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ABSTRACT 

"Skyrmion and other Extended Solutions of Non-Linear a-Models 

in 2 and (2+1) Dimensions~ 

Ian Stokoe 

Low dimensional models are generally regarded to be a convenient theoretical 

laboratory for studying various aspects of elementary particle theory. In this 

thesis, the extended solutions of one particular class of such models, namely the 

a::pn-l non-linear a-models in 2 dimensions, are discussed. Special attention 

is paid to the shape of these extended structures and their dependence on the 

parameters of the solutions. Time dependence is introduced into the models, 

and properties of the moving objects in these (2 + !)-dimensional theories are 

explored. In particular, the Hopf terms of the theories are investigated, and 

their relation to the spin of the extended solutions is discussed. Also the classical 

dynamics of these moving objects, and their explanation in terms of the geodesic 

motions on certain Hermitian and Kahler manifolds is considered. Finally the 

embedding of the ccpn-l solutions into the 2-dimensional U(n) chiral models is 

studied, paying particular attention to the stability of these embedded solutions 

in the larger group space, and to the number of independent negative modes of 

the fluctuation operator around these solutions. 
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1. INTRODUCTION. 

It is widely believed that non-Abelian gauge theories play an important role 

in any field theoretical description of the theory of elementary particles. For 

example, weak and electromagnetic interactions are described by such a theory, 

and it is generally felt that the same is true for strong interactions. Gauge 

theories are defined in terms of a Lagrangian density C: for example, in the case 

of an SU(2) symmetry group, C is given by 

(1.1) 

(J.L,V = 1,2,3,4), where 

(1.2) 

and where AJ.' is a vector function of Euclidean four-dimensional space-time with 

values in SU(2). 

Many quantities in these theories are given in terms of functional integra-

tions, and hence one of the major difficulties in making progress with any par-

ticular theory is the lack of understanding of how to perform many of these 

integrations. One approach is to calculate them numerically: the results of 

such attempts are encouraging, but unavoidably involve various approximations, 

making the results inconclusive. 

If one attempts to calculate the functional integrations analytically, then the 

only viable approach available in many cases is based on an expansion around 

the stationary points of the action of the theory, followed by perturbation theory 

of the resultant effective theory. To proceed in this way, one therefore has to 

determine all the stationary points of the action, which as usual are given by 

the Euler-Lagrange equations of the theory: 

(1.3) 
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Written in terms of the gauge potential A,_" these equations are second order, 

highly non-linear partial differential equations. 

Now, due to the Bianchi identity 

Dp, *F'-'11 = O, (1.4) 

where 

(1.5) 

and f.1.wafi is the totally anti-symmetric 4-tensor (with f.l234 +1), it is well 

known that a subclass of solutions of the Euler-Lagrange equations is provided 

by the solutions of the first order equations 

(1.6) 

known as the self-duality e.quations. These equations can be thought of as 

resulting from requiring the Lagrangian density to be equal to the modulus of 

the topological charge density of the theory, that is, imposing the additional 

constraint · 

.c = ±.Q (1.7) 

where 

.Q = tr Fp.v *Fp.v (1.8) 

is the topological charge density. 

Now, the most interesting solutions of these equations are those for which 

the action is finite, since it is only for them that the perturbation theory of 

fluctuations around them can be set up. Indeed, all finite action solutions of 

(1.6) have been implicitly determined by Atiyah et al. [3]: in the case of the 

plus (minus) sign, these solutions are called instantons (anti-instantons), and 

they correspond to local minima of the action. Hence these solutions are stable 

under small fluctuations. 
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But what of finite action solutions of (1.3) which are not self-dual? It has 

turned out to be very difficult to find such solutions, although presumably they 

too will play a part in the calculation of the functional integrations. 

Given the complexity of non-Abelian gauge theories in four dimensions, it is 

natural that people started looking at models in lower dimensions which exhibit 

some features of the four-dimensional theory, but where the relevant calculations 

are simpler to perform. In particular, for two (Euclidean) dimensions several 

classes of models have been proposed, namely the O(n) non-linear a-models 

[4], the principal, or U(n), chiral models (5], the ccpn-1 non-linear a-models 

[6,7,8,9], and also the latter's non-Abelian generalizations, the complex Grass­

mannian models [10]. All of these models are interesting in their own right, 

and exhibit many properties similar to those of the four-dimensional theories; 

in this thesis, however, the focus of attention is the ccpn-1 models. This class 

of models additionally exhibits a first-order system of equations analogous to 

the four-dimensional self-duality equations (1.6), and has solutions which are 

also analogous to the instantons of gauge theories. Furthermore, the stability 

of these finite action solutions is guaranteed topologically for all n (in contrast 

to the O(n) models, which have stable instanton solutions only for n = 3, [11]). 

Of course, some of the properties exhibited by these models may not necessarily 

indicate what happens in non-Abelian gauge theories; on the other hand, some 

of these models may be directly relevant in other specific physical systems, for 

example, for the case n = 2 the model provides a phenomenological description 

of Heisenberg ferromagnets in a two-dimensional system [12]. 

Chapter 2 therefore introduces in detail the basic quantities involved in the 

a:;pn-1 models in two Euclidean dimensions: after the defining equations, the 

general instanton solution is presented and the stability of the solution is dis­

cussed. Other finite action solutions of the models do exist, however, and after 

a brief overview of the O{n) non-linear a-models the chapter goes onto present 
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non-instanton solutions of the (tpn-1 models, constructed from instanton solu­

tions of the 0 ( n) models. The chapter ends by discussing a useful reformulation 

of the (Cpn- 1 models using projectors, a reformulation which allows the general 

finite action solution of the full Euler-Lagrange equations to be written down in 

an elementary way. This general solution contains both the instanton solutions 

and also non-instanton solutions, and an obvious application of this would be 

to attempt the evaluation of the functional integrals mentioned earlier in this 

introduction. However, the final pages of chapter 2 demonstrate that any solu­

tion of the cepn-1 model which is neither instanton nor anti-instanton in nature 

is necessarily unstable under small perturbations, and at present there is no 

universal agreement on how to deal with instabilities in this type of calculation. 

Rather than trying to pursue this idea further, we therefore return our attention 

to the solutions of the models themselves. 

Because of the ease with which explicit solutions can be constructed, the 

(tpn- 1 non-linear a-models offer a good theoretical laboratory for clarifying 

non-linear interactions in particle physics. To enable us to benefit from this, 

we clearly need a good understanding of the nature of the solutions we are 

constructing. To this end, the first part of chapter 3 presents a detailed ex­

amination of the action densities of various solutions in the simplest, ie., <tP1 

model, investigating the dependence these quantities have on the parameters of 

the solutions, and discussing the various interpretations which can be adopted. 

Similar techniques are then used to investigate possible analogous field config­

urations for a system containing both instantons and anti-instantons-no such 

exact solutions exist, but various field configurations approximate to solutions 

provided the instantons and anti-instantons are well separated in the complex 

plane. Even though they are approximate solutions, these configurations may 

still have an important part to play in the theory. For example, chapter 3 goes 

on to investigate an interaction which can be identified in these approximate 
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solutions, and which has an obvious physical analogue. 

Up to this point in the thesis, all the structures so far considered have been 

solutions (or approximate solutions) of the two-dimensional <I::P"'-1 models, with 

no time dependence. If we wish to make further progress it is therefore of con­

siderable interest to try to extend the models to (2+1)-dimensional (Minkowski) 

space, and to investigate time-dependent finite energy solutions of these models. 

The static solutions of these (2 +!)-dimensional theories, known as skyrmions 

[13], have already been considered-they are simply the solutions of the two­

dimensional theory discussed previously. To go beyond the static field configura­

tions requires the solution of the full (2 + !)-dimensional field equations, which 

is rather difficult. On the other hand, it has been suggested that one inter­

prets the static field configurations as static extended objects, and then obtains 

approximate time-dependent solutions of the full theory by introducing a time 

dependence into these extended objects. This type of time evolution is discussed 

in the latter part of chapter 3, and by considering the various extended objects 

already discussed in this chapter as moving objects in (2+ 1) dimensions, various 

constraints are derived to ensure finiteness of the kinetic energy of each system. 

If one wants to model non-linear interactions using these moving objects, as 

much information as possible needs to be known about the evolution of these 

structures. In general the movement may induce interaction forces to act, which 

will cause a distortion of the shape of the extended objects and may lead to 

some radiation effects, but even though the general problem may be intractable, 

observations can be made about the evolution of the system in the limit of small 

velocities. For example, in the theory of non-Abelian BPS monopoles, Manton 

[14] noted that the initial motion of a similar system of monopoles follows the 

geodesics in the space of parameters of the static extended solutions. This 

observation has led to a partial understanding of the evolution of a system of 

monopoles [15,16], and information about the way they scatter off each other. A 
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similar consideration for the (2 +I)-dimensional ([!Pn-l models would therefore 

be most welcome. 

But before addressing this matter, we investigate a crucial observation made 

by Wilczek and Zee [17] on the (2 + I)-dimensional models: namely, one is at 

liberty to introduce an additional topological term, known as the Hopf term, into 

the usual expression for the action of the models. This extra term, although it 

does not affect the classical equations of motion, does have a profound effect 

on the spin and statistics properties of the extended structures in the models, 

and in fact leads to the possibility of fractional spin for the skyrmions. This 

observation is of particular interest, not only because of the extra information 

it provides on the structures in the models, but also in view of its possible 

physical relevance: it has been suggested that an explanation of the fractional 

quantum Hall effect may be found in terms of such objects [18,19]. Chapter 4 

therefore discusses in detail the construction of this Hopf term and its lack of 

effect on the equations of motion of the models. Explicit expressions for the 

Hopf terms are derived for the extended structures met in chapter 3, and the 

values of these terms are calculated for specific time evolutions of the objects, 

ending with a discussion on the spin properties these structures exhibit. The 

chapter ends with investigations into a more general method of calculating Hopf 

terms, for use with configurations which do not lend themselves easily to the 

methods discussed previously. 

Chapter 5 returns to the consideration of the slowly moving skyrmions in 

the ~pn-l models. For the case n = 2, Din and Zakrzewski [20] have shown 

that the classical dynamics of such structures can be described by the geodesic 

motion on a Kahler manifold of the structures' parameters. This result is re­

produced in chapter 5, followed by detailed calculations aiming to extend the 

various observations that can be made to cases other than n = 2, particularly 

for structures of a non-instanton-like nature. These latter cases are far from 
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trivial, and chapter 5 is completed by a detailed investigation into the methods 

one can use to determine the nature of the metrics defined by these structures. 

At the beginning of this introduction, several classes of two-dimensional 

models were mentioned, of which <f:PR-l non-linear a-models was one. To round 

off this thesis, chapter 6 looks at the embedding of the ecpn-1 solutions into one 

of the other classes of models, namely the U(n) chiral models. Recently, much 

progress has been made in this class of models-this progress is discussed briefly 

at the beginning of the chapter, and the remainder of the chapter is devoted to 

studying the important question of stability of the ccpn-1 embedded solutions 

in this larger group space. Negative modes of the fluctuation operator around 

the solutions are considered, and the number of independent negative modes is 

investigated. 

Finally, chapter 7 summarizes the major results in this thesis, and sets out to 

indicate some of the topics which could be studied in order to further_ expand our_ 

knowledge of this interesting and highly non-trivial area of elementary particle 

theory. 
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2. BASIC EQUATIONS. 

The ~pn-I model in two dimensions, as first discussed by Eichenherr [6], 

Cremmer and Scherk [7], Golo and Perelomov [8], and d'Adda et al. [9], can be 

defined in terms of an n-dimensional complex vector field Z01 = Z01 (x, y) where 

a= 1, ... , non the Euclidean space E 2 , subject to the constraint 

(2.1) 

Two such fields Z01 and Z~ are taken to be equivalent if they are related by a 

regular gauge transformation 

Z' _ z eiA(z,y) 
01- 01 ' (2.2) 

that is, the theory is required to be U(1) gauge invariant. The covariant deriva­

tive is given by 

(2.3) 

where p, = x, y and the bar denotes complex conjugation, and the Lagrangian 

density for the theory is 

.C(Z) = D~Z.DJJZ 
(2.4) 

With the action S defined by 

(2.5) 

then the Euler-Lagrange equations, corresponding to the stationary points of S, 

are 

(2.6) 

The solutions of these equations which result in a finite action are the required 

classical solutions of the model. [To be more precise, imposing the condition of 

finiteness of the action means that the base space of the model is the compactified 

E 2 , that is, 8 2 , since the points at infinity are identified.] 
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As demonstrated by Din and Zakrzewski 121], it is useful at this stage to 

introduce the complex variables 

X±= X± iy. (2.7) 

The Lagrangian density can then be rewritten as 

(2.8) 

where 

(2.9) 

and the Euler-Lagrange equations become 

(2.10) 

or 

(2.11) 

It is also useful to introduce at this stage the quantity .Q defined by 

(2.12) 

which, as shall be seen later, is the topological charge density. 

Having rewritten the equations in this form, it is clear from (2.10) and (2.11) 

that there exists a subclass of equations called the self-duality equations, 

(2.13) 

which correspond to the situation 

.c = ±.Q. (2.14) 

The finite action solutions of D_Z = 0 are known as the instanton solutions of 

the o::pn-l model (anti-instantons being the solutions of D+Z = 0 ). 
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Explicitly, it has been shown by d' Adda et al. [9] that the general instanton 

solution is 

(2.15) 

where the I a.'s are polynomials in X+ of the form 

k 

la.(x+) = .\a. II (x+ -a~) (2.16) 
i=l 

with no common roots, where .\a. and a~ are complex constants. [The general 

anti-instanton solution is obtained by simple complex conjugation.] 

The degree k of the polynomials Ia. is called the instanton number, and the 

action for such solutions is 

s = 21rk. (2.17) 

For example, in the <tP1 model, consider 

(2.18) 

This is an instanton solution of the model, and using (2.15) we find that 

(2.19) 

Hence from (2.8), after a few lines of algebra, 

(2.20) 

and thus from (2.5) we obtain after simple integration 

s = 211", (2.21) 

which implies that (2.18) is a one-instanton solution, as we would expect from 

the form of I a.· 

The existence and stability of these instantons can be predicted topologically, 

and the observation that the base space is the compactified E 2 , and not simply 

E 2 , is essential for the existence of the non-trivial topological structure. This 
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can be seen by recalling that the complex projective space cepn-l is the space of 

all equivalence classes [Za] of the complex n-dimensional vectors Za =f. 0, with 

the equivalence relation defined by 

if where (2.22) 

D'Adda et al. [9] then noted that if the fields [Za](.~), where~= (x, y), approach 

a constant value [Z00
] as 1~1 ---+ oo, then the fields Za(~) in the equivalence class 

need not be continuously deformable into each other, because if 

as (2.23) 

then it follows that 

as (2.24) 

where g(~/1~1) is a direction-dependent, singular phase factor. In other words 

the fields fall into different homotopy classes. The collection of these classes is 

known as the second homotopy group ll2, and using well-known results from 

pure mathematics, d 'Adda et al. concluded that 

(2.25) 

where 'll is the set of all integers. So each homotopy class can be labelled by an 

integer winding number Q, and therefore every field Z has a topological charge 

Q with values in '/l. Din and Zakrzewski [22], for example, exhibited a simple 

expression for Q as follows :-

(2.26) 

where 

(2.27) 

with (2.28) 
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Written in terms of the complex variables X±, this becomes 

(2.29) 

that is, using equation (2.12), 

(2.30) 

demonstrating the previous claim that Q is the topological charge density. 

Defined in this way, if Z is an instanton (anti-instanton) field, then the 

topological charge will be positive (negative) and gives directly the instanton 

(anti-instanton) number by virtue of equations (2.14) and (2.17). For example, 

with lex as in equation (2.18), it is very easy to calculate that Q = 1, implying 

as it should that I ex is a one-instanton solution. 

Now Q is an invariant topological quantity: if a small complex fluctuation 

(the explicit form of which will be stated later) is introduced into Z, the field 

remains in the same homotopy class and Q is unchanged. Also equations (2.8) 

and (2.12) can be used to show that 

(2.31) 

or 

(2.32) 

That is, 

(2.33) 

or after integrating 

s ~ j271"Qj. (2.34) 

The equality holds if and only if Z is either an instanton (.C = Q, n_z = 0) or 

anti-instanton ( .C = - Q, D+Z = 0) solution. Hence from this topological argu­

ment we can conclude the well-known result that the instanton (anti-instanton) 
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solutions are absolute minima of the action-and are therefore stable-and have 

definite positive (negative) integer topological charge. 

The question now arises whether solutions of finite action other than the 

instantons and anti-instantons exist: the answer is yes, and Din and Zakrzewski 

[23] exhibited some of these non-instanton solutions by using certain results from 

two-dimensional Euclidean O(n) non-linear a-models. 

The O(n) models [4,11] are defined on the two-dimensional Euclidean space 

E 2 in terms of real n-component fields qi = qi(x, y) where i = 1, ... , n, subject 

to the constraint 

q.q = 1. (2.35) 

The Lagrangian density for this theory is defined to be 

where 11 = x,y (2.36) 

and gives rise to the corresponding Euler-Lagrange equations 

(2.37) 

Again the base space E 2 is compactified by requiring the solutions to be of finite 

action. 

Belavin and Polyakov [12], and Woo [24] have shown that these models have 

stable instanton solutions only for the specific case of n = 3, given explicitly by 

,\ rr~=l (x+ - ai) 
w = /c 

rri=l (x+ - bi) 

where w is a complex field related to qi by the relation 

ql + iq2 
w=.;;;..._-~ 

1 + q3 

(2.38) 

(2.39) 

and where,\, ai, bi are complex constants such that ai f:. b; for all i and j. Anti­

instanton solutions are given as before by complex conjugation of the field w, 

and the instanton number of the solution (2.38) is k. Finally the action S for 

this instanton solution can be calculated using (2.36) to be 

s = 81rk. (2.40} 
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The stability of the 0(3) instantons can again be explained topologically: 

the solutions are characterized by different values of a conserved topological 

number because they fall into different homotopy classes. However, for n > 3, 

there is no corresponding non-trivial topological quantity for the O(n) solutions, 

and Din and Zakrzewski [11] have shown that its absence makes all non-trivial 

solutions unstable. 

To conclude this brief overview of the O(n) non-linear a-models, we state 

the observation of d'Adda et al. [9] that the ~P1 model is in fact equivalent to 

the 0(3) a-model: if qi and Zo are related by 

where ai are the Pauli matrices 

1 (0 1) a = 1 0 , 

then 

(a,{J = 1,2) 

(i = 1,2,3) 

3 (1 a = 0 

q.q = z.z = 1 

(2.41) 

(2.42) 

(2.43) 

and simple algebraic manipulation shows that the Lagrangian densities of the 

two models are essentially the same:-

(2.44) 

Hence the two theories are equivalent. 

Armed with these results, Din and Zakrzewski [23] have produced non­

instanton solutions of the ~pn-1 model, after first hinting via the energy-

momentum tensor that these solutions can exist: the energy-momentum tensor 

of the theory corresponding to the Lagrangian density (2.4) is 

(2.45) 

and this quantity must be conserved, ie. 

(2.46) 
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Written in terms of the complex variables x±, this conservation equation be-

comes 

(2.47) 

in other words, D+Z.D-Z is a function of X+ only. Imposing finiteness of the 

action gives IDJLZI ---+ 0 as 1~1 ---+ oo, which essentially implies that 

(2.48) 

As was noted, this does not further imply that 

D-Z=O (2.49) 

or 

(2.50) 

in general; if true, then they could have concluded that the instantons and anti­

instantons were the only existing solutions because (2.49) and (2.50) are the 

self-duality equations used to derive such solutions. In the n = 2 case, since 

Z.D±Z =0 (2.51) 

then (2.48) does in fact imply that at least one of equations (2.49) and (2.50) 

holds, but this is not so for general n. Tnis demonstrates the known fact that 

only instanton and anti-instanton solutions exist in the CCP1 (or equivalently 

0(3)) model. 

For n ~ 3 there are non-trivial solutions besides the instantons and anti­

instantons: they obtained these by noting that as real (2p + 1 )-dimensional 

vectors, solutions qi of the 0(2p + 1) models can easily be embedded in the 

(2p +!)-dimensional space of the CCP2P models by the simple identification 

where i = 1, ... '2p + 1. (2.52) 

These embedded solutions are still solutions of the d;P2P models-because q is 

real and q.q = 1, then 

q.aJLq = o 

15 
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which means that 

(2.54) 

Hence, for q the Euler-Lagrange equations (2.6) and (2.37) are identical. 

In fact, as they went on to explain, these embedded solutions can be inter­

preted as a mixture of <CP2P instantons and anti-instantons. First notice that 

since these solutions are real, then their topological charge is zero: from (2.12) 

and so 

.Q = 2 (ID-tZI2 -ID-ZI2
] 

= 2 [la+ZI 2 -la-ZI2
] 

= 0 because Z is real, 

1 I 2 Q =- Qd x=O. 
21r 

(2.55) 

(2.56) 

Therefore if this interpretation is correct, these solutions should contain an equal 

number of instantons and anti-instantons. Now consider the 0(3) model instan­

ton solutions given by equation (2.38), which can be written as 

where 

A 
w=-

B 

k 

A(x+) = A II (x+- a,), 
i=l 

k 

B(x+) = II (x+- bi)· 
i=l 

(2.57) 

(2.58) 

Using (2.39) this complex field can be related to the real field q, and it is found 

that 

(2.59) 

Interpretation of this field as a solution of the <CP2 model is made simpler by 

introducing a translation defined by 

(2.60) 

16 



and writing 

(2.61) 

where N is the normalization factor. Now, if s = t = 0, then Qs,t = q. Fur-

thermore, if lsi, ltl and Is - tl are taken to be large compared to lail and lbil, 
then if x+ is taken to be in the neighbourhood of s, Qs,t looks like a k-instanton 

solution of the <J::P2 model (see equations (2.15) and (2.16)); with x+ in the 

neighbourhood oft, Qs,t resembles a k-anti-instanton solution. Hence (2.59) can 

be interpreted naturally as a mixture of k instantons and k anti-instantons. 

Similarly, embeddings of 0(2p + 1) solutions into ~2P can be thought of as 

mixtures of equal nu:r;nbers of instantons and anti-instantons in <J::P2P-for more 

details see reference [ 23]. 

However, it turns out that all these embedded solutions are unstable: in 

fact, as shall be demonstrated later, any solution of the <J::pn- 1 model which is 

neither instanton nor anti-instanton in nature is necessarily unstable. 

We end this chapter by discussing a reformulation of the <J::pn-1 model in a 

gauge invariant way, looking at more general solutions of the model and consid-

ering their stability. 

To reformulate the model, as discussed for example by Sasaki [25] and by 

Zakrzewski [26], an n x n projection matrix 1P is introduced, defined by 

IP = z.zt (2.62) 

where the dagger denotes hermitian conjugation and where 

( {:} z.z = 1). (2.63) 

The Lagrangian density (2.4) can be rewritten as 

(2.64) 
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and it can be shown by simple algebraic manipulation that the Euler-Lagrange 

equations (2.6) become 

[8p8p1P,1P] = 0 (2.65) 

or, when written in terms of complex variables, 

(2.66) 

The self-duality equations (2.13) in this formulation become 

a_JP.1P= o (<=> n_z = o) (2.67) 

and 

1P.8_1P= 0 (<=> D+Z = 0) (2.68) 

or equivalently 

1P.8+1P= 0 (¢> n_z = o) (2.69) 

and 

a+1P.1P= o (<=> D+Z = 0). (2.70) 

We now re-address ourselves to the question of non-instanton solutions of 

(2.6). Din and Zakrzewski [21] have shown that the general finite action solution 

of (2.6) can be expressed-in terms of a:n arbitrary rational analytic vector I = 

z<k) 
Z=-.. -

IZ(k)l 
(2.71) 

where k = 0,1, ... ,n- 1, with 

k-1 ( )-1 z(k) = ak 1 - """' ai 1 M~~) a M(k) 
+ ~ + '·' + ,,k-1 

i,j=O 
(2.72) 

and the matrix M(k) given by 

(k) ---.--- . 
M .. = 8'+1·8+' I .,, where i,j = o, ... 'k- 1. (2.73) 

Taking k = 0 gives the instanton solutions; k = n - 1 results in the anti­

instantons appearing. However, for any other choice of k within the specified 

range, new classes of solutions are obtained. 
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There is an alternative construction of this general solution using Gramm-

Schmidt orthonormalization which shall be more useful for our later discussions, 

and which uses the projector form of the model described above. This con­

struction is described below using Zakrzewski's notation [26], and although by 

making certain identifications the two formulations of the solution can be seen 

to be equivalent, we shall nevertheless exhibit Sasaki's explicit proof [25] that 

the expressions obtained by this second method solve the CIP"-1 Euler-Lagrange 

equations in their projector form (2.66). 

The construction starts by considering a vector field g E G::" - {0}. An 

operator P + is defined to act on g by 

and its repeated action is defined by 

where 

Po -+g =g. 

(2.74) 

(2.75) 

(2.76) 

Analogous to the definition ofP+, an operator p_ can also be defined, involving 

differentiation with respect to x_ instead of x+· It is not difficult to demonstrate 

that P+P_g- g and soP± seems to behave like a kind of raising and lowering 

operator. With this definition of P~, algebraic manipulation soon produces the 

fact that the z(k) of (2.72) are given by 

(2.77) 

where f again is an arbitrary rational analytic vector. 

To proceed further, Zakrzewski [26] noted that 

1. 

2. 
(2.78a) 
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(2.78b) 

all of which either follow directly from the definitions, or are easy to prove from 

them. These orthogonality properties show that the P~f vectors can be thought 

of as being obtained by Gramm-Schmidt orthogonalizing the sequence of vectors 

J, 8+1, 8~/, ... , 8~/, .... (2. 79) 

and if normalized, as shown by Sasaki [25], in fact provide solutions of the <IPn.-l 

model Euler-Lagrange equations: denote by 

e1 , e2, ... , en. (2.80) 

the vectors obtained by Gramm-Schmidt orthonormalizing the sequence (2.79). 

Take the ith element of the sequence and consider 

IP = e;ej. (2.81) 

Also consider another projector 

;-1 
~ = L eket. (2.82) 

k=l 

Then, using the relations 

(2.83) 

and 

8+el = fl+l (el+t8+el) + e, (eJ8+el) (2.84) 

which follow easily from equations (2.78), various identities can be proved in-

volving IP and ~. First, ~and (IP+ ~) can be thought of as projectors describing 

instanton solutions in various complex Grassmannian u-models-for more de-

tails see references [25] and [26]-and as such they satisfy the equations 

(2.85) 
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and 

a_(IP+ <Q).(IP+ <Q) = o (2.86) 

(cf. equation (2.67)). However, due to (2.83) and (2.84), it can be shown that 

a_JP.<Q = o (2.87) 

and so (2.85) and (2.86) give 

8_IP.IP + 8_CQ.IP = o. (2.88) 

Also from (2.83) and (2.84) it is found that 

(2.89) 

and equivalently 

8_CQ.IP = 8_CQ, (2.90) 

and using these two equations, (2.88) can be written as 

8_1P.IP + 8_CQ = o. (2.91} 

Taking the hermitian conjugate of this gives 

(2.92) 

and finally if the combination 8+(2.91)- 8-(2.92} is considered, it is found that 

(2.93) 

which is the required Euler-Lagrange equation (see (2.66)). This completes 

Sasaki's proof. So 

(2.94) 

is a genuine solution of the (Vpn-l model: k = 0 corresponds to instanton 

solutions; k = n- 1 to anti-instantons. Any other choice of k gives new, non­

instanton solutions since the P!f, k = 0, 1, ... , n- 1 are linearly independent. 
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We shall use these non-instanton solutions extensively in later chapters: let us 

conclude this chapter by considering their stability. 

We have already noted that the instanton and anti-instanton solutions are 

relative minima of the action, that is, they are stable solutions. We now exhibit 

Din and Zakrzewski's proof [21] that any solution which is neither instanton nor 

anti-instanton in nature is necessarily unstable. 

Assume for a certain solution Z that 

(2.95) 

and consider a small complex fluctuation ¢> about Z of the form 

(2.96) 

with 

Z.¢> = 0. (2.97) 

The action for this new field Z' is 

(2.98) 

where-D~ is the usual covariant derivative (2.9) written rn terms of Z'. Since 

the integral of 

Q' = 2 (ID~Z'I2 - ID~Z'I 2) 

is a topological invariant, it follows that 

where Q is given by (2.12). To second order in¢> it can be shown that 

ID~Z'I 2 
= ID-ZI2 + ID-cf>l2

- lci>I 21D-ZI2 

Hence 

s' = s + 4 J v ( ¢>) d 2 x 
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where S is the action of Z and 

(2.103) 

They then chose ¢> to satisfy 

(2.104) 

where f is a small complex number. This choice of¢> satisfies (2.97), but also 

leads to the additional results 

and 

(i>,D_Z =0 

and so V ( ¢>) becomes 

V(¢>) = I£12 ID+ZI4 -lei2 ID+ZI2 ID-ZI2 -lfi2 ID+ZI4 

= -lfi2 ID-ZI2 ID+ZI2
• 

(2.105) 

(2.106) 

(2.107) 

Since D±Z =j:. 0, V(¢) is not identically zero, and so equation (2.102) implies 

that 

s' < s. (2.108) 

So the solution Z does not correspond to a minima of the action: it is unstable 

under small fluctuations, and is in fact a saddle point of the action. 

Hence, as stated earlier, any solution of the ccpn-l model which is neither 

instanton nor anti-instanton in nature is necessarily unstable. 
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3. ACTION DENSITIES AND KINETIC ENERGIES. 

In the previous chapter, we reviewed the basic quantities involved in the 

~pn-l model in two dimensions. In this chapter, we shall limit ourselves to the 

~P1 model and concentrate particularly on the Lagrangian densities of various 

extended structures in the model. To avoid confusion at a later stage, we shall 

call the Lagrangian densities of these two-dimensional objects the "action densi-

ties", and investigate in detail how these action densities depend on the various 

parameters of the structures. Towards the end of the chapter we shall go beyond 

the static limit of this model by introducing a time dependence into the system, 

and consider the resulting "kinetic energies" of our structures as moving objects 

in (2 + 1) dimensions, a concept to be used extensively in later chapters. 

First we recall briefly the multi-instanton solution of the two-dimensional 

model defined in chapter 2-see equations (2.15) and (2.16). In <CP1 , we take 

(3.1) 

where a = 1, 2 and the fa. 's are polynomials in x+ of the form 

i=l (3.2) 
lc 

12 = IT (x+ - bi) 
i=l 

where .A, ai and bi are arbitrary complex constants (with ai =!= b;, and .A =!= 0). 

This configuration solves the Euler-Lagrange equations (2.6) and its action is 

2nk, independent of the choice of .A, ai and bi. 

In particular, consider the simplest form of this field configuration, that is, 

the case k = 1 which corresponds to a one-instanton solution, and take .A = 1, 

so that 

(3.3) 
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Written another way, consider the configuration 

where w is defined by 

x+ -a w = _..;... __ 
X+- b 

(3.4) 

(3.5) 

Simple algebraic manipulation to calculate the action density using equations 

(2.4), (3.1) and (3.3) yields the result 

D Z.D z = 2l(b- a)/212 
,., ,., [lx+- (a+ b)/212 + l(b- a)/212]2 (3.6) 

(see also reference [27]). Figs. 3.1 and 3.2 show various plots of this action 

density for different values of a and b: in these and all following figures, the 

contour plots on the left are on the usual x- y complex plane, the horizontal axis 

being the real x direction and the vertical axis being the imaginary y direction, 

and the surface plots on the right plot the values of the action density as vertical 

distances above the same x- y complex plane, the point 0 + Oi being the far left 

corner of the grid (as shown in Fig. 3.1a). [The values of the action density on 

all the plots are multiplied by a constant factor of 250 for ease of plotting, and 

the interval between each contour on the contour plots is 2 units.] 

It is well known that this solution has finite total action, and the form of 

the action density, as illustrated by the figures, demonstrates that we can think 

of this solution (and other similar configurations which we shall meet later) as 

describing an extended structure in the model. Observe that the action density 

has an obvious maximum at x+ = (a+ b)/2-this can be seen both by looking 

at the form of (3.6), and by studying the pictorial evidence in Fig. 3.1-and so 

we identify the point 
a+b 

r=--
2 

(3.7) 

as the "position" of the instanton (that is, the position of the "centre" of the 

extended object). Note also from (3.6) and from Fig. 3.2 that the action density 
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Fig. 3.1a: Action density (3.6) with a= 20 + 25i, b = 30 + 25i. 
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- Fig .. 3.1b: Action density (3.6) with a= 10 + 15i, b = 20 + 15i. 

lG 

10 • 
Fig. 3.lc: Action density (3.6) with a = 30 + 35i, b = 40 + 35i. 
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Fig. 3.2a: Action density (3.6) with a = 20 + 25i, b = 30 + 25i. 
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Fig. 3.2b: Action density (3.6) with a = 18 + 25i, b = 32 + 25i. 
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10 

Fig. 3.2c: Action density (3.6) with a = 21 + 25i, b = 29 + 25i. 
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is bell-shaped, the shape being controlled by the quantity lb- al: as lb- ai ---. 0, 

the action density becomes narrower and more peaked about the "position" r, 

the reverse being true when lb- al increases, but always in such a way that the 

total action remains constant (we know this must occur since the action for a 

one-instanton solution is 271", independent of the choice of a and b). We therefore 

identify the quantity 

lsi= lb- al (3.8) 

as describing the "size" of our extended structure-as the "size" decreases our 

extended object becomes more and more "point-like". 

Now we consider the slightly more general case of arbitrary .X, that is, we 

consider the configuration 

(3.9) 

Calculation of the action density for this solution gives 

(3.10) 

so we have an extended structure similar to the previous configuration, with the 

"position" of the object given by 

and its "size" governed by 

lsi= 12.\(b- a) I 
I-XI2 + 1 

if we work by analogy with the previous case. 

(3.11) 

(3.12) 

Introducing the .X parameter in this way enables us to consider two limiting 

cases. First, take the limit 

.X ---. oo and b---. oo such that .X/b---. -c (3.13) 
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where c is some complex number. In this limit, the configuration (3.9) becomes 

w-+ c(x+- a) (3.14) 

and also note that 

I A(b ~a) I' ~ 1!_1' 
IAI2 + 1 c 

(3.15) 

and 

IAI2a + b 
IAI2 + 1 -+a. (3.16) 

Hence we can say, using equations (3.9)-(3.16), that the configuration 

w = c(x+- a) (3.17) 

has an action density given by 

(3.18) 

which still exhibits the same characteristics as a true one-instanton configura-

tion despite the simpler form for w. The action density this time indicates an 

extended structure with "position" 

r=a (3.19) 

and "size" 

lsi= 12/cl. (3.20) 

In a similar way, taking instead the limit 

A -+ 0 and a -+ oo such that Aa -+ -d (3.21) 

where dis another complex number, we can conclude that the configuration 

w = d/(x+- b) (3.22) 

has an action density of the form 

(3.23) 
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indicating an extended structure of one-instanton-like character, "position" 

r = b, (3.24) 

and of "size" 

lsi= l2dl. (3.25) 

We shall use these configurations later in this chapter-finally note at this stage, 

however, that the complex conjugates of all the configurations discussed above, 

which correspond to one anti-instanton models, give rise to identical action den-

sities to those calculated above. 

Returning to (3.2), we now consider the case k > 1, where the interpretation 

of the parameters is more complicated. If each ai is assumed to be close to the 

corresponding bi and far away from the other parameters in the complex plane, 

then an n-instanton solution looks like a classical system of n extended objects, 

whose "positions" are given by 

(3.26) 

and whose "sizes" are given by 

(3.27) 

(assuming that A = 1). Various authors, for example Forster [33], d'Adda et 

al. [9], and Din and Zakrzewski [28], refer to this interpretation as the dilute 

instanton gas limit; Wilczek and Zee [29], and Wu [30] take this limit a little 

further and treat the widely separated instantons approximately as point par-

ticles. This form of interpretation may be deceptive however, since in general 

the ai's and bj's can take any value: Fateev et al. [31] prefer to interpret the 

system in terms of a gas of n "instanton quarks" and n "instanton antiquarks" 

positioned at ai and b; respectively. 

We shall use various aspects of all these interpretations later: let us illustrate 

them by considering in more detail the k = 2 case, that is, by considering the 
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configuration 

(3.28) 

It is only a matter of algebra to produce the action density for this system:-

Dp,Z.Dp,Z = 

l;l 4 { lx+- ad2lx+- btl2lb2- a2l2 + lx+- a2l2lx+- b2l2lb1 - atl2} 

+ l;l4 Re { (x+- at)(x-- a2)(x+- bt)(x_- b2){b1- at)(b2- a2)} 

(3.29) 

where 

(3.30) 

and Figs. 3.3-3.5 illustrate this action density for various parameter values, 

using the same plotting specifications as Figs. 3.1 and 3.2. (Hatched contours 

imply a depression inside the contour.) 

Fig. 3.3 demonstrates well the dilute instanton gas limit: the action density 

shows two distinct peaks, well separated in the complex plane and each with 

negligible distortion due to the other's presence. However, as depicted in Figs. 

3.4 and 3.5, if the "positions" of the objects, r1 and r2, are taken to be closer 

together, superposition of the extended structures occurs and when lrt - r2l 

is small compared to the "sizes" lstl and ls2l, the two distinct peaks are lost 

completely. At this stage, then, we must interpret the system as a gas of instan­

ton quarks and antiquarks since the variables Ti and lsil have no well-defined 

interpretations as "positions" and "sizes". 

Despite this superposition, it is important to remember that the total action 

of the system is constan~ for all values of ai and bi: there is no interaction 

between the two instantons resulting in a change in the value of the action-the 

only change is the way in which we can interpret the system. Indeed, numerical 

calculations using the data for the surface plots confirm that the total action for 

the system is 4?r in every case. 
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Fig. 3.4a: Action density (3.29) with { a1 = 10 + 15~, bt = 20 + 15i, 
so r---.-------.-----.---.--....::.___, a2 = 30 + 35,, b2 = 40 + 35i. 
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Fig. 3.4b: Action density (3:29) with { a1 = 12 + 17~, bt = -22 + 17i, 
sor-----~--------------..--------. a2 = 28 + 33t, b2 = 38 + 33i. 
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Fig. 3.4c: Action density (3.29) with { a1 = 14 + 19~, b1 = 24 + 19i, 
a2 = 26 + 3h, b2 = 36 + 31i. 
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Fig. 3.5a: Action density (3.29) with { a1 = 16 + 21~, b1 = 26 + 21i, 
~ r--------.------.-_:_.:...,..___::.___, a2 = 24 + 29z, b2 = 34 + 29i. 
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Fig. 3.5c: Action density (3.29) with { a1 = 20 + 25~, b1 = 30 + 25i, 
a2 = 20 + 25z, b2 = 30 + 25i. 
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On the other hand, the specific values of the parameters are crucial for 

determining the nature of the superposition-even for fixed values of ri and lsi I, 
the remaining degrees of freedom in the choice of ai and bi can greatly affect 

the form of the action density when superposition of the two extended objects 

is substantial. As an example, we fix 

r1 = r2 = 25 + 25i (3.31) 

and 

(3.32) 

as in Fig. 3.5c, and illustrate in Figs. 3.6 and 3. 7 the form of the action density 

(3.29) for various values of ai and bi subject to the constraints (3.31) and (3.32). 

[Remember that all these systems have the same total action, but note that a 

cut-off had to be introduced during the plotting of Figs. 3.7b and 3.7c as the 

peaks became too tall to plot accurately.] 

In Fig. 3.6 it is clear that the only interpretation we can sensibly use is that 

of instanton quarks and antiquarks; as the specific values of a2 and b2 change, 

however, Fig. 3.7 clearly illustrates tha~ the dilute instanton g~ limit becomes 

meaningful, with a1 and b2 parametrizing one extended structure and a2 and bt 

the other-indeed, in Fig. 3.7c where a1 ~ b2 and bt ~ a2 (the action density 

is ill-defined for a1 = b2 and b1 = a2) there is strong evidence that the point­

particle approximation becomes an acceptable interpretation for the system. 

So far in this chapter, we have only considered the well-known instanton 

solutions of the <I::P1 model, and we have looked in detail at these extended 

structures and their interpretations. We shall now go on to use these illus­

trative techniques to study possible analogous field configurations for a system 

containing instantons and anti-instantons. 

As point~d out by Bukhvostov and Lipatov [32], although the classical Euler­

Lagrange equations (2.6) have no exact solution containing both instantons and 
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anti-instantons, field configurations do exist which represent approximate solu­

tions provided the instantons and anti-instantons are concentrated in different 

widely separated regions of the complex plane. Again we shall investigate in 

detail a simplified case, and consider a system containing only one instanton 

and one anti-instanton. Recalling from (3.4) that 

(3.33) 

describes one instanton and its complex conjugate one anti-instanton, we fol-

low Bukhvostov and Lipatov's idea that this system can be described by the 

configuration 

(3.34) 

This choice is of course not unique, and later in this chapter we will discuss other 

candidates. [For a more general system of n instantons and m anti-instantons, 

reference [32] suggests a configuration of the form 

n m -
w = A IT x+ - ai II x_ - c; , 

i=l x+ - bi i=l x_ - d; 
(3.35) 

again a choice which is not unique, but which represents an approximate solution 

of the required form for large separations.] 

Calculating the action density in the usual way for (3.34), algebraic manip­

ulation produces the result 

Dp.Z.Dp.Z= 

where 

,;,4 {lx+- a1!2lx+- b1l2lb2- a2!2 + lx+- a2!2lx+- b2l2lb1- a1!2} 

(3.36) 

(3.37) 

Written in this form, the action density is not very illuminating; however, note 

that there are striking similarities between this and the action density (3.29) 

for two instantons. Therefore we shall illustrate this density for the same sets 
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of parameters as in Figs. 3.3-3.5 (using identical" plotting parameters) and 

attempt to interpret the extended structures thus produced in Figs. 3.8-3.10 in 

an analogous way to the two instanton case. 

The action densities depicted in Fig. 3.8 demonstrate well that the dilute in­

stanton gas interpretation can easily be used to describe this system of extended 

objects too. With 

(3.38) 

as the "position" of the instanton and 

(3.39) 

for the anti-instanton, then for lrt- r2llarge compared to the "sizes" lstl and ls2l 

(defined as before), two distinct peaks can be seen in the action density centred 

on r1 and r2, as we would expect. Only when lrt - r2l is small compared to the 

"sizes" of the instanton and anti-instanton does this interpretation break down, 

as shown by Fig. 3.10, when superposition of the extended object again becomes 

significant. Here we have to resort to the instanton quark and antiquark type 

of interpretation to obtain meaningful observations. 

However, when we compare Figs. 3.9 and 3.10 to Figs. 3.4 and 3.5, there 

is one very noticeable and very important difference in the superpositions of 

the extended objects: despite starting with similar sized structures when the 

separation is fairly large, the resulting action density is dramatically smaller 

in Fig. 3.10c than that shown in Fig. 3.5c. Indeed, if we perform numerical 

calculations using the data for the plots in Figs. 3.8-3.10, we find that the total 

action for the system decreases from 4'1r for Fig. 3.8a to 21r for Fig. 3.10c, the 

action decreasing significantly once superposition is no longer negligible. In other 

words, when the instanton and anti-instanton are well separated in the complex 

plane, the total action of the system is approximately equal to the sum of the 

action for one instanton and the action for one anti-instanton; however, when the 
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separation is small, there is interaction between the objects, and associated with 

this interaction we can identify an "interaction energy". Following Bukhvostov 

and Lipatov [32] this interaction energy Sint can be defined by 

(3.40) 

where Sw is the total action for the system, and ki and ka are the numbers of 

instantons and anti-instantons respectively in the system. So in our case of one 

instanton and one anti-instanton, the interaction energy varies from 0 for large 

separation to a value of -211" when r1 = r2, which seems to indicate an attractive 

interaction. This is a very different situation to the two instanton case, where 

the total action for the system is always 411", and no interaction occurs. 

Remembering that the form of the superposition in the two instanton case 

depended crucially on the specific values of the parameters ai and b;, it is natural 

to ask the same question for the instanton plus anti-instanton case, and to 

investigate their effect on the value of the interaction energy. To this end, we 

again fix 

r1 = r2 = 25 + 25i (3.41) 

and 

(3.42) 

as we did in the two instanton case, and illustrate the action density (3.36) 

in Figs. 3.11 and 3.12 using the same sets of parameters as in Figs. 3.6 and 

3.7 (once again using identical plotting parameters). [Again a cut-off had to 

be introduced during the plotting of Figs. 3.12b and 3.12c as the peaks of the 

action density became too tall to plot.] 

Figs. 3.11 and 3.12 show that the form of the superposition does depend 

heavily on the specific values taken by ai and b;, in an analogous way to the 

two instanton case, and the various interpretations we can use for the system 

are once again clearly demonstrated (although the point particle limit is not as 
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appropriate in this case). The major difference for this system lies in the values 

of the total action for the various relative orientations of the instanton and 

anti-instanton. Numerical calculations using the data for Figs. 3.11 and 3.12 to 

estimate the total action and hence the interaction energy for the system indicate 

that the latter can vary from -211" as a lower limit to fairly large positive values­

the action density is so sharply peaked in the later plots that the numerical 

approximations used in the calculations make the actual values inaccurate, but 

the magnitude of these results is clearly indicated (see later). In other words, the 

specific values for the parameters ai and b; can profoundly affect the interaction 

between the instanton and anti-instanton, making the interaction attractive or 

repulsive depending on their relative orientation. 

This situation is in some ways reminiscent of the behaviour of two dipoles 

or magnets when brought together: two magnets will attract or repel depend­

ing on the relative positions of their north and south poles. Indeed, for large 

separations, Forster [33] has shown that the interaction energy for this system 

does have a dipole-dipole-type form. We need to take a closer look at how our 

numerically calculated interaction energies behave for small separations, to see 

if this physical analogy is still valid. 

We do this by starting with a system of instanton and anti-instanton with a 

certain fixed relative orientation, and we plot the calculated interaction energies 

against "separation", which we shall define as jr1 - r2l· (This definition makes 

obvious sense when the dilute instanton gas-type interpretation is valid: we 

simply extend this idea for any values of r1 and r 2 .) We then change the relative 

orientation and repeat the procedure several times. The graphs thus produced 

are shown in Fig. 3.13a, and the relative orientations which produced these 

graphs are shown in Fig. 3.13b. 

From the figure, we see that orientations 1-5 produce a negative interaction 

energy, that is, an attractive interaction, with orientation 1 being most attrac-
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a, a2 
a2 

a2 

a2 '2 62 '2 

6, 
62 6, 62 

2 3 4 5 

7 8 9 

Fig. 3.13b: The nine orientations used to calculate the above curves. 
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tive and 5 the least. Orientations 6-9, on the other hand, produce a repulsive 

interaction, the weakest being 6 and the strongest 9. This is exactly the type of 

behaviour we would expect to see exhibited by a pair of magnets positioned at 

r1 and r2 , with the north-south axes of the magnets perpendicular to the lines 

joining a1 and b1 , and a2 and b2 respectively. Then orientation 1 corresponds to 

the north pole of one magnet facing the south pole of the other, and orientations 

2-8 represent rotation of one of the magnets about its centre point until two like 

poles (either north or south) face each other-orientation 9. In this scenario, we 

would certainly expect to see the interaction between the two magnets become 

less attractive as we rotate one of them, and become more repulsive until the two 

like poles are in line. (The graphs in Fig. 3.13a show some peculiarities for very 

small separation, particularly the repulsive ones. This is partly due to numerical 

inaccuracies because of the sharp peaking which occurs-see Fig. 3.12c-but for 

such small separation the magnet analogy becomes dubious anyway.) 

So to conclude, the configuration (3.34) shows many promising features for 

it to represent a system containing an instanton and an anti-instanton: for 

large separations the instanton and anti-instanton are clearly seen as peaks in 

the action density, and for smaller separations the resulting superposition of 

the extended objects shows many similarities to the behaviour of the known two 

instanton configuration. The main difference is the appearance of the interaction 

between the instanton and anti-instanton: for large separation it has been shown 

[33] that the interaction is of a dipole-dipole form, and we have seen, at least 

qualitatively, that for smaller separations the comparison of the system with a 

system of two magnets is still feasible. (Obtaining an analytic expression for 

the form of the interaction for small separations is a highly non-trivial problem, 

and shall not be addressed in this thesis.) 

We now return to an earlier comment made on the uniqueness of this 

instanton-anti-instanton configuration (3.34). This choice [32] is certainly not 
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unique, and we shall now look at some other possible configurations for this 

system. 

Recall that the expression (3.34) was constructed from the known instanton 

configuration (3.4) and its complex conjugate. However, earlier in this chapter 

we derived other expressions which showed one-instanton-like character despite 

being of a simpler form-see equations (3.17) and (3.22)-namely 

w = c(x+- a) (3.43) 

and 

w = d/(x+- b). (3.44) 

In an analogous way, can we produce another possible configuration to describe 

a system containing one instanton and one anti-instanton? To this end, we 

investigate the configuration 
x+ -a 

w= . 
x_- b 

(3.45) 

This contains an instanton contribution of the form (3.43) and an a.nti-instanton 

contribution of the form (3.44): also the form of this expression is much simpler 

than (3.34). Does this represent the required system? 

Calculating the action density for (3.45), we find 

(3.46) 

and Figs. 3.14 and 3.15 show various plots of this density for different values of 

a and b. 

We see clearly from these plots that (3.45) is not a suitable candidate: the 

density shows behaviour more reminiscent of a one-instanton system than a 

system containing an instanton and an anti-instanton; however, this observation 

suggests we try one final configuration of a similar form, namely 

(3.47) 
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Fig. 3.14b: Action density (3.46) with a = 10 + lSi, b = 20 + lSi. 
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Fig. 3.14c: Action density (3.46) with a= 30 + 3Si, b = 40 + 3Si. 
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Fig. 3.15a: Action density (3.46) with a = 20 + 25i, b = 30 + 25i. 
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Fig. 3.15b: Action density (3.46) with a = 18 + 25i, b = 32 + 25i. 
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Fig. 3.15c: Action density (3.46) with a = 21 + 25i, b = 29 + 25i. 
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The action density for this configuration is of the form 

Dp,Z.Dp,Z = 

l;l4 {l(x+- at)(x+- a2) (2x+- (bt + b2))l2} 

+ l;l4 {l(x+- bt)(x+- ba) (2x+- (at+ a2))12} 

where 

and plots of this action density are shown in Figs. 3.16-3.18. 

(3.48) 

(3.49) 

This time we do see two distinct peaks for large values of lr1 - r2l and 

superposition does occur in a similar way to previous configurations we have 

considered. A promising sign, although distortion of each extended structure 

due to the presence of the other appears to occur for much larger separations 

than was previously the case. There is one major failing of this model, however: 

if we consider the limit lx+l -+ oo, we see from (3.48) that 

as (3.50) 

Hence, the total action of the system, defined by 

(3.51) 

is logarithmically divergent. Since one of our first requirements when consid-

ering extended structures in this model was that the configurations should re-

suit in finite action (see chapter 2), the discovery that the configuration (3.47) 

gives a divergent action effectively precludes its use as a valid expression for an 

instanton-anti-instanton system. 

So far in this chapter we have looked in detail at the action densities of 

various configurations in the <CP1 model in 2 dimensions: we have considered 

systems containing one or two instantons, and have looked at various candidate 

configurations for an instanton-anti-instanton system, of which one in particular 

showed many promising features. We shall now go beyond this static limit of 
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Fig. 3.18a: Action density (3.48) with { a1 = 18 + 22~, b1 = 26 + 22i, 
•.---..------.--~----.--~- a2 = 24 + 28z, b2 = 32 + 28i. 
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Fig. 3.18c: Action density (3.48) with { a1 = 21 + 25~, b1 = 29 + 25i, 

a2 = 21 + 25t, b2 = 29 + 25i. 
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the model by introducing a time dependence into the system, and consider our 

extended structures as moving objects in (2 + 1) dimensions. 

The modified action for the <CP1 model in (2 + 1) dimensions is of the form 

(3.52) 

where p, = x, y and 

Do= 8o- z.aoz (3.53) 

where 80 denotes partial differentiation with respect to the time variable t. The 

first term in the integrand is simply the "action density" of the model in 2 

dimensions which we studied extensively in the previous part of this chapter; 

the second term, for reasons which will become more obvious soon, we will call 

the "kinetic energy density". [There is in fact another term which can be added 

to the integrand-this extra term will be discussed in detail in chapter 4.] 

The equations of motion corresponding to S (ie. the Euler-Lagrange equa­

tions) have obvious time independent solutions, that is, soliton solutions-these 

static objects are simply the instantons (anti-instantons) of the <CP1 model in 2 

dimensions discussed previously. Following Wilczek and Zee [17] we refer to these 

solitons as "skyrmions" [13] (or in the case of anti-instantons, "anti-skyrmions"). 

To find time dependent solutions, we should try to solve the full equations 

of motion, bearing in mind of course that our interest lies in field configurations 

for which the total energy E is finite at any time t, that is, 

(3.54) 

Forgacs et al. [34] have studied this problem in detail and presented a general 

method of generating such solutions; however, complications were encountered in 

the construction of certain auxiliary functions in the solutions, and the existence 

of non-static solutions which satisfied all the necessary conditions was not fully 

resolved. 
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Therefore, rather than trying to solve the equations of motion exactly, we 

return to the skyrmion solutions described above, and introduce a time depen-

dence into these fields (as described by Din and Zakrzewski [28]) by assuming 

that all time dependence resides in the parameters ai, bi and A which define the 

skyrmion, ie., we assume 

and A= A(t). (3.55) 

These proposed configurations do not solve the full equations of motion exactly, 

but if the parameters vary slowly with time it has been argued-see for example 

references [20J and [35J-that these fields approximate exact solutions in the 

limit of small velocities. 

Take for example the n-skyrmion solution defined by (3.1) and (3.2), that 

is, 

(3.56) 

where a= 1, 2 and 
" !I= A Il(x+- ai), 

i=l (3.57) 

i=l 

For the rest of this discussion we shall fix A = 1, as this parameter only plays 

a minor role in the problem. Following Din and Zakrzewski [28J we now allow 

the parameters ai and bi to vary slowly as a function of the time variable t 

belonging to a finite interval [0, TJ. H the configurations are identical at t = 0 

and t = T, then the skyrmion system defines a map S 3 _.. CGP1 - S 2 , and 

since it is a well-known mathematical result that lla(S2) = 'll, then for each 

topological charge sector the skyrmion manifold is multiply connected: this 

result is basically responsible for the spin and statistics properties of skyrmions­

see in particular reference [36J and also discussions in chapter 4. 

For the moment, however, we shall assume that ai(t) and bi(t) vary arbi­

trarily in the interval [0, TJ (always subject to ai(t0 ) :/; b;(to) for any particular 
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t0-see note at beginning of chapter). We now recall that we wish our configura­

tion to have finite total energy at any time, as expressed by (3.54). Calculation 

of the first term in the integral (3.54) is straightforward-it is simply the "total 

action" of an n-instanton configuration in 2 dimensions, which we know takes 

the value 21rn, independent of the values of ai and bi. So the contribution to the 

total energy of the n-skyrmion system due to the time dependence of the param­

eters ai and bi comes wholly from the second term in the integral (3.54)-hence 

the interpretation of DoZ .DoZ as the "kinetic energy density" of the system. 

So we are left needing to calculate 

DoZ.D0 Z d x. 1- 2 (3.58) 

Note that a small amount of simple algebraic manipulation yields the result 

DoZ .DoZ = KoKo (3.59) 

where 

(3.60) 

There is much that can be said about this form of the kinetic energy density for 

various configurations and we shall discuss this in detail in chapter 5. Here we 

shall substitute explicitly for II and f2 from (3.57) (remembering that .A = 1) 

and, as noted by Din and Zakrzewski [28], we obtain the result 

where 

. dai a·--
'- dt and 

. dbi 
bi=-. 

dt 

Now, if the limit lx+ I -+ oo is considered, it is found that 

and hence we see that in general f D0 Z.D0 Z d 2x diverges. 
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(3.62) 

(3.63) 



In order to ensure that our n-skyrmion system has finite kinetic energy, it is 

therefore necessary to impose a constraint on the parameters ai and b;, namely 

n 

2:(bi- ai) = o. (3.64) 
i=l 

In the "instanton quark and antiquark" interpretation for the parameters ai 

and bi, this corresponds to requiring equality of the total quark and antiquark 

"momenta"; interpreted as a "dilute instanton gas" this constraint implies that 

the total internal "size" of the skyrmions must be conserved, if we make the 

obvious definition of "size":-

(3.65) 

(cf. (3.8)). [If we interpret the system in the "point-particle" limit, then the 

kinetic energy of the system would automatically be finite: this interpretation 

contains the assumption that each Si is small and constant, a constraint which 

is in fact stronger than the necessary minimum constraint of 

which we impose.] 

n 

L s, = constant. 
i=l 

(3.66) 

Din and Zakrzewski then go on to calculate the leading terms for the kinetic 

energy-for more details, see reference [28]. It is sufficient for our purposes just 

to note that the kinetic energy can be made finite. 

We are now in a position to return to the extended structures we considered 

in two dimensions in the earlier part of this chapter, and to introduce a similar 

time dependence into their parameters so that they can be thought of as moving 

objects in (2+ 1) dimensions. We can then look at their kinetic energy densities in 

a similar manner to the n-skyrmion case considered above, and determine what 

constraints it is necessary to impose on their parameters to ensure finiteness of 

the kinetic energy. 

59 



We have five configurations to consider: a one skyrmion configuration from 

(3.4) 
x+ - a(t) 

w= ' 
X+- b(t) 

(3.67) 

a two skyrmion configuration from (3.28) 

(3.68) 

and three candidate configurations for a skyrmion-antiskyrmion system from 

(3.34), (3.45) and (3.47), namely 

(x+- al(t))(x_ - ~) 
w= ' (x+ - bl(t))(x_ - b2(t)) 

(3.69) 

(x+ - a(t)) 
W= ' (x- - b(t)) 

(3.70) 

and 

(3.71) 

respectively. Configurations (3.67) and (3.68) are obviously just special cases of 

(3.57), and their kinetic energies can be made finite by imposing the constraints 

b-a=o (3.72) 

and 

(3.73) 

respectively. In other words, in the one skyrmion system the skyrmion's "size" 

must remain constant, and in the two skyrmion system (when the two structures 

are well separated) the relative "sizes" of the two skyrmions can change, but the 

sum of the "sizes" must be constant. 

Now we consider (3.69). Using (3.59) and (3.60), simple algebraic manip­

ulation and then a consideration of the limit lx+ I -+ oo produces the result 

that 

(3.74) 
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Hence, for the kinetic energy of this system to be finite, we need to impose 

and (3.75) 

This constraint is noticeably stronger than the two skyrmion case, and seems 

to indicate that the skyrmion and antiskyrmion "sizes" must be conserved in-

dependently. Indeed, further consideration using the configuration 

where 

w = ftfh, 

k 

It = II (x+- ai)(x_ - Ci) 
i=l 

lc 

h = II (x+- bi)(x_- di), 
i=l 

(3.76) 

(3.77) 

as a candidate for a system containing k skyrmions and k antiskyrmions soon 

produces the constraint 

lc 

Lhi-ai=O 
i=l 

and 
lc 

I:di-ci=O 
i=l 

(3.78) 

to ensure finiteness of the kinetic energy. This clearly indicates that the total 

"sizes" of the skyrmions and the antiskyrmions in the system must be conserved 

independently-certainly a stronger constraint than in the n-skyrmion case. 

Nevertheless, it is still possible to obtain a finite kinetic energy. 

This turns out not to be the case for configuration (3.70). Calculating 

D0 Z .DoZ for this field produces, in the limit lx+ I ---+ oo, 

(3.79) 

and so the kinetic energy is divergent unless 

(3.80) 

which is only possible if a and bare both constants. This is not a valid situation, 

because the configuration would then be time-independent and its kinetic energy 
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density would be zero. Hence this configuration cannot result in a finite kinetic 

energy: if a large lx+ I cut-off A is introduced, it is found that the kinetic energy 

contains a log A dependence, and is thus logarithmically divergent when we take 

the limit A~ oo. 

Finally, consideration of the kinetic energy density for (3. 71) reveals in the 

limit lx+l ~ oo that 

D z D z,..,. _1_ ['a• + a2l2 
+ ib• + b2!2] 

o . o lx+l2 4 . 
(3.81) 

Thus the kinetic energy of this system can be made finite by imposing the 

constraint 

and {3.82) 

This constraint has no obvious interpretation in the "dilute instanton gas" limit; 

in the "instanton quark and antiquark" interpretation it corresponds to requiring 

the total quark and antiquark "momenta" both to be zero independently. Recall, 

however, that although the kinetic energy of this system can be finite, the "total 

action" of the system in the two-dimensional case was shown to be divergent, 

and hence the total energy of the system when thought of as a moving object in 

(2 + 1) dimensions is also divergent. 

So we have now considered all our configurations as moving objects in (2+ 1) 

dimensions. We have looked at the constraints needed in each case to ensure 

finiteness of the energy, and interpreted these constraints as far as possible in 

terms of the characteristics of the skyrmions/antiskyrmions in the system. One 

configuration, namely 

(3.83) 

is noticeable for exhibiting many promising features we would like to see in a 

system containing skyrmions and antiskyrmions. 

We shall use all of these (2 +!)-dimensional moving objects extensively in 

the following chapters. 
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4. THE HOPF TERM. 

It is well known that if a purely bosonic classical field theory admits topo­

logical solitons then it may have fermionic characteristics too-Finkelstein and 

Rubinstein [36] considered this possibility from the point of view of algebraic 

topology, and found that the multi-valuedness of the configuration space was 

crucial for the existence of spin and Fermi-Dirac statistics in the theory. 

There are similar possibilities for the CCP1 model. In 2 dimensions we know 

that the field manifold of t.his model is CCP1 ....... S 2 and the configuration space is 

the space of continuous maps from the base space (which we know is the com­

pactified Euclidean space E 2 , that is, S 2} to the field manifold. We have seen 

in chapters 2 and 3 that since ll2 (S2} = 'll then this model admits topological 

solitons. In (2 + 1) dimensions however, with time evolution introduced as ex­

plained in the previous chapter, we have seen that approximate time-dependent 

solutions can be produced which evolve over the time interval [0, T]. If these 

configurations are identical at t = 0 and t = T, then the base space of our model 

can be thought of as sa and these skyrmions define maps sa --. CCP1 ....... S2• The 

additional well-known mathematical result lla(S2 } = 'll therefore means that 

the configuration space in this (2 +I)-dimensional model is infinitely connected, 

which leads to the possibility of fractional spin and statistics. This possibility 

can in fact be realized, as was first shown by Wilczek and Zee [17] who noted 

that in (2 + 1) dimensions one was at liberty to introduce an additional topolog­

ical term into the usual expression for the action. This extra term, known as the 

Hopf term of the theory, does not affect the classical equations of motion as we 

shall see later, but does alter the quantum properties of the model-it turns out 

that the Hopf term is related to the "spin" properties of the extended structures 

in the model, and the skyrmions can have any spin, determined by an arbitrary 

coefficient in the Hopf term, a fact reflected in their statistics properties. 
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Wilczek and Zee [17] produced an explicit expression for this term using the 

0{3) parametrization; Din and Zakrzewski [22] rewrote it using the equivalent 

<CP1 notation, and it is the latter that we shall present here. 

The <CP1 model contains a topological current J~ (see reference [22]) given 

by 

J~ = --8-e~v>. DvZ.D>.Z 
211" 

(4.1) 

where all greek indices now run over 0, 1, 2 and e012 = + 1 (hence the notation J 0 

used in equations {2.26) and (2.27) whilst defining the topological charge). This 

current must be conserved, and its conservation enables us to define a "gauge 

potential" A~ through the curl equation:-

{4.2) 

Explicitly, 

(4.3) 

and using these quantities, the complete action for this model can now be pre-

sented, namely 

S= J[v~z.D~Z+:11"A~J~] dtd 2x. (4.4) 

The 8-term is the Hopf term of the theory, where 8 is an arbitrary coefficient 

and 

(4.5) 

is known as the Hopf invariant-a quantity formally analogous to the Chern­

Simons term of gauge theories (see reference [37]) since from (4.2) and (4.3) it 

follows that 

(4.6) 

where 

(4.7) 
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The solitons of this model are the time independent solutions of the equa-

tions of motion corresponding to ( 4.4). However, since the 0-term involves time 

derivatives it is identically zero for such solutions, and so the solutions are 

once again the instantons/anti-instantons of the <tP1 model in two dimensions 

discussed in chapter 2. In fact, as we shall see below, the addition of the Hopf 

term does not modify the classical equations of motion of the (2 + 1 )-dimensional 

model at all since it can be shown to be a total divergence locally. [This last fact 

has been demonstrated independently for the CCP1 parametrization of the model 

by Din and Zakrzewski [22] and by Wu and Zee [38]; in the 0(3) parametrization 

A,.,J~' is not obviously a total divergence locally, but it can easily be shown that 

arbitrary variations of A,.,J~' are total divergences-see for example reference 

[39]-from which it can also be deduced that the equations of motion remain 

unaltered.] 

To see that the Hopf term is a total divergence in the n-skyrmion case, 

we reproduce here the arguments of Din and Zakrzewski [22], with the time 

parameter introduced into the skyrmions as described in the previous chapter, 

that is, the parameters ai, bi and A in the n-skyrmion configuration 

z = //l/1, (4.8) 

where 

i=l (4.9) 
" h = .\ IJ(x+- b,), 

i=l 

are allowed to vary arbitrarily as functions of t in the interval [0, T] (subject to 

ai =/= bi and A =/= 0 for all t). Then 

H =loT dt j d 2x A,.,J~' 
= __!:._ fT dt j d 2x h 

21r lo 
where the integrand h is given by 

I' p.v>. (- ) ( -h = 21r A,.,J = E z.a,.,z a,z.a><z). 
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Writing in general 

Z=f/1/1, (4.12) 

where f = (!I(x+),f2(x+)), after a few lines of algebra the quantity h in (4.11) 

becomes 

(4.13) 

Making use of the identity 

(4.14) 

we see that h can be rewritten as 

(4.15) 

proving the claim that h is a total divergence. Hence the addition of the Hopf 

term does not affect the classical equations of motion, and the total derivative 

form of h enables us to write Has a line integral using Green's Theorem in the 

complex plane: we obtain 

(4.16) 

where the x+ contour in the line integral is the circle at infinity, which therefore 

encloses all the singularities of the integrand. 

Inserting the explicit forms for !I and f2 from (4.9), the integrand becomes 

(4.17) 

where as before the dots mean time derivatives. We can now use calculus of 

residues to evaluate the line integral in (4.16): from the first term of (4.17) 

there are contributions from the poles at X+ = b;, and from the second term the 

only contribution is at infinity. The final result for H is 

H = ~ f [- '~' !; = ~ + ~ (l+,AI')- c.c.] dt. (4.18) 
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Note that this expression involves line integrals of the relative vectors b;- ai and 

the scale .\ in the complex plane. If the skyrmion configuration at t = 0 coincides 

with the configuration at t = T, that is, if the set of parameters { ai(T)} is some 

permutation of the set {ai(O)}, and similarly for b;(t) (and .\(0) = .\(T)), then 

the t integral becomes a closed contour integral and the skyrmion defines a map 

S 3 - CCP1 - S 2 : thus the value of H is always an integer multiple of 21r, due to 

the mathematical result ll3 (S2) = 'll. 

As an example, Din and Zakrzewski considered the case of a one skyrmion 

configuration 

I= (x+- a, x+- b) (4.19) 

and allowed the parameters a and b to perform a 21r rotation, following the 

prescription 

a(t) = aeit, b(t) = beit, t E [0, 21r]. 

With this time evolution, it is simple to calculate that 

• 27r 

H = - .!_ f ( i + i) dt = 21r 
2 lo 

(4.20) 

(4.21) 

and we recognize that the relative vector b(t}- a(t} makes one revolution about 

the origin during this evolution. In general, the value of H thus depends on how 

many times the relative position vector of the "instanton quark" and "anti quark" 

revolves around the origin. 

The two skyrmion configuration can be considered as a further example; 

however, before discussing this case in more detail we shall derive expressions 

for the Hopf terms of other configurations we have studied in previous chapters. 

We can then carry out certain transformations on the parameters of these various 

extended structures, and compare the values of the Hopf terms thus produced 

in a systematic way. 

First, for completeness, note that we exhibited above the Hopf term for the 
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configuration 

i=l (4.22) 

i=l 

for the case m = n; we shall now look briefly at the more general case m i= n. 

(Such solutions do exist: we shall meet examples in later chapters.) Obviously, 

H can still be written in a line integral form as in equation (4.16):-

(4.23) 

and inserting expressions for II and /2 the integrand is found to be 

(4.24) 

in complete analogy with ( 4.17). Again calculus of residues enables us to calcu­

late this line integral around the circle at infinity: for m > n there are contri-

butions from the poles at x+ = b; from the first term, and at infinity from the 

second term; for m < n the contribution at infinity disappears completely and 

the only contributions come from the simple poles. The final result is 

where 

H = ~ fT [- f E :~=a~ + *m1?(m- n) - c.c.] dt 
2 lo i=I f=I 1 a, "" 

1? ( m _ n) = { 1 for m > n 
0 form< n. 

(4.25) 

( 4.26) 

Now we shall attempt to calculate the Hopf terms in an analogous way for 

our candidate configurations for a skyrmion plus antiskyrmion system. To this 

end we consider first configurations of the form 

n 

It = ft(x+) = II (x+- ~) 
i=l (4.27) n 

12 = /2(x-) = II (x- - bi), 
i=l 

so that two of our candidates are considered, namely the cases n = 1 and n = 2 

(cf. (3.45) and (3.47)). Can the Hopf terms for these structures also be written 
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in line integral form? Well, if we substitute (4.27) into our expression for h from 

(4.11), we find after a certain amount of algebra that 

(4.28) 

and using the identity 

(4.29) 

we soon realize that 

(4.30) 

again showing that h can be written in a total derivative form. So as before the 

addition of this Hopf term does not affect the classical equations of motion of 

the system, and H can be written as a line integral in the following manner:-

(4.31) 

where the x+ contour is the circle at infinity. 

This expression holds for h = h(x+), f2 = f2(x_) in general; we shall now 

insert the explicit forms for h and h from ( 4.27), and we find that the integrand 

becomes 

" b;-ai 11112 

iEI (x+ - ai)(x+ - b;) l/12 + c.c . . (4.32) 

Applying calculus of residues once again to the x+ integral around the circle at 

infinity, the result obtained for the Hopf term is 

H = ~ fT [ t b; - ~ - c.c.] dt, 
2 lo i,;=t b; - ai 

(4.33) 

an expression which involves a line integral in the complex plane of the relative 

vectors b;- ai, and hence to which we can apply the same remarks as for the 

n-skyrmion case (indeed, (4.33) and (4.18) only differ by an overall minus sign 

if we take .A = 1): we shall see in detail soon that the value of H from ( 4.33) is 
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again always an integer multiple of 211" if the t integral becomes a closed contour 

integral as described previously. 

But first there is one more configuration for which we would like to derive 

the Hopf term: our most likely candidate for a skyrmion/antiskyrmion system 

{4.34) 

In other words, we would like to calculate the Hopf term for a configuration of 

the form 

(4.35) 

where It and h are functions of x+ and x_, Inserting this into our expression 

for h in (4.11), we can eventually produce h in the form 

i { 8oft(-8+f2A + 8-hB + f2C)- c.c. } 
h-- X (4.36) 

- l/14 + 8of2(8+flA- 8_fiB- ftC)- c.c. 

where 
A= fJ_ftf2- ft8_f2 

B = 8+hh- ft8+f2 {4.37) 

c = a_t.a+h- a+fi8-f2. 
Assuming that we can write 

h(x+,x-) = FI(x+)Gt(x-) 

h(x+, x_) = F2(x+)G2(x-) 
(4.38) 

-this is always the case for the expressions we use-then {4.36) becomes 

- G28+F2G1G2{8-FtF2- F18-F2) 

+ F28-G2FtF2(8+GtG2- Gt8+G2) 

+ F2G2(F2G18-Ft8+G2- FtG28-F28+Gt) 

i(F28oG2 + G28oF2) 
+ lfl4 X - Ft8-GtFtF2(8+GtG2- Gt8+G2) 

- FtGt{F2Gt8-Ft8+G2- FtG28-F28+Gt) 

+complex conjugate. (4.39) 
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It is not at all clear how to turn this expression into a total divergence, and 

hence how to express this Hopf term as a line integral. We can estimate what 

the expression may look like by writing down analogous terms to ( 4.15) and 

( 4.40) 

or more generally 

h = _ ·a [(aofta+f2- aof2a+!t) 11112] + ·a [ l 
' - 1112 1112 ' + c.c. 

_ ·a [(aoTta+];- ao];a+Tt) 11112] + ·a [ l 
' - 1112 1112 ' + c.c. 

+ ·a [(aol1a+];- ao'ha+l1) 11112]- ·a [ l 
' - 1112 1112 ' + c.c. 

(4.41) 

+ ·a [(aoTta+f2- ao12a+K.) 11112]- ·a [ l 
' - 12ft 1112 ' + c.c. 

but in each case, when we perform the copious amounts of algebra needed to 

compare these guesses with (4.36) and (4.39), we are always left with extra 

terms which cannot be eliminated. It is clear that we need a different approach 

to enable us to calculate the Hopf term for this type of configuration. 

The approach we adopt is as follows: consider 

where 

If we take 

11 = (x+- a1)(x_ - a2), 

12 = (x+ - bl) (x- - b2). 

I
I_ X+- a1 
1- b ' X+- 1 

I I- X- -li2 
2- _, 

x_- a2 
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then we can say that 

( 4.45) 

but because we now have n = tHx+) and t~ = tHx-) we can use equations 

(4.27)-(4.31) to write the Hopf term, as a function of If and/~, in the form of a 

line integral. Substituting the explicit forms for If and I~ from (4.44) into this 

line integral, the integrand becomes ( cf. ( 4.32)) 

(4.46) 

and using calculus of residues once more to evaluate the line integral we find 

that 

This is not the final result, however: we are seeking to evaluate H(ft, 12), which 

will not in general be the same as H (If' I~) even though II I 12 = w = n I I~. We 

shall now proceed to calculate the extra terms which may appear in the former 

due to this change of variables. 

We start with the original definition of the Hopf term in terms of Z' from 

(4.10) and (4.11) where 

that is, 

where 

H(Z') = _!__ fT dt J d 2x h(Z') 
21r lo 

and we consider a change of gauge given by 

ur, ~~) -+ (It, 12) = u;, ~~)g 
72 

(4.48) 
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(4.50) 

(4.51) 



where 

g = (x+- bt) (x_ - a2). (4.52) 

Thus 

(4.53) 

where 

(4.54) 

(Note that Z'.Z' = Z.Z = 1.) How does this change of gauge affect the Hopf 

term? Simple algebra yields 

h(Z') ~ h(Z) = h(Z'ei.P) 

= h(Z') + iEp,
11>.8p.f/J(8vZ1.8>.Z1

) 

(4.55) 

and hence 

so our result for the required Hopf term is 

H ~ ~ { [ (~ = !: -:: = !:) -c.c.] dt 
. T 

+ 
2
'7r fo dt I d 2x k·"'>.8p.f/J(811 Z 1.8>.Z')]. 

(4.57) 

Consider this second integral, say I : 

(4.58) 

where V is the volume defined by -oo < x < +oo, -oo < y < +oo, 0 < t < T. 

Using the divergence theorem, we obtain 

(4.59) 

where S is the enclosing surface of V, and if we calculate this integral over the 

whole surface using the usual cylindrical polar coordinates we find that 

I= _j_ [ ff dxdy<f>(8zZ'.811Z'- 811Z1 .8:~:Z')]t=T (4.60) 
27r 11 t=O 

73 



since the contribution from the curved surface at infinity is zero. Written in 

terms of If and /~, this becomes 

I=;[/! dxdy l:.l' UU:a+J;a_J;- J;t,a_J:a+f:{: 

and so, finally, the Hopf term for the configuration (4.42) is given by 

where 

and 

I t- X-- b2 
2- -x_- a2 

,~,. _ 1 (Im(x+- bl)(x- - Ci2)) 
'I"= tan ( )( ) . Re X+ - b1 X- - a2 

(4.61) 

(4.62) 

(4.63) 

(4.64) 

This expression may seem difficult to work with, and indeed it is, except in the 

special cases where the final and initial configurations of a time evolution are 

identical, in which case the second term vanishes and only the simpler first term 

remains. 

More will be said about this Hopf term later; now we note that since we 

have derived expressions for our various Hopf terms we can return to the earlier 

comment about configurations which coincide at t = 0 and t = T, namely, if the 

set { ai(T)} is some permutation of the set { ai(O)} and similarly for b, then the 

t integral reduces to a closed contour integral, and the homotopy Jl3 (S2) = 7l 

tells us that the value of H is always an integer multiple of 211". We illustrate 

this by considering the Hopf terms corresponding to the three configurations 

(x+ - a1)(x+- a2) 
w= ~~--~~----~ 

(x+- b1)(x+ - b2) 
(4.65) 

(x+ - at)(x+ - a2) w= ~~~~~--~~ 
(x_ - bt)(x_ - b2) 

(4.66) 

(x+- at)(x_- a2) 
w=~~--~~--~~ 

(x+- bi)(x_- b2) 
(4.67) 
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when the parameters are allowed to evolve in two ways:-

( a) Fixing b1 and b2 (so that b1 = b2 = 0), and exchanging a1 and a2 

according to the prescription 

(4.68) 

where 0 S t S 1r (or similarly exchanging bt and b2 with a1 and a2 fixed). 

(b) Fixing a2 and b2 (so that i£2 = b2 = 0), and rotating at through 211" about 

bt according to the prescription 

(4.69) 

where 0 S t S 211" (or similarly rotating a2 about b2 with at and bt fixed). 

The Hopf terms of all these cases bar one (see below) are simple to 

calculate-a closed contour integral evaluated using calculus of residues again­

and the various results are shown in Table 4.1. The problem case is the exchange 

prescription for the configuration ( 4.67): since the initial and final configurations 

are not identical (they are identical in the rotation prescription), the second ex­

pression in the Hopf term for this structure does not vanish, and hence the value 

of the Hopf term is not obviously calculable. 

Notice from Table 4.1 that the values of H depend crucially on the positions 

of the various fixed parameters with respect to the closed contours traced out 

by the moving parameters, and also the values depend on how many times the 

contours are traced out by the moving parameters. For example, if we consider 

the configuration ( 4.65), if only bt lies inside the closed contour then the value 

of H is 211" (if the contour is traced out once) for both the exchange and the 

rotation prescriptions; for bt and b2 both inside the contour, H = 411" for both 

prescriptions, and similarly for the configuration (4.66). This observation serves 

as an indication that the exchange and the 21r-rotation belong to the same 
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Configuration Motion performed Hopf term (with conditions) 

w = (x+- at)(x+- a2) Rotation of 271" of H = 471" if b2 is inside the 
(x+ - bt}(x+- b2) a1 about b1 with contour traced by a1 

a2 and b2 fixed. H = 21r if b2 is outside the 
Similarly for 1 +-+ 2. contour traced by a1 

w = (x+- a1)(x+- a2) Exchange of a1 and H = 411" if b1 & b2 are both 
(x+ - b1)(x+ - b2) a2, with b1 and b2 inside the contour 

fixed. Similarly traced by a1 & a2 
for ai +-+ bi. H = 21r if b1 or b2 is 

inside the contour 
traced by a1 & a2 

H=O if b1 & b2 are both 
outside the contour 
traced by a1 & a2 

w = (x+- at)(x+- a2) Rotation of 271" of H = -471" if b2 is inside the 
(x- - b1)(x_ - b2) a1 about b1 with contour traced by a1 

a2 and b2 fixed. H = -271" if b2 is outside the 
Similarly for 1 +-+ 2. contour traced by a1 

w = {x+- a1Hx+- a2) Exchange of a1 and H = -471" if b1 & b2 are both 
(x_- bt)(x_- b2) a2, with b1 and b2 inside the contour 

fixed. Similarly traced by a1 & a2 
for ai +-+ bi. H = - 271" if b1 or b2 is 

inside the contour 
traced by a1 & a2 

H=O if b1 & b2 are both 
outside the contour 
traced by a1 & a2 

w = (x+- a1Hx- - a2) Rotation of 271" of H = -271" if b2 is inside the 
(x+ - bt)(x_ - b2) a1 about b1 with contour traced by a1 

a2 and b2 fixed. H=O if b2 is outside the 
contour traced by a1 

w = (x+- at)(x_ - a2) Rotation of 271" of H = 271" if b1 is inside the 
(x+- bi)(x_- b2) a2 about b2 with contour traced by a2 

a1 and b1 fixed. H=O if b1 is outside the 
contour traced by a2 

w = (x+- ai)(x_- a2) Exchange of a1 and The Hopf term for this 
(x+- bi)(x- - b2) a2, with b1 and b2 motion is not easily 

fixed. Similarly determined. 
for ai +-+ bi. 

Table 4.1 
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homotopy class, as discussed in reference [36], which is a manifestation of the 

connection between the spin and the statistics of the extended structures. 

Now, according to Feynman (as quoted for example in reference [17]), to 

determine the spin of our skyrmions we simply rotate the skyrmion adiabati­

cally through 21r over a long time period, after which the wave function of the 

skyrmion acquires a phase factor exp( iS) where S is the action corresponding 

to this rotation. Hence the effect of the Hopf term corresponding to the mo­

tions discussed above is simply to multiply the skyrmion wave function by a 

factor exp(ifJHj21r), as can be seen from equation (4.4). For the choice of the 

parameter fJ = 0, this factor becomes + 1, that is, the object is quantized as a 

boson; for the choice fJ = 1r, this factor becomes exp(iH/2) which can be +1, 

that is, quantized as a boson, or -1, that is, quantized as a fermion, depending 

on the choice of the transformation path but independent of the orientation of 

the path. This is shown in Table 4.2 where this factor has been calculated for 

all the prescriptions considered in Table 4.1 (setting fJ = 1r), and it is clearly 

demonstrated that although the Hopf term does not affect the classical equa­

tions of motion of the extended structures of this model as we saw previously, 

the term is intimately related to the spin properties of the objects and hence the 

quantum properties of the model. 

If we choose the parameter fJ such that 0 < fJ < 1r, to try to interpolate 

somehow between fermions and bosons, the transformation paths can be chosen 

so as to obtain any factor exp(iqfJ) where q is an integer, thus realizing the 

possibility as claimed at the beginning of this chapter that this model can exhibit 

fractional spin and statistics. 

We saw above that the form of the Hopf term in (4.62), corresponding to 

the configuration (4.34), was not very satisfactory when we tried to calculate 

its value for certain transformations. However, (4.34) turned out to be our best 

candidate for a system containing one skyrmion and one antiskyrmion in earlier 
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Configuration Motion performed Value of exp(iH/2) 

w = (x+- ai)(x+- a2) Rotation of 211" of + 1 if ba is inside the 
(x+ - bl)(x+- b2) at about bt with contour traced by at 

a2 and b2 fixed. -1 if b2 is outside the 
Similarly for 1 - 2. contour traced by at 

w = (x+- ai)(x+- a2) Exchange of at and +1 if bt & b2 are both 
(x+- bi)(x+- b2) a2, with bt and b2 either inside or 

fixed. Similarly outside the contour 
for ai 4-+ bi. traced by at & a2 

-1 if bt or b2 is 
inside the contour 
traced by at & a2 

w = (x+- at)(x+- a2) Rotation of 211" of + 1 if b2 is inside the 
(x-- bi)(x-- b2) at about bt with contour traced by at 

a2 and b2 fixed. -1 if b2 is outside the 
Similarly for 1 4-+ 2. contour traced by at 

w = (x+ - at)(x+ - a2) Exchange of at and +1 if bt & b2 are both 
(x_ - b';')(x_ - b2) a2, with bt and b2 either inside or 

fixed. Similarly outside the contour 
for ai 4-+ bi. traced by at & a2 

-1 if bt or b2 is 
inside the contour 
traced by at & a2 

w = (x+- at)(x_ - a2) Rotation of 211" of -1 if b2 is inside the 
(x+- bi)(x_- b2) at about bt with contour traced by. at 

a2 and b2 fixed. + 1 if b2 is outside the 
Similarly for 1 4-+ 2. contour traced by at 

w = (x+- at)(x_- a2) Exchange of at and The value of exp(iH/2) 
(x+- bt)(x-- b2) a2, with bt and b2 for this motion is not 

fixed. Similarly easily determined. 
for ai 4-+ bi. 

Table 4.2 
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chapters, and so we end this chapter by trying to obtain a more suitable form 

for this Hopf term. 

We start by recalling that for one skyrmion we know from (4.18) that 

or if we put 

then 

I 2 [6- a 6- ~] h d X = -1ri -- - =----:= , 
b-a b-a 

a= p+ iq, b = r +is, 

I h d2x = 21rl(r- p)(s- q) + (s- q)(p- r)J. 
(r- p) 2 + (s- q)2 

(4.70) 

(4.71) 

(4.72) 

We shall try to obtain this same result by a different method, which we hope to 

be able to generalize so that we can calculate the required Hopf term for (4.34). 

First we note that in general we can always write 

(4.73) 

independently of the configuration we are considering. This result can be ob-

tained simply by algebraic manipulation of 

"'").(- )( - ) h = l z.a"'z a,z.a).z 

after substituting 

where the Yi 's necessarily satisfy 

and we find that 

2 2 2 2 
YI + Y2 + Ya + Y4 = 1, 

Jt = 2f(Yi)[azYt811 y2- 8 11 y1azY2l 

Jz = 2f(Yi)[811 Yt 8tY2 - atYl ayY2] 

J!l = 2f(Yi)[8tYI 8:r:Y2 - 8:r:Yl 8tY2] 
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(4.74) 

(4.75) 

(4.76) 

(4.77) 



where 

(4.78) 

For certain configurations (for example, the one skyrmion case), h can be further 

simplified to 

(4.79) 

and hence f h d 2 x is easily calculated using 

(4.80) 

This was the method we used to calculate all our previous Hopf terms. However, 

in some cases, simplification to the form (4.79) is not so straightforward, as we 

saw for the configuration (4.34) for example, so instead we use the following 

idea: consider instead the quantity 

(4.81) 

Using cylindrical polar coordinates with the "z direction" being the t direction 

we can use (4.73) to write 

(4.82) 

where u is the curved cylindrical surface at infinity. Now, by choosing a particu-

lar gauge the first two terms can be shown to cancel as we shall now demonstrate. 

Recall that from (2.27) the topological charge density J 0 is given by 

(4.83) 

after a few lines of algebra. Substituting ( 4. 75) into this expression yields 

(4.84) 
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Also, from ( 4. 77), 

Jt = 2sin-1 (.; Ya ) [8zYt8yY2- 8yyl8zY21· 
Ya 2 + Y42 

Now, if we choose a gauge such that 

where a is a constant, then {4.84) and {4.85) simplify to 

and 

Jt = 2sin-
1 

( v'l: a 2) [8zy1811 y2- 8 11y18zY2l· 

In other words, this choice of gauge produces the result 

Hence, 

{4.85) 

(4.86) 

(4.87) 

(4.88) 

(4.89) 

(4.90) 

for any time t0 , but since J 0 is the conserved topological charge density and is 

therefore independent of time, then the value of I J 0 dx dy and hence I Jt dx dy 

is independent of the time at which it is evaluated. Hence 

r Jt dxdy = r Jt dxdy 
lt=T lt=O 

(4.91) 

and the first two terms in (4.82) cancel as claimed. 

For the one skymion case, can such a gauge choice be made? In other words, 

if 

(4.92) 

can ¢ be chosen so that Ya = ay4 and such that the Hopf term is invariant? 

(We saw earlier that for a general¢, His not always invariant-see for example 

(4.56).) 
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Algebraic considerations soon show that <P must be of the form 

(4.93) 

to ensure y3 = ay4 in the new gauge. We need to check the behaviour of H 

under this gauge transformation. 

We saw .earlier-see (4.56) and (4.60)-that under a gauge transformation 

Z -+ Z ei¢J the Hopf term transforms as 

(4.94) 

Using (4.83), we realize this can be written in the form 

(4.95) 

and also in an n-skyrmion case J 0 can be rewritten in the form 

(4.96) 

(this can be proved in only a couple of lines of algebra) and so we can say that 

(4.97) 

Integrating this second term by parts twice, it is fairly easy to show that the 

surface terms vanish and we are left with 

(4.98) 

Finally it can be shown that in our one skyrmion case 

(4.99) 

and so we are left with 

H-+H, (4.100) 

that is, the Hopf term is invariant under this change of gauge. 
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Hence this choice of gauge can indeed be made, and equation ( 4.82} simplifies 

to 

(4.101} 

where the quantity on the right must be calculated in the new gauge, but the 

quantity on the left is invariant under this change of gauge. Now o is the curved 

cylindrical surface at infinity and so on this surface 

dS .. = lim n .. p d,P dt ,.. p-+00 ,.. (4.102) 

where niJ is the JL th component of the unit normal to the surface, and p and 

'1/.J are the usual radial and angular variables in cylindrical polar coordinates. 

Hence 

that is, 

I 
h d 2x dt = lim I(J:£ cos 1/J + JY sin 1/J)p dt/J dt 

p-+oo 

and so we can write in this particular gauge 

I h d 2x = lim (
2

fr (JZ COS '1/J + JY sin '1/J)p dt/J 
p-+oo lo 

(4.103) 

(4.104) 

(4.105) 

where JZ and JY are given by (4.77). Thus we have an expression for f hd 2x as 

required, which we need to calculate in the correct gauge for the one skyrmion 

case to compare with ( 4. 72) 

Recall that previously the one skyrmion configuration was given by 

z _ (x + iy) - (p + iq) 
1

- l/1 
z _ (x+iy)- (r+is) 

2
- l/1 

(4.106) 

(using (4.71)). In the new gauge we know that Y3 = o:y4, so the f(Yi) in (4.78) 

becomes a constant: 

/(a:) = sin-1 ( v'1: o:2) (4.107) 

83 



and Yl and Y2 can be shown to be given by 

x-p y-q. 
Y1 = ---uf cos tP - ---uf sm 4> 

y-q x-p. 
Y2 = ---uf cos 4> + ---uf sm tP 

(4.108) 

where, using (4.93), 

A. -l (X - Ot.Y - ( r - Ot.S) ) 
YJ =tan · 

ax + y - ( o:r + s) (4.109) 

Several pages of algebra enable us to calculate the various derivatives of (4.108) 

needed to calculate JZ and JY, and hence complete expressions for JZ and J'Y 

can be written down. Here, however, we shall just consider the r dependent 

terms for the sake of argument, and compare these terms with the r dependent 

terms in (4.72). 

It is found after much algebraic manipulation that the r dependent terms in 

Jz and JY are 

and 

2/(a)f[(x- p) 2 + (x- q) 2 - (x- r)(x- p)- (y- s)(y- q)] 
[(x- r)2 + (y _ s)2 + (x _ p)2 + (y _ q)2]2 

-2/(a)r[(x- r)(y- q)- (x- p)(y- s)] 
[(x- r)2 + (y- 8 )2 + (x- p)2 + (y _ q)2]2 

respectively, with f(a) given by (4.107). Changing to polar coordinates 

X= p COS t/J, 

y = psin t/J, 

the r dependent term in I h d2x can therefore be shown to be given by 

(4.110) 

(4.111) 

(4.112) 

f . r [ 2
7r [p2(r- p) + p(p2 + q2 - rp- sq) cost/J- p(rq- sp) sin t/J] dt/J 

2 
(a)r p!..~ lo [2p2- 2p(r + p) cos t/J- 2p(s + q) sin t/J + (r2 + s2 + p2 + q2)J2 · 

(4.113) 

Now, asp---+ oo, the integrand appears to behave,..,; 1/p2 and so if we take the 

limit p---+ oo this r term would disappear. This contradicts our expected r term 

from (4.72) of 
21r(q- s)f 

(4.114) 
(r- p)2 + (s- q) 2 • 
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Similar behaviour appears if we consider the terms dependent upon s, p or q and 

hence we are forced to conclude that our method contains a fundamental error: 

we believe that the gauge transformation interferes with the simple pole which 

gave us our contribution via the calculus of residues to the Hopf term (4.70) 

for the one skyrmion configuration, and so we cannot immediately produce the 

Hopf term we required. However, although we shall not pursue this idea further 

in this thesis, preliminary investigations indicate that if a way could be found to 

deal with this interference then this method provides a promising mode of attack 

to produce Hopf terms so far uncalculable by the method previously discussed 

in this chapter. 
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5. SKYRMION DYNAMICS AND KAHLER METRICS. 

We saw in chapter 3 that the motion of skyrmions in the CI!Pn-l models can 

be studied by assuming that all time dependence of these skyrmions resides in 

the skyrmion parameters. This in fact amounts to studying the dynamics of 

slowly moving skyrmions which approximate to genuine time dependent classi-

cal solutions of the full (2 +!)-dimensional theory. In that chapter we defined a 

quantity known as the "kinetic energy density" of the slowly moving skyrmions 

and studied the constraints it was necessary to impose on the skyrmion param-

eters to ensure finiteness of the kinetic energy. Here we shall look more closely 

at the form of the kinetic energy density so that we can make observations of a 

more general nature about the evolution of these systems in the limit of small 

velocities. 

First we consider the <CP1 model, a case already studied in detail by Din 

and Zakrzewski [20], but one which is important enough in our later work to be 

presented again here in some detail. In chapter 3 we saw that the kinetic energy 

density of the <CP1 model is given by 

DoZ.DoZ = KoKo = K, say, (5.1) 

where 

(5.2) 

(see equations (3.59) and (3.60)). Substituting the n-skyrmion configuration 

i=l (5.3) n 

12 = IJ (x+- bi), 
i=l 

we saw that the constraint 
n 

2)bi- ai) = o (5.4) 
i=l 
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must be imposed to ensure finiteness of the kinetic energy of the system (see 

(3.64)). However, if we now look more closely at the form of (5.2), further 

observations can be made. Din and Zakrzewski [20] noted that the kinetic energy 

density K for the n-skyrmion system can be written in a more convenient form 

as 
1 2 

K = lll4lf2ao/1 - ftaohl 

1 I· a . a 12 2 2 
= 1114 a'aai- b'abi 1111 1121 

(5.5) 

(where summation is implied over repeated indices). Introducing the compact 

notation 

(5.6) 

the second equality in (5.5) implies that 

(5.7) 

where 
1 a a 2 2 

ga,a, = lll4 aai aa; lit I 1121 
1 a a 12 2 

ga,b, = - 1114 aai ab; III 1121 (5.8) 

1 a a 12 2 
gb,a, = - 1114 abi aa; Ill 1121 

1 a a I 21 12 
gb,b; = 1114 abi ab; Ill 12 

and hence we see that the kinetic energy density simply defines an Hermitian 

metric on the manifold of skyrmion parameters. [Such a metric always exists 

on a complex analytic manifold: this means that for our complex local coordi­

nates {Aa}, the quadratic form ds2 which defines the metric on our manifold of 

skyrmion parameters can be written in the form 

ds 2 = ga{j dAadAfJ (5.9) 

where gap is an Hermitian matrix.] 
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In fact, a few lines of algebra easily show that the metric given by (5.8) can 

be written compactly as 

which is of the form 

a a 2 g - - --log l/1 
01{3 - aA01 aAP ' 

a2v 
901P = BA 01 aAP 

(5.10) 

(5.11) 

and hence we see that the metric defined by K is Kahler-like, with Kahler 

potential 

V =log l/12· (5.12) 

[There are several other ways one can recognize a Kahler metric, some of which 

we shall meet later in this chapter-for a complete mathematical discussion of 

Hermitian and Kahler manifolds, see for example reference [40].] 

The kinetic energy K is obtained by integrating the metric form over the 

space coordinates: 

K = J g01{j.A
01 AP d 2x (5.13) 

and this integral is well defined on the submanifold given by the constraint (5.4) 

discussed previously. We can also write this as 

(5.14) 

by introducing the integrated metric 

(5.15) 

but care is needed here to avoid divergent integrals: finiteness of (5.13) (due to 

the constraint) is not enough to ensure that individual terms such as (5.15) in 

the summation over a and {J are finite. 

As Din and Zakrzewski have explained [20], it is possible to prevent diver-

gences occurring, for example, by introducing a Lagrange multiplier term into 

the metric, or by introducing a space cut-off in all intermediate calculations and 
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then removing it in the final expressions. Suffice it to say that such a defini-

tion of the integrated metric can be made rigorous: we can then write down 

the corresponding equations of motion for the quark and antiquark coordinates, 

namely 

(5.16) 

or 

(5.17) 

Solutions of these equations, with the constraint taken into account, are 

precisely the geodesic motions of the skyrmion constituents which represent 

approximate solutions to the full (2+1)-dimensional theory if the velocity vectors 

are small. 

So, in the CCP1 model we have seen that the classical dynamics of slowly 

moving skyrmions can be described by the geodesic motion on a Kahler man-

ifold of the 'skyrmion quark and antiquark constituents. We shall now try to 

generalize these observations for the ccpn-1 models with n > 2, also in (2 + 1) 

dimensions, where similar time-dependent structures exist which approximate 

to exact solutions in the limit of small velocities. 

In chapter 2 we studied in detail the «:P"-1 model in 2 dimensions, and 

apart from the k-instanton solutions 

Z = /(x+)/1/1 (5.18) 

where 

(5.19) 

with i = 1, ... , n, we saw that for n > 2 there also exist non-instanton solutions 

of the full Euler-Lagrange equations, obtained from the instanton solutions, 

given by 

(5.20) 

89 



where 

(5.21) 

(see equations (2.94) and (2.74)). We can think of all of these extended struc­

tures as moving objects in (2+ 1) dimensions simply by introducing time depen­

dence as before: by supposing that the af depend on a time parameter t. As for 

the ci:P1 case, these moving objects then approximate to exact solutions of the 

(2 +I)-dimensional theory in the limit of small velocities. Can we extend the 

previous results in this chapter for the CCP1 model to both the instanton-like and 

the non-instanton-like skyrmions in the cr:pn.-l model in (2 + 1) dimensions? 

We consider first the k-instanton-like configuration (5.18) with 

(5.22) 

where i = 1, ... , n. Starting from the definition of the kinetic energy density 

K = DoZ.DoZ = l8oZ- (Z.8oZ)ZI2 (5.23) 

we can rewrite K as 

K = 8oZ.8oZ- (8oZ.Z)(Z.8oZ). (5.24) 

Then if 

zi = Iiiii I where i = 1, ... 'n (5.25) 

it is easy to show that 

1 - - - -
K = ifi4[(!.f)(aof.8of)- (8of.f)(f.8of)] 

= l;l4 ?:.l/i8o/;- /;8o/il2
• 

•>1 

(5.26) 

Substituting 
k 

/i = JI (x+- aj(t)), (5.27) 
l=l 

we soon find that 

K = 11
1

14 ~ [ t (a1
8

8
,. - ai a~i) 

2

lhl2 l/;l2
]· (5.28) 

•>1 l=l az l 
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This result is a direct consequence of n_z = 0, simply stemming from the fact 

that all the parameters a} in ft. are mutually independent. 

Introducing the compact notation 

(5.29) 

then equation (5.28) implies that 

(5.30) 

where the metric can again be written compactly, after a certain amount of 

manipulation, as 

g - - _!___.!._log l/12 
o.P - aAo. aAP (5.31) 

and hence we see again that the kinetic energy density defines a Kahler-like 

metric on the manifold of the skyrmion parameters, with Kahler potential 

V =log l/12 (5.32) 

in direct analogy with the <VP1 case. So once again the classical dynamics of 

slowly moving instanton-like skyrmions in this model can be described by the 

geodesic motion on a Kahler manifold of the skyrmion parameters, and to ensure 

finiteness of the kinetic energy of this system, we find that we need to impose 

the constraints 
k 

L:U4- a{) = o for an i =1= i, (5.33) 
l=l 

clearly a simple generalization of (5.4) for the CI::P1 case. 

We now turn our attention to the non-instanton-like skyrmions in the (2+1)-

dimensional (Vpn-l model. Again the kinetic energy density K for this system 

is given by 

K = aoz.aoz- (aoZ.Z)(Z.aoZ) (5.34) 

as in (5.24), but this time we make the substitution 

(5.35) 
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where i = 1, ... , n and the /i are given by (5.27), and a few lines of algebra soon 

produce the result 

A significant amount of manipulation then follows, making use of the usual 

chain rule of differentiation, and again introducing the compact notation {Aor} 

as in (5.29) for the skyrmion parameters. The manipulation involves various 

easily-proved identities containing P+f, P+f and their derivatives, for example, 

(5.37) 

and 

(5.38) 

and the final result of this algebra is that K can be written as 

(5.39) 

(5.40) 

Just a few more lines of calculation, motivated by analogy with the instanton-like 

case, shows that this last expression can be rewritten in the form 

(5.41) 

So the metric defined by the kinetic energy density in this case is certainly Hermi­

tian, and when written in the form (5.41) the first term is obviously Kahler-like, 

with Kahler potential 

(5.42) 

But what of the second term? Is it possible to write gorP completely in an 

obviously Kahler form? 
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Naively for this metric to be Kahler, the second term 

must be Kahler-like itself, that is, a potential V must exist such that 

a a 
H-=--=V. 

cr.fJ 8Acr. 8Af3 

(5.43) 

(5.44) 

If such a potential V exists, then by symmetry of partial derivatives we have 

(5.45) 

that is, 

(5.46) 

Hence, if this result does not hold, it seems that Hcr.p can not be Kahler-like. 

As an example where the result should hold, we consider the specific case of 

a one-instanton-like skyrmion in <CP2 , that is, we take 

It= (x+- a) 

12 = (x+- b) 

Ia = (x+- c) 

(5.47) 

where a, band c depend on the time parameter t. Applying the P+ operator to 

this solution we obtain 

P+ft = [(a- b)(x_ -b)+ (a- c)(x_ - c)J/1/12 

P+h = [(b- a)(x_ -a) + (b- c)(x_ - c)J/1/12 (5.48) 

P+fa = [(c- a)(x_- a)+ (c- b)(x_- b)J/1/12 

which in fact is essentially a one anti-instanton-like solution of the <CP2 model, 

that is, of the form 
P+ft = .\(x- -a') 

P+h = JL(X- - b') 

P+h = v(x-- c') 

(5.49) 

and so we know that this solution should define a Kahler-like metric in the way 

discussed above for the instanton-like case. 
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However, when we try to compute (5.46) for the configuration (5.48), we 

find that the result does not hold in general, implying a non-Ka.hler metric! 

This contradiction leads us to reflect upon our "condition for Ka.hlerity", (5.46), 

and we realize that we are not using a covariant condition. This presents us 

with a very interesting problem: in one set of variables a', b', c' (that is, one 

complex structure) our metric appears to be Kahler-like whereas in another set 

of variables a, b, c (that is, a different complex structure) a non-Ka.hler-like 

metric is obtained. Hence, we clearly need a "condition for Kahlerity" which 

will not produce contradictions due to changes of complex structure. We shall 

discuss this further later in this chapter; first we present configurations for which 

this prescription works perfectly reasonably, and the P + operator does give us 

further solutions which clearly define Kahler-like metrics. 

This situation occurs for example for very special configurations describing 

a one instanton-like skyrmion and one anti-instanton-like skyrmion located at 

the same point. Such solutions are real and are constructed as follows: we start 

with a one instanton solution of the 2-dimensional CCP1 model, that is, 

11 = >.(x+- a) 
(5.50) 

f2 = J.L(X+- b) 

and we translate this solution into its 0(3) form using 

(5.51) 

where a,{J = 1,2 and i = 1,2,3, and where as usual 

Za = /a/l/1 (5.52) 

and ui are the Pauli matrices 

1 (0 1) u = 1 0 , (5.53) 

This procedure yields the results 
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2 i..\j:t(x+- a)(x_ -b)+ c.c. 
q = l..\l2 lx+- al 2 + lttl2 lx+ - bl 2

' 
(5.54) 

3 l.\l21x+- al2
- I1LI 2Ix+- bl 2 

q = l.\l 2 lx+- al2 + l~tl 2 lx+- bl 2 • 

The next step is to identify qi with the components zj1
) of a configuration 

in the <CP2 model, that is, simply put q8 = zftl in O::P2 • These Z's are real, and 

do indeed define a solution of the CCP2 model Euler-Lagrange equations-we met 

this type of embedded solution earlier, in chapter 2 (see equations (2.41)-(2.44) 

and (2.52)-(2.54)). 

Now, defining 

1~ 1 ) = i..\p.(x+- a)(x_ -b) - ip."X(x- - a)(x+ -b) (5.55) 

IJ1
) = l..\l2 lx+- al2 -l~tl 2 lx+- bl 2 

we use the operator P _ defined by 

P I = a I- I(J.a_f) 
- - 111 2 (5.56) 

to give us another solution of the <CP2 model (recall we discussed solutions 

produced by the operators P± in chapter 2). Performing the algebra, we obtain 

-- 2 2 2 2 p 
1

(1) = ..\p.(b- a)[..\ (x+ -a) - tt (x+ -b) ] 
-

1 I.XI2 Ix+- al2 + l~-£1 2 lx+- bl 2 

P 1(1) = iXjl(b- a)[..\2(x+- a) 2 + tt2(x+ - b) 2
] (5.57) 

-
2 l..\l2 lx+- al2 + l~tl 2 lx+- bl 2 

p ll) = -2Xjl(b- a)..\tt(x+- a)(x+- b) 
-

3 I.XI2 lx+- al2 + l~tl 2 lx+- bl2 

and ignoring overall factors, which we are at liberty to do since the model is 

invariant under a change of phase of Z = P-1 /IP-11, we can take this new 

solution to be defined by 

(5.58) 
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where 

/~o) = >.2(x+- a)2 _IL2(x+- b)2 

/~O) = i>.2(x+- ar~ + i~t2 (x+- bf~ 

11°) = -2..\~t(x+ - a)(x+ -b). 

(5.59) 

We see that this configuration describes a special two-instanton solution of our 

two-dimensional <CP2 model. We can now introduce time dependence into this 

system in the usual way, and if we consider the kinetic energy density of this 

(2 + I)-dimensional moving object, we do indeed find that it gives rise to a 

Kahler-like metric of the form 

(5.60) 

as before, with the obvious definition of the compact notation {A0
}. 

Now, applying P+ to tf0>, we get our (2 +I)-dimensional non-instanton-like 

solution 

(5.6I) 

where explicitly 

P+t<o> = -2..\J.L(b- a)[>.jr(x+- a)(x_ - 6) + J.LX(x+- b)(x_ -a)] 
1 l..\l2lx+- al2 + IJ.LI2Ix+- bl 2 

P+lo) = -2..\J.L(b- a)[iXJL(x+- a)(x_ - 6) - iJ.LX(x+ - b)(x_ -a)] (
5

.
62

) 
2 l..\l2lx+- al2 + IJ.LI 2Ix+- bl2 

P+f(O) = -2..\J.L(b- a)[1>.121x+- al2-: IJ.LI21x+- bi2J. 
3 I>. l2 lx+ - al2 + IJ.LI2 Ix+ - bl2 

Performing the copious amounts of algebra needed to calculate Hap from 

(5.43) and then to compute (5.46), we find this time that the result (5.46) 

does hold, and thus this non-instanton-like skyrmion configuration can lead to 

a Kahler-like metric as claimed. 

Note that, as expected, the P;Ji(o),s can be shown to describe essentially a 

two anti-instanton-like solution, which leads once more to a Kahler-like metric 
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from the kinetic energy density in a similar manner. Hence we have produced 

three related skyrmion systems in <CP2 which all lead to Kah.ler-like metrics, 

despite one of them being of non-instanton-like form. 

In all our discussions of the (Cpn-l non-instanton-like cases, we have used 

the "unintegrated metric" gQ7i given by (5.40). To discuss the dynamics of these 

systems this metric has to be integrated to the full metric, as in (5.15), that is, 

GQ-p = J gQ7id 2 x. (5.63) 

Then the dynamics are determined by the motion of the skyrmion parameters 

along the geodesics of this metric. Unfortunately it is very difficult to perform 

the integration in (5.63) analytically, even for the simplest configurations, and 

additionally the form of the constraints (analogous to (5.4) and (5.33}) needed 

to ensure finiteness of the kinetic energy of the system are more complicated 

now. Almost certainly any progress here would have to involve some numerical 

calculations, and so we shall not pursue this further in this thesis; however, it is 

difficult to conceive how the integrated metric, if it could be determined more 

explicitly, could avoid exhibiting similar properties to the ones we have discussed 

above for the unintegrated form. 

So, in summary, we have seen that the classical dynamics of slowly moving 

a;pn-1 instanton-like skyrmions in (2 + 1) dimensions can be described by the 

geodesic motion on a Kahler-like manifold of the solution parameters. However, 

for the a;pn-1 non-instanton-like solutions, the Kahler or non-Kahler nature 

of the metric produced is unclear. For some special solutions the metric is 

obviously Kahler whereas for others the choice of complex structure affects the 

results dramatically. We end this chapter by taking some steps towards finding 

a "condition for Kahlerity" which will not be so dependent upon the choice of 

complex structure. 

Pope et al. [41] have produced expressions, involving the Riemann curvature 

tensor, Ricci tensor and covariant derivative constructed from a metric, which 
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may in principle be used to test whether the metrics we have been considering 

are Kahler or not. These expressions vanish for Kahler metrics, but not for 

general Riemannian metrics-the exact expression used depends on whether 

the metric in question is Einstein (ie. if the Ricci tensor is proportional to the 

metric tensor) or not. 

Now, the metrics we have been considering are certainly Hermitian-are 

they Einstein? In other words, can we demonstrate that 

Rap = Rap = 0 

Rap= >.gap 
(5.64) 

where Rap is the Ricci tensor and >. is a constant of proportionality? We start 

by considering the quantity Rap· 

In terms of the Riemann curvature tensor Rap..,s, we can define Rap by 

(5.65) 

and the Riemann curvature tensor itself can be defined in terms of the Christoffel 

symbols r;.., by 
Rap..,6 = a..,r;6 - a6 r;.., + r:..,r$6 

- r:6r;.., + r.;..,rfo - r;6r%.., 
(5.66) 

(these are simply the usual definitions for the Riemann curvature tensor and 

the Ricci tensor for a complex manifold). So we need to calculate the various 

Christoffel symbols for our Hermitian metrics. Working from first principles, 

the Christoffel symbols are determined by two conditions, namely requiring the 

metric to be covariantly constant, and requiring the manifold to be torsion-free. 

Coupled with the fact that our metrics are Hermitian, it takes only simple alge­

braic manipulation to produce the following results for the Christoffel symbols: 

1 -r;.., = r;p = 2ga~'( ap9..,TI + a..,9fJTI) 

r a - pQ - ! "-o(a - a ) pry- J.;yp - 2g pgi''Y- l'gp;y (5.67) 

rf,y = r;p = o. 
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Now that we have the Christoffel symbols, we can substitute (5.67) into 

(5.66} and hence evaluate (5.65)-performing the tensor analysis, it is straight­

forward to show that 

R 01p - Rp01 = 0, (5.68) 

that is, 

(5.69) 

so the Ricci tensor Rap is certainly symmetric; however, we find that 

Rap+ Rp01 = 0 (5.70) 

only if we impose an additional constraint on the metric, namely 

{5.71) 

If this condition is imposed, we see that 

{5.72) 

as required; if we do not impose this condition then our metric cannot be Ein-

stein. 

But what have we assumed if we impose this condition? To understand this, 

we introduce a 2-form F which is known as the "Kahler form" associated with 

the Hermitian structure 

{5.73) 

given by 

(5.74) 

Now, in order that an Hermitian metric is Kahler, it is necessary and sufficient 

that 

(dF) 011J7 = 0, (5.75) 
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that is, the Kahler form is closed (see for example reference [40] and also reference 

[42]). But a couple of lines of algebra shows us that this closure condition can 

be rewritten equivalently as 

(5.76) 

which is exactly the condition (5.71) we had to impose to ensure that Rap= 0. 

So we find ourselves with a puzzle. To use the results of Pope et al. [41] 

to test the Kahlerity of our Hermitian metrics, we need to know if the metrics 

are Einstein or non-Einstein. To this end we calculated Rap via the Riemann 

curvature tensor and the Christoffel symbols. Rap should be zero if the metric 

in question is Einstein, but we found that to achieve this we needed to impose 

a condition which, according to the above comments, is equivalent to already 

requiring our metric to be Kahler! Additionally, looking closely at the expres­

sion (5.76), we recognize that this condition is exactly the type of "condition for 

Kahlerity" we studied earlier in the chapter (cf. (5.46)), which we found was 

subject to grave inconsistencies when different complex structures were consid­

ered. This is exactly the type of condition we were trying to avoid! One final 

problem is the method we us~d to ca.lculate Rap-construction of the Christof­

fel symbols involved the use of the inverse metric gaP, but consideration of gaP' 

even for the simplest case of one instanton-like skyrmion in CI!P1, shows us that 

the metric gap is degenerate and hence non-invertible! 

These inherent problems prevent us from being able to proceed further with 

this approach; however, we would still like to use the results of Pope et al. to 

test our metrics. This may still be possible if we calculate the Ricci tensor in 

a way which avoids the explicit use of the inverse metric. We may then be 

able to determine whether our metrics are Einstein or not without resorting to 

a condition of the form (5.76), and we would then be in a position to use the 

results of Pope et al. as required. 

We shall therefore attempt to recalculate the Ricci tensor, this time using a 
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method described by Eguchi et al. in section 3 of reference [42] which appears 

to satisfy the needs outlined above. This method involves calculating for a given 

metric such quantities as the vierbeins, affine spin connection 1-forms, curvature 

2-forms and hence the Riemann curvature tensor and the Ricci tensor-rigorous 

definitions of all these quantities are contained in [42]; we shall introduce the 

quantities as necessary as we work through the method. 

For simplicity, we shall consider first the case of a one instanton-like skyrmion 

in the (2 +!)-dimensional <IP1 model, and then try to extend the results to more 

general systems. For the one skyrmion case, we already know that the metric is 

given by 

ds2 = ga/i dA0 dAf3 (5.77) 

where 

{A0
} = {a,b} (5.78) 

and 

a a 2 
ga{i = aAa aAf3 log l/1 ' (5. 79) 

with 

I = (X+ - a, x+ - b) (5.80) 

(see equations (5.9), (5.6), (5.10) and (5.3) respectively) and so we know that 

this metric is Kahler-like. Nevertheless, we continue with this system in order 

to demonstrate how the Kahler nature of the metric may be concluded via the 

method of Eguchi et al. and Pope et al. 

First, writing 

a= p + iq, b = u + iv (5.81) 
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we see that our quadratic form ds2 in (5.77) can be rewritten as 

that is, 

a a 
ds2 = --=log l!l2(dp2 + dq2) aaaa 

a a 
+--=log lfl2(du2 + dv 2

) abab 
+ aa a_ log l!l2(dpdu + dqdv + idqdu- idpdv) aab 
+ :b :a log l!l2(dudp + dvdq- idudq + idvdp), 

where p,, v = 0, 1, 2, 3 and 

(5.82) 

(5.83) 

dx0 
_ dp, dx1 = dq, dx2 = du, dx3 = dv. (5.84) 

We can now calculate the vierbeins e" for this metric using the defining equations 

(5.85) 

and 

(5.86) 

where a, b = 0, 1, 2, 3 and '11ab = diag(1, 1, 1,1). In other words, calling 

a a I 12 --=log f =A aaaa . 
a a I 2 --::log /I = C aaab 

a a I 12 --=log f = B abab 
a a I 2 abaa log !I = D 

(5.87) 
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we need to solve the set of simultaneous equations 

oo 11 22 33 A e oe o + e oe o + e oe o + e oe o = 

oo 11 22 33 A e 1e 1 + e 1e 1 + e 1e 1 + e 1e 1 = 

oo 11 22 33 B 
e 2e 2 + e 2e 2 + e 2e 2 + e 2e 2 = 
oo 11 22 33 B e 3e 3 + e 3e 3 + e 3e 3 + e 3e 3 = 
o o 1 1 2 2 3 3 _ 0 e 0e 1 + e 0e 1 + e 0e 1 + e oe 1 -

e0oe
0

2 + e 1
oe

1
2 + e2oe

2
2 + e3

oe
3

2 = i(C +D) 

e
0

1e
0

3 + e 1
1e

1
3 + e 2

1e
2

3 + e3
1e

3
3 = i(C +D) 

e
0

1e
0

2 + e 1
1e

1
2 + e 2

1e
2

2 + e3
1e

3
2 = i{c- D) 

e
0

oe03 + e 1
oe

1
3 + e

2
oe

2
3 + e3

oe
3

3 = -i(C- D), 

(5.88) 

a set of ten equations containing sixteen unknowns. With suitable choices 

for various of these unknowns, we find by the usual elimination/substitution 

technique for simultaneous equations that a consistent set of quantities can be 

obtained for all these unknowns. The details of this calculation are clearly 

tedious-we shall simply state here that during the calculation the result 

AB=CD (5.89) 

was needed, a result which can be proved in a couple of lines for our one skyrmion 

system-and it was found that seven unknowns needed to be chosen. A suitable 

choice turned out to be 

2 i(C-D) 
e 3 = - (8A)l/2 , 

(5.90) 

from which the other nine unknowns could be calculated. Using (5.86), the 
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vierbeins for this metric could then be written down: they are 

o- I/2 d i(C- D) d (C +D) d 
e - A q + 2Al/2 u + 2Al/2 v 

1 _ ( ) 1; 2 d [(C +D)+ 2i(AB) 112
] d _ i(C- D) d 

e - 2A P + (BA)lf2 u (8A)lf2 v (5.91) 

e2 = [(C +D)- 2i(AB)lf2
] du _ i(C- D) dv 

(8Jl)l/2 (8Jl)l/2 

e3 = -iJl1l2 dp + B1
/

2 du 

with Jl,B,C,D given by (5.87). 

Having obtained the vierbeins, we are now in a position to calculate the 

affine spin connection 1-forms wab, which are defined by 

(5.92) 

for a torsion-free manifold. To calculate these quantities, Eguchi et al. advocate 

writing dea in the form 

(5.93) 

where it should be easy to determine the cbd simply by comparing independent 

terms on the left and right hand sides of {5.93). Having obtained the quantities 

c6d, it is only a matter of simple substitution into a certain set of equations 

to obtain the affine spin connection 1-forms wab-it is not very illuminating to 

present these equations here: they can be found in reference [42], in section 7 of 

Appendix A. 

Carrying out this prescription for our vierbeins (5.91), however, surprisingly 

we find that a consistent set of expressions for the cbd can not be found: the 

simultaneous equations we obtain by comparing independent terms on the left 

and right hand sides of (5.93) are not compatible, and hence we cannot calculate 

our affine spin connections in this manner. 

What has caused this unfortunate breakdown 1 A couple of reasons present 

themselves: first, it is possible that the choices we made whilst calculating the 
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vierbeins were poor-perhaps more suitable choices would produce a consistent 

set of expressions for cbd? On the other hand, it is possible that the problem 

again lies in the non-invertibility of the metric g
01
p, even though the inverse 

metric does not appear explicitly in this calculation. 

One solution we suggest to this problem is to consider not g
01
fj but the 

integrated metric G 
01

-p which, as we saw earlier in the chapter, can be suitably 

defined to avoid divergences. Preliminary investigations into this suggestion 

indicate that G 
01
p is not necessarily non-invertible, and hence we may be able 

to complete the above calculations using this integrated form of the metric. 

Unfortunately, calculations involving the integrated metric are very difficult to 

perform, and so far we have not succeeded in producing explicit expressions 

for the vierbeins associated with this metric. Nevertheless, it would be very 

interesting to proceed further with these calculations in an attempt to carry out 

our proposed verification of the Kahler nature of this metric. We could then 

proceed to more general skyrmion systems and comment on the nature of their 

associated metrics also. 

The prospect of being able to make such comments, particularly m cases 

where the Kahler or non-Kahler nature of the metric in question was not previ­

ously clear, serves to highlight the importance of further research in this area. 
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6. LARGER SPACES AND NEGATIVE MODES. 

In this thesis we have looked in detail at several important aspects of the 

<VP"'-1 models and their solutions. Before concluding, we would like to discuss 

one more interesting item, namely the embedding of the <VP"'-1 solutions in 

larger group spaces, and their stability in these new spaces. 

It has been known for some time that all solutions of Grassmannian models 

are also solutions of the 2-dimensional U(n) chiral models !43]: in particular, as 

we shall see· below, <CP"'-1 solutions can be shown to be solutions of the SU(n) 

chiral model. To see this, we start with the Lagrangian density .C for the SU(n) 

chiral model 

where g E SU(n), so that 

g t g = gg t = 1 and det g = 1. 

Calculating the Euler-Lagrange equations in the usual way, we obtain 

Now, if we write 

where 

g = ll(1- 2IP) 

n-1 times 
_.-.... 

n = diag(1,1, ... ,1,-1) 

then our Lagrangian density (6.1) becomes 

and the Euler-Lagrange equations (6.3) become 
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But we saw 'in chapter 2 that if 

IPo = z.zt (6.8) 

where Z is a solution of the <CP"- 1 model, then IP0 satisfies the equation 

(6.9) 

(see equations (2.62) and (2.65)), and hence 

go = ll(1 - 2IPo) (6.10) 

satisfies the Euler-Lagrange equations (6.3). Thus our CCP"-1 solution defines a 

solution of the SU(n) chiral model, as claimed. 

Previously, not much was known about other solutions of the U(n) chiral 

models; recently, however, Uhlenbeck [44] has made great progress by proving 

that all classical solutions of the U(n) chiral models are of the form 

l 

g = A II (1 - 2IPi) (6.11) 
i=1 

where l is some number (which Uhlenbeck calls the "uniton" number), A is 

a constant matrix and the IPi are projectors which satisfy certain first order 

differential equations. This theorem therefore provides a way of generating new 

solutions from old ones: namely one writes 

(6.12) 

and then, as Uhlenbeck has shown, g1 satisfies the Euler-Lagrange equations if 

go does and if IR satisfies the equations 

(6.13) 

and 

(1 - IR.)[a_JR. + A-IR] = 0, (6.14) 
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where 

(6.15) 

If 9o = 1, equations (6.13) and (6.14) reduce to 

a_JRIR = o, (6.16) 

that is, the self-duality equations for the instantons of the ~pn-1 model (see 

equation (2.67)). For 90 =f. 1 we obtain more general solutions, which include 

the a::pn- 1 non-instanton solutions we met in previous chapters and also non-

Grassmannian solutions. Piette and Zakrzewski have studied properties of these 

non-Grassmannian solutions and plan to report their findings soon [45]; in this 

thesis we shall be more concerned with the ~pn- 1 solutions. 

One of the most important properties of any solution is its stability when 

subjected to small fluctuations. We saw in chapter 2 that the ~pn- 1 instanton 

solutions are stable whereas the non-instanton solutions are unstable with re-

spect to small fluctuations: we also saw that the stability of the instantons was 

guaranteed by the topology of the field manifold. For the chiral model, however, 

there are no equivalent topological arguments to guarantee the stability of the 

non-trivial solutions, and so we would expect all these solutions to be unstable. 

For the a::pn-1 non-instanton embeddings this is obvious since they are already 

unstable in the <J::pn- 1 subspace: this leaves us with the instanton embeddings 

and the non-Grassmannian solutions. 

Now, for solutions which are unstable it is important to know the number 

of directions of instability-the so-called "negative modes" of the fluctuation 

operator around the solution-and to check their independence. For example, 

in the functional integral approach to quantization one has to evaluate the de­

terminant of the fluctuation operator which (at least formally) is given by a 

product of positive eigenvalues. All directions of instability have to be excluded 

from this calculation of the determinant and treated in a special way: hence the 
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importance of the number of negative modes, since this defines the index of the 

fluctuation operator. 

It is in fact possible to show that all non-trivial solutions of the U(n) chiral 

model are unstable. To demonstrate this we take a general solution of the model 

and use Uhlenbeck's procedure (6.12) to construct from it a new solution. If 

we then define a third field which interpolates between the two solutions it is 

not difficult to show that the constructed solution is unstable. The details of 

this calculation have been presented in reference [2]; however, it is unclear using 

this method whether more than one mode of instability exists in general. In this 

chapter, therefore, we shall restrict ourselves to the instanton embed dings in the 

SU(n) chiral model. We shall introduce the fluctuation in a different way, and 

try to determine whether there is more than one negative mode. 

We start with our instanton embedding from (6.10), that is, 

where IP0 satisfies 

go = H(1 - 21Po) 

1Po1Po = IPo 

1Po8+1Po = 0 

8+1Po1Po = 8+1Po 

(6.17) 

(6.18) 

(cf.(2.63) and (2.69)). We introduce a small fluctuation by assuming that the 

field g in the neighbourhood of g0 can be written in the form 

g =go exp(ieX) 

where E is small. ForgE SU(n), X must satisfy 

X=Xt 

and 

trX= 0 

(so that gtg = 1) 

(so that det g = 1). 
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Substituting (6.19) into the Lagrangian density (6.1) and calculating to second 

order in e, it is straightforward to show that 

(6.22) 

where we have used the Euler-Lagrange equations (6.3) for go, and assumed 

that X-+ 0 as 1~1 -+ oo (this must be the case if we wish our fluctuation to be 

integrable). Finally, substituting for go from (6.17) and writing 

(6.23) 

we find that, after transferring to complex coordinates X± and using the prop-

erties (6.18), 6£ can be written in the form 

(6.24) 

Therefore, considering the action S = f .C d2 x for the solutions g and g0 , we 

see that 

(6.25) 

where 68, the action associated with the fluctuation, is given by 

(6.26) 

So, to find negative modes of fluctuation, we simply have to find X such that 

6 .C is negative. 

It is relatively easy to find one negative mode. For example, consider 

1 
X= IPoKIPo- -tr(IPoKIPo) 

n 

where K is a constant matrix which can be written in the form 

K=vvt 

(6.27) 

(6.28) 

where Vis a column n-vector. This X certainly satisfies (6.20) and (6.21)-what 

value do we obtain for 6£ for this trial fluctuation? 
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With X given by (6.27), then 

(using the cyclic properties of trace), and similarly for a_X. Performing the 

necessary algebra, using the properties (6.18) where appropriate and the cyclic 

properties of trace, substitution in (6.24) produces the result 

h.C = 4tr[KIPoK(a+IPoa-IPo- a_JPoa+IPo)] 

4 
- -tr{ a_IPoK) tr( a+IPoK) 

n 

(6.30) 

Now, since 

a_IPoiPo = 0 (6.31) 

we can write 

(6.32) 

and so 

(6.33) 

that is, 

{6.34) 

so, substituting (6.34) into (6.30) we get 

The last term is clearly negative since it can be written as 

4 ( 2 --1 tr a+IPoK)I 
n 

(6.36) 

but what of the first term? 

Well, we can rewrite this term as 

(6.37) 
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If we now think in terms of the integrated quantity 6 S = f 6.£ d 2 x, we realize 

that if K is chosen so that the divergence theorem can be used, then the first 

term in ( 6.37) becomes a surface term and, as we shall see below, can be dropped. 

So the final expression for 6.£ is 

(6.38) 

in other words, substituting K = vvt and using the cyclic properties of trace, 

(6.39) 

that is, 

(6.40) 

This quantity is negative definite, and so we have found our required negative 

mode, provided we can justify the dropping of the surface term. Looking at this 

term, which we can essentially write as 

since K = vvt and 

IPo = zzt =fit 
111 2 

{6.41) 

(6.42) 

where f = f(x+) for our instanton embedding, it is sufficient to require that 

(6.43) 

This condition is easy to impose: we shall look at one simple example for n = 3. 

Consider the configuration 

Ia = 1, (6.44) 

so 

(6.45} 

112 



It is trivial to check that this is a valid «:P2 instanton solution, and if we consider 

the limit lx+l -+ oo we see that 

I T1i -+ (1, 0, 0} as (6.46) 

Hence, if we choose V to be of the form 

{6.47) 

where v2 and v3 are constants, our condition (6.43) is satisfied, and we can 

rightly drop the surface term (6.41). Hence 

1 
X= 1PoK1Po- -tr(1PoK1Po) 

n 
(6.48) 

does give us a genuine negative mode, which in our n = 3 example depends on 

two parameters v2 and v3 • However, it is easy to check that no superposition 

principle exists for the independent parameters of V: the way the parameters 

appear in the expression for the fluctuation prevents us from taking the number 

of them as the number of negative modes. Do further independent negative 

modes of fluctuation exist? 

First of all, observe that instead of (6.48) we could take 

1 
X= (1 -1Po)M(1 -1Po) - -tr[(1 -1Po)M(1 -1Po)J 

n 
(6.49) 

where M is another constant matrix such that 

M=wwt (6.50) 

where W is a column n-vector, that is, take 

1 
X = ffi.Mffi. - -tr(ffi.Mffi.) 

n 
(6.51) 

where 

m. = 1-1Po. (6.52} 
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Since 
gdo14go = -2{1- 21Po)B141Po 

= -2{1- 2lR)o14JR, 
{6.53) 

then the above calculation can be repeated, with IPo replaced by lR and K by 

M, to demonstrate that (6.49) is also a negative mode of the fluctuation, with 

8£ given by 

(6.54) 

that is, 

(6.55) 

Again we must justify the dropping of a surface term, namely 

tr[M(l -1Po)M8+1Po], (6.56) 

which can be rewritten as 

(6.57) 

using {6.50) and (6.42). This time it is sufficient to require that 

(6.58) 

which again is easy to impose: for our special case of n = 3 and f given by 

(6.44), this corresponds to choosing 

{6.59) 

So (6.49) is another genuine negative mode. The important question we 

must now ask is whether these two modes are independent. To answer this 

question we consider the following superposition of the two modes: 

1 
X= 1PoK1Po + P(l-1Po)M(l-1Po)- -tr[1PoK1Po + P(l-1Po)M(l-1Po)]. (6.60) 

n 

If this superposition remains a negative mode of the fluctuation for any value of 

the constant p, then the two modes are truly independent. 
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If we perform the substitution of (6.60) into {6.24) and do the necessary 

manipulation, using the properties (6.18) as before, we find that 6£ for this 

superposition is given by 

o.C = 4 tr[KIPoKa_a+IPo + 2PB+IPoKB-IPoM- P2M(1- IPo)Ma_a+IPo] 

4 
--tr[a-IPoK- ,aa_IPoM] tr[a+IPoK- pa+IPoM]. 

n 
(6.61) 

Choosing K and Mas before (so that the surface terms can again be dropped) 

this expression can be rewritten as 

o.C =- 4[lvta+IPoVI2 + P21Wta+IPoWI2
- 2,Biwta+IPoVI2

] 

- ~l(vta+IPoV- pwta+IPoW)I2
• 

n 

(6.62) 

The last term here is clearly negative, but the appearance of the mixed term 

(proportional to ,8) prevents us from drawing a conclusion in full generality. Let 

us therefore consider the first term for our special n = 3 case, with IPo = {~! 
where 

{6.63) 

as before, and with 

V=(~)• W=(!) (6.64) 

for simplicity. It is not difficult to show that the first term in (6.62) for this 

special situation simplifies to 

(6.65) 

Not being able to say much more at this stage, we therefore turn our attention 

to the integrated quantity oS = I o.C d2x. Demonstrating that 6S is negative 

clearly indicates a negative mode in the same manner as showing ol to be 

negative: we shall therefore calculate oS from (6.65). To do this, we change to 

polar coordinates in the normal way: 

- i8 x+- re , x_ = re-i8 (6.66) 
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so that 

(6.67) 

and the integration range is 0 ~ r < oo, 0 ~ () ~ 211". Since X+ X- = r 2
, there is 

no () dependence in (6.65) and so the angular integration is trivial; to perform 

the radial integration we use the well-known results 

I rm dr = I rm-2 dr - I rm-2 dr 
(r2 + l)n (r2 + l)n-1 (r2 + 1)n 

(6.68) 

and 

I r dr =- 1 
(r2 + l)n 2(n- l)(r2 + l)n-1' 

(6.69) 

which can be found in any table of indefinite integrals. The final result of this 

manipulation is 

(6.70) 

This quantity is clearly non-positive, only vanishing for lvl2 = .Biwl2; in the case 

lv 12 = .Biwl2 , however, the second term in (6.62) does not vanish and so the total 

expression for 6S, that is, 

(6.71) 

is negative definite for all values of ,8. 

Thus, for our special n = 3 solution we have found two genuinely indepen-

dent negative modes of fluctuation. [If we had taken 

V= (~) (6. 72) 

as before, it can be shown easily that the two modes are independent only for 

v2 0-hence our stated choice for V in (6.64)J. It is very difficult to say much 

more in general about the number of negative modes-in this special n = 3 case 

we have exhibited two such modes, but the question of more modes is unclear 

since we have been unable to find a general method of generating such objects: 

preliminary attempts using quantities of the form 

f 1t P+f(P+f)t P~/(P~f) t 
IPo = l/12' IP1 = IP+fl2 ' IP2 = IP~/12 ' (6. 73) 
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(where /, P+f and P!f are all solutions we have met previously of the ~P2 

model) have not produced results of the desired form. Similar considerations for 

n = 4 have produced two negative modes analogous to our n = 3 case, with 

and 
W= (~) (6.74) 

for the special solution 

(6.75) 

but again we do not have a superposition principle for the independent param-

eters of V, so although our fluctuation contains three parameters this number 

cannot be taken as the number of independent negative modes, and so far we 

have been unable to find a third genuinely independent negative mode. 

It would be very interesting to find a general method of generating such 

negative modes of fluctuation, and to find a procedure by which the number 

of negative modes for a particular fluctuation could be predicted. Although 

at present we have not succeeded in formulating these methods, this problem 

clearly merits further study. 
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1. CONCLUSION. 

So, what have we learned from our consideration of the ccpn.-l non-linear 

a-models? 

Instanton solutions of the two-dimensional models have been known for some 

time; we have seen how these extended structures depend on the parameters 

of the solutions, and how various interpretations can be used to describe this 

behaviour. Using similar techniques, we have considered various field configura­

tions which approximate to solutions of the theory, and which contain instanton 

and anti-instanton components, and have found that one configuration in par­

ticular exhibits many properties we would desire from such a system. Indeed, 

an interaction between the constituents was predicted, of a form very much 

reminiscent of the interaction between dipoles. 

Introducing time dependence into the models, we saw that the full theory in 

(2 + 1) dimensions was rather difficult to solve, but that approximate solutions 

could be obtained by introducing time dependence into the static solutions of the 

theory. We have derived certain constraints which can be imposed on these sys­

tems to ensure finiteness of the kinetic energy, and have discussed their physical 

interpretations. 

It is well known that the spin properties of such solutions are determined by 

the Hop£ term of the theory; we have derived expressions for this term for both 

solutions and approximate solutions of the model, and have calculated the values 

of the Hopf term for certain explicit evolutions. This enabled us to make various 

remarks about the spin properties of the systems under consideration. One 

system did not lend itself easily to investigation in this way, however: to remedy 

this situation, we have initiated a more general method to derive Hopf terms 

for configurations of this form. Unfortunately, we have not been able to pursue 

this method to its conclusion, but the early indications are that this method 
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would provide a convenient way to produce Hopf terms as yet uncalculable, and 

is clearly worthy of further investigation. 

What more have we learned about the motion of these extended objects? In 

the QP1 case, it was already known that the dynamics of slowly moving skyrmions 

could be described by the geodesic motion on a Kahler manifold of the skyrmion 

parameters. We have been able to extend this result to cepn-1 for instanton-like 

skyrmions, but we have seen that the situation for non-instanton-like skyrmions 

is far more complex. The metrics defined by the latter are certainly Hermi­

tian, but we have found difficulty in producing a consistent way of testing the 

Kahlerity of these metrics. Various approaches have been tried, and certainly 

further research in this area would be of great benefit. 

Finally, we have looked at the stability of the cepn-1 solutions when embed­

ded in the 2~dimensional U(n) chiral models. We have seen that all non-trivial 

solutions of the U(n) chiral model are in fact unstable, and by using the CCP"-1 

embedded solutions have exhibited negative modes of the fluctuation operators 

around these solutions. The number of independent negative modes, however, 

was not so easy to determine: for specific solutions we have been able to find 

two genuinely independent negative modes, but the problems of finding a gen­

eral method of generating these modes, or of determining the number of such 

modes are still unsolved-clearly a third area of interest for future study. 

The various topics considered in this thesis have certainly enhanced our 

knowledge of the CCP"-1 non-linear u-models, and have indicated certain areas 

where further research would definitely be of great benefit: what other topics 

could be studied to further improve our understanding? 

In the approximation of considering only instanton and anti-instanton solu­

tions, various authors [46,31) have shown that the quantum corrections to these 

classical solutions can be described in terms of a gas of instanton quarks. It 

would be interesting to consider the effect non-instanton solutions would have 
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on the properties of this gas. One may argue that classical solutions which are 

not stable give rise to unstable quantum states, and therefore it does not make 

sense to study quantum fluctuations around these states; however, although 

positive modes of fluctuation can be treated with standard methods, there is no 

universal agreement as yet on how to take into account negative modes with an 

appropriate mathematical apparatus. 

Other authors have chosen to understand the physics of these models using 

a 1/n expansion approach [9,47]. This approach has led to interesting features 

like dynamical mass generation and dynamically generated, confining long range 

fields. It has also been shown [48] that 1/n expansion results can be simulated by 

classical solutions obeying certain boundary conditions. This line of approach 

would be particularly interesting if similar relations could be found in four­

dimensional gauge theories. 

Finally, one could consider a supersymmetric version of these models, and 

look at the various topics considered in this thesis again for the supersym­

metrized models. A report on progress in this area can be found in reference 

[27]. 
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