
Durham E-Theses

An investigation of shortest paths algorithms

Tabatabai, Bijan Oni

How to cite:

Tabatabai, Bijan Oni (1987) An investigation of shortest paths algorithms, Durham theses, Durham
University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/6685/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support O�ce, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/6685/
 http://etheses.dur.ac.uk/6685/
http://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk

The copyright of this thesis rests with the author.

No quotation from it should be published without

his prior written consent and information derived

from it should be acknowledged.

A N I N \ r j S S m C3^Am CDN CDF'

-fc o t ±X tZL»
X>ejp.a jr~-fc n-fc o j f

CD CD JUjp ui -tz G r~ JSiz; i e xa c; e
ZJjn n. xr^s dL -tz yr tu ifT X) u r li^ rzi

JT cjr~ tz Jri

X><r7<=;-fc o j t — o j f f^ia i i ci»scD_p>J:a3;r

BIST A N CDNI T A B A T A B A I

M A Y 1 <3<S ^

13,JN.I988

ABSTRACT

y

In this work, we classify the shortest path

problems, review all source algorithms and analyse

the different implementations of single source

algorithms using various list structures and

label 1i ng techniques.

Furthermore, we study the Sensitivity Analysis of

one-to-all problems and present an algorithm,

Senet, for their Post Optimali ty Analysis. Senet

determines all the critical values far the weight

of an arc (which could be optimal, non-optimal or

nan-existant) at which the optimal solution

changes. Senet also provides the updated optimal

solution for every range formed by two successive

critical values.

(i i)

ACKNOVLEDGBKEFTS

I am grateful to Mr A J Slade, my supervisor, for

his guidance and encouragement throughout the

research leading to this- thesis. I would also

like to thank J Nellist for typing and preparing

the thesis.

This work was done with the financial support of

SERC.

(l i i)

CONTENTS

PART I: FOUNDATIONS

Page

1. Introduction i '
2. Graphs and Networks 5
3. Computationa1 Complexity 15
4. Data Structure 19
5. Network and Tree Representations 46
6. Problem Classification 52

PART II: SINGLE SOURCE ALGORITHMS

7. Single Source Algorithms 58
8. Label Correcting Algorithms 69
9. Label Setting Algorithms 91
10. An Empirical Study 120

PART III: ALL SOURCE ALGORITHMS

11. Matrix Multiplication Methods 130
12. Triple Algorithms 133
13. Modified Label Setting Algorithms 137

PART IV: SENSITIVITY ANALYSIS AND POST
OPTIMAL I TY ANALYSIS

14. Sensitivity Analysis 142
15. Past Optimal ity Analysis 164

PART V: SUMMARY, CONCLUSIONS AND
REFERENCES

16. Summary and Conclusions 194
17. References 199

APPENDICES

Appendix A
Appendix B
Appendix C
Appendix D
Appendix E
Appendix F

205
215
226
236
250
263

B A R T

JRO U N D A TICDNS

1 INTRODUCTION

Shortest path problems are the most fundamental

and the most commonly encountered problems In the

study of transportation and communication

networks. Many other important network problems

involve shortest path computations in their

solution methods.

Various shortest path algorithms have been

developed since the latter half of the 1950's.

The purpose of this work is to evolve a

classification of the "efficient" sequential

algorithms for a particular class of unconstrained

deterministic shortest path problems, and to study

their computational efficiency and sensitivity.

The work is divided into 5 parts.

In Part I, the introduction is followed by

necessary definitions and theorems of graphs and

networks in section 2, and computational

complexity and data structure ID sections 3 and 4.

In section 5 the network and tree representations

used in this work are presented and analysed.

A classification of sequential algorithms for "THE

SHORTEST PATH" is introduced in section 6.

In Part II, single source algorithms are

classified and studied in section 7. In section 8

and 9 various label setting and label correcting

methods are analysed. In section 10 an empirical

study of the most efficient labelling algorithms

an small networks, ie. networks with upto 200

nodes is carried out.

In Part III, all source algorithms, matrix

multiplication methods, triple algorithms and

modified label setting algorithms are reviewed in

sections 11, 12 and 13.

In Part IV, various algorithms for sensitivity

analysis on "THE SHORTEST PATH PROBLEMS" are

studied in section 14, and in section 15 we

introduce an algorithm, Senet, for post optimality

analysis of "ONE-TO-ALL SHORTEST PATH PROBLEMS".

Senet determines every nan-negative critical value

of an arc weights at which the optimal solution

changes and also provides the updated solution.

Senet is applicable to basic, non-basic and nan-

existant arcs in a non-negative network.

Part V, consists of a summary of the work together with

conclusions in section 16, and the references in section 17.

The complete Pascal codes of the more complicated and also the

most efficient algorithms are presented in the appendices.

2 GRAPHS AND NETWORKS

A Graph G = <N, A) is a structure which consists

of a non-empty and finite set of Nodes N of

cardinality n, and a set of unordered pairs of

Nodes A, called arcs, of cardinality m, the arcs

are not necessarily distinct.

ie. A = {<u, v> : u, v ^ N)

A digraph is a graph in which all the arcs are

directed, ie. the set of arcs is a set of ordered

pairs of nodes. A graph can be converted to a

digraph by simply replacing every undirected arc

by two directed arcs in opposite directions, ie.

replacing every unordered pair of nodes by its

eqivalent two ordered pairs of nodes. If (u,v) is

a directed arc then u is its initial node and v is

its terminal node.

A loop is an arc (u, v) with u = v. Two arcs

(ui,vi> and <Uj^,V::^) are parallel arcs if Ui = u^-

and vi = Vs. A graph is called simple if it

contains neither loops, nor parallel arcs.

A network is a simple digraph together with a real

valued function w defined for every (u, v) e- A.

The real number w^.^ is the weight of the arc

(u, V) .

Node u is said to be Isolated if neither an arc

(u, v) nor an arc (v, u) exists with v er N - <u).

A path (j t ^ v from node u to node v, in G, is an

alternating sequence of nodes and arcs, with

q,.,^ = (U = U, i, X.i 7 , U i Xj s:, Xj k ,

Ui,./.. r > = v), where x.i,~ - (u±r, u±<:,- i >) for

1 i r (k. qcwv^ can also be represented by the

node sequence, (u = Uii, U x j > , U i t t * i > = v).

A path in which all nodes (except possibly the

first and the last, called source and sink of the

path) are distinct is an elementary path. Ve will

denote an elen^ntary path from node u to node v

by P t ^ ^ , and the set of all elementary paths from u

to V by R,^^, ie. R^^ = {P'^^, P-'^^,). The

length or total weight of a path is given by,

d c j v - = f / i j . A cycle is a path for which the source

and the sink are the same node, ie q^,^. Node u is

said to be directly connected to node v if arc

(u, v) A. If there exists a path from node u to

node V, then v is reachable from u, disconnected

otherwise.

Define uRv if there exists path q,^^ and q-^,^, R is

an equivalence relationship. A network in which

all uRv is defined for all u, v ^ N is strongly

connected. Furthermore, the subnetworks

Gi = (Ni, {(u,v) I <u,v) e- A and u,v ^ Ni),

where Ni is an equivalence class under R, are the

strongly connected components of G.

A network is complete if every node u er N is

directly connected to every other node

V ^ N - <u} .

A network, G, is acyclic if no path in G is a

directed cycle, ie. G has no strongly connected

component. A graph with n nodes and m arcs is

dense if m is "large" compared to n and sparse

otherwise. The value of "large" depends on the

context, we shall assun^ that m and n are positive

and (m + n) = 0(m) for dense graphs and

(.m + n) = 0(n) for sparse graphs. If m < (n-1)

then clearly G is disconnected.

A connected network without cycles is called a

tree, equivalently a network is a tree if there

exists a unique path from any node u ^ N to any

node V ^ N - {u). Ve denote a tree by T. A tree

T is a spanning tree of network G if T is a

subnetwork of G containing all nodes of G.

A shortest path from node u to node v is a path

q,^^ such that d c ^ ^ i s a minimum over all paths from

u to V. Note that the number of arcs is

immaterial. Let I q,^^ I denote the number of arcs in

path (j c ^ ^ . A path with the minimum number of arcs

is arc shortest.

Theorem 1: If G is a complete network with n

nodes and m arcs then m = n(n-l).

Proof: By definition, there are n nodes each of

which is directly connected to all the other (n-1)

nodes, thus there are n(n-l) arcs. t

Carol lary 1.1: If G is a simple graph with n

nodes and m arcs and is undirected then

m (n(n-l) /2, and if G is a digraph then

m (n (n-1) .

Theorem 2: There exists an elementary path Pt^^

from node u to node v if and only if there exists

a path (Jt-zv,

Proof: By definition, if p^^ exists then q^-^

exists. Now suppose q,^^ is given, if q..^^ is not

elementary, then for every repeated node in q^^^

delete all nodes between the two instances of the

repeated node and one of the instances of the

repeated node, leaving a new path q^^. Continue

the process until some q^-^ is elementary. The

path p,^^ obtained from q^^ by the above process is

a reduction of q,^^. A reduction is not

necessarily unique. t

Theorem 3: The set of elementary paths R^^ from

any node u to any other node v in a complete

network G, is of cardinality IR^^I, where

n-2
IR^^I = (n-2)! H l/(n-2-i)!

1=0

Proof: By definition, an elementary path in a

complete network utilises at most (n-1) arcs or

has a maximum number of (n-2) intermediate nodes.

Furthermore the total number of paths in R^^ is

the grand total of total numbers of paths with i

intermediate nodes, where

i = 0, 1. (n-2).

Now, the total number of paths with exactly i

intermediate nodes is given by,

(n-2) Pi = (n-2)! /(n-2-i)!

Thus we have,

n-2 n-2
IR^.^1 = H (n-2)Pi = (n-2) I 2 7 l/(n-2-i)l

i=0 i=0
f

Theorem 4: There exists a shortest path from

node u to node v in network G if and only if there

exists at least a path g^^v, and furthermore all

such paths must not contain a directed cycle of

total weight of less than zero.

Proof: Let P^^ be the shortest path from u to v

in G, thus there is a path q̂ ^̂ = P̂..̂-. Now suppose

there exists a path q'^^ which contains a cycle of

negative total weight, then a new path can be

constructed in which this cycle is repeated a

number of times sufficient for d(q"^^) < d(P,^^)

contrary to assumption. Let q.^^ be a path from u

to V and suppose no path from u to v contains a

cycle of total negative weight. Now if P^.^ is a

reduction of q^^ then d(P^.^) (d(q,..,^). Thus the

total weights of a number of elementary paths

bound from below all total path weights, and since

there are a finite number of elementary paths,

then among them is a path Pwv such that

d(P,^s^) (d(q^^) for all paths q^^^. By definition.

iO

t

is a shortest path from node u to node v.

Corol1ary 4.1: There exists an elementary shortest

path Pcj.^, if there exists a shortest path q,^^.

Corollary 4.2: There exists a shortest path from

node u to node v in an acyclic network for every

node V reachable from node u.

Theorem 5: For any shortest path

P,^s^ = (u = ui , u^, , UK = v) each subpath

P'^^ = (u.i, uj-^i, , uj^,-) where,

1 (J ((J + r) (k is a shortest path from node

u.i to U j ^ r . Furthermore if P t ^ v i s arc shortest

then so are all its subpaths.

Proof: Suppose that there exists such a subpath

which is not the shortest path (arc shortest) from

node Uj to node uj-,-. But this contradicts the

assumption that P^.^ is the shortest path (arc

shortest) from node u to node v. t

Let V(G, ¥) denote a shortest path problem, where

G is a network and ¥ is a set of ordered pairs of

nodes between which shortest paths are to be

found. The definitions and the notations for a

variety of shortest path problems will be

discussed in section 6.

A solution to IT (G, ¥) is an assignment

o- : ¥(u, V) < ^ (P^^, d,^^)

Of an elementary path together with its total

weight to each element of ¥. If for some ¥(u, v),

P c j v ^ i s not defined, then

o- : ¥(u, v) <=P Co, a>).

o- will be detailed in sections 5 and 6.

An arc is optimal if it is utilised by a path in a

solution, non optimal otherwise. An arc (u, v)

is non-existant if u, v ^ N and (u, v) ^ A.

The set of all arcs emanating from a given node u

is the set of forward star arcs of node u, denoted

by FS(u), ie. FS(u) = <(u, i) I (u, i) ^ A). The

set of all arcs proceeding from a given node u is

the set of backward star arcs of node u, denoted

by BS(u), ie. BS<u) = < (i, u) I (i, u) A}.

The set of successor nodes of u is defined as

i V " = <v I (u, v) ^ A and ty X W .

The s e t of predecessor nodes of u is defined as

^"•N = <v I (v, u) ^ A and u ^ v) .

The set of adjacent nodes of a given node u is

defined as f-''N U N"^.

The indegree of a given node u is defined as

E' (u) = I ̂ -'N (u)l, and its outdegree is defined as

(u) = IN"^ (u)l.

By definition, a network is a simple digraph, ie.

it contains neither loops nor parallel arcs. A

network containing such features can be converted

to a standard network, as defined above, ,by simple

preprocessing. Consider the network in figure 1

in which there are parallel arcs between nodes 2

and 3, and also arc <4, 4) is a loop.

Figure 1: The numbers corresponding to the arcs
represent the weights of the arcs.

13

To convert this network to a standard network,

firstly all parallel arcs except one with the

smal lest weight have to be el iminated, secondly

the loop an node 4 has to be eliminated, by

converting- it to an arc connecting a dummy node 5

to the modified version of node 4 which contai ns

no loop.

All the arcs going into the original node 4 will

now go into node 5. The newly created, arc (5, 4)

has a weight equal to the weight of the eliminated

loop and all the arcs going out of the original

node 4 will go out of the modified node 4. Figure

2 shows the drived standard version of the example

network in figure 1.

Figure 2: The standard version of the network in
figure 1.

14

3 COMPUTATIONAL COMPLEXITY

For the generality, in this work a random-access

machine (RAM) model as suggested in, [AHHU 741, is

used for worst case analysis of the algorithms to

study their efficiency. A random-access machine

consists of a finite program, and a memory in the

form of an array of (MAXLENGTH) words, each of

which has a unique address between 1 to

(MAXLENGTH) and can store an integer (or a real)

number. It also contains a finite number of

registers, each of which can store an integer (or

a real) number. In a random—access machine a

single arithmetic, logical, fetch or store

operation is performed in one step. Far

simplicity, the algorithms are expressed in a

pascal/english based language; and are introduced

throughout the work in order to consider their

developments. However, the sophisticated

algorithms and also the mast efficient algorithms

are implemented using a pascal-run compiler on

either a VAX 11/750 with UNIX operating system, or

IBM 4341 with MTS operating system or prime

computers with primus operating system. The

corresponding cades are listed in the appendices.

15

In general, there are two methods of measuring the

running time of a shortest path algorithm.

(1) Analysis of average running time:

To evaluate an algorithm in this method,

first the algorithm is applied to a

diverse set of randomly generated

networks, where a random network is one

in which two nodes of a network are

selected randomly to form a new arc which

is to be added to the network. Then the

average of the running times is reported.

(2) Worst-case analysis:

In worst case analysis the running time

of an algorithm as an upper bound which

depends on the problem size Is reported.

In this work we shall use the worst case analysis

for the evaluation of every single source

algorithm, mainly due to the fol lowing two

reasons:

(a) Vorst case analysis guarantees that no

problem of a given size will take longer

to run than the bound given.

(b) Analysis of average running time is

difficult and the concept itself is

elusive, because it is not clear what a

random distribution of networks with

negative arc weights is.

However, in section 10 an analysis of average

running time far some of the best single source

algorithms is used.

Now consider a shortest path problem If (G, ¥).

The size of this problem can be defined in terms

of n =. INI, m = lAI and I ¥1 . But I ¥1 is a

function of n, thus we can seek time bounds

T(n,m) depending an n and m such that T(n,m) is

the time taken by a certain algorithm to solve a

problem of size (n, m) and no problem of this size

takes longer. These bounds can be expressed in

terms of n only, ie. T(n), since m = n (n-1),

[maximum number of arcs in a network with n

nodes]. But according to a random-access machine

definition each operation, of the types mentioned

above, takes one step then we can translate T(n)

as the number of repetition of an operation with

the highest frequency in the algorithm when

salving a problem of size n, or T(n,m) if the

problem size is expressed in terms of <n,m).

4 DATA STRUCTURE

It IS obvious that if the arc weights in a given

network are all integers, then the total weight of

a path is also an Integer, since the only

operation required in total weight finding is

addition, and the sum of integer numbers is an

integer. In real life problems arc weights are

usually integers and if not, then by multiplying

all the arc weights of the given network by an

appropriate number they can all be converted to

integers. In this work we will only consider the

net works with int eger a rc we i gh t s. For si mpl icity

we will also present the nodes by integers, ie.

N - {i I i = 1 , 2, . • . , h) . Beside Integer type,

we will also consider Boolean type or bit, which

can either have the value of true or false. ¥e

wi 11 al so consider more complicated types 1 i ke

arrays, lists, queues, etc. For futher

discussions on these types see [KNUT 73a],

[KNUT 73b], [AHHU 741 and IFOXB 781.

<a> Create AL 1 produces the empty array A;

<b) Retrieve (A. Index) takes as input the

array A and an index;

(0) i^tare (A. index, value) is used to enter

new index-value pair in array A.

An ordered, or a sequence, or a linear, list is

one of the most commonly found data objects. It

is either empty or can be written as

Ca 7 , as:, a,;) .

The permitted operations an ordered lists that we

are concerned with are as follows:

(1) Find the length of the list, n;

(ii) Read the list from left to right (or

right to left);

(Hi) Retrieve the i element, 1 (1 (n;

(iv) Store new value in i'-^"' position,

1 (1 s< n;

(v) Insert a new element at position i,

1 (i i n + 1 causi ng elements numbered

i, i + 1, , n to become numbered

i -hi, i +2, , n + 1;

(vi) Delete the element at position i,

1 i i i' n causing the elements numbered

i -f 1, i + 2, , n to become

numbered i, i -1-1, , n-1.

In the study of data structure we are interested

in ways of representing ordered lists so that

these operations can be carried out efficiently.

The most common way of representing an ordered

list is by an array where we associate the list

element a.i . with the array index i. This can be

viewed as a sequential mapping, since using the

array representation we are storing ai and

a<:x ... I into consecutive locations i and (i + 1)

of the array. Ve can also have access to the list

values in either directions by changing the index

values in a controlled way. Thus the above

operations can be carried out in a list, in a

constant amount of time.

A stack is an ordered list in which all insertions

and deletions are made at one end, called the top.

Given a stack S = (a i , a-z-, , a,-,} then ai is

said to be the bottom element and a.i is said to be

on top of element a<: x — i , 1 i i (n. The

restrictions on a stack imply that the first

element to be removed or deleted from a stack must

be the last element inserted in the stack. For

this reason stacks are also called Last-In-First-

Out, LIFO-lists. In figure 3(a) the value a-i was

the last element inserted into the stack and thus

will be the first to be removed. The value a,-, was

the first element inserted into the stack and will

be the last to be removed. The permitted

operations on stacks that we are concerned with

are as fallows:

(i) Create (S) produces the empty stack S;

(il) Add (i. S) inserts the element i into

the stack S, at the top position, and

returns the new stack S;

(Hi) Delete (S) removes the top element of

stack S and returns the new stack S;

(iv) Top (S) returns the top element of

the stack S;

(v) EmptyS (S) returns the value true if

stack S is empty, else false.

The simplest way to represent a stack is by using

a one-dimensi anal array of size n, denoted by

stacic (n) where n is the maximum number of

allowable entries. The first or the bottom

element in the stack will be stored at stack (1),

the second at stack (2) and the 1 at stack (i).

Associated with the array will be a variable, top,

which points to the top element in the stack.

A queue is an ordered list in which all i nsertions

take place at one end, the back, and all deletions

take place at the other end, the front. Given a

queue Q = (a-i , a,,-, , a,,) then a,~, is the back

element and a , i s the front element. The element

a(:i i) is said to be behind a.i , 1 (i (n.

A queue is also called First-In-First-Out, FIFO-

list. The- permi tted operations an queues that we

are concerned with are as fol lows:

(i) Create. CO) produces the empty queue Q:

(ii) AddO (i. O) adds the element i to the

back of the queue Q and returns the

resulting queue Q;

(Hi) DeleteO (O) removes the front element

from the queue Q and returns the

resulting queue Q;

(iv) Front (O) returns the front element of

the queue Q;

(v) EmptyO (O) returns the value true if the

queue Q is empty, else false.

A double ended queue (dequeue) is a queue in which

insertions and deletions can take place at bath

end points, front and back. In a dequeue

operations (ii) and (Hi) above can be extended to

the fol lowing:

(ii)' AddO (i, L. DO) which adds the element i

to the back of the DQ if L = back, and to

the front of DQ if L = front;

(Hi)' DeleteDO (L. DO) which deletes the front

element of DQ if L = front and its back

element if L = back;

Operation (iv) may also be extended to the

fall owl ng:

(iv) ' EndDO (L. DO) which returns the front

element of DQ if L = front and its back

element if L = back;

If on a given queue all operations except (Hi),

deleteQ (Q), can be extended to those on a

dequeue, then the queue is called an output

restricted dequeue, RDQ. The permitted operations

on a RDQ are (i), (ii)', (Hi), (iv)', (v). For

simpl icity we will sometimes refer to RDQ as

dequeue or double ended queue, since this is the

only form of double ended queue used in this work.

Figure 3 illustrates different types of lists.

(a)

TOP

BOTTOM

(b)

(c)

(d)

FRONT BACK

a
n

FRONT BACK

^1 ^2
a

n

FRONT BACK

^1 ^2
a

^1 ^2 n

Figure 3: Types of lists, (a) stack, (h) queue,
(c) dequeue, (d) output restricted dequeue

A node is a collection of data, a,, a.^, , a,-,,

and pointers or links, Li, L.K, , L,-,.

A linked structure is a collection of nodes

Interconnected by links. In a linked structure

node i contains data a.i and an address J in link

L i where J is the address of the next node in the

structure. A list can be represented by a linked

structure as well as sequential mapping. Figure 4

shows some types of linked lists, pointers are

used to show the links. Unlike a sequential

representation where successive items of a list

are located a fixed distance apart, in a linked

representation these items may be placed anywhere

in memory, ie. in a sequential representation the

order of the elements is the same as in the

ordered list, while in a linked representation

these two sequences need not be the same.

(a)

(b)

^1 ao •
^1 1 2

(c)

a
n

• \ /
V

(d)

Figure 4: linked representation
pointers are null (a)
single circular, (c)
double circular.

of lists, missing
single linear, (b)
double linear, (d)

In a single linear linked list, each node has a

painter to its successor node in the list. In a

double linear linked list each node has two links,

one pointing to its successor node and one t o i t s

predecessor node in the list. In a linear linked

list the successor of the last node and the

predecessor of the first node are null. In a

circular linked list the successor of the last

node is the first node and the predecessor of the

first node is the last node. A linear linked list

is accessed by means of a pointer to its front and

a circular linked list is accessed by means of a

painter to its back.

A stack can be represented by a single linear

linked list. An output restricted dequeue can be

represented by a single circular linked list. A

dequeue can be represented by a double circular

linked list. In this manner the operations on

stacks and queues can be carried out more

efficiently. Clearly this efficiency is at the

cast of additional memory space far the links,

which can be the dominating factor in same

situations.

A binary tree, BT, is a type of tree in which

every node has at most 2 branches or subtrees, le.

(i) 2, for all 1 ^ BT and also there is a

distinction between the subtrees on the left and

on the right of a node. The successor of a node

is either null or is a LSUB-NODB if it is on the

left and RSUB-NODE if it is on the right. We

define the level of a node by initially letting

the root be at level 1, then if a node is at level

i, then the roots of its subtrees are at level

i + 1. The depth of a tree is defined to be the

maximum level of any node in the tree.

Theorem 6: The maximum number of nodes on level i

of a binary tree is ' ' for i ? 1.

Proof: The proof is by induction. The root is

the only node on level 1, hence maximum number of

nodes on level i = 1 is 2'-' = 1. Now suppose for

a general value j where 1 i j (i, the maximum

number of nodes on level j is 2^ '. Then by

assumption, the maximum number of nodes on level

i-1 is 2-'- Since each binary tree has a

maximum outdegree of 2, then the maximum number of

nodes on level i is 2 times the maximum number of

level i-1 or 2^"'.

29

The jnaximum number of nodes in a binary tree of
k

depth k is given by, 2'-' ' ' = 2'= - 1
i=l

(geometric progressian). t

Theorem 7; let no and n:z be the number of the

nodes with B'- = 0 and £"' = 2 in a binary tree BT,

then n,:, = n::;;: + 1.

Proof: let n-i , n, and b be the number of nodes

with B'~ = 1, all the nodes and the number of

branches in BT. We have,

n - n,:, + ni + n .-.^ <I)

since all nodes in BT have E'" i 2.

Clearly n ^ b -h 1 (II)

since all the nodes, except the root, in BT have

E = 1. All branches in BT emanate from a node

wl th ei ther

E- = 1 or E- = 2, thus b = n, + 2n::s (III)

from (II) and (III) we get

n = 1 + n-, + 2n,,: (IV)

and from (I) and (IV) we get

no = 1 + 73;.-̂ . f

A sequential representation of a binary tree is

numbering the nodes in the fallowing manner,

number the root by 1 then number those nodes on

30

level 2 and so on. Nodes on any level are

numbered from left to right. Now the nodes can be

stored in a one dimensional array, BTREE, with the

node numbered 1 being stored in BTREE (i). The

fallowing theorem enables us to easily determine

the locations of the predecessor, LSUB and RSUB

nodes of a given node.

Theorem 8: If a complete binary tree with n nodes

<ie. depth Log-,:n + 1) is represented

sequentially then for any node with index i,

1 i' i i' n we have:

(i) predecessor of node i is at i/2_ if

i /: 1. If i = 1, then i is the root and

has no predecessor.

(ii) LSUB-NODE of node i is at 2i if 2i x< n.

If 21 > n. then i has no LSUB-NODE.

(Hi) RSUB-NODE of node i is at 21 + 1 if

(2i + 2) (n. If (2i + 1) > n, then i

has no RSUB-NODE.

Proof: First we prove (ii) by induction, for

i = 1 clearly LSUB-NODE is at level 2 unless n < 2

in which case 1 has no LSUB-NODE. Now assume that

for all J, 1 i' J i' i, LSUB-NODE of J is at 2j .

Then the two nodes immediately preceeding LSUB-

NODE a + 1) in the representation are the RSUB-

NODE and the LSUB-NODE of i. The LSUB-NODE of i

is at 2i, hence the LSUB-NODE of (i -h 1) is at

(2i +2) = 2(i + 1) unless 2(i + 1) > n in which

case (i + 1) has no LSUB-NODE. (Hi) is the

immediate consequence of (ii) and the number of

nodes on the same level from left to right. (i)

follows from (ii) and (Hi). t

In this work we sometimes, without loss of

generality, assume that the root node is at level

zero. Figure 5 illustrates the computer

representation of a binary tree.

a full binary tree of depth 3

B

D

sequential representation

Figure 5: A binary tree with its sequential
representations.

A heap is an abstract data structure consisting of

a collection of items, {ai , a-..,-,, , a,-,), each

of which is associated with a real valued data.

First we will consider a heap in terms of a binary

tree and then expand the definition for other

types of heaps. The items are stored at the nodes

of a special kind of binary tree. For every node,

the value of the item is less than or equal to the

values of the items stored at the immediate

successor nodes (if such exist) in the tree.

Thus, numbering the nodes in the usual way for a

binary tree and assuming, for simplicity, that n

(number of the items or nodes), is add, ie.

a.T ^ <3i-;.i, <3;E.T. 7 far 1 i i (n/2, then this

defines a heap, Na orderi ng is implied between

the items associated with two nodes if one is not

the predecessor of the other, indirectly or

directly. Each subtree of heap is also a heap.

Node 1 is the root of the heap which is at the top

of the tree and its corresponding item is of

minimum value. We can represent a heap

sequentially as a one dimensional array, see

figure 6 below. The operations on heaps that we

are concerned with are as fallows:

<."i.> Makeh (h) which constructs the empty heap

h;

(ii) G e t A (S. h) which takes the elements of

set S as input to heap h;

(Hi) Addh (i. h) which inserts the new data

i to heap h;

(iv) Delete (i, h) which deletes the data i

from heap h;

(v) Get mi n (h) finds and returns the data of

minimum value from heap h, and returns

null if h is empty;

(vi) , Mergeh (hi . h---) which returns the heap

farmed by combining d i s j o i n t heaps hi and

ij;.;; and destroying hi and h:.-;^. The new

heap will have root with

a value equal to that of hi if the

value of the root of hi is smaller

than that of hs, otherwise to that

of h::„.

(a)

(b)

6 9 12 16 n

Figure 6: (a) Tree representation of a heap, (b) The
computer representation of a heap.

Combining operations (i) and (ii) and calling it

heap-former, then the fol lowing procedure, coded

in standard pascal, will construct a heap out of a

given binary tree. In the procedure below n is a

global integer represent!ng the number of the

elements in the tree, and BINTRE is a one

dimensiana 1 array type.

1 Procedure heapformer (VAR BT : BIHTRE);
2 VAR
3 s, j , nn : integer;
4 dum : integer;
5 Begin
6 s ;= 0;
7 nn := ((n + l) / 2) - 1;
8 j nn;
9 while (n <> 0) do
10 Begin
11 i f (B T (2 * j) > BT((2»j) + D)
12 then
13 s := 2*j + 1
14 e l s e
15 s := 2 * j ;
16 i f (B T (j) > B T (s))
17 then Begin
18 dum := B T (j) ;
19 B T (j) ;= B T (s) ;
20 BT(s) := dum
21 end;
22 i f <(2*s) > n)
23 then Begin
24 nn ;= nn - 1;
25 J := n
26 end
27 end {whil e)
28 end; {heapformer)

In steps 11 to 21 the data of two successors of a

node i, ie. LSUB-nade(i) and RSUB-node (i) are

compared and if the smaller data is less than

that of the node i then the nodes are swapped.

37

In this procedure the initial root of the binary

tree is sifted dawn until it finds its proper

place. If a node of a heap were removed, we could

make the farmer last element the new initial root

of the corresponding subtree, reducing n by 1, and

sift the just move element up or down as

appropriate. Sorting the elements of a heap can

be done by successively removing the root,

replacing it by 03, and then sifting it down to

restore the heap. This sorting scheme is called

heapsart. In a heapsort, the depth of the heap is

O(logn) and n elements must be removed, then the

total time to reform the heap is O(nlogn). The

procedure can be streamli ned by eliminating

superfluous comparisons.

Theorem 9: The procedure heapfarmer forms a heap

in linear time.

Proof: Let f (k) be the maximum number of

swappings necessary to form a heap out of ("2""' '->

elements. Clearly f (1) = 0. Before dealing with

node 1, subheaps are formed from the subtrees

having nodes 2 and 3 as their roots. By

definition forming each of these subheaps takes at

most /(k-1) swappings. When the two subheaps are

merged, all swappings take place along a single

path from node 1 to some terminal node with

E" = 0. Since the number of nodes on this path is

k, at most k-1 swappings are required for the

final merge (normal ly only a few swappings are

required). Thus removing a node from a heap and

then restoring the heap structure is an O(logn)

process, at worst. Therefore to form a heap,

f(k) = 2 f(k-l) + (k-1), k } 2 where f (1) = 0 and

f (k) = 2''-l-k, we require fewer than one swapping

per element. If the number of elements is between

2'--l and 2'-'-l, then the number of swappings to

form the heap is at most,

f(k+l) = 2 f (k) -h k = 0(f (k)).

And this proves the linear time claim in general,

f

Suppose in a given heap r values change. For the

data whose new values are less then the heap's

last element, put the new values in their

respective former position and for the others put

their values at the bottom of the heap and

implicitly insert co in their respective former

position. Finally after all the above operations

are done, reform the heap. Reforming a heap after

r elements change takes 0[min (n, r logn)l time at

worst.

Defining a d-tree to be a tree in which each node

has at most d successors, then a d-heap is a d-

tree containing one item per node arranged in heap

order, see figure 7 below:

Figure 7: a 3-beap with nodes numbered as in binary
tree, ie. top to bottom, left to right

Clearly the operation (v) has a running time of

0(1). Operations (Hi) and (iv) have a running

time of O (dlog.:,in), where n is the number of nodes

in the tree, since the depth of a d-heap is log.jn.

In d-heaps parameter d allows us to choose the

data structure to fit the relative frequency of

the operations, as the proportion of deletions

decrease, we can increase the value of d, saving

time on insertion. Due to regular structure of a

d-heap we do not require e x p l i c i t links to

represent it. If the nodes are numbered in the

manner explained above then the predecessor of

node X is (x-l)/d and the successors of x are

the integers in the interval,

[d(x-l) + 2 . . min <dx + 1, n) 1 . To implement a

d-heap we use an array of positions from 1 to the

maximum size of a heap. We also stare an integer

giving the size of the heap. We also associate an

index h(i) to each item in the heap to give its

position in the heap. Operation (vi) is rather

difficult and time consuming on d-heaps. The

operation d-heapformer, for forming a d-heap,

analogous to heapformer, far forming a 2-heap,

runs in linear time for 2 i d i n-1.

A fibonacci heap or f-heap is a collection of

item-disjoint heap-ordered trees. Fredman and

Tarj an, [FRTA 851, used the following

representation of f-heaps.

Each node has a pointer to its predecessor node or

a special node null if it has no predecessor and a

painter to one of its successor nodes. The

successors of each node are doubly linked in a

circular list. Furthermore an integer is

associated with each node indicating its number of

successors, E"", and a bit indicating whether the.

node is marked or not. The roots of all the trees

in the heap are doubly linked in a circular list.

A heap is accessed by a pointer to a root

containing an item of minimum value, called

minimum node of the heap, A minimum node of null

denotes an empty heap. Each node has space for

its data, four pointers, an integer indicating

number of its successor and a bit. Figure 8 shows

a f-heap represented in this manner.

Ml 12̂ T 16 18

0^2 < / 0 2C F

PI P2 d B P3 P4

PI: Pointer to predecessor In the tree;
P2: Pointer to one successor 1n the tree;
P3: Pointer to predecessor In the doubly circular linked l ist;
PJ: Pointer to successor In the doubly circular linked l i s t ;
E : Number of the successors;
d : The value associated with a node;
- T I f the node Is labelled
^ : on • p otherwise.

Figure 8: f-heap representation.

The double linking of the lists of roots and the

successors of a node makes deletion from such a

list possible in 0(1) time and the circular

linking makes the merging passible in 0(1) time.

A bucket is a list of nodes whose data fall within

a given range, ie. a bucket p is a list of nodes

i whose data a (i) fall within the half open

interval [pz, (p + l)z),

ie. pz v< a(i) < (p + l)z.

In this work we will represent a bucket by double

linear linked lists. Associated with each node k

in bucket p there is a data a(k), two pointers and

other information which we will explore later in

section 9. Each data k, except the last, in

bucket p has a pointer pi (k) to its successor in

the bucket. Each data k, except the first, has

also a pointer p2(k) to its predecessor in the

bucket. To access the buckets we store the heads,

address of their respective first elements, of the

buckets in a master list, then the master list

contains a painter to the memory location of the

first element of each bucket. The computer

representation of heaps and buckets will be

explained in wore detail in section 9, when

required.

5 NETWORK AND TREE REPRESENTATIONS

There are several ways of representing a network

G = (N, A) in a computer, and the manner of

representation directly effects the performance of

a 1 gori thms applied to the net work. Here we will

give two such methods:

(a) Adjacency Matrix:

The adjacency matrix representing a

network G is a 2-di mens i anal n * n array

V such that, the element (i, j) of the

array, ie. W(i, j), has the value w±.i,

the weight of the arc (i, j), if

(i, j) ^ A, and oo otherwise.

Any algorithm applied to an adjacency

matrix would require at least 0(n-^'') as

there are n(n-l) elements to be

examined. Storing such a matrix will

also require 0(n^~} space. Therefore such

a representation is excessive for

sparse networks in which a large fraction

of the elements of W are <», hut may be

considered as a good representation,

because of its simple structure, for

dense networks.

(h) Adjacency Lists:

The most popular way of representing a

network G in a computer is to use linked

list structure. In this method, all the

forward star arcs of a node are stored

tog-ether and each arc is represented by

recording only its terminal node and

weight. A pointer is then kept for each

node which i n d i c a t e s the block of

computer memory locations for the forward

star arc of that node.

In this manner of representation, we need

(n + 2m) space or units of memory and

0(n + m) time for examining all arcs. The

advantages of this method over adj acency

matrix special ly for sfiarse networks are

obvious. This method of representation

is also known as forward star

representation, and if the forward star

arcs of each node are ordered by

ascending length, then the method is

47

called sorted forward star representati on

form.

In this work we will adopt both these methods for

network representations. Figure 10 illustrates

the storage of the network shown in figure 9, in

an adjacency matrix and also in a sorted forward

star form.

Figure 9: numbers associated with the arcs represent
the weights of the arcs

(a)

TERMINAL NODE

INITIAL
NODE

1 2 3 4 5

1 CO 4 6 7 CO

2 CO CO CO 00 2

3 CO 3 CO 5 9

4 CO 00 CO <o CO

5 CO CO CO 6 CO

(h) null painter means no forward arcs

NODE

1

2

3

4

5

POINTER TERMINAL NODE

1

4 4

5

8

WEIGHT

null pointer means no forward arc

Figure 10. network representation, (a) Adjacency
Matrix, (b) sorted forward star

49

One of the most common ways of representing a tree

in a computer is to think of the root, s, as the

highest node in the tree and all the other nodes

hanging below the root. The tree is then

represented by keeping an upward pointer list

containing the predecessor node of every node in

the tree, except the root. We will assume that

^'•'N(s) = s. Associated with a tree we will also

define a list, indexed by the node numbers,

containing a label, d (v), for each node v in the

tree, whose value is the length or total weight of

the unique path from s to v in the tree. In some

implementations d(v) is not necessarily the

correct length but an over estimate that will

eventually converge to the correct length.

If a node, i, does not belong to the tree, then

its label is set to <», i e . d<i> = M, and this

indicates that node i is not yet reached. We will

also assume that d(s> = 0.

Figure 11, below, illustrated the computer

representation of a tree using two linear lists,

both indexed by the nodes.

50

NODE "N

3

4

5

6

7

11

21

10

22

Figure 11: Computer representation of a tree

e. PROBLEM CLASSIFICATION

In 1957 MINTY. [MINT 571, made the fallowing

suggestion far finding a shortest path between a

pair of nodes, source and sink, in a given

network:

Construct a copy of the network using pieces of

strings with lengths proportional to the weights

of the arcs. Then place the source node in one

hand and the sink node in the other, to stretch

and determine the shortest path as the path with

tense strings.

Since then there has been considerable development

in solution methods far a variety of shortest

paths problems. In general the shortest path

problems can be divided into four groups, see

figure l l . l b e i o w ;

The Shortest Path Problem

(iii)

all-to-one

(ii)

one-to-all all-to-all one-to-one

Fissure ^^ .^: problem Classification

Each of these problems for a given network is

defined as fallows:

<i) one-to-ane problem is to find a shortest

path from a given source to a given sink;

(ii) one-to-all problem is to find the

shortest path from a given source to

every other node;

(Hi) all-to-one problem is to find a shortest

path from every other node to a given

si nk;

(iv) all-to-all problem is to find a shortest

path between every pair of nodes.

Up to date, there is no efficient algorithm for

solving one-to-one problem in a given network

without having to find the shortest paths from the

source to at least some of the other nodes, if not

all. All-to-one problems and ane-to-all problems

are directional duals of each other, reversing the

directions of the arcs in G converts one to the

other. Therefore we will consider the soluti on

methods for (ii) which will Include (i) and (Hi).

We will refer to these solution methods as the

single source algorithms. Furthermore, for

54

solving an all-to-all problem we can adapt an

efficient single source algorithm and apply it to

every node in the network, ie. apply the algorithm

n times to the given network, each time having a

different source node. We will refer to the

specific algorithms designed for solving all-to-

all problems as all source algorithms. As we will

see same of the single source algorithms used to

solve all-to-all problems, as explained above, are

more efficient than mast of and as efficient as

the best of all source algorithms. Therefore in

this work more emphasis is put on single source

a 1 gori thms.

Extending our shortest paths notations for one-to-

all and all-to-all problems,

In one-to-al1 problem the source node, S, is

distinguished, then

¥„n = <(S, V) I V ^ (N - <S})}

and this can be abbreviated to ¥m - N - <S}

since s is distinguished. In all-to-all problems

all node pairs, except nodes paired with

themselves,, are considered, then

= {(u, v) I u. V ^ N, u ?i v} .

Thus a shortest path problem can be stated as

TT(G,s) if it is an one-to-all problem and If (G) if

it is an all-to-all problem, since the source is

understood.

Furthermore we will denote the weight of a

shortest path from a source node to a given node v

by dv- i - n a one-to-al 1 problem, since the source is

distinguished and d.̂ .̂ -- in a all-to-all problem when

the source node is u.

56

7 SINGLE SOURCE ALGORITHMS

The best algorithms known far the one-ta-all

problems concatenate arcs to subpaths in order to

find new paths. After obtaining a new path its

total weight is compared to that of the current

shortest path and if it is smaller, then the new

path becomes the current shortest path. When the

current shortest path cannot be improved any mare

then it becomes the shortest path.

Consider a network G - (N, A) with no negative

cycles, in a one-to-all problem with a source node

s, clearly dm = 0. Far each node v, v s, there

must be some final arc (u, v) in the shortest path

from s to V. Whatever the identity of u, it is

certain that d-^ = d,_,, + W^,,.^. As a result of

theorem 5, section 2, d,.,, i s the weight of the

shortest path from s to u. This is called the

principle of optimal 1ty. But there are only (n-1)

number of choices foi~ u. Clearly u must be a node

for which (d,.,, + ¥,..,^) is the minimum. Therefore

the weights of the shortest paths must satisfy the

fol lowing system of equations:

d.. = 0

dv. = min (d,., + W,,s.} (v ^ N, u s)

U^iV

this system of equations was first formulated by

Bellman, C BELL 531, and we will refer to them as

Bellman's equations.

As a result of theorem 4 and theorem 5, section 2,

we can conclude the following:

Suppose di, d:::i, , d r , satisfy Bellman's

equations in a network G - (N, A) with no negative

cycle, then there exists a tree in G, rooted at

the source with exactly (n-1) arcs, such that the

path in the tree from the root to each node is the

shortest path. We will refer to such a tree as

the minimum tree or the shortest path tree.

Now let us consider the uniqueness of a finite

solution to Bellman's equations.

Theorem 10: If a network G = (N, A) contains no

nonpositive cycle and there is a path from the

source to every other node, then there is a unique

finite solution to Bellman's equations.

Proof: let d,, d.v,?, , d,-, be the shortest path

from the source to all the other nodes in G, and

let d' I , d':.;v, , d ' be any other finite

solution to Bellman's equations, such that

d ' d., for some i.

d'l, d , d',-, represent the weights of some

paths, not necessarily the shortest paths in G.

Accordingly, if d.i d' i it must be the case that

d'i > d.i. Now choosing a node J such that

d'j > d.i, but d'l.: = dk, where (k, j) is an arc in

the minimum tree of G (there must be at least one

such arc since d'„, = d^,}. Then d',,- > d',< -/• Wk j,

contrary to the assumption that

d'i, d's, , d'r, satisfy Bellman's equations.

Therefore there is a unique finite solution to

Bellman's equations. t

Therefore solving a one-to-al 1 problem in a given

network G = (N, A) is equivalent to finding a

minimum tree of G rooted at the source. We will

denote such a tree by:

Ta, = (Nr, Ar>.

To formulate a one-to-al1 problem as a linear

programming model consider each of the Bel 1 man's

equations.

ds.. - min <d,.., + W,^,^} (j)
U ?i V

This gives a system of (n-1) inequalities, that is

far a fixed v,

i d.., + W,.,^ (II)

far u = 1,2, , (V - 1). (v + 1), , n

Conversely, if di , ds: , d^~., , d-^-*-1 , , d,-i

are given fixed values and d^ is maximised subject

to (II), then (I) is satisfied. This suggests the

fal lowing linear programming problem,

maximise ds: + d s + + d,-,

subject to

di = 0

and dv- - d,.,, i V,..,-^

for u - 1, 2, , n

V = 2, 3, , n

and u V

However, Bellman's equations imply implicit

functional relationships, that is each shortest

path weight is expressed as a non linear function

61

of the other shortest path weights. Due to this

reason Bellman's equations are not solvable as

they stand, but there are methods for overcoming

such difficulties which will be considered in the

remainder of this part. Furthermore in theorem 10

we required that the network must not have

nonpasitive cycles, in order to have a unique

finite solution to Bellman's equations, but the

computational procedures that we consider here are

actually effective for networks which contain no

negative cycles. That is, although the solution

to Bellman's equations is not unique, the

computation will terminate with the correct

solution.

We now develop a basic algorithm for solving one-

to-all problems to which all known algorithms can

be related.

Let d and f-'N be two n-element arrays defining in

some algorithm. The i*'"' element of d, d(i),

contains the weight of same path from the source

to the node, i «=• N, and the corresponding element

of '"W, ''iirCi>. contains the predecessor node of i

an that path. If at the termination of algorithm

d(i), for all i «= N, are the shortest paths then

the solution is correct. Then the pointer chain

in '-•JIT will trace back a shortest path from every

node i to the source node.

Now let [IMPROVE (A)! be a property such that,

[IMPROVE (A)]

B3 (i,j) ^ A, such that d(j} > dd) + V^.i.

[IMPROVE (A)] is true if there is an arc in A

which can be used to reduce some element of d.

Theorem 11: Suppose d(i) is defined for all

i «=- N, such that d(i) = d(Pi), where F.i is some

finite elementary path from source to node i, then

[IMPROVE (A)l is false if and only if dd) is a

shortest path to i far all i ^ N.

Proof: Suppose [IMPROVE (A)l is false and assume

that there exists some node u with a shortest path

of d' (u) such that d(u> ;^ d'(u).

Clearly d(u) < d' (u) cannot be true, since it

implies that there exists a path to u with a

weight less than the weight of the shortest path

to u. Then d(u) > d' (u), and this implies that

d' (u) is defined, ie. d'(u) > ĉ , and hence there

must be a path.

63

P^., (s, ii, i:r,::, , ib:, u) such that

d' (u) = d(P.,). Now let i.,- be the first node in F....

such that d(ij) > d'(ij), where d'(i.,) is the

weight of a shortest path to node ij. Clearly

i.i ^ s. ' Thus, d(ij) > ddj-i) -h W (i . i i j).

[W(A, B) - lî îev.-? but this contradicts the

assumption that I IMPROVE (N) J is false.

Now suppose d(i) is a shortest path to node i, for

all i <=- N. Then if [IMPROVE (A)! is true, then

there is an arc (i, J) such that

d(j) > d(i) + Vi. J, implying a path Pj from s with

d (P.i) less than the weight of the shortest path

from s to node J, which cannot be true.

Therefore [IMPROVE (A)] is false if and only if

d(i) is a shortest path to node i for all i < ^ N.

f

As a result of theorem 11 we can write a basic

algorithm which may be considered as the

underlying structure in all labelling algorithms.

We will refer to this algorithm as labelling

algori thm.

64

Algorithm l a b e l l i n g ;
Step 1 { i n i t i a l i s e d)

f o r i := 1 to n do
begin

d (i) := CO;
•̂̂ •N(i) := 0

end;
d (s) ;= 0;
f^'II(s) := s;

Step 2 { s e a r c h and update)
while CIMPROVE (A)] do
begin

for some a r c (i , j) s a t i s f y i n g [IMPROVE (1)1 do
begin

d (j) := d (i) + V i j ;
f'II(j) i ;
end;

end;
end.

d(i.) is the weight of some path from s to node i,

for all i e- N when d(i) is the weight of a

shortest path then this path is elementary. The

algorithm enumerates elementary paths in some

sequence of sufficient length to guarantee that

shortest paths have been found far every node. A

search for an arc (i, j) for reducing d(j) will

always succeed until d(j) defines the weight of

the shortest path to J for all J ^ N. In Step 2

of the labelling algorithm d(i) is the weight of

some finite path from s whose last arc is

(^••^•N(i), i).

Theorem 12: Labelling algorithms terminates if

and only if array d contains the weights of the

shortest paths from s to every other node.

Ecnn£: The algorithm terminates if [IMPROVE (A)!

is false, which in turn implies that d contains

the weights of the shortest paths from to every

other node. Now if the shortest paths to every

node is defined in d, then it is clear that d(i)

is the weight of some elementary path. But there

is finite number of such paths in any finite

network, and each iteration reduced same d(i),

then termination must occur. t

Clearly if a network contains a negative cycle,

then the property [II>IFROVE (A)] will always be

true and hence the loop in Step 2 will never halt.

Therefore the algorithm will never terminate.

Although this algorithm is fundamental, but it is

not very useful. Firstly the algorithm will not

terminate if the network contains a negative cycle

and secondly and more importantly it does not

outline how [IMPROVE (A)! is evaluated.

Operations required for evaluating [IMPROVE (A) J

can be divided into two categories, scanning arcs

and searching nodes. Scanning an arc (i, j > «=• A

is checking whether or not the inequality

d(j) > d(i) + Vij holds and if it holds modifying

the labels of node J by setting:

• d(j> := d(i) +

Searching node 1 er N is scanning every forward

star arc of node i.

The algorithms which are based on the labelling

algorithm developed above are called labelling

algori thms.

According to the manner of searching the labelling

algorithms can be classified into two:

1. label correcting algorithms

2. label setting algorithms.

Both these methods start with a tree

TG - (Nr, AT), such that Nr = -Cs} and Ar - 0. A

label correcting method always updates arcs in Ar

in a manner that replaces or shortens the weight

of the paths from s to every other node in T, but

d o e s not guarantee that the new path is a shortest

path, until the algorithm terminates. A label

setting method augments N-r and A-r respectively by

one node i tsr N and one arc (i, J) tsr A at each

iteration in such a manner that i t=" N"'" and

J ^ N-NT, and the unique path from s to i is a

shortest path in G. A label setting method

terminates when all arcs in A have their initial

nodes and terminal nodes in Nr. Ve will consider

these two general classes of labelling algorithms

separately in the next two sections.

8. LABEL CORRECTING ALGORITHMS

An obvious way of evaluating [IMPROVE (A)] of

labelling algorithms, section 7, is to use

exhaustive searching. Algorithms that use such

searching are called label correcting algorithms.

This method was first suggested by Ford,

[FORD 561, and subsequently details were worked

out by others including Bellman, [BELL 581, and

similar results were published by Moore,

[MOOR 591.

Ford's algorithm is probably the earliest shortest

path algorithm to be published.

In Ford's algorithm, each arc (1, J) i s scanned In

turn or examined for the property

d(j) > d(i) + I/x J . If no such arc is found then

this Implies that [IMPROVE (A)] is not true and

hence the algorithm halts. Otherwise any arc for

which the property holds may be remembered for use

in updating the paths.

Algorithm Ford;
begin
Step 1 { i n i t i a l i s e }

f o r 1 :- 1 to n do
begin

d<i) := «>;
p N (i) 0

and;
d (s) ;= 0;
P'NCs) := s;

Step 2 {se a r c h and update)
repeat

s e a r c h . f o r an a r c (i , j) s a t i s f y i n g [IMPROVE (A)]
i f (the s e a r c h succeeds) then
begin

d<j) := d (i) + V i j ;
f^'N(j) := 1

end;
u n t i l the s e a r c h f a i l s ;

end.

The proof of correction and termination of Ford's

algorithm is the direct result of theorems 11 and

12, section 7.

With a sensible search strategy for examining arcs

a, j) e . A to evaluate [IMPROVE (A)l, Ford's

algorithm has a time bound of O(n-), see [DERY 691

and [YENJ 701. However the algorithms can be

exponential under very simple search strategies as

shown by D B Johnson in, [JOHN 771.

70

But using a search strategy which retains same

information from previous searchs, like

remembering the point at which the last search

left of is sufficient to yield an 0(n--') algorithm.

To develop algorithms with good bounds we first

consider search strategies which are potentially

exhaustive.

Let found <f^ [IMPROVE (A)], then it will hold on

termination of the following search:

found := f a l s e ;
repeat

s e l e c t (i , j) e: A;
i f (d (j) < d (i) + V i j)
then

found i = t r u e ;
u n t i l ((found) or a l l a r c s i n A have been s e l e c t e d) ;

Now we can use this searching scheme directly in

Ford's algorithm, since testing on found can

determine if the search succeeded. The updating

is carried out only if and immediately after found

becomes true. Now by letting A' denote the set of

arcs which have been examined for [IMPROVE (A)]

and moving the updating operations into the search

loop we get:

s t e p 2 { s e a r c h and update)
A' := {) ;

repeat
found ;= f a l s e ;
while not (found) and (A - A' {)) do
begin

s e l e c t (i , j) e A;
i f (d (j) > d (i) + V i j) then
begin

found := true;
d (j) ;= dCi) + V i j ;
p^ir(j) := i

end
end;

u n t i l not (found);

The correctness and termination of this algorithm

is the direct result of theorems 11 and 12,

section 7, if choosing (i, j) e- A is a finite

process which, when repeated, eventually chaoses

every arc in A.

Now consider a sufficient bound B for some rule of

choice so that every arc will be chosen within B

choices. Again with B defined as above, theorems

11 and 12 will hold for Ford's algorithm with the

following refinement:

s t e p 2 { s e a r c h and update)
repeat

found := f a l s e ;
count 1;
while (count < B) do
begin

choose (i , j) e- A;
i f (d (j) > d (i) + W i , i) then
begin

found ;= true;
d (j) := d (l) + V i , ,
^»U(j) := i

end;
count ;= count + 1

end;
u n t i l not (found);

To find a sufficient value for B, let the rule for

choosing (i, j) e: A be, choose a r r o > w h e r e

a = (i, j) A and, in some order

A = (ai , a.^, , am). The first m choices will

be exhaustive, so B = m is sufficient under this

rule of choice. Let us rewrite the inner loop

once mare using these ideas. In addition we

introduce a variable pweight which counts the

number of entries to the inner loop, initially

setting pweight := 0 then the inner loop becomes:

pweight := pweight + 1;
found f a l s e ;
count := 1;
while (count < m) do
begin

(inn) (i , j) := a
i f (d (J) < d (i) + V i j) then
begin

found ;= true;
d (j) := d (i) + V i j ;
'^'N(j) := i

end;
count := count + 1

end;

i t i s c i e a r - that theorems 11 and 12 hold for

Ford's algorithm in which step. 2, is replaced by

the following:

Step 2 { s e a r c h and update)
repeat

inn;'
u n t i l not (found);

and the variable pweight is Ignored. To bound the

outer loop define the property,

R = (d(i) is the shortest path length from two

to 1, for all 1 for which there exists a shortest

path Pi such that I Pi I i' pweight).

Theorems 13: If d(i) defines the shortest paths

for all 1 ^ N, then I Pi I i pweight.

Proof: We only need to cansi der nodes i such that

the arc shortest path Pj. has exactly (pweight + 1)

arcs. By assumption, for some such path

Pi - (s = ii, i , 2.,,,, i), it is truG that

d(i,.») is the weight of the shortest path to so

the inner loop, inn, will set (d^) to the weight

of the shortest path to i and "••Nd) to i ^ , , since

it tests every arc. t

Theorem 13 and the preceeding discussion suggest

a goad exhaustive search in Ford's algorithm as

fol lows:

Algorithm Ford with refinements;
begin
Step 1 { i n i t i a l i s e) ;

f o r i:= 1 to n do
begin

d (i) : = CO;
f'N(i) := 0

end;
d (s) ;= 0;
f'N(s) ;= s;
Pweight ; = 0;

Step 2 { s e a r c h and update)
repeat

inn;
u n t i l not (found) or Pweight i (n-1)

end.

In this algorithm two tree functions predecessor

and length are only used and, it runs in time

proportional to the depth t of a shortest path

tree of least depth.

Theorem 14: The algorithm terminates in 0(tm) if

f,f.: is defined far nodes in G and in 0(nm) if i s

not defined far same node in G.

Proof: The proof of this theorem is a direct

result of theorems 11 and 12 and also the fact

that the maximum number of arcs in a path is

(n-1). t

This is one of the best results known under an

exhaustive search strategy. Deleting the variable

(found) so that the outer loop terminates when

pweight } (n-1), then the resulting algorithm

leads to Bellman's algorithm, [BELL 581, which is

a derivation of Ford's algorithm, [FORD 561, with

explicit iteration indices.

Bellman's algorithm;
Begin

f o r i := 1 to n do
begin

d (i) := «>;
P'N(i) := 0

end;
d (s) := 0;
-^'Ks) -.^ Si
f o r K := 1 to (n-1) do
begin

f o r i := 1 to n do
f o r J := 1 to n do
i f (d { j) > d (i) + V i j) then
begin

d (j) := d (i) + V i j ; { s earch and
f'N(j) := i r e p l a c e)

end
end

end.

In search and replace step af Bel 2 man's algorithm

every passible correction, ie. i, j ^ N and

<i, J) t= A or (i, J) «^ A, is examined and this

step is repeated Cn-l) times. Thus the algorithm

always runs in OCn'-"') since there are n<n-l) such

possible corrections. (i), for some node i,

undefined can only be detected if a negative cycle

on a path to node i includes s and this can be

detected by testing d(s> against zero after

termination.

An obvious improvement in this algorithm is that

the forward star arcs of a node i with d(i) = <»

are not required to be scanned in the search and

replace step. This improvement can be. made by

replacing the search and replace step by the

fal 1 owing:

f o r i ;= 1 to n do
i f (d (i) t 00) then
f o r j := 1 to n do

i f (d (j) > d<i) + V i j) then
begin

d (j) := d (i) + V i j ;
'='N(j) := i

end;

This improvement also indicates that the order in

which forward star arcs of nodes are examined is a

major factor in the efficiency af the algorithm.

As 3 result of this observation it can be

concluded that if each arc (i, J) ^ FS(i) has

been scanned and found to satisfy the condition

d(i) + Wi.j d (J) then it is not necessary to scan

these arcs until d(i) decreases. Based upon this

observation the algorithm can further be improved

by only examining the forward star arcs of the

nodes which have not been scanned since their

label were last changed. This can be accompl ished

through the use of a boolean set, f, corresponding

to set N. Initially the boolean element of each

node i, f(i), is set to false until its label is

changed. The boolean element of the source node,

s, is set to true. Then when the label of a node

is changed, its boolean element is set to true

until all its forward star arcs are examined and

then set to false again. The algorithm terminates

when no more flag is set. Bellman's algorithm

with this refinement is as follows:

Bellman's algorithm with boolean l i s t ;
begin

for i := 1'to n do
begin

d (i) : = 0=;
p'N(i) := 0;
f (i) := f a l s e

end;
count := 1;
d(s) := 0;
f^'I(s) ; = s;
f (s) := true;
while (count > 1) do
begin

f o r i;= 1 to n do
begin

count ;= 0;
i f (f (i) = t r u e) then
begin

for j := 1 to n do
i f (.d, > di + V i j) then
begin

d (j) := d:L + V i . j ;
' - l l (j) := i ;
f (j) := true;
count := count + 1

end;
f (i) := f a l s e

end
end

end.

In this algorithm count is used to check whether a

solution if found. Clearly theareins 11 and 12

hold for this algorithm and it runs in 0(nm) or

0<n-') in case of complete networks.

Based on the preceding observation it can be seen

that the forward star arcs of nodes need not be

scanned in numerical order as above, they may

instead be scanned in the order in which the nodes

were labelled. That is if node i was labelled

before node J, then the forward star arcs af i are

scanned before that af node J, regardless of the

node numbers i and j. This observation can be

implemented efficiently by using a queue structure

or a one way linked list as defined in Section 4.

This is because all the permissible operations, as

stated in Section 4, are in 0(1), except the

operation CREATE (Q> which is of 0 (n). In this

implementation nodes are placed an the queue as

their labels are altered, and removed from the

queue as their forward star arcs are scanned. In

this form the forward star arcs of nodes are

examined in the order in which they are placed on

the queue, the queue is said to be managed in FIFO

manner.

There is one problem in using a queue and that is

if a node is placed on the queue whenever its

label is changed, the same node may appear in more

than one position on the queue. This means that

the size of the queue may be longer than n. One.

way to avoid this is to use a boolean list of size

n corresponding to N. Then initially the elements

of this list, flag, are set to false and when a

node appears on the queue, its flag is set to true

until it leaves the queue when it is set to false

80

again. The following is Bellman's algorithms with

this refinement.

Bellman's a l g o r i t h m with queue;
begin

for i := 1 to n do
begin

d (i) ;= <»;
•^•IKi) 0;
f l a g (i) := f a l s e

end;
CREATE (Q);
ADDQ (s, Q);
dCs) := 0;
f^'FCs) := s;
f l a g (s) true;
repeat

u := FRONT(Q);
f l a g (u) := f a l s e ;
DELETEQ(Q);
for j := point (u) to (point (u+1) - 1) do
i f (d (t e r m (j)) > d(u) + V.. <j>) then
begin

dCterm (j) := d(u) + V..
''N (term (j)) := u;
i f not (f l a g (term (j)) then
begin

f l a g (term (j)) := true;
ADDQ (term (J) , Q)

end
end;
u n t i l (EMPTYQ(Q))

end.

In this algorithm the function FRONT and the

procedures CREATE, ADDQ, DELETEQ and EMPTYQ are as

explained in section 4, the forward star

representation of a network is considered in which

variable point (i) is the pointer associated with

node i and contains the address of the terminal

node of the first forward star arc of node i in

list term. It is clear that theorems 11 and 12

hold for this algorithm and that it has an upper

time bound of 0(nm) since each node is removed

from the queue no more than n times. For

algorithms based on this refinement see CGIVI 731,

LPAPE 741. [STEE 741, [VLIE 781. [DEFO 79a] and

[DGKK 791. In this implementation if the forward

star arcs af the latest node added to the queue is

examined b&fore that of a node placed an the queue

previously, it is said to be managed in LIFO (last

in first out) manner. In general examining the

list in a FIFO manner is much more efficient than

LIFO alternative, since nodes in some sense

closest to the root are scanned before those

further out in the tree, that is if a path in the

tree is extended from its end node before the

labels of nodes closer to the root have been

lowered, the extension will have to be relabel led

later on.

The preceding observation can also be implemented

as outlined by Pape, [PAPE 741, by using an output

restricted dequeue, PDQ or simply a dequeue, as

explained in section 4. In this implementation

the nodes not in the queue are split into two

classes.

92

<i.> the "unlabelled nodes", ie. those that

have never entered the queue (ie. whose

distance from s are still <»J> ;

(ii) the "labelled and unscanned nodes", ie.

those that have passed through the queue

at least once, and whose current distance

from s has already been used.

Then the unlabel led nodes a2~e inserted at the end

of the queue, while the nodes have been labelled

and scanned are inserted at the beginning of the

queue. An easy approach to this implementation

consists of using a code to disti nguish between

the two classes of nodes and a node size array

with two pointers to indicate the two ends of the

queue, see section 4. In addition a node size

rray, sit, is used to indicate the situation that

node is in. The situation of a node i is one of

the following three.

<i) sit(i) = 1, if node i is currently in the

queue;

(ii) sit(i) = 0, if node i is not in the queue

and has not ever been on the queue, ie. i

is unlabel led;

a

a

33

(iii) sit(i) = -1. if node i is not currently

on the queue, but it had been before, ie.

i is label led and unscanned.

Bellman's algorithm with this refinement is as

fal 1 ows:

Bellman's algorithm v/ith RDQ;
begin

for i := 1 to n do
begin

d (i) := «;
-^'Ud) := 0;
s i t (i) := 0

end;
CREATE (RDQ);
ADDDQ (s, F, RDQ);
d(s) ;= 0;
f^'If(s) := s;
s i t (i) := 1;
repeat

u := FRONT (RDQ);
s i t (u) := -1;
DELETEDQ (F, RDQ);
for j := po i n t (u) to (point (u+1) -1) do
i f (d (t e r i n (j) > d(u) + V.. t.».-n, < j i) then
begin

d (t e r i n (j)) := d(u) +
''•JS (t e r i i i (j)) u;
i f (s i t (t e r m (j)) = -1) then
ADDQ (t e r m (j) , F, RDQ)
e l s e

i f (s i t (t e r i n (j)) = 0) then
ADDDQ (t e r i n (j) , B, RDQ)

end;
u n t i l (EMPTYQ (RDQ))

end.

In this algorithm all queue functions and

procedures are as defined in section 4. and all,

except CREATE which is of 0(n), are af 0(1). The

variables B and F used in some af the queue

34

operations Indicate the front and the back ends of

the queue.

In the refinement with RDQ the forward star arcs

of the nodes are examined in DEPTH-FIRST-SEARCH

manner, that is the forward star arcs of the node

which was most recently visited are examined.

However, in the refinement with FIFO management

they are examined in BREADTH-FIRST-SEARCH manner,

that is the forward star arcs of the node which

was last recently visited are examined. To

examine the efficiency of Depth-First-Search over

Breadth-First-Search consider the version of the

algorithm with RDQ and let h be the amount by

which the label of a node i is decreased, then the

labels of all the nodes in the subtree of i must

ultimately be decreased by h, unless the subtree

later becomes restructured in which case some node

labels will decrease by an even greater amount.

In the implementation with a queue managed in

FIFO manner updating these node labels are

postponed, since node i is added to the back of

the queue. In contrast, in the RDQ implementation

node i is added to the front of the queue, if it

is not already in the queue. Thus loosely

speaking, nodes in the subtree of i tend to be

updated before other nodes are searched. Thus

updating sequence helps to eliminate unnecessary

node label corrections that are dominated by the h

correction that should be transmitted through the

subtree. That is, an arc (1, j) may satisfy the

condition d(i) + < d(j) only because d(j) has

not been reduced by h.

A s a result of this discussion clearly theorem 11

and 12 hold for this algorithm which has an upper

time bound af 0 (nm). Algorithms based on this

implementation have also appeared in [MAGO 761,

[VLIE 781. [DGKK 791. [DEFO 791 and [PALL 811.

Theoretically. as a result of the above

discussions this latest implementation of label

correcting algorithms is the most efficient one,

however practically this is not always true, see

section 10.

All di fferent implementations of the general label

correcting algorithms stated in this section can

be considered as specialised variants af the

primal simplex algorithm where the optimal arcs,

ie. arcs in Ar, are the basic variables augmented

by nonexistent arcs which could Jain s to each

node i N-Nr, ie. all arcs (s, i) with V,„i = <».

The interpretation is specially direct for the

86

algorithm with the latest refinement which ensures

that the node labels always satisfy complementary

slackness, ie. d(j) - d(i) = Wij for (i, j) e: AT

and d(r> - d(s) = W^,, far r ^ N - N-r. Then the

process of selecting an improving arc (i, J)

corresponds to searching for an arc which violates

dual feasibility, ie. a non basic with a negative

reduced cost. The process of adding such an arc

(i, j) to AT- and deleting an arc (f~'N(j), j) from

AT is equivalent to simplex basis change. The

update of node labels after this basic exchange

clearly maintains complementary slackness. The

pivoting strategy however is different for the

algorithm with a FIFO management or the other

refinements. In these variants of the algorithm

the updating version of the primal simplex

algorithm is different from the version of the

algorithm with RDQ in the sense that a basis

exchange is performed each time an arc is added to

AT, but the full set of updated node labels in a

subtree arc not immediately determined. In

particular these variants differ from the latest

refinement.- ie. with RDQ, by requiring the

complementary slackness be maintained only locally

rather than globally. The result of Dial, Glover,

Kannig and Klingman, [DGKK 701, emprical study of

Bellman's algorithm with FIFO management and also

with RDQ may support the theory that it is not

necessarily beneficial to maintain complementary

slackness after each iteration. The version with

FIFO management postphanes the updating af the

dual variables (node labels) and this appears to

balance the distortion caused by using locally

updating dual variables with the work required to

maintain globally updated dual variables.

Although mast of the improved versions of the

general label correcting algorithm stated in this

section, are bounded from above by 0(nm), these

efficiency changes from algorithm to algorithm.

The results af worst case analysis and computer

memory requirement of these implementations are

tables below:

<_>
>-
<X. on

S:
> - U J

o >-• •

Q U J
O _ l
•z. o
o
CQ

CM CO

CO

O
CO

U J
Q

UJ <:
a . D:
D-

a :

Q-

CO r o
C C c:

o o
c
o

o
E c

o o
c:
o

o
S-
o

-o s-o

c
S- E
4-> C
C - r -
3 4 -
O O)

+-> - i - >
cn c O c n QJ U - O)

c c r — E c »—« E n3 4 - <D n3 u. OJ
E E C E cn r x: • f — ^ — rd , <4- 1 — 4-> c HI GJ OJ O) •r— fO

m CQ S- OQ 3 E

c
O- O)

c: o E
E c

CO

4-> 4 -
•r- CU
5

In the above table the codes for the algorithm

which are used in this work are considered for

worst case analysis and also memory requirement.

The structure of the input data is not considered

in memory requirement. The "rank" columns

indicate the order of performance of the

algorithms. This latter conclusion is based on

the discussions through out this section about the

algorithms, our empirical study (stated in section

10), and also the comparison of many publications

on practical and emprical studies of these

algorithms such as [DEFO 79a1, [DGKK 791,

[VLIE 781, [IMAI 341 and I RAPE 741.

9 LABEL SETTING ALGORITHMS

Classifying the nodes either as permanently or

temporari ly label led, where a permanently label 1 ed

node is one with a label which is the shortest

path length. Then if step (2) of general

labelling algorithm, in section 7, is modified

such that it finds a node r with the minimum

temporari ly label defined by,

d(r) = min {d(i) + Wij I for all permanently

label led nodes i and unlabelled nodes j)

and makes the label of node r permanent, then the

resulting algorithm is the general label setting

algorithm. This algorithm was first proposed by

Dijkstra, LDIJK 591, also a similar result was

obtained independently by Dantzig, [.DANT 601.

Now, let set Nr represent the set of permanently

label led nodes, complemented by set (N-Nr) which

contains the temporarily labelled nodes. Define,

.4* (c A) = {(i, j) I i ^ NT and j ^ (N-NT))

then the general label setting algorithm, named

after Dijkstra, is as follows:

D i j k s t r a ' s a l g orithm (i n general form)
begin
s t e p 1 (i n i t i a l i s e)

f o r i : - 1 to n do
begin

d (i) to;

K i) 0
end;
d (s) : =
'•'•N(s) s;
UT := (s)'

s t e p 2 (s e a r c h and r e p l a c e)
while (A* 0) do

begin
choose V e (N-N-r) such that d(u) +
W,ĵ = minimum

{ d (i) + V i j I (i , J) e A*);
ST ;= NTU (V) ;
A* ;= A* - { (i , V) I i e m

end
end.

If this algorithm, in the process of finding an

arc in A"' which yields the shortest path tree

extension, in step 2, many possible labels are

calculated and discarded. The following

implementation of this algorithm retains this

information and thus avoids recalculations. This

implementation of Dijkstra's algorithm will be

referred to as Dijkstra's algorithm.

D l j k s t r a ' s algorithm;
begin
s t e p 1 { i n i t i a l i s e }
f o r i := 1 to n do

begin
d (i) := V,.i;
i f (d (i) ̂ 00) then
"= •11(1) := s

end;
d (s) := 0;
•^IICs) := s;
min : = «>;
dum := 0;
NT := { s) ;

s t e p 2 (se a r c h and r e p l a c e)
while (U - NT / 0) do
begin
s t e p 2' {update NT)

for i ;= 1 to n do
i f (i not i n NT) and (rain > d (i)) then

begin
mi n ; = d (i) ;
dum : = i

end;
NT := NT U dum;

ste p 2" {update (N - N T))
f o r i ;= 1 to n do

i f (i not i n NT) and (d (i) > (d(dum) + Vd..™ i)) then
begin

''•NCi) := dum;
d (i) : = d(dum) + V.=it.m t

end
end

end.

In the above procedure variables dum and min are

used to find the node which will become

permanently labelled next.

Theorem 15-: Dijkstra's algorithm terminates in

0(n-'-) time and d<i) defines the shortest path

length from the source to each node i if the

network contains no arc with negative weight.

Proof: The proof of termination is by inspection.

At each stage of the algorithm the nodes are

divided into 2 sets, N-r and (N-N-r). At each

repetition of step 2. one more node becomes

permanently label led in step 2' and Joins the set

Nr • Thus after (n-1) repetition of step 2, i'N

-Nr) = 0 and algorithm terminates. In step

2' . each operation is repeated at most n times and

so is each operation in step 2". Thus the

algorithm runs in OCn-") time. The proof of

validity is inductive. Consider step 2, (search

and replace) after i f '' repetition and suppose that

each node in If-r is labelled correctly, that is for

each node i ^ Nr, d(i) defines the length of the

shortest path. This is clearly true when k=l,

since Nr = {s) and s is labelled correctly. Now

suppose that node v er (N - Nr) is chosen to be

labelled next and let ''NCv) = U, then

d(v) = d(U) + y;..,v..

clearly if U ^ Nr then mi n = d (v), Now suppose

U i= (N - Nr), in fact let node x be the first

node an the path from s to v which is not in N-r

and let ''NCx) = Z.

le • © © — » • — 0

Then, if all arc weights are non-negative,

d (v.) ? d (X) + V:,,

but d(x) + W:,,:„: } ml n, otherwise x would have been

labelled, then, d(v) min.

But if V is chosen to be label led next, then

clearly there is a path from s through z to v with

d (v) s<' min.

Therefore, d(v) = min, and hence v is going to be

labelled with '""NCv) = u where u e- NT. Thus v is

labelled correctly and d(v) is the length of the

shortest path from the source to node v.

Note that the proof of validity of the algorithm

breaks down if the network contains an arc with a

negative weight, since we could not show that

d (v.) min. t

Sequencing techniques and lists are also used to

improve Dijkstra's algorithm. Yen, [YENJ 721,

implemented the general form of Dijkstra's

algorithm with a refinement similar to the one

above, except that he stored (N - Nr) as a linked

list and then in step 2', {update Nr), instead of

obtaining dum, the node at the top of the list was

used and then the upward pointer moves to point to

the old pointer' s successor. This implementation

will still run in 0(n'-') time.

The manner in which set CN-Nr) is searched and

updated effects the computational timing directly.

However having (N-Nr) partial ly sorted rather than

fully sorted as in, [YBNJ 721, is more efficient

since, firstly some nodes i e- (N-Nr) have d(i) =

<x> and secondly set (N-Nr) will usually change

slightly from one iteration to the next (these

statements will be Justified in the remaining of

this section).

Before considering further improved implementation

of label setting algorithm, let us consider its

relationship with simplex method. Let the set of

arcs in Ar be the set of basic variables,

complemented by artificial arcs which start at the

95

source, s, and at node i for each i t E " N-Nr such

that Wmd. = Then the label setting algorithm

may be viewed as a special purpose primal simplex

method. Clearly, d(i) satisfy complementary

slackness at each iteration,

ie. -d(i) + d(J) = Wij for (i, j) ^ Ar and -d(s)

+ d(i) = far i ^ N - N,-.

Furthermore, the process of selecting an improving

arc a, j) to enter the basis corresponds to

searching, in some manner, for an arc which

violates dual feasibility

(ie. -d(i) -h d(j> > W.. i. , j y) by the largest

amount. Then the process of adding such an arc to

AT and deleting the artificial and corresponding

to the terminal node of this arc, t, from this

basis is equivalent to simplex basis exchange.

The setting of d(t) after performing this basis

exchange simply maintains complementary slackness.

Therefore, like label correcting algorithms, label

setting algorithms are special purpose primal

simplex methods which use different pivot

strategies.

97

To have set (N - Nr) partially sorted, (N - Nr)

can be maintained as a heap, as explai ned in

section 4. The use of a heap was evidently first

reported for this application by Murchland [MURC

601, however he failed to note that his treatment

yields a worst case bound on complete networks of

O(n'-logn) time, not as good as the original

algorithm which runs in 0(n'-) time. This was

first noted by E Johnson. [JOHN 721.

To consider implementation of the general label

setting algorithm with a heap, first let us define

two more operations on heaps, these two operations

sift up and sift down are parts of the procedure

heapfarmer given in section 4. Furthermore in our

implementation as was first suggested by

D Johnson, [JOHN 771, each non-empty key of the

heap will possess same node i in a non-negative

network, and the value of the key will be the

value d(i). The two operations sift up and sift

down are concerned with a heap in which a single

key had its value changed. If the value decreases

(this case includes the case where a new node is

added at the leftmost empty key on the lowest

level), the heap is restored if the path from the

root to the key of decreased value is reordered.

This may be done by comparing the value of the

changed key with the key above (its predecessor in

the tree). If the changed key has a lesser value

then the values of the keys are interchanged, and

the process is repeated on the key with the

original change until no more interchange is

required or the root is reached. The cost of this

process is proportional to distance the changed

value moves in the heap. This cost is bounded by

the order of the depth of the heap, OClogi^") where

n is the number of keys in the heap and value of k

depends on the tree type, ie. k = 2 in a binary

heap, k - d in a d-heap. The procedure for

restoring a heap, h, fallowing a reduction in some

d(v) is as follows:

Procedure s i f t u p (v) ;
begin

q :- key <v)
repeat

i f (q not the root) then
i f (d (V) < d(h(^"-'N(q))) then

begin
h (q) := h ('--NCq));
q := f̂ N (q)

end;
u n t i l (no key i s moved);
h (q) := V

end;

If the value of a key increases, the ordering of

the entire subtree rooted at the key with changed

value is affected. Clearly in this case it is

s,ufficient to reorder the path from the changed

key toward the levels which is of the least value

at each level. Hence the cost is proportional to

klogt,:'"', since one of the k choices must be made at

k each key of the path except the last. The

algorithm far restoring a heap, h, following an

increase in some d(v) is as fallows:

Procedure siftdown (v) ;
begin

q := key (v)
repeat

i f <q not i n l a s t l e v e l) then
begin

P := key of node u of min d(u) on the
subheap rooted at key (q);

i f (d(v) > d(h (p))) then
begin

h (q) := u;
q := P

end
end;

u n t i l (no key i s moved);
node (q) := v

end;

The proof of termination of these two operations

within the time bounds stated are direct results

of theorem 9, and more detailed versions of the.

procedures can be seen in procedure heapfarmer,

given in section 4.

In the implementation of Dijkstra's algorithm, we

will change values associated with nodes (creating

new keys when necessary on the bottom of the heap)

100

and also identifying and removing the least

element of the heap. This identification is in

0(1), since the least element of key value is

always at the root of the heap. These operations

are explained in section 4, DELETE (i, h) and

GETMIN (h). Then the least value which is removed

is replaced with the value from the rightmost key

on the lowest level of the tree. This preserves

the heap. Restoring order is then of 0 (klogi..'''),

since the removed in a heap of size n -f- 1 is

equivalent to an increase of the root value in a

heap of size n, the following implementation of

Dijkstra's algorithm with a heap differs from that

of D Johnson, [JOHN 771, mainly in the definition

of keys, here are suggested by Tarjan, [TARJ 841,

the key of a node v, has a value d(v) which is the

length of the shortest path from s to v.

D i j k s t r a ' s a l g o r i t h m with a heap;
begin

f o r i := 1 to n do
begin

d (i) := «>;
'='ir(i) := 0

end;
d (s) ;= 0;
'•"•N(s) : = s;
heapformer (h);
V : = s;
while (v 0) do

begin
for i := point (v) to (point (v + 1) - 1) do
i f (d (i) > d(v) + V-.i) then
begin

d (i) := d(v) + V ^ i ;
'=N{i) := v;
i f (i not i n h) then
begin

ADDH (i , h);
s i f t u p (i)

end
end;
V := GETMIN (h);
DELETE (V, h)

end
end.

By inspection, in this implementation there are

one heapf ormer, n, DELETE operations, n ADDH

operations and at most m decrease or label

updating operations. Therefore if we use a binary

heap, the algorithm runs in 0(mlogn), and if a d-

heap with d + 2 + m/,,, then the running time is

in 0 <m log,:,',;: „>>-,nP. The proof of validity and

termination of these algorithms in the stated time

bounds is the direct result of the above

discussions and theorems 9, 11, 12 and 15. The

102

result of this implementation is clearly superior

to that of Dijkstra's far spouse networks.

Fredman and Tarjan, [FRET 85], suggest the use of

a heap called, FIBONACCI heap, which is an

extension of binomial queues, see section 4,

instead of a d-heap to implement Dijkstra's

algorithm. The resulting algorithm is then

bounded from above by 0 (nlog (n-hm)) which gives the

best result in implementing the algorithm with a

heap. This implementation is the same as the one

described above however, we have not analysed it

in this work.

Another method which provides a more direct access

to a temporary labelled node with the minimum

total weight is called "address calculation sort".

This method was arginal ly developed by Dial, [DIAL

651, and is based an the following observations.

If a node v not yet in the minimum tree, ie. v ^

N-NT, has a finite total weight, then it has been

labelled, ie. a path to node v has been

determined. Since any node can only be label led

from a permanently label led node, then v must have

been labelled by a node u ^ Nr.

103

Upon being relabelled by node u, v's total weight

will have become equal to d(u), total weight of a

permanent node u, plus the weight of the arc (u,

v). Therefore, for any labelled node v N-Nr we

have d(v) = d(u) + (the weight of some arc) where

u (= Nr, Now suppose that node v is a temporary

labelled node with the minimum total weight, d(v),

then d(v) bounds from above all the permanently

labelled nodes, ie. if u ^ Nr then d(u) (d(v),

since a node u «E- Nr- has entered the tree before v

N-Nr. It also bounds from below the weights of

all the temporary label led nodes, ie. if t «=- N-N-r

then d(t) P d (v). Furthermore, the weight of any

temporary label 1 ed node t «=• N-Nr - <v) is bounded

from above by d(v) plus the maximum arc weight in

the network, since the total weight of t equals

the total weight of some permanently label led node

plus the weight of some arc, and d(v) bounds from

above all the permanently label led nodes.

Therefore, denoting the maximum arc weight of a

network by WMAX, then

d(v) i d(t) (d(v) + WMAX

ie. at any stage in the execution of the

algorithm, if node v is a temporary labelled node

104

with the minimum total weight, then the total

weights of all the temporary labelled nodes are

bracketed on the lower side by d(v) and on the

upper side by d(v) + WMAX.

Using this property, at any stage in the execution

of the algorithm, the total weights of all the

temporary labelled nodes can be represented modulo

WMAX + 1. The best way to illustrate this is by

loosely defining an array, NODEARRAY, with (WMAX +

1) locations where:

NODEARRAY(i) stores any labelled node, u e N-NT,

far which d(u) mod (WMAX + 1) = i.

Theorem 16: At any stage in the algorithm,

NODEARRAY, can stare temporary label led nodes with

every possible total weight, and no location of

NODEARRAY will contain nodes with different total

weights.

Proof: Suppose that, at some stage in the

algorithm a temporary labelled node v has the

minimum total weight among such nodes, and let

d(v) mad (WMAX -f- 1) = i. Furthermore let node v

be any other temporary label led node. Node r will

105

be stared in location i of NODEARRAY. The minimum

value of d(r) is d(v) and at this value node r

will also be stored in the same location, ie.

NODEARRA Yd), si nee

d(r) mod (WMAX + 1) = i.

As d(r) increases by one unit at a time, then d(r)

mod (WMAX + 1) = i+1, i+2, consequently node

r will be stored in locations i+1, i+2,

When d(r) reaches (WMAX + 1), then d(r) mod (WMAX

+ 1) = 0, and node r will be stored in location 0,

ie. NODEARRAY (0). As d(r) increases from (WMAX +

1), then d(r) mod (WMAX + 1) = 1, 2, and node

r will be. stared in locations 1, 2, . . . , in

NODEARRAY. Eventually d(r) reaches the maximum

passible value that it can have, ie. d(v) + WMAX,

but (d(v) + WMAX) mad (WMAX + 1) = (d(v) - 1) mad

(WMAX + 1) and since, d (v) mod (WMAX + 1) = i,

then (d(v) - 1) mad (WMAX + 1) = (i-1). Therefore

temporary labelled nodes with any passible total

weight can be stored in NODEARRAY, and no location

of NODEARRAY will contain nodes with different

total weights. t

As a result of the theorem above. NODEARRAY

achieves an "automatic sort" of the label led nodes

not yet in the tree relative to their total

weights. That is, starting from any location i in NODEARRAY,

locations i+1, 1+2, will contain nodes of increasing total

weight values. Upon reaching the end of the array, nodes in

location 0 will have a higher total weight than those in

location (VMAX + 1).

To complement NODEAERAY for computational purposes, it is

arranged as follows:

NIL if i / d(v) mod (VMAX T 1)

for any v N-Nr;

NODEARRAY(i) =

P where F' is a pointer to

the first node in a

linked list of nodes

q HE- N-Nr, such that

d(q) mad (WMAX + 1) = i .

The current minimum total weight is then found by

sequencially examining the elements of NODEARRAY

in a "wrap-around" fashion (ie. when the end of

the array is reached, go back to the beginning).

Each time a painter is encountered, the current

minimum total weight is that of the nodes in the

107

linked list associated with that pointer. Each

node u in this linked list can then be searched

and removed from the linked list. A relabelled

node V will have its location in NODEARRAY

calculated, ie. d(v) mad (WMAX + 1) and added to

the appropriate linked list. This may involve

removing node v from its original linked list.

The examination of NODEARRAY always assumes where

the last examination ended so nodes with

increasing total weights are encountered each

time. The algorithm terminates when NODEARRAY is

empty, implying that all the label led nodes. or

reachable nodes from the source, are in the tree.

Here, we explain, rather than give an

implementation of this algorithm because, of the

complexity and the length of it. However, the

complete Pascal code of this implementation is in

appendix D.

108

Algorithm Address C a l c u l a t i o n ;
begin

s t e p 1
(i n i t i a l i s e) ;

s t e p 2
while (TODEARRAY i s not empty) do
begin

s e a r c h through UODEARRAY to f i n d the next
pointer to a l i n k e d l i s t ;
i f (a pointer to a l i n k e d l i s t i s found) then
begin

repeat
f i n d the next node u, i n the li n k e d l i s t ;
add node u to the t r e e nodes;
for each forward s t a r a r c of node u,
<u, v) where v e N-N-r, do

i f (d(u) + V..^ < d<v)) then
begin

i f (node v i s a l r e a d y i n a li n k e d
l i s t i n NODEARRAY) then
begin

compute node v's current address
(l o c a t i o n) i n NODEARRAY;
remove node v from i t s current
l i n k e d l i s t pointed to from t h i s
address;

end;
d(v) := d(u) + V....;
'=11 (v) := u;
c a l c u l a t e node v's new address;
add node v to the l i n k e d l i s t
pointed to, from t h i s address;

end;
remove node u from the l i n k e d l i s t ;
u n t i l (every node, u, i n the li n k e d
l i s t has been examined);

end;
end; (while)

end.

The proof that this algorithm is correct is the

direct result of theorems 15 and 16. By-

inspection, we can also observe that this

algorithm runs in 0(n(¥MAX + D) time and requires

OCVKAX + 1) memory space. Clearly, it is not

passible to theoretically compare this algorithm

with the other labelling algorithms, but almost

all empirical studies of such algorithms have

identified this implementation as the fastest

single source algorithm for both sparse and dense

networks in which ¥MAX is small compared with n

and m, ie. (WMAX.) = 0(n) or at most (WMAX) 0(m).

However, in case of small networks with WKAX

rather large, this implementation will be much

slower than the other labelling algorithms.

This implementation can be Improved by reducing

the effort of inserting and removing nodes on the

linked lists by postponing adding nodes to the

list. This can be done by observing that it is

unnecessary to scan the entire forward star of a

permanently labelled node v. In particular, only

the endpaint of a minimum weight arc in such a

forward star needs to be considered for addition

to NODEARRAY. This follows from the fact that the

total weights of the temporary label led nodes

determined from node v will be bounded from below

by the total weight of such an arc with the

minimum weight. This refinement was first

suggested by Dial, Glover, Karney and Klingman,

110

[DGKK 79], however it requires that the network to

be stored in a sorted forward star form which

requires some preprocessing- in 0 Cn''-) time and

this, clearly, makes the use of such

implementation inefficient.

Another method of storing the temporary labelled

nodes relative to their total weights is by means

of buckets, see section 4. A precursor to this

method is given by Loubal, [HITC 683, Dial, [DIAL

651, and also Gil son and Witzgall, [GIVI 731. In

this method, temporary label led nodes whose total

weights fall within a specified range are stored

together. The col lection of nodes is called a

bucket. To sort several temporary label led nodes

of diffej-ing total weights, several buckets may be

used. Each bucket will contain nodes of a

different total weight range. For instance

suppose that nodes A, B and C have total weights

of 1, 3 and 7, repsecti vely. Then, if bucket 1

stores nodes v, such that

0 (d (v) < 4

and bucket 2 stores nodes v, such that

4 v< d(v) < 8

then bucket 1 will contain nodes A and B, and

bucket 2 will contain node C.

Far any bucket holding nodes v, with total weights

within (a, bl, ie. a i d(v) < b, Cb - a) is its

width. For example buckets 1 and 2 above have a

width of 4. When several buckets are used to

store temporary label led nodes with different

total weights, the set of buckets are arranged in

a bucket list. The bucket list is a collection of

buckets 0, 1, 2, . . . , where bucket i contai ns

nodes v, such that

a i d(v) < b

and bucket Ci + 1) contains nodes, v such that

b (d(v) < c etc.

All the buckets in the bucket list, have the same

width. In general if Z is the bucket width, then

bucket i stares nodes v, such that

i * Z (d(v) < a + 1) Z.

The bucket list achieves an automatic sort of the

temporary labelled nodes, relative to their total

weights. To access the nodes whose total weights

are currently the minimum, the lowest non-empty

bucket is found. Nodes in this bucket are then

searched, ie. their forward star arcs are scanned.

Any relabelled node is put into the appropriate

bucket. This may require removing the node from

its original bucket. Note that only nodes with

forward star arcs are placed into the bucket list.

This prevents unnecessary searching of a node that

can not relabel any other node. The nodes in the

lowest numbered non-empty bucket i, can be

searched in any order, and this is achieved by

setting Z equal to the weight of the lowest

weighted arc in the network.

Theorem 17: if Z = minimum {Wi. j I (i, J> <sr A),

then no node can relabel another node in the same

bucket.

Proof: Let WMIN = minimum / (i, j) er A) and

suppose that bucket i contains two nodes u and v,

both with temporary labels, and that node u is

being searched. If node u relabels node v, then

the new total weight of node v will be given by

113

d('v.> = dCu) + (the length of same arc).

The lowest possible value that d(v) could have is

(d(u) + WMIN) and for node v to be relabelled, its

original total weight must have been greater than

this. Now bucket i holds node u, such that

i # VMIN ^ d(u) < (i+1) * VMIN,

therefore the lowest passible value of d(u) is (i

* VMIN). Thus the lowest passible value the new

total weight of v could have is given by

d<v) = <i * VMIN) -h VMIN

= (i+1) * VMIN

and the original value of d(v) must have been

greater than (i+1) * VMIN. But this is contrary

to the assumption that bucket i holds node v,

since d(v) < (i+1) VMIN. t

Corollary 17. 1: Any relabelled node will always

be put into a higher numbered bucket in the bucket

list.

114

Using this property, the search far the next

lowest numbered bucket can always resume when the

last one stopped.

The algorithm terminates when there are no more

non-empty buckets left in the bucket list,

implying that every node has been permanently

label led.

To implement the general label setting algorithm

with this refinement, let us define the bucket

list, BUCKLIST, a linear list, as follows:

BOOKLIST (i) =

NIL if bucket i contains no

node;

F if bucket i contains one

or more nodes, then F is

a pointer to the first

node in a linked list of

nodes in bucket i.

Bucket i in BUCKLIST will contain node v such

that,

d(v) (i+1) *

where Z is the bucket width and is set to VMIN.

The minimum weight of the weighted arcs. The

fal lowing is an outline of this implementation,

and the complete Pascal code of it is in appendix

E.

Algorithm bucketsort;
begin

S t e p 1
{ i n i t i a l i s e)

s t e p 2
while (there i s s t i l l a non-empty bucket do
begin

se a r c h through BUCKLIST to f i n d the next pointer
I n d i c a t i n g the next non-empty bucket;
i f (a pointer i s found) then
repeat

f i n d the next node, R, i n the bucket;
add node S to N t ;
f o r every node C such t h a t (R, C) e: A-A-r do
begin

i f ((d(R) + V.~c) < d(C) then
begin

i f (node C i s al r e a d y i n bucket) then
begin

c a l c u l a t e which bucket node C i s i n ;
remove node C from i t s current bucket;

end;
d(C) := d(R) + V r c ;

^=R(C) R;
i f (node C has a forward s t a r a r c) then
begin

c a l c u l a t e which bucket node C i s to be
put in;
put node C i n t o the appropriate bucket;

end;
end;

end;
remove node R from i t s bucket;

u n t i l (every node i n bucket has been searched);
end; {while)

end.

116

The proof of correctness of this algorithm is a

direct result of the theorems 15 and 17, and the

proof of its termination in OCm + (n * Z)) is by

inspection and clear, note that the number of

buckets necessary for the computation is at most

Z(n-l) .

The efficiency of the above method, known as 1-

level bucket depends highly an the parameter Z.

Based on this observation, Denarda and Fax, [DEFO

79a], introduced the 2-level and k-level bucket

techniques which have better computation times

than the 1-level bucket technique. In 2-level

bucket technique the temporary labelled nodes are

maintained by a 2-level bucket system. That is on

the first level the nodes are distributed into Z

buckets of width Z * VMIN and on the second

level, the nodes which are contained in the

smallest numbered bucket that is non-empty on the

first level are distributed into Z buckets of

width WKIN of the second level. By doing so, the

computation of the method will be reduced to OCm +

n Z) time. The k-level bucket technique is

similar to 2-level bucket and reduced the

computation time to OCm -f KnZ'-^'-). However, we

have not considered this refinement in this work.

All label setting algorithms run approximately in

0(n-'-') time in worst case. However, as a result of

the above discussi ons and theorems concerning the

label setting algorithms, the study of many

practical and empirical surveys such as those used

for comparing label correcting algorithms and also

our own empirical study of the best of these

algorithms which is introduced in section 10, we

can draw the following conclusions about the label

setting algorithms. In this conclusion, it is

assumed that the maximum weight of the weighted

arcs in a network is small compared with n'--.

118

, ^
1 —

+ to X <—^
N

Ul + n: t— «•

o

_ I

o
>- 1—1
<t oc

U J
DC s: CM

<x.
1 1 1

M
> - t—t 00
o s: U J

Q U J

s: O 1 sr

BO
O

<: a : 1—- u n CM C O ' J - .

—^
s

c : +
X M

o i <: C
o z:

U J ^—^ 1 ^—» + CM CM CVJ
z: C c c E ^ L U ^ o o o O O

O
CQ

111

)—(A
M

I —

1 1 I

cs; I T) C O CM I —

1 1 I

I —

1 1 I

Q_ c
c

L L J og
 n

) "E +
CM

o

T
X nz

)

I /) ^ — r— r + CM '
<c C E E c E

> • •>> ' "« ' o o o O o

(/I
>, </l
i _ to <D o > s: i t i OJ S- •1— OJ s: re c x: -o 4-> r—

1 S- • r— I fO 1
CQ to r— . — 4->

.G
OR
] (/) QJ

.G
OR
]

a.

.G
OR
]

+-> + J , .G
OR
]

•1— • r - 0) •<- 13
—1 Q 5 x: s 3 o 3 -o

.IV

10 AN EMPIRICAL STUDY

In this section, five different implementations of

labelling algorithms are evaluated by solving the

one-to-all ' probl em an a di verse set of randomly

generated networks using the same computer CFRIJfE

750), the same compiler CFASCAL RUN COMFILER) and

executing the codes during a time period with a

constant demand an CFU time. The implementations

studied here are:

1. Dijkstra's label setting, SI ;

2. general label setting with address

calculation, S2;

3. general label setting with 1-level buckets,

S3;

4. general label correcting with a queue, using

FIFO management, CI;

5. general label correcting with a output

restricted double ended queue, C2.

Each algorithm is used to solve the same set of

"small" randomly generated networks, and its

performance behaviour is observed as:

Ca.> the number of nodes in the networks

grows;

Cb) the number of arcs in the networks grows.

The number of nodes, n, in the networks are

10, 20, 40, 60, . . . , 200 and for each node size

there are 9 networks which vary with respect to

random variation in their number of arcs, m, which

is bounded from above by k, where k takes the

values,

n Cn-1). 2n Cn-1?. , dn Cn-1?
10 10 10

In other words we consider a complete network,

ie. m = nCn-1), and generate random networks with

n nodes which are ClOO-lc^Z arc free, for

k90, 80, 70, . . . , 20 and we repeat the process for

dl fferent values of n which are stated above. In

all the networks the arc weights are three digit

random numbers, regardless of the node size or the

arc size. In the following algorithm, used for

generating a random network with n nodes and

k n Cn-1) arcs for a given n and a given k
100

where 100 x< k (100, the procedures RAND2 and
n

RANDS produce 2 and 3 digit random numbers.

Algorithm Random Hetwork;
begin

for i : = 1 to n do
f o r J : = 1 to n do
i f (.i ̂ y) then
begin

RAirD2 (num);
i f (num < (lOO-k-D)
then

RAIID3 (V i j)
e l s e

V i j : = CO .

end
end;

Note that we require m Cn-1) in order to have a

connected network, thus k P 100.
n

The following table illustrates the computational

times of the implementations tested.

n
NODES

k
DENSITY

{%)

CPU TIME

CI

IN MILLISECONDS

C2 S I • S2 S3

10 10 0 0 3 24 79 20 10 6 3 9 61 91 40 10 21 21 63 79 116 60 10 58 58 137 109 145
80 10 97 103 239 130 179 100 10 151 124 366 172 230 120 10 209 206 515 233 287

140 10 352 339 700 273 336 160 10 412 388 903 342 394
180 10 648 842 1152 397 458 20.0 10 651 730 1400 458 503
10 . 20 3 3 6 40 82
20 20 12 12 18 48 100
40 20 58 61 73 78 131
60 20 91 94 158 118 170
80 20 164 187 272 173 239

100 20 309 306 421 239 300
120 20 476 500 603 324 376
140 20 530 663 803 397 440
160 20 778 985 1027 485 521
180 20 864 903 1300 615 648
200 20 1409 1576 1591 725 755
10 30 3 6 9 40 88
20 30 19 15 24 49 103
40 30 49 46 82 85 140
60 30 139 154 176 143 203
80 30 228 233 300 218 279

100 30 481 660 467 306 357
120 30 694 745 661 412 454
140 30 921 788 888 527 557
160 30 1045 1222 1167 672 700
180 30 1521 1639 1464 788 809
200 30 1700 2397 1785 943 955
10 40 6 7 9 34 91
20 40 21 15 25 58 106
40 40 97 82 90 97 155
60 40 233 200 200 176 243
80 40 360 418 331 252 306

100 40 676 788 512 367 415
120 40 866 1048 734 521 548
140 40 1321 1618 976 633 667
160 40 1376 1712 1276 788 812
180 40 1967 2328 1594 970 978
200 40 2445 3081 1957 1154 1146

n
NODES

k
DENSITY

(%) CI C2 SI S2 S3

10 50 6 10 10 33 91
20 50 33 34 27 51 112
40 50 97 110 97 112 173
60 50 260 303 212 185 257
80 50 575 591 372 309 363

100 50 585 673 563 425 454
120 50 963 1149 813 594 618
140 50 1609 1600 1079 725 749
160 50 1924 2379 1394 939 954
180 50 2206 3203 1749 1136 1131
200 50 3227 3933 2158 1370 1350
10 60 7 9 9 45 91
20 60 36 36 30 54 109
40 60 109 122 110 115 179
60 60 297 324 234 218 276
80 60 676 952 403 336 385

100 60 852 1012 616 491 524
120 60 1215 1533 869 679 697
140 60 1821 2537 1167 870 885
160 60 2118 2654 1509 1085 1070
180 60 2961 3534 1888 1297 1294
200 60 3836 5815 2330 1554 1545
10 70 9 9 6 36 94
20 70 31 27 33 55 112
40 70 163 185 115 131 200
60 70 333 448 251 225 288
80 70 706 912 430 370 412

100 70 894 1224 561 527 558
120 70 1475 1753 934 739 755
140 70 1882 1970 1251 958 972
160 70 2537 3048 1627 1203 1194
180 70 3188 4309 2037 1476 1451
200 70 4734 7691 2500 1764 1764
10 80 9 9 13 36 94
20 80 30 33 33 60 112
40 80 142 160 122 140 . 209
60 80 379 524 263 254 316
80 80 621 667 463 403 445

100 80 1100 1354 730 500 639
120 80 1493 1718 1012 797 818
140 80 2657 4566 1343 1057 1054
160 80 3127 3597 1739 1324 1312
180 80 3715 5097 2194 1615 1600
200 80 4591 5897 2691 1933 1927

124

n
NODES DENSITY

CI C2 SI S2 S3

10 90 12 12 13 40 94
20 90 39 40 36 63 118
40 90 228 249 127 149 212
60 90 445 673 281 276 333
80 90 894 1073 500 448 500

100 90 1139 1737 761 637 667
120 90 2013 2748 1070 876 897
140 90 2591 4263 1436 1136 1139
160 90 3470 4636 1869 1440 1419
180 90 4430 6582 2321 1754 1739
200 90 6143 8967 2867 2161 2131

125

The following conclusions based on the above table

can be drawn about the tested algorithms.

1. The general label setting implemented with

address calculation sort is the most

efficient. However, in this study only small

networks (ie. n (200) are considered and the

arc weights are small compared with n'^'.

2. The general label setting with bucket sort is

almost as efficient as the one with address

calculation, especial ly in case of dense

net works.

3. The general label correcting with a output

restricted double ended queue is more

efficient than that with a single queue for

sparse networks (K i 20%) and also for small

networks (n (100).

4. Dijkstra's algorithm becomes more efficient

as the number of nodes grows and also as the

network becomes more dense, especially for k

>? 30Z, Dijkstra's algorithm becomes the third

best.

5. The general label correcting with a single

queue managed with FIFO, becomes the fourth

best with n 120, and the general label

correcting with output restricted double

ended queue is the third best with k 20%,

the fourth best with n i 100 and the fifth

best otherwise.

Figure 12, illustrated the graph of the average

CPU times of the algorithms against different

densi ties in the same set of diverse randomly

generated networks with upto 200 nodes.

3600

3400

3200

3000

2800

^ 2600 H

i 2400
UJ
I/O
^ 2200 _
k—i
^ 2000 _

1800 _

1600 ^

m 1400

1200 _

1000^

800-

600-

400^

200^

-r 1 • T 1 — V I n—••—J—
10 20 30 40 50 60 70 80 90

DENSITY {%)
(K)

Figure 12, the graph of average CPU times f o r networks w i t h
up t o 200 nodes.

F^AJE^I- III

129

11 MATRIX MULTIPLICATION ALGORITHMS

To study all source algorithms, as defined in

problem classification,

let d.x ' = the length of a shortest path from i

to J subject to the condition that

the path contains no more than m

arcs.

then if f/y .» = 0, for all i,

(11. 1) d.i .i = 0

d . i . , ' " " ' • = min ^ d . ^ . " " ' + w,.,../;

Clearly the computation of (11.1) will converge at

the (n-1)""' operation, ie. di.i = dij. The

overall computation is in 0(n") time, since it is

the n repetition of Bellman's algorithm which runs

in 0(n"') time. However, these equations have a

property that their computation is equivalent to

the "plus-min" inner product,

i e . let c = [C.,:., J = AB

n
where = 27

k=l

and suppose that the matrix multiplication is

redefined as *, where

C = [Ci..il = A * B

and

C:ij = min {an-. + fa.<

i e . let addition take the place of multiplication

and minimisation take the place of addition.

Now let D - [d.i.,1 and consider W = [w^j], ie.

represent dxj's in a n*n array and consider the

adjacency matrix representation of the arc

weights, then:

p c o . > = £d'-"\ijl, where d i .y = { 0 if i = J
<» otherwise

' •' = D' " * ¥ = ((CD'-'" '' * W) * V) * W>

Theorem 18: Plus-min inner product method solves

equations of (11.1) in 0 (n-'log-,::''').

Proof: For this type of matrix multiplication,

clearly, i s the identity matrix,

ie. D''-'-' * W = V, furthermore the multiplication

is associative, thus D""'' •' = 7 .-̂ where v<-'••>--'•'

i s the (n-1) power of W.

Now since W-'" = ' for any 2" > (n-1), then it

is appropriate to square ¥ until a sufficiently

high power of W is obtained, ie. ¥'•' = V * W,

then, = W--^- * , for 2" > (n-1).

Now clearly this method requires logs'''

multiplications, each of which is an 0(n'--'). Thus

the method solves the equations in 0 (n~-'log:s'''). t

This approach to "all-to-all" shortest path

problems was first made by Farley, Land and

Murchland, [FALM 671, and the algorithm was

called, by them, "cascade algorithm". Hu,

[HUTC 671, also gives an extensive discussion on

this type of approach to all-to-all problems.

12 TRIPLE ALGORITHMS

The earliest work on this type of algorithm was by

FLOYD, [FLOY 62J, on a paper by Varshall,

[WARS 621, on transitive closure which is

equivalent to a shortest path problem in which all

arc weights are zero. This method runs in

0 (n'-~-log::>'''') time. Before considering triple

algorithms, let d.i ,,• ' be redefined as:

d.i .,• ' ' = the length of a shortest path from i to j

subject to the condition that the path does not

pass through nodes m, m+1, , n (except i

and j).

Now, a shortest path from i to j which does not

pass through nodes m+l, m+2, , n ei ther

(1.) does not pass through node m in which

case di j ''" ̂-' ' = d . i ' ' /

or

(2) does pass through node m in which case

Thus we have.

l o o

(12. 1) d,, ' = V,,- .

d .i ,y ' ' ' = mi n {d .i .,• ', d .t ,„ ' ' + d„, <'';

a n d clearly, d.i = di.j, the length of a

shortest path from i to J. This algorithm is

named after Warshal 1-Floyd and has the following

general form:

Algorithm V a r s h a l l - F l o y d ;

begin
{ i n i t i a l i s e }
for i : = 1 to n do
begin

for j : = 1 to n do
d i ; i ; = V i . , ;

d:Li = 0
end
<search and r e p l a c e)
k:= 0;
while (k < n) do
begin

k:= k+1; .
f o r i : = 1 to n do
f o r J:= 1 to n do) (12.2)

(d i j , (d i K + d h : j))
end;
{check)
fo r i:= 1 to n do
i f (d i i < 0)
then

report f a i l u r e
e l s e

report s u c c e s s
end.

Theorem 19: Algorithm Varshal 1-Floyd termi nates

in 0 (n ~-') reports,

<i) success and defines a shortest path

between every pair of nodes if there is

no negative cycle;

<ii) failure otherwise.

Proof: The time bound is obvious from inspection

of the program, for correction let

T = d.t,, = min -Cdij, Cdi/,. -/• du j)} . k<n

Clearly T is satisfied before the start of the

minimisation process, ie. after the initialisation

steps in the algorithm. Now let k' = k+1 for some

k under which T is satisfied initially. Clearly

(12.2) examines every triple < i, K', j >,

replacing d.,.,, if and only if there is a shorter

path via {1, 2, , k') than via

{1, 2, , (k'-l)}. But this satisfies T for

K = 0 to k (n, due to the fact that there can

only be a maximum of (n-1) arcs in a path and also

the results of theorems 11 and 12, if there is no

negative cycle, ie. the algorithm will halt with a

solution if there is no negative cycle. Otherwise

135

far some i <=- N, dii. i'0 which indicates that

there is a negative cycle in the network. t

Dantzig, [DANT 671, proposed a variant of

Varshall-Floyd's algorithm which requires the same

computation time and memory space. Both

algorithms are the same except in Dantzig's

algorithms the iteration step, ie. {search and

replace) is divided into parts. If the following,

(12.3), replaces (12.2) of Warshal 1-Floyd's

algorithm, then the resulting algorithm will be

that of Dantzig.

(12,3) f o r i := 1 to k do
f o r j := 1 to k do

dkj:= min (Vki + d i j) ;
f o r i:= 1 to k do

f o r J;= I to k do
dii<: = min {di.i + Vjk) ;

f o r i:= 1 to k do
f o r j:= 1 to k do

d i j := min (dik + duj i di.i)

The proof of correctness and termination of

Dantzig's algorithm is the same as that of

Warshall-Floyd' s algorithm.

Iri and Nakamoni, [IRNA 721, exhibited a set of

triple algorithms which run in 0(n-~') time. Most

of these algorithms are similar to and are. based

on Warshall-Floyd algorithm.

13 MODIFIED LABEL SETTING ALGORITHMS

The all-to-all problem on a network which contains

no arc with negative weight, can be solved by n

iterations of a label correcting algorithm, one

far each possible source. Then, clearly this

solution method will run in

0 (n m l o g . : n) . If the label setting method

is implemented with a d-heap as stated in section

9. This Implementation runs faster than 0(n~O

time for sparse networks, and in OCn-') time for

dense networks. However, the result can be

further improved by implementing the label setti ng

algorithms with address calculation sort, see

section 9, or with a f-heap. Then as claimed by

Tarjan, n repetition of the algorithm solves an

all-to-all problem in a non-negative network in

0 (n-^'log (n+m)) time. Even if the network contains

arcs with negative weights, the same time bound

can still be obtained by making all the arc

weights non-negative in a preprocessing step.

Edmonds and Karp, [EDKA 721, defined the

appropriate transformation which is as follows:

First we add to network G a new node (n + 1) and a

ZERO WEIGHT ARC ((n + 1), i) for every node i in

G. Then d< , , ,./ t i s c a l c u i a t e d far every node i.

Using a label correcting algorithm will take 0(nm)

time. Finally a new weight for each arc (i, J)

can be defined by Wi .i = Wi j + d<.-,-,.v-; .> / - d,:i :, j .

Clearly, Wi.i > 0 for every (i, J) e A. This is

due to d , I :, .j being the length of a shortest path

from (n + 1) to J which gives

do-,-v.>.i + V,..i > d(n+l)J and thus Wi .i > 0. This

transformation makes all arc weights non-negative

and preserves shortest paths, since i t transforms

the lengths of all paths from a given node i to a

given node J by the same amount, dx - d,,-.

Thus this solution method is correct for negative

networks as well as non-negative networks and runs

in 0(n'-') time. Then it may be concluded that the

modified label setting algorithms are faster than

triple algorithms which are in turn faster than

matrix multiplication algorithms. Although this

statement is true in case of worst case analysis,

the empirical studies of these algorithms do not

quite support it. However implementation of a

label setting algorithm with a F-heap or address

136

caculation sort has not yet been considered for

all-to-all problems in any empirical study, to the

best of the author's knowledge, and that unlike

the empirical studies of single source algorithms

which mostly report consistant results, in the

case of all source algorithms most results are not

consistant. For example Dreyfus, [DREY 691,

reported that Dij'kstra's algorithm requires 50%

more time than that of Floyd and that of Dantzig.

Yen, [YENJ 701, reported that his implementation

of Dijkstra's algorithm is 25% faster than Floyd's

algorithm, Kelton and Law, [KELA 781, claimed that

the matrix multiplication methods are most

efficient on Dense networks, Floyd reported that

his algorithm is the fastest, Glover and Klingman,

[GLKL 821, have results that shows Dijkstra's

algorithm is faster than that of Floyd. However,

most of these studies agree that for small

networks with up to 400 nodes, modified label

setting algorithms are faster, especially in case

of sparse networks.

Another reason which makes the use of label

setting algorithms in solving all-to-all problems

more papular is that in most practical situations

139 •

the shortest paths from every node of a subset of

N to every other node in N are required, rather

than from every node to every other node in N.

Supposing K (< n) nodes are to act as source nodes

in a given network, then k repetitions of a label

setting algorithm will salve the problem rather

than n repetitions.

140

ANJD

F^CDST CDFT I mAZ^ I T Y A N A I ^ Y S I ^

CDF- CDNF:—irCD—AJL.i:^ J R J R O J B i ^ J E T J V r S :

14 S E N S I T I V I T Y A N A L Y S I S

In this section the sensitivity of an optimal

solution to a one-to-all problem is studied. More

precisely, the methods of characterising the

maximum increase and decrease in the weight of an

existing arc, optimal or non-optimal, that can be

tolerated without changing the optimality of the

current solution are analysed. However, before

discussing these algorithms, consider the

fol lowing expansions of definitions and notations

of section 2.

Consider a connected and undirected network

G = (N, A) and its minimum spanning tree,

TG = (Nr, Ar) rooted at node s, source, where

N-T = N

and A = {< i, j > I i, j e- N, and i and j are connected)

[< } denote an unordered pair].

Furthermore, let F'^ denote the shortest path from

s to V, also P',.,,s, denote the subpath from u to v

on the shortest path P'^, then F',..,^ F'^ <=: T<~,.

142

r.;, defines a partial ordering- of nodes i N,

with respect to their paths from s, ie. if

2 ^ P'j (ie, node i is on the tree path from s to

j) then d(i) ^ d(j) and we write i i J.

Bach arc <i, j> e- Ar divides set N into two

subsets N.i. J and where

N:,..i = {k I k ^ N and <i, j > ^ . P\,.i}

and N' i.i = {k I k ^ N and <i, j> ^ P' i.,,}.

Ni .i and N'ij are the node sets of the two trees in

which T& transforms after <i, J> er A-r has been

deleted. Note that i ^ J V , a n d J «= N',.,.

Each arc <i, j> Ar together with its partition

of node set N into N.i .j and N'ij defines the two

following cutsets of G,

C ' (i, j) = <<u, \0 I u «^ N.r.j and v ^ N'ij}

and C a, J) = {<u, v> I u ^ N'i.i and v ^ Nxj}

note that <i. j> C'(i, J).

Each arc <i, j> ^ A-Ar defines the particular

cycle,

k(i, J) = {i, <i, J.>, P",y.i, i.>

where F",: is the unique tree path connecting node

J to node i in TG.

Theorem 20 •• Let T o = (N-r, A ,) be a spanning tree

of G = (N, A) and suppose that <u, v> e- A-r and

<u', v'> A-A-r. Then <u, v> t= k(u', v')

precisely when, <u', v'> «^ C" (u, v) or

<u', v'> «s- C (u, V) .

Froof: consider k(u', v') = <u', <u', v'>,

F"^ '• , u' } and,

(i) let <u', V'> ^ C-* (u, V),

then <v, u> e: P'V - -

s i n c e u ' N^..,^- and v' N\^,^

thus <u', v'> C ' (u, v) <=> <v, u>

k(u', V)

more precisely, <u, v> is counterdlrected

in k(u', V') .

(ii) let <u', V'> ^ C(u, v)

than <u, v> ^ F'V - -

since u' N',..,^ and v' e- N,.,^

thus <u', v'> «= C-Cu, V) <^ <u, v> e-

k(u', V')

more precisely, <u, v> in codirected in

k(u', V') .

(Hi) let <u', v'> «= C^(u, v) and <u', V > e

C<u, v> then clearly <u, v> «E- P"-^-^.,-.

[u, vJ retraction of G is a reduced network, G ' ,

obtained by identifying the two distinct nodes u

and V of G and deleting any possible loops that

result from this process.

ie. G' = (N', A') <=: G

where

= N - {u}

and

A ' =• A-A'~'' where

A'--' = (FS(u) Q BS(v)) U (FS(v) Q BS(u))

(Q means intersection)

Note that A'=' is the set of those arcs in A which

would become loop arcs upon identification of u

with V. Node u is called a "deal-end" node of T<s

i f it is incident with exactly one arc <u, r>,

furthermore arc <u, r>. t E " TG is called a "dead­

end" arc. Clearly, if in [u, v] retraction of G,

u is a dead-end node and <u, v> is the

corresponding dead-end arc then [u, vl retraction

TG ' of TG is again a tree. More precisely, it is

the tree which results from TG by deleting arc

<u, v> and node u.

The retractions can be used, for successively

determining the. cutsets C'd, J) and C (i, j) of

the tree arc <i, j> e- A-r, and in the case that

<i, j> is a dead-end arc, then clearly these

cutsets are the forward and backward star arc sets

of node i,

ie. <=:• a , j) = FS(i), <=:(i, J} = BS(i).

Far a directed network G - (N, A), clearly, if

parallel arcs are not allowed, then

FS a) Q BS (j) = {(i, j) if (i , j) ^ A

0 otherwise

and also, ^

FS(J) Q BS(i) = { (J, i) if (J, i) e A

0 otherwise

146

thus,

<<i. J), (j,i)> if <i, j) e A

I <(i, j)) if a, j) e A, (J, i) <= A

l(J. i)) if (J, i) £ A, a, j) e A

0 otherwise

ie. d^-^a, J) = FS(i), c -(i, J) = BS(i).

The following example clarifies the . above

definitions and theorem. Consider the network

given in the following diagram together with its

minimum spanning tree rooted at node 1.

Figure 13: Example network, numbers associated with
the arcs are the arc weights.

d 0 3 6 9 7 14 13

'"JIT 1 1 1 2 2 5 4

Figure 14: The shortest path tree of the example network
in figure 13.

148

In particular consider the arcs (2, 5) <= Ar- and (2, 3),

(6, 1). (1, 5) «sr A-Ar, then for

(2, 5) e r AT-: the two node sets are,

N,,:s = il, 2) and N,,^ ' = [5, 6);

the two cutsets are,

•=^ ' (2, 5) = {(2,5)} and <=:(2, 5) = {(6, 1)};

(2, 3) £ A-AT: k(2, 3) = {2, (2, 3), 3, (1,3), 1,

(1.2), 2), then

(2, 5) k (2, 3), since 3 ^ i l / l s * . - ;

«5, 1) A-Ar: k (6, 1) = (6, (6, 1), 1, (1, 2),

2, (2, 5), 5, (5, 6), 6}

(2, 5) «=- k(6, 1) and is codirected, since

6 ^ Nss^' and 1 ^ N,;,^,.

(1, 5) e- A-Ar: k(l, 5) = <1, (1, 5), 5, (2, 5),

2, (1, 2). 1}

(2, 5) «=- A - C J , 5) and is counter directed, since

I e N::,:s and 5 es iVs-; ' .

Now consider [2, 51 retraction of G.

FS(2) = {(2, 3), (2, 4), (2, 5)}

BS(2) = <(1, 2)}

FS(5) = <(5, 3), (5, 6), (5, 7))

149

BSCS.) = <(1, 5), (2, 5), (4, 5)}

N' = {1, 3, 4, 5, 6, 7)

^ • ' = {FS(2) Q BS(5)} U {GS<5) Q BS(2)}

= <(2, 5)} U 3 = <(2, 5)}

[Note that A-"' is the set of loops caused by the

retraction].

A ' = A-A''-' = A-{(2, 5>}

G' = (N', A'), the [2, 51 retraction of G = (N, A)

is shown in figure 15.

Figure 15: [2.51 retraction of the example network

in figure 13.

150

The retraction has created parallel arcs, which

are not allowed. Without loss of generality all

parallel arcs except the one with the least weight

from a node i to a node j in the resulting network

are eliminated. In figure 16, the simplified

[2, 5J retraction of the example network is shown.

Figure 16: Simplified [2, 51 retraction of the
example network in figure 13.

151

Nate that there are always two parallel arcs and

the one with the larger weight is eliminated.

Consider the Li, J] retraction of a network

G = (N, A), then for a node u ^ i X j with (i, u)

and (J, u) A, G' will contain <i, u) if

ii/.Tc., <• W.j,.^, or (j, u> otherwise. Similarly for a

node u i J with (v , i) and (v, J) t= A, G'

will contain (v, i) if lî v-.* < K - j , or (v, J)

otherwise.

Now consider a network G = (N, A) and its minimum

spanning tree TG = (Nr, A-r) where Nr = N and let

A(i, J) = Vi..i -h d(i) - d(j>

clearly TG is the minimum spanning tree of G if

and only if Ad, J) ,^ 0, for all (i, j> e- A in

particular for every (i, j) «=• A-Ar, since node j

would have been labelled from node i, this is the

well known optimality criterion.

Let the weight of an arc (i, j) ^ A changes by S,

from W:i..i to + S, then the problem in this

section is to determine S* (1, J) } 0 and

S(i, J) i' 0, such that TG remains optimal as Wi.i

varies by S, where

S(i, J) (S i- S' (i, j).

152

Furthermore I / . . , , - -f- S'd, j) is called the lower

limit of W.,.i and V^. j -h S^'d, j) is called the

upper limit of I / x .,• .

Clearly, if (i, j) is a non optimal arc,

ie. (i, j) e- A-Ar, then

S-a, J) =

s a , J) = - A a, J).

However, in case of an optimal arc (i, J), ie.

(i, j) «=• Ar, the determination procedures of

S-'(i, J) and S--(i, j) are rather more compl icated,

and are based an the following theorem.

Theorem 21: let (u, v) e- Ar, then

S'(u, V) = min{A (i, J) I (i, j) ^ C ^ C a , v),

(i, j) ^ (u, V)}

and,

S (u, V) = max {-A(i, j) I (i, j) ^ C (u, v)}.

Proof: If (u, v) e- Ar and W,..,^ -) l/<..,̂ , + S, then

for a node, k ^ N either d(k) -> d(k) if k >s- N^.,^-,

or d(k) -i 'd(k) -f- S if k N\.^^-. The changes in

d(k), for k - 1 to n, affect the quantities

153

A a, J) for a, j) ts- A-Ar, which enter the

optimal ity criterion,

A(l, j) if a, j) e- o - f u , V) U o-^fu, V)

Ad, J) (Ad, J) + if if d, j) ^ c -iu, V)

Ad, j) - S if d, J) e CD^CU, V).

Clearly, S'(u, v) and d(u, v) describe the range

for S such that A(i, J) > 0 for all

a, J) ^ A-Ar. t

The algorithm cutset, stated below is a direct

result of the above theorem and determines the

lower and upper limits of an arc (u, v) e- Ar.

Algorithm cutset;
begin {far the arc (u, v) e A-r do)

obtain N.,^- and S,^^';
obtain C' iu, v) and G ' CU, V) ;
for all d, j) iS c:: "(u, v) da

S'-(u, V) := minimum (Ad, J));
for all d, j) e- cc '(u, v) da

S"(u,v) := maximum {A d,J));
upper := V^.^ + cf-Cu, v);
lower := V,^^ + S'(u, v)

end;

In this algorithm N..,^ and N,..,^' are obtained by

simply checking Nr and clearly this is done in

0<n);

154

C3: ' CJ7, V) and - fu, v) are obtained by checking

FS(i) and BS(i) for every i ^ N,^^ U N\.,^. This

procedure in worst case requires examining every

arc (i, j) e- A and hence runs in 0(m) time or

0(n^-) in case of a complete network.

Therefore the algorithm runs in 0 (m) or 0(n'-) time

and requires 0 (m) or 0(n---) additional space. If

the lower and upper limits of every arc

a, J) Ar is to be obtained then clearly the

algorithm has to be repeated (n-1) time, thus

resulting in 0 (nm) or 0 (n--') time and 0 (m) or

0(n-'~) additional space [notice that the limits of

every arc is determined independently of that of

the other arcs]. Sheir and Witzgall, ISHVI 601,

have proposed three algorithms for obtaining the

cutsets. These algorithms are not more efficient

than the cutset algorithm, if the aim is to obtain

the cutsets of a particular arc (u, v) e" ^ T , but

if the cutsets of all the optimal or tree arcs are

to be obtained, then these algorithms prevent the

duplication of some of the calculations and hence

are more efficient than repeating the algorithm

cutset (n-1) times. All these algorithms run in

0(n-'--) time, require 0(n-^-) additional space and are

based on the following theorem.

15.5

Thearsm 22: Let TG = (N, Ar) be a shortest path

tree of G = (N, A), and suppose (u, v) ^ Ar is a

dead-end arc. Let G' = (N<, A') and

T' = (N', Ar') arise from G and T by [u, vl

retraction, then T' is,a shortest path tree of G'

i f far e very (i, J) ^ A\

+ I / < „ ^ if i = u

w.r.i ' (V.i.i - if J ^ u

1
V.i .i otherwi se

Furthermore, S'(i, j) ' = S'~(l, j) and S-(i, J)' =

S(i, j), for a, J) ^ A'.

Ejzaaf: Clearly V . . , , ^ ' = W.,,^ for (u, v) «= T ' ,

thus d' (u) = d(u) for u ^ T'

Now, if a, j) er A' - AT', then

A(i, j) = A(i, j),

and hence, A'(i,j) /- 0 which establishes the

optimal ity of the tree T ' , as well as the equality

of lower and upper limits for nan optimal arcs.

A1 so f ar (u, v) er A ',

G'Cu, v) ' = <=: '-(u, v) and cz; " C u , v) ' = cz; (u, v).

f

156

In this work, we will consider the implementation

and analysis of one of these algorithms, called

dead-end retraction, within a more complete

algorithm, called sensitivity analysis, which

calculates the lower and upper limits of every arc

(u, v))= A. The algorithm dead-end retraction,

in our opinion, is the most efficient and the

simplest to program, among the three algorithms

proposed by Shier and Vitzgall .

In dead-end retraction algorithm the cutsets of a

dead-end arc (u, v) <=• AT are first obtained and

then the network is retracted using arc (u, v),

and then the process is repeated to the resulting

network and tree until all the optimal arcs are

considered. This manner of consideration of the

optimal arcs, cl early, makes the determination

procedure of cutsets more efficient, since the

determination of cutsets of a dead-end arc

<u, v) ^ Ar only involves the examination of

FS'(u) and BS(u>, and after determination of the

cutsets of an arc the network is reduced by

eliminating the trivial arcs. In algorithm

sensitivity analysis, given below, it is assumed

that the shortest path tree was obtained by using

a label setting algorithm and the order in which

157

the nodes were labelled is recorded. Then a dead­

end arc is obtained by considering the unique

backward star optimal arc of the node which was

labelled later than the other nodes in a network,

the initial network or any retracted network, ie.

if the nodes of a network are labelled in the

order vi, v,,?, v,-,, then consider (u, v,-,) A-r

first, and then after (u, v,-,) retraction . of the

network consider (u, v,-,...i) «s- AT, and so on. In

our implementation, given below, a shortest path

tree is represented by three node size lists, one

called order, initially contains all the nodes of

N in the order in which they were labelled in a

label setting method, and '''N and d, as defined

before, are ordered accordingly. Furthermore, it

is assumed that the network is represented by an

adjacency matrix, mat, in order to eliminate the

parallel arcs resulted after a retraction more

efficiently. The following algorithm calculates

the lower and upper limits of every arc

<u, v) e- A, and uses the dead-end retraction

method of Shier and Witzgall to determine these

limits for the optimal arcs.

1 Algorithm S e n s i t i v i t y a n a l y s i s ;
2 begin
3 f o r i := 1 to n do
4 f o r j := 1 to n do
5 A (i , j) := CO;
6 f o r i ;= 1 to n do
7 f o r j := 1 to n do
8 i f (V.,-..,~d«,-<. i-...j < «>) then
9 begin
10 i f {'--S (o r d e r (i)) * j) then
11 begin
12 A (order (i) , j) ; = Vo ,•• da.<: i . i +

d (o r d e r (i) - d (j) ;
13 upper : = CO;
14 lower := Vo.-d*,- .: i j - A (order (i) , j)
15 end
16 end;
17 nn := n;
18 min :=+<»;
19 max := - »;
20 while (nn > 1) do
21 begin
22 f o r i := 1 to (nn-1) do
23 i f ((V i < a>) and

(•=-11 (order(nn) ^ i))) then
24 begin
25 i f (min > A (i , o rder(nn)) then
25 min := A (i , o r d e r (n n))
27 end;
28 f o r i := 1 to (nn-1) do
29 i f (Vo,-.=i«.-<,-,>-,:. i < CD) then
30 begin
31 i f (max < (A(order(nn), 1) * (-1))) then
32 max := A (o r d e r (n n) , i) * (-1)
33 end;
34 upper
35 lower
36 f o r i

Vc' l\i < o r cl«r I - '< r n - O > H o 1^ cii» < n r \ ;i "t" min;

V c N i t oi-ola» 1-<: ini-i :i > 3 o r di» i'C n i l 1 + IHEiX',

1 to (nn-2) do
37 i f (A (i , order(nn)) > A (i , o r der(nn-1)))

then
38 begin
39 A (i , order(nn)) ;= A (i , order(nn-1));
40 V i o i - d a t r i: i - i n :> := V i o,-,tile, 1- c: , - 1 1 - 1 - 1 5

41 end;
42 f o r i := 1 to (nn-2) do
43 i f (A(order(nn), i) > A('=N(order(nn)),

i))) then
44 begin
45 A (o r d e r (n n) , i) := A('=H'(order (nn)), i) ;
4 6 V.3 I - I - (. n n 5 i .' - V '" N C o \- i - <: m-i :> >

47 end;
48 f o r i := 1 to n do
49 begin

159

50 AC^NCorderdin)), i) := w;
51 A<i, i^'Korder (nn))) : = <»;
52 Vc'"N<o.-.=i«.-<;r..-> .i • i := <»;
53 Vic'"iM<. o.-.do.-.:.->,-> 1;. J : = <»
54 end;
55 V.=.r.1-1^-1 :» or<rl«»r <; i ^ n > I —
56 order {i^N (order (n n))) := order (nn) ;
57 nn := nn-1

end <while}
58 end;

In the above algorithm initially all A's are set

to <», s t e p s 3 to 5, and then for every arc

<u, v) 1= A-Ar, A(u, v) is calculated in steps 6

to 16. The lower and upper limits of every such

arc is then obtained in steps 13 and 14. The

variable nn indicates the number of nodes in a

retracted network, and initially is set to n. In

steps 20 to 58 the lower and upper limits of dead­

end arcs in the reverse order of being label led in

a label setting algorithm, are calculated. In

steps 22 to 27 the backward star arcs of a node u,

the initial node of a dead-end arc, are considered

and min or (u, v) is calculated. In steps 28 to

33 the forward star arcs of such a node are

considered and max or S' (u, v) is calculated.

Then in steps 34 to 35 the lower and upper limits

of the dead-end arc (u, v) e AT are obtained. In

steps 36 to 57, the Cu, vl retraction of the

current shortest path tree is updated accordingly.

Clearly this algorithm runs in 0(n--) time, since

160

the while loop is executed (n-1) times and every

other loop in the while loop is executed at most n

times, it also requires 0(n''-') additional space.

The proof of correction of this algorithm is a

direct result of the theorems 21 and 22.

Applying the sensitivity analysis algorithm to the

example network of figure 13 and its shortest path

tree in figure 14, gives the following results:

ARC LIMITS

Identity Weight Activity lower uppei

1 —> 5 9 NOP 7 INF

2 —> 3 11 NOP 5 INF

O N 4 6 OPT 3 9

2 } 5 4 OPT 3 6

3 —> 6 9 NOP 6 INF

4 — > 5 1 NOP 0 INF

4 —-> 7 4 OPT 0 7

5 —> 3 2 NOP 1 INF

5 — > 6 7 OPT 0 10

5 —> 7 9 NOP • 6 INF

6 —> 7 6 NOP 0 INF

In the above results, the activity of an arc is

OPT, if the arc is a tree arc, and is NOP, if the

arc is a non-tree arc. The lower and upper limits

of an arc, regardless of its activity or type,

gives the range within which the weight of that

arc can vary without affecting the optimal

solution or changing the paths in the shortest

path tree.

Another method for obtai ning the cutsets which was

also proposed by Shier and Witzgall is called

cycle tracing algorithm and is based on an

algorithm far transportation problems which was

first proposed by Mullei—Menback, [MULL, 681.

This algorithm is based on theorem 20. Jh this

algorithm for each non-optimal arc Cu, v) »=• A-Ar,

which contain (u, v) are obtained. Then the

quantity, A(u, v) = V,..,^ + d(u) - d(v> is entered

into the optimisation process for calculating

S'(i, J) and SCi, j), as shown in theorem 21, for

updating tentative minima and maxima which are

initially set to and respectively. To

obtain all the cutsets which contain

(u, V) A-AT, k(u, v> is first obtained, as

described before, and then theorem 20 is used.

162

Finally, the third algorithm proposed by Shier and

Vitzgall is called the tree building. In this

algorithm the quantities A(u, v) are calculated in

the process of building the shortest spanning

tree. This algorithm seems to be the most

complicated and is definitely the most inefficient

one among the them.

163

15 POSTOPTIMALITY ANALYSIS

All the labelling algorithms, in fact all known

solution methods for one-to-all problems, are

applicable to networks with known constant arc

weights. The algorithms described in section 14,

for sensitivity analysis of shortest path problems

give a range within which the weight of a specific

arc can vary without affecting the shortest path

tree. However, what these algorithms fail to show

is the effect on the shortest path tree if an arc

weight falls outside of its given range.

Spira and Pan, ISPPA 781, have shown that to

update a shortest path tree after a constant

increase or decrease in the weight of an existant

arc takes OCn--) time. It may be as efficient, in

case of a non-negative dense network at least, to

modify the network, ie. setting the weight of the

varied arc to its new value, and resolve the

problem by a label setting algorithm which will

take 0(n'-) time. In this section we present an

0(n'--) algorithm, Senet, which post optimises the

ane-ta-all problems on non-negative networks whose

arc weights are subject to variation. More

precisely, algorithm Senet determines all the non-

164

negative critical values (at each of which the

shortest path tree changes further) for the weight

of a varying arc. Furthermore, Senet also reports

the updated shortest path tree for every range

formed by two successive critical values of the

varying arc weight. Senet is applicable to the

optimal, non-optimal and non-existant arcs and

analysis the variations in the arc weights

independently.

Let us extend the network terminology, before

introducing Senet.

By an optimal solution or simply a solution to a

network, we mean a shortest path tree of the

network rooted at a distinguished node (source).

Let. Ri be the set of all the paths from source to

node i, where no arc is traversed more than once

in each path. Let Phi be the path number k to

node i with a total weight of d^,. .i

(ie. i?,: = -CPii, Pay., Pc. .r , . . . }) Now Pn,i is

the optimum of P i ii^ and only if

d,„.i = min <dj i I P.,-.< «s- P.i ̂ . Node i is said to be

label led if the shortest path from the source to i

i s determined. Then the label of node i consists

of two parts:

(i> a node which is immediately before i on

the path from source to i, '"'N(i>;

(ii) an integer representing the total weight

of the path d(i).

Node i is said to be totally relabel led if the

ordered set of nodes in its path from the source

is changed.

Node i is disconnected if there exists no path

from the source to i. A network is disconnected

if it contains at least one disconnected node.

Assume that there exists an optimal solution,

sal uti an one, to a given network G. Then the set

of arcs A can be divided into two parts,

A = Af + As:, where Ai is the set of optimal arcs

(ie. those utilized by the original solution) and

A:::;: IS the Complement of AT, the set of non-

existant arcs, ^ 3 , i s also considered, where

A.-: <(i, J) : i, J ^ N, a, j) ^ A)

Now suppose that the effect on the optimal

solution caused by variation in the arc (p, q) is

to be analysed, (p, q e N), then the solution can

be analysed by considering Ai and (A„s + 4;s.>

separately. In the following cases w'r.-,.-.-:,

represents the original weight af (p, q).

(i) Optimal Case

Set w,::,.:::, to Infinity and salve the resulting

network G' (ie. find the shortest path from

source to each of the other nodes).

If there exists no optimal solution to G',

then (p, q) is optimal for all values of wt-...3-

otherwise the solution found becomes solution

two. Solution two would contain a set of

nodes which are either totally relabel led or

disconnected. These are the nodes whose

shortest paths in solution one contained

(p, q). Arc (p, q) is always optimal for

disconnected nodes. Let N' be the set of

totally relabelled nodes and suppose that

K IN'I. (1 .< k (n). For each totally

relabelled node, N'i, obtain the quantity

A (N' (i)) , where

A(N'(i)) = + d2(N'(i)) - dl(N'Ci)),

for i = 1 k.

where, dKN'd)) is the total weight of the

shortest path to node N' (i) in solution one

and d2(N'(i>) is that of node N'(i> in

solution two.

Now set Wf,.,3 to zero and solve the resulting

network, G", obtaining solution three.

Suppose that f nodes are totally relabelled,

excluding the nodes whose total weights are

changed only, then for each of these nodes,

N'(k+i), calculate A(N'(k+i)),

for i .= 1 r , where

A(N' (k+i)) = dl (N' (k+i)) - d3(N' (k+i)),

for i = 1 . . . r .

where, d3(N'(k+l)) is the total weight of the

shortest path to node N'(k+1) in solution

three.

Now rearrange A and N', for i = 1 ... k+T, in

descending order af A. In this order, the

first k elements of A and N' are the ones

obtained by solving G' and the rest are those

obtained by salving G". We also have,

A(N' (k+1)) (pv',v.c, (A(N'(k)), optimal ity

range. Now the following conclusions about

the values of w,.,--,..;, can be drawn.

OPTIMAL ARCS

i Range Change i n o r i g i n a l s o l u t i o n
(path = s h o r t e s t path)

Non-Optimality
A d) (Vp„.,

S o l u t i o n two becomes
optimal to G

Increase (i) The paths to If' (i) , f or
A(m) ^ V„,:, ^ A (l) i = m ... k, are as i n

j f o r ra ^ k
1 •

s o l u t i o n two

(i l) T o t a l weights of a l l the
paths to N ' (i) f o r
i = 1 ... m, inc r e a s e by
the same amount as ŵ..̂
i n c r e a s e s

(i i i) The paths to the r e s t of
the nodes are as i n
s o l u t i o n one

Optiraality Uo change
A(k+1) ^ Wp>., ^ A(k)

Decrease (i) T o t a l weight of every
A(k+l+m) i Wp, s< A(k+1) path containing (p, q),
m ^ r decreases by

(W'cei - Wp.=,)

(i i) The paths to N ' (i) , f o r
i = r .. . m, are as i n
s o l u t i o n three

(l i i) The paths to the r e s t of
the nodes are as i n
s o l u t i o n one

A l t e r n a t i v e o ptiraal s o l u t i o n s e x i s t f o r those values
of Wp,::,' which f a l l on the boundary of a range

•f V

<ii> Nan-Optimal and Ifan-EKistant. Case

Set Wr.,,,-4 to zero and salve the resulting

network, G'. Let solution two be the optimal

one obtained for G'.

Let N' be the set of totally relabelled nodes

and suppose that k = IN'I, (0 i k (n). For

each totally relabelled node N'(i),

(i = 1 ... k), calculate A(N'(i)) where

A(N'(i)) = dl(N'(i)) - d3(N'(i)).

Now rearranging A and N' in descending order

of A, the following conclusions about the

values of iv,,,.;, can be drawn

171

NON-OPTIMAL AND NON-EXISTANT ARCS

Range Change i n o r i g i n a l s o l u t i o n
(path = s h o r t e s t path)

Non-optimality
A (1) ^ Wp.:,

No change

General

A(m) ^ Wr...=, ^ A (l)
for m ^ k

(i) The paths to N'<i), for
1 = 1 . . . m, are as i n
s o l u t i o n two

(i i) The paths to the r e s t
of the^ nodes are as i n
s o l u t i o n one

F i n a l
0 $ Wpc, « A(k)

S o l u t i o n two becomes
optimal f o r G

A l t e r n a t i v e optimal s o l u t i o n s e x i s t f o r those values
of Wp.:,- which f a l l on the boundary of a range

Supposing that arc (p, q) in a network G with an

optimal solution C'Nl, dl), ie. '"Nl contains the

predecessor nodes and dl the shortest path

weights, is to be analysed, then Senet can be

structured in the following manner.

1 algorithm Senet;
2 begin
3 K := 0;
4 kk 1;
5 get <p, q);
6 act := a c t i v i t y (P, q);

8 i f (act = OPT) then
9 begin
10 data (P, q) := co;
11 shortest-path (data, d2, '='N2);
12 compare i'"S2, If', k);
13 for i := 1 to k do
14 A(i) := V'p,:, + d 2 (I f (i)) - d l (I I ' (i))
15 kk := k
16 end; (i f)
17 data (P, q) := 0;
18 shortest-path (data, d3, '•••ir3)
19 compare (.'"13, N' , k);
20 i f (k > 0) then
21 begin
22 for i := kk to k do
23 A(i) := dKU'd)) - d 3(H'(i));
24 descend (H', A, k)
25 end
26 end.

In the above implementation, analysis of an

optimal arc requires the execution of all 26 steps

and analysi s of a non-optimal or a nan-exi stant

arc require the execution of the steps from 1 to 7

and from 17 to 26, inclusive. The function

activity determines the type of the arc (p, q)

which may be:

OPT = optimal,

NOP = non-optimal,

NEX = nan-existant.

173

This function can be implemented as follows:

function a c t i v i t y (P, q);
begin

i f (Vp„=, = en)
then

a c t i v i t y := NEX
else

i f C'lIKq) = P)
then

a c t i v i t y := OPT
else

a c t i v i t y := NOP
end;

Procedure shortest-path is a label setting

algorithm which solves a one-to-all problem in a

network represented in data. Procedure descend

rearranges N' and A in descending order of A.

Procedure compare, obtains the totally relabel 1ed

nodes after a change in data and stores them in

N', a node-size linear list. This procedure is

used twice if arc (p, q) is optimal and once

otherwise. Here we give two different

implementations of this procedure. In each

implementation a node-size linear list of boolean

type, L, is used to prevent a node entering N'

more than once. In the first implementation we

have used a queue with FIFO management, Q, to

identify the totally relabel led nodes.

1 (1) procedure compare ('̂N, ET' , k);
2 begin
3 far i := 1 to n do
4 L (i) := false;
5 for i := 1 to n do
6 i f C^'Ki) t f^NKi)) then
7 begin
8 L (i) := true;
9 ADDQ(i, Q)
10 end;
11 while not (EMPTYQ (Q)) do
12 begin
13 u ;= FKOIKQ);
14 DELETEQ(Q);
15 K ' ••= k+1;
16 N'(k) := i ;
17 for i : = 1 to n do
18 i f ((U = ''NKi)) and (L (i) = false)) then
19 begin
20 ADDQ(i, Q);
21 LCD := true
22 end
23 end;

In the second implementation we have used N', a

node-size linear list, to directly identify and

store the totally relabel led nodes. Associated

with N' there are two pointers, one (K') indicates

the location of the next totally relabel led node

in N' which is to be searched and the other, K,

indicates the location in N' for inserting a new

total ly relabel 1 ed node. N' is in a way treated

like a queue with FIFO management, except that no

deletion takes place.

175

1 (2) Procedure compare Ĉ'N, N', k);
2 begin
3 for i := 1 to n do
4 L (i) := false;
5 k' 0;
6 k := 0;
7 for i := 1 to n do
8 i f C'lKi) / f'NKi)) then
9 begin
10 L (i) := true;
11 k := k+1;
12 N'(k) := i
13 end;
14 repeat
15 i f (k > 0) then
16 begin
17 k' := k'+1;
18 for i := 1 to n do
19 i f ((N'(k') = ''NKi)) and (L(i) = false)) then'
20 begin
21 L (i) := true;
22 K := k+1;
23 N' <k) := i
24 end
25 end;
26 u n t i l (k'=k)
27 end;

Clearly, both implementations run in 0(n^-) time,

however, the second one is more space efficient.

In bath implementations '""Nl represents the

predecessor node set of solution one, and ''"N

represents that of a new soluti on, either solution

two or solution three.

176

Theorem 23: Senet determines all the critical

values for the weight of an arc and reports the

correct effects on the optimal solution at each

critical value. Furthermore, IN'I = k (n.

Proof: Consider Pi, as shown in theorem 3, this

set is finite and has a size of k.i , where

n-2
wax (ki> = (n-2)! E l/(n - 2 - r)! for n 2,

r=0

Pi. can be divided into two parts. R,. = P'j. + P" i ,

where P',-. is the set of paths containing- a

particular possible connection f i e . (p, q), where

p, q «=- N) and i ? " , is its complement. Now let

w\:>.::i be the original weight of (p, q) in G, and

also PI ± and P ^ i be the optimums of P'i and R"i

respectively then,

(i) if Wr„.^ is set to infinity, then

Ps:x = optimum (Pi >

(ii) if wi:;...:, i s s e t to zero and

(a) Pii = optimum Ci?.t >, then

dli i' ds;^ - W'p,.:,,

(b) P,7:.i. = optimum (P i) , then

d:::i::i. i' d I i - W' p..:::,

for i = 1 . . . n

177

The optimal case and the non-optimal case, which

•includes the non-existant case, are considered

separately:

a > Optima.I Cage

Let P-, i and P..>.i be the shortest paths to a

node i in G and G' respectively, where G' is

determined from G by letting w,::,.:, ^ <». The

following are now true.

(1 . 1) if P..,:-.T does not exist for some i,

then PI i is optimal for all values of

(1 . 2) if Pi .i does not include (p, q), then

PI , = P,>,.

(1 . 3) . if P,,:± ^ Py i , then d , i (d:,,i., now let

d'i. = d.,;-.T - d) . i , then for a general

value of w'i::,,::, In G We hsve

(1 . 3 . 1) P-, .i. is optimal if

W,:,..„ < W'p-,,,j + d' i

(1 . 3 . 2) P ^ i is optimal if

Wr..:, > W\-:,.:, + d',

(1 . 3 . 3) Pi i. and P;:.* are,

alternative optimal

paths (ie. d,.i = d:^i) if

W,::,.::, = W + d ' i .

175

Therefore, (p, q) is in the optimal path to i if

w,::,,::, (w ' , + d'y and clesrly, this is true far

every i e- N.

Now let P i j i be the optimal path to node i in G",

where G" = G, but (Vr.,.„ = 0, then the following

are true,

(2.1) if P, .i exist, then P^.i exists.

(2.2) if P;,:;.£ does not include (p, q), then

P^^i P i . i .

(2.3) if P;,:;.i includes (p, q) and,

(2.3.1) Pi .i. includes (p, q), then

d,T,;Y = d l i - W'

(2.3.2) PI r does not Include (p, q)

then da-.i -J' di i .

Now let d ' i = d,.i - d;.s.i , d',. ^ 0,

then

(a) P.K.i i s optimal if

0 s< Pvfc,.̂ ^ d ' ,

(b) Pii. is optimal if

d'i (•f' f/V>'--i

Therefore (p, q) is in the optimal path to i if

0 i w^,,.,, i d ' i and this is true for every i <=" N.

However (1.3.1) and (2.3.2.b) above, together

imply that for the range d' j. ̂ w;....,-, (w',.,„.-, + d ' i ,

the original path, P-, .i , is optimal. Now assume

that the shortest paths to k nodes in solution one

include (p, q), where (k (n). Then clearly as a

result of (1.2) above, only k nodes are totally

relabelled in solution two. In solution three the

set of nodes N can be divided into three parts:

(a) the set of nodes whose labels are

unchanged

(b) the set of nodes whose labels are totally

changed

<c) the set of nodes whose total weights are

decreased only.

Now let r', r, and P" be the sizes of the above

three subsets of N respectively, then

(1) r -I- f + T" = n

(2) F" = k, as a result of (2.2) and (2.3) above.

Therefore k + F i n as T') 0, f i e . maximum

number of relabelled nodes, when analysing an

optimal arc is n), ie. IN'I = k .(n.

f i i . > Nan-Optimal and Non-Existant Ca.^e

In this case let Pi i and Ps.i be the optimal

paths to i in G and G' respectively, where

G' ^ G, but w,v.,.;., ^ 0. Then the following are

true,

(a) if PI i exists, then P-si exists

(b) d::i:i i' d i i , for all i ^ N

(c) if di .1^ = d::i:i then Pi x = Psi

(d) if d..v;/.T <• dv,:, then P.v,v.-.y. includes (p, q)

and if d',-. = di j. - d::^i,' then for a

general value of w,;.>..-, 0,

we have:

(d.l) Fzi is optimal for 0 r Hp.., i' w'̂ c, - d'i

(d.2) Pii is optimal far Wp.=, ^ w'p.:, - d'i

Therefore, (p, q) is in the optimal path to i if

0 i w,T.>..., i Wp:...-, - d ' i , and clearly this is true for

every i e- N. Furthermore, it is clear that

IN' I = k i n. t

Theorem 24: Senet terminates in O(n-) time and

requires 0 (n) additional memory space.

151

Froaf: The termination of the algorithm depends

on the number of critical values for the weight of

an arc. The set of critical values of the weight

of an arc in a network of size n is finite and has

a maximum size of n, since:

At each success!ve critical value at least one

more node becomes totally relabelled, and a node

is totally relabel led at mast once in the process

of analysing an arc. Furthermore, if no node is

totally relabelled, then the algorithm terminates.

The proof that Senet terminates in 0(n-'^) time in

worst case is by inspection. A label setting

algorithm runs in 0(n-~) time, procedure compare

runs in 0(n'-') time and rearranging the totally

relabelled nodes in procedure descend takes 0(n'-)

time. Therefore, Senet runs in 0(n''-).

In case of analysing an optimal arc, there are

seven additional node-size linear lists, four to

represent solutions two and three, two for N' and

A and one, L, for identification of totally

relabelled nodes. In case of analysing a non-

optimal or a non-existant arc, there are five

additional node size linear lists, all similar to

182

the case of analysing an optimal arc with the

exception that only two such lists are required to

represent one new solution only. Therefore the

maximum number of additional memory units required

for analysing an arc is 7n. t

To compare Senet with the algorithms of chapter

14, consider the example network of figure 13 and

its solution in figure 14. Furthermore, suppose

that arcs (2, 5), (1, 5), (2, 6) and <3, 2) are t o

be analysed, where arcs (2, 6) and (3, 2) are non-

existant, Analysing the arcs separately:

<i) arc (2, 5) is optimal,

act = OPT;

y^-^^ - 4;

solution 2:

d2 0 3 8 9 9 16 13

'"N2 1 1 1 2 . • 1 5 4

totally relabelled nodes:

I f c s 0;

solution 3:

d3 0 3 5 9 3 10 12

f"'N3 1 1 5 2 2 5 5

5 6 3 7

A
1
1
1 ^ •

6 3 1

rearranglng:

N' 5 6 3 7

6. 6 6 3 1.

16̂

(ii) arc (1, 5) is non-optimal,

act := NOP;

V,B' := 9;

fes 1^ 0;

solution 2:

d3 0 3 2 9 0 7 13

'='13 1 1 5 2 1 5 4

W 3 5

A 6 7

rearranging:

5 3

A 7 6

165

(Hi) arc (2, 6) is nan-existant;

act := NEX;

fee' a-,-

fee ^ 0;

solution 2:

d3 0 3 8 9 7 3 9

'='N3 1 1 1 2 2 2 6

N' 6 7

A 11 4

rearranging:

N' 6 7

A 11 4

185

C i v ; arc (3, 2) is non-existant,

act := NEX;

Ife:^' t- 0;

solution 2:

d3 • 0 3 8 9 7 14 13

'''N3 1 1 1 2 2 5 4

Now the following conclusions about the arc

weights can be made.

187

o +
LU +
L i .

= <

h- <t
U l

L L . o a: o z u. o
»—« •

- I =>

<_> =

^ 5
(y1 _ l

— I t_>

£ <:
«= .

t— UJ
CL. I C
O h -

I
Z L . o o

i :
O CK

o

I CM

V • — L D tr> m

0)
4->

ro

i n v o n r-H

L U

z i n i n
1— z
<_>
U l u. 1
IL. _ 1
U l 4 J

- C U
A

MA

^
O l » ^

• r" 1— + +
<U a . i n CM X o

4->

0) i n k o « r o
•o o * c «

c
o

• M
10

1 * • 1
E
u u
•o

i .
CO o

i n i n i n

Q..

O O CM

^ (O l O

P C M C M

^ T T
o m a»

i n v o r o

o. z o
LLJ O L U 1—
o •-• X i n
L J

L U

z
• t

'zn <u l O r o r—
L U I — a. z z o. z s: <s o

UL.
>—«
(/> <_j I /)
>- < C L U >>
—J LiJ O

< Z
z u. «r >
•t o c2 id OP

>- = o: < J o z
t— 1— L U 10
t—• <j a: 1 L U 1—

MA
 u. o u. •)->

*-H LJJ L U C M
1— r a:
o . 1— o

1
L U

3 : u. <: s
1— t— o
o + + >< •*-> m i n

* • M A A

« C 1 1
« 01 1 1

T3 1 1
« C M 1—

X
IxJ
z

166

In the above output:

The weight of the optimal arc (2, 5) can vary from

6 to infinity and this will change the routes to

nodes 5 and 6 in solution one to (1 5) and

(1 -> 5 ^ 6) with total weights of 9 and 16,

respectively, only. The weight of this arc can

vary from 3 to 6 without affecting the structure

of the shortest path tree of solution one. If

this weight varies between 1 and 3, then the route

to node 3 will change to (1 -> 2 -> 5 -> 3) with a

total weight of (5 + I»̂ z-.s;. If it varies between 0

and 1, then beside the change in the route to node

3, the route to node 7 will change to

(1 2 5 -) 7) with a total weight of (12 V::^^^);

The weight of the non-optimal arc (1, 5) can vary

from 7 to infinity without effecting the optimal

solution (ie. solution one). If it varies from 6

to 7 the routes to nodes 5 and 6 will change to

(1 -) 5) and (1 -) 5 6) with total weights of (0 +

Wis) and (7 + ViKi) respectively. If it varies

between 0 and 6 however, beside the changes in the

routes to the nodes 5 and 6 the route to node 3

will also change to (1 -f 5 3) with a total

weight of (2 + V,s^);

159

If the non-existant arc (2, 6) is to be created

and its weight is between 11 and infinity, then

the optimal solution will not be effected.

However if it has a weight between 4 and 11, then

it will become an optimal arc and will change the

route to node 6 to (1 -> 2 6) with a total weight

of (3 + W:::!:^), and if it has a weight between 0 and

4, then the route to node 7 will also be changed

to (1 -) 2 ^ 6 -i 7) with a total weight of

(9 + W,^^:>;

The creation of the arc (3, 2> with a total weight

between 0 to infinity will not effect the optimal

solution.

The complete pascal cade of the algorithm Senet

together with a sample run is given in appendix F.

190

The algorithms of section 14, for sensitivity

analysis, determine only two of the critical

values, maximum increase and decrease, within

which the weight of a given arc can vary,

independently, without changing the structure of

the shortest path tree. Furthermore, they do not

report the updated weights of the shortest path

tree within the given range and do not indicate

the structural changes of the shortest path tree

when an arc weight falls outside of its determined

range. Senet provides all the critical values for

the weight of an arc together with the updated

weights of the shortest paths and the structural

changes between every two successive critical

values. This is because, in analysing a non-

optimal arc, sensitivity analysis algorithms only

consider the affect on the terminal node of the

arc, when the weight of the arc . is reduced. This

node is obviously the very first one which, may be

affected as a result of the reduction. Senet,

however considers every other node which could be

affected after the terminal node of the arc is

affected. In case of analysing an optimal arc,

sensitivity analysis algorithms consider all the

nodes that Senet considers, but they do no use all

the information that they obtain. Sensitivity

191

analysis algorithms do not consider the non-

existant arcs, although with a simple

modification, some of them could become capable of

analysing such arcs. Analysis of an arc for

sensitivity or post-optimal i ty takes 0(n'---) time,

however, in Senet the additional memory space

required is 0(n> and in the sensitivity analysis

algorithms is (n-"). Some of the sensitivity

analysis algorithms analyse all the m arcs in

0<n'-) time and Se.net analyses them in 0(n-~m) time,

but still • Senet will require 0(n> additional

memory space.

Senet can be modified to analyse negative networks

as well as non-negative networks. In case of

negative networks which do not contain negative

cycles, the lowest critical value for an arc

(u, v) will be t rather than zero, where t is the

minimum weight of a cycle containing arc (u, v).

thus the modified version must be capable of

determining such cycles.

192

ANJD

193

16 SUMMARY AMD CONCLUSIOM

Section 1,. in a way, could be considered as a

summary, futhermore at the end of each section the

corresponding conclusions are drawn. However, in

this section we present a brief summary coupled

with an outline of the conclusions made throughout

the work.

In section 6, we classified the deterministic

unconstrained shortest path problems in order to

outline the importance of one-to-al1 problems.

In section 7, we developed an algorithm,

labelling, which is the underlying structure of

all the labelling algorithms. We then used this

algorithm and its properties, directly or

indirectly, to study, classify, analyse and

compare the different labelling algorithms.

In sections 8 and 9 we considered all different

implementations of labelling algorithms using

various data structures. and sorting techniques,

and analysed and compared most of such

implementations. All the analysed algorithms in

these two sections were evaluated by using worst

194

case analysis and their memory space requirements.

In section 10, the most efficient labelling

algorithms were compared using their average

computation times on a set of diverse randomly

generated networks. Results of the

classifications of the label 1 i ng algorithms can be

generalised as follows:

195

c
o

• f —
->->

*-> ut IS
•*- w> 3

i- U •4->
r — s. _ i -o <e o o la u

o.
'5 W 10

(/> lO 1
_J 01

<u
lO r —
,—

C _ l
l- •f- t 3
0) 4~> —-
c •U
(U OJ
cn i/i

<u
•M u

C 4-> <U
, <I> c ' x: u <u

•M
•r- *J 9> * 3 •— a> n n 3 <_> +» 3 (U _ l 3 o 3
t 3 O "O

01
3
0) 3
o-

f <u
*>,— ••- o> X c

_ I
C9 n)

196

In section 11 to 13, the all source algorithms

were reviewed, classified and compared. The

classification of these algorithms can be

generalised.as follows:

a l l source algorithms

matrix m u l t i p l i c a t i o n
algorithms

t r i p l e algorithms modified l a b e l
s e t t i n g
algorithms

In section 14, the sensitivity analysis of one-to-

all problems was considered and the best of such

methods was implemented and analysed.

In section . 15, we introduced an algorithm, SENEt,

for the post optimality analysis of one-to-all

problems. In this section we also considered the

advantages of this new approach to such problems

over the existing sensitivity analysis, probably

the closest class of algorithms to SENET.

197

All the theory behind the shortest path problems,

one—to—all in particular, were developed

throughout the work in terms of definitions,

algorithms and theorems. However, the emphasis in

this work is on sections 6 to 10 and in particular

on section 15.

198

17 REFERENCES

[AHHU 741 Aha, Hopcroft and Ullman, "The Design
and Analysis of Computer Algorithms", Addisan-
Wesley, Reading, MA, 1974.

[BELL 581 Bellman, "On a Routing Problem", Quart.
Appl. Math., Vol 16, 1958.

[DANT 60], Dantzig, "On The Shortest Route Through
a Network", Management Sci, Vol 6, 1960.

[DANT 671 Dantzig, "All Shortest Routes in a
Graph", in Theory of Graphs, P Rosenstiehl, Ed.
Gordon and Breach, New York, 1967.

[DEFO 79a] Denarda and Fox. "Shortest-Route
Methods: 1 Reaching, Pruning and Buckets",
Operational Research, Vol 27, 1979.

[DEED 79b] Denardo and Fox, "Shortest-Route
Methods: 2 Group Knapsacks, Expanded Networks and
Branch-and-Bound", Operational Research, Vol 27,
1979.

[DERY 69] Deryfus, "An Appraisal of some Shortest-
Path Algorithms", Operations Research, Vol 17,
1969.

[DGKK 791 Dial, Glover, Karney and Klingman, "A
Computational Analysis of Alternative Algorithms
and Label]ing Techniques for Finding Shortest Path
Tree", Networks 9, 1979.

[DIAL 651 Dial, "Algorithm 360 Shortest Path
Forest with Topological Ordering", Communications
of the ACM, Vol 12, 1965.

[DIAL 691 Dial, "Algorithm 360 Shortest Path
Forest with Toplogical Ordering", Comm. ACM, Vol
12, 1969.

[DIJK 591 Dijkstra, "A Note on Two Problems in
Connexion with Graphs", Numer Math, Vol 1, 1959.

[EDKA 721 Edmonds and Karp, "Theoretical
Improvements in Algorithmic Efficiency for Network
Flow Problems", J of ACM, Vol 19, 1972.

[FALM 671 Farbey, Land and Murchland, "The Cascade
Algorithm for Finding All Shortest Distances in a
Directed Graph", Management Sci, Vol 14, 1967.

199

[FLOY 621 Floyd, "Algorithm 97: Shortest Path",
Comm. ACM, Vol 5, 1962.

[FORD 561 Ford, Jr, "Network Flow Theory", Report
p-923. Rand Corp, Santa Monica, CA, 1956.

[FOXB 78] Fox, "Data Structures and Computer
Science Techniques in Operations Research",
Operations Research, Vol 26, No 5, 1978,

[FRET 851 Fredman and Tarjan, "Fibonacci Heaps and
Their Uses in Improved Network Optimisation
Algorithms", to be publ ished in IEEE, 1985
onwards.

[GIVI 733 Gilsinn and Witzgall, "A Performance
Comparison of Labelling Algorithms for Calculating
Shortest Path Trees", NBS Technical Note 772, US
Department of Commerce, 1973.

[GLKL 821 Glover F, Klingman D, "A Computer Study
of Efficient Algorithms far Shortest Path Trees
and Assignment Problems", University of Texas,
Austin, 1982.

[HITC 683 Hitchner L E, "A Comparative
Investigation of the Computational Efficiency of
Shortest Path Algorithms", Report ORC 68-25,
Operations Research Centre, University of
California, Berkeley, 1968.

[HUTC 673 Hu, Tc, "Revised Matrix Algorithms for
Shortest Paths", Siam J. Appl. Math., Vol 15,
1967.

[IMAI 843 imai and Iri, "Practical Efficiencies of
Existing Shortest-Path Algorithms and a New Bucket
Algorithm", Journal of the Operations Research
Society of Japan, Vol 27, No 1, 1984.

[JOHN 723 Johnson E L, "On Shortest Path and
Sorting", in Proceedings, 25th Conference of the
Association for Computing Machinary", Boston,
1972.

[JOHN 773 Johnson D B, "Efficient Algorithms for
Shortest Path in Sparse Networks", J Assoc.
Comput. Mach, Vol 24, 1977.

[KBLA 783 Kelton W D, Law A M, "A Mean Time
Comparison of Algorithms for the All Pairs
Shortest Path Problem with Arbitary Arc Length",
Networks, Vol 8, 1978.

200

[KNUT 73a] Knuth D, "The Art of Computer
Programming, Vol 1: Fundamental Algorithms",
Addison-Wesley, Reading, Mass, 1973.

[KNUTH 73b] Knuth D, "The Art of Computer
Programming, Vol 3: Sorting and Searching",
Addison-Wesley, Reading, Mass, 1973.

[MAGO 78] Magnanti T L, and Golden B L,
"Transportation Planning; Network Models and Their
Implementation", Technical Report 143, Operations
Research Centre, Mass. Institute of Technology,
Cambridge, MA, 1978.

[MINT 57] Minty, "A Comment an Shortest Route
Problems", Operations Research, Vol 5, 1957.

[MOOR 591 Moore E, "The Shortest Path Through a
Maze", Proceeding of the International Symposium
on the Theory of Switching, 1959.

[MULL 681 Muller-Merbach, "Sensi bi 11 tatsanalyse
Von Transportproblemen Der Linearen
Planunescrechnung (Mit Algol-Pragramm)", Elektron.
Datenverarbeitung, 10, 1968.

[MURC 691 Murchland J D, "The 'Once Through'
Method of Finding All Shortest Distance in a Graph
from a Single Origin", Tranport Network Theory
Unit, London Graduate School of Business Studies,
Report LBS_TNT_56. 1, 1969.

[PALL 811 Pallottino, "Shortest Path Methods:
Complexity, Interrelations and New Propositions",
Center De Research Sur Les Transports
Publication # 233, 1931.

[RAPE 74al Rape U, "Changes, in Networks and
Adjustment of the Lengths of Shortest Paths",
Computing, Vol 12, 1974.

[RAPE 74b] Rape U, "Implementation and Efficiency
of Moore_Algorithms for the Shortest Route
Problems", Math. Programming, Vol. 7, 1974.

[SHWI 801 Shier and Witzgall, "Arc Tolerances in
Shortest Path and Network Flow Problems",
Networks, Vol 10, 1980.

[SPPA 781 Splra and Pan, "On Finding and Updating
Spanning Trees and Shortest Paths", Slam J Comput,
Vol 4, No 3. 1978.

[STEE 743 Steenbrink, "Optimisation of Transport
Networks", Printed by J V Arrowsmith Ltd, Bristol,
England, 1974.

[TARJ 833 Tarjan, "Sensitivity Analysis of Minimum
Spanning Trees and Shortest Path Trees",
Information Processing Letters (North-Holland),
1982.

[TARJ 853 Tarjan, "Data Structure and Network
Algorithms 1443", CBMS-NSF Regional Conference
Series in Applied Mathematics, 1984,

[VLIE 783 Vliet, "Improved Shortest Path
Algorithms for Transport Networks", Transpn. Res,
Vol 12, 1978.

[WARS 623 Warshall, "A Theorem on Boolean
Matrices", J. ACM 9, 1962.

[WILL 641 Villaims, "Algorithm 232: Heapsort",
Comm. ACM 7, 1964.

[YENJ 703 Yen, "A Shortest Path Algorith", PhD
Thesis, University of California, Berkeley, 1970.

[YENJ 723. Yen, "Finding the Lengths of All
Shortest Paths in N-Node Non-Negative-Distance
Complete Networks Using !4(N~') Additions and (N~)
Compares", ACM 19, 3, 1972.

203

The following appendices contain the complete

Pascal codes of:

(a) reading and writing a network in both

adjacency matrix and forward star forms;

(b) label correcting algorithm with a single

queue managed in FIFO manner;

(c) label correcting algorithm with double

ended queue (or actually output

restricted double ended queue);

(d) label setting algorithm with address

calculation sort;

(e) label setting algorithm with one level

bucket sort.

In all the cades the variable names are chosen in

a manner that makes their functions self

explanatory.

204

APPENDIX A

This appendix describes the user input text file,

INFILE. It also contains the Pascal coding for

the procedures CHARTOINT, READADJMATRIX,

READFORSTAR and PRINT AD J MATRIX. Procedures

READADJMATRIX or READFORSTAR read the adjacency

matrix representation of a network stored in

INFILE and represent it in the form of an

adjacency matrix or adjacency lists C i e . forward

star form), respectively. Both these procedures

read the arc weights as characters and use the

procedures CHARTOINT to convert them back to their

integer values, there are two versions of this

procedure, the one which excludes negative numbers

is used for label setting algorithms. Procedure

PRINTADJMATRIX outputs the adjacency matrix

representation of the network.

INFILE is a text file that the user must create

prior to running any of the programs in this

study. INFILE contains an adjacency matrix

representation of the network the user wishes the

program to operate on. The adjacency matrix must

be formatted in the following manner:

205

C i ..> Each row of the adjacency matrix must be

on one line, starting- in the first column

of the file.

(ii) Each number in the adjacency matrix must

be in a field width of. 4 characters. For

example, if X represents a space, then

the number 3 would be written:

3 X X X X

cm.) One clear line must be between the rows

of the adjacency matrix.

(iv) To mark the end of each row of numbers in

INFILE, an asterisk, *, must follow the

last character in the row.

(v) The end of all the rows to be input is

identified by an asterisk in the first

col umn of a row.

To i l l u s t r a t e t h e s e r e q u i r e m e n t s , c o n s i d e r the

adacency m a t r i x :

1 0 1 3 - 0

2 2 -5 0 0

3 0 0 0 6

4 4 -33 224 0

The c o r r e c t I H F I L E format f o r t h i s a d j a c e n c y

m a t r i x i s

1 s t Column i n I N F I L E

0-

0 X X X l X X X 3 x X X 0 X X X *

X

2 x x x - 5 x x 0 x x x 0 x x x *

X

0 X X X 0 X X X 0 X X X 6 X X X *

X

4xxx-33x22x0xxx*

(where x r e p r e s e n t s a s p a c e)

207

PROCEDURE CHARTOINKCHARARRAY: VQRD5; VAR VALUE: IITTEGER);
{This procedure converts a number held i n character form,)
(i n CHARARRAY, t o i t s integer value. VALUE }

VAR
I.MULTFAC: IITTEGER; (MULTFAC stores the m u l t i p l i c a t i o n)

{ f a c t o r)

BEGIN
VALUE:= 0;
I:= 5;
WHILE (CHARARRAY[I] = ' ') DO
BEGIN

I:= I - l ;
END; {Find the l a s t d i g i t of the number)

MULTFAC:= 1;
REPEAT

IF (CHARARRAY[I] <> '-') THEN
BEGIN {Convert the d i g i t t o i t s integer value)
VALUE: = VALUE+ (IfULTFAC* ((ORD (CHARASRAYĈ I])) -
ORDCO')))) ;
KULTFAC:= KULTFAC*10;

END;
I : - I - l ;

UNTIL (1=0);
IF (CHARARRAYCI] = '-') THEN
VALUE:= (VALUE * (-1)); {Convert a -ve number t o i t s)

{cor r e c t value)
END; {CHARTOINT)

208

Procedure CHARTOIKKCHARAERAY : WORDS; VAE VALUE : IITERGER);
{This procedure converts a number held i n character form,)
{ i n CHARARRAY t o i t s integer value, VALUE. This version)
{of CHARTOINT terminates processing on encountering a)
{negative number)

VAR
I , MULTFAC: INTEGER; {MULTFAC stores the m u l t i p l i c a t i o n)

{ f a c t o r)

BEGIU
IF (CHARARRAYLI) = '-') THEB
BEGIN
WRITELNCNEGATIVE WEIGHT ARC ENCOUNTERED - ILLEGAL');
GOTO 99;

END;
VALUE:= 0;
I:= 5;
WHILE CHARARRAYCI] = ' ' DO
BEGIN

l;= l - i ;
END; {Locate the l a s t d i g i t of the number)

MULTFAC:- 1;
REPEAT {Convert the d i g i t t o i t s integer value)
VALUE:= VALUE+ (MULTFAG*((ORDCCHARARRAYCI]))-
(ORDC 0")))) ;
MULTFAC:= MULTFAC»10;
I:= I - l ;

UNTIL (1=0);
END;(CHARTOINT)

209

PROCEDURE READADJMATRIX;
{This procedure reads the adjacency matrix representation)
{of the network from INFILE i n t o ADJMATRIX)

VAR
ROW,COL,I,J,VALUE: INTEGER;
NUMBER:WORDS;
{NUMBER holds the number read from INFILE, i n)
{character form)
ENDROV,ENDCOLS:BOOLEAN;
{ENDROW = TRUE i f end of row i s reached i.e. a * i s)
{detected)
{ENDCOLS =TRUE when a l l rows i n adjacency matrix have)
{been read)
CH:CHAR;

BEGIN
RESET(INFILE);
EKDCOLS:̂ ^ FALSE;
FOR I:= 1 TO 100 DO
BEGIN
FOR J:= 1 TO 100 DO
BEGIN

ADJMATRIXCI,J] := 0;
END;

END; { I n i t i a l i z e ADJMATRIX)
ROV:= 0;
WHILE NOT(ENDCOLS) DO
BEGIN
ENDROW:= FALSE;
COL;= 1;
ROW:= ROW+1;
WHILE NOT(ENDROW) DO
BEGIN
FOR I:= 1 TO 5 DO
NUMBERCI] : = ' ' ;

I : - 1;
REPEAT {Read the next number from INFILE)

READ(INFILE,CH);
NUMBERE I.] := CH;
I:= I + l ;

UNTIL ((I = 5) OR (NUMBEREl] = ' * ')) ;
IF (NUMBERLl] = '*') THEN
BEGIN {End of row detected)
ENDROW :=TRUE;
IF (C0L=1) THEN
ENDCOLS;= TRUE; {End of Adjacency matrix)

END
ELSE
BEGIN

IF (NUMBEREl] <> '0') THEN

210

BEGIN { I n s e r t the number i n t o ADJKATEIX)
CHARTOINT(NUMBER,VALUE);
ADJMATRIXC ROW,COL];= VALUE;

END;
COL:= COL+1; (Increment column reference)

END;
END;

IF NQT(ENDCOLS) THEN
BEGIN

READLN(INFILE);
READLN(INFILE);

END; {Move t o next row of the adjacency matrix)
END;

NUMNODES:= ROW-1; {Record the number of nodes i n the)
(network)

END; (READADJMATRIX)

211

PROCEDURE READFORSTAR;
(This procedure reads the adjacency matrix representation)•
(of the network from INFILE t o the 3 forward s t a r arrays,)
(POINTERARRAY. STAEARRAY and WEIGHTARRAY)

VAR
ROW.COL,I.EDGEPOINTEE.EDGEPOINTSTORE,VALUE:INTEGER;
{EDGEPOINTER stores the next fre e l o c a t i o n number i n)
(STARARRAY)
(EDGEPOINTSTORE stores the f i r s t l o c a t i o n number i n)
(STARARRAY used t o store the current nodes forward s t a r)
NUMBER:WORDS;
(NUMBEE holds the number read from INFILE , i n character)
{form)
ENDEOW,ENDCOLS:BOOLEAN;
(ENDEOW = TRUE i f end of row i s reached i . e . a * i s)
(detected EIDCOLS = TRUE when a l l rows i n adjacency)
(matrix have been read)
CH:CHAR;

BEGIN
RESET(INFILE);
FOR I:= 1 TO 100 DO
BEGIN
POINTERARRAYEI]:= 0;
STARARRAYCI]:= 0;
WEIGHTAREAYEI] := 0;

END; (I n i t i a l i s e forward s t a r arrays)
ENDCOLS: = FLASE;
ROW:= 0;
EDGEPOINTER: = 1;
WHILE NOT(ENDCOLS) DO
BEGIN
ENDEOW:= FALSE;
COL:= 1;
{EDGEPOINTEE c u r r e n t l y contains the f i r s t l o c a t i o n)
(number i n STAEAERAY th a t w i l l be used t o store the)
(forward s t a r of the next node)
EDGEPOINTSTORE:= EDGEPOINTEE;
EOW:= ROW+1;
WHILE NOT(ENDROW) DO
BEGIN
FOR I:= 1 TO 5 DO

NUMBEECI]:= ' ' ;
I:= 1;
EEPEAT (Eead the next number from INFILE)
EEADdNFILE, CH);
NUMBERLI] := CH;
I:= I + l ;

UNTIL ((1 = 5) OR (NUMBERLl] = ' * ')) ;
IF (NUMBER[1] = •*') THEN

2 i ;

BEGIN {End of row detected)
ENDROW:= TRUE;
IF (COL^l) THEN
ENDCOLS:= TRUE; (End of adjacency matrix)

END
ELSE
BEGIN

IF (NUMBER[I] <> '0') THEN
BEGIN { I n s e r t information i n t o the 3 arrays)
FOINTERARRAY[ROW]:= EDGEPOINTSTORE;
CHARTOINT(NUMBER,VALUE):
STARARRAYC EDGEPOINTER]:= COL;
VEIGHTARRAYCEDGEPOINTER]:= VALUE;
EDGEPOINTER:= EDGEPOINTER+1;
{set p o i n t e r t o next free l o c a t i o n i n)
{STARARRAY)

END;
COL:= COL+1; {Increment column reference)

END;
END;

IF NOT(ENDGOLS) THEN
BEGIN

READLN(INFILE);
READLN(INFILE);

END; {Move t o the next row. of the adjacency)
{matrix)

END;
NUMNODES:= ROW-1; {Record the number of nodes i n)

{the network)
POINTERARRAYENUMNODES+1] := EDGEPOINTER;
{ I n s e r t dummy po i n t e r i n POINTERARRAY)

END; {READFORSTAR)

PROCEDURE PRINTADJMATRIX;
(This procedure displays the adjacency matrix)
(r e p r e s e n t a t i o n of the network t o the.screen)

VAR
I : INTEGER;
CH: CHAR;

BEGIN
WRITELNC ADJACENCY MATRIX ') ;
WRITELNC — ') ;
WEITELN;
RESET(INFILE);
WRITEC ') ;
FOR I:= 1 TO NUMNODES DO

BEGIN
WRITE (CHR (ORD ((OED CO')) + I))) ;
IF (I>9) THEN
WEITEC •)
ELSE
WEITEC ') ;

END;
WEITELN;
WEITEC ') ;
FOE I:= 1 TO NUMNODES DO
BEGIN
WEITEC ') ;

END;
WEITELN;
FOE I:= 1 TO NUMNODES DO

BEGIN
WEITE(CHE(ORD({ORDCO')) + !))) ;
IF (I>9) THEN
WRITEC 1')

ELSE
WEITEC I ') ;

EEPEAT
READ(INFILE, CH);
IF (CHO* *•) THEN
WRITE(CH);

UNTIL (CH = • * ') ;
EEADLN(INFILE);
EEADLN(INFILE);
CH:= ' ';
WEITELN;
WEITELNC I ') ;

END;
WRITELN;
WRITELN;

END; (PRINTADJMATRIX)

£14

APPENDIX B

T h i s appendix c o n t a i n s the PASCiAL code f a r the

program - FIFOSEQULST and the p r o c e d u r e s PUTINLIST

and PRINTFIFO. FIFOSEQLIST' i s the l a b e l

c o r r e c t i n g a l g o r i t h m w i t h a s i n g l e queue u s i n g

F I F O management and procedure PUTINLIST adds a

node t o the end of the queue, i e . ADDQ. both a r e

d i s c u s s e d i n s e c t i o n 8. PRINTFIFO d i s p l a y s the

c o n t e n t s of the sequence l i s t upon b e i n g c a l l e d .

P r i o r t o r u n n i n g FIFOSEQULST, a c o r r e c t l y

f o r m a t t e d v e r s i o n of lETFILE must be a v a i l a b l e .

Some sample r u n s of t h i s program a r e a l s o shown i n

t h i s appendix.

215

PROGRAM FIFOSEQULST (INPUT,OUTPUT,INFILE);
(This program f i n d s the shortest paths from a node, START)
(t o every other node i n a network using the label)
c o r r e c t i n g algorithm. This program implements a FIFO)
sequence l i s t and uses forward s t a r representation of the)
(network)

LABEL 99,88;

CONST
INFINITY = 99999;

TYPE
W0ED5 = AEEAYC1..S] OF CHAR;
ARRAY2 = ARRAYE1..2] OF INTEGER;
AREAYIOO = AEEAYE1..100] OF INTEGER;
LISTINFOTYPE = ARRAY[1..100] OF AREAY2;

VAE
POINTEEAREAY,STAEAEEAY,WEIGHTAEEAY,P,SEQULIST.d:ARRAYIOO;
LISTINFO: LISTINFOTYPE;
NUMNODES, R, FIRST,LAST,N.C,I,J: INTEGER;
START,NEXT,ENTRYPOINTER,LEAVEPOINTER:INTEGER;
INFILE: TEXT;

BEGIN (MAIN)
RESETdNFILE);
FOR I:= 1 TO 100 DO
BEGIN

POINTERARRAYLI]:= 0;
STARARRAYEI]:= 0;
WEIGHTARRAYLI]:= 0;
PL I] := 0;
d [I] : = INFINITY;
SEQULISTLI]:= 0;
LISTINFOEI, 1]:= 0;
LISTINFO[I, 2]:= 0;

END; (I n i t i a l i s e the arrays)
READFORSTAE; (Eead i n the network)
PRINTADJMATRIX; {Display the network)
WRITELNCTHIS IS THE GRAPH REPRESENTED IN FORWARD STAR

FORM');
WRITELNC ')
WRITELN;
WRITELNC POINTERARRAY STAEAERAY WEIGHTAEEAY');
WEITELNC ') ;
WRITELN;
FOR I:= 1 TO POINTERAERAYENUMNODES + 1] DO
BEGIN
WRITEC ' POINTEEAERAYCI].' ',STARARRAYEI]);

;i6

WRITELNC • , WEIGHTARRAYE I]);
END;

WRITELN;
WRITELNCWHICH IS THE START NODE ?');
READLN(START);
WRITELN;
d[START] := .0;
RESTART] := START;
IF (POINTERARRAYESTART] = 0) THEN
GOTO 80; (There are no paths from the s t a r t i n g node)

LEAVEPOINTER : =̂ 1;
SEQULISTELEAVEPOINTER] := START;
ENTRYPOINTER := 2; (I n s e r t s t a r t i n g node i n the sequence)

{ l i s t)
WHILE (SEQULISTELEAVPOINTER] <> 0) do
BEGIN
R := SEQULISTELEAVEPOINTER];
SEQULISTELEAVEPOINTER] := 0;
{Remove the next node from the sequence l i s t)
LEAVEPOINTER := LEAVEPOINTER + 1;
IF (LEAVEPOINTER > 100) THEN
LEAVEPOINTER := 1; {Implement c i r c u l a r property of)

{queue)
LISTINFOER,1] := 0; {Node R i s no longer i n the)

{sequence l i s t)
IF (SEQULISTELEAVEPOINTER] <> 0) THEN
PRINTFIFO; {Display the sequence l i s t)

FIRST := POINTERARRAYER];
N:= R;
REPEAT
N:= N+1;
LAST:= POINTERARRAYE N];

UNTIL (LAST <> 0);
LASTi= LAST - 1;
FOR J := FIRST TO LAST DO
BEGIN
C := STARARRAYEJ];
IF (dEC] > (dER] + WEIGHTARRAYEJ]) THEN
BEGIN {Relabel node C)

dEC] := (dER] + WEIGHTARRAYE J]);
PEC] := R;
IF (POINTERARRAYEC] <> 0) THEN

PUTINLIST(C); (Add node C.to the back of the)
{queue)

END;
END; (FOR loop)

END; {WHILE loop)
{Trace the short e s t paths through the tree)

88: FOR I:= 1 TO NUMNODES DO
BEGIN

IF (I <> START) THEN
BEGIN

IF (dEI] = INFINITY) THEN

!17

BEGIN
WRITELN;
WRITELN ('THERE IS NO ROUTE FEOM ', STAET,
TO', I)

END
ELSE
BEGIN
WRITELN;
WRITELN ('DISTANCE FROM' , STAET, '.TO' , I , ' IS' ,

d d]) ;
WEITELN;
WRITELNC ROUTE IS: ');
WEItELN;
WRITEd);
NEXT := PCI];
WHILE (NEXT <> STAET) DO
BEGIN
WEITE(NEXT);
NEXT := PENEXT];

END;
WRITELN(START);

END;
END;

END;
99: END,

218

PROCEDURE PUTINLIST(NODE: INTEGER);
(This procedure adds a node, NODE, to the end of the)
{queue formed by the sequence l i s t)

BEGIN
IF (POINTERARRAYENODE] <> 0) AND (LISTINFOENODE, 2] <> 1)
THEN
{Check t h a t NODE has a forward s t a r and i s not already)
{ i n the queue)
BEGIN
SEQULISTEENTRYPOINTER]:= NODE; { I n s e r t NODE inqueue)
ENTRYPOINTER:= ENTRYPOINTER+1;
{Set ENTRYPOINTER t o r e f e r t o the new 'end' of the)
{queue)
IF ENTRYPOIHTER > 100 THEN
ENTRYPOINTER:= 1; (Implement c i r c u l a r property of)

{queue)
PRINTFIFO; (Display the contents of the queue)
LISTINFOENODE,2] := LISTINFOENODE,2] + 1 ; '
{Increment no. of timed NODE has been i n the queue)
LISTINFOENODE, 1]:= 1; { I n d i c a t e t h a t NODE i n the)
{queue)
IF (LISTIHFOENQDE, 2] = (NUMNODES + 1)) THEN
BEGIN
WRITELNCTHIS GRAPH CONTAINS A NEGATIVE CIRCUIT -
ILLEGAL');

END;
END;

END; {PUTINLIST)

219

PROCEDURE PEINTFIFO;
(This procedure displays the contents of the queue formed)
(by the sequence l i s t)

VAE I : INTEGER;

BEGIN
WEITELNCSTATE OF THE SEQUENCE LIST');
WEITELNC ');
WRITELN;
WRITELNC NEXT NODE OUT');
WRITELNC I ') ;
WRITEC ') ;
FOR I:= LEAVEPOINTER TO (ENTRYPOINTER - 1) DO
BEGIN

WEITE(SEQULISTEI]: 4);
END;

WSITELN;
WRITEC •) ;
FOR i:= LEAVEPOINTER TO (ENTRYPOINTER - 2) DO
BEGIN
WRITEC ') ;

END;
WRITELNC I ') ;
WRITEC ') ;
FOR I:= LEAVEPOINTER TO (ENTRYPOINTEE - 2) DO
BEGIN
WEITEC ') ;

END;
WEITELNC LAST NODE IN*);
WEITELN;
WEITELN;

END; (PEINTFIFO)

OK, PASCALG P408U>FIFOSEQULST.PAS
[S h e f f i e l d Pascal version 3.3.1b]
No e r r o r s reported.

Executing FIFOSEQULST

ADJACEIfCY MATRIX

1 2 3 4

1 1 0
1

5 0 0
1

2 1 0
1

0 0 2
1

3 1 0
1

1 0 0
1

4 1 0
1

0 -3 0

THIS IS THE GRAPH

POINTERARRAY STARARRAY VEIGHTARRAY

1 2 5
2 4 2
3 2 1
4 3 -3'
5 0 0

VHICH IS THE START lODE ?
1

STATE OF THE SEQUENCE LIST

NEXT NODE OUT
I
2
I
LAST lODE 15

STATE OF THE SEQUENCE LIST

NEXT NODE OUT
I
4
1
LAST NODE IN

STATE OF THE SEQUENCE LIST

NEXT NODE OUT
I
3
1
LAST lODE I I

DISTANCE FROM 1 TO 2 IS

ROUTE IS:

2 1

DISTANCE FROM 1 TO 3 IS '

ROUTE IS:

3 4 2 1

DISTANCE FROM 1 TO 4 IS

ROUTE IS:

4 2 1

OK, PASCALG P408U>FIFOSEQULST.PAS
[S h e f f i e l d Pascal version 3.3.1b]
No e r r o r s reported.

Executing FIFOSEQULST

ADJACENCY MATRIX

1 2 3 ,

1 10 2 0
I

2 10 0 8
I

3 1-12 0 0
I

THIS IS THE GRAPH REPRESENTED IK FORWARD STAR FORM

POINTERARRAY STARARRAY WEIGHTARRAY

1 2 2
2 3 8
3 1 -12
4 0 0

VHICH IS THE START NODE ?
1

STATE OF THE SEQUENCE LIST

NEXT NODE OUT
I
2
I
LAST NODE IN

STATE OF THE SEQUENCE LIST

NEXT NODE OUT
I
3
I
LAST NODE IN

STATE OF THE SEQUENCE LIST

NEXT NODE OUT

1
i
LAST NODE IN

STATE OF THE SEQUENCE LIST

NEXT NODE OUT
I
2
I

LAST NODE IN

STATE OF THE SEQUENCE LIST
NEXT NODE OUT

I
3
I
LAST NODE IN

STATE OF THE SEQUENCE LIST

NEXT NODE OUT
I
1
I

LAST NODE IN

STATE OF THE SEQUENCE LIST

NEXT NODE OUT
!•

2
I
LAST NODE IN

STATE OF THE SEQUENCE LIST

NEXT NODE OUT
I
3
I
LAST NODE IN

STATE OF THE SEQUENCE LIST

NEXT NODE OUT
1
1 t
I
LAST NODE IN

STATE OF THE SEQUENCE LIST

NEXT NODE OUT
I
2
I

LAST NODE IN

THIS GRAPH CONTAINS A NEGATIVE CIRCUIT - ILLEGAL

225

APPENDIX C

This appendix contai ns the PASCAL code for the

program - DBENDQUEUE and the procedure

PUTINDEQUEUE and PRINTDEQUEUE. DBENQUEUE is the

label correcting- algorithm with output restricted

double ended queue and procedure. PUTINDEQUEUE

adds a node to the tap or bottom of a queue,

ADDDQ, bath are discussed in sections 4 and - 8.

PRINTDEQUEUE, upon call, displays the contents of

the output restricted double ended queue. Prior

to running DBENDQUEUE, a correctly formatted

version of INFILE must be available.

Some sample runs of this program are also shown in

this appendix.

PROGRAM DBENDQUEUECINPUT,OUTPUT,INFILE);
{This program f i n d s the shortest paths from a node, START
{to every other node i n a network using the lab e l
{ c o r r e c t i n g algorithm. This program implements an output
{ r e s t r i c t e d double ended queue and uses forward s t a r
{ r e p r e s e n t a t i o n of the network

LABEL 99,88;

CONST
I N F I N I T Y = 99999;

TYPE
WORDS = ARRAYC1..5] OF CHAR;
ARRAY2 = ARRAYE1..2] OF INTEGER;
ARRAYIOO = AR.RAY[1. . 1 0 0] OF INTEGER;

VAR
POINTERARRAY, STARARRAY,WEIGHTARRAY,P,d,DEQUEUE : ARRAYIOO;
ENTRYCOUNT: ARRAYIOO;
NUMNODES,R, N,C,I,J.START,NEXT,FRONTQUEUE,BACKQUEUE, FIRST,
LAST:INTEGER;
ENTRY,TOP:BOOLEAN;
INFILE:TEXT;

BEGIN {MAIN)
R E S E T (I N F I L E) ;
FOR I : = 1 TO 100 DO

BEGIN
POINTERARRAYCI]:= 0;
STARARRAYCI]:= 0;
WEIGHTARRAYII]:= 0;
P[I] : = 0;
d[I] : = I N F I N I T Y ;
DEQUEUECI]:= 0;
ENTRYCOUNTII]:= 0;

END; { I n i t i a l i s e the arrays)
READFORSTAR; {Read i n the network)
PRINTADJMATRIX; {Display the network)
WRITELNCTHIS IS THE GRAPH REPRESENTED I N FORWARD STAR
FORM');
WRITELNC ') ;
WRITELN;
WRITELNC' POINTERARRAY STARARRAY WEIGHTARRAY');
WRITELNC ') ;
WRITELN;
FOR I : = 1 TO POINTERARRAYENUMNODES + 1] DO

WRITELNC ',POINTERARRAY[I], ' ',STARARRAYCI],
',WEIGHTARRAYLI]);

WRITELN;

VRITELNC VHICH IS THE START NODE ?');
READLN(START);
VRITELN;
d[START]:= 0;
DEQUEUE!START]:= INFINITY;
P[START]:= START;
IF (POINTERARRAYISTART] = 0) THEN
GOTO 88;

FROKTQUEUE: START; { I n s e r t ttie s t a r t i n g node i n the)
{dequeue)

BACKQUEUE:= START;
VHILE (FRONTQUEUE <> INFINITY) DO
BEGIN
R := FRONTQUEUE:
{Remove the next node from the dequeue)
ENTRY :=FALSE;
PRINTDEQUEUE; {Display the contents of the dequeue)
FRONTQUEUE:= DEQUEUE!FRONTQUEUE]; {Reset queue)

{poi n t e r)
IF (FRONTQUEUE = INFINITY) THEN
BACKQUEUE:= INFINITY; {Empty queue condition)

DEQUEUE!R];= - 1 ;
FIRST :=• POINTERARRAYL R];
N:= R;
REPEAT
N:= N+1;
LAST:= POINTERARRAY!N];

UNTIL (LAST <> 0);
LAST := LAST - 1;
FOR J:= FIRST TO LAST DO

BEGIN
C:= STARARRAY!J];
IF (d!C] > (d!R] + WEIGHTARRAY!J])) THEN
BEGIN {Relabel node C)

d!C] := (d!R] + VIEIGHTARRAY!J]);
P[C] ; = R;
IF (POINTERARRAY!C] <> 0) THEN
PUTINDEQUEUE (C); (Add node C t o tlie)

{dequeue)
END;

END;
END; {WHILE loop)
{Trace the shor t e s t paths through the tree)

88: FOR I:= 1 TO NUMVERT DO
BEGIN

IF (I <> START) THEN
BEGIN

IF (dEI] = INFINITY) THEN
BEGIN

VRITELN;
WRITELNCTHERE IS NO ROUTE FROM', START,
'T O ' . d l l]) ;
VRITELN;

WRITELNC ROUTE IS: ');
WRITELN;
WRITE(I);
NEXT:= PC I] ;
WHILE (NEXT <> START) DO
BEGIN

WRITE(NEXT);
NEXT:= PCNEXT];

END;
WRITELN(START);

END;
END;

END;
99: END.

PROCEDURE PUTINDEQUEUE(NODE: INTEGER);
{This procedure adds a node, NODE, t o the f r o n t or the)
(back of the double ended queue, as required)

BEGIN
ENTRYCOUNTENODE]:= ENTRYCOUNTCNODE] + 1;
{Increment no. of times NODE has been i n the dequeue)
IF (ENTRYCOUNTINODE] = (NUMNODES + 1)) THEN
BEGIN
WRITELNC NEGATIVE LENGTH CIRCUIT ENCOUNTERED -
ILLEGAL');
GOTO 99;

END;
IF (DEQUEUECNODE] = -1) THEN
BEGIN (I n s e r t NODE at the f r o n t of the dequeue)
TOP:= TRUE;
DEQUEUEC NODE]:= FRONTQUEUE;
FRONTQUEUE:= NODE;
IF (BACKQUEUE = INFINITY) THEN
BACKQUEUE:= NODE;

ENTRY:= TRUE;
PRINTDEQUEUE; (Display the contents of the dequeue)

END
ELSE
BEGIN (I n s e r t NODE at the back of the dequeue)

IF (DEQUEUECNODE] = 0) THEN
BEGIN
TOP:= FALSE;
DEQUEUECNODE!:= INFINITY;
IF (BACKQUEUE <> INFINITY) THEN
DEQUEUEC BACKQUEUE]:= NODE;

BACKQUEUE:= NODE;
IF {FRONTQUEUE = INFINITY) THEN
FRONTQUEUE:= NODE;

ENTRY:= TRUE;
•PRINTDEQUEUE; {Display the contents of the dequeue)

END;
END;

END; (PUTINDEQUEUE)

230

PROCEDURE PRINTDEQUEUE;
{This procedure displays the contents of the double)
{ended queue formed by the sequence l i s t)

VAR
I.NUMPRINTED: INTEGER;

BEGIN
VRITELN('STATE OF THE DOUBLE ENDED QUEUE');
VRITELNC •);
VRITELN;
IF NOT (ENTRY) THEN
BEGIN

VRITELN('NODE ABOUT TO LEAVE');
VRITELNC I ') ;

END
ELSE
BEGIN

IF (TOP) THEN
BEGIN
VRITELNC NODE JUST ENTERED');
WRITELNC I ') ;

END;
END;

I:= FRONTQUEUE;
NUMPRINTED;= 0;
VRITEC ') ;
REPEAT

VRITEd: 4) ;
NUMPRINTED:= NUMPRINTED+l;
I;= DEQUEUE!I];

UNTIL (I = INFINITY);
VRITELN;
IF (ENTRY = TRUE) AND (NOT TOP) THEN
BEGIN
VRITEC I ') ;
FOR I:= 1 TO (NUMPRINTED - 1) DO

BEGIN
WRITEC ') ;

END;
VRITELNC ') ;
FOR I:= 1 TO (NUMPRINTED - 1) DO

BEGIN
VRITEC ') ;

END;
VRITELNC lODE JUST ENTERED');

END;
VRITELN;
VRITELN;

END; {PRINTDEQUEUE)

OK, PASCALG P408U>DEQUEUE.PAS
CSheffield Pascal version 3.3.1b]
No e r r o r s reported.

Executing DBENDQUEUE

ADJACENCY MATRIX

1 2 3

1 1 0
1

2 0

2
1
1 0
I

0 8

3
1
1 0 0 5

THIS IS THE GRAPH REPRESENTED IN FORWARD STAR FORM

POINTERARRAY STARARRAY WEIGHTARRAY

1 2 2
2 3 8
3 3 5
4 0 0

WHICH IS THE START NODE ?
1

STATE OF THE DOUBLE ENDED QUEUE

NODE ABOUT TO LEAVE

STATE OF THE DOUBLE ENDED QUEUE

2
I

NODE JUST ENTERED

STATE OF THE DOUBLE ENDED QUEUE

NODE ABOUT TO LEAVE
I
2

STATE OF THE DOUBLE ENDED QUEUE

3
I

NODE JUST ENTERED

STATE OF THE DOUBLE ENDED QUEUE

NODE ABOUT TO LEAVE
I
3

DISTANCE FROM 1 TO

ROUTE IS:

2 1

DISTANCE FROM 1 TO

ROUTE IS:

3 2

IS

3 IS 10

OK, PASCALG P408U>DEQUEUE.PAS
CSheffield Pascal version 3.3.1b]
No e r r o r s reported.

Executing DBENDQUEUE

ADJACENCY MATRIX

1 2 3

110 2 0 •
I

2 10 0 8
i

3 10 0 -12
I

THIS IS THE GRAPH REPRESENTED IN FORWARD STAR FORM

POINTERARRAY STARARRAY WEIGHTARRAY

1 2
2 3
3 3
4 0

WHICH IS THE START NODE ?
2

STATE OF THE DOUBLE ENDED QUEUE

2
8

-12
0

NODE ABOUT TO LEAVE
I
2

STATE OF THE DOUBLE ENDED QUEUE

3
I

NODE JUST ENTERED

STATE OF THE DOUBLE ENDED QUEUE

NODE ABOUT TO LEAVE
I
3

STATE OF THE DOUBLE ENDED QUEUE

NODE JUST ENTERED
I
3

STATE OF THE DOUBLE ENDED QUEUE

NODE ABOUT TO LEAVE
I
3

STATE OF THE DOUBLE ENDED QUEUE

NODE JUST ENTERED
I
3

STATE OF THE DOUBLE ENDED QUEUE

NODE ABOUT TO LEAVE
I
3

NEGATIVE LENGTH CIRCUIT ENCOUNTERED - ILLEGAL

235

APPENDIX D

This appendix contains the PASCAL code for the

program, ADCALC, the label setting algorithm with

address calculation, the procedure ADDNODE and

REMOVENODE, • and the modified PASCAL code for the

procedure PEADFORSTAR. The PASCAL code for the

procedure FRINTNODEARRAY is also included. This

procedure, upon call, displays the contents of the

nan-empty locations of NODEARRAY. Prior to

running ADCALC, a correctly formatted version of

INFILE must be avai lable.

Some sample runs of this program are also shown in

this appendix.

23<d

PROGRAM ADCALC(INPUT, OUTPUT, I l f F I L E) ;
{ T h i s program f i n d s t h e s h o r t e s t p a t h s f r o m a node, START)
{ t o e v e r y o t h e r node i n a network u s i n g the l a b e l s e t t i n g }
{ a l g o r i t h m . T h i s program implements an address)
{ c a l c u l a t i o n s o r t and uses f o r w a r d s t a r r e p r e s e n t a t i o n of)
{t h e network >

LABEL 99;

CONST
INFINITY = 99999;

TYPE
V0RD5 = ARRAYC1..5] OF CHAR;
ARRAYIOO = ARRAYE1..100] OF INTEGER;
POINTER = 'NODE;
PTRARRAY = ARRAY!0..1000] OF POINTER;

NODE = RECORD
NAME: INTEGER;
NEXT: POINTER;

END;
BOAERAY: ARRAY!1..1001 OF BOOLEAN;

VAR
NODEARRAY: PTRARRAY;
PTR: POINTER;
POINTERARRAY.STARARRAY,VEIGHTARRAY.P.d : ARRAYIOO;
NUMNODES.N.C,I,.J,MODULUS,START,NEXT,R ; INTEGER;
AERAYEEF,STARTREF,CURRENTLOC,NEVLOC,FIRST,LAST:INTEGER;
TERMINATE: BOOLEAN;
INFILE: TEXT;
INTREE: BOAREAY;

BEGIN {MAIN)
RESET (I N F I L E) ;
FOR I:= 1 TO 100 DO

BEGIN
POINTEEAEEAYCI] := 0;
STARARRAYCI]:= 0;
WEIGHTARRAYCI] := 0;
PC I] : = 0;
d[I] : = INFINITY;
INTREEI I] : = FALSE;

END; { I n i t i a l i s e t h e a r r a y s)
READFORSTAR; {Read i n t h e network)
PRINTADJMATRIX; { D i s p l a y t h e network)
VRITELNCTHIS IS THE GRAPH REPRESENTED IN FORWARD STAR

FORM');
VRITELNC •);,
VRITELN;
VRITELNC POIUTERARRAY STARARRAY VEIGHTARRAY');
VRITELN (' •) ;
VRITELN;
FOR I:= 1 TO POINTERARRAYCNUMODES + 1] DO

VRITELNC '.POINTERARRAYCI],' ',STARARRAYLI] ,
•,VEIGHTAERAY[I]);

VRITELN;
VRITELNC WHICH IS THE START NODE ?');
READLN<START);
WRITELN;
d[START]:= 0;
RESTART]— START;
FOR I =0 TO MODULUS DO
NODEARRAYC I] ; NIL;

ARRAYREF;= - 1 ;
NEV(PTR);
PTR-.NAME;= START;
PTR-.NEXT:= NIL;
NODEARRAYCOJ— PTR; { I n s e r t s t a r t i n g node i n NODEARRAY)
IF (POINTERARRAY[START] <> 0) THEN
TERMINATE:= FALSE {No paths f r o m s t a r t node)

ELSE
TERMINATE;= TRUE;

VHILE (TERMINATE = FALSE) DO
BEGIN

STARTREF:== ARRAYREF;
REPEAT

ARRAYREF:= ARRAYREF + 1 ;
I F (ARRAYREF > MODULUS) THEN
ARRAYREF:= 0;

UNTIL (NODEARRAYIARRAYREF] <> NIL) OR
(ARRAYREF = STARTREF);
{Search f o r next non NIL e n t r y i n NODEARRAY)
IF ARRAYREF = STARTREF THEN
TERMINATE;= TRUE {NODEARRAY I s empty)

ELSE
BEGIN

PTR:= NQDEARRAYC ARRAYREF] ;
REPEAT {For each node i n t h e l i n k e d l i s t l o c a t e d) ;

R:= PTR-.NAME;
INTREEEI] := TRUE;
VRITELN{'EXAMINING NODE •,R:3);
VRITELN;
FIRST:= POINTERARRAYCR] ;
N; =R;
REPEAT

N:= N+1;
• LAST:= POINTERARRAYIN];
UNTIL (LAST <> 0) ;
LAST;= LAST - 1;

FOR J:= FIRST TO LAST DO
BEGIN
C:= STARARRAYIJ];
IF ((d[R] + VEIGHTARRAYCJ]) < (dCC]))

AND (INTREEEC] = FALSE) THEN
BEGIN { R e l a b e l node C)

IF (dIC] <> INFINITY) AND
(POINTERARRAYEC] O' 0) THEN
BEGIN {Remove C fr o m i t s c u r r e n t pos.)
{ i n NODEARRAY)
CURREITLOC:= (d l C I HOD MODULUS);
{* C a l c u l a t e C's c u r r e n t address i n)
{NODEARRAY *)
REMOVENODE(CURRENTLOC,C);
PRIITNODEARRAY(FALSE,C);
{ D i s p l a y c o n t e n t s o f NODEARRAY)

END;
dCC]:= dCR] + VEIGHTARRAYCJ] ;
PCC] := R;
IF (POINTERARRAYCCl <> 0) THEN
BEGIN
NEVLOC:= (dCC] MOD MODULUS);
{* C a l c u l a t e C's new address i n)
{NODEARRAY *)
ADDNODE(NEVLOC,C);
PRINTNODEARRAY(TRUE,C);
{ D i s p l a y c o n t e n t s of NODEARRAY)

END;
END;

END;
PTR:= PTR^NEXT;
{Set p o i n t e r t o r e f e r t o t h e next node i n t h e)
{ l i n k e d l i s t)
REMOVENODE(ARRAYREF.R); {Remove R f r o m t h e)

{ l i n k e d l i s t)
PRINTNODEARRAY(FALSE,E);
{ D i s p l a y c o n t e n t s of NODEARRAY)

UNTIL (PTR = N I L) ;)
{End o f l i n k e d l i s t has been reached)

END; { I F ARRAYREF = STARTREF)
END; {WHILE TERMINATE <> FALSE)

{Trace t h e s h o r t e s t p a t h s t h r o u g h t h e t r e e)
FOR I:= 1 TO NUMNODES DO

BEGIN
IF (I <> START) THEN
BEGIN

IF (dCn = INFINITY) THEN
BEGIN

VRITELN;
VRITELNC THERE IS NO ROUTE FROM', START, ' T O M)

END
ELSE

BEGIN

VRITELN;
VRITELN('DISTANCE FROM' .START,'TO' , I , ' IS',d[I]) ;
VRITELN;
VRITELNC ROUTE IS; ');
VRITELN;
V R I T E (I) ;
NEXT:= P[I] ;
VHILE (NEXT <> START) DO

BEGIN
VRITE(NEXT);
NEXT:= PC NEXT];

END;
VRITELN(START);

END;
END;

END;
99: END.

340

PROCEDURE ADDNODE(LOC,NODE:INTEGER);
{ T h i s p r ocedure adds a node, NODE, t o t h e end of t h e)
{ l i n k e d l i s t p o i n t e d t o fr o m l o c a t i o n LOC i n NODEARRAY}

VAR PTR,NEVPTR:POINTER;

BEGIN
PTR:-NODEARRAYCLOC] ;
IF (PTE <> NIL) THEN
BEGIN {There i s a l r e a d y a l i n k e d l i s t p o i n t e d t o from)

{ l o c a t i o n LOC)
VHILE (PTR',NEXT <> NIL) DO

BEGIN
PTR:=PTR*.NEXT;

END; { F i n d t h e end of t h e l i n k e d l i s t)
NEW(NEVPTR);
NEVPTR". NAME: =NODE;
PTR-.NEXT:=NEVPTR;
NEVPTR-. NEXT:=NIL; {Add NODE t o t h e end of t h e l i n k e d)

{ l i s t)
END

ELSE {There i s c u r r e n t l y no l i n k e d l i s t p a i n t e d t o from)
{ l o c a t i o n LOO .

BEGIN
NEV(NEVPTR);
NEVPTR-.NAME:=NEVPTR;
NEWPTR".NEXT:=NIL;

END; {Add NODE as f i r s t (and o n l y) node i n the l i n k e d)
(l i s t)

END; (ADDNODE)

341

PROCEDURE REMOVENODE(LOC,NODE:INTEGER);
{ T h i s procedure removes a node, NODE, fro m t h e l i n k e d)
{ p o i n t e d t o f r o m l o c a t i o n LOC i n NODEARRAY)

VAR PTR,OLDPTR:POINTER;

BEGIN
PTR;=NODEARRAYCLOC] ;
IF (PTR-.NAME <> NODE) THEN
{Check i f NODE i s t h e f i r s t node i n t h e l i n k e d l i s t)

BEGIN
REPEAT
OLDPTR:=PTR;
{OLDPTR p o i n t s t o t h e node b e f o r e NODE i n t h e)
{ l i n k e d l i s t)
PTR:=PTR-.NEXT;

UNTIL (PTR-.NAME = NODE); {Locate NODE i n t h e l i n k e d)
(l i s t)

OLDPTRNEXT:=PTR-.NEXT; {Bypass NODE i n t h e l i n k e d)
(l i s t)

DISPOSE(PTR);
END

ELSE
BEGIN {The node a f t e r NODE becomes t h e f i r s t i n t h e)

{ l i n k e d l i s t)
NODEARRAYC LOC] : = PTR\ NEXT;
DISPOSE(PTR);

END;
END: {REMOVENODE)

242

PROCEDURE READFORSTAR;
{ T h i s p rocedure reads t h e adjacency m a t r i x r e p r e s e n t a t i o n)
{ o f t h e netw o r k f r o m INFILE t o t h e 3 f o r w a r d s t a r a r r a y s -)
{POINTERARRAY, STARARRAY and VEIGHTARRAY. T h i s v e r s i o n o f)
{ t h e p r o cedure a l s o o b t a i n s t h e v a l u e of MODULUS r e q u i r e d >
{by t h e program)

VAR
ROW.COL.I,EDGEPOINTER,EDGEPOINTSTORE,VALUE:INTEGER;
{EDGEPOINTER s t a r e s t h e next f r e e l o c a t i o n number i n)
{STARAERAY)
{EDGBPOINTSTORE s t o r e s t h e f i r s t l o c a t i o n number i n)
{STAEARRAY used t o s t o r e t he c u r r e n t nodes f o r w a r d)
(s t a r)
NUMBER:V0RD5;
{NUMBEE h o l d s t h e number read f r o m INFILE, i n c h a r a c t e r)
{ f o r m)
ENDROV,ENDCOLS:BOOLEAN;
{ENDROV = TRUE i f end of row i s reached i . e . a * i s)
{ d e t e c t e d ENDCOLS = TRUE when a l l rows i n adjacency)
{ m a t r i x have been read)
CH:CHAR;

BEGIN
MODULUS:= 0;
RESET(INFILE);
FOR I:= 1 TO 100 DO

BEGIN
POINTERARRAYCI]:= 0;
STARARRAYCI]:= 0;
VEIGHTARRAYCI] ;- 0;

END: { I n i t i a l i s e f o r w a r d s t a r a r r a y s)
ENDCOLS: = FALSE;
ROV;= 0;
EDGEPOINTER: = 1;
VHILE NOT(ENDCOLS) DO

BEGIN
ENDROV;= FALSE;
COL:- 1;
{EDGEPOINTER c u r r e n t l y c o n t a i n s t h e f i r s t l o c a t i o n)
{number i n STARARRAY t h a t w i l l be used t o s t o r e t h e)
{ f o r w a r d s t a r of t h e next node)
EDGEPOINTSTORE:= EDGEPOINTER;
ROV:= ROV+1;
VHILE NOT(ENDROV) DO

BEGIN
FOR I ; = l TO 5 DO

NUMBERCI]:= ' ' ;
I:= 1;
REPEAT {Read t h e next number f r o m INFILE)

READdNFILE, CH);
NUMBERCI] :- CH;

34C

I:= I + l ;
UNTIL ((I = 5) OR (NUMBERCl] = ' * ')) ;
I F (NUMBERC1] = '*') THEN
BEGIN {End o f row d e t e c t e d)
ENDROW:= TRUE;
IF (C0L=1) THEN
ENDC0LS:= TRUE; {End o f adjacency m a t r i x)

END
ELSE

BEGIN
I F (NUMBERC1] <> '0') THEN

BEGIN { I n s e r t i n f o r m a t i o n i n t o t h e 3 a r r a y s)
POINTERARRAYCROW]:= EDGEPOINTSTORE;
CHARTOINT(NUMBER,VALUE);
IF (VALUE > MODULUS) THEN
MODULUS:= VALUE;

STARARRAYCEDGEPOINTER]:= COL;
VEIGHTARRAYC EDGEPOINTER]:= VALUE;
EDGEPOINTER:= EDGEPOINTER+1;
{Set p o i n t e r t o next f r e e l o c a t i o n i n)
{STARARRAY)

END;
COL:= COL+1; {Increment column r e f e r e n c e)

END;
END;

IF NOT(ENDCOLS) THEN
BEGIN

READLN(INFILE) ;
READLN(INFILE);

END; {Move t o t h e next row o f t h e adjacency)
(m a t r i x)

END;
NUMNODES: = ROV-1; {Record t h e number of nodes i n t h e)
(ne t w o r k)
POINTERAREAYC NUMNODES+ll:= EDGEPOINTER;
{ I n s e r t dummy p o i n t e r i n POINTEEARRAY)
MODULUS:= MODULUS+1; (MODULUS := Lmax + 1)

END; {READFOESTAR)

•344

PROCEDURE PRINTNODEARRAY(ADDED:BOOLEAN;NODENUM:INTEGER);
(T h i s procedure d i s p l a y s t h e c o n t e n t s o f t h e non-empty)
{ l o c a t i o n s of NODEARRAY. I t a l s o o u t p u t s which node has)
(j u s t been added o r removed f r o m NODEARRAY)

VAR
K:INTEGER;
PTR:POINTER;

BEGIN
WRITELNCSTATE OF NODEARRAY');
VRITELNC ') ;
VRITELN;
IF (ADDED) THEN
VRITELN('NODE',NODEIUM:4, ' ADDED')

ELSE
VRITELNC NODE' , NODENUM: 4, ' REMOVED') ;

VRITELN;
VRITELNCLOCATION IN NODARRAY
V R I T E L N C — :
VRITELN;
FOR K:= 0 TO MODULUS DO

BEGIN
PTR:= NODEARRAYCK];
IF (PTR <> NIL) THEN

BEGIN
VRITE(K:11);
VEITEC ') ;
EEPEAT

WEITEC

LIST FEOM LOCATION');
.).

VEITE(PTE-.NAME
PTE:= PTE-.NEXT

UNTIL (PTR = NIL)
VEITELN;
WRITELN;

END;
END;

END; (PRINTNODEARRAY)

>;
3) ;

OK, PASCALG P40SU>ADCALC.PAS
[S h e f f i e l d Pascal v e r s i o n 3.3.1b]
No e r r o r s r e p o r t e d .

E x e c u t i n g ADCALC

ADJACENCY MATRIX

1 2 3

1 1 0 1 4
I

2 10 0 3
I

3 10 0 0-
I

THIS IS THE GRAPH REPRESENTED IN FORWARD STAR FORM

POINTERARRAY STARARRAY VEIGHTAERAY

1 2 1
3 3 4
0 3 3
4 0 0

VHICH IS THE START NODE ?
2

STATE OF NODEARRAY

NODE 2 ADDED

LOCATION IN NODEARRAY LIST FROM LOCATION

EXAMINING NODE 2

STATE OF NODEARRAY

NODE 2 REMOVED

LOCATION IN NODEARRAY LIST FROM LOCATION

346

THERE IS NO ROUTE FROM 2 TO 1

DISTANCE FROM 2 TO 3 IS

ROUTE IS:
3 2

OK, PASCALG P408U>ADCALC,PAS
[S h e f f i e l d Pascal v e r s i o n 3.3.1b]
No e r r o r s r e p o r t e d .

E x e c u t i n g ADCALC

ADJACENCY MATRIX

1

1 10
I

2 I 0
I

3 I 0

2 3

1 4

0 3

0 0

THIS IS THE GRAPH REPRESENTED IN FORVARD STAR FORM

POINTERARRAY STARARRAY VEIGHTARRAY

1
3
0
4

2
3
3
0

VHICH IS THE START NODE ?
1

STATE OF NODEARRAY

NODE 1 ADDED

LOCATION IN NODBARRAY LIST FROM LOCATION

0

EXAMINING NODE 1

STATE OF NODEARRAY

NODE 2 ADDED

345

LOCATION IN NODEARRAY LIST FROM LOCATION

0

1

STATE OF NODEARRAY

NODE 1 REMOVED

LOCATION IN NODEARRAY LIST FROM LOCATION

EXAMINING NODE 2

STATE OF NODEARRAY

NODE 2 REMOVED

LOCATION IN NODEARRAY LIST FROM LOCATION

DISTANCE FROM

ROUTE IS:

2

DISTANCE FROM

ROUTE IS:

3

1 TO 2 IS

1 TO 3 IS

;49

APPENDIX B

This appendix contai ns the PASCAL code far the

program, BUCKETSORT, the label setting algorithm

with 1-level bucketsort, the procedures

ADDNODEBUCK and REMOVENODEBUCK and the modified

PASCAL code far READFORSTAR. The program and its

associated procedures are discussed in section 9.

The PASCAL code for the procedure RINTBUCKETS is

also included. This procedure, upon call,

displays the contents of the nan-empty buckets in

the bucket list. Prior to running BUCKETSORT, a

correctly formatted version of INFILE must be

available.

Some samples runs of this program are also shown

in this appendix.

£1-0 V

PROGRAM BUCKETSORT(INPUT,OUTPUT,INFILE);
(T h i s program f i n d s t h e s h o r t e s t p aths f r o m a node , START)
{ t o e v e r y o t h e r node i n a network u s i n g t h e l a b e l s e t t i n g)
{ a l g o r i t h m . T h i s a l g o r i t h m implements a bucket s o r t and)
{uses f o r w a r d s t a r r e p r e s e n t a t i o n o f t h e network)

LABEL 99;

CONST
INFINITY = 99999;

TYPE
V0RD5 = ARRAYC1..5] OF CHAR;
ARRAYIOO = ARRAYC1..100] OF INTEGER;
POINTER = "NODE;
PTRARRAY = ARRAYC0..10001 OF POINTER;

NODE = RECORD
NAME: INTEGEE;
NEXT: POINTER;

END;
BOARRAY = ARRAYC1..100] OF INTEGER;

VAR
BUCKLIST: PTRARRAY;
PTR: POINTER;
POINTERARRAY.STARARRAY,VEIGHTARRAY.P.d : ARRAYIOO;
NUMNODES.N.C, I . J,LMIN.START. NEXT: INTEGER;
BUCKREF,CURRENTBUCKET,NEVBUCKET.FIRST.LAST: INTEGER;
TERMINATE: BOOLEAN;
INFILE: TEXT;
INTREE: BOARRAY;

BEGIN {MAIN)
RESET{INFILE);
FOR I:= 1 TO 100 DO

BEGIN
POINTERARRAYCI]:= 0;
STARARRAYCI]:= 0;
VEIGHTAERAYCI];= 0;
PC I] := 0;
dC I] : = INFINITY;
INTREECI]:= FALSE;

END;
READFORSTAR; {Read i n t h e network)
PRINTADJMATRIX; { D i s p l a y t h e network)
WRITELNCTHIS IS THE GRAPH REPRESENTED IN FORWARD STAR
FORM');

251

VEITELNC — — ') ;
VRITELN;
VRITELNC POINTERARRAY STARARRAY VEIGHTARRAY');
VRITELNC •) ;
VRITELN;
FOR I:= 1 TO POINTERAERAYCNUMNODES + 1] DO

VRITELNC '.POINTERARRAYCI],' ',STARARRAYCI],
•.VEIGHTARRAYCII);

VRITELN;
VRITELNCWHICH IS THE START NODE ?') ;
READLN(START)
WRITELN;
dCSTART]:= 0;
PC START];= START;
FOR I := 1 TO 1000 DO

BUCKLISTC n : = NIL;
BUCKREF:= - 1 ;
NEW(PTR);
PTRNAME:= START;
PTR-.NEXT:= NIL;
BUCKLISTIO] := PTR;
{ I n s e r t s t a r t i n g node i n BUCKET 0)
IF (POINTERARRAYISTART] <> 0) THEN
TERMINATE:- FALSE (No pa t h s f r o m s t a r t node)

ELSE
TERMINATE:- TRUE;

WHILE (TERMINATE = FALSE) DO
BEGIN
REPEAT
BUCKREF:- BUCKREF + 1;

UNTIL (BUCKREF = 1001) OR (BUCKLISTCBUCKREF] <> N I L) ;
{Search f o r t h e next non-empty bu c k e t)
I F BUCKREF = 1 0 0 1 THEN
TERMINATE:- TRUE

ELSE
BEGIN

PTR:= BUCKLISTCBUCKREP];
REPEAT {For each node - R, i n t h e bucket l i n k e d)

{ l i s t)
R:= PTR-.NAME;
INTREECR]:- TRUE; {Add R t o t h e t r e e)
WRITELN('EXAMINING NODE',R:3);
WRITELN;
FIRST:- POINTERARRAYCR] ;
N:= R;
REPEAT

N:- N+1;
• LAST:- POINTERARRAYCN];

UNTIL (LAST <> 0) ;
LAST:- LAST - 1;
FOR J:- FIRST TO LAST DO

BEGIN
C:- STARARRAYCJ];

252

IF ((d[R] + VEIGHTARRAYEJ]) < d[C]) AND
(IlfTKEEtC] = FALSE) THEN

BEGII {Relabel node C)
IF (d[C] <> INFINITY) AND (POINTERARRAY
CC] <> 0) THEN
BEGIN <If C i s already i n a bucket)
CURRENTBUCKET:= (dCCl DIV LMIN);
{Find C's current bucket)
REMOVENODEBUCK(CURRENTBUCKET,C);

END;
dCC] ;= (dCR] + VEIGHTARRAYCJ]);
PEC] := R;
IF (POINTERARRAYCCI <> 0) THEN
(Check i f C has a forward s t a r)
BEGIN
NEVBUCKET:= (dLC] DIV LMIN);
{Calculate C's new bucket)
ADDNODEBUCK(NEVBUCKET,C);
{I n s e r t C i n i t s new bucket)

END;
END;

END; {FOR Loop)
PTR:= PTR-.NEXT;
REMOVENODEBUCK(BUCKREF, R);

UNTIL (PTR = NIL);
END;

END; {WHILE loop)
FOR I:= 1 TO NUMNODES DO
BEGIN

IF (I <> START) THEN
BEGIN

IF (d [I] = INFINITY) THEN
BEGIN
VRITELN;
WRITELNCTHERE IS NO ROUTE FROM', START, ' TO'.I)

END
ELSE

BEGIN
VRITELN;
VRITELN('DISTANCE FROM' .START,'TO' . I ,

'IS'.dCID;
VRITELN;
VRITELN('ROUTE I S : ') ;
VRITELN;
VRITE(I);
NEXT:= P [I] ;
VHILE (NEXT <> START) DO
BEGIN

VRITE(NEXT);
NEXT:= PLNEXT].;

END;
VRITELN(START);

END;

EID;
END;

99:END.

354

PROCEDURE ADDNDDEBUCKCBUCKNUM,NODE: INTEGER);
{This procedure adds a node, NODE, t o bucket K i n the)
{bucket l i s t)

VAR
PTR.NEVPRT: POINTER;

BEGIN
PTR:= BUCKETARRAYIBUCKNUM] ;
IF (PTR <> NIL) THEN {Bucket BUCKNUM i s not empty)
BEGIN {Find the l a s t node i n bucket BUCKNUM)

VHILE (PTR-.NEXT <> NIL) DO
BEGIN
PTR:= PTR'.NEXT;

END;
NEV(NEVPTR);
NEVPTR-.NAME:= NODE;
PTR'.NEXT:= NEVPTR;
NEVPTR-.NEXT:= NIL;

END
ELSE
BEGIN {NODE i s added as the f i r s t node i n bucket K)
NEW(NEVPTR);
NEVPTR".NAME:= NODE;
BUCKETARRAYC BUCKNUM]:= NEVPTR;
NEVPTR-.NEXT:= NIL;

END.
PRINTBUCKETS(TRUE,NODE); {Display the non-empty buckets)

END; {ADDNODEBUCK)

i5n

PROCEDURE REMOVENODEBUCK(BUCKNUM,NODE: INTEGER);
{This procedure removes a node, NODE, from bucket BUCKNUM)
{ i n the bucket l i s t)

VAR

PTR,OLDPTR:POINTER;

BEGIN
PTR:= BUCKETARRAYL BUCKNUM];
IF (PTR'.NAME <> NODE) THEN
BEGIN {NODE i s not the f i r s t node i n bucket K)
REPEAT {Locate NODE i n bucket K)
OLDPTR:= PTR;
PTR:= PTR-.NEXT;

UNTIL (PTR-.NAME = NODE);
OLDPTR-.NEXT:= PTR".NEXT;
{Bypass NODE i n the l i n k e d l i s t representing bucket K)
DISPOSE(PTR);

END
ELSE
BEGIN {NODE i s the f i r s t node i n bucket K)
BUCKETARRAYL BUCKNUM]:= PTR'.NEXT;
DISPOSE(PTR);

END;
PRINTBUCKETS(FALSE,NODE);

END; {REMOVENODEBUCK}

255

PROCEDURE READFORSTAR;
{This procedure reads the adjacency matrix representation)
{of the network from INFILE t o the 3 forward s t a r arrays)
{- POINTERARRAY. STARARRAY and VEIGHTARRAY. This version)
{of the procedure also obtains the value of LMIN required)
{by the program)

VAR
ROV,COL,I,EDGEPOINTER,EDGEPOIITSTORE,VALUE : INTEGER;
{EDGEPOINTER stares the next fre e l o c a t i o n number i n)
{STARARRAY EDGEPOINTSTORE stores the f i r s t l o c a t i o n)
{number i n STARARRAY used t o store the current nodes)
{forward s t a r)
NUMBER : V0RD5;
{NUMBER holds the number read from INFILE , i n character)
{form)
ENDROV,ENDCOLS : BOOLEAN;
{ENROV = TRUE i f end of row i s reached i . e . a* i s)
{detected ENDCOLS = TRUE when a l l rows i n adjacency)
{matrix have been read)
CH : CHAR;

BEGIN
LHIN:= INFINITY;
RESET(INFILE);
FOR I:= 1 TO 100 DO
BEGIN
POINTERARRAYCI] := 0;
STARARRAYCI]:= 0;
WEIGHTARRAYCI]:= 0;

END; { I n i t i a l i s e forward s t a r arrays)
ENDCOLS:= FALSE;
ROW:= 0;
EDGEPOINTER:= 1;
WHILE NOT(ENDCOLS) DO
BEGIN
ENDROV:= FALSE;
COL:= 1;
{EDGEPOINTER c u r r e n t l y contains the f i r s t l o c a t i o n)
{number i n STARARRAY tha t w i l l be used t o store the)
{forward s t a r of the next node)
EDGEPOINTSTORE;= EDGEPOINTER;
ROV:= ROV+1;
VHILE NOT{ENDROV) DO
BEGIN
FOR I:= 1 TO 5 DO

NUMBER[I]:= ' ' ;
I:= 1;
REPEAT {Read the next number from INFILE)

READ(INFILE,CH);
NUMBERCI]:= CH;

I:= I + l ;
UNTIL ((1 = 5) OR (NUMBERCl] = '»'));
IF (NUMBER!1] = •*') THEN
BEGIN {End of row detected)
ENDROW:= TRUE;
IF (C0L=1) THEN
ENDCOLS:= TRUE; {End of adjacency matrix)

END
ELSE
BEGIN

IF (NUMBERCl] <> '0') THEN
BEGIN { I n s e r t i n f o r m a t i o n . i n t o the 3 arrays)
POINTERARRAYL ROV]:= EDGEPOINTSTORE;
CHARTOINT(NUMBER,VALUE);
IF (VALUE < LMIN) THEN
LMIN:= VALUE;

STARARRAYC EDGEPOINTER]:= COL;
VEIGHTARRAYE EDGEPOINTER]:= VALUE;
EDGEPOINTER:= EDGEPOINTER+1;
{set p a i n t e r t o next f r e e l o c a t i o n i n)
{STARARRAY)

END;
COL:= COL+1; {Increment column reference)

END;
END;

IF NOT(ENDCOLS) THEN
BEGIN

READLN(INFILE);
READLN(INFILE);

END; {Move t o the next row of the adjacency matrix)
END;
NUMNODES;= ROV-1; {Record the number of nodes i n the)
{network)
POINTERARRAYENUMNODES+1]:= EDGEPOINTER;
{ I n s e r t dummy po i n t e r i n POINTERARRAY)

END; {READFORSTAR)

PROCEDURE FRINTBUCKETS(ADDED,BOOLEAN,NODENUM,INTEGER);
(This procedure di s p l a y s the contents of the non-empty)
{buckets i n the bucket l i s t . I t also outputs which node)
{has j u s t been added or removed from the bucket l i s t)

VAR
K,LOV,HIGH : INTEGER
PTR : POINTER;

, NODENUM:4,

NODENUM:4,

0 TO 1000 DO

BEGIN
IF (ADDED) THEN
VRITELN('NODE'

ELSE
VRITELN('NODE'

WRITELN;
WRITELNC
VRITELNC
VRITELN;
FOR K:=

BEGIN
PTR:= BUCKLISTEK];
IF (PTR <> NIL) THEN
BEGIN

VRITE(K:4);
LOW:= K*VIDTH;
HIGH:= (K+1)•WIDTH;
VRITE(LOV: 13);
WRITE(' <= DISTANCE <
WRITE(HIGH:4);

ADDED')

REMOVED');

NON - EMPTY BUCKETS ');
') ;

);

WRITE('
REPEAT
WRITE(PTR-

');

NAME:3);
PTR:= PTR-.NEXT;

End;

WRITE('
UNTIL (PTR
WRITELN;
WRITELN;

END;
END;
{PRINTEBUCKETS)

') ;
NIL);

359

OK, PASCALG P408U>BUCKETSORT.PAS
[S h e f f i e l d Pascal version 3.3.1b]
No e r r o r s reported.

Executing BUCKETSORT

ADJACENCY MATRIX

1

1 10
I

2 10
I

3 14

2 3

1 0

0 3

0 0

THIS IS THE GRAPH REPRESENTED IN FORVARD STAR FORM

POINTERARRAY STARARRAY VEIGHTARRAY

1 2
2 3
3 1
4 0

WHICH IS THE START NODE ?
1

EXAMINING NODE 1

NODE 2 ADDED

NON - EMPTY BUCKETS

BUCKET

0

1

NODE

DISTANCE VALUE RANGE

0 <= DISTANCE <

1 <= DISTANCE <

1 REMOVED

NON - EMPTY BUCKETS

1
3
4
0

NODES IN BUCKET

1

2

BUCKET DISTANCE VALUE RANGE NODES IN BUCKET

360

1 1 <= DISTANCE < 2

EXAMINING NODE 2

NON - EMPTY BUCKETS

BUCKET

1

4

NODE

DISTANCE VALUE RANGE

1 <= DISTANCE < 2

4 <= DISTANCE < 5

2 REMOVED

NON - EMPTY BUCKETS

BUCKET DISTANCE VALUE RANGE

NODES IN BUCKET

2

3

NODES IN BUCKET

4 4 <= DISTANCE < 5

EXAMINING NODE 3

NODE 3 REMOVED

NON - EMPTY BUCKETS

BUCKET DISTANCE VALUE RANGE NODES IN BUCKET

DISTANCE FROM

ROUTE IS:

2

DISTANCE FROM

ROUTE IS:

3

1 TO

1 TO

2 IS

3 IS

261

OK, PASCALG P408U>BUCKETSORT,PAS
[S h e f f i e l d Pascal version 3.3.1b]
No e r r o r s reported.

Executing BUCKETSORT

ADJACENCY MATRIX -

1

2

3

1

0

0

0

2 3

1 4

0 3

0 0

THIS IS THE GRAPH REPRESENTED IN FORWARD STAR FORM

POINTERARRAY STARARRAY WEIGHTARRAY

1
3
0
4

2
3
3
0

WHICH IS THE START NODE ?
2

EXAMINING NODE 2

NODE 2 REMOVED

1
4
3
0

HON - EMPTY BUCKETS

BUCKET DISTANCE VALUE RANGE NODES IN BUCKET

THERE IS NO ROUTE FROM

DISTANCE FROM

ROUTE IS:

3 2

2 TO

2 TO 1

3 IS

APPENDIX F

This appendix contains the PASCAL cades for the

program SENET, and all the procedures used in the

program. A correctly formatted version of INFILE

must be avai lable before the execution of the

program.

A sample run of this program is also shown in this

appendix.

353

PROGRAM SENET(INPUT,OUTPUT,INFILE);
{This program f i r s t f i n d s the shortest path tree rooted a t)
{a node START i n a network stored i n INFILE using)
{DIJKSTRA's algorithm. I t then applies the algorithm)
{SENET, t o a l l the possible arcs, f o r the purpose of post)
{ o p t i m a l i t y a n alysis)

LABEL 99;

CONST
INFINITY = 99999;

TYPE
BOARRAY = ARRAYEl..100] OF BOOLEAN;
V0RD5 = ARRAYEl..5] OF CHAR;
ARRAYIOO = ARRAYE1..100] OF INTEGER;
ADJARRAY = ARRAYE1..100] OF ARRAYIOO;

VAR
ACT : V0RD5;
ADJMATRIX : ADJARRAY;
Pl,P2,P3,dl,d2,d3, CHANGEDNODES : ARRAYIOO;
NUMNODES.I,J,MINIMUM,START : INTEGER;
MIDPOS,K,KK : INTEGER;
DELTA : ARRAYIOO;
INFILE : TEXT;

BEGIN {MAIN)
RESET(INFILE)
BEGIN

PIE I] : = 0
P2EI]:= 0
P3EI]:= 0
d l E I] : = INFINITY
d2EI]:= INFINITY
d3EI];= INFINITY

END;
READADJMATRIX;
PRINTADJMATRIX
VRITELNC VHICH
READLN(START);
VRITELN;
PIE START]:= START
P2ESTART]:= START
P3ESTART]:= START
dlESTART]:= 0
d2[START]:= 0
d3ESTART]:= 0

{Read i n the network)
{Display the network)

IS THE START NODE ?');

SHORTESTPATH(Pl,dl);

364

TRACERATH;
K:= 0;
KK:= 1;
WRITESHEAD;
FOR I:= 1 TO NUMNODES DO
FOR J:= 1 TO NUMNODES DO

IF (I <> J). THEN
BEGIN
WEIGHT:= ADJMATRIXEI, J] ;
IF(WEIGHT = INFINITY)
THEN
ACT:= 'NEX '

ELSE
IF (P1[J] = I)
THEN
ACT:= 'NOP '

IF (ACT = 'OPT ') THEN
BEGIN
ADJMATRIX [I , J] : = INFINITY;
SH0RTESTPATH(P2,d2);
COMPARE(P2,K);
MIDPOS:= k;
IF (k > 0) THEN
BEGIN
FOR IJ:= kk TO k do

DELTA[IJ]:= WEIGHT + d2[CHNGEDNODECIJ]]
-dlCCHANGEDNODECIJ]];

kk:= k+1
END;

ADJMATRIXI I, J] : = 0
END;
SH0RTESTPATH(P3,d3);
COMPARE(P3,k);
IF (k > 0) THEN
BEGIN
FOR IJ:= kk TO k DO

DELTA[I]:= dlCCHANGEDNODECIJ]] -
d3[CHANGEDNODECIJ]]

END;
IF (k > 0)
THEN
DESCEND;

VRITELN;
VRITELN;
VRITESENET

END
END. {MAIN)

355

PROCEDURE COMPARE(VAR P : ARRAYIOO; H : INTEGER);
{This procedure determines the nodes whose labels t o t a l l y)
{change a f t e r a re o p t i m i s a t i o n)

VAR
I,HH:INTEGER;
L:BOARRAY;

BEGIN
FOR I:= 1 TO NUMNODES DO
LE I] : = FALSE;

HH;= 0;
FOR I:= 1 TO NUMNODES DO
IF(PEI] <> PIE I]) THEN
BEGIN
LE I] : = TRUE;
H:= H+1;
CHANGEDNODEE H] : = I

END
REPEAT

IF (H > 0) THEN
BEGIN
HH;= HH+1;
FOR I:= 1 TO NUMNODES DO

IF {(CHANGEDNODEE HHl = PIED) AND
(LEI] = FALSE)) THEN

BEGIN
LEI]:= TRUE;
H:= H+1;
CHANGEDNODEEH] : = I

END
END

UNTIL(HH = H)
END; {COMPARE)

366

PROCEDURE SHORTESTPATH(VAR P,d:ARRAYIOO);
{This procedure f i n d s the shortest path tre e rooted at)
{node START i n a network stored i n ADJMATRIX. The)
{procedure i s based on D i j k s t r a ' s a l g o r i t h m }

VAR
R,NEXT,I,J:INTEGER;
INTREE ; ARRAYIOO;

BEGIN
FOR I := 1 TO NUMNODES DO
BEGIN

INTREELI] := 0;
P[I] :- 0;
d l l] : INFINITY;

END;
REPEAT
MINIMUM := INFINITY;
FOR I :=: 1 TO NUMNODES DO
BEGIN

IF ((d l l] < MINIMUM) AND (INTREE[I] = 0)) THEN
BEGIN
R ;= I ;
MINIMUM := dCR]

END
END; {Find the node w i t h minimum t o t a l weight)

IF (MINIMUM <> INFINITY) THEN
BEGIN

INTREEII] := 1;
FOR J := 1 TO NUMNODES DO
BEGIN

IF (ADJMATRIXCR, J] <> 0) THEN
IF (((dCR] + ADJMATRIX!R. J]) < d [J]) AND

(INTREECJ] = 0)) THEN
BEGIN {Relabel node J)

d[J] := dCR] + ADJMATRIX [R, J] ;
PtJ] := R

END
END

END;
UNTIL (MINIMUM = INFINITY)

99 : END; {SHORTEST?ATH)

267

PROCEDURE TRACEPATH;

{This procedure traces the shortest paths through the tree)

VAR
NEXT,I : INTEGER;

BEGIN
FOR I := 1 TO NUMNODES DO

IF (I <> START) THEN
IF (dEI] = INFINITY) THEN
BEGIN
VRITELN;
VRITELNCTHERE IS NO ROUTE FROM',START, ' TO', I) '

END
ELSE
BEGIN •

VRITELN;
VRITELNC DISTANCE FROM' .START. 'TO' , I , ' IS' , dE I]);
VRITELNC ROUTE IS: ');
VRITELN;
TRACKPATH(P1,I)

END
END; {TRACEPATH)

369

PROCEDURE TRACKPATH (P: ARRAYIOO; SIM: IITTEGER);
{This procedure traces the unique tree path t o a node sink)

VAR
NEXT : INTEGER;

BEGIN
WRITE(SINK);
NEXT:= PC SINK];
WHILE (NEXT <> START) DO
BEGIN

WRITE(NEXT);
NEXT: =PC-NEXT]

END;
WRITELN(START)

END; (TRACKPATH)

PROCEDURE DESCEND;
{This procedure arranges the arrays CHANGEDHODE and DELTA)
{ i n DESCENDKilTG ORDER OF DELTA)

VAR
KI, II.Dumd.DUMP.KJ : IITTEGER;

BEGIN
FOR KI := 1 TO kk DO
BEGIN
DUMd := DELTA!KI];
DUKP := CHASGEDNODECKI] ;
I I := KI+1;
FOR KJ := I I TO kk DO
IF (DELTA!KI] < DELTA!KJ]) THEN
BEGIN

DELTA!KI] DELTA!KJ];
CHANGEDNODE!KI] := CHANGEDNODE! KJ]
DELTA!KJ] := DUMd;
CHANGEDNODBIKJ] := DUMP

END
END

END; {DESCEND)

!70

PROCEDURE VRITESHEAD;
(This procedure w r i t e s the headings f o r SENET)

BEGIN
WRITELN;
WRITELN;
WRITELNC
WRITELN;
WRITELN;
WRITE(' '

***** POST-OPTIMALITY ANALYSIS');

;20,'++ THE "EFFECT" OF EACH RANGE, EXCEPT THE
OPTIMAL AND NON-OPTIMAL, IS AN ') ;

WRITELNCACCUMULATION OF THE "EFFECTS" OF THE OTHER ') ;
WRITE('RANGES FROM THE SIGN "T" OR "A" TO "-" OF THE ') ;
WRITELNC"ACCUMULATION" COLUMN FOR EACH ARC ++');
WRITELN;
WRITELN;
WRITELN;
WRITELNC ':10,'ARC',' ':29,'RANGE',' ',:48.'EFFECT');
WRITEC i d e n t i t y weight a c t i v i t y ' , ' •:10);
WRITECupper lower accumulation node');
WRITEC t-weight',' ':6,'route < ') ;
WRITELN;
WRITELN

END;

PROCEDURE VRITESENET(DUJ[I,DUMJ : INTEGER);
{This procedure w r i t e s the r e s u l t s of SENET)

VAR
POSFLAF : BOOLEAN;
OLDINDEX,NEVINDEX,OLDLIMIT,NEVLIHIT,I,DUH; INTEGER;
DUM, DUMP, DUMMY : INTEGER;

FUNCTION NEW VALUE (I J : INTEGER) : INTEGER;
VAR
DUMMY : INTEGER;

BEGIN
DUMMY := I J ;
WHILE {(DELTA! DUMMY] = OLDLIMIT) AND (DUMMY <= k)) DO
DUMMY := DUMMY + 1 ;

NEWALUE := DUMMY
END; (lEWVALUE)

BEGIN {VRITESENET)
OLDINDEX := 1;
NEVLIMIT := INFINITY;
POSFLAG := FALSE;
VRITE(DUMI:3, ' — > ' , DUKJ:3, " ') ;
IF(ACT = 'NEX •)
THEN
WRITEC INF')

ELSE
WRITE(WEIGHT:5);

WRITEC •:6) ;
WRITE (ACT,' '.-9);
IF (k = 0) THEN
BEGIN
WRITELNC •:20,'NON-EFFECTIVE');
WRITELN

END
ELSE

BEGIN
NEWLIMIT := INFINITY;
WRITEC INF');
OLDLIMIT
WRITEC '
NEWINDEX
NEWLIMIT
WRITEC '

= NEWLIMIT;
36);
= NEWVALUE(OLDINDEX);
= DELTA!NEWINDEX];
3,NEWLIMIT:5,' ':3);

IF(OLDLIMIT = INFINITY)
THEN
WRITEC •: 4,'ION-OPTIMAL RANGE')

ELSE
BEGIN

WRITELN;
WRITELNC ':46, " ' - " ') ;
IF((ACT = 'OPT ') AND (OLDLIMIT < ̂ WEIGHT)

AND (NEWLIMIT > = WEIGHT))
THEN
WRITELNC ':14,'**»* OPTIMAL RANGE')

ELSE
BEGIN

IF (ACT = 'OPT •) THEN
BEGIN

IF (OLDINDEX = 1)
THEN
WRITEC ': 6 , ' " t ")

. ELSE
IF (OLDINDEX < MIDPOS)
THEN
WRITEC ':6,"'4"')

END
ELSE
WRITEC ' : 6 , ' " ! " ') ;
DUM = NEWINDEX;
OLDINDEX := OLDINDEX + 1;
FOR I := OLDINDEX TO DUM DO
BEGIN
WRITELN;
WRITEC ':52);
POSFLAG : = (! < = MIDPOS) OR

NOT (ACT = 'OPT ') ;
DUMP := CHANGEDNODECI];
WRITEC ' , DUMP:5, ' ' :4);
IF(CHANGEDNODE[I] = 0)
THEN
DUMd := 0

ELSE
BEGIN

IF (POSFLAG)
THEN
DUMd := d2[CHANGEDNODECI]]

ELSE
DUHd := d3CCHANGEDNODECI]

END;
IF (DUMd = INFINITY)

THEN
IF (ACT = 'OPT *) THEN
BEGIN
DUMd := dieCHANGEDNODECI]] -

WEIGHT;
WRITE(DUMd:4, '+WC ,DUMI:3, ' , ');
WRITE(DUMJ:3, ')')

END
ELSE
WRITEC INF NO ROUTE')

2?::

ELSE
BEGIN

IF (POSFLAG)
THEN
WRITE(DUMd:4,'+W(',DUMI:3,
,DUMJ:3,')')

ELSE
WRITE(DUMd:5, • ':11);

WRITE(DUMP:4, ' ':2);
REPEAT ,

IF(DUMP <> 0) THEN
BEGIN
DUMMY := DUMP;
IF (POSFLAG)
THEN
DUMP := P2 !DUMP]

ELSE
DUMP := P3 [DUMP]

IF (DUMP <> DUMMY.)
THEN
WRITE(DUMP:4,• ':2)

END;
UNTIL (DUMP = START) OR (DUMP = 0)

END
END

END;
WRITELN;
WRITELN;
WRITELN

END; {WRITESENET)

274

OK, PASCALG P408U>SENET.PAS
[S h e f f i e l d Pascal version 3.3.l,b]
No e r r o r s reported.

Executing SENET

ADJACENCY MATRIX

1

1 10 11 21 0
I

2 10 0 6 17
I

3 10 0 0 4
I

4 10 0 0 0

WHICH IS THE STARTING NODE ?
1

DISTANCE FROM 1 TO 2 IS 11

ROUTE IS:

2 1

DISTANCE FROM 1 TO 3 IS 17

ROUTE IS:

3 2 1

DISTANCE FROM 1 TO 4 IS 21

ROUTE IS:

4 3 2 1 .

1/1
I —

U- u
- «s
UJ 3:
^ o 1
1— <I '
u . V
o cc (U

o *J
z u . o 0

i.
(— z
<l 2:
_j =>
=) —I s 0

h-
0 <_>
(-) = UJ
d z Ll-

0 U.
z UJ *->
«I t- x:

<£ cn
(/> _J •-• => OJ s:

1
_ l <_> *j
cr 0
2: <c
i- UJ 01
Q. X T3
0 1— 0
1 C

Z ti-
0 0
z

C
Q 1 0
Z =
<£ *J

0
_ l h- »—

13
E

>-• -»• 3

<:
3 +

o

z
<

O

o

o Q:
o

Q. Z
UJ (J
<_> •—
X 1/1
UJ

UJ

3 o

a:

z

O I/)
<t U)
UJ O

fei
= Q:
I— UJ
<_)
ui (—
u . o

a .
o
z

a .
o

>- o
+

en OJ

•< s

^- + <-j +
Ul

Lu <_)

L U <_)

3: « t
I — i j j
L l . OC
o o

V
<u

5 i
—1 - J
s: <_>
o =
< o

I?
a . zn
o I—

01

o

<_>

00
CVJ

3C
a.
o

>•
I —
o

Z :

C
o

Q .
o o:

o

E

U

U J C 2

X lO

(U r - o
o

2

z

>-

o
. a .

o C O

L U C 9

= Q £
»- LLl
O I
U J I —
u . o
u .
L L I U J

X u .
h- O

o

O - r -

<: s

4J A
C 1
0) I

o

A

I
ro

