:PRIMT:AS
 840 IF AS="Y" OR AS="y" THEN Straight=TRUE
 PRINT"Do you want a polynomial fit (V/N)";
 AS=GETS:PRINT;AS
 IF AS="}" OR AS = "y" THEN POIY=TRLE
 IF NOT Poly AND VOT Straight THIN ITLY
 LNILL Poly OR Straight
 IF Poly PRINT "Do vou want a plot file(YN)"::AS=GETS
PRINT;AS:IF AS="Y" OK AS="Y" THEN OUt=TRLE
910 1F Out THEN PROCOpenout
920 lF Out THEN PRINT\#Fileout,TitleS,Title2S
930 INPUT\#File,NofYs,Xaxiss,Yaxis\$
940 NofYs=NofY's-1
950 JF Out THEN PRINT\#Fileout, 1, Naxis S,Yaxis\
900 DIM YS(Nofls), Conments(20)
970 FOR I=0 TO NofYs
INPUT\#File,YS(I):NEXT
IF Out THEN PRINT\#Fileout, YS(0)
NotCs=0):Comment$(0) =",
 REPEAT: PROCTest
 IF String THEN NofCs=NofCstl:INP(T##i]e,CommentS(NofCs)
 LNTlL NOT String
 FORI=0 TO NofCs
 PRINT Comment$(I)
IF Out THEN PRINT\#Fileout,Comments(I)
NEXT
IF Out THEN PRINT\#Fileout,"Rotational Hysteresis Fit"
ENDPROC
:
DEFPROCTest
REM Tests next bit of data
Integer=FALSE:Real=FALSE:String=FALSE
char=BGET\#File

```
```

Listing of ROTHYS.BBC at 22:32:46 on MAY 12, 1987 for CCid=PHP7
1150 PTR\#File=PTR\#File-1
1160 IF char=\&40 THEN Integer= FRLJ
1170 IF char=\&FF THEN Real=TRLI:
1180 IF char=\&00 THEN String=TRLE
1190 E.NDPROC
1200
1210 DEFFNLoad
1220 IF NOT EOF\#File AND (lnteger (OR Real) :INPGT\#File,Var:=Var
1230=0
1240 :
1250 DEFPROCC1ose
1260 IF Fileopen THEN CLOSE\#File
1270 IF Out THEN CLOSE\#Fileout
1280 *DRIVE 0
1290 ENDPROC
1300 :
1310 DEFPROCProgram
1320 PRINT"Do you want a hard copy (Y/N)";
1330 AS=GET$:PRINTAS
1340 IF A S="Y" OR A }$="y" THEN Print=TRUE
1350 JF Print THFN PROCPrinter
1360 PROCOpen
1.370 1% % =
1380 PRINT "Reading in data
1390 REPEAT
1400 1%=1%+1
1410 X(16,) FNLoad
1420 Y(I%)=FNLoad:FOR J%=1 TO NofYs:Rubbish=FNLoad:NTXT
1430 LNTIL EOF\#File
1440 Nofpts=1%
1450 IF Strajght PROCCalcstraight :PROCPrint
1460 IF Poly PROCCalcpoly : PROCPrint
1770 ENDPR()C
1480:
1490 DEFPROCCalcstraight
1500 PRINT "Calculating straight line fit . . "
1510 I%=1
1520 REPEAT: I%=1%+1:UNTIL X(I%) > 180
1530) Area=FNArea(180,Y(1%-1)+(180-X(1%-1))*(Y(1%)-Y(1%-1))/
(X(1%)-X(1%-1)),X(1%),Y(1%))
1540 1%=1%+1
1550 REPEAT
1560 Area=Area+FNArea(N(1%-1),Y(I%-1),N(I%),Y(I%))
1570 J%=1%+1
1580 LNTIL . (1%) < 180
1590 REPEAT
1600 Area=Area+FNArea(X(1%-1).Y(1%-1), X(1%),Y(I%))
1610 I%: 1%+1
1620 UNTIL X(I%) >180
1630 Area=Area+FNArea(X(1%-1),Y(I%-1),180,Y(1%-1)+(180-X(1%-1))*
(Y(1%)-Y(I%-1))/(X(I%)-X(I%-1)))
1640 REPEAT: I%=1%+1:UNTIL X(I%) < 180
1650 Areal=Area:Area=0
1660 Area=FNArea(X(1%),Y(I%),180,Y(I%)+(180-X(I%))*
(Y(1%-1)-Y(I%))/(X(I%-1)-X(I%)))
1670 I%=I%+1
1680 REPEAT
1690 Area=Area+FNArea(X(1%),Y(I%),X(I%-1),Y(I%-1))

```
```

Listing of ROTHYS.BBC at 22:32:46 on MAY 12, 1987 for CCid=PHP7
1700 1%=1%+1
1710 UNTlL X(1%) = 180
1720 REPEAT
1730 Area=Area+FNArea(X(1%),Y(I%),N(1%-1),Y(1%-1))
1740 I%=1%+1
1750 UNTII X(1%) < }18
1760 Area=Area+tNArea(180.)(1%)+(180, \(1%))*(Y(1%-1)-Y(1%))/
(X(1%-1)-X(1%)),X(I%-1),Y(I%-1))
1770 Area2=Area
1780 ENDPROC
1790 :
1800 DEFPROCPrint
1810 PRINT ,"Area Forwards=";Area1;", Nmdeg"
1820 PRINT "Area Backwards=";Area2;" Nmdeg"
1830 PRINT "Difference=";Area1-Area2;" Nmdeg"
1840 PRINT "Average hysteresis=";(Area1-Area2)/360;"Nm"
1850 PRINT
1860 ENDPROC
1870 :
1880 DEFFNArea(X1,Y1,X2,Y2)
1890 Diff=X1-X2
1900 IF ABS(Diff) >180 THEN Diff=Diff-360*SGN(Diff)
1910 Ar=(Y1+Y2)*(Diff)/2
1920 REM PRINT "From ";X1;" to ";X2;", area=";Area;"+";Ar;"=";Area+Ar
1930 =Ar
1940 :
1950 DEFPROCOpenout
1960 PRINT"Which file for curve fit""" (* for catalogue)"
1970 REPEAT:INPUT FileS
1980 IF FileS="*" THEN *CAT 0
1990 IF FileS="*" THEN *CAT 2
2000 UNTIL File§<>"*"
2010 Fileout=OPENOUT(FileS)
2020 ENDPROC
2030 :
2040 :
2050 :
2060 DEFPROCCalcpoly
2070 PRINT "Calculating Polynomial fit"
2080 Area=0
2090 Start=-180
2100 Finish=180
2110 FOR I=-180 TO 180
2120 PROCfit(I,+1,6)
2130 NEXT
2140 Areal=Area
2150 Start=180:Finish=-180
2160 Area=0
2170 FOR I=180 TO -180 STEP - 1
2180 PROCfit(1,-1,6)
2190 NENT
2200 Area 2=-Area
2210 ENDPROC
2220 :
2230:
2240 DEFPROCRange(I,J,K)
2250 REPEAT
2260 IF J*X(3) > J*I OR J*X(4) < J*I THEN PROCNext

```
```

L.isting of ROTHYS.BBC at 22:32:46 on MAY 12, 1987 for CCid=PHP7

```
```

2270 REPEAT

```
2270 REPEAT
2280 IF ABS(X(6)-1):180 THEN X (6)=\(6)+360*SGN(1-X(6))
2280 IF ABS(X(6)-1):180 THEN X (6)=\(6)+360*SGN(1-X(6))
2290 LNTll. ABS(X(6)-1)<=180
2290 LNTll. ABS(X(6)-1)<=180
2.300 UNTIL J*S(3) < J*| AND) J*&(4) , J*l
2.300 UNTIL J*S(3) < J*| AND) J*&(4) , J*l
2310 ENDPROC
2310 ENDPROC
2320:
2320:
2330:
2330:
2340 DEFPROCi i ( ( I, J,K)
2340 DEFPROCi i ( ( I, J,K)
2350 FOR II=1 TO 6:REPEAT
2350 FOR II=1 TO 6:REPEAT
2360 IF ABS(X(II)-1)>180 THEN . N(II)=X(II) +360*SGN(I-X(II))
2360 IF ABS(X(II)-1)>180 THEN . N(II)=X(II) +360*SGN(I-X(II))
2370 UNTIL ABS(X(II)-I)<=180
2370 UNTIL ABS(X(II)-I)<=180
2380 NEXT
2380 NEXT
2390 IF First OR J*X(3)>J*I OR J*X(4)<J*] THEN PROCRange(I, J,K):PROCSolv(6)
2390 IF First OR J*X(3)>J*I OR J*X(4)<J*] THEN PROCRange(I, J,K):PROCSolv(6)
2400 IF J*X(3)>J*I OR J*X(4)<J*I THEN PROCRange(I,J,K):PROCSolv(6)
2400 IF J*X(3)>J*I OR J*X(4)<J*I THEN PROCRange(I,J,K):PROCSolv(6)
2410 IF ((()I-Start)*J*100)+36000) MOD 36000)<18000 THEN PROCAddarea(J,K)
2410 IF ((()I-Start)*J*100)+36000) MOD 36000)<18000 THEN PROCAddarea(J,K)
2420 Yi=0:FOR L=1 TO K:Yi=Yi+A(L)*I`(L-1):NEXT
2420 Yi=0:FOR L=1 TO K:Yi=Yi+A(L)*I`(L-1):NEXT
2430 REM PRINT I ;TAB(18);Yi
2430 REM PRINT I ;TAB(18);Yi
2440 IF Out PRINT#Fileout,(1+360)MOD360,Yi
2440 IF Out PRINT#Fileout,(1+360)MOD360,Yi
2450 First=FALSE
2450 First=FALSE
2460 ENDPROC
2460 ENDPROC
2470 :
2470 :
2480 :
2480 :
2490 DEFPROCNext
2490 DEFPROCNext
2500 FOR 11I=0 TO Nofpts - 1
2500 FOR 11I=0 TO Nofpts - 1
2510 X(III) =X(III+1)
2510 X(III) =X(III+1)
2520 Y(I|I) =Y(III +1)
2520 Y(I|I) =Y(III +1)
2530 NEXT
2530 NEXT
2540 X(Nofpts)=X(0)
2540 X(Nofpts)=X(0)
2550 Y(Nofpts)=Y(0)
2550 Y(Nofpts)=Y(0)
2560 ENDPROC
2560 ENDPROC
2570 :
2570 :
2580 DEFPROCSoJv(N)
2580 DEFPROCSoJv(N)
2590 LOOCAIM, I , J , K
2590 LOOCAIM, I , J , K
2600 FOR GI=1 TO 6:YI(GJ)=Y(GI):NEXT
2600 FOR GI=1 TO 6:YI(GJ)=Y(GI):NEXT
2610 FOR I=1 TO N:FOR J=1 TO N
2610 FOR I=1 TO N:FOR J=1 TO N
2620 M(I, J )=X(1)^(J - 1)
2620 M(I, J )=X(1)^(J - 1)
2630 NEXT:A(1)=0:NEXT
2630 NEXT:A(1)=0:NEXT
2640 FOR l=2 TO N
2640 FOR l=2 TO N
2650 FOR J=1 TO l-1
2650 FOR J=1 TO l-1
2660 MI=M(I J J 
2660 MI=M(I J J 
2670 FOR K=1 TO N
2670 FOR K=1 TO N
2680 M(I,K)=M(l,K)-M(J.K)*Ml/M(J,J )
2680 M(I,K)=M(l,K)-M(J.K)*Ml/M(J,J )
2690 NEXT
2690 NEXT
2700 Yl(I)=YI(I)-YI(J)*Ml/M(J.J)
2700 Yl(I)=YI(I)-YI(J)*Ml/M(J.J)
2710 NEXT:NEXT
2710 NEXT:NEXT
2720 FOR J=N TO 1 STEP - 1
2720 FOR J=N TO 1 STEP - 1
2730 FOR I=1 TO N
2730 FOR I=1 TO N
2740 IF I<>J THEN YI(J)=YI(J)-M(J,I)*A(I)
2740 IF I<>J THEN YI(J)=YI(J)-M(J,I)*A(I)
2750 NEXT
2750 NEXT
2760 A(J ) =YI(J )/M(J , J )
2760 A(J ) =YI(J )/M(J , J )
2770 NEXT
2770 NEXT
2780 ENDPROC
2780 ENDPROC
2790 :
2790 :
2800:
2800:
2810 DEFPROCAddarea(J,K)
2810 DEFPROCAddarea(J,K)
2820 Begin=Start:Last=Finish
2820 Begin=Start:Last=Finish
2830 IF (X(4)*J) < (Last*J) THEN Last=X(4)
2830 IF (X(4)*J) < (Last*J) THEN Last=X(4)
2840 Start=Last
```

```
Listing of ROTHYS.BBC at 22:32:46 on MAY 12, 1987 for CCid=PHP7
2850 Yb=0:Yl=0
2860 FOR L==1 TO k
2870 Yb=Yb+A(L)*Begin^(L)/I
2880 Yl=Yl+A(L)*Last^(L)/L
2890 NEXT
2900 REM PRINT "From ";Begjn;" to ":last;", area=";Area;"+":Yl-Yb;"=";
2910 Area=Area+Yl-Yb
2920 REM PRINT Aren
2930 ENDPROC
```

```
Listing of SKETCH.BBC at 00:18:33 on MAY 13, 1987 for CCid=PHP7
    10 REM Sketchin Program
    20 REM
    30 REM M.Hawton (Durham Feb 1985)
    40 REM
    50 REM - plots results on screen
    6 0 ~ R E M
    70 VDU3, 15
    80 MODE 7
    90 PROCSetup
    95 PROCOptions
    98 MODE 0
100 PROCProgram
110 Finished=TRUE
120 IF Pixy PROCPen(0)
130 IF Pixy PROCMove(0,0)
140 *FX2,0
150 *FX3,0
160 PROCClose
170 IF NOT Finished THEN PRINT"Last error was ";
                    :REPORT:PRINT;" at line ";ERL
190 VDU28,0,2,79,0
210 END
220:
230 DEFPROCSetup
240 VDU28,0,24,39,9
250 Fileopen=FALSE:Title$="":Title 2$=""
260 Finished=FALSE:Pixy=FALSE
270 ON ERROR GOTO 120
280 PROCTitle
290 *FX7,7
300 *FX8,7
310 *FX5,2
320 *FX2,2
340 *FX2,2
350 DIMMax(1),Min(1),Scale(1),Unit(1),Num(1),Diff(1),Fact(1)
360 ENDPROC
370 :
380 DEFPROCPen(I%):ENDPROC
390 :
400 DEFPROCMove(1%,J%):MOVE 1%/2,J%/2+28:ENDPROC
410 :
420 DEFPROCDraw(I%,J%):DRAW 1%/2,J%:2+28:ENDPROC
430 :
440 DEFPROCCharactersize(1%): ENDPROC
450):
460 DEFPROCNaxis(Length%,Number%):LOCAL K%
    :FOR K%=1 TO Number%:PLOT 1,Length%/2,0
463 IF ((K% MOD 2) = 1) AND ((Length% MOD 2)=1) THEN PLOT 1,1,0
465 PLOT 0,0,5:PLOT 1,0,-10:PLOT 0,0,5:NEXT:ENDPROC
470 :
480 DEFPROCYaxis (Length%,Number%):LOCAL K%
    :FOR K%=1 TO Number%:PLOT 1,0,Length%/2
483 IF ((K% MOD 2) = 1) AND ((Length% MOD 2)=1) THEN PLOT 1,0,1
485 PLOT 0,5,0:PLOT 1,-10,0:PLOT 0,5,0:NEXT:ENDPROC
490 :
500 DEFPROCCurve(N1%,N2,Xscale,Yscale)
6 8 0 ~ E N D P R O C ~
690 :
```

```
Listing of SKETCH.BBC at 00: 18:33 on MAY 13, 1987 for CCid=PHP7
    700 DEFPROCPrint(X.Y.SS)
    702 1F SS="" OR VOT Label THEN ENDPROC
    704 PROM,Move(X.Y'):VDU5:PRINT S $:VDU4:ENDPROC
    7 1 0
    720 DEFPROCRotate(N%): ENDPROC
    730
    740 DEFPROCMark(N%)
    742 iF W%=8 THEN PLOT 0,5,0:PLOT 1,-10,0:PLOT 0,5,5
        :PLOT 1,0,-10:PLOT 0.0.5
    744 1F N%=3 THEN PLOT 0,5,5:PLOT 1,-10,0:PLOT 1,0,-10
        :PLOT 1,10,0:PLOT 1,0,10:PLOT 0,-5,-5
    746 IF N%=1 THEN PLOT 0, 1,1:PLOT 1,-2,0:PLOT 1,0,-2
        :PLOT 1,2,0:PLOT 1,0,2:PLOT 0,-1,-1
    748 ENDPROC
    750:
    7 6 0 ~ D E F P R O C S p e e d ( N \% ) : ~ E N D P R O C ~
    7 7 0
    7 8 0 \text { DEFPROCTitle}
    790 VDU28,0,24,39,0
    800 CLS
    810 PRINTTAB(0,4);:VDU131,157,132,136:PRINT" Data plotting routine"
    820 PRINTTAB(0,5);:VDU131,157,132:PROCSpace(17-LEN(Tit1e$)/2):PRINTTitle$
    830 PRINTTAB(0,6);:VDU131,157,132:PROCSpace(17-LEN(Title2$)/2):PRINTTitle 2$
    840 PROCCom(7,"")
    845 PR1NTTAB(0,0);
    850 ENDPROC
    860 :
    8 7 0 \text { DEFPROCSpacebar}
    880 LOCAL AS
    890 *FK21,0
    900 PRINT,"Press the space bar to continue"
    910 PROCCom(2,'Waiting for your reply")
    920 REPEAT:AS=GET$:UNTIL A S=""
    9.30 PRINT "Thank you"',
    940 PROCCom(2,"*)
    950 ENDPROC
    960 :
1240 :
1250 DEFPROCCom(N,CS}
1260 L%=LEN(CS ): X=POS:Y=VPOS:X%=19-L%/2
1270 \DL28,0.24.39.0
1280 PRINT TAB(0,N);" "::PROCSpace(N%)
1290 PRINTCS::PROCSpace(38-. . %-L%)
1300 \DL28,0,24.39.9
1310 PRINTTAB(X, `)"":
1320 ENDPROC
1330 :
1340 DEFPROCSpace(N)
1350 LOCAL N1
1360 N1=1:REPEAT :PRINT" ";:N1=N1+1:UNTIL N1>N
1370 ENDPROC
1380 :
1390 DEFPROCOpen
1400 lF Fileopen THEN ENDPROC
1410 REPEAT
1420 INPUT "Which file is data stored in"'
                                    "(type * for catalogue)",';File$
1460 IF File$="*" THEN *CAT 0
```

Listing of SKETCH. BBC at OO: 18:33 on MAY 13. 1987 for CCid=PHP7

```
1470 IF Files=**" THEN *CAT 2
1480 UNTIL. FileS<<"**
1490 File=0PENIN(Files)
1500 Fileopen=TRUE
1510 INPUT#File,TitleS,Title2$
1520 PROCTitle
1530 PROCCom(7."From data file: "+FileS)
1540 INPUT#File,NofYs,Naxis$,Yaxiss
1550 J%=1400/NofYs:NofYs=NofYs - 1
1560 DIM CommentS(15),Y$(NofYs),X(J%),Y(NofYs,J%)
1570 FOR I=0 TO NofYs
1580 INPUT#File,Y$(I):NEXT
1590 NofCs=0:Comment $(0)=""
1600 REPEAT:PROCTest
1610 IF String THEN NofCs=NofCs+1:INPUT#File,Comments(NofCs)
1620 UNTIL NOT String
1630 FORI=0 TO NofCs
1640 PRINT Comments(I):NEXT
1650 ENDPROC
1660 :
1670 DEFPROCTest
1680 REM Tests next bit of data
1690 Integer=FALSE:Real=FALSE:String=FALSE
1700 char=BGET#File
1710 PTR#File=PTR#File-1
1720 IF char=&40 THEN Integer=TRUE
1730 IF char=&FF THEN Real=TRUE
1740 IF char=&00 THEN String=TRLE
1750 ENDPROC
1760:
1770 DEFFNLoad
1780 IF NOT EOF#File AND (Integer OR Real) :lNPLT#File,Var:=Var
1790 =0
1800
1810 DEFPROCCIose
1820 IF Fileopen=FALSE THEN ENDPROC
1830 CLOSE#File
1840 *DRIVE 0
1850 ENDPROC
1860 :
1870 DEFPROCOptions
1880 PROCOpen: PROCSpacebar
1890 DIM Mark(NofYs).Line(NofYs).Not(NofYs)
1910 FOR I=0 TO NofYs
1920 CLS:PROCCom(1,"Line Option"):PRINT'"For Y(";1+1:") :";Y$(1);`"
    "Do you want:","" M - a mark only (dot,cross etc.)",
        " J - line joining points only"," C - marks and joining line",
        * N - nothing"
1940 Mark(I)=-1:Line(1)=0:Not(I)=FALSE
1950 REPEAT :A$=GETS
            IF AS="C" OR A }=="\textrm{c}"\mathrm{ OR A }$="J" OR AS="j" THEN Line(I)=
1980 IF AS="C"OR AS ="c"OR AS="M"OR AS="m" THEN PRINT","Choose from",
1980 IF AS="C"OR AS="c" OR AS="M"OR AS="m" THEN PRINT","C
1990 IF AS="N" OR A S="n" Not(I)=TRUE
2010 IF (Line(I) < 1) AND (Mark(I) < 1) AND (NOT(Not(I))) VDU 7
2020 UNTlL (Line(I)>0) OR (Mark(I)>0) OR Not(I)
2030 NEXT
2040 DIM Lines%(23):FOR l=0 TO 23:Lines%(I)=0:NEXT
```

```
2050 W%=1:T%=0:Tal]=FAL.SE:Whole=TRUE:Wjde=TRUE:Zero=FALSE:Quick=TRUE
            :Axis=TRUE:Label=TRLE:Xscale=FALSE:Yscale=FALSE:Pen=FALSE
2060 CLS:PROCCom(1,"Format Options"):PRINT" T - Tall plot",
    "W Wide plot"," P - Whole page plot"," R - room for comments"
    PRINT " Z - axis along zeros"," B - axis on bottom and left".
    " N - no axis or label drawn"," A - axis only (no labels)"
    PRi\X " M - miñ and max used for both axis""
    " X - X axis scale fixed"," Y - Y axis scale fixed"
    PRINT" O - one pen plot"," C - coloured plot".
            Q - quick plot"," G - good plot";
2100 PROCCom(2,"* marks option chosen"):PROCCom( 3,"-press RET to continue")
2110 REPEAT
2120 IF Tall Lines%(8)=1:Lines%(9)=0
2130 lF Wide Lines%(9)=1:Lines%(8)=0
2140 IF NOT Whole Lines%(11)=1:Lines%(10)=0
2150 IF Whole Lines%(10)=1:Lines%(11)=0
2160 IF Zero Lines%(12)=1:Lines%(13)=0 ELSE Lines%(13)=1:Lines%(12)=0
2165 IF Labe] Lines%(15)=0 ELSE Lines%(15)=1
2170 IF NOT Ax is Lines%(14)=1:Lines%(12)=0:Lines%(13)=0::Lines%(15)=0
            ELSE Lines%(14)=0
2180 Lines%(16)=1:Lines%(18)=0:Lines%(17)=0
2190 IF Yscale Lines%(18)=1:Lines%(16)=0
2200 JF Xscale Lines%(17)=1:Lines%(16)=0
2205 IF Pen Lines%(19)=1:Lines%(20)=0 ELSE Lines%(19)=0:Lines%(20)=1
2210 lF Quick Lines%(21)=1:Lines%(22)=0 ELSE Lines%(21)=0:Lines%(22)=1
2220 FOR L=0 TO 15:IF Lines%(L+8)=1 THEN PRINTTAB(0,L);"*";
                ELSE PRINTTAB(0,L);" ";
2230 NEXT
2240 A$=GETS
2250 IF A$= 'W" OR AS="w" THEN Tal1=FALSE:Wide=TRLE:W%=1:T%=0
2260 REM IF AS ="T" OR AS="t" Tall=TRUE:Wide=FALSE:W% =0:T%=1
2270 IF AS="P" OR AS="p" THEN Whole=TRLE
2280 REM IF AS="R" OR AS="r" THEN Whole=FALSE
2290 IF AS = "Q" OR AS="q" THEN Quick=TRLE
2300 IF A$="G" OR AS="g" THEN Quick=FALSE
2305 1F AS ="O" OR AS ="o" THEN Pen=TRUE
2307 1F A S = "C" OR A S="c" THEN Pen=FALSE
2310 IF AS="M" OR A S="m" THEN Yscale=FALSE:Xscale=FALSE
2320 IF A }=>\timesN"\mathrm{ OR A }$="x"\mathrm{ THEN \iscale=TRUE
2330 IF A }=>>>"\mathrm{ OR A }$="y"\mathrm{ THEN Yscale=TRUE
2340 IF AS="Z" OR A S="z" THEN Zero=TRLE:Ax is=TRUE:Label=TRUE
2350 IF A $="B" OR AS="b" THEN Zero=FALSE:Ax is=TRLE:Label=TRLE
2360 IF A $="N" OR A S="n" THEN Axis=FALSE:Label=FALSE
2365 IF AS ="A" OR AS="a" THEN Axis=TRLE:LabeJ=FALSE
2370 LNTIL ASC(AS)=13
2380 ENDPROC
2383
2390 DEFPROCProgram
2420 1F Quick THEN PROCSpeed(9) ELSE PROCSpeed(2)
2430 PROCCharactersize(3)
2440 PROCPen(3)
2450 PROCRotate(3*T%)
2460 PROCPrint (2400*T%,1765+50*T%,Titles)
2470 IF Whole PROCPrint(2350*T%,1700+100*T%,Title 2S)
2480 FOR l=0 TO NofCs
2490 IF NOT Whole AND Ax is PROCPrint((400-50*I)*T%+1800,900+(100-50*1)*W%
                                    ,Comments(I))
2500 NEXT
```

```
2510 PROCPen(2):PROCCharactersize(5)
2520 IF NOT Whole PROCPrint(2260*T%,1650+50*T%,Title2S)
2530 PROCCharactersize(3)
2540 FOR I=0 TO) 1:Max(I)=-9E30:Min(J)=9E30:NEXT
2550 1%=0
2560 REPEAT
2570 1%=1%+1
2580 Xíi%)=FNLOad
2590 IF X (1%)<Min(0) Min(0) =X(1%)
2600 IF X(I%)>Max(0) Max(0)=X(1%)
2610 FOR J%=0 TO NofYs:Y(J%,1%)=FNLoad
2620 IF (NOT Not(J%)) AND Y(J%,I%)<Min(1) Min(1)=Y(J%,I%)
2630 IF (NOT Not(J%)) AND Y(J%,I%)>Max(1) Max(1)=Y(J%,I%)
2640 NEXT
2650 UNTIL EOF#File
2660 IF Xscale THEN CLS:PRINT'"Minimum X is ";Min(0)'"Maximum X is ";Max(0)
                :INPUT "Scale to go from";Min(0)'" to";Max(0)
2670 1F Yscale THEN CLS:PRINT""Minimum Y is ";Min(1)'"Maximum Y is ";Max(1)
                :INPUT "Scale to go from";Min(1)"" to";Max(1)
2680 NofPs=I%
2690 FOR I=0 TO 1
2700 Diff(1)=ABS(Max(1)-Min(I))
2710 IF Diff(I)=0 THEN PRINT "Silly data - can't plot jt":ENDPROC
2720 Fact(I)=1
2730 REPEAT
2740 IF Diff(I)>15 THEN Diff(I)=Diff(I)/10:Fact(I)=Fact(I)*10
2750 UNTIL Diff(I)<15
2760 REPEAT
2770 IF Diff(I)<1.5 THEN Diff(I)=Diff(l)*10:Fact(I)=Fact(I)/10
2780 UNTIL Diff(I)>1.5
2790 Unit(I)=0.1
2800 IF Diff(I)>2 THEN Unit(I)=0.2
2810 lF Diff(I)>5 THEN Unit(I)=0.5
2820 Lnit(1)=\operatorname{Lnit(I)*Fact(I)}
2830 Min(I)=(INT(Min(I)/Lnit(I)))*Unit(I)
2840 Max(I)=(INT(Max(1)/Lnit(I)+1))*Unit(I)
2850 Diff(1)=Max(I)-Min(I)
2860 Num(1)=INT(Diff(1)/Lnit(I)+0.1)
2870 IF I=0 OR NOT Whole Fact(I)=1NT(1500/Num(I))
                                    ELSE Fact(l)=INT(2100/Num(I))
2880 1F I=0 AND Whole AND Wide Fact(1)=INT(2300% \um(I))
2890 IF l=1 A\D Wide AND Whole Fact(l)=INT(1400;Num(I))
2900 IF I=1 AND Wide AND NOT Whole Fact(I)=INT(1350/Num(I))
2910 Scale(1)=Fact(1)*Num(I)/Diff(1)
2920 NEXT
2930 PROCPen(1)
2940 YZero=150
2950 IF Zero THEN YZero=150-Min(1)*Scale(1)
2960 IF Tall AND Axis PROCMove(YZero, 1650):PROCYaxis(-Fact(0),Num(0))
                                    ELSE IF Axis PROCMove(150,YZero): PROCXaxis(Fact(0),Num(0))
2970 FOR U%=0 TO Num(0)
2980 String=Unit(0)*INT(0.1+(Min(0)+U%*Diff(0)/Num(0))/Unit(0))
2990 IF (Min(0)/Unit(0)+U%+500.1) MOD 5 = 0 THEN PROCXlabel
3000 NEXT
3010 IF Whole PROCPrint(YZero*T%-130+1630*W%,YZero*W%-140+840*T%,Xaxis$)
3020 IF NOT Whole PROCPrint(YZero*T%-130+1230*W%,YZero*W%-140+840*T%, Xaxiss)
3030 PROCRotate(W%)
3040 XZero= 150+1500*T%
```

 3050 IF Zero THEN NZero=(1650+Min(0)*Scale(0))*T\%+(150-Min(0)*Scale(0))*W\%
 3060 IF Axis AND Tall PROCMove (150, XZero) : PROCXaxis (Fact (1) , Num (1))
 ELSE IF Axis Procmove(XZero, 150): PROCYaxis(Fact(1),Num(1))
 3070 FOR \(\mathrm{L} \%=0\) TO Num (1)
 $3080 \quad$ String $=\operatorname{Linit}(1) * 1 \operatorname{NT}\left(0.1+\left(\operatorname{Min}(1)+\mathrm{L} \%^{*} \operatorname{Diff}(1) / \mathrm{Num}(1)\right) / \mathrm{Unit}(1)\right)$
3090 IF (Min(1)/Unit(1)+L\%, 500.1) MOD $5=0$ THEN PROCY1abel
3100 NEST
3110 lF Whole PROCPrint ($1400 * T \%+(X Z e r o-110) * W \%, 900 * W \%+(X Z e r o+100) * T \%$, Yaxis $\$)$
3120 IF NOT Whole PROCPrint (1000*T\%+(XZero-110)*W\%, 900*W\%+(XZero+100)*T\%,
Yaxiss)
3130 PROCRotate (3 *T\%): Pens=1
3140 FOR $\mathrm{l}=0$ TO NofY's
3150 IF NOT Not(I) Pens=1+(Pens MOD 3): PROCPen(Pens)
$3160 \quad$ IF NOT Not (I) AND Whole AND Tall PROCPrint (2400-I*50, 800, Y $\$(1))$
3170 IF NOT Not(I) AND NOT Whole AND Tall PROCPrint (1800+NofYs*50-I*50,
1700,Y(1))
3180 IF Wide AND NOT Not(I) PROCPrint(1500, 1750-65*I,Y\$(I))
3190 PROCCalc (I)
3200 IF Mark (I) >0 PROCMarks (I)
$3220 \quad 1 F$ Line(I) $=2$ PROCJoin(I)
3230 IF Line(I)=1 PROCLine(I)
3240 NEXT
3250 ENDPROC
3260 :
3270 DEFPROCCalc (1)
3280 FOR J $\%=1$ TONofPs
$3283 \quad \mathrm{IF} \mathrm{Y}(\mathrm{I}, \mathrm{J} \%)>\operatorname{Max}(1)$ THEN $\mathrm{Y}(\mathrm{I}, \mathrm{J} \%)=\mathrm{Max}(1)$
3284 IF $\mathrm{Y}(\mathrm{I}, \mathrm{J} \%)<\operatorname{Min}(1)$ THEN $\mathrm{Y}(\mathrm{I}, \mathrm{J} \%)=\operatorname{Min}(1)$
$3286 \quad 1 \mathrm{~F} X(\mathrm{~J} \%)>\operatorname{Max}(0)$ AND $\mathrm{I}=0$ THEN $\mathrm{X}(\mathrm{J} \%)=\operatorname{Max}(0)$
3287 IF $\mathrm{X}(\mathrm{J} \%)<\operatorname{Min}(0)$ AND $\mathrm{J}=0$ THEN $\mathrm{X}(\mathrm{J} \%)=\operatorname{Min}(0)$

$3300 \quad 1 F$ Tall AND $\quad \mathrm{l}=0$ THEN $\mathrm{Y}(1, \mathrm{~J} \%)=1650-((\mathrm{XI}-\mathrm{Min}(0)) * S c a l e(0))$
$3310 \quad 1 \mathrm{~F}$ Tall AND $\mathrm{I}<>0$ THEN $\mathrm{Y}(1, \mathrm{~J} \%)=\mathrm{Y}\left(1-1, \mathrm{~J} \sigma_{\%}\right)$
$3320 \quad$ IF Wide THEN Y(1.J J $)=150+((\mathrm{Y}(1, \mathrm{~J} \%)-\mathrm{Min}(1)) * \mathrm{Scale}(1))$
$3330 \quad 1 F$ Wide AND $\mathrm{J}=0$ THEN $\mathrm{X}(\mathrm{J} \%)=150+((\mathrm{X}(\mathrm{J} \%)-\mathrm{Min}(0)) * S c a l e(0))$
3340 NEXT
3350 ENDPROC
3360 :
3370 DEFPROCMarks(1)
3380 FOR J $\sigma_{\%=1 \mathrm{TO}} \mathrm{I} \%$
3390 PROCMove ($\mathrm{X}\left(\mathrm{J} \sigma_{\mathrm{F}}\right) . \mathrm{Y}\left(\mathrm{J} . \mathrm{J} \sigma_{r}\right)$): PROCMark(Mark (I))
3400 NEXT
3410 ENDPROC
3420 :
3430 DEFPROCLine(I)
3440 PRCCCurve (1, 1\% , 1, 1)
3450 ENDPRCC
3455
3510 :
3520 DEFPROCJoin (1)
3530 PROCMove (X (1), Y(1,1))
3540 FOR J $\%=2 \mathrm{TO}$ I
$3550 \quad 1 F \operatorname{ABS}\left(\left(\mathrm{X}(\mathrm{J} \%)-\mathrm{X}\left(\mathrm{J} \sigma_{-1}\right)\right)\right)<1200 \operatorname{AND} \operatorname{ABS}((\mathrm{Y}(\mathrm{J}, \mathrm{J} \%)-\mathrm{Y}(\mathrm{I}, \mathrm{J} \%-1)))<1200$
THEN PROCDraw(X(J\%),Y(I,J\%)) ELSE PROCMove(X(J\%),Y(I,J\%))
3560 NEXT
3570 PROCMove (0,0)
3580 ENDPROC
3590 :

Listing of SKETCH.BBC at 00:18:33 on MAY 13, 1987 for CCid=PHP 7
3600 DEFPROCXIabe 1
3610 IF Tall PROCMove(YZero, 1650-L\%, Fact(0)):PROCDraw(YZero-40, 1650-6\%* Fact (0)) : PROCPrint (YZero-78, 1690-L\%*Fact(0), FNRound (STRS(String), 2))
3620 IF Wide PROCMove ($150+\mathrm{U} \%$, Fact (0). IZero) : PROCDraw(150+U\%*Fact (0).
YZero-40): PROCPrint(110+ L\%*Fact(0), YZero-90, FNRound(STRS(String). 2))
3630 ENDPROC
3640 :
3650 DEFPROCYI abel
3660 IF Tall THEN PROCMove(150+U\%*Fact(1), XZero)
: PROCDraw ($150+$ U\%*Fact (1), XZero 37)
: PROCPrint (120+U\%*Fact (1), XZero+48, FNRound (STRS(String), 2))
3670 IF Wide THEN PROCMove(XZero, 150+U\%*Fact(1))
: PROCDraw (XZero-37, 150+U\%*Fact (1))
: PROCPrint (XZero-50, 120+U\%*Fact (1), FNRound (STR\$(String), 2))
3680 ENDPROC
4000 :
4010 DEFFNRound (S \$,N)
4020 LOCAL AS,chS,Count
4030 FOR $\mathrm{I}=1$ TO LEN ($\mathrm{S} \$$)
$4040 \quad \operatorname{ch} \$=\operatorname{MID} \$(S \$, 1,1)$
$4050 \quad$ IF ch $\$=$ "." THEN Count $=1$
4060 IF chS="E" THEN Count=0:A $\$=$ FNTrail(AS)
$4070 \quad$ IF Count >0 THEN Count $=$ Count +1
$4080 \quad$ IF Count $<\mathrm{N}+3$ THEN $\mathrm{A} S=\mathrm{A} \$+\mathrm{ch} \$$
4090 NEXT
$4100=$ FNTrail(AS)
4110 :
4120 DEFFNTrail (AS)
4130 LOCAL Carry,B\$,1,L
4140 Carry=FALSE: Point=FALSE:B $\$=A \$$
4150 IF RIGHT $\$(A S, 1)=" 9 "$ THEN Carry=TRUE
4160 REPEAT
IF R1GHTS(AS, 1) $=" 9$ " AND Carry THEN AS=LEFTS(AS,LEN(AS)-1)
IF RIGHTS (AS, 1) $=$ " 0 " AND NOT Carry THEN AS=I.EFTS (AS,LEN(AS)-1)
IF RIGHTS $(A S, 1)=" . " \operatorname{THEN} \operatorname{AS}=\operatorname{LEFT}(A S, \operatorname{LEN}(A S)-1):$ Point=TRLE
UNTIL Point OR ((RIGHTS (AS, 1) < > " 0 " OR Carry) AND
R1GHT (AS,1)<>"."AND (RIGHT\$(A\$,1)<>"9"OR NOT Carry))
4170
4180
4190
4200
4210
$4220 \mathrm{~L}=\mathrm{LEN}(\mathrm{AS})$
4230 FOR I=LEN(AS) TO 1 STEP - 1
4240 IF MIDS(A\$.I,1)="9"AND Carry THEN AS $=$ LEFT $(A S, 1-1)+" 0 "+$ RIGHT $(A S . L-I)$ ElSE If Carry

THEN A $\$=\operatorname{LEFT}(\mathrm{A} \$.1-1)+\operatorname{CHR} \$(\operatorname{ASC}(\operatorname{MIDS}(\operatorname{AS} . \mathrm{I}, 1))+1)+\operatorname{RIGHTS}(\mathrm{AS}, \mathrm{L}-1)$: Carry=FALSE
4250 NEXT
4260 IF Carry THEN $A S=1 "+A S$
4270 : $=\mathrm{AS}$

```
Listing of HP.BBC at 00:18:20 on MAY 13, 1987 for CCid= PHP7
    10 REM HP ploting program
    30 REM M.Hawton (Durham Dec 1986)
    40 REM
    50 *KEY 0 *COPY 1 0
    52 *KEY 1 *COPY 0 3A
    54 *KEY 3 *KEY 2 V
    56 *KEY 9 RUNIM
    70 VDU3,15:MODE 7
    80 Split 180=FALSE
    90 PROCSetup:PROCProgram
110 Finished=TRUE
120 lF Pixy PROCPen(0):PROCPen(0)
130 IF Pixy PROCMove(0,0):PROCPen(0)
140 *FX2,0
150 *FX3,0
160 PROCCIose
170 IF NOT Finished THEN REPORT:PRINT;" at line ";ERL
180 PROCCom(1,"Thank you for using this plotter")
190 PROCCom(2,"I now await your next command")
200 VDU28,0,24,39,0
210 END
220:
230 DEFPROCSetup
240 VDU28,0,24,39,9
250 Fileopen=FALSE:Title$="":Title 2S=""
260 Finished=FALSE:Pixy=FALSE
270 ON ERROR GOTO 120
280 PROCTitle
290 *FX7.7
300 *FX8,7
310 *FX5,2
320 *FX2,2
330 PROCHP
340 *FX2,2
350 DIM Max(1),Min(1),Scale(1),Unit(1),Num(1),Diff(1),Fact(1)
360 ENDPROC
370 :
380 DEFPROCPen(1%):IF Pen THEN I%=SGN(1%)
385 PROCSend("SP"+STRS(1%)):ENDPROC
390 :
400 DEFPROCMove(I, J):PROCSend("PA,PL,"+STRS(1*4)+","+STR$(J*4)):E\DPPROC
410 :
420 DEFPROCDraw(I.J):PROCSend("PA.PD,"+STRS(I*4)+","+STR$(J*4)):ENDPROC
4 3 0 ~ : ~
440 DEFPROCCharactersize(1%):PROCSend("SI"+STRS(0.04+1%*0.04)+","
                            +STR$(0.07+I%*0.07)):ENDPROC
450:
460 DEFPROCXaxis(Length,Number%)
4 6 2 ~ I F ~ T a l 1 ~ P R O C S e n d ( " T L 1 . 0 , 0 " ) ~ E L S E ~ P R O C S e n d ( " T L - 1 . 0 , 0 " ) ~
464 FOR TICK=1 TO Number%:PROCSend("PR,PD,"+STRS(Length*4)+",0")
                        :PROCSend("XT"):NEXT
465 PROCSend("PR,PC"):ENDPROC
470 :
480 DEFPROCYaxis(Length,Number%)
482 PROCSend("TL-1.0,0")
485 FOR TICK=1 TO Number%:PROCSend("PR,PD,0,"+STRS(Length*4))
                                    :PROCSend("YT"):NEXT
```

```
Listing of HP.BBC at 00:18:20 on MAY 13. 1987 for CCid=PHP7
487 PROCSend("PR,PU"): ENDPROC
4 9 0
500 DEFPROCCurve(N1%,N2, Xscale, Yscale)
510 LOCAL 1%
520 REM Draws curve through X(N1%),Y(N1%)...to X(N2),Y(N2)
530 REM IF N2<0 THEN curve closed
540 N2%=ABS(N2):!F (N2%-N1%)<3 THFN FNDPROC
550 VDU2
560 PRINT "PA,PU";
570 1%=N1%-1
580 REPEAT
590 I%=1%+1
600 IF ABS((X(1%)-X(I%-1))*Xscale)>600 THEN OK=FALSE
610 IF ABS((Y(1,1%)-Y(I,I%-1))*Yscale)>600 THEN OK=FALSE
620 IF I%=N 1% THEN OK=TRUE
630 IF OK THEN PRINT;",";4*Xsca
635 IF I%=N1% THEN PRINT ",PD";
640 UNTIL (I%>=N2%) OR NOT OK
650 PRINT",PL"
6 6 0 ~ V D U 3
6 7 0 ~ I F ~ N O T ~ O K ~ T H E N ~ P R O C C u r v e ( I \% , N 2 \% , X s c a l e . Y s c a l e ) ~
680 ENDPROC
6 9 0 :
700 DEFPROCPrint(X,Y,S$)
702 IF S $="" OR NOT Label THEN ENDPROC
704 PROCMove(X,Y):PROCSend("LB"+S$+CHR$(1)+CHR$(3)):ENDPROC
710 :
720 DEFPROCRotate(N%):LOCAL sign
722 sign=1:lF N%>1 sign=-1
723 PROCSend("DI"+STRS(sign*((1+NG)MOD2))+","+STR$(sign*(NGMOD2)))
7 2 5 ~ E N D P R O C
730 :
740 DEFPROCMark (N%)
741 1F N %=1 THEN PROCSend("PR,PD,1,1,PL,-1,-1")
742 IF N%=2 THEN PROCSend("PR,PU, 30,0,PD,-30, 30, - 30,-30,30,
                                    -30.30,30,PU, - 30,0")
743 1F N%=3 THEN PROCSend(`PR,PU, 30,30,PD, -60,0,0,-60,60,0,0,60,pu, - 30, - 30")
744 IF N%=4 THEN PROCSend("PR,PU,0,30,pd,-25,-45,50,0,-25,45,pu,0,-30")
745 IF N%=7 THEN PROCSend("PR,PD, 25, 25,-50,-50, 25, 25, 25,-25,-50,50, 25,-25")
746 IF \%=14 OR N=15 THEN PROCMark(7):PROCMark(8)
748 IF \%=8 THEN PROCSend("PR,PD, 30.0.-60,0.30,0,0.30,0,-60,0,30,PU")
749 ENDPROC
750 :
760 DEFPROCSpeed(N%):PROCSend("VS"+STRS(N%*4)):ENDPROC
7 7 0 :
7 8 0 \text { DEFPROCTitle}
790 VDL 28,0,24,39.0
800 CLS
810 PRINTTAB(0,4);:VDL131.157,132.136:PRINT" HP7470 plotting routine"
820 PRINTTAB(0,5)::VDC131, 157,132:PROCSpace(17-LEN(Tit1e§)/2):PRINTTitleS
830 PRINTTAB(0,6)::\DL131.157,132:PROCSpace(17-LEN(Title2$)/2):PRINTTitle 2$
8 4 0 ~ P R O C C o m ( 7 , " , )
845 PRINTTAB(0,0);
850 ENDPROC
860 :
8 7 0 \text { DEFPROCSpacebar}
8 8 0 ~ L O C A L ~ A S ~
8 9 0
*FX21,0
```

```
Listing of HP.BBC at 00:18:20 on MAY 13, 1987 for CCid=PHP7
```

```
    900 PRINT" "Press the space bar to continue"
    910 PROCCom(2,'Waiting for your reply")
    920 REPEAT : A $=GET $:UNTIL A $=""
    930 PRINT "Thank you",'
    940 PROCCom(2,"")
    950 ENDPROC
    960:
    970 DEFPROCSend(S S )
    980 VDU2
    990 PRINTS $
1000 VDU3
1010 ENDPROC
1020 :
1030 DEFPROCHP
1050 *FX6,10
1052 PRINT '"Are you using Clearway? (Y/N)",
1053 AS=GETS
1060 IF A$="Y" OR A $="y" THEN PROCReset("31-") ELSE *FX8,7
1070 ENDPROC
1080 :
1090 DEFPROCPrinter
1110 *FX6,0
1120 PROCReset("20-")
1130 ENDPROC
1140 :
1150 DEFPROCReset(S$)
1160 VDU2,21,1,2
1170 PRINT:STRINGS(64,CHR$(13)):"N!!!!!!!!!!!!";SS
1180 PRINT;"\";
1190 VDU6,3
1200 *FX2,1
1210 REPEAT:AS=INKEYS(2):UNTIL AS=""
1220 *FN2.0
1230 ENDPROC
1240 :
1250 DEFPROCCom(N,C$)
1260 L%=LEN(CS ): X=POS:Y=VPOS:X%=19-L%/2
1270 VDL28,0,24,39,0
1280 PRINT TAB(0,N);" ";:PROCSpace(X%)
1290 PRINTCS;:PROCSpace(38-X%-L%)
1300 VDU28,0,24,39,9
1310 PRINTTAB(X,y)"";
1320 ENDPROC
1330 :
1340 DEFPROCSpace(N)
1350 LOCAL N1
1360 N1=1:REPEAT:PRINT" ";:N 1=N 1+1:UNTIL N1>N
1370 ENDPROC
1380 :
1390 DEFPROCOpen
1400 IF Fileopen THEN ENDPROC
1410 REPEAT
1420 INPLT "Which file is data stored in","(type * for catalogue)",';File§
1460 IF File$="*" THEN *CAT 0
1470 IF File$="*" THEN *CAT 2
1480 UNTIL File$<>"**
1490 File=OPENIN(File$)
1500 Fileopen=TRUE
```

Listing of HP. BBC at 00:18:20 on MAY 13, 1987 for CCid=PHP7

```
1510 INPUT#File,Titte$,Title2$
1520 PROCTitle
1530 PROCCom(7,"From data file: "+File§)
1540 INPLT#File, NofYs, Xaxis$,Yaxis$
1550 J%=1600/NofYs:NofYs=NofYs-1
1560 DIM Comment $(20),Y$(NofYs),S(.J%),Y(NofYs,J%)
1570 FOR I=0 TO NofYs
1580 INPUT#File,IS(1):NFXT
1590 NofCs=0:Comment S(0)=""
1600 REPEAT:PROCTest
1610 IF String THEN NofCs=NofCs+1:INPUT#File,Comments(NofCs)
1620 UNTIL NOT String
1630 FORI=0 TO NofCs
1640 PRINT Conment$(1):NEXT
1650 ENDPROC
1660 :
1670 DEFPROCTest
1680 REM Tests next bit of data
1690 Integer=FALSE:Real=FALSE:String=FALSE
1700 char=BGET#File
1710 PTR#File=PTR#File-1
1720 IF char=&40 THEN Integer=TRUE
1730 IF char=&FF THEN Real=TRUE
1740 IF char=&00 THEN String=TRUE
1750 ENDPROC
1760 :
1770 DEFFNLoad
1780 IF NOT EOF#File AND (lnteger OR Real) :lNPLT#File,Var:=Var
1790=0
1800 :
1810 DEFPROCCIose
1820 IF Fileopen=FALSE THEN ENDPROC
1830 CLOSE#File
1850 ENDPROC
1852
1854 DEFFNCh:LOCAL Mark
1856 PRINT,'"Choose from"'" 1 - dot"," 2 - diamond">" 3 - square"
1857 PRINT"4 - triangle"," 7 - X"'" 8 - cross","14 - astefix","15 - star"
1858 lNPUT Mark:=Mark
1860 :
1870 DEFPROCProgram
1880 PROCOpen:PROCSpacebar
1890 DIM Mark(Nofls).Line(Nofls),Not(Noflis)
1910 FOR 1=0 TO NofYs
1920 CLS:PROCCom(-1,"Line Option"):PRINT'"For Y(";I+1;") :";YS(I)
1925 PRINT'"Do you want:",'" M - a mark only"
1927 PRINT" J - line joining points only"," C - marks and joining line".
1935
1940
1950
1960
1970
1980
1990
2010
2020
2030
2040
    PRINT" N - nothing"
    Mark(I)=-1:Line(I)=0:Not(I)=FALSE
    REPEAT : AS =GETS
    IF A S="C" OR A S="c" OR AS="J" OR AS="j" THEN Line(I)=2
            IF AS="B" OR AS="b" OR AS="L"OR AS="1" THEN Line(I)=1
        IF AS="B"OR AS="b"OR AS="C"OR A S="c"OR AS="M"OR AS="m"Mark(I)=FNCh
        IF A$="N" OR A$="n" Not(1)=TRUE
        IF (Line(I) < 1) AND (Mark(I) < 1) AND (NOT(Not(1))) VDU 7
        UNTIL (Line(I)>0) OR (Mark(I)>0) OR Not(I)
        NEXT
    DIM Lines%(23):FOR l=0 TO 23:Lines%(I)=0:NEXT
```

```
2050 T%=1:W%=0:Tal1=TRUE:Whole=FALSE:Wide=FALSE:Zero=FALSE:Quick=TRLE
2055 Axis=TRUE:Label=TRUE:Xscale=FAlSE:Yscale=FALSE:Pen=FALSE
2060 CLS:PROCCom(1."Format Options"):PRINT" T - Tall plot"
2065 PRINT" W -Wide plot"," P - Whole page plot"
2067 PRINT" R - room for comments"," Z - axis along zeros"
2070 PRINT" B - axis on bottom and left"." N - no axis or label drawn"
2075 PRINT" A axis only (no lahels)"
2080 PRINT" M - min and max used for both axis"
2085 PRINT" X - X axis scale fixed""" Y - Y axis scale fixed"
2090 PRINT" O - one pen plot"," C - coloured plot"," Q - quick plot"
2095 PRINT" G - good plot";
2100 PROCCom(2."* marks option chosen"):PROCCom( 3,"-press RET to continue")
2110 REPEAT
2120 IF Tall Lines%(8)=1:Lines%(9)=0
2130 IF Wide Lines%(9)=1:Lines%(8)=0
2140 lF NOT Whole Lines%(11)=1:Lines%(10)=0
2150 IF Whole Lines%(10)=1; Lines%(11)=0
2160 IF Zero Lines%(12)=1:Lines%(13)=0 ELSE Lines%(13)=1:Lines%(12)=0
2165 IF Label Lines%(15)=0 ELSE Lines%(15)=1
2170 IF NOT Ax is Lines%(14)=1:Lines%(12)=0:Lines%(13)=0::Lines%(15)=0
2175 IF Axis Lines%(14)=0
2180 Lines%(16)=0:Lines%(18)=0:Lines%(17)=0
2190 IF Y'sale Lines%(18)=1:Lines%(16)=0
2200 IF Xscale Lines%(17)=1:Lines%(16)=0
2205 IF Pen Lines%(19)=1:Lines%(20)=0 ELS
2210
2220
2230 IF Lines%(L
2240 NEXT:AS=GET$
H1 ASC(AS)=13
2380 PROCCom(1,""):PROCCom(2,""):PROCCom(3,"")
2390 CLS:PRINT'"Please check HP plotter is ready":PROCSpacebar
2400 Pixy=TRUE
2410 PROCCom(1,"Plotting on HP 7470 plotter")
2420 IF Quick THEN PROCSpeed(9) ELSE PROCSpeed(2)
2430 PROCCharactersize(3)
2440 PROCPen(3)
2450 PROCRotate(3*T%)
2460 PROCPrint(2400*T%,1750+50*T%,TitleS)
2470 IF Whole PROCPrint(2350*T%,1700+100*T%,Title 2S)
2480 FOR l=0 TO NofCs
2490 Pr=FALSE:IF NOT Whole AND Ax is Pr=TRUE
2495 IF Pr PROCPrint((400-50*I)*T%+1800,900+(100-50*I)*W*%,CommentS(I))
```

2250

Listing of HP. BBC at 00:18:20 on MAY 13, 1987 for CCid=PHP7

```
2500 NEST
2510 PROCPen (2): PROCCharactersize (5)
```



```
2530 PROCCharactersize (3)
\(2540 \mathrm{FOR} \quad 1=0 \mathrm{TO} 1: \mathrm{Max}(1)=-9 \mathrm{E} .30: \mathrm{Min}(1)=9 \mathrm{E} .30:\) NEXT
2550 J \(c_{n}=0\)
2560 REPEAT
\(2570 \quad 1 \%=1 \%+1\)
\(2580 \quad \mathrm{X}(1 \%)=\mathrm{FNLoad}\)
2585 IF Split180
\(2590 \quad 1 F \mathrm{X}(1 \%)<\operatorname{Min}(0) \quad \operatorname{Min}(0)=\mathrm{X}(1 \%)\)
\(2600 \quad 1 F X(1 \%)>\operatorname{Max}(0) \quad \operatorname{Max}(0)=X(1 \%)\)
\(2610 \quad \mathrm{FOR} \mathrm{J} \%=0 \mathrm{TO}\) Nof Js: \(\mathrm{Y}(\mathrm{J} \%, \mathrm{~J} \%)=\mathrm{FNLO} \mathrm{Cd}\)
\(2620 \quad 1 F(\mathrm{NOT} \operatorname{Not}(\mathrm{J} \% \mathrm{~F})\) ) AND Y(J\%, \(1 \%)-\operatorname{Min}(1) \operatorname{Min}(1)=\mathrm{Y}(\mathrm{J} \%, \mathrm{~J} \%)\)
\(26.30 \quad \mathrm{IF}(\mathrm{NOT} \operatorname{Not}(\mathrm{J} \%)) \mathrm{AND} \mathrm{Y}(\mathrm{J} \%, \mathrm{~J} \%)>\operatorname{Max}(1) \operatorname{Max}(1)=\mathrm{Y}(\mathrm{J} \%, \mathrm{I} \%)\)
2640 NEXT
2650 LNTIL EOF\#File
```



```
2665 JF X scale INPLT "Scale to go from":Min(0)"" to";Max(0)
```



```
2680 NofPs \(=1 \%\)
\(2690 \mathrm{FOR} \quad \mathrm{I}=0 \mathrm{TO} 1\)
\(27(10 \quad \mathrm{Diff}(1)=\mathrm{ABS}(\mathrm{MaX}(1)-\mathrm{Min}(1))\)
2710 I 1 Diff(l)=0 THEN PRINT"Silly data-can't plot it":ENDPROC
2720 Fact (I)=1
2730 REPEAT
27.40
2750
2760
2770
2781
2790
1F \(\mathrm{H}: \mathrm{f}(1)\).
\(2810 \quad 1 F \operatorname{Diff}(1) \leqslant \mathrm{FHE} \operatorname{Lnit}(1)=0.5\)
\(2820 \quad \ln 1+(1)=\operatorname{lnit}(1) * 1 a c t(1)\)
```



```
\(2910 \quad\) scale111=1\&...
2020 SEKI
2930 PkokPen (1)
2440 YZeri=150
```



```
29?a Foh iceo TO Nun: 9
```



```
3000 NEXT
```



```
3030 PROCROtate (WF)
```

3040 XZero $=150+1500^{*} \mathrm{~T} \%$
3050 IF Zero AND Min $(0)<0$ THEN XZero=(1650+Min(0)*Scale(0))*T\%+(150-Min(0)* Scale(0)) *W\%
3060 IF Tall AND Axis PROCMove (150, XZero) : PROCXaxis(Fact(1),Num(1))
3065 IF Wide AND Axis PROCMove(XZero, 150): PROCYaxis(Fact(1),Num(1))
3070 FOR L\%=0 TO Num (1)
$3080 \quad$ String=Lnit(1)*1NT(0.i+(Min(1)+U\%*Diff(1)/Num(1))/Unit(1))
30901 FF (Min(1)/Unit(1)+し\%+500.1) MOD $5=0$ THEN PROCYlabel
3100 NEXT
3110 IF Whole PROCPrint (1400*T\% (XZero-110)*W\%, 900*W\%+(XZero+100)*T\%,Yaxis \$)
3120 JFNOTWhole PROCPrint (1000*T\%+(XZero-110)*W, $900 * W \%+(X Z e r o+100) * T \%$,
FNOTWhole PROCPrint Yaxis§)
PROCRotate ($3 * T \%$): Pens=1
3140 FOR I=0 TO NofYs
3150 IF NOT Not(I) Pens=1+(Pens MOD 3): PROCPen(Pens)
3160 IF NOT Not (I) AND Whole AND Tall PROCPrint(2400-1*50,800,YS(I))
3170 IFNOTNot (1) ANDNOTWhole ANDTa 11
PROCPrint (1800+NofYs*50-I*50,1700,Y\$(I))
3180
3190 PROCCalc (I)
3200 IF Mark (I) >0 PROCMarks (I)
3220 1F Line(I) $=2$ PROCJoin(I)
3230 IF Line(1)=1 PROCLine(I)
3240 NEXT
3250 ENDPROC
3260 :
3270 DEFPROCCalc (1)
3280 FOR $\mathrm{J} \%_{0}=1 \mathrm{TONof} \mathrm{Ps}$
3283 IF Y(1.J J $)>\operatorname{Max}(1)$ THEN Y(I, J $\%$) $=\operatorname{Max}(1)$
$3284 \quad$ IF $Y(1, J \%)<\operatorname{Min}(1)$ THEN $Y(1, J \%)=\operatorname{Min}(1)$
$3286 \quad$ IF $\mathrm{X}(\mathrm{J} \%)>\operatorname{Max}(0) \mathrm{A} D \mathrm{D}=0$ THEN $\mathrm{X}(\mathrm{J} \%)=\operatorname{Max}(0)$
3287 IF $\mathrm{X}(\mathrm{J} \%)<\mathrm{Min}(0)$ ADD $\mathrm{I}=0$ THEN $\mathrm{X}(\mathrm{J} \%)=\mathrm{Min}(0)$
$3290 \quad 1 \mathrm{~F}$ Tall $\mathrm{X} \mathrm{I}=\mathrm{X}(\mathrm{J} \%): \mathrm{X}(\mathrm{J} \%)=((\mathrm{Y}(\mathrm{I}, \mathrm{J} \%)-\mathrm{Min}(1))) * \mathrm{Scale}(1)+150)$
$3300 \quad 1 \mathrm{~F}$ Tall AND $\quad \mathrm{I}=0$ THEN $\mathrm{Y}(\mathrm{I}, \mathrm{J} \%)=1650-((\mathrm{XI}-\mathrm{Min}(0)) * S c a l e(0))$
$3310 \quad 1 \mathrm{~F}$ Tall AND $\mathrm{I}<>0$ THEN $\mathrm{Y}(\mathrm{I}, \mathrm{J} \%)=\mathrm{Y}(1-1, \mathrm{~J} \%)$
3320 IF Wide THEN $\mathrm{Y}(1, \mathrm{~J} \%)=150+((\mathrm{Y}(\mathrm{I}, \mathrm{J} \%)-\mathrm{Min}(1)) * S c a l e(1))$
$3330 \quad$ IF Wide AND $\quad 1=0$ THEN $X(J \%)=150+((X(J \%)-M i n(0)) * S c a l e(0))$
3340 NEXT
3350 ENDPROC
3360 :
3370 DEFPROCMarks(I)
3380 FOR J\% $=1 \mathrm{TO} 1 \%$
3390 PROCMore (X (J\%) ,Y(I.J\%)): PROCMark(Mark(1))
3400 NEXT
3410 ENDPROC
3420 :
3430 DEFPROCLine(I)
3440 PROCCurve ($1.1 \%, 1,1$)
3450 ENDPROC
3455 :
3510
3520 DEFPROCJojn(1)
3530 PROCMove (X (1), Y(I, 1))
3540 FOR J $\%=2$ TO 1%
$3545 \quad \mathrm{Pr}=\mathrm{FALSE}$
$3550 \quad \operatorname{IF} \operatorname{ABS}((\mathrm{X}(\mathrm{J} \%)-\mathrm{X}(\mathrm{J} \%-1)))<400 \operatorname{AND} \operatorname{ABS}((\mathrm{Y}(1, \mathrm{~J} \%)-\mathrm{Y}(1, \mathrm{~J} \%-1)))<400 \operatorname{Pr}=$ TRUE
3556 IF Pr PROCDraw(X(J\%),Y(I, J\%)) ELSE PROCMove(X(J\%),Y(I, J\%))
3560 NEXT

Listing of $\mathrm{HP} . \mathrm{BBC}$ at 00:18:20 on MAY 13, 1987 for CCid=PHP7

```
3580 ENDPROC
3590 :
3600 DEFPROCXlabel:IF NOT Axis THEN ENDPROC
3610 IFTal1 PROCMove(YZero, 1650-L%%Fact(0))
            : PROCDraw(YZero-40,1650-L%*Fact(0))
3615 IF Tall PROCPrint(YZero-78.1690-U%*Fact(0),FNRound(STRS(String), 2))
3620 IF Wide PROCMove(150+L%*Fact(0),YZero)
                                    :PROCDraw( i 50+L灰*Fact(0), YZero-40)
3625 IF Wide PROCPrint(110+U%*Fact(0),YZero-90,FNRound(STR$(String),2))
3630 ENDPROC
3640 :
3650 DEFPROCYlabel:IF NOT Axis THEN ENDPROC
3663 lFTal1 PROCMOve(150+L%*Fact(1), XZero):PROCDraw(150+U%*Fact(1),XZero+37)
3665 IF Ta|l PROCPrint(120+U%*Fact(1), XZero+50,FNRound(STR$(String), 2))
3670 IF Wide PROCPrint(XZero-50,120+U%*Fact(1),FNRound(STRS(String),2))
3680 ENDPROC
4000 :
4010 DEFFNRound(S S,N)
4020 LOCAL A$,ch$, Count
4030 FOR I=1 TO LEN(S$):ch$=MlD$(S$, I, 1)
4050 1F ch $="." THEN Count=1
4060 IF ch$="E" THEN Count=0:A$=FNTrail(A$)
4070 IF Count>0 THEN Count=Count+1
4080 IF Count<N+3 THEN A }=A=A$+ch
4 0 9 0 ~ N E X T ~
4100 =FNTrail(A$)
4110 :
4120 DEFFNTrail(A$)
4130 LOCAL Carry,B$,I,L
4140 Carry=FALSE:Point=FALSE:B$=AS
4150 JF RlGHT$(A$,1)="9" THEN Carry=TRUE
4160 REPEAT
4170 IF RIGHT$(AS.1)="9" AND Carry THEN AS=LEFTS(AS.LEN(AS)-1)
4180 JF RIGHT$(AS,1) ="0" AND NOT Carry THEN A $=LEFTS(AS,LEN(AS)-1)
4190 lF RIGHT$(A$, 1)="." THEN A$=LEFT$(AS,LEN(AS)-1):Point=TRUE
4195 Pr=(RIGHT$(A$,1)<>"0" OR Carry) AND (RIGHT$(A$,1)<>>"9" OR NOT Carry)
4200 LNTIL Point OR ( Pr AND RIGHT$(A$,1)<>".")
4210 JF Point=FALSE A$=B$:Carry=FALSE
4220 L=LEN(AS):FOR I=LEN(AS) TO 1 STEP - 1
4235 Pr=FALSE : Pr=MIDS(AS,I,1)="9" AND Carry
4240 IF Pr AS =LEFT$(AS.1-1)+"0"+RIGHT$(AS,L-1)
4243 Fl=FALSE:IF Pr OR Carry Fl=TRUE
4245 IF FI AS=LEFTS(AS.I-1)+CHR$(ASC(MIDS(AS,I,1))+1)+RIGHTS(AS,L-I)
4247 IF F1 Carry=FAlSE
4250 NEXT
4260 IF Carry THEN AS="1"+AS
4270 :=AS
```

Listing of CONV.PAS at 00:55:56 on MAY 13, 1987 for CCid=PHP7

```
    program Convert;
    { read BBC data from a file and convert it to a text file
    M.J.Hawton - Durham 1986
                }
iype sir_80 = pucked array [1 . . 80] of char;
    flag = ( f_real, f_integer, f_string, f_char, f_end );
var count: integer;
            byte:char;
    filein, fileout : text ;
    in_int : integer;
    in_str : str_80;
    in_rea : real;
    in_cha : char;
    in_fla : flag;
    number_per_line : integer;
    points : integer;
    bytecount : integer;
    title : array[ 1 .. 2 ] of str_80;
    title_check : boolean;
function ebcd ( ascii : char ) : char;
        var count : integer;
                code : integer;
                bcd : char ;
    begin
        code := ord(ascii);
        if code < 32 then ebcd:= '?' else
        if code = 32 then ebcd:= , else
        if code = 33 then ebcd:= '!' else
        if code = 34 then ebcd:= ,', else
        if code = 35 then ebcd:= '#' else
        if code = 36 then ebcd:= '$' else
        if code= = 37 then ebcd:= '%' else
        jf code = 38 then ebcd:= '&' else
        if code = 39 then ebcd:= , else
        if code = 40 then ebcd:= (' else
        if code = 41 then ebcd:= ')' else
        if code=42 then ebcd:= ,* else
        if code = 43 then ebcd:= '+' else
        if code = 44 then ebcd:= ',' else
        if code = 45 then ebcd:= ',' else
        if code = 46 then ebcd:= ','else
        if code = 47 then ebcd:= '/' else
        if code < 58 then begin
                bcd := '0' ;
                coune := 48 ;
                repeat
                if code > count then
                            begin
                            count := succ(count);
                        bcd := succ(bcd)
                        end;
                until code=count;
                ebcd := bcd end else
if code = 58 then ebcd:= ':' else
```

Listing of CONV.PAS at 00:55:56 on MAY 13, 1987 for CCid=PHP7

```
    if code = 59 then ebcd:= ': else
    if code = 60 then ebcd:= ', else
    if code = 61 then ebcd:= '= ' else
    if code = 62 then ebcd:= > else
    if code=63 then ebcd:= ? ? else
    if code = 64 then ebcd:= '@' else
    lf code < 74 then begin
    bcd := 'A' ;
    count := 65 ;
    repeat
        if code > count then
                            begin
                            count := succ(count);
                            bcd := succ(bcd)
                            end;
    until code=count;
        ebcd := bcd end else
if code < 83 then begin
    bcd := 'J' ;
    count := 74 ;
    repeat
        if code > count then
            begin
                    count := succ(count);
                    bcd := succ(bcd)
                    end;
    until code=count;
    ebcd := bcd end else
if code <91 then begin
    bcd := 'S' ;
    count := 83 ;
    repeat
        if code> count then
            begin
            count := succ(count);
            bcd := succ(bcd)
            end;
    until code=count;
    ebcd := bcd end else
if code= 91 then ebcd:= , [' else
if code = 92 then ebcd:= ', else
if code = 93 then ebcd:= ,], else
if code = 94 then ebcd:= M, else
if code = 95 then ebcd:= '_' else
if code = 96 then ebcd:= '#' else
if code <106 then begin
    bcd := 'a' ;
    count := 97 ;
    repeat
        if code > count then
            begin
            count := succ(count);
            bcd := succ(bcd)
            end;
        until code=count;
        ebcd := bcd end else
if code < 115 then begin
    bcd := ' j' ;
```

```
        count:= 106:
        repeat
                            if code > count then
                            begin
                            count := succ(count);
                            bcd := succ(bcd)
                            end;
        until code=count:
        ebcd := bcd end else
        if code < 123 then begin
        bcd := 's' ;
        count := 115:
        repeat
            if code > count then
                begin
                count := succ(count);
                    bcd := succ(bcd)
                            end;
        until code=count;
        ebcd := bcd end else
        if code = 123 then ebcd:= '{, else
        if code = 124 then ebcd:= '।' else
        if code = 125 then ebcd:= '}, else
        | code = 126 then ebcd:= ' ~' else
        if code > 127 then ebcd:= '?'
    end;
procedure readin (var in_file : text;
                        var int : integer;
                        var rea : real;
                        varstr: str_80:
                            varcha: char;
                            varfla: flag;);
    var byte: char;
        count, total : integer;
        B1,B2,B3,B4,B5 : integer;
        sign, expon, mant : integer:
    procedure readbyte;
    { this procedure strips out bytes apparantly added to the file during
        file transfer}
        begin
        if not eof( in_file) then
            read ( in_file. byte);
        if not eof (in_file ) then
            begin
            bytecount := bytecount + 1;
            if bytecount>256 then
            begin
            if ord(byte)=64 then
                    read (in_file, byte)
                else
                                    write (output, ord(byte) );
                bytecount := 1
                end;
            end;
```

 end;
    ```
begin
    for count:= 1 to 80 do str[count]:=, , ;
    fla := f_char;
    if not eof(in_file) then readbyte;
    if (ord(byie)=64) then fla:=f_integer;
    if (ord(byte)=255) then fla:=f_real;
    if (ord(byte)=00) then fla:=f_string;
    if fla=f_string then begin
        if not eof(in_file) then begin
            readbyte;
            total := ord (byte);
            for count := 1 to total do begin
                if not eof(in_fjle) then readbyte;
                str[total - count + 1] := ebcd( byte );
                end
            end
        end;
    if fla=f_integer then begin
        readbyte ; b1:=ord(byte);
        readbyte ; b2:=ord(byte);
        readbyte ; b3:=ord(byte);
        readbyte ; b4:=ord(byte);
        sign:= 1-2 * (b1 div 128);
        b1 := b1 - 128* (b1 div 128);
        if sign > 0 then
            int:=(((b1*256+b2)*256+b3)*256+B4)
                else
                        int := 0-1*((((127-b1)*256+255-b2)*256+255-b3)*256+256-b4)
        end;
    if fla=f_real then begin
        readbyte ; bl := ord(byte);
        readbyte ; b2 := ord(byte);
        readbyte ; b3 := ord(byte);
        readbyte ; b4 := ord(byte);
        readbyte ; b5 := ord(byte);
        sign := 1-2* (b4 div 128);
        expon:= b5-160;
        b4:= b4 - 128* (b4 div 128);
        rea}:=((128+B4)*256+b.3)*256
        rea:= sign*exp(ln(2)*expon)*(((rea+b2)*25b+b1))
        end;
    if fla=f_char then cha := byte:
```

 end;
 begin

```
{
    opening up files ********************** }
        reset (filein, 'unit=1' );
        bytecount := 0;
```

```
reset (input , 'interactive' );
rewrite (output , 'interactive`);
rewrjte ( fileout, `unit=2`) ;
title_check:= true;
for count := 1 to 2 do begin
    ieadin (filein, in_int, in_rea, in_str, in_cha, in_fla);
        if in_fla= f__string then title[count]:= in__str
                                    else begin
                                    writeln (output, , *** ERROR IN TITLES *** ');
                                    title_check:= false
                                    end
        end;
readin(filein, in_int, in_rea, in_str, in_cha, in_fla);
    jf in_fla= f_integer then begin
        writeln(fileout,',File with, , in_int, , sets of information');
        number_per_line:= 1 + in__int
        end
    else if in_fla= f__real then begin
        in_int := round(in__rea);
        writeln(fileout, 'File with', in_int, , sets of information');
        number__per__line := 1 + in__int
        end
    else writeln( output, , *** ERROR IN NUMBER **,);
if title_check then
    for count := 1 to 2 do writeln (fileout, title[count]);
repeat
    readin(filein, in__int, in_rea, in_str, in_cha, in_fla):
    if in_fla= f_integer then
            writeln(output, , *** ERROR IN COMMENTS *** ');
        if in_fla=f_string then writeln(fileout, in_str) ;
        if in_fla= f_char then
            writeln}(\mathrm{ output, , *** ERROR IN COMMENTS ***,)
    until in_fla= f__real;
count := 0:
points:= 0;
repeat
        if in_fla=f__real then
            begin
            count := count+1;
            write ( fileout, in_rea, , , )
            end
            else
                    write (output, , *** ERROR IN DATA SECTION *** ');
        if not ( eof(filein) ) then
            readin (filein, in_int, in_rea, in_str, in__cha, in_fla);
        if count = number__per__line then
            begin
            count := 0;
            writeln(fileout);
            points := points + 1
            end;
    until eof(filein);
if count <>0 then writeln(fileout);
```

Listing of CONV.PAS at 00:55:56 on MAY 13, 1987 for CCid=PHP7

[^2]```
Listing of FIT.PAS at 00:50:23 on MAY 13, 1987 for CCid=PHP7
 (* Malcolm Hawton - Durham 1986 *)
program plotfit;
 (* program either reads data from a file, or generates data randomly
 to test a generallised fitting routine using the NAG
 subroutine E04FDF *)
const word_length = 25;
type sort=(a_word, an_integer, a__real, end__of_file):
 words = string(word_length);
const max_graph = 20;
 max_point = 300;
 line_length=80;
 max_comment = 35;
type line= packed array[1 .. line_length] of char;
 graph = 1 .. max_graph;
 point = 1 .. max_point;
 comment = 1 .. max_comment;
 vector = array [1 .. max_point] of real;
 two_lines = array [1 .. 2]] of line;
 graph_lines = array [graph] of line;
 comment_lines = array [comment] of iine;
 graph_vectors = array [graph] of vector ;
 graph_reals = array [graph] of real;
const max_coefficient_number = 10;
type coefficient_number = 1 . max_coefficient_number;
 coefficient = array [coefficient_number] of real;
 coefficient_lines = array [coefficient_number] of line;
var current_graph, no_of_graphs : graph;
 filein, fileout, log, data : text;
 title : two_lines;
 y_axis, x_axis : line;
 number_string : string(30);
 y_label : graph_lines;
 comments : comment_lines;
 current_comment, no_of_comments : comment;
 fit_co, current_co_no, no_of_coeff, no_of_fixed, initial_fit,
 no_to_fit : coefficient_number:
 initial_coeff.fit_coeff, error_coeff.
 simul_coeff, fixed_coeff : coefficient:
 name_coeff, name_fixed : coefficient_lines:
 line_read : line:
 out_files : integer;
 out_lines : array [1 .. 2, 1 .. 20] of integer;
 easy_direction, sum, temperature : real;
 current_point, no_of__points : point;
 x. weight : vector;
 y : graph_vectors;
 y_fit : vector;
 count, int, count2 : integer;
 lines_out, lines, fits : integer;
 iflag1, iflag2 : integer;
 torque_range, mid_torque, smallest_torque: real;
```

```
ms_field, val__co, stand_dev : real;
sum_sq, x_max, x_min: real:
y_max, y_min : graph_reals;
word: packed array \1 .. 15] of char;
flag : sort;
answer, choice : char;
weighted : boolcan;
blank_line : !ine;
mass : real;
```

procedure test;
\{ debugging procedure to allow break points to be set easily \}
begin
end;
procedure forfit (var m, n : integer;
var $x_{\text {_ in, }} x_{\text {_ corr, }}$ weight, y_in : vector;
var initial_coeff : coefficient;
var $\quad y_{\text {_c }}$ calc, y_corr, y_corr_fit: vector;
var sum_sq : real;
var fit_coeff.error_coeff: coefficient;
var fixed_coeff: coefficient;
var iflag1, iflag2: integer ;
(* routine written in fortran to interface with E04FDF from
NAG library version 11 *)
(* returns y_calc as calculated curve,
and fit_coeff as coefficients to fit curve if ifail=0*)
fortran;
function gosddf (const mean, standard_deviation : real) : real;
(*) NAG routine - generates gaussian noise *)
fortran:

(* XaG routine - randomises gaussian generator*)
fortran:
procedure readin (
var in_stream : text;
var read_word : words ;
var read_int : integer;
var read_real : real:
var read_flag : sort);
\{ reads data from file and sees if it finds a word, number or an integer\}
$\{$ requires readin types \}
\{ M.J.Hawton Durham 1986 \}
type
charset $=$ set of char;
var
letters,
numbers, aux ,
allowed,
delimiters: charset;

Listing of FIT.PAS at $00: 50: 23$ on MAY 13. 1987 for CCid=PHP7
eoinput, decimal_point, exponent. int_f. real_f, end_of_line_done, found, digit, first: boolean;
read_char: char;
count: 0 .. word_length;
begin

aux $:=$ [', ' $E$, $]$ :

delimiters $:=\left[{ }^{\prime}=,,{ }^{\prime},{ }^{\prime},{ }^{\prime}, \quad, ’,{ }^{\prime}, ’\right] ;$
read_word :=
end_of_line_done := false;
read_int $:=0$;
read_real $:=0.0$;
count : $=0$;
read_flag :=end_of_file ;
if (NOT (eof(in_stream)))
then begin
eoinput: $:$ false;
found := false;
digit:= false;
int_f: $=$ true;
real_f := true;
decimal_point $:=$ false;
exponent: $=$ false;
first :=true;
while ( (NOT eof(in_stream)) AND (NOT eoinput)) do begin if (eoln(in_stream) AND NOT end_of_1ine_done)
then begin read_char := ': end_of_line_done := true end else begin read(in_stream, read_char): end_of_line__done $:=$ false: end;
if (read_char IN letters) then begin if ( (found) and not exponent) then first : false; found := true; if (NOT (read_char IN numbers))
then begin
int_f: false;
if (not (read_char in aux))
then
real_f: false
else begin
if (read_char $=$ '.')
then begin
if (decimal_point OR exponent)
then
real_f: false
else
decimal_point $:=$ true;
end;
if (read_char $=$ ' $\mathrm{E}^{\prime}$ )
then begin
if (exponent)

Listing of FIT.PAS at 00:50:23 on MAY 13, 1987 for CCid=PHP7

```
 then
 real_f := false
 else
 exponent := true;
 first := true;
 end;
 end;
 end
 else
 begin
 if ((read_char = ',') OR (read_char = ','))
 then begin
 if (not fisst)
 then begin
 real__f:= false;
 int_f:= false;
 end;
 end
 else
 digit := true;
 first:= false;
 end;
 if count < word_length
 then begin
 count:= count+1;
 read_word[count]:= read_char;
 end;
 end:
 if ((read__char IN delimiters) AND found)
 then begin
 eoinput := true;
 read_flag:= a_word;
 end;
 end:
 if ((real_f) AND found AND digit)
 then begin
 read__flag:= a_real;
 readstr(read__word, read_real);
 end:
 if ((int_f) AND found and digit)
 then begin
 readstr(read__word, read__int);
 read_flag:= an_integer;
 end:
 end
 end {readin};
procedure writestring (var text_file : text;
 var outline : line):
var count, actual : 1 .. line_length;
begin
actual := line__length;
while ((outline [actual]=, ') and (actual> >)) do actual:=actual - 1;
for count := 1 to actual do write(text_file, outline[count]);
```

```
 end;
 procedure writelnstr (var text_file : text;
 var outline : line):
 var count, actual : 1 .. line_length;
 begin
 actual:= line_length;
 while ((outiline [actual] = ') and (actual > 1)) do actual:= actual-1;
 for count := 1 to actual do write (text_file, out]ine[count]);
 writeln
 end;
procedure read_file_in (
 var filin : text;
 var title : two_lines;
 var x_axis, y_axis : line;
 var y_label : graph_lines;
 var no_of_comments : comment;
 var no_of_graphs : graph;
 var no_of_points : point;
 var comments : comment_lines;
 var x : vector;
 var y : graph_vectors;
 var x_min, x_max : real;
 var y_min, y_max : graph_reals) ;
 { reads data from file, which is down loaded from the BBC }
 { uses readin procedure
 file definitions }
 (* Malcolm Hawton - Durham 1986 *)
 var
 current_graph : graph;
 current_comment : comment;
 com_read,blank_line : line;
 current_point : 1 .. max__point+1;
 file_with : packed array [1 .. 10] of char;
 flag : sort;
 int, count : integer;
 word : words ;
 number, y_in : real;
 begin
 for count:= 1 to line_length do
 blank_line[count] := , ;
 repeat
 readin(filin, word, int, number, flag)
 until (flag=an_integer);
 readln(filin);
 no_of__graphs:= int;
```

```
 readln(filin, title[1]);
 readln (filin, title[2]);
 readln(filin, x_axis);
 readln(filin, y_axis);
 for current_graph:= 1 to no_of_graphs do
 begin
 readln(filin. y_label[current_graph]);
 end;
com_read := 'start';
current_comment := 1;
while com_read <> blank_line do
 begin
 readln(filin, com_read);
 comments[current_comment] := com_read ;
 current_comment := current_comment + 1;
 end;
no_of_comments := current_comment - 1;
current_point := 1;
x_max := -99999;
x_min := +99999;
for current_graph := 1 to no_of_graphs do
 begin
 y_max [current_graph] := -999999;
 y_min [current_graph] := 999999;
 end;
while not eof (filin) do
 begin
 readin(filin, word, int, number, flag);
 if ((flag=a_real) or (flag=an_integer)) then
 begin
 x[current_point]:=number;
 if x [current_point] > x_max then x_max:=x[current_point];
 if (x [current_point] < x_min) and
 (x [current_point] + 999 > 2)
 then x_min:=x[current__point];
 for current_graph:= 1 to no_of_graphs do
 begin
 readin(filin, word, int. number, flag);
 if ((flag=a_real) or (flag=an__integer)) then
 begin
 y__in:=number;
 if (abs (y_in+999)>0.001) then
 begin
 if y_in: y_max[current_graph] then
 y_max[current_graph]:= y_in;
 if y_in< y_min[current_graph] then
 y_min[current_graph]:= y_in
 end:
 y [current_graph, current_point] := y_in
 end
 end;
 readln(filin);
 current_point := current_point + 1;
 end;
 end :
 no_of_points := current__point - 1;
 end;
procedure write__file (
```

```
 var filout : text:
 const title : two_lines;
 const x_axis, y_axis : line;
 const y_label : graph_lines;
 const no_of_comments : comment;
 const no_of_graphs : graph;
 const no__of_points : point;
 const comments : comment_lines;
 const x : vector;
 const y : graph_vectors);
 { writes file in similar form to that from the BBC }
 { requires file definitions }
 (* Malcolm Hawton - Durham 1986 *)
 var
 current_graph : graph;
 current_comment : comment;
 blank80 : 1ine;
 current_point : point;
 count : integer;
 fileout : text;
 begin
 for count:= 1 to 80 do
 blank80[count] := ',;
 writeln(filout,'FILE WITH ', no_of_graphs:2,' GRAPHS');
 writeln(filout,title[1]);
 writeln(filout,title[2]);
 writeln(filout,x_axis);
 writeln(filout,y_axis);
 for current_graph:= 1 to no_of_graphs do
 writeln(filout, y_label[current_graph]);
 for current_comment := 1 to no_of_comments do
 wrjteln(filout, comments[current_comment]):
 writeln(filout,blank80);
 for current_point := 1 to no_of__points do
 begin
 write (filout, x [current_point]:15);
 for current_graph:= 1 to no_of_graphs do
 if (y[current_graph, current_point] = -999)
 then
 write (filout, , , y [current_graph, current_point])
 else
 write (filout., , , y [current_graph, current_point]:15);
 writeln(filout) ;
 end:
 end;
procedure fit (var m,n : integer;
 var x_in, x_corr, weight, y_in : vector;
 var initial_coeff : coefficient;
 var y_calc, y_corr, y_corr_fit: vector;
```

```
 var sum_sq: real;
 var fit_coeff, error_coeff : coefficient;
 var fixed_coeff : coefficient;
 var iflagl, iflag2 : integer);
 (* routine calculates fourier coefficients from k values,
 calls forfit and then calculates anisotropy constants back*)
const max_index=5;
type index = 1 . max_index;
 vector = array [index] of real;
 matrix = array [index] of vector;
var four1 , anis1,four2 , anis2, four3, anis3 : vector;
 F__to__K, K_to_f : matrix;
 count: integer;
 col, row, max_const: index;
 current__coeff: coefficient_number;
 print, easy__dir: boolean;
function mat_vec (mat : matrix; vec ; vector; size : index):vector;
 var row, col: index;
 vec1 : vector;
 function vec_prod (vecl, vec2 : vector; size : index): real;
 var row: index;
 sum : real;
 begin
 sum := 0;
 for row:=1 to size
 do sum := sum + vec1[row] * vec 2[row];
 vec__prod := sum
 end: {vvec_prod}
 begin
 for row := 1 to size
 do begin
 for col := 1 to size
 do vecl[col] := mat [col . row];
 mat_vec [row] := vec_prod (vecl, vec, sizee);
 end
 end: { mat_vec }
begin {fit}
 if iflag1=1 then print:=false else print:=true;
 max_const := n-4;
 for row := 1 to max_index
 do for col := 1 to max_index
 do begin
 F_to_K[col,row] := 0;
 K_to_F[col,row]:=0
 end;
```

```
K_to_F [[1, 1] { := 1;
K_to_F[2.2] := 0-0.5;
K_tO_F [3, 1]]:= 0.9375;
K_to_F[3.2] := 0.0.75;
K_to_F[3,3]:=0.1875;
K_to_F[4, 1, { := = 0.875 ; ;
K_to_F [4, 2] {:= 0-0.875;
K_to_F [4, 4] := 0-0.0625;
K_to_F[5, 1]}]:=0.8203125
K_to_F [5, 2] := 0-0.9375;
K_to_F [5, 3] := 0.52734375;
K_to_F [5, 4] := 0-0.15625;
K_to_F [5, 5] := 0-0.01953125;
F_to_K [1, 1] := 1;
F_to_K [2, 1] := 2;
F_to_K [2, 2] := 0-2 ;
F_to_K [3, 1]}]:=3
F_to_K [3, 2] : = 0-8;
F_to_K [3, 3] := 16/3;
F_to_K [4, 1]]:= 4;
F_to_K [4, 2] := 0-20;
F_to_K [4, 3] := 32;
F_to_K [4, 4] := 0-16;
F_to_K [5, 1]]:= 5;
F_to_k [5, 2] : = 0-40;
F_to_K [5, 3] := 112;
F_to_K [5, 4] := 0-128;
F_to_K [5, 5] := 51.2;
for row:=1 to max_const do
 begin
 current_coeff := row + 4;
 anisl[row] := initial_coeff[current_coeff];
 end;
four1:= mat_vec (K_to_F, anis1, max_const);
for row:= 1 to max_const do
 begin
 current_coeff := row + 4;
 initial_coeff[current_coeff] := fourl[row];
 fit_coeff[current coeff] := fourl|row];
 error_coeff[current_coeff] := four1[row];
 end;
count := 0:
sepeat
 easy_dir := true;
 forfit (m, m, x_in, x_corr, weight, y_in,
 initial_coeff, y_calc, y_corr, y_corr_fit,
 sum_sq, fit_coeff, error_coeff, fixed__coeff.
 iflag1, iflag2);
 count := 1 + count;
 for row := 1 to max_const do
 begin
 current_coeff := row + 4;
 four1[row] := initial_coeff[current_coeff];
 four2[row] := fit_coeff[current_coeff];
 four3[row] := error_coeff[current_coeff];
```

```
 if print then
 begin
 writeln (Fourier coeff(`.row: 2, ')=`,four 2[row],
 `+-`, four3[row]);
 writeln(log. 'Fourier coeff(`.,row:2,')=',
 four2[row].'+-'.four3[row]);
 end;
 end;
 if fit_coeff[5]<0 then
 begin
 if print then
 writeln(, - not on easy direction ');
 easy_dim:= false;
 fit_coeff[1]:= fit_coeff[1] - 90;
 fit_coeff[4]:= fit_coeff[4] - 90;
 fit_coeff[5] := fit_coeff[5] * (-1);
 fit_coeff[7] := fit_coeff[7] * (-1);
 fit_coeff[9]:= fit_coeff[9]* (-1);
 initial_coeff := fit_coeff
 end;
 until (count>5) or easy_dir;
 anis1:= mat_vec (F_to_k, four1, max_const);
 anis2:= mat_vec (F__to_k, four2, max_const);
 anis3:= mat_vec (F_to_K , four3, max_const);
for row:= 1 to max_const do
 begin
 current_coeff := row + 4;
 initial_coeff[current_coeff] := anis 1[row];
 fit_coeff[current_coeff]:= anis2[row];
 error_coeff[current_coeff] := anis 3[row]:
 end;
end; {fit}
```

```
procedure generate (
 var graph_coeff, fixed_coeff: coefficient;
 var stand__deviation : real ;
 var title: two_llines;
 var x_axis, y_axis : line;
 var v_label: graph_lines;
 var no_of_comments : comment;
 var no_of_ggaphs: graph;
 var no__of_points: point;
 var comments : comment__lines;
 var x : vector;
 var y : graph_vectors;
 var x_min, x_max : real:
 var y_min, y__max : graph__reals);
 {generates a graph}
 {uses fit procedure written in fortran to interface
 with NAG routines ।
 (* Malcolm Hawt on - Durham 1986*)
```

```
var
 current_co_no: coefficient_number;
 current__point : point;
 count : integer:
 mean : real;
 biank iine : ifne:
 read_word : words
 read_int : integer;
 read_real : real;
read_flag : sort;
```

begin
for count :=1 to line_length
do blank_line[count] :=,
title[1] := 'Simulated torque curve';
title[2]: $=$ 'with gaussian noise';
x_axis $:=$ 'Rotation/degrees';
y_axis := 'Torque/NM';
y_label[1] := 'simulated torque';
no_of_graphs := 1;
writeln ('How many points do you want generated');
readln ( no_of_points) ;
$x \_m i n:=0.0$;
$x$ max $:=359.9$;
for current_point $:=1$ to no__of_points do
begin
$\mathrm{y}[1, \mathrm{current}$ _point] $:=0.0$;
weight[current_point] $:=1.0$;
$x[$ curfent_point $]:=x$ min +
(x_max - x_min) * (current_point - 1 )/(no_of_points - 1)
end;
Writeln $(\log )$;
writeln (log,,$* * * *$ generating simulated data ${ }^{* * * *}$ );
writeln ('fit to function defined LSFUN1 in FIT.FOR');
writeln ( 'Please give values for the coefficients (or return) ; ;
for current_co_no := 1 to no_of_coeff do
begin
writestring ( output, name_coeff[current_co_no]);
write (, (, graph_coeff[current_co_nol, ,)? ; writeln;
readin ( input, read_word, read_int, read_real , read_flag) ;
if (read_flag=a_real) or (read_flag=an_integer) then
graph_creff[current_co_no]:=read_real;
comments[current_co_no]:=name_coeff[current_co_no]:
comments[current_cono,18]:='=;
writestr(number_string, graph_coeff[current_co_no]:10);
for count :=1 to length(number_string) do
comments[current_co_no, count +20 ] $:=$ number_string[count];
writestring ( log, name_coeff[current_co_nol);
write (log, $=$, graph_coeff[current_co_nol);
writeln (log);
end;
no_of_comments $:=$ no_of_coeff +1 ;
for current_co_no:=2 to no_of_fixed do
note : fixed[1] is calc from fixed[2]\}
begin

```
 writestring (output, name_fixed[current_co_nol);
 write ('(',fixed_coeff[current_co_no],')?'); writeln;
 readin (input, read_word, read_int, read_real , read_flag):
 if (read_flag=a_real) or (read_flag=an_integer) then
 fixed_coeff[current_co_no] := read_real;
 comments[no_of_comments]:= blank_line:
 conments[no_oi__comments]:= name_fixed!current_ro_no l:
 comments[no_of_comments,18]:='=';
 writestr(number__string, fixed_coeff[current_co_nol: 10);
 for count := 1 to length(number_string) do
 comments[no_of_comments,count+20]:= number_string[count];
 no_of_comments := 1 + no_of_comments;
 writestring (log, name_fixed[current_co_no]);
 wrjte(log, , =, fixed_coeff[current_co_nol);
 writeln (log);
 end;
fixed__coeff[1]:=180/(3.14159*fixed_coeff[2]);
writeln (, what is the standard deviation of the noise');
writeln ('(presently ', stand_deviation,')');
readin (input, read__word, read_int, read_real , read_flag);
if (read_flag=a_real) or (read_flag=an_integer) then
 stand_deviation:= read_real;
comments[no_of_comments]:=blank_line;
comments[no_of_comments]:='stand. dev. noise=, ;
writestr(number__string, stand_deviation);
for count := 1 to length(number__string) do
 conments[no_of_comments,count+20]:= number__string[count];
no_of_comments := 1 + no_of_comments;
conments[no_of_comments]:=blank_line;
write (log, 'noise standard deviation');
write (log,' = , stand_deviation);
writeln (log):
mean := 0;
count := 0;
repeat
 count := count + 1;
 iflag1:= 1;
 iflag2 := 0;
 fit(no_of_points, no_of_coeff, x. y[9], y[10], weight,
 graph_coeff, y[1], y[2], y[3], sum_sq, fit_coeff,
 error_coeff . fixed_coeff, iflag1, iflag2);
 y[10] := y[1];
 until (count }>=20)\mathrm{ ;
y_min[1]:=9999999.0;
y_max[1]:=-9999999.0;
g05ccf; (* randomise random numbers *)
for current_point := 1 to no_of__points do
 begin
 y[1,current_point] :=
 g05DDF (mean, stand_deviation) + y[1,current_point]:
 (* add gaussian noise *)
 if (y[1,current_point]>y_max[1]) then y_max[1]:=y[1,current_point];
 if (y[1,current_point]<y_min[1]) then y_min[1]:=y[1,current_point]
 end;
writeln ;
writeln(, ****** simulated data generated **** ');
writeln ;
```

end:
begin

```
reset (input , 'interactive');
reset (filein, 'unit=1');
rewilie (outpui, 'intcyac:ive');
rewrite (fileout, 'unit=2');
rewrite (log, 'unit=3 noempty');
rewrite (data, 'unit=4 noempty');
for count := 1 to line_length do
 blank_line[count] := ';
```

name_coeff[1]:= phase shift (deg)
name_coeff[2]:= 'torque offset
name coeff[3] $:=$ 'side pull (sinx)
name_coeff[4] := 'phase side pull
name_coeff[5] := 'K1/J/kg
name_coeff[6] := 'K2/J/kg
name_coeff[7] $:=$ 'K3 / $\mathrm{J} / \mathrm{kg}$
name_coeff[8] $:=$ 'K4 / J/kg
name_coeff[9] := 'K5/J/kg
no_of_coeff:=9;
for current_co_no : $=1$ to no_of_coeff do
simul_coeff[current_co_no] $:=0$;
name_fixed[1] := 'shear cortection
name_fixed[2] := (Ms*Field)
name_fixed[3] $:=$ 'torque offset
no_of_fixed:= 3 ;
for current_co_no := 1 to no_of_fixed do
fixed_coeff[current_co_no] := 0 ;
stand dev :=0;
lines_out $:=0$;
out_files : $=0$;
fits $:=0$;
weighted : $=$ false;
writeln;
writeln ( 'Program to ít anisotropy constants to torque data ; ;
writeln
writeln ( , This program fits a curve to a data file, mimimising the');
writeln ( $\quad$ squared error. '):
writeln ( , The number of anisotropy constants are chosen, and whether ):
writeln ( the points nearer the origin are considered more important );
writeln ( (weighting)' ):
writeln :
writeln ('Do you want to test the routine with simulated data(y/n)');
readln ( answer );
if $\left(\right.$ (answer $\left.=^{\prime} y^{\prime}\right)$ or (answer $\left.\left.=\prime y^{\prime}\right)\right)$
then begin
generate ( simul_coeff, fixed_coeff, stand_dev,
title, x_axis, y_axis, y_label,
no_of_comments, no_of_graphs, no_of_points,

end
else begin

Listing of FIT.PAS at 00:50:23 on MAY 13, 1987 for CCid=PHP7

```
read_file_in(filein. title, x_axis, y_axis, y_label,
 no_of_comments, no_of__graphs, no_of__points,
 comments. x, y, x_min. x_max, y_min, y_max):
line_read:= 'curve read in: ' ;
for count := 1 to 64 do
 line_read[count+16]:= y_label[1, count];
writelnstr(output, line_read)
end:
```

```
torque_range \(:=y _\max [1]-y _m i n[1] ;\)
\(\operatorname{mid}\) torque \(:=\left(y _\max [1]+y_{\min }[1]\right) / 2\);
smallest_torque \(:=a b s(y[1,1]\)-mid_torque) :
easy_direction :=x[1];
for current_point \(:=1\) to no_of_points do
 begin
 we ight[current_point] \(:=1\);
 if (abs(y[1, current_point]-mid_torque) < smallest_torque) then
 begin
 easy_direction \(:=x[\) current_point];
 smal]est_torque \(:=\) abs(y[1,current_point]-mid_torque)
 end
 end;
```

```
fit_coeff[1] :=-easy_direction;
fit_coeff[2] := mid_torque;
fixed_coeff[3]:= mid_torque;
fit_coeff[3]:= 0.01 * torque_range;
fit_coeff[4] := 0;
fit_coeff[5]:=0.8 * torque_range;
fit_coeff[6] :=-0.4 * torque_range;
fit_coeff[7] := 0.1 * torque_range;
fit_coeff[8]:=0.01 * torque_range;
fit__coeff[9] := 0.01 * torque_range;
writeln ('What is the value of Ms*Field (joules)');
readln(Ms_field):
writeln ('What is the temperature (kelvin)');
readln (Temperature);
fixed_coeff[2] := Ms_field:
fixed_coeff[1] := 180!(3.14159*Ms_field); {shear_cortection}
no_of_fixed:= 2;
no_of_coeff:= 6;
writeln (log);
writelnstr('log, y__label[1]);
writeln(log);
writeln (log.'fixed coefficients ,);
for current_co_no:= 1 to no_of_fixed do
 begin
 writestring(log, name_fixed[current_co_nol);
 write (log, =',fixed_coeff[current_co_no]);
 writeln(log)
 end;
writeln (log);
writeln(log, initial coefficients ,);
for current_co_no:= 1 to no_of_coeff do
 begin
```

```
writestring(output, name_coeff[current_co_no]);
write (output, ' =',fit_coeff[current_co_nol);
writeln (output):
writestring(log, name_coeff[current_co_no]);
write (log , , =',fit_coeff[current_co_no]):
writein(log)
end;
```

repeat
writeln ;
writeln ( choose from:');
writeln
writeln ( $\quad 1$ - 5 : no. of anisotropy const (presently,
no_of_coeff - 4:2, ').');
writeln ( $\quad$ s - change starting coeff values.');
if weighted then writeln (,$\quad$ w - stop weighting (presently on)')
else writeln ( $\quad$ w - switch weighting on (presently off)');
writeln ( $\quad \mathrm{m}$ - change Ms*Field value.') ;
writeln ( $\quad$ f - fit (least squares)');
writeln (,$o-$ output to data file. ');
writeln (, g - generate new simulated data. ');
writeln ( $\mathrm{e}^{\text {e }}$ - end );
readln (choice);
if (choice=' $1^{\prime}$ ) then no_of_coeff $:=5$;
if (choice=, 2 , ) then no_of_coeff $:=6$;
if ( choice='3') then no_of_coeff :=7;
if (choice=,4, ) then no_of_coeff : $=8$;
if (choice='5') then no_of_coeff : $=9$;
if ((choice='s')or(choice='S')) then
begin
writeln ( give new value or -999 ');
for current_co_no:=1 to no_of_coeff do
begin
writestring ( output, name_coeff[current_co_no]);
writeln('=', fit_coeff[current_co_no]);
readln ( val_co);
if (val_co<c -999) thenfit_coeff[current_co_no]:=val_co;
end
end :
if ( (choice='m')or(choice='M')) then
begin
writeln ( $\mathrm{Ms}^{*}$ Field $={ }^{\prime}$.Ms_field, Joules') :
writeln ( What is the new value of Ms*Field (joules )');
readln (Ms_field);
fixed_coeff[2] := Ms_field;
fixed_coeff[1] $:=180 /(3.14159 *$ Ms_field) ; \{shear_cortection $\}$
witeln (log);
writeln ( log, - new fixed coefficients ) ;
for current_co_no := 1 to no_of_fixed do
begin
writestring ( log, name_fixed[current_co_nol);
write ( log, =, fixed_coeff[current_co_nol);
writeln (log)
end
end:

```
if ((choice='w')or(choice='W')) then
 begin
 jf we ighted
 then begin
 weighted:= false:
 writeln (log., - weighting switched on ();
 for current_point := 1 to no_of_points do
 weight[current_point]:=];
 end
 else begin
 weighted := true ;
 writeln(log, , weighting switched off ,);
 for current_point := 1 to no_of__points do
 wejght[current_point]:=
 sin(3.14159*(0.01+0.98*(y[1,current_point]-y_min[1])
 /torque_range));
 end
 end;
if ((choice='f')or(choice='F')) then
 begin
 initial__coeff:= fit_coeff;
 iflag1 := 0;
 writeln (log);
 writeln(log, ' - fitting to , no_of_coeff:3,' coefficients,);
 writeln (least squares fit starting. . .'):
 fit (no_of_points, no_of_coeff,x, y[5],y[1], weight, initial_coeff,
 y[2], y[3], y[4], sum_sq, fit_coeff, error_coeff,
 fixed_coeff, iflag1, iflag2);
 writeln (log, 'indication flags are, ,iflagl, `, , iflag2);
 writeln (least squares fit finished...,):
 writeln('indication flags are ',iflag1,', ,iflag2);
 for current_co_no := 1 to no_of_coeff do
 begin
 writestring (log, name_coeff[current_co_nol);
 write (log, =,,fit_coeff[current_co_nol]);
 write (log, '+-', error_coeff[current_co_no]):
 writeln(log);
 writestring (output, name_coeff[current_co_no]);
 write (output, = ,fit_coeff[current_co_nol);
 write (output, ,+-, error_coeff[current__co_no]);
 writeln (output)
 end;
 write (data, temperature:5:0);
 write (data, ,);
 for current_co_no:= 1 to no_of_coeff do
 begin
 write (data, fit_coeff[current_co_no]:15);
 write (data, , ')
 end;
 forcurrent_co_no:= no_of__coeff to 10 do
 write (data, ' 0.0');
 writeln;
 writeln (data);
 fits:= fits+1
 end;
```

```
if ((choice='o')or(choice='O')) then
 begin
 for current_point \(:=1\) to no_of_points do y[10, current_point]:=0;
 count2:=0;
 repeat \(\}\) \{ loop to calculate the smooth curve
 not using measured torques for shear correction \}
 count2: \(=\) count \(2+1\);
 iflag \(1:=1\);
 iflag2 \(:=0\);
 test;
 fit (no_of_points, no_of_coeff, \(x, y[10]\), weight, fit_coeff,
 \(y[2], y[9], y[4]\), sum_sq, initial_coeff, etror_coeff,
 fixed_coeff, iflag1, iflag2);
 \(y[10]:=y[2]\);
 until (count2>=20);
 for current_co_no:= 1 to no__of__fixed do
 begin
 comments[no_of_comments]:=name_fixed[current_co_no];
 comments[no_of_corments, 18]:=' =';
 writestr (number_string, fixed_coeff[current_co_no]:10);
 for count \(:=1\) to length(number_string) do
 comments[no_of_comments, count +20] \(:=\) number__string[count];
 no_of_comments:=1+no_of_comments;
 end ;
 for current_co_no:= 1 to no_of_coeff do
 begin
 comments[no_of_conments]:=name_coeff[curient_co_no];
 comments[no_of_conments, 18]: \(={ }^{\prime}={ }^{\prime}\);
 writestr (number_string, fit_coeff[current_co_no]:10);
 for count \(:=1\) to length(number_string) do
 comments[no_of_comments, count+20]:= number_string[count]:
 writestr (number_string, error_coeff[current_co_no]:10);
 for count \(:=1\) to length(number_string) do
 conments[no_of_comments, count+31]:= number_string[count];
 comments[no_of_comments, 31]:='+';
 comments[no_of_comments, 32]:=' -';
 no_of_comments:=1+no_of_comments;
 end ;
 if we ighted then
 begin
 comments[no_of_comments]:=, weighted data points';
 no_of_comments :=1+no_of_comments;
 end;
 comments[no_of_conments]:= blank_line;
 no_of_graphs := 5;
 y_]abel[2] := fit to ;
 for count \(:=1\) to 73 do
 y_label[2, count+7] \(:=y_{\text {_label }}[1\), count \(]\);
 y_label[3]:= 'Corrected ;
 for count \(:=1\) to 70 do
```

```
Listing of FIT.PAS at 00:50:23 on MAY 13, 1987 for CCid=PHP7
 y_label[3.count+10]:= y_label[1,count];
 y_label[4] := 'Fit tocor.`;
 for count := 1 1o 68 do
 y_label[4,count+12]:= y_label[1, count];
 y_label[5] := 'Corrected angle/deg.';
 write_file (fileout, title, x__axis, y_axis, y_label,
 no_of_comments, no_of_graphs, no_of_points,
 comments. x, y);
 lines := 6 + no_of_graphs + no_of_comments + no_of_points;
 out_files := 1 + out_files;
 out_lines[1,out_files] := lines_out + 1;
 out__lines[2,out_files] := lines__out + lines;
 writeln(lines:5, 'lines written, from line,, lines_out+1:5,' to,,
 lines_out+lines:5,'.');
 writeln(log, ,******* written to output file lines,',
 lines_out+1:5,' to ', lines__out+1ines: 5,'.');
 lines_out := lines_out + lines;
 no_of_comments := no_of_comments - no_of_fixed - no_of_coeff ;
 if weighted then no_of_comments := no_of_comments - 1
 end;
 if ((choice='g')or(choice='G'))
 then begin
 no_of_coeff:= 9;
 generate (simul_coeff, fixed_coeff, stand_dev,
 title, x_axis, y__axis, y_label,
 no__of_comments, no_of_graphs, no_of_points,
 comments, x, y, x_min, x_max. y_min, y_max);
 no_of__fixed:= 2;
 no_of_coeff:= 6;
 writeln(log, ,****** new data generated ,);
 end
until ((choice='e')or(choice='E`)):
writeln (, Thank you : fits done, fits:3,`, files output,,out_files: 3,
 , lines output'.lines_out:5,'.'):
 if out_files>0 then
 for count := 1 to out_files
 do writeln(, - file, count:2,' lines , out_lines[1,count]:5,
 to ,out_lines[2,count]:5)
```

end.

```
Listing of FIT.FOR at 00:52:27 on MAY 13, 1987 for CCid=PHP7
 SUBROUTINE FORFIT (M, N, X, XCORR, Y, WT, INCO, YCALC, YCORR,
 * YCFIT, FSLMSQ, FITCO, ERRCO, FIXCO, IFLAG1, IFLAG2)
C
 INTEGER M, N, IFLAG1, IFLAG2, POINT, LIW, IW(10), LW, IFAIL,
 CO, COUNT, CFLAG
C
 DOUBLE PRECISION NUMBER, X(1000), Y(1000), YCALC(1000),
 * YCFIT(1000), WT(1000), INCO(10), FITCO(10), ERRCO(10).
 FSUMSQ,W(23220), YCORR(1000), CX(1000), CY(1000),
 CWT(1000), CJ(10), CINCO(10), FIXCO(10), CFIXCO(10),
 CXCORR(1000), XCORR(1000)
C
C COPY THE DATA INTO A COMMON BLOCK
C
 CFLAG=I FLAG2
 DO 50 CO = 1,10
 CINCO(CO) = INCO (CO)
 CFIXCO(CO) = FIXCO (CO)
50 CONTINUE
C
 DO 100 POINT = 1, M
 CX(POINT) = X (POINT)
 CY(POINT) = Y(POINT)
 CWT(POINT) = DSQRT(WT(POINT))
 100 CONTINUE
C
C
 DO 200 COEF = 1, 10
 FITCO(COEF) = INCO(COEF)
 CONTINLE
 F OPTION NOT TO MINIMISE THE SQUARE ERR(OR
 THEN SKIP THAT SECTION
 IF (IFLAG1 .EQ. 1) GO TO 1000
C
 SET UP VAILES REQLIRED BY LEAST SQLARES ROLTINE
 LW = 23220
 LIW = 10
 COLNT = 0
C REPEAT CALL OF LEAST SQLARES ROUTINE UP TO TEN TIMES
 300 CONTINLE
 COLNT = COUNT + 1
 IFAlL = 1
 CALL EO4FDF (M, N, FITCO, FSUMSQ, IW, LIW, W, LW, IFAIL)
 IF ((IFAIL .EQ. 2) .AND. (COUNT .LT. 10)) GO TO 300
 IFLAG1 = IFAIL
C
 SKIP THE CALCULATION OF VARIENCE IF THE CALL TO FIND A
```

```
Listing of FIT.FOR at 00:52:27 on MAY 13, 1987 for CCid=PHP7
C MINIMUM WAS LNSUCCESFLL.
 IF (IFAIL .EQ. 1) GO TO 2000
C
C
 NS = 6*N+2*M + M*N + j + (N*(N-i))/2
 IF (N .NE. 1) GO TO 350
 NS = NS + 1
 350
 CONTINUE
 NV = NS + N
 IFAlL = 1
 CALL E04YCF (0, M, N, FSUMSQ, W(NS), W(NV), N, CJ, W, IFAIL)
C
 IFLAG2 = IFAIL
 SKIP CALCULATION OF STANDARD ERROR IF ROLTINE FAILS
 IF ((IFAIL .EQ. 1) .OR. (IFAIL .EQ. 2)) GO TO 2000
C
 DO 400 COEFF = 1, N
 ERRCO (COEFF) = DSQRT (CJ (COEFF))
 CONTINUE
 400
C
 1000 CONTINUE
C
C (v NEGATIVE => LSFUN1 CALC VALLE NOT ERROR)
 N = -N
 CALL LSFLN1 (M, N, FITCO. YCALC)
 N = -N
C C (M NEGATIVE => LSFUN1 CALC CORRECTED CLRVE)
 M = -M
 CALL LSFLN1 (M, N, FITCO, YCORR)
C
C (N & M NEGATIVE => LSFUN1 CALC FlT TO CORRECTEI)CLRVE)
 N = -N
 CALIL LSFLN1 (M. N. FITCO. YCFIT)
 N = -N
 M = -M
C
 DO 500 POINT = 1, M
 XCORR(POINT) = CXCORR(POINT)
 500 CONTINLE
C
2000 CONTINUE
 RETLRN
 END
C
C
C*
```

Listing of FIT.FOR at 00:52:27 on MAY 13, 1987 for CCid=PHP 7
SLBROUTINE LSFUNI (M, ․ XC. FIECC )
C
SLBROLTINE CALCLLATES LSING ANI SOTROPY CONST COEFFICIENTS
INTEGER M,N, POINT, COLNT, ABSN, ABSM, CFLAG
DOUBLE PRECISIOA X, CX(1000), CY(1000), CXCORR(1000), COSX,
CWT(1000), CFIXCO(10), CXC(10), XC(10), FVECC(1000), SINX
COMMON CX. C), CXOORR, CWT , CAC, CFIXCO, CFLAO
C
$A B S N=A B S(N)$
$\mathrm{ABSM}=\mathrm{ABS}(\mathrm{M})$
DO 100 POINT $=1, \mathrm{ABSM}$
DI SPLACEMENT AND SIN(X) TERM
$\operatorname{FVECC}(\operatorname{POINT})=\mathrm{XC}(2)+$
FVECC(POINT) $=\operatorname{CFIXCO}(3)+$
$\mathrm{XC}(3) * \operatorname{DSIN}((\mathrm{CX}($ POINT $)+\mathrm{XC}(4)) * 3.14159 / 180)$
SHEAR CORRECTION - DONE FOR ALL OPTIONS
$\operatorname{CXCORR}(\operatorname{POINT})=C X($ POINT $)-X C(1)$
$\operatorname{CXCORR}(\operatorname{POINT})=\operatorname{CX}(\operatorname{POINT})+229.0$
$+(\mathrm{CY}(\operatorname{POINT})-\operatorname{FVECC}(\operatorname{POINT})) * \mathrm{CFIXCO}(1)$
$\mathrm{X}=\operatorname{CXCORR}(\mathrm{POINT}) * 3.14159 / 180$
DISPLACEMENT AND SIN(X) TERM, NOT CALC FOR FIT TO CORRECTED CURVE.
IF ( (M.GE. O) .OR. (N .GE. O) ) GOTO 15
FVECC(POINT) $=0$
CAI_CLLATED CLRVE FIT NOT DONE FOR CORRECTED CLRVE
CONT INUE
IF ( (M . LT. O) .AND. (N .GE. O)) GOTO 20
CALCLLATION OF FOURIER CLRVE FIT

```
FVECC(POINT})= FVECC(POINT) - NC(5)*DSIN(2*N)
IF (ABSN .LT. 6) GO TO 20
 FVECC(POINT) = FVECC(POINT) - XC(6)*DSIN(4*N)
IF (ABSN .LT. 7) GO TO 20
 FVECC(POINT) = FVECC(POINT) - XC(7)*DSIN(6*S)
IF (ABSN .LT. 8) GO TO 20
 FVECC(POINT) = FVECC(POINT) - XC(8)*DSIN(8*X)
1F (ABSN .LT. 9) GO TO 20
 FVECC(POINT) = FVECC(POINT) - XC(9)*DS1N(10*X)
```

    CALCLLATION OF THE VALUE AND NOT THE ERROR
    CONTINUE
IF ( N .LT. 0 ) GO TO 50
FVECC (POINT $)=($ CY (POINT $)-\operatorname{FVECC}($ POINT $))$

FOR CORRECTED CURVE NO WEIGHTING IS REQUIRED

## M. J. Hawton pro

Listing of FIT.FOR at 00:52:27 on MAY 13, 1987 for CCid=PHP7
IF ( M . LT. O ) GO TO 50 FVECC(POINT) $=$ FVECC(POINT)*(WT (POINT)
$\stackrel{C}{C}$
50 100 CONTINLE CONTINLE

C

## RETURN

END
C
END (LSFUN1)

Listing of GRAPH. PLOT at 01:04:01 on MAY 13, 1987 for CCid=PHP7

```
 (* Malcolm Hawton - Durham 1986 *)
 progsam Graph;
 {read data from file and produce plot descriptor file for
 laser printer or calcomp plotter}
consi woid_length=25;
type sort = (a_word, an_integer, a_real, end_of_file);
 words= string(word_length);
const max_graph=20;
 max__point = 300;
 1ine_length=80;
 max__comment = 35;
type line= packed array[1 .. line_length] of char;
 graph = 1 . max_graph;
 point = 1 .. max_point;
 comment = 1 . . max__comment;
 vector = array [1 . max_point] of real];
 two_lines = array [1 . 2] of line;
 graph_lines=array [graph] of line;
 comment__lines=array [comment] of line;
 graph_vectors= array [graph] of vector ;
 graph_reals=array [graph] of real;
 type
 shortvector = array [1 .. max_point] of shortreal;
 graph_shortvectors=array [graph] of shortvector:
 type_of_graph=(nothing, markers, joined, smooth, mark_joined,
 mark_smooth);
var
 logether, conments_page : boolean;
 current_ggraph,no_of_graphs: graph;
 title : two_lines;
 current__comment,no_of__comments: comment;
 conments : comment_lines;
 single_comment : line;
 current_point, no__of_points,
 start, last, first : point;
 shortx_min, shortx_max : shortreal:
 shorty_min_tog,shortv_max_tog : shortreal;
 shorty_min,shortymax : array [graph] of shortreal;
 3_min, x_max : real;
 1irst_page : boolean;
 y_min, y_max : graph_reals;
 answer : char:
 graph_type array[graph] of type_of_ggraph:
 X : vector;
 shortx : shortvector;
 y : graph_vectors;
 shorty : graph_shortvectors;
 x_axis,y_axis : line;
 blank_line : line;
 count,mark : integer;
 line_count : integer;
 y_label : graph_lines;
 filein : text;
```

```
%include readin.pro { see fit.pas }
gonclude filein.pro { see fit.pas }
Ginclude wstr.pro { see fit.pas }
type shortarrav= array[1 .. 100] of shortreal;
procedure annotp(const x_direct, y_direct: integer); fortran;
 {side of axis for annotation, O=-ve, l=+ve}
procedure arc (const x_start, y_start, angle : shortreal); fortran;
 {draw arc around positn, anti-clock}
procedure arcell(const x__st, y_st, ang, eccent : shortreal); fortran;
 {draw arc of an ellipse with eccentricity eccent }
procedure axes; fortran;
 {draw axes on the graph}
procedure axessi (const increment_x, increment_y: shortreal); fortran;
 {draw axes with fixed increments on the graph }
procedure axexl; fortran;
 {draw logrithm x axis, linear y axis }
procedure axexli (const increment_y : shortreal); fortran;
 { draw logrithm x axis, linear y axis- fixed y incr.}
procedure axexyl; fortran;
 {doaw logrithm x axis and y axis }
procedure axeyl ; fortran;
 {draw logrithm y axis, linear x axis}
procedure axeyli (const increment_x : shortreal); fortran;
 {draw logrithm y axis, linear x axis- fixed x incr.}
procedure axnota (const enable ; integer) ; fortran ;
 {enables/disable axis/scale annotation }
procedure axorigg(const x, y : shortreal); fortran;
 {fixes the intersection point of the axes }
procedure barcht (const v_origin, bar_width: shortreal;
 const x_posns, values : shortarray;
 const start, stop : integer); fortran;
 {draws a histogram - see alsohistgm }
procedure border: fortran:
 {draws a border aroun vector window }
procedure box (const xmin, xmax, ymin, ymax : shortreal); fortran;
 {draws a box ..}
procedure cdefin (const character_number : integer:
 const specification_array : shortarray;
 const spec : integer); fortran;
 { enables characters to be defined }
procedure circle (const radjus : shortreal): fortran:
 {draws a circle around positn }
procedure crlnfd; fortran;
 {carriage return/ line feed }
procedure cretrn: fortran;
 {carriage return}
procedure cspace (const cxmin, cxmax, cymin, cymax : shortreal); fortran;
 { defines character space for 'typewriter mode' }
procedure ctrang (const angle : shortreal); fortran;
 {orientation of characters within a string}
procedure ctrfnt (const character_set : integer); fortran;
 {font to be used}
procedure ctrmag (const size : integer); fortran;
 {character size in 0.001* ND space units}
procedure ctrobl (const width : shortreal); fortran;
```

```
 { sets character width, default 1.0}
procedure ctrori (const angle : shortreal); fortran;
 {orientation or string to be used - default degrees }
procedure ctrsiz (const size : shortreal); fortran;
 {character size in vector space units }
procedure curveo (const xarray, yarray : shortvector:
 const first. last : integer); fortran;
procedure degree: fortran; { sets units to degrees }
procedure ellipse(const x_axis , y_axis : shortreal); fortran;
} {draw ellipse around current plot. pos }
procedure frame; fortran;
 { new sheet of paper }
procedure gpstop (const max_sheets : integer); fortran;
 { maximum number of graphs to be drawn }
procedure grad; fortran; { sets angular units to grads }
procedure gratic; fortran;
 {draws graticule }
procedure gratsi (const interval_x, interval_y : shortreal); fortran;
 { draws graticule with fixed x and y intervals }
procedure graxl ; fortran;
 {draws graticule, x logrithm., y linear }
procedure graxli (const interval_y : shortreal); fortran;
 { draws graticule, x logrithm., y linear and fixed }
procedure graxyl; fortran;
 {draws graticule, x logrithm., y log. }
procedure grayl ; fortran;
 {draws graticule, y logrithm., y linear }
 procedure grayli (const interval_x ; shortreal); fortran;
 {draw's graticule, y logrithm., y linear and fixed }
procedure grend; fortran:
 { last procedure to be called - closes pds }
procedure histgm (const x_origin, y_origin, bar_width : shortreal;
 const values : shortarray;
 const start, stop : integer); fortran;
 { draws a histogram, with bars up against each other }
procedure hlinfd (const number_of_half_lines : integer); fortran;
 { half line feeds }
procedure hspace (const number_of__half_spaces: integer); fortran;
 { typewriter spaces }
procedure italic (const enable : integer); fortran;
 { enables ltalic characters }
procedure join (const x_pos, y_pos : shortreal); fortran;
procedure locate (const x_pos, y_pos : shortreal): fortran;
 { defines a translation from positn to locate}
procedure linefd (const number_of_lines : integer); fortran;
 { line feeds }
procedure map (const xmin, xmax, ymin, ymax : shortreal); fortran;
 this area in vector space maps onto the area defined
 in ND space by pspace }
procedure mapfol: fortran;
 cancels mapping, and makes window like vector rectange }
procedure mapxl (const xmin, xmax, ymin, ymax : shortreal); fortran;
 { - as map but x axis logarithm }
procedure mapyl (const xmin, xmax, ymin, ymax : shortreal); fortran;
 { - as map but y axis logarithm }
procedure mapxyl (const xmin, xmax, ymin, ymax : shortreal); fortran;
 { - as map but x axis and y axis logarithm }
procedure marker (const mark : integer); fortran;
```

Listing of GRAPH. PLOT at 01:04:01 on MAY 13, 1987 for CCid=PHP7

```
procedure mask (const xmin, xmax, ymin, ymax ; shortreal); fortran;
 {defines a mask - no plotting within it }
procedure mskchr (const enable : integer); fortran;
 { makes the mask affec; characters }
{ procedure nscurv (const xarray, yarray : shortvector:
 const first, last : integer); fortran:
 } procedure paper(const on_off : integer): fortran;
 { first procedure to be called - 1=on, O=off }
procedure pcscen - see spcscn}
procedure pcsend - see spcsed }
procedure piecht (const x_origin, y_origin, radius : shortreal ;
 const values: shortarray;
 const number_of_sectors : integer); fortran;
 {draws a pie chart }
procedure place (const x, y : integer); fortran;
 { positions current character pointer (ccp) }
procedure plotcs - see spltcs }
procedure plotnc (const x, y : shortreal;
 const character : integer); fortran;
 { write character at x,y (vector space) }
procedure plotne (const x, y : shortreal;
 const number : shortreal;
 const number_after_decimal__point : integer); fortran;
 { write a real number out d.pt. at x, y, e.g. 3.456E02 }
procedure plotnf (const x, y : shortreal;
 const number : shortreal;
 const number_after_decimal__point : integer); fortran;
 { write a real number out, d.pt. at x, y e.g. 345.6 }
procedure plotni (const x, y : shortreal;
 const number : integer): fortram:
 {write an integer out }
procedure positn (const x, y : shortreal); fortran:
procedure pspace (const pxmin, pxmax, pymin, pymax : shortreal);fortran;
procedure ptgraf (const xarray, yarray : shortvector; const
 first_point, last_point, plotchar : integer); fortran;
 { plot points and draws lines between them }
procedure ptjoin (const xarray. yarray : shortvector; const
 first_point, last_point, plotchar : integer); fortran:
 { join the points, plotchar = -ve for closed curve }
procedure ptplot (const xarray, yarray : shortvector: const
 first_point, last_point, plotchar : integer); fortran;
 {plot points, plotchar = 232 for +. etc.}
procedure qadrnt: fortran; { sets units to quadrants
procedure radian; fortran; { sets units to radians }
procedure rotate (const angle : shortreal); fortran;
 { defines a rotation around positn fixed by positn }
procedure scale (const x_scale, y_scale : shortreal); fortran;
 {defines a scale (enlargement) around current pl pt.}
procedure scales; fortran;
 {draws scales around the vector window }
procedure scalsi (const interval_x, interval_y : shortreal); fortran;
 draws scales around the vector window, fixed intervals }
procedure scarot (const x_scale, y_scale, angle : shortreal); fortran;
 {defines a rotation aand a scaling}
procedure scaxl ; fortran;
 { draws scales, x, log and y linear }
procedure scaxli (const interval_v : shortreal); fortran;
```

 \{ defines window in vector_sp. coord \}

Listing of GRAPH.PLOT at (01:04:01 on MAY 13. 1987 for CCid=PHP7
procedure winfol: fortran;
\{cancels window $=\boldsymbol{v}^{\prime}=$ vect. space rectangle \}
procedure xaxis; fortran:
\{ draws $x$ axis on the graph \}
procedure xaxisi ( const increment $x$ : shortreal ) fortran;
$\{$ draws $x$ axis with fixed increments on the graph \}
procedure xaxasl: fortran;
draws $x$ axis for logrithm scale $\}$
procedure xscale; fortran;
\{ draws $x$ scale round vector window \}
procedure xscali (const increment_x : shortreal ) fortran;
\{draws $x$ scale with fixed increments on the graph \}
procedure xscall; fortran;
\{draws $x$ scale for logrithm scale \}
procedure xgrat; fortran;
\{ draws $x$ graticule on graph \}
procedure xgrati ( const increment_x shortreal ) fortran;
\{ draws $x$ graticule with fixed interval \}
procedure xgratl; fortran;
draws logrithmetic $x$ graticule \}
procedure yaxis; fortran;
\{ draws y axis on the graph \}
procedure yaxisi (const increment_y shortreal ); fortran; draws y axis with fixed increments on the graph \}
procedure yaxisl; fortran;
draws y axis for logrithm scale $\}$
procedure yscale: fortran;
\{ draws y scale round vector window \}
procedure yscali (const increment_y : shortreal) fortran;
\{ draws y scale with fixed increments on the graph \}
procedure yscall; fortran;
\{ draws yscale for logrithm scale \}
procedure ygrat; fortran;
\{ draws y graticule on graph \}
procedure ygrati (const increment_y : shortreal ); fortran;
\{ draws y graticule with fixed interval \}
procedure ygratl; fortran;
\{draws logrithmetic y graticule \}

```
procedure newpage;
```

*********************** $\mathrm{NEWPAGI} \quad * * * * * * * * * * * * * * * * * * * ~\}$
$\{$ draws border. comments and title for a graph \}
var
present_comment _ : comment:
counter : integer;
begin
if ( not first_page) then
begin
frame:
unmask(0)
end;
first_page : false;
pspace $(0.05,0.75,0.0,1.0)$;
$\operatorname{map}(0.05,0.75,0.0,1.0)$; window ( $0.05,0.75,0.0,1.0)$;

```
L.sting of GRAPH.PLOT at 01:04:01 on MAY 13, 1987 for CCid=PHP7
 border;
 box (0.05. 0.75, 0.0. 1.0):
 box (1).45, (1.75, (0.7. 1.0):
 box (0.05, (0.45, 0.7,0.943):
 cspace (0.05.0.45.0.7, ().99):
 ctrmag (12):
 lor counter := i io 2 do
 begin
 place (2, counter);
 stypcs(title[counter], length(title[counter]))
 end;
 cspace (0.05,0.45,0.65,0.935);
 ctrmag (10);
 if (no_of_comments>15) then ctrmag(9);
 if (no_of_comments>17) thenctrmag(8);
 if (no_of_comments>20) thenctrmag(7);
 for present__comment := 1 to no_of__comments do
 begin
 place (2, present_comment);
 single_comment := comments [present__comment];
 stypcs (single_comment, length(single_comment))
 end;
 ctrmag (12);
 cspace (0.0, 0.0, 0.0, 0.0);
 spltcs (0.08, 0.68, y__axis, length(y__axis));
 spltcs(0.5,0.03, x_axis, length(x_axis));
 mask (0.48,0.75,0.001,0.049);
 mskchr (1);
 line__count := 1;
 mark := 232;
 end;
 begin
```

```

 READING DATA IN
 READING DATA IN
 reset (filein, 'unit=1');
 reset (filein, 'unit=1');
 reset (input, 'interactive');
 reset (input, 'interactive');
 for count := 1 to line_length do
 for count := 1 to line_length do
 blank_line[count]:=,',
 blank_line[count]:=,',
 read_file_in (filejn. title, x__axis, y__axis. r__label,
 read_file_in (filejn. title, x__axis, y__axis. r__label,
 no__of_comments. no_of_graphs. no_ofl_points.
 no__of_comments. no_of_graphs. no_ofl_points.
 comments, x, y, x_min. x_max, y_min, y_max);
 comments, x, y, x_min. x_max, y_min, y_max);
{***** funny business to plot djfferent graphs *****
{***** funny business to plot djfferent graphs *****
 for current_point := 1 to no__of__points do
 for current_point := 1 to no__of__points do
 begin
 begin
 y[1, current__point]:= y[1,current__point]/y[2,current_point]:
 y[1, current__point]:= y[1,current__point]/y[2,current_point]:
 if (abs(y[1,current_point])>1) then
 if (abs(y[1,current_point])>1) then
 v[1,current_point] := 1/y[1,current_point]
 v[1,current_point] := 1/y[1,current_point]
 end;
 end;
 y_max[1] := 1;
 y_max[1] := 1;
 y_min[1]:= - 1;
 y_min[1]:= - 1;
 no__of_graphs := 1;
 no__of_graphs := 1;
}
```

}

```
```

                                    CONVERSION TO SHORT
                                    ********************* }
    { convert to short real to call ghost package }
    shortx_max := x_max;
    shortx_min := x_min;
    for current_graph:= 1 to no_of_graphs do
    begin
    shorty_max[current_graph] := y_max[current_graph];
    shorty_min[current_graph] := y_min[current_graph]
    end;
    for current_point := 1 to no_of_points do
    begin
    shortx[current_point] := x[current_point];
    for current_graph := 1 to no__of_graphs do
        shorty[current_graph, current_point]:=y[current_graph,current_point];
    end;
    {
ASKING OPTIONS
}
writeln (, GRAPH PLOTTING ; using GHOST 80, );
writeln( , -............., );
writeln;
writelnstr ( output, title[1] );
writelnstr ( output, title[2] );
writeln( no_of_graphs. ' graphs read in ');
writeln;
writeln( , Do you want the graphs on one sheet or separate ? (o/s)');
readln ( answer );
if (( answer='o') or (answer='O')) then together := true
else together := false;
writeln( 'What do you want for each graph ');
writeln(, N- nothing,');
writeln(, M - mark ');
writeln( ; J - joined points !);
writeln( , S - smooth line ;);
writeln ( . B - both marks and a smooth line ');
writeln (, L - markers joined up with straight lines ');
for current_graph:= 1 to no_of_graphs do
begin
writelnstr ( output. Y_labe![current_graph]);
readln ( answer):
case answer of
'N','n' : graph_type[current_graph] := nothing;
'M','m' : graph_type[current_graph] := markers;
,J, ,j, : graph_ype[current graph] := joined ;
'S','s': graph_type[current_graph] := smooth ;
'B','b': graph_type[current_graph] := mark_smooth ;
'L','l' : graph_type[current_graph] := mark_joined ;
otherwise graph_type[current_graph] := nothing;
end;
end;
GRAPH PLOTTING

```
```

paper(1):
first_page := true:
if (together) then
begin
newpage;
shorty_min_tog := 9999999;
shorty_max_tog := -94999994:
for current_graph := 1 to no_of_graphs do
if ( graph_type[current_graph] << nothingg) then
begin
if ( shorty_min [current_graph] < shorty_min_tog)
then shorty_min_tog:= shorty_min[current_graph];
if (shorty_max [current__graph] > shorty_max_tog)
then shorty_max_tog:= shorty_max[current_graph]
end;
for current_graph := 1 to no_of_graphs do
begin
shorty_min[current_graph] := shorty_min__tog;
shorty_max[current_graph] := shorty_max_tog
end;
pspace ( 0.05, 0.75, 0.0, 0.7);
map (1.12*shortx_min-0.12*shortx_max,
1.12*shortx_max-0.12*shortx_min,
1.12*}\operatorname{shorty_min_tog-0.12*shorty_max_tog,
1.12*shorty_max_tog-0.12*shorty_min_tog);
window (1.02 *shortx_min-0.02*shortx_max,
1.02*shortx_max-0.02 *shortx_min,
1.02*shorty_min_tog-0.02*shorty_max_tog,
1.02*shorty_max_tog-0.02*shorty_min_tog);
scales;
border;
if (shortx_min*shortx_max < 0.0 ) then
begin
axnota (0);
yaxis;
axnota (1)
end:
if (shorty_min_tog*shorty_max__tog< 0.0 ) then
begin
axnota(0):
xaxis ;
axnota (1)
end
end:
for current_graph :=_ 1 to no_of_graphs do
if ( graph_type[current_graph] <> nothing ) then
begin
{****** calc of limits ******* }
start := 1;
while ( ( abs(y [ current_graph, start]+999)<0.001 )
and (start< no_of__points) ) do start:=start+1;
last:= start;
while ( ( abs(y [ current_graph, last] + 999) > 0.001)
and (last < no_of_points) ) do last:=1ast+1;
if (not together ) then newpage;
pspace (0.50, 0.73, 0.7, 0.98);
cspace (0.47, 0.73, 0.7,0.985);

```
```

place ( 1, line_count );
if( (graph_type[current_graph) = joined ) or
graph_type[current_graph]=smooth) )
then typenc (45)
else begin
typenc (mark );
marker ( mark ):
mark := mark + 1;
if ( mark = 233 ) then mark := 235
end;
cspace (0.49, 0.745, 0.7, 0.985);
place ( 1, line_count );
stypcs ( y_label[current_graph], length(y_label[current_graph]));
count := line_length;
while ((y_label[current_graph,count]=,') and (count>1)) do
count := count - 1;
line_count := line_count + ((count+25) div 25);
pspace (0.05, 0.75, 0.0, 0.7);
map (1.12*shortx_min-0.12*shortx_max,
1.12*shortx_max-0.12*shortx_min,
1.12*shorty_min[current_graph]-0.12*shorty_max[current_graph],
1.12*shorty_max[current_graph]-0.12*shorty_min[current_graph]);
window (1.02 *shortx_min-0.02*shortx_max,
1.02*shortx_max-0.02 *shortx_min,
1.02*shorty_min[current_graph]-0.02*shorty_max[current_graph],
1.02*shorty_max[current_graph]-0.02*shorty_min[current_graph]);
if ( not together) then
begin
scales;
border;
if ( shortx_max*shortx_min< 0.0) then
begin
axnota (0);
yaxis ;
axnota (1)
end :
if ( shorty_max[current_graph]*shorty_min[current_graph]<0.0)
then begin
axnota (0);
xaxis ;
axnota (1)
end
end:
if ( (graph_type[current_graph] = markers ) or
graph_type[current_graph] = mark_joined ) or
(graph_type[current_graph] = mark_smooth) ) then
ptplot ( shortx, shorty[current_graph],start, last,0);
if ( (graph_type[current_graph] = joined) )or
graph_type[current_graph] = mark_joined ) ) then
begin
first:=start;
current_point:=start;
while current_point< last do
begin
current_point:={jrst;
while current_point < last do
begin
current_point := current_point + 1;

```

Listing of GRAPH. PLOT at 01:04:01 on MAY 13. 1987 for CCid=PHP7
if ((abs (shortx[current_point)
shortx[current_point - 1])
\(\because((\operatorname{shortx}\) max - shortx_min \() / 2))\)
orlabs (shortylcurrent_graph, current_point]
- shorty[current_graph, current_point - 1])
((shorty_max [curreni_graph]
shorty_min (current_graph])/2))) then
begin
ptjoin (shortx, shorty[current_graph], first, current_point-1, 0);
first : \(=\) current_point;
end:
\(\because\) end;
end;
ptjoin (shortx, shorty[curfent_graph],first, last, 0) ; end;
if ((graph_type[current_graph] = smooth) or
(graph_type[current_graph] = mark_smooth) then
begin
first:=start;
current_point:=start;
while current point< last do begin
current_point:=first;
while current_point < last do
begin
current_point \(:=\) current__point +1 ;
if ((abs (shortx[current_point]
- shortx[current_point - 1])
\(>((\operatorname{shortx} \max -\operatorname{shortx} \min) / 2))\)
orfabs (shortylcurrent_graph, current_point]
- shorty[current_graph , current_point - 1]),
((shorty_max [current_graph]
- shorty_min [current-graph])/2))) then
begin
curveo (shortx, shorty[current_graph], first, current_point-1);
first := current_point;
end:
end:
end;
curveo (shortx. shorty[current_graph], first, last); end:
end;
grend;
end.

Listing of GHOST. FOR at 01:04:58 on MAY 13, 1987 for CCid=PHP7
```

SUBROUTINE SPLTCS( X, Y, STRING, LENGTH)

```
REAL X, Y. XO, YO
INTEGER*4 COLN" LENGTH, TMP1, TMP2
1.NTEGER*4 STRING(LENGTH)
CHARACTER*80 LINE

C
\[
\text { TMP } 1=0
\]
Do 10 (COUNT \(=1\). LENGTH
 IF (TMP1. .NE. ((COUNT-1)/4+1)) THEN
 TMP \(1=(\) COUNT -1\() / 4+1\)
 TMP2 \(=\) STRING (TMP1)
 ENDIF
LINE (COUNT: COUNT) =CHAR (ISHFT (IAND (TMP2,
TMP \(2=1\) SHFT \((\operatorname{TMP} 2,8\))
CONT I NUE

C
CALL PLOTCS (X, Y, LINE (1 : LENGTH))
RETURN
END
SUBROUTINE SPCSCN(\(X, Y, S T R I N G, ~ L E N G T H)\)
REAL \(X, Y\), XO, YO
INTEGER*4 COUNT, LENGTH, TMP1, TMP2
INTEGER*4 STRING (LENGTH)
CHARACTER*80 LINE
C
TMP \(1=0\)
DO 10 COUNT \(=1\), LENGTH
 IF (TMP1 . NE. ((COUNT-1)/4+1)) THEN
 TMP \(1=(\) COUNT -1\() / 4+1\)
 TMP2 \(2=\operatorname{STRING}(\) TMP1)
 ENDIF
LINE (COUNT: COUNT) =CHAR (ISHFT (IAND (TMP2,
 -16777216), -24))
TMP2 \(=1\) SHFT (TMP2, 8)
CONTINUE
CALL PCSCEN (X, Y, LINE (1:LENGTH))
RETURN
END
 SUBROLTINE SPCSED(\(\lambda, Y\), STRING, LENGTH)
REAL \(X, Y\) YO, YO
IXTEGER*4 COLNT, LENGTH, TMP1, TMP2
INTEGER*4 STRING(LENGTH)
CHARACTER*80 LINE

C
TMP \(1=0\)
DO 10 COUNT \(=1\), LENGTH
 IF (TMP 1 . NE . ((COUNT-1)/4+1)) THEN
 TMP \(1=(\) COUNT -1\() / 4+1\)
 TMP 2 \(=\) STR 1 NG (TMP1)
 ENDIF
LINE (COUNT: COUNT) =CHAR (I SHFT (IAND (TMP 2,
 - 16777216), -24)
```

L.isting of GHOST.FOR at 01:04:58 on MAY 13, 1987 for CCid=PHP7
TMP2=I SHFT( TMP2, 8 )
CONTINLE
CALL PCSEND (X, Y, LINE(1:LENGTH))
RETLRN
END
C
C
C
SUBROUTINE STYPCS( STRING, LENGTH)
INTEGER*4 COUNT, LENGTH, TMP1, TMP2
INTEGER*4 STRING(LENGTH)
CHARACTER*80 LINE
C
TMP1=0
DO 10 COUNT=1, LENGTH
IF (TMP1 .NE. ((COUNT-1)/4+1)) THEN
TMP1=( COUNT - 1 )/4+1
TMP2 = STRING( TMP1 )
ENDIF
LINE ( COUNT:COLNT )=CHAR( I SHFT(IAND(TMP2,
-16777216), -24) )
TMP2=I SHFT( TMP2, 8 )
CONTINUE
C
CALL TYPECS ( LINE(1:LENGTH))
RETURN
END
C
C
C
SLBROLTINE STCSCN( STRING, LENGTH)
I NTEGER*4 COUNT, LENGTH, TMP1, TMP2
INTEGER*4 STRING(LENGTH)
CHARACTER*80 LINE
C
TMP 1 =0
DO 10 COUNT=1, LENGTH
IF (TMP1 .NE . ((COLNT-1)/4+1)) THEN
TMP1 = (COLNT - 1)/4+1
TMP2=STR1NG( TMP1 )
ENDIF
LINE ( COUNT:COLNT )=CHAR( I SHFT(IAND( TMP 2.
-16777216), -24) )
TMP2=1 SHFT( TMP2, 8)
CONTINUE
CALL TCSCEN ( LINE(1:LENGTH))
RETLRN
END
C
C
SUBROUTINE STCSED( STRING, LENGTH)
INTEGER*4 COUNT, LENGTH, TMP 1 , TMP 2
INTEGER*4 STRING(LENGTH)
CHARACTER*80 LINE

```

Listing of GHOST.FOR at 01:04:58 on MAY 13, 1987 for CCid=PHP7
C
TMP \(1=0\)
DO 10 COUNT \(=1\), LENGTH
\(1 F\left(\right.\) TMP \(1 . \therefore E . \quad\left(\left(\right.\right.\) COLNT \(\left.\left.\left.^{-1}-1\right) / 4+1\right)\right)\) THEN
TMP \(1=(\) COUNT -1\() / 4+1\) TMP2 \(=\operatorname{STR} \operatorname{JNG}(\) TMP1)
ENDIF
1.1NE (COLNT: COUNT) \(=\) CHAR (I SHFT (IAND (TMP2. -16777216), -24))
\(\operatorname{TMP} 2=1\) SHFT \((\operatorname{TMP} 2,8)\)
CONTINUE
\({ }_{C}^{10}\)
```

CALL TCSEND ( LINE(1:LENGTH))
RETURN
END

```

Appendix 3: Switched Hode power supply.

In order to control the current to the cross coils easily a dedicated twin power supply was built. The supply was designed to work with the Minicam digital to analogue converters, which can be controlled from the micro. It can also be used a a simple power supply with manual controls. Only a basic voltage indication is given, as the supply was designed to be used in conjunction with computerized instrumentation. The circuit diagram is given in fig A3.1, although this is doubled up to provide a twin supply. A 5 V auxiliary supply is also available, and this was normally used to power a calculator.

The specifications are as follows:
\begin{tabular}{ll}
Maximum Output Voltage & 30 V \\
Maximum Output Current & 1 A (0.6A fuse) \\
Supply Voltage & 250 V (or 110V) \\
Programming voltage & \(0-400 \mathrm{nV}\) \\
Regulation & \(0.5 \%\)
\end{tabular}

Description of the circuit

The switched mode controller regulates the frequency of switching to provide the constant output voltage, the frequency, and therefore the level of this output voltage being determined by comparison of the output voltage with a reference voltage.

A transformer provides the basic \(A C\) supply at about 35 V . This is then rectified in the normal way and is smoothed by \(C_{1} . R_{1}\) draws a basic current from the supply.
\(C_{z}\) and \(R_{4}\) determine the timing of the switched mode supply.
\(C_{3}, C_{4}, C_{6}\) and \(C_{7}\) are decoupling capacitors to prevent 'ringing'.
\(R_{z}\) prevents too large a surge current on switching the transistor \(T_{1}\) which is switched by the switching IC, 78S40. Rs provide the correct base current for this transistor.

The Inductor, \(L_{1}\) and the diodes, \(D_{1}-D_{3}\), mean that the output current can be larger than the supply current, the extra being drawn up through these diodes.

Si selects between local control and remote control.

In remote control the supply is controlled by a control voltage which provides, through \(R_{7}\) to \(R_{s}\) a reference voltage for one side of the comparator. The other side is provided by the potential divider consisting of \(P_{1}, R_{s}\) and \(R_{s}\) on the output voltage. Adjusting this trimmer \(\left(P_{1}\right)\) alters the output voltage range for a given input range.

In local control the potential divider on the output voltage is made up of the potentiometers, \(P_{2}\) (coarse) and \(P_{3}\) (fine), which are mounted on the front of the supply, and Rio. In this local position the reference voltage is the 1.3V reference from the \(78 S 40\). C \(\mathrm{C}_{6}\) provides the final smoothing for the supply.

\section*{Appendix 4i Relay board for Minicam interface.}

In order to reverse the polarity on the power supply a relay board was designed and built for the Minicam interface. Minicam is a commercially built interface, available from Bede Scientific Equipment in Coxhoe, County Durham. It is of modular construction, with a basic 'crate' consisting of a power supply, giving \(+5 V\) and \(+/-15 V\) to rails along the back. A Controller board plugs in one slot, with either an RS232 or IBEE488 interface or a direct memory map interface for a Commodore Pet. The Controller has an on board micro and controls data and address lines along the crate. Various boards are available to plug into the crate, but none were able to do the job of switcing the power supply. In order to do this a relay board was designed, and this is now marketed as an option for the interface.

A circuit diagram is given in fig A4.1.
The board consists of address decoders, 4514 and 4515 , and the address is selected with wire links to these decoders. An octal latch and Darlington driver chip, 5801A, switches the current for the eight relays. PB8402 relays are used and a 12 ohm resistor drops the \(15 V\) supply to drive these \(12 V\) relays. A reset button acts on the latch in the 5801 A to unset all the relays. and a small capacitor ensures that the relays are not powered when the Minicab is switched on.

In order to accommodate the board the Minicam power supply was uprated, to provide a maximum current of 5 A on the 5 V rail and a total of 8 Amps on the 5 V and +15 V rails.

The relay board uses the same Minicam software as the digital to analogue converter, with the relays relating to the eight least significant binary digits. For example 6 , which is binary 00000110 , would switch relays 2 and 3 on and leave the rest off.

Fig A4.1 Minicam Relay Board

Appendix 5: RS232 Multiplexor for BBC micro

\section*{A5.1 Introduction}

In order to use more than one instrument from a micro either a number of communication ports are required, or a sophisticated communications bus or ring system with every instrument on the bus or ring conforming to an agreed protocol.

The standard laboratory interfaces are the RS232 and the IEEE488.The former is a serial interface, and is defined primarily for communication between a terminal and a main frame computer. It has however been adopted by a large number of instrument and micro manufacturers as a laboratory standard. It Is a one-to-one communications interface and to use one micro with more than one instrument requires efther a number of RS232 ports on the micro, a switch of some sort or pulling connectors in an out.

The IEEE488 standard defines a bus upon which up to 32 instruments can be connected. The IEEE488 standard is very extensive and when fully implemented provides an extremely fast and efficient interface. There are two problems with this interface, the instruments and the controller. Very few systems implement the complete standard, and those that do are expensive. A system will therefore normally consist of a number of instruments with some of the protocol implemented and a controller with some, usually a different part, of the protocol implemented. Great care has to be taken to ensure that the protocol required for efficient communication is available.

In order to attach the instruments required for this experiment to a BBC micro it was decided to build a four way RS232 multiplexor which could be
controlled by the micro. This means that the BBC has effectively four RS232 ports, one port being selectable at a time.

A5.2 Design (see Fig A5.1)
The multiplexor is run from the \(B B C\) user port, which is connected Internally to a 6522 Versatile Interface Adaptor (VIA). The user port provides up to 8 TTL compatible \(0 V\) or 5 V lines which can be used either as logic input or output. Two of these lines are used as output from the micro to control the switch. Any system which provides a 5 V logic signal can be used to switch the multiplexor. The user port also has a 5 V power connection which is used to power the switch.

The user port lines go to a switch(SW1), which gives the choice of using the multiplexor as a manual switch or under remote control by the user port lines. The manual logic signals are obtained from a couple of two-way switches (SW2/3). The logic signals then go to buffers consisting of a 741 op-amp which provide both a buffered 5 v logic signal and a 15 V signal. The 5V drives a 741392 bit decoder, which illuminates display LED's to indicate which line is connected.

The 15 V drives a bank of AD7592 analogue switches. These have a very fast switching time \((\langle 1 \mu s)\), and are therefore effectively instantaneous for the micro. Reed relays switch in \(2-3 m s\) and could therefore be caught out, if machine code routines were being used. The analogue switches switch the four lines from the BBC RS423 port, and sockets are provided which are compatible with the Clearway installed in the laboratory.

The power is taken from the user port, and a \(D C-D C\) converter supplies the \(\pm 15 \mathrm{~V}\) needed for the 741 s and the AD7592s. Loading resistors are needed on this converter to enable it to work smoothly.

\section*{Appendix 6: Relationship between Fourier and Anisotropy constants.}

\section*{Introduction}

When fitting coefficients using an iterative least squares method a formulation in terms of orthogonal coefficients is much preferred, both in allowing the method to converge and in preventing the trapping in 'false' local minima.

THe non-orthogonality of the standard anisotropy constants presents a problem, but this is easily resolved by fitting with Fourier coefficients and then calculating the anisotropy constants from these. The relationships between the first five Fourier coefficients of a torque curve and the anisotropy constants for a magnetically uniaxial system are given below. These can be easily computed for any other system by fourier analysing the expression for the torque, and inverting the derived matrix. If an inverse exists then the treatment is valid The anisotropy energy of a uniaxial system can be expressed as:

```

    K4sin}\mp@subsup{}{}{(}(0)+\mp@subsup{K}{5sin}{10}(0)+
    ```

Differentiating this gives a torque of:
```

T= K1sin (2*0) + 4*K}\mp@subsup{K}{2}{}\mp@subsup{\operatorname{sin}}{}{3}(0)\operatorname{cos}(0)+6*\mp@subsup{K}{3}{}81\mp@subsup{n}{}{5}(0)\operatorname{cos}(0

```


This can be expressed in terms of Fourier coefficients:
\[
\begin{align*}
T=F_{2} \sin (2 * \theta) & +F_{4} \sin (4 * \theta)+F_{\epsilon} \sin (6 * \theta)+F_{\theta} \sin (8 * \theta) \\
& +F_{10 \sin (10 * \theta)} \tag{16.3}
\end{align*}
\]

Equating A6.2 and A6.3 gives equations:
\[
\left(\begin{array}{l}
F_{2} \\
F_{4} \\
F_{\epsilon} \\
F_{10}
\end{array}\right)=\left(\begin{array}{ccccc}
1 & 1 & 0.9375 & 0.875 & 0.8203125 \\
0 & -0.5 & -0.75 & -0.875 & -0.9375 \\
0 & 0 & 0.1875 & 0.375 & 0.52734375 \\
0 & 0 & 0 & -0.0625 & -0.15625 \\
0 & 0 & 0 & 0 & 0.01953125
\end{array}\right)\left(\begin{array}{l}
\mathrm{K} 1 \\
\mathrm{~K} 2 \\
\mathrm{~K} 3 \\
\mathrm{~K} 4 \\
\mathrm{~K} 5
\end{array}\right)
\]
(A6.4)
and inversely:
\[
\left(\begin{array}{l}
\text { K1 } \\
\text { K2 } \\
\text { K3 } \\
\text { K4 } \\
\text { K5 }
\end{array}\right)=\left(\begin{array}{rrrrr}
1 & 2 & 3 & 4 & 5 \\
0 & -2 & -8 & -20 & -40 \\
0 & 0 & 16 / 3 & 32 & 112 \\
0 & 0 & 0 & -16 & -128 \\
0 & 0 & 0 & 0 & 51.2
\end{array}\right) \quad\left(\begin{array}{c}
\text { F2 } \\
\text { F3 } \\
\text { F4 } \\
F 6 \\
\text { F8 }
\end{array}\right)
\]
these formulation are used in procedure 'fit' in the PLOTFIT program (Appendix 2).

Appendix 7: Relationship between torque curves and Anisotropy constants.

\section*{Introduction}

If torque measurements are made then they are most accurate at or around a low torque value, near the easy direction, as in this region the sample is most likely to be saturated. In a simple uniaxial system this means that the first anisotropy constant can be derived from the slope at the easy direction as it is the only non zero term. In the following we assume that the system can be modelled in terms of the first two anisotropy constants. The energy can then be expressed as:
\[
\begin{equation*}
E=K_{1} \sin ^{2}(\theta)+K_{2} \sin ^{4}(\theta)+\ldots \tag{A7.1}
\end{equation*}
\]

Differentiating this gives a torque of:
\[
\begin{equation*}
T=2 K_{1} \sin (\theta) \cos (\theta)+4 K_{2} s \ln ^{3}(\theta) \cos (\theta)+\ldots \tag{A7.2}
\end{equation*}
\]

This is only equal to zero if:
\begin{tabular}{ll}
& \(\sin (\theta)=0\) \\
or & \(\cos (\theta)=0\) \\
or & \(2 K_{7}+4 K_{z=1 n}(\theta)\)
\end{tabular}
(A7.3c)

Equation A7.3a is the position of the uniaxial axis, A7.3b is that of the basal plane and A7.3c is the position of the easy cone in cases where this occurs. Looking at the slope of the torque curve:
```

dT/d0=2K}\mp@subsup{K}{1}{}\mp@subsup{\operatorname{cos}}{}{2}(0)-2\mp@subsup{K}{1}{}\mp@subsup{\operatorname{sin}}{}{2}(0)+12\mp@subsup{K}{2}{}\mp@subsup{\operatorname{sin}}{}{2}(0)\mp@subsup{\operatorname{cos}}{}{2}(0)+4\mp@subsup{K}{2}{}\mp@subsup{\operatorname{sin}}{}{4}(0

```

In the case of an easy axis (e.g. terbium and \(N d_{z} \mathrm{Fe}_{14} \mathrm{~B}\) at high temperature) the slope at \(\theta=0\) is given by:
\[
\begin{equation*}
\mathrm{dT} / \mathrm{d} \theta_{\langle\epsilon-0\rangle}=2 \mathrm{~K}_{1} \tag{A7.5}
\end{equation*}
\]

When an easy cone has developed then equation \(A 7.5\) is still valid, but as the uniaxial axis is now hard the measurement of the slope is less accurate, the slope at the easy direction is given by substituting A7.3c into A7.4:
or
\(\mathrm{dT} / \mathrm{d} \theta\) cemeasy cone, \(=-4 \mathrm{~K}_{1} \cos ^{2}(\theta)\)
(A7.6a)
\(\mathrm{dT} / \mathrm{d} \theta\) (emeavy cone \()=8 \mathrm{~K}_{2} \cos ^{2}(\theta) \sin ^{2}(\theta)\)
(A7.6b)

Thus the first two anisotropy constants can be derived from measuring the slope at the easy direction and the separation of the easy directions.

Appendix 8 Shear Correction in Torque magnetometry.

When an angle is measured in any magnetic measurements then it is usually an angle between two simple obvious physical directions. In torque magnetometry the angle measured is between the field direction and an easily recognisable crystal axis. However the angle at which the moment lies within the sample is neither of these and this leads to the so-called 'shear' correction which has to be applied to the angle.

In figure A8.1 the situation is shown. The measured torque is a function of the angle that the moment subtends to the crystal axis, \(\theta_{1}\), and it is the form of this function that is of interest to measure. However the angle measured is \(\theta_{1}+\theta_{z}\). However the torque can also be seen to arise from the interaction of the moment with the external field, i.e.
\[
\begin{equation*}
T=\mathbf{H} \mathbf{B} \tag{A8.1}
\end{equation*}
\]
or
\[
\begin{equation*}
T=M B \sin \left(\theta_{z}\right) \tag{A8.1b}
\end{equation*}
\]
therefore the measured angle has to be corrected by this \(\theta_{2}\) which can be calculated once the torque is measured if the field and the magnitude of the magnetic moment are known. As the correction is usually small, it is usually applied in the appoximate form:
\[
\begin{equation*}
\theta_{z}=T /(M B) \tag{A8.2}
\end{equation*}
\]
and is therefore known as a shear correction as the correction to \(\theta\) is proportional to \(T\).

Fig A8.1 Moment in an applied field.```

[^0]: * r. - hexagonal, r - rhomb., " - mixed.

[^1]: * Crangle 1977.

[^2]: writeln (output, file converted:) ;
 writeln (output, number_per_line-1. graphs and ', points,' points.') end

