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AB§'I'RAC'I' 

The greening of etiolated first leaf blades of wheat (Triticium aestivum Mer­

cia) seedlings (referred to in the text as leaf tissue) was studied in relation to tissue 

age and water stress. Use was made of whole seedlings, excised leaf blades and leaf 

blade segments. Responses to photoperiodic illumination were measured as changes 

in the levels of chlorophyll, total soluble protein and nucleic acids (both total and 

specific fractions). The pattern of greening in the whole seedlings, excised leaf blades 

and leaf blade segments was essentially the same in 6 and 10 day-old dark-grown tis­

sues, where chlorophyll accumulation followed the age sequence along the leaf. Least 

chlorophyll accumulated in the tip of leaves of both ages but the older leaves contained 

less overall pigment than the younger leaves. Patterns of total soluble protein and 

total nucleic acid accumulation did not reflect the pattern shown by the chlorophyll. 

Protein accumulated most in the tip region, with nucleic acids being highest in the 

middle region. 

Water stress treatment reduced chlorophyll accumulation in leaf blade tissue, 

particularly in the intact seedlings. Protein levels, however, were more variable and 

appeared to reflect the ability of the younger tissue to accumulate this compound as 

a stress metabolite. Total nucleic acid levels were also elevated under water stress. 

Again, these effects were most marked on the intact seedlings, implying that an effect 

on the roots was also involved. The data from polyacrylamide gel electrophoresis of 

RNA fractions showed that the level of chloroplast RNA components was maintained 

up to 17 days for tissue incubated in the dark as well as in the light. Severe water stress 

treatments applied to the roots of whole seedlings resulted in the loss of ribosomal 

fraction in the leaves. However, this effect was not seen with mild water stress. 

Kinetin treatments during water stress did not appear to alter the pattern 
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of cell component accumulation although in unstressed material, treatment with this 

compound enhanced chlorophyll accumulation slightly, especially in the young tissue. 

This indicates that, at the concentration used, the growth regulator was not able to 
I 

alleviate the stress condition. 

The leaf blades of intact seedlings responded in a specific way which was 

much more pronounced than for excised leaf blades or leaf blade segments. It was 

concluded that some signalling was involved between the root and shoot tissues during 

water stress treatments. 
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CHAPTER ONE 

INTRODUCTION 

l.JL Genell'al In.tlt'odUlldion 

In higher plants, the formation of new cells occurs in regions called meris­

tems. The latter can be found at the apex of every root and shoot, and are capable 

of continual cell division to give indeterminate increases in length (Brown and Broad­

bent, 1950). The apex of the shoot is enclosed by young leaves which originate 

from primordia. These are groups of cells a short distance from the apical meristem 

(Clowes, 1961). 

The presence of meristematic regions in the developing primordium has been 

reported by Esau (1965), Cutter (1964) and Dale (1964, 1982). The formation of new 

cells in leaves of monocotyledonous plants is from meristematic cells which are located 

close to the leaf base and surrounded by enveloping leaves (Gifford, 1951, 1963). It 

has been reported that cell divisions ·occur throughout the whole of the expanding leaf 

in dicotyledonous plants (Avery, 1933; Maksymowych, 1963; Saurer and Possingham, 

1970; Steer, 1971 ). In monocotyledonous plants, however, such divisions cease, first in 

the distal regions and then in the proximal basal parts of the lamina. Langer (1980) 

reported that in the grass leaf, the cells at the leaf tip become fully differentiated 

earlier than those at the base. Therefore, the tip of the leaf represents the oldest part 

and the base the youngest part. Hence, the leaf tip is physiologically mature and is 

the first part to senesce when the leaf dies. 

The photosynthetic abilities of leaf tissues are important in the establishment 

of seedlings, the growth of plants and the development of fruits and seeds. Correla­

tions of the biochemical and physiological aspects of photosynthesis with morpholog-
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ical and ultrastructural features, have been widely investigated (Gunning and Steer, 

1975). Particular attention has been given to the development of chloroplast struc­

ture and biosynthetic activities during the light-induced greening of etiolated tissues 

(Armond, 1976). The sequence of events associated with the greening of leaves has 

been established for a number of species such as bean (Bradbeer et al., 1974). The 

development of tissue and cell differentiation along the leaf blade are reflected in the 

varieties of vascular development, biosynthetic capabilities and extent of senescence 

(Hedley and Stoddart, 1972). The chronology of greening-up of cereal leaves has been 

reported for a range of species (Grumbach, 1981). 

The greening-up and the development of photosynthesis have been studied in 

leaves under continuous illumination. Very little information is available concerning 

the effect of light and dark as in natural photoperiods. When light and dark regimes 

have been imposed, some degradation of chlorophyll has been detected during the 

dark period (Bennett, 1981 ). The lability of chlorophyll has been related to turnover 

of thylakoid protein (Lichtenthaler and Grumbach, 1974). It may, in part, reflect the 

general turnover of leaf proteins which is influenced by condition of imposed stress 

(Cooke et al., 1979b). Very little attention has been paid to the development of 

photosynthetic competence in cereal seedlings, grown under normal photoperiodic 

illumination, with or without additional physiological stress. 

Internal factors, such as the age of tissue and plant growth hormones, are 

important in controlling plant development and the greening process. Chloroplast 

development in wheat leaves (as mentioned above) is a linear progression with the 

youngest chloroplasts in cells near the base and the oldest chloroplasts in cells near 

the tip of the leaf. Robertson and Laetsch (1974) reported that the age of developing 

etiolated leaves has a major effect on the rate of chlorophyll synthesis in the presence 
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of light. Similar results were reported by Biswal and Mohanty (1976) and Biswal and 

Sharma (1976). 

Ageing-induced differential rates of degradation of various leaf pigments such 

as chlorophyll a, chlorophyll b and monocarotenoids have also been reported (Biswal 

and Mohanty, 1976; Whitfield and Rown, 1974). Chlorophyll a is more labile during 

leaf ageing than chlorophyll b (Whitfield and Rown, 1974). Misra and Misra (1987) 

reported that the age of etiolated leaves of barley, bean and wheat has a considerable 

effect on the greening process. Similar results were reported by Sisler and Klein 

(1963) and Nadler and Granick (1970). Therefore, the chronological age of leaves is 

an important factor in the greening process of etiolated tissue. 

The effects of plant growth regulators at all levels of development and green­

ing have been reported. Steeves and Sussex (1972) reported that auxins from leaves 

induce vascular differentiation in the stem. McDavid et 9!,., (1972) showed that aux­

ins induce lateral root production. It has been reported that gibberellic acid pre­

vents the break-down down of chlorophyll (Bata and Neskovic, 1974). Abscisic acid 

(ABA) affected chloroplast differentiation by reducing the chlorophyll and carotenoids 

in greening barley seedlings (Railton et al., 1974) and in maize (Mercer and Pughe, 

1969). Hayes (1978) and Hammond (1979) found that cytokinins promote leaf unfold­

ing and expansion in intact plants, green etiolated leaf discs and detached cotyledons. 

Phillips (1975) and Richards (1980) reported that cytokinins promote the growth of 

lateral buds. Schneider and Legocka (1981) reporte that cytokinins promote chloro­

phyll synthesis and chloroplast differentiation in plants grown in the dark which are 

subsequently transferred to the light. 

In addition to internal factors, environmental factors play an important role 

in greening and other developmental processes. The plant is positioned specifically 
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in relation to light intensity, temperature, nutrients and water supply. Therefore, 

it is dependent on its environment and exhibits very different behaviour in different 

environments (Went and Sheps, 1969) 

Light has profound effects on the growth process of plants. Bunce et al 

{1977) reported that the growth of young plant tissue is increased by exposure to 

light. Schopfer (1972) found that light promoted leaf elongation and the develop­

ment of proplastids and etioplasts into chloroplasts via its effects on the synthesis 

of chloroplast constituent molecules such as chlorophyll, ribonucleic acid and pro­

tein, (Possingham et al., 1975). Similar results were reported by Ka.semir {1983) and 

Castelfranco and Beale (1983). 

The availability of nutrients and water is very important for plant growth 

(Gifford, 1977). Plants suffering from nitrogen deficiency mature early and the veg­

etative growth stage is shortened (Mengel and Kirkby, 1978). Nitrogen deficiency is 

characterized by a poor growth rate; the plants remain small and the stems have a 

spindly appearance (Hewitt, 1963). Root growth is also affected by nitrogen deficiency 

and, in particular, branching is restricted (Casper, 1975). Magnesium availability is 

directly involved in photosynthesis. It has been reported that plants deficient in mag­

nesium have a lower chlorophyll content and a lower photosynthetic capacity (Hewitt, 

1963). lngestad (1972) reported that nitrogen and potassium are required by plants 

in large quantities. Nitrogen has several effects on plant growth, especially the leaves, 

such as the expansion of the leaf surface of birch seedlings (Ingestad and Lund, 1979). 

Robson and Deacon (1978) reported that increased nitrogen levels resulted in faster 

leaf elongation, greater leaf length and area, and an increased number of tillers in 

ryegrass. Similar results have been reported by Bhat et al. (1979). In contrast, ni­

trogen deficiency has been shown to reduce the rate of chlorophyll synthesis (Tevini, 
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1971a), to lower C02 uptake per unit leaf area (Bouma, 1970) and reduce chloroplast 

size to one half of its normal length (Tevini, 1971a). Potassium is known to be an 

osmoticum in many physiological processes in plants, such as stomatal opening (Fis­

cher and Hsiao, 1968) and leaf expansion (Mengel and Kirkby, 1980). Marschner and 

Possingham (1975), working with sugar beet and spinach, reported that leaf cell size 

increased with increasing levels of potassium. 

Water is an essential constituent of all living cells. A plant must maintain its 

water status near the optimum in order to survive. However, in response to changes in 

environmental conditions, plants can suffer from either excess of water during flooding 

or from deficiency of water during water stress (Kluge, 1973). 

In recent years, more attention has been paid to biochemical aspects of water 

stress during plant growth and development. The changes which have been reported 

in response to water stress depend on the species of plant and on the severity and time 

course of water stress (Hsiao, 1973; Jones, 1983) Water stress is known to affect many 

physiological and developmental processes including cell division, cell expansion and 

primordium development (Slatyer, 1967; Hsaio, 1973). Davies and Van-valkenburgh 

{1983) and Carmi and Van-Staden {1983) reported that water stress led to a reduction 

in leaf growth. Mare and Palmer {1976), working with sunflower, found that leaf 

number can be reduced by water stress. Water stress alters the biological parameters 

which govern cell enlargement including turgor, wall extensibility and wall yield-stress 

as reported by Tomos {1985). Brix (1962) and Boyer {1971) reported a decrease in 

photosynthesis and transpiration in water-stressed plants. Jackson (1962) reported 

that the growth of root hairs of Agrostis alba seedlings was completely inhibited by 

a very low concentration of polyethylene glycol (PEG). He also outlined the effect of 

water loss on plant tissue:-
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"a. reduction in the chemical potential or activity of water. 

b. mcreases in concentration of macromolecules and of solutes of low molecular 

weight. 

c. changes in spatial relations in membrane and organelles due to the reduction in 

volume. 

d. reduction of hydrostatic pressure inside the cells. 

e. the effect of mild and moderate water stress is likely to be a mechanism of trans­

duction". 

Virgin {1965) showed the influence of water stress to be greater on the synthesis 

of protochlorophyll than on the conversion of protochlorophyll to chlorophyll. He 

concluded that water stress had little effect on chlorophyll production until the pro­

tochlorophyll pool had been exhausted. Duysen and Freeman (1974) also noted that 

under water stress there was no change in the chlorophyll a/b ratio. However, there 

was a difference in the total chlorophyll content in the early hours of exposure of the 

tissue to the light and before the chloroplast developed. Taylor and Rowley (1971) 

using, sorghum, reported a decrease in photosynthesis during water stress. However, 

there was no change in total chlorophyll a+ b. Klein and Neuman (1966) reported a 

correlation between grana formation and rapid chlorophyll synthesis. A similar result 

was noted by Boasson et al. (1972). Freeman and Duysen {1975) reported the disap­

pearance of cytoplasmic ribosomes under water stress. Similar results were reported 

by Mittelheusor and Van Steveninck (1971a). 

Cell division and cell enlargement are very sensitive to water stress and are 

affected in the early stage of plant development (Sivakumar and Shaw, 1978). Mare 

and Palmer (1976), using sunflower, found that under water stress the number of 

leaves in the primary stems declined. Troughton and Slatyer (1969) and Slatyer (1969) 
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concluded that this was a result of stomatal closure. This caused leaf temperature 

to rise with water stress having an indirect result on photosynthesis. It has been 

reported that as water stress increases, photosynthesis declines (Boyer, 1970). 

Significant differences have been found in the protein levels of plants grown 

with and without water stress (Bewley, 1981). These depend on the ability of dif­

ferent species and varieties to respond to drought stress. Huffaker (1982) suggested 

that leaf age and environmental conditions influences protein levels. Dungey and 

Davies (1982), using barley leaves, found that the rate of protein synthesis in the 

youngest regions of the tissue was higher than in the older ones. Similar results were 

reported by Mae et al. (1983). They found that, in a fully expanded rice leaf, ribulose 

biphosphate carboxylase (RuBisCo) accounted for half RuBis Co accounted for half or 

more of the total soluble protein content and that, even in the same leaf the protein 

content of each region was different. Bryant and Fowden (1958) found that leaf age 

did not affect protein composition in daffodil leaves. However, Viana and Metivier 

(1980) reported that the total soluble protein changed during leaf ontogeny in Stevia 

rebaudiana. Bjurman (1959) and Tal (1977) reported that chromosomal genome 

duplication and physiological activities had a major effect on protein content. Tal 

(1977), using tomato leaves, found that the protein content was higher in diploid 

plants than in autotetraploid plants. In contrast, Leech et al., (1985) using leaves of 

Triticum found that the amount of RuBisCo in a cell was higher in hexaploids than 

in tetraploids. Diploids contained the lowest amount of RuBisCo. However, Timko et 

al. (1980) using leaves of Ricinus communis, reported no differences in protein level 

between haploid, diploid and tetraploid plants. 

There are many reports of protein breakdown accompanying water stress. 

Mothes (1928), Petrie and Wood (1938) and Wilson (1968) found increased protein 
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breakdown and accelerated leaf senescence in maize plants with increased water stress. 

Sullivan and Levitt (1959) noted that soluble nitrogen increased and protein declined 

in the top half of excised succulent leaves during water stress . In addition, nitro­

gen and soluble nitrogen accumulated in the base of the leaves. Decreased protein 

synthesis in leaves (Dasgupta and Bewley, 1984), decreased C02 fixation (Kramer, 

1969; Johnson and Moss, 1976) and a decline in total chlorophyll (Kushnirenko et 

al., 1976), have also been noted in response to water stress. Levitt {1980) reported 

that the growth of immature leaves and buds, in the creosote bush, continued even 

as old leaves died, with severe water stress. The protein content was higher in the 

younger leaves of creosote than the older ones. In oil seed rape plants, the old leaves 

wilted faster than the youngest ones (Levitt, 1980). Petrie and Wood (1938), using 

leaves of the grasses Phalaris tuberosa and Lolium multifl.orum, found a decline in 

protein content and an increase in amino acids during the wilting process. Similar 

results were reported by West (1962) working with corn seedlings who found that 

protein levels declined under water stress. In contrast, Chen et al. {1964) found 

an increase in protein level in citrus seedlings, under extreme water stress. Brady 

(1973) reported that the synthesis of starch, nucleic acids and protein was inhibited 

in water-stressed tissues. Gates {1968), working with apical leaves of Lupinus albus, 

found no loss of proteins under water stress. Shah and Loomis (1965), using sugar 

beet leaves, found both soluble and total protein content declined during water stress. 

Similar results have been reported by Stutte and Todd (1969) using wheat leaves and 

Shiralipour and West {1984a) using maize seedlings. Stutte and Todd (1967) also 

reported that the amount of protein was higher in drought-resistant wheat varieties 

than in non-resistant varieties. The response of individual cells in tissues was in­

fluenced by changes in other tissues within the plant, for example the root system. 

Given these observations it is reasonable to assume that cells within a leaf do not 
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necessarily respond as individuals to water stress, but in relation to the response of 

other cells. 

One of the most common responses of a plant cell to shortage of water is 

an incease in RNase activity (Diener, 1961; Dove, 1967, 1971; Todd, 1979). Dove 

(1967) and Kessler (1961) have reported an increase in ribonuclease activity in water­

stressed leaves. Arade and Richmond (1976) reported that increases in RNase activity 

parallel increased water stress, due to an increase in the concentration of abscisic acid 

(ABA). The stress produced by a medium of high osmotic potential, is a major cause 

of increased RNase activity. Premecz et al. (1977), using different enzyme inhibitors, 

concluded that the increase in RN ase level is due to enzyme synthesis. Marilla et 

al. (1973) and Dhindsa and Bewley (1976), working with corn (Zea mays) leaves and 

the moss Tortula muralis respectively, found that the dehydration of polyribosomes 

was followed by a decrease in RNase activity. Cocucci et al. (1976) noted a decline 

in the polyribosomes of water-stressed squash fruit. In addition to the decline in 

polyribosomes, osmotic dehydration occurred in 0.6 M polyethylene glycol (PEG) 

reducing the binding of ribosomes to the endoplasmic reticulum in barley aleurone 

cells (Armstrong and Jones, 1973). The disturbance in protein metabolism caused by 

water stress depends on a preceding disturbance in nucleic acid metabolism. Levitt 

(1980) made the following observations on nucleic acids: 

1. Nucleic acid (NA) breakdown: the increase in activity of RNase, induced by 

dehydration, led to a. decline in RNA content and protein synthesis. The parts 

most affected by osmotic stress were the chloroplast components. 

2. Nucleic acid synthesis was inhibited by water stress, with decreased incorporation 

of 32 P into some specific fractions in the desert plant Anastatica hierochuntica.. 

3. Decreased polyribosome content: the greatest affect of water stress on NA compo-
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nents was a decline in polyribosomes, such as the disappearance of polyribosomes 

in maize and bean plants under water stress. 

Levitt concluded that RNase destroyed mRNA which binds ribosomes into polyri­

bosomes. Similarly, Chen et al. (1968) showed a decrease in mRNA activity and ar­

rest protein synthesis in wheat embryos under water stress. Hsiao (1970), using Zea 

mays, showed a shift in polyribosomes to the monomeric form during water stress. 

Rhodes and Matsuda (1976) found that polyribosomes, in pumpkin seeds, declined 

under water stress. Similar results were obtained with shoot tissues of peas, wheat 

and barley. 

According to ltai and Benzioni (1973), plant growth regulators are part of 

the mechanism controlling a plants response to water stress. They supported this as 

follows: 

"1. Water stress evokes concurrent responses in different plant organs which are not 

directly exposed to the stress. This was found in wheat plants under water stress 

or when part of the root was exposed to low osmotic potential. 

2. The ratio between root and shoot increases owing to reduced shoot growth when 

plant shoots are exposed to atmospheric stress or roots are exposed to low water 

potential in their medium. 

3. Many developmental changes accompany water stress such as a shortening of life 

cycle, abscission, dormancy and induction of flowering. These are regulated by a 

control mechanism of which plant hormones constitute an important part. 

4. Moderate water deficits affecting only minute changes in the osmotic potential of 

plant tissue can cause considerable metabolic changes. 

5. Plant response to renewal of the water supply after the stress is characterized 

by 'overshoot' and the so-called after-effects such as growth rate. Rewatered, 
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stressed plants exhibit a growth rate surpassing that of the controls. The 'after­

effect' is the delay in stomatal opening after turgor is regained by water-stressed 

plants. These phenomena indicate the existence of oscillation and a 'memory', 

both features of control systems. 

6. Plant responses to different stresses such as heat, low temperature, water and 

salinity . This may indicate some common regulatory mechanism. 

7. The intensity of plant response to water stress varies with plant age and growth 

condition. These differences indicate the possibility that endogenous hormone 

levels, which are influenced by plant age and its growth conditions, act as modu­

lators of plant response" . 

In an attempt to explain changes in protein levels and other components 

during water stress, a number of workers have looked at coincident changes in plant 

growth regulators. Itai and Vaadia {1971) found a correlation between the decline of 

cytokinin in the roots and a decrease in protein synthesis in the leaves. Similarly, it 

has been reported by Wright and Hiron {1969) that water stress results in an increase 

in the ABA content in wheat leaves and other species. Mizrahi et al. (1970) and 

Brady et al. {1979) reported that, during water stress, the effects of ABA are similar 

to those occurring during natural senescence. All such factors can imitate effects on 

leaf protein synthesis. It has been reported that senescence and water stress decrease 

the relative rate of protein synthesis and, under moderate water stress, cytoplasmic 

polyribosomes decline faster than chloroplast polyribosomes. 

Cytokinins have been found to influence stomatal behaviour ( Jewer and In­

coli, 1981; Blackman and Davies, 1984a). It has been reported that the accumulation 

of ABA can be stimulated by salt stress (Walker and Dumbroff, 1981 ), waterlogging 

(Mizrahi et al., 1972), high and low temperature, (Chen et al., 1983), nutrient defi-
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ciency (Goldbach et al., 1975) and by pathogen attack (Ayres, 1981). Under normal 

water regimes, ABA has been found in mesophyll chloroplasts (Loveys, 1977; Heil­

mann et al., 1980). According to Hartung et al. (1981) synthesis takes place in the 

cytoplasm of the leaf mesophyll. Water stress caused a reduction in stomatal pH and 

then a release of ABA from the chloroplast (Hartung et al., 1981 and Cowan et al., 

1982). Most of the growth regulators have been shown to have effects at the cellular 

level (Cleland, 1986) reducing cell wall extensibility (Van Volkenburgh and Davies, 

1983) and hydraulic conductivity (Boyer and Wu, 1978; Cosgrave and Cleland, 1983; 

Eamus and Tomas, 1983) and affecting cell osmotic properties (Karmoker and Van 

Steveninck, 1979). Such cellular changes have also been found to be influenced by 

water stress (Barlow, 1986). 

Cytokinin, usually interacting with other growth hormones, can influence dif­

ferent aspects of shoot physiology such as stomatal behaviour, leaf growth, senescence 

and ABA production. Mansfield and Davies (1985) reported changes in stomata and 

other drought-related responses to cytokinin and auxin. All these factors can influ­

ence water use by the plant (Davies et al., 1986). There are many factors influencing 

cytokinin transport from roots such as flooding (Burrows and Carr, 1969), salinity 

(Walker and Dumbuff, 1981) and low temperature (Steponkus, 1982). 

Seedling establishment is probably the most critical stage in the life cycle of a 

plant. Any factors which influence this will eventually have pronounced effects on the 

growth and development of the mature plant. In this respect, one of the fundamental 

stages of development is the formation of a photosynthetic system. This involves 

changes at the cellular and physiological levels in leaves and seedlings as a whole. 

Chlorophyll production is the most obvious phenomenon seen when seedlings green, 

but other associated changes in the tissue are also apparent such as protein synthesis. 
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Any environmental effects, however, will be in relation to the innate changes taking 

place within the tissue such as ageing. The result is that the effectiveness of external 

treatment may vary with the age of the tissue. 

In order to investigate these aspects of seedling growth, the use of wheat as 

a model system was employed. This was taken as a representative monocotyledonous 

species. It was considered suitable since relatively uniform tissue could be grown 

consistently and quickly. More importantly, because of the nature of the growth of the 

leaves, it was possible to obtain tissue of different ages within differently-aged plants. 

One of the problems of studying events in seedling establishment, such as greening, 

is that they occur over a relatively short of period of time. By manipulation of the 

period of growth prior to exposure to greening conditions, it is possible to extend 

the developmental stages and, therefore, allow a study of the events involved. The 

general aim of the work reported here was to investigate some aspects of the greening 

process in the first leaf blades of wheat seedlings by analysis of tissue components 

and at the same time to look at the influence of external conditions on the process. 

The specific aims of the investigation were to try and answer the following questions:-

1. What are the baseline changes in the tissue components during greening and 

growth of the first leaf of wheat? 

2. Given that chlorophyll levels alter during greening, what changes occur in other 

components such as protein and nucleic acids? 

3. Is the capacity to green a function of the individual tissue areas within the leaf 

or is it a function of the seedling as a whole? 

4. Is there a loss of greening capacity with the age of the tissue and the length of 

dark growth prior to illumination? 

5. To what extent does the imposition of water stress on individual leaf tissues and 
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seedlings as a whole influence greening and associated developmental processes? 

In particular, does water stress application to the root cause changes in the leaf 

tissue? 

6. Given the potential role of plant growth regulators as modifiers of water stress 

conditions, to what extent can cytokinin application influence greening and de­

velopment both under water-stressed and un-stressed conditions? 
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1.2 MA'JrERlAJL§ AND METHOD§ 

Jr.2.JI. Ge:rme:rratll Matel!'n.aill8 A:rmdl Metb.ods 

Wheat Triticium aestivum Mercia caryopses were obtained from Tyne Seed 

Stores Ltd., Newcastle Upon Tyne. Caryopses were soaked for 12 h in tap water at 

room temperature ( 21 °C ). They were then placed either in trays on sheets of paper 

towel or trays filled with graded horticultural vermiculite. The trays were placed in a 

dark growth room at 22°C with relative humidity of 90% (RH). The trays were kept 

in the dark room for varying periods of time (normally 6 or 17 days) from the day of 

sowing, depending on the required treatment. 

Plants grown in the dark on vermiculite were kept for four days from the day 

of sowing. These plants were used as a source of etiolated wheat seedlings, excised 

leaves and leaf segments (tip, middle and base ) for various treatments. Only leaf 

blade tissue was used in this study and is referred to as leaf tissue, excised leaf or leaf 

segments. 

1.2.1.1 Plant Treatment 

1.2.1.2 Preparation of Solutions. 

Kinetin (K) was made up as a 50 ppm stock solution from which the required 

dilutions were made; these were stored at room temperature ( 21 °C ). Fresh solutions 

of polyethylene glycol (PEG) (mol.wt. 8,000) with different osmotic concentrations 

were prepared by dissolving the appropriate amount of PEG in water. The -5 bar 

solutions contained 125 g 1-1 and the -10 bar solutions contained 200 g 1-1 (Resnik, 

1970). A Combination of (K) plus PEG was made up as required. 

All reagents were purchased from either British Drug House Ltd., Poole, 
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Dorset, or Sigma Chemical Ltd., Poole, Dorset. 

Jl..L2.3 Whole Wh.eat §eedlings 

Seedlings were grown for 6 to 10 days in a dark growth room -at 22°C then 

transferred to 500 ml screw-neck jars so that the roots were submerged in solutions 

of PEG, K or a combinations of both solutions. 12 seedlings were maintained in each 

jar for each treatment. The seedlings were held in small holes ( 5 mm diameter) in 

the cap of the jar {12 holes in each cap, arranged in two rows of six). 

Jl..Jl..2.4 Excised Leaf Blade§ 

Etiolated wheat leaf blades from 6 and 10 day-old wheat plants were cut 

above the sheath. A portion ( 500 mg) was floated in a polyethylene tube (width 90 

mm,length 120 mm and height 60 mm) containing 100 ml freshly prepared PEG, K 

or a combination of both solutions. 

1.1.2.5 Wheat Leaf Blade Segments 

Etiolated wheat leaves from 10 day-old wheat plants were excised above 

the sheath and divided into three equally-sized segments (tip, middle and base). A 

portion (500 mg) from each region was placed in a covered glass Petri-dish (90 mm 

in diameter) containing 20 ml of PEG, K or a combination of both solutions. All 

experiments were performed in the dark. All samples were incubated in either a dark 

growth room at 18°C or under a 16 h light/8 h dark cycle with a light intensity of 200 

p. mol m-2 s-1 at 23-24°C. The samples were kept in dark and light growth rooms 

for various periods of time. 

1.1.2.6 Fresh and Dry Weight 

Tissue from all samples was weighed at the beginning of each experiment, 
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dried to a constant weight at 70°C for 12 h, then reweighed. 

For the extraction of cellular components, the complexity of treatments al­

lowed the use of only two replicate samples of plant material. Therefore, full statisti­

cal analysis was not possible. The number of plants or weights of tissue used in each 

replicate is indicated in the specific component extraction sections. 
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CJHIAPTER TWO 

CIHIJLORO PHYJLJL 

2.]. INTRODUCTJION 

Chlorophylls are the principal class of pigments responsible for light ab­

sorption in photosynthesis and are found in all photosynthetic organisms. At least 

seven different chlorophyll types which may be distinguished. These are chlorophyll 

a, b, c, d, bacterio-chlorophyll a, bacterio-chlorophyll b and chlorobium chlorophyll 

(bacterio-viridin) (Allen 1966). 

The most widely distributed of these pigments is chlorophyll a, found in all 

photosynthetic plant cells. Chlorophyll a is the only green pigment in some ·algae, 

but in many plant cells it is accompanied by either chlorophyll b or chlorophyll c 

Aronoff, 1950; Givan and Hartwood, 1976; Hoober, 1984). Chlorophyll b functions as 

an accessory pigment in higher plants, green algae and euglenoids. In these organisms, 

chlorophyll b comprises from 15% to 50% of the the total chlorophyll content. Most 

algae contain 25% chlorophyll b. Chlorophyll b is only detected in greening leaves 

following the formation of chlorophyll a (Augustinussen, 1964). Photosynthetically 

competent, mutant strains of Chlorella spp. (Allen, 1966) and barley (Boardman 

and Highkin, 1966) which lack chlorophyll bare known. Diatoms, dinoflagellates and 

brown algae contain, in addition to chlorophyll b, small amounts of chlorophyll c. This 

pigment transfers energy (absorbed by the major xanthophyll accessory pigments) to 

chlorophyll a (Vernon and Seely, 1966). Chlorophyll band phycobilin pigments (the 

latter found mainly in blue-green and red algae) have an important collaborative 

function with chlorophyll a in photosynthesis (Givan and Hartwood, 1976). 

The majority of angiosperm seedlings which germinate in darkness do not 
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contain chlorophyll. Plant tissues that contain little or no chlorophyll are referred 

to as etiolated and are yellow in colour due to the presence of unmasked carotenoids 

(Smith and Young, 1956). 

In contrast to angiosperms, which form chlorophyll only in light, there are 

classes of plants which form chlorophyll in the dark. Most gymnosperms and lower 

plants can produce chlorophyll in the dark (Vernon and Seely, 1966). Algae that nor­

mally form chlorophyll in the dark can give rise to mutant strains which require light 

for greening. This phenomenon has been reported in Chlorella spp. (Granick, 1949), 

Chlamydomonas spp. (Sager, 1961) and Scenedesmus spp. (Senger and Bishop, 

1972). Griffiths and Mapleston (1978) reported that protochlorophyllide reductase 

in tissues can form chlorophyll a in total darkness, in etiolated Picea spp. seedlings 

and wild type Chlamydomonas reinhardtii. The y-1 mutant of Chlamydomonas spp. 

which had lost its ability to synthesize chlorophyll a in the dark retained the light de­

pendent reductase (Kirk and Tilney-Bassett, 1967). Pinus jeffreyi cotyledons formed 

chlorophyll in the dark when the seeds were germinated at 23°C. However at 10°C, 

less chlorophyll was formed (Bogorad, 1950). It has been shown that protochloro­

phyll is the immediate precursor of chlorophyll during the greening process in leaves. 

Anderson and Boardman (1964) and Virgin (1981) reported that protochlorophyll 

is the precursor of chlorophyll a. Gassman and Bogorad (1967) and Virgin (1981) 

summarized the formation of chlorophyll in etiolated plants when they are exposed 

to light:-

1- The small amounts of protochlorophyll always present in etiolated plants, undergo 

rapid photochemical transformation to chlorophyll a. This transformation takes 

place immediately after the plant is exposed to light. 

2- Additional chlorophyll a is formed. This is the greening process and is much 
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slower than the first step. 

3- The formation of chlorophyll b. The first traces of chlorophyll b appear after 

about 1 h of continuous illumination . 

Liro (1908) found that most seeds did not contain protochlorophyll and the 

formation of this pigment was a result of the germination process, the pigment is de­

tectable only after the appearance of the root. Smith (1950, 1951) reported the pro­

duction of protochlorophyll during growth of etiolated barley seedlings. Liro (1908) 

also reported that the rate of accumulation of chlorophyll is slow compared with the 

rate of transformation of protochlorophyll. After the initial transformation of pro­

tochlorophyll, there is a lag period in which little additional chlorophyll is formed 

(Gassman and Bogorad, 1967). Subsequently, the rate of chlorophyll accelerates 

rapidly suggesting that an autocatalytic process is involved. This may be due to an 

accelerating accumulation of photosynthates which contribute to chlorophyll produc­

tion. The process of chlorophyll formation slows down at the end of autocatalytic 

phase, until a steady state is reached. The steady state is considered to be a balance 

between the production and destruction of chlorophyll (Zavalishina, 1951). 

The pigment systems in the leaf are responsible for harvesting and convert­

ing light energy into chemical energy (Barber, 1983; Thornber et al., 1979). They 

are located inside chloroplast on the thylakoid membrane. The pigments, including 

chlorophyll and carotenoids, are bound to membrane proteins. These pigment-protein 

complexes have been divided into four categories on the basis of their function (Bar­

ber, 1983 and Thornber et i!J., 1979). 

1. The photosystem I (PSI) complex comprises about 30% of the total chlorophyll 

content of the leaf and is responsible for the transfer of light energy to the PSI 
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reaction centre. 

2. The photosystem 2 (PS2) complex comprises up to 20% of the total chlorophyll 

and is responsible for the transfer of light energy to the centre of PS2. 

3. A light-harvesting chlorophyll ajb protein complex (LHCP) comprises 40% to 60% 

of the total chlorophyll (Thornber et al., 1979; Barber, 1983), LHCP is responsible 

for collecting about one third of chlorophyll a and possibly all chlorophyll b into 

complexes which absorb light and transfer the energy to photosystems 1 and 2 

(Butler 1978). Bennett {1983) reported that LHCP is encoded in nuclear DNA 

and synthesized in precursor form on cytoplasmic ribosomes. The pre-LHCPs 

are then transferred into chloroplasts and become associated with the thylakoid 

membrane (Schmidt et al., 1981). 

4. Chlorophyll-protein complex IV (CPa) compnses 10% of the total chlorophyll 

of higher plant chloroplasts (Remy et al ., 1977; Wessels and Borchert, 1978; 

Waldron and Anderson, 1980) and about 30% of the total chlorophyll in barley 

mutants (Waldron and Anderson, 1980). 

Rauzi and Dobrenz (1970) found that chlorophyll a was more abundant than 

chlorophyll b in western wheat grass and blue grama. They reported higher concen­

trations of total chlorophyll in western wheatgrass than in blue grama. However, 

Holden (1973) reported that the ratio of chlorophyll a to chlorophyll b was higher in 

blue wheat grama than in western wheat grass. It has been reported that the ratio of 

chlorophyll a to chlorophyll bin LHCP is 1.3 for higher plants (Hiller and Goodchild, 

1981). In some marine algae the ratio was also less than 2 (Nakamura et al., 1976). 

Baker and Leech (1977) and Webber et al. (1984) reported that the ratio of LHCP, 

PSl and PS2 complexes remained constant throughout development. The chlorophyll 
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ajb ratio has been reported to be affected by length of time of illumination (Thorne 

and Boardman, 1971 ). It has been reported that the ratio is constant in young green 

maize leaves (Boffey et al., 1980). However, the chlorophyll a/b ratio decreased with 

age in greening, etiolated leaves (Boffey et al., 1980). Otto and Young (1976) reported 

that the chlorophyll ajb ratio decreased as total chlorophyll levels declined. 

The amount of chlorophyll in plants is affected by internal factors including 

plant age and plant growth regulators, and external factors including light intensity 

and water supply (Strain et al., 1971 ). There are many reports of the loss of pigments 

from leaves during ageing (Panigrahi and Biswal, 1979). Ageing-induced differential 

rates of degradation of various leaf pigments such as chlorophyll a, chlorophyll b and 

carotenoids have been noted (Biswal and Mohanty, 1976). Robertson and Laetsch 

(1974) found that the age of developing etiolated tissue had a considerable effect on the 

rate of chlorophyll formation during greening. Similar results have been reported by 

Harris and Naylor {1968). Virgin {1983) reported that the amount of protochlorophyll 

is higher in the tissues at the base of primary wheat leaves than in tissues of the tip 

regwn. 

Plant growth regulators have different effects on the greening process. Banerji 

and Laloraya {1967) reported that cytokinin enhances the greening of etiolated leaves 

exposed to light. Similar results were reported by Shlyk (1971). In ageing etio­

lated seedlings, cytokinin increased the amount of chlorophyll formation. Similarly, 

Mlodzianowski and Gezela (1974) reported that cytokinin affected greening in cotyle­

dons by increasing ultrastructural differentiation. El Hinnawy {1974) found that 

cytokinin induced chlorophyll production in root callus of Melilotus alba . 

Light is one of the major external factors affecting chlorophyll formation and 

is the primary component on the greening and development process of etiolated wheat 
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leaves (Dale and Murray, 1968). 

Light induced accumulation of chlorophyll and chlorophyll-protein complexes 

have been studied extensively by Lichtenthaler ( 1981) for radish seedlings and by Vir­

gin and Egneus (1983) for various cereals. Virgin (1956) reported that the stomata 

of wheat leaves grown in the dark do not respond to light until a certain amount 

of chlorophyll has accumulated in the leaves. Also, he found a correlation between 

chlorophyll content and the activity of stomatal opening in light-grown leaves. Simi­

lar results have been reported by Lurie (1977), working with etiolated leaves of Vicia 

faba. He reported that the start of stomatal opening activity in greening Vicia faba 

leaves coincided with the start of cyclic photophosphorylation. Freudenberyer {1940) 

found that the stomata in etiolated leaves opened in the dark in C02-free air. Plas­

tids in leaves of plants grown in the shade are longer than those in leaves of plants 

grown in the sun (Bjorkman~ ru., 1972; Boardman, 1977b). However, chlorophyll 

accumulation in the light is greater than in darkness (Bogorad 1950). It has been 

reported that chlorophyll a accumulation in the cotyledons of Scots pine seedlings is 

much higher in the light than in the darkness (Kasemir and Mohr, 1981). 

The phytochrome molecule is a reversible biological switch, activated by 

light. A number of light-controlled plant responses are reported to be phytochrome 

mediated (Smith, 1975). It is believed to be one of the internal factors which is 

stimulated by red and far-red light (Beevers et al., 1970; Smith 1975, 1976). Miller 

et gJ. (1979) and Beevers et al. (1970) reported that red light enhanced chlorophyll 

formation in barley and wheat respectively. In addition, far-red light reversed the 

effect of red light effect. It has been reported that red light eliminates the lag phase 

in chlorophyll formation (Virgin, 1972). Phytochrome appears to affect chlorophyll 

formation by accelerating protochlorophyllide synthesis (Ford and Kasemir, 1980). 
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It has been suggested that there may be an inter-action between far-red light and 

protochlorophyllide. Chlorophyllide conversion to chlorophyll is controlled by delta­

aminolevulinic acid (ALA) synthesis (Ford and Kasemir, 1980) 

It has been reported that phytochrome increases the rate of formation of 

ALA, the first step in the chlorophyll biosynthesis pathway (Klein et al., 1977; Ma­

soner and Kasemir, 1975). In seedlings of gymnosperms, far-red light increases the 

rate of chlorophyll synthesis (Virgin, 1972; Frosch and Mohr, 1980). Oelze-Karow and 

Mohr {1978) reported that far-red light is important in the formation of chlorophyll 

b. 

The greening process is affected by water stress in plants (Hsiao, 1973 and 

Sundquist et et., 1980). The sensitivity of plants to water stress varies according to 

metabolic processes and plant species. Plants overcome water stress conditions on 

rehydration and Hsiao ( 1973) reported that rehydration affects the greening process of 

etiolated seedlings. Virgin {1965) found that chlorophyll formation diminished under 

water stress due to the slower formation of precursors for protochlorophyll. Duysen 

and Freeman (1974), using etiolated wheat leaves, reported that both the number of 

thylakoid membranes and chlorophyll synthesis declined during water stress. Duysen 

and Freeman (1975) reported that moderate water stress inhibited the synthesis of 

chlorophyll and carotenoids in etiolated wheat leaves and also inhibited ALA synthesis 

and its conversion to chlorophyll a. The decrease in chlorophyll accumulation in 

response to water stress has been reported by Alberte et al. (1975). Similar results 

have been reported by Nordin (1976) and Virgin (1965) with etiolated wheat leaves. 

The latter author suggested that the decrease may be due to a decrease in ALA 

synthesis. 
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In this chapter, the results are reported of the investigations of the changes 

in growth patterns and chlorophyll levels of wheat seedlings exposed to light after 

various periods of growth in the dark. The growth period regimes were imposed in 

order to give an age range in the whole seedlings. In addition, the effect of the age 

range within the individual leaves was investigated on the greening process. From 

this part of the study it was intended that the baseline pattern of greening could be 

described. For greening, seedlings were exposed to photoperiodic light regimes (16 h) 

as opposed to continous light as this was felt to mimic a more natural situation. The 

influence of imposed water stress, by incubation in PEG, on the growth and greening 

processes was also investigated. 
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2.2 MATEJRlAI...§ AND METHOD§ 

2.2.JI. Mateli:'ials 

2.2.1.JI. JP>Ramt mateEial: as described in General Materials and Methods. 

2.2.2 Methods 

2.2.2.JI. Estimation of chlorophyH nn wheat leaf segments using acetone 

Wheat leaf segments (tip, middle and base segments from seedlings 6 and 

10 day-old) were transferred from Petri dishes, dried with a paper towel and placed 

in test tubes with 10 ml 80% (v/v) acetone. The tubes were incubated at room 

temperature (21 °C) for 12 h. Absorption was recorded at 645 nm and 663 nm using a 

spectrophotometer (Unicam SP 800). Chlorophyll concentration was calculated using 

the equation of Holden (1965). 

Total chlorophyll mg 1 - 1 = 20.2A645 - 8.02A663 

Chlorophyll a mg 1 - 1 = 12.7 A663- 2.69A645 

Chlorophyll b mg 1 - 1 = 22.9A645- 4.68A663 

2.2.2.1.1 Estimation of chlorophyll in wheat leaves using methanol 

Wheat leaves (500 mg) were frozen in liquid nitrogen, ground to a pulp using 

a pestle and mortar then extracted as follows:-

!. Tissue was homogenized in 4.4 ml extraction buffer (100 mM trizma base, 53 

mM sodium acetate, 8.8 mM magnesium acetate, pH 7.2) and transferred to a 

centrifuge tube. 

2. A further 4.4 ml of extraction buffer was added to the pestle and mortar and the 

washings were combined with the homogenate from (1) above. 
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3. The homogenate was centrifuged at 2000 g for 10 min at room temperature (21 °C) 

in a bench-top centrifuge (MSE). 

4. The supernatant from (3) above was decanted into a centrifuge tube containing 

1.0 milO% (w/v) aqueous trichloroacetic acid (TCA) and incubated in the dark 

at 4°C for 30 min. 

5. The pellet from (3) above, was resuspended in 90% (v/v) methanol (5 ml) in a 

centrifuge tube and incubated in the dark at 4°C for 1 h. 

6 .. The suspension from (5) above, was centrifuged, the supernatant decanted into a 

tube and made up to volume ( 5 ml) with 90% ( v Jv) methanol. 

7. The methanolic extract from (6) above, was scanned in a spectrophotometer 

(Ultrospec 4050 Biochrom) at 650 nm and 665 nm. 

Total chlorophyll was calculated from the equation of Holden (1976). 

total chlorophyll mg 1 -l =25.5A650 + 4.0A665 

Parts of this procedure were similar to those used for protein extraction (see 

Chapter 3) 
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~.3 RESUILT§ 

~.3.1 Leaf growth rresponses 

The effect of incubation in the light (16 h photoperiod) on the growth of dark­

grown wheat seedlings during greening was determined, as a preliminary investigating 

cell component changes. 

2.3.2 Leaf dimension measurements 

Wheat seedlings (6 day-old) were transferred from dark conditions and in­

cubated in the light or kept in the dark with various treatments for 24 h or 72 h, as 

described in (General Materials and Methods) page 38. 

The data in Table 1.1 show that the first leaf of the seedlings grew by a similar 

amount whether in the light or in the dark, with water. The effect of water stress on 

growth of the first leaf was tested by incubating seedlings with their roots in a solution 

of PEG at -5 bar and -10 bar. The growth of first leaves was reduced markedly by 

the low concentration of PEG in both the light and the dark incubations. There was, 

however, a very marked reduction in leaf growth with the higher concentration of 

PEG in the light and dark samples (Table 1.1 ). It was noted that K slightly reduced 

the growth of seedling leaves in the light, but it had no effect on seedlings which were 

incubated in the dark. The effect of K, in combination with PEG, on the growth of 

leaves was investigated to see if there was a counter effect by the growth regulator. 

the data in Table 1.1 show that K treatment along with high and low concentrations 

of PEG caused essentially the same reduction in leaf growth as caused by PEG alone. 

The influence of leaf age on growth processes was also investigated using 10 

day-old seedlings. Similar results were obtained for 10 day-old seedlings treated as 

stated above for 6 day-old seedlings. Leaf size increased after 72 h in both light and 
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V1 
~ Treatment 

H20 

K 

-5 PEG 

-10 PEG 

-5 PEG+ K 

-10 PEG+ K 

Table :D..ll. 
Leaf length increase ( mm) 

Light 

24 h 72 h 

13.2 31.4 

10.8 27.0 

6.4 16.0 

1.4 2.8 

4.4 19.4 

1.0 2.4 

Dark 

24 h 72 h 

10.4 30.2 

10.8 30.8 

2.8 14.6 

1.0 1.8 

4.8 11.8 

1.4 1.6 



'"" ~ 
I 

Treatment 

H20 

K 

-5 PEG 

-10 PEG 

-5 PEG+ K 

-10 PEG+ K 

Tabne ll..2 
Leaf Rength mcrease (mm) 

-

Light 

24 h 72 h 

6.4 12.6 

7.4 8.4 

2.0 5.8 

1.0 1.2 

3.4 6.6 

1.0 1.2 

- - --- ·---- - - -

I Dark 
I 

24 h 72 h 

9.2 16.4 

9.0 14.6 

5.0 9.0 

1.0 1.2 

5.0 7.6 

1.2 2.2 



dark incubation on water; however, the growth was less than observed with 6 day-old 

leaf tissue (Table 1.2). This indicates that by 13 days the leaf blade was reaching its 

ma.ximium growth capacity. K treatment caused a slight reduction in the growth of 

older seedlings in both light and da.rk treatments (Table 1.2). 

The results of the effect of PEG on the growth of older leaves, when compared 

with water controls is shown in Table 1.2. There was a reduction in their growth 

with both low and high concentrations of PEG. However, there was a more marked 

reduction in leaf growth with high concentration of PEG. This occurred both in light 

and da.rk incubations for 24 and 72 h. However, there was a slight increase in the 

leaf growth with low concentrations of PEG, in the dark and the light, for the period 

of incubation. The effect of PEG on the leaf growth (as measured in terms of leaf 

length increase) was more pronounced with older leaves than younger ones. 

The effect of a combination of PEG and K was tested on the growth of leaves 

(Table 1.2). There was no effect of K over PEG on the growth. Therefore, the PEG 

influence was not countered by the growth regulator. 

2.3.3 Weight measurements 

The effect of water stress on the fresh and dry weight of greening etiolated 

seedlings was also investigated. Dark-grown wheat seedlings (6 days-old) were incu­

bated in the light and the da.rk for 48 h and 72 h with their roots in either water or 

a solution of PEG as described in General Materials and Methods. The data in Fig. 

1.1, 1.2, 1.3 and 1.4 show the fresh and dry weight of seedlings, when incubated for 

48 h and 72 h in the light and the dark. 

The data in Fig. 1.1 show that overall the fresh weight of the roots for 

seedlings incubated in the dark for 48 h was reduced as opposed to seedlings incubated 
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in the light. No effect of K on root fresh weight wa.S noted in either case. PEG 

alone appeared to be only slightly effective in reducing the fresh weight of seedlings 

incubated in the light and the dark and only at the higher concentration. In both 

light and dark conditions the combinations of PEG and K caused a slight reduction 

in fresh weight in relation to the water or K. In light-incubated seedlings, the dry 

weight of the roots was slightly increased with PEG treatments. However, this effect 

was not as apparent in the dark-incubated seedlings. This pattern of effect for the 

leaves of the seedlings is shown in Fig. 1.2. There was a pronounced reduction in 

the fresh weight of the leaf which was much more marked than for the root systems. 

However, the reduction in the fresh weight of the leaf was more noticeable in the 

dark-incubated than light-incubated seedlings. PEG caused a reduction in the fresh 

weight of the leaf in the dark and the light, but the effect was higher in the dark. In 

contrast, K caused a slight decrease in the fresh weight of the leaves of those plants 

incubated in the light compared to the plants incubated in the dark. The effect of 

a combination of K and PEG was found to be similar to the effect of PEG alone in 

both concentrations(reduction in the fresh weight of the leaf). 

The fresh weight of roots of seedlings which were incubated for 72 h are 

shown in Fig. 1.3. There was no effect of PEG or K or a combination of them on 

the fresh weight of the roots of plants incubated either in the dark or in the light. 

The dry weight of the root was the same with all treatments in both the dark and 

the light incubation. It was also found that PEG had essentially no effect on the 

dry weight of roots. However, when the fresh weight was determined for the first 

leaves after 72 h of incubation, it was noted that the effect of PEG was similar to 

the 48 h incubation. There was a reduction in leaf fresh weight in both the dark 

and the light incubated plants (Fig. 1.4). However, the reduction in leaf weight was 
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greater than for the 48 h treatment. However, the reduction in the fresh weight of 

leaves after 72 h was higher in plants incubated in the light than in those incubated 

in the dark. PEG caused a reduction in the fresh weight in both treatments in the 

dark and the light and the fresh weight was lower with the high PEG concentration 

than the low PEG concentration. K treatment caused a reduction in the leaf fresh 

weight in both the dark and the light in relation to the control. Treatment with a 

combination of K and PEG showed a similar pattern to PEG alone. K did not appear 

to counter the effect of PEG in the leaf tissue. However, the growth regulator did 

cause a slight reduction in leaf fresh weight in relation to the water in both the dark 

and the light-incubated seedlings. Dry weight determinations indicated a different 

pattern for leaves compared with the roots. The dry weight decreased with all PEG 

treatments in the leaves in relation to the water control. This effect was seen for 

seedlings incubated in both the light and the dark for 72 h. 

In order to investigate the influence of the age of leaf tissue on growth during 

greening, 10 day-old wheat seedlings were incubated and treated in the same way as 

mentioned before for 6 day-old wheat seedlings. PEG caused a reduction in the fresh 

weight of roots of 10 day-old seedling with both PEG concentrations in the dark and 

the light after 48 h of incubation (Fig. 1.5). However, the reduction in the fresh 

weight was greater in the light than in the dark. K did not overcome the effect of 

PEG in a combination of PEG and K. However, there was very little effect of K alone. 

It was noted in Fig. 1.5 that the dry weight of root was slightly higher with both 

PEG treatments or in combination with K. The effect of K treatment on the dry 

weight of root is shown in Fig. 1.5. K caused a decrease in the dry weight of root in 

the light in relation to the water or PEG treatments. In the dark incubation, K had 

no effect on the dry weight of the root and it was the same as control. 
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The data in Fig 1.6 show the fresh and the dry weight for leaves of 10 day-old 

seedling incubated in the dark and the light for 48 h. There was a reduction in the 

fresh weight of the leaves and the reduction was greater in the light than in the dark. 

Again, K appeared to have no countering effect on PEG. However, K treatments 

alone only had an effect in the dark. The dry weight of the leaves was similar in all 

treatments (Fig. 1.6). 

The data in Fig. 1.7 illustrate the effects of PEG, K and a combination 

of the two compounds on the fresh and dry weights of of roots of 10 day-old wheat 

seedlings following incubation for 72 h either in the dark or light. The fresh weight 

of the root was reduced with both PEG concentrations in the dark and the light in 

relation to water controls. K had no effect on the fresh weight of roots of 10 day-old 

plants when applied either as a single treatment or in combination with PEG in both 

the dark and the light. The dry weight of roots was increased by PEG treatment and 

was the same as for 48 h root treatments (Fig. 1.5). K had no effect on the dry weight 

of roots of 10 day-old plants in both treatments in the dark and the light. The data 

in Fig. 1.8 represent the fresh and dry weight determinations for leaves of 10 day-old 

plants incubated for 72 h in the dark and the light. A more marked reduction in the 

leaf fresh weight was seen in the light-incubated seedlings compared to those plants 

incubated in the dark, for the PEG treatments. K treatment reduced the fresh weight 

of the leaf samples incubated in the light (in relation to the water control) more than 

in the samples incubated in the dark. A combination of K and PEG resulted in a 

reduction of the fresh weight of the leaves and no marked countering effect of K was 

seen (Fig. 1.8). The dry weight of leaves of 10 day-old plants was slightly higher 

in the light-incubated samples than the dark-incubated samples with PEG, K and a 

combination of both compounds (Fig. 1.8). 
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The role of the root in relation to effects on the leaves was investigated using 

excised leaf and leaf segment tissue. Excised dark-grown leaves (6 and 10 day-old) 

were incubated both in the light and the dark in Petri-dishes with or without PEG 

for 48 h and 72 h. Leaf tissue ( 500 mg) was placed in a Petri-dish with low and high 

concentrations of PEG solution, K or a combination of PEG and K solution. At the 

end of the incubation period, the tissue was re-weighed and placed in an oven for 12 

h at 70°C and dried to a constant dry weight. Fig. 1.9 and 1.10 show the fresh and 

the dry weight determinations for the 6 day-old excised leaves incubated in the dark 

and the light for 48 h and 72 h. 

The fresh and the dry weights were essentially the same in all treatments 

with a solution of PEG (-5 bar, -10 bar) or K or a combination of PEG and K. Fresh 

and dry weights were the same as the water incubated control samples. However, the 

fresh weight of the tissue increased slightly from the original weight ( 500 mg) in all 

treatments. For 10 day-old excised leaves treated and incubated as above, there was 

a similar pattern for fresh and dry weights (Fig. 1.11 and 1.12). It appears that the 

age of the tissue did not alter the response substantially. 

In order to investigate the effect of PEG or K or a combination of both 

solutions on leaf sections, leaf segments were incubated as for excised leaves. Dark­

grown leaves (10 day-old) were segmented into 3 segments (tip, middle and base) and 

incubated as stated before for 48 h and 72 h in the dark and the light. The data in 

Fig. 1.13 and 1.14 show the fresh and the dry weight of the leaf segments (10 day-old) 

incubated in the dark and the light, respectively. There was a slight effect of PEG at 

low and high concentrations, reducing the fresh weight of the leaf segments in both 

the dark and the light. It was more noticeable in the light than the dark. K did not 

effect the fresh weight of the segments in either case. However, a combination of K 
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and PEG gave a similar pattern as PEG alone. 

The results for leaf segments incubated in the same way for 72 h in the dark 

and the light are shown in Fig. 1.15 and 1.16. The effect of PEG at low and high 

concentrations was more effective in reducing the fresh weight of the leaf tip segments 

than other segments in both the dark and the light. K treatment did not effect the 

fresh weight of the segments. However, the effect of a combination of K and PEG 

on the fresh weight of the leaf segments was similar to that at 48 h. The data in 

Fig. 1.13, 1.14, 1.15 and 1.16 show that the dry weight for all segments in the dark 

and the light was similar for the leaf segments treated and incubated for the same 

period of time. However, PEG, K or a combination of K and PEG appeared directly 

to affect the root system, not the excised leaves or the leaf segments. 
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2.41 JLem ~li"eerung l1"<e§JP01Ill§e§ 

Chlorophyll accumulated by the first leaves of dark-grown wheat seedlings was 

investigated in relation to the age of the plants and the age within the leaf. 

2.41.]. JEif!fed oif &ge oif llw olill Une gl1'eelillium~ JP!i"OC<e§§. 

Wheat seedlings {10 day-old) were exposed to 72 h of light following growth 

in the dark for 10 days (Plate 1.1). It was noted that the greening occurred along 

the leaves, but was not equal. It was noted that the leaf tip still did not green fully 

over this period of time. It appeared, therefore, that the capacity to accumulate 

chlorophyll was lost in the older tissue. 

The first leaves of seedlings, treated a.s above, were divided into three equa.lly­

sized segments and the chlorophyll extracted as described in General Materials and 

Methods. The data in Fig. 1.17 show the total extracted chlorophyll levels of the tip, 

middle and basal segments. It can be seen that the segments differed in their ability 

to accumulate chlorophyll. The level of chlorophyll was higher in basal segments, 

followed by the middle segments. Least chlorophyll wa.s found to accumulate in the 

leaf tips. Therefore, the sequence of greening potential down the leaf and the capacity 

to green were not equal along the length of the leaf. This pattern followed the age 

sequence down the leaf where the tip contained the oldest cells and the base of the 

leaf contained the youngest ones. This differential capacity for greening could have 

been a function of tissue interaction along the leaf and in order to test this, use was 

made of excised leaf segments comparable to the areas of segmented leaves. 

Three equally-sized leaf segments were cut from the first leaves of wheat 

seedlings which had been grown in the dark for 9, 11, 15, 17 or 20 days. These seg­

ments were incubated on water in Petri-dishes for 24 h or 48 h in the light growth 
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JPAate 1.1 

The pattern of greening of wheat seedlings grown in the dark for 10 days then 

incubated in the light for 72 h. 
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room. The data in Fig. 1.18 show that older leaf tissue (tip) was less able to accu­

mulate chlorophyll than the other two areas after 11 and 15 days growth in the dark 

followed by illumination for 24 h or 17 and 20 days dark growth followed by 48 h 

of illumination. However, the pattern of greening of tip, middle and base segments 

was maintained with segments in isolation from one other, giving essentially the same 

relative accumulation of chlorophyll as in the intact seedlings. 

It appears that the pattern of greening along the leaf is maintained after 

segmentation, prior to illumination. The possibility that the greening pattern origi­

nally observed -in the intact seedling was due to interaction within tlie leaftissue-does 

not therefore seem to be the case. The influence of age on this greening process is 

apparent since the tip region initially has a relatively high capacity for chlorophyll 

accumulation after 11 days dark growth but this is lost gradually up to 20 days. A 

similar pattern is seen for the middle segment. However, whilst the total capacity 

for chlorophyll accumulation of the basal segment declined with time, accumulation 

relative to the other segments actually increased up to 20 days. 

The observed pattern of greening, therefore, appears to be related to the 

tissue age and hence to cell age. It should be noted that even after 20 days of 

incubation in the dark wheat tissue still retained some capacity for the accumulation 

of chlorophylL 

2.4.2 Effect of K on the greening process 

In order to investigate whether or not cytokinins were involved in the green­

ing process, leaf segments were incubated in a solution of K at 5 mg 1 -l during, or 

prior to exposure to the light. 500 mg of leaf tissue, representing the amount of 12 

replicate plant samples, was extracted for chlorophyll at time indicated. the data in 
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Fig. 1.19 and 1.20 show that the differences in the pattern of greening in the tip, 

middle and base segments were maintained over 28 h and showed a similar pattern to 

that recorded above. K treated leaves appeared to have increased levels of chlorophyll 

in all segments but the pattern of differential greening was maintained (tip least and 

base most). It was noted that K appeared to have more effect on the greening of 

segments derived from young tissue (7 day-old) than from older tissue (9 day-old). 

This effect was noted for tip, middle and basal segments. The data in Fig. 1.21 and 

1.22 show that K had a slight effect on the greening process of samples pre-incubated 

with growth reg-ulator fer 24 h prior to exposure to the--light. H-owever, pre-incubation 

with K did not affect chlorophyll levels. 

2.4.3 Effect of wate:r §bess on the greening process 

The effect of water stress on the greening process and any interaction with the 

age of tissue was investigated using whole seedlings, excised leaves and leaf segments. 

In this series of experiments, the chlorophyll content was calculated on a dry weight 

basis for the first leaf. This takes into account any changes in the fresh weight 

caused by the effect of water stress condition imposed by the PEG treatment. The 

data in Table 1.3 indicate that when 6 day-old wheat seedlings were incubated in 

the light with their roots in water for 48 h and 72 h, greening of the whole leaf 

occurred. More chlorophyll accumulated after 72 h incubation than after 48 h. The 

plants which were grown in the lower concentration of PEG showed a slight decrease 

in chlorophyll levels. However, at high concentrations of PEG, seedlings showed a 

marked reduction in the levels of total chlorophyll accumulated after 72 h. However, 

there was a slight increase in the levels of chlorophyll with this treatment applied to 

10 day-old seedlings for 48 h. These seedlings exhibited a lower capacity to green than 

the 6 day-old seedlings when incubated in water, the capacity to green appearing to 
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decrease with increasing age of the tissue. No marked difference was seen between 

the amount of chlorophyll accumulated in segments of 10 day-old seedlings incubated 

on water for 48 h and 72 h. Low osmotic strength PEG also increased slightly the 

level of chlorophyll accumulation in 10 day-old seedlings. 

However, high osmotic strength of PEG (-10 bar) had an effect on the 

seedlings, over the same period of time, reducing the levels of chlorophyll. Fur­

thermore, after 72 h incubation, wheat seedlings contained lower levels of chlorophyll 

in both osmotic concentrations of PEG, the chlorophyll levels being lowest at high 

osmotic concentration of PEG. These results are consistent with the results in Fig. 

1.17. It is possible that water stress has a secondary effect on the leaves when the 

seedlings are treated via the roots. The effect of PEG on excised leaves was studied 

in order to establish whether or not stress effects on the leaves were secondary as the 

effect appeared to be on growth. 

The data in Table 1.4 show that when 6 day-old, excised leaves were incu­

bated in water for 48 h and 72 h, chlorophyll accumulated; however, the level at 72 

h was slightly less than that at 48 h. Therefore, the presence of roots appears to 

influence chlorophyll accumulation. Under water stress condition, the low concentra­

tion of PEG had no effect on the chlorophyll level of 6 day-old tissue. However, it 

was noted that a greater reduction in chlorophyll level occurred at the highest PEG 

concentration. In contrast, 10 day-old, excised leaves incubated for the same period 

of time, showed a reduction in total chlorophyll levels using water and also with both 

PEG concentrations (Table 1.4 ). 

The effect of water stress on leaf segments was investigated in order to es­

tablish whether or not the lack of effect of PEG on excised leaves could be due to 

tissue interaction. The first leaves of 10 day-old etiolated seedlings were cut into 
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three segments of equal size prior to transfer to the light. The data in Table 1.5 

show that the sequence of greening from tip to base was as mentioned before. Total 

chlorophyll was low in the leaf tip followed by middle segments. The highest levels 

of chlorophyll accumulated in the basal segments during 48 h or 72 h incubation in 

water. In contrast, When segments were treated with either concentrations of PEG, 

greening followed the same sequence as for water treated tissue, but effects on the 

segments were variable. However, it appeared that PEG caused a general reduction 

in chlorophyll for most leaf segments during the period of incubation. The greatest 

reduction, however, in chlorophyll levels occurred in-the tip segments. -It appears that 

the effect of PEG on greening was most marked and consistent when whole seedlings 

were incubated. This indicates a role of the root system. Therefore, no effect of water 

stress was observed on leaf area or excised leaves. 

2.4.4 Effect of K and PEG on the greening process 

The effect of the growth regulator and water stress on chlorophyll accumula­

tion was investigated. The data in Table 1.3 demonstrate that there was no difference 

between the effect of a combination of K and PEG, or PEG alone, on chlorophyll ac­

cumulation at low concentration of PEG. K did not appear to overcome the effect 

of PEG. However, at a high PEG concentration, K was found to enhance the effect 

of PEG on the inhibition of chlorophyll accumulation. A similar reduction in the 

chlorophyll levels was found using 10 day-old seedlings (Table 1.3). This suggests 

that the presence of roots influenced the effect of PEG and K. 

This was further investigated using excised leaves. It was observed (at both PEG 

concentrations) that K and PEG had no effect on chlorophyll levels when they were 

applied directly to the leaves (Table 1.4) either with 6 or 10 day-old tissue. 
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The results using leaf segments did not show a consistent pattern (Table 1.5). 

The sequence of greening from tip to base, however, was maintained in all treatments 

as was seen previously. 
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The pattern of greening for whole seedlings could have been due to variations 

in the unrolling of the leaf tissue and the effect of water stress on this process. If a 

part of the leaf remained tightly rolled then the filtration of the light could infleunce 

the greening process. This possibility, when the tightly rolled dark-grown leaves may 

not green to the same extent when allowed to fully unroll upon transfer to the light, 

was investigated further. 

W_heat seedlings_ w_ere incubated in_ the dark for 10_days. First leaves were 

excised and divided into three equally-sized segments (tip, middle and base). Average 

width of rolled segments was measured prior to their incubation with or without PEG 

at a high concentration, for 24 h, 48 h, and 72 h in the light. 

In another series of incubations segments were kept for 24 h in water or 

PEG (-10 bar). After 24 h of incubation, the segments from the water were then 

transferred to PEG solution (-10 bar). Whilst those originally incubated in PEG 

were transferred to water. Both sets and controls were incubated for a further 48 h 

and 72 h in the light. The initial incubation for 24 h was to allow unrolling to occur 

for all treatments, particularly in water. Leaf width was measured at the end of the 

incubation and chlorophyll was estimated after each period of incubation for each of 

the segments. 

The data in Fig. 1.23a show that leaf width was higher in all segments after 

incubation in water for 24 h in the light. However, the width of the tip segments was 

higher because it was slightly unrolled in the dark. In contrast, leaf segments were 

rolled after 24 h of incubation in PEG in the light and leaf tip was more tightly rolled 

than at zero time (Fig. 1.23a). The greening pattern after 24 h in the light followed 
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the sa.me pattern from tip to the ba.sa.l segments a.s mentioned before (Fig. 1.24a. a.nd 

b). After 48 h of incubation in wa.ter in the light, the segments were fully unrolled. 

PEG prevented lea.f unrolling in all treatments, a.nd their width wa.s the sa.me as a.t 

zero time (Fig. 1.23b ). The greening after this period ( 48 h) of incubation was higher 

when segments were incubated in wa.ter tha.n for 24 h. However, greening was lower 

in segments treated with PEG compared to the controls during sampling period (Fig. 

1.24a a.nd b). Although PEG prevented leaf segments from unrolling, the pattern of 

greening was ma.inta.ined. 

Unrolling occurred to a greater extent in all segments incubated in wa.ter 

for 72 h. PEG ca.used greater unrolling in basal segments than the other segments. 

However, it was less than with water (Fig. 1.23c). The greening was higher with 

wa.ter than with PEG, aga.in as with the pattern seen previously. 

It was noted that the segments which were incubated in water then trans­

ferred to PEG for 48 hand 72 h, showed reduced unrolling of the tissue (Fig. 1.25a). 

When segments were transferred from PEG to water, for the sa.me period of time, the 

segments showed a. greater unrolling (Fig 1.25b) compared to those segments trans­

ferred from water to PEG. This indicated that the lea.f segments were not tota.lly 

rolled under water stress. At 72 h the sa.me pattern of greening was found from tip to 

basal segments with those transferred to water than those with PEG solutions Fig. 

1.25a and b. 

These results indicate that PEG does not abolish the ability of the segments 

to green by an effect on unrolling of leaves. After 72 h of incubation, those segments 

transferred from wa.ter to PEG or from PEG to water showed the same pattern of 

greening from tip to the basal region (Fig. 1.26). The total levels of chlorophyll in 

a.ll segments were less in those segments incubated in water then transferred to PEG, 

94 



0 

b 

Loo? t~odth (QQ) 
a.5 

a 

2.5 

2 

1.5 

0.6 

0 

Lcof "'' d th (llllll) a.5 

a 

2.5 

2 

1.5 

0.5 

95 

Figure 1.25 

• PEG 

Ill t1ot!Z7' 

Hill Zoro tuno 

H B 
LEAF SEGMENTS 

LEAF S~GHENTS B 



96 



than for those segments transferred from PEG to water. However, all the segments 

which were incubated in PEG solution still have the ability to green. 

2.4.!6 Chlolioplllyllll a aumdl Chloliphyll.ll b dluuilllg gJreel!lilllg JPli'OCe§§ 

The rate at which the individual chlorophyll a and b components were pro-

duced was measured in one set of experiments. 8 day-old dark-grown leaves were 

excised and cut into three equally-sized segments (tip, middle and base). These seg­

ments were then incubated in the dark in water in Petri-dishes for 24 h prior to 

_ . t_r_ansfer to the light for 24 h and 48 h. At the end of this period the total chlorophyll 

was extracted and chlorophyll a and chlorophyll b contents were determined. 

The results are shown in Fig. 1.27. It can be seen that for each segments 

there was a similar increase in chlorophyll a and chlorophyll b components from 24 h 

to 48 h of incubation. The rate of accumulation of these two components was more 

or less equal as can be seen from Fig. 1.27 a and b. Likewise the ratios between 

chlorophyll a and chlorphyll b were more or less the same as shown in Fig. 1.27 c. 

The ratio of chlorophyll a to chlorophyll b was also investigated for 10 day­

old intact wheat seedlings which were illuminated for 48 h and 72 h with their roots 

in water or -10 bar PEG. The results are shown in Fig. 1.28 where it can be seen that 

the water stress treatment did not alter the ratio of chlorophyll a and chlorophyll b 

at either 48 h or 72 h in relation to the control. There was a difference, however, in 

the absolute value of the ratio at these two times of incubation, it being higher at 72 

h of incubation than at 48 h. These results are in agreement with those of Duysen 

and Freeman (1974) who found that water stress did not alter the ratio between the 

two chlorophyll components. 
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One of the more striking effects of water stress on development of the first 

leaf of wheat seedlings was the inhibition of growth. The reduction in growth of the 

first leaf was more pronounced with both levels of osmotic stress in the older leaves 

compared with the younger ones. In contrast, it has been reported that the effect 

of water stress on growth tends to be especially pronounced in those tissues that are 

in a rapid stage of development (Williams and Shapter, 1955; Gates, 1968). Hsiao 

(1970) reported that plant growth was severely inhibited by water stress. 

Many investigations have shown that cell division and cell enlargement are 

sensitive to water stress (Slatyer, 1967; Hsiao, 1970). Stransky and Wilson (1964) 

and Boyer (1968, 1970) found a decline in the rate of cell enlargement as water stress 

increased, with enlargement ceasing at moderate water stress. The knowledge that 

cell growth is generally more sensitive to water stress than stomatal opening (Hsiao, 

1973) has a. direct implication in the analysis of water stress effects on leaf growth. 

The effect of cell water stress will be apparent during the early stages of growth and 

development of the leaf whereas the effect on stomatal opening will be seen only 

after the stoma have developed in the leaf. Water stress at the early seedling stage, 

therefore, will influence greatly the establishment of the seedlings, in particular, the 

rate at which new leaves and hence photosynthetic capacity are produced. Mare and 

Palmer (1976) noted that the total number of leaves produced by the primary stem 

of sunflower was reduced when water stress was imposed over a period of 10 days. 

In a review of water stress effects on wheat growth (Table 1.1 and 1.2), 

Hsiao (1973) concluded that leaf growth was very sensitive to water stress. It has 

been reported that older plants may stop growing in PEG solution because of the 

natural breakdown of the permeability of barriers with increased age (Macklon and 
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Weatherley, 1965). They also regarded root damage as a very important factor. 

In this study, the reduction in leaf growth occurred in both light and dark in­

cubations of 6 and 10 day-old wheat seedlings. 10 day-old seedlings. Christ (1978 a,b) 

has reported slow growth of wheat leaves in the dark. This may be due to a depletion 

of reserves in leaves grown at low photon flux densities. Davies and Van Volkenburgh 

(1983) reported that plant growth with a restricted water supply showed a reversal 

of the leaf growth pattern exhibited by leaves which were well-supplied with water. 

There was higher growth rates during the dark period than the light period. These 

observations suggested that the enhanced growth rates shown by soybean (Bunce et 

al., 1977) and sunflower leaves (Radin and Boyer, 1982) when the light was switched 

off may have resulted from the limitation of daytime growth by water stress. Radin 

(1983) has reported that nitrogen deficiency can greatly reduce the daytime rate of 

leaf expansion. Nitrogen deficiency apparently lowers the hydraulic conductivity of 

the roots leading to large daytime water stress. Delane et gl. (1982) suggested that 

osmotic adjustment of cells during water stress conditions probably results in reduced 

growth rate of barley leaves. The effect could be that diversion of resoures for osmotic 

adjustment results in loss of these components being available for the leaf growth pro­

cess. It is known from previous studies (Gates, 1955) that when young tomato plants 

were subjected to water stress, the growth of the plants was reduced. Leaves of differ­

ent ages had different sensitivities to such stress. Young leaves suffered the greatest 

absolute growth reduction, but recovered most rapidly. Older leaves did not suffer 

such a great reduction in growth, but recovered from water stress more slowly (Gates, 

1955). 

It has been shown in the present studies that in intact wheat seedlings, K 

reduced leaf growth in both young and old plants. The reduction in leaf growth was 
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more noticeable in the light incubation treatment than in the dark treatment. It 

has been reported that cytokinins inhibit root growth (Miller, 1961) and may have 

partially inhibited radicle growth. Jones and Kaufman (1971) reported that K slightly 

promoted elongation of roots only in the absence of exogenously supplied substrate. 

In several other plant systems, such as sunflower hypocotyls (De Ropp, 1956) and 

pea stem segments {Brian and Hemming, 1957), exogenous K, when supplied with 

gibberellin in physiological concentrations, has the effect of suppressing gibberellin 

promoted longitudinal growth. The results here show that K in combination with 

PEG solutions, had no eff'ect on t-he growth of the first leaf of wheat seedlings. The 

growth was inhibited with PEG, alone, as mentioned before. 

The relationship between the shoot and the root is complex and homeostatic. 

When a change in the environment occurs, the rate of growth of one sub-system 

changes relative to that of the other so that the functional equilibrium is maintained 

(Richards, 1980; Troughton, 1980). Troughton (1980) suggested that there is main­

tenance of a constant carbon-nitrogen ratio so that if nitrogen supply from soil is 

increased, leaf expansion is promoted and carbon fixation is increased. Conversely, 

if assimilate supply is increased, root growth is promoted leading to enhanced up­

take of nitrogen. Growth readjustments of this kind are relatively slow, but some 

experimental treatments, such as root cooling or removal, lead to a reduction in leaf 

growth which is detectable within hours (Davies and Van Volkenburgh, 1983; Carmi 

and Van Staden, 1983). It is often found that treatments applied to roots affect their 

capacity for water uptake; therefore, water stress at the roots has been invoked as 

being responsible for effects on subsequent growth in these tissues and also in other 

tissues of the plant. 

The fresh and the dry weights for the leaves and the roots of 6 day-old 
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wheat seedlings incubated in the light and dark for 48 h and 72 h were compared: 

Comparison was made between the fresh weight for the shoot and the root system. 

The shoot decreased in growth to a greater extent than the root systems in the 

dark after 48 h of incubation, but it was higher in the light after 72 h. The higher 

concentration of PEG (-10 bar) was more effective in decreasing the fresh weight of 

both systems than the lower concentration (-5 bar). Similar responses occurred with 

the older seedlings (10 day-old) incubated in the dark and the light for 48 hand 72 h. 

The dry weight of shoot and root systems were slightly variable with PEG treatment 

depending on the tissue- age and the period or-incubation. There was slight -increase 

in the dry weight for both systems of the young seedlings in the light than in the 

dark at 48 h of incubation. However, there was no effect of PEG on the root systems 

in both the light and the dark condition after 72 h of incubation. The dry weight 

of the leaves tended to decrease after PEG treatment in both the light and the dark 

condition in relation to the control after 72 h of incubation. 

The dry weight of 10 day-old seedlings was higher with PEG for the roots, but 

it was the same for the leaves with PEG for the dark and the light incubation. It was 

reported by Mansfield et al. (1978) that the rapidity of the response suggested that 

either some kinds of stress signal, possibly hormonal, is rapidly generated and passed 

from the roots to the shoot resulting in reduced leaf growth, or that the treatment 

affects the generation or flux of a signal which is necessary for the continued expansion 

in control plants. The effects of reduced water supply on growing leaf tissue may 

not be simple. Water stress can affect cell division (Clough and Multhorpe, 1975) 

leaf metabolism (Hsiao, 1973; Lawlor and Leach, 1985), or may alter the biological 

parameters which govern cell enlargement, such as turgor, wall extensibility or wall 

yield stress (Tomos, 1985). It is possible that root treatments affect one or more of 
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these parameters directly a.nd not through water stress. 

The effect of K treatments on fresh and dry weights of the roots and leaves 

was variable. K had no effect on the fresh weight of roots of 6 day-old wheat seedlings 

incubated for 48 h and 72 h in the light and the dark. However, there was no effect 

on old tissue during 48 h of incubation, and there was no effect recorded after 72 h 

in the light and the dark. K did not overcome the effect of PEG with young or old 

tissue incubated in the light a.nd the dark for the same period of time. The fresh 

weight of the leaves was reduced in both 6 and 10 day-old tissue incubated for 48 h 

and- 72 h In the light and the dark except in the old leaves incubated for 48 h when 

the fresh weight was increased in relation to water. However, the effects of K with 

both levels of PEG were the same as for PEG alone treatment in the light and the 

dark with young and old tissue incubated for 48 h and 72 h. Similar responses were 

found with the dry weight of the leaves with K and a combination of K with both 

PEG concentrations. The dry weight of the leaves was reduced in the young tissue 

during incubation for 48 h and 72 h in both the light and the dark. However, there 

was no effect of K on the dry weight of the leaves. The effect of K on the older tissue 

was different. The dry weight of the leaves after 48 h was the same for water and 

PEG treatments, but after 72 h of incubation, there was a slight increase in the dry 

weight with K with both PEG concentrations. K itself gave no effect over PEG alone, 

where the dry weight of the leaves was reduced in the young tissue incubated in both 

the light and the dark for 48 hand 72 h. The dry weight was, however, slightly higher 

in the dark than in the light incubations. In the older tissue, K incubation with PEG 

solutions gave the same results as the control and PEG alone after 48 h of incubation 

in the light and the dark. After 72 h, the dry weight of leaves was slightly higher in 

the light than in the dark. 
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It has been shown by Richards, (1980) that cytokinin applied to the roots 

of apple seedlings resulted in markedly reduced growth. It was also reported that 

exposure of roots to K decreased the water uptake (Richards, 1980). Tal et al. (1970) 

and Collins and Kerrigan (1974) reported that cytokinins increased the resistance of 

the root to the absorption of water. The reduction in root growth depended on the 

amount of the root system treated with the hormone. In contrast, Srivastava (1967) 

reported that both fresh and dry weight of tissue growing on K media was greatly 

increased compared to plants growing without K. 

-

_In contrast, ~xcised leaves of dark-grown leaves (6 and 10 day-old) had similar 

fresh or dry weights when they were treated with the same solutions for the same pe­

riod of time as mentioned before. The treatments using excised leaves showed a slight 

increase in the fresh weight over the original weight. The dry weight was the same 

in all treatments. Similar responses were found with 10 day-old leaf segments when 

the same procedure was followed. These results suggest that the relation between 

root and shoot systems should be taken into account under water stress conditions. 

Therefore, there was a great effect of water stress, K treatments and PEG solution 

combined with K, directly on the root system which then affected the shoot system. 

It is well established that water stress and water-logging may lead to marked changes 

in endogenous levels of growth regulators in plant. These phenomena are documented 

for ABA (Wright and Hiron, 1969; Loveys and Kriedemann, 1973) and cytokinin (Ita.i 

and Vaadia, 1971). The interdependence between root and shoot function and growth 

is well documented (Boote, 1976). Wareing (1970) reported the involvement of root­

produced hormones (which travel to the top of the plant) in hormonal control over 

shoot growth. Skene (1975) showed that cytokinins were the major hormone involved 

in this concept. Wittwer and Dedolph (1963) reported that cytokinins reduced top 
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dry weight and plant height, especially at a cytokinin concentration of about 2 mg 

1-1. They also noted a different degree of inhibition exhibited by tops and roots 

resulting in decreased top:root ratios. 

Leaves of higher plants grown in darkness lack chlorophyll and hence can 

not carry out photosynthesis. Upon illumination, the plastids of such leaves undergo 

a series of developmental changes, membrane components are reorganized, there is 

new synthesis of chlorophyll (Boardman et al., 1978; Bogorad, 1967; Rosinski and 

Rosen, 1972) and photosynthetic capacity develops (Bogorad, 1967; Anderson, 1975). 

In this study; it wa.s found tnat the -greening of primary leaves of 10 day-old dark­

grown seedlings was not equal when they are transferred to the light for 72 h. The 

leaf tips were mostly yellow compared with middle and basal regions. However, the 

capability for greening under white light decr~ased from the apical sections to the 

basal ones along the whole leaf. This gradient remained unchanged during irradiation 

up to 72 h. This pattern followed the age sequence down the leaf where the leaf tips 

contained the oldest cells and the basal sections contained the youngest cells. This 

differential capability of greening may be due to a function of tissue interaction within 

the leaf. However, similar responses were found in excised segments with different 

ages. Chlorophyll accumulation decreased with leaf age and was higher in the basal 

segments. These results coincide with the findings from Virgin (1955) who showed 

that in old leaves the photoconvertible protochlorophyll is higher in basal sections 

of leaf than in the apical regions. Therefore, the capability of greening is higher 

in tissue of young leaves than of older ones. It has been reported that leaf age 

influenced the greening process in the dark grown barley, bean, and wheat leaves 

(Axelsson, 1977; Bradbeer et al. 1974). However, Bradbeer et al. (1974) reported 

that the rate of greening in Phaseolus vul"aris leaves increased gradually up to 14 days 
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after which the greening potential of the etiolated leaves declined. Accumulation of 

chlorophyll depends upon available food reserves. Detached bean leaves, which had 

lost their ability to green as a result of the depletion of substrates, regained the 

capacity to synthesize chlorophyll after incubation overnight with sucrose (Sisler and 

Klein, 1963). However, it has been reported that leaf age or stage of development is 

important, where older leaves may show a different degree of response than younger 

leaves (Raschke and Zeevaa.rt, 1976). 

Evidence for progressive senescence from tip to base after prolong~ed gro~h 
~ 

in darkness is the loss of greening capacity with increasing age, loss of fresh weight 

and loss of turgor (Obendorf and Huffaker, 1970). It has been reported that the 

effect of a growth regulator is associated with either a maintainence or enhancement 

of chlorophyll synthesis (Fletcher, 1969; Adedipe et al., 1971). When leaf segments of 

different ages were incubated with K solutions then transferred directly to the light or 

kept for 24 h in the dark, followed by exposure to the light for up to 28 h, chlorophyll 

levels increased in both treatments with all segments (tip, middle and base). How­

ever, the level of chlorophyll was higher in treated segments compared to control and 

the pattern of greening was as previously found from the leaf tip to the basal ones. 

The tip had the lowest levels and the base the highest levels of chlorophyll. However, 

K was more effective on young tissue rather than older tissue. Fletcher and McCul-

lagh (1971) found that etiolated cucumber cotyledons, pre-treated with cytokinin and 

exposed to the light for 3 h had up to 45% more chlorophyll than the water control. 

The rapidity of the response indicated that cytokinin influenced chloroplast differenti­

ation and chlorophyll biosynthesis. They also reported that the effect of cytokinins, in 

chlorophyll production, was a result of enzyme inductions including ALA synthetase. 

Ueda and Kuraishi (1977) reported that both transpiration and chlorophyll forma-
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tion, in etiolated cotyledons of squash, were equally stimulated by K. These results 

are consistent with present observations that chlorophyll in the dark-grown wheat 

leaves was stimulated by K. However, Buchanan (1980) reported that the action of 

light in preventing pigment degradation of chloroplasts during senescence of attached 

and detached leaves is attributed to its action through phytochrome and/or through 

maintenance of proper hormonal balance. The role of light in controlling the biosyn­

thesis of pigments in leaves cannot be ignored (Sironval, 1963). The decrease in the 

photochemical activities of chloroplasts caused by water stress during the greening of 

etiolated wheat leaJ seedlings-can be-correlated with a aecrease ln. the accumulation 

of chlorophyll. The decrease in chlorophyll accumulation in response to water stress 

has been reported for many species (Alberte et al., 1973; Nordin, 1976). The results 

indicated that the levels of chlorophyll accumulation during water stress conditions 

was reduced. The young tissue of wheat leaf seedlings showed a slight decrease in 

chlorophyll level with mild water stress after 48 h of incubation in the light. Severe 

water stress, using PEG solutions, causes the chlorophyll levels to markedly declined. 

However, old tissue exhibited the lowest level of chlorophyll accumulation with both 

PEG concentrations. The greening was lower in both young and old water stressed 

seedlings compared to the control seedlings. In contrast, Misra and Misra (1987) 

reported that the chlorophyll content, after a period of 48 h of illumination was ap­

proximately the same in stressed and unstressed leaves of 12 and 15 day-old seedlings. 

Also, the youngest one {9 day-old) showed a lower rate of chlorophyll synthesis com­

pared to the control. They suggested that the youngest seedlings were relatively more 

prone to water stress than the older ones. 

In different sets of experiments (Table 1.4 and 1.5), water stress was less 

effective on either excised leaves or leaf segments. The young tissue of excised leaves 
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was not affected by a low water stress of PEG (-5 bar). However, the effects of 

water stress was much higher with a higher water stress of PEG (-10 bar). Similar 

responses were observed with the old tissue of excised leaves. The effect of water stress 

on leaf segments (tip, middle and base) showed that there was no interactions between 

segments. The sequence of greening with water stress in the leaf segments from the 

tip to the base was observed as mentioned previously. The leaf segments responded 

differently to the water stress of both PEG concentrations. The segment most affected 

by water stress was the leaftip followed by the other segments (middle and base). The 

pattern of green!ztg was <!Sin the control water, but it was- more reduced compared 

with control samples. It has been reported that chlorophyll formation was reduced 

during water stress condition (Bengtson et al., 1978; Bourque and Nayler, 1971; 

Duyson and Freeman, 1974). Virgin (1965) showed that water stress had a greater 

effect on the synthesis of protochlorophyll than chlorophyll, such a result suggested 

that PEG-induced stress should have little effect on chlorophyll production until the 

protochlorophyll pool has been exhausted. Therefore, some chlorophyll could be 

produced even under water stress condition. In addition, it was reported that the 

chlorophyll content of leaves decreased rapidly during periods of water stress (Singh 

et 91., 1972). 

K treatments alone caused a very slight effect on the level of chlorophyll 

content in either young or old wheat seedlings during period of incubation. K and 

both PEG concentrations caused a reduction in the level of chlorophyll with both 

young and old seedlings, but the reduction was more pronounced with a combination 

of high PEG concentrations compared to the lower one. Furthermore, K treatments 

or K with both PEG concentrations had no major effect on chlorophyll levels in young 

and old excised tissues. The treatment of PEG and K had no effect on leaf segments 
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(tip, middle and base). The level of chlorophyll was variable in all segments with both 

K and K with PEG (low and high) concentrations. The pattern of greening down the 

leaf wa.s observed in all treatments. Ita.i and Vaa.dia (1965) reported that the cytokinin 

concentration of root exudate from sunflower plants was markedly reduced after a 24 

h period of water stress. Water stress may have caused leaf senescence by reducing the 

production of cytokinin in the roots and, consequently, reducing the cytokinin supply 

to the shoot. Extraction of cytokinins would be necessary to establish this, but this 

was not carried out in the present study. K treatments may have overcome the loss of 

th~ .a.hiHty of ageing dark-grown leaves -to produce chlorophyll upon exposure to light. 

Wolf (1977) reported that the rate of chlorophyll accumulation was influenced by 

many chemical agents including cations and plant growth regulators. Potassium and 

calcium had noticeable effects on chlorophyll accumulation (Knypl, 1969; Knypl and 

Rennert, 1970). The former promotes chlorophyll accumulation and the latter inhibits 

chlorophyll accumulation. Knypl and Rennert (1970) showed that calcium inhibited 

both growth and chlorophyll accumulation in excised cotyledons of cucumber during a. 

long period of illumination and that both types of inhibition were completely reversed 

by potassium. Green and Muir (1978) reported that a combination of potassium and 

calcium promoted chlorophyll formation in 7 day-old cucumber cotyledons. 

In dark-grown wheat seedlings, the first leaf remained tightly rolled even 

when it emerged from the coleoptiles. However, upon illumination this leaf unrolled 

rapidly (only the tip region started to unroll in darkness as the leaves increased 

in age). Virgin (1962) demonstrated that red light was effective in promoting leaf 

unrolling. Leaf unrolling can also occur by phytochrome-controlled changes in the 

endogenous levels of gibberellic acid (Beevers et al., 1970; Poulson and Beevers, 1970; 

Cooke and Saunders, 1975 a,b ). ABA prevented light stimulated unrolling (Poulson 
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and Beevers, 1970). When the leaf segments of dark-grown wheat were floated on 

water in the light for 24 h there was a marked increase in their width, and chlorophyll 

content. This increase in width is similar to that reported by Beever et al. (1970), 

and Pearson and Wareing (1970) when the leaf segments were illuminated for 10 min 

with red light followed by darkness. More recently Viner et al. (1988) reported that 

unrolling etiolated barley leaves had a calcium requirement. 

Incubation of the leaf segments in the light for 24 h in PEG ( -10 bar) solutions 

resulted in an inhibition of both unrolling and chlorophyll accumulation. However, 

transferring the leaf segments, to the water for 48 h and 72 h in the light, resulted in 

an increase in both leaf width and chlorophyll content. In contrast, transferring the 

leaf segments from water (after 24 h in the light) to PEG solutions in the light for 

the same period of time caused a reduction in both the leaf width and chlorophyll 

content. Despite, the inhibition of unrolling by PEG solution, the pattern of greening 

down the leaf was maintained either in water or PEG solution. 

From the above discussion, it would appear that the unrolling of wheat leaf 

segments in water (in the light) is associated with an increase in the levels of chloro­

phyll. The effect of PEG appears to be both on the unrolling and greening here since, 

even when the leaves are pre-unrolled, PEG still reduces chlorophyll accumulation. 
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CHAPTER THREE 

PROTEIN 

3.]. Jini!rodl uction:n. 

Leaf proteins are the major store of nitrogen. They act in a structural ca­

pacity and function as catalysts such as ribulose biphosphate carboxylase (RuBisCo ). 

The proteins of plant cells are distributed between several cellular components and 

organized bodies. In leaves, most of the protein is located in chloroplasts (Stahma~n, 

1963; Hu:ffaker-, 1982). The- -remainder is distributed between the nuclei, mitochon­

dria, microsomes, cytoplasmic protein and combined with cell wall material (Perei, 

1959; Stahmann, 1963). Wildman and Bonner (1947) and Wildman et al. (1949) 

reported that the cell-free protoplasm from tobacco leaves consisted of three types 

of nitrogenous material. Firstly, the soluble low molecular weight nitrogenous com­

ponents such as amino acids. Secondly, the particulate matter such as chloroplasts 

and thirdly, the soluble protein of the leaf cytoplasm. It has been found that the 

amount of soluble cytoplasm protein ranges from 23% to 50% of the total leaf protein 

(Wildman and Cohen, 1955; Boulter et al., 1972). 

The leaf storage proteins are important in the maturation, reproduction and 

final seed yields of plants. Nitrogen can limit photosynthetic capacity and hence seed 

yield, as the plant matures. Final seed yields depend on the proteolysis of stored 

leaf nitrogen and its translocation to the seed (Dalling et al., 1975; Hageman and 

Lambert, 1981). 

RuBisCo is an important factor in metabolism in plant leaves. It is respon­

sible for the initial stage of photosynthesis and photorespiration. It is present in 

high concentrations in the leaf. RuBisCo constitutes from 40% to 80% of the total 
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soluble leaf protein of soyabean Glycine nn ~nd alfalfa Medicago sativa (Huffaker 

and Miller, 1978; Wittenbach, 1979; Friedrich and Huffaker, 1980), and from 10% 

to 30% of the total leaf protein in corn Zea mays (Huffaker and Muller, 1978; Wit­

tenbach, 1979; Friedrich and Huffaker, 1980). The level of RuBisCo depends on the 

species and environmental conditions (Huffaker and Miller, 1978; Wittenback, 1979; 

Friedrich and Huffaker, 1980). It is estimated that the loss of RuBisCo is about 80% 

of the total loss of soluble protein in wheat seedlings grown in the dark {Wittenbach, 

1978). It has been found that RuBisCo belongs to a group of enzymes which decrease 

r~pidly in ccmce_ntrati~J! at the s~n_esce_nce stage, whilst other. enzymes decline- more 

slowly (Batt and Woolhouse, 1975). 

RuBisCo is made up of two different subunits:-

1 - a large subunit (mol.wt ca 48000-55000). 

2- a small subunit (mol.wt ca 1400). 

The large subunit is synthesized on 70S polyribosomes in the chloroplast 

(Hartley et al., 1975; Alscher et al., 1976; Boulter et al., 1972) and the small subunit 

is synthesized on 80S polyribosomes in the cytoplasm (Chua and Schmidt, 1978; 

Gooding et al., 1973; Highfield and Ellis, 1978). The small subunit is transferred 

to chloroplasts as its precursor and combined with the large subunit into a native 

enzyme (Highfield and Ellis, 1978; Chua and Schmidt, 1978). Ellis and Hartley 

(1971) and Kleinkopf et al. (1970) reported that etiolated plants contained small 

amounts of RuBisCo which increase in the level in the presence of the light due to 

the onset of the development process. Brady and Steele-Scott (1977) found that the 

capacity for RuBisCo synthesis decreased with leaf age. Peterson et al., (1973) noted 

that the increase in the levels of RuBisCo remained stable until the leaf reached the 
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senescence stage then the RuBisCo disappeared rapidly with up to a 76% decline in 

barley Friedrich and Huffaker (1980) 

Protein concentration has been reported to be influenced by internal factors 

such as tissue age and plant growth regulators (Strain et a.l., 1971). It has been 

reported that most leaves show a general decrease in their protein contents upon 

maturation (Pirie, 1955; Webster, 1959; Shah and Loomis, 1965). Similar results 

were reported by Mothes et a.l. (1958) using tobacco leaves and Samuels (1959) using 

sugar cane. Hendry and Stobart (1977) using etiolated barley leaves, reported that 

the levels of protei:n and aillino acids decreased with plant age. 

Plant growth regulators have a significant effect on protein concentration as 

mentioned before. Vaa.dia ~ _M. (1962) reported that cytokinins prevent reduction 

in protein levels and retard ageing. Similar results were reported by Mathes (1964). 

Richmond and Lang (1957) and Osborne (1962) demonstrated that protein levels 

in detached green leaves of Xanthium pennsylvanicum were retained by cytokinin. 

Srivastata and Ware (1965) and Boer and Feierabend (1978) found that cytokinins 

caused an increase in the levels of ribosomes and polyribosomes in green tissues. 

It has been reported that cytokinins increase the ratio of chloroplast ribosomes to 

cytoplasmic ribosomes (Takegami, 1975; Boer and Feierabend, 1978). 

It has been reported that protein metabolism is influenced by external factors 

such as light and water supply (Stewart and Durzan, 1963). Lyttleton (1962) reported 

that the levels of soluble proteins increased after 20 h when etiolated wheat leaves 

were illuminated. Graham et _M. (1968,1971) reported that red light increased the 

activity of RuBisCo (91 fold) in pea seedlings after 5 days illumination. Similar results 

were reported by Chen et a.l. (1967) with etiolated corn leaves. The ratio of RuBisCo 

to ribulose bisphosphate carboxylase activity of barley plants remained constant after 
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24 h of the greening process in white light. It has been reported that light enhances 

the synthesis of the large subunit of this enzyme in fully greened fronds of Lemna 

minor (Blackwood and Leaver, 1977). 

The inhibition of protein synthesis is an early response to water stress (Hsiao 

1973). Bewley et al. (1983) reported that water stress elicits quantitative changes 

in protein synthesis in plants. Bidwell and Yeman (1956), working with carrot root 

explants, reported that amino acids arise by protein breakdown while they are re­

utilized for protein synthesis. Protein synthesis and breakdown take place in separate 

compartments of tlie cell. Sinlllar results w~re reported by Ryan and Walker-Simmons 

(1981). Barnett and Naylor (1966) found that soluble and total protein content 

declined in Bermuda grass under water stress. Similar results have been reported by 

Shiralipour and West (1984a) with maize seedlings. Similarly, Maranvill and Paulson 

(1972) reported that seedlings of corn showed a reduction in protein synthesis, instead 

of increased protease activity, causing leaf protein concentration to decrease during 

severe water stress, but significant decreases in proteins were not found during mild 

stress. Subbotina (1962), working with excised and attached leaves, reported that 

wilting led to an increase in the amount of soluble protein. Protein turnover can lead 

to losses of up to 40% to 60% of the leaf protein during water stress (Hanson and 

Hitz, 1982). 

One of the major responses of plants to water stress is to synthesize nucleic 

acids (Kessler and Tishel, 1962). Thus it would appear that this links to the synthe­

sis of proteins which are renewed during water stress for the resumption of cellular 

activity when the stress is relieved (Henckel, 1970). 

Amino acids play an important role in plant nitrogen metabolism and exhibit 

a close relationship with protein metabolism (Tan and Habloran, 1982; Fukutaka and 
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Yamada, 1984). It ha.s been reported that free proline accumulates in leaf tissue in 

response to water stress in intact plants (Chen et al., 1964; Barnett and Naylor,1966; 

Singh et al., 1973a; Waldren and Teare, 1974) and excised leaf tissue (Kemble and 

MacPherson, 1954; Palfi, 1968). The amount of proline that accumulates varies with 

the degree of stress and species (Voetberg and Stewart, 1984). Aspinal and Paleg 

(1981) reported that proline accumulation is a fundemental response of living organ­

isms to water stress. However, it has been reported that proline accumulation does 

not occur in some higher plants, drought-tolerant bryophytes, some pteridophytes 

and lic4ens undey water stress (Stewart a.nd Larther, 1980): It- has been concluded 

that proline accumulation cannot be regarded as a universal response of plants to 

water stress (Palfi and Juhasz, 1971). 

It has been reported that proline accumulation may reflect a compensatory 

mechanism for better plant survival during a period of water stress. Such a conclusion 

is based on the theory that proline acts as an osmotic regulator (As pinal and Paleg, 

1981), a protector of enzyme denaturation (Paleg et al., 1980), a reservoir of nitrogen 

and C02 sources (Fukutaku and Yameda, 1984) and a stabilizer of the machinery 

for protein synthesis (Kardpal and Row, 1985). llahi and Dorffiing (1982) reported 

that proline accumulation is mediated by ABA. Stewart and Voetberg (1985), using 

barley plants, reported that salt stress increased the levels of free proline in leaves 

without increases in leaves of ABA. Similar results were reported by Pomeroy and 

Siminovitch (1970). In agreement with the previous work, Parker (1962), using ivy 

leaves, reported that water soluble protein increased from summer to winter. Similar 

results have been reported by Gerloff et al. (1967) using alfalfa root and Morton 

(1967) using cabbage leaves. 

This Chapter represents the results of investigations of the some of the 
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changes in soluble proteins during greening of etiolated wheat leaves. The effect 

of age and length of incubation in the dark prior to illumination was also determined. 

In addition, the effect of mild and severe water stress on protein accumulation was 

examined. Particular reference was paid to the relation of the differential greening 

response along the length of the leaf. 

The attainment of a functional photosynthetic capacity within the leaf de­

pends on the accumulation of functional proteins. However, given that protein com­

ponents can change under water stress conditions it was important to establish the 

pattern of protein accumulation during greening in relation to water stress. In the 

broader context protein levels are important in the nutritional aspect of plants in gen­

eral, particurly grasses, and any delay in achievement of the functional level would 

impair development and crop value. 

In this study analysis only of the soluble protein was made which would 

exclude to a large extent any changes in structural components. However, this soluble 

fraction of protein appears to be more important in stress-related responses. 
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21.2 MA'JI'EWAJL§ AND ME'JI'JHIOJD)§ 

21.2.1.1 J?ll&m.t Materri&ll as described in General Materials and Methods. 

Leaf tissue (500 mg) from either 6 or 10 day-old plants was ground to a fine 

powder in the presence of liquid nitrogen, using a pestle a!ld mortar. The leaf sample 

was then treated as follows: 

a. Leaf sample was mixed with 1.0 ml extraction buffer (100 mM trizma base, 53 

mM sodium acetate, 8.8 mM magnesium acetate, pH 7.2). The homogenate was 

then poured into a centrifuge tube. 

b. A further 1.0 ml of extraction buffer was added to the pestle and mortar and the 

washings were combined with the homogenate in (a). 

c. The homogenate was centrifuged at 2000 g for 10 min at room temperature (21 °C) 

in a bench top centrifuge 

d. The supernatant from (c) was decanted into a centrifuge tube containing 1.0 ml 

10% (w/v) aq. trichloroacetic acid (TCA) and incubated in the dark at 4°C for 

30 min. 

e. The solution from (d) was centrifuged, the supernatant discarded and 1.0 ml M 

NaOH added to the pellet. 

f. The solution from (e) was incubated for 30 min in a water bath at 30°C and 

protein was then determined by the method of Lowry et al. (1951) using the 
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following reagents. 

A. 2 g sodium potassium tartrate, 100 g anhydrous Na2C03 in 500 ml M NaOH, 

distilled water to 1 L. 

B. 2 g sodium, potassium tartrate, 1 g anhydrous CuS04 in 90 ml distilled water 

and 10 ml M NaOH. 

C. Folin Ciocalteu's phenol reageant as 1 volume reagent: 15 volumes distilled water. 

3.2.2.1.1 The Proced'W'e: 

- -

I. 0:05 ml samples of the protein solution were taken and made up to 1.0 ml with 

distilled water. 

2. 0.9 ml reagent A added, the solution shaken and incubated for 10 min. in a water 

bath at 30°C. 

3. 0.1 ml reagent B was added, the solution shaken and incubated for at least 10 

min at room temperature {21 °C). 

4. 3.0 ml of reagent C was added with immediate mixing using a Whirlimix. The 

solution was then incubated for 10 min. in a 30°C water bath. 

Absorbance of the blue coloured solution was measured at 650 nm in the 

spectrophotometer {Ultrospec 4050, LKB Biochrom) against a blank consisting of 1.0 

ml distilled water treated as the sample. 

A calibration curve for protein concentration (Fig. 3.1) was prepared using 

BSA v made up in M NaOH. The samples of BSA v were treated along with the lea.f 

tissue samples. 
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Figure 3.1 
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3.3 RESULT§ 

3.3.1 The effect of age of leave§ on the floluble protein conteni dlurling ihe 

greening proce§§ 

Wheat seedlings were exposed to the light for 72 h following growth in the 

dark for 10 days. The first leaf was cut into three equally-sized segments (tip, middle 

and base). The different segments of the leaf were found to have variable levels of 

soluble protein (Fig. 3.2). The level of soluble protein was higher in the tip seg­

ments, followed by the middle segments with least being found in the basal segments. 

Therefore, the sequence of protein content of the leaf from the base to the tip was 

not consistent with the sequence of chlorophyll content as seen during the greening 

process. This pattern was not consistent with the expected pattern of the highest 

protein content in the basal segment. The high level of soluble protein in the tip 

segment could be the result of breakdown of insoluble protein. Changes in protein 

levels may be related to the age of the tissue in development terms and to changes in 

water status. 

In order to investigate the above effect, experiments were carried out with 

wheat seedlings, excised leaves and leaf segments. Tissue of different ages was used 

with and without water stress treatment. The data in Table 3.1 and 3.2 represent 

the values for soluble protein from 6 day-old and 10 day-old wheat seedlings, which 

were incubated for 48 hand 72 h, and in the light and the dark. It can be seen that 

more soluble protein was present at 48 h than after 72 h, in water, in both light and 

dark. This was probably related to aging of the tissue where there could be a shift 

from structural insoluble proteins to the soluble forms by degradation. 
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3.3.2 'I'llne ei!lfed off w&~el1' §be§§ oxn ~llne level§ off §O}Ullbne JPlt"Oteixn lixn wllne&t 

§eednixng§ 

The data in Table 3.1 and 3.2 show that when tissue was incubated in the 

light, increases in protein concentrations were observed in response to water stress. 

However, these changes appeared to be related to the age of the tissue. 6 day-old 

tissue showed a higher level of protein at the lower PEG concentration at 48 h in 

relation to the controls. However, the leaf tissue from seedlings under higher water 

stress showed protein contents which were essentially the same as the control. After 
-

72 h of incubation, the lever of protein was higher in both PEG treatments than in 

the controls even though the level for the tissue incubated on water from 48 hand 72 

h declined. When 10 day-old tissue was incubated as above, there was essentially no 

change in the protein levels. In contrast, the level of soluble protein declined with the 

low PEG concentration after 72 h for tissue incubated in the dark for both 6 and 10 

day-old leaf tissue (Table 3.2). However, in the 6 day-old tissue, the treatment with 

both PEG concentrations caused a higher level of soluble protein after 48 h. This 

was consistent with a response of the tissue to water stress where soluble protein can 

increase. After 72 h, the level of protein was lower indicating that the tissue had lost 

the ability to retain protein in response to stress. This effect is shown further by the 

10 day-old tissue which was unable to accumulate protein in response to water stress 

treatment. 

In order to investigate the effect of water stress further for the whole seedling, 

the levels of soluble protein were estimated in roots of intact seedlings. Roots of 

seedlings (6 and 10 days-old) which were grown either in light or dark for 48 h and 

72 h, were used. The data in Table 3.3 and 3.4 show the protein levels in roots of 

seedlings, incubated with or without PEG in the light or the dark, respectively. There 
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6 

10 
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48 
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Treatment 
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8.6 5.8 6.1 5.3 

4.6 5.8 5.0 7.9 

2.5 2.3 2.2 . 2.1 

2.4 2.3 1.7 1.6 



Table 3.2 

Tissue age Time in dark Treatment 
(day) (h) H20 K -5 PEG -10 PEG -5 PEG'+ K -10 PEG+ K 

.... 
~ 

48 4.4 4.7 5.9 5.4 5.1 6.2 
6 

72 3.4 2.7 2.3 2.8 2.6 2.1 

48 3.8 3.0 2.8 2.5 1.8' 2.1 
10 

' 72 2.2 1.8 1.8 1.5 1.9 2.1 



was a slight increase in the level of soluble protein in the young root tissue after 48 

h of incubation in both PEG treatments. However, there was a decline in the level 

of soluble protein in the young tissue after 72 h. In the old tissue there was also a 

decline after 48 h and 72 h of incubation. Therefore, the roots exhibited the same 

pattern of protein levels as in the leaves for young tissue at 48 h of incubation, but 

the level of soluble protein declined with tissue age. 

In order to investigate the potential role of the roots in supplying components 

for the leaf responses, experiments were designed involving treatments with K or a 

combination of K and PEG. The procedures and the periods- of incubation were as in 

previous experiments (page 123). 

K caused a slight increase in the levels of soluble protein in 6 day-old seedlings 

when they were incubated in the light for both 48 h and 72 h (Table 3.1 ). In contrast, 

there was very little effect of K on 10 day-old plants. The tissue may have lost its 

ability to respond to K treatment with ageing. However, when the tissue was treated 

in the dark with K, there was very little difference in levels of protein at 48 h for the 

6 day-old tissue compared with the controls (Table 3.2). However, at 72 h the levels 

of protein in the tissue declined slightly with the K treatment but there was a general 

decline in all the treated tissues of this age. 

Therefore, with old tissue the response to K, was reduced. However, with a 

combination of K and PEG, K showed no effect over PEG in the young tissue after 48 

h of incubation. In contrast, with old tissue K enhanced the effect of PEG reducing 

the protein level in tissue incubated in both the light and the dark as shown in Table 

3.1 and 3.2. 

K gave a slight enhancement of the level of protein in young and old roots 
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'fibRe 31.4 

I Tissue age Time in dark Treatment - (day) (h) H20 K -5 PEG -10 PEG -5 PEG+ K -10 l?EG + K 

~ 48 1.1 0.73 0.96 0.66 0.69, 0.52 
6 

72 0.95 0.55 0.72 0.63 0.83 0.71 

48 0.50 0.67 0.56 0.43 0.50 0.50 

I~ 
10 

72 0.52 0.67 0.52 0.29 0.59 0.48 



tissue at 48 hand 72 h (Table 3.3 and 3.4). However, K had no effect on the old root 

tissue after incubation for 72 h in the light (Table 3.3). In dark treatments, the levels 

of soluble protein decreased in the 6 day-old tissue from 48 h to 72 h of incubation, 

but K enhanced the level of soluble protein after 48 h and 72 h (table 3.4 ). 

These responses of the leaves of whole seedlings, which had intact roots, was 

investigated further using excised leaves and leaf segments. The data in Table 3.5 show 

the response of the excised first leaves to treatment with PEG, K or a combination of 

both compounds. The levels of soluble protein found after incubation in the light was 

I ewer- for both young and old excised leaf tissue than for whole seedlings. Treatment 

of the leaves with both concentrations of PEG reduced the levels of soluble protein in 

the young and old tissue after 48 hand 72 h in the light. However, the reduction was 

higher after treatment with the higher concentration of PEG. Similar results were 

found with the samples incubated in the dark for the same period of time (Table 3.6). 

It was noted that the leaf segments which were incubated in the light and dark for the 

same period of time with both PEG solutions gave similar patterns of reduced protein 

levels as for the whole leaves (Table 3.7 and 3.8), respectively. The data in Table 3.5 

show the responses of excised leaves to K treatment. These differences between the 

K treatment and the water controls were only slight and highly variable. It appears 

that K treatment had very little effect, if any, on the levels of protein in the tissue 

incubated in the light (Fig. 3.5) or in the dark (Fig. 3.6). However, the levels of 

protein were generally much lower than those found in the leaves of intact seedlings 

(Fig. 3.1 and 3.2). 

The effect of K on the level of soluble protein in leaf segments following 

incubation for 48 h or 72 h is shown in Fig 3. 7 and Fig 3.8. The data in Table 3. 7 

show that K caused a slight increase in the levels of soluble protein for the leaf tip 
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after 48 h and 72 h in the light. However, soluble protein in the middle segments 

decreased after 48 h, but slightly increased after 72 h. Similar responses were found 

with basal segments. The data in Table 3.8 show that the level of soluble protein 

in tissue treated with K and incubated in the dark slightly increased in the tip and 

middle segments after 48 h and 72 h of incubation. However, soluble protein levels 

in the basal segments slightly decreased after 48 hand increased after 72 h, however, 

this effect was marginal and probably not significant. The data in Table 3.5 show 

the effect of K, with a combination of PEG, on the level of soluble protein of excised 

leaves. A comb~n~tion of K and PEG solutions caused slight- increase-s -in the level of -

soluble protein in the light compared to the K effect on young tissue after 48 h of 

incubation in the light. The levels of soluble protein decreased in young tissue after 

72 h. However, the level of soluble protein decreased in both combinations after 48 h 

and 72 h. The data in Table 3.6 show a similar pattern for soluble protein levels for 

both young and old tissue incubated in the dark. 

Leaf segments eventally showed similar patterns of protein levels as excised 

leaves when incubated with K in combination with PEG at both low and high concen­

trations. K and PEG treatments caused a reduction in the levels of soluble protein in 

all segments incubated in the light or dark as seen in Table 3. 7 and 3.8, respectively. 

However, the response to PEG appeared not to be modified by co-treatment with K. 

It would appear that the response of leaves is most marked when the seedlings are 

treated via the root systems. 
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In addition to the normal enlargement and greening process following illumi­

nation, it was shown (Rhodes and Yemm, 1968) that there was a consistent increase in 

the protein content of the leaves. When dark-grown wheat seedlings were illuminated 

for 72 h protein levels in the segmented leaves were seem to be variable (Fig. 3.2). 

The apical regions exhibited the highest levels of protein. Thereafter, the middle and 

basal segments. This result indicated that the protein level increased from the base 

to the apex of the leaf. However, protein content varied quantitatively in different 

regions of the leaf, during greening. For example, there was a noticeable increase in 

the soluble protein in the apical region of the leaf compared to the basal region. This 

sequence of soluble protein content in the greening of dark-grown leaves is inconsis­

tent with the sequence of chlorophyll accumulation, where the apical region had the 

lowest levels of chlorophyll and the basal region the highest levels of chlorophyll. 

Proteins vary in their individual rates of degradation, depending on either 

their physical properties (Dice et al., 1973; Acton and Gupta, 1979; Cooke and Davies, 

1980) or their location in the cell. Barratt and Woolhouse (1981) showed that different 

fractions from Phaseolus spp. had different in vivo rates of degradation. 

It has been reported that water stress, in most plants, causes a reduction 

in growth (Cleland, 1967; Gates, 1968; Shiralipour and West, 1968), which may be 

associated with an alteration of protein metabolism (Benzioni et al., 1967; Dhindsa 

and Bewley, 1977). It has been shown (Dhindsa and Cleland, 1975) that water stress 

causes a change in the types of proteins produced by A vena spp. coleoptile cells and 

also a reduction in the rate of protein synthesis. Cooke et al. ( 1979a, b) found that 

when Lemna spp. fronds were placed under water stress, there was a reduction in 

growth and protein synthesis and an increase in protein degradation. 
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When PEG solutions were applied to the roots of 6-day old wheat seedlings, 

the soluble protein levels were increased with mild PEG (-5 bar). However, there was 

no increase with severe water stress in relation to the control after 48 h of incubation 

in the light. However, after 72 h of incubation the soluble protein level was higher 

with both PEG osmotic solutions. Old seedlings responded in a different way to water 

stress. They exhibited a greater reduction in soluble protein levels with different PEG 

concentrations after 48 h and 72 h, in the light. The incubation of wheat seedlings 

in the dark gave similar patterns of protein degradation. However, the reduction in 

levels of protein was higher th_at;1 i_n_ those samples inc-ubated in the dark. The soluble 

protein loss was increased in dark-incubated old leaves compared to those leaves 

incubated in the light. Such an effect may have been due to irreversible damage to 

the protein synthesizing complex (Bewley and Dhindsa, 1977). It has been shown 

{Shiralipour and West 1968) that under moderate water stress, protein synthesis 

was inhibited and under severe water stress degradation of protein occurred (such as 

maize shoots}. Dhindsa and Clelend {1973) have shown that water stress caused a 

differential inhibition of the synthesis of some proteins. 

The changes in the soluble protein which occurred in water-stressed roots 

of wheat seedlings under the condition described earlier was different from those in 

leaves. The level of soluble protein slightly increased in young tissue after 48 h of 

incubation in the light with both PEG solutions. However, after incubation of up to 

72 h in the light, a decrease in level of soluble protein occurred especially with severe 

water stress. Similar responses were found in old leaves incubated in the light for the 

same period of time as young leaves. Obendorf and Huffaker (1970) reported that 

responses of RUDP carboxylase activity and soluble protein content to illumination 

were highest in leaves of 5 to 7 day-old barley plants and later declined. Furthermore, 
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when root of wheat seedlings was held in the dark under water stress condition, the 

response was rapid, and the soluble protein was reduced in the young and old tissue. 

However, this study showed that water stress had no effect on either young or 

old excised leaves after 48 h a.nd 72 h in the light and dark. The level of soluble protein 

remained the same in all treatments with small differences between the samples, which 

may be due to the stages of development and the time of incubation. Similar responses 

were found with leaf segments. 

The effects of water stress on protein level has been reported by ma.ny workers 

(Hsiao, 1970; Morilla .d .sY.., 1973). Leaves subjected to water stress had an impaired 

capacity to make protein and showed a rapid loss of polysomes and an increase in 

monosomes. Responses to a continuing water stress included premature senescence 

involving a net loss of protein from the leaves (Tung and Brady, 1970). Todd and 

Basler (1965) found that there was a disappearance of protein in the chloroplast and 

mitochondria fractions with increasing water stress. Total soluble protein decreased 

with increasing stress while the specific activity of peroxidase increased with detached 

leaves (Todd and Yoo, 1964). 

Water stress also caused a rapid increase in the ABA content of leaves of 

wheat (Wright and Hiron, 1969). Such responses to water stress may be due to the 

accumulation of ABA or to the changing AHA/cytokinin balance. Water stress and 

ABA can provoke effects on leaf protein synthesis which are similar to the changes 

that occur during senescence. Cooke et al., (1979b) reported that the loss of protein 

brought about by water stress was the result of reduced protein synthesis and en­

hanced protein degradation. However, an alternative strategy which plants may use 

to adapt to a water stress situation is to change its enzyme complement by synthe­

sizing new proteins from amino acids formed by degradation of old protein (Dhindsa 
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a.nd Cleland, 1975). 

K treatment, using 6 day-old wheat seedlings, resulted in an increase in the 

level of soluble protein, after 48 h and 72 in the light. However, K treatment using 

old seedlings caused a slight increase in soluble protein after 48 h in the light, but 

there was no effect of K after 72 h. Treatment with K in the dark caused a slight 

increase in the soluble protein after 48 h in young seedlings. However, K had no effect 

on soluble protein levels after 72 h in young seedlings or after 48 h and 72 h in older 

seedlings. The different responses of seedlings to K may be due to the difference in 

developmental stages of the plant. However-, roots of the wheat seedlings exhibited 

a declining level of soluble protein with K treatment compared to the leaves. In 

order to assess changes in soluble protein level occurring as a result of K treatment 

of wheat seedlings, studies were carried out with excised leaves and leaf segments. K 

treatments with excised leaves had no effect on the level of soluble protein in both light 

and dark incubation. Furthermore, leaf segments gave a similar pattern to excised 

leaves. However, there were small differences between the samples which may reflect 

the tissue age and the time of incubation. 

Treatment with K and PEG, as a mixture, caused the level of soluble protein 

of wheat seedlings {6 and 10 day-old) to decline in young and old leaves in the light 

and dark after 48 h and 72 h. This pattern of responses was not found with excised 

leaves and leaf segments, which were not affected by a combination of K and PEG. 

Again, there were slight differences between the samples as stated earlier which may 

have been due to the developmental stages and the time of incubation. However, it 

seems more likely that the PEG solution, K treatment and a combination of both 

solutions did not affect either excised leaves or leaf segments, but affected the wheat 

seedlings as a results of interaction between the root and shoot system. However, it 
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has been reported that K treatment caused a 25% increase in protein level compared 

to control samples (Jones and Kaufman, 1971). Itai and Vaadia (1971) reported that 

when plants were subjected to water stress, translocation of cytokinin from the root 

zone decreased and the decline in protein synthesis in the leaves of these plants may 

be linked to fall in cytokinin levels. Cooke et al. ( 1980a, b) suggested that water 

stress, perhaps acting via hormones, affects the permeability of the tonoplast and 

allows the vacuolar proteolytic enzymes to interact with cytoplasmic protein. 

The results in this section were not totally explainable since large varaitions 

were found -in protein content -tinder the var{ous treatments. However, it can be 

concluded that the incubated excised whole leaf blades and segments had lower protein 

contents than for the leaves of intact seedlings. This pattern was seen for dark and 

light incubations and for the 6 and 10 day-old tissues. Root systems from the intact 

seedlings showed that the amount of protein declined for the 6 day-old to 10 day-old 

seedlings. This pattern was more pronounced than for the leaf tissue and indicated 

that the root tissue varied independently of the leaf tissue in regard to protein content. 
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CHAJP>'JI'lER FOUR 

NUCJLJE][C ACID§ 

Nucleic acids are the major components of cell nuclei. They were discovered 

in animal tissues by Miescher {1871). The first nucleic acids isolated from plant tissues 

were from yeast (Altmann, 1889; Osborne and Harris, 1902). 

DNA in higher plants varies in amount and type dep_ending on the species 

(Flavell, 1982). The haploid DNA content of angiosperms is variable, ranging from 

0.5 to over 200 pg per cell (Bennett and Smith, 1976; Rees and Hazarike, 1969) with, 

for example, a three-fold variation in the genus Lathyrus and ten-fold variation in 

the genus Crepis (Jones and Brown, 1976). Hinegardner (1976) reported that higher 

plants contain more DNA than is required for developmental processes. DNA in the 

nucleus is found in the form of chromosomes but smaller amounts are present in cellu­

lar organelles such as mitochondria a.nd chloroplasts (Zubay, 1988). Organelle DNA 

has been found in different plastid types, proplastids (Edelman et al., 1964), etioplasts 

(Herrmann and Kowallik, 1970), chromoplasts (Herrmann, 1972), leucoplasts (Siu et 

al., 1976) and chloroplasts (Rose et al., 1974). Kowallik and Herrmann (1972), Gibbs 

et al. (1974) and Siu et al. (1976) have reported that the DNA fibrils are found in 

more than one region within organelles. 

In higher plants, the number and size of DNA regions increases during devel­

opment of the chloroplast, indicating genome amplificatation. The amount of DNA 

increases (Herrmann and Kowallik, 1970; Kowallik and Herrmann, 1972). Incubation 

of tissues in radioactive nucleotide precursors results in DNA being labelled in all 

chloroplasts following organelle division as noted by Rose et g,l. (1974) and Poss-
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ingham and Rose (1976) with spinach chloroplasts; and Kadouri et al. (1975) with 

cucumber chloroplasts. These observations suggest that DNA is synthesized in the 

chloroplasts themselves. All cellular DNA synthesis is restricted to the nucleus, mito­

chondria and chloroplasts. Localization of DNA polymerases within these organelles 

show that 90% of the total DNA polymerase activity is in the nucleus (Weissbach, 

1977). DNA polymerase activity has been reported to be increased prior to the on­

set of cell division in washed slices of sugar beet (Dunham and Cherry, 1973) and 

in potato tuber (Watanabe and Imaseki, 1977). DNA polymerase activity has been 

reported in pollen grains of Tradescantia spp. (Takats and Weaver, 1971). 

It has been found that the amount of DNA per cell may affect the rate 

and duration of different developmental process. DNA content in higher plants is 

reported to be correlated with such features as cell size, size of tissues, type of organ, 

cell cycle time and duration of S phase, duration of meiosis, pollen maturation time 

and minimum generation time (Rees and Jones, 1972). DNase activities have been 

found associated with DNA replication, recombination and repair in bacterial systems. 

They are also associated with the degradation of foreign DNA in bacterial and animal 

cells, and in catabolic processes associated with cellular senescence (Flashman and 

Levings, 1981 ). 

Different sites of DNase in plant cells have been demonstrated. These sites 

include chromatin (Kligman and Takats, 1975), the vacuole (Matile and Winkenbach, 

1971), lysosomes (Coulomb, 1971) and the cytosol (Butcher et al., 1977). Chromatin­

associated and free nuclear DNase have been reported to be associated with DNA 

replication in seedlings (Jenns and Bryant 1978). It has been reported that lyso­

somal and vacuolar enzymes serve as a defence against viral infection (Flashman 

and Levings, 1981 ). Vacuoles contain a variety of degradative enzymes in addition 
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to DNase. The vacuole is the primary cellular site of such activity (Flashman and 

Levings, 1981 ). It has been reported from work using thymidine incorporation, that 

nuclear DNA and plastid DNA are synthesized during greening and synthesis of the 

former precedes plastid DNA synthesis. This appears to be due to an increase in the 

population of chloroplasts where plastid DNA synthesis coincides with chloroplast 

division (Kowallik and Herrmann, 1974; Rose et al., 1975). The ratio of plastid DNA 

to nuclear DNA is higher in fully green pea shoots than in younger ones. It has been 

reported that the amount of plastid DNA in young leaves is 1.3% of the total DNA 

an~ 7._3% of the total DNA in the old-green shoots (bamppa and Bendich, 1979). 

Ribosomes are known to play an important role in transforming genetic in­

formation into cellular realisation (Von Wettstein et al., 1971 ). They are commonly 

regarded as a RNA-protein complexes through which mRNA passes, with consequent 

translation of the genetic code into polypeptides, by sequential amino acid assembly 

(Davies and Larkins, 1980). The rRNA serves to provide a template for ribosomal 

protein assembly since partial destruction of rRNA need not mean the loss of riboso­

mal function (Furano and Harris, 1971). 

Ribosomes are made up of two nucleoprotein subunits. The subunits contain 

between 30 and 50% (by weight) protein, the remainder being RNA and a minor 

amount of inorganic molecules (Davies and Larkins, 1980). The classification of 

ribosomes is based on their sedimentation coefficients. Ribosomes (70S) occur in 

prokaryotic organisms such as bacteria and blue-green algae, and in the chloroplasts 

of plants. Ribosomes (80S) are reported to be in the cytosol of eukaryotic cells 

(Loening, 1968; Stutz 1976; Davies and Larkins, 1980). These are more larger and 

more complex than 70S ribosomes of bacteria (Wool and Stoffer, 1974). Bacteria have 

only one genome and produce just one ribosomal 70S. 
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In contraJ:Jt, animalo ha.ve two genomeB with 70S ribosomes in the mitochon­

dria and 80S ribosomes in the cytoplasm. Green plants have a third genome and 

an additional ribosome of the 70S type in the chloroplast (Loening, 1968; Stutz, 

1976). The RNA component of 80S ribosomes is synthesized directly from a DNA 

template in the fibriller region of the nucleus, whereas the ribosomal proteins are 

made on cytoplasmic polyribosomes and are transported into the nucleus for assem­

bly (Warner et al., 1973). In eukaryotes, ribosomal RNA is synthesised as a large 

precursor molecule by a specific enzyme, RNA polymerase I (Perry, 1976; Hadjiolov, 

1977; Krakow and Kumar,_1977). Plastids have their own cemplement of ribosomes 

which belong to the prokaryotic type (as mentioned before) and are different in their 

functional and physiological properties to those of 80S type (Leaver and Pope, 1977). 

In photosynthetic tissue, plastid ribosomes comprise about 50% of the total cellular 

ribosome complement and are the main contributors to cellular protein biosynthesis 

(Ellis, 1976). 

Internal and the external factors (as mentioned in Chapters 1, 2 and 3) have 

their effect on cellular components including nucleic acids. It has been reported that 

the levels of N A found in a particular tissue are related to the age of the tissue. A 

decrease in leaf N A with age has been noted in tomato leaves and the percentage of 

RNA decreased as the leaves aged (Gates and Bonner, 1959). Holden (1952) showed 

that the DNA and RNA per dry weight of tobacco leaves were higher in the youngest 

leaves than in the oldest one. 

It was suggested that the cotyledons of tobacco leaves contained storage N A 

which were broken down during germination and transported to the growing parts 

where resynthesis occurred (Smillie and Krothov, 1961). Similar results have been 

reported by Barker and Douglas (1960), working with pea seeds. Mothes et al. (1958) 
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found that during the growth of Nicotiana rustica leaves the levels of N A started to 

increase, followed by a decrease in the levels, which eventally attained a fairly constant 

level. Similar findings were reported by Holmes et al, (1955) using bean leaves, and 

Samuels (1959), using pea roots. Osawa and Oota (1953) and Oota and Osawa 

(1954) have reported that, during germination of the bean Vigna sesquipedalis, a 

rapid decrease in the NA levels of the cotyledon occurred. This was accompanied 

by a parallel increase in various parts of the growing seedlings. The ageing of leaves 

is characterized by a gradual decrease in metabolic activity, manifesting itself in 

yellowing _and degradati9n of NA (Wollgiehn, 1967). 'I'h€ levels of RN-A subjected- to 

degradation during ageing of tobacco leaves are strongly dependent on a supply of 

nutrients. However, after excision, the young tobacco leaves aged more slowly than 

old ones (Wollgiehn, 1967). It has been reported that during the initial stages of 

germination in the peanut, there is an increase in the levels of RNA and DNA due to 

enzymic changes during the developmental process (Aldana et al., 1972). 

Plant growth regulators (especially cytokinins) have different effects on NA. 

It has been reported that cykok.inin enhanced RNA in tobacco leaves (Partheir and 

Wollgiehn, 1961). Similar results have been reported by Srivastava (1967), using bar­

ley leaves. Cytokinin is reported to enhance endogenous polymerase activity (Johnson 

and Kende, 1971). It has been noted that cytokinin induced increases in nuclear RNA 

and nuclear labelling with RNA precursors (Guttman, 1957; Olszewka, 1959; Jensen 

rl iY., 1964). Carpenter and Cherry (1966), using peanut cotyledons, reported that 

cytokinin increased the levels of all RNA species within 2 h of hormone application. 

Similar findings of enhanced RNA by cytokinin have been reported by Zwan (1973) 

and Erismann and Fankhauser (1967), using Lemna spp. It has been found that cy­

tokinin promotes the activity of nuclear polymerase 1 that catalyzes the transcription 
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of ribosomal RNA (Schneider et al., 1978; Romanko et al., 1978). Mikulovick et a.l. 

(1978) reported that cytokinin promoted RNA synthesis in the greening tissues. Sim­

ilar results have been found by Dyer and Osborne (1971) and Grierson et al. (1977). 

Cytokinins have been shown to decrease RNa.se levels in intact leaves (Fletcher, 1969). 

Light has an important role in the physiological and biochemical events which 

occur during leaf development a.nd greening (Dale and Murray, 1968). It has been 

demonstrated that the illumination of etiolated tissues elicits an increase in the total 

RNA (Bogorad, 1970; Tester, 1977). Harel and Bogorad {1973) reported that the ac-
- -

tivity of chloroplast RNA polymerase increased after illumination of etiolated maize 

leaves. Similarly, Apel and Bogorad (1976) reported that the activity of RNA poly-

merase increased from three to four-fold within 16 h of illuminating etiolated maize 

plastids. They also reported that light enhanced activity of maize plastid DNA­

dependent RNA polymerase. It has been noted that light increased the amount of 

chloroplast and cytoplasmic ribosomal RNA, and that higher levels occured in plastid 

rRNA (Roussaux et al., 1976; Mikulovich, 1978). Similar results have been reported 

by Harel and Bogorad {1973), using green maize leaves. They suggested that light 

enhanced chloroplast rRNA synthesis came from the elevated activity of plastid RNA 

polymerase which has been reported to occur immediately after the illumination of 

etiolated maize leaves (Bogorad, 1976; Harel and Bogorad, 1973). 

In addition to the normal enlargement and greening of etiolated tissues fol­

lowing illumination, it has been shown that there is a consistent increase in the NA 

levels. This increase in RNA could arise as a result of increased cytoplasmic and 

chloroplast synthesis (Rhodes and Yemm, 1966). It has been reported that the in­

crease in RNA levels may accompany the unrolling and greening process (Bogorad 

and Jacobson, 1964). Similar results have been noted in barley leaves (Bogorad, 1967; 
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Kirk and Tilney-Bassett, 1967). 

One of the major effects of illumination on etiolated pumpkin cotyledons 

is an accumulation of ribosomal RNA (Wollgiehn and Parthier, 1980; Mikulovich, 

1978). Poulson and Beevers {1970) reported that the capacity of RNA synthesis was 

increased in response to light, with barley leaf segments. They also reported that light 

stimulated RNA polymerase activity in maize leaves. It has been reported that white 

and red light have an effect on morphological and biochemical changes in cellular 

components, one effects being increased soluble RNA polymerase activity. Pearson 

and Wareing (1970) noted~an i~crease in polysomes with white and red light using 

wheat leaves. Similar results have been reported by Thien and Schopfer (1975), using 

mustard cotyledons. They found an increase in cytoplasmic and plastid rRNA in the 

presence of white or red light. 

Many investigations have been carried out on structural aspects of water 

stress on development and metabolic processes (Kessler, 1961 ). It has been reported 

that the most consistent response of a plant cell to water stress is an increase in 

RNase activity (Diener, 1961, Dove, 1967, 1971; Arad et al., 1973). It has been 

suggested that the increase in RN ase activity parallels the increase in water stress, 

due to an increase in the concentration of ABA (Arad and Richmond, 1970). Premecz 

et al. {1977) reported that the increase in RNase level is due to enzyme protein 

synthesis. Reduction in RNA synthesis rates during the imposition of water stress has 

been reported for corn seedlings (Maranvill and Paulson, 1972), and for the desert 

plant Anastatica hierochuntica where recovery occurred within 12 h of rewatering 

after severe water stress (Hartung, 1974). Nir et al. {1970) found that water stress­

induced changes to cells caused condensation of DNA in the nucleus thus blocking 

messenger RNA synthesis and, ultimately, protein synthesis. Henckel et al. {1967), 

146 



Henckel {1970) and Blekhman {1977) demonstrated that there was an increase in 

ribonuclease activity in a variety of plants subjected to water stress. Hsiao (1973) 

reported that moderate water stress probably had little effect on N A composition, 

and severe deficiency of adenosine triphosphate {ATP) might slow NA synthesis and 

prevent genome replication. In stressed tissue, RN ase activity increased and may 

have inhibited accumulation of RNA (Hsaio 1970). 

Hsaio {1970) found that water stress caused a reversible decrease in NA in 

wheat leaves and accumulation of intermediate products of NA metabolism. In agree­

ment with other workers investigating wheat T~dd and Basler (1965) and Stutte and 

Todd (1969) reported that more severe water stress caused irreversible NA decompo­

sition. Morilla et al. (1973) noted that the increase in ribonuclease followed polysome 

level decline during water stress with corn seedlings. Henckel et al., (1967) reported 

that water stress caused the disappearance of polysomes in corn and bean leaves and 

the appearance of free ribosomes. It has been reported that stressed tomato leaves 

(Lycopersicon esculentum) retain the ability to incorporate 32 P into RNA, but the 

rate of destruction of RNA is increased (Gates and Bonner, 1959). When barley 

plants were exposed to water stress, the RNA levels of developing pollen decreased 

(Simonovitch 1963). Wyen et al., {1969), using Avena spp. leaves, reported that 

the decrease in RNA was associated with increased RNase activity and this was as­

sociated with injury and senescence. Kessler (1961) noted that the decline in RNA 

levels during water stress was due to impaired RNA synthesis or increased hydroly­

sis. Water stress impaired the NA system which is intimately connected with protein 

synthesis (Casperson, 1950). 

The major aim of the work presented in this Chapter was to investigate the 

level of NA, particularly RNA, in the development and the greening process of wheat 
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leaves where the capacity to accumulate chlorophyll is altered with the ageing of the 

etiolated tissue. Particular attention was pa.id to the fractionation of the N A with a 

view to distinguishing which ribosomal fractions (if any) changed specifically, i.e the 

chloropla.stic or cytoplasmic component. The effect of water stress on this process was 

also investigated in order to elucidate what effect environmental factors, other tha.n 

light, might have. Again the a.im was to see if, given that chlorophyll accumulation 

was impaired, the chloroplast specific ribosomal RNA levels were also altered or if 

the effect was generally on all heavy molecular weight ribosomal RNA fractions. 
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4.2 MATERIAL§ A.ND METHOD§ 

In all cases of N A extraction 500 mg of leaf tissue was used. 

4.2.Jl..Jl. Plant mate!i'nall: as described in General Materials and Methods. 

4.2.2 Method§ 

The method used was that of Solymosy et al. (1968,1970) and modified by 

Cha.ffey (1983). 

4.2.2.1 Extraction of NA 

Leaf tissue of up to 0.5 g was placed in a mortar and ground to a fine powder 

in the presence of liquid nitrogen and treated sequentially as follows:-

a. To the homogenate was added 0.32 ml diethylpyrocarbonate (DEP), 0.88 ml of 

10% sodium dodecylsulphate (SDS) (100 g. I - 1) and 4.4 ml extraction buffer 

(100 mM Tris/HCl, 53 mM sodium acetate, 8.8 mM magnesium acetate, pH 7.2). 

The homogenate was mixed thoroughly then poured into a centrifuge tube. 

b. A further 4.4 ml extraction buffer was added to the mortar, the washing was 

combined with the homogenate from (a) above. 

c. NaCl (0.25 g) was added to the combined homogenates from (a) and (b) above 

and after it was dissolved the solution was centrifuged in a bench top centrifuge 

at 2,000 rpm for 10 min. The supernatant was decanted into a centrifuge tube 

containing 12 ml ( 100% ) ethanol, the top sealed with parafilm and the mixture 

then stored at -5°C. 

d. The ethanolic NA solution from (c) was centrifuged, the supernatant discarded 
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and precipitate allowed to air dry before being dissolved in 1.5 ml of (E) buffer 

solution ( 40 mM tris base; 20 mM sodium acetate; 2.5 mM magnesium acetate, 

pH 7.2). 

e. The N A solution was further centrifuged if necessary and supernatant retained 

for N A determination. 

4.2.2.2 NA estimation and fractionation 

The method of Chaffey (1983) was used with minor alterations. Acrylamide 

and bis-acrylamide were dissolved in water to make a stock-solution of 15% wjv and 

-0.75% wjv, respectively. The 10% (w/v) ammonium persulphate solution was made 

up fresh each time. Buffer (3E) was prepared using: 

trizma base 120m M 

sodium acetate 60 m M 

magnesium acetate 7.5 m M 

The pH was adjusted to 7.2 with M HCI. A gel running buffer (3E) was 

prepared by diluting (3E) 1:2 with distilled water into which was dissolved 2 g SDS. 

1 -1. 

4.2.2.3 Gel preparation 

Acrylamide gels ( Strength 2.6% ) were made using the following reagents:­

stock acrylamide ( 4.33 ml) 

(3E) buffer (8.32 ml) 

distilled water (12.11 ml) 

NNN'N'-tetramethylethylene diamine (Temed) (0.010 ml) 

ammonium persulphate (0.10 ml) 
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The acryla.mide solution, buffer, water and Temed were mixed in a beaker. 

Ammonium persulphate solution was added and quantities of the mixture pipetted 

to a depth of 8 em in 0.45 em diam. plexiglass gel tubes which had their lower ends 

sealed with dialysis membrane held with a rubber ring. Closed rubber tubes were 

fitted over the membrane to form an air seal to prevent the solution passing through 

the membrane. Polymerisation was completed in 20 minutes, after which the air seals 

were removed and the gel transferred to an electrophoresis tank. 

4.2.2.4 ElectrophoresiE~ 

This was carried out at room temperature (21 °C). The gels were pre-run at 

6 rnA. gel -l for a 30 min. prior to loading the samples, to remove free acrylamide, 

ammonium persulphate and other impurities (Poulson and Beevers, 1970). RNA (10 

to 20 1-Lg in 15 ILl of (E) buffer (to which had been added a small quantity of solid 

sucrose) was loaded onto each gel 

Electrophoresis was perfomed for 3! h at 6 rnA/ gel and 50 volts in plastic 

electrophoresis tanks. At the end of this period, the dialysis membrane was removed 

and the gels gently blown into a Petri-dish and soaked in 7% acetic acid for 12 h to 

remove any strong ultra-violet light-absorbing material present at the top of the gel. 

Gels were scanned in a Joyce Loebl 400 linked to Joyce Loebel D7 power supply and 

potentiometric recorder on which the peaks absorbance of the RNA were obtained. 

The peak heights and the ratio between total cytoplasm and total chloroplast were 

recorded from traces by measuring the area under the peaks by manual integration. 

4.2.2.5 Quantitative NA determination 

NA solution (0.1 ml) was made up to 3.0 ml with distilled water and scanned 

in an Ultrospec ( 400 LKB) Biochrom, using distilled water as a blank. N A concen-
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tration was calculated from the following equation of Tester and Dure (1966). 

22 A260 - A290 = 1 mg ml -l nucleic acid. 

Whilst fractionation into discrete components was possible on the gels no 

actual quantitative yield could be obtained for each fraction. 
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4.31 RE§UlLT§ 

4.3.1 Total NA levels during greening of the first leaf of wheat seedlings 

In preliminary experiments, first leaves of wheat seedlings were segmented 

into three segments (tip, middle and base) after the seedlings had been exposed to 

light for 72 h following growth in the dark for 10 days. Total N A were extracted 

and the levels estimated for each segments. The data in Fig. 4.1 show that the 

distribution of NA was very similar for all segments. The middle segments contained 

the highest level of N A followed by the tip segments. The lowest level of N A was_ in 

the basal segments. These total N A levels along the length of greening leaves did not 

follow the same pattern as seen for chlorophyll (the greening process from the tip to 

the base). 

This pattern was further investigated in relation to the treatment applied 

with factors such age, K and water stress. The first leaves of whole seedlings (6 or 

10 day-old) which had not been exposed to light were used. The level of N A in the 

leaves was estimated for seedlings kept in the dark and the light for 48 h and 72 h 

using both young and old tissue. 

The level of NA accumulated in the tissues, which were incubated for 48 h 

and 72 h in the light and the dark, are shown in Table 4.1 and 4.2, respectively. There 

was an increase in the level of NA in young tissue after 72 h of incubation in water. 

In contrast, there was no change in the NA level in the older tissue over the period 

of the experiment (Table 4.1). Samples incubated in the dark showed higher levels of 

NA after 48 h on the young tissue. However, after 72 h the level of NA declined in 

the tissue in the light (Table 4.1). The capacity of the older seedlings to accumulate 

N A was less than that of the younger seedlings. 
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The effect of water stress on the NA content of the tissue was investigated 

by treating seedlings for 48 h and 72 h with either a low or a high concentration of 

PEG prior to extraction. The level of N A increased slightly in young tissue after 48 

h of incubation in the low PEG concentration, but declined after 72 h (Table 4.1). 

A similar response was found for the tissue incubated in the dark (Table 4.2). This 

indicates that the response of NA accumulation to PEG was not related directly to 

the greening of tissue. The level of NA increased in the high PEG concentration 

in young tissue during the period of 48 h to 72 h of incubation in the light and in 

the dark. However, there appeared t~ be :no effect of PEG on elder tissue over the 

sampling period (Table 4.1 and 4.2). 

The results of the effect of K on 6 day-old wheat seedlings which were incu­

bated in the light or dark for 48 and 72 hare shown in Table 4.1 and 4.2. It appears 

that the levels of N A were increased slightly in young tissue after 48 h of incubation in 

both the light and the dark compared to water controls. There was a slight decrease 

in older tissue after 72 h in the light, and a slight increase in levels in older tissue 

incubated in the dark for 72 h. These effects were found to be variable and there was 

no consistent effect in any of the treatments. 

The effect of K as a potential inhibitor of stress imposed by PEG on the level 

of NA was also investigated and the results are shown in Table 4.1 and 4.2. For the 

light investigations, it was noted that the level of N A was higher in the young tissue 

after 48 h incubation with both PEG concentrations and K in comparison to the 

PEG or K alone. The level of NA was higher after 72 h incubation with the low PEG 

concentration and K, and slightly decreased in the same period with the higher PEG 

concentration and K. There was no effect of the combined treatments (K and PEG) 

in the older tissue incubated in the light. The level of NA in the tissue incubated 
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in the dark with similar combined treatments is shown in Table 4.2. There was no 

consistent effect of PEG and K on N A levels. There were increases and decreases in 

levels of N A in treated and control-plants. In the young tissue, it appeared that a 

combination of PEG and K abolished the increase in levels of N A over the sampling 

period. 

It was noted that the various treatments had no effect on N A levels of root 

systems (Table 4.3 and 4.4). However, for the 6 day-old dark-grown tissue, the overall 

level of NA was higher than for light grown tissue, at both times of incubation. The 

10 day-old tissue- gave sirililar levels of NA in the roots of the light and dark-grown 

seedlings. It appears that the effect of water stress was apparent not on the root 

system but on the leaves. 

The effect of water stress on leaves was studied further using excised leaves 

and leaf segments. Seedlings were grown in the dark for either 6 or 10 days-old, prior 

to excision of the leaves before being transferred to the light. Tissue from both excised 

leaves and leaf segments (tip, middle and base) were treated in the same way as the 

seedlings. It was noted that levels of NA in excised leaves were generally higher when 

incubated in the dark compared with the light (Table 4.5 and 4.6). These effects 

were apparent for leaves derived from 6 or 10 day-old dark-grown seedlings following 

incubation for 48 hand 72 h in the light. 

It appeared that K, PEG treatment and a combination of PEG and K had 

no consistent effect on the levels of the N A extracted from the excised leaves (Table 

4.5 and 4.6). Analysis of the total NA levels extracted from leaf segments which had 

been incubated in the same way as excised leaves are shown in Table 4. 7 and 4.8. 

Once again, no consistent effect of the treatment was seen on the total N A for either 

time of treatment. 
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It appears that the effect of treatment on the leaf tissue wa.s most pronounced 

when intact seedlings were used. 
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In view of the effect of light treatment (increases and decreases in levels 

of NA in treated and control plants respectively) on total NA in whole seedlings, a 

further set of investigations were carried out. Incubations were for longer periods of 

time and the NA was fractionated by polyacrylamide gel electrophoresis (PAGE). The 

total NA was estimated in segmented leaves (tip, middle and base) after incubation 

of the seedlings. Wheat seedlings were grown for 5 days in the dark prior to transfer 

to the light or kept in the dark. Incubation was for up to 17 days, with the first 

extractions being made from 6 days. Total NA was extracted at day 6 to 15. The 

total N A levels extracted fro_m light and dar-k incubated first leaves of seedlings are 

shown in Fig. 4.2, 4.3 and 4.4 for tip, middle and basal segments, respectively. There 

was a general decline in NA during the time of incubation from 6 to 15 days, for 

tip segments incubated in both light and dark (Fig. 4.2). However, the level of NA 

was higher in tissue incubated in the dark compared to tissue incubated in the light. 

Similar results were found for middle segments (Fig. 4.3). The levels of NA in the 

basal segments were less consistent. In general, they were higher in tissue incubated 

in the dark, but decline were not apparent (Fig. 4.4). This may be a reflection of 

the younger age of this tissue where the N A levels were more stable and less likely to 

change. 

The data in Fig. 4.5 show the levels of N A in segments of leaves taken from 

whole seedlings which were incubated for extended periods of time in the light. The 

level of NA in the tip segments was variable, but a decline was apparent by the end 

of the incubation. In the middle segments, the level of N A was higher with a general 

decline during the period of incubation. The basal segments showed a decline from 

day 13 for the level of total NA. 

In order to investigate the effect of extended periods of incubation in the 
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Figure 4-.5 
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dark on the total NA content ofleaves and on the capacity to accumulate RNA when 

subseqently transferred to light after these periods, wheat seedlings were kept in the 

dark for 14 days prior to their exposure to light for 3 days. First leaves of seedlings 

were segmented into three segments as described before, then total NA was extracted 

and estimated. The data in Fig. 4.6 show that the level of NA was maintained during 

the dark incubation and was higher in the tip segments. During incubation in the 

light, a decline in N A was seen with the lowest level at day 17. However, the level of 

total NA in both middle and basal segments tended also to decrease with time. The 

level of N A was higher in the b~al seg~ents than _in the other_ segments by day- 17-. 

This was probably a reflection of the younger age of these tissues. 
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4!:.:31.2: Frrad.Rona.tnoxn. olf NA dllmrixn.g greexn..Rxn.g olf wheat leaves 

Total N A extractions gave some indications of the changes which occurred 

in cellular components during greening and development. In order to investigate 

this further, specific fractions of RNA, particularly chloroplast RNA components 

were examined. Cytoplasmic and chloroplastic RNA fractionation was performed by 

PAGE. Gels were prepared a.nd the RNA fractionated as described in Chapter 4.2 

(Materials a.nd Methods). 

The extraction of NA was a gross method and included RNA and DNA 

although the vast bulk of material was RNA. Fig. 4. 7 shows the fractionation of 

the heavy ribosomal RNA components from the cytoplasm and chloroplast. DNA, 

however, did not appear on the gels. The peaks designated 1, 2, 3 and 4 represent 

(28S) cytoplasmic RNA with an approximate molecular weight of 1.38 x 106 Daltons, 

(23S) chloroplast RNA with an approximate molecular weight 1.1 x 106 Daltons, 

(18S) cytoplamic RNA with an approximate molecular weight 0.69 x 106 Daltons, 

and (16S) chloroplastic RNA with molecular weight 0.53 x 106 Daltons respectively. 

The data in Fig. 4.8 show the PAGE traces for segmented dark-grown leaves. 

All components are present in the fractionation for tip, middle and base. It appears, 

therefore, that all the heavy molecular weight ribosomal RNA components are main­

tained at high levels, particularly the chloroplast components, even in the tip which 

has been shown to accumulate only low levels of chlorophyll when exposed to light. 

The data in Fig. 4.9 show the traces for light and dark-grown 10 day-old leaves, 

for the middle segments as an example. All fractions of RNA were present, but the 

chloroplastic RNA components were higher in the light than in the dark. 

The leaf tip did not accumulate high levels of chlorophyll after the transfer 
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of the leaf to the light. Therefore, it was investigated which of the components of 

RNA were present, and also, if any of these were specifically lost or changed during 

exposure to light. In order to do this, seedlings were grown in trays as described in 

General Materials and Methods for 4 days in the dark before they were transferred to 

the light growth room for various periods of time. Other seedlings were kept in the 

dark for the same period of time as the samples which were incubated in the light. 

Fractionation of the RNA was started from day 6 until day 15 for both dark and light 

grown seedlings. 

-In addition, the effect on NA fractions In tissue kept in tlie dark for proionged 

periods prior to illumination was investigated. To do this seedlings were transferred 

from the dark at 11 days and 14 days and were allowed to grow in the light for 

up to 17 days. This investigation was necessary in order to follow the pattern of 

development and to get a full picture of any changes in the young tissue before it 

reached the senescence stages. The old tissues were used to see if the same pattern of 

development of RNA was maintained, when they were kept in the light and the dark 

from the early stage of development or after they were kept for long periods of time 

in the dark (11 and 14 days) prior to being transferred to light. 

Fig. 4.10 a-i show the traces of fractionation of ribosomal RNA from leaf tip 

segments which were incubated in both dark and light from day 6 until day 15. In all 

cases the chloroplastic RNA component was present from day 6 until day 15. All four 

components of cytoplasm and chloroplast were present in light and dark. However, 

it was noted that more chloroplastic RNA was present in the light than in the dark. 

All fractions were maintained in the dark with no apparent loss of chloroplastic RNA 

even up to 15 days of incubation. However, it was noted that at this time there was a 

loss of definition of components which indicated that RNA degradation had started. 
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This may have been due to the tissue reaching the senescence stages. 

The data in Fig. 4.11 show the ratio between the cytoplasmic and chloro­

plastic RNA for the tip segments as shown in Fig. 4.10. Fractionation of RNA from 

leaf tips of seedlings incubated in the light after being grown in the dark, showed a 

high ratio of cytoplasmic/chloroplastic RNA components, at the early stage of incuba­

tion which indicated that the leaf tip may have lost its ability to produce chloroplast 

components. Alternatively, the cytoplasmic components may have decreased, but 

this is unlikely during a senescence phase. In contrast, the tip segments for leaves 

which were inc-ubated in the light, showed a lower ratio of cytopla.sll1icjchlor6plastic 

RNA components, which indicates that higher levels of chloroplast components were 

maintained in the light than in the dark. 

The data in Fig. 4.12 a-e show the traces of fractionation of cytoplasm and 

chloroplast components of RNA for the middle segments. A comparison of these 

results with those for the tip segments (Fig. 4.10) indicated that in the middle 

segments the chloroplast RNA components appeared to be maintained at a slightly 

higher level in both the light and the dark. 

This is further indicated by a comparsion of the ratios of cytoplasmic to 

chloroplastic RNA shown for the tip region (Fig. 4.11), and for the middle segments 

(Fig. 4.13). These differences are probably a reflection of the younger age of the 

middle segment tissue compared with the older tip tissue. 

However, in the light, the ratio between the two components in the middle 

segments tended to stay the same during sampling period. Again, the level of chloro­

plast RNA was higher in the light and probably reflects the younger age of the tissue. 

In the dark-incubated tissues, the chloroplast RNA components were less than those 
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reported for tip segments. 

The data in Fig. 4.14 a-f illustrate the traces of fractionation of ribosomal 

RNA from basal segments which were incubated in the dark and the light. It was 

noted that chloroplast RNA components were maintained at a higher level than those 

in the tip and middle segments. 

The ratio between cytoplasmicjchloroplastic RNA components for basal seg­

ments from day 9 until day 15 is shown in Fig. 4.15. Low levels of chloroplast RNA 

components were noted in the dark, but these were higher in the light as seen for the 

other segments. However, after day 15, the tip and basal segments showed slightly 

lower chloroplast RNA components in the light. At this time it would have been 

expected that the tissue should have reached the senescence stage but this was not 

really indicated by the RNA levels. 

The data in Fig. 4.16 a-e show the traces for fractionated RNA for tissues 

which were transferred to the light after 11 days of incubation in the dark. It was 

noted that chloroplast RNA components were present in the samples fractionated. 

Therefore, the tissues retained the ability to produce chloroplast RNA components 

when they were transferred to the light even after this long period of incubation in 

the dark. 

The data in Fig. 4.17 a-c represent the ratio of cytoplasmic/chloroplastic 

RNA components for the data which were presented in Fig. 4.16. The chloroplast 

components in the tip and middle segments were at approximately the same level as 

the cytoplasmic components throughout the period of incubation for 12-17 days, ie 

cytoplasmic to chloroplastic RNA ratios were approximately 1:1. 

In the basal segments the level of chloroplast components was lower than 
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for the other two segments at the begining of incubation, i.e. the ratio of cytoplas­

mic/chloroplastic was higher. However, over the period of incubation the ratio falls 

to near unity by day 17. Since the basal segment is composed of the youngest tissue 

the fall in the ratio represents the continued synthesis of chloroplast components even 

up to the late stage of incubation at 17 days. 

The data in Fig. 4.18 a-c show the traces of fractionated ribosomal RNA 

from leaves of 14 day-old dark-grown wheat seedlings which were incubated in the 

light for up to 17 days. The chloroplast components were maintained and the tissue 

still retained the ability to produce chloroplast components after this long period of 

incubation in the dark and the light. Given that the tissue had been held in the dark 

for 14 days prior to illumination for 3 days, it would have been expected that the 

tissue would have entered a senescence phase. Ordinarily this is indicated by the loss 

of chloroplast RNA components (Vedal and D'Aoust, 1970), but in this study with 

wheat, it appears that the chloroplast RNA components are maintained at a high 

level. This is borne out by the ratios shown in Fig. 4.19. 

The ratios indicate that in the tip and middle segments the levels of chloro­

plastic and cytoplasmic ribosomal RNA are maintained at approximately unity. Again, 

however, the basal segments show a decline in the ratio indicating continued chloro­

plast RNA accumulation even at this late stage of incubation. An alternative situa­

tion, however, could be that at this late stage of development the cytoplasmic RNA 

is more labile and is lost in preference to the chloroplastic RNA. 
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4..~.~ EWed off waierr §be§§ O!Dl tlhte NA compo!Dlellllb oft' wlhte&t §eedlRiiDlg§ 

The effects of water stress on total NA of wheat seedlings was variable as 

mentioned before (page 157). Given that chloroplast RNA components were main­

tained in the young tissue and old tissue which were incubated for various periods of 

time in the light a.nd dark the possibility that water stress may have affected these 

was investigated. 

In order to further investigate the effect of water stress on N A components, 

the effect of treatment of tissue with PEG prior to NA extraction and fractionation 

was investigated. Wheat seedlings were grown in trays in the dark. They were 

transferred at day 6 to the light for different periods of time. Seedlings were incubated 

with their roots in PEG solution or water as described in General Materials and 

Methods. First leaves were segmented and the RNA extracted from the segments 

was fractionated as stated before (page 150). 

4.3.3.1 Effect of a low concentration of PEG 

The data in Fig. 4.20 a and b show the traces of fractionated ribosomal RNA 

extracted from leaves of wheat seedlings which had been subjected to mild water 

stress ( -5 bar). Chloroplast components were found to be present and maintained 

in all treatments in both the light and the dark, with or without PEG treatment. 

The level of chloroplast components was only slightly higher in tissue incubated in 

the light in water compared with tissue maintained in the dark. PEG treatment 

appeared to have no effect on the levels of chloroplast RNA components in either the 

light or the dark. 

The data in Fig. 4.21 confirm these results. The ratio between cytoplas­

mic/chloroplastic RNA components varies only slightly. However, it can be seen that 
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the levels of chloroplast RNA components were higher in tissue incubated in the light 

than in the dark for tissue incubated in water. Also, PEG increased the ratio slightly 

for light-incubated tissue. However, the levels of chloroplast RNA components were 

slightly higher in the tissue incubated in the dark than the light, for PEG treatments. 

4.2.:3\.2 JEJfi'ed oif «ll. lbtigJl:n COl!llCelDlill"&tnOJDl§ oif JPJEG 

The effect of a high concentrations of PEG (-10 bar) on chloroplast RNA 

components was studied using wheat seedlings treated and incubated as mentioned 

before (page 214). 

The data in Fig. 4.22 a, band c show the fractionation of RNA components 

following a treatment with a high concentration of PEG. The PAGE of the RNA com­

ponents in this fractionation indicated a rapid breakdown in response to treatment. 

All fractions of RNA seemed to be lost for PEG-treated seedlings,whereas they were 

maintained for the water controls (Fig. 4.22 d, e and f). Such a loss of RNA could 

have been due directly to the effect of water stress on the cells or to other cellular 

changes including the activation of nuclease activity. 
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One of the effects of illumination on dark-grown plant organs is accumu­

lation of ribosomal RNA (Wollgiehn and Parthier, 1980; Mikulovich, 1978). The 

level of NA in dark-grown wheat seedlings was different in their segmented leaves 

after illumination for 72 h. NA in leaf segments exhibited a different pattern from 

those of chlorophyll and protein during the greening process. The highest level was 

accumulated in the middle segments, followed by leaf tips and basal segments. 

It has been reported that RNA decreases markedly after excision of leaves in 

Xanthium pennsylvanicum (Wollgiehn, 1967; Osborne 1962). The factors contribut­

ing to decreased RNA levels could be enhanced nuclease activity (Lewington et al., 

1967). Dyer and Osborne (1971) found changes in the structure of DNA or a decrease 

in the synthetic capacity of the leaves due to declining RNA polymerase activity or 

synthesis of nucleoside triphosphates. Biswal and Mohanty (1976) reported that NA 

declined in detached barley leaves kept in the darkness. Thimann (1980) reported 

that loss of N A with time has been recorded for a number of species. Inducing senes­

cence under a variety of artificial conditions appears to result in changes normally 

associated with ageing and senescence under natural condition. 

It has been reported that the increased RNase activity associated with stress 

conditions, such as water stress (Bagi and Farkas, 1968) and plant bacterial infections 

(Reddi, 1966), is consistent with the hypothesis that accelerated ageing can be re­

garded as a consequence of general stress (Farkas and Stahman, 1966). However, in 

dark-grown tissue, water stress increased the level of NA in young seedlings (6 day­

old) in relation to water controls. Wheat seedlings (10 day-old) were less affected 

by water stress, and the levels of N A was apparently lower. However, the higher 

concentration of PEG (-10 bar) raised the level of NA in young seedlings after 72 h in 
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the light and dark. Furthermore, similar responses were found with dark incubated 

wheat seedlings. However, water stress had no effect on the NA of roots of the same 

seedlings. It has been shown previously that there was a large increase in total N A 

during osmotic pre-treatment of tomato seed (Coolbear and Grierson, 1979). 

Therefore, the effect of water stress had transferred via the root to the shoot 

systems. However, there was no effect of water stress on the level of N A of excised 

leaves or leaf segments. This finding is similar to that reported with chlorophyll 

(Chapter 2) and protein (Chapter 3), which indicated that water stress had no effect 

on the cellular components of excised leaves or-leaf segments. 

The results of the effect of water stress on the N A fractionation wheat 

seedlings in this study are in contrast with the finding by Todd and Basler (1965) 

working with different varieties of wheat exposed to various levels of water stress. 

They found a decrease in NA content in various sub-cellular fractions of leaves and 

crown and suggested that death of the plants occurred whenever the N A content 

of any given fractions dropped below a certain critical level. Similarly, Rhodes and 

Matsuda (1976) reported that a decrease in polyribosomes in pumpkin seeds was de­

tectable following their exposure to an osmotic stress. Similar results were reported 

by Cocucci et al. (1976) with shoot tissue of peas, barley and wheat. The decrease 

in polyribosomes has also been seen in water stress inhibited growth of squash fruit. 

Armstrong and Jones (1973) found that osmotic dehydration in- 6 M PEG reduced 

the binding of ribosomes to the endoplasmic reticulum in barley aleurone cells. 

In this study K treatment resulted in an increase in the levels of N A in young 

seedlings after a period of 48 h in the light. However, there was no further increase 

after 72 h. K treatment did not appear to affect the level of N A in old seedlings. In 

the dark treatments K slightly raised the level of N A after 72 h. 
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In contrast, K treatments on the roots of wheat seedlings had no effect on 

the level of NA. Similar patterns of response were found with excised leaves and leaf 

segments, when the tissues were incubated with K, and there was no effect in the 

level of NA in the tissues. However, it has been reported that in senescing barley 

leaves, the activity of RNA polymerase was higher in cytokinin-treated material than 

in the untreated material (Schneider et al., 1978; Schneider, 1980). It was found 

that the presence of cytokinin in tRNA's increased the ribosome binding affinity for 

the aminoacylated tRNA. (Fittler and Hall, 1966). Berridge et al. (1970) showed a 

binding of the cytokinin to the 80S r~bos<?mes, yvith a correlation between the extent 

of binding and the biological activity of various cytokinins and cytokinin analogues. 

Mikulovich et al., (1978) reported that cytokinin stimulated the incorporation of 

radiolabelled components into RNA in isolated chloroplasts through activation of 

RNA polymerase systems of chloroplasts. 

In this study with wheat, however, the level of NA was increased with a com­

bination of K and PEG in the young seedlings after 48 h, in relation to K treatment 

alone. Similar responses were found in the light and dark treatments. There was no 

effect of the same treatment on the level of N A in the roots of the wheat seedlings. 

The results were variable and may reflect tissue age and period of incubation. More­

over, in excised leaves and leaf segments a combination of K and PEG did not bring 

about an increase in the level of N A. 

During experiments using leaf segments of wheat seedlings for periods up to 

17 days in the dark and light starting from day 6, the level of NA declined in all leaf 

segments, and was higher in the dark than in the light. However, after a long period 

in the dark (11 days), and 6 days in the light there was general decline in the levels 

of NA by the end of incubation periods. Furthermore, middle segments represented 
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the highest level of NA after the period of incubation, followed by the tip and least in 

the basal segments. Again, after further incubation in the dark (14 days), the level 

of N A was higher in the basal segments, followed by middle segments and least in 

tip segments. These variations in the level of NA of segmented leaves may be due to 

a difference in metabolism and physiological conditions between leaves. This could 

be related to the physiological age of the tissue where the concentration of various 

compounds would vary. It is possible that such a variation could involve a decreased 

level of endogenous cytokinin in the older tissue which could result in reduced RNA 

levels. 

Fractionation of NA from segmented leaves of incubated wheat seedlings. by 

PAGE gave some insight into the qualitative changes in NA underlying the quantita­

tive changes. All extractions gave more or less identical results for the electrophoresis 

pattern of the RNA components in that cytoplasmic and chloroplastic heavy riboso­

mal components were present. However, the relative proportions of the components 

varied with the developmental stage of the tissue. The older tissue contained a lower 

proportion of chloroplast components. However, the fractionation of the segments of 

dark grown leaves showed that the components of cytoplasmic and chloroplastic RNA 

were maintained in all segments (tip, middle and base) even after extended periods 

of incubation. Furthermore, in a comparison between components in the light and 

dark, it was clear that chloroplast RNA components were higher in the light than the 

dark as could be expected. 

Fractionation of leaf segments grown from day 6 to day 15 in the dark and 

light, showed that chloroplastic and cytoplasmic RNA was maintained during the 

period of incubation in the dark and the light for leaf tip segments. Similar responses 

were found in the middle and basal segments. It was noted that the cytoplasmic 
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RNA was higher in samples incubated in the light compared to those incubated in 

the dark. Since ageing of leaf tissue has been shown to result in an early decline in 

heavy ribosomal RNA fractions, it was expected that similar effects would have been 

found in this study. Vedal and D'Aoust (1970) found that there was a 57% breakdown 

of the 238 RNA in etiolated radish cotyledons by day 16 compared to only 29% of day 

6. In green cotyledons, 238 chloroplastic RNA degradation increased with age and 

23S RNA breakdown was greater in dark than in green tissue. The fact that ribosomal 

RNA fractions were maintained in wheat tissue indicates that these fractions do not 

change in this particular species as early as in others. Alternatively, _itjs quite likely 
- - - - - -

fhat the extraction methods used in this study (presence of DEP and SDS, both 

nuclease inhibitors) indicated a greater preservation of the RNA components. 

It is, however, difficult also to make direct comparisons between individual 

species since the patterns observed in monocotyledenous leaves will differ from those 

in dicotyledenous leaves. In the former there is a defined age sequence down the leaf 

whereas this is not always the case for the latter where the whole leaf is effectively of 

the same age. 

Comparison of the levels of specific fractions indicated that the basal seg-

ments contained the most chloroplastic RNA components followed by middle segments 

and these were least in the leaf tip segments. However, there was a loss of definition 

for all RNA components after a long period of incubation (17 days), which may be 

due to leaf tissue reaching the senescence phase with a subsequent breakdown of RNA 

due to nuclease activity. 

The ratio between cytoplasmic/ chloroplastic RNA components gave a similar 

pattern as the traces offractionation of ribosomal RNA for all segments in this respect. 

Long periods of incubation in the dark did not stop the tissue maintaining ribosomal 
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RNA components in the light. After a long period of incubation in the dark (11 and 

14 days), all leaf segments showed a similar pattern of fractionations when the leaves 

were kept in the light (up to 17 days). The ratio between cytoplasmic/ chloroplastic for 

those kept in the dark for 11 and 14 days varied along the leaf. The leaf tip segments 

showed the highest chloroplastic RNA components followed by middle segments and 

the least in basal segments. 

In studies with pea leaf tissue (Pisum sativum) Mills and Baumgartner 

(1983) reported that chloroplasts from 7 to 9 day-old plants contained higher numbers 

of plastids compared to those from l4 day-old planfs. Therefore, as far as species could 

be compared, it would expected that loss of chloroplast components should have been 

apparent in the older wheat tissue, but this was not readily seen for the chloroplast 

RNA components. 

It has been reported that in dark-grown cotyledons, the relative increase in 

plastid rRNA contents subsequently decreased (Thien and Schopter, 1975). Ingle 

(1968) and Vedal and D'Aoust (1970) reported that in radish cotyledons the accu­

mulation of chloroplast RNA was stimulated by light. Vedal and D'Aoust (1970) 

reported that light was not an absolute requirement for proplastid RNA synthesis, a 

slight accumulati()n being observed in the dark. Bogorad (1976) and Harel and Bo­

gorad (1973) reported that in greening maize leaves, the light-stimulated chloroplast 

rRNA synthesis. In isolated cotyledons, light caused an increase in the amount of 

both chloroplast and cytoplasmic ribosomal RNA and was higher for plastid rRNA 

(Roussaux et al., 1976; Mikulovich, 1978). 

The influence of water stress on the maintainance of the ribosomal RNA 

components showed contrasts between the levels of treatment given. Whilst exposure 

of the tissues to -10 and -5 bar PEG treatments resulted in only very marginal changes 
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in the total N A levels after 3 days of treatment in the light following growth for 6 

days in the dark changes were seen in specific fractions. Mild water stress treatment 

(-5 bar PEG) for up to 48 h had no apparent marked effect on the specific ribosomal 

fractions when compared with water controls. This is consistent with observations 

that this treatment did not alter markedly the quantitative yields of RNA. Similar, 

results were found in both the light and dark incubated tissue. 

Tissue incubated in the higher PEG concentration showed a degradation of 

both chloroplastic and cytoplasmic ribosomal RNA components in both the light and 

the dark even afte~ 24 h when compared with water controls. At 7'2 h of PEG-treat­

ment there was a marked loss of RNA integrity. The fact that the light treatment 

gave essentially the same results as incubation in the dark indicates that chloroplast 

function and integrity were being impaired as well as there being effects on the cyto­

plasmic ribosomes. 

Kessler (1961) found that water stress appeared to impair NA accumulation; 

however, here the quantitative yields of RNA were not markedly altered by the higher 

PEG treatment. Kessler (1961) similarly reported that the breakdown of plastid 

ribosomes which preceded the disappearance of cytoplasmic ribosomes. Mittelheuser 

and Van Steveninck {1971a) reported a similar sequence in disappearance of ribosomes 

under severe water stress conditions. The results here indicate that for wheat the 

loss of chloroplastic and cytoplasmic ribosomes (measured in tissues of their RNA 

stablities) was more or less equal. 
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CHAPTER JFJIVE 

5. Gene!l"a.ll Discu.saion 

The preceding chapters have given the results of an investigation of greening 

and development of wheat seedlings in relation to the age of the tissue, time of pre­

incubation in the da.rk and imposed water stress. Discussion in previous chapters 

has already emphasized the changes in the levels of cellular components during the 

greening process and development and the effect of water stress on these processes. 

In tltis st'!dy t~e pa.tter11 of change of all cellular components in wheat seedlings, 

excised leaves and leaf segments was monitored during leaf greening and development 

of the experimental systems used. The intact plant offered a. better environment for 

the study of leaf development than either the excised leaves and leaf segments. 

There were variations in the pattern of chlorophyll, protein and nucleic acids 

under the various treatments in intact plants during greening and development. In 

contrast, excised leaves and leaf segments showed relatively small changes in the cel­

lular components during greening other than in the levels of chlorophyll. This is not 

surprising in view of the knowledge that each region of an intact plant has the ben­

efit of materials made by the rest of the plant as it greens. In contrast, the excised 

leaves and leaf segments have only the resources and developmental capacity of their 

own cells. The changes in the levels of chlorophyll during greening reported by other 

workers using intact tissue were probably due to differences in plants species or exper­

imental methods. Conditions under which plants were grown and their subsequent 

handling could also be contribute to observe a differences in chlorophyll levels. 

As early as 1920, Briggs found that the age of tissue affected the rate at which 

it developed the ability to liberate and incorporate C02. Also Obendorf and Huffaker 
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(1970) showed that the age of dark-grown barley seedlings had a significant influence 

on light-induced changes in chlorophyll synthesis, protein content and activities of 

several Calvin cycle enzymes. 

In this study with wheat, it was shown that ageing of tissue in the dark prior 

to illumination reduced the capacity for chlorophyll accumulation. This effect was 

seen within the leaf, ie the tip being the oldest portion, and between leaves of different 

ages. Even though it was not measured, C02 exchange and therefore photosynthetic 

capacity could be expected to have been reduced in the aged tissue. Also, the changes 
- - -

in the capacity to accumulate protein and nucleic acid components -would influence 

the formation and functioning of the chloroplast. 

The content of cellular components during greening of dark-grown wheat 

seedlings were sensitive to water stress. The rapid decrease in leaf water potentials 

between treatment with PEG at -5 bar and -10 bar coincided with the end of eel-

lular component accumulation. These observations clearly demonstrate that cellular 

component accumulation is influenced primarily by environmental conditions prevail-

ing during development and greening of dark-grown tissue and is not indicative of 

programmed events in leaf development. 

The leaves of the wheat seedlings under water stress wilted, but they did 

not dry completely even though the leaf tips were desiccated. Whilst the use of PEG 

was an artificial means of water stressing the plants, this compound, and related 

compounds have been reported as being active as in natural conditions of water 

stress. Hodgson et al. (1949) showed that polyethylene glycols, polyvinyl alcohols 

and polysaccharides from crown gall bacteria caused wilting in mature leaflets at low 

concentrations. Lawlor, (1970) summarized the mechanisms of PEG during water 

stress:-
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1- PEG entered the leaf and decreased the osmotic potential of the xylem solution 

or in part of the leaf. 

2- PEG interfered with plant metabolism 

3- PEG lowered the surface tension within the leaf, affecting cell permeability 

4- PEG blocked the transpiration pathway. 

The effect of water stress was also noted in the roots of the treated seedlings. 

Here growth was inhibited as was the pattern of protein and nucleic acid accumulation. 

This effect was similar to that seen in the leaves. The effect, therefore, on the leaves 

could have been in part the result of the effect on the roots. This could also be 

consistent with observation that water stress effects were not as severe on excised leaf 

tissue. 

Roots under water stress were yellow with the intensity of the yellow colour 

related to the amount of stress applied. This was clearly apparent between the stress 

and non-stressed roots of the same plant. Zgurouskaya and Tsel'Niker, (1955) re­

ported similar results with roots under soil moisture stress. The colour may be due 

to the formation of a particular pigment under stress (Zgurouskaya and Tsel'Niker, 

1955) or an accumulation of pigments in general (Nezgovorova, 1957) or a change in 

state of various compounds. 

Given the potential limitations to the use of PEG, the studies reported here 

with wheat indicate that water stress conditions imposed by the use of this compound 

did cause alterations in cellular component accumulation pattern in the plants. The 

levels of chlorophyll accumulated in illuminated tissue which was previously dark­

grown were subject to variation with PEG treatment. This was the most consistent 

effect and could be expected. Protein level changes, however, were more complex. In 
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addition to the effect of water stress in potentially involving accumulation of protein 

associated with formation of the photosynthetic apparatus, there was the potential 

effect of altered protein levels with these components acting as stress metabolites. The 

more severe water stress (-10 bar) treatment had the more marked effect on nucleic 

acid components. It was noted that both the cytoplasmic ribosomal components were 

lost as were as those from the chloroplast. This indicates a compounding effect of 

water stress on the central metabolism of the plant other than on the chloroplast 

alone. This is in contrast to the results of Brady et al. (1979) who found that 

cytoplasmic ti:bosomes were lost in preference to those from chloroplasts. 

There appeared to be a correlation between the pattern of cellular compo­

nents accumulated and the growth inhibition due to water stress. The least effect on 

growth and the components was seen with -5 bar PEG, whereas -10 bar PEG had a 

greater effect. It is not possible to conclude from this study if growth was inhibited 

indirectly by an effect of water stress on photosynthesis as noted by Bhardwaj and 

Singhal ( 1981) for barley or through a direct effect as the cell growth pattern. 

The involvement of phytohormones in the adaptive responses of plants to 

water stress has been reported. Cytokinin levels in xylem exudates were reported to 

be depressed by water stress (Itai and Vaadia, 1971) and the effects of cytokinins on 

stomatal apertures and plant growth were opposite to those of ABA (Mizrahi et al., 

1970; Khan, 1969). A reduced cytokinin content would tend to augment the effect of 

higher ABA levels on stomatal closure and growth. The use of K in the study reported 

here was to investigate if its addition to the plants could lessen the effects of imposed 

water stress on cell component accumulation. At the same time this compound could 

counter any effects of ABA which may have accumulated in the tissue. It has been 

reported that during water stress a rapid formation of ABA occurs. The levels of 
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this compound increased by up to 40-fold in green wheat leaves subjected to severe 

water stress (Wright, 1969; Wright and Hiron, 1969). The chloroplast has been 

demonstrated to be the site of ABA synthesis in the leaf (Milborrow, 1974; Railton et 

al., 1974; Loveys, 1977). Furthermore, whilst ABA is synthesized in the chloroplasts 

it might be released for a regulatory role in the cytoplasm (Willburn et al., 1973; 

Willburn and Hampp, 1976). Raschke (1975) suggested that ABA may extend its 

effect on an H+ expulsion mechanism in the plasmalemma. Cleland (1977) found that 

increased cell wall extensibility and cell growth occurred, when cells were caused to 

excrete hydrogen ions, loweri-ng th~ pH of the cell wall solutions. _It £.eem~ possible 

that in the water-stressed plant, ABA inhibited H+ excretion into the cell wall and 

thus inhibited cell expansion and growth. ABA is known to be a general growth 

inhibitor {Milborrow, 1974), but also it is known, to inhibit chlorophyll accumulation 

in illuminated dark-grown tissue (Beevers et al., 1970). This inhibitory effect could 

be compounded by the accumulation of higher levels of ABA under water stress. 

K application to wheat in this study had very inconsistent effects on chlorophyll 

accumulation and growth. It is unlikely therefore, that the effect of this compound 

is explainable mainly in terms of a counter effect of, for example, an accumulation of 

ABA. 

From the results reported here a number of conclusions can be drawn re­

garding the progress of greening in wheat leaf tissue:-

1. There was a marked effect of the age of wheat seedlings during greening and 

development on the accumulation of cellular components. This effect was most 

pronounced on the chlorophyll accumulation, where the capability of the accu­

mulation was reduced with ageing. This effect was seen both in the age sequence 

along the leaf and in differently-aged seedlings. 
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2. Water stressing the leaf tissue had some effect on the pattern of greening in that 

chlorophyll accumulation was normally reduced, but this effect was most evident 

with intact seedlings. 

3. The levels of chloroplast RNA fractions were high even in the dark-grown tissue as 

was the total N A content. Exposure to light led to an increase in the chloroplast 

RNA components. 

4. Exposure to the higher water stress condition led to a loss of RNA components in 

the intact seedlings both in the chloroplast (consistent with inhibitory effects on 

chlorophyll accumulation) and also in the cytoplasm (consist ant with inhibitory 

effects on growth, and potentially on greening). 

5. Since the effects of water stress were most marked with the intact seedlings, it 

was apparent that the involvement of roots was important in the response of the 

leaves. This implies that there was some signalling between the roots and leaves, 

possibly through a plant growth regulator response, as reported by Mansfield et 

al. (1978); Davies et al. (1987) and Milligan and Dale (1988). However, even 

though cytokinins are shown to be involved in water stress, K did not counter the 

effects of PEG on wheat. 

It is recognised that the experimental procedures for growth employed here 

were an exaggeration in terms of time span of growth in the dark. They seemed, 

however, to illustrate more clearly the changes which would occur under normal 

growth and greening patterns. The overall conclusions, therefore, are that growth 

and development of functional photosynthesis capacity of leaf tissue following growth 

in the dark is influenced by the age of the tissue and other environmental factors; 

in this study water stress. Any alteration of the capacity to green and the tissue to 
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develop the photosynthesis activity would have pronounced effects on the productivity 

of a plant under field conditions where seedling establishment is of great importance. 

As noted in the General Materials and Methods statistical analysis of the 

results of the component extractions were not carried out. The results, therefore give 

an indication of trends in changes in the various components. 
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Adl&en.dum 

Geirllel!"ii.c a.n& specilic mun.mes oii' plallllts dtedl iillll thesis lby common l!lla.m.e 

Alfalfa 

Barley 

Bean 

Bermuda grass 

Birch 

- --Blue grama 

Cabbage 

Carrot 

Creosote bush 

Crown gall bacterium 

Cucumber 

Daffodil 

Maize/Corn 

Oil seed rape 

Pea 

Pumpkin 

Radish 

Rice 

Rye grass 

Scots pine 

Soybean 

Spinach 
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Medicago sativa 

Hordeum vulgare 

Vicia faba 

Cynodon dactylon 

Betula pubescens 

Bouteloua gracilis 

Brassica oleracea 

Daucus carota 

Larrea tridentata 

Agrobacterium tumefaciens 

Cucumis sativus 

Narc iss us pseudo-narcissus 

Zea mays 

Brassica napus 

Pisum sativum 

Cucurbita~ 

Raphanus sativus 

Oryza sativa 

Lolium perenne 

Pinus sylvestris 

Glycine max 

Beta vulgaris 



Squash 

Sugar beet 

Sugar cane 

Sunflower 

Tobacco 

Tomato 

Western wheat grass 

Wheat 

Yeast 

,J 
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Cucumis @PUS 

Beta vulgaris 

Saccharum officinarum 

Helianthus annuus 

Nicotiana tobaccum 

Lycopersicon esculentum 

Agropyron smithii 

Triticum aestivum 

Saccharomyces cerevisiae 




