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ABSTRACT

In this worlk, we classify the shortest path
problems, review all source algorithms and analyse
the different implementations of single source
algorithms using various list structures and

labelling techniques.

Furthermore, we study the Sensitivity Analysis of
one—-to-all problems and present an algorithm,
Senet, for their Fost Optimality Analysis. Senet
determines all the critical values for the weight
of an arc (which could be optimal, non-optimal or
non-existant) at which the optimal solution
changes. Senet also provides the updated optimal
solution for every range fofmed by two successive

critical values.
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PART I
FOUNDATIONS




1 INTRODUCTION

Shortest path problems are the most fundamental
and the most commonly encountered problems 1n the
study of transportation and communication
networks. Many other 1mportant network problems
involve shortest path computations in their

solution methods.

Various  shortest  path algorithms  have been
developed since the latter bhalf of the 1950’'s.
The purpose of this work is to evolve a
classification of the "efficient’”  sequential
algorithms for a particular class of unconstrained
"deterministic shortest path problems, and to study
their computational efficiency and sensitivity.

The work is divided into 5 parts.

In Part I, the introduction 1s followed by
necessary definitions and theorems of graphs and
networks In section 2, and computational
-complexity and data structure in sections 3 and 4.
fn section 5 the network and tree representations

used in thls work are presented and analysed.

[89]



A classification of sequential algorithms for "THE

SHORTEST PATH” is introduced in section 6.

In Part II, single source algorithms  are
classified and studied In section 7. In section 8
and 9 various label setting and label correcting
methods are analysed. In section 10 an empirical
study of the most efficient labelling algorithms
on small networks, ie. networks with upto 200

nodes 1s carried out.

In Part II1I, all source algorithms, matrix
multiplication methods, triple algorithms and
modified label setting algorithms are reviewed in

sections 11, 12 and 13.

In Part 1IV, various algorithms for sensitivity
analysis on '"THE SHORTEST PATH PROBLEMS" are
studied in section 14, and 1in section 15 we
introduce an algorithm, Senet, for post optimality
analysis of "ONE-TO-ALL SHORTEST PATH PROBLEMS".
Senet determines every non—-negative critical value
of an arc weights at which the optimal soclution
changes and also ;wv?ides the updated solution.
Senet is applicable to basic, non-basic and non-

existant arcs in a non-negative network.
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Fart V, consists of a summary of the work together with

conclusions In section 16, and the references in section 17.

The complete Fascal codes of the more complicated and alsoc the

most efficient algorithms are presented in the appendices.



2 GRAPHS AND NETVURKS

4 Graph G = (N, A is a structure which consists
of a non-empty and finite set of Nodes N of
cardinality n, and a set of unordered pairs of
Nodes A, called arcs, of cardinallity m, the arcs
are not necessarily distinct.

ie. A = {(Ku,v> : u, v e N

A digraph is a graph in which all the arcs are
directed, ie. the set of arcs is a set of ordered
pairs of nodes. A graph can be converted to a
digraph by simply replacing every undirected arc
by two directed arcs in opposite directions, 1le.
replacing every unordered palr of nodes by 1its:
eqgivalent two ordered pairs of nodes. If (u,v) 1is
a directed arc then u 1s its initial node and v 1is

its terminal node.

A loop is an arc (u,v) with u = V. Two arcs
(ui,v:> and (u=,ve) are parallel arcs i1f ur = u=z
and vy = V=. A graph is called simple I1f 1t

contalins neither loops, nor parallel arcs.

A network is a simple digraph together with a real

valued function w defined for every (u, v & A.
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The real number w.. 1is the welght of the arc

u, vo.

Node u 1is said to be isoclated 1f neither an arc
(u,v) nor an arc (v,u) exists with v & N — {ul.

A path Qqu. <from node u to node v, in G, 1s an

alternating sequence of nodes and arcs, Wwi th
Guaw = (u = Ui, Xit, Uiz, Xz, B Xjt,
Usicw - 13 = v), where Xi- = (Uir, Uice + 12 fOr
1 ¢ r § k. qu~ can also be represented by the
node sequence, (U = Usiir, Uiz, ..., Uicw + 10> = v),

A path in which all nodes (except possibly the
first and the last, called source and sink of the
path) are distinct is an elementary path. We will
denote an elementary path from node u to node v
by P.., and the set of all elementary paths from u
to v by R.., le. R.. = {P'we, PZLv, ..., }. The
length or total weight of a path 1is given by,
duv = wis;. A cycle is a path for which the source
and the sink are the éame node, ie Quu. Node u is
sald to be difectly connected to node v 1if arc
(u,v)> € A4. If iﬁ:bere exists a path from node u 'Lfo

node v, then v is reachable from u, d.isconneéted

otherwilse.



Define uRv if there exists path q.. and gq.., K Is
an equivalence relationship. A network 1In which
all uRv is defined for all u,v €« N is strongly
connected. Furthermore, the subnetworks
G: = (Ni, {((u, v> | (u, vy & A and u,v & N:J},
where N: 1s an equivalence class under R, are the

strongly connected components of G.

A network is complete if every node u & N Is
directly connected to every other node

v e N - {u).

A network, G, 1s acyclic 1if no path in G 1s a
directed cycle, 1e. G has no strongly connected
component. A graph with n nodes and m arcs 1s
dense if m is '"large” compared to n and sparse.
otherwise. The value of '"large" depends on the
context, we shall assume that m and n are positive
and (m + n) = O(m) for dense graphs and

(m + n) = 0(n) for sparse graphs. If m < (n-1D

then clearly G is disconnected.

A connected network without cycles 1s called a
-tree, equivalently a. net&ark is a tree 1if there
exists a unique path from any node U & N to any

node v &« N - {(u). We denote a tree by T. A tree



T is a spanning tree of network G if T 1is a

subnetwaork of G containing all nodes of G.

A shortest path from node u to node v is a path
Gu~ such that du. is a minimum over all paths Irom
u to v, Note that the number of arcs 1Is
Iimmaterial. Let /qu.! denote the number of arcs in
path qu.. A path with the minimum number of arcs

Is arc shortest.

Thegrem 1: If G 1s a complete network with n

nodes and m arcs then m = n(n-1).

Proof: By definition, there are n nodes each of
which 1Is directly connected to all the other (n-1)

nodes, thus there are n(n-1) arcs. t

Corollary 1.1: If G is a simple graph with n

nodes and m arcs and is uvndirected then
m § n(n-1>/2, and 1f G 1is a digraph then

m § nin-1). "

Theorem 2: There exists an elementary path Pu.

from node u to node v 1f and only if there exists

a Patb Qe



Proof: By defini tion, if pu. exists then Qo

exists. Now suppose qu.~ 1s given, If Qu. 1S not
elementary, then for every repeated node 1in quw
delete all nodes between the two Instances of the
repeated node and one of the Iinstances of the
repeated node, leaving a new path go.. Continue
the process until some guv 1S elementary. The

path p.. obtained from qu. by the above process Is

a reduction o©f Quw. A reduction is not
necessarily unique. t
Theorem 3: The set of elementary paths R.. from

any node u to any other node v in a complete

network G, is of cardinality |R..!, where

n-2
IRl = (n=2J! x 1/(n-2-1)!
1=0
Proaf: By definition, an elementary path 1in a

complete network utilises at most (n-1) arcs or
has a maximum number of (n—-2) Iintermediate nodes.
Furthermore the total number of paths in R.. 1s
the grand total of total numbers of paths with 1
intermediate nodes, where

1 =0, 1, ....., (@=2).

Now, the total number of paths with exactly 1
intermediate nodes is given by,

(n-2)P: = (n-2>! /(n-2-1)!



Thus we have,

n-2 n-2

IRl = X (n-2)F; = (n-2J! 1/ (n-2-1i)!
1=0 i1=0

t

Theorem 4: There exists a shortest path from

node u to node v in network G if and only 1f there
exlists at least a path qu., and furthermore all
such paths must not contain a directed cycle of

total weight of less than zero.

Lroaf: Let P.. be the shortest path from u to v
in G, thus there i1s a path q.. = P... Now suppose
there exists a path gq'w. which contains a cycle of
negative total welght, then a new path q".. can be
constructed 1in which this cycle 1s repeated a
number of times sufficient for d(q"._,v.) < d(P..)
contrary to assumption. Let gqu. be a path from u
to v and suppose no path from u to v contalins a
cycle of total negative weilght. Now if P.. 1iIs a
reduction of Qu. then d(P..) € d(qu.). Thus the
total weights of a number of elementary paths
bound from below all total path weights, and since
there are a finite number of elementaryA'p_gaths,
then among them .is a path Pue suéh that

d(P..) € d(qu.) for all paths qu.. By definition,

10



F.. is a shortest path from node u to node V.

Corollary 4.1: There exists an elementary shortest

path P.., 1f there exists a shortest path Qu-.

Corollary 4.2: There exists a shortest path from

node u to node v in an acyclic network for every

node v reachable from node u.

Theorem 5: For any shortest path

Pouoe = (U = Ui, Uz, «.+ocoo , Uw = V) each subpath
Plow = Uy, Us+T, oo , Us+»? where,

1 € J € (G +r) €k 1is a shortest path from node
u;, to Us+w~. .Furthermore 1if P.. 1s arc shortest

then so are all its subpaths.

Proof: Suppose that there exists such a subpath
which is not the shortest path (arc shortest) from
node u; to nodeluj-p. But this contradicts the
assumption that Pu. 1S the shortest path (arc

shortest) from node u to node v. t

Let WG, ¥ denote a shortest path problem, where
G is a network and ¥ 1s a set of ordered pairs of

nodes between which shortest paths are to be




found. The definitions and the notations for a
variety of shortest path problems will be

discussed In section 6.

A solution to W (G, ¥) iIs an assignment

[+ ¥(U, v) < (.Puv. dl.dv)

Of an elementary path together with 1its total
weight to each element of ¥. If for some ¥(u, v),
FP.. 1s not defined, then

o : ¥lu, v) & (o, o).

o will be detailed In sections 5 and 6.

An arc is optimal 1f it is utilised by a path in a
solution, non optimal otherwise. An arc (u, wv)

I1s non-existant if~u, v & N and (u, v ¢( A.

The set of all arcs emanating from a given node u
is the set of forward star arcs of node u, denoted
by FS(u), ie. FS(u) = {(u, 1) | (u, i) & A). The
set of all arcs proceeding from a given node u is
the set ofAbackward star arcs of node u, denoted

by BS(u>, 1e. BSCu) = {1, u) | (i, u) e A},

The set of successor nodes of u i1s defined as

N# = (v | (u, v) ¢« A and u # v’.




The set of predecessor nodes of u iIs defined as
N = (v | (v, u)>) & A and u # v}.

The set of adjacent nodes of a given node u is
defined as ~N U N=.

The indegree of a given node u 1s defined as

/=N (u>l!, and its outdegree is defined as

E~ (w

E* (u> = | N= (ull.

By definition, a network 1is a simple digraph, 1e.
it contains neither loops nor parallel arcs. A
network containing such features can be converted

to a standard network, as défined above, by simple

preprocessing. Consider the network 1in figure 1

~

in which there are parallel arcs between nodes 2

and 3, and also arc (4, 4) is a loop.

Figure 1: The numbers corresponding to the arcs
represent the weights of the arcs.

13




To convert this network to a standard network,
firstly all parallel arcs except one with the
smallest weight have to be eliminated, secondly
the loop on node 4 bhas to be eliminated, by
converting it to an arc connecting a dummy node 5

to the modified version of node 4 which contains

no loop.

All the arcs going into the original node 4 will
now go into node 5. The newly created, arc (5, 4)
has a weight equal to the weight of the eiiminated
loop and all the arcs going out of the original
node 4 will go out of the modified node 4. Figure
2 shows the drived standard version of the example

network in figure 1.

Figure 2: The standard version of the network in
figure 1. '

14



3 COMPUTATIONAL COMPLEXITY

For the generality, 1in this work a random-access
machine (RAM> model as suggested 1in, [AHHU 74], 1is
used for worst case analysis of the algorithms to
study their efficiency. A randomaccess machine
consists of a finite program, and a memory in the
form of an array of (MAXLENGTH)> words, each of
which has a unique address between 1 to
(MAXLENGTH> and can store an Integer <(or a real)
number. It also contains a finite number of

registers, each of which can store an integer (or

a real) number. In a random-access machine a
single arithmetic, logical, fetch or store
operation is .performed in one step. For
simplicity, the algorithms are expressed 1In a

pascal/english based language; and are I1ntroduced
throughout the work 1n order to consider their
developments. However, the sophisticated
algorithms and also the maost efficient algorithms
are 1mplemented using a pascal-run compiler on
either a VAX 11/750 with UNIX operating system, or
IBM 4341 with MNIS operating system or prime
computers with primus operating system. The

corresponding codes are listed In the appendices.

15



In general, there are two methods of measuring the

running time of a shortest path algorithm.

(12 Analysis of average running time:
To evaluate an algorithm in this method,
first the algorithm 1s applied to a
diverse set of randomly genera f:ed
networks, where a random network 1is one
in which two nodes of a network are
selected randomly to form a new arc which
is to be added to the network. Then the

average of the running times is reported.

22 Worst-case analysis:
In worst case analysis the running time
of an algorithm as an upper bound which

depends on the problem size 1s reported.

In this work we shall use the worst case analysis
for the evaluation of every single source
algorithm, mainly due to the following two

reasons:

ca) - Worst case anélysis guarantees that no
problem of a given size will take longer

to run than the bound given.



(b Analysis of average running time 1Is
difficult and the concept 1itself Is
elusive, because it 1Is not clear what a
random distribution of  networks with

negative arc weights is.

However, in section 10 an analysis of average
running time for some of the best single source

algorithms is used.

Now consider a shortest path problem 7 (G, ¥).
The size of fbis problem can be defined Iin terms
of n = |INI, m = Al and [|¥/!. But [I'¥l 1is a
function of n, thus we can seek time bounds
T(n,m) depending on n and m such that T(n,m) Is
the time taken by a certain algorithm to solve a
problem of size (n,m) and no problem of this size
takes longer. These bounds can be expressed 1In
terms of n only, ie. T(n), since m = n (n-1),
[maximum number of arcs 1in a network with n
nodesl . But accoraing to a random-access machine
definifion each _operation, of the types mentioned
above, takes one step then_ we can translate T(n)
as the number of repetiti‘on of an operation with

the highest frequency 1in the 'alg'oritbm when

e
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solving a problem of size n, or T(n,m) 1if the

problem size Iis expressed in terms of (n,m.

Dex)



4 DATA STRUCTURE

It is obvious that if the arc weights in a given
network are all integers, then the total weight of
a path 1s alsog an Integer, since the only
operation required In total weight finding 1is
addition, and the sum of Integer numbers is an
integer. In real life problems arc weights are
usually Iintegers and if not, then by multiplying
all the arc weights of the given network by an
appropriate number they can all be converted to
integers. In this work we will only consider the
networks with integer arc weights. For simplicity
we will also present the nodes by integers, 1ie.
N = 1 | 1 = 1, 2, ..., h}. Beside integer type,

we will also consider Boolean type or bit, which

can eilther have the value of ftrue or falcse. Ve
will aleo consider more complicated types like
arrays, lists, queues, etc. For futher

discussions  on these types see [KNUT 73al,

[ KNUT 73bl, [AHHU 74] and [FOXB 781].

a’ Create AL 1 produces the empty array A;
(b Retrieve (A, Index) takes as IiInput the

array A and an Iindex;



(P

otore (A, Index, value? I1s used to enter

new Iindex—value pair in array A.

An ordered, or a sequence, or a linear, list is

one opf the most commonly found data objects. It
is either empty or can be written as
@1, @z, oo , &)

The permitted operations on ordered lists that we

are concerned with are as follows:

(1>

(11>

(111

(ivo

‘v

(vi?

Find the length of the list, n;

Read the 1list from 1left to right (or
right to left,;

Retrieve the 1%*" element, 1 € i € n;

Store new value in I*" posifion,

1 ¢ i € n;

Insert a new element at position 1,

1l ¢« 1 ¢ n + 1 causing elements numbered

i, I + 1, ..... , n to become numbered

Delete the element at position 1,
1 € i § n causing the elements numbered
1 + 1, I + 2, ... , n to become

numbered 1, 1 + 1, ..... , n—1,

iy
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In the study of data structure we are interested

in ways of representing ordered ‘lists so that
these operations can be carried out efficiently.
The most common way "of representing an ordered
list is by an array where we associate the list
element a: with the array index 1. This can be
viewed as a sequential mapping, since using the
array representation we are storing a: and
aci -~ 15 Into consecutive locations i and (I + 1)
of the array. We can also have access to the list
values in either directions by changing the I1Index
values 1In a controlled way. Thus the above
operations can be carried out in a 1list, 1In a

constant ampunt of time.

4 stack is an ordered list in which all insertions
and deletions are made at one end, called the top.
Given a stack & = (ar, a=, ... , am’. then a, 1is
said to be the bottom element and ai 1s sald to be
on top of element aci -~ 109, 1 <€ i € n. The
restrictions on a stack 1imply that the first
element to be removed or deleted from a stack must
be the last element inserted in the stack. For
this reason stacks are also called Last-In-First-
Qut, LIFO-lists. In figure 3(a’ the value a: was

t+the last element Inserted into the stack and thus



will be the first to be removed. The value a~ was
the first element inserted Into the stack and will
be the Ilast to be removed. The permitted
operations on stacks that we are concerned with

are as follows:

(i) Create (&> produces the empty stack S;

(11 Add__ (i, S0 Iinserts the element 1 1Into
the stack S, at the top position, and
returns the new stack S,

(111> Delete (S removes the top element of
stack S and returns the new stack S;

(iv) Top 5> returns the top element of

the stack Sy

(v EmptyvS (32 returns the value true 1f

stack S is empty, else false.

The simplest way to represent a stack is by using

a one-dimensional array of size n, denoted by
stack (n> where n is the maximum number of
allowable entries. The first or the bottom

element gn the stack will be stored at stack (12,
the second at stack (2) and the 1*" at stack (i).
Associated with the array will be a variable, top,

which points to the top element in the stack.



4 queue Is an ordered list in which all insertions

take place at one end, the back, and all deletions

take place at the other end, the front. Given a
queue & = (A, A, ... , am’ then a. 1s the back
element and a: Iis the front element. The element
adi - 12 1s said to be behind a:, 1 ¢ I ¢ n.

A queue is also called First-In-First-Out, FIFO-
list. The permitted operations on queues that we

are concerned with are as follows:

(1> Create () produces the empty queue &

(i1 Adde  (1,Q) adds the element 1 to the
back of the queue @ and returns the
resulting queue Q;

(111 Delete@ (Q) removes the front element
from the queue & and returns the
resulting queue Q;

(iv) Front (@) returns the front element of
the queue @;

vy | EmptyQ (Q) returns the value true 1f the

queue @ Is empty, else false.

A double ended queue (dequeuve) is a queue Iin which
insertions and deletions can take place at both

end points, front and back. In a dequeue



operations (ii? and (iii) above can be extended to

the following:

(110’ AddQ d, L, D@ which adds the element i
to the back of the DQ if L = back, and to
the front of DQ if L = front;

(i11>’ PeleteDQ (L, D) which deletes the front
element of DQ iIf L = front and its back

element if L = back,

Operation (iv) may also be extended to the

following:
(iv)’ EndpPe (L, D) which returns the front
element of DQ if L = front and its back

element 1f L = back;

If on a glven queue all operations except (111,

delete@ (@, can be extended to those on a
degueue, then the queue 1is «called an output
restricted dequeue, RDQ. The permitted operations
on a RDQ are (1), (11)°, (111>, (iv>’, (v). For

simplicity'Awe will sometimes refer to KRDQ as
dequeue or double ended queue, since this is the
only form of double ended queue used in this work.

Figure 3 illustrates different types of lists.

%
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A node is a collection of data, a:, az=, ..... , A,

and pointers or links, Ly, L&, ..... , L.

A 1linked structure 1is a «collection of nodes
Interconnected by 1links. In a linked structure
node 1 contains data a. and an address j in 1link
L; where j Is the address of the next node in the
structure. | A list can be represented by a linked
structure as well as sequential mapping. Figure 4
shows some types of linked 1lists, pointers are
used to show the links. Unlike a sequential
representation where successive items of a list
are located a fixed distance apart, 1in a linked
representation these items may.be placed anywhere
in memory, ie. In a sequentlal representation the
order of the elements 1is the same as 1In the
ordered 1list, while 1in a Ilinked representation

these two sequences need not be the same.

[XD]
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In a single linear linked list, each node has a
pointer to 1Its successor node in the list. In a
double linear linked list each node has two 1links,

one pointing to its successor node and one to its

predecessof node in the list, In a linear linked
list the successor of the last node and the
predecessor o©of the first node are null. In a

circular linked 1list the successor of the last
node is the first node and the predecessor of the
first node is the last node. 4 linear linked list
is accessed by means of a pointér to its front and
a circular linked list is accessed by means of a

pointer to its back.

A stack can be represented by a single linear
linked list. An output restricted dequeue can be
represented by a single circular linked list. A
degqueue can be .represented- by a double circular
linked list; In this manner the operations on
stacks and queues can be carried out more
efficiently. Clearly this efficiency 1is at the
cost of additional memory space for the links,
which can be the dominating factor 1In sonme

situations.

[\Y]
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A4 binary tree, BT, is a type of tree 1in which
every node has at most Z branches or subtrees, le.
E* (i) § 2, for all 1 & BT and also there is a
distinction between the subtrees on the left and
on the right of a node. The successor of a node
is either null or is a LSUB-NODE if it is on the
left and KRSUB-NODE 1if it is on the right, Ve
define the level of a node by initially letting
the root be at level 1, then 1If a node is at level
1, then the roots aof its subtrees are at level

i+ 1. The depth of a tree is defined to be the

maximum level of any node in the tree.

Thegorem & The maximum number of nodes on level 1

of a binary tree is Z°* ™ re, for 1 2 1.

Froof: The proof is by Iinduction. The root is
the only node on level 1, hence maximum number of
nodes on level i =1 1is 2% = 1. Now suppose for
a general value j where 1 ¢ j ¢ I, the maximum
number of nodes on level j is 2777, Then by
assumption, the maximum number of nodes on level
i-1 1is 24, Since each binary tree bhas a
maximum outdegree of 2, then the maximum number of

nodes on level i is 2 times the maximum number of

level 1-1 or 2+,



The maximum number of nodes in a binary tree of

k
depth k is given by, X 2+ re= 2 = 1
i=1

~+

(geometric progression).

Theorem 7: let ne and niz be the number of the
nodes with E* = 0 and E" = 2 in a binary tree BT,
then ne = nw + 1.

Froof: let n+, n, and b be the number of nodes

with E* = 1, all the nodes and the number of
branches in BT. We have,
n = no + nir + n o (1)

\M)

since all nodes in BT have E™
Clearly n = b + 1 (r1o

since all the nodes, except the root, in BT have
E~ = 1. All branches in BT emanate from a node
with either

E* = 1 or E" = 2, thus b = n: + Zn= (III)

from (II> and (III) we get

n =1+ n+ + Znz (Ivy

and from (12 and (IV) we get

ne = 1 4+ na. t

A sequential representation of a binary tree 1s
numbering the nodes in the following manner,

number the root by 1 then number those nodes on

Cad
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level 2 and so on. Nodes on any level are

numbered from left to right. Now the nodes can be
stored in a one dimensional array, BTREE, with the
node numbered 1 being stored in BTREE (i). The
following theorem enablés us to easily determine
the locations of the predecessaf, LSUB and RSUB

nodes of a given node.

Theorem 8: 'If a complete binary tree with n nodes
(ie. depth = Lfogméj + 1 ) 1is represented

sequentially then for any node with Index 1,

1 £ 1 § n we have:
(i) predecessor of node i is at[}/gj if
i = 1, If i = 1, then i is the root and

has no predecessor.

(11 LSUB-NODE of node i1 is at 2i if 21 ¢ n.
If 21 > n, then I has no LSUB—NDDE.

(111> RSUB-NODE of node 1 1is at 2i + 1 1if
(21 + 12 € n. If (21 + 1> > n, then 1

has no RSUB-NODE.

Fraof: First we prove (iiJ) by induction, for
i = 1 clearly LSUB-NODE is at level 2 unless n < 2
in which case 1 has no LSUB-NODE. Now assume that

for all j, 1 § j € i, LSUB-NODE of j is at 2J.



Then the two nodes immediately preceeding LSUB-
NODE (i + 1) 1in the representation are the RSUB-
NODE and the LSUB-NODE of 1. The LSUB-NODE of 1

is at 21, hence the LSUB-NODE of (i + 1) is at

(21 + 2> = 21 + 1) unless 2(1I + 1) > n in which
case (i + 12 has no LSUB-NODE. (i1i) 1s the

Iimmediate consequence of (i1i) and the number of

nodes on the same level from left to right. (1)
follows from (11i) and (i11i). t
In this worlk we sometimes, without loss of

generality, assume that the root node is at level
zero. Figure & illustrates the computer

representation of a binary tree.



a full binary tree of depth 3

[}

sequential representation

Figure 5: A blnary tree with its sequential
representations.
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A heap Iis an abstract data structure consisting of
a collection of 1tems, {ar, a=, ..... , aml, each
of which 1is associated with a real valued data.
First we will consider a heap in terms of a binary
tree and then expand the definition for other
types of heaps, The items are stored at the nodes
of a special kind of binary tree. For every node,
the value of the item is less than or equal tgo the
values of the items stored at the Iimmediate
successor nodes (if such exist) in the tree.
Thus, numbering the nodes in the usual way for a

binary tree and assuming, for simplicity, that n

(number of the items or nodes), Is odd, ie.
ai § ami, ami - 1 for 1 € 1 € n/2, then this
defines a heap, No ordering is implied between

the items associated with two nodes if one IiIs not
the predecessor of the other, indirectly or
directly. Eéoh subtree of heap is also a heap.
Node 1 is the root of the heap which is at the top

of the tree and 1ts corresponding item 1is oOf

minimum value. Ve can represent a heap
sequentially as a one dimensional array, see
figure 6 below. The operations on heaps that we

are concerned with are as follows:

(Y]
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(i1

(111

(1v)

v

(vi)

Makeh (h) which constructs the empty heap
by

Geth (S,h) which takes 'tAhe elements of
set S as input to heap h;

Addh (i, h) which inserts the npew data
i to heap h;

Delete (i, h) which deletes the data 1

- from heap h;

Getmin <h) finds and returns the data of
minimum value from heap h, and returns
null if h is empty;

Mergeh (hi, h=) which returns the heap
formed by comblining disjoint heaps h: and
hx and destroying h: and h=z. The new
heap will ha ve root with
a value equal to that of h: 1f the
value of the root of h: 1is smaller
than that of  hi, otherwise to that

2
]



Figure 6: (a) Tree representation of a heap, (b) The
computer representation of a heap.

Combining operations (i) and (ii> and calling it
heap—-former, then the following procedure, coded
in standard pascal, will construct a heap out of a
given binary tree. In the procedure below n Is a
global integer representing the number of the

elements in the tree, and BINTRE 1is a one

dimensional array type.

o



1 Procedure heapformer (VAR BT : BINTRE);
2 VAR

3 s, j, nn : integer;
4 dum : integer;
5 Begin

6 s := 0;

7 nn := ((n + 1)/2) - 1;

8 j += nn;

9 while (n <> 0’ do

10 Begin

11 if (BT(2#j) > BT((2%j) + 1)
iz then

13 s = 2% + 1

14 else

15 S = 2%];

16 if ¢ BT({j) > BT(s))
17 then Begin

18 dum := BT(j);
19 BT(j>» := BT(s);
20 BT(s) := dum
21 end;

22 if (2*s)y > )

23 then Begin

24 nn = nn - 1
25 J i=n

26 end

27 end {while)

28 end; {heapformer}

In steps 11 to 21 the data of two successors of a
node 1, ie. LSUB—-node(i> and KRSUB-node(i’ are
compared and if the smaller data is less than

that of the node i then the nodes are swapped.

[}
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In this procedure the initial root of the binary

tree 1s sifted down wuntil it finds its proper
place. If a node of a heap were removed, we could
make the former last element the new initial root
of the corresponding subtree, reducing n by 1, and
sift the Just move element up or down as
appropriate. Sorting the elements of a heap can
be done by successively removing the root,
replacing it by ®, and then sifting it down to
restore the heap. This sorting scheme is called
heapsort. In a heapsort, the depth of the heap is
O{logn> aﬁd n elements must be removed, then the
total time to reform the heap is O(nlogn). The
procedure can be streamlined by eliminating

suparfluous comparisons.

Theorem @: The procedure heapformer forms a heap

in linear time.

Proof: Let §(k> be the maximum number of
swappings necessary to form a heap out of 271D
elements. Clearly f(1> = 0. Before dealing with
node 1, subheaps are formed from the subtrees
having nodes 2 and 3 as their roots. By

definition forming each of these subheaps takes at



most f(k—1) swappings. When the two subheaps are
merged, all swappings take place along a single
path from node 1 to some terminal node with
E~ = 0. Since the number of nodes on this path is
k, at most k-1 swapplings are required for the
final merge <(normally only a few swappings are
required). Thus removing a node from a heap and
then restoring the heap structure is an 0Odlogn)
process, af worst. Therefore to form a heap,

(k) = 2 §<k—-1) + (k-1), k ? 2 where f(1) = 0 and

f(k) = 2¢-1-k, we require fewer than one swapping
per element. If the number of elements is between
2%—1 and 2<%™*'?-1, then the number of swappings to

form the heap Is at most,
FCk+1) = 2 §f<Ck) + kK = 0(fk)).
And this proves the linear time claim in general.

t

Suppose in a given heap r values change. For the
data whose new values are less then the heap’s
last element, put the new values in their
respective former position and for the others put
their values at the bottom of the heap and
implicitly insert © in their respective former
position. .Finally after all the above operations

are done, reform the heap. Reforming a heap after

(e



r elements change takes Olmin (n, r logn’] time at

worst.

Defining a d-tree to be a tree in which each node
has at most d successors, then a d-heap is a d-

tree containing one item per node arranged in heap

order, see figure 7 below:

Figure 7: a 3-heap with nodes numbered as 1in binary
tree, ie. top to bottom, left to right



Clearly the operation (v) has a running time of
Q1. Operations (iii? and (iv) have a running
time of O(dlog=.n’, where n I1s the number of nodes
in the tree, since the depth of a d-heap is logwn.
In d-heaps parameter d allows us to choose the
data structure to fit the relative frequency of
the operations, as the proportion of deletions
decrease, we can I1Increase the Valﬁe of d, saving
time on Insertion. Due to regular structure of a
d-heap we do not require explicit 1links to
represent 1it. Ir bthe nodes are numbered in the
manner explained above then the predecessor of
node x Iis Px—l)/d_land the successors of x are
the integers in the interval,

[d(x-1) + 2 .. min {dx + 1, nll. To implement a
d-heap we use an array of positions from 1 to the
maximum size of a heap. Ve also store an Iinteger
giving the size of the heap. Ve also associate an

index h(i> to each Iitem in the heap to give 1its

position in the heap. Operation (vi) 1is rather
difficult and time consuming on d-heaps. The
operation d-—-heapformer, for forming a d-heap,

analogous to heapformer, for forming a Z2-heap,

runs in linear time for 2 € d € n—-1.



A fibonacci heap or f-heap 1is a collection of
item-disjoint heap-ordered trees. Fredman and
Tarjan, [ FRTA 8517, used the following

representation aof f-heaps,

Each node has a pointer to its predecessor node or
a special node null if it has no predecessor and a
pointer to one of its successor nodes. The
successors bf each node are doubly linked in a
circular list. Furthermore an Integer 1is
associated with each node indicating its number of
successors, E*, and a bit indicating whether the
node is marked or not. The roots of all the trees
in the heap are doubly linked in a circular list.

4 heap 1is accessed by a pointer to a root

containing an item of minimum value, called
minimum node of the heap. A minimum node of null
denotes an empty heap. Each node has space for

its data, four pointers, an 1nteger 1Iindicating
number of its successor and a bit. Figure 8 shows

a f-heap represented in this manner.



P1{P2 |E d 8 P3| P4

P1: Pointer to predecessor in the tree;
P2: Pointer to one successor in the tree;
P3: Pointer to predecessor in the doubly circular 1inked list;
P4: Pointer to successor in the doubly circular linked list;
€7: Number of the successors; :
d : The value associated with a node;
B : Bit = T {f the node is labelled
* F otherwise,

Figure 8: f-heap representation.




The double linking of the lists of roots and the
successors of a node makes deletion from such a
list possible in OC1) +time and the circular

linking makes the merging possible in O(1) time.

A bucket is a list of nodes whose data fall within
a given range, 1ie. a bucket p 1s a list of nodes
1 whose data a(i) fall within the bhalf open
Interval lpz, (p + 1)z,

ie. pz § adi) < (p + 1)=z.

In this work we will represent a bucket by double
linear linked lists. Associated with each node k
in bucket p there is a data a(k), two pointers and
other information which we will explore later in
section G. Each data &k, except the last, in
bucket p hés a pointer pl(k) to its successor in
the bucket. Each data Uk, except the first, has
also a pointer p2(k) to its predecessor in the
bucket. To access the buckets we store the heads,
address of their respective first elements, of the
buckets in a master 1list, then the master 1list
contains a pointer to the memory location of the
first element of each bucket. The computer

representation of heaps and buckets will be

P
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explained in more detail in section 9, when

required.




5 NETWORK AND TREE REPRESENTATIONS

There are several ways of representing a network
G = (N, A> in a computer, and the manner of
representation directly effects the performance of
algorithms applied to the networl. Here we will

give two such methods:

(a Adjacency Matrix:
The adjacency matrix representing a
network G is a Z2-dimensional n # n array
W such that, the element (i, Jj) of the
array, 1le. wi, jJ, has the value wij;,
the weight of the arc (1, 77, if

(i, J) & A, and ® ptherwise.

Any algorithm applied to an adjacency

matrix would regquire at least O0(n¥) as

there are n{n-1> elements to be
examined. Storing such a matrix will
also require 0O((n¥) space. Therefore such
a representation is excessive for

sparse networks in which a large fraction
of the elements of W are w, but may be

considered as a good representation,



(b)

because of its simple structure, for

dense networks.

Adjacency Lists:

The mast popular way of representing a
network G in a computer is to use linked
list structure. In this method, all the
forward star arcs of a node are stored

together and each arc 1is represented by

recording only its terminal node and
weight. A pointer is then kept for each
node which Indicates the block of

computer memory locations for the forward

star arc of that node.

In this manner of representation, we need
(n + 2m) space or units of memory and
O(n + m) time for examining all arcs. The
advantages of this method over adjacency
matrix specially for sparse networks are
obvious. This method of representation
is also known as forward star
representation, and if the forward star
arcs of each node are ordered by

ascending length, then the method 1Is

47



called sorted forward star representation

form.

In this work we will adopt both these methods for
network representations. Figure 10 illustrates
the storage of the network shown in figure 9, in

an adjacency matrix and also Iin a sorted forward

star form.

Figure §: numbers associated with the arcs represent
the weights of the arcs

sl



‘ay

TERMINAL NODE

1 z 3 4 5

INITIAL 1 o 4 6 7 @
NODE

2 0 o © -4 2

3 o 3 @ 5 9

4 0 w© .4 [ 4

5 © o 00 6 o

(b) null pointer means no forward arcs

NODE FOINTER TERMINAL NODE VEIGHT
1 _ 1 —p 1 | 4
2 4 i 3 6
3 5 4 7
4 5 2
5 8 2 3
oy 5
5 | 9
4 L 6

null pointer means no forward arc

Figure 10, network representation, (a) Adjacency
Matrix, (b) sorted forward star
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One of the most common ways of representing a tree
in a computer 1s to think of the root, s, as the
highest node in the tree and all the other nodes
hanging below the root. The tree 1is then
represented by keeping an upward polnter 1list

containing the predecessor node of every node in

the tree, except the root. Ve will assume that
EN(s) = S. Associated with a tree we will also
define a list, indexed by the node numbers,

containing a label, d(v), for each node v in the
tree, whose value is the length or total weight of
the wunique path from s to v in the tree. In some
impl ementations d(v) is not necessarily  the
correct length but an over estimate that will

eventually converge to the correct length.

If a node, i, does not belong to the tree, then

ite label is set to o, ie. d(i) = w, and this
indicates that node i is not yet reached. Ve will
also assume that d(s> = 0.

Figure 11, below, illustrated the computer

representation of a tree using two linear lists,

hoth indexed by the nodes.



NODE "N d

1 1 0
z 1 6
3 1 2
4 2 11
5 3 21
6 3 10
7 6 L 22

Figure 11: Computer representation of a tree
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6. PROBLEM CLASSIFICATION

In 1957 MINTY, [(MINT 57], made the following
suggestion for finding a shortest path between a
pair of nodes, source and sink, in a given

network:

Construct a copy of the network using pieces of
strings with lengths proportional to the weights
of the arcs. Then place the source node 1iIn one
hand and the sink node 1In the other, to stretch
and determine the shortest path as the path with

tense strings.

Since then there has been considerable development
in solution methods for a variety of shortest
paths problems. In general the shortest path
problems can be divided into four groups, see

figure 11.1below:



The Shortest Path Problem

(i) (110 (111) (iv)

one-to-one one-to-all all-to—-one all-to-all

Figure 11.1. Problem Classification

n
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Each of these problems for a given network Iis

defined as follows:

& one-to-one problem is to find a shortest
path from a given source to a given sink;

(11> one-to-all problem is to find the
shortest path from a given source to
every other node;

(111D all-to-one problem is to find a shortest
path from every other node to a given
sink;

(iv) all-to-all problem is to find a shortest

path between every pair of nodes.

Up to date, there is no efficient algorithm for
solving one-to-one problem in a given network
without having to find the shortest paths from the
source to at least some of the other nodes, if not
all. All-to-one problems and one—to-all problems
are directional duals of each other, reversing the
directions of the arcs in G converts one to the
other. Therefore we will consider the solution
methods for (11) which will include (i) and (iii).
Ve will refer to these solution methods as the

single source algorithms. Furthermore, for



solving an all-to-all problem we can adapt an
efficient single source algorithm and apply it to
every node in the network, ie. apply the algorithm
n times to the given network, each time having a
different source node. We will refer to the
specific algorithms designed for solving all-to-
all problems as all source algorithms. As we will
see some of the single source algorithms used to
solve all-to—-all problems, as explained above, are
more efficient than most of and as efficient as
the best of all source algorithms. Therefore 1in
this work more emphasis 1s put on single source

algorithms.

Extending our shortest paths notations for one-to-

all and all—-to-all problems,

In one-to—all problem the source node, S, is

distinguished, then

¥, = {5 v | ve (N - {5}

and this can be abbreviated to ¥ = N - {5
since s is distinguished. In all-to-all problems
all node pairs, except nodes paired with

themsel ves, are considered, then

Fin = {C(u,v> | u, ve N, u# v}

Wt
[8]]



Thus a shortest path problem can be stated as
T(G,s> if it 15 an one-to-all problem and T (G) 1if
it is an all-to-all problem, since the source Is

understood.

Furthermore we will denote the weight of a
shortest path from a source node to a given node v
by d. 1in a one-to-all problem, since the source is
distinguished and du. In a all-to-all problem when

the source node is u.
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PART II

SINGLE SOURCE AILGORITHMS



7 SINGLE SOURCE ALGORITHKS

o

ff

The best algorithms known for the cne—-to-all

in

probilems concatenate arcs +to subpaths in order to
find new paths. After obtaining a new path its
total welght is compared to that of the current
shortest path and if it is cmaller, then the new
path beccomes the current shortest path. When the

current shortest path cannot be improved any more

then it becomes the shortest path.

Consider a network G = (N, A with no negative
cycles, in a one-to-all problem with a source node
s, clearly ds = 0. For each node v, v # g, there

must be some final arc (u, v) Iin the shortest path

from s to wv. Whatever the identity of Ll-, it 1s
certain that d. = du + Woe. 4z a result of
theorem 5,. section 2, d. 1s the weight of the
shortest path from s to u. This 1is callec.? the
principle of optimality. But there are only {n-1)
number of choices for u. Clearly v must be a node

the minimum. Therefore

1]

for which d. + W... 1

the weights of the shortest paths must satisfy the

following system of equations:

dw = O
d. = min {d. + W..? (v e N, u £ s
u#v

[N}
]



this system of eguations was first formulated by
Bellman, (BELL 581, and we will refer to them as

Bellman's equations.

As a result of theorem 4 and theorem 5, section 2,

we can conclude the following:

Suppose dq, Ay, e , di satisfy Bellman’'s
equations In a network G = (N, A> with no negative
cycle, then there exists a tree in G, rooted at
the source with exactly (n—-1) arcs, such that the
path In the tree from the root to each node is the
shortest path. Ve will refer to such a tree as

the minimum tree or the shortest path tree.

Now let us consider the uniqueness of a finite

solution to Bellman's equations,

Thegrem 10: If a network G = (N, A> contains no
nonpositive cycle and there is a path from the
source to every other node, then there is a unigue

finite solution to Bellman's equations.

Froof: let d+, dwz, ... , dnw be the shortest path
from the source to all the other nodes in G, and

let d’q, d'z, oo » d'w be any other finite



solution to Bellman's equations, such that

d'; # d, for some 1.

d’v, dla, ... , d'w represent the weights of some
paths, not necessarily the shortest paths in G.
Accordingly, 1if di # d': it must be the case that
d's > di. Now choosing a node j such that
d'; » dsi, but d'v. = dw, where (k, j) is an arc in

the minimum tree of G (there must be at least one

such arc since d's = dw.). Then d’; > d'w + Wey,
contrary to the assumption that
d’r, dlm, ... , d'w satisfy Bellman's equations.

Therefore there 1s a unique finite solution to

Bellman's equations. t

Therefore solving a one-to-all problem in a given
network G = (N, A) 1s equivalent to finding a
minimum tree of G rooted at the source. We will

denote such a tree by:

T = (Nv, Avr).

To formulate a one-to—-all problem as a linear

programming model consider each of the Bellman's

equations,



dv = min {d. + W..) (1)
u = v

This gives a system of (n-1) inequalities, that is

for a fixed v,

de € du + W (11)
for u=1,2, ...., (v - 1), (v + 1), ...., n
Conversely, 1f d+, daz ...., de-1, des1, ..., dn

are given fixed values and d. is maximised subject
to (II>, themn (]I) is satisfied. This suggests the

following linear programming problem,

maximise dw + de + ... + dn

subject to

d, = 0
and de — du € W
for v = 1, 2, ,
v =2, 35, , I

and u # v

However, Bellman’s equations imply implicit
functional relationships, that 1iIs each shortest

path weight is expressed as a non linear function

61



of the other shortest path weights. Due to this
reason Bellman's equations are not solvable as
they stand, but there are methods for overcoming
such difficulties which will be considered in the
remainder of this part. Furthermore in theorem 10
we required that the network must not have
nonpositive cycles, 1In order to have a unique
finite solution to Bellman's equations, but the
computational procedures that we consider here are

actually effective for networks which contain no

negative cycles. That is, although the solution
to Bellman's egquations is not unique, the
computation will terminate with the correct

solution.

We now develop a basic algorithm for solving one-
to—all problems to which all known algorithms can

be related.

Let d and #N be two n—-element arrays defining in
some algorithm. The 1i*" element of d, d(i,
contains the weight of some path from the source
to the node, i & N, and the corresponding element
of =N, #&N(i1). contains the predecessor node of I
on that path. If at the termination of algorithm
d(i>, for ali I & N, are the shortest paths then

the solution 1is correct. Then the pointer chain



in *N will trace back a shortest path from every

node 1 to the source node.

Now let [ IMFROVE (A>] be a property such that,

[ IMFROVE (AJ>]

=3 (1,70 & A, such that d(j> > d(i) + Wi,.

[ IMFROVE (4)] is true if there 1iIs an arc in A4

which can be used to reduce some element of d.

Theorem 11: Suppose d(i> is defined for all

I & N, such that d(i)> = d(FP:;), where FP; is some
finite elementary path from source to node i, then
[ IMFROVE (A>] 1is false i1f and oanly if d(i) is a

shortest path to I for all i & N.

Froof: Suppose [ IMFROVE (A)] is false and assume
that there exists some node u with a shortest path

of d’' (u) such that ddu> = d’' (u).

Clearly d(u> < d’(u) cannot be true, since it
Implies that there exists a path to u with a
weight less than the weight of the shortest path

to u. Then d<u> » d’(u), and this implies that
d’ (u) is defined, ie. d'(u) » ¢®, and hence there

must be a path,
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Fo. (s, 1+, 1z, ..... y Iw, UD such that

d’ (u) = ddF.). Now let i, be the first node in P.,
such that d(i;> > d’'(i;), where d'(i,) is the
weight of a shortest path to node i,;. Clearly

i; # s.  Thus, d(i;) > d(ij..)> + W(lswmio,15).
[ WA, B = W e 7 but this contradicts the

assumption that [IMFROVE (N)] is false.

Now suppose d(i) is a shortest path to node i, for
all i & N. Then if [IMPROVE (A>] is true, then
there is an arc (i, j) such that

adj’ » ddi> + Wiy, implying a path P, from s with
d(F;> less than the weight of the shortest path

from s to node j, which cannot be true.

Therefore ([ IMPROVE (A)>] is false if and only if
d(i) is a shortest path to node i for all i < N.

f

As a result of theorem 11 we can write a basic
algorithm which may be considered as the
underlying structure in all labelling algorithms.

Ve will refer to this algorithm as labelling

algorithm.



Algorithm labelling;
Step 1 {initialised’
for i := 1 to n do
begin
ddi) = o;
BN{) 1= 0
end;
d(s)
#N(s) := s;

"
(=]

Step 2 {search and update}
while [ IMPROVE (A)) do
begin
for some arc (i, J) satisfying [ IMPROVE ()1 do
begin
d@) = dd) + Vi,
PNy = 1
end;
end;
end.
d(i) is the weight of some path from s to node 1,
for all i & N when d(i) is the weight of a
shortest path then this path is elementary. The
algorithm enumerates elementary paths 1in some
sequence of sufficient length to guarantee that
shortest paths have been found for every node. A
search for an arc (i, Jj? for reducing d(j) will
always succeed until d(j) defines the weight of
the shortest path to j for all j  N. In Step 2
of the labelling algorithm d(i) is the weight of

some finlte path from s whose last arc is

=NCiD), 1),
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Theorem 12: Labelling algorithms terminates if
and only if array d contains the weights of the

shortest paths from s to every other node.

Froof: The algorithm terminates if [ IMFROVE (A)]
is false, which in turn Implies that d contains
the weights of the shortest paths from to every
other node. Now if the shortest paths to every
node is defined in d, then it is clear that d1i>)
is the weight of some elementary path. But there
is finite number of such paths in any finite
networlk, and each Iiteration reduced some dci),

then termination must occur. t

Clearly if a network contains a negative cycle,
then the property [IMFROVE (A)) will al ways be
true and hence the loop in Step 2 will never halt.

Therefore the algorithm will never terminate.

Although this algorithm is fundamental, but it is
not very useful. Firstly the algorithm will not
terminate if the network contains a negative cycle
and secondly and more Importantly it does not

outline how [ IMFROVE (4] is evaluated.

Operations required for evaluating [ IMPROVE (A)]

can be divided into two categories, scanning arcs

I
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and searching nodes. Scanning an arc (i, jJ) & A
is checking whether or not the inequality
d{j> » d({i> + Wi, holds and if it holds modifying

the labels of node j by setting:
~d(f) = d1) + Wiy

BNCF) = 1y,

Searching node i & N Is scanning every forward

star arc of node 1.
The algorithms which are based on the labelling
algorithm developed above are called labelling

algorithms.

According to the manner of searching the labelling

algorithms can be classified into two:

1. " label correcting algorithms

[5Y)

label setting algorithms.

Both these methods start with a tree

T = (Nr, Avr), such that Nr = {s) and Ar = o. A
label correcting method always updates arcs in Ar
in a manner that replaces or shortens the weight

of the paths from s to every other node in T, but

<h
~3



does not guarantee that the new path is a shortest
path, until the algorithm terminates. A label
setting method augments N+ and A+ respectively by
one node i & N and one arc (i, Jj7> & A at each
iteration in such a manner that I < N7 and

J & N-Nr, and the unique path from s to I Is a
shortest path 1in G. A label setting method
terminates when all arcs in A have their initial
nodes and terminal nodes in Nv. Ve will consider
these two general classes of labelling algorithms

separately in the next two sections.

Tt
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8. LABEL CORRECTING ALGORITHMS

An obvious way of evaluating [IMFROVE <(4)) of
labelling algorithms, section 7, is to use
exhaustive searching. Algorithms that use such
searching are called label correcting algorithms.
This method was first suggested by Ford,

[ FORD 561, and subsequently details were worked
out by others Including Bellman, (BELL 58], and
similar results were published by Moore,

{ MOOR 597 .

Ford's algorithm is probably the earliest shortest

path algorithm to be published.

In Ford's algorithm, each arc (i, j) is scanned in
turn or examined for the property

ddj> » dir> + Wii. If no such arc 1s found then
this Iimplies that [IMPROVE (A>] is not true and
hence the algorithm halts, Otherwise any arc for
which the property holds may be remembered for use

Iin updating the paths.



Algorithm Ford;
begin
Step 1 {initialise}
for i := 1 to n do
begin
d{i) = o
PR) 1= 0
and;
d(s) := 0;
#N(s) := s;

Step 2 {search and update)
repeat
search. for an arc (i, j) satisfying [ IMPROVE (A)].
if (the search succeéds) then

begin
adjid = d) + Vi
NG =4

end;

until the search fails;
end.

The proof of correction and termination of Ford'’s
algorithm is the direct result of theorems 11 and

12, section 7.

With a sensible search strategy for examining arcs
(i, J72 & . A to evaluate [IMPROVE (A)), Ford’s
algorithm has a time bound of 0(n*), see [(DERY 69]
and [YENJ 701]. However the algorithms can be
exponential under very simple search strategies as

shown by D B Johnson in, [JOHN 77].
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But using a search strategy which retains some
information from previous searchs, like
remembering the point at which the last search

left of is sufficient to yield an O(n®) algorithm.

To develop algorithms with good bounds we first
consider search strategies which are potentially

exhaustive.

Let found <& [IMPROVE (A>], then it will hold on

termination of the following search:

found := false;
repeat
select (i, J) € A;
if @(j> < ddi)y + Vi
then
found := true;
until ((found) or all arcs in A have been selected);

Now we can use this searching scheme directly in
Ford's algorithm, since testing on found can
determine if the search succeeded. The updating
is carried out only if and immediately after found
becomes true. ﬂbw by letting A'.denote the set of
arcs which have been examined for [IMFROVE (4]
and moving the updating operations into the search

loop we get:



Siep 2 {search and update)

A = {0),
repeat
found := false;
while not (found) and (A - A' # { }) do
begin

select (i, J) € A;
if d{ji) > d) + Wi;) then

begin
found := true;
ddjy = di) + Viy;
PN = i
end
end;

until not (found);

The correctness and termination of this algorithm
is the direct result of theorems 11 and 12,
section 7, if choosing (i, Jj) & A4 is a finite
process which, when repeated, eventually chooses

avery arc in 4.

Now consider a sufficient bound B for some rule of
choice so that every arc will be chosen within B
choices. Again with B defined as‘above, theorems
11 and 12 will hold for Ford's algorithm with the

following refinement:



Step 2 {search and update}

repeat
found := false;
count := 1;
while (count < B) do
begin

choose (i, j) e A;
if @dd{j> > di) + Wi;) then

begin
found := true;
d{j) := 4y + Vi,
PN() = 1
end;
count := count + 1
end;

until not (found);

To find a sufficient value for B, let the rule for

choosing (I, j) & A be, choose Aewmomt, where

a = (1, g2 = A and, in some order
A = Car, az, ..... y 3m). The first m choices will
be exhaustive, so B = m is sufficient under this
rule of choice. Let us rewrite the inner loop
once more using these Iideas. In addition we

Introduce a variable pweight which counts the
number of entries to the inner Iloop, initially

setting pweight := O then the inner loop becomes:

~1
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pweight := pweight + 1;

found := false;
count := 1;
while {(count < m) do
begin
(inn> (1, 37 1= acount;
ifdd (§) < d¢i>» + Wi;) then
begin
found := true;
addy = dd) + Vi
BNG) =4
end;
count := count + 1
end;

it is c¢lear that theorems 11 and 12 hold for
Ford's algorithm in which step. 2, 1s replaced by

the following:

Step 2 {search and update)
repeat
inng
until not (found);

and the variable pweight is ignored. To bound the

outer loop define the property,

R = (d(i) is the shortest path length from two

to i, for all i for which there exists a shortest

path P; such that |P:l § pweight).

Theorems 13: If d¢i) defines the shortest paths

for all i & XN, then IF:l ¢ pweight.



Froof: We only need to consider nodes i such that
the arc shortest path P. has exactly (pweight + 1)
arcs. By assumption, for some such path

Fi = (¢ = 14, Zwm, ..... y Tw, I, it is true that
d(iw’) 1s the weight of the shortest path to i., sO
the Iinner loop,vinn, will set (d.) to the weight
of the shortest path to i and *N(i) to i., Since

it tests every arc. t

Theorem 13 and the preceeding discussion suggest

a good exhaustive search in Ford's algorithm as

follows:

Algorithm Ford with refinements;
begin
Step 1 A{initialisel;

for i:= 1 to n do
begin
ddi) := o;
#N{) = 0
end;
d(s) := 0;
PN(s) = s;
Pweight := 0;

Step 2 {search and update}
repeat

inn;
until not (found) or Pweight 2 (n-1)

end.

In this algorithm two tree functions predecessor
and length are only used and, it runs 1iIn time
proportional to the depth t of a shortest path

tree of least depth.



Theorem 14: The algorithm terminates in O(tm) if
¥w Is defined for nodes in G and in O(nm) I1f Y is

not defined for some node in G.

Proof: The proof of this theorem is a direct
result of theorems 11 and 12 and. alsc the fact
that the maximum number of arcs in a path is

(n—1). t

This is one of the best results known under an

exhaustive search strategy. Deleting the variable
(found’> so that the outer loop terminates when
pweight ? (n-1), then the resulting algorithm
leads to Béllman's algorithm, [BELL 58], which is
a derivation of Ford's algorithm, [FORD 56], with

explicit i1teration indices.

Bellman's algorithm;
Begin
for i := 1 to n do
begin
ddi) = o
FN()Y := 0
end;
d(s) := 0;
FN{(s) := s;
for K := 1 to (n-1) do
begin
for 1 := 1 to n do
for j := 1 to n do
if (d¢3d) > ddi) + Wi;) then

1]

begin
d(j) = diy + Vi {search and
NGy =4 replace)
end
end

end.

~3
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In search and replace step of Bellman's algorithm
every possible correction, ie. i, j & N and

(i, j) & A4 or (i, j) & A, iIs examined and this
step Is repeated (n—-1) times. Thus the algorithm
always runs in 0(n*) since there are n(n-1) such
possible corrections. ¥« (1), for some node 1,
undefined can only be detected:if a negative cycle
on a path to node i includes s and this can be
detected by 'testing d(s) against =zero after

termination.

An obvious improvement in this algorithm is that
the forward star arcs of a node i with d(i) = w
are not required to be scanned in the search and
replace step. This improvement can be made by
replacing the search and replace step by the
following:
for i 1= 1 to n do
if (d 4) # @) then
for j := 1 to n do
if d(i) > ddi) + Wi;) then
begin
ddiy = dl) + Vi,
PN(G) = 4
end;
This improvement also indicates that the order in

which forward star arcs of nodes are examined is a

major factor Iin the efficiency of the algorithm.



ds a result of this observation it «can be
concluded that if each arc (1, J> & FS({(i) has
been scanned and found to satisfy the condition
ddi> + W.i; # d(j) then it is not necessary to scan
these arcs until d(i) decreases. Based upon this
observation the algorithm can further be improved
by only examining the forward star arcs of the
nodes which have not been scanned since their
label were last changed. This can be accomplished
through the use of a boolean set, f, corresponding
to set N Initially the boolean element of each
node i, f(i), 1is set to false until its label 1s
changed. The boolean element of the source node,
s, 1s set to true. Then when the label of a node
is changed, 1its boolean element is set to true
until all ifs forward star arcs are examined and
then set to false again. The algorithm terminates
when no more flag is set. Bellman’s algorithm

with this refinement is as follows:

-3
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Eellman's algorithm with boolean list;

begin
for i := 1 to n do
begin
d{i)y = o;
PN(LY = 0,
f(i) = false
end;
count := 1;
ds) = 0;
PN(s) 1= s34
fls) := %true;
while {(count > 1) do
begin
for i:= 1 to n do
begin
count := 0
if (f (i) = true) then
begin
for j := 1 to n do
if (d; > ds + Wi;) then
begin
dd{jy := di + Vij;
PN = i
f{j) := true;
count := count + 1
end;
f{i) = false
end
end
end.

In this algorithm count i1s used to check whether a
solution if found. Clearly thecrems 11 and 12

hold for this algorithm and it rune in 0(nm) or

O(n¥*) in case of complete netwarks.

Based on the preceding observation it can be seen
that the forward star arcs of nodes need not be
scanned in numerical order as above, they may

instead be scanned in the order in which the nodes

=}
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were labelled. That 1is 1If node 1 was labelled
before node j, then the forward star arcs of 1 are
scanned before that of node J, regardless of the
node numbers I and j. This observation can be
implemented efficiently by using a queue structure
or a one way linked list as defined in Section 4.
This 1Is because all the permissible operations, as
stated in Section 4, are 1in 0<¢(1), except the
operation CREATE(Q) which is of 0<(n>. In this
implementation nodes are placed on the queue as
their labels are altered, and removed from the
gueue as thelr forward star arcs are scanned. In
this form the forward star arcs of nodes are
examined Iin the order in which they are placed on
the queue, the queue is said to be managed in FIFO

manner,

There 1s one problem in using a queue and that is
iIf a node 1is placed on the queue whenever 1its
label is changed, the same node may appear in more
than one position on the queue. This means that
the size of the gqueve may be longer than n. One
way to avoid this Is to use a boolean list of size
n corresponding to WV. Then initially the elements
of this 1list, flag, are set to false and when a
node appears on the queuve, 1its flag iIs set to true

until it leaves the queue when it is set to false

(4]
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again. The following is Bellman's algorithms with

this refinement.

Bellman's algorithm with queue;
begin .
for 1 := 1 to n do
begin
ddi) 1= o
PN{i) = 0;
flag(i) :=
end;
CREATE (Q);
ADDQ (s, Q);
d(s) := 0
#H(s) :=
flag(s)
repeat
u := FRONT(Q);
flag(u) := false;
DELETEQ(Q);
for j := point (u) to (point (u+l) - 1) do
if (@ (term(J)) > du) + V. twem ¢;5>) then
begin
derm (j) := dW) + Vu cevrm ¢35;
N (term (J)) := u;
if not (flag (term (j)) then
begin
flag (term (j)) := true;
ADDQ (term (j) , Q
end
end;
until (EMPTYQ(Q)>
end.

2]
o]
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true;

m o--

In this algorithm the function FRONT and the
procedures CREATE, ADDQ, DELETEQ and EMFTYQ are as
explained in section 4, the forward star
representation of a network is considered in which
variable point (i) is the pointer associated with
node 1 and contains the address of the terminal

node of the first forward star arc of node 1 iIn



list term. It is clear that theorems 11 and 12
hold for this algorithm and that it has an upper
time bound of O0(nm) since each node is removed
from the queue no more than n times. For
algorithms based on this refinement see [GIWI 737,
{FAFE 74], [STEE 74], [VLIE 781, [DEFO 79a] and
[ DGKK 797. In this implementation if the forward
star arcs of the latest node added to the queue is
examined before that of a node placed on the gueue
previously, it is said to be managed in LIFQO (last
in first out) manner. In general examining the
list in a FIFO manner is much more efficient than
LIFO alternative, since nodes iIin some sense
closest to the root are scanned before those
further out in the tree, that is if a path in the
tree is extended from its end node before the
labels of nodes closer to the root have been
lowered, the extension will have to be relabelled

later on,.

The preceding observation can also be implemented
as outlined by Fape, (PAFPE 74J], by using an output
restricted dequeue, FDQ or simply a dequeue, as
explained in section 4. In this implementation
the nodes not in the queue are split into two

classes.



‘1) the "unlabelled nodes”, Ife. those that
have never entered the queue (ie. whose

distance from s are still )

(11 the "labelled and unscanned nodes’, ie.
those that have passed through the queue
at least once, and whose current distance

from s has already been used.

Then the unlabelled nodes are inserted at the end
of the queuve, while the nodes have been labelled
and scanned are inserted at the beginning of the
queue. An easy approach to this implementation
consists of using a code to distinguish between
the two classes of nodes and a node size array
with two pointers to indicate the two ends of the
gueue, see section 4. In addition a node size
array, sit, is used to indicate the situation that
a node is iIn. The situation of a node i is one of

the following three.

i) sit(i) = 1, If node i is currently in the
gueue;
(11) sit(1) = 0, If node i is not in the gqueue

and has not ever been on the gueve, ie. I

Is unlabelled,

[}
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(iii> sit(1) = -1, 1if node i 1s not currently
on the queue, but it had been before, 1ie.

I Is labelled and unscanned.

Bellman's algorithm with this refinement is as

follows:

Bellman's algorithm with RDQ;
begin
for i := 1 to n do
begin
adi) = o;
PN = 0
sit{i) := 0
end;
CREATE (RDQ);
ADDDQ (s, F, RDQJ;
d(s) = 0;
#E(s) := s;
sit(i) = 1;
repeat
u := FRONT (RDQ);
sit) = -1;
DELETEDQ (F, RDQ);
for j := point(u) to (point (u+l) -1) do
if @Germ(j> > dW) + Vi twrm ¢i>) then

begin
d(term(j)) = d(u) + wu tavrm (3D
PN (term{(j)) := u;

if (sit (term(j)) = -1) then
ADDQ (term(j>, F, RDQ)
else
if (sit (term(j)> = 0) then
ADDDQ (term(j>, B, RDQ)
end; )
until (EMPTYQ (RDQ))
end.

In this algorithm all queuve  functions  and
procedures are as defined in section 4, and all,
except CKEATE which is of 0(n>, are of 0¢(1). The

variables B and F used in some of the qgueue

34



operations indicate the front and the back ends of

the gqueue.

In the refinement with RDQ the forward star arcs
of the nodes are examined IiIn DEPTH-FIRST-SEARCH
manner, that Is the forward star arcs of the node
which was most recently visited are examined.
However, in the refinement with FIFO management
they are examined in BREADTH-FIRST-SEARCH manner,
that 1iIs thé forward star arcs of the node which
was last recently visited are examined. To
examine the efficiency of Depth-First-Search over
Breadth-First-Search consider the version of the
algorithm with RDQ and let h be the amount by
which the label of a node 1 is decreased, then the
labels of all the nodes in the subtree of I must
ultimately be decreased by h, unless the subtree
later becomes restructured in which case some node
labels will decrease by an even greater amount.
In the implementation with a queue managed 1In
FIFO manner updating these node labels are
postponed, since node 1 1is added to the back of
the queue. In contrast, in the RDQ impiementation
node 1 1is added to the front of the queue, If It
Is not already in the queue. Thus loosely
speaking, nodes in the subtree of 1 tend to be

updated before other nodes are searched. Thus
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updating sequence helps to eliminate unnecessary
node label corrections that are dominated by the h
correcti&n that should be transmitted through the
subtree. That is, an arc (i, j) may satisfy the
condition d(i) + W., < dj only because d(j) has

not been reduced by h.

A s a result of this discussion clearly theorem 11
and 12 hold for this algorithm which has an upper
time bound vof O (nm. Algorithms based on this
Implementation bhave also appeared in [MAGO 78],

(VLIE 781, [DGKK 791, [DEFQO 79] and [FALL 81].

Theoretical 1y, as a result of the above
discussions this latest implementation of label
correcting algorithfns is the most efficient one,
however practically this is not always true, see

section 10.

All different implementations of the general label
correcting algorithms stated in this section can
be considered as specialised variants of the
primal simplex algorithm where the optimal arcs,
Ie. arcs In A+, are the basic variables augmented
by nonexistent arcse which couvld join s to each
node 1 &« ﬁ—N~r-, ie. all arcs (s, 1) with We.: = o,

The 1interpretation is specially direct for the

86



algorithm with the latest refinement which ensures

that the node labels always satisfy complementary

slackness, ie. d(j> - d(i) = W;, for i, J) & A+
and d(r> - d(s) = Wa~. for r « N - Nr. Then the
process of selecting an Iimproving arc (1, j)

corresponds to searching for an arc which violates
dual feasi.bility, Ie. a non basic with a negative
reduced cost. The process of adding such an arc
(i, Jj7> to Avr and deleting an arc (*N(j), j) from
Avr 1s equivalent to simplex basis change. The
update of node labels after this basic exchange
clearly maintains complementary slackness. The
pivoting strategy however is different for the
algorithm with a FIFO management or the other
refinements. In these variants of the algorithm
the updating version of the primal simplex
algorithm is different from the version of the
algorithm with RDQ in the sense that a basis
exchange is performed each time an arc is added to
Ar, but the full set of updated node labels in a
subtree arc not Immediately determined. In
particular these variants differ from the latest
refinement, " ie. with RD@, by requiring the
complementary slackness be maintained only locally
rather than globally. The result of Dial, Glover,
Kannig and Klingman, [DGKK 701, emprical study of

Bellman's algorithm with FIFO management and also

"



with KDQ may support the theory that it is not
necessarily beneficial to maintain complementary
slackness after each iteration. The version with
FIFO management postphones the updating of the
dual variables (node labels) and this appears to
balance the distortion caused by using locally
updating dual variables with the work required to

maintain globally updated dual variables.

Although most of the Improved versions of the
general label correcting algorithm stated in this
section, are bounded from above by 0O(nm), these
efficiency changes from algorithm to algorithm.
The results of worst case analysis and computer
memory requirement of these implementations are

tables below:
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In the above table the codes for the algorithm
which are used in this work are considered for
worst case analysis and also memory requirement

The structure of the input data is not considered

in memory requirement,. The "rank" columns
Indicate the order of  performance of the
algorithms. This latter conclusion iIs based on

the discussions through out this section about the
algorithms, our empirical study (stated in section
100, and also the comparison of many publications
on practical and emprical studies of these
algorithms such as [DEFQ 79al, [DGKK 791,

(VLIE 787, (IMAI 84] and [FAFE 74].



L2} LABEL SETTING ALGORITHMS

Classifying the nodes either as permanently or
temporarily labelled, where a permanently labelled
node 1is one with a label which 1s the  shortest
path length. Then 1f step (2> of general
labelling algorithm, in section 7, 1is modified
such that it finds a node r with the minimum

temporarily label defined by,

d{(r> = min {d<{i)> + W.; | for all permanently
labelled nodes I and unlabelled nodes j)

and makes the label of node r permanent, then the
resulting algorithm is the general label setting
algorithm. This algorithm was first proposed by
Dijkstra, {DIJK 59], also a similar result was

obtained independently by Dantzig, [ DANT 607,

Now, let set Ny represent the set of permanently
labelled nodes, complemented by set (N-Nv) which
contains the temporarily labelled nodes. Define,

A% (c A> = (<, j>) | 1 &€ Nr and j & (N-Nr))

then the general label setting algorithm, named

after Dijkstra, iIs as follows:



Dijkstra's algorithm (in general form);
begin
step 1 {initialise)
for i:= 1 to n do
begin
dl) = o
PR 1= 0
end;
d(s) := 0
FN(s) := s;
N = {s);

step 2 {(search and replace)
while (A* = 0) do

begin
choose v € (N-Nv) such that du+
Vuv = minimum
dd) + iy 1, 1) € A%);
e := W+U (v},
A" i= A% - {{d, I 1 e N
end
end.
If this algorithm, in the process of finding an
arc in A% which yields the shortest path tree
extension, In step 2, many possible labels are
calculated and discarded. The following
Iimplementation of this algorithm retains this
Information and thus avolds recalculations. This

implementation of Dijkstra's algorithm will be

referred to as Dijkstra's algorithm.

el
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Dijkstra's algorithm;
begin
gtep 1 {initialise}
for 1 := 1 to n do
begin
ddi) = Wiy
if (d{i) # ®) then
FN({) = s
end;
d(s) := 0y
FN(s) := sg;
min := ®;
dum := 0;
Nr 1= {s);

step 2 {search and replace}
while (N - N+ # Q) do
begin
step 2' A{update N}
for i := 1 to n do
if (i not in N+) and (min > d{i)) then
begin
min :
dunm :
end;
Nt := N+ U dum;
step 2" {update (F - N¢)}
for 1 := 1 to n do
if (i not in F+) and (d{i) > (d(dum> + Vauw 1)) then
begin
"N({) = dumg
d(i)> := d{dum) + Waum 1
end
end
end.

ddid;
i

i

In the above procedure variables dum and min are

used to find the node which will become

permanently labelled next.

Theorem 15: Dijkstra’'s algorithm terminates 1in

0(n*) time and d(i) defines the shortest path

]
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length from the source to each node 1 1If the

network contains no arc with negative welight.

Praof: The proof of termination i1s by inspection.
At each stage of the algorithm the nodes are
divided into 2 sets, N+ and (N-N+J. At each
repetition of step 2, one more node becomes
permanently labelled in step 2 and joins the set
N Thus after (n-1) repetition of step 2, (N
-N+)> = 0 and algorithm terminates. In step

2', each operation is repeated at most n times and

so is each operation 1n gstep 27. Thus the
algorithm runs 1in O0(n¥) time. The proof of
validity 1is inductive. Consider step 2, {search

and replace) after k*" repetition and suppose that
each node in N+ is labelled correctly, that is for

each node i e Ny, d(i) defines the length of the

shortest path. This is clearly true when k=1,
since Nr = {s) and s is labelled correctly. Now
suppose that node v & (N - Ns) is chosen to be

labelled next and let "N<v> = U, then

d(vy) = dl) + Wue

clearly if U & N+ then min = dd{vy, Now suppose

U & (N - Ny), in fact let node x be the first



node on the path from s to v which is not in N+

and let “N(x) = Z.

Then, 1f all arc weights are non—-negative,

ddvy 2 di{x) + V:!::n»x:

but d(x) + Wau.. 2 min, otherwise x would have been
labelled, then, d(v) 2 min.

But 1if v is chosen to be labelled next, then
clearly there is a path from s through z to v with

d(v) & min.

Therefore, df(v) = min, and hence v is going to be
labelled with "N(v) = u where u & Nv. Thus v 1Is
labelled correctly and d(v) is the length of the

shortest path from the source to node v.

Note that the proof of validity of the algorithm
breaks down 1f the network contains an arc with a

negative weight, since we could not show that

d{(v) 2 min. t



Sequencing techniques and lists are also used to
Improve Dijkstra's algorithm. Yen, [YENJ 7217,
implemented the general form of Dijkstra's
algorithm with a refinement similar to the one
above, e.vcépt that he stored (N - Nvy) as a linked
list and then in step 2’', <{update N+}, Iinstead of
obtaining dum, the node at the top of the list was
used and then the upward pointer moves to point to

the o0ld pointer’s successor. This implementation

The manner 1in which set (N-Nr) is searched and
updated effects the computational timing directly.
However having (N-Nv) partially sorted rather than
fully sorted as 1in, [(YENJ 72], 1s more efficlent
since, firstly some nodes 1 & (N-Ny) have d(i) =
© and secondly set (N-Ny) will wusually change
slightly from one iteration to the next (these
statements vlvill be justified in the remaining of

this section).

Before considering further improved implementation
of label setting algorithm, let us consider its
relationship with simplex method. Let the set of
arcs in A be the set of basic variables,

complemented by artificial arcs which start at the
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source, s, and at node i for each 1 & N-N+ such
that Wuws = co. Then the label setting algorithm
may be viewed as a special purpose primal simplex
method, Clearly, d{i) satisfy complementary

slackness at each iteration,

ie. —d(i) + d{(j> = W.;, for (i, j) & A+ and -d(s>

+ d(i) = [‘7‘1,‘;,1',, fOI" .i (=3 N - N'I”.

Furthermore, the process of selecting an ifnproving
arc (1, J? to enter the basis 'corresponds to
searching, in some manner, for an arc which
viclates dual feasibility

(ie. -d((i> + d<¢j> > Wes:, 422 by the largest
amount. Then the process of adding such an arc to
Ar and deleting the artificial and corresponding
to the terminal node of this arc, t, from this
basis 1is gquivalent to simplex basis exchange.
The setting of d(t) after performing this basis
exchange simply maintains complementary slackness.
Therefore, like label correcting algorithms, label
setting algorithms are special purpose primal
simplex methods which use different pivot

strategies.



o have set (N - Nr) partially sorted, (N - Ny)
can be maintained as a heap, as explained 1in
section 4. The use of a heap was evidently first
reported for this application by Murchland [MURC
60J, however he failed to note that his treatment
yields a worst case bound on complete networks of
O(n¥logn’ time, not as good as the original
algorithm which runs in 0% time. This was

first noted by E Johnson, [JOHN 72]7.

To consider implementation of the general label
setting algorithm with a heap, first let us define
two more operations on heaps, these two operations
sift up and sift down are parts of the procedure
heapformer given in section 4. Furthermore in our
implementation as was first suggested by
D Jobnson,'[JOHN 771, each non-empty key of the
heap will possess some node I in a non—negative
network, and the value of the key will be the
value d(d{iv, The two operations sift up and sift
down are concerned with a heap in which a single
key had its value changed. If the value decreases
(this case includes the case where a new node is
added at the leftmost empty key on the lowest
level), the heap is restored if the path from the

root to the key of decreased value 1iIs reordered.

%
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This may bé done by comparing the value of the

changed key with the key above (its predecessor 1in
the tree). If the changed key has a lesser value
then the values of the keys are interchanged, and
the process 1s repeated on the key with the
original change until no more interchange 1Is&
required or the root is reached. . The cost of this
process 1s proportional to distance the changed
value moves in the heap. This cost is bounded by
the order of the depth of the heap, 0(log.™) where

n is the number of keys in the heap and value of k

depends on the tree type, ie. k = 2 Iin a binary
heap, k = d 1in a d-heap. The procedure for

restoring a heap, h, following a reduction in some

d(v) is as follows:

Procedure siftup (v);

begin
q := key (¥
repeat

if (q not the root) then
if (@ (v) < d¢h("F(g))) then

begin
h (@) := h ("N(g));
q := "N (@)
end;
until (no key is moved);
h (@ :=vw

end;

If the value of a key Increases, the ordering of
the entire subtree rooted at the key with changed

value 1is affected. Clearly in this case It is

@



sufficient to reorder the path from the changed

key toward the levels which is of the least value

at each level. Hence the cost is proportional to
klogw.™, since one of the k choices must be made at
k each key of the path except the last. The

algorithm for restoring a heap, h, following an

Increase In some d(v) iIs as follows:

Procedure siftdown (v);

begin
q := key (v)
repeat
if (g not in last level) then
begin
P := key of node u of min d(u) on the
subheap rooted at key (q);
if (d<v) > d¢h (p))) then
begin
b (q) := u;
q := P
end
end;
until (no key is moved);
node (q) := v
end;

The proof of termination of these two operations
within the time bounds stated are direct results
of theorem &, and more detailed versions_of the
procedures can be seen in procedure heapformer,

given Iin section 4.

In the implementation of Dijkstra’'s algorithm, we
will change values associated with nodes (creating

new keys when necessary on the bottom of the heap)



and also identifying and removing the least

element of the heap. This identification is 1in
012>, since the least elementlof key value is
always at the root of the heap. These operations
are explained in section 4, DELETE (1, h)> and
GETMIN (hv. Then the least value which is removed
is replaced with the value from the rightmost key
on the lowest level of the tree. This preserves
the heap. Restoring order is then of 0 (klogM”L
since the removed in a heap of size n + 1 1is
equivalent.to an Increase of the root value in a
heap of size n, the following Iimplementation of
Dijkstra's algorithm with a heap differs from that
of D Johnson, [JOHN 77], mainly In the definition
of keys, here are suggested by Tarjan, [TARJ 841],
the key of a node v, has a value d(v) which is the

length of the shortest path from s to v.




Dijkstra's algorithm with a heap;
begin
for 1 := 1 to n do
begin
ddi) 1= o
"N() =0
end;
dis) := 0;
PN(s) := s;
heapformer (h);
v = 5;
while (v # 0) do
begin
for i := point (v) to (point (v + 1) - 1) do
if (d i) > d(v) + VWo:) then
begin
dd¢i) = dd(v) + Woi;
FN({L) 1= v,
if i not in h) then
begin
ADDH (i, W);
siftup (1)
end
end;
v := GETMIN h);
DELETE (v, h)
end
end.

By inspection, in this implementation there are
one heapformer, n, DELETE operations, n ADDH
operations and at most m decrease or label
updating operations. Therefore if we use a binary
heap, the algorithm runs in O(mlogn’, and if a d-
heap with d + 2 + m/w, then the running time Is
in 0 (m 1logecz -+ mmnl, The proocf of validity and
termination of these algorithms in the stated time
bounds Is the direct result of the above

discussions and theorems 9, 11, 12 and 15. The
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result of this implementation 1s clearly superior

to that of Dijkstra’'s for spouse networks.

Fredman and Tarjan, [FRET 857, suggest the use of
a heap called, FIBONACCI  heap, which iIs an
extension of binomial queues, see section 4,
instead of a d-heap to implement Dijkstra’'s
algorithm. The resulting algorithm 1is then
bounded from above by 0(nlog(n+m)) which gives the
best result in implementing the algorithm with a
heap. This implementation is the same as the one
described above however, we have not analysed it

in this work.

Another method which provides a more direct access
to a temporary labelled node with the minimum
total weight is called '"address calculation sort”.
This method was orglnally developed by Dial, [DIAL

651, and is based on the following observations.

If a node v not yet Iin the minimum tree, ie. v &
"N-Nvr, has a finite total weight, then it has been
labelled, ie, a path to node v has been
determined, Since any node can only be labelled

from a permanently labelled node, then v must have

been labelled by a node u & Nr.



Upon being relabelled by node u, v's total weight
will have become equal to d(u), total weight of a

permanent node u, plus the weight of the arc (u,

V). Therefore, for any labelled node v & N-N+ we
have d(v) = d(u> + (the weight of some arc) where
u & Ny Now suppose that node v is a temporary

labelled node with the minimum total weight, d(v),
then d(v) bounds from above all the permanently
labelled nodes, ie. if u & N+ then d(u) § d(v),
since a node u & N+ has entered the tree before v
e N-Nr. It also bounds from below the weights of
all the temporary labelled nodes, ie. if t & N-N+
then d<t> 2 d(v). Furthermore, the weight of any
temporary labelled node t & N-Ny - {v} is bounded
from above by d(v) plus the maximum arc weight in
the network, since the total weight of t equals
the total weight of some permanently labelled node
plus the weight of some arc, and d(v) bounds from
above all the permanently labelled nodes.
Therefore, denoting the maximum arc weight of a

network by WMAX, then

d(vy> ¢ d(t) § ddv) + WMAX

ie. at any stage 1In the execution of the

algorithm, if node v is a temporary labelled node



with the minimum total weight, then the total
weights of all the temporary labelled nodes are
bracketed on the lower side by d(v) and on the

upper side by d(v) + WMAX.

Using this property, at any stage in the execution
of the algorithm, the total weights of all the
temporary labelled nodes can be represented modulo
WVMAX + 1. The best way to illustrate this is by
loosely defining an array, NODEARRAY, with (WMAX +

1) locations where:

NODEARRAY (i) stores any labelled node, u e N-N+,

for which d(u) mod_ (WMAX + 1) = 1.

Theprem 16: At any stage 1In the algorithm,

NODEARRAY, can store temporary labelled nodes with
every possible total weight, and no location of
NODEARRAY will contain nodes with different total

weights.

Eroof: Suppose that, at some stage 1IiIn the
algorithm a temporary labelled node v has the
minimum total welight among such nodes, and let
d(v> mod (WMAX + 1) = 1. Furthermore let node v

be any other temporary labelled node. Node r will
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be stored in location I of NODEARRAY. The minimum
value of d{(r? is d(v) and at this value node r
will also be stored in the same location, ie.
NODEARRAY (i), since

d(r> mod (WMAX + 10> = 1.

As d{(r) increases by oﬁe unit at a fime, then d(r)
mod (WMAX + 1) = 1i+1, 1i+2, ..., consequently node
r will be stored 1in locations 1i+1, 1i+2, .....
When d(r) reaches (WMAX + 1>, then d(r> mod (WMAX
+ 1) = 0, and node r will be stored in location O,

ie. NODEARRAY(0). As d(r> increases from (WMAX +

1>, then d(r> mod (WMAX + 1> =1, 2, ..., and node
r will be stored in locations 1, 2, C ey, in
NODEARRAY. Eventually d(r) reaches the maximum

possible value that it can have, Ie. d(v) + WMAX,
but (d(v) + WMAX> mod (WMAX + 1) = d{v) - 1) mod
(WMAX + 1) and since, d(v) mod ((WMAX + 1) = 1,
then (d(v) - 1) mod (WMAX + 1) = (i-1). Therefore
temporary labelled nodes with any possi ble total

weight can be stored in NODEARRAY, and no location
of NODEARRAY will contain nodes with different

total weights. t

As a result of the theorem above, NODEARRAY
achieves an "automatic sort! of the labelled nodes

not yet 1in the tree relative to their total
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weights. That is, starting from any location i in NODEARRAY,
locations i+1, 1+2, ..., will contain nodes of Iincreasing total
weight values. Upon reaching the end of the array, nodes'in
location 0 will have a higher total weight than those in

location (WMAX + 1).

Tc complement NODEARRAY for computational purposes, it is

arranged as follows:

NIL 1if 1 # d(v) mod (VMAX + 1)

for any v & N-Nv;

NODEARRAY (1> =
F where F is a pointer to
the first node in a
linked list of nodes
q e N-Ny, such that

d(g?> mod (WMAX + 1> = 1.

The currenz'“. minimum total welght is then found by
sequencially examining the elements of NODEARRAY
in a "wrap-around’” fashion <(ie. when the end of
the array is reached, go back to the beginning).
Each time a pointer 1is encountered, the current

minimum total weight Is that of the nodes in the
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linked list associated with that pointer. Each
node u in this linked 1list can then be searched
and removed from the linked list. A relabelled
node v will  have 1ts location In NODEARRAY
calculated, 1e. d{(v) mod (WMAX + 1) and added to
the appropriate linked 1ist. This may Iinvolve
removing node v from 1its original linked 1list.
The examination of NODEARRAY always assumes where
the last examination ended s0 nodes with
Increasing total weights are encountered each
time. The algorithm terminates when NODEARRAY is
empty, Implying that all the labelled nodes, or

reachable nodes from the source, are in the tree.

Here, we explain, rather than give an
iﬁplementation of this algorithm because of the
complexity and the length of 1it. However, the
complete Fascal code of this implementation is In

appendix D.
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Algorithm Address Calculation;
begin

{initialise};

while (NODEARRAY is not empty) da
begin
search through NODEARRAY to find the next
pointer to a linked list; '
if (a pointer to a linked list is found) then
begin
repeat
find the next node u, in the linked list;
add node u to the tree nodes;
for each forward star arc of node u,
(u, v) where v &« N-N+, do
1f dd + Vue < d(v)) then
begin
if (node v is already in a linked
list in NODEARRAY) then
begin
compute node v's current address
(location) in NODEARRAY;
remove node v from its current
linked list pointed to from this
address;
end;
d(v) = d) + Wuo;
"N(v) 1= u;
calculate node v’s new address;
add node v to the linked list
pointed to, from this address;
end;
remove node u from the linked list;
until (every node, u, in the linked
list has been examined);
end;
end; {while}
end.

The proof that this algorithm is correct is the
direct result of theorems 15 and 16. . By
Inspection, we can also observe that this
algorithm runs in O0(n(WMAX + 1)) time and requires

O(WMAX + 1) memory space. Clearly, 1t 1Is not



possible to theoretically compare this algorithm
with the other labelling algorithms, but almost
all empirical estudies of such algorithms bhave
identified this implementation as the fastest
single source algorithm for both sparse and dense
networks in which WMAX 1is small compared with n

and m, ie. (WMAX)> = (O0(n> or at most (WMAX)> = O<{m).

However, in case of small networkse with WMAX
rather large, this Iimplementation will be much

slower than the other labelling algbrithms.

This implementation can be improved by reducing
the effort of inserting and removing nodes on the
linked 1lists by postponing adding nodes to the
list. This can be done by observing that it is
unnecessary to scan the entire forward star of a
permanently labelled node v. In particular, only
the endpoint of a minimum welight arc in such a
forward star needs to be considered for addition
to NODEARRAY. This follows from the fact that the
total welghts of the temporary labelled nodes
determined from node v will be bounded from below
by the total weight of such an arc with the
minimum welght. Thise refinement was first

suggested by Dial, Glover, Karney and Klingman,



[ DGKK 78], however it requires that the network to
be stored in a sorted forward star form which
regquires some preprocessing in 0{n¥) time and
this, clearly, makes the use of such

Implementation inefficient.

Another method of storing the temporary labelled
nodes relative to thelr total weights Is by means
of buckets, <see section 4. A precursor to this
method is given by Loubal, [HITC 681, Dial, [DIAL
65], and also Gilson and Witzgall, [GIWI 73]. In
this method, temporary labelled nodes whose total
welights fali within a specified range are <stored
together. The collection of nodes 1is called a
bucket. To sort several temporary labelled nodes
of differing total weights, several buckets may be
used. Each bucket will «contain nodes of a
different total weight range. For instance
suppose that nodes A, B and C have total weights
of 1, 3 and 7, repsectively. Then, 1f bucket 1

stores nodes v, such that

0 € ddvy) < 4

and bucket 2 stores nodes v, such that



/\\
Q

4 ¢ dv)

then bucket 1 will contain nodes A and B, and

bucket 2 will contain node C.

For any bucket holding nodes v, with total weights
within <(a, bl, ie. a § d(v)> < b, (b —- a) is its
width. For example buckets 1 and 2 above have a
width of 4. When several buckets are used to
store temporary labelled nodes with different

total weights, the set of buckets are arranged 1in

a bucket list. The bucket list 1s a collection of
buckets O, 1, 2, ..., where bucket 1 contains

nodes v, such that

/\
o

a ¢ ddv)
and bucket (i + 1) contains nodes, v such that
b € d(v) < ¢ etc.
Al1l the buckets in the bucket list have the same
width. In general if Z is the bucket width, then

bucket I stores nodes v, such that

i *# Z £ dw) < 1+ 1) 2.
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The bucket list achieves an automatic sort of the

temporary labelled nodes, relative to their total
weights. To access the nodes whose total weights
are curreﬁtl)' the minimum, the lowest non-empty
bucket is found. Nodes in thié bucket are then
searched, ie. their forward star arce are scanned.
Any relabelled node is put into the appropriate
bucket. This may require removing the node from
its original bucket. Note that only nodes with
forward star arcs are placed Into the bucket list.
This prevents unnecessary searching of a node that
can not relabel any other node. The nodes in the
lowest  numbered non-empty bucket 1, can be
searched in any order, and this 1s achieved by
setting Z equal to the weight of the lowest

weighted arc in the networlk.

Theorem 17 if Z = minimum (W.,; /| (i, J) & A,

then no ncde can relabel another node Iin the same

bucket.

Froof: Let WMIN = minimum {W.,; / (i, j) & A} and
suppose that bucket i contains two nodes u and v,
both with temporary labels, and that node u 1Is
being searched. If node u relabels node v, then

the new total weight of node v will be given by
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d{v)> = dd(u) + (the length of some arc).

The lowest possible value that d(v) could have is
(d{u?> + WMIN)> and for node v to be relabelled, its
original total weight must have been greater than

this. Now bucket i holds node u, such that

i * WMIN & dd(u) < (i+l1) * WMIN,

therefore the lowest possible value of d(u) is (i
* WMIND. Thus the lowest possible value the new

total weight of v could have is given by

ddv) = (I # WMIN) + WMIN

(1+1) * WMIN

and the original value of d(v)> must have been
greater than (i+1) * WMIN. But this is contrary
to the assumption that bucket 1 holds node v,

since di{(v> < (i+1) WMIN. t

Corpllary 17, 1: Any relabelled node will always

be put into a higher numbered bucket in the bucket

list.
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Using this roperty, the search for the next
& prop .

lowest numbered bucket can always resume when the

last one stopped.

The algorithm terminates when there are no more
non-empty  buckets left iIn the bucket list,

Implying that every node has been permanently

labelled.

To implement the general label setting algorithm
with this refinement, 1let us define the bucket

list, BUCKLIST, a linear list, as follows:

/ NIL if bucket i contains no
i node;

BOOKLIST (i) =

J
: F if bucket 1 contains one
} or more nodes, then P is
} a pointer to the first

node in a linked 1list of

|
I
/ nodes in bucket 1.

Bucket 1 1In BUCKLIST will contain node v such

that,

I # 2 ¢ ddv) < (1+1> #* Z




where Z is the bucket width and is set to WMIN.

The minimum weight of the weighted arcs. The
following iS' an outline of this implementation,
and the complete Fascal code of it is in appendix

E.

Algorithm bucketsort;
begin
step 1

{initialise}

while (there is still a non-empty bucket do
begin
search through BUCKLIST to find the next pointer
indicating the next non-empty bucket;
if (a pointer is found) then
repeat
find the next node, R, in the bucket;
add node R to Nr;
for every node C such that (R, C) & A-Ar do

begin
if ((d(R) + VW.c) < d(C) then
begin
if (node C is already in bucket) then
begin
calculate which bucket node C is in;
remove node C from its current bucket;
end;
d) = dR) + WRC;
"N = R;
if (node C has a forward star arc) then
begin
calculate which bucket node C is to be
put in;
put node C into the appropriate bucket;
end;
end;

end;
remove node R from its bucket;
until (every node in bucket has been searched);

end; {while}
end.
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The proof of correctness of this algorithm is a
direct result of the theorems 15 and 17, and the
proof of 1its termination in OCm + (n * 2)) is by
inspection and clear, note that the number of
buckets necessary for the computation is -at most

Z(n~1.

The efficiéncy of the above method, known as 1-
level bucket depends highly on the parameter Z.
Based on this observation, Denardo and Fox, [ DEFO
79al, introduced the 2-level and k-level bucket
techniques which have better computation times
than the 1-level bucket technique. In Z2-level
bucket technique the temporary labelled nodes are
maintained by a 2Z-level bucket system. That is on
the first level the nodes are distributed Iinto z
buckets of width A ¥ WMIN and on the second
level, the nodes which are contained in the
smallest numbered bucket that is non-empty on the
first level are distributed into =z buckets of
width WMIN of the second level. By doing so, the

computation of the method will be reduced to 0(m +

n Z ) time. The k—-level bucket technique 1is
similar to Z-level bucket and .reduced the
computation time to O(m + KnZ'-“ %), However, we

have not considered this refinement in this work.
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All label setting algorithms run approximately 1in
O0(n*) time In worst case. However, as a result of
the above discussions and theorems concerning the
label setting algorithms, the study of many
practical and empirical surveys such as those used
for comparing label correcting algorithms and also
our own émpirical study of the best of these
algorithms which is introduced in section 10, we
can draw the following conclusions about the label
setting algorithms. In this conclusion, 1t is
assumed that the maximum weight of the weighted

arcs in a network is small compared with n¥,
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10 AN EMPIRICAL STUDY

In this section, five different implementations of
labelling alg&rithms are evaluated by solving the
one-to-all’ problem on a diverse set of randomly
generated ﬁetworks using the same computer (FRIME
7502, the same compiler (FASCAL RUN COMFILER) and
executing the codes during a time period with a
constant demand on CFPU time. The implementations

studied here are:

1. Dijkstra’'s label setting, S1;

2. general label setting with address
calculation, S5z;

3. general label setting with 1-level buckets,
S3;

4. general lébel correcting with a queue, using

FIFO management, Cly

§)

general' label correcting with a output

restricted double ended queue, CZ.
Fach algorithm is used to solve the same set of

"emall’ randomly generated networks, and its

performance behaviour is observed as:



{a) the number of nodes 1In the networks

Srows;
b) the number of arcs in the networks grows.
The number of nodes, n, in the networks are
10, 20, 40, 60, ..., 200 and for each node size

there are @ networks which vary with respect to
random variation in their number of arcs, m, which

is bounded from above by k, where k takes the

values,
nin—-12, 2 =12, ..... , Snn—-12
10 10 10

In other words we consider a complete network,

ie. m = n(n-1), and generate random networks with
n nodes . which are (100-kJ)% arc free, for
k90, 80, 70, ..., 20 and we repeat the process for
different values of n which are stated above. In

all the networks the arc weights are three digit
random numbers, regardless of the node size or the
arc size. In the following algorithm, used for

generating a random network with n nodes and

k n<n-1) arcs for a given n and a given k
100
where 100 € k ¢ 100, the procedures RANDZ2 and

n
RAND3 produce 2 and 3 digit random numbers.
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Algorithm Random Network;
begin
for 1 1 to n do
for j := 1 to n do
if (i # j) then
begin
RANDZ <(num);
if (num < (100-k-1))
then :
RAND3 (Wi ) <
else
Vig 1= o

end
end;
hY

Note that we require m 2 (n~1> in order tao have a

connected network, thus k 2 100.
n

The following table illustrates the computational

times of the implementations tested.
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CPU TIME IN MILLISECONDS

n k
NODES  DENSITY
%) Ci1 c2 S1 - S2 S3
10 10 ’ 0 0 3 24 79
20 10 6 3 9 61 01
40 10 21 21 63 79 116
60 10 58 58 137 109 145
80 10 97 103 239 130 179
100 10 ‘ 151 124 366 172 230
120 10 209 206 515 233 287
140 10 352 339 S 700 273 336
160 10 412 388 903 342 394
180 10 648 842 1152 397 458
200 10 651 730 1400 458 503
10 .20 3 3 6 40 82
20 20 12 12 18 48 100
40 20 58 61 73 78 131
60 20 91 94 158 118 170
80 20 164 187 272 173 239
100 20 309 306 421 239 300
120 20 476 500 603 324 376
140 20 530 663 803 397 440
160 20 778 985 1027 485 521
180 20 864 903 1300 615 648
200 20 1409 1576 1591 725 755
10 30 3 6 9 40 88
20 30 19 15 24 49 103
40 30 49 46 82 85 140
60 30 139 154 176 143 203
80 30 228 233 300 218 279
100 30 481 660 467 306 357
120 30 694 745 661 412 454
140 30 921 788 888 527 557
160 30 1045 1222 1167 672 700
180 30 1521 1639 1464 788 809
200 30 1700 2397 1785 943 955
10 40 6 7 ) 34 01
20 40 21 15 25 58 106
40 40 97 82 90 97 155
60 40 233 200 200 176 243
80 40 360 418 331 252 306
100 40 676 788 512 367 415
120 40 866 1048 734 521 548
140 40 1321 1618 976 633 667
160 40 1376 1712 1276 788 812
180 40 1967 2328 1594 970 978

200 40 2445 3081 1957 1154 1146

g
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n

k

NODES  DENSITY
(%) C1l c2 S1 52 S3

10 50 6 10 10 33 o1
20 50 33 34 27 51 112
40 50 97 110 97 112 173
60 50 260 303 212 185 257
80 50 575 591 372 309 363
100 50 585 673 563 425 464
120 50 963 1149 813 594 618
140 50 1609 1600 1079 725 749
160 50 1924 2379 1394 939 954
180 50 2206 3203 1749 1136 1131
200 50 3227 3933 2158 1370 1360
10 60 7 9 9 46 91
20 60 36 36 30 54 109
40 60 109 122 110 115 179
60 60 297 324 234 218 276
80 60 676 952 403 336 385
100 60 852 1012 616 491 524
120 60 1215 1533 869 679 697
140 60 1821 2537 1167 870 885
160 60 2118 2654 1509 1085 1070
180 60" 2961 3534 1888 1297 1204
200 60 3836 5815 2330 1554 1545
10 70 9 9 6 36 94
20 70 31 27 33 55 112
40 70 163 185 115 131 200
60 70 333 448 251 225 288
80 70 706 912 430 370 412
100 70 894 1224 661 527 558
120 70 1475 1758 934 7389 755
140 70 1882 1970 1251 958 972
160 70 2537 3048 1627 1203 1194
180 70 3188 4309 2037 1476 1451
200 70 4734 7691 2500 1764 1764
10 80 9 9 13 36 94
20 80 30 33 33 60 112
40 80 142 160 122 140 . 209
60 80 379 524 263 254 316
80 80 621 667 463 403 445
100 . 80 1100 1354 730 600 639
120 80 1493 1718 1012 797 818
140 80 2657 4566 1343 1057 1054
160 80 3127 3597 1739 1324 1312
180 80 3715 50097 2194 1615 1600
200 80 4591 5897 2691 1933 1927
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n kK
NODES DENSITY
(%> C1 c2 S1 S2 S3
10 S0 12 12 13 40 94
20 g0 39 40 36 63 118
40 90 228 249 127 149 212
60 80 445 673 281 276 333
80 90 894 1073 500 448 500
100 90 1139 1737 761 637 667
120 90 2013 2748 1070 876 897
140 90 2591 4263 1436 1136 1139
160 90 3470 4636 1869 1440 1419
180 90 4430 6582 2321 1754 1739
200 90 6143 8967 2867 2161 2131

y
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following conclusions based on the above table

be drawn about the tested algorithms.

The general 1label setting implemented with
address calculation sort is the most
efficient, However, in this study only small
networks (ie. n § 200) are considered and the

arc weights are small compared with n#,

The general label setting with bucket sort is
almost as efficient as the one with address
calculation, especially in case of dense

networks.

The general label correcting with a output
restricted double ended queue is more
efficient than that with a single queue for
gparse networks (K ¢ 20%)> and also for small

networks (n € 100).

Dijkstra’'s algorithm becomes more efficient
as the number of nodes grows and also as the
network becomes more dense, especially for k

? 30%, Dijkstra’s algorithm becomes the third

best.



5. The general label correcting with a single
queue managed with FIF0O, becomes the fourth
best with n 2, 120, and the general label

correcting with output restricted double

A

ended queue is the third best with k 20%,
the fourth best with n € 100 and the fifth

best otherwise.

Filgure 12, illustrated the graph of the average
CFPU times of the algorithms against different
densities 1in the same set of diverse randomly

generated networks with upto 200 nodes.
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Figure 12, the graph of average CPU times for networks with
up to 200 nodes.
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11 MATRIX MULTIPLICATION ALGORITHMS

To study all source algorithms, as defined in

problem classification,

let diy; <™’ = the length of a shortest path from i1
to j subject to the condition that

the path contains no more than m

arcs.
then I1f wii = 0, for all 1,
(11.1) dii: %2 = 0
dig ' = @
diy 2 = min {diw """ 4+ W)

Clearly the computation of (11.1) will converge at
the (n—-1)%* ogperation, i1e. d:y;<"71" = di,. The
overall computation is in 0<(n<). time, since it is
the n repetition of Bellman's algorithm which runs
in 0<(n¥) time. However, these equations bhave a
property that their computation is equivalent to

the "plus—min” inner product,

A

)
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Ie. let ¢ = [C:;] = AB

and suppose that the matrix multiplication is

redefined as #, where

Ciiy = min {a@in + biwnl},

ie. let addition take the place of multiplication

and minimisation take the place of addition.

Now let D = [d.,;] and consider W = [wi;,;], ie.
represent di..,’'s in a n¥n array and consider the
adjacency matrix  representation of the arc

weights, then:

¢ 1f 1 = J
® gtherwise

3

Dy = [gees, ,y], where d<<’; g

D¢ty = Doy x W
pDeErs = pero g o= (Dew@d ® W) * WV

D13 = peweio g o= (DY o®x W) o* WL ... * W

[
(93]
-



Theprem 18: Flus-min inner product method solves

equations of (11.1> in 0(n¥logw=").

Froof: For this type of matrix 'multiplicafion,
clearly, D¢’ is the identity matrix.

ie. D’ * W = V¥, furthermore the multiplication
is associative, thus D<™'? = WY<12  where Wen—12

Is the (n-1>%* power of V.

Now since W#< = WY<m-'2 for any 2% » (n-1), then it

is appropriate to square W until a sufficiently

high power of W is obtained, ie. W& = W # v,
then, W< = W+ #* W, oo, , W=k, for 2% > (n-1).
Now clearly this method requires loga"
multiplications, each of which is an 0(n%), Thus
the method solves the equations in 0(n¥log:"). t

This approach to all-to-all"” shortest path
problems was first made by Farley, Land and
Murchland, [FALM 671, and the algorithm was
called, by them, "cascade algorithm”. Hu,

[HUTC 67], also gives an extensive discussion on

this type of approach to all-to-all problems.

48]



12 TRIPLE ALGORITHMS

The earliest work on this type of algorithm was by
FLOYD, [FLOY 62], on a paper by Warshall,

[ WARS 627, on transitive closure which is
equivalent to a shortest path problém in which all
arc welghts are zero. This method runs 1in
0 (n*logz") time. Before <considering triple

algorithms, let d.,;<™® be redefined as:

diy ™ = the length of a shortest path from i to j
subject to the condition that the path does not
pass through nodes m, m+l, ....... , n (except I

and J..

Now, a shortest path from 1 to j which does not

pass through nodes m+1, mt2, ........ , n either

(1) does not pass through node m 1in which
case d.i J Corpt= 42 = dj. g < 1 .'l’.

or

(2) does pass through node m in which case

i — Y - o
di g = dy S dm_’_ e

Thus we have,

a3
4l



(12.1> diji <" = Wis.

d i Crppnl D = ml‘ n .(d iy (ST , di . e d"‘ J Cro D )
and clearly, digcm*?? = dig, the length of a
shortest path from i to . This algorithm Is

named after Warshall-Floyd and has the following

general form:

Algorithm Varshall-Floyd;

begin
{initialise}
for i:= 1 to n do
begin
for j:= 1 to n do
dig:= Vijg
dis = 0
end
{search and replace)
ki= 0
while (k < n) do
begin
k:= k+1;
for i:= 1 to n do .
for j:= 1 to n do (12.2)
(dss, din * Qugs?)
end;
{check}
for i:= 1 to n do
if (dis < O
then
report failure
else

report success
end.

bt
1)
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Theprem 19: Algorithm Warshall-Floyd terminates

in 0(n*) reports,

i) success and defines a shortest path
between every pair of nodes if there 1is
no negative cycle;

(11> failure otherwise.

Froof: The time bound is obvious from ilnspection

of the program, for correction let

l\)
I

dijy = min {dij;, (diw + dus;’}. k<n

Clearly T is satisfied before the start of the
minimisation process, I1e. after the initialisation
steps in the algorithm. Now let k' = k+1 for some

k under which T 1s satisfied initially. Clearly

(12.2) examines every triple < 1, K’, J >,
replacing di:; if and only 1if there is a shorter
path via 1, 2, ....... , k') than via

{1, 2, ....... , (Kk'—-10). But this satisfies T for
K = 0 to k ¢ n, due to the fact that there can

only be a maximum of (n—1) arcs in a path and also
the results of theorems 11 and 12, 1f there is no
negative cycle, ie. the algorithm will halt with a

solution if there is no negative cycle. Otherwise



for some 1 = N, di. $0 which indicates that

there is a negative cycle in the network. t

Dantzig, [DANT 671, proposed a variant of

Warshall-Floyd's algorithm which requires the same
computation time and memory  space. Both
algorithms are the same except iIn Dantzig’'s
algorithms the iteration step, 1e. {search and

replace) is divided into parts. If the following,

AN
\\)

(12. 3>, replaces (12.20 of Warshall-Floyd's

algorithm, then the resulting algorithm will be

that of Dantzig.

(12.3) for i := 1 to k do
for j := 1 to k do
Grs:= min {Vus + disl;
for i:= 1 to k do
for j:= 1 to k do
diw:= min {dis + Wsnd; o
for i:= 1 to k do
for j:= 1 to k do
di; := min {diw + dws , dis)

The proof of correctness and: termination of
Dantzig's algorithm 1s the same as that of

Warshall-Floyd’'s algarithm.

Iri and Nakamoni, [IRNA 72171, exhibited a set of
triple algorithms which run in 0(n*) time. Most
of these algorithms are similar to and are based

on Warshall-Floyd algorithm.

ol
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13 MNODIFIED LABEL SETTING ALGORITHMS

The all-to-all problem on a network which contains
no arc with negative weight, can be solved by n
Iterations of a label correcting algorithm, one
for each possible source. Then, clearly this
solution method will run in

A(nmloge:s « momsn). If the label setting method
Is implemented with a d-heap as stated in section
Q. This Iimplementation runs faster than 0(n¥)
time for sparse networks, and in 0(n®) time for
dense networks. However, the result can be
further improved by implementing the label setting
algorithms with address calculation sort, see
section 9, or with a f-heap. Then as clalmed by
Tarjan, n repetition of the algorithm solves an
all-to-all problem Iin a non-negative network 1in
O0(n*log(n+m>) time. Even 1f the network contains
arcs with pegativé weights, the same time bound
can still be obtained by making all the arc
weights non—-negative 1In a preprocessing step.
Edmonds and Karp, [ EDKA 7217, defined the

appropriate transformation which is as follows:



First we add to network G a new node (n+1) and a
ZERO WEIGHT ARC ((n + 1), 1) for every node 1 1in

G. Then dcywi2i 1Is calculated for every node 1.

Using a label correcting algori th}n will take O (nm
time. Finally a new weight for each arc (i, j)
can be defined by Wi, = Wii; + demewrsi — demei oy,
Clearly, W., > 0 for every (1, j) & A. This 1s
due to dcw+1,,; being the length of a shortest path
from (n+1> to j which gives

demersi + Wiy > d(n+1)j and thus Wi, > O. Thié
transformation makes all arc welghts non-negative
and preserves shortest paths, since it transforms
the lengths of all paths from a given node i to a

given node j by the same amount, d:. - d;.

Thus this solution method is correct for negative
networks as well as non-negative networks and runs
in 0(n*®) tims. Then it may be concluded that the
modified label setting algorithms are faster than
triple algorithms which are in turn faster than
matrix multiplication algorithms. Although this
statement 1s true in case of worst' case anaiysis,
the empirical studies of these algorithms do not
quite support it. However implementation of a

label setting algorithm with a F-heap or address



caculation sort has not yet been considered for
all~-to-all problems In any empirical study, to the
best of the author's knowledge, and that unlike
the empirical studies of single source algorithms
which mostly report consistant results, in the
case of all source algorithms most results are not
consistant. For example Dreyfus, [DREY 68J],
reported that Dijkstra's algorithm reguires 50%
more time than that of Floyd and that of Dantzig.
Yen, (YENJ 70], reported that his implementation
of Dijkstra’'s algorithm is 25% faster than Floyd’s
algorithm, Kelton and Law, [KELA 787, claiﬁed that
the matrix multiplication methods  are most
efficient on Dense networks, quyd reported that
his algorithm is the fastest, Glover and Klingman,
{GLKL 827, have results that shows Dijkstra’s
algorithm is faster than that of Floyd. However,
most of these studles agree that for small
networks with up to 400 nodes, modified label
setting algorithms are faster, especially in case

of sparse networks.
Another reason which makes the use of label

setting algorithms in solving all-to-all problems

more popular iIs that Iin most practical situations
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the shortest paths from every node of a subset of
N to every other node in N are required, rather
than from every node to every other node in N.

Supposing K (< n) nodes are to act as source nodes
in a given networl, then_k repetitions of a label
setting algorithm will solve the problem rather

than n repetitions.
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14 SENSITIVITY ANALYSIS

In this éection the sensitivity of an optimal
solution to a one-to-all problem is studied. More
precisely, the methods of characterising the
maximum increase and decrease in the weight of an
existing arc, optimal or non-optimal, that can be
tolerated without changing the optimality of the
current solution are analysed. However, before
discussing these algorithms, consider the
following expansions of definitions and notations

of section 2.

Consider a connected and undirected networlk

G = (N, A0 and its minimum spannling tree,
T = (Nv, Ar) rooted at node s, source, where
Ny = N

and 4 = (< i, j » | i, J € N, and I and j are connected)

[< > denote an unordered pairl.
Furthermore, let FP'. denote the shortest path from

s to v, also P’'.. denote the subpath from u to v

on the shortest path FP'., then F'u. < P'e < Ta.
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Te defines a partial ordering of nodes i & N,
with respect to their paths from s, ie. if
i & FP'; (ie. node i is on the tree path from s to

J7 then d(i) ¢ d(j) and we write i ¢ 7.

Each arc <i, j> & Ar divides set XN Into two

subsets N;, and N';;, where

Ni; = {k | k& N and <i, j > & . P, ;)

and N'i; = {k | k & N and <1, j> & P'.unl}.
N:y and N’';, are the node sets of the two trees in
which Te transforms after <i, j> e A+ has been

deleted. Note that 1 e Niy and J & N'q,.

Each arc <i, j> & Ar together with its partition
of node set N into N.; and N':, defines the two

following cutsets of G,

C*(i, J> = Ku, v> | ue N, and v e N’;;)}

N'i,j and v & N ;)

i

and C~ (1, j? = {<u, v> | u

note that X1, J~>

Each arc i, JjJ»> & A-Ar defines the particular

cycle,

r\n‘
A
v

Lol



where P ;.

J to node i in Ta.

is the unique tree path connecting node

Theorem 2Q: Let Ta = (Nv, A+) be a spanning tree
of G = (N, A> and suppose that (u; v> & A+ and
<u’, v'> &  A-A+, Then <u,. vy & k(u?, v')
precisely when, <u’, v’y = C*(ﬁ, v) or
{u’', v'> & C- u, vo.
FProof: consider k(u’, v’y = {u’, <u', vy,
vy, W'} and,
(1 let <u’, v'> & C*(u, v,
then <v, u> & PFP"e. .
since u' & Nu. and v' & N'..o
thus <u’, v'> & C*(u, v) & v, u> &
ku?, v'D
more precisely, <u, v> is.counferdirected
in k<(u’', v’').
(110 let <u', v'> & C~(u, v)
than <u, v> & P'c w-

since u’

e N'.. and v' & N..

[y
§h
ie
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thus <u’, v'> & C(u, v) & <Ku, v =
kdu’, v'D

more preclsely, u, wv> 1In codirected in

ku', v’').

let <u’', v'> & C*(u, v) and <u', v’') &

Cc<u, wv»> then clearly <u, v> &

lu, vl retraction of G is a reduced network, G',

obtained by identifying the two distinct nodes u

and v of G and deleting any possible loops that

result from this process.

ie.

and
A" = A-A< where
A = (FSCu) 2 BS(v>)) U (FSC(v) 2 BS(uJ)

(2 means Intersection’

Note that A is the set of those arcs in A which

would become loop arcs upon identification of u

with v.

Node u 1is called a "deal-end” node of Ta

b



if it is incident with exactly one arc <u, r>,
furthermore arc <u, r»> & T 1is called a '"dead-
end’” arc. Clearly, 1f in (u, v] retraction of G,
u is a ‘'dead-end node and <u, \ is the
corresponding dead-end arc then [u, v] retraction
Te,' of Te Is again a tree. More precisely, it is
the tree which results from T by deleting arc

<u, v, and node u.

The retractions can be used for successively
determining the cutsets C*(i, j) and C~ (i, j) of
the tree arc i, JjJj»> & A+, aﬁd Iin the case that
<1, J» 1is a dead—-end arc, then clearly these

cutsets are the forward and backward star arc sets.

of node 1,
ie. <" (i, J) = FS{I), <1, jJ)> = BS(i).
For a directed network G = (N, 4), clearly, 1if

parallel arcs are not allowed, then

FS({i> 2 BS(jo) = i, J» if 1, jo> & A
Ied otherwilse
and also,
r
FS(j) £ BSi) = <7, 10 if ¢(j, 1> & A
o otbefwise
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thus,

{1, j>, (f,i)) 1if <i, j>o e A4

~——

A« = A, g if (4, j) e
]
{(f, 1)} if (j, 1) e
o otherwise

ie. <™, J) = FS{i), <~(i, J) = BS(i).

The following  example clarifies

definitions and theorem. Consider

Al (j: 1) & A

the . above

the network

given in the following diagram together with its

minimum spanning tree rooted at node 1.

Figure 13: Example network, numbers associated with

the arcs are the arc weights.

.
B
=3
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13

“N 1 1 1

M)

Figure 14: The shortest path tree of the example network

in figure 13.
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In particular consider the arcs (2, 5) & A+ and 2, 3,

(6, 12, (1, 5> & A-A+, then for

(2, 52 e A4+: the two node sets are,
Naw = {1, 23 and Nas' = {5, 6);

the two cutsets are,

<2, 52 = {(2,5)} and <2, 5) = {6,
(2, 32 € A-Av k{2, 3> = {2, (2,3, 3,

(1,22, 2}, then

. ~ V4
5 & k(2, 3>, since 3 /E Now oo

2, (2, 5, 5, &, 6, 6

1,3, 1,

(2 P &= (5, 1> and 1is codirected, since

6 & Niwm’' and 1 < Novs .

8
~
-

1, 8 & A-A+: k(1I, 5> = {1, (I,

(2, 85 &« k{1, 52 and is counterdirected, since

! € Nz and 5 e Nas'.

Now consider (2, 5] retraction of G.

{2, 5>, (2, 4,, (2, 5>}

FS 2
B&5(2) = {1, 207

FES5> = {5, 3>, (5, 65, &, 72)



77

It
o~
[aXY
)
[SY
&)1
&)}

= AFS{2) 2 BSGO) U {GS(5) @ BS2))

= A2, B} U e = A2, 58

[Note that A+ is the set of loops caused by the

retractionl.

A 1

G'I

is

= A-A= = 4-{2, 5>

= (N', A'), the [2, 5] retraction of G = (N, A)

shown In figure 15.

Figure 15: [2.5) retraction of the example network

in figure 13.



The retraction has created _pa;allel arcs, which
are not allowed. WVithout loss of generality all
" parallel arcs except the one with the least weight
from a node'i to a node jJ in the resulting network
are eliminated. In figure 16, the simplified

(2, 51 retraction of the example network is shown.

Figure 16: Simplified [2, 5] retraction of the
example network in figure 13.
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Note that there are always two parallel arcs and
the one with the larger weigbt is eliminated.
Consider the (1, Jjl retraction of 'a network
G = (N, A>, then for a node u :t i # j with (1, u>

and J, u) = 4, G' will contaln (1, u)> 1f

Wi < Wiw, or (J, u) otherwise. Similarly for a
node u # 1 # J with (v , 1) an_d (v, J2 & A4, G!
will contain (v, i) 1If Wes < Wes, or (v, J
otherwise.

Now consider a network G = (N, A) and its minimum
spanning tree Ta = (Nr, Av) where N+ = N and let

ACL, J) = Wi, + di> — d(jo

clearly 7Te is the minimum Spanning tree of G If
and only if a¢i, j> 2 0, for all (i, Jj?> € A in
particular for every (1, Jj> & A-Ar, since node J
would have been labelled from node 1, this I1Is the

well known optimality criterion.

Let the weight of an arc (I, j) & A changes by &,
from W.; to VW.;, + &, then the problem in this
section is to determine 81, g 2 _ 0 and
S(i, J» &€ 0, such that Tg remains optimal as Wiy

varies by &, where

sCi, Jo € & ¢ &£, jo.



Furthermore W,; + &¢I, Jj) 1is called the lower
limit of W.;, and W.;, + &*(i, j) is called the

upper limit of W.,.

Clearly, if (1, J?> 1s a npon optimal arc,

ie. (1, J) & A-A+, then

I
S .

gr(i, j)

h

S(i, J - adi, j.

However, 1in case of an optimal arc (i, jo, 1ie.
i, J72 & A+, the determination procedures of
(i, J> and &£(i, j> are rather more complicated,

and are based on the following theorem.

Thegrem 21: let (u, vo & A+, thénl

S*(u, wv) = min{a <1, J2 | (i, J) & C*{u, w),
i, 72 2 (u, vo>)

and,

S (u, v) = max {-Ad, j) | d, j> & C~(u, wvJ.

Proof: If (u, v> & Ar and V.. -2 W.. + &, then
for a node k e N either d(k) -» d(k) if kK  Nu..,
or d(k) - dk) + & if k & N'ue. The changes 1in

d k>, for k¥ = 1 to n, affect the gquantities
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adi, Jj2> for (i, J? = A-A, which enter +the

optimality criterion,

a(i, jJ) if (1, joe o w, vwUcttu v)
add, jl) = ali, j) + 6 I1f (U, j) e <, v

ali, jo> - & 1f 1, j) eﬂc“(u, v).

Clearly, &"(u, v) and d~(u, v) describe the range
for & such that a1, Jo 2 0 for all

(i, J) & A-A+. t

The algorithm cutset, stated below is a direct
result of the above theorem and determines the

lower and upper limits of an arc (u, v) & Ar.

Algorithm cutset;

begin {for the arc (u, v) ¢ A+ do)
obtain N.. and N..’;
obtain < (u, v) and <*(u, v);
for all (i, j) & <™ (u, v) do

§“(u, v) := minimum (A(i, J)};

for all (1, j) & <~ (u, v) do
8§ (u,v) := maximum {4 (1,F));
upper := Wu. + 8§¥(u, v);
lower := VWuo + &7 (u, v)

end;

In this algorithm N.. and N.." are obtained by
simply checking N+ and clearly this 1is done in

0<(no;
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< " (u, vJ> and < 7 (u, V} are obtained by checking
FS(i) and BS(i) for every i & Nu.. U N'... This
procedure in worst case requires examining every
arc (i, Jj) & A and hence runs 1in Ofm) time or

0(n#) in case of a complete network.

Therefore the algorithm runs in O(m> or 0(n*) time
and requires 0(m) or 0(n*) additional space. If
the lower and upper limits of every arc

(i, Jj’> & A+ 1Is to be obtained then clearly the
algorithm has to be repeated (n-1) time, thus
resulting in C@(nm> or 0% time and O0(m) or
every arc 1s determined Independently of that of
the other arcsl]. Sheir and Witzgall, [(SHWI 801,
have proposed three algorithms for obtaining the
cutsets. These algorithms are not more efficient
than the cutset algorithm, if the aim i1s to obtain
the cutsets of a particular arc (u, v) & A+, but
i1f the cutsets of all the optimal or tree arcs are
to be obtained, then these algorithms prevent the
duplication of some of the calculations and hence
are more efficient than repeating the algorithm
cutset ((n-1) times. 411 these algorithms run in
Q(n*> time, require 0(n*) additional space and are

based on the following theorem.



JTheorem 22: Let Ta = (N, A+) be a shortest path

tree of G = (N, A>, and suppose (u, v) & Ar 1s a
dead-end arc. Let G'? = (N7, A and
Ir* = (N7, Ar') arise from G and T by [(u, v]

retraction, then T' 1s a shortest path tree of G’

if for every (1, J) & A7,

[ V.i J + R’(..:v if i = u
Wi i ! \: W.i g M.dv’ if j = u
|
!k Wi i otherwise
Furthermore, &"<(i, j>' = &*{i, j> and &£, Jo!' =
s (i, J72, for (i, Jjo & A’'.
Froof: Clearly Wuv' = Wu. for (u, v) & T’,

thus d’(u) = d(u> for u & T’

Now, if (i, jJ) & A’ — A+', then

AdL, J) = AW, J2,

and hence, A' (1,50 2 ¢ which establishes the
optimality of the tree T’, as well as the equality
of lower and upper limits for non optimal arcs.
Also for (u, v)> & A7,

— *“(u, v)' = <*(u, v) and <o (u, w'! = <o (u, v).

f
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In this work, we will consider the implementation
and analysis of one of these algorithms, called
dead-end retraction, within a more complete
algorithm, called sensitivity analysis, which
calculates the lower and upper limits of every arc
u, v & A. The algoritbm déad—end fetraction,
in our opinion, Is the most efficient and the
simplest to program, among the three algorithms

proposed by Shier and Vitzgall.

In dead-end retraction algorithm the cutsets of a
dead-end arc (u, vJ) & Ar are first obtalined and
then the network Iis retracted using arc (u, vJ,
and then the process is repeated to the resulting
network and tree until all the optimal arcs are
considered. This manner of consideration of the
optimal arcs, clearly, makes' the determination
procedure of cutsets more efficient, since the
determination of cutsets of a dead-end arc
(u, v) & Ay only involves the examination of
FS<u) and BS(u), and after determination of the
cutsets of an arc the network 1is  reduced by
eliminating the trivial arcs. In algorithm
sencsitivity analysis, given below, it is assumed
that the shortest path tree was obtained by using

a label setting algorithm and the order in which
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the nodes were labelled is recorded. Then a dead-
end arc 1is obtained by considering the unique
backward star optimal arc of the node which was
labelled later than the other,ﬁodes in a network,
the initial network or any retrabted netw&rk, ie.
1f the nodes of a network are labelled in the
order vi, V&, ..., Va, then consider (u, v.) & Ar
first, and then after (u, v.) refraction,of the
network consider (u, vﬁwy) = Ar, and so on. In
our Iimplementation, given below, a shortest path
tree is represented by three node size lists, one
called order, initially contains all the nodes of
N in the order in which they were labelled in a
label setting method, and ”N and d, as defined
before, are ordered accordingly. Furthermore, it
is assumed that the network is represented by an
adjacency matrix, mat, 1In order to eliminate the
parallel arcs resulted after a retraction more
efficiently. The following algorithm calculates
the lower and upper limits of every arc
‘u, v) & A, and uses the dead*end ‘retraction
method of Shier and VWitzgall tp.zjetermine these

limits for the optimal arcs.
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Algorithm Sensitivity analysis;
begin

for i := 1 te n do
for § := 1 to n do
AlL, 3) = o
for i := 1 to n do
for j := 1 to n do
if (Waraevrcinsg < ® then
begin
if (N (order(i)) # j) then
begin
A(Order(i), J) HES w.:-\-~.:lmr<:iil.i +
dCorder(i) - d(j»;
upper := o, .
lower := Vorawecizs — Aorder(i), j)
end ‘
end;
nn := n;
min := + o;
max := — o;
while (nn > 1) do
begin
for 1 := 1 to (nn-1) do
if ((wi asvdarcmmy < ®©) and
("N<(order{(nn) # 1))) then
begin
if (min > A (i, order(nn)) then
min := A{i, order<(nn))
end;
for i := 1 to (nn-1) do
if (Vorawecnnrs < ©) then

begin
if (max < (A(order{(nn), i) ¥ (-1))) then
max := Alorder(nn), i) ¥ (-1)
end;
upper = Vi ncordercnms 13 ordercnns t ming
lower (= ViFNcordarcnmisl ordeecnns T MAX;

for i := 1 to (nn-2) do

if (A{i, order(nm)) > A({i, order(nn-1>))

then

begin
A(i, order(nn)) := A{i, order{(amn-1));
Vi craercmms (5 Wi oedes con-i

end;

for i = 1 to (nn-2) do
if (Alarder{(mn), 1) > aA(*N(order(nn)),

i))) then
begin
Alorder(nn), 1) := A(*N{(order(nn)),
w-:- cdar Cnmdi o = w F.N( avdar Crinv )
end;
for i := 1 to n do
begin
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50 A(*N{(order(nn)), i) := o
o0

51 A(i, PE(order(nn))) := o;

52 VeFNcordarcnnias (= 0

53 VitFucordarcmmraa (= 0

54 end;

55 w-:-r-:hn\-lin\'\h @rdar (nny 0= 0)

56 order (*N(order(an))) := order{(nn);
57 nn := nn-1

end {while)}
58 end;

In the above algorithm. initially all A's are set

to oo, steps & to 5, and then for every arc

(u, v) & A4-Av, 4(u, v) 1Is calculated in steps 6
to 16, The lower and upper limits of every such
arc is then obtained in steps 13 and 14. The

variable nn indicates the number of nodes 1In a
retracted network, and initially is set to n. In
steps 20 to 58 the lower and upper limits of dead-
end arcs 1n the reverse order of being labelled in
a label setting algorithm, are calculated. In
steps 22 to 27 the backward star arcs of a node u,
the initial node of a dead—-end arc, are considered
and min or §*(u, v) Is calculated. In steps 28 to
33 the forward star arcs of such a node are
considered an& max or &7 (u, v) 1Is calculated.
Then in steps 34 to 35 the lower and upper limits
of the dead-end arc (u, v) & A+ are obtained. In
steps 36 to &7, the [u, v] retraction of the
current shortest path tree is updated accordingly.

Clearly this algorithm runs Iin O(n¥> time, since
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the whilejloqp is executed (n—-1? times and every
other loop Iin the while loop is executed at most n
times, 1t also requires 0(n¥*) additional space.
The proof of correction of this alguritbm is a

direct result of the theorems 21 and 22.

Applying the sensitivity analysis algorithm to the
example network of figure 13 and its shortest path

tree in figure 14, gives the following results:

ARC _ LIHITS

Identity  Weight  Activity lower  upper
1 --->5 9 Nop 7 INF
2 -—->3 11 NOP 5 INF
2 ---> 4 6 OFT 3 9
2 --->5 4 OPT 3 6
3 -==> 6 9 NOP 6 INF
4 ~--> 5 1 NOP 0 INF
4 ~-->7 4 OFT 0 7
5 ---> 3 2 NOF ' ' 1 INF
5 —=-> 6 7 OPT ‘ 0 10
5 -—=-> 7 9 NOP 6 INF
6 ~=—> 7 6 NOP 0 INF



In the above results, the activity of an arc is
OPT, if the arc is a tree arc, and is NOP, if the
arc iIs a non—tree arc. The lower and upper limits
of an arc, regardless of its activity or type,
8ives the range within which the weight of that
arc can vary without affecting the optimal
solution or changing the paths 1in the shortest

path tree.

Another method for obtaining the cutsets which was
also proposed by Shier and Witzgall is called
cycle tracing algorithm and is based on an
algorithm for transportation problems which_ was
first proposed by Muller-Menbaclk, [MULL, 6817.
This algorithm is based on theorem Z20. In this

algorithm for each non-optimal arc (u, v) & A-4r,

which contain (u, v) are obtained. Then the
quantity, Aadlu, v) = W,. + du> - d(v) is entered
Into the optimisation process for calculating

&1, JJ) and &1, J), as shown in theorem 21, for

updating tentative minima and maxima which are

initially set to +® and -® respectively. To
obtain all the cutsets which contain
(u, v) & A-A+, k< (u, v) 1s first obtained, as

described before, and then theorem 20 is used.
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Finally, the third algorithm proposed by Shier and
Witzgall is called the tree building. In this
algorithm the quantities A(u, v) are calculated in
the process of building the shortest Spanning
tree. This algorithm seems to be the most
complicated and is definitely the most inefficlent

one among the them.
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15 POSTOPTIMALITY ANALYSIS

All the labelling algorithms, in fact all known
solution methods for one-to-all problems, are
applicable to networks with known constant arc
weights. The algorithms described in section 14,
for sensitivity analysis of shortest path problems
give a range within which the weight of a specific
arc can vary without affecting the shortest path
tree. However, what these algorithms fail to show
is the effect on the shortest path tree if an arc

weight falls outside of its given range.

Spira and FPan, [SFFA 78], have shown that to
update a <shortest path tree after a constant
increase or decrease in the weight of an existant
arc takes 0(n*) time. It may be as efficient, 1in
case of a non-negative dense network at least, to
modify the network, ie. setting the weight of the
varied arc to its new value, and resolve the
problem by a label setting algorithm which will
take 0(n+) fime. In this section we present an
O<¢n*) algorithm, Senet, which post optimises the
one-to—-all problems on non—-negative networks whose
arc weights are subject to wvariation. More .

precisely, algorithm Senet determines all the non-
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negative critical values <(at each of which the
shortest path tree changes further) for the weight
of a varying arc. Furthermore, Senet also reports
the updated shortest path tree for every range
formed by two successive critical valués of the
varying arc weight. Senet ié applicable to the
optimal, non—oﬁtimal and non-existant arcs and
analysis the variations in . the arc weights

Independently.

Let wus extend the network terminology, before

introducing Senet,

By an optimal solution or simply a solution to a
network, we mean a shortest path tree of the

network rooted at a distinguished node (source).

Let R: be the set of all the paths from source to

node I, where no arc 1s traversed more than once

in each path. Let Fu.: be the path number k to
node i with a total welght of dw i
(ie. Ri = (Pii, Puyy ..., Pui, ...}3). Now Pu: is

the optimum of R: If and only if

dmi = min {dyi:i ! Pii & Ril). Node 1 iIs said to be

labelled if the shortest path from the source to I



is determined. Then the label of node i consists

of two parts:

i a node which is immediately before i on
the path from source to i, *N(1);
(11> an integer representing the total welght

of the path d(i).

Node 1 1is said to be totally relabelled if the
ordered set of nodes in its path from the source

i1s changed.

Node 1 is disconnected if there exists no path
from the source to 1. A networlk is disconnected

i1f it contains at least one disconnected node.

N
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Assume that there exists an optimal solution,
solution one, to a given network G. Then the set
of arcs A can be divided into two parts,

A = 4y + Az, where A4, is the set of optimal arcs

(Ie. those utilized by the original solution) and

Az 1Is the complement of A:, the set of non-
existant arcs, A, Is also consideked, where
Aw = L, O ¢ 1, J e N <, 5> &

Now suppose that the effect on the optimal
sol utio}J caused by variation in the arc. (p, g’ 1is
to be analysed, (p, q € N>, then the soclution can
be analysed by considering A: and (4z + Az
separately. In the following cases W' ey

represents the orig-inal. welight of (p, gJ.

(i) Optimal Case

Set Wwy to Infinity and solve the resulting

network G’ <(ie. find the shortest path from

source to each of the other nodes).

If there exists no optimal solution to G!,
then (p, q’ is optimal for all values Of Weou-

otherwise the solution found becomes solution



two. Solution two would contain a set of
nodes which are elther totally rel_abélled or
disconnected. These are the nodes whose

shortest paths in solution one contained

p, qJ. Arc (p, q) is always optimal for
disconnected nodes. Let N’ be the set of
totally relabelled nodes and suppose that
K = JN')], (1 € k & n. For each totally

relabelled node, N’':, obtain the quantity
AN’ (1)), where |

AN (1)) = Wy + d2(N' (1)) — d1(N' (1)),

for i =1 .... k.

where, dil1N' (1)) 1s the total weight of the
shortest path to node N’ (1) in solution one
and 2N’ (12> is that of node N'(i> 1in

solution two.

Now set wWmw to zero and solve the resulti ng
networlk, G, obtaining solution three.
Suppose that I’ nodes are totally relabdelled,
excluding the nodes whose total weights are
changed only, then for each of these nodes,
N' (k+1), calculate AN’ (k+1i>),

for i =1 .... I, where

AN’ (k+1)) = d1(N' (k+1)) - d3 (N’ (k+1)),

for 1 = 1 ... I.



where, d3(N'(k+1)) is the total weight of the

shortest path to node N’ (k+1) in solution

three.
Now rearrange A and N', for i1 = 1 ... k+Ir, in
descending order of 4. In this order, the

first k elements of A aﬁa N' are the ones
obtained by solving G’ and the rest are those
obtained by solving G, Ve also bhave,
AN (K+1)) & wW'ae € AW (k)), o‘l-otimali ty
range. Now the following conclusions about

the values of W, can be drawn.



OPTIMAL ARCS

Range

Change in original solution
(path = shortest path)

Non-Optimality

Solution two becomes

ALY ¢ Vg optimal to G
Increase (1) The paths to N’ (i), for
Alm) € Vg ¢ AL i=m... k, are as in
form ¢ Xk solution two
(i1> Total weights of all the
paths to N’ (i) for
i=1... m increase by
the same amount as wen
increases
(iii)> The paths to the rest of
the nodes are as in
solution omne-
Optimality No change
AK+HL) € Wpa € A
Decrease i Total weight of every
Alk+H1+m) € W § A(KkHDD path containing (p, Q,
m ¢ T decreases by
(W e~ Wiow)
(ii> The paths to ¥' (1), for
i =1... m are as in
salution three
(111> The paths to the rest of

the nodes are as in
solution one

Alternative optimal solutions exist for those values
0f Wmo: which fall on the boundary df a range




(ii> Non-Optimal and Non-Existant Case
Set Wiy to zero and solve the resulting

network, G'. Let solution two be the optimal

one obtained for G’.

Let N' be the set of totally relabelled nodes

and suppose that k = (N'!, (0 ¢ k ¢ n. For

each totally relabelled node N (1),
(i = 1 ... k), calculate A(N' (1)) where
AN’ (12> = dI(N’ (12> — d3(N’ (1)),

Now rearranging A and N’ in descending order
of 4, the following conclusions about the

values of Ww.., can be drawn
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NON-OPTIMAL AND NON-EXISTANT ARCS

Range Change in original solution
' (path = shortest path)

Non-optimality Yo change

ALY & Wy

General (i) The paths to N' (i), for
i=1... m are as in

Alm) ¢ wWeg € AL solution two

for m ¢ k :

(ii> The paths to the rest
of the nodes are as in
solution one

Final Solution two becomes
0 ¢ Waa & &K optimal for G

Alternative optimairsolutions exlst for those values-
0f Wes: which fall on the boundary of a range °

Supposing that arc (p, g’ In a network G with an
optimal solution (N1, di1), ie. *N1 contains the
predecessor nodes and dl the <shortest path
welights, is to be analysed, then Senet can be

structured in the following manner.

e
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1 algorithm Senet;

2 begin

3 K := 0;

4 kk := 1;

5 get (p, q?;

& act := activity (P, qJ;

7 Vipa 1= Weg;

8 if (act = OPT) then

9 begin

10 data (P, q) = o

11 shartest-path (data, dz, "N2);
ie compare ("F2, N', k);

13 for i := 1 to k do

14 Ald) 1= W + d2(F' (1)) - dI(F’ (4));
15 kk := k »
16 end; {if}

17 data (P, q) := 0;

18 shortest-path (data, d3, "N3)

19 compare (*N3, N', k);
20 if (k > 0> then
21 begin
22 for i := kk to k do
23 AdL) = dICE L)) — d3(N (1))
24 descend (N', a4, k)
25 end
26 end.

In the above implementation{ analysis of an

optimal arc requires the execution of all 26 steps
and analysis of a non-optimal oOr a noﬁ—existant
arc require the execution of fhe steps from.l to 7
and from 17 to 26, inclusive. The function
‘activity determines the type of the arc (p, g’

which may be:

OFT = optimal,
NOF = non-optimal,
NEX = non-existant.



This function can be Iimplemented as follows:

function activity (P, q);
begin
1f (Voy = o)
then
activity := NEX
else
if ("N1(g@) = P)
then
activity :
else
activity :

OPT

it

NOP
end;

FProcedure shortest-path is a label setting
algorithm which solves a one-to-all problem in a
network represented 1in data. Frocedure descend

rearranges N' and 4 1n descending order of A.

Frocedure compare, obtains the totally relabelled
nodes after a change in data and stores them In
N', a node-size linear list. This procedure is
used twice If arc (p, q) 1is optimal and once
otherwise. Here we give two different
implementations of this procedure. In each
impiementation a node-size linear list of boolean
type, L, is used to prevent a node entering N’
more than once. In the first implementation we
bave used a queue with FIFO management, @, to

identify the totally relabelled nodes.
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1 (1) procedure compare ("N, N', kJ;
2  begin : '
3 for i := 1 to n do
4 L{i) := false;
5 for 1 := 1 to n do
6 if ("R{) # "R1({i)) then
7 begin
8 LY = true;
e ADDQ{i, @
10 end;
11 while not (EMPTYQ (Q)) do
1z begin
13 u := FRONT(Q);
14 DELETEQ(Q);
15 K := k+1;
16 N' (k) := i
17 for 1 := 1 to n do
18 if (U = PN1(i)) and (L<i> = false)) then
19 begin
20 ADDQi, Q)
21 L{i) := true
22 end
23 end;
In the second implemsntation we have used N', a

node~-size linear list, to difectLy identj{y and
store the totally relabelled nodes. Associated
with N’ there.are two pointers, one (K') indicates
the location of the next totally relabelled node
in N' which is to be searched and the other, K,
indicates the location in N’ for inserting a new
totally relabelled node. N' is in a way treated
like a queue with FIFO management, except that no

deletion takes place.
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1 (2) Procedure compare (N, N', kJ;
2 begin

3 for i := 1 to n do

4 L(i) := false;

5 k' 1= 0

6 k := 0;

7 for 1 := 1 to n do

8 if (®*N(i> # "N1(i)) then
9 begin

10 L{i) := true;

11 k := k+1;

12 N (k) = 1

13 end;

14 repeat

15 if (k > 0) then

16 begin

17 k' = k'+1;

18 for i := 1 to n do

19 if (W' (k') = PN1()) and (L(i) = false)) then’
20 begin
21 L{i) := true;
ze K := k+1;
23 N () := i
24 end
25 end;
20 until (k'=k)
27 end;

Clearly, both implementafions Iini in 0<(n*) time,
however, the second one 1s more space efficient.
In both Iimplementations N1 represents the
pfedecessor node set of solufion one, and ~WN
represents that of a new salutibn, elther solution

two or solution three.
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Theorem 23: Senet determines all the critical
values for the weight of an arc and reports the
correct effects on the optimal solution at each

critical value. Furthermore, IN'] = k § n.

FProof: Consider R., as shown In theorem 3,'tbis

set is finite and has a size of ki, where

\M)

‘ n-
max (ki) = (n-2)! 1/(n - 2 - r)! for n 2
r

N

1l
>

R. can be divided into two parts. R. = R’ + R".,
where K’, iIs the set of paths containing a
particular possible connection (ie. (p, q?, where
P, 9 & N> and R”; 1is its complement. Now let
w'mew be the original weight of (p, g in G, and
also F:i and Fz: be the optimums of R’ and R".

respectively then,

i) if Wew 1S5 "~ set to infinity,  then
Fiey = optimum (R:> |
(i1 if Wew Is set to zero and
(a) Fi: = optimum (R:.), thenA
dii § dwi — W
(b2 Fu. = optimum (R:, then
diza € dia W' i
for 1 = 1 n
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The optimal case and the non-optimal case, which
includes the non-existant case, are considered

separately:

(12 Optimal Case
Let FPy: and PFz; be the shqftest paths to a
node i in G and G’ respectively, where G' is
determined from G by letting Wemsy - oo The

following are now true.

(1.1 if Fz: does not exist for some 1,
then F,; 1is optimal ‘for all values of
Wiiaiiy »
1.2 if Fy, does not include (p, q), then
FPii = Pazi. |
(1.3>, 1if Pwi # FPyi, then di: § dw:, now let
d’'; = dws — dii, then for a general
value of w'p.; Iin G we have
(1.3.1> Fy: 1s optimal 1if
Weseg < W'l + d'i

(1.3.

[\
~

FPi:: is optimal Iif
A d’:

(1.3.32 Fyi and Pz« are,

alterﬁafi ve optimal

paths (fe. di: = d=:) 1If

Wiy = W',:;\n::.y + - d ! X



Therefore, (p, gq) is in the optimal path to i if
Wiy $ W' + d?’. and clearly, this is true for

every I « N.

Now let PFu: be the optimal pafh to node i in G”,
where G" = G, but Wmag = 0; then the following
are true, |
2.1 i1f Pvy exist, then Fu. exists,
(2.2 i1f Fu: does not include (p, g), then

Pei = Pis. |
2, 3) if Pzy Includes (p, g) and,

(2.3.1) PFi; includes (p, q>, then

das = dvi = Wi

(2.3.2) Fy, does not include (p, gq)

then
(a) Pua: is optimal if
0 < MJ £ d’i
(b2 Fi: 1s optimal If

d ’ i N Wiy $ ow! gy

Therefore (p, ) 1is 1in the optimal path to 1 if
O § Wewy € d’'s and this is true for every 1 & N.

-

However (1.3. 1) and (¢

(‘\,)

3.2.b) above, together

imply that fOI‘ t.be range d ! i \( M:,\-:,y \( W’y:;n-.:y + d ! iy




the original péth, Fii, 1s optimal. Now assume
that the shortest paths to k nodes in solution one
include (p, q>, where (k § n». Then clearly as a

result of (1.2) above, only k nodes are totally
relabelled in solution two. In sovlutvion tﬁree the

set of nodes N can be divided into three parts:

a’ the set of nodes ' whose labels are
unchanged

(bJ the set of nodes whose labels are tbtally
changed

c) the set of nodes whose total weights are

decreased anly.

Now 1let ', I', and " be the sizes of the above

three subsets of N respectively, then

(1> r +r- + o' = n

(2) I = k, as a result of (2.2) and (2.3) above.
Therefore k + ' § n as I’ 2 0, (ie. maximum
numbér of relabelled nodes, when analysing an

optimal arc is n), ie. IN’| = Kk.€ n.



(112 Non-Optimal and Non-Existant Case
In this case let P.: and Pz: be the optimal

paths to 1 in G and G' respectively, where

G’ = G, but wa., = 0, Then the following are
true, |
(a) i1f Py: exists, then Fi, exists
b) de: $ dvs, for all i e N
= if diy = dws then Pii = Pa
d> if dwi < dvi, then PFz:; Iincludes (p, gqJ)
and if d’s = dii - dw:, then for a

general value of Waww 2 0,
we have:
(d.1) P:: Is optimal for 0 § Wou § Wha - d':

’

d.2) Pi: is optimal for Weo 2 Wi — d's

Therefore, (p, q) is in the optimal path to 1 if

0§ Wow § Wiey — d's, and clearly this is true for
every i & N. Furthermore, it 1s clear that
/IN'} = k € n. t

Theorem =24: Senet terminates IiIn 0n¥) time and

requires 0(n) additional memory space.



Frooft: The termination of the algorithm depends
on the number of critical valuee for the weight of
an arc. The set of critical valuves of the weight
of an arc 1n a network of size n is finite and has

a maximum size of n, since:

At each successive critical Value at least one
more node becomes totally relabelled, énd a node
is totally relabelled at most once in the process
of analysing an arc. Furthermore, if no node 1is

totally relabelled, then the algorithm terminates.

The proof ‘that Senet terminates in 0(n¥) time Iin
worst case is by inspection. A label setting
algorithm runs in 0(n*) time, procedure compare
runs in O0(n¥) time and rearranging the totally

relabelled nodes in procedure descend takes 0(n#)

time. Thereforé, Senet runs in O(nﬂ).

In case of analysing an optinm} arc, there are
ceven additional node-size linear lists, four to
represent solutions two and three, twovfor N' and
A and one, L, 'for identification of fotally
relabelled nodeé. Iﬁ case of analysing a non-
optimal or a non-existant arc, there are filve

additional node size linear lists, all similar to
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the case of analysing an thinml' arc with the
exception that only two such lists are reqguired to
represent one new solution only. Therefore the
maximum number of additional memory Qnits required

for analysing an arc is 7n. t

To compare Senet with the algorithms of chapter
14, consider the example netwofk of figure 13 and
I1ts solution in figure 14. Furthermore, suppose
that arcs (2, 5>, (1, 5>, (2, 6) and (3, 2) are to

be analysed, where arcs (2, 6) and (3, 2) are non-

existant. Analysing the arcs separately:
(i) arc (2, 5’ is optimal,

act = OFT;

V' iew = 4 s

Wi € 09

solution 2:

dz2 0 3 8 9 9 16 13

"N2 1 1 1 2 |1 5 4

totally relabelled nodes:

N 5 6
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Vas ¢ 0

solution 3:

a3 0 10 12
N3 1 5 5
N 5
L
A P 6
rearranging:
N 5
a 6




(110

arc (1, 5> is non-optimal,

act := NOP;
Vis' := 9
Vas ¢ 0;

solution 2:

a3 0 3 2 13
N3 1 1 5 4
N 3 5
A 6 7

rearranging:
N’ 5 3
a - 7 6

.
(]
a




(ii1) arc (2, 6) Is non-existant;

act := NEX;
WVas® = o
Vie ¢ 0;

solution 2:

a3 0 3 8

N3 1 1 1

N 6 7

a 11 4
rearranging:

N 6 7

a 11 4
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(iv) arc (3, 2) 1s non-existant,

act := NEX;
Voz’ = o,
Wax! ¢ 0y

solution 2:

a3 0 3 8 9 7 14 13
N3 1 1 1 2 2 5 4
N 0

Now the following <conclusions the arc

welights can be made.
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In the above output:

The weight of the optimal arc (2, 5> can vary from
6 to infinity and this will change the routes to
nodes 5 and 6 In solution one to (1 -+ 5) and
(1 2 5 -5 6) with total weights of 9 and 16,
respectively, only. The weigbtbof'tbis arc can
vary from 3 to 6 without éffecting the structure
of the shortest path tree of solution one. If
this weight varies between 1 and é, then the route
to node 3 will change to (1 -» 2 - 5 2 3) with a
total weight of (5 + Was). If it varies between 0
and 1, then beside the change‘in the route to node
3, the route to node 7 will changé to

(1 » 2+ 5 - 7) with a total weight of (12 WVas);

The weight of the non-optimal arc (1, 5) can vary
from 7 to infinity without effectihg the optimal
solution (ie. solution one). If it varies from 6
to 7 the routes to nodes & and 6-wd11‘change to

(1 - 5> and (1 » 5 < 6) with total weights of (0 +
Wiw? and (7 + Wig) respectively.- If it varies
between 0 and 6 however, beside the changes in theée
routes to the nodes 5 and 6 the route to node 3

will also change to (1 -5 &5 =2 3> with a total

weight of 2 + V'l.ec;;),’



If the non-existant arc (2, 6) 1is to be created
and its weight is between 11 and infinity, then
the optimal solution will not be effected.
However if it has a weight between 4 and 11, then
it will become an optimal arc and will change the
route to node 6 to (1 - 2 - 6 with a total weight
of (3 + Wee), and if it has a weight between 0 agd
4, then the route to node 7 will also be ¢changed
to (1 » 2 3+ 6 5 7) with a total Qeigﬁt of

(O + Waw);

The creation of the arc (3, 2) with a total welight
between 0 to infinity will not effect the optimal

solution.

The completé pascal code of the algorithm Senet

together with a sample run is given in appendix F.



The algorithms of section 14, for éensitivify
analysis, determine only two ‘ofv tbé critical
values, maximum increase and decrease, within
which the weight of a given arc can vary,
independently, without changing the structure of
the shortest path tree. Furthermore, they do not
report the updated weights of the shortest path
tree within the given range and do not indicate
the structural ébanges of the shortest path tree
when an arc weight falls outside of_its determined
range. Senet provides all the critical vaiues for
the weight of an arc together with the updated
weights of the shortest paths and the structural
changes between every two successive critical
values. This is because, In analysing a non-
optimal arc, sensitivity analysis algorithms only
consider the affect on the terminal node of the
arc, when the weight of the arc i1s reduced. This
node is obviously the very first one which may be
affected as a result of the reduction. Senet,
however considers every other node which could be
affected after the terminal node of the arc is
affected. In case of analysing an optimal arc,
sensitivity analysis algorithms consider all the
nodes that Senet considers, but they do no use all

the information that they obtain. Sensitivity
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analysis algorithms do not consider the non-
existant arcs, although with a simple
modification, some of them could become capable of
analysing such arcs. Analysié éf an arc for
sensitivity or post—optimality'.takeS"O(Hﬂ) time,
however, in Senet the additional memory space
required is 0> and in the Sensitivfty analysis
algorithms is (n#), Some of the sensitivity
analysis algorithms analyse all the m arcs in
0<n*) time and Senet analyses them in 0(n*m) time,
but still. Senet will require 0(n) additionai

memory space.

Senet can be modified to analyse negative networks
as well as non-negative networks. In case of
negative networks which do not contain négative
cycles, the lowest critical value for an arc

(u, v) will be t rather than zer@,,where t is the
minimum weight of a cycle containing arc (u, wv).
thus the modified version must be capable of

determining such cycles.
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16 SUMMARY AND CONCLUSION

Section 1, in a way, could be considered as a -
summary, futhermore at the end of each section the
corresponding conclusions are drawn. However, 1n
this section we present a brief summary coupled
with an ogutline of the‘ conclusions made throughout

the worlk.

In section 6, we classified 'the deterministic
unconstrained shortest path problems 1in order to

outline the importance of one-to-all problems.

In section 7; we A developed an algorithm,
labelling, which is the underlying structure of
all the labelling algorithms. Ve then used this
algorithm "and its  properties, directly or
indirectly, to study, classify, analyse and

compare the different labelling algorithms.

In sections 8 and 9 we considered all different
implementations of labelling algorithms using
various data structures. and sorting techni ques,
and analysed and compared most of such
implementations. All the analysed algorithms 1in

these two sectlions were evaluated by using worst
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case analysis and their memory space requirements.
In section 10, the most efficient labelling
algorithms were compared using their average
computation times on a set of diverse randomly
generated j networks. Resvlts - of the
classifications of the labelling algorithms can be

generallised as follows:
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In section 11 to 13, the all source algorithms
were reviewed, classified and compared. The
classification of these algorithms can be

generallsed as follows:

all source algorithms

matrix multiplicétion triple algorithms| | modified label
plgorithms . setting
algorithms

In section 14, the sensitivity analysis of one—-to-
all problems was considered and the best of such

methods was implemented and analysed.

In section 15, we Iintroduced an algorithm, SENET,
for the post optimality analysis of one-to-all
problens. In this section we aléo considered the
advantages of this new approach to such problems
over.the existing sensitivity analysis, probably

the closest class of algorithms to SENET.
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All the theory behind the shortest path problems,
one-to-all in particular, - were - developed
throughout the work in terms of defiﬁitions,
algorithms and theorems. However, the emphasis in
this work is on sections 6 to 10 and in particular

on section 15.
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The

following appendices contain the complete

Pascal codeé of:

@’

(b’

(o

reading and writing a network in both

adjacency matrix and forward star forms;

label correcting algorithm with a single

queue managed Iin FIFO manner;

label «correcting algorithm with double
ended queue (or cactually output

restricted double ended queue);

label setting algorithm with address

calculation sort;

label setting algorithm with one level

bucket sort.

In all the codes the variable names are chosen in

a

manner that makes their functions self

explanatory.



APPENDIX A

This appendix describes the user input text file,

INFILE. It also contains the PFascal coding for
the procedures . CHARTOINT, K’EADADJMATRIX,
READFORSTAR and PRINTADJMATRIX. Frocedures

READADIMATRIX or READFORSTAR read the adjacency
matrix representation of a network stored 1Iin
INFILE and represent it in the form of an
adjacency matrix or adjacency lists (ie. forward
star form), respectively. Both these proéedures
read the arc welights as characters and use the
procedures CHARTOINT to convert them back to their
integer values, there are two versions of this
procedure, the one which excludes negative numbers
is used for label setting algorithms. Procedure
PRINTADJMATRIX  outputs the adjacency matrix

representation of the network.

INFILE is a text file that the user must create
prior to running any of the prograns in this
study. INFILE «contains an adjacency matrix
representation of the network fh.e user wishes the
program to operate on. The adjacency matrix must

be formatted in the following manner:
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(1?2

(ii)

(111>

(Iv)

(v)

Each row of the adjacency matrix must be

on one line, starting in the first column

of the file.

Each number in the adjacency matrix must
be in a field width of Z characters. For
example, 1if X represents a space, then
the number 3 would be written:

3 X X X X

One clear line must be between the rows

of the adjacency matrix.

To mark the end of each row of numbers in
INFILE, an asterisk, #*, must follow the

last character in the row.
The end of all the rows to be input Is

identified by an asterisk in the first

column of a row.
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To illustrate these requirements, consider the

adacency matrix:

1 2 3 4
1 @ 1 3 o
2 2 -5 o o
3 o o o 6
4 4 -33 224 7]

The correct INFILE faormat for this adjacency

matrix is

let Column in INFILE
i
ORXXXLIXXXS XXX XXX ¥
X
Z2XXX-DXXOAKXXOKKX¥
bid
DHAXDPXXXOKXKXO XXX ¥
X
Axxx-33%x22XoXKx*
X

*

(where x represents a space)

[y}
=)
-3



PROCEDURE CHARTOINT (CHARARRAY:VORDS; VAR VALUE: INTEGER);
{This procedure converts a number held in character form,}
(in CHARARRAY, to its integer value, VALUE )

VAR

I, MULTFAC: INTEGER; {MULTFAC stores the multiplication) .

{factor)

BEGIN

VALUE:= 0;

I:= 5; :

WHILE (CHARARRAY[I] = ' ') DO

BEGIN
I:.= I-1;

END; {Find the last digit of the number)
MULTFAC:= 1; . '
REPEAT
IF (CHARARRAY(I1 <> '-') THEN
BEGIN {Convert the digit to its integer value}
VALUE:= VALUE+ (MULTFAC#* ((ORD(CHARARRAY({I1))-
ORDC' 0’323 ’
MULTFAC:= MULTFAC*10;
END;
I.= I-1;
URTIL (I=0)7;
IF (CHARARRAY(I]l = '-')> THEN
VALUE:= (VALUE * (-1)); <{Convert a.-ve number to its}
{correct value}

END; {CHARTOIXNT}



Procedure CHARTOINT(CHARARRAY : WORDS; VAR VALUE : INTERGER);
{This procedure converts a number held in character form,)
{in CHARARRAY to its integer value, VALUE. This version}
{of CHARTOINT terminates processing on encountering a)
{negative number}

VAR
I, MULTFAC: INTEGER; {MULTFAC stores the multiplication}
' {factor}
BEGIN :
IF (CHARARRAY[ I}l = '-')> THEN
BEGIN
WRITELN (' NEGATIVE WEIGHT ARC ENCOUNTERED - ILLEGAL’);
GOTO 929; :
END;
VALUE: = 0;
I:= 5;
WHILE CHARARRAY(CI1 ="' ' DO
BEGIN
I:= 1I-1 ‘
END; {Locate the last digit of the number)
MULTFAC:= 1;

REPEAT {Convert the digit to its integer value}
VALUE:= VALUE+ (MULTFAC# ((ORD(CHARARRAY[I1))-
(ORDC' 0" )

MULTFAC:= MULTFAC#10;
I:.= 1I-1;
URTIL (I=0);
END; {CHARTOINT}



PROCEDURE READADJMATRIX;

{This procedure reads the adjacency matrix representation)
{of the network from INFILE into ADJMATRIX)

VAR :
RCW,COL, I,J,VALUE: INTEGER;
NUMBER: WORDS;
{NUMBER holds the number read from INFILE in}
{character form)
ENDROV, ENDCOLS: BOOLEAK;
{ENDROW = TRUE if end of row is reached i.e. a ¥ is)
{detected}
{ENDCOLS =TRUE when all rows in ad1acency matrix have)
{been read}
CH: CHAR;

BEGIN
RESET(INFILE);
ENDCOLS: = FALSE;
FOR I:= 1 TO 100 DO
BEGIN
FOR J:= 1 TO 100 DO
BEGIN
ADJMATRIX(I,J1:= 0;
END;
END; {Initialize ADJHATRIX)
ROW:= 0;
WHILE NOT(ENDCOLS) DO
BEGIN
ENDROV: = FALSE;
COL:= 1;
ROW:= ROW+1;
WHILE NOT<(EXDROW> DO
BEGIN
FOR I:= 1 TO 5 DO
NUMBER[ I}:= ' ';
I:= 1;
REPEAT <{Read the next number from INFILE}
READ(INFILE,CH);
NUMBER[L I1:= CH;
I:= I+1; '
UNTIL ((I = 5) OR (NUMBER[1] = "#'));
IF (NUMBER[ 1) = '#') THEN
BEGIN <{End of row detected)
ENDROV :=TRUE;
IF (COL=1) THEX o
ENDCOLS:= TRUE; <{End of Adjacency matrix}
END ' :
ELSE
BEGIN
IF (NUMBER[1] <> '0') THEX



BEGIN {Insert the number inta ADJMATRIX)
CHARTOINT (NUMBER, VALUE);
ADJMATRIX[ ROW, COL]: = VALUE;

ERD; )
COL:= COL+1; {Increment column reference)
END;
END;
IF NOT(ENDCOLS) THEN
BEGIN
READLN(INFILE);
READLN(INFILEy;
END; {Move to next row of the adjacency matrix)
END;
NUMNODES: = ROVW-1; {Record the number of nodes in the

{network} )
ERD; <{READADJMATRIX}

Q8]
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FROCEDURE READFORSTAR;

{This procedure reads the adjacency matrix representation
{of the network from INFILE to the 3 forward star arrays,
{POINTERARRAY, STARARRAY and WEIGHTARRAY

VAR
ROV, COL, I, EDGEPOIRTER, EDGEPOINTSTORE, VALUE: INTEGER;

{EDGEPOINTER stores the next free location number in }
{STARARRAY?

{EDGEPOINTSTORE stores the first location number in }
{STARARRAY used to store the current nodes forward star}
NUMBER: VORDS;

).
}
}

{NUMBER holds the number read from iNFILE , in character}

{form}

ENDROV, ENDCOLS: BOOLEAN;

{ENDROV = TRUE if end of row is reached i.e. a ¥ is}
{detected ENDCOLS = TRUE when all rows in adjacency)
{matrix have been read)

CH: CHAR;

BEGIN
RESET(INFILE);
FOR I:= 1 TO 100 DO
BEGIN
POINTERARRAY[I):= O;
STARARRAY(I1:= 0;
WEIGHTARRAY[Il:= 0;
END; {Initialise forward star arrays}
ENDCOLS:= FLASE;
ROW:= 0
EDGEPOINTER: = 1;
WHILE NOT(ENDCOLS> DO
BEGIN
ERDROVW: = FALSE;
COL:= 1;
{EDGEPOINTER currently contains the flrst location)
{number in STARARRAY that will be used to store the)
{forward star of the next node}
EDGEPOINTSTORE: = EDGEPOINTER;

ROW:= ROW+1;
WHILE NOT (EFDROW> DO
BEGIN
FOR I:= 1 TO 5 DO
NUMBERC{ I1:= ' *;
I:=1,;

REPEAT {Read the next number from INFILE)
READ(INFILE, CH);
NUMBER[ I1:= CH;
I:= 1+1;

UNTIL ((I = 5) OR (NUMBER[1l = '#'));

IF (NUMBER[ 1] = *'#') THEN



BEGIN {End of row detected)
ENDROV: = TRUE;
IF (COL=1) THEN
ENDCOLS: = TRUE; {End of adjacency matrix}
END
ELSE
BEGIN
IF (NUMBER[I] <> '0') THEN
BEGIN {Insert information into the 3 arrays}
POIRTERARRAY{ ROV : = EDGEPOINTSTORE;
CHARTOINT (NUMBER, VALUE):
STARARRAY([ EDGEPOINTER]:= COL;
WEIGHTARRAY[ EDGEPOINTER]: = VALUE;
EDGEPOINTER: = EDGEPOINTER+1;
{set pointer to next free location in)
{STARARRAY}
END;
COL:= COL+1; A{Increment column reference}
END;
END;
IF NOT(ENDCOLS)> THEX
BEGIN
READLN(INFILE);
READLN(INFILE);
END; {Move to the next row of the adjacency }
{matrix) '
END;
NUMNODES:= ROV-1; <{Record the number of nodes in}
{the network}
POINTERARRAYI NUMNODES+11:= EDGEPOINTER;
{Insert dummy pointer in POINTERARRAY)
EXD; <{(READFORSTAR}



PROCEDURE PRINTADJMATRIX;
{This procedure displays the adjacency matrix}
{representation of the network to the.screen}

VAR
I: INTEGER;
CH: CHAR;
BEGIN
VRITELN C ADJACEXNCY MATRIX '
WRITELN (! —————————————— ')
WRITELN;
RESET(INFILE);
WVRITE(C ')
FOR I:= 1 TO NUMNODES DO
BEGIN
WRITE(CHR(ORD((ORD(’D'))+I)));
IF (I>9) THERN
WRITEC ')
ELSE
WVRITEC '
END;
VRITELN;
VRITE ')
FOR I:= 1 TO NUMNODES DO
BEGIN
WVRITE(' ———-");
END;
VRITELKN;
FOR I:= 1 TO NUMNODES DO
BEGIN
WRITE(CHR(ORD((ORDC' Q') +1I)));
IF (I>9) THEN
VRITEC 1')
ELSE
WRITEC 1),
REPEAT
READ(INFILE, CH);
IF (CH<>'#') THEN
WRITE(CH);
UNTIL (CH = '#');
- READLE(INFILE);
READLE(INFILE);
CH:= * ';
VRITELK; |
VRITELNC'  1');
END;
VRITELN;
WRITELN;

END; <{PRINTADIMATRIX}

[3N]
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APPENDIX B
This appendix contains the PASCAL code for the
program - FIFOSEQULST and the procedures PUTINLIST
and PRINTFIFO. FIFOSEQLIéT‘ is the 1label
correcting algorithm with a siﬁgle queue using -
FIFO management. and procedure PUTINLIST adds a
node to the end of the queue, ie. ADDQ..both are
discussed in section 8. PRINTFIFO displays the
contents of the sequence 1list upon being called.
Prior to running FIFOSEQULST, a correctly

formatted versidn of INFILE must be available.

Some sample runs of this program are also shown in

this appendix.
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PROGRAM FIFOSEQULST ( INPUT,OUTPUT, INFILE);

{This program finds the shortest paths from a node, START
{to every other node in a network using the label
correcting algorithm. This program implements a FIFO
sequence list and uses forward star representation of the
{netwaork}

LABEL 99, 88;

CONST
INFINITY = 99999;

TYPE
WORDS = ARRAY[1..51 OF CHAR;
ARRAY2 = ARRAY(1..2] OF INTEGER;
ARRAY100 = ARRAY[1..1001 OF INTEGER;
LISTINFOTYPE = ARRAY[1..100] OF ARRAYZ;

VAR
POINTERARRAY, STARARRAY, VEIGHTARRAY, P, SEQULIST, d: ARRAY100;
LISTINFO: LISTINFOTYPE;
NUMNODES, R, FIRST, LAST, N,C, I,J: INTEGER;
START, NEXT, ENTRYPOINTER, LEAVEPOINTER: INTEGER;
INFILE: TEXT;

BEGIN ({MAIN)
RESET (INFILE);
FOR I:= 1 TO 100 DO
BEGIN
POINTERARRAY[I]:= 0;
STARARRAY[LIl:= 0;
WEIGHTARRAY[ I1:= O3
PLIl:= 0, :
dlIl:= INFINITY;
SEQULISTI Ii:= 0;
LISTINFOLI, 11l:= 0;
LISTINFOLI, 21:= O;
END; <{Initialise the arrays)
READFORSTAR; {Read in the network)
PRINTADIMATRIX; {Display the network)
WRITELN (' THIS IS THE GRAPH REPRESENTED IN FORVARD STAR
FORM’);
WRITELN ('~ e oo e e ')
WRITELN; _
WRITELN (' POINTERARRAY  STARARRAY WEIGHTARRAY');
WRITELN(®  —-=--—mommmm mmmmmmmoe oo "
WRITELN;
FOR I:= 1 TO POINTERARRAY[NUMKNODES + 11 DO
BEGIN .
WRITE(’ ' POINTERARRAY(I,® ", STARARRAY[ 11);

S N N



WRITELN C’ ', VEIGHTARRAY[ID)
ERD;
WRITELN;
WVRITELNC' WHICH IS THE START NODE ?°');
READLN (START);
WRITELN;
dl START1:= 0;
PUSTART]:= START;
IF (POINTERARRAYUSTART] = 0) THEN
GOTO 80; {There are no paths from the starting node)
LEAVEPOINTER := 1;
SEQULISTILEAVEPCINTER] := START;
ENTRYPOINTER := 2; {(Insert starting node in the sequence}
{list}
WHILE (SEQULISTILEAVPOINTER] <> 0) do
BEGIN '
R := SEQULISTILEAVEPOINTER];
SEQULISTI LEAVEPOINTER] := 0;
{Remove the next node from the sequence list)
LEAVEPOINTER := LEAVEPOINTER + 1;
IF (LEAVEPOINTER > 100> THEN :
LEAVEPOINTER := 1; {Implement circular property of }
{queue}
LISTIRFO(R, 1] := 0; {Node R is no longer in the}
{sequence 'list}
IF (SEQULISTILEAVEPOIRTER] <> 0) THEW
PRINTFIFO; <{Display the sequence list}
FIRST := POINTERARRAY(R]; '
N:= R;
REPEAT
N:= N+1;
LAST:= POINTERARRAY(N];
URTIL (LAST <> 0);
LAST:= LAST - 1;
FOR J := FIRST TO LAST DO
BEGIN
C := STARARRAY[JI;
IF (d(Cl > (dlR) + WEIGHTARRAY[J1) THEN
BEGIN {Relabel node C)
dlC]l := (dlR] + WEIGHTARRAY(J1);
PICl:= R;
IF (POINTERARRAYICI <> 0) THEN
PUTINLIST(C); {Add node C.to the back of the}
{queue}
END;
END; {(FOR loop}
END; (WHILE loop? _
{Trace the shortest paths through the tree}
88: FOR I:= 1 TO NUMNODES DO
BEGIN
IF (I <> START) THEN
BEGIN
IF (d[I1 = INFINITY) THEKN



BEGIN

WVRITELN;
WRITELN (' THERE IS NO ROUTE FROM °, START,"
TO', DD

ERD

ELSE

BEGIN -
WRITELN; )
WRITELN (' DISTANCE FROH',START,'IO',I,'IS’,

ar11y; . ‘
WRITELN; :
WRITELN (' ROUTE IS:');
VRITELN;
WVRITE(ID);
NEXT := P[I];
WHILE (NEXT <> START) DO
BEGIN
WVRITE(NEXT);
NEXT := PI{NEXT];
END;

VRITELN(START);

END;

END;
END;
99: END.
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PROCEDURE PUTINLIST(NODE: INTEGER);
{This procedure adds a node, NODE, to the end of the)
{queue formed by the sequence list)

BEGIN

IF (POINTERARRAY(NODEI <> 0> AND (LISTINFOLNODE,2] <> 1)

THEN '

{Check that NODE has a forward star and is not already}

{in the queue}

BEGIN _
SEQULISTIENTRYPOINTER]): = NODE; <{Insert NODE in-queue}
ENTRYPOINTER: = ENTRYPOINTER+1;

{Set ENTRYPOINTER to refer to the new 'end’ ‘of the)
{queue}
IF ENTRYPOINTER > 100 THEN
ENTRYPOINTER:= 1; {Implement circular property of)
{queue) '
PRINTFIFO; {Display the contents of the queue)
LISTINFOLNODE, 2] := LISTINFOLNODE,2] + 1;
{Increment no. of timed NODE has been in the queue}
LISTINFOLNODE, 11:= 1; {Indicate that NODE in the)
{queue) o '
IF (LISTINFOLRODE, 2] =. (NUMNODES + 1)) THEFN
BEGIN
VRITELN (' THIS GRAPH CONTAINS A NEGATIVE CIRCUIT -
ILLEGAL’);
EXRD;
END;
END; {PUTINLIST)
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PROCEDURE PRINTFIFO;
{This procedure displays the contents of the queue formed)
{by the sequence list) '

VAR I: INTEGER;

BEGIN
WRITELN (' STATE OF THE SEQUENCE LIST');
WRITELN (! === ——— == mmm e DY
WRITELN;
WRITELK (' NEXT NODE OUT');
WRITELN(' DY
VRITE(' "y - , .
FOR I:= LEAVEPOINTER TO (ENTRYPOINTER - 1) DO
BEGIN '
VRITE(SEQULISTII]: 4);
END;
VRITELN;
VRITE(' DY
FOR 1:= LEAVEPOINTER TO (ENTRYPOINTER - 2) DO
BEGIN
VRITE (" DY
END;
VRITELNC' 1');
VRITE( "y
FOR I:= LEAVEPOINTER TO (ENTRYPOINTER - 2) DO
BEGIN
VRITE (' "
END;
VRITELN (' LAST NODE IN');
WRITELN;
VRITELN;
END; {PRINTFIFOQ)

[
€l
<O



OK, PASCALG P408U>FIFOSEQULST.PAS
[Sheffield Pascal version 3.3.1bl
No errors reported.

Executing FIFOSEQULST

ADJACERCY MATRIX

!
|

210 0 0 2
!

3t 0 1 0 0
I

41 0 0 -3 0
I

POINTERARRAY STARARRAY VEIGHTARRAY

O d W
O W &~

VHICH IS THE START NODE ?
1 .

STATE OF THE SEQUENCE LIST

NEXT NODE OUT
|
2
!
LAST NODE 1IN

STATE OF THE SEQUERCE LIST

NEXT NODE OUT
!
4
!
LAST KODE IXN

Ca



STATE OF THE SEQUENCE LIST

NEXT NODE OUT
!
3
{
LAST NODE IF

DISTANCE FROM 1 TO 2 1S
ROUTE IS:

2 1
DISTANCE FROM 1 10 3 1s
ROUTE IS:

3 4 2 1
DISTANCE FROM | 1 TO 4 18
ROUTE IS:

4 2 1



OK, PASCALG P408U>FIFOSEQULST.PAS
[Sheffield Pascal version 3.3.1b)
F¥o errors reported.

Executing FIFOSEQULST

ADJACERCY MATRIX

! .
3 1-12 0 0
I

THIS IS THE GRAPH REPRESENTED IN FORWARD STAR FORM

POINTERARRAY STARARRAY  VEIGHTARRAY

1 2 2
2 3 8
3 1 -12
4 0 0

WHICH IS THE -START NODE ?
1

STATE OF THE SEQUENCE LIST

NEXT NODE OUT
!
2
!
LAST NODE IR

STATE OF THE SEQUERCE LIST

NEXT NODE OUT
!
3
I
LAST NODE IX
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STATE OF THE SEQUENCE

NEXT NODE OUT
!
1
|
LAST NODE

STATE OF THE. SEQUENCE

YEXT NODE OUT
l
2
!
LAST NODE

STATE OF THE SEQUENCE

NEXT NODE OUT
!
3
f
LAST NODE

STATE OF THE SEQUENCE

NEXT NODE OUT
|
1
!
LAST RODE

STATE OF THE SEQUENCE

‘NEXT NODE OUT
b
2
|
LAST NODE

IN

IN

IN

IN

IN



STATE OF THE SEQUENCE LIST

NEXT FODE OUT
|
3
|
LAST NODE IN

STATE OF THE SEQUENCE LIST

NEXT NODE OUT

l .
1 ¢
, .
LAST NODE IN

STATE OF THE SEQUENCE LIST

NEXT NODE OUT
I
2
I .
LAST NODE IN

THIS GRAPH CONTAINS A NEGATIVE CIRCUIT - ILLEGAL
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APPENDIX C

This appendix contains the FASCAL code for the
program - DEENDQUEUE and the procedure
FPUTINDEQUEUE and fTINTDEQUEUE._ DBENQUEUE 1is the
label correcting algorithm with output restricted .
double ended queue and procedure, FPUTINDEQUEUE
adds a node to the top or bottom of a queue,
ADDDQ@, both are discussed in sections 4 and. 8.
FRINTDEQUEUE, upon call, displays the contents of
the output restrictedAdouble'eﬁded queue. FPrior
to running DBENDRQUEUE, a «correctly formatted

version of INFILE must be available.

Some sample runs of this program are also shown in

this appendix.
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PROGRAM DBENDQUEUE(INPUT, QUTPUT, INFILE);

{This program finds the shortest paths from a node, START )
{to every other node in a network using the label }
{correcting algorithm. This program implements an output )
{restricted double ended queue and uses forward star }
{representation of the network ‘ )

LABEL 99, 88;

CONST
INFINITY = 99999;

TYPE

WORDS = ARRAY({1.,.5) OF CHAR;

ARRAYZ = ARRAYL1..21 OF INTEGER;
ARRAY100 = ARRAY(1..100] OF INTEGER;

VAR
POINTERARRAY, STARARRAY, VEIGHTARRAY, P,d, DEQUEUE : ARRAY100;
ENTRYCOUNT: ARRAY100;

NUMNODES, R, N, C, I,J, START, NEXT, FRONTQUEUE, BACKQUEUE, FIRST,
LAST: INTEGER;

ENTRY, TOP: BOOLEAN;

INFILE: TEXT;

BEGIN {MAIN
RESET(INFILE);
FOR I:= 1" TO 100 DO
BEGIN
POINTERARRAY( I):= 0;
STARARRAYI[ I):= 0;
WEIGHTARRAY( I):=
P{Il:= 0
d{ I1:= INFINITY;
DEQUEUEL I]:= 0;
ENTRYCOUNTLI1:= 0;
END; {lInitialise the arrays)
READFORSTAR; {Read in the network)
PRINTADIJMATRIX; ({Display the network)
VRITELN('THIS IS THE GRAPH REPRESENTED IN FORVARD STAR
FORM") _
WRITELN (f m i mm s m e e e e e e e e e m e e ',
WRITELN;
WRITELNC’ POINTERARRAY STARARRAY WEIGHTARRAY’
WRITELN('  ~=======--=m —m————eom mmmmmmmm e ’);
WRITELN;
FOR I:= 1 TO POINTERARRAYINUMNODES + 1) DO
WVRITELN (! ' ,POINTERARRAY[I], ' ', STARARRAYI( I1,
! ' WVEIGHTARRAYI I1);

WRITELN;

0;



WRITELN('WHICH IS THE START NODE ?');
READLN(START);
WRITELN;
dl START):= 0;
DEQUEUEL START]:= INFINITY;
PISTART]:= START;
IF (POINTERARRAYISTART) = 0) THEN
GOTO 88; :
FRONTQUEUE: = START; {Insert the starting node in the}
{dequeue}
BACKQUEUE: = START;
WHILE <(FRONTQUEUE <> INFINITY)> DO
BEGIN
R := FRONTQUEUE:
{Remove the next node from the dequeue}
ENTRY :=FALSE, ) '
PRINTDEQUEUE; {Display the contents of the dequeue}
FRONTQUEUE: = DEQUEUE[ FRONTQUEUE]; {(Reset queue}
{pointer}
IF (FRONTQUEUE = INFINITY)> THEN
BACKQUEUE:= INFINITY; <{Empty queue condition)

DEQUEUELRl:= -1;
FIRST := POINTERARRAY(R];
N:= R;
REPEAT
N:= N+1;

LAST:= POINTERARRAY(NI;
UNTIL (LAST <> 0);
LAST := LAST - 1;
FOR J:= FIRST TO LAST DO
BEGIN
C:= STARARRAYLJI;
IF (d(Cl > (dalR) + WEIGHTARRAY(J1)) THEN
BEGIN {Relabel node C)
d(C) := (dlR] + VIEIGHTARRAYLJ));
PI{Cl:= R;
IF (POINTERARRAYIC1 <> -0) THEN
PUTINDEQUEUE(C); {Add node C to the)
{dequeue)
END; '
END;
END; {WHILE loop}
{Trace the shortest paths through the tree}

88: FOR I:= 1 TO NUMVERT DO

BEGIN
IF (I <> START) THEXN

BEGIN
IF (dL 11 = INFINITY) THEN

BEGIN
WRITELN;
WRITELN (' THERE IS NO ROUTE FROM', START,

T, dl 11D
WRITELN;

g
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99:

END;

END.

WVRITELN(C ROUTE IS:');
WRITELN;
WRITE(I);
NEXT:= P{I]; :
WVHILE (NEXT <> START»
BEGIN
WRITE(NEXT?;
NEXT:= PLNEXT];
EXND;
WVRITELN(START);
END;
END;

Qg
5‘: wr :?
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PROCEDURE PUTINDEQUEUE(NODE: INTEGER);.
{This procedure adds a node, NODE, to the front or the)
{back of the double ended queue, as required)

BEGIN
ENTRYCOUNTL NODE1 : = ENTRYCOUNT{ NODE1 + 1;
{Increment no. of times NODE has been in the dequeue)
IF (ENTRYCOUNT(NODE]l = (NUMNODES + 1)) THEN
BEGIN
WVRITELN (' NEGATIVE LENGTH CIRCUIT ENCOUNTERED - -
ILLEGAL'>;
GOTC 99;
END;
IF (DEQUEUE[ NODEl = -1) THEN
BEGIN ({(Insert NODE at the front of the dequeue}
TOF:= TRUE;
DEQUEUEL NODEl:= FRONTQUEUE;
FRONTQUEUE: = NODE;
IF (BACKQUEUE = INFINITY) THEK
BACKQUEUE:= NODE;
ENTRY: = TRUE;
PRINTDEQUEUE; {Display the contents of the dequeue)
END
ELSE
BEGIN {Insert NODE at the back of the dequeue)
IF (DEQUEUVEL NODE]l = 0) THEN
BEGIN
TOP: = FALSE;
DEQUEVEL NODEl:= INFINITY;
IF (BACKQUEUE <> IKFINITY)> THEN
DEQUEUEI BACKQUEUE}:= NODE;
BACKQUEUE:= NODE;
IF (FRONTQUEUE = INFINITY) THEN
FRONTQUEUE:= NODE; ’

ENTRY:= TRUE; _
"PRINTDEQUEUE; ({(Display the contents of the dequeue)
END;

END;
END; {PUTINDEQUEUE}



PROCEDURE PRINTDEQUEUE;
{This procedure displays the contents of the double)
{ended queue formed by the sequence list}

VAR
I,NUMPRINTED: INTEGER;

BEGIN ‘
WRITELN (' STATE OF THE DOQUBLE ENDED QUEUE');
WRITELN (' — =~ oo 'y
WRITELN;
IF NOT (ENTRY) THEN
BEGIN
WRITELN (! NODE ABQUT TO LEAVE’);
WRITELK (’ 1),
END
ELSE
BEGIN
IF (TOP) THEN
BEGIN
WRITELN (' NODE JUST ENTERED');
WRITELNC 1)
END;
END;
I:= FRONTQUEUE;
NUMPRINTED: = 0O;
WRITEC '
REPEAT
WRITE(I: 4);
NUMPRINTED: = NUMPRINTED+1;
I:= DEQUEUELI];
UNTIL (I = INFINITYD;

WRITELN;
1F (ENTRY = TRUE) AND (NOT TOP> THEN
BEGIN
VRITE( ' 1');
FOR 1:= 1 TO (NUMPRINTED - 1) DO
BEGIN
WRITE( ')
END;
WRITELN '
FOR I:= 1 TO <NUMPRINTED - 1D DO
BEGIN
WRITEC '),
END;
WRITELNC' NODE JUST ENTERED');
END;
WRITELN:
WRITELN;

END; <{PRINTDEQUEUE}
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OK, PASCALG P408U>DEQUEUE.PAS
[Sheffield Pascal version 3.3.1b]
No errors reported.

Executing DBENDQUEUE

ADJACENCY MATRIX

FOINTERARRAY STARARRAY VEIGHTARRAY
1 2 2
2 3 8
3 3 5
4 0 0

WHICH IS THE START NODE ?
1

STATE OF THE DOUBLE ENDED QUEUE

NODE ABOUT TO LEAVE
!
1
!

STATE OF THE DOUBLE ENDED QUEUE

NODE JUST ENTERED
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STATE OF THE DOUBLE ENDED QUEUE

NODE ABOUT TO LEAVE
f
2

STATE OF THE DOUBLE ENDED QUEUE

NODE JUST ENTERED

STATE OF THE DOUBLE ENDED QUEUE

NODE ABOUT TG LEAVE
!

3
DISTANCE FROM 1 T0 2 I8
ROUTE 1IS:
2 1
DISTANCE FROM 1 TO 3 I8
ROUTE IS:

3 2 1
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0K, PASCALG P408U>DEQUEUE. PAS
{Sheffield Pascal version 3.3.1b]
No errors reported.

Executing DBENDQUEUE

ADJACENCY MATRIX

POINTERARRAY STARARRAY WEIGHTARRAY

=W e

VHICH IS THE START NODE 7
2

STATE OF THE DOUBLE ENDED QUEUE

NCDE ABOUT TO LEAVE
l
2

STATE OF THE DOUBLE ENDED QUEUE

NODE JUST ENTERED



STATE OF THE DOUBLE ENDED QUEUE

KRODE ABOUT TO LEAVE
!
3

STATE OF THE DOUBLE ENDED QUEUE

NODE JUST ENTERED
!
3

STATE OF THE DOUBLE ENDED QUEUE

NODE ABOUT TO LEAVE
!
3

STATE OF THE DOUBLE ENDED QUEUE

NODE JUST ENTERED
|
3

STATE OF THE DOUELE ENDED QUEUE

NODE ABOUT TO LEAVE
!

3

NEGATIVE LENGTH CIRCUIT ENCOUNTERED - ILLEGAL
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APFENDIX D

This appendix contains the 'PASCAL code for the
program, ADCALC, the label setting algorithm with
address calculation, the procedure ADDNODE and
REMOVENODE, - and the modified FASCAL code for the
procedure KREADFORSTAR. The FASCAL code for the
procedure FRINTNODEARRAY is also iﬁcluded. This
procedure, upon call, displays the contents of the
non—empty locations of NODEARRAY. Prior to
running ADCALC, a correctly formatted version of

INFILE must be available.

Some sample runs of this program are also shown in

this appendix,
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FROGRAM ADCALC(INPUT, OUTPUT, IRFILE);
‘This program finds the shortest paths from a node, START)
{to every other node in a network using the label setting )}

{algorithm. This program implements an address }
{calculation sort and uses forward star representation of )}
{the network }
LABEL 99;

CONST

INFINITY = 99999;

TYPE
VORDS = ARRAY(1..5] OF CHAR;
ARRAY100 = ARRAY[1..100] OF INTEGER;
POINTER = "NODE;
PTRARRAY = ARRAY[O0..10001 OF POINTER;

NODE = RECORD
NAME: INTEGER;
NEXT: POINTER;
END;
BOARRAY: ARRAY[1..100]1 OF BOOLEAN;

VAR
NODEARRAY: PTRARRAY;
PTR: POINTER;
POINTERARRAY, STARARRAY, VEIGHTARRAY,P,d : ARRAY100;
NUMNODES, N, C, I, J, MODULUS, START, NEXT,R : INTEGER;
ARRAYREF, STARTREF, CURRENTLOC, NEVLOC, FIRST, LAST: INTEGER;
TERMINATE: BOOLEAN,
INFILE: TEXT;
INTREE: BOARRAY;

BEGIN {MAIN}
RESET (INFILE);
FOR I:= 1 TO 100 DO
BEGIN
POIRTERARRAY[I):= 0;
STARARRAY{ I1:= O;
WEIGHTARRAY[I):=
PlLI]l:= 0;
dl11:= INFINITY;
INTREE[ I1:= FALSE;
END; {Initialise the arrays}
READFORSTAR; {Read in the network} _
PRINTADJMATRIX; <{Display the network}
WRITELN('THIS IS THE GRAPH REPRESENTED IN FORVARD STAR

0;
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FORM' ) ;
WRITELN (? —= == === mmmm o m e m oo )
WRITELN; '
WRITELN C POINTERARRAY  STARARRAY  VEIGHTARRAY');
WRITELN (' ———mom—mmmmm mmmmmmmmm oo ¥
WRITELN;
FOR 1:= 1 TO POINTERARRAY(NUMNODES + 11 DO
WRITELN (' ', POINTERARRAY(I],’ ', STARARRAY( I3,
' ', VEIGHTARRAY( 11);
VRITELY;
VRITELN(' VHICH IS THE START NODE ?');
READLN(START); '
VRITELN;
d{ START):= 0;
PLSTART]:= START;
FOR 1 =0 TO MODULUS DO
NODEARRAYL I1:= NIL;

ARRAYREF:= -1
NEV(PTRY; '
PTR™.NAME:= START;
PTR".NEXT:= NIL;

NODEARRAY[ 01:= PTR; {Insert starting node in NODEARRAY}
IF (POINTERARRAYISTARTI <> 0> THEN
TERMINATE:= FALSE {No paths from start node}
ELSE
TERMINATE:= TRUE;
WHILE (TERMINATE = FALSE) DO
BEGIN
STARTREF:= ARRAYREF;
REPEAT
ARRAYREF:= ARRAYREF + 1;
IF (ARRAYREF > MODULUS) THEN
ARRAYREF:= 0,
UNTIL (NODEARRAY[ARRAYREF1 <> NIL) OR
(ARRAYREF = STARTREF);
{Search for next non NIL entry in NODEARRAY)
IF ARRAYREF STARTREF THEN
TERMINATE: = TRUE {NODEARRAY is empty?
ELSE
BEGIN
PTR: = NODEARRAY[ ARRAYREF1];
REPEAT {(For each node in the linked list located};
R:= PTR".NAME;
INTREE[I1 := TRUE;
WRITELN (' EXAMINING NODE ',R:3);
WRITELN;
FIRST:= POINTERARRAY[RI];
N; =R;
REPEAT
N:= N+1,;
" LAST:= POINTERARRAY[ N1;
UNTIL (LAST <> 005
LAST:= LAST - 1;

Hon



FOR J:= FIRST TO LAST DO
BEGIXN
C:= STARARRAY[J1;
IF ((dlR] + WEIGHTARRAY(J1) < @lC1)»
AND (INTREELC] = FALSE) THEFN
BEGIN <{(Relabel node C)
IF (dIC] <> INFINITY) AND
(POINTERARRAYLC] <> 0> THEN
BEGIN {Remove C from its current pos.)
{in NODEARRAY) '
CURRENTLOC:= (d[C] MOD MODULUS);
{# Calculate C's current address in)
{NODEARRAY +) :
REMOVENCDE (CURRENTLOC, C); -
PRINTNODEARRAY(FALSE, C);
{Display contents of NODEARRAY)
ERD; 4
dfCl:= 4fR] + WEIGHTARRAY[JI1;
PICY:= R,
IF (POINTERARRAY[CI <> 0> THEN
BEGIN
NEVLOC:= (dLC] MOD MODULUS);
{# Calculate C’'s new address in)
{NODEARRAY #}
ADDNODE (NEWLOC, C) ;
PRINTNODEARRAY(TRUE, C);
{Display contents of NODEARRAY}
EXND;
END;
END;
PTR:= PTR".NEXT; i
{Set pointer to refer to the next node in the)
{linked list) .
REMOVENODE (ARRAYREF,R)>; {Remove R from the)
{linked list}
PRINTNODEARRAY (FALSE,R);
{Display contents of NODEARRAY}
UNTIL (PTR = NIL);)
{End of linked list has been reached}
END; <{IF ARRAYREF = STARTREF}
END; {(WHILE TERMINATE <> FALSE}
{Trace the shortest paths through the tree}
FOR I:= 1 TO NUMRODES DO '

BEGIN
IF (I <> START) THEN
BEGIN
IF (dlIl = INFINITY) THEN
BEGIN
WRITELN;
WRITELN (' THERE 1S NO ROUTE FROM',START,’'TO', D)
END
ELSE

BEGIN

e teix]
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WVRITELN;
WRITELN (' DISTANCE FROM',START,'TO',1,'IS',dl11);
WRITELN;
WRITELN (' ROUTE IS:');
WRITELN;
WRITE(D);
NEXT:= P[1I1;
WHILE (NEXT <> START) DO
BEGIN
WRITE (NEXT);
NEXT:= PUNEXTI;
END;
WRITELN (START);
END;
EXD;
END;
99: END.



PROCEDURE ADDNODE (LOC, NODE: INTEGER);
{This procedure adds a node, NODE, to the
{linked list pointed to from location LOC

VAR PTR, NEWPTR: POINTER;

BEGIN
PTR: =NODEARRAY[ LOCI;
IF (PTR <> NIL) THEN :
BEGIN {There is already a linked list
{location LOC)
WHILE (PTR".NEXT <> ¥NIL)> DO
BEGIN
PTR: =PTR".NEXT;
END; <{Find the end of the linked
NEW(NEWPTIR);
NEWPTR" . NAME: =NODE;
PTR".NEXT: =NEVPTR;
NEVPTR". NEXT:=NIL; {Add NODE to the
{list?
END
ELSE {There is currently no linked list
{location LOC}
BEGIN
NEV(NEVPTR);
NEVPTR" . NAME: =NEWPTR;
NEWPTR" . NEXT:=NIL;

end of the)
in NODEARRAY)

pointed to from}

end of the linked)

pointed to from)

END; {Add NODE as first {(and only) node in the linked)

- {list}
END; {ADDNODE}
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FROCEDURE REMOVENODE(LOC, NODE: INTEGER);
{This procedure removes a node, NODE, from the linked)
{pointed to from location LOC in NODEARRAY}

VAR PTR,OLDPTR: POINTER;

BEGIN
PTR; =NODEARRAY[ LOCI;
IF (PTR".NAME <> NODE) THEN .
{Check if NODE is the first node in the linked list)
BEGIHN
REPEAT
OLDPTR: =PTR;
{OLDFTR points to the node before NODE in the}
{linked list}
PTR:=PTR".NEXT;
UNTIL (PTR".NAME = NODE); {Locate NODE in the linked)

{list}
OLDPTR".NEXT:=PTR".NEXT; {Bypasc NODE in the linked}
{list)
DISFOSE (PTR) ;
EXND
ELSE

BEGIN {The node after NODE becomes the first in the)
{linked list)} .
NODEARRAYLLOCl:= PTR".NEXT;
DISPOSE (PTR);
END;
END: {REMOVENQODE}



PROCEDURE READFORSTAR;

{This procedure reads the adjacency matrix representation )}
{of the network from INFILE to the 3 forward star arrays -}
{POINTERARRAY, STARARRAY and VEIGHTARRAY. This version of}
{the procedure also obtains the value of MODULUS required }
{by the program}

VAR
ROV, COL, I, EDGEPCINTER, EDGEPOINTSTORE, VALUE: INTEGER;
{EDGEFPOINTER stores the next free location number in}
{STARARRAY} .
{EDGEPOINTSTORE stores the first location number in ?}
{STARARRAY used to store the current nodes forward 1}
{star}
NUMBER: WORD5;
{NUMBER holds the number read from INFILE, in character)
{form}
ENDROV, ENDCOLS: BOOLEAR;
{ENDROV = TRUE if end of row ig reached i.e. a ¥ is }
{detected ENDCOLS = TRUE when all rows in adjacency }
{matrix have been read? :
CH: CHAR;

BEGIN
MODULUS: = 0;
RESET(INFILE);
FOR I:= 1 TO 100 DO
BEGIN
POINTERARRAY( I1:= 0;
STARARRAY[Il:= 0;
VEIGHTARRAY(I}:= 0O;
END: {Initialise forward star arrays}
ENDCCLS: = FALSE;
ROW:= 0;
EDGEPOINTER: = 1;
VHILE NOT(ENDCOLS) DO
BEGIN
ENDROV: = FALSE;
COL:= 1;
{EDGEPOINTER currently contains the first location}
{number in STARARRAY that will be used to store the}
{forward star of the next node}
EDGEPQINTSTORE: = EDGEPCINTER;
ROW:= ROW+1;
WHILE NOT (ERDROW) DO
BEGIN
FOR I:=1 TO 5 DO
NUMBER[ I1:= ' ';
I:=1;
REPEAT {Read the next number from INFILE)
READ(INFILE, CH); :

NUMBER{ I1:= CH;



I:= I+1;
URTIL ((I = 5) OR (NUMBER[ 1] = '#'));
IF (NUMBER[ 1] = '#%') THEN :
BEGIN {End of row detected}
ENDROV: = TRUE;
IF (COL=1) THEN
ENDCOLS:= TRUE; {End of adjacency matrix)
EXD
ELSE
BEGIN
IF (NUMBER(11 <> '0') THEN
BEGIN {Insert information into the 3 arrays)
POINTERARRAYL ROV]:= EDGEPOINTSTORE;
CHARTOINT (NUMBER, VALUE) ; ’
IF (VALUE > MODULUS) THEF
MODULUS: = VALUE;
STARARRAY{EDGEPOINTER]:= COL;
VEIGHTARRAY[ EDGEPQINTER]:= VALUE;
EDGEPOINTER:= EDGEPOINTER+1; -
{Set pointer to next free location in)
{STARARRAY? :
EXD; . :
COL:= COL+1; {Increment column reference}
END; ‘
END;
IF NOT(ENDCOLS) THEXN
BEGIN
READLN(INFILE);
READLN(INFILE);
END; {Kove to the next row of the adjacency)
{matrix}
END;
NUMNODES: = ROV-1; {Record the number of nodes in the}
{network? : :
POINTERARRAY[ RUMNODES+11:= EDGEPQINTER;
{Insert dummy pointer in FOINTERARRAY}
MODULUS: = MODULUS+1; <{MODULUS := Lmax + 1}
END; {READFORSTAR}



PROCEDURE FRINTNODEARRAY (ADDED: BOOLEAN; NODENUM: INTEGER) ;
{This procedure displays the contents of the non-empty}
{locations of NODEARRAY. It also outputs which node has}
(just been added or removed from NODEARRAY)

VAR
K: INTEGER;
PTR: POINTER;

BEGIN
WRITELN('STATE QOF NODEARRAY');
WRITELN (' ===~ m e ')
WRITELN;
IF (ADDED) THEN
WRITELN (' KODE', NODENUM: 4, ' ADDED'>
ELSE :
WRITELN (' NODE' , NODENUM: 4, ' REMOVED"); -
WRITELN;
WRITELN (' LOCATION IN NODARRAY LIST FROM LOCATION');
VRITELN(' —=~r~~~—mmmmmmmmmmm —mmmmmm oo ')
VRITELN;
FOR K:= 0 TO MODULUS DO
BEGIN
PTR:= NODEARRAY[KI];
IF (PTR <> NIL> THEX
BEGIN
WRITE(K: 11>
WRITE (' ')
REPEAT
WRITE(® =-=~--- 'y,
WRITE(PTR" . NAME: 3);
PTR:= PTR".NEXT;
UNTIL (PTR NIL);
WRITELN;
WRITELN;
END;
END;
END; {PRINTNODEARRAY)



OK, PASCALG P408U>ADCALC.PAS
[Sheffield Pascal version 3.3.1bl
No errars reported.

Executing ADCALC
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OK, PASCALG P408U>ADCALC, PAS
[ Sheffield Pascal version 3.3.1bl]
No errors reported.

Executing ADCALC

ADJACERCY MATRIX

1 2 3
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LOCATION IN NODEARRAY LIST FROM LOCATION

STATE OF NODEARRAY

NGDE 1 REMOVED
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NODE 2 REMOVED
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APPENDIX E

This appendix contains the FPASCAL code for the
program, BUCKETSORT,the label setting algorithm
with 1-level bucketsort, the  procedures
ADDNODEBUCK and FREMOVENODEBUCK and the modified
PASCAL code for READFORSTAR. AThé program and its
associated proceaures are discussed In section 9.
The FASCAL code for the procedure RINTBUCKETS is
also included. This pro&edure, upon call,
displays the contents of the non-empty buckets in
the bucket 1list. Prior to running BUCKETSORT, a
correctly formatted version of INFfLE must be

available.

Some samples runs of this program are also shown

Iin this appendix.
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PROGRAM BUCKETSORT(INPUT, OUTPUT, INFILE);

{This program finds the shortest paths from a node , START)
{to every other node in a network using the label setting )

{algorithm. This algorithm implements a bucket sort and

{uses forward star representation of the network
LABEL 99;

CONST
INFINITY = 99999;

TYPE
WORDS = ARRAY[1..5) OF CHAR;
ARRAY100 = ARRAY[1..100] OF INTEGER;
POINTER = "NODE;
PTRARRAY = ARRAY(0..10001 OF POINTER;

NODE = RECORD
NAME: INTEGER;
NEXT: POINTER;
END;
BOARRAY = ARRAY(1..100] OF INTEGER;

VAR
BUCKLIST: PTRARRAY;
PTR: POINTER;
POINTERARRAY, STARARRAY, VEIGHTARRAY,P,d : ARRAY100;
NUMNODES, N,C, I,J,LMIN, START, NEXT: INTEGER;
BUCKREF, CURRENTBUCKET, NEVBUCKET, FIRST, LAST: IFTEGER;
TERMINATE: BOOLEAR;
INRFILE: TEXT;
INTREE: BOARRAY;

BEGIN {MAIE}
RESET(INFILE);
FOR I:= 1 TO 100 DO
BEGIN
POINTERARRAY[Il:= 0;
STARARRAY( I1:= 0;
WEIGHTARRAY[ I1: =
P{I):= O ,
dlIl:= INFINITY;
INTREEL I1:= FALSE;
END;
READFORSTAR; {Read in the network)}
PRINTADJMATRIX; {Display the network)

0;

WRITELNC' THIS 1S THE GRAPH REPRESENTED IN FORWARD STAR

FORM' Y,

}
}



WRITELN (? === mm e oo mmmmmm S S

WRITELN; _

WRITELK (* POINTERARRAY STARARRAY WEIGHTARRAY');

WRITELN(® = ———-=mmmmmee e e "),

WRITELN;

FOR I:= 1 TO POINTERARRAYI NUMNODES + 1] DO
VRITELN (' ', POINTERARRAY( I1,’ ', STARARRAY( 11,
! ', WEIGHTARRAY[ I11); :

WRITELN;

WVRITELN (' VHICH IS THE START NODE ?');

READLE(START)

WRITELN;

dl START1:= 0;

PUSTARTI: = START;

FOR I := 1 TO 1000 DO
BUCKLIST{ I1:= NIL;
BUCKREF:= -1;
NEV(PTR);
PTR".NAME:= START;
PTR".NEXT:= NIL;
BUCKLIST(Ol:= PTR;
{Insert starting node in BUCKET 0 ?
IF (POINTERARRAY[START] <> 0) THEN
TERMINATE:= FALSE ({No paths from start node )
ELSE
TERMINATE: = TRUE;
WHILE (TERMINATE = FALSE) DO
BEGIN : :
REPEAT
BUCKREF:= BUCKREF + 1;
UNTIL (BUCKREF = 1001) OR (BUCKLISTLBUCKREFI <> NIL);
{Search for the next non-empty bucket)
IF BUCKREF = 1001 THEN
TERMINATE:= TRUE
ELSE
BEGIN
PTR:= BUCKLISTI BUCKREF];
REPEAT A{For each naode - R, in the bucket linked)}
{list}
R:= PTR".NAME;
INTREEL Rl := TRUE; <{Add R to the tree}
WRITELN (' EXAMINING NODE’,R:3);
WRITELN;
FIRST:= POINTERARRAY[RI];
N:= R;
REPEAT
N:= N+1;
" LAST:= POINTERARRAY(NI;
UNTIL (LAST <> O
LAST:= LAST - 1;
FOR J:= FIRST TO LAST DO
BEGIXN
C:= STARARRAY[JI;
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IF ((d[R] + WEIGHTARRAY[J])> < dfCl) AND
(INTREE[{C] = FALSE) THEN
BEGIN <{Relabel node C)
IF (dfCl <> INFINITY) AND (POINTERARRAY
[C1 <> 0) THEN
BEGIF A{If C is already in a bucket)
CURRENTBUCKET:= (d[Cl DIV LMIN);
{Find C's current bucket}
REMOVERODEBUCK (CURRENTBUCKET, C) ;

END;
dlCl := (4Rl + WEIGHTARRAY[J1);
CPICYl:= R;

IF (POINTERARRAY(C] <> 0> THEX
(Check if C has a forward star}
BEGIN
NEVBUCKET:= <(d{C} DIV LMIM;
{Calculate C’'s new bucket)
ADDNODEBUCK (NEVBUCKET, C);
{Insert C in its new bucket}
EXND;
END;
E¥D; {FOR Loop}
PTR:= PTR".XNEXT;
REMOVENODEBUCK (BUCKREF, R) ;
UNTIL (PTR = NIL);
END;
END; ({WHILE loop}
FOR 1:= 1 TO NUMNODES DO
BEGIN
IF (I <> START> THEN
BEGIN
IF (d{Il = INFINITY> THEN
BEGIN
VRITELN;
VRITELN (' THERE 1S NO ROUTE FROM', START,'TO', D)
END
ELSE
BEGIN
VRITELN;
VRITELN (' DISTANCE FROM', START,'TO',1I,
TIST,d0 11D,
WVRITELK;
WRITELN (' ROUTE 1S:°');
- WRITELN;
VRITE(ID);
NEXT:= PLI];
VHILE (NEXT <> START) DO
BEGIN
VRITE(REXT);
NEXT:= PI[NEXT1,
END;
VRITELN(START);
END;

%]
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END;
99: END.

END;




PROCEDURE ADDNODEBUCK(BUCKNUM,NDDE:INTEGER);
{This procedure adds a node, NODE, to bucket K in the }
{bucket list}

VAR
PTR, NEWPRT: POINTER;

BEGIN
PTR:= BUCKETARRAY[ BUCKNUM];
IF (PTR <> NIL) THEN {Bucket BUCKNUM is not empty}
BEGIN {Find the last node in bucket BUCKNUM )}
WHILE (PTR".NEXT <> NIL) DO

BEGIN
PTR:= PTR".NEXT;
END;
NEW(NEWPTR);

NEVPTR".NAME: = NODE;
PTR".NEXT:= NEVPTR;
NEVPTR" . NEXT:= NIL;
EKND
ELSE
BEGIN {NODE is added as the first node in bucket K)
NEV(NEVPTR);
NEVPTR".NAME: = NODE;
BUCKETARRAY[ BUCKNUM1:= NEVPTR;
NEWPTR".NEXT:= NIL;
END.
PRINTBUCKETS(TRUE,NODE); {Display the non-empty buckets}
END; <{ADDNODEBUCK}

[8h]
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PROCEDURE REMOVENODEBUCK (BUCKNUM, NODE: INTEGER); '
{This procedure removes a node, NODE, from bucket BUCKNUM)
{in the bucket list)

VAR
PTR, OLDPTR: POINTER;

BEGIXN
PTR:= BUCKETARRAY[ BUCKNUMI;
IF (PTR".NAME <> RODE) THEXN
BEGIN (NODE is not the first node in bucket K}
REPEAT {Locate NODE in bucket K}
OLDPTR: = PTR;
PTR:= PTR".NEXT;
UNTIL (PTR".NAME = NODE);
OLDFTR".NEXT:= PTR".NEXT;
{Bypass NODE in the linked list representing bucket K)
DISFPOSE(PTR);
END
ELSE
BEGIN {NODE is the first node in bucket K
BUCKETARRAY[ BUCKNUM] := PTR".NEXT;
DISPOSE (PTR); ’
END;
PRINTBUCKETS (FALSE, NODE) ;
END; {REXOVENODEBUCK}
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PROCEDURE READFORSTAR;

{This procedure reads the adjacency matrix representation)
{of the network from INFILE to the 3 forward star arrays )
{- POINTERARRAY, STARARRAY and WEIGHTARRAY. This version}
{0of the procedure also obtains the value of LMIN required}
{by the program}

VAR : .
ROV, COL, I, EDGEPOINTER, EDGEPOINTSTORE, VALUE : INTEGER;
{EDGEPOINTER stores the next free location number. in }
{STARARRAY EDGEPOINTSTORE stores the first location }
{number in STARARRAY used to store the current nodes }
{forward star}
NUMBER : VORD5S;
{NUMBER holds the number read from INFILE , in character}
{form}
ENDROV, ENDCOLS : BOOLEAKN;
{ENROV = TRUE if end of row is reached i.e. a* is )
{detected ENDCOLS.= TRUE when all rows in adjacency )
{matrix have been read)}
CH : CHAR;

BEGIN
LMIN:= INFINITY;
RESET(INFILE);
FOR I:= 1 TO 100 DO
BEGIN
POINTERARRAY(I1l:= 0;
STARARRAY[I1:= O;
WEIGHTARRAY[ I}:= O;
END; {Initialise forward star arrays}
ENDCOLS:= FALSE;
ROVW:= 0;
EDGEPOINTER: = 1;
WHILE KNOT(EXDCOLS> DO
BEGIN
ENDROV: = FALSE;
COL:= 1;
{EDGEPOINTER currently contains the first location }
{number in STARARRAY that will be used to store the)
{forward star of the next node)} .
EDGEPOINTSTORE: = EDGEPOINTER;

ROV:= ROW+1;
WHILE NOT(ERDROW> DO
BEGIN
FOR I:= 1 TO 5 DO
NUMBERL I1:= ' ';
I:= 1; '

REPEAT <{Read the next number from INFILE)
READ(INFILE,CH);
NUMBER({ I):= CH;



I:= I+1;
UNTIL ((I = 5) OR (NUMBER[1] = '#'));
IF (NUMBER{1] = '#') THEN
BEGIN {End of row detected}
ENDROW: = TRUE;
IF (COL=1) THEN
EXDCOLS:= TRUE; <{(End of adjacency matrix)
END
ELSE
BEGIN
IF (NUMBER[1]) <> '0') THEN
BEGIN {Insert information into the 3 arrays}
POIBTERARRAY[ROV]:= EDGEPOINTSTORE;
CHARTOINT (NUMBER, VALUE);
IF (VALUE < LMIN) THEXN
LMIN:= VALUE;
STARARRAY[ EDGEPOINTER] := COL;
VEIGHTARRAY[ EDGEPOINTER]:= VALUE;
EDGEPOINTER: = EDGEPOINTER+1;
{set pointer to next free location in}
{STARARRAY}
END;
COL:= COL+1; A{Increment column reference}
END;
END;
IF NOT(ERDCOLS) THEN
BEGIXN
READLN(INFILE);
READLN(INFILE)Y;

END; {Move to the next row of the adjacency matrix)
END;

NUMNODES:= ROW-1; {Record the number of nodes in the)
{network}
POINTERARRAY[ NUMNODES+1]:= EDGEPOINTER;

{Insert dummy pointer in POINTERARRAY}
END; <{READFORSTAR) '



PROCEDURE PRINTBUCKETS (ADDED, BOOLEAN, NODENUM, INTEGER);
{This procedure displays the contents of the non-empty )
{buckets in the bucket list. It also outputs which node)
{has just been added or removed from the bucket list}

VAR
K,LOW,HIGH : INTEGER
PTR : POINTER;

BEGIN
IF (ADDED) THEN
WRITELN (' NODE' ,NODENUM:4,' ADDED')

ELSE
WRITELN (' NODE' , NODERUM: 4,' REMOVED');
WRITELN,;
WRITELN (' NON - EMPTY BUCKETS
WRITELN (' e
WRITELN;
FOR K:= 0 TO 1000 DO
BEGIN
PTR:= BUCKLISTLK];
IF (PTR <> NIL> THEN
BEGIXN
VRITE(K: 4);
LOW:= K*VIDTH;
HIGH:= (K+1)#*VIDTH;
VRITE(LOV: 13);
VRITE(' <= DISTANCE < ');
VRITE(HIGH: 4>,
VRITE(’ ')
REPEAT
WRITE(PTR".NAME:3);
PTR:= PTR".NEXT;
VRITE( ')
UNTIL (PTR = ¥NIL);
WVRITELN;
VRITELN;
END;
END;

End; {PRINTEBUCKETS}
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OK, PASCALG P408U>BUCKETSORT.PAS
(Sheffield Pascal version 3.3.1bl
No errors reported.

Executing BUCKETSORT
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OK, PASCALG P408U>BUCKETSORT. PAS
[Sheffield Pascal version 3.3.1b]
No errors reported.

Executing BUCKETSORT
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APPENDIX F

This appendix contains the PASCAL codes for the
program SENET, and all the procedures used in the
program. A correctly formatted version of INFILE

must be available before the .execution of the

program.

A sample run of this program is also shown in this

appendix.
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PROGRAM SENET (INPUT,QUTPUT, INFILE);

{This program first finds the shortest path tree rooted at}
{a node START in a network stored in INFILE using)
{DIJKSTRA's algorithm. It then applies the algorithm)
{SENET, to all the possible arcs, for the purpose of post)
{optimality analysis) '

LABEL 99;

CONST
INFINITY = 99999;

TYPE
BOARRAY = ARRAY[1..1001 OF BOOLEAN;
WORDS = ARRAY[1..5] OF CHAR;
ARRAY100 = ARRAY[1..100] OF INTEGER;
ADJARRAY = ARRAY[1..100) OF ARRAY100;

VAR
ACT : WORD5;
ADIMATRIX : ADJARRAY;
P1,P2,P3,d1,d2,d3, CHANGEDNODES : ARRAY100;
NUMNODES, I,J, MINIMUM, START : INTEGER;
MIDPOS, K, KK : INTEGER;
DELTA : ARRAY100;
INFILE : TEXT;

BEGIN {MAINW}

RESET (INFILE);
BEGIN

P1l1l:= 0;

P2l 11:= 0;

P3(I1:= 0;

dilIl:= INFINITY;
d2(I1:= INFINITY;
d30I1:= INFINITY;
END;
READADIMATRIX; {Read in the network}
PRINTADIJMATRIX ({(Display the network)
WRITELN (' VHICH IS THE START NODE ?');
READLN (START)Y; :
WRITELN;
PL{START]:= START;
P2[START]:= START;
P3USTART]:= START;
d1lSTARTI:= 0,
d2[ STARTY:= 0;
d3{START):= 0,
SHORTESTPATH(P1,d1);
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TRACEPATH;
K:= 0;
KK:= 1;
VRITESHEAD;
FOR I:= 1 TO NUMNODES DO
FOR J:= 1 TO NUMNODES DO
IF (I <> J) THEN
BEGIN
WEIGHT:= ADJMATRIX[I,JI;
IF(VEIGHT = INFIFNITY)
THEN
ACT:= 'NEX
ELSE
IF (P1LJ1 = D)
THEN
ACT:= 'ROP
IF (ACT = 'OPT ') THEN
BEGIN
ADJMATRIX (I,J1:= INFINITY;
SHORTESTPATH(F2,d2»;
COMPARE(P2,K>;
MIDPOS: = k;
IF (k > 0) THEN
BEGIN
FOR 1J:= kk TO k do
DELTA{IJ1:= VEIGHT + d2[ CHNGEDNODE( IJ11
—d1{ CHANGEDNODE[ 1J1};

kki= k+1
END;
ADJMATRIX[I,J1:= 0

END;
SHORTESTPATH(P3,d3);
COMPARE(P3,k);
IF (kx > 0) THEXN
BEGIN
FOR 1J:= kk TO k DO
DELTA(I1:= d1({CHANGEDNODE[ 1J1]1 -
d3{ CHANGEDNODEI[ 1J11
END;
IF &k > O
THEX
DESCERD;
WRITELN;
WVRITELN;
WRITESENET
END
END. {MAIN)



PROCEDURE COMPARE(VAR P : ARRAY100; H : INTEGER);
{This procedure determines the nodes whose labels totally)
{change after a reoptimisation)

VAR
I,HH: INTEGER; .
L:BOARRAY;

BEGIN .
FOR I:= 1 TO NUMKODES DO
L[ I}:= FALSE;
HH:= 0;
FOR I:= 1 TO NUMNODES DO
IF(PLI] <> P10 11) THEN

BEGIN
L{I}:= TRUE;
H:= H+1;
CHANGEDNODE[Hl:= I
END
REPEAT
IF (H > 0> THEN
BEGIN '
HH:= HH+1;

FOR I:= 1 TO NUMNODES DO
IF ((CHANGEDNODE[(HH] = P1{1I1) ARD
(LL I = FALSE)) THEN
BEGIN
LL11:= TRUE;
H:= H+1;
CHANGEDRODELHl:= 1
EXD
END
URTIL(HE = W
END; <{COMPARE}



PROCEDURE SHORTESTPATH(VAR P,d: ARRAY100);

{This procedure finds the shortest path tree rooted at )}
{node START in a network stored in ADJMATRIX. The }
{procedure is based on Dijkstra's algorithm )

VAR

R, NEXT, I,J: INTEGER;
INTREE : ARRAY100;

BEGIN
FOR I := 1 TO NUMNODES DO
BEGIN '
INTREEL I] := O;
PLI1 := O
dl 11: INFINITY;
END;
REPEAT

MINIMUM := INFINITY;
FOR I := 1 TO NUMNODES DO

BEGIN .
IF ((alIl < MINIMUM) AND C(IRTREELI] = 0)) THEN
BEGIN . :
R := I;
MINIMUM := 4(R)
END

END; {Find the node with minimum total weight)
I[F (MINIMUM <> INFINITY) THEN
BEGIN

INTREELI] := 1;

FOR J := 1 TO NUMKNODES DO
BEGIN

IF (ADJMATRIXLR, J) <> 0) THEN

IF (((d[R] + ADJMATRIX(R, J1) < d[J1) AND
(INTREELJ] = 0)>) THEN

BEGIN <{Relabel node J}

dlJl := d4(R] + ADJMATRIX (R, JI;
P(JI := R
END

END .
END;
UNTIL (MINIMUM = INFINITYD
99 : END; {SHORTESTPATH}



PROCEDURE TRACEPATH;
{This procedure traces the shortest paths through the tree)

VAR ’
NEXT,I : INTEGER;

BEGIN
FOR I := 1 TO NUMRODES DO
IF (I <> START) THEK
IF (d{I] = INFINITY) THEN
BEGIN
WRITELN;
WRITELN (' THERE IS NO ROUTE FROM',START,'TO',I)’
END
ELSE
BEGIN
WRITELN;
WRITELN (' DISTANCE FROM’,START,'TQ’',I,'I1S',dl11);
WRITELN (' ROUTE IS:');
WRITELN;
TRACKPATH (P, ID
END
END; {TRACEPATH)
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PROCEDURE TRACKPATH (P:ARRAY100;SINK: INTEGER);
{This procedure traces the unique tree path to a node sink)

VAR
NEXT : INTEGER;

BEGIN
VRITE(SINK);
NEXT:= PISINK];
WHILE (NEXT <> START) DO
BEGIXN
WRITE (NEXT);
NEXT:=PUNEXT]
END;
WRITELN (START)
END; {TRACKPATH)
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PROCEDURE DESCEND;
{This procedure arranges the arrays CHANGEDNODE and DELTA)
{in DESCENDKING ORDER OF DELTA}

VAR
KI,1I,Dumd, DUMP,KJ :INTEGER;

BEGIN
FOR KI := 1 TO kk DO
BEGIN
DUMd := DELTALKII;
DUMP := CHANGEDNODELKI];
1T = KI+1;
FOR KJ := II TO kk DO :
IF (DELTAUKI] < DELTALKJ}) THEN
BEGIN
DELTACKI] := DELTALKJ];
CHANGEDNODELKI] := CHANGEDNODEL[KJ];
DELTALKJ] := DUMd; :
CHANGEDNODE[KJ] := DUMP
EXKD

EFD
END; {DESCEND}
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PROCEDURE VRITESHEAD;
{This procedure writes the headings for SENET)

BEGIN
WRITELN,;
WRITELN;
WRITELN(C'  *#%%% POST-OPTIMALITY ANALYSIS')
WRITELN;
WRITELN; ' '
WRITE(' ':20,'++ THE "EFFECT” OF EACH RANGE, EXCEPT THE

OPTIMAL AND NON-OPTIMAL, IS AN ');

WRITELN (' ACCUMULATION OF THE "EFFECTS" OF THE OTHER ');
WRITE (' RANGES FROM THE SIGN "1t OR "i" TO ”-" OF THE ');
WRITELN('"ACCUMULATION" COLUMN FOR EACH ARC ++');
WRITELN;

WRITELN;

WRITELN;

WRITELN(' ':10,'ARC’,' ':29,'RAKGE',’ ’,:48,'EFFECT');
VRITE(' identity weight activity',' ':10);
VRITE('upper lower accumulation node');
WRITEC t-weight',’' ':6,'route {-———-—- '),

WRITELN;

WRITELN

EKD;

48]
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PROCEDURE WRITESENET(DUMI,DUMJ : INTEGER);
{This procedure writes the results of SENET)

VAR
POSFLAF : BOOLEAN;
OLDINDEX, NEVINDEX, OLDLIMIT, NEVLIMIT, I, DUM: INTEGER;
DUMd, DUMP, DUMMY : INTEGER;

FUNCTION NEV VALUE (IJ : INTEGER) : INTEGER;
VAR
DUMMY : INTEGER;
BEGIN
DUMMY := 17J; :
WVHILE ((DELTALDUMMY] = OLDLIMIT) AND (DUMMY <= k)) DO
DUMMY .= DUMMY + 1; '
NEWVALUE := DUMMY
END; {NEVVALUE)

BEGIN {WRITESEXET)
OLDINDEX := 1;
NEVLIMIT := INFINITY;
POSFLAG := FALSE; :
VRITE(DUMI: 3, '--->', DUMJ:3, ')

IF(ACT = 'NEX ")
THEXN
WRITEC' INF’)
ELSE
WVRITE(VEIGHT:5);
WRITE(' ':6),
WRITE (ACT,’ ':9),
IF (k = 0> THEN
BEGIN
WRITELN(' ':20, ' NON-EFFECTIVE');
WRITELN
END
ELSE
BEGIN

NEWLIMIT := INFINITY;
WRITEC’ INF');
OLDLIMIT := NEWLIMIT;
WRITE(C ':36);

NEVINDEX := NEWVALUE(OLDINDEX);
NEVLIMIT := DELTAL{ NEVINDEX];
WRITE(' ':3,NEVLIMIT:5,' ':3);

IF(OLDLINMIT = INFINITYD

THEX :
WRITE(' ':4,’NON-OPTIKAL RAKRGE')
ELSE

BEGIN
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WRITELKN;
WRITELNC' ':46,'"-"");
IF(C(ACT = 'OPT ') AND (OLDLIMIT < = VEIGHT)

AND (NEVLIMIT > = VEIGHT»)

THEN
WRITELNC' ':14,'#¥#%  OPTIMAL RANGE')
ELSE
BEGIN
IF (ACT = 'OPT ') THEN
BEGIN
IF (OLDINDEX = 1)
THEY
WRITEC' ':6,'"1")
ELSE
IF (OLDINDEX < MIDPOS)
THEN
WRITEC ':6,'"4"")
END :
ELSE

WRITEC' ':6,'"i"');

DUM = NEVINDEX;

OLDINDEX := OLDINDEX + 1;

FOR I := OLDINDEX TO DUM DO

BEGIN :
VRITELN;
WRITE(' ':52);
POSFLAG := (I < = MIDPOS)> OR
FOT (ACT = 'OPT ');

DUMP := CHANGEDNODE[ I,

WRITE(' ', DUMP:5,' ':4);
IF(CHANGEDNODEL I1 = OO
THEN
DUMG := 0
ELSE
BEGIN
IF (POSFLAG)
THEN
DUMd := d2({ CHANGEDNODEIL 111
ELSE
DUMd := 43[CHANGEDNODEI I}
END;
IF (DUMd = INFINITY)
THEN :
IF (ACT = 'OPT ') THEN
BEGIN
DUMG := dl[QHANGEDNODE[I]J -

WEIGHT;
VRITE(DUMAd: 4, +V (' ,DUMI:3,',")
WRITE(DUMJ:3,')') '
END :
ELSE :

VRITEC'  INF - NO ROUTE")

a3

oo



ELSE

BEGIN
IF (POSFLAG)
THEN
VRITE(DUMd: 4, '+W(' ,DUMI:3,","
,DUMJ:3,')")
ELSE
VRITE(DUMd:5,' ':11);
VRITE(DUMP:4,®' ':2);
REPEAT .
IF(DUMP <> 0) THEN
BEGIN -
DUMMY :=" DUMP;
IF (POSFLAG)
THEN
DUMP := P2 [ DUMP]
ELSE
DUMP := P3 ([ DUMP}
IF (DUMP <> DUMMY)
THEN
VRITE(DUMP: 4,' ':2)
END;
UNTIL (DUMP = START) OR (DUMP = O)
END
END
END;
WRITELN;
WRITELN;
WRITELN

END; <{WRITESEWET}
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OK, FASCALG P408U>SENET.PAS
[Sheffield Pascal version 3.3.1.b]
No errors reported.

Executing SENET

ADJACERCY MATRIX

WHICH IS THE STARTING NODE ?
1

DISTANCE FROM 1 TO 2 18
ROUTE 1IS:

2 1
DISTANCE FROM 1 10 3 IS
ROUTE IS:

3 2 1
DISTANCE FROXM 1 T0 4 IS
ROUTE IS: |

4 3 2 1

xS}
pust
N

11

17

21
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