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Dedicated to my Late Father, May Allah forgive him. 

And Say : 11 Work : Soon will God observe your 

work, And His Apostle, and the Believers : Soon 

will ye be brought back To the Knower of what 

is Hidden and what is Open: Then will He show 

you The truth of all That ye did. 11 

(Qura'n, s. ix, Tauba 105) 
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is essential to impose restricted sintering conditions for adequate 

utilization of the doping and fluxing function of the CdC1 2 material. 

Standardization of the printing 9 preparation and s i nteri ng 

conditions involved in the fabrication processes were necessary to 

ensure reproducible CdS layers. 

Good quality screen printed layers were fabricated on soda lime 

substrates. The significance of other substrate materials for CdS 

preparation was also investigated and optimum substrate choice is 

suggested. 

The properties of the CdS screen printed layers were investigated 

by forming simple Schottky devices and more complicated heterojunction 

solar cells. Good rectification behaviour of the Schottky diodes was 

achieved. The CdS/CdTe solar cells revealed a wide spectral response. 

However, the photovoltaic behaviour was relatively poor largely due to 

the high resistivity of the CdTe part of the cell structure. 







Figure li.li Spectral distribution of solar radiation under 
dffferent conditions. 
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The direct conversion of solar energy by solar cells is based upon 

the photovo lta i c effect, t-Jhi ch is defined as the generation of an 

electromotive force as a result of the absorption of solar radiation in 

an inhomogeneous sytem. 

The essential features of a solar cell are, an absorber generator 

material, in which mobile carriers are created by the absorbed solar 

energyg and a built-in potential barrier which allows the generated 

carriers to be collected from the region in which they are produced and 

converted to majority carriers. 

There are four methods of creating such a barrier. One involves 

adding small amounts of impurities or •dopants• to pure material to 

produce a homojunction cell or a PN junction (e.g. silicon solar cell). 

Another method involves two different semiconductor materials such as 

Cadmium Sulfide (CdS) and Cadmium Telluride (CdTe) creating a 

heterojunction cell. A third method involves a junction between the 

Semiconductor material and a metal, creating a •schottky• barrier. The 

last method is where a very thin layer of some material is sandwiched 

between the metal and the semiconductor. This creates a 

metal-insulator- semiconductor or MIS junction. 

1.4 Semiconductors 

The primary materials used for photovoltaic conversion in solar 

cells are semiconductors. 

Semiconductors are a class of materials with electrical 

conductivity somewhere between metals and insulators. Their 

resistivity is usually in the range of 0.001 to 100 ohm em. 

Many of the electronic properties of semiconductors depend on the 

presence of impurities, known as dopants, which may act as sources of 

free carriers. Concentrations of the order of parts per million or 
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1 ess, can change a semi conductor from a poor conductor to a good 

conductor of electric current. 

Semiconducting elements are found in column IV of the periodic 

table, and semiconducting compounds in combination from neighbouring 

columns of the periodic table. Table 1.1 demonstrates that there are 

numerous semiconducting materials. This wide range offers a 

considerable variety of properties. 

1.5 II-VI Compounds 

II-VI compounds are these formed between elements from group I I 

and group VI of the periodic table (table l.lB). They crystallise in 

two main modifications, namely the cubic zince blende (sphalerite), and 

the hexagonal wurtzite structures (fig. 1.2). 

The II-VI compounds were the first semiconducting materials to be 

used on a large scale as phosphors, and even today their production 

volume is comparable with that of silicon (6). One of the most 

important properties of these compounds is that they have wide and 

direct band gaps so that they are most useful for optoelectronic 

devices in the visible and near infrared regions (7). Fahrenbruch (8) 

has reviewed the uses of II-VI compounds in solar energy conversion and 

has indicated that the principal advantages of these materials are 

their low cost and the ease of deposition of good quality films by a 

variety of methods. 

Typical deposition techniques are screen printing, evaporation, 

electrophoresis and spray pyrolysis. Conversion efficiencies higher 

than 10% have been achieved in thin film cells (9) and 15% in single 

crystals have been known and are being actively investigated (10). 

However, most of the applications of II-VI semiconductors have not 

reached their fu 11 potentia 1 due, in the rna in, to the d iffi cu lty of 

controlling defects in the materials. Such defects can behave, for 
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II III IV v VI 

·-

B c i 

Al Si p s 

Zn Ga Ge As Se 

Cd In Sn Sb Te 

A 

Elemental IV Compound III-V Compound II-VI Compound 

Si SiC AlP ZnS 

Ge AlAs ZnSe 

AlSb ZnTe 

GaP CdS 

GaAs CdSe 

GaSb CdTe 

InP 

In As 

InSb 

B 

TABLE 1.1 Common Semiconductor Materials 

A Portion of the periodic table where semiconductors occur 

B Elemental and compound semiconductors 
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iii) Ohmic Contacts 

Good ohmic contact can be made between a metal and the n-type CdS 

if the work function,¢ • of the metal is less than that of the CdS. 

The most commonly used contact to CdS is indium (14) but other 

metals of suitable work function such as gallium (14), silver/zinc, 

aluminium and chromium have also been reported (15). 

Indium was used to provide the ohmic contact to CdS in this work. 

There are several methods of achieving this, such as vacuum evaporation 

(14) 0 alloying (16L electrolytic deposition (17). and more recently 

screen printing (18). 

2.2.2 Cadmium Telluride (CdTe) 

i) Properties of CdTe 

CdTe is also a member of the II-VI group of compounds, and has 

very advantageous properties as an absorber material for solar cells, 

because of its direct band gap of 1.5 eV (19), which is optimum for 

photovoltaic conversion of solar energy (20), with a high optical 

absorption coefficient of >104 cm-l (21). 

The high absorption coefficient implies that photons with energies 

above 1.5 eV wi 11 be absorbed within a few micro meters of the CdTe 

surface, and in principle therefore, less material will be required for 

device fabrication, with a potential saving in cost. 

Polycrystalline CdTe has been the most commonly used 

heterojunction partner for n- CdS material either in its single 

crysta 11 i ne or po lycrysta 11 i ne form ( 19). Polycrysta 11 ine thin films 

of CdTe have been deposited by a variety of techniques including vacuum 

evaporation (22) (23), close space sublimation (CSS) (24), 

electroplating (25) and screen printing (26). 

ii) Impurity doping 

The as-deposited CdTe layers had a high resistivity and were 
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w 
l/J (x) = J Edx 2.7 

X 

which reduces to the quadratic 

l/J (x) = (w - x) 
2 2.8 

The variation of l/J (x) with x is shown in fig. 2.1 C. For the 

metal-semiconductor contact, the subsequent parabolic band bending is 

shown in fig. 2.2 This is known as a Schottky barrier. 

The height of the potential barrier on the semiconductor side is 

2.9 

Vd is the diffusion potential measured from the interior of the 

semiconductor with respect to the metal surface. The height of the 

barrier on the metal side is given by 

cp - X 2.10 
m s 



(a) 

(b) 

(c) 

w 

Fig. 2.1 Variation of (a) charge density (b) electric field strength 
and (c) electrostatic potential with distance according 
to the depletion approximation. 
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In most devices the ideal Schottky barrier shown in fig. 2.2 is 

never achievedg because there is a thin insulating layer on the surface 

of the semiconductor 9 which is generally developed during the 

fabrication processes prior to the formation of the metal contact. 

This usually leaves a thin 9 interfacial layer. The barrier presented 

by such a layer may be sufficently narrow to allow electron tunnelling. 

The band diagram of this structure is shown in fig. 2.3. 

ii) Current transport 

When a metal n-type semiconductor contact is biased in the forward 

direction (i.e. the metal electrode is positive) there are four ways 

(38) in which the charge can be transported across the barriers, these 

are: 

a) Thermionic emission of electrons over the top of the barrier 

b) Quantum mechanical tunneling through the barrier 

c) Recombination in the depletion region 

d) Minority carrier injection 

These processes are shown in fig. 2.4. In most devices the major 

contribution to the current transport is provided by the first process. 

The processes (b), (c) and (d) usually arise from non-ideal behaviour. 

For the thermionic process, electrons must be transported first 

through the depletion region of the semiconductor. This occurs by the 

normal processes of diffusion and drift which take place in this 

region. Schottky and Spenke (39) proposed that the current flow is 

limited by diffusion processes, whereas Bethe (40) proposed that 

thermionic emission was the limiting mechanism. Both these ideas were 

later combined in a joint thermionic emission-diffusion theory by 

Crowell and Sze (41). 

If the width of the space-charge region is less than the diffusion 

length of the electrons, according to the thermionic emission theory, 





Fig. 2.4 Current transport mechanisms in a forward-biased Schottky 
barrier 
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The electric field then becomes 

I E (x) I = (w-x) 2 016 

and the depletion width is 

w = 2.17 

where Es is the relative permittivity of the semiconductor and Vd is 

the diffusion potential at zero bias. KT/q is a contribution from the 

Kinetic energy of the mobile charge carrier. The space charge Qsc per 

uni't · area and capacitance, c, per unit area are given by 

Q - qNdw = sc - 2 018 

and 

€ - ]' = 2 019 

Thus the depletion layer capacitance is voltage dependent, and 

inversely proportional to Nd, i.e. it narrows as the density of 




































































































































































































































































































































































































































