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ABSTRACT 

A phenomenological description is sought of the dynamics operating in high energy 

elastic hadron-hadron scattering. The predictions of a simple Pomeron and weak cut 

model of high energy elastic scattering are compared with the new and surprising pp 

data from the ISR and SppS Collider. The model, which gives a complete account of all 

the lower energy data, is incompatible with the unexpected energy dependence of the 

differential cross-section shown by the Collider data. Modifications within the original 

framework of the model are examined but found inadequate and it is concluded that 

new contributions are necessary. Two avenues are explored as likely candidates for the 

correct approach. 

The first approach considered is the possible existence of a small odd charge 

conjugation term with constant or increasing contribution to the cross-section. Two 

existing models of such an "Odderon" effect are studied which give good agreement 

with the new data but neither of which are entirely satisfactory. A reggeized Odderon 

contribution, analagous to these models, is examined and limitations are placed ori its 

effect. 

The second possibility considered as a description of the additional contributions 
to the model are the correction terms necessary to prevent the violation of unitarity 

and the breaking of asymptotic bounds. An eikonalization model, in which s-channel 
unitarity is explicitly satisfied, is reviewed but several theoretical problems emerge due 
to the nature of the basic exchange and the model gives a relatively poor description of 
the data. A" similar model in which the Born term is described by a Pomeron with the 
appropriate Regge phase is developed. This clears up some of the theoretical problems 
but is found to exaggerate the problems encountered in fitting the data and it is 
concluded that such an eikonal description is unlikely to work. A simple model of the 
unitarity corrections which gives a better chance of reproducing the data is proposed. 
The results of the phenomenology of the asymptotic and perturbative Reggeon field 
theory approaches to elastic scattering are briefly reviewed. 
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1 

KntroducHon. 

1.1. Objed;live. 

The vast increase in the energies produced in particle accelerators in recent years has 

brought much new physics into the laboratory. Most of the phenomenological interest 

in the last decade has centred on the increase in transverse momentum that the higher 

energies allow. More so because of the non-abelian nature of QCD and the asymptotic 

freedom and infra-red confinement that this implies. Along with the high }JT physics 

the new machines have also provided a wealth of new data on high energy soft hadronic 

scattering. Recent work in the area of soft physics has been directed at understanding 

the longitudinal momentum distributions in the fragmentation region in terms of the 

parton model; diffraction disassociation; heavy flavour production; understanding the 

dynamics of elastic scattering at high energies and the Pomeron in terms of QCD. 

Since the models describing soft physics at high energies are mostly applicable only 

at energies much greater than the hadronic mass scale, s 0 , so that log :
0 

is large, 

new higher energy data is a crucial test of their validity and also necessitates some 

reappraisal of the data at lower energies. In the following we examine how well existing 

models of elastic scattering confront the high energy data from the SppS Collider 

and CERN ISR and seek ways in which they can be improved. We also study their 

predictions at the higher energies likely to be attained in new accelerators over the 

next decade. 

Current theory falls a long way short of having any real understanding of diffractive 

scattering in terms of a fundamental theory. On the other hand a phenomenological 

description in terms of Regge poles (and cuts) has had great success in tieing together 

and predicting the huge amount of data on diffractive hadron-hadron scattering. The 

major outstanding problems in the Regge theory approach-to strong interactions are 

the fundamental nature of the Pomeron and the role played by Regge cuts. The 

best place to try to understand these problems is at high energies where the effects 

of other Regge trajectories and different helicity amplitudes are small and first we 

need an accurate phenomenological description of how the Pomeron behaves. This 

;requil:es mm:e understanding of how the Regge (: erm~ beha.ve a.nd how the Pom~ron 
QUN . .. -1 z 



is compatible with unitarity; and whether an odd charge conjugation contribution 

survives at high energy and its possible effect. A better theoretical appreciation of the 

Pomeron and of Regge cuts would have implications for the whole range of processes 

that Regge theory describes. 

The problem presented by the high energy pp data from the ISR and the SppS Collider 

is the significant difference in shape in the dip region at both energies compared with 

the ISR pp data and the surprisingly large energy dependence between the ISR and 

the Collider. lin the next decade new machines should provide data at much higher 

energies, up to Js = 40 Te V, so that the predictions of the various models are relevant 

and experimentally testable. 

1.2. ][ntroductioltll to Elastic Scattering. 

The high energy behaviours of the quantities o-T(8), p(8) and B(8) have received much 

attention. Most of the analyses of hadron-hadron elastic scattering are directed to­

wards pp and pp scattering since these are the most accurately measured processes. 

The total cross-sections for various hadron-proton collisions are shown in figure 1.1 . In 

all cases the antiparticle-proton cross-section is substantially greater than the particle­

proton cross-section and the difference falls with increasing energy. The particle-proton 

cross-sections are relatively independent of energy showing only a slight minimum for 

.JS ~ 10 GeV (apart from the J(+p cross-section which increases monotonically). The 

cross-sections are of order 10's of millibarns giving a hadronic radius of approximately 

one fermi. 

Originally it appeared that the total cross-sections were approaching cons taut values at 

high energy, in which case the Pomeranchuk theorem implied that crossed channel total 

cross-sections should become asymptotically equal as the data seem to imply (provided 

that there is no odd charge conjugation contribution with real part growing as log2 
8 ). 

The behaviour of the cross-section differences : pp- pp, n-p- n+p, J(-p- J(+p, all 

show a very clean~ 8-t energy dependence and are attributed to odd signature Regge 

exchanges. Regge theory predicts that the high energy behaviour of the direct-channel 

amplitudes are governed by the cross-channel resonances through au 8a(t) behaviour 

for their energy dependence. 
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FIG.1.1 Total cross-sections for hadron-proton scattering (figure is taken from Carboni 

(1985), curves are due to Lipkin (1975)). 

In the crossed-channel a(t) corresponds to the spins of a set of resonances lying on 

the same Regge trajectory when t = MA corresponds to the resonance mass. Ex­

perimentally it is found that the Regge trajectories are linear, which can naively be 

thought of as arising from the constant energy density along a tube-like region between 

two quarks. The Chew-Frautschi plot of spin against resonance mass squared for the 

leading meson Regge trajectories is shown in figure 1.2 . 
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FIG.1.2 Chew-Frautschi plot for leading meson resonances (figure is taken from Collins 

(1977)). 

The constant component of the cross-section is due to diffractive processes which do 

not involve the exchange of constituent quarks between the colliding hadrons. This 

was described by the Pomeron trajectory, with intercept at one and even signature 

to give the constant, asymptotically equal cross-sections in the s- and u-channel pro­

cesses and the predominantly imaginary amplitudes. Unlike conventional trajectories 

no established particle states lie on this trajectory and it is higher and flatter than 

known meson Regge trajectories. The true nature of the Pomeron trajectory is still 

_n_nclear. The small contribution of the non-diffractive Regge exchanges to 1r+p, J(+p, 

pp in comparison with those to 1r-p, J{-p, j)p correlates with the observation that 

the former processes are exotic in the direct channel and that the t-channel Regge ex­

changes which govern the asymptotic s-channel behaviour are "dual" to the s-channel 

resonances. This implies exchange degenerate trajectories and residues which, as the 

Chew-Frautchi plot in figure 1.2 shows, is obeyed very well by the leading trajectories. 

The small departure of the pp, J(+ p and 7r+ p cross-sections from a constant value does 

however imply some breaking of exchange degeneracy. 

The ratios of the total cross-sections in figure 1.1 obey the additive quark model 

predictions reasonably accurately and therefore imply that the Pomeron couples to 

single quarks. The /-dominated Pomeron idea further supports this, and analagous to 
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vector meson dominance, describes the conpliug of the Pomeron to quarks through the 

f mesons, which have the same quantum numbers as the Pomeron. Another important 

property of Regge poles is the factorizability of their couplings as a product of the 

couplings at each vertex, which gives Regge theory great predictive power through 

SU(3) of flavour. 

The predictions of dispersion relations and the later confirmation by direct measure­

ments of ur at the ISR and the SppS Collider and from cosmic ray data showed 

that the constant behaviour of ur does not continue at higher energies and the total 

cross-section rises with an approximate log2 s dependence for vs~15 GeV, which is 

as fast as allowed by asymptotic theorems. In terms of a Regge pole model for the 

Pomeron an increasing cross-section corresponds to a trajectory above one. Since this 

gives a cross-section growing faster than log2 s it will eventually violate the asymptotic 

bound, but by this time Pomeron cut effects should be important and restore the log2 s 

behaviour. 

Since Pomeron exchange is thought not to involve the interchange of quarks it is natu­

rally attributed to gluon exchange. The basic diagram for colourless gluon exchange is 

the 2 gluon box diagram shown in figure 1.3(a), which gives an is contribution to the 

amplitude as required for the Pomeron. However, a priori, higher order exchanges will 

swamp this behaviour and there is not much reason for supposing this simple diagram 

has any relevance except that it produces the right answer so well. A field theory model 

for how the higher order effects may sum to give the Pomeron trajectory represents 

the Pomeron by the sum of gluon ladder diagrams like figure 1.3(b ). The Pomeron cut 

effects result from multiple scattering of Pomerons from different constituents of the 

hadrons as in figure 1.3( c) . The Pomeron conserves helici ty in the s -channel and at 

high energies the effect of different spin amplitudes are small and can be neglected. 
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Ia) I b) I C) 

FIG.1.3 (a) Basic two gluon exchange diagram representing Pomeron exchange. (b) 

Gluon ladder diagram reggeizing basic exchange to give Pomeron trajectory. 

(c) Two Pomeron exchange giving a Pomeron cut. 

One of the major reasons for supposing the Pomeron may be described by a Regge pole 

is the characteristic shrinkage of the forward elastic differential cross-section. Since 

all the hadron-hadron scattering processes show a similar t-dependence and shrinkage 

with energy this implies that the Pomeron couples universally to hadrons and is flavour 

independent. At larger ltl the data show dip/bump structure reminiscent of that in 

optical diffraction and similar in shape to the first order Bessel function resulting from 

scattering from a black disk. 

At low energies the large It I behaviour of the differential cross-section can be predicted 

from perturbative QCD. The dimensional counting rules relate ~~ in the regions, t ~ 

oo { ~ fixed) to the scale invariant qq scattering sub-process and the tail of the hadron 

form factor. These give 

2 dO" j( t ) -2n s-rv -s. 
dt s 

(1.2.1) 

where n 8 is the number of spectator quarks. 

1.3. Chapter Outlines. 

In chapter 2 we review the available high energy data on pp and jip scattering for the 

experimental observables O"T, tl.O", p, O"eh B and ~~ and perform a calculation of the 

effective trajectory. 
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In chapter 3 we summarise the relevant parts of Regge theory and field theory used in 

the other chapters. 

In chapter 4 we examine the predictions of the Pomeron and weak cut model and 

compare them with the new data from the ISR and the Collider. We adjust the 

parameter values used to obtain the best fit within the framework of the original 

model and then try out various modifications to improve the description of the data. 

The behaviour of an odd charge conjugation contribution is explored in chapter 5 

using the models of Donnachie and Landshoff, and Gauron, Leader and Nicolescu and 

a reggeized version of these examined. 

In chapters 6, 7 and 9 we look at ways of ensuring that the amplitude does not exceeds­

channel unitarity limits and violate asymptotic bounds. Chapter 8 reviews the results 

from Reggeon field theory which is thought to satisfy both s- and t-channel unitarity. 

The computing work in the following has been performed on the RAL IBM 3081, 

NUMAC and a microvax at RAL. Where we have quoted computation times this 

refers to the IBM machine. 

7 



2 

Data 

2.1. JintrodUlldiollll 

The major accelerators from which the high energy ( Js > 4 Ge V) total and elastic 

cross-sections have been obtained are all synchrotron machines and are detailed in 

table 2.1. The first five accelerators in the table are fixed target machines where 

the primary beam from the synchrotron is incident onto a target and produces a 

secondary beam for scattering experiments made up of 1r, J(, p, Ji, tt and e which is 

then projected onto a liquid Hydrogen target away from the synchrotron. The CERN 

ISR and SppS Collider are colliding beam machines and the collisions take place inside 

the synchrotron in areas around the machine where the two beams intersect. Because 

of the momentum conservation constraints the centre of mass energy in colliding beam 

machines is much greater than that in fixed target machines but at the cost of a much 

lower luminosity and diversity of types of particle beams that can be used. The ISR 

was developed first as a pp collider and then adapted for use as a pp collider also. The 

SppS Collider uses the 400 GeV SPS machine to contain a counter rotating beam of 

antiprotons along with the proton beam and collides the two beams at various points 

around the ring. Of the others, only the Tevatron (fixed target) and Tevatron I (pp 

collider) are in operation and so far these have not yet produced any data on total 

or elastic cross-sections except at lower energies. The Tevatron is an upgrade of the 

existing 500 Ge V proton synchroton at Fermilab. It uses superconducting magnets 

instead of conventional magnets and gives a yf8 = 1 Tev beam which is used both as 

a fixed target machine and as a vf8 = 2 Tev pp collider (Tevatron I). 

There are three other hadron-hadron machines planned at higher energies in the near 

future. The UNK is a Russian machine currently being built at Serpukhov and due 

for completion in 1993. The facilities available will be a superconducting magnet ring 

producing 3 Tev protons allowing both fixed target experiments and 400 GeV on 3 Tev 

pp colliding beam experiments with a 400 GeV conventional magnet storage ring and 

eventually including an antiproton beam in the main ring giving a 3 Tev on 3 Tev 

pp collider. The Large Hadron Collider (LHC) proposal is still under discussion and 

involves building a pp collider within the LEP tunnel giving an 8 Tev on 8 Tev collider. 
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The SSC project has now been given the green light and will consist of a 20 Tev on 

20 Tev proton-proton collider which should be completed around 1996. 

Accelerator Hearn Energy Luminosity Circumference Year (cm-2a-l) 

CERN PS p 28 GeV f'V 1038 600 m 1959 

BNL AGS p 33 GeV f'V 1038 800 m 1960 

Serpukhov IHEP p 76 GeV f'V 1038 1500 m 1967 

CERN SPS p 450 GeV rv 1038 7km 1976 

FNAL p 200/500 GeV rv 1038 6km 1972 

CERNISR pp 31.4 + 31.4 GeV 1031 - 1032 940 m 1971. 

pp f'V 1028 1981 

SppS Collider pp 273+273 GeV > 1030 7km 1981 (450+450) 

Tevatron p 1 Tev "' 1038 6km 1983 

Tevatron I pp 1 + 1 Tev ~ 1030 6km 1985 

UNK p 3 Tev 20 km ~ 1993 

pp 400 + 3000 Ge V 1032 

pp 3 + 3 Tev 

LHC pp 8 + 8 Tev 1033 - 1034 27 km ~ 1995 

sse pp 20 + 20 Tev 1033 84km ~ 1996 

TABLE 2.1. Hadron-Hadron Colliders. 

In fixed target experiments a typical set-up would consist of directing the secondary 

beam into a liquid Hydrogen or Deuterium target. The beam particles would be 

detected with a beam hodoscope and identified with differential Cerenkov counters, 

the scattered particles detected with a counter hodoscope and MWPC. These measure 

the angle of ingoing and outgoing particles and then elastic scattering events can be 

selected by coplanarity and kinematic angle requirements. Comparison of the count 

rates with the target full and empty and the dimensions of the hydrogen target gives 

the cross-sections directly. An alternative experimental technique is to replace the 

Hydrogen target by a Hydrogen bubble chamber and observe the number of elastic 

and inelastic events giving a measurement of uT and ~~. 
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The most direct way to determine ar in a fixed target experiment is to measure the 

fraction of the beam transmitted through the target without interaction which gives 

ar through: 

LN 
Transmission ratio= Bie-uiP7J (2.1.1) 

where pis the density of liquid Hydrogen, Lis the length of the Hydrogen column, N is 

Avogadro's number and M is the atomic weight of Hydrogen. Bi is the fraction of the 

beam transmitted with the target empty. The subscript i refers to the fact that what 

is actually measured is the number of particles detected by a transmission counter 

i, which subtends a finite solid angle ni at the target. The calculated cross-section 

ai is then underestimated since particles which suffer only small deflections are also 

detected, so that 

(2.1.2) 

In practice Ui is measured for various ni and ur obtained by extrapolating down to 

n = 0. This is the so called good geometry transmission method. The extrapolation is 

not straightforward because the Coulomb scattering cross-section must be subtracted 

and Coulomb/Nuclear interference taken into account. This method typically gives 

errors of rv 0.3% and has been used by Galbraith (1965), Foley (1967), Denisov (1973) 

and Carroll (1976/79) amongst others. 

The colliding beam machines required different techniques to measure ur and ~~ 

since it is not possible to interrupt the beam. Detectors were developed, called Roman 

pots, which were placed inside movable sections of the vacuum chamber and could be 

inserted into the beam pipe and get very close to the beam. At the ISR these were 

positioned 90 m down the beam pipe from the interaction region and could get as close 

as 9 mm from the beam so that they could detect particles scattered at an angle of 

only 1 mrad. 

Measurement of the differential cross-section involves the measurement of the number 

of particles, df: tlt, scattered into a bin of width tlt over some time period and a 

measurement of the integrated luminosity, L, over that period. The cross-section is 

then given by 

(2.1.3) 

10 



The integrated iuminosity was determined at the ISR by measuring the number of 

counts recorded over the period by a given detector and calibrating the detector us­

ing the Van der Meer method , a technique which involves sweeping the two beams 

through each other whilst measuring the count rate in the detector. With some later 

improvements this technique gave luminosity measurements accurate to 0.3%. 

A number of methods were employed to measure ur at the ISR. The two basic ones 

were performed by the Pisa-Stony Brook (PSB) group and the CERN-Rome (CR) 

group. Both made use of the luminosity determined by the Van der Meer method. 

The PSB collaboration measured the total interaction rate and so required efficient 

coverage of the complete solid angle around the zone of interaction (Amendolia 1973). 

Making the beam pipe elliptic in cross-section reduced the holes in the detector for the 

incoming and outgoing beams and the remaining losses at small angles of elastically 

and quasi-elastically scattered particles were estimated. The total cross-section was 

then obtained from 
1 

UT = L Rrotal {2.1.4) 

Where Rrotal is the total number of elastic and inelastic events recorded over the 

period. The CR method found ur by measuring small ltl elastic scattering and ·de­

termining the optical point by extrapolating to t = 0 {Amaldi 1973b). The optical 

theorem then gives ur from : 

da' dt t=O 
(2.1.5) 

The ratio of the real to imaginary parts of the amplitude, p, can be determined from 

Coulomb/ nuclear interference. 

For very low momentum transfers, It! < 0.001 GeV2
, the cross-section is dominated 

by Coulomb scattering giving a differential cross-section behaving like : 

{2.1.6) 

Where a is the fine structure constant and G(t) is the proton electromagnetic form 

factor which is well parametrized empirically by 

1 
G ( t) - -----:--:--

- (1 + J!L)2 
0.71 

{2.1.7) 
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For larger It I > 0.01 GeV 2
, the cross-section is dominated by diffractive nuclear scat­

tering and can be parametrized at small ltl by : 

(2.1.8) 

In the intermediate region, 0.001 < ltl < 0.01 GeV2
, the cross-section is dominated by 

the coherent superposition of the coulomb and nuclear amplitudes and this gives rise 

to an interference term. Thus we have : 

du d C duN O:CT B 

u +- - _I_(p + 8)G 2(t)e¥ 
dt = dt dt itl (2.1.9) 

Where 8 can be calculated (see for example Block and Cahn {1985)) and is given by 

8 = o:(log 0 j~l8 - 0.577). It can be seen that at small It I the Coulomb term has a t
1
2 de­

pendence, the interference term a ~ dependence and the nuclear term is approximately 

independent of ltl for small ltl. This allows the contributions of the three terms to 

be separated and provided the data penetrates into the Coulomb interference region 

p, B 0 and ur can be found by fitting the data using (2.1.9). The Coulomb/Nuclear 

interference subtracts from the pp nuclear amplitude (for p > 0) and adds to the pp 

amplitude. Since ~~ is obtained from t d:: the cross-section calculated this way de­

pends on the luminosity through CTT rv Jr· The different luminosity dependences of 

the PSB and CR methods provides an independent check on the luminosity calibra­

tion. More recent measurements of ur(pp) and ur(pp) using the PSB and CR methods 

have been performed by the CERN-Naples-Pisa-Stony Brook collaboration (Carboni 

1985) and the Louvain-Northwestern collaboration (Amos 1985) respectively. 

The energy dependence of the position of the region of Coulomb/nuclear interference 
' 

is produced by the energy dependence of the nuclear term. Through the ISR energy 

range the interference region occurs for ltl ~ 0.0017 GeV2 corresponding to an angle of 

~ 2 mrad which can be easily obtained using the Roman pot detectors descibed above. 

In fact these detectors can penetrate well into the region where Coulomb scattering 

dominates and since the cross-section for Coulomb scattering is known (2.1.6) the data 

can be normalized relative to this. This provides another independent measurement 

of luminosity and has been used in the past by the CR group (Amaldi 1973a) in 

preference to other methods of measuring luminosity. 

By measuring the cross-sections using the CR and PSB methods simultaneously at 

the same intersection region it is possible to eliminate the dependence of ur on the 
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calibrated luminosity. Combining equations (2.1.3), (2.1.4) and (2.1.9) gives 

167r dNell 
UT = RTot(1 + p2 ) dt t=O 

(2.1.10) 

This method was used by a collaboration of the PSB and CR groups to give another 

luminosity independent measurement of UT (Amaldi 1978) using the Split Field Magnet 

Detector. With this it was not possible to detect particles at small enough angles to 

probe the Coulomb interference region and determine p and so p was obtained from 

previous measurements of the CR group. 

At the SppS Collider the luminosity can only be determined to 10% accuracy giving 

a 5% error in uT with the CR method so that a luminosity independent method of 

measuring uT is preferable. At Js = 546 Ge V the Coulomb interference region occurs 

for ltl ~ 0.001 GeV2 which corresponds to an angle of()= 0.12 mrad to be compared 

with the Omin = 0.65 mrad so far obtained. At tlus angle Coulomb interference has only 

a small effect and therefore p must be calculated by extrapolation from lower energy 

data (Bozzo 1984). The SppS Collider has also run at an increased energy of 310 GeV jc 

per beam (1984) and in pulsed mode where the beam is accelerated between energies 

of 100 and 450 GeV /c allowing measurements at Js = 200 and 900 GeV (1985). 

At the forthcoming higher energy colliders the small angle problem will be even wo~se. 

At the SSC, for instance, with Js = 40 Tev the Coulomb interference region occurs for 

ltl = 0.0004 GeV2 giving 0 = 1 ~trad which will require new experimental techniques 

to attain though this is not beyond the bounds of possibility (Foley 1985). 

Some data at these Tev energies are already available from another source : that 

of cosmic ray air. showers. These yield data for the total inelastic proton-air cross­

sections, Uabs(P- Air), at energies up to ..jS rv 105 GeV. Using Glauber scattering 

theory this allows a determination of the pp total inelastic cross-section, Uinel (pp) to 

be made provided the forward slope of the amplitude can be estimated. This then 

gives UT assuming a model for the ratio R = ~. The calculated values of UT have 

large errors and are model dependent. There is some disagreement in the literature as 

to the correct result of the calculation (Kopeliovich 1986). 

In the following sections we briefly review the currently available experimental data 

on elastic and total cross-section measurements. 

13 



In figure 2.1 we show the data for uT(PP) and uT(fip) from 0 > 2 GeV up to 

the highest laboratory energy measured at 0 = 900 Ge V. Above threshold, at 

Js = 1. 76 Ge V, uT(PP) falls sharply to a minimum and then rises rapidly again to a 

maximum at Js = 2.3 GeV where uT(pp) =47.6mb. Beyond this the cross-section 

drops steeply until Js = 3 GeV and then flattens off, falling slowly until a minimum at 

Js ~ 10 GeV followed by a slow rise thereafter up to Js = 63 GeV which is the high­

est energy the pp cross-section has been measured at in the laboratory. Through the 

whole of the region 3 ~ Js < 63 GeV the cross-section lies within the band 41 ±3mb. 

The jip cross-section lies approximately 50% above the pp data at low energy. H does 

not have the same structure as in pp but drops rapidly and smoothly to a minimum at 

Js ~ 20 GeV (though it shows some sign of resonance structure for Plab < 2 GeV /c). 

Through the ISR energy range uT(fip) rises slowly and gets steadily closer to uT(PP ). 

The jip total cross-section data from the SjipS Collider at Js = 546 and 900 GeV 

show this rise continuing. 

We are only concerned with the data for the energy region Js;:::: 4 GeV where thresh­

old effects are expected to be small and below which the Regge parametrization is 

complicated by daughters and lower lying trajectories. In our fits we use the sub-set 

of the available data shown in Table 2.2. 
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Energy ScaleError Author Year Accelerator Technique ..,fi GeV mb 

pp 

4-t7 ±0.02 Foley 1967 BNL AGS Transmission method 

7 -t 26 ±0.02 Carroll 1976/79 FNAL Transmission method 

23 -t 63 ±0.25 Amos 1985 ISR Compilation 

pp 

4-t6 Galbraith 1965 BNL AGS Transmission method 

8 -t 23 ±0.02 Carroll 1976/79 FNAL method 

30 -t 63 ±0.25 Amos 1985 ISR CR method 

30 -t 63 ±0.25 Carboni 1985 ISR PSB method 

546 ±0.6 Bozzo 1984 Collider Luminosity Independent 

900 ±1,8 Rushbrooke 1985 Collider Measures Uinel 

TABLE 2.2. Sources for total cross-section data. 

The Amos (1985) paper updates the summary of pp scattering results at the ISR given 

in Amaldi (1980) and gives a new best value for uT(pp) at ISR energies obtained by 

averaging the results of the three different methods used at the ISR to measure. UT. 

The measurement of uT(PP) at the Collider uses the result of a dispersion relation 

fit to determine p(s, t = 0) at .JS = 546 GeV (assumes p = 0.15) and obtains UT 

from the luminosity independent measurement of uT(1 + p2 ). Though the effect of 

p is small this can produce a slight difference in models where p is different from 

its predicted value (due to an asymptotic odd charge conjugation contributution for 

example). The datum at .JS = 900 GeV is calculated from a measurement of the ratio 

of Uinel( .JS = 200 GeV) to Uinel( .JS = 900 GeV) and so to extract UT they have to 

obtain R = u~~cl at .JS = 200 and 900 GeV and Uinel( .JS = 200 GeV) by extrapolation 

from previous measurements. 
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FIG. 2.1 pp and pp total cross-sections. 

We have not included in our fits the data at very high energies obtained from the 

analysis of cosmic ray protons since as described above they have large uncertainties 

and model dependencies. VVe do, however, use them as a useful comparison to the 

prediction of the models at energies where no data is currently available. Figure 

2.2 shows the cosmic ray data from the Akeno experiment (Hara 1983), the Fly's 

eye experiment .(Baltrusaitis 1984) and the results produced by Linsley (1985) from 

experiments at Haverah Park, Yakutsk and Dugway. Included for comparison are the 

recalculated total cross-sections from Kopeliovich (1986). 
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FIG. 2.2 Cosmic ray data on pp total cross-section 
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2.3. Difference of Total cross~sectnons, Lia = ay(pp)- ay(pp) 

When ay(pp) and ay(pp) have both been measured a value for Lla is obtained with 

better errors than the individual measurements combined because some of the system­

atic errors cancel. The data for !:1a detailed in Table 2.3 is plotted in figure 2.3 on 

log/log axes and the resulting approximate straight line shows that the pp,pp difference 

is decreasing with a simple power law behaviour Lla rv s-!3 with /3 :::::::: i· 

Energy Author Year Accelerator Technique vs GeV 

3.6 ---+ 6 Galbraith 1965 BNL AGS Transmission method 

3.8---+ 10 Denisov 1973 Serpukhov Transmission method 

8 ---+ 23 Carroll 1976/79 FNAL Transmission method 

31 ---+ 63 Amos 1985 ISR CR method 

31 ---+ 63 Carboni 1985 ISR PSB method 

53 Ambrosio 1982 ISR CR and PSB methods 

TABLE 2.3. Data sources for difference of pp and pp total cross-sections. 
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FIG. 2.3 Difference of pp and pp total cross-sections. 
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2.4. Re/Xm, totall elastllc cJross-sectRol!A am:ll forward! slope parameteJr. 

We do not use the data for p, O"et and Bin our fits but compare them to the predictions 

of the models. The data for Vs > 4 GeV are shown in figures 2.4, 2.5 and 2.6. 

p(pp) increases uniformly from a value of -0.38 at Vs = 4 GeV through to a small 

positive value at Vs = 63 Ge V, the highest energy at which it has so far been measured. 

The zero crossing point occurs at Js ~ 22 Ge V. Below Js = 3 Ge V p(pp) increases 

sharply and has a value of +0.25 at Js = 2 GeV. 

The data for p(pp) are a lot poorer and show a slow increase from a value of approx­

imately zero for Vs = 15 GeV to +0.12 at Js = 63 GeV. Over this energy range 

the data are not much different from p(pp) and the difference seems to shrink with 

increasing energy. At lower energies the data are fairly well scattered and have rel­

atively large errors but indicate a value around zero which is substantially different 

from p(pp) at this energy. A value for p(pp) at JS = 546 GeV of 0.240 ± 0.024 has 

recently been measured (Bernard (1987)). 

0.2 

I 
+ + I 

+ 
-0.2 + PP 

0 PP 

-0.3 

-0.4 -l----,5c---r6---:!7c--:!:6----'T9 -..--------,.-----,--~--...,-5-..,--6 -----r, ---,-6 -gr-l 

1 o' ,fi JGevJ 102 

FIG. 2.4 Re/lm data for pp, and pp. 

The integrated elastic cross-section, o·el, is shown in figure 2.5 and can be seen to 

decrease steeply in both pp and pp, levelling off for vs~10 GeV where uet(pp) and 

18 



O'eJ(i"5p) are indistinguishable and O'eJ :=::::: 7mb. Up to Vi = 63 GeV it shows only a 

slight increase with energy, but the measurement of O'eJ(PP) at the Collider shows that 

the elastic cross-section has almost doubled between the ISR and the Collider energies. 

The ratio R = ~ is approximately constant over ISR energies and similar for both pp 
UT 

and pp. In fact at ISR energies we have 

O"eJ = 0.170 ± 0.004 
O"T 

throughout the energy range for both pp and pp, whilst at Js = 546 GeV 

0" e! 
- = 0.215 ± 0.005 
O"T 

(2.1.11) 

(2.1.12) 

So the ratio ~increases quite markedly between the ISR and the Collider, a fact that 
UT 

has serious implications for any models in which asymptotia should already have been 

reached. 

35 

+ PP-+ PP 
30 

X pp-+ pp 

2 5 10 20VS [Gev]so 100 200 500 1000 

FIG. 2.5 Elastic Total Cross-section data for both pp and pp. 

Figure 2.6 shows a compilation of the data available on the forward slope of the pp 

and pp differential cross-sections defined by : 

B =-log-d du I 
dt dt t=O 

(2.1.13) 
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It can be seen that for y's > 5 Ge V the Bpp increases approximately linearly with 

increasing logs. At low energy Bpp is more or less constant with energy and larger 

than Bpp, but approaches Bpp as the energy increases. The value of Bpp measured at 

the Collider seems consistent with the linear increase in Bpp· 
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FIG. 2.6 Forward Elastic Slope parameter for pp and pp. 

2.5. Elastic differential Cross-section data. 

The pp elastic differential cross-section as a function of t has been exceptionally well 

measured for a wide range of energies and ltl values; up to the highest ISR energy of 

-JS = 63 GeV and out as far as It I = 18 GeV2
• Figure 2.7 shows a compilation of the 

pp scattering data for y's 2 3 GeV and It I ~ 5 GeV2
• At small It I the differential cross­

section drops off exponentially with increasing It I, ~~ "'eBt, where B = 7--. 13 GeV-2 

as the energy increases from y's = 3 --. 63 GeV (see figure 2.6) and produces the 

"shrinkage" of the forward peak seen clearly in figure 2.7 . At ISR energies the small 

It I data show an abrupt change of exponential slope, tlB ~ 1.6 GeV2
, which occurs 

around It I = 0.2 GeV2
• This effect, termed the Carrigan break, can be seen at lower 

energies for Plab = 50 --. 175 GeV /c (Ayres 1977) and is also present in the pp data 

at y's = 546 GeV. For itl = 0.2 --. 0.85 GeV2 the data do not differ from a simple 

exponential t-dependence (Breakstone 1984). 
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At larger JtJ, ~~ (pp) again has a simple exponential JiJ dependence but with a much 

reduced slope, B ::::::: 1.5 Ge v- 2
• As the energy increases the magnitude of ~~ at)arge 

Jt J falls dramatically until Plab ::::::: 50 Ge V / c and thereafter shows a marked energy 

independence up to Js = 63 Ge V. At very low energies, Plab :::; 5 Ge V / c, the small 

JtJ and large JtJ regions map smoothly together but as the energy increases a slight 

shoulder appears in the intermediate region around JtJ = 1.5 GeV2
• This gradually 

develops into a dip between Plab = 100 and 150 GeV /c which continues to get deeper 

until it reaches a minimum depth at Js = 31 GeV and then fills in slowly up to 

Js = 63 GeV. The behaviour of the dip for Plab ~50 GeV /c can be seen in figure 2.8 

where the data are decaded for clarity. For Plab~200 GeV /c the dip position shows a 

small but quantifiable movement towards t = 0. 
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FIG. 2.7 Overlaid ~~(pp) data at selected incident momenta for Plab ~ 3 GeV /c. 
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FIG. 2.8 Decaded ~~ (pp) data at selected incident momenta for Plab 2 50 Ge VI c. 

The pp elastic differential cross-section is not as accurately or as comprehensively 

measured as in pp scattering, nevertheless very good data exist over a large energy 

range and there is data available at a much higher energy (from the SppS Collider). 

Figure 2.9 shows a comparison of the pp and pp differential cross-sections for Plab 2 

5 Ge VIc up to Js = 53 Ge V, which is the highest energy at which both have been 

measured. For small ltl the pp differential cross-section shows a simple exponential t­
dependence with a slight break in slope at It! = 0.2 GeV2 as in pp. At low energies Bpp 

is greater than Bpp so that there is a cross-over point at smallltl ~ 0.19 GeV2 beyond 

which ~~ (pp) < ~~ (pp). This is most obvious in the pp IPP data of Ambats (1974) 

ior Plab = 3 ---+ 6 GeV /c. In the FNAL small ltl data for Plab = 50 ---+ 175 GeV /c 

(Ayres 1977) the difference tl..B = Bpp- Bpp is much smaller but is still clearly· present 

22 



in the data with tlB ~ 2 ± 0.4 GeV- 2
• By ISR energies the pp and pp slopes are 

approximately equal though there is some evidence for a small systematic difference 

of tlB ~ 0.3 ± 0.2 GeV- 2 (Breakstone 1984). 

The low energy ~~ (pp) data show more structure than in pp scattering. There is 

a dip at Plab = 5 GeV lc for ltl ~ 0.6 GeV2 followed by a second maximum and 

then a shoulder at It I ~ 2 GeV 2
• As the energy increases the first dip fills in. By 

Plab = 30 GeV lc the position of the dip is marked only by a slight shoulder and 

by Plab = 50 GeV lc it has disappeared entirely. The shoulder at ltl = 2 GeV2 on 

the other hand appears to deepen into a shallow dip at Plab = 10 GeV lc and by 

Plab = 30 GeV lc gives a distinct dip which is still present at Plab = 50 and 100 GeVIc 

(Asa'd 1984, Rubinstein 1984). Beyond Plab =50 GeV lc measurements of ~~(pp) for 

it I > 1 Ge V 2 are fairly sparse because of the problem of measuring a small cross-section 

with machines of relatively low luminosity. The pp and pp data at Plab = 100 and 

200 Ge VIc have been measured at FN AL but the data are not sufficiently accurate to 

show any statistically significant differences between pp and pp (Rubinstein 1984). At 

the ISR, for JS = 53 Ge V, fairly accurate measurements of ~~ (pp) have been made 

(Breakstone 1985, Erhan 1984) and can be compared with the very accurate ~~ (pp) 

data. This comparison is shown in figure 2.10(a) and indicates that there is a shoulder 

in pp for ltl = 1.4 GeV2 rather than the dip seen in pp (In the figure the PP. data 

do not include the 1.3 normalization factor required for pp in the same experiment). 

However, because of the low statistics of the pp data it is by no means a certain 

conclusion that the difference exists. The bin size in the pp data is twice as large as 

in the more accurate pp data which results in the entire dip region being spanned by 

just three points, only one of which differs significantly from the pp data. In the same 

experiment low statistics pp data were also taken which agreed reasonably well with 

the previous pp data. A more meaningful pp I pp comparison can be made between 

the two sets of data taken in the same experiment and this is shown in figure 2.10(b ). 

Taking into account the uncertainties in the relative normalizations it is not clear that 

there is a pp I pp difference at this high energy. 

A further indication that ~~ (i1p) may be different from ~~ (pp) at high energies comes 

from the SppS Collider data at JS = 546 and 630 GeV2 which is shown in figure 

2.11 compared with the pp data at vs = 53 GeV 2
• At JS = 546 GeV there is a 

definite shoulder in pp starting at ltl = 0.8 GeV2 which is confirmed by the data at 
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the slightly higher energy, Js = 630 GeV 2
• The higher energy data go out to larger It! 

(since the angular acceptance of the detector was fixed) and seem to show the cross­

section approaching the large It I ISR data though at It I = 2 GeV2 there is still a factor 

of 2 or 3 between them. 

We shall now concentrate on the high energy data for Plab 2: 200 GeV /c from FNAL, 

ISR, SPS and. SppS Collider and calculate the effective trajectory over this energy 

range. 
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630 GeV (Bernard (1986)) with ~~ (pp) at y's =53 GeV (Nagy (1979)). 

2.6. The Effective Trajectory. 

5 

The shrinkage observed in figure 2.7 at small ltl is a characteristic feature of Regge 

poles and suggests that a useful quantity to extract from the data would be the effective. 

trajectory, G'eff(t), defined by : 

~(s, t) = F(t) !_ 
d ( ) 2aerr(t)-2 

dt so (2.6.1) 

26 



If a single Regge pole, R, dominates the amplitude then O:eff(t) = aa(t). :From (2.6.1) 

we have 

log dda = (2aeff(t)- 2)logs +log ( ~~t) ) 
t 2aeff t - 2 so 

(2.6.2) 

Therefore the slope of log ~~ vs logs for a given process at fixed t gives O:eff(t). The 

computer program we use to calculate aeff is taken from Harrison, Irving and Martin 

(1973). Each data set consists of a number of points at different t-values at a given 

energy and is fitted with a parametrization of the form (2.6.3) using the method of 

least squares. 

(2 .. 6.3) 

This allows a value of ~~,with the appropriate errors, to be calculated from each data 

set at any given value of t. The effective trajectory can then be calculated by a least 

squares fit to the interpolated data using (2.6.2) and the result at different t-values 

fitted to a linear form giving the intercept and slope of the trajectory. Extrapolation 

of (2.6.3) to values outside the t-range of the data set is only valid in the immediate 

neighbourhood of the data and errors in the extrapolation will increase rapidly outside 

this range. Extrapolated values from either side of the Carrigan break or from either 

side of the dip at ltl = 1.4 GeV2 would be meaningless. For this reason we broke the 

determination of aerr( t) up into values within overlapping t-regions and only included 

data which extended into these regions in the calculation. 

For Plab 2:: 200 GeV /c there is a large amount of pp and pp data available. This is 

summarized in table 2.4 below. We only use the data outside the Coulomb/nuclear 

interference region It I > 0.01 GeV2
• 
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Author Type ../8 it I min I i lmo.x Scale error Accelerator Year 

Fidecaro PP 19.4 0.613 3.9 SPS 1981 

Rubinstein PP 19.4 0.95 10.3 15% FNAL 1984 

PP 0.95 4.45 35% 

Faissler PP 19.5 5.0 11.9 15% FNAL 1980 

27.4 5.5 14.2 

Amos PP 23.5 0.00037 0.0102 1% ISR 1985 

30.6 0.00050 0.0176 

52.8 0.00107 0.0555 

62.3 0.00543 0.0512 

PP 30.4 0.00067 0.0156 2.5% ISR 1985 

52.8 0.00097 0.0387 

62.3 0.00632 0.0382 

Baksay PP 44.9 0.022 0.052 1.5% ISR 1978 

52.8 0.031 0.072 

62.5 0.037 0.099 

Barbiellini pp 21.5 0.042 0.238 Unnormalized ISR 1972 

30.8 0.016 0.456 

44.9 0.054 0.289 

53.0 0.076 0.448 

Alb row PP 23.4 0.15 1.05 15% ISR 1976 

26.9 0.15 0.55 

30.6 0.25 0.95 

32.4 0.20 0.35 

35.2 0.20 0.75 

38.3 0.20 0.70 

TABLE 2.4 Differential cross-section data for pp and pp for Piab > 200 GeV /c and 

It! ~ 0.01 GeV /c. 
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Author Type Js ltlmin ltlma.x Scale error Accelerator Year 

llreakstone PP 31 0.05 0.85 10% ISR 1984 

53 0.11 0.85 

62 0.13 0.85 

PP 31 0.05 0.85 10% ISR 1984 

53 0.11 0.85 

62 0.13 0.85 

Bohm pp 23.5 0.15 1.40 Unnormalized XSR 1974 

30.7 0.26 2.45 

44.9 0.50 4.60 

53.0 0.66 5.30 

Kwak PP 23.5 0.03 3.5 5% ISR 1975 

62.0 0.21 3.5 

Nagy PP 23.5 0.825 5.75 5% ISR 1979 

30.5 0.875 5.75 

44.6 0.875 7.25 

52.8 0.825 9.75 

62.1 0.825 6.25 

Breaks tone pp 53 0.623 3.390 20% ISR 1985 

PP 53 0.523 3.520 30% 

Erhan PP 53 0.65 2.05 10% ISR 1985 

jip 53 0.65 1.95 

Bozzo jip 546 0.0325 0.3175 5% SppS 1984 

0.215 0.495 8% 

0.46 1.53 10% 1985 

Bernard pp 630 0.7 2.2 15% SppS 1986 

TABLE 2.4 Continued from overleaf. 
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The above table does not represent a complete list of the available data in this energy 

range but is fairly comprehensive. For a more complete list see Carter, Collins and 

Whalley (1985). Accurate normalization of the data is only possible at small jtj. A 

review of the ~~ (pp) data at the ISR was given in Arnaldi (1978) and Landolt-Bornstein 

(1980) where a consistent set of data was obtained by requiring contiguous data sets 

join together smoothly and adjusting the normalization factors within the scale errors 

of the data. For the most part this involves scaling factors which differ from unity by 

~1% and are not significant. The only sizeable deviation from the normalized data 

was at Js = 23.5 GeV where a 7.5% increase in normalization was required for the 

Nagy (1979) data set which has a scale error of 5%. In the Amaldi compilation the 

ISR data were normalized to the optical points, which were determined using equation 

(2.1.5) from the average of the total cross-section measurements at each energy and 

from the measured values of p. A value for the forward slope, B(s), was obtained by 

interpolation from the experimental data and was used describe the differential cross­

section over the Coulomb interference region It! < 0.01 GeV2
• Using this procedure 

a normalization factor was calculated for the unnormalized data sets of Barbiellini 

(1972) and Bohm (1974). For the most part we use the relative normalizations of 

Amaldi in the following fits. However, for Js = 23.5 GeV, the total cross-sections 

found at the ISR are consistently lower than the values obtained at similar energies at 

FNAL (Carroll et al1979) by about 0.7 mb. For this reason we determine the optical 

points from a fit to the total cross-section for Js 2: 10 GeV (see §4.2). This produces 

a 3% increase in the normalization factor at .JS = 23.5 GeV and an insignificant 

difference at other energies ( < 1% ). This gives an overall 11% normalization correction 

to the Nagy data at Js = 23.5 GeV. The latest measurement of UT at the ISR for 

Js = 23.5 GeV from Amos (1985) is in agreement with the FNAL data. The earlier 

data from the same experiment presented in Kwak (1974), which extends down to small 

ltl at Js = 23.5 GeV, requires a 30% correction to bring it in line with the current 

normalization. The pp and pp data from Breakstone (1984) are consistent with the 

current normalization. Figure 2.12 shows the resulting data set at ISR and Collider 

energies for It I ~ 1 Ge V2
• 
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FIG. 2.12 Small It I ~~ data for ..jS = 23 ---+ 546 GeV. 

' 
In the forward direction, we determined aetr(t) separately in the three regions : 0 ~ 

It I ~ 0.2, 0.2 ~ It I ~ 0.6 and 0.5 ~ It I ~ 1.3 GeV2
, using in each range the data from 

table 2.4. The results were not sensitive to the degree of the polynomial in t used in the 

exponential in (2.6.3). Figure 2.13 shows the interpolated values of ~~ for the various 

data sets plotted against log .JS at selected values oft (using a polynomial fit of degree 

2). Equation (2.6.2) implies these points should lie on straight lines and within fairly 

large errors the data are consistent with this. The straight lines shown in the figure 

correspond to the calculated values of aeff· In the region beyond ltl = 0.8 GeV2 the 

Collider data arc extrapolated and so take no account of the shoulder that appears in 

the data. The long lever arm the SjipS Collider data provide is clearly very important 

in the calculation of aetr, though it is consistent with the lower energy data. The values 
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of aerr(t) obtained at different values oft are plotted in figure 2.14 . The determination 

of <l'eff with no Collider data gives results showing the same general trend but followed 

less accurately. The dotted lines correspond to ap(O) = 1.095, a~ = 0.2 (normal) and 

0.3 GeV-2 (bold). 
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FIG. 2.13 Interpolated values of~~ for data from table 2.4 at ltl = 0.1, 0.3 and 0.6 GeV2. · 
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FIG. 2.14 O'eff obtained by fitting small It I data. 

It can be seen that the data indicate a linear effective trajectory out to ltl ~ 1.3 GeV2 

with slope approximately a~ = 0.3 Ge V2
• The effective trajectories found in the three 

regiOns were : 

O'eff(t) = (1.071 ± 0.001) + (0.25 ± 0.01)t for 0.0:::; ltl :::; 0.2 GeV2 

O'etr(t) = (1.084 ± 0.002) + (0.309 ± 0.004)t for 0.2:::; ltl :::; 0.6 GeV2 

O'eff(t) = (1.11 ± 0.01) + (0.35 ± 0.02)t for 0.5:::; ltl :::; 1.3 GeV2 

Combined, these give 

O'eff(t) = (1.083 ± 0.002) + (0.319 ± 0.004)t 

(2.6.4) 

(2.6.5) 

The trajectory obtained combining all the data sets at each energy into one data set 

and using their original normalizations was 

O'eff(t) = (1.076 ± 0.001) + (0.297 ± 0.002)t for 0.0 :::; It I :::; 1.3 GeV2 (2.6.6) 

We also repeated the calculation using only the data for -JS ~ 53 GeV and obtained 

the trajectories 

cterr(t) = (1.074 ± 0.002) + (0.21 ± 0.01)t fot 0.0 :S Iii :S 0.2 GeV2 

O'eff(t) = (1.095 ± 0.002) + (0.365 ± 0.004)t for q.2 :::; ltl :::; 0.6 GeV2 
(2.6.7) 
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The agreement of these values provides a check on the consistency of the data and 

indicates that the same mechanism is responsible for the shrinkage through the ISR 

and from the ISR to the Collider. The effective trajectory crosses Oeff = 1 for It! = 
0.27 GeV2 at which point the differential cross-section is energy independent. 

The calculation of Oeff for large It I beyond the dip region is hampered by the lack of 

large It I data at the Collider energy and by the larger statistical errors and normal­

ization uncertainties in the data. The effect we are trying to measure is also smaller 

than in the forward diffraction peak. 

The main source of large ltl data is from Nagy (1979) taken at the ISR for energies 

Js = 23.5 ---+ 62.5 GeV2
• There also exists large ltl data from FNAL at Plab = 200 

and 400 GeV Jc (Faissler (1980) and Rubinstein (1984)) and from the SPS at Plab = 

200 GeV Jc (Fidecaro (1981)). Using this lower energy data is complicated by the 

uncertainty in the point at which the high energy behaviour sets in. Figure 2.15 shows 

the energy dependence at fixed It! ~ 2 GeV2 of ~~ against log.JS extending down 

to low energies. The result of fitting the high energy part of this with a straight 

line depends on where the low energy cut off is applied. We use the data for Plab 2:: 

200 GeV /c for It! ~ 2 GeV2
• 

10-5T---'-----.___ ___ _._ __ _ 

10 100 1000 

plab (GeV/c) 

FIG. 2.15 Jnt.P.rpola.t.ed values of ~~ for data extending down to low energies at It I = 1.8 

and 2.4 GeV 2 (figure taken from Collins and Kearney (1984)). 
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Fitting this data with the form (2.6.3) we find that a double exponential only gives a 

significant improvement in the x2 of the fit for the data where a relatively large t":range 

is spanned (Nagy ( ..fi =53 GeV) and Faissler data). 1'he Fidecaro (1980) data do not 

extend out to very large ltl and the Rubinstein (1984) data are relatively inaccurate 

compared with the ISR data. The calculated values of ~~ at large ltl for these data 

sets do not agree very well with the ISR data and are omitted. The behaviour of the 

Js = 31 Ge V2 ISR data for It 12.4 Ge V2 also seems inconsistent with the rest of the 

ISR data and is omitted. 

The resulting values for Oeff are shown in fig.2.16 . The trajectory calculated at large. 

ltl was 

t:Yetr(t) = (1.17 ± 0.03) + (0.075 ± 0.01)t for 2.0::; ltl ::; 6.0 GeV2 (2.6.8) 

The energy independent point where Oeff = 1 occurs for It I ~ 2.2 GeV2
• 

1.1 

<Yeff = 1.17 + 0.075t 

1.0 -

0.9 

0.8 -

0.7 -

0.6 

2 .3 4 5 6 

FIG. 2.16 Oeff obtained by fitting large It I data. 
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A similar study of just the ISR data given in Nagy (1979) found no indication. of 

energy dependence in the large It I data. The discrepancy appears to be caused by the 

use of more recent FNAL data (Faissler 1980); the normalization correction applied 

to the Js = 23.5 GeV ISR data; the omission of the data at .JS = 31 GeV (causes 

quite a significant change); the use of a quadratic form in the exponential and a 

slightly different t-range used in the fits. The calculated value of Geff(t) is our "best 

estimate" of the energy dependence but the ISR data alone are compatible with no 

energy dependence. Figure 2.17 is a comparison of the data at ..[i = 23 and 53 Ge V 

and the FNAL data at Plab = 200 and 400 GeV /c and shows the energy dependence. 

The neff's calculated should perhaps be conservatively taken as indicating an upper 

limit on the energy dependence and thus on a'. 
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-· 10 

-· 10 

-7 
10 

-· 10 
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= • 
-I ,. 

o- ISR ..fS = 23.5 GeV 

*- ISR ..fS =53 GeV 

10-10~------~----~-------.------~----~-------.------.-----~r-----~ 
2 3 4 7 8 9 10 

FIG. 2.17 Comparison of large It I rlata at Vs = 23.5 and 53 GeV and Plab = 200 and 400 GeV /c. 
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TheoJreticall Dii.scussion 

3.1. Unitarity, Analyticity and Crossing. 

The S-matrix elements, Sif, represent the transition probability amplitude from an 

initial state, i, to a final state, f . The probability of transition is given by 

WjJ = ISiJI 2 = (fiSii}O:.(fiSii} 

= (iJStjf)(fJSJi) 
(3.1.1) 

Unitarity is the requirement that the sum of the probabilities over all final states must 

be unity : 

L Wif = (iJSfSJi) = 1 
f 

and so the S-matrix is unitary : sts = sst = 1. 

The two-particle scattering amplitude, A, is obtained from S through 

(3.1.2) 

(p~,p~JSJp~,p2) = (p~,p~JPt,P2) +i(27r)4 84 (Pt +P2 -p~ -p~)(p~,p~JAJp~,p2) 

(3.1.3) 

For spinless particles Lorentz invariance implies that the scattering amplitude depends 

on the external particle momenta only through their invariant scalar products which 

for 2 --? 2 can be written in terms of the Mandelstam invariants s, t and u where 

s + t + u =4m2 for equal mass scattering. 

A(s,t,u) = (p~,p~JAIPbP2} (3.1.4) 

One of the basic postulates of S-matrix theory is that the scattering amplitudes are 

analytic functions of the Lorentz invariant quantities and the physical amplitudes are 

obtained as real-boundary values of these functions. The only singularities of the 

amplitude on the physical sheet are the elementary particle poles and the threshold 

branch cuts demanded by unitarity. 

The unitarity equation (3.1.2) gives non-linear equations for the scattering amplitude, 

A( s, t) . Below the inelastic threshold in the s-channel this yields 

A - At = v 4 dflAA t 
i fs m2 J 
(47r)2vfs 

(3.1.5) 
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At each new threshold a new term contributes to the r.h.s of (3.1.5) giving rise to 

the threshold singularities in A - At (the discontinuities across which are given by 

Cutkosky's formula). For energies outside of the physical region, below the elastic 

threshold, it can he shown that 

(3.1.6) 

The physical amplitudes are obtained as real boundary values from above the real 

axis. This prescription is equivalent to the +i€ prescription in perturbation theory 

and stems from causality. Thus 

Physical A(s, .. . ) =lim A(s + i€, .. . ) 
f->0 

{3.1.7) 

Using the analyticity postulate we can expand the scattering amplitude as a lLaurent 

series in s so that 

{3.1.8) 

and for the reverse transition 

{3.1.9) 

Then we have 

{3.1.10) 

so that A and At are opposite boundary values of analytic functions. The condition 

{3.1.6) implies ar = b; and thus that A and At are opposite boundary values of 

the same analytic function. Equation (3.1.5) therefore represents the discontinuity 

across the threshold branch cut. If the symmetry condition A fi = A;t holds, which 

follows just from Lorentz invariance for the elastic scattering of spinless particles and 

from PT invariance for inelastic 2 ~ 2 amplitudes, then (3.1.6) implies that ar = 

a; and therefore A(s, t) = A*(s*, t) so that A(s, t) is a real analytic function and 

the discontinuity across the branch cut gives the imaginary part of the scattering 

amplitude. 

Analytic continuation allows amplitudes involving antiparticles to be related to those 

for the corresponding particles by "crossing". This follows provided an analytic con­

tinuation exists which connects the physical regions of the two processes. This can 

be shown to exist in quantum field theory and in S-matrix theory (with certain other 

analyticity assumptions). 
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Using Cauchy's integral formula (A.3) a dispersion relation ins can be written for the 

scattering amplitude (provided lim jA(s, t)l ---t Is i-f where € > 0) giving 
8-+00 

00 00 

A( ) 98 (i) 9u(i) 1 J Ds(s1,i)d 1 1 J Du(U1 ,i)d 1 s, t = .. + . + - s + - u 
m~ - s rn 2 - u 1r s 1 - s 1r u 1 - u 

(3.1.11) 

where D 8 and Du are the discontinuities across the s- and u-channel branch cuts and 

the first two terms represent the contributions of the stable physical particles in the s­

and u-channels. In general lim IA(s, t)l ---t !siN-£ and N subtractions will be needed 
8--->00 

to obtain a similar result to the above. The point of this dispersion relation is that 

it embodies the (s-plane) analyticity assumptions we have made about the scattering 

amplitude. 

The optical theorem is a particular case of the unitarity relation for identical initial 

and final states. In this case the sum over all possible intermediate states just gives 

the total cross-section and the discontinuity across the branch cut gives the imaginary 

part of the elastic scattering amplitude. It then follows from the unitarity equation 

that : 
1 

ur = JSim Ael(s,t = 0) 
2q812 

(3.1.12) 

where 2q812 = Js- 4m2 for equal mass scattering. 

3.2. Partial-wave Amplitudes and Impact Parameter Space. 

A useful decomposition of the scattering amplitude is obtained by defining partial-wave 

amplitudes. Since angular momentum is a conserved quantity, scattering of states 

with different angular momenta can be treated independently and satisfy indepen­

dent unitarity equations which take a very simple form. The s-channel centre-of-mass 

partial-wave amplitudes for spinless particles are defined by 

1 

1 1 J At(s)- -- dz 8 Pt(z 8 )A(s, t) 
167r 2 

1 = o, 1, 2, ... (3.2.1) 
-1 

and the inverse transformation by 

00 

A(s, t) = 167r 2:)21 + 1)A,(s)Pt(z8 ) (3.2.2) 
1=0 

where z 8 =cos 08 = 1 + _1_4t 2 and 08 is the .'!-channel centre-of-mass scattering angle. s- 1n 
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Substituting this into the two-particle unitarity equation gives 

A if( ) Ail( ) _ 4iqsn Ain( )Anf( ) 
I 8+ - I 8_ - Vs I 8+ I 8_ + ... (3.2.3) 

which for elastic scattering, where the initial and final states are the same, yields 

(3.2.4) 

+ 3 body channels etc. 

The first term on the r.h.s corresponds to elastic scattering, the second is the sum 

over inelastic two particle intermediate states, further terms give the contributions of 

n-particle intermediate states. Since 2q812 = v' 8 -4m2 ---+ Js for large s and all the 

terms on the r.h.s are positive the above equation implies that 

(3.2.5) 

which just represents the condition that the probability of elastic scattering cannot 

exceed unity and that no scattering process can be purely inelastic, elastic scattering 

is always present as the 'shadow' of inelastic processes. 

The elastic partial-wave amplitudes are often parametrized as in (3.2.6) below, explic­

itly satisfying the above unitarity condition. 

(3.2.6) 

where T/1 is the inelasticity factor and li1 is the real phase shift. For unitarity 'to be 

satisfied 0 :::; TJI :::; 1. 

In terms of the partial wave amplitudes the optical theorem (3.1.12) gives 

871" '\:""" l 271" ~ 
aT(8) = .Js L.)21 + l)Im {Aj (8)} = - 2- L..)21 + 1)[1- TJICos2lir] 

q812 8 l q812 l 
(3.2.7) 

and integrating over all angles we find 

{3.2.8) 

and therefore 

(3.2.9) 
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so that the contribution of any individual partial wave to the total cross-section de­

creases with increasing energy and, if ur does not fall, more and more partial waves 

must contribute as the energy increases. 

For purely elastic scattering 171 = 1 so that ur1 = O"eJl whilst for maximum absorbtion 

1]1 = 0 and UeJ
1 = O"ine1

1 = tur1. At an elastic resonance A1(s) ~ i and l)f = (2n + 1)f 

so all of the partial wave is elastically scattered. In the "black disk limit" all partial 

waves suffer maximum absorbtion up to some maximum, lma.x~Rq812 , where R is the 

particle radius, and so O"eJ = O"inel = tar= 1r R 2
• 

For high energies and small angles ( s ~ !tl), where a large number of partial waves 

contribute, we can simplify things further by replacing the summations over partial­

wave amplitudes by integrals in impact parameter (b) space. This proceeds through 

the classical relation l = q8 b- ! and for large l 

Pl(zs) ~ Jo((2l + 1)sin ~) 

and writing 

A1(s)---+ A(s,b) (J (J (-t)t 
sin 2 ~ 2 ~ q; 

we get 
<X> 

A(s, t) = 81rs j bdbJ0 (bv'-t)A(s,b) 

0 

while the inverse transformation corresponding to (3.2.1) is 

0 

A(s, b)= -
1
- j dtJ0 (bv'-t)A(s, t) 

167rs 
-<X) 

(3.2.10) 

(3.2.11) 

This is just the 2-dimensional Fourier transform of the scattering amplitude in impact 

parameter space with the azimuthal angle integrated out. Conservation of angular 

momentum is replaced by constancy of the impact parameter for scattering at high 

energy and small angle. Note that the above equation holds exactly for the S-wave so 

that A(s, b)lb=o= A1(s)l1=0• 

In terms of the elastic profile function, A( s, b), the unitarity condition on the elastic 

partial-waves (3.2.5) becomes 

0 ~ IA(s, b)l 2 ~ Im A(s, b) ~ 1 (3·.2.12) 

41 



and analagous to (3.2.6) we define the eikonal phase, x(s,b), and eikonal series by 

eix(s,b)- 1 1 00 (ix(s, b))n 
A(s,b) = 2' = -2. L i z z n. 

n=l 

(3.2.13) 

so that x(s, b) t-t 2ht(s) for large sand x(s, b) is complex with positive imaginary part. 

The equations (3.2.7),(3.2.8) and (3.2.9) translate to 

00 

ur(s) = 81r Jbdb Im A(s,b) 
0 

00 

O"el(s) = 81r J bdbiA(s,b)l2 

0 

00 

O"inel(s) = 81rjbdbGinel(s,b) 
0 

where we have defined the inelastic profile function, Ginel(s, b), by 

Ginel(s, b)= lm A(s, b)- IA(s, b)l 2 

and by analogy with optics we also define the "opacity"' n( s' b)' by 

O(s,b)- -ix(s,b) 

so that 

Ginel(s, b)= 1- e-2Re n(s,b) 

(3.2.14) 

(3~2.15) 

(3.2.16) 

(3.2.17) 

(3.2.18) 

(3.2.19) 

Re-writing equation (3.2.13) as in (3.2.6) and defining the absorbtion factor, 7J(s,b) = 
e-Re n(s,b)' we get 

q(s,b)e2it5(s,b) _ 1 
A(s,b) = 

2
i (3.2.20) 

where 2o(s,b) = Re x(s,b) and therefore 

Re A(s, b)= ~ sin2o , 
1 

I m A( s, b) = 2 ( 1 - 1J cos 26) (3.2.21) 

The unitarity condition (3.2.12) then corresponds to A(s, b) lying within the "unitarity 

circle" centred on Im A(s, b) = t with radius t (see fig.3.1). In terms ofthe absorbtion 

factor the inelastic profile function is given by 

(3.2.22) 
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As the energy increases, more and more inelastic channels become available so that at 

high energy TJ -Y 0 corresponding to maximum absorbtion and giving the black disk 

limit, A(s, b) -Y f. Since we are far away from the resonance region we expect elastic 

scattering to be purely diffractive (no resonance scattering), so that it is produced only 

as the shadow of Ginel ( s, b), and therefore 

1 
Im A(s, b)= 2(1- TJ(&, b)) (3.2.23) 

i.e it has the minimum value compatible with a given amount of absorbtion. This puts 

a stronger limit on Im A(s, b) than (3.2.12) which we call the diffractive limit : 

1 
Im A(s, b)~ 2 (3.2.24) 

This limit corresponds to the Re n --+ oo and the particle becoming infinitely black 

and totally absorbing. However, the dispersion relation (3.1.11) implies that a cross­

section which changes with energy must have a finite real part. In QCD this can be 

thought of as the difference between the basic exchange given by two gluon amplitude 

which is energy independent and pure imaginary and the sum of the ladder diagrams 

(see §3.5) which is energy dependent and gives the real part of the amplitude. 

Let p( s, b) be the ratio of the real to the imaginary part of the profile function A( s, b). 

Re 
p(s, b)_ Im A(s, b) (3.2.25) 

The energy dependence of ar implies a finite value for p( s, b). This gives the constraint 

1 
Im A(s, b)~ ( 2 ( b)) 2 1 + p s, 

(3.2.26) 

rather than (3.2.24). For fixed p(s,b) the maximum allowed value of Im A(s,b) cor­

responds to minimum TJ· This is shown in fig.3.1 . Since the energy dependence of the 

forward peak changes only slowly with t then 

(3.2.27) 

This fixes the maximum value allowed for Im A(s, b) and since p(s, t = 0) is small this 

is not much different from (3.2.24). 
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Im A.(s~ b) 

Re A(s, b)' 

FIG.3.1 Maximum value of Im A(s, b) allowed in diffractive limit for fixed p(s, b). 

The above discussion clearly does not correctly represent an amplitude with an odd 

charge conjugation contribution increasing with energy at a similar rate to ~he even 

C part, in which case Re A(s, b) does not tend asymptotically to zero. The amplitude 

should still however satisfy the constraint (3.2.24). Impact space analyses of the high 

energy pp and pp differential cross-section data have been given in Amaldi {1980) and 

Fearnley {1985) respectively. The nearly exponential t-dependence of the forward peak 

gives Im A(s,b) a Gaussian shape as a function of b. The large ltl structure in ~~ 

beyond the dip region produces a decrease in Im A(s,b) at small b, slightly flattening 

the profile function, whilst the slope variation at small ltl (Carrigan break) produces 

an increase above the Gaussian for b~2 GeV-2
• The values of Im A(s,b = 0) quoted 

for pp at y's =53 GeV and y's = 546 GeV are (0.353 ± 0.002) and (0.425 ± 0.002) 

respectively with the nucleon mean square radius increasing from (0.953 ± 0.005 fm) 

to (1.061 ±0.003 .fm). The increase of Ginel(s, b) over these energies is greatest at large 

b ~ 1 fm showing the peripheral nature of the scattering that produces the rising cross­

section. This peripherality is a consequence of the unitarity limit. Thus the profile 

function represents a grey disk which gets blacker and larger with increasing energy. 

3.3. Asymptotic Bounds on the Scattering Amplitude. 

Using unitarity and the analyticity of the scattering amplitude useful bounds can be 

put upon the asym]Jtotic energy dependence and t-dependence of the total and elastic 

cross-sections. Since t only enters the partial wave series (3.2.2) through z 8 in the 

44 



Legendre functions P,(zs) the series must diverge if it is continued into the t-channel 

physical region to the nearest t-channel singularity. The nearest t-channel singularity 

in pp scattering turns out to be the two pion threshold, t 0 = (2m 'II" ) 2 (the 1r pole does 

not occur in the spin amplitude relevant at high energy because it has negative parity). 

If we assume that the amplitude is analytic for t < t 0 and is polynomial bounded in 

s so that A(s, t) < CsN, which is true in quantum field theory (and N ~ 2 follows 

from unitarity), then following Block and Cahn (1985) and applying this to equation 

(3.2.11) at t = t 0 > 0 and using (A.7) gives 

(X) 

A(s, t 0 ) = 81rs j bdbi0 (b0o)A(s, b) < CsN (3.3.1) 

0 

where ! 0 is the modified Bessel function and Cis an unknown constant. Since Io is an 
(X) 

increasing function of its argument the maximum value of 81rs Jbdbi0 (bVt)Im A(s, b) 
0 

for 0 ~ t < t 0 subject to the above constraint is obtained for saturation of the imagi-

nary part of the low impact parameter profile function i.e for A( s, b) = { ~ ~ ; ~:. 

Substituting this into (3.3.1) and using (A.8) we find 

<Xl be 

81rs j bdbi0 (bVt)Im A(s, b)= 81rs J bdbi0 (bv'i) 

At t = to this gives 

0 0 

B~ Il(be0o) < CsN-l 
vto 

so that for high energy where be is large 

be ~ - 1
- [( N - 1) log ~ - ! log { ( N - 1) log ~} + ... ] 

yTo so 2 so 

and thus for 0 ~ t < to we have 

2 [ 2!1 (beVt) l max{Im A(s,t)} = 47rsbe beVt 

At t = 0 using (A.12) and (3.2.14) this gives 

(3.3.2) 

(3.3.3) 

(3.3.4) 

(3.3.5) 

mAv 47r r, __ · _,.,_ ., S . . (B)\ 1 {eN )1 3} Jl 
ar·----=-ltlV-lJ~log~--(N-1)1og- og -1 og- + ... 

to so so so 
(3.3.6) 
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so for N = 2 and to = 4m;_ it follows that 

(3.3.7) 

This is the F\·oissa.rt bound which puts a limit on how fast ur can grow with energy. 

The scale factor s 0 in the above equations is unknown because the constant C in (3.3.1) 

is incalculable but so should be of the order of the hadronic mass scale : &o ~ 1 Ge V. 

The ur data at present energies do not show any sign of saturating the Froissart 

bound. Their energy dependence indicates a coefficient of log2 s of about 0.6 mb, a 

factor of 100 x below the corresponding coefficient in the Froissart bound. 

If the amplitude satisfies a more stringent limit on its energy dependence at t = t0 

than (3.3.1) so that A(s, t) < Csi+e with 0 < E < 1 then ur satisfies the bound with 

reduced coefficient. 
411" 2 2 s 

ur ~ -E log -
to so 

(3.3.8) 

ForE~ 0.1 as in Pomeron dominated models and eikonal type models with the Born 

term giving single Pomeron exchange (see §7) this reduces the coefficient of the bound 

by a factor of 100. Similarly, if the effective region of analyticity of the amplitude 

bounded by t = t 0 is larger than that given by to = 4m; the bound is also improved. 

The t-dependence of the differential cross-section in hadronic processes indicates that 

the 211" threshold is not responsible for the effective range of the interaction which 

corresponds to a singularity at t 0 ~ 0.7 GeV2 (as in the proton electromagnetic form 

factor) giving a factor ~ 10 x reduction in the coefficient. 

For t > 0 equations (3.3.4) and (3.3.5) give 

r.>= ( ) ~ ( )(N-1) II [ l ~(1- IT) 4v .c.1r t 4 s V to s 2 V to 
Im A(s,t) ~ -- - s - (N -l)log-

t to so so (3.3.9) 

I+ II 
"' s V to for N = 2 and s ~ so 

At t = 0 this reproduces (3.3.1) and puts some constraint on the form of the amplitude. 

For instance a form like ise(blog
2 

s)t is not consistent with (3.3.9). 

3.4. Regge Poles. 

The partial-wave amplitude given by equation (3.2.1) is also defined for non-integer and 

complex values of l so that we can consider continuing the amplitude into the complex 
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angular momentum plane. In order that the continuation be unique it is required 

that the function both vanishes for l ---+ C ± ioo and is regular for l > C where C is 

some real constant. To ensure this for t-channel partial-wave amplitudes we have to 

decompose the amplitude into parts which are even and odd under the interchange 

cos Bt ~ -cos Bt (i.e s i-t u) This gives even and odd signatured amplitudes (~ = ±1 ), 

which have only right hand cuts in the complex Zt plane, and the corresponding partial­

wave decompositions give the physical partial-wave amplitudes for l even and odd 

respectively, i.e. 

Al(t) = { At(t) for l even 
AI (t) for l odd 

(3.4.1) 

Using a Sommerfeld-\Vatson transformation we can write the partial-wave series for 

the signatured amplitude as an integral in the complex 1-plane 

A~(s,t) = - 16~ f(2l+1)A~(t)p1~-zt)dl 
2z sm rrl 

(3.4.2) 

c1 

where C1 is a contour enclosing zero and the positive integers. The analyticity in 

l of A~(t) allows the contour C1 to be expanded to a semi-circle at infinity with 

its base along the line Re l = C. The convergence properties of AT(t) means the 

contribution from the semi-circle vanishes leaving only the base contribution. If it is 

assumed that the signatured partial-wave amplitudes have only isolated singularities 

(poles and branch cuts) for Re 1 < C then the base line of the contour can be pushed 

further to the left picking up separate contributions from each of these singularities. 

The Legendre function P1( z) decreases most rapidly as a function of z for l = - ~, for 

which P _1. ( z) ---+ z- t as z ---+ oo. If the base of the contour is displaced to the left as 
2 

far as the line Re 1 = C = - ~ then the contribution to the contour integral along this 

will be asymptotically negligible compared to that of any singularities encountered 

to the right of the line. These t-channel singularities are the Regge poles and Regge 

cuts and they determine the asymptotic behaviour of the s-channel amplitude. The 

base of the contour in the above can in fact be pushed as far to the left as we like 

using the Mandelstam-Sommerfeld-·watson transformation. The reason for using the 

integral representation (3.4.2) rather than the partial-wave series (3.2.2) is that whilst 

the latter diverges at the nearest s-channel singularity the former is valid throughout 

the complex z-plane provided the partial-wave amplitudes are sufficiently convergent 

in the 1-plane. 

In general the position of the singularity will be a function oft and describe a trajectory 

in the 1-plane as t varies, l = a(t). A simple pole, R, with signature, ~' and residue, 
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(3( t), of the form 

A ~(t) = (3(t) 
1 l- an(t) 

(3.4.3) 

substituted into (3.4.2) gives the amplitude 

(3.4.4) 

The contribution to the physical amplitude is then given by 

(3.4.5) 

and in the s-channel this has the high energy behaviour 

(3.4.6) 

It follows from the disconnectedness postulate of S-matrix theory that the residue of 

the pole, f3(t), factorizes into a product of its couplings to each of the external particle 

lines, so that f3(t) = r 1,3(t)'Y2,4(t). As it is written, equation (3.4.4) also has unphysical 

poles at negative integer values of an(t). A convenient expression summarizing the 

properties of a Regge pole in both the asymptotic s-channel and the resonance region 

of the t-channel is (from Collins (1982)) 

e-i11"o(t) + ~ 1 (sso) o(t) A(s, t) = '"YI,3(t)'Y2,4(t) 2sin7ra(t) f(a(t) + 1) (3.4.7) 

The poles of the r function cancels the poles in (3.4.4) for negative integer values of 

a(t). 

It can be shown that the Regge trajectory, l = an(t), is a real analytic function oft 

and contains the right-hand threshold branch cut. So below the t-channel threshold 

an(t) is purely real but fort > ty it develops an imaginary part. When a Regge pole 

with even signature occurs at an even value of l, or with odd signature at an odd value 

of 1, then it gives a pole in the physical partial-wave amplitude. If this occurs below 

the t-channel threshold the pole corresponds to a bound state, above threshold the 

trajectory has an imaginary part and corresponds to a resonance. 

Thus the trajectory, an(t), produces both the asymptotic s-channel behaviour and the 

t-channel poles of the amplitude. As t is varied, for t > O, we expect a trajectory with 

definite signature to generate a sequence of bound states and resonances corresponding 
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to observable particles with the same quantum numbers, apart from their spins which 

differ by two units of angular momentum between successive states. The experimental 

data on the particle masses and spins (see fig.1.2) indicate that such sequences of 

particles do occur,· and that the trajectories associated with them are linear functions 

of t ( = mass2
) of the form a R ( t) = a R ( 0) + a~ t. The experimental data on the 

appropriate high energy crossed channel elastic differential cross-sections show that 

the linear behaviour of some meson trajectories continues to negative values of t at 

least as far as t ~ -1.5 GeV2
• 

The above discussion can be extended to include the scattering of particles with spin. 

This significantly complicates the formalism because we have to worry about the kine­

matical singularities and crossing properties of the helicity amplitudes. However, these 

complications can be taken care of, and essentially the same result holds as for spin­

zero scattering (see Collins (1977)). For the s-channel helicity amplitudes it is found 

that 

(-t) ~m e-i1r(a-v) + ~ ( S )a(t) 
AR (s t)---+- - fJH (t) -

H. ' so 2sin1r(a- v) • so 
(3.4.8) 

in which: 

{3.4.9) 

where the ~-t's are the s-channel c-of-m helicities; 

(3.4.10) 

v is zero or a half corresponding to whether the total angular momentum states are 

integer or half-integer respectively; and the residue function fJH. (t) can be factorized 

as 

(3.4.11) 

We have found that the asymptotic s-channel behaviour of the amplitude is controlled 

by the rightmost j-plane singularities in the t-channel partial-wave amplitude. The 

Froissart bound, derived above in §3.3 using s-channel unitarity, gave Im A(s, t) ::; 

constant x s log2 s so that only one subtraction is needed in the dispersion relation 

(3.1.11) and the partial-wave amplitudes are free of singularities (analytic) for j > 1. 

We can also use t-channcl unitarity to constrain the asymptotic behaviour of the 

s-channei amplitude through the connection with the t-channel partial-wave singular­

ities. As in eq.(3.2.3), elastic t-channel unitarity gives for the signatured partial-wave 
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amplitudes 

(3.4.12) 

where p(t) = J1- 47~ 2 • Eliminating the kinematical singularities in A;s'(t) by writing, 

A((t) ---+ B'((t) x kinematical singularities, and using the real analyticity of Br(t) to 

write 

(3.4.13) 

equation (3.4.12) gives 

B((t) - B~*(t) = 2ip1 (t)B((t)B~*(t) (3.4.14) 

This equation is valid for the amplitudes B'((t) continued in l as well as at right­

signature integer values and applies in the region tr < t < tinel (i.e in the t-channel 

region above the elastic but below the inelatic threshold). The non-linearity of the 

equation implies that the partial-wave amplitudes cannot contain any hard singularities 

at real values of j in the region oft over which it applies. Thus (fixed) poles and hard 

branch cuts whose positions are independent oft are forbidden since real analyticity of 

B'((t) means they occur at real values of j. Moving singularities are allowed because 

below threshold they can occur at real j but develop an imaginary part above threshold. 

Soft branch points at real values of j in the elastic t-channel region are also allowed. 

The asymptotic s-channel behaviour corresponding to a given j-plane singularity struc­

ture can be conveniently found from the asymptotic limit of eq.(3.4.2) which yields a 

Mellin transform for the amplitude and the imaginary part then has the form 

C+ioo 

Im A~(s, t)"' ~ J A((t)s1dl for s---+ oo 
27rt 

C-ioo 

(3.4.15) 

As we have already found above, a simple pole in the j-plane gives rise to an asymptotic 

power behaviour in the s-channel. More generally, a singularity of the form (j - a Y 
(v -=/= 0), which corresponds to a multiple pole in the j-plane if v = negative integer 

or a hard (soft) branch point if v = real and negative (positive), gives the s-channel 

behaviour: 

( . )v s~ 
J - a +----+ (logs )v+l (3.4.16) 

A logarithmic branch point in the j-plane gives : 

(1 (
. )) 11 s~(loglogsy-t 

og J - a +----+ 
logs 

(3.4.17) 
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From eq.(3.4.16) the s log2 s asymptotic behaviour of the Froissart bound comes from a 

j-plane singularity with the form (j~1) 3 at t = 0. U the asymptotic s and t dependence 

of the s-channel amplitude factorizes, so that A(s, t) --+ (3(t)f(s), then since this 

corresponds to Aj(t) ---+ f3(t)F(j), a fixed j-plane singularity, the singularity can only 

be a soft branch cut and so A(s, t) ---+ {log ;),+1 where v > 0 and so the total cross­

section must decrease at least as fast as -1 
1 

• og s 

3.5. Regge poles and! PeJrtu.rbatii.on FieYd Theoll'y. 

We would like to be able to see how Regge poles arise from a fundamental theory of 

strong interactions in which hadrons are made of quarks and gluons. However, there 

are numerous problems preventing the use of QCD in the relevant regions of Regge 

physics. Not le~st of these are the ultra-violet confining nature of non-abelian QCD 

and the infra-red complications produced by a massless vector gluon. A perturbative 

approach is not really suited to the calculation of Regge pole behaviour since it must 

involve the study of bound states. The best that can be done is to examine field 

theories which are more easily calculable but less physically realistic and hope that 

these give a valid indication of how strong interactions behave. 

The simplest field theory we can look at is one involving only scalar mesons with a 

q} interaction. If we consider only planar diagrams then the leading behaviour in the 

s-channel comes from diagrams with only two particle states in the t-channel, so that 

it is given by the sum of ladder diagrams shown in figure 3.2 . 

. 3.2 The planar graphs giving the leading logarithm behaviour in the s-channel. 

Each of these graphs has the leading behaviour s-1(log s )n-I where n ~ 1 is the 

number of rungs in a given ladder and determines the power of logs that appears. 

The sum of the ladder graphs has the asymptotic behaviour (see Eden (1967)) 

2 
A(s, t) rv !!_eK(t)logs 

s 
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and so has a Regge pole-like behaviour with trajectory a(t) = -1 + K(t). As It I ---+ oo, 

the ( t-channel) Born term with propagator "' ~ dominates and so K(t) ---+ 0 and 

a(t) ---+ -1. The Born term gives rise to a fixed pole at l = -1 in the t-channel 

partial-wave amplitude which as we saw in §3.4 is forbidden by t-channel unitarity. 

Iteration in the t-channel restores unitarity and converts the fixed pole into a moving 

pole and so Reggeizes the exchange. 

We may then hope that a similar mechanism operates with multiple gluon exchange 

in which the basic t-channel Born diagram goes like "' .; . This is illustrated in figure 

3.3 . 

H 
3.3 The rnultiple-gluon ladders representing a Regge pole exchange. 

The ~ dependence of the Born term again means that the trajectory a(t) ---+ -1 as 

ltl ---+ oo. The above diagram corresponds to a meson Regge trajectory. A similar set 

of diagrams may be expected to give Pomeron exchange. In this case the exchange of 

a single t-channel gluon has the form "' { and so the trajectory asymptotes to one as 

ltl ---+ 00. 

The properties of the field theory of massive quantum electrodynamics has also been 

studied in the hope that it bears some relation to the physics of hadron scattering since 

it preserves at least the vector nature of the field. The leading high energy behaviour 

is given by summing ladder diagrams as in ¢3 theory, but twisted ladders are included 

in order to preserve gauge invariance. The sum of these diagrams, called a tower, has 

the asymptotic behaviour 
iss a 

A(s, t)---+ - 2-f(t) 
log s 

where a is a positive constant and so (3.5.2) violates the Froissart bound. 

3.6. Regge Cuts. 

(3.5.2) 

The existence of branch cut singularities in the j-plane can be deduced from two particle 
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t-channel unitarity (for theories with third Mandelstam double spectral functions). 

Regge cuts can be shown to arise in Feynmann diagrams as a result of the exchange 

of two or more Reggeons with nested couplings as in figure 3.4(a). 

(a) (b) 

3.4 (a) Mandelstam cross diagram for two Reggeon exchange giving rise to a Regge 

cut, (b) Physical representation of two Reggeon exchange. 

The asymptotic behaviour of the sum of two such Reggeon diagrams summed over all 

numbers of rungs has the form (see Collins (1977)) 

A(s t) = ig4 J dtl J dt2 (N(t, tl, t2))20( -.A) so(tt)+a(t2)-1 

' 1611"2 (-.A(t,tt,t2))! 
(3.6.1) 

where N(t, t 1 , t 2 ) is the Feynmann integral of the cross structure which is present in 

each of the couplings of the two Reggeons to the external particles and is not in general 

calculable. 

Equation (3.6.1) behaves asymptotically like 

o/ 01 1 

0'1(0)+a2(0)-1+~+ 1 t 
s '"1 

01
2 

A(s,t) rv -------­

(a:~+ a:~) logs 

and so corresponds to a Regge cut with branch point at 

(3.6.2) 

(3.6.3) 

More generally, the exchange of n Reggeons, with trajectories ai(t), leads to a branch 

cut with branch point given by 

(3.6.4) 
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subject to the phase space constraint 

n 

L:v=ti =V-i (3.6.5) 
i=I 

(at least for trajectories which increase with increasing t ). 

For identical Reggeons this gives a branch point at 

(3.6.6) 

which for linear trajectories gives 

a:' 
O:c" (t) = n(o:o- 1) + 1 + -t 

n 
(3.6.7) 

Thus for a Pomeron trajectory with intercept one, all the Pomeron cut trajectories 

intersect at one for t = 0. For sufficiently large -t, the higher order Reggeon cuts 

dominate the lower order cuts and the pole since the slope of the cut trajectory gets 

smaller as n increases. 

Physically, it is expected that the Regge cuts will arise from the coherent scattering 

by separate constituents in the particles as in figure 3.4(b) which can be represented 

in </>3 theory by figure 3.4(a). Replacing the ladder diagram in (3.6.1) by Reggeon 

amplitudes gives 

0 0 00 

= 16: 2 lsl j j dt1 dt2 j bdbJo(b.;=t";)Jo(bvCt;)J0 (bv'=t) 
-oo-oo 0 

(3.6.9) 

A model for calculating the contributions of multiple Reggeon exchanges and their 

strengths relative to the pole term is given by the eikonal series (3.2.13) which sums 

the repeated exchange of the Born term in the s-channel in the approximation that 

none of the exchanges carry much momentum relative to that of the scattered particle. 

This corresponds to the high energy small angle limit and can be shown to hold in 

perturbation field theory for the exchange of ladders with nested couplings. For two­

particle exchange this corresponds to putting the Gribov vertex N(t, t~, t 2 ) = 1 in 
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equation (3.6.9). The series of diagrams summed by this procedure consist of planar 

as well as non-planar diagrams so that the higher terms in the eikonal series contain 

parts which contribute to the renormalization of the pole term rather than to Pomeron 

cuts (as in the AFS cut). Also the series does not take into account the composite 

nature of the exchanged particle, so that more complicated diagrams are allowed where 

the exchanged particles interact, and so it does not satisfy t-channel unitarity. 

However, one of the features of the eikonal model that makes it useful is that it does 

explicitly satisfy s-channel unitarity and thus the Froissart bound. Similar models have 

been proposed for multiple-Pomeron exchange, with an enhancement (suppression) 

factor, .A, representing the contribution of diffractively produced intermediate states 

(see Collins et al (1974)), so that 

ei-Xx(s,b) _ 1 
A(3,b) = '.A 2z 

(3.6.10) 

This can be shown to satisfy the Froissart bound but clearly it does not necessarily 

respect the unitarity condition (3.2.12) (if x-+ ioo then A(3,b)-+ 2~). 
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4 

Pole and Weak Cut Modell 

4.1. ][ntroduction 

We saw in §1 that the pp and pp total cross-sections are well described as the sum of 

two components: a diffractive part due to the Pomeron which contributes equally to pp 

and pp scattering and increases slowly with energy; and a secondary Regge exchange 

contribution which falls with energy approximately likes-~ and contributes mainly to 

aT(fip) which has non-exotic s-channel quantum numbers. The Chew-Frautschi plot 

in figure 1.2 shows that the leading meson Regge trajectories which can be exchanged 

in pp and pp scattering are the p, A 2 , f and w trajectories. These have approximately 

degenerate trajectories with intercept, aR(O) ~ !, and slope, a~~ 0.9 GeV-2
, so from 

(3.4.7) have energy dependence saR(o)-l ~s-t. 

Experimentally the couplings of the p and A 2 Reggeons, which have isospin one, are 

small in comparison with the f and w couplings with zero isospin. This is reflected in 

the near equality of the pp and pn ( =pn) and the pp and pn total cross-sections. In 

fact we have 
aT(PP--+ pp) = P + f- w- p + A2 

aT(PP--+ pp) = P + f + w + p + A2 

aT(pn --+ pn) = P + f - w + p- A2 

aT(fin --+ pn) = P + f + w - p - A2 

(4.1.1) 

so that if the p and A2 were exchange degenerate their imaginary parts would cancel 

in pp and pn scattering and only produce a difference in the pp and pn total cross­

sections. In practice the pn,pn cross-sections are determined from deuteron scattering 

experiments and the Glauber screening corrections introduce too large an uncertainty 
·, 

to accurately determine the p and A2 exchange contribution from the difference be-

tween pn,pn and pp,pp scattering. However, determining the coupling of the p to the 

pp vertex, 1;p, from ~( 1rp) = aT( 1r-p)- aT( 1r+ p) and using the factorization of Regge 

residues and p universality gives 1;p = 1.31 mb (Hendrick et al (1975)), whereas ob­

taining IKp (and lf<p) from ~(Kp) and using w universality gives ~~P =23.9mb. So 

p and A 2 trajectory exchanges are only a 5% effect in pp and pp scattering and since 

we are mainly interested in determining the diffracti:ve component of the amplitude 
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and the p, A 2 , J,w trajectories are at least approximately exchange degenerate we shall 

neglect the small effects of the p and A2 Reggeon exchanges and effectively include 

them in thew and f Reggeon exchange contributions respectively. 

The f trajectory has same quantum numbers as the Pomeron and so adds to the imag­

inary part of the Pomeron contribution. Thew Reggeon has odd charge conjugation 

and so will contribute to pp and pp scattering with opposite sign. Since experimentally 

uy(pp) > uy(pp) clearly we need the w Reggeon to subtract from the imaginary part 

of the amplitude in pp scattering and to add in pp scattering as in (4.1.1). This is as 

we expect from the basic quark diagrams for Reggeon exchange which in pp and pp 

scattering are ( see Collins and Martin (1984)) 

pp scattenng . pp scattering 

P--........... 

(a) (b) 

FIG.4.1 Basic quark exchange diagrams for Reggeons in (a) pp and (b) pp scattering. 

so that Regge exchange in pp scattering gives to a first approximation a purely real 

contribution to the amplitude and in pp a mixture of real and imaginary parts due to 

the rotating phase i.e f and w Reggeons are exchange degenerate. 

Phenomenologically it has proved successful to also treat the Pomeron as a Regge 

pole. As we saw in §1, since its contribution to uy increases with energy, the intercept, 

ap(O), of the Pomeron trajectory must lie above one. In fact we find ap(O) ~ 1.095, 

and the shrinkage of the small It I high energy data indicates a trajectory slope, a~, 

of about 0.25 Ge v-2
• Thus the Pomeron trajectory is markedly different from the 

meson Regge trajectories and there are no known particles which lie on it. Because of 

its strange properties and its basic description in terms of two gluon exchange it has 

been speculated (Collins 1985) that the t-channel resonances lying on the trajectory 
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may be glueballs. Extrapolation of the Pomeron trajectory gtves a mass of about 

2 GeV for the lowest state, the 2++ glueball. There are candidates in this region but 

the nature of these states has not yet been confirmed experimentally. 

As we saw in figure 2.9, to a good approximation the differential cross-section has 

a simple exponential t-dependence out to It! ~ 1 GeV2 • At ISR energies there is 

then a dip at It! ~ 1.4 GeV2 and beyond this, for ltl > 2 GeV2 , there is again a 

simple exponential t-dependence but with a slope which is about 6x smaller and 

almost independent of energy. The natural description of the amplitude giving this 

behaviour is in terms of two imaginary components with opposite sign; one with the 

steep slope seen at small It!, the other with the shallow slope from large It!, so that 

for It I = 1.4 Ge V
2 

they interfere and give a dip in the differential cross-section as in 

figure 4.2 . 

ltl--<> 

FIG.4.2 Production of a zero in the amplitude by the interference of two exponential 

contributions (figure from Collins and Martin (1984)). 

Since we believe the Pomeron pole dominates the amplitude at t = 0 it is easiest to 

interpret the forward peak as due to the Pomeron with some other contribution giving 

the large ltl behaviour. We know from §3.6 that the Pomeron cut contribution to the 

amplitude will have a flatter t-dependence than the pole and will be approximately 

independent of energy since it has a trajecto.ry with intercept of about one and a 

slope half that of the pole. For a purely imaginary Pomeron the cut is also purely 

imaginary but with opposite sign so the cut should have the right phase to produce 
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the dip observed in ~~~. However, the t-dependence of the cut calculated using (3.6.10) 

from the eikonal model is only about half as steep as that of the pole and so still much 

too steep to describe the large ltl data and its magnitude is such that it produces 

a dip at too small· a value of It I. There is some uncertainty though, in the form of 

the Gribov vertex N(t, t 1 , t 2 ) in (3.6.9), which allows us to change the magnitude and 

t-dependence of the cut relative to the pole. In the eikonal model, N(t, it, t2) = 1, but 

we can reproduce the right sort of shape for the cut if we instead take 

( 4.1.2) 

for the Gribov vertex, which just multiplies the cut contribution calculated from 

(3.6.10) since it is independent of t 1 and t2. Then if b1 < 0 this factor reduces 

the rate at which the cut contribution falls off with It I in agreement with the large It I 

data. 

From (3.6.6) the Pomeron cut has trajectory given by 

(4.1.3) 

and so the s-dependences of the cut term, modulo logs factors, and the pole term, 

assuming a linear Pomeron trajectory, ap(t) = ap(O) + a~t, are given by 

( 4.1.4) 

So that, using, ~~ ~ l~f , the pole contribution to the differential cross-section has 

an energy independent point at ltl = .!f. (where €p = ap(O) - 1) and the cut at 
Op 

ltl = '!:;. The shrinkage of ~~ with energy occurs with these points as fulcrums and 

the angle turned through depends on the slope of the trajectory. From the ISR and 

Collider small ltl data in figure 2.11 the energy independent point in the Pomeron 

contribution, which dominates small It!, occurs for ltl ~ 0.4 GeV2 and so that of 

the cut should occur around It I ~ 1.6 GeV2
• In the region where the pole and the 

cut contributions overlap they cancel destructively and give a dip which moves with 

energy due to shrinkage as in figure 4.3 . The data from ISR in figure 2.8 looks very 

much like this simple description. 
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FIG.4.3 Movement of dip position with energy due to shrinkage of the pole and cut. 

This "weak cut model" has been used very successfully to fit the ISR and lower energy 

data (see Collins and Gault (1976)). The finite value of ~~ in the dip region occurs 

because of the small real part of the Pomeron pole and its cut due to their Regge 

phase. The shrinkage of the pole and cut produce movement and a filling in of the dip 

like that observed in the ISR data. At low energy, the large ltl data require a different 

sort of energy behaviour from that seen in the ISR data ( see §2.6). In Collins and 

Kearney (Hl84) this was described by a complicated superposition of R 0 P cuts and 

gave a reasonable fit to all the available data. Since then data has become available at 

very high energy from the collider at .JS = 546 Ge V. Straightforward extrapolation 

to the collider energy of the model with the parameters described in Collins and Gault 

(1978) gives the prediction shown in figure 4.4 . The small ltl slope and magnitude at 

Js = 546 GeV is slightly wrong but more importantly the model fails to predict the 

change in ~~ from a dip at the ISR to a shoulder at the collider. In this chapter we 

shall examine how the new data affect the parameter values and whether the model 

is compatible with the better data at high and low energies. We start by refitting the 

total cross-section which gives a best value for the Pomeron trajectory intercept·. We 
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then try to fit the high energy differential cross-section data from the ISR and the 

Collider which fixes the Pomeron trajectory slope and finally extrapolate these fits to 

low energy and see how well the data can be described by the model. 

IOJ -.,.-_ --------------------------, 

, 
10 

0 
10 -. 

_, 
10 -

_, 
10 : 

-· 10 -, 

-· 10 -

-· 10 --

.jS =53 GeV/ 

0 

FIG.4.4 Prediction of the model of Collins and Gault (1978) for the differential cross-

section at Vs = 53 Ge V (pp) and Vs = 546 Ge V (jip ). 

4.2 Total cross-section. 

Neglecting for the moment the Pomeron cut contribution to the total cross-section we 

have using {3.4.7) for the Regge pole amplitudes and the optical theorem: 

(
pp) 1{ (s)op(O) (s) 0

J(O) (s)ow(O)} 
UT _ =- f3p - + f3t - =f f3w - · 

pp s so so so 
( 4.2.1) 

In this section we shall use the above expression to determine the value of the Regge 

parameters at t = 0. In the above so is a scale parameter and should be of the order 

of the hadronic mass scale and so we choose for convenience s0 = 1 Ge V2
• For the 

above asymptotic behaviour to be applicable we need s ~ s0 • At lower energies we 
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expect other non-leading meson Regge trajectories and daughter trajectories to become 

significant. In fact the optical theorem (3.1.12) actually gives 

ay = J 1 
Im Ae1(s, t = 0) 

S 1 - 4m2 
8 

( 4.2.2) 

which would produce deviations from leading Regge behaviour for VB < 10 GeV2 

(unitarity implies Ael has a square root branch point ofthe form /1- 4
';;

2 
at threshold 

which cancels the above singularity in pp but not jip ). Only by reference to the data 

can it be determined to how low an energy we can apply ( 4.2.1) but we expect that it 

should hold at least for .Js~ 10 Ge V where s / s 0 is ~ 102 • 

As we saw in the previous section, the exchange degeneracy of the f and w means that 

the f and w Reggeon contributions to ay interfere destructively in pp scattering and 

constructively in jip scattering so that the pp amplitude is due mainly to the Pomeron . . 
However, ay(pp) falls with energy for Js < 10 GeV, see figure 2.1, indicating either 

that exchange degeneracy does not hold exactly, or that the Pomeron contribution does 

not behave as a simple Regge pole, as we have supposed, but rises at low energy, or 

that there are some other contributions to ay which are important for Js < 10 GeV. 

In both ay(pp) and ar(pp) the fall of the cross-section with energy at low energies has 

approximately an s-t energy dependence indicating that the fall is most likely due to 

a breaking of the exchange degeneracy of the f and w residues. 

This simple sa energy dependence continues down to .Js = 3.6 GeV in tl.a and the fall 

in ay(pp) seems to have a similar energy dependence down to Js = 4 Ge V below which 

there is a much steeper fall off with energy (see figure 2.1). Thus the data indicate 

that the simple Regge pole picture of (4.2.1) should hold down toy'S = 4 GeV. Below 

this one requires the inclusion of daughter trajectories in the amplitude (see Collins 

and Wright (1978)). If it is assumed that the exchange degeneracy of the residues is 

broken whilst that of the trajectories remains intact (so called weak exchange degen­

eracy) then, before data at the collider energy were available, a relatively small~ 20% 

breaking of exchange degeneracy in the residues allowed a good fit to all the data on 

total hadronic cross-sections (as in, for example, Collins and Wright (1978)) so that 

exchange degeneracy was reasonably well obeyed. However, the collider data show 

that ar(pp) (and thus the Pomeron contribution to ar) increases faster at very high 

energies than the data at lower energies had previously indicated. From {4.2.1) we see 
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that the difference between the pp and pp total cross-sections is given by 

( ) 

a..,(o)-1 

tla = 2f3w :
0 

mb (4.2.3) 

and depends only on t.he w Ilcggcon which can thus he determined. The data on tla, 

figure 2.3, gives aw(O) ~ t· Since the f Reggeon has the same quantum numbers as 

the Pomeron it is not possible to separate their contributions uniquely and the data 

could be fitted with a 1(0) = !, degenerate with thew trajectory, by choosing suitable 

Pomeron parameters. However, the data at Vs = 546 GeV give a better indication of 

the energy dependence of the Pomeron. We wish to see how well the Pomeron and f 

Reggeon can be determined using this longer lever-arm in energy (but still assuming 

that they behave as simple Regge poles). 

Fixing a,(o) = aw(O) = ! in (4.2.1) and fitting ar(pp) and ar(pp) for Vs ~ 4 GeV 

we find 

ar = ~{23.lsl.076 + 81.3s~ =F 28.6s~} mb 
s 

( 4.2.4) 

which is shown in figure 4.5 (this is very similar to the ar parametrization in Donnachie 

and Landshoff (1979) which uses an(O) = 0.44 GeV-2
). For Vs < 6 GeV the fit misses 

the pp rlata ami t,he overall x2 is very high, x2 = 413 for 51 points. So the collider data 

implies that exchange degeneracy of the residues is broken by a factor ~~:: ~ 300% 

and the poor fit in the above shows we need breaking of exchange degeneracy of the 

trajectories also. 
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FIG.4.5 Prediction of the UT(PP) and UT(fip) using exchange degenerate parametriza­

tion of eq.(4.2.4). 

In our fits toUT we have forced the parametrization to go through the collider point by 

giving it a large weighting but we take the error of the measurement into account by 

using the data point as a variable parameter in the minimization program MINUIT and 

allowing it to vary within the experimental error of 61.9 ± 1.5 mb. We incorporate the 

systematic errors in the different data sets by giving each set a free parameter which 

adds equally to every point and is allowed to vary within the systematic error. The 

data from Carroll et al (1976/79) (see §2.2) are held fixed to normalize the surrou~ding 

data sets. A weight of x3 was attached to the ISR data. These extra parameters make 

it harder for MINUIT to find the minimum so we verify the results by repeating the 

fits with different initial parameter values and checking they converge to the same 

minimum. Typically we found that varying five parameters needed 800 calls to find 

the minimum and took about one CPU second on the IBM 3081. 

'iVe determine the trajectories from the data on aT(PP) and aT(fip) but it should be 

born in mind that they are contrained by the particle masses in the Chew-Frautschi 

plots. The particles thought to lie on the f Reggeon trajectory are the !2(1270), 

!4(2030) and possibly the f 6 (2510) and on thew trajectory the w(783) and w3 (1670) 
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(formerly the f, h and r mesons and the w and w* mesons). From the Review of 

particle properties 1986 we have 

Particle JG(JPC) Mass (Gev) Full Width (Gev) 

w(783) o-(1--) 0. 7826 ± 0.0002 0.0098 ± 0.0003 

w3(1670) o-(3--) 1.668 ± 0.005 0.166 ± 0.015 

/2(1270) o+(2++) 1.27 4 ± 0.005 0.176 ± 0.020 

/4(2030) o+(4++) 2.026 ± 0.012 o:2oo ± o.013 

/6(2510)t o+(6++) 2.510 ± 0.030 0.240 ± 0.060 

t Not an established resonance. 

TABLE 4.1. Properties of particles on the f and W trajectories. 

The errors on the masses of the particles are much smaller than their full widths and 

using the mass errors the trajectories are well determined. The data does not support 

this precise continuation of the trajectories through the particle masses, for instance 

the f 6 does not lie exactly on the trajectory through the h and f4. However, because 

in this t-region we are above the t-channel threshold, t = 4m'll" 2 , the trajectories are 

no longer purely real and at values of t corresponding to resonances they have an 

imaginary part given by 

( 4.2.5) 

where m and r are the mass and width of the resonance respectively. To account 

for the uncertainty in how to continue the trajectories for t > 0 we use the widths 

of the resonances· as errors on the masses used to determine the trajectories rather 

than the experimental errors to which the masses are known. Figure 4.6 shows the 

Chew-Frautschi plots for the two trajectories. 
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FIG.4.6 Chew-Frautschi plots for the (a) f and (b) W Regge trajectories. 

Using a simple least squares calculation for the trajectories we obtain 

(a) Using Full Width (b) Using Mass errors 

aw(O) 0.435 ± 0.128 0.435 ± 0.008 

a' w 0.922 ± 0.118 0.922 ± 0.007 

a 1(o) 0.623 ± 0.337 0.669 ± 0.037 

a' I 0.842 ± 0.102 0.819 ± 0.014 

TABLE 4.2. Trajectory intercepts and slopes from particle masses. 

Column (a) in table 4.2 contains the values obtained using the the full widths and 

column (h) using the errors on the particle masses. 

Thew intercept can also he determined from the tlu data using ( 4.2.3). We performed 
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a fit to the data on ~u for Js > 3.6 GeV from §2.3) and found a best fit for 

f3w = 41.6 mb , aw(O) = 0.412 (4.2.6) 

2 

which gave ~ = :~ and agrees with the value obtained from the masses of thew and 

w3 in table 4.2 . This is shown in figure 4. 7 . For vs < 3 Ge V some other contribution 

to the odd part of the amplitude is needed with steeper energy dependence than w 

Reggeon exchange as can be seen from the uT(PP) data in fig.2.1 . 

10
2
.---------------------------------------, 

~u]mb] 

FIG.4.7 Result of a fit to ~U using (4.2.3) and (4.2.6). 

The small contribution of the p Reggeon to ~u should have been included if we were 

trying to obtain the w intercept as accurately as possible and we could also have 

included the data for t < 0 on K£p ~ K~p which is due mainly to thew Reggeon, 

though universality implies that the w residue is 3x smaller than in pp scattering 

whilst the p contribution is the same so that the effect of the p is more significant. 

These are taken into account in Aronson 1983 where it is found aw(O) = 0.44 ± 0.01 

consistent with the above. However, we are interested only in fixing the odd charge 

conjugation part of the amplitude and so shall use ( 4.2.6). 
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With the w parameters : f3w, O'w ( 0), fixed we determined the parameters of the Pomeron 

and f Reggeon: j3p,ap(O),J3J,af(O), in (4.2.1) by fitting the ur(pp) and ur(pp) data 

for ,jS > 4 Ge V as descibed above. We obtain a best fit for the parametrization 

. 1 
ar = -{18.8s(l.094 ) + 66.6s<0·629) =f 41.55s<0·412)} mb 

s 
(4.2.7) 

This is shown below in figure 4.8 . We find the collider data requires a larger value for 

ap(O) than before e.g. Collins and Gault (1978) used ap(O) = 1.067. His also slightly 

larger than that found in Donnachie and Landshoff (1979) where ap(O) = 1.08 because 

we have allowed different intercepts for the f and w trajectories and therefore obtain 

a better fit to the data. The f trajectory intercept, a 1(0) = 0.629, is in agreement 

with that from the particle masses in table 4.2 . 
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FIG.4.8 Result of a fit to ur(pp) and ur(pp) using ( 4.2. 7). 

In order to determine the possible range of ap(O) we have fitted the ur(pp) and 

ur(i5p) for ,jS 2: 10 GeV with different values of ap(O) and varied j3P,j3f,a!(O), with 

f3w and aw(O) fixed as above. For large values of ap(O), a,(o) also gets large and, 

if somewhat arbitrarily, we regard a,(o) = 0.75 as the largest value we are prepared 

to tolerate, this fixes ap(0)<1.12 (though as we saw above a,(o) is not really much 
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restricted by the particle masses). It is only the requirement that the f trajectory 

should not be too different from the other meson Regge trajectories that places an 

upper limit on a J( 0). Using only the cross-section data for ,f8 2:: 10 Ge V we find the 

best fit for ap(O) =·1.091 but ap(O) is not well determined and values within the range 

1.08 :::; ap(O) :::; 1.11 give reasonable fits to ar consistent with the f intercept from 

the particle masses (note that the best fit does not correspond to lowest x2 in table 

4.3 because of the weighting we have used). 

We repeated these fits using the data for ,f8 2:: 4 GeV with similar results which are 

shown in figure 4.9 for selected values of ap(O) compared with the ar(pp) data. The 

best fit occurs for ap(O) = 1.089 but ap(O) = 1.090 ± 0.005 does almost as well. 

Figure 4.9 shows that only for ap(O) > 1.10 do the fits differ significantly (note ISR 

data have a 0.25 mh systematic error). The fact that we get about the same values· for 

the parameters whether or not we include the low energy data lends support to the 

idea that our parametrization of the amplitude is valid down to ,j8 = 4 GeV. Table 

4.3 shows the parameter values obtained using the data for both Vs 2:: 10 GeV and 

-JS 2:: 4 GeV. 
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(a) y'S ~ 10 GeV (v = 16 points) (b) -J8 ~ 4 GeV (v =51 points) 

ap(O) (Jp f3t a 1(0) ur(546) x2 (Jp f3t a,(o) ur(546) x2 

1.070 24.90 35.5.7 0.19 60.2 152.7 

1.080 21.96 91.07 0.47 60.4 16.6 21.91 77.65 0.539 60.3 96.4 

1.085 20.72 74.66 0.57 60.9 10.4 20.66 71.41 0.584 60.7 50.0 

1.089 19.81 70.14 0.602 61.6 49.8 

1.090 19.66 69.52 0.61 61.6 9.5 19.68 69.91 0.604 61.7 48.3 

1.095 18.63 65.76 0.63 62.3 9.1 18.73 68.76 0.623 62.6 52.0 

1.100 17.64 63.86 0.66 63.1 8.6 17.76 67.12 0.643 63.4 63.3 

1.105 16.60 63.92 0.675 63.4 122. 

1.110 15.41 53.46 0.73 63.4 11.1 15.50 61.70 0.700 63.4 207. 

1.115 14.46 60.05 0.723 63.5 312. 

1.120 13.31 49.12 0.78 63.4 19.4 13.47 57.99 0.745 63.5 488. 

1.130 11.44 46.84 0.81 63.4 29.6 11.66 55.95 0.778 63.4 555. 

TABLE 4.3. Results of fits to ur(pp) data for Vs ~ 10 GeV and Vs ~ 4 GeV at 

various fixed values of ap(O). The value of lTT given is at Vs = 546 GeV. 
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FIG.4.9 Resulting fit to a-r using data for Js ~ 4 GeV for etp(O) fixed at : 1.08, 

1.09, 1.10, 1.11, 1.12, 1.13 . 

Figure 4.10 shows the different contributions of the terms in ( 4.2. 7) to a-r. It can 

be seen that the f Reggeon contribution is much larger than that of the w Reggeon 

and at .JS = 4 Ge V it is as large as the Pomeron contribution but falls rapidly with 

energy. The Pomeron contribution shows quite a steep rise with energy. The Pomeron 

cut contribution shown is that calculated from fit ( 4a) in §4.4 and gives a contribution 

of approximately one millibarn at the Collider energy. Including the Pomeron cut 

contribution ( 4.1.4) in the parametrization of a-r will produce a small change in the 

parameter values. Since the cut contribution interferes destructively with the Pomeron 

pole and its magnitude increases with energy we expect that the cut will increase the 

value of etp(O) (see §4.7). 
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FIG.4.10 Contributions toUT in (4.2.7). 

4.3 Prediction olf Rej][m. 

The data for p h?-ve been described in §2.4. Since we have fitted ur(pp) and ur(pp), 

which determines the imaginary part of the amplitude for both positive and negative, 

the real part should be given by the dispersion relation (3.1.11) (with one subtraction 

provided ~u ---+ s-6 for s ---+ oo where lJ > 0). Thus to the extent that we can 

neglect the low energy behaviour of ur, which is not fitted by ( 4.2.1 ), p is completely 

dependent on ur (if subtraction constant negligible) and does not have to be fitted 

separately (see Amaldi (1977)). The value of p predicted by the Regge phases of (4.2.7) 

is shown in figure 4.11 as a function of Js for pp and pp scattering. It can be seen 

that for .JS~10 GeV the prediction falls about 20% below the data. Also shown in 

figure 4.12 are the predictions for ap(O) = 1.08 ---+ 1.13 from the fits in table 4.3 . As 

the value of ap(O) increases the agreement with the low energy data for p improves 

and we find a good agreement with p for ap(O) ~ 1.12, but from table 4.3 this is too 

high a value of ap(O) to give an acceptable fit to ur. Thus it does not seem to be as 

good to assume that the real part of the amplitude is entirely due toP+ f + w down 

to .JS = 4 Ge V as it is for the imaginary part. At low energy one cannot neglect the 

low energy behaviour of ur in the calculation of the real part of the amplitude from 

dispersion relations and the full dispersion relation should be used. In Regge terms 

this means that other trajectories should be included in the calculation of the real part 
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and that all the pole amplitude cuts should start at s = 4m; not at s = 0. 
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FIG.4.11 Prediction of p using ( 4.2. 7) compared with p(pp ). 
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FIG.4.12 Prediction of p using fits (b) from table 4.3 compared with p(pp). 
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4.4 Fits to the Diffell."ential Cll."oss-sectlion 

Following Collins and Gault (1974a) we have used a double exponential form for the 

residue of the Pomeron pole in order to describe the break in the forward slope apparent 

in the data at It! ~ 0.2 GeV2 (see figure 2.12). From (3.4.7) this gives for the even­

signatured Pomeron amplitude 

(4.4.1) 

where Cp = ap + a~ (tn 
8

8

0 
- if). We define x and a1 to be positive and put· so = 

1 GeV2
• 

Substituting this into equation (3.6.1) for the cut amplitude and using the form 

( 4.4.2) 

for the Gribov vertex we find for the Pomeron cut amplitude ( using equations A.4 

and A.5) 

(4.4.3) 

This represents a hard branch cut in the complex angular momentum plane of the 

form, log(j- a 2p), with rightmost branchpoint occurring at a 2 p(t) = 2ap U) -1 as 

in (3.6.6). Using ( 4.1.4) for the Pomeron trajectory, ap(t), the cut trajectory is given 

by 

( 4.4.4) 

so that it has half the slope of the pole. The ...L factors in the denominators of the 
Cp 

terms in ( 4.4.3) are complex and so at non-asymptotic energies the phase of the cut 

term is not just given by its trajectory. For Ins ~ .!!? these effects are negligible 
CXp 

and ( 4.4.3) has the simple energy behaviour A 2
P rv 1 ~ 8 

( e-it s t' 2
p(t). At ISR energies 

ln s ~ 8 and ~ ~ 10 ~ 60, so that it is not a good approximation that the Ins term 
Op 

dominates at current energies. 
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The f and w Reggeons with even and odd signatures respectively are given by 

for pp 
pp 

( 4.4.5) 

where c8 = a 8 + o:~ (In 
8

/J
0 

- i ~). The ( 1 + t~) factor is introduced into the residue 

of the w Reggeon in order to account for the cross-over zero effect which occurs in 

pp and pp scattering (see Collins, Gault and Martin (1974a)). This is just used as a 

convenient way of reproducing the effect seen in the data. It it known from polarization 

measurements that the zero only occurs in the imaginary part of the amplitude at 

this point and not in the real part and also it is not seen in some other processes 

connected by fa-ctorization like 1r±p --+ p±p suggesting that cuts are also present but 

since the amplitude is predominantly imaginary the real part is negligible and this 

parametrization will do (it also gives some evidence that the cuts are pole dominated). 

The amplitudes defined above are dimensionless and ur and ~~ are given by (A.1) 

and (A.2). Comparing with (4.2.1) this gives 

f3P = 
1 

G P sin ~o:p(O) 
0.3893 2 

f3J = 
1 

G 1 sin ~a,(O) 
0.3893 2 

(4.4.6) 

1 7r 
f3w = Gw COS -aw(O} 

0.3893 2 

so that GP, Gj, Gw, ap(O), aJ(O) and aw(O) are all determined by (4.2.7). The 

Reggeon slope parameters are fixed by the Chew-Frautschi mass plots above and we 

take the values of aj and a:W from table 4.2(a). The high energy differential cross­

section should not be very sensitive to the Reggeon parameters and so for a first 

approximation we fix the values for a 1' aw and t 0 in ( 4.4.5) at those obtained in 

Collins and Gault (1978). 

Thus the only free parameters left are those that give the t-dependence of the Pomeron 

pole and cut and the magnitude of the cut relative to the pole namely: a~, x, ai, ap, 

A and b1 • At large ltl the Pomeron cut should dominate the amplitude because of 

its flat t-dependence even at quite low energies, but should not be too important 

at sufficiently small ltl. From the fit of Collins and Gault {1978), at y's =53 GeV 

the cut gives a 3% correction to the differential cross-section at ltl = 0 and 17% at 
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It I = 0.4 GeV2, rising to 5% and 26% respectively at -JS = 546 GeV, so the fit to 

even very small ltl will be affected by the cut. However, as a first approximation 

we determine ·the Pomeron parameters a~, x, a 1 and ap by fitting only the data 

for ltl ~ 0.4 GeV2. The contribution of the Reggeons in (4.2.7) has about a 20% 

effect on ~~ at t = 0 and -JS = 53 Ge V and so cannot be neglected but the the 

Reggeon parameters have been reasonably well tied clown so they do not much effect 

our determination of the Porneron contribution. We fit only the high energy data for 

y's ;::: 53 GeV in order to minimize the effect of the Reggeons. Fitting the data for 

ltl ~ 0.4 GeV2 at y's =53 GeV and .JS = 546 GeV from §2.5 with no cut contribution 

included in the parametrization and adjusting the weighting of the data to obtain the 

best fit, we find the data requires a~ ~ 0.25 -+ 0.32 GeV-2. The lowest value of at~ 

which can be tolerated by the data is about a~ = 0.2 GeV-2, the best fit obtained 

for ap(O) = 0.31. The resulting fit using ap(O) = 0.31 is shown in figure 4.12(a) and 

the effect of omitting the Reggeon contributions on the fit is shown in figure 4.12(b). 

Though the Reggeons are a small effect their effect on ~~.is not negligible. We also used 

two dipole form factor parametrizations for the Porneron residue taken from Donnachie 

and Landshoff (1979) eq.(4.4.7) and Collins and Wright (1978) eq.(4.4.8) and fitted 

them to the same data to compare with the double exponential parametrization we 

used in ( 4.4.1 ). The dipole fits gave a significantly better x2 compared with the 

double exponential parametrization and there was no significant difference between 

the results obtained with the different dipole forms (the x2 obtained depends on the 

weights attached to the data sets and only provides a relative measure of the quality 

of the fits). 

4m~- 2.79t 1 
Fl ( t) = -4-'--m--=2-_-t - (1 - _t_ )2 

p 0.71 
(4.4.7) 

1 1 
FI(t) = (1- ~) (1- _t ) 

mP 0.9 

( 4.4.8) 
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FIG.4.12 (a) Resulting small !tl ~~ from above fit at various energies, {b) effect of 

omitting Reggeon contribution in above fit. 

In .the above fits we used the normalizations for the data discussed in §2.6, those of 

Breakstone, Battiston and Bozzo were allowed to vary within their scale error.s. The 

program typically took 20 cpu sees and 600 calls to find the minimum whilst varying 

6 parameters. 

We now try to include the cut contribution and to fit out to larger ltl at the ISR by 

alternately fitting the small ltl data for ltl :::; 0.8 GeV2 and ..jS 2:: 53 GeV and then 

adjusting the cut parameters ..\and b1 to fit the large ltl data for It! > 1 GeV2 at 

77 



fi = 23.5 and 52.8 GeV from Nagy (1979). This does give a very good fit to the 

forward peak with a~ = 0.31 GeV-2 but for the ISR data right of the dip region we 

find the model predicts too much energy dependence and the fit gives too high a value 

compared with the large It I data at Vs = 23.5 GeV and too low a value compared with 

that at Vs =53 GeV. This is shown in figure 4.13. The model also gives a dip rather 

than the shoulder seen in the data at the Collider. 
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FIG.4.13 Fit to large ltl data at Vs = 23.5 and 53 GeV using a~ = 0.31 GeV-2
• 

The large jij probiem is caused by the high value of a~ which determines the energy 

dependence of the Pomeron cut as well as the pole. The discrepancy can be clearly seen 

78 



from a plot of the cut trajectories at large ltl calculat~d from the effective trajectory 

at small ltl according to (3.6.6), compared with the effective trajectory at large ltl. 

This shown in figure 4.14 for 2-, 3-, 4-Pomeron cuts. The 2-Pomeron cut calculation is 

significantly different from effective trajectory for lt1~2 GeV2
• In fact the data agree 

I 

much better with a~ut = T corresponding to a three Pomeron cut. In view of this 

we tried fits in which the large ltl data was described by a 3-Pomeron cut with a 

2-Pomeron cut cancelling the Pomeron in the dip region. However, the phases of the 

three terms do not allow a fit with the correct shape in the dip region. 
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FIG.4.14 Multiple-Pomeron cut trajectories compared with large ltl effective trajectory. 

The problem of the energy dependence at large ltl is therefore inherent in the simple 

version of the pole and weak cut model. The amplitude is dominated at small ltl by 

the Pomeron pole and at large It I by the Pomeron cut with trajectories given by ( 4.1.3) 

having slopes a~ and * respectively. However, the effective trajectory calculation in 

§2.6 gives the trajectory slopes at small and large ltl as a~ff ~ 0.3 and 0.07 GeV-2 

respectively and so is incompatible with ( 4.1.3) (though the intercepts of the effective 

trajectories do more or less agree with their predicted values). We shall try to find the 

best fit possible in spite of this problem. 
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VVe have fitted the whole t-range simultaneously using the data at -J8 = 23.5, 52.8 

and 546 GeV and the large ltl data from Faissler at -J8 = 19.5 and 27.4 GeV (see 

Table 2.4). We find a best fit for a~ = 0.15 GeV-2 shown in fig.4.15 . The energy 

dependence at large ltl and the dip at Js =53 GeV are about right. The dip moves 

slowly inwards and is filled in as the energy is increased through the ISR region, 

which is in agreement with the ISR data though this does show the dip deepest at 

Js = 30.7 GeV rather than at Js = 23.5 GeV2 and the dip produced by the fit is not 

quite deep enough at these two lowest ISR energies. The small ltl fit is now not so 

good because of the low value of a~ and the fit to the collider data for ltl > 0.8 GeV2 

is not improved and still gives a dip, much below the data, rather than a shoulder. 

The parameter values obtained in this fit are given in table 4.6 and are referred to as 

fit{ 4a). A graph showing the individual contributions of the Pomeron and its cut is 

shown in figure 4.16 . 

ap(O) 1.094 a 1(o) 0.629 aw(O) 0.412 

al p 0.145 al 
J 0.805 a/ w 0.922 

(Jp 18.8 (3, 66.6 f3w 41.6 

ap 2.452 a! 1.35 aw 1.03 

al 4.09 X 0.753 A 0.107 

bl -1.08 b2 0.0 to 0.19 

TABLE 4.4. Fit ( 4a) parameter values. 
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FIG.4.15 Fit (4a) compared with data at Vs = 23.5-+ 546 GeV. 
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FIG.4.16 Individual contributions of Pomeron and Pomeron cut to ~~ at Js = 53 and 

546 GeV. 

The deepness of the dip g1ven by destructive interference of the pole and the cut 

depends upon how nearly out of phase the two contributions are and upon their t­

dependences in the clip region. Both of these affect how large a real part is left at the 

point where the imaginary parts of the pole and cut cancel. To the extent that the 

phase of the cut is determined wholly by its trajectory the relative phase of the pole 

and cut depends only upon the difference between their trajectories. The closer the 

two trajectories are the more exact the cancellation of the two terms and the deeper 

is the dip. The complex denominators in ( 4.4.3) have a roughly t-independent affect 
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upon the phase of the cut and change only slowly with energy due to the In lJ term. The 

phase and the energy dependence of the denominators are affected by including a more 

complex structure in the Gribov vertex i.e [N(t, it, t 2 )] 2 = .Aeb1 t+b2 (tt+t2 ). However, 

we were not able to obtain any significant improvement using this extra freedom. 

The difference between the pole and cut trajectories increases with increasing ltl at 

a rate determined by a~. Their difference at t = 0 is determined by ap(O). So we 

should get a deeper dip for small a~ and ap{O). Note that this also means that the 

cancellation of the pole and cut will tend to be better if it occurs at smaller ltl and so 

we expect to have problems getting a shoulder at ltl = 0.8 GeV2 at collider energies 

but a dip at ltl = 1.4 GeV 2 as occurs in the ISR data. 

Below, we plot the real and imaginary parts of the amplitude at y's · 53 GeV for 

above fit (4a). We have omitted the Reggeon contributions for the sake of clarity. 
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FIG.4.17 Real and Imaginary parts of the contributions to the amplitude in fit(4a) at 

..jS =53 GeV. 

In figure 4.18 we vary the phase of the cut term at ..jS = 546 GeV in the above fit, 

keeping everything else fixed, and plot the results for different phases i.e we plot 

P + ei'TT</> P ® P for different values of</>. It can be seen that to get a shoulder at the 

Collider with this cut the pole and the cut need to be more in phase by ·o.11r and the 

shoulder produced lies a factor 5 x below the data. Constructive interference between 

the pole and the cut would produce the wrong shape fo:rthe shoulder. 
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FIG.4.18 ~~ (P + ei1r¢ P 0 P) plotted for different cP in fit(4a) at Js = 546 GeV. 

So the simple version of this model has four drawbacks: 

o the energy independence of the large It! data at ISR energies and below is not consistent 

with the Pomeron cut generated from a Pomeron pole with trajectory slope a~ ~ 

0.3 GeV- 2 which the small ltl data seems to need, 

o the magnitude of the cut is too small to give the shoulder at the Collider even if the 

phase were right,. 

o the relative phases of the pole and cut do not change sufficiently between Js = 53 Ge V, 

It!= 1.4 GeV
2 

and Js = 546 GeV, It!= 0.8 GeV2 to produce a dip in ~~ at the first 

value oft and a shoulder at the other, 

o the destructive interference between the pole and the cut does not produce a deep 

enough dip at Js = 23.5 Ge V 2 • 
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4.5 Bent Trajectory Parametrizatioll1. 

One way in which we can attempt to clear up some of the above problems is to allow 

some deviation of the Pomeron trajectory from a purely linear form. In this section 

we shall explore whether this idea can improve matters. 

The t-dependence of the meson Regge trajectories appears to be linear, at least for 

t?. -1.5 GeV 2 (see Collins (1977)). However, Regge cuts also seem to be important so 

the effective trajectories do not necessarily reflect just the energy dependence of the 

Regge poles. As we saw in §3.5, in perturbation theory the large ltl behaviour of the 

Rcgge trajectory is governed by the Born diagram which fV .; for large s, -t and so 

an(t) ----+ -1 as t ----+ -oo. This behaviour gives agreement with the CIM dimensional 

counting rules of Brodsky et al (1973) which give : 

(4.5.1) 

where f(.;) ----+ !~ for s, -t ----+ oo, .; fixed and n 8 is the number of spectator quarks. 

This works quite well in hadron-hadron scattering at low energy and 1t1?.2.4 GeV2
• 

A model which gives a satisfactory account of the low energy data was proposed by 

Collins and Kearney (1984). In this the Regge poles and their daughters dominate 

at large ltl as well as at small ltl because of the bending of their trajectories, with 

Regge cuts only being important for 1 ::; ltl ::; 3 GeV2
• The linearity of the Pomeron 

trajectory is even more open to question since it has no particles which lie on it and it 

already has quite different properties from the meson Regge trajectories i.e the string 

tension as~ociated with the Pomeron trajectory, T = -2 
1

, , is about 4x larger than 
7rO'p 

in the meson Regge trajectories. The effective trajectory calculation in §2.6 supports 

a linear Pomeron trajectory for ltl ::; 1 GeV2 but as noted above this depends on the 

amount of pole-cut interference. 

By analogy with the above argument for the large ltl behaviour of meson Regge tra­

jectories, the Pomeron trajectory should end up at ap(t) = 1 since the basic gluon 

diagram has an fV { behaviour. Similarly the Pomeron cut trajectory should also tend 

to a 2 p(t) ----+ 1 as jtj ----+ oo in accord with (3.6.6) but since it has more factors of a 8 

than the pole (see fig.3.5), where a 8 ----+ 0 for large ltl, it is expected to be negligible 
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compared to the pole term at large enough ltl. At the KSR energies however, there is 

no evidence that anything except the Pomeron cut is needed to describe large Iii. 

It seems plausible therefore, that bending the Pomeron trajectory might clear up the 

phase and energy dependence problems noted at the end of §4.3. Bending the Pomeron 

trajectory so that it asymptotes to Otp(t) = 1 will allow the energy dependence of the 

cut at large ltl to be disassociated somewhat from that of the pole at small ltl (since 

the pole trajectory for t > i only affects the cut trajectory for t > t ). It brings the 

pole and cut trajectories closer together in the dip region than if the trajectories were 

linear so that the real and imaginary parts cancel more exactly and give a deeper dip. 

It also allows their trajectories to be closer at ltl = 1.4 GeV2 than at ltl = 0.8 GeV2 

and thus produce less of a dip at the latter. 
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FIG.4.19 Bent Pomeron trajectory asymptoting to one from above. 

We first examined whether these ideas can be made to work with a Pomeron trajectory 

which asymptotes to one from above as shown in fig.4.19 . However, even taking into 

account the tendency of the pole-cut interference to produce some of the observed 

shrinkage at small ltl we found that the above trajectory was incompatible with the 

energy independence of the data for ltl ~ 0.3 GeV2 which implies that the dominant 

trajectory passes through one at small ltl (as shown by the l:teff plot in fig.2.13). If the 

trajectory is to pass through one at small ltl and asymptote to one at large ltl then it 
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must bend back up again as in figure 4.20 . 
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FIG.4.20 Bent Porneron trajectory asyrnptoting to one from below. 

There are theoretical problems with this behaviour since trajectory functions should 

be Herglotz and have all derivatives positive for t < iT. · However, the behaviour of 

the Pomeron trajectory is complicated by its collision with all the multi-Pomeron cut 

trajectories at t = 0 and it is not obvious that this restriction necessarily applies. The 

fits are also not much affected by the trajectories bending upwards at large ltl and the 

results are unchanged if the Pomeron trajectory asymptotes to zero or some negative 

value rather than bending back up. 

We parametrize a trajectory with the form shown in figure 4.20 by 

u 2v 
ap(t) = 1 + x + lxl + (x -lxl) (vlxl + u2)(1xl + v) 

{ 
1 + 2x if x ~ 0; 

= 1 + 2zu
2

v otherwise. 
( -vz+u2 )( -z+v) 

(4.5.2) 

where x = t{ a P ( 0) - 1 + a~ t) and 1t and v are free parameters. This function has the 

properties that (i) it passes through one at x = 0 ; (ii) its first derivative is continuous 

at x = 0 and (iii) it tends to one as x ---+ -oo. The minimum value of the function 

occurs at x = -u and the width of the minimum is determined by v. It is not possible 

to calculate the cut amplitude analytically using (3.6.9) so we use its leading behaviour 
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given by 

(4.5.3) 

in which a 2 p(t) is calculated from (3.6.6) and is given by 

(4.5.4) 

() 
ot't 

where y = a P 0 - 1 + f. 

With this parametrization we varied the parameters: ap, a~, x, a 1 , .A, b1 , u and v 

; and fitted the data at .JS = 23.5, 53 and 546 GeV as above. We obtained the fit 

( 4b) shown in figure 4.22 . The parameter values are given in table 4.5 . As expected, 

with this parametrization we were able to get a deeper dip at the ISR and more of a 

shoulder at the Collider. However, the dip shape at the higher ISR energies does not 

agree very well with the data and the shoulder produced at the Collider energy is still 

a factor lOx below the data. This fit has a~ = 0.18 GeV-2 which is not much larger 

than found previously and would give a reasonable energy dependence at large It I even 

without bending the trajectory. The pole and cut trajectories produced by this are 

shown in figure 4.21 . 

1.2 

1.1 
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0.9 

O.B 

-5 -4 -3 -2 -1 0 

-1:: [ g cv.?] 

FIG.4.21 Bent Pomeron pole and cut trajectories from fit (4b), 
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As stated above, the cut trajectory does not bend back up appreciably over the t­

range of the data. Effectively the cut trajectory is independent of t for !tl2:3 GeV2 

and a linear function of t with slope *- for 1t1~2 GeV2
• The t-dependence of the 

cut amplitude for 1tl2:2 GeV2 is fixed by the data which gives A 2 p(s,t) rv e1.2t, so 

the change in the cut trajectory for It! ~ 3 GeV2 produces a small !tl increase in the 
o.' 

t-dependence of the cut amplitude (i.e A 2 p( s, t) rv e1.2t+=f-Iog ot at small It!, where 

¥-logs ~ 0.8 GeV- 2
). So the bent trajectory affects the t-dependence of the cut 

amplitude. A larger cut increases the amount of shrinkage produced by the pole-cut 

interference so that a~ = 0.18 GeV- 2 is large enough to produce the effective shrinkage 

seen in the data. This is why the fits do not reproduce the large:r value for a~ found in 

ll'eff· It is also this affect (rather than the change in phase) which produces a shoulder 

instead of a dip at the Collider energy. The contributions of the pole and cut to the 

amplitude at yfS = 53 and 546 GeV are shown in figure 4.23 . 

In the same way, the bending of the Pomeron trajectory affects the t-dependence of the 

Pomeron and at large enough t the Pomeron again gives the dominant contribution 

to the amplitude. The main effect then of bending the trajectory is to change the 

t-dependence of the cut (although the change in phase does produce a deeper dip at 

ISR energies). This effect can be reproduced more simply by changing the structure 

of the Gribov vertex N( t, t 1 , t 2 ) in equation (3.6.9). 

a' p 0.180 al 3.43 A 0.143 u 0.0773 

ap 2.80 X 0.515 bt -0.501 v 0.0437 

TABLE 4.5. Fit (4b) parameter values. 
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FIG.4.22 Fit using bent trajectory parametrization (4b). 
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4.6. Strong Cut Parametrization. 

As we have seen above, by making the Pomeron cut term larger at small ltl, the 

effective shrinkage at small ltl is increased so that the O'eff seen at large ltl is more 

compatible with that expected from the Pomeron pole. We have also found that to 

reproduce the shoulder, the magnitude of the cut term needs to be bigger and its 

t-dependence needs to be steeper. This has lead us to try increasing the magnitude 

of the cut in the shoulder region by either giving it more energy dependence or by 

making the energy-independent part of the amplitude larger at small jtj. 

To give the cut more energy dependence at ltl ~ 0.8 GeV2 the cut trajectory has to 

be increased in this region (i.e increase ap(O) or decrease a~) but this is constrained 

by aT and the large ltl data. With the parametrization used in §4.4 we forced a fit 

to the Collider shoulder by weighting the data appropriately, while also trying to fit 

the ISR data. The best fit is shown in figure 4.24 . Though this fits the data at 

-JS = 546 GeV very well, it gives a very poor account of the ISR data in the dip region 

and beyond. There is not sufficient freedom in the t-dependence of the cut, using the 

above parametrization, to cope with the required difference in its magnitude at the 

ISR and the Collider. 
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FIG.4.24 Fit toy'S = 546 GeV using parametrization of §4.4 compared with data at 

y'S =53 and 546 GeV. 

In order to get something which can produce a cut of the right magnitude at ltl = 
0.8 GeV2 but still fit the ISR data for ltl;::::2 GeV2

, which is entirely due to the cut in 

this model, more t-dependence is needed in the Gribov vertex. We therefore replace 

(4.4.2) by 

(4.6.1) 

and for convenience adapt ( 4.5.3) slightly to give 

(4.6.2) 
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Using this to fit the data at Js = 23.5, 53 and 546 GeV we obtain a reasonable 

fit to both the dip at Js =53 GeV and the shoulder at .Js = 546 GeV. We find 

a~ = 0.08 GeV-2 so that most of the shrinkage at small ltl (corresponding to Cteff · 

0.3 Ge v-2
) comes from the interference of the pole and the cut. This parametrization 

produces a marked increase in the magnitude of the cut at t = 0 and so it is no longer 

true that its effect on O'T and the optical point is insignificant. Hence in the above, 

for each iteration of the fit, we have had to refit O'T with the cut contribution included 

and so find slightly different values for the parameters : ap(O), Gp, OtJ(O), G Ji from 

the previous fits. However, the energy dependence is now such that we do not get a 

good fit to the dip and large ltl data at .Js = 23.5 GeV. The fit (4c) is shown below in 

figure 4.25 and the pole and cut contributions in figure 4.26 . Comparing figures 4.16 

and 4.26 shows how having a larger cut with smaller a~ and bigger ap(O) produces 

the rise in cross-section between the Collider and the ISR. 
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FIG.4.25 Fit (4c) using parametrization of (4.6.2) and §4.4 compared with data for 

y's = 23.5--. 546 GeV. 
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FIG.4.26 Pole and cut contributions of fit (4c) at Vs =53 and 546 GeV. 

ap(O) 1.103 aJ(O) 0.610 a' p 0.0714 ap 3.24 a1 3.26 X 0.609 

{Jp 19.7 f3J 70.7 .X 0.121 bl 0.594 b2 2.653 y 0.969 

TABLE 4.6. Fit (4c) parameter values. 

The low value of a~ means the pole amplitude is more or less energy independent in 

the dip region and pushes the energy independent point in the cut amplitude out to 

larger It I so that in the dip region the energy dependence of the cut is close to its value 

at t = 0 which '""' s2 G'p(O) and this produces too much energy dependence to agree 

with the ISR data. A higher value of a~ (i.e = 0.14 GeV-2 as found in §2.6 for cut) 

makes the Pomeron cut effectively energy independent in the dip region but now the 

shrinkage of the pole and the t-dependence of the cut combine to give too much dip 
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move1nent. 

Thus it is impossible to get the energy dependence right in the dip region between 

the ISR and the Collider without getting the energy dependence over the ISR energy 

range wrong. Perhaps some contribution could be added which fixes the fit to the 

low energy ISR data but vanishes at the higher energies, but the parametrization is 

already a very uimatural description of the data. We conclude that if this model gives 

the correct description of the ISR data then something else must be responsible for 

the shoulder at the Collider. 

4. 7. Core term Parametrization. 

The problem of the different energy dependences needed at small and large ltllead us 

to try to better fix the Pomeron parameters by using an arbitrary parametric form 

for the large It! contribution, neglecting for the moment the question of its origin. We 

replaced the cut amplitude used in ( 4.4.3) by a term with the energy dependence found 

by aeff in §2.6 and an arbitrary phase and t-dependence. This was parametrized by 

G P 2 . A- b t b t ( - . .x. ) ac ( t) 
Ac(s,t)=>. 321l"e'1r'~'e 1 (1-y+ye 2

) e 1
2s (4.7.1) 

where a 0 (t) = O!eff(t) = 1.16 + 0.01t. 

With this, and the parameters (4.2.7) for the Pomeron and Reggeons, we have refitted 

the ISR and Collider data (no shoulder region data) and obtain a very good fit to the 

small ltl data with a~ = 0.28 GeV- 2 and</>= 0.24. The agreement with the large ltl 
data is reasonably good but the energy dependence of the shape and position of the dip 

does not correspond very well to the data. The non-zero value of <Pin (4.7.1) means 

that the core term does not have the correct Regge phase and its real part cancels 

with the real part of the Pomeron pole in the dip region in contrast to the Pomeron 

cut of ( 4.4.3). 

This still has the same problem as fit ( 4a) and cannot reproduce the Collider shoulder, 

so that an extra contribution is necessary. We add a term (4.7.2) which only appears 

at the Collider energy and produces the shoulder. Keeping the parameter values found 

in the above fit and allowing the extra term to vary gives an excellent description of 

the Collider shoulder. The parameter values (fit (4d)) ate given in table 4.7 and the 

fit displayed in figure 4.27 . 
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a' p 0.278 X 0.457 ,\ 0.0081 y 0.933 

ap 2.25 a I 4.56 bl 0.0105 b2 0.487 

f3ez 1.34 Ce;c 1.43 'Pe;r; 1.90 

TABLE 4.7. Fit (4d) parameter values. 

The freedom given by this extra term should allow a better parameterization to be 

found with different Pomeron parameters. So we also re-fitted the ISR and Collider 

data using this term, the core term in (4.7.1) and the Pomeron of (4.4.1). The best fit 

was found using a~ = 0.225 Ge v-2
• 

fory'S = 546 GeV 
for .jS < 546 GeV 

(4.7.2) 

Thus the effect of the term giving the Collider shoulder produces quite a large variation 

in the shrinkage ~ttributed to the pole and so a~ is not necessarily as great as Oeff 

would indicate and perhaps closer to that needed to generate the energy dependence 

of the large It! ISR data. 

We repeated the above exercise for the parametrization of §4.4. Adding the term 

(4.7.2) to fit (4a) allows a good description of the Collider shoulder. Refitting all the 

data including the extra term gives a slight improvement on ( 4a) at the ISR and a 

good fit to the Collider shoulder. This uses a~ = 0.117 GeV-2
• 

The extra term added to fit the Collider shoulder is not very well determined. To get 

some estimate of the contribution of this term to the total cross-section we can look 

at these four different versions of fits to the Collider shoulder. Assuming the phase of 

the extra term has no t-dependence these give at .jS = 546 GeV 

Fit (4a) Refitted ( 4a) Fit (4d) Refitted ( 4d) 

uT( cut/core) -1.44mb -1.20mb -0.49 mb -0.50 mb 

uT( extra term) -0.53 mb -3.35 mb -0.17 mb -0.73 mb 

TABLE 4.8. Contribution of cut and the term of (4.7.2) to O'T at Vs = 546 GeV. 
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so the combined contribution to UT is about 1 ---+ 5 mb. As we saw in figure 4.18, we 

need destructive interference with the Pomeron to give a shoulder of the right shape 

at the Collider so the contribution to uT is negative. Including this effect in the fit 

to UT makes little difference to the parameter values obtained and justifies neglecting 

the contribution in (4.2.1). For example including the 1.5mb effect of the cut in fit 

(4a) we find a best fit for: ap(O) = 1.094, (Jp = 19.2, a,(o) = 0.616, f3J =70.2mb, 

which are similar to the values obtained in ( 4.2. 7). 

0 ? -t.\~"1 l - - -- . ~ - 5 

FIG.4.27 Fit obtained using parametrization ( 4d) of table 4.7 . 
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4.8. JLow Ene~rgy Fits to ~~. 

We saw in §2.5 that for Plab ~ 30 GeV /c the large ltl data in both pp and pp have a 

quite different energy dependence from the data at higher energies. This indicates that 

different dynamics give the dominant large ltl contribution in the two energy regimes. 

The same dynamics that are responsible for the ISR data appear to dominate the 

amplitude down to Pl.ab = 50 GeV jc. The only remnant of the low energy effects 

above this energy is the difference between ~~ (pp) and ~~ (pp) in the dip region where 

the cross-section is small. It is an important check on the consistency of a model which 

purports to describe the dynamics operating at the ISR and Collider energies that it 

also gives a reasonable description of the data for Plab ~ 50 GeV /c. A parametrization 

of the data for Plab ~ 30 Ge V / c and of the pp / pp difference for Plab ~ 50 Ge V / c is 

also needed to determine what low energy effects are still present at higher energies. In 

previous versions of this model the low energy data at large It I have been described by 

an effective pole (Collins and Gault (1976)) and a detailed superposition of Reggeon­

Pomeron cuts incorporating polarization data (Collins and Kearney (1984)). We have 

adopted the former approach of trying to find a simple parametrization of the low 

energy effects. 

Extrapolating the differential cross-section for fit ( 4d) from §4. 7 down to low energies 

we find good agreement with the small 1t1~1 GeV2 data for Plab ~ 20 GeV jc, but 

the agreement with the data at Plab = 5 and 10 GeV /c, where the cross-over zero 

is prominent, is very poor. To improve the low energy, small ltl parametrization we 

have fine tuned the parameters a1 and aw in (4.4.5) by fitting the pp and pp data 

for ltl ~ 0.6 GeV2 and Plab = 5 --. 30 GeV jc. This does not affect the fit at higher 

energies. The parameter values found are given in table 4.9 and the smallltl prediction 

of the model is shown in figure 4.28 . The energy dependence of the cross-over zero 

effect is not properly accounted for by the shrinkage of the w pole. In particular the 

parametrization does not reproduce very well the small It I difference between pp and pp 

for Plab =50 -t 200 GeV /c present in the data from Ayres (1977) and Akerlof (1976). 

If the difference seen in the small ltl data at higher energies (Breakstone (1984) see 

§2.5) is a real effect it certainly cannot be accounted for by just thew Reggeon, since 

this would then give too large a difference at lower energies. As noted above the cross­

over zero cannot be simpiy due to a change of sign in the w residue and is probably 

caused by the presence of cuts, giving a

1
:ore~cated energy dependence. Fbr 



Plab ::::::.: 5 GeV /c the Reggeons are comparable in magnitude to the Pomeron and for 

a detailed fit to the data it would be necessary to include other effects such as more 

complicated Reggeon residues, other Reggeon contributions and spin effects. 

Table 4.9 Re-fitted Reggeon parameters for fit (4d). 
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In the dip region and at larger ltl the prediction only agrees with the pp data for 

Plab 2:: 200 GeV /c. The agreement with the jfp data is reasonable for Plab 2:: 50 GeV fc 
but the odd charge conjugation contribution due to the w Reggeon is too small to 

produce a significant difference between pp and jfp. For Plab = 5, 10 GeV /c .the 

predicted cross-section is a factor of lOOx below the data for 1tl2::1 GeV fc. 

To fit the pp data for 1tl2::1 GeV2 and Plab :S 30 GeV /c we add a term with the form 

• .1. ( • .K. ) cw., ( t) b t Ax(s, t) = f3xse'rr'~'"' e-• 2 s e "' ( 4.8.1) 

where ax(t) = ax(O) + a~t. Using (4.8.1) with a~ = 0 we obtained a reasonable 

parametrization of the large ltl data for az(O) = -0.43. At higher energies where the 

extra term (4.8.1) is comparable to the Pomeron cut in magnitude the relative phases 

are such that the dip in the P + P ® P cross-section is deepened, in contradiction with 

the pp data. However, we noted above that fit ( 4d) has the wrong sign for the real 

part of the amplitude in the dip region. Using fit ( 4a) instead, which gives a poor fit 

to the small It I data, we find that the dip structure of ~~ (pp) is well reproduced for 

Plab = 5 ~ 200 Ge V /c. This is shown in figure 4.29 with parameters given in table 

4.10 . At the lowest ISR energy, Js = 23.5 GeV, the extra term gives a small but 

significant contribution and increases ~~ slightly in the dip region and large ltl. This 

raises the possibility that the low energy effects are not negligible in determining the 

dip shape and the large ltl energy dependence at ISR energies, as we have assumed 

above. 

We attempted to describe the low energy jfp data by adding another term similar 

to ( 4.8.1) but with odd charge conjugation but were unable to obtain a suitable 

parametrization of the data at Plab = 5 and 10 GeV /c. The jfp data at higher en­

ergies is well described by the original parametrization with no extra terms so we 

obtain a reasonable description of the pp and jfp data if we assume that the extra 

terms cancels in jfp but add in pp. The result of this is shown in figure 4.30 . 

It is tempting to think of the extra contribution as due to Reggeon-Pomeron cuts, 

which should have a flatter t-dependence than the Reggeons and shrink much less with 

energy. The value of aeff for the low energy data for 1tl~1 GeV2
, aeff R:l 0 --+ -0.5, 

is too high for a conventional Reggeon trajectory. The trajectory agrees much better 
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with that expected from Reggeon-Pomeron cuts. From (3.6.3) these have trajectories 

given by 
ot' a' 

a RP ( t) ~ a R ( Q) + I R pI t 
an+aP 

:=:::! 0.5 + 0.2t 

(4.8.2) 

The t-dependence of the low energy, large It I data is also similar to that of the Pomeron 

cut at ISR energies. We tried fits in which we replaced the term ( 4.8.1) by Reggeon~ 

Pomeron cut generated by (3.6.9) from the f and w Reggeons of ( 4.4.5) giving the 

form 
~t 

A ( t) - AnpXnGRGP ( -i.lL )Otnp(O) bnpt e "R+cp 
RP s, - e 2 s e 

167rs Cn + Cp 
(4.8.3) 

where x R = ~i for R = ~. We found that although the energy dependences of the 

terms calculated using ( 4.8.3) were about what was needed they did not give the 

correct phase to properly reproduce the dip structure for Plab =50--. 280 GeV /c. 

I f3x 13141 bx I 0.758 ~ ax(O) 1-0.43 ~ lf>x 11.19 II 

Table 4.10 Parameter values used in (4.8.1). 

~ I 
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4.g). Gondusions, ihe U:nita:rity JLimH al!1ldl Hiiglht 1Ell1le:rgy lExili"aJPohn.iiioll1ls. 

We have found above that the energy dependence of the Pomeron cut at large ltl is 

not compatible with the energy dependence of the Pomeron at small ltl. The phase 

of the Pomeron determined by the energy dependence at small It I does not reproduce 

the sharp dip in the ISR data by interference between the Pomeron and the Pomeron 

cut. The energy independence of the large ltl data at the ISR is incompatible with 

the growth of the cross-section in the dip region between the ISR and the Collider if 

the same dynamics are responsible for both. Thus the simple version of the model is 

incapable of answering any of the questions posed by the Collider data. 

We have examined some possible refinements of the model to test if they can improve 

the agreement with the data. Incorporating a bent Pomeron trajectory to bring the 

Pomeron and cut more out of phase allows some improvement due to both the phase 

effect and the effect on the t-dependence of the Pomeron cut, though in practice it 

was difficult to get a reasonable description of the evolution of the dip through the 

ISR and the parametrization was unable to produce a shoulder at yl8 = 546 GeV of 

the correct magnitude. Allowing extra t-dependence in the simple cut parametrization 

was able to reproduce a shoulder at the Collider and a dip at the ISR but could not 

then reproduce the energy independence of the ISR data. 

Extrapolating the fits to low energies we found that a reasonable description of the 

data could be found for Plab ~ 50 Ge V /c. This indicated that there was still a small 

low energy effect present at the lowest of the ISR energies. This could account for 

the large ltl shrinkage found in §2.6 so that the cut off, Plab = 200 GeV jc, applied in 

figure 2.13 is possibly too low. 

We concluded that in this model some extra contribution is needed to describe the 

Collider data and examined the effects on the Pomeron parameters of including an 

arbitrary parametrization of the extra term. 

The predictions of the model at high energy using fit (4a) are shown in figures 4:31-34 

. The high energy behaviour of UT is displayed in figure 4.31 for -JS up to 108 Ge V 

and is consistent with the cosmic ray data. The contributions to UT of the Pomeron 

and cut are also included in the figure. The cut has very little effect at these energies~ 
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The F'roissart bound (3.3.7) is eventually violated by the Pomeron contribution. In fit 

(4a) this occurs for Js ~ 1025 GeV, too high an energy to attach much significance 

to. The reduced bound given by (3.3.8) is violated for .J8 ~ 1010 GeV. The energy 

dependence of the cut means that eventually it will dominate the amplitude but this 

does not occur until .JS ~ 1013 GeV. Figure 4.32 shows the high energy behaviour of 

p. For vs?..1 Te V the Pomeron contribution dominates the amplitude resulting in a 

constant value for the ratio Re/Im given by 

n n n 
p =tan -(ap(O) -1) ~ -(ap(O) -1) = -0.094 = 0.148 

2 2 2 
(4.9.1) 

The ratio, R = Uei/uT, exceeds the diffractive limit value of one half for vs?..200 TeV 

and continues growing as 1:; 8 
reJecting the fact that unitarity is violated by a Pomeron 

with intercept greater than unity. The elastic profile function, A(s,b), for the full am­

plitude of fit ( 4a) is shown in figure 4.33 at various energies. It violates the diffractive 

limit (3.2.24) for .JS ~ 1.8 TeV and the unitarity limit (3.2.12) for Vs ~ 300 TeV. A 

simple parametrization of the elastic scattering amplitude by the Pomeron pole 

where Cp = ap +a~ (logs- i;) (4.9.2) 

gives for the profile function 

G ( 
-i.l!. )ap(0)-1 _£ 

p e 2 s e 4cp 
A p ( s, b) = i ----'----_.:.._ ___ ---

16n cp 
( 4.9.3) 

so that as the energy increases this increases without bound and violates the unitarity 

constraint. 

To the extent that Cp is real in the above, the ratio p'(s, b) = Re/lm A(s, b), is just 

p'(s, b) = p(s, t) ~ ~(ap(O)- 1). An Argand plot of the elastic profile function as a 

function of energy at fixed b is therefore linear with slope 1/ p. This is shown in figure 

4.34 for both the Pomeron contribution alone and with the cut contribution included. 

The Pomeron alone violates the diffractive limit for Js ~ 900 Ge V. We shall consider 

the effects of restoring unitarity in chapters §6 -+ 9. 

The dependence on ap(O) of the energy, Vi, at which the Pomeron violates the diffrac­

tive limit is explored in table 4.11 using the fits obtained for various values of ap(O) 

in table 4.3(a). Increasing ap(O) means f3P must decrease to fit UT at the Collider 
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so 0 is fairly independent of ap(O) and given by V] ~ 1 Tev. Also given in table 

4.11 are the predicted cross-sections at .J8 = 2 and 40 Tev for the various values of 

ap(O). These give a range of about 10mb and 30 mb respectively at the two energies 

for viable fits to ur. 

Gp(O) V]GeV ur(2 Tev) ur( 40 Tev) 

1.07 2500 72.2 110. 

1.08 1700 74.1 120 

1.085 1400 75.5 126 

1.09 1100 77.4 132 

1.095 1000 78.8 139 

1.10 850 81.0 147 

1.11 840 82.9 159 

1.12 900 84.2 170 

1.13 1000 85.2 181 

TABLE 4.11 Predicted energies at which diffractive limit is exceeded for fits of table 4.3(a) 

and total cross-sections at -/8 = 2 and 40 Tev. 
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5 

OddleJroll'll Models 

5.1. Introduction 

We saw in the previous chapter that it does not seem possible to explain the liSR 

and Collider data within the framework of a Pomeron plus weak cut model without 

invoking an extra contribution. This must be either increasing with energy or perhaps 

independent of energy and exposed by the shrinkage of the small It! amplitude. In 

either case it cannot involve the exchange of quarks (this would produce a cross-section 

that falls rapidly with energy) and so must be due to gluon exchange. The Pomeron 

and Pomeron cuts have been identified with even charge conjugate multiple-gluon 

exchange, so it seems natural to try to interpret this extra term as an odd-charge­

conjugation multiple-gluon exchange contribution. To preserve colour this must have 

a primitive representation as three gluon exchange as in fig.5.1 just as the primitive 

representation of the Pomeron is two gluon exchange. 

In this chapter we shall explore the idea of adding an odd charge conjugate contribution 

or 'Odderon' and see whether it improves the agreement with the data. The P+P®P 

model could not reproduce the large change between the ISR pp data and Collider pp 

data in the dip region whilst still keeping large It! at ISR energies almost energy 

independent. This would not be such a problem if pp and pp were noticeably different 

due to the presence of an odd charge conjugate contribution. As we discussed in §2.5 

the pp and pp data at .JS = 53 Ge V are not conclusive but they do place a restriction 

on how large the difference between ~~ (pp) and ~~ (pp) can be and limit the possible 

size of such an odd charge conjugate contribution. We shall look at three models 

with different approaches to the dynamics of the Odderon. Firstly, a model proposed 

by Donnachie and Landshoff, which we shall refer to as the DL model, in which the 

odd charge conjugate contribution is due to multiple scattering of the partons by the 

exchange of three gluons as in figure 5.1(a) and is energy independent; then a model 

proposed by Gauron, Leader and Nicolescu (1985), which we shall refer to as the GLN 

model, in which the odderon contribution increases with energy as fast as asymptotic 

theorems will allow it; and finally a model in which the odderon contribution is thought 

of as reggeized three gluon exchange and grows with energy in the same way as the 

Pomeron (see fig.5.1(b )). 
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(a) (b) 

FIG. 5.1 (a) 3 gluon exchange. (b) primitive representation of reggeized 3 gluon exchange. 

5.2 Th.e Donnaclb.lie-JLan.dshoflf Modlell 

In this model the large ltl amplitude is dominated by the triple gluon exchange of 

fig.S.l(a). This gives a purely real, energy independent contribution with odd charge 

conjugation and so appears with a +ve sign in the pp amplitude and -ve sign in pp. 

The small ltl region is described by a Pomeron with intercept greater than one as 

in §4 which gives an almost pure imaginary contribution. Since the 3g amplitude 

is real and the Pomeron is imaginary, they alone cannot produce the dip in ~~ (pp ). 

Another contribution is needed and this is provided by the Pomeron cut which is also 

mainly imaginary but with the opposite sign to the Pomeron (as in §4.4). The relative 

phase and t-dependence of the pole and cut are such that their interference still leaves 

a substantial real part and produces a shoulder rather than a dip in ~~. The dip 

is produced by cancellation of the remaining real part of the amplitude by the 3g 

contribution. Since 3g exchange has odd charge conjugation it cancels in pp but adds 

in pp and so produces a dip in pp scattering but a shoulder in pp. A prediction of the 

model (Donnachie and Landshoff (1984a)) was therefore that the dip seen at the ISR 

in pp scattering would not be present at similar energies in pp scattering. 

The original motivation for this model stemmed from a calculation of a triple scattering 

.mechanism in pp elastic scattering (Landshoff {1974)) in which each of the valence 
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quarks scattered through the same angle (none of them being far off shell) and then 

recombined to reform the proton. 

If spin-one gluons are exchanged in this triple scattering mechanism then it is found 

that the differentialcross-section behaves like : 

(5.2.1) 

independent of energy. R is a measure of the radius of the three-quark proton (see 

Donnachie and Landshoff (1979)). The data for Plab > 400 GeV from FNAL and the 

ISR at large ltl are approximately energy independent and seem to obey (5.2.1) rather 

well for ltl~3.5 GeV2
, as can be seen in fig.5.2 . However, the analysis of the data in 

§2.6 indicated some energy dependence at large It I and there is considerable uncertainty 

about whether the behaviour (5.2.1) will be significantly modified by QCD corrections 

like that in fig.5.3(a) and thus whether it has any relevance at available energies and ltl 

ranges. In the leading logarithm approximation these diagrams give the 3g amplitude 

an energy dependence through a factor like e-blog
2 

8 which is incompatible with the 

large ltl pp data (Landshoff and Pritchard (1980)). Hence the agreement with the 

large ltl data is not entirely convincing evidence for 3g behaviour. 
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FIG. 5.3 Higher order QCD corrections to the primitive diagram of fig.5.1(a). 
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The, diagrams like that in fig.5.3(b) will cancel the infra-red divergence at t = 0 and 

so the expression (5.2.1) is valid only for large enough ltl where the t-scale is defined 

by R-2 • This is modelled by introducing a cut off at small It I so that the divergent 

behaviour is damped for 1tl~2 GeV2
• The cut off is not well determined and can 

be adjusted appropriately. The mechanism described in Donnachie and Landshoff 

(1984a) is to modify the gluon propagators at some small value of ltl: t 1 ::::::: 0.3 GeV2
, 

and to adjust the magnitude of the term so that at large ltl it has the behaviour 

~~ ~ 0.09r8 mb Ge v-2
• The resulting contribution to ~~ for different choices of the 

cut off, t 17 are shown in figure 5.4 . The cut off chosen corresponds to a radius of 0.35 

fm. It can be seen that the cut off controls the magnitude of the three gluon term 

in the dip region and makes a significant difference to the t-dependence of the three . 
gluon contribution for 1t1~2 GeV2 allowing better agreement with the data around the 

second maximum. All the curves in the above figure are normalized so that they have 

the same magnitude at large ltl. 
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FIG. 5.4 Contribution of the 3 gluon term to ~~ for different values of the cut off, t 1 (~"tl 
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The Pomeron parametrization is the same as used in ( 4.4.1) but with the residue 

function written as 

(5.2.2) 

The Pomeron is assumed to have a 'Y'"' coupling with the quarks, with coupling strength, 

{3, and F1(t) is the Dirac form factor of the proton. The amplitude then satisfies quark 

additivity and s-channel helicity conservation. The form used for F 1 (t) is 

F 
4mp 2 - 2.79t 1 

1 (t) - ----''-------­
- 4mp 2 - t (1- t/0.71)2 (5.2.3) 

We saw previously that with s0 = m 2 in ( 4.4.7) this gives a good description of 

the small ltl data at both ISR and collider. However, the arbitrariness of the scale, 

s 0 , introduces an exponential factor ecr~ log 80 t into the t-dependence of the Pomeron 

contribution and so the agreement probably mainly reflects the fact that in both ep 

and pp elastic scattering the scale is the proton radius. 

The contribution from the Pomeron cut is calculated with the eikonal form (3.6.10) 

using the Pomeron amplitude (4.4.1) with residue from (5.2.2) and (5.2.3). The major 

difference from §4.4 is that the Gribov vertex ( 4.4.2) is replaced by a constant, less 

than one, so that the cut is similar to that in the eikonal approximation (§7) below but 

with a factor .X which suppresses the P®P term. This results in at-dependence for the 

Pomeron cut of roughly half the exponential slope of the Pomeron (exactly half for a 

simple exponential t~'dependence of the Pomeron residue) but with the same trajectory 

as in ( 4.4.3). The Pomeron cut only gives a large contribution to the amplitude in the 

t-range 1 ::; ltl ::; 2 GeV2 since it has a t-dependence approximately midway between 

the Pomeron and triple gluon contributions. This is in contrast to the model described 

in §4 where the Pomeron cut had a much shallower slope and dominated the amplitude 

for t22 GeV2
• The cut contribution is adjusted so that it cancels the imaginary part 

of the Pomeron in the dip region at It I ~ 1.4 GeV2
• The 3g contribution then cancels 

the remaining real part of the amplitude in pp scattering producing a dip, but adds in 

pp producing a shoulder. Interference between the Pomeron cut and 3g contributions 

continues out to large ltl producing some difference between the magnitudes of pp and 

pp but since the Pomeron cut is dying away with increasing ltl this effect is small for 

It I > 5 GeV2
• Since the triple gluon contribution is purely real it does not contribute 

to UT. The Pomeron cut gives a larger contribution to UT than in §4 because of 

its different t-dependence and this is compensated by increasing the magnitude and 
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energy dependence of the Pomeron term but otherwise the results of §4.2 are essentially 

unchanged. 

Using this model a good account of the ISR pp data was obtained by Donnachie and 

Landshoff (1984a). The more recent pp data from the ISR and the Collider which show 

a shoulder rather than a dip seem to support this model (though the difference between 

the ~~ (pp) and ~~ (pp) data at y'S =53 GeV is not compelling). Straightforward use 

of this parametrization with this more recent data produces too high a shoulder in pp 

at y'S = 53 Ge V and the shoulder in pp predicted at the collider energy lies a factor 

of 8x below the collider data. In Donnachie and Landshoff (1986) they adjust the 

parameters to try to cope with the new data. 

In order to get agreement with the new pp data it is necessary to describe the collider 

shoulder as an interference effect between the Pomeron and the Pomeron cut in a 

similar way to fit( 4c) in §4.6 rather than as an effect produced by the 3g term (weak 

Odderon). To make this work the Pomeron must be given a flatter t-dependence to 

make it larger in the shoulder region (since the cut subtracts more off the Pomeron) 

which is accomplished by exploiting the e0~ log sot factor noted above and replacing 

so = m; by s0 = 1/o:~, which is given some theoretical motivation through the work of 

Veneziano (1968). The triple gluon contribution is a relatively small effect at this value 

of ltl and only produces a small difference between pp and pp at JS = 546 GeV. This 

effect also increases the size of the real part in the ISR dip region left by the cancellation 

of the imaginary parts of the Pomeron and Pomeron cut which was previously cancelled 

in pp by the 3g contribution. However, to reproduce the pp data at y'S =53 GeV and 

avoid making pp and pp too different in the dip region it is necessary to reduce the part 

played by the 3g contribution in cancelling the real part of the P + P 0 P amplitude. 

This limitation on the size of the 3g term at the ISR prevents it being responsible 

for the shoulder at the collider. The cancellation of the real part of the P + P 0 P 

amplitude is produced by a large R 0 P term. The f 0 P contribution at ISR energies 

- is 1/12th the size of P or P0P in the dip region but the phases are such that it reduces 

the real part of the amplitude substantially. Thew 0 Pis a small effect because the 

magnitude of the w contribution is smaller than that of the f and it is almost purely 

imaginary in the dip region. 

The dip found in the ISR data is deepest at ys = 31 GeV and !tl = 1.43 GeV2
• The 
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amplitude is made to vanish at this point by adjusting the strength of the P ® P cut 

through A2 p in equation (B.5) so that the imaginary part of the amplitude cancels and 

then adjusting the 3g cut off so that the real part of the amplitude is cancelled. As the 

energy differs from -/S = 31 Ge V the positions of the zeroes in the real and imaginary 

parts change differently with energy and the dip fills in as the data indicate. As in 

the PWC model most of the movement of the dip is produced by the shrinkage of the 

Pomeron contribution and so the dip moves in to smaller ltl as the energy increases. 

The shape of the dip depends upon how the 3g contribution is cut off at small It I which 

can be adjusted to fit the data. 

In their earlier work Donnachie and Landshoff also considered the effects of including 

triple-Pomeron and Pomeron-two gluon exchange. These are expected to make little 

difference and were omitted in their latest parametrization. The calculation of the 

3-Pomeron term (described in appendix B) follows that of 3g exchange differing from 

the eikonal prescription for 3-Pomeron exchange but giving approximately the same 

t-dependence. The strength of the contribution is not very well known and is sensitive 

to the magnitude of the Pomeron term and perhaps should include the suppression 

factor present in the two-Pomeron cut calculation. Its phase and energy dependence 
I 

are determined by the trajectory a 3 p(t) = 1 + 3t:p + ¥t and so is an almost pure 

imaginary term like the Pomeron which grows faster with energy than the Pomeron or 

2-Pomeron cut. Its inclusion thus has the effect of lowering the shoulder produced at 

the collider (though the strength of the 2-Pomeron cut has to be increased by 10% to 

compensate the 3-Pomeron term at the ISR the energy dependence of the 3-Pomeron 

term means a net decrease in the height of the shoulder at the collider by a factor 

of two). Multiple Romeron exchange is important in that it is expected to prevent 

violation of the Froissart bound at high energy (see §6). However, since it is uncertain 

whether it is significant yet we shall omit it also. The Pomeron-two-gluon exchange 

term has the same shape as 3-gluon exchange but is negligible since a small alteration 

in the parameters of the other terms will mask its effect. 

We attempted to reproduce the parametrization given in Donnachie and Landshoff 

(198?) which gives an excellent description of the ISR and Collider data but the fit is 

very sensitive to the exact parameter values and precise details of the parametrization 

used. The parametrization we have used is given in appendix B. The main problem 

in getting agreement with the data using this seems to be the slightly high value of 
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a~ used (a~ = 0.25 GeV-2
) which gives too much shrinkage for 1ti~0.5 GeV2 and too 

large a real part in the dip region. In order to obtain better agreement with the data 

we adjusted the parameters of the Pomeron, 2-Pomeron cut, f-Pomeron cut and 3g 

terms. 

The calculation of the triple gluon amplitude involves a double integral at each t-value. 

We evaluated it at a number oft-points and obtained intermediate values by interpo­

lation. The Pomeron cut and Regge-Pomeron cuts were calculated using (3.6.9) and 

involve double integrals at each s and t point (For a discussion of how we evaluated 

these numerically see §6 below). We found that the energy dependences of the approx­

imateforms of the full integrals for the P 0 P and R® P terms given in Donnachie and 

Landshoff (1984) are not sufficiently accurate to be used as replacements for the full 

integrals in the fitting procedure. To allow us to fit the data we used an exponential 

approximation to the form factor (5.2.3), as in (4.4.1), giving an analytic solution for 

the integrals (equation (4.4.3) with bt = 0). We first fit to smallltl and the collider 

shoulder giving reasonable values for the Pomeron and Pomeron cut parameters; then 

use these in a fit to UT to determine the f parameters and fine tune the Pomeron at 

t = 0 and finally vary the t-dependence of the Pomeron, f-Pomeron cut and strength 

of the Pomeron cut to fit the ISR dip region and collider shoulder. 

The parameter values found differ slightly from those in Donnachie and Landshoff 

(1986). Like them, we have included a P®P term in the calculation of UT, but following 

. §4.2 we have allowed the f and w Regge trajectories to differ and also included the 

Regge-Pomeron cut terms. The results for uT, shown in fig.5.5(a), are comparable to 

those obtained in §4.2. The parameters found are given in appendix B. The Pomeron 

cut, which now makes a sizeable contribution to the amplitude at t = 0, is compensated 

by increasing the magnitude of the Pomeron term rather than its intercept, which is 

the same as that obtained in (4.2.7). We have not changed the parameters of thew 

from ( 4.2.6) although they should be slightly affected by the inclusion of thew ®P cut. 

Figure 5.5(b) shows the contributions of the various parts of the amplitude to UT. At 

Vs = 546 Ge V the Pomeron cut gives a contribution 13% that of the total compared 

with~ 2% in the PWC model. 
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FIG. 5.5 Fit to ur using the DL model (a) compared with the pp and pp data, (b) 

individual contributions to ur. 

Figure 5.6 shows the contributions of the various terms to the differential cross-section 
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at ..;8 =53 GeV. The only important terms at this energy in the dip region are the 

Pomeron, Pomeron cut, f-Pomeron cut and 3-gluon terms. The Reggeon terms and 

the w-Pomeron cut are negligible. Also shown is the contribution of P + P ®Palone 

which shows the importanc~ of the f ® P and 3g terms in producing the dip in pp. 
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FIG. 5.6 Individual contributions to ~~ made by the various terms in the DL model. 
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The comparison with ~~ at other energies is shown in fig.5.7 . The small ltl fit at the 

ISR and Collider compares well with that obtained in the PWC model. The description 

of the ISR dip is not as good as that in Donnachie and 1andshoff (1986) but is nonethe­

less reasonable and in agreement with the data except possibly at .jS = 23.5 GeV 

where the dip is a little too far out in ltl and slightly the wrong shape. The shoulder 

in pp at the Collider is very well accounted for whilst that at y'S = 53 Ge V is too high 

but consistent with Donnachie and Landshoff (1986). 

Comparing the model with the data at .jS =53 GeV and ltl = 1.35 GeV2 in table 

5.1 we find that the calculated pp and pp cross-sections are equally far away from 

the actual pp data. The 30% normalization error quoted in the pp data means the 

calculated cross-section is only slightly too high for pp but the agreement is no better 

than without an odd charge conjugation contribution (though the pp data at the same 

energy indicate that the normalization error is saturated). This indicates that the 3g 

contribution is too large ( though using t 1 = 0.35 GeV2 for the cut off as in Donnachie 

and Landshoff (1986) makes little difference to the quality of the fit). 

pp 

pp 

Data 

(7.7 ± 2.7) x 1o-5 

(2.1 ± o.6) x 10-5 

TABLE 5.1 

Model 

14.2 x 1o-5 

1.6 x 10-5 

We find we need a smaller value of a~ to control the shrinkage between the ISR 

and the Collider and the movement of the dip in pp at the ISR. If we compare 

the Pomeron t-dependences at -Ji =53 GeV using the exponential residue (4.4.1) 

with a~ = 0.16 GeV-2 and using the dipole form factor residue (5.2.3) with a~ = 

0.25 GeV-2 we find they are very similar so we will get a good description of the data 

with the dipole form factor residue and a~ = 0.16 GeV-2 proyided we use s 0 ~ 4 GeV2 

rather than +. 
Olp 
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FIG. 5.7 Differential cross-section obtained using DL model. 

The smaller value for a~ produces a better cancellation of the real part of the Pomeron 

and its cut but a comparatively large f 0 Pis still needed to prevent the dip moving 

too far out to larger ltl at low energy. We explicitly tried fitting without an f 0 P 

term but as expected this gives too much energy dependence to the dip position at 
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the ISR. The absorbtion enhancement factors AJp and Awp for the f ® P and w ® P 

cuts in (B.6) were held fixed in our fits at the same value required for the 2-Pomeron 

cut ().. /P = Awp ~ A2p) and the strength of the f ® P cut in the dip region adjusted 

by varying the t-dependence of the f Reggeon. The resulting t-dependence of the f is 

not too different from that used in the PWC model (a!PWC = 2.7 GeV-2
, compared 

with a1DL = 1.9 GeV-2
) giving a similar exponential fall off to the lPomeron oveJr ISR 

energies. Since the f Reggeon and the Pomeron have the same quantum numbers their 

contributions cannot be easily separated. The f ® P contribution is usually assumed 

to be negligible at XSR energies since it dies away fairly fast with increasing energy 

and there are considerable uncertainties in its calculation. In models in which the 

cuts are generated by an eikonal series a small alteration in the t-dependence of the 

Born, term can make higher terms significant in the dip region (In the PWC model 

of §4 the small value of Anp made the R ® P cuts negligible at ISR energies). The 

only theoretical restrictions on the t-dependence of the f Reggeon come from the f 
dominated Pomeron hypothesis and exchange degeneracy, neither of which usefully 

constrain the t-dependence of the f Reggeon in this parametrization~ The best place 

to test whether this large an f ® P term is acceptable is in low energy pp and pp 

scattering. In fig.5.8 we show the extrapolation of the fit down to low energies. 
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FIG. 5.8 Extrapolation of above fit to ~~ to low energies. 

The model gives qualitative agreement with the dip structure in both pp and pp down 

to Plab = 30 GeV /c. At Plab = 30 GeV /cit produces a dip in ~~(pp) and a shoulderin 

~~ (pp) as in the data but the dip occurs at too small a value of t and the shoulder is too 

low by a factor of three. At Plab = 50 Ge V / c the model gives quite good quantative 
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agreement in the dip region (though the prediction is not so good in the region beyond 

the dip). At Plab = 100 GeV Jc the dip in ~~ (pp) has filled in slightly and a similar dip 

has formed in ~~ (pp) and by Plab = 200 Ge VIc the jip dip has turned into a shoulder 

whils~ that in pp has deepened further. 

The phase of the f 0 P term is such that it adds to the P 0 P contribution and 

at Ptab = 30 GeV Jc pulls the dip too far in to the forward direction. In the odd 

charge conjugation part of the amplitude at Plab = 30 and 50 GeV lc thew 0 P term 

is comparable in magnitude to the 3g term so that the pp I pp difference depends 

crucially on the w 0 P contribution. The full odd charge conjugation term is certainly 

not properly accounted for by these terms because the cross-over zero at small It I 
is not very well represented. At lower energies where the cross-over is more evident 

the predictions for pp and jip do not cross and have the wrong shape (though other 

non-leading trajectories and spin effects are important at these low energies). 

Using (instead of (B.3)) an effective w Reggeon with a (1 + t~) absorbtion factor in 

the residue (pole dominated cut) to describe the small It!, low energy data produces 

interference with the w 0 P cut at larger ltl and destroys the qualitative agreement 

with the data at Plab = 30 Ge VIc though the prediction at Plab = 50 Ge VIc is still 

quite reasonable. Leaving out the w 0 P cut and just keeping the effective w Reggeon 

term fails to produce the correct dip structure at either Plab = 30 or 50 GeV lc. 

Thus the low energy predictions of the model agree tolerably well with the pp / pp 

data down to Plab = 50 GeV lc but do not give an adequate description of the data 

at Ptab = 30 Ge VIc for which lower energy effects are important. The R 0 P cuts 

generated in this model have little in common with the Regge cuts needed to reproduce 

the low energy structure in the strong cut absorbtion model which typically requires 

enhancement factors of Anp ~ 2.5. There is evidence though, that the R0P cuts in the 

strong cut absorbtion model are pole-dominated and shrink faster with energy than 

expected from (B.6) (see for example Collins and Fitton (1975)) and there is enough 

theoretical uncertainty in the R 0 P cut calculation to allow contributions with both 

energy dependences to be present. 

The necessity for a large f 0 P cut seems an unsatisfactory aspect of the model in that 

the stable position of the dip through FN AL and ISR energies arises as a result of a 
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quite complicated cancellation of the imaginary parts of the P, P ® P and f ® P teiLms. 

It also lessens the role the 3g term plays in cancelling the real part of P + P ® P. Since 

the data seem to prefer less of a difference in pp and pp than the 3g term produces, 

the two main roles the 3g term plays are to free the P ® P term so that it can be 

used to fit the Collider shoulder and to give the large ltl cross-section. The main test 

of the model is still the existence of a high energy pp / pp difference since all the other 

majoiL features of the data are produced by adding another degree of freedom to the 

parametrization. It is perhaps arguable that the Collider shoulder provides support 

for the model in that it shows structure produced by the P ® P contribution which 

was previously a necessary ingredient of the model but had only shown itself in the dip 

region. However, the change in the t-dependence necessary to account for the shoulder 

also affects the fit in the dip region at the ISR and the 3g term alone is not sufficient 

to enable the model to get the dip position and the pp jpp difference right. The 3g 

term does give the t-dependence observed in the data at large ltl but this is by no 

means compelling phenomenologically or theoretically. 

It might be expected that because the f ® P contribution is comparatively large in 

the,~ip region at high energies a ppfpp difference might be produced by thew® P 

cut. A model which uses this has to contend with the problem that the magnitude 

and phase of the w ® P term results in a factor of 30 X between the real parts of the 

two contributions so that it is difficult to make this work. 

The behaviour of UT at very high energies predicted by the model is similar to that 

of the PWC model but the larger P ® P cut term reduces the rate at which UT rises 

and ameliorates the unitarity problems. The high energy prediction for UT is shown in 

fig.5.9 in which the Pomeron and Pomeron cut contributions are shown individually. It 

can be seen from the figure that at ..JS ~ 107 GeV a cross- over point is reached where 

the increase in the Pomeron contribution is offset by the increase in the Pomeron cut 

so that the total cross-section decreases unphysically with energy thereafter. This is 

expected to be counteracted by higher order Pomeron cuts. 
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FIG. 5.9 High energy prediction for UT in DL model (note the P 0 P cut gives a 

negative contribution to the amplitude). 

The energy at which the diffractive limit condition, Im A(s, b) ~ !, is violated in 

the model is increased from vs ~ 200 GeV for the Pomeron contribution alone, to 

y'S ~ 4 TeV with the cut contribution included. The behaviour of the profile function 

as a function of energy at fixed impact parameter, b = 0, is shown on an Argand 

plot in fig.5.10 . The Pomeron cut contribution makes the profile function at small b 

decrease with energy for y's~70 TeV, giving a peripheral shape in b(see figure 5.11). 

The effect of the 3-gluon term on the Argand plot is to shift the curves along the real 

axes by a fixed amount (in opposite directions for pp and pp ). 

Thus, although unitarity violation is not important in this model at SppS Collider 

energies, by LHC and SSC energies other contributions must be included to prevent 

this happening. At these energies higher order Pomeron cuts are expected to be 

important and will perhaps prevent unitarity violation. However, the form (3.6.10) 

used to calculate the multiple Pomeron cuts leads to satisfaction of the Froissart bound 

at as~mptotic energies but does not satisfy unitarity requirements at b = 0. 

The high energy behaviour of the differential cross-section is shown in fig.5.12 . It can 
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be seen that the model predicts a slight dip at Js = 1 Tev and Iii = 0.8 GeV2 which 

moves in to smaller It I and deepens as the energy increases. A second shoulder develops 

at ltl = 2.5 GeV2
, due toP® P + 3g interference, which becomes more distinct and 

shrinks inwards with increasing energy. The small pp / pp difference in the dip region 

vanishes by y8 = 5 Tev but that in the region of the second shoulder remains up to 

very high energies. However, the behaviour of ~~ will be significantly modified at large 

It I by the addition of the 3-Pomeron term which must become important for v'i2::4 Tev 

as seen above. 

This model shows one way in which including an odd charge conjugation term can 

produce a reasonably good fit to all the pp and pp data for Plab2::50 GeV fc (though 

our fit relaxes some of the constraints of the model). The price payed is the necessity for 

relatively strong R ® P cuts and although this does not produce any inconsistencies 

the simplicity of the original model is lost and the resulting description somewhat 

unsatisfying. The unitarity problems encountered in the PWC model are postponed 

to higher energies but are not irrelevant to the phenomenology of the model. 
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5.3. The Maxi\mall OddleJrollll. Model (GJLN Modell). 

An alternative approach to the Odderon term is that it is the C = -1 contribution 

(strong Odderon), rather than the C = +1 contribution as in the DL model (weak 

Odderon), which is responsible for the rapid rise in ~~ between the ISR and the Collider 

in the dip region. In the model proposed by Gauron,Leader and Nicolescu (the GLN 

model) the rise in the pp,pp total cross-sections is attributed to an even signatured 

contribution they term the "Froissaron" which grows as fast as allowed by the Froissart 

bound producing asymptotically a ar ""log2 
& behaviour. This is maximal growth in 

a functional rather than quantitative sense since the coefficient of the log2 s rise is 

much smaller than the -;- ~ 60 mb allowed theoretically (see §3.3). In the absence 
m,.. 

of any understanding of the dynamics of the C = + 1 amplitude there is no reason for 

supposing the C = -1 odd charge conjugate amplitude does not obey the same maxim 

and also increase with energy at the maximum rate allowed by asymptotic theorems. 

This corresponds to the imaginary part increasing ass logs (see Roy and Singh (1970)) 

giving the Odderon behaviour. 

The apparent log2 s growth of the total cross-sections has a long history. The uncer­

tainty in the value of the hadronic mass scale s0 is frequently used in log2 
...!. fits to ar Bo 

to introduce a term with logs energy dependence (see Block and Cahn (1985)) and 

to reproduce part or all of the fall in ar(pp) with increasing energy for yls < 10 GeV 

(in §4.2 this fall was produced by exchange degeneracy breaking of the secondary 

Regge trajectories and residues). This effect is also present in the Odderon log 
8

8

0 

contribution to ar and has been used to produce all of the pp ,pp total cross-section 

difference, so that no Ilegge contributions are needed in the ar fit and Dt.a changes 

sign at yfs = ..jiO ~ 24 GeV (see Lukaszuk and Nicolescu (1973)). It is more normal 

to suppose the Odderon contribution acts in addition to the C = -1 secondary Regge 

contribution (primarily due tow Reggeon exchange in pp scattering) which is respon­

sible for the low energy Dt.a as in §4.2 and that the Odderon contribution to ar is · 

only significant at the upper limit of the ISR energy range where the secondary Regge 

contribution is sn:tall (see Kang and Nicolescu (1975)). 

The correct phases of the even and odd amplitudes are given by writing down functions 

which are real analytic and possess the appropriate crossing symmetry a.s below, 

A+(s, 0)"" vsulog2 .JiU --t -C+se-if (logs- i~) 
2 

(5.3.1) 
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1 2 ( 71")2 A-(s, 0) rv 2 (s- u)log .jiU-~> -C_s logs- i2" (5.3.2) 

Thus the real part of the Froissaron has an slogs dependence and that of the Odderon 

an s log2 s dependence. 

Depending on the sign of the Odderon contribution the pp and pp cross-sections will 

either cross over for large enough s (~ s 0 ) if C_ positive in (5.2.2) or, for C_ negative, 

attain a minimum difference and then increase with energy (or for suitable C_ < 0 and 

s0 cross over and back again). The analysis of Block and Calm (1985), in which the p 

and lTy, pp and pp data were fitted, indicated that any Odderon contribution was small 

but not ruled out by the data. For an Odderon with an s log2 s energy dependence 

they found that a positive value for the coefficient C_ was favoured so that the pp 

and pp cross-sections crossed over for .j8 ~ 80 GeV. However, the GLN analysis 

finds c_ < 0 so that f1q instead approaches a minimum value for -J8 ~ 100 GeV 

and gives a good fit to the data as shown in figure 5.14 (see Gauron and Nicolescu 

(1983)). The discrepancy exemplifies the fact that as far as lTy and p are concerned 

the data do not require an Odderon contribution and if it is present its parameters 

are not well tied down. It should also be noted that a more recent examination of 

the log2 
s dependence of lTy (Block and Cahn (1987)), incorporating the UA5 data 

at Js = 900 Ge V, indicated that an asymptotic s log2 s dependence for the C = + 1 

amplitude is not favoured. 

It is also believed that the Odderon behaviour should be universal and therefore present 

in all hadronic reactions. The addition of an Odderon term to the amplitude in 1r-p--. 

1r
0 n charge exchange scattering (where I = 1, ~ = -1) can be used to explain the 

anomalous polarization data and this is claimed as further support for the Odderon 

idea (see Gauron and Nicolescu (1984a)). However, it seems preferable to believe that 

the Odderon contribution, if it exists, is due to gluon exchange and does not involve 

the exchange of valence quarks since the exchange of massive particles implies a finite 

range of interaction. 
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The explicit parametrization of UT used in Gauron, Leader and Nicolescu (1986) was 

with 

uT =F1 (log
2 
s- :

2
) + F2log& +Fa 

11" c2P logS 
± 0111"log& ± 02- + cp + 2 2 

2 log s- ~ 

+ c; sa~(o)-I ± C;_ sa~(o)-I + (1 ± 1 )Cii&a.R(o)-I for pp 
pp 

F1 = 0.29 mb 

F2 =-1.70mb 

Fa= 8.47 mb 

cp =29.4mb 

ct =48.8mb 

c;; =38.5mb 

Ck =35.8mb 

01 = 0.031 mb 

0 2 =-0.30 mb 

c2P =-1.69mb 

a;t(O) = 0.54 

a;(o) = 0.41 

aii(O) =-0.21 

(5.3.3a) 

(5.3.3b) 

The above equation represents a Froissaron contribution to uT with log2 s, logs and 

constant components; an Odderon with a logs and a constant component; a Pomeron 

term with intercept one giving a constant contribution; a Pomeron cut term which 

gives a small contribution that falls as 1/log s; secondary Reggeon terms (R) repre­

senting mainly f and w Reggeons and a low energy term ( R) representing daughter 

contributions. With the above parameter values this gives a good description of ur 

which is shown in figure 5.13(a). It can be seen that instead of becoming equal at high 

energies the cross-sections approach each other to within a millibarn and then slowly 

diverge again. A breakdown of the various contributions is given in figure 5.13(b ). 

Below .JS :::::l 100 GeV the Pomeron gives the main contribution tour; at ISR energies 

the Pomeron gives about i of the cross-section, the Froissaron about :t· At the Collider 

energy the contributions are about equal. In the C = -1 amplitude the Odderon gives 

the dominant contribution for .JS~60 GeV. At 0 :::::l 11 GeV its contribution tour 

changes sign due to the non-leading components. The behaviour of flu is shown in 

figure 5.14. The effect of the Odderon can be seen for Vs~20 GeV where it produces 

a deviation from the simple power behaviour predicted by the Regge pole model. 
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(a) compared with high energy data; (b) showing individual contributions to 
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FIG. 5.14 GLN model prediction for t:lu using the parametrization of (5.3.3). 

Asymptotically only the contributions increasing with energy are important so that 

(5.3.4) 

and t:lu increases with energy as logs whilst O"T increases as log2 s. Figure 5.15 shows 

the behaviour of ur at asymptotic energies with the ratio ur(pp)/ur(pp) approaching 

unity and ur tending to a log2 s behaviour. 
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FIG. 5.15 Asymptotic prediction for O'T in GLN model. 

The asymptotic behaviour of p, the ratio of the real to imaginary parts at t = 0, is 

given by 

where (5.3.5) 

Thus p(pp) and p(pp) tend to opposite ±constant values since the 8log2 
8 component 

of the imaginary part of the amplitude is given by the Froissaron with C = +1 and 

the 8log2 
8 component of the real part is given by the Odderon with C = -1. The 

prediction for p compared with the data and its asymptotic behaviour are shown in 

figure 5.16. The asymptotic limit where p(pp) ~ p(pp) occurs only for .JS;::::l020 GeV. 
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The best signature for the presence of an Odderon would be a difference in the pp ,pp 

differential cross-sections at high energy where conventionally the odd charge conju­

gation amplitude is vanishingly small. The ISR and Collider data indicate a possi­

ble difference in pp and pp ~~ persisting to high energies. This prompted G lLN to 

parametrize the t-dependence of the Odderon and use it to produce these differences. 

Since the Odderon is much smaller than the Froissaron at t = 0 its effect can lbe ig­

nored in fitting the small ltl data. Effectively, the only asymptotic constraint on the 

t-dependence of the amplitude is produced by the MacDowell-Martin bound which 

relates the forward slope of the absorbtive part of the amplitude to the total cross­

section through BA(s, t = 0) >CaT (see Martin (1985)). Then BA must increase at 

least as fast as l7'T. Applied to the Froissaron this means that the slope at t = 0 must 

increase like log2 s. 

The form used by Gauron, Leader and Nicolescu (1985) automatically satisfies asymp­

totic constraints and corresponds for large logs to a grey disk with radius growing as 

R+ logs. In the j-plane this gives the simple form below which represents a triple pole 

at j = 1 

+ 1 A· (t) = s 3 
[U- 1)2 - tR~p 

(5.3.6) 

This is modified at lower energies by including a residue function : 

(5.3.7) 

The t-dependences of the exponentials effectively just introduce a constant into the 

radius which is asymptotically negligible. The powers of (j -1) give non-leading terms 

with constant and logs energy dependences in aT which were needed in (5.3.3) to fit 

aT, but their effect on the t-dependence of the Froissaron is not important and this 

can be effectively represented by just the first term which gives 

(5.3.8) 

where the simple exponential gives a good approximation to the t-dependence of the 

Bessel function at smallltl and was used by Gauron and Nicolescu (1984b) in a fit to 

the forward scattering data. 
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In order to reproduce the small ltl data it is necessary to include a Pomeron term 

which was given a trajectory ap(t) = 1 + 0.25t. It is this which is mainly responsible 

for the shrinkage observed at ISR energies and below. The major effects produced by 

the Froissaron are the rise in ~~ at small It I and some of the shrinkage between the 

ISR and the Collider. In the latter it is not so much the log2 s t-dependence of the 

slope which is important so much as the energy dependence at t = 0 (nevertheless a 

non-zero value for boo was found to be necessary). 

In extending the model to larger ltl the Odderon term becomes important and is the 

dominant contribution to the amplitude beyond the dip region. The Froissaron and 

Pomeron pole and cut contributions fall rapidly below the data for ltl~2 GeV2
• A 

breakdown of the contributions to ~~ at y's =53 GeV is shown in figure 5.17. 
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FIG. 5.17 Comparison of the individual contributions to ~~ in the GLN model at Vs = 53 Ge V. 

The t-dependence of the Odderon is constructed in a similar way to that of the Frois­

saron .. Instead of (5.3.6) there is a double pole at j = 1: 

-c ) !3-Ci, t) 
Ai t = (j- 1)2 - tR~ (5.3.9) 

This gives three terms with real parts growing as s, slogs and s log2 s. 

At ISR energies the way in which the dip is produced is in some ways similar to the 

DL model. The major difference is that whilst the 3g term in the DL model is purely 

real the Odderon contribution in the GLN model has a substantial imaginary part 
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in the dip region. The cross-section beyond the d.ip is dominated by the purely real 

energy independent component of the Odderon which has a :flat t-d.ependence. This is 

cancelled in the dip region by the log 8 component of the Odderon which has opposite 

sign and steeper t-dependence and produces a zero crossing in the C = -:n. amplitude 

near the dip position which is effectively independent of energy over the XSR energy 

range. Thus the C = -1 contribution mimics the energy independent behaviour, with 

a zero in the dip region, of the 3g term in the DL model. This cancels with the real 

part of the C = +1 contribution producing a zero in the real part of the pp amplitude 

and because there is a zero crossing in the C = -1 amplitude a zero is also produced 

nearby in the real part of the pp amplitude. The imaginary part of the C = +t 
amplitude, dominated at ISR energies in the forward direction by the Pomeron, is 

cancelled near the dip region by the Pomeron cut but this is overshadowed by the 

imaginary part of the Odderon amplitude. In pp, the Odderon moves the zero in the 

imaginary part slightly closer to the forward direction, but in pp prevents a zero from 

being produced. The zeroes in the real and imaginary parts of the pp amplitude give 

a dip in ~~ (pp) whilst in pp there is a zero in the real part of the amplitude but not 

in the imaginary part and this gives a shoulder instead of a dip in ~~ (pp). The real 

and imaginary parts of the pp and pp amplitudes at .JS =53 GeV are shown in figure 

5.18. 

The effect of the Odderon at the ISR is to lower the height of the second maximum in 

~~ (pp) by a factor of two relative to ~~ (pp) and to fill the dip in slightly. This agrees 

quite well with the ppfpp data. 
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FIG. 5.18 Real and imaginary parts of the pp and pp amplitudes in the GLN model at 

..jS =53 GeV. 

At the Collider energy the Pomeron cut has decreased slightly and is not important. 

The large change in the dip region between the ISR and the Collider is mainly produced 

by the fast increase in the Odderon contribution which results from the movement of 

the zeroes in the logs component of the Odderon from a cos (R-.J=ilog s) factor 

(ltldip rv 1/ log2 s ). At ISR energies the. zero in the real part occurs for It I > 2 GeV2 

and so is hidden underneath the large It I component of the Odderon. The imaginary 

part of ihe Odderon is hidden under the forward peak and more gets exposed by 

shrinkage. This parametrization gives a very good fit to the pp data at the Collider. 
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The pp differential cross-section is predicted to still have a dip but the height of the 

second maximum has increased by a factor of ten. 

The leading component of the Odderon has little effect except at t = 0. The major 

effect of neglecting it would be to alter the asymptotic predictions of the modeL The 

next to leading component of the Odderon gives a constant contribution to O"T so that 

at high energies the difference between aT(PP} and uT(PP} becomes negligible. The 

ratio of the real to imaginary parts of the amplitude would go to zero asymptotically 

rather than a constant value as in (5.3.5}. The asymptotic predictions of (5.3.4} and 

(5.3.5} are therefore not supported by the behaviour of the differential cross-section 

(though neither are they contradicted by it). 

Using the parametrization given in appendix C (reproduced from GLN (1986}} a good 

description of the pp and pp data for -J8 ~ 23 Ge V is obtained and this is displayed in 

figure 5.19 . The complicated cancellations of energy dependent contributions which 

occur in the dip region means that it is difficult to maintain the approximate energy 

independence of the data and the fit to the shape of the dip is not so good at -J8 = 

23.5 GeV and lower energies. In order to describe the lower energy data R ® P cuts 

have been included which only give a small effect at ISR energies and produce a good fit 

to the data at Plab =50 GeV fc. However, the energy dependence does not allow such 
-,, 

a good description of the data at neighbouring enetgies. The low energy behaviour is 

shown in figure 5.20 . 
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FIG. 5.19 ~~ (pp) fit in GLN model at ISR and Collider energies. 
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FIG. 5.20 Low energy ~~ predictions of the GLN model for pp and pp at Plab = 30, 

50, 100 and 200 GeV /c. 

At higher energies the dip/shoulder structure is controlled by zeroes in J1 (b.;=t'log s) 
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for the Froissaron and cos (bRlog s) for the Odderon and moves in to smaller it I 
as 10;2 

8
• The dip/shoulder difference between pp and pp persists at higher energies. 

Figure 5.21 shows the behaviour of ~~ up to Js = 40 Tev. 

This model shows how the Collider shoulder can be attributed to an odd charge 

conjugation contribution growing rapidly with energy and how this growth can be 

masked at lmver energies. However, the complicated Odderon components and their 

t-dependences are somewhat ad hoc. The leading component does not affect the t­

dependence at all. It is the arbitrary non-leading terms which produce all the structure 

of the differential cross-section. The even charge conjugation amplitude is equally ar­

bitrary and since it cannot be distinguished from the Pomeron contribution its effects 

are difficult to tie down from the data. Also, since the Froissaron represents in some 

sense the sum of all the Pomeron and Pomeron cut contributions, including a separate 

Pomeron contribution involves some double counting. 
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FIG. 5.21 High energy ~~ predictions of the GLN model for pp and pp for Vs = 1 -+ 

1000 Tev. 
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5.4. Reggeized Odderon Contribution 

It seems unlikely that simple perturbative QCD processes are believable over the jtj 

range of the elastic scattering data. The Pomeron should be a much more complicated 

object than the two gluon picture of §3.5, with many gluons exchanged. We might 

then ask why we do not get a similar object to the Pomeron but with odd charge 

conjugation. At large jtl we might expect such an object to have a representation in 

terms of 3 gluon exchange and for it to Reggeize accordingly as in figure 5.22 . 

FIG. 5.22 Reggeized 3-gluon exchange. 

Since each gluon has odd charge conjugation and gives a factor i:, the 3g contribution 

to the amplitude is 

(5.4.1) 

which is purely real; +vein pp, -vein pp; has the same s dependence as the Pomeron 

and is helicity non-flip. It is difficult to see how any simple connection with this idea 

can survive at small ltl (see White (1985)), nevertheless the Pomeron does behave as 

expected of two gluon exchange and so we might expect a Reggeized odderon to have 

a similar trajectory with an intercept close to one and a shallow slope. 

The odderon has odd charge conjugation and thus odd signature so that its phase is 
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given by 

(5.4.2) 

Thus, as for the 3g contribution in the DL model, the odderon has the right phase to 

add to the real part in pp in the dip region and subtract in pp. Since the primitive 

diagram for the odderon involves three gluons rather than the two in the primitive 

diagram for the Pomeron, we might expect that 1 < a 0 (0) < ap(O) as an extra 

coupling constant is given by the extra gluon in the triple odderon vertex renormalizing 

the odderon pole. We also expect 0 < a 0 < a~ since a' = t . ~ . and the string s rmg enswn 

tension of three gluons should be greater than that of two. However, since we are not 

in a region where perturbative QCD is expected to be valid, these arguments cannot 

be taken too seriously. 

It is difficult to understand why the coupling of the odderon should be much different 

from that of the Pomeron. The coupling is presumably dominated by coupling to 

thew meson with quantum numbers JPC = 1-- in the same way as the Pomeron is 

dominated by the f meson and so the Odderon should couple to hadrons as strongly 

as does the Pomeron. Since the odderon is almost purely real it does not contribute 

to the total cross-section. A large odderon contribution would effect p and the optical 

point in ~~, but at ISR energies the phase is known reasonably accurately and is 

consistent with dispersion relations and the data show p(pp) ~ p(pp), so that the 

odderon contribution at t = 0 must be quite small, as was found in the previous two 

models. 

We have examined whether a Reggeized odderon contribution can account for the 

discrepancy between the data and predictions of the pole and weak cut model of §4 

and take over the role of the term (4.7.2) in fit 4(d). From (3.4.7), we have for the 

odderon amplitude : 

(5.4.3) 

An Odderon of similar form to this was proposed in Joynson, Leader and Nicolescu 

(1975) to explain the 1r±p scattering differences. 

It might be hoped that the energy dependence of the odderon would allow it to be 

sufficiently small at vs =53 GeV to give agreement with the ppfpp difference in the 

dip region but increase enough with energy to produce the Collider shoulder and so be 
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effectively negligible at energies other than ..j8 = 546 GeV as was the term (4.7.2). The 

phases of the extra term used to produce the Collider shoulder in the four fits described 

in §4. 7 are given in table 5.2 . We see from this that the Odderon has the wrong phase 

(see (5.4.2)) to simply replace the term ( 4.7.2). The extra contribution required to fit 

the shoulder data in these fits had a large imaginary part which cannot be produced 

by the odderon phase. The two Odderon parametrizations described above in §5.2 and 

§5.3 had a very different form from the fits of §4 in that the Odderon dominated large 

ltl rather than the Pomeron cut. 

Fit 'Pe:z: 

Fit (4a) 1.28 

Re-fitted ( 4a) 1.35 

Fit ( 4d) 1.90 

Re-fitted (4d) 1.35 

TABLE 5.2 Phase factors for term (4.72) used in fits (4a) and (4d) from §4.7. 

'We nevertheless tried fitting the pp and pp data at ..j8 = 23.5, 53 and 546 Ge V2 using 

(5.4.3) and the parametrization used in §4.4 with the parameters of ( 4.2.7). The results, 

in which two types of fits arose, reflect the problems discussed above. In the first 

(fit(5.4a)) the Pomeron cut contribution dominated large ltl and was comparatively 

large in the shoulder region at the Collider. The Odderon filled in the dip from 

P + P 0 P interference in pp at the Collider energy and cancelled the real part of 

P + P 0 P in the dip region at ISR energies. The major problem with this is the 

resulting very large pp / pp difference produced in the dip region which is incompatible 

with the data at ..j8 =53 GeV. This also gave a poor fit to the energy dependence of 

the pp ISR data in the dip region and beyond, shown in figure 5.23 . The Odderon 

parameters are given intable 5.3(a) which show the its trajectory does at least conform 

to the above expectations. In the second type of fit (fit(5.4b )) the magnitude of the 

Odderon and the Pomeron cut were similar at large ltl. The Collider shoulder was 

produced by the Odderon, which had a large intercept, a 0 (0) = 1.201, (see table 

5.3(b)) disagreeing with the above. The shape of the shoulder produced was not in 

very good agreement with the data. The Odderon was still too large at ..j8 =53 GeV 

in the dip region to agree with the observed pp / pp difference and the fit to the ISR 
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data not very good, though better than the fit(5.4a). This is shown in figure 5.24 . 

In the light of the results of sections §5.2 and §5.3 it is not surprising that the simple 

parametrization of (5.4.3) does not produce good results. In order to be compatible 

with the pp I pp difference at the ISR it is necessary to somehow cancel the Odderon in 

the dip region. A parametrization using (5.4.3) in which the Odderon dominates large 

ltl would produce far too large a difference in the dip region. An approach, consistent 

with the model of §4, which would give the appropriate result would be to produce the 

Odderon zero by interference between the Odderon and the Odderon-Pomeron cut. 

However, we have not attempted to try this ~ince the data on the pp I pp difference are 

not good enough to give a believable parametrization. 

The direct effect of the Odderon contribution in these fits on UT is very small, however 

the change produced in the magnitude of the Pomeron cut at t = 0 decreases uT by 

approximately a millibarn. At very high energy, only fit (5.4b) shows any noticeable 

difference between uT(pp) and uT(fip). This is shown in figure 5.25 . 

parameter fit (5.4a) fit (5.4b) 

a' p 0.166 GeV-2 0.241 GeV-2 

ap 1.14 GeV-2 1.93 GeV- 2 

X 0.925 0.712 

al 3.53 GeV- 2 3.63 Gev-2 

bl -0.64 GeV- 2 -1.11 GeV- 2 

,\2P 0.230 0.060 

ao(O) 1.063 1.201 

a' 0 
0.094 GeV-2 o.ooo Gev-2 

Go 0.909 1.047 

ao 1.70 GeV-2 0.97 Gev-2 

TABLE 5.3 Parameters of fits (5.4a) and (5.4b). 
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FIG. 5.23 Results of fit (5.4a) at Vs = 23.5, 53 and 546 Ge V. 

152 



5 

10 =r----------------------------------------------------~ 

4 
10 

J 
10 

I 
10 

0 
10 

-I 
10 

-2 
10 

-J 
10 

-4 
10 

-5 
10 

-6 
10 

0 2 
-t: 

3 4 5 

FIG. 5.24 Results of fit (5.4b) at Vs = 23.5, 53 and 546 GeV. 
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FIG. 5.25 Results of fit (5.4b) at high energy for CTT(PP) (full line) and crT(J5p) (dotted line). 
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6 

The ][mpad Picture Model of Bourrely, SoffeJr and Wu. 

6.1. ][ntroduction 

An eikonal type of model was used some time ago (BSW (1979)) to give a good 

description of pp. elastic scattering at the ISR and lower energies. A prediction of the 

model was that the height of the second maximum in ~~ would increase rapidly with 

energy. Subsequent data has shown the magnitude of the first structure relative to the 

optical point increase from 10-7 at the ISR to 10-5 at the pp collider. Changing the 

parameters slightly to fit the new data has given a good account of the high energy 

behaviour of the differential cross-section (BSW (1984a) ). In particular it gives a good 

description of the change from a dip in ~~ at the ISR to a shoulder at the pp collider. 

It is therefore worth investigating how the filling in of the dip comes about and so we 

shall review the details and results of their model. 

The relevant formulae giving the full scattering amplitude but not including spin effects 

are given below. 

From equations (3.2.10), (3.2.13) and (3.2.18) we have for the scattering amplitude 

CXl 

A(s, t) = 4Jris j bdbJ0(bvf-i) (1- e-no) 
0 

The opacity, f2 0 , has two contributions : 

no( s, b) = S0 (s )F(b2
) + R0 (s, b) 

(6.1.1) 

(6.1.2) 

The first part is due to diffractive scattering and gives the asymptotic energy behaviour 

of the amplitude; while the second is a Reggeon exchange contribution which dies off at 

high energy but is necessary to describe the low energy data. The diffractive scattering 

component can be thought of as due to Pomeron exchange, the higher order terms in 

the eikonal series giving multiple Pomeron exchange. The s-and b-dependences of the 

Pomeron contribution are given by 

sc uc 
So(s) = (lns)c' + (lnuY (6.1.3) 

0 

F(b2
) == ~ j dtJ0 (b...l-i)F(t) (6.1.4) 

-= 
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where 

F(t) =! [G(t)] 2 a:+ t 
a - t 

(6.1.5) 

(6.1.6) 

The function S0 (s) is motivated by the high energy behaviour of massive QED in 

which the amplitude for single tower exchange has the form (Cheng and Wu (1970)): 

· issc 
Atower( s, f) = (In 

8 
) 2 F( f) (6.1.7) 

The form for S0 (s) used in (6.1.3) has been given a real part by the addition of a 

crossing symmetric (s ~ u) term and the power of the logarithm in the denomina­

tor is made a free parameteter. This asymptotic behaviour corresponds to a j-plane 

singularity of the form (provided c' not a +ve integer) : 

( · 1)c' -1 J- c- (6.1.8) 

so that with c' < 1 it corresponds to a hard Regge cut. 

As we saw in §3.6, it can be shown from field theory calculations that single tower 

exchange in massive QED eikonalizes, which gives some reason for hoping that this 

is the correct form for the Born term in the eikonal series. However, this form for 

S0 ( s) has some theoretical drawbacks: it does not have the Regge phase expected 

from dispersion relations and it corresponds to a fixed hard singularity in the j-plane. 

The latter point means that it is incompatible with t-channel unitarity and some 

mechanism must exist whereby the singularity disappears onto an unphysical sheet for 

t above threshold, for example a soft cut which passes through j = 1 + c for all values 

of t between the t-channel elastic and inelastic thresholds. 

The t-dependence of the Born term is given by the function F(t) which is proportional 

to the square of the proton electromagnetic form factor, G(t), up to a slowly varying 

function of t. The anzatz of proportionality between the matter distribution and the 

charge distribution was used extensively before large-It! data became available at the 

ISR. Direct proportionality is ruled out because it predicts a second dip around ltl = 

4 GeV2 which is not present in the data (Chou and Yang (1970)) and in fact any simple 
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form for the t-dependence of the Born term gives the same result (Sukhatme(1977)). 

The chosen form for the slowly varying function, with a pole at t = a2 ~ 4 GeV2
, 

pushes the next zero in the imaginary part of the amplitude out in It I s~ that no more 

dips are predicted. However, it has the problem that it can no longer be factorized 

into two real equal functions of t to represent the coupling of a single exchange to each 

of the colliding particles, as one would expect for the first term of an eikonal series. 

However, since it does not satisfy t-channel unitarity anyway it does not really have 

to factorize. 

The Reggeon exchange contribution in equation (6.1.2) is given by 

0 

~(s, b)= ;_ j dtJ0 (bJ-:i)R0 (s, t) 
zs 

-00 

where 
for pp 

for pp 

A good fit is obtained using the following parameterst: 

c =0.167 

m1 =0.586 Ge V 

a =1.953 GeV 

c+ = -55.6 

c_ = -1.03 

c' =0.748 

m2 =1.704 GeV 

f =7.115 GeV-2 

aR(O) =0.308 

, a~ =0.694 Ge v- 2 

Using this parametrization the first term in the eikonal series is just 

00 

A( 1)(s, t) = 4rris j bdbJo(bv'-t)no(s, b) 
0 

00 0 

and using: F(t) = ! JbdbJo(by'=i) J dt' Jo(bv=t')F(t'), this gives. 
0 -oo 

A(1)(s, t) = 4rrisSo(s)F(t) + i4>(s, t) 

(6.1.9) 

(6.1.10) 

(6.1.11) 

(6.1.12) 

(6.1.13) 

t The Pomeron parameters are taken from (BSW (1984a)); the Reggeon parameters are 

similar to those used in (BSW (1979)) but have been adjusted by us to fit UT with 

these Pomeron parameters. 
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It is useful to compare this with the parametrization of the Pomeron and Reggeons 

we used previously. For the Pomeron we had from equation (4.4.1) : 

(6.1.14) 

Thus,if a~ = 0 and c' = 0, then 

(6.1.15) 

corresponding to the fact that the Pomeron contribution in equation (6.1.2) factorizes 

into a function of s and a function oft and so represents a fixed pole in the j-plane at 

j = 1 +c. 

For the Reggeons in equation ( 4.4.5), we had a sum of even and odd signature contri­

butions due to f and w Reggeon exchange: 

Comparison with R0 (s, t) yields 

So we have 
G 1(t) {:} -411"( C++ C_) cos ~a(t) 

Gw(t) {:} -i47r(C+- C_) sin ~a(t) 

(6.1.16) 

(6.1.17) 

(6.1.18) 

and since from (6.1.11) c+ is negative, these parametrizations differ only in their 

t-dependence. 
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6.2. Details of the Computatiol1l 

In order to calculate the scattering amplitude at a given value of s and t we need to 

compute two Bessel transforms numerically. The Bessel transform of the t-dependent 

part of Pomeron contribution, F(b2
), in equation (6.1.4), is independent of 8 and t 

so that it can be performed independently and referenced as a table. That leaves the 

inverse transformation to be calculated numerically at each ( 8, t) point. The Reggeon 

contribution, R0 (s, t), has a simple exponential t-dependence and so.its transform has 

an analytic expression. 

vVe use Simpson's rule to do the integrals since the integrands are highly oscillatory 

due to the function J0 (b..;=t). The number of integration points needed to obtain 

sufficient accuracy was fixed by trial and error. The asymptotic behaviour of the 

zeroth order Bessel function, Jo(x), is given by 

J 0 ( x) ~ {2 cos( x - f) for large x. y;; (6.2.1) 

so has a period ::::::: 211' and dies off only slowly as 1/vz. The integral for F(b2 ) was 

performed out to It I = 20 GeV2
• At large b the function J0 (b,;=t) oscillates very 

rapidly as a function of b and so a large number of integration points are necessary. 

vVe used 20000 points at 250 values of b out to b = 25 GeV-1 to set up a table 

for F(b2 ) which takes approximately 4 minutes of cpu time on the IBM 3081. The 

other integration over b was performed out to b = 25 GeV-1 using 2700 points and 

calculates A(s,t) at about 200 (8,t)-points per minute. Thus it was not possible to fit 

the data allowing F(t) to vary, because it would take too long to calculate the transform 

numerically, but S0 (s) could be varied. The accuracy obtained in ~~ is always better 

than 1 part in a 1000 even at large ltl. This was checked by changing the integration 

ranges and the number of integration points in each of the integrals and by using the 
00 0 

expression: A(s, t) = t JbdbJo(b,;=t) J dt' Jo(bv=:f)A(s, t'). Comparing the results 
0 -00 

with (BSW (1984a)), which uses the above parametrization, shows agreement to about 

1%. 

6.3. High Energy Behaviour of the Profile Function, A(s,b) 

The Reggeon contribution dies off fairly rapidly with energy so we shall ignore it for 

the moment in considering high energies and see how the Pomeron part alone behaves. 

159 



Ass-+ oo at fixed b, we have Re S10 (s, b)-+ oo, due to its sc power behaviour, so that 

A(s, b) -4 f. The profile function is then dependent upon many terms in the series, 

each of which individually would violate unitarity. From fig.6.1 we can see that the 

profile function starts out at ISR energies looking something like a gaussian in shape. 

As the energy increases, Im A(s, b) rises less at small b than at large b so becoming 

flatter than a gaussian. At sufficiently high energy the profile function is essentially 

equal to f out to some radius, r, which increases with energy, and then drops rapidly 

to zero. Thus it behaves more and more like a black disk as the area around the edge 

becomes relatively less important. This is true of any reasonable input to the eikonal 

series (3.2.13) which grows with energy since the effect of summing the series is more 

or less to chop off the imaginary part of the profile function at the diffractive limit 

Im A(s, b)= t· 
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FIG. 6.1 Imaginary part of the profile function in BSW model at Vs = 53, 546, 

2 X 103 , 104 , 4 X 104 , 106 , 107 and 108 GeV as a function of b {Reggeon 

contribution not i.-1clud;;d). Dashed curve is a. Gaussian function with the same 

radius as the curve at ..[S = 106 GeV. 
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Even at Js = 546 Ge V the first term of the series has an imaginary part bigger than 

~ for small values of b so that higher order terms in the series are important. Fig.6.2 

shows the effect on Im A(s, b) of adding successively more terms to the series. It can 

be seen that at large b, where Im A(s, b) is small, the effects of eikonalization are 

small and the profile function is essentially just due to the first term in the series. 
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FIG. 6.2 Effect on profile function of adding successively more terms to the eikonal series 

{3.2.13) at .JS = 546 Ge V. 

At high enough energy, Im A(s, b) will not be able to increase any more in the central 

region and will only increase peripherally. However, at current energies, Im A(s, b) 

is still rising at small b and the amplitude is not yet peripheral in that sense. This 

can be seen in fig.6.3 which shows the change in Im A(s, b) as a function of b between 

.JS =53 and 546 GeV, 5 and 40 Tev, 103 and 104 Tev respectively, the first of which is 

at currently accessible energies and doesn't show a pronounced peak away from b = 0. 

On the other hand, ~Ginel(s, b), which loosely speaking gives the value of b at which 

new inelastic processes are occurring, does show a peak at b = 5 GeV-1 over the same 

energy range. 
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FIG. 6.3 BSW model prediction for D..Im A(s, b)= Im A(s2 , b)- Im A(s1 , b) for 

(s1 , s 2 ) =(53, 546), (5. X 10\40 x 103 ), (106 , 107 ) GeV. 

The Argand plot of Im A(s, b) against Re A(s, b) at fixed b and varying s in fig.6.4 

shows how the profile function ends up at ~ as s ~ oo and avoids violating unitarity. 

The ratio,. Re/Im A(s, b) = p'(s, b), tends to zero as s -+ oo, so that Re/Im for the 

scattering amplitude, p( s, t), also tends to zerq. 
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FIG.6.4 Argand plot for profile function for Born term and full eikonal series in BS\V 

model at b = 0 and 5 GeV-1 for Js = 10 -too GeV. 

6.4. High Energy Behaviour of ur and the Froissart Bound. 

In terriis of impact parameter amplitudes we have 

00 

ur = 4! d2 blm A(.<J, b) 
0 

(6.4.1) 

As we found above, at sufficiently high energy the profile function resembles a black 

disk of radius, r, and with Im A(.<J,b) = t then 

(6.4.2) 

If we take the radius of the black disk as the value of b for which I m A( s, b) = i then 

we have for the radius, r(.<J), as a function of s: 

1- e-Re O(s,r(s)) = ! or Re n =In 2 
2 
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So that 

(6.4.4) 

At sufficiently highs, where S 0 (s) is large, F(r2 ) will be small, corresponding to a 

large value of r. Since b and r-i are conjugate variables, the behaviour of F(b2 ) in 

equation (6.1.4) at large b is dominated by the nearest t-channel singularity of F(t). 

From (6.1.6) the nearest t-channel singularity is at t = mi. So to get the large b 

behaviour of f(b 2 ) we approximate F(t) in (6.1.4) by 

(6.4.5) 

and using (Gradshteyn, Ryzhik p.686) we get 

0 CX> 

~ J J0 (b..,r-:i) (a 2 _\)~-'+ 1 = J xdxJo(bx) (a2 + ~2 )1-'+ 1 
-ex> 0 (6.4.6) 

where J( is the modified Bessel function of the 2nd kind. Putting Jl = 1 and using the 

above in equation (6.1.4) gives 

(6.4.7) 

The asymptotic behaviour of I<11 (x) is given by (Gradshteyn, Ryzhik p.963) 

, [7r -x ~ 1 r(v + k- t) 
l\v(x) = v ~e ~ k!(2x)k r(v- k + l) 

k=O 2 
1 

~ {1r e-x independent of v at large x 
v~ 

(6.4.8) 

Using this asymptotic expression in (6.4.7) gives us 

(6.4.9) 

= 1.81 v'be-0.5866 

with the values from (6.1.11). 

In fig.6.5 we compare this asymptotic estimate to our numerical calculation of the 

Bessel transform in equation (6.1.4). At large b they are similar. At b = 5 GeV-1 the 

difference between the asymptotic prediction and the numerical value is about 15% 
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and decreases slowly as b increases. In fact if we also include the contribution from 

the simple pole at t = mi using 

where 

- f(t) 
F(t) = ( 2 )2 m 1 -t 

f(mi) f'(mi) 
( 

2 )2 - ( 2 ) + ... m 1 - t m 1 - t 

f 4 4 
f(t) = mlm2 

(m~ - t)2 (
a2 + t) 
a 2 - t 

to give using {6.4.6) 

(6.4.10) 

(6.4.11) 

(6.4.12) 

and include 2nd order terms in the expansion of K -b we get agreement with the 

numerically calculated value to about 1% at b = 5 Ge y-l. This method could be used 

to calculate F(b2 ) forb> 1 GeV- 1 and so allow the parameters of F(b2 ) to be varied, 

tabulating K v ( x) for x < 1. 
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FIG.6.5 Comparison of asymptotic prediction for F(b2
) for (a) (6.4.~), (b) (6.4.1~); 

with numerical calculation. 

165 



Combining equations (6.4.4) and (6.4.9) at large b gives us 

(6.4.13) 

and so at large s, using (6.1.3), 

1 c 
r( 8) rv -ln So{ s) rv - ln s 

ml ml 
(6.4.14) 

From (6.4.2) this gives for the asymptotic behaviour of ur: 

(6.4.15) 

and so satisfies the Froissart bound ur ~ ,;;2 ln2 s since the coefficient in (6.4.15), 
11" 

Putting in the values from (6.1.11) we get 

UT rv 0.2ln2 8mb (6.4.16) 

In figure 6.6 we plot the high energy behaviours of ur, Uel and the ratio R = ~ 
O'T 

and their asymptotic predictions. From the figure we see that at JS = 106 Ge V the 

calculated value is about 20% above the asymptotic prediction which shows that it is 

not yet a good approximation to ignore the effects of the grey fringe. Hmvever, the 
-I 

cross-section does seem to be growing with a con8tant+0.2ln2 8mb behaviour, where 

the constant is approximately 32 mb and is negligible at asymptotic energies compared 

to the ln 2 
8 term. 

In the black disk limit we expect, R -+ t and Uel -+ 1r R2 
rv 11'c; ln2 

8 = O.lln2 
8. 

ml 

The ratio, R, of the elastic to total cross-sections is a good indicator of the onset of 

asymptotic black disk behaviour. At vs = 1 TeV, R is only 0.17, by 40 TeV it has 

risen to 0.24, and thereafter it rises slowly towards 0.5. Thus we will not reach the 

point where the contribution of the edge of the black disk is negligible until very high 

energies~ 106 GeV. The behaviour of O"el and Rand their asymptotic predictions are 

also shown in fig.6.6 . 
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FIG.6.6 High energy behaviours of ur, O"el and the ratio R = ~ (normalized to 0.5 
UT 

at 250 mb) in the BSW model and their asymptotic predictions. 

A breakdown of the different contibutions to ur shows that as the energy increases 

the relative importance of higher terms increases. At ISR energies, the contributions 

of the 2nd and 3rd terms of the series relative to the l 8 t term are about 25% and 10% 

respectively. The effect of higher terms on ur seems less than on the profile function 

because the contribution to ur at a given impact parameter is weighted by b but the 

higher terms mainly affect A(s, b) at small b. 

6.5. High Energy Behaviour of Re/Im. 

As noted above, we expect the real part of the amplitude at t = 0 to go to zero 

asymptotically. Derivative analyticity relations (Bronzan, Kane and Sukhatme (1975)) 

give 
7r 1 d 

p(s, t = 0) ~ - ---ur for large s 
2 ur dlns 
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and using equation (6.1.15) this gives 

11" 2 
p( !J' t = 0) ~ --

2lns 
(6.5.2) 

which describes how Re/Im asymptotically tends to zero but, as fig.6.7 shows, up to 

~ = 108 Ge V we do not yet see this behaviour. 
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-0.3 

FIG.6.7 High energy behaviour of p(s, t = 0) = ~; A(s, t = 0). 

6.6. High Energy Behaviour of ~~. 

The prediction for ~~ without the Reggeon exchange contribution gives a reasonable 

account of the data for ltl < 0.8 GeV2 at both ~=53 GeV and ~ = 546 GeV 

and for the large It I data at ,fS = 53 Ge V. However, as we can see in fig.6.8, the 

dip at It I = 1.35 Ge V 2 is not deep enough at ,fS = 53 Ge V and a little too deep at 

v'S = 546 Ge V and the ;r"!.d maximum has increased too much to give good agreement 

with the more accurate new data that has since appeared from the collider. The shape 
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of the dip in the Pomeron contribution does not alter appreciably between the ISR 

and the collider. For 1tl2:5 GeV2 the prediction of the model lies well above the ISR 

and FNAL data. At ltl = 8 GeV2 it is a factor of lOx too large. 
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FIG. 6.8 ~~ for BSW model at .JS = 53 and 546 GeV (no Reggeon contribution 

included). 

The structure of ~~ is formed by the superposition of many terms of the eikonal series. 

Adding successive terms to the sum gives a result which at small ltl converges quite 

rapidly onto the full exponential result but at large ltl needs something like five terms 

before starting to approach the final result. This is the same thing we saw in the profile 

function where smallltl corresponds to large band at large b the first few terms give a 

good approximation to the final answer. The differential cross-section resulting from 

summing successively greater numbers of terms in the eikonal series is displayed in 

fig.6.9 . The dip in ~~ of the input of the eikonal series is due to its change of sign at 
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ltl = 4 GeV2 and is not present in the sum of the series, at least not for ltl < 20 GeV2
• 

The first term of the series has a fixed phase but this is not true for the sum of the 

series, which has a t-dependent phase. 
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FIG. 6.9 ~~ for BSW model from summing successively greater numbers of terms in the 

eikonal series (no Reggeons). 

At even higher energies the model predicts that the 2nd maximum continues to increase 

at a fast rate and the dip deepens again and continues to shrink in towards the forward 

peak. At Vs = 5 TeV secondary structure starts to appear in the form of a slight 

shoulder around It I = 2 GeV2 and moves in as the energy increases. This is due to the 

te-eruergence. of the second zero in th~ imaginary part of the full amplitude. It does not 

give a dip because the real part washes it out. At 40 TeV the model gives a sharp dip 
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at iti = 0.35 and the 2nd maximum is only a factor of 10-3 down on the magnitude at 

the optical point. So as energy increase the model predicts that the dip should shrink 

inwards and become deeper and new dips start to appear. This behaviour agrees with 

(BSvV (1984b)) and is shown in fig.6.10 . 

' 10 .. ---------------------------------------------------------. 

2 
10 

1 
10 

0 
10 

-2 
10 

- ,, 
10 ·~-----.----.-----.-----.-----.-----.-----.-----.----,,---~ 

0 2 4 5 

FIG. 6.10 High energy prediction for ~~ in BSW model at Vs = 1, 5, 40 and 1000 Tev 

(with no Reggeon contribution and compared with data at Vs = 546 GeV). 
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6.1. The Reggeon Contribution. 

To fit the low energy pp and pp total cross-sections we need to include the Reggeon 

exchange contribution to the scattering amplitude. This has both an even and an odd 

signature part and the odd part gives rise to the difference in the pp and pp total 

cross-sections, !:lu = ur(pp)- ur(pp ), seen at low energies. As we observed in §4, this 

difference is well described by w Reggeon exchange with trajectory intercept ~· Here 

however, we are adding the Reggeon contribution to the opacity, equation (6.1.2), so 

that the effects of multiple exchanges involving Reggeons are also included. The total 

effect of the Reggeons is therefore different from that of the Regge pole we start with, 

and so to give the right total contribution the input Reggeons must have different 

trajectories from those used in §4. The additional terms tend to increase the effective 

shrinkage so that the slope a~ of our input Regge trajectory must be smaller. than 

normal just as we found for the Pomeron contribution. The effect on the intercept of 

the Regge trajectory is smaller because for JS > 10 GeV the dominant higher term 

corrections to single Reggeon exchange are those involving multiple Pomeron/single 

Reggeon exchange i.e R + R 0 P + R@ P@ P + ... ; and their trajectory has the same 

intercept as single Reggeon exchange because the effective Pomeron trajectory is close 

to unity in this energy region, corresponding to a constant contribution to ur. 

The form used for S0 (s) in equation (6.1.3) means that the total Pomeron contribution 

to ur rises again for .JS < 6 Ge V because of the logarithm in the denominator (see 

fig.6.11). This is just an artefact of the parametrization which is meant to hold at 

asymptotic energies and indicates that we are extending the result to a region where it 

is not valid. However, we can hope that the important features of the model will not 

be affected by ignoring low energy corrections to the asymptotic form of the Pomeron 

contribution. 

Since the Reggeon parameter values corresponding to the latest Pomeron parameters 

(6.1.11) in this model have not been given explicitly in BSW (1984a) we have fitted 

them to the ur(PP) and ur(PP) data from §2.2 using the parameter values from BSW 

(1979) as a starting point. We have kept the Reggeon trajectory slope, a~, fixed since 

it is not well determined by fitting ur and mainly effects the amount of shrinkage 

observed. The fit is not much improved by allmving a~ to vary anyway. 
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A reasonable fit to uy was obtained for Js > 7 GeV consistent with BSW (1984a). 

The values obtained are given in (6.1.11). The low value for the intercept, ctn(O) = 
0.308 Ge v- 2

, is caused by the shape of the Pomeron contribution which determines 

the form the even part of the Reggeon contribution must have. The very low energy fit 

is not very good and this seems to be a general feature of eikonalizing the Reggeons. 

At very low energies the two Reggeon exchange terms become significant and the even 

and odd signature parts do not cancel as they do for single Reggeon exchange in pp 

scattering. Their effect can be seen in fig.6.12 showing l:::t,.a against log Js, where 

for Js > 10 GeV the model gives a straight line corresponding to the san(o)-l power 

behaviour from the R+R®P+ ... terms but for Js < 10 GeV the power behaviour is 

modified by these R®R terms. The magnitudes of successive multi-Pomeron/Reggeon 

terms are down on single Reggeon exchange by about a factor of 3x for each Pomeron. 

The low value for the Reggeon intercept is reflected in the slightly too steep energy 

dependence of the predicted value for tl.u in fig.6.12 compared with the data. The 

data is consistent with an(O) = ! down to Js < 4 GeV indicating that single w 

exchange is the dominant odd signature contribution to the amplitude down to very 

low energies. By allowing the f and w trajectories different intercepts, a better fit 

to .6.u for Js > 10 GeV could be obtained but the bad very low energy behaviour is 

unavoidable. 

The prediction for p with these parameters is shown in fig.6.13 and both are in fair 

agreement with the data. The contribution to p from just Pomeron exchanges -is also 

shmvn. 
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FIG. 6.13 Comparison of BSW model prediction with p data. 

6.8. ~~ with Reggeon Contribution Included. 

As noted in the previous section, for JS > 10 GeV the main Reggeon contribution 

is given by R + R 0 P + ... where the magnitude at t = 0 decreases by a factor of 

about three for each Pomeron exchange included. The successive terms have a flatter 

and flatter t-dependence and also do not shrink with energy as the pole term does 

since the R 0 pn cuts are fixed (because the Pomeron pole is fixed). So they become 

relatively more important at large ltl and higher s. In the dip region at JS =53 GeV 

the single Reggeon exchange term has shrunk out of sight but the R 0 P term still 

has an important effect. It is the contribution of the f 0 P term which deepens the 

shallow dip given by the Pomeron exchange contributions to give agreement with the 

dip in the ISR data. The effect of including the Reggeons is to decrease the magnitude 

of the real part of the amplitude in the dip region sufficiently to give a reasonable dip. 

It has very little effect on the imaginary part of the amplitude. 
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At Js = 546 Ge V the f ® P term is too small to have any noticeable affect. So we just 

get a shallow dip from the Pomeron contribution alone, as in fig.6.8 . Extrapolating the 

fit through the ISR energy region (see fig.6.14), we see that the dip deepens between 

.jS = 23.5 and 30.7 Ge V and then fills in again as the energy increases and as the 

data requires but that the energy dependence of the height of the 2nd maximum makes 

the fit fall seriously below the data at .JS = 23.5 Ge V. It was this energy dependence 

that allowed the fit to the collider shoulder. The odd signature Reggeon contribution 

produces a significant difference between pp and pp scattering only at the lowest ISR 

energy Js = 23.5 GeV and no observable difference at .jS =53 GeV. 

At lower energies, as we saw in §2.5, the dip in the data fills in again in pp scattering 

but remains in pp scattering. This model predicts the filling in of the dip at low 

energy in pp scattering and allows a good description of the low energy ~~ (pp) data as 

was obtained in BS\V (1979). However, the odd signature contribution produces dips 

in the wrong place in pp scattering at low energy (fig.6.15). It is not clear whether 

the parametrization of the residues of the Reggeons can be adjusted to control this 

problem. Their magnitude at t = 0 is more or less fixed by fitting the total cross-section 

and the effective trajectories of the total Reggeon contributions should have a slope of 

about unity to agree with the effective shrinkage observed in processes where quantum 

numbers are exchanged and with the trajectories obtained from the particle masses. 

The question is whether the t-dependence of the residues of the input Reggeons can 

be varied to give the total Reggeon contribution the right magnitude and phase to fit 

-~~ (pp) and ~~ (i5.P) whilst satisfying the above constraints. "\Ve shall investigate this in 

a slightly different context in the next chapter. At very low energies, Plab = 10 GeV jc, 

the model does give a cross-over zero effect through cancellation of thew and w ® P 

cut (as in the absorbtion model), but needs further adjustement to agree with the pp 

and pp data. 
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FIG. 6.15 Low energy prediction of the BSW model for ~~ (thick line is pp prediction, 

dotted line is for pp, thin line is without Reggeon contribution). 

6.9. Conclusions 

We have found that though this model is able to describe reasonably well the rapid 

growth of the differential cross-section in the dip region from the ISR to the Collider, 

this energy dependence gives problems at the low energy range of the ISR. The fact 
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that the model needs R @ P cuts to still be significant at the highest ISR energies in 

order to reproduce the dip in the ISR data means that the cuts will be very important 

at low energies, even dominating for It I > 1 GeV 2
, and so it has not been possible to 

fit the low energy pp and pp data. It also means that the input Reggeon trajectory 

must be flatter than expected from the particle masses. Producing the R@ P cuts by 

adding a Reggeon contribution to the opacity in equation (6.1.2), also produces R® R 

cuts which disrupt the low energy behaviour of ur. 

As noted in §3.6, the planar diagrams in the eikonal series corresponding to n-ladder 

exchanges do not contribute to the leading energy behaviour of the n-Pomeron cut 

but give non-leading corrections to single Pomeron exchange and other cuts, so that 

part of the eikonal series gives a re-summation of Pomeron exchange. Only the parts 

with couplings nested give contributions to the leading behaviour of the n-Pomeron 

cut. Similarly part of the R@ pn terms in the eikonal series re-sums the Reggeon 

exchanges and part gives contributions to the Regge-Pomeron cut terms. So perhaps 

it is acceptable that the input Regge trajectories do not agree 'vith the trajectories from 

the particle masses, since the physical Reggeons include these corrections, and also that 

we should not include R@ R exchanges in the sum. For similar reasons, perhaps we 

should not be too concerned that the input Pomeron term does not factorize (6.1.5), 

since the physical Pomeron exchange also has these corrections. 

However, because the Pomeron doesn't factorize we lose the simple physical picture of 

eikonalization in terms of Glauber scattering, with the proton having some energy inde­

pendent matter distribution represented by the e-m form factor, and the growth of the 

total cross-section with energy by the increasing strength and range of the exchanged 

Pomeron. So that we have no good reason for using the form factor parametrization 

for the residue of the Pomeron in (6.1.6). 

In view of this and the problems we encountered with S 0 (s) in (6.1.3) the motivation 

for using the above form for the Pomeron is not very strong, especially not at current 

energies. vVe would prefer a phenomenological description of the input Pomeron as a 

Regge pole since as we have seen in §4 the forward diffraction peak shows features of 

Regge behaviour such as shrinkage and is well described by (4.4.1). This is the subject 

of the next chapter. 
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7 

The Reggeon~Eikonai Model 

'7ol. Introduction 

In the previous chapter we saw how the BSW model allowed us to satisfy unitarity 

and the Froissart bound with a Pomeron amplitude which grew with energy like si+c 

by using it as the Born term in an eikonal series. This gave a reasonable fit to the 

high energy data. However, the model did not treat the Pomeron as a Regge pole but 

as a fixed pole, with a non-factorizable residue and its treatment of the low energy 

behaviour of ~~ (pp) was unsatisfactory. In this chapter we examine whether a Regge 

pole input to the eikonal series can make any improvement. 

In §4 we used a model in which single Pomeron exchange dominated the amplitude 

and this gave a good account of the rise of the total cross-section with energy and the 

shrinkage of the small ltl differential cross-section. Single Pomeron exchange should 

still dominate the amplitude at small enough jtj at current energies in the Reggeon­

Eikonal model and the phenomenological description of the Pomeron used previously, 

which has the correct Regge phase and small trajectory slope, should give a good fit 

to the data with some changes to the parameters. The multiple exchange corrections, 

which ensure that the Froissart bound and unitarity are satisfied at high energies, 

should dominate at larger jtj. Field theory calculations show that multiple exchanges 

of Reggeons with nested couplings should eikonalize. Since the Regge pole is a moving 

singularity
1 
in the j-plane which obeys the phase-energy relation we can avoid some of 

the theoretical problems we had with the input to the eikonal series in the BSW model 

(§6.1 ). 

The idea that we should use a Reggeon as the first term in an eikonal series to generate 

multiple scattering corrections dates back to Arnold (1965). The model of Chiu and 

Finkelstein (1968) used this idea with the Pomeron trajectory fixed at ap(t) = 1, whilst 

Frautschi and Margolis (1968) used a linear t-dependent trajectory passing through 

one at t = 0 and found that the data then available were compatible with a~ = 1. 

Later, the idea was explored by Collins et al (1974a) with a Pomeron intercept greater 

than one and they found the ISR data to be reasonably well fitted with a~ = 0 out to 

ltl = 3 GeV2 but that the fit fell below the data for larger ltl. The Chou, Yang model, 
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with ap(t) = 1, also falls below the data beyond the 2nd maximum and gives a 2nd dip 

around It I = 4 GeV2
• The fall off at large ltl predicted by these models is inconsistent 

with the data from Nagy (1979) which shows that beyond ltl = 2 GeV2 the data is 

to a good approximation given by a simple exponential behaviour with small slope, 

~~ ~ constant X e2t, and no further structure. As noted in Sukhatme (1977), the 

energy independence of the large ltl data shows that for an even signatured amplitude 

the real part of the amplitude must be small (from dispersion relations). 

To the extent that the parametrization used in the BSW model gives the impact 

parameter decomposition of the data we should expect to obtain substantially the 

same results as in the previous chapter. However, it is not clear what the effect of 

allowing some t-dependence in the phase of the Pomeron will be and how much freedom 

there is in obtaining A(s, b) from the differential cross-section data using (3.2.11). 

Using the parametrization of the Pomeron in equation (4.4.1) as input to the eikonal 

series we get 

AP( t)- -G cpt ( -i.!!.. )ap(O) s, - pe e 2 s where Cp = ap + o:~ (Ins- i~) (7.1.1) 

which, using equation (3.2.11 ), gives for the eikonal phase : 

_k._ 

( b) Gp ( -i.l!. )ap(O) e 4 cp 
XP s, = -- e 2 s 

81rs Cp 
(7.1.2) 

This is then used to generate the eikonal.series through A(s, b)= eix;i-l, which ensures 

q1at unitarity is satisfied. Expanding the exponential and using equation (3.2.10) gives 

oo (G ( -i.!!.. )ap(O))n 
A(s, t) = 16~s L _!_ P e .2 s Cp e~t 

2~ n! 81rzscp n 
n=l 

(7.1.3) 

The nth term can be identified with the n-Pomeron exchange contribution and from 

(3.4.16) it can be seen that in the j-plane this gives a discontinuity of the form (j -

an(t))n-2 , thus representing a Regge cut with a branch point at an(t) = 1 + nt: + a~t. 

As we saw in the previous chapter higher order exchanges give a significant contribution 

to the amplitude, so that the Born term is not a good approximation. From the above 

we see that the n-Pomeron exchange term behaves like 

(7.1.4) 
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where € = ap(O) - 1 is small and positive. Thus at fixed t the energy dependence of 

the nth term is given by sn< and so higher order terms become more important as the 

energy increases. At fixed energy, higher terms decrease more slowly 'Vith increasing 

ltl and so become relatively more important at large It!. The phase of the amplitude 

in (7.1.4) is controlled by € and a~. These are both small so the Pomeron term is 

almost pure imaginary and the eikonal series consists of a sum of imaginary terms 

with alternating sign and increasingly flat t-dependence. This results in a sequence of 

dips in the differential cross-section. 

The single exponential form for the Pomeron residue in (7.1.1) does not possess enough 

freedom to give a good fit to the differential cross-section. We choose to parametrize 

the residue by a sum of exponentials as 

Gp(t) = Gpeapt (1- x 1(1- ea 1 t)- x 2(1- ea 2t)- .. . ) 
N 

= Gp LXiec;t 
j=l 

(7.1.5) 

where we used up to six exponential terms. The Bessel transforms can then still be 

calculated analytically using equations (A.4) and (A.5) term by term in the series. As 

we saw in the previous chapter, calculating these integrals numerically takes too much 

computer time to allow us to fit data. We did however use numerical integration to 

compute the high energy behaviour and to.check the accuracy of the series expansion. 

vVe restrict the ai to be less than ap so that the amplitude cannot grow with energy 

at large It!, and restrict the Xi to be positive so that the Pomeron amplitude cannot 

change sign. 

vVe separated the s-and t-dependence of the amplitude at ..jS =53 GeV by writing the 

parametrization in such a way that at this energy it is not much affected by variation 

of the Pomeron trajectory. By rewriting the Pomeron amplitude in (7.1.1) as 

Ap(s,t) = isGp(t)(e-if.
5

;
2
rea',(In 5;2-if)t (7.1.6) 

we find e. only affects the phase, not the magnitude, of AP at ..jS =53 GeV and a~ 

only affects the imaginary part of the exponential slope. 

Then we find 

( '\"k-1 . } 

co ( -r)n N-1 l n-L.,m=l im 

A(s, t) = 81rs L 
2

. 1 L L 
n=l zn. k=O i~~:=l 
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Pomeron contribution are then: ap(O), a~, Gp, {xi,a;,i = 1,6}. 

7.2. Fitting ~~ and ur. 

vVe wish first of all to see if we can fit the change in the differential cross-section 

from the ISR to the Collider and then to extrapolate the model to both higher and 

lower energies. It is not so easy to separate the fits to ur and ~~ as in §4, where 

the cut contribution at t = 0 was small, be~ause in this model the cut contibutions 

are significant even at t = 0. All the parameters of (7.1.3) are correlated and have 

an effect on both ur and ~~. However, it is approximately true that changing the 

Pomeron term at some value oft will not significantly affect the n-Pomeron exchange 

terms until larger Jtl and so it is possible to alter the large Jtl parametrization of the 

Pomeron residue without affecting the small It! fit very much. 

As noted above, we have written the parametrization in equation (7.1.6) in such a way 

that a~ and ap(O) have little effect on ~~ at Js =53 GeV (at smallJtl at least) and 

we expect that the Reggeons should make only about a 10% contribution to small Jtl 

~~ at this energy (as in §4). Thus we should be able approximately to tie down the 

parameters of the Pomeron residue in (7.1.5) : GP,xi,ai; by fitting small Jtl ~~ at 

Js =53 GeV. vVe chose to fit at Js =53 GeV because the ~~ data is most accurate 

at this energy; the higher order terms in the eikonal series are not too big so the series 

conwrges quite rapidly, and the Reggeon contribution is small. Provided the slope 

of the Pomeron trajectory, a~, has only a small effect ori ur we can then determine 

the Pomeron intercept, ap(O), and the Reggeon parameters by fitting ur. This leaves 

a~ to be determined by fitting small Jtl ~~ at the Collider. The large Jtl structure of 

~~ can then be fitted at Js = 53 Ge V, without affecting the small JtJ fit, by varying 

the Pomeron residue at large JtJ. The s- and t-dependence of the amplitude are then 

approximately determined and we can extrapolate the fit to higher and lower energies. 

In fitting the smalljtj ~~data at Js =53 GeV, we initially fixed ap(O) in the Pomeron 

amplitude (7.1.6) at the value in obtained in §4: ap(O) = 1.094, and set the slope of 

the trajectory to zero. The phase of the Pomeron is then independent of t and the 

parametrization similar to that used in the BSW model and in Collins et al (1974a). 

In these fits to small Jtl we used the data at Js =53 GeV from Baksay (1978) and 
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Breakstone (1984) (see §2.5). H can be seen from fig.6.9 in the previous chapter, 

that using five terms in the series expansion of (7.1.3) gives sufficient accuracy for 

It I < 1 GeV2
• At It I = 1 GeV2 calculating with five terms gives an accuracy of 

~ 10% in ~~ (see fig.7.2) and is sufficiently fast to allow us to fit, though it becomes 

prohibitively expensive in terms of computer time to allow more than four parameters 

to vary. Varying four parameters and using above data it takes about 8 minutes cpu 

time on the IBM 3081 for a fit to converge. 

Parametrizing the Pomeron residue in equation (7.1.5) by only a single exponential 

and fitting the forward diffraction peak for 0 < It I < 0.1 GeV2
, the model produces 

a dip at It I ~ 0.6 Ge V2 which does not appear in the data until it I ~ 1.35 Ge V2
• 

Including in the fit the data out to jtj = 0.85 GeV2 from Breakstone (1984) (see 

§2.5) still produces a dip too close in at ltl ~ 0.9 GeV2 and fails to get a good fit to 

very small jtj < 0.1 GeV2
• Using two terms in the residue we find a good fit out to 

jtj = 0.85 GeV2
• Similar results were found in Collins et al (1974a). We repeated these 

fits for a non-zero value of a~: a~ = 0.28 GeV-2 from table 4.7 . We found that it 

now took four terms in the Pomeron residue to get rid of the premature dip and give 

a good fit to the data for jtj < 0.85 GeV2 

In order to fit the uy data, we must include the Reggeon contribution to the amplitude 

which we initially choose to add to the multiple Pomeron exchange contribution as in 

(4.2.1) rather than to eikonalize the Reggeon exchanges along with the Pomeron as 

in (6.1.2). vVe use the parametrization of the Reggeons from equation ( 4.4.5) and 

the parameter values from table 4.4, but allow the f Reggeon coupling strength, fJJ, 

and its trajectory intercept, aJ(O), to vary in order to fit ay with the new Pomeron 

contribution. vVe fitted the ay(pp) data from §2.2 and forced a fit to the collider data 

as in §4.2, varying the parameters :ap(O),aJ(O) and f3J· This gave a good fit to uy 

and approximately fixed these parameters. We then fitted small ltl ~~,allowing a~ to 

vary and using the data at .JS =53 GeV for ltl ~ 0.85 GeV2 and at y'S = 546 GeV for 

jtj ~ 0.7 GeV2 (varying four terms takes 15 minutes cpu time). However, we find that 

to some extent the parameters are still correlated; the shape of the Pomeron residue 

and the value of the intercept of the Pomeron trajectory affect how much shrinkage 

is seen, the trajectory slope and the shape of the residue affect ay and the Reggeons 

affect the small ltl differential cross-section. An iterative approach is needed to obtain 

a good fit. First fitting ay and very small It I < 0.3 GeV2
, and then extending this 
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to larger ltl until we found a reasonable fit to both ~~ for ltl < 0.7 GeV2 at the two 

energies and to ur over the whole energy range. The fit (7a) to ur obtained with the 

parameter values of table 7.1 is shown in fig.7.1 below. The fit to small'ltl ~~ is shown 

in fig. 7 .2; the dotted lines correspond to the sum of five terms of the eikonal series and 

the full lines to the complete series. 
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FIG. 7.1 Fit (7~~.) to UJ' in Reggeon-Eikonal model (dotted line is muitiple Pomeron 

exchange contribution). 
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ap(O) 1.118 f3J 71.5mb X2 0.0659 

a' p 0.056 GeV-2 a 1(o) 0.630 a2 -3.69 Gev-2 

Gp 126.5 XI 0.236 XJ 0.0780 

ap 5.173 GeV-2 
al 6.12 GeV-2 

a3 -3.071 Ge v-2 

TABLE 7.1 Parameter values of fit (7a) used in (7.1.7). 

We tested the effect on ur of varying a~ and ap(O). By construction, a~ in (7.1.6} 
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has little effect at y8 = 53 Ge V. Its effect at lower energies is also very small and 

easily compensated for by small changes in the Reggeon parameters. At the Collider 

energy, changing a~ from 0.0 to 0.1 GeV-2 increases ur by 1.6 mb. Changing ap(O) 

has a larger effect on ur at the Collider. The Pomeron contribution is approximately 

independent of ap(O) at y8 =53 GeV. Increasing ap(O) by 0.02 produces a 4mb rise 

at y8 = 546 GeV. Thus, it is still a good approximation that ap(O) determines how 

fast the Pomeron contribution to ur rises with energy. The effect of a~ can produce 

a change of ~0.01 in ap(O). If the Pomeron were responsible for all the increase in UT 

between the ISR and the Collider then we would have ap(O) ~ 1.10, so that this is the 

smallest value of ap(O) which can reproduce the rise in ur (this value can be modified 

slightly by the dependence of UT on a~ and the small iti fit). 

Equation (7.1.6) implies that the differential cross-section should be more or less in­

dependent of a:~ and a:p(O) at y8 =53 GeV. Changing a~ from 0.0 to 0.3 GeV-2 

increases ~~ at iti = 0.5 GeV2 by about 3% and at iti = 1.0 GeV 2 by about 40%. To 

a good approximation ~; at y8 =53 GeV is independent of a:~ for iti ~ 0.7 GeV2
• 

Similarly, changing a:p(O) does not affect ~~ appreciably over this t-range. 

The effect of the cuts is to increase the amount the forward peak shrinks between 

the ISR and the Collider, which is given approximately by O:eff ~ 0.3 GeV- 2 (see 

§2.6). Figure 7.3 shows the effect of varying the slope of the Pomeron trajectory from 

a:~ = 0.0 - 0.3 GeV-2 on the fit to the Collider small iti data. If a:~ is too large 

there is too much shrin.k.:•ge at large iti at the Collider and the fit falls below the data. 

At iti = 0.5 GeV2 we see that a:~ = 0.10 GeV- 2 is probably already too large and 

produces too much shrinkage. On the other hand the data is quite compatible with 

a:~ = 0 as we found in the previous chapter with the BSW model. 

187 



l 

10 ~----------------------------------------------------~ 

2 
10 

_, 
10 

-2 
10 

-l 

-+-
-t--+--t-

10 4-----~--~r---~----,-----~--~----~----~--~----~ 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 

-t:- [lqe.'i'J 
0.8 

FIG. 7.3 Effect of a~ on shrinkage of ~~ at Vs = 546 GeV for a~ 

0.3 Ge v-2 in steps of 0.05 Ge v- 2
• 

0.9 

0.0 ---+ 

The above argument is dependent on how much the effective shrinkage is affected by 

ap(O) and the structure of the residue. Increasing ap(O) in the above fit produces 

only a relatively small increase in the observed shrinkage so that results should not be 

affected much by the change in ap(O) produced by refitting ur for different a~. We 

_also expect the structure of the residue to have little effect because it is constrained by 

the data at .jS = 53 Ge V. However, the only way to evaluate properly these effects is 

to attempt to fit with different a~. Fixing a~ = 0.1 GeV-2 and repeating the above 

fits to small ltl and ur we were able to obtain a reasonable fit similar to the above. 

For a~ = 0.15 GeV-2 the fit was below the Collider data for lti~0.5 GeV2 and gave . 

. the maximum value of a~ compatible with the small lt·l data. For a~ = 0.2 GeV 2 the 

best fit gives a dip at It I = 0.6 GeV2 and lies below the Collider data for 1tl2::0.3 GeV2
• 
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7.3. Fitting the ~~ data in the d.ip region and! lbeyond. 

Having obtained a good fit to UT and to ~~ for 0 ~ ltl ~ 0.7 GeV2 we then tried to 

fit the dip region and large jtj data at ..jS =53 GeV by varying the parameters which 

control the large jtj behaviour of the Pomeron residue : x2, a2, x3, a3, in equation 

(7.1.5). With only five terms in the series (7.1.7) leads to quite large inaccuracies for 

ltl > 1.1 GeV2 at ..jS =53 GeV. For jtj > 2 GeV2 the result is ~ 50% lower than 

that of the complete series and to get good agreement with the full exponential series 

at large jtj it is necessary to use six terms. at ..jS =53 GeV for jtj ~ 6 GeV2 (see 

fig.7.5) and seven terms at vs = 546 GeV. Using more terms in the series does mean 

however that it is not possible to fit so much data as it takes too much computing 

time (although five terms gives a less accurate result we found it useful to fit with five 

terms sometimes since the results with the full series are qualitatively the same). 

Fitting the data at ..jS =53 GeV using six terms in the eikonal series we found it 

impossible to obtain a dip in the differential cross-section. Increasing the number of 

terms in our parametrization of the Pomeron residue (7.1.5) to six exponential terms 

gave no improvement (it is necessary then to use only five terms in the series because 

of the increased computer time involved). The best that can be done is to fit the 

forward peak as well as possible to as large a value of jtj as possible. This produces 

a zero crossing in the imaginary part of the full amplitude in the right position at 

ltl ~ 1.35 GeV2
, which is filled in by the real part of the amplitude to give a shoulder. 

It is not possible to obtain a dip in this model because the real part of the amplitude 

is too large in the dip region. This results from the large value of ap(O) necessary to 

produce the rapid increase of UT between the ISR and the Collider. As a~ increases 

the height of the shoulder increases so that it is also not possible to obtain a dip by 

changing a~. A smaller value for ap(O) (ap(0)~1.07) in the above fit can produce a 

sharp dip rather than a shoulder in the appropriate region. 

Previous fits of this type, for example Chou and Yang (1968) with ap(O) = 1 GeV-2 

and Collins et al (1974a) with ap(O) = 1.06 GeV-2
, were able to obtain a sharp 

dip because the total cross-section data then available did not indicate so large a 

value for ap(O). With ap(O) = 1.06 GeV-2 the above fit closely resembles these 

parametrizations and, as they do, falls below the data for jtj > 3 GeV2
• It was possible 
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to obtain a shallow dip in the BSvV model (see fig.6.8) because the Pomeron input used 

did not obey the phase-energy relation. The phase of 50 ( s) produced by the (In u )c' 

denominator in equation (6.1.3) corresponds to a Regge pole with intercept ap(O) = 

1.074 GeV-2
, rather than ap(O) = 1.146 GeV- 2 which is the intercept associated with 

the s 1+c energy dependence used. 

Fig.7.4 shows a breakdown of the contributions of the multiple Pomeron exchange 

terms to the real and imaginary parts of the amplitude. To get a sharp dip the 

imaginary part of the amplitude must have a zero whilst the real part is small compared 

to the imaginary part in the immediate vicinity of the zero. In tllis fit the real part is 

large and negative in the dip region and so gives a shoulder. 
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FIG. 7.4 Real and imaginary parts of the full amplitude and the first three terms in the 

eikonal series. 
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From equation (7.1.3) we see that Re/Im for the nth term is given approximately by 

(7.3.1) 

which increases rapidly with increasing f. and n, and the importance of a~ decreases 

rapidly with increasing n at fixed t. We saw above that as Jtl increases the relative 

importance of higher terms increases so that p(s, t) for the full amplitude gets bigger. 

However, at large s and fixed t, the amplitude becomes pure imaginary so the real 

parts of the higher terms must cancel at asymptotic energies. If the intercept, ap(O), 

in (7.1.1) is close to one the phases of the higher terms are smaller and so the phase of 

the full amplitude is smaller further out in JtJ. At smallJtJ the first term of the eikonal 

series at Js = 53 Ge V dominates, whilst the main contribution to the imaginary part 

of the amplitude for 1 :::; Jt I :::; 2 Ge V2 comes from the first three terms of the series. At 

Jt I = 0.8 Ge V2 the imaginary parts of the 1st and 2nd terms cancel but the contribution 

of the 3rd term pushes the zero out to JtJ = 1.35 Ge V2
• The small JtJ dependence of 

the first term approximately determines the magnitudes of the higher terms in the dip 

region so that the position of the dip is controlled mainly by the size of the first term. 

As we noted above, changing the magnitude of the first term does not affect higher 

terms very much until larger JtJ. Thus, when first fitting small Jtl above, we pushed 

the dip at Jtl = 0.7 GeV2 out to larger Jtl by increasing the pole term at larger Jtl by 

adding flatter terms to the residue. 

The main contribution to the real part of the amplitude in the same region comes 

from the 2nd,3rd and 4th terms. The real part of the first term has a zero at JtJ·::::: 

+ ~ 2 Ge V 2
• In §4.4, where the model had the diffraction peak dominated by 

Otp 

single Pomeron exchange, this energy independent point occurred for JtJ ~ 00~;84 ~ 
0.3 Ge V2 and we find in these fits that the real part of the full amplitude has a zero 

in approximately the same place, as of course it must if it is to account for the energy 

independence of the data at this point. Fig.7.4 shows that Re/Im for the nth term 

is increasing with n and that the effect of a~ is decreasing with n, since the real and 

imaginary parts of higher n terms are becoming more nearly equal and the phase of 

terms with n ~ 2 changes only slowly with t. The only term that a~ has a large effect 

upon is the pole term. Increasing a~ brings the dip in the real part of the first term 

in to smaller JtJ, and since the real part is negative in the dip region this increases the 

magnitude of .the real part and thus the }:leight of the shoulder. So as far as getting a 

dip is concerned a~ = 0 produces the best results. 
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So it is not pos.sible to obtain a dip in this model at Js =53 GeV with just multiple 

Pomeron exchanges. It should be possible to use the same method to produce a dip 

as the BSW model in §6 i.e adding the Regge-Pomeron cuts generated by including 

the Reggeon contribution in the eikonal phase, as in (6.1.2). We want the zero in 

the imaginary part of the amplitude to occur at It I = 1.35 Ge V2 and expect the real 

part to be cancelled by the Reggeon contribution, so do not mind producing a large 

real part from multiple Pomeron exchanges. We want the Reggeon contribution to 

be as small as possible since, as we saw in §6. 7, eikonalizing the Reggeon exchange 

leads to problems in fitting the low energy. differential cross-section data. For this 

reason we want the magnitude of the Pomeron exchange amplitude to be as small as 

possible in the dip region, which is produced by making the zero in the imaginary part 

of the amplitude coincide with the dip position. The Pomeron still controls large ltl, 

so we want to produce a good fit to the large and small ltl data with the Pomeron 

contribution, and a zero in the imaginary part at the dip position. 

Fit (7a) (table 7.1) falls below the data for ltl > 3 GeV2
• 'We tried to improve this by 

attaching more weight to the large It! data and varying the parameters that control the 

large It! dependence of the residue : x2 , a 2 , x3 , a 3 ; and obtained reasonable fits to the 

large ltl data for 1tl~5 GeV2 but at the expense of pushing the zero in the imaginary 

part of the amplitude out to ltl = 1.6 GeV2 and so increasing the magnitude of the 

amplitude in the dip region. This fit is shown in figure 7.5 along with the sum of a 

successively larger number of terms of the eikonal series, which shows that six terms 

of the series is sufficiently accurate for It! ~ 6 GeV2
• For 1tl;:::5 GeV2 the fit still 

falls below the ISR large ltl data. In these fits we used the complete eikonal series 

and varied two parameters at a time because of the computer time involved ( ~ 20 

minutes). Keeping the zero of the imaginary part at ltl = 1.35 GeV2 by including 

data at ltl ~ 1 GeV2 produces a better fit than (7a) for ltl~1 GeV2 but cannot prevent 

the predicted cross-section falling below the data for 1tl;:::3 GeV2 (fit (7b) in table 7.2, 

curve (b) fig.7.6). Trying to improve the large ltl fit by adding more terms to the 

residue does not give any better fit. In fact adding a term to the residue with flatter 

t-dependence at large ltl produces a dip in ~~ at ltl = 4.5 GeV2 (see curve (a) fig.7.6). 
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FIG. 7.5 Reggeon-Eikonal model fit. Light curves give predictions using successively 

more terms in the eikonal series (n = 1 ~ 8). 

If the first zero crossmg m the imaginary part of the amplitude occurs at the dip 

position at It! = 1.35 GeV2
, the second occurs too close in at It! = 6 GeV2 and 

produces the fall off from the data at large It! seen above. With the first zero crossing 

at It! = 1.65 GeV2 the fit to the large It! data is improved because the second occurs 

further out. Increasing the pole term at large It! by giving it a flatter t-dependence has 

only a small effect on higher terms in the same t-range but, since the imaginary part 

of the amplitude is negative between the first and second zero crossings, this moves 

the second zero to smaller It! making the large ltl fit worse. The energy dependence of 

the large It I data at the ISR shows that there is no zero in the imaginary part of the 

amplitude for 2 ~ It! ~ 7 GeV2 over the ISR energy range. To push the second zero 

crossing further out in ltl in order to fit the large ltl data, the imaginary part of the 

input pole must be decreased in the region where the output starts to fall below the 

data, but must be unaffected for smaller It!. To prevent the 2nd dip we find that it 
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is necessary to make the Pomeron residue in (7.1.5) go negative at large It! by adding 

a fifth exponential io ihe parametrization with a negative coefficient, ·x4 , and with 

small slope, a4 , so thai it dominates at sufficiently large jtj. This exactly mirrors the 
2 

effect of the factor : 2 :!:~ in (6.1.5) in the BSW model and gives very similar results. 

Since the imaginary part of the amplitude dominates at large It!, the trajectory slope, 

a~, has little effect on the large !tl fits io Js =53 GeV except where there is a zero 

in the imaginary part because the change in the imaginary part it produces can be 

compensated for by small changes in ihe residue at large jtj. It will however affect 

the energy dependence of ihe large It! fit. '_To produce a change of sign in the pole 

term at It! = 4 GeV2 would need a~ ~ altlo) ~ 0.25 GeV-2
, which is incompatible 

with the small !tl shrinkage. Adjusting the two parameters of the extra term in the 

residue, using the parameters from fit (7b ), gives the fit (7c) in table 7.2 and plotted 

in fig.7.6 as curve (c). The predicted cross-section for 1tl~6 GeV 2 now lies above the 

data and gives a similar large It! fit to the BSW model. We have not tried to improve 

the agreement with the 1tl~6 GeV2 data but this should be possible since as the sign 

of x 4 in the Pomeron residue (7.1.5) is changed from + ~ 0 ~ - the output goes 

smoothly from curve a~ b ~ c in figure 7.6. 

Fit (7b) 

Gp 130.7 ap 5.404 Gev-2 

XI 0.229 al 9.66 GeV-2 

xa 0.155 a a -2.56 GeV-2 

1 Fit (7c) 

X4 -2.77 X 10-4 a4 -5.181 Ge v-2 

TABLE 7.2 Parameter values of fits (7b) ~d (7c). The latter uses the parameters of (7b). 
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FIG. 7.6 Reggeon-Eikonal model fits to large It I ~~ at Vs =53 GeV. (a) Fit (7b), (b) 

extra term added to Pomeron residue, (c) extra term subtracted from Pomeron 

residue. 

"Ve attempted to improve fit (7c) in the region 2 ~ ltl ~ 6 GeV2 at Js =53 GeV by 

adding another term to the residue, keeping the subtracted term fixed. This gave a 

good fit in this t-range but affected the fit to small It I at the Collider for It I > 0.5 GeV2
• 

This fit (7d) is shown in fig.7.7 and table 7.3 compared with the BS"V model fit from 

§G. In these fits, (7b ~ d), changing ihe residue from that of fit (7a) will affect ur by 

~ 0.5 mb and so this should also be refitted. 
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Fit (7d) 

x2 0.900 a2 0.90 GeV-2 

Xg 0.0792 ag -2.66 Gev-2 

x4 -2.77 X 10-4 a4 -5.18 GeV-2 

xs 0.07891 as -3.60 GeV-2 

TABLE 7.3 Parameter values of fit (7d). 
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FIG. 7.7 Reggeon-Eikonal model fit (7d) (thick line) at JS = 53 and 546 GeV com­

pared with BSW model (thin line). 
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Extrapolating fits (7c) and (7d) to the Collider energy, we find that they give the 

shoulder a factor of 4x higher than the data and a slight dip at ltl = 0.85 GeV 2 (the 

shallow dip occurs because Re/lm is smaller at lower ltl and the zero in" the imaginary 

part of the amplitude has moved in to ltl = 0.85 GeV2
). We investigated the reason 

for the difference between these fits and the BSW model of §6 which gives a shoulder 

at the Collider only 50% above the data (see fig.6.8). Setting a~ = 0 and repeating the 

above fits (tour, smallltl and large ltl ~~)improves the agreement with the Collider 

shoulder by a factor of two but is still too high (fit (7e)). The difference is now caused 

by the different shapes of the small ltl fits; the BSW model and this fit (7e) have 

similar Pomeron contributions at t = 0 and similar phases (note that the phase of 

the Pomeron contribution in the BSvV model is energy dependent; at Js =53 GeV it 

corresponds to Ep = 0.074 and at y's = 546 GeV to Ep = 0.107). Comparatively small 

changes in the small ltl slope can affect the height of the shoulder. This leads us to 

believe that it should be possible to improve the description of the Collider shoulder, 

while maintaining similar fits to those above at -JS =53 GeV, by readjusting the small 

ltl parametrization (even with non-zero a~) but we were unable to do this because of 

the prohibitive amount of computer time involved. Also, we have not yet taken into 

account the effect of eikonalizing the Reggeons, which will alter the parameter values 

anyway. A larger value of a~ makes it harder to get the magnitude of the shoulder 

right. This will further limit the value of a~ but again the maximum value compatible 

with the data can only be found by explicitly attempting to fit the data. A comparison 

of the Pomeron contribution from the BSvV model, and fits (7c---+ e) at Js = 546 GeV 

is shown in figure 7.8 . 
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FIG. 7.8 Comparison of Reggeon-Eikonal model fits (7c), (7d) and (7e) with the BSW 

model at VS = 546 Ge V. 

ap(O) 1.108 !3! 80.8mb Gp 131.8 

a' p 0 a 1(o) 0.564 ap 5.468 GeV-2 

XI 0.312 X2 0.0659 XJ 0.1547 

a1 4.64 GeV-2 
a2 -3.69 Gev-2 

a3 -2.56 GeV-2 

X4 -2.77 X 10-4 
a4 -5.24 GeV-2 

TABLE 7.4 Parameter values of fit (7e). 
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7.4. Eikonalizedl ReggeOJrn Contribution. 

vVe now want to see if it is possible to add a Reggeon contribution to the eikonal phase 

(7.1.2) which can cancel the real part of the Pomeron contribution at ISR energies 

and produce a dip as in §6.8. 'Neuse the fit (7e) above which gave a good description 

of the small ltl ~~ data and ay, and a reasonable description of the large ltl data. 

At JS = 53 Ge V the imaginary part of the sum of the Pomeron contributions has a 

zero crossing at It I= 1.38 GeV2
• Extrapolating fit (7e) to lower energies we find that 

at .JS = 23.5 GeV this has moved out to ltl = 1.6 GeV 2 and the cross-section at the 

second maximum is 40% below the data (see. fig.7.10); by ..j8 = 10 GeV2 the zero has 

moved out to It I = 1.8 GeV2 and the cross-section is a factor lOx below the data. So in 

order to fit the data, the Reggeon contribution must also offset the energy dependence 

of the eikonalized Pomeron. 

For the Reggeon contribution to the Born term of the eikonal series we use a form 

similar to ( 4.4.5) and (6.1.17) but use simple exponentials for the t-dependence of 

the f and w residues and, as in (7.1.6), scale the shrinkage of the Reggeons about 

.JS = 53 GeV. This gives 

b2 

( b) 
1 [ G ( -i2!.. )a,(o)e-4c/ 

Xn 8, =- - 1 e 2 8 --
8rrs CJ 

-~ ·c ( -i2!.. )a..,(o)e 4c.., J 
=j=t we 28 

Cw 

where Cn =an+ o:~(log 5 ; 2 - i~). 

for 
pp 
pp 

(7.4.1) 

We then fit ay and~~ at .JS =53 GeV by varying Gt, O:J(O), af, o:j, Gw and o:w(O). 

In ar the effects of the parameters a 1 and o:/ are approximately interchangeable, we 

fix these in the ar fit at at = 3.95 GeV-2
, o:j = 1 GeV-2

• Since we are using a 

fixed Pomeron pole (o:~ = 0), the Reggeon-Pomeron cuts are also fixed. In the clip 

region at .JS =53 GeV the dominant Reggeon term is the f ® P cut, the real part of 

which is positive, so has the right sign to cancel the real part of the multiple Pomeron 

exchange. Higher terms are far from small and even R®R cuts are not negligible. The 

magnitude of the eikonalized Reggeon terms can be altered by adjusting a1, the phase 

can be altered by adjusting aj which affects the R ® R terms. For aj = 1 GeV-2 the 

eikonalized f Reggeon is approximately real in the dip region as required and so we 

adjust a 1 to give the right magnitude to cancel the eikonalized Pomeron term. The 
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rest of the parameters are fixed by ar. The parameters of this fit are given in table 

7.5. The low value of O'w(O) means that thew 0 P cut is predominantly imaginary in 

the dip region and so only moves the position of the dip, rather than filling it in. For 

this reason we keep the odd charge conjugation contribution small in the dip region. 

The fit to ar is shown in figure 7.9. 

a 1(0) 0.492 GJ 500mb 

a' J 
1.0 GeV-2 

a! 5.5 GeV- 2 

aw(O) 0.141 Gw 596mb 

a' w 0.8 GeV- 2 aw 6.6 GeV- 2 

TABLE 7.5 Parameter values of eikonalized Reggeon fit. 
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FIG. 7.9 Fit to aT using parameters of table 7.5 . 
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The fit could probably be improved by further adjustement. Unlike the BSW model 

we have allowed separate intercepts for the f and w trajectories. This has resulted 

in a very small value for aw(O) (compare with (6.1.11)). In order that there be some 

hope of the eikonalized Reggeon contributions being compatible with the low energy 

~~ data, their effect at small It I should be similar to the conventional Reggeons of 

( 4.4.5). We examined the effective trajectories of the even and odd charge conjugation 

Reggeon contributions. The effective trajectories at t = 0 are shown in table 7.6 for 

the above fit . 

.fi Pomeron Even Reggeon Odd Reggeon Total 

10 GeV 1.093 + 0.062t 0.501 + 1.162t 0.161 + 0.859t 0.974- 0.394t 

53 GeV 1.088 + 0.086t 0.486 + l.333t 0.134 + 1.097t 1.068 - 0.097t 

546 GeV 1.078 + 0.131t 0.481 + 1.518t 0.128 + 1.290t 1.077 + 0.112t 

TABLE 7.6 Effective trajectories at t = 0 for above fit. 

The behaviour of the f trajectory is reasonable; the w trajectory is not high enough 

at t = 0 which is reflected in the poor fit to the high energy !la. Since the Pomeron 

intercept is close to one the R ® P cuts have approximately the same intercepts as the 

pole terms and and so the intercepts of the Reggeons are not changed by much. The 

slopes of the effective trajectories are increased by interference with cut terms. 

Using fit (7e) for the Pomeron gives the best chance of fitting the ~~ data because the 

real part in the dip region is as small as possible in these fits, and so the Reggeon terms 

are as small as possible. The resulting prediction for ~~ (pp) at ISR energies is shown 

in figure 7.10 along with the eikonalized Pomeron contribution alone. Whilst the fit 

at yfS =53 GeV is reasonable, the large contribution of the f ®P cuts and the energy 

dependence of the eikonalized Pomeron give nothing like the behaviour observed in 

the data. At .J8 = 10 GeV the eikonalized f Reggeon gives a cross-section a factor of 

lOx too high for ltl2::0.8 GeV2
• 
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FIG. 7.10 Prediction of~~ using pa.r:m1ctcrs of ta.blc 7.5 (thin line is eikona.lized Pomeron 

contribution). 
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7.5. Conclusions. 

In the above we found that it was impossible to reproduce the dip in the ISR data with 

just a Pomeron contribution so that large Reggeon cut terms were needed. In order 

to avoid further dip structure at large ltl it was necessary to use a non-factorizable 

Born term in the eikonal series (residue changes sign for ltl ~ 4 GeV2
). The resulting 

parametrization gave a very poor description of the UT and ~~ data. One of the major 

difference between these fits and those of the BSW model is that the Reggeon terms 

do not need to be so large in the latter in order to produce a dip because the Pomeron 

contribution does not have the Regge phase. 

If the real part of the eikonalized f contribution is positive so that it cancels the real 

part of the eikonalized Pomeron in the dip region, the imaginary part destructively 

interferes at large It I, producing greater energy dependence and making it more difficult 

to get agreement with the data.. It is possible that using a different calculation for 

the Reggeon cut terms the model can be improved (just using f + f Q9 P will avoid 

this effect). 

In figure 7.11 we show the high energy behaviour of UT from fit (7a), which gave a 

good description of small ltl and UT. The contributions from individual terms in the 

eikonal series (for n = 1 ~ 8) are also shown. The total cross-section asymptotically 

satisfies the Froissart bound as in §6.4 (see Collins (1977) p.278). The behaviour of 

the profile function is very similar to that of the BS':V model in §6.3 and is shmvn in 

figure 7.12 ( dott~d line is Born term). 
I 
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FIG. 7.12 Prediction of imaginary part of the profile function using parameters of fit (7a) 

at JS =53, 546, 2 X 103 , 104 , 4 X 104 and 105 GeV (dotted lines are 

Born terms in eikonal series). 
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8 

Reggeon Field Theory Phenomenology 

8.1. Introduction 

The problem of summing the infinite number of Regge cuts generated by multiple 

Reggeon exchanges can be tackled by introducing an effective field theory in the com­

plex angular momentum plane. This is developed as a calculus for summing the 

hybrid Regge-Feynmann graphs like that of :figure 3.6 or as a solution to the Reggeon 

unitarity relations derived from fundamental S-matrix principles. The Reggeons are 

treated as non-relativistic quasi-particles in 2+1 dimensions with an "energy" given 

by E = 1 - j (where j is the position of the moving Regge pole in the j-plane) and 

with two-dimensional momentum k. The variables conjugate to these are the "time", 

T = -ilogs, and impact parameter, b, respectively. The mass of the particle is given 

by 2~, and 6.0 = 1 - a 0 is the mass gap. These can interact with each other via a 

triple-Regge (or higher order) coupling giving rise to diagrams like figure 8.1 . 

FIG. 8.1 Example graph with 3-Porneron interactions in RFT. 

The satisfaction of the Reggeon unitarity relations ensures that t-channel unitarity is 

satisfied. RFT also appears to satisfy s-channel unitarity though this is not explicitly 

built in. Other interaction terms are also possible and in principle they will result 
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in an infinite number of free parameters but most of these will be unimportant at 

high enough energy. If no Reggeon-Reggeon interaction terms are present RFT just 

reproduces graphs similar to those of the eikonal model in which s-ch~nnel unitarity 

was explicitly satisfied but t-channel unitarity was violated. 

----0- ~+ ~ t +"· 

+ ~ + +··· 

f ~ + +··· 

FIG. 8.2 Perturbation expansion for renormalized Pomeron propagator in RFT . 

. The picture that emerges from RFT is that the bare Pomeron with trajectory a 0 (t) will 

be modified by Pomeron interactions giving a renormalized trajectory a(t). The ex­

pansion parameter in the perturbation expansion for the Pomeron propagator (fig.8.2) 
2 

is 4log s, where r0 is the bare triple-Pomeron coupling and a~ the bare trajectory 
ao 

slope. If this quantity is small then the perturbation approach will be valid and the 

series can be approximated by its first few terms. The 3-P coupling can be estimated 

from the inclusive cross-section data from the ISR and FNAL for pp --+ pX and it 
2 

is found that 4 logs ~ 0 .Ollog s. The renormalized triple-Pomeron cou piing is then 
ao 

essentially just given by the bare quantity and the only diagrams which contribute 

appreciably to the elastic scattering amplitude are those shown in figure 8.3 and their 

s-channel iterations. 
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FIG. 8.3 Dominant graphs in perturbative RFT at ISR energies. 

As the energy increases the expansiOn parameter increases logarithmically so that 

higher order terms become important. If the expansion parameter is large enough 

the perturbation approach will be invalid and the series must be summed by other 

means. In the case where the renormalized Reggeon intercept is unity, so that the 

mass gap Ll0 = 1 - a 0 vanishes, the infrared behaviour of the theory (E -+ 0, k -+ 

0) corresponds to a field theory with massless particles and all the multi-Reggeon 

trajectories collide. This can be studied using the renormalization group equations, 

and provided an infrared stable fixed point exists the Reggeon Green's functions satisfy 

scaling laws whose form does not depend on the underlying parameters of the theory. 

The limitE -+ 0 corresponds to logs -+ oo and so the infrared behaviour corresponds 

to asymptotic energies. Both the critical indices governing the scaling law and the 

functional form of the scaling law can be calculated from a perturbation .series in 
1

€
2 

(where € = 4- D and D = 2 for RFT). 

The energy, sr, below which the corrections to the scaling law become too large for it 

to provide a pertinent description of the scattering amplitude is given by 

1 
sr Srra~ 

og- ~ --2-
so 3r0 
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and the energy above which the perturbation expansion factor exceeds one half so that 

higher terms are not negligible is given by 

1 
ST 47ra~ 

og- ~ --2-
so To 

(8.1.2) 

I 

so both transition energies are gov~rned by the quantity ~. The experimental value 
0 

of the bare triple-Pomeron coupling, To, is not very well determined because of large 

absorbtive corrections which need to be taken into account when extracting its value 

from inclusive cross-sections. This results i~ an uncertainty of a factor of three in To 

which gives a factor of ten variation in log ST so that it can range from log ST ~ 7 

where the scaling solution would be applicable at current energies to log ST ~ 100 

for which the perturbation expansion gives the correct description at all attainable 

energies. 

8.2. Behaviour of aT• 

The asymptotic scaling law prediction for aT is given by equation (8.2.1) where suc­

cessive terms represent the leading contributions of the renormalized Green's functions 

G(l,l) G(l,2 ) c<2 ' 2 ) respectively 
R ' R ' R ' · 

(8.2.1) 

The critical exponents, 77 and .X, can be calculated in perturbation theory (or on a 

lattice) and have the values shown below (Cardy (1977)). 

TJ = 0.26 ± 0.02 

.X = 0.49 ± 0.01 
(8.2.2) 

Some account should probably also be taken of non-leading terms in G~,rn) since the 

non-leading term in G~,l) may well be more important than the leading term in G~'2 ) 

for example. 

Using this prediction together with a parametrization of lower Reggeon trajectories by 

(8.2.3) 
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a fit to the O"T(PP) data for .JS 2: 5 GeV was obtained in Baig (1985). The parameters 

he found are given in (8.2.4). 

f3o = 61.49 ± 2.30 mb 

!31 = -1.73 ± 0.03 

/32 = 0.073 ± 0.09 

/33 = 3.305 ± 0.21 

(8.2.4) 

The large corrections to the leading behaviour of (8.2.1) given by the term, /31 , indicate 

that the asymptotic form is not yet applicable. This sets a lower bound for approximate 

scaling behaviour at Js = 546 GeV. The results of the fit using the above parameters 

together with a breakdown of the contributions of the individual terms is shown in 

figures 8.4a and 8.4b . The description of the data for Js:S102 GeV is very poor and 

at high energies the predicted cross-section is too small too agree with the cosmic ray 

data. 
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FIG. 8.4 Predicted cross-section for (a) Vs ::; 1 Tev, (b) Vs ::; 105 Tev (shows 

contributions of the dominant terms), in the asymptotic RFT scaling law pre-

diction. 
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In the perturbative Reggeon calculus the energy dependence of the cross-section de­

pends upon the bare mass gap, .6.0 , and the bare 3-P coupling, To. In the critical 

Pomeron model the value of .6.0 is adjusted to give a renormalized Pomeron intercept 

of one (.6. = 0). This implies a relationship between the bare parameters .6.0 , a~ and 

To which has no physical motivation, which is somewhat unsatisfactory. The value 

of the bare Pomeron intercept, aoc, which will result in the critical behaviour, can 

be calculated in perturbation theory and it is found that a value greater than one is 

obtained with a 0c - 1~0.01. This is too small to produce the observed increase in 

O"T (though there is some indication from non-perturbative calculations that the value 

may be higher). A value some ten times bigger than the critical value, a 0 - 1 = 0.11, 

gives reasonable agreement with the ar data. This "supercritical" solution gives a 

renormalized intercept above one and the renormalization group equation is no longer 

useful in determining the asymptotic behaviour. However, model calculations in which 

the infinite number of cuts are summed, indicate that the asymptotic energy depen­

dence goes like log2 s so that the Froissart bound seems to still be satisfied. The 

scattering amplitude which results from the eikonalization of the diagrams in figure 

8.3, together with the parameter values used, is given in Pajares et al (1983). This fit 

is displayed in figure 8.5 with a breakdown of the contributions from the bare Pomeron 

pole, the triple-Pomeron Y -diagram, the Loop diagram and the higher order Eikonal 

sum of these. It can be seen that at current energies the bare Pomeron graph gives a 

contribution about 20 x bigger than the loop graph and that the Y-graph is negligible. 

1 To a good approximation the Y- and 1-graphs can be neglected, which amounts to 

setting the triple-P coupling, To, to zero. The model then corresponds to the Regge­

Eikonal model of §7 with enhancement of higher terms in the series due to diffractively 

produced resonances. The sum of the series satisfies the Froissart bound and ar has 

an asymptotic log2 s dependence. However, at higher energies the contributions of the 

Y, L and higher order graphs will become more important. In fact, the L-graph has 

approximately an s 2 .::l energy dependence for y's~100 GeV and dominates the P term 

for -JS > 400 Te V. The asymptotic prediction usirig just these three terms is there­

fore invalid for y's>10 TeV. The sum of the higher terms in the eikonal series give 

approximately a 10% contribution at the collider energy but will eventually dominate 

the pole terms. As in the Regge-Eikonal model, higher terms in the eikonal series :-
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P 0 P, P 0 P 0 P, ... are comparable in magnitude to the Born term (see fig. 7.11). 

10 2 ~------------------------------------------------------~ 

-------
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-··-··-·-··- --· 

--· 

FIG. 8.5 Contributions of the various terms in the perturbative Reggeon calculus pre-

diction for ur. 

8.3. The Differential Cross-section. 

The differential cross-section obtained from the perturbative Reggeon calculus at cur­

rent energies is governed by the eikonalized Pomeron exchange term. The t-dependence 

of the bare Pomeron term is approximated by a simple exponential with shrinkage given 

. by a~. This is only a good approximation near t = 0 and gives the wrong curvature 

to ~~ at larger jtj. To reproduce the larger ltl differential cross-section the Pomeron 

residue must be parametrized by a dipole function as in the Eikonal models. The Y 

and L graphs in figure 8.3 have a steeper exponential slope than the P graph because 

of the decrease of the triple-Pomeron coupling with increasing momenta parametrized 

in the above fits by 

(8.3.1) 
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Each triple-P coupling gives an extra factor e8 t to the t-depeudence. Thus the t­

depeudence predicted by the perturbative Reggeon calculus is little different to that 

of the Regge-Eikonal model (at least at current energies). 

The t-dependence of the asymptotic critical RFT is governed by a scaling law. The 

renormalized Pomeron propagator, which gives the leading term in O"T in (8.2.1) sat­

isfies 

Tj(t) = (j- 1)-1+-rT(l,l) [- ~:t (j- 1)-I+f. l 

This leads, via the Sommerfeld-VVatson transformation, to the scaling law 

Im A(s, t) = ,82 (t)s(log s)--ri'(l,l) [- a~t (log s) 1-f.l 
kz 

(8.3.2) 

(8.3.3) 

The critical exponents, 'Y and f,, and the universal function i'(l,l), can be calculated in 

the 
1
; expansion. The unknown constant, k2 , determines the t-scale and the function 

{J(t) is an unknown external particle vertex taken arbitrarily as ,B(t) = 1. The only 

unspecified parameters in the scaling law are thus the t-scale and the normalization. 

Equation (8.3.3) predicts that O'eJ(s) should fall with increasing energy. It was also 

clear from fits to UT that this leading term cannot be a good approximation to the full 

amplitude at current energies. Using (8.3.3) and an 0( t: 2 ) calculation for the critical 

exponents and i'<I,l) gives a two dip structure for ~~ (Baig et al (1984a)). Setting 

the t-scale by adjusting position of the first dip to coincide with that in ~~ (pp) at 

the ISR results in the prediction shown in figure 8.6 for Vs = 53 and 546 Ge V. The 

small itl ISR data lie 1well below the predicted cross-section whilst at large itl the 

prediction falls off much too quickly with increasing itl and has a spurious second dip 

at It! ~ 2.6 GeV2
• At Collider energies the small Iii prediction does reasonably well 

but for ltl2:0.4 GeV2 it drops below the data, and although it gets the dip position 

right the second maximum is too low to agree with the shoulder in the data. In the 

calculation of Baig (1985) the second maximum lies a factor of 100x below the Collider 

shoulder. Our recomputation of this quite involved calculation is in close agreement 

with that of Baig et al (1984a, 1985) for It I < itldip at Vs =53, 546 GeV but disagrees 

as to the height of the 2nd maximum at both energies by a factor of 10 X. The reason 

for this disagreement is not understood but still the predicted t-dependence does not 

agree very well with the data. The details of the computation are described in Baig 

and Bourrely (1984b ). Since the t-scale is controlled by an arbitrary parameter the 
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agreement with the smallltl data at one energy is not significant though the prediction 

for· larger ltl at the Collider can be improved by including finite energy effects such as 

the real part of the amplitude, which is asymptotically zero, and a modified form for 

the external particle coupling, {3( t). 

The conclusion from these analyses is that we are not yet in an energy region where 

the asymptotic behaviour of the critical RFT is applicable. The perturbative analysis 

indicates that the critical Pomeron does not reproduce the energy dependence of the aT 

data and that a supercritical Pomeron with cx0 > cx0 c > 1 is needed. The terms that 

make the perturbative supercritical Pomeron model different from the Regge-Eikonal 

model discussed in §7 are small at current energies. 
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FIG. 8.6 Results of asymptotic RFT calculation for ~~ at Vs = 53, 546 Ge V. 
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9 

U nitaurization ModeL 

9.1. ][niroduction 

We saw in §4.9 that a Pomeron with trajectory intercept greater than one exceeds the 

diffractive limit: A( s, b) ----+ t, ass ----+ oo. The single Pomeron exchange amplitude first 

reaches this limit at b = 0 for .fS ~ 1 TeV as shown in the impact parameter plot of 

fig.4.33 . The amplitude will also eventually violate the unitarity bound Im A( s, b) :5 1 

at ,fS ~ 300 TeV. Adding terms which counteract the divergent behaviour of the 

Pomeron so that the full amplitude satisfies the diffractive limit will alter the aT "' se 

behaviour of the Pomeron term to a form consistent with the Froissart bound (3.3. 7). 

This problem is most acute for the Pomeron and weak cut model of §4 since the weak 

cut has little effect on the impact parameter amplitude. The different values of the 

Pomeron intercept, etp(O), allowed in the fits of table 4.3(a) give the energy at which 

Im A(s, b = 0) = t somewhere between 800 GeV and 2 TeV (see table 4.11). In the 

Donnachie-Landshoff model of §5.2, the Pomeron contribution similarly exceeds the 

diffractive limit for ,fS = 1 TeV, but the Pomeron cut term is larger than in the 

Pomeron and weak cut model and the combined amplitude does not reach the limit 

until ,fS = 10 TeV. In the eikonal models of chapters 6 and 7 the unitarity corrections 

prevent the amplitude from violating the diffractive limit, but we 
1
found that their 

effect at the lower ISR energies was inconsistent with the data. In this chapter we 

examine briefly an alternative model for how unitarity might be restored. 

9.2. A Simple Model 

The simplest way in which the amplitude can be constrained to stay within the 

diffractive limit is to truncate Im A(s, b) for Im A(s, b) > t as in fig.9.1 . There 

are then no unitarity corrections for energies below approximately 1 TeV, for which 

Im A(s, b) :5 !; and above ..js' = 1 TeV, the unitarity correction simply cancels the 

imaginary part of the profile function above a half. 
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FIG. 9.1 In this simple model Im A(s, b) is truncated for Im A(s, b) > ~;resulting 

profile function for ..j8 =53, 546 GeV, 2, 10, 40 and 100 TeV. 

This prescription gives slightly different results to the eikonal model. Since the profile 

function has a maximum value at b = 0, the un.itarity correction occurs first at small b 

and its radius in impact parameter space increases as the energy increases. In eikonal 

models the unitarity corrections appear gradually with energy rather than occurring 

suddenly at about 1 Te V as in the above and act over a larger range of b. In a first 

approximation they have radius }z x that of the Pomeron corresponding to P ® P 

exchange. However, at high energies in eikonal models the profile function approaches 

a black disk limit (see §6.3) and since the tail of the profile function is dominated 

by single Pomeron exchange the models shoul9. be similar (though requiring different 

parameters for the Pomeron). In particular they should have the same asymptotic 

behaviours for uy and both satisfy the Froissart bound. This model gives the least 

effect upon Im A(s,b) that will make the amplitude consistent with the diffractive 

limit and thus shows the minimum effect un.itarity must have on the contribution to 

qT from the Pomeron. The effect on ur is shown in figure 9.2 using the Pomeron 

parameters from fit (4a) of §4.4. At y'S = 2 and 40 TeV this produces a correction of 
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0.4 and 14 mb respectively. This is to be compared with a spread of about 10 and 30 

mb at the two energies given by the different values of ap(O) in the fits of table 4.3a 

(see table 4.11), and so is a comparatively small effect in ar at these energies. 
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FIG. 9.2 Total cross-section using parameters of fit ( 4a) (full line) and unitarity correc-

tion in this simple model (dotted line). 

The effect of the truncation of the profile function on the amplitude A( s, t) is to produce 

a pure imaginary term with a fiatt-dependence which first appears for y's;:::1 TeV. The 

exponential t-dependence of the correction term and its magnitude at t = 0 increase 

with energy as the radius in impact parameter space increases. At very high energies 

the slope and magnitude of the Pomeron and correction become more nearly equal so 

they almost entirely cancel. This behaviour is shown in figure 9.3 at yiS = 1, 2, 10 

and 40 TeV. 
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FIG. 9.3 Effect on ~~ of minimum unitarity correction at y's = 1, 2, 10 and 40 TeV. 

Thus, this simple model gives a contribution, which occurs suddenly for y's~1 TeV, 

with a very flat t-dependence and increases rapidly with energy. At higher energies the 

range in impact parameter space increases and so the t-dependence of the correction 

term increases. Since the term is pure imaginary, interference with the Pomeron 

produces a sharp dip structure. It is tempting to try to associate this with the problem 

of the height of the Collider shoulder. However, by allowing the correction an arbitrary 

range in impact parameter space rather than just the minimum necessary to restore 

Im A(s,b) < ~'the exponential slope of the correction term can be made arbitrarily 

steep (though this increases the magnitude at t = 0 and thus the effect of the correction 

on O'T ). If it is given the same range in impact parameter space as the Pomeron it 

will have the same t-dependence as the Pomeron and so be hidden by the Pomeron 

contribution. At collider energies the profile function has not reached Im A(s, b)= ~ 

so that in this simple model there are no unitarity corrections. 
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9.3. An Extension of the §Jimple Modleli 

The unitarity correction in the above model occurs suddenly for y'S;::::l TeV. However, 

we would expect that, as in the eikonal model, the correction occurs as an analytic 

function of the energy and so has an effect at lower energies also. As in the model 

above we want the correction to act at smaller b than in the eikonal model. We also 

want to take account of the real part of the amplitude and the effect of the correction 

on the real part. 

We want an analytic form for the profile fun'ction 

A(s, b)= A(x(s, b)) (9.3.1) 

which satisfies the diffractive limit and in which the corrections appear smoothly as 

functions of energy and are negligible at ISR energies. This will than have qualitatively 

the same behaviour as the simple model above but the corrections will have some effect 

at lower energy and perhaps produce something which looks like the Collider shoulder. 

So we want a function which has the behaviour : 

z 
A(x) -t 2 as Im x -t oo 

A(x) -t !. as Im x -t 0 
2 

(9.3.2) 

(9.3.3) 

The eikonal function (3.2.13) has these properties bu,t at ISR energies Im x(s, b = 

0) :::::: 0.6 and so (9.3.3) is not a good approximation (see fig.6.2). vVe want a function 

for which (9.3.3) holds at ISR energies but in which modifications are produced at 

Vs = 546 GeV where Im x(s, b = 0):::::: 0.8 . So we generalize the eikonal function to 

the form 

where 

so that 

N n 
'\:"""'"' -x 

-nN(x)= ~-
n 

n=l 

{ 
log(1- x) for lxl-t 0 or N -too, lxl < 1. 

-t zN for lxl -t oo. -N 

{ 

iz for small x; 
A(s,b) ~ _l' 

2 , for x large and +ve. 
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(9.3.6) 



and if we put x ---+ -ix then 

(9.3.7) 

will have the behaviour we wanted *. For N = 1 we just have the eikonal model of § 7 

and for N = oo we have the simple model of §9.2 . Increasing N interpolates between 

the two extremes. This behaviour is shown in figure 9.4(a) using X= XP(s, b) and the 

Pomeron parameters of fit ( 4a) for N = 1, 2, 5, 10 and oo. The effect of this on ~~ at 

.JS = 546 GeV is shown in figure 9.4(b). 
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FIG. 9.4 Results using equation (9.3.7) and Pomeron term from fit (4a) for N = 1, 2, 

5, 10 and oo; (a) Argand plot for profile function at b = 0 as a function of 

energy, (b) ~~ at Vs = 546 Ge V . -

* For x complex we should also have Re { x} N ---+ +oo as Re x ---+ +oo which is satisfied 

for the values of N we have used but is not true in general. This could be side-stepped 
- N 

_by _using the function y = 1- f(x)e-<z•z)T where f(x) = 1- x- ... is a polynomial 

of degree less than N. 
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As N increases the small It I differential cross-section approaches that from just the 

pole. For N = 5 this produces a reasonable description of the collider shoulder. It 

will not of course reproduce the large It! data at ISR energies without considerable 

manipulation, but for a suitable choice of Pomeron and N this could probably be 

accomplished also. This is precisely what the eikonal model of §7 did using N = 1 and 

should have the same problems. We reproduce the large ltl cross-section by a more 

simple construction. U instead of using x = -ixP in (9.3.4) we use x = -i(XP + Xcut), 

where Xcut is the double Pomeron exchange contribution used in §4.4, then (9.3.7) 

with a suitable value of N gives an amplitude which is essentially just fit ( 4a) in the 

ISR energy region, but which has unitarity corrections at the collider energy that may 

allow a better account of the shoulder. 

Using this form for x and varying N has the effect on !~ at Js = 53 and 546 Ge V 

shown in figure 9.5 (for n = 5, 8, 10 and oo). It can be seen that at Js =53 GeV 

the dip is moved by the unitarity corrections and fills in slightly. As N increases the 

corrections become smaller and the amplitude approaches that due to just the pole 

and cut. At Js = 546 GeV the unitarity corrections are larger and move the dip more. 

Using N = 8 gives a correction that does not much effect the ISR data but goes some 

way to producing a shoulder at the collider. The prediction at the collider is still not 

very good but indicates that with a suitable parametrization of the Pomeron and cut 

at the ISR and a suitable choice for x in (9.3.4) a reasonable fit might be obtained. 

221 



10-·--.------rr--------------------, 

_, 
tO 

-· 10 

... 10 

·. s 
.... 6 

FIG. 9.5 Results for ~~ at Vs = 53 and 546 Ge V using equation {9.3. 7) and Pomeron 

and cut terms from fit (4a) for N = 5, 8, 10 and 00. 

The function (9.3. 7) produces less effect than the eikonal series at large b where x is 
small, so that the unitarity corrections act at smaller b than in the eikonal series and 

thus have flatter t-dependence. The correction is imaginary and negative (at smallltl) 

and so has the effect of pulling the dip in to smaller It I. Since the correction is larger at 

higher energies this increases the shrinkage seen. In fit ( 4a) the zero in the imaginary 

part of the amplitude is at too large a value of ltl but the unitarity correction pulls 

it in to smaller ltl. One of the major problems we have encountered in the previous 

chapters in obtaining a satisfactory description of the data is reconciling the energy 
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independence of the ISR data with the growth of the differential cross-section between 

the ISR and the Collider. Effectively this model allows a small O:eff for the Pomeron at 

low energy, consistent with the energy dependence at large It!, and an increased O:eff 

between the ISR and the collider. In this case the unitarity correction mimics quite 

closely the behaviour of the extra term (4.7.2) in fit(4d) which reproduces the collider 

shoulder. The effect on the real part of the amplitude is to reduce the real part at 

small b;. this gives the correction term a negative real part in the dip region and so 

increases the magnitude of the real part of the full amplitude (since the real part of 

P + P 0 P was negative in fit (4a)). 

If we repeat this for fit (4d) (which has a Pomeron with larger a:~, and a cut term with 

energy dependence given by O:eff and arbitrary phase), we find the unitarity correction 

produces a deeper dip at ISR and Collider energies. This is because in fit( 4d) allowing 

an arbitrary phase for the cut resulted in the real part being positive in the dip region 

so that the unitarity correction reduces tllis and produces a deeper dip. 

vVe can use the fits of §4.7 (which use an extra, arbitrary term to give the Collider 

shoulder) to estimate the effect of these unitarity corrections at ISR energies since the 

energy dependence of the profile function in ( 9.3 .4) is determined by that of x( s, b). If 

we assume the extra term (4.7.2) gives the unitarity correction at y's = 546 GeV then 

the unitarity correction at lower energies is determined. Figure 9.6 shows the same 

correction that the extra term makes to the profile function at y's = 546 Ge V applied 

to the profile function at y's =53 GeV. At .JS =53 GeV fits (4a) and (4d) give the 

results shown in figure 9. 7( a) and 9. 7(b ), which indicate that ifthe unitarity corrections 

are generated as above their effects on ~~are of order 40% for 1tl2:2 GeV2
• The validity 

of this argument depends on the extent to which the extra term is determined by the 

data, but together with fig.9.5 this provides an indication of the magnitude of the 

unitarity corrections at ISR energies. 
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FIG. 9.6 Effect of extra term (4.7.2) on profile function from fit (4a) at Js = 53 and 

546 Ge V (solid line is P + P 0 P, dotted line has extra term included). 
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In figure 9.8 we show the differential cross-section resulting from extrapolating equation 

(9.3.7), with the Pomeron and Pomeron cut of fit (4a) and N = 8, to ,jS = 1, 5, 10 

and 40 TeV (the data at .jS = 546 GeV are shown for comparison). Tllis produces a 

shoulder at .jS = 1 Te V, which deepens into a dip and moves inwards with increasing 

energy. At -JS = 1000 TeV the second maximum is only a factor of 300x less than 

the optical point which shows the rapid increase in the height of the second maximum 

from these unitarity corrections. The differential cross-section at large ltl is rather 

more flat and a lot larger compared with other models (see figures 5.12 (DL model), 

5.21 (GLN model), 6.10 (BSW model)). The impact parameter picture arising in tills 

model and the eikonal models of §6 and §7 is similar to the BEL (blacker, edgier and 

larger) description of the data of Renzi and Valin (1979,1983,1985). 
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FIG. 9.8 Differential cross-section from (9.3.7) with N = 8 at -JS = 1, 5, 10 and 40 TeV. 
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10 

General! Discussion and §ummaJry 

10.1. Summary of results. 

In the above we have sought a description of the high energy total and elastic dif­

ferential cross-sections. We have reviewed the existing models which theoretical and 

phenomenological prejudice present as likely candidates for the correct approach. No 

attempt has been made to make this review .complete and numerous models have not 

been discussed. The data present us with certain characteristics which seem to result 

from the underlying dynamics involved and which we expect the model to describe in 

a natural manner, rather than as a complicated effect of different dynamical mecha­

nisms. These are : 

o the shrinkage of the forward peak with energy; 

o approximate constancy of the pp total cross-section for 4::=;vf.9::=;30 GeV and its sub­

sequent rise up to y's = 900 Ge V and beyond; 

o the energy independence of the large iti data and dip position for 10::=;vf.9::=;63 GeV; 

o the rise of the differential cross-section from the ISR to the Collider; 

e the behaviour of the pp / pp difference at low energies and at vf.9 = 53 Ge V. 

How naturally these effects are described by a given model determines how believ­

able the model is. vVe note that the status of the pp and pp difference in ~~ at 

j8 = 53 GeV discussed in §2.5 is enhanced by the inability of any model with an even 

charge conjugation amplitude to give a natural description of the rest of the data. 

vVe have examined how well these various models explain the above characteristics, 

using as a basis the PvVC model discussed in chapter 4. Prior to the Collider this gave 

good agreement with the elastic scattering data. The energy independence of the large 

iti cross-section at the ISR and the evolution of the dip structure arose in a simple, 

economical fashion from the interference of the Pomeron and the Pomeron cut. The low 

energy differential cross-section was reasonably well described by small perturbations 

which were negligible at higher energies. This model is therefore in conflict with the 

difference observed in the dip region at vf.9 =53 GeV between pp and pp, but given 

the uncertainties in the pp data (see §2.5) this did not seem an untenable position. 

However, it was clear that, confronted with the ur and ~~ Collider data, the model 

needed some modification. 
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In its original form the PWC model is incapable of reproducing either the shrinkage at 

small jtj or the change in dip structure between the ISR and Collider energies whilst 

retaining the description of a Pomeron cut term dominating the large ltl amplitude. 

The modifications we made to the model in §4.5 and §4.6, in which we looked at the 

effects of a non-linear Regge trajectory for the Pomeron and of more t-dependence 

in the Gribov vertex, did improve the agreement with some aspects of the data, but 

neither gave a good overall description. Bending the Pomeron trajectory allowed us to 

produce a sharp dip at ISR energies which developed into a shoulder by the Collider 

energy, but the magnitude of the shoulder and the energy dependence of the dip were 

in disagreement with the data. Altering the Gribov vertex in the parametrization of 

the Pomeron cut allowed us to fit the data at Js = 53 and 546 Ge V but could not 

then reproduce the energy independence at large jtj. These problems appear to some 

extent in all the models we looked at. Agreement with the Collider shoulder makes it 

difficult to maintain the energy independence at ISR energies of ~~ at large jtj and in 

the dip region. 

In §4.8 we fitted the Pomeron parameters with an arbitrary parametrization of the 

terms producing the Collider shoulder and ISR large jtj. This again demonstrated that 

the phase necessary to produce the dip at ISR energies is not that of the Pomeron 

cut alone. We looked at a very simple parametrization of low energy effects which 

suggested that, at the lower ISR energies at least, these were not necessarily negli­

gible. The conclusion from this analysis of the PWC model is that though it might 

still be possible to fit the available data by incorporating suitable low energy effects 

this approach is not. supported by the data. If a new mechanism is responsible for the 

Collider shoulder the situation is improved and, though the model still has some diffi­

culty reproducing the shrinkage at smalljtj, an arbitrary parametrization of this extra 

term allows a reasonable description of the data. We also noted that the increased 

energy dependence of the Pomeron, which was necessary to describe the rising total 

cross-section, brings it into conflict with unitarity for energies of order 1 Tev. 

There seem to be two candidates for necessary modifications of the PWC model: a 

term with odd charge conjugation to produce the pp / jip difference at .JS = 53 Ge V; or 

correction terms to prevent the Pomeron amplitude violating unitarity. We reviewed 

the DL and GLN models which are examples of the former and the BSW model which 

is an example of the latter. 
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The DL model gave a good overall description of the pp and jip data from the ISR and 

the Collider and, though it does not attempt to account properly for the low energy 

cross-section, is not unreasonable at low energy. However, on the minus side, the model 

also requires the existence of residual low energy effects to help produce the ISR dip 

and the theoretical and phenomenological evidence for the 3-gluon description of the 

large ltl amplitude is not compelling. The unitarity problem is delayed to energies of 

order 10 Tev but still needs to be addressed. The GLN model also gave good agreement 

with the data but lacked any physical motivation for the form of the amplitude. The 

odd charge conjugation term was responsible for the Collider shoulder which required 

some mechanism to make it vanish in the ISR dip region in order to be compatible 

with the relatively small ppfjip difference. As in the DL model, the large ltl amplitude 

is dominated by an energy independent, odd charge conjugation contribution. 

We attempted to describe the extra contribution necessary in the PWC model by an 

odd charge conjugation contribution akin to the Pomeron. However, the phase of the 

arbitrary term added to the PWC model to produce the shoulder in §4.7 does not 

look like such an Odderon contribution. The small ppfjip difference at yiS =53 GeV 

constrained the size of the simple Odderon contribution we used so that it could 

not have much effect at the Collider energy and the fits did not reproduce very well 

the energy independence at large It!. If an Odderon contribution is to be made to 

work within the PWC model it must be more complicated than the simple form we 

considered. 

We then looked at the BSW model which explicitly satisfies J-channel unitarity and 

the Froissart bound through eikonalization of the basic exchange. This produced a 

shoulder at the Collider 50% above the data and again had difficulty reproducing the 

energy independence of the dip region and large It!. The dip in ~~ at the ISR was again 

a result of low energy effects. These were calculated by including a Reggeon contribu­

tion in the eikonal phase, which resulted in the parameters of the Regge trajectories 

being lower and flatter than the corresponding particle masses indicate and gave bad 

fits to the low energy UT and ~~ data. In order to prevent further, spurious dips in 

the differential cross-section at large It! it was necessary to include zero-crossings in 

the t-dependence of the Born term at large It!. The non-Regge phase of the Born term 

resulted in better cancellation of the diffractive contribution in the dip region than 

otherwise and therefore a smaller residual Reggeon contribution. The model gave a 
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poor fit to the 1tl26 GeV2 data from FNAL and the XSR. 

In §7 we attempted to construct a similar description but using a Born term with a 

proper Regge phase and which avoids conflict with t-channel unitarity since it results 

from a moving j-plane pole. This exaggerated the problems encountered in the BSW 

model. The large Reggeon contributions required to produce a deep enough dip at the 

higher ISR energies did not allow a reasonable fit to the lower energy ISR data. It was 

still necessary to include a non-factorizable zero-crossing in the t-dependence of the 

Born term and the behaviour of the cross-section in the dip region favoured a small 

value for a~. The magnitude of the shoulder predicted at the Collider was too large 

to give good agreement with the data. 

We also briefly reviewed the predictions of critical and perturbative Reggeon field the­

ory. Though critical Reggeon field theory provides an interesting theoretical framework 

for doing calculations it does not give a viable phenomenology (at least not at present 

energies). As with most models it does produce dip/bump structures but their magni­

tudes are not in 'agreement with the data. The predicted asymptotic behaviour of the 

total cross-section, fiT ,..._, log0
'
26 s, and of the total elastic cross-section, O'el "'log-t s 

(see Moshe (1978)), are also contrary to the trend of the data. The perturbative Regge 

calculus seems to be very similar to the Regge-Eikonal description we tested in §7 and 

seems likely to produce different results only at larger It! or higher energies, but a 

description of the differential cross-section has not yet been attempted. 

Finally, in §9 we considered an admittedly rather ad hoc model for preventing the 

amplitude violating unitarity in which the ISR energy amplitude is "protected" from 

unitarity corrections, so that we can have the original PWC model at these and lower 

energies but which has substantial corrections at the Collider energy and beyond. This 

disassociates the cut contribution of (3.6.9) from any unitarizing role and properly 

separates the requirements of s-channel unitarity and the prediction of Mandelstam 

cuts. We estimated the effect that the unitarity corrections would have at ISR energies 

to be of order 40% if they were to reproduce the Collider shoulder, but have not 

attempted detailed fits to the parametrization of the Born term with this general 

unitarizing form. 

It is clear from the above that low energy effects though relatively small at ISR ener-

229 



gies still play an important role in the phenomenology and so a much more detailed 

description of the low energy dynamics needs to be undertaken for each model that 

claims to describe the high energy behaviour of the cross-section in order to check 

the consistency of the model. Further measurement of ~~ for pp and pp at similar 

energies is essential to confirm the existence of an odd charge conjugation contribution 

remaining at high energy. The effects of unitarity corrections and lPomeron cuts are 

important at current energies and will determine the behaviour of the amplitude at 

the higher energies of the UNK, LHC and SSC. 

10.2. Comparison of High Energy Predictions. 

In figure 10.1 we compare the asymptotic predictions for ur of the various models we 

have discussed. Also included for comparison is a simple log2 s fit to the data as in 

§4.2 given by equation (10.2.1). 
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We see that the DL, BSvV, Regge-Eikonal and unitarized PWC model all give very 

similar predictions for the high energy behaviour of the total cross-section, within 

10mb of each other for vs:S106 GeV. Only the critical RFT model significantly dis­

agrees with the cosmic ray data. The perturbative RFT model and the DlL model have 

unphysical behaviour at high energy because higher order terms have been omitted. 

The predictions of the various models for lTT(PP) at .J8 = 2 and 40 Tev are given in 

table 10.1 . Typical values at these two energies are 76 and 120 mb respectively. 

Model .J8 = 2 Tev Js = 40 Tev 

PWC §4.2 78.7mb 137.9 mb 

PWCunit. §9.2 78.3mb 123.9 mb 

GLN §5.3 77.3mb 129.7 mb 

BSW §6.4 75.6mb 120.4 mb 

RE §7.2 76.7mb 120.3 mb 

DL §5.2 75.3mb 120.8 mb 

RFT asym. §8.2 68.3mb 83.5mb 

RFT pert. §8.2 73.6mb 86.1mb 

log2 s §10.1 75.0mb 118.3 mb 

TABLE 10.1 Predictions of lTT(PP) for various models at -JS = 2 and 40 Tev. 

10.3. Future Prospects. 

If the recent value of p(pp) found at Js = 546 GeV mentioned in §2.4 turns out to be 

correct this holds strong implications as to the nature of the high energy amplitude. 

The first point to mention is that with this new value of p the total cross-section 

at the Collider is reduced by 3% to 59.8mb. Clearly the phase associated with this 

value of Re/Im is incompatible with purely an even charge conjugation contribution 

dominating the small ltl amplitude and hints again at the possibility of a fairly large 

Odderon contribution at high energies. We note that the Odderon used in the GLN 

model has the opposite effect to that required by this new data. It reduces the value 

of p(pp) to 0.106 and increases p(pp) to 0.176 and the value of lTT at the Collider. If 

the Odderon is to cancel the real part of the even signatured amplitude in the dip 
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region it must have positive real part in pp, and so if it is to add to the real part in 

pp at t = 0 it must change sign in between. An Odderon similar to that in the GLN 

model with opposite sign and with a zero crossing at smaller ltl would have the right 

effect. The Odderon amplitude in the GLN model at ..jS =53 and 546 GeV is shown 

in figure 10.2 . 
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FIG.10.2 Real and imaginary parts of the Odderon contribution at ..JS - 53 and 

546 GeV in the GLN model. 

Testing this idea in the model of §5.4 would seem a reasonable next step. As noted 

there, a zero crossing in the real part of the Odderon amplitude in the dip region 

appears to be necessary if the Odderon is to have any effect on the differential cross­

section at the Collider energy. 

The situation may be cleared up by data at higher energies from the new machines. It 

is uniikely that a measurement of ur at these energies will help to differentiate mu~h 

between the various models. A measurement for both p or ~~ in the dip region at 
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similar energies would help most in defining the Odderon contribution. A measurement 

of the shrinkage and height of the second maximum would be most useful in fixing the 

unitarity corrections. 

We note, in connection with the above comments, that in response to the measurement 

of Re/Im at the Collider a new version of the GLN model has recently been published 

(Gauron (1987)) in which the sign of the Odderon contribution is reversed. This allows 

the new value of Re/Im to be reproduced by the model at t = 0 but a description of 

the t-dependence has not yet been obtained. This affirms the problem of obtaining a 

detailed description of the odd C component of the high energy amplitude noted in 

§5. 

10.4. Collldusions. 

Of the models we have examined the Odderon models of DL and GLN do best in 

reproducing the data, though these do not yet give a satisfactory description of the 

low energy data. If we disregard the recent measurement of p at the SppS Collider, 

then it seems preferable to describe the Collider shoulder as an even charge conjugation 

effect since this can be attributed to unitarity corrections which must be present if the 

Pomeron is not to violate unitarity at higher energies. The available data do not allow 

an odd charge conjugate term to be pinned down very well but indicate that such a 

term must have complicated structure and energy dependence. Though clearly such a 

parametrization is possible, it is very speculative. We do not then expect to see any 

further pp / pp differences at higher energies. If this is the case it will be disappointing 

from a phenomenological viewpoint since the new machines will not reveal more of the 

tantalizing glimpse of an odd charge conjugation contribution seen at the subsequently 

decommissioned ISR. 

Measurements of cross-sections at higher energies should improve our understanding 

of the behaviour of the unitarity corrections and perhaps throw more light on the 

phenomenology at the ISR energies. As it stands, if it is believed an odd charge 

conjugation contribution survives up to y's = 53 Ge V as the data suggests, then the 

choice is between the DL (or simila.r model with a reggeized C =--- -1 exchange at large 

jtl) or a C = +1 dominated model with a small C = -1 contribution which surfaces 
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only in the dip region (and perhaps slightly affects the small ltl slope), though it does 

not seem to be possible to describe the latter contribution as a Regge pole effect. 

Conventional eikonal type models with even signatured components only do not repro­

duce the Collider shoulder and the ISR data very well. H is not too surprising however 

that the behaviour of the unitarity corrections is more complicated than the simple 

eikonal model predicts. The description afforded by the unitarized model of chapter 9 

seems likely to give a more reasonable account of the data. 

So the situation cannot as yet be resolved. The surprising value for the recent mea­

surement for p hints that there may be more surprises in store at higher energies. If the 

value is confirmed it should help to understand the phenomenology of the Odderon. 

234 



Appendlitx A 

N olr'matHzation al!ld u.nseJful Jformu.nllae. 

In the above the elastic scattering amplitude, A( s, t), is dimensionless and the total 

and differential cross-sections are given by 

0.3893 
ur = Im A(s, t) mb 

8 
(A.l) 

and 

du = 0.3893l ( )l 2 b G v-2 

d 2 
As, t m e 

t l61rs 
(A.2) 

For f(z) analytic inC, Cauchy's integral formula gives 

f f(z) dz = ~f(a) 
z- a 21rz 

(A.3) 
c 

Integrals involving zeroth order Bessel functions : 

(A.4) 

0 b2 

J ~ t e-4c 
dtJo(bv -t)ec = -c- (A.5) 

-(X) 

R J bdbJ0 (byCi) = ~JI(RV-i) (A.6) 

0 

Similarly for the modified Bessel function of the first kind, In(x), where 

(A.7) 

we have 
R 

J bdbl0 (bVt) = :5tl1(Rvt) (A.8) 

0 

The series expansion of the Bessel function, ln(z), is given by 

for lzl < oo (A.9) 
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and 

(A.lO) 

The asymptotic behaviour of the Bessel functions are : 

{ 

7r 7r 1 . 7r 7r } 
l±v --+ cos(z =F -v- -) +- sm(z =F -v--) 

2 4 8z 2 4 
for z--+ oo (A.ll) 

and 
ez e< -z±(v+~)7ri) 

f±v --+ -- + ---==--
~ ~ 

for z--+ 00 (A.l2) 
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Appendix B 

Details of the DJL model pa:rametJrizatiion and parameter values. 

The following parametrization was used in the fits of §5.2. 

Pomeron: 

Reggeons: 

A'(s,t) = -G1 (e-itsf~,(o)ec't 
Aw(s, t) = =t=iGw ( e-it s tw(O) ecwt for pp 

pp 

where cR = aR +a~ (logs- i~) and 

(3P = GP sin ~ap(O) 

f3J = 0. 3~93 G,sin~a,(O) 
1 7r 

f3w = 0.3893 Gw COS 2aw(O) 

Pomeron cut : 

A 2p( t) ).2PG't ( -iz. )2ap(0)-1 [(1- x) 2 
{ 1 } s, = + e 2 s exp -cpt 

327r Cp 2 

Reggeon-Pomeron cuts : 

where x R = 1
. for R = I . 

-1 w 

The 3-gluon term (notation corresponds to Donnachie and Landshoff (1979)) : 

Aa9 (s, t) = 2sDa9 

fa 9 ~ Integral 
= =f2s 1.586 x 10-7 V D.3s93 x _t_o_:::-:.......t-
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pp 
pp 

(B.1) 

(B.2) 

(B.3) 

(B.4) 

(B.5) 

(B.6) 

(B.7) 



where 

For large Jtl this gives 

dfi f"V !2 c -8 
dt 3g t 

if X~ > l.L. 
l - -t' 

otherwise. 
(B.8) 

(B.9) 

In the calculation of §5.2 we calculated the above integral numerically and stored the 

result (independent of energy) in a look-up table. 

ap(O) 1.095 a 1(o) 0.610 aw(O) 0.412 

a' p 0.161 GeV-2 a' I 0.805 GeV-2 a' w 0.922 GeV-2 

f3p 20.7mb !3, 73.9mb f3w 41.6mb 

ap 1.99 GeV-2 
a! 1.89 GeV-2 aw 1.99 GeV-2 

al 4.28 Gev-2 Afp 0.4 AwP 0.4 

X 0.667 to 0.33 GeV2 c 0.09 mb GeV-2 

A2P 0.450 tl 0.33 GeV2 f3g 1.5 

TABLE B.l Parameter values for DL model used in §5.2. 

We have also used the form from Donnachie and Landsho:ff (1986): 

(B.10) 

(B.ll) 
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2,\ ( ) aR(0)-1 [!00 

ARP(s, t) =- 2is~(3,B)4 e-if !!._ (A± iB) bdbJ0(bvCi) 
l67r so 

0 

0 

x {j dt'[Fl(t')rea'p(Iog1Q-if)t'} 

-oo 

0 

X { 1 dt' [FI(t')J' e"~(log :, -if)t'} l 
-oo 

where F1 (t) is given by (5.2.3) 

(B.13) 

By analogy with the 3-gluon calculation we also have for the triple-Pomeron exchange 

term: 

(B.14) 

and a similar form for Pomeron-two-gluon exchange. These can be calculated for 

0:' 8 ~ 0.3, but unlike the 3-gluon term must be separately evaluated at each energy. 
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Appexullh.: C 

Details of the GlLN modleX parameh-iizatlion and! parameter vaRllles. 

This parametrization is described in Gauron and Nicolescu (1986). The two terms 

important at asymptotic energies, the Froissaron and Odderon, are given by 

(C.1) 

(C.2) 

where s =se-q:. and f = ..;=llogs. We evaluated the complex Bessel functions to an 

accuracy of one part in 10-6 using the series expansion (A.9). 

The Pomeron and Pomeron cut contributions are given by 

( ) 
f3p eapt ( -i.l!. )ap(t) 

AP 8
' t =- 0.3893 sin fap(t) e 

2 8 

o/ 
where ap(t) = 1 + a~t and ct 2 p(t) = 1 + Tt. 

The Reggeon contributions are given by 

( ) ( 
-i1L )a,(t) 

A (s, t) = f3rrt t ea't e 2 s 
I 0.3893 sin ~at( t) 

and 

for 

The Reggeon-Pomeron cut terms are given by 
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pp 
pp 

(C.3) 

(C.4) 

(C.5) 

(C.6) 

(C.7) 



where Xn = ~· for R = f and anp(t) = O:np(O) + ~n_;~ . These Regge-Pomeron 
1 W OIR Olp 

cuts are treated as effectively describing the low energy cut effects, their intercepts are 

treated as free parameters. 

A low energy, exchange degenerate, secondary Regge term is also included with the 

form (C.5) and (C.6) and 

(C.8) 

The parameter values used in the above fits are given in table C.1 . 

F1 0.29 mb 01 0.031 mb f3p 29.4mb 

F2 -1.70mb 02 -0.30 mb ap 3.37 GeV-2 

Fa 8.47 mb Oa 0.22 mb /32P 1.69mb 

b+ 
1 4.25 GeV-2 b-

1 7.02 GeV-2 a2P 0.72 GeV-2 

b+ 
2 5.40 GeV-2 b-

2 2.10 GeV- 2 a:ii(O) -0.21 

b+ 
3 6.01 GeV- 2 b-

3 0.98 GeV-2 
f3ii 35.8mb 

R+ 0.43 GeV-1 R_ 0.13 GeV-1 aii 0.38 GeV2 

a:J(O) 0.54 f3J 48.8mb a! 0.011 GeV-2 

aw(O) 0.41 f3w 38.5mb aw 1.84 GeV-2 

O:Jp(O) -0.19 f3Jp 4252.5 mb afP 2.93 GeV-2 

O:wp(O) -0.60 f3wP 937.4 mb awP 0.60 GeV-2 

a:' p 0.25 GeV-2 a:' R 
0.88 GeV-2 O:np 0.19 GeV-2 

TABLE C.l Parameter values for GLN model used in §5.3. 

241 



C.W.Akerlof et al, Phys. Rev., 2864 (1976) 

M.G.Albrow et al, Nucl. Phys., BlOB, 1 (1976) 

U.Amaldi et al, Phys. Letters, 43B, 231 {1973a) 

U.Amaldi et al, Phys. Letters, 44B, 112 {1973b) 

U.Amaldi et al, Phys. Letters, 66B, 390 (1977) 

U.Amaldi et al, Nucl. Phys., B145, 367 (1978) 

U.Amaldi, K.Schubert, Nucl. Phys., B166, 301 (1980) 

I.Ambats et al, Phys. Rev., D9, 1179 (1974) 

M.Ambrosio et al, Phys. Letters, 115B, 495 {1982) 

S.Amendolia it et al, Phys. Letters, 44B, 119 (1973) 

N.Amos el al, Nucl. Phys. B262, 689 (1985) 

R.C.Arnold, Phys. Rev., 140B, 1022 {1965) 

S.H.Aronson, G.H.Bock, Phys. Rev., D28, 476 (1983) 

Z.Asa'd et al, Nucl. Phys., B255, 273 {1985) 

D.S.Ayres et al, Phys. Rev., D15, 3105 (1977) 

M.Baig, Z. Physik, C28, 563 (1985) 

M.Baig, J.Bartels, J.W.Dash, Nucl. Phys., B237, 502 (1984a) 

M.Baig, C.Bourrely, Comp. Phys. Comm., 32, 281 {1984b) 

L.Baksay et al, Nucl. Phys., B141, 1 (1978) 

R.Baltrusaitis et al, Phys. Rev. Letters, 52, 1380 (1984) 

G.Barbiellini et al, it Phys. Letters, 39B, 363 {1972) 

D.Bernard et al, Phys. Letters, B179, 142 (1986) 

D.Bernard et al, CERN EP/87-147 {1987) 

D.Bernard, P.Gauron, B.Nicolescu, IPNO/TH,87-59 (1987) 

M.M.Block, R.N.Cahn, Rev. Mod. Phys., 57, 563 (1985) 

M.M.Block, R.N.Cahn, , {1987) 

A.Bohm et al, Phys. Letters, 49B, 491 {1974) 

M.Bozzo et al, Phys. Letters, 147B, 385 (1984) 

M.Bozzo et al, Phys. Letters, 155B, 197 (1985) 

C.Bourrely, J .Soffer, T.T.Wu, Phys. Rev., D19, 3249 (1979) 

C.Bourrely, J.Soffer, T.T.Wu, Nucl. Phys., B247, 15 (1984) 

A.Breakstone et al, Nucl. Phys., B248, 223 {1984) 

242 



A.Breakstone et al, Phys. Rev. Letters, 54, 2180 {1985) 

S.J.Brodsky, G.Farrar, Phys. Rev. Letters, 31, 1153 {1973) 

J.Bronzan, G.Kane, U.Sukhatme, Phys. Letters, 49B, 272 {1974) 

G.Carboni et al, Nucl. Phys., B254, 697 (1985) 

J.L.Cardy, it Phys. Letters, 67B, 97 (1977) 

A.S.Carroll et al, Phys. Letters, 61B, 303 {1976) 

A.S.Carroll et al, Phys. Letters, SOB, 423 {1979) 

M.ICCarter, P.D.B.Collins, M.R.Walley, RAL preprint, (1985) 

H.Cheng, T.T.Wu, Phys. Rev. Letters, 24, 1456 {1970) 

C.B.Chiu, J .Finkelstein, Phys. Letters, 27B, 510 {1968) 

T.Chou, C.N.Yang, Phys. Rev. Letters, 20, 1213 {1968) 

T.Chou, C.N.Yang, Phys. Rev., 170, 1591 {1970) 

P.D.B.Collins, Introduction to Regge theory and high energy physics, (1977) 

P.D.B.Collins, Proc. of the Blois workshop on Elastic and Diffractive Scattering, (1985) 

P.D.B.Collins, A.Fitton, Nucl. Phys., B91, 332 {1975) 

P.D.B.Collins, F.Gault, Nucl. Phys., B113, 34 (1976) 

P.D.B.Collins, F.Gault, Phys. Letters, 73B, 330 (1978) 

P.D.B.Collins, F.Gault, A.Martin, Nucl. Phys., B80, 135 (1974a) 

P.D.B.Collins, F.Gault, A.Martin, Nucl. Phys., B83, 241 (1974b) 

P.D.B.Collins, F.Gault, A.Martin, Nucl. Phys., B85, 141 (1975) 

P.D.B.Collins, F.Gault, A.Wright, J. Phys.G: Nucl. Phys., 4, 471 (1978) 

P.D.B.Collins, P.Kearney, Z. Physik, C22, 277 (1984) 

P.D.B.Collins, A.D.Martin, Hadron Interactions, (1984) 

P.D.B.Collins, A. Wright, J. Phys. G: Nucl. Phys., 4, 1223 {1978) 

S.Denisov et al, Nucl. Phys., B65, 1 (1973) 

A.Donnachie, Proc. of the Blois workshop on Elastic and Diffractive Scattering, (1985) 

A.Donnachie, P.V.Landshoff, Z. Physik, C2, 55 (1979) 

A.Donnachie, P.V.Landshoff, Phys. Letters, B123, 345 (1983) 

A.Donnachie, P.V.Landshoff, Nucl. Phys., B231, 189 (1984a) 

A.Donnachie, P.V.Landshoff, Nucl. Phys., B267, 690 (1986) 

S.Erhan et al, Phys. Letters, 152B, 131 (1985) 

W.Faissler et al, Phys. Rev., D23, 33 (1981) 

G.R.Farrar; C.C.Wu,Nucl. Ph-ys., B85, 50 (1975) 

T.Fearnley, CERN EP /85-137 (1985) 

243 



G.Fidecaro et al, Phys. Letters, 76B, 369 (1978) 

K.J .Foley et al, Phys. Rev. Letters, 19, 857 (1967) 

K.J.Foley, BNL 37466 (1985) 

S.Frautschi, B.Margolis, Nuovo Cimento, 56A, 1155 (1968) 

vV.Galbraith et al, Phys. Rev., 138, B193 (1965) 

P.Gauron, B.Nicolescu, Phys. Letters, 124B, 429 (1983) 

P.Gauron, B.Nicolescu, Phys. Rev. Letters, 52, 1952 (1984a) 

P.Gauron, B.Nicolescu, Phys. Letters, 143B, 253 (1984b) 

P.Gauron, E.Leader, B.Nicolescu, Phys. Rev. Letters, 54, 2656, (1985a) 

P.Gauron, E.Leader, B.Nicolescu, Phys. Rev. Letters, 55, 639 (1985b) 

P.Gauron, E.Leader, B.Nicolescu, IPNO/TH, 86-55 (1986) 

I.S.Gradshteyn, I.M.Ryzhik, Table of Integrals, Series and Products, (1980) 

T.Hara et al, Phys. Rev. Letters, 50, 2058 (1983) 

D.J.Harrison, A.C.Irving, A.D.Martin, Comp. Phys. Comm., 5, 153 (1973) 

R.Hendrick et al, Phys. Rev., Dll, 536 (1975) 

R.Henzi, Proc. of the Blois workshop on Elastic and Diffractive Scattering, (1985) 

R.Henzi, P.Valin, Nucl. Phys., B148, 513 (1979) 

R.Henzi, P.Valin, Phys. Letters, 132B, 443 (1983) 

R.Henzi, P.Valin, Phys. Letters, 160B, 167 (1985) 

D.Joynson, E.Leader, B.Nicolescu, fl Nuovo Cimento, 30A, 345 (1975) 

K.Kang, B.Nicolescu, Phys. Rev., Dll, 2461 (1975) 

B.Kopeliovich ,N.Nikolaev, I.Potashnikova, JINR E2-86-125 (1986) 

N.Kwak et al, it Phys. Letters, 58B, 233 (1975) 

P.V.Landshoff, Phys. Rev., D10, 1024 (1974) 

P.V.Landshoff, Proc. of the Blois workshop on Elastic and Diffractive Scattering, 

(1985) 

P.V.Landshoff, D.J .Pritchard, Z. Physik, C6, 69 (1980) 

J.Linsley, Lettere al Nuovo Cimento, 42,403 (1985) 

L.Lukaszuk, B.Nicolescu, Lettere al Nuovo Cimento, 8, 405 (1973) 

A.Martin, Proc. of the Blois workshop on Elastic and Diffractive Scattering, (1985) 

M.Moshe, Phys. Rep., 37C, 255 (1978) 

E.Nagy et al, it Nucl. Phys., B150, 221 (1979) 

C.P::~.ja.res; A.Va.ria""' P.Yepes, Z. Physik, Cl9, 89 (1983) 

S.Roy, V.Singh, Phys. Letters, 32B, 50 (1970) 

244 



R.Rubinstein et al, it Phys. Rev., D30, 1413 (1984) 

J.G.Rushbrooke, CERN EP/85-124 (1985) 

K.R.Schubert, Landolt-Bornstein, New Series, Vol.1/9a, (1979) 

U.Sukhatme, Phys. Rev. Letters, 38, 124 (1977) 

G.Veneziano, Nuovo Cimento, 57 A, 190 (1968) 

A.White, Proc. of the Blois workshop on Elastic and Diffractive Scattering, (1985) 

245 




