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ABSTRACT 

y 

In this work, we classify the shortest path 

problems, review all source algorithms and analyse 

the different implementations of single source 

algorithms using various list structures and 

label 1i ng techniques. 

Furthermore, we study the Sensitivity Analysis of 

one-to-all problems and present an algorithm, 

Senet, for their Post Optimali ty Analysis. Senet 

determines all the critical values far the weight 

of an arc (which could be optimal, non-optimal or 

nan-existant) at which the optimal solution 

changes. Senet also provides the updated optimal 

solution for every range formed by two successive 

critical values. 

( i i ) 
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1 INTRODUCTION 

Shortest path problems are the most fundamental 

and the most commonly encountered problems In the 

study of transportation and communication 

networks. Many other important network problems 

involve shortest path computations in their 

solution methods. 

Various shortest path algorithms have been 

developed since the latter half of the 1950's. 

The purpose of this work is to evolve a 

classification of the "efficient" sequential 

algorithms for a particular class of unconstrained 

deterministic shortest path problems, and to study 

their computational efficiency and sensitivity. 

The work is divided into 5 parts. 

In Part I, the introduction is followed by 

necessary definitions and theorems of graphs and 

networks in section 2, and computational 

complexity and data structure ID sections 3 and 4. 

In section 5 the network and tree representations 

used in this work are presented and analysed. 



A classification of sequential algorithms for "THE 

SHORTEST PATH" is introduced in section 6. 

In Part II, single source algorithms are 

classified and studied in section 7. In section 8 

and 9 various label setting and label correcting 

methods are analysed. In section 10 an empirical 

study of the most efficient labelling algorithms 

an small networks, ie. networks with upto 200 

nodes is carried out. 

In Part III, all source algorithms, matrix 

multiplication methods, triple algorithms and 

modified label setting algorithms are reviewed in 

sections 11, 12 and 13. 

In Part IV, various algorithms for sensitivity 

analysis on "THE SHORTEST PATH PROBLEMS" are 

studied in section 14, and in section 15 we 

introduce an algorithm, Senet, for post optimality 

analysis of "ONE-TO-ALL SHORTEST PATH PROBLEMS". 

Senet determines every nan-negative critical value 

of an arc weights at which the optimal solution 

changes and also provides the updated solution. 

Senet is applicable to basic, non-basic and nan-

existant arcs in a non-negative network. 



Part V, consists of a summary of the work together with 

conclusions in section 16, and the references in section 17. 

The complete Pascal codes of the more complicated and also the 

most efficient algorithms are presented in the appendices. 



2 GRAPHS AND NETWORKS 

A Graph G = <N, A) is a structure which consists 

of a non-empty and finite set of Nodes N of 

cardinality n, and a set of unordered pairs of 

Nodes A, called arcs, of cardinality m, the arcs 

are not necessarily distinct. 

ie. A = {<u, v> : u, v ^ N) 

A digraph is a graph in which all the arcs are 

directed, ie. the set of arcs is a set of ordered 

pairs of nodes. A graph can be converted to a 

digraph by simply replacing every undirected arc 

by two directed arcs in opposite directions, ie. 

replacing every unordered pair of nodes by its 

eqivalent two ordered pairs of nodes. If (u,v) is 

a directed arc then u is its initial node and v is 

its terminal node. 

A loop is an arc (u, v) with u = v. Two arcs 

(ui,vi> and <Uj^,V::^) are parallel arcs if Ui = u^-

and vi = Vs. A graph is called simple if it 

contains neither loops, nor parallel arcs. 

A network is a simple digraph together with a real 

valued function w defined for every (u, v) e- A. 



The real number w^.^ is the weight of the arc 

(u, V) . 

Node u is said to be Isolated if neither an arc 

(u, v) nor an arc (v, u) exists with v er N - <u). 

A path ( j t ^ v from node u to node v, in G, is an 

alternating sequence of nodes and arcs, with 

q,.,^ = (U = U, i, X.i 7 , U i Xj s:, Xj k , 

Ui,./.. r > = v), where x.i,~ - (u±r, u±<:,- i >) for 

1 i r ( k. qcwv^ can also be represented by the 

node sequence, (u = Uii, U x j > , U i t t * i > = v). 

A path in which all nodes (except possibly the 

first and the last, called source and sink of the 

path) are distinct is an elementary path. Ve will 

denote an elen^ntary path from node u to node v 

by P t ^ ^ , and the set of all elementary paths from u 

to V by R,^^, ie. R^^ = {P'^^, P-'^^, ). The 

length or total weight of a path is given by, 

d c j v - = f / i j . A cycle is a path for which the source 

and the sink are the same node, ie q^,^. Node u is 

said to be directly connected to node v if arc 

(u, v) A. If there exists a path from node u to 

node V, then v is reachable from u, disconnected 

otherwise. 



Define uRv if there exists path q,^^ and q-^,^, R is 

an equivalence relationship. A network in which 

all uRv is defined for all u, v ^ N is strongly 

connected. Furthermore, the subnetworks 

Gi = (Ni, {(u,v) I <u,v) e- A and u,v ^ Ni), 

where Ni is an equivalence class under R, are the 

strongly connected components of G. 

A network is complete if every node u er N is 

directly connected to every other node 

V ^ N - <u} . 

A network, G, is acyclic if no path in G is a 

directed cycle, ie. G has no strongly connected 

component. A graph with n nodes and m arcs is 

dense if m is "large" compared to n and sparse 

otherwise. The value of "large" depends on the 

context, we shall assun^ that m and n are positive 

and (m + n) = 0(m) for dense graphs and 

(.m + n) = 0(n) for sparse graphs. If m < (n-1) 

then clearly G is disconnected. 

A connected network without cycles is called a 

tree, equivalently a network is a tree if there 

exists a unique path from any node u ^ N to any 

node V ^ N - {u). Ve denote a tree by T. A tree 



T is a spanning tree of network G if T is a 

subnetwork of G containing all nodes of G. 

A shortest path from node u to node v is a path 

q,^^ such that d c ^ ^ i s a minimum over all paths from 

u to V. Note that the number of arcs is 

immaterial. Let I q,^^ I denote the number of arcs in 

path ( j c ^ ^ . A path with the minimum number of arcs 

is arc shortest. 

Theorem 1: If G is a complete network with n 

nodes and m arcs then m = n(n-l). 

Proof: By definition, there are n nodes each of 

which is directly connected to all the other (n-1) 

nodes, thus there are n(n-l) arcs. t 

Carol lary 1.1: If G is a simple graph with n 

nodes and m arcs and is undirected then 

m ( n(n-l) /2, and if G is a digraph then 

m ( n (n-1) . 

Theorem 2: There exists an elementary path Pt^^ 

from node u to node v if and only if there exists 

a path (Jt-zv, 



Proof: By definition, if p^^ exists then q^-^ 

exists. Now suppose q,^^ is given, if q..^^ is not 

elementary, then for every repeated node in q^^^ 

delete all nodes between the two instances of the 

repeated node and one of the instances of the 

repeated node, leaving a new path q^^. Continue 

the process until some q^-^ is elementary. The 

path p,^^ obtained from q^^ by the above process is 

a reduction of q,^^. A reduction is not 

necessarily unique. t 

Theorem 3: The set of elementary paths R^^ from 

any node u to any other node v in a complete 

network G, is of cardinality IR^^I, where 

n-2 
IR^^I = (n-2)! H l/(n-2-i)! 

1=0 

Proof: By definition, an elementary path in a 

complete network utilises at most (n-1) arcs or 

has a maximum number of (n-2) intermediate nodes. 

Furthermore the total number of paths in R^^ is 

the grand total of total numbers of paths with i 

intermediate nodes, where 

i = 0, 1. . . . . . . (n-2). 

Now, the total number of paths with exactly i 

intermediate nodes is given by, 

(n-2) Pi = (n-2)! /(n-2-i)! 



Thus we have, 

n-2 n-2 
IR^.^1 = H (n-2)Pi = (n-2) I 2 7 l/(n-2-i)l 

i=0 i=0 
f 

Theorem 4: There exists a shortest path from 

node u to node v in network G if and only if there 

exists at least a path g^^v, and furthermore all 

such paths must not contain a directed cycle of 

total weight of less than zero. 

Proof: Let P^^ be the shortest path from u to v 

in G, thus there is a path q̂ ^̂  = P̂..̂-. Now suppose 

there exists a path q'^^ which contains a cycle of 

negative total weight, then a new path can be 

constructed in which this cycle is repeated a 

number of times sufficient for d(q"^^) < d(P,^^) 

contrary to assumption. Let q.^^ be a path from u 

to V and suppose no path from u to v contains a 

cycle of total negative weight. Now if P^.^ is a 

reduction of q^^ then d(P^.^) ( d(q,..,^). Thus the 

total weights of a number of elementary paths 

bound from below all total path weights, and since 

there are a finite number of elementary paths, 

then among them is a path Pwv such that 

d(P,^s^) ( d(q^^) for all paths q^^^. By definition. 

iO 
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is a shortest path from node u to node v. 

Corol1ary 4.1: There exists an elementary shortest 

path Pcj.^, if there exists a shortest path q,^^. 

Corollary 4.2: There exists a shortest path from 

node u to node v in an acyclic network for every 

node V reachable from node u. 

Theorem 5: For any shortest path 

P,^s^ = (u = ui , u^, , UK = v) each subpath 

P'^^ = (u.i, uj-^i, , uj^,-) where, 

1 ( J ( (J + r) ( k is a shortest path from node 

u.i to U j ^ r . Furthermore if P t ^ v i s arc shortest 

then so are all its subpaths. 

Proof: Suppose that there exists such a subpath 

which is not the shortest path (arc shortest) from 

node Uj to node uj-,-. But this contradicts the 

assumption that P^.^ is the shortest path (arc 

shortest) from node u to node v. t 

Let V(G, ¥) denote a shortest path problem, where 

G is a network and ¥ is a set of ordered pairs of 

nodes between which shortest paths are to be 



found. The definitions and the notations for a 

variety of shortest path problems will be 

discussed in section 6. 

A solution to IT (G, ¥) is an assignment 

o- : ¥(u, V) < ^ (P^^, d,^^) 

Of an elementary path together with its total 

weight to each element of ¥. If for some ¥(u, v), 

P c j v ^ i s not defined, then 

o- : ¥(u, v) <=P Co, a>). 

o- will be detailed in sections 5 and 6. 

An arc is optimal if it is utilised by a path in a 

solution, non optimal otherwise. An arc (u, v) 

is non-existant if u, v ^ N and (u, v) ^ A. 

The set of all arcs emanating from a given node u 

is the set of forward star arcs of node u, denoted 

by FS(u), ie. FS(u) = <(u, i) I (u, i) ^ A). The 

set of all arcs proceeding from a given node u is 

the set of backward star arcs of node u, denoted 

by BS(u), ie. BS<u) = < (i, u) I (i, u) A}. 

The set of successor nodes of u is defined as 

i V " = <v I (u, v) ^ A and ty X W . 



The s e t of predecessor nodes of u is defined as 

^"•N = <v I (v, u) ^ A and u ^ v) . 

The set of adjacent nodes of a given node u is 

defined as f-''N U N"^. 

The indegree of a given node u is defined as 

E' (u) = I ̂ -'N (u)l, and its outdegree is defined as 

(u) = IN"^ (u)l. 

By definition, a network is a simple digraph, ie. 

it contains neither loops nor parallel arcs. A 

network containing such features can be converted 

to a standard network, as defined above, ,by simple 

preprocessing. Consider the network in figure 1 

in which there are parallel arcs between nodes 2 

and 3, and also arc <4, 4) is a loop. 

Figure 1: The numbers corresponding to the arcs 
represent the weights of the arcs. 

13 



To convert this network to a standard network, 

firstly all parallel arcs except one with the 

smal lest weight have to be el iminated, secondly 

the loop an node 4 has to be eliminated, by 

converting- it to an arc connecting a dummy node 5 

to the modified version of node 4 which contai ns 

no loop. 

All the arcs going into the original node 4 will 

now go into node 5. The newly created, arc (5, 4) 

has a weight equal to the weight of the eliminated 

loop and all the arcs going out of the original 

node 4 will go out of the modified node 4. Figure 

2 shows the drived standard version of the example 

network in figure 1. 

Figure 2: The standard version of the network in 
figure 1. 

14 



3 COMPUTATIONAL COMPLEXITY 

For the generality, in this work a random-access 

machine (RAM) model as suggested in, [AHHU 741, is 

used for worst case analysis of the algorithms to 

study their efficiency. A random-access machine 

consists of a finite program, and a memory in the 

form of an array of (MAXLENGTH) words, each of 

which has a unique address between 1 to 

(MAXLENGTH) and can store an integer (or a real) 

number. It also contains a finite number of 

registers, each of which can store an integer (or 

a real) number. In a random—access machine a 

single arithmetic, logical, fetch or store 

operation is performed in one step. Far 

simplicity, the algorithms are expressed in a 

pascal/english based language; and are introduced 

throughout the work in order to consider their 

developments. However, the sophisticated 

algorithms and also the mast efficient algorithms 

are implemented using a pascal-run compiler on 

either a VAX 11/750 with UNIX operating system, or 

IBM 4341 with MTS operating system or prime 

computers with primus operating system. The 

corresponding cades are listed in the appendices. 

15 



In general, there are two methods of measuring the 

running time of a shortest path algorithm. 

(1) Analysis of average running time: 

To evaluate an algorithm in this method, 

first the algorithm is applied to a 

diverse set of randomly generated 

networks, where a random network is one 

in which two nodes of a network are 

selected randomly to form a new arc which 

is to be added to the network. Then the 

average of the running times is reported. 

(2) Worst-case analysis: 

In worst case analysis the running time 

of an algorithm as an upper bound which 

depends on the problem size Is reported. 

In this work we shall use the worst case analysis 

for the evaluation of every single source 

algorithm, mainly due to the fol lowing two 

reasons: 

(a) Vorst case analysis guarantees that no 

problem of a given size will take longer 

to run than the bound given. 



(b) Analysis of average running time is 

difficult and the concept itself is 

elusive, because it is not clear what a 

random distribution of networks with 

negative arc weights is. 

However, in section 10 an analysis of average 

running time far some of the best single source 

algorithms is used. 

Now consider a shortest path problem If (G, ¥). 

The size of this problem can be defined in terms 

of n =. INI, m = lAI and I ¥1 . But I ¥1 is a 

function of n, thus we can seek time bounds 

T(n,m) depending an n and m such that T(n,m) is 

the time taken by a certain algorithm to solve a 

problem of size (n, m) and no problem of this size 

takes longer. These bounds can be expressed in 

terms of n only, ie. T(n), since m = n (n-1), 

[maximum number of arcs in a network with n 

nodes]. But according to a random-access machine 

definition each operation, of the types mentioned 

above, takes one step then we can translate T(n) 

as the number of repetition of an operation with 

the highest frequency in the algorithm when 



salving a problem of size n, or T(n,m) if the 

problem size is expressed in terms of <n,m). 



4 DATA STRUCTURE 

It IS obvious that if the arc weights in a given 

network are all integers, then the total weight of 

a path is also an Integer, since the only 

operation required in total weight finding is 

addition, and the sum of integer numbers is an 

integer. In real life problems arc weights are 

usually integers and if not, then by multiplying 

all the arc weights of the given network by an 

appropriate number they can all be converted to 

integers. In this work we will only consider the 

net works with int eger a rc we i gh t s. For si mpl icity 

we will also present the nodes by integers, ie. 

N - {i I i = 1 , 2, . • . , h) . Beside Integer type, 

we will also consider Boolean type or bit, which 

can either have the value of true or false. ¥e 

wi 11 al so consider more complicated types 1 i ke 

arrays, lists, queues, etc. For futher 

discussions on these types see [KNUT 73a], 

[KNUT 73b], [AHHU 741 and IFOXB 781. 

<a> Create AL 1 produces the empty array A; 

<b) Retrieve (A. Index) takes as input the 

array A and an index; 



(0) i^tare (A. index, value) is used to enter 

new index-value pair in array A. 

An ordered, or a sequence, or a linear, list is 

one of the most commonly found data objects. It 

is either empty or can be written as 

Ca 7 , as:, ...... a,;) . 

The permitted operations an ordered lists that we 

are concerned with are as follows: 

(1) Find the length of the list, n; 

(ii) Read the list from left to right (or 

right to left); 

(Hi) Retrieve the i element, 1 ( 1 ( n; 

(iv) Store new value in i'-^"' position, 

1 ( 1 s< n; 

(v) Insert a new element at position i, 

1 ( i i n + 1 causi ng elements numbered 

i, i + 1, , n to become numbered 

i -hi, i +2, , n + 1; 

(vi) Delete the element at position i, 

1 i i i' n causing the elements numbered 

i -f 1, i + 2, , n to become 

numbered i, i -1-1, , n-1. 



In the study of data structure we are interested 

in ways of representing ordered lists so that 

these operations can be carried out efficiently. 

The most common way of representing an ordered 

list is by an array where we associate the list 

element a.i . with the array index i. This can be 

viewed as a sequential mapping, since using the 

array representation we are storing ai and 

a<:x ... I into consecutive locations i and (i + 1) 

of the array. Ve can also have access to the list 

values in either directions by changing the index 

values in a controlled way. Thus the above 

operations can be carried out in a list, in a 

constant amount of time. 

A stack is an ordered list in which all insertions 

and deletions are made at one end, called the top. 

Given a stack S = (a i , a-z-, , a,-,} then ai is 

said to be the bottom element and a.i is said to be 

on top of element a<: x — i , 1 i i ( n. The 

restrictions on a stack imply that the first 

element to be removed or deleted from a stack must 

be the last element inserted in the stack. For 

this reason stacks are also called Last-In-First-

Out, LIFO-lists. In figure 3(a) the value a-i was 

the last element inserted into the stack and thus 



will be the first to be removed. The value a,-, was 

the first element inserted into the stack and will 

be the last to be removed. The permitted 

operations on stacks that we are concerned with 

are as fallows: 

(i) Create (S) produces the empty stack S; 

(il) Add (i. S) inserts the element i into 

the stack S, at the top position, and 

returns the new stack S; 

(Hi) Delete (S) removes the top element of 

stack S and returns the new stack S; 

(iv) Top (S) returns the top element of 

the stack S; 

(v) EmptyS (S) returns the value true if 

stack S is empty, else false. 

The simplest way to represent a stack is by using 

a one-dimensi anal array of size n, denoted by 

stacic (n) where n is the maximum number of 

allowable entries. The first or the bottom 

element in the stack will be stored at stack (1), 

the second at stack (2) and the 1 at stack (i). 

Associated with the array will be a variable, top, 

which points to the top element in the stack. 



A queue is an ordered list in which all i nsertions 

take place at one end, the back, and all deletions 

take place at the other end, the front. Given a 

queue Q = (a-i , a,,-, , a,,) then a,~, is the back 

element and a , i s the front element. The element 

a(:i i) is said to be behind a.i , 1 ( i ( n. 

A queue is also called First-In-First-Out, FIFO-

list. The- permi tted operations an queues that we 

are concerned with are as fol lows: 

(i) Create. CO) produces the empty queue Q: 

(ii) AddO (i. O) adds the element i to the 

back of the queue Q and returns the 

resulting queue Q; 

(Hi) DeleteO (O) removes the front element 

from the queue Q and returns the 

resulting queue Q; 

(iv) Front (O) returns the front element of 

the queue Q; 

(v) EmptyO (O) returns the value true if the 

queue Q is empty, else false. 

A double ended queue (dequeue) is a queue in which 

insertions and deletions can take place at bath 

end points, front and back. In a dequeue 



operations (ii) and (Hi) above can be extended to 

the fol lowing: 

(ii)' AddO (i, L. DO) which adds the element i 

to the back of the DQ if L = back, and to 

the front of DQ if L = front; 

(Hi)' DeleteDO (L. DO) which deletes the front 

element of DQ if L = front and its back 

element if L = back; 

Operation (iv) may also be extended to the 

fall owl ng: 

(iv) ' EndDO (L. DO) which returns the front 

element of DQ if L = front and its back 

element if L = back; 

If on a given queue all operations except (Hi), 

deleteQ (Q), can be extended to those on a 

dequeue, then the queue is called an output 

restricted dequeue, RDQ. The permitted operations 

on a RDQ are (i), (ii)', (Hi), (iv)', (v). For 

simpl icity we will sometimes refer to RDQ as 

dequeue or double ended queue, since this is the 

only form of double ended queue used in this work. 

Figure 3 illustrates different types of lists. 
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Figure 3: Types of lists, (a) stack, (h) queue, 
(c) dequeue, (d) output restricted dequeue 



A node is a collection of data, a,, a.^, , a,-,, 

and pointers or links, Li, L.K, , L,-,. 

A linked structure is a collection of nodes 

Interconnected by links. In a linked structure 

node i contains data a.i and an address J in link 

L i where J is the address of the next node in the 

structure. A list can be represented by a linked 

structure as well as sequential mapping. Figure 4 

shows some types of linked lists, pointers are 

used to show the links. Unlike a sequential 

representation where successive items of a list 

are located a fixed distance apart, in a linked 

representation these items may be placed anywhere 

in memory, ie. in a sequential representation the 

order of the elements is the same as in the 

ordered list, while in a linked representation 

these two sequences need not be the same. 



( a ) 

( b ) 

^1 ao • 
^1 1 2 
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a 
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Figure 4: linked representation 
pointers are null (a) 
single circular, (c) 
double circular. 

of lists, missing 
single linear, (b) 
double linear, (d) 



In a single linear linked list, each node has a 

painter to its successor node in the list. In a 

double linear linked list each node has two links, 

one pointing to its successor node and one t o i t s 

predecessor node in the list. In a linear linked 

list the successor of the last node and the 

predecessor of the first node are null. In a 

circular linked list the successor of the last 

node is the first node and the predecessor of the 

first node is the last node. A linear linked list 

is accessed by means of a pointer to its front and 

a circular linked list is accessed by means of a 

painter to its back. 

A stack can be represented by a single linear 

linked list. An output restricted dequeue can be 

represented by a single circular linked list. A 

dequeue can be represented by a double circular 

linked list. In this manner the operations on 

stacks and queues can be carried out more 

efficiently. Clearly this efficiency is at the 

cast of additional memory space far the links, 

which can be the dominating factor in same 

situations. 



A binary tree, BT, is a type of tree in which 

every node has at most 2 branches or subtrees, le. 

(i) 2, for all 1 ^ BT and also there is a 

distinction between the subtrees on the left and 

on the right of a node. The successor of a node 

is either null or is a LSUB-NODB if it is on the 

left and RSUB-NODE if it is on the right. We 

define the level of a node by initially letting 

the root be at level 1, then if a node is at level 

i, then the roots of its subtrees are at level 

i + 1. The depth of a tree is defined to be the 

maximum level of any node in the tree. 

Theorem 6: The maximum number of nodes on level i 

of a binary tree is ' ' for i ? 1. 

Proof: The proof is by induction. The root is 

the only node on level 1, hence maximum number of 

nodes on level i = 1 is 2'-' = 1. Now suppose for 

a general value j where 1 i j ( i, the maximum 

number of nodes on level j is 2^ '. Then by 

assumption, the maximum number of nodes on level 

i-1 is 2-'- Since each binary tree has a 

maximum outdegree of 2, then the maximum number of 

nodes on level i is 2 times the maximum number of 

level i-1 or 2^"'. 
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The jnaximum number of nodes in a binary tree of 
k 

depth k is given by, 2'-' ' ' = 2'= - 1 
i=l 

(geometric progressian). t 

Theorem 7; let no and n:z be the number of the 

nodes with B'- = 0 and £"' = 2 in a binary tree BT, 

then n,:, = n::;;: + 1. 

Proof: let n-i , n, and b be the number of nodes 

with B'~ = 1, all the nodes and the number of 

branches in BT. We have, 

n - n,:, + ni + n .-.^ <I) 

since all nodes in BT have E'" i 2. 

Clearly n ^ b -h 1 (II) 

since all the nodes, except the root, in BT have 

E = 1. All branches in BT emanate from a node 

wl th ei ther 

E- = 1 or E- = 2, thus b = n, + 2n::s (III) 

from (II) and (III) we get 

n = 1 + n-, + 2n,,: (IV) 

and from (I) and (IV) we get 

no = 1 + 73;.-̂ . f 

A sequential representation of a binary tree is 

numbering the nodes in the fallowing manner, 

number the root by 1 then number those nodes on 
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level 2 and so on. Nodes on any level are 

numbered from left to right. Now the nodes can be 

stored in a one dimensional array, BTREE, with the 

node numbered 1 being stored in BTREE (i). The 

fallowing theorem enables us to easily determine 

the locations of the predecessor, LSUB and RSUB 

nodes of a given node. 

Theorem 8: If a complete binary tree with n nodes 

<ie. depth Log-,:n + 1 ) is represented 

sequentially then for any node with index i, 

1 i' i i' n we have: 

(i) predecessor of node i is at i/2_ if 

i /: 1. If i = 1, then i is the root and 

has no predecessor. 

(ii) LSUB-NODE of node i is at 2i if 2i x< n. 

If 21 > n. then i has no LSUB-NODE. 

(Hi) RSUB-NODE of node i is at 21 + 1 if 

(2i + 2) ( n. If (2i + 1) > n, then i 

has no RSUB-NODE. 

Proof: First we prove (ii) by induction, for 

i = 1 clearly LSUB-NODE is at level 2 unless n < 2 

in which case 1 has no LSUB-NODE. Now assume that 

for all J, 1 i' J i' i, LSUB-NODE of J is at 2j . 



Then the two nodes immediately preceeding LSUB-

NODE a + 1) in the representation are the RSUB-

NODE and the LSUB-NODE of i. The LSUB-NODE of i 

is at 2i, hence the LSUB-NODE of (i -h 1) is at 

(2i +2) = 2(i + 1) unless 2(i + 1) > n in which 

case (i + 1) has no LSUB-NODE. (Hi) is the 

immediate consequence of (ii) and the number of 

nodes on the same level from left to right. (i) 

follows from (ii) and (Hi). t 

In this work we sometimes, without loss of 

generality, assume that the root node is at level 

zero. Figure 5 illustrates the computer 

representation of a binary tree. 



a full binary tree of depth 3 

B 

D 

sequential representation 

Figure 5: A binary tree with its sequential 
representations. 



A heap is an abstract data structure consisting of 

a collection of items, {ai , a-..,-,, , a,-,), each 

of which is associated with a real valued data. 

First we will consider a heap in terms of a binary 

tree and then expand the definition for other 

types of heaps. The items are stored at the nodes 

of a special kind of binary tree. For every node, 

the value of the item is less than or equal to the 

values of the items stored at the immediate 

successor nodes (if such exist) in the tree. 

Thus, numbering the nodes in the usual way for a 

binary tree and assuming, for simplicity, that n 

(number of the items or nodes), is add, ie. 

a.T ^ <3i-;.i, <3;E.T. 7 far 1 i i ( n/2, then this 

defines a heap, Na orderi ng is implied between 

the items associated with two nodes if one is not 

the predecessor of the other, indirectly or 

directly. Each subtree of heap is also a heap. 

Node 1 is the root of the heap which is at the top 

of the tree and its corresponding item is of 

minimum value. We can represent a heap 

sequentially as a one dimensional array, see 

figure 6 below. The operations on heaps that we 

are concerned with are as fallows: 



<."i.> Makeh (h) which constructs the empty heap 

h; 

(ii) G e t A (S. h) which takes the elements of 

set S as input to heap h; 

(Hi) Addh (i. h) which inserts the new data 

i to heap h; 

(iv) Delete (i, h) which deletes the data i 

from heap h; 

(v) Get mi n (h) finds and returns the data of 

minimum value from heap h, and returns 

null if h is empty; 

(vi) , Mergeh (hi . h---) which returns the heap 

farmed by combining d i s j o i n t heaps hi and 

ij;.;; and destroying hi and h:.-;^. The new 

heap will have root with 

a value equal to that of hi if the 

value of the root of hi is smaller 

than that of hs, otherwise to that 

of h::„. 



(a) 

(b) 

6 9 12 16 n 

Figure 6: (a) Tree representation of a heap, (b) The 
computer representation of a heap. 

Combining operations (i) and (ii) and calling it 

heap-former, then the fol lowing procedure, coded 

in standard pascal, will construct a heap out of a 

given binary tree. In the procedure below n is a 

global integer represent!ng the number of the 

elements in the tree, and BINTRE is a one 

dimensiana 1 array type. 



1 Procedure heapformer (VAR BT : BIHTRE); 
2 VAR 
3 s, j , nn : integer; 
4 dum : integer; 
5 Begin 
6 s ;= 0; 
7 nn := ( ( n + l ) / 2 ) - 1; 
8 j nn; 
9 while (n <> 0) do 
10 Begin 
11 i f ( B T ( 2 * j ) > BT((2»j) + D ) 
12 then 
13 s := 2*j + 1 
14 e l s e 
15 s := 2 * j ; 
16 i f ( B T ( j ) > B T ( s ) ) 
17 then Begin 
18 dum := B T ( j ) ; 
19 B T ( j ) ;= B T ( s ) ; 
20 BT(s) := dum 
21 end; 
22 i f <(2*s) > n) 
23 then Begin 
24 nn ;= nn - 1; 
25 J := n 
26 end 
27 end {whil e ) 
28 end; {heapformer) 

In steps 11 to 21 the data of two successors of a 

node i, ie. LSUB-nade(i) and RSUB-node (i) are 

compared and if the smaller data is less than 

that of the node i then the nodes are swapped. 
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In this procedure the initial root of the binary 

tree is sifted dawn until it finds its proper 

place. If a node of a heap were removed, we could 

make the farmer last element the new initial root 

of the corresponding subtree, reducing n by 1, and 

sift the just move element up or down as 

appropriate. Sorting the elements of a heap can 

be done by successively removing the root, 

replacing it by 03, and then sifting it down to 

restore the heap. This sorting scheme is called 

heapsart. In a heapsort, the depth of the heap is 

O(logn) and n elements must be removed, then the 

total time to reform the heap is O(nlogn). The 

procedure can be streamli ned by eliminating 

superfluous comparisons. 

Theorem 9: The procedure heapfarmer forms a heap 

in linear time. 

Proof: Let f (k) be the maximum number of 

swappings necessary to form a heap out of ("2""' '-> 

elements. Clearly f (1) = 0. Before dealing with 

node 1, subheaps are formed from the subtrees 

having nodes 2 and 3 as their roots. By 

definition forming each of these subheaps takes at 



most /(k-1) swappings. When the two subheaps are 

merged, all swappings take place along a single 

path from node 1 to some terminal node with 

E" = 0. Since the number of nodes on this path is 

k, at most k-1 swappings are required for the 

final merge (normal ly only a few swappings are 

required). Thus removing a node from a heap and 

then restoring the heap structure is an O(logn) 

process, at worst. Therefore to form a heap, 

f(k) = 2 f(k-l) + (k-1), k } 2 where f (1) = 0 and 

f (k) = 2''-l-k, we require fewer than one swapping 

per element. If the number of elements is between 

2'--l and 2'-'-l, then the number of swappings to 

form the heap is at most, 

f(k+l) = 2 f (k) -h k = 0(f (k)). 

And this proves the linear time claim in general, 

f 

Suppose in a given heap r values change. For the 

data whose new values are less then the heap's 

last element, put the new values in their 

respective former position and for the others put 

their values at the bottom of the heap and 

implicitly insert co in their respective former 

position. Finally after all the above operations 

are done, reform the heap. Reforming a heap after 



r elements change takes 0[min (n, r logn)l time at 

worst. 

Defining a d-tree to be a tree in which each node 

has at most d successors, then a d-heap is a d-

tree containing one item per node arranged in heap 

order, see figure 7 below: 

Figure 7: a 3-beap with nodes numbered as in binary 
tree, ie. top to bottom, left to right 



Clearly the operation (v) has a running time of 

0(1). Operations (Hi) and (iv) have a running 

time of O (dlog.:,in), where n is the number of nodes 

in the tree, since the depth of a d-heap is log.jn. 

In d-heaps parameter d allows us to choose the 

data structure to fit the relative frequency of 

the operations, as the proportion of deletions 

decrease, we can increase the value of d, saving 

time on insertion. Due to regular structure of a 

d-heap we do not require e x p l i c i t links to 

represent it. If the nodes are numbered in the 

manner explained above then the predecessor of 

node X is (x-l)/d and the successors of x are 

the integers in the interval, 

[d(x-l) + 2 . . min <dx + 1, n) 1 . To implement a 

d-heap we use an array of positions from 1 to the 

maximum size of a heap. We also stare an integer 

giving the size of the heap. We also associate an 

index h(i) to each item in the heap to give its 

position in the heap. Operation (vi) is rather 

difficult and time consuming on d-heaps. The 

operation d-heapformer, for forming a d-heap, 

analogous to heapformer, far forming a 2-heap, 

runs in linear time for 2 i d i n-1. 



A fibonacci heap or f-heap is a collection of 

item-disjoint heap-ordered trees. Fredman and 

Tarj an, [ FRTA 851, used the following 

representation of f-heaps. 

Each node has a pointer to its predecessor node or 

a special node null if it has no predecessor and a 

painter to one of its successor nodes. The 

successors of each node are doubly linked in a 

circular list. Furthermore an integer is 

associated with each node indicating its number of 

successors, E"", and a bit indicating whether the. 

node is marked or not. The roots of all the trees 

in the heap are doubly linked in a circular list. 

A heap is accessed by a pointer to a root 

containing an item of minimum value, called 

minimum node of the heap, A minimum node of null 

denotes an empty heap. Each node has space for 

its data, four pointers, an integer indicating 

number of its successor and a bit. Figure 8 shows 

a f-heap represented in this manner. 



Ml 12̂  T 16 18 

0^2 < / 0 2C F 

PI P2 d B P3 P4 

PI: Pointer to predecessor In the tree; 
P2: Pointer to one successor 1n the tree; 
P3: Pointer to predecessor In the doubly circular linked l ist; 
PJ: Pointer to successor In the doubly circular linked l i s t ; 
E : Number of the successors; 
d : The value associated with a node; 
- T I f the node Is labelled 
^ : on • p otherwise. 

Figure 8: f-heap representation. 



The double linking of the lists of roots and the 

successors of a node makes deletion from such a 

list possible in 0(1) time and the circular 

linking makes the merging passible in 0(1) time. 

A bucket is a list of nodes whose data fall within 

a given range, ie. a bucket p is a list of nodes 

i whose data a (i) fall within the half open 

interval [pz, (p + l)z), 

ie. pz v< a(i) < (p + l)z. 

In this work we will represent a bucket by double 

linear linked lists. Associated with each node k 

in bucket p there is a data a(k), two pointers and 

other information which we will explore later in 

section 9. Each data k, except the last, in 

bucket p has a pointer pi (k) to its successor in 

the bucket. Each data k, except the first, has 

also a pointer p2(k) to its predecessor in the 

bucket. To access the buckets we store the heads, 

address of their respective first elements, of the 

buckets in a master list, then the master list 

contains a painter to the memory location of the 

first element of each bucket. The computer 

representation of heaps and buckets will be 



explained in wore detail in section 9, when 

required. 



5 NETWORK AND TREE REPRESENTATIONS 

There are several ways of representing a network 

G = (N, A) in a computer, and the manner of 

representation directly effects the performance of 

a 1 gori thms applied to the net work. Here we will 

give two such methods: 

(a) Adjacency Matrix: 

The adjacency matrix representing a 

network G is a 2-di mens i anal n * n array 

V such that, the element (i, j) of the 

array, ie. W(i, j), has the value w±.i, 

the weight of the arc (i, j), if 

(i, j) ^ A, and oo otherwise. 

Any algorithm applied to an adjacency 

matrix would require at least 0(n-^'') as 

there are n(n-l) elements to be 

examined. Storing such a matrix will 

also require 0(n^~} space. Therefore such 

a representation is excessive for 

sparse networks in which a large fraction 

of the elements of W are <», hut may be 

considered as a good representation, 



because of its simple structure, for 

dense networks. 

(h) Adjacency Lists: 

The most popular way of representing a 

network G in a computer is to use linked 

list structure. In this method, all the 

forward star arcs of a node are stored 

tog-ether and each arc is represented by 

recording only its terminal node and 

weight. A pointer is then kept for each 

node which i n d i c a t e s the block of 

computer memory locations for the forward 

star arc of that node. 

In this manner of representation, we need 

(n + 2m) space or units of memory and 

0(n + m) time for examining all arcs. The 

advantages of this method over adj acency 

matrix special ly for sfiarse networks are 

obvious. This method of representation 

is also known as forward star 

representation, and if the forward star 

arcs of each node are ordered by 

ascending length, then the method is 
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called sorted forward star representati on 

form. 

In this work we will adopt both these methods for 

network representations. Figure 10 illustrates 

the storage of the network shown in figure 9, in 

an adjacency matrix and also in a sorted forward 

star form. 

Figure 9: numbers associated with the arcs represent 
the weights of the arcs 



(a) 

TERMINAL NODE 

INITIAL 
NODE 

1 2 3 4 5 

1 CO 4 6 7 CO 

2 CO CO CO 00 2 

3 CO 3 CO 5 9 

4 CO 00 CO <o CO 

5 CO CO CO 6 CO 

(h) null painter means no forward arcs 

NODE 

1 

2 

3 

4 

5 

POINTER TERMINAL NODE 

1 

4 4 

5 

8 

WEIGHT 

null pointer means no forward arc 

Figure 10. network representation, (a) Adjacency 
Matrix, (b) sorted forward star 
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One of the most common ways of representing a tree 

in a computer is to think of the root, s, as the 

highest node in the tree and all the other nodes 

hanging below the root. The tree is then 

represented by keeping an upward pointer list 

containing the predecessor node of every node in 

the tree, except the root. We will assume that 

^'•'N(s) = s. Associated with a tree we will also 

define a list, indexed by the node numbers, 

containing a label, d (v), for each node v in the 

tree, whose value is the length or total weight of 

the unique path from s to v in the tree. In some 

implementations d(v) is not necessarily the 

correct length but an over estimate that will 

eventually converge to the correct length. 

If a node, i, does not belong to the tree, then 

its label is set to <», i e . d<i> = M, and this 

indicates that node i is not yet reached. We will 

also assume that d(s> = 0. 

Figure 11, below, illustrated the computer 

representation of a tree using two linear lists, 

both indexed by the nodes. 
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NODE "N 

3 

4 

5 

6 

7 

11 

21 

10 

22 

Figure 11: Computer representation of a tree 



e. PROBLEM CLASSIFICATION 

In 1957 MINTY. [MINT 571, made the fallowing 

suggestion far finding a shortest path between a 

pair of nodes, source and sink, in a given 

network: 

Construct a copy of the network using pieces of 

strings with lengths proportional to the weights 

of the arcs. Then place the source node in one 

hand and the sink node in the other, to stretch 

and determine the shortest path as the path with 

tense strings. 

Since then there has been considerable development 

in solution methods far a variety of shortest 

paths problems. In general the shortest path 

problems can be divided into four groups, see 

figure l l . l b e i o w ; 



The Shortest Path Problem 

(iii) 

all-to-one 

(ii) 

one-to-all all-to-all one-to-one 

Fissure ^^ .^: problem Classification 



Each of these problems for a given network is 

defined as fallows: 

<i) one-to-ane problem is to find a shortest 

path from a given source to a given sink; 

(ii) one-to-all problem is to find the 

shortest path from a given source to 

every other node; 

(Hi) all-to-one problem is to find a shortest 

path from every other node to a given 

si nk; 

(iv) all-to-all problem is to find a shortest 

path between every pair of nodes. 

Up to date, there is no efficient algorithm for 

solving one-to-one problem in a given network 

without having to find the shortest paths from the 

source to at least some of the other nodes, if not 

all. All-to-one problems and ane-to-all problems 

are directional duals of each other, reversing the 

directions of the arcs in G converts one to the 

other. Therefore we will consider the soluti on 

methods for (ii) which will Include (i) and (Hi). 

We will refer to these solution methods as the 

single source algorithms. Furthermore, for 
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solving an all-to-all problem we can adapt an 

efficient single source algorithm and apply it to 

every node in the network, ie. apply the algorithm 

n times to the given network, each time having a 

different source node. We will refer to the 

specific algorithms designed for solving all-to-

all problems as all source algorithms. As we will 

see same of the single source algorithms used to 

solve all-to-all problems, as explained above, are 

more efficient than mast of and as efficient as 

the best of all source algorithms. Therefore in 

this work more emphasis is put on single source 

a 1 gori thms. 

Extending our shortest paths notations for one-to-

all and all-to-all problems, 

In one-to-al1 problem the source node, S, is 

distinguished, then 

¥„n = <(S, V) I V ^ (N - <S})} 

and this can be abbreviated to ¥m - N - <S} 

since s is distinguished. In all-to-all problems 

all node pairs, except nodes paired with 

themselves,, are considered, then 

= {(u, v) I u. V ^ N, u ?i v} . 



Thus a shortest path problem can be stated as 

TT(G,s) if it is an one-to-all problem and If (G) if 

it is an all-to-all problem, since the source is 

understood. 

Furthermore we will denote the weight of a 

shortest path from a source node to a given node v 

by dv- i - n a one-to-al 1 problem, since the source is 

distinguished and d.̂ .̂ -- in a all-to-all problem when 

the source node is u. 
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7 SINGLE SOURCE ALGORITHMS 

The best algorithms known far the one-ta-all 

problems concatenate arcs to subpaths in order to 

find new paths. After obtaining a new path its 

total weight is compared to that of the current 

shortest path and if it is smaller, then the new 

path becomes the current shortest path. When the 

current shortest path cannot be improved any mare 

then it becomes the shortest path. 

Consider a network G - (N, A) with no negative 

cycles, in a one-to-all problem with a source node 

s, clearly dm = 0. Far each node v, v s, there 

must be some final arc (u, v) in the shortest path 

from s to V. Whatever the identity of u, it is 

certain that d-^ = d,_,, + W^,,.^. As a result of 

theorem 5, section 2, d,.,, i s the weight of the 

shortest path from s to u. This is called the 

principle of optimal 1ty. But there are only (n-1) 

number of choices foi~ u. Clearly u must be a node 

for which (d,.,, + ¥,..,^) is the minimum. Therefore 

the weights of the shortest paths must satisfy the 

fol lowing system of equations: 

d.. = 0 

dv. = min (d,., + W,,s.} (v ^ N, u s) 

U^iV 



this system of equations was first formulated by 

Bellman, C BELL 531, and we will refer to them as 

Bellman's equations. 

As a result of theorem 4 and theorem 5, section 2, 

we can conclude the following: 

Suppose di, d:::i, , d r , satisfy Bellman's 

equations in a network G - (N, A) with no negative 

cycle, then there exists a tree in G, rooted at 

the source with exactly (n-1) arcs, such that the 

path in the tree from the root to each node is the 

shortest path. We will refer to such a tree as 

the minimum tree or the shortest path tree. 

Now let us consider the uniqueness of a finite 

solution to Bellman's equations. 

Theorem 10: If a network G = (N, A) contains no 

nonpositive cycle and there is a path from the 

source to every other node, then there is a unique 

finite solution to Bellman's equations. 

Proof: let d,, d.v,?, , d,-, be the shortest path 

from the source to all the other nodes in G, and 

let d' I , d':.;v, , d ' be any other finite 



solution to Bellman's equations, such that 

d ' d., for some i. 

d'l, d , d',-, represent the weights of some 

paths, not necessarily the shortest paths in G. 

Accordingly, if d.i d' i it must be the case that 

d'i > d.i. Now choosing a node J such that 

d'j > d.i, but d'l.: = dk, where (k, j) is an arc in 

the minimum tree of G (there must be at least one 

such arc since d'„, = d^,}. Then d',,- > d',< -/• Wk j, 

contrary to the assumption that 

d'i, d's, , d'r, satisfy Bellman's equations. 

Therefore there is a unique finite solution to 

Bellman's equations. t 

Therefore solving a one-to-al 1 problem in a given 

network G = (N, A) is equivalent to finding a 

minimum tree of G rooted at the source. We will 

denote such a tree by: 

Ta, = (Nr, Ar>. 

To formulate a one-to-al1 problem as a linear 

programming model consider each of the Bel 1 man's 

equations. 



ds.. - min <d,.., + W,^,^} (j) 
U ?i V 

This gives a system of (n-1) inequalities, that is 

far a fixed v, 

i d.., + W,.,^ (II) 

far u = 1,2, . . . . , (V - 1). (v + 1), . . . . , n 

Conversely, if di , ds: . . . . , d^~., , d-^-*-1 , . . . . , d,-i 

are given fixed values and d^ is maximised subject 

to (II), then (I) is satisfied. This suggests the 

fal lowing linear programming problem, 

maximise ds: + d s + . . . . + d,-, 

subject to 

di = 0 

and dv- - d,.,, i V,..,-^ 

for u - 1, 2, . . . . , n 

V = 2, 3, . . . . , n 

and u V 

However, Bellman's equations imply implicit 

functional relationships, that is each shortest 

path weight is expressed as a non linear function 
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of the other shortest path weights. Due to this 

reason Bellman's equations are not solvable as 

they stand, but there are methods for overcoming 

such difficulties which will be considered in the 

remainder of this part. Furthermore in theorem 10 

we required that the network must not have 

nonpasitive cycles, in order to have a unique 

finite solution to Bellman's equations, but the 

computational procedures that we consider here are 

actually effective for networks which contain no 

negative cycles. That is, although the solution 

to Bellman's equations is not unique, the 

computation will terminate with the correct 

solution. 

We now develop a basic algorithm for solving one-

to-all problems to which all known algorithms can 

be related. 

Let d and f-'N be two n-element arrays defining in 

some algorithm. The i*'"' element of d, d(i), 

contains the weight of same path from the source 

to the node, i «=• N, and the corresponding element 

of '"W, ''iirCi>. contains the predecessor node of i 

an that path. If at the termination of algorithm 

d(i), for all i «= N, are the shortest paths then 

the solution is correct. Then the pointer chain 



in '-•JIT will trace back a shortest path from every 

node i to the source node. 

Now let [IMPROVE (A)! be a property such that, 

[IMPROVE (A)] 

B3 (i,j) ^ A, such that d(j} > dd) + V^.i. 

[IMPROVE (A)] is true if there is an arc in A 

which can be used to reduce some element of d. 

Theorem 11: Suppose d(i) is defined for all 

i «=- N, such that d(i) = d(Pi), where F.i is some 

finite elementary path from source to node i, then 

[IMPROVE (A)l is false if and only if dd) is a 

shortest path to i far all i ^ N. 

Proof: Suppose [IMPROVE (A)l is false and assume 

that there exists some node u with a shortest path 

of d' (u) such that d(u> ;^ d'(u). 

Clearly d(u) < d' (u) cannot be true, since it 

implies that there exists a path to u with a 

weight less than the weight of the shortest path 

to u. Then d(u) > d' (u), and this implies that 

d' (u) is defined, ie. d'(u) > ĉ , and hence there 

must be a path. 
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P^., (s, ii, i:r,::, , ib:, u) such that 

d' (u) = d(P.,). Now let i.,- be the first node in F.... 

such that d(ij) > d'(ij), where d'(i.,) is the 

weight of a shortest path to node ij. Clearly 

i.i ^ s. ' Thus, d(ij) > ddj-i) -h W (i . i i j). 

[W(A, B) - lî îev.-? but this contradicts the 

assumption that I IMPROVE (N) J is false. 

Now suppose d(i) is a shortest path to node i, for 

all i <=- N. Then if [IMPROVE (A)! is true, then 

there is an arc (i, J) such that 

d(j) > d(i) + Vi. J, implying a path Pj from s with 

d (P.i) less than the weight of the shortest path 

from s to node J, which cannot be true. 

Therefore [IMPROVE (A)] is false if and only if 

d(i) is a shortest path to node i for all i < ^ N. 

f 

As a result of theorem 11 we can write a basic 

algorithm which may be considered as the 

underlying structure in all labelling algorithms. 

We will refer to this algorithm as labelling 

algori thm. 
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Algorithm l a b e l l i n g ; 
Step 1 { i n i t i a l i s e d ) 

f o r i := 1 to n do 
begin 

d ( i ) := CO; 
•̂̂ •N(i) := 0 

end; 
d ( s ) ;= 0; 
f^'II(s) := s; 

Step 2 { s e a r c h and update) 
while CIMPROVE (A)] do 
begin 

for some a r c ( i , j ) s a t i s f y i n g [IMPROVE (1)1 do 
begin 

d ( j ) := d ( i ) + V i j ; 
f'II(j) i ; 
end; 

end; 
end. 

d(i.) is the weight of some path from s to node i, 

for all i e- N when d(i) is the weight of a 

shortest path then this path is elementary. The 

algorithm enumerates elementary paths in some 

sequence of sufficient length to guarantee that 

shortest paths have been found far every node. A 

search for an arc (i, j) for reducing d(j) will 

always succeed until d(j) defines the weight of 

the shortest path to J for all J ^ N. In Step 2 

of the labelling algorithm d(i) is the weight of 

some finite path from s whose last arc is 

(^••^•N(i), i). 



Theorem 12: Labelling algorithms terminates if 

and only if array d contains the weights of the 

shortest paths from s to every other node. 

Ecnn£: The algorithm terminates if [IMPROVE (A)! 

is false, which in turn implies that d contains 

the weights of the shortest paths from to every 

other node. Now if the shortest paths to every 

node is defined in d, then it is clear that d(i) 

is the weight of some elementary path. But there 

is finite number of such paths in any finite 

network, and each iteration reduced same d(i), 

then termination must occur. t 

Clearly if a network contains a negative cycle, 

then the property [ II>IFROVE (A)] will always be 

true and hence the loop in Step 2 will never halt. 

Therefore the algorithm will never terminate. 

Although this algorithm is fundamental, but it is 

not very useful. Firstly the algorithm will not 

terminate if the network contains a negative cycle 

and secondly and more importantly it does not 

outline how [IMPROVE (A)! is evaluated. 

Operations required for evaluating [IMPROVE (A) J 

can be divided into two categories, scanning arcs 



and searching nodes. Scanning an arc (i, j > «=• A 

is checking whether or not the inequality 

d(j) > d(i) + Vij holds and if it holds modifying 

the labels of node J by setting: 

• d(j> := d(i) + 

Searching node 1 er N is scanning every forward 

star arc of node i. 

The algorithms which are based on the labelling 

algorithm developed above are called labelling 

algori thms. 

According to the manner of searching the labelling 

algorithms can be classified into two: 

1. label correcting algorithms 

2. label setting algorithms. 

Both these methods start with a tree 

TG - (Nr, AT), such that Nr = -Cs} and Ar - 0. A 

label correcting method always updates arcs in Ar 

in a manner that replaces or shortens the weight 

of the paths from s to every other node in T, but 



d o e s not guarantee that the new path is a shortest 

path, until the algorithm terminates. A label 

setting method augments N-r and A-r respectively by 

one node i tsr N and one arc (i, J) tsr A at each 

iteration in such a manner that i t=" N"'" and 

J ^ N-NT, and the unique path from s to i is a 

shortest path in G. A label setting method 

terminates when all arcs in A have their initial 

nodes and terminal nodes in Nr. Ve will consider 

these two general classes of labelling algorithms 

separately in the next two sections. 



8. LABEL CORRECTING ALGORITHMS 

An obvious way of evaluating [ IMPROVE (A)] of 

labelling algorithms, section 7, is to use 

exhaustive searching. Algorithms that use such 

searching are called label correcting algorithms. 

This method was first suggested by Ford, 

[FORD 561, and subsequently details were worked 

out by others including Bellman, [BELL 581, and 

similar results were published by Moore, 

[MOOR 591. 

Ford's algorithm is probably the earliest shortest 

path algorithm to be published. 

In Ford's algorithm, each arc (1, J) i s scanned In 

turn or examined for the property 

d(j) > d(i) + I/x J . If no such arc is found then 

this Implies that [IMPROVE (A)] is not true and 

hence the algorithm halts. Otherwise any arc for 

which the property holds may be remembered for use 

in updating the paths. 



Algorithm Ford; 
begin 
Step 1 { i n i t i a l i s e } 

f o r 1 :- 1 to n do 
begin 

d<i) := «>; 
p N ( i ) 0 

and; 
d ( s ) ;= 0; 
P'NCs) := s; 

Step 2 {se a r c h and update) 
repeat 

s e a r c h . f o r an a r c ( i , j ) s a t i s f y i n g [IMPROVE (A)] 
i f (the s e a r c h succeeds) then 
begin 

d<j) := d ( i ) + V i j ; 
f^'N(j) := 1 

end; 
u n t i l the s e a r c h f a i l s ; 

end. 

The proof of correction and termination of Ford's 

algorithm is the direct result of theorems 11 and 

12, section 7. 

With a sensible search strategy for examining arcs 

a, j) e . A to evaluate [IMPROVE (A)l, Ford's 

algorithm has a time bound of O(n-), see [DERY 691 

and [ YENJ 701. However the algorithms can be 

exponential under very simple search strategies as 

shown by D B Johnson in, [JOHN 771. 
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But using a search strategy which retains same 

information from previous searchs, like 

remembering the point at which the last search 

left of is sufficient to yield an 0(n--') algorithm. 

To develop algorithms with good bounds we first 

consider search strategies which are potentially 

exhaustive. 

Let found <f^ [IMPROVE (A)], then it will hold on 

termination of the following search: 

found := f a l s e ; 
repeat 

s e l e c t ( i , j ) e: A; 
i f ( d ( j ) < d ( i ) + V i j ) 
then 

found i = t r u e ; 
u n t i l ((found) or a l l a r c s i n A have been s e l e c t e d ) ; 

Now we can use this searching scheme directly in 

Ford's algorithm, since testing on found can 

determine if the search succeeded. The updating 

is carried out only if and immediately after found 

becomes true. Now by letting A' denote the set of 

arcs which have been examined for [IMPROVE (A)] 

and moving the updating operations into the search 

loop we get: 



s t e p 2 { s e a r c h and update) 
A' := { ) ; 

repeat 
found ;= f a l s e ; 
while not (found) and (A - A' { ) ) do 
begin 

s e l e c t ( i , j ) e A; 
i f ( d ( j ) > d ( i ) + V i j ) then 
begin 

found := true; 
d ( j ) ;= dCi) + V i j ; 
p^ir(j) := i 

end 
end; 

u n t i l not (found); 

The correctness and termination of this algorithm 

is the direct result of theorems 11 and 12, 

section 7, if choosing (i, j) e- A is a finite 

process which, when repeated, eventually chaoses 

every arc in A. 

Now consider a sufficient bound B for some rule of 

choice so that every arc will be chosen within B 

choices. Again with B defined as above, theorems 

11 and 12 will hold for Ford's algorithm with the 

following refinement: 



s t e p 2 { s e a r c h and update) 
repeat 

found := f a l s e ; 
count 1; 
while (count < B) do 
begin 

choose ( i , j ) e- A; 
i f ( d ( j ) > d ( i ) + W i , i ) then 
begin 

found ;= true; 
d ( j ) := d ( l ) + V i , , 
^»U(j) := i 

end; 
count ;= count + 1 

end; 
u n t i l not (found); 

To find a sufficient value for B, let the rule for 

choosing (i, j) e: A be, choose a r r o > w h e r e 

a = (i, j) A and, in some order 

A = (ai , a.^, , am). The first m choices will 

be exhaustive, so B = m is sufficient under this 

rule of choice. Let us rewrite the inner loop 

once mare using these ideas. In addition we 

introduce a variable pweight which counts the 

number of entries to the inner loop, initially 

setting pweight := 0 then the inner loop becomes: 



pweight := pweight + 1; 
found f a l s e ; 
count := 1; 
while (count < m) do 
begin 

(inn) ( i , j ) := a 
i f ( d ( J ) < d ( i ) + V i j ) then 
begin 

found ;= true; 
d ( j ) := d ( i ) + V i j ; 
'^'N(j) := i 

end; 
count := count + 1 

end; 

i t i s c i e a r - that theorems 11 and 12 hold for 

Ford's algorithm in which step. 2, is replaced by 

the following: 

Step 2 { s e a r c h and update) 
repeat 

inn;' 
u n t i l not (found); 

and the variable pweight is Ignored. To bound the 

outer loop define the property, 

R = (d(i) is the shortest path length from two 

to 1, for all 1 for which there exists a shortest 

path Pi such that I Pi I i' pweight). 

Theorems 13: If d(i) defines the shortest paths 

for all 1 ^ N, then I Pi I i pweight. 



Proof: We only need to cansi der nodes i such that 

the arc shortest path Pj. has exactly (pweight + 1) 

arcs. By assumption, for some such path 

Pi - (s = ii, i , 2.,,,, i), it is truG that 

d(i,.») is the weight of the shortest path to so 

the inner loop, inn, will set (d^) to the weight 

of the shortest path to i and "••Nd) to i ^ , , since 

it tests every arc. t 

Theorem 13 and the preceeding discussion suggest 

a goad exhaustive search in Ford's algorithm as 

fol lows: 

Algorithm Ford with refinements; 
begin 
Step 1 { i n i t i a l i s e ) ; 

f o r i:= 1 to n do 
begin 

d ( i ) : = CO; 
f'N(i) := 0 

end; 
d ( s ) ;= 0; 
f'N(s) ;= s; 
Pweight ; = 0; 

Step 2 { s e a r c h and update) 
repeat 

inn; 
u n t i l not (found) or Pweight i (n-1) 

end. 

In this algorithm two tree functions predecessor 

and length are only used and, it runs in time 

proportional to the depth t of a shortest path 

tree of least depth. 



Theorem 14: The algorithm terminates in 0(tm) if 

f,f.: is defined far nodes in G and in 0(nm) if i s 

not defined far same node in G. 

Proof: The proof of this theorem is a direct 

result of theorems 11 and 12 and also the fact 

that the maximum number of arcs in a path is 

(n-1). t 

This is one of the best results known under an 

exhaustive search strategy. Deleting the variable 

(found) so that the outer loop terminates when 

pweight } (n-1), then the resulting algorithm 

leads to Bellman's algorithm, [BELL 581, which is 

a derivation of Ford's algorithm, [FORD 561, with 

explicit iteration indices. 

Bellman's algorithm; 
Begin 

f o r i := 1 to n do 
begin 

d ( i ) := «>; 
P'N(i) := 0 

end; 
d ( s ) := 0; 
-^'Ks) -.^ Si 
f o r K := 1 to (n-1) do 
begin 

f o r i := 1 to n do 
f o r J := 1 to n do 
i f ( d { j ) > d ( i ) + V i j ) then 
begin 

d ( j ) := d ( i ) + V i j ; { s earch and 
f'N(j) := i r e p l a c e ) 

end 
end 

end. 



In search and replace step af Bel 2 man's algorithm 

every passible correction, ie. i, j ^ N and 

<i, J) t= A or (i, J) «^ A, is examined and this 

step is repeated Cn-l) times. Thus the algorithm 

always runs in OCn'-"') since there are n<n-l) such 

possible corrections. (i), for some node i, 

undefined can only be detected if a negative cycle 

on a path to node i includes s and this can be 

detected by testing d(s> against zero after 

termination. 

An obvious improvement in this algorithm is that 

the forward star arcs of a node i with d(i) = <» 

are not required to be scanned in the search and 

replace step. This improvement can be. made by 

replacing the search and replace step by the 

fal 1 owing: 

f o r i ;= 1 to n do 
i f (d ( i ) t 00) then 
f o r j := 1 to n do 

i f ( d ( j ) > d<i) + V i j ) then 
begin 

d ( j ) := d ( i ) + V i j ; 
'='N(j) := i 

end; 

This improvement also indicates that the order in 

which forward star arcs of nodes are examined is a 

major factor in the efficiency af the algorithm. 



As 3 result of this observation it can be 

concluded that if each arc (i, J) ^ FS(i) has 

been scanned and found to satisfy the condition 

d(i) + Wi.j d (J) then it is not necessary to scan 

these arcs until d(i) decreases. Based upon this 

observation the algorithm can further be improved 

by only examining the forward star arcs of the 

nodes which have not been scanned since their 

label were last changed. This can be accompl ished 

through the use of a boolean set, f, corresponding 

to set N. Initially the boolean element of each 

node i, f(i), is set to false until its label is 

changed. The boolean element of the source node, 

s, is set to true. Then when the label of a node 

is changed, its boolean element is set to true 

until all its forward star arcs are examined and 

then set to false again. The algorithm terminates 

when no more flag is set. Bellman's algorithm 

with this refinement is as follows: 



Bellman's algorithm with boolean l i s t ; 
begin 

for i := 1'to n do 
begin 

d ( i ) : = 0=; 
p'N(i) := 0; 
f ( i ) := f a l s e 

end; 
count := 1; 
d( s ) := 0; 
f^'I(s) ; = s; 
f ( s ) := true; 
while (count > 1) do 
begin 

f o r i;= 1 to n do 
begin 

count ;= 0; 
i f (f ( i ) = t r u e ) then 
begin 

for j := 1 to n do 
i f (.d, > di + V i j ) then 
begin 

d ( j ) := d:L + V i . j ; 
' - l l ( j ) := i ; 
f ( j ) := true; 
count := count + 1 

end; 
f ( i ) := f a l s e 

end 
end 

end. 

In this algorithm count is used to check whether a 

solution if found. Clearly theareins 11 and 12 

hold for this algorithm and it runs in 0(nm) or 

0<n-') in case of complete networks. 

Based on the preceding observation it can be seen 

that the forward star arcs of nodes need not be 

scanned in numerical order as above, they may 

instead be scanned in the order in which the nodes 



were labelled. That is if node i was labelled 

before node J, then the forward star arcs af i are 

scanned before that af node J, regardless of the 

node numbers i and j. This observation can be 

implemented efficiently by using a queue structure 

or a one way linked list as defined in Section 4. 

This is because all the permissible operations, as 

stated in Section 4, are in 0(1), except the 

operation CREATE (Q> which is of 0 (n). In this 

implementation nodes are placed an the queue as 

their labels are altered, and removed from the 

queue as their forward star arcs are scanned. In 

this form the forward star arcs of nodes are 

examined in the order in which they are placed on 

the queue, the queue is said to be managed in FIFO 

manner. 

There is one problem in using a queue and that is 

if a node is placed on the queue whenever its 

label is changed, the same node may appear in more 

than one position on the queue. This means that 

the size of the queue may be longer than n. One. 

way to avoid this is to use a boolean list of size 

n corresponding to N. Then initially the elements 

of this list, flag, are set to false and when a 

node appears on the queue, its flag is set to true 

until it leaves the queue when it is set to false 
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again. The following is Bellman's algorithms with 

this refinement. 

Bellman's a l g o r i t h m with queue; 
begin 

for i := 1 to n do 
begin 

d ( i ) ;= <»; 
•^•IKi) 0; 
f l a g ( i ) := f a l s e 

end; 
CREATE (Q); 
ADDQ (s, Q); 
dCs) := 0; 
f^'FCs) := s; 
f l a g ( s ) true; 
repeat 

u := FRONT(Q); 
f l a g ( u ) := f a l s e ; 
DELETEQ(Q); 
for j := point (u) to (point (u+1) - 1) do 
i f (d ( t e r m ( j ) ) > d(u) + V.. <j>) then 
begin 

dCterm ( j ) := d(u) + V.. 
''N (term ( j ) ) := u; 
i f not ( f l a g (term ( j ) ) then 
begin 

f l a g (term ( j ) ) := true; 
ADDQ (term ( J ) , Q) 

end 
end; 
u n t i l (EMPTYQ(Q)) 

end. 

In this algorithm the function FRONT and the 

procedures CREATE, ADDQ, DELETEQ and EMPTYQ are as 

explained in section 4, the forward star 

representation of a network is considered in which 

variable point (i) is the pointer associated with 

node i and contains the address of the terminal 

node of the first forward star arc of node i in 



list term. It is clear that theorems 11 and 12 

hold for this algorithm and that it has an upper 

time bound of 0(nm) since each node is removed 

from the queue no more than n times. For 

algorithms based on this refinement see CGIVI 731, 

LPAPE 741. [STEE 741, [VLIE 781. [ DEFO 79a] and 

[ DGKK 791. In this implementation if the forward 

star arcs af the latest node added to the queue is 

examined b&fore that of a node placed an the queue 

previously, it is said to be managed in LIFO (last 

in first out) manner. In general examining the 

list in a FIFO manner is much more efficient than 

LIFO alternative, since nodes in some sense 

closest to the root are scanned before those 

further out in the tree, that is if a path in the 

tree is extended from its end node before the 

labels of nodes closer to the root have been 

lowered, the extension will have to be relabel led 

later on. 

The preceding observation can also be implemented 

as outlined by Pape, [ PAPE 741, by using an output 

restricted dequeue, PDQ or simply a dequeue, as 

explained in section 4. In this implementation 

the nodes not in the queue are split into two 

classes. 
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<i.> the "unlabelled nodes", ie. those that 

have never entered the queue (ie. whose 

distance from s are still <»J> ; 

(ii) the "labelled and unscanned nodes", ie. 

those that have passed through the queue 

at least once, and whose current distance 

from s has already been used. 

Then the unlabel led nodes a2~e inserted at the end 

of the queue, while the nodes have been labelled 

and scanned are inserted at the beginning of the 

queue. An easy approach to this implementation 

consists of using a code to disti nguish between 

the two classes of nodes and a node size array 

with two pointers to indicate the two ends of the 

queue, see section 4. In addition a node size 

rray, sit, is used to indicate the situation that 

node is in. The situation of a node i is one of 

the following three. 

<i) sit(i) = 1, if node i is currently in the 

queue; 

(ii) sit(i) = 0, if node i is not in the queue 

and has not ever been on the queue, ie. i 

is unlabel led; 

a 

a 
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(iii) sit(i) = -1. if node i is not currently 

on the queue, but it had been before, ie. 

i is label led and unscanned. 

Bellman's algorithm with this refinement is as 

fal 1 ows: 

Bellman's algorithm v/ith RDQ; 
begin 

for i := 1 to n do 
begin 

d ( i ) := «; 
-^'Ud) := 0; 
s i t ( i ) := 0 

end; 
CREATE (RDQ); 
ADDDQ (s, F, RDQ); 
d( s ) ;= 0; 
f^'If(s) := s; 
s i t ( i ) := 1; 
repeat 

u := FRONT (RDQ); 
s i t ( u ) := -1; 
DELETEDQ (F, RDQ); 
for j := po i n t ( u ) to (point (u+1) -1) do 
i f ( d ( t e r i n ( j ) > d(u) + V.. t.».-n, < j i ) then 
begin 

d ( t e r i n ( j ) ) := d(u) + 
''•JS ( t e r i i i ( j ) ) u; 
i f ( s i t ( t e r m ( j ) ) = -1) then 
ADDQ ( t e r m ( j ) , F, RDQ) 
e l s e 

i f ( s i t ( t e r i n ( j ) ) = 0) then 
ADDDQ ( t e r i n ( j ) , B, RDQ) 

end; 
u n t i l (EMPTYQ (RDQ)) 

end. 

In this algorithm all queue functions and 

procedures are as defined in section 4. and all, 

except CREATE which is of 0(n), are af 0(1). The 

variables B and F used in some af the queue 
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operations Indicate the front and the back ends of 

the queue. 

In the refinement with RDQ the forward star arcs 

of the nodes are examined in DEPTH-FIRST-SEARCH 

manner, that is the forward star arcs of the node 

which was most recently visited are examined. 

However, in the refinement with FIFO management 

they are examined in BREADTH-FIRST-SEARCH manner, 

that is the forward star arcs of the node which 

was last recently visited are examined. To 

examine the efficiency of Depth-First-Search over 

Breadth-First-Search consider the version of the 

algorithm with RDQ and let h be the amount by 

which the label of a node i is decreased, then the 

labels of all the nodes in the subtree of i must 

ultimately be decreased by h, unless the subtree 

later becomes restructured in which case some node 

labels will decrease by an even greater amount. 

In the implementation with a queue managed in 

FIFO manner updating these node labels are 

postponed, since node i is added to the back of 

the queue. In contrast, in the RDQ implementation 

node i is added to the front of the queue, if it 

is not already in the queue. Thus loosely 

speaking, nodes in the subtree of i tend to be 

updated before other nodes are searched. Thus 



updating sequence helps to eliminate unnecessary 

node label corrections that are dominated by the h 

correction that should be transmitted through the 

subtree. That is, an arc (1, j) may satisfy the 

condition d(i) + < d(j) only because d(j) has 

not been reduced by h. 

A s a result of this discussion clearly theorem 11 

and 12 hold for this algorithm which has an upper 

time bound af 0 (nm). Algorithms based on this 

implementation have also appeared in [ MAGO 761, 

[VLIE 781. [DGKK 791. [DEFO 791 and [PALL 811. 

Theoretically. as a result of the above 

discussions this latest implementation of label 

correcting algorithms is the most efficient one, 

however practically this is not always true, see 

section 10. 

All di fferent implementations of the general label 

correcting algorithms stated in this section can 

be considered as specialised variants af the 

primal simplex algorithm where the optimal arcs, 

ie. arcs in Ar, are the basic variables augmented 

by nonexistent arcs which could Jain s to each 

node i N-Nr, ie. all arcs (s, i) with V,„i = <». 

The interpretation is specially direct for the 
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algorithm with the latest refinement which ensures 

that the node labels always satisfy complementary 

slackness, ie. d(j) - d(i) = Wij for (i, j) e: AT 

and d(r> - d(s) = W^,, far r ^ N - N-r. Then the 

process of selecting an improving arc (i, J) 

corresponds to searching for an arc which violates 

dual feasibility, ie. a non basic with a negative 

reduced cost. The process of adding such an arc 

(i, j) to AT- and deleting an arc (f~'N(j), j) from 

AT is equivalent to simplex basis change. The 

update of node labels after this basic exchange 

clearly maintains complementary slackness. The 

pivoting strategy however is different for the 

algorithm with a FIFO management or the other 

refinements. In these variants of the algorithm 

the updating version of the primal simplex 

algorithm is different from the version of the 

algorithm with RDQ in the sense that a basis 

exchange is performed each time an arc is added to 

AT, but the full set of updated node labels in a 

subtree arc not immediately determined. In 

particular these variants differ from the latest 

refinement.- ie. with RDQ, by requiring the 

complementary slackness be maintained only locally 

rather than globally. The result of Dial, Glover, 

Kannig and Klingman, [ DGKK 701, emprical study of 

Bellman's algorithm with FIFO management and also 



with RDQ may support the theory that it is not 

necessarily beneficial to maintain complementary 

slackness after each iteration. The version with 

FIFO management postphanes the updating af the 

dual variables (node labels) and this appears to 

balance the distortion caused by using locally 

updating dual variables with the work required to 

maintain globally updated dual variables. 

Although mast of the improved versions of the 

general label correcting algorithm stated in this 

section, are bounded from above by 0(nm), these 

efficiency changes from algorithm to algorithm. 

The results af worst case analysis and computer 

memory requirement of these implementations are 

tables below: 
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In the above table the codes for the algorithm 

which are used in this work are considered for 

worst case analysis and also memory requirement. 

The structure of the input data is not considered 

in memory requirement. The "rank" columns 

indicate the order of performance of the 

algorithms. This latter conclusion is based on 

the discussions through out this section about the 

algorithms, our empirical study (stated in section 

10), and also the comparison of many publications 

on practical and emprical studies of these 

algorithms such as [DEFO 79a1, [DGKK 791, 

[VLIE 781, [ IMAI 341 and I RAPE 741. 



9 LABEL SETTING ALGORITHMS 

Classifying the nodes either as permanently or 

temporari ly label led, where a permanently label 1 ed 

node is one with a label which is the shortest 

path length. Then if step (2) of general 

labelling algorithm, in section 7, is modified 

such that it finds a node r with the minimum 

temporari ly label defined by, 

d(r) = min {d(i) + Wij I for all permanently 

label led nodes i and unlabelled nodes j) 

and makes the label of node r permanent, then the 

resulting algorithm is the general label setting 

algorithm. This algorithm was first proposed by 

Dijkstra, LDIJK 591, also a similar result was 

obtained independently by Dantzig, [.DANT 601. 

Now, let set Nr represent the set of permanently 

label led nodes, complemented by set (N-Nr) which 

contains the temporarily labelled nodes. Define, 

.4* (c A) = {(i, j) I i ^ NT and j ^ (N-NT)) 

then the general label setting algorithm, named 

after Dijkstra, is as follows: 



D i j k s t r a ' s a l g orithm ( i n general form) 
begin 
s t e p 1 ( i n i t i a l i s e ) 

f o r i : - 1 to n do 
begin 

d ( i ) to; 

K i ) 0 
end; 
d ( s ) : = 
'•'•N(s) s; 
UT := (s)' 

s t e p 2 ( s e a r c h and r e p l a c e ) 
while (A* 0) do 

begin 
choose V e (N-N-r) such that d(u) + 
W,ĵ  = minimum 

{ d ( i ) + V i j I ( i , J ) e A*); 
ST ;= NTU ( V ) ; 
A* ;= A* - { ( i , V) I i e m 

end 
end. 

If this algorithm, in the process of finding an 

arc in A"' which yields the shortest path tree 

extension, in step 2, many possible labels are 

calculated and discarded. The following 

implementation of this algorithm retains this 

information and thus avoids recalculations. This 

implementation of Dijkstra's algorithm will be 

referred to as Dijkstra's algorithm. 



D l j k s t r a ' s algorithm; 
begin 
s t e p 1 { i n i t i a l i s e } 
f o r i := 1 to n do 

begin 
d ( i ) := V,.i; 
i f ( d ( i ) ̂  00) then 
"= •11(1) := s 

end; 
d ( s ) := 0; 
•^IICs) := s; 
min : = «>; 
dum := 0; 
NT := { s ) ; 

s t e p 2 (se a r c h and r e p l a c e ) 
while (U - NT / 0) do 
begin 
s t e p 2' {update NT) 

for i ;= 1 to n do 
i f ( i not i n NT) and (rain > d ( i ) ) then 

begin 
mi n ; = d ( i ) ; 
dum : = i 

end; 
NT := NT U dum; 

ste p 2" {update (N - N T ) ) 
f o r i ;= 1 to n do 

i f ( i not i n NT) and ( d ( i ) > (d(dum) + Vd..™ i ) ) then 
begin 

''•NCi) := dum; 
d ( i ) : = d(dum) + V.=it.m t 

end 
end 

end. 

In the above procedure variables dum and min are 

used to find the node which will become 

permanently labelled next. 

Theorem 15-: Dijkstra's algorithm terminates in 

0(n-'-) time and d<i) defines the shortest path 



length from the source to each node i if the 

network contains no arc with negative weight. 

Proof: The proof of termination is by inspection. 

At each stage of the algorithm the nodes are 

divided into 2 sets, N-r and (N-N-r). At each 

repetition of step 2. one more node becomes 

permanently label led in step 2' and Joins the set 

Nr • Thus after (n-1) repetition of step 2, i'N 

-Nr) = 0 and algorithm terminates. In step 

2' . each operation is repeated at most n times and 

so is each operation in step 2". Thus the 

algorithm runs in OCn-") time. The proof of 

validity is inductive. Consider step 2, (search 

and replace) after i f '' repetition and suppose that 

each node in If-r is labelled correctly, that is for 

each node i ^ Nr, d(i) defines the length of the 

shortest path. This is clearly true when k=l, 

since Nr = {s) and s is labelled correctly. Now 

suppose that node v er (N - Nr) is chosen to be 

labelled next and let ''NCv) = U, then 

d(v) = d(U) + y;..,v.. 

clearly if U ^ Nr then mi n = d (v), Now suppose 

U i= (N - Nr), in fact let node x be the first 



node an the path from s to v which is not in N-r 

and let ''NCx) = Z. 

le • © © — » • — 0 

Then, if all arc weights are non-negative, 

d (v.) ? d (X) + V:,, 

but d(x) + W:,,:„: } ml n, otherwise x would have been 

labelled, then, d(v) min. 

But if V is chosen to be label led next, then 

clearly there is a path from s through z to v with 

d (v) s<' min. 

Therefore, d(v) = min, and hence v is going to be 

labelled with '""NCv) = u where u e- NT. Thus v is 

labelled correctly and d(v) is the length of the 

shortest path from the source to node v. 

Note that the proof of validity of the algorithm 

breaks down if the network contains an arc with a 

negative weight, since we could not show that 

d (v.) min. t 



Sequencing techniques and lists are also used to 

improve Dijkstra's algorithm. Yen, [ YENJ 721, 

implemented the general form of Dijkstra's 

algorithm with a refinement similar to the one 

above, except that he stored (N - Nr) as a linked 

list and then in step 2', {update Nr), instead of 

obtaining dum, the node at the top of the list was 

used and then the upward pointer moves to point to 

the old pointer' s successor. This implementation 

will still run in 0(n'-') time. 

The manner in which set CN-Nr) is searched and 

updated effects the computational timing directly. 

However having (N-Nr ) partial ly sorted rather than 

fully sorted as in, [ YBNJ 721, is more efficient 

since, firstly some nodes i e- (N-Nr) have d(i) = 

<x> and secondly set (N-Nr) will usually change 

slightly from one iteration to the next (these 

statements will be Justified in the remaining of 

this section). 

Before considering further improved implementation 

of label setting algorithm, let us consider its 

relationship with simplex method. Let the set of 

arcs in Ar be the set of basic variables, 

complemented by artificial arcs which start at the 

95 



source, s, and at node i for each i t E " N-Nr such 

that Wmd. = Then the label setting algorithm 

may be viewed as a special purpose primal simplex 

method. Clearly, d(i) satisfy complementary 

slackness at each iteration, 

ie. -d(i) + d(J) = Wij for (i, j) ^ Ar and -d(s) 

+ d(i) = far i ^ N - N,-. 

Furthermore, the process of selecting an improving 

arc a, j) to enter the basis corresponds to 

searching, in some manner, for an arc which 

violates dual feasibility 

(ie. -d(i) -h d(j> > W.. i. , j y) by the largest 

amount. Then the process of adding such an arc to 

AT and deleting the artificial and corresponding 

to the terminal node of this arc, t, from this 

basis is equivalent to simplex basis exchange. 

The setting of d(t) after performing this basis 

exchange simply maintains complementary slackness. 

Therefore, like label correcting algorithms, label 

setting algorithms are special purpose primal 

simplex methods which use different pivot 

strategies. 
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To have set (N - Nr) partially sorted, (N - Nr) 

can be maintained as a heap, as explai ned in 

section 4. The use of a heap was evidently first 

reported for this application by Murchland [ MURC 

601, however he failed to note that his treatment 

yields a worst case bound on complete networks of 

O(n'-logn) time, not as good as the original 

algorithm which runs in 0(n'-) time. This was 

first noted by E Johnson. [JOHN 721. 

To consider implementation of the general label 

setting algorithm with a heap, first let us define 

two more operations on heaps, these two operations 

sift up and sift down are parts of the procedure 

heapfarmer given in section 4. Furthermore in our 

implementation as was first suggested by 

D Johnson, [JOHN 771, each non-empty key of the 

heap will possess same node i in a non-negative 

network, and the value of the key will be the 

value d(i). The two operations sift up and sift 

down are concerned with a heap in which a single 

key had its value changed. If the value decreases 

(this case includes the case where a new node is 

added at the leftmost empty key on the lowest 

level), the heap is restored if the path from the 

root to the key of decreased value is reordered. 



This may be done by comparing the value of the 

changed key with the key above (its predecessor in 

the tree). If the changed key has a lesser value 

then the values of the keys are interchanged, and 

the process is repeated on the key with the 

original change until no more interchange is 

required or the root is reached. The cost of this 

process is proportional to distance the changed 

value moves in the heap. This cost is bounded by 

the order of the depth of the heap, OClogi^") where 

n is the number of keys in the heap and value of k 

depends on the tree type, ie. k = 2 in a binary 

heap, k - d in a d-heap. The procedure for 

restoring a heap, h, fallowing a reduction in some 

d(v) is as follows: 

Procedure s i f t u p ( v ) ; 
begin 

q :- key <v) 
repeat 

i f (q not the root) then 
i f (d (V) < d(h(^"-'N(q))) then 

begin 
h (q) := h ('--NCq)); 
q := f̂ N (q) 

end; 
u n t i l (no key i s moved); 
h (q) := V 

end; 

If the value of a key increases, the ordering of 

the entire subtree rooted at the key with changed 

value is affected. Clearly in this case it is 



s,ufficient to reorder the path from the changed 

key toward the levels which is of the least value 

at each level. Hence the cost is proportional to 

klogt,:'"', since one of the k choices must be made at 

k each key of the path except the last. The 

algorithm far restoring a heap, h, following an 

increase in some d(v) is as fallows: 

Procedure siftdown ( v ) ; 
begin 

q := key (v) 
repeat 

i f <q not i n l a s t l e v e l ) then 
begin 

P := key of node u of min d(u) on the 
subheap rooted at key (q); 

i f (d(v) > d(h ( p ) ) ) then 
begin 

h (q) := u; 
q := P 

end 
end; 

u n t i l (no key i s moved); 
node (q) := v 

end; 

The proof of termination of these two operations 

within the time bounds stated are direct results 

of theorem 9, and more detailed versions of the. 

procedures can be seen in procedure heapfarmer, 

given in section 4. 

In the implementation of Dijkstra's algorithm, we 

will change values associated with nodes (creating 

new keys when necessary on the bottom of the heap) 
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and also identifying and removing the least 

element of the heap. This identification is in 

0(1), since the least element of key value is 

always at the root of the heap. These operations 

are explained in section 4, DELETE (i, h) and 

GETMIN (h). Then the least value which is removed 

is replaced with the value from the rightmost key 

on the lowest level of the tree. This preserves 

the heap. Restoring order is then of 0 (klogi..'''), 

since the removed in a heap of size n -f- 1 is 

equivalent to an increase of the root value in a 

heap of size n, the following implementation of 

Dijkstra's algorithm with a heap differs from that 

of D Johnson, [JOHN 771, mainly in the definition 

of keys, here are suggested by Tarjan, [ TARJ 841, 

the key of a node v, has a value d(v) which is the 

length of the shortest path from s to v. 



D i j k s t r a ' s a l g o r i t h m with a heap; 
begin 

f o r i := 1 to n do 
begin 

d ( i ) := «>; 
'='ir(i) := 0 

end; 
d ( s ) ;= 0; 
'•"•N(s) : = s; 
heapformer (h); 
V : = s; 
while (v 0) do 

begin 
for i := point (v) to (point (v + 1) - 1) do 
i f (d ( i ) > d(v) + V-.i) then 
begin 

d ( i ) := d(v) + V ^ i ; 
'=N{i) := v; 
i f ( i not i n h) then 
begin 

ADDH ( i , h); 
s i f t u p ( i ) 

end 
end; 
V := GETMIN (h); 
DELETE (V, h) 

end 
end. 

By inspection, in this implementation there are 

one heapf ormer, n, DELETE operations, n ADDH 

operations and at most m decrease or label 

updating operations. Therefore if we use a binary 

heap, the algorithm runs in 0(mlogn), and if a d-

heap with d + 2 + m/,,, then the running time is 

in 0 <m log,:,',;: „>>-,nP. The proof of validity and 

termination of these algorithms in the stated time 

bounds is the direct result of the above 

discussions and theorems 9, 11, 12 and 15. The 

102 



result of this implementation is clearly superior 

to that of Dijkstra's far spouse networks. 

Fredman and Tarjan, [FRET 85], suggest the use of 

a heap called, FIBONACCI heap, which is an 

extension of binomial queues, see section 4, 

instead of a d-heap to implement Dijkstra's 

algorithm. The resulting algorithm is then 

bounded from above by 0 (nlog (n-hm)) which gives the 

best result in implementing the algorithm with a 

heap. This implementation is the same as the one 

described above however, we have not analysed it 

in this work. 

Another method which provides a more direct access 

to a temporary labelled node with the minimum 

total weight is called "address calculation sort". 

This method was arginal ly developed by Dial, [DIAL 

651, and is based an the following observations. 

If a node v not yet in the minimum tree, ie. v ^ 

N-NT, has a finite total weight, then it has been 

labelled, ie. a path to node v has been 

determined. Since any node can only be label led 

from a permanently label led node, then v must have 

been labelled by a node u ^ Nr. 
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Upon being relabelled by node u, v's total weight 

will have become equal to d(u), total weight of a 

permanent node u, plus the weight of the arc (u, 

v). Therefore, for any labelled node v N-Nr we 

have d(v) = d(u) + (the weight of some arc) where 

u (= Nr, Now suppose that node v is a temporary 

labelled node with the minimum total weight, d(v), 

then d(v) bounds from above all the permanently 

labelled nodes, ie. if u ^ Nr then d(u) ( d(v), 

since a node u «E- Nr- has entered the tree before v 

N-Nr. It also bounds from below the weights of 

all the temporary label led nodes, ie. if t «=- N-N-r 

then d(t) P d (v). Furthermore, the weight of any 

temporary label 1 ed node t «=• N-Nr - <v) is bounded 

from above by d(v) plus the maximum arc weight in 

the network, since the total weight of t equals 

the total weight of some permanently label led node 

plus the weight of some arc, and d(v) bounds from 

above all the permanently label led nodes. 

Therefore, denoting the maximum arc weight of a 

network by WMAX, then 

d(v) i d(t) ( d(v) + WMAX 

ie. at any stage in the execution of the 

algorithm, if node v is a temporary labelled node 
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with the minimum total weight, then the total 

weights of all the temporary labelled nodes are 

bracketed on the lower side by d(v) and on the 

upper side by d(v) + WMAX. 

Using this property, at any stage in the execution 

of the algorithm, the total weights of all the 

temporary labelled nodes can be represented modulo 

WMAX + 1. The best way to illustrate this is by 

loosely defining an array, NODEARRAY, with (WMAX + 

1) locations where: 

NODEARRAY(i) stores any labelled node, u e N-NT, 

far which d(u) mod (WMAX + 1) = i. 

Theorem 16: At any stage in the algorithm, 

NODEARRAY, can stare temporary label led nodes with 

every possible total weight, and no location of 

NODEARRAY will contain nodes with different total 

weights. 

Proof: Suppose that, at some stage in the 

algorithm a temporary labelled node v has the 

minimum total weight among such nodes, and let 

d(v) mad (WMAX -f- 1) = i. Furthermore let node v 

be any other temporary label led node. Node r will 
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be stared in location i of NODEARRAY. The minimum 

value of d(r) is d(v) and at this value node r 

will also be stored in the same location, ie. 

NODEARRA Yd), si nee 

d(r) mod (WMAX + 1) = i. 

As d(r) increases by one unit at a time, then d(r) 

mod (WMAX + 1) = i+1, i+2, consequently node 

r will be stored in locations i+1, i+2, 

When d(r) reaches (WMAX + 1), then d(r) mod (WMAX 

+ 1) = 0, and node r will be stored in location 0, 

ie. NODEARRAY (0). As d(r) increases from (WMAX + 

1), then d(r) mod (WMAX + 1) = 1, 2, and node 

r will be. stared in locations 1, 2, . . . , in 

NODEARRAY. Eventually d(r) reaches the maximum 

passible value that it can have, ie. d(v) + WMAX, 

but (d(v) + WMAX) mad (WMAX + 1) = (d(v) - 1) mad 

(WMAX + 1) and since, d (v) mod (WMAX + 1) = i, 

then (d(v) - 1) mad (WMAX + 1) = (i-1). Therefore 

temporary labelled nodes with any passible total 

weight can be stored in NODEARRAY, and no location 

of NODEARRAY will contain nodes with different 

total weights. t 

As a result of the theorem above. NODEARRAY 

achieves an "automatic sort" of the label led nodes 

not yet in the tree relative to their total 



weights. That is, starting from any location i in NODEARRAY, 

locations i+1, 1+2, will contain nodes of increasing total 

weight values. Upon reaching the end of the array, nodes in 

location 0 will have a higher total weight than those in 

location (VMAX + 1). 

To complement NODEAERAY for computational purposes, it is 

arranged as follows: 

NIL if i / d(v) mod (VMAX T 1) 

for any v N-Nr; 

NODEARRAY(i) = 

P where F' is a pointer to 

the first node in a 

linked list of nodes 

q HE- N-Nr, such that 

d(q) mad (WMAX + 1) = i . 

The current minimum total weight is then found by 

sequencially examining the elements of NODEARRAY 

in a "wrap-around" fashion (ie. when the end of 

the array is reached, go back to the beginning). 

Each time a painter is encountered, the current 

minimum total weight is that of the nodes in the 
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linked list associated with that pointer. Each 

node u in this linked list can then be searched 

and removed from the linked list. A relabelled 

node V will have its location in NODEARRAY 

calculated, ie. d(v) mad (WMAX + 1) and added to 

the appropriate linked list. This may involve 

removing node v from its original linked list. 

The examination of NODEARRAY always assumes where 

the last examination ended so nodes with 

increasing total weights are encountered each 

time. The algorithm terminates when NODEARRAY is 

empty, implying that all the label led nodes. or 

reachable nodes from the source, are in the tree. 

Here, we explain, rather than give an 

implementation of this algorithm because, of the 

complexity and the length of it. However, the 

complete Pascal code of this implementation is in 

appendix D. 
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Algorithm Address C a l c u l a t i o n ; 
begin 

s t e p 1 
( i n i t i a l i s e ) ; 

s t e p 2 
while (TODEARRAY i s not empty) do 
begin 

s e a r c h through UODEARRAY to f i n d the next 
pointer to a l i n k e d l i s t ; 
i f (a pointer to a l i n k e d l i s t i s found) then 
begin 

repeat 
f i n d the next node u, i n the li n k e d l i s t ; 
add node u to the t r e e nodes; 
for each forward s t a r a r c of node u, 
<u, v) where v e N-N-r, do 

i f (d(u) + V..^ < d<v)) then 
begin 

i f (node v i s a l r e a d y i n a li n k e d 
l i s t i n NODEARRAY) then 
begin 

compute node v's current address 
( l o c a t i o n ) i n NODEARRAY; 
remove node v from i t s current 
l i n k e d l i s t pointed to from t h i s 
address; 

end; 
d(v) := d(u) + V....; 
'=11 (v) := u; 
c a l c u l a t e node v's new address; 
add node v to the l i n k e d l i s t 
pointed to, from t h i s address; 

end; 
remove node u from the l i n k e d l i s t ; 
u n t i l (every node, u, i n the li n k e d 
l i s t has been examined); 

end; 
end; (while) 

end. 

The proof that this algorithm is correct is the 

direct result of theorems 15 and 16. By-

inspection, we can also observe that this 

algorithm runs in 0(n(¥MAX + D ) time and requires 

OCVKAX + 1) memory space. Clearly, it is not 



passible to theoretically compare this algorithm 

with the other labelling algorithms, but almost 

all empirical studies of such algorithms have 

identified this implementation as the fastest 

single source algorithm for both sparse and dense 

networks in which ¥MAX is small compared with n 

and m, ie. (WMAX.) = 0(n) or at most (WMAX) 0(m). 

However, in case of small networks with WKAX 

rather large, this implementation will be much 

slower than the other labelling algorithms. 

This implementation can be Improved by reducing 

the effort of inserting and removing nodes on the 

linked lists by postponing adding nodes to the 

list. This can be done by observing that it is 

unnecessary to scan the entire forward star of a 

permanently labelled node v. In particular, only 

the endpaint of a minimum weight arc in such a 

forward star needs to be considered for addition 

to NODEARRAY. This follows from the fact that the 

total weights of the temporary label led nodes 

determined from node v will be bounded from below 

by the total weight of such an arc with the 

minimum weight. This refinement was first 

suggested by Dial, Glover, Karney and Klingman, 
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[ DGKK 79], however it requires that the network to 

be stored in a sorted forward star form which 

requires some preprocessing- in 0 Cn''-) time and 

this, clearly, makes the use of such 

implementation inefficient. 

Another method of storing the temporary labelled 

nodes relative to their total weights is by means 

of buckets, see section 4. A precursor to this 

method is given by Loubal, [ HITC 683, Dial, [DIAL 

651, and also Gil son and Witzgall, [GIVI 731. In 

this method, temporary label led nodes whose total 

weights fall within a specified range are stored 

together. The col lection of nodes is called a 

bucket. To sort several temporary label led nodes 

of diffej-ing total weights, several buckets may be 

used. Each bucket will contain nodes of a 

different total weight range. For instance 

suppose that nodes A, B and C have total weights 

of 1, 3 and 7, repsecti vely. Then, if bucket 1 

stores nodes v, such that 

0 ( d (v) < 4 

and bucket 2 stores nodes v, such that 



4 v< d(v) < 8 

then bucket 1 will contain nodes A and B, and 

bucket 2 will contain node C. 

Far any bucket holding nodes v, with total weights 

within (a, bl, ie. a i d(v) < b, Cb - a) is its 

width. For example buckets 1 and 2 above have a 

width of 4. When several buckets are used to 

store temporary label led nodes with different 

total weights, the set of buckets are arranged in 

a bucket list. The bucket list is a collection of 

buckets 0, 1, 2, . . . , where bucket i contai ns 

nodes v, such that 

a i d(v) < b 

and bucket Ci + 1) contains nodes, v such that 

b ( d(v) < c etc. 

All the buckets in the bucket list, have the same 

width. In general if Z is the bucket width, then 

bucket i stares nodes v, such that 

i * Z ( d(v) < a + 1) Z. 



The bucket list achieves an automatic sort of the 

temporary labelled nodes, relative to their total 

weights. To access the nodes whose total weights 

are currently the minimum, the lowest non-empty 

bucket is found. Nodes in this bucket are then 

searched, ie. their forward star arcs are scanned. 

Any relabelled node is put into the appropriate 

bucket. This may require removing the node from 

its original bucket. Note that only nodes with 

forward star arcs are placed into the bucket list. 

This prevents unnecessary searching of a node that 

can not relabel any other node. The nodes in the 

lowest numbered non-empty bucket i, can be 

searched in any order, and this is achieved by 

setting Z equal to the weight of the lowest 

weighted arc in the network. 

Theorem 17: if Z = minimum {Wi. j I (i, J> <sr A), 

then no node can relabel another node in the same 

bucket. 

Proof: Let WMIN = minimum / (i, j) er A) and 

suppose that bucket i contains two nodes u and v, 

both with temporary labels, and that node u is 

being searched. If node u relabels node v, then 

the new total weight of node v will be given by 
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d('v.> = dCu) + (the length of same arc). 

The lowest possible value that d(v) could have is 

(d(u) + WMIN) and for node v to be relabelled, its 

original total weight must have been greater than 

this. Now bucket i holds node u, such that 

i # VMIN ^ d(u) < (i+1) * VMIN, 

therefore the lowest passible value of d(u) is (i 

* VMIN). Thus the lowest passible value the new 

total weight of v could have is given by 

d<v) = <i * VMIN) -h VMIN 

= (i+1) * VMIN 

and the original value of d(v) must have been 

greater than (i+1) * VMIN. But this is contrary 

to the assumption that bucket i holds node v, 

since d(v) < (i+1) VMIN. t 

Corollary 17. 1: Any relabelled node will always 

be put into a higher numbered bucket in the bucket 

list. 
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Using this property, the search far the next 

lowest numbered bucket can always resume when the 

last one stopped. 

The algorithm terminates when there are no more 

non-empty buckets left in the bucket list, 

implying that every node has been permanently 

label led. 

To implement the general label setting algorithm 

with this refinement, let us define the bucket 

list, BUCKLIST, a linear list, as follows: 

BOOKLIST (i) = 

NIL if bucket i contains no 

node; 

F if bucket i contains one 

or more nodes, then F is 

a pointer to the first 

node in a linked list of 

nodes in bucket i. 

Bucket i in BUCKLIST will contain node v such 

that, 

d(v) (i+1) * 



where Z is the bucket width and is set to VMIN. 

The minimum weight of the weighted arcs. The 

fal lowing is an outline of this implementation, 

and the complete Pascal code of it is in appendix 

E. 

Algorithm bucketsort; 
begin 

S t e p 1 
{ i n i t i a l i s e ) 

s t e p 2 
while (there i s s t i l l a non-empty bucket do 
begin 

se a r c h through BUCKLIST to f i n d the next pointer 
I n d i c a t i n g the next non-empty bucket; 
i f (a pointer i s found) then 
repeat 

f i n d the next node, R, i n the bucket; 
add node S to N t ; 
f o r every node C such t h a t (R, C) e: A-A-r do 
begin 

i f ((d(R) + V.~c) < d(C) then 
begin 

i f (node C i s al r e a d y i n bucket) then 
begin 

c a l c u l a t e which bucket node C i s i n ; 
remove node C from i t s current bucket; 

end; 
d(C) := d(R) + V r c ; 

^=R(C) R; 
i f (node C has a forward s t a r a r c ) then 
begin 

c a l c u l a t e which bucket node C i s to be 
put in; 
put node C i n t o the appropriate bucket; 

end; 
end; 

end; 
remove node R from i t s bucket; 

u n t i l (every node i n bucket has been searched); 
end; {while) 

end. 
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The proof of correctness of this algorithm is a 

direct result of the theorems 15 and 17, and the 

proof of its termination in OCm + (n * Z)) is by 

inspection and clear, note that the number of 

buckets necessary for the computation is at most 

Z(n-l) . 

The efficiency of the above method, known as 1-

level bucket depends highly an the parameter Z. 

Based on this observation, Denarda and Fax, [DEFO 

79a], introduced the 2-level and k-level bucket 

techniques which have better computation times 

than the 1-level bucket technique. In 2-level 

bucket technique the temporary labelled nodes are 

maintained by a 2-level bucket system. That is on 

the first level the nodes are distributed into Z 

buckets of width Z * VMIN and on the second 

level, the nodes which are contained in the 

smallest numbered bucket that is non-empty on the 

first level are distributed into Z buckets of 

width WKIN of the second level. By doing so, the 

computation of the method will be reduced to OCm + 

n Z ) time. The k-level bucket technique is 

similar to 2-level bucket and reduced the 

computation time to OCm -f KnZ'-^'-). However, we 

have not considered this refinement in this work. 



All label setting algorithms run approximately in 

0(n-'-') time in worst case. However, as a result of 

the above discussi ons and theorems concerning the 

label setting algorithms, the study of many 

practical and empirical surveys such as those used 

for comparing label correcting algorithms and also 

our own empirical study of the best of these 

algorithms which is introduced in section 10, we 

can draw the following conclusions about the label 

setting algorithms. In this conclusion, it is 

assumed that the maximum weight of the weighted 

arcs in a network is small compared with n'--. 
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10 AN EMPIRICAL STUDY 

In this section, five different implementations of 

labelling algorithms are evaluated by solving the 

one-to-all ' probl em an a di verse set of randomly 

generated networks using the same computer CFRIJfE 

750), the same compiler CFASCAL RUN COMFILER) and 

executing the codes during a time period with a 

constant demand an CFU time. The implementations 

studied here are: 

1. Dijkstra's label setting, SI ; 

2. general label setting with address 

calculation, S2; 

3. general label setting with 1-level buckets, 

S3; 

4. general label correcting with a queue, using 

FIFO management, CI; 

5. general label correcting with a output 

restricted double ended queue, C2. 

Each algorithm is used to solve the same set of 

"small" randomly generated networks, and its 

performance behaviour is observed as: 



Ca.> the number of nodes in the networks 

grows; 

Cb) the number of arcs in the networks grows. 

The number of nodes, n, in the networks are 

10, 20, 40, 60, . . . , 200 and for each node size 

there are 9 networks which vary with respect to 

random variation in their number of arcs, m, which 

is bounded from above by k, where k takes the 

values, 

n Cn-1). 2n Cn-1?. , dn Cn-1? 
10 10 10 

In other words we consider a complete network, 

ie. m = nCn-1), and generate random networks with 

n nodes which are ClOO-lc^Z arc free, for 

k90, 80, 70, . . . , 20 and we repeat the process for 

dl fferent values of n which are stated above. In 

all the networks the arc weights are three digit 

random numbers, regardless of the node size or the 

arc size. In the following algorithm, used for 

generating a random network with n nodes and 

k n Cn-1) arcs for a given n and a given k 
100 

where 100 x< k ( 100, the procedures RAND2 and 
n 

RANDS produce 2 and 3 digit random numbers. 



Algorithm Random Hetwork; 
begin 

for i : = 1 to n do 
f o r J : = 1 to n do 
i f (.i ̂  y) then 
begin 

RAirD2 (num); 
i f (num < (lOO-k-D) 
then 

RAIID3 ( V i j ) 
e l s e 

V i j : = CO . 

end 
end; 

Note that we require m Cn-1) in order to have a 

connected network, thus k P 100. 
n 

The following table illustrates the computational 

times of the implementations tested. 



n 
NODES 

k 
DENSITY 

{%) 

CPU TIME 

CI 

IN MILLISECONDS 

C2 S I • S2 S3 

10 10 0 0 3 24 79 20 10 6 3 9 61 91 40 10 21 21 63 79 116 60 10 58 58 137 109 145 
80 10 97 103 239 130 179 100 10 151 124 366 172 230 120 10 209 206 515 233 287 

140 10 352 339 700 273 336 160 10 412 388 903 342 394 
180 10 648 842 1152 397 458 20.0 10 651 730 1400 458 503 
10 . 20 3 3 6 40 82 
20 20 12 12 18 48 100 
40 20 58 61 73 78 131 
60 20 91 94 158 118 170 
80 20 164 187 272 173 239 

100 20 309 306 421 239 300 
120 20 476 500 603 324 376 
140 20 530 663 803 397 440 
160 20 778 985 1027 485 521 
180 20 864 903 1300 615 648 
200 20 1409 1576 1591 725 755 
10 30 3 6 9 40 88 
20 30 19 15 24 49 103 
40 30 49 46 82 85 140 
60 30 139 154 176 143 203 
80 30 228 233 300 218 279 

100 30 481 660 467 306 357 
120 30 694 745 661 412 454 
140 30 921 788 888 527 557 
160 30 1045 1222 1167 672 700 
180 30 1521 1639 1464 788 809 
200 30 1700 2397 1785 943 955 
10 40 6 7 9 34 91 
20 40 21 15 25 58 106 
40 40 97 82 90 97 155 
60 40 233 200 200 176 243 
80 40 360 418 331 252 306 

100 40 676 788 512 367 415 
120 40 866 1048 734 521 548 
140 40 1321 1618 976 633 667 
160 40 1376 1712 1276 788 812 
180 40 1967 2328 1594 970 978 
200 40 2445 3081 1957 1154 1146 



n 
NODES 

k 
DENSITY 

(%) CI C2 SI S2 S3 

10 50 6 10 10 33 91 
20 50 33 34 27 51 112 
40 50 97 110 97 112 173 
60 50 260 303 212 185 257 
80 50 575 591 372 309 363 

100 50 585 673 563 425 454 
120 50 963 1149 813 594 618 
140 50 1609 1600 1079 725 749 
160 50 1924 2379 1394 939 954 
180 50 2206 3203 1749 1136 1131 
200 50 3227 3933 2158 1370 1350 
10 60 7 9 9 45 91 
20 60 36 36 30 54 109 
40 60 109 122 110 115 179 
60 60 297 324 234 218 276 
80 60 676 952 403 336 385 

100 60 852 1012 616 491 524 
120 60 1215 1533 869 679 697 
140 60 1821 2537 1167 870 885 
160 60 2118 2654 1509 1085 1070 
180 60 2961 3534 1888 1297 1294 
200 60 3836 5815 2330 1554 1545 
10 70 9 9 6 36 94 
20 70 31 27 33 55 112 
40 70 163 185 115 131 200 
60 70 333 448 251 225 288 
80 70 706 912 430 370 412 

100 70 894 1224 561 527 558 
120 70 1475 1753 934 739 755 
140 70 1882 1970 1251 958 972 
160 70 2537 3048 1627 1203 1194 
180 70 3188 4309 2037 1476 1451 
200 70 4734 7691 2500 1764 1764 
10 80 9 9 13 36 94 
20 80 30 33 33 60 112 
40 80 142 160 122 140 . 209 
60 80 379 524 263 254 316 
80 80 621 667 463 403 445 

100 80 1100 1354 730 500 639 
120 80 1493 1718 1012 797 818 
140 80 2657 4566 1343 1057 1054 
160 80 3127 3597 1739 1324 1312 
180 80 3715 5097 2194 1615 1600 
200 80 4591 5897 2691 1933 1927 
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n 
NODES DENSITY 

CI C2 SI S2 S3 

10 90 12 12 13 40 94 
20 90 39 40 36 63 118 
40 90 228 249 127 149 212 
60 90 445 673 281 276 333 
80 90 894 1073 500 448 500 

100 90 1139 1737 761 637 667 
120 90 2013 2748 1070 876 897 
140 90 2591 4263 1436 1136 1139 
160 90 3470 4636 1869 1440 1419 
180 90 4430 6582 2321 1754 1739 
200 90 6143 8967 2867 2161 2131 
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The following conclusions based on the above table 

can be drawn about the tested algorithms. 

1. The general label setting implemented with 

address calculation sort is the most 

efficient. However, in this study only small 

networks (ie. n ( 200) are considered and the 

arc weights are small compared with n'^'. 

2. The general label setting with bucket sort is 

almost as efficient as the one with address 

calculation, especial ly in case of dense 

net works. 

3. The general label correcting with a output 

restricted double ended queue is more 

efficient than that with a single queue for 

sparse networks (K i 20%) and also for small 

networks (n ( 100). 

4. Dijkstra's algorithm becomes more efficient 

as the number of nodes grows and also as the 

network becomes more dense, especially for k 

>? 30Z, Dijkstra's algorithm becomes the third 

best. 



5. The general label correcting with a single 

queue managed with FIFO, becomes the fourth 

best with n 120, and the general label 

correcting with output restricted double 

ended queue is the third best with k 20%, 

the fourth best with n i 100 and the fifth 

best otherwise. 

Figure 12, illustrated the graph of the average 

CPU times of the algorithms against different 

densi ties in the same set of diverse randomly 

generated networks with upto 200 nodes. 
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11 MATRIX MULTIPLICATION ALGORITHMS 

To study all source algorithms, as defined in 

problem classification, 

let d.x ' = the length of a shortest path from i 

to J subject to the condition that 

the path contains no more than m 

arcs. 

then if f/y .» = 0, for all i, 

(11. 1) d.i .i = 0 

d . i . , ' " " ' • = min ^ d . ^ . " " ' + w,.,../; 

Clearly the computation of (11.1) will converge at 

the (n-1)""' operation, ie. di.i = dij. The 

overall computation is in 0(n") time, since it is 

the n repetition of Bellman's algorithm which runs 

in 0(n"') time. However, these equations have a 

property that their computation is equivalent to 

the "plus-min" inner product, 



i e . let c = [ C.,:., J = AB 

n 
where = 27 

k=l 

and suppose that the matrix multiplication is 

redefined as *, where 

C = [Ci..il = A * B 

and 

C:ij = min {an-. + fa.< 

i e . let addition take the place of multiplication 

and minimisation take the place of addition. 

Now let D - [d.i.,1 and consider W = [w^j], ie. 

represent dxj's in a n*n array and consider the 

adjacency matrix representation of the arc 

weights, then: 

p c o . > = £d'-"\ijl, where d i .y = { 0 if i = J 
<» otherwise 

' •' = D' " * ¥ = ((CD'-'" '' * W) * V) * W> 



Theorem 18: Plus-min inner product method solves 

equations of (11.1) in 0 (n-'log-,::'''). 

Proof: For this type of matrix multiplication, 

clearly, i s the identity matrix, 

ie. D''-'-' * W = V, furthermore the multiplication 

is associative, thus D""'' •' = 7 .-̂  where v<-'••>--'•' 

i s the (n-1) power of W. 

Now since W-'" = ' for any 2" > (n-1), then it 

is appropriate to square ¥ until a sufficiently 

high power of W is obtained, ie. ¥'•' = V * W, 

then, = W--^- * , for 2" > (n-1). 

Now clearly this method requires logs''' 

multiplications, each of which is an 0(n'--'). Thus 

the method solves the equations in 0 (n~-'log:s'''). t 

This approach to "all-to-all" shortest path 

problems was first made by Farley, Land and 

Murchland, [ FALM 671, and the algorithm was 

called, by them, "cascade algorithm". Hu, 

[ HUTC 671, also gives an extensive discussion on 

this type of approach to all-to-all problems. 



12 TRIPLE ALGORITHMS 

The earliest work on this type of algorithm was by 

FLOYD, [FLOY 62J, on a paper by Varshall, 

[WARS 621, on transitive closure which is 

equivalent to a shortest path problem in which all 

arc weights are zero. This method runs in 

0 (n'-~-log::>'''') time. Before considering triple 

algorithms, let d.i ,,• ' be redefined as: 

d.i .,• ' ' = the length of a shortest path from i to j 

subject to the condition that the path does not 

pass through nodes m, m+1, , n (except i 

and j). 

Now, a shortest path from i to j which does not 

pass through nodes m+l, m+2, , n ei ther 

(1.) does not pass through node m in which 

case di j ''" ̂-' ' = d . i ' ' / 

or 

(2) does pass through node m in which case 

Thus we have. 

l o o 



(12. 1) d,, ' = V,,- . 

d .i ,y ' ' ' = mi n {d .i .,• ', d .t ,„ ' ' + d„, <''; 

a n d clearly, d.i = di.j, the length of a 

shortest path from i to J. This algorithm is 

named after Warshal 1-Floyd and has the following 

general form: 

Algorithm V a r s h a l l - F l o y d ; 

begin 
{ i n i t i a l i s e } 
for i : = 1 to n do 
begin 

for j : = 1 to n do 
d i ; i ; = V i . , ; 

d:Li = 0 
end 
<search and r e p l a c e ) 
k:= 0; 
while (k < n) do 
begin 

k:= k+1; . 
f o r i : = 1 to n do 
f o r J:= 1 to n do ) (12.2) 

( d i j , ( d i K + d h : j ) ) 
end; 
{check) 
fo r i:= 1 to n do 
i f ( d i i < 0) 
then 

report f a i l u r e 
e l s e 

report s u c c e s s 
end. 



Theorem 19: Algorithm Varshal 1-Floyd termi nates 

in 0 (n ~-') reports, 

<i) success and defines a shortest path 

between every pair of nodes if there is 

no negative cycle; 

<ii) failure otherwise. 

Proof: The time bound is obvious from inspection 

of the program, for correction let 

T = d.t,, = min -Cdij, Cdi/,. -/• du j)} . k<n 

Clearly T is satisfied before the start of the 

minimisation process, ie. after the initialisation 

steps in the algorithm. Now let k' = k+1 for some 

k under which T is satisfied initially. Clearly 

(12.2) examines every triple < i, K', j >, 

replacing d.,.,, if and only if there is a shorter 

path via {1, 2, , k') than via 

{1, 2, , (k'-l)}. But this satisfies T for 

K = 0 to k ( n, due to the fact that there can 

only be a maximum of (n-1) arcs in a path and also 

the results of theorems 11 and 12, if there is no 

negative cycle, ie. the algorithm will halt with a 

solution if there is no negative cycle. Otherwise 
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far some i <=- N, dii. i'0 which indicates that 

there is a negative cycle in the network. t 

Dantzig, [ DANT 671, proposed a variant of 

Varshall-Floyd's algorithm which requires the same 

computation time and memory space. Both 

algorithms are the same except in Dantzig's 

algorithms the iteration step, ie. {search and 

replace) is divided into parts. If the following, 

(12.3), replaces (12.2) of Warshal 1-Floyd's 

algorithm, then the resulting algorithm will be 

that of Dantzig. 

(12,3) f o r i := 1 to k do 
f o r j := 1 to k do 

dkj:= min (Vki + d i j ) ; 
f o r i:= 1 to k do 

f o r J;= I to k do 
dii<: = min {di.i + Vjk) ; 

f o r i:= 1 to k do 
f o r j:= 1 to k do 

d i j := min (dik + duj i di.i) 

The proof of correctness and termination of 

Dantzig's algorithm is the same as that of 

Warshall-Floyd' s algorithm. 

Iri and Nakamoni, [ IRNA 721, exhibited a set of 

triple algorithms which run in 0(n-~') time. Most 

of these algorithms are similar to and are. based 

on Warshall-Floyd algorithm. 



13 MODIFIED LABEL SETTING ALGORITHMS 

The all-to-all problem on a network which contains 

no arc with negative weight, can be solved by n 

iterations of a label correcting algorithm, one 

far each possible source. Then, clearly this 

solution method will run in 

0 ( n m l o g . : n ) . If the label setting method 

is implemented with a d-heap as stated in section 

9. This Implementation runs faster than 0(n~O 

time for sparse networks, and in OCn-') time for 

dense networks. However, the result can be 

further improved by implementing the label setti ng 

algorithms with address calculation sort, see 

section 9, or with a f-heap. Then as claimed by 

Tarjan, n repetition of the algorithm solves an 

all-to-all problem in a non-negative network in 

0 (n-^'log (n+m)) time. Even if the network contains 

arcs with negative weights, the same time bound 

can still be obtained by making all the arc 

weights non-negative in a preprocessing step. 

Edmonds and Karp, [EDKA 721, defined the 

appropriate transformation which is as follows: 



First we add to network G a new node (n + 1) and a 

ZERO WEIGHT ARC ((n + 1), i) for every node i in 

G. Then d< , , ,./ t i s c a l c u i a t e d far every node i. 

Using a label correcting algorithm will take 0(nm) 

time. Finally a new weight for each arc (i, J) 

can be defined by Wi .i = Wi j + d<.-,-,.v-; .> / - d,:i :, j . 

Clearly, Wi.i > 0 for every (i, J) e A. This is 

due to d , I :, .j being the length of a shortest path 

from (n + 1) to J which gives 

do-,-v.>.i + V,..i > d(n+l)J and thus Wi .i > 0. This 

transformation makes all arc weights non-negative 

and preserves shortest paths, since i t transforms 

the lengths of all paths from a given node i to a 

given node J by the same amount, dx - d,,-. 

Thus this solution method is correct for negative 

networks as well as non-negative networks and runs 

in 0(n'-') time. Then it may be concluded that the 

modified label setting algorithms are faster than 

triple algorithms which are in turn faster than 

matrix multiplication algorithms. Although this 

statement is true in case of worst case analysis, 

the empirical studies of these algorithms do not 

quite support it. However implementation of a 

label setting algorithm with a F-heap or address 
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caculation sort has not yet been considered for 

all-to-all problems in any empirical study, to the 

best of the author's knowledge, and that unlike 

the empirical studies of single source algorithms 

which mostly report consistant results, in the 

case of all source algorithms most results are not 

consistant. For example Dreyfus, [DREY 691, 

reported that Dij'kstra's algorithm requires 50% 

more time than that of Floyd and that of Dantzig. 

Yen, [ YENJ 701, reported that his implementation 

of Dijkstra's algorithm is 25% faster than Floyd's 

algorithm, Kelton and Law, [ KELA 781, claimed that 

the matrix multiplication methods are most 

efficient on Dense networks, Floyd reported that 

his algorithm is the fastest, Glover and Klingman, 

[ GLKL 821, have results that shows Dijkstra's 

algorithm is faster than that of Floyd. However, 

most of these studies agree that for small 

networks with up to 400 nodes, modified label 

setting algorithms are faster, especially in case 

of sparse networks. 

Another reason which makes the use of label 

setting algorithms in solving all-to-all problems 

more papular is that in most practical situations 
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the shortest paths from every node of a subset of 

N to every other node in N are required, rather 

than from every node to every other node in N. 

Supposing K (< n) nodes are to act as source nodes 

in a given network, then k repetitions of a label 

setting algorithm will salve the problem rather 

than n repetitions. 
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14 S E N S I T I V I T Y A N A L Y S I S 

In this section the sensitivity of an optimal 

solution to a one-to-all problem is studied. More 

precisely, the methods of characterising the 

maximum increase and decrease in the weight of an 

existing arc, optimal or non-optimal, that can be 

tolerated without changing the optimality of the 

current solution are analysed. However, before 

discussing these algorithms, consider the 

fol lowing expansions of definitions and notations 

of section 2. 

Consider a connected and undirected network 

G = (N, A) and its minimum spanning tree, 

TG = (Nr, Ar) rooted at node s, source, where 

N-T = N 

and A = {< i, j > I i, j e- N, and i and j are connected) 

[ < } denote an unordered pair]. 

Furthermore, let F'^ denote the shortest path from 

s to V, also P',.,,s, denote the subpath from u to v 

on the shortest path P'^, then F',..,^ F'^ <=: T<~,. 
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r.;, defines a partial ordering- of nodes i N, 

with respect to their paths from s, ie. if 

2 ^ P'j (ie, node i is on the tree path from s to 

j) then d(i) ^ d(j) and we write i i J. 

Bach arc <i, j> e- Ar divides set N into two 

subsets N.i. J and where 

N:,..i = {k I k ^ N and <i, j > ^ . P\,.i} 

and N' i.i = {k I k ^ N and <i, j> ^ P' i.,,}. 

Ni .i and N'ij are the node sets of the two trees in 

which T& transforms after <i, J> er A-r has been 

deleted. Note that i ^ J V , a n d J «= N',.,. 

Each arc <i, j> Ar together with its partition 

of node set N into N.i .j and N'ij defines the two 

following cutsets of G, 

C ' (i, j) = <<u, \0 I u «^ N.r.j and v ^ N'ij} 

and C a, J) = {<u, v> I u ^ N'i.i and v ^ Nxj} 

note that <i. j> C'(i, J). 

Each arc <i, j> ^ A-Ar defines the particular 

cycle, 



k(i, J) = {i, <i, J.>, P",y.i, i.> 

where F",: is the unique tree path connecting node 

J to node i in TG. 

Theorem 20 •• Let T o = (N-r, A , ) be a spanning tree 

of G = (N, A) and suppose that <u, v> e- A-r and 

<u', v'> A-A-r. Then <u, v> t= k(u', v') 

precisely when, <u', v'> «^ C" (u, v) or 

<u', v'> «s- C (u, V) . 

Froof: consider k(u', v') = <u', <u', v'>, 

F"^ '• , u' } and, 

(i) let <u', V'> ^ C-* (u, V), 

then <v, u> e: P'V - -

s i n c e u ' N^..,^- and v' N\^,^ 

thus <u', v'> C ' (u, v) <=> <v, u> 

k(u', V ) 

more precisely, <u, v> is counterdlrected 

in k(u', V' ) . 

(ii) let <u', V'> ^ C(u, v) 

than <u, v> ^ F'V - -

since u' N',..,^ and v' e- N,.,^ 



thus <u', v'> «= C-Cu, V) <^ <u, v> e-

k(u', V' ) 

more precisely, <u, v> in codirected in 

k(u', V' ) . 

(Hi) let <u', v'> «= C^(u, v) and <u', V > e 

C<u, v> then clearly <u, v> «E- P"-^-^.,-. 

[u, vJ retraction of G is a reduced network, G ' , 

obtained by identifying the two distinct nodes u 

and V of G and deleting any possible loops that 

result from this process. 

ie. G' = (N', A') <=: G 

where 

= N - {u} 

and 

A ' =• A-A'~'' where 

A'--' = (FS(u) Q BS(v)) U (FS(v) Q BS(u)) 

(Q means intersection) 

Note that A'=' is the set of those arcs in A which 

would become loop arcs upon identification of u 

with V. Node u is called a "deal-end" node of T<s 



i f it is incident with exactly one arc <u, r>, 

furthermore arc <u, r>. t E " TG is called a "dead­

end" arc. Clearly, if in [u, v] retraction of G, 

u is a dead-end node and <u, v> is the 

corresponding dead-end arc then [u, vl retraction 

TG ' of TG is again a tree. More precisely, it is 

the tree which results from TG by deleting arc 

<u, v> and node u. 

The retractions can be used, for successively 

determining the. cutsets C'd, J) and C (i, j) of 

the tree arc <i, j> e- A-r, and in the case that 

<i, j> is a dead-end arc, then clearly these 

cutsets are the forward and backward star arc sets 

of node i, 

ie. <=:• a , j) = FS(i), <=:(i, J} = BS(i). 

Far a directed network G - (N, A), clearly, if 

parallel arcs are not allowed, then 

FS a ) Q BS (j) = {(i, j) if (i , j) ^ A 

0 otherwise 

and also, ^ 

FS(J) Q BS(i) = { (J, i) if (J, i) e A 

0 otherwise 
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thus, 

<<i. J), (j,i)> if <i, j) e A 

I <(i, j)) if a, j) e A, (J, i) <= A 

l(J. i)) if (J, i) £ A, a, j) e A 

0 otherwise 

ie. d^-^a, J) = FS(i), c -(i, J) = BS(i). 

The following example clarifies the . above 

definitions and theorem. Consider the network 

given in the following diagram together with its 

minimum spanning tree rooted at node 1. 

Figure 13: Example network, numbers associated with 
the arcs are the arc weights. 



d 0 3 6 9 7 14 13 

'"JIT 1 1 1 2 2 5 4 

Figure 14: The shortest path tree of the example network 
in figure 13. 
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In particular consider the arcs (2, 5) <= Ar- and (2, 3), 

(6, 1). (1, 5) «sr A-Ar, then for 

(2, 5) e r AT-: the two node sets are, 

N,,:s = il, 2) and N,,^ ' = [5, 6); 

the two cutsets are, 

•=^ ' (2, 5 ) = {(2,5)} and <=:(2, 5) = {(6, 1)}; 

(2, 3) £ A-AT: k(2, 3) = {2, (2, 3), 3, (1,3), 1, 

(1.2), 2), then 

(2, 5) k (2, 3), since 3 ^ i l / l s * . - ; 

«5, 1) A-Ar: k (6, 1) = (6, (6, 1), 1, (1, 2), 

2, (2, 5), 5, (5, 6), 6} 

(2, 5) «=- k(6, 1) and is codirected, since 

6 ^ Nss^' and 1 ^ N,;,^,. 

(1, 5) e- A-Ar: k(l, 5) = <1, (1, 5), 5, (2, 5), 

2, (1, 2). 1} 

(2, 5 ) «=- A - C J , 5 ) and is counter directed, since 

I e N::,:s and 5 es iVs-; ' . 

Now consider [2, 51 retraction of G. 

FS(2) = {(2, 3), (2, 4), (2, 5)} 

BS(2) = <(1, 2)} 

FS(5) = <(5, 3), (5, 6), (5, 7)) 
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BSCS.) = <(1, 5), (2, 5), (4, 5)} 

N' = {1, 3, 4, 5, 6, 7) 

^ • ' = {FS(2) Q BS(5)} U {GS<5) Q BS(2)} 

= <(2, 5)} U 3 = <(2, 5)} 

[Note that A-"' is the set of loops caused by the 

retraction]. 

A ' = A-A''-' = A-{(2, 5>} 

G' = (N', A'), the [2, 51 retraction of G = (N, A) 

is shown in figure 15. 

Figure 15: [2.51 retraction of the example network 

in figure 13. 
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The retraction has created parallel arcs, which 

are not allowed. Without loss of generality all 

parallel arcs except the one with the least weight 

from a node i to a node j in the resulting network 

are eliminated. In figure 16, the simplified 

[2, 5J retraction of the example network is shown. 

Figure 16: Simplified [2, 51 retraction of the 
example network in figure 13. 
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Nate that there are always two parallel arcs and 

the one with the larger weight is eliminated. 

Consider the Li, J] retraction of a network 

G = (N, A), then for a node u ^ i X j with (i, u) 

and (J, u) A, G' will contain <i, u) if 

ii/.Tc., <• W.j,.^, or (j, u> otherwise. Similarly for a 

node u i J with (v , i) and (v, J) t= A, G' 

will contain (v, i) if lî v-.* < K - j , or (v, J) 

otherwise. 

Now consider a network G = (N, A) and its minimum 

spanning tree TG = (Nr, A-r) where Nr = N and let 

A(i, J) = Vi..i -h d(i) - d(j> 

clearly TG is the minimum spanning tree of G if 

and only if Ad, J) ,^ 0, for all (i, j> e- A in 

particular for every (i, j) «=• A-Ar, since node j 

would have been labelled from node i, this is the 

well known optimality criterion. 

Let the weight of an arc (i, j) ^ A changes by S, 

from W:i..i to + S, then the problem in this 

section is to determine S* (1, J) } 0 and 

S(i, J) i' 0, such that TG remains optimal as Wi.i 

varies by S, where 

S(i, J) ( S i- S' (i, j). 
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Furthermore I / . . , , - -f- S'd, j) is called the lower 

limit of W.,.i and V^. j -h S^'d, j) is called the 

upper limit of I / x .,• . 

Clearly, if (i, j) is a non optimal arc, 

ie. (i, j) e- A-Ar, then 

S-a, J) = 

s a , J) = - A a, J). 

However, in case of an optimal arc (i, J), ie. 

(i, j) «=• Ar, the determination procedures of 

S-'(i, J) and S--(i, j) are rather more compl icated, 

and are based an the following theorem. 

Theorem 21: let (u, v) e- Ar, then 

S'(u, V) = min{A (i, J) I (i, j) ^ C ^ C a , v), 

(i, j) ^ (u, V)} 

and, 

S (u, V) = max {-A(i, j) I (i, j) ^ C (u, v)}. 

Proof: If (u, v) e- Ar and W,..,^ -) l/<..,̂ , + S, then 

for a node, k ^ N either d(k) -> d(k) if k >s- N^.,^-, 

or d(k) -i 'd(k) -f- S if k N\.^^-. The changes in 

d(k), for k - 1 to n, affect the quantities 
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A a, J) for a, j) ts- A-Ar, which enter the 

optimal ity criterion, 

A(l, j) if a, j) e- o - f u , V) U o-^fu, V) 

Ad, J) ( Ad, J) + if if d, j) ^ c -iu, V ) 

Ad, j) - S if d, J) e CD^CU, V). 

Clearly, S'(u, v) and d(u, v) describe the range 

for S such that A(i, J) > 0 for all 

a, J) ^ A-Ar. t 

The algorithm cutset, stated below is a direct 

result of the above theorem and determines the 

lower and upper limits of an arc (u, v) e- Ar. 

Algorithm cutset; 
begin {far the arc (u, v) e A-r do) 

obtain N.,^- and S,^^'; 
obtain C' iu, v) and G ' CU, V) ; 
for all d, j) iS c:: "(u, v) da 

S'-(u, V) := minimum (Ad, J)); 
for all d, j) e- cc '(u, v) da 

S"(u,v) := maximum {A d,J)); 
upper := V^.^ + cf-Cu, v); 
lower := V,^^ + S'(u, v) 

end; 

In this algorithm N..,^ and N,..,^' are obtained by 

simply checking Nr and clearly this is done in 

0<n); 
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C3: ' CJ7, V) and - fu, v) are obtained by checking 

FS(i) and BS(i) for every i ^ N,^^ U N\.,^. This 

procedure in worst case requires examining every 

arc (i, j) e- A and hence runs in 0(m) time or 

0(n^-) in case of a complete network. 

Therefore the algorithm runs in 0 (m) or 0(n'-) time 

and requires 0 (m) or 0(n---) additional space. If 

the lower and upper limits of every arc 

a, J) Ar is to be obtained then clearly the 

algorithm has to be repeated (n-1) time, thus 

resulting in 0 (nm) or 0 (n--') time and 0 (m) or 

0(n-'~) additional space [notice that the limits of 

every arc is determined independently of that of 

the other arcs]. Sheir and Witzgall, ISHVI 601, 

have proposed three algorithms for obtaining the 

cutsets. These algorithms are not more efficient 

than the cutset algorithm, if the aim is to obtain 

the cutsets of a particular arc (u, v) e" ^ T , but 

if the cutsets of all the optimal or tree arcs are 

to be obtained, then these algorithms prevent the 

duplication of some of the calculations and hence 

are more efficient than repeating the algorithm 

cutset (n-1) times. All these algorithms run in 

0(n-'--) time, require 0(n-^-) additional space and are 

based on the following theorem. 
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Thearsm 22: Let TG = (N, Ar) be a shortest path 

tree of G = (N, A), and suppose (u, v) ^ Ar is a 

dead-end arc. Let G' = (N<, A') and 

T' = (N', Ar') arise from G and T by [u, vl 

retraction, then T' is,a shortest path tree of G' 

i f far e very (i, J) ^ A\ 

+ I / < „ ^ if i = u 

w.r.i ' ( V.i.i - if J ^ u 

1 
V.i .i otherwi se 

Furthermore, S'(i, j) ' = S'~(l, j) and S-(i, J)' = 

S(i, j), for a, J) ^ A'. 

Ejzaaf: Clearly V . . , , ^ ' = W.,,^ for (u, v) «= T ' , 

thus d' (u) = d(u) for u ^ T' 

Now, if a, j) er A' - AT', then 

A(i, j) = A(i, j), 

and hence, A'(i,j) /- 0 which establishes the 

optimal ity of the tree T ' , as well as the equality 

of lower and upper limits for nan optimal arcs. 

A1 so f ar (u, v) er A ', 

G'Cu, v) ' = <=: '-(u, v) and cz; " C u , v) ' = cz; (u, v). 

f 
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In this work, we will consider the implementation 

and analysis of one of these algorithms, called 

dead-end retraction, within a more complete 

algorithm, called sensitivity analysis, which 

calculates the lower and upper limits of every arc 

(u, v) )= A. The algorithm dead-end retraction, 

in our opinion, is the most efficient and the 

simplest to program, among the three algorithms 

proposed by Shier and Vitzgall . 

In dead-end retraction algorithm the cutsets of a 

dead-end arc (u, v) <=• AT are first obtained and 

then the network is retracted using arc (u, v), 

and then the process is repeated to the resulting 

network and tree until all the optimal arcs are 

considered. This manner of consideration of the 

optimal arcs, cl early, makes the determination 

procedure of cutsets more efficient, since the 

determination of cutsets of a dead-end arc 

<u, v) ^ Ar only involves the examination of 

FS'(u) and BS(u>, and after determination of the 

cutsets of an arc the network is reduced by 

eliminating the trivial arcs. In algorithm 

sensitivity analysis, given below, it is assumed 

that the shortest path tree was obtained by using 

a label setting algorithm and the order in which 
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the nodes were labelled is recorded. Then a dead­

end arc is obtained by considering the unique 

backward star optimal arc of the node which was 

labelled later than the other nodes in a network, 

the initial network or any retracted network, ie. 

if the nodes of a network are labelled in the 

order vi, v,,?, v,-,, then consider (u, v,-,) A-r 

first, and then after (u, v,-,) retraction . of the 

network consider (u, v,-,...i) «s- AT, and so on. In 

our implementation, given below, a shortest path 

tree is represented by three node size lists, one 

called order, initially contains all the nodes of 

N in the order in which they were labelled in a 

label setting method, and '''N and d, as defined 

before, are ordered accordingly. Furthermore, it 

is assumed that the network is represented by an 

adjacency matrix, mat, in order to eliminate the 

parallel arcs resulted after a retraction more 

efficiently. The following algorithm calculates 

the lower and upper limits of every arc 

<u, v) e- A, and uses the dead-end retraction 

method of Shier and Witzgall to determine these 

limits for the optimal arcs. 



1 Algorithm S e n s i t i v i t y a n a l y s i s ; 
2 begin 
3 f o r i := 1 to n do 
4 f o r j := 1 to n do 
5 A ( i , j ) := CO; 
6 f o r i ;= 1 to n do 
7 f o r j := 1 to n do 
8 i f (V.,-..,~d«,-<. i-...j < «>) then 
9 begin 
10 i f {'--S ( o r d e r ( i ) ) * j ) then 
11 begin 
12 A (order ( i ) , j ) ; = Vo ,•• da.<: i . i + 

d ( o r d e r ( i ) - d ( j ) ; 
13 upper : = CO; 
14 lower := Vo.-d*,- .: i j - A (order ( i ) , j ) 
15 end 
16 end; 
17 nn := n; 
18 min :=+<»; 
19 max := - »; 
20 while (nn > 1) do 
21 begin 
22 f o r i := 1 to (nn-1) do 
23 i f ( ( V i < a>) and 

(•=-11 (order(nn) ^ i ) ) ) then 
24 begin 
25 i f (min > A ( i , o rder(nn)) then 
25 min := A ( i , o r d e r ( n n ) ) 
27 end; 
28 f o r i := 1 to (nn-1) do 
29 i f (Vo,-.=i«.-<,-,>-,:. i < CD) then 
30 begin 
31 i f (max < ( A(order(nn), 1) * (-1))) then 
32 max := A ( o r d e r ( n n ) , i ) * (-1) 
33 end; 
34 upper 
35 lower 
36 f o r i 

Vc' l\i < o r cl«r I - '< r n - O > H o 1^ cii» < n r \ ;i "t" min; 

V c N i t oi-ola» 1-<: ini-i :i > 3 o r di» i'C n i l 1 + IHEiX', 

1 to (nn-2) do 
37 i f ( A ( i , order(nn)) > A ( i , o r der(nn-1))) 

then 
38 begin 
39 A ( i , order(nn)) ;= A ( i , order(nn-1)); 
40 V i o i - d a t r i: i - i n :> := V i o,-,tile, 1- c: , - 1 1 - 1 - 1 5 

41 end; 
42 f o r i := 1 to (nn-2) do 
43 i f ( A(order(nn), i ) > A('=N(order(nn)), 

i ) ) ) then 
44 begin 
45 A ( o r d e r ( n n ) , i ) := A('=H'(order (nn)), i ) ; 
4 6 V.3 I - I - (. n n 5 i .' - V '" N C o \- i - <: m-i :> > 

47 end; 
48 f o r i := 1 to n do 
49 begin 

159 



50 AC^NCorderdin)), i ) := w; 
51 A<i, i^'Korder (nn))) : = <»; 
52 Vc'"N<o.-.=i«.-<;r..-> .i • i := <»; 
53 Vic'"iM<. o.-.do.-.:.->,-> 1;. J : = <» 
54 end; 
55 V.=.r.1-1^-1 :» or<rl«»r <; i ^ n > I — 
56 order {i^N (order ( n n ) ) ) := order (nn) ; 
57 nn := nn-1 

end <while} 
58 end; 

In the above algorithm initially all A's are set 

to <», s t e p s 3 to 5, and then for every arc 

<u, v) 1= A-Ar, A(u, v) is calculated in steps 6 

to 16. The lower and upper limits of every such 

arc is then obtained in steps 13 and 14. The 

variable nn indicates the number of nodes in a 

retracted network, and initially is set to n. In 

steps 20 to 58 the lower and upper limits of dead­

end arcs in the reverse order of being label led in 

a label setting algorithm, are calculated. In 

steps 22 to 27 the backward star arcs of a node u, 

the initial node of a dead-end arc, are considered 

and min or (u, v) is calculated. In steps 28 to 

33 the forward star arcs of such a node are 

considered and max or S' (u, v) is calculated. 

Then in steps 34 to 35 the lower and upper limits 

of the dead-end arc (u, v) e AT are obtained. In 

steps 36 to 57, the Cu, vl retraction of the 

current shortest path tree is updated accordingly. 

Clearly this algorithm runs in 0(n--) time, since 
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the while loop is executed (n-1) times and every 

other loop in the while loop is executed at most n 

times, it also requires 0(n''-') additional space. 

The proof of correction of this algorithm is a 

direct result of the theorems 21 and 22. 

Applying the sensitivity analysis algorithm to the 

example network of figure 13 and its shortest path 

tree in figure 14, gives the following results: 

ARC LIMITS 

Identity Weight Activity lower uppei 

1 —> 5 9 NOP 7 INF 

2 —> 3 11 NOP 5 INF 

O N 4 6 OPT 3 9 

2 } 5 4 OPT 3 6 

3 —> 6 9 NOP 6 INF 

4 — > 5 1 NOP 0 INF 

4 —-> 7 4 OPT 0 7 

5 —> 3 2 NOP 1 INF 

5 — > 6 7 OPT 0 10 

5 —> 7 9 NOP • 6 INF 

6 —> 7 6 NOP 0 INF 



In the above results, the activity of an arc is 

OPT, if the arc is a tree arc, and is NOP, if the 

arc is a non-tree arc. The lower and upper limits 

of an arc, regardless of its activity or type, 

gives the range within which the weight of that 

arc can vary without affecting the optimal 

solution or changing the paths in the shortest 

path tree. 

Another method for obtai ning the cutsets which was 

also proposed by Shier and Witzgall is called 

cycle tracing algorithm and is based on an 

algorithm far transportation problems which was 

first proposed by Mullei—Menback, [MULL, 681. 

This algorithm is based on theorem 20. Jh this 

algorithm for each non-optimal arc Cu, v) »=• A-Ar, 

which contain (u, v) are obtained. Then the 

quantity, A(u, v) = V,..,^ + d(u) - d(v> is entered 

into the optimisation process for calculating 

S'(i, J) and SCi, j), as shown in theorem 21, for 

updating tentative minima and maxima which are 

initially set to and respectively. To 

obtain all the cutsets which contain 

(u, V) A-AT, k(u, v> is first obtained, as 

described before, and then theorem 20 is used. 
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Finally, the third algorithm proposed by Shier and 

Vitzgall is called the tree building. In this 

algorithm the quantities A(u, v) are calculated in 

the process of building the shortest spanning 

tree. This algorithm seems to be the most 

complicated and is definitely the most inefficient 

one among the them. 
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15 POSTOPTIMALITY ANALYSIS 

All the labelling algorithms, in fact all known 

solution methods for one-to-all problems, are 

applicable to networks with known constant arc 

weights. The algorithms described in section 14, 

for sensitivity analysis of shortest path problems 

give a range within which the weight of a specific 

arc can vary without affecting the shortest path 

tree. However, what these algorithms fail to show 

is the effect on the shortest path tree if an arc 

weight falls outside of its given range. 

Spira and Pan, ISPPA 781, have shown that to 

update a shortest path tree after a constant 

increase or decrease in the weight of an existant 

arc takes OCn--) time. It may be as efficient, in 

case of a non-negative dense network at least, to 

modify the network, ie. setting the weight of the 

varied arc to its new value, and resolve the 

problem by a label setting algorithm which will 

take 0(n'-) time. In this section we present an 

0(n'--) algorithm, Senet, which post optimises the 

ane-ta-all problems on non-negative networks whose 

arc weights are subject to variation. More 

precisely, algorithm Senet determines all the non-
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negative critical values (at each of which the 

shortest path tree changes further) for the weight 

of a varying arc. Furthermore, Senet also reports 

the updated shortest path tree for every range 

formed by two successive critical values of the 

varying arc weight. Senet is applicable to the 

optimal, non-optimal and non-existant arcs and 

analysis the variations in the arc weights 

independently. 

Let us extend the network terminology, before 

introducing Senet. 

By an optimal solution or simply a solution to a 

network, we mean a shortest path tree of the 

network rooted at a distinguished node (source). 

Let. Ri be the set of all the paths from source to 

node i, where no arc is traversed more than once 

in each path. Let Phi be the path number k to 

node i with a total weight of d^,. .i 

(ie. i?,: = -CPii, Pay., Pc. .r , . . . }) Now Pn,i is 

the optimum of P i ii^ and only if 

d,„.i = min <dj i I P.,-.< «s- P.i ̂  . Node i is said to be 

label led if the shortest path from the source to i 



i s determined. Then the label of node i consists 

of two parts: 

(i> a node which is immediately before i on 

the path from source to i, '"'N(i>; 

(ii) an integer representing the total weight 

of the path d(i). 

Node i is said to be totally relabel led if the 

ordered set of nodes in its path from the source 

is changed. 

Node i is disconnected if there exists no path 

from the source to i. A network is disconnected 

if it contains at least one disconnected node. 



Assume that there exists an optimal solution, 

sal uti an one, to a given network G. Then the set 

of arcs A can be divided into two parts, 

A = Af + As:, where Ai is the set of optimal arcs 

(ie. those utilized by the original solution) and 

A:::;: IS the Complement of AT, the set of non-

existant arcs, ^ 3 , i s also considered, where 

A.-: <(i, J) : i, J ^ N, a, j) ^ A) 

Now suppose that the effect on the optimal 

solution caused by variation in the arc (p, q) is 

to be analysed, (p, q e N), then the solution can 

be analysed by considering Ai and (A„s + 4;s.> 

separately. In the following cases w'r.-,.-.-:, 

represents the original weight af (p, q). 

(i) Optimal Case 

Set w,::,.:::, to Infinity and salve the resulting 

network G' (ie. find the shortest path from 

source to each of the other nodes). 

If there exists no optimal solution to G', 

then (p, q) is optimal for all values of wt-...3-

otherwise the solution found becomes solution 



two. Solution two would contain a set of 

nodes which are either totally relabel led or 

disconnected. These are the nodes whose 

shortest paths in solution one contained 

(p, q). Arc (p, q) is always optimal for 

disconnected nodes. Let N' be the set of 

totally relabelled nodes and suppose that 

K IN'I. (1 .< k ( n). For each totally 

relabelled node, N'i, obtain the quantity 

A (N' (i) ) , where 

A(N'(i)) = + d2(N'(i)) - dl(N'Ci)), 

for i = 1 .... k. 

where, dKN'd)) is the total weight of the 

shortest path to node N' (i) in solution one 

and d2(N'(i>) is that of node N'(i> in 

solution two. 

Now set Wf,.,3 to zero and solve the resulting 

network, G", obtaining solution three. 

Suppose that f nodes are totally relabelled, 

excluding the nodes whose total weights are 

changed only, then for each of these nodes, 

N'(k+i), calculate A(N'(k+i)), 

for i .= 1 .... r , where 

A(N' (k+i)) = dl (N' (k+i)) - d3(N' (k+i)), 

for i = 1 . . . r . 



where, d3(N'(k+l)) is the total weight of the 

shortest path to node N'(k+1) in solution 

three. 

Now rearrange A and N', for i = 1 ... k+T, in 

descending order af A. In this order, the 

first k elements of A and N' are the ones 

obtained by solving G' and the rest are those 

obtained by salving G". We also have, 

A(N' (k+1)) ( pv',v.c, ( A(N'(k)), optimal ity 

range. Now the following conclusions about 

the values of w,.,--,..;, can be drawn. 



OPTIMAL ARCS 

i Range Change i n o r i g i n a l s o l u t i o n 
(path = s h o r t e s t path) 

Non-Optimality 
A d ) ( Vp„., 

S o l u t i o n two becomes 
optimal to G 

Increase ( i ) The paths to If' ( i ) , f or 
A(m) ^ V„,:, ^ A ( l ) i = m ... k, are as i n 

j f o r ra ^ k 
1 • 

s o l u t i o n two 

( i l ) T o t a l weights of a l l the 
paths to N ' ( i ) f o r 
i = 1 ... m, inc r e a s e by 
the same amount as ŵ..̂  
i n c r e a s e s 

( i i i ) The paths to the r e s t of 
the nodes are as i n 
s o l u t i o n one 

Optiraality Uo change 
A(k+1) ^ Wp>., ^ A(k) 

Decrease ( i ) T o t a l weight of every 
A(k+l+m) i Wp, s< A(k+1) path containing (p, q), 
m ^ r decreases by 

(W'cei - Wp.=,) 

( i i ) The paths to N ' ( i ) , f o r 
i = r .. . m, are as i n 
s o l u t i o n three 

( l i i ) The paths to the r e s t of 
the nodes are as i n 
s o l u t i o n one 

A l t e r n a t i v e o ptiraal s o l u t i o n s e x i s t f o r those values 
of Wp,::,' which f a l l on the boundary of a range 
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<ii> Nan-Optimal and Ifan-EKistant. Case 

Set Wr.,,,-4 to zero and salve the resulting 

network, G'. Let solution two be the optimal 

one obtained for G'. 

Let N' be the set of totally relabelled nodes 

and suppose that k = IN'I, (0 i k ( n). For 

each totally relabelled node N'(i), 

(i = 1 ... k), calculate A(N'(i)) where 

A(N'(i)) = dl(N'(i)) - d3(N'(i)). 

Now rearranging A and N' in descending order 

of A, the following conclusions about the 

values of iv,,,.;, can be drawn 
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NON-OPTIMAL AND NON-EXISTANT ARCS 

Range Change i n o r i g i n a l s o l u t i o n 
(path = s h o r t e s t path) 

Non-optimality 
A ( 1 ) ^ Wp.:, 

No change 

General 

A(m) ^ Wr...=, ^ A ( l ) 
for m ^ k 

( i ) The paths to N'<i), for 
1 = 1 . . . m, are as i n 
s o l u t i o n two 

( i i ) The paths to the r e s t 
of the^ nodes are as i n 
s o l u t i o n one 

F i n a l 
0 $ Wpc, « A(k) 

S o l u t i o n two becomes 
optimal f o r G 

A l t e r n a t i v e optimal s o l u t i o n s e x i s t f o r those values 
of Wp.:,- which f a l l on the boundary of a range 

Supposing that arc (p, q) in a network G with an 

optimal solution C'Nl, dl), ie. '"Nl contains the 

predecessor nodes and dl the shortest path 

weights, is to be analysed, then Senet can be 

structured in the following manner. 



1 algorithm Senet; 
2 begin 
3 K := 0; 
4 kk 1; 
5 get <p, q); 
6 act := a c t i v i t y (P, q); 

8 i f (act = OPT) then 
9 begin 
10 data (P, q) := co; 
11 shortest-path (data, d2, '='N2); 
12 compare i'"S2, If', k); 
13 for i := 1 to k do 
14 A(i) := V'p,:, + d 2 ( I f ( i ) ) - d l ( I I ' ( i ) ) 
15 kk := k 
16 end; ( i f ) 
17 data (P, q) := 0; 
18 shortest-path (data, d3, '•••ir3) 
19 compare (.'"13, N' , k); 
20 i f (k > 0) then 
21 begin 
22 for i := kk to k do 
23 A(i) := dKU'd)) - d 3(H'(i)); 
24 descend (H', A, k) 
25 end 
26 end. 

In the above implementation, analysis of an 

optimal arc requires the execution of all 26 steps 

and analysi s of a non-optimal or a nan-exi stant 

arc require the execution of the steps from 1 to 7 

and from 17 to 26, inclusive. The function 

activity determines the type of the arc (p, q) 

which may be: 

OPT = optimal, 

NOP = non-optimal, 

NEX = nan-existant. 
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This function can be implemented as follows: 

function a c t i v i t y (P, q); 
begin 

i f (Vp„=, = en) 
then 

a c t i v i t y := NEX 
else 

i f C'lIKq) = P) 
then 

a c t i v i t y := OPT 
else 

a c t i v i t y := NOP 
end; 

Procedure shortest-path is a label setting 

algorithm which solves a one-to-all problem in a 

network represented in data. Procedure descend 

rearranges N' and A in descending order of A. 

Procedure compare, obtains the totally relabel 1ed 

nodes after a change in data and stores them in 

N', a node-size linear list. This procedure is 

used twice if arc (p, q) is optimal and once 

otherwise. Here we give two different 

implementations of this procedure. In each 

implementation a node-size linear list of boolean 

type, L, is used to prevent a node entering N' 

more than once. In the first implementation we 

have used a queue with FIFO management, Q, to 

identify the totally relabel led nodes. 



1 (1) procedure compare ('̂N, ET' , k); 
2 begin 
3 far i := 1 to n do 
4 L ( i ) := false; 
5 for i := 1 to n do 
6 i f C^'Ki) t f^NKi)) then 
7 begin 
8 L ( i ) := true; 
9 ADDQ(i, Q) 
10 end; 
11 while not (EMPTYQ (Q)) do 
12 begin 
13 u ;= FKOIKQ); 
14 DELETEQ(Q); 
15 K ' ••= k+1; 
16 N'(k) := i ; 
17 for i : = 1 to n do 
18 i f ((U = ''NKi)) and (L ( i ) = false)) then 
19 begin 
20 ADDQ(i, Q); 
21 LCD := true 
22 end 
23 end; 

In the second implementation we have used N', a 

node-size linear list, to directly identify and 

store the totally relabel led nodes. Associated 

with N' there are two pointers, one (K') indicates 

the location of the next totally relabel led node 

in N' which is to be searched and the other, K, 

indicates the location in N' for inserting a new 

total ly relabel 1 ed node. N' is in a way treated 

like a queue with FIFO management, except that no 

deletion takes place. 
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1 (2) Procedure compare Ĉ'N, N', k); 
2 begin 
3 for i := 1 to n do 
4 L ( i ) := false; 
5 k' 0; 
6 k := 0; 
7 for i := 1 to n do 
8 i f C'lKi) / f'NKi)) then 
9 begin 
10 L ( i ) := true; 
11 k := k+1; 
12 N'(k) := i 
13 end; 
14 repeat 
15 i f (k > 0) then 
16 begin 
17 k' := k'+1; 
18 for i := 1 to n do 
19 i f ((N'(k') = ''NKi)) and (L(i ) = false)) then' 
20 begin 
21 L ( i ) := true; 
22 K := k+1; 
23 N' <k) := i 
24 end 
25 end; 
26 u n t i l (k'=k) 
27 end; 

Clearly, both implementations run in 0(n^-) time, 

however, the second one is more space efficient. 

In bath implementations '""Nl represents the 

predecessor node set of solution one, and ''"N 

represents that of a new soluti on, either solution 

two or solution three. 
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Theorem 23: Senet determines all the critical 

values for the weight of an arc and reports the 

correct effects on the optimal solution at each 

critical value. Furthermore, IN'I = k ( n. 

Proof: Consider Pi, as shown in theorem 3, this 

set is finite and has a size of k.i , where 

n-2 
wax (ki> = (n-2)! E l/(n - 2 - r)! for n 2, 

r=0 

Pi. can be divided into two parts. R,. = P'j. + P" i , 

where P',-. is the set of paths containing- a 

particular possible connection f i e . (p, q), where 

p, q «=- N) and i ? " , is its complement. Now let 

w\:>.::i be the original weight of (p, q) in G, and 

also PI ± and P ^ i be the optimums of P'i and R"i 

respectively then, 

(i) if Wr„.^ is set to infinity, then 

Ps:x = optimum (Pi > 

(ii) if wi:;...:, i s s e t to zero and 

(a) Pii = optimum Ci?.t >, then 

dli i' ds;^ - W'p,.:,, 

(b) P,7:.i. = optimum ( P i ) , then 

d:::i::i. i' d I i - W' p..:::, 

for i = 1 . . . n 
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The optimal case and the non-optimal case, which 

•includes the non-existant case, are considered 

separately: 

a > Optima.I Cage 

Let P-, i and P..>.i be the shortest paths to a 

node i in G and G' respectively, where G' is 

determined from G by letting w,::,.:, ^ <». The 

following are now true. 

( 1 . 1 ) if P..,:-.T does not exist for some i, 

then PI i is optimal for all values of 

( 1 . 2 ) if Pi .i does not include (p, q), then 

PI , = P,>,. 

( 1 . 3 ) . if P,,:± ^ Py i , then d , i ( d:,,i., now let 

d'i. = d.,;-.T - d ) . i , then for a general 

value of w'i::,,::, In G We hsve 

( 1 . 3 . 1 ) P-, .i. is optimal if 

W,:,..„ < W'p-,,,j + d' i 

( 1 . 3 . 2 ) P ^ i is optimal if 

Wr..:, > W\-:,.:, + d', 

( 1 . 3 . 3 ) Pi i. and P;:.* are, 

alternative optimal 

paths (ie. d,.i = d:^i) if 

W,::,.::, = W + d ' i . 
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Therefore, (p, q) is in the optimal path to i if 

w,::,,::, ( w ' , + d'y and clesrly, this is true far 

every i e- N. 

Now let P i j i be the optimal path to node i in G", 

where G" = G, but (Vr.,.„ = 0, then the following 

are true, 

(2.1) if P, .i exist, then P^.i exists. 

(2.2) if P;,:;.£ does not include (p, q), then 

P^^i P i . i . 

(2.3) if P;,:;.i includes (p, q) and, 

(2.3.1) Pi .i. includes (p, q), then 

d,T,;Y = d l i - W' 

(2.3.2) PI r does not Include (p, q) 

then da-.i -J' di i . 

Now let d ' i = d,.i - d;.s.i , d',. ^ 0, 

then 

(a) P.K.i i s optimal if 

0 s< Pvfc,.̂  ^ d ' , 

(b) Pii. is optimal if 

d'i ( •f' f/V>'--i 

Therefore (p, q) is in the optimal path to i if 

0 i w^,,.,, i d ' i and this is true for every i <=" N. 

However (1.3.1) and (2.3.2.b) above, together 

imply that for the range d' j. ̂  w;....,-, ( w',.,„.-, + d ' i , 



the original path, P-, .i , is optimal. Now assume 

that the shortest paths to k nodes in solution one 

include (p, q), where (k ( n). Then clearly as a 

result of (1.2) above, only k nodes are totally 

relabelled in solution two. In solution three the 

set of nodes N can be divided into three parts: 

(a) the set of nodes whose labels are 

unchanged 

(b) the set of nodes whose labels are totally 

changed 

<c) the set of nodes whose total weights are 

decreased only. 

Now let r', r, and P" be the sizes of the above 

three subsets of N respectively, then 

(1) r -I- f + T" = n 

(2) F" = k, as a result of (2.2) and (2.3) above. 

Therefore k + F i n as T' ) 0, f i e . maximum 

number of relabelled nodes, when analysing an 

optimal arc is n), ie. IN'I = k .( n. 



f i i . > Nan-Optimal and Non-Existant Ca.^e 

In this case let Pi i and Ps.i be the optimal 

paths to i in G and G' respectively, where 

G' ^ G, but w,v.,.;., ^ 0. Then the following are 

true, 

(a) if PI i exists, then P-si exists 

(b) d::i:i i' d i i , for all i ^ N 

(c) if di .1^ = d::i:i then Pi x = Psi 

(d) if d..v;/.T <• dv,:, then P.v,v.-.y. includes (p, q) 

and if d',-. = di j. - d::^i,' then for a 

general value of w,;.>..-, 0, 

we have: 

(d.l) Fzi is optimal for 0 r Hp.., i' w'̂ c, - d'i 

(d.2) Pii is optimal far Wp.=, ^ w'p.:, - d'i 

Therefore, (p, q) is in the optimal path to i if 

0 i w,T.>..., i Wp:...-, - d ' i , and clearly this is true for 

every i e- N. Furthermore, it is clear that 

IN' I = k i n. t 

Theorem 24: Senet terminates in O(n-) time and 

requires 0 (n) additional memory space. 
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Froaf: The termination of the algorithm depends 

on the number of critical values for the weight of 

an arc. The set of critical values of the weight 

of an arc in a network of size n is finite and has 

a maximum size of n, since: 

At each success!ve critical value at least one 

more node becomes totally relabelled, and a node 

is totally relabel led at mast once in the process 

of analysing an arc. Furthermore, if no node is 

totally relabelled, then the algorithm terminates. 

The proof that Senet terminates in 0(n-'^) time in 

worst case is by inspection. A label setting 

algorithm runs in 0(n-~) time, procedure compare 

runs in 0(n'-') time and rearranging the totally 

relabelled nodes in procedure descend takes 0(n'-) 

time. Therefore, Senet runs in 0(n''-). 

In case of analysing an optimal arc, there are 

seven additional node-size linear lists, four to 

represent solutions two and three, two for N' and 

A and one, L, for identification of totally 

relabelled nodes. In case of analysing a non-

optimal or a non-existant arc, there are five 

additional node size linear lists, all similar to 
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the case of analysing an optimal arc with the 

exception that only two such lists are required to 

represent one new solution only. Therefore the 

maximum number of additional memory units required 

for analysing an arc is 7n. t 

To compare Senet with the algorithms of chapter 

14, consider the example network of figure 13 and 

its solution in figure 14. Furthermore, suppose 

that arcs (2, 5), (1, 5), (2, 6) and <3, 2) are t o 

be analysed, where arcs (2, 6) and (3, 2) are non-

existant, Analysing the arcs separately: 

<i) arc (2, 5) is optimal, 

act = OPT; 

y^-^^ - 4; 

solution 2: 

d2 0 3 8 9 9 16 13 

'"N2 1 1 1 2 . • 1 5 4 

totally relabelled nodes: 



I f c s 0; 

solution 3: 

d3 0 3 5 9 3 10 12 

f"'N3 1 1 5 2 2 5 5 

5 6 3 7 

A 
1 
1 
1 ^ • 

6 3 1 

rearranglng: 

N' 5 6 3 7 

6. 6 6 3 1. 

16̂  



(ii) arc (1, 5) is non-optimal, 

act := NOP; 

V,B' := 9; 

fes 1^ 0; 

solution 2: 

d3 0 3 2 9 0 7 13 

'='13 1 1 5 2 1 5 4 

W 3 5 

A 6 7 

rearranging: 

5 3 

A 7 6 
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(Hi) arc (2, 6) is nan-existant; 

act := NEX; 

fee' a-,-

fee ^ 0; 

solution 2: 

d3 0 3 8 9 7 3 9 

'='N3 1 1 1 2 2 2 6 

N' 6 7 

A 11 4 

rearranging: 

N' 6 7 

A 11 4 
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C i v ; arc (3, 2) is non-existant, 

act := NEX; 

Ife:^' t- 0; 

solution 2: 

d3 • 0 3 8 9 7 14 13 

'''N3 1 1 1 2 2 5 4 

Now the following conclusions about the arc 

weights can be made. 
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In the above output: 

The weight of the optimal arc (2, 5) can vary from 

6 to infinity and this will change the routes to 

nodes 5 and 6 in solution one to (1 5) and 

(1 -> 5 ^ 6) with total weights of 9 and 16, 

respectively, only. The weight of this arc can 

vary from 3 to 6 without affecting the structure 

of the shortest path tree of solution one. If 

this weight varies between 1 and 3, then the route 

to node 3 will change to (1 -> 2 -> 5 -> 3) with a 

total weight of (5 + I»̂ z-.s;. If it varies between 0 

and 1, then beside the change in the route to node 

3, the route to node 7 will change to 

(1 2 5 -) 7) with a total weight of (12 V::^^^); 

The weight of the non-optimal arc (1, 5) can vary 

from 7 to infinity without effecting the optimal 

solution (ie. solution one). If it varies from 6 

to 7 the routes to nodes 5 and 6 will change to 

(1 -) 5) and (1 -) 5 6) with total weights of (0 + 

Wis) and (7 + ViKi) respectively. If it varies 

between 0 and 6 however, beside the changes in the 

routes to the nodes 5 and 6 the route to node 3 

will also change to (1 -f 5 3) with a total 

weight of (2 + V,s^); 
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If the non-existant arc (2, 6) is to be created 

and its weight is between 11 and infinity, then 

the optimal solution will not be effected. 

However if it has a weight between 4 and 11, then 

it will become an optimal arc and will change the 

route to node 6 to (1 -> 2 6) with a total weight 

of (3 + W:::!:^), and if it has a weight between 0 and 

4, then the route to node 7 will also be changed 

to (1 -) 2 ^ 6 -i 7) with a total weight of 

(9 + W,^^:>; 

The creation of the arc (3, 2> with a total weight 

between 0 to infinity will not effect the optimal 

solution. 

The complete pascal cade of the algorithm Senet 

together with a sample run is given in appendix F. 
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The algorithms of section 14, for sensitivity 

analysis, determine only two of the critical 

values, maximum increase and decrease, within 

which the weight of a given arc can vary, 

independently, without changing the structure of 

the shortest path tree. Furthermore, they do not 

report the updated weights of the shortest path 

tree within the given range and do not indicate 

the structural changes of the shortest path tree 

when an arc weight falls outside of its determined 

range. Senet provides all the critical values for 

the weight of an arc together with the updated 

weights of the shortest paths and the structural 

changes between every two successive critical 

values. This is because, in analysing a non-

optimal arc, sensitivity analysis algorithms only 

consider the affect on the terminal node of the 

arc, when the weight of the arc . is reduced. This 

node is obviously the very first one which, may be 

affected as a result of the reduction. Senet, 

however considers every other node which could be 

affected after the terminal node of the arc is 

affected. In case of analysing an optimal arc, 

sensitivity analysis algorithms consider all the 

nodes that Senet considers, but they do no use all 

the information that they obtain. Sensitivity 
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analysis algorithms do not consider the non-

existant arcs, although with a simple 

modification, some of them could become capable of 

analysing such arcs. Analysis of an arc for 

sensitivity or post-optimal i ty takes 0(n'---) time, 

however, in Senet the additional memory space 

required is 0(n> and in the sensitivity analysis 

algorithms is (n-"). Some of the sensitivity 

analysis algorithms analyse all the m arcs in 

0<n'-) time and Se.net analyses them in 0(n-~m) time, 

but still • Senet will require 0(n> additional 

memory space. 

Senet can be modified to analyse negative networks 

as well as non-negative networks. In case of 

negative networks which do not contain negative 

cycles, the lowest critical value for an arc 

(u, v) will be t rather than zero, where t is the 

minimum weight of a cycle containing arc (u, v). 

thus the modified version must be capable of 

determining such cycles. 
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16 SUMMARY AMD CONCLUSIOM 

Section 1,. in a way, could be considered as a 

summary, futhermore at the end of each section the 

corresponding conclusions are drawn. However, in 

this section we present a brief summary coupled 

with an outline of the conclusions made throughout 

the work. 

In section 6, we classified the deterministic 

unconstrained shortest path problems in order to 

outline the importance of one-to-al1 problems. 

In section 7, we developed an algorithm, 

labelling, which is the underlying structure of 

all the labelling algorithms. We then used this 

algorithm and its properties, directly or 

indirectly, to study, classify, analyse and 

compare the different labelling algorithms. 

In sections 8 and 9 we considered all different 

implementations of labelling algorithms using 

various data structures. and sorting techniques, 

and analysed and compared most of such 

implementations. All the analysed algorithms in 

these two sections were evaluated by using worst 
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case analysis and their memory space requirements. 

In section 10, the most efficient labelling 

algorithms were compared using their average 

computation times on a set of diverse randomly 

generated networks. Results of the 

classifications of the label 1 i ng algorithms can be 

generalised as follows: 

195 



c 
o 

• f — 
->-> 

*-> ut IS 
•*- w> 3 

i- U •4-> 
r — s. _ i -o <e o o la u 

o. 
'5 W 10 

(/> lO 1 
_J 01 

<u 
lO r — 
,— 

C _ l 
l- •f- t 3 
0) 4~> —-
c •U 
(U OJ 
cn i/i 

<u 
•M u 

C 4-> <U 
, <I> c ' x: u <u 

•M 
•r- *J 9> * 3 •— a> n n 3 <_> +» 3 (U _ l 3 o 3 
t 3 O "O 

01 
3 
0) 3 
o-

f <u 
*>,— ••- o> X c 

_ I 
C9 n) 

196 



In section 11 to 13, the all source algorithms 

were reviewed, classified and compared. The 

classification of these algorithms can be 

generalised.as follows: 

a l l source algorithms 

matrix m u l t i p l i c a t i o n 
algorithms 

t r i p l e algorithms modified l a b e l 
s e t t i n g 
algorithms 

In section 14, the sensitivity analysis of one-to-

all problems was considered and the best of such 

methods was implemented and analysed. 

In section . 15, we introduced an algorithm, SENEt, 

for the post optimality analysis of one-to-all 

problems. In this section we also considered the 

advantages of this new approach to such problems 

over the existing sensitivity analysis, probably 

the closest class of algorithms to SENET. 
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All the theory behind the shortest path problems, 

one—to—all in particular, were developed 

throughout the work in terms of definitions, 

algorithms and theorems. However, the emphasis in 

this work is on sections 6 to 10 and in particular 

on section 15. 
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The following appendices contain the complete 

Pascal codes of: 

(a) reading and writing a network in both 

adjacency matrix and forward star forms; 

(b) label correcting algorithm with a single 

queue managed in FIFO manner; 

(c) label correcting algorithm with double 

ended queue (or actually output 

restricted double ended queue); 

(d) label setting algorithm with address 

calculation sort; 

(e) label setting algorithm with one level 

bucket sort. 

In all the cades the variable names are chosen in 

a manner that makes their functions self 

explanatory. 
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APPENDIX A 

This appendix describes the user input text file, 

INFILE. It also contains the Pascal coding for 

the procedures CHARTOINT, READADJMATRIX, 

READFORSTAR and PRINT AD J MATRIX. Procedures 

READADJMATRIX or READFORSTAR read the adjacency 

matrix representation of a network stored in 

INFILE and represent it in the form of an 

adjacency matrix or adjacency lists C i e . forward 

star form), respectively. Both these procedures 

read the arc weights as characters and use the 

procedures CHARTOINT to convert them back to their 

integer values, there are two versions of this 

procedure, the one which excludes negative numbers 

is used for label setting algorithms. Procedure 

PRINTADJMATRIX outputs the adjacency matrix 

representation of the network. 

INFILE is a text file that the user must create 

prior to running any of the programs in this 

study. INFILE contains an adjacency matrix 

representation of the network the user wishes the 

program to operate on. The adjacency matrix must 

be formatted in the following manner: 
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C i ..> Each row of the adjacency matrix must be 

on one line, starting- in the first column 

of the file. 

(ii) Each number in the adjacency matrix must 

be in a field width of. 4 characters. For 

example, if X represents a space, then 

the number 3 would be written: 

3 X X X X 

cm.) One clear line must be between the rows 

of the adjacency matrix. 

(iv) To mark the end of each row of numbers in 

INFILE, an asterisk, *, must follow the 

last character in the row. 

(v) The end of all the rows to be input is 

identified by an asterisk in the first 

col umn of a row. 



To i l l u s t r a t e t h e s e r e q u i r e m e n t s , c o n s i d e r the 

adacency m a t r i x : 

1 0 1 3 - 0 

2 2 -5 0 0 

3 0 0 0 6 

4 4 -33 224 0 

The c o r r e c t I H F I L E format f o r t h i s a d j a c e n c y 

m a t r i x i s 

1 s t Column i n I N F I L E 

0-

0 X X X l X X X 3 x X X 0 X X X * 

X 

2 x x x - 5 x x 0 x x x 0 x x x * 

X 

0 X X X 0 X X X 0 X X X 6 X X X * 

X 

4xxx-33x22x0xxx* 

(where x r e p r e s e n t s a s p a c e ) 
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PROCEDURE CHARTOINKCHARARRAY: VQRD5; VAR VALUE: IITTEGER); 
{This procedure converts a number held i n character form,) 
( i n CHARARRAY, t o i t s integer value. VALUE } 

VAR 
I.MULTFAC: IITTEGER; (MULTFAC stores the m u l t i p l i c a t i o n ) 

{ f a c t o r ) 

BEGIN 
VALUE:= 0; 
I:= 5; 
WHILE (CHARARRAY[I] = ' ') DO 
BEGIN 

I:= I - l ; 
END; {Find the l a s t d i g i t of the number) 

MULTFAC:= 1; 
REPEAT 

IF (CHARARRAY[I] <> '-') THEN 
BEGIN {Convert the d i g i t t o i t s integer value) 
VALUE: = VALUE+ (IfULTFAC* ((ORD (CHARASRAYĈ  I ] )) -
ORDCO' ) ) ) ) ; 
KULTFAC:= KULTFAC*10; 

END; 
I : - I - l ; 

UNTIL (1=0); 
IF (CHARARRAYCI] = '-') THEN 
VALUE:= (VALUE * (-1)); {Convert a -ve number t o i t s ) 

{cor r e c t value) 
END; {CHARTOINT) 
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Procedure CHARTOIKKCHARAERAY : WORDS; VAE VALUE : IITERGER); 
{This procedure converts a number held i n character form,) 
{ i n CHARARRAY t o i t s integer value, VALUE. This version) 
{of CHARTOINT terminates processing on encountering a) 
{negative number) 

VAR 
I , MULTFAC: INTEGER; {MULTFAC stores the m u l t i p l i c a t i o n ) 

{ f a c t o r ) 

BEGIU 
IF (CHARARRAYLI) = '-') THEB 
BEGIN 
WRITELNCNEGATIVE WEIGHT ARC ENCOUNTERED - ILLEGAL'); 
GOTO 99; 

END; 
VALUE:= 0; 
I:= 5; 
WHILE CHARARRAYCI] = ' ' DO 
BEGIN 

l;= l - i ; 
END; {Locate the l a s t d i g i t of the number) 

MULTFAC:- 1; 
REPEAT {Convert the d i g i t t o i t s integer value) 
VALUE:= VALUE+ (MULTFAG*((ORDCCHARARRAYCI]))-
(ORDC 0" ) ) ) ) ; 
MULTFAC:= MULTFAC»10; 
I:= I - l ; 

UNTIL (1=0); 
END;(CHARTOINT) 
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PROCEDURE READADJMATRIX; 
{This procedure reads the adjacency matrix representation) 
{of the network from INFILE i n t o ADJMATRIX) 

VAR 
ROW,COL,I,J,VALUE: INTEGER; 
NUMBER:WORDS; 
{NUMBER holds the number read from INFILE, i n ) 
{character form) 
ENDROV,ENDCOLS:BOOLEAN; 
{ENDROW = TRUE i f end of row i s reached i.e. a * i s ) 
{detected) 
{ENDCOLS =TRUE when a l l rows i n adjacency matrix have) 
{been read) 
CH:CHAR; 

BEGIN 
RESET(INFILE); 
EKDCOLS:̂ ^ FALSE; 
FOR I:= 1 TO 100 DO 
BEGIN 
FOR J:= 1 TO 100 DO 
BEGIN 

ADJMATRIXCI,J] := 0; 
END; 

END; { I n i t i a l i z e ADJMATRIX) 
ROV:= 0; 
WHILE NOT(ENDCOLS) DO 
BEGIN 
ENDROW:= FALSE; 
COL;= 1; 
ROW:= ROW+1; 
WHILE NOT(ENDROW) DO 
BEGIN 
FOR I:= 1 TO 5 DO 
NUMBERCI] : = ' ' ; 

I : - 1; 
REPEAT {Read the next number from INFILE) 

READ(INFILE,CH); 
NUMBERE I.] := CH; 
I:= I + l ; 

UNTIL ( ( I = 5 ) OR (NUMBEREl] = ' * ' ) ) ; 
IF (NUMBERLl] = '*') THEN 
BEGIN {End of row detected) 
ENDROW :=TRUE; 
IF (C0L=1) THEN 
ENDCOLS;= TRUE; {End of Adjacency matrix) 

END 
ELSE 
BEGIN 

IF (NUMBEREl] <> '0') THEN 
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BEGIN { I n s e r t the number i n t o ADJKATEIX) 
CHARTOINT(NUMBER,VALUE); 
ADJMATRIXC ROW,COL];= VALUE; 

END; 
COL:= COL+1; (Increment column reference) 

END; 
END; 

IF NQT(ENDCOLS) THEN 
BEGIN 

READLN(INFILE); 
READLN(INFILE); 

END; {Move t o next row of the adjacency matrix) 
END; 

NUMNODES:= ROW-1; {Record the number of nodes i n the) 
(network) 

END; (READADJMATRIX) 
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PROCEDURE READFORSTAR; 
(This procedure reads the adjacency matrix representation )• 
(of the network from INFILE t o the 3 forward s t a r arrays, ) 
(POINTERARRAY. STAEARRAY and WEIGHTARRAY ) 

VAR 
ROW.COL,I.EDGEPOINTEE.EDGEPOINTSTORE,VALUE:INTEGER; 
{EDGEPOINTER stores the next fre e l o c a t i o n number i n ) 
(STARARRAY) 
(EDGEPOINTSTORE stores the f i r s t l o c a t i o n number i n ) 
(STARARRAY used t o store the current nodes forward s t a r ) 
NUMBER:WORDS; 
(NUMBEE holds the number read from INFILE , i n character) 
{form) 
ENDEOW,ENDCOLS:BOOLEAN; 
(ENDEOW = TRUE i f end of row i s reached i . e . a * i s ) 
(detected EIDCOLS = TRUE when a l l rows i n adjacency) 
(matrix have been read) 
CH:CHAR; 

BEGIN 
RESET(INFILE); 
FOR I:= 1 TO 100 DO 
BEGIN 
POINTERARRAYEI]:= 0; 
STARARRAYCI]:= 0; 
WEIGHTAREAYEI] := 0; 

END; ( I n i t i a l i s e forward s t a r arrays) 
ENDCOLS: = FLASE; 
ROW:= 0; 
EDGEPOINTER: = 1; 
WHILE NOT(ENDCOLS) DO 
BEGIN 
ENDEOW:= FALSE; 
COL:= 1; 
{EDGEPOINTEE c u r r e n t l y contains the f i r s t l o c a t i o n ) 
(number i n STAEAERAY th a t w i l l be used t o store the) 
(forward s t a r of the next node) 
EDGEPOINTSTORE:= EDGEPOINTEE; 
EOW:= ROW+1; 
WHILE NOT(ENDROW) DO 
BEGIN 
FOR I:= 1 TO 5 DO 

NUMBEECI]:= ' ' ; 
I:= 1; 
EEPEAT (Eead the next number from INFILE) 
EEADdNFILE, CH); 
NUMBERLI] := CH; 
I:= I + l ; 

UNTIL ( ( 1 = 5 ) OR (NUMBERLl] = ' * ' ) ) ; 
IF (NUMBER[1] = •*' ) THEN 
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BEGIN {End of row detected) 
ENDROW:= TRUE; 
IF (COL^l) THEN 
ENDCOLS:= TRUE; (End of adjacency matrix) 

END 
ELSE 
BEGIN 

IF (NUMBER[ I ] <> '0' ) THEN 
BEGIN { I n s e r t information i n t o the 3 arrays) 
FOINTERARRAY[ ROW]:= EDGEPOINTSTORE; 
CHARTOINT(NUMBER,VALUE): 
STARARRAYC EDGEPOINTER]:= COL; 
VEIGHTARRAYCEDGEPOINTER]:= VALUE; 
EDGEPOINTER:= EDGEPOINTER+1; 
{set p o i n t e r t o next free l o c a t i o n i n) 
{STARARRAY) 

END; 
COL:= COL+1; {Increment column reference) 

END; 
END; 

IF NOT(ENDGOLS) THEN 
BEGIN 

READLN(INFILE); 
READLN(INFILE); 

END; {Move t o the next row. of the adjacency ) 
{matrix) 

END; 
NUMNODES:= ROW-1; {Record the number of nodes i n ) 

{the network) 
POINTERARRAYENUMNODES+1] := EDGEPOINTER; 
{ I n s e r t dummy po i n t e r i n POINTERARRAY) 

END; {READFORSTAR) 



PROCEDURE PRINTADJMATRIX; 
(This procedure displays the adjacency matrix) 
( r e p r e s e n t a t i o n of the network t o the.screen) 

VAR 
I : INTEGER; 
CH: CHAR; 

BEGIN 
WRITELNC ADJACENCY MATRIX ' ) ; 
WRITELNC — ' ) ; 
WEITELN; 
RESET(INFILE); 
WRITEC ' ) ; 
FOR I:= 1 TO NUMNODES DO 

BEGIN 
WRITE (CHR (ORD ((OED CO' )) + I ) ) ) ; 
IF (I>9) THEN 
WEITEC •) 
ELSE 
WEITEC ' ) ; 

END; 
WEITELN; 
WEITEC ' ) ; 
FOE I:= 1 TO NUMNODES DO 
BEGIN 
WEITEC ' ) ; 

END; 
WEITELN; 
FOE I:= 1 TO NUMNODES DO 

BEGIN 
WEITE(CHE(ORD({ORDCO' )) + ! ) ) ) ; 
IF (I>9) THEN 
WRITEC 1') 

ELSE 
WEITEC I ' ) ; 

EEPEAT 
READ(INFILE, CH); 
IF (CHO* *• ) THEN 
WRITE(CH); 

UNTIL (CH = • * ' ) ; 
EEADLN(INFILE); 
EEADLN(INFILE); 
CH:= ' '; 
WEITELN; 
WEITELNC I ' ) ; 

END; 
WRITELN; 
WRITELN; 

END; (PRINTADJMATRIX) 
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APPENDIX B 

T h i s appendix c o n t a i n s the PASCiAL code f a r the 

program - FIFOSEQULST and the p r o c e d u r e s PUTINLIST 

and PRINTFIFO. FIFOSEQLIST' i s the l a b e l 

c o r r e c t i n g a l g o r i t h m w i t h a s i n g l e queue u s i n g 

F I F O management and procedure PUTINLIST adds a 

node t o the end of the queue, i e . ADDQ. both a r e 

d i s c u s s e d i n s e c t i o n 8. PRINTFIFO d i s p l a y s the 

c o n t e n t s of the sequence l i s t upon b e i n g c a l l e d . 

P r i o r t o r u n n i n g FIFOSEQULST, a c o r r e c t l y 

f o r m a t t e d v e r s i o n of lETFILE must be a v a i l a b l e . 

Some sample r u n s of t h i s program a r e a l s o shown i n 

t h i s appendix. 
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PROGRAM FIFOSEQULST ( INPUT,OUTPUT,INFILE); 
(This program f i n d s the shortest paths from a node, START ) 
(t o every other node i n a network using the label ) 
c o r r e c t i n g algorithm. This program implements a FIFO ) 
sequence l i s t and uses forward s t a r representation of the ) 
(network) 

LABEL 99,88; 

CONST 
INFINITY = 99999; 

TYPE 
W0ED5 = AEEAYC1..S] OF CHAR; 
ARRAY2 = ARRAYE1..2] OF INTEGER; 
AREAYIOO = AEEAYE1..100] OF INTEGER; 
LISTINFOTYPE = ARRAY[1..100] OF AREAY2; 

VAE 
POINTEEAREAY,STAEAEEAY,WEIGHTAEEAY,P,SEQULIST.d:ARRAYIOO; 
LISTINFO: LISTINFOTYPE; 
NUMNODES, R, FIRST,LAST,N.C,I,J: INTEGER; 
START,NEXT,ENTRYPOINTER,LEAVEPOINTER:INTEGER; 
INFILE: TEXT; 

BEGIN (MAIN) 
RESETdNFILE); 
FOR I:= 1 TO 100 DO 
BEGIN 

POINTERARRAYLI]:= 0; 
STARARRAYEI]:= 0; 
WEIGHTARRAYLI]:= 0; 
PL I ] := 0; 
d [ I ] : = INFINITY; 
SEQULISTLI]:= 0; 
LISTINFOEI, 1]:= 0; 
LISTINFO[I, 2]:= 0; 

END; ( I n i t i a l i s e the arrays) 
READFORSTAE; (Eead i n the network) 
PRINTADJMATRIX; {Display the network) 
WRITELNCTHIS IS THE GRAPH REPRESENTED IN FORWARD STAR 

FORM'); 
WRITELNC ' ) 
WRITELN; 
WRITELNC POINTERARRAY STAEAERAY WEIGHTAEEAY'); 
WEITELNC ' ) ; 
WRITELN; 
FOR I:= 1 TO POINTERAERAYENUMNODES + 1] DO 
BEGIN 
WRITEC ' POINTEEAERAYCI].' ',STARARRAYEI]); 
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WRITELNC • , WEIGHTARRAYE I ] ); 
END; 

WRITELN; 
WRITELNCWHICH IS THE START NODE ?'); 
READLN(START); 
WRITELN; 
d[ START] := .0; 
RESTART] := START; 
IF (POINTERARRAYESTART] = 0) THEN 
GOTO 80; (There are no paths from the s t a r t i n g node) 

LEAVEPOINTER : =̂  1; 
SEQULISTELEAVEPOINTER] := START; 
ENTRYPOINTER := 2; ( I n s e r t s t a r t i n g node i n the sequence) 

{ l i s t ) 
WHILE (SEQULISTELEAVPOINTER] <> 0) do 
BEGIN 
R := SEQULISTELEAVEPOINTER]; 
SEQULISTELEAVEPOINTER] := 0; 
{Remove the next node from the sequence l i s t ) 
LEAVEPOINTER := LEAVEPOINTER + 1; 
IF (LEAVEPOINTER > 100) THEN 
LEAVEPOINTER := 1; {Implement c i r c u l a r property of ) 

{queue) 
LISTINFOER,1] := 0; {Node R i s no longer i n the) 

{sequence l i s t ) 
IF (SEQULISTELEAVEPOINTER] <> 0) THEN 
PRINTFIFO; {Display the sequence l i s t ) 

FIRST := POINTERARRAYER]; 
N:= R; 
REPEAT 
N:= N+1; 
LAST:= POINTERARRAYE N]; 

UNTIL (LAST <> 0); 
LASTi= LAST - 1; 
FOR J := FIRST TO LAST DO 
BEGIN 
C := STARARRAYEJ]; 
IF (dEC] > (dER] + WEIGHTARRAYEJ]) THEN 
BEGIN {Relabel node C) 

dEC] := (dER] + WEIGHTARRAYE J] ); 
PEC] := R; 
IF (POINTERARRAYEC] <> 0) THEN 

PUTINLIST(C); (Add node C.to the back of the) 
{queue) 

END; 
END; (FOR loop) 

END; {WHILE loop) 
{Trace the short e s t paths through the tree ) 

88: FOR I:= 1 TO NUMNODES DO 
BEGIN 

IF ( I <> START) THEN 
BEGIN 

IF (dEI] = INFINITY) THEN 
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BEGIN 
WRITELN; 
WRITELN ('THERE IS NO ROUTE FEOM ', STAET, 
TO', I ) 

END 
ELSE 
BEGIN 
WRITELN; 
WRITELN ('DISTANCE FROM' , STAET, '.TO' , I , ' IS' , 

d d ] ) ; 
WEITELN; 
WRITELNC ROUTE IS: ' ); 
WEItELN; 
WRITEd); 
NEXT := PCI]; 
WHILE (NEXT <> STAET) DO 
BEGIN 
WEITE(NEXT); 
NEXT := PENEXT]; 

END; 
WRITELN(START); 

END; 
END; 

END; 
99: END, 
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PROCEDURE PUTINLIST(NODE: INTEGER); 
(This procedure adds a node, NODE, to the end of the) 
{queue formed by the sequence l i s t ) 

BEGIN 
IF (POINTERARRAYENODE] <> 0) AND (LISTINFOENODE, 2] <> 1) 
THEN 
{Check t h a t NODE has a forward s t a r and i s not already) 
{ i n the queue) 
BEGIN 
SEQULISTEENTRYPOINTER]:= NODE; { I n s e r t NODE inqueue) 
ENTRYPOINTER:= ENTRYPOINTER+1; 
{Set ENTRYPOINTER t o r e f e r t o the new 'end' of the) 
{queue) 
IF ENTRYPOIHTER > 100 THEN 
ENTRYPOINTER:= 1; (Implement c i r c u l a r property of) 

{queue) 
PRINTFIFO; (Display the contents of the queue) 
LISTINFOENODE,2] := LISTINFOENODE,2] + 1 ; ' 
{Increment no. of timed NODE has been i n the queue) 
LISTINFOENODE, 1]:= 1; { I n d i c a t e t h a t NODE i n the) 
{queue) 
IF (LISTIHFOENQDE, 2] = (NUMNODES + 1 ) ) THEN 
BEGIN 
WRITELNCTHIS GRAPH CONTAINS A NEGATIVE CIRCUIT -
ILLEGAL'); 

END; 
END; 

END; {PUTINLIST) 
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PROCEDURE PEINTFIFO; 
(This procedure displays the contents of the queue formed) 
(by the sequence l i s t ) 

VAE I : INTEGER; 

BEGIN 
WEITELNCSTATE OF THE SEQUENCE LIST'); 
WEITELNC ' ); 
WRITELN; 
WRITELNC NEXT NODE OUT'); 
WRITELNC I ' ) ; 
WRITEC ' ) ; 
FOR I:= LEAVEPOINTER TO (ENTRYPOINTER - 1) DO 
BEGIN 

WEITE(SEQULISTEI]: 4); 
END; 

WSITELN; 
WRITEC • ) ; 
FOR i:= LEAVEPOINTER TO (ENTRYPOINTER - 2) DO 
BEGIN 
WRITEC ' ) ; 

END; 
WRITELNC I ' ) ; 
WRITEC ' ) ; 
FOR I:= LEAVEPOINTER TO (ENTRYPOINTEE - 2) DO 
BEGIN 
WEITEC ' ) ; 

END; 
WEITELNC LAST NODE IN*); 
WEITELN; 
WEITELN; 

END; (PEINTFIFO) 



OK, PASCALG P408U>FIFOSEQULST.PAS 
[ S h e f f i e l d Pascal version 3.3.1b] 
No e r r o r s reported. 

Executing FIFOSEQULST 

ADJACEIfCY MATRIX 

1 2 3 4 

1 1 0 
1 

5 0 0 
1 

2 1 0 
1 

0 0 2 
1 

3 1 0 
1 

1 0 0 
1 

4 1 0 
1 

0 -3 0 

THIS IS THE GRAPH 

POINTERARRAY STARARRAY VEIGHTARRAY 

1 2 5 
2 4 2 
3 2 1 
4 3 -3' 
5 0 0 

VHICH IS THE START lODE ? 
1 

STATE OF THE SEQUENCE LIST 

NEXT NODE OUT 
I 
2 
I 
LAST lODE 15 

STATE OF THE SEQUENCE LIST 

NEXT NODE OUT 
I 
4 
1 
LAST NODE IN 



STATE OF THE SEQUENCE LIST 

NEXT NODE OUT 
I 
3 
1 
LAST lODE I I 

DISTANCE FROM 1 TO 2 IS 

ROUTE IS: 

2 1 

DISTANCE FROM 1 TO 3 IS ' 

ROUTE IS: 

3 4 2 1 

DISTANCE FROM 1 TO 4 IS 

ROUTE IS: 

4 2 1 



OK, PASCALG P408U>FIFOSEQULST.PAS 
[ S h e f f i e l d Pascal version 3.3.1b] 
No e r r o r s reported. 

Executing FIFOSEQULST 

ADJACENCY MATRIX 

1 2 3 , 

1 10 2 0 
I 

2 10 0 8 
I 

3 1-12 0 0 
I 

THIS IS THE GRAPH REPRESENTED IK FORWARD STAR FORM 

POINTERARRAY STARARRAY WEIGHTARRAY 

1 2 2 
2 3 8 
3 1 -12 
4 0 0 

VHICH IS THE START NODE ? 
1 

STATE OF THE SEQUENCE LIST 

NEXT NODE OUT 
I 
2 
I 
LAST NODE IN 

STATE OF THE SEQUENCE LIST 

NEXT NODE OUT 
I 
3 
I 
LAST NODE IN 



STATE OF THE SEQUENCE LIST 

NEXT NODE OUT 

1 
i 
LAST NODE IN 

STATE OF THE SEQUENCE LIST 

NEXT NODE OUT 
I 
2 
I 

LAST NODE IN 

STATE OF THE SEQUENCE LIST 
NEXT NODE OUT 

I 
3 
I 
LAST NODE IN 

STATE OF THE SEQUENCE LIST 

NEXT NODE OUT 
I 
1 
I 

LAST NODE IN 

STATE OF THE SEQUENCE LIST 

NEXT NODE OUT 
!• 

2 
I 
LAST NODE IN 



STATE OF THE SEQUENCE LIST 

NEXT NODE OUT 
I 
3 
I 
LAST NODE IN 

STATE OF THE SEQUENCE LIST 

NEXT NODE OUT 
1 
1 t 
I 
LAST NODE IN 

STATE OF THE SEQUENCE LIST 

NEXT NODE OUT 
I 
2 
I 

LAST NODE IN 

THIS GRAPH CONTAINS A NEGATIVE CIRCUIT - ILLEGAL 
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APPENDIX C 

This appendix contai ns the PASCAL code for the 

program - DBENDQUEUE and the procedure 

PUTINDEQUEUE and PRINTDEQUEUE. DBENQUEUE is the 

label correcting- algorithm with output restricted 

double ended queue and procedure. PUTINDEQUEUE 

adds a node to the tap or bottom of a queue, 

ADDDQ, bath are discussed in sections 4 and - 8. 

PRINTDEQUEUE, upon call, displays the contents of 

the output restricted double ended queue. Prior 

to running DBENDQUEUE, a correctly formatted 

version of INFILE must be available. 

Some sample runs of this program are also shown in 

this appendix. 



PROGRAM DBENDQUEUECINPUT,OUTPUT,INFILE); 
{This program f i n d s the shortest paths from a node, START 
{to every other node i n a network using the lab e l 
{ c o r r e c t i n g algorithm. This program implements an output 
{ r e s t r i c t e d double ended queue and uses forward s t a r 
{ r e p r e s e n t a t i o n of the network 

LABEL 99,88; 

CONST 
I N F I N I T Y = 99999; 

TYPE 
WORDS = ARRAYC1..5] OF CHAR; 
ARRAY2 = ARRAYE1..2] OF INTEGER; 
ARRAYIOO = AR.RAY[ 1. . 1 0 0 ] OF INTEGER; 

VAR 
POINTERARRAY, STARARRAY,WEIGHTARRAY,P,d,DEQUEUE : ARRAYIOO; 
ENTRYCOUNT: ARRAYIOO; 
NUMNODES,R, N,C,I,J.START,NEXT,FRONTQUEUE,BACKQUEUE, FIRST, 
LAST:INTEGER; 
ENTRY,TOP:BOOLEAN; 
INFILE:TEXT; 

BEGIN {MAIN) 
R E S E T ( I N F I L E ) ; 
FOR I : = 1 TO 100 DO 

BEGIN 
POINTERARRAYCI]:= 0; 
STARARRAYCI]:= 0; 
WEIGHTARRAYII]:= 0; 
P[ I ] : = 0; 
d[ I ] : = I N F I N I T Y ; 
DEQUEUECI]:= 0; 
ENTRYCOUNTII]:= 0; 

END; { I n i t i a l i s e the arrays) 
READFORSTAR; {Read i n the network) 
PRINTADJMATRIX; {Display the network) 
WRITELNCTHIS IS THE GRAPH REPRESENTED I N FORWARD STAR 
FORM'); 
WRITELNC ' ) ; 
WRITELN; 
WRITELNC' POINTERARRAY STARARRAY WEIGHTARRAY'); 
WRITELNC ' ) ; 
WRITELN; 
FOR I : = 1 TO POINTERARRAYENUMNODES + 1 ] DO 

WRITELNC ',POINTERARRAY[I], ' ',STARARRAYCI], 
',WEIGHTARRAYLI]); 

WRITELN; 



VRITELNC VHICH IS THE START NODE ?'); 
READLN(START); 
VRITELN; 
d[START]:= 0; 
DEQUEUE!START]:= INFINITY; 
P[START]:= START; 
IF (POINTERARRAYISTART] = 0) THEN 
GOTO 88; 

FROKTQUEUE: START; { I n s e r t ttie s t a r t i n g node i n the) 
{dequeue) 

BACKQUEUE:= START; 
VHILE (FRONTQUEUE <> INFINITY) DO 
BEGIN 
R := FRONTQUEUE: 
{Remove the next node from the dequeue) 
ENTRY :=FALSE; 
PRINTDEQUEUE; {Display the contents of the dequeue) 
FRONTQUEUE:= DEQUEUE!FRONTQUEUE]; {Reset queue) 

{poi n t e r ) 
IF (FRONTQUEUE = INFINITY) THEN 
BACKQUEUE:= INFINITY; {Empty queue condition) 

DEQUEUE!R];= - 1 ; 
FIRST :=• POINTERARRAYL R]; 
N:= R; 
REPEAT 
N:= N+1; 
LAST:= POINTERARRAY!N]; 

UNTIL (LAST <> 0); 
LAST := LAST - 1; 
FOR J:= FIRST TO LAST DO 

BEGIN 
C:= STARARRAY!J]; 
IF (d!C] > (d!R] + WEIGHTARRAY!J])) THEN 
BEGIN {Relabel node C) 

d!C] := (d!R] + VIEIGHTARRAY!J]); 
P[C] ; = R; 
IF (POINTERARRAY!C] <> 0) THEN 
PUTINDEQUEUE (C); (Add node C t o tlie) 

{dequeue) 
END; 

END; 
END; {WHILE loop) 
{Trace the shor t e s t paths through the tree) 

88: FOR I:= 1 TO NUMVERT DO 
BEGIN 

IF ( I <> START) THEN 
BEGIN 

IF (dEI] = INFINITY) THEN 
BEGIN 

VRITELN; 
WRITELNCTHERE IS NO ROUTE FROM', START, 
'T O ' . d l l ] ) ; 
VRITELN; 



WRITELNC ROUTE IS: ' ); 
WRITELN; 
WRITE(I); 
NEXT:= PC I ] ; 
WHILE (NEXT <> START) DO 
BEGIN 

WRITE(NEXT); 
NEXT:= PCNEXT]; 

END; 
WRITELN(START); 

END; 
END; 

END; 
99: END. 



PROCEDURE PUTINDEQUEUE(NODE: INTEGER); 
{This procedure adds a node, NODE, t o the f r o n t or the) 
(back of the double ended queue, as required) 

BEGIN 
ENTRYCOUNTENODE]:= ENTRYCOUNTCNODE] + 1; 
{Increment no. of times NODE has been i n the dequeue) 
IF (ENTRYCOUNTINODE] = (NUMNODES + 1 ) ) THEN 
BEGIN 
WRITELNC NEGATIVE LENGTH CIRCUIT ENCOUNTERED -
ILLEGAL'); 
GOTO 99; 

END; 
IF (DEQUEUECNODE] = -1) THEN 
BEGIN ( I n s e r t NODE at the f r o n t of the dequeue) 
TOP:= TRUE; 
DEQUEUEC NODE]:= FRONTQUEUE; 
FRONTQUEUE:= NODE; 
IF (BACKQUEUE = INFINITY) THEN 
BACKQUEUE:= NODE; 

ENTRY:= TRUE; 
PRINTDEQUEUE; (Display the contents of the dequeue) 

END 
ELSE 
BEGIN ( I n s e r t NODE at the back of the dequeue) 

IF (DEQUEUECNODE] = 0) THEN 
BEGIN 
TOP:= FALSE; 
DEQUEUECNODE!:= INFINITY; 
IF (BACKQUEUE <> INFINITY) THEN 
DEQUEUEC BACKQUEUE]:= NODE; 

BACKQUEUE:= NODE; 
IF {FRONTQUEUE = INFINITY) THEN 
FRONTQUEUE:= NODE; 

ENTRY:= TRUE; 
•PRINTDEQUEUE; {Display the contents of the dequeue) 

END; 
END; 

END; (PUTINDEQUEUE) 
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PROCEDURE PRINTDEQUEUE; 
{This procedure displays the contents of the double) 
{ended queue formed by the sequence l i s t ) 

VAR 
I.NUMPRINTED: INTEGER; 

BEGIN 
VRITELN('STATE OF THE DOUBLE ENDED QUEUE'); 
VRITELNC • ); 
VRITELN; 
IF NOT (ENTRY) THEN 
BEGIN 

VRITELN('NODE ABOUT TO LEAVE'); 
VRITELNC I ' ) ; 

END 
ELSE 
BEGIN 

IF (TOP) THEN 
BEGIN 
VRITELNC NODE JUST ENTERED'); 
WRITELNC I ' ) ; 

END; 
END; 

I:= FRONTQUEUE; 
NUMPRINTED;= 0; 
VRITEC ' ) ; 
REPEAT 

VRITEd: 4) ; 
NUMPRINTED:= NUMPRINTED+l; 
I;= DEQUEUE!I]; 

UNTIL ( I = INFINITY); 
VRITELN; 
IF (ENTRY = TRUE) AND (NOT TOP) THEN 
BEGIN 
VRITEC I ' ) ; 
FOR I:= 1 TO (NUMPRINTED - 1) DO 

BEGIN 
WRITEC ' ) ; 

END; 
VRITELNC ' ) ; 
FOR I:= 1 TO (NUMPRINTED - 1) DO 

BEGIN 
VRITEC ' ) ; 

END; 
VRITELNC lODE JUST ENTERED'); 

END; 
VRITELN; 
VRITELN; 

END; {PRINTDEQUEUE) 



OK, PASCALG P408U>DEQUEUE.PAS 
CSheffield Pascal version 3.3.1b] 
No e r r o r s reported. 

Executing DBENDQUEUE 

ADJACENCY MATRIX 

1 2 3 

1 1 0 
1 

2 0 

2 
1 
1 0 
I 

0 8 

3 
1 
1 0 0 5 

THIS IS THE GRAPH REPRESENTED IN FORWARD STAR FORM 

POINTERARRAY STARARRAY WEIGHTARRAY 

1 2 2 
2 3 8 
3 3 5 
4 0 0 

WHICH IS THE START NODE ? 
1 

STATE OF THE DOUBLE ENDED QUEUE 

NODE ABOUT TO LEAVE 

STATE OF THE DOUBLE ENDED QUEUE 

2 
I 

NODE JUST ENTERED 



STATE OF THE DOUBLE ENDED QUEUE 

NODE ABOUT TO LEAVE 
I 
2 

STATE OF THE DOUBLE ENDED QUEUE 

3 
I 

NODE JUST ENTERED 

STATE OF THE DOUBLE ENDED QUEUE 

NODE ABOUT TO LEAVE 
I 
3 

DISTANCE FROM 1 TO 

ROUTE IS: 

2 1 

DISTANCE FROM 1 TO 

ROUTE IS: 

3 2 

IS 

3 IS 10 



OK, PASCALG P408U>DEQUEUE.PAS 
CSheffield Pascal version 3.3.1b] 
No e r r o r s reported. 

Executing DBENDQUEUE 

ADJACENCY MATRIX 

1 2 3 

110 2 0 • 
I 

2 10 0 8 
i 

3 10 0 -12 
I 

THIS IS THE GRAPH REPRESENTED IN FORWARD STAR FORM 

POINTERARRAY STARARRAY WEIGHTARRAY 

1 2 
2 3 
3 3 
4 0 

WHICH IS THE START NODE ? 
2 

STATE OF THE DOUBLE ENDED QUEUE 

2 
8 

-12 
0 

NODE ABOUT TO LEAVE 
I 
2 

STATE OF THE DOUBLE ENDED QUEUE 

3 
I 

NODE JUST ENTERED 



STATE OF THE DOUBLE ENDED QUEUE 

NODE ABOUT TO LEAVE 
I 
3 

STATE OF THE DOUBLE ENDED QUEUE 

NODE JUST ENTERED 
I 
3 

STATE OF THE DOUBLE ENDED QUEUE 

NODE ABOUT TO LEAVE 
I 
3 

STATE OF THE DOUBLE ENDED QUEUE 

NODE JUST ENTERED 
I 
3 

STATE OF THE DOUBLE ENDED QUEUE 

NODE ABOUT TO LEAVE 
I 
3 

NEGATIVE LENGTH CIRCUIT ENCOUNTERED - ILLEGAL 
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APPENDIX D 

This appendix contains the PASCAL code for the 

program, ADCALC, the label setting algorithm with 

address calculation, the procedure ADDNODE and 

REMOVENODE, • and the modified PASCAL code for the 

procedure PEADFORSTAR. The PASCAL code for the 

procedure FRINTNODEARRAY is also included. This 

procedure, upon call, displays the contents of the 

nan-empty locations of NODEARRAY. Prior to 

running ADCALC, a correctly formatted version of 

INFILE must be avai lable. 

Some sample runs of this program are also shown in 

this appendix. 
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PROGRAM ADCALC( INPUT, OUTPUT, I l f F I L E ) ; 
{ T h i s program f i n d s t h e s h o r t e s t p a t h s f r o m a node, START) 
{ t o e v e r y o t h e r node i n a network u s i n g the l a b e l s e t t i n g } 
{ a l g o r i t h m . T h i s program implements an address ) 
{ c a l c u l a t i o n s o r t and uses f o r w a r d s t a r r e p r e s e n t a t i o n of ) 
{t h e network > 

LABEL 99; 

CONST 
INFINITY = 99999; 

TYPE 
V0RD5 = ARRAYC1..5] OF CHAR; 
ARRAYIOO = ARRAYE1..100] OF INTEGER; 
POINTER = 'NODE; 
PTRARRAY = ARRAY!0..1000] OF POINTER; 

NODE = RECORD 
NAME: INTEGER; 
NEXT: POINTER; 

END; 
BOAERAY: ARRAY!1..1001 OF BOOLEAN; 

VAR 
NODEARRAY: PTRARRAY; 
PTR: POINTER; 
POINTERARRAY.STARARRAY,VEIGHTARRAY.P.d : ARRAYIOO; 
NUMNODES.N.C,I,.J,MODULUS,START,NEXT,R ; INTEGER; 
AERAYEEF,STARTREF,CURRENTLOC,NEVLOC,FIRST,LAST:INTEGER; 
TERMINATE: BOOLEAN; 
INFILE: TEXT; 
INTREE: BOAREAY; 

BEGIN {MAIN) 
RESET ( I N F I L E ) ; 
FOR I:= 1 TO 100 DO 

BEGIN 
POINTEEAEEAYCI] := 0; 
STARARRAYCI]:= 0; 
WEIGHTARRAYCI] := 0; 
PC I ] : = 0; 
d[ I ] : = INFINITY; 
INTREEI I ] : = FALSE; 

END; { I n i t i a l i s e t h e a r r a y s ) 
READFORSTAR; {Read i n t h e network) 
PRINTADJMATRIX; { D i s p l a y t h e network) 
VRITELNCTHIS IS THE GRAPH REPRESENTED IN FORWARD STAR 



FORM'); 
VRITELNC • );, 
VRITELN; 
VRITELNC POIUTERARRAY STARARRAY VEIGHTARRAY'); 
VRITELN (' • ) ; 
VRITELN; 
FOR I:= 1 TO POINTERARRAYCNUMODES + 1] DO 

VRITELNC '.POINTERARRAYCI],' ',STARARRAYLI] , 
•,VEIGHTAERAY[I]); 

VRITELN; 
VRITELNC WHICH IS THE START NODE ?'); 
READLN<START); 
WRITELN; 
d[START]:= 0; 
RESTART]— START; 
FOR I =0 TO MODULUS DO 
NODEARRAYC I ] ; NIL; 

ARRAYREF;= - 1 ; 
NEV(PTR); 
PTR-.NAME;= START; 
PTR-.NEXT:= NIL; 
NODEARRAYCOJ— PTR; { I n s e r t s t a r t i n g node i n NODEARRAY) 
IF (POINTERARRAY[START] <> 0) THEN 
TERMINATE:= FALSE {No paths f r o m s t a r t node) 

ELSE 
TERMINATE;= TRUE; 

VHILE (TERMINATE = FALSE) DO 
BEGIN 

STARTREF:== ARRAYREF; 
REPEAT 

ARRAYREF:= ARRAYREF + 1 ; 
I F (ARRAYREF > MODULUS) THEN 
ARRAYREF:= 0; 

UNTIL (NODEARRAYIARRAYREF] <> NIL) OR 
(ARRAYREF = STARTREF); 
{Search f o r next non NIL e n t r y i n NODEARRAY) 
IF ARRAYREF = STARTREF THEN 
TERMINATE;= TRUE {NODEARRAY I s empty) 

ELSE 
BEGIN 

PTR:= NQDEARRAYC ARRAYREF] ; 
REPEAT {For each node i n t h e l i n k e d l i s t l o c a t e d ) ; 

R:= PTR-.NAME; 
INTREEEI] := TRUE; 
VRITELN{'EXAMINING NODE •,R:3); 
VRITELN; 
FIRST:= POINTERARRAYCR] ; 
N; =R; 
REPEAT 

N:= N+1; 
• LAST:= POINTERARRAYIN]; 
UNTIL (LAST <> 0 ) ; 
LAST;= LAST - 1; 



FOR J:= FIRST TO LAST DO 
BEGIN 
C:= STARARRAYIJ]; 
IF ((d[R] + VEIGHTARRAYCJ]) < (dCC])) 

AND (INTREEEC] = FALSE) THEN 
BEGIN { R e l a b e l node C) 

IF (dIC] <> INFINITY) AND 
(POINTERARRAYEC] O' 0) THEN 
BEGIN {Remove C fr o m i t s c u r r e n t pos.) 
{ i n NODEARRAY) 
CURREITLOC:= ( d l C I HOD MODULUS); 
{* C a l c u l a t e C's c u r r e n t address i n ) 
{NODEARRAY *) 
REMOVENODE(CURRENTLOC,C); 
PRIITNODEARRAY(FALSE,C); 
{ D i s p l a y c o n t e n t s o f NODEARRAY) 

END; 
dCC]:= dCR] + VEIGHTARRAYCJ] ; 
PCC] := R; 
IF (POINTERARRAYCCl <> 0) THEN 
BEGIN 
NEVLOC:= (dCC] MOD MODULUS); 
{* C a l c u l a t e C's new address i n ) 
{NODEARRAY *) 
ADDNODE(NEVLOC,C); 
PRINTNODEARRAY(TRUE,C); 
{ D i s p l a y c o n t e n t s of NODEARRAY) 

END; 
END; 

END; 
PTR:= PTR^NEXT; 
{Set p o i n t e r t o r e f e r t o t h e next node i n t h e ) 
{ l i n k e d l i s t ) 
REMOVENODE(ARRAYREF.R); {Remove R f r o m t h e ) 

{ l i n k e d l i s t ) 
PRINTNODEARRAY(FALSE,E); 
{ D i s p l a y c o n t e n t s of NODEARRAY) 

UNTIL (PTR = N I L ) ; ) 
{End o f l i n k e d l i s t has been reached) 

END; { I F ARRAYREF = STARTREF) 
END; {WHILE TERMINATE <> FALSE) 

{Trace t h e s h o r t e s t p a t h s t h r o u g h t h e t r e e ) 
FOR I:= 1 TO NUMNODES DO 

BEGIN 
IF ( I <> START) THEN 
BEGIN 

IF (dCn = INFINITY) THEN 
BEGIN 

VRITELN; 
VRITELNC THERE IS NO ROUTE FROM', START, ' T O M ) 

END 
ELSE 

BEGIN 



VRITELN; 
VRITELN('DISTANCE FROM' .START,'TO' , I , ' IS',d[ I ] ) ; 
VRITELN; 
VRITELNC ROUTE IS; ' ); 
VRITELN; 
V R I T E ( I ) ; 
NEXT:= P[ I ] ; 
VHILE (NEXT <> START) DO 

BEGIN 
VRITE(NEXT); 
NEXT:= PC NEXT]; 

END; 
VRITELN(START); 

END; 
END; 

END; 
99: END. 
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PROCEDURE ADDNODE(LOC,NODE:INTEGER); 
{ T h i s p r ocedure adds a node, NODE, t o t h e end of t h e ) 
{ l i n k e d l i s t p o i n t e d t o fr o m l o c a t i o n LOC i n NODEARRAY} 

VAR PTR,NEVPTR:POINTER; 

BEGIN 
PTR:-NODEARRAYCLOC] ; 
IF (PTE <> NIL) THEN 
BEGIN {There i s a l r e a d y a l i n k e d l i s t p o i n t e d t o from) 

{ l o c a t i o n LOC) 
VHILE (PTR',NEXT <> NIL) DO 

BEGIN 
PTR:=PTR*.NEXT; 

END; { F i n d t h e end of t h e l i n k e d l i s t ) 
NEW(NEVPTR); 
NEVPTR". NAME: =NODE; 
PTR-.NEXT:=NEVPTR; 
NEVPTR-. NEXT:=NIL; {Add NODE t o t h e end of t h e l i n k e d ) 

{ l i s t ) 
END 

ELSE {There i s c u r r e n t l y no l i n k e d l i s t p a i n t e d t o from) 
{ l o c a t i o n LOO . 

BEGIN 
NEV(NEVPTR); 
NEVPTR-.NAME:=NEVPTR; 
NEWPTR".NEXT:=NIL; 

END; {Add NODE as f i r s t (and o n l y ) node i n the l i n k e d ) 
( l i s t ) 

END; (ADDNODE) 
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PROCEDURE REMOVENODE(LOC,NODE:INTEGER); 
{ T h i s procedure removes a node, NODE, fro m t h e l i n k e d ) 
{ p o i n t e d t o f r o m l o c a t i o n LOC i n NODEARRAY) 

VAR PTR,OLDPTR:POINTER; 

BEGIN 
PTR;=NODEARRAYCLOC] ; 
IF (PTR-.NAME <> NODE) THEN 
{Check i f NODE i s t h e f i r s t node i n t h e l i n k e d l i s t ) 

BEGIN 
REPEAT 
OLDPTR:=PTR; 
{OLDPTR p o i n t s t o t h e node b e f o r e NODE i n t h e ) 
{ l i n k e d l i s t ) 
PTR:=PTR-.NEXT; 

UNTIL (PTR-.NAME = NODE); {Locate NODE i n t h e l i n k e d ) 
( l i s t ) 

OLDPTRNEXT:=PTR-.NEXT; {Bypass NODE i n t h e l i n k e d ) 
( l i s t ) 

DISPOSE(PTR); 
END 

ELSE 
BEGIN {The node a f t e r NODE becomes t h e f i r s t i n t h e ) 

{ l i n k e d l i s t ) 
NODEARRAYC LOC] : = PTR\ NEXT; 
DISPOSE(PTR); 

END; 
END: {REMOVENODE) 
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PROCEDURE READFORSTAR; 
{ T h i s p rocedure reads t h e adjacency m a t r i x r e p r e s e n t a t i o n ) 
{ o f t h e netw o r k f r o m INFILE t o t h e 3 f o r w a r d s t a r a r r a y s -) 
{POINTERARRAY, STARARRAY and VEIGHTARRAY. T h i s v e r s i o n o f ) 
{ t h e p r o cedure a l s o o b t a i n s t h e v a l u e of MODULUS r e q u i r e d > 
{by t h e program) 

VAR 
ROW.COL.I,EDGEPOINTER,EDGEPOINTSTORE,VALUE:INTEGER; 
{EDGEPOINTER s t a r e s t h e next f r e e l o c a t i o n number i n ) 
{STARAERAY) 
{EDGBPOINTSTORE s t o r e s t h e f i r s t l o c a t i o n number i n ) 
{STAEARRAY used t o s t o r e t he c u r r e n t nodes f o r w a r d ) 
( s t a r ) 
NUMBER:V0RD5; 
{NUMBEE h o l d s t h e number read f r o m INFILE, i n c h a r a c t e r ) 
{ f o r m ) 
ENDROV,ENDCOLS:BOOLEAN; 
{ENDROV = TRUE i f end of row i s reached i . e . a * i s ) 
{ d e t e c t e d ENDCOLS = TRUE when a l l rows i n adjacency ) 
{ m a t r i x have been read) 
CH:CHAR; 

BEGIN 
MODULUS:= 0; 
RESET(INFILE); 
FOR I:= 1 TO 100 DO 

BEGIN 
POINTERARRAYCI]:= 0; 
STARARRAYCI]:= 0; 
VEIGHTARRAYCI] ;- 0; 

END: { I n i t i a l i s e f o r w a r d s t a r a r r a y s ) 
ENDCOLS: = FALSE; 
ROV;= 0; 
EDGEPOINTER: = 1; 
VHILE NOT(ENDCOLS) DO 

BEGIN 
ENDROV;= FALSE; 
COL:- 1; 
{EDGEPOINTER c u r r e n t l y c o n t a i n s t h e f i r s t l o c a t i o n ) 
{number i n STARARRAY t h a t w i l l be used t o s t o r e t h e ) 
{ f o r w a r d s t a r of t h e next node) 
EDGEPOINTSTORE:= EDGEPOINTER; 
ROV:= ROV+1; 
VHILE NOT(ENDROV) DO 

BEGIN 
FOR I ; = l TO 5 DO 

NUMBERCI]:= ' ' ; 
I:= 1; 
REPEAT {Read t h e next number f r o m INFILE) 

READdNFILE, CH); 
NUMBERCI] :- CH; 
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I:= I + l ; 
UNTIL ( ( I = 5 ) OR (NUMBERCl] = ' * ' ) ) ; 
I F (NUMBERC1] = '*') THEN 
BEGIN {End o f row d e t e c t e d ) 
ENDROW:= TRUE; 
IF (C0L=1) THEN 
ENDC0LS:= TRUE; {End o f adjacency m a t r i x ) 

END 
ELSE 

BEGIN 
I F (NUMBERC1] <> '0') THEN 

BEGIN { I n s e r t i n f o r m a t i o n i n t o t h e 3 a r r a y s ) 
POINTERARRAYCROW]:= EDGEPOINTSTORE; 
CHARTOINT(NUMBER,VALUE); 
IF (VALUE > MODULUS) THEN 
MODULUS:= VALUE; 

STARARRAYCEDGEPOINTER]:= COL; 
VEIGHTARRAYC EDGEPOINTER]:= VALUE; 
EDGEPOINTER:= EDGEPOINTER+1; 
{Set p o i n t e r t o next f r e e l o c a t i o n i n ) 
{STARARRAY) 

END; 
COL:= COL+1; {Increment column r e f e r e n c e ) 

END; 
END; 

IF NOT(ENDCOLS) THEN 
BEGIN 

READLN(INFILE) ; 
READLN(INFILE); 

END; {Move t o t h e next row o f t h e adjacency) 
( m a t r i x ) 

END; 
NUMNODES: = ROV-1; {Record t h e number of nodes i n t h e ) 
(ne t w o r k ) 
POINTERAREAYC NUMNODES+ll:= EDGEPOINTER; 
{ I n s e r t dummy p o i n t e r i n POINTEEARRAY) 
MODULUS:= MODULUS+1; (MODULUS := Lmax + 1) 

END; {READFOESTAR) 
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PROCEDURE PRINTNODEARRAY(ADDED:BOOLEAN;NODENUM:INTEGER); 
( T h i s procedure d i s p l a y s t h e c o n t e n t s o f t h e non-empty) 
{ l o c a t i o n s of NODEARRAY. I t a l s o o u t p u t s which node has) 
( j u s t been added o r removed f r o m NODEARRAY) 

VAR 
K:INTEGER; 
PTR:POINTER; 

BEGIN 
WRITELNCSTATE OF NODEARRAY'); 
VRITELNC ' ) ; 
VRITELN; 
IF (ADDED) THEN 
VRITELN('NODE',NODEIUM:4, ' ADDED' ) 

ELSE 
VRITELNC NODE' , NODENUM: 4, ' REMOVED' ) ; 

VRITELN; 
VRITELNCLOCATION IN NODARRAY 
V R I T E L N C — : 
VRITELN; 
FOR K:= 0 TO MODULUS DO 

BEGIN 
PTR:= NODEARRAYCK]; 
IF (PTR <> NIL) THEN 

BEGIN 
VRITE(K:11); 
VEITEC ' ) ; 
EEPEAT 

WEITEC 

LIST FEOM LOCATION'); 
. ). 

VEITE(PTE-.NAME 
PTE:= PTE-.NEXT 

UNTIL (PTR = NIL) 
VEITELN; 
WRITELN; 

END; 
END; 

END; (PRINTNODEARRAY) 

>; 
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OK, PASCALG P40SU>ADCALC.PAS 
[ S h e f f i e l d Pascal v e r s i o n 3.3.1b] 
No e r r o r s r e p o r t e d . 

E x e c u t i n g ADCALC 

ADJACENCY MATRIX 

1 2 3 

1 1 0 1 4 
I 

2 10 0 3 
I 

3 10 0 0-
I 

THIS IS THE GRAPH REPRESENTED IN FORWARD STAR FORM 

POINTERARRAY STARARRAY VEIGHTAERAY 

1 2 1 
3 3 4 
0 3 3 
4 0 0 

VHICH IS THE START NODE ? 
2 

STATE OF NODEARRAY 

NODE 2 ADDED 

LOCATION IN NODEARRAY LIST FROM LOCATION 

EXAMINING NODE 2 

STATE OF NODEARRAY 

NODE 2 REMOVED 

LOCATION IN NODEARRAY LIST FROM LOCATION 
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THERE IS NO ROUTE FROM 2 TO 1 

DISTANCE FROM 2 TO 3 IS 

ROUTE IS: 
3 2 



OK, PASCALG P408U>ADCALC,PAS 
[ S h e f f i e l d Pascal v e r s i o n 3.3.1b] 
No e r r o r s r e p o r t e d . 

E x e c u t i n g ADCALC 

ADJACENCY MATRIX 

1 

1 10 
I 

2 I 0 
I 

3 I 0 

2 3 

1 4 

0 3 

0 0 

THIS IS THE GRAPH REPRESENTED IN FORVARD STAR FORM 

POINTERARRAY STARARRAY VEIGHTARRAY 

1 
3 
0 
4 

2 
3 
3 
0 

VHICH IS THE START NODE ? 
1 

STATE OF NODEARRAY 

NODE 1 ADDED 

LOCATION IN NODBARRAY LIST FROM LOCATION 

0 

EXAMINING NODE 1 

STATE OF NODEARRAY 

NODE 2 ADDED 
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LOCATION IN NODEARRAY LIST FROM LOCATION 

0 

1 

STATE OF NODEARRAY 

NODE 1 REMOVED 

LOCATION IN NODEARRAY LIST FROM LOCATION 

EXAMINING NODE 2 

STATE OF NODEARRAY 

NODE 2 REMOVED 

LOCATION IN NODEARRAY LIST FROM LOCATION 

DISTANCE FROM 

ROUTE IS: 

2 

DISTANCE FROM 

ROUTE IS: 

3 

1 TO 2 IS 

1 TO 3 IS 
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APPENDIX B 

This appendix contai ns the PASCAL code far the 

program, BUCKETSORT, the label setting algorithm 

with 1-level bucketsort, the procedures 

ADDNODEBUCK and REMOVENODEBUCK and the modified 

PASCAL code far READFORSTAR. The program and its 

associated procedures are discussed in section 9. 

The PASCAL code for the procedure RINTBUCKETS is 

also included. This procedure, upon call, 

displays the contents of the nan-empty buckets in 

the bucket list. Prior to running BUCKETSORT, a 

correctly formatted version of INFILE must be 

available. 

Some samples runs of this program are also shown 

in this appendix. 
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PROGRAM BUCKETSORT(INPUT,OUTPUT,INFILE); 
( T h i s program f i n d s t h e s h o r t e s t p aths f r o m a node , START) 
{ t o e v e r y o t h e r node i n a network u s i n g t h e l a b e l s e t t i n g ) 
{ a l g o r i t h m . T h i s a l g o r i t h m implements a bucket s o r t and ) 
{uses f o r w a r d s t a r r e p r e s e n t a t i o n o f t h e network ) 

LABEL 99; 

CONST 
INFINITY = 99999; 

TYPE 
V0RD5 = ARRAYC1..5] OF CHAR; 
ARRAYIOO = ARRAYC1..100] OF INTEGER; 
POINTER = "NODE; 
PTRARRAY = ARRAYC0..10001 OF POINTER; 

NODE = RECORD 
NAME: INTEGEE; 
NEXT: POINTER; 

END; 
BOARRAY = ARRAYC1..100] OF INTEGER; 

VAR 
BUCKLIST: PTRARRAY; 
PTR: POINTER; 
POINTERARRAY.STARARRAY,VEIGHTARRAY.P.d : ARRAYIOO; 
NUMNODES.N.C, I . J,LMIN.START. NEXT: INTEGER; 
BUCKREF,CURRENTBUCKET,NEVBUCKET.FIRST.LAST: INTEGER; 
TERMINATE: BOOLEAN; 
INFILE: TEXT; 
INTREE: BOARRAY; 

BEGIN {MAIN) 
RESET{INFILE); 
FOR I:= 1 TO 100 DO 

BEGIN 
POINTERARRAYCI]:= 0; 
STARARRAYCI]:= 0; 
VEIGHTAERAYCI];= 0; 
PC I ] := 0; 
dC I ] : = INFINITY; 
INTREECI]:= FALSE; 

END; 
READFORSTAR; {Read i n t h e network) 
PRINTADJMATRIX; { D i s p l a y t h e network) 
WRITELNCTHIS IS THE GRAPH REPRESENTED IN FORWARD STAR 
FORM'); 

251 



VEITELNC — — ' ) ; 
VRITELN; 
VRITELNC POINTERARRAY STARARRAY VEIGHTARRAY'); 
VRITELNC • ) ; 
VRITELN; 
FOR I:= 1 TO POINTERAERAYCNUMNODES + 1] DO 

VRITELNC '.POINTERARRAYCI],' ',STARARRAYCI], 
•.VEIGHTARRAYCII); 

VRITELN; 
VRITELNCWHICH IS THE START NODE ?' ) ; 
READLN(START) 
WRITELN; 
dCSTART]:= 0; 
PC START];= START; 
FOR I := 1 TO 1000 DO 

BUCKLISTC n : = NIL; 
BUCKREF:= - 1 ; 
NEW(PTR); 
PTRNAME:= START; 
PTR-.NEXT:= NIL; 
BUCKLISTIO] := PTR; 
{ I n s e r t s t a r t i n g node i n BUCKET 0 ) 
IF (POINTERARRAYISTART] <> 0) THEN 
TERMINATE:- FALSE (No pa t h s f r o m s t a r t node ) 

ELSE 
TERMINATE:- TRUE; 

WHILE (TERMINATE = FALSE) DO 
BEGIN 
REPEAT 
BUCKREF:- BUCKREF + 1; 

UNTIL (BUCKREF = 1001) OR (BUCKLISTCBUCKREF] <> N I L ) ; 
{Search f o r t h e next non-empty bu c k e t ) 
I F BUCKREF = 1 0 0 1 THEN 
TERMINATE:- TRUE 

ELSE 
BEGIN 

PTR:= BUCKLISTCBUCKREP]; 
REPEAT {For each node - R, i n t h e bucket l i n k e d ) 

{ l i s t ) 
R:= PTR-.NAME; 
INTREECR]:- TRUE; {Add R t o t h e t r e e ) 
WRITELN('EXAMINING NODE',R:3); 
WRITELN; 
FIRST:- POINTERARRAYCR] ; 
N:= R; 
REPEAT 

N:- N+1; 
• LAST:- POINTERARRAYCN]; 

UNTIL (LAST <> 0 ) ; 
LAST:- LAST - 1; 
FOR J:- FIRST TO LAST DO 

BEGIN 
C:- STARARRAYCJ]; 
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IF ((d[R] + VEIGHTARRAYEJ]) < d[C]) AND 
(IlfTKEEtC] = FALSE) THEN 

BEGII {Relabel node C) 
IF (d[C] <> INFINITY) AND (POINTERARRAY 
CC] <> 0) THEN 
BEGIN <If C i s already i n a bucket) 
CURRENTBUCKET:= (dCCl DIV LMIN); 
{Find C's current bucket) 
REMOVENODEBUCK(CURRENTBUCKET,C); 

END; 
dCC] ;= (dCR] + VEIGHTARRAYCJ]); 
PEC] := R; 
IF (POINTERARRAYCCI <> 0) THEN 
(Check i f C has a forward s t a r ) 
BEGIN 
NEVBUCKET:= (dLC] DIV LMIN); 
{Calculate C's new bucket) 
ADDNODEBUCK(NEVBUCKET,C); 
{I n s e r t C i n i t s new bucket) 

END; 
END; 

END; {FOR Loop) 
PTR:= PTR-.NEXT; 
REMOVENODEBUCK(BUCKREF, R); 

UNTIL (PTR = NIL); 
END; 

END; {WHILE loop) 
FOR I:= 1 TO NUMNODES DO 
BEGIN 

IF ( I <> START) THEN 
BEGIN 

IF ( d [ I ] = INFINITY) THEN 
BEGIN 
VRITELN; 
WRITELNCTHERE IS NO ROUTE FROM', START, ' TO'.I) 

END 
ELSE 

BEGIN 
VRITELN; 
VRITELN('DISTANCE FROM' .START,'TO' . I , 

'IS'.dCID; 
VRITELN; 
VRITELN('ROUTE I S : ' ) ; 
VRITELN; 
VRITE(I); 
NEXT:= P [ I ] ; 
VHILE (NEXT <> START) DO 
BEGIN 

VRITE(NEXT); 
NEXT:= PLNEXT].; 

END; 
VRITELN(START); 

END; 



EID; 
END; 

99:END. 
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PROCEDURE ADDNDDEBUCKCBUCKNUM,NODE: INTEGER); 
{This procedure adds a node, NODE, t o bucket K i n the ) 
{bucket l i s t ) 

VAR 
PTR.NEVPRT: POINTER; 

BEGIN 
PTR:= BUCKETARRAYIBUCKNUM] ; 
IF (PTR <> NIL) THEN {Bucket BUCKNUM i s not empty) 
BEGIN {Find the l a s t node i n bucket BUCKNUM ) 

VHILE (PTR-.NEXT <> NIL) DO 
BEGIN 
PTR:= PTR'.NEXT; 

END; 
NEV(NEVPTR); 
NEVPTR-.NAME:= NODE; 
PTR'.NEXT:= NEVPTR; 
NEVPTR-.NEXT:= NIL; 

END 
ELSE 
BEGIN {NODE i s added as the f i r s t node i n bucket K) 
NEW(NEVPTR); 
NEVPTR".NAME:= NODE; 
BUCKETARRAYC BUCKNUM]:= NEVPTR; 
NEVPTR-.NEXT:= NIL; 

END. 
PRINTBUCKETS(TRUE,NODE); {Display the non-empty buckets) 

END; {ADDNODEBUCK) 
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PROCEDURE REMOVENODEBUCK(BUCKNUM,NODE: INTEGER); 
{This procedure removes a node, NODE, from bucket BUCKNUM) 
{ i n the bucket l i s t ) 

VAR 

PTR,OLDPTR:POINTER; 

BEGIN 
PTR:= BUCKETARRAYL BUCKNUM]; 
IF (PTR'.NAME <> NODE) THEN 
BEGIN {NODE i s not the f i r s t node i n bucket K) 
REPEAT {Locate NODE i n bucket K) 
OLDPTR:= PTR; 
PTR:= PTR-.NEXT; 

UNTIL (PTR-.NAME = NODE); 
OLDPTR-.NEXT:= PTR".NEXT; 
{Bypass NODE i n the l i n k e d l i s t representing bucket K) 
DISPOSE(PTR); 

END 
ELSE 
BEGIN {NODE i s the f i r s t node i n bucket K) 
BUCKETARRAYL BUCKNUM]:= PTR'.NEXT; 
DISPOSE(PTR); 

END; 
PRINTBUCKETS(FALSE,NODE); 

END; {REMOVENODEBUCK} 
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PROCEDURE READFORSTAR; 
{This procedure reads the adjacency matrix representation) 
{of the network from INFILE t o the 3 forward s t a r arrays ) 
{- POINTERARRAY. STARARRAY and VEIGHTARRAY. This version) 
{of the procedure also obtains the value of LMIN required) 
{by the program) 

VAR 
ROV,COL,I,EDGEPOINTER,EDGEPOIITSTORE,VALUE : INTEGER; 
{EDGEPOINTER stares the next fre e l o c a t i o n number i n ) 
{STARARRAY EDGEPOINTSTORE stores the f i r s t l o c a t i o n ) 
{number i n STARARRAY used t o store the current nodes ) 
{forward s t a r ) 
NUMBER : V0RD5; 
{NUMBER holds the number read from INFILE , i n character) 
{form) 
ENDROV,ENDCOLS : BOOLEAN; 
{ENROV = TRUE i f end of row i s reached i . e . a* i s ) 
{detected ENDCOLS = TRUE when a l l rows i n adjacency ) 
{matrix have been read) 
CH : CHAR; 

BEGIN 
LHIN:= INFINITY; 
RESET(INFILE); 
FOR I:= 1 TO 100 DO 
BEGIN 
POINTERARRAYCI] := 0; 
STARARRAYCI]:= 0; 
WEIGHTARRAYCI]:= 0; 

END; { I n i t i a l i s e forward s t a r arrays) 
ENDCOLS:= FALSE; 
ROW:= 0; 
EDGEPOINTER:= 1; 
WHILE NOT(ENDCOLS) DO 
BEGIN 
ENDROV:= FALSE; 
COL:= 1; 
{EDGEPOINTER c u r r e n t l y contains the f i r s t l o c a t i o n ) 
{number i n STARARRAY tha t w i l l be used t o store the) 
{forward s t a r of the next node) 
EDGEPOINTSTORE;= EDGEPOINTER; 
ROV:= ROV+1; 
VHILE NOT{ENDROV) DO 
BEGIN 
FOR I:= 1 TO 5 DO 

NUMBER[I]:= ' ' ; 
I:= 1; 
REPEAT {Read the next number from INFILE) 

READ(INFILE,CH); 
NUMBERCI]:= CH; 



I:= I + l ; 
UNTIL ( ( 1 = 5 ) OR (NUMBERCl] = '»')); 
IF (NUMBER!1] = •*') THEN 
BEGIN {End of row detected) 
ENDROW:= TRUE; 
IF (C0L=1) THEN 
ENDCOLS:= TRUE; {End of adjacency matrix) 

END 
ELSE 
BEGIN 

IF (NUMBERCl] <> '0' ) THEN 
BEGIN { I n s e r t i n f o r m a t i o n . i n t o the 3 arrays) 
POINTERARRAYL ROV]:= EDGEPOINTSTORE; 
CHARTOINT(NUMBER,VALUE); 
IF (VALUE < LMIN) THEN 
LMIN:= VALUE; 

STARARRAYC EDGEPOINTER]:= COL; 
VEIGHTARRAYE EDGEPOINTER]:= VALUE; 
EDGEPOINTER:= EDGEPOINTER+1; 
{set p a i n t e r t o next f r e e l o c a t i o n i n ) 
{STARARRAY) 

END; 
COL:= COL+1; {Increment column reference) 

END; 
END; 

IF NOT(ENDCOLS) THEN 
BEGIN 

READLN(INFILE); 
READLN(INFILE); 

END; {Move t o the next row of the adjacency matrix) 
END; 
NUMNODES;= ROV-1; {Record the number of nodes i n the) 
{network) 
POINTERARRAYENUMNODES+1]:= EDGEPOINTER; 
{ I n s e r t dummy po i n t e r i n POINTERARRAY) 

END; {READFORSTAR) 



PROCEDURE FRINTBUCKETS(ADDED,BOOLEAN,NODENUM,INTEGER); 
(This procedure di s p l a y s the contents of the non-empty ) 
{buckets i n the bucket l i s t . I t also outputs which node) 
{has j u s t been added or removed from the bucket l i s t ) 

VAR 
K,LOV,HIGH : INTEGER 
PTR : POINTER; 

, NODENUM:4, 

NODENUM:4, 

0 TO 1000 DO 

BEGIN 
IF (ADDED) THEN 
VRITELN('NODE' 

ELSE 
VRITELN('NODE' 

WRITELN; 
WRITELNC 
VRITELNC 
VRITELN; 
FOR K:= 

BEGIN 
PTR:= BUCKLISTEK]; 
IF (PTR <> NIL) THEN 
BEGIN 

VRITE(K:4); 
LOW:= K*VIDTH; 
HIGH:= (K+1)•WIDTH; 
VRITE(LOV: 13); 
WRITE(' <= DISTANCE < 
WRITE(HIGH:4); 

ADDED' ) 

REMOVED'); 

NON - EMPTY BUCKETS ' ); 
' ) ; 

); 

WRITE(' 
REPEAT 
WRITE(PTR-

' ); 

NAME:3); 
PTR:= PTR-.NEXT; 

End; 

WRITE(' 
UNTIL (PTR 
WRITELN; 
WRITELN; 

END; 
END; 
{PRINTEBUCKETS) 

' ) ; 
NIL); 
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OK, PASCALG P408U>BUCKETSORT.PAS 
[ S h e f f i e l d Pascal version 3.3.1b] 
No e r r o r s reported. 

Executing BUCKETSORT 

ADJACENCY MATRIX 

1 

1 10 
I 

2 10 
I 

3 14 

2 3 

1 0 

0 3 

0 0 

THIS IS THE GRAPH REPRESENTED IN FORVARD STAR FORM 

POINTERARRAY STARARRAY VEIGHTARRAY 

1 2 
2 3 
3 1 
4 0 

WHICH IS THE START NODE ? 
1 

EXAMINING NODE 1 

NODE 2 ADDED 

NON - EMPTY BUCKETS 

BUCKET 

0 

1 

NODE 

DISTANCE VALUE RANGE 

0 <= DISTANCE < 

1 <= DISTANCE < 

1 REMOVED 

NON - EMPTY BUCKETS 

1 
3 
4 
0 

NODES IN BUCKET 

1 

2 

BUCKET DISTANCE VALUE RANGE NODES IN BUCKET 
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1 1 <= DISTANCE < 2 

EXAMINING NODE 2 

NON - EMPTY BUCKETS 

BUCKET 

1 

4 

NODE 

DISTANCE VALUE RANGE 

1 <= DISTANCE < 2 

4 <= DISTANCE < 5 

2 REMOVED 

NON - EMPTY BUCKETS 

BUCKET DISTANCE VALUE RANGE 

NODES IN BUCKET 

2 

3 

NODES IN BUCKET 

4 4 <= DISTANCE < 5 

EXAMINING NODE 3 

NODE 3 REMOVED 

NON - EMPTY BUCKETS 

BUCKET DISTANCE VALUE RANGE NODES IN BUCKET 

DISTANCE FROM 

ROUTE IS: 

2 

DISTANCE FROM 

ROUTE IS: 

3 

1 TO 

1 TO 

2 IS 

3 IS 
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OK, PASCALG P408U>BUCKETSORT,PAS 
[ S h e f f i e l d Pascal version 3.3.1b] 
No e r r o r s reported. 

Executing BUCKETSORT 

ADJACENCY MATRIX -

1 

2 

3 

1 

0 

0 

0 

2 3 

1 4 

0 3 

0 0 

THIS IS THE GRAPH REPRESENTED IN FORWARD STAR FORM 

POINTERARRAY STARARRAY WEIGHTARRAY 

1 
3 
0 
4 

2 
3 
3 
0 

WHICH IS THE START NODE ? 
2 

EXAMINING NODE 2 

NODE 2 REMOVED 

1 
4 
3 
0 

HON - EMPTY BUCKETS 

BUCKET DISTANCE VALUE RANGE NODES IN BUCKET 

THERE IS NO ROUTE FROM 

DISTANCE FROM 

ROUTE IS: 

3 2 

2 TO 

2 TO 1 

3 IS 



APPENDIX F 

This appendix contains the PASCAL cades for the 

program SENET, and all the procedures used in the 

program. A correctly formatted version of INFILE 

must be avai lable before the execution of the 

program. 

A sample run of this program is also shown in this 

appendix. 
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PROGRAM SENET(INPUT,OUTPUT,INFILE); 
{This program f i r s t f i n d s the shortest path tree rooted a t ) 
{a node START i n a network stored i n INFILE using) 
{DIJKSTRA's algorithm. I t then applies the algorithm) 
{SENET, t o a l l the possible arcs, f o r the purpose of post) 
{ o p t i m a l i t y a n alysis) 

LABEL 99; 

CONST 
INFINITY = 99999; 

TYPE 
BOARRAY = ARRAYEl..100] OF BOOLEAN; 
V0RD5 = ARRAYEl..5] OF CHAR; 
ARRAYIOO = ARRAYE1..100] OF INTEGER; 
ADJARRAY = ARRAYE1..100] OF ARRAYIOO; 

VAR 
ACT : V0RD5; 
ADJMATRIX : ADJARRAY; 
Pl,P2,P3,dl,d2,d3, CHANGEDNODES : ARRAYIOO; 
NUMNODES.I,J,MINIMUM,START : INTEGER; 
MIDPOS,K,KK : INTEGER; 
DELTA : ARRAYIOO; 
INFILE : TEXT; 

BEGIN {MAIN) 
RESET(INFILE) 
BEGIN 

PIE I ] : = 0 
P2EI]:= 0 
P3EI]:= 0 
d l E I ] : = INFINITY 
d2EI]:= INFINITY 
d3EI];= INFINITY 

END; 
READADJMATRIX; 
PRINTADJMATRIX 
VRITELNC VHICH 
READLN(START); 
VRITELN; 
PIE START]:= START 
P2ESTART]:= START 
P3ESTART]:= START 
dlESTART]:= 0 
d2[START]:= 0 
d3ESTART]:= 0 

{Read i n the network) 
{Display the network) 

IS THE START NODE ?'); 

SHORTESTPATH(Pl,dl); 
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TRACERATH; 
K:= 0; 
KK:= 1; 
WRITESHEAD; 
FOR I:= 1 TO NUMNODES DO 
FOR J:= 1 TO NUMNODES DO 

IF ( I <> J). THEN 
BEGIN 
WEIGHT:= ADJMATRIXEI, J] ; 
IF(WEIGHT = INFINITY) 
THEN 
ACT:= 'NEX ' 

ELSE 
IF (P1[J] = I ) 
THEN 
ACT:= 'NOP ' 

IF (ACT = 'OPT ' ) THEN 
BEGIN 
ADJMATRIX [ I , J ] : = INFINITY; 
SH0RTESTPATH(P2,d2); 
COMPARE(P2,K); 
MIDPOS:= k; 
IF (k > 0) THEN 
BEGIN 
FOR IJ:= kk TO k do 

DELTA[IJ]:= WEIGHT + d2[CHNGEDNODECIJ] ] 
-dlCCHANGEDNODECIJ]]; 

kk:= k+1 
END; 

ADJMATRIXI I, J ] : = 0 
END; 
SH0RTESTPATH(P3,d3); 
COMPARE(P3,k); 
IF (k > 0) THEN 
BEGIN 
FOR IJ:= kk TO k DO 

DELTA[I]:= dlCCHANGEDNODECIJ]] -
d3[CHANGEDNODECIJ]] 

END; 
IF (k > 0) 
THEN 
DESCEND; 

VRITELN; 
VRITELN; 
VRITESENET 

END 
END. {MAIN) 
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PROCEDURE COMPARE(VAR P : ARRAYIOO; H : INTEGER); 
{This procedure determines the nodes whose labels t o t a l l y ) 
{change a f t e r a re o p t i m i s a t i o n ) 

VAR 
I,HH:INTEGER; 
L:BOARRAY; 

BEGIN 
FOR I:= 1 TO NUMNODES DO 
LE I ] : = FALSE; 

HH;= 0; 
FOR I:= 1 TO NUMNODES DO 
IF(PEI] <> PIE I ] ) THEN 
BEGIN 
LE I ] : = TRUE; 
H:= H+1; 
CHANGEDNODEE H] : = I 

END 
REPEAT 

IF (H > 0) THEN 
BEGIN 
HH;= HH+1; 
FOR I:= 1 TO NUMNODES DO 

IF {(CHANGEDNODEE HHl = PIED) AND 
(LEI] = FALSE)) THEN 

BEGIN 
LEI]:= TRUE; 
H:= H+1; 
CHANGEDNODEEH] : = I 

END 
END 

UNTIL(HH = H) 
END; {COMPARE) 
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PROCEDURE SHORTESTPATH(VAR P,d:ARRAYIOO); 
{This procedure f i n d s the shortest path tre e rooted at ) 
{node START i n a network stored i n ADJMATRIX. The ) 
{procedure i s based on D i j k s t r a ' s a l g o r i t h m } 

VAR 
R,NEXT,I,J:INTEGER; 
INTREE ; ARRAYIOO; 

BEGIN 
FOR I := 1 TO NUMNODES DO 
BEGIN 

INTREELI] := 0; 
P[ I ] :- 0; 
d l l ] : INFINITY; 

END; 
REPEAT 
MINIMUM := INFINITY; 
FOR I :=: 1 TO NUMNODES DO 
BEGIN 

IF ( ( d l l ] < MINIMUM) AND (INTREE[I] = 0 ) ) THEN 
BEGIN 
R ;= I ; 
MINIMUM := dCR] 

END 
END; {Find the node w i t h minimum t o t a l weight) 

IF (MINIMUM <> INFINITY) THEN 
BEGIN 

INTREEII] := 1; 
FOR J := 1 TO NUMNODES DO 
BEGIN 

IF (ADJMATRIXCR, J] <> 0) THEN 
IF (((dCR] + ADJMATRIX!R. J ] ) < d [ J ] ) AND 

(INTREECJ] = 0)) THEN 
BEGIN {Relabel node J) 

d[J] := dCR] + ADJMATRIX [R, J ] ; 
PtJ] := R 

END 
END 

END; 
UNTIL (MINIMUM = INFINITY) 

99 : END; {SHORTEST?ATH) 
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PROCEDURE TRACEPATH; 

{This procedure traces the shortest paths through the tree) 

VAR 
NEXT,I : INTEGER; 

BEGIN 
FOR I := 1 TO NUMNODES DO 

IF ( I <> START) THEN 
IF (dEI] = INFINITY) THEN 
BEGIN 
VRITELN; 
VRITELNCTHERE IS NO ROUTE FROM',START, ' TO', I ) ' 

END 
ELSE 
BEGIN • 

VRITELN; 
VRITELNC DISTANCE FROM' .START. 'TO' , I , ' IS' , dE I ] ); 
VRITELNC ROUTE IS: ' ); 
VRITELN; 
TRACKPATH(P1,I) 

END 
END; {TRACEPATH) 
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PROCEDURE TRACKPATH (P: ARRAYIOO; SIM: IITTEGER); 
{This procedure traces the unique tree path t o a node sink) 

VAR 
NEXT : INTEGER; 

BEGIN 
WRITE(SINK); 
NEXT:= PC SINK]; 
WHILE (NEXT <> START) DO 
BEGIN 

WRITE(NEXT); 
NEXT: =PC-NEXT] 

END; 
WRITELN(START) 

END; (TRACKPATH) 



PROCEDURE DESCEND; 
{This procedure arranges the arrays CHANGEDHODE and DELTA) 
{ i n DESCENDKilTG ORDER OF DELTA) 

VAR 
KI, II.Dumd.DUMP.KJ : IITTEGER; 

BEGIN 
FOR KI := 1 TO kk DO 
BEGIN 
DUMd := DELTA!KI]; 
DUKP := CHASGEDNODECKI] ; 
I I := KI+1; 
FOR KJ := I I TO kk DO 
IF (DELTA!KI] < DELTA!KJ]) THEN 
BEGIN 

DELTA!KI] DELTA!KJ]; 
CHANGEDNODE!KI] := CHANGEDNODE! KJ] 
DELTA!KJ] := DUMd; 
CHANGEDNODBIKJ] := DUMP 

END 
END 

END; {DESCEND) 
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PROCEDURE VRITESHEAD; 
(This procedure w r i t e s the headings f o r SENET) 

BEGIN 
WRITELN; 
WRITELN; 
WRITELNC 
WRITELN; 
WRITELN; 
WRITE(' ' 

***** POST-OPTIMALITY ANALYSIS'); 

;20,'++ THE "EFFECT" OF EACH RANGE, EXCEPT THE 
OPTIMAL AND NON-OPTIMAL, IS AN ' ) ; 

WRITELNCACCUMULATION OF THE "EFFECTS" OF THE OTHER ' ) ; 
WRITE('RANGES FROM THE SIGN "T" OR "A" TO "-" OF THE ' ) ; 
WRITELNC"ACCUMULATION" COLUMN FOR EACH ARC ++'); 
WRITELN; 
WRITELN; 
WRITELN; 
WRITELNC ':10,'ARC',' ':29,'RANGE',' ',:48.'EFFECT'); 
WRITEC i d e n t i t y weight a c t i v i t y ' , ' •:10); 
WRITECupper lower accumulation node'); 
WRITEC t-weight',' ':6,'route < ' ) ; 
WRITELN; 
WRITELN 

END; 



PROCEDURE VRITESENET(DUJ[I,DUMJ : INTEGER); 
{This procedure w r i t e s the r e s u l t s of SENET) 

VAR 
POSFLAF : BOOLEAN; 
OLDINDEX,NEVINDEX,OLDLIMIT,NEVLIHIT,I,DUH; INTEGER; 
DUM, DUMP, DUMMY : INTEGER; 

FUNCTION NEW VALUE ( I J : INTEGER) : INTEGER; 
VAR 
DUMMY : INTEGER; 

BEGIN 
DUMMY := I J ; 
WHILE {(DELTA! DUMMY] = OLDLIMIT) AND (DUMMY <= k ) ) DO 
DUMMY := DUMMY + 1 ; 

NEWALUE := DUMMY 
END; (lEWVALUE) 

BEGIN {VRITESENET) 
OLDINDEX := 1; 
NEVLIMIT := INFINITY; 
POSFLAG := FALSE; 
VRITE(DUMI:3, ' — > ' , DUKJ:3, " ' ) ; 
IF(ACT = 'NEX •) 
THEN 
WRITEC INF' ) 

ELSE 
WRITE(WEIGHT:5); 

WRITEC •:6 ) ; 
WRITE (ACT,' '.-9); 
IF (k = 0) THEN 
BEGIN 
WRITELNC •:20,'NON-EFFECTIVE'); 
WRITELN 

END 
ELSE 

BEGIN 
NEWLIMIT := INFINITY; 
WRITEC INF'); 
OLDLIMIT 
WRITEC ' 
NEWINDEX 
NEWLIMIT 
WRITEC ' 

= NEWLIMIT; 
36); 
= NEWVALUE(OLDINDEX); 
= DELTA!NEWINDEX]; 
3,NEWLIMIT:5,' ':3); 

IF(OLDLIMIT = INFINITY) 
THEN 
WRITEC •: 4,'ION-OPTIMAL RANGE') 

ELSE 
BEGIN 



WRITELN; 
WRITELNC ':46, " ' - " ' ) ; 
IF((ACT = 'OPT ') AND (OLDLIMIT < ̂  WEIGHT) 

AND (NEWLIMIT > = WEIGHT)) 
THEN 
WRITELNC ':14,'**»* OPTIMAL RANGE') 

ELSE 
BEGIN 

IF (ACT = 'OPT •) THEN 
BEGIN 

IF (OLDINDEX = 1) 
THEN 
WRITEC ': 6 , ' " t " ) 

. ELSE 
IF (OLDINDEX < MIDPOS) 
THEN 
WRITEC ':6,"'4"') 

END 
ELSE 
WRITEC ' : 6 , ' " ! " ' ) ; 
DUM = NEWINDEX; 
OLDINDEX := OLDINDEX + 1; 
FOR I := OLDINDEX TO DUM DO 
BEGIN 
WRITELN; 
WRITEC ':52); 
POSFLAG : = ( ! < = MIDPOS) OR 

NOT (ACT = 'OPT ' ) ; 
DUMP := CHANGEDNODECI]; 
WRITEC ' , DUMP:5, ' ' :4); 
IF(CHANGEDNODE[I] = 0) 
THEN 
DUMd := 0 

ELSE 
BEGIN 

IF (POSFLAG) 
THEN 
DUMd := d2[ CHANGEDNODECI]] 

ELSE 
DUHd := d3CCHANGEDNODECI] 

END; 
IF (DUMd = INFINITY) 

THEN 
IF (ACT = 'OPT *) THEN 
BEGIN 
DUMd := dieCHANGEDNODECI]] -

WEIGHT; 
WRITE(DUMd:4, '+WC ,DUMI:3, ' , ' ); 
WRITE(DUMJ:3, ' )') 

END 
ELSE 
WRITEC INF NO ROUTE' ) 

2?:: 



ELSE 
BEGIN 

IF (POSFLAG) 
THEN 
WRITE(DUMd:4,'+W(',DUMI:3, 
,DUMJ:3,')') 

ELSE 
WRITE(DUMd:5, • ':11); 

WRITE(DUMP:4, ' ':2); 
REPEAT , 

IF(DUMP <> 0) THEN 
BEGIN 
DUMMY := DUMP; 
IF (POSFLAG) 
THEN 
DUMP := P2 !DUMP] 

ELSE 
DUMP := P3 [DUMP] 

IF (DUMP <> DUMMY.) 
THEN 
WRITE(DUMP:4,• ':2) 

END; 
UNTIL (DUMP = START) OR (DUMP = 0) 

END 
END 

END; 
WRITELN; 
WRITELN; 
WRITELN 

END; {WRITESENET) 
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OK, PASCALG P408U>SENET.PAS 
[ S h e f f i e l d Pascal version 3.3.l,b] 
No e r r o r s reported. 

Executing SENET 

ADJACENCY MATRIX 

1 

1 10 11 21 0 
I 

2 10 0 6 17 
I 

3 10 0 0 4 
I 

4 10 0 0 0 

WHICH IS THE STARTING NODE ? 
1 

DISTANCE FROM 1 TO 2 IS 11 

ROUTE IS: 

2 1 

DISTANCE FROM 1 TO 3 IS 17 

ROUTE IS: 

3 2 1 

DISTANCE FROM 1 TO 4 IS 21 

ROUTE IS: 

4 3 2 1 . 
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