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EFFECTS OF HIGH CARRIER CONCENTRATIONS ON SOME OPTICAL

PROPERTIES OF SEMICONDUCTORS

by
G. Childs
ABSTRACT

Many semiconductor devices, such as heterostructure lasers and silicon
bipolar transistors, require large concentrations of free carriers in the
conduction and/or valence band of an active region. Under these conditions
the band gap of the material is reduced by the many-body interactions of the
carrier gas. The band gap narrowing results from a lowering of the con-

duction and raising of the valence band edge energies and is evaluated for

: 17 22 -3 . .
a range of carrier concentrations. (10 ~ 10 cm ) in p~type Si and
- - A A P
p- and n-type GahAs, Gao'47 Ino.53 s and Gao.28 Ino.72 SO.6 0.4 at
T = OK. A plasmon-pole approximation for the carrier gas dielectric

function is used in the calculations. For all these materials, the largest
energy shift occurs in the band containing the free carriers.

For comparison the band edge shifts in all four materials are evaluated

at finite temperature (300 K). The band gap narrowing at finite and zero
temperatures differ notably only for low carrier concentrations (e.g.

19 -
p <5 x 10 cm 3 in p-type Si) where the thermal excitation of the

carriers reduces their screening effect so producing smaller band gap
reduction.

High hole concentrations also lead to increased optical losses in semi-
conductor lasers due to intervalence band absorption (IVBA) transitions.
These losses, which are considered to be partially responsible for the temper-
ature dependence of threshold current densities in some semiconductor lasers,
are evaluated in bulk laser materials using a pseudopotential bandstructure
model. The temperature dependencies of the IVBA coefficients in

GaAs, Ga In As and Ga I are shown to be

0.47 T™o.53 0.28 ™Mo.72 *%0.6 Fo.4
either small or the coefficients themselves are negligible.

A

Intervalence band absorption is also calculated for a 100/200 Ao

GaAs/Gao'7 ARO.3

bandstructure is determined using a variational k<p approach. The wave-

As quantum well laser structure for which the electronic

length dependence of the IVBA coefficients differs notably from corres-
ponding results derived using simpler effective mass and pseudopotential
models. In particular the 532. model gives significant contributions to

the total loss, from certain 'forbidden' transitions.
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CHAPTER 1

INTRODUCTION

1.0. Preliminary Discussion

The operation of many semiconductor devices is based on large concen-
trations of carriers in the conduction and/or valence bands of an active
region in the device. These high carrier concentrations can be produced
by processes such as current injection (used in semiconductor lasers
(Casey and Panish (1978)), and by heavy doping which is used in bipolar
transistors (Sze (1981)).

The presence of these large carrier concentrations, greatly in excess
of that found in an intrinsic semiconductor, affects some of the funda-
mental optical and electrical properties of the material. Two such effects
of particular importance are the narrowing of the fundamental semiconductor
band gap produced by electrons and/or holes and the increase in optical
absorption over a range of wavelengths due to the inter-valence band trans-
itions occuring when large hole concentrations are present.

In view of the possible influence of these effects on device perform-
ance, the dependence of band gap nafrowing and intervalence band absorption
IVBA) on carrier concentration.(and other parameters) has been studied.

The various models used and results derived from the calculations form the
basis of the work in this thesis.

As the two effects are coécerned with separate physical processes the
thesis is essentially divided into two parts. Chapters 2-4 are concerned
with the band gap narrowing effects while Chapter 5-7 consider inter-
valence band absoprtion and different bandstructure models in which it is

calculated.




1.1. Band Gap Narrowing

In this thesis particular emphasis is given to the changes in the
energies of the band edges produced by p-type doping. However, the band
gap narrowing for several n-type materials is also evaluated and is
designed to complement the similar work by Saunderson (1983) on n-type
Si. The analysis is also extended to the evaluation of the band gap
narrowing produced by the introduction of an electron-hole plasma (which
could be achieved for example by current injection or optical excitation).

For the purposes of the present work a heavily doped semiconductor is
defined as one in which the concentration of dopant atoms is sufficiently
high that the impurity band and adjacent host band have merged to produce
a single band similar to the original host band with a large concentration
of free carriers.

A heavily doped uncompensated semiconductor contains a large concentra-
tion of free carriers and an equal concentration of impurity ions both of
which perturb the energy states of the carriers in such a way as to cause a
reduction in the fundamental band gap. The Coulombic interaction between
free carriers and the ionised dopant atoms provides significant perturbations
of carrier wavefunctions and gnergies and has been discussed in some detail
by several authors (see for example Halperin and Lax (1966), Serre and
Ghazali (1983)). However, these impurity effects are not considered in the
present work, the emphasis instead being placed on the changes induced by
the many~body electron-electron interactions. It should be noted that the
model is also applicable to semiconductors containing carriers introduced by
means other than heavy doping, such as electrical injection or optical
excitation.

As the free carrier concentration is increased two effects act to alter

the energies of the electronic states in the semiconductox; (a) an



electron's interactions with the other electrons in the semiconductor is
screened by the free carrier gas(es), (b) the number of electrons with
which an electron interacts is changed by the introduction of free
carriers. Both of these effects act to shift the energies of states in

the conduction and valence bhands and the nett shifts generally produce a
narrowing of the fundamental band gap. The evaluation of the concentration
dependence of these shifts for states at the band edge at temperatures

T = OK and 300K forms the basis of the work in Chapters3 and 4. The
relevant expressions used in these calculations together with a discussion
of the basic concepts is given in Chapter 2.

The materials for which the energy shifts are derived are chosen on the
basis of their use in devices operating under conditions of high carrier
concentrations. The band gap narrowing is therefore evaluated in silicon
which is used in heavily doped bipolar transistors and in the 3-5 compound
used

and alloy materials GaAs, and Ga

Gag 4710, 53PS 0.28™0.72%%0.650.4

in heterostructure lasers.

1.2, Intervalence Band Absorption

\

Intervalence band absorption (IVBA) is an optical loss mechanism in
which photons are absorbed by excitation of electrons from low energy
- valence band states to states occupied by holes higher in the valence band.
Bbsorpt:ion due to these transitions becomes more significant as the
valence band hole population is increased. Several workers have suggested
that IVBA 1is partly or largely responsible for the exponential temperature

dependence of the threshold current density (J x exp (T/TO)) in long

th

wavelength double heterostructure (DH) lasers (see for example Adams et al
(1980)). The concentration, wavelength and temperature dependence of the
IVBA coefficients are therefore evaluated in the materials GaAs,

In allg Ga 11 s P C Ol y used i thes laser
GaO.47“10.53AS and UdO.28LLO.72A=O.6 0.4 commonly used in these laser

structures. The physical model used and the results of the calculations.

are given in Chapter 5.



Quantum well lasers also exhibit an exponential temperature dependence
of the threshold current density (Chin (1980). However a larger To
value makes this dependence less pronounced than that found in bulk DH
lasers. This temperature dependence is largely attributed to loss
mechanisms such as Auger recombination (Dutta (1983)) with IVBA providing
only a small contribution. However IVBA can still be an important
intrinsic loss mechanism in these structures and a model for the evaluation
of these absorption coefficients is presented in Chapter 7.

In a quantum well structure the restriction of carrier motion perpen-
dicular to the well creates new energy states (sub-bands) for the carriers.
The energy-wavevector dispéfsion rel;tions for these sub-bands are of
crucial importance in any realistic derivation of IVBA losses. A model
(based on a modified k.p approach) for the derivation of the sub-band
structure and relevant momentum matrix elements is presented in Chapter 6

together with the corresponding results derived for a GaAs/Ga 1

0.7%% 0. 308y

100/ 200 & quantum well structure. The bandstructure derived in this
model was however limited by computer time and complexities in the calcula-
tion to regions close to the sub-band edges. IVBA coefficients for trans-
itions at lasing wavelengths therefore could not be determined for Gaas.
However, the model could be extended for use in alloy materials in which
these transitions occur near the band edge and provide more important con-
tributions to the optical loss.

The wavelength dependence of absorption coefficients derived in the
k.p model is given in Chapter 7 and compared with the corresponding results
derived using simple effective mass and pseudopotential sub-bandstructures.
These latter models are easily extended to the derivation of 1IVBA losses
at shorter wavelengths (higher energy transtions) and are therefore used to
evaluate the concentration and temperature dependence of the absorption

coefficients at several different wavelengths.



CHAPTER 2

ELECTRON-ELECTRON SELF ENERGY

2.0. Introduction

A brief discussion was given in Chapter 1 of the band gap narrowing
effects produced by the introduction of large concentrations of carriers
into the conduction and/or valence bands of a semiconductor. The shifts
in the host band edges which produce the band gap narrowing, can be
explained in terms of changes in the many-body (electron-electron) inter-
actions of a band edge electron. This chapter introduces the concept
of the self energy of an electron due to its many-body interactions and
provides the background material for the detailed calculations in the
next two chapters. A Feynman diagrammatic approach is used initially
to derive an expression for the self energy of a state k 1in a metal.
The modifications required to make the theory appropriate to a semi-
conductor are then considered, with particular emphasis on the form of
the hole gas dielectric function occurring in a heavily doped p-type
semiconductor (comparison can then be made with the corresponding{work
on n-type Si by Saunderson (1983)). Two possible theoretical
expressions for this dielectric response are compared and their ease
of use in analytic calculations is considered. However, before examin-
ing the self energy concept, the materials for which the band edge
shifts are to be evaluated and some basic parameters based on their band

structure are discussed.

2.1l. Semiconductors Considered and Their Electronic Bandstructure

The introduction of high carrier concentrations into the conduction
or valence bands of a semiconductor causes a narrowing of the fundamental

band gap Eg. This change in band gap correspondingly causes changes



in the optical emission and absorption spectra of the material, which

in a lasing material may modify its operational wavelength. With

this consideration in mind the band gap narrowing in two alloy materials
used in semiconductor lasers for optical fibre communcation

G

As (A = 1.6 um) and Ga (A = 1.3 um)

25.471M0.53 0.281"0.72"%0.6%0.4

is evaluated. Band gap narrowing in the important prototype material
GahAs (A = 0.87 uym) 1is also determined.

In addition, band gap changes affect the current gain in silicon
bipolar transistors. The band gap narrowing in p-type silicon is thus
evaluated and compared with the results of Saunderson (1983) for n-type
Si.

All four chosen materials have a similar valence band structure
which for simplicity is taken to consist of parabolic, isotropic,heavy
(HH) and light hole (LH) bands (of masses mH and mL respectively),
degenerate at the Brillouin zone centre (I'-point) with a similarly
parabolic, isotropic, spin split off (SS) band (mass mS) separated
from these bands by the spin splitting energy A. A valence band

density of states effective mass is defined in the usual way by

n = @32, 532,273

Dv H L (2.1) .

The three gallium based materials all have a direct energy gap at

k= O and a single lowest conduction band minimum which is taken to be
isotropic with a density of states effective mass mDe. In contrast
the band gap of silicon is indirect, the lower part of the conduction
band consisting of six valleys formed some 85% of the way from the
Brillouin zone centre (') to the zone edges (X) along each of the
six [100] directions. The constant energy surfaces of these valleys
are not isotropic but near to the band edge may be approximated by

ellipsoids characterized by a longitudinal (parallel to the appropriate



{lo0] direction) mass m2(= 0.98 mo) and two transverse masses

mt (= 0.18 mo). For each valley i we can define a new set of axes
(k',k',k') with origin at the ellipsoid centre k. and with the
"=y '=2z 1

k; axis orientated longitudinally. The energy of a state

k = (kx, ky, kz) in that valley is then given by

h2 k;2 (k'2 + k'2)
E=E + = + —X z (2.2)
c 2 m m
] t
where k' =k -k, etc.
= - =ix

The ellipsoidal form of equation (2.2) would present many difficulties
in the self energy analysis and hence for each valley the energy-
wavevector relation is approximated by

'52 K2

S

(2.3)

where My is the density of states effective mass given by
2.1/3 .
mDe = (mgmt) . The values of effective masses and the other parameters

used in the present calculation are given in Appendix 1.

2.2. Introduction to the Theory of Heavy Doping in Semiconductors

This section contains a preliminary discussion of the effects of
adding large concentrations of dopants to otherwise pure semiconductors,
a process often used to reduce the size of the depletion region in p-n
junction devices.

The dopants of interest in the present work are shallow donors or
acceptors - that is they produce energy levels close to the band edges
of the host material, e.g. phosphorous in Si. For a single shallow
impurity state with a loosely bound electron or hole the carrier wave

function is assumed to be of the hydrogenic form



exp(-r/af)
¢ (r) = 12 (2.4)

(ﬂa?

where af is the effective Bohr radius given by,

2
h4ne € h24ﬂ€ € € a
or 0'r r G
a_. = = — = {2.5)
£ m 2 m*m e2 m*
o° D o D

1.e. the normal hydrogenic Bohr radius a is modified by the static
relative pexmittivity of the host material er and the density of states

effective mass mD (m_ = m*m of the relevant host band.

D Do)
The corresponding binding energy is given by
4

m e
D

= —— (2.06) .
th(4ne € )2
or

E
B

The impurity concentration N is often expressed in the form of the
. . 1/3 . . . ,
dimensionless parameter N 73 (= Bohr radius/impurity separation)
because this is a convenient way of comparing doping levels in materials
with different effective masses and relative permittivities. A related

parameter r_ much used in many body theory is defined as the ratio of

the carrier spacing to theeffective Bohr radius

‘ _[_3}1/3 1. 062 (2.7)
s 47 Nl/3af Nl/Baf

The approximations implicit in the above expressions are that the host
band has a single isotropicvalley with a simple effective mass and a
Coulombic impurity potential with an absence of chemical effects; that
is independent of the type of dopant used.

At low dopant concentrations the impurities are well separated in
the host semiconductor and the hydrogencnic like states are well localised

around the impurity cores. As the dopant concentration increases the



random distribution of impurities and the decreasing impurity-impurity
separation results in a significant overlap of wave functions from two
or more impurities. The resulting coupling of the impurity states leads
to wave functions that extend over larger and larger regions of space.

In uncompensated materials at higher concentrations, e.g.
N1/3

af x 0.25 - 0.33 (rS = 2.5 -1.88) (Mott (1974)) states have
finite amplitude throughout the system, i.e. are completely delocalised,
and metallic like conduction occurs in the impurity states. The con-
centration at which this transition from insulator to 'metal' occurs is
called the Mott critical density Nc'

It has generally been accepted that as the dopant concentration
increases the splitting of the impurity levels forms an impurity band
which is initially separate from the host band edge but merges with it
on increasing the concentration. However, recent work by Mott and Kaveh
(1983) and others, indicates that there is no real evidence for the
existence of a separate impurity band and there is a discontinuous trans-
ition between the existence of localised states close to the host band
edge and metallic conduction occurring in the host bands. These argu-
ments however do not affect the present wqfk for which the Mott critical
density represents a lower . bound to the rénge.of concentrations of
interest. The calculations in this thesis are concerned with the high
density regime where the delocalised states are in the host band and
r, s 2.5 (Nl/3af 2 0.25). In this case the large density of
carriers occupying the host band fill states up to the Fermi level (at
T = OK) and the carrier gas is degenerate. The interaction between

electrons is then represented by a screened Coulomb potential of the

form

v = T (2.9)



10

where K 1s the Thomas Fermi (T.F.) wavevector defined for electrons

in n-type material as;

M2/3m e2(3n2n)l/3
De

K" = (2.10)
n%ﬁee
r’o

{(n being the elctron concentration and M the number of conduction

band valleys) and in p-type material as
2 2 .1/3
5 m, € (31 p)

K = (2.10a)
rh%e e
r o

where p 1is the hole concentration.
If both conduction and valence bands are occupied by an electron-

hole plasma the T.F. wavevector is defined as:

K2 = K2 (electrons) + K2 (holes) . (2.11)

The Fermi level Ef in the conduction and valence bands can be

described in terms of another useful parameter, the Fermi wavevector

k_. For electrons this is defined as

f
3n2n H3
kfe = M (2.12)
'hzkge
and Efe = - (2.12a)
De

where if ™M > 1,k represents the Fermi wavevector in one valley.

fe

The corresponding expressions for holes are

_ 2 .1/3
ke, = 31°p) (2.13)
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2
W4,
and Efv = S (2.13a)
Dv

The concentration dependence of the inverse Fermi wavevector, T.F.
screening length A(= 1/K) and the effective Bohr radius for p-type
silicon are shown in Figure (2.1)

Having described the important features of the electronic band-
structure and defined some basic parameters a brief physical explanation

of the self energy concept is now given.

2.3. Self Energy - A Physical Description

In many areas of semiconductor physics carrier-carrier interactions
are tacitly ignored. However, in a semiconductor with a high con-
centration of free carriers the carrier-carrier interactions have been
shown to have an important influence on the electronic bandstructure.

A simple explanation of these interactions and their effects on the
physical properties of the material can be given in terms of the quasi
particle concept described below.

For definiteness consider an electron gas in the conduction band of
a semiconductor with uniform neutralizing, positive jellium type back-
ground. Choosing any one electron as a test particle, examination of
its motion through the 'gas' would show that it repels other electrons
in its vicinity producing a 'hole' around it in which the positive back-
ground charge is exposed. This 'hole' tends to neutralise the charge of
the test electron so effectively screening its interaction with other
electrons, resulting in a much weakened Coulombic repulsion. The
repulsion of electrons to create the initial ‘hole' is clearly a dynamic
situation as electrons are continually scattered in and out of the region
of space near the test electron, and in addition the test particle must
be scattered in and out of the 'holes' of other particles. The test

particle with its surrounding hole is called a quasi particle and it
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is a useful concept when its interaction with other quasi particles is
weak.
The interaction of the test particle on the surrounding carrier
gas which in turn reacts on the test particle causes a contribution
to the energy of the quasi particle, which is called the self energy.
It is changes in the real part of this self energy brought about through
heavy doping, carrier injection or optical excitation which produce
energy shifts in the bands and changes in the semiconductor band gap.,
the carrier concentration dependence of which is evaluated in Chapter 3.
As the quasi particles interact with each other and their environment
they have a finite lifetime which is defined by the imaginary part of the
self energy. This imaginary parf is manifested by a broadening of the
quasi particle energy levels and is normally much smaller than the real
part. The work in this thesis is concerned only with the real part of
the self energy and the energy broadening effects are not considered.
Although all calculations in the present work are for band edge
states, energy shifts for other states away from the band edge have been
shown in various simplified models (Abram et al 1978 (using the T.F.
screening approximation), Rice (1974) and Inkson (1984) for metals) to
be approximately the same. The recent work of Sernelius (1986) indi-
cates the difference in energy shift between states at the band edge and
the Fermi level is larger than that derived in the simple models.
However, for electron-electron interactions these changes are still
small. The shift variation with state that does occur causes a distortion
of the E - k dispersion relation and modifies the quasi particle effective
mass. However, for the present work these changes are ignored and the
host bands are considered to shift rigidly for k-values close to the

band edge.
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2.4. Self Energy Expression - A Diagrammatic Interpretation

The derivation of the self energy of a state in the conduction or
valence band of a semiconductor, closely follows that for a high
density electron gas in a metal. Hence the well documented procedure
(see for example Mattuck 1976) for obtaining the self energy of an
electron in a metal using a Feymman (1949) diagrammatic analysis is
reviewed first. The changes required to derive the appropriate
expression for a semiconductor are discussed in section 2.5.

The single particle propagator or Green's function for a quasi
particle in a high density electron gas can be expressed as a sum over

all repetitions of all irreducible self-energy parts, which for diagrams

in (k,w) space is:

X

”\/\/‘A’O (2.14)

R

(2.15)
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¥

where single lines represent the single free particle propagator or
Green's function, double lines represent the quasi particle propagator,
and wiggly lines represent the unscreened interaction (—iVO% between

two particles. The self energy (:) is then given by:

@ ~ o~ )+ N E:@Jr—--@m

The above expressions for the self energy and propagator are indicated
as being approximate due to the omission of factors such as vertex
corrections (see Chapter 11, Mattuck 1976).

The Dyson equation (2.16) can be expressed algebraically as:

Gk, w) = L (2.18)

[6° (k0T -2 (k) /B

where GO(EJN) is the free particle propagator or Green's function for
an electron in state Kk, G(k,w) 1is the quasi particle propagator or
total Green's function and I(k,w) is the self energy of state k.
The free particle propagator is defined as:
o
6 (k,w) = L . (2.19)

- w—mk+lésgn(hmk45wf)

where ﬁwk is the energy of state k the value of which with reséect

to the Fermi energy hw determines the sign of the complex infinitesi-

£
mal i§.

The quasi particle propagator thus has the same form as the free

particle Green's function but with a modified energy 'Ewk + Z(k,w)
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rather than 'hwk. In general the self energy is a complex term where
the imaginary part defines the quasi particle lifetime 1 or energy
broadening AE = H/1 of the state k, and the real part defines the

quasi particle energy, i.e.

B ="ﬁu}i + RelZ(k,)] (2.20)

The Dyson equation (2.16) can also be expressed in its more

general form through algebraic manipulation as:

= % — % X A =
@< ©

I
+

= = x@x

(2.21)

The first term in expression , (2.17) the bubble diagram, represents
the average electron-electron interaction which cancels with the positive
jellium background and therefore can be removed from the diagram sum.

Of the remaining terms only the most divergent of the irreducible polar-
isation parts in (2.17) are considered to be important. These dominant

terms in the self energy series then give

® =< T

(2.22)
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That is, the only remaining diagrams are the first order exchange
diagram and the infinite series of pair-bubble diagrams. The partial
sum (so called because many terms are now omitted) over repeated pair-
bubble diagrams, is the Random Phase Approximation (RPA) for the self
energy. Factoring out a free propagator from each diagram in

equation (2.22) gives:

(::::> ~ NERAAAN =

where

(2.24) .

The double wiggle in equations (2.23) and (2.24) is the effective inter-

(2.23)

action calculated in the RPA and is essentially the screened interaction
(—iveff(RPA)) between two particles.

Expression (2.24) can be factorised as:

-1V
s _ ANAA ’V‘fb«A'_ 09
Wegeg = " = 1 = l+iVo§ (2.25)

As will be seen in more detail in section 2.6 the denominator in

equation (2.25) represents the dielectric function of the electron gas,.
Using expression (2.23) and the diagrammatic rules given by

Mattuck (1976) the general self energy expression in the random phase

approximation is written as:



17

J[iGo(}_c__—g_,w—v)][-iveff(g_,v)]e_iv6 d33_dv (2.26)

-il(k,w) =
- (211)4

where a sum over spin states is included, § 1is a positive infinites-
imal and the exponential factor conserves causality. This final
expression can now be used as a basis for the derivation of the self

energy of a conduction or valence band state in a semiconductor.

2.5, Self Energy in a Semiconductor

The analysis in the previous section related to a high density
electron gas and can be applied directly to a simple free electron model
of a metal. However, iﬁ‘a semiconductor we must take account of the
fact that electrons exist in several bands, and holes can occupy over-
lapping valence bands. To be able to incorporate these factors into
the self energy calculation we revert to the spatially dependent form
of expression (2.26) in which the semiconductor bandstructure is
included through the appropriate Bloch wave functions and effective
masses, in the Green's function and effective interaction Veff'
Fourier transformation of both sides of equation (2.26) gives the

spatially dependent self energy operator:

Z(r,r',w) = §%~[ GO(EJEJ,w—V)Veff(EJEf,v)e_ivs dv . (2.27) .
To determine the energy shifts induced by adding carriers to the

conduction or valence bands we need to evaluate the expectation value

of the real part of the self energy operator I(r,r',w) £for these

bands, for both doped and intrinsic material. The following deriva-

tion of appropriate expressions for these energy shifts and the sub-

sequent determination of the dielectric function is essentially the

same as the analysis used in the paper by Abram et al (1984).



18

If the expectation value of I(r,r',w) for band n at wave-
z
vector k is En(E) then the shift of the state n,k upon doping

is given by:

L X
AER (k) = RelE (k)] - RelE_ (k)] (2.28)
n — n — n - . . s
doped intrinsic
and the resulting band gap narrowing is determined by shifts in the

conduction and valence band edges:
AE_ = AES (k) AEZ (k) (2.29)
g "¢ =co v '—vo :

where Eco and Evo represent the appropriate band edge states.

Ei(_) is evaluated using the expression (Hedin and Lundqvist, 1969).
Z = *. 1 t 1 ) A <

E_ (k) I ¢n£(_r_)2(1:_,£ w6 (x')dTr a7 (2.30)

n —

where the ¢nk(£) are the semiconductor Bloch functions for state k
in band n, and we have assumed the Bloch fuﬁctions do not change with
doping.  The self energy. operator is given by expression (2.27) in
which the spatially dependent'Green's function is derived from the

wavevector dependent free particle propagator as:

¢n.._k_.. (£)¢’*1"]i" (")

7 (r ' w-v) = % (2.31)

n"k" w—v

—wn"Eﬁ+1ésgn(hwn"Eﬁ4hwf)

and the dynamically screened Coulomb interaction is given by the Fourier

transform of the wavevector dependent expression (2.25) i.e.

VgL' ,v). = L ( (g,v)exp[igj(gjgf)]d3g_ (2.32) .

v
f
e (2“)3 ; eff
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The explicit derivation of V v) is given in section 2.6.

eff(gf
Substitution of expressions (2.31), (2.32) and (2.27) into (2.30)

gives:
' * woige (x-r')
T i q)g}i(_r_) ¢n‘)ﬁ_(£ )¢nll}ill (£)¢nn£n (£ )e
for o)
(2m) n"k' wn&fv‘wn"5f+ldsgn(hwn"gf;hwf)
-i8v 3 3 .3,
Veff(g,v)e dvd gd rd x (2.33)
which can be reduced to
BX (k) = —= H z Uq»* (x) ¢ e L Sl v __(q,v)
n - 4 - nk = "n"k" = = eff =
(2m) n"k' < =
e—iév 3
. d g av (2.34)
wnk_v—wn"]_c_"+165gn (hwn"_}i" hwf)

The squared factor involwving Bloch functions can also be simplified as
follows. For states normalised to the crystal volume { and Bloch
periodic parts normalised to the unit cell volume Q the Bloch

cell

functions are given by:

%11} 2 HRE
g%g)—( Q %%Eﬁ (2.35)
which gives
trr 30 feeqy 1k +g-k) - r 3
I¢§£f£)¢nuhﬁ(£)e dr = "—?f*'f uggﬂg)unugﬁ(g)e ErLTRICE g r
(2.36)

This expression is evaluated in Appendix 2 by expanding the Bloch
product in texms of reciprocal lattice vectors g and then retaining

only terms for which g = O on the assumption that contributions from
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terms with finite g values are very small. Expression (2.36) then

reduces to:

iger 3

=d°r = § (2.37)

I‘b;ji(_r_)q)nn}in (E_)e OIE_—]E_"-S_ In}—{_,nn}_{—u

where I is the overlap integral between the Bloch function

ni, n"k"

periodic parts:

T, i J u:uc(ﬁ)un"g"(£)d3£ (2.38) .

chll

Substitution of equation (2.37) into (2.34) and performing the sum over

k" gives:

-ivé .3
Veff(g!v)e d g av

L _ i
En(k) = [ L (2.39)

- om?* )

2
rﬂiln"li"ﬂ_' wnk—\)—wn“k_q+iésgn(’ﬁw q—hwf)

] n"k—

The explicit determination of the squared moduli of the overlap integrals

is now considered.

2.5.1. Evaluation of Bloch Function Overlap Integrals

The inter- and intréband overlap integrals between states k and
k' for the heavy and light hole valence bands have been derived for a
range of semiconductor materials by Wiley (1971), using wave functions
derived from Kane's (1957) four band k°p model. In this model the
conduction band states at the band edge have purely s-like symmetxy and
the valence band states have p-like symmetry. For states away from
the band edge the k- p perturbation mixes s and p Llike orbitals in
both conduction and valence bands and the overlap integrals are
determined by the coefficients of the different orbital symmetries at

the relevant values of k and k'.
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In the present analysis the evaluation of equation (2.39) for the
band edges requires k = 0 (corresponding to the band edge) and
k' =k - g with small g (as only small g values provide a signi-
ficant contribution to the integral in equation (2.39)). Under these
circumstances the expressions derived by Wiley and used in the present

analysis for the squared moduli of the valence band overlap integrals

are given by

— sin’@ n # n" where

n
alw

. 2
| Fri ko]

= HH or LH bands

2

1 2
~ — + = "
‘I n'k-q| = 4(1 3 cos’B) n = n" where

n,n" = HE or ILH bands

}Ilﬂim"}i_-glz = 0 n #n" where n = HE or LH

and n" 1is 8S$ band or vice-versa
(2.40a)

where 6 is the angle between k and k - g, HH, LH and SS are
the heavy hole, light hole and spin split-off bands respectively.

The angular dependence of these terms arises from the predominantly
p-like nature of the Bloch function period parts.

The corresponding overlap term for state k near the conduction
band edge is determined by the predominant s-like character of the
conduction band Bloch periodic part and its orthogonality to the Bloch
function period parts of other bands at the same k, thus

[l n" same conduction

2 L
IC§Jn"§ng = band minimum

0 n" all other bands (2.40b)
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These results from a simplified kep calculation are in excellent
agreement with pseudopotential bandstructure calculations of the same
quantities carried out by Brand (1984). The overlap integrals between
the spin split-off and the heavy and light hole valence bands in the
materials considered is only relevant in the case of silicon for which
the spin splitting energy A 1is relatively small (A : 0.045 eV)
resulting in occupancy of the spin split-off band for high hole
densities. The spin splitting energy of the other materials considered,
is too large for hole occupancy of this band (at T = OK) to occur.

To evaluate the integral equation (2.39) we must now derive an

explicit expression for the screened Coulomb term V (g,v) applicable

eff

to electron, hole or plasma screening gases.

2.6. Evaluation of the Dynamically Screened Coulomb Interaction

The Coulomb interaction between two electrons is given by

2
€
Vog(r) = 4"€Or (2.41)

In a semiconductor with an intrinsic dielectric constant Er the

interaction becomes

2
e
v = — 2.42
O(r) 4ne € r ( )
r o
Expressed in wavevector space this interaction is
2
V(@) = —— (2.43)
o'Z 2 )
€ofrd ’

where €, is taken to be independent of wavevector and frequency.
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In a heavily doped semiconductor with an electron or hole gas in
the relevant band, the Coulomb interaction is screened by the carrier
gas. The susceptibility of the carrier gas must therefore be added
to the intrinsic dielectric constant of the semiconductor to give a
wavevector and frequency dependent dielectric function € (g,v) which

converts the bare Coulomb interaction into the screened interaction

v Q) = ——~ (2.44) .

We thus need to determine the dielectric function e(g!v) for the

doped semiconductor.

2.6.1. Derivation of the Carrier Gas Dielectric Function

The form of equation (2.44) for a free electron gas has already

been introduced in equation (2.25) which was obtained by a diagrammatic

derivation. In equation (2.25) the effective interaction is given as:
v Vo
Ve (@) = g - > (2.45)
X
l+Vdg l+vogn (a,v)
or
Vog
= ——————— .4
Veff(gfv) e_(q,v) (2.467
g <
o

where eg(g!v) 1+ vogﬂ (g,v) 1is the dielectric function for a free
electron gas.

The pair-bubble diagram represents the polarisability-iﬂo(g!v) of
the electron gas to zeroth order, that is it represents the simplest
process showing the effects of correlation on the motion of a particle.

The pair-bubble term can be evaluated using the dictionary interpretation

of the free particle propagator (Mattuck 1976, Fetter and Walecka 1971).
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The resulting expression for eg(g,v) is the Lindhard dielectric
function for an electron gas, which can also be derived in the Random
Phase Approximation by perturbation theory (Wooten 1972, Ziman 1972).
The modifications necessary to convert the Lindhard expression for a
free electron gas to that appropriate for electrons in the conduction
band of a semiconductor amount to the replacement of the free electron
mass with the conduction band density of states effective mass mDe,
and the inclusion of the static dielectric constant ar in the bare
interaction temm, The corresponding expression for p-type materials
is however complicated by hole occupation of two (heavy and light hole)
and possible three (spin split-off) valence bands and also by the
resulting increase in the polarisability due to interband transitions.
The cémplexity of the resulting expression is increased further by the

angular dependence of the overlap integrals ( ) between the

Lok, noxe
Bloch function periodic parts of the heavy and light hole states as
shown in section 2.5.

A full derivation of the hole gas dielectric function incorporating
the above modifications is given by Bardyszewski (1986). However, it
has a very complicated algebraic form which makes its use in the energy
expression (2.39) prohibitive. An obvious simplification of the

Bardyszweskl expression can be made by approximating the valence band

to a single isotropic band with a density of states effective mass m

Dv
and an overlap between the Bloch periodic parts of unity. The resulting
Lindhard expression for the dielectric function (equation (2.47)) then

has the same form as that derived for the conduction band electron gas.

) K2 kfv[ Key (Eq—h (v+i8)) ke, (Eqm (v+id))
el{g,v) =1+ 2l+2f 5 + £ =
2q qL £yl fv

d

(2.47)
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where Efv is the Fermi energy, kfv is defined as
L2, 2
bk 21
fv L-x |(x+2)]
E,. = ——— and f(x) = { &n' (2.48) .
fv 2my 4 )7 (x-2)]

It is possible to use dielectric function expressions of the form of
equation (2.47) in the self energy calculation (see for example
Berggren and Sernelius (198l)) but the Lindhard form leads to a
cumbersome analysis. However, a useful and accurate approximation to
the inverse dielectric function of an electron gas has been used by
several authors (Lundgvist (1967 a,b), and Inkson (1984)) and it is
this plasmon pole approximation for both electron and hole gases in

a semiconductor which is described in the next section and used for

the evaluation of equation (2.39) in the present work.

2.6.2. The Plasmon Pole Approximation

The detailed derivation for the plasmon pole expression in n-type
silicon has been given by Saunderson (1983), but for clarity the basic
concepts (omitting much of the algebra) are given below.

Examination of expression (2.46) indicates that as e(gjv) -+ 0
the effective interaction Veff(g!v)+ ® that is the zeros in the Lindhard
dielectric function correspond to a self-exciting system in which the
mode of excitation is a plasma oscillation, that is a collective
oscillation of the carrier gas. In the plasmon pole approximation it
is assumed that the dominant response of the carrier gas to the field
of another carrier can be described in terms of plasmons (the quanta
of plasma oscillations). On this assumption the resulting expression
for the inverse dielectric function in the plasmon pole approximation
for a carrier gas in a single isotropic parabolic band is given by

(Hedin and Lundgvist (1969)).



26

2
w
-1 P 1 1
, = - - - 2.
(elg, V) 1+ T (le@m v‘—}ﬂul(g)—lél (2.49)

where

2 4
= -+ .
wl(q) wp agq” + bq (2.50)

wl(g) is the plasmon angular frequency expressed as a function of
wavevector ¢, and wp is the g = O plasmon angular frequency. In
fact the constants a and b 1in the second and third terms of the
plasmon dispersion relation ml(g) are normally chosen to get the
correct screening behaviour in certain limits. In the present cal-
culation the constant a 1is chosen to give the value of €{g,v)
predicted by the Thomas-Fermi (T.F) theoxry for v = O and g > O.

That is, a = w;/K2 where K takes the appropriate form of equations

(2.10) and (2.10a) for electrons and holes. Then
as g*o (2.51)

and substitution into (2.49) gives the T.F. approximation to the inverse

dielectric function

i ____P - g
s - L 5 (2.52)

The third term in the plasmon dispersion relation is quartic in gq and
gives an approximate representation of the effects of particle-hole
transitions - that is the single particle excitations that have hithertc
been ignored in the plasmon pole approximation. It is important for
obtaining the right sort of behaviour for E(ng)_l at large values of
q where the Thomas-Fermi theory becomes inadequate. The constant b
is thus chosen to make the guartic term have the form of a carrier

hq H

2

dispersion relation w = relevant to band n. Hence b = —=
nq 2m 2

n 4mn
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where mn is the density of states effective mass for a carrier in

band n. The plasmon dispersion relation is then given by:
2
2
0l = w1+ Y+ (2.53)
1 K2 nq

The above discussion and expressions (2.49) and (2.53) are based on
carriers in a single isotropic parabolic band. For electrons in the
single valley conduction band of the gallium based materials discussed
in section 2.1 this represents a good approximation and expressions

(2.49) and (2.53) can be applied without modification using:

=+

e}
N

N

Ne
w = and w = — (2.54)
cd 2mDe P Eoer e

and expressions (2.10/2.10a) for the T.F. screening wavevector with the
number of conduction band valleys M = 1.

In n-type Si however the electrons occupy six anisotropic con-
duction band valleys and a single parabolic conduction band model is
clearly inadequate. The simplest way to account for this difference in
bandstructure is to incorporate the band parameters into the plasmon
dispersion relation wl(g) and then use this relation in expression
(2.49) as before. The appropriate expressions for K and the density
of states effective mass have already been given in section 2.2. The
expression for the g = O plasmon angular frequency wp is derived
in Appendix 3 using a classical model based on equal populations of

electrons in each valley, and is given by:

2 ne2
wt = (2.55)
P € €m
o r ope
where n 1is the-electron concentration, and m is the electron

ope

optical mass defined as:
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Loz
ope t L

Allowing for the somewhat indefinite nature of the prefactor b for

the quartic q temm the density of states (rather than the optical)

effective mass is retained, i.e. Db =-—7Z—.
4m

De

As already discussed for p-type materials the holes occupy two
(heavy and light hole) and possibly three (spin split off band in the
case of Si) wvalence bands. The T.F. wavevector is given by
expression (2.10a) with the density of states effective mass defined
as equation (2.1). Note, the hole occupancy of the silicon spin
split off band will be discussed in the next chapter and for the
remainder of the present discussion is ignored.

The plasma frequency wp is modified to account for occupancy of

light and heavy hole bands by the expression

W’ = B (2.57)
P € g m
C r ov
where
m1/2 nl/2
LS H + L (2.57a)
m_ 3/2 , _3/2 3/2, 372 . .
H L H L

The above expression is derived in Appendix 3 using a classical cal-

culation, with the resulting mass term differing slightly from the hole

, 1 1 . .
optical mass — = 1 — + L . An equivalent expression is
m 2 |m m
oH H L
2 (p P
W S| B, L (2.58)
p € & (m m

o'r H L

where pH and pL are the concentrations of heavy and light holes

respectively. For the quartic term in the plasmon dispersion relation

2 2
the density of states effective mass is again used, i.e. Db =+h /4mDV
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For materials containing an electron-hole plasma, expression (2.11)
is used for the T.F. wavevector and a natural extension of the above

arguments gives (Appendix 3).
2 2 2

w_ = w (electrons) + w’ (holes) (2.59)
p P P

An average mass myy = (mH +m o+ mDe)/3 is used in the quartic term.
Using the approximations described above, the plasmon dispersion

relation wl(g) for a hole gas in the silicon valence band (for

p= lOZOcm—3) is drawn in Figure 2.2 together with the light and heavy

hole dispersion relations v = hqz/ZmH,L. The region (I) of q and Vv

for which single particle excitations are possible (that is the region

in which plasmon oscillations are damped) is also shown, with the

maximum vmax and minimum vmin energy values for these transitions

indicated.
v 2
max _ ¢ + 2q
va kgv kfv
(2.60)

vmln _ q2 _ 2q
Viv k2 Kgy

fv

A comparison of the real parts of the inverse dielectric functions
Re(e(g!v)—l) for n-type Si in the Lindhard and plasmon pole approx-
imations has been given by Saunderson (1983), Figures 2.3a and b, and
agreement between the two models is seen to be good. A corresponding
comparison for p-type silicon would involve a derivation of the Lindhard
function using the full complexity of the valence band structure and
incorporating the light-heavy hole interband transitions (Bardyszewski 1986).
This derivation however is somewhat lengthy and a simpler comparison can

be made using the single band approximation to the Lindhard function
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given in expression (2.47). As the plasmon pole equation (2.49) is
derived from a single band Lindhard expression, comparison of these
two models is more relevant to the present calculation, than use of the
full Lindhard expression. This comparison of the real parts of the
inverse dielectric functions is made in Figures 2.4 and 2.5 for a range
of g and corresponding VvV coupled by the heavy hole (Figure 2.4) and
light hole (Figure 2.5) band dispersion relation (i.e. Vv ='h%/mnH,L).
In Figure 2.4 the inverse dielectric function in the plasmon pole approx-
imation diverges at g = 3Efv where the heavy hole dispersion
v ='hc21/2mH coincides with the plasmon. However, the real part of the
inverse Lindhard dielectric function exhibits no divergence as the values
of g and Vv at which the plasmon and heavy hole dispersions are equal
occurs well into the spectrum of single particle excitations shown in
Figure 2.2. These single particle transitions which are included in the
Lindhard function, damp the plasmon modes and the dielectric response of
the hole gas at large ¢ becomes dominated by these transitions. In
Figure 2.5 the inverse dielectric function for both models is seen to
diverge for g = 0.6 Efv' In this case, the damping effect of the single
particle excitations in the Lindhard function is small as the values of
gq,v at which the inverse Lindhard and light hole dispersion relations
coincide, only just falls into the single particle excitation spectrum.
The comparison between the plasmon pole and inverse Lindhard dielectric
functions for a hole gas in Si is similar to that for n-type Si and
shows good agreement over the low g range dominant in the present
calculation.

All the relevant terms of expression (2.39) have now been explicitly
derived and the energy shifts of the band edge states can now be

determined. The evaluation of the band edge shifts for the four materials

under consideration is given in the next chapter.
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2.7. Summary

A heavily doped or optically excited semiconductor can contain large
concentrations of carriers in the conduction and/or valence band. The
energy of a state k in band n of the intrinsic material is then modi-
fied by screening of the carrier-carrier interaction and by carrier-
carrier exchange energy. This change in energy of state k can be
determined by evaluating the difference between the self energies of the
state for doped and intrinsic material. An expression for the self
energy of state n,k has been derived using a Feynman diagrammatic
analysis for a state in a free electron gas and the necessary modifications
to make the expression appropriate to a semiconductor have been made. The
principle modification of the expression occurs in the screened Coulomb
potential in which a plasmon pole approximation for the frequencey

dependent dielectric function is used.
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CHAPTER 3

BAND GAP NARROWING DUE MANY BODY INTERACTIONS AT T = OK

3.0. Introduction

The analysis and results presented in this chapter, closely follows
the publication by Abram, Childs and Saunderson (1984). The present
work provides more extensive information on individual terms contributing
to the band edge shifts, and a comparison with the band gap narrowing
derived using the Thomas-Fermi approximation to the dielectric response
is made. The band gap narrowing in two more materials (Ga

A
0.47 00,535

and Ga ) 1s also evaluated.

0.28™.72%%.6%0.4
An expression (2.39) for the self-energy at T = OK of a state k

in band n has been derived for a model semiconductor with large

carrier concentrations in the conduction and/or valence band. These

carriers are agssumed derived from the merging of an impurity band

(induced by heavy doping) into the host semiconductor band or are

derived from some form of excitation such as by light. As the calcula-

tions in this chapter refer to the absolute zero of temperature, the

electrons in n-type material occupy the host conduction band up to the

Fermi level E and in p-type material the valence states are occupied

fe

by holes (or unoccupied by electrons) down to the Fermi level E

fv
To determine the shift in each band edge energy resulting from

changes in the elctron-electron interactions due to the presence of

these carriers, we must evaluate the difference in the real part of the

self energy at the band edge between the doped and intrinsic material.

That is, the shift of band n at its edge, located at wavevector 50 is

z:(k
n -o

"
4

) = Re[EX(k )] - Re[EZ (k)] (3.1)
n —o n —o . S
doped intrinsic
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The calculation of ‘AEE(EO) requires consideration of the changes in
electron—-electron interaction energies due to the changed electron
occupancy and the screening effect of the introduced free carriers.

Before explicitly evaluating the terms in AEi(&O) it is instructive
to examine in a simple diagrammatic form the effects of introducing
carriers into the host bands. In figure 3.1 scme of the possible inter-
actions between test electrons at the band edges and the other electrons,
are compared with those in the intrinsic material using the simpleet model
of an n-type semiconductor. The unscreened interactions between the
test electron and the valence band electrons are marked as full lines in
the intrinsic material. On introduction of the electron gas to the
conduction band, these interactions are screened (dashed lines). In
addition a test electron at the conduction band edge now has a screened
interaction with the new electrons in this band. In the empty con-
dunction band of the intrinsic materiai no electron-electron interactiong
were possible. (Note this simplified picture includes no interactions
between electrons in different bands, but does provide a useful visual
introduction to some of the important changes in electron-electron inter-
actions).

The corresponding case for p-type material is shown in Figure 3.2
where the interactions in the intrinsic material take the same form as
those illustrated in figure 3.1. The introduction of a hole gas into
the valence band removes electrons from states near the band edge thus
lowering tille electron-electron interactions available to the test electron.
In addition the remaining interactions are screened (dashed lines) by
the hole gas. The host conduction band remains empty of carriers but
the energy of a band edge test electron is altered by the Coulombic

response of the hole gas, which is not shown.
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Figure 3.1: The screened (dashed lines) and unscreened (full lines)
interactions in a model (single valence and conduction bands) intrinsic

and n-type semiconductor at T = OK.
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Figure 3.2: The screened (dashed lines) and unscreened (full lines)
interactions in a model (single valence and conduction bands) intrinsic

and p-type semiconductor at T = OK.
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Derivation of Screened Exchange and Coulomb Hole Terms

The self energy expression (2.39)

written as

for

the doped material can be

(3.2)

2
rd i e
= r —
En (k) 4.f " Ink,n"k—ql
(2m) n — = € € g
o r
02 e—lvé dvd3q
1+ —2 ( L ot
2‘*’1 (q) v-wy (Q)+1i8 v+wl(q_) —16J (mn}i—v—wn..]i_g_ﬂdsgn (hwn"}_c_—q__hwf)

The frequency integral v

analytically by contour integration.

dictates that the contour be completed by a semicircle at infinity in

the lower half of the complex v

the Green's function and the effective interaction lying in the lower

The

plane.

half plane can contribute to the integral.

arise from poles at

v = wnk-vwn“&rg-— ié

in the Green's function and

v = wl(g) - 18§

in the effective interaction.

T diti <
he condition wn"Efg, We

Green's function implies that the resulting wavevector ¢g

over occupied states only.

in the doped semiconductor derived from the frequency integral around

the above poles are:

e g

derived from the sgn

in the above expression can be evaluated

causality factor e_lév

Hence only those poles in

That 1s contributions

< hy,.)

term in the

The two contributions to the self energy

(3.3)

(3.3a)

integral is
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a) The screened exchange (SX) term from poles in the Green's function:

3
2 2 d g
dsx =
SRR S ., . e (3.4)
n o (21r)3 n" nk,n"k-g £ € 2 E(gfwnk—w "~
states o] rq nrErd
n'k-g
occupied
by electrons
For static screening, i.e. e(g!wn£_— wn"E:g} = 1 this expression has‘
the same form as the Hartree-Fock (H-F) exchange energy for an electron
gas, hence the origin of the terminology "screened exchange".
b) The Coulomb-hole (CH) term resulting from poles in the effective
interaction
2
2
ZacH 1 . ’1 ’2 e “p
E = - 3 « | nk,n"k-q 22 2w, (q)
n (2m) all n* " € L
and g
3
dg
W, —w. (q)-w +idsgn thw “hw,) (3.5)
nk "1 “n"k-q n"k-g £

This Coulomb-hole term corresponds to the self energy resulting
from the region around the test particle being denuded of other electrons
by Coulomb repulsion (see Section 2.3).

The self energy of the intrinsic semiconductor is given by:

Li i 2 e2
SR | o L 2
™ P |
e-lév d3g_dv
: (3.6)
wnk—v—wnuqu+lésgn(hmn"Efg:hwf)

Where the screening effect of the carrier gas has vanished and the

Coulomb interaction is simply modified by the static dielectric constant
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of the semiconductor. The frequency integral can again be carried out
by contour integration with contributions coming from poles in the

Green's function giving:

2 2
Li 1 e 3
En (£) (2’"’)3 iu In}i,n"]i—(i) e e q2 d g‘ (3°7)
all n" and or
q = valence
bands

which is again of the form of a H-F exchange energy.

Having derived the general self energy expressions (3.4) - (3.7) for
the state k 1in band n we now proceed to evaluate these terms for the
particular case of a p-type material.

A brief presentation of the equivalent expressions and results for

n-type materials is then made subsequently in Section 3.6.

3.2. Band Edge Shifts inp-type Material

3.2.1. Valence Band Energy Shift - Introduction

The valence band of each of the four materials discussed in the
present work is considered to consist of isotropic, parabolic heavy and
light hole bands degenerate at the Brillouin zone centre, with an iso-
tropic, parabolic spin split off band separated from these at k = O by
the spin splitting energy A(ev). In the gallium based compounds
the spin splitting parameter is relatively large (A = 0.34 eV in GaAs)
and the band is unoccupied by free carriers (holes) for the range of hole
concentration of interest in the present work. For silicon however the
spin splitting parameter is quite small (A = 0.044 eV) and the spin
split off band is occupied with holes for concentrations 2 1.7 X lOlgcm*B.
The effect of hole occupancy of the SS band is shown in section 3.8

to be small and for the present, occupancy of the heavy and light hole

bands only is considered-
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3.2.2. Derivation of General Texms

For the present the energy shift at k = O of the heavy hole (HH)
band is considered but it is shown later that an equal shift of the
light hole (LH) band edge also occurs.

As indicated in figure 3.2 the energy shift of this band edge state
is evaluated by determining the self energy of a test electron at the
top of the heavy hole valence band due to its screened interactions with
the electrons in the electron occupied part of the valence band and
subtracting from this the unscreened exchange interaction with the
electrons in the valence band full of electrons. In algebraic terms
the band edge shift is given by evaluation of the real parts of
expressions (3.4) - (3.7) using the relevant occupancies of the heavy

and light hole bands. Thus

z LICH IsX Ti
AE (0) = (Re[E (_o_)] + Re [E (Q)BI - Re[E (9)] ’ (3.8)
H HH HH DOPED H INTRINSIC

The real parts of these expressions are derived by taking the Cauchy
principal part of each expression which in the present case amounts to
ignoring the complex infinitesimals in equations (3.4) - (3.6). For
the remainder of this chapter the real part of each expression is taken
and this is not written explicitly.

The last two terms in the above expression both take the form of

the Hartree-Fock exchange interaction and can be combined to give the

Lsx

change in the heavy hole band screened exchange term AEHH

(0 as;
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3
AEZSX(O) ) -e2 2 da q
B gne ¢ w| BHO,n"-q e ( - )
o r states 4 g~’mHHQ_wn"—c_1_
_g' n"
occupied
by electrons
e2 2 d3g
+ —_ 3.
S T L 39
€ofr a1l n" and q 4

There is no Coulomb hole term in the intrinsic material so the

change in this term is given by:

2 2
LCH _ LCH _ e
AEHH (9) - EHH (9) = 8"3 J i..lIHHQIn"_gJ
E:oer all n" and g
wg d3g_
(3.10) .
2q2ml(gp ((wHH Q_Mn"—g? wl(g))

The first term in expression (3.9) can alternatively be expressed as the
difference between the screened exchange of the full valence band and

the screened exchange of the states occupied down to the Fermi level, i.e.

2 3

- e 2 d gq
SX -
2eE ¥ (o) = I .
HH — 81T3€ e " HH_(_)_,n -q) 26( ® - )
or all n" and g q & HHO n"-gq
e2 2 ng
b2 ; |I ) }
8n3e € [ i HHO,n"-q q2€(q W =W )
o r all valence =""HHO "n"-q
band
unoccupied
states
82 ’2 d3C_1_
+ n_ — (3.11)
8n3e e w| HHO,n"-g q2

or all n" and g

The first and third terms in this expression can now be combined to give:



39

3
2 2 d'gq
LSX _ e 1 =
BEgy (@ = R f Z,,|IHHO,H"—3‘ . (e ) q2
ar "_
¥ all n" and -q HHO "n'-q
e2 2 d33
+ . .
| themed 3 20
Eoer . d g(i/ wHHO— (")n" _q)
unoccupied = 1
valence band
states
The form of the overlap integrals given by equation (2.40) can now
be substituted into equation (3.14) and (3.10). As indicated in section
2.5.1, for a test electron in the HH band the only overlap integrals of
significant magnitude are with states in the heavy and light hole bands.
These are:
2 1 2
"oz = = +
for n HH IHH&,HHE} 2 (1 3 cos“8)
2 3 2
no - ~ 2 :
for n" = LH IHHE,LHE} 7 Sinm 0 (3.14a).

The sum over bands n" therefore reduces to a sum over HH and LH
bands only. For a state at the band edge k = O the angle 6 between
states k and k - g has little meaning. To define 0O therefore a
k of infinitesimal size but definite direction (e.g. z-direction) is
taken, the angular part of the wavevector integrals of equation (3.14) then

have the form:

2% w
1 2 .
Z—(l + 3 cos™0) sin® 46 d¢ = 27m , for n" = HH
(O N 0]
2n w
3 .2 .
7 sin 8 sin® &6 .d¢ = 2w, for n" = LH (3.15)
O 0

Substitution of these terms into expressions (3.10) and (3.14) give

the remaining parts of the wavevector integrals as
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LsX LSXA . SXU
AEHH (0) = AEHH (o) + AEHH (0) (3.16)
where
2
Isxa —62 wp dq
AE = —— p) (3.17)
HH € € 4n2 " (w - )2—w2( )
or all - g HHO wn"—q 1 !
n"ZHH,LHd
2
2 w 1
LSX
a2 - & 1+ P dg (3.18)
HH € € 4n2 n" (w_ _-w )2—w2( )J
or unoccupied HHO n"-gq 1 4
HH and LH
states

and the superscripts A and U on AE imply integration over all

states, and unoccupied states respectively. The CH term is given as:

2 w2
By = [ el s e e e R IE
4t7e € " 14 HHO wn"—q 14
X
all g

To simplify the notation the wavevector (k = 0) at which the AE
of equation (3.16 - 19) are evaluated is dropped and will be omitted for

the remainder of this section.

The total energy shift of the heavy-hole. band edge AEHH is thus
given by the sum of equations (3.16 - 19) as
z LCH LSXA LSXU
AEHH = AEHH + AEHH + AEHH (3.19a)

The evaluation of these individual terms is performed in the next

three sections.
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3.2.3. Definition of Energy Parameters and Discussion of Difficulties

in Evaluation of General Temms.

To evaluate these terms explicitly we define the energy difference

between the two eigenvalues th and hw for parabolic, isotropic

HO n"-q

valence bands as

BNHHO - hw " = _ﬁf_g where n" Z H or L (3.20).
n"-q 2mn )
Note this energy difference is positive as the band edge state Xk = 0 1is
higher in energy than any valence band state at (g.
As discussed in section2.3 the effective masses m . are assumed
to have the same value as in the undoped material. This implies the
assumption of a rigid shift of all bands due to many body effects. This
assumption was recently validated by Sernelius (1986) for the band shifts
in n-type GaAs.
For a state at the light hole band edge (which is degenerate with

the heavy hole band edge) an expression

W -k W = 3 n" = H or L (3.21)

also applies.

Now by changing the HH subscripts in expressions (3.17 - 3.18) to

z
LH it can be seen that AEEH = AELH so the band shifts of the heavy and

light hole valence band edges are in fact equal.
Considering now the evaluation of the integrals over wavevector

magnitude g in the equations (3.17) and (3.19), it can be seen from

, L . . 20 -3
figure 2.2 for p-type Silicon with a hole concentration of 10" cm
that the plasmon dispersion curve crosses the frequency-wavevector curve

) .

for the light hole band (Vv = hqg /2mL) at g = 0.6 ke, ~and for the
heavy hole band at g z 3 kfv' This results in a singularity in the

integrals over g, the magnitude of g at which this occurs being
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dependent on the carrier concentration. The evaluation of the Coulomb-
hole term then beccmes particularly difficult by either analytical or
numerical methods. To overcome this problem the SXA and CH terms

(3.17) and (3.19) are added together giving:

2
2 w
Z
AEHEXA+CH - - J I Lz r dq (3.22)
4"€o%: n" ““1'9Y g tw. (Q)
all q 2m , U1\
n
This term contains no poles and can be evaluated numerically. To determine

the individual contributions to the above integral the screened exchange

term is evaluated analytically and the CH term can then be derived by

subtraction.

3.2.4. Evaluation of AEEiXA and AEZCH Terms

HH

Substitution of the plasmon dispersion relation

2 2 4
Wi = w1+ L R (3.23)
1 P 2 2
K 4m
Dv

into expression (3.22) yields

2 < :
AEZSXA+CH _ e 5 dg (3.24)
HH ane ¢ o 2 64? hz{ 2 B4 1/2
o'r ¥ 0 2f1+%54 2q2 +mq 1o do =2
K K kaJ n pl K K kf
3 m v
where g = > =% (3.24)
4 m
Dv

This integral was evaluated numerically using the NAG dquadrature routine

22 -3

D¢l APF for a range of hole concentrations lOl7 - 10 cm ; the

results for p-type Si are shown in figure 3.3.
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The evaluation of the screened exchange term for the full valence
band can now be performed as follows. Substitution of the plasmon

dispersion relation into equation (3.17) gives:

2.2
SXA K
AEY =—== | x dx (3.25)
HH 2 " 2. 2 4
d77¢ £ k n K X +a X
or fv n
0 k
fv‘
.
m m 2
3 ov Dv
where x = k and o _, = - —— |1 - |— .
v fv n' 4 m m_,
Dv \ n

This integral is evaluated analytically using formulae from Gradshteyn
and Ryzhik (1980) (2.161, 2.141/2 and 2.143/2) and the resulting

expression has the form

, 1/2
LSXA e2K2 5 —_zan"kfv
HH SHEOer 2 2 2 l/2_k ]

n 2
n (kfV 4an"K )[(kfv 4an"K ) £y

AE

(3.26)

The results derived from this expression for a range of hole con-
centrations in p-type silicon are illustrated in Figure 3.3 together with

the Coulomb hole term derived from:

SXA
AEZCH - AEZSXA+CH _ AEZ X

EH HH HH (3.27)

It should be noted that the SX and CH terms make opposing con-
tributions to the band edge shift. The CH contribution lowers the
band edge energy, but the dominant contribution comes from the change
in the screened exchange term which is positive. This latter contribu-
tion can be regarded as the lowering of the magnitude of the exchange
energy (the exchange energy is negative) of the full valence band due to
the screening effect of the hole gas that has been introduced.

Another effect of the introduction of holes is that the magnitude of

the exchange energy is further reduced by the removal of the valence band
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electrons down to the Fermi level and the term representing this,

X
AE SXU, is now evaluated.
HH
LSXU L
.2.5. i £f AE T
3.2.5 Evaluation o HH and AEHH erms

Expression (3.18) gives

A

HH 2

EZ SXU e2
At ¢ €
o)

|1 - P 1 dq (3.28)
" 2
r ° w?(q) - |22
unoccupied 14 2m_,
states
In this case the ragga of integration covers values of g down to

E kfv
the Fermi level E =
fv 2mD

For each valence sub-band the wave-
v
vector limit of the unoccupied states is now defined as:

Jf‘zkin" 2 2 Mye
Bey = Tom + hemee ki . o=k om— . (3.29)
n Dv

The integral over the first term in the brackets is now straightforward

and represents the Hartree-Fock exchange energy in a coupled valence

band. Expression (3.28) now reduces to
k
2 fn" 2
e k 2 w.  dg
fnll
AeEY - g - e _: P (3.30)
HH n 1] 2 4
n" 41°e ¢ 41°e €_ n 2 h
or or 0] w. () -
1 2
dm ",
n

The remaining integral has the same form as expression (3.25) for the
screened exchange over the full valence band but the range of integration
is now finite. Once again the expression has poles where the band

energy 'ﬁmn" corresponds to the plasmon energy. This pole falls outside
the range of integration for the heavy hole band for reasonable hole
concentrations but may fall within the range for the light hole band.

If nc pele exists within the range of integration the integral is performed
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using the NAG quadrature routine D¢1 AHF. When a pole falls within

the range of integration the integral reduces to

LSXU © kfn" e2K2 n" Cnn
AEHH =1 - b oF arctg .
n" 4r7¢ ¢ n" 4n anrkfn" n" n" n'"
1 l+alY
*Zan ., M IC
l r1" alJ
2
m m m
3 ov n" Dv
h == - =
where Cu 4 m2 1 5
“Dv Bhw
2 11/2 h_,
h, = |l-4 ,—= g L _ o'
n k2 n" 2 2
fn"J
(L+h_,) %2
and al = = —Z—C——"‘-—" (3.31)
n -4

This term must now be added to the valence band shift determined from

LSXA+CH . .
AEHH to give the total shift of the band edge state AEEH' The
. , ISXU | :
contribution of AEHH is seen from figure 3.3 for p-type silicon to be

very small compared to AEEEXA

It should be noted however that for GaAs in particular the inte-
gration over the pole in equation (3.30) is badly behaved giving a large
increase in the contribution due to this term over a small range of
carrier concentration. This large increase leads to a rapid pole like
decrease in the band gap narrowing, for a hole concentration
p= 7.5 x 1020 cm—3. As this effect has its origin in the numerical
difficulties encountered in the integration over the pole the somewhat
unphysical behaviour of a pole like drop in the band gap narrowing has
been ignored. The results shown for the band gap narrowing in GaAs

thus represent an extrapolation over the region of high carrier concentra-

tion in which the fine structure occurs.
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Figure 3.3: The hole concentration dependence of all terms contributing

to the energy shift of the valence band edge in p-type Si at T = OK.
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3.2.6. Comparison with the Use of the Thomas-Fermi Approximation for

the Dielectric Function.

If the frequency independent Thomas-Fermi approximation to the hole
gas dielectric function is used in expressiors (3.17) and {3.18) for the
valence band screened exchang terms, the resulting integrals can all be

performed analytically. Using:

1 _ g (3.32)

gives

2
AgE SXTF _ e’k vy oo Fenn -
HH dre ¢ " 2 k_ .
or n" 4n eoar fn

arctg ( n (3.33)

As with the frequency dependent model the dominant term in the T.F.
approximation arises from the screened exchange of the full valence band
which correspondsto the first term in the above expression. The hole

. %L SXTF . ,
concentration dependence of AEHH for p-type Si is compared with
the frequency dependent model in figure 3.3, from which it can be seen
that the resulting band shifts are exaggerated by the TF approximation
due to the overestimation of carrier screening.

The TF approximation to the valence band CH term can also be

derived analytically and provides a downward shift of the valence band

given by:
LCHTF ezK
AEHH = - m . (3.34)
o X

As figure 3.4 shows this contribution is also larger for p-type Si

than the corresponding frequency dependent term.
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3.2.7. Conduction Band Shift - Screened Exchange Term

In equatim (2.40) the overlap integral (Ink n"k )  between conduction
[

and valence band states is taken as zero and consequently, no energy con-
tribution to the SX terms in the doped (equation (3.4)) and intrinsic
(equation (3.6)) material arises from interactions between these bands.
From these same expressions it is also seen that the SX energy is
dependent on state occupancy. As the conduction band is unoccupied in
both doped and intrinsic material no contribution to the band edge energy

shift arises from the SX terxm, i.e.

AR = o (3.35).

9]

The Coulomb-hole term is, however, non zero and provides the band edge
shift which is now evaluated. This shift can be considered to arise

from correlation effects of the hole gas.
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3.2.8. Conduction Band Shift - Coulomb-Hole Term

Taking the real part of expression (3.5) the energy shift of a state

at the band edge 50 is given by:

2
ILCH 82 J 2 wp
AE (k)— 1]
c o wt ck ,n"k - 2
81°e € —o 29w, (@)
all n"
and g
d3g
3.36
o Y=oy @) (3.36)

ch- n Eo—q

In section 2.5.1 the overlap integral between the conduction band

states and states in band n" was shown to be unity for n" corresponding

to the same conduction band minimum and zero otherwise. Applying this

prescription to the above fornula gives

3
2 d g
AEZCH(k ) = e
)

W
P

(3.37)

C J 2wl(g)q%(mck -

—©O

)-wy (@))

8n3e € mck
%5

all q

Note in silicon the appropriate band edge state is Eo = k. where
Ei is the minimum of one ofvthe six valleys, and the above expression
therefore gives the shift of that minimum.

Using spherical polar co-ordinates, the angular integrals in
equation (3.37) are straightforward:

T w

2
I [ sinb 46 d¢ = 4w (3.38)
o O

Then,
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w2
p dg
(3.39)
2wl (a) ¢ (wcko—wcko—q) Wy (a))

LCH e2
AE k ) =
o} 2
217e €
or

o—28

Following the prescription of equation (3.20) we now define the energy
difference between the eigenvalues Twc and 'hmck - as follows. For
o o)
the gallium based materials 50 = 0 and the parabolic, isotropic con-

k

duction band gives:

fw - fw = - = (3.40) .

For silicon each of six valleys can be considered separately and for

valley 1 the equivalent of equation (3.40) is:

- 5 (3.41)

Note this enexrgy difference is a negative quantity as the conduction
band edge is lower in energy than state -q. Substitution of these

equations into (3.39) gives:

2 T W2
w
AP (k) = - —8 p dq (3.42)
C O 2 2
2n €€, 2wl(q) o ( );hq
0 14 2m_

This expression has the same form as equation (3.22) for the sum of
the full valence band SX and CH terms and is evaluated in a similar
manner using the NAG library routine D¢l APF.

As with the valence band, the contribution of the CH term lowers
the energy of the band edge state, and as the magnitudes of the shifts
in both bands do not differ considerably the resulting contribution from
CH terms to the band gap change is small. The carrier concentration
dependence of the conduction and valence band CH terms in p-type Si

is shown in figure 3.4.
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3.2.9. Conduction Band Shift in the Thomas-Fermi Approximation

If the TF approximation to the dielectric function is used the
conduction band CH term is the same as that derived for the valence
band CH term. The Coulomb-hole contribution to the band gap narrow-
ing is therefore zero in the TF approximation, as pointed out by
Inkson (1976). The carrier concentration dependence of the TF, CH

term, given by

2
LCHTF e K
E = = —— .4
A C,HH 8me e ' (3.43)
or
is shown in Figure 3.4 for p-type Si. The resulting band shifts are

larger than those produced in the frequency dependent plasmon pole
approximation, which again is a result of the overestimation of the

carrier screening effects in the TF approximation.

3.2.10. Results for p-type Materials

The hole concentration dependence of the upward valence band and
downward conduction band shifts with the resulting band gap narrowing,
are

for p-type Si, GaAs, Ga and Ga

0.47 00,5308 0.28%%.72"%0.6%0.4

illustrated in figures 3.5 to 3.8 respectively. For comparison the band
gap narrowing derived in the T.F. approximation (which equals the shift
due to the valence band SX term) for p-type Si is also shown in
figure 3.5. The band shifts in all four materials follow a similar
pattern with the greatest shift occurring in the valence band.

The narrowing of the band gap causes a shift towards lower frequencies
in the fundamental optical emission spectrum of the material. However,
the corresponding shift in the absorptionAspectrum is compensated to a

greater or lesser extent by the Moss-Burstein (1954) shift arising from
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the removal of electrons from valence band states down to the Fermi

level. The fundamental absorption frequency w is then given by:

A

o E. + E —AES (3.44)

The concentration dependence of the Fermi level in Si and

GaAs is shown in figures 3.5 and 3.6, from which it can be seen that

19 -3 19 -3

IE > IAESI for p ¢ 10O cm in GaAs and p z 3 x 10 cm in

fvl
Si. The fundamental absorption frequency therefore increases for hole
concentrations in excess of these values.

Several authors including Casey (1976) and Vol'fson (1967) have

1/3

deduced from optical measurements a p power law for the carrier
concentration dependence of the band gap reduction in semiconductors.
This power law provides an approximate relationship for the results
derived in the present model. For example the relationship

-8 1/3
ot/

]AEg[ = 16 x 10 provides g reasonable fit to the band gap narrow-

ing for p-type GaAs in figure 3.6.

3.3. Band Gap Narrowing in n~type Material

3.3.1. Introduction

A detailed analysis of the band edge shifts due to many body effects
in n-type Si has been performed by Saunderson (1983) and the results
repeated in the work of Abram et al (1984). However, to illustrate the
similarities between the derivations of the band shifts in n and p-type
material a brief comparison of the fundamental expressions is given below.
Saunderson's work is then extended to derive the band gap narrowing in the

n-type gallium based materials. This comparison also serves to
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outline the procedure for deriving the band gap narrowing in electron-
hole plasmas.

As shown in figure 3.1 the conduction band in n-type material is
occupied by electrons up to the Fermi level and the response of the
electron gas to test electrons at the band edges provides Coulomb-
hole terms contributing to the shifts in both band edges. The terms
are similar to the corresponding terms in p-type material. Unlike p-
type material however the test electron in the conduction band now has
a screened exchange interaction with the carriers of the electron gas
in the conduction band which then contributes to the downward shift in the
conduction band. In addition the electron gas screens carrier inter-—

actions in the full valence band.

3.3.2. Basic Formulae - Conduction Band Shift

Substituting the relevant overlap integral (2.40) into the Coulomb-

hole term (3.5) and performing the angular integration in wavevector space

gives:
2
2 w
LCH e ) dq
AES" (k) = — J (3.45)
C o e e 2w, (q) [(wckO wcko-q) wl(q)]

all g

which is identical to equation (3.39) for the conduction band CH term

in p-type material, except mp and wl(q) now refer to the electron

gas. It is also interesting to note that this term has the same form
z
as that for the sum AEEEXA + AEHEH (see equations (3.17) + (3.19)) in

p-type material.
The screened exchange interaction for the states occupied up to the

Fermi level is expressed as:
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2
sX d
BE. = - 2e I e (q,w q-w ) (3.46)
21 € =""ck “ck_-q
o} ; -0 -0 =
occupied
states

which has the same form as expression (3.18) for the valence band shift

EZSXU

AEgy

in p-type material. However, the comparison is somewhat

obscured due to the coupling of the heavy and light hole valence bands

in AEEEXU. Nevertheless it is now possible to see a physically sensible

correspondence between the contributions to the conduction band shift in

n-type material and the valence band shift in p-type material.

3.3.3. Basic Formulae- Valence Band Shift

The shifts of the heavy hole band edge are again considered and a

similar argument to that used in section 3.2.3 can be used to show

AEEIH = AEEH i.e. the shifts in the heavy and light hole band edges are
equal,

The valence band CH term takes the same form as that derived for
the valence band in p-type material (expression 2.19) apart from the

relevant changes to wp and wl(g), and is given by

w2 d3q

2
0) = ——— L ’I ; | £ — (3.47) .
HH 3 I ool HHO/n"-a| 2w, (@) [(wHHQ_wHH—q) wl(g)]

°r all -q o

and n"

The screened exchange term for the full valence band is expressed as:

2 2
A
peEFR o) = —2= g |1 . 1 - L a’q (3.48)
HH — 3 o | HEBO,n"—g =
8T e € n = < E(ngHHO—wn"—q)

all n" - -

and -q
If AEEEH and AEiiXA are added the resulting expression takes the same

form as the conduction band CH term in p-type material. Hence there is
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a direct correspondence between the valence band shift in n-type material

and conduction band shift in p-type material.

3.3.4. Results for n-type Materials

The carrier concentraion dependence of the conduction and valence
band shifts together with the corresponding band gap narrowing for n-
is illus-

type Si, GaAs, Ga and Ga

0.470. 53087 0.281%0.72%%0.6%0.4

trated in figures 3.9 to 3.12 respectively. The relatively light effect-
ive masses of the single valley conduction bands of the gallium compounds
(e.g. my, = 0.067 m, in GaAs) makes the free electron screening quite
weak. In any of these materialsthe resulting changes in the interactions
in the full valence band are therefore small giving only a small shift in
the valence band edge. However, in the conduction band the weak screen-
ing of the interaction with the newly introduced electrons ensures a large
contribution from the screened exchange term and a correspondingly large
conduction band shift. The relatively heavy density of states effective
mass of each conduction band valley of silicon and the fact that there are
six valleys to be occupied ensures good carrier screening and results in
a large shift in the valence band edQe and small shift in the conduction
band edge compared to tho;é'found in the gallium coméounds.

The light conduction band effective mass in the gallium compounds
causes the Fermi level to increase rapidly with increasing concentration
as shown in figure 3.10 for GahAs. The Moss=-Burstein shift is therefore

quite significant in these compounds and IE [ > lAEg[ giving a large

fe
increase in the fundamental absorption frequency. The Moss-Burstein
shift in n-type Si is however considerably smaller than in the gallium
compounds due to the heavy conduction band density of states effective
mass and 6 valleys. As shown in figure 3.9 the Fermi energy is less

20 =3
than the band gap narrowing for electron concentrations < 1O cm .
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The band gap narrowing derived for the n-type gallium compounds is
in excellent agreement with the power law |AEg| = Bnl/3. For example
B = 22.1x 10_8 provides a very good fit to results shown in figure
3.10 for n-type GahAs. A similar power law relationship for the band

gap narrowing in n-type Si can be deduced, however the fit to the

calculated result is less accurate than in the gallium compounds.

3.4. Band Gap Narrowing due to Electron-Hole Plasmas

3.4.1. Introduction and General Discussion

The calculations described so far have related to heavily doped
material with a single species carrier gas in the host conduction or
valence band.

However, if the semiconductor material is pumped by say optical
excitation, large and equal concentrations of electrons and holes are
produced in the relevant bands. This electron-hole (e-h) plasma acts
to screen interactions in the same manner as a single species gas but
with a T.F. screening wavevector K and plasma frequency wp, modified
as discussed in sections 2.2 and 2.6.2 respectively.

The conduction band contains newly occupied states and the band
edge shift is evaluated using the procedure derived for n-type material
with the expressions wp, wl(g) and e(gjv) modified accordingly.
Similarly the valence band states are unoccupied by electrons down to the
Fermi level and the valence band shift is derived in the same manner as
that in p-type material. A similar calculation for the band shifts due
to an electron-hole plasma in germanium has been performed by Rice (1974)
using the plasmon pole approximation to the dielectric function, with a

modified damping factor to account for interband transitions.
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3.4.2. Results for Materials Containing Electron-Hole Plasmas

The concentration dependence of the band edge shifts and band gap
narrowing for e-h plasmas in Si and GaAs are shown in figures 3.13
and 3.14. The increased screening effect of the plasma results in
greater band gap narrowing for a given electron or hole concentration
than is produced in materials with a single species carrier. The results
for GaAs compare well with those derived by Tanaka et al (1980) from
measurement of the luminescence spectra. However, the range of carrier
concentrations over which their results were measured was less than

18

5 x 10 cm_3 which represents the lowest range of validity of the

present calculation.

3.5. The Effects of Hole Occupation of the Spin Split Cff Band in p-type

Silicon

3.5.1. Introduction

The spin split off band edge lies some 44 mev below the degenerate HH
and LH band edge at k = O. The SS band becomes occupied with holes at
T = OK when the Fermi level passes below -44 mev which occurs for

, . 19 -3 ,
carrier concentrations 2 1.7 X 10 cn . This occupancy alters some

of the basic parameters used in the present calculations. These changes

and the effects they have on the band edge shifts are discussed below.

3.5.2. Effects on Parameters and Band Edge Shifts

From section 2.5.1 it is seen that the overlap integral between states
in the spin split-off and the other three relevant bands (HH, LH and C)
can be taken as zero. Thus no changes in the forms of the derived
expressions for the band edge shifts are required due to the hele occupancy

of the SS band although some of the parameters in these expressions are
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affected. A larger density of states exists at a given energy E
(E < Ev - A) than for the two band case. At the Fermi level this

density of states is given by:

2l/2El/2 21/2(E _8)

D(Efv) _ ——5—-£X—-(m3/2+m3/2) + fv m3/2 (3.49)

. h3 H L 1T21:13 S

1/2

where mS is the density of states effective mass in the SS band.

This increase in the density of states causes a raising in the Fermi

energy so that it is closer to the valence band edge than in the two band

model. The change becomes significant (>10 mev) for carrier concentra-
. 20 -3 . . , .

tions 2 1O cm . The main effect of the raised Fermi level is that,

for a given carrier concentration, more heavy and light hole states remain

. , , , LSXU
occupied with electrons. Hence, in the evaluation of AEHH for the
HH and LH bands, there are fewer unoccupied states to integrate over.

The increase in the density of states at the Fermi level additionally

affects the T.F. screening wavevector defined as

2
K2 =& 3 J p(E)[—_—af—(E—)—I dE (3.50)

£ €_ . JE
o rXr 1

(ref. Abram et al 1978) where i represents all bands occupied with holes,

and f(E) 1is the occupation factor which at T = OK is a step function

at E_ . Hence
fv
2 2 e2
K™ = L f p(E)YS(E - E_ ) dE = Ip(E_ ) (3.51)
€ _E_ . fv £ € . fv
or i o'r i
2 1/2
i.e. K2 = —E———-gt——-[El/2 (m3/2 + m3/2) + (E - A)l/2 m3/2] (3.52) .
€ €y wth fv L H fv S

This expression is approximately equal to:
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2 2 . 1/3
2 e mDVS(3n p)
K< = 2h2 (3.53)
ELELT
where mDvs is the density of states effective mass
_ 3/2 3/2 3/2.2/3
mDvs = (mL + m + m ) (3.54)
The zero wavevector plasmon frequency wp contains the mass
moos which on following a similar derivation to that in appendix 3 flor
three valence band becomes:
A A A
oA, 2,8 (3.55)
movs H L S
where Ax is the fraction of the total hole concentration in band x.

Finally the prefactor of the q4 term in the plasmon dispersion

relation is altered to the new value of ﬁ2/4m§vs .

The nett effect of making the above changes in the various parameters
is only a small increase in the band edge shifts (6 mev for the heavy
hole band and 3 meV for the conduction band at p = lO20 cm , giving
an increased band gap narrowing of 9 meV). These changes represent

only a small percentage of the band edge shift and justify the use of the

two band approximation in Si.

3.6. Summary

The frequency integral part of the fundamental self energy expression
(2.39) has been performed, reducing this expression to the form of two
wavevector integrals known as the screened exchange and Coulomb hole terms.
The sum of the real parts of these texrms evaluated under the relevant

occupancy conditions gives the self energy of a state k in band n.
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The difference between this self energy evaluated for the doped and
intrinsic material provides the energy shift of the state. The band
gap narrowing has thus been derived by evaluation of this shift for
states at the conduction and valence band edges. Comparison between
expressions derived for these shifts in n and p-type material
indicate a correspondence between the valence band shift in p-type
material and the conduction band shift in n-type material and vice versa.
The band gap narrowing has been calculated for p and n-type 8Si,
and for Si and

I As and Ga I

Gahs, .53 0.28 M0.72 55,6 Fo.4

G20.47
GaAs containing an electron-hole plasma. The carrier concentration
dependence of the band edge shifts follow a similar pattern in all four
materials with the largest shift occurring invthe band containing the
carriers. The band edge shifts are also seen to reflect the effective
mass and screening properties of the carrier gas.

The results derived for the band edge shifts using the Thomas-Fermi
approximation to dielectric response are seen to be much larger than

those derived in the plasmon pole approximation, but the model provides

a rough guide to the energy shifts of the band edges.
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CHAPTER 4

BAND GAP NARROWING DUE TO MANY BODY INTERACTIONS

AT FINITE (T = 300 X) TEMPERATURE

4.0. Introduction

The work in this chapter provides a direct extension to finite
temperatures of the band edge energy shifts derived at T = OK in
the electron-electron self energy model of Chapters 2 and 3. The
main emphasis will again be on deriving band edge shifts in p-type
material with a brief comparison of the corresponding shifts in n-type
material given in section 4.4. The work thus complements the analysis
of Saunderson (1983) who evaluated the band gap narrowing in n-type
silicon at T = 300 K.

The effect of the hole occupancy of the spin split-off band in
p-type silicon at T = OK was shown to be small and this occupancy is
therefore ignored in the finite temperature (T = 300 K) calculations.

At larxge carrier concentrations (2 1020 cm_3) the band edge shifts
at room temperature in n and p-type material are found to differ little
from those at zero temperature, A similar effect will be seen for semi-
conductors with conduction and valence bands occupied by an electron-hole
plasma. The extension to finite temperatures of the calculations in
section 3.4 for the band gap narrowing induced by e-h plasmas is there-
fore not given, the band shifts at the high carrier concentrations found
in for example operational lasers can be assumed to be approximately
equal to the zero temperature shifts.

A direct extension from zero to finite temperatures is possible in

the description of the electron-electron interactions through the use of
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the finite temperature plasmon pole approximation to the dielectric

function derived in section 2.6.2. This removes the complexities
involved in using the full finite temperature Lindhard dielectric
function.

At finite temperatures (T = 300 K) the host bands of a doped
semiconductor will be occupied by carriers thermally excited from
shallow donor or acceptor centres. However, as with the zero temper-
ature model the present analysis is valid in uncompensated material for
the range of impurity concentration for which the impurity band has
merged with the host semiconductor band and each impurity has donated
a single carrier to the host band. The dopant concentration at which
this occurs (the Mott critical density Nc) is, however, different from
that at T = OK. The thermal energy of the carriers now acts to reduge
their screening response to a perturbation. This weaker screening
(larger screening length A) increases the impurity concentration
required to produce a screening length A smaller than the effective

Bohr radius a the approximate condition for which the carriers are

£
no longer bound to the impurity ions. The dopant concentration at
which A = af for p-type Si at room temperature (T = 300 K) can
be estimated from the carrier concentration dependence curves of these
two parameters given in figure 4.1. This dopant concentration
{(p x 2.5 x 1019 cm—3) represents a lower bound for the validity of the
present work.

The reduction in screening with decreasing carrier concentration
can be attributed to the change in the carrier distribution function.
At low dopant concentrations the Fermi level lies in the band gap

(particularly for p-type material with large valence band effective

masses and a large density of states near the band edge) and the carrier
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distribution is Boltzmann like. However, at high dopant concentrations
the carrier distribution is little different from that at T = OK, and
the band edge shifts are correspondingly similar to those at zero
temperature.

The detailed evaluations of the Thomas-Fermi (T.F.) screening
wavevector and Fermi energy upon which the self energy calculations are
dependent is dealt with in section 4.1.3. In the next section the
finite temperatureversions of the Green's functions and effective
potential are derived, and the resulting expression for the self energy

of state k due to electron-electron interactions is given.

4.1, Self Energy due to Electron-Electron Interactions

In chapter 2 the basic expression for the self energy of state k

in band n due to electron-electron interactions was derived using a

Feynmman diagrammatic approach. The same expression (2.39)
z i 2 o -iv6 .3
= | 2 g rig] Ve (@IS gy vie TRy (a0

is used for the evaluation of self energies at finite temperature but the

Green's function and effective interaction Veff now take their modified

finite temperature form. The host band Bloch functions are assumed to
be unaltered by the temperature changes and the squared overlap integrals

I are accordingly unaltered and take the forms given in

ng, n"E—gl
equation (2.40).

4.1.1. Finite Temperature Green's Function

The Green's function or free particle propagator given in equation

(4.1) has been defined at zero temperature as:
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o 1
G ,(k-q,w - V) = —— : = (4.2)
n nk wn§.v wnukrgfldsgn(hwn"Efg-hwf)
This is simply a reduced form of the full expression:
8 = =
i (hmf hmﬂ"&fg) 8 (hw "K___Bwf)
G . (k-gq,w . -V) = —— — + - (4.3)
n nk wnE.v wn"E;g-ld wnE-v wn"k—q+ld
where the first term represents propagation of a hole below the Fermi
surface and the second term propagation of an electron above it. The
8 terms are unit step functions. At finite temperatures however the
step function distribution is smeared out by the thermal motion of the
carriers and the carrier distribution is then described by the Fermi-
Dirac functions fn"k—q' The finite temperature Green's function is
then defined as
o fn"]}__g l—fn"E—_q_
G_,(k-q,w_ -V) = —= + - (4.4)
n nk wnE.v wn"kj__la wnk.v wn"Er_flG
where fn"k—q is the electron occupancy factor for state k - g in
band n" given by
£ = L (4.5)
"y _ - _ .
n"k-q l+exp[(hmn"5;g.Ef)/kT]
(Ef is the appropriate Fermi energy) and (1 - fn"k—q) is the corres-

ponding hole occupation factor.

In p-type material the Fermi energy is several kT below the
conduction band which is therefore unoccupied. Similarly in n-type
material the Fermi energy is several kT above the valence band which

is therefore fully occupied and f 1.

n ll.}s‘__g =
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4.1.2. Finite Temperature Inverse Dielectric Function

The limitations of the plasmon pole approximation to the carrier
gas dielectric function for p-type material were discussed in section 2.6
where a comparison with a simplified Lindhard dielectric function was
made. The results of this comparison indicated a fair agreement of the
two models over the range of g of interest in the present work. The
plasmon pole approximation at finite temperature could in prinicple be
derived from the zeros of the full finite temperature Lindhard expression
involving sub-band coupling and Fermi factors. However, the complexity
of this procedure is removed by directly extending the zero temperature
plasmon pole approximation tdvfini£e temperatures, on the basis of iﬁs
good agreement with the Lindhard function at zero temperature. This
extension is made by interpretation of the inverse dielectric function in
terms of a Bose (plasmon) propagator and a coupling constant (for a full
discussion see Lundgvist (1967)).

At zero temperature the effective interaction is defined as

vi(q) 2

_ - _ e
Veee @V = ooy = 2 - (4.8)
= eoer q €(g,V)

where from equation (2.49)

2
w

1 p
= -1 + (4.7)
e(g:\)) \)2—((1.\1 (g) —i5)2

Now the zero temperature plasmon propagatar D(q,v) 1is defined as

@ (4.8)

D(g_l\)) = 5
v —(wl(q)-i6)

Relating expression (4.8) to (4.7) gives
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2
1 wp
—— =1 + —*—— D{(q, 4.9
e (@) 2 (@ ° ) (4-9)
or EYE£;7-= 1 + (coupling constant) x (Bose propagator) (4.10)
where:
2
w
coupling constant = EEI%ET . (4.11)

The finite temperature plasmon-pole approximation to the dielectric
function can then be defined by a straightforward extension of equation

(4.9) using the finite temperature Base propagator defined as (Mahan 1981)

LN, N -'
D{(g,v) = 2w, (q) 4 (4.12)
== 1'= Loy 2 2 Loy 2
v —(wl(g)—lé) v —(wl(g)+16)
where ®_(q) is the finite temperature plasmon dispersion relation dis-

1=

cussed in section 4.1.4 and Nq is the Bose-Einstein distribution function

for plasmons defined by

v - 1
q expfhwl(g)/kT]—l

(4.13) .

The inverse dielectric function in the plasmon pole approximation is
therefore given by
1+N N

1 2 g 9 ]
—— =1+ w - (4.14)
e(q,v) p v2—(wl(g)—15)2 v2—(ml(g)+15)2j

Substitution of equations (4.4) and (4.14) into (4.1) gives the
expression for the finite temperature self energy of state k due to

e - e linteractions as
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-id
(2ﬂ)4 n" nk, —;V—mn"E;—-l wn&jv—wn“k—qf ErEOq2
1+N N }
-i8
1+l < - 9 e Va3g ay (4.15)

P v2—(wl(g) —16)2 v2—(wl(q)+ié$)2J

Expression (4.15) can be evaluated through substitution of the
appropriate finite temperature forms of the T.F. screening wavevector,

Fermi energy and plasmon dispersion relation derived in the next section.

4.1.3. Finite Temperature Thomas-Fermi Screening Wavevector and Fermi Energy

a) Fermi Energy

Using the same basic assumptions applied in the zero temeprature
calculations, of isotropic, parabolic heavy and light hole valence bands
degenerate at the Brillouin zone centre and ignoring the spin split off

band, the Fermi energy E for a hole gas in the valence band is given

fv
by
3/27 By 1/2
2m_|3/2 2m_ |- (E_-E) dE
1 L v
p=—5|— o J (4.16)
27 +H + - l+exp[(Efv—E)/kT]
where Ev is the energy of the valence band edges. This expression
reduces to
3/2 0
p = —% oy (kT)3/2.[——3£122§3—— (4.17)
2_"2 _hz . l+exp (E+F)
o
E - E
where F = v .
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A similar expression is derived for the Fermi level Efe due to
an electron gas in the conduction band. The Fermi level for a given
hole or electron concentration can then be found from the above
expression using the NAG root finding routine C@5ADF combined with
the integral routine D@IAJF.

The carrier concentration dependence of the Fermi level for p-type
Si at T =0 and 300 K 1is shown in figure 4.2. For low carrier
concentrations the finite temperature Fermi level is found to be well
into the band gap due to the large density of states near the band edge.
At high carrier concentrations the hole gas becomes strongly degenerate
and the Fermi energy apprcaches its zero temperature value. A similar
behaviour is exhibitedfor the Fermi level in the p-type gallium compounds.
For gallium compounds doped n-type the single valley conduction band and
very light effective mass give a small density of states near the band
edge and the Fermi level enters the conduction band for quite low
carrier concentrations, (n z 3 ><l0l7 cm“3 in GahAs). However in
silicon the six conduction band valleys and relatively heavy density of
states effective mass produce a large density of states and the Fermi
level only enters the conduction band for a dopant concentration

n =~ 2.5 x 1019 cm_3.

b) T.F. Screening Wavevector

The definition of the T.F. wavevector for holes in the valence band

was given in equation (3.50) as

2
T, J 0, (E) [i'f_—(ﬂ} dE (4.18)
1 JE
or i
where the sum i 1s over all occupied valence bands. On substitution

of the differentiated Fermi factor this above expression reduces to
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(kT)

Dv 1/2 J El/zexp(F+E)dE (4.19)

5 [l+exp(F+E)]2

A similar expression exists for the electrongas.

The above expression can again be evaluated using the NAG integrai
routine D¢lAJF. As either T - OK or the carrier concentration
increases and the hole gas becomes more degenerate the value of the
finite temperature K tends towards the zero temperature value. This
is clearly seen in figure 4.1 which illustrates the hole concentration

dependence of A(=1/K) for p-type Si at T = 0 and 300 K.

4.1 .4. Finite Temperature Plasmon Dispersion Relation

The finite temperature plasmon dispersion relation can be defined

in a manner similar to the zero temperature relationship (2.53) i.e.

2
2 2 q 2
=w = + .
wl(q) p[l + 2] wnq (4.20)
K
where K now takes its finite temperature form. If we now define a
normalising parameter ka by
1/2 s
L 1 2mDv 1/2 El/zexp(F+E)dE
2 2 2 (k) [1+exp (F+E)] * (4.21)
Kem Brp)l o
so that
2.2 @ 3movav
KxkE = B IV (4.22)
£T h2

then equation (4.20) gives
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2 3m 4

2 2 q ov q (4.23)
= + A=+ i .
wl(q) wp 1 >

2 4m 2
K DVkaT

The above form of the plasmon dispersion relation is used in the sub-
sequent derivatives of the band edge shifts and makes comparision with
the zero temperature model more straightforward. The carrier concentra-
tion dependence of the inverse normalising parameter ka— is given in
figure 4.1 .where it is seen to tend to the zero temperature value kfv_l
at higher concentrations.

Having derived expressions for all the terms relevant to the self

energy expression (4.15) this can now be evaluated by division into the

screened exchange and Coulomb hole terms through contour integration.

4.2. Derivation of the Generalised Screened Exchange and Coulomb Hole Terms

The expressions for the self energy of state k in band n and the
various finite temperature parameters have been defined in the previous
sections. To determine the band edge shifts due to the introduction of
the carrier gas into the host band, the difference in the real part of
the self energy between doped and intrinsic material must be evaluated.

We first evaluate the self energy for the doped material by separating

expression (4.15) into two terms as

a,. _.za rd
20k = BT + ES k) (4.24)
where
2 2 -igv
Ld i e
B (k) = >
n1 (&) 2% By I Ink,n"l_c_—gl 2
all n" !
and —-q
f —
n"k-q ag ] 3
+ — a’q av (4.25)
wnE-v Yk g §  w _-v wn"Er_fléJ

and
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2
2
rd i e 2w -idv
E _(k) = I " — €
n2 '~ (2m) ? €ofr nv nk,n"k-gq 2
4 all n" e
and -q
[ fag £ g ]
- g8 ' —~- 16
w VW w1 O TV g i J
L — — -
i 1+N N 1 5
- 1 i E— 5| d°a av (4.26) .
Vo=l (@)-16) V- (v, (q) +i6) J
k.

The frequency integrals in equations (4.25) and (4.26) can now be
performed by contour integration completing the contour in the lower half
-idv

of the complex Vv plane as required by the causality factor e .

In expression (4.25) only the pole in the Green's function at

v o= wn§.— wn"Efg__ i§ contributes to the integral giving
£
2 2 "'n"k-q
Id -e — = 3
T | e — -
oty all n" e
and -gq

The same Green's function pole also provides a contribution to the contour

integration of equation (4.26) as

£d -’ 2 2
1 7 = ————
En2(5) (Green's function pole) - 3 wp i" [ IﬂEg“"Efi' 2
™ Eogr all nll q
and -g
1+N N ]
q - =t a3
2 2 Loy 2 '6)2 1
(mnk—wnnkfgfla) - (@, (@) -16) ‘“ngf“n"E;g_la) () (q)+i

(4.28)
Combining equations (4.28) and (4.27) as contributions from poles in the
Green's function gives the screened exchange term defined in terms of

equations (4.6) and (4.14) as
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2
£dsx 3
E [ |Im&n"&—g’ fnvcg Verr (B gt (4-29)
all n"
and —gq

(5) = - —£§ X
8“- n"

This expression differs from the zero temperature SX term in that the
wavevector integral is now over all states defined by -g and n", and
is limited for carrier occupancy by the Fermi distribution function.

Of "the poles in the effective interaction of equation (4.26) only

the poles at
v o= ml(g) - id and Vv = —ml(g) - ié
contribute to the contour integration. Performing this integral and

expressing the result in terms of equation (4.4) for the Green's function

gives the Coulomb hole term:

2
LACH e2 2 wp
E (k) = z I "
n - grie ¢ " nk,n"kgl o, (q) 2
or all n" 1 4/q
and —q
[ (14N )G°, (k~q,0 . -0 (q)) + N GO, (k-q,0 , +W (q))]d3q (4.30)
g 'n"'=*'"nk 1¥ q n" == 1% =

The self energy for state k 1in band n in the intrinsic material
takes the same form as equation (4.27) which is the unscreened Hartree-Fock
exchange energy between an electron in state %k in band n and the

electrons in the full valence band 2f the intrinsic material:

5 _ 2 2 'n" kg |
= 4.31
or all n",-g q
As the Fermi factor £ equals unity for the fully occupied valence

n"]i-g

band (ignoring the small number of elsctrons thermally excited to the

conduction band) this expression is the same as the zero temperature

equation (3.7).
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4.3. Band Edge Shifts in p-type Material

4.3.1. Introduction

The basic concepts used in deriving the band gap narrowing at
finite temperature are the same as those discussed for T = OK. The
hole gas introduced into the semiconductor valence band screens the
exchange interaction of the test electron at the band edge with the
remaining electrons in the valence band. Both the screening of the
carrier gas and the removal of electrons from the valence band states
then contribute to the change in self energy of the band edge test
electron. The self energy of state k in the valence band of the
intrinsic material is simply the Hartree-Fock exchange energy, which
must be subtracted from the screened exchange energy of the doped material.
A shift in the conduction band edge is again produced by the correlation

of the hole gas in response to the test electron.

4.3.2. Conduction Band Shift

The intrinsic semiconductor at T = OK has no occupied states in the
conduction band and this situation prevails on doping the material p-type.
The Fermi faétors in thé real parts of equations (4.29) and (4.31) are
therefore zero for the conduction band states. As the squared overlap
integral between states in the conduction band and the valence band is
also taken as zero (the sums in expressions (4.29) and (4.31) thus
reducing to n" = conduction band), the change in screened exchange

energy for the conduction band is zero, i.e.
SX
pEEF k) =0 (4.32)
—0

where EO again represents the wavevector of a conduction band minimum.
However, the response of the hole gas in the doped material to the

presence of a test electron affects the band edge energy through the
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the Coulomb hole (CH} term. In the intrinsic material the Coulomb
term is zero. The change in self energy of the conduction band edge

is then given by the real part (the Cauchy principal part) of equation

(4.30) as:
2
2 2 w
X
pEECH Gy = 8 L 1 . P
c 81 e € n" ckym Eo—g- 20 _(
or all n" l_g)q
and -q
1+N N 3
- (q)—w + w, +w, ( ?—m d'q (4.33)
Pk 14 n"k. ck 1 4 n"k -
—o o = —o o =

Using expression (2.40) for the conduction band overlap integrals
(which is unity for states in the same conduction band minima and zero
otherwise) and performing the angular part oflthe polar co-ordinate

wavevector integral (equation 3.38) this expression reduces to

o 2
2 w 2w N
LCH e P cq q 1
= P - 4.34
e (k) ane o wa(o) Wl )l By @ 99 (4.34)
or 14 cqg 4
where the substitution
2
g
w - = -~y = - == (4.35)
CEO ck 9 cq Zﬁk

has been made.

The second term in the square brackets gives an integral expression

ICH2 . .

(AEc ) identical to the zero temperature CH term (3.42) but the
finite temperature parameters for wl(g) apply in the present case.
This term is therefore evaluated in a similar manner to equation (3.42)
using the NAG integral routine D¢l APF.

The first term in the square brackets provides an integral not

previously encountered which on substitution of the various parameters

takes the form
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TCH1 k2 1/2 "pv
AE k ) = B =Y
C —° k 2n2 mDe
£fT EoEr
< x2 dx
J 2 02 4.1/2, '2 2 4 lep 2.2 4.1/2
O (k +x"+Bx") (k +x +a_x )lexp|———(k +x +8x ) —LJ
e k'kT
where
m m2
' K 3
k=k— x=-i- B=Z__ol anda___Bl__zl
£T £T v € m
De

This expression contains a singularity where the plasmon energy hwl

equals the conduction band energy wcq and is therefore evaluated using

the NAG Cauchy principal part routi;e Ddl AQF. The efiergy values
obtained from this expression are very small (< 0.5 mev) for the range
of concentrations above the Mott critical density and its contribution
to the band edge shift at high carrier concentrations can be ignored
without significant loss of accuracy.

AEZCHl

The carrier concentration dependence of the terms and

(4.3¢€)

ZCH2 . . ,
AEC for p-type Si at T = 300 K is shown in figure 4.3 and compared
with the zero temperature conduction band CH term. In general the

CH contribution lowers the band edge but at finite temperatures the
hole occupancy in the region around the test charge is reduced by
thermal excitation and the resulting energy shift is smaller than that
obtained at zero temperature. However, at high acceptor concentrations
the carrier distribution and therefore thecorrelation of the hole gas

is little different from that at zero temperature and the CH contribu-

tions are approximately equal.
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4.3.3. Conduction Band Shift using the Thomas-Fermi Approximation for

the Dielectric Function.

If the frequency independent, small wavevector T.F. approximation
to the carrier screening is used in place of the plasmon pole dielectric

function the conduction band CH term (4.33) reduces to

% 2
2 w
rgCHETF o ) o =8 J P 4q (4.37)
c — 41 € € wz( )
o “1'd
2
where wz(q) = w2 1+ a_
1 P 2
K
giving
LCHTF —e2K
A = .
E (Eo) 8nereo (4.38)

which is the same expression as derived for the zero temperature model

with K replaced by its finite temperature value. The carrier concentra-
tion dependence of this term is given in figure 4.3 where at high carrier
concentrations it is seen to overestimate the carrier screening effects

and give much larger shifts than the plasmon pole approximation. At

low concentrations, however, the screening is reduced substantially, this
is quite marked in the T.F. approximation with its strong dependence on

K. The resulting reduction in the T.F. CH term with increasing
temperature then produces a more realistic approximation to the conduction

band shift at low dopant concentrations.

4.3.4. Valence Band Shift - Introduction

The valence band shift is again derived by evaluating the difference
between the real parts of the self energy for the screened interaction
of the band edge test electron with the valence band occupied states and
the unscreened interacﬁion of the test electron with the full valence band,

i.e.



75

b LCH - ZsX LI
AET_(0) = (RelE (0) 1 + Re[E (o)1) - RelE_~ (0) ] (4.39)
HH — HH — HH — HH — . L
doped intrinsic
The above expression refers to the shift of the heavy hole band edge,
the corresponding shift in the light hole band can be found by inter-
changing the relevant subscripts in the following expressions and is seen

to be the same as the HH shift.

4.3.5. Derivation of the Valence Band CH Term

The CH term for the intrinsic material is zero so the only contribution

comes from the CH shift in the doped material given by equation (4.30)

2 m2
=& 5 —_—FP
HH = 8ﬂ3E € n" 2w, (g) 2

o'r all n" W, dd

1+N
!

(g)-wn"_q

2
*HHQ, " -gl

Ym0 ™1

and -q

Nq 3
+ daq . (4.40)
Ygpoty (D e

Substitution of the squared overlap integrals (2.40) and performing
the resulting integral for the angular parts of the spherical polar wave-

vector term gives

0 2
JECH _ o2 : [ Wy Ny N Ny ]dq (4.41)
HH o
4 eoer n" 2wl(q) wn"11 wl(q) wl(q)+wn"—gJ
where the sum is now over n" = HH or LH and the substitution
2
tig
= = — 4.42
wHHQ_ Wpe q wn"g_ 2m_,, ( )
has been made. In addition explicit mention of the wavevector k = O

ICH

has been dropped from EHH
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The poles occurring in the integeral of the first term in square
brackets, where the plasmon energy hml equals the band energy
hmn"q' make this integral difficult to evaluate. To overcome this
problem the CH term is added to the SX term for the full valence
band producing an easily evaluated integral. The value of the CH

term can then be derived by subtracting the SX +term which is also

relatively easy to evaluate ..

4.3.6. Derivation of Valence Band Screened Exchange Terms

The change in the heavy hole band SX term is given by

ZSX LsX LI
AEHH = EHH - EHH (4.43)
doped
where the real parts of the above terms are assumed. From expressions
(4.29) and (4.31)
f "
AEZSX = _____e_z__ ): T 2 " _g-
HH 873¢ ¢ n HHO,n"-q 2
or all n" !
and —-q
1+N N ]
1+ w2 k! - q a’q
P (o e 0 202@) (-, ) 2w?@) ||
HHO "n"-g 1 HHO "n"-g 1
e2 2 _int 3
+ ——— I .
3 ) ‘IHHO,n"—qI fn"—q d’q (4.44)
817e £ _n " — = - =
or n" and -q q‘

=valence band

Substitution of the appropriate expressions for the overlap integrals
(equations (2.40)) and performing the integral over the angular parts of

the polar coordinate gives
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@ 2

2 SX -e2 wp

= by £, 1+ dgq

HH 4n25 € n" g ( )2ﬂu (q)

0 L HHO “n"-q’ 1'¢
e2 [ int
+ —2——— % J fn" dq (4.45)
4t"e € _ n" =
0
where n" = HH or LH.

For the intrinsic material the elactron occupation factor of the full

valence band is unity. In the extrinsic material this occupation

L - _ e ) . ,
probability fn"Efg_ 1 £ n"k-q where £ n"k-q is the hole occupation
probability. Use of expression (4.42) for the energy eigenvalue difference

in equation (4.45) gives

o
AEZSX = dg
HH 4n €8y n" w2 -w (q)
O Il l q
e2 i
+ pX I £, dg (4.46) .
4n7e ¢_ n" n"k-g
r 0
) 1SX _ ,_LSXA LSXU
That is AE = AEHH + AEHH (4.47) .

The second term in this expression is equivalent to the zero temper-
ature result (equation (3.28)). However, the integration is now over
all states but limited by the Fermi occupation probability factor. The
first term in equations (4.46) or (4.47) is equivalent to expression
(3.17) for the difference in the exchange energies of the screened and

. ; . LSXA
unscreened interactions in the full valence band (AEHH ). For the

reasons explained at the end of section 4.3.5 this term is added to the

valence band CH term (4.41) to give
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T SXA+CH e2 w 2Nq wn"q 1
AEBH - 2 . Janiﬁ 2 " w tw, (q) dq (4.48)
4mr"c € n" 1 [m w w3 (a) a"g 1
o) 7 1
. , . . LCH1 ,
The first term is equivalent to the conduction band term AEC and is
evaluated in a similar manner. The contribution from this texrm is again

found to be negligibly small at high carrier concentrations.

Similarly the second term is equivalent to the second conduction

band CH temm AEiCH2 and is therefore evaluated in the same way. The
%L SXA+CH

carrier concentration dependence of AEHH

for p-type S8Si at room

temperature is given in figure 4.5 together with the individual contribu-

tions AEESXA and AEEEH evaluated as described below.
LSXA LCH
4.3.7. i
3.7 Evaluation of AEHH and AEHH Terms

Substitution of the plasmon dispersion relation (4.23) into the first

term in equation (4.46),

2 < mz
AEZSXA - -e 5 P dq , (4.49)
HE 4n2 n" 2 -m2( )
€ofr o} wn“q 14
gives the expression
2.2 P
pEESKA _ e Ko dx (4.50)
HH K 4"2 . k'2+ 2+ 4
gpdm EEL R X +o X
q K 3moV mgv
where x = X k' = X and =3 1l - -
£T £T Pov m’,

Solving this integral analytically using Gradshteyn and Ryshik (1980)

formula numbers 2.161, 2.141/2 and 2.143/2 gives.
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-2
SSXA e2K2 v an"
,2)1/2

AE = z (4.51)

HH k_ 4n’c e n" 2(l-da_, k
T or n

2.1/2_
£ ) .

1/2

L (l—4an,,k ]

This SX term provides an upward shift of the heavy hole band edge
while the valence band CH term gives a smaller opposite contribution
which is evaluated through the equation

LCH LSXA+CH EZSXA

AE = AE - A

(4.52)
HH HH HH

The hole concentration dependence of both CH and SXA terms for
room temperature p-type Si is given in Figqure 4.5. The valence band
CH term is additionally compared with the corresponding zero temperature
CH term and the finite temperature conduction band CH term in fiqgure 4.4.
For reasons already discussed in section 4.3.2 the finite temperature
valence band CH term gives a lower energy shift than the zero temperature
term but at high hole concentrations the shifts are approximately equal.

The only term still to be evaluated is that due to the SX inter-
action of the test electron with those electrons removed from the valence
band by the hole gas occupation. This term is evaluated below.

ZSXU

. z
4.3.8.
3.8 Evaluation of AEHH and AEHH Terms

From equation (4.46) and (4.47)

2 P w2
pES¥U . & 5 | g 1+ P dq (4.53)
HH 4n2e e_n" n"-q m2 -wz( )
or 0 n"gq 14
. . LSXU ISXUL LSXU2
which separates into AEHH _VAEHH + AEHH where
2 c 2 =
HH « ] n'-g 2 "
4w e €_ n = 4t"e € n
or 0] or 0

% 2
lﬂpoJi * a]/kﬂ-}
r1"
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and
2
@ £, dq
LSXU2 pn
AE = (4.55)
HH
4n €€, n" o (w (q))
Lsxul . .
The term AEHH resembles the first term of expression (3.28) for the

integration over the states occupied by holes in the zero temperature

extrinsic material. This integration is straightforward and was

carried out using the NAG guadrature routine D¢l AHF. The second
LSXU2

term AE , however, contains a pole where the plasmon energy Hhuw

HH 1

equals the bhand energy hwn"q' Unlike the equivalent zero témperature
term in which normally only the pole due to the light hole band falls
within the integration range, the poles from both HH and LH bands
are encountered in the infinite range integral of the present calculation.
The integral for both HH and LH bands is therefore performed using
the Cauchy principal part NAG routine D¢L AQF. The carrier concentra-
tion dependence of the AEZSXU term for room temperature p-type Si 1is
shown in figure 4.5. As with the zero temperature calculation this
term provides only a small addition to the upward shift of the wvalence
band edge, and once again this energy shift approaches that found at =zero
temperature and high carrier concentrations.
The resulting total upward shift of the valence band edge is given by
AEEH - AEEEXA+CH + AEEEXU (4.56)
and is also shown in figure 4.5.

For comparison the valence band edge shift derived in the T.F.

approximation is evaluated in the next section.
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shifts of the conduction and valence band edges of p-type Si at T = 300 K.
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4.3.9. Valence Band Shift in the Thomas-Fermi Approximation

a) Coulomb Hole Term

Use of the frequency independent T.F. approximation for the carrier
screening reduces the HH band CH term to the same form as expression
(4.37) for the conduction band CH term except that the valence band

coupling is now incorporated, giving,

2 ® w2 dq
ApeCHTE _ e o B (4.57)
HH 8 a" 2( )
™ EIEO 0 ml q
2
_ _—e’K (4.58)
8Te €
Y O

which is the same downward energy shift as produced for the conduction
band CH term and, as with the zero temperature model, the CH terms

make no contribution to the band gap narrowing.

b) Screened Exchange Term

Evaluation of the heavy hole SX term is performed following the
method of section 4.3.6. The difference between the screened exchange

energy for the fully occupied valence band in the doped material and

LSXATF

HH reduces to

the exchange energy in the intrinsic material AE

pESKATE _ ek

4 HH "~ dme_e (4.59)
ro

which relates directly to the first term of the zero temperature result

of equation (3.33) but now K takes its finite temperature form.

LSXUTF

The SX term for those states occupied by holes AEHH reduces

from expression (4.46) to
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o 2
%, SXUTF e? Wy
AE = —7 £, 1 - dq (4.60) .
HH 4 2 n" nq 2( )
T Eoer o) wl q

Evaluation of this term is easily performed using the NAG integral
routine D¢l AHF.

The total SX contribution to the shift of the heavy hole band edge
is given by the sum of equations (4.59) and (4.60) as:
EZSXA L SXU

g=SXTE _ ) + AE (4.61) .

& HHE HH HH

This term provides the only contribution to the band gap narrowing
in the T.F. approximation as the CH terms produce equal downward
shifts in both the valence and conduction bands. The carrier concentra-
tion dependence of the T.F. screened exchange term for room temperature
p—tjpe Si is shown in figure 4.5. This shift is seen to be larger
than that produced for the more realistic plasmon pole approximation and
is roughly equal to its zero temperature value, for high carrier concentra-
tions. At low hole concentrations the finite temperéture shift is
significantly lower than the zero temperature value due to the sensitivity

of the T.F. screening to the carrier distribution.

4.3.10. Results and Discussion

The hole concentration dependencies of the shifts in the conduction
and valence band edges derived in the plasmon pole approximation, together

with the resulting band gap narrowing in p-type Si, GaAs, Ga I As

0.47 “"0.53
and Gao.28 Ino.72 ASO.6 PO.4 at T = 300 K are illustrated in figures
4.6 - 4.9 respectively. For comparison the band gap narrowing at zero
temperature is also shown.

The four materials considered have a similar valence band structure

with little difference in the HH and LH effective masses. The shifts
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in the valence band edges are therefore similar in all four materials
and represent the largest contribution to the band gap narrowing, due
to the SX contribution which is not present in the conduction shift.
The relatively large density of states effective mass of the valence
band holes ensures large carrier concentrations (2 5 x 1019 cm_3) are
required before the hole distribution resembles that at T = OK. At
low carrier concentrations the main contribution to the reduction of
the band edge shifts at room temperature from their zero temperature
values comes from the valence band which is affected by changes in the
CH and SX terms.

For comparison a brief description of the derivation of band edge
shifts in n-type material is given below. This follows the work of

Saunderson (1983) for n-~type Si but is extended to include the results

for the gallium compounds considered above.

4.4, Finite Temperature Band Gap Narrowing in n-type Material

4.4.1. Introduction

The analysis used here follows directly from that described for the
zerc temperature model in section 3.3. In the doped material the donor
impurity band is considered to have merged with the host conduction band

and each donor atom has contributed a single electron to the carrier gas.

4.4.2. Valence Band Shift

The Fermi level lies either close to or within the conduction band
and the valence band is taken to be fully occupied. The resulting
change in the exchange energy for a valence band edge electron is given

through equations (4.29) and (4.31) as
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2
2 2w

P e I . £
HH 8ﬂ3€ it HHO,n"—q 2
“r all n" - 4

and -q
1+N N 3
i - o a’q (4.62)
(mHHO_wn"-g} ﬂul(q) (wHHO—wn"—g} —wl(q)

where wl(g) has its finite temperature form for an electron gas.
The valence band CH term is unaffected by carrier occupancy and

is given directly by expression (4.41) as

2
2 w 1+N N
Sl Iw & e @t e @e } dq (4.63)
87 €.E4 n o 1 n"g "1 1 n"'"q
4.4.3. Conduction Band Shift

The electrons in the newly occupied canduction band states of the doped
material have a screened exchange interaction with the band edge test
electron. The unoccupied conduction band states in the intrinsic material
produce no such interaction so the change in the conduction band SX term
is simply given by expression (4.29) in which the electron occupancy

probability £ limits the integral to occupied states only.

n"}_{__g
0 2
2 w
LSX -e p
E = — - .
A - (50) ; 5 I fCEO‘g, 1 2( . 5 dg (4.64)
TEE. 4 i w, (q wcq

where the appropriate substitution of overlap integrals has been made

and the angular part of the polar coordinate wavevector integral performed.
As T - OK the occupancy probability takes the form of a step function
and limits the upper range of the integral to kfe so that the

expression reduces to equation (3.46) of the zero temperature calculation.
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The conduction band CH term can be derived directly from equation

(4.30) which reduces to

5 o Nq wcq w2 w2
o) = 5 J T@ T r L T a@ e @] 4 (469
2r’e €4 L (ml(q)—wcq) 1 cqg 1
4.4.4. Results and Discussion

The electron concentration dependencies of the conduction and valence
band shifts and the resulting band gap narrowing in n-type Si, GaAs,
G

I s and Ga I

no.53 A 0.28 no_72 ASO.6 PO.4 at T = 300 K are given

90.47
in figures 4.10 to 4.13 respectively. The corresponding band gap
narrowing results for T = OK are also shown for comparison.

The screening effect of the electrons is determined by their distri-
bution in the conduction band which is in turn dependent on the density
of states effective mass of the conduction band and the number of valleys
occupied. In the case of silicon the relatively large density of states
effective mass and six valley occupancy keeps the room temperature Fermi

, . 19 -3

level in the band gap for electron concentrations < 2 X 10 cm . The
screening effect of the electron gas is consequently much weaker than
that produced by the strongly degenerate electron gas at T = OK. As
a result the band gap narrowing is reduced by some 10 meV at an electron

. 18 -3 . 20 -3
concentration of n = 10 cm . At dopant concentration 2 10 cm
the Fermi level has entered the host conduction band, the electron gas
is strongly degenerate and carrier distribution and screening resembles
that at zero temperature. The resulting band gap narrowing is approx-
imately equal to the zero temperature value. For the gallium compounds

and alloys the single valley conduction band with very light density of

states effective mass causes the room temperature Fermi level to enter
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the host band at relatively low electron concentrations (z 3 X 1017 cm_3

for GaAs). The carrier distribution is thus little different from that
at zero temperatures for carrier concentrations 2z 5 X lO18 om-3 and the
resulting band gap narrowing at finite and zero temperature are approx-
imately equal.

Camparison of the formulae and results for n and p-type materials
shows that there is a direct correspondence between the conduction band
shift in n-type material and the valence band shift in p-type material
and vice-versa, Jjust as in the zero temperature case. However, the

correspondence is somewhat obscured by the temperature distribution factors

f and N .
q

4.5. Summary

The analysis of chapters 2 and 3 deriving the band gap narrowing due
to electron-electron interactions at T = OK has been extended to finite
temperature (T = 300 K). This extension is facilitated by the use of a
finite temperature plasmon propagator which converts the zero temperature
plasmon pole approximation of the carrier gas dielectric function to a
suitable finite temperature form. All other terms in the self energy
expression (including the Green's functions) are expressed in their finite
temperature form but it turns out to be possible to evaluate the band
edge shifts in a manner similar to that for T = OK.

The change in distribution of the carrier gas provides a physical
explanation for the differences in the carrier concentration dependence
of the band gap narrowing at finite and zero temperatures. At low carrier
concentrations thermal excitation reduces the screening response to a
perturbation and the band edge shifts are correspondingly lower than those
produced at T = OK. As the dopant concentration is increased the carrier
distribution and degeneracy resemble that at absolute zero and the band

edge shifts at both T = OK and T = 300 K are very similar.
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CHAPTER 5

INTERVALENCE BAND ABSORPTION AS A LOSS MECHANISM IN HETEROSTRUCTURE LASERS

5.0. Introduction

low transmission loss and low dispersion are obtained in silica
based optical fibres for wavelengths of 1.55 ym and 1.3 pym respectively.
Double heterostructure lasers emitting within this range can be obtained.

by lattice matching Gax In to InP and can be used as

1-x ASy Pl—y
sources in optical fibre systems. However the threshold current density
for these devices exhibits an exponential temperature dependence

(n exp (T/To)) where To has several constant values over different
ranges of temperature. The higher the temperature range the lower is
the value of To and hence the more rapid the variation of Jth with
temperature. One such example of this behaviour is found in

30.28 1P0.72 #S0.6 Fo.a (A
100 < T < 25) K and To ~ 65 K for 250 K < T < 350 K (ref. Casey (1984)

G I = 1.3 um) for which TO ~ 100 K for
and Henry et al (1983)).

Several loss mechanisms have been proposed to explain this temperature
sensitivity: (i) Carrier leakage over the heterobarrier into the con-
fining layers (Dutta et al (1980), Nahory et al (1979) and Yano et al
(1981)), (ii) non radiative losses due to Auger recombination which both
reduces the quantum efficiency and increases carrier leakage by exciting
carriers above the heterostructufe potential barrier (Dutta and Nelson
(1981 and 1982} and Sugimura (1981)), (iii) non-radiative recombination
at defects, and interface states, (Yano et al (1980) and Ettenberg and
Kressel (1976)). (iv) intervalence band absorption (IVBA) causing

optical losses, (Henry et al (1983), Mozer et al (1983), and Adams et al

(1980)) .
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In view of the potential importance of the latter loss mechanism,
IVBA coefficients for several laser materials have been evaluated at

various temperatures and carrier concentrations.

5.1. The IVBA Mechanism

In an operational laser most photons emitted by electron transitions
from the conduction to valence band will either leave the laser structure
as part of the emitted radiation, often after stimulating more downward
electron transitions, or be reabsorbed by causing the reverse transition.
Some photons, however, are absorbed by other loss mechanisms. One such
mechanism is the intervalence band absorption transition in which photons
excite an electron from one valence band state into a higher energy state
occupied by a hole in another valence band. If no phonon or other energy
broadening mechanisms are considered in this process the transition is
vertical in k space that is the electron wavevector k 1is conserved.
This condition is assumed in the present calculations and all IVBA
coefficients are evaluated for vertical tramsitions. The extent to
which this simplificatioh.affects the calculated value of absorption
coefficient has been shown in some detail by Takeshima (1984). By
inclusion of phonon and impurity scattering processes, he has shown the
principal effect of level broadening to be a reduction in the temperature
dependence of 1IVBA coefficient over the range T = 100 K - 400 K which
correspondingly reduces the temperature dependence of threshold current
density on the IVBA mechanism. The three possible types of vertical
transition are illustrated in figure (5.1). The light-heavy hole band
transition (A) 1is considered unimportant as the transition energies

are small for all heavy hole states with a high probability of hole
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occupancy. The spin split off-light hole band transition (B) is
neglected on the basis of a low density of states in the light hole
band and a very low hole occupancy of final states for transitions at
the band gap energy. The larger density of states and hole occupancy
in the heavy hole band produces much greater absorption at relevant
wavelengths for the spin split off-heavy hole band transition (C)
than for transition (B). IVBA coefficients are therefore only
evaluated for the spin split off-heavy hole band transition.

The values of these absorption coefficients derived in the calcula-
tion are clearly dependent on the banastructure and momentum matrix
elements used. In the present Qork the absorption coefficients are
derived using pseudopotential bandstructure and momentum matrix
elements evaluated along 21 k space directions in an irreducible
segment of the Brillouin zone. This good coverage of k space takes
into account the variation of absorption coefficient with k space
direction. The band;tructure and momentum matrix elements for alloy
materials have been evaluated using a simple linear interpolation of the
values obtained for the constituent compounds.

The absorption coefficients determined in the above model are
compared with those derived using an approximation based on the same
pseudopotential information in only three k-space directions and also

with a simple parabolic isotropic effective mass model.

5.2. Theory of Photon Absorption and the IVBA Transition

In a semiconductor laser photons are reflected by cleaved and
mirrored surfaces at the opposite ends of the laser cavity. In traversing
the cavity the photons induce electronic transitions across the semi-

conductor band gap. The electron-photon interaction can be considered
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Figure 5.1:
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The three vertical (k-selection) types of IVBA transition.

IVBA coefficients are only determined for the spin split off-heavy hole

band transitions.
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as the interaction of an electron of charge -e with an electro-
magnetic wave. The electric and magnetic fields of a plane electro-

magnetic wave can be represented in terms of the vector potential

éoe—l(gjrnwt) éoel(EjE; wt)
A = — — = °
A=z +t 5 éo cos(ker-wt)
where
82
B = VXA E = - — . .
B =Vxa E= -5 (5.1

The Hamiltonian for an electron subject to a regular periodic
potential V(r) and an electromagnetic field is then given by

(Gasiorowicz (1974))

1 2
H=2m—O(P_+ le|a)® + vi(x) (5.2)

on substitution into the Schrodinger equation and using V*A =0 we

obtain
552 2 i e[h 92A2
E—m_ ve - o A_'Z+ - + V(r) Yy = EY (5.3) .

Of the terms in brackets the final term with the A2 component can be
shown to be several orders of magnitude smaller than the second term
(assuming no large external fields are applied (ref. Gasiorowicz (1974))
and is therefore ignored. The second term can now be considered as a

perturbation H' on the perfect crystal Hamiltonian where:

. -i(ke-r-wt) i(ker —wt)
_ _ilefh RS ST

AV (5.4)
Emo —0 —



91

The photon wavevector is very small compared with typical electron or

~ik e
hole wavevectors and in an expansion of e l—‘Ey
iker (=)™ n
e = I —— (kex) (5.5)
n=0 :
all terms higher than zeroth order can be neglected. In fact we take

k = o.
Using time dependent perturbation theory the first time dependent
. . . . iwt
term in equation (5.4) is proportional to e and produces downward
L . . -iwt
transitions and the second time dependent texm, proportional to e LW R
produces upward transitions. The rates of transitions between states

H and S 1in the heavy hole and spin split off bands are then given by

Fermi's Golden Rule as:

_ 2T ' 2 - =
Rup = SZH f(Es) (l__f(EH)) l<H|H IS>| G(EH ES R w)

_2r

. 2
Riown = & ° (B (1-£(Eg)) [<ulu'[s>|"8(E B hw) (5.6)

S,H

where f(EH S) are the probabilities of electron occupancies in the
14

relevant bands, and H' is now:

L -y (5.7) .

From equation (5.1) the direction of A is determined by the
polarisation of the electric field, i.e. éo = Aoé- where é_ is a unit
vector in the polarisation direction. Now the intensity I of electro-

magnetic radiation is given by Poyntings vector as

2
{(wA ) n
1= o T _ Ly 2 al (5.8)
2 cuo 2 o)
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where ﬂr is the refractive index of the semiconductor and the

remaining constants take their usual meaning.

Substitution of equations (5.7) and (5.8) into the rate expressions

(5.6) gives for the nett upward transition rate:

*h1 2
= I (£(Eg) - £(E))|H[a-Y[s>]° 6(E -E_“hw) (5.9).

Rnett - 2
up o © r

Now the energy density due to photonsin the active region is given by

photon velocity (c/nr) -0

i Nh
Energy density = lrradiance = = (5.10)

where N is the number of photons in volume Q.
The absorption coefficient is defined as the fractional loss of
irradiance (intensity) per unit distance, which for a beam of photons

in the x direction gives

1 dz1
= - = == 5.11
a(w) I dx ( )
(or equivalently I(x) = I(O)e—ax) which combined with equation (5.10) gives
1d1 _ldvhwe 1avhe (5.12)
Idx Idx&n Idt Q
dN , . ,
Now - g s the photon loss per unit time which equals the nett rate of
upward transitions. Hence
3 1 hu
o (w) = Rnett T 0 (5.13)
up

which gives
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2,2
me h R 2
a(w) = ;E__—"___'s§ﬁ (£(Eg) - £(E)) |<H|&- T[5> 8 (B -E_ -hu) (5.14)
€
o]

OwcnrQ

By expanding the periodic parts of the carrier Bloch wave-function for
states H and S 1in terms of reciprocal lattice vectors, it is shown

, 2
in Appendix 4 that |<H|ngJS>| averaged over all polarisations is

]2 = J<nle-v]s>]|® = |2 6, (5.15)
'~H -8

where lMIiv = l-[IMX|2

2 2
3 + !Myl + w72 (5.16)

and Mi are the momentum matrix elements formed by the Bloch periodic

parts for radiation polarised in the x, y, 2z directions
M = f u*(r)e *Vu (r)d’r (5.17)
H'="-x =

The kronecker delta in equation (5.15) provides the k selection condition

. 3
, . . ~ (2m .
. 8 = el - v
discussed previously Using k- o) §(k k. ) and converting

the sums over S and H states to integrals, expression (5.14) becomes:

2
3 3
3} JI (f(ES)—f(EH))lM S(ES—EH)G(EH—ES;Bm)d Esd

a(w) = kg

5 VS

ne’h?  (2m>[ @

m_€ wecn § {2)
oo . r

(5.18) .

Where to account for the two spin states in the heavy hole and splin split-

off bands the transition matrix element has been summed over all

possible transitions such that:

‘Mliv = |u| ' (5.18a) .
spin

states

Integration over ES and dropping the subscript on EH gives
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re%h®

_ 2 3
alw) = 3 J (£(Eg(K)) ~£ (B, (k) [M] 8 (E, (k) -E_ (k) -hw)dk  (5.19) .
moeomcnr(Zn)

Now using the expression

§(k-k )
G(EHS(}-(‘) - hw) =2 TV—E—-]—Q:—— (5.20)
L H =
kHS E-5a
where EHS(E) = EH(E) - ES(_) and the E& define surfaces in k-space
such that
Eyglke) -~ huw =0 . (5.21)

For isotropic E - E_ dispersion in both heavy hole and spin split-
off bands such that the energy separation increases monotonically with
k, there is a single spherical surface defined by equation (5.21), and

expression (5.19) reduces to

2 2
e 22 (£(Eg (k) ~£ (B, (K))) [My 4k

[v (k) |

alw) = (5.22) .

m € _wcn 8ﬂ3 kEHS k=k
oo r

However, to account for the non-isotropic E - k dispersion found in
most semiconductors a surface integral over the defined surface must be
performed. In the present calculation such a continuous surface is not
defined, the band structure and momentum matrix elements being determined
along only 21 k-space directions in an irreducible segment of the
Brillouin Zone. Thus only 21 values of k  are determined within this
region. However, a good approximation to the surface can be made by
assuming k has a constant value in each sector surrounding the chosen
21 directions. The derived surface area can then be used to evaluate

the absorption coefficient for each sector.
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If in is the solid angle in k-space of the sector i, the

contribution to the absorption coefficient from the sector is given by

2 2
. (£(E_ (k))-£ (B, (K)) [M] o K ag,
ai(w) = 2 2 17 E (k.)| (5.23)
moeowcnr8n k HS k=k2_
i
The total absorption coefficient is obtained by summing over 1i. The

procedure for determining the appropriate solid angles is given in the
next section.
In a simple isotropic, parabolic band effective mass approximation

expression (5.22) reduces to:

2,2 3/2
_ e’h 2u _ 2 1/2
a(w) = ——— [—2] [£(Eg (X)) -£ (B, (k) I|M]| o thu-2)
m e wen_w4lh
o o r
where k = Fl‘— (hu)—A)}l/2 (5.24)
2
h
1 1 1 , , . . A
— = — - — 1is the reduced effective mass and A is the spin splitting
u m m
S H
energy.

5.3. Choice of Directions

Ideally a uniform distribution of points on a sphere in k-space
would Dbe chosen to define the k-space directions referred to in the
last section. Each direction represented by the points could then be
considered to represent equal solid angles in k-space and correspondingly
given an equal weighting in the absorption coefficient evaluation.
However, as it is impossible to obtain a uniform distribution of a large
number of points on a sphere, a convenient set of directions was chosen
and the K-space solid angle of the sectors represented by the chosen

directions were then evaluated and the absorption coefficient weighted.
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accordingly. The Brillouin zone of the zinc-blende lattice is shown

in Figure (5.2a) with the principal symmetry points and lines labelled
by conventional notation. An irreducible segment (1/48th) of the
zone is shown in Figure (5.2b) and represents the volume enclosed by
appropriate planes passing through the T point and points L, K, W,

X, U. This volume is also that enclosed by planes cutting the TI'-point
and the lines along the [100], [110] and [111] directions. The
region on the (100) face enclosed by these planes was divided into 21
equal area squares, as shown in Figure (5.3). Points in the centre of
these squares Jjoined to the: r 'point then represent the k-space
directions along which the band strﬁcturé and momentum matrix elements
were derived. The ratio of the k-space volumes represented by each
direction was then determined from the solid angle subtended at the
[-point by each chosen area. That is by A cos e/r2 where A 1is the
area of the sguare, 8 is the angle between the normal to the plane of
squares and the line joining the square to the T-point, and r is the
distance from the square to the TI-point. For those squares along the
diagonal C - B of Figure (5.3) for which the full area A 1is shared
with a neighbouring irreducible segment, the derived ratio of solid angle

is halved.

5.4. Evaluation of the Hole Quasi Fermi Level

Using the NAG routine E¢2 ADF a tenth order polynomial expression
for the E - k dispersion relationship in the heavy hole, light hole and
spin split off bands was determined along each of the 21 chosen k-space
directions. As the hole occupancy of the spin split off band at the
temperatures under consideration is neglible only the light and heavy
hole bands were used to determine the quasi Fermi level. For a valence

band hole concentration of p(m-3) we have:



Figure 5.2a: The first Brillouin zone of the zinc blende lattice with

the principal points and directions marked.

Figure 5.2b: An irreducible segment of the Brillouin zone occupying

1/48th of the total volume of k-space.
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Figure 5.3: The section of the (100) plane divided into 36 equi-area
squares, the lines joining the centres of the 21 marked squares to the T
point define the directions for the bandstructure and matrix element

derivation.
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ZONE EDGE ZONE EDGE
2 3 3 in
p = z F'(E_(k))d 'k + £'(E_(k)d7k (5.25)
(2“)3 i H — - L — 4m
@) o
where 3 is the density of k-states including a factor of 2 for
(2m)

spin and in/4TT is the fraction of the total volume of k-space
attributable to each of the 21 directions i, and f'(E(E)) is the
hole occupation factor for the relevant band. The above expression
is equivalent to considering 21 isotropic systems and evaluating the hole
quasi Fermi level using an average weighted by the appropriate k-space
volume for each direction.

The hole occupancy factor ensures rapid convergence of the integrals
as k increases. Hence a value of k = 25 50 where
Eo = 27/ (100 x lattice constant) was used as the upper limit of the

k integrals. Expression (5.25) then reduces to

25 25
2
p = an 2m 3 k'zdk' + k'2 dk ' ,] d i (5.26)
(2“)3 100a F+EH(k') F+EL(k') aT )
—— + e et
O l+exp T ‘ 0 l+exp KT J
where k' = k/ko, a 1is the lattice constant and F 1is the hole quasi

Fermi level, measured from the valence band edgé. This expression was
evaluated using the NAG root finding routine C¢5 BADF, together with the
integral routine D¢1 AJF for which the quasi Fermi level is the determined
root.

In a simple isotropic effective mass approximation (SEMA) for which

1/2

the density of energy states has a E dependence expression (5.25)

reduces to:

0 ' o]
1 2m,, 3/2 _El/z'dE 1 2mL 3/2 _El/zdE 5 )
g 21r2 “hz 1+ F-E 27r2 “hz l+exp |t ]
— “TEXP T —w “TEXP T
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0 .
om )Y/? 1/2
1 -E dE
or p = — (5.28)
2n2 ‘hz l+ex F-E
b P37
2 2 3/2
where mé/ = m;/ + mL/ is the valence band density of states effective

mass, and the valence band edge is taken as the zero of energy. A
comparison of the hole quasi Fermi levels derived from 21-D pseudo-
potential and SEMA models for varying hole concentrations in Gaas at
T = 300 K is given in figure (5.4). For both models the quasi Fermi
level lies in the band gap for the carrier concentrations of interest
(that is p < 5 X 1070 em™°.)

Discussion of these reults and their effect on the IVBA coefficients

is given in the next section.

5.5. Bandstructure - Discussion and Comparison of Models Used

The bandstructure and momentum matrix elements were evaluated along
the 21 k-space directions using a Chelikowsy and Cohen (1976) pseudo-
potential calculation, an appropriate camputer program for this evaluation
being made available by S. Brand.

It is well known that for GaAs the [100] direction has a lighter
effective mass and larger (S - H) momentum matrix elements (at a given
k) than the [110] and [111] directions. The use of many directions
in the present calculation incorporates these differences and provides a
good coverage of k-space. Comparison of the main physical difference
arising from the use of pseudopotential or effective mass bandstructure
is best seen by examining their effect on the occupancy factor fH which
is the dominant term in the absorption coefficient expressions. The
much larger heavy hole density of states derived in the pseudopotential

calculation has three main effects which are shown diagrammatically in

figure (5.5) and can be summarised as follows:
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Figure 5.4: The position of the hole quasi-Fermi level relative to the

valence band edge E, = O, for the 21-D pseudopotential (A) and simple

effective mass (B) models.
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For the pseudopotential bandstructure (i) the hole quasi Fermi
level is further from the band edge, (ii) transitions at a given energy
take place nearer the band edge, (iii) the heavy hole energy level at
which a given energy transition takes place is higher so hole occupation
is more likely. The effects are reflected in the absorption spectra for
GaAs illustrated in figure (5.6) where absorption for high energy transi-
tions is very small in the effective mass model due to low hole occupancy
in the heavy hole band, and absorption for low energy transitions gives
greater absorption than the pseudopotential calculation due to the
relative positions of the quasi Fermi levels. To make the comparison
more direct, the momentum matrix elements used in the effective mass
calculation were the same as those used in the weighted average three
direction (3-D) pseudopotential model discussed below.

To determine the effect of using a smaller number of directions,
absorption coefficients were evaluated using a weighted average of results
for isotropic systems based on the three symmetry directions [l00],
(110], and [111]. The weightings were taken as being proportional to the
number»of possible equivalent directions, i.e. [1lo0l; [1lo]; [1111]:

o, 12, 8. For higher energy transitions near the band gap energy the
3-D calculation gives greater absorption than the 21-D model, the
reverse effect is seen for low energy transitions occurring near the band
edge.

For both twenty-one and three k space direction calculations, the
bandstructure and momentum matrix elements for alloys were determined
using a simple linear interpolation of the values obtained for the con-

stituent compounds.
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5.6. Results and Discussion

5.6.1. Energy Dependence of the Absorption Coefficients

The calculated absorption coefficient versus wavelength for Gaas
at a hole concentration of lO18 cmk3 and T = 300 K is shown in
figure (5.6). For comparison the results of a simple effective mass
model using mH = 0.45 mo, mL = 0.085 mo and mS = 0.15 mO (ref.

Landolt and Bérnstein (1982) are also shown. The same weighted average
matrix element was used in the pseudopotential 3-D and effective mass
calculations, making comparison of the effects of different band structure
more straightforward.

Low energy transitions give greater absorption in the 21-D cal-
culation due to insufficient emphasis being placed on the 'heavy' [110]
and [111] directions in the 3-D calculation, an effect which is also
found for the other materials considered. The experimental work of
Henry et al (1983) (which measured the resultant of all the possible
types of 1IVBA transition shown in figure (5.1)) is also shown in
figure (5.6) and compares well with both the 3-D and 21-D calculations.
The large energy difference between the band gap and the spin splitting
parameter in GaAs ensures transitions at the band gap energy take
place at large k values where the hole occupancy of the heavy hole band
is very low. The absorption coefficient at the band gap wavelength
(0.87 um) 1is therefore negligible.

Absorption coefficient versus wavelength results for Gao'47 Ino.53 As
(21-D and 3-D) at a hole concentration of 1018 dn_3 and T = 300 K
are shown in figure (5.7) together with the experimental results of
Henry et al (1984). The theoretical results are larger than the
experimental results for all the wavelengths considered. Of the materials

considered Ga I As has the smallest band gap and largest spin

0.47 "0.53

splitting parameter and hence the largest band gap wavelength absorption
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Figure 5.6: IVBA coefficient versus wavelength for Gahs. Results
for twenty one and three k-space directions are shown in graphs (A) and

(B) respectively. Graph (C) gives the experimental results of Henry

et al and (D) represents a simple effective mass model.
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coefficient (a (21-D) = 39 cm_l at A = 1.6 um). Results for the

absorption coefficient as a function of wavelength (21-D) for the

quaternary material at the same temperature and hole concentration as

used in the previous materials are also shown in figure (5.7). The

relatively small spin splitting value (A = 0.26 evV) and larger band

gap than the ternary material, results in lower absorption at the band
1

gap energy (a (21-D) = 13 cm at A =1.3 ym) than is found in the

ternary material.

5.6.2. Temperature Dependence

Calculated results (21-D) of absorption coefficient versus temper-

ature at the band gap wavelength for Gao A and

.28 M0.72 50,6 Fo.4

Ga As are shown in figure (5.8) (band gap wavelength absorption

0.47 ™0.53
in . GaAs 1is negligible at all temperatures considered). The ternary
material exhibits a gradual increase in absorption coefficient with
temperature with a decrease occurring for T > 350 K. This change occurs
due to changes in the hole population as carriers are distributed further
down the heavy hole bandAhence increasing the probability of high

energy transitions and reducing the number of low energy transitions.

The number of holes available for transitions at a given heavy hole

energy level will hence show an initial increase with temperature then a
decrease. This effect is not seen in the quaternary material which

shows an initial rapid increase in absorption coefficient with tempera-
ture, the rate of increase falling at high temperatures. This again
results from the large difference in enefgy between the band gap and the
spin splitting parameter causing band gap energy transitions to take

place well down the heavy hole band and ensuring much higher temperatures

are needed before the carrier distribution changes can produce a negative
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Figure 5.8: The temperature variation of IVBA coefficients for

G I As (graph (A)) and Ga In A (B) at
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wavelengths corresponding to their respective band gaps.
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temperature coefficient of absorption. However, the absorption at the
band gap energy in this material is small and would seem unable to con-
tribute significantly to the total laser loss. The results for

G

I As compare well with those of Takeshima (1984Db). However,

%.47 "0.53

his use of a differently averaged bandstructure, and momentum matrix
elements derived in the k-°p method results in the temperature coefficient
of absorption becoming negative at a lower temperature (= 250 K) than

the present calculation.

5.6.3. Concentration Dependence

The concentration dependence of absorption coefficient at a given
energy is found to be approximately linear for all the materials considered

in the range p = 7.5 X% lQl7 cm_3 - 3 x 1018 cm_3 .

5.7. Summary

The wavelength, temperature, and concentration dependence of IVBA
coefficients for three semiconductor laser materials have been evaluated
using Chelikowsky and Cohen (1976) pseudopotential bandstructure and
momentum matrix elements evaluated along twenty one k space directions
in an irreducible segment of the Brillouin zone. Results obtained using
only three k space directions compare well with the 21-D results but a
simple parabolic, isotropic, effective mass approximation gives much
smaller band gap energy absorption coefficients than the pseudopotential
calculation. The temperature dependence of IVBA coefficients at wave-
lengths relevant to optical fibre transmission has been shown to be either

small or where rapid variation does occur, the absorption itself is small.
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CHAPTER 6

SUPERLATTICE AND QUANTUM WELL STRUCTURES

6.0. Introduction

Having described calculations of intervalence band absorption in
bulk semiconductors a similar analysis is now performed for quantum well
heterostructures. The optical losses produced by IVBA transitions
can be an important intrinsic loss mechanism in quantum well lasers and
as such these losses are evaluated for a single quantum well structure
using several different bandstructure models.

The work in this chapter is concerned with the derivation of the
electronic bandstructure and momentum matrix elements for the relevant
optical transitions in quantum wells. The IVBA losses using this
derived bandstructure together with corresponding losses derived using
SEMA and pseudopotential bandstructures are evaluated in the next

chapter.

6.1. Superlattices and Quantum Wells - Basic Theory

A conventicnal superlattice structure is composed of alternate
layers (same 1O - 1000 g thick) of two semiconductors. The materials
are usually closely lattice matched to reduce strain at the layer inter-
faces. In the type I superlattice of interest in the present problem the
band gap of one of the materials (say B) is larger than that of the
other (say A) and the conduction and valence band edges in A lie
within the band gap of B. This difference in band gap produces
attractive potential wells for electrons in the conduction band and holes
in the valence band (figure 6.la), which act to restrict carrier motion

in the direction perpendicular to the superlattice planes (the super-



SUPERLATTICE PERIOD

b | —

CONDUCTION
BAND E—
POTENTIAL WELLS
VALENCE
BAND —— ? : . —
LAYER LAYER

Figure 6.la: The variation in bulk band edge energies forming the

potential wells in a type I superlattice structure.
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Figure 6.1b: The parity of the first four bound state wave functions

for an electron confined to an infinite square well potential.
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lattice direction - chosen as 2z). If a carrier is in a layer A and
has an energy below that of the barrier presented by B and the width
of layer A, LA is less than the carrier de Broglie wavelength,
quantisation of the particle motion in the 2z direction occurs, with

motion in the layer planes remaining free. A series of quantised energy

’hzkzn
levels En = ——EE— (n is the nth bound state) for motion in the =z

direction is then produced, where to the simplest approximation kzn is

given by the solution of the infinite one dimensional well problem as

kzn = %E-. Hence the allowed states form a series of sub-bands with
A

edges defined by the En and energy dispersion relations for free motion

in the x and y directions given by the simple effective mass model:

hzkil 2 2 2
E = where k =k~ + k', the total energy of a particle in
2m 11 X y
h2 2
kll
state kll of the nth sub-band is then given by E = En + - .

In optical emission carrier transitions can take place between
conduction and valence sub-bands, the energy of the emitted photon

(neglecting exitonic effects) being given by:

hzkil hzkil
E = Eg + Ecn + Evﬁ + zmc + va (6.1)

where E and E
cn v

g are the energies of the nth conduction and the

Lth valence sub-band edges (see figure 6.2) respectively, and m_ and
m  are the corresponding effective masses.

The form of a typical carrier wavefunction produced by the well
confinement in the z-direction is a product of a slowly varying envelope
function F(z) and a rapidly oscillating Bloch periodic part. In its
simplest form for a quantum well of infinite depth the envelope function

takes the form of a simple sine or cosine:
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F(z) =C°S[n;_xl n=1,3,5,...
A
= sin[nnTx} n=2,4,6,... (6.2) .
A

The cosine terms have even and the sine terms odd parity about the
well centre; the first two envelope functions of each parity are illus-
trated in figure 6.1lb. The definite parity and orthogonality of these
functions results in a selection rule An = 0 for interband transitions
(i.e. transitions are allowed between sub~bands 1 ~+ 1, 2 -+ 2 etc).

A full calculation for a finite quantum well shows that this rule is not
generally valid and so called 'forbidden transitions' can be significant,
as found for intervalence band transitions near the sub-band edges in the
k°p model derived in this chapter. However, fundamental interband trans-
itions and intervalence band transitions away from the band edge for which
An = O still provide the dominant contributions to optical spectra.
Expression (6.1) for the energies of emitted photons due to interband
transitions must therefore be modified by the An selection rule.
However, the energies of the remaining allowed transitions can be tuned
by the variation of either the composition of the barrier material
(altering the depth of the quantum wells) or the well width LA (altering
the carrier kinetic energy). An example of this compositional tuning is
found in a GaAs/Gal_xAlX As superlattice. Where the aluminium content
of the barrier material Gal_x Alx As can be varied resulting in an
increase in band gap of =z 560 meV at T = 300 K when x is changed
from O to 0.45 (for x 2 0.45 the band gap is indirect). Variation
of well width produces a more marked change in sub-band energies, well
widening causing an increase in the number of sub-bands corresponding to

confined states and a shift in their energies towards the bulk band edge.
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Additional changes in the position and structure of the sub-bands can
be made by reducing the width of the barrier material to give large
coupling between adjacent wells. Each of the single well levels then
splits into N closely spaced levels (where N 1is the number of wells)
forming an essentially continuous band for large N as first discussed
by Kronig and Penney (1931).

The depthof a quantum well in a given band is determined by the
relative positions of the band edges in materials A and B. Early
papers (Dingle et al 1974/75) gave the conduction band discontinuity AEC
(the well depth) as 85% of the band gap difference (AEE = 0.85 (EgB - EgA))

in a GaAs/Ga Alx As structure with x wvarying between 0.19 and 0.27.

1l—=x
However, the trend in more recent papers (Batey et al 1985, and Miller
et al 1984) is towards a 60/40 split (AEc = 60% gap difference) in this
structure, with different ratios occurring in other material systems.
As the position of the sub-band levels is dependent on the well depth,
any physical properties predicted using calculated energies for sub-bands,
will be dependent on the choice of band offsets. In addition to the
valence band édge energies the depthof the potential well in the spin

split-off band is also dependent on the choice of splitting and is given

by reference to figure (6.2) as:

AE | = AB + AEV - A (6.3)

where AA and AB are the spin splitting parametersin A and B
respectively.

The energy-wavevector dispersion relation for the system determines
the form of the density of states function g (E). In a single quantum
well and in the simplest effective mass model the density of states in
all bands takes the form of a step or staircase function (as shown in

figure (6.3)).
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Figure 6.4: The envelope function of the ground state in an irregular

superlattice, showing the continuity of the wave function at the A - B

interface.
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The discussion in this section has largely related to the simple
effective mass model of superlattice and quantum well structures. In
the next section a method for providing a more realistic approximation
to the band structure in type I superlattices is considered. The
dispersion relationships and the corresponding density of states derived
from the calculation, differ in detail from the simple model, however

there are some general similarities.

6.2. Derivation of Superlattice Bandstructure

6.2.1. Introduction

The technique described below gives the E - k relationship for k
parallel to the well-barrier intexface (in-plane k) for a single gquantum’
well superlattice. The approach adopted is to consider a superlattice,
with barrier layers thick enough to essentially decouple adjacent wells
so giving negligible E - k dispersion in the superlattice direction.

The method is easily extended to superlattices with thin barriers and
strongly coupled wells by a simple modification to the trial wave function
and this procedure is outlined later. The periodic nature of the super-
lattice means we need only consider one period comprising a single well

of material A and an adjacent barrier of material B and apply pericdic
boundary conditions. The problem then, is to solve the Schrodinger

equation

2.2

1t

+ VY = ey (6.4)

where V 1is the periodic potential of the lattice in materials A or

B as appropriate.



The method used to solve this expression is a variational technique
derived by Schlosser and Marcus (1963) for the solution of the energy
band problem in metals, and extended to the present problem by Altarelli

(1983) .

6.2.2. The Variational Technigue

The standard Rayleigh-~Ritz variational technique chooses a trial
wave function ¢ in terms of some variational parameters.

The expression € = f%%féﬁi. where H 1is the Hamiltonian, is then
minimised with respect to each of the variational parameters. The
present problem however, is more complicated because we are dealing with
two materials, and the wavefunctions in these materials must be matched
at the A - B interfaces. Schlosser and Marcus have shown how the
boundary conditions can be incorporated into a modified variational
technique and their general method can be applied to a superlattice as
follows (see Altarelli (1983)).

A rectangular box whose surface encloses a volume of the quantum
well and barrier material (figure 6.5) is drawn such that Sl and S3

are interfaces between adjacent layers of well and barrier materials,

52 is the interface between A and B materials, 84, S5 and 56’ S7
are chosen to satisfy the cellular boundary conditions
ik.a
+ = g = =
b (£t ak) =e v, (x/k)
Yy (r+ak = =29y (k) (6.5)
nw— = n'w o= .
where ww is the trial wave function in material w (A or B), n |is

the cutward normal on the appropriate surface and a 1is the distance

between opposite faces S, and Sg of the box. Similar conditions



Figure 6.5: The surface surrounding a chosen volume of materials A and

B. S S and S are interfaces between adjacent material types.

1’ 2 3
84 - S7 are surfaces subject to the periodic boundary conditions

imposed on the trial wave functions.
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apply on the remaning parallel surfaces (not shown) on the box. Clearly
we could choose S4 - S7 to be the outer surfaces of the material for
which the boundary conditions (6.5) must apply. This choice of
boundary conditions for the trial wave function ensures cancellation of
some integral terms in the derivation of the variational expression in
Appendix 5.

It is shown in Appendix 5 that € differs only in second order
from the true energy when derivations of the wavefunctions from the true
functions are first order. The variational solution is therefore
obtained by the condition that € is stationary under independent varia-

tion of the parameters in the trial solutions in A and B. The modi-

fied variational expression derived in Appendix 5 is then given as

™

I q;*q;dsz=J P* H Y aQ +
s-ZA+B SBA+B

|

J [y = ¥y (V% + ¥ 4%) = (W + ¥ (7 g -V y )] as
< :
2

1
N

J [(q;B - pr) (vnlpg + Vn"’}'&) - (wg + w;) (vnnpB - vn\pA)] das (6.6)
S. ‘
1

where wA and wB are trial wave functions in materials A and B

respectively, ¢ |is wA or wB' H is the Hamiltonian in A or B

as appropriate, and n 1is the outward normal on S

, _ 9
A (di.e. Vn = 37 -

5 in material
The wavefunction continuity conditions at the A - B interface
(which provided the necessity for a modified variational expression) are

taken care of by the last two terms in equation (6.6)}.



It should be noted that atomic units for which h = m = 1 have
been used in expression (6.6) and the same prescription will be main-
tained throughout the remainder of this chapter. In addition the
eigenvalue € is shown in Appendix 6 to be always real as equation

(6.6) reduces to a sum of conjugate pairs.

6.2.3. Choice of Trial Wave Function

We must now choose a trial wave function for the regions A and B.
Following the standard procedure of Efg. perturbation theory (Kane 1957)
we can express the wave functién of a state k in band n in terms of
an expansion in the band edge Bloch functions uj of the bulk material.
To reduce the computational effort, wave functions for each material are
expanded in terms of only the eight band edge Bloch functions ul - u8
(two from each band allowing for spin) derived from the conduction, heavy
hole, light hole and spin-split off bands. The effect of other bands
on the wave function being accounted for by first order perturbation
theory and on the energies by Lowdin (1951) renormalisation. The Bloch

function basis states are chosen to diagonalise the spin-orhit inter-

action and are given as

J, mJ
u =1/2 1/2 S ¢

» Conduction Band
u. =1/2 -1/2 s+
u, = 3/2, 3/2 (X + iY)4/V2

Heavy Hole Band
ug = 3/2, -3/2 —(X = iY)4M/2
uy = 3/2, 1/2 /224 + (X + iY)4/V/6
V3 Light Hole Band
u, = 3/2, -1/2 -(X - iY)+/V/6 - /224
V3
u, = 1/2, 1/2 (X + iY)+/V/3 + 24/V/3
Spin Split Off Band

u, = 1/2, -1/2 -(X - 1¥)4/V/3 + Z4/V3

110

(6.7)



The trial wave function for an electron in either material A or B

is taken to be of the fomm

ik, -r. kep..
g = I uj(Eij(g)e 11 ll+-2 z B
j JoiFILI

ik .. -x
G @F ) e (6.8)

Ei
where the summation over i refers to states in bands other than those
forming the basis set (6.7), ‘Ell and I are wavevector and position
coordinates in the x -y plane, and Fj(g) are envelope functions which
along with the Bloch periodic parts give the =z dependence of the wave-
function.

We are now in a position to evaluate the first term on the right

hand side of equation (6.6). Using a wavefunction for material A of

the form of equation (6.8) gives

LA
o A
J Y*HPAR = I (F*H., ,F.,) dz (6.9)
ia JJ3° 3
Q 1175
A
where 2z = LA is the location of the A - B interface shown on figure
A

6.5. and sz, is the Kane Hamiltonian matrix in which k takes its
operator form k ,k ,=i . A similar expression can be derived for
P (_Xl_yl 13/32) P

material B. Note the spin orbit splitting perturbation due to higher
bands, the Xk dependent spin orbit splitting and the linear terms due
<S|px|ui><uilpy|z>

(4(E +E )-E,)
C v 1

to renormalised perturbations of the form [ are

all omitted from the Kane matrix, their values being negligibly small
compared to the other energy terms. As a result the matrix possesses
Kramer's symmetry and all eigenvalues subsequently derived occur in
degenerate pairs.

The terms Yl’ Y5 and Y3 used in the Kane matrix are similar to

the parameters used by Luttinger (1956) for the perturbations due to higher
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bands. However, in the present model the basis states include the
conduction band, and its contribuiton is therefore treated exactly,
rather than as a perturbing higher band as in Luttinger's evaluation.
The contributions of the conduction band are therefore subtracted from

L
the Luttinger terms Y in the following way

_ L__2P2
Y9 7Y T 3E
g

2
L P

Yo =Y 7 3E (6.10)

g

_ L2
Y3 = Y37 3E
g

where Eg is the energy gap at k =0

The operator function of k correspondingly applies to the first
order perturbation expansion used in the trial wave function in A and
B layers for the surface integrals in the variational expression (6.6).

The explicit version of equation (6.8) for material A is

| : A
ik. . °x kep ik .-°r
—11 11 A A : A A =
vy= I e 1 uj(@FS(2) + T TS — u, (D)F . (z)e 3 61
j=1,8 j=1,8 i#3{"3 1 ’
where k = (Ex'Ey' - i3/3z), the summation over 1 refers to the band

index subscript (which is not to be confused with the complex number i),
and again the spin-orbit coupling between the basis states j and the

higher bands is neglected.

6.2.4. Evaluation of the Interface Integrals in Egquation (6.6)

Expanding (6.1ll) gives
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Figure 6.6: The Kane matrix derived

from the band edge Bloch basis

states for a bulk material.

See Appendix 10 for an

enlarged version of this figure
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A
' O y i ©
7% aa A5E1™ iy aa KyptEp
gy, = L e uF,. + L I 1 F.u, e
A . s e g E.-E, J1i
] J i#3 j i
A
z OFT ik, ex
. A K. er
T N [ i B N (6.12)
. .,.|E.-E i 3z
JiAIy3 1
X , X -9d
where P,. = -ip.,, = u* |=— u.,, etc. and for brevity the 2z and
13 1] i {ox J =
chll

dependences of F and u have been omitted. Subtitutions of this
equation into the surface integrals found in the variational expression
(6.6) yields expressions involving products of Bloch periodic parts.
To remain within the spirit of k-°p theory these products are integrated
over a unit cell at the interface. It is further assumed that the Bloch
function periodic parts are the same for materials A and B. As the
envelope functions vary little over a unit cell, they assume their
values at the appropriate interface, and the integrals over Bloch function
periodic parts are equal to paramters defined in k°p theory.

The detailedjevaluation of the unit cell integrals is given in

Appendix 7 from which we obtain the following expressions:

zz aFj' ZZ aFj :
* - * = * . .- ® D S
J (WY, - ¥, T4%)ds 2j§,[Fijj' -2 NLI
)
*
+ 21 ik 0%, + Y2 )R + ik (0%% + 0¥ )P - p%, PR, (6.13)
PO B b 33 X33 33 33'7 3
B*aFa' A A aF?* Bzz
*Wy_ - P Vyx =2z —J - ph3E _ -3 p
f A N e TR L
52
* y A%4 b zZ
+ 20 FooLik 002 4+ pPY%) 4 oax 0% 4 pPRE) L p% R, (6.14)
3Ty 3 33 x' 33 33 3373

33!
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§..,8 D
o8 3378 . T3i Tij (6.15)

where 591 > : E E

Similar terms are formed for the remaining integrals by interchanging
labels A and B
af

Note the Djj' are found in the Kane matrix of figure (6.6) which

is of the form:

B, = 3 D

af o
Iy ' kak + I P.., ka + Ej'éjj'_ (6.16) .

oB =x,v,z 33 8 0=xX,Y,2 ]

No dependence of P on A or B 1is shown in the above expressions as
the Bloch function periodic parts used in its evaluation are assumed to
be the same in bothamaterials.

An expression for the remaining normalisation term on the left hand

side of the variational equation (6.6) is now derived, using the wave-

function expression (6.8).

6.2.5. The Normalisation Term

The remaining term to be evaluated in the variational expression (6.6)

is ¢ [ P*paq. Substitution of the trial wave functions into this
9]
A+B

expression yields an expression in terms of integrals over the envelope

functions:
LA L
* *
€ J PFYdo= €| I FAj F? dz + I j F? F? az (6.17)
“rsB J T L
8] A

A full derivation of this result is given in Appedix 8.
We must now consider the form of the envelope functions Fj used

in the trial wave function.
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6.2.6. The Envelope Function Expansion

Bloch's theorem requires that the envelope functions have the
full periodicity of the superlattice (period L), and it is therefore
convenient to express each Fj in terms of a Fourier series. The
number of terms used in the expansion must be sufficiently large to
provide a good representation of the envelope function, but too many
terms requires excessive computational time in solving the variational
expression. As such, an expansion in terms of thirteen basis states

(a constant, 6 sines and 6 cosines) is used.

a 6 13
A o} Ccos 214z sin 2w (2-6)z
F|l = —+ —— 4+ I —_— .
5 2T LAy L 227 213 L (6.18)
=1
b 6 13 \
F? - 24 3 b . cos 2miz + I b sin 21 (1-6)2 (6.19)
302 g M =7 3 L

If the barrier thickness is reduced resulting in stronger coupling
between adjacent wells the sub-band structure may then have significant
dispersion in the z-direction. This dispersion is determined by

ik =z
multiplying the envelope terms Fj by a plane wave term e where
kz is a wavevector in the superlattice Brillouin zone such that
~TF < <7 .
( /L k, /L)
All terms in the variational expression (6.6) have now been evaluated

and we must now consider the solution of this expression.

6.2.7. Solution of the Variational Expression

Each term of equation (6.6) has already been expressed in terms of

envelope functions F?, F? etc. Use of equation (6.18) and (6.19) in these

gives an equation, all terms of which are a product of a Fourier expansion

coefficient (e.g. alj) and the complex conjugate of an expansion

*

coefficient (e.qg. a2|j')
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b) ) '* oal o, (Hl 2

.. + H, - €D = 6.20
i3 oage 23 T3 gt T igimeer T Py 20 (6.20)

. 1
Here a!' represents either a_ ., or represents terms

b ., H,.
3 23 L3 jitag!
from the Hamiltonian (first term on the right hand side of equation (6.6)),

H2

. represents terms from the interface integrals and D,
jjree’ 3j

Jllll

represents the normalisation terms. The variational character of energy

¢ means that equations for the coefficients aéj and aég can now be

obtained by the condition that ¢ is stationary as a function of the

finite set of coefficients. Hence linear equations for the ai,J,
are obtained by differentiating with respect to the ai;. The linear

equations can then be solved by matrix diagonalisation; the matrix in
general is non-Hermitian. However we have proved quite generally in
Appendix 6 that only real values of ¢ are valid solutions of expression
(6.6) and it is convenient to cast the problem into a form that ensures
real €. Equation (6.20) is added to its complex conjugate (which is
also variational) and the sum is then halved. ‘On taking the j

dependence as implicit the resulting expression gives:

* *
R Ll YRkl K% (Dzz'+Dz-z)1
L al ag. > -€ 5 =0 (6.21)
20" J
1 2
where ng, = Hgg' + Hll' .

As the above sum is still variational, differentiation w.r.t. ai*

yields a system of linear equations of the form:

(6.22) .

* +D*
T AT (D Dm'z)}
z a - € 5 =0

These equations have non-trivial solutions if
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(T, ,+I*, ) (D
det 2 AT S

=0 (6.23)

The solution of this will now yield only real eigenvalues due to the
Hermitian nature of the terms.
The J matrix can be seen to fall into 4 blocks corresponding to

the various combinations of the expansion coefficients:

* *

5 %5 | 23 Py 6.24
b*. a b*. b (6.24) .
Rfj Ql'j.' l Q,j llj'

_Each of these main blocks can be further subdivided into 64 small blocks
corresponding to matrix elements involving the Bloch functions uj and
uj.- For j=1-8 and j' =1 - 8. The upper left and lower right
blocks contain terms due to the Kane Hamiltonian matrices (figure (6.6))
for material A and B respectively, plus terms from the interface
integrals. The other blocks contain interface integral terms only.

Thus symbolically

(6.25) .

The D matrix is real and contains terms only in the upper left and
lower right blocks and only for j = j' but it should be noted that it
is not a unit matrix. The system of linear equations (6.21) thus takes

the matrix form

JX = eDX (6.26)
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where X 1is the vector formed from the ai. coefficients, and J and
D are square matrices of dimension 208 x 208. As D is not a unit
matrix, evaluation of (6.26) requires the use of NAG routine

F$2 GIJF for solution of a generalised eigenvalue problem.

6.3. Results and Discussion

6.3.1. Introduction

The solution of expression (6.30) demands considerable amounts of
c.p.4. time on a large mainframe computer due to the large dimensions
(208 X 208) of the complex square matrices J and D. With the
limitation on computer facilities the sub-band structures and momentum
matrix elements for a single well width in only one superlattice system
have been detexrmined. In view of the considerable attention devoted
to the GaAs/Gal_x Alx As gquantum well system in heterostructure studies
the bandstructure for this system has been evaluated using the material

parameters listed in table 6.1. The relatively wide Ga Alx As

l-x
Q
barrier layers (200 A) essentially decouples adjacent wells giving

negligible E - 52 dispersion and the in-plane bandstructure corresponds

to that found in a single quantum well.

6.3.2. Bandstructure

The solution of equation (6.26) for a given wavevector Eil in the
layer plane produces 104 doubly degenerate (i.e. 208) eigenvalues. of
these solutions only a small number (usually less than 15 degenerate
pairs) correspond to the bound state solutions for carriers confined to
the quantum well regionms. For example in the 100/200 R well/barrier

system considered in the present work there are 6 doubly degenerate heavy

and light hole confined states and 2 doubly degenerate states in both the



Table 6.1: Parameters used in Bandstructure Evaluation
Parameter GaAs Gal—x Alx As
Percentage Aluminium content - 30% (x = 0.3)
Material width 100 A 200 A
Band Gap E_(eV) 1.424 1.424 + 1.247% (@)
Spin orbit splitting A (eV) 0.34 0.34 - x(0.34 - 0.275) (&)
P(a-u) (b) 0.636 0.636
vy (c) 6.85 3.45
Y]2:' (e) 2.1 0.68
Ys (e) 2.9 1.29

The ratio of conduction to valence band discontinuity is taken as

AEC/AEV = 60/40 .

References

(a) Casey and Panish (1978)

and Adachi (1985).

(b) Alavi and Aggarwal (1978) give P for

assumed for the alloy material.

(c) Altarelli and Ekenberg (1985).

GaAs,,

the same value is
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the conduction and spin split off wells for a given value of &11

The remaining solutions correspond to unbound states of the conduction

and valence bands. The unbound states are not studied here but it

should be recognised that their energies are likely to show considerable
dependence on the wavevector component kz. In contrast and as explained
earlier bound state energies will have a negligible dependence on kZ
because of the lack of significant coupling between wells for these states.
The relevant bound states of the system are obtained by examination of

the relative amplitudes of the wavefunctions in regions A and B and
the form of the appropriate envelope parts of the wavefunction. Some
spurious solutiong Wwhere the variational wavefunctions show poor matching
at the interfacesare also rejected by examining the relative magnitudes

of the energy contribuiton from the interface matching conditions and

the Kane matrix terms.

The sub-band dispersion for bound states with ki in the [100]
and [110] directions are shown in figures (6.7) (with predcminant heavy
and light hole character) (6.8) (with predominant conduction band
character) and (6.9) with predominant spin split-off character). The
spin split-off and conduction sub-bandsare almost parabolic in nature
and approximate closely to the effective mass theory sub-bands obtained

using m, = 0.15 m and m, = 0.067 m_ - In addition in each case the dis-

persion along the two kll directions differs little. The only obvious
comparison that can be drawn between simple effective mass theory results
and those illustrated in Figure 6.7 for the heavy and light hole sub-
bands is the approximate n2 relationshipAin the energies of the heavy
hole sub-band edges. Unlike the simple uncoupled band calculation these
sub-bands have a distinctly non-parabolic E - Eil dispersion resulting
from band mixing. The small energy separation between some of these

sub-bands causes distinct band bending effects and anticrossing behaviour.

This is particularly noticeable between sub-bands Hl and Ll at
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Eil:ZEO (ko = /300 i) and subbands H2 and H3 at

511:350 at which points the hole effective mass in bands L1 and H3
is seen to change sign. These results are in excellent agreement

with those derived from a pseudopotential complex bandstructure calcula-
tion by Monaghan et al (1986) and in good quantitative agreement with
the results of Sanders and Chang (1985) derived using a two band k°p
model. It should be noted here that the absence of similar effects in
the conduction and spin split-off bands results from the small inter-
sub-band coupling.

The non-parabolic nature of the heavy and light hole sub-bands
has marked effects on their density of states and corresponding hole
occupancy. The most noticeable and impbrtant difference (relevant to
optical transitions) between this bandstructure and a simple effective
mass model occurs in the first light hole sub-band which exhibits a much
larger density of states in the present model. These changes and their
effects on the IVBA transition are discussed in detail in the next
chapter.

Band mixing affects not only the'energy of a given state but
produces significant chang;s*in the state wavefunction. The change in
character of a band wave function with increasing in-plane wave vector
k and the resulting effects on the optical transition matrix elements

=11

is discussed in the next section.

6.3.3. Wavefunctions and Momentum Matrix Elements

6.3.3 a) Preliminary Discussion

The determinantion of absorption coefficients such as those due to
the intervalence band absorption transitions evaluated in the next
chapter require knowledge of the momentum matrix elements as a function

of in-plane (k,,) wavevector and the dispersion relations of the sub-bands.

11
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The value of these matrix elements at a given k is dependent on the

11
form of the wavefunctions of the initial and final states of the trans-
ition. Therefore, in the next section we examine the nature of the
wavefunctions for relevant transitions and relate these to the magnitude
of the derived matrix element.

In view of the periodicity of the superlattice structure it is
sensible to nommalise the state wavefunctions to a single period (a well

-with an adjacent barrier). The normalised wavefunction of equation

(6.8) ignoring terms from higher bands is shown in Appendix 8 to be

NQ 1/2 ik..-r
p o= —CEE} IF, u e hTH (6.27)
A .1 ]
3
/2 . .
where N is the normalisation factor for the envelope terms such that
L
N I f F; Fj dz = 1 (6.28)
J o

and A 1is the area of the layer plane.

It is aisohshown in appendix 8 that the same normalisation factor is
correct to first order for the wave function including the effects of
higher bands.

The normalised perturbed wavefunction can then be used in the
determination of momentum matrix elements for the optical transitions.
Expressions for the matrix elements for transitions between the spin
split-off and heavy hole sub-bands (the corresponding expressions for
transitions to the light hole band is given by replacing subscript H
with L) are derived in appendix 9. This is done for radiation
polarised in both the x -direction and the z-direction. In the
IVBA calculations of chapter 7 and the remainder of the chapter the matrix

elements are evaluated assuming the radiation is polarised in the in-plane
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x direction which corresponds to a quantum well laser operating in the
TE mode. The resulting expression for the momentum matrix elements

is given by equation (&9.16) as

M= (NHNS)l/ZGO K LI LeFr P, olipt , + 2k p¥%,
X1p K15 5 5 JH ] i3 i3
Xy ¥X aFj's Xz aFﬁH ZX
+k (D%, + DIT,)] - <F¥ >1ipTT, +< F,,.>ip >, ] 6.29)
y 33’ 3] ) JH 9dz j3' 3z 3's 7733 (

where <F§H Fj'S> implies integration over the length LA of region A.

6.3.3. b) Transitions Between the Spin Split-Off and Heavy/Light Hole

-B =
Sub-Bands at Eil 0

Examination of the Kane matrix figure (6.6) indicates that at the band

edge (k = 0) the heavy hole band is completely decoupled from all

11
other bands whereas the light hole and spin split off bands are coupled
by the kZ operator. The wavefunction of a bound state therefore
consists of either a single HH component or components from each of the
other three bands in the basis set, one of which may give the dominant
contribution to the state. Examination of the wavefunction components

therefore provides the means of associating a derived eigenvalue with a

particular sub-band. The envelope functions of the dominant component

of each wavefunction (at Eil = Q) take the form appropriate to the
quantum number n of the sub-band. Ideal examples of this for an
infinite square well potential are shown in figure (6.1lb). In the

present model the finite depth of the potential well allows some penetra-
tion of the wavefunction into the barrier material as shown in figures
6.10a and 6.10b for the suitably normalised envelope functions of sub-

bands H1 and H2. It should be noted that the periodicity of these
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functions is reflected in the behaviour of the function in figure 6.10a
at the R.H.S. of the barrier material.

This straightforward situation however is found not to hold for the
envelope function of the spin split-off component of sub-band S1 (the
first spin split-off sub-band). This envelope function (shown in
figure 6.1la), although of definite parity is seen to have distinct
secondary peaks. Thesa peaks result from a coupling-in of the SS
component of an unbound light hole state (see Figure 6.1l b) occurring
some 8meV higher in energy than the bound SS state. The relatively
large SS component of this unbound state appears to perturb the
corresponding component of the bound Sl state producing an envelope
function of the form shown in figure 6.lla. Similar perturbations of
the SS envelope function in sub-bands S1 and S2 occur for Eil # 0
and while the relevant parity of the SS envelope function is retained
these perturbations clearly have some effect on the value of momentum
matrix elements derived for transitions to or from these sub-bands.

The parxity of the envelope function of the smaller components of
Bloch functions coupled-in witﬁ £he déminant contributions of the LH,
SS and C sub-bands can be determined by examination of the Kane matrix
figure (6.6). Taking for example the light hole Bloch function Uqy at

Eil = 0 this is coupled with an even parity envelope function of the SS

124

Bloch function u and an odd parity envelope function from the conduction -

4

band Bloch function u, - Similar couplings are found in the conduction
and SS sub-bands. The wavefunction of a degenerate state in sub-band

L1 1is therefore composed of a dominant LH component with an even

parity envelope function (n = 1) coupled with small amounts of SS and

C band components with even and odd parity envelope functions respectively.
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As we shall see this coupling of different parity envelope functions
results in a An =1 selection rule for SS to HH or LH transitions
at Eil = 0.

The dominant terms in the matrix element expression (6.29) are of
the form P?j' arising from the coupling of orbital (Bloch function
periocdic parts at the band edge) wavefunctions of s and p 1like
symmetry. These terms are multiplied by the overlap integrals of the
envelope term <Fij,> and their contribu?ions are therefore negligibly
small for envelope functions Fj‘ and ‘Fj, of opposite parity. As the
heavy hole sub-band states are of purely p 1like symmetry at the band
edge, terms of the form ng, for transitions from SS to HH sub-bands
at the band edge only arise due to small amounts of conduction band s
like orbital mixed into SS states. However this s-like orbital has
an envelopé function of opposite parity to the dominant SS component.
Hence the envelope function overlap integral between HH and SS sub-
bands with the same quantum number n {(and hence the same parity envelopes)
is small, close to Eil = 0, The contributions from other terms in the
matrix element expression (6.29) are generally quite small and as a
result transitions from the SS to HH sub-bands for which An = O are
small. However, transitions for which An = 1 are possible due to the
equal parity of the envelope function of the HH band (sub-band quantum
number n) and the SS band (sub-band quantum number n * 1). A
similar effect occurs from transitions between the SS and LH sub-bands,
however, in this case both states have s-like orbital components.

The Eil dependence of the momentum matrix elements averaged along
the [100] and [110] direction for transitions between sub-bands (Sl, S2)
and (Hl, L1, H2) is shown in figure (6.14). As each state derived

from the solution of expression (6-26) is doubly degenerate, the results

shown in figure (6.14) are determined from the expression
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2 2
| e § (6.30)
2f2 | 1 -
Letex ok g X 1s

+ |Milf2x + | M

where the subscripts i and £ refer to the initial and final states
of the transition repsectively, and each individual term is of the form

given in equation (6.29).

6.3.3 ¢) Transitions Between the Spin Split-Off and Heavy/Light Hole

Sub-Bands at -Ell # 0

At non-zero values of _51 the wave function of a given state

1

contains components of all eight basis states given in expression (6.7).
That is each state is composed of the two spin components of the band
edge Bloch functions of the four bands considered. The mixing of the

different basis states becomes more marked with increasing -Ell and the

magnitude of the compoment due to the s -like orbitals uy and ug in

the valence band states tends to increase. In a simple k°p calculation
in the bulk material this would lead to an increasaih the intervalence
band transitions. However; this situation is complicated in the present
model by the differing parities of envelope functions and the change in
character of the sub-bands, such as in the case of H1 and L1 as dis-—
cussed below.

As seen in figure (6.7), with increasing kll the sub-bands Hl

and L1 approach each other in energy and thenmove apart exhibiting a
distinct anticrossing behaviour. Examination of the wavefunctions of

states in sub-bands H1 and L1 (for along the [100] direction)

ki

indicates a change in wavefunction character in the region = 2 - 3&0.

51

For values of Eil < 230 the wavefunction of the Hl state has a large

HH component and a smaller LH component, a complementary situation
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exists in the L1 state. With increasing Ell the LH component

of the Hl1 state increases and the HH component reduces, and for

k2 3&0 the LH component is dominant. Once again a complementary
effect occurs in sub-band Ll. The sub-bands have thus essentially
changed character. The relative magnitudes of the HH and LH com-—

ponents of one particular spin state of the wavefunction in the HI1
sub-band for -Ell = 50 - 3&0 along the [100] direction is shown in figure
(6.12), and clearly indicate the changes discussed above.

A further change in the. wavefunctions which can be clearly seen from
figure (6.12) is the increasing asymmetry of the envelope functions as
Eil increases. The asymmetric envelope functions can be re—expressed
as symmetric and antisymmetric functions by adding or subtracting the
contribution of the same spin basis form the other degenerate state in
the band considered. The relative magnitudes of the symmetric and anti
symmetric components can then be compared with such components for the
states to (from) which transitions occur. This then provides a good
indication of the overlap integrals of the transitiionmatrix elements,.

For example an increase in antisymmetric (odd parity) component of the

HH envelope functions leads to a reduction in the overlap with the even

parity envelope functions of another state but an increase in the overlap
integrals with odd parity envelope functions. These changes in symmetry
which are also found in the s-like components of the HH, LH and SS

sub~-bands are partially responsible for the variation with gll of the

matrix elements of the intervalence band transtions. The symmeterised
forms of the HH components of sub-band Hl for 511 = 3&0 along the
£100] direction are shown in figure (6.13). The antisymmetric (odd

parity) compcnent of the HH envelope has significant amplitude.
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In summary the various wave function properties affecting the
momentum matrix elements between states relevant to IVBA transitions
are as follows: a) the magnitude of the symmetrical and antisymmetrical
components of each basis state (that is the form and amplitude of the
envelope function of each basis state), b) the coupling of unbound
light and heavy hole states to the bound =SS states. All these effects
to some extent influence the magnitude of the intervalence band matrix
elements (averaged over the [100] and [1l10] direction) shown in figure
(6.14). The combination of these factors leads to a general increase
with Ell of transitjons for which An = O and a decrease in transitions
for which An = 1 over the small range of &11 considered. The effects

of these changes on the derived values of absorption coefficients is given

in the next chapter.

6.4. Summary

A technique for the derivation of quantum well or superlattice band-
structure has been described. The method used is a variational approach
first devised by Schlosser and Marcus (1963) for solution of the energy
band problem in metals, and extended to the present model by Altarelli
(1983) . In this approach a trial wave function is matched at the inter-—
faces of the quantum well. The trial wavefunctionis expanded in terms
of eight Bloch basis states each weighted by an envelope term expressed
as a Fourier expansion of sines and cosines. The Bloch periodic parts
of the wavefunction in both well and barrier material are considered to
be the same.

Using this model the in-plane bandstructure for a GaAs/Ga Al As

0.7 0.3

100/200 A quantum well structure has been evaluated. The E - Eil

dispersion in the conduction and spin split-cff bands is similar to that
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used in a simple effective mass model, whereas the heavy and light hole
bands show marked non-parabolicity due to band mixing.

The wavefunctions determined fram the bandstructure calculation
are used to evaluate the momentum matrix elements of transitions relevant
to the IVBA calculations. These matrix elements exhibit a An =1
selection rule for transitions at the sub-band edges with An = O trans-

itions becoming more important with increasing in-plane wavevector.
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CHAPTER 7

INTERVALENCE BAND ABSORPTION IN QUANTUM WELL LASERS

7.0, Introduction

The IVBA coefficients of some bulk semiconductor materials used in
double heterostructure (DH) lasers were evaluated in chapter 5. As
explained there, IVBA is one of the mechanisms responsible for the temper-
ature dependence of semiconductor laser threshold current densities, The
threshold current temperature dependence normally takes the form
Jth @ exp(T/To) and a similar exponential temperature dependence is
found in quantum well lasers (Resek (1980) and Chin (1980)). For quantum
well lasers several loss mechanisms have been suggested (see Dutta (1983))
as the possible cause of this temperature dependence of the threshold
current, with the emphasis falling largely on Auger recombination in the
longer wavelength (A = 1.3. - 1.6 um) devices. While IVBA may not be a
significant mechanism for the temperature dependence of threshold currents
in;thelonger' wavelength lasers, it is expected to be important in the
GaAS,/GaO°7 A20.3 As gquantum well structure where Muger recombination is
considered to be small. Therefore some model calculations of absorption
in this system have been carried out. In the brocess of doing this, some

important parameters such as the hole occupation of different sub-bands

and the Fermi energy have been evaluated in the models considered.

7.1, The Intervalence Band Absorption Transitions

The absorption coefficients evaluated in this chapter are obtained
by considering only transitions occurring between bound states of the

valence band quantum well, The results are therefore based on the



assumption that the bound-unbound and unbound-unbound transitions are
responsible for only a small proportion of the total intervalence band
absorption.

The number of bound states of a well is basically determined by the
well depth, well width and the light, heavy and spin split-off effective

masses at the sub-band edges, In the GaAs/Ga AL s structure

0.7 ¥o0.3 ®
of interest here the well depths in the spin split-off and in the heavy
and light hole valence bands differ by only a few hundred meV on the
basis of a discontinuity ratio AEC/A'EV = 60/40, For a fixed well
width therefore the number of bound states in each well is determined by
the hole effective mass. The rel;tively small effective masses of the

holes in the spin split-off (SS) and light hole (LH) bands implies

very few bound states (for example in the k¢:p calculation only two

bound states are produced in a 100 a° ‘GaAs well)., The large heavy hole

(HH) effective mass correspondingly produces many more bound states.

Although IVBA transitions may occur between any bound valence
band states, the lasing wavelength transitions of interest in the present
work will come from the excitation of electrons from the SS to LH or
HH states occupied by holes, Other IVBA transitions are therefore
not considered in the following analysis.,.

The number of possible SS, HH or LH transitions is equal to the
product of the number of bound states in each well. This simple rule,
however, ignores the form of the envelope term modulating the Bloch
periodic part of the bound state wave function. As explained in Section
6.1, in its simplest form, this envelope has a pure sine or cosine
character. The orthogonality of these envelope functions imposes a
An = O selection rule on the IVBA transitions (that is transitions
only occur between sub-bands with the same quantum number n). This

selection rule is applied in the evaluation of the IVBA coefficients in
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the simple effective mass (SEMA) and pseudopotential calculations of
section 7.5, However, it was shown in chapter 6 that a more realistic
determination of bandstructure and wavefunctions based on a kep approach
produces momentum matrix elements for which the selection rule no longer
applies. Hence in the evaluation of the IVBA coefficients using the
k°p bandstructure contributions to the absorption from all possible
transitions from the SS to HH and LH sub-bands with significant

hole occupancy are considered. The possible transitions between 5SS and
HH and LH sub-bands for a simplified model with two HH, two SS and
one LH sub-band is shown in figure 7.1. The effect on these transitions

of applying the An = O seélection rule is also shown.

7.2, Bandstructure Models

Three bandstructure models (SEMA, pseudopotential and kep) are
used to calculate IVBA coefficients, The essential difference
between the models is 1in the form of the in-plane bandstructure. In the
SEMA model the sub-band edges are derived using a simple wave function
matching technique described in the next section. Away from these sub-

band edges each sub-band E - k. dispersion relation takes the familiar

11
parabolic form E = hzkil/2mx where m_ is the effective mass of the
relevant bulk band. For the intersub-band momentum matrix elements
simple averages of the Bloch function matrix elements for the [100] and
[110] directions from the bulk pseudopotential calculation of chapter 5
are used,

To provide what might be expected to be a better approgimation to
the sub-band structure, the pseudopotential model uses a simple average of

the bulk pseudopotential bandstructure for the [100] and [110] directions.

The same sub-band edges as derived for the SEMA model are used.
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The third evaluation of IVBA coefficient is performed using an
average of the bandstructure and momentum matrix elements derived in the
[100] and [110] directions from the kep calculation of chapter 6.

As this model is expected to provide a good representation of the

quantum well bandstructure, the IVBA coefficients derived from it should
provide a more realistic estimate than the other two models, However,
the complexities and limitations of this model greatly restrict the
region of k-space over which bandstructure and momentum matrix elements
can be accurately determined and, as such, the absorption coefficients
derived in this model only cover the low energy transitions near the sub-
band edges.

Having briefly described the three bandstructure models to be used,

a comparisdn of some important parameters derived from them is now given,

7.3. Determination of Sub-Band Edges

The sub-band edges for the SEMA and pseudopotential models are
evaluated using the familiar quantum mechanical solution for a particle
confined to a 1-D potential well (Schiff (1955)). In the present
model where the particle wavefunction is a product of a Bloch periodic
part and an envelope function, the Bloch term is assumed to be the same
in both well and barrier regions. The solution of the potential well
problem then amounts to solving the Schrddinger equation for the envelope
parts (F and F,) -of the particle wavefunction inside and outside

1 2

the well, as:
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hz szl
- — = EF inside well
2m dz2 1
1
2
h2 d F2
- — = (E - V)F outside well (7.1)
2m 2 2
2 dz

where V 1is the depth of the potential well and ml and m, are the

effective masses in the well and barrier region respectively.
These wavefunctions are also subject to the current continuity

condition (Bastard (1981))

_l.ffl.; _i. 2
ml dz m2 z

&

|

(7.2)

Q

at the well boundaries, A further condition that the wavefunctions are
matched a single band at a time, for example HH - HH is also applied.
Thus, no band mixing is included in this simple model.

Solution of equations (7.1) and (7.2) in the usual way gives:

(2mlE)l/2L‘| m, (v-m) |12
tan A = 1
2h J m2E
and
(2m E)l/zL m.E 172
tan | — Blo o —2— (7.3)
2h ml(V—E) °

where E 1is the energy of the sub-band edge, and LA is the well width.
The well width dependence of the band edges for the SS sub-bands and
the HH and LH sub-bands are shown in figures 7.2 and 7.3 respectively.
Both diagrams give a clear indication of the increase in the number of

bound states as the well width increases,
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The energies of all the sub-band edges obtained are approximately

equal to those derived from the ke°p calculation for LA = 100 AO, and

the kinetic energies are seen to be roughly proportional to n2 as would
nznzhz

— s -
2mXLA
Figure 7.3 also reveals a crossing of sub-bands H2 and L1 in the

be predicted by the infinite square well model for which E =

region LA = 150 - 200 A°. In a bandstructure model incorporating band
coupling effects (e.g. the k°p model) these sub-bands would exhibit strong
anticrossing behaviour and the heavy (H2) and light (L1) hole wave-
functions would change character as the well width was increased from
150 - 200 a°, This effect is discussed in some detail by Chang and
Schulman (1985) and Schulman and Chang (1985).

Having derived the sub-bandstructure for the SEMA and pseudopotential
models (see section 7.2) and the k.p model (see chapter 6) it is now
possible to evaluate the position of the hole quasi Fermi level for each sub-

bandstructure in the next section.

7.4. Determination of Hole Quasi Fermi Level

The assumption is made of carrier thermalisation between all valence
sub-bands. That is it is assumed the holes produced by optical excitation
or electric injection have lifetimes sufficiently long that thermalisation
between all valence sub-bands occurs and the carriers are in equilibrium
with the lattice so that the hole temperature equals the lattice tempera-
ture. This is a standard assumption in the calculation of optical spectra
in the bulk and is based on a comparison of optical transition and carrier
relaxation times.  Its validity in quantum wells is not so clearly
established but it will be used as a matter of expediency. Under these
conditions only one quasi Fermi level need be calculated and Fermi-Dirac

statistics can be used,



For each of the heavy and light hole sub-bands a tenth order

polynomial approximation E (k

H,Ln _11) to the E -k dispersion

—11

relationship was obtained using NAG routine E¢2 ADF, Then choosing
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the bulk valence band edge as the zero of energy and defining the positive

energy direction as shown in figure (7.l) the hole occupation per unit

volume p 1is given by

ZONE EDGE ZONE EDGE

z £(E_ (k, ))dk, . + I £(E. , (k,.))dk
a 212 |n Hn =11 1" Ln' =11''"=11

(7.4)

wWhere 2A/(21r)2 is the 2 - D density of k-states including a
factor of two for spin degeneracy, ALA is the volume of well material

containing the holes ((LA = well width), f(EH,Ln(Ell)) is the hole

occupation probability, and the sums are taken over all relevant sub-bands

(unbound sub-bands are not considered due to their negligibly small hole
occupancy) .

Clearly the hole occupation of the higher sub-bands at large kll

values is very small, and the integrals in equation (7.4) converge rapidly

for values of kll > 10 ko (ko = W/L Z 0,094 X ZONE EDGE, where L is

the superlattice period). Thus taking the upper limit of the integrals

as kll = 15 kO and using dimensionless parameters we obtain
) 15 15 ]
1 il k dk k dk
= — | z
P=T [L} j FE_ k) f (F+E__, (k) (7.5)
B "0 leexp|—2— | M5 o1 Ln’
A SXP| T kT

Equation (7.5) is solved for F wusing the NAG root finding routine

C¢5 ADF together with the integral routine D¢1 AJF.
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In the simple effective mass approximation (SEMA) for which

2.2
Eg,L =" kip/2my,

for all sub-bands, equation (7.4) reduces to:
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(7.6)

L
_EHn o _ELn'
oo i G [ dF , L J dE
- - 2 -E
L Jﬁz n l+exp [F——E} L. hT n' l+exp [F——]
A - A kT
kT
Ty, L
where L 5 is the density of energy states in the relevant sub-band
L h

(i ncluding a factor
the nth sub-~band e
. The integrals i

by substitution givi

m kT
Hk Z 2nll+exp

mTh L
h A D

p:

Substitution of Bolt

in expression (7.6)

of two for spin) and the E are the energies of

H,Ln

dges.

n expression (7.6) can be carried out analytically

ng:

mLkT

2
h LA

[-(F+EHn)/kT]J+

gl 2n[l+exp[-(F+ELn,)/kT]] (7.7) o

zmann statistics for the Fermi Dirac (F-D) factors

immediately yields:

quT : [
exp

TrLA'hz n

o]
il

-F—EHn] m kT (-F—ELn,]
+ I exp|———n

kT ﬂLAhz o kT

or F = -kT In
N_ X

H
n

whe N i
re H,L s the
mH,L kT
NH L~ 2
! TL_ h

This Boltzmann

L, 275 a°  and hole

quasi Fermi level is well into the band gap, however Fermi-Dirac statistics

have been used for a

-E =
Hn In'
exp +N_ I

effective density of states:

approximation is good for relatively wide wells

18

(7.8)

(7.9)

(7.10)

-3
concentrations p § 3 X 10 cm where the hole

11 numerical results given in this chapter.



In figure (7.4) the carrier concentration and well width dependence
of the hole quasi Fermi level F 1in the SEMA and pseudopotential
models are compared. A comparison is also made with the values of F
obtained using the k°p model for LA = 100 AO° As pointed out in
chapter 5, the pseudopotential bandstructure calculation produces sub-
bands which are non-parabolic and give larger densities of states than is
found in the SEMA model, The increased density of states is reflected
in the position of the hole quasi Fermi level which is deeper into the
band gap. This effect is clearly illustrated in figure (7.4) with the
quasi Fermi level in the pseudopotential model having a higher energy
than for the SEMA modél for all conéentrations and well widths. With

increasing hole concentration the Fermi level crosses the bulk the band

18
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edge, this crossing occurs for p < 2 x 10 cm_3 for the narrow 5k= 25 a°

well, As the well width increases the quasi Fermi level in the SEMA
model tends towards that evaluated using a parabolic band effective mass
approximation in the bulk material. A similar effect would be seen for
the pseudopotential calculation if the same average of bandstructure
directions was used in the bulk and quantum well models. The quasi

Fermi level evaluated using the 5}2. bandstructure for LA = 100 AO is

very similar to that derived in the pseudopotential model. However, these

similar results occur for very different reasons. The pseudopotential
model gives a larger density of states in the heavy hole sub-bands
than does the EfE. model, However the distinct non-parabolicity and
change in sign of the hole effective mass in the first light hole sub-
band of the k-<p model gives this band a very large density of states
compared with'the corresponding sub-bands in the other models. Unlike
the other models, therefore, the light hole sub-band has a strong
influence on the position of the hole gquasi Fermi level. This influence
is reflectedin hole occupation of the different sub-bands, discussed in

the next section.
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7.5. Distribution of Holes between Sub-Bands

In the comparison of the different bandstructure models one of the
most significant features is the change in hole occupation of each sub-
band. To derive these occupation numbers the assumption of carrier
thermalisation is maintained and the quasi Fermi levels derived in the
previocus section are used.

The hole occupancy per unit volume p of a given sub-band n

H,Ln

is given by:

ZONE EDGE

[y

pH,Ln = . (Density of states) X (occupation factor)‘c'i}_<_ll (7.11)

B

where the factor of 2 accounts for spin degeneracy. Assuming in-plane

isotropy gives

ZONE EDGE
b = 2 _A J 2n k £(
(0]

(k,,))dk (7.12)

H,Ln — AL 11 T By pn Ry )0dkyy

A (2ﬂ)2

following the prescription used in the previous section; using dimension-
less integral parameters, reducing the upper limit of the integral to

15 kO (kO = N/L), and substituting the relevant polynomial expansion we

obtain:
5 15
1 w k dk
pH,Ln I [I} [ F+E (x) (7.13)
A O exp H,Ln +1
kT

where again k = kll/ko o

In the SEMA model the polynomial EH Ln(k) takes the form:

’

2,2
1k
E (k) = E +

H,Ln H,In 2mH,L

or alternatively using the energy density of states in expression (7.11)

gives
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-E
H,In m de
= gL (7.14)
Py,in ~ 2 F-E °
—o HLAh [ex +1
U RT i
which reduces to
m kT -F=E
L L
P = _EL———-ln[l + exp{ kg’ n ] (7.15) .

H,Ln 2
wLAh

If the Fermi level is well into the band gap and the Boltzman approx-

imation can be used, then

-F-E
] H,Ln
= o1
Py,1n - VgL exP[ KT (7.16)
where N is the effective density of states defined in expression (7.10).,

H,L

Variation of sub~band occupation with well width for the SEMA model
with a hole concentration of p = 1018 cm at T = 300 K 1is shown in
figure (7.5). These results are derived using expression (7.15) and
compared with the corresponding hole densities derived using the more
realistic kep bandstructure for LA = 100 a°.

The hole occupancies inen by the curves shown in figure (7.5) for the
SEMA model can be explained in terms of the well width dependence of the
sub-band edge energies. In very narrow wells (e.g. 25 Ao) the sub-band
edges are widely separated in enexrgy and nearly all holes are found in
the highest sub-band Hl. As the well width increases the energy separa-
tion of sub-bands reduces and more sub-bands are found near the bulk band
edge. This results in a depopulation of sub-band H1 and an increase in
population of other sub-bands. The low hole occupancy of LH sub-bands
for all well widths is a direct result of the small light hole density of
states.

In comparing the results of the SEMA and k°p models the most

significant difference between the two is found in the population of the
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first light hole sub-band which is 55 X 100 a3 (SEMA) and some

five times larger =3 x 1017 cm_3 in the kep model. A comple-
mentary effect occurs in the first two heavy hole sub-bands for which
the hole occupation is lower in the kep model. The large hole con-
centration in the light hole sub-band of the k°p model is a result of
its large density of states,

With such a low hole occupancy of sub-band L1 in the SEMA model,
it is justifiable to neglect IVBA transitions to this sub-band.
(Note a similar hole distribution occurs in the pseudopotential model
and transitions to the LH sub-bands can also be ignored there),
However, this is clearly not a ﬁsefui»apprdximation in the k°p model
for which a substantial proportion (230%) of the hole population is
found in sub-band L1 (for L = 100 Ao)° Thus in the evaluation of
the IVBA coefficients, transitions to the light hole sub-bands are

accounted for in the k°p model but ignored in the SEMA and pseudo-

potential models.

7.6, Evaluation of the IVBA Coefficients

The equation for the IVBA coefficient in the quantumwell system is

derived in a similar way to that for the bulk. The result is

2,2

me’ h

o (w). = p Lo(gy fglnL feevles|Pee, B _chw)  (7.17)
r ’ P
moeowchWELL nan,L SH,L

(where fH L.g are hole occupation factors). Note the expression for

14 r
o (w) now contains sums over all sub-bands (nS and nH L) and sums

4

over the states within each sub-band (S,L,H).

Converting the sums over states within each sub-band to integrals

over k wusing I = A 5 j d2k , and using QWELL = ALA gives
S (2m)
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2 2
alw) = re’h 2 z ” (£, _-f )|<H,L]é°V|S>|2
mze wcnAL (21r)4 n_n H,L S - -
oo A S H,L
§(E - E_ - hw) d2k d2k (7.18)
H,L S —11H,L =~ =118

where the degeneracy of the states involved in the transition is incorp-
orated in the squared matrix element which is summed over all transitions.
For the SEMA and pseudopotential models transitions to the LH band
have been ignored due to the low density of states in these sub-bands.

For the quantum well the momentum matrix element in the SEMA and
pseudopotential models is given by the 2-D equivalent of the transition

matrix elementsused in the bulk material (see Appendix 4) that is:

2
2 (27)
= M|, 8 . 6 = M|y, 5 6k "k, )8 (7.19) .
AV 0'5118 EilH nsnH AV A 11s —1l1H nSnH

The average over all polarisation directions is retained to give
comparison with the IVBA results for bulk material. The Kronecker
delta Sns'nH comes from the orthogonality of the envelope functions and
provides the An = O selection rule,

For the k°p model the squared momentum matrix element for light
polarised in the x-direction (T.E. mode of the laser) is given by

expression (6.30) for the four possible transitions between two doubly

degenerate states, that is

2
M, 738 _ (7.20)
12£2x" “oikyuR

e 5k~ Kool (7.21)
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where

4120y = B

2
.2la) .
ror - Milf1x | (7.21a)

Substitution in equation (7.18) of the relevant expression (7.19 or 7.21)

for the squared momentum matrix element gives

nezh2 2
= z —
a(w) . — ! H ]Mll [0 @y, Gy ) - £(E G )]
ofote =T Hgligs
S(E_, (k ) - E_(k,,.) - hw))d(k -k )dzk a’k (7.22)
H' '—11H' S —11S =118 —11H' —1l1g'" -—-11s
2 2 . ,
where |M |“ =| 6 IMI SEMA and pseudopotential models
1 anS AV
IM|2 k°p model
TOT - =
and H' = {H SEMA and pseudopotential models
H and L kep model (7.23) .

Integrating over Eil and dropping the 11 subscript to shorten the

S

notation gives

th
a(w) = —E——fl——___- X [ lMlli [fH,(EH,(E)
m_€ WcnhL_4T n_n_, -
o o A S H
2
ES(E KT 8B, (k) - Eg(k) - hwld'k (7.24) .
Now the prescription used in chapter 5. For evaluation of bulk

IVBA coefficients is followed, in particular we makeuse of the relation



144

5(EH'S(5) - hw) = — (7.25)

where = EH.(K) - E_(k) and the Eﬂ define surfaces in 2-D

EH'S S

k-space such that

Eig(®) -hw = o0 (7.26) .

On assuming an isotropic E - k dispersion over the layer plane,

equation (7.24) reduces to

2 .
2 |, | [fH.(EH.(k)_—fS(Es(k))]Mk‘ . (7.27) .

a(w) =

n_n! , I
v E: =
m_e_wenL,4m “S H |V E ol E, o=ho

Bandstructure and momentum matrix elements are evaluated along two
directions ([100] and [110]) and the absorption coefficients are obtained
using a simple average based on the two directions in a similar way to the
bulk calculation,

The numerical evaluation of @ (W) in equation (7.27) was performed
using the NAG root finding routine C¢5 ADF to determine the solutions

of (k) - hw =0 for a given w, where E (k) 1is a tenth order

EH'S H'S

polynomial. Similar polynomials are derived for the IM - k relations

.|
between the relevant sub-bands, into which the root solutions of k are

substituted.

In the SEMA model equation (7.27) can be simplified using:

H' = H
2,2
_ hk
Egk)= - By - —=5—
H
2.2
Tk
= - A - -k
Es(k) Bl >



145

2.2
Bl
EHS(k)—A+ESn—EHn T—ﬁw—-o
so k = [gE-(hm - A+ E - E ):Il/2
2 S
+
where =21 _2L1 (7.28) .
u mg Wy
Hence
2 2
eulmlyy
a(w) = —————— (fH - fS)Gn n (7.29) .
’ moeomncLA2 anS HS

The IVBA coefficients derived from expressions (7.27) and (7.29) are

now given and comparison is made between the three models.

7.7. Results and Discussion

7.7.1. Introduction

As the SEMA and pseudopotential models both use the same Eil
dependence of the momentum matrix elements and also the An = O selection

rule, it is straightforward to give a comparison of results for these two

models and that forms the initial part of this section.

7.7.2. SEMA and Pseudopotential Models

a) Wavelength Dependence: The wavelength dependence of the IVBA

coefficients derived in the two models for a GalAs/Ga A As

0.7 o3

quantum well structure with well width LA = 100 AO, p = 1018 cm_3 and

T = 300 K are shown in figures (7.6) (SEMA) and (7.7) (pseudopotential).
The three spin split-off sub-bands S1 - S3 allow hole transitions from

the heavy hole sub-bands Hl - H3 under the A&n = O selection rule.
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Figure 7.6: The wavelength dependence of the IVBA coefficients
derived using a simple effective mass bandstructure for a

Gahs /Ga As quantum well structure with 100 2° well and a

. 18 -3
hole concentration of 1O cm at T = 300 K.
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Figure 7.7: The wavelength dependence of the IVBA coefficients for
a well width of 100 a° in a GaAs/GaO - AQO 3 As quantum well
structure. The results are based on a sub-band structure derived from

an average of the bulk pseudopotential bandstructure evaluated along

the [100] and [110] directions.
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The IVBA coefficients derived for each value of n 1is shown together
with the total absorption coefficient. The very small absorption due

to the 83 - H3 transitions reflects the low hole occupancy of the H3
sub-band. The low hole occupancy of all the heavy hole sub-bands at the

large k. values required for transitions of energy equal to the band

11
gap, also causes absorption in this part of the wavelength range to be
negligibly small. The result is similar to that derived for bulk Gaas.
The total absorption coefficient given in figures 7.6 and 7.7 shows
several rapid increases at wavelengths corresponding to the onset of
transitions between sub-bands with increasing n values. However,
these curves lack the sharp step-like increases found in fundamental
absorption transitions due to the vanishing momentum matrix elements at
the sub-band edges. Comparison of the total absorption coefficient for
both models clearly indicates the changes induced by the different band-
structure, In the SEMA model the high energy transitions occurring at
large Eil give much smaller abscrption than the pseudopotential model due
to thevery low hole occupancy of the heavyjhole‘sub-bands. However, the
low energy transitions are moré pronounced in the SEMA model because the

hole quasi Fermi level is closer to the bulk band edge. These effects

mirror the corresponding results derived in chapter 5 for the bulk material.

b) Temperature Dependence: In figure (7.8) the temperature dependence of

the IVBA coefficients derived in the pseudopotential model for several
wavelengths, is illustrated, The well width of 100 AO and the hole

; 18 -3 . ,
concentration p = 10 cm are retained. As the temperature increases
the absorption due to low energy transitions decreases while absorption

due to high energy transitions increases, A similar effect was observed

in absorption coefficients derived for bulk material (see figure 5.8).
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Figure 7.3: The temperature dependence of the IVBA coefficients for
several wavelengths. Results are derived using the bulk pseudopotential

bandstructure approximation for the sub-band E-k dispersion.
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These changes can be understood in terms of an increase in the hole
population at larger 511 values as holes are thermally excited away

from the lowest sub-band edge (hence reducing the low energy absorption

transitions).

c) Concentration Dependence: The hole concentration dependence of the

absorption coefficients for a given well width and temperature is approx-
imately linear for all wavelengths considered, a result which again is

similar to that found in bulk material,

d) Well wWidth Dependence: As the well width increases and sub-bands are

pushed closer to the bulk band edges the energy separation of the sub-
bands Hl and 81 is reduced resulting in an increase of absorption due
to low energy transitions.

For a given high energy transition, increasing the well width lowers
the absorption due to S1 - H1 transitions as these now take place further
out in k-space and also the hole population of H1l is lowered by the
increasing population of the-higher energy sub-bands. However, the
absorption due to higher sub-bands increases and tends to compensate for

the reduction in the process involving the lowest sub-band.

7.7.3. The k-°p model

As explained in section 7.2 the bandstructure derived for the 100 Ao
GaAs guantum well using the modified kep calculation, has only been
determined for the region of k-space close to the sub-band edge. Only
low energy IVBA transitions can occur within this region and these do not

contribute to the optical loss at lasing wavelengths. However, a useful
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comparison can be made in the limited energy range with the other two
bandstructure models. The wavelength dependence of the IVBA coefficients
has been derived in the k-p model again using a simple average 6f results
calculated for the [100] and [110] directions. The absorption coefficient
a{w) for a hole concentration of 1018 cm_3 at T = 300 K, is shown in
figure 7.9. As discussed in section 7.1 the An = O selection rule does
not apply to the intervalence band transitions in this model and band edge
transitions for which 4An = 1 are in fact significant. These transitions
provide absorption which would not otherwise occur. Transitions obeying
the &n = 0 selection rule (as in the other models) become more significant,
and others less so, with increasing Eil' The absorption coefficients
shown in figure 7.9 generally reflect the bandstructure and momentum matrix
elements shown in figures 6.7 and 6.14 and as such the absorption due to
the H2Z - S1 transition is not shown, the matrix elements for these trans-
itions being very small.

The large density of states in sub-band L1 (resulting from the
band curvature) produces significant absorption for transitions to this
band, This contrasté mafkédly with the SEMA and pseudopotential
models in which these transitions are ignored due to the relatively low
density of states in the light hole sub-bands. The absorption coefficients
for transitions from the SS to HH sub-bands for which An = 0 are
notably smaller than those derived in the other two bandstructure quels,
a result partly due to the lower hole occupancy of the HH sub-bands.
The transitions to the Ll sub-band to some extent compensate for this,
however the total absorption coefficient in the k°p model remains lower

than that derived in the other models for all the wavelengths shown.
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Figure 7.9: The wavelength dependence of the IVBA coefficients derived
in the k-p model. The A4n = 0 selection rule is not applied and

. e . . ) . o
Significant contributions arise from 'forbidden' transitions.
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7 8. Summar

The IVBA coefficients for a 100 A° GaAs - quantum well structure
have been evaluated using three different bandstructure models. The
absorption coefficien£s derived using simple effective mass and pseudo-
potential bandstructures show wavelength, temperature and concentration
dependence similar to that found in bulk material. These dependencies
can be summarised as:

a) absorption at lasing wavelength is small but low energy transitions
give significant absorption,

b) the concentration dependence is approximately linear,

¢} low energy transitions decrease with increasing temperature while
high energy transitions increase.

The absorption coefficients derived using the Efg_ bandstructure and
momentum elements determined in chapter 6 are limited to the low energy
part of the spectrum involving transitions close to the sub-band edges,
and as such the results are not really relevant to the operation of the
GaAs QW laser. However, the trends shown in this model could be
important in longer wavelength lasers for which IVBA transitions occurring
near the band edge provide a significant optical loss. The effect of
particular importance shown in this model is the contribution to the

absorption of transitions that are forbidden in the simpler models.
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CHAPTER 8

CONCLUSIONS AND SUGGESTIONS FOR FUTURE WORK

8.0. Conclusions

The aim of the work in this thesis has been to evaluate some
fundamental effects relevént to the optical properties of semiconductors
resulting from the presence of high concentrations of free carriers.

The two important effects considered are the band gap narrowing, producing
changes in the emission and absorption spectra, and the optical absorption
produced in semiconductor laser material due to intervalence band
transitions.

In chapter 2 a model was developed for the evaluation of band edge
shifts (at T = 0K} due to changes in electron-electron interactions
resulting from the introduction of extra carriers. This model incorporated
coupling between the heavy and light hole valence bands and used a plasmon-
pole approximation for the dielectric function of the carrier gas. The
band gap narrowing in p-type Si and p- and n-type S;, GahAs
A was evaluated using this

G As and Ga

a5.47 Mo.53 0.28 To.72 #%0.6 Fo.4

model as described in chapter 3. A typical example of a band gap reduction
predicted by this calculation was 88 mev in p-type Si for a hole
concentration of lO20 cm_3. This narrowing of the band gap leads to a
shift to lower energies of the band to band features in the luminescence
spectra. A corresponding effect in the absorption spectra is normally not
found due to the Moss-Burstein shift which produces an opposing increase

in the absorption energy. For materials with very light conduction band
effective masses (e.g. GaAs) the Moss-Burstein shift is much larger

than the band gap narrowing for most concentrations of interest in the

n-type. materials considered in the present work.
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In chapter 4 the model for evaluation of the energy shift of a
state due to many body effects/was extended to finite temperature
(T = 300 K) through the use of a finite temperature plasmon-pole
approximation. For large free carrier concentrations (> 1020 an—3)
the carrier distributions at T = O and 300 K differ little in all
the materials considered, and for a given carrier concentration the band
gap narrowing at these temperatures is approximately the same. For
lower carrier concentrations (or higher temperatures) the thermal
excitation of the carriers reduces their screening effect producing a
smaller band gap narrowing than at T = OK. This effect is least
noticeable in n-type materiais with low conduction band effective masses
(e.g. GaAs) in which the carrier gas becomes strongly degenerate resembling
that at T = OK even at quite low carrier concentrations
(eg. n =5 x 1018 cm_3 in GaAs) .

Optical losses dué.to IVBA transitions were evaluated in chapter 5
for materials used in double heterostructure lasers: that is
GaAs,

I and Ga I

) h
N5.53 AS 0.28 ™o.72 2S0.6 Fo.q4- The wavelengt

G25.47
dependence of the IVBA coefficient evaluated using a pseudopotential
bandstructure model compared well with the experimental results of Henry
et al (1983). In each case the temperature dependence of IVBA coefficients
was shown to be either small or if rapid variation did occur the absorption
itself was small. This would seem to imply that IVBA 1is not responsible
for the temperature dependence of laser threshold current densities.
However, a full self consistentlaser rate calculation would be needed to
confirm this suggestion.

In Chapter 6 a variational technique for the derivation of quantum
well bandstructure Qas described. The method based on a modified k-p

approach can also with small alterations be used to determine superlattice

bandstructure.
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For the 100 Ao GaAs quantum well considered, insufficient band-
structure was evaluated to enable the determination of 1IVBA coefficients
at wavelengths relevant to laser operation. The model could however be
used to evaluate IVBA 1in longer wavelength lasers for which inter-
valence band transitions occurring near the sub-band edge may be close to
lasing energies.

The results derived from the k°p model for the wavelength dependence
of IVBA coefficients were compared with corresponding results derived
using simple effective mass and pseudopotential bandstructures. These
models which are easily extended to high energy transitions were used to
determmine the concentration and temperature dependence of IVBA coefficients

at various wavelengths.

8.1. Suggestions for Future Work

The band gap narrowing derived in chapters 3 and 4 for p-type material
was evaluated using a plasmon-pole approximation for the Lindhard dielectric
function. An improvement on this model through the use of the full
Lindhard dielectric function including coupled valence bands, was discussed
in section 2.6. This modificétion.would then complement the work of
Berggren and Sernelius (1981) who used the Lindhard dielectric function
for electrons in evaluating the band gap narrowing in n-type materials.

A further extension of the plasmon-pole model could be made through
the use of a realistic bandstructure derived in a pseudopotential calcu-
lation, and by evaluation of band shifts at non-zero k-values.

The band gap narrowing work could also be extended to the derivation
of band shifts in low dimensional structures. This is particularly
important in .the quantum laser systems considered in chapters 6 and 7 for
which band gap renormalisation would produce changes in the band to band

emission spectra.
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While the real part of the electron-electron self energy provides
the shift in the energy of an electrcnic state the imaginary part
determines the energy broadening of states. Evaluation of the
imaginary part of the self enexgy would provide a straightforward
extension of the present work and a useful contribution to the under-
standing of some aspects of optical spectra.

These energy level broadening effects could also be incorporated -
into the IVBA calculations in bulk and quantum well lasers. This would then
provide a comparison with broadening mechanisms considered by other
authors for IVBA in bulk materials (e.g. Takeshima (1984a)).

Finally as mentioned in section7fthe k°p bandstructure model
could be used to determine fundamental and intexvalence band absorption

coefficients in alloy materials used for long wavelength lasers.



APPENDIX 1

PARAMETER VALUES

S Gahs Gay. 4710 5388 Ga5.281%0.72%.6%0. 4
m/m_ 0.5 0.45" 0.47 0.466
m_/m 0.16 0.085 0.055 0.075
ng/m 0.24 0.15 0.12 0.14
mz/mo 0.98 0.067 0.041 0.056
m, /m 0.19 0.067 0.041 0.056
E_ (ev) T=300k 1.12 1.42 0.78 0.96
A (ev) T=300k 0.045 0.34 0.38 0.262
e 11.8 12.35 11.67 11.18

* 0.52 in chapters 3 and 4.



APPENDIX 2

EVALUATION OF INTEGRAL EXPRESSION (2.36)

Expression (2.36) is writen as

* . . " - °
[¢nk(_r_) B e (E)e = = fu;;k(g)un,,k,,(E)el(£ AL B (a2

The product of Bloch periocdic parts may be expanded in terms of

reciprocal lattice vectors as:

% - ig-x
umJQuMkMQ ZCbe (A2.2)
X = g 2
where
C = L u* (rju (r)e—ing-d3r (a2.3)
g Q rlk funlll r1"}(l = - .
= cell . - -
unit
cell

Substitution of (A2.2) into (A2.1) gives

. Q
* iger 3 _ “cell i(k"+g+g-k)-r .3
f ¢mi(£)¢n..£..(_r_)e dr=—g— )(3 Cg_e d’r (A2.4)

|

=0 L Ccé " (A2.5)
The only significant contribution to the energy shifts evaluated
using equation (2.39) are those for which g = O. Retaining only this
term in (A2.5) gives:

[ Ok () upm (E)eig‘.Ed3£ =Q S (A2.6)

which on using (A2.3) gives

-



where

iger. 3
[ ¢:;)-(—(£_)¢nu}£u (£)e _d r
In£,nu£n = f u:ﬂi(_r_)un")i"

= *
Go,;r}i'-_g_f Yo BV
= GO’IE-_E_Il_q— In}ilnl|£ll
({)d3£_

n"}i"

(;_)d3r

(a2.7)

(A2.8)



APPENDIX 3

CLASSICAL DERIVATION OF PLASMA FREQUENCY

a) Six Valley Silicon Conduction Band

Assume the carriers are distributed equally between the six valleys

shown in Figure (A3.1) and an electric field is applied along the x-

direction. The applied field causes electron motion in the x-direction.
P
t
£
Y
X
t

Figure (A3.1)

In four of the valleys this direction corresponds to the transverse
direction t with displacements xt. The other two valleys have their

longitudinal axes in the x direction and corresponding displacements

Xg- On removing the driving force, the force F felt by each electron
is F = - Ee where
ne x ne x
L
E== v 2 £ (A3.1)
3 e ¢ 3 e e

o r or

A3.1.



The acceleration of particles with mass m

A3.

) and mt is then given
as.:
d2 ne x
Xy ne x, 5 Ne x,
Ty 2 3 e 3ece (A3.2)
dt Eo r or
d2 2 2
X ne x, o e X
i i (h3-3)
dt eoEr or
Using trial solutions of the form = x eimt and = x eimt
9 % T *0o % T %o
gives
1 ) \
-m w2 + Lne X + 2 ne2 X = 0
2 3 e_¢g, Lo 3 ¢ to
L r o o x|
(
2 2)
1 ne 2 2 ne
= + + — = A .4
3 e *10 _mtw 3ee *to © (A3.4)
\ L )
For non-trivial solutions the determinant of the coefficients of
X065 and X, must vanish. Solving this determinant gives
2 ne2 3m2mt
© T Tem T Tope T mm_
eoer ope Lt
or ml =% L,z (A3.5)
ope mR mt
b) Heavy and Light Hole Valence Band
A similar analysis to above gives:
d2xH pe o 2
m = -A X - A x
H L
dt2 H €oEy H eos L
2
d X pe pe2
- A3.6
e 2 Heec H Lee L ( )



c)

where AH = heavy hole fraction of total hole concentration
m3/2
U - B
B _3/2 3/2
m +mL
AL = light hole fraction of total hole concentration
w2
A, = ————
L m3/2+m3/2 (A3.7)
H L
Again using the trial solution x_ = it = X iwt ives
9 9 B *Ho € S T PN g
+A
W2 - APy LmH? pe?
mHmL J E:osr
172 L1/2 1 ,
_ H + L pe
| 3/2 3/2 3/2, 3F2] e e
m +mL m, +mL or
- |
thus w” = —o— where = (A3.8)
€ €m m 3/2 3/2
o r ov ov my +mL

Electron-Hole Plasma

A similar analysis to the above for a single conduction band and a

heavy and light hole valence band yields

+ B (A3.9)

where n = concentration of electrons or holes, i.e.

wz = wz(electrons) + wz(holes)
b b P

A3,
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APPENDIX 4

DERIVATION OF THE AVERAGED MOMENTUM MATRIX ELEMENTS IN A BULK

SEMICONDUCTOR

The momentum matrix element between states in the spin split-off

and heavy hole bands is given by

M = [ V)| 8] pglr) &ox (ad.1)

Q

where the volume integral covers the actiive lasing material and the unit

polarisation vector is defined as:

+ a2 o o2 2 + e2 =1 (B4.2)

jo>

e
=X

The Bloch functions wH and ws can be expressed as

v = chll 1/2 (r)elEH'E- v = chll 1/2 (r)lES'E- (rd.3)
S ) Ug L I Ug ' o
Substitution of (A4.3) into (A4.l) gives
-ik r ik _-xr
el f ut(r)e © |a-V|u (xe ° & (A4.4)
M= —= H =
Q
Q -ik exr ik _°r
cell —H — 3 3 3 - = 3
= * - -— . A4.5
or M Q J uH(E)e e 3% T ey 3y te 5 | us(gje d'r ( )
Q

Applying the differential operators and ignoring the small terms arising

from differentiation of the exponential factor gives
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1 -k, ~k )-°xr
_ cell . 5 d 5 “H = 3
= =5 f(uH(_r_)leX TR s LS solug(x)e a’r (A4.6)
or M=e M}'< te M'+ e, M (24.7)
Q -i(k -k )°r
1 —_
where M' = _cell (u*(r) o u_(r)le —H S d3r (A4.8)
X 2 H—=— 38x §— -

As (uI’_"I (r) o ug (r)) 1is lattice periodic it can be expanded as a sum

0x

or reciprocal lattice vectors,

u* (r) o u (r) = C elgm£ (A4.9)
H'= 9x S — g
g 2
Then
Q iger -i(k_-k_ )e°xr
Mr = -ceil f Ic e e HTE T4 (A4.10)
X Q g ~—
0 <
M' = Q rc ¢ (Ad4.11)
X cell g g g—'}iﬁ ES
so M' = Q cC 6 (Ad4.12)
b4 cell o 9'}£H"}£S

as EH and }_<_S will always be much smaller than the smallest non-zero

reciprocal lattice vector.

Now
-igrxr
c =2 {uﬁ(g) Su_(ze a’r (A4.13)
2 Yeenl *
1 L. 3 3
= 2 24.14
So C 9) J ug (x) % Us (r) d'r ( )
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then M =M & (A4.15)
X X Q.'EH £S
L) 3
where M = u*(r) —u_(r) d'r (Ad.16)
X H— 08x S — -

Similar expressions are found for M; and M; giving
M = + +
(eX M ey My e, MZ) $ (A4.17)
and [M|2=]e M +e M +e M |?s (A4.18) .
X X Yy Y z z

Now an integral over all polarisation space normalised to unit volume gives

2
,M|2 = Z%-J le M_+eM + ezle S, x 3 g (r4.19) .
X Yy 2547 %g
Using the coordinate system
e = e sinb cos) e = e sin® sin¢ e = e cosb
X y Z
. . . 2 2 2
on substitution into (A4.19) only terms of the form e ey, e,
contribute towards the integral, for example
T 27
2 4
J exde = I J sin29 cos2¢ sin® d6 d¢ = EI- (A4.20)
=0 ¢=0
Hence
|2 = %[Imxlz Y [Mz|2] 8. x —x (A4.21) .
b4 ='2H =5
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APPENDIX 5

Derivation of the Variational Expression (6.6)

Taking the trial wave functions and energy to be different from

their true values by a small amount, i.e.

Yy = ¥t S €, + o¢ (85.1)

™
it

where wt and g, are the true wavefunction and eigenvalue respectively,
wA and wB are trial wavefunctions in regions A and B.

Note the above expressions for ¢ and WB imply that the trial

A
wavefunctions in regions A and B are varied independently, 1i.e.
Sy, # Sy .

We substitute these trial functions into the normal variational

expression, (using atomic units throughout).

f w*HWdQ=€J_ Y* oy dAQ (A5.2)
QA+B QA+B

which on ignoring terms of second order in small quantities gives

f (w; H Sy + SyY* H wt + ‘1’{'{ H tbt)dﬂ =
Q

A+B

€ J (wéwt + wz&w + 6w*wt)dﬂ + §e J w; wt d@ (A5.3)

QA+B QA+B

subtracting terms on L.H.S. from the R.H.S. gives
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Se I vy, da = VY (H - e )8y d (AS. 4)

D

Y
A+B A+B
We now separate the volume integrals into integration over distinct
volumes of material A and B and use Green's Theorem for a region {

bounded by a surface S

I (wv2¢ - ¢v2¢)d9 = J (WY _¢ = ¢9_y)ds (A5.5)
Q S

n being the outward normal to surface S.

This is applied to the R.H.S. of equation (A5.4) for region A giving

2 2
J PE(H - e )6 AQ = [ V(- Y§-+ V- e )y, aa - J S, Yg-w; dg
QA QA QA
' 1
+ f YRV - e )8y, 4 - E'J (b v 8, - Sy, V_ y¥)ds (A5.6)
2, Sy

where SA is the surface surrounding volume A. The first two terms on
the R.H.S. cancel. A similar expression can be derived for integration
over volume B.

Equation (A5.4) now becomes

> J Yy, ae = - %—[ (pr v S, = 8y, V. pr)ds
fasn Sp
l . —
- §~[ <w; Vo de éwB vn, yr)ds (A5.7)
S
B

whexe n and n' are the outward normals to the surfaces surrounding

regions A and B respectively.
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Now as the trial wave functions together with 6wA, and SwB
satisfy the periodic boundary conditions (6.5) we see by reference to
figure (6.5) that integrals over surfaces S4, S5 and S6' S7 vanish
by cancellation of contributions from opposite points on the cell
boundary where n or n' have opposite directions. Similar cancella-
tion will occur for the parallel faces not shown in the figure.
Equation (A5.7) then reduces to integrals over Sl' 82 and S3.

Se f Ypxy 40 = - i-[ (p* v_ 8y - 8¢V ¢*)ds

t’t 2 t n A A n't
Save 51%52
- l.f (p* ¥ Sy - Sy_ V Py*)ds (A5.8)
2 t n' B B n' 't
S2+S3

These terms can be further simplified as the outward normal on S2 in
A 1s in the opposite direction to that on 82 in B. In addition the
periodic nature of the superlattice dictates that the wave functions on
Sl and S3 are equal, however the outward normal on S2 in A 1is in
opposite direction to that on S3 in B. Choosing as our positive
direction the outward normal on 82 in A we obtain

se [ wmvean = 5[ top ooy - vsu) ¢ ton, - sv o) as

QA+B S2
. %f Lyx(v_ 6y, - ¥ 8y + (B = 8y )V 4x] ds  (AS.9)
S

If the trial wavefunctions in regions

variable i.e. GwA

original expression

1

A and B were not independntly

6wB the R.H.S. of (A5.9) would vanish showing our

(A5.2) to be variational. However the problem is
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then effectively reduced to the normal variational expression applicable
to the wave function in a single material. In the present model with
independently variable trial wavefunctions, first order variations of
€(8e) will only vanish if either terms on the R.H.S. of equation (A5.9)
cancel or we add in terms to our original expression (A5.2) which cancel
the above surface integrals. If these additional terms take the form

given in equation (6.6) as

1
ZJ [(bg = W) (VW% + ¥ y%) = (2 + 92 (V4 - ¥ )] as

52

I
j&{ (same expression as above) dS (A5.10)
Sl

substitution of conditions (A5.1) gives on ignoring terms of second order

in small quantities:

1
ZJ [2(8vy ~8y,) v Ui 21p;(vn5¢B - vnsmpA) Jas
82 :
- %-( (same expression as above) ds (A5.11)
S

1
These terms clearly cancel the surface integrals in equation (A5.9) so
causing &e to vanish. The disappearance of first order variations in
energy thus satisfies the required condition that expression (6.6) be

variational.
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APPENDIX 6

Proof of Reality of Eigenvalues in Variational Expression (6.6)

We wish to prove that eigenvalue ¢ in the expression (A6.1) below

is always real.

€ J v* Y g = f Pp* H oy dQ + %—f Clyg = wp) (Y 05 + 9 u3)
Q

A+B “arB S,

= (U R (9 - T u,) Tas

|
N

I (same expression as above)ds (A6.1)

S
1

Rearranging terms in the integral over 82 gives

1 :
Z-[ I:(q)l’ivnwlk - wAvnwz) - (wgvan - lpBVnw}’;)
S

2
* - *) - * - * A6 .
* (wBVnwA wAVan) (wAvan vanwA)]ds ( 2)
a similar expression is produced for the integration over S.. Terms

1

in the last two pairs of brackets appear in conjugate pairs and will
give real values on integration. Applying Green's theorem to the

Hamiltonian term in expression (A6.1) gives
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2
J P* —(z§-+ VI¢ daq = %—[ (V> - V¢ + p*Vy)dQ
9]

A+B QA+B

1
[ Vx V4, ds - 5[ ViV, Wy ds (36.3)

S S
A B

|
N

Applying the same arguments as used in Appendix 5 for cancellation of
terms on opposing faces and choosing the normal on S2 in A to be the

positive direction expression (A6.3) reduces to

5 .
I u* (- V—2+ v]np aq = %f (Vy*- Ty + §*vp)dQ
QA+B QA+B
I AV oy - AV yyds - = | (WY y - pRV y)as (26.4) .
2 A n'A BnB 2 B n'B A'n'A
SZ Sl
On substitution into (A6.2) all terms are now in conjugate pairs. The

eigenvalue € must therefore always be real.
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APPENDIX 7

Evaluation of the Integral Terms from the Matching Conditions

We have from equation (6.12) the trial wavefunction in region B

X vy B .
ik, °r. (k_P..+k_ P ) ik..°r
bp=re TP Eley gy XA XA RRE T
j N IS (E,-E, ) J
J 1
z B B
pZ, } 3F. ik, .°r
+ 53 i B3l (A7.1)
... -E, i 9z
j i#] j 1}

where the r and 2z dependence of uj and Fj respectively have been

omitted to simplify the notation. The term

* - * A7.2

J (vawA wAva)dQ ( )
chll

will be evaluated, all other terms in the matching conditions can then

be derived from the resulting expression by suitable manipulation of

labels A and B. Differentiating wA with respect to z we obtain:

. A
. F.  ou.
¥a I "y Yy
—2 - 1e ., —3 + F.,
Z . 3 oz j oz
3
% v A A
+ ik, .- F
e (Nl HaEn (B 0y
i E,.-E 3z Y4 3 dz
p? % ik ory, [, aF, du | ®
+ 2z |—2| e —_—d oy o+ 3= (A7.3)
.. 2 i dz 9z
j i {E.-E, 0z
j i

The term J w*vaA dQ is now calculated neglecting all texrms of
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second order (i.e. those with two denominators), and noting that all

integrals are taken over a lattice unit cell located at the interface

A
oF . Ju,
* * [ 1
J VETY, = T3 [ B g8 [uj, L — J aq
] ]

j e ) J 3z j' 9oz
;s A A
kP, . aF. , su
+rr x| W BT g xiEN ¥ l'J'I J 4., +F o oag
LN j | Ej'—E ' J 3z j! 3! 3z
z A 2 A
px px [Birqo ] 3°F,, 3F,, Bu,,
+I% I u. Fo El ZE g g, + a; = dq
i o4t it 3 30 i'J 3z
*x
k P +k_pY )B oF su, )*
+ I LT -i ) Y 2 B* B ' L p an
: E,-E, 3 Ui i oz i oz
jij? i
* * A
R R 3F | du,,,
+ Iz J S ¢ -y s, —] an (37.4) .
J 15 E;~E i 3z j' dz j' oz

As the envelope functions change little over a lattice cell, they
are taken to have their values at the relevant interface. The Bloch

functions are normalised to the unit cells so:

i3 33!

—

e
%
ot

[oF)
e

I

o]

and also we define P?j' as

ou.,
f u* —J = ~ p2 (A7.5)
J 9z '



Then n

. A B .
oting that uj = u,, which is an assumption of the model as

described in Chapter 6, expression (A7.4) becomes

|

A
aF" .
B* 9% §¢ z _B* A
* gy dQ =3 L |6.., F. - P2, Fo F,
Vg Y jj.[JJ 3 02 13 J 3
x Y A
k_ BT, ., +k P,,.,‘f .
z £ i XlE _Eylj P,i,Fl.B o
P Sy j PR B
b4 A A
Py ox OF.,
I I P, , F. ——
j jl 1 Ejl—.Ei' Jl J az
*
k Pi +P] .k B 5% a
) XEJ_EJY Pi.,F, FS,
3i3 3 >
* *
pZ B SFE
5 z Jj FA
1 se BE ij' ez !

On subyracting the similar tehns obtained from [ wA ng df
using:
8..,6 p% pb
ap _ _J3j' oB Ji 1]
D.., = > -z P
and
z*
i3t T3'3

we obt

ain:

A7 .

(A7.6)

and

(8a7.7)
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ar’ Tt
(UFVU - TuF)dQ = 2 5 [FBT i pR%E _pA 3 B2z
VpTVa T dpVplaRt = 2t LRy T Py Ty o Py
33
B* Azy Byz , Azx Bxz z Z
+2 I F, [ik (D,°5 + D.20) + ik _(D.., + D..,) - P..,IF", (A7.8)
J y( 33’ 33 ) Kx 33 33 ) 33 ] j

j3'
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APPENDIX 8

Normalisation Factor for the Quantum Well Wavefunctions and

Evaluation of Normalisation Integral (6.20)

This appendix serves to evaluate the normalisation integral of
expression (6.20) and to determine the correct normalisation factor for
the wavefunction . Let D be the appropriate normalisation factor

such that if:

ik, ., °xr k-p,_, ik. . er
Y =D[Z F,.(2) u., (xr) e il =1 + Z Zi =2 u, F. e 11 =1 (a8.1)
] ] - .. E. -E, i3
J j i
then f P* P aQ = 1 (A8.2)
QA+QB

where the Bloch periodic parts of uj(g) of equation (A8.1) are taken
to be normalised to the unit cell, and QA and QB are the volumes of
materials A and B respectively, and superscripts A or B from the
wavefunction expansion in the appropriate region are omitted.

Ignoring terms of second order in the energy denominators,

expression (A8.2) gives:

kP,
. 1]
* d =D*D I I F*F_ ., u*u,, ~ L i |>—— F*F., u* u.
J vr Y jj.[ j o3t 3l . E -By j o3t i3
+
QA QB QA+QB
+Z i F., u¥ u,,| d (x8.3)
i j o3t 1 i




Now considering the first terms in the square brackets we use the

lattice periodicity of the Bloch functions to express the product

u*u
J

AB.2.

as a Fourier series expansion in terms of reciprocal lattice vectors

Then

F.(z)F,,(2)df
J )J'
Integrating over the plane of the layers gives

= §
d511 A Cg e 0,9

[ M1thy MR 2
C e e
g 2. 411

(where A is the area of the planar interface), and hence

(A8.4)

(A8.5)

(A8.6)

(A8.7) .

Equation (A8.7) contains the Fourier transform of Fij, for a discrete

set of wavevectors gz. For quantum wells much wider than the lattice
parameter only g, = O gives a significant contribution.
L
F* F,, u* u,, d2 = AC F, F,, dz (A8.8)
J 5 2 I B OOOJ j o3
f
A+QB ©
. . ~-ig'.r . . . .
Now multiplying (A8.4) by e "= = and integrating over a lattice unit

cell gives
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utu,, e L Egg=1 f c otlg-a') L 4
3 ] g
Y 29
cell cell
= X Q = 2 .
g Cg_dg,g' cell Cgf cell (A8.3)
Thus Co.0 = 3 L I u* u., & (A8.10)
‘cell )3
cell
Expression (A8.8) now becomes
L
A
{ F*¥* F., u, u,, dQ = [ u*, u., d@ I F* F,, dz
J 3 J ] J ]
0. +0 cell Q
A B cell o}
L
A
=5 s, ., f F* F_, dz (A8.11)
cell J3 . J 3]

The same procedure can be followed for evaluation of the other terms
in expression (A8.3). The kronecker delta term Gij arising from the
overlap integral of the Bloch function periodic terms, then ensures all
other terms vanish (as i # 3Jj).

Substituting equation (A8.11) in (A8.3) gives

L
*
f vt pde=2PR p g o5 f FY Py, dz
o

A ‘B
L
*
- Dba J F* F, dz (A8.12)
) J
cell j 6

This expression can now be substituted into equation (6.6) as the
normalisation factor on the L.H.S. of the expression. It should be
noted that the normalisation prefactors (D2A/chll) can be omitted from

equation (6.6) due to its appearance in every term of the expression.
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1/2

If N is the appropriate normalisation factor for the envelope

functions such that

L
N ¢ J Fg Fj dz = 1 {A8.13)
10
2
Then ;m = N
cell

1/2
N Q ik, -°r kP, . ik..-°r
and ¢ = cell [ZF, u, e T LI i fj—=df u F. e 1 ll]
A 3 , Ej—Ei 1 3

(A8.14)
This normalised wavefunction is used in evaluation of the momentum matrix

elements discussed in chapter 6.
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APPENDIX 9

Derivation of Momentum Matrix Elements for Quantum

Well States

An expression for the momentum matrix element of the transition from
a spin split-off to a heavy hole sub-band is derived below. This
expression can be applied to optical transitions between any sub-bands
by appropriate manipulation of the subscripts H and S.

The wavefunctions in the form (6.12) for 'heavy hole' and 'spin
split-off' sub-bands (normalised by the prescription (A8.14) must be

substituted into the expression:

= * ° * N A9.
M fwAH |e-p| wASdQ+I x letp] vy an (R9.1)
25 g
where
1/2 .
N o1l ki1°I3p A a
Y a [t e Foguy
AH i J J
X vy YA ,
Kt 15K yr® ijJ A KigtEig
z J F u, e
. E.-E, J JH i
J J i
oF, ik Y
JjH —=11H =11 ] (A9.2)

Where the H subscript appearing on the envelope term Fj indicates
that its expansion coefficients alj are dependent on the particular

state H Dbeing represented. A similar expression exists for wAS'
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Corresponding expressions also exist for the wavefunctions in material B,
however as the wavefunction amplitude in this region is small, the
transition matrix elements are also small and are therefore omitted

from the calculation.

a) Radiation Polarised along the x-Direction

The choice of the in-plane x-direction for polarisation of laser
light is appropriate to a TE mode of laser operations.

on using §X°E_= -i 53—, dropping the A superscript, and ignoring
terms of second order in energy dencminator, substitution of (A9.2) (and

the corresponding expression for the spin split-off sub-band) into (A9.1)

gives:

Q Ju, ,
M = —J i —Cell L7212y v px ux, R, lik _ u,, + —3-
A H S 53 4m j 3's xS ] ox
Q

jE 3 " 3's E, -E, xS i

kxsp}i{"'+k spi---] 9u;
+ I35 I F* urF., i MR L S5 {ik u,, + ———51
3 J L} J_ 1 k

z
oF P du
le il:]l 1 . [}
+ L I * u*
o F'H uj 9z E., E., * ka Yy * ox
J 3 1 j'- i
X Y
k P k . ou,
xH ij yH ij] * " ) '
- X F
§ i , E.-E Fia Ui Fyrg | Kys Uy ax
G M- 3 3 (k. k.. )
.. . u., ik, .k °r
+ 2 L3 e L O L U P 11s =11H° =1 40
349 Ej—Ei i 3z j's XS ] ax

(A9.3)
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If we now choose a typical term in the above expression e.g. the
second part of the first term and evaluate this as:

du., ik, , k... )ex
il 115 —11H 11 aq

Q
s cell 1/2 . "
Y¥=-i J 2 (NgNg) LI FigFyguy 5
13
(A9.4)

all other terms can be evaluated in a similar manner.

The Bloch functions have the periodicity of the lattice and can be

expanded in a Fourier series in terms of reciprocal lattice vectors g.

Ju., S )
Clearly ug Ty is also lattice periodic hence we can write

(RA9.5)

integrating over a lattice unit cell gives

multiplying by e = — and
ou,, -ig'-r gy !
[ u* e ag =:c f el @) 4
j oox g
Q i -
cell cell
- A9,
Cg_égjgf chll (A9.6)
1 du,, -ig-r
so cC = a [ u¥* BJ e daq (p9.7) .
g cell Q ] X
cell
Now substituting (A9.5) into (A9.4)
Q , ik -k )ex
., cell 1/2 . ig-r —11s =11’ =11
= -i — 2 = d
Y 1 a (NHNS) [ ; g' b FjH Fj'S Cg e e dEil z
JJ1 g =
(A9.8)
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Now following the prescription of Appendix 8 for the normalisation of

the wave function we integrate over a "layer plane (L.P). This gives

ik, o k419, ,) L. : ig_z
L J c e STHETEL AL AgrEy -zac s L e © (a9.9)
g /2 g £ L1'fis s

As the values of Ells and EilH of physical interest are much smaller

than the smallest, non-zero reciprocal lattice vector, then the only
term contributing significantly to the sum of (A9.9) is that for which

311 = 0. Hence

~ $ 3.10
A S e A CO,O,g e 0,k X (AS.10)

c _ 5
9 9% 8 g, 9, fa11 %811

L ™

substitution in (A9.8) gives

LA igzz
1/2 —
Y =-1iQ (N N I I [ C e ) ~ F* (z) F.,.(z) dz
cell H'S Ay gz A Ong O’EilH Eils jH J's
(A9.11)
As with equation (A8.7) in appendix 8, only the g, = O term in (A9.11)
makes a significant contribution to Y and therefore
LA
v=-1a_ mNoYE s J Cooo %0 k. k. Flg(z) P, (2) dz (A9.12)
< jirl L1t J
From (A9.7)
1 auj,
= * ' A9.13
COOO 3 I uj o aq ( )
cell Q
cell

substitution into (A9.12) gives



1/2 Buj, A
Y = -i (NHNS) 60’&11H”5115 § §' £ ug = dan i F* Fj's
cell
LA
e (NHNS)l/Z GO'EiLH"Eils § ?' ng' i FgH s -

Evaluating the other terms from expression

using the orthognality of the Bloch functions gives:

(e}

(A9 .14)

(A9.15)

(A9.3) in a similar manner, and

(r9.16)

1/2 X
M_ = (N_N.) § L [<p* F,,.> [iP., +
* HS Ok 1p¥yyg 5 40 I IS 13
2k_ Do, +k DY, +k DN, ]-
x JJ y 1] Yy JJ
aFj' XZ aF?H zx
<F* i + < > i
FjH g Djjl = Fj'S i Djj']
where <F3‘H Fj'S> implies integration over the length LA of region A,
and use of the delta function (3 ) has been anticipated in
°kr¥is

order to drop the S and H subscripts on the wavevector (k)
The same expression (A9.16) can be used for both materials

B with the appropriate choice of parameters.

Equation (A9.16) can be expressed as:

k

M. 6
A
* 0k R

* 3]

1H

and

which on using

terms.

A and

(A9.17)
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2
. (2m
= A S (k

do,k k1518

ki Ki1s

and anticipating a relevant integration gives

2
2 (2m)
| a - Ss7Ey g (a9.18)

NN

where
1/2 [ vy
:'1 - fay A N4 AY <« o * - > N . P
Ax NN ; ;' [erﬂ i's tLP , T Akx Djj' +
Xy ¥X aFJ'S XZ aF*H zZX
k_(D.%, O - <FE iD,,, o+ v > 1D A9.19
j3 33 J jH 9z i3’ 3z " ]'s i3 ( )

b) Radiation Polarised in the z-Direction

Radiation polarised in the superlattice z-direction corresponds to
the TM mode of laser operations.

Following the same prescription as above we obtain:

1/2 2
M= (N.N_) $ 2L |<F*_F.,.> |1 P., +
H'S Ok 157Ky18 5 4 HJ'S 33
k (D?¥. + D%%,) + k (D?Y, + Dyé.) +
x 3] 33 y 33 j3J

| 8
, o g .
«—d Flig® i[o?? - —31—} e i(D??. + —;Q—J (A9 .20)
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