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ABSTRACT

The history of the theory of magnetic monopoles in
classical electrodynamics and wunified gauge theories is
revieuwed, and the Atiyah-Ward and Atiyah-Drinfeld-Hitchin-
Manin constructions of exact <classical solutions to the
self-dual Yang-Mills equations are described.

It is shown that +the one-dimensional self-dual equation
introduced by Nahm can be reformulated as a Riemann-Hilbert
problem through the twistor transform previously used by Ward
for monopole and instanton fields, and a general formula for
the patching matrix is derived. This is evaluated in some
special cases, and a few simple examples are given where
Nahm'’s equation can be solved by this method.

An attempt is made t¢c generalize the ADHM construction
to treat nonselfdual Yang-Mills fields, with only partial
success. The one-dimensional analogue of the second-order

Yang—-Mills equation, the so-called nonselfdual Nahm equation,

is investigated, paying particular attention to a simple
ansatz in which translation of the fields is equivalent to a
mere scale transformation of the matrices Ti(z). For these
’separable solutions’ the matrices satisfy certain cubic
equations, whose solution space depends critically on the
nature of the Lie algebra wunder consideration. It is shouwn
that corresponding to certain Riemannian symmetric pairs
there are one-parameter families of ‘interpolating solutions’®
to the cubic equations, which join oppositely oriented bases
0f a Lie subalgebra. The associated matrix-valued functions
Ti(Z) therefore interpolate Thetween solutions of ’'selfdual’

and ’antiselfdual’® Nahm equations.
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Chapter O. Introduction

The idea of magnetic monopocles was introduced to
physics as long ago as 19831 by Dirac [1] in order to explain
the observed quantization of electric charge. Houwever, these
did not become an essential feature of particle physics until
t'Hooft [2)] and Polyakov [3] pointed out that isolated
magnetic charges appear quite naturally in many modern
unified field theories. Since then the growth of the subject
has been drqmatic, and has invelved many techniques drawn
from the mathematical disciplines of vector bundle theory,
homotopy theory, and algebraic geometry. In particular the
complete integrability of the so-called Bogomolny equations
which describe static magnetic monopoles has allowed the
construction of explicit solutions by a variety of methods,
which are distinct but interrelated. It is this aspect of the
theory with which this work is concerned.

Before looking at the question of exact solutions,
however, uwe shall briefly review the history of the monopole

concept, starting with Dirac’s original formulation.




1. Dirac Monopoles

Long before the advent of modern wunified field
theories involving the strong and weak interactions, Dirac
considered the consequences of point monopoles in pure
electromagnetism coupled to charged particles. Such magnetic
charges produce singular magnetic fields of the form

B = £/4mr3 . This field cannot be derived from a smooth
vector potential A. However, if the monopole is joined to the
point at infinity by a curve known as the Dirac string, then
a potential can be constructed which is regular except at
points on the string and the wave equation for electrons or
other charged particles may be solved in the background field
A . The string, however, is purely an artefact wused in
calculation, and its position is chosen arbitrarily;
accordingly we must demand +that no physical measurement can

locate it. The path integral of the vector potential around a

small curve encircling the string is

A.dx =

Thus the string appears as a tube of flux /L equal to the
magnetic charge of the monopole. Magnetic flux enters the
monopole from infinity through this tube, and then emerges as
a normal inverse square law field.

To see how such a string may be detected, consider a

flux/u,concentrated on the Xgmaxis; this may be derived from
the potential A = Yw, where :'#X727c, and X is a polar
co-ordinate around the x_-—-axis. This field is obtained by

3



applying the singular gauge +transformation @ to the zero
field. It follows that in order to solve the gauge-invariant
Dirac or Schrédinger equation for an electron wave function
we need only take a soclution -¢b in the absence of magnetic

fields, and apply a gauge transformation

p - ey,

where gq = -e is the charge on the electron. Houwever, if.yb

is single—valued,}p will in general be multivalued:

VX = 270 = e *¥¥ = o)

INTERFERENCE
> REGION .
} BRANCH CUT
IN .

Fig. 0.1

Physically speaking, this means that plane waves incident on
the string will interfere in the lee of the string: this is
the so-called Bohm-Aharonov effect. The condition necessary

for the string to be undetectable by this method is



qu = 2@, 1€ 2 (0. 1)

This is the Dirac quantization condition, which tells us that
if a monopole of charge fL exists anywhere, then electric
charge is quantized in units 2%4%; and conversely that

magnetic charge is quantized in units 29v'q, where q is the

smallest electric charge.

The constraint (0.1) ensures that the gauge

transformation e AW g single-valued, although it is

singular on the string. Suppose we have a monopole with Dirac

string C1 and we wish to move this to the curve CZ' Let

C = —C1 + C2 , where -C1 denotes the curve C! with opposite

orientation.

TO ©O
Cl
MONOPOLE
.
TO OO
Fig. 0.2
Then we may apply a gauge +transformation eiqw’ where w is a

nultivalued function which increments by fb upon traversal of

a curve encircling the line €. ©Such a gauge transformation



will cancel the flux from the string C1 and create an equal
flux in C2, as required. So we see that indeed all Dirac
strings are equivalent under gauge transformations.

The following points should be noted concerning Dirac

monopoles: Firstly, they are point singularities in the
magnetic field; secondly, they have been introduced by
hand’, that is, while they are not inconsistent with standard

electrodynamics they are certainly not neccessary features of

it.



2. HMonopoles in Unified Theories

The next major development in the theory of
monopoles was the observation by t’*Hooft [2] and Polyakov (3]
that when the electromagnetic gauge group U(1l) is obtained by
spontaneous symmetry breaking from a simple group, there may
exist classical solutions of +the field equations which have
magnetic charge. In contrast to Dirac monopoles, however,
these are extended objects, and +the surrounding magnetic
fields are nonsingular.
The unbroken gauge theory contains a vector field AfJx)
which takes values in the Lie algebra of +the group G. We
shall represent the elements of G by n x n unitary matrices,

and as a basis of the Lie algebra we shall take the skeu-

hermitian matrices 'I‘a normalized by

1
tr TaTb - égab

In terms of this basis, we have, for example,

The Lagrangian density for the gauge fields alone is

1.a ya
L, = - = I
4€MVF



It is invariant under the gauge transformations

-1 -1
A, (x) ———> g(x)4, (x)g(x) + g(x)9 g(x)
fL M M
To the gauge fields we couple a set of n complex scalar

fields represented by the column vector ¢(x) which transforms

via the rule

Bix) ——=> g(x)P(x)

The gauge—invariant kinetic term for this Higgs field is

(D ¢)+D#¢, where the covariant derivative %L is defined by

M

-3 b

To break the gauge symmetry we also introduce a gauge-
invariant potential V(¢) which attains its minimum when
'¢' > 0O . The exact form of this function is not important,
but for our purposes we must assume that the minimum V = O
is unique up to gauge transformations, that is V(¢) = 0 if

and only if ¢ = g#o for some g € G, uwhere ¢% is a fixed

vector. The complete action for the gauge and Higgs fields is
now

4 1_a Ya +
S :\f‘d x (= =F VE#' + ‘%u¢) Dﬂ¢ - v(¢))

iy
(0.2)

We shall confine ourselves to seeking static, purely magnet ..



solutions aoAi = Eb¢ =0 , AO = O . In this case we have to

minimize the energy functional

_ 3 liaja +
E —fd x (3BIBY + (Di¢) Di¢ + V(gf)) (0.3)

_ _ 1 a
where BT = ZEiijjk

In order that the energy (0.3) be finite it is necessary that
V--—->0 as r = ix: ——>0&0. If X = ru , where u is a

fixed unit vector, this implies that

Px) ———> glwg, as r —--> o0 (0.4)
where glu) € G . Furthermore, the requirement of finite
energy gives Di¢ -—=> 0 at infinity, leading to the

asymptotic condition
. -1 -1
AL (x) A glw et (x)glu) + g(g)aig(g) (0.5)
where Oﬂ(ﬁ)?% = 0 . This means that Ai is asymptotically

equivalent to the potential Cg which lies in the algebra of

the little group H. This subgroup HC G contains all the

transformations which leave ¢O invariant, h¢o = ¢O ; these
are the invariances which remain after symmetry breaking via
the Higgs mechanism. Now the group element g(u) 1is not
uniquely determined by (0.4), since g(g)¢o = g(g)h¢o for
.any h &€ H . What is determined is the <coset g(ul)H; this

means that to each configuration of the Higgs field uwe may



associate a mapping

Y : 8% -=> esH
u ———> g(ulH (0.8)
of the two-sphere into the coset space G/H. If a
configuration ¢1 may Dbe deformed continuously into a

configuration ¢2 then ¢1 and 92 are said to be homotopic. The
mapping ¢ -——=> B’ which we have described above is
continuous, and it follows that if ¢1 and ¢E are homotopic
then the corresponding maps of spheres )ﬁ and Xé are also
homotopic. But conversely, if Bq and Zé are not homotopic,
then ¢1 and ¢2 cannot be homotopic; in other words the
configurations (A1,¢1) and (A2,¢2) lie in disjoint componenFs
of the space M. We therefore see that M = Llﬁl , Where the
disjoint components Ml correspond to homotopy classes of maps

82 -——> G/H , that is, to elements of the so-called homotopy

group ﬂ%(G/H).

It is possible to recast the above topological
classification in a form which involves only the residual
unbroken. symmetry group H. This is done by noting that the
two-sphere is topologically egquivalent (homeomorphic) to a
disc whose boundary is identified to a single point

sZ = D/3D

More explicitly, if (8X) are polar co-ordinates on 82, the

correspondence is established by using @ as the radial co-

ordinate of the disc. The boundary of the disc, 89 = 7T,
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corresponds to the south pole of the sphere. It is therefore
possible to regard X as a mapping of the disc D ---> G/H ,
such that the boundary oD maps to a single point, which by a
global gauge transformation may be taken to be the coset H.
Now X may be lifted +to a continuous mapping g : D ——> G

such that XTG,ZQ = g(Q,X)H . This 1is equivalent to the
statement that the coset representative g(u) in (0.4) may be

2

chosen smoothly except at the south pole of S™. But since

Z(BD) = H we must have
g(@D) C H

Thus the restriction of g to the boundary of D, g X)), is a
mapping S1 ~——=> H , which allows us to <classify the field
configuration by an element of +the homnotcpy group‘ﬂa(H). In
particular, if the residual symmetry group contains a factor
U(1), then this homotopy group will contain a factor Z. It is
this integral topological invariant which is interpreted as
nagnetic charge.

In order to see that this interpretation is valid ue
turh to the specific <class of models first considered by
Bogomolny [4]1 and Sommerfield [5], in which exact solutions
of arbitrary magnetic charge have been constructed. In these
models the Higgs fields lie in the adjoint representation of
G, and a 1limit is taken in which the Higgs potential

vanishes. However, we retain the asymptotic condition on the

Higgs field

fr ¢2 -—-> constant (0.7)
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The energy functional to be minimized now takes the form
E = | a® 288 + D 4°D ¢%) (0.8)
B = 2717 i i ’

which may be rewritten as the sum of a surface integral and a

positive definite piece

(% - Dinga)(}a,‘fi - Di¢a)

1 1

%]
1l
N
wn
!
tﬁp’
!
~6.
[\
Qj
o
w
|5
N —

The former integral is carried out over the sphere ‘at
infinity', and is therefore unaffected by variations of the
fields in any bounded region. It follous that a local minimum
of E with respect to such variations 1is given by the

Bogomolny equations [4]
a _ a
D.$% = B (0.9)

Now at each point of the sphere at infinity there is a
certain subgroup leC G which leaves the Higgs field
¢Q5) invariant. When ¢ lies in the adjoint representation,

the analogue of (0.4) is the asymptotic condition
-1
Plx) -—-> g(wW @ glu) as r -——-> 00 (0. 10)

It follows that all the subgroups Hu are in fact conjugate to

one another
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Hu = g(g)Hg(g)_l

In particular, Hu contains the U(1l) factor exp t¢(§)
(t € R) , which may be identified with the electromagnetic
gauge group. This means that the asymptotic magnetic field is

B?, and the magnetic charge of +the solution is the flux of

this quantity through the sphere at infinity

3 asa
,uv—jd‘o‘i B P (0.11)

It follous .that the energy of each field <configuration
satisfies the inequality E >/L , and that equality is
attained if and only if the Bogomolny equation (0.8) holds.
The integral in (0.11) is @gauge-invariant, and may therefore
be evaluated in any convenient gauge. We shall use the gauge
in which the Higgs field at infinity takes the constant value

¢O and the asymptotic gauge field lies in the Lie algebra of

H:

o (x) = g(g)'lAi(yg(y + g(y"laig(y (0.12)

Recall, however, that the gauge transformation g(u) 1is

singular at the south pole of Sz. Using Stokes’s theorem, we

can express the magnetic charge in terms of a path integral

around a small closed curve encircling this singularity
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v =fdli oChd (0. 13)

where a limit is to be taken as the curve C shrinks to a

point. Substituting (0.12) in (0.13) we find the expression

- -1 aa
Mo —Jdli (g”°9,8) %% (0. 14)

in terms of the left-invariant one-forms (g_laig)a on the
group G. Now we <can see the connection of magnetic charge
With topology. Suppose that the residual symmetry group is
H = U(1l) x H* , and the gauge transformation factorizes in
the form g = e_iwg‘ on the curve C, where g®'€ H'® . Then

the required one-form simplifies to

-1 aja
(g "0, 8) ¢o = J.w
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and the magnetic charge is then /A = Ac, the increment of
upon traversal of the curve C. This is just the winding
number or homotopy class of the gauge transformation g on the
curve C.

Note that at the south pole 8 =9 of the sphere, the
gauge transformation g{(u) is singular, and accordingly so is
the H-gauge field Og(g). At large distances the U(1) part of
this field looks just like that of Dirac's point monopole,

and this singularity occurs where the Dirac string meets the

sphere at infinity.
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3. Monopoles and Instantons

We have seen that the gauge and Higgs fields of a
magnetic monopole are described by the Bogomolny equations
(0.9). The construction of solutions to these equations will
be described in chapter 1; however, it is convenient to start
by rewriting them in a different form, which involves only a
pure Yang-Mills field without explicit mention of the Higgs
field ¢.

To accqmplish this we observe that scalar fields such as ¢
may be generated quite naturally by the process of
dimensional reduction. In this way we are led to consider a
four—-dimensional gauge theory with vector potential %ij)
yb = 0,1,2,3) such that none of the fields is dependent on

0
the extra co-ordinate X

0 (0.15)

BOA/L =

Under these circumstances we may identify the additional
component AO with the Higgs field, so that Dﬁﬁ = FiO . The

Bogomoln& equation (0.9) is then simply the equation of self-

duality for the field strength %MN:

F = ¥F (0.16)

where the dual of F, *F, is defined by

e FFY (0.17)
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With a Euclidean metric **F = F whereas with a Minkowski

XX
metric F =-F . In order that the equations (0.18) be
consistent it is therefore necessary to choose the Euclidean
. 4 . . . 0 . .
metric on R°. The extra Euclidean dimension X is unphysical
and entirely unrelated to time.

Written in terms of the gauge field F _, the energy

functional (0.8) becomnes

It is natural at this point +to consider a related problen,

which is to determine the stationary ©points of the action

functional

4 1_a _a
S = d -F~ F (0.18)
\f\ X 4 Wy pwy

when the fields are no longer constrained to be independent

of xo. By an argument similar to that which led to (0.9) we

find that S has a local minimum at each field configuration

Wwhich satisfies the self-duality -equation (0.16). However,

the Dboundary conditions are very different from those

employed in the case of nmnonopoles. For the action (0.18) to
2

be finite it is necessary that F = o(l/sr™) as

r = iX: ——=> O0; this implies that +the connection eu,tends

to a pure gauge at infinity

-1
A (X))~ g(u) o glu) as r-——> o9 (0.19)
M /L
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where x = ru , uy = 1

When the self-duality equation (0.16) is satisfied, the

action reaches a local minimum

4 1 a X
Q —\J\d X 41#” Fﬁw

Just as in the monopole case it is possible to express this
as a surface integral over the sphere (in this case a three-
sphere) at -infinity.

AZ(d A_ + ra LA 1?2

—\{ beZfofU‘\l p o 3 po

o
|

1 -1 a, -1 b, -1 C
—é\[“dsftgﬂﬁar abc(g avg) (g %pg) (g acg)

(0.21)

where the structure constants Cabc of the group G are defined

by
(T ,T1=C2PrT (0.22)
a C

The expression (0.21) involves the canonical left-invariant

three-form of G given by

-1 -1 b, -1 c
Cabc(g dg) (g "dg) (g “dg)

It may be shown that Q is a homotopy invariant of the mapping

g S3 --—-> G , that is, Q remains unchanged by any
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continuous deformation of the function g(u). Furthermore, Q

is additive in the sense that
Q(gh) = Q(g) + Q(h) (0.23)

The interpretation of Q for the case G = SuU(2) is
straightforward, since the three-form which appears in (0.21)

is simply the standard volume measure on G, and therefore
Q = 8ﬂ?1 (0.24)

where 1 is the multiplicity with which the mapping g covers
the group SU(2).
The integral topological invariant 1 is knouwn as the

instanton number of the configuration; a selfdual gauge field

for which Q = 8&?1 is said to be an l-instanton solution.
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4. Nonselfdual Solutions

So far uwe have considered only the minima of the
energy functional (0.8). It is ©possible that this functional
also possesses saddle points which are solutions to the full

second-order field equations

& kDB = [$,D @1

(0.26)

DiDi¢ =0

The Bogomolny equations (0.9) imply the equations (0.25) but
are not implied by them.

The existence of saddle points may again be inferred
from the topology of the configuration space M. To see how
this is done, we shall consider a very simple model in which
M is the two-dimensional torus embedded 1in R3 with radii 1

and a < 1
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Fig. 0.4

Suppose we wish to find the stationary points of the function

f(x,y,z) = z on the surface H. The first step is to find
the absolute minimum of f, which lies at the point
P = (0,0,-1-a) . The next step is to consider a homotopy

class of closed curves in M, passing through P, which cannot
be shrunk to a point. On each curve C, f attains a maximum
value F(C), say. In the given homotopy class there is a curve

CO for which F(C) is minimized, and the maximum of f on Co is

then a saddle point of f on M. In our simple modei this is
the point Q = (0,0,-1+4+a) . It is a stationary point With

respect to variations along CO because it is the maximum of f

on Co. On the other hand it is a stationary point with

respect to variations orthogonal +to C_., because otherwise
P g )

there would be a neighbouring curve with a smaller value of
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F(Cy.

The foregoing argument depends on the existence of
curves in M which cannot be shrunk +to a point, or in other
words on a nontrivial homotopy group TS(H). In the case of
the torus, TQ(M) has +two generators; the one illustrated
leads us to the stationary point Q, while the other leads to
the point R = (0,0,1-2a)

Now we can apply the idea developed above to the problen
of stationary points for the energy functional (0.8). In this
case we need to calculate the homotopy group 7%(”) for the
space of all finite energy Yang-Mills-Higgs fields. In
section 2 we saw how +to associate to each configuration a
continuous mapping of the +two-sphere into the coset space
G/H; the space of all such mappings Wwill be denoted
CO(SZ,G/H). It is important to recall that all these mappings
are understood to be based; that is, the south pole of the

sphere always maps to the <coset H. The problem is therefore

reduced to the calculation of TQ(CO(SZ,G/H)). An element of
this group may be regarded as a mapping S1 X 82 -——> G/H
with the property
0 x 82 —-=> H
(0.26)
S1 X u., ———> H
_.O

In homotopy theory the subset (0 x SZ) L}(S2 x 0) is called
the reduced sum of S1 and 82, denoted Sl”v 82, and the

reduced product Sl/\ 82 is constructed from 81 X 82 by

identifying the subset SI‘V 5% to a single point:
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1 2 2

sth g2 =st xs2 ,slv s

The importance of this construction lies in the fact that it

may be used to produce higher—-dimensional spheres [6], since

SPA s® = s"™ | By virtue of (0.26) we therefore have a
mapping
s'A s%=5% - o/H

and so there is a relation
7C (¢ (s?,6/H)) :77:3((;/}{) (0.27)
1 ]

An important example of this application of topology is
an SU(2) gauge theory broken by a triplet Higgs field. In
this case G/H =82 , and any textbook will tell wus that
‘ﬂ%(sz) = Z . Since this homotopy group is nontrivial wue
expect a saddle point in the sector HO of zero magnetic
charge. Of course, since the configuration space is infinite-—
dimensional, a rigorous proof of existence is more difficult
than for our toy model, but nevertheless one has been given

by Taubes [7]. Very little is knoun of the exact nature of

this solution, but it is usually thought of as a bound state

of a monopole and an antimonopole.

Saddle points may exist in theories where the
configuration space M is connected and monopoles are absent.
For example if SU(2) is broken by a doublet then there is no

residual symmetry and G/H = 83 . There are no monopoles
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since 74 (s%) = 0, but on the other hand TG(S%) = Z so
that saddle points are expected [8]. The same phenomenon

occurs in the Weinberg-Salam theory [9].
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Chapter 1. Nahm’s Equation and the Transition Matrix

In this chapter we turn our attention to the
solution of the self-duality equation (0.18), which describes
either instantons or monopoles depending on the choice of
boundary <conditions. Two methods of solution will Dbe
described, the first due to Atiyah and ¥ard (AW) (10,111, and
the second due to Atiyah, Drinfeld, Hitchin and Hanin (ADHH)
(12]. The main common feature of these two constructions is
that both succeed in reducing the original nonlinear problem
to an associated linear one, involving the solution of a
linear or linear differential equation. Because of this
underlying linear structure it is very convenient to use the
language of vector bundles, which will be briefly summarized
in section 1. Next the AW and ADHM <constructions will be
reviewed. The AW method associates to each selfdual field a
holomorphic vector bundle over the tuwistor space CP3. On the
other hand the ADHM method sets wup a ’'reciprocity’ betueen
selfdual fields in d and 4-d dimensions which have been
produced by dimensional reduction from d = 4 . In
particular, the three-dimensional Bogomolny equation (0.8) is
associated to a certain one-dimensional equation first

considered in this context by Nahm [13]

1

|
-3
N

1
NI —

£ijk[Tj(z),Tk(z)J (1.1)

In section 4 we shall address the question: What is the form
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of the holomorphic vector bundle which corresponds via the
AW construction to a given solution of Nahm’s equation (1.1)7
We shall find that the transition matrix for this bundle
takes a relatively simple form as a function of the complex

'spectral parameter’ §.
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1. Vector Bundles

The algebra of nonabelian gauge fields may be given
an elegant geometrical interpretation within the theory of
vector bundles, which we shall now describe. The formal
definition of these objects runs as follous:

A vector bundle consists of a pair of manifolds E,M

together with a smooth mapping p :E -———> M . Each point
Xx € M has a neighbourhood U whose inverse image p—l(U) is
diffeomorphic to the product Ux V , where V is a fixed

vector space.
The manifold M is known as the base space of the bundle,

and E is called the total space. By an abuse of terminology

we usually speak of the vector ©bundle E. The inverse image

p_l(x) is the fibre at x, which is denoted EX. Each fibre is

isomorphic to the vector space V, and the total space is the

union of all the fibres

x€ M

This means that the vector bundle E is simply a collection of
vector spaces EX, one for each point of the manifold M. To

set up a <co-ordinate system on the bundle we use a
diffeomorphism

f :p (U) ——> U x V

.f(v) = (p(v),q(v))
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and then choose co-ordinates on the open set U and a basis

for the vector space V.

The first factor of f(v) is fixed by the definition of
the bundle; if v lies in the fibre Ex then p(v) = x%
However, there is a good deal of freedom in the choice of the

_1(

function q : p U) ———> V . For each x € U let q, be the

restriction of @ to the fibre at x

The each qX is an isomorphism. The crucial point is that
because the Ex are distinct vector spaces, these isomorphisms
may be chosen independently. In other words each fibre has
its own basis which may be chosen independently o¢f the
others. It follows that an equally acceptable co-ordinate

system related to f is provided by the diffeomorphism
f (v) = (p(v),glp(v)iq(v))

where g(x) € GL(v) is a smooth function on the open set U.
If the fibre V has more structure than a vector space,

then the automorphisms of V must preserve this. For example,

if V has a hermitian metric and a measure, then g(x) lies in

the special unitary group SU(V).

A section of the wvector bundle p:E-—>H is a
smooth mapping ¢ : M ---> E such that the composition of p

Wwith ¢ is the identity mapping on M:
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This means that for each x € M the wvalue gkx) lies in the
fibre at x. Taking co—-ordinates on the bundle E, the section

can be represented by a functicn on the chart U

¢ = qo¢ : U —> VvV

~n
The functnn1¢transforms under a change of <co-ordinates

through the familiar relation

g’(x) = g(x)g(x) (1.2)

In this way we see that the matter fields in a nonabelian
gauge theory are described by sections of a vector bundle.
The gauge transformations of these fields are simply co-
ordinate changes on the bundle.

If the topology of the base space M is more complex than
that of Rn, several charts may be needed to cover the whole
bundle. In the intersection Ulfﬁ U2 of two charts, tuo

alternative co—-ordinate systems will exist. These are related

by a transformation of the form

q2(v) = g(p(v))ql(v)

In this case the V-automorphism g(x) 1is referred to as the

transition matrix between the two co-ordinate systems.

The gauge field A4, (x) may now be interpreted in the

Y2

language of vector bundles. Suppose that ¢(x) is a section of
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the bundle E, whose co-ordinate representative transforms via

(1.2). Then the covariant derivative

Dﬂér: %&z’+ 5u§? (1.3)

”~
transforms in exactly the same way. This means that 3ﬂ¢ is
itself the co-ordinate representative of a section Bﬁf, the
covariant derivative of ¢. A differential operator D which

nmaps sections to sections is called a connection on the

bundle E. When E is +the tangent bundle of spacetime H, the

connection V,, is identified with the gravitational field of

/J«

general relativity.

It is important to note that the connection D and the

section ¢ provide co-ordinate—free descriptions of the gauge
”n/

and matter fields, whereas A and ¢ are co-ordinate

dependent i.e. subject to gauge transformations. In future,

however, we shall always uwrite ¢(x) for the co-ordinate

N/
representative ¢(x) € Vv
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2. The Atiyah-Ward Method

It was shown by Ward ([10] that to each selfdual
connection on the gauge bundle over R4 there corresponds a
holomorphic vector bundle over the twistor space CP3. The
elegance of this construction lies in the fact that there is
no connection on this latter bundle; the information
concerning the gauge field has been coded into the
holomorphic structure of the bundle.

The first step in the —construction 1is to extend the

gauge potential A, (x) to C4 by analytic continuation. The

M

points of C4 may be represented as quaternions

X = xo - iX. T
y -z
= _ (1.4)
z y
so defining the complex co-ordinates
0 3 - _ .0 3
y = X - iX y = X + iX
> 1 - 2 1 (1.5)
z = X - ix z = X+ ix

If x E:R4 then y is <complex <conjugate to y and z is
complex conjugate to z. There are two classes of null planes
in C4, which may be distinguished by means of the skeu-
-V

symmetric tensor G = {unique up to a factor)

V W W
fad /A \% V’/L

formed from any two independent vectors in the plane. For one

class df null planes G is selfdual; for the other class it
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is antiselfdual. An antiselfdual null plane can be described

by an equation of the form

X5C = W _ (1.6)

where x is the quaternion introduced in (1.4) and W are
two-dimensional complex column vectors such that JC # 0 . It

is clear that the pairs (7, W) and G ,w’) define the same
plane if and only if o) :‘Qgt, w' = Aw for some nonzero
complex scale factor A It follous that the set of

antiselfdual null planes, or twistor space, is isomorphic to

1

CP3\CP , Where the deleted CP1 contains all those pairs (OT,W)
for which 7 = O
He shall now introduce the following complex co-

ordinates on CP3:

M = W17,

% :(Ollﬂa (1.7)

£ =G

These functions, however, are singular as Tq ---> 0 or
7f2 -———=> 0 . To define a holomorphic structure on the twistor
space=he must use co-ordinates which are smooth at these

points. Since JU # O for each twistor, the manifold CP3\CP1

can be covered by two charts

U1 :' {(ILw) - n:l X 0} and U, = {((ITwW) : 71:2 # o;

The standard co-ordinates in these regions are as follous:
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in U - f@/E RV V2
in U2: /u_/ s y§ , C

(1.8)

In terms of the parameters (1.7) the antiselfdual null plane

quv,E) is given by

y + 28 = /L

y - 2/8 =y

(1.9)

I

We shall now set up the correspondence between selfdual

- gauge fields and holomorphic vector bundles over the twistor

space T = CPANCP! . Let $(x) be a field lying in the
fundamental representation of the gauge group G. The
restriction of the selfdual connection iuy to the any
antiselfdual null ©plane Q vanishes identically. This

condition is necessqry and sufficient for the consistency of
the equations which state that ¢(x) is covariantly constant

on O, namely

i
o

%“R“¢ B (1.10)
e

where V and W are any two independent vectors in the plane 9.

i
O

it is therefore possible to define a vector bundle over T
whose fibre at @ contains all the covariant constants on O
the fibre dimension is n, the dimension of the gauge group
representation.

To study the structure of this bundle it is necessary to
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introduce co-ordinates, which may be done as follows. On each
Q€ U1 choose a point xl(Q), and on each 8 € U2 choose a
point x2(9), such that the co-ordinates xi(Q) are smooth
functions on the respective charts Ui' To any covariant
constant ¢ on the plane we may ascribe co-ordinates ¢(x1) if
O€u, ,or #x,) it G€u,. 1f Q€U NU, then there
are two sets of co-ordinates for ¢, related by a transition

matrix g(@):
¢(x1)-: g (@)1 dix,) (1.11)

where

g(0) = P exp 2 A (x) ax M (1.12)
X M

and the integration is performed along any path from X, to X5
in the plane 8. 1n principle, knouwledge of g(@) is sufficient

to determine A, (X) up to a gauge transformation. This follous

/.A

since
X X
g(B) = P exp A (x) dx/bP exp~{ 2 A (x) dxfb
x, M x M
= h(x, Dk (x,0)7!
where h is analytic for E 0 and k is analytic for

% Q. Liouville's theorem implies +that h and k are

uniquely determined up to transformations of the form
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h(x,5) ———> h(x,§)X(x) , k(x,8) ———> k(x,Q)X(x) . The gauge
potential A (x) may be calculated from either of the

equivalent expressions

U/MA//JX) v/%(x,C)_la/Ah(x,ﬁ)

/5 -1y
V k(x,N) k(x,
X § " §)

(1.14)

where V is an arbitrary vector lying in the plane éﬁx,?).
From (1.14) it is evident that APJX) is defined only up to
gauge transformations B&x).
Now the vector V lies within +the plane VAV,§) if and
only if Vf%)/bz Wﬂé y =0 . It follows using the expressions
# M
(1.9) that this plane is spanned by the vectors ay«-gag and

52 - §3§, and so the equations (1.14) lead to

h"l(ay +5o-)h
-1
h @, —ES}—,)h

Ay + Ca

A, - §A)7

(1.15)

Thus it is straightforuward to determine the gauge field ﬁA}x)
provided that we <can perform the factorization of the
transition matrix (1.12). This is the <crucial step; it is

termed the Riemann-Hilbert Problem for g(x,g).

The co-ordinates chosen on the holomorphic vector bundle
E are by no means unique. In particular we may perform an
independent change of basis in each of the charts U1 and U2;

this would induce a +transformation of the transition matrix

g(e)

g(® ——> a@1g® B! (1.16)
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where the unimodular matrices A(Q) and B(@) are respectively
analytic in U1 and U2. The corresponding transformation of

h(x,g) is given by
h(x,5) ——=> a(@)h(x,5) (1.17)

The gauge potential calculated from (1.14) is unchanged
because the matrix A depends only wupon the null plane 9(xt§)
and the directional derivative Vf%%b is tangential to this
plane. Accordingly two +transition matrices g(@, g’'(@) are
said to be eguivalent if they are related by a transformation
of the form (1.16); they describe the same vector bundle E.
The Riemann-Hilbert problem (1.13) for a general matrix-
valued function g(e) is toco difficult for us. Houwever, using
certain theorems of algebraic geometry Atiyah and Ward have
shown [11] that to construct all selfdual SU(2) instantons it

is sufficient to use matrices with the special form

1
gO = (E gi?) (1.18)
0

uhe;é ] is a positive integer. A similar result was obtained
more recently by Hitchin [14] for SU(2) monopoles; in this
case 1 is the monopole number or topological charge. When the
transition matrix has the triangular form (1.18) +the
splitting g = hk_1 may be performed explicitly; this is’

done in (19,161, where a sequence of ansdtze for the gauge

potential is derived. We shall not describe these results
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here, since we are interested in +the application of the

twistor technique +to a different situation in which the

potential A, (x) depends upon one co-ordinate alone. The

/.b

relevance of such a one-dimensional system to monopoles is

the subject of the next section.
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3. The ADHM Method

It has been shown in section 1 that a nonabelian

gauge field may be described geometrically as a connection on

a vector bundle F = R4 x W over R4. The fibre W of this

bundle is a real, conmnplex or quaternionic vector space of
dimension n upon Wwhich acts the gauge group G. In what
follows we shall restrict attention to O(n), U(n) and Sp(n);

since all these groups arise as subgroups of unitary groups
we shall only make explicit reference to U(n).

A subménifold NCH may be curved even though the
manifold M is itself flat: the curvature of N depends on the

embedding. For example, the sphere s" is most easily realized

n+1

as a submanifold of R The idea of the ADHM construction

is to construct the curved gauge bundle F by embedding in a

higher—-dimensional flat bundle E = R4 x V . The vector space

V, like W, is assumed to <carry a Hermitian metric. The
embedding v : F —---> E can be represented by a linear
mapping v(x) : W -——>V , depending on the base point x,

which is normalized by

vix) Tvix) = 1 (1.19)

The range of v(x) is the {fibre of the subbundle vF at x.
Suppose that ¢(x) is a section of the gauge bundle F, that
is, ¢(x) € W . Using the embedding v it is possible to lift

this to a section of the flat bundle E

~/
bx) = v(x)¢(x) E V (1.20)



38

v
The standard partial derivative §L¢(x) does not generally lie

in the subbundle vF, but it may be projected onto it using

the operator
+
P(x) = vix)vi(ix) (1.21)
A connection is now defined on F by
N
%M¢(x) = P(x)0, P(x) (1.22)
or equivalently

3u¢(x) = vix) D (v(x)¢(x)) (1.23)

M

From the latter definition it is easy to read off the gauge

potential
+
A (x) = v(x) 3 v(x) (1.24)
//L

Under a change of basis in the gauge bundle F, the matrix

v(x) transforms via
vix) —==> vix)g(x) ! (1.25)

where g(x) is a unitary +transformation of W. It is easy to
see from (1.24) that this induces a gauge transformation of
A (x), as we have remarked wearlier. Using the definition

y %

(1.22) it is ©possible to express the curvature of the
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connection in terms of the projection operator P(x):

Flofx) = v(x)+[P/LAfx),Py(x)]v(x) (1.26)
where P = ?ﬂ? .

In the work which follows we shall use the standard
representation of quaternions by 2 x 2 complex matrices
eO =1, ei = —io; 3y points of R4 correspond to quaternions
through the relation (1.4). ADHM found [12] that in order to

construct any selfdual SU(n) instanton solution with

topological charge k it is sufficient to use a complex vector

space V with dimension n+2k. The required embedding
vix) : W -—>V is determined by the linear equation
Acx)Tvix) = o (1.27)
where A(x) is a linear mapping W' —~-->V | and W' is a 2k-
dimensional complex vector space. The space W’ is also
endowed with a quaternionic structure, that is, it may be

viewed as a vector space over the quaternions. The mapping
A(x) then has a particularly simple form: it is linear in the

quaternion X

Alx) = a + bx (1.28)

It is easily seen that the projection operator P{(x) is given

in terms of this mapping by

P = 1 - AFAY (1.29)
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where F =A"A)"! . The curvature of the resulting gauge
field then follows from the expression (1.26); it is
+ +, +
F = v be, Fe.b v — (UAL—==> V) (1.30)
v My e

We readily see [17] +that +this tensor is selfdual provided
that Aﬁﬂ comnutes with the quaternions 3L. However, the proof
that all selfdual instanton solutions can be constructed in
this way is more difficult:; we shall approach this problem in

the next chapter. It is clear that the gauge field (1.30) is

nonsingular provided that the matrix:ﬁ(x)zﬁ(x) is invertible

for all X. Furthermore, since F(x) = 0(r %) and
b+v(x) = O(r—l) as r =.x:, ——> 00, the asymptotic
behaviour of the field strength is F = O(r_4) 7 it follous

that the action (0.18) is finite.

Recall that the spaces W' and V' have dimensions 2k and

n+2k respectively. The components of w&€ W® will therefore

be denoted ug,, Wwhere r = 1,2,...,k and B’ = 1',2° is a
dotted spinor index. Similarly the components of v € V will
ra X . . .
be denoted v and v, where A = 1,2 1is a spinor index and
xX =1,2,...,n . It is possible +to choose bases such that
rA _Cr CA e _ . .
b sc = 8 SS C and b sc = O . The hermitian conjugate of

(1.27) may now be written in component form

(v+) (Sr xAB +a euAB ) + (v ad BT 0
rA s Mo S & S
(1.31)

In summary, then, the <construction of a selfdual instanton

field proceeds in two stages: Firstly, a matrix Alx) is
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chosen which is linear in x (1.28) and satisfies the

quadratic constraint

A Ax) , e, 1 =0 (1.32)
fag
Secondly, the linear equation (1.27) or (1.31) is solved for

the n linearly independent vectors v(x) which span the curved
subbundle representing the gauge field. The potential ﬁ#}x)
is then easily found from (1.24).

The selfdual instanton solutions given by the above
constructioﬁ are localized in the co-ordinate xo as well as
in xi (hence the term ’instanton’); but a multimonopole is a

selfdual gauge field independent of xo. Such a solution may

be regarded as an infinite string of instantons laid along
the xo—axis, that is, a limiting case of a multi-instanton as

k ——> 0 (1815 in this limit the spaces W’ and V become
infinite—-dimensional. These considerations led Nahm to modify
the ADHM construction to treat monopoles ([13]. W® and V are

now Hilbert spaces of functions, and Aﬂx)+ is a differential

operator whose kernel has finite dimension n.

After a gauge transformation the Higgs field Ao(x) has

the following asymptotic form as r = ix: —-—--> OO:
B - ~~g°(’8( B TS U (1.33)
o~ Tt N 2r r2 :
where 2y < 2,41 and ka §' Z . Let I ={X : k“ = 0} and

define the integer-valued function
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k(z) = }Z 5x9(%x - z) (1.34)

Then the Hilbert space V of Nahm’s construction consists of

pairs (vrA(z),¢X) where r = 1,2,...,k(z) and X € I . The

inner product is naturally defined by

kiz) + rA + «
<V1,v2> =\f\dz (;;_1 (vl)rAVZ + E: (vl)dVZ)

(1.395)

and the gauge potential is ~calculated wusing the analogue of

(1.24)

Aoﬁ(x) = <v(“)(x)£%0ﬂﬂ)(x)> (1.36)

The vectors used in this formula are the n orthonormal

solutions to the differential equation

+ r AR’ T iAB® .cr CcAB’d
(v(z) )rA(S X+ AT ((2)e i§ 33
+ X B’ _
£ > (v s Oz —zy) =0 (1.37)
Xel
or ﬁuppressing indices
+ ) .d + & _
v(z) (x + iT - 132) + 2: (v %xa S(z - Zu) =0
e ]
which is entirely analogous to (1.31). The origin of the

space V will be explained in the next chapter; it is in fact
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the solution space of a <certain covariant linear equation in
the background field A (x). At the present time we shall not
prove the completeness of Nahm®s construction.

The quadratic constraint (1.32), which ensures
selfduality of +the monopole, implies firstly that the

matrices Ti(z) are antihermitian

T = -T" (1.38)

and secondly that the following differential equation must be

satisfied:

! > &5

=== £ T.T + 2 d.dz - z) (1.39)

dz ijk ik xel * X

. . . ol
The discontinuity di of Ti(Z) at the ‘jumping point’ ax is
given by

a&xT MABT (gt TAX B (1.40)

Mo s (0.4 s

where no summation is intended on the index X. The equations

(1.39) are known as Nahm's equations; between the points of

discontinuity they take the simpler form
-l =g T T (1.41)
ijk™j

It is a striking feature of Nahm’s <construction that the

equation (1.41) expresses the selfduality of a gauge field

T (x) which depends only upon a single co-ordinate 2z = xo
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In this case it is always possible to transform To(z) to zero
by a gauge transformation g(z); then Nahm’s equation is

equivalent to the selfduality equation

F (1.42)

0i %EiijJ’k
It has also been remarked [138] that the relationship between
the three—-dimensional monopole potential eufx) and the one-
dimensional gauge field T (x) is a reciprocal one. In order
to derive T- from A oOr vice vefsa it iS necessary to solve a
covariant Heyl equation such as (1.37) in the background

gauge field, and then take matrix elements of a suitable

operator between the resulting solutions, as in (1.36). More
details of the inverse construction (of 2u/ in terms of @L)
will be given later. For the ©present, however, ue shall be

content with the observation that the selfduality equation
(0.16) can be written in a form which is highly reminiscent
of the quadratic constraint (1.32). To =see this we write the

covariant derivative operator as a quaternion

D =D e
*Lif (1.43)
?uP/L

and wuse a well-known identity for the product of tuo

quaternions

(1.44)
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where 7 is an antihermitian matrix and an antiselfdual

tensor

77(—)i = —’710 = -0

(1.45)
77ij - g’ijkorc
It follouws from (1.42) and (1.43) that
+
DD=DD + (1.48)

1. -

and it is clear from this that the curvature F is self-dual

if and only if the operator D+D commutes with the quaternions
(DD, e 1 =20 (1.47)

In other words the covariant derivative D plays an analogous

role to the matrix A x) which appears in (1.31).
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4. The Transition Matrix for Nahm's T,
/

We have seen in section 2 that there is a one-to-
one correspondence betuween selfdual gauge fields and
holomorphic vector bundles over +the tuistor space T. The
argument presented there applies Dboth +to four-dimensional
instanton fields and to three-dimensional monopoles; in the
latter case a further constraint on the transition matrix is
required to ensure the invariance of the gauge field with

respect to translations in the xo—direction. Let O = 9u,v,§)

be a general antiselfdual null plane, and let
Q' = (/c,v‘,g’) be +the plane obtained by +translating
through a distance a along the xo—axis. It is evident from

(1.5) and (1.9) that

/u}:/,(,+a

V' =V + a (1.48)

§ s

]
Y

In order that the gauge field A (x) should be translation-
invariant it is necessary that the translated patching matrix

be equivalent to the original in the sense of (1.16)
g(0') = Ata,@g(@)1B(a,O ! (1.49)

If this condition is satisfied then g(8) is equivalent to a
s . = . ) . . 0
transition matrix g(Q) which is invariant under x -

translation, in other words é(@) is independent of x
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g(@) = HO KO ! (1.50)

It is sufficient to choose the matrices H(@) and K(©) such

that

H(G)

K(8*)

Ala,OHH(O)
(1.51)

B(a,9) K@)

ng,o,§) and K(O,V,E) are assigned arbitrary values, and the
complete fupctions are then determined from (1.51). The newu
transition matrix g(&) is a function of yA—VO/Z and § only,
. since the third co-ordinate yL+v)/2 is not translation
invariant.

A rather more direct way of ensuring translational
invariance of the patching matrix is to choose the reference

points xi(Q) to satisfy
x (@) = x (@) + ae (1.52)

For example, a good choice is

(e
- )
U=/ vV

L ()

(1.53)

If the gauge field A (x) is independent of xo, then the

matrix defined by (1.12) is automatically invariant under

translations, since the path of integration may simply be
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translated from @ to ©.

The following question now arises: What is the form of
the patching matrix for Nahm's reciprocal one-dimensional
gauge field T, (x)? In other words, what constraints must be
placed on g(Q) in order that it should represent a gauge
field which depends on one co-ordinate alone? To answer this
question we shall perform explicitly the integral in (1.12).

We observe firstly that it is ©possible to choose two
reference points xi(Q) both of which lie on a given slice

xo = ;L. For example we might take

v 0
17 ((/u.+v—2/1)/§ —y+21>
22X V=208
()

(1.54)

X
N
1}

Indeed, it is easy to see that X, is an analytic function of
-the co-ordinates (1.8) in the region Ui; and in both cases
xo :(y+§)/2 = ;L. This choice of reference points greatly
simplifies the integration in (1.12), since it can be
performed along a straight line lying entirely within the

slice xo = ;L, on which T is constant. The result is

J

therefore

gA.0) = exp T/A/(;L)(Xz - xl)/" (1.55)

On substitution of the expressions (1.54) for the endpoints,

we find
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g A, @ = exp —TIA, D o+ v - 220 (1.56)

where

_ 1
TAL) = T, A - T)—,(;L) + ETZ(;U + 8T

1., 2 2 .
éguu—; T A + (145D T, + 28T 00

(1.57)

Nahm’s\equation (1.41) is a first-order differential
equation; it may therefore be regarded as an initial value
problem. Given the initial value Ti(Z) at some point 2 = ;L,A
the functions Ti(z) are uniquely determined. This property is
reflected in the fact that the transition matrix g(Qﬁ depends
only upon these initial values. It has already been remarked
after (1.13) that the patching matrix determines the gauge
potential only up to a gauge transformation; however, in the

present case the condition TO =0 is sufficient to fix the

gauge.
The equivalence class of the transition matrix should
not, of course, depend on the particular point where the

initial conditions are used. We may verify -this by the

following argument: Let X(E) be the null vector
y(&) = %g(iu—gz) ,1+EY 21D (1.58)

It is easily verified that for any nonzero vector Yy the

mapping u -——> w Ay has rank 2, and it follous that the
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image of this mapping is the space of all vectors orthogonal

to y. Since y is a null vector, there exists some u such that

Y= WA Y (1.59)

By taking the scalar product of y with Nahm's equation we

obtain the following result for the y-component of T:

d_ T = fu.T , y.T1 (1.60)

This equation has solutions of the form

1

y-T(z) = h(z2)y. T h(z) (1.61)

where h(A) 1 . In other words, y.T(z) and X.Iﬁﬁ) are

equivalent; they differ only by a change of basis. The

spectrum of y.T is independent of 2z [20]. Now, y.T is

precisely the matrix which appears in the exponent of

equation (1.56)

TAL) = y&). T (1.62)

therefore g(Rﬂ,Q) and g(ZQ,Q) differ only by a gauge
transformation, as asserted.

A relationship between the transition matrix (1.56) and
the transition matrix for +the monopole itself has been
obtained by Rouhani [21], at least for the gauge group SU(2).

For the case of SU(2) the ©parameters uwhich characterize the
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asymptotic behaviour of the Higgs field (1.33) are

N
I}

-1/2 2, = 1/2
(1.63)

From (1.34) we may deduce that Ti(z) is a k x k matrix
defined on the interval (-1,/2,1/2) and that v(x,z) is a 2k-
dimensional column vector defined on the same interval. If X
and X, are two reference points lying in a common antselfdual

null plane, +then the monopole patching matrix can be

-expressed in terms of v(x,z) by [17]

2
~N
g(xl,xz) = dz v(xl,z)v(xz,z) (1.64)
" . +
where vi(x,z) is the analytic continuation of v(x,z) to

complex x. We shall suppose that the reference points are

chosen as in (1.54) so that x? = xg . It may then be showun

using the ideas of Panagopoulos (223 that the integrand in

(1.64) is in fact a total derivative

4% o)
V(XI)V(XZ) = SE(V(XI)H(XI’XZ)V(XZ)) (1.65)

To do this we need only find a kernel H(xl,xz,z) such that

oH . ot _
Sz * (Cix +THH + Hix,+T) = 1 (1.68)

Rouhani's solution to this equation is [21]
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H= - 4 5 (1.67)

Where ng) is the null vector defined previously in (1.58).
It is now possible to express the patching matrix for the

monopole in terms of the boundary values of v and H

z=1/2

glx, ,%x,) = vix, JH(x, ,x )v(X,) (1.88)
172 1 1°72 2 e 1,2

From (1.5), (1.9) and (1.58) we see immediately that the
scalar product y.X depends only upon the complex parameters

of the null plane containing x:

-y = Y-
y.X = X = 29;« V) (1.69)

The inverse of ‘X + iy.T , which appears in (1.67), can be
re—-expressed as the Laplace transform of +the +transition

matrix for the reciprocal selfdual field, that is,
oy + iy.T) 7! =jds e S¥e iSY-L (1.70)
0

Indeed, the Laplace transform exp(-isy.T) 1is precisely the
transition matrix (1.56) with the argument y&+y—22) replaced
by is.

T A further relationship with the Atiyah-Ward method is

indicated by the appearance of the polynomial
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P(x,§) = det(y + iy.T) (1.71)

when calculating the inverse (1.87). This 1is the same
polynomial which appears in the denominator of the monopole
generating function P(xtg) (see (1.18)) according to Corrigan
and Goddard [16]. What is more, the parametrization (1.58)
shows that the space of null three-vectors has a complex
structure; it is isomorphic to CPl. The tangent space to this
manifold at any point y is therefore isomorphic to the
complex plane C. This means that +the multivalued function
B%E) obtained by solving the characteristic equation P = O

can be thaought of as a curve in the tangent bundle T(CPl);

it is this which Hitchin refers +to as the spectral curve of

the monopole [141. It can be shouwn that if two monopcle gauge
fields have the same spectral curve then they are gauge-
equivalent; the correspondence betueen gauge field and

spectral curve is one—to-one.
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5. Two-monopole Solutions for SU(2)

The simplest nontrivial example of Nahm’s equation
is that which describes a pair of monopoles in an SU(2) gauge
field. Recall (1.83) that in this case Ti(z) is a 2 x 2
matrix defined on the interval (-1/2,1/2), and v(x,z) is a 4-
dimensional column vector defined on the same interval. It is
a condition of Nahm’s construction that Ti(z) has simple

poles at the endpoints 2z = 1/2 , that is,

’ -1+
T, (z) = - (z£1/2)7 X+ 0C1) (1.72)
Nahm's equation (1.41) implies +that the resides C{;'must

constitute a representation of the S0(3) Lie algebra,

X (1.73)

[a},dj] = & k

ijk

For the +two-monopole solution therefore a global gauge

transformation may be found which reduces the residues at
z = -1/2 to the form (X; = —(i/Z)O: . It is now possible to

demonstrate that (1.37) has only two normalizable solutions

v(z); to do this we consider the asymptotic form of this
equation near z = -1/2 ,
dv _ __ 1
iz T 3z v 172790 vz
2JiKi
= 2—1—375 viz) (1.74)

Wwhere Ji = (01/2)®1 and Ki = 1@(01/2) . The solution of
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(1.74) takes the form viz) = V(z+1/2)2', where A  is an
eigenvalue of 2J.K and V is a corresponding eigenvector; so
the asymptotic behaviour of v(z) depends only wupon +the

spectrum of this operator. Using the identity

2J.K = (J+K)° - g% - K7
we easily see that the eigenvalue 1/2 occurs with
nultiplicity 3, and the eigenvalue -3/2 occurs with

multiplicity 1. This means that of the four independent
solutions for v(z) one blouwus up at z = -1/2 3 in the same
way another blows up at z = 172 . Thus we are indeed left
with just two normalizable solutions from which to construct

an SU(2) gauge field.

The fundamental solution of Nahm’'s equation when k = 2
is just
i
Ti(z) = EEO: (1.79)

This solution is not relevant to the physical tuwo-monopole
problem since it has only one pole; nevertheless we shall
calculate the corresponding patching matrix as an example of
(1.56). It is convenient to use the initial values at the

point z :_K,: 1 5 by substitution in (1.57) we obtain

i w2 2 .
T1,0) aw (=8hoy + (14390, + 2107} (1.76)

To evaluate the exponential in (1.56) we use the well-knowun
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identity
exXp ixXn. o= 1 + ixn. o (1.77)
valid when n is a null vector. In the present case uwe

therefore obtain the patching matrix

g(@ = 1+ A2 c1-xPie7 - 11eghioy, +

+Y = Sy~
7 >rY-2)
= (1.78)
Ury-2 _ MAEY
/LZE 2 2
Conversely, houwever, it 1is possible to start from the

transition matrix (1.78) and to reclaim the original gauge
field (1.75). The first step in this reverse procedure is to
perform an equivalence transformation ot the type (1.18) in
order to render g(9) triangular. Once this has been done the
calculation of T, (x) (up to a gauge transformation) proceeds
by a straightforward application of +the ansdtze [15,16]. As
an illustration of the kind of manipulations which are
necessary to find a triangular patching matrix we list here
in full the sequence of transformations which must be carried

out on (1.78)

g~
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HZY - %yuy—z) L

v

WIH

—g‘ 0 1 0

)( T —gwirz —i 0
0 0 gl (o i>

(LY /2
~ -t (1.79)

< wAvy/Z T 0 -1
This matrix has the standard form (1.18) with 1 =1 3 so to
recover the gauge field we must apply the first ansatz,

namely

T (%) n.q:(x) (1.80)
S /.wv

where b_v is the antiselfdual tensor defined in (1.45) and
éﬁ(x) is the coefficient of §_i in the Laurent expansion of
P(xtg). In the present case Z&D(X) = xo , and therefore the
ansatz (1.80) leads directly to the original expression for
the gauge field (1.75); we note that in this case the gauge
conditions T, = O , B,T = 0O are already satisfied.
0 Ly o
Our second example will be the most general two—monopole

soclution Ti(z). It is known that the number of parameters
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needed to describe an l-monopole solution is 41-1 [(23]. Thus
the two-monopole solution has 7 ©parameters of wuwhich 3%
correspond to translations in X-space and do not appear in T,
and 3 correspond to rotations. There remains only one
nontrivial parameter, which measures the distance between the
two0 monopoles.

The gauge group SU(Z2) is isomorphic to Sp(l); in order
to yield an Sp(1) potential the linear mapping Al(x) of the

ADHM construction must ©preserve a symplectic structure. In

other words, there exist antilinear mappings J @ W’ -—-—--> W’
and J : V -——> V such that J% = -1 , and the mapping
commutes with J. In Nahm’ construction for monopoles the

symplectic structure is chosen to be

(Jw)(z) = C®E w(-z)¥ (1.81)
where C is a k x k ‘charge conjugation’ matrix such that
CC* = 1 . We shall find it convenient to make a choice of
basis in which C = OE . The operator A = x + iT + iaz

commutes with J provided that the three matrices Ti(Z)

satisfy the reality conditions

(1.82)

The most general SU(2) two-monopole solution of Nahm’s

equations is, up to rotations and gauge transformations
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- _ ig__9___ - _ inp_dntpz)
Ti(Z) - 2C§cn(pz) T2(Z) - 292 cn(pz)
- _ i~9_sn{pz)
T3(2) = 2037 Cn(pz) (1.83)
_ 2.1/2 . , )
where q = p(1-k™) and k is the modulus of the elliptic

functions. In order to place +the poles at =z =11/2 +the
parameters p and k must be related by p = 2K(k) , where K(k)
is the smallest positive zero of cn(x). The remaining single
parameter k is that which determines the separation of the
two monopoles. It also measures the departure of the solution
from axial symmetry, since when k =0 there is an evident
symmetry of the solution with respect to rotations in the
(xl,xz)—plane. |

The patching matrix for the two—-monopole solution (1.83)
is found using (1.56)}, (1.97) with initial values taken at

z =A=0; it is
g(8) = exp —i—{i(l—g’z)qO' + (1+§2)p0'} +Y) (1.84)
4% 2t :

1

To evaluate the exponential in this case we need to use the

identity
exp iXn.g'= cosX + in.gsind (1.85)
valid when n is a unit vector. From (1.84) we can read off

the angle and axis of rotation, namely

o(%v,g) = n/a(g)b(fj(/LL+ V)
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{(1.86)

n) = :"z_a(l)b( i a@)-p&)) , aCHr+bZ) , 0)

expressed in terms of the two rational functions

a(X)

1 2 2
Zg{p(l*‘s ) o+ q(l—g )3
(1.87)

b))

1 2 2
Zg{p(ug ) - q(1-T")2

Finally we obtain the following explicit representation of

the patching matrix:

cos JmEW+Y) ;/:—bsin./abyu\/)
g(&) = (1.88)

- Q%%sinJabyL+V) cosJab%A#V)/

The transition matrix (1.88) ©behaves in a very special

way under translations in the three spatial co-ordinates x

because the underlying gauge field admits these as

invariances. In order that the translated gauge field %ufx‘)

should be gauge-equivalent to T, (x) it is necessary that the

translated patching matrix be equivalent to the original one

(compare (1.49))
g(9°) = Ala,0)g(8)B(a,0) ! (1.89)

where @ is the plane obtained by subjecting © to the

displacement a. The infinitesimal form of +the translation
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invariance condition is
Sg(9 = Sxi(xi(B)g(Q) - gy (O (1.90)

where the unimodular matrices Xi(9) and Yi(Q) are analytic

in U, and U, respectively. It is possible to verify (1.80)

1 2
directly for the general 2 x 2 patching matrix (1.88), uhose

variation is

) = -Adab sini b cos
Sg(0) = (8§z% - bz,
§ - a cosX -,/ab sine
= $zX 1@ - Szg v (&) (1.91)

where the left and right infinitesimal gauge transformations

are given by

x& = & lz
Y&y = Lz

0 -b _
(1.83)
a 0

It is readily checked wusing (1.92) and (1.93) that indeed

(1.82)

Z(%)

X(g) is analytic when g' z 0 and Y(E) is analytic when
T # 00; therefore the transition matrix (1.88) does indeed

lead to a translation-invariant gauge field.

We should now like to reverse the procedure which led to

g(Q) and recover from this the original field Tpéx). However,
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the usual ansétze may cnly be used if the patching matrix can
be reduced to the triangular form (1.18). Unfortunately, this
is not possible for the general form of (1.88) - The function

a(§)b(§) possesses branch cuts which cannot be removed by

our equivalence transformations (1.18). In order to recover
the gauge field T,,(x) in this case it would be necessary to

fb

solve the Riemann-Hilbert problem for matrix-valued functions
Wwith branches.

However, there is a special case for which the standard
ansatze are_sufficient, namely the case of axially symmetric
monopoles. As we have already mentioned, the gauge field
(1.83) becomes axially symmetric when k =0 , p = q = 7C,

and the &elliptic functions then reduce to the familiar

circular ones

iy T . _ i TT_
Tl(Z) 2 1cos Tz TZ(Z) - ZOécosjtz
i _TsinTrz
T3(2) = 503725s (1.84)

The transition matrix (1.88) simplifies greatly since in this

case ab is just the square of a rational function, and the

result is just

o cos TtVL*V)/Z ‘§sin TOYUAY) /2
g(O) = ~ (1.95)
-X7lsin i sz cos Topy /2

The reduction of this matrix to upper-triangular form

proceeds in a manner similar to (1.78); the first two stages

consist in multiplying g(9) by the two matrices
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1 0 1 -i%
~1 and (1.96)
-iL 1 0 1

from the left and right respectively. The triangular form of

the patching matrix is

geio‘t(/u+\/)/2 cos 7179&(_+V)/2

g(® = . (1.97)
o Tl VI /2

In order to reduce this to +the form required for application
of the first ansatz, we must remove the exponential factors
which multiply the diagonal elements. This is ©possible

because eiﬂfy/2 and ei 7 2 are analytic in U1 and U2

respectively so that the further multiplication of (1.87) by

e—iﬂﬂVZ 0 e-dﬂyVZ 0

, and .
0 elﬂnMZ 0 e1ﬂ?U2

from left and right is an equivalence transformation in the
sense (1.168). After this transformation the patching matrix

is left in the canonical form

g %(eﬂgu'+ e_ﬂtv)
g = (1.99)

0 el

It is now possible to apply the first ansatz (1.80) with the

substitution
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cos?txo (1.100)

i
(0]

Ao(x)

This results in the selfdual gauge field

= L
Ty (x) = S

- L - Y

Tl(x) = 2ﬂKO§ OTtan?tx )
(1.101)

- _ i Y
T2(x) = 2ﬂ10} + Oétanﬁtx )
T (x) = — % O‘tan‘ﬂ&o
3 éﬂj3
Unlike the previous example (1.75) +this field does not

satisfy the gauge <condition TO = 0 . In order to rectify

this we must apply a gauge transformation

leb ——=> b/r/‘b/—l + X%_l

in which the group element KKX) obeys +the differential

equation aOK’: KTO . An appropriate choice might be

_ i 1 _ 0
z(x) = exp ZCETUZ X ) (1.102)
which represents a rotation through an angle TU1/2 - xo) in

the (Cq,Oé)—plane. After +this transformation Wwe recover
precisely the original field (1.94).
As our final example we shall consider the fundamental

(single pole) solution of Nahm's equation for k x k matrices
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iJ,
T.(z) = —-== _ (1.103)
1 pA
The three hermitian matrices Ji must constitute a
representation of +the angular momentum algebra so(3); ue

shqll suppose that this is the irreducible representation of
sp{n j, where k =2j+1
Taking boundary conditions on T at the point 2z = A =1

and using the equation (1.62) we obtain

r(1,8) = i§¥§).g_ (1.104)
Because zjg) is a null vector, it is possible to choose co-
ordinates in which ng) = c¢(1,i,0) for some scalar constant
¢ in this frame wWe can readily see that T(1,§) is
proportional to the raising operator J+, and is therefore
nilpotent. The exponential series in (1.56) is therefore in

fact a finite pouer series.
In order to evalate the expression (1.56) in this case
Wwe Will use a neat 1little +trick to eliminate the spectral

parameter §. Define the k x k matrix M by
M = exp(Jg 1n CH (1.106)

which may be done in any representation of SU(2). This
represents a rotation about the 3-axis through the complex
angle i 1n g . In the fundamental representation the

generators of the Lie algebra are given by
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J. = = (1.107)
3 2 0 -1

and hence, in the fundamental representation, our matrix M

takes the particularly simple form

§1/2 0
M = ) §—1/2 : (1.108)

In the spin-1/2 representation it is trivial to verify the
following relationships between M and the generators of the

rotation group:

Tl =mon Cu, = MJI M
-1

Jo = MIH (1.109)

However, these relationships tell us about the structure of
the angular momentum group and its associated algebras;
although we have chosen to prove them in a specially sinple
representation, in fact they hold in every representation of
SU(2). They demonstrate that in order to multiply the raising
and lowering operators by § and §_1 Wwe need only conjugate by
the matrix M.

Now we can use the above properties of M to simplify the

exponential to be evaluated in (1.56). If we abbreviate our
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notation with the definition s = y4+y—2)/2 . then the

expression for the patching matrix is

g(1,08) = exp -T4(1,8).2s

exp s(g_lJ_ - CJ+ + 2d5)

-1
Mexp stJ_ - J  + 2J3) H (1.110)

To simplify the remaining exponential we again resort to the
technique of proving an identity in the fundamental
representation which can then be applied to an arbitrary

representaion. In this way we can obtain the group

multiplication law

exp s(J_ - J+ + 2J3) = exp J_ exp —(1+s)J+
exp iﬂﬁz exp —J+ (1.111)
The matrix C = exp iﬂUZ is the so-called charge conjugation
matrix for SU(2) which reverses the ‘"charge" ( or angular
momentum) of any state, in other words C_1J3C = —J3
Substituting the relation (1.111) into (1.110) and using

(1.109), we obtain

-1 exp —§J+

(1.112)

_ -1 _
g(1,9) = exp g J_ exp (1+s)§J+ MCH

It is readily seen that +the outer pair of exponentials
in this expression are simply equivalence transformations on
the patching matrix in the sense of (1.16)3 furthermore, it

follows from the properties of the charge conjugation matrix
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that C_1MC = M_l . So an equivalent patching matrix for the

fundamental solution of Nahm's equation is

g(1,0) = exp —(1+s)§J+ M2
_ Y 4
= exp /“‘2 Ty, exp 2J31n§ (1.13)
This matrix is closely analogous to (1.79); it is upper-

triangular, and the diagonal elements are simply the integral

pouers of g-from ng down to §—2j.
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Chapter 2. The ADHM Construction and Reciprocity

In the previous chapter a description of the ADHHM
construction was given for instantons and for monopoles. The
purpose of the present chapter is to show that this
construction is complete, that is, that all instanton and
monopole fields can be derived within it. We shall find that
there is a reciprocal relationship between the monopole gauge
field A (x) and its associated one—-dimensional partner 3u}z),
in that each is constructed from the other by solving a
covariant Dirac (Weyl) equation using the other as background
field, and then taking matrix elements of a suitable operator
between the resulting solutiomns.

There are several versions "of this completeness proof,
but all start from the observation that in the background

field of an instanton or monopole there are finitely many

normalizable solutions to the covariant Weyl equation

A _
Dy =0 . or
(2. 1)

p’¥ = o

In fact, using the index theorem it can be shown that an
instanton of topological charge k admits exactly k such

solutions for which the normalization integral is finite:

j.}”+}yd4x <00

It is possible to arrange these solutions as the columns of a
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2n X k matrix and to normalize this matrix so that

f‘&”“{’ a*x = 1 (2.2)

The most straightforward approach to the proof of
completeness for the ADHM construction is that developed in

{191 where the matrix A(x) is constructed directly using the

matrix elements

a = —JV’*(x)x Vix) ax (2.3)
2 o |

The ADHM equation Zx+v = O is then solved, and a new field
A’(x) derived using (1.24). By comparing the Green's
. functions of the covariant Laplacian operators D2 and D‘2 it
is ther possible +to show that this new field 1is gauge-
equivalent to the original one.

The approach adopted here (251, although technically

more difficult than that outlined above, has several
advantages: firstly, instead of dealing with the matrix
representatives of the linear maps a,b, we shall focus our

attention on a co—opdinate—free description of the vector
spaces V and W described in the preceding chapter, realizing
these as solution spaces of partial differential equations.
Secondly, we shall see how these spaces are related to the
holomorphic bundle of covariant constants over the tuwistor
space of antiselfdual null ©planes wused in the Atiyah-Ward
construction. We can thus uncover the connection between the

two major approaches to the instanton/monopole problem.
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1. Covariant Differential Equations

The proof of completeness for the ADHM nmethod
starts with a general selfdual connection D. By considering
certain systems of covariant differential equations using
this connection a sequence of three complex vector spaces U,V

and W is constructed, and to each tuistor 9 is associated a

linear mapping A(Q) U ——=>V and a similar mapping
B(G): V -———> W . Diagramattically,
U -———-———— >V ——————————— > W (2.4)
29 B(9)

These mappings have the fundamental property

B ad) =0 for all O

(2.5)
in A(Q) C ker B(O)
We shall show that the quotient space
E(©) = ker B(&)/im AG) (2.8)

is naturally identified with the fibre of covariant constants
on the null plane 9. If we denote by im A and ker B the
vector bundles whose fibres at O are im A(O and ker B(Qi
respectively, then the holomorphic bundle of the Atiyah-Ward

construction is isomorphic to

E = ker B/im A (2.7)
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The covariant differential equations which give rise to
the solution spaces U,V and W are most readily expressed in
spinor form; therefore we shall briefly summarize the
notation which will be employed.

The Lorentz group SL(2,C) has two inequivalent
representations of lowest dimension which are complex
conjugates of one another and act on two-component sSpinors vA

B’
and w respectively. Because the representation matrices
have unit determinant there are invariant skew—-symmetric

spinors Egcﬁand Eﬁ’D‘ which may be used to raise and lower

indices according to the conventions

- LA -
Vo =V EAC R v = &
(2.8)

AE _ CA
& 8CE‘SC

The same conventions will hold for the corresponding dotted
spinors. The transition between vector and spinor quantities
is accomplished using the following matrices, which represent

the quaternions used previously:

e = (1, -ig.)
1
(2.9)
e (1, -ig loog) = e
JLAB v TiE O =
These transition matrices satisfy the following orthogonality

relations, used extensively in the sequel:
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AB®
%uAB‘ev = 2§MN
(2.10)
Ch* _ C D>
iuAB’%M = 25% B
if xfbis a vector, wWwe can define an associated spinor xAB by
XAB = X eAB (2.11)

1

The connection D, may likewise be written in spinor form

AB”

D = B | (2.12)

D eA
P p
The spaces U,V and W and the mappings A(G) and B(@) can only
be constructed when the connection %u, is selfdual. The
condition of selfduality may be expressed in sSpinor form
using the identity

D1

AD® _ -
Suarty (8/”1 VIS

(2.13)

where 7;y is the antiselfdual tensor defined previously. If

the curvature tensor F is selfdual, therefore,
AD> D> 1. - D
Dyp+D = D#%LL R 21%\/(77/0)3, (2.14)
D‘
= D, D ,
s

This equation is used frequently in verifying the consistency
of the sets of equations which define the spaces U,V,W.

The third space W in our sequence is simple to describe:



74

it is just the space of solutions of the covariant Weyl

equation mentioned previously (2.1)
A
Dap ¥ =0 (2.15)

We have already seen that this equation has only finitely
many solutions in an instanton field if the normalization
integral (2.2} is required to be finite. For monopoles the
necessary modification is fairly obvious: we 1impose a

condition of Xo_invariance
Vix®,x) = exptizx® V0, x) (2.16)

and require finiteness of a 3-dimensional normalization

integral, nanmely

f}"*‘;’ Sx = 1 (2.17)

We have already noted +that if instanton boundary conditions
are imposed then the Weyl equation has just k solutions; if
however we impose monopole boundary conditions as described

above we find that the number of solutions depends on the

*frequency parameter’® Zz. In fact, there are just k(z)
solutions for any given value of 2z, where k(2z) is the
integer-valued function defined in (1.34). The number of

socolutions changes when z passes through one of the so-called
'jumping points’ z, (see discussion after (1.33)).
The second space in our sequence is rather more complex

to describe: the fields upon which the differential equations
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, A
are imposed are a scalar ¢, a second rank spinorjlcy and a

. AB’
mixed spinor () . In order to abbreviate our notation
somewhat we note that the direct sum of the dotted and
undotted spinor representations is by definition +the so-

called Dirac spinor representation; the components of a Dirac

spinor v are denoted vq, where the index & runs over the
standard spinor values A = 1,2 and the dotted wvalues
B* =1",2° . The inner product of two Dirac spinors is

defined as

The equations satisfied by the fields ¢ amd,fldefining

the space V may now be written

pA%¢ = Q"B+ P =,QAb,xXB' (2.18)

D,5.0" =0 (2.19)
where xAB’ is the spinor representative of x (2.11) and
xD,B’ = D,B‘ . The boundary condition on the spinoril is
similar to that used on 3”, namely +that the integral of_Q?
should be finite, the integral ©being taken over the entire
4-dimensional space in the case of instantons but over a 3-
dimensional spacelike slice in the case of monopoles. In the
latter <case, this field should satisfy a condition of
translational invariance analogous to (2.16). The boundary
condition on the scalar ¢ is simply that it should be

covariantly constant *at infinity’, and in the case of
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monopoles it should also be independent of xo
The equations (2.18) and (2.18) are consistent only if
the ©background field ﬁM} is selfdual. This follows by

differentiating (2.18) and wusing the fundamental relation

{(2.14) together with (2.19):

ABY _ . 2¢ B 1. - B’
Dyp-D" P = (D SD, +21F/Ly(/,gy)D’ ) @

(2.20)

- B*
- ZmA D

It is clear that this equation is <consistent only if the
curvature term vanishes, i.e. if F is selfdual. In this case

we have the simpler equation
p%4 = 20 (2.21)

This may be used to deduce the dimension of the space V,
that is, the number of linearly independent solutions of
(2.18-2.19) which satisfy the appropriate boundary
conditions. The space V may be represented by the fields ¢
and.jfc alone, where ¢ satisfies (2.21) and.ﬂfc satisfies the

covariant Weyl equation
D A 0 (2.22)
apflc = ’

For given such fields we may define the remaining components

e

_QﬁB using (2.18), and then use (2.21-2.22) to verify that

these components too satisfy the Weyl equation (2.19).
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Now, since (2.22) represents a pair of solutions to the

Weyl equation (2.1), nanmnely _Qél and _052, there are 2k
solutions in the case of instantons, 2k (z) in the case of
monopoles. On the other hand, the solution of (2.21) is

defined only up to addition of a solution of the Laplace

equation, <covariantly constant at infinity
2
Do = 0O (2.23)

In:an instanton field there are just n independent functions
of this kind; Thus we have ©proved the assertion made earlier
that in this case the dimension of the space V is n+2k.
However, in a monopole field which behaves like (1.33)
there are feuwer covariant constants at infinity. The
essential difference between the two <cases is that the
curvature of a monopole field behaves like r—2 Wwhereas that
of an instanton field decreases more rapidly like r‘3. To
estimate the <change in a vector caused by parallel
transport round_g closed <curve, the curvature is integrated
over a 2-surface spanning the circuit. As this surface is
magnified towards *infinity’, its area increases in
proportion to r2, and thus it may be'seen that the effect of
curvature remains finite for monopoles but tends to zero for
instantons. However, there may remain vectors in the
fundamental representation which are annihilatéd by the
asymptotic curvature, in other words ’neutral’ modes which do
not _interact with the asymptotic gauge field. These
correspond to the indices XE€E 1 mentioned after (1.33);

they provide the covariantly constant boundary values for the
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solutions of the Laplace equation (2.23) as r —-—-> 0OO. These
solutions account for the extra components vX needed to
describe the ADHM wvector space in Nahm’s extension for
nmonopoles (1.35),(1.37).

We see therefore +that the differences Dbetween the
original ADHM method (for instantons) and Nahm's construction
(for monopoles) are largely due to the boundary conditions
inposed on the fields. The actual equations which define the
spaces U,V,H are the same!'

The first space U nmay, like V, ©be described in tuwo

equivalent ways: The simplest representation is to consider

it as the solution space of
p**'p*A, = o (2.24)
where the Weyl spinor DZR,A satisfies the same condition of

normalization as VA. The solutions of (2.24) may therefore be

obtained by applying the inverse Laplacian operator

to those of (2.1%), and thus the dimensions of U and W are

equal.

An alternative parametrization for U is constructed by

introducing the third-rank spinors

A _ 1244
Plpc = - 2D A 6y
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_ nAB’ A EB®
=D 2@ P cEX
(2.25)

_ _ ,A B’
= P c

_ DAB;LD _ PAD CXCB’

. B’ ) .

dotted spinor A is related to its undotted
- AP (2.26)

this complex set of equations may be much
by wusing four-component spinor indicess; the

the above definitions is to ensure that the fields

satisfy the system of equations

0 (2.27)
- PAXEX&B (2.28)
A
- P (2.29)
&y
0 (2.30)
Ye

a striking similarity to (2.18-2.18). In proving
equations follow from (2.24-2.28) it is again
identity (2.14) and the selfduality of

ound field.



80

2. The Mappings and the Twistor Bundle

We are now in a ©position to describe the natural
linear mappings 4(9) and B(9) which exist between the
solution spaces U,V and W describéd in the last section. We
saw in section 1.2 that a +twistor, or antiselfdual null
plane, could be specified by a pair of two—-component sSpinors

aﬁ and ﬂ%, such that the equation of the plane is

If we amalgamate these into a single four-component quantity

&
O, we can extend this equation to give

=% TG, (2.31)

using the additional components of x which uwere defined after
(2.19).

Now we can see uwhy the four-component representation of
the equations (2.18-2.19) and (2.27-2.30) is so useful - it
enables us to contract a field with the twistor Qd giving a
field with feuwer indices. For example, if the pair (XqP) is a
solution of (2.27-2.30), i.e. an element of the space U, then

Wwe may form the contracted fields

-
1
o8
<o}
<><

(2.32)
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It is now trivial to verify +that these do indeed satisfy the
the equations of V, namely (2.18-2.19). Given any other

solution of the latter equations there exists a further

contraction, namely

yAzzﬁfxeX (2.33)

and the resulting field now satisfies the Weyl equation
(2.15) which defines the space W.
Given any twistor © ., therefore, the transformations
(2.32) and (2.33) may be used to define tuwo linear mappings
AG) : U -——-—>V and B(® : V ——> W . It 1is at this point
that the antisymmetry property (2.29) comes into its own; for
if we apply both A and B successively using the same tuistor

6 as argument, then we find that the final result is

A _ € _ LA YAE
Vh et - 0%

=0 (2.34)

In other words, we have as promised the relation (2.95)

B a(® = 0

im A(08) C ker B(Y)

The image of & and the kernel of B may be used to
construct the holomorphic vector bundle of the Atiyah-Ward
method using (2.6). In order to verify this we need several
lemhas,-full proofs of which are given in [25]. In the

following outlines we use the notation
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A A ’
p=w - XAB7tB,
(2.35)
A _ _AB’
d = DU,
Therefore PA = O 1is the equation of the null plane , and
since %éfp = 0 it follows that the two directional
derivatives dg:are the tangent vectors to this plane. As ue
have remarked previously, these operators commute with one

another by virtue of the selfduality of the gauge field.

Lemma 1: The mapping A(8Q) is surjective for each Q.
(Proof:1 Let the spinor"\}/A be given, satisfying the HWeyl

equation (2.19), and consider the equation
AL A
a"d =¥ on the plane @ (2.36)

This equation is integrable precisely because of the Heyl
equation satisfied by %A. If an arbitrary scalar field is

chosen subject to this requirement, then
A A C
yh = dg e 2 p (2.37)

for some smooth spinor field_ﬁfc. The fields ¢ and ) are not
unique - ¢ is only determined on the plane 9, SO is subject

to transformations

@ ——> ¢ + ¢CPC (2.38)
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and similarly is subject to the transformations
A A A
Q- O, - a. + dip, (2.39)

It is possible to wuse these ambiguities to choose the two
fields ¢ and fz to satisfy +the -equations (2.21-2.22). When
this has been done, the equation (2.37) leads to (2.33); in
other wor@s YA is the image of the pair (¢,LTZ) under the
mapping B(Q). Since a preimage may be found for any solution
of (2.1%), it follows that B(O) is indeed sur jective.

A
Corollary. If ¢ is any covariant constant defined upon

the null plane 9, then there exists a pair (¢,£fzJ € V such
A
that ¢ is the restriction of ¢ to the plane Q: Furthermore
this pair lies in the kernel of B(Q).
A\

N 4
{Procf:] Choose any extension ¢ of ¢ to R°; Because this

function is covariantly constant on O we must have

0 = dft‘gs + _QAC'DC (2.40)

for some smooth spinor field Jléc. As in the main Lemma, we
can use the remaining ambiguity in ¢ and {) to choose these
fields in such a way that they satisfy the equations (2.21-
2.22). It is evident from (2.40) that 'WA = 0, i.e. the pair

(¢,ﬂﬁx) does indeed lie in the kernel of B(O).

Lemma 2. Suppose the pair (¢,sz) lies in the kernel of

B(O); then it also lies in the 1image of A(8) if and only if

the scalar field ¢ vanishes on the null plane 6.

[Proof:]1 The ‘'only if' part of the proof is a matter of
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straightforward calculation. The *if’® part employs arguments
similar to those used in Lemma 1. If ¢ vanishes on the plane

© then there is a smooth spinor field 2@ such that

¢:&PC (2.41)

By differentiating this equation and wusing the equations of

the space V we can show that

A _ A A
Q6 = .d.R@ + TP, (2.42)

where TA is another smooth spinor field. By using the

remaining freedom in the choice of A and T ue may arrange

that

=27

les)
aif

il
(@]

(2.43)

which of course are equivalent to the single equation (2.24)
which defines the space U. Now a little further manipulation
of (2.41-2.42) gives the relations (2.32), indicating that
the pair (¢,ﬂ?x) is indeed the image of (A%’PAXE) under the
mapping A(Q).

Lemma 3. The kernel of A(8) is isomorphic to the space
of solutions of +the covariant Laplace equation D%J =0
subject to homogeneous boundary conditions at infinity.

[Proof:] Suppose the pair (Rk’PAXE) lies in the kernel

of A(O). It then follous that



85

Cc _
/lcp - 0 (2.44)

and so there exists a scalar field, which we shall denote by

O, such that
lc = Op, (2.45)

It is this scalar which may be shown [25] to satisfy the
Laplace equation - it is plain that if the spinor Rﬁ is to
satisfy the appropriate boundary conditions, the scalar nust
tend to zero at infinity. This proves homomorphism in one
direction; to establish the other half of the isomorphism we
just start with the field }ﬁ defined by (2.45), where O is an
arbitrary harmonic function, and verify by direct calculation
that this field (i) satisfies the equations which define U,
and (ii) lies in the kernel of A(O).

Of course, in any ©physically reasonable gauge field,
whether due to an instanton or to a monopole, the covariant
Laplace equation has only one solution which satisfies
homogeneous boundary conditions - the trivial zero solution.

It follouws that the sequence of spaces and mappings

U ———mmmm - > V mm—mmmmm— > W (2.46)

has a very simple structure: A is injective, B is surjective,
and the image of A is wholly contained by the kernel of B. If

the pair (¢vﬂﬁx) lies in the image of (@), then the scalar
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field vanishes on the null plane ©. On the other hand, if
(¢,£fx) lies in the kernel of B(@), then this scalar field is
covariantly constant on O. The corollary to Lemma 1 implies
that any covariant constant on 9’ may be derived by
restriction from the scalar field of a pair in the kernel of
B(Q); of course, the pair is not uniquely determined - but if
(¢,£D and (¢’%£U) are any two elements of ker B(9) then

according to Lemma 2,

if and only if
(P-4, N-Q) € in AH

It follows that there is a natural isomorphism betueen the
vector space of covariant constants on the plane &, which
we will call E(©), and the quotient space which is

constructed from ker B(Q) and its subspace im Xl
E(Q) = ker B(®)/im A(O) , (2.47)

As @ varies throughout the whole twistor space CP3, th;s
quotient space varies, describing the same holomorphic vector
bundle which is wused in the Atiyah-Ward approach +to the
solution of the selfduality equations.

To establish the explicit formula (1.24) or (1.36) for
the gauge field a 1little more work must be done. Firstly,

this formula involves an inner product on the space V, which
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has not yet been defined. Secondly, as one might expect from
their equal dimensions, the spaces U and W are related - W is
naturally anti-isomorphic with the dual space U*, in other
words there is a natural hermitian form on U x ¥.

In order to construct these hermitian forms, Wwe vieu the
fields WA(X), ¢(x), _QAX(X), lb}x), PAXE(x), not as particular
solutions of the field equations, but as linear functions on
the spaces U,V,and W. These may be represented numerically by
using a linearly independent set of sclutions as columns in a
single matrix. Since the fields }UA satisfy the Weyl
equation, they may be expressed as linear combinations of the
'WA. Similarly, since the fields ;LX and PAX£ satisfy the same
equations as the fields of V (with an extra free index Xﬁ,

they may be expressed as linear combinations of these fields
A A
. =¥ (2.48)
¥ ¥

_ A _
A = ¢AX P v ——QAeAbf (2.49)

where A, : U -——-—->V and B, : V -——> W . It is not hard to
] ¥
verify that these mappings are the components of the A(O) and

B(O), which are linear functions of the argument

A(O) = ¥ B(E) = B ¥ (2.50)
Ab’e b,@

Multiplying by the spinor co-ordinates XXB , We then obtain

two linear mappings, which also depend linearly upon position

X
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1 A ] A 3 9
AP (x) = a x¥B AP ) = B x¥® (2.51)
¥ ¥
Uu--—>V V —~—> W
By virtue of the fundamental relation (2.5), there exists a
function c(x) U -——> W such that
N/R o s ) k]
A oAl (x) = coxogd’? (2.52)
Let F(x) W —-——> U* be any inner product on W, and define
the mappings
1= @' + APTHRAR v > v¥
(2.53)
L = Fc U ——-> ¥
The mapping I(x) is positive definite hermitian, and
represents an inner product on Vi the mapping L(x) is
nonsingular, and is equivalent to a hermitian form on U xW.

Then it may be shouwn that

by the formula

-1 +
A =@l 9
= #1714
The inner products I and L will
position x; however, if F(x)

equation

-y

aZAF(x) =

the gauge connection must be given

(2.54)

in general depend on the

is chosen to satisfy the Poisson

(2.55)
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it is possible to show (253 +that although the individual
fields in (2.53) depend on X, the inner products I and L are
actually constant. By choosing bases such that I =L = 1 we
obtain from (2.54) a more familiar form of the ADHM formula
(1.24) for the <connection. The spaces U and U* are now
naturally identified, and the mappings AXB,(X) and;KB,(x) are
adjoint to one another. The former mapping is that which
appears in (1.27), and because the scalar field ¢ vanishes on

the null plane O whenever (¢VQ) € ker A(Q) ue have
B.‘
POA” (x) = 0 (2.58)

Thus this scalar field 1is recognized as identical with the
adjoint of the mapping vi(x) which appears in the ADHM

+
construction: ¢ = Vv

In this chapter we have outlined a completeness proof,
using partial differential equations, of the ADHHM
construction for selfdual gauge fields. In the conclusion to
the paper [25]1 in which this method was first described,
Osborn speculates that a similar approach may prove useful in
the case of nonselfdual Yang-Hills -equations. WHe shall

investigate this possibility in the next chapter.
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Chapter 3. The Nonselfdual Nahm Equation

The theorem of Taubes described in section 0.5
demonstrates that a simple theory which admits selfdual
monopoles will also allow nonselfdual solutions of the field

equations. So far we have concentrated our attention on

selfdual gauge fields, since the =selfduality equations are
known to be completely integrable; as we have seen several
methods of solution are available. The question which we

would like to investigate iS to what extent similar progress
can be made towards solution of the full second-order field

equations.
D F = 0 {(3.1)

It must be said beforehand that there is nc reason to
suppose that the second-order Yang-MHills equations are
completely integrable. A certain amount of Success was
achieved by Witten (261 and by Isenberg, Yasskin and Green
{273 in generalizing +the Atiyah-Ward construction to deal
with nonselfdual gauge fields, but their method does not lead
to explicit expressions for the gauge ©potential. It is
therefore tempting to ask whether a nonselfdual parallel also
exists for the ADHM method, and if so whether it may supply a
direct way of evaluating A4,,.

/u,

The most sound way of approaching this question uwould be

to search for systems of differential equations analogous to

those investigated in the previous chapter - The condition

for such systems to be integrable should be that the Yang-
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Mills equation (3.1) is satisfied by the background gauge
field, so that the very existence of these spaces would imply
(3.1). We would then look for natural linear mappings between
these spaces which might characterize the connection in the
same wWay that the mappings Acx) and Atx,z) correspond to the
selfdual instanton and monopocle fields. We might speculate
that as in the selfdual <case the relationship between the
connection D and these linear mappings should be a reciprocal
one, and that the nonselfdual A’s would satisfy essentially
the same Yang—-Mills equations.

This ig an ambitious programme, and may prove impossible
to implement. However, we have been able to obtain several
interesting results concerning the so-called ‘’nonselfdual
Nahm equation’ which is satisfied by selfdual gauge fields in
four dimensions which depend upon only one co-ordinate. This
is just the type of field which we would expect to obtain if
it were indeed possible to apply an ADHM type transformation
to a static 3-dimensional solution 1in a model with one

adjoint Higgs and zero Higgs potential (BPS limit).
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1. Generalizing the Atiyvyah-Ward and ADHM Methods

By applying +the Penrose transform to a general
Yang-Mills gauge field 5“’ Witten ([26] and Isenberg, Yasskin
and Green [273 obtain a holomorphic vector bundle E(A) over
the space of null lines L; the fibre at L contains all

covariant constants on L. Let the space of all selfdual null

planes be denoted QX‘ and that of all antiselfdual null
planes be denoted 38 (both isomorphic to CPS). Then =since

each null line lies in the intersection of a selfdual and an
antiselfduai null plane, and since these planes are uniquely
determined by the line ,the space L may be viewed as a 5-
dimensional submanifold of qx X ?5. The condition which must
be imposed on the bundle E(A) +to ensure that the asscciated
connection A satisfies the wvacuum Yang-Mills equations is

rather subtle, and concerns the extension of the bundle to

I1f the bundle E(A) is represented by an open covering Ui
and a set of transition matrices gij defined on the
intersections Uifﬁ Uj, then it is <clear that the following

cocycle conditions’ must be satisfied:

SRR (3.2)
Eix

That is, a transformation from the co-ordinate frame used in
Uk to that used in Ui should have the same effect whether it
is performed directly or through the intermediate frame in

Uj. The bundle E(A) may be extended to the whole of TN X 38
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provided that there exist

~S
(i) extensions (supersets) U, of +the U, , which
1 1

provide a covering of ﬂx X ?9’ and
Va4 ~
{ii) holomorphic extensions of gij to U . MNU,_,
i J

which satisfy the cocycle conditions (3.2).

Unfortunately, these conditions are not satisfied even for a
connection which satisfies the Yang-Mills equation. However,
if we only_ demand that the <cocycle conditions (3.2) be
satisfied to O(ta) in the neighbourhood of L, where t = 0O

is a local equation of the submanifold L, then an extension
can be found if and only if the field equation (3.1) holds.

g g =1+ 0(tH

1oy (3.3)
+ O(t4)
8k

I

gijgjk

As stated in the introduction to this chapter, our
ultimate aim is the generalization of the ADHHM construction
to nonselfdual <connections, since this would hopefully
provide a much more explicit description of the gauge field
than that just described. We found it helpful to use Witten’s
indirect proof of the equivalence of the Yang-Mills equation

and the third-order extension property (3.3). He noticed [26]

that if y , 2z are co-ordinates in a (real) 8-dimensional
. (y) (z) . .

space, and if D/p , D/A’ are the —corresponing covariant

derivatives of an 8-D <connection, then it is possible to

produce a 4-D Yang-Mills field by dimensional reduction as

,

follows: Let the 8-D connection be selfdual in the 'y’ co-
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ordinates but antiselfdual in the 2z co-ordinates;

furthermore let the 'y’ and 'z’ covariant derivatives commute

(07,071 = selfdual

(z) (z), _ .
[DfL/,D v ] = antiselfdual (3.4)
[D(y),D(Z)] -0

o )%

Now make a change of variables to x and %Midefined by

y, = X + u zZ =% - u (3.5)
wom e Y
The 4-dimensional subspace ﬁu,: ) corresponds to the
*diageonal’ y. = 2z in terms of +the original co-ordinates -
e

this will be identified with 'physical® 4-D space. The

restriction of the connection (3.4) to the diagonal subspace

satisfies the (second-order) Yang-Mills equation.

By no means all sclutions of (3.1) may be constructed by
this method - but the remarkable finding of Witten was that
the 4-dimensional solutions of (3.1) are precisely those which

admit an extension

(x) (x) (w) (w)
D =9 + A (x,u) D =9 + B (x,u)
p o e S
(3.8)
to R8, where A and B are power series which satisfy (3.4) as
far as the second order in w. Note that ﬁujx,O) is the Yang-
Mills gauge field on R4, but Bﬁéx,w) has no physical

interpretation since it refers to covariant differentiation

in a direction orthogonal to physical space.
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Our attempt to extend the ADHH construction to cover
nonselfdual gauge fields therefore began in 8 dimensions,
with the simplest examples available; those for which the
gauge group could be factored G = H x K, and for which the
'y® components of the connection lay in H and the ’2z2°
components lay in K. This ensured +the commutation of the two
sets of derivatives, as in (3.4), in a rather trivial uay.
Given an H-instanton A (x) and a K-anti-instanton %ufx) it is
easy to construct the 8-dimensional gauge field which when

4
restricted to R™ gives their tensor product; it is

p Y 2 ) L oa (v p(Z? = 32 4L g (2

A I o S

(3.7)

We can then construct a rather large set of spinor fields in
8 dimensions which satisfy covariant linear equations
akin to those described in +the previous chapter. These

equations were modelled on those satisfied by the tensor

products of the ¢,-W,I2, A, etc. for the instanton and the

anti-instanton. For example, the scalar fields would combine

to form

(y,z) = (y) (z) (3.8)
Py by® @

where the first factor is a solution of (2.18) in the H-
gauge field and the second satisfies a similar, but spatially
reflected, equation in the K-gauge field (which is an anti-
instaﬁ;on). Differentiating (3.8) with respect to y and z ue

see that we require two further spinor fields
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Q2 y,2) =y @ Bz) N, tv,2) = giyr® Lz

(3.9)
and so on. If the spaces U, V and W used in Chapter 2 are
renamed U—l’ UO and Ul’ and the corresponding spaces for an
anti-instanton are called w_l, wo and wl, then the tensor
product of the instanton and anti—-instanton complexes
contains nine components Vij = Ui g)wj . For each
antiselfdual null plane or tuwistor @ in 'y’'—-space there
exists a mapping B(Q) : V, —m=> v (previously called

A(0) or B(8)) and for each selfdual plane‘v in 'z'-space

there is a similar C(v) PW - W, Upon the tensor

+1

product of the two complexes there acts the mapping

A0 =BO1I® 1 + (-1 ® O (3.10)

Vij B Ui+1,j * Vi,j+1

which, like that used in +the construction of instantons and

monopoles, satisfies the fundamental relation

>
AE M =0 (3.11)

We note here that the index k=itj is incremented by the

mapping A; we therefore define the direct sums

v = & v . (3.12)
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so that A(G{h) : Vk —_——> Vk+1 . It is <clear that k can take
the values -2,-1,0,+1,+2 - hence there are five spaces in the
sequence
Y -—=>V ——=> V>V, -—-=>V (3.13)
2 A -1 A O A 1 A 2

The equations defining these spaces and the mappings

between them can be defined without explicit reference to the

original derivation using tensor products. It is easy to see
that the <consistency of the differential -equations is
equivalent to Witten’s conditions (3.4); the equations in the
y*-variables and those in the ‘z'-variables may be treated
almost independently Dbecause the covariant derivatives
commute. It is further ©possible +to prove that the sequence
{(3.13) is exact at the points V_1 and Vl’ that is, that the
image of the incoming map is the kernel of the outgoing one.
Furthermore, at the point VO we have im(Ain) C ker(Aout) y
and the quotient of these two spaces is naturally isomorphic
to the space of <covariant constants on the 4-D subspace
9>:ZL

These results are ©potentially very promising. However,
in order to obtain ’'nontrivial’ nonselfdual fields (i.e. not
merely tensor products) one really needs to construct
complexes such as (3.13) using fields which are only defined
by Taylor series in the neighborhood of the diagonal
’physical’ space. The defining Dirac, Laplace equations

should then be satisfied only to a low order in uW (see

(3.6)). This we have not been able to do.
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2. The Nonselfdual Nahm Equations

By applying the process of dimensional reduction to
the selfduality equation (0.18) we have obtained both the
Bogomolny equations (with ¢ = AO ) and Nahm’s equation.
Performing a similar reduction of the full second-order
equation (3.1) produces the static Yang-Mills-Higgs system in
3 dimensions with ‘'the fourth component of the connection

again playing the role of the Higgs field.

'RECIPROCITY’

d = 3 (=== > d = 1
F = xF Monopoles <{---> Nahm’s equation
D F =0 Static Y-M-H {===> ?

We know that the three and one-dimensional versions of the
selfdual equation are related by the ADHM construction; it is
at least possible that the one-dimensional Yang-Mills
equation may play a similar role in the solution of the
static Yang-Mills-Higgs equations. This was the original
motivation for the study of a system which has since revealed
many.features of interest in their ouwn right.

As Dbefore, we shall start our investigation by
considering a Yang-Mills gauge field T (x) in four Euclidean

dimensions X,,. The four components of this one-form take

fb
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values in some matrix Lie algebra L, corresponding to a Lie
group G = exp L . The dimension of the vector space upon
which this group acts, i.e the size of the matrices ?M) is as
yet undetermined. W®We recall that in the selfdual Nahm
construction this dimension was determined by the topological
charges ki of the reciprocal gauge field %M’ since (by the
index theorem) these determined the number of solution;fof
the Weyl equation (2.1). If indeed there exists gome
reciprocity in the nonselfdual case the size of the %u/should
be given bj the dimension of another solution space, whose
defining equation Wwe have not been able to guess.

We proceed by supposing that there exists a gauge in
which the connection matrices %u}x) depend upon one co-

ordinate alone, namely xO: Thus

0J 0 03 0" (3.14)

The second-order Yang-Mills equations for the reduced gauge

field take the form

D/A,F/‘M.O = D1 FlO
= - [Ti‘DOTiJ
If in- addition we let z = XO and choose a gauge in which
T. = O , these equations simplify further to

0



100

a4T
—-sl = - €T .07, ,7T 12 (3.15)
dZ 1 1 J
aT.
[Ti,a—z—}-] =0 (3.186)

As we might expect, any set of matrices which satisfies
Nahm’s equation (1.1) will also satisfy (3.15-3.16}); but the
converse is not true. We shall see that ‘' there are many
solutions of our second-order system which do not solve the
first—ordér equation. A particularly remarkable feature of

this system is the existence of continuous families of

solutions, distinguished by means of a single real parameter,
whose extreme members satisfy the selfdual Nahm equation and

its antiselfdual analogue

i _— —_— pa—
= E k[T, T) ) . (3.17)

This equation differs from the standard Nahm equation (1.1)
only by a single sign, and may in fact be derived from it by
subjecting the fiélds ?u}z) to the parity transformation
z ——=> -~z
To construct a conserved ’energy function’® for equations
{3.15-3.16) we are guided by analogy with 4-dimensional

Yang—-Mills theory, for which +the following integral is

conserved:
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[=3]

i

|
Ry P

3
de P tr(FOiFOi + 2FijFij) (3.18)

Of course, in the case we are currently considering there are
two changes to be made - (i) the fields are independent of
the three ’spatial’ variables xi, so that the integration
cannot be performed, and (ii) the variable 2z represents
*Fuclidean time’, so that we expect the first term to change

sign. Taking these points into account We can wWrite doun a

candidate for the conserved ‘energy’, namely [28]

B

W |

4T 2
_ 1 i _ 1 2z
- tr(iZ(dZ ) 2izj (T,,T 1% (3.19)

Indeed, a simple calculation shows that E is independent of *
2. However, unlike the true energy functional (3.18) this
quantity is not positive definite. In fact, if Wwe write it in

the factorized form

dTi dTi
—_— —_—— — ——— Ry
E =~ trity EijijTk)(dz + EilmTle)J (3.20)
it-becomes clear that selfdual (1.1) and antiselfdual (3.17)

solutions are zeros of E.

The system of ordinary differential equations (3. 15-
3.16) has a very rich structure, and we have not been able to
solve it completely, even uwhen Ti lies in the simplest Lie

algebra SU(2). However, there is a special class of solutions
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whose exXistence is easily verified, and whose structure
depends in a complex and fascinating way on the nature of the

underlying Lie algebra L. These are the ’separable solutions’

T (z) = iXif(z) (3.21)

whose z-dependence is contained in a single scalar function
f(z), which multiplies the constant matrices X &€ L . It is
- 1

clear that this function satisfies an equation of the form

£10(2) = cf(z)° (3.22)

while the three elements of the Lie algebra must be subject

to the following relations, which we have dubbed the ’cubic

algebra’
[X ,[X ,X 11 = cX. (3.23)

(as usual, a summation is understood on the repeated index
i). The actual value of +the real constant ¢ is unimportant;
it is clear from (3.22) that a change in ¢ is equivalent to a
rescaling of the variable z. It is most convenient to choose
¢ = 2 i then multiplying (3.22) by 2f' and integrating with

respect to z, uWe obtain a first integral

£1(2)% = r(z2)¥+ ot (3.24)

Note that the arbitrary constant O may be adjusted using the

scale transformations 2z -——-> )flz , T —-—>;Lf , under which
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O ---> Ag~. When O # © the general =socluticn of this=s
first-order equation may be constructed using the Jacobi
elliptic functions: If the positive sign is taken in (3.24)

then

£(z) = QomomQ 27 70 (3.25)

but if the constant in (3.24) is negative, then

fiz) = EE—Zégé:257 (3.28)
where the elliptic functions have modulus k = 172 5 For
this value their real and imaginary periods 4K, 4K’ are
equal. In the case Qg = 0 , the solution has only one pole,
and no periodicity - it is just f(z) = 1/(2—20) . The
arbitrary constant 25 corresponds to an obvious translation-
invariance of (3.24). The main feature which distinguishes
the two kinds of solution shown above is that (3.25)
possesses zeros f(at 2z = zo+2nK ) as well as poles; it is an
odd funcion of (z—zo). In contrast, the absolute value of

(3.26) is never less than Qi it is an even function.

The conservation law (3.24) may be used to simplify the
energy function (3.19) for the separable solutions (3.21),
giving a gauge-invariant bilinear function of the three

generators X  :
1

—1
E = _}_;lo—‘*q (3.27)
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q = tr(XiXi) (3.28)

The =ign in (3.27) opposes that which appears in (3.24).
Furthermore, for a compact simple Lie group such as SU(n) the
bilinear form (3.28) is positive definite. In fact, there is
a theorem of Wigner (291 which states that any finite-—
dimensional representation of a compact group is equivalent
to a unitary representation - it follows that without loss of
generality.the Xi may be assumed to be hermitian, and in that
case tr XX = =r X+X is positive definite. Hence the tuo
classes of solutions (3.25) and (3.28) are distinguished by
the sign of the energy.

It is clear that for each S0(3) invariant tensor Tij...k
there exists a corresponding function of the Xi which 1is

1

invariant under all +the transformations Xi -==> gX_g— ,
1

uheré g € G , namely
1. =T, tr(Xin...X ) (3.29)

The ’‘energy’ q is only the first of the series; the next is

the cubic invariant

t = -1gijktr(xixjxk) (3.30)
The two parameters (3.28) and (3.30) are most useful for
characterizing the solutions of (3.23). By -expanding the

positive definite expression
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+ - -
(X, E 1E | X XY = 2@ t) > 0

4 .
tr((Xi_ 1£iijJXk 1%n
(3.31)
Wwe derive a bound on the cubic invariant, namely t < q

It is clear that for a compact simple Lie group the extreme

values t = gq are attained if and only if the factors in

(3.31) vanish, i.e.

X, =+ L K Ky (3.32)
These are exactly the relations which must be satisfied by
the residues at any pole of the Ti in Nahm’s construction for
selfdual (+) or antiselfdual (-) monopoles. For this reasdn
solutions of (3.32) will ©be ~called selfdual or antiselfdual
respectively. In either case the Xi span an SO(3) subalgebdbra
of L - the difference lies in the orientation of the basis.
The cubic invariant (3.30) changes sign under the ’parity’
transformation X, 6 ---> -X 3 it is positive for selfdual

1 1

solutions but negative for antiselfdual ones.
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3. Interpolating Solutions

One of the most interesting features of the cubic

algebra (3.23) is the existence, for <certain choices of the
Lie algebra L, of <continuous families of solutions which
interpolate between the ’'selfdual’ and ’antiselfdual’ S0(3)

embeddings (3.32). In this section we shall investigate the
simplest Lie algebra for which a nontrivial ’interpolating
solution’ can be shown to exist, namely L = SU(3) . In 3.4
we shall show that this construction has an analogue in each
Lie algebra, provided that we are prepared to consider sets
of more than three matrices. In what follows L will always

denote a compact semisimple Lie algebra, and G the Lie group

obtained by exponentiating L. We shall find that each of our
interpolating solutions is associated with an irreducible
Riemannian symmetric space L/M.

In the following calculations it is usually convenient

to use in place of the Xi the complex generators

X. = X (3.33)

inspired of course by the raising and lowering operators J+,
J_ used in the theory of angular momentum. Written in terms

of this basis the cubic algebra becomes

1 1 : _
S0X, L DX, X 10 + 50X ,[X, ,X 11 = cX, (3.34)

1 -
XL OX_,X 11 + Xy, 0X,,X, 1) = cX, (3.35)
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The theorem of Wigner cited previocusly permits us to assume

without loss of generality that the Xi are hermitian
_ +

matrices, and therefore X = (X+) . Hence the tuwo terms in

(3.34) are hermitian conjugates of one another; a third

equation, which would have X on the right-hand side, is

redundant, being the conjugate of (3.35).

We shall construct the ‘’interpolating solution’ using a
'Chevalley basis’® of SU(3), in which the commutation rules
take a particularly simple form. A summary of the key facts

about the canonical form of a Lie algebra, and particularly
that of 86(3), will be found in Appendix A, where our,
conventions concerning normalization of root vectors and
signs of structure constants are also collected.

The so-called maximal embedding of SU(2) in SU(3) is

spanned by the three generators Ji’ whose complex forms are

J, = 2(E_, + E;) J = 2(E + E )
* « - « P (3.36)
JO = Hdﬁﬂ
which satisfy the familiar commutation rules
(J.,J,1 =14 (J.,J 1 =-J_
o7 0 (3.37)
[J+,J_] = 2JO
In particular, therefore, the generators Ji provide a

'selfdual’ solution to the cubic algebra (3.23). As uwe have
noted before, the selfdual and antiselfdual solutions differ
only by orientation; therefore by reversing one of these

matrices, JO say, we obtain an ‘antiselfdual’ set
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These two extreme examples may be joined by a one-parameter
family of ‘’interpolating’® solutions [28]. This family is
constructed by mixing the O-component of the above sets with
the root vector E¢+ and its <conjugate, leaving the '+’ and

y

-~' components untouched:

X, = J, X_=J_

Xg = Ay +/wE&+ﬁ + E‘O“lg)

(3.38)

where Agand/;,are scalar wvariables which are linked by some
relationship yet to be determined. Using the ansatz (3.38) in
the cubic algebra (in its complex form (3.34-35)) we obtain

after some calculation the conditions

2X, :CRJO + %uEd+ﬁ) + herm. conj.

5 A (3.39)
2X, = (1 + A +/u,)J+

The first of these equations is of <course satisfied
ideﬁtﬁcally (i.e. for all z.andfi); the second holds provided

only that

22 +/u,2 =1 (3.40)

It is clear that the pair A =1, /A,: 0 gives rise to the
original selfdual embedding (3.36), whereas A = -1 , M= 0

gives the corresponding antiselfdual solution. These special
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solutions lie at opposite points on the circle (3.40) - the
other points correspond to 'nonselfdual’® solutions of the
cubic algebra. As the parameter pair 0L¢AJ moves round this
circle, the gauge invariants q and t (cf. (3.28) and (3.30))

vary continuouslys; a simple calculation gives
q = 6 t = BA (3.41)

The ’energy’ invariant q remains constant, whereas the cubic
invariant t changes sign as the solution 1is deformed from

selfdual to antiselfdual.

The class of all sets {Xi} which satisfy the cubic

algebra has the structure of an algebraic variety, because

the defining equation is ©polynomial in the elements of the
Xi. Since the maximal embedding (3.36) 1is a member of the
one-parameter family (3.38), the dimension of this variety is
at least one; but we have not yet ruled out the possibility
that it may be more than one. That is, there may be other
families of soclutions xi(9> which pass through the maximal
embedding but are otherwise distinct from (3.38).

We can, however, place a bound upon the dimension of the
solution space by using the fact +that the dimension of an
algebraic variety is no greater than the dimension of its
tangent space at any point. Unlike a smooth differential
manifold, however, there may be singular points where the
dimension of the tangent space 1is strictly greater than that

of the variety. Take for example case of the cone

f(x,y,2) = x° + y2 - 2% -0 (3.42)
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The tangent space at the point (X,¥,2z) is by definition the

vector space of all (u,v,w) such that

of of of
toIyV ot 5g¥ = 0 (3.43)

that is, the set of all wvariations for which the linear term
in the Taylor series of f(x+u,y+v,z+w) vanishes. However, in
the case of the cone, all partial derivatives of f vanish at
tHe origin~— (3.43) is satisfied identically, and the tangent
space at O is three-dimensional, although the dimension of
the cone, and that of the tangent space at any other point,

is only two.

With this reservation in mind, we shall calculate the
dimension of the tangent space of the cubic algebra at the
point (3.36), the maximal embedding. We accordingly consider

a general variation in the configuration {Xi}’ which we shall

write

X =J. + V. (3.44)

where the Ji are the generators of the maximal embedding and

the Vi are any three (Hermitian) generators of SU(3). The
cubic algebra may be uwritten in a form akin to (3.42), namely
= .45)
fj(xl’XZ‘XS) 0 (3

where




f (X,,X,,X,) = [X"[Xi’xj]] - 2Xj (3.486)

In order to determine the tangent space, wWwe must calculate

the Taylor series for fj up to first order in Ui. The
constant term vanishes, of course, because the maximal
embedding is itself a particular solution of (3.45). The

vector Vi lies in the tangent space if and only if the linear

term is also zero:

MV, = tJ_,0J3,,v 311 + [J_,CV ,J 11 - (V ,0J,,J. 3] - 2V
i i J i i J i i J J

=0 (3.47)

Now, the SU(2) subalgebra spanned by the generators Ji
acts upon the entire Lie algebra SU(3) through the adjoint
representation. Thus it is possible to classify the elements
of the larger algebra into SU(Z2) or S0O(3) multiplets. The Ji
themselves form a triplet:i the subspace orthogonal to these

is irreducible under the rotation group, and therefore forms

a quintuplet, or spin—-2 representation.

It is worth noting that if M is a Lie subalgebra of L,
and if P is a subalgebra which 1includes M and is included in
L, then [ﬂ,P] C (P,PI1C P ;5 This means that P is invariant
under the adjoint representation of M on L. Houwever, if the
quo¥ient space L/M is irreducible under this representation,
then no such intermediate P can be found, in other words, M
is a maximal subalgebra of L. This 1is why the embedding
(8.38),}5 called the ’maximal’® embedding of SU(2) in SU(3) -

it contrasts sharply with a more obvious embedding such as



112

(Ed’Hd’E—d) which admits an extension to SU(2) x U(1)

The cubic algebra (3.23) has a rotational symmetry

X, ——=> R ,Xj . Rij € S0(3) (3.48)
as well as an invariance under the adjoint group
X —-==> gxig' , g € SU(3) (3.49)
Moreover, there is a certain 'diagonal’ subgroup of the full

symmetry group which leaves the maximal embedding as a fixed

point; this is the group of all transformations of the form

-1

Xi -——=> Rijngg (3.50)
where g € SU(2) , and the orthogonal matrix R is chosen such
that

-1

g J.g =R, .J, {(3.51)

1 1] J

Under this group, the solutions of the cubic algebra are
rotated about the fixed point Ji, thus inducing a group of

transfofmations on the tangent space containing the Ui' This
implies that the =solutions of (3.47) may themselves be
classified into SU(2) multiplets by their behaviour under the
action of this group.

In order to solve the linear equation (3.47) we find it
conveniént to expand the Hermitian matrices Vi in terms of a

standard basis of ’angular momentum eigenstates’ Tpm’ where
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(i) Ad(J HYAA(J )T = p(p+1)T
1 1 Ppm pn
(ii) Ad(J )T = mT
O "pm Pm
(iii) Ad(Jingm = Nylp,mIT gy (3.52)
(iv) N (p,m) = N_(p,m+1) = A(P~m) (p+m+1)
(v) T Y= (-
pm p,—m

(we use the letter p for the J2 eigenvalue to avoid confusion

with the three-vector index j ). Thus
_ PO, .
v,=2 v, T (3.53)
pm
In the case of SU(3), as we have seen, the only spins present
in this expansion are p =1 and P = 2 3 however, the

argument which will be presented works for other Lie groups G
and ény SU(2) embedding - all we need to know is the spins
which are present in the adjoint representation of this
subgroup on L.

We can simplify +the expansion (3.53) by wusing the
observation that the linear operator M of (3.47) comnutes
with the square of the *angular momentum’, Ad({?). The
solution space may be decomposed as a sum of spin
eigenspaces, and we therefore need only consider one value of
P at a time. A straightforward, though rather tedious,

computation of the expression (3.47) using complex components

of Vi and the expansion (3.53) gives finally



2¢p(p+1)-n"-239," - (m-2)N_v "1 - 2N, v, " = 0
(3.54)
m+1 m—-1 _
tplp+D+m(n+53v, ™ N v P - 2mi2N Y = 0
(3.55)

There is in fact a third component in this set of equations,
but this is somewhat redundant because of the Hermiticity of
the Vi. It may be derived "from (3.54) by taking the complex

conjugate and using the reality condition

y ¥ (—1)mvi*m (3.56)

1

It is clear therefore that in any spin multiplet there
is always at least one solution to these equations for each
value of m; namely, if Um are the components of a skeu-

Hermitian matrix V, then we set
v "= Ny v ® - v v ™l o Ny

The significance of this solution is not hard to see - these

are nothing but the components of the matrices
v = [Ji,V] (3.57)

which are the varia;ions of the Ji under an infinitesimal
SU(3) gauge transformation of the form (3.439) generated by V.

In order that other, unexpected, dimensions' should
exist {n the tangent space it is necessary that the equations

{3.54-3.55) should be proportional, i.e. that the 2 x 2
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determinants formed by their coefficients should vanish.

These determinants have just one common factor; this is
pitp+tl) -— 68 = 0 (3.58)

It follows that the linearised cubic algebra (3.47) has no
other solutions but the gauge transformations (3.57) unless
the adjoint representation of the SU(2) subalgebra on the
including algebra L contains a spin-2 component. As We have
seen, this condition holds for the maximal embedding in
SU(3), but not for the three obvious embeddings of the fornm
(Ed‘Ha’E—d)’ where X is any root of SU(3). For these the
adjoint representation is resolved in the form

8§ =3+2+2+1
with no quintup1e£ available.

In the case p =2, there is only one independent
relation among the components of V for each value of m. Using

(3.54), for reasons of symmetry, and solving for UO, ue

obtain

o me2n,y M ez v MY
Vo T TTTTTTTTGEImY(zR Wy T (3.59)
Since V_ is be the Hermitian conjugate of V+, the V+m are

sufficient in general to determine the other components.

Hovever, as seen from the vanishing numerator and dencminator
. +2

in (3.59), the Vd_ remain free - apart from the constraint
that they too shall be conjugates. Therefore there is a total

of 12 real degrees of freedom in the cubic algebra for each
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spin-2 representation. Five of these are gauge
transformations (3.57), one for each member of the quintuplet
- but seven remain unaccounted for. Since the Vi carry a
vector, or spin-—-1, index as well as a spin-2 internal

symmetry, they belong to a representation of the form

3 x5 =3+5+7 {3.60)
Since the linearised cubic algebra (3.47) is invariant under
the ’diagonal’ S0(3) group (3.50), its solution space can

only contagn complete irreducible components from this sum;
therefore it must transform as 5 + 7. Under the action of
this group the original interpolating solution (3.38) sueeps
out a four—-dimensional submanifold; one co-ordinate being the
parameter 8 and the other three being the Euler angles of

S0(3).

We have not been able to find any other interpolating

solutions apart from those obtained by rotating (3.38). It
seems likely, therefore, that the apparent 7 nontrivial
dimensions of the tangent space are misleading, as in the

case of the cone cited earlier. This is not surprising, since
like the vertex of the cone, the maximal embedding is a point
of high symmetry f(cf. (3.51)); if there is any singular point

on the variety, where else could it be!
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4. Interpolating Solutions in Other Algebras

In the last section we considered in some detail
the 'interpolating soclution’ (3.38); a set of three SU(3)
matrices, depending upon a real parameter Q, which satisfies
the cubic equations (3.23) for all values of the parameter
and which reduces to the familiar (anti-) selfdual forms
(3.32) for certain extreme values of 0. In this section we
shall consider a generalization of this construction.

The cubic algebra as we have described it so far is a
set of three elements of a Lie algebra L satisfying the cubic
equations (3.23). In section 3.3 we considered only the
simplest nontrivial case, L = SU(3) ;3 however, an obvious
extension which cannot be neglected is the study of Lie
algebras with higher dimension and/or rank.

The restriction to matrix triples which we have so far
observed has been motivated by the hope that the nonselfdual
Nahm equations may in some way be connected with three-
dimensional Yang-Mills fields. If we now decide to study the
cubic algebra for its oun sake, or indeed if we are
interested in gauge fields in higher~-dimensional spaces, then
we are free to consider larger sets of matrices.

In particular, if the Xi span a simple Lie subalgebra of

L, M say, and if they are orthonormal with respect to the

Killing form of M, then the cubic equations are certainly
satisfied. For under the adjoint representation of exp M the

basis X. is subjected to orthogonal transformations:

.

g X.g =R X (3.61)
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and it may therefore be shown that the mapping
Y ——=> [Xi,[xi,Y]] (3.62)

of M into itself <commutes with the adjoint group. Assuming
that the subalgebra M is simple, it follouws using Schur’s
Lemma that this mapping must be a constant multiple of the
identity. The constant, ¢ in (3.23), is called the quadratic
Casimir invariant of the algebra M. Henceforth we shall
denote by Ji the orthonormal Dbasis of any subalgebra M (to
maintain a similarity with the SO(3) embeddings), and use Xi
for a general or ’'nonselfdual’® solution of the cubic algebra.

Now, not every embedding M C L is connected to a one-
parameter family of solutions such as (3.38). We have already
found one constraint on the occurence of interpolating
solutions in the case M = S0(3) , namely +that the adjoint
representation of M in L should <contain a quintuplet. He sau
in that case that we were forced to take a very special
embedding of M in L, the so-called maximal embedding. If we
look at the basis (3.36) for this embedding, we notice a very
striking thing - it is constructed symmetrically with respect
to the two simple roots & and /8

It is clear that there exists an isometry of the root
space H* which maps the set of roots onto itself and which
exchanges the rcots & and ﬁ; this is a reflection in the line
of de. There is a well-known theorem which asserts that for

any such transformation mapping X to there exists a

corresponding automorphism ¢ of the Lie algebra such that
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¢(§x) = E, ¢(Hd) = H, (3.63)

for each simple root &X. In the present case, therefore,

$H,) = s ¢(Hﬁ) = Hy
¢(Ed) = Eg ¢(Eﬂ)
¢(§d+ﬂ) = gﬁ[gd,%gj)

(3.64)

1
5!
R

Furthermore, because it derives from a reflection of the root
diagram, tﬁis mapping is an involution, that is, ¢2 =1
The significance of the maximal embedding (3.36) is clear;
the subspace M spanned by the Ji is precisely the set of
fixed points of this involution.

Another key result in the theory of Lie algebras is the
fact that all simnple sets of roots are equivalent under the
adjoint group:; that is, if {q;} and {q;‘} are any two simple
sets of roots then there exists an automorphism of the form

(3.83) under which the two sets correspond, and furthermore

there is some g € G such that
-1
@ X) = gXg (3.65)

It follows that in order to find all involutions in a Lie

algebra up to equivalence it is sufficient to consider those

isometries of the root space diagram which permute a simple
set of roots. However, the geometry of a simnple set of roots
is encoded in the so-called Dynkin diagram - each point of

the diagram represents a root, and the number of lines
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joining each pair of points gives the angle between the

corresponding roots according to the rule

(number of lines) = 4c032(ang1e) (3.66)

Hence, up to equivalence wunder the adjoint group Inn(L),

there is only one distinct involution of L for each possible
symmetry of the Dynkin diagranm.

In order to generalise the interpolating solution
(3.38), it‘is convenient to use a somewhat different, though
equivalent, embedding of SO(3). This is the set M = L+ of

fixed points of the involution

(E) = - E
PEy —& (3.67)
¢(Ho() = - Hy

which is spanned by the generators
J, = i(E, = E ) (3.68)

corresponding one-to one with the positive roots of L. In

order to see that this involution is indeed equivalent to the

previous one Ed ——> Eﬂ , we use the conventional basis of
the complex algebra SL(n,C), in which the Cartan subalgebra
contains all diagonal matrices and the simple roots

%X’Eﬂ”" are represented by matrices with a single unit

element directly above the major diagonal. In SL(3,C)

t
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The negative simple Troots are obtained by

E_o(,E_'g,...

transposing the above roots, that is, by reflection about the

major diagonal, so the involution (3.87) is that given by
n/
Fx) = - X (3.69)

However, the involution (3.64), which we used to construct
the maximal embedding in the previous section, can clearly be

expressed in the form

1

nd
G(x) = - gXg (3.70)

where the matrix g for the case n = 3 1is

(3.71)

[4,¢]
it
N\
|
- O O
O — O
|
O O
\_—/

The fixed point subalgebra of (3.70) is the Lie algebra of a
group which preserves the bilinear metric g. It is clear from
(3.71) that this form 1is symmetric, and therefore we may
choose a (complex) basis in which it is represented by the
identity matrix, as in (3.869).

The generalization of the maximal embedding for higher
SL(n,C)ﬁalgebras and their compact real forms SU(n) is clear.

The Dynkin diagram for one of these algebras is



122

containing n-1 points and n—-2 lines, which has an obvious P2

symnetry. Each algebra therefore possesses an involution of

the type (3.68) or (3.70), the -equivalence matrix g being
expanded accordingly — it always has an alternate sequence of
1’s and -1's along the minor diagonal, as in (3.71). The

fixed point algebra of (3.63) or (3.70) 1is SO0(n,C) or its
real form SO(n,R); The quotient space SU((n)/SO(n) is one

‘exanple of a Riemannian symmetric space.

The Riemannian symmetric spaces are coset spaces of the
form G/H, where H is the subgroup of fixed points of some
involution of a Lie group G. This space clearly carries a

representation of the subgroup H; if G is a simple group then

this representation is irreducible, and G/H is <called an
irreducible symmetric space. The classification of
irreducible symmetric spaces therefore amounts to the

classification of all inequivalent involutions in a Lie group
G or its associated Lie algebra L, and this is summarized in
Appendix B.

We have not investigated the existence of interpolating
solutions for all the symmetric spaces, but the involution
(3.67) clearly exists in any Lie 'algebra, and the symmetric
spaces so formed are the most ©promising candidates for

further study. These are
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(i) SU(n)/50(n) from An

(ii) S0(2n+1)/50(n)x30(n+1) from Bn

(iii) S0(2n)/80(n)xS0{(n) from Dn

(iv) USp(2n)/U0((n) from Cn

(v) G2/A1XA1

(vi) F4/03xA1

(vii) EB/C4

(viii) E.7/A.7

(ix) E8/D8

For ény of these algebras, the generators (3.68)

constitute a selfdual solution of the cubic equations.

Orthogonal to the fixed point subalgebra L is the vector

+
subspace L_ spanned by
KX = Eu + E_“ and Hd (3.72)
which carries an 1irreducible representation of L+; the

elements in this space are multiplied by -1 under the action
of the involutive automorphism ¢. We shall denocte by W the
highest weight of this representation (with respect to some
total ordering of the weight space). The most obvious

generalization of the interpolating solution (3.38) is that

given by
Xo( = Jo( for all X ¥ @
X, = )\Jw + (3.73)

where H = W.H
W
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The commutation relations of the Lie algebra in terms of the

basis of the H, J and K are

[y dg? = Nong'gm - N_o(,ngg_o(
[y oKy = No9gKﬂ+a - N_%Kﬂ_‘x

tJ,,K =
X’ N] 2H

if 0(71/2
& (3.74)

}(,8] = No(ng'BM( + N_O(IBJ’g_O(
CHO(,J'Q] = (O(,/Q)K/g
KISJ = (d,/e)Jlg

Using these we can evaluate the various components of the
cubic equation (3.23): in particular for any root/Q other

than the highest weight (U we have

pe— p— 2_
..gtxo(,[xd,x 11 = cHJﬂ (A“-1)¢ NwﬁNw‘ﬂ+wJ/B+2w
2 2
+ N_w’lg N_w‘ﬁ_wJ/g_Zw - (Nwlg + N_wIS)J/B )
—%m Nwlg(w,mz/gm e " N_c%(w,w—z/g)xﬂ_w}
+/,{/2((4),13)2J/g (3.75)

where ¢, is the quadratic Casimir invariant for the subgroup

H

H = exp L+ . Now, the cubic algebra requires that (3.75)
should be proportional to %3 for a continuocus range of values
of A.and/&; it is clear that this is impossible unless the

root space of L and the choice of the particular rootw

satisfy some very stringent conditions.

. . . ch
(1) The terms in ﬂ3+23 and in Jﬂ—Zw must vanish, whic

means that /81‘240 can not be a root of L for any lg #w
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This property may be expressed in terms of the geometry of

the root space using the relation (A13), with w in place of
the generic root &. It implies that ©p,q { 1 - hence
1 1

for all roots £ # w , where m is the z-component of ’spin’

Wwith respect to the SU(2) subalgebra spanned by (%w,E_w,HQQ:

@.£) . (3.77)

If this co-ordinate is used to order the root space then it
is clear that () must indeed be the highest weight, as
claimed. This means that(@ﬁB is not a root for any positive
ﬁ, and the only possible values for the integers in (Al13) are

q =0, p=90o0or 1
(2} The terms in K£+a) and in Kp_a)must vanish, which

means that if Qkﬁ is a root then
2
2(@,B) = w (3.78)

This relation holds by virtue of the constraints on p and g
established in (1), provided only that (W is a highest weight.

(3) The terms in {8 itself must add up to CH{Q; by
equating coefficients we therefore obtain a relationship
between the parameters A and fu analogous to (3.40):

2 2 2 2 2
A —1)(Nw'g + N_w'e) +/.L(w,/9) = 0 (3.79)
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if ﬁ is orthogonal to W, this equation vanishes identically;
otherwise w73 must be a root of L. Using the result of (3.78)
and the expression for the structure constants (Al14), ue can

rewrite the condition in the form
2 1 2 _
k + é(l)z//(/ = 1 (3.80)

(4) Applying the cubic constraint (3.23) to the highest

weight vector X , we obtain the condition

Z;[Xa’tﬁx’ﬁw]] = Aeyd,, +UEG %#QFHQ)

cH(A{” + ) (3.81)

where CG/H is the Casimir of the adjoint representation of H

on G/7H. It is clear +that this invariant must be related to

that of H itself by

ooy - 2uf (3.82)

Q
"

By direct calculation we can easily show that

2

2
C, = (N + N )
i 2L Mg

(3.83)

where ﬂ is an arbitrary positive root of L and the sum is
taken over all positive roots except /3 By choosing /B to be
the highest weight W and using the results (3.78), (Al14) ue

may express this in terms of the geometry of the roots:
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c. = (5,00 - W (3.84)

H

where 8 is the sum of all the positive roots of L. & similar
calculation for the representation of H on G/H (spanned by Kx

and Hq) leads to the Casimir

~ 2
Casy = (5,00 + @ (3.85)

Again, the necessary condition (3.82) is clearly satisfied.

We have therefore proved the following result:

Theorem: If L is a simnple Lie algebra, with Chevalley
basis (EN’HN)’ and if %X are the generators of a subalgebra

as defined in (3.68), then the cubic equation (3.23) has an
interpolating solution' given by (3.73), in which the

parameters Z.and/A,satisfy the quadratic relation (3.80).
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Chapter 4. Conclusion

We have seen (Chapter 1) that in solving the
Bogomolny equations which describe static magnetic monopoles,
an associated one-dimensional selfdual field ?M}Z) introduced
by Nahm plays a role of prime importance. We have further
shown that since the ordinary differential equation (1.1)
which determines this field may be realized by dimensional
reduction of the four—-dimensional selfduality equation
(0. 167, wa?d’s twistor transform may be applied to convert

Nahm’s system to an' equivalent Riemann-Hilbert problem. The

solution of Nahm’s equation for any given initial conditions
would follow straightforwardly if we could only perform the

necessary factorization of the patching matrix g(;g»cﬁ):
gV, 8) = h(x,Srkx,5)7 ! (4.1)

When performing a similar task in the construction of
3- or 4-dimensional selfdual fields (monopoles and
instantons) the matrices h and k are analytic in the domains
§ £ 0 and § # &0 respectively; consequently the only
singularities in g (as a function of X and,g) are at f = 0
and g = &0, the north and south ’poles® of the Riemann

sphere. However, this condition is not necessary for the

uniqueness of the solution to a Riemann-Hilbert problem. It
is only necessary that g be analytic in the neighbourhood of

~S
a closed curve C which ©bisects a compact Riemann surface S,

and that h and k should be continuous on C and respectively

no a4 Pasd
analytic in the domains D_  and D+ bounded by C. This means
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that if C, D_ and D_ are the projections of C, D_ and D_ onto
the complex plane, we may allow h, k, and g to have branches
provided that no branch cut crosses the <curve C and that h
and k are finite in D and D+ respectively. The uniqueness of
the solution to (4.1} (up to gauge transformation) now
followus as before by Liouville’s theorem, which holds on any
compact Riemann surface.

The patching matrix which we have obtained for the
general 2 x 2 Nahm equation has an unusual feature not found
in those u;ed for instantons and monopoles; this is the
appearance of the double valued function JZE. Of course, this
multivaluedness cancels in the particular form (1.88). As wue
have noted in section 1.5 it does not seem possible to reduce
this matrix to upper-triangular form without introducing
extra singularities; however, in view of the comments above,
this need not present an insuperable obstacle to solving the
kHP. By performing equivalence transformations analogous to
(1.96), but using the double-valued functions J€7; and Afa/b
in place of § and S_l as matrix elements, we can reduce the

patching matrix to the triangular form

b i
JEe cos &
a

g = (4.2)
a -
0 Be
where & is the angle defined in (1.86). It is clear from
(1.87) that the zeros of b(g) lie within the curve :El =1,
whereas those of a(g) lie outside it. Therefore the points

where Ab/a tends to infinity 1lie entirely in one domain D_
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whilst the ;nfinities of Jasb lie entirely in the other D+;
These regularity properties clearly generalize those oflg and
g

It seems then that it should be ©possible to sclve the
Riemann—-Hilbert problem (4.1) even when the patching matrix
is multivalued, as in (4.2); this would provide a systematic
method for solving Nahm's equation. The solution will involve
contour integrals of multivalued functions arcund branch
cuts, which probably explains the appearance of the higher

transcendental functions sn, cn and dn in the 2 x 2 case.

In the latter part of our work, which concerns the
'nonselfdual Nahm equaticons’, we have uncovered a rich field
for future study, which we have only barely begun to explore.
We have shown that ‘’interpolating solutions® of the cubic
algebra (3.23) are associated with those Riemannian symmetric
pairs (L,M) for which the embedded subalgebra M is spanned by
(3.68). It may well be that other symmetric pairs share this
property, but so far this has not been fully investigated. It
is possible to write down a set of conditions which would

permit the existence of a solution analogous to (3.73)

‘Lom Ty W
(4.3)
w,B) (2,8 - =0 for all BFw
where c,, and c are the Casimir invariants for the adjoint

M L/M

representations of M in M and L/M respectively, W is the

highest weight of the latter representation, and %g is an
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arbitrary positive root of M. In order to wverify these
conditions we therefore need considerable knowledge of the
representation of M in L/M, and it may be that only by a
case-by case study of each and every symmetric pair can

results be established.
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Appendix A. Lie Algebras and Root Spaces

If L is a semisimple Lie algebra, and LO a maximal
abelian subalgebra of L1, then LO is called a Cartan

subalgebra (CSA); it is well-known that the group Inn(L) of

all inner automorphisms

X ———> ng—l , g €G (A1)

acts transitively on the set of Cartan subalgebras, that is,

all CSA’s are conjugate to one another. Each generator X of
the algebra L gives rise to a linear mapping Ad(X) of L into

itself, defined by
Ad(X)Y = X,Y) for each Y € L (A2)

It is a simple consequence of the Jacobi identity that the
linear mapping X ——-—-> Ad(X) constitutes a representation of

L, called the adjoint representation (of L on L}. Because the

elements of the Cartan subalgebra LO commute with one another

(Lo is by definition an abelian algebra), the algebra L may

be decomposed as the direct sum of a number of root spaces

HX’ each of which is a simultaneous eigenspace of every

menber of the C3SA& under the adjoint representation. That is,
if X lies in the root space La, then

[H,X] = X(H)X for each H € LO (A3)

the eigenvalue X(H) is clearly a linear function of the
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generator H; this linear function, or one-form, is called a
root of the algebra L. The set of all nonzero roots, which is
a subset of the dual space H*, provides a unique
characterization of the algebra. The root spaces have the

following useful property under the Lie bracket operation:

[%x’L 1C L (A4)

14 xX+8
The symmetric bilinear form or metric

(X,Y) = tr(Ad(X)Ad(Y)) (AS)

is invariant under the group of inner automorphisms, or

adjoint group, Inn(L); it is «called the Killing form (KF),

and it <can reveal much about the nature of the algebra L.
In particular L is semisimple if and only if its Killing form
is nonsingular; the group G = exp L is also compact if and
only if the KF is negative definite. Any invariant metric on
a semisimple Lie algebra may therefore be written in the form
(X,AY) for some operator A, and if +this algebra is simple
(i.e the adjoint representation is irreducible) then Schur’'s
ILemma may be used to show that A = ¢ , a scalar. Thus there
is only one invariant metric on L, up to a multiplicative
constant, and so the calculation of the Killing form may be
performed using any representation, not necessarily the

adjoint as above.

It is shown in any standard text on Lie algebras [(30]
that if & # 0 then the root space LN is one-dimensional,

and that if  is a root then -& is also a root. Furthermore,
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the root space corresponding to & = O is precisely the
Cartan subalgebras; this is why we use the notation LO for the

CSA. A so-called Chevalley basis for the Lie algebra L may be

constructed as follows: Firstly, we «choose a basis for each
root space Hx ™ # 0); each basis contains a single element

and these are normalized with respect to the Killing

%X’

metric by
(E ,E )y =1 (AB)
Next, we define the commutators

E ] (A7)

which belong to the Cartan subalgebra LO by virtue of (A4).
It may be shown [30] +that in fact +the WX span the Cartan

subalgebra. They also satisfy
(H_ ,H) = X(H) (A8)
Therefore the commutator of an H with an E is

(H,,Enl = (a, YE (A9)
o« E8 R

Since the H's 1lie in a Cartan subalgebra, and such a

subalgebra is by definition abelian,

tH ,H,7 = O (A10)
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If «+f # O then the subalgebra on the right-hand side of

(A4) is one—-dimensional; therefore the commutator of two E’'s

is

[E,,E,1 = N,,E (A11)
g’ = gtk
where Q%g is some real constant. The structure constants N%g

satisfy a number of symmetry properties, namely

if d-fﬂ + X =0 (A12)
g = T o p

Of these, the first follows from +the antisymmetry of the Lie
bracket, the second follows from the Jacobi identity, and the
third is a further condition which we impose in order to fix
the structure constants (almost) uniquely. In order to write
douwn an expression for the &¥€ we need some terminology: the
o{-chain containing ﬂ is the set of all nonzero root spaces of
the form Lﬁ+kd’ where k is an integer, positive, negative or
zero. 1t follows from (A4) that any &-chain is invariant

under the adjoint representation of +the SU(2) subalgebra

generated by E ,, E—d’ and Hd' Suppose that

if and only if -p

IAN

~x
I
Ne]

Lﬂ+kd #0

Then it may be shown that
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2,8y _ _
NZ = Lo, 0 (q-k) (prk+1) (A14)
ofs Brkat T 2777 ATk TPTX
2 _ 1
No( = (X, X)q(p+1) (A15)
ﬁ 2
-t = = pa— —_— - ; .
Note here that NOCﬁ+kd 0 when k p—-1 or k q this
follows since the root spaces with k < -p and k > q are

empty, so the ’'raising’ and ’lowering’ operators E“, E—d must
eventually annihilate the E£+kd'

The Lie algebra SU(3) is said to be of rank 2, meaning
that all its Cartan subalgebra H are two-dimensional. The
root vectors of SU(3) therefore lie in a two-dimensional

vector space H' . There are in fact just SiX nonzero roots,

which form a pleasingly symmetrical hexagonal pattern:

& Xtp

N
V
Q

The distances and angles in this root space diagram are

calculated using the Killing form, which is transferred from
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H to its dual space H*. This metric is positive definite on
the real space spanned by the Hd in any Lie algebra, so the
roots can always be represented in a Euclidean space. The

algebra SU(n) i3 said to be simply laced because all of its

nonzero roots have the same length - we shall normalize them
so that ' = 2 . We mentioned %before that the roots of a
Lie algebra always occur in equal and opposite pairs: for the
SU(n) groups H is usually taken to be the set of all diagonal

n x n matrices, in which case a Chevalley basis can be

chosen such that

(A16)

The equation (A15) is not quite sufficient to determine the
structure constants; there are several possible sign
conventions consistent with the symmetries (A12). The one uwe

shall choose is

ng - N_d’ﬁ+d -

(A17)

B = N-pop
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Appendix B. Riemannian Symmetric Spaces

The space SU(n)/S0(n) 1is by no means the only
symmetric space based on the Lie group SU(n). The involutions

of the form

x) = gxg” ! (B1)

where g2

1, lead to fixed point subalgebras of the form
StU(p) x U(g)1 , where P+tq = n , and symmetric <spaces
Ulp+g)/U(p)xU(q) . It is also possible to take an involution

of the form (3.70), but with a skeu-symmetric bilinear form

gs the dimension of the matrices must be even, n = 2p . Now

the resulting subalgebra belongs to the unitary-symplectic

group USpi(2Zp), that is, the group of unitary matrices which
also preserve the symplectic fornm g = €®Ip - this is
isomorphic to the group of wunitary matrices whose elements
are quaternions, U{(p,H) . The corresponding symmetric space
is SU(2p)/USp(2p)

The classical Lie algebra Bn‘ or S0(2n+1), has a Dynkin
diagram with no symmetry; all involutions are therefore inner
automorphisms of the form (Bl1), where g € S0(2n+1) and
g = 1. The equivalence classes of involutions are
distinguished by the numbers p and g of positive and negative
eigenvalues of g, and the only symmetric spaces based on Bn
are SO(p+q)/50(p)xS0(q)

In the case of Dn’ or S0(2n), g is still an orthogonal

matrix, but its determinant may be +1 or -1; this latter case

arises because the Dynkin diagranm



139

n
has a P2 symmetry, so there is one coset in Aut(L)/Inn(L)
which contains non—inner automorphisnms. Since the
automorphism (Bl) is an involution, g2 must be a constant
multiple of the unit matrix, g2 = ¢l . However, because the

dimension of the matrices is even, taking the determinant of

this equation no longer leads to ¢ = 1 . When c is positive
we obtain the spaces SO(p+q)}/S0(p)xS0O(qg) as before, but
when g° = -1 we find instead SO0(2n)/U(n) (note that the
representation of complex numbers by 2 x 2 orthogonal

matrices induces an embedding of U(n) in SO0(2n}).

Finally, the symplectic groups Cn’ or Sp(2n), allow only
inner automorphisms (Bl) with g2 = cl . For positive c the
possible symmetric spaces are USp(2p+2q)/USp(2p)xUSp(2q) ,
while for negative ¢ there is only USp(2n)/U(n)

In summary, then, the classical Lie groups give rise to
the following symmetric spaces. We list here only the compact
forms which carry positive definite metrics; to each of

these there correspond many others which possess the same

complex extension but have a metric of different signature.

(i) From An : Ulp+q)/U(p)xU(q) ,
SU(n)/S0(n} , SU(2p)/USp(2p)
{ii) From Bn : SO(p+gq)/S0(p)xS0(q)
(iii) From Dn : SO(p+q)/S0(p)xS0(q) , SO(Zn)/U(n)
(iv) From Cn : USp(2p+2q)/USp(2p)xUSp(2q)

USp(2n)/U0((n)
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