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THE SYNTHESIS AND CHEMISTRY OF MODEL COMPOUNDS 

RELATED TO FLUOROPOLYMERS 

by 

GLENN APSEY 

ABSTRACT 

The objectives of this research project were to synthesize 

and investigate the chemistry of model compounds related to the 

hexafluoropropene/vinylidene fluoride copolymer system. A number 

of compounds of this type were prepared which underwent a series 

of reactions in order to obtain definitive information about the 

chemical processes occuring during the cross-linking of the copolymer 

system with bis-nucleophiles. Further studies with the model compounds 

also- indicated potential sites in the cur_ed copolymers thro_ugh which 

chemical degradation could take place, during their use in aggressive 

environments. 

Other investigations with the model compounds, together with 

unsaturated compounds derived from these systems, led to the observation 

of some very unusual chemistry. Lewis acid induced dehydrofluorination 

reactions with antimony pentafluoride led to the formation of a 

number of observable carbocations and a unique contiguous dication. 

This methodology was further developed in the treatment of saturated 

homopolymers, in which dehydrohalogenation by antimony pentafluoride 

led to formation of polyacetylene derivatives displaying intense 

colouration. 

In order to circumvent the formation of potential sites of 

chemical instability during the curing process with nucleophiles, 

a methodology was investigated in which cross-linking could occur 



via a free radical mechanism involving homolytic bond cleavage of 

sterically demanding groups. A number of monomers containing a 

bulky pendant group were prepared and were investigated in order 

to determine their suitability to undergo copolymerisation with 

vinylidene fluoride. Copolymers obtained in this way were then 

examined to determine whether polymer radicals could be produced 

by thermally induced homolytic bond scission of sites involving 

the sterically crowded groups. The results obtained clearly demonstrated 

that this type of cross-linking process is entirely feasible. 
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INTRODUCTION 



2. 

CHAPTER ONE 

FLUOROELASTOMERS 

lol Introduction 

Elastomeric materials are extremely important in the family of 

materials of construction, as their use permits increased flexiblity 

in design of mechanical systems. There are two remarkable properties 

which distinguish elastomers from other types of material. When an 

external force is applied elastomers undergo very large deformations 

in shape without disintegrating and on removal of the stress spontaneous 

1-3 
recovery of their original dimensions occurs. 

The performance of an elastomer at low temperatures is only one 

of many properties which determine its utility. Its stability at 

elevated temperatures and chemical and/or physical interactions with 

its intended environment are also important factors, all of which 

are related to its chemical constitution. For a material to possess 

elastomeric properties it must consist of long flexible and linear 

molecules of high molecular weight, which have been cross-linked by 

a few intermolecular bonds to form an insoluable three-dimensional 

1-3 
network. The thermal stability of an elastomer often differs from 

that of the raw polymer, which is a consequence of the introduction 

of chemical heterogeneity by the cross-linking process. Even if the 

cross-links have the same chemical structure as the polymer chains, 

the structure at the junctions between chains and cross-links usually 

differs. 

Cross-linked elastomers cannot be dissolved in any solvents but 

may swell in contact with liquids and vapours. In their numerous 

applications such as sealings, rings, gaskets and linings, elastomers 

4 
need to be resistant to the solvents to which they come into contact. 



However, many elastomers have unsatisfactory resistances to hydrocarbon 

2,4 
fuels and oils, as well as to chlorinated solvents. Hydrocarbon 

elastomers in particular are most susceptible to degradation in these 

liquids. 

In searching for a means of improving the thermal, chemical and 

oxidative stability of elastomeric materials investigations have focused 

mainly on reducing the amount of unsaturation and on introducing other 

elements to the hydrocarbon systems. The interest in fluorine - containing 

elastomers followed from the discoveries of poly (chloro-trifluoroethylene) 

and poly (tetrafluoroethylene), since these polymersdisplaygreat 

superiority over their non-fluorinated analogues in their resistance 

to many organic solvents. 

Homopolymers of simple fluoroalkenes are often crystalline in 

nature as a consequence of regular and repeating monomer units in 

2,12 
the polymer backbone. A high degree of crystallinity in a polymer 

is undesirable for elastomeric behaviour since, such regions do not 

12 
confer flexibility on thematerial. However, copolymers of fluoroalkenes 

possess sufficient structural irregularities to prevent crystallization. 

Hence, copolymers of vinylidene fluoride with chlorotrifluoroethylene 

and with hexafluoropropene are non-crystalline elastomers which form 

the bases of commercially available elastomers introduced in the 1950s. 

Materials based on these polymer systems are easily the most successful 

of the fluoroelastomers and have dominated the market since their 

introduction. Many detailed reviews on fluoroelastomers are available 

in which their preparation and properties are discussed together with 

. . 2,5,12-16 
their use in specialized appl~cat~ons. 

A brief outline of the synthesis and copolymerisation of fluorovinyl 

monomffs together with a more detailed discussion of fluoroelastomers, 

is given overleaf. 



lo2 PreparationandPolymerisation of Fluorovinyl Monomers 

Synthetic routes to the fluoralkenes which are most frequently 

used in the preparation of fluoroelastomers are outlined in 

Table 1.1. The processes which are most widely employed in the 

synthetic routes include halogen exchange, dehydrohalogenation 

l 
. . . 17-19 

and hydrof uor1nat1on react1ons. 

The preparation of fluorelastomers is usually achieved by 

2,12 
a free-radical emulsion polymerisation process. The initiators 

employed are frequently either ammonium or potassium persulphate since 

. . 13,14 
they are useful sources of radicals for low temperature polymer1sat1ons. 

Perfluorinated emuls[ying agents such as ammonium perfluoro-octanoate 

are preferred in order to minimize chain transfer reactions. The 

temperature range for the polymerisation process is from 30 to 

l25°C and since themonomersare gases, the pressure is regulated 

so it is between 50 and 1500 psi. 

The polymerisation is carried out by either a batch or continuous 

process. Control of the copolymer composition is achieved by altering 

the monomer ratios. The molecular weight of the products is 

dependent on both the monomer/initiator ratio and the presence of 

chain transfer reagents such as carbon tetrachloride, methanol 

or diethyl malonate. 
42,43 

A typical polymerisation recipe is 

given in Table 1.2. 
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Alkene 

HF/SbC1 5 

CF2 = CF2 

CF 2 = CFCl (CTFE) 

HF/SbC1 5 

CC1 3ccl3 
150°C 

HF/SbC1
5 

CFH=CFCF3 (HPFP) 

CF 3 CF=CF 2---:>? 

CF 2 = CHCF
3 

Table ll..l 

Pt tube 

> CF3CF = CF2 

Zn/MeOH 

CF 2ClCFC1 2 > CF 2 = CFCl 

100°C 

Ni tube 

---)'? CH2=CF2 

550°C 

base 

CF 
3 

CFHCF 2 H ~-)>.,::) CF 
3 

CF = CFH 

References 

21-23 

24,25 

26-29 

30-32 

33-36 

peroxide 2)Na0H/b. 

~CF 2 0CF=CF 2 

0 
II 

~CF 

CsF.diglyme - + 
~CF20 Cs 

185-2l5°C 

~CF 2 0CF=CF 2 , 

37-40 

TF3 
RFCF 20CFCOF 

1 KOH 



Uo 

On removal of the polymer latex from the reactor vessel it is 

coagulated by adding salt or acid. The resultant crumb is washed 

and then dried. 

Table lo2 

Component 

water 
Vinylidene fluoride (VDF) 
Hexafluoropropene (HFP) 
Dibasic potassium phosphate 
Potassium persulphate 
Perfluoro-octanoic acid 
Carbon tetrachloride 

lo3 Fluorocarbon Elastomers 

340 
61 
39 

3.6 
1.2 
0.9 
0.1 

The principal commercial fl~oroelastomers based on carbon-carbon 

polymer chains are listed in Table 1.3, together with their major 

structural units. The actual chemical structures of the raw polymers, 

on which the fluoroelastomers are based, are a function of a number 

of different factors including the monomer ratios, their relative 

reactivities and the degree of regioselectivity of the polymerisation 

. 44-47 
react1ons. 

lo3l Curing of Pluoroelastomers 

Raw fluoropolymers may possess some elastomeric properties due 

to some degree of inter-ch~in entanglements and this effect is augmented 

by pendant groups situated along the polymer backbone. However, thermal 

agitation or the application of sufficient stress to the polymers 

can overcome any elastomeric properties which may be present. This 

results in the permanent plastic flow of polymer molecules past one 

another unless this is restricted by cross-links between the chains 

at selected sites along their lengths, to give a three-dimensional 

network. It is necessary however, to optimize the number and distribution 

of crass-lin~ between polymer chains since too many will give materials 

which are rigid, whereas insufficient intermolecular links will produce 



Monomers 

CH2=CF 2 / 

CF3CF=CF2 

CH2=CF 2/CF 2=CF 2 
CF3CF=CF 2 

CH 2=CF2/ 
CF3CF=CFH 

CH 2=CF2 
/CF 2=CFC1 

CF 2=CF 2 
/CF30CF=CF2 

CF 2=CF 2 I CH2=CF 2 
/CF3CF=CFH 

CF 2=CF2/ 
CH 2=CHCH

3 

Trade Name/ 
Manufacturer 

Fluorel 
3M (USA) 
Viton A 
du Pont (USA) 
Tecnoflon 
Montefluos (Italy) 

Viton B 
du Pont (USA) 

Tecnoflon SL 
Montefluos (Italy) 

Kel-F Elastomer 
3M (USA) 

Kalrez 
du Pont (USA) 

Tecnoflon T 
Montefluos (Italy) 

Aflas 
Asahi Glass (Japan) 

Major Structural 
Units 

48-50 
-{ CH 2 CF 2 ) CF 2 CF ( CH 2 CF 2 }-

x I y 

CF3 

' 50 -{CH2CF 2) (CF 2CF 2) CF 2CF(CH 2CF 2)-
w X I y 

CF 
3 

51 

50,52 

-(CH 2CF 2) CCF2CF2) CFHCF(CH2CF2)-
w X I y 

CF
3 

53 



12 
materials that are devoid of elastomeric characteristics. 

The curing of raw fluoropolymers is generally carried out according 

to the stages outlined below: 

i) The raw polymer is formulated with a curing agent, an acid acceptor 

and a filler, on 
. 2,13,15,54 

conventional processing equ~pment. Both 

the nature and proportions of the compounding ingredients are determined 

by the end uses of the fluorocarbon elastomers but a typical recipe 

is outlined in Table 1.4. Metallic oxides are essential for satisfactory 

cures and while their function is not completely understood they are 

known to remove any acids, such as HF, produced during the curing 

process. Studies have demonstrated that an increase in the magnesium 

oxide content (up to 15 pph) actually increases the cross-link density 

55 
of fluoroelastomers based on vinylidene fluoride. 

Table 1.4 

Component 

Elastomer 
Mgo or Ca(OH)

2 
Filler, reinforcing or non-reinforcing 
Curatives/accelerators 
Process aids 

100 
6-20 
0-60 
0-6 
0-2 

Fillers are used in variable quantities to meet a number of criteria 

for specific applications of fluorocarbon elastomers. Medium thermal 

carbon bl~ck is the most frequently used filler, which serves to increase 

the tensile strength of cured materials while also reducing their 

costs. However, too high a proportion of MT carbon black can have 

detrimental effects on both the ageing and low temperature properties 

15,41 
of fluoroelastomers. For materials which are required to be 

heat resistant fine silica fillers are often used instead of carbon 

black but this is at the expense of resistance to fluids and compression 

56 
set. 



ii) The compounded polymer is formed into the desired shape at a 

suitable temperature and then subjected to a press-cure for 10-60 

minutes between 100-150°C. The purpose of the press-cure is to introduce 

some cross-links between the polymer molecules and to release trapped 

air and other volatiles which thereby prevents formation of a porous 

57 
product. 

iii) The partially cured material is then heated in an air oven for 

15-24 hours at ca 200°C. A considerable increase in the cross-link 

density usually occurs and more volatile materials are emitted. For 

nucleophilic cures water is the major volatile. It is produced by 

. . 57 
the reaction of HF with the bas1c metal ox1de, e.g: 

2HF + MgO 

The physical properties of fluoroelastomers are generally improved 

by an oven post-cure, and in particular there is an increase in tensile 

strength and compression set resistance. 

la32 Formation of Cure-Sites 

Materials such as natural rubber have unsaturated sites along 

58 
their chain lengths through which intermolecular bonding can occur. 

For fluorinated polymers cure-sites have to be created by either one 

of the following methods: 

i) For certain fluorine containing polymers unsaturated sites can 

be produced, by dehydrohalogenation for example, and the development 

of cross-links can then be achieved by the chemical reaction of these 

active sites with nucleophiles, such as amines or his-hydroxy compounds. 

ii) For fluoropolymers containing suitable C-H bonds cure-sites can be 

created by peroxide induced abstraction of hydrogen atoms. It is believed 

that the resultant polymer radicals may then combine with each other, or 

with a radical trap, to produce cross-links (see Scheme 1.1). 



vyv peroxide 
---:> 

H (-H.) 

Polymer 

0 

Polymer radical 

Scheme lol 

0 
-----> 

Cross-linking 
agent 

Cross-linked 
product 

iii) Optimum amounts of a special monomer can be incorporated into 

a polymerisation system, so that the resultant fluoropolymer contains 

active sites through which cross-linking can occur. 

Each of the three techniques have been used to produce fluoroelastomers 

that are commercially available. However, the choice of which methodology 

to use depends on not only the chemical nature of the fluoropolymer, 

but its intended application also. Polymers of tetrafluoroethylene 

and perfluoromethylvinyl ether can only be cross-linked by the incorporation 

of cure-sites, since they are highly resistant to most chemicals. 

A more detailed discussion of the cross-linking procedures is 

given below. 

1.33 Cross-linking by Amines 

For copolymers of vinylidene fluoride the mechanism of cross-

linking by amines involves initial dehydrohalogenation to produce 

unsaturated sites, which are then attacked by the curing agent. Details 

of the subsequent reactions are not completely understood. 

Polymers based on CF
2
=CFC1 and CH

2
=CF

2 
can be cross-linked in 

57 solution by primary diamines at room temperature. Initially 

dehydrochlorination occurs, which proceeds much more rapidly than 

dehydrofluorination. It is believed that this is followed by addition 

of the amine to the unsaturated sites, with concomitant loss of HF 

51 
(See Scheme 1.2). 
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Primary monoamines also cross-link CF 2 =CFC1/CH 2 =CF 2 copolymers at 

room temperature and it has been postulated that the mechanism for 

this process is the one outlined in Scheme 1.3, based on studies with 

59 
model compounds. 
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These mechanisms, involving nucleophilic attack of amines on 

unsaturated sites, cannot account for the fact that the copolymers 

are cross-linked by secondary and tertiary monoamines and by tertiary 

diamines at elevated temperatures. To overcome this problem, however, 

57 
the rather unlikely formation of quaternary sites was proposed, 

e.g., 

- CF CFCl - ~CP-a - 2 

- CF 2 CFCl - CHCF :z 
e 

Dehydrofluorination of these copolymers by amines occurs 

preferentially at tertiary sites, although less readily than the 

dehydrochlorination of CF 2 =CFC1/CH
2
=CF 2 polymers. 



OJ. 

-HF 

-CF 2 CFCH 2 CF2 

I 
CF 3 

It is believed that the free amines add across the unsaturated 

sites to give a product from which elimination of HF could occur, 

as for the CF 2 =CFCl/CH
2
=CF

2 
copolymer system. This is supported by 

studies with model compounds and by the fact that four moles of HF 

55 
are eliminated for each molar equivalent of cross-link which is formed. 

However, there is a lack of definitive evidence for the mechanism 

of this process. 

Sequences of vinylidene fluoride units are present in CF 3 CF=CF 2 /CH 2 =CF 2 

copolymers and elimination ofHF from these sites could ultimately 

lead to the formation of cross-links, by a similar route to that outlined 

55,60 
in Scheme 1.2, e.g. 

-CH
2
CF 2 CH 2 CF-z > -CH

2
CF=CHCF2 

(-HF) 

l H 2 N~NH 2 

etc 

In order to determine the differences in rates of dehydrofluorination 

and 

schmiegel treated solutions of 

fluoride polymers in dimethylacetamide (DMAC) with different types 

of base/bis-nucleophlie systems. It was found that CF 3 CF=CF 2 /CH
2
=CF 2 

copolymers were gelled much more rapidly than CH 2 =CF 2 homopolymers. 

For example, treatment with hexamethylene diamine led to gellation 

in under 4 minutes for CF 3 CF=CF 2 /CH 2 =CF 2 copolymers, , whereas CH 2 =CF 2 

homopolymers only afforded a firm gel after more than 10 days. 



Further studies carried out by Schrniegel demonstrated that the 

dehydrofluorination step proceeds relatively slotily compared to 

50 
nucleophilic attack on unsaturated sites. 

after treatment ~i~ tetra-n-butylammonium hydroxide. have indicated 

that preferential elimination of HF occurs from tertiary sites 

. 50 
and that units of the type (1) are the most act1ve. Further 

investigations led to the proposal that the displaced fluoride 

ion may participate in reactions with the unsaturated sites, leading 

ultimately to further dehydrofluorination of the polymer chains 

(see Scheme 1.4). 

(1) F 

-HF 

< 

Scheme 1.4 

c) Curing Agents 

During the compounding· of the raw fluoropolymers it is important 

that premature cross-linking ('scorch') is avoided. In practice 

aliphatic amines are extremely reactive and cause scorching, so 

. 60-62 
that compounds which generate amines on heating are used 1nstead. 

A number of delayed action curing agents have been developed to 

overcome the scorch problem and these include Schiff bases of 

alphatic diamines, such as bis-cinnamyliderehexamethylene diamine 

(PhCH=CHCH=N(CHz)J)z and carbonates such as hexamethylene diamine 



+ carbonate ( H 
1 
N ( CB 3 ) 

6 
NHCO 

3
- ) • Water is required to produce the 

free amine and this is accomplished by the chemical reaction between 

the basic metal oxide and HF. The metal oxide also reacts with 

any amine hydrofluoride which is present. to produce the free 

amine. e.g. 

+ 
MgO+ 2RNH:~~F 

The presence of water can have a significant effect on the 

stability of the cured material since it cancleave the intermolecular 

bonds. Consequently, water must be carefully removed duri.ng the 

post-cure process. 

The function of the post-cure is not only to remove volatile 

materials. It also serves to significantly increase the degree 

of cross-links. The role of the acid acceptors during this process 

is not completely understood since copolymers of vinylidene fluoride 

cannot be effectively cross-linked unless they are included in 

the curing formulation. This applies to curing by amines, bis-

. 60 
hydroxy compounds and perox1des. Indeed, heating raw copolymers 

of CF 3 CF=CF 2 and CH 2 =CF
2 

with magnesium oxide alone can bring 

63 
about some degree of cross-linking. This observation, together 

with the fact that magnesium oxide can act as a dehydrofluorinating 

agent, have led to proposals that unsaturated sites can react 

f 1 . d . 60 to arm cross- ~nks ur1ng the post-cure stage, e.g. 

I 
CH 

II 
CF 

-2HF I 
CH F P' 

I + II ------~ 
CH 

II 
H 

H 
CF 
I 

CF 
I 

Scheme loS 



However, it is highly unlikely that this type of cross-linking 

mechanism occurs since related conjugated materials failed to 

. 51 
react in the absence of am1nes. 

d) Properties of Amine Cured Fluoroelastomers 

A significant increase in the physical and thermal properties 

of Uuoroelastomers based on vinylidene fluoride is obtained during 

the oven post-curing cycle. Many of the centres of instability 

are removed so that the cured materials are largely stable to 

heat and have increased resistance to oxidation and weathering. 

The limitations of amine cured rluorelastomers, however, are their 

susceptibility to degradation by various solvents and gases, which 

64 
can attack any remaining sites of unsaturation. Consequently, 

the proportion of fluoropolymerswhich are cross-linked by amines 

has progressively diminished over the last two decades. 

lo34 Cross-linking by Bisphenols 

Currently the curing of vinylidene fluoride copolymers is 

largely carried out using a bisphenolin conjunction with a cross-

65,66 
linking accelerator and an acid acceptor. The preferred 

cross-linking accelerator is a quaternary phosphonium salt of 

+ 
the type R

1
R 2 R3 P R

4 
X , although related arsenic or antimony compounds 

66 
can be used also. Typically, however, benzytriphenylphosphonium 

chloride is used. Bisphenols of the form (2) are the cross-linking 

agents used most frequently, where X 

(HO)n@-"-@(OH)n 

( 2) Bisphenol AF 



is preferably an electron-withdrawing group such as a carbonyl, 

66 
sulphonyl or perfluorinated alkylene. Usually, hexafluorisopropylene 

- bis-(4-hydroxybenzene) (BisphenolAF) is the preferred compound 

and a typical curing system is shown in Table 1.5. Both the press-

cure (several minutes at 170-190°C) and the oven post-cure processes 

(24h at 230-260°C) are carried out at temperatures above those 

used for cross-linking by amines. 

Component 

Elastomer 
MT Black 
Ca ( OH) 2 

MgO 
Bisphenol AF 

+ Ph 3 P CH 2 Ph Cl 

Table loS 

100 
30 

6 

3 
1. 5-2.5 
0.4-0.5 

Copolymers of vinylidene fluoride and hexafluoropropene, 

chlorotrifluoroethylene or pentafluoropropene and terpolymers 

of vinylidene fluoride, tetrafluoroethylene and hexafluoropropene 

or pentafluoropropene can be cross-linked using the phenol curing 

66 
system. Most investigations of the cross-linking process have 

concentrated on studies with the CF 3 CF=CF 2 /CH
2
=CF 2 copolymer 

system and a discussion of the results is given below. 

Schmiegel investigated the curing of these copolymers with 

Bisphenol AF and made several observations:
50 

+ 
i) If the cross-linking accelerator, e.g. Ph 3 P CH 2 Ph Cl , is omitted 

from the curing recipe no cure occurs. 

ii) If Bisphenol AF is omitted, only ca 7% of the cure-state of 

the complete formulation is attained. 

iii) The cross-link density is directly related to the level of 

Bisphenol AF. 



19 
These observations, together with studies based on FNMR analysis 

of polymer solutions, after treatment with base/bis-nucleophlie systems, 

led to the proposal that the most likely cross-linking mechanism 

is the one outlined in Scheme 1.6. However, these studies only 

apply to the initial stages of the curing process, since the formation 

of cross-links cause the polymer solutions to gel and consequently 

hinder the spectroscopic analysis. It is known that there is a 

significant increase in the degree of cross-linking during the post-

cure stage, and there is evidence that bond breakage is followed 

12 
by bond reformation, to give a more stable three-dimensional network. 

(See Scheme 
1.4) 

CF 
\ 3 

HOArOH 

l HOArOH/Ph,P+ CH,Ph Cl 

CF 3 CF 3 
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-CH CF C=C-CF=CF-CF CF- ~<:~-----------
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I 

-CH CF C=C-CF=CF-CF CF-
2 21 2 

OArOH 

Ar 

I 
0 

I 
-CH CF C=C-CF=CF-CF CF-

2 2 I 2l 
CF 3 CF 3 

Scheme 1.6 

During the cross-linking process Bisphenol AF is probably 

converted to the corresponding bisphenolate by either magnesium 

oxide or the quaternary phosphonium salt. 

---...;;)>::, PhCH 
2 
p+ Ph 

1 
OArOH + HCl 

The phenolate can then attack the polymer either eliminating 

so 
HF or adding to any unsaturated units. The quaternary phosphonium 

salt serves to accelerate these reactions, possible by conferring 



I/ • 

some surface phase transfer properties on the system. Schmiegel 

has proposed that the phosphonium ion undergoes c.onversion from 

bisphenolate to fluoride or bifluoride during the course of the 

48 
curing process. Ultimately, it is converted to triphenylphosphonium 

oxide. 

b) Polymers containing CF 3 0CF=CF~ and CH 2:£!2 __ 

Terpolymers based on vinylidene fluoride, perfluoromethylvinyl 

ether and tetrafluoroethylene or hexafluoropropene have been developed 

as they can be used at lower temperatures than CH 2 =CF 2 /CF 3 CF=CF 2 

resistance to chemical attack. However, these materials cannot 

be effectively cross-linked by nucleophilic curatives since there 

are considerable porosity problems with the vulcanizates. 50 The 

unsuitability of this curing methodology is most likely to be due to 

emission of insoluble volatile materials from the fluoroelastomer 

compound during .the cross-linking process. In fact, it was demonstrated 

that trifluoromethanol is eliminated in preference to BF when solutions 

50 
of these polymers are treated with base (see Scheme 1.7). 

base 
-CF 2 CF=CHCF 2 

-CF CF-CH CF -21 2 2 

OCF 3 

""-. V base 
"'-----7\*-----p~ -CF C=CHCF-

21 2 

OCFl 

Scheme 1. 7 

Furthermore, the decomposition of trifluoromethanol according 

to the process: 

CF)OH CF
2
= 0 + HF 



leads to the evolution of HF, which on reaction with metal oxides 

will produce water. It is understandable, therefore, that the 

formation of these insoluble volatiles is instrumental in causing 

the observed porosity problems. This situation, however, can be 

circumvented by incorporating a cure-site monomer into these polymers 

(See Section 1.36). 

c) Properties of Bisphenol Cured Fluoroelastomers 

The major utility of the bisphenol curing process is in the 

manufacture of fluoroelastomers having a combination of high thermal 

stability and low compression set for applications such as 0-rings, 

. 66 
shaft seals and tub~ng. In addition the compounded articles 

have improved storage stability and processability relative to 

amine formulations. 

Bisphenol cured fluoroelastomers are resistant to a wide range 

of chemicals including acids, salt solutions, hydrocarbon solvents, 

fuels and oils. However, they are degraded by certain polar solvents 

such as methyl ethyl ketone, amines and low molecular weight esters 

13 
and alchols. 

lo35 Cross-Linking by Peroxides 

a) CH 2 aCF 2 Copolymers 

In principle, copolymers containing vinylidene fluoride can be 

cross-linked by peroxides via the abstraction of hydrogen atoms 

from the polymer chains and reaction of the resultant radica1sprobably 

with either each other or a suitable cross-linking agent. (See 

1 )
14,15,57,67,68 

Scheme .1. In practice however, it is necessary 

to add magnesium oxide to the system in order to attain a practical 

degree of cure. Furthermore, the abstraction of a hydrogen atom 

is a high energy process which requires very active peroxides 

and the use of such compounds often leads to scorching problems. 



Fluoroelastomers based on vinylidene fluoride, which have been 

cured in this way, are thermally less stable than amine or his-phenol 

vulcanizates and have poor resistance to compression set and creep. 

Copolymerisation of tetrafluoroethylene and propene produces 

amorphous polymers in which there is a high degree of alternation 

. 53,69,70 
of the monomer un1ts. These polymers cannot be cured by 

most cross-linking agents, including polyamines and polyhydroxyaromatics, 

since there are no active cure sites. However, the combination 

of a peroxide and a cross-linking coagent can bring about an effective 

71 
cure-state. A typical curing recipe is shown in Table 1.6~ 

Table 1.6 

Component 

Copolymer 
MT carbon black 
Me 3 COOCMe 2 ~CMe 2 OOCMe 3 

Triallyl isocyanurate (TIC) 

100 
35 

2 
3 

Press-Cure: 30 mins at 160°. Post-cure: 2h at 200°C 

I 
The most satisfactory cure-states are obtained with oc 1 r.c 

- his - (t - butylperoxy) - p - diisopropylbenzene as the peroxide 

71 
and triallyl isocyanurate (TIC) as the coagent. 

It was postulated that the cross-linking reaction proceeds 

71 
by the mechanism outlined in Scheme 1.8 The mechanism involves 

peroxide induced abstraction of hydrogen from the tertiary carbons, 

giving polymer radicals which participate in the cross-linking 

process. It is most likely that the methylene groups of TIC are 

susceptible to abstraction of hydrogen also, although this was 

71 
not stated. 
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Scheme 1.8 

Elastomers of tetrafluorocthylene and propene \/hich have been 

cured in this manner show good physical properties and are highly 

resistant to heat (no loss in tensile strength after 60 days at 200°C) 

71 
and to chemicals, including acids,alkalis and steam. Due to their 

lower fluorine content, however, they are not as resistant as CH:f'CF 2 /CF
3

CF=CF'; 

copolymers to swelling by hydrocarbon fuels and oils. 



lo36 Incorporation of Cure-Site Monomers 

The use of amine and peroxide formulations for the cross-linking 

of copolymers based on vinylidene fluoride is often problematic, 

since highly active materials are required which frequently give 

rise to processing difficulties. Furthermore, copolymers of 

tetrafluoroethylene and perfluoromethylvinyl ether cannot be 

cross-linked using nucleophilic curatives, due to their extreme 

chemical inertness. These difficulties can be overcome by incorporating 

optimum amounts of a special monomer, containing an active site 

through which cross-linking can occur. For example, the cure-site 

monomer A-B can be incorporated into the CF 2 =CF 2 /CF 3 0CF=CF 2 copolymer 

as shown in Scheme 1.9. 

+ 
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+ 
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+ cure-site monomer 
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~ Cross-linking process 
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2 ) CF 2 CF-

n I 
OCF 3 

(CF 2 CF
2

) CF
2
CF­

n I 
OCF 3 

Scheme la9 

This cross-linking methodology is suitable for all fluoropolymers 

in principle, provided that the cure-site monomer can satisfy 

several criteria, as follows: 



i) During the polymerisation step, the reactivity of the cure-

site monomer must not appreciably differ from that of the other 

monomers, since the cross-link density will contribute to the 

mechanical properties of the cured product. 

ii) The cure-site must not particip~e in the free radical polymerisation 

step, since this could lead to substantial chain branching or complete 

inhibition of the process. 

iii) The cure-site must be reactive towards the curing agents so 

that the cross-links are stable extensions of the polymer system, 

thereby avoiding the introduction of weak bonds through which chemical 

and/or thermal degradation could occur. 

iv) The cure-site monomer must be relatively easy to synthesize 

in order to minimise its cost and must also be fairly non-toxic. 

Cure site monomers displaying enhanced receptivity to attack 

by either free radicals or nucleophilic cross-linking agents have 

been developed and a discussion of some specific examples is given 

below: 

a) Cure-Sites Responsive to Nucleophilic Cross-linking Agents 

Perfluorovinyl ethers of the form CF
2
=CFOR A are easily incorporated 

F 

into fluoropolymer chains and several different types have been 

Synthetic 

routes to these compounds are shown in Schemes 1.10 and 1.11. 

Typically, about 1-4% of the cure-site monomers are incorporated 

into the fluoropolymer systems and cross-linking is achieved by 

reaction with nucleophilic reagents such as polyfunctional amines, 

glycols or phenols. For example, polymers containing a cure-site 

monomer of the form CF
2
=CFO(CF

2
) 
n 

C0 2 R are presumably cross-linked 

according to Scheme 
72 

1.12. 
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Fluoropolymers containing the active pentafluorophenoxy site 

are cross-linked by polyamines, such as hexamethylenediamine and 

tetraethylenepentamine, or salts of polyhydroxyaromatics, e.g. 

hydroquinone, Bis-phenol A, etc (See Scheme 1.13 for the postulated 

. 72,74 
mechan1sm). A typical curing formulation is shown in Table 1.7. 

Component 

Polymer 
Carbon black 
MgO 
Cross-linking salt 
Polyether accelerator 

Table 1o7 

100 
10 

4 
3 
3 

Press-cure: 30 mins at l77°C. Post-cure: Several days at a 
steadily increasing temp. 150-300°C. 



Scheme 1.13 

Satisfactory cures are obtained in this way but for polymer chains 

linked by an ester group (See Scheme 1.12), the possibility of 

cross-link interchange is reflected in the vulcanizates possessing 

. . 72 
low compress~on- set res1.stances. Also, materials containing 

perfluorophenoxy linkages lose some degree of thermal stability. 

b) Nitrile Cure-Sites 

Monomers in which the active cure-site is a nitrile group 

have been used for the cross-linking of fluoropolymers, since they 

can be easily synthesized by modification of the ester group of 

12,75 
the perfluorovinyl ethers discussed in section 1.35a, e.g. 

l)NH
1 

CF 3 =CFO(CF 2 ) C0 2 CH 1 ------~~~ n 
2)P 2 0

5
/.6 

CF 2 =CFO{CF 2 ) CN 
n 

For a typical curing process, the fluoropolymer containing 

pendant nitrile groups (lOOpph) is formulated with carbon black 

(lOpph) and tetraphenyl tin {3-6pph). The polymer compound is 

subjected to a press-cure for 0.5-lSh at l60-2l0°C followed by 

an air oven post-cure at 200-290°C over several days. The mechanism 

of cross-linking is believed to be that in which thenitrile groups 



LO 

are converted into triazine units, e.g: 

CF 
2
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c) Cure-Sites Responsive to Free Radical Cross-LinkingAgents 

Over the last decade or so cure-site monomers have been developed 

which, on incorporation into a fluoropolymer, greatly enhance the 

response to curing by peroxides. This susceptibility to free radical 

attack is provided by the introduction of bromine containing monomers, 

such as bromotrifluoroethylene, 3-bromopentafluoroprop-1-ene and 

64,76,77 
4-bromo- 3,3,4,4- tetrafluorobut-1-ene, amongst others. 

In order to reach an effective state of cure, the fluoropolymer 

containing the copolymerized cure-site monomer must be compounded 

with an organic peroxide, a suitable cross-linking coagent and 

a combination of acid acceptors (See Table 1.8). The peroxides 

which give the most favourable response are 2,5 - dimethyl - 2,5-

64 
di-t- butylperoxyhexane (3) and the analogous hex-3-yne derivative(4). 

Me 2 C CH
2

CH
2
CMe

2 
Me c-c=c-cMe 

I I 2 I I 2 

0 0 0 0 

I I I I 
0 0 0 0 

I I I I 
CMe 3 CMe

3 
CMe 

3 
CMe

3 

(3) ( 4) 



Di-tert-butylperoxide also gives good cures but problems 

with is volatility are restrictive to its utility. 

Component 

Copolymer 
MT carbon black 
Austin black 

Table loB 

Acid acceptor, e.g. MgO and/or Ca(OH) 2 

Peroxide 
TIC 

100 
15-30 

0-10 
3-5 
1-6 
1-6 

Initial Cure: 1-60 mins at 149-204°C. Post-cure (for maximum 
heat resistance): l-48h at 180-300°C. 

A number of compounds were examined for their suitability 

as cross-linking coagents but triallylisocyanurate (TIC) was found 

64 
to be the most useful. Although other coagents such as triallylcyanurate 

and diallylacrylamide are similarly effective in forming cross-

links, the cured articles possess inferior resistance to compression 

. 77 
set and thermal degradation. 

There are several advantages in using this type of curing 

system: 

i) A wide range of fluoropolymers can be cross-linked in this 

way, many of which would not respond to nucleophilic curatives. 

ii) The curing process is rapid and can be carried out at atmospheric 

pressure. This is in contrast to cross-linking with polyfunctional 

nucleophilic reagents, in which the compounded fluoropolymers have 

to be subjected to a press-cure in order to avoid the formation 

of porous products. 

iii) More useful physical properties and increased resistance to 

chemical degradation can be obtained. Nucleophilic cures have 

the inherent disadvantage of producing vulcanizates which contain 

reactive sites. This undesirable feature is avoided using the 

peroxide curing system. 



Studies were carried out in order to determine the mechanism 

by which the peroxide induced cross-linking of polymers containing 

bromotrifluoroethylene occurs. The simplest way of generating 

a fluorinated alkyl radical from a fluoxoalkylbromide involves 

the abstraction of bromine. Thus, using 2-bromononafluorobutane 

as a .model for bromine containing fluoropolymers, treatment with 

UV light and di-t-butyl peroxide in cyclopropane gave an intense 

. ( ) 77 ESR spectrum due to formation of the radJ.cal. 5 

CH 2 

/ "" hV CH 2 CH 2 

( 5) 

Further investigations to determine the nature and amount 

of volatiles produced during the curing process indicated the manner 

in which peroxide decomposition and cross-link formation probably 

77 
occur (See Table 1.9 and Scheme 1.14). 

Table 1.9 

Relative Amounts of Volatile Materials Generated During Curing 

Compound 

Water 

Acetone 
Methane 
t-Buty1 alcohol 
Isobutene 
Methyl bromide 

Others 

Amount Produced 

ill 

54 

31 
9 
3 
1 
1 

1 

Observations 

The only product when 
peroxide is omitted 

50-100% greater on omission 
of TIC 

Ingredients: Polymer 100; Carbon black 30; Ca(OH) 2 4; peroxide 4; 

TIC 4. 
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l 0 .ljl Jl.l'lUOirm2l.astomers Based on Pol)fiilei:'S m til l!Ieteroatom Backbones 

There are three major classes of fluoroelastomer based on 

polymers containing heteroatom backbones: 

i) Perfluoroalkylenetriazine elastomers 

ii) Nitroso rubbers 

iii) Fluorothiocarbonyl elastomers 

A dicussion of each class is given below: 

la41Perfluoroalkylenetriazine Elastomers 

It has been known for some time that tris(perf1uoroalkyl)-s-triazines 

. 78-80 
are very resistant to thermal and chemical degradat~on. This 

prompted interest in the synthesis of polymers based on this unit, 

since it was hoped that these materials would display similar stability 

. . . . 81 f 1 1' 
~n aggress~ve env~ronrnents. The most success u routes to ~near 

poly(alkylenetriazine)s are outlined in Scheme 1.15 involving the 

synthesis of poly(imidoylamidine ) polymers, which then undergo 

ring closure reactions along their chain lengths by treatment with 

82 
an acid anhydride. 

l. N - C ( CF l ) C::N 
m 

n 



2. N :: C ( CF 2 ) C= N 
m 

Room Temp. 
-----:> 

Scheme 1.15 

n 

Since the triazine units are sterically demanding, it is necessary 

that the perfluoroalkylene links between the rings contain at least 

five carbon atoms (1 and m ~ 5). Otherwise the materials do 

not display good elastomeric properties and problems arise in 

preparing the requisfte poly(imidoylamidine)s, since the dinitriles 

d 1 . h d . h . 81 
ten to eye 1se wen treate w1t ammon1a 1 e.g.: 

~C~NH2 
(CF ) ~N 

\2m . / 
~C~NH 

m = 2,3,4 

n 



In order to cross-link the triazine polymers, cure-sites need to be 

incorporated and this is achieved by adding a small amount of a 

cyclic anhydride or a iJ- cyanoacyl chloride to the poly( imidoylamidine) 

during the ring closure step. This leads to a proportion of triazine 

rings having pendant carboxyl or nitrile cure-sites (See Scheme 

Scheme lal6 

0 

I! 
CN(CF

2
) -C 
m \ 

Cl 

The carboxyl groups can be converted to their silver salts 

d b t h t t t t 1 d 1 . k" f . 57 1 an su sequen ea rea men ea s to cross- 1n 1ng ormat1on. Po ymers 

containing nitrile cure-sites are cross-linked by metal oxides, 

e.g. silver oxide or lead oxide. It is believed that these materials 

57,83 
catalyze the formation of triazine rings (cf. section 1.36b). 

Poly(perfluoroalkylenetriazine) polymers are not commercially 

available mainly as a consequence of the difficulty in carrying out 

reproducible syntheses, together with the high cost of requisite 

perfluorinated starting materials. 



lo42 Nitroso Rubbers 

Many copolymers belonging to the family of nitroso rubbers 

have been prepared and they have been the focus of much interest, 

mainly because of their potential value as chemically resistant 

elastomers for low temperature applications, especially in the 

aerospace industry. A number of detailed reviews on nitroso rubbers 

85-87 
have been published. 

The best material in this class has been found to be the copolymer 

of tetrafluoroethylene and perfluoronitrosomethane which was first 

prepared in 1955.
88

-
90 

It was discovered that on mixing equal 

amounts of the two monomers, spontaneous reaction occurred giving 

a viscous polymeric oil and heptafluoro-2-methyl -1,2-oxazetidine (6). 

The yields of the 

(6) 

CF 3--N--0 

products were found to be dependent on temperature. Low temperatures 

tend to favour polymer formation (65% at 45°C), whereas at high 

temperatures (> 100°C) the heterocycle is the only product. Detailed 

studies demonstrated that the polymerisation process proceeds via 

free-radical intermediates, whereas the heterocycle (6) is formed 

91-93 
by a homogeneousbimolecular reaction. Further work indicated 

that a significant proportion of the copolymers prepared in this 

-
manner consist of chains of relatively low molecular weight (~ < 5000) 

. . 94 
and that this may be the cause of the1r low tens1le strengths. 

Other fluoroalkenes can be copolymerised with perfluoronitrosomethane in 

95-97 
an analogous way. For unsymmetrical alkenes, addition to 

the N=O bond to form the heterocyle (7) proceeds with reversed 

regioselectivity to that observed for the free radical polymerisation 

process, so the copolymer is largely composed of the structure (8). 



CF 2 =CFX 

+ ~~-0-CF,CFj 
LCFl 

n 

( 7) ( 8) 

The nature of the fluoroalkene has a marked effect on the 

rate of the polymerisation reactions and it was found that the 

relative ·reactivities of the monomers decreases as the fluorine 

. 91 f h content 1s lowered. Conversely, altering the structure o t e 

nitroso monomer does not have a significant effect on the rate 

of reaction provided the nitroso group is directly bonded to a 

difluoromethylene unit. 

The CF 2 =CF 2 /CF 3 NO copolymer, which is usually referred to 

as nitroso rubber, cannot be cross-linked using traditional curing 

systems due to its chemical inertness. However, terrnonomers containing 

cure-sites can be incorporated and it was found that the most useful 

87 
are of the nitroso type. The preferred active cure-site is a 

carboxyl group, which allows for the introduction of cross-links 

by a number of reagents, including metal oxides, chromium 

tris(perfluorocarboxylate)s 
57,99 

and epoxy compounds. Thus, the 

most successful material in this class is the terpolyrner of tetrafluoroethylene, 

perfluoronitrosomethane and perfluoro (nitrosobutyric acid), H0 2 C(CF 2 ) 3 NO, 

which is known as carboxy nitroso rubber (CNR) and is available 

99 
on pilot-plant scale. 
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la43 Fluorothiocarbonyl Elastomers 

Considerable interest has centred on fluorinated thiocarbonyl 

compounds since they can undergo facile polymerisation to yield 

. 12,100~101 
materials possessing unusual propert1es. The most intensely 

studied material in this class is poly(thiocarbonyl fluoride), 

(CF 2 S)n although polymers of thioacyl fluorides (RFCF=S) and of 

fluorothioketones (R CSR ) have been investigated also. A detailed 
F F 

. 102 
review on fluorothiocarbonyl compounds is ava1lable. 

Thiocarbonyl fluoride can undergo polymerisation by either 

. 100,101 
free radical or anionic chain mechan1sms. The raw polymer 

is a tough, highly resilient material which displays elastomeric 

properties and can be pressed into films or moulded into required 

102 
shapes. It has an extremely low glass transition temperature 

(Tg = -ll8°C), but potential applications are limited by the fact 

that it gradually crystallizes on storage at room temperature (T =35°C) 
m 

and that depolymerisation occurs at temperatures above 175°C. 

The chemical resistance of the polymer is generally good. It is 

unaffected by boiling sodium hydroxide solution or short term contact 

with boiling nitric acid. However, it is severely degraded by 

. 102 
am1nes. 

Although poly(thiocarbonyl fluoride) displays elastomeric 

properties attempts were made in order to cure it. Compounding 

of the polymer with benzoyl peroxide and divinylbenzene followed 

by a press-cure at 100°C yielded a vulcanizate which showed good 

. d . . 102 compress1on set an abras1on res1stances. However, the undesirable 

properties inherent in the raw polymer are still present in the 

cured material, such as the poor resistance to amines and slow 

crystallization at room temperature. 



Crystallization of the thiocarbonyl fluoride polymer can be 

avoided by incorporation of small amounts of a vinyl comonomer 

l0lul03 
into the system, such as 3-butenyl acetate or allyl chloroformate. 

Copolymers containing the former compound can be modified so that 

the pendant groups contain a functional hydroxyl group and by 

treatment with di-isocyanates cross-links can be formed (presumably 

by the mechanism given in Scheme 1.17). Curing of copolymers 

containing allyl chloroformate can be carried out by a press-cure 

operation at 100°C, using zinc oxide (ca 2-5 mol%). 

MeOH/5%HCl 

THF/60% 

Scheme 1.17 

Due to limitations in their resistance to chemical and thermal 

degradation, the fluorothiocarbonyl elastomers have riever attained 

commercial availability. 
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laS Fluoroelastomers Based on Polymers with Inorganic Backbones 

The two major types of fluoroelastomer in this category are 

fluorosilicones and fluoroalkoxyphosphazenes 

la5l Fluoroalkoxyphosphazenes 

Compounds containing the basic unit -N=/- are called phosphazenes 
\ 

and both cyclic and linear types have been known for some time. 

They are obtained by the reaction of ammonium chloride or ammonia 

. 104-106 
with phosphorus pentachlor~de. 

nNH
4 

Cl + nPCl
5 

-[N=PCl a-n + 4nHCl 

By regulating the reaction conditions the yields of the most 

use·ful cyclic products, where n=3 and 4, can be optimized (ca 60% 

107,108 
and 25% respectively). 

Ring opening polymerisation of the cyclicoligomers occurs 

between 230 - 250°C and it was found that the rate decreases with 

. . . . 104,109 
~ncreas1ng r~ng s1ze. The most satisfactory polymers are 

110 
obtained by heating the trimer ( 9) under vacuum at 250°C. 

f=PCl:t 

( 9) 

n 

Poly(dichlorophosphazen~ prepared in this way is amenable 

to displacement of its chlorine atoms, since it can undergo treatment 

with a nucleophilic reagent while dissolved in a suitable solvent 

such as benzene, toluene or THF. 
110-115 

(See Scheme 1.18) 
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Scheme Ll8 

(a thermoplastic) 

(an elastomer) 

A significant number of different alkoxyphosphazene polymers 

can be synthesized by varying the alkoxide, or by utilizing more 

than one alkoxide materials with different pendant groups can be 

formed. Thus, reaction of two fluoroalkoxides of different carbon 

chain lengths with poly(dichlorophosphazene) produces a fluoroelastomer. 

Much of the available literature refers to fluoroelastomers carrying 

the pendant groups OCH 2 CF 3 + OCH 2 (CF 2 ) 3 CHF 2 and OCH 2 CF 3 + OCH2 
112, 116-118 

(CF 2 ) 2 CF 3 • Elastomers based on materials of this type 

are commercially available under the trademark PNF (Firestone, USA). 

In order to optimise the physical properties of poly(fluoroalkoxy-

phosphazene) polymers for particular applications they can be cured 

. . 117,119 
by the use of organic peroxides, sulphur or high-energy rad1at1on. 

A basic formulation consists of the polymer (100 pph), a reinforcing 

filler (e.g. silica or carbon blacks) (30 pph), magnesium oxide 

(6 pph), a stabilizer (e.g. zinc- 8- quinolinolate (1-2 pph) and 

a curing agent (1-6 pph). 

Compared to poly (alkoxyphosphazene) polymers the fluoroalkoxy 

derivatives are more resistant to chemical and thermal degradation. 

The major advantage of these materials over fluorocarbon elastomers 

is their ability to function at much lower temperatures. For example 

the glass transition temperature of the rawfluorOllkoxyphosphazene 



... I o 

polymer containing the pendant groups CF 3 CH 2 0 and HCF 2 (CF 2 ) 1 CH
2
0 

is -
0 117 

68 c. 

Jn.uorosilicones 

The sites to which fluorine can be bonded in polyalkylsiloxanes 

are limited due to the susceptibility of cc and f3 substi tuents to 

undergo hydrolytic or thermal degradation. 

---:> 

Consequently the most useful site in which fluorine can be 

bonded is ~ to silicon, so that polymers of the form 

have been prepared, where RF = CF 1 r C 2 F
5 

or 

Since the nature of the perfluoroalkyl group does 

not significantly affect the properties of polyfluoroalkylsiloxanes 

investigations have centred on developing the polymer in which 

RF=CF 3 • Materials based on this polymer are commercially available 

and are designated 'Silastic' LS (Dow Corning, USA). 

As for other fluoroelastomers, the fluorosilicones can be 

formulated to provide specific properties for a number of applications.
15 

They are usually compounded with ca 1 pph of a peroxide curing 

agent, as well as upto 50 pph of silica fillers and hydroxy containing 

"1" "1 123 Sl. 1.cone 01. s. The mechanism of cross-linking involves the 

combination of polymer radicals to create new carbon-carbon bonds. 

Formation of the polymer radicals is achieved by the peroxide, 

either by abstraction of hydrogen from methyl groups or addition 

to a vinyl cure-site (See Scheme 1.19!.
15 

Although the incorporation of fluorine into the poly(alkylsiloxane)s 

is rat~er limited, the cured materials are significantly more resistant 

to swelling by solvents than their hydrocarbon analogues. Furthermore, 



the inherent thermal stability and lo~ temperature characteristics of 

silicone elastomers are retained on the introduction of fluorine.
14 

RO-OR 2ROo 
peroxide radicals 

ROo 

--------> 

Scheme lul9 

la6 Properties and Applications of Pluoroelastomers 

As a broad class fluoroelastomers display a remarkable resistance to 

chemical and ·thermal degradation, flame propagation, oxidation and 

weathering. The chemical resistance of the materials is usually 

dependent upon their fluorine content so that elastomers based on 

tetrafluoroethylene and perfluoromethylvinyl ether are unaffected by 

most chemicals and solvents. 

The selection of a fluoroelastomer for a given application is often 

a compromise between a number of different factors, including its cost 

and the optimum properties which it confers upon the system. Fluoroelastomers 

are utilized in specialized applications where high performance is 

required since their relatively high cost precludes widespread use but 

their excellent mechanical properties and high resistance to degradation in 

aggressive environments is outstanding when compared to other classes of 

elastomer. Fluor~lastomers are most widely used in industry for sealing 

applications such as 0-rings, but they also find major use as diaphragms 

for pumps, industrial rolls, tubing, coatings and pipe expansion joints. 

The characteristics of some fluoroelastomers are given in Table 1.10. 



Elastomer 

CF30CF=CF2/ 
CF 2=CF2 

CF3CF=CF2/ 
CH2=CF2 

CF 2=CFC1/ 
CH2=CF2 

CF 2=CF2/ 
CH3CH=CH2 

Triazine 
Elastomers 

Nitroso rubber 
CNR 

Fluorosilicores 
Silastic LS 

Phosphonitrilic 
elastomers 

PNF 

Table ll..ll.O 

Continuous Fluid and Chemical 
Service Resistance 
Temp/°C 

315 

200 

175 

200 

345 

200 

260 

174 

Good ~oor 

Almost all 
solvents 
and liquids 

hydrocarbons 

Some· highly 
fluorinated 
solvents 

ketones 

inorganic esters 
acids 
chloro sol vents amines 

Generally less 
resistant than 
CH2=CF2/ 
CF3CF=CF2 
elastomers 

inorganic 
acids and 
bases 
H202 

Hydrocarbons 
strong acids 

ozone 

hydrocarbons 

Strong acids 
Most common 
Solvents 

hydrocarbons 
dilute acids 
and alkalis 

benzene 

amines 
caustic 
solutions 

amines 

ketones 
esters 

esters 
ketones 
ethers 

Useful Properties 

Unmatched chemicalD 
solvent and 
oxidation resistance 

Excellent weather 
resistance 
Low compression set 

Low permeability to gase: 

High tensile 
strength 
High resistance to 
oxidising agents 

Low permeability to gase 

Good resistance to 
compression set 

High tensile strengths 
at elevated temperatures 

Excellent weather 
resistance 
Low temp.serviceability 
(ca-40°C) 
Non-flammable even in 
oxygen 

Good mechanical properti 
at high temperatures. 
Low temp.flexibility 
(ca-54°C) 

non-flammable 
Low temp.flexibility 
(down to ca-68°C) 



CHAPTER TWO 

SYNTHESIS AND SPECTROSCOPIC EXAMINATION OF 

SATURATED MODEL COMPOUNDS 

2ol Introduction 

It is often difficult to determine the nature of chemical 

reactions occurring in a bulk polymer system with any degree 

of certainty. Consequently, model studies offer an opportunity 

to provide a framework of understanding on which to base more 

firmly, discussions of chemistry carried out on the polymer. 

This research project is concerned with the synthesis and 

chemistry of model compounds related to the CH 2 =CF 2 /CF 3 CF=CF 2 

copolymer system. Investigations have mainly concentrated 

on discovering the mechanism by which the cross-linking of 

these copolymers occurs, especially using nucleophilic curatives 

such as Bisphenol AF (See Section 1.34). These studies have 

led to the discovery of some interesting and unusual reactions 

of the model compounds and further work has been carried out 

in order to demonstrate the potential chemistry of this copolymer 

system. 

2.2 Structure and Routes to the Saturated Model Compounds 

For CH 2 =CF 2 /CF 3 CF=CF 2 copolymers the structural arrangements 

(lO),(lOa),(ll) and (lla) are present, although (10) and (11) 

d 
. 49 

pre om1.nate. The ratio of (10):(10a) and (ll):(lla) is constant 

but the ratio of [<lO)+{lOa~ [{ll)+(llalJ obviously 

varies with monomer ratios. Therefore, model compounds which 

incorporate structures {10) and {11) have been synthesized. 

The simplest model compounds are of the type 



rcH 2 CF zCH 2 CF~ 
L o.95 

'(10) (lOa) 

[ CF 2 CF(CFll )CHaCFa] 
0.93 

[ CF ( CW ll ) CF 2 CH 2 CF 2 J 
0.07 

(11) (lla) 

(14) and (15) and they have been prepared by the route outlined 

in Scheme 2.1. 

CH 2 =CF 2 

(CF 3 ) 2 CFI :> 

(13) 

Bg/UV light 

(15) 

[ ( CF l ) z CF ( CH z CF 2 ) n J 
2 

(14) 

Scheme 2.1 

More complex model compounds have been obtained by further 

development of this synthetic approach and these are discussed 

below. 

2.3 Synthesis of Pluoroalkyl Iodides 

2.31 Beptafluoro-2-iodopropane (12) 

Heptafluoro-2-iodopropane (12) can be synthesized from 

hexafluoropropane by formal addition of iodine fluoride to 

124 
the carbon-carbon double bond. The most convenient preparative 

system, which was developed earlier in our laboratory, involves 

the use of a mixture of iodine and iodine pentafluoride in 

t , . 1 t t IF t . h' 125- 126 proper ~ons equ~va en o s o~c 1ometry. 



CF 3 CF=CFz (CF 3 ) 2 CFI 

(12) 

During the course of this work the reactions were carried 

out in a stainless steel autoclave under autogenous pressure 

and gave yields between 94 and 98%. 

Heptafluoro-2-iodopropane is a useful source of tertiary 

fluorine since at elevated temperatures homolytic cleavage of 

the C-I bond occurs. Thus, it can undergo successive addition 

to suitable fluoroalkenes and by using vinylidene fluoride, 

the carbon backbone of the model compounds can be constructed 

1
·n th" 127-129 1s way. The reaction is outlined in Scheme 2.2 

in which free-radical addition of the propagating fluoroalkyl 

radical to vinylidene fluoride proceeds preferentially at the 

methylene unit. This largely leads to telomer radicals of the 

form (16) in which the unpaired electron is situated on a difluoromethylene 

130 
carbon rather than the relatively less stabilising methylene carbon. 

However, each of the telomer iodides produced in this way contain 

ca 5% of the corresponding regia-isomer RFCF 2 CH 2 I. 

Initiation 

Propagation 

Chain Transfer 

(CF 3 ) 2 CFI 

( 12) 

• • 
( CF 3 ) 2 CF +{ n+lJCH 2 =CF 2 --__..;::>~ ( CF 3 ) 2 CF ( CH 2 CF 2 ) CH 2 CF 2 n 

(16) 

(13) 

Scheme 2.2 



Since heptafluoro-2-iodopropane is an efficient chain transfer 

agent the telomer iodide products usually contained between one 

and five vinylidene fluoride units. The actual yields of each 

compound were regulated by varying the alkene:telogen ratioQ together 

with the duration and temperature of the reaction (See Table 2.1). 

Table 2al 

Alkene/Telogen 
ratio 

Time/h Tem12rc A1212rox.molar com12osition of 

3.6 
1.9 
1.0 

36 
24 
24 

190 
185 
185 

n=l n=2 

9 27 
44 37 
75 21 

n=3 n=4 n=5 

36 23 3 
10 5 

2 

Although the telomerisation reactions were initially carried 

out in nickel or stainless steel autoclaves, it was found that 

Hastelloy tubes (principally composed of nickel (51%), chromium 

(17%), molybdenum (17%), iron (7%) and tungsten (5%)) gave products 

which were the most iodine free. 

(CH 2 CF 2 ) I (19-20) 
m n 

More complex telomer iodides were synthesized by a series 

(13) /% 

of additions to vinylidene fluoride and hexafluoropropene, as outlined 

in Scheme 2.3. The products were separated by fractional distillation 

after each step. 



""T'-'o 

CH 2 =CF 2 

(CF 3 ) 2 CFI > (CF 3 ) 2 CF(CHaCF 2 )
1

I 

(12) 180°C-200°C ( 13) 

200"C t CF,CF•CF, 

( CF 3 ) 2 CF ( CH 2 CF 2 ) l [ CF 2 CF ( CF 3 ) J I 
m 

(17) 1=1 m=l.2 

CH 2 =CF 2 180°C-190°C 
(18) 1=2 m=l.2 

( CF 3 ) 2 CF ( CH 2 CF 2 ) 
1 

[ CF 2 CF ( CF 3 >] m ( CH 2 CF 2 ) n I 

(19) 1=1 m=1,2 : n=1,2 

(20) 1=2 m=l n=l,2 

Scheme 2o3 

Free-radical additions to HFP proceeded by attack on the 

dif1uoromethylene unit. Significant amounts of telomer iodides 

containing the sequence HFP-HFP were produced, e.g. (17) and (18) 

where m = 2. 
131 

Since HFP does not undergo facile homopolymerisation 

it has been suggested that these products are formed via a cyclic 

transition state of the type (21) shown in Scheme 2.4.
132 

> 
CF 3 

I 
R CF 2 CF-----I 

F I I 
I 
I 

I I 
•- -----1 
CF 2- CF-CF 3 

CF
3 

/ 
I 

R CF 2 CFCF 2 CFCF 3 

F I 
I 

Scheme 2o4 

(21) 



~7. 

In contrast to these observations 0 however, no reaction occurred 

on heating heptafluoro-2-iodopropane (12) with HFP under identical 

conditions, i.e. the corresponding telomer (22) was not found. 

(12) (22) 

The te1omerization reaction between heptaf1uoro-2-iodopropane 

and trif1uoroethy1ene gave a range of telomer iodide products, 

where n depended on the reaction conditions as for the analogous 

1 . . 1" d f1 . d 133 
process emp oy1ng v1ny 1 ene uor1 e.· 

CHF=CF 2 

(12) (23) 

n=l (25%) 

n=2 (38%) 

+ Higher telomers 
for a1kene/telogen = 2.6 

The reactions were slightly more complex than that involving 

vinylidene fluoride and heptafluoro-2-iodopropane for two reasons: 

i) Addition of the propagating fluoroalkyl radicals to trifluoroethylene 

. . "f" 134,135 1s not reg1ospec1 1c, i.e. both steps 1. and 2. occur. 

(24) 

RF. + CHF=CF 2 

(25) 

The ratio (24)/(25) is ca 5 

ii) For each trifluoroethylene unit in the telomer iodides there 

is one chiral centre. Hence, for a given value of n there can 

b (n-1) b bl · t · f h · · e 2 o serva e dJ.as ereo1somers or eac reg1o1somer. 



2o4 Synthesis of Model Compounds 

2.41 Fluorodeiodination of the Telomer Iodides 

Many reagents are available which can effect the fluorodeiodination 

of fluoroalkyl iodides, e.g.: 

HF 
~==> C 2 F

5
CF 2 CH 2 C3F

7 
(53%)136 

CoF 3 
---~)!1~ CFl(CF 2 ) 

4
cFl (75%)132 

260°C-290°C 

HgzFz 
CF 3 CF 2 CH 2 CF 2 I > CF3CF 2 CH 2 CF 3 (48%)137 

140°C 

SbCl 2 F3 

RFCH 2 CF 2 I ::> RFCH 2 CF 3 
(71%)127,138 

Room temp. 

For our purposes the most convenient fluorinating agent is 

. fl 'd 139 ant1mony penta uor1 e. The reactions were carried out at 0°C 

using an excess of the reagent and in order to ensure efficient mixing 

of the system, arklone ~F 2 ClCFC1 2 ) was used as the solvent. Mixtures 

of telomer iodides can be converted to the corresponding model compounds 

in this way. However, model compounds of higher molecular weight 

(i.e. n=3,4,~ are not as easily separated by fractional distillation 

as their corresponding telomer iodides. Consequently, it is preferable 

to firstly separate the iodides and then fluorinate each individually. 



J u 0 

SbF
5

/0°C 

(CF 1 ) 2 CF(CH 2 CF 2 ) I ~ (CF 1 ) 2 CF(CH 2 CF 2 ) F n = 2 (70%) 
n n 

3 (68%) n = 
(13) CF 2 ClCFC1 2 (15) n = 4 (60%) 

n = 5 (58%) 

(19b) 

(76%) 

(26) 

At temperatures above ~ l0°C the model compounds undergo further 

reaction with SbF
5

, yielding unsaturated products (See Section 

3.23). 

2.42 Coupling Reactions of the Telomer Iodides 

Much work has been published on the free-radical coupling 

of fluoroalkyl iodides, e.g. 

Hg 

C 2 F
5

CFICH 2 C,F
7 :> 

uv light 

Hg 

(CF 1 ) 2 CFI > (CF 1 ) 2 CFCF(CF,) 2 

uv light 

Hg 

uv light 

136 
(75%) 

(97%)125 

(68%)140 

This type of reaction can be applied to the synthesis of model 

compounds as demonstrated by Chambers and co-workers, who coupled the 

telomer iodide (13a) as follows: 
127 



Hg 

----> (75%) 

uv light 

(13a) (14a) 

Comparable yields of (14a) have been obtained on repeating the 

reaction. The products (27) and (28) were formed also. 

(71%) 
Hg 

(14a) 

( 13a) uv light + 

(CF 3 ) 2 CFCH=CF 2 ( 11%) 

(27) 

+ 

(12%) 

(28) 

Similar treatment of the higher telomer (13b) led to the formation 

of the corresponding coupled product (14b), but in lower yield. 

Two other products (29) and (30) were also identified. 

[ ( CF 3 ) 2 CF ( CH 2 CF 2 ) 2] 2 
(41%) 

Hg 
( 14b) + 

( 13b) uv light 

(29b) 

+ 

(17%) 

(30) 



2a5 Spectroscopic Examination of the Model Compounds and the 
HFP/VDF Copolymer System 

2a5l Introduction 

The model compounds that have been discussed in this chapter 

contain the pertinent structural features of HFP/VDF copolymers. 

Hence, by acquiring NMR spectroscopic data for the model compounds 

it should be possible to correlate their chemical shift values 

with those for the copolymers. In this way the model compounds 

can provide information about chemical processes occurring in the 

copolymer system. 

1 13 
Due to the complexity of the H and C NMR spectra, 

investigations have~lely concentrated on acquiring 
19

F NMR data. 

19 
F NMR Spectroscopy is particularly suited to this kind of correlation 

study since the regions of CF 3 , CF 2 and CF fluorine resonances 

are essentially non-overlapping and encompass a wide chemical shift 

range. 

2a52 Correlation Between The Model Compounds and the Copolymer System 

A 1:9 ratio of HFP to VDF was irradiated with ~- rays at 

ambient temperature for four days. The resultant copolymer was 

19 
dissolved in N, N-dimethylformamide (DMF) and its high field F 

NMR spectrum acquired. Compar~on with the 
19

F chemical shift 

values for the model compound (26) in DMF led to assignment of 

the different groups in the copolymer as shown in Table 2.3. 
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Table 2o3 

1 2 3 5 1 2 3 5 

Model (26) Polymer (~ 60% CH 2 =CF 2 ) 

Shift/ppm Assignment Shift/ppm 

76.0 4 - CF3 76.0 

97.2 5 - CF 2 92.4 to - 95.5 (4)* 

- 110.1 1 - CF 2 - 109.2 to - 110.7 (2) 

- 118.6 2 - CF 2 - 117.4 to - 118.4 ( 4} 

- 185.0 3 - CF - 185.0 

*The figure in brackets indicates the number of signals occurring 

within the chemical shift range. 

It can be seen that there is a very good correlation between 

the chemical shifts for the copolymer and the model (26}, although 

there is some difference between the values for the 5 - CF 2 groups. 

This is due to a difference in adjacent groups for the model (26} 

The SF value for the 

5-CF 2 group of the copolymer, however, is in closer agreement with 

the model compound (CF 3 } 2 CF(CH 2 CF 2 } 3 CH 2 CF 3 (15d) in which the 

signals for the CF 2 units are between -92.3 and -95.4 ppm. 

It can also be seen from Table 2.3 that there is a chemical 

shift range over which some of the groups in the copolymer resonate. 

Within each range there are a number of signals 1 each depending 

on the specific nature of the neighbouring units. By a consideration 

of the relative intensities of these signals, together with reference 

to the chemical shift values for the model compounds, most of them 

can now be assigned. 
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2o53 Assignment of the Structural Units in the Copolymer 

In order to facilitate assignment of the NMR signals, it was 

firstly determined whether HFP units are present in the copolymer. 

19 
By comparison of the F NMR spectrum of the telomer (19d) (see 

Section 2.33 for its preparation) in DMF with that of the copolymer 

in DMF, it was found that there can be no repeating HFP units in 

CF
3 

i -C, F 7cH ,CF, -e-r -8~FCH, CF, CH, CF, I 

CF 3 

(19d) 

the copolymer system. This conclusion was derived from the fact 

that thehighlighted CF 2 groups in the diasteroisomers of (19d) 

form a complex set of AB systems between -102 and -115 ppm, which 

19 
are not observed in the F NMR spectrum of the copolymer. 

Referring to Table 2.3, there are two signals within the chemical 

shift range assigned for the l-CF 2 group. These two signals must 

depend upon the precise arrangement of units directly attached 

to the structure (31), i.e. A and B, which represent either VDF 

or HFP units. 

1 2 3 5 

A- CH 2 CF 2 CF 2 CFCH 2 CF 2 - B ( 31) 

41 
CF 3 

The 8F value for the 1 - CF 2 group should be more sensitive 

to changes in the unit A rather than B, due to its greater proximity. 

Since A can be a VDF or an HFP unit the two resonances within this 

range can be assigned as follows: 
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la CF
3 

-CH 2 CF 2 CH 2 -e- CF 2 ~FCH 2 CF 2 

la 

8F = - 109.2 ppm 

(3la) 

lb CF3 

-CF,,FCH,~CF,JFCH,CF, - llO. 7 ppm 

CF 3 

(3lb) 

These assignments are supported by the fact that the copolymer 

in the study contained ca. 60% VDF and, in accordance, the integral 

for the signal at - 109.2 ppm was correspondingly larger than that 

at- 110.7 ppm. However, the use of model compounds in assigning 

structures (3la) and (3lb) is somewhat limiting. For example, 

~ lc . oF 1s- 110.1 ppm for model (26), which is close the resonances 

lc 

(CF,),CFCH,~CF,,F(CH,CF,),F (26) 

CF 3 

for both (3la) and (3lb). In addition, the SF value for ld- CF 2 

in compound (20b) occurs at - 111.1 ppm and therefore shows poor 

correlation with the assignments given above. 

(20b) 

For the 5 - CF 2 group there are four distinct resonances 

in the spectrum of the copolymer. The exact chemical shift values 

are dependent on the contiguous units C and D in (32) which can 

be either HFP or VDF. 

5 

C-CH 2-e-CH 2 CF 2 - D (32) 

Since the copolymer contains ~ 60% VDF the signals have been 

assigned on the basis of their relative intensities (See Table 2.4). 



)/ D 

'it'able 2o4 

Shift/ppm Relative Intensity 

- 95.5 ca 3 

- 93.7 

3 

- 93.3 

- 92.4 1 

Assignment 

Sa 

-CH 2 CF 2CHz.-@ CHzCFaCH 2 CF 2 -* 

-CH,CF,CH,-@ CH,CF,CF,CF(CF, 1-

OR 
Sc 

-CF 2 CF(CF 3 )CH 2~CH2CFzCH 2 CF 2 -

-CF2CF(CF3 )CH 2 8 CH 2CF 2CF 2CF(CF 3 )-

Sd 
19 

*This assignment is further supported by the F NMR spectrum of the 

model compound (lSd), in which there is close correlation with the 

8F value for the 2 - CF 2 group. 

(15d) 

~FLEE!! - 92.4 -95.4 -95.0 

Assignment of the four resonances for the 2-CF 2 group of the copolymer 

is more difficult since they overlap to a certain extent. Consequently 

the use of signal integration is limited and the only structural 

unit which has been definitively assigned is (33). 

2a CF
1 

-CH 2 CF 2CHzCFz~CFCH 2CF 2 CH 2 CF 2-
(33) 

S 2a 
F 

- 118.4 ppm 

Further work is under way in order to resolve the NMR signals 

for this group. 
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2o6 Gamma Ray Polymerisation of Vinylidene Fluoride 

During the course of our investigations we became interested 

in determining the effect of temperature on the polymerisation 

of vinylidene fluoride using l- ray initiation. Samples of VDF 

were irradiated with ~~rays at room temperature. 0°C and - 78°C. 

The resultant polymers obtained at each temperature were then dissolved 

in DMF and their high field 
19

F NMR spectra acquired. Each of 

the spectra consisted of five resonances of which four have been 

. 141,142 
assigned to the var~ous CF 2 groups. 

1 
-CF 2 CH 2CF 2 CH 2CF 2 -

2 
-CH 2 CHzCF 2 CH 2CF 2 -

3 
-CFzCH2CF2CF2CH 2-

4 
-CH 2CHzCF 2CFzCH 2-

~j;· 1 =-92.6 ppm 
F 

lj) / =-95. 8 ppm 

4 S F = -117 • 0 ppm 

Intensity measurements of the resonances gave a direct estimation 

of the percentage of head-to-tail arrangement of the monomer units 

in the homopolymer, prepared at different temperatures. The results 

are displayed in Table 2.5. 

Table 2.5 

Origin of PVDF 

Room Temp. 
0°C 

- 78°C 
Room Temp. + 
Precipitation* 

Head-to-Tail (%) 

87 
89 
92 

90 

*Solution of the polymer was concentrated under vacuum to precipitate 

out some of the material. 
19

F NMR studies were carried out on the 

remaining solution. 
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As expected, the degree of regioselectivity increases as the 

temperature at which polymerisation is carried out becomes lowerp 

so that the degree of head-to-tail addition of the monomer is seen 

to increase as the temperature is dropped. Howeverp the percentage 

values given in Table 2.5 are lower than those obtained for 

poly(vinylidene fluoride) (PVDF) formed by peroxide initiated 

polymerisations, which are typically about 5-6% irregular.
143 

In fact a further signal was observed at -93.1 ppm in the 
19

F NMR 

spectra of the VDF polymers prepared by gamma ray initiation. 

This resonance overlapped with that at -92.6 ppm and is indicative 

. 144 
of the formation of branched chains during the polymerisation process. 

A possible mechanism for the formation of branched chains is presented 

in Scheme 2.5. This mechanism requires that for every branched 

chain which is formed, a terminal difluoromethyl group is also 

produced. However, resonances due to this group were not observed 

in the 
19

F NMR spectra of the VDF homopolymers • 

• 
---___;'>~ -CHCF 2...-VVV'-CH 2 CF 2 H 

! CH ,=CF, 

CH 2 =CF2 
etc < -CHCF ...-VVV'-cH CF H I 2 2 2 

CH 2 

I 
CF 2 
• 

Scheme 2.5 

. 
It is possible that polymer radicals of the type RCF 2 CH 2 , 

formed by head-to-head addition of monomer units, could undergo 

a similar process to that outlined in Scheme 2.5. This would result 

in the formation of terminal methyl groups, which could not be detected 

by this type of study. 



2o7 Conclusions 

A number of model compounds have been synthesized which contain 

the pertinent structural units of VDF/HFP copolymers. NMR spectroscopy 

has demonstrated that there is good correlation between the models 

and the copolymers. Furthermore, the spectroscopic investigations 

have proved conclusively that there are no sequences of HFP units 

in the copolymer system. Since the model compounds are liquids 

they can be easily manipulated and analysed, so that they present 

an excellent opportunity to determine the nature of chemical processes 

occurring during the cross-linking of these copolymers. 
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CHAPTER THREE 

MODEL STUDIES RELATED TO THE CROSS-LINKING OF VDF/HFP COPOLYMERS 

lol Xntroduction 

It is believed that during the cross-linking of HFP/VDF 

copolymers with nucleophilic curatives. the initial step involves 

elimination of hydrogen fluoride (see section 1.33b). Therefore, 

attempts have been made to prepare some compounds which would usefully 

serve as models for unsaturated sites that might be produced by base 

induced elimination of hydrogen fluoride from the structural units 

(10) and (11) in the polymer system. 

-CH 2 CF 2 CH 3 CF a-

( 11) 
(10) 

3.2 Synthesis of Unsaturated Model Compounds 

3.21 Base Induced Elimination of HF from Saturated Model Compounds 

Fluoride ion can function as a strong base 
146 

so that heating the 

saturated model compounds (15b) and (15c) with caesium fluoride, in 

0 
sulpholane at 150 C, gave good yields of the corresponding alkenes (34) 

and (35). It is significant that this system was unable to promote 

elimination of hydrogen fluoride from a site involving difluoromethylene. 

n=l (15b) 

n=2 (15c) 

CsF, SULPHOLANE) 

150° 

(34) (79%) 

(35) (70%) 

The structural unit (CF 3 ) 2 C=CH- was easily identified by NMR 

spectroscopy since the trifluommethyl groups were non-equivalent and 

gave rise to signals at lower field shift values than for the 

corresponding groups in the saturated models. In addition the vinylic 

hydrogen gave rise to a triplet (J=l3Hz) at 6.5 ppm in the 'H NMR spectrum 

147 
which is characteristic of such an atom in this environment. 



The fluorohydrocarbon alkenes (29) were easily prepared from 

their corresponding telomer iodides (13) by elimination of hydrogen 

iodide, using a base such as triethylamine or tri-n-butylamine. 

( CF 
3 

) 
2 

CF ( CH 
2 
CF 

2 
) CH 

2 
CF 

3 
I 

n 

NBu 3 or NEt
3 

~~-~> 

room temp. 

(13) (29) (81-97%) 

n=O,l,2, 

These compounds are useful intermediates in the synthesis of 

unsaturated models. Thus, treatment of (29a) and (29b) with fluoride 

ion in sulpholane gave the alkenes (36) and (37) respectively. 

(CF 3 ) 2 CF-CH=CF 2 

(29a) 

(29b) 

CsF, SULPHOLANE ( ) 
----------------~>~ CF 3 2 C=CHCF 3 

100°C, 2h 

(9 6%) 

(36) 

CsF, SULPHOLANE 

0 
150 c, 7h 

> 
CF '.. H 

C=C/ 

/ " H CF1 C=C/ 
F/ "\.CF

3 

(37a) 

+ 

(37b) 

(64%) 

(34%) 

However, similar treatment of (29c) with fluoride ion gave several products, 

presumably as a consequence of further reaction of the diene (38). 

CsF, SULPHOLANE, (CF 3 ) 2 C=CHCF
2

CH 2 CF=CHCF
3 ( CF 

3 
) 

2 
CF ( CH 

2 
CF 

2 
) 

2
- CH=CF 

2 
-----------------...;:t7 

(38) 

(29c) 

1 
Several products 

These products were not characterised. 



3a23 Letlis Acid Induced Reactions 

Usually, Lewis acids are not used to carry out dehydrohalogenation 

reactions since the unsaturated products are often susceptible to 

electrophilic attack. However, a number of unsaturated model compounds 

can be prepared in this way, using antimony pentafluoride as the Lewis acid. 

(80%)133 

0 
120 C,3h 

(15a) (36) 

(86%)133 

(14a) (39) 

In addition, it was found that antimonypentafluoride can be employed in 

rearrangement reactions, e.g. 

(CF 3 ) 2 CF-CH=CF 2 > 
room temp. 

(29a) 

(40) 

(CF 
3

) 
2 

C=CH-CF 
3 

(36) 

SbFS 

:> 
room temp. 

(Quant.) 

(41) 

The z-stereoisomer of (41) was formed exclusively, reflecting the 

preference to keep the sterically demanding groups as spatially distant as 

possible. The identity of (41) was largely determined by NMR spectroscopy 

which showed a coupling constant of 11 Hz between the fluorines of the vinylic 

CF 
3 

groups. 

This methodology for producing unsaturated models is useful in that 

the reactions proceed in high yield. Furthermore, the unsaturated models 

(39) and (41) can only be prepared in this way. For example, the 

1,5-diene (39) cannot be synthesized by base induced elimination of hydrogen 

fluoride from the saturated model (l4a). Attempts to produce it, using either 

fluoride ion or tri-n-butylamine led to exclusive formation of the 

cyclopentene deri·vative ( 42) • 133 



(14a) 

NBu
3 

=~-J> [< CF 3 ) 2 C"'CHCF l 
0 

110 CuSh 

( CF 
3

) 
2 

CH 

(39) 
Not isolated 

l 
F 

(42) 

H 

F 

F 

(74%) 

Longer chain saturated models of the type (15) also underwent 

elimination of hydrogen fluoride on treatment with antimony pentafluoride. 

However, many of the products were not inert to further electrophilic 

attack and led to remarkably stable carbocations or other unusual reactions. 

This chemistry is discussed in chapter five. 

3a3 Treatment of Saturated Model Compounds with Curing Agents 

The saturated model compounds (14) and (15) showed no evidence of 

elimination of hydrogen fluoride when heated to elevated temperatures in 

the presence of typical mixtures that are used for cross-linking raw 

133 
HFP/VDF copolymers. Typical mixtures involve addition of carbon black 

(Bisphenol AF)
50

. 

During the course of this work, treatment of the more appropriate saturated 

model (26) with MgO at high temperature also failed to bring about a 

dehydrofluorination reaction. The metal oxide is known to be able to 

63 
bring about some degree of cross-linking of HFP/VDF copolymers. 

MgO 

X 
0 

210 c,24h 

(26) 

CF 
I ] 

R CF 
2
-C=CHCF 

2
CH 2 CF 3 F 

(43) 



Quite clearly 0 there is a marked difference between the activity of 

the polymer system and that of the model compounds and this could be 

attributed to a) a contact problem in the case of the models, or 

b) enhanced reactivity of solid - solid interaction which occurs in the 

polymer system 0 or c) intrinsic instability of the polymers towards 

elimination of hydrogen fluoride, which is not characteristic of lower 

molecular weight systems of similar structure. The most significant is 

probably a) because treatment of models of type (15) with D.B.U. in 

D.M.A.C., i.e. a homogeneous system, at room temperature, led to rapid 

dehydrofluorination in a manner similar to that which has previously been 

50 
observed with the polymer. 

(CF
3

)
2 

CFCH CF (CH CF ) F 
z 2 2 2 n 

n=l 

n=2 

(15b) 

(15c) 

50 

D.B.U., D.M.A.C. 

room temp. 

(34) 

(35) 

(39%) 

(38%) 

It has been argued that in reaction of base with polymer sites (10) 

and (11), preferential elimination of hydrogen fluoride occurs from 

positions involving the 'tertiary' fluorine. We have reached the same 

conclusion by observing the reactions of model compounds with bases in 

solution. For example, reaction of (15b) with D.B.U. gave (34) exclusively. 

Other examples of reactions of models with bases that led exclusively to 

eliminations of hydrogen fluoride from sites involving 'tertiary' fluorine, 

have been discussed in section 3.2. 

Further attempts to react saturated model compounds with the curing 

agents, by adding D.M.A.C. to the system, were unsuccessful. 

MgO,D.M.A.C. 

(CF ) CFCH CF (CH CF ) F 
32 2 z z 2Z )( (CF ) C=CHCF (CH CF ) F ] z z 2 2 2 

0 
140 c, 24h 

(15c) (35) 



i 
(CF ) CFCH CF (CH CF ) F 

12 a a a aa -----> No Reaction 

(15c) + 
i Bisphenol AF 0 Ph

3
P CH 2 Ph Cl-, 

D.M.A.C., 
0 

140 c, 24h. 

3o4 Reactions of Unsaturated Model Compounds with Nucleophiles 

3o41 Reactivity of the -C(CF )=CH- Site 
! 

Having established the type of unsaturated site most readily 

produced in the copolymer system, further reactions have been carried 

out with model compounds involving the site -C(CF])=CH- which is contained 

in (44). The reactions involve nucleophilic attack of phenoxide 

~Fl Base CF I ] 
-CH CF

2
CF CFCH CF -

2 2 2 2 
-CH CF CF--C=CHCF -

2 2 2 2 

(11) (44) 

or methoxide and are discussed below. 

(CF
3

l 2 C=CHCF (CH CF ) F 
2 2 2 n 

(34) n=l 

(35) n=2 

CF
3 

I 
PhOCF. -CHCHCF 2 ( CH CF 

2 
) F . I 2 n 

OPh 

PhOH, K2C0
3 

MeCN 
Room temp. 

(CF ) 
] 2 

-HF 

CH-CHCF 2 (CH 2 CF
2

) F 
I n 
OPh 

(45) 

IF) 
CF == C - CHCF ( CH CF ) F 

2 I 2 2 2 n 

OPh 

CF 
I l 

PhOCF =C-CHCF 2 ( CH CF 2 ) F I z n 
OPh 

(46) (E,Z Isomers) 

(47) 

Scheme 3.1 



Treatment of models (34) and (35) with phenol demonstrates that 

reaction occurs extremely readily with systems containing sites 

-C(CF
3

)===CH- giving the product of addition (45), but it is important 

to note the formation of both (46) and (47) since this demonstrates that 

attack at the double bond can occur with allylic displacement of fluoride. 

A new unsaturated site is formed which reacts further with phenol to give 

(46) and (47). This observation has great significance for the elastomer 

cross-linked with Bisphenol AF. Similar treatment of the model (34) with 

methanol gave the products (48) and (49). 

( CF ) C=CHCF- CH CF 
. 3 2 2 2 3 

(CF ) 
3 2 

CH-CHCF CH CF I 2 2 3 

MeCN OMe 

(34) room temp. (48) 

+ 

CF 3 

I 
MeO-CF=C-CHCF CH 2 CF I 2 3 

OMe 

(49) (E,Z - Isomers) 

The 1,5-diene (39) contains two sites which are susceptible to 

attack by nucleophiles. Using an equi::nolar mixture of phenol and ( 39) the 

principal product was the adduct (50). 

CHCFJ 
PhOH, K2 C0

3 

[ (CF ) C > ( CF l) 2 CH-CHCF CF 2 CH=C(CF ) 
l 2 I 2 3 2 

2 MeCN OPh 

(39) room temp., 8h (50) 

Using an excess ofphenol to diene (39), two major products were 

obtained. Mass spectrometry indicated that these products were formed 

by further addition of phenol to (50) accompanied by dehydrofluorination, 

i.e. the E- and Z- isomers of (51) (~/z 574). 
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CF I 3 

PhOCF = C-CHCF CF CH=C ( CF ) I 2 z , z 

OPh 

(51) (E 0 Z - Isomers) 

The isomers of (51) were not fully characterisedq however, as they 

could not be separated from other minor products. 

Compound (41) is a more appropriate model for sites of unsaturation 

(44) generated in the main polymer structure (11) and reactions of (41) 

illustrate further the allylic displacement process described above. 

( CF ) CFCH CF CF !\. 
) 2 2 2 2\. 

i 
c 

I or ii 

CF
1 

(41) 

i, PhOB, MeCN,K 2 C0
1

, room temp. 

ii, MeOH, MeCN, K2 C0
1

, room temp. 

CF 
I ' 

( CF ) CFCH CF CF=C- CHCF 
, 2 2 2 I , 

OR 

(52) (E,Z Isomers) 

Product (52) was obtained from allylic displacement of fluoride ion 

and this obviously occurs more readily with (41) than with (34) or (35) 

because the process involves loss of fluoride in the former case from a 

difluoromethylene site. It is well known that a carbon-fluorine bond is 

148 
weaker in a difluoromethylene group than in a trifluoromethyl, Indeed 

it is worth stressing that no addition product was obtained from (41) and 

undoubtedly an analogous process, i.e. forming and retaining unsaturated 

sites, will predominate with the polymer system. Therefore cross-linking 

with Bis-phenol AF will always generat:e vinylic fluorine sites which will 

obviously be a major source of chemical instability. 

50 
Schmiegel recognised the production of sites in the polymer with 

fluorine attached at vinylic positions but found it necessary to suggest 

equilibration with fluoride ion in order to produce these sites, i.e. 

CH- ....,.. 
F, 

-CF C(CF )CHF-



107. 

This equilibrium iso however 0 unlikely because attachment of 

perfluoroalkyl is thermodynamically preferred over fluorine at double 

149 
bonds and the allylic displacement process that has been described 

above adequately demonstrates how these vinylic sites attached to fluorine 

may be produced. 

3o42 Response of the -CF
2 
CF=C(CF~)-cB(OAr)- Unit to Nucleophilic Attack 

The susceptibility of the vinylic site in compound (52) to nucleophilic 

attack has been clearly demonstrated. Under the conditions used to generate 

(52) from the unsaturated model (41), adding an excess of phenol led to 

further reaction of (52) in which both addition to the double bond and 

substitution of the vinylic fluorine occurred to yield the products (53) and 

(54}. G.C.-Mass spectrometry was used to investigate the reaction since the 

products gave definitive mass spectra (m/z 614 (53) and 594 (54). 

TF 3 Ph0H,K 2 CQ 3 

(CF ) CFCH CF CF=C- CHCF > 
l : 2 2 I 3 

OPh 
MeCN (53) 

room temp. + 

(52) (E,Z - isomers) CF I 3 

(CF ) CFCH CF C=C-CHCF 
3 2 2 2

1 
I l 

OPh OPh 

(54) (E,Z - isomers) 

It is worth stressing that the ether linkage on compound (52) remained 

intac~ during the reaction, Hence, for VDF/HFP elastomers cured by 

Bisphenol AF, the source of chemical instability will be the vinylic sites 

in (55) rather than the actual cross-link. 

<fF3 
-CH CF CF C = CHCF

2
-

2 2 2 

Bisphenol AF 

(44) CURE SYSTEM 

CF 3 

-CH CF CF=~- CHCF -
2 2 I 2 

0 
Ar (55} 
I 
0 
I 

-CH CF CF=C- CHCF -
z 2 I z 

·cF l 



It is also worth noting that the vinylic sites in (55) are unlikely 

to be modified by Bisphenol AF to any significant extent during the curing 

process. This is because the ratio of the curing agent to raw copolymer 

50 
is generally ca 1:50. 

(CF ~ C=CB-CF=CHCF (37) ~ith !!~ethanol 
~ 2 5 

If dehydrofluorination of contiguous VDF units occurs during the 

curing of the polymer with Bisphenol AF, unsaturated sites of the type 

-CF=CH- will be formed. In order to determine the relative reactivities 

of the unsaturated sites -C(CF )= CH- and -CF=CH- towards nucleophilic 
l 

attack the diene (37) was treated with methanol at room temperature. 

Under these conditions it was found that the -CF=CH- unit was inert to 

nucleophilic attack, whereas the -C(CF )=CH- site reacted to give the 
l 

products (56) and (57) in a manner similar to that observed for the models 

(34) and (35). 

OMe 

I 
MeOH, K 

1
CO 

3 
(CF ) CH-CH-CF=CHCF

3 l 2 

E,Z - (CF ) C=CH-CF=CHCF 
l 2 l (56) 

+ MeCN 

(37) Room temp. CF
3 

I 
MeOCF=C-CH-CF=CHCF I l 

MeO (57) 

3.44 (CF ) CFCB CF 2 CF -C(CF ) = CHCP 1 (41) with Phenol 
l z :a z J 

The unsaturated model (41) was treated with phenol in slightly 

modified systems to the one described in section 3.41, all at ambient 

temperature as follows: 

CF 
I l 

(41) ( CF ) CFCH CF CF=C- CHCF 
l z 2 2 I l 

OPh 
(52) 

i) PhOH, Na z col, MeCN 
ii) PhOH, KZC()l DMF 

iii) PhO-Na+, DMF 

iv) PhOH, MeCN 
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With systems i)and ii) conversion of (41) to (52) was observed 

whereas iii) gave little and iv) no reaction. The solvent. DMF or 

acetonitrile, was responsible for dissolving the solid phenol and ensuring 

increasrocontact between the reactants. The presence of carbonate was 

essential for reaction to occur, although the choice of counter-ion. 

Na+ or K+, did not affect the process. Since little reaction was observed 

on treating (41) with system iii), in contrast with ii), it appears that 

there must have been a lack of phase contact between phenoxide and the 

model in the former case. 

Under exactly analogous conditions phenol was more reactive towards 

(41) than methanol and this reflects the fact that the nucleophile which 

attacks (41) must be either methoxide or phenoxide rather than the 

corresponding OH compound. This is because formation of phenoxide from 

phenol will occur more readily than that of methoxide from methanol. 

3.5 Conclusions 

Some definite conclusions can be drawn on the basis of these 

investigations with model compounds, that relate to bisphenol cured 

elastomer: 

1. Unsaturated sites are initially generated predominantly through 

elimination of the 'tertiary' fluorine, i.e.~ 

CF
3 

I 
-HF CF J 

I 
-CH CF CF CFCH CF -z z z z 2 

-CH CF CF - C==CHCF -z 2 z 2 

(11) (44) 

In addition, merely heating the copolymer system may generate fluoride 

ion which can eliminate hydrogen fluoride, principally with loss of tertiary 

fluorine. 

2. With the model compounds, unsaturated sites of the form (44) are 

susce~tible to attack by alcohols and phenols under mild conditions, i.e., 



ROH 
CF

3 

I 
-CH CF CF C-CHCF -

2 2 I 2 

OR 
(44) (58) 

Hence, such unsaturated sites present in the copolymer system 

should also be susceptible to attack by nucleophiles in a similar way, i.e. 

during the curing process with bisphenols. 

3. The remaining vinylic site in (58),rather than the aryl link, will 

be the most significant source of chemical instability of bisphenol cured 

elastomers. Consequently, the use of such elastomers in environments 

where aqueous alkalis, amines or other nucleophiles are present, could be 

life limiting. 

4. If any sites of the form (59) are initially present in the copolymer 

during the bisphenol curing process, they ought to be susceptible to 

nucleophilic attack but only in a chemoselective manner i.e., 

CF
3 

I 
HOArOH CF

3 

I 
-CF CF -C CH-CF=CH-CF -

2 2 2 
-CF CF 

2 
C-CH-CF=CH-CF -I 2 

CURE SYSTEM OArOH 

(59) (60) 
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CHAPTER POUR 

DEVELOPMENT OF A NEW FREE RADICAL CROSS-LINKING PROCESS 

4.1 Introduction 

The studies outlined in chapter three have demonstrated the 

mechanism by which the cross-linking of CF 3 CF=CF 2 /CH 2 =CF 2 copolymers 

probably occurs using the bisphenol curing system. Furthermore, 

it was shown that relatively reactive vinylic sites remain in the 

bisphenol cured elastomers and that such sites will be a source of 

long term instability towards nucleophiles, e.g. steam, amines, etc. 

A possible way in which to circumvent these undesirable features 

of nucleophilic cures is to carry out the cross-linking of the 

CF 2 CF=CF 2 /CH 2 =CF 2 copolymer system by a free radical process. 

A number of fluorocarbon elastomers, which have been produced 

by a free radical cross-linking process, are commercially available. 

Fluropolyrners containing bromine cure-sites have received much attention 

in recent years as they can be cured using a suitable peroxide and 

. 77,142 
a cross-linking coagent, such as triallyl 1socyanurate (TIC). 

Although there are a number of advantages in using this type of curing 

system (See section 1.36b), the incorporation of bromine containing 

monomers can be problematic, This is because during polyrnerisation 

scission of carbon-bromine bonds can occur, which results in chain 

branching and/or inhibition of the process,e.g. with bromotrifluoroethylene; 

bromine 

Br abstraction 

-CF 2 -

Scheme 4.1 



The curing of fluoropo1ymers containing bromotrifluoroethylene 

~s studied by Apotheker and co-~rkers77who proposed a mechanimo 

by ~ich cross-link formation occurs (see Scheme 1.14). In ord~ 

~ obtain ~ore definitive exper~ntal evidence for the postula~ed 

cross-linking mechanism, the reaction between a perfluoroalkyl halide 

of the form RFCFXRF and the coagent TIC has been examined. Since 

fluoropolymers containing bromotrifluoroethy1ene have a highly fluorinated 

backbone containing pendant tertiary bromine atoms, the alkyl halide 

can be envisaged as approximating to this structure. The perfluoroalkyl 

halide of the type RFCFXRF which ~as most easily obtainable was heptafluoro-

2-iodopropane (12}. On irradiating a mixture of TIC and (12) with 

! - rays at ambient temperature, three products were obtained as follows: 

TIC 

R= (CF,) CFCH 2 -CHCH 2 
l I 

I 

CF 1 CFICF 3 

if - rays 
room temp. 

(61) (38%) (62) (32%) 

+ 

R 

I 
OYN"( 

NYN 
/ "" R R 

0 

(63) (8%) 



1-:J. 

Structural identification of the products was achieved by G.C.-

mass spectrometry and by NMR spectroscopy (see appendix for spectra). 

The mass spectra (electron impact mode) of compounds (61) and (62) 

both included a base peak arising from the M+ - I fragment ion, at 

m/z 418 and 714 respectively. In contrast, this fragment ion was 

not observed in the mass spectrum of (63). Instead, a base peak 

was observed at m/z 252 which has been attributed to fragmentation 

of the isocyanurate ring of the molecular ion accompanied by loss 

of iodine, i.e. 

0 

R\A,/R 

oA~o 
I 
R 

,>lolecular ion 

+ • 

-->-:!> ( RN = C = 0) ! + 2RN = C = 0 
~ Loss of I. from R group 

(R!_N • C • ' m/z 252 

The NMR shifts and couplings for the allyl groups of compounds 

(61-63) are essentially similar to those for TIC. By comparing the 

NMR shift data for the (CF 3 ) 2 CFCH 2 group of the saturated model compounds 

described in chapter two with the NMR spectra obtained for (61), (62) 

and (63), it was possible to determine the direction of addition of 

heptafluoro-2-iodopropane to TIC, i.e. (CF 3 ) 2 CFCH 2 CHICH 2- was formed 

The corresponding bromo compound of (12), 2-bromoheptafluoropropane, 

is a better model for the polymer system and ought to give analogous 

products to (61), (62) and (63), although the yields in each case 

would be expected to be lower since the C-Br bond will not undergo 

homolyticscission as readily as the C-I bond. Hence the reaction 

between (12) and TIC has clearly demonstrated the way in which cross-



linking of bromine containing fluoropolymers must occur with TIC and 

77 
is in agreement with the postulated mechanism (see Scheme 1.1~}. 

In principle, it is possible that during the cross-linking 

process abstraction of hydrogen from a methylene group of TIC could 

occur. to give a relatively stable radical intermediate of type (64}. 

(I ~I 
oy"yo - H. oy"yo (64) 

TIC )> 

NYN NYN )o\ fo\ 
77 

In fact studies carried out by Apotheker and co-workers 

demonstrated that of the t-butoxy radicals that were formed by thermal 

decomposition of the peroxide, 36% led to hydrogen abstraction reactions 

which ultimately produced either methane, t-butanol or isobutene, 

the latter formed by dehydration of t-butanol {see Scheme 1.14 and 

Table 1.9). This figure increases to ca 43% if the formation of other 

volatiles, ethylene, propylene and propane, are taken into account 

since they must be produced by a series of reactions that may include 

hydrogen abstraction from TIC. Hence. of the t-butoxy radicals that 

were produced, just over half were able to initiate the cross-linking 

process. 

The reaction between TIC and heptafluoro-2-iodopropane {12) 

described above, has clearly shown that free radical addition to the 

alkene units of TIC occurs readily. This was also demonstrated by 

irradiation of a solution of TIC in acetone with a"- rays. TIC underwent 

'd . . 143,144 . . l b rap1 polymer1sat1on y1elding a mater1al which was highly so u le 

in acetone. Three major resonances in its solution state 1H NMR spectrum 

were aLmost identical to those observed for TIC, so they have been 

attributed to the allyl unit within structure {65). This follows 
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from the fact that on heating the material under vacuum. no TIC was 

transferred to a cold trap. Further work is under way to determine 

the overall structure of the material. 

(65) 

0 

Similar irradiation of a mixture of HFP and TIC in actone with 

~- rays gave a polymer in which HFP had been incorporated. Elemental 

analysis has shown that there are ca six TIC units to each of HFP 

in the polymer. Further analytical studies have been hampered by 

the fact that the polymer is virtually insoluble in all of the common 

organic solvents which have been examined to date, including DMF, 

hexane and chloroform. 

4.3 Cross-linkinq Via Sterically Cr~ed Cure-Sites 

In order to avoid the occurrence of chain transfer processes 

during the incorporation of cure-site monomers that are responsive 

to free radical reactions, a new approach to the cross-linking of 

fluoropolymers has been investigated. This involves the incorporation 

of a sterically crowded monomer into the polymer system which can 

underqo facile and specific homolytic bond scission at elevated 

temperatures, yielding polymer radicals which would be active towards 

cross-linking in the presence of a suitable coagent such as TIC (see 

133 
Scheme 4. 2 l. 
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CHz=CFz 

+ Initiator 

CF 3 CF=CF 2 

+ 

-CH 2 CF 2 -CF 2 CF(CH 2 CF 2 ) -CFz-CF-CHzCFz-
1 n 

CF 3 + 

l 
x. 

Coagent 

Cross-linked product 

Scheme 4.2 

There are many possible sterically crowded groups which can 

be envisaged for the group X but there are a number of important 

requirements which must be overcome, as outlined in Section 1.36. 

In addition it is preferable that the group X is not directly bonded 

to the polymer backbone but, instead, is separated by at least one 

carbon unit, e.g. a CF 2 group. This is advantageous in that steric 

crowding is then minimized at the point where the crowded alkene is 

attached to the polymer backbone, thus reducing the risk of chain 

scission, i.e. cleavage of bonds a and bin (66). 

a b 
-CH 2 CF 2 -CF 2 -CF-CH 2 CF 2 -

I 
CF 2 

c I 
X 

(66) 

Initially, the synthesis and incorporation of some alkene 

compounds derived from 2-iodoheptafluoropropane, i.e. X=(CF 3 ) 2 CF, 

was carried out. The syntheses were achieved in good yields using 

the route given below in Scheme 4.3 (cf. Section 2.2). 



-------> (67} Y=H and/or F 

185°, 24h 

(12} 

CHY=CF 2 

< 

(69) 

Scheme 4.3 

Copolymerisation reactions with vinylidene fluoride and each 

of the alkenes were carried out in sealed and evacuated Carius tubes, 

with irradiation by r- rays. This method of initiation is advantageous 

not only in that the copolymerisations can be carried out at ambient 

temperature but, more importantly, that the resultant copolymers 

are produced in high purity which thereby facilitates their structural 

analysis. 

The copolymers displayed high solubility in DMF and were 

therefore analysed by solution state
19

F NMR in order to determine 

the degree of incorporation of (69). Each of the copolymer systems 

that were prepared are discussed below. 

A mixture of (CF 3 } 2 CFCH 2 CF 2 CH=CF 2 (29b) and vinylidene fluoride in 

1:9 ratio was irradiated with ~- rays for 2 days. By comparing the 

19
F chemical shifts for the groups in alkene (29b) with the 

19
F NMR 

spectrum of the copolymer, it was determined that the comonomer (29b) 

had largely been incorporated as structure(70). The degree of molar 

incorporation of (29b) was determined as 7% by assigning the resonances 

19 
in the F NMR spectrum due to vinylidene fluoride units in the copolymer 

(see Section 2.6) and obtaining their overall intensity measurement 

relative to that for a CF 2 group within structure (70). 
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Together with the resonances assigned to structure (70) 

19 
(See Table 4.2) in the F NMR spectrum of the copolymer, a number 

of other resonances were observed also. For example, resonances 

at -59.9 and -66.0 ppm of equal intensity indicate that (CF 3 ) 2 -

C=C sites may be present in the copolymer and that the incorporation 

of (29b) is not merely a simple process leading to exclusive 

formation of structure (70). 

5 4 6 

-CH 2CF 2CF 2-CH-CH2-CF2-

I 
3 CF 2 

I 
CH 2 

I (70) 
CF(CF3)2 

2 1 

Table 4.2 

Assignment 

- 78.0 1 

- 81.8 3 

- 89.9 6 

-111.2 4 or 5 

-112.6 4 or 5 

-186.2 2 

On irradiation of a 1:8 mixture of (69b) to vinylidene 

fluoride for 2 days, a copolymer was obtained which contained ca 12% 

molar composition of (69b), incorporated as the structural unit (71) 

(Table 4.3}. 



8 

~F/PPM 
- 72.3 

- 74.5 

- 93.0 

-109.9 

-116.6 

-117.1 

-184.9 

-206.8 

7 6 9 

1,2 

Table 4o3 

Hl. 

(71) 

Assignment 

1 or 2 

1 or 2 

9 

8 

5 or 7 

5 or 7 

3,6 

4 

The copolymer obtained on irradiation of a 1:8 mixture of (69a) 

and vinylidene fluoride contained 10% molar composition of the structural 

unit ( 72). 

7 6 5 8 

2 1 



~F/PPM 

- 72.0 

- 93.5 

-109.8 

-112.8 

-114.5 

-116.5 

-185.5 

-186.0 

OLa 

Assignment 

1 

8 

7 

3,4,6 

2 or 5 

2 or 5 

4.44 Suitability of the i-C 3 F
7 

Group for Cross-Linking Purposes 

A convenient way in which to follow chemical and/or physical 

changes in a material involves the use of differential scanning calorimetry 

(DSC). The material to be examined is slowly and steadily heated 

to elevated temperatures under an atmosphere of dry argon. Any endothermic 

or exothermic processes are detected by a change in the specific heat 

capacity of the material, which is plotted against temperature on 

a chart recorder. Since only small samples are required for analysis, 

typically on the milligram scale, this technique is highly suitable 

for the examination of polymers containing crowded sites since it 

would be expected that cleavage of the weak bonds and resultant relief 

in steric crowding will be an exothermic process. 

On investigation of the homopolymer of VDF by DSC, no exothermic 

or endothermic process was observed in the temperature range 30-300°C. 

However,the copolymer of VDF and the alkene (69b) showed a steadily 

increasing exotherm from 70°C upwards. This is unlikely to be due 

to specific homolytic cleavage of the i-CJF
7 

group since a relatively 

sharp exotherm would be expected. Instead, the observed exotherm 

may be due to elimination of hydrogen fluoride, as follows: 



------~> 

(71) (73) 

This process did not occur with the copolymer of VDF and alkene 

(29b), which instead showed an endothermic melting point in the region 

150-170°C. In fact for the copolymers containing (29b) and (69b) 

specific homolytic bond scission of the type (74)~ (75) was not 

observed, so that the isopropyl group is not sufficiently crowded 

for our purposes. 

-CF 2 CF 2 -CR-CH 2 CF 2 -

I 
CF 2 

--~x~~> 1 
CHR 

R=H or F + (75) 

(74) 

The investigations have clearly demonstrated that alkenes of 

the type (69) possess suitable sites for incorporation into VDF polymers, 

although the presence of hydrogen atoms in the monomers can lead to 

the occurrence of side reactions during the copolymerisation process. 

In addition, the investigations have been useful in developing a suitable 

methodology for the preparation and analysis of copolymers containing 

bulky pendant groups. 

Having demonstrated that alkenes of the type RFCF 2 CF=CF 2 can 

be copolymerized with VDF,attempts were made to synthesize comonomers 

in which the RF group is more sterically crowded than the heptafluoroiso-

propyl group. Initially the route to the alkene (77) was investigated 

(See Scheme 4.4). 



CsF,MeCN 

CsF,Tetraglyme \ CsF,MeCN, 72h 

-
(CF 3 ) 2 CCF 2 CF 2 CF3 <(------- (78) 

24h 

(76) 

(77) 

Scheme 4.4. 

For the reaction of the carbanion (76) with perfluoroallylfluoro-

146 
sulphate (FAFS) there are two possible processes which could occur, 

resulting from either a 

(76) (77) 

(76) 

+ CF 3 CF=CF2 

Scheme 4.5 

simple quenching reaction or a donation of fluoride ion (see Scheme 4.5). 

The reaction was carried out at 0°C since any significant rise in 

temperature would be expected to favour route 2 over route 1. However, 

the former pathway occurred exclusively instead of the reaction which 

led to the required product (77).
147 



Two routes to perfluoro-2-iodo-2-methylpentane (79) have been 

described by von Werner et al which both involve formal addition of 

iodine fluoride to 'the double bond of perfluoro-2-methylpent-2-ene 

(78).148 

l)AgF,MeCN 

Scheme 4a6 

Both of these routes were examined but no reaction occurred using 

the IF
5
/I 2 /KF system. However, the second system employing silver 

(I) fluoride gave the iodide (79) in 66% yield. The use of silver 

fluoride rather than caesium fluoride for the formation of (79) was 

important in that the iodide ions produced in the reaction were efficiently 

removed from solution as silver iodide, which could then be recovered. 

Iodide ions rapidly attack (79) with consequent reformation of the 

starting alkene (78). 

The relatively low thermal stability, i.e. weak carbon-iodine 

bond, of the iodide (79) can be exploited in carrying out some free 

radical additions to certain fluoroalkenes. In this way the crowded 

alkene compounds (81),(84) and (85) were synthesized in good yields 

by the route outlined in Scheme 4.7. 



H6o 

CHF=CF 2 KOH 
R I (79) 

F 
~---> RFCHFCF 2 I (80) _____, RFCF=CF 2 (81) (80%) 

150°, 36h (74%) 

CH 2 =CHz 

DTBP, 

24h,l40° 24h,l40° 

(63%) (83) (96%) 

1 NBu 3 

80°,l2h 

(85) (89%) 

Scheme 4o7 

Perfluoro-2-bromo-2-methylpentane, the bromo derivative of (79) 

was unsuitable for free-radical reaction with trifluoroethylene even 

using peroxide or gamma ray initiation. 

The thermal reaction between the crowded iodide (79) and trifluoro-

ethylene, when carried out in a glass vessel, gave (80) as the major 

product with only small amounts of (82) formed also. Only~ 2% of (80) 

was due to its regioisomer RFCF 2 CHFI (86) which demonstrates that 

the process is of high regioselectivity. Typically, for reactions 

that involve free radical addition to trifluoroethylene, 10-15% of 

the propagating radicals attack the difluoromethylene moiety of the 

149 
double bond. 

Partial decomposition of the crowded iodide (79) according to 

Scheme 4.8 occurred when conversion to (80) was carried out in a 

stainless steel tube, or to a lesser extent, a nickel tube. However, 

these side reactions can be avoided by carrying out the process in 

a glass vessel or a Hastelloy tube. 



..,, . 

{CF 3 ) 2 C=CFCF 2 CF 3 (78) 

+ 

-----> CF 
metal tube ~2 

CFJCF 2 CF 2 -C, (87) 

(79) CF 3 

Scheme 4.8 

Telomerisation reactions with (80) were carried out using a 

peroxide initiator. With trifluoroethylene (82) was the major product 

but higher telomers were also formed. Reaction between (80) and ethylene, 

however, yielded (83) exclusively. 

4. 7 Quenching of Carbanion (76) with A1lyl Iodide 

The carbanion (76),formed by addition of fluoride ion to F-2-

methylpent-2-ene (78) in tetraglyme, was quenched with allyl iodide 

147 
to give the crowded alkene (88). 

(76) 

4.8 Copolymerisation Studies 

Tetraglyme 

> 
CF 3 
I 

CF,CF 2 CF 2 CCHaCH=CHa 
I 
CF 3 

(88) 

Mixtures of each of the alkenes (81), (84), (85) and (88) with 

vinylidene fluoride were irradiated with r- rays as described in 

Section 4.4. Each of the systems are discussed below. 

On irradiating a 9:1 mixture of vinylidene fluoride to (81) 

with ~- rays for 72h, analysis of the resultant polymer showed that 

the incorporation of (81) was minimal. This result is most likely 

to be due to the difficulty of a propagating polymer radical in 

approaching alkene (81), due to the sterically demanding perfluoroalkyl 

group of the latter. Therefore, for alkene (81) the crowded perfluoroalkyl uni 

is spatially too close to the site of polymerisation. 
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4.82 CH 2 =CF 2 with n -ClF
7

C(CF 3 ) 2 CHFCF 2 CH=CH 2 (85) 

Irradiation of both a CH 2 =CF 2 /{85) and a CH 2 =CF 2 /CF 3 CF=CF 2 /{85) 

mixture with ~-rays at room temperature failed to initiate polymerisation. 

Instead only a slight discolouration of each of the systems was observed 

and the starting monomers were recovered. Copolymerisation also failed 

to occur at temperatures up to 140°C with mixtures of alkene {90) 

and vinylidene fluoride, using either peroxide or ~-rays initiation. 

Alkene {90) was used for the studies at elevated temperatures rather 

than {85) since the former contains the relevant -CF 2 CH=CH 2 unit 

but can be prepared more easily. The route used to synthesize (90) 

is shown in Scheme 4.9. 

CH 2 =CF 2 

i-C 3 F
7

I > 
{12) 185°~24h 

i-C 3 F
7

CH 2 CF 2 I 

(13a)l CHz=CHt> 

DTBP 

140°,24h 

n=l only 

(82%) 

(90) 

Scheme 4.9 

{89a) {88%) 

n=2 r89b) { 6%) 
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These results are rather surprising not only in that alkenes (85) 

and (90) failed to incorporate but also that they actually hindered 

the homopolymerisation of vinylidene fluoride. 

Irradiation of a 1:9 mixture of (88) and vinylidene fluoride 

with gamma rays failed to produce any polymeric material, as for the 

alkenes (85) and (90). 

On irradiation of a 1:10 mixture of alkene (84) and vinylidene 

fluoride a copolymer was obtained that consisted of 22% molar composition 

of (84), which had been incorporated as the structural unit (91), 

as determined by 
19

F NMR spectroscopy (Table 4.5). 

8 9 10 11 

s_ /PPM p-.- Assignment 

- 58.8 4 or 5 

- 59.1 4 or 5 

- 79.7 1 

-104.0 3 

-106.8 7 

-121.5 2 

-114.5 8 or 9 

-115.7 8 or 9 

-187.3 10 

-198.0 6 



4o9 Thermal Stability of the CB 2 =CF 2 /n-C 3 F
7

C(CF 3 ) 2 CBFCF 2 CF=CF 2 Copolymer 

The thermal stability of the copolymer of VDF and n-C 3 F
7

C(CF 3 ) 2 --

CHFCF 2 CF=CF 2 (84) described in Section 4.84 was investigated by DSC. 

When a sample of the copolymer was progressively heated from 30° to 

400°C two exotherms were observed. the first between 160 and 200°C 

and the second between 275 and 380°C. The latter was due to decomposition 

of the copolymer since tarring was observed but the first exotherm 

has been attributed to specific homolytic bond cleavage of the type 

(91)~ (92). 

--------> 

(91) (92) 

Confirmation that bond scission of this type had occurred was 

achieved by heating a sample of the copolymer to 190°C for 0.5 h under 

high vacuum. The system was backed up by a cold trap which was subsequently 

rinsed out with acetone. The only product transferred to the cold 

trap during the experiment was identified as (93) by NMR spectroscopy 

(e.g. ~F = - 188.4 and - 197.5 ppm for the CHF groups (two diastereoisomers) 

Due to the crowded nature of (93), its mass spectrum (EI) showed complete 

fragmentation of the molecular ion. The highest observed masses were 

463 (loss of H, CF 3 and C 3 F
7

l and 363 (loss of Hand two C3 F
7 

groups). 

The observation of (93) provides clear evidence that specific 

bond scission of the copolymer had occurred, with concomitant formation 

of the radical n-C 3 F
7 

C(CF 3 ) 2 CHF (92a) and that alkene (84) is entirely 

suitable as a source of polymer radicals for cross-linking purposes. 

(92a) (93) 



4ol0 Attempted Synthesis of Vinyl Ethers Containing a Bulky Pendant Group 

Vinyl ethers of the type RCH 2 0CF=CF 2 and RCH 2 0CH=CH 2 , where 

R is a bulky alkyl or perfluoroalkyl groupg ought to copolymerize 

with vinylidene fluoride (cf. Scheme4.2) so that it is possible for 

the resultant copolymers to undergo thermally induced homolytic bond 

scission as follows: 

Copolymer of 
vinyl ether and 
VDF 

> 

Scheme 4el0 

....-vvyvv'-

l~ 
CH 2 • • R 

l Cure System 

Cross-linked Material 

The oxygen aton is strategically positioned so as to stabilize the 

polymer radicals which, under suitable conditions, ought to give 

rise to intermolecular cross-links. In addition, the oxygen atom 

can stabilize propagating polymer radicals during the copolymerisation 

process, i.e.: 

etc 

Scheme 4.11 

Two routes to vinyl ethers of this type have been investigated 

as outlined below. 

The route to the crowded alkene (94), as illustrated in Scheme 

4.12, has been examined. 



(94) 

Scheme 4ol2 

However, it was found that little reaction occurred between 

2-chloroethanol and chloroidomethane, even after modification of the 

conditions as follows: 

A potential route to the crowded vinyl ether (95) involves reaction 

between neopentyl alchol and tetrafluoroethylene. 

i) Na 

ii)TFE,DMF 

50°C 

(95) 

Neopentyl alchol was completely converted to the alkoxide using sodium 

metal in rigorously dried ether, in order that conversion to (95) 

would occur rather than formation of Me 3 CCH 2 0CF 2 CF 2 H (96). However, 

although dry solvents were used throughout only (96) was produced 

in 46% yield. 

Attempts to remove hydrogen fluoride from (96) to give the requisite 

vinyl ether (95) were unsuccessful. Treatment of (96) with SbF
5 

at 

room temperature led to a vigorous reaction, the products of which 

gave a complex lH NMR spectrum. In addition, no reaction between 

(96) and D.B.U. was observed at temperatures up to 200°C. 
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4all Conclusions 

It has been demonstrated that alkenes containing a crowded 

perfluoroalkyl group can be prepared by relatively simple synthetic 

routes but that the suitability of these compounds for copolymerisation 

with vinylidene fluoride is dependent on a number of factors. 

1) It is important that the alkene moiety of the comonomer consists 

either of trifluorovinyl or a 1,1-difluorovinyl group. Alkenes of. 

is rather surprising since Apotheker and coworkers observed that both 

4-bromo - 2,3,4,4,-tetrafluorobut-1-ene and 6-bromo- 5,5,6,6,- tetrafluorohex-

1 f d 1 . h h fl d . I'd fl 'd 76 • 77 
-ene orme terpo ymers w1t exa uoropropene an v1ny 1 ene uor1 e. 

2) The sterically demanding perfluoroalkyl group must not be directly 

bonded to the site of polymerisation since this will result in minimal 

incorporation. This crowding effect was observed for the alkene 

features mentioned above and therefore easily underwent copolymerisation 

with vinylidene fluoride. Studies with the resultant copolymer have 

clearly demonstrated that the bulky, pendant perfluoroalkyl groups 

can be thermally cleaved to yield polymer radicals which, under suitable 

conditions, should be able to form a cross-linked network. This methodology 

offers a completely new approach to the cross-linking of HFP/VDF copolymers 

but without the limitation of leaving sites of instability in the 

cured products, as is found with nucleophilic curing systems. 



CHAPTER FIVE 

REMAR!ABLE CHEMISTRY OF THE MODEL COMPoUNDS .WIT§.AN~IMONY PENTftEyUORIDE 

Sal Introduction 

In Chapter three the use of antimony pentafluoride as a 

dehydrofluorinating agent in the synthesis of unsaturated model 

compounds was discussed. In the examples given, elimination of 

hydrogen fluoride occurred exclusively at sites involving 'tertiary' 

f 1 uor ine, i.e. , 

( CF 
3 

) 
2 
CFCH 

2 
( CF 

2 
CH 

2 
) 

n 

SbF 
5 

n=O and RF=F or Coupled (80-86%) 

However it was found that saturated model compounds of longer chain 

length, i.e. n~l, are susceptible to elimination of hydrogen fluoride by 

antimony pentafluoride at room tempsr,atQre. Moreover, the products of 

dehydrofluorination are not alkenes but instead, remarkably stable allylic 

carbocations which in all examples discovered to date show no sign of 

decomposition on storing at room temperature for several weeks. This 

chemistry, together with its application to the synthesis of polyacetylene 

derivatives, is discussed in this chapter. 

5.2 Preparation of Remarkably Stable Fluorinated Carbocations 

Much work has been published on the synthesis and characterisation of 

150-157 
stable fluorinated carbocations. During the course of these studies 

fluorinated carbocations were prepared in each case by dissolving appropriate 

model compounds in an excess of antimony pentafluoride at room temperature 

(typically 6:1 excess). During the process antimony pentafluoride functions 

as both a Lewis acid and as the solvent. 
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When an excess of antimony pentafluoride was added to the saturated 

model (15b), significant changes in the NMR spectra were observed as outlined 

in table 5.L The geminal CF 3 groups became non-equivalent, i.e. coupling 

was observed and, in addition, the resonances due to the CF 2 and terminal 

CF 3 group completely disappeared. 
19 

In the F NMR spectrum, signals 

downfield from the CFC1 3 reference became evident and increased with time, 

gaining maximum intensity after ~ ~ hour. The NMR spectra clearly indicate 

the quantitative formation of an observable carbocation (97) (see tables 5.1 

and 5. 2) • 

la 2a 3a 4a XS 

(lSb) room temp. 

TABLE 5.1 

1 H
4 

CFJ 3 I 6 

"----- + H c-c_, /-
/ -'\., ---

2 c-' 
CFJ I \, 7 

SF C-F 

81 
(97) F 

19 
Selected F NMR DATA FOR (15b) and (97) 

Model .(15b) Carbgcati.on .(97) 

~ F I .£2!!!. A§s,i,qnmgnt 8 F/.9.B!Jl Assignment 

- 80.4 la - 69.1 1 

-188.2 2a - 62.6 2 

- 93.8 3a +14.8 5 

- 65.2 4a +32.2 
7,8 

+34.0 

(see appendix for full 
19

F and 
1 

H NMR spectra) 
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Table 5.2 

13 c NMR DATA FOR CARBOCATION (97) 

3/BB!!!. c 
~QUP,~INgLH~ fl§S I9Nmi!f~ 

96.1 D(J=20) 6 

116.1 Q(J=278) 
1,2 

117.4 Q(J=277) 

125.2 s 4 

146.0 Sept.(J=36) 3 

177.4 T(J=365) 7 

199.4 D(J=354) 5 

19 13 
The F and c NMR spectra of carbocation (97) show that the charge 

must be essentially delocalised as shown. This conclusion follows from 

the fact that the resonances associated with 5-CF and 7-CF 2 show massive 

downfield shifts from the values observed for similar model compounds. 

For example, the~ and~ values for the vinylic CF in Z-(CF 3 ) 2 c F 

C=CH-CF=CHCF 3 (37a) are 121.3 and -102 ppm respectively. In contrast the 

13 
signals associated with the vinylic CH groups 4-CH and 6-CH in the C NMR 

spectrum of carbocation (97) show upfield shifts when compared to compound 

(37a) in which these groups resonate at 129.3 and 109.0 ppm respectively. 

It would be expected that any charge development at the 3-C site in 

carbocation (97) will be disfavoured by the inductively electron withdrawing 

capability of the geminal trifluoromethyl groups. However, there must be 

some degree of charge development at this site since its signal in the 

13 
C NMR spectrum, at 146.0 ppm, is significantly shifted downfield from 

that for the corresponding group in (37a) at 127.8 ppm. The 

stereochemistry of carbocation (97) could not be elucidated from the NMR 

data but it must exist in the Z- configuration as determined by quenching 

reactions (see section 5.31). 



Further evidence for the existence of carbocation (97) sterns from· 

the fact that it can also be prepared by treatment of either (29b) or 

(37a) with an excess of SbF
5 

at room temperature, i.e.: 

(29b) 

SbF 

SbF 
5 

5 

Z- ( CF 
3 

) 2 C=CH -CF=CHCF 3 ------..J 

room temp. 
( 3 la) 

(97) 

SbF -
6 

It is interesting to contrast the chemical behaviour of (15b) in 

SbF
5 

with that of (98) in SbF
5

• The former system gave carbocation (97) 

as described above but compound (98) was completely unaffected by SbF , 
5 

i.e. carbocation (99) was not produced. 

SbF 
5 1,2 3 4 F 6 

)( :> (CF ) c:..:..:c< + F 
3 2 ~'- ----/ SbF -c--c. 

5 I '\,, 7 6 room temp. 
(98) F CFz 

(99) 

This observation is understandable since carbocation (99) would be 

relatively less stable than (97) due to the replacement of the hydrogens by 

fluorine at the 4-C and 6-C positions, i.e. adjacent to the charge centres. 

+/ + / 
It is now well established that fluorine at a carbocation site F- c, ~ F = c, 

+_.... 
is stabilising whereas at a site adjacent to the positive charge F-f- C- c....._, 

fl . . . d . 1 1 d b '1' . 158 
uor~ne ~s ~n uct~ve y strong y esta ~ ~s~ng. 



The higher homologues of (15b) also yield observable allylic 

carbocations on treatment with an excess of antimony pentafluoride at 

133 
room temperature. 

(15c) n=l 

(15d) n=2 

(15e) n=3 

SbF 
5 

room temp. 

(100) 

(101) 

(102) 

For these model compounds, ·allylic carbocations can be produced by 

elimination of fluorine exclusively from CF 2 units. This is in contrast to 

model (15b) which only contains one difluoromethylene unit so, in order 

to form an allylic carbocation, there must also be loss of fluorine from 

a trifluoromethyl group. The structure of the carbocations (100),(101) and 

(102), is such that fluorine is directly attached to those carbon atoms 

bearing a partial positive charge i.e. a stabilising situation. In addition 

the destabilising effects of the electron withdrawing trifluoromethyl and 

heptafluoroisopropyl groups are diminished by the presence of a methylene 

unit between these groups and the charge centres. 

The N~m spectra of carbocations (100), (lOll and (102) clearly 

indicate the sites at which the overall positive charge is principally 

located (see appendix for complete spectral data). As an example, details 

19 13 
of the F and C N~ffi spectra of carbocation (100) are outlined in tables 

5.3 and 5.4 respectively. The fact that the charge is essentially 

localised on carbons 4-CF and 6-CF is clearly shown by the two doublet 

resonances at the relatively low field shift values of 209.3 and 210.5ppm 

13 19 
in the C NMR spectrum. In addition, the F N~ffi signals for the CF 1 

groups of the saturated model (15c) are virtually unchanged after 

treatment with SbF , whereas those for the CF 2 groups at -91.2 and 
5 

-92.9 ppm are not observed. Instead, a resonance of integral t~o appears 

at+ 58.5ppm which is approximately 150 ppm downfield from"the signals 

for the CF rou s. 



Tsl:!!e .a •. 3, 

Selected 
1~ NMR .Data .far ,Madel USc) and carbacatian ClOQ ). 

la 2a3a 4a Sa 6a 7a Sa 
(CF 3 }

2
CFCH

2
CF 2 CH 2 CF 2 CH 2 CF 3 

( CF 
3

) 2 CFCH 2 c:_F_:~i!:"£FCH 2 CF 3 SbF 
6
-

~/£Em -p 

- 63.6 

- 78.7 

-186.7 

- 91.2 

- 92.9 

~ IJll!!!!. c 

35.7 

42.0 

89.0 

111.7 

117.4 

118.7 

209.3 

210.5 

room temp. + 
(15c) (100) 

Assignment 8 II?.Em -p 
Assignment 

Sa - 63.0 8 

1a - 79.4 1 

2a -181.9 2 

4a + 58.5 4,6 

6a 

'J;A:§1E ,5 •. 4 

13 c NMB dats for carbocstion (600) 

Couplinq/H?; As,si,qnment 

s 

Q(J=36) 

D(J=250)ofsept.(J=29) 

s 

Q(J=287)ofD(J=26) 

Q(J=281) 

D(J=368) 

D(J=373) 

3 

7 

2 

5 

1 

8 

4,6 

On comparing NMR data for ions (100}, (101} and (102), an upfield trend 

19 13 
for the F and C chemical shifts of the charged sites is observed (see 

table 5.5}. These trends are understandable since charge is delocalised 

over a greater number of atoms. 
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TABLE 5,.~ 

Chemical shift values of carbocations at the charge centres 

Ca,r.Rocation _a;l2E!!! 
-F ac/_EE!l 

(100) +58.5 209.3, 210.5 

(101) +8 to 0 190.1, 195.4 

(102) -13.3 to -30.0 178.6,183.8,185.5,191.2 

19 
Notably the upfield trend for the F resonances is more pronounced and 

13 19 
this fact, together with a progressive broadening of the C and F 

signals, suggest that exchange processes are probably occurring at room 

temperature especially for ions (101) and (102). 

It was expected that alkene (29c), on treatment with SbF
5 

at room 

temperature, would yield carbocation (103). Instead, the major product 

was (100) in which formal addition of hydrogen fluoride to the double bond 

of (29c) had occurred. This observation is rather surprising in view of 

the fact that there is an increased delocalisation of charge in ion (103) 

over (100). 

(29c) 

SbF 
5 

room temp. 

+ ------------
(CF3)2CFCH2CF-CH-CF-CH-CF2 

(103) 

+ -------
(CFJ)2CFCH2CF-CH-CF-CH2CFJ 

(100) (90%) 

SbF -
6 

Dehydrof1uorination of the alkene (35) with SbF
5 

at room temperature 

gave carbocation (104), which has been observed and characterised by NMR 

(see tables 5.6 and 5.7). 



(35) 

19 

SbF 
~~5=> 

room temp. 

1 
CF 3 3 4 H 

'c=-=--c<"' 6 

/ "' + H 2cF 
3 

, c.:.:.~ 
5 / "' 8 9 F C-CH 2 CF 3 

7/ 
F 

(104) 

SbF 
6 

The F Nl~ spectrum of the carbocation solution has a very large coupling 

constant of 207 Hz between the two fluorine atoms at the charge centres, 

so they are most likely to be spatially near to each other as in structure 

(104). 

TAaLE 5.6 

19 
Selected F NMR data for compound (35) and carbocation (104). 

(35) (104) 

8/BB!!l -F Assignment ~ F/EB!!! Assignment 

- 61.2 2a - 62.3 2 or 9 

- 64.7 9a - 62.6 2 or 9 

- 68.4 la - 68.8 1 

- 92.7 Sa + 24.5 5 or 7 

- 94.3 7a +57.4 5 or 7 

:;J:AB!J§ ,5.7 

13 c NMR data for carbocation (104) 

~c I .!ill!!!. <;qupJ,i,ng/li?1 Assignment; 

43.9 Q(J=33) 8 

114.6 s 6 

126.7 s 4 

117.4 Q(J=277) 1 or 2 

118.2 Q(J=278) 1 or 2 

120.5 Q(J=280) 9 

149.4 sept(J=36) 3 

195.1 D(J=367) 5 or 7 

211.9 D(J=375) 5 or 7 



It would be expected that delocalisation of the charge on to carbon 

C-3 of ion (104) would be energetically unfavourable due to the proximity 

of the inductively electron withdrawing perfluoromethyl groups. However. 
13 

a pronounced downfield shift of 23.4 ppm was observed for the c 

resonance of carbon C-3 on conversion of (35) to carbocation (104), so it 

is likely that there is some degree of charge development at this carbon 

atom in (104). 

Reaction of (14b) with antimony pentafluoride gave the most remarkable 

result of all. since the NMR data clearly point to the formation of a 

unique dication (105) (see tables 5.8 and 5.9). 

SbF 
5 

SbF -
+ 6 

QcF 3 ) 2 CFCH 2 CF 2 CH 2 CF 2 ] 2 

la 2a 3a 4a Sa 6a 

(CF 3 ) 2 CFCHzCF-CH-CF-CF-CH-CFCH 2 CF(CF 3 ) 2 

1 2 3 4 5 6 
room temp. 

(14b) (105) 

We are unaware of any previous report of a dication with adjacent charges 

of this type. The possibility that (105) is a monocation which is 

13 
undergoing rapid exchange is inconsistent with the data because the c 

NMR shifts for the charged sites C-4 and C-6 are even further downfield 

than for the ion (100), whereas shifts similar to those observed for (101) 

and (102) would be apparent for a monocation averaged over six carbon 

atoms. The coupling to fluorine, associated with the low field signals, 

is also quite inconsistent with rapid exchange. 



TABLE 5.8 

19 
Selected F NMR data for (14b) and dication (105) 

3 /nnm 
-p= 

- 92.8 

-116.8 

- 78.5 

-186.5 

.!_cl~ 

41.4 

94.5 

122.1 

123.1 

210.4 

224.8 

(14b) (105) 

13 

4a 

6a 

la 

2a 

TABLE 5.9 

S /nnm =p ..&&::.;. 

+42.0 

+40.6 

-79.0 

-182.1 

C NMR data for dication (105) 

COUPLING/HZ 

s 
D(J=232)ofM(J=36) 

s 

Q(J=287)ofD(J=26) 

D(J=372) 

D(J=37l)ofD(J=41) 

ASSJ;GNMENT 

3 

2 

5 

1 

4 

6 

Ass.i,qnment 

4 or 6 

4 or 6 

1 

2 

Treatment of 1,2,4,5-tetrafluoroben~ne with an excess of antimony 

pentafluoride was carried out in order to determine whether it would 

form the dication (106). However, the blue colouration of the solution, 

1 
together with the fact that no signals were observed in both the H and 

19 
F NMR spectra indicate formation of the radical cation (107) rather than 

(106). The presence of unpaired electrons prevents the acquisition of 

159 
NMR spectra due to rapid relaxation of the excited nuclei. 

F F z-

H SbF
5 

(106) 

FJ§J: F F 

XS SbF 
5 

H 
H 

room temp. 

:@1: H 

SbE' ( 107) 
5 



On dissolving either (36) or (15a) in an excess of antimony 

pentafluoride, the NMR spectra in each case were consistent with rapid 

exchange of fluoride ion between the Lewis acid and the model compounds. 

1 19 
There were no significant changes in the H and F chemical shifts of 

each of the models in antimony pentafluoride, compared with those for 

the compounds alone. However, no coupling was observed between adjacent 

groups of the models and in addition a broad resonance was centred at 

19 
-109 ppm in the F NMR spectra, which is characteristic of SbF

6 
rather 

than SbF 
5

• 
160 

5.3 REACTIONS OF THE CARBOCATIONS 

Apart from the interesting properties of the carbocations described 

above, including their remarkable stability, they also provide a convenient 

route by which functional groups may be introduced into the saturated model 

compounds. The routes which have been investigated include quenching 

reactions and high temperature reactions of the carbocations. 

5.31 QUENCHING REACTIONS 

Reaction of carbocation (100) with methanol at low temperature gave 

133 
(108) as the major product. 

+ ------
(CF3)2CFCH2CF-CH-CFCH2CF3 

(100) 

xs MeOH 

> 

Similar treatment of carbocation (97) with methanol gave (109) as the 

j 
. 19 + 

rna or product as determ1ned by F NMR and mass spectrometry (m/z 266(M ), 

+ + 
235(M -OCH

3
) and 207(M -C0 2CH

3
)). 
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The proposed mechanism for its formation is outlined in scheme 5.1. 

+ xs MeOH 

(97) (109) 

(-MeF) 

i ~OH 
--:> 

SCHEME 5.1 

However (109) was rapidly converted to a number of other products, 

presumably by further attack of methanol. These products were not 

characterised. 

Carbocation (97) has also been quenched with both fluoride and 

chloride ion. With potassium fluoride a mixture of the monoene (34) and 

diene (37a) was produced, the latter in the Z-configuration only. 

CF 3 H 

'----I+ H 

1 
CF H 
'3 4/ KF c-c.:, / 

/ -"''---c-c' 
CF 3 I "' 

c ;:::: c 
---;>~ / 'c 

2
cFJ 5 I 

(59%) 

F CF2 F 

(97) + (37a) 

(34) 

The stereochemistry of (37a) was determined by NMR spectroscopy in which the 

magnitude of the coupling constant 

characteristic of the group F~C 
between 5-F and 6-H (J=28 Hz) is 

/ 161 
C" In addition, the coupling of 

H 
18Hz between the 5-F and 7-F nuclei is indicative of their z-geometrical 

relationship. Treatment of carbocation (97) with potassium chloride afforded 

the unexpected alkene (110) as the major product. 
+ 

( CF ) C-cH.:cp':.fH--CF 
l 2 2 

(97) 

SbF 
6 

(110) 



The identity of (110) was established by mass spectrometry (m/z 

+ 
3ll(M -F)) and by NMR spectroscopy in particular (see appendix). 

5.32 HIGH TEMPERATURE REACTIONS 

0 
Heating a number of the carbocations to over 100 C has led to 

some unusual observations as detailed below. 
H 

c::c:< + /H ,, ___ c 
c- ' 

F/ "CF2 

( CF 3 ) 2 

(97) 

+ 

SbF -
6 

---:> 
~h 

(Quant) 

(111) 

110°C CCF
3
l 2C=CHCF2CFCF 2CH 2CF 3 (40%)

133 

-~--~>~ hF 3 

(100) 

SbF -
6 

+ 

0 
120 c 

~h 

(CF ) CFCH CF(CH=CF) CH 2CF ------~~3)~ No change 
3 2 2 n 3 

~h 

(101) n=2 

(102) n=3 

( 112) 

Conversion of (100) to (112) is a rather unusual process and clearly must 

133 
proceed by an intermolecgkar mechanism. Conversely, formation of the 

cyclopentene derivative (111) from (97) must be an intramolecular process. 

Carbocation (97) prob~bly exists in equilibrium with another ion of type 

(113) under the reaction conditions. Once formed ion (113) must undergo 

rapid cyclisation and pick-up of fluoride ion from SbF to give product 
6 

(111) (see scheme 5.2). 

CF H 3' / c =c F 
+/ \/ 
CF 2 C 

II SbF6 
c 

1\ 
H CF 3 

(97) (113) (111) 

SCHEME 5.6 



+ 
The structure of (111) was determined by mass spectrometry (m/z 276 M ) 

133 
and by NMR spectroscopy (see table 5.10). 

TABLE 5.1,0 

NMR data for compound (111) 

S§IF,'J;/gpm 

19 
F spectrum 

- 66.5 

- 66.9 

- 99.2 

-100.0 

1 
H spectrum 

3.6 

6.8 

Integrals as required. 

F 5 
2 

CQQPLING/Hz 

M 

s 

AB(J=282) 

AB(J=268) 

M 

s 

ASSIGNMENT 

4 

1 

2 or 5 

2 or 5 

3 

6 

Carbocations (101) and (102) showed no sign of decomposition after 

0 
heating to 120 C for ~h. These observations are quite remarkable and 

162 
are examples of only a few carbocations known to be so thermally stable. 

5.33 EXPOSURE OF CARBOCATIONS TO HIGH VACUUM 

Ions (97) and (100) were exposed to high vacuum in order to 

determine whether conversion to other products would occur. For example, 

it was hoped that (100) might undergo proton loss to generate alkene 

products as follows: 

H 
+ I I 

-H 2>/c~ /c~ / 
c c 
I I 
F F 

However both ions (97) and (100) were stable to high vacuum at room temperature 



5.4 REARRANGEMENT OF 4H-PERFLUOR0-5-METBYLHEX-l-ENE (69b) BY SbF 
5 

Fluorohydrocarbon compounds of the type i-C 3 F (CHF CF ) F0 where 
7 2 n 

n= 1 and 2. show no susceptibility to Lewis acid induced elimination of 

0 133 
hydrogen fluoride at temperatures up to 150 c. However, treatment 

of alkene (69b) with antimony pentafluoride ar room temperature gave a 

rearrangement reaction forming the internal alkene (114). 

(69b) 
room temp. 
~h 

( 114) 

The Z isomer of (114) was formed exclusively as determined by NMR 

spectroscopy which gave a coupling constant of 29 Hz between the vinylic 

hydrogen and fluorine. 

0 
On heating alkene (114) to 100 c in antimony pentafluorid~ 

quantitative rearrangement to the more thermodynamically stable alkene 

(115) occurred. 

5.5 

( 114) 

SbF 
5 

0 
100 c 

~h 
( 115) 

APPLICATION OF SbF CHEMISTRY TO THE SYNTHESIS OF POLYACETYLENE DERIVATIVES 
5 

5.51 DEHYDROHALOGENATION OF SATURATED POLYMER SYSTEMS BY SbF
5 

163 
There is much current interest in conjugated polymers and the 

effect of replacing hydrogen by fluorine on the properties of polyacetylene 

164, 165 
has been speculated upon. Polymerisation of difluoroacetylene has 

154 
been claimed and this is surprising in view of the inherent 

166 
instability of difluoroacetylene. The reactions of antimony 

pentafluoride which have been described in this chapter suggest an 

alternative approach to polyacetylene derivatives by effecting elimination 

from a saturated polymer system and it has been found that this process is 



133 
remarkably effective. When a thin film of polyvinylidene fluoride 

(116) was simply exposed under high vacuum to antimony pentafluoride as a 

vapour, the film rapidly darkened and went through black to a lustrous 

black appearance, all at room temperature (scheme 5.3). Similarly, 

polytrifluoroethylene (117) went through the same sequence but this 

0 
system required heating to 80 C in neat antimony pentafluoride. In 

marked contrast a film of PVC (118) went instantly black when a vacuum 

tap was opened to allow vapour contact with antimony pentafluoride. 

It is clear that extensive elimination occurs in these systems but the 

products are not simply (119) - (121) since they contain antimony 

pentafluoride and certainly for dehydrofluorinated polyvinylidene fluoride, 

a number of charged sites must be present. This is evident from the fact 

that long-lived fluorinated carbocations can be observed in analogous 

less conjugated model systems (see section 5.2). 

-{-cHF-cFJ-n 
( 117) 

===>~ -(cH=CFfn 
( 119) 

---:>~ ~ CF==CF}-n 
(120) 

-fcH 2 - CHCl)-n =--::::>~ + CH=CH~ 
( 118) (121) 

Allowing the polymer films (116) - (118) to come into contact with 

trace amounts of antimony pentafluoride vapour, followed by exposure to 

high vacuum alone, did not lead to intense colouration. Continuous 

exposure to antimony pentafluoride was required for the formation of 

intensely coloured products, i.e. the action of antimony pentafluoride is 

not catalytic. 

The treated films (119) and (121) were stored and manipulated under 

dry nitrogen. Their elemental compositions and infra-red spectra were 

obtained, the latter using a Nicolet 60 SX photoacoustic IR spectrometer 

since the films did not have to undergo any treatment prior to running of 

the spectra. 
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5a52 EXAMINATION OF THE COLOURED FILMS (119) and (121) 

Elemental analyses of the coloured films derived from PVC and 

polyvinylidene fluoride indicate that the proportion of each element on a 

particular film differs from region to region. Furthermore antimony is 

present in the materials (typically 8-15%) and must exist either as 

SbF 
6 

or as SbF
5 

coordinated with the remaining halogen sites along the 

polymer chains, since the antimony species could not be removed by 

exposure to high vacuum. 

Comparing the photoacoustic IR spectra of the coloured films with those 

of the corresponding saturated homopolymers it is evident that there are 

significant differences in the spectra, indicating that there has been a 

bulk chemical change rather than just a surface effect. However, it must be 

noted that the coloured films probably contain charged sites which may 

significantly modify their vibrational characteristics as well as their 

chemical properties. For this reason the IR spectrum of the coloured film 

derived from PVC is not directly comparable with that of polyacetylene. 

Since the films also contain antimony pentafluoride the properties of these 

materials will be modified to a further extent, since the natu~e o~ dopant 

. h h . . . 167 spec1es and t e omogene1ty of dop1ng are very 1mportant matters. 

Consequently, caution must be exercised in noting any analogies or 

differences between the properties of these materials and polyunsaturated 

polymer systems described in the literature. 

Each of the treated films are discussed below. 

5.53 Dehydrochlorinated PVC 

The photoacoustic FT-IR spectrum of a treated PVC film is shown in 

figure 5.1. Bands characteristic of PVC initially present at 1425, 1240 

-1 
and 610 em have disappeared. The IR spectrum of the coloured film is 

-1 
essentially devoid of bands in the 2800-3200cm region. Weak, broad 

-1 
bands are observed in the 1650-1450 em region, some of which may be due 
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IR SPECTRUM OF A PVC FILM AFTER TREATMENT WITH SbF VAPOUR 
5 

2~00 00 00 
~AVENUMBERS 

-1 
to C=C bonds. Furthermore, bands at 1102 and 1272 ern are indicative of 

possible fluorine incorporation into the polymer since there is an absence 

~00 

of an intense band in the region of the C-Cl stretching mode. Alternatively, 

-1 
an intense band at 82lcrn could be C-Cl stretch but shifted in frequency 

from PVC since IR absorptions often occur at higher energies on fluorine 

l~ 
incorporation into a material. 

Bulk elemental analyses have been carried out and are variable even for 

the same film. Some samples showed a high chlorine content but the IR 

spectrum shows that the bulk, rather than the surface had been affected by 

exposure to antimony pentafluoride. Consequently, it is assumed that a 

great deal of the eliminated chlorine must remain associated with the 

counter-ion, i.e. as SbCl 
6 

or as mi~ed ions, SbF Cl 
5 

etc. Consistent 

with this conclusion is the fact that complex absorptions between 400 and 

-1 
800 em are observed in the IR spectrum. Further evidence for the 

presence of mixed counter-ions sterns from the fact that no chloride ion 

was detected in the materials (SbF
5 

and HF) recovered from liquid air 
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cooled traps after treatment of PVC with antimony pentafluoride vapour. 

5a54 DEHYDROFLUORINATED POLYVINYLIDENE FLUORIDE 

The photoacoustic IR spectrum of polyvinylidene fluoride produced by 

l-ray initiation is shown in figure 5.2 0 in which there are intense bands 

at 1402 (CH 2 wagging) 1197 (CF 2 stretching) 1067 (CF 2 wagging) and 

-1 
878 ern (C-C stretching). 

169,170 
The characteristics of this 

spectrum contrast with that of a coloured film resulting from treatment of 

polyvinylidene fluoride with antimony pentafluoride vapour, given in 

figure 5.3, which clearly demonstrates that a bulk chemical change has 

occurred. Intense bands due to polyvinylidene fluoride at 1402, 1197, 1067 and 

-1 
878 em have completely disappeared and broad strong absorptions appear 

-1 
at 1640, 1685 and 1530 em , which are indicative of the formation of both 

isolated and conjugated C=C bonds. The disappearance of the bands at 1402 

-1 
and 1197 ern especially indicates that both C-H and C-F bond breakage has 

170 -1 
occurred during the process. In addition, the C-H band at 3022 em in 

the IR spectrum of polyvinylidene fluoride was not observed for a pyrolyzed 

171 
sample and is also not present in that of the coloured film. In fact, 

the IR spectrwu of the coloured film bears a remarkable similarity to that 

observed for a base induced dehydrofluorinated product of polyvinylidene 

172 
fluoride given in the literature. The very broad and intense band between 

-1 
2000 and 3600 em is also similar to that observed for polyacetylene doped 

173 
with hydrogen fluoride. Indeed the coloured film is expected to contain 

hydrogen fluoride following its displacement from the polymer backbone by 

antimony pentafluoride. 

5.55 EVIDENCE FOR THE EXISTENCE OF CHARGED SITES 

172 
Kise and Ogata reported that no significant change in the IR 

spectrum occurred after exposing a dehydrofluorinated polyvinylidene fluoride 

film to air for eight weeks. In contrast when a polyvinylidene fluoride film, 

after treatment and antimony pentafluoride, was exposed to air, a very strong 



-1 
band at 1760 em was the most striking feature of the IR spectrum of the 

resultant product (see figure 5.4). This indicates that carbonyl groups 

were formed on contact with air, probably by attack on charged sites of 

the type (122). 

(122) 

Quenching of carbocations, derived from model compounds, with 

methanol gave rise to products containing carbonyl groups (see section 

133 
5.31). Hence, the coloured films derived from PVC and polyvinylidene 

fluoride were treated with methanol vapour at room temperature, in order 

to determine whether a reaction would occur as a result of the presence 

of charged sites. The former system produced no colour change but the 

latter, derived from polyvinylidene fluoride, gave an immediate colour 

change to orange. The photoacoustic IR spectrum of the orange film is 

-1 
given in figure 5.5 and shows an intense band at 1650 em which is almost 

certainly due to carbonyl groups conjugated to C=C bonds. In addition, the 

-1 
intense absorptions between 1050 and 1200 em may be due to C-0 stretching 

_l 
of methoxy groups. The absorption at 1650 em overlaps with a broad band 

_1 
covering the range 1550 - 1760 em which indicates that a number of 

different C=C groups are present. 

The fact that the dehydrofluorinated films derived from polyvinylidene 

fluoride are modified by either air or methanol to give materials containing 

carbonyl groups, presents strong evidence for the existence of charged 

sites of the type (122). It would be expected that hydrogen atoms adjacent 

to charge centres will give rise to signals showing appreciable downfield 

shifts in the 
1 

H NMR spectrum, as observed for the carbocations described in 

1 
section 5.2. Table 5.11 shows the H NMR chemical shift ranges observed for 

the broad signals of carbocations (100)-(102). It can be seen from the 

table that as n increases, the resonances for the l-CH 2 and 2-CH groups 
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fiGURE 5o6 H N.MR SPECTRUM OF DEBYDROFLUORINATED PVDFo 
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1 
progressively shift upfield and become closer. Hence, for H NMR 

spectra of polyvinylidene fluoride films, after treatment with antimony 

pentafluoride, these resonances should be even closer. This accounts for 

1 
the observed H NMR spectrum presented in figure 5.6 and provides further 

.evidence for the presence of charged sites of the type (122 ). The sharp 

resonance at ~ lO.Oppm in the spectrum is due to the presence of 

1 
hydrogen fluorid~ and was also observed in the H NMR spectra of carbocations 

(100)-(102). 

TABLE 5.11 

+ 
< cF 3 ) 2 cF- cH 2 cF·=fc"H:.cF T-n cH 2 - cF l 

1 2 1 

1 2 
8/lli2!!1 ~/.E.E!!! 

H H 

n=l (100) 3.6 - 4.8 7.0 -
n=2 (101) 3.0 - 4.5 6.2 -

n=3 (102) 2.9 - 4.4 5.8 -

8.3 

7.6 

7.6 

SbF 
6 



5a6 CONCLUSIONS 

The Lewis acid induced rearrangement and dehydrofluorination 

reactions described in this chapter have illustrated new chemistry and 

have also led to a number of interesting products. Synthesis of unsaturated 

model compounds has been possible and these have been useful in carrying 

out mechanistic studies concerning cross-linking processes (see chapter three). 

I 

In addition a number of remarkable, highly fluorinated carbocations have been 

prepared which are useful intermediates for functionalizing the saturated 

model compounds, via quenching reactions with nucleophiles. Notably the 

reactions with antimony pentafluoride yield unsaturated products in which 

the most sterically demanding groups are situated exclusively in the E 

configuration relative to each other. 

This methodology for forming unsaturated products has been 

successfully extended to the synthesis of polyacetylene derivatives, by 

treating suitable saturated polymers with antimony pentafluoride. 

Currently there is much interest in the synthesis and investigation of 

polymers with conjugated n -electron backbones since they possess unusual 

electronic properties when compared to conventional polymers. The most 

successful attempts to prepare fluorinated polyacetylenes are limited to 

base induced dehydrofluorination of saturated homopolymers such as PVDF. 

These reactions require a solvent and often a phase transfer catalyst, 

such as tetrabutylammonium bromide, and are usually carried out at elevated 

temperatures (typically 90-100°C). By contrast, Lewis acid induced 

dehydrohalogenation of PVC and PVDF simply involves exposure to antimony 

pentafluoride vapour at room temperature. The resultant materials may 

well be difficult to completely characterise but this procedure offers an 

extremely simple methodology for generating polyconjugated films and it is 

clear that the electrical properties of these systems should be explored. 



CHAPTER SIX 

MISCELLANEOUS REACTIONS OF SOME FLUOROCARBON DERIVATIVES 

6ol Introduction 

In Chapter three it was concluded that unsaturated units of 

the form -(CF 3 )C=CHCF 2 - are the sites through which nucleophilic cross-

' linking of HFPjVDF copolymers occurs. Since it is likely that a proportion 

of these sites remain in the cured articles. which are often utilized 

in contact with aggressive chemical~. their response towards nucleophilic 

and free radical attack is described in this chapter. 

Details of the synthesis of fluorocarbon derivatives containing 

the bulky F-2-methylpentyl group were presented in Chapter Four. 

The presence of this group has led to the observation of some unusual 

chemistry, the results of which are discussed in this chapter. 

6.2 Nucleophilic Attack on -(CF 3 )C=CHCF 2 - Sites 

6a21 (CF 3 ) 2 C=CHCF 3 (36) with Grignard Reagents 

Treatment of alkene (36) with a stoichiometric amount of propyl 

magnesium bromide in ether led to allylic displacement of fluoride 

ion to form (123) (See Scheme 6.1). 

CF 3 

I 
CF 2 =C-CHCH 2 CH 2 CHl 

I 
(59%) 

(36) (123) 

0°C then reflux 

Scheme 6.1 



An alternative alkene (124) 0 which could be formed by the mechanism 

outlined in Scheme 6.2 0 was not produced. 

(36) 

Scheme 6o2 

The trifluoromethyl groups in (124) would be magnetically equivalent 

d ld . . . 1 . h 19 N h an wou g1ve r1se to one s1gna 1n t e F MR spectrum, rat er 

than the two resonances which were observed. Furthermore, two molar 

equivalents of Grignard reagent would be required to produce (124) 

but only a stoichiometric amount was used. 

On treatment of (36) with two molar equivalents of propyl magnesium 

bromide, the major product was (123) (See Scheme 6.1). Compound (123) 

contained only ~ 8% of other minor products which did not appear 

to include (126) as determined by G.C. - mass spectrometry. It is 

-
very surprising that (123) did not react with further amounts of Grignard 

reagent to produce (126), by analogy to the reaction between (125) 

and methanol described in Section 3.41, i.e., 

CF 3 MeOH,K 2 C0 3 

I 
CF 2 =C-CHOMe 

/ MeCN 
CF 2 CH 2 CF 3 room temp. 

{125) {49) {E and Z isomers) 

Similar treatment of {36) with an excess of phenyl magnesium 

bromide gave {127) as the major product. Further reaction of {127) 

with Grignard reagent to give {128) was not observed. 



xs PhMgBr CF 3 

I 
( CF 3 ) 2 C=CHCF 3 > CF 2 =C-CHCF 3 (127) (60%) 

I 
(36) Et 2 0 Ph 

0°C then reflux 

CF t 
I l 

PhCF=C-CHCF 3 (128) 

I 
Ph 

Scheme 6o3 

A possible explanation for these observations is that the reaction 

between Grignard reagent and alkene (36) produced a carbanion inter-

mediate (129), which only yielded the products (123) or (127) on carrying 

out the work-up procedure. Formation of (129) would hinder any further 

reaction to give (126) or (128). 

RMgBr 

(36) 

-
(CF 3 ) 2 C-CHCF 3 (129) 

I 
R l Work-up 

CFl 
I 

CF 2 =C-CHCF 3 

I 
R 

Scheme 6.4 

6.22 (CF 3 ) 2 C=CBCF 3 (36) with Ethyl Acetoacetate 

R=CH 2 CH 2 CH 3 (123) 
R=Ph (127) 

On addition of alkene (36) to a mixture of ethyl acetoacetate 

and sodium hydride in tetraglyrne, the pyran derivative (130) was the 

only product. The probable mechanism for its formation is presented 

in Scheme 6.5.
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CF3 ~ ""' / -n / C=C """ CH 3 COCHCO 2 Et 

F == CF 2 CF 3 

i U
H CF 

CF C0 2 Et(
4

S%) 

F 
0 

l-ie 

(36) (130) 

CF, 1 H " / c-c ~- CF3 

/ ""' 
NaH 

CF 2 ~CHC0 2Et 

O=C 

" Me 

i CH 3 COCH 2 C0 2 Et, xs NaH, tetraglyme, room temp., 19h. 

Scheme 6o5 

6o23 -(CF 1 )C=CHCF 2 - With Catechol 

The response of -(CF 3 )C=CHCF 2 - groups to nucleophilic attack 

by alcohols was described in Section 3.41 and further related studies 

have been carried out. For example, treatment of (36) with catechol 

gave a cyclization reaction leading to predominant formation of (131) 

and (132). The mechanism for their formation is presented in Scheme 

6. 6. 



(36) 

(131) (14%) 

C
6

H
4

(0H)
2 

CF 3 

I 
====:> CF 2 =C-CHCF 3 

\ 
Room temp <05 

/ 

(132) (26%) 

Scheme 6a6 

Structural elucidation of the products was achieved principally 

by mass spectrometry (m/z 302 (131) and 322 (132), IR spectrometry 

(~max (C=Cl 1700 cm-l) and NMR spectroscopy <aF<vinyl F) -61.5 ppm 

(131) and SF (CF 2 ) -61.0 ppm and -67.1 ppm (132) (two diastereoisomers)). 

6.3 Free Radical Attack on -(CF 1 )C=CHCF 2 - Sites 

It is known that fluoroalkenes of the type R CF=CF 2 are 
F 

susceptible to free radical addition reactions.
176 

For example, irradiation 

of a mixture of alkene (133) and methanol with 0- rays gave (134) in 

moderate yield. 



MeOH 

(CF 3 ) 2 CFCF=CF 2 (57%) 

( 133) 
i(- rays 

(134) 

Alkene (133) was synthesized from heptafluoro-2-iodopropane 

(12) by the route given in Scheme 6.7. 

CHF=CF 2 NBu 3 

Room temp. 

(12) (23a) ( 133) 

Scheme 6o7 

Sites of the type -(CF 3 )C=CHCF 2 - also undergo free radical 

reactions as exemplified by treatment of (36) with ethanal, which 

yielded ( 135). 

MeCHO 0 

II 
(CF 3 ) 2 C=CHCF 3 :> ( CF 3 ) 2 CHCHCMe (70%) 

r - I 
rays CF 3 

(36) 

( 135) 

In a similar way, irradiation of a mixture of (36) and methanol 

with r- rays afforded the alcohol ( 136). 

MeOH 

(CF 3 ) 2 CH-CHCH 2 0H (88%) 

(36) ~- rays 
I 
CF 3 

( 136) 

An attempt was made to cyclize alcohol (136) according to Scheme 

6.8, in which initial elimination of hydrogen fluoride is followed 

by intramolecular nucleophilic attack of alkoxide on the double bond 

of (137). 



* ( CF 3 ) 2 CH-CHCF 3 

I 
CH 2 0H 

(136) 

MeCN i K,CO, 

CF 3 

\ 
C- CHCF3 

~ I 
CF 2 CH 2 

I 
H-0 

( 137) 

MeCN 

===> (CF 3 ) 2 CH-C=CH 2 ( 65%) 

I 
CF1 

(139) 

( 138) 

Scheme 6.8 

However, the furan derivative (138) was not produced. The 

only product was alkene (139) which was formed by elimination of 

water from (136). This result is surprising since it appears to 

indicate that the most base sensitive site is the asterisked group 

of (136) rather than the 2H-hexafluoropropyl unit. The identity 

of (139) was achieved by mass spectrometry (m/z 246(M+)) and by NMR 

spectroscopy in particular (See Table 6.1). 

Table 6.1 NMR data for alkene (139) 

1 2 H4 
/ 

( CF 1 ) 2 CH-C=c, 
/ H5 

3 CFJ 

Coupling/Hz Assignment 

19
F spectrum: CDC13 

- 66.9 D{J=B) of Q(J=l) 1 

- 70.4 Sept. {J=l) 3 

lH spectrum: CDC1 3 

3.8 Sept. {J=8) 2 

6.2 s 4 or 5 

6.3 s 4 or 5 

Integrals as required. 



The free radical reactions described above have clearly demonstrated 

that -(CF 3 )C=CHCF 2 - sites are susceptible to attack by free radicals. 

However, it was also found that when such sites are conjugated to 

an alkene group. as with (37). then this is sufficient to offset 

any reaction. Hence, irradiation of a mixture of (37) and dimethyl 

ether with r- rays gave no chemical change. 

Me 2 0 
E,Z-(CF 3 ) 2 C=CH-CF=CHCF 3 3> 

Y- rays 
(37) 0 

l (140) 

.. 
(CF 3 ) 2 C-CH:cF-CHCF 3 

I 
(141) 

CH 2 0Me 

Scheme 6.9 

This result may be due to formation of the relatively stable 

allylic radical (141) which could then hinder the reaction. 

6.4 Novel Reactions with Compounds Containing the F-2-Methylpentyl 

Group 

6.41 2H-Perfluoro-l-iodo -3,3-dimethylhexane (80) with Tri-n-Butylamine 

Normally the formal elimination of hydrogen iod1de from 

fluorohydrocarbon iodides containing the -CHFCF 2 I group can be achieved 

relatively easily using tri-n-butylamine at ambient temperature (see 

Section 4.4). However, the crowded iodide (80) failed to react readily 

until the temperature was maintained at 90°C. This has been attributed 

to the difficulty of the large tertiary amine in approaching the 

hydrogen of (80) due to chronic steric repulsions. 

When iodide (80) was treated with the amine at 90°C, two products 

were observed in addition to the expected alkene (81). 



NBul RFCF=CF 2 (81) (24%) 

RFCHFCF 2 I > + 

(80) 90°C 0 12h RFCHFCF 2 H (142) (32%) 

+ 

RFCHFCF 3 (143) (41%) 

RF=CFJCF 2 CF 2 C(CF 3 ) 2 

The products (142) and (143) were not derived from alkene (81) 

since the latter remained unchanged after heating to 90°C with tri-

n-butylamine. Consequently, it is likely that (142) was produced 

by reduction of iodide (80) according to Scheme 6.10. One electron 

reductions of this type have been reported and are now well established.
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• 
133 

.. 

•+ 
-N CH 2 ( CH 2 ) 2 CH J 

I 

-r 

+ 

H· transfer 

•+ • 
+ -N-CH(CH;) 2 CH 3 ~ 

I /-a+ (142) 

.. 
Scheme 6.10 

The formation of (143) suggests that hydrogen fluoride was 

produced during the reaction presumably as a result of partial 

decomposition of (80). This would lead to formation of tertiary 

amine hydrofluoride which is known to be an active source of fluoride 

. 178 d ( 1on an could therefore attack alkene 81) to give (143). 



6a42 Free Radical Addition of the THF to Perfluoro-3o3-Dimethylhex-l-Ene (81) 

Irradiation of a mixture of perfluoro-3,3-dimethylhex-1-ene (81) 

and THF with ¥- rays afforded the products (144) and (145). 

n-c,F7C(CF,),CHFC:~ 
CF 3 

CF 3 CF 2 CF 2 !CF=CF 2 --------~J>~ 
I 

xs THF 

~- rays 

(144) 

+ 

(42%) 

(145) (49%) 

Hence, the crowded perfluoro-2-methylpentyl group of (81) did 

not suppress free radical addition to the double bond. Compound 

(145) contains four chiral centres so there should be eight observable 

isomers. However, only three were produced and this must reflect 

the preference to form diastereoisomers in which the large groups 

are spatially distant from each other. 

The structures of the products were determined principally 

by mass spectrometry (for (144) m/z 472 (M+) and for (145) m/z 853 

(M+-p) and NMR spectroscopy (see appendix). For product (145} the 

two fluorocarbon groups are attached to different ring carbon atoms, 

as indicated by lH NMR spectroscopy in which the ratio of methine 

to methylene protons is 1:2. This result is in agreement with studies 

179 
carried out by Jones. 

6.43 Pyrolysis of Perfluoro-3,3-Dimethylhex-1-ene (81) 

The crowded alkene (81} underwent complete conversion to perfluoro-

2-methylhept-2-ene (146) on exposure to high temperature. The proposed 

mechanism for the reaction is presented in Scheme 6.11. 



~--<:) (94%) 

72h 

(81) (146} 

1 
----> 

Scheme 6oll 

Identification of alkene (146} was achieved by mass spectrometry 

(m/z 381 (M+-F)), IR spectrometry(~ 
max 

(See Table 6.2}. 

Table 6o2 NMR data for alkene (146} 

~F~ Integral 

- 60.0 3 

- 62.7 3 

- 84.6 3 

- 99.2 1 

-116.6 2 

-124.8 2 

-129.4 2 

-1 
(C=C) 1705 em ) and NMR spectroscopy 

Assignment 

2 

1 

7 

3 

4 

5 

6 

6o44 Preparation of Perfluoro-2-Methylheptyl Anion {147) 

On stirring alkene (146) with an excess of caesium fluoride in 

tetraglyme an orange coloured solution was obtained. 
19 

Its F NMR spectrum 

indicated that quantitative formation of perfluoro-2-methylheptyl anion 

(147) had occurred. 

CsF 

(146} tetraglyme 

1 

+ 
Cs 

The 
19

F NMR data are summarized in Table 6.3. 

2 3 4 5 6 

(147) 



Table 6o3 
19

F NMR data for anion (147) 

~FLEE!!! Coupling Integral Assignment 

- 41.7 M 6 1 

- 81.8 M 3 6 

- 91.9 M 2 2 

-112.6 M 2 3 

-122.0 M 2 4 

-126.5 M 2 5 

The 
19

F NMR shifts for the fluorine atoms adjacent to the anionic 

charge centre are in close agreement with those observed for similar 

b l "ff 147 perfluoroalkyl carbanions prepared y Bay 1 • 

6o45 Reaction of Perfluoro-3 6 3-Dimethylhex-1-ene (81) with MEthanol 

Treatment of alkene (81) with methanol gave the products (148) 

and (149) as follows: 

CF 3 MeOH,K 2 C0 3 

I 
CF 3 CF 2 CF 2 CCF=CF 2 Z) 

I 
CF 3 MeCN 

20h, 60°C (148) 
(81) 

(34%) 

(149) 

The structural nature of the products was determined mainly by 

mass spectrometry (for (148) m/z 412 (M+) and for (149) m/z 413 (M+-F)) 

and by NMR spectroscopy (See appendix). Nucleophilic substitution of 

fluoride by methoxide ion gave the E isomer of (148) exclusively, as 

d . d b . 19 h" h h d 1 1" eterm1ne y 1ts F NMR spectrum w 1c s owe a arge coup 1ng constant, 

JFF=ll9Hz, between the two vinylic fluorines. Typically, such coupling 

constants range between 100 and 140 Hz for vinylic fluorines situated 

in a trans configuration, whereas similar fluorines situated cis to each 

160 
other generally give rise to values between 10 and 60 Hz. 



6a46 Preparation of 1H-Perfluoro-3o3Dimethylhex-l-yne (150) 

2H,4H-Perfluoro-l-iodo-5.5-dimethyloctane(82) was treated with 

potassium hydroxide at 90°C in order to produce alkene (84) (See Section 

4.6). Remarkably, however, the major product was lH-perfluoro-3.3-dimethylhex-

1-yne (150) rather than (84). 

KOH 4cF 

1 2 3 sl ~ 7 

:> CF 3 CF 2 CFzC-C:C-H (77%) 

90°C, 
4/ 

48h CF 3 

(82) (150) 

Structural identification of (150) was achieved from the following 

data: 

i) mass spectrometry; m/z 325 (M+-F) 

ii) IR spectrometry~)) (C:C) 2142cm-l, ')) 
max max 

-1 
(C:C-H) 3315cm • 

iii) NMR spectroscopy~ 3H<C=C-H) 2.9ppm. 

In addition the 
13

c NMR spectrum of (150) is given in Table 6.4 

Table 6.4 
13

c NMR data for alkyne (150). 

~~ Coupling/Hz Assignment 

57.0 M(J=30) 5 

65.8 s 6 

80.7 s 7 

109.1 T(J=272) of Q(J=38) of T(J=38) 2 

113.4 T(J=273) of T(J=33) 3 

117.6 Q(J=289) of T(J=33) of T(J=2) 1 

120.4 Q(J=288) 4 

On repeating the reaction for Sh and for 24h, two major volatile 

products (84) and (150) were obtained. Hence the first step in the 

formation of alkyne (150) must be dehydroiodination to give (84). The 

remaining steps in the reaction are not clear but the intermediate compounds 

must either be short-lived or involatile, since they were not present 

in the volatile reaction mixture. The type of mechanism which may be 

in operation is shown in Scheme 6.12. 



OH-

RFCHFCF 2 CHFCF 2 I :> RFCHFCF 2 CF=CF 2 

(82) (-HI) (84) 

(-HF) ~ OH-

OH-
RFCF=C=CF-CF 2 0H < RFCF=CF-CF=CF 2 

1 OH-

OH-
RFCF=C=CF-C0 2 H :> RFC=C-CF-C0 2 H 

l 
OH 

~(-HF) 
0 

R c=c-H < - '£1 II,D R C=C-C-C-0-H F 
F -tJ II 

(150) 0 

Scheme 6al2 

It appears that the formation of alkyne (150) is favoured by the 

presence of the bulky F-2-methylpentyl group in (82). This follows from 

the fact that similar treatment of iodide (23b) only gave alkene (69b) 

as the major product. 

KOH 

(23b) (69b) 

A minor product resulting from dehydrofluorination of (69b) was 

also formed, as indicated by GC-mass spectrometry. The identity of this 

compound was not determined. 



EXPERIMENTAL SECTION 



INSTRUMENTATION 

IR spectra: Unless stated IR spectra were recorded on a Perkin 

Elmer 457 grating IR spectrophotometer. Liquid samples were recorded 

as thin films between KBr plates and gaseous samples or volatile 

liquids in a cylindrical cell with KBr windows. 

Mass Spectra: Mass spectra of pure samples were acquired on a VG 

7070E spectrometer equipped with electron impact, chemical ionization 

and negative ionization modes. GC-mass spectra were recorded on 

a VG Micromass 12B spectrometer fitted with a Pye 104 gas chromotgraph 

or a VG 7070E spectrometer equipped with a capillary column gas chromograph. 

Gas Liquid Chromatography: Gas liquid chromatographic analyses were 

carried out using either a Varian Aerograph Model 920 equipped with 

a gas density balance detector or Pye Unicam GCD chromatographs fitted 

with flame ionisation detectors. Column packings most frequently 

used were silicone elastomer (5% or 10%) on thromasorb P (column 

0) diisodecylphthalate (10% or 20%) on chromasor~ P (column A) and 

Krytox (20%) on Chromasorb P (Column K). Alternatively GC analyses 

were carried out on a Hewlett Packard 5890A instrument equipped 

with a silicone elastomer coated fused silica capillary column. 

Preparative GC was performed on a Varian Aerograph Model 920 fitted 

with a Cathodometer detector, using columns A or 0. 

. lH 19 NMR Spectra: Rout1ne and F NMR spectra were recorded on a Perkin 

Elmer R24B spectrometer operating at 60MHz and a Varian EM360L spectrometer 

operating at 56.4 MHz respectively. High field spectra were recorded 

on a Bruker AC250 operating at 62.9 MHz (for 
13

c) 250.1 MHz (for
1

H) 

19 
and 235.3 MHz (for F). Chemical shifts are quoted in ppm relative 

to TMS (for 
1

H and 13c) or CFC1 3 (for 19F) as external reference, 

with downfield values expressed with a positive sign. 



Elemental Analyses: Carbon. hydrogen and nitrogen analyses were obtained 

using a Carlo Erba 1106 elemented analyser. Analysis for halogens 

was performed as described in the literature.
181 

Fractional distillations: Fractional distillations of product mixtures 

were carried out using a Fischer Spaltrohr MMM 202 concentric tube 

system. 

Reaqents and Solvents 

Unless otherwise stated, reagents were used as supplied. Hexa­

fluoropropene, vinylidene fluoride, antimony pentafluoride, Bisphenol 

AF,triallyl isocyanurate (TIC) and perfluoroallylfluorosulphate (FAFS) 

were obtained from Montefluos SpA, Bollate, Italy. 

Solvents were dried prior to use by standard methods and stored 

over molecular sieves (type 4A) under dry nitrogen. 



CHAPTER SEVEN 

EXPERIMENTAL TO CHAPTER TWO 

SYNTHESIS AND SPECTROSCOPIC EXAMINATION OF MODEL COMPOUNDS 

7al Preparation of Fluoroalkyl Iodides 

?all Heptafluoro-2-iodopropane (12)
125 

A mixture containing hexafluoropropene (273g, 1.82 mol), iodine 

pentafluoride (8lg, 0.36 mol) and iodine (185g, 0.73 mol) was sea1ed 

in a stainless steel autoclave (capacity 1175 ml) and rocked under 

autogenous pressure for 24 h at a temperature of 150°C. HFP (ca.4g) 

was recovered on opening the tube and further material (508g) was 

transferred under vacuum to a separate vessel. The product was 

washed with water, followed by alkaline sodium thiosulphate solution. 

Analysis by capillary G.C. showed one component which was identified 

as heptafluoro-2-iodopropane by comparison of its IR spectrum with 

125 
that of an authentic sample. 

a) A mixture containing heptafluoro-2-iodopropane (12) (4l.Og, 

0.14 mol) and vinylidene fluoride (32.8g, 0.51 mol) was sealed 

in a stainless steel tube (150m!) and rocked at 190°C for 36h under 

autogenous pressure. VDF (ca. lg) was recovered on opening the 

tube, together with a purple liquid (69.4g). Capillary G.C. (100-

250°C) showed the presence of five major components which were 

separated by fractional distillation. The fractions isolated were 

2H,2H~ nonafluoro-1-iodo-3-methylbutane (13a) (4.5g, 9%)~ b.p. 

105°C: 4H,4H-undecafluoro-l-iodo-5-methylhexane (13b) (15.9g, 27%)~ 

2H,2H,4H,4H,6H,6H-tridecafluoro-l-iodo-7-methyloctane (13c) (24.6g, 

36%)~ b.p. 98°C (15 mmHg): 2,2,4,4,6,6,8,8- octahydropentadecaf1uoro-

1-iodo-9-methy1decane (!3d) (17.6g, 23%); b.p. 106°C (5 mmHg): 

NMR spectrum no. 1~ m/z 425 (M+-I): and 2,2,4,4,6,6,8,8,10,10-



decahydroheptadecafluoro-1-iodo-11-methyldodecane (13e) (2.6g,3%); 

+ 
NMR spectrum no. 2; m/z 469 (M -I-HF). Compounds (13a)-(13c) were 

identified by comparison of their NMR and mass spectra with authentic 

133 
samples. 

The reaction was repeated at 185°C for 24h with heptafluoro-

2-iodopropane (12) (70.lg, 0.24 mol) and VDF (29.3g, 0.46 mol). 

On opening the tube VDF (ca.0.5g) was recovered and the telomer 

iodides were separated by distillation to give four fractions, 

(13a) (37.6g, 44%); (13b) (37.5g, 37%); (13c) (11.6g,l0%); and 

(13d) (6.5g, 5%). 

7el3 (CFl) 2 CF(CHaCF 2 )l [CF 2 CF(CFl)] m I U7-18) 

a) The iodide i-C 3 F
7

CH 2 CF 2 I (13a) (49g, 0.14 mol) was pipetted 

into a stainless steel autoclave (150ml) and HFP (35g, 0.23 mol) 

transferred under vacuum. The contents were rocked for 48h at 

200°C and on cooling a liquid (69.3g) was recovered. Analysis 

of the liquid by capillary G.C. (100-220°C) showed three major 

peaks. Distillation of the mixture yielded three major fractions 

which were identified as (13a) (10.9g): b.p. 105°C; 5H,5H-pentadeca-

fluoro-2-iodo-6-methylheptane (17a) (49.lg, 71%); b.p. 70-71°C 

(27 mmHg); (Found: C, 18.5; H, 0.4. c
8

H2 F
15

r requires C, 18.8; 

H, 0.4%); NMR spectrum no. 3; mass spectrum no. 1; IR spectrum 

no. 1; and 7H,7H-heneicosafluoro-2-iodo-4,8-dimethylnonane (17b) 

(5.9g, 7%); b.p. 109-ll0°C (28 mm Hg); (Found: m/z 659.9787. c
11 

H2 F
21

r requires M+ 659.8865); NMR spectrum no. 4; mass spectrum 

no. 2, IR spectrum no. 2. 

b) A stainless steel autoclave (lSOml) was charged with (CF 3 ) 2 

CF(CH 2 CF 2 ) 2 I (13b) (3l.lg, 73.3 mmol) and HFP (11.2g, 74.7 mmol). 

The tube was rocked for 48h at 200°C and on cooling HFP (ca. 1.5g) 

and a liquid (38.2g) were recovered. Distillation of the liquid 



afforded two major fractions. The first fraction was the starting 

material (CF 3 ) 2 CF(CH 2 CF 2 ) 2 I (13b) (17.lg) and the second fraction 

was identified as 5v5,7,7 - tetrahydroheptadecafluoro-2-iodo-8-

methylnonane (18a) (15.lg, 36%); b.p. 88-89°C (12mmHg); (Found: 

Cv21.0; H,0.8, F, 56.4, C H F I requires C,20.0;H, 0.7; F, 
10 4 17 

56.3%);NMR spectrum no. 5; mass spectrum no. 3; IR spectrum no. 3. 

a) Vinylidene fluoride (15.5g, 0.24 mol) and (17a) (99.4g, 0.19 mol) 

were sealed in a stainless steel tube (125 ml capacity) and rocked 

at 185°C for 24h. On opening the tube a liquid (112.7g) was recovered 

and analytical G.C. showed that it contained two major components, 

which were separated by fractional distillation. The fractions isolated 

were 2H,2H,6H,6H-heptadecafluoro-l-iodo-3,7-dimethyloctane (19a) (83.0g, 

74%); b.p. 91-92°C (13mmHg); (Found: C, 20.5; H, 0.7; F, 56.9.c
10

H
4

F
17

r 

requires C, 20.9; H, 0.7; F, 56.3%); NMR spectrum no. 6; mass spectrum 

no. 4; "rR spectrum no. 4; and 2,2,4,4,8,8-hexahydrononadecafluoro-

1-iodo-5-9-dimethyldecane (19b) (24.lg, 19%); b.p. 125°C/15mmHg; 

(Found: C, 22.6, H, 1.0; F, 56.9. c
12

a
6

F
19

r requires C, 22.6; H, 1.0; 

F, 56.6%); NMR spectrum no. 7; mass spectrum no. 5; IR spectrum no.5. 

b) The iodide (18a) (12.3g,21.4 mmol) and vinylidene fluoride 

(2.7g, 42.2 mmol) were transferred to a stainless stell autoclave 

(150ml) which was subsequently rocked at 185°C for 24h. On opening 

the tube VDF (ca lg) and a pale yellow liquid (12.3g) were recovered. 

Distillation of the liquid gave two major fractions which were 

identified as 2,2,6,6,8,8-hexahydrononadecafluoro-1-iodo-3,9-dimethyldecane 

(20a) (6.0g, 44%); b.p. 106°C/5mmHg; (Found: C, 22.5; H, 1.0; F, 56.9. 

C12H6F19 I requires C, 22.6; H, 1.0; F, 56.6%); NMR spectrum no. 8; 

mass spectrum no. 6; IR spectrum no. 6; and 2,2,4,4,8,8,10,10-



octahydroheneicosafluoro-1-iodo-5,11-dimethyldodecane (20b) (3.4g, 

23%); b.p. 131-132°C/3 mm Hg; (Found: c, 23.7; H, 1.0; I, 18.5. 

c
14

H
8

F
21

I requires C, 23.9; H, 1.2; I 18.1%); NMR spectrum no. 9; 

mass spectrum no. 7; IR spectrum no. 7. 

c) A stainless steel autoclave (150m!) was charged with the 

iodide (17b) (16.lg, 24.4 mmol) and vinylidene fluoride (3.4g, 53.lmmol) 

and rocked at 190°C for 24h. On opening the tube VDF (1.5g) and a 

liquid (15.0g) were recovered. Distillation of the liquid yielded 

one fraction which was identified as 2,2,8,8-tetrahydrotricosafluoro-

1-iodo-3,5,9-trimethyldecane (19c) (ll.Og, 62%); b.p. 95°C/5mmHg: 

(Found: C, 21.7; H, 0.5; F, 60.9. c
13

H
14

F
23 

I requires C, 21.6; 

H, 0.6; F, 60.4%); NMR spectrum no. 10; mass spectrum no. 8; IR spectrum 

no. 8. The liquid remaining in the distillation apparatus could 

not be distilled over. It was identified as 2,2,4,4,10,10-hexahydro~ 

pentacosafluoro-1-iodo-5,7,11-trimethyldodecane (19d); (1.4g, 7%); 

(Found: C, 22.6; H, 0.8. c
15

H
6

F
25 

I requires C, 22.9; H, 0.8%); NMR 

spectrum no. 11; mass spectrum no. 9; spectrum no. 9. 

7al5 Beptafluoro-2-iodopropane (12) with BFP 

A stainless steel autoclave (150ml) was cooled in liquid air 

and heptafluoro-2-iodopropane (12) (46.3g, 156.4 mmol) and HFP 

(24.9g, 166.0 mmol) transferred under vacuum. The contents were 

rocked at 200°C for 7h and on cooling HFP (ca. 14g) and a liquid 

(35.4g) were recovered. Analysis of the liquid by capillary G.C. 

showed the starting material (12) to the only major component, along 

with several very minor products which were not characterized. 



A mixture of heptafluoro-2-iodopropane (12) (59.5g. 0.20 mol) 

and trifluoroethylene (42.4g. 0.52 mol), in a stainless steel autoclave 

(150 ml), was rocked at 185°C for 24h. On opening the tube trifluoroethylene 

(ca. 4g) and a purple liquid (84.6g) were recovered. Three fractions 

were isolated from the liquid by distillation. They were identified 

as (12) (3.4g): b.p. 38-4l°C: 2H-decafluoro-l-iodo-3-methylbutane 

(23a) (19.3g, 25%); b.p. 103°C;
133 

NMR spectrum no. 12; and 2H, 

4H-tridecafluoro-l-iodo-4-methylhexane (23b) (35.3g, 38%): b.p. 

14 0 133 
3 C (540 mmHg): NMR spectrum no. 13. The remaining undistilled 

material was not characterized. 

NMR spectroscopy showed that 16% of product (23a) was due 

to its regioisomer (CF 3 ) 2 CFCF 2 CHFI (23c). 

7 2 1 d . . . f d"d 133 • F uoro e1od1nat1on o the Telomer Io 1 es 

a) A three necked round-bottommflask (250ml) was fitted with 

a condenser, dropping funnel and mechanical stirrer. Under an 

atmosphere of nitrogen gas antimony pentafluoride (43.2g, 0.20mol) 

I (13b) (50.5g, 0.12 mol) in arklone (20ml) at 0°C with stirring. 

The mixture was stirred for a further 0.5h and then water (150ml) 

was added cautiously. The contents of the flaskwerewarmed to 

room temperature and poured into more water (150ml). Repeated 

washing of the lower fluorocarbon layer was carried out using saturated 

sodium carbonate solution until effervescence had almost ceased. 

Finally, the fluorocarbon material was washed with water (lOOml), 

dried using anhydrous Mgso
4 

and distilled to remove the solvent. 

The remaining liquid was purified by distillation to give 3H,3H,SH,5H-

dodecafluoro-2-methylhexane (lSb) (26.2g, 70%): b.p. 104-l05°C. 



The product was identified by comparison of NMR and mass spectral 

133 
data with those of an authentic sample. 

By following the procedure described above. other model compounds 

were prepared also. 

(13c) (16.2g, 33.2 mmol) gave 3,3,5,5,7,7-hexahydrotetradecafluoro-

2-methyloctane (15c) (8.6g, 68%); b.p. 58-59°C (15mmHg); (Found: 

C, 28.7; H, 1.5; F, 69.4. c
9

H
6

F
14 

requires C, 28.4; H, 1.6; F, 

70.0%). The product was identified by comparison of its NMR spectrum 

with that of a sample given in the literature, although erroneous 

133 
analysis and mass spectral data were quoted; mass spectrum no. 10. 

c) Antimony pentafluoride (25.1, O.llmol) and (CF 3 ) 2 CF(CH 2 CF 2 )
4

I 

(13d) (42.6g, 77.2 mmol) gave 3,3,5,5,7,7,9,9,-octahydrohexadecafluoro-

2-methylhexane (15d) (20.5g, 60%); (Found: C, 29.6; H, 1.7; F, 

69.0. c
11

H
8

F
16

requires C, 29.7; H, 1.8; F, 68.5%); NMR spectrum 

no. 14; mass spectrum no. 11. 

d) Antimony pentafluoride (11.8g, 54.4mmol) and (CF 3 ) 2 CF(CH 2 CF 2 )
5

I 

(13e) (15.2g, 24.7mmol) gave 3,3,5,5,7,7,9,9,11,11-decahydrooctadecafluoro-

2-methyldodecane (15e) (7.3g, 58%); (Found: C, 30.9; H, 1.9; F, 

66.8. c
13

H
10

F
18 

requires, C, 30.7; H, 2.0; F, 67.3%); NMR spectrum 

no. 15~ mass spectrum no. 12. 

Following the procedure outlined in Section 7.2la, antimony 

(196) (23.0g, 36.1 mmol) gave 3,3,7,7,9,9- hexahydroeicosaf1uoro-

2,6-dimethyldecane (26) (14.6g, 76%); b.p. 81-82°C (SmmHg); (Found: 

m/z 511.0152. C12H6 F
20 

requires M+-F 511.0166); NMR spectrum no. 

16; mass spectrum no. 13; IR spectrum no. 10. 



7a3 Coupling of the Telomer Iodides 

127 145 
7a31 (CF 3 ) 2 CFCH 2 CF 2 I(l3a) 0 

A Carius tube was charged with mercury (128g) and (CF 3 ) 2 CFCH 2CF 2 I 

(13a) (15.2g, 42.2 mmol). The sealed tube was shaken for 

4 days while under exposure to UV light from a lKW Hanovia lamp. 

After this time volatile material was transferred to a separate 

vessel under vacuum. Analysis by G.C showed one major and two 

minor components which were separated by fractional distillation. 

The fractions isolated were 2H-nonafluoro-3-methylbut-l-ene(27) 

(l.lg, 11%); b.p. 31°C; 3,3,4-trihydrononafluoro-2-methylbutane 

(28) (1.2g, 12%); b.p. 52-53°C; NMR spectrum no. 17; and 3,3,6,6,-

tetrahydrooctadecafluoro-2,7-dimethyloctane (14a) (7.0g, 71%). 

The products were identified by comparison of their infrared spectra 

145 
with those of authentic samples. 

A Carius tube was charged with mercury (60.4g) and the iodide 

(13b) (15.6g,36.8 mmol). The sealed tube was irradiated for 7 

days with UV light from a lKW Hanovia lamp. Volatile material 

was then transferred under vacuum to a separate vessel. Analysis 

by capillary G.C. (60°-l70°C) showed three components and no starting 

material. The components were separated by fractional distillation 

which yielded 2,4,4-trihydroundecafluoro-5-methylhex-(E)-2-ene 

(30) (1.9g, 17%); b.p. 89°C; NMR spectrum no. 18; mass spectrum 

no. 14; IR spectrum no.11; 2,4,4,-trihydroundecaf1uoro-5-methy1hex-

1-ene (29b) (3.7g,34%); b.p. 92-93°C; NMR spectrum no. 19: mass 

spectrum no. 15; and 3,3,5,5,8,8,10,10-octahydrodocosaf1uoro-2,11-

dimethy1dodecane (14b) (4.5g, 41%). Products (29b) and (14b) were 

. d 1 133,145 ident1fie by comparison of spectra with those of authentic samp es. 



19 
F NMR Data on a VDF/HFP Copolymer 

A Carius tube was charged with VDF (3.9g 0 60.9 rnmol) and HFP 

(10.8g, 72.0 rnmol), then sealed under vacuum. The tube was irradiated 

with ~-rays for 96h at ambient temperature. On opening the tube 

the solid material was dissolved in DMF over a period of 2 days. 

The high field NMR spectra for the copolymer and solutions of each 

of the models (15d) and (26) in DMF were recorded. Discussion 

of the spectroscopic data is given in Section 2.5. 

7.5 Polymerisation of VDF at Different Temperatures 

VDF (ca. 2.5g) was transferred under vacuum to each of three 

different Carius tubes, which were then sealed and irradiated with 

~-rays. One tube was irradiated at room temperature for 2 days, 

the second at 0°C for 5 days and the third at-78°C for 10 days. 

On opening the tubes, each of the homopolymer samples were dissolved 

. . d f 2 d d h ' 19F d d 1n DMF over a per1o o ays an t e1r NMR spectra recor e • 

Accurate integrals of the observed signals in the spectra gave 

an estimation of the regioselectivity of addition during the polymerisation 

process at different temperatures. Discussion of the results 

is given in Section 2.6. 



CHAPTER EIGHT 

EXPERIMENTAL TO CHAPTER THREE 

MODEL STUDIES RELATED TO THE CROSS-LINKING OF VDF/HFP COPOLYMERS 

Sol Fluoride Ion Induced Dehydrofluorination Reactions of Saturated 

Model Compounds 

A mixture containing sulpholane (4 ml) caesium fluoride (1.8 g, 11.8 

0 
Carius tube under vacuum and rocked at 150 c for 6 h. On opening the 

tube volatiles were transferred under vacuum and analysis by glc showed 

two components, one of which was the starting material (15c). Separation 

was effected by fractional distillation to give (15c) (0.5 g) and 

3~5,5,7,7-eentahydroterdecafluoro-2-methyloct-2-ene (35) (2.8 g, 70%); 

0 
b.pt. 55-56 C (15 mmHg); (Found: c, 30.2; H, 1.3; F, 68.9. C H F requires 

9 5 13 

C,30.0;H,l.4;F,68.6%); NMR Spectrum no. 20; mass spectrum no. 16~/z (NI) 

341 (M--F, 7%); IR spectrum no. 12. 

13.3 mmol), sulpholane (4 ml ) and caesium fluoride (2.7 g, 17.8 mmol). 

Analysis by glc showed one major component which was subsequently 

identified as 3.5.5-trihydroundecafluoro-2-methylhex-2-ene (34) (3.1 g, 79%) 

133 
by comparison of its NMR and mass spectra with those of an authentic sample. 

8.2 Dehydroiodination Reactions of Telomer Iodides 

Tri-n-butylamine (6.9 g, 37.1 mmol) and the iodide (19a) (21.2 g, 

36.9 mmol) were stirred vigorously until the mixture became solid due to 

the formation of the amine hydroiodide. Volatile material was transferred 

under vacuum and subsequent distillation of this material yielded the 

alkene 2,6,6-trihydroheptadecafluoro-3,7-dimethylo~t-1-ene (40) (14.1 g, 

0 
86%); b.pt. 71-72 (44 mmHg); (Found: C, 26.9; H, 0 .7; F, 72.7. C F H 

10 17 3 

requires c, 26.91; H, 0.68; F, 72.42%); NMR spectrum no. 21; mass spectrum 

+ -1 
no. 17, m/z (CI)427(i1i -F, 1%); ... \ (C=C) 1750 em (s). 

~'max 



The procedure was repeated with (CF
3

)
2
CFCH

2
CF

2
I (13a)(l5.4g, 42.8 

mmol) and tri-n-butylamine (10.2g, 55.0 mmol) to give 2H-nonafluoro-3-

methylbut-1-ene (29a) (9.6g, 97%), which was identified by comparison of 

145 
its IR spectrum with that of an authentic sample. 

35.8 mmol) gave 2H,4H,4H- undecafluoro-5-methylhex-1-ene (29b)(8.7g, 82%), 

which was identified by comparison of its IR spectrum with that of an a 

145 
authentic sample. 

Tri-n-butylamine (6.2g, 33.4 mmol) and (CF ) CF(CH CF 2 ) I 
3 2 2 3 

(13c)(l6.3g, 33.4 mmol) gave 2H,4H,4H,6H,6H-tridecafluoro-7-methyloct-

0 
1-ene (29c)(9.8g, 81%);b.p. 59 C (23mm Hg), NMR spectrum no. 22; mass 

spectrum no, 18. The identity of the product was confirmed by comparison 

145 
of its IR spectrum with that of an authentic sample. 

8.3 Synthesis of Unsaturated Model Compounds Using Fluoride Ion 

8.31 (CF ) C=CHCF (36) 
J 2 3 

A Carius tube was charged with (CF ) CF-CH=CF (29a) 
3 2 2 

(17.6g , 75.9 mmol ), caesium fluoride (7.0g, 46.1 mmol) and sulpholane 

( 6 ml) • 
0 

The tube was sealed and then rocked at 100 c for 3h. After cooling 

the tube, volatile material was transferred under vacuum to a separate 

vessel. The liquid was washed with water (2x50ml) and dried using 

anhydrous MgSO • Analysis by capillary G.C. showed one component only, 
4 

which was identified as 3H- nonafluoro -2-methylbut-2-ene (36) (16.9g, 96%) 

0 133 
by comparison of its NMR spectrum with that given in the l~terature. 

8.32 E- and Z- (CF 3 ) C=CH-CF=CHCF (37) z 3 

A mixture containing sulpholane (8 ml ), caesium fluoride (3.8 g, 

25.0 mmol), and the alkene (CF
3

) CFCH
2
CF

2
CH=CF

2 
(7.0 g, 23.6 mmol) was 

2 

sealed in a glass ampoule, then rocked at 1S0°c for 4h. On opening the 

tube, volatile material was transferred under vacuum. Analysis by glc 



showed two major components which were separated by fractional 

distillation and identified as (Z)-3,5-dihydrodecafluoro-2-methylhexa-2, 

4-diene (37a) (4.2 g, 64%); b.p. 
0 

109 C; (Found: m/z 275.9997. 

c
7

H
2
F

10 
requires M+ 276.0001); NMR spectrum no. 23; mass spectrum no. 19, 

+ m/z(EI) 276(M, 18%); IR spectrum no. 13; and 

(E)-3,5-dihydrodecafluoro-2-methylhexa-2,4-diene (37bt (2.2 g, 34%); b.p. 

0 
86 C; (Found: c, 30.1; H, 0.9; F, 68.4. c

7
H

2
F

10 
requires C, 30.4; H, 0.7; 

F, 68.8%); NMR Spectrum no. 24; mass spectrum no. 20; IR Spectrum no.l4. 

8a4 Synthesis of Unsaturated Model Compounds Using SbF
5 

An NMR tube was charged with antimony pentafluoride (2.8g, 12.9 mmol) 

and (CF 3 ) 2 CFCH=CF 2 (29a) (0.5g, 2.2mmol). The tube was sealed and the contents 

agitated for a few minutes at room temperature. Changes in the chemical 

1 19 
nature of the mixture were followed by H and F NMR spectroscopy. The 

spectra which were acquired indicated that conversion of (29a) to 

8a42 (CF ) CFCH CF CF C(CF ) = CHCF~ (41) 
:1 :z :z :z :z 3 • 

A two-necked 50ml round-bottomed flask was fitted with a condenser 

and dropping funnel. Under an atmosphere of dry nitrogen the alkene (40) 

(14.8g, 33.2 mmol) was dropped into antimony pentafluoride (7.2g, 33.2 mmol). 

Stirring of the mixture was continued for 2h at room temperature. After 

this time water (15ml) was added carefully to the system; two layers were 

observed and the lower fluorocarbon material was washed with further 

quantities of water, dried using anhydrous Mgso4 and distilled to give 

{Z)-2,61 6- trihydroheeta-decafluoro -3,7- dimethyloct-2-ene(41) (12.3g, 

83%); b.p. 73°c (47 mm Hg); (Found : C, 26.9iH, 0.8; F, 71.7. C H F 
10 3 17 

requires C, 26.9; H, 0.7; F, 72.4%); NMR spectrum no. 25; mass spectrum 

+ 
no. 21, m/z(EI) 427(M -F, 2%); IR spectrum no. 15. 



8 .. 43 [ (CF 
3

) 
2 

C=CHCF 
2

] 2 (39) 

Antimony pentafluoride ( 6. 7g, 30.9 mmol) and [< CF 
3

) 
2 
CFCH 

2 
CF 

2
] 

2 

(14a) (7.2g, 15.4 mmol) were stirred in a round-bottomed flask fitted 

0 
to a condenser, under an atmosphere of nitrogen gas, for 4h at 120 c. 

After cooling the system, water was added carefully to destroy any 

remaining SbF • The fluorocarbon layer was then washed ~ith quantities of 
5 

saturated Na
2
C0

3 
solution until no effervescence was observed and finally 

dried using MgSO • Analysis of the liquid by capillary G.C. showed one 
4 

component which was identified as 3H, 6H- hexadecafluoro-2,7-dimethylocta-2,6-

diene (39) (5.2g, 79%) by comparison of its IR spectrum with that of an 

133 
authentic sample. 

8.5 Treatment of Saturated Model Compounds with Typical Curing Agents 

Magnesium oxide (1.4g, 34.7 mmol) and (26) (4.7g, 8.9 mmol) were 

0 
sealed in a Carius tube and rocked for 24h at 210 c. On opening the tube 

a volatile liquid (4.5g) was recovered which was identified as the starting 

material (26). 

The saturated model (15c) (0.4g, 1.1 mmol), magnesium oxide (0.02g-1 

0.5mmol) and DMAC (0.7g) were sealed in a 'Rotaflo' tube and heated to 

0 
140 C for 24h. Analysis by capillary G.C. and NMR spectroscopy showed that 

no reaction had occurred and that only the starting material (15c) was 

present. 

A mixture of the saturated model (15c), (0.5g, 1.3mmol), DMAC (l.Og), 

Bisphenol AF (0.2g, 0.6 mmol), and benzyltriphenylphosphonium chloride 

0 
(0.2g, 0.5 mmol) was heated in a 'Rotaflo' tube for 24h at 140 C. After 

cooling the system was analysed by G.C. and NMR spectroscopy which showed 

that no reaction had occurred. 



8o6 Dehydrofluorination of Saturated Models by DoBoUo 

To a solution of the saturated model compound (15b) (0.7 g. 

2.2 mmol) in dimethy1acetamide (1 ml), D.B.U. (0.3g, 2.0 mmol) was added 

at room temperature. An immediate exothermic reaction was observed and 

1 19 
analysis by H and F NMR spectroscopy showed that elimination of 

hydrogen fluoride had occurred, exclusively at the 'tertiary' fluorine 

site,to yield the alkene 3H,5H,5H ~ undecafluoro-2-methylhex-2-ene (34) 

(39%). The identity of the product was confirmed by comparison of its 

133 
NMR data with that given in the literature. 

Similar treatment of the saturated model compound (15c) (O.Sg, 1.3 mmol) 

is D.M.A.C. (l.Og) with D.B.U. (0.2g, 1.3 mmol) yielded the alkene 

3,5,5,7,7-pentahydroterdecafluoro-2-methyloct-2-ene (35) (38%). 

19 
The F NMR spectra of the treated model compounds (15b) and (15c) 

showed a singlet resonance at-153.9 ppm in each case and this is probably 

due to the presence of the amidine hydrofluoride. 

8.7 Reactions of Unsaturated Model Compounds with Nucleophiles 

8.71 (CF ) C=CHCF CH CF~ (34) with Methanol 
~ 2 2 2 

A mixture of the alkene (34) (3.5g, 11.8 mmol) methanol (0.6g, 18.8 

mmol), acetonitrile (3 ml) and potassium carbonate (1.6g, 11.6 mmol) was 

stirred at room temperature for 30h. The system was washed with water 

(3 x 10 ml) and then dried using anhydrous MgSO to give a liquid (3.7 g). 
4 

Analysis by capillary G.C. showed 2 major components which were isolated by 

0 0 
preparative scale G.C. (30% SE30, column temp. 160 C, injector temp. 160 c, 

flow rate 120 mm/min). The two products, in order of increasing retention 

time, were identified as 2,3,5,5-tetra~~dro-undecafluoro-3-methoxy-2-

methylhexane (48); (Found: C, 29.5; H, 2.1; F,63.3. C H F 0 requires 
' 8 7 11 

C, 29.3; H, 2.2; F, 63.7%); NMR spectrum no. 26; mass spectrum no. 22, 

m/z (EI) 327 (M+-H, 0.5 %) and 309 (M+-F, 4%); 



methy~hex-l-en~(49) (E and Z isomers); (Found: m/z 301.0263 (M+ -F). 

C H F 0 requires M+-F 301.0475); NMR spectrum no. 27; mass spectrum 
9 9 9 2 

no. 23,m/z (EI)l87 (M+-CF 2 CH 2 CF 3 , 100%); IR spectrum no. 17. 

A mixture of the alkene (35) (1.8 g, 5.0 mmol), phenol (0.5 g, 

5.0 mmol), acetonitrile (2 ml) and potassium carbonate (0.6 g, 4.3 mmol) 

was stirred for 24h at ambient temperature. After this time the system 

was washed with water ( 5 x 5 ml), then dried (Mgso
4

>. Analytical scale 

gas chromatography showed five major products. The component with the 

shortest retention time was isolated using preparative scale gas 

0 
chromatography (30% SE30, column temp. 210 C) and identified as 

2L3,5,5,7,7-hexah~dro-3~phenq~yterdecafluorq-2~methylqctan~(45b); 

+ 
(Found m/z 454.0572. C H F 0 requires M 454.0602); NMR spectrum no. 28; 

15 11 13 

mass spectrum no. 24. Separation of the other components was not 

possible but they were identified as 3,5,5,7,7-pentahydro-1,~~ 

diphenoxyundecafluoro-2~methyloct-l-ene(46b) (E and Z isomers); NMRspectrum 

no. 29; mass spectrum no-. 25; m/z (EI) 415 (M+~OPh, ·16 %);IR spectrum no. 18 ail£] 

2,3,5,5,7,7-hexahvdro-1,3-d~phenoxydodecafluorq-2-methyloctane(47b) (two 

diastereoisomers); NMR spectrum no. 30; mass spectrum no. 26, m/z(EI) 528 

+ 
(M, 12%); IR spectrum no. 18. 

8.73 (CFll)
2 

C=CHCF CH CF (34) with Phenol 
2 2 lJ 

The procedure was repeated using the alkene (34)(1.7g, 5.7 mmol), 

phenol (0.5g, 5.7 mmol), acetonitrile (2 ml) and potassium carbonate 

(0.9 g, 6.5 mmol), and stirred for 24h at room temperature. Analytical 

scale G.C. showed five major products, the most volatile of which was 

0 
isolated by preparative G.C. (30% SE30, column temp. 175 , injector temp. 

0 
200 C) and identified as 2,3,5,5-tetrahydro-3-phenoxyundecafluoro-2-

methylhexane(45a) ; NMR spectrum no. 31; mass spectrum no. 27. 

m/z (EI) 390 (M+, 34%) and 257 (M+-CF
2
CH 2 CFl ,43%). The other 



four components could not be separated but were identified as 

3,5,5-trihydro -1, 3-d~phenoxydecafluoro-2-methylhex-l-ene(46a) 

(E and z isomers); NMR spectrum no. 32; mass spectrum no. 28; IR spectrum 

no. 19; and 2#3,5,5-tetrahydro-1,3-diphenoxydecafluoro-2-methylhexane(47a) 

(two diastereoisomers); NMR spectrum no. 33; mass spectrum no. 29, 

+ 
m/z 464 (H, 40%); IR spectrum no. 19. 

~ CF 3 ) 
2 

C=CHCF zl ( 39) and Phenol 

The diene (39) (1.7g, 4.0mmol), phenol (0.4g, 4.2 mmol), potassium 

carbonate (O.Sg, 3.6 mmol) and acetonitrile (2 ml) were stirred at room 

temperature for lOh. After this time the mixture was washed with water 

(5 x Sml) and dried using anhydrous Mgso
4

• Capillary G.C. showed the 

presence of two major components in the mixture, one of which was the 

starting material (39). The other compound was isolated by preparative 

0 0 
G.C. (10% SE30, column temp. 190 C, injector temp. 220 C) and identified as 

3, 6, 7-trihydro-6-phenoxyhexadecafluoro - 2, ?-dimethyl oct-2-ene, (50); 

(Found: m/z 501.0057. c
16

H F 0 requires M+-F 501.0336); NMR spectrum no. 
8 16 

+ 
34; mass spectrum no. 30, m/z (EI) 520 (M, 34%); IR spectrum no. 20. 

The procedure was repeated using the diene (39) (l.Sg, 3.5 mmol), 

phenol (0.7g, 7.4 mmol), potassium carbonate (0.6g, 4.3 mmol) an~ 

acetonitrile- (2 ml) for 26h. Two major products were observed us~ng 

capillary G.C. but they could not be purified since several minor components 

with similar boiling points were also present in the mixture. Consequently, 

the products were not fully characterised although their mass spectra are 

consistent with the E and Z isomers of 3,6-dihydro - 1,3-diphenoxytetradecafluoy-c 

+ 
-2,7-dimethvlocta- 1,6-diene (51) mass spectrum no. 31, m/z 574 (M ,26%). 

A mixture of the alkene (41) (1.9 g, 4.3 mmol) methanol (0.3 g, 

9.3 mmol), acetonitrile (1 ml) and potassium carbonate (0.4 g, 2.9 mmol) 

was stirred vigorously at room temperature for 24h. The mixture was washed 



with water and analysis by G.C. 
0 0 

(capillary column, 70 C to 170 C) 

showed two major products and no starting material. The products could 

not be separated, so were isolated together by preparative scale G.C. 

0 
(30% SE30, column temp. 140 C) and identified as 2,6,6-trihydro-2-

methoxyhexadecafluoro-3,7-dimethyloct-3-ene (52a) (E-isomer) and (52b) 

(Z-isomer); Found: m/z 439.0370. c
11

H
6

F
16

o requires 439.0179 (M+-F) 

NMR spectrum no. 35; mass spectrum no. 32; IR spectrum no. 21. 

The above reaction was repeated using phenol (0.4 g, 4.3 rnrnol), (41) 

(2.0, 4.5 rnrnol), KzC0
3 

(0.6 g, 4.5 rnrnol) and CH 3 CN (1 ml). The mixture was 

0 
stirred at room temperature for 4 h and analysis by capillary G.C. (90 C 

0 
to 250 C) showed two major components, together with a number of minor 

products. The major products could not be separated from each other but they 

were isolated as a mixture using preparative scale G.C. (30% SE30, injector 

temp. 210°C, column temp. 210°C) and identified as 2,6,6-trihydro-2-

phenoxyhexadecafluoro-3,7-dimethyloct-3-ene(52c) (E-isomer) and(52d) 

(Z-isomer); (Found: m/z 520.0296. C H F 0 requires 520.0320 (M+)); 
16 8 16 

NMR spectrum no. 36; mass spectrum no. 33; IR spectrum no. 22. 

The minor products could not be isolated but were analysed by 

GC-mass spectrometry. They have greater retention times than the E and 

Z isomers of (52) and their mass spectra are consistent with 2,6,6-trihydro-

2,4-diphenoxypentadecafluoro-3,7-dimethyloct -3-ene (54) (E and Z isomers); 

mass spectrum no. 34; and 2,3,6,6-tetrahydro-2,4-diphenoxyhexadecafluoro-3-

7-dimethyloctane(53) (Mixture of diastereoisomers); mass spectrum no. 35. 

By increasing the ratio of phenol to the alkene (41), these products could 

be formed in greater proportions relative to (52). 

The following mixtures were stirred at room temperature for 12h and 

any reaction detected by analysis using capillary G.C. 



a) Phenol (0.02g, 0.2 mmol), (4l)(O.lg, 0.2 mmol), Na 2 C0 3 (0.02g, 

0.2 mmol), CH
3

CN (l ml) 

b) Phenol (0.02g, 0.2 mmol), (41) (O.lg, 0.2 mmol), K2 C0 3 (0.03g, 

0.2 mmol), DMF (1 ml) 

c) Pho-Na+ (1.3g, 11.2 mmol), (41)(4.8g, 10.8mmol), DMF (15m!) 

d) Phenol (0.02g, 0.2 mmol), (41) (O.lg, 0.2 mmol), CH 3 CN (l ml) 

With systems a) and b) conversion of (41) to (52) was observed. 

No reaction was observed for system d) and c) gave little change. 

A mixture of E- and Z-dienes (37) (2.0g, 7.2 mmol). methanol 

(0.3g, 9.4 mmol) potassium carbonate (0.6g, 4.3 mmol) and acetonitrile 

(l ml) was stirred at room temperature for 24h. Capillary G.C. showed four 

major products and no starting material. The products could not be isolated 

but were separated into two mixtures, each containing two compounds, by 

0 0 
preparative G.C. (30% SE30, column temp. 140 C, injector temp. 150 C). The 

first mixture was identified as 2,4,5-trihydro-4-methoxydecaflyoro-5-methylhex-

2-ene (56a)(Z-isomer) and (56b) (E-isomer); (Found: C, 31.5; H, 1.9; F;61.1. 

C H F 0 requires C, 31.2; H, 2.0; F, 61.7%); NMR spectrum no. 37; mass 
8 6 10 

spectrum no. 36; IR spectrum no. 23; and the second as 3,5-dihydro-1,3-

dimethoxyoctafluoro-2-methylhexa-1, 4-diene (57) (mixture of isomers); 

(Found: m/z 269.0210. 
+ 

C H F 0 requires M -OCH 3 269.0213); NMR 
9 8 8 2 

spectrum no. 38: mass spectrum no. 37 ; IR spectrum no. 24. 



CHAPTER NINE 

EXPF;RlMENTJU, TO CHAPTER F.Q(JR 

DEY§L9PMENT OF A NEW FREE RAD!CAL CROSS LINKING PBOCESS 

9ol Free Radical Reactions of TIC. 

A Carius tube was charged withheptafluoro-2-iodopropane (12) (6.6g, 

22.3 mmol) and TIC (2.8 g, 11.2 mmol). The materials were thoroughly 

degassed and the sealed tube was irradiated with ~-rays at room 

temperature for 72h. On opening the tube the iodide (12) (2.5g) was 

recovered by distillation of the material under reduced pressure. The 

remaining material (6.lg) was analysed by capillary G.C. which showed the 

presence of four components, one of which was TIC. Separation of the other 

compounds was not possible but their identity was determined by GC-mass 

spectrometry as follows; (1,1,2,3,3-pentahydroheptafluoro-2-iodo-4-

methylpentyl) diallyl isocyanurate (61) (38%): mass spectrum no. 38, m/z 

+ + + 
(EI) 545 (M ,4%), 418 (M -I, 100%) and 252 ([RNCO] -I, 27%) where 

R=(CF ) CFCH CHICH 2 ; Bis (1,1,2,3,3-pentahydroheptafluoro-2-iodo-4-
J 2 2 

methylpentyl) allyl isocyanurate (62) (32%); mass spectrum no. 39, m/z (EI) 

+ + 
714(M -I, 100%) and 252 ([RNCO] -I, 34%); and tris(l,l,2,3,3-pentahydrohepta-

fluoro-2-iodo-4-methylpentyl isocyanurate (63) (8%); mass spectrum no. 40, 

+ 
m/z(EI) 252 (RNCO] -I, 100%). See NMR spectrum no. 39. 

A Carius tube was charged with a solution of TIC (3.4g, 13.7 mmol) 

in acetone (15ml). The materials were thoroughly degassed and the sealed 

tube irradiated with ~-rays for 96h. On opening the tube a polymer (3.4g) 

was recovered by removing the acetone under reduced pressure. The acetone 

1 
was found to be virtually pure by H NMR, i.e. it did not contain any 

dissolved TIC. On heating a portion of the polymer under high vacuum to 

0 
£2 250 C no physical change was observed and no volatile material was 

transferred to the cold trap. 
1 

The H NMR spectrum of the polymer in 

acetone was acquired and its pertinent features are as follows: 



~ 4.5(2H, d, J=6 Hz), 5.3(2H, m), 5.9 (lH, tt, J=l4 and 6Hz); (Found: 
H 

c, 57.6; H, 5.7; c
12

H N 0 units require C, 57.8; H. 6.0%). 
15 3 3 

A Carius tube containing a degassed solution of TIC (3.3g, 13.3 mmol) 

and HFP (4.8g, 32.0 mmol) in acetone (25ml) was irradiated with ~-rays for 

4 days. On opening the tube HFP (2.8g) and a polymer (4.9g) were 

recovered. The polymer was found to be virtually insoluble in acetone, DMF. 

hexane and chloroform. (Found: C, 54.1; H, 5.5; N, 14.3; F, 6.2 %). 

9.2 Trifluoroethylene with i-C 3 F
7

CF 2 CF 2 I (67a} 

A 150ml stainless steel autoclave was evacuated and charged with 

i-C 3 F CF 2 CF 2 I(67)(43.lg, 108.8 mmol) and trifluoroethylene (10.7g, 
7 

130.5 mmol). 
0 

The tube was rocked at 185 C for 24h and after cooling, 

trifluoroethylene (ca. 5g) and a liquid (46.2g) were recovered. Fractional 

distillation of the liquid afforded three major fractions which were 

0 
identified as the starting material (67a) (22.2g, 52%), b.p. 94 C; 

0 
2H-tetradecgfluoro-l-iodo-5-methvlhexane(68a)(l6.7g, 32%); b.p. 77-78 c 

(65mm Hg); (Found: C,l7.9;H,0.2;F, 55.6. c
7

HF
14

r requires c, 17.6; H, 

0.2; F, 55.7 %); NMR spectrum no. 40; mass spectrum no. 41, m/z(EI) 478 

+ 
(M , 43%); IR spectrum no. 25; and 2H, 4H-heptadecafluoro-l-iodo-7-

0 
methyloctane (68b) (1.7g, 3%); b.p. 87-90 C (40 mm Hg); NMR spectrum 

no. 
+ 

41; mass spectrum no. 42; m/z (EI) 560 (M , 20%). 

9.3 Dehydroiodination of Telomer Iodides 

9.31 i-C 3 F
7

CF 2 CF 2 CBF-CF 2 I (68a} 

Tri-n-butylamine (4.7 ml, 19.7 mmol) and (CF
3

)
2
CFCF

2
CF

2
CHFCF

2
I (68a) 

(9.4g, 19.7 mmol) were stirred together at room temperature until the 

mixture became solid in nature. Volatile material was transferred under 

vacuum to a separate vessel, washed with water (2xl0ml) and dried using 

anhydrous Mgso
4

• Capillary G.C. showed one component ca 45% pure which 

was identified as tetradecafbuoro-5-methvlh§x-l~ene (69a) (4.4g, 64%); 



(Found: C, 23.7; F, 76.4.C F requires C, 24.0; F, 76.0%); NMR 
8 16 

spectrum no. 42~ IR spectrum no. 26. 

The above procedure was repeated with tri-n-butylamine (12.0ml, 

50.4 mmol) and (CF 3 ) 2 CF(CHFCF 2 ) 2 I (23b) (23.2g, 50.4 mmol). Analysis by 

capillary G.C. showed one major component which was purified by distillation 

to yield 4H-trigecafluoro~5-methylhex-l-ene (69b) (11.9g, 71 %); b.p. 

0 
85-86 C; (Found: C, 25.2; H, 0.4; F, 74.9. C HF requires C, 25.3; 

7 13 

H, 0.3; F, 74.4 %); NMR spectrum no. 43; mass spectrum no. 43; m/z(EI) 332 

+ 
(M, 2%); IR spectrum no. 27. 

9o4 Copolymerisation Reactions 

Table 9.1 summarises the amounts of each of the alkenes., vinylidene 

fluoride,(29b), (69a) and (69b) which underwent copolymerisation reactions. 

In each case the alkenes were transferred under vacuum to a Carius tube. 

The tubes were sealed and the contents irradiated with ~-rays for 2 days 

at ambient temperature. After this time each of the tubes were opened and 

volatile materials removed by transfer under high vacuum to cold traps. A 

small portion of each of the resultant polymers were dissolved in DMF and 

their high field F NMR spectra obtained. Discussion of the structures of 

the copolymers is given in section 4.4. By calculating the amounts for 

each of the comonomers that were incorporated into the copolymers, from 

the data given in table 9.1, their percentage molar compositions were 

determined. However, the values obtained in this way are less accurate 

19 
than those obtained by intensity measurements of the resonances in the F 

NMR spectra of the copolymers, since it is not possible to completely 

separate VDF from the other comonomer, on their removal from the polymer 

after K-ray irradiation. 



TABLE 9.1 

Quantity of Starting Quantity of Volatiles Molar Composition of 
Materials (g) Recovered (g) Incorporated Alkene (g) 

Alkene VDF Alkene VDF By calculation By integration 

(29b) 2.8 5.5 (29b) 1.9 2.9 7 7. 

(69b) 2.9 4.5 (69b) 1.6 3.3 17 12 

(69a) 3.2 4.5 (69a) 1.4 2.8 16 10 

9.5 Attempted Preparation of Octadecaf1uoro-4 0 4-dimethy1hept-1-ene (77) 

9.51 Synthesis of F-2-methy1pent-2-ene (78) 
147 

A 'Rotaflo' tube was charged with acetonitrile (130ml), caesium 

fluoride (6.9g, 45.4 mmol) and HFP (58.2g, 388.0 mmol). The mixture was 

agitated using a rotating arm for 3 days at ambient temperature. After this 

time the lower fluorocarbon layer was removed from the tube, washed with 

water (2x50ml) and dried using anhydrous Mgso
4

• A good yield of 

F-2-methylpent-2-ene (78) (46.9g, 81%) was obtained in this way. 

9.52 Reaction Between F-2-methy1penty1 carbanion (76) and FAFS 

Caesium fluoride (8.9g, 58.6 mmol), tetraglyme (35ml) and 

(CF 3 ) 2 C=CFCF 2 CF 3 (10.8g 36.0 mmol) were stirred together at room temperature 

for 48h. Stirring of the mixture was then halted and the solution was 

separated from the excess caesium fluoride. 
19 

The F NMR spectrum of a 

small portion of the solution was then acquired in order to confirm the 

formation of F-2-methylpentyl carbanion (76). Under an atmosphere of 

dry nitrogen the carbanion solution was placed in a two-necked round-

bottomed flask, fitted with a dropping funnel and condenser leading to a 

0 
cold trap. The solution was then cooled to 0 c and with constant stirring 

perfluoroallylfluorosulphate (FAFS) (10.4g 45.2 mmol) was added. Stirring 

0 
was continued at 0 C for lh, then at room temperature for 2h. The 

volatiles were transferred off under vacuum (lO.Og). Capillary G.C. showed 

one major component which was attributed to (CF 3 )
2
C=CFCF

2
CF

3 
and, together 

with a small amount of HFP recovered from the cold trap, it was concluded 

that the carbanion had acted as an active source of fluoride ion in its 

reaction with FAFS. 



9.6 Preparation of F-2-Iodo-2-methylpentane (79) 
148 

a) A stainless steel autoclave (125ml) was charged with potassium 

fluoride (1.2g, 20.7 mmol) iodine (6.0g, 23.6 mmol), iodine pentafluoride 

(2.9g, 13.1 mmol) and F-2-methylpent-2-ene (78) (17.2g, 57.3 mmol) and 

0 
rocked at 190 for 15h. After cooling to room temperature the contents of 

the tube were poured into ice/water. The lower fluorocarbon layer was 

washed with further quantities of water, then dried over molecular sieves 

(type 4A) and finally transferred under vacuum to a separate vessel to give 

a liquid (9.2g). 
19 

Analysis by both G.C. and F NMR spectroscopy showed the 

liquid to be starting material only. 

On repeating the reaction with potassium fluoride (1.5g, 25.8 mmol), 

iodine (6.4g, 25.2 mmol), iodine pentafluoride (2.8g, 12.6 mmol), and 

F-2-methylpent-2-ene (30.3g, 101.0 mmol) in a Hastelloy vessel (150 ml), a 

liquid (24.lg) was recovered which was identified as principally the 

starting material (78). 

In each reaction described above, the potassium fluoride was 

rigorously dried before use and the iodine pentafluoride was pre-treated 

with fluorine gas. 

b) Under exclusion of light, silver (I) fluoride (9.lg, 67.0 mmol) and 

F-2-methylpent-2-ene (78) (20.lg, 67.0g} were stirred together in 

acetonitrile (65ml) for 48h at room temperature. A portion of the mixture 

19 
was analysed by F NMR spectroscopy in order to confirm conversion to the 

carbanion. Iodine (17.lg, 67.3 mmol) was then added to the mixture 

through a condenser. Stirring was continued for lh at room temperature, 

then for 3h under reflux. After cooling, the liquid was filtered and the 

solid residue washed with acetonitrile~ the acetronitrile solutions were 

combined and poured into water. The lower organic layer was separated 

washed with further quantities of water and finally dried with magnesium 

sulphate. 
19 

The remaining liquid was analysed by F NMR spectroscopy and 

identified as perfluoro-2-iodo-2-methylpentane (79) (19.7g, 66%); 



+ 
446 (M ). The silver iodide was recovered 

by washing the solid residue with water followed by drying. 

9.7 Te1omerisation Reactions 

9.71 F-2-Iodo-2-Methy1pentane(79) with Trif1uoroethy1ene 

A Carius tube was cooled with liquid air then perfluoro-2-iodo-2-

methylpentane (79) (8.6g, 19.3 mmol) and trifluoroethylene (2.4g, 29.3 mmol) 

were transferred in under vacuum. The tube was sealed and rocked for 36h 

0 
at 150 C. After cooling to room temperature gaseous material (0.6g) 

was recovered, together with a purple liquid (9.7g). Analysis of the 

liquid by capillary G.C. showed one major and four minor components. Using 

fractional distillation the major component was isolated and identified as 

2H~hexadecafluoro~l-iogo-3,3-dimethylh§xane (80) (7.5g, 74%);b.p. 87°c 

(66 mmHg); (Found: C, 17.9; H, 0.2; F, 58.3. C HF I requires C, 18.2; 
8 16 

H, 0.2; F, 57.6%); NMR spectrum no. 44; mass spectrum no. 44, m/z(EI) 401 

+ . 
(M -I, 35%); IR spectrum no. 28. The remaining four components were 

identified as 2H, 4§-nonadecafluoro-1-iodo-5,5-dimethyloctan§ (82) (mixture 

0 
of diastereoisomers) and its two regioisomers (l.lg, 8%); b.p. 48-49 c 

( 2mmHg ) ; ( Found : C, 19. 9 ; H, 0 • 6 • 

NMR spectrum no. 45; mass spectrum 

spectrum no. 29. 

C H F I requires c, 19.7; H, 0.3 %); 
10 2 19 

+ 
no. 45, m/z(EI) 483(M -I, 4%); IR 

9.72 n-C F C(CF ) CHFCF I (80) with Trif1uoroethy1ene 
3 7 3 2 2 

A Carius tube was charged with n-C F C(CF ) CHFCF I (80) (10.6g, 
3 7 3 2 2 

20.1 mmol), trifluoroethy1ene (1.9g, 23.1 mmo1) and di-tert-buty1 peroxide 

(6 drops). The tube was sealed under vacuum and the contents rocked at 

0 
140 C for 24h. After cooling a purple liquid (l2.lg) was recovered but there 

was no remaining gaseous alkene. Analysis of the liquid by G.C. showed a 

number of components including some starting material. The major components 

as determined by G.C.-mass spectrometry were due to 2H,4H-nonadecafluoro-l-

iodo-5,5-dimethyloctane (82) (two diastereoisomers + two regioisomers) 



which was separated by fractional distillation under reduced pressure, 

0 
b.p. 90 C (14 rnmHg) (7.7g, 63%). The remaining components in the mixture 

were due to higher telomers but they were not fully characterised. 

9o73 Preparation of n-C F C(CF
3

) CBFCF CH CH I (83) 
3 7 2 2 2 2 

A Carius was charged with C F C(CF ) CHFCF I (80) (8.0g. 15.2 mmol), 
3 7 3 2 2 

ethylene (0.5g, 17.9 mmol) and di-tert-butyl peroxide (8 drops). The tube 

0 
was sealed and rocked at 140 C for 24h. After this time a liquid (8.lg) 

was recovered and analysis by capillary G.C. showed only one major 

component. which was identified as ), ,,1, 2, 2, 4-;pentahydrohe;xage;cat;l uoro-1-: 

iodg-5,,5-di,me-t;lw;l,acta,ne (83) (8.lg, 96%); (Found: c, 21.9; H, 0.7; 

F, 54.8. c
10 

H F I requires C, 21.6; H, 0.9; F, 54.7%); NMR spectrum 
5 16 

+ 
no. 46; mass spectrum no. 46, m/z(EI) 556(M • 26%); IR spectrum no. 30. 

9.74 Preparation of (CF 3 )
2

CFCH 2 CF 2 CH 2 CH 2 I (89a) 

A nickel autoclave (lOOml) was charged with (CF
3

)
2
CFCH

2
CF

2
I (l3a) 

(37.lg, 0.1 mmol), ethylene (3.2g, O.lmol), and di-tert-butyl peroxide 

( 0. 2g). 
0 

The tube was sealed and the contents rocked at 140 for 24h. On 

opening the tube a pale yellow liquid (38.8g) was collected but there was 

no remaining gaseous material. Analysis by G.C. showed one major and one 

minor component. Distillation of the mixture yielded a small fore-fraction 

0 
boiling between 35-40 c. 

The other fractions were identified as ;J,, 1,,2 ,,2, 4,,4--:heasqlwdronona.fluoro-: 

0 
1,-iogo-:5-me;-t;hxlhexan§ (89a) (35.0g, 88%); b.p. 92 c (36mmHg); (Found: 

C, 22.0; H, 1.3. C H F I requires C, 21.7; H, 1.6%); NMR spectrum no. 47; 
7 6 9 

+ 
mass spectrum number 47, m/z(EI) 388 (M, 20%); IR spectrum no. 31; and 

1,1,,2,2,3.3,4,4,6,6-;decahydrononaflyoro-l-iodo-7-methy1octane (89b) 

(2.5g, 6%); (Found: c, 25.7; H, 2.1; F, 41.6. C H F I requires C, 26.0; 
9 10 9 

H, 2.4; F, 41.1%); NMR spectrum no. 48; mass spectrum no. 48, m/z(EI) 

+ 289 (M -I, 8%); IR spectrum no. 32. 



9.8 Preparation of Sterically Crowded Alkene Compounds 

Tri-n-butylamine (3.4 mlu 14.3 mmol) and the iodide (83) (7.8g, 

0 
14.0 mmol) were stirred at 80 C for 12h. Volatile material was then 

transferred under vacuum to a separate vessel, washed with water (2x20ml) and 

dried using anhydrous Mgso
4

• Analysis by capillary G.C. showed that only 

one compound was present. Distillation was carried out in order to 

remove slight colouration of the compound which was subsequently identified 

as 1~1,2~4-tetrahvdrohexadecafluo;o-5~5-dimethyloct~l-en§ (85) (5.7g, 

0 
95%): b.p. 73 C (51 mmHg): (Found: C, 28.3: H, 0.9; F, 71.4. c

10
H

4
F

16 

requires C, 28.0; H, 0.9; F, 71.0%); NMR spectrum no. 49; mass spectrum 

+ 
no. 49, m/z(EI) 409 (M -F, 1%); IR spectrum no. 33. 

Potassium hydroxide pellets (11.7g, 208.5 mmol) and n-C
3

F
7

-

o 
C(CF ) CHFCF 2 I (80) (6.3g, 11.9 mmol) were heated to 90 C for 5h. After 

3 2 

this time volatile material was transferred under vacuum to a separate 

vessel, washed with water (3xl0 ml) and dried using anhydrous Mgso
4

• 

Analysis by G.C. showed one component only, which was identified as 

he;5d§C,Afluoro-3,3-dimethzlh§3~1~en§ (81) (3.8g, 80%); (Found: C, 23.7; 

F, 76.5. C F requires C, 24.0; F, 76.0%); NMR spectrum no. 50; mass 
8 16 

+ 
spectrum no. 50, m/z(EI) 400 (M, 6%); IR spectrum no. 34. 

A mixture of tri-n-butylamine (2.4ml, 10.1 mmol) and 

n-C F C(CF 3 ) 2 (CHFCF 2 ) 2 I (82) (6.2g, 10.2 mmol) was stirred at room temperature 
3 7 

for 6h. Volatile material was then transferred under vacuum to a separate 

vessel and analysis by capillary G.C. showed one major product, together 

with a small amount of starting material. The product was isolated by 

fractional distillation and identified as 4H-nonadecafluoro-5,5-dimethyloct-l-

0 
~(84) (3.0g, 61%); b.p. 76 C (66mmHg); (Found: C, 25.2; H, 0.5; F, 74.4. 



C HF requires c, 24.9: H, 0.2; F, 74.9%): NMR spectrum no. 51; 
10 19 

+ 
mass spectrum no. 51, m/z (Ell 482(M ,0.5%); IR spectrum no. 35. 

The above procedure was repeated with tri-n-butylamine (5.5g, 29.7 mmol) 

of the volatile material by capillary G.C. showed only one component which 

was identified as!,!,2,4,4-p~ntahydrononaf6uoro-5-methylhex-l-~ne (90) (6.4g, 

82%); (Found: C, 32.5: H, 1.8; F, 65.3. C H F requires C, 32.3; H, 1.9; 
7 5 9 

+ 
F, 65.8%); NMR spectrum no. 52; mass spectrum no. 52, m/z(EI) 24l(M -F, 

18%); IR spectrum no. 36. 

9 8 ( ) C C (88) 
147 

• 5 CF
3
CF 2 CF

2 
C CF

3 2 
H

2 
H=CH

2 

Caesium fluoride (ll.Og, 72.4 mmol) tetraglyme (30ml) and 

perfluoro-2-methylpent-2-ene (8.8g, 29.3 mmol) were stirred at room 

temperature for 24h. 
19 

Analysis of the mixture by F NMR spectroscopy 

showed conversion to F-2-methylpentyl carbanion (76). The carbanion solution 

was separated from excess caesium fluoride and allyl iodide (4.9g, 29.2 mmol) 

was then introduced to the system. After stirring for ~h the fluorocarbon 

layer was allowed to settle and was then removed from the vessel. 

Subsequent analysis of the material showed it to be 1,1,2,3,3-pentahydro-

tridecafluoro-4,4-dimethylhept-1-ene (88) by comparison of its NMR and 

147 
mass spectral data with these of an authentic sample. 

9.9 Attempted Copolymerisations with Vinylidene Fluoride 

Each of the alkenes listed below were transferred into separate 

Carius tubes together with vinylidene fluoride. The tubes were then sealed 

and the contents irradiated with ~-rays. The results for each system were 

as follows; 

i) VDF (4.3g, 67.2 mrnol) and (88) (2.6g, 7.2 mrnol). Irradiated for 

1 week at room temperature. No polymer was observed after this time. 



10 I o 

ii) VDF (5.0g, 78.1 mmol) and (81) (3.5g, 8.8 mmol). Irradiated for 

3 days at room temperature. On opening the tube only VDF (3.5g) and (81) 

(3.3g) were recovered. 
19 

The F NMR spectrum of a solution of the 

remaining polymer in DMF showed only a very small degree of incorporation 

of ( 81). 

iii) VDF (3.2g, 50.0 mmol) and (85) (2.lg, 4.9 mmol). Irradiated for 1 

week at room temperature: no polymeric material was observed. 

iv) VDF (2.3g, 35.9 mmol), HFP(l.Og, 6.7 mmol) and (85) (1.5g, 3.5 mmol). 

Irradiated for 1 week at room temperature: no polymer formation was observed. 

v) VDF (2.3g, 35.9 mmol) and (84) (1.8g, 3.7 mmol). Irradiated at room 

temperature for 4 days. On opening the tube VDF (1.4g) and (84) (0.2g) were 

recovered, together with a polymer. Analysis of a solution of the polymer 

19 
in DMF by F NMR showed 22% molar incorporation of (84). 

vi) VDF (3.2g, 50.0 mmol) and (90) (1.4g, 5.4 mmol). Irradiated for 1 

week at room temperature: no polymer was observed. 

vii) VDF (2.6g, 40.6 mmol) and (90) (l.lg, 4.2 mmol). Irradiated for 

0 
1 week at 80 c: no polymer was recovered. 

viii) VDF (1.7g, 26.6 mmol), (85) (1.6g, 3.7 mmol) and di-tert-butyl peroxide 

0 
(0.08g). Ro-cked in a Carius tube at 140 C for 24h. No chemical change 

was observed and the starting materials were completely recovered. 

9.10 Thermal Analysis of Polymers by Differential Scanning Calorimetry 

The technique of DSC involved heating each of the polymers(ca 

0 0 
0.02-0.05g), under an atmosphere of dry argon, from 30 C to over 300 Cat 

0 -1 
a steady rate (typically 5 C min ). The resultant thermograms are 

depicted overleaf and are discussed in sections 4.44 and 4.9. 
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A sample of the VDF/n-C F ((CF ) CHFCF CF=CF (84) copolymer 
3 7 3 2 2 2 

. 0 
(ca. 0.3g) was heated under h1gh vacuum at 190 c for ~h. The apparatus 

included a cold trap which was rinsed out with acetone (2ml) after the 

experiment. Analysis of the acetone solution by capillary G.C. showed 

one product had been transferred from the copolymer and this was 

subsequently identified as 5H, 6H-octacosafluoro-4,4,7,7-tetramethyldecane 

(93); 
+ 

NMR spectrum no. 53.; mass specttr-um no. 53, m/z(EI) 463 (M -(H, 

+ 
CF ,C F ),O.l%)and 363 (M -(H,C F, C F ), 0.2%). 

3 3 7 3 7 3 7 

The remaining copolymer was virtually insoluble in DMF. This is 

in contrast to its high solubility before undergoing thermal treatment and 

probably reflects the formation of a cross-linked network. 

9.11 Attempted Synthesis of Vinyl Ether Compounds 

Nucleophilic Attack of Alkoxide on TFE 

The ether used in this experiment was firstly dried over sodium 

wire, then distilled on to lithium aluminium hydride and finally distilled 



on to molecular sieves (type 4A). During these procedures the ether was 

kept under an atmosphere of dry nitrogen. 

To a solution of neopentyl alcohol (2.7g, 30.6 mmol) in dry ether 

(30 ml), sodium metal (0.7g, 30.6 mmol) was added and the mixture was 

refluxed overnight under an atmosphere of dry nitrogen. The resultant 

suspension of sodium alkoxide was introduced into a Carius tube by use of 

a syringe and ~he ether was then removed under reduced pressure. DMF (20ml) 

and tetrafluoroethylene (3.0g, 30.0 mmol) were transferred into the Carius 

0 
tube which was sealed and rocked at 50 c for 48h. On opening the tube, 

TFE (0.9g) was recovered and ether (50ml) added to the rest of the material. 

The ether solution was washed with water in order to remove the DMF and 

finally dried with anhydrous MgSO • Removal of the ether by distillation 
4 

yielded the crude product, which was distilled to give one fraction that was 

0 
(2.6g, 46%); b.p. 72 c (262 mmHg); (Found: c, 45.0; H,6.4; F, 40.4. 

c H F 0 requires c, 44.7; H, 6.4; F, 40.4 %); NMR spectrum no. 54; mass 
7 12 4 

+ 
spectrum no. 54; m/z(EI) 173 (M -CH ,12%). 

3 

9.112 Attempted Dehydrofluorination of Me3~co2=cF2CF2BC96) 

The ether (96) (O.Sg, 2.7 mmol) was dissolved in DBU (0.5g, 3.3 mmol) 

0 
and the solution sealed in an NMR tube, which was then heated to 200 C for 

l 
24h. However, analysis by H NMR spectroscopy showed that no reaction had 

occurred. 

Antimony pentafluoride (4.0g, 18.4 rnrnol) and the ether (96) (0.4g, 

2.1 rnrnol) were sealed in an NMR tube. On warming to room temperature a 

1 
vigorous reaction occurred. Analysis by H NMR spectroscopy showed that the 

tertiary butyl group had been attacked by SbF
5 

rather than a simple 

dehydrofluorination reaction. 



9oll3 Chloroiodomethane with 2-Chloroethanol 

Sodium (0.9g, 39.1 mmol) was carefully added to 2-chloroethanol 

(9.7g, 120.5 mmol) and stirred until the metal had completely disappeared. 

Chloroiodomethane (lO.Og, 56.7 mmol) was then added to the system and 

stirring continued. Little reaction was observed at temperatures up to 

0 
120 C for 24h as determined by G.C. and G.C.-mass spectrometry. 

On repeating the procedure with ClCH 2 CH 2 0H(0.4g, 5.0 mmol), 

ICH 2 Cl (0.9g, 5.1 mmol) K2 C0 3 (0.7g, 5.1 mmol) and DMF (2ml),little reaction 

was observed also. 



CHAPTER TEN 

EXPERIMENTAL TO CHAPTER FIVE 

REMARKABLE CHEMISTRY OF THE MODEL COMPOUNDS WITH ANTIMONY PENTAFLUORIDE 

lOal Preparation of Remarkably Stable Fluorinated carbocations 

A se'ries of observable carbocations were prepared by dissolving 

appropriate fluorohydrocarbon compounds in antimony pentafluoride. In 

a typical procedure, a fluorohydrocarbon derivative listed in Table 10.1 

was transferred under vacuum to an NMR tube, followed by a ca 6:1 molar 

excess of antimony pentafluoride. The NMR tube was sealed and allowed 

to warm to room temperature. Gentle rotation of the tube was then carried 

13 19 1 
out for ca. 0.5h and the C, F and H NMR spectra of the resultant 

solution acquired. In each case observable carbocations were produced 

in almost quantitative yield. The carbocations showed no detectable 

signs of decomposition after storage at room temperature for several 

weeks. A discussion of the NMR data is presented in Section 5.2. 

Table 10.1 

Fluorohydrocarbon Antimony Carbocation NMR SEectrum 

Derivative (g,mmol) Pentafluoride(g,mmol) Produced No. 

(15b)(0.9,2.8) (3.6,16.6) (97) 55 

(15c)(0.4,1.0) (1.1,5.1) (100)
133 

56 

( 15d) ( 0 o 811.8) (2.4,11.1) (101)
133 

57 

( 15e) ( 1. 1, 2. 2) (4.7,21.7) (102) 58 

( 14b) ( 1. 6, 2. 7) (4.6,21.2) (105) 60 

(35)(1.5,4.2) (5.2,24.0) (104) 59 

(29b)(0.6,2.0) (2.4,11.1) (97) 55 

(37a)(0.8,2.9) (3.6,16.6) (97) 55 

(29c) (0.4,1.1) (1.4,6.5) (100) 56 

Similar treatment of (CF 3 ) 2 CFCHFCF 2 CHFCF 3 (98) (0.4g,l.lmmol) with 

antimony pentafluoride (1.7g, 7.8mmol) at room temperature failed to 

eliminate hydrogen fluoride. 



On mixing 1,2,4,5-tetrafluorobenzene (0.2g,l.3mmol) with antimony 

pentafluoride (1.7g,7.8mmol) at room temperature the solution became 

blue in colouration. This coupled to the fact that no signals were observed 

1 19 
in either the H or F NMR spectrum of the solution led to the conclusion 

that the radical-cation (107) was formed. 

No chemical change was observed on dissolving the saturated model 

(CF 3 ) 2 CFCH 2 CF 3 (15a)(5.4g, 21.0 mmol) in SbF
5 

(13.9g, 64.0 mmol) as determined 

1 ' 19 
by H and F NMR spectroscopy. Similarly, treatment of the unsaturated 

model (CF 3 ) 2 C=CHCF 3 (36) (0.5g, 2.2mmol) with SbF
5 

(2.8g, 13.0mmol) gave 

no chemical change. The spectra of models (15a) and (36), however, indicate 

that rapid exchange of fluoride ion may be occurring at room temperature 

(see Section 5.25). 

l0a3 Quenching Reactions 

10o3l carbocation (97) with Methanol 

(28.0g, 129.2 mmol) was stirred in a round-bottomed flask (lOml) for 

lh under an atmosphere of dry nitrogen. Formation of carbocation (97) 

was confirmed by analysis of the solution by 
19

F NMR spectroscopy. The 

flask was then fitted with a water and a dry-ice condenser. The mixture 

was cooled by an acetone/dry-ice bath and sulphuryl chlorofluoride (20ml) 

added with constant agitation using a mechanical stirrer. This was followed 

by slow addition of methanol (30.0g, 0.94mol) and stirring was continued 

for a further 0.5h. After warming the contents of the flask to room 

temperature, diethyl ether (50ml) was added. The ether layer was washed 

with water (2x50ml) then dried (Mgso
4

J and transferred under vacuum to 

a fresh vessel. AFter distilling off the ether the remaining solution 

was analysed by G.C. The major component was identified as methyl 2H,4H-

heptafluoro-5-methylhexa-2,4-dienoate (109); NMR spectrum no. 61; mass 

spectrum no. 55, m/z (EI) 226(M+,2%), 235 (M+-oCH 3 ,100%) and 207 (M+-



C0 2 CH 3 • 35%). Complete characterization of (109) was not possible since 

it underwent decomposition at room temperature. 

10o32 Carbocation (97) with Potassium Fluoride 

A mixture of (15b) (4.6g,l4.6 mmol) and SbF
5 

(18.8g. 86.7 mmol) 

was stirred for lh at room temperature. Carbocation (97) was produced 

(as determined by 
19

F NMR spectroscopy) and was quenched by addition 

of dry potassium fluoride (20.0g) to the system. A temperature of 0°C 

was maintained during the addition of KF. After a contact time of 0.5h 

the volatiles were transferred under vacuum to a separate vessel, washed 

with dilute sodium carbonate solution and dried using anhydrous Mgso
4

• 

Analysis of the remaining liquid by capillary G.C. showed a small amount 

of starting material (15b) together with one major and one minor product. 

The products were isolated using preparative G.C. (30% SE30, column temp. 

60°C, injector temp. 150°C) and identified as 3,5,5-trihydroundecafluoro-

2-methylhex~2-ene (34) (24%) and (Z)-3,5-dihydrodecafluoro-2-methylhexa-

2,4-diene (37a)(59%). The identity of (34) was determined by comparison 

f . d 1 d . h h f h . 1 133 
o ~ts IRan mass spectra ata w~t t ose o an aut ent~csamp e. 

An alternative route to diene (37a) was described in Section 8.32. 

10.33 Carbocation (97) with Potassium Chloride 

Carbocation (97) was produced by stirring thesaturatedmodel (15b) 

(8.5g,26.9 mmol) with SbF
5 

(30.8g, 142.1 mmol) at room temperature for 

6h. The carbocation solution was then carefully dropped on to potassium 

chloride (14.0g) at 0°C. After a contact time of lh the volatiles were 

transferred under vacuum to a fresh vessel, washed with dilute sodium 

carbonate solution and finally dried (MgSo
4

J to give a liquid (5.6g). 

Analysis by G.C. showed one major product and several minor components. 

The major product was isolated by preparative G.C. (20% DIDP, column 

temp. 90°C, injector temp. 150°C) and was identified as 3H,5H-5-chloro-

undecafluoro-2-methylhex-2-ene (110): (Found: C,25.5;H,0.6.c
7

H
2

F
11

cl 

requires C, 25.4: H, 0.6%); NMR spectrum no. 62; mass spectrum no. 56, 



m/z (EI) 311 (M+-F u 3%) and 213 (M+- CH(Cl)CF 3 , 100%)~ IR spectrum no. 

37. The minor compounds were not characterized. 

10.4 High Temperature Reactions of the Carbocations 

The diene Z-(CF 3 ) 2 C=CH-CF=CHCF 3 (37a) (l.lg. 4.0 rnrnol) was 

stirred with SbF
5 

(1.3g 0 6.0 rnrnol) at room temperature for O.Sh. Analysis 

19 
of the solution by F NMR spectroscopy indicated that formation of (97) 

had occurred. The carbocation solution was then stirred for O.Sh at 

100°C and after cooling volatile material was transferred under vacuum 

to a separate vessel, washed with dilute sodium carbonate solution and 

finally dried using anhydrous Mgso
4

• Analysis of the resultant liquid 

by G.C. showed one component which was identified as 2H,4H-decafluoro-

1,4-dimethylcyclopentene (111) (l.Og,91%) by comparison of its NMR and 

133 
mass spectral data with those of an authentic sample. 

The saturated model (15d) (0.8g,l.8 rnrnol) and SbF
5 

(2.4g,ll.l rnrnol) 

were stirred together at room temperature. Formation of carbocation 

(101) was confirmed by NMR spectroscopy. On heating the solution to 

120°C for O.Sh, no chemical change was detected in its NMR spectra. 

Carbocation (102), prepared in a similar way from (15e) (l.lg, 2.2 rnrnol) 

and SbF
5 

(4.7g, 21.7 rnrnol), was also thermally stable over this 

temperature. 

10.5 Exposure of Carbocations to High Vacuum 

The saturated model compounds (15b)(0.5g,l.6rnmol) and (15c) (0.4g, 

1.1 rnmol) were pipetted into separate NMR tubes and SbF
5 

(2.2g, 10.2 rnrnol) 

added to each. 
19 

After O.Sh the F NMR spectra of the solutions were 

acquired to confirm conversion to carbocations (97) and (100). The carbo-

-4 
cations were then exposed toa high vacuum (10 rnm Hg) at room temperature, 

each backed up by a cold trap. For both systems only SbF
5 

and HF were 

recovered from the cold traps after exposure for lh, i.e. no organic 

material had been transferred. The 
19

F NMR spectra of the carbocations 

were unchanged after this treatment. 



l0a6 Rearrangement of 4E-Perfluoro-5-Methylhex-l-ene (69b) by SbF
5 

An NMR tube was charged with alkene (69b) (0.6g. 1.8 mmol) and 

SbF
5 

(0.8gv 3.7 mmol)v then sealed under vacuum. The tube was agitated 

19 l 
for 0.5h and the F and H NMR spectra of the resultant solution was 

acquired. The NMR data indicate that quantitative rearrangement of (69b) 

to (Z)-3H-tridecafluoro-2-methylhex-3-ene (114) had occurred; NMR spectrum 

no. 63. 

Alkene (69b) (3.lg,3.3 mmol) and SbF
5 

(4.4g, 20.3 mmol) were stirred 

at l00°C for 0.5h. After cooling, volatile material was transferred 

under vacuum to a separate vessel. The liquid was poured into ice/water, 

then washed with sodium carbonate solution until effervescence had ceased 

and finally dried with anhydrous Mgso
4

• Analysis by capillary G.C. showed 

one component which was identified as 3H-tridecafluoro-2-methylhex-2-

ene (115) (2.0g, 65%): (Found: c, 25.4; H, 0.4; F, 73.8. c
7

HF
13 

requires 

C, 25.3; H, 0.3; F, 74.4%); NMR spectrum no. 64; mass spectrum no. 57, 

+ + m/z (EI) 313 (M -F, 16%) and 213 (M -CF 2 CF 3 , 56%); IR spectrum no. 38. 

10.7 Application of SbF
5 

Chemistry to the Synthesis of Polyacetylene 

Derivatives 

10.71 Preparation of Coloured Films
133 

The homopolymers listed in Table 10.2 were dissolved separately 

in their respective solvent over a period of 3 days and the resultant 

gels were then filtered to leave solutions of the polymers. Each of 

the polymers were deposited as a thin film on a clean round-bottomed 

flask (lOOml) by progressive evaporation of the solvent. Traces of 

solvent were removed by exposure to high vacuum for lh, then SbF
5 

vapour 

was allowed to pass over each film until a strong colouration was observed. 

A sustained temperature of l70°C was required for colouration of poly-

trifluoroethylene although extensive dehydrofluorination was also observed 

by heating a film to 80°C in neat SbF
5 

solution. In each case the 



-4 
coloured materials were exposed to high vacuum (10 mmHg) for lh in 

order to remove any SbF
5

• Storage and manipulations of the films were 

carried out under a nitrogen atmosphere. A discussion of the IR and 

NMR data of the films is given in Section 5.5. 

Table l0a2 Solvents used to prepare polymer films and conditions of 

reactions with SbF
5 

vapour 

Polymer Solvent 

D~ 

Temp.of Reaction Observations 

Room Temp. Immediate intense 
colouration. 

Room Temp. Intense colouration 
after ca. lb. 

170°C Strong colouration 
after several hours. 

10.72 Exposure of the Coloured Fi1ms to Methanol 

The coloured films derived from PVC and PVDF were exposed to high 

vacuum and allowed to come into contact with dry methanol vapour. The 

former system produced no colour change but the latter gave an immediate 

change terminating in an orange colouration. The photoacoustic IR spectrum 

of this product was recorded and is presented in Section 5.55. 
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CHAPTER ELEVEN 

EXPERIMENTAL TO CHAPTER SIX 

MISCELLANEOUS REACTIONS OF SOME FLUOROCARBON DERIVATIVES 

(CF 3 ) 2 C=CHCF!(36) with Grignard Reagents 

lloll With Propyl Magnesium Bromide 

Under an atmosphere of dry nitrogen, propyl bromide (3.0g, 24.4 rnrnol) 

was added slowly to magnesium metal (0.6g, 25.0 rnrnol) in dry ether (25ml) 

with stirring. The rate of addition was controlled so as to give a 

steady reflux of the ether. After all of the bromide had been added 

the system was allowed to reflux for a further 20 min to ensure complete 

conversion to propyl magnesium bromide. The Grignard solution was then 

cooled to 0°C and slow addition of alkene (36) (4.6g,l9.8 rnrnol) was carried 

out. After stirring for 10 min. water (Sml) was added to destroy any 

remaining Grignard reagent, followed by sufficient 5% aqueous HCl to 

dissolve all inorganic salts. The ether layer was washed with further 

amounts of water and then dried with anhydrous Mgso
4

• The ether was 

distilled off to leave the crude product which afforded one major fraction 

upon distillation that was identified as 1,1-difluoro-2,3-bis(trifluoro­

methyl)hex-1-ene (123) (3.0g, 59%);b.p. 102°C; (Found: C,37.8; H, 3.4; 

F, 59.8. c
8

H
8

F
8 

requires C, 37.5; H, 3.1; F, 59.4%); NMR spectrum no. 

65; mass spectrum no. 58, M/Z (EI) 256 (M+, 6%) and 187 (M+-CF 3 ,30%); 

IR spectrum no. 39. The experiment was repeated using magnesium (l.lg, 

45.8 mrnol), ether (35ml) propyl bromide (5.6g, 45.5 rnrnol) and alkene 

(36)(4.7g, 20.3 rnrnol). After addition of the alkene to propyl magnesium 

bromide at 0°C, the system was held under reflux for O.Sh. After the 

wor~up procedure, analysis of the crude product mixture (3.7g) by G.C. 

showed the major product to be (123). Approximately 8% of the mixture 

consisted of minor products which were not isolated. 



llal2 With Phenyl Magnesium Bromide 

To a dry round-bottomed flask (250m!), magnesium turnings (1.8g, 

74.1 mmol) and diethyl ether (35ml) were added. The flask was fitted 

to a condenser and dropping funnel and, under an atmosphere of nitrogen, 

bromobenzene (11.9g, 75.8 mmol) was added slowly with stirring. After 

all of the bromide had been added the system was refluxed for 0.5h to 

ensure complete formation of phenyl magnesium bromide. The alkene (36) 

(8.3g, 35.8 mmol) was then added slowly to the ice-cooled solution of 

the Grignard reagent and the reaction mixture was refluxed for 15 min. 

Water (50ml) was added to the system, followed by sufficient 5% aqueous 

HCl to dissolve all inorganic salts (~ 75ml). The organic layer was 

separated, washed with water (30ml) and dried over Mgso
4

• Ether removal 

was effected by distillation which also yielded a small fraction of 

benzene (b.p. 80-81°C). The major fraction was identified as 3H-octafluoro-

3-phenyl-2-methybut-l-ene (127) (6.2g, 60%); b.p. 103°C (109mmHg); (Found: 

C, 45.8, H, 2.0; F, 52.0, c
11

H
6

F
8 

requires C, 45.5; H, 2.1; F, 52.4%); 

NMR spectrum no. 66; mass spectrum no. 59, m/z (EI) 290 (M+, 29%) and 

221 (M+-CF 3 , 66%); IR spectrum no. 40. The remaining undistilled material 

(1.5g) consisted mainly of biphenyl. 

11.2 
175 

(CF 3 ) 2 C=CHCF 3 (36) and Ethyl Acetoacetate 

To a mixture of sodium hydride (0.5g, 20.8 mmol) in tetraglyme 

(5ml), ethyl acetoacetate (3.0g, 23.1 mmol) was added carefully at 0°C. 

Alkene (36) (2.5g, 10.8 mmol) was then transferred to the system under 

vacuum. On warming to room temperature an exothermic reaction was 

observed. Stirring of the mixture was continued at room temperature 

for 19 h and after this time water (30ml) was added. The fluorocarbon 

layer was dissolved in ether and washing of the ether layer was carried 

out using water. The ether solution was then dried over anhydrous Mgso
4 

and removal of ether was achieved by distillation. Analysis of the 

crude product by capillary G.C. showed one major product, together with 



some remaining ethyl acetoacetate. The product was isolated by distillation 

and identified as 3-ethoxycarbonyl-6-fluoro-2-methyl-4,5-bis(trifluoro­

methyl)-4H-pyran (130) (2.0g, 48%); b.p. 84°C (8 mmHg); (Found: c, 41.3; 

H, 3.1; F, 41.4. c
11

H
9

F
7

o
3 

requires C, 41.0; H, 2.8; F, 41.3%); NMR 

spectrum no. 67; mass spectrum no. 60, m/z (EI) 303 (M+-F, 3%), 277 

(M+-oEt, 80%) and 253 (M+-CF 3 , 100%); IR spectrum no. 41. 

(CF 1 ) 2 C=CHCF 3 (36) with catechol 

A mixture of catechol (2.7g, 24.5 mmol), acetonitrile (9 ml) potassium 

carbonate (3.lg, 22.4 mmol) and (36) (4.8g, 20.7 mmol) was stirred at 

room temperature for 3 days. After this time the system was extracted 

with ether (10 ml) and then washed with water. The ether layer was 

removed and washed further with water, followed by treatment with 

anhydrous Mgso
4

• Removal of the ether was then carried out by distillation 

to yield a fluorocarbon material containing three major components, 

as determined by capillary G.C. Separation of the three products was 

not possible by fractional distillation. Instead, the products (2.6g) 

were isolated in one fraction boiling in the range 46-48°C (8 mmHg) 

and were subsequently identified as 6,7-benzo- 2-fluoro-3,4-bis{trifluoro­

methyl)-1,5-dioxacyclohept-2-ene(l31) {0.9g, 15%); NMR spectrum no. 

69; mass spectrum no. 61, m/z {EI) 302 (M+, 73%) and 233 (M+-CF 3 , 10%); 

IR spectrum no. 42; and 6,7-benzo-2,2-difluoro-3,4-bis{trifluoromethyl)-

1,5-dioxacycloheptane{l32) (1.7g, 26%) (two diastereoisomers); NMR spectrum 

no. 69; mass spectrum no. 62, m/z (EI) 322 {M+,lOO%) and 303 {M+-F,3%); 

IR spectrum no. 42. The remaining material in the distillation flask 

was not characterized. 

11.4 Synthesis of F-3-Methylbut-1-ene (133) 

A mixture of tri-n-butylamine (6.2g, 33.4 mmoll and (CF 3 ) 2 CFCHFCF 2 I 

(23a)(l2.7g, 33.6 mmoll was stirred at room temperature for 6h. Vo~ati1e 

material was transferred under vacuum to a separate vessel, washed with 



water and then dried over anhydrous Mgso
4

• The product was identified 

as decafluoro-3-methylbut-l-ene (l33)(6.4g, 76%) by comparison of its 

. h th . . h l' 180 NMR spectrum w1t at g1ven 1n t e 1terature. 

lloS Free Radical Reactions of Fluoroalkenes 

A Carius tube was charged with alkene (133) (6.4g, 25.6 mmol) 

and methanol (2.0g, 62.5 mmol). The tube was sealed and the contents 

irradiated with ~-rays for ll days. On opening the tube the liquid 

material was washed with water (4xl5ml) and dried over anhydrous Mgso
4

• 

The resultant liquid consisted of one compound as determined by capillary 

G.C. and was identified as 1,1,3-trihydrodecafluoro-4-methylpentan-1~1 

(134) (4.lg, 57°%); (Found: C, 25.7; H, 1.5; F, 67.2. c
6

H
4

F
10

o requires 

C, 25.5; H, 1.4; F, 67.4%); NMR spectrum no. 68; mass spectrum no. 63, 

m/z (EI) 263 (M+-F, 2%); IR spectrum no. 43. 

A mixture of alkene (36) (6.3g, 27.2 mmol) and methanol (2.lg, 

65.6 mmol) was irradiated with ~-rays for 2 weeks. Analysis of the 

resultant solution by capillary G.C. showed two components were present, 

one of which was due to methanol. Thorough washing with water was carried 

out in order to remove the methanol and the remaining liquid was then 

dried over anhydrous Mgso
4

• Subsequent analysis of the liquid identified 

it as 1,1,2,3-tetrahydrononafluoro-2,3-dimethylbutan-l~l (136) (6.3g, 

88%); (Found: C, 27.3; H, 2.1, F, 64.2. c
6

H
5

F
9

o requires C, 27.3; H, 

1.9; F, 64.8%); NMR spectrum no. 70; mass spectrum no. 64, m/z 195 (M+-

CF 3 , 5%); IR spectrum no. 44. 

A mixture of ethanal (2.8g, 63.6 mmoll and (36) (5.9g, 25.4 mmol) 

was irradiated with 0-rays for 2 weeks. On opening the tube the remaining 

ethanal was removed by distillation (l.6g). Further distillation yielded 

one major fraction which was identified as 1,1,1,3,4-pentahydrononafluoro-



3,4-dimethylpentan-2-one (135) (4.9g, 70%)~ 43°C (700 mmHg); (Found: 

C, 30.7; H, 1.9; F, 62.6. C
7

H
5

F
9

o requires C, 30.4; H, 1.8~ F, 62.0%); 

NMR spectrum no. 71; mass spectrum no. 65, m/z (EI) 261 (M+-CH 3 , 6%). 

llo53 (CF3)aC=CH-CF=CHCF3(37) 

A Carius tube was charged with dimethyl ether (1.3g, 28.3 mmol) 

and E- Z- (CF 3 ) 2 C=CH-CF=CHCF 3 (37) (2.4g, 8.7 mmol). The materials were 

thoroughly degassed and then irradiated with 0-rays for 12 days. The 

tube was opened and the liquid analysed by capillary G.C. and by NMR 

spectroscopy, which both showed the presence of starting materials 

only. 

11.6 Dehydration of (CF 3 ) 2 CH-CH(CF 3 )CH 2 0H (136) 

Potassium carbonate (2.5g, 18.1 mmol) was added to a solution 

of (136) (4.9g, 18.6 mmol) in acetonitrile (5 ml). The system was 

stirred at room temperature for 4 days. After this time K2 C0 3 and 

the solvent were removed by thorough washing with water. The remaining 

fluorocarbon material was dried with anhydrous Mgso
4 

and analysis by 

capillary G.C. showed one major product and ca 10% remaining starting 

material. The product was isolated using preparative G.C. (10% SE 30, 

column temp. 90°C, injector temp.·l60°C) and identified as 1,1,3-tri­

hydrononafluoro-2,3-dimethylbut-1-ene (139)(3.0g, 65%); NMR spectrum 

no. 72; mass spectrum no. 66, m/z (EI) 246 (M+, 91%) and 227 (M+-F, 

100%). 

11.7 Novel Reactions with Compounds Containing the F-2-Methy1pentyl Group 

11.71 2H-Perf1uoro-l-iodo-3,3-dimethylhexane {80) with Tri-o-butylamine 

Tri-n-butylamine (2.3g, 12.4 mmo1) and n-C 3 F
7

C(CFJ) 2 CHFCF 2 I (80) 

(6.6g, 12.5 mmol) were stirred for 12h at 100°C. Volatile material 

was then transferred under vacuum to a separate vessel (3.3g). Analysis 

by capillary G.C. showed three major components the most volatile of 

which was separated by fractional distillation and identified as 

hexadecafluoro-3,3-dimethylhex-1-ene (81)(1.2g,24%); b.p. 68°C (245 mmHg) 



by comparison of its NMR spectrum with that of an authentic sample 

(See Section 9.82). The remaining two components could not be completely 

separated by distillation, so each was isolated by preparative G.C. 

(30% SE30, column temp. 50°C, injector temp 150°C). The compounds in 

order of increasing retention time were identified as 2H-heptadecafluoro-

3,3-dimethylhexane (143) (41%); (Found: C, 22.7; H, 0.1; F, 76.7. 

c
8

HF
17

requires C, 22.9; H, 0.2; F, 76.9%); NMR spectrum no. 73; mass 

spectrum no. 67 (substantial breakdown of the molecular ion was observed 

for CI,EI and NI modes), m/z (EI) 351 (M+-CF 3 12%); and 1H,2H-hexadecafluoro-

3,3-dimethylhexane (142) (32%); (Found: C, 23.6; H, 0.5; F, 75.7. c
8

H
2 

F
16 

requires C, 23.9; H, 0.5; F, 75.6%); NMR spectrum no. 74; mass spectrum 

no. 68 (substantial breakdown of the molecular ion was observed for 

CI, EI and NI modes), m/z (EI) 331 (M+- [H,CF 3 ,~, 3%);IR spectrum no. 45. 

On stirring a mixture of n-C 3 F
7

C(CF 3 ) 2 CF=CF 2 (81) (0.4g, 1.0 mmol) 

and tri-n-butylamine (0.2g, 1.1 mmol) at ll0°C for 48h, no chemical 

change was observed as determined by G.C. and by NMR analysis. 

11.72 Addition of THF to Perf1uoro-3.3-Dimethy1hex-l-ene (81) 

A thoroughly degassed mixture of tetrahydrofuran (2.0g, 27.7 mmol) 

and (81) (3.0g,7.5 mmol) in a sealed Carius tube was irradiated with 

~- rays for 15 days at room temperature (initially a two phase system). 

On opening the tube a liquid (4.9g) was recovered and analysis by G.C. 

showed six major components which included THF but not the alkene (81). 

THF and other minor components were distilled off (42-43°C at 370 mmHg) 

and further distillation yielded two compounds which were identified 

as diastereoisomers of 2-(2H-hexadecafluoro-3,3-dimethylhexyD tetrahydrofuran 

(144) (1.5g, 42%); b.p. 41-42° (10-lmmHg); (Found: C, 30.8; H, 1.8; 

F, 63.9. c
12

H
8

F
16

o requires c, 30.5; H, 1.7; F, 64.4%); NMR spectrum 

no. 75; mass spectrum no. 69, m/z (EI) 471 (M+- H, 1%); IR spectrum 

no. 46. The remaining three components of the product mixture could 

not be distilled over but instead they were transferred under high vacuum 



to a separate vessel and identified as diastereoisomers of 2v5-bis(2H­

hexadecafluoro-3,3,-dimethylhexyl) tetrahydrofuran (145) (1.6g. 49%); 

(Found: C0 27.8; H, 0.9; Fv 69.2. c
20

H
8

F
32

o requires C, 27.5; H, 0.9; 

F, 69.7%); NMR spectrum no. 77; mass spectrum no. 70, m/z (EI) 853 (M+­

F, 11%) and 471 (M+-(CF 2 CFHC(CF 3 )CF 2 CF 2 CF~ 100%). 

lla73 Pyrolysis of Perfluoro-3 9 3-Dimethylhex-1-ene (81) 

Alkene (81) (3.2g, 8.0 mrnol) was transferred under vacuum to a 

Carius tube which was subsequently evacuated and sealed. The tube was 

heated to 260°C for 72h and after cooling, a liquid (3.0g) was recovered. 

Analysis of the liquid by capillary G.C. showed only one major component 

which was identified as hexadecafluoro-2-methylhept-2-ene (146) (3.0g, 

94%); (Found: C, 23.7; H, 0.0; F, 76.4. c
8

F
16 

requires C, 24.0; H, 0.0; 

F, 76.0%); NMR spectrum no. 76; mass spectrum no. 71, m/z (EI) 381 (M+-

F, 40%); IR spectrum no. 47. 

11.74 Preparation of F-2-Methylheptyl Anion (147) 

A mixture of F-2-methylhept-2-ene (146) (1.4g, 3.5 mrnol), caesium 

fluoride (0.9g, 5.9 mrnol) and tetraglyrne (5ml) was stirred at room 

temperature for 5h. Analysis of the resultant orange solution by NMR 

spectroscopy indicated that quantitative formation of heptadecafluoro-

2-methylheptyl anion (147) had occurred; NMR spectrum no. 78. 

11.75 Reaction of F-3,3-Dimethylhex-1-ene (81) with Methanol 

A mixture of (81) (2.7g, 6.8 mrnol) methanol (0.5g, 15.6 mrnol), 

acetonitrile (3ml) and potassium carbonate (1.2g, 8.7 mmol) was stirred 

for 20 h at 60°C. After cooling, the material was washed with water 

(30ml) which gave rise to two liquid layers. The lower fluorocarbon 

layer was further washed with water, then dried over anhydrous Mgso
4 

to give a liquid (2.4g). Analysis of the liquid by G.C. showed two 

major products had been formed. Separation of these compounds could 

not be achieved, so instead a small sample containing both of the products 

was obtained for analysis using preparative G.C. (10% SE30, column temp. 



70°C, injector temp. 150°C). The compounds were subsequently identified 

as (E)-1-methoxypentadecafluoro-3,3-dimethylhex-1-ene (148) (50%); NMR 

spectrum no. 79; mass spectrum no. 72, m/z (EI) 412 (M+, 11%); and 2H­

l-methoxyhexadecafluoro-3,3-dimethylhexane (149) (34%); NMR spectrum 

no. 80; mass spectrum no. 73, m/z (EI) 413 (M+-F, 24%). 

lla76 Preparation of 1H-Perfluoro-3o3-Dimethylhex-l-yne (150) 

In a sealed 'Rotaflo' tube, potassium hydroxide pellets (9.5g, 

169.3 mmol) and n-C 3 F
7

C(CF 3 ) 2 CHFCF 2 CHFCF 2 1 (82) (ll.Sg, 18.9 mmol) were 

heated at 90°C for 48h. After cooling, volatile material was transferred 

under vacuum to a separate vessel and G.C. analysis showed that it contained 

one major product and no remaining starting material. The product was 

purified by distillation and identified as lH-tridecafluoro-3,3-dimethylhex­

-1-yne (150) (5.0g, 77%); b.p. 84°C (618 mmHg); (Found: C, 27.6; H, 

0.4; F, 72.4. c
8

HF
13 

requires C, 27.9; H,0.3; F, 71.8%); NMR spectrum 

no. 81; mass spectrum no. 74, m/z (EI) 325 (M+-F, 6%) and 275 (M+-CF 3 , 5%); 

IR spectrum no. 48. 

On repeating the reaction with potassium hydroxide (4.2g, 74.9 mmol) 

and (82)(4.4g, 7.2 mmol) for 24h at 90°C, two major products were obtained 

which were identified as (84) and (150) by mass spectrometry and by 

IR spectrometry. 
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APPENDIX ONE 

NMR SPECTRA 

1. 2.2.4,4,6,6,8.8-0ctahydropentadecaf1uoro-1-iodo-9-methy1decane (13d) 

2. 2,2,4,4,6,6,8,8,10,10-Decahydroheptadecaf1uoro-1-iodo-11-methy1-

dodecane (l3e) 

3. 5H,5H-Pentadecaf1uoro-2-iodo-6-methy1heptane (17a) 

4. 7H,7H-Heneicosaf1uoro-2-iodo-4,8-dimethy1nonane (17b) 

5. 5,5,7,7-Tetrahydroheptadecaf1uoro-2-iodo-8-methy1nonane (18a) 

6. 2H,2H,6H,6H-Heptadecaf1uoro-1-iodo-3,7-dimethy1octane (19a) 

7. 2,2,4,4,8,8-Hexahydrononadecaf1uoro-1-iodo-5,9-dimethy1decane (19b) 

8. 2,2,6,6,8,8-Hexahydrononadecaf1uoro-1-iodo-3,9-dimethy1decane (20a) 

9. 2,2,4,4,8,8,10,10-0ctahydroheneicosaf1uoro-1-iodo-5,11-dimethy1dodecane 

(20b) 

10. 2,2,8,8-Tetrahydrotricosaf1uoro-1-iodo-3,5,9-trimethy1decane (19c) 

11. 2,2,4,4,10,10-Hexahydropentacosaf1uoro- 1-iodo-5,7,11-trimethy1-

dodecane (19d) 

12. 2H-Decaf1uoro-1-iodo-3-methy1butane (23a) 

13. 2H,4H-Tridecaf1uoro-1-iodo-5-methy1hexane (23b) 

14. 3,3,5,5,7,7,9,9-0ctahydrohexadecafluoro-2-methy1hexane (15d) 

15. 3,3,5,5,7,7,9,9,11,11-Decahydrooctadecaf1uoro-2-methy1dodecane (15e) 

16. 3,3,7,7,9,9-Hexahydroeicosaf1uoro-2,6-dimethy1decane (26) 

17. 3H,3H,4H-Nonaf1uoro-2-methy1butane (28) 

18. 2H,4H,4H-Undecaf1uoro-5-methy1hex-(E)-2-ene (30) 

19. 2H,4H,4H-Undecaf1uoro-5-methy1hex-1-ene (29b) 

20. 3,5,5,7,7-Pentahydroterdecaf1uoro-2-methy1oct-2-ene (35) 

21. 2,6,6-Trihydroheptadecaf1uoro-3,7-dimethy1oct-1-ene (40) 

22. 2H,4H,4H,6H,6H-Tridecaf1uoro-7-methy1oct-1-ene (29c) 

23. (Z)-3,5-Dihydrodecaf1uoro-2-methy1hexa-2,4-diene (37a) 

24. (E)-3,5-Dihydrodecaf1uoro-2-methy1hexa-2,4-diene (37b) 

25. (Z)-2,6,6-Trihydroheptadecaf1uoro-3,7-dimethy1oct-2-ene (41) 



26. 2,3,5,5,-Tetrahydroundecaf1uoro-3-methoxy-2-methy1hexane (48) 

27. 3,5,5-Trihydrononaf1uoro-1,3-dimethyoxy-2-methy1hex-1-ene (49) 

28. 2,3,5,5,7,7-Hexahydro-3-phenoxyterdecaf1uoro -2-methy1octane (45b) 

29. 3,5,5,7,7-Pentahydro-1,3-diphenoxyundecaf1uoro-2-methy1oct-1-ene (46b) 

30. 2,3,5,5,7,7-Hexahydro-1,3-diphenoxydodecaf1uoro-2-methy1octane (47b) 

31. 2,3,5,5,-Tetrahydro-3-phenoxyundecaf1uoro-2-methy1hexane (45a) 

32. 3,5,5-Trihydro-1,3-diphenoxynonaf1uoro-2-methy1hex-1-ene (46a) 

33. 2,3,5,5,-Tetrahydro-1,3-diphenoxydecaf1uoro-2-methy1hexane (47a) 

34. 3,6,7-Trihydro-6-phenoxyhexadecaf1uoro-2,7-dimethy1oct-2-ene (50) 

35. 2,6,6,-Trihydro-2-methoxyhexadecaf1uoro-3,7-dimethy1oct-3-ene (52a & b) 

36. 2,6,6-Trihydro-2-phenoxyhexadecaf1uoro-3,7-dimethy1oct-3-ene (52c & d) 

37. 2,4,5-Trihydro-4-methoxydecaf1uoro-5-methy1hex-2-ene (56) 

38. 3,5-Dihydro-1,3-dimethyoxyoctaf1uoro-2-methy1hexa-1,4-diene (57) 

39. Heptaf1uoro-2-iodopropane adducts of tria11y1 isocyanurate ( 61), 

(62) and (63) 

40. 

41. 

42. 

43. 

- 44. 

45. 

46. 

47. 

48. 

49. 

so. 

51. 

52. 

53. 

54. 

2H-Tetradecaf1uoro-1-iodo-5-methy1hexane (68a) 

2H,4H-Heptadecaf1uoro-1-iodo-7-methy1octane (68b) 

Tetradecaf1uoro-5-methy1hex-1-ene (69a) 

4H-Tridecaf1uoro-5-methy1hex-1-ene (69b) 

2H-Hexadecafluoro-l-iodo-3,3-dimethylhexane (80) 

2H,4H-Nonadecaf1uoro-1-iod-5,5-dimethyloctane (82) 

1,1,2,2,4-Pentahydrohexadecaf1uoro-1-iodo-5,5-dimethyloctane (83) 

1,1,2,2,4,4-Hexahydrononaf1uoro-1-iodo-5-methy1hexane (89a) 

1,1,2,2,3,3,4,4,6,6,-Decahydrononaf1uoro-1-iodo-7-methy1octane (89b) 

1,1,2,4-Tetrahydrohexadecaf1uoro-5,5-dimethy1oct-1-ene (85) 

Hexadecaf1uoro-3-3-dimethy1hex-1-ene (81) 

4H-Nonadecaf1uoro-5,5-dimethy1oct-1-ene (84) 

1,1,2,4,4-Pentahydrononaf1uoro-5-methy1hex-1-ene (90) 

5H,6H-Octacosaf1uoro-4,4,7,7-tetramethy1decane (93) 

2,2,-Dimethy1propy1-1,1,2,2-tetraf1uoroethy1 ether (96) 



55. 

56. 

57. 

58. 

59. 

60. 

Observable 

Observable 

Observable 

Observable 

Observable 

Observable 

carbocation (97) 

carbocation (100) 

carbocation (lOll 

carbocation (102) 

carbocation (104) 

carbocation (105) 

6.1 Methyl 2H,4H-heptafluoro-5-methylhexa-2,4-dienoate (109) 

62. 3H,5H-5-chloroundecafluoro-2-methylhex-2-ene (110) 

63. (Z)-3H-Tridecafluoro-2-methylhex-3-ene (114) 

64. 3H-Tridecafluoro-2-methylhex-2-ene (115) 

65. 1,1-Difluoro-2,3-bis(trifluoromethyl)hex-1-ene (123) 

66. 3H-Octafluoro-3-phenyl-2-methybut-l-ene (127) 

67. 3-Ethoxycarbonyl-6-fluoro-2-methyl-4,5-bis(trifluoromethyl)-4H­

pyran (130) 

68. 1,1,3-Trihydrodecafluoro-4-methylpentan-1-ol (134) 

69. 6,7-Benzo-2-fluoro-3,4-bis(trifluoromethyl)-1,5-dioxacyclohept-2-ene (131) 

and 

6,7-Benzo-2,2-difluoro-3,4-bis(trifluoromethyl)-1,5-dioxacycloheptane 

( 132) 

70. 1,1,2,3-Tetrahydrononafluoro-2,3-dimethy1butan-1-o1 (136) 

71. 1,1,1,3,4-Pentahydrononaf1uoro-3,4-dimethy1pentan-2-ene (135) 

72. 1,1,3-Trihydrononafluoro-2,3-dimethy1but-1-ene (139) 

73. 2H-Heptadecaf1uoro-3,3-dimethy1hexane (143) 

74. 1H,2H-Hexadecaf1uoro-3,3-dimethylhexane (142) 

75. 2-(2H-Hexadecaf1uoro-3,3-dimethylhexyl)tetrahydrofuran (144) 

76. Hexadecafluoro-2-methy1hept-2-ene (146) 

77. 2,5-Dis(2H-hexadecaf1uoro-3,3-dimethy1hexy1)tetrahydrofuran (145) 

78. Heptadecaf1uoro-2-methy1hept-2-y1caesium (147) 

79. (E)-l-Methoxypentadecaf1uoro-3,3-dimethy1hex-1-ene (148) 

80. 2H-l-Methoxyhexadecaf1uoro-3,3-dimethy1hexane (149) 



81. lH-Tridecafluoro-3,3-dimethylhex-1-yne (150) 

13 1 
For the C and H NMR data presented below, the chemical shifts 

are expressed relative to TMS as external reference, whereas for the 

19
F NMR data, the values are expressed relative to CFC1 3 • All shifts 

occurring downfield from the reference are quoted with a positive sign. 

Abbreviations used for the multiplicity of the resonances are S-

singlet, D-doublet, T-triplet, Q-quartet, Sept.-septet and M-complex 

multiplet. 

Unless otherwise stated, the samples were dissolved in CDC1 3 and 

their spectra recorded at the ambient temperature of the probe. 



SHIFT/PPM COUPLING/Hz 

1 2 3 4 5 6 7 8 9 10 
1. (CF

3)
2

CFcH2
CF

2
cH2cF2cH2cF

2
CH

2
cF

2I 

19
F spectrum: neat 

-39.0 

-78.0 

-91.1 

~186.4 

1 
H spectrum: neat 

3.3 

M 

D(J=6) of T(J=6) 

M 

M 

M 

2 

6 

6 

1 

2. 
1 2 3 4 5 6 7 8 9 10 11 12 

(CF3 ) 2CFCH2cF2CH2cF2cH2CF
2

cH
2

cF2CH
2

CF
2

I 

19
F spectrum: neat 

-39.0 

-78.0 

-91.2 

-186.5 

M 

D(J=6)of T(J=6) 

M 

M 

1
H spectrum: neat 

3. 

3.3 M 

1 2 3 4 5 6 7 
(CF3 ) 2CFCH2CF2CF2CFCF

3 I 
I 

19F spectrum: neat 

-75.1 

-79.3 

-110.3 

-145.7 

-187.6 

D(J=9 )of T(J=9) 

D(J=6) 

M 

M(J=l3) 

M 

1H spectrum: neat 

2.8 D(J=17)of T(J=17) 

2 

6 

8 

1 

3 

6 

4 

1 

1 

INTEGRAL 

10 

1 

ASSIGNMENT 

(13d) 

3,5,7,9 

12 

1 

2 

(13e) 

3,5,7,9,11 

(17a) 

7 

1 

4,5 

6 

2 

3 



4. 

5. 

IUJa 

SHIFT/PPM COUPLING/HZ INTEGRAL 

1 2 3 4 5 6 8 9 10 

(CF ) CFCH CF CF CFCF CF 
3 2 2 2 21 21 

7cF I 
3 

CF 
3 

19
F spectrum 

- 70.2 D(J=108) of D(J=100) 

- 72.7 M(J=8) 

- 77.1 D(J=6) 

-100.6 to -114.1 M 

-110.6 M 

-145.4 M 

-181.6 D(J=80) of M(J=26) 

-185.5 M 

1
H spectrum 

2.9 

19F spectrum 

- 73.0 

- 77.0 

- 87.8 

-107.8 

-109.9 

-144.1 

-185.4 

1H spectrum 

2.9 

M 

1 2 3 4 5 6 7 8 9 
(CF ) CFCH CF CH CF CF CFCF 

3 2 2 2 2 2 2J 3 

I 

M 

M 

M 

AB(J=289) 

M 

M 

M 

M 

3 

6 

2 

2 

2 

1 

1 

3 

3 

3 

4 

2 

1 

1 

1 

ASSIGNMENT 

(17b) 

10 

7 

1 

5,8 

(18a) 

4 

9 

6 

2 

3 

9 

1 

4 

7 

6 

8 

2 

3,5 



SHIFT/PPM COUPLING/HZ INTEGRAL ASSIGNMENT 

6. 1 2 3 4 5 6 7 8 

(CF
3

)
2

CFCH
2

CF
2
cF

2
CFCH

2
CF

2
I 

(19a) 

I 9
cF 

3 

19 
F spectrum: neat 

- 39.2 M 2 8 

- 78.2 D(J=9) of T(J=9) 3 9 

- 79.7 D(J=7) of T(J=7) 6 1 

-112.6 M 2 4 

-121.2 M 2 5 

-185.9 M 1 

-187.5 M 1 
2,6 

1 
H spectrum: neat 

3.3 M 3,7 

7. 1 2 3 4 5 6 7 8 9 10 (19b) 
(CF

3
J
2

CFCH 2CF
2
cr

2
CFCH

2
cr

2
ca

2
cr

2
I 

I 
11 CF

3 

19 
F spectrum: neat 

- 40.0 M 2 10 

- 77.5 D(J=9) of T(J=9) 3 11 

- 79.3 D(J=7) of T(J=7) 6 1 

- 91.5 M 2 8 

-112.0 M 2 4 

-120.5 M 2 5 

-185.3 M 1 ) 

J 2, 6 
-187.4 M l ) 

1 
H spectrum: neat 

3.2 M 3,7,9 



SHIFT/PPM COUPLING/HZ INTEGRAL ASSIGNMENT 

8. .1 2 3 4 5 6 7 9 10 11 
(20a) 

(CF
3

)
2

CFCH
2

cF
2

cH
2

CF
2

CF
2

CFCH
2 I 

CF
2

I 

8 CF
3 

19 
F spectrum: neat 

- 38.4 M 2 11 

- 77.7 M 3 8 

- 78.8 D(J=6) of T(J=6) 6 1 

- 90.2 M 2 4 

-112.7 M 2 6 

-121.0 M 2 7 

-186.3 M 1 

-187.3 M 1 
)2,9 
) 

1 
H spectrum: neat 

2.2 - 3.9 M 3,5,10 

9. 1 2 3 4 5 6 7 9 10 11 12 13 

(CF3 ) 2CFCH2CF2CH2cF
2

CF2,FcH
2

CF2CH
2

cF
2

I (20b) 

8 CF
1 

19 
F spectrum: neat 

- 39.8 M 2 13 

- 77.5 M 3 8 

- 78.9 D(J=6) of T(J=6) 6 1 

- 90.7 M 2 4 

- 91.5 M 2 11 

-112.8 M 2 6 

-120.9 M 2 7 

-186.1 M 1 ) 

-187.3 M 1 
)2,9 
) 

1 
H spectrum: neat 

2.1-3.9 M 3,5,10,12 



SHIFT/PPM COUPLING/HZ INTEGRAL ASSIGNMENT 

10. 1 2 3 4 5 7 8 10 11 12 
(19c) 

(CF
3

J
2

CFCH
2

CF
2

CF
2

CFCF
2

CFCH
2

CF
2

I 

I I 
6 CF

3 
CF

3 
9 

19 
F spectrum 

- 37.5 M 2 12 

- 70.2 M 3 6 

- 75.7 M 3 9 

- 77.0 M 6 1 

-110.5 M 2 4 

-101.4 to -115.8 M 4 5,8 

-187.7 to -183.1 M 2 7,10 

-185.4 M 1 2 

1 

H spectrum 

2.9 M 2 3 

3.5 M 2 11 

.1. 1 2 3 4 5 7 8 10 11 12 13 14 

(CF3 J2CFCH2cF2CF 2,FCF2,FCH 2cF2CH2CF 2I (19d) 

6 CF
3 CF- 9 

.j 

19 
F spectrum 

- 38.6 M 2 14 
- 70.3 M 3 6 
- 75.3 M 3 9 
- 77.1 M 6 1 
-89.4 M 2 12 

-101.4 to -115.9 M 4 5,8 
-110.6 M 2 4 

-181.8 to -182.8 M 2 7,10 
-185.5 M 1 2 

1 
H soectrum 

2.9 M 4 3,13 

3.3 M 2 11 



SHIFT/PPM COUPLING/HZ INTEGRAL ASSIGNMENT 

12. 1,2 3 4 5 6 

(CF
3

J
2

CFCHFCF
2

I (23a) 

19 
F spectrum 

- 54.7 AB(J=198) 2 6 

- 72.6 M 3 ) 

- 76.0 M 3 
) 1,2 
) 

-186.4 M 1 3 

-191.5 M 1 5 

1 
H spectrum 

5.2 D(J=46)ofD(J=17)ofD(J=8) 4 
of D(J=4) 

13. 1,2 3 4 5 6 7 8 9 

(CF
3

J
2

CFCHFCF
2

CHFCF
2

I (23b) 

19F spectrum 

- 54.1 M 2 9 

- 72.8 M 3 1,2 
-75.8 M 3 

-117.6 to -124.4 M 2 6 

-186.5 M 1 3 

-192.1 M 1 8 

-209.6 M 1 5 

1 
H spectrum 

4.8 - 5.6 M 4,7 

14. 1 2 3 4 5 6 7 8 9 10 

(CF
3

)
2

CFCH
2

cF
2

CH
2

CF
2

cH
2

cF
2

CH
2

CF
3 

(15d) 

19 
F spectrum: neat 

- 63.2 T{J=9) of T(J=9) 3 10 

- 78.3 D{J=6) of T{J=6) 6 1 

- 92.7 M 6 4,6,8 

-186.2 M 1 2 
1 

H spectrum: neat 

2.6 M 3,5,7,9 



SHIFT/PPM COUPLING/HZ INTEGRAL ASSIGNMENT 

15. 1 2 3 4 5 6 7 8 9 10 1112 

(15e) 

19 
F spectrum: neat 

- 64.2 T(J=9) of T(J=9) 3 12 

- 79.2 D(J=6) of T(J=6) 6 1 

- 93.0 M 8 4,6,8,10 

-187.4 M 1 2 

1 

H spectrum: neat 

2.5- 3.4 M 3,5,7,9,11 

16. 1 2 3 4 5 6 7 8 9 10 

(CF
3

) 2CFCH2CF
2

CF
2

,FCH
2

CF
2

cH
2

CF
3 

(26) 

11 CF
3 

19 

F spectrum: neat 

- 64.9 M(J=9) 3 10 

- 78.3 D(J=9) of T(J=9) 3 11 

80.2 D(J=6) of T(J=6) - 6 1 

- 93.2 M 2 8 

-112.6 M 2 4 

-121.1 M 2 5 

-186.3 M 1 

-188.2 M 1 
)2,6 
) 

1 
H spectrum: neat 

2.8 M 3,7,9 



SHIFT/PPM COUPLING/HZ INTEGRAL AS~IGNMENT 

17. 1 2 3 4 5 

(CF
3

J
2

CFCH
2

CF
2

H (28) 

19F spectrum: neat 

- 80.8 M 6 1 

-116.0 AB(J=56) 2 4 

-188.5 M 1 2 

lH s~ctrum: neat 

4.1 M 3,5 

18. 1 2 3 

(CF
3

J
2

CFCH
2 

" 
5 

/CF3 (30) 

c-~ 
4 / 6 

F H 

19F spectrum 

- 58.0 M 3 5 

- 77.0 D( J=6) of D(J=Sl 6 1 

- 84.4 M 1 4 

-182.6 M 1 2 

lH s~ctrum 

3.3 D(J=2ll of D(J=21) 2 3 

5.8 D(J=18) of Q(J=7) 1 6 

19. 1 2 3 4 

(CF
3

)
2

CFCH
2

CF
2 

7 
(29b) F 

" C=C/ 

SH / "6 F 
19F spectrum: neat 

- 77.8 D(J=23l of D(J=23l 1 6 

- 80.1 D(J=6) of T(J=6l 6 1 

- 82.0 M 1 7 

- 87.0 M 2 4 

-188.1 M 1 2 

1H s~ctrum: neat 

2.9 D(J=17l of T(J=14l 2 3 

4.8 M 1 5 



SHIFT/PPM COUPLING/HZ INTEGRAL ASSIGNMENT 

uc s~ctrum 

36.1 T(J=32) of D(J=19) 3 

77.9 T(J=14) of T(J=l7) 5 

89.3 D(J=298) of Sept. (J=32) 2 

115.6 T(J=242) of D(J=12) 4 

120.2 Q(J=286) of D(J=28) 1 

157.7 T(J=296} of T(J=7) 6 

20. 

1
cF 

4 
B 3 / \ 

2 /C=C\5 6 7 8 9 
CF

3 
CF

2
cH

2
cF

2
CH

2
CF

3 
( 35} 

19F spectrum: neat 

- 61.3 T(J=14} of Q(J=17l 3 2 

- 64.7 T(J=9) of T(J=9) 3 9 

- 68.4 Q(J=7) 3 1 

- 92.8 M 2 5 

- 94.4 M 2 7 

lH spectrum: neat 

2.6 
M 4 6,8 

6.4 
T(J=l3} 1 4 

13c spectrum 

40.9 M(J=30) 8 

43.7 T(J=26) of T(J=26) 6 

116.2 T(J=246) 5 

117.3 T(J=239) 7 

120.3 Q(J=275) l or 2 or 9 

123.2 Q(J=278) l or 2 or 9 

123.3 Q(J=277) 1 or 2 or 9 

126.0 M 3 

137.7 T(J032) 4 



SHIFTLPPM COUPLINGLHz INTEGRAL ASSI~NMENT 

10 
1 2 3 4 5 6 CF 

21. (CF ) CFCH CF CF C~ 3 
F8 (40) 

3 2 2 2 2 / 
c c 

'9 7H/ F 

19 
F sgectrum: neat 

- 75.5 M 2 8,9 

- 80o3 M 3 10] 1 . 

1 
Over app1.ng signal 

- 80o3 D(J=7) of T(J=7) 6 

-113 0 0 M 2 4 

-123.6 M 2 5 

-177 0 3 M 2 2,6 

1 
H SJ2ectrum:neat 

2.6 D(J=l7) of (T(J=l7) 2 3 

4.3 D(J=20) of D(J=20) 1 7 

22. (CF ) CFCH CF CH CF F9 3 2 2 2 2 ~ 
c/ (29c) 

1 2 3 4 5 6 H/c = 
'F 

7 8 

19 
F s12ectrum:neat 

- 77.7 M 1 8 

- 79.3 D(J=6) of T(J=6) 6 1 

- 81.7 M 1 9 

- 88.3 M 2 6 

- 92.9 M 2 4 

-187.0 M 1 2 

lH s12ectrum:neat 

2.5 M 4 3,5 

4.3 M 1 7 



SHIFT/PPM COUPLING/HZ INTEGRAL ASSIGNMENT 

22. 13 
c s~ctrum 

34o8 T(J=26) of D(J=20) 3 

43.8 T(J=26) of T(J=26) 5 

78.0 T(J=18) of T(J=14) 7 

89.4 D(J=210)of sept.(J=33) 2 

116.2 T(J=239) 6 

117.5 T(J=246) 4 

119.9 Q(J==286)of D(J=27) 1 

157o5 T(J=299)of T(J=7) 8 

23. 1 4 
CF

3 
H 

' I 6 
c=c H 

2 / \c =c/ (37a) CF
3 - I \ 

~F CF 
3 

7 

19F SEectrum:neat 

- 60.0 D(J=29) of Q(J=B) 3 2 

- 6L3 D(J==18) of D(J=8) 3 7 

- 67.0 Q(J=8) 3 1 

-10L7 M 1 5 

1 
H SEectrum:neat 

5.6 D(J=28) of Q(J==B) 1 6 

6.7 D(J==24) 1 4 

uc SEectrum 

109.0 Q(J==38) of D(J=10) 6 

119.0 Q(J=272) 1 or 2 or 7 

119.9 Q(J=274) 1 or 2 or 7 

121.3 D(J==144) 5 

122.3 Q(J=275) 1 or 2 or 7 

127.8 M 3 

129.3 D(J=26) 4 

l 
H 24. CF\ 3 4/ 7 

c c CF
3 (37b) 

2 / \ / 
CF

3 
c c"-. 6 

s I 
F 

H 



SHIFTLPPM COUPLINGLHz INTEGRAL ASSIGNMENT 

24. 19 
F SQectrum:neat 

- 60.3 D(J.::ll) of D(J.::8) 3 7 

- 62.4 D(J.::28) of Q(J.::8) 3 2 

- 68.1 Q(J=8) 3 1 

- 98.0 M 1 5 

1H s12ectrum:neat 

7.3 D(J=22) 1 4 

5.8 Q(J.::8) of D(J.::7) 1 6 

1 2 3 4 5 
25. (CF ) CFCH CF CF 7 

3 2 2 2 
2" 

H 

c/ (41) 
/c "' 8 6

cF CF 
3 3 

19 
F s12ectrum 

- 60.7 T(J=2l) of Q(J.::ll) 3 6 

- 61.6 Q(J.::ll) of D(J=8) 3 8 

- 79.5 D(J=7) of T(J;:::7) 6 1 

-111.3 M 2 4 or 5 

-112.4 M 2 4 or 5 

-188.0 M 1 2 

1 
SQeetrum:neat H 

2.7 D(J.::17) of T(J=17) 2 3 

6.3 Q(J=8) 1 7 

26. 1,2 3 4 6 7 8 
(CF ) CH-CHCF CH CF (48) 

3 2 I 2 2 3 
5cH . 

30 

19 
F s12ectrum 

- 61.9 M 6 1,2 

- 67.0 M 3 8 

-106.4 AB(J;:::268) 2 6 



27. 

28. 

SHIFT/PPM COUPLING/HZ 

1 
H spectrum 

3.0 

3.4 

3.6 

3.9 

3 
CF

3 

M 

Sept. (J=8) 

s 
D(J=17) of D(J=7) 

1 2 1 4 6 1 8 
MeOCF=C-CHCF CH CF 

I / 2 3 

(49) 

OMe 

19
F spectrum 

- 56.5 

- 57.7 

- 62.2 

- 71.3 

- 75.3 

-106.2 

-106.5 

D(J=19) of D(J=11) 

D(J=9) of D(J=9) 

T(J=10) of T(J=10) 

Q(J=19) 

M 

AB(J=267) 

AB(J=263) 

1
H spectrum 

2.9 M 

19 

3.4 

3.9 

4.2 

4.3 

s 

s 
D(J=18) of D(J=7) 

D(J=17) of D(J=7) 

1,2 3 4 5 6 7 8 9 10 
(CF ) CH-CH(OPh)CF CH CF CH CF 

3 2 2 2 2 2 3 

F spectrum 

- 61.0 

- 62.0 

- 66.1 

- 90.2 

-104.7 

(CD ) CO 
3 2 

M 

M 

T(J=10) of T(J=10) 

M 

AB(J=264) 

INTEGRAL 

2 

1 

3 

1 

ASSIGNMENT 

7 

3 

5 

4 

E and Z isomers (54% Z) 

3 

3 

6 

1 

1 

2 

2 

4 

6 

6 

1 

1 

3 

3 

3 

2 

2 

(45b) 

3(Z) 

3(E) 

8(E and Z) 

2(Z) 

2(E) 

6(Z) 

6(E) 

7(E and Z) 

5(E and Z) 

1(E and Z) 

4 (E . or z) 

4(E or Z) 

1 or 2 

1 or 2 

10 

8 

6 



29. 

30. 

SHIFT/PPW COUPLING/Hz 

1 
H spectrum: 

2.8 

3.5 

4.9 

(CD ) CO 
3 2 

7.0-7.2 

M 

Sept.(J=8) 

D(J=16) of D(J=7) 

M 

3 
CF 

1 2 I 34 6 1 8 9 10 
PhOCF=C-CHCF CH CF CH CF 

1 2 2 2 2 3 
19 5 PhO 

F spectrum: (CD
3

l
2

CO 

- 56.2 D(J=14) of 0(14) 

1 

- 57.5 M 

- 61.7 T(J=10) of T(J=10} 

- 65.2 M 

- 68.0 M 

- 93.4 M 

-103.5 to-108.2 M 

H spectrum: (CD ) CO 
3 2 

3.0-3.4 

5.7 

7.1-7.5 

3 
CIF3 

1 2 
PhOCF CH -

2 

M 

M 

M 

5 7 8 9 10 11 
CHCF CH CF CH CF I 2 2 2 2 3 

6oPh 

19
F spectrum: (CD ) CO 

3 2 
- 61.7 T(J=10) of T(J=10) 

- 93.0 M 

- 94.3 M 

-103.5 to-108.2 M 

1
H spectrum: 

3.0-3.4 

5.6-5.8 

7.1-7.5 

(CD ) CO 
3 2 

M 

M 

M 

INTEGRAL ASSIGNMENT 

4 

1 

1 

5 

3 

4 

5 

(46b) (E and Z isomers) (1:1)) 

3 

3 

6 

1 

1 

4 

4 

4 

1 

10 

(47b) 

3 

1 

1 

1 

5 

1 

10 

3(E or Z) 

3(E or z) 

10(E and Z) 

2(E or Z) 

2(E or Z) 

8(E and z) 

6(E and Z) 

7,9(E and Z) 

4(E and Z) 

1,5 (E and Z) 

(Two diastereoisomers) 

3,11 

2 

9 

7 

4,8,10 

5 

1,6 



SHIFT/PPM COUPLING/HZ INTEGRAL ASSIGNMENT 

31. 1, 2 3 4 5 6 7 8 
(CF3 ) 2CH-CH(OPh)CF

2
cH

2
CF

3 
(45a) 

19F s2ectrum 

- 61.0 M 3 1 or 2 

- 61.3 M 3 1 or 2 

- 66.1 T(J=10) of T(J=10) 3 8 

-105.6 AB(J=264) 2 6 

1H s2ectrum 

3.0 M 2 7 

3.6 Sept. (J=8) 1 3 

5.0 D(J=15) of D(J=7) 1 4 

7.0 - 7.3 M 5 5 

32. 3 
1 2 CF

3 4 6 7 8 
I 

PhOCF c - CHCF
2

cH
2

cF
3 

(46a) (E and Z isomers) 

I 5
Ph0 

19F s2ectrum 

- 56.4 M 3 3 (E or z) 

- 57.6 M 3 3 (E or z) 

- 61.6 T(J=9) of T(J=9) 6 8 

- 65.4 Q(J=10) 1 2 (E or Z) 

- 67.4 M 1 2 (E or Z) 

-103.5 to -108.0 M 4 6 

1H s2ectrum 

3.0 - 3.3 M 2 7 

5.4 - 5.7 M 1 4 

6.7 - 7.5 M 10 1,5 



33. 

19F 
s~ctrum 

- 61.1 

- 61.6 

-100.6 to -103.3 

-103.5 to -108.0 

1H 
s~ctrum 

3.0 - 3.3 

5.4 - 5.7 

6.7 - 7.5 

34. 

19F 
s~ctrum 

- 59.4 

- 61.2 

- 65.9 

- 66.1 

-110.8 

-121.5 

1H 
s~ctrum 

3.6 

5.3 

6.8 

6.9 - 7.3 

COUPLING/HZ 

3 
CF

3 
1 2 14 s 1 a ~ 
PhOCF2CH IHCF2CH2CFJ 

6
0Ph 

M 

T(J=9) of T(J=9) 

M 

M 

M 

M 

M 

M 

M 

M 

M 

M 

AB(J=274) 

Sept. ( J=B) 

D(J=l8) of D(J=7) 

T(J=l4) 

M 

(47a) 

ASSIGNM.EW'i' 

(Two diastereoisomexs) 

3 3 

3 9 

2 2 

2 7 

3 4,8 

1 5 

10 1,6 

(50) 

3 9 or 10 

3 9 or 10 

3 1 or 2 

3 1 or 2 

2 7 

2 6 

1 3 

1 4 

1 8 

5 5 



SHIFT/PPM COUPLING/HZ 

la 2a 3a 4a 6a 

35. (CF
3

)
2

CFCH
2

CF
2 

CF
3 

\ c/ c = 

Sa/ "7a Sa 
F CHCF

3 

9a I 
CH30 

(52a) 

19 
F spectrum 

- 55.6 M 

- 58.6 D(J=22) of Q(J=S) 

- 73.S M 

- 74.9 M 

- 77.6 M 

- 92.1 AB(J=2S2) 

- 96.4 M 

- 9S.4 M 

- 96.S M 

-186.9 M 

1 
H spectrum 

3.0 M 

3.S s 
3.S s 
4.6 Q(J=7) 

4.9 Q(J=7) 

+ 

INTEGRAL ASSIGNMENT 

1b 2b 3b 4b 

(CF3 J2CFCH2CF2"' 

c 
Sb / 

F 

3 

3 

3 

3 

12 

2 

1 

1 

2 

2 

4 

6 

1 

1 

(S2b) 

6a 

6b 

Sb 

Sa 

1a,1b 

4b 

Sa or 

Sa or 

4a 

2a,2b 

3a,Jb 

9a,9b 

7a 

7b 

5b 

5b 



SHIFT/PPM COUPLING/HZ 

la 2a 3a 4a 6a 

36. 

"c/F' 
\ 8a 

7a CHCF
3 

9a / 
PhO 

(52c) 

19F spectrum 

- 54.9 M 

- 57.6 D(J=21) of Q(J=7) 

- 73.8 M 

- 75.1 M 

- 77.8 M 

- 94.3 AB(J=287) 

- 96.6 M 

- 96.8 M 

- 97.4 M 

-187.0 M 

1H spectrum 

2.9 M 

5.5 Q(J=6) 

5.7 Q(J=6) 

7.0 M 

7.3 M 

INTEGRAL ASSIGNMENT 

1b 2b 3b 4b 

(CF
3

)
2

CFCH
2

CF
2 

\ 
c 

5b I 
F 

3 

3 

3 

3 

12 

2 

1 

1 

2 

2 

4 

1 

1 

5 

5 

9b 
OPh 
I Bb 

7b CHCF 
3 I 

c 
\ 6o 

CF
3 

(52d) 

6a 

6b 

8b 

Sa 

1a,1b 

4b 

Sa 

5b 

4a 

2a,2b 

3a,3b 

7b 

7a 

9a 

9b 



SHIFT/PPM COUPLING/HZ INTEGRAL ASSIGNMENT 

37. 
7a. 

H 

c/ 

1b,2b 3b 0Me5b 

I 
(CF

3
)
2

CH-CH4b 

"'-. 
c 

" Sa 
+ 6b / 

CF
3 F 

(56a) (56b) 

19F spectrum 

-56.1 D(J=l9) of D(J=S) 3 Sb 

- SS.7 D(J=l7) of D(J=S) 3 Sa 

- 62.0 D(J=10) of Q(J=7) 3 1a or 2a 

- 65.3 D(J=10) of Q(J=7) 3 la or 2a 

- 63.3 M 3 1b or 2b 

- 64.6 M 3 lb or 2b 

-105.5 D(J=33) of Q(J=17) 1 6a 

-106.9 M 1 6b 

1H spectrum 

3.3 M 2 3a,3b 

3.4 s 3 5b 

3.5 s 3 Sa 

4.3 Broad s 1 4a 

4.6 D(J=25) of D(J=S) 1 4b 

5.5 D(J=33) of Q(J=S) 1 7a 

5.S D(J=17) of Q(J=S) 1 7b 



LU..Jo 

SHIFT/PPM COUPLING/HZ 

Sa 
OHe 

la l 4a 7a 
38. 

F" /CB"" 
H 

I + c = c c = c 
2a / \ I \ Sa 

Mea CF
3 

F CF
3 

3a 6a 

(57 a) 

19
F spectrum: neat 

- 58.5 D(J=20) 

- 59.3 D(J=ll) 

- 60.2 D(J=l7) of D(J=B) 

- 75.7 Q(J=20) 

- 80.3 Q( J=ll) 

-105.4 D(J=33) of Q(J=17) 

1 
H spectrum: neat 

3.5 s 
3.9 s 
4.7 Broad s 
5.5 D(J=33) of Q(J=B) 

2b 

INTEGRAL ASSIGNMENT 

!lleO 

" c <= 

lbF/ 

Sb 
MeO 

l 4b 
CH 

c/ ~c 
\ / 

3 

3 

6 

1 

1 

2 

3 

3 

1 

1 

CF
3 

F 

3b 6b 

(57b) 

7b 
H 

I 
c c 

3b 

3a 

\ 8b 
CF

3 

8a,8b 

1b 

1a 

6a,6b 

4a,4b 

2a,2b 

Sa,Sb 

7a,7b 



LU'+o 

SHIFT/PPM COUPLING/HZ INTEGRAL ASSIGNMENT 

39. Mixture containing (61),(62) and (63) 

4 5 6 7 8 

R
1

,R
2

, and R
3 

= CH
2

CH=CH
2 

or CH
2

CHICH
2

CF(CF
3

J
2 

19
F spectrum 

- 75.4 to - 77.6 M 

- 185.2 M 

1
H spectrum 

3.0 M 2 

4.2 M 2 

4.5 M 2 

4.7 M 1 

5.3 M 2 

5.8 M 1 

40. 1 2 3 4 5 6 7 
(68a) 

19
F spectrum 

- 53.8 AB(J=l91) 2 

- 72.1 M 6 

-115.9 M 2 

-122.4 AB(J=282) 2 

-186.4 M 1 

-191.6 M 1 

1
H spectrum 

5.0 D(J=43)ofT(J=16) of T(J=3) 

8 

7 

6 

4 

1 

5 

3 

2 

7 

1 

3 

4 

2 

6 

5 



LUJo 

SHIFT/PPM COUPLING/HZ INTEGRAL ASSIGNMENT 

41. 
1 2 3 4 5 6 7 8 9. 10 

(CF
3

)
2

CFCF
2
cF

2
CHFCF

2
CHFCF

2
I (68b) 

19F spectrum 

- 53.9 M 2 10 

- 72.2 M 6 1 

-116.2 M 2 3 

-121.0 to -121.6 M 4 4,7 

-186.4 M 1 2 

-192.3 M 1 9 

-210.3 M 1 6 

1 
H s2ectr~ 

4.8 - 5.3 M 5,8 

42. 1 2 3 4 

( CF 3 ) 2 
CFCF 2 CF 2 ............ F6 (69a) 

/ 
C=C 

5/ " 7 
F F 

19 
F spectrum 

- 72.4 M 6 1 

- 87.4 D(J=45) of D(J=45) 1 7 

-104.5 M 1 6 

-116.4 M 2 3 or 4 

-117.7 M 2 3 or 4 

-186.9 M 1 2 

-188.3 D(J= 120) of M 1 5 



SHIFT/PPM COUPLING/HZ INTEGRAL ASSISGNMENT 

43. 
1,2 3 4 5 6 8 

(69b) (CF 3 ) 2 CFCHFCF 2 ~F 

"-c=c 
7/ "9 F F 

19F spectrum 

- 73.2 M 3 1 or 2 

- 76.4 M 3 1 or 2 

- 89.7 D(J=54) of D(J=38) 1 9 

-105.7 M 1 8 

-114.9 AB(J=292) 2 6 

-188.0 M 1 3 

-189.8 D(J=80) of M 1 7 

-209.6 M 1 5 

1H spectrum 

5.3 D(J=43) of M 4 

44. 
1 2 3 

4
cF 

I ~ 7 8 
CF 3 CF 2 CF 2 C-CHFCF 2 I (80) 

51 
CF 3 

19F spectrum: neat 

- 50.0 M 2 8 

- 61.0 M 6 4,5 

- 81.8 T(J=14) 3 1 

-106.4 M 2 3 

-124.4 M 2 2 

-177.8 M 1 7 

1 
H spectrum: neat 

5.9 D(J=39) of D(J=17) of D(J= 4)- 6 



SHIFT/PPM COUPLING/HZ INTEGRAL ASSIGNMENT 

4 
45. 

CF 3 

1 2 3 I 6 7 8 9 10 11. 
CF 3CF 2 CF 2 C-CHFCF 2 CHFCF2I (82) 

~ 
5CF3 

19 
F spectrum 

- 53.7 M 2 11 

- 59.2 M 3 4 or 5 

- 59.9 M 3 4 or 5 

- 80.0 M 3 1 

-105.2 AB(J=320) 2 3 

-122.5 M 2 2 

-113.9 AB(J=250) 2 8 

-191.8 M 1 10 

-19 9. 7 M 1 7 

1H spectrum 

5.7 M 6,9 

4 

46. 
CF 3 

1 2 3 I 6 7 8 9 10 
CF 3 CF 2 CF 2 C-CHFCF 2 CH 2 CH 2 I (83) 

~ 
5CF3 

19F spectrum 

- 59.1 M 3 4 or 5 

- 60.1 M 3 4 or 5 

- 80.0 T( J=l3) 3 1 

-105.1 AB(J=313) 2 3 

- 106.5 AB(J=261) 2 8 

-122.3 M 2 2 

-196.2 M 1 7 

lH spectrum 

2.7 M,broad 2 9 

3.2 D(J=8) of D(J=8) 2 10 

5.4 D(J=41) of D(J=l9) of D(J=4) l 6 



SHIFT/PPM COUPLING/Hz INTEGRAL ASSIGNMENT 

47. 
1 2 3 4 5 6 
(CF 3 ) 2 CFCH 2 CF 2 CH 2 CH 2 I (89a) 

19F spectrum: neat 

- 79.1 D(J=6) of T(J=6) 6 1 

- 96.8 M 2 4 

-187.2 M 1 2 

1H spectrum: neat 

2.8-3.9 M 3,5,6 

1 2 3 4 5 6 7 8 
48. (CF 3 ) 2 CFCH 2 CF 2 CH 2 CH 2 CH 2 CH 2 I (89b) 

19F s12ectrum: neat 

- 78.8 D(J=6) of T(J=6) 6 1 

- 95.6 M 2 4 

-187.1 M 1 2 

1H s12ectrum: neat 

2. 0-4.0 M 3,5,6,7,8 

4 
49. CF 3 

1 2 3 \ 6 7 8 10 
CF3CF 2 CF 2 C-CHFCF 2 H 

5Jp 'C=C/ 
(85) 

19F s12ectrum 3 9H/ "Hll 

- 59.2 M 3 4 or 5 

- 59.9 M 3 4 or 5 

- 80.1 T(J=14) 3 1 

-105.1 AB(J=311) 2 3 

-105.2 AB(J=268) 2 8 

-122.4 M 2 2 

-196.1 M 1 7 

1H S[>ectrum 

5.3 D(J=41) of D(J=16) of D(J=5) 1 6 

5.7 M 1 10 or 11 

5.8 M 1 10 or 11 

6.0 M 1 9 



SHIFT/PPM COUPLING/HZ INTEGRAL ASSIGNMENT 
4 

1 CF 3 4 
so. 2 3 I CF . 

/ 3 6 CF 3CF 2CF 2 C F 

"-c=c/ (81) 
5/ ~ 7 F F 

19F spectrum 

- 60.8 M 6 4 

- 80.6 T(J=15) 2 1 

- 87.6 T(J=47) 1 7 

-100.5 M 1 6 

-106.9 M 2 3 

-124.7 M 2 2 

-179.8 D(J=ll1) of M 1 5 

51. 1 2 3 
4 

CF 36 7 8 
I FlO CF 3CF 2CF 2C CHFCF 2 

I " / (84) 5 CF3 C=C 

9F / '\.Fn 

19F spectrum: <CD 3 > 2Co 

- 60.3 M 3 4 or 5 

- 60.6 M 3 4 or 5 

- 81.2 T(J=14) 3 1 

- 92.1 M 1 11 

-105.3 to -107.0 M 2 3,10 

-112.2 AB(J=289) 2 8 

-123.0 M 2 2 

-189.2 D(J=ll3) of M 1 9 

-198.4 M 1 7 

1H spectrum: <CD 3 > 2Co 

6.3 D(J=39) of D(J=20) 6 



52. 

53. 

54. 

SHIFT/PPM 

19F SEectrum: 

- 79.4 

- 96.4 

-187.0 

1H spectrum: 

2.4 

5.1 

5.4 

neat 

neat 

4 

COUPLING/HZ 

D(J=6) of T(J=6) 

M 

M 

D(J=18) of T(J=14) 

s 

M 

CF 3 CF 3 

INTEGRAL 

(90) 

6 

2 

1 

2 

1 

2 

ASSIGNMENT 

1 

4 

2 

3 

7 

5,6 

1 2 3 l 6 1 
CF 3 CF 2CF 2C-CHFCHF2CCF 2CF 2CF 3 (93) (mixture Of diastereoisorners) 

51 I 
CF 3 CF 3 

19 
< CH3 l 2co F SEectrum: 

- 59.0 M 4,5 
6 

- 59.4 M 

- 79.9 M 3 1 

-104.4 to -117.1 M 2 3 

-121. 7 M 2 2 

-188.4 M 
1 6 

-197.5 M 

1 2 3 4 5 

Me 3 CCH 2 0CF 2 CF 2 H (96) 

19F sEectrum: neat 

- 42.9 T(J=9) 1 3 

-110.0 M 1 4 

1H sEectrurn: neat 

0.7 s 9 1 

3.3 s 2 2 

5.4 T(J=53) of T(J=3) 1 5 



SHIFT/PPM COUPLING/HZ INTEGRAL ASSIGNMENT 

55. 
1 

CF 3 3 4 H 

'-... c-.:.::.:c/ + 6 H 
2 

CF ( ""-e:- 7 C/ SbF = (97) 
5/ '\, 7 

6 

F C~F 

81 
F 

19F spectrum: SbF
5 

- 69.1 Q(J=8) 3 1 

- 62.6 D(J=30) of Q(J=8) 3 2 

+ 14.8 M Very broad 1 5 

+ 32.2 M 1 7 or 8 

+ 34.0 M 1 7 or 8 

1H spectrum: SbF
5 

7.3 M 4,6 

13c spectrum: SbF
5 

96.1 D(J=20) 6 

116.6 Q(J=278) 1 or 2 

117.4 Q(J=277) 1 or 2 

125.2 s 4 

146.0 Sept. (J=36) 3 

177.4 T(J=365) 7 

199.4 D(J=354) 5 

56. + ------ (100) (CF 3 ) 2 CFCH 2 CF-CH-CFCH 2 CF 3 SbF -
6 

1 2 3 4 5 6 7 8 

19F spectrum: SbF
5 

- 63.0 M 3 8 

- 79.4 D(J=6) 6 1 

-181.9 M 1 2 

+ 58.5 M 2 4,6 

1H spectrum: SbFS 

4.2 M 4 3,7 

7.6 M 1 5 



SHIFT/PPM COUPLING/HZ INTEGRAL ASSIGNMENT 

13c spectrum: SbFS 

35.7 s 3 

42.0 Q(J=36) 7 

89.0 D(J=250) of Sept. (J=29) 2 

111.7 s 5 

117.4 Q(J=287) of D(J=26) 1 

118.7 Q( J=281) 8 

209.3 D(J=368) 4 or 6 

210.5 D(J=373) 4 or 6 

57. + 
----- -------

(CF 3 ) 2CFCH2CF-CH-CF-CH-CFCH 2CF3 SbF
6 

(101) 

1 2 3 4 5 6 7 8 9 10 

19F spectrum: SbF
5 

- 64.1 s 3 10 

- 79.3 D(J=6) 6 1 

-183.1 M 1 2 

-8 to 0 Broad 3 4,6,8 

1H spectrum: SbF
5 

3.7 M 2 3,9 

6.8 M 1 5,7 

13c spectrum: SbF
5 

34.6 s 3 

40.5 Q(J=31) 9 

90.2 D(J=248) of Sept. (J=34) 2 

108.0 s 5 or 7 

108.8 s 5 or 7 

118.8 Q(J=287) of D(J=26) 1 

121.1 Q(J=278) 10 

190.1 M 
4,6,8 

195.4 M 



58. 

SHIFT/PPM COUPLING/HZ 

+ 
(CF 3 ) 2 CFCH 2 CF-CH-CF-CH-CF-CH-CFCH 2 CF 3 

\ 2 3 4 5 6 7 8 9 10 11 12 

19
F spectrum: SbF

5 

- 64.8 

- 79.4 

-183.4 

-13.3 to -30.0 

1
H b spectrum: s F

5 

3.0 to 4.4 

5.8 to 8.1 

13c spectrum: SbF
5 

34.0 

39.6 

90.3 

106.1 

107.0 

107.7 

119.7 

122.1 

178.6 

183.8 

185.5 

191.2 

M 

M 

M 

M 

M 

M 

s 

M 

D(J=216) of M 

s 

s 

s 

Q(J=286) of D(J=27l 

Q(J=279) 

M 

M 

M 

M 

INTEGRAL 

SbF -
6 

3 

6 

1 

4 

4 

3 

ASSIGNMENT 

(102) 

12 

1 

2 

4,6,8,10 

3,11 

5,7,9 

3 

11 

2 

5,7,9 

1 

12 

4,6,8,10 



SHIFT/PPM 

)9. 

19F spectrum: SbF
5 

+ 57.4 

+ 24.5 

- 62.3 

- 62.6 

- 68.8 

1H spectrum: SbF
5 

4.2 

7.5 

7.6 

13c spectrum: SbF
5 

43.9 

114.6 

126.7 

117.4 

118.2 

120.5 

149.4 

195.1 

211.9 

COUPLING/Hz 

D(J=207) of M 

D(J=207) of M 

M 

M 

Q(J=5) 

M 

D(J=25) 

SbF -
6 

D(J=26) of D(J=26) 

Q(J=33) 

s 

s 

Q(J=277) 

Q(J=278) 

Q(J=280) 

Sept. (J=36) 

D(J=367) 

D(J=375) 

INTEGRAL ASSIGNMENT 

(104) 

1 5 or 7 

1 5 or 7 

3 2 or 9 

3 2 or 9 

3 1 

2 8 

1 4 

1 6 

8 

6 

4 

1 or 2 

1 or 2 

9 

3 

5 or 7 

5 or 7 



SHIFT/PPM COUPLING/Hz INTEGRAL ASSIGNMENT 

,o. + + ------- -------
(CF 3 ) 2 CFCH 2 CF-CH-CF-CF-CH-CFCH 2 CF(CF 3 ) 2 2SbF

6
- (105) 

1 2 3 4 5 6 6 5 4 3 2 1 

19F spectrum: SbF
5 

+ 42.0 M 1 4 or 6 

+ 40.6 M 1 4 or 6 

- 79.0 D(J=6) 6 1 

-182.1 M 1 2 

1H spectrum: SbF
5 

3.5 M 2 3 

6.9 M 1 5 

Be spectrum: SbF
5 

41.4 s 3 

94.5 D(J=232) of M(J=36) 2 

122.1 s 5 

123.1 Q(J=287) of D(J=26) 1 

210.4 D(J=372) 4 

224.8 D(J=371) of D(J=41) 6 

61. 
1 
CFl H 

" / (109) C=C 

2 / " CF 3 CF=CHC0 2 Me 

3 

19F spectrum: neat 

- 59.2 D(J=33) of Q(J=8) 3 2 

- 65.7 Q(J=8) 3 1 

- 99.1 M 1 3 



SHIFT/PPM COUPLING/HZ INTEGRAL ASSIGNMENT 

62. 
1

cF 3H 

'\ I 
C1 C=C ( llO) 

2cf \ I 
J CF 2 -CH CF 3 

4 5 6 

19F s:eectrum 

- 58.9 T(J=23) of Q(J=8) 3 2 

- 65.6 Q(J=8) of D(J=2) 3 1 

- 69.0 T(J=10) of D(J=6) 3 6 

- 98.0 AB(J=275) 2 4 

1H s:eectrum 

4.6 T(J=17) of Q(J=6) 1 5 

6.8 T(J=l3) 1 3 

i3. 
1 2 

4 
(CF 3 ) 2 CF" /F 

3 /C=C""-.5 6 
H CF 2 CF3 ( 114) 

19F s:eectrum: SbF
5 

- 79.7 D(J=5) 6 1 

- 86.3 M 3 6 

-113.9 M 1 4 

-125.4 D(J=13) 2 5 

-188.8 M 1 2 

1H spectrum: SbF
5 

5.4 D(J=29) of D(J=21) 3 

64. 
1

cF 3 H 
3 

'-........C=C_/ 
5 6 

( 115) 
2 ~ '-......4 

CF 3 CF 2CF 2 CF 3 



SHIFT/PPM COUPLING/Hz INTEGRAL ASSIGNMENT 

19F spectrum: neat 

- 61.1 M 3 2 

- 68.5 Q(J=8) 3 1 

- 82.9 T(J=9) 3 6 

-113. 5 M 2 4 

-130.2 M 2 5 

1H spectrum: neat 

6.7 T(J=13) 3 

5. 

3 
1 CF 3 

6 7 8 F' I 4 
C=C-CHCH 2 CH 2 CH 3 (123) 

2F/ 51 
CF 3 

19F SJ2ectrum 

- 59.4 M, broad 3 3 

- 68.2 M, broad 1 1 or 2 

- 69.8 M 3 5 

- 72.2 M, broad 1 1 or 2 very 

1H SJ2ectrum 

1.0 T(J=7) 3 8 

1.4 M 2 7 

1.8 M 2 6 

3.1 M 1 4 

66. 
1 3 
F""' /CF 3 

C=C (127) 

2F / '\4 5 
CHCF 3 

6 I 
Ph 

19F SQectrum 

- 59.9 D{J=22) of D{J=10) of D{J=3) 3 3 

- 66.6 D{J=ll) of D(J=9) of D{J=3) 3 5 

- 69.5 Q{J=22) 1 1 

- 71.1 M 1 2 



SHIFT/PPM COUPLING/HZ INTEGRAL ASSIGNMENT 

1H sEectrum 

4.4 Q(J=9) of D(J=3) 1 4 

7.4 s 5 6 

4 
67. H 

6 3 2 
C0 2 CH 2 CH 3 ( 130) 

7F CH/ 

19F SEectrum 

- 59.2 D(J=14) of Q(J=5) 3 6 

- 74. 2 M 3 5 

- 79.8 Q(J=14) of D(J=7) 1 7 

1H s2ectrurn 

1.3 T(J=7) 3 2 

2.5 s 3 1 

4.3 Q(J=ll) of Q(J=7) 2 3 

4.5 D(J=7) of Q(J=7) 1 4 

3. 1,2 3 4 5 6 7 8 
(CF 3 ) 2 CFCHFCF 2 CH 2 0H (134) 

19F s:2ectrurn 

- 73.4 M 3 1 or 2 

- 76.3 M 3 1 or 2 

-121.1 AB (J=274) 2 6 

-187.8 M 1 3 

-211.7 M 1 5 

1H s2ectrum 

2.7 Broad 1 8 

4.0 M 2 7 

5.4 D(J=42) of D(J=l8) of D(J=9) of D(J=~ 1 4 



69. 

SHIFT/PPM COUPLING/HZ INTEGRAL ASSIGNMENT 

3 4 3 

,54 ·A, 5 1 
F 2 CF 3 F ~ CF 3 

( 131) 0(05 ( 132) + 0(05 
6 5 

Mixture containing 35% (131) and 65% (132) 

a denotes shifts for (131)~ band c denotes shifts for the stereoisomers 

of (132) 

19F s2ectrum 

- 58.2 

- 61.0 

- 61.5 

- 62.6 

- 66.6 

- 67.1 

- 73.3 

- 74.3 

- 77 0 2 

1H spectrum 

3.6 

4.8 

4.9 

5.2 

7.1 

D(J=18) of Q(J=4) 

AB(J=168) 

Q(J=18) of D(J=5) 

M 

M 

AB(J=153) 

M 

M 

M 

M 

D(J=6) of Q(J=6) 

Q(J=7) 

D(J=6) of Q(J=6) 

M 

3 

2 

1 

3 

3 

2 

3 

3 

3 

2 

1 

1 

1 

12 

3a 

5c 

4a 

3b 

3c 

5b 

la 

lb 

1c 

4b,4c 

2c 

2a 

2b 

5a,6b,6c 



SHIFT/PPM COUPLING/HZ INTEGRAL ASSIGNMENT 

1,2 3 4 5 6 
). (CFJ) 2 CH-CHCH 20H (13b) 

I 7
cF 3 

19F seectr'.11ll 

- 62o4 M 1 7 

- 65.6 M 1 1 or 2 

- 66.9 M 1 1 or 2 

1H seectrum 

2.1 broad 1 6 

3.1 M 1 4 

3.6 sept.(J=9)ofD(J=1) 1 3 

4.1 D(J=17)ofQ(J=9) 2 5 

1,2 3 4 6 
(CF 3 )

2
CH-CH-COMe ( 135) 

I 
SCF 3 

19 
F seectrum 

- 62.8 M 1 

- 63.7 M 1 1,2,5 

- 64.1 M 1 

1H seectrum 

2.5 s 3 6 

3.7 Q(J=8)ofD(J=7) 1 4 

4.0 M 1 3 

1 2 3 
~ . (CF 3 ) CH H 

2 \ / (139) 
c c 

5cF/ 
l 

'\.H4 

19 
F seectrum 

- 66.9 D(J=8)ofQ(J=1) 2 1 

- 70.4 sept. (J=1) 1 5 

1H seectrum 

3.8 sept.(J=8) 1 2 

6.2 s 1 3 or 4 

6.3 s 1 3 or 4 



73 

74 

SHIFT/PPM COUPLING/Hz INTEGRAL 

4 

1 2 3 
CF 3 

I 7 8 
CF

3
CF

2
CF

2
-C-CHFCF

3 
(143) 

s\ 
CF 3 

19 
F s2ectrum: neat 

- 62.9 M 6 

- 74.4 M 3 

- 83.6 T(J=14) 3 

-107.9 M 2 

-125.4 M 2 

-204.7 M 1 

1 
H s2ectrum: neat 

5.6 D(J=40)of M 
4 

1 2 3 
CF 3 

I 7 8 9 
CF

3
CF

2
CF

2
-C-CHFCF

2
H (142) 

sl 6 
CF3 

19F s2ectrum: (CD 3 ) 
2
CO 

- 60.9 

- 61.6 

- 81.3 

-106.1 

-122.8 

-128.0 

-212.5 

lH s2ectrurn: (co J > 2 CO 

6.0 

6.7 

M 3 

M 3 

T(J=14) 3 

M 2 

M 2 

AB(J'='300) 2 

M 1 

D(J=41)ofD(J=8)of D(J=2) 1 

T(J=5)ofD(J=10)ofD(J=2) 1 

ASSIGNMENT 

4 

4 

4,5 

8 

1 

3 

2 

7 

6 

or 

or 

1 

3 

2 

8 

7 

6 

9 

5 

5 



l.ZZ. 

SHIFT/PPM COUPLING/HZ INTEGRAL ASSIGNMENT 

4 cFJ 10 11 

12 3 167 -;D CF 3 CF 2 CF 2 -C-CHFCF
2 (144) 

51 8 9 12 
CFJ H 0 

19 
F sEectrum 

- 59.5 M 3 4 or 5 

- 59.7 M 3 4 or 5 

- 80.2 M 3 1 

-105.3 AB(J=300) 2 3 

-114.4 AB(J=264) 
2 8 

-122.8 AB(J=265) 

-122.6 M 2 2 

-200.2 M 1 7 

1H SEectrum 

2.0 M 
4 10,11 Oyer1apping 2.1 M sJ.gna1s 

3.9 M 2 12 

4.3 M 1 9 

5.8 D(J=39)ofD(J=22) 1 6 

16 1 3 
CF 3 /F 

"' c c 

/ "4 5 6 7 2CF CF 2 CF 2 CF 2 CF 3 (146) l 

19 
F sEectrum 

- 60.0 M 3 2 

- 62.7 D(J=26)ofM 3 1 

- 84.6 M 3 7 

- 99.2 M 1 3 

-116.6 M 2 4 

-124.8 M 2 5 

-129.4 l-1 2 6 



77. 

78. 

223. 

SHIFT/PPM COUPLING/Hz INTEGRAL 

CF3 10 CF 
1 2 3 16 7 80 I 

3 

CFJCF2 CF2 -,-CHF~F2 CFzCHF-~-CF2 cF2CFJ 

5CF H 0 H CF 
. 3 3 

(mixture of diastereoisomers) 

19F spectrum 

-59.4 M 

-60.0 M 

-80.2 M 

-105.2 AB(J=294) 

-114.4 AB(J=226) 

-122.6 AB( J=277) 

-122.4 M 

-122.7 M 

-200.2 M 

-200.9 M 

1H spectrum 

2.3 

4.6 

M 

M 

5.6 M 

1 -2 3 4 5 6 
(CF3 ) 2CCFzCF2cF2CFzCF3 +-

Cs 

19F spectrum: Tetrag1yme 

-41.7 M 

-81.8 M 

-91.9 M 

-112.6 

-122.0 

-126.5 N 

) 
) 
) 

) 
) 
) 
) 
) 
) 

3 

3 

3 

2 

2 

2 

1 

2 

1 

1 

(147) 

6 

3 

2 

2 

2 

2 

) 
) 
) 

) 
) 
) 
) 
) 
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ASSIGNMENT 

(145) 

4 or 5 

4 or 5 

1 

3 

8 

2 

7 

10 

9 

6 

1 

6 

2 

3 

4 

5 



SHIFT/PPM COUPLING/Hz INTEGRAL ASSIGNMENT 

4 
79. CF3 

1 2 3 l~cF; 6 
(148) CF3CF2CF2-c, F 

c=c/ 
I \ 7 5F OCH

3 

19F spectrum 

-60.7 M 6 4 

-80.8 M 3 1 

-106.8 M 2 3 

-124.5 M 2 2 

-174.6 M 1 6 

-179.3 D(J=l19) of M 1 5 

1 
H spectrum 

3.4 s 7 
4cF 

3 
80. 1 2 3 1 6 7 8 9 

CF3CF2cF2C-CFHCF20cH3 (149) 
I 5cF 3 

19F spectrum 

-59.3 M 3 4 or 5 

-60.2 M 3 4 or 5 

-79.7 AB(J=147) 2 8 

-80.5 M 3 1 

-105.3 AB(J=300) 2 3 

-122.6 M 2 2 

-199.5 M 1 6 

lH spectrum 

3.7 s 3 9 

5.4 D(J=41) of D(J=4) of D(J=4) 1 7 



SHIFT/PPM COUPLING/Hz INTEGRAL ASSIGNMENT 

4cF3 

81. 
1 2 3 51 6 7 
CF CF CF C-CEC-H (150) 

3 2 21 
4

cF 3 

19F spectrum (CD
3

) 2co 

-65.7 T(J=9) of T(J=9) 6 4 

-81.3 T(J=12) 3 1 

-109.6 M 2 3 

-123.4 M 2 2 

1H spectrum (CD
3

)
2
co 

2.9 s 7 

13c Seectrum 

57.0 M(J=30) 5 

65.8 s 6 

80.7 s 7 

109.1 T(J=272) of Q(J=38) of T(J=38) 2 

113.4 T(J=273) of T(J=33) 3 

117.6 Q(J=289) of T(J=33) of T(J=2) 1 

120.4 Q(J=288) 4 



APPENDIX TWO 

MASS SPECTRA 

The mass spectra of the compounds listed below were obtained by either 

electron impact (EI), chemical ionization (CI) or negative ion chemical 

ionization (NI) methods. Unless stated the mode of ionization was by 

electron impact. 

1. 5H,5H-Pentadecaf1uoro-2-iodo-6-methylheptane (17a) 

2. 7H,7H-Heneicosafluoro-2-iodo-4,8-dimethylnonane (17b) 

3. 5,5,7,7-Tetrahydroheptadecaf1uoro-2-iodo-8-methylnonane (18a) 

4. 2H,2H,6H,6H-Heptadecaf1uoro-l-iodo-3,7-dimethyloctane (19a) 

5. 2,2,4,4,8,8-Hexa-hydrononadecafluoro-1-iodo-5,9-dimethyldecane (19b) 

6. 2,2,6,6,8,8-Hexahydrononadecaf1uoro-1-iodo-3,9-dimethyldecane (20a) 

7. 2,2,4,4,8,8,10,10-0ctahydroheneicosaf1uoro-1-iodo-5,11-dimethy1-

dodecane (20b) 

8. 2,2,8,8-Tetrahydrotricosafluoro-1-iodo-3,5,9-trimethyldecane (19c) 

9. 2,2,4,4,10,10-Hexahydropentacosafluoro-1-iodo-5,7,11-trimethyl-

dodecane (19d) 

10. 3,3,5,5,7,7-Hexahydrotetradecaf1uoro-2-methyloctane (15c) 

11. 3,3,5,5,7,7,9,9-0ctahydrohexadecafluoro-2-methylhexane (15d) 

12. 3,3,5,5,7,7,9,9,11,11-Decahydrooctadecafluoro-2-methyldodecane (15e) 

13. 3,3,7,7,9,9-Hexahydroeicosafluoro-2,6-dimethyldecane (26) 

14. 2H,4H,4H-Undecaf1uoro-5-methylhex-(E)-2-ene (30) 

15. 2H,4H,4H-Undecaf1uoro-5-methy1hex-1-ene (29b) 

16. 3,5,5,7,7-Pentahydroterdecaf1uoro-2-methy1oct-2-ene (35) (NI) 

17. 2,6,6-Trihydroheptadecaf1uoro-3,7-dimethyloct-1-ene (40) (CI) 

18. 2H,4H,4H,6H,6H-Tridecafluoro-7-methy1oct-1-ene (29c) 

19. (Z)-3,5-Dihydrodecaf1uoro-2-methy1hexa-2,4-diene (37a) 

20. (E)-3,5-Dihydrodecaf1uoro-2-methylhexa-2,4-diene (37b) 

21. (Z)-2,6,6,-Trihydroheptadecaf1uoro-3,7-dimethy1oct-2-ene (41) 

22. 2,3,5,5-Tetrahydroundecaf1uoro-3-methoxy-2-methylhexane (48) 



23. 3.5,5-Trihydrononafluoro-1,3-dimethoxy-2-methylhex-1-ene (49) 

24. 2,3,5,5,7,7-Hexahydro-3-phenoxyterdecafluoro-2-methyloctane (45b) 

25. 3,5,5.7 0 7-Pentahydro-1,3-diphenoxyundecafluoro-2-methyloct-1-ene (46b) 

26. 2.3,5,5,7,7-Hexahydro-1,3-diphenoxydodecafluoro-2-methyloctane (47b) 

27. 2,3,5,5-Tetrahydro-Yphenoxyundecafluoro-2-methylhexane (45a) 

28. 3,5,5-Trihydro-1,3-diphenoxynonafluoro-2-methylhex-1-ene (46a) 

29. 2,3,5,5-Tetrahydro-1,3-diphenoxydecafluoro-2-methylhexane (47a) 

30. 3,6,7-Trihydro-6-phenoxyhexadecafluoro-2,7-dimethyloct-2-ene (50) 

31. 3,6-Dihydro-1,3-diphenoxytetradecafluoro-2,7-dimethylocta-1,6-

diene (51) 

32. 2,6,6,-Trihydro-2-methoxyhexadecafluoro-3,7-dimethyloct-3-ene (52a) 

33. 2,6,6-Trihydro-2-phenoxyhexadecafluoro-3,7-dimethyloct-3-ene (52c) 

34. 2,6,6-Trihydro-2,4-diphenoxypentadecafluoro-3,7-dimethyloct-3-ene (54) 

35. 2,3,6,6-Tetrahydro-2,4-diphenoxyhexadecafluoro-3,7-dimethyloctane (53) 

36. (Z)-2,4,5-Trihydro-4-methoxydecafluoro-5-methylhex-2-ene (56a) 

37. 3,5-Dihydro-1,3-dimethoxyoctafluoro-2-methylhexa-1,4-diene (57) 

38. (1,1,2,3,3-Pentahydroheptafluoro-2-iodo-4-methylpentyl) diallyl 

isocyanurate (61) 

39. Bis(l,l,2,3,3-Pentahydroheptafluoro-2-iodo-4-methylpentyl) allyl 

isocyanurate (62) 

40. Tris(l,l,2,3,3-Pentahydroheptafluoro-2-iodo-4-methylpentyl) 

isocyanurate (63) 

41. 2H-Tetradecafluoro-l-iodo-5-methylhexane (68a) 

42. 2H,4H-Heptadecafluoro-l-iodo-7-methyloctane (68b) 

43. 4H-Tridecafluoro-5-methylhex-l-ene (69b) 

44. 2H-Hexadecafluoro-l-iodo-3,3-dimethylhexane (80) 

45. 2H,4H-Nonadecafluoro-l-iodo-5,5-dimethyloctane (82) 

46. 1,1,2,2,4-Pentahydrohexadecaf1uoro-1-iodo-5,5-dimethy1octane {83) 

47. 1,1,2,2,4,4-Hexahydrononafluoro-l-iodo-5-methy1hexane {89a) 

48. 1,1,2,2,3,3,4,4,6,6-Decahydrononafluoro-1-iodo-7-methyloctane {89b) 



49. 1,1,2,4-Tetrahydrohexadecafluoro-5,5-dimethyloct-1-ene (85) 

50. Hexadecafluoro-3,3-dimethylhex-1-ene (81) 

51. 4H-Nonadecafluoro-5,5-dimethyloct-l-ene (84) 

52. 1,1,2,4,4-Pentahydrononafluoro-5-methylhex-1-ene (90) 

53. 5H,6H-Octacosafluoro-4,4,7,7-tetramethyldecane (93) 

54. 2,2,-Dimethylpropyl-1,1,2,2-tetrafluoroethyl ether (96) 

55. Methyl 2H,4H-heptafluoro-5-methylhexa-2,4-dienoate (109) 

56. 3H,5H-5-Chloroundecafluoro-2-methylhex-2-ene (110) 

57. 3H-Tridecafluoro-2-methylhex-2-ene (115) 

58. 1,1,-Difluoro -2,3-bis(trifluoromethyl )hex-1-ene (123) 

59. 3H-Octafluoro--3-phenyl-2-methylbut-1-ene (127) 

60. 3-Ethoxycarbony1-6-fluoro-2-methy1-4,5-bis(trifluoromethy1)-4H-

pyran (130) 

61. 6,7-Benzo-2-f1uoro-3,4-bis(trifluoromethyl)-1,5-dioxacyc1ohept-2-ene (131) 

62. 6,7-Benzo-2-dif1uoro-3,4-bis(trif1uoromethyl)-1,5-dioxacycloheptane (132) 

63. 1,1,3-Tetrahydrodecafluoro-4-pentan-1-ol (134) 

64. 1,1,2,3-Tetrahydrononaf1uoro-2,3-dimethylbutan-l-ol (136) 

65. 1,1,1,3,4-Pentahydrononafluoro-3,4-dimethy1pentan-2-one (135) 

66. 1,1,3-Trihydrononaf1uoro-2,3-dimethy1but-l-ene (139) 

67. 2H-Heptadecaf1uoro-3,3-dimethy1hexane (143) 

68. 1H,2H-Hexadecaf1uoro-3,3-dimethylhexane (142) 

69. 2-(2H-Hexadecaf1uoro-3,3-dimethylhexyl)tetrahydrofuran (144) 

70. 2,5-Bis(2H-hexadecaf1uoro-3,3-dimethy1hexyl)tetrahydrofuran (145) 

71. Hexadecafluoro-2-methy1hept-2-ene (146) 

72. (E)-1-1Methoxypentadecafluoro-3,3-dimethylhex-1-ene (148) 

73. 2H-1-Methoxyhexadecaf1uoro-3,3-dimethy1hexane (149) 

74. lH-Tridecafluoro -3,3-dimethy1hex-l-yne (150) 
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8.97 

8.28 
11.28 
o.sJ 
•. 11 

8.U 

0.8] 
0.84 

4.69 
8.46 

•••• 
0. 11> 

e. OS 

7. 58 
e. so 
8. e• 
0. u 
0. 2J 

e. 29 

e. eJ 

0. 06 
1. I>) 

0 19 

1. Gil 

0. 87 

e. 1• 
19 71 

1. 59 

e .• ., 
1. 29 
e. 14 

1. fib 

e. e4 
s. 4141 

2. ll 

No 6 

]26.91 

)27.92 

)211.9] 

)]2. 91 

)J4.91 

]]4.98 

3:14.111 

:ne. u 
ll9.92 
]48.02 

]41. 84 

l4Z.H 

3".92 
]46.98 

318.91 

U2.U 

Ul.IJ 
JU. 98 

:an.•• 
JU.tl 

JU.Il 
170.16 

)72.'12 

171. 94 
JM.n 
]81.98 

)112. '11 

)1]. 92 

184 Dl 

liS. 82 
)86. 88 

)1111. 9l 

n8. 01 

ns. 01 

""· 90 
1181. 91 

402 .•• 

432. s• 
414. 711 

IllS. 78 

440 ,. 

441. 92 

458 57 

·~·- 89 
451. 85 

1152. 29 

4S2. 41 

452. 98 

s 1 

5.86 

6.1>0 

o.u 
0.21 

a. t4 

e.os ..... 
e. 111 

8.85 
1.47 

•. 11 
&.86 

8.114 

•. S7 

1.84 
8. ]2 

e. 111 

a. u 
•. l2 

8.26 
•. 18 
•. lS 

e.u 
8.84 ... , 
8.04 

0. 65 

•.• 7 

•••• 
• 25 

0 12 ..... 
0 $7 

(j 87 

0 ) .. 

0. 18 

Q 8€1 

Q 18 

• 21 
• e7 

0 78 

0 04 

1 14 

0 u 
8 OS 

e u .. )•, 

11511 42 

454.88 

455. 79 
870. 89 

471.1!'1 

472.'f8 
47l ,, 

111!9. S7 
4'18 21 
498.48 
4'1'8.08 
691. 1111 

692. " 
!5011. 14 
Soli. U 

see. a• 
519.94 
511.97 

512. &4 

U%. 97 

548. Bl 

!UB. 78 

5711. DO 

'"-" 
6111. 79 

619. 77 

619. 09 

lo)7. 79 .,. .. 

19=SEP 

e.t4 

3.811 

0.28 
1 .• , 

•. 81 

$.47 

8." 
e.n 
e. 04 
8.117 

9.01 

1. 73 
•. 15 
e.e:z 
o. OJ 
8.85 

!\b.ltb F 
7. )8 F 

8.04 

8.50 
fi.Ol 

o. o& 
e es 
e. t9 

•. 49 

O.t4 
•. tJ 

1. 77 

e zo 



19-SEP 
@sQ 

;~--~~~--------------~~---------------------------------------r----~1~==~---, 
co 

FIASS 

27.9'P 

]$. 9'P 

]1. 9(1 

ll.M 

H. 01 
45. $0 

58.99 

17 ... 
&9.01 

oll. <J9 

dol ... ..... 
69. 98 
74.99 

"·" ..... 
••••• 
H.98 

"-"6 , ..... 
181." 

IH. 97 

1 ...... 

le7. 98 
1 ... ,., 

10"9 .,., 

Ill. 96 

112.96 

Ul. 97 

IU. 90 

IU.H 

IU. 9J 
116. 97 

117. 02 

117 19 

118. 91> 

11'1. 98 
129. 99 

12]. 96 

121l. 97 

125.97 

126. 86 
12A.. 90 

127.96 
L28.9e 

Ln. &7 

LM.ft 

l! BASE 

7. ll 
I. 19 
I. 84 

I. 22 

2. IS 
).64 

7.1ll 

I. 41 

7. Ill 

20. 11 

J. Ul 

1 3 

IOO.ee 0 
1.50 
).25 
). 97 

2. 19 
... 71 
1.61 

2. It] 
I. 48 

•. 16 
•. lB 

8.41> 

2. 1>6 

1.61 

•. 88 

e. Z9 

28.87 

I. l7 

1. :Zl 
•.• 6 

8.86 

•.• 6 
8.414 
$.82 
2. 99 

•. l6 

e. sa 
0. 1$ 

ti. ltB 

1. 1B 

1>. 34 F 

2. 75 F 
2.]] 

•. 78 

•. 14 
!i.48 

lll. 90 
U2.77 

ll:Z. 97 

1ll.96 
IU. 96 
U5.96 
146.97 

147.97 

149.95 
150. 96 

151. 87 

151. en 
152.117 

152.99 
l§]. 25 

153. 4e 
15 ]. 52 
153. 62 

ISl. 68 
15]. 95 

154.94 
155. 95 

156. 94 
157. 92 

158. 92 

159.95 

16G.95 

161. 92 

162.94 
174.87 
175. 91 
176.47 

176.86 
177. 89 
188.94 

182.94 
194. 95 
195. 95 

191>.47 

196.96 

19111. 94 
199.9$ 

299. 9<1 

282.86 

296." 

297. 98 
2ea.a9 

2 3 

0. 82 

0.83 

78.1lO 

2.67 
64.06 
2.83 
8.54 

8.8<1 

0. 81 

0.94 

8.85 

e.e8 
e. 25 

8.84 
8.83 
e.e4 
0.84 
$.04 
1!1.83 

8. 11 

8. e5 

e. 97 

1. 55 

0.47 

1. 12 
$.99 

8.86 
$.84 

21. 68 
:Z.It8 

8.116 
0.04 

28. 3Q 

0. 28 

1. 53 

II. 92 
II. 53 

1. eo 
e. o6 

•. &3 
e. 111 

0. 18 
•. ]4 
•. )1 

2.22 

•. 118 

1. 58 

212.9) 

213. 94 
214. 95 

226. 94 

227.95 

2211.92 

::&.99 
~)8. 9l 

2ll.fM 

231. 15 
2]1. l4 

2JI.!H 

232.92 
2Jil.9<:1 

2l4.2"e 

2l4. 92 

2lS. 9] 

2:Jb. 45 
2:U. 9] 

237. 9] 

2M. 't4 
239. 94 

240.04 
2S6. 'll 

:!58. 66 

259. 95 
262.92 
26]. 96 
264 9] 

267. 95 
268.93 

278 H 

272 95 

274. 92 

276 92 
277 93 

288 91 

~82 92 

2'111 .•• 

~"7 s• 
2<17.91 

2fl8 90 

)\98. 88 

l$1. 93 
Jo; 93 

].l 9'1 . ., 

21. 3<1 

1. 12 
0. 11> 

IS. U 

1. ::!4 

8.811 

0.04 

0. 14 
O.Bl 
0. ~2 
B. 83 

•••• 
100.88 FO 

12. 46 F 
8.8] 

8.28 

•. 64 
0.07 

e. u 
•. 12 

7.67 

8.67 
4. 70 
1. 61 

2. 38 

8. 15 
1.77 

•. 18 

8. 11 
0. 12 

0. 28 
e. le 
0.28 
0 07 

II. 53 

" 75 
0. OJ 

1. 1 B 

1>5 26 

e •J 
4. 78 
e 11 

"· 17 
0. 05 

•. d . ] .. 

3 .. 7 92 

3.8. 93 

312. 92 
314. 87 

liB. 91 

328. 93 

322.95 

321>.92 
327. 93 

332. 93 
]36.83 

335. 83 

338.91 

l<IO. 84 

3116. 92 

518.87 
51'1.87 
SM.ze 
Sll. 82 

U7.811 

U4.17 
111.88 

116.11 .... ., 
17J.211 
17J. 18 

574. 98 
575. 9] 
5711.9) 
1>18.84 

t.l2. s• 
1>62. 79 
682. 82 
lt8l. 81 

0 89 

0.119 

•••• 
•. 14 

0.89 

•. 11 

8. 21 

2. 72 
e. 31 

0. 111 

1. 98 

o. 14 
8. 1] 

0. ll 

1. 63 

2. 61 
•. 38 
8. es 
1.29 

8.88 

4. ]6 

•••• 
B. 81 

•••• 
B.U 

•••• 
28. 99 F 

l. 4] F 
$. 24 
•. 83 

0.22 
0. 86 

2. 20 

0. ]5 

s 
6 3 



5 

I 

5 

9 

~XYilco nl 
~@ 1=1~ 

G'S 

] 145 

j 
95 

119 

J I 
I 

ill ll ll 
188 

llgd= SS S -IIDIH11 lli'l-il IV 42 Ill[ [I • 
~ISS TIC=4351511!88 Rent: Sys:APS£ 

Iii:= IF ta:Pm 
~ 

283 

Ill 

195 

213 

,!,! .l .J. J ch .1 .o..l 

288 368 488 SBB 

't411111 X Be•• 
27.91 B.OB 194.96 20.21 26:2. 95 B. 49 
30.90 1. 6:3 19~. 96 1 06 263. 9~ 0. 94 
31. 90 2.06 198.96 0.05 264. 94 0.07 
«. 94 ::2. 73 :200.95 0. 44 268. 94 0. 93 
~- 91 4. 3~ :20:2. 87 0. :29 269. 93 0. 0~ 
63. 95 22. 84 204.94 0. 14 270. 86 :2. 36 
68. 95 100.00 0 20~.96 0 08 271. 86 0.30 
69.95 2.0:2 :206. 96 0.6~ 274.9~ 0. 93 
7 .... 97 :3. 4~ :207.84 0.03 :275.96 0. 13 
92. 97 1. 24 207.95 0. 06 276.&5 0. 0:5 
9 .... 98 :26.81 208. 86 1. 90 279. 95 0.:2 ... 
99. 97 5.34 209.84 0. 04 279.46 0. 06 

100. 97 1. 04 :211.94 0 19 280. 94 0. 37 
11:2. 97 13.67 21:2. 95 12. :21 :281. 89 0.03 
118. 96 :a. eo :213. 96 0 98 2131.98 0. 05 
1:24. 97 1. 06 :217.96 0 07 213:2. 45 0. 04 
1:25.98 1. 81 :218. 95 0 68 :28:2. 96 3:2. 10 
126. 88 9.:22 :219.97 0 04 :283. 96 :2. 09 
130. 96 1:2. 18 :2:20. 87 0 31 :2134. 96 0. 06 
13:2. 98 34. :23 :2:23. 93 0 04 :286. 96 0. 11 
13-4. 00 1. 1:5 :224. 10 0 04 :2138.91 0. 08 
143. 96 :2. 50 224. :29 0 02 :290. 86 0. 10 
144. 97 4:5. 83 224. 34 0 04 :29:2. 94 0. 04 
145. 97 2. 05 :2~4. 43 0 04 :294. 96 1. 59 
149. 9:5 1. 43 224. 56 0 03 29:5. 96 0. 10 
1 :x>. 96 3. 63 :2:24. 70 0 04 300. 95 0. 04 
1~. 96 14. 49 :2:24. 95 1 54 301. 85 0. 05 
1o3. 96 1. 09 2:25. 96 0 18 30:2. 88 0. 20 
167. 96 0. 16 2:26. 86 0 37 304. 96 0 05 
1b8. 9:5 3. 16 2;;:s 96 0 15 306. 96 0. 13 
169. 96 0 13 230 95 1 1:< 312. 95 0. 85 
170.87 0. 10 231. 71 0 03 313. 95 0. 1:< 
171. 88 1. :<9 232 96 100 00 0 320. 86 0 22 
17';;.. 89 0. 03 233. 44 0 04 3:< 1. 86 0. 07 
173.94 0. 05 233. 54 0 04 3';;.4, 95 0. :lO 
174. 96 3. 99 233. 97 5. q1 325. 96 0. 1:2 
175. 97 1. 00 234 97 0 14 326. 94 0. 04 
176.86 25. 35 236. 96 0 3:2 330. 86 0. 05 
177. 87 0. 29 237. 95 0 03 330. 94 0. 05 
lBO. 9::1 11. 93 238. 01 0 04 332. 9:5 0. 07 
181.96 0. ::17 238. 87 0 19 336.94 0. 04 
182. 97 5. 69 240. 87 0 38 338. 91 0. 07 
193. 95 1. 13 24:2. 95 74 340. 87 0. 56 

No 8 

l 
lidS 788 

412. 94 0 91 
413. 96 0. 11 
424. 94 0.04 
4&!6. 97 0 03 
432. 94 0. 15 
438. 9~ 0 04 
45:2. 93 0. 05 
4:59. 02 0. 10 
468. 97 0. 16 
488. 96 0. 4:2 
489. qq 0.09 
508. 97 0. 71 
509. 97 0. 08 
::1:26 97 0. 10 
~27. qq 0. 05 
:538. 96 0. 14 
540. ea 0 06 
:556. 97 0. 10 
:557 95 0 06 
5:58 96 0 56 
559 98 0 09 
:566 85 0 0::1 
:576 96 0 5:2 
577 95 0 10 
:596 43 0. 02 
596 97 , 66 
:597 96 0 80 
:598 98 0 06 
68~ 00 0 04 
704 90 0 :<a 
705 97 0 04 



Gf!54Xllt51o n1 Bgd=W 10-~011-QJ rul-5•0 10 27 7ft£ El• 
Rpti=Q l=IIW lb=m TIC=59612m Rent: Sys:R¥5[ 

et= IStJ Cd : PfiC2 
- li9 233 0 

133 

5 

8 

35 

38 95 17/ 

113 
28 

213 263 283 
IS 

195 661 
18 

5 

IL I IL ~~ j .u .l .J _l 
8 In !I, j Jl IlL l t 

188 2BB 388 488 SBB 61lB 788 

l'la•r. ll: Ba•e 
~7.94 7. 11 164. 14 1. 03 238. 19 0. 21 341. 16 0. 29 
30.94 1. 1:2 164.41 0.02 239. 20 1. 21 343. 24 0. 05 
31. 94 1. 71 165. 13 3.47 240. 20 0. 13 345.26 1. 02 
38. 9<i 1. 06 166. 16 0.27 241. 11 7. 14 346.26 0.09 
44. 99 2. 78 168. 15 0. 12 242. 11 0. 22 347.28 4. 13 
50. 98 :5. 93 
59~03 3.03 

169. 14 3. 33 243. 18 1. 53 413. 30 1. 17 
170. 15 0.29 244. 19 0. 29 .414.30 0. 11 

64.03 21. 44 
69. 03 100.00 0 
70.04 1. 64 

171. 13 0.08 244. 43 0. 03 433. 31 0. 51 
172.06 1. 16 244. 60 0. 05 577.40 0. 69 
173.07 0.09 245. 20 1. 63 578.43 0. 09 

75.06 :2. 4:2 174. 11 0.03 262. 21 0. 0:5 ~~- 4~ 0. 48 
77.08 2. 31 174. 16 0.04 262.88 0. 03 54r.Z. 42 0. 11 
95.09 :29. 37 175. 1:5 2. 53 263. 20 15. 91 597.40 0. 11 

100.08 4. :58 177.06 27.91 264. 20 1. 12 ~1. 21 0.03 
101.09 1. 00 178. 08 0. 31 275.21 0. 85 ~1- 40 0. 04 
108. 11 1. 78 181. 14 12. 05 276.21 0. 09 ~:2.31 0.03 
113. 10 21. 93 182. 15 0. 57 ';;.77. 2';;. 8. 36 .!.0:2. 48 0. 04 
114. 11 1. 11 182. 62 0. 03 283.22 16. 91 6-0:5.3:5 0. 09 
119.10 21.06 183. 16 5. 54 284.22 1. 11 022. 27 0. 49 
126. 12 1. 34 191. 08 2. 19 :28:5. 17 0. 08 641. 46 4. 16 
127. 01 :5. 33 F 
1:27. 13 3. 18 F 

192. 10 0. 05 295. 23 1. 35 6-4:2. 45 0. 66 
193. 14 0. 30 296. 23 0. 10 6-43. 40 0. 06 

128. 11 1. 88 194. 16 1. 01 297. 24 0. 28 659. 45 0. 18 
131. 10 B. 53 194. 62 0. 02 301.25 0. 12 bet. 44 12. 33 F 
133. 12 86. 96 
134. 1:2 :2. 84 
139. 14 1. 26 
144. 12 1. 3:3 
145. 13 43. 91 
146. 13 1. 90 

194. 70 0. 02 305. 19 0. 07 bb;!_ 47 :i!. 14 F 
194. 82 0. 05 307. 24 1. 05 603. 47 0. 16 
195. 17 12. 13 308. 26 0. 33 699. 41 0. 02 
196. 17 0. 68 308. 56 0. 03 705. 40 0. 05 
197. 18 1 53 308 71 0. 04 709. 50 0. 03 
21:i!. 16 0 19 309. 26 0. 30 719.44 0. 25 

1:30. 1:2 1. 34 213. 17 16. 50 311. 24 0. 08 747. 52 0. 10 
151. 12 4. :54 214 18 1. 08 313. 23 0. 56 749. 43 0. 10 
152. 12 0. 18 225. 18 1. 22 314.22 0. 07 76.,. 52 1. 89 
153. 05 0. 21 226. 18 0. 14 314. 33 0.0:2 
155. 1:2 0. 12 227. 19 8. 72 315. 15 0.05 
156. 13 0.09 233. 19 99. 88 315. 23 0. 0~-
157. 14 1. 07 233. 76 0. 03 319. 25 0. 10 
1:58. 11 0. 16 233. 88 0. 02 321. 21 0.07 
159. 15 1. 16 234. 19 5. 29 325. 25 0. 45 
160. 17 0.05 235. 16 0. 18 326. 23 0.07 
162. 13 0. 26 :236. 14 0. 09 327.2:5 3.06 
~~., t4 t'\ a1 ~~- -~ 



' 

-

s~ 

s 

Ill 

MASS 7.HT, 
BASE 

67.04 0.62 
68.90 0.34 
68.96 1.16 
70. y 7 o.~t 

78.93 0,31 
80.94 0.28 
85.05 0.45 

112.88 0.34 
132.85 1.10 
\44.89 . 0-.48 
196.7~ 0.34 
232.65 1.38 
360.42 0.42 

QGaAPSlEV rEI 
STI'l8 

~~ 

I 
189 

I ... 
2BS 

No 10 

2 3 

I 
388 

83-MAR-BS 
ia34 

3539 

489 



Gf!BS0365o 
Bpll=0 

58 

ass 
32.92 
38. 92 
39. 93 
44.90 
50.89 
56.89 
ea. 90 
as. eo 
63.87 
64.88 
68.84 
74.84 
76.8!5 
82.84 
88.84 
94.82 

107. 81 
108.81 
112.79 
126. 79 
127. 79 
132. 78 
133.77 
144.76 
162. 73 
'76. 74 
.91. 73 
96. 70 
97. 70 

!12. 69 
!27. 71 
!32. 69 
:33.69 
:40. 72 
60.74 
76. 70 
96. 67 
00.62 
20.64 
40.67 
4!5. 75 
54. 70 

nl Bgd=359 21-stP-88 ll=S+ft=CG-29 
1=1~ HCl=424 T1C:C&S49GS92 

133 

69 

19/ 

188 158 288 

'l. Base 
2.20 360. 69 0.50 
2. 66 361. 71 0.06 
2. 99 384 29 0.05 
!5.31 384.80 0.05 
4.08 404.86 0.58 
1. 36 405.89 0.07 
9.67 424.96 0.04 
2.09 

16. 74 
1. 99 

63.48 
1. 90 
3. 62 
1. 19 
1. 56 

10.49 
1. 44 
5. 14 

16. 25 
1. 36 
7.69 

100.00 0 
3.36 

15.26 
3.87 
5. 78 
2. 26 

25.!55 
1. 53 
5. 60 
7.4!5 

42.47 
2.33 
2.25 
1. 60 
4.88 

10. 18 
0.04 
0.03 
0.42 
0.05 
0. 10 

C!o 

233 

258 

Sys=Drol 
Cal=Prn=&/ 

0 lt!?O •o 

29/ 

388 

llR!! 
H!ISS 

No 11 

361 485 

358 488 458 



GA40 I2J 
mt.llLJ~ 

N 
ID 

ID 
8 

Mass 
;!7.99 
31. 97 
32. 99 
39. 00 
40.01 
44.99 
50.97 
59. 00 
60. 00 
63. 98 
64. 98 
68.96 
76. 98 
88. 98 
94. 97 

100.97 
101.97 
102. 99 
107.97 
108. 98 
109. 97 
112.95 
113. 95 
114. 95 
118.94 
120. 96 
122. 98 
1;!5. 94 
126. 96 
127. 97 
1;!8_ 97 
131. 94 
132. 85 
132. 95 
133. 95 
136. 93 
138. 95 
143. 93 
144. 94 
145. 94 
146. 96 
149. 94 
150.94 
152.96 
156.94 
157.95 
158.95 
159.95 

" Base 
4 34 

05 
1 01 
1 24 
2 61 
2. 41 

72 
4 o6 
2 96 
9 56 
1 52 

31 05 
1 90 
1 03 
5 77 
0 37 
0 10 
0 22 

85 
6 68 
0 25 

12 35 
0 49 
0 18 
0 33 
0 21 
0 08 
0 12 
0 95 
4 95 
0 58 
0 14 
0 07 

100 00 
3 18 
0 13 
0 51 
0 I I 
8 36 
0 32 
0 29 
0 13 
0 09 
0 84 
0 52 
0 08 
0 81 
0 07 

No 12 19-SEP 
~·@ 

2 

258 

162. 93 2. 27 304 9J 1 35 
163. 93 0. 12 305 95 0 O'i' 
164. 94 0. 13 316. 9::? 0. 18 
168. 93 0. 30 322 90 0 11 
171. 95 0. 16 324 92 0. 32 
172. 96 0. 49 340. 89 1. 83 
174. 93 0. 07 341 90 0 13 
176.94 8. 98 355 92 0 20 
177.94 0. 50 360. 89 1 98 
18:2. 93 0 68 361 ee 0 18 
188. 93 0. 39 404. 89 0 87 
190. 96 0. 07 405. 8" 0. 10 

191. 96 5. 53 418 93 0. 11 

192. 97 0 36 424. 93 0. 07 

194. 93 0. 22 468. 89 1. 10 

196. 94. 37 71 469. 89 0 13 

197 95 2. 06 
202. 95 0 08 
206. 93 0 39 
208. 93 0. 28 
212. 91 4 78 
213. 91 0 19 
216 95 0 31 
220 92 0 12 
222 94 0 31 
226 92 f) 29 
227 93 5 56 
228 93 0 39 

. 232 91 46 6C/ 
233 91 2 52 
240 93 4 73 
241 93 0 31 
246 92 0 27 
252. 93 0 09 
255 95 0 67 
256 91 0 32 
258. 91 0 4'" 
260 93 4 86 
261 93 0 41 
272 92 0 30 
276 90 7 81 
277. 91 0 58 
284 93 0 18 
290 92 0 16 
291 92 2 49 
292 92 0 I 'I 
296. 90 13 52 
297 '11 I 0:1 



) 
!l 

d 

8 

MASS 

27.23 
28.10 
28.97 
29.00 
30.87 
30.89 
31.97 
33.08 
34.11 
38.97 
39.82 
40.97 
42.06 
43.13 
44.10 
45.14 
45.16 
50.98 
55.20 
56.19 
57.12 
57.18 
59.05 
64.16 
65.14 
67.11 
68.94 
69.02 
69.89 
70.00 
71.08 
75.08 
77.08 
81.07 
83.14 
85.14 
91.00 
92.99 
9~5. 03 
95.11 
99,87 

113.04 
118.95 
119.04 
125.05 

S1A: 

G~ 
! 3 

9S 

1 3 

G 

I kl I L n I I ~I I II L Ill I 

%HT. 
BASE 

4.08 126.05 1.27 
94.79 127.05 2.48 
12.61 128.03 2.93 
3.74 131.02 4.25 
2.17 133.09 93.69 
2.17 134.10 4.28 

99.10 145.08 39.61 
2.00 146.09 1.49 
1.72 159.08 1.80 
4.11 163.10 16.19 

23.87 165.11 1.63 
9."16 169,01 1.58 
4.50 175.08 2.25 

14.39 177.09 1.10 
3.15 183.10 7.85 
6.31 195.08 4.48 
1.04 197.09 3.97 
7. 18 213.09 8.47 
2.73 227.13 15.29 
1.04 228.09 1.32 
1. 38 233.11 100.00 
3.35 234.10 6.53 
3.89 239.05 1. 30 

11."13 263.11 9.12 
1.10 264.08 1. 41 
1.32 283.16 2.67 

97. 16 339.'27 1.15 
4.05 407.47 1.55 
1 .66 427.54 5.26 
1.15 447.59 3.91 
2. 11 511.79 1.07 
3.77 
3.43 
2.4::! 
1. 24 
1 .04 
1.52 
1.38 

30. 18 
1.55 
3.24 

14.13 
7.21 
1. :!7 
1.13 

No 13 19-SEP 
ID•fl 

~~ 

lUl'l 

I 
I 
I 
I 
I 
I 
lq 1 

2 I 
I 
I 

l 
I 
I I I l I I . 

258 S88 



GAX29 9 
tRL:Ll~ 

rs~ 

E 

~,., 

SlA: 

~~ 

1 3 

S;:> I 

il J~ L ill 
lBB 

Mas,; X Base 
63. 03 1. 13 207. 09 
63. 98 1. 56 208.09 
64. 03 3. 76 213 07 
65. 04 9. 67 227 10 
68. 03 1. 40 237 10 
69. 01 69. 86 257. 11 
70. 04 1. 23 277. 13 
75. 03 9. 74 278. 13 
77. 05 100 00 296 13 
78. OS 3. 99 297. 14 
79. 08 1. 03 
82. 03 1. 16 
82. 07 1. 60 
88. 04 4. 52 
89. 05 2. 19 
91. 08 s. 88 
92. 09 1. 46 
93. 03 3. 46 
94. 04 2. 19 
95. 04 11. 47 
99. 04 2. 26 

100. 02 4. 69 
106. 04 1. 93 
107. 05 2. 29 
108. 06 10. 27 
109 07 1 06 
113. 04 49. 72 
114. OS 1 20 
119. 04 7. 54 
124. 08 1 40 
126. 06 2. 29 
127. 06 75. 87 
128. 07 2. 53 
131. 04 I 33 
137. OS 4.35 
139 07 7. 51 
145. 06 10. 97 
146 06 1 69 
150 OS 3 02 
157 07 16. 48 
158. 07 1 26 
163. 06 7 08 
169. 07 2. 99 
187. 07 I. 43 
189. 09 5. 92 
19::1. 08 1. 40 

lf1 
5 

_I ll l, 

21. 67 
1. 23 
9. 37 
2. 36 
1. 16 
6. 35 

24. 09 
2. 33 

25 26 
1. 73 

No 14 

2 1 
2r? 

l I 
288 

2~6 

3BB 

~9-SEP 
fiMI 

lftlli 



No 15 16-MAY-86 
2a4 

-~------------~~--------~.~~~----------------------------------------------------------------, I . .. 34SS 

188 288 388 

MASS XHT. 
BASE 

26.28 1.22 108,01 14.67 276.87 14.79 
27.21 0.93 108,98 0.67 277.91 1 .13 
28.09 4.14 111.96 2.03 295.89 1.91 
30.85 13.81 112.99 97.22 
31 .96 1.16 114.02 13.31 
33.07 1.59 116.99 0.81 
37.09 1.42 117.99 0.26 
38.03 3.50 118.96 5.76 
38.96 12.68 119.93 0.64 
39.80 0.49 123.99 0.38 
39.85 0.43 125.01 0.78 
43.04 0.35 126.01 3.79 
44.09 3.50 127.00 10.30 
45.11 4.25 127.99 0,43 
48.95 0.29 130,92 0.67 
49.86 2.26 132.98 1.53 
50.92 15,46 136,97 3.33 55.07 0.52 137.97 0.52 56.07 1.82 138.94 8.10 
57.06 9.78 139.92 0.43 
58.02 0.69 143,97 0,49 
63.03 4.37 144,97 12.36 64.06 8.31 145,98 0.55 68.01 1,39 

149.87 0.55 
68.95 100,00 156.98 5.64 
69.89 1.56 157,97 0.61 
74.06 0.98 162.95 4.49 
75.07 15.28 167.95 0.46 
76.07 t. 77 168,92 3.04 
77.06 22.89 174.94 0.38 
78.03 0.69 175.96 0.38 
80.95 0,49 186.91 1. 13 
81,99 1.62 187,92 0.32 
87.02 0.90 188.90 5.41 
88.00 5.64 189.89 0. -~8 
88.97 1.42 194.93 0.98 
92.99 9.26 206.88 9.26 
94.02 4.54 207.90 0.81 
95.03 14.01 212.91 A .~J4 96.03 0.55 213,92 0.55 98.95 2' 11 226.91 0.49 99.89 2.34 

232.88 4.40 100.97 0.67 236,91 1 .13 
106.03 0.90 256.85 4.63 107.02 1.19 257.90 0.46 



GAS='lS~ 3 G.APSEY NEGo 1-BU No 16 18-AUG-86 
tm.s~ STR: ~·34 

~ Jj_ 

2SSS 

2:~ 
31 1 

1 ~ 1 
158 20e 388 498 

MASS %HT, 
BASE 

127.03 0.97 
232.83 0.43 
252.90 13.30 
253.96 1.17 
270.98 2.30 
280.98 1.43 
301.05 14.64 
302.08 1.43 
303. 13 0.37 
321.12 100.00 
l~2. 12 9.30 
323.09 0.57 
339.13 0.87 
341.13 7.04 
342.12 0.73 



GAM8 S 
m:LrCRLTS 

tl ~ 

G.APSEV X-BU c.x. 
snu 

1 3 

1 s 

MASS Y.HT. 
BASE 

65.12 1.39 
66.09 1.68 
67.08 7.87 
68.94 2.0J 
69.02 14.55 
69.96 2.14 
71.03 6.16 
73.10 1.13 
77.08 1.27 
79.02 6.37 
81.04 4.86 
83.13 3.18 
85.14 5.38 
90.98 1. 88 
95.02 1.91 

112.99 8.30 
142.13 1.53 
144.98 3.65 
162.9/ 20.80 
164.00 1.04 
!93.91 1.36 
::'12.93 1.59 
~32.95 10. 16 
427.34 1.39 

No 17 

3 

388 488 

01-0CT-SS 
la!~ 

34SS 



N 
m 

GA17}{ 35 
ml.ICR:l.ni 

.. 

2~ 

s 

rJ 

MASS 7-HT, 
BASE 

26.28 0.40 
27.21 0.86 
28.09 55.41 
30.85 4.76 
31.96 11.47 
33.07 2.15 
38.03 2.75 
38.96 11.44 
39.79 2.72 
39.85 0.52 
40.94 0.-72 
43.10 1.09 
44.08 1,32 
45.11 3.18 
49.85 o.8o 
50.91 16.52 
51.98 0.49 
56.07 1.12 
57.05 11.76 
58.02 0.83 
58.96 12.02 
61.99 0,43 
63.03 1. 06 
64.06 11.24 
65.07 1.23 
68.93 99.08 
69.88 ~.52 

74.05 0.49 
75.06 12.02 
76.06 1. 35 
77.04 18.64 
78.01 0.98 
80.94 0.92 
81.97 1.09 
83.03 1.52 
84.06 0.37 
87.01 0.43 
87.98 3.87 
88.95 4.16 
89.91 0.89 
92.98 3.64 
94,00 2.27 
95.01 35.79 
96.02 1.18 
98.92 0.43 

NO 18 18-JUN-86 
2a1S 

'I~ 
3487 

a s 

2~ 

s~ 

~~ 
1~ 

. .t.ll 1 I.J . 1L J hl.. ... l J I I l 
188 200 3e0 4B0 

99.87 1.29 192.91 0.40 
100.9'5 4.36 194.92 0.52 
102.00 2.06 202.91 1.46 
103.03 0.98 206.89 0.72 
106.01 0.77 212.89 8.72 
107.00 1.61 213.94 0.52 

107.99 23.37 226.92 0.52 

108.96 1.61 227.89 7.77 

111.96 0.43 228.92 0.34 

112.98 100.00 230.88 0,57 

1-13.99 3.99 232.9:! 58.73 

118.92 3.70 233.92 4.42 

120.95 1.49 250.86 0.89 

124.97 0.60 256.89 1.06 

125.98 2.72 270.89 1.63 
126,97 4.73 276.91 1.12 
130.89 0.60 300.83 0.95 
131.96 1.20 320.84 ~.21 
132.97 14.08 340.84 ::! • 7:! 
133.98 0.52 341.91 0.43 
136.97 1. 55 359.83 o.9o 
138.94 2.04 
139.92 o. 43 
142.95 0.63 
143.95 1,03 
144.96 74.85 
145.96 3.70 
149.86 0.43 
150.90 1.75 
151.94 0.98 
156.92 7. 11 
157,91 1.43 
162.90 I 7. t 13 
163.92 l. 18 
~8.86 2.7~ 

169.90 0.34 
170.90 2. 18 
174.91 0.46 
175.93 1.35 
176.93 6. 11 
177.93 0.37 
180.86 1.06 
182.94 0.99 
188.92 1.29 
190.91 1.35 



GR7X 3 !5o APSEY [oX. 
0\'!..3 CAL 1'~1 STfi)S 

No 19 13-FEB-85 
lla33 

~----~~------~----------------------------~-------~~~~--------------------------~~;-----l ~.., ~~ 
i 

n 
~ 

~~ 

• D 

213 
!35 

1 3 1 ? 
\1 
D 1 ? 2"S 

s q? 

~~ .M, jl 
D 

11 J I ~ I .II .I I J J l 
188 208 308 

MASS Y.HT. 
BASE 

26.30 1.02 98.96 13.37 
27.23 4.28 99.92 1. 83 
28.11 27.45 106.03 2.01 
28.13 0.89 107.03 1. 29 
28,97 0.94 l 11 • 99 1.74 
29,00 4.01 11J.01 2~).06 

30.87 9.27 114.04 0.67 
31.97 5.57 117.01 2.45 
37.09 1.4] 118.01 1.29 
38.04 2.32 118.98 22.19 
38.96 2.63 119.95 1. 07 
39.80 1.92 124.0"2 0.67 
40.94 4.95 125.04 1. 87 
42.04 2.54 126.03 1 . 41 
43.07 1.20 133.03 0.58 
43.11 8.02 137.01 17.11 
4"1.09 1.11 138.01 2-27 
45. 1"1 2.09 143.00 1.25 
48.96 o.8s 144.02 1 • 11 
49.87 3.03 145.03 :.!,70 
'50.94 12.97 149.94 0.94 
55.09 0.62 155.02 1. 29 
55.15 1.07 1'56.01 1.34 
56.09 3.30 157.00 2~ .. 77 
57.08 5.12 157,99 1. 20 
57.13 1. 38 

16:::'.9~ :! • . ~6 
59.01 2.23 1b6.98 0.49 
60.96 0.85 It> 7, 97 3.65 
64.09 0.94 168.96 13.10 
68.03 2.27 169,95 1. 0:::' 
68.97 86.59 174.99 1.43 
69.9'2 0.94 175,98 5.04 
74.06 1.07 180.94 0.67 
74. 14 1 . 11 186.96 11 . 7:::! 
75.04 24.51 187.96 ::,f)Q 
76.04 1.20 193,95 0.94 
78.93 1.29 :..!06.'>'4 100.1)0 
79.88 1. 74 207.94 6.1 ~ 
80.96 1.65 212.93 1. 29 
81.99 o.8o 224.94 0.85 
87.03 1.5~ 2~5.95 3.21 
88.00 6.68 236.91 6. !9 
93.00 6.:28 2J7.90 o.a~ 
94.03 3.88 256.91 45.94 
95,04 23.84 257.89 3.97 
96.04 0.89 275.92 17.60 
97.99 0.80 271..9? 1 - c:;,, 



GA19){ 56 
OiL 8 CRI..P4 

41!3 

s 

I~ . J 

MASS XHT. 
BASE 

28.10 22.28 
30.86 6.53 
31.97 4.86 
37.10 0.84 
38.04 1.28 
39.80 1.12 
44.10 0.78 
49.87 2.01 
50.93 11.56 
56.09 1.56 
57.07 4.02 
68.02 1.62 
68.96 73.26 
69,90 0.95 
75.06 21.05 
76.07 0.73 
80.96 0.95 
87.03 1.01 
88.oo 4.58 
93.01 4.63 
94.03 3.35 
95.04 21.89 
96.05 0.84 
98.95 8.60 
99,91 1.12 

106.03 1.40 
107.03 1.06 
11 t. 98 t. 73 
113.01 17.81 
117.00 2.07 
117.99 0.89 
118.96 17.36 
119.93 0.84 
12:5.01 1.95 
126.02 1. 40 
136.98 14.63 
137.97 1.56 
142.97 1.23 
143.98 1.06 
144.99 3.35 
155.98 1.12 
156.98 22.28 
157.97 1.28 
162.97 2.07 
167.95 2.57 

G. APSEY ~.X. 
STF\1 

Iii~ 

Sp 
1 3 

J I l b L h .. 
lBe 

168.93 10.78 
169.92 0.73 
174.97 1. 40 
175.96 5.58 
186.94 11.06 
187.94 1.68 
193.94 1. t 7 
206.94 100.00 
207.93 6.87 
224.93 0.73 
225.91 4.47 
236.89 6.25 
256.93 44.61 
257.91 3.46 
275.91 23.62 
276.92 1.56 

No 20 08-JUL-86 
2•58 

_71 n 
1'791 

~f7 

1?7 2 s 

lJ? 
1r;' 

J I J J I 
208 3ee 



N 
ID 

SAX X){ 0 
m..zL1B 

E/3 
~ 

~JN I j 

MASS XHT. 
BASE 

26.30 1. 1 s 
27.23 3.42 
28.10 91.90 
28.97 s.ss 
29.00 1.64 
30.86 4.08 
31.97 95.38 
38.97 1.39 
39.81 11.79 
40.96 3.97 
42.06 1.42 
43.09 7.41 
43.13 6.13 
44 .to 2.43 
45.14 2.27 
49.90 1.56 
50.98 6.56 
55.20 1.50 
56.14 1.45 
56.19 1.07 
57.18 2.05 
58.11 3.04 
64.16 6.21 
69.01 95.82 
69.08 2.60 
69.95 1. 67 
74 .to 1.23 
75.09 21.01 
81.01 2.76 
82.05 2.08 
91 .03 1. 18 
93.03 5.25 
94.06 1.42 
95.01 1 .18 
95.07 21.66 
96.07 1. 18 
98.98 1. 15 
99.93 3.04 

101.01 1.09 
106,03 2.19 
113.03 17.37 
117.03 1 .18 
118.98 3.64 
124.05 1. 81 

~ :l!ll 

2 3 

1 s 

s~ 
~~ 

,! I IJL I I I LJ J 1 Ill 
188 288 

125.06 5.99 337.13 
129.90 1.07 338.12 
131. OS 1.34 357.15 
133.11 19.26 387.19 
137.08 2.05 388.17 
143.09 2.49 -407.2S 
144.12 1.97 427.29 
145.10 32.36 
146.09 1.50 
150.03 2.00 
161.05 1.20 
163.09 32.36 
164. 11 2.60 
169.02' 1.94 
175.10 5.25 
179.06 1.26 
181.07 2.00 
183. 12 6.13 
193.09 1.39 
194.11 7.66 
199.04 3.80 
200.06 1.20 
213.14 70.46 
214.10 5. 1 ;> 
218.10 4.02 
219.09 1.53 
225.13 1.~6 

233.12 100.00 
234.09 4. Tl 
237.10 1. 15 
243.12 1.09 
244.10 1,45 
249.06 18.35 
250.0 l 1.56 
263.12 1. 94 
2~7.11 2.19 
268.08 3.04 
269.07 3.42 
275. 12 1. 61 
287. 10 1.72 
299. 10 2. 11 
317.18 2.63 
318.14 1.97 
319.10 2.30 

No 21 

a:n 

~ I d I I I M I 
388 

20.87 
2.35 
5.36 

17.20 
2.49 
5.31 
1. 81 

l! s 
I 

•07 
I 
I 
I 

3 J(l 
I 
I 
I 
I 
I 
I 

488 

19-SEP 
lihG 

Ul811l 

see 



GRG4D192o Ill Ogd=l79 29-JRM-88 15:3•8:03:26 }II[ El• 
JW!: Bpft=O I=IIW ii!Fl2'9 TIC=}83521824 !lent: ~:lfS( No 22 RRSS: &t= w t!IAfl<llf 

63~ m B95 

!i5 

• 
115 29 

118 

;s 

ro 
ss 
;u 113 
55 

58 

45 
35 

48 
51 95 

35 91 

38 
145 

~5 
123 I 

I 
289 

~8 

I 133 
15 

75 15/ 
45 I 

18 

5 

]II J.li~l . .I.! ll ,Ill In II 1111 .LLI. I L l1 ,I I I ,Ill 

"' 
l ld 8 

58 199 158 288 258 388 

Mao;;s 7. Base 
26 04 2 01 91. 11 13 21 155. 15 0 07 255. 23 I 77 
27 05 5 99 93. 1 1 4. 61 157.01 0. 07 257 22 0 92 
28 03 4 40 94. 12 2 04 157. 17 14. 78 258 26 0 23 
29 04 84 15 95 12 37. 11 158. 18 1. 44 259 25 I 49 
30 04 4 97 96. 13 I 55 159. 16 1. 44 260. 28 0 05 
31 04 II 82 F 99. 12 I 03 160. 16 0. 12 269. 25 0 15 
31. 06 13 88 F 100 12 0 31 161. 16 1. 67 270. 35 0 06 
33 06 12 97 F 101 13 2 62 162. 17 0. 14 275. 24 0 67 
33. 08 I 82 F 113. 13 58. 17 163. 16 4. 72 276. 30 0 07 
35 08 42 18 113. 30 0. 07 175 19 5. 61 277. 23 0 23 
38 07 1 22 114. 14 :i!. 74 176. 19 0. 52 278. 24 0. 17 
39.08 3 48 115. 03 0. :i!O 176. 33 0. 06 288 99 0 16 
42. 07 I 14 115. 14 28 76 176. 48 0 14 289 27 20 57 
43. 08 5 30 119. 14 2 77 176.95 0 84 290 27 I 54 
44. 07 3 73 120 15 0. 19 177. 21 100. 00 0 309 29 4 14 
45 08 13 04 121. 16 0. 70 177. 49 0. 05 310 28 0 27 
46. 08 I 47 122. 15 0 13 177. 54 0. 04 327 25 0 22 
47 06 2 45 123. 02 0. 13 177 57 0. 03 329 30 0 13 
50 07 2 94 123. 14 22. 10 178. 21 5. 52 
51 07 36 79 124. 14 1. 25 179 17 4 87 
56 08 I 39 125. 15 3 61 194 90 1. 78 F 
57 09 5 58 126. 16 2 79 195. 21 tOO. 00 0 
59 10 3 09 127. 16 3. 54 195. 44 0 06 
63 03 J 27 128 17 0 15 195. 60 0. 08 
63 09 JClO 00 0 131 15 0 45 196. 02 0. 06 
64 09 26 50 132. 15 2. 60 196. 22 11 58 
65 10 3 e7 133 03 0 10 197. 21 0 65 
68 98 1 24 133. I 5 18. 09 201. 20 0. 05 
69 07 100 00 0 I 41. 14 205. 21 0. 13 3. 1 1 207 20 2. 01 70 09 I 60 142 15 0. 39 208. 21 0 14 73 09 2 OJ 143 04 0 05 209. 22 I 86 75 09 16 22 143. 92 16 8. 65 210. 22 0. 18 7o II 2 144 16 0. 88 211. :i!O 0 I I 77 II 14 16 

145 Ot 79 09 I 57 0 20 213. 19 3 26 
81 II 34 51 145. 15 27 36 214 20 (J 21 146. 82 10 6 08 16 1 22 

215. 22 0 05 83 II 2 62 147. 14 0 28 
225. 23 0. 

. 
20 88 12 I 23 150. 15 0. 1 I 

227. 22 2. 20 89 14 3 84 151. 17 0. 18 



35 

38 

25 69 

20 81 
IS 

18 

5 

8 
58 188 

Mal! II % Base 
:28. 04 9.03 123. 14 
:2'9.04 8. '93 124. 15 
:u. 04 l. 64 F 124.38 
31.06 1. 80 F 124. 56 
32.03 2. 22 124. 86 
33.06 l. 91 124. 89 
35.08 4. 59 124.98 
45.08 2.46 125. 14 
47.06 1. 59 125. 30 
51. 07 4. 32 125. 41 
53.07 2. 10 125. 52 
57.09 1. '96 1::!5.65 
63. 10 71. 13 125. 70 
64.09 3. 14 125. 79 
69. 07 :23. 7:2 125. 84 
71.07 l. 45 126. 16 
75.0'9 :').00 127. 16 
77. 11 1. 21 1:28. 17 
81. 11 17. 77 131. 15 
82. 10 l. 26 133 15 
87. 13 l. 93 134. 17 
91. li 3. 52 135 17 
93. 12 1. 58 136. IS 
94. 12 l. 23 137 14 
95. 12 2. 63 138. 16 

101. 13 0. 19 139 17 
105 14 0. 94 141 14 
106. 13 0. 34 142. 16 
107. 14 0. 53 143. 14 
108. 14 0 67 144. 16 
109. 15 0. 19 145 16 
110. 12 0. 18 151 17 
111. 13 0. 53 153. 03 
113. 13 4. 77 !53 17 
114. 14 0. 22 154 17 
11 5. 15 1 16 155. 17 
119. 13 1 05 156. 15 
120. 15 0 1 1 157. 18 
121.11 0 08 158. 18 
122. 13 0. 22 159. IS 

l. 78 
0. 17 
0. 05 
0. 18 
0.05 
0.07 
0. 18 
l. 08 
0. 13 
0.22 
0. 14 
0. 11 
0. 14 
0.08 
0. 12 
0. 55 
0. 35 
0.07 
0. 32 
3. 32 
0. 05 
0 10 
0. 18 
2. 43 
0 22 
0. 47 
3. 04 
0. 15 
1 33 
0 43 
1 52 
0 20 
0 20 

27. 53 
1. 66 
0 95 
0 1 1 
2 09 
0. 20 
0 14 

ML [Jo 
~: ~:ft 

lip l~ CaL:Pftmf 
I 

!53 

163. 16 1 35 
167. 16 0 11 
1 be. 19 0 10 
169. 16 0 57 
170. 19 0. 07 
171. 16 0. 94 
172. 17 0 30 
173. 16 0 08 
175. 16 0 54 
176 18 0 15 
177 19 1 1 1 
181. 18 0 20 
185. 19 0. 60 
186. 74 0. 05 
186 99 0 85 
187 ~2 100 00 
187 35 0 07 
187 61 0 0'1 
188 22 I> <;>S 

189 22 I UB 
191 18 2. 93 
192 18 0 ..,..., 

~~ 

195. 22 0 19 
201 22 0 71 
203 21 0 22 
205 18 0 13 
20b 20 0 06 
207 20 3 63 
208. 20 0 22 
213. 20 0 05 
215 23 0 12 
219 23 0 60 
225 22 0 64 
231. 24 0. 19 
235 21 2 91 
236 22 ). 26 
237 23 0 46 
238 23 0 15 
23'9 24 74 
240 27 0 08 

No 23 

247.26 0. 15 
:251. :25 0. 20 
~55.23 0.26 
257.23 1. 04 
258.24 0. 10 
267. 26 0.21 
269.25 2.37 
270.27 0. 13 
271. 27 0. 17 
281.29 0 62 
28'9.26 2.'95 
290.26 0. 3<1 
301. 29 3. 56 
302.30 0.29 



en 
0 

l . 

Ill 

d" 

IS 

~-

MASS 

~6.30 

27.~3 

28. 11 
28.97 
29.00 
29.80 
29.81 
30.8! 
30.89 
31.97 
33.08 
33.11 
34.11 
36.11 
37.10 
38.01 
38.05 
38.97 
39.8! 
39.87 
40.9.!> 
42.01 
4.:'.05 
43.08 
43. 12 
44.10 
44. 16 
45.13 
47.07 
49.90 
50.97 
5::!.05 
53. 11 
'54. 15 
55 .. 1"' 
55. !8 
56. 1 a 
57. 10 
57. 16 
::.i8.09 
~8. 1~ 

59. •)4 
6:'.06 
6J. 1 I 
64. 11 

'l'7 

G~ 

li ,IL ~ .L, LJ.I J .!.. 
Ul8 

jCHT. 
FASE 

1.57 65.11 19.19 
7.53 66.08 2.81 

97.98 67.07 1. 32 
15.84 68.05 0.56 
3.26 68.93 11.60 
1. 29 69.00 2.98 
0.53 69.95 1. 21 
1.07 71.03 2.36 
2.42 73,08 0.34 

93.82 74.07 o.81 
0.62 75.07 1.38 
0.51 76.08 2.0~ 
1.99 77.07 100.00 
1.10 78.05 9,94 
0.81 79.01 1.43 
0.34 80.97 0.90 
2.33 81.04 1.57 

15.03 82.04 0.70 
3~). 28 82.09 0.81 

1. 88 83.0"7 0.4S 
11.66 83.13 1.54 
0.70 84.12 0.67 
4.86 85. 10 1. 26 
9.13 90.95 3.06 

17.61 91.98 1.85 
24.38 93.00 7.75 
0.59 94.03 11.80 
1.77 95.0t 2.84 
0.31 96. ()1 0.:\6 
3.26 96.07 0.42 

10.84 96.91 0.59 
0.87 97.02 6. :~4 
1.07 103.03 o.:,t 
0.76 104.05 0.42 
0.59 105.06 2.31, 
3.71 106.06 0.87 
1. 57 108.96 0.6~ 
0,76 109.02 0.84 
4.69 110.96 0. 3~' 
2.78 111.06 0.4:! 
0.53 112.99 3.88 
0.96 115.05 0.93 
0. ~'6 117.05 0,96 
2.78 118.99 ::?.:!5 
2.89 119.99 0.81 

No 24 19-SEP 
Oa® 

i88fl 

-~~ 

4 .. 

. I I .11 J I 

2BB aee 408 see 

122.98 0.59 
125.04 4.78 
127.02 0.81 
129.83 0.67 
13•.). 99 0.42 
131.93 0.48 
13],04 8.06 
133.15 0.70 
134_.13 0.42 
138,99 0.76 
143.05 0.56 
145.04 3.62 
145.12 0.31 
151.04 0.37 
155.07 1.60 
157.06 1.12 
163.04 1 .07 
167.0"' •). 42 
169.02 0.:13 
1"79.04 0.76 
181.03 ·). 37 
1!:19. 05 1. 10 
207.13 ·). 81 
209.0:" ·~·.51 
213.0- :;; .. 1 ~ ~ 
217. t:.' ·~·. 79 
237.00 I. 24 
~55.11 •:0. 48 
~S7.13 ~-3.6:.; 

'258. 10 3.99 
~~'5. 11 1. 7•1 
281.•)8 ·>. '~~·! 
283.10 I. 71 
:'87. 0.' I. 43 
301. •)" ·;· . ~i:! 
303.1 ... J. H'_l 
31'/,fl(l .; ·1:~ 

331 . 1 ? ,_· .. :;.~ 
3'7!. l Q -~·. 31 
395.~7 ·~·. 5'1 
41~.~11 1 • II J 
434.22 I. 04 
4.35.20 1 .;:>1 
4~4.:'4 I ~.~~A 

455.~4 ) • 1 =~ 



SA29 0 
a...:LIB 

No 25 19-SEP-89 
8&8 STA: 

_,------------~~7L-________________________________ ,x __ 4 ________________________________________ ~ 

: I 

: 

.. 
ID 

I I LL 

ISB8 

4 s 

3 9 

l 
488 



6A29 0 
~il71& 

0 
0 

€) 
0 

:lfS 

8 

MASS 

28.09 
31.96 
38.96 
39.79 
49.87 
50.94 
63.07 
64.08 
65.12 
66.09 
otl. 94 
76.06 

E;5 

II 

:Y.HT. 
BASE 

91.76 
21.98 
13.46 
8.24 
2.75 

16.21 
2.47 
1.92 

21.98 
4. fJl 
6.32 
2.06 

77.04 100.00 
78.02 5.49 
90,99 2.34 
93.03 4.67 
94.05 31.32 
95.06 25.69 
96.06 2.61 
97.04 5.08 

112.99 2.47 
!~5.05 10.85 
!.::'7.04 2.:!0 
:33.00 6.46 
! 41 • 02 3.02 
!43.02 4 t :

1 6 
143.03 3.43 
155,03 4.26 
167.00 1.9'2 
168.99 1. 65 
!71.00 1. 24 
.::'07.00 :>.20 
.: 1 7. 02 4. ~j] 
~37.02 12. :"1.~ 
.C38.02 2.34 
.::'63.03 1. 92 
.::'93.05 6. 73 
.::'97.03 1. 92 
303.06 6.18 
395.10 1. 37 
415.02 2.06 
435.05 1. 79 
528.07 11.81 
5~9.14 2.61 

No 26 X9-SEP 
f.leQ 

"l") 

llm&l 

qs z~ s~ 

I I I ill I Jh J I I I, 1 1 1 .J 

2sa 588 



No 27 

'1'7 

~~ 

2l~ 

3:18 

2~ 
S? 

5 

lJ ~ M .I l . .I l l I . II 
188 488 

MASS /.HT. 
BASE 

26.28 0.50 112.98 4.44 
27.21 1.14 115.00 0.44 
28.09 20.56 118.95 0.41 
.28.95 0.-79 122.98 0.44 
30.85 0,44 125.03 5.93 
31,96 5.05 126.01 0.50 
37,08 0,41 1.27.00 0.76 
38.03 2.07 13.2.97 2.13 
38.96 13.73 138.95 0.41 
39,79 1.37 142.98 1.23 
39.85 0,70 144.98 4.06 
44.07 1.64 148.96 0.35 
45.11 0,99 158.96 0.44 
49.86 3.97 162.94 o.88 
50.94 13.76 168.95 0.38 
52.02 0.96 178.91 0,79 
53.03 0,]5 186.98 0.3::' 
55.09 0.38 188.95 0.55 
57.07 0,44 208.94 0.38 
62.01 0.70 212.94 0.61 
63.06 3.48 216.98 0. 5t) 
64.09 2.69 :!18.95 0.38 
65.11 22.43 2:'8.95 0.38 
66.08 3,12 2.58.9~ ,, .1·1 
68.93 10.51 ~'-19. 93 (). l ·"" 
69,89 0.32 ?54. 9~; 0.6:· 
74,04 0.85 ~S6.Yl 4].:'0 
75,04 1 • 1 7 :!57.98 4.44 
76.05 1.84 274.9J 2. 6') 
77,04 100.00 286.98 o.3:' 
78,01 10.34 3::;0.96 1. 23 
81.96 0.29 370,91 1. 4'-' 
83.02 0.32 38'1'.90 33.64 
90.96 0,96 390.95 4.38 
91,99 2.31 391.97 0. 5•j 
93.01 8.06 
94,04 7.68 
95.0J 3.39 
96,03 0.50 
97,03 7.48 
98,01 0.58 

100.93 0.47 
108.97 0.61 
110.93 0.44 



No 28 
S"ms 

~,-----------~~~~~------------------------------------------------------------------------------, 
!j 

j')" 
9 

2~ 

IL 
MASS 

::'7.21 
28.09 
31.96 
38.03 
38.96 
39.79 
39.85 
40.94 
43.10 
44.07 
49.87 
50.94 
52.01 
55. 1 () 
62.02 
63.06 
64.09 
65.11 
66.09 
68.93 
74.04 
r.;.04 
76.0::i 
77,04 
78.01 
90.98 
93.02 
94.04 
95.04 
96.03 
97.03 

112.99 
115.04 
118.Y4 
127.00 
13~.99 

140.98 
142.0:' 
142.98 
145.01 
152.01 
167.00 
168.96 

s~ 

' I ~ 

%HT, 
BASE 

1. 29 
19.87 
5.20 
0.91 
6.63 
1.58 
0.50 
0.29 
0.53 
1.46 
4.00 

18.35 
o.ae 
0.32 
0.32 
1.26 
1. 02 

10.43 
1.11 
1 ,99 
0.91 
1. 26 
~. ?:! 

100.0() 
8.88 
0.56 
1.34 
2.80 
0.50 
1. 75 
0.56 
0.91 
1. 00 
0.2.'> 
0.51:l 
1.02 
.L07 
0.76 
0,44 
0.96 
0.35 
0.38 
0.61 

3l 1 

·" .. L I I L l l 
188 288 

190,91 1.64 
195,00 0.85 
206.96 2.66 
216.98 1.87 
217.98 0.53 
234.94 9. 14 
235.96 1. 23 
238.95 0.32 
~54.95 16.16 
255.96 1. 26 
282.9';1 0.38 
290.94 0.91 
310.97 o.as 
330,94 3.71 
331.94 0.58 
350.96 ~4.33 

3~i1. 98 5.17 



No 22_ 19-SEP 
~0~ 

97 

Ul18tl 

/ 

dl3 

'l14 

ZIS 

E~ 
2 7 

s 
3"1 

u II i I • ~ J .0 ,J n dJ I I l 
188 2B8 388 488 S88 

MASS Y.HT. 
BASE 

27.21 1.01 198.98 0.83 
28.09 63.88 ::!12.93 1.75 
28.95 1.84 216,96 3.95 
31.95 15.17 218.9~ 1. 38 
38.03 1.01 236.96 15.90 
38.95 10.29 ::'37.96 1. 75 
39.79 4.69 238.95 29,41 
43.10 1.29 239,93 3.77 
44,06 3.77 25"1.92 1.47 
49.87 3.22 280,96 0.9'2 
50.94 12.32 330,91 2.67 
63.06 3.03 350.93 7.54 
64.09 1.93 351.9'5 1.29 
65 .to 17.37 :i70.9J 9,93 
66.08 2.39 371.9,., 1. 47 
68.93 2.76 46.3. 9) 4fl • .35 
75.05 1.56 465,00 9.4A 
76.05 2.67 465.9 7 1 . 19 
77.04 100.00 
78.01 6.80 
90.97 1.56 
91.98 1.38 
93.01 5.61 
94,03 26.01 
95.05 12.78 
96.04 1.9J 
97.03 3.~:! 

l t:.!. 97 :! '~Jl 
l15. 01 1. 7:·; 
122.98 2 •. 3',1 
125.03 8.18 
126.01 1. 56 
127.00 ::0,48 
141.00 1.93 
14::0.98 6.8Y 
144.99 4,96 
150.96 1. 10 
153.02 1. 75 
L55.00 1.84 
162.96 1. 0 I 
168.95 0.83 
170.97 1.56 
188.95 1.75 
190.97 1.75 



No 30 ~9-SEP 
Sif'IB t!la0 

=~----------~~7~-------------------------------------------------------------~~eea~----~ = 

S:8 

N 
Ill 

lJ ~ I l J I .I I I I _l_ _L l 
ID . . ._ 

8 258 588 

MASS ZHT. 
FASE 

26.27 0.43 1~5.00 7.84 
27.21 1.39 125.99 0.81 
28.09 34.70 12o.98 2.08 
28.95 1. 30 131.93 0.43 
30.84 0.61 135.99 0.75 
31.95 8.os 142.97 0.58 
37.08 0.49 143.96 0.38 
39.03 2.66 144,97 2.69 
38.95 18.06 145.97 0.32 
39.79 1. 71 154.97 0.67 
39.135 .l .13 155.99 0.61 
43.09 o •. 18 162.93 6.25 
44.06 o.ss 168.92 0.35 
49.86 3.18 174.93 0.84 
50.93 13.17 178,89 1.30 
52.00 0.90 188.94 0.43 
53.0.3 0.49 193.95 2.0~ 

57.06 0.58 206.95 0.35 
62.00 0.98 212.91 3.99 
c'>3,05 3.42 213.9::, 0.38 
64,08 3.21 ~'16.96 o.7a 
65 • .10 41.68 218.94 Q,4J 
66 .to 3.88 2:!4.95 0.96 
68.92 9.93 228.94 0.41 
74.03 0.84 236.96 0.61 
75. (l2 4.60 250. 40 0.49 
76.04 1. 79 256.95 32.88 
77.03 100.00 ~57.93 3.27 
78.00 10.04 259.93 0.38 
78.96 0.43 ::!62.96 0. •11 
81.95 0.75 280.91 0.43 
flJ.OO 0.32 306.94 0.78 
90.9! o·. 43 -~68. 98 4.98 
90.96 0. 49 369.39 0.55 
'? 1. 9 7 1. 77 3J 1. 92 0.6-1 
?3.00 18.49 460.90 1.56 
94.02 6.95 461.92 0.3::' 
95.01 3.10 480.89 1.19 
Y6.03 0.55 500,91 ::'.89 
97.02 7.67 501.93 0.75 
97.99 0.58 519.89 3•1. 27 

112.96 5.35 520.97 6.08 
118.93 0,32 ~i~l. 98 0.69 
123.96 0.32 



Sfi21SZ ~ No 31 XS-SEP 
~~UIID ~~~ GlaiD 

"i')l 
Il 2 

e- : X~ C'll 
(3 

I 
I 
I 
I 
I 

@ I 
® 

I 
l 

S4 



No 32 X9-SEP 
laO 

;~----------------------------------------------------------~~----~~~~::----, 
119 

1 3 

4 

11ASS %HT. 
EIASE 

28.10 58.33 106.09 2.12 187.09 :?.60 300. l :~ 0.4'7' 
28.97 18.23 107.09 0.68 188.08 1.01 301.12 0.68 
29.81 1.99 1oa.oa 0.59 189.06 2-77 305.08 o. 3:1 
30,88 ., ., ... ...... .,) 112.06 0.59 191.06 4.69 307,07 2.15 
31,98 15.33 113.10 19.24 193.08 0.62 ~H!:L 10 0. 4'1 
33.09 2.90 114.12 0.81 194 .to 1.50 31'7.10 0 • .16 
35.17 4.62 117.07 0.75 195. 12 1 .56 319.08 1. 46 
38.98 o.81 119.02 4.46 199.05 1.07 327.1 ~j 0.68 
39.82 2.57 120.01 0.42 200.04 :?.99 335.1':J 3.68 
43 .to 0.98 123.08 0.46 20lol0 3.78 337.08 0.94 
43.13 0.49 124.07 1.17 205.13 0.75 339 .ll 2.1H 
45.15 0.98 

t25.09 3.35 206,0Y t.BY 350. o~; 0.49 
47.09 0.65 

126.09 1. 7~~ 207.08 2.67 350.4b IJ' :t,~ 
49.89 0.72 127.09 0.62 209.02 0.46 353-13 0.88 
50.97 t4.55 211.04 4 .to 355.11 ~. 12 
56.t3 0.65 131.05 2.38 357.06 ~,t)H 

132.10 0.72 212.06 0.42 
57.12 2.08 2t3.08 ., c-c- ~M9.0l ~. /0 t33.09 1.43 •• ...J.J 

~170.0/ 59.03 0.49 137 .l 0 4.39 218.013 1 . 04 0.94 
63.12 82.29 138.08 0.49 219.05 4.98 .J13 .to f) • . 1.1 
64.11 2.57 139.06 1.92 2:'0. 06 (). ~~ .. 385. I ~J 0. ~):~ 
65 .to 1. 01 141.05 3.52 225.11 ;: • 1 :~ 3fl7.08 ".!. /3 
68.94 94.27 143.09 3.35 231.07 o . . '::; 388.12 0.4::' 
69.88 0.94 144. 11 t. 20 233.\)<,1 I 3 • . !B 389. 13 too.oo 
10,97 0.68 145.09 t0.09 234. I 1 l..l. I:~ 390.1;! 10.42 
74.01 0.52 146. 1 \) 0.52 237.08 _,. 41 .i9 .l . 1 1 0.65 
7'!l.09 9.73 149.02 0 •. 33 238.07 1 • () ._, 40~ •• ,., 1 •. u 
76.09 0.91 150.00 2.57 239.0~ ;!,YQ 40/.•JH 6. ~-" 
77.09 t. 24 151.05 1. 76 241.06 1. 99 1011. ()/, 1 .n·l 
78,99 t. 17 155..10 1.3] 24 .!. 07 l:l. ~~:.. 11 "'. 1 l 0 '·IH 
81.00 31.74 156.09 0.4:? 244.09 n,\.p' L 4~' l. 1 :• ()' 'II• 
82.05 t .11 157.08 2. ~-~~ 245.11 :?.9o 4 .1'1. l ~· l.l. ~-; 4 
83.08 0.39 1:)9,04 o.w; 249.~)7 t). ·0•>:1 44l>, I l 1 • '1"..~ 87,08 0.62 163.0Y 10.64 250.08 rj. 4::...l 
88.06 1 • 14 164. 11 o. 6:.' 256. t ~: cl. 88 
89.02 0.81 

167.0'1 0 •.. , 251.0) ~ • I/ 
91.01 0.81 •..J-

168.06 0.98 263.08 1_, • • Jtf 
93.07 5.01 

169.04 3.09 2t.9.07 4 • 1".' 
94.10 1. 27 170.04 1. 0 7 2/0.08 '). J6 
95. 1 ::' 14.84 171.08 o.sy :!7~i.t:! l . ;>I 
96.09 0.46 175.09 9.15 2H1. 1 1 0. 4'1 97.05 0.75 1 76. 11 0.78 :~u~J. L · .. ' u .. IL." 

99.00 1. 20 . 
99,96 0.91 177.08 0. 5~! :'Hl. tv .· .ou 

101.02 2.57 181.05 1.63 2ll'l. 08 •).MI 

t05.08 0.36 183.09 0.42 295.1 ~J ._ • 1 4 
185,09 1.40 299.0!:l •). 41> 



N 
ID 

m 

l 

d~ 

B 

MASS 

26.29 
27.22 
28.10 
28.96 
30.86 
31.97 
37.11 
38.05 
38.97 
39.82 
39.88 
43.13 
44. 10 
49.90 
50.98 
52.06 
62.06 
63.11 
64.12 
65.10 
66.08 
68.93 
74.05 
75.05 
?6.07 

E~ 

;(HT, 
BASE 

0.41 
1.08 

60.61 
0.76 
0.56 

13.98 
0,64 
2.29 

16.18 
2.61 
0.85 
0.38 
0.38 
2.40 

10.76 
0.44 
0.97 
3.43 
3.05 

63.77 
4.22 

22.98 
0.56 
2.34 
1.03 

77.06 100.00 
78.03 6.71 
81 ,Y9 0.12 
9::!.0.! :~. 20 
93. 0.'> 76. '/9 
'14,09 7.97 
9'j. 01 2.17 
96.09 0.47 
99.93 0.50 

101.00 0.73 
106.06 0.38 
113.06 2.34 
119.01 0.76 
125.09 0.97 
127. 11 0.56 
133.07 0.53 
143.59 0,44 
145.09 2.81 
150.02 0.76 

No 33 XS-SEP 
!Ja® 

., '7_ 
I 

1188 

s 1 

21r7 I 
Sl~ I 

l 1 I 
I 

J a j._ 1~ Ln Jj___._ _l 1 
I 
I j_ 

2S8 see 

151.08 0.97 
1·!>3.10 1.82 
169.07 1 .14 
t:71.12 1.03 
175.11 2.26 
181,06 0.32 
189.06 0.62 
t 91.06 9.94 
192.07 0.56 
194.09 0.56 
199.07 0.32 
211.11 0.38 
213.13 1.06 
217.12 0.85 
218,09 0.32 
219.04 1.23 
233 .to 2.90 
2J9,()f:l 1. 41 
240.07 1. 29 
247,14 0.85 
248.10 0.94 
261. 12 1.20 
287.15 15.86 
288.10 1.73 
337.23 0.44 
412.41 0.41 
431. 41 1.96 
451.54 3.25 
45::'.54 0.56 
481.53 1 . ._ . .J 
501.61 6.51 
50~.6~ 1.20 
~L~O. 68 17.82 
521.69 3.31 



No 34 

1 4 

8 

HASS 7-IH • 
BASE 

.28.10 100.00 146.08 0.35 220.05 1..33 297.08 1 • ~~8 46:3.07 0.49 
28.97 0.84 147.08 0.26 221.09 1.02 298.08 3.:!~ 479.13 0.32 31.98 26.89 149.05 0.49 223.11 0.64 299.07 0.67 4£ll.14 28.78 38,06 0.49 150.00 1.62 224.11 0.46 301.12 0.35 4R.•, 09 :L 40 38,98 3.68 151.05 4.61 2'25.06 1.19 303.11 0.38 48.L II o.5H 39.82 5.28 152.09 0.84 226,08 0.44 312.12 0 • .32 500.14 (),:')2 43.13 0.49 153.13 3.54 228.06 0.96 313.15 0 c·'l ...... 501.08 ?2.51 -44.11 0.93 163.02 2.70 229.04 7.4J 321.13 0.70 502.14 .3.39 -49.91 0.96 164.06 0.52 231.05 1.16 322.13 0.81 

so:~, 12 3.31 50.98 5.43 167.06 0,75 232.08 2. L2 323.0 l 0.44 506.11 0.67 62.08 0.38 168.05 0.64 2_33.07 6.24 3.35.05 0.35 535.14 1.45 63.12 2.20 169.01 4.93 234 .0'1 0. ,Jfl 337.0fl 0.38 536. 14 0.38 64.13 1. 71 170.03 4.70 235.11 0.44 339,05 0.49 555.24 0,6/ 6~ .1 ~) 20.42 171.07 1. 31 237.09 o .. '>t 341.13 2.41 594.::9 29.94 66,08 1.94 17~>. 06 5.40 239.06 2 •. ,6 34.S.1-~ 0.52 595.27 1..70 68.94 9.05 176.08 0.61 240.08 o.~~; 3~;2. t.t 0.44 596.?6 0.87 7't.06 0.55 177, OEJ 4.50 241.07 o.n 353.01> 0.29 
75.06 1. 13 178.07 (),41 :'43.1.3 7.40 .357.05 0.9.3 
76.08 1.89 179.<P 1,6() 244.12 1.25 361.<)'1 0.70 
77.06 97.91 181.05 0.87 245.08 1.:.:.!5 363.10 o. 4'1 
78.04 6.30 182.09 1. 19 246.10 0 .~)5 373.1 J 0.41 
92.03 1.02 18.3.09 0.84 24?.o:·l (). ·.!9 :mo. t:· 0.?9 
93.08 17.61 185.11 0.6? :> 411. \):·~ 16. ~-i'l 301.17 0.58 
94 .to 62.6<'> 186, lO 0.61 :!4'" .o:, 4 • :~ 1 3~5 .10 0.55 
95.11 4.79 11'17. 02 0.49 ~~O.OJ 1.89 3(17.12 0. '11 
96.08 1.4'2 189.01 1.94 .25l.OJ 0.67 38~'. 09 0.55 
'99,93 0.38 190.99 1.65 ::!55.07 o.::Jn 39:~. u '.). ~,:-j 

100.99 0 ,6'7 193.07 0.5~ 2~7. 0.1 0. 4t• ]'11. 1 ::' l.'l:' 
109.0.3 0.64 1;'5.07 1.65 2oJ.09 0. 4<'• .I'}'}. •>6 1). fl~ 
113.05 2.49 196.09 0.46 264.09 o .... 4 4\)~j. 0'1 0.91. 
114.08 0.35 197.08 0.32 :'65.08 1.<'1? 411.14 O.YO 
11 :'5. 12 1.13 198.07 1.51 266.0H 0.38 41 :·. '" 2.\)Y 118.99 0.55 199.o::, 3.92 267.0H 79.34 41.L <lfl I. t Y 120.00 0.38 200.0.'i 1. .31 ::'68.08 10.79 4.1 L. I.:' :•o. flY 
1::-5.0/ 1. 0:! 201.06 4.09 2o9.0!') 1 .l.! 4:1;•. 1 () ] • 4~j 
1 2 7, Of! ~.~7 202.09 0.64 270.06 0 •. ,B 4:U. 10 1. :'5 
1~8.08 0.70 20/.0/ 0.55 ~73. 14 0.44 441. 1).5 0.61 
131.02 0.49 20'!1.07 0.32 274. l5 0 t 2,.1 442. 11 0.:!6 
133.08 0.96 21 I , 06 3.39 27S. \0 o .. Ht 450. I~ (). J :! 
137,06 0.78 212.09 0.44 277.09 ().46 4:':it. Ito 4-64 
139.04 0.38 213.()9 2.00 2 78. t 0 1. 36 4 ~·;::.~ • 1 .! 0.5~, 
141.09 2. :~6 214. 13 0.35 ::'84 .12 0.7:') 4:;:1. I 0 0.4Y 
142. 13 1 • .36 215. 1:! 1. 1.~ 28~J. 08 0.49 45~'. 08 0.6/ 
143.07 2.76 217.08 3.34 29:.' .10 o.s;- 461.50 2. 1:.! 
144.06 0.64 218.06 0.67 293.1 :· () • fd 46:'.40 () • .3'2 
145.06 s.s7 219.03 5.89 29~ •• 06 0.9J 46:::!. ;'6 0 •. 32 



9 .. 

N 
lill 

<;iljj 

B 

MASS 

26.29 
27.22 
28.10 
28.96 
30.87 
31.97 
37.11 
38.06 
38.98 
39.82 
39.88 
40.97 
43.13 
44.11 
45.15 
49,91 
~O.YB 

~~.07 

53.09 
55.15 
5'1.1:..! 
1>2.08 
... 3 .12 
64.13 
6~·. 11 
66.09 
68.01 
68.94 
69.88 
73.03 
74.06 
75.07 
76.08 
l7.05 
78.04 
78.99 
83.06 
91.01 
'12.05 
93.07 
94 .to 
95, tO 
96.11 
9l.07 
99.91 

c 

c::; 

A:HT, 
BASE 

0.73 
3.11 

100.00 
0.79 
0.59 

24.30 
0.53 
3.08 

26.29 
3.76 
1.85 
0.44 
0.41 
0.67 
0.41 
8.74 

46.01 
3.29 
0.70 
0.85 
0.41 
1.44 
7.19 
4.69 

51.64 
5.78 
0.02 

21.57 
0.38 
0.85 
1.41 
3.70 
8.13 

98.83 
43.81 

1.2h 
0.35 
0.67 
0.76 
9.45 

10. 111 
2.64 
3."29 
2.90 
0.67 

2 1 

1 1 1 1 

... ,al ~uHJ .II 
'I 

100.98 0.50 
102.06 0.50 
105.09 0.62 
109.02 1.88 
113.05 3.14 
115.12 2.58 
116.10 0.73 
119 .oo 0.44 
125.07 0.56 
127.07 7.34 
128.07 0.67 
129.04 0.38 
133.07 0.67 
137.05 0.47 
138.07 0.32 
139.05 o.sa 
140.05 0.47 
141.09 11.03 
142.13 3.29 
143,06 0.67 
144.05 0.41 
145.06 4.87 
149.05 o. 44 
149.91:1 0.47 
l~d .O~i 2.90 
1~i2.09 1 • :'6 
153. 11 0.79 
155.09 0.76 
159.06 1.20 
163.07 2.96 
168.10 0.70 
169.07 3.49 
170.08 2.32 
171.08 1.38 
1.12. 08 0.38 
1 75. 11 3.58 
176.09 0.41 
177.09 0.76 
179.07 0.44 
180.05 0.44 
181.07 0.44 
182.07 0.88 
183.07 3.02 
187.10 0.44 
189.05 0.3:"· 

No 35 

II 
lfi1il 

$! ll 

S?S 

41 1 

s:~ 

4 1 

1H I I I II I 

2S8 588 

191.0::. 9.60 322.15 0.56 
192.()~. o.~iO 335.13 0.5.3 
1'13.10 0.26 3~U.06 · 0.35 

195.12 1.82 357.13 0.73 

196.11 0.38 377.15 t.OJ 

199.07 2.90 385.18 1. 4 7 

200.05 0.6'7 386.1l 0.29 

201.08 2.93 40~i.21 6. 7A 

211.08 22.54 406.20 0.44 
212.10 1.32 411.2] o. ~J6 
213.09 1.56 412.21 3.84 
215·. 17 0.38 413.23 0.79 
217.12 1.00 431.23 10.59 
219.06 0.91 432.27 1. 91 
220.07 o.so 433.22 0.79 
221.09 1.03 453.30 o.~;9 

229.09 1. 79 461.04 0.26 
230.11 0. 7.~ 462.07 1. 67 
231.01:1 0.38 481.35 25.97 
233.08 19,Y8 482.37 4.78 
2:34 .to l. ~9 483.40 0.53 
235.14 0.~9 499.44 0.44 
239.09 0.:--'6 500.46 0.35 
241.0/ 2.14 501.43 9~.02 

243.16 3. ~!0 ~0~.45 16.34 
244.11 0.4\ 503.47 1 . 4 I 
247.10 v.15 55:: .• 6f.t I.;:> . ._ 
248. to '2. ~i2 556. 6tJ 0.3::' 
249.09 1 • 4/ 594.79 0.91 
~50.01:) 0.41 5?5.87 lj, ':,(r 

251. t 1 •). 41 ot4.Hfl 0.6;' 
~~i~. lt· 0 • . \~ 

.·.~.~. t 4 () •. Ill 
:·!61. 1 ~~ \) • IY 
/.68. o·J o.n. 
269,06 1.20 
287.18 1.56 
291. 15 0.41 
293.17 1 . 1 ~ 
297.\2 1. 0.~ 
298.09 o. 70 
311.09 0,56 
313.13 0.30 
317.11 1. 44 
318.09 0.38 



= • !Ill 

n 
D 

2 

s~ 

J11Lr m, 'l.ll 

MASS :t.H r. 
ItASE 

26.29 0.59 
27.22 1.04 
28.10 28.37 
28.96 32.19 
29.80 2.31 
30.88 7.49 
31.97 5.80 
33.08 3.37 
35.17 7.25 
.57.11 0.68 
.18.05 1.51 
38,97 2.84 
39.82 1.01 
43.09 1.45 
44.11 1. 78 
4:-:i. 14 \.57 
47.09 1.07 
47.12 0.44 
48.98 0.38 
49,89 1.27 
50.96 12.07 
~.5.08 1.21 
~~. 14 2.93 
~6 .12 1.15 
57.11 8. 11 
58.07 0.59 
59,0~ 3.43 
63.12 31.?1 
64 .to ~.51 

65.09 1.60 
68.02 0.53 
68.96 81.39 
69.91 t. 21 
70.95 0.74 
73.05 3.46 
74.07 0.53 
75.07 t 5. 15 
76.09 1.54 
77.06 0.25 
80.99 31 .12 
82.02 2.75 
83.07 0.47 
HI. 0/ O.Y[I 
fHI.04 :• .. n 

IS~ 

9~ 

63 

I 3 

h • I J Jll. ~~l 
188 

fi'J.oo 3.61 
'10,99 9.44 
Y3,05 3.25 
94.08 3.99 
95.09 43.08 
96.09 1.78 
99.01 2.13 
99,97 0.56 

101.03 2.49 
10.5.08 o.so 
104.10 0.47 
105.11 1.42 
106.07 0.59 
107.0'7 8.49 
108.05 1.66 
109.03 1.83 
111.01 0.68 
112.04 0.33 
113.06 17.99 
1t4.0H o. ;'4 
11/.()7 0. 3:\ 
119.0:' 8.05 
120.01 0.86 
t;~1.04 0.41 
123.07 36.42 
124.09 2.40 
125. 10 1.86 
126.09 t. 18 
127.09 2.99 
lJ?. 06 0.9~1 

1 JJ. 10 IJ • 'I~' 

13/.09 2.01 
L.ll:l,\0 4. J5 
1.39.0~ t 3. ~5 
140.04 o. 77 
l 41 • 04 4.14 
142.08 0.50 
145. 1 2 29.79 
146.09 1. 27 
150.01 0. 3.\ 
151.07 0.38 
~~.7.10 100.00 
158.09 14.80 
159.05 1 • 1 ::' 

No 36 
i "' I 

le&fi 

I 2 9 

I 3 

I S 
2"8 

l 9 
I 9 

2 9 

I. hJ lll.l L I ll I IlL I I ., 
' 288 388 

163.09 0.92 
169.0~; 3.17 
170.06 0.71 
175.13 1.04 
179.03 16.66 
180.02 0,71 
t85 .to 0.38 
187.09 o.ah 
1£1'/,06 12.31 
1Y0,05 0.86 
195. 13 4.32 
207 .tO 3.34 
208.11 0.44 
209.08 4.05 
219.11 0.44 
227.12 2.34 
235.12 1.04 
239.08 9.32 
:;"40.0Y '..•, nfl 

255. 14 1.66 
257.10 1. 6'! 
258 .to l • 4 ~~ 

259.06 1 • .1 ~. 
269.09 0.50 
';77.1J 1 • 36 
2:'0.0B 6 •. .,6 
219,0" o. ~-.o 
'.!B9. 1.~ I ;1. 'IJ 
:!YO. I 0 l .. 1.1 
3•J8. (•, () •. 1.1 



GR2~l 0 

- ~~·~i~b~XQ~o-=--~~::o=g~--------------------------------------------------~tl--3~;;;---~ 
-""' l~H&l ~ 

No 37 

2 1 

MASS 7.HT, 
BASE 

28.10 100.00 126.09 1.14 
28.97 9.86 1 37.07 7,6] 
29.81 1.20 138.06 1.14 
]0.87 :..!.94 139.05 0.90 
30.89 1.~o 141.04 4.51 
3LY8 20.19 14~.i.10 7,93 
J3 .10 4.03 147.07 0.66 
35.17 2.22 153.09 10 .to 
38.98 0.78 154.11 0.78 
39.82 3.55 155 .• 09 1.14 43.10 1.20 

157.08 14.36 44.11 0,66 
15A.07 0.84 45.16 2.88 
165.08 1.02 47.09 2.58 
167ol0 0.66 49.91 0.78 
169.06 1.26 50.96 3.61 
171.07 1.50 53.09 1.6:2 
175 ·12 3.06 56.13 0.60 
181.07 1.38 57.11 2.82 
185.09 4.57 59.02 1.62 
187.12 32.99 63.12 31.67 188.07 2 .to 64.11 0.84 197.09 1. 14 

68.96 26.38 201.10 2.58 70.96 0.84 
203.08 0.78 75.08 7.09 
207.07 20.19 

77.07 1.56 208.08 1.38 80.99 4Y.2Z 215.10 2.58 0:'.03 1. 32 218.07 1.44 
87.08 0.90 219.08 5.11 
88.04 2.34 231.13 32.63 89.Y4 0.66 232.14 3.06 
90.99 3.25 235.05 14.90 
93.08 2.82 236.07 1.32 
94.08 2.46 237.07 1,08 
95.10 8.95 238.05 I, 4~; 
98.99 ., .,., 

2J9.04 1 .08 .... ""4-. 
105.09 0.72 24/, L' 0.7:! 106.08 1 • 14 

249.06 0.78 107.09 1.62 
265.12 1.20 113.08 8.59 
269.06 20.85 117.09 0.60 :no.to 2.40 119.04 5.11 
281.13 4.33 123.09 4.09 
285.11 0.78 t 25. 12 1.62 



... 
I 

N 
Gl 

. 

~ 
8 

1'1•1111 
27.00 
27.99 
28.00 
39.00 
41. 02 
4201 
54. 01 
s;; . ..:·1 
S!. ~9 
36.03 
59.00 
69.97 
69.96 
81 03 
81 qq 

93.00 
94. 01 
95.00 

124. 98 
125. 99 
126. 99 
138.99 
144.95 
188. 94 
206.92 
206. 98 
207. 99 
208. 98 
209.98 
211. 00 
211. 93 
2:22.00 
222. 99 
223. 95 
224.94 
225.97 
231.94 
233. 92 
234.01 
235.0:2 
237. 95 
237. 99 
248.02 
249. 00 
249.97 
250. 93 

<l 

3 

. 
:t 

ll;4 

II 
"'lj! 

II .. 

Base 
3. 46 
7.04 F 
4.01 F 
9 69 

56. 77 
2. 06 
7. 69 
~- 71 

2-:t. 17 F 
5.40 F 
2.97 
2.67 

27.95 
4 07 

3!. ?8 
1 :'. 1 1 
4.j. 17 

2. 26 
7. 71 
3. 77 
4. 85 
2. 91 
3. 10 
2. 41 
0. Ob 
0. 16 
1. 27 
6 83 
2. 55 
0. 26 
0. 27 
1. 18 
0. 21 
0. 21 
0 12 
0 26 
0 29 
0 05 
0 33 
0. 11 
0. 07 
0. 09 
0. 44 
1. 02 
0. 3~ 
0. 23 

No 38 
4 1ft 

UJIMJ 

~2 

s-s 
s:s 

~ . Ll I J I 

l I . '· 
I 

258 S88 

2~1. 93 26. 90 333. 88 0. 22 
2~2, 93 2. 26 334. 94 0. 32 
253.85 0. 07 335. 87 0. 22 
2~3. 96 0. 14 336.Ei3 1. 21 
263. 99 0. 06 337.91 0. 56 
276. 94 0.08 338.96 0. 08 
280.95 0. 06 338.99 0.05 
280. 99 0. 11 349.00 0. 43 
291. 99 0.09 349.01 0.08 
292.94 0. 11 349. 96 0. 11 
293.89 0. 14 357.95 0. 46 
294.93 1. 32 359.83 0.23 
29:!.90 0.20 361. 91 0. 10 
306. 98 0. 21 375. 91 1. 27 

307.86 0.35 376. 80 0. 12 
308.03 0.06 376.9~ 0. 28 

319. 97 0.09 377. 94 0. 86 
319. 69 0.05 379.98 0. 14 
319. 76 0.07 397. 99 0. 11 
319. 79 0. 07 398. 97 0.28 
319. 85 0 08 400.02 0. 09 
319 90 0 09 401. 99 0. 07 
320. 02 0. 09 402. 85 0. 12 
.::;20. 1S 0. 0~ 416. 97 0. 47 
320. 27 0. 07 417.30 0. 07 
320. 38 0. 07 417.97 100.00 
320. 45 0.08 418. 46 0. 07 
320. 50 0.08 418. 54 0 08 
J20. 54 0 06 418. 98 17.76 
~J20 63 0 07 419. 98 2. 23 
320 78 0 07 420. 98 0. 17 
320 90 0. 10 517. 85 0. 28 
320. 97 0. 06 525. 87 3. 03 
321. 03 0. 08 526. 87 0. 51 
321. 13 0. 08 5:27. 94 0. 08 
321. 22 0. 06 !>44. 85 4. 13 
321. 30 0. 08 ~~ 85 0. 73 
321. 37 0. 08 ~46. 87 0. 11 
321. 41 0. 09 
321. 46 0. 07 
321. 60 0. 07 
321. 77 0. 08 
321. 96 0. 11 
322. 07 0. 05 
322. 41 0. 06 
331. 8~ 0. 12 



No 39 19-SEP-80 
lila® 

.y---------------------------------------------------~~------1 
~ leBa 
!! 

II 
9 

I) 

9 

g 

e 

1t!tllll 

26. 99 
27. ~ 
39. 00 
41. 02 
43. 99 
'54. 01 
55. 01 
55. 99 
56.03 
59. 00 
68 97 
69.96 
76. 99 
81.99 
83. 00 
84. 00 
94. 97 

124. 98 
126. 00 
126.97 
138. 97 
140. 90 
144. 95 
162. 94 
188. 94 
205. 97 
206. 96 
207. 98 
208. 94 
209. 87 
210. 88 
211 94 
212. 85 
221. 01 
223. 95 
224. 95 
225. 98 
226. 99 
231. 95 
232. 97 
238. 00 
248. ~ 
249. 94 
250. 93 
251. 94 
252. 88 

:r. 

2 
2 

258 

Base 
2 87 2'53.84 
5. 84 :253.98 
6. 35 255.85 

52. 80 266. 01 
2. 24 274. 96 
5. 52 276. 97 
2. 62 278. 90 

34. 98 F 280. 77 
4. 12 F 280.9'5 
7. 19 281. 64 
4. 34 281. 94 

38. 73 282. 58 
2. 50 282. 92 

37.02 282.99 
11. 36 292.93 
19. 50 293. 92 

2. '54 294. 93 
8. 94 295. 90 
5. 73 296. 92 
3. 93 298. 99 
2.09 306. 87 
2.69 306. 98 
8. 78 307. 73 
2. 02 307. 93 
7. 52 308. 92 
0. 15 308. 99 
0 59 321. 93 
1 52 331.87 
9 26 332. 95 
4. 12 333. 89 
0. 25 334. 97 
0. 53 335. 88 
0. 19 336. 83 
0. 37 337. 89 
0. 59 349 93 
0 78 350. 94 
0. 33 354 10 
0. 13 354. 44 
0. 66 354 49 
0. 23 354. 56 
0. 17 354 63 
0. 40 354 67 
0. 72 354. 97 
1. 11 356. 91 

33. 56 357. 18 
5. 12 357. 27 

4 

8 

see 758 

0. 37 357. 48 0. 14 567. 99 0 38 
0. 14 357. 95 0. 61 585 94 4. 31 
0. 11 358. 8J3 0. 12 586. 95 1. 12 
0. 30 358. 96 0. 26 587. 96 1. 67 
0. 41 359. 86 0. 27 '589.00 0. 3!5 
0. 20 359. 93 0. 14 611. 75 6. 97 
0. 09 361. 98 0. 20 612. 75 0. 96 
0. 10 372. 98 0. 1 !5 629. 78 0. 14 
0. 62 373. 02 0. 13 653.88 0. 67 
0. 13 375. 94 2. 19 671. 81 0. 78 
0. 33 376. 95 2. 10 672. 83 0 17 
0. 11 377. 94 23. 35 693. 82 0 12 
0. 19 378. 95 3.25 693.93 0. 15 
0.20 379. 98 0. 44 713. 97 100. 00 F 
0. b7 402. 76 0. 13 715. 00 21 61 F 
3.64 402. 80 0. 11 716.03 2. 82 

13. 90 402. 86 0. 19 717.07 0. 33 
1. 53 403. 99 0. 27 817. 16 1. 94 
0. 18 417.98 7. 71 817.98 0 38 
0. 33 418. 99 1. 58 832. 49 1. 00 
0. 14 419. 73 0. 13 833. 27 0. 24 
0. 45 419. 77 0. 16 
0. 16 420. 00 0. 22 
0. 92 420. 81 1. 48 
0. 15 4:21. 78 0. 26 
0 16 422. 84 0. :21 
0 27 447. 76 0. 43 
0 17 461. 76 0. 56 
0. 18 463. b9 0. 09 
0. 48 463. 83 0. 37 
0. 54 483. 84 0. 16 
1. 39 485. 84 1. 91 
8. 22 486.88 0. 27 
0. 73 501 86 0. 09 
1 09 502. 98 0. 14 
0. 16 503 84 47. 76 
0 10 504. 37 0 13 
0 09 504. 84 10. 04 
0 16 505. 84 1. 40 
0. 14 506. 85 0 14 
0 12 517.86 0. 73 
0. 15 525. 94 0. 22 
0. 41 543. 89 0 26 
0. 27 545. 91 4. 30 
0. 19 546. 92 0. 72 
0. 14 547. 99 0. 13 



6A68Z 0 
C'LBLlB STFI: 

LOO. 

No 40 19-SEP-80 
8•0 

;,---------------------~~~'-----------------------------------------------------~seea==~----, 
11!1 

5p 

Mas~ 

27 98 
31. 96 
35 95 
37 95 
39. 00 
41. 01 
43. 97 
50 98 
54 00 
55. 99 
56 99 
'59. 00 
63. 93 
68 96 
69 9'5 
73. 96 
76. 98 
81 99 
8:2 99 
84. 00 
86 97 
91 95 
94 96 
98 97 
99 96 

100 97 
110. 97 
112. 95 
120 97 
124. 97 
126. 84 
126. 96 
129 96 
138 95 
140 89 
144 94 
158 9'5 
162 92 
166. 86 
168 94 
170 9'!) 
188. 93 
189 93 
19'5. 83 
206. 94 
207 88 
207. 92 

1 5 

'- Bas12 
20. 65 

5. 22 
8. 48 
2. 85 
2. 70 

12. 91 
8. 68 
3. 61 
3. 84 

44. 18 
2. 61 

14. 29 
li!. 52 

10. 74 
76. 27 

4. :25 
6. 42 

49. 08 
'5. 54 
3. 02 
2. 93 
2. 58 
6. 63 
2. 17 
2. 93 
3. 40 
2. 02 
3. 96 
'5. 49 
8. 86 
:2. 49 
4. 11 
2. 35 
5. 40 
8. 48 

29. 89 
3. 81 
6 54 
2. 17 
3. 29 
2. 58 

26. 87 
2. 79 
2. 20 
2. 11 
0. 35 
0. 56 

2 9 

1 9 

2 s 

207. 96 
208. 92 
209. 92 
211. 92 
212 82 
223 93 
224. 94 
2:25. 95 
231 93 
:232. 92 
249 91 
250 91 
251 92 
252. 92 
253.65 
253. 72 
253. 89 
253. 93 
255. 83 
274. 9:2 
276. 92 
280. 93 
292. 90 
293. 90 
294. 9;2 
295 85 
335 82 
336 81 
337. 90 
338. 92 
349. 91 
351. 81 
375 92 
376 93 
377. 85 
402. 80 
417.98 
420. 78 
421. 76 
462. 73 
462. 80 
463 78 
464. 79 
465. 79 
475.91 
489. 76 
502. 90 

3 7 

0. 94 
35 49 

3. 31 
1. 82 
2. 61 
2 11 
2. 61 
2 05 
2. 08 
0. 67 
1. 47 
~- qo 

100 00 
7.07 
0. 44 
0. 79 
0. 35 
0. 76 
0. 82 
1. 23 
0 91 
0. 88 
2. 41 
5. 40 

51. 42 
4 69 
3. 64 

28. 10 
10 71 

1. 35 
2 35 
1. 70 
2. 20 
0. 47 
3. 61 
0 91 
0. 65 
5 69 
0 62 
0. 56 
0. 67 

34. 91 
5. 28 
0. 79 
0. 85 
0.94 
1. 85 

503. 8:2 
504. 75 
504 89 
525. 88 
527. 96 
544. 90 
545. 88 
546. 88 
547. 89 
'571. 68 
585.92 
589.65 
590 58 
'590. 70 
603. 72 
632. 30 
632. 45 
632. 59 
632 66 
632. 82 
633 02 
633 28 
633 71 
634 05 
634 16 
634. :26 
634. 3:2 
634. 60 
634. 81 
635.00 
635. 1:2 
635. 29 
653. 81 
6'54. 81 
671 79 
672. 78 
673. 79 
674 80 
697. 58 
713. 95 
753. 84 
753 97 
756. 04 
7:F 64 
779. 61 
779. 73 
781. 56 

3. 58 
0. 47 
0 41 
0. 59 
0. 44 
0 53 

91. 49 
16. 54 
2.85 
1. 41 
0. 94 
6. 13 
0. 32 
0. '53 
0. 38 
0 65 
0. 50 
0 44 
0 53 
0 62 
0 47 
0. 85 
0 76 
0. 59 
0 '56 
0. 59 
0. 38 
0. 44 
0 53 
0. 41 
0 53 
0. 50 
9. 74 
1. 73 
B. 51 
1. 85 
B. 89 
1 61 
1. 06 
1. 55 
0 85 
0 53 
0. 62 
0. 50 
0. 76 
0. 44 
1. 53 

798. 04 
798. 94 
799. 8'5 
863. '52 
864.26 
864.98 
882. 16 
882. 87 
925. 14 
954.98 
9'5'5. 69 
9'56. 40 

30. 83 
6. 13 
0. 73 
'5. 28 
1. 73 
2. 14 
'5. 72 
0. 88 
0. 47 

65. 74 
16. 13 
2. 49 



95 

Sil 

BS 

8tl 

78 

55 

35 

25 

:s 
IB 

5 

G~l!8§7o ol ~g~=G~ !1-~A~-87 10:31~0:04: 15 70E 
Bp~=G~ 1=1.2~ Ho=4~0 YIC~21J~GOOOO Acnt: 
YonP.: 

69 

51 

L 
12/ 

!59 
82 113 

181 

ll u 1 I I l l J J j I [, l 
58 IBB ISB 288 258 388 

Man 1 sue 
27.02 0.84 112. 97 HI. 10 218.92 2.!56 
21.00 215.04 113.97 0.!58 220.84 0. 79 
21.00 0. 11! 116.96 0.0!5 224.93 0.24 
29.03 0.30 118.96 8.84 228.83 0.22 
30.99 5.!57 119.96 0.24 230.92 0. 19 
31.88 15.86 F 123.91 0.20 238.83 0. 7!5 
32.00 0.82 F 124.18 0.21 242.92 0.33 
39.01 0.39 121.87 21.1!1 243.94 0.09 
39.9!5 3.81 127.88 0.47 257.415 0. 16 
41.03 1.29 130.98 11.!57 257.52 0. 10 
42.04 1. 041 131. 98 0.!51 2!57.!59 0. 11 
42.99 0. 10 138.87 0. 19 2!57.77 0. 1 !5 
.. 3.015 3. 79 139.87 0.23 2!57.99 0.08 
.. 3.98 2.27 1 .. 2.98 0.32 2!58.38 0. 13 
49.98 0.157 143.98 0 ... 8 262.92 2.05 
80.99 83.80 1415.815 0.08 263.90 0. 10 
151.99 0.78 149.9!5 0.37 268.91 0.40 
15 ... 98 0.08 HI0.98 0.!59 280.89 7.09 
1515.0 .. 0. 13 1!57.815 0.83 281.90 0.37 
1515.99 0. 14 1158.87 19.39 312.89 9.4!5 
157.08 0.26 1!59.87 0 22 313.90 1. 08 
158.08 0. 10 181. 115 0.215 3!50.86 2.21 
81.18 0. l8 182.915 4. 17 351.87 0. 13 
82.99 1. 40 163.9!5 0. 16 388. 77 0.69 
88.88 100.00 168.9!5 0.46 477. 73 43. 16 
68.18 I. 12 169.915 0 05 479. 73 3. 76 
73.98 0.33 170.87 0. 14 479. 74 0. 10 
74.99 1. 63 17-4.95 0.41 
80.98 0.48 176.85 8.60 
81.99 16.73 177.8!5 0. 17 
82.99 0.37 190.94 5.88 
91.04 0. 14 191.94 0. 19 
92.04 0. 11 199.86 4 62 
12.97 2.68 192.94 0.43 
83.98 0.153 195.8!5 0.26 
99.97 3.94 200.93 1. 37 

100.98 12.71 207.84 1. 09 
101.98 0.32 209.84 7. 73 
1015.98 0. 19 209.8!5 0. 13 
111.__1_8_ 0.92 212.94 0.61 

No 41 

l 
358 4BB 458 

HRR 
ARSS· 

4/8 

I 
I 

58B 



3 

3 

2 

2 

0 

5 

0 

5 

8 

5 

8 

5 

8 

15 

10 

5 

8 

GAJ!O!O®o n! ®fi~=!OO &1-~A~-~7 10:31~0:0G:S5 70E 
Bp~:.:2Q i:&.ID'tf MD=661 YXC,t32!il40000 Acnt: 
Tau~: 

28 No 42 

69 

!51 

113 

51 

82 12/ IBI . 
I J ~ II .I II j I l ttl I J j 

188 2BB 388 488 

M~lltl l Baoo 
27.02 3.82 14-4.98 2.48 
28.00 100.00 148.H 0.41 
29.00 1. 40 1!50.87 28.94 
28.03 0.71!1 11!11. 88 0.88 
30.89 1. 30 1157.88 0.38 
31.02 0.33 11!18.88 14.88 
31. •• 23.00 182.97 1. !51 
U.02 !.U 188.98 0.88 
31.18 14.08 174.9!5 0.14 
41.03 5.47 178.87 1!1.98 
42.0 .. IS. l1 180.9!5 10. 13 
.. 3.01!1 .... 87 181. 88 0.47 
43.88 9. 14 182.88 0.22 
44.015 0.88 111.11 3.70 
150.89 18.07 114.18 ... 13 
157.08 l. 08 200.115 8.215 
12.89 1. o .. 201.88 0.42 
88.98 69.08 207.815 0.80 
18.·81 0.82 208.88 !5.48 
74.98 1. 3!5 212.9 .. 2.98 
81.89 11.92 218.94 ... 34 
11. 0<1 1. 10 220.88 0.83 
12.04 0.34 224.94 0.48 
12.98 1. 48 238.8!5 0.69 
91!1.00 1. 41 244.98 0.39 
11.17 1. 99 2!58.81!1 4.39 

100.18 6.98 262.94 3.00 
111.87 0.715 268.92 5.32 
112. 98 24.03 280.92 0.78 
113. 88 0.88 312.90 0.!:10 
111!1.17 I.U 330.91 2.37 124.11 0.31!1 362.91 7.32 
121.00 0.41!1 363.91 0. 77 
128.88 11.1515 383.92 0.!58 
127.88 0.13 394.91 3.89 
130.97 10.49 432.89 0.64 
131.87 0.!51 !559.77 19.69 
143.87 1. 26 !560.77 2.05 

IEH ttl. 1 
Syo:APSIEV 
Co I: PFI{CiiC 

588 

HHR: 
HRSS: 

568 

688 



Ge.~a:Kl!CO n! §eEJ:!l 21-W~®-~7 &B:30~0:0A:07 
ap~=o n~n.~~ Mo~~Ja ViC:::GJQO!OOOO ~ent: 

ion&:(;.IW~~'\1 

Ill. 18 

95 

9 

85 

Btl 

I 

II} 

131 
No 43 

6 

6 

5 

5 

4 

4 

3 

3 

D 

5 

5 

8 

5 

8 

5 

8 

5 

8 

5 

B 

5 

8 

5 

8 

29 

I 
II 

..... 
28.02 
27.03 
28.01 
28.03 
29.0<4 
31.00 
32.00 
37.02 
38.02 
38.03 
38.97 
40.04 
41.05 
42.05 
o43.03 
43.01 
44.00 
44.01 
44.07 
80.01 
!11. 02 
!13.015 
!15.07 
86.02 
56.08 
157.09 
82.03 
83.02 
815.08 
17.08 
89.02 
81.09 
70.03 
71. ll 
74.02 
7!1.03 
77. 0!5 
71.01 
11.03 

43 

69 

/5 

I ~I hi ~' 58 

X Bas• 
0.98 
7.!14 

40.75 
1.20 
3.98 
9.67 
9.03 
0.5411 
1.44 
5.97 
2.09 
I. 08 

10.40 
&.92 
2.27 

11.34 
0.78 
0.69 
o.e5 
1. 83 
8.8!5 
0.86 
2.32 
1.11 
l. 29 
2.941 
0.88 
o.ee 
0.72 
0.76 

10.89 
1. 150 
0.87 
0.88 
1. 10 

13.81 
0.157 
0.152 
1.17 
'2 ... 

113 

11i1 I ,,1 ~ I 

IBB 

83.04 
83. 12 
8~. 12 
91. OS 
92. 10 
93.03 
9411.0411 
9!1.05 

100.03 
101. 0411 
106.05 
112. 0411 
113. 05 
114.06 
117.05 
119.05 
124.0!1 
12!1. CHI 
131.0!1 
132.06 
137.07 
143.07 
1414.07 
ue. 01 
1!50.06 
leli.07 
use. 01 
162. 07 
163.08 
164.08 
17!J. 09 
181. 08 
183. 11 
193.09 
194. 10 
207. 1!3 
213. 11 
225. 12 
243. 13 

!63 

144 

.II lll 1 
159 

1. 82 
0.58 
0.6.11 
8.64 
3.158 
9.87 
2. 1 .. 
1. 33 
3.23 
l. 61 
I. 82 
2.02 

3!5.80 
I. 41 
1. 28 
3.42 
I. 1 !5 
I. 80 

100.00 
3.11 
I. !52 
0.88 

16.70 
0.915 
0.33 
2. 18 
1.152 
o. 79 

27.90 
1.24 
4.87 
1. 72 
I. 36 
I. 01 
2. 79 
0. 72 
0.94 
!5.!55 
0.80 

299 

313. 18 
332.20 

I 
258 

0.98 
I. 72 

389 

S!fll:IEI 
Col:C~LY24 

I 
359 

HHR 
RfiSS: 

488 



GR33075o 
BpH=69 
Te~tt' 

95 

90 

85 

80 

75 

70 

65 

68 

55 

58 

45 

48 

35 

38 

25 

28 

IS 

18 

5 

8 ' L 

!!'lEI II II 
60. 13 
81. 12 
152. 12 
58.07 
1515.1.2 
66.06 
56. 12 
157. 12 
61.99 
62.99 
13 ..... 

118. "' 
69.02 
69.93 
70.01 
73.92 
74.92 
75.92 
80.89 
81.90 
82.91 
815.90 
86.91 
90.97 
91.98 
92.1H 
93.92 
98.81 

100.12 
101. 92 
104.12 
1015.92 
Ill. IH 
112. 12 
113.05 
113.91 
116.91 
118.90 

58 

118. 99· 

1tl Bgd=69 ca-HHR-97 IS-46•0'94:43 7DE 
J:::l~ lb=SB9 TIC=ml~ llcnt: 

169 

289 

82 

181 
127 

l J 1 Jl ' I J d I 

189 158 28B 258 

X Ba69 
0.45 II!'. !:'1 0. 14 213.86 
9. 14 123.90 0.89 224.84 
0. 13 124.!H 1. 43 22!5.84 
0. 11 126.81 12.36 226.7!5 
0.16 127.81 0.77 230.83 
0.32 130.89 1. 08 231.82 
0.09 13!5. 88 0.08 242.82 
0. 17 136. 90 0.33 243.82 
0. 13 142.89 1. 62 2!53.64 
1. !53 1 .. 3.89 0.42 212.83 
0. HJ 141!1.80 0. 1!5 213.83 

100.00 0 1-49.87 0.138 276.71 
0.09 1!54.88 0.31 280.80 
1. 20 115!5.86 0.08 281.81 
0. 10 1!5!5. 91 0.09 292. 79 
0.158 Ul7. 79 0.68 293. 79 
4.36 1!58.80 0.98 312.78 
0. 10 161. 117 0. 17 313.80 
0.315 162.88 8.32 320. 71 

41.84 1&3.88 0.30 338.69 
0.72 1GI.88 74.89 362.79 
0. 10 169.87 2.06 381. 75 
0. 16 173.87 0. 12 400.74 
0.41 174.88 I. 57 401. 74 
0.12 175.88 0.09 408.62 
3.87 176.78 7.41 508.65 
0.49 177.77 0.07 
5.41 lBO. 87 7.83 

16.24 181.87 0. 28 
0.35 189. 77 2. 70 
0.2!5 190.80 0.07 
0.815 192.85 I. 02 
0.60 193.86 4.35 
2.48 194.85 0. 18 
0.07 207.76 0. 18 
0.07 208. 76 66.82 
0. 12 209. 77 1. 31 
6.64 211. 84 0. 70 
0.06 212. 8!5 49.35 

No 44 

481 

313 

L 

39B 358 48B 458 se~ 

2.57 
0.93 
0.06 
0. 13 
1. 26 
0.05 
0.84 
0. 14 
0. 10 
0.!56 
0.08 
025 
1. 33 
0.28 
0.34 
0.79 

11. 8!5 
0. 72 
0.52 
0.09 
0 11 
0.23 

34.88 
2. 96 
0. 16 
0 08 



Gfi35B91o 
l!pll=GS 
hut: 

Ill 

!iS 

sa 
ii5 

R 

f5 

;u 

iS 

ill 

iS 

ift 

15 

18 

lS 

ltl 

~5 

:a 
51 

,s 

:8 

5 

8 .I 
58 

t4AII 
28.00 
30.99 
31.98 
39.9!5 
43.99 
150.99 
82.99 
88.98 
69.98 
74.99 
81.98 
92.97 
94.99 
99.97 

100.98 
112.17 
118.91 
12!5.97 
128.87 
130.96 
143.96 
1-44.96 
1!58.87 
182.95 
183.9!5 
188.94 
169.94 
174.94 
176.8!5 
177.85 
180.94 
182.96 
183.96 
189.86 
206.94 
208.8!5 
212.93 
220.84 
224.13 

~1 Bgdr-94 1~-RPR·B] 1G-G1•G:Q].35 }0[ 
1=13ous Ho=484 JIC=3n59118a Rent 

69 

169 

82 
113 

J 1 l L I I ll I .I t I. I 

188 158 2BB 

'1. 8AU 
9.57 2!51.93 0.95 
l. 68 258.83 0.65 
2. 17 212.91 O.E!I 
0.!58 274.91 0.81 
0.!57 280.90 2.35 

16.89 29oll.80 13.27 
0.83 29!5.91 l. 04 

100.00 312.89 2.31 
0.98 394.88 3.72 
l. 83 482.84 3.!52 

14.41 
0.92 
8.92 
2.50 
6.73 

11.90 
4.20 
0.67 
9.54 
2.69 
0.56 
!5.43 
0.!56 
7.05 
0.!57 

6!5.61 
2. 16 
0.62 

5!5. 82 
0.57 
3. 74 

42. 16 
l. 83 
1. !54 
0.57 
3. 15 
9. 79 
1. 14 
1. 22 
n 7.4 

~ 

258 

El• 
Sys:~Y 
Czl.. Pf1G 

295 

\ I 

388 358 

No 45 

l 
488 458 

tOOl· 
RRSS· 

l 
58E 



Gll360116o 111 llgrl=lgs 14-RPR-87 111:44-9:09 39 70£ 
BpR=SS 1=9.5:lus tb=SS/ TIC=3358- Rent: 
Telll' 

IS 

19 

IS 

10 

'5 

18 

iS 

i8 

iS 

i8 

IS 
189 

18 

IS 

18 

!5 169 

!8 2/ 
51 

141 
5 

!55 
9 

5 

Jl ~ L1l J I l 8 ldl I J,d l1 d l.l 
188 299 

~O!lO X Booo 
20.00 1. 31!11 127.84 3.04 
27.01 19.32 128.98 8.47 
20.00 12.186 130.91 0.68 
29.02 0.66 132.93 3.78 
30.98 1. 12 140.84 17.81 
31.97 1. 84 144.92 1. 92 
32.99 1. 88 HIO.I2 0.62 
39.00 3.07 163.83 1. 03 
39.94 0.53 194.85 12.46 
41.01 0.71 HIB. 82 1. 70 
43.03 0.82 162.89 6. 14 
47.00 20.02 1418.89 24.50 
60.97 21. 82 169.89 0.92 
68.98 1. 30 172.82 1. 50 
69.00 9.90 174.89 0.58 
63.98 0.90 180.88 6.56 
IS4.98 100.00 194.89 0.51 
65.99 2. 18 200.8!1 1. 51 
68. 9& 62.36 202.80 0. 75 
G9.96 0.81 204.81 3.03 
70.99 1. 14 212.07 2.22 
74.00 1. e7 220.89 3.40 
75.07 19.98 224.86 0.94 
77. 9Q 3.08 230.86 0.57 
€11. iUl 2.79 244.86 0.66 
82.97 1. 43 262.84 I. 32 
88.97 8.96 280.81 4.09 
89.98 4.90 308.83 3.03 
90.99 3.26 312.80 0. 58 
92.94 0.86 320.82 0. 70 
94.96 1. 32 330.92 l. 01 
£19.94 a.28 362.78 0.61 

100.99 2.23 388. 78 0. 69 
108.9& 42.20 408.79 9. 68 
109.96 2.00 409. 79 I. 06 
112.94 1. 10 428. 76 I. 20 
114.96 6.01 555.64 26.49 
118. 92 3.08 556.64 2.97 
126.83 6.72 

l I I 

399 489 

No 46 

556 

598 

IGJ: 
hJtSS: 

689 



L./Ja 

No 47 
g ® 

=~----~L-----------------~~--------------=-----------~u~~---g I 

1 

2 1 

188 388 488 

Mass 7. Base 
25.81 2.81 113. 08 5. 44 
26. 82 24. 70 119.08 0.91 
27.82 19. 73 121. 10 0.62 
28. 85 1. 47 127. 01 7. 48 
30.83 1. 50 128. 00 2. 54 
31. 83 4.87 129. 11 0. 37 
32. 86 3. 15 132. 10 0. 42 
37. 90 0. 29 133. 10 3. 05 
38. 9;;! 2. 56 141. 01 10. 48 
39.86 4. 70 145. 10 16. 06 
40.95 1. 18 14b. 10 0. 57 
42.98 0. 76 1:H. 12 1. 57 
43. 92 1. 82 152. 12 0. :H 
44.96 1. 57 153. 13 0. 67 
45.97 1. 18 154. 02 0. 67 
46. 98 6. 18 155. 04 6. 93 
49.99 0. 51 157 11 0 89 
50.99 18.48 159. 02 0. 45 
52.01 0.30 163. 10 3. 99 
53.03 1. 43 169 10 0 sq 
56. 00 0.34 171 14 2. 27 
57.02 2. 41 172. 1:1 0 30 
59. 05 5. 36 175. 11 1 04 
64.05 3. 45 177. 12 I 82 
65.06 100.00 181 12 0 45 
66. 06 2.01 195. 12 3 67 69.06 51. 29 201. 14 2 98 
70. 06 0. 59 203 04 0 27 
71. 08 1. 25 205 06 I 08 
7';1.. 09 2. 09 213. 12 1. 77 
73. 10 2. 97 215 13 0 24 
75. 06 3. 57 221. 15 3. 35 
76. 06 0. 76 222. 15 0 61 
76.09 0. 27 233. 13 4 35 
77.07 22. 91 241. 16 12 23 
78. 07 2. 39 242. 16 0 qq 
83. 07 0. 57 261 17 13 34 
89.08 0. 72 262. 17 I 08 
91. 10 4. 30 388 1 I 20. 08 
93. 06 0. 44 389 11 1 47 
95. 08 B. 12 
97. 10 2.06 

100. 07 0. 72 
101.09 1. 21 
10;;!. 10 0.69 
103. 11 1. 04 
109. 10 3. 45 



... 
ID 

N 
lSI 

GA41Z 0 
ta:ll.l!B 

Mass :r. BasP 
25 81 2. 29 
26. 82 23. 88 
27. 81 6. 94 
27. 83 12. 36 
28. 85 20. 90 
29. 86 0. 41 
30. 83 0. 63 
31. 82 1. 55 
32 86 2. 48 
36. 88 0 20 
37 90 0. 84 
38. 92 17. 93 
39. 86 1. 67 
39. 93 2. 67 
40 95 77 02 
41 96 7 85 
42 98 1 42 
43. 92 0. 85 
44. 95 0. 87 
45. 97 0. 66 
46. 98 31. 64 
47. ~ 0. 71 
49. 99 0. 62 
50 99 7 26 
52 02 08 
53. 03 4 64 
54 04 1 57 
55 05 29 23 
56 06 2. 14 
57. 03 1. 71 
58 03 0 28 
59 04 31 51 
60 0'5 2. 57 
61 07 51 47 
62 07 1 69 
63 05 0 24 
64 05 2 96 
65 06 21 97 
66 on 0 6H 
67 10 0 35 
69 OS 30 :JO 
70 07 0 43 
71 08 0 88 
72 O<> 1 13 
73. 10 13. 52 
74 0<7 0. 72 
75 0~· 1 79 

T.1 

F 
F 

L../Oo 

No 48 19-SEP-80 
I all 

2 1 

76. 06 0 36 l 57. 11 0. 69 
77 06 18. 24 158. 11 0 22 
78 07 0. 95 159. 13 0 92 
79. 09 3. 68 163 10 2 91 
80. 10 6. 89 165 13 0 35 
81. 10 1 05 167 04 0 87 
83. 07 0. 97 169. 07 1. 06 
84 08 0. 50 171. 13 1. 42 
85. 10 3 73 173.04 0.83 
86 10 0 96 17'5.10 0. 51 
89. 08 0 74 177. 13 1. 14 
90 08 0 40 179. 15 0. 53 
91 10 2 76 180. 16 0.33 
93. 07 0.21 181. 13 0. 45 
95. 08 6.30 183. 13 0. 59 
96. 10 0. 34 187. 05 0. 33 
97. 11 0. 91 189. 13 1. 35 
98. 13 0. 54 195. 12 0.95 
99. 13 2. 09 201. 13 1. 66 

100. 10 0.62 203. 15 0 54 
101. 09 0. 90 209. 14 1. 07 
102. 10 0.38 213. 10 0.93 
103. 11 1. 23 216. 07 0. 24 
104. 12 0.29 221 14 0. 62 
105. 12 4. 64 223. 16 6. 54 
106. 13 0. 32 224 16 0 48 
109. 10 1 44 ;;?27. 13 0. 64 
111. 13 0 38 228. 14 0. 25 
113 08 3. 89 229. 16 1. 06 
114. 09 0 29 230. 54 0. 32 
115 11 0. 70 233. 14 1 34 
119. 09 0. 73 241. 15 41. 35 
121. 11 0. 43 242. 16 3. 25 
127. 02 5. 41 243. 17 0. 40 
128. 01 1. 21 249 19 29. 87 
132. 11 0 35 250. 33 3. 40 
133. 10 1. 85 2'51. 18 0. 21 
139. 10 0. 71 267. 17 0. 36 
141. 02 2.80 268. 19 0. 27 
145. 10 7. 11 269. 20 100 00 
146. 11 0. 32 :no. 20 9 79 
151. 12 0. 80 271 20 0. 41 
152. 12 0.31 289. 21 7 72 
153.01 0.29 290. 22 0.80 
153. 12 0. 36 
154. 02 0. 42 
155. 03 8.30 



~9o ul Bgd=t 22·1lPIHD 15:04 9 0 fl1 QJ }0[ 
~ l=t.Bu 1111=446 TIC=318i51189 Rent: 
1 erl 6 .WY 

H. I 

95 

9R 

85 

88 

75 

}8 

5 6 

6{1 

s 
s 
4 

4 

3 

3 

25 

2 

5 

8 

5 

8 

5 

0 

8 

IS 

18 

5 

8 

28 

.! .u1 

..... 
21.02 
27.03 
28.01 
29. 0!1 
31.00 
32.00 
33.02 
39.02 
41.0 .. 
.. 2.0!5 
.. 3.06 
.. 7.03 
50.02 
!11. 01 
!5!5. 06 
!56.07 
!57.02 
!57.08 
!59.0 .. 
6 ... 02 
115.03 
II. 01 
19.01 
7!5.01 
77.02 
78.03 
82.00 
89.03 
90.03 
91. 06 
93.01 
9!5.02 

100.00 
101.02 
109.04 
110.05 
113. 02 
1 us. 03 
119. 00 
131.01 

69 

51 

89 

J. l L 

58 

X suo 
1. 08 

10.413 
24.93 

0.81 
1. 09 
!5.47 
0.89 
4.88 
3.24 
2.01 
6.!54 
0.71 
0.!59 

20.40 
0.97 
0.!56 
I. 34 
1. 14 
4.8!5 
0.7!5 
I. 29 

28.158 
0.159 
2.36 

100.00 
3.46 
I. !58 

11.28 
6. 17 
0. 77 
1. 19 
0.!52 
2.30 
0.61 

1!5.63 
0.!53 
0.7!5 
4. 16 
2.!56 
0.93 

181 

I 
281 

189 

I. .I! .. d 
188 158 288 

132.03 0.!53 
133.02 0.~6 
... 2. us 0.79 
149.0 .. 1. 07 
HH.04 0.16 
113.02 2.7Ci 
119.00 5 ... 1 
171.03 0.62 
181. 00 2.2!5 
201. 07 1. 16 
213.01 I. 08 
221.01 0.66 
224.99 0.67 
239.03 0.6!5 
263.00 0.88 
280.941 0.61 
309.03 O.S3 
313.00 0.78 
363.015 0.94 
408.93 0.90 

No 49 H!IR: 
RRSS 

lllO•r 

213 

263 
363 489 

313 
225 239 281 

381 325 

II I 
258 398 358 488 



!j5 

9!11 

Q5 

etl 

l5 

~ 

&S 

li8 

s 
5B 

45 

«< 

l5 

38 

2S 

29 

IS 

18 

1 

5 

,l 

f!llius 
28.00 
30.99 
49.98 
68.98 
19.18 
73.18 
80.18 
12.18 

"· 98 I 1 I. 87 
118.87 
123.97 
130.97 
142.87 
149.9!5 
1!54.96 
161.96 
168.96 
169.96 
180.96 
181.97 
192.96 
211.96 
230.86 
231. 96 
242.96 
280.96 
292.96 
330.96 
380.98 
399.97 
•oo.9a 

nl Bgd=/ 14-API!-0/ 11 :SNl Cl 49 /e£ 
J::21oos ~I TIC=3283B8111l l!tnt 

G9 

181 

I 

:53 

I 
i 
I 
I 

1!9 

I I I l 
58 188 !58 2BB 

7. Bue 
1. 23 
3.0"1 
0.70 

100.00 
1. 07 
0.13 
o.u 
7.81 
<4.152 
0.92 

12.63 
2.04 
1. 64 
6.88 
0.71 
1. 07 
0.83 

30. 74 
0.98 

46.8!5 
I. 97 
8.8!5 
3.8!5 

23.32 
1. 20 
!5.92 
3.!51 
1. 94 
1. 76 
2.27 
6.21 
0.!5!5 

I 

[Jo 
Sys:flPS[V 
Yt PfK9 

231 

l 
258 

No 50 

I I 
388 

I I 
358 

lfiR: 
if!SS· 

l 
499 



\) 
B 

9 

. 

:i~ 

~-~ 

l'flliiS 

26. 82 
27. 81 
30. 82 
31.82 
38. 91 
39. 86 
40. 95 
41.96 
42.97 
50. 98 
57.07 
69.04 
7:1. 04 
82. 06 
93.05 
94. 07 

100.06 
101. 06 
105. 13 
106. 07 
112. 06 
113. 06 
114. 08 
117. 07 
119. 07 
119. 16 
124.07 
125.07 
130. 77 
130. 79 
131. 07 
132.07 
134. 18 
137. 09 
138. 20 
143. 07 
144. 08 
145. 09 
149. 11 
150.08 
155. 08 
162.08 
163. 10 
164. 09 
168.09 
169.09 
170.09 

J 

7. 

~~ 

1 3 

I ll J 
usa 

Base 
3. 35 

24. 47 
4. 26 
5. 64 
2. 70 
1. 30 
6. 31 
3. 87 

14. 02 
4. 69 
1. 22 

70.67 
6. 91 
1. 20 
3.92 
1. 10 
3. 19 
0. 33 
0. 22 
0. 58 
2.00 

21. 76 
0. 69 
0. 54 
4. 02 
0.26 
0.32 
0. 55 
0. 09 
0. 08 

100.00 
3. 30 
0.09 
0. 84 
0. 08 
0. 48 

11. 40 
0. 70 
0 13 
0. 35 
0. 62 
0. 23 

26. 17 
1. 23 
0 21 

23. 05 
0. 82 

No 51 
'll'l 

llllii!i§ 

I 
I 
I 
I 
I 
I 

~~ I 
I 

~,a 313 41~ 

I 
I 
I 
I 

I I l 
I 
I 

489 S88 

17:1.09 0. 87 
181. 09 2. 02 
182. 11 0. 13 
186. 10 0. 17 
187. 11 0.87 
193. 10 0.29 
194. 10 0.28 
205. 10 0. 57 
207. 18 0. 11 
213. 11 0.95 
225. 11 1. 88 
"Ol37. 14 0.24 
243. 12 0.66 
255. 07 0 10 
255 12 0. 10 
263. 12 0.20 
275. 13 3 59 
276 06 0 06 
276. 13 0. 23 
281. 14 0. 36 
287 13 0 35 
293 11 0 18 
293. 17 0 14 
313. 15 0 31 
363. 15 0 1 I 
463. 15 0 12 
482. 16 0 16 



GR810116o ltl Bgd=lll 21-stP-89 14:2~0:02:94 ~0[ C1• 
llpR=G I=IGu Hfl=255 TIC=3/Qil51109 Rcnt=CDI Sys:Offtl No 5? HHR 

GC= 40° ~ :Fftc2G} hf!SS 

1 '}} 

95 

911 

95 

90 

~5 

711 

65 51 

68 69 

55 

58 

45 
2/ 

48 

35 

39 

25 

29 241 

15 95 

18 64 113 

5 

9 
58 198 159 258 

Mass % Base 
25. 91 6 41 118.72 2. 17 233 51 0 03 
26. 92 42.20 120.74 2.28 233. 61 0 06 
27. 92 2. 78 126.72 2. 12 238. 53 0. 05 
30 98 672 131. 71 1. 72 239. 64 0 I I 
32.e9 2.40 132. 7 1 4.43 239. eo 0 05 
37.88 1. 25 144.68 9.29 239. 88 0 04 
38.89 6.45 150.69 4.96 239. 99 0 08 
40. 90 1. 66 151. 69 1. 52 240 62 18 24 
44. 86 3. 78 156.66 2.40 241. 08 0. 06 
45. 87 4.82 162.64 4. 77 241 27 0 04 
49. 85 1 91 168.63 1. 07 241. 63 1 41 
50. 85 64. 19 170.65 7. 14 242 67 0 05 
51. 86 I. 66 176.65 5. 77 258 63 0 09 
55. 84 1. 71 180.65 1. 79 259. 65 0 32 
56 84 7 44 194.63 2.82 
58 85 94 200.63 7.37 
63 82 11. oe 200.87 0.03 
64 83 7. 69 200.96 0.05 
68. 79 59. 72 201.02 0.06 
69. 81 1. 56 201 27 0 05 
70. 82 6. 38 201 30 0 05 
71. 83 7. 69 201 62 0 52 
74. 79 14 48 201 81 0 05 
75 eo 3. 71 F 201 89 0.07 
76. 71 3 52 F 201 93 0 06 
76. 79 100. 00 0 202 07 0 07 
77. 80 15. 20 202 47 0 13 
80 79 1 10 202 85 0 05 
82.80 I 80 202 91 0 05 
88. 78 1 65 202 97 0 04 
89 79 2.96 203 01 0 06 
90. 79 12.95 203 49 0 04 
92. 75 1. 43 206 64 0 06 
94. 76 14 46 212 60 1 09 
99. 74 2. 88 213 55 0 04 

100. 76 4 43 214 62 0 12 
101. 76 2. 16 218 63 0 05 
102 77 4.88 220 63 1 13 
108 75 4 70 221 64 0 08 
112 72 10. 91 232 60 I 37 



19 

95 

98 

85 

89 

/5 

19 

65 

60 

55 

58 

45 

40 

35 

38 

25 

28 

15 

18 

5 

8 

LOU o 

GR}]G139o nl Bgd=135 2&-JUL -88 15:9•9:92:28 ]QE 
BpA=O t=4.S11 HQ=4G2 TIC=temJ009 Rent: 

69 

169 
113 

144 

58 11!9 158 288 

l"l!HHI Y. Ba Ill? 
27.99 8.98 143.93 11.23 
30.18 4. 87 144.93 0.!50 
80.19 6. 17 149.92 0.24 
68.97 81. l1 1!54.91 0.49 
74. 97 8.86 1!5!5.9"" 0. 11 
92.95 3.85 181.91 0.2!5 
99.96 2.99 112.76 0.20 

100.95 0.33 182.82 11.23 
104.95 0. 19 163.92 1. 01 
10!5.95 0.33 166.92 0. 10 
111. 94 1.77 167.92 0.20 
112. 84 0. 17 168.74 0.20 
112. 915 19.39 168.91 22.21 
113. 915 0.71 169.91 0.84 
116.94 0.44 174.92 0.""9 
117. 96 0.06 180.90 1. 29 
119. 94 3.96 191.91 0.09 
119.94 0. 13 19!5. 90 0. 14 
123.94 0.2!5 196.91 0.70 
124.94 0.52 212.87 0.94 
127.84 0. HI 224.86 1. 32 
128.8!5 0.69 225.87 0. 12 
129.80 0.07 230.88 0.09 
129.86 0. 13 236.89 0.25 
130. 18 0.08 242.88 0.40 
130.30 0.08 254.89 0. 10 
130. 32 0.05 25!5.89 0. 10 
130.35 0.05 262.93 0.24 
130. 39 0. 13 274.90 2.69 
130.44 0. 11 27!5.90 0.33 
130.48 0. 10 280.88 0. 19 
130.64 0. 11 286.87 0.23 
130. 77 l. 14 292.86 0. 13 
130.93 100.00 312.84 0.25 
131. 92 3.67 324.85 0.24 
133.83 0.33 362.85 0.24 
13!5.84 0.25 462.85 0. 11 
136.94 0.66 
142.92 0.35 
143.75 0. 10 
143.79 0. 13 

GC= Sil 
No 53 

258 488 458 



GR53XB33o 
BpR=D 

18 

95 

98 

85 

88 

]5 

/8 

65 

68 

55 

58 

45 

411 II 
35 

3B 

25 

28 

IS 

10 

5 

8 I 
68 

M••• 
2:5.93 
26.93 
27. 94 
28.9:5 
29.3:5 
29.9:5 
30.93 
31.92 
32.93 
·36. 93 
37.94 
38.9:5 
39.96 
40.97 
41.39 
41.97 
42. 98 
43.98 
44. 96 
4:5.96 
46.9:5 
47.9:5 
48.94 
49.94 
50.93 
51. 95 
:52.96 
:53. 97 
:54. 98 
:5:5. ~ 
:57. 02 
:58.00 
58.97 
:59. 96 
60. 46 
60.98 
62.96 
64.99 
67.00 
69.0:2 
70.03 

&..U4....o 

nl Bgd=32 9-NOV-8] 16:4<>0:02:16 ]Br 

l=lg, ltl=l/5 Y1 C=S/4852992 Rent: 

15 

I 
98 

X Base 
2. 11 

34.33 
6. 17 

91.90 
0. 19 
2. 08 
7.72 
0.60 
0.83 
0.:52 
1.83 

26.27 
3. ~ 

9:5. 46 
0. 13 
:5. 40 

4:5. ~ 
1. 68 
6. 33 
0. 19 

:H. 98 
0. :53 
0. 20 
0.9:5 

17. 9:5 
0. ::M3 
4. 16 
1. 07 

90.69 
23. 91 

100.00 0 
14. :31 

1. 27 
0. 11 
0. 57 
0. 58 
0. 13 
0. 20 
0.42 
2.48 
0.30 

101 

II 
188 

71.05 
72.0:5 
73.03 
74.03 
75.03 
76.04 
77.01 
78.97 
80.00 
80.99 
81.99 
87.06 
88.07 
89.06 
93.00 
98. 98 
99.98 

100.98 
101. ~ 
128.89 
131. 00 
131. 93 
144. 01 
145.01 
146. 02 
157.02 
1:58.02 
171. 04 
172.05 
173.05 
174.06 

1211 
l 

37.98 
2.41 

21.80 
1. 14 

148 

100.00 0 
5. 74 
0.:22 
2.39 
0. l1 
0.29 
1.05 
0.20 
0.22 
0.33 
0.38 
0. 16 
0.41 

50.09 
1. 19 
0. 17 
3. 71 
0. 18 
0. 13 
3. 38 
0. 18 
3.94 
0. 26 
0. 43 
4. 52 

12. 47 
0. 94 

I 

[Jo 
IW!: SyslfS£ No 54 NfSS: GC= 81° ~:PfK2 

113 

I I 
168 189 229 248 



= 
! 

- 2~ 

MASS 

27.23 
28. t 1 
~'B .9l 
29.00 
31.98 
38.97 
39.81 
40.95 
42.04 
43.12 
44.09 
45.14 
50.93 
~i/.08 

57.13 
~A.97 

68.96 
69,04 
75.07 
78.96 
80.95 
87.03 
88.01 
90.95 
YJ,OO 
95.04 
97,02 
98.96 
99,92 

107.02 
1 13.00 
117.00 
117.99 
118.96 
122.99 
12~.01 

133.01 
136.98 
137.97 
145.98 
146.98 
156.97 
157.96 
162.95 
164,9'/ 

L.OJo 

®.~Y ~.all. ~.x. 
~~g 

1 9 1" 
.J.. J 111 j1 I l L . , 

188 

%HT. 
BASE 

0.79 lltb.96 0.52 
60.99 16/.95 0.4!5 
o.n 1Mi.9J 2.44 
0.72 180.89 1.17 

14.01 182.28 0.31 
o.s8 184.97 2.44 
0.79 186.95 7.11 
1.34 1.87.95 3.23 
0.82 190.91 0.136 
2.58 196.96 ~~5. 44 
0.89 l 'i'7. 9~ 2.60 
0.41 201.95 ~.44 
0.93 206.94 35.13 
1).62 207.93 2.58 
0.79 214.92 1.13 
7.86 234.90 100.00 
5.91 235.92 6,83 
0.45 265.92 1.99 
2.61 
2.16 
o.s8 
0.58 
2.51 
0.6~ 

1. 30 
7.25 
0.82 
2.27 
0.38 
0.89 
2.99 
0.92 
0.62 
9.58 
1.03 
0.41 
0.65 
8.31 
1.58 
1.44 
0.82 

13.19 
0.72 
o.89 
1.68 

No 55 
~ iC 

~~~<!! 

q? 

.J_j_ J I I ., . 
288 see 



~ 1!1 ~~ Rl-ftUli-{17 i!J: ioQ:I:£:<$) 
~ J::l~ ~t?3U m:~ 
lll'fY m 

15 

If) 

GS 

68 

55 

5I 

45 

48 

35 

38 

25 

21 

15 
I 3 

Ill 

5 

0 

Mass 7. Base 
27. 00 0. 14 90 90 0.24 
27 98 2. 62 92. 91 2. 98 
30 97 2. 96 93. 92 0. 84 
31.96 0. 67 94.93 2. 11 
34. 94 0. 14 96. 88 0. 11 
36. 97 0. 34 97. 89 3. 70 
37 98 0. 30 98.92 1. 32 
39. 92 0. 21 99. 89 1. 38 
41 00 0. 23 100.91 0. 18 
42 00 0 21 104. 90 0.21 
43 01 0 66 105.91 0. 85 
43 96 0 42 106. 92 0. 24 
46 92 0 27 108.87 0. 29 
41 93 0. 63 110.88 0. 41 
48 94 0. 14 111. 90 0 52 
49 95 0 71 112. 90 15. 80 
50 95 5. 96 113. 91 0 51 
54 95 0 21 115 87 0 13 
55 95 0 95 116.88 4 85 
56 96 0. 70 117.89 0 29 
62. 95 0. 47 118.89 2 43 
63 95 0. 15 123 0':' 0 9c c 
65 91 0. 10 124 89 2 9~ F 
66. 91 6 95 1~5 9'J (o ):, 
67 94 0 44 1.?8 Bt> (i 41 
68 93 38 85 130 88 0 ~'8 
69 93 0 44 131 89 " 7'(1 

72.92 0 14 134 a:, C• ~~ 
73 93 0 58 135 88 f) l."" 
74 93 13 67 136 sq ;• l;. 
75 94 0. :>1 137 8'7 .. I-~ 

78 91 0. 26 l '1;.~ (10 ,, 
<~ 

79 92 0 17 l ol :J hfi I 'I\ .. .' 

80 92 0 17 1'14 (l!J " .'? 
81 92 1. 55 146 (1•1 ') ._,_ 
84 89 3. 19 152 8•) ~~ '·' 85 91 0. 13 !54 8o rJ :_-"·1 

86. 90 1. 28 1~5 r-m 0 ' -87. 93 0. 80 1 ~·b 8't I. ~·. -· 

IG3 

162 8;' 

163 88 
1!'>6. (14 

167 EP 
160 85 
170 R·l 

J 72. 84 
17'1 86 
17~ 81 
178 83 
179 BJ 
180 lD 
186 86 
190 8:1 
J9;..• El·l 

19:1 8<1 
194 fie·· 
196 81 
202 81 
204 IJ:.J 
206. 8<1 
207 85 
212 92 

213 84 
214 85 
222 81 
224 n:> 
'1 ~I£: A:l c..r ... · 

228 8(1 
230 81 
240 £-!0 
~41 80 
~42 7'7 
2'16 7r:: 
274 81 
290 77 
~92 7 I 

310 70 
311 lll 
312 78 

7;;'. 
3 
(; 

0 
(I 

1) 

f) 

0 
0 
,_ 
() 

I 
0 
() 
., 
'· 
·-
i) 

() 

(I 

() 

3 
c 

li•O 

1\) 

0 
(.l 

•.) 

(j 

() 

0 

() 

L' 

0 
() 

I 
0 
,, 

~· 
0 

"JO 
1 I 
:Jb 
3! 
1? 
J ~~ 
24 
6:3 
..,I 
47 
II 
t>U 
f,'' 

~-

;_·· 
II.• 
H._, 

~· J 
I I ·-C"!'. ~ 

~t? 

77 

~=-
()I_) 

r;;.· 
24 
s~ 

7~ 

2!· 
!;::" 

1! 
~4 

1 ~j 
"I 

I I 
5"> 

28 
·ll 
ll 

;;_•! 

8/ 

No 56 
2 3 

··;_; 

1' 



N 
~ 

SRtt2S 0 
~Sl!@ 51~1 

IJ:"'I 

d~ 

4fl 

:i1 
!! 

'j ~ J. DJIL l{r . , 

1):1oao '1 §IO!lQ 

21.02 2.38 
27.03 18.21 
28.01 71. 12 
28.04 4. 17 
29.015 @.Sa 
31.01 1.47 
31.02 0.86 
32.00 ~U.158 
37.02 1. 66 
38.02 2.89 
38.03 17. 13 
38.87 15.87 
40.04 2.01 
41.06 21.74 
42.041 12.90 
43.03 15.915 
43.01 &Jl. !58 
44.00 2.87 
44.07 1.27 
411.04 1. 01 
60.02 2.12 
111.02 12. II 
88.07 4.915 
158.02 2. 13 
88.08 2. 111 
157.09 7.18 
S8.0G 1. 37 
liS. OS 3.28 
87.08 1. 815 
19.02 100.00 
88.09 3.24 
70.02 0.90 
70.10 1. 82 
71. 11 I. 80 
73.07 1. 48 
74.03 2.34 
78.03 23.89 
77.06 l. 53 
92.03 2.78 
12.07 1. 153 
84.12 3.29 
87.03 1. 44 
IH.Ofil 13.81 
12.10 IJ. 12 
93.03 15.30 
13.11 l. 13 
14.04 1. 87 

1 3 

lbu 
188 

IllS. OS 
IBIS. 12 

!00.04 
101.0B 
106.12 
101.09 
113.oa 
119. 015 
119. 14 
124.otl 
128.06 
131.06 
137.07 
143.07 
144.07 
UU.07 
168.07 
163.08 
164.09 
178.10 
181.09 
183. 10 
193. 10 
194. 10 
207. 14 
213. l1 
214. 12 
225. 1J 
243. 12 
2151. 14 
283. 1~ 
293.17 
313. 19 
314.20 

No 57 19-SEP-89 
Waf& 

l! 3 
I 

~~ 

~~ 

2 3 

3 3 

I 
I 
I 
I 
I 
12 3 
I 

~lrttl I II J 
I 

1 1 I 

I I I . .. 
208 

l. 14 
2.32 
3.!54 
1. 83 
1. 83 
3.38 

21.39 
111.27 

&. 34 
3.84 
7.152 
3.84 
1.18 
2.38 
2.01 
6.95 
I. 13 

60.150 
2.08 
3.98 
6.07 
.... 17 
2.55 
9. 12 
2.01 

55.92 
3.59 

10.00 
3.98 
1. 13 
2.41 
2.38 

1!'.1. 8.11 
1. 37 



GAS8 0 
Oi:l...llliBJ STA: 

~., <l 

3 

S? 

ltl.t ,Jill IJI 

IIASS ! DASE 

26.83 

27. 04 

28.112 

28.05 

29.06 
30. 06 
31.112 

32.01 
n.u 
n. ea 
Jl.eJ 
]9.04 
40.0!1 

41.06 

42.06 
43.00 
44.07 
46.04 
47.05 

u.n 
11. OJ 

53.06 

!iS. 08 
56. 8) 

56. 89 

57.04 
S'J. 86 

60. 87 

1>1. 87 

l>l. IDS 

1>4.84 

1>1 ... 

1>9.U 

73.89 

75.84 
76. 84 

77.86 
78.86 

7'J. 87 
82.84 

81. 96 
87. 85 

011. 05 
89.06 
'J1.07 

92.00 

91.04 

'J4.05 

4.0] 

100.00 0 
4.69 F 

12. 99 F 
72. 75 

l. 56 

2. 82 

1. u. 
2. 79 

1. u 
4. ll 

34.59 
4. 34 

188. eo o 
47.23 

188.88 0 

19.64 

1. 52 

44.94 

1.88 
15.89 

1. 7] 

38. 99 

1.21> F 
1.55 F 
5.81> 
7. 38 

5 .•• 
l 2. 11> 

1. 61 

.... 511 

21 24 

ll.2'1 

3. 28 

21>. 14 

2. 29 

lb. 65 

3. B'i 

2. 72 

2. 18 

2. 41 
1. 23 

4. 41 

7. ot1 

32.53 

4.89 

5. 74 
1. 21 

s~ SJ 

1 

l lllrl j Ill .l!LLI, 

95. 85 

9'1.85 

108.84 

181.86 

1t2.87 
10J. 911 

U14. 89 

ltS.oO 
186.86 

U7.86 
100.06 

189.87 
112.84 

uJ. e5 
114.87 

us. 8'i 

121. 08 

122. 89 

12]. 10 

124.18 
125 . ., 

t:zt..n 
121 08 
137.07 

l38. 07 

13'1. 88 
145. 87 

1U. 88 

147. 18 

163.87 
11>4. 88 

165. 11!1 

U6.U 

1116.011 
11>7. 12 

11>7. 24 

11>7.118 
u.s. 12 
11>9. 8!1 

178.118 

171.89 
175.86 
176.07 
176. 95 

177.89 
187. 14 

187. 44 

188. 14 

188 

13. OS 

1. 68 

Q. 84 

s 51 

1. 19 

4. lS 

5 88 

e."" 
1. 73 

1. 68 

1. 1M 
2. 18 
4.29 

18. ]6 

l. 25 
1. 57 
3 77 

1.22 
6.83 

44. 92 

5 87 

14 

11. 04 
4. Bt 

• 69 

" 49 
81. 15 

u 46 

2 68 

]] 30 

1. 38 

1. 12 

0. 22 

8 8b 

12. 1>7 

• 8) 

e e5 
1. ot2 

1. 38 

0 2!; 

7 Zl 

2 75 

8 45 
8 06 

4. 98 
29 82 

e es 
2. 11 

No 58 
l! s 
I 

1< s 

I 

1. 4 

1 i3 
1 i 

3 2 3 
2~ 

In It .I II tl J.dl ,J d I w 1l_l l .I. I 

194.8'1 

195. 10 

196. 11 

191>. 49 

1'16. 55 

191>.80 

197. 13 

1'17. 26 

197. St 

197. 7'1 

198. 1l 

19'1. 10 

281. 11 

2.2. 18 

285.13 

287. U> 

2B8. ll 
289. 12 

210. 12 

212.07 
213. te 
217.11 

217. lB 
2U.U 

219.12 

221. 12 

222. 1l 
22!1. 18 

221>. 11 

227. 12 
22e. 11 

2n.u 
216. u 
237. 16 
2]9. 18 

241.15 

242. 21 

255. 14 

215. 2'i 

2111. 17 

217. i7 

B. 38 
4. 1>8 
e. 2'i 

0.84 

0.04 

0.05 

7.55 

0. OJ 

0.04 
8.83 

e. 74 
0. 17 

1. 4b 

•. 10 

e. 37 

3. 47 
8.42 

0. 66 

0. 17 

8.87 

18. 48 

?.U 
0.06 

t.n 
B. 88 
0. ,., 

B.IIJ7 

•. 11 

e.n 
1.00 
e. 14 

1 ]5 

0. 33 

0. 10 

0 .3 
0 38 
0. lt4 

0.88 
0. 84 

5. 99 

e. 10 

., 

19-SEP-80 
!!I alB 

1661Zl 

2!S 



I 
CD 

I 

I 

i 

I 

i 

I 

I 

51 

G9 

75 l9 63 

I j 
so 

a 'is 7. Base 
27.02 2. 15 
28.01 96.97 
31. 01 2. 14 
32.00 24. 12 
35.99 9. 78 
37. 98 3. 18 
38. 03 2. 61 
39.03 11. 43 
44.00 2. 88 
50.02 15.22 
51. 03 28. 8::1 
52. 04 2. 73 
57. 03 5. 43 
62. 03 5. 26 
63 04 10. 06 
69. 01 22.64 
74. 03 7. 44 
75. 03 12. 45 
76 04 3. 50 
77. 05 11. 45 
81. 03 3. 58 
83. 05 3. 32 
87. 03 2. 16 
89. 06 2. 53 
'H. 03 9. 37 
93. 02 285 
99. 03 5. 18 
00. 03 3. 61 
00. 53 0 38 
01. 04 4.86 
02. 07 5. 03 
05. 03 1. 06 
06. 03 0 72 
07. 05 2. 14 
09. 07 17.63 
10. 05 1. 51 
10. 54 4. 77 
11. 04 1. 13 
12.03 1. 36 
13. 03 1. 45 

189 

12} 

II,Lt II ~~~~ b .J Ll~ 
108 

114.03 0. 56 
115. 54 0. 26 
119.04 1. 72 
120."06 1. 47 
123.03 1. 27 
124.03 0.64 
125.04 2.98 
126.05 0. 32 
127. 06 10. 50 
128.06 0.93 
128. 93 l. 50 
130. 93 1. 52 
131. 05 1. 12 
131. 93 2. 10 
132.05 1. 03 
133.07 8. 42 
133.93 0 59 
134 07 0. 53 
135 54 0. 46 
13::1. 93 0 47 
137 02 0 34 
138. 05 0 47 
140.07 1. 22 
143 03 1 07 
14'5. 0'5 1. 92 
149 0'5 1. 00 
1'50 05 1. 17 
1 51 06 4'5 27 
152.07 12. 65 
153 07 0 81 
159. 07 2. 06 
161 04 0 41 
163. 04 I 36 
169 05 5 36 
170 06 I 45 
171. 07 I 68 
181. 05 2. 29 
182 06 13 41 
183. 06 I. 44 
195 06 0 53 

-

151 

m•1 1.1 In 
lSD 

200. 06 
201. 06 
202. 06 
203. 06 
211. 04 
219. 05 
220. 06 
221. 06 
222. 07 
231. 04 
251. 08 
252 08 
269. 04 
290. p7 
291.07 

182 

I 

5 72 
100 00 

1 1 77 
0 34 
0. 39 
2 39 
0. 34 

66 27 
7 65 
0 45 
8 16 
0 85 
0 '51 

28. '50 
3 24 

No 59 
2i 1 

221 

I 1 
288 253 

~: 

~: 

251 

II 



IS 

9 

5 

0 

5 

0 

5 

GRS/~GGillo ltl ~581 11-ni:C-87 15:5•0:10:42 /G£ EI• 
BpA=29 I= !Cv Hb=lC4 TJC=63/241G24 

69 

IAU 

u.n 
27.04 

28.$2 
28.ts 
29.02 
29.06 

)0. 06 

32.01 
]8.8) 

]9.04 

42.0] 

43.04 

45.82 

45.05 
51. 84 

n.n 
$7 .•• 

1>2." 
1>].86 

61." 
••. 01 

67.01 

69.1)] 

711.06 

71.116 

7S.Il4 

77.06 

01. n 
82. es 
91.87 
84 87 
88. OS 

119.06 

91.11)7 

9].~4 

9S. Ot. 

99.86 

180.86 
101. G7 

102.87 

1113.89 

104.05 

83 
181 

188 

X OA5E 

2. ]8 
21i.]] 

J. n F 

2. 41 F 

2.79 F 
188.98 FO 

l.IU F 

1.08 
1.9) 

B. OJ 
1. 84 

26. 115 

2.54 F 

7. 99 F 

]. 87 

1. 77 

5. 92 
1.28 

7.112 
2. 94 

5.21 

7.41 

14.84 
I. 17 

]. 18 

5.06 
1. 34 

4. 68 

1. 15 F 

1 J. 23 

1. 84 

I 52 

1. 69 
1. 91> 

1. 02 

I. 23 

I. 1>8 

0. 42 

10. 43 

3. 17 

e. 53 

s. 35 

129.87 

129.49 
129. !12 

129.58 
ue. n 
131' 86 

132.08 
112.88 
132. 83 

Ill. 89 
133. 19 

Ill. 28 

Ill. 65 

133. 75 

114. 86 
135. 88 

135. 98 

136.88 
137.87 
138.88 

139. 88 
139. 19 
139.42 

IU.89 
141 .•• 

151. 89 

151. 48 

11117 
151.77 

151. 76 

151. 84 

151. 89 
152.89 
l6e.e9 
u.e. 86 

161' 18 

161. 2'9 
162. 10 
163. 08 
164.09 

165.08 
11>7.88 

151 

4. 79 

0.05 

e.G!6 

e.u 
0. Ill 

2. 05 

9. ll 

o.u 
e.os 
7.66 
9.86 
e. 84 
8.84 

0.86 
e. u .. 2. 
• 71 
8.28 

l. 24 
e.22 
I. 72 
0.06 

•. 03 

•. 12 

2. 91 

IJ. 6S 
e. o7 
o es 
0.81> 

e. oJ 
0.06 

e.es 
7.52 
I. ]II 

e.eJ 
18. 73 

0.05 

0.99 

6. Jl 

8.52 

2. 61• 
'> ao 

161 

!lent · S:ys RJISE 
lit= 135° C4t PfOC412 

IBS 

177.89 

177. ]4 

177. 72 

178.89 

178.27 

179.09 

179.72 

17'9. 81 
188. ,. 

lBO. 56 
188.61 

188. 72 

198.86 

181. 89 

195. 07 

196. 84 

187. 88 

205. 12 

2es. 65 

z•5. 79 

206. 11 
~OIL 'Z.7 

z•7. 11 

z•1. 12 

2•"· "" 
207. 51 

208. 1 z 
:e~ 1: 
225 12 

LLS. 4 l 

~25. 48 

225. 59 

225 75 

225. 86 

225. ~· 
226. 12 

226. ]5 

Z2b.S2 

:Z27. 12 

228. 13 

:Z28. 91 

285 

3. 2? 
0.84 

0.85 

0. 1>4 
B.Ol 
l·. 94 

e.es 
e.es 
3. 48 

8. II 

0.85 

•· ea 
•••• 
5.44 

79. 13 F 

7. II F 

2. 49 " 

57 51 

•. ttll 

•. 09 

5 65 

e e5 
19. 17 

0 oi'S 

•. 11'9 

• e1 
~. 31 

U. 02 

0. 05 

0.87 

1!1.0!1 

o!I.Ol 

•. 1!15 

e. Ob 

4.45 

0. OS 
0.06 

36 . .,. 

]. 25 ... ] 

25). 22 
ZS4. 17 

254. 57 

255. 14 
255. 48 

254. 14 

256.9'l 
Z!li7. U 

251. 14 

259. 11 

21>11. 38 

26'l.ll 

26&.77 
Zt.'l.ll7 

261." 
272.05 
272. I l 

271. 14 

274. II> 

275. 15 

275. 90 

27&. 17 

277. IS 

278. 15 

279. 15 

281. 19 

284. 21 

201. 1S 

294. 14 

294. 19 

295. 17 

302. 19 

301. 20 

304. 21 

]07, 18 

322.28 
lZ ... 21 

No 60 

253 

m 

100.00 FO 
21>. lB F 
8.04 

13.49 

lt.Ol 

1. G5 

e.es 
1. 52 

0.24 

e.es 
•.• 7 

•.• s 
•••• .... .... .... 
o. •a 
1.46 

0. Zb 
l. 68 

0 .•• 

0 54 " 
80. 34 F 

7 57 

0.59 

0. ]I 

• 07 

e 47 

• 03 

• t115 

•· as 
0 57 

].1)4 

0. JB 

111.119 

0. 08 

G. 26 

~: 

haSS: 

358 



GRG60592o nl egd=587 11-RAR-88 12:0~0=10:32 70£ El~ 
Bpli=O 1=4.511 lb=l»4 TIC=117548080 Rent: ~=RPS£ 

GC= 1~0 tat =PrK43 
No 61 

88. 64 

IS 

10 

rs 
Ill 

'5 302 
'0 

s 
8 

5 

0 

5 

8 

5 

139 

I ! I II I I l _1 I l I I I . 
1118 158 288 258 388 

lOll 7. Base 
26.04 1. 04 137. 12 0.86 
28.03 2.60 138. 13 0. 22 
37. 04 1. 25 139. 11 13. 01 
38.05 7. :53 140. 12 0. 89 
39.05 2.03 141. TO 0. 63 
50.06 4. 19 143. 11 0. 28 
51.06 2. 44 14:5. 12 0. 35 
52.08 2.~ 151. 10 0. 12 
53.05 2. 19 1:56. 11 0. 13 
62.07 3. 70 157. 13 1. 09 
63.08 31.90 158. 14 0. 19 
64.09 100. 00 163. 11 0. 39 
65.09 5. 64 164. 13 0 32 
69.06 4 39 167. 13 0. 43 
74.08 1. 24 169. 12 0. 36 
75.08 4 67 176. 13 0. 16 
76.09 1. 32 177. 13 1. 34 
eo. 09 1 52 185. 14 0. 78 
91. 08 1. 73 186. 14 1. 37 
92.09 5b. 29 187. 13 0. 07 
93.09 4. 13 191. 11 1. 36 
95. 10 3. 47 194. 13 0. 33 

101. 10 0. 13 204. 14 0. 22 
106. 10 0 12 205. 16 1. 65 
107. 10 1 05 207. 14 0. 22 
108. 11 0. 81 213. 14 1. 26 
109. 10 0 13 214. 16 0 22 
111 10 0 43 233. 16 9. 87 
112. 10 0 19 234. 16 0. 94 
113. 09 0 9"1 235. 16 0. 66 
115. 12 0 20 254 16 0 46 
116. 59 1. 52 255. 17 0. 47 117. 09 0 10 263. 15 0. 32 117. II 0. 10 

283. 18 9. 22 119. II 0. 22 284. 18 1. 08 120. 12 0 10 301. 77 0. 12 121. 12 0. 56 302. 18 72. 56 
125. 10 0 45 303. 18 8. 24 
i26. 10 0 12 304. 19 0. 56 
. 27. 13 2 . 49 



ul Bgd=SJ3 11-AA~-BB 12·0~0=10=21 GRGG0582o 
BpR=C 1=3.lv Ho=324 TIC=131221~ 

IJi 

95 

90 

85 

1m 

}5 

70 

55 

iB 

iS 

iB 

IS 

18 

IS 

18 

s 
8 

5 

B 

91 

69 

i 

M ~L J 

lAIII 7. 
:16.04 
27. 05 
28. 03 
29. 03 
37. 04 
38.06 
39. 06 
50. 06 
51. 07 
5:2.08 
:53.05 
53.09 
54. 06 
57. 07 
6:2.08 
63. 09 
64. 09 
65. 10 
69. 06 
75. 08 
76. 10 
77. 11 
79. 09 
80. 09 
81. 10 
82. 09 
83. 11 
91.08 
92. 10 
93. 11 
95. 10 

101. 11 
102. 12 
107. 11 
lOB. 11 
109. 11 
110. 12 
111. 12 
112. 13 
113. 09 
'14. 12 

189 

95 

188 

So!! II~ 
4. 61 
1. 30 
L 11 
3. 21 
l. 41 
6. 40 
4. 63 
7.31 

11 63 
23.89 

3. 79 F 
2. 95 F 
l. 41 
1. 38 
3. 24 

19_ 34 
18. 77 

8. 86 
11.97 

5 65 
1 60 
4. 30 
l. 56 

12. 20 
18. 53 

1. 05 
1 33 
1 93 

10 43 
1 71 

20. 32 
0 57 
0 68 
0. 62 
0. 98 

74. 77 
5 03 
1 05 
0. 37 
B. 31 
0. 41 

121 

145 

I I I I ~ I 
151 

115. 14 0. :29 
118. 13 1. 56 
119. 13 0. 98 
120. 13 0. 37 
1.21. 13 79. 70 
122. 14 5. 79 
123. 14 0. ~0 
12~. 11 0. 76 
126. 13 0. 74 
126. 60 0. 38 
127. 14 1. 78 
130. 13 L 12 
132. 14 0. 12 
133. 14 0. 54 
134. 15 0.96 
136. 16 0. 24 
139. 13 12.00 
140. 13 0.65 
143. 14 1. 78 

. 145. 12 18. 94 
146. 13 0. 67 
157. 13 0. 23 
157. 17 0. 14 
158. 14 4. 63 
159 15 0. 81 
162. 14 3. 17 
163. 11 2 07 
165. 15 0. 16 
165. 17 0. 19 
167. 15 1. 03 
171. 14 2 51 
172. 17 0. 23 
173. 12 0. 16 
173. 17 0 23 
177. 18 0. 52 
183. 10 1. 05 
185. 12 0. 10 
185. 17 0. 19 
186. 15 0. 14 
186. 18 0. 10 
187. 18 n ~· 

7&r EI~ 

Rent Sys ' Rl'S£ 
lit= tlt ta=Ffm 

I I I l I. 

289 

189. 15 0.90 
191 12 4. 41 
192. 16 0. 14 
193. 16 o. 56 
194. 15 0. 32 
205. 16 1. 34 
213. 14 1. 13 
219. 20 0.28 
225. 18 3. 30 
226. 21 0.30 
233. 19 0. 98 
234. :24 0. 29 
235. 21 0 29 
253. 20 1. 46 
254_ 21 o. 18 
255 19 0. 16 
255. 22 0. I :2 
283. 23 0. 40 
302. 20 1. 30 
303 22 2. 51 
304 29 0. 16 
321 64 0. 16 
322. 22 100. 00 
323. 22 11. 81 
324_ 23 0. 95 

.No 62 

I d 
259 3118 

322 

HRR= 
RASS= 

358 



GA69 0 
m....aLU!I STfU No 63 

X tS 

19-SEP-80 
liitB 

-~~¥-----------------------------------------------------------------,--------------------, 
I 

G) 
19 

10 -
1 

.A 
19 

2 

N 
ID 

1 3 

ID 
188 288 380 

Mas11 X Base 
27. 98 4. 19 156. 93 1. 00 
28.97 16. 71 158.91 0. 12 
30. 99 100.00 158. 94 0. 09 
32. 99 5.33 161.92 0. 10 
48.98 8. 15 162.92 44. 35 
90. 98 9.95 163. 92 1. 93 
60.97 7.98 168. 90 0. 52 
61. 98 :i!. 72 172.92 0. 27 
64.98 4. 77 173. 93 0. 13 
68.95 20. 27 174. 91 6. 17 
74.96 2.91 175. 92 0. 57 
80.97 4.49 176.93 0. 56 
81. 96 5.98 180. 91 0. 58 
82. 96 4.08 181. 90 0. 09 
92. 95 2.67 190.89 0. 09 
94.96 3. 95 192. 91 0. 23 

100.95 0. 76 193. 91 0 30 
103.00 0.06 194. 91 5. 59 
103. 95 0.08 195.90 0. 31 
105.95 0. 19 196. 89 0. 73 
106. 96 0.35 212. 90 0. 59 
107.96 0. 11 213. 90 0. 54 
110. 93 0. 13 222. 90 0.24 
110. 96 0. 16 231.89 15. 42 
111. 93 0.26 232. 90 4. 23 
11;;!. 94 12.61 233.91 0 22 
113.95 0. 40 240. 90 0 31 
114.96 024 242. 91 0 47 
118. 93 0.81 250.90 0 22 
1:22. 94 0. 10 260 89 0. 07 
1:23 91 0. 11 260. 92 0. 12 
1:23. 94 0. 18 262.92 2. 11 
124. 94 0. 51 263.94 0 15 
1:25. 95 0. 55 280. 92 0. 10 
126. 95 1. 02 282. 91 0 37 
128. 84 0. 15 
130. 92 3. 59 
131.84 0. 18 
131. 93 0 26 
132. 94 2. 33 
136. 93 0 16 
140. 9;;! 0. 12 
142.93 0.29 
143. 92 1. 57 
144. 93 7. 66 
14!5. 94 0.31 
149.91 0.86 
150. 92 0.37 

1"\ ... 



GRS502ll:> 
Bpll=0 

95 

9ll 

BS 
69 

8ll 

75 

}8 

65 

68 

55 

58 

45 

40 

35 

30 

25 
}5 

28 

IS 

18 

5 

11<!1111 

27.06 
29.04 
30.05 
31.07 
32.06 
33.06 
39.07 
43. 07 
45. 07 
49. 06 
51. oo 
57.08 
64. 09 
65. 10 
67. 09 
69. 08 
75. 10 
76. 10 
77. 11 
82. 10 
89. 12 
91. 10 
92. 10 
93. 11 
95. 12 

100. 11 
101. 12 
105. 14 
106. 13 
107. 13 
108. 14 
109. 15 
110.1:2 
111. 13 
112. 13 
113.12 
114. 14 
115. 14 
119. 14 
123. 15 

nl Bgd=203 li·RRR-B8 IJ:2o0:B3:4} 
I=iev Ha=2SS JIC=225}B28B0 

95 

113 

91 

88 188 

X Base 
1. 84 124. 14 

21. 62 125. 15 
3.32 126. 15 

100.00 0 127. to 
3.97 132.06 
2.07 132. 14 
2.20 133. 16 
1. 25 137. 15 
1. 06 139. 17 
5.08 143. 14 
8. 82 144. 15 
2. 86 145. 15 
150 146. 15 
2.05 155. 15 
4. 27 157. 16 

26. 76 158. 18 
7. 37 159. 18 
1. 17 160. 20 
4. 06 163. 16 
1. 29 164. 18 
1. 55 173. 19 
5. 30 175. 17 
2. 46 176. 19 
1. 96 177. 19 

16. 53 178.20 
0. 13 181. 19 
0. 11 185. 19 
0. 33 193. 19 
0.36 194. 18 
o. so 195. 19 
0. 3:2 196.21 
o.i38 205. 21 
0. 50 206.22 
0. 18 207. 20 
1. 34 208. 23 
6. 82 213. 21 
0. 26 214. 20 
1. 32 215. 22 
0.25 2:23. 21 
0.22 224. 21 

145 

0.20 
l. 71 
2. 42 
1. 67 
0.05 
0. 30 
0.06 
0. 69 
0.89 
0.44 
0. 16 

32. 56 
1. 32 
0. 37 
2. 18 
0. 55 
3 48 
0. 19 
4 84 
0. 22 
0. 16 
4. 31 
0.23 
8. 29 
0. 39 
0 10 
0. 98 
o. 08 
2 52 
4 80 
0. 27 
1. 58 
0. 06 
2. 46 
0 14 
0. 35 
3. 48 
0. 63 
0. 34 
0. 62 

1&3 

[Jo 

225.23 
227.22 
228.23 
243.23 
245.25 
247. 19 
247.24 
263. 28 
265.26 

Sys:R?S[ 
C.rl. :PfK43 

195 

0. 40 
3.01 
0. 15 
0. 29 
o. 17 
0.04 
0.06 
0. 11 
0.29 

No 64 

214 

248 268 

HHR: 
flfiSS 



18 

95 

98 

85 

88 

~5 

~8 

65 

60 

55 

so 
45 

40 

35 

30 

25 

28 

15 

10 

lll 
1=1~ 

43 

Bgd=lD I~·DEC-8~ 16:3~9:02:49 [)• 
Ho=261 TIC=201695BG8 

69 

Sys:RPS£ 
Cal :Pff{ll 

No 65 

213 

5 

8~~~~4L~LL~~-J--~~~~~~~~~~~~~~~----~ 

IIASS X BASE 

42. IU 1 J. u tJ9. e:z 1. 31> 238. 81 oil. 59 
43. 82 •••• •• 0 148. 82 •. 11 239 •• .. .] 
44. e:;: I> llo 14l .•• e.zh 248 <17 ]. 24 
51. 81 4.85 142.99 8. 7b ~-~ 98 •. 24 
b9 ... ]6. 23 tu .. oe •. 34 256 •• .. 47 
75 ... 7. 63 145.81 6.95 257 u •. 46 
95.81 9.9] 1•&4 .•• e. 12 4:6. 98 1>. 27 ...... 8. 15 147.88 8.87 ~bl 99 .. 43 

181.01 1. 88 158.88 e . •• 
182.82 •• •• 151 .•• .. 27 
lOS. H •. 85 157.88 e. 31 
184.88 8.21 158.81 8. 85 
187.81 8. 19 159. 81 • s• 
te8. e:z .. 1~ 11>2. '' 2. 79 
•• 9.82 .. 23 174. 99 8. 88 
ll8. •• 8 . 74 175. 9<1 •. 44 
Ill. 9<1 .. 11 185 88 .. o&lo 
11]. .. ] . 29 187 .. .. 9oll 
114. 88 •. 14 188. 82 8 .n 
u• 81 .. 13 189. oil I 8 94 
II 9. 81 e. •a 198 . •• 8.84 
128. 8:Z • 11 19oll. '" I 4] 
121. 82 e. 45 1~2. 88 • 87 
122. OJ e. e5 192 ,, 4 27 
12]. 81 .. 88 Hl 99 8 45 
124 . .. •. 37 1 .. 5. 88 5 ]] 

125 .. e. 65 196. •• • =· 1~6. 81 • 51 197 ... • f9 
127. 82 • 32 ~·7. 1111 o& 78 
128. 82 •. 2.7 :z•8. 01 ol.o&6 
128 . .,. • 16 z•q .. 111. :9 
129. 83 • e4 ~12 98 18. 89 
129. 11 • •• :0:1]. 99 I oll] 
12<1. 28 e. •J 217 •• 1 82 
129. 32 0 e2 ~19 •• • lZ 
129. •• . . •• 44:. 97 I. 8<& 
129. 98 .. 0114 24:1. 98 oil. It 
1)8. 91 •. 13 2:0:7. 02 .a •si 
Ill. 98 .. 16 235 99 8 21 
I 32 .. • 21 237. 88 7. 68 



Gfl6}023o 
Bpll=O 

• 
!!S 

99 

es 
8'il 69 

.75 

73 

6S 

61! 

55 

58 

45 

(@ 

35 

31! 

C'5 

Cll 

IS 

18 

5 

8 I 
68 

l'l•ss 
69.04 
89.08 
95.07 

113.08 
132. 09 
145. 11 
157. 11 
158. 12 
163. 11 
177. 14 
207. 13 
208. 15 
213 15 
225. 16 
226. 16 
227. 16 
228. 17 
245. 20 
;l46. 19 
247. 19 
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78. 57 
30. 09 
12. 23 
44. 55 
22. 56 
10. 01 
26. 19 
51. 35 
15. 48 
:23.21 
61. 57 

3. 43 
1. 25 
0. 14 
0. 48 

100. 00 
6. 23 
0. 10 

90. 68 
5. 76 
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269 
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Hass r. !lase 
42. 58 0. 28 
43. 93 21. 55 
45. 29 0. 10 
48. 01 0 24 
49. 36 4. 71 
54. 71 0. 16 
59. 98 2 32 
61. 40 0. 57 
62. 72 0. 35 
64. 03 1. 42 
65. 25 0 33 
74. 28 3. 21 
96 76 56. 04 
97. 99 0. 55 

104. 10 0. 92 
112. 56 0. 88 
125. 66 1. 32 
126.85 0. 16 
133. 90 3. 16 
135. 08 12. 73 
136.25 0 16 
147. 86 0 16 
149. 03 I. 37 
155. 92 6. 90 
161. 64 0. 25 
162 79 0. 35 
169 60 0 75 
183 12 0 88 
184. 25 0 16 
190. 94 0. 93 
205 36 15. 46 
206. 47 0 54 
211 95 100. 00 
213. 04 2 96 
218 52 0 79 
225. 06 13 78 
226 14 0 50 
238. 06 0 81 
239. 15 0. 47 
258. 44 0. 30 
259 51 60 98 
260 58 2. 99 
27;!, 25 1. 10 
278. 59 2. 72 
291. 22 1 33 
311. 04 0. 23 

~ 

l 5 

I I I 
188 

312. 08 5. 41 
313.11 0. 24 
330. 67 11. 17 
331.70 0. 64 
343. 01 0 88 
351. 18 11. 96 
352. 21 0. 67 
363. 39 11 55 
364 40 0. 74 
401. 68 0. 16 
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188 288 388 

l'lass 7. Base 
43. 92 1. 28 170. 72 0. 03 
48.01 2. 40 176.37 0 20 
49.36 0. 30 183. 10 0. 38 
:50. 73 b. 39 184.22 0. 10 
52.08 0. 05 185.35 1. 95 
59. 97 0. 13 186.48 0.07 
64.02 0.07 190.92 0. 59 
65. 26 0. 16 196.48 0.08 
66. 57 0. 13 198. 72 0. 17 
72. 98 0. 57 198.84 0.02 
74.27 100. 00 204.23 0.04 
75. 55 1. 06 205.34 7.30 
80:61 0. 14 206.45 0.29 
81. 88 0. 33 211 92 20.25 
88. 11 0. 05 21'3 02 0. 61 
89. 36 1. 05 218 50 3 30 
90.61 1. 65 21<;1. 60 0 23 
96. 75 66. 46 225 03 4 98 
97. 98 0. 70 226 12 0. 2~ 

102.86 0. 13 231 56 0. 06 
104.09 2. 41 238 03 0 19 
105. 31 0. 10 239 12 0. 24 
111. 33 0. 14 240 21 3 88 
112. :54 1. 69 241 29 0 20 
113. 75 77. 58 253 10 0. 10 
114.95 1. 61 2S8 41 0 07 
11 B. 52 0. 09 259 48 1. 00 
119.72 0 03 260 55 0 04 
125.64 I 61 2~~ 23 0. 37 
126. 83 0. 31 273 31 0 02 
128. 02 0. 55 278 56 0 84 
132. 72 0. 02 27Q ~,: 0 0:1 
133. 89 3. 74 ~ql !9 0 29 
135. 06 0. 60 20~ 25 0 03 
139. 72 0. 06 ~93 3t_) 0 12 
140. 90 0. 25 ji)Q '9H () (1;:> 

142. 07 0. 07 31 l 00 0 II 
147. 85 0. 28 312 06 I 51 
149. 01 0. 94 313 oj9 0 II 
153.61 0. 03 324 48 ., 88 
155. 90 3. 80 325 51 0 06 
157.05 0. 07 330 65 2 78 
161.62 0. 20 331 68 0 lt:l 
162. 77 0 50 332 71 0 OJ 
163.92 0. 11 34!:' 04 0 btl 
169. 58 0. 61 346 05 0. O•l 
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43 71 

!5 

~ 

55 

~ 

i5 

fD 

li5 

S9 

)5 

it 

IS 

II 

15 

IU 83 
5 

!II v 
lS 453 

:a 163 471 

5 

I 
451 

Mass Y.. Base 
50.94 6. 90 95.01 0. 70 180 '18 ~ 06 <-

51. 96 o_ 15 99.01 0. 30 181 9'? 0 11 

:52. 98 1 49 99.99 1. 86 IU9 uo a 3£1 

53. 99 0. 25 101. 01 1. 37 19~· CJ;" 0 l'i 

55.00 3. 01 102. 04 1. 32 143 tf''/ 0 ,•i) 

55. 99 o_ 20 103 03 1. 20 1?5. uo 2 1 " 
56. 98 0. 60 104 04 1. 03 196. 01 0 15 
57. 98 0. 13 105 05 0. 74 197 02 0 J.:] 

58. 99 5. 00 106. 01 0. 12 206 99 0 \8 
59. 99 0 25 107 02 0. 14 .;!1::! 98 1 Jr.l 
61.01 0. 52 109. 02 0. 48 224. 98 a ~'3 

62. 99 0. 33 111. 99 0. 15 230 9' 0 34 
63. 99 0 99 113. 01 0. 75 242 98 0 1 ;~ 
65 00 3. 47 114.04 0. 79 245 ')0 ...... I ., 

66. 03 0 18 115 03 0. 42 :162 98 c- ;~ J 

68. 02 0 22 11 B. 99 2. 36 265 0(1 0 IS 
69. 00 29. 61 120. 02 0. 20 274 't"' o') <In 
70. 02 0. 51 121. 03 0 25 277 00 0 I:J 
71. 06 100. 00 0 123. 04 0. 15 280 98 ~ OJ 
72 05 5 43 123 99 0 11 281 98 0 14 
73 05 1 99 12~1 on () ~·: 283 00 ,"'\ 7.~ 

74. 04 0 17 I;_, o:: () 1•- ;;'911 99 ·) 80 
75 01 24 JJO 'IU () '•I :Jf)') 05 0 29 
76 02 0. 18 J J;..' 01 (\ II :)\] 01 () 22 
77 03 4 83 J J:1 O:i d ~}6 '145 01 ,, 

1-'· 
78. 03 0. 20 1:1~ O·l ,, :\•:;. ']46 99 I;_' 

79. 04 0. 43 I Ja 99 '• l . .J5J o·; ., ),' 

81 03 0. 25 1 ·12 '--1(3 ·.J ;,. .. ·;· ")1,5 ··:· .. I'' 

82. 01 5. 24 14~ OJ (I u "j/? (), . I) ~~ 1 
83. 02 27 73 149 ~9 r, I . ~ J85 er; J I'' 
84. 03 0 78 151 OJ 0 t•l a in ..... ~~: ,. 13 
85. 05 I 46 155 OJ () ;; .:~ 40"> o.., IR 
86. 06 0 43 157 0(1 •) 1-:- ·106 On <· 1·1 
88. 02 0 13 \ l,c-~ 9Q 18 40Q 03 ·) 1'1 
89. 03 0. 86 163 f'JCJ .-, 17' •li:J 04 ·.j 1:-' 
90. 03 0 77 168 ·~fl J() II •ld:J On ·:1 1·1 
91. 03 4. 26 169 99 _., ]7 4JJ 0~ 0 ;.!() 
92. 04 0. 21 I 71 01 '> 1'1 ~T5 01 0 I., .-. 
93. 00 0. 99 1'!4 9'1 n '?I <153 0/J •) 74 
94. 01 0 16 I 77 01 " 1/(·· 471 (ltJ (I ~J 
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No 10 
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11ass Yo Base 
50. 94 6. 98 99.01 0. 60 280 96 2. 39 813 OS 0 14 
51. 96 0. 13 99. 99 1. 54 281. 97 0 l!:j 832. 99 0. 31 
52. 98 0.81 101. 01 1. 81 282 98 15 835. 01 0 14 
53. 99 0. 17 102. 02 0. 29 283 99 0. 11 853 11 11.05 F 
54.97 4.32 103.02 3 58 288. 98 0. 4'-i' 854.24 2. 43 F 
55. 97 0. 37 104. 04 5. 05 294.91:l 1. 02 
56. 98 0. 40 123. OJ I ~-= 376 99 4. 16 
57. 98 0. 11 124 01 \t 16 378. 01 0 4.2 
58. 99 17.92 125. 00 •J ~..:, J8J 00 0 56 
59 99 0. 76 127. Ot ij e:> 385 0~ 0 14 
61.00 0. 32 129. 02 0 10 391 00 0 10 
62. 98 0. 15 130 99 () 46 394 99 0 JB 
63. 99 1. 01 132 Ul v 2..., 401 00 0. 13 
65 00 4.65 133 02 0 5f'"• 403 01 2 39 
b6 01 0 13 I :l4 0"' ... .. ~ J9 404 02 0 28 
68.02 0. 41 I II, '~9 ., l"l 405 03 0 18 
68. 99 27. 87 1~19 01 . } ;'I 409 I)~ 2 :)3 

70 02 0. 63 141 0\ 'J .)t< 410 03 0 28 
71. 03 1. 12 14~~. 9'i 0 4;-'1 02 .:; 29 
72. 03 1. 51 14:} 00 I 1 ~ 4~::1 OJ J r.1 l 
73. 03 068 146 02 . . !ol 4~'q <'.l 0 40 
75. 00 0. 71 147 01 ·, !ol 4~/ Ul i) 4f; -
76.01 0. 15 149 '-/9 •J ;:_.·: 4")3 0~ 0 36 
77 02 10. 55 lSI Oil c y.o 43~· 02 0 24 
78. 03 0. 41 1';2 '"";.., 0 2~ 436 99 0 25 
79. 02 0. 50 156 Q<;· 0 1 .. 451 02 0 74 
81. 03 0 16 159 01 ·:.' :> ·. i 4"'., _,~ OJ 0 II 
82. 00 1. 31 16;.1 'hi 4 Jl 453 03 58 
83. 02 27. 58 16.1 q.., -:· ..,., 

454 114 0 c22 ~~ 

84.03 1 14 165 01 - 4.;:' 45'; •J3 0 IJ 
85.05 0. 60 \1,6 0~ .., 

471 09 1•:00 0() F i) .. 
87. 03 0 .17 lo8 97 I-, '" 472 04 14 19 I' 
88. 02 0 14 16<1 "itl •J ~·-' 473 05 I 18 F 
89.03 1 59 171 00 ,_. 4 1 485 011 0 l'i 
90 02 1. 08 174 98 :,; t- ·.·· 501 OJ 0 19 
91. 03 5. 44 l 7~, {.~( .. ' .... I'• 502 o~~ 0 2~· 

92. 03 0. 38 I! 7 Ot.• '·1 S;:'J 1)3 I 8? 
93. 00 0 64 lAO 'fl. I.- 753 11 2 :35 
94.00 0. 11 212 97 .1 37 754. I l 0. 48 
95. 00 1. 39 213 98 0 2':J 785 09 0 12 
96. 01 0. 12 215 ou 0 t>3 803 09 0. 18 
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Ma,;~; 7. DasP 
54. 94 0. 39 230. 99 49. 45 
61. 97 0 22 232. 00 2. 55 
68. 99 100 00 242 99 3 96 
69. 99 0. 99 244 00 0 2~ 

74. 00 1. 90 262 02 0 32 
81. 01 0. 45 281 01 1 58 
86. 02 0. 24 282.03 0 11 
93. 01 15. 79 292. 99 1. 40 
94. 02 0. 51 331. 03 0 76 
98. 02 0. 12 381. 01 39 88 F 

100. 01 7. 54 382 02 3. 51 F 
101. 01 0. 17 383 04 0 16 
105. 02 0. 77 
112. 02 2. 46 
117. 01 0. 81 
119. 00 20 81 
120. 01 0 46 
124. 01 3. 19 
125. 02 0 16 
131. 01 5 83 
132 02 0 19 
136 02 0 II 
141 98 0 .,~ 

~~ 

143 00 8 42 
144. 02 0 34 
150 02 0 47 
155 00 I 79 
156. 00 0. 13 
162 01 I 73 
169 00 18 84 
170 00 0 58 
174. 01 0."29 
181 01 88. 45 
182. 01 3 67 
193.01 3 36 
194.03 0. 20 
205. 00 0. 47 
212. 00 6. 38 
213. 01 0 32 
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No 72 

181 

81 

281 

4 2 

488 

;s ... 
r1dSP ... 

)\) 92 19 121 oo 35 208 97 45 87 331 98 0 27 
)II 9:1 0 ~·J 124 00 1. 70 209. 29 0. 1t 343. 00 9. 96 
it>. 96 0 17 1:;:s 00 0 24 209. 34 0. 11 344.00 0 83 
!>0. 9'/ 0 2~ 127 03 0 27 209.98 2. 39 358. 97 6.95 
>J 97 0 61 131. OJ 3 60 210. 97 0. 15 359. 97 0 54 
. ., 
)~ 98 0 ::30 1")2 02 0. 13 211 97 1. 45 392. 99 2. 17 
)3 99 0 19 lJ2 99 0 18 212. 98 0. 25 393. 98 0. 24 
>5 00 0 ?8 133 02 0 17 220. 98 0 82 411. 98 11. 05 
>A. 99 100 00 136 99 0 14 224. 00 10. 48 412.98 1. 05 
,9 99 0 92 137 05 0. 12 225.00 0. 77 
•cr 99 0 54 141. 02 0. 12 230. 97 4. 46 
'4 00 I 04 143. 00 4. 45 231. 97 0. 21 
'5 01 0. 60 144 00 0 31 239. 96 0.25 
, 7 03 0 77 145 02 0. 56 242. 28 0. 11 
'8 00 0 1 I 147 00 0 24 242.99 66.89 
'8 03 0 1 4 ISO 00 0 58 243. 41 0. 12 
'8. 06 0 1 I l~"i 00 2 02 244. 00 4. 18 
II OJ ~~ 33 1~8 98 2 22 245 01 0 31 
12 03 0 58 161 98 2. 10 255. 01 0 57 
13 02 2 4:.! 162. 99 0. 58 258 98 2. 50 
)t, 00 0 14 168 99 6 73 259 97 0 18 
19 OJ 0 II 169 99 0. 19 261 96 0 23 , .. 1)(1 II :I 'I 170 98 0 19 262. 08 0 11 
''l (!I \I ,1:1 171. 99 0. 18 270 97 0 37 
'~~ 02 0 ~~ 173 91 0. 11 273 95 0 14 
':' 00 1 ~·6 174 00 0.25 274. 05 0 13 
10 00 ~ I j 175 00 0. 48 278 38 0 17 
II 01 0 14 177 02 0. 14 278. 97 0 11 
,_ ~ 1)1) (I 17 178 88 0. 12 279. 09 0. 12 
1!0 01 0 60 180. 99 70. 06 280 98 16. 31 
16 00 0 I"' 182. 00 2. 72 281. 98 06 
16 OJ 0 II 189. 99 0. 48 293 00 1 97 
19 02 0 24 191 01 0 14 294 01 0 15 
19 08 0 11 193.00 7. 28 305. 02 0. 25 
I 02 0. 41 194. 00 0. 51 308 98 5 70 
2 01 2 20 195 00 0 22 324. 01 0. 97 
3 01 0 40 204. 99 0. 48 327. 43 0 11 
7 00 0 31 207 01 0 19 327. 96 0. 17 
9. 00 7 36 208. 46 0 11 328. 52 0. 12 
•o 00 0 IE! ;?Ofl 49 0 1 I 330 98 4 05 



No 13 

51 
181 

243 4 3 

5I 488 

55 7. Base 
so. 92 36. 67 106. 02 023 180 26 () J 3 271 05 0 10 

51. 93 0 36 109. 01 0. 13 180 2 ... (o. I() 278 98 C• 71 
54. 93 0 13 109. 05 0. 10 180 3~ I;! 280 98 D 82 
55. 95 0 13 111. 02 0. 13 180 6.1 IJ 11 281. 98 0 85 
56 9.5 0 13 112.01 1. 15 180 99 .)3 05 290. 98 1 99 

56.96 0 10 113. 02 5.97 18~ ·JO 39 291. 96 0 13 
59. 96 .., .... 04 114.02 0. 18 190 .:,1) 0 16 292. 99 0. 81 
60.97 0. 19 114.07 0. 12 191 ()\) 4 4.' 308 98 1. 97 
61. 98 1 47 117 00 0 16 I c,• ~ t-Jh () l(i 309 98 0 16 
62. 99 11. 16 119 00 b. 49 1 ~;' .,, () ~'l 313 02 6 74 
63. 99 0 39 120 00 0. 13 19] \)() 2 87 314 02 0 46 
65 00 0. 46 120. 99 0. 51 1"4 .-.,\·, 0 4 .... 324 01 0 33 
65. 96 0 10 124. 00 0.89 1°5 '}t' 0 1r, 325. 02 0 38 
65. 98 0 12 125. 00 0. 57 204 9ty ll IC' 330. 98 1 43 
68. 83 0 13 127. 03 0. 11 2•)6 , . 15 ·11i 331. 97 0. 11 
68 98 98 82 131. 00 2. 04 209 98 0 91 343. 00 3 46 
69. 99 0. 94 137. 00 0. 14 211 ~El 0 70 344. 00 0 31 
70. 99 0. 22 141.00 0 32 2&~ ~~ 7 1·1 358. 97 2 42 
74.00 0 51 143. 00 2. 15 21J oo.; 0 J'j 359 98 0 20 
75. 01 2 75 144. 00 0 39 220 9¥ o.) ~"'l.J 363 00 0 57 
76. 02 0 10 145. 01 0 26 224 Q,) J 'l] 378 98 0 38 
77.03 0 44 14"' ()f.) ·~ 'I 2~5 I) I) ' 49 392 99 0 81 :. 

78. 02 0. 11 149 qq ll ".'"; 22~ lj(.'\ •] t:l 400. 97 0 46 
79.00 1. 30 I 'j5 01~ (• ;'l,l ;':.30 "'' ;~ 5'< 41 1. 97 4 QCI 

30. 02 0 16 I"J'j lflJ (I II 231 98 0 10 412 97 23 71 
31 02 100 00 1~7 (I( I (J I' 

231 97 (J lb 413 34 1 33 
32. 02 7 52 I Sfl l}t·' I) ·~o ~40 9'j •'.! 1; 413. 99 2. 07 
33 02 1 19 lbl 98 0 ~l'l 

241 04 0 t ti 414. 99 0 13 
~1 00 0 10 \6.;' 99 8 -, c"'42 ·-r..; o:.lJ r:.' 

~1. 03 0 13 l/,3 'h 0 :l;' ;~4 ·l f •{) I r:;n 

~3 00 5 73 168 99 d!_7 71 
.'41J •·I (I )(I 

~4 03 b. 48 169 9'' 0 8:1 2~0 ·, 'i t) c~ 

~5. 03 0 28 172 ')'} \). ~') ~':IS 0•.} 0 ;•(J 

?7. 00 0. 52 173 ·n 1) 1::' 258 9~ •) 94 
)0. 00 5 85 173 '>9 •) I'' ~-til Q7 0 IJ 
>1. 01 2. 04 I 7~; 01 I ;?6 2bC: 01 (• 1:1 
)1. 98 0 10 179 :~u ·} If) ~02 •)':' l) 10 
)2. 01 0 10 I 79 :u 0 I •) :2c;' 0" I ;:11) 
)5. 01 0 31 179 6-1 oJ 2".J 27(1 ?8 •J I:' 
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©J'a.B[Ll!ffi 

N 
m 

Mass 
27.00 
27. 9<'1 
28. 98 
30. 98 
31. 97 
36. 98 
39. 93 
41. 01 
42. 01 
43. 02 
43. 96 
44. 9S 
49. 96 
50. 97 
55. 97 
56. 97 
56.98 
59. 01 
63.97 
67. 96 
68. 95 
69. 95 
73. 95 
74. 95 
75. 96 
77. 94 
78. 95 
79 95 
80. 94 
85. 94 
86.95 
87. 95 
92. 93 
93 93 
94. 94 
96. 93 
97 92 
98. 94 
99. 93 

100. 93 
104. 92 
105. 93 
106 94 
108. 92 
111. 92 
112. 93 
113. 93 

Y. Base 
0 14 
9. 01 
0. 07 
0. 71 
2. 01 
0. 36 
1. 03 
0. 24 
0. 18 
0. 60 
0. 39 
0. 09 
037 
0. 61 
0. 62 
0 07 
0. 06 
0. 07 
0. 10 
0. 81 

100. 00 
1. 08 
0. 14 
2. 44 
0. 05 
0. 07 
0. 08 
0. 15 
0. 15 
0. 23 
2. 76 
0. 18 
2 14 
0 07 
0 13 
1 17 
0. 13 
1 !33 
4. 44 
0. 09 
0 46 
5. 26 
0. 41 
0. 08 
l. 01 

10. 77 
0. 34 

M 

M 

M 

M 

1 ! 
1 3 

116.92 
117.92 
118.92 
119. 92 
123.91 
124. 92 
125.92 
128.91 
130. 90 
132. 92 
135. 91 
136. 91 
137. 91 
142. 90 
144.91 
146 89 
149. 89 
154.89 
155. 90 
156. 90 
157 90 
158. 88 
161 88 
162 89 
166 09 
167 89 
168 88 
169 89 
173 88 
174 89 
175 89 
176. 90 
1£:10. 87 
181 88 
18:1 87 
186. 88 
187 [3(1 

192. 86 
194 87 
204 86 
205 86 
206. 87 
212. 86 
213 8"1 
2Jb 86 
223. 84 
2~4 Eli> 

No 74 
'II § 

n 

1. 14 225 8!:1 I 48 
0. 36 235. B4 .0 29 

14. 83 1'1 236. 85 10. 88 M 
0. 29 237. 85 0 78 
0. 43 242. 84 0. 47 
1. 29 244. 86 0 OS 
0. 14 254.83 0. 70 
0. 13 255 84 11. 90 M 
2. 59 256 84 0 88 
0. 14 274.83 5 34 M 

0. 28 275. 83 0 43 
37. 48 1"1 280.82 0 47 

l. 87 304. 80 0 61 

0. 53 324. 80 6. 17 M 
0. 60 325.80 0 5;::> 

0 26 
0. 46 
1. 24 

46. 25 M 
5 18 M 
0 17 
0 t;::> 
0 0"1 
1 :lJ 
0 lb 

~J 

6"' 82 M 

2 12 
0 17 ., 49 c.. 

3. 85 
0 to 
8 00 M 
0 32 
0. I 1 
8 27 M 
0. 52 
0. 40 
0 18 
1 94 
0 17 
0. 25 
3 22 
0 14 
0 10 
0 09 

2'1 ,.., M 



APPENDIX THREE 

INFRA-RED SPECTRA 

1. 5H,5H-pentadecaf1uoro-2-iodo-6-methy1heptane (17a) 

2. 7H,7H-heneicosaf1uoro-2-iodo-4,8-dimethy1nonane (17b) 

3. 5,5, 7,7-tetrahydroheptaf1uoro-2-iodo-8-methy1nonane (18a) 

4. 2H,2H,6H,6H-heptadecaf1uoro-1-iodo-3,7-dimethy1octane (19a) 

5. 2,2,4,4,8,8-hexahydrononadecaf1uoro-1-iodo-5,9-dimethy1decane (19b) 

6. 2,2,6,6,8,8-hexahydrononadecaf1uoro-1-iodo-3,9-dimethy1decane (20a) 

7. 2,2,4,4,8,8,10,10-octahydroheneicosaf1uoro-1-iodo-5,11-dimethy1-

dodecane (20b) 

8. 2,2,8,8-tetrahydrotricosaf1uoro-1-iodo-3,5,9-trimethy1decane (19c) 

9. 2,2,4,4,10,10-hexahydropentacosaf1uoro-1-iodo-5,7,11-trimethy1-

dodecane (19d) 

10. 3,3,7,7,9,9-hexahydroeicosaf1uoro-2 ,6-dimethy1decane (26) 

11. 2H,4H,4H-undecaf1uoro-5-methy1hex-(E)-2-ene (30) 

12. 3,5,5,7,7-Pentahydroterdecaf1uoro-2-methy1oct-2-ene (35) 

13. (Z)-3,5-Dihydrodecaf1uoro-2-methy1hexa-2,4-diene (37a) 

14. (E)-3~5-Dihydrodecaf1uoro-2-methy1hexa-2,4-diene (37b) 

15. (Z)-2,6,6-Trihydroheptadecaf1uoro-3,7-dimethy1oct-2-ene (41) 

16. 2,3,5,5-Tetrahydroundecaf1uoro-3-methoxy-2-methy1hexane (48) 

17. 3,5,5-Trihydrononaf1uoro-1,3-dimethoxy-2-methy1hex-1-ene (49) 

18. 3,5,5,7,7-Pentahydro-1,3-diphenoxyundecaf1uoro-2-methy1oct-1-ene (46b) 

and2,3,5,5,7,7-hexahydro-1,3-diphenoxydodecaf1uoro-2-methy1octane (47b) 

19. 3,5,5-Trihydro-1,3-diphenoxynonaf1uoro-2-methy1hex-1-ene (46a) and 

2,3,5,5-tetrahydro-1,3-diphenoxydecaf1uoro-2-methy1hexane (47a) 

20. 3,6,7-Trihydro-6-phenoxyhexadecafluoro-2,7-dimethy1oct-2-ene (50) 

21. 2,6,6-Trihydro-2-methoxyhexadecaf1uoro-3,7-dirnethy1oct-3-ene (52a) 

22. 2,6,6-Trihydro-2-phenoxyhexadecafluoro-3,7-dimethy1oct-3-ene (52c) 

23. 2~4,5-Trihydro-4-rnethoxydecaf1uoro-5-methy1hex-2-ene (56a) 

24. 3,5-Dihydro-1,3-dimethoxyoctf1uoro-2-methy1hexa-1,4-diene (57) 

25. 2H-Tetradecaf1uoro-1-iodo-5-methyhexane (68a) 



26. Tetradecaf1uoro-5-methy1hex-1-ene (69a) 

27. 4H-Tridecaf1uoro-5-methy1hex-1-ene (69b) 

28. 2H-Hexadecaf1uoro-1-iodo-3.3-dimethy1hexane (80) 

29. 2H,4H-Nonadecaf1uoro-1-iodo-5,5-dimethy1octane (82) 

30. 1,1,2,2,4-Pentahydrohexadecaf1uoro-1-iodo-5,5-dimethy1octane (83) 

31. 1.1,2,2,4,-Hexahydrononaf1uoro-1-iodo-5-methy1hexane (89a) 

32. 1,1,2,2,3,3,4,4,6,6-Decahydrononaf1uoro-1-iodo-7-methy1octane (89b) 

33. 1,1,2,4-Tetrahydrohexadecaf1uoro-5,5-dimethy1oct-1-ene (85) 

34. Hexadecaf1uoro-3,3-dimethy1hex-1-ene (81) 

35. 4H-Nonadecaf1uoro-5,5-dimethy1oct-1-ene (84) 

36. 1,1,2,4,4-Pentahydrononaf1uoro-5-methy1hex-1-ene (90) 

37. 3H,5H-5-Ch1oroundecaf1uoro-2-methy1hex-2-ene (110) 

38. 3H-Tridecaf1uoro-2-methy1hex-2-ene (115) 

39. 1,1-Dif1uoro-2,3-bis(trif1uoromethy1)hex-1-ene (123) 

I 

40. 3H-Octaf1uoro-3-pheny1-2-methy1but-1-ene (127) 

41. 3-Ethoxycarbony1-6-f1uoro -2-methy1-4,5-bis(trif1uoromethy1)-4H-pyran (13C 

42. 6,7-Benzo-2-f1uoro-3,4-bis(trif1uoromethy1)-1,5-dioxacyc1ohept-2-ene 

(131) and 6,7-Benzo-2,2-dif1uoro-3,4-bis(trif1uoromethy1)-1,5-

dioxacyc1oheptane (132) 

43. 1,1,3-Trihydrodecaf1uoro -4-methy1pentan-1-o1(134) 

44. 1,1,2,3-Tetrahydrononaf1uoro-2,3-dimethy1butan-1-o1(136) 

45. 1H,2H-Hexadecaf1uoro-2,3-dimethy1hexane (142) 

46. 2-(2H-Hexadecaf1uoro-3,3-dimethy1hexy1)tetrahydrofuran (144) 

47. Hexadecaf1uoro -2-methy1hept-2-ene (146) 

48. 1H-Tridecaf1uoro-3,3-dimethy1hex-1-yne (150) 
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APPENDHX FOUR 
LECTURES, COLLOQUIA AND CONFERENCES 



The Board of Studies in Chemistry requires that each postgraduate 

research thesis contain an appendix listing: 

1 all research colloquia, research seminars and lectures, 

arranged by the Department of Chemistry during the period 

of the residence as a postgraduate student. 

2 all research conferences attended, and papers presented 

by the author, during the period when the research for 

the thesis was carried out. 

1 Lectures and Colloquia organised by the Department of Chemistrv 

during the period October 1985 - July 1988 

17.10.85 * Dr. C.J. Ludman (University of Durham) 
"Some Thermochemical Aspects of Explosions" 

24.10. 85 * Dr. J. Dewing (UMIST) 

30.10.85 

"Zeolites - Small Holes, Big Opportunities" 

Dr. S.N. Whittleton (University of Durham) 
"An Investigation of a Reaction Window" 

31.10.85 * Dr. P. Timms (University cf Bristol) 
"Some Chemistry of Fireworks" 

5.11.85 

7.11.85 

Prof. M.J. O'Donnell (Indiana-Purdue University, U.S.A.) 
"New Methodology for the Synthesis of Amino Acids" 

Prof. G.Ertl (Munich, W.Germany) 
"Heterogeneous Catalysis" 

14.11.85 * Dr. S.G.Davies (University of Oxford) 
"Chirality Control and ~olecular Recognition" 

20 .11. 85 

21.11.85 

Dr. J.A.H. McBride (Sunderland Polytechnic) 
"A Heterocyclic Tour on a Distorted Tricycle - Biphenylene" 

Prof. K.H. Jack (University of Newcastle) 
"Chemistry of Si-Al-0-~ Engineering Ceramics" 

28.11.85 * Dr. B.A.J. Clark (Kodak Ltd) 

28.11.85 

15. 1.86 

"Chemistry and Principles of Colour Photography" 

Prof. D.J. Waddington (Vniversity of York) 
"Resources for the Chemistry Teacher" 

Prof. N. Sheppard (University of East Anglia) 
"Vibrational and Spectroscopic Determinatioos of the 
Structures of Molecules Chemisorbed on Metc>_l Surfaces" 



23. la86 Prof. Sir Jack Lewis (Uni~ersity of Cambridge) 
"Some More Recent Aspects in the Cluster Chemistry of 
Ruthenium and Osmium Carbonyls" 

29. 1.86 * Dr. J.H. Clark (University of York) 
"Novel Fluoride Ion Reagents 99 

30. 1.86 Dr. N.J. Phillips (University of Loughborough) 
"Laser Holography" 

12. 2.86 Dr. J. Yarwood (Univeristy of Durham) 
"The Structure of Water in Liquid Crystals" 

12. 2.86 * Dr. O.S. Tee (Concordia University, Montreal, Canada) 
"Bromination of Phenols" 

13. 2.86 * Prof. R. Grigg (Queen's University, Belfast) 
"Thermal Generation of 1,3-Dipoles" 

19. 2.86 * Prof. G. Procter (University of Salford) 

20. 2.86 

26. 2.86 

27. 2.86 

5. 3.86 

"Approaches to the Synthesis of Some Natural Products" 

Dr. C.J.F.Barnard (Johnson Matthey Group) 
"Platinum Anti-Cancer Drug Development" 

Ms. C.Till (University of Durham) 
"ESCA and Optical Emission Studies of the Plasma 
Polymerisation of Perfluoroaromatics" 

Prof. R.K.Harris (University of Durham) 
"The Magic of Solid-State NMR" 

Dr. D.Hathway (University of Durham) 
"Herbicide Selectivity" 

5. 3.86 * Dr. M. Schroder (University of Edinburgh) 
"Studies on Macrocyclic Compounds" 

6. 3.86 * Dr. B. Iddon (University of Salford) 
"The Magic of Chemistry" 

12. 3.86 Dr. J.M. Brown (University of Oxford) 
"Chelate Control in Homogeneous Catalysis" 

14. 5.86 Dr. P.R.R. Langridge-Smith (University of Edinburgh) 
"Naked Metal Clusters - Synthesis, Characterisation, and 
Chemistry" 

9. 6.86 Prof. R.Schmutzler (Braunschweigh, W.Germany) 
"Mixed Valence Diphosphorus Compounds" 

23. 6.86 Prof. R.E.Wilde (Texas Technical University, U.S.A.) 
"Molecular Dynamic Processes from Vibrational Bandshapes" 

16.10.86 * Prof. N.N. Greenwood (University of Leeds) 
"Glorious Gaffes in Chemistry" 

23.10.86 * Prof. H.W.Kroto (University of Sussex) 
"Chemistry in Stars, Between Stars and in the Laboratory" 



.JIUo 

29.10.86 Prof. E.H.Wong (University of New Hampshirep U.S.A.) 
"Coordination Chemistry of P-0-P Ligands" 

5.11.86 Prof. Dopp (University of Duisburg) 
"Cyclo-Additions and Cyclo-Reversions Involving Capto-Dative 
Alkenes" 

6.11.86 * Dr •. R.M. Scrowston (University of Hull) 
"From Myth and Magic to Modern Medicine" 

13.11.86 * Prof. Sir Geoffrey Allen (Unilever Research) 
"Biotechnology and the Future of the Chemical Industry" 

20.11.86 * Dr. A. Milne and Mr. S. Christie (International Paints) 
"Chemical Serendipity - A Real Life Case Study" 

26.11.86 Dr. N.D.S. Canning (University of Durham) 
"Surface Adsorption Studies of Relevance to Heterogeneous 
Anunonia Synthesis" 

27.11.86 * Prof. R.L.Williams (Metropolitan Police Forensic Science) 
"Science and Crime" 

3.12.86 

8.12.86 

22. 1.87 

28. 1.87 

4. 2.87 

Dr. J. Miller (Dupont Central Research, U.S.A.) 
"Molecular Ferromagnets: Chemistry and Physical Properties" 

Prof. T.DorfmUller (University of Bielefeld, W.Germany) 
"Rotational Dynamics in Liquids and Polymers" 

Prof. R.H. Ottewill (University of Bristol) 
"Colloid Science:A Challenging Subject" 

Dr. W. Clegg (University of ~ewcastle -upon-Tyne) 
"Carboxylate Complexes of Zinc Charting a Structural Jungle" 

Prof. A. Thomson (University of East Anglia) 
"Metalloproteins and Magneto-optics" 

5. 2.87 * Dr. P. Hubberstey (University of Nottingham) 
"Demonstration Lecture on Various Aspects of Alkali Metal 
Chemistry" 

11. 2.87 * Dr. T. Shepherd (University of Durham) 
"Pteridine Natural Products:Synthesis and Use in 
Chemotherapy" 

12. 2.87 * Dr. P.J.Rodgers (I.C.I., Billingham) 
"Industrial Polymers from Bacteria" 

17. 2.87 Prof. E.H.Wong (University of New Hampshire, U.S.A.) 
"Symmetrical Shapes from Molecules to Art and Nature" 

19. 2.87 Dr. M. Jarman (Institute of Cancer Research) 
"The Design of Anti-Cancer Drugs" 

4. 3.87 Dr. R. Newman (University of Oxford) 
"Change and Decay:A Carbon-13 CP/MAS NMR Study of 
Humification and Coalification Processes" 



s. 3.87 0 

9. 3.87 

11. 3.87 

12 0 3.87 

17. 3.87 

18. 3.87 

Prof. S.V.Ley (Imperial College) 
"Fact and Fantasy in Organic Synthesis" 

Prof. F.G.Bordwell (Northeastern Universityo U.S.A.) 
"Carbon Anionso Radicalso Radical Anions and Radical Cations" 

Dr. R.D.Cannon (University of East Anglia) 
"Electron Transfer in Polynuclear Complexes" 

Dr. E.M. Goodger (Cranfield Institute of Technology) 
"Alternative Fuels for Transport" 

Prof. R.F.Hudson (University of Kent) 
"Aspects of Organophosphorus Chemistry" 

Prof. R.F.Hudson (Univeristy of Kent) 
"Homolytic Rearrangements of Free-Radical Stability" 

3. 4.87 • Prof. G.Ferguson (University of Guelph, Canada) 
"X-Ray Crystallography for the Organic Chemist" 

6. 5.87 

7. 5. 87 

11. 5.87 

Dr. R. Bartsch (University of Sussex) 
"Low Co-ordinated Phosphorus Compounds" 

Dr. M. Harmer (I.C.I. Chemicals and Polymer Group) 
"The Role of Oranometallics in Advanced Materials" 

Prof. S.Pasynkiewicz (Technical University, Warsaw) 
"Thermal Decomposition of Methyl Copper and Its Reactions 
with Trialkylaluminium" 

27. 5.87 * Dr. M. Blackburn (University of Sheffield) 
"Phosphonates as Analogues of Biological Phosphate Esters" 

24. 6.87 * Prof. S.M.Roberts (University of Exeter) 
"Synthesis of ~ovel Anti-Viral Agents" 

26. 6.87 -~r Dr. C.Krespan (E.I. Dupont de Nemours) 
"Nickel (0) and Iron (0) as Reagents in Organofluorine 
Chemistry" 

15.10.87 * Dr. M.J.Winter (University of Sheffield) 
"Pyrotechnics" 

22.10.87 * Prof. G.W.Gray (University of Hull) 
"Liquid Crystals and their applications" 

29.10.87 * Mrs S. van Rose (Geological Museum, London) 
"Chemistry of Volcanoes" 

4.11.87 Mrs M. Mapletoft (Durham Chemistry Teachers' Centre) 
"Salter's Chemistry" 

5.11.87 Dr. A.R.Butler (University of St.Andrews) 
"Chinese Alchemy" 

12.11.87 *Prof. D.Seebach (E.T.H., Zurich) 
"From Synthetic Methods to Mechanistic Insight" 



26.11.87 * Dr. D.H.Williams (University of Cambridge) 
~olecular Recognition" 

11.87 

3.12.87 

10.12.87 

16.12.87 

19.12.87 

21. 1.88 

28. 1.88 

9. 2.88 

11. 2.88 

18. 2.88 

15. 2.88 

3. 3.88 

7. 3.88 

16. 3.88 

7. 4.88 

13. 4.88 

18. 4.88 

25. 4.88 

27. 4.88 

Dr. J.Davidson (Herriot-Watt University) 
''Metal Promoted Oligomerization Reactions of Alkynes" 

Dr. J. Howard (I.C.I., Wilton) 
"Chemistry of Non-Equilibrium Processes" 

Dr. C.J. Ludman (University of Durham) 
0'Explosi ves" 

Mr R.M.Smart (I.C.I.) 
"The Interaction of Chemicals with Lipid Bilayers" 

Prof. P.G.Sammes (Smith, Kline and French) 
"Chemical Aspects of Drug Development" 

Dr. F.Palmer (University of Nottingham) 
"Luminescence" 

Dr. A.G.Cairns-Smith (University of Glasgow) 
"Clay Minerals and the Origin of Life" 

Mr Lacey (Durham Chemistry Teachers' Centre) 
"Double Award Science" 

Prof. J.J.Turner (University of Nottingham) 
"Catching Organometallic Intermediates" 

Dr. K. Borer (University of Durham Industrial Research Labs) 
"The Brighton Bomb - A Forensic Science View" 

Prof. A. Underhill (University of Bangor) 
"Molecular Electronics" 

Prof. W.A.G.Graham (University of Alberto, Canada) 
"Rhodium and Iridium Complexes in the activation of 
Carbon-Hydrogen Bonds" 

Prof. H.F.Koch (Ithaca College, U.S.A.) 
"Does the E2 Mechanism Occur in Solution?" 

L.Bossons (Durham Chemistry Teachers' Centre) 
"GCSE Practical Assessment" 

Prof. M.P. Hartshorn (Unviersity of Canterbury, New Zealand) 
"Aspects of Ipso-Nitration" 

Mrs E. Roberts (SATRO Officer for Sunderland) 
"links between Industry and Schools" 

Prof. C.A.Nieto de Castro (University of Lisbon and Imperial 
College) 

"Transport Properties of Non-Polar Fluids" 

Prof. D.Birchall (I.C.I. Advanced ~~terials) 
"Environmental Chemistry of Aluminium" 

Dr. R. Richardson (University of Bristol) 
"X-ray Diffraction from Spread Monolayers" 



28. 4.88 

11. 5.88 

8. 6.88 

29. 6.88 

Dr. J.A.Robinson (University of Southampton) 
ovAspects of Antibiotic Biosynthesis 119 

Prof. A.Pines (University of California, Berkeley, U.S.A.) 
nSoiue Magnetic Moments" 

Dr. W.A.McDonald (I.C.I. Wilton) 
"Liquid Crystal Polymers 119 

Dr. J. Sodeau (University of East Anglia) 
"Spray Cans, Smog and Society" 

Prof. J.P. Majora! (Universite Paul Sabatier) 
"Stabilization Complexation of Short-Lived Phosphorus Species" 

Dr. M.E.Jones (Durham Chemistry Teachers' Centre) 
"GCSE Chemistry Post-mortem" 

29. 6.88 * Prof. G.A.Olah (University of Southern California, U.S.A.) 
"New Aspects of Hydrocarbon Chemistry" 

6. 7. 88 Dr. M.E.Jones (Durham Chemistry Teachers' Centre) 
"GCE Chemistry A-Level Post-mortem" 

*Indicates colloquia attended by the author. 

2. Conferences Attended 

1. Sheffield Symposium on 'Modern Aspects of Stereochemistry', 
Sheffield, December 1985. 

2. Graduate Symposium, Durham, April 1986. 

3. 'Fluoropolymers' Conference, UMIST, January 1987. 

4. Graduate Symposium, Durham, March 1987. 

5. Sheffield Symposium on 'Modern Aspects of Stereochemistry', 
Sheffield, December 1987. 

6. Graduate Symposium, Durham, April 1988. 

7. 12th International Syrnposi urn on Fluorine Chemistry, Santa Cruz, 
California, August 1988. 
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