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ABSTRACT 

It is generally accepted nowadays that a significant cost 

reduction in terrestrial solar cell application could be brought about 

by investigating alternative fabrication techniques for solar cells. 

It is believed that screen printing (or the so called thick film 

technique) is one such technique which promises a potentially low cost 

method for fabricating flexible~ large area solar energy conversion 

ce 11 s. 

The active research on this technique started in 1976 in Japan. 

However~ it was not until 1983~ that wide interest developed when the 

Matsushita group in Japan reported an efficiency of 12.8% for their 

entirely screen printed CdS/CdTe solar cells. This was the highest 

reported efficiency for any thin film solar cell. 

However~ the details of the fabrication processes of these cells 

were not reported and several scientific groups in the world started to 

explore this technique. The first published report was in 1985. In 

the last few years these groups have reported results on various 

aspects of this technique. Nevertheless there are still major 

parameters to be investigated. 

This thesis represents a concise reference for the application of 

the screen printing technique to solar cells. In the course of this 

study many new investigations have been made which supplement the 

previous work by other groups. Starting with a pure CdS powder with 

suitable grain size and distribution is a prerequisite for achieving 

the best morphological and electrical behaviour of screen printed 

layers of CdS.Careful paste mixing is of uppermost importance which can 

override any other parameters involved in the fabrication processes. It 
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is essential to impose restricted sintering conditions for adequate 

utilization of the doping and fluxing function of the CdC1 2 material. 

Standardization of the printing 9 preparation and s i nteri ng 

conditions involved in the fabrication processes were necessary to 

ensure reproducible CdS layers. 

Good quality screen printed layers were fabricated on soda lime 

substrates. The significance of other substrate materials for CdS 

preparation was also investigated and optimum substrate choice is 

suggested. 

The properties of the CdS screen printed layers were investigated 

by forming simple Schottky devices and more complicated heterojunction 

solar cells. Good rectification behaviour of the Schottky diodes was 

achieved. The CdS/CdTe solar cells revealed a wide spectral response. 

However, the photovoltaic behaviour was relatively poor largely due to 

the high resistivity of the CdTe part of the cell structure. 



1.1 Introduction 

1 

CHAPTER ONE 

GENERAL BACKGROUND 

The utilization of solar energy is one of the most convenient and 

reliable methods which could provide substantial energy for the whole 

world•s needs. 

One approach to utilization of solar energy is the use of the 

semi conductor device~ namely a so 1 ar ce 11, which a 11 ows the direct 

conversion of light to electricity. Of particular interest in this 

study is a II-IV Compound Semiconductor application to solar cells. 

This chapter will give an overview which includes solar energy, 

photovoltaic conversion by solar cells, semiconductors and II-IV 

compounds. 

1.2 Solar Energy 

The sun is a gigantic thermonuclear spherical reactor of intensely 

hot gaseous matter with a diameter of 1.39 x 106 km~ and is on average, 

1. 5 x 108 km from the earth ( 1). The energy emitted from the sun is 

mainly in the form of electromagnetic radiation ranging from about 30 m 
-10 short radio waves to 10 m X-rays. 

As the solar photons pass through the earth•s atmosphere, the 

spectrum changes by selective absorption of certain wave lengths by the 

atmospheric gases (2). The x-rays and other very short wave radiation 

are absorbed high in the ionsphere by nitrogen, oxygen and other 

components of the atmosphere. Most of the ultra violet radiation is 

absorbed by ozone. At wave lengths longer than 2.5 ~m~ a combination 

of low extra-terrestrial radiation and strong absorption by co2 and H2o 
means that very little energy reaches the ground. Thus, from the 
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viewpoint of the terrestrial application qf solar energy, only 

radiation with wave lengths between .29 and 2.5 ~m need be considered. 

The effect of the atmospheric attenuation on solar irradiance is 

described by the term air mass number. Conventionally, solar cell 

performance is measured in terms of certain standard conditions of 

illumination, in particular AMO, AMl and AM2. AMO (air mass zero) 

corresponds to the solar irradiance at the top of the earth•s 

atmosphere. AMl is the irradiance at sea level under a standard 

atmosphere when the sun is at zenith, and AM2, which is a typical 

average irradiance at the earth•s surface, corresponds to the condition 

where the angle between the sun and the zenith is 60°. Fig. 1.1 shows 

the spectral distribution of solar radiation under the various 

conditions. 

1.3 Solar cells and 1 Photovoltaic Conversion• 

Solar cells were developed during the 195o•s, primarily at the 

Bell Telephone and RCA Laboratories (U.S.A.) (3-5). These cells proved 

to be the best power sources for extraterrestrial emission, and almost 

all satellites use solar cells. In the mid-1970•s, efforts were 

initiated to make solar cells for terrestrial applications, and since 

that time, most of the solar cell market has been for use on earth, 

although space applications remain buoyant. 

Continued efforts during the last two decades to fabricate high 

efficiency solar cells have succeeded in producing single crystal Si 

and GaAs solar cells with efficiencies in excess of 20% and 25% 

respectively. However, the cost of these cells made them too expensive 

for wide scale terrestrial application and many new techniques have 

emerged to reduce the cost, such as thin film, thick film and amorphous 

solar cells. 



Figure li.li Spectral distribution of solar radiation under 
dffferent conditions. 
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The direct conversion of solar energy by solar cells is based upon 

the photovo lta i c effect, t-Jhi ch is defined as the generation of an 

electromotive force as a result of the absorption of solar radiation in 

an inhomogeneous sytem. 

The essential features of a solar cell are, an absorber generator 

material, in which mobile carriers are created by the absorbed solar 

energyg and a built-in potential barrier which allows the generated 

carriers to be collected from the region in which they are produced and 

converted to majority carriers. 

There are four methods of creating such a barrier. One involves 

adding small amounts of impurities or •dopants• to pure material to 

produce a homojunction cell or a PN junction (e.g. silicon solar cell). 

Another method involves two different semiconductor materials such as 

Cadmium Sulfide (CdS) and Cadmium Telluride (CdTe) creating a 

heterojunction cell. A third method involves a junction between the 

Semiconductor material and a metal, creating a •schottky• barrier. The 

last method is where a very thin layer of some material is sandwiched 

between the metal and the semiconductor. This creates a 

metal-insulator- semiconductor or MIS junction. 

1.4 Semiconductors 

The primary materials used for photovoltaic conversion in solar 

cells are semiconductors. 

Semiconductors are a class of materials with electrical 

conductivity somewhere between metals and insulators. Their 

resistivity is usually in the range of 0.001 to 100 ohm em. 

Many of the electronic properties of semiconductors depend on the 

presence of impurities, known as dopants, which may act as sources of 

free carriers. Concentrations of the order of parts per million or 
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1 ess, can change a semi conductor from a poor conductor to a good 

conductor of electric current. 

Semiconducting elements are found in column IV of the periodic 

table, and semiconducting compounds in combination from neighbouring 

columns of the periodic table. Table 1.1 demonstrates that there are 

numerous semiconducting materials. This wide range offers a 

considerable variety of properties. 

1.5 II-VI Compounds 

II-VI compounds are these formed between elements from group I I 

and group VI of the periodic table (table l.lB). They crystallise in 

two main modifications, namely the cubic zince blende (sphalerite), and 

the hexagonal wurtzite structures (fig. 1.2). 

The II-VI compounds were the first semiconducting materials to be 

used on a large scale as phosphors, and even today their production 

volume is comparable with that of silicon (6). One of the most 

important properties of these compounds is that they have wide and 

direct band gaps so that they are most useful for optoelectronic 

devices in the visible and near infrared regions (7). Fahrenbruch (8) 

has reviewed the uses of II-VI compounds in solar energy conversion and 

has indicated that the principal advantages of these materials are 

their low cost and the ease of deposition of good quality films by a 

variety of methods. 

Typical deposition techniques are screen printing, evaporation, 

electrophoresis and spray pyrolysis. Conversion efficiencies higher 

than 10% have been achieved in thin film cells (9) and 15% in single 

crystals have been known and are being actively investigated (10). 

However, most of the applications of II-VI semiconductors have not 

reached their fu 11 potentia 1 due, in the rna in, to the d iffi cu lty of 

controlling defects in the materials. Such defects can behave, for 
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II III IV v VI 

·-

B c i 

Al Si p s 

Zn Ga Ge As Se 

Cd In Sn Sb Te 

A 

Elemental IV Compound III-V Compound II-VI Compound 

Si SiC AlP ZnS 

Ge AlAs ZnSe 

AlSb ZnTe 

GaP CdS 

GaAs CdSe 

GaSb CdTe 

InP 

In As 

InSb 

B 

TABLE 1.1 Common Semiconductor Materials 

A Portion of the periodic table where semiconductors occur 

B Elemental and compound semiconductors 
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example9 as recombination centres and thereby reduce the carrier life 

time (11) and with it the device efficiency. 

1 .6 Scope_of the Present St~dy 

The problem addressed in this thesis was the preparation of good 

screen printed CdS layers for use in the fabrication of solar cells. 

To achieve this a comprehensive study was made of various printing9 

preparation and sintering conditions involved in the fabrication of 

such layers. Following the brief general background presented in this 

chapter, a theoretical background is given in Chapter 2. This includes 

material characterization and a review of relevant theories. The 

details of experimental equipments and techniques employed and device 

preparation are outlined in Chapter 3. Chapter 4 is devoted to various 

aspects concerning the use of the screen printing technique for solar 

cell fabrication. Preliminary studies related to the starting CdS 

powder and the behaviour of the CdCl 2 material in the screen printing 

process are described in Chapter 5. The characterizations of the 

screen printed 1 ayers using Ha 11 Effect and Schottky measurements is 

discussed in Chapter 6. In Chapter 7 the significance of the substrate 

is described. In Chapter 8 trials to fabricate a solar cell by 

evaporation CdTe layers on to the resultant screen printed layers are 

reported. Finaiiy, a summary of the main objectives achieved are 

outlined in Chapter 9. 
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CHAPTER TWO 

THEORETICAL BACKGROUND 

In the first part of this Chapter~ various aspects related to 

cadmium sulfide and cadmium telluride will be discussed. In the second 

part, the relevant theories used in the present work will be reviewed. 

2.2 Material Aspects 

2.2.1 Cadmium Sulfide (CdS) 

i) Properties of CdS 

Cadmium Sulfide is a II-VI compound which crystallises in two 

forms with the zinc blende and wurtzite structures (fig. 1.2). It has 

a direct band gap of about 2.4 eV giving it a transparent yellow 

colour. 

Although cadmium melts at 320°C and sulphure at 119°C the minimum 

temperature at which cadmium sulfide melts is about 1475°C, and then 

only under an equilibrium vapor pressure of- 4 atmosphere (1). 

There are a number of criteria which suit CdS for use as thin film 

solar cells reviewed by T. Coutts (2) as follows, 

i) Wide band gap : the value of the band gap of CdS is 2.4 eV 

corresponding to a wave length of 0.5 1-1m. This means that 

the bulk of the solar spectrum is transmitted quite freely, 

thus making CdS suitable as a 1Window layer 1 above the 

absorber in which photogeneration of excess minority carriers 

takes place. 

ii) Resistivity: in its bulk form CdS has a very high 

resistivity, but it can easily be doped n-type to have a 

resistivity of an appropriate value for solar cell 

applications (10- l001l.cm). 
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iii) Electrical Contacts: it is a straight-forward matter to make 

ohmic contact to CdS layers. 

In general9 in the past~ CdS has been coupled with P-type Cu 2s 
(3). However9 in recent years CdS has been used in conjunction with 

InP (4)9 CulnSe2 (5) and CdTe (6) to produce heterojunctions with very 

promising efficiencies. 

Of particular interest in this thesis is the CdS/CdTe device. In 

this structure CdS is a good choice as a window material since the 

electron affinities of both CdS and CdTe are approximately 4.5 eV (7), 

and therefore the conduction bands of the two materials join smoothly 

at the interface (8). 

ii) Impurity doping 

CdS is not amphoteric, and can only be made n-type. Any attempt 

to diffuse in acceptor impurities results in self compensation by 

vacancies to maintain charge neutrality. The high resistivity of the 

bulk CdS can be reduced in several ways. For example, sulphur 

vacancies introduced by the presence of excess cadmium (Cd) during film 

fabrication act as donors, and reduce the resistivity (9). Extrinsic 

impurity dopants such as the halogens (Cl, Br, I) and group III 

elements (Al, In, Ga) can be introduced substitutionally into CdS to 

reduce the resistivity (10). 

In this work, chlorine was used as the main dopant to reduce the 

resistivity of the fabricated CdS layer. The recognition of chlorine 

as a donor in CdS has been reported by many workers (11-13). CdC1 2 was 

used in the present work as the donor source. A simplified picture of 

the doping procedure is that the divalent sulphur ion is replaced by 

the monovalent chlorine ion, and an extra electron is present for 

conduction with a very small activation energy of about .03 eV (11). 
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iii) Ohmic Contacts 

Good ohmic contact can be made between a metal and the n-type CdS 

if the work function,¢ • of the metal is less than that of the CdS. 

The most commonly used contact to CdS is indium (14) but other 

metals of suitable work function such as gallium (14), silver/zinc, 

aluminium and chromium have also been reported (15). 

Indium was used to provide the ohmic contact to CdS in this work. 

There are several methods of achieving this, such as vacuum evaporation 

(14) 0 alloying (16L electrolytic deposition (17). and more recently 

screen printing (18). 

2.2.2 Cadmium Telluride (CdTe) 

i) Properties of CdTe 

CdTe is also a member of the II-VI group of compounds, and has 

very advantageous properties as an absorber material for solar cells, 

because of its direct band gap of 1.5 eV (19), which is optimum for 

photovoltaic conversion of solar energy (20), with a high optical 

absorption coefficient of >104 cm-l (21). 

The high absorption coefficient implies that photons with energies 

above 1.5 eV wi 11 be absorbed within a few micro meters of the CdTe 

surface, and in principle therefore, less material will be required for 

device fabrication, with a potential saving in cost. 

Polycrystalline CdTe has been the most commonly used 

heterojunction partner for n- CdS material either in its single 

crysta 11 i ne or po lycrysta 11 i ne form ( 19). Polycrysta 11 ine thin films 

of CdTe have been deposited by a variety of techniques including vacuum 

evaporation (22) (23), close space sublimation (CSS) (24), 

electroplating (25) and screen printing (26). 

ii) Impurity doping 

The as-deposited CdTe layers had a high resistivity and were 
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slightly p~ type9 leading to a high series resistance of the devices 

produced here (see later). Therefore further doping treatment had to 

be considered. 

It is generally accepted that p~type conductivity in CdTe may be 

obtained by doping from groups I and V of the periodic table. Success 

has been reported with Cu 9 Ag, Au and P (27). 

P-type doping with copper (Cu), which belongs to group I, has been 

demonstrated by many workers (28) (23), and was chosen in the present 

work to reduce the resistivity of the deposited CdTe layers. 

Copper9 Cu+, presumably substitutes for cadmium and behaves as an 

acceptor. De Nobel (29) investigated the electrical properties of CdTe 

doped with Cu and reported a p-type conduction with activation energies 

in the range of 0.35 ± .05 eV. The ionic radius of Cu+ (0.96 A) is 

close to that of Cd2+ (0.95A) (30) which makes the substituion for Cd 

easy. 

The major problem associated with copper as well as with other 

dopants, when introduced into polycrystalline CdTe, is segregation at 

the grain boundaries which lowers the shunt resistance of the device. 

iii) Ohmic contacts 

It is difficult to make a low resistance ohmic contact to p- type 

CdTe (30) (31). This is because a true ohmic contact top- type CdTe9 

requires a metal with a work function larger than the work function of 

p- CdTe (of the order of 5.7 eV), which is not available. To overcome 

this problem it is necessary to produce a heavily doped region in the 

CdTe adjacent to the contact metal, to the point where easy tunneling 

is possible (32). 

The work functions of Cu9 Au, Ag9 Zn9 In and Pb on p~ type CdTe 

have been determined, and gold (Au) has been found to be the most 

favourable contact material (33). Since the pioneer work of De Nobel 

(29), gold has mainly been used to make ohmic contact to P- CdTe. 
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Recently~ the use of a carbon contact to P- CdTe has been 

suggested by Nakayama et.al. (34) for applications with their screen 

printed solar cells. They found that carbon contacts led to efficient 

devices with improved stability. 

2.3 Relevant Theories 

2.3.1 Hall effect 

The Ha 11 effect has been used for many years as an aid in the 

understanding of semiconductors (35). In this work Hall effect 

measurements were made on screen printed CdS layers using the Van der 

Pauw technique to determine the resistivity, carrier concentration and 

mobility of the layers. 

i) Classical Hall theory 

When a semiconductor is placed in a magnetic field perpendicular 

to the direction of current flow, a field EY is developed across the 

specimen in the direction perpendicular to both the current and the 

magnetic field Bz. This field, called the 'Hall Field', is given by 

= 
J B 

X i! 

nq 
2.1 

where Jx is the current density, n is the number of carriers per unit 

volume and q is the carrier charge. The ratio 

= 2.2 
lillQ[ 

is called the 'Hall Coefficient'. A measurement of RH thus determines 
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n, and since 

p = 2.3 
nq11 

where ~ is the carrier mobility. then 

11 = 2.4 

From equations 2.2 and 2.4 the carrier concentration and mobility can 

be determined. 

ii) The Vander Pauw technique 

The Van der Pauw method (36) is the most reliable and widely used 

method of determining the resistivity and Hall Coefficient of 

semiconducting specimens. It enables measurements to be made on 

samples with arbitary shapes without the classical bar-or-bridge shaped 

conventional geometry (37). 

In essence this method consists of applying four ohmic contacts A, 

B, C and D at the periphery of an arbitary shaped sample of thickness 

t, as shown below. 
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When a current lAB is allowed to flow across the contacts A and B, a 

potential drop VCD is produced between the contacts C and D. The ratio 

of VCD to lAB is defined as the resistance RABsco· Similarly RBCsDA is 

determined by establishing a current IBC across the contacts B and C9 

and measuring the potentila drop v0A between the contacts 0 and A. The 

expression for the resistivity P is then given by 

p = 
.Q, n2 

where f (RAB,CD' RBC,DA) is a function which satisfies the relation 

IRAB.CD- RBC,DA I = f 

RAB .CD + RBC ,DA ~n 2 {
1 (l.n2)\ 

arc cosh 2 exp ~ / j 

The function f is described graphically by Vander Pauw (36). 

2.3.2 Schottky barriers 

2.5 

2.6 

Because of their simple structure and relative ease of 

fabrication, Schottky diodes were used in the present study as a means 

of characterizing the fabricated layers. The following description of 

the Schottky devices, and their electrical behaviour will be useful in 

the analysis of the experimental results in Chapter 6. 
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i) Metal Semiconductor Contacts 

Consider a metal and an n-type semiconductor that are electrically 

neutral and separated from each other; the semiconductor work function 

0s is less than that of the metal 0m. If the metal and the 

semiconductor are brought into contact electrons flow from the 

semiconductor into the metal. This results in the Fermi level in the 

semiconductor being lowered by an amount equal to the difference 

between the two work functions to bring the Fermi levels into 

coincidence. The negative charge on the metal resides on the surface 

and an equa 1 and opposite charge is built up in the semi conductor 

provided by the loss of electrons. This leaves uncompensated positive 

donor ions in the region depleted of electrons. Since the donor 

concentration is many orders of magnitude less than the electron 

concentration in the metal, this depleted zone of uncompensated donors 

occupies a region of appreciable width extending into the 

semiconductor. This is known as the space charge or depletion region. 

The density of free carriers is assumed to fall abruptly from a value 

equal to the density in the semiconductor bulk to a value at the 

interface which is negligible compared with the donor concentration; 

this is known as the depletion approximation. Outside the depletion 

region the semiconductor is neutral, but within this region there is a 

charge density of qNd. The variation of the charge density with 

distance x from the metal is shown in fig. 2. la. The electric field, 

E, is related to the charge density by Gauss's theorem and is such that 

it increases linearly as the metal is approached reaching a value of 

qNdW/Gs at the interface (fig. 2.lb) where W is the width of the space 

charge region and~ is the dielectric constant of the semiconductor. s 
The electrostatic potential (~(x)) is given by 
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w 
l/J (x) = J Edx 2.7 

X 

which reduces to the quadratic 

l/J (x) = (w - x) 
2 2.8 

The variation of l/J (x) with x is shown in fig. 2.1 C. For the 

metal-semiconductor contact, the subsequent parabolic band bending is 

shown in fig. 2.2 This is known as a Schottky barrier. 

The height of the potential barrier on the semiconductor side is 

2.9 

Vd is the diffusion potential measured from the interior of the 

semiconductor with respect to the metal surface. The height of the 

barrier on the metal side is given by 

cp - X 2.10 
m s 



(a) 

(b) 

(c) 

w 

Fig. 2.1 Variation of (a) charge density (b) electric field strength 
and (c) electrostatic potential with distance according 
to the depletion approximation. 
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In most devices the ideal Schottky barrier shown in fig. 2.2 is 

never achievedg because there is a thin insulating layer on the surface 

of the semiconductor 9 which is generally developed during the 

fabrication processes prior to the formation of the metal contact. 

This usually leaves a thin 9 interfacial layer. The barrier presented 

by such a layer may be sufficently narrow to allow electron tunnelling. 

The band diagram of this structure is shown in fig. 2.3. 

ii) Current transport 

When a metal n-type semiconductor contact is biased in the forward 

direction (i.e. the metal electrode is positive) there are four ways 

(38) in which the charge can be transported across the barriers, these 

are: 

a) Thermionic emission of electrons over the top of the barrier 

b) Quantum mechanical tunneling through the barrier 

c) Recombination in the depletion region 

d) Minority carrier injection 

These processes are shown in fig. 2.4. In most devices the major 

contribution to the current transport is provided by the first process. 

The processes (b), (c) and (d) usually arise from non-ideal behaviour. 

For the thermionic process, electrons must be transported first 

through the depletion region of the semiconductor. This occurs by the 

normal processes of diffusion and drift which take place in this 

region. Schottky and Spenke (39) proposed that the current flow is 

limited by diffusion processes, whereas Bethe (40) proposed that 

thermionic emission was the limiting mechanism. Both these ideas were 

later combined in a joint thermionic emission-diffusion theory by 

Crowell and Sze (41). 

If the width of the space-charge region is less than the diffusion 

length of the electrons, according to the thermionic emission theory, 
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the forward biased current density can be expressed by (42) 

J F = J s [ e)!.p ( q VI KT) - 1 ] 2 • 11 

conversely if the space-charge region is greater than the diffusion 

length, the forward current is limited by the diffusion mechanism, and 

the current-voltage relationship becomes (42) 

J = N E ex (-9 ~ bn 
F q clle -max p KT ) ( exp( qV /KT) - 1] 2 012 

where Emax is the maximum electric field at the junction, J.le is the 

electron mobility and Nc is the effective density of states in the 

conduction band. 

For the general case in which the space charge region is 

comparable in thickness to the diffusion length, both mechanisms apply, 

and the current-voltage relationship becomes (41) 

[exp(qV/KT) - 1) 2 013 
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where Vr is an effective recombination velocity at the potential energy 

maximums9 and Vd is an effective diffusion velocity for the transport 

of electrons from the edge of the depletion region to the potential 

energy maximum. If Vd << Vr the pre-exponential term in equation 2.13 

reduces to qNc V r and the diffusion theory app 1 ies. If V d » V r the 

thermionic emission process is dominant. 

However9 in practice Schottky barriers deviate from the ideal 

behaviour9 and the experimental forward current-voltage relation is 

usually expressed as : (43) 

JF = J
5 

exp {qv/AkT) 2. 14 

for bias voltages V ~ 3 kT/q. The parameter A is known as the ideality 

or quality factor and is normally greater than unity as a result of non 

ideal interface conditions. A detailed discussion of non-ideal diode 

mechanisms such as recombination and tunneling has been given by 

Rhoderick (38). 

iii) The Capacitance of a Schottky barrier 

The capacitance of a diode is determined by the distribution of 

the charge density p in the space charge region of the function. With 

a Schottky barrier device, and assuming that the charge density P in 

the depletion region is given by P = qNd (Nd = N0 - NA = donor density) 

for x < w and P = o for x > w9 where w is the depletion width, 

integration of Poisson's equation yields (44) 

V(x) = (wx - ~x2 ) - <P 2.15 
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The electric field then becomes 

I E (x) I = (w-x) 2 016 

and the depletion width is 

w = 2.17 

where Es is the relative permittivity of the semiconductor and Vd is 

the diffusion potential at zero bias. KT/q is a contribution from the 

Kinetic energy of the mobile charge carrier. The space charge Qsc per 

uni't · area and capacitance, c, per unit area are given by 

Q - qNdw = sc - 2 018 

and 

€ - ]' = 2 019 

Thus the depletion layer capacitance is voltage dependent, and 

inversely proportional to Nd, i.e. it narrows as the density of 



uncompensated donors increases. At higher temperature more donors are 
+ 

ionized and Nd = N0 - No is large~ so that the depletion region is 

smaller. At lower temperature Nd decreases and w increases. 

or 

Equation 2.18 may be re~written as 

1 
= 

KT 2 (Vd + V - --- ) 
9 

2 

q£ E 
0 s 

dv 
d(C- 2

) 

2.20 

2.21 

Providing that Nd remains constant throughout the depletion 

region, a plot of l/C 2 vs V should produce a straight line, the voltage 

intercept of which gives the diffusion potential Vd, while the gradient 

yields the donor density Nd. If there are electron traps present in 

the dep 1 et ion 1 ayer then some traps above the Fermi 1 eve 1 wi 11 be 

emptied when reverse bias is applied. This would contribute an 

additional capacitance. With polycrystalline films, the intergranular 

barriers also provide depleted regions in the grains of the interface 

and may affect the capacitance measurement (45). 

The carrier mobility in the sample can be calculated using the 

following equation 

2.22 
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where P is the resistivity of the sample. 

2.3.3 Heterojunction theory 

A heterojunction is a junction formed between two dissimilar 

semiconductors. If the two semiconductors have the same type of 

conductivity9 the heterojunction is referred to as an isotype 9 

othe~Jise it is referred to as an anisotype. 

Heterojunctions have been extensively studied for applications 

such as light-emitting diodes, photo-detectors and solar cells. 

Heterojunctions have been reviewed by many authors (46) (47) (48). 

The energy band models of semiconductor heterojunctions were first 

described by Anderson (49). When the effect of dipoles and interface 

states are negligible, the energy profile of the n-Cds/p-CdTe 

heterojunction at thermal equilibrium and zero bias is as shown in fig. 

2.5 (a) and (b) before and after the formation of an abrupt junction 

(50). Both semiconductors are characterized by their electron 

affinities, band gaps and work functions. In the ideal situation9 the 

barrier height is given by : (48) (50) 

Vb = E + L1 E gp c 0 0 n p 2.23 

where ~ Ec is the conduction band discontinuity at the 

hetero-interface 9 and 0 n and 0 p are the displacements of the Fermi 

level from the conduction band edge in the n(CdS) and p{CdTe) type 

materials, respectively. Egp is the band gap of the p-type material. 
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Fig. 2.5 Equilibrium energy band diagram for the CdS/CdTe 
heterojunction (Ref. 49): (a) before; and (b) after 
the formation of an abrupt p-n. junction. 
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The discontinuities are given by: 

~ E c 

b. E = (E - E ) - b. E v gn gp c 

where Egn is the band gap of n-type material. 

where 

and 

The current~voltage relationship takes the form (47) (50) 

K V 
p 

2.24 

2. 25 

Vbp is the portion of the built-in voltage on the p-side of the 

junction; Vp and Vn are the portions of the applied voltage appearing 

on the p and n-sides of the junction; x is the transmission coefficient 

for electrons to pass the interface; Dn, Ln are the diffusion constant 

and diffusion length respectively for electrons in p-type 

semiconductors. The contribution to the current from the injection of 

holes into the wider band gap semiconductor is negligible because of 

the large energy barrier to hold injection arising from b. Ev. 
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2.3.4 The Solar Cell 

i) Equivalent Circuit 

When light of sufficent energy (h'DJ > Eg) falls on a solar cell 9 

electron~hole pairs are generated. These carriers diffuse to the 

junction where they are separated to yield useful electrical energy. 

This can be modelled as a light independent current generator connected 

with a diode. This is illustrated in the equivalent circuit of fig. 

2.6 which includes series and shunt resistance components. 

The genera 1 expression for the tota 1 current through an 

illuminated solar cell is given by the following equation (51) 

V - JR 
J - __ __:;_s 2.27 

where JL is the light generated current. Under illumination~ the dark 

current voltage characteristics are translated by the amount of light 

generated current. The dark and light current-voltage characteristics 

for an ideal case are shown in fig. 2.7. 

ii) Operational Parameters 

The performance parameters of a solar cell are derived from the 

output characteristics. Usually four main parameters are used: 

a) Short-Circuit Current (ISC) : This is the current that flows 

through the junction under illumination with zero applied bias. In 

ideal conditions (if the series and shunt resistance effects are 

negligible) it is equal to the light generated current \ and is 

proportional to the incident number of photons with energy greater than 

or equal to the energy gap of the absorber. 
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Fig. 2.7 : Typical dark and light J-V characteristics of an ideal solar cell 
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b) Open-Circuit Voltage (V0C) : This is the voltage across the 

terminals of an illuminated solar cell at zero current flowing through 

the junction. It is given by (52) 

2.28 

where A = q/nkT and I
0 

is the reverse saturation current. 

c) Fill Factor (FF) : This is defined as the ratio of the 

maximum electrical power output to the product of v0C and Isc· It 

describes the rectangularity or squareness of the photovoltaic output 

characteristics. The fill factor is mainly affected by the series 

resistance (Rs) and shunt resistance (Rsh). The effect of these 

parameters on the J-V characteristics is shown in fig. 2.8. It is 

obvious that as the series resistance increases and shunt resistance 

decreases, the fill factor deteriorates (53). 

d) Efficiency (~) This parameter describes the overall 

performance of a solar cell. The three parameters, Isc' V
0
c and FF, 

determine the efficiency of a cell, which can be expressed as (48): 

= 1sc Voc ~·~· 
P. x Area 1nc 

2.29 

where Pine is the incident radiation power density, usually expressed 

in mW/cm 2 • 



Fig. 2.8 
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iii) Spectral Response 

The photocurrent collected at each wavelength relative to the 

number of photons incident on the surface at that wavelength determines 

the spectral response of the device (48) (some times known as the 

quantum efficiency or collection efficiency at each wave length). 

Measurement of the spectral response can provide detailed information 

about the design parameters of any particular solar cell (53). 
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CHAPTER THREE 

EXPERIMENTAL TECHNIQUES_AND DEVICES PREPARATION 

3.1 Introduction 

In this Chapter the most important experimental equipments and 

techniques used in the present work will be described. The electrical 

measurements will be presented in section 3.3 9 while in the final 

section the fabrication of Schottky diodes and CdS/CdTe heterojunction 

solar cells will be described. 

3.2 Structural Analysis Techniques 

3.2.1 Scanning Electron Microscopes (SEM) 

A Cambridge Stereoscan S600 SEM was used in this work for 

morphological observations and thickness assessment of the screen 

printed CdS layers. 

A schematic diagram of the SEM device is shown in fig. 3.1. The 

SEM may be operated in several modes by imaging various signals derived 

from the different interactions that occur between the incident 

electron beam and the specimen (1). These are shown in fig. 3.2. Only 

the secondary emission mode was used in this work. 

i) Secondary emission mode 

The basic principle of operation in this mode is that as the 

electron beam is scanned across the sample in a raster, the secondary 

electrons that are emitted from the specimen surface are collected by 

an Everhart-Thornley (ET) detector consisting of a scintillator and 

photo multiplier (PM). The output from the photomultiplier is taken 

through the PM tube amplifier and is fed into the input of the cathode 

ray tube (CRT) monitor which is scanned with the same raster generator 

as that used to scan the electron beam across the sample. In this way 

a micrograph of the secondary emitted electrons from the specimen 

surface is formed. 
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Figure 3.1 Schematic diagram of the SEM. 
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ii) Energy Dispersive Analysis by X-Rays (EDAX) 

X-rays may be produced by the interaction of the electron beam 

with the specimen. These may be analysed for their energy in order to 

identify the elements from which they originated. Each element 

produces its own characteristic x-rays and the intensity of them can 

give an indication of the stoichiometry. 

This technique was employed by using a Link System 860 series 2 

Analyser. The block diagram of the system is illustrated in fig. 3.3 

The x-rays emitted from the surface of the specimen pass through a 

thin beryllium window into a cooled9 reverse-bias p-n Si (Li) detector 

(2). This leads to the ejection of a photo electron which gives up 

most of its energy to the formation of several electron-hole pairs. 

These are swept away by the applied bias to form a charge pulse which 

in turn is converted to a voltage pulse by a charge-sensitive 

preamplifier. The amplitude of this voltage pulse is proportional to 

the magnitude of the charge released by the photoelectron which in turn 

is proportion a 1 to the energy of the incident x-ray photon. Thus an 

energy spectrum of the incident x-rays can be built-up by sorting and 

summing the voltage pulses according to pulse-height in a multi-channel 

analyser (MCA). 

The resulting spectrum ·is then (in the Link System) dispiayed on a 

cathode ray tube and may be 11 screen-dumped 11 to a matrix printer for 

permanent record. The contents of the MCA memory can be further 

processed, for example9 for peak identification by comparison with the 

known position of characteristics x-ray lines. 

3.2.2 Electron Spectroscopy for Chemical Analysis (ESCA) 

The ESCA technique has been used in this study to investigate the 

presence of oxygen, as well as the ratio of the sulphur to oxygen on 

the surface of the sintered CdS layers. 



Eieciron Beam 

Specimen 

X-Ray Signa! 

Cryostat 

Pileup 
Rejector 

l...r--! Amplifier 

Bias Supply 

Multichanne~ 
Anady2err 

wJl 
Display 

Data 
Outpu~ 
Device 

Figure 3.3 Energy dispersive X-ray analyser. 

Compu~srr 



32 

ESCA is a non destructive and powerful method for surface analysis 

which relies upon x~rays interacting with deep core electrons in an 

ultra high vacuum system (l0-7 - 10-lO torr). Energetic photoelectrons 

are emitted and the material may be analysed by counting their number 

and measuring their velocity. The technique is limited to the 

characterization of the first few layers (usually to a depth of 

20-40A 0
) of the sample surface. 

3.2.3 X-Ray Diffraction (XRD) 

The structure of the screen printed CdS layers after various 

sintering conditions were investigated in a Philips PW 1130 

diffractometer using Cobalt K ~radiation (A = 1.7902A0
) with a 

goniometer scanning rate of one degree per minute. The diffractometer 

was operated with target voltage and current of 40 KV and 20 rnA. 

The scan was made on samples with dimensions of 2.5 x 2.5 cm2 and 

x-ray diffraction was recorded from 2Q = 28° to 2Q = 34°. The analysis 

of the films was carried out using the standard joint Committee for the 

powder diffraction standard (J.C.P.D.S.) index 1974 (3). The 

hexagonality value of the layers was calculated using the following 

equation (3.1) 
15. 9R - 8.1 33.2 ~ 2.5R 

H = ----- + (4) 

13.5R + 25.1 32.5 + 71.2R 

where R is the intensity ratio of the (101) to (002) reflections of the 

diffraction pattern. 

3.2.4 X-Ray Fluorescence (XRF) 

The quantity of chlorine remaining in the screen printed CdS 

layers after various treatments was determined in counts per second 

using a Philips PW 1400 x-ray spectrometer with a rhodium x-ray tube 

(3KW) which was operated at 80 KV and 35 rnA with flow counter9 using a 

PET analysis crystal. 
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3.2.5 Chemical Analysis by Atomic Absorption Spectroscopy (AAS) 

The indirect method of AAS analysis was used to determine the 

chlorine content remaining in the sintered layers in atomic percent 

ratio using a Perkin Elmer 5000 Atomic Absorption Spectrometer. 

3.3 Electrical Measurements 

3.3.1 Hall Effect Measurements 

Hall measurements were made to determine the carrier 

concentrations and mobilities of the screen printed CdS layer under 

various preparation and sintering conditions. The Van der Pauw 

technique was employed and this allowed both the resistivity and Hall 

coefficient to be measured. 

a) Sample preparation 

Square samples with dimensions of 1 x 1 cm2 were used for all 

measurements. Contacts to the samples were made by pressing four small 

slices of 1.5 mm diameter ondium wire on the periphery of the sample 

and then heating for 10 minutes in argon. The sample was then fixed 

with silicone grease to a glass microscope cover slip. Electrical 

contact to the sample was made with fine copper wires soldered to the 

cover slip with indium. The wires were connected to the sample with· 

quick drying silver paste. The sample was then fixed on the sample 

holder and connected to the electrical circuit shown in fig. 3.4 

b) Hall Apparatus 

The measuring circuit was designed and constructed in this 

laboratory. A BBC micro computer was used to control a prograrmnable 

current source capable of providing currents from 2 ~A to 10 rnA over 3 

ranges in both forward and reverse directions. This current could be 

fed to any pair of the 4 V.D.P. contacts via the relay unit. The relay 

unit also allowed sample voltages to be measured across the non current 

V.D.P. contacts using a Hewlett Packard HP 3456a D.V.M. Current 
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sensing resistor and thermocouple voltages were also measured with this 

meter again via the relay unit. Data from the voltmeter was passed to 

the computer along an IEEE 488 bus for storage and subsequent analysis. 

The electromagnet provided a 0.16 T field constant to within 5% in 

a 1 cm3 volume around the centre of the pole piece gap. The magnet 

power supply was a variable constant current source. Field switching 

and reversing was accomplished by relays which were protected from the 

back e.m.f. of the magnet by diodes in parallel with the coils. The 

necessary timed switching of the relays and diodes was provided by a 

synchronous circuit controlled by the computer. 

I-V characteristics were taken for each of the V.D.P. resistivity 

and Hall configurations. These could be plotted to check for ohmic 

contacts. A computer analysis program performed a least squares fit to 

each set of data and so obtained resistance values for the V.D.P. 

formulae. 

From the measurements of the Hall coefficient and the resistivity 

of the sample, the carrier concentration and mobility were calculated 

using equations 2.2 and 2.4. 

3.3.2 Current-Voltage Characteristics 

Current-Voltage characteristics were measured in the dark and 

under' Afvll illumination at room temperature. Simuiation of AMl 

illumination was accomplished using a 1.5 kw quartz halogen strip lamp 

with a parabolic reflector housing, and a tray of water 2 em deep 

acting as a filter to reduce the infrared content (fig. 3.5). The 

source was calibrated using a standard silicon PIN diode (type 10 Df, 

United Detector Technology) and adjusting the distance between the 

source and the sample to provide· 100 mA/cm2 constant illumination. 

Measurements of the current-voltage characteristics were carried out 

point-by-point using a high impedance Bradley Voltmeter (type 173B) and 
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a low impedance Hewlett Packard ammeter {type 3465B). The bias voltage 

was provided by DC Voltage Calibrator type 2003 (Time Electronics 

Ltd.). An automated current-voltage tracer employing an X-V plotter 

was also used to monitor the effects of different treatments. 

3.3.3 Capacitance-Voltage Characteristics 

The Capacitance (C) of the Schottky diodes was measured as a 

function of bias voltage (V) to yield information about uncompensated 

donor concentration and the carrier mobility in the screen printed CdS 

layer. By using a Boonton 72B Capacitance meter operated at lMHZ; C-V 

characteristics were recorded point-by-point using a calibrated voltage 

source to provide the bias. 

3.3.4 Spectral response measurements 

The spectral response of a solar cell was measured using 1 ight 

from the exit slit of a Barr and Stroud double prism monochromater9 

Type VL2 9 fitted with Spectrosil •A• silica prism. A 250 watt quartz 

halogen lamp driven by a 200 V d.c. stabilised power supply was used as 

the light source. The energy distribution of the source at the exit 

slit9 which includes the varying dispersion of the prism monochromator 

was measured using a Hilger and Watts Schwartz compensated 1 inear 

vacuum thermopile9 type FT 16. 

The voltage was measured using a Keithley electrometer model 602 

which has a high impedance for voltage measurements. The output from 

the electrometer was plotted on a Honeywell Electronic (Model 196) high 

impedance chart recorder. 

A schematic diagram of the arrangement used for the spectral 

response measurements is shown in fig. 3.6. 

3.4 Device preparation 

3.4.1 Schottky diode formation 

For the preparation of the Schottky diodes9 the CdS samples were 
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first etched in 3% HCl for 3 seconds, and then Au~CdS diodes were 

formed by the vacuum evaporation of gold dots (1 mm diameter) onto the 

etched surfaces, The underlying Sno2 conductive coating beneath the 

CdS was used as the back contact of the Schottky device, 

3,4,2 CdS/CdTe Solar Cell Fabrication 

The main structure of the CdS/CdTe solar cell used in the present 

work was: 

Soda Lime glass/screen printed CdS/thermal evaporated 

CdTe layer/Ohmic contacts to CdS and CdTe, 

The preparation of the screen printed CdS layer will be described 

in Chapter 4, The other parts of the cell structure were prepared as 

follows: 

i) Preparation of CdTe 

CdTe junctions were deposited on the screen printed CdS layers in 

an Edwards Coating Unit, which is shown schematically in fig, 3,7, 

The 'CdS' substrates were mounted in a stainless steel mask and 

heated radiantly during growth by an infrared lamp (750W). The 

temperature of the substrate was monitored by a NiCr/NiAl thermocouple 

attached to the back of the substrate. A quartz crucible with a 

spirally wound molybdenum wire heater was used as the evaporation 

source. The charge temperature was measured using a Pt (13%) Rd/Pt 

thermocouple fixed in a way that its junction touched the bottom of the 

crucible through a special narrow tube provided for this purpose. 

The source material was high purity synthesized CdTe. A small 

quantity (5-lOg) of the charge was placed in the crucible for each run. 

In order to prevent spattering of the charge the mouth of the crucible 

was baffled with a thin layer of silica wool. The evaporation rate was 

calculated from the thickness of the film as measured in the SEM, and 
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the deposition time. The evaporation cycle for the CdTe film 

deposition was as follows: 

1) After loading the system it was pumped down to a pressure of 

5 x 10~ 5 torr~ and the substrate were heated to the selected 

temperature e.g. 150° - 200°C. 

2) The evaporation source was then gradually heated to 450° 

and the CdTe charge was outgassed for 30 mins. 

3) Depending on the expected deposition rate the source 

temperature was raised to lie within the range 750°C to 

950°C. When steady state conditions were reached~ the 

mechanical shutter was opened to start the deposition. 

4) At the end of the deposition (4-6 mins) the mechanical 

shutter was closed~ and the source and substrate heaters were 

switched off. 

5) The system was all owed to coo 1 down to room temperature~ 

while pumping was continued. 

ii) Copper doping 

Copper was employed to reduce the high resistivity of the 

deposited CdTe layer (see later). This was achieved by evaporating a 

calculated quantity of high purity elemental copper under high vacuum 

onto CdTe surface9 which was then annealed for copper diffusion as will 

be described later (Ch. 8). 

iii) Contact Formation 

To complete the cell structure ohmic contacts to CdS and CdTe were 

made. Contacts to p-CdTe were obtained by vacuum evaporation of gold 

or by painting a small quantity of carbon paste onto CdTe surface~ 

while for CdS a 1.5 mm pellet of indium wire was pressed and alloyed to 

form the contact on the screen printed CdS layer near the CdTe 

junction. With CdS films prepared on conducting glass9 the tin oxide 

layer beneath the CdS film provided the ohmic contact. 
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CHAPTER FOUR 

SCREEN PRINTING FOR SOLAR CELL APPLICATIONS 

4.1 Introduction 

The screen printing technique essentially consists of the transfer 

of the print paste of the desired material through a screen onto a 

special substrate and sintering them to form electronic components. 

In general~ there are various conditions and controlling factors 

involved in the application of this technique for the fabrication of 

solar cells which need to be closely understood and optimised if 

reproducible results are to be achieved. Otherwise many conflicting 

results can easily be obtained. 

The purpose of this chapter is to examine the significance of the 

printing parameters and other controlling factors with respect to solar 

cell applications. This includes device parameters~ screen parameters, 

the substrate, the screen printing paste and various aspects related to 

the sintering procedure. This chapter will end with a description of a 

typical procedure for the preparation of a screen printed CdS layer. 

It is useful to start this Chapter by reviewing the screen 

printing technique and giving a short history of its application to 

solar cells. 

4.2 Screen Printing Technique; review and short history 

Screen printing~ also known as 'thick film' or 'screen and fire' 

(1) processing is a long established technique which was born in the 

graphic art industry (2). An extensive review of the early history and 

application of this technology can be found in an article by Brunettei 

et al (3). The name thick film was given in the 1960s to differentiate 

this technique from the already existing thin film technology (4) (5) 

(6). 
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The many interesting properties of this technique such as cheap 

design~ reliability and automation (4) have made this technology very 

useful in various applications. 

It was adapted in the late sixties by the microelectronic industry 

for the fabrication of res i stars, capacitors, conductors and re 1 a ted 

circuit elements on virtually any substrate or printed circuit board 

material (7) (8). 

Recently, this technique has been used for various aspects of 

solar cell preparation. It has been used for the deposition of 

diffusion source layers, front grid metalization, back contact 

metallization, back surface field and for antireflection coatings (9). 

Today screen printing is accepted as the most effective method for 

solar cell metallisation in a production environment. Most of the 

world•s largest photovoltaic products use this technology (4) (10). 

The utilization of this technique in the preparation of active 

semiconductor layers for the use in solar cell fabrication was first 

reported in 1973 by Vodjani et al (11). In 1976 the wireless research 

laboratories of the Matsushita Company took the lead in developing this 

technique (12). By 1983 they reported an efficiency of 12.8% for an 

entirely screen printed CdS/CdTe solar cell of an active are of 0.78 

cm 2 (13). A reliable performance of their cells was observed under 

roof top conditions ( 14). The major achievement of the Matsushita 

group was reviewed very recently by S. lkegami (15). 

A typical manufacturing procedure for entirely screen printed 

CdS/CdTe solar cells is shown in Fig. 4.1. 

Several other groups in the world have started using screen 

printing techniques in producing other solar cells structures such as 

CdS/CulnSe2 (17), CdS/polysilicon solar cells (18) and screen printed 

particulate silicon solar cells (19). 
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Since the work reported by Matsushita group was described in terms 

of solar cell parameters~ effort has begun to understand the effect of 

various parameters involved in the fabrication of the screen printed 

devices (20~23). The work described in this thesis forms a further 

contribution. 

4.3 Screen Printing device 

The availability of a proper screen printing device is very 

necessary for reproducible printing procedure. To fulfil this 

requirement a screen printer was designed and built in this laboratory 

and optimised9 following a series of trials, to produce an accurate 

print quality. The device has the following specifications. 

1) A printing base with a vacuum to keep the printed material 

(substrate) in place and prevent it from adhering to the bottom of 

the screen. 

2) A raising mechanism for adjusting the substrate from screen (snap 

off distance). 

3) A proper screen frame with stretching mechanism to hold the 

printing screen tight. 

4) A squeegee with controlling mechanism to adjust the angle and 

pressure, which can travel forward and backward on a linear track. 

5) The screen frame as well as the squeegee mount to be securely held 

by special clamps. 

A photograph of the screen printer together with its main 

components are shown in Figs. 4.2A and B. 

4.4 Effect of printing parameters 

There are a large number of variables which may affect the quality 

of the print produced by the screen printing processes ( 24). However, 

it is believed that device parameters and screen parameters are the two 

major ones which can largely influence the printing conditions (1). 
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In the following sections the magnitude and effect of these 

parameters will be briefly described. 

4.4.1 Device parameters 

The most important device variables are the squeegee~ the snap off 

distance and volume of paste on the screen. 

1) The Squeegee: It is made of a speci a 1 rubber b 1 a de he 1 d by a 

metal handle. In principle, it is used to force the printing paste 

through the screen and deposit it on the substrate. The role of the 

squeegee in the printing procedure has been reviewed by many authors 

(1) (25). 

However~ for the purpose of this study special care m~st be taken 

to ensure the following: i) the use of an inert squeegee which does not 

react with the printing paste, ii) a relatively hard squeegee blade 

with square edge shape to help in maintaining the squeegee angle of 

attack and removing the surplus paste from the screen surface sharply, 

iii) the squeegee should be applied at a special angle which helps in 

using the area immediately below the edge to push the paste through the 

screen. The angle of attack has to be decided for each experiment 

since it varies with screen parameters and paste properties and finally 

iv) the squeegee pressure must be adjusted with the snap off distance 

such that it should not deform the squeegee edge and change the angie 

of attack. 

The normal squeegee stroke is shown in Fig. 4.3. 

ii) Snap off distance: This is the distance between the substrate and 

the screen at rest. This distance depends on the tension of the screen 

(4) and it is desirable that it should be as small as possible and 

consistent with achieving a satisfactory peeling action of the screen 

immediately behind the squeegee blade. This peeling is very important 

in the screen printing process as the rate of separation of the screen 
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Fig. 4.3 The normal Squeegee Stroke 
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from the substrate is the principal factor controlling the ratio of 

paste transferred to the substrate to that left in the screen (1). In 

practice the snap off distance varies between 0.6 and 1 mm (4). 

iii) Amount of paste ~~ _t~~ screen: It is necessary to apply a 

controllable amount of paste to the screen since a large volume of 

paste tends to reduce the squeegee attack angle and produce a heavier 

deposit. 

Following a series of trials the device parameters in this study 

were optimised to the following: 

Using a polyurethane squeegee blade with hardness of 70 Shore A 

(Serical Co.) with a square section, two angles of attack were used, 

45° for paste distribution on the screen and 55° for the deposition of 

paste on the substrate through the screen (see Fig. 4.3). Care was 

taken to apply the same amount of paste each time using a spatula for 

each print. 

4.4.2 Screen parameters 

The screen is the most important part of the screen printing 

process (26). It acts as a metering device for the deposition of a 

controlled amount of paste (5). Different screens are characterized by 

various parameters (1). The most important ones are; screen material, 

screen tension, mesh number, wire diameter and percentage of open area. 

The significance of these parameters has been reviewed in detai 1 by 

several authors (1) (26) (27). 

In what follows, brief comments in each parameter will be given. 

i) Screen material: Three types of screens are currently being used 

for screen printing, namely, nylon, polyester and stainless steel. The 

latter has been widely used in electronic circuit applications. 

However, it is costly and has a low life. In addition, stainless steel 

loses its resilience quickly. On the other hand a nylon screen has a 
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high resilience but it is inclined to stretch when under pressure from 

the squeegee. The polyester screen represents the best compromise 

between the lack of resilience of the stainless steel and the high 

elongation of the nylon (27). Moreover it is a low cost material. 

i i) Screen tension: Different types of screen have different 

stretching values. To obtain a high quality print~ it is important 

that the screen is tensioned to the recommended values. Screens which 

are too loose will not release properly from the substrate and will 

pull off some of the printed paste~ while very tight screens may cause 

splitting of the screen and premature loss of tension. 

Information about screen stretching and tension level~ together 

with the proper tension mechanism, can be found in the accompanying 

sheet of information of the screen used. 

iii) Screen thickness: This parameter plays an important part in 

controlling the thickness of the final screen printed layer. The 

thickness of the screen is normally measured in microns. A coarse 

screen will result in a thick coating of paste, consuming a lot of 

paste and requiring a long drying time (28), while a fine screen will 

result in a light coating, less paste used and less drying time. 

iv) Mesh number: This is defined as the number of wires per inch. 

The mesh number· is usually considered as a measure of the expected 

deposit thickness, the lower count gives a thicker deposit while the 

higher the count the finer the deposit. 

v) Wire diameter: Measured in microns. Normally a thin diameter is 

desirable to allow a small distance between mesh opening. 

vi) Percentage of open area: A 1 arge percentage of open area is 

needed since the paste will pass more readily through the screen 

without hanging in the mesh opening. The mesh opening in particular 

must be large enough so that the larger paste particles do not clog the 
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screen. It is recommended that the mesh opening should be 

approximately 2t to 5 times larger than the average grain size of the 

paste material (26). 

The above described parameters are shown in Table 4.1 for some 

selected screens. 

Screen Mesh Stretch- Thick- Wire Mesh Percentage 
Material No. ing ness diameter opening of open 

% ~m ~m ~m area (%) 

Polyester 53 3 290 160 216 44 

Polyester 125 4 125 70 134 43 
-

Polyester 196 4 100 55 74 32 

Stainless 

Steel 165 .5 106 50 104 46% 

Table 4.1 Major screen parameters 

Fig. 4.4 illustrates the importance of some of the above 

parameters in producing the final thickness of the deposit. It is 

clear that by using a thinner wire diameter (d), the paste cubes will 

have very small gaps between them so that they only have small distance 

to flow to form an even layer. With thick wires the cubes will not 

flow out sufficiently and hence will produce a non uniform layer. 

A trial to investigate the thickness of the deposit by varying the 

mesh number of the screen and the screen material is illustrated in 

Fig. 4.5. It is clear that a '53 mesh' polyester screen produced the 

thickest deposit(- 70~m), while a '196 mesh' polyester screen gave the 

thinnest deposit (~ 15~m). A '125 mesh' poly screen gave a thickness 
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ink forming an even film 

Fig. 4.4 Significance of screen parameters on print quality 
(W : mesh opening; d : wire diameter; S : screen 
thickness and S* : theoretical thickness) 



10~ 

Fig 4.5 Variation of screen printed film thickness 

with different screens 

A 196 mesh polyester screen 

B 125 mesh polyester screen 

c 165 mesh stainless steel screen 

D 53 mesh polyester screen 
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of 25~m. It is interesting to note that although 1 165 mesh• stainless 

steel had a higher mesh number than 1 125 mesh• poly screen 9 and would 

therefore be expected to yield a thinner deposit thickness (secto 

4.4.2~iv) ~ nevertheless9 the thickness produced was larger ( ~ 351-lm). 

This may be attributed to the finer wire diameterg and larger 

percentage of open area (Table 4.1) (27). 

It should be mentioned here that although the ultimate thickness 

of the paste deposit is additionally influenced by other factors (e.g. 

viscosity of the paste (see later)g device parameters (section 4.4.1) 

etc.) the mesh opening9 wire diameter and screen thickness are the most 

important features. 

For the purposes of this study 1 125 mesh • polyester screen was 

used most of the time. 

4.5 The substrate 

4.5.1 Substrate properties 

The substrate plays an important part in the screen printing 

process and its effect on the final film properties is very significant 

(29). 

In general the major requirements of a substrate for screen 

printing application may be summarized as follows: 

(1) It should have good electricai insulation properties 

(2) provide a strong9 stable support for printed components and 

attached device. 

(3) maintain dimensional stability without bowing at the temperature 

used. 

(4) have high thermal conductivity for greater heat dissipation. 

(5) have a similar coefficient of thermal expansion to that of the 

film to reduce the stress. 
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(6) be chemically and physically compatible with the appropriate 

paste components9 so that a strong bond between the screen printed 

film and the substrate is formed. 

(7) have a low cost in quantity production (5). 

The most frequently used substrates in screen printing are of 

glass. The properties of these vary widely depending on their chemical 

composition (30). Some typical chemical compositions of commonly used 

glasses and their major properties are shown in Table 4.2. 

Three glass substrates were mainly used in this study; namely~ 

soda lime~ borosilicate 7740 and a soda lime coated with •sno2•. 

The significance of these substrates in screen printing 

applications will be discussed in detail in Chapter 7. 

4.5.2 Substrate Cleaning 

Glass substrates must be thoroughly cleaned before the deposition 

of the printing paste to ensure reproducible results (1). 

A variety of cleaning procedures exist~ depending on the nature of 

the substrate~ the type of the contaminants and the degree of 

cleanliness required (30). The following procedure is normally 

adequate for cleaning glass substrates (31) and is used in this work: 

The gross contaminants are first removed by warmed detergent mixed with 

dionized water in an uitrasonically agitated bath. The glass is then 

rinsed thoroughly several times in deionized water and later subjected 

to a vapour degreaser using Isopropane Alcohol (IPA) for several 

minutes to ensure that no strains persist on the dry substrate. 

4.6 The screen printing paste 

4.6.1 Introduction 

The materials that are to form the desired device are made up into 

the form of viscous paste~ for application to the substrate. 



Major Compositions Strain Point Thermal Expansion 

no. Glass type Si02 NaO CaO MgO Al 2o3 BaO 8203 (oc) Coeff. (0-300°C) 

1 Soda Lime 

Corning 008 67.7 15.6 5.6 4.0 2.8 2.0 1.5 472 9.2 

2 Borosilicate 

Corning 7746 80.6 4. 1 - - 2.5 - 10.3 520 3.25 

3 Borosilicate 

Corning 7059 50.2 - - - 10.7 25.1 13 613 4.5 

4 Fused Silica 

Corning 7940 99.5 - - - - - - 990 .56 

-' ~~ - -

Table 4.2 Composition and major prop1:!rties of some common glasssubstrates (Ref. 30) 

Thermal Conductivity 

W cm-l deg-l 

.009 

.018 

-
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The main paste constituents and a typical formation mechanism will 

be described below. 

4.6.2 Paste constituents 

The paste used in this study contained three major constituents~ 

i) the active powder~ ii) the flux and iii) an organic binder. 

i) The active powder. This is the functional constituent in the 

paste. After sintering it determines the electrical properties of the 

layer. Various aspects related to the powder application in screen 

printing will be discussed in chapters 5 and 6 In general, purity, 

grain size and grain size distribution of the powder will greatly 

influence the paste formation and the subsequent sintering procedure 

(1) (4). 

ii) The flux. This is a special material which is included in the 

paste and has a low melting point so it helps to promote contact 

between the powder particles during sintering, and causes adhesion of 

the paste onto the substrate. Further discussion of the role of the 

flux in the sintering procedure will be given in the next section, 

while the significance of using a controlled ratio of flux in the 

printing paste will be discussed in Chapter 6. It is worth mentioning 

here that the flux material also provided the donor dopant (see later). 

iii) Organic binder. This is a viscous liquid in which the powder and 

flux are mixed and suspended. In general, the bin-der should have the 

following functions (28) a) joining the powder particles together, b) 

making possible the processing of printing and c) adhering the paste to 

the substrate. 

Due to the carbon content of the binder it should burn off 

completely during the sintering procedure leaving no residue. The 

proportion of binder in the paste is expressed in volume percent and a 

proper ratio used should be sufficient to wet the powder particles and 
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to fill all the voids between them. When the proportion is greater 

than the critical point~ air filled voids form in the dry film. The 

correct ratio will result in a void free continuous printed film. This 

correct ratio is influenced by many parameters such as powder grain 

size and purity (32). 

Various types of binder such as cellulose derivatives~ vinyls and 

glycols may be used for screen printing applications depending on the 

properties desired. 

Glycols are often used in screen printing since their slow 

evaporation maintains the film open or wet for a long time to allow a 

satisfactory coalescence and a more coherent film in the room ambient. 

Among various glycol types~ the most commonly reported in the 

screen printing literature is 'propylene glycol' which has the 

following properties: 

o Composition CH3CHOHCH20H 

o Boiling Point 187°C 

o Density: 1.036 

This binder was used in the present study. 

4.6.3 Paste formation 

i) Mixing Procedure 

Pr-obably the most critical part of a screen printing process is 

the mixing procedure of the paste constituents. Great care must be 

taken to apply the same mixing procedure for every paste preparation. 

The function of mixing in this study was to achieve the following 

purposes: 

a) Flux and dopant distribution : Since flux material and impurities 

are normally mixed with the initial screen printed paste, proper mixing 

is of great importance to ensure the correct distribution and intimacy 

of these materials with other paste constituents (i.e. powder and 
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binder). Otherwise unsatisfactory results would occur. Experimental 

results will be described in Chapter 6. 

b) A good screenable easte.~ which is required fov- smooth printing 

operation9 can be achieved by the rubbing action between the paste 

constituents9 which will make each pav-ticle of the ingredients wet and 

completely mixed with the binder. Also during the process the powder 

agglomerates will break down helping to expose more particles to the 

paste (33). 

A proper paste mixing equipment is needed~ and specialized roller 

mills are best for preparing a proper paste. A mortar and pestle is 

also beneficial. The mixing procedure followed in this study was 

performed manually using a glass beaker and a rod9 where the paste was 

mixed thoroughly with the help of ultrasonic stirring. Ultrasound is 

very effective in dislodging mechanically interlocked particles (34) 

and produces a fine and uniform dispersion. 

ii) Paste Characteristics 

The flow behaviour (rheology) of the screen pv-inting paste is 

mainly controlled by the viscosity of the paste. Other influencing 

parameters are described in the literature (35-37). 

The viscosity Of the paste can be described as 11 how a substance 

flows" (28). It is a measure of the inner resistance of the paste, 

which is also called its consistency. The greater the inner resistance 

of the paste, the more slowly it flows. 

The viscosity is mainly influenced by two factors9 i) the 

characteristics of the paste constituents (e.g. powder purity and 

particle size) and ii) the volume ratio of binder to powder. 

The viscosity requirements of the paste are complex (4) (37). 

Generally, during screen printing the paste must be viscous enough 

(thin) whereas immediately after the printing the viscosity must 
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increase (thick) to allow a levelling off of the printed layer. Fig. 

4.6 shows the variation of paste viscosity with time. It is clear that 

a sharp decrease in the viscosity at the moment of printing through the 

screen will allow the printing of more material in a shorter time. 

This behaviour is called thixotropy (4). A good thixotropic paste is 

one which will allow (a) easy smooth distribution over the screen to 

fill the mesh without excessive pressure 9 and (b) smooth release of the 

screen from the substrate leaving a minimum of paste in the mesh after 

printing. 

Non-optimum paste properties can lead to undesirable printed 

layers. For example, a porous structure can result from an increased 

binder ratio, cracks can occur if water is used in an attempt to 

improve the viscosity, and screen marks may occur if levelling 

properties of the paste are lacking. A set of these printing faults is 

shown in Fig. 4.7 A, B and C together with a normal printed structure 

in Fig. 4.7 D. 

4.6.4 Correlation 

Paste properties and printing variables are closely inter-related 

and a strong correlation exists between them. G. Dubey (38) indicated 

that with every paste, the mesh size, the material of the screen, the 

snap off distance, and the squeegee parameter§ have to be optimised, 

otherwise completely meaningless results would be obtained. For 

example, the thickness of the printed layer depends largely on two 

parameters; the viscosity and the mesh number. It is necessary in 

studying the effect of changing one parameter to ensure that the others 

remained unchanged. 

In general, the printing faults which occur in screen printing are 

usually concerned either with improper paste formation or with improper 

printing parameters. 
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Fig. 4.7 Optical microscope micrographs of different screen printed 
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The most commonly occurring faults together with their possible 

causes have been discussed by many workers (l) (5). 

4.7 The Sintering St~g~ 

4.7.1 Introduction 

The sintering stage is an essential part in the screen printing 

process. In fact the process is frequently known as the screen and 

sintering technique (15). It is during the sintering proceSS 9 that the 

electrical and mechanical properties of the film are developed (1). 

In what follows a brief description is given of the various 

furnaces used for the sintering process, as well as of the sintering 

envelope. The sintering procedure and the sintering theory will be 

presented. 

4.7.2 Furnace Studies 

i) Furnace type 

The sintering operation is performed in a special furnace in an 

inert atmosphere. The literature of screen printing indicates that 

there are three furnaces which are normally used for sintering 

purposes; the belt furnace (15) the muffle furnace (39) and the tube 

furnace (21). 

i) The belt furnace9 this is the most commonly recommended furnace 

for sintering screen printed layers (4) (40). It uses infrared 

radiation for heating and has an accurately controlled sintering 

profile. It is designed so that it is long enough to complete the 

whole sintering procedure. The printed layer simply rests on a belt 

which has a preset speed depending on the desired sintering time. The 

belt moves through various sintering zones. The first zone is the 

prefiring zone. The second is the high temperature sintering zone and 

the third is the cooling zone. In passing through the length of the 

furance, the sample is gradually raised to the desired sintering 
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temperature and then gradually cooled down to approximately room 

temperature. Each zone has its own atmosphere and changes over from 

one to the other with the opening and closing of special valves. The 

volatile fumes from burning the binder from the sintered layer are 

disposed through a special central exhaust. 

Unfortunately9 these furnaces are too costly to be used for 

Laboratory purposes. As a result other options are needed. 

ii) Muffle furnace this furnace has a major application in ceramic 

screen printing (39). It consists of a rectangular cavity and was 

tried here in an attempt to provide a better closed atmosphere during 

the sintering process. However9 the major disadvantages of this 

furnace were its slow sintering rate and very long cooling period 9 in 

addition to difficulties in removing the vollatilized fumes and burning 

the binder. Experimental results using this furnace will be discussed 

in Chapter 6. 

iii) Tube furnace : this conventional furnace was mainly used in this 

study. It consists of a silica tube overwound with the heating 

element. The sample was placed in the central zone. 

The furnace system used and its temperature profile are shown in 

fig. 4.8 A and B. 

ii) Sintering rate 

Close control of the sintering rate of the furance is important 

(41). The sintering rate must be chosen to meet the desired 

requirements of a final layer. 

A study of various sintering rates of the tube furnace is 

illustrated by the curves in fig. 4.9 together with those for the 

muffle furnace for comparison. The numbers shown on the sintering rate 

curves are representative of the maximum power used to change the 
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sintering rate. Their interpretation and significance will be 

discussed in Chapter 6. 

Different tube furnaces have different sintering rates depending 

on the windings of the heating elements. 

iii) Cooling rate 

The cooling rate of the furnace must be closely controlled to 

avoid undesirable effects. Fast coo 1 ing can induce stacking faults 

with cubic structure (42) and it can also disturb the compactness of 

the layer. Very slow cooling can cause deviation from proper 

stoichiometry through the differential evaporation of sulphur. 

The cooling rate curve of the tube furnace used is shown in fig. 

4.10. It indicates that a long time was needed to cool the sample from 

the high sintering temperature to room temperature. As a result a 

typical cooling procedure was followed to minimize the effects of the 

cooling period as will be described later. 

4.7.3 Sintering envelope 

The screen printed layer is placed in a specially designed 

sintering envelope and inserted into the central zone of the tube 

furnace (see fig. 4.8 A). A schematic diagram of the sintering 

envelope used is shown in fig. 4.11. It consists of a cylindrical boat 

which is cover'ed with another speciaiiy designed boat such that it 

leaves an elongated 2mm opening. The sample rests on a special support 

to equalize the temperature of the printed substrate which might 

otherwise vary due to the geometry of the cylindrical boat. The choice 

of the support is not crucial, it is very critical. It is easy to 

obtain misleading results with an inadequate support. A good support 

is one with (1) high thermal conductivity which will allow good heat 

transfer and (2) low thermal expansion so as not to be affected by the 

high sintering temperature and thus always offer a flat surface with 
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isothermal heating. Among the various support materials tried silica 

was found to yield the best results. 

4.7.4 Sintering Procedure 

In genera19 the processes following the actual screen printing of 

the layer can be classified into four operations (5)9 namely 9 paste 

coalescence, drying9 burning off the organic binder and finally high 

temperature sintering. 

i) Paste co a 1 escence : a short period is needed directly after the 

printing for the sufficient levelling of the paste on the substrate. 

This time depends mainly on the paste composition (5). 

ii) Drying process : This is a relatively low temperature process 

(70°-l50°C). Drying is usually understood to be the elimination of 

moisture in the film. However, when solvents are used with the paste 

constituents (32) this process is also needed for solvent evaporation. 

In general, the drying time depends on the thickness of the paste and 

the method used for drying. It has been claimed that infra red is best 

for drying the printed layers (1) (4) since it penetrates deeply, 

causing bulk heating of the paste and hence ensures moisture and 

solvent free layers. 

iii) Burning-off the organic binder : Effi cent binder remova 1 is very 

necessary for a high performance of the final layer since any retained 

carbon residue can cause pin holes or bubbling in the composition (1). 

This burn-off process occurs at 200°-350°. A flow of air is necessary 

to ensure rapid oxidation of the carbonaceous residue (5). 

In the tube furnaces the burning of the binder is generally 

carried out as the first phase of the final firing processg so that in 

the belt furnace, for example, the temperature profile provides an 

adequate period at low temperature for effective binder removal. 
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iv) Final Sintering : At this stage the flux material melts~ and the 

powder particles partially dissolve in it. A brief description of the 

role of the flux in sintering and the actual sintering theory will be 

given here. 

a) Flux role Flux is a term used generally to describe a material 

which lowers the fusion point of another material for the purpose of 

obtaining more rapid liquifaction than obtained by temperature alone. 

In this study CdC1 2 in the paste acts as a flux for the fusion of 

CdS material. CdC1 2 melts at a low temperature and the CdS dissolves 

in the mo 1 ten CdC1 2. Then s i nteri ng process promotes growth of the 

powder particles by fusion and granule regrowth at temperatures well 

below the normal CdS sublimation point (7). 

b) Sintering theory (Liquid Phase Sintering) The sintering 

enhancement of CdC1 2 is called liquid phase sintering (21). This 

refers to the sintering of a powder mixture of two or more components~ 

of which at least one has a melting temperature lower than the others 

(43). The sintering temperature is then selected in such a manner that 

a liquid phase is formed in which the solid powder particles of the 

other components join together and are re-arranged by the action of the 

liquid phase (1). 

Unless the liquid phase penetrates completely between solid 

particles, the presence of the liquid is not effective as a sintering 

aid (4). 

An excellent general discussion of liquid phase sintering has been 

presented by W. Kingery (44) (45). 

4.7.5 Sintering parameters 

Standardizing the correct sintering procedure is very important in 

the interdependent processes of screen printing. There are a 1 arge 

number of parameters which have to be controlled to produce the best 
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screen printed layer. Included among others are the following~ powder 

grain size and distribution (4) (44)9 purity of the powder (46)9 paste 

viscosity and mixing procedure (45)9 flux ratio (6)~ furnace type (4) 

and the confinement of the sintering ambient. The influence of most of 

these parameters upon the final performance of the screen printed layer 

will be described in Chapter 6. 

4.8 Preparation of the screen printed CdS layers 

The preparation procedure of the screen printed CdS layer involves 

five stages9 viz: initial setting-up of the printing device9 paste 

preparation 9 paste application9 sintering procedure and finally cooling 

the screen printed layer. 

i) Initial setting of the device Before printing commences 9 certain 

device parameters must be estimated to be approximately in the correct 

range. The most important parameters are the snap-off, squeegee angle 

of attack and squeegee pressure. It is impossible to give specific 

values for these parameters as the optimum values will depend upon such 

factors as paste viscosity, screen types9 etc. (1). However useful 

starting points for snap-off distance would be in the range of .6-.8 

mm. The squeegee angle for paste distribution was 45° while it was 

fixed at 55° for paste deposition. The squeegee pressure was adjusted 

with the he·l p of an indicator on the squeegee. The criterion sought 

was a smooth movement of the squeegee travel. 

ii) Paste preparation The CdS screen printed paste was prepared by 

mixing CdS powder with 10-15 wt% CdC1 2 (flux and dopant) and 35-45 vol% 

of propylene glycol (binder). 

The paste constituents were mixed thoroughly as described in 

section 4.6.3-i to produce a smooth paste (section 4.6.3.-ii). 

iii) Paste application A clean substrate was placed on the vacuum 

printing base. A controlled quantity of CdS paste was placed on the 
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clean screen just at the top of the substrate edge using a spatula. 

The paste was then spread with the distribution squeegee head to cover 

the image area of the substrate. The paste was then forced through the 

screen mesh with the required deposition angle. On removal of the 

squeegee~ the screen regained its original position by its natural 

tension~ leaving behind the printed paste on the substrate. 

The initial settings of the printing parameters were then slightly 

adjusted to match the paste viscosity~ so that a clean smooth and 

evenly distributed paste was always produced. 

A simple printing procedure can be seen in fig. 4.3. 

iv) Sintering procedure The printed CdS layer was allowed to settle 

for 10-15 minutes in a clean environment and was then dried for 1 hour 

at 120°-l50°C in a small oven. The dried layer was then placed in the 

s i nteri ng en vel ope and inserted into the centra 1 zone of the tube 

furnace. The temperature of the furnace was set initially to 350°C for 

15-30 minutes to burn off the binder and then the temperature was 

raised to a higher value between 620°-680°C for 60-120 minutes. The 

sintering rates used varied from 30% to 100% while flow rates between 

.04 L/min and .4 L/min were investigated. 

v) Cooling procedure The sintered layer was allowed to cool 

natur·a11y in the centrai zone unti 1 the temperature of the furnace 

reached 350°C then the layer was gradually moved towards the exit, and 

finally removed at room temperature. 
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CHAPTER FIVE 

PRELIMINARY STUDIES 
- ·-

The purpose of this Chapter is to introduce some preliminary 

studies concerning the two major constituents of the CdS screen 

printing paste~ namely9 the CdS powder and the CdC1 2. 

5.2 CdS Powder Studies 

The significance of the starting CdS powder was mentioned in 

section 4.6.1. In this study various powders from different suppliers 

were tried and examined with a view to choosing the best one for the 

purpose. The following four powders were the major ones examined which 

represent a variety of features. The first one was supplied by General 

Electric Co. (U.S.A.). The second~ was an old powder with unknown 

origin while the third one was supplied from B.D.H. Ltd. (U.K.). The 

fourth powder was from Ha~n Co. (Germany). For simplicity these 

powders will be referred to as powders A, B, C and D respectively. 

In what follows a brief description is given of the various 

powders in relation to their major parameters i.e. purity, grain size 

and grain size distribution (sect. 4.6.1). The results of preliminary 

sintering trials will also be described. 

5.2.1 Various Powder Types 

i) Purity 

Powder A : This is a 1 umi nescent grade powder which is known to be 

comparable to or slightly below that of semiconductor grade. 

Powder B This powder has been available in the Laboratory for a long 

time. A large density of absorbed impurities from the atmosphere is 

expected to exist. 
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Powder C : This powder was pre sub 1 imed at 700°C in an Argon flow to 

remove volatile impurities. The resultant flow powder was of light 

yellow appearance. 

Powder D : is a high purity 5N grade powder which is the powder usually 

described in the literature of screen printing CdS layers. 

ii) Grain Size Consideration 

Careful control of the grain size and distribution is essential to 

ensure dense compaction (1) of the screen printed layer. However, it 

is not always possible to obtain the proper grain size for screen 

printing applications. Some powders from the chemical suppliers are 

very fine (<.5 ~m) so that they have to be calcined~ then crushed to a 

suitable grain size (2). Other powders with very large grains have to 

be crushed to the desired size. The CdS powders examined in this study 

have the following grain size characteristics. 

Powder A This powder has a blend of grain sizes which vary from 1-3 

~m. This is near the optimum grain size of 1-2 ~m reported as 

appropriate for screen printed CdS layer applications (3). The grain 

size distribution of this powder is shown in fig. 5.1 A. 

Powder B The grain size of this powder was examined under the SEM, and 

found to be of the order of 60-80 ~m (fig. 5.1 B). This is too large a 

size for screen printing application. Various techniques have been 

tried to obtain the appropriate grain size such as swing milling, 

manual grinding in a mortar and ball milling. The latter was found to 

be the most convenient method. The ball mill consists of three bottles 

with special ceramic balls for grinding purposes. Different milling 

times with different quantities of CdS powder have been tried. Figs. 

5.1 C and D show the best grain size distribution obtained with 9 hours 

and 16 hours milling time respectively. The latter was chosen in this 

study. However, the appearance of non uniform grain size distribution 



Fig 5.1 Grain size distribution for various powders. 

A) Powder A (As received) 

B) Powder B (As received) 

C) Powder B ( 9 hrs. mi 11 i ng time) 

D) Powder B (16 hrs. milling time) 
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is very evident with submicron grains mixed together with a large grain 

size. It should be noted that milling unavoidably introduces 

undesirable contaminants either from the milling balls or during the 

filtering procedure. In addition~ a phase change could occur as a 

result of a milling action (4). This could introduce a further 

complication. 

Powder C The resultant flow powder was in the form of large rods and 

platelets which needed to be crushed to a powder with small grain size. 

The same milling procedure used for ~owder B was followed again. By 

optimizing the millin§ time~ a powder was obtained with a similar grain 

size distribution to powder B. 

Powder D SEM examination of this powder revealed agglomerates of 200 

JJm size, each agglomerate containing grains ranging from 10-15 1-1m in 

size. After a short milling period, the agglomerates were broken, and 

the resultant powder had a good grain size distribution of 3-5 JJm. 

iii) Preliminary sintering trials 

A preliminary sintering trial of screen printed layers utilizing 

the powders described above revealed an interesting phenomenon 

concerning powder D. This powder produced the best thixotropic paste 

when -compared-- wHh th-e pastes prepared using tne other powders. 

However, sintering the printed layer using powder D led to a peculiar 

appearance with black spots distributed all over the surface. An 

overall view of this feature is shown in fig. 5.2 A. The SEM 

observation of the black spots is shown in fig. 5.2 B and revealed 

faceted crystallites nucleated above the surface of the sintered layer. 

These were identified using EDAX as a simple cadmium crystallites 

(Figs. 5.3 A and B). It is clear that a major sulphur loss occurred in 

the faceted area and a non stoichiometric CdS layer had been produced. 
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The layers sintered from powders A9 B and C had normal 

stoichiometric surfaces with clear appearances. Facete only occurred 

when a very slow inert flow was used. 

These results suggested that powder 1 D 1 had a great tendency to 

loose S and to become non stoichiometric more rapidly than the other 

powders. As a result9 and also in view of the high cost of the Ha~n 

powder9 the present study was confined to powders A9 B and C. Major 

studies of these powders will be described in Chapter 6. 

5.2.2 Powder resistivity trials 

In general9 an intrinsic semiconductor may exhibit a relatively 

large change in electrical resistivity with pressure due to the change 

in band structure9 which accompanies a compression of the lattice (5). 

Brentano et al (5) in their studies of the effect of pressure on 

powdered semiconductors used a vacuum press and the simple V-I 

measurements of resistance. 

The same technique was used here. The resistivity of a powder can 

be changed by varying the impurity incorporated. Unfortunately9 

although a lot of work was done 9 the results were difficult to analyse 

and no true estimate of resistivity was obtained. Nevertheless9 a good 

-i-ndication of the effect of impur-ities-on Cds- powder was ·ablained. 

5.3 CdC1 2 Studies 

5.3.1 Introduction 

CdC1 2 has a dual function in the formation of the screen printed 

CdS layers as a donor (section 2.2.1-ii) and as a flux (section 

4.7.4-iv-a). In discussing the fluxing and doping effects of CdCl 2 it 

is important to know whether the initial concentration of CdCl 2 present 

in the paste changes during the course of the sintering procedure. 

Such a change is very likely to take place because of the volatile 

nature of CdC1 2. It starts to volatilize at 400°C and is completely 
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volatilized at 600°C (6) (7}. Since high temperatures are normally 

required in the fabrication of screen printed CdS layers~ )600°C (see 

later) it is very crucial to stress that sufficient CdC1 2 must be 

available for fluxing and doping purposes and this imposes very 

restricted sintering conditions. 

The purpose of the following sections is merely to monitor the 

behaviour of CdCl 2 with various sintering temperatures using EDAX~ XRF 

and AAS techniques. The impact of this behaviour upon the performance 

of the CdS screen printed layers will be considered in the next 

Chapter. 

5.3.2 EDAX Studies 

The EDAX spectra from CdS layers using 10 wt % CdC1 2 ~ as starting 

ratio~ after three different sintering temperatures are shown in fig. 

5.4. The maximum chlorine peaks are shown by the 300°C layer; this 

temperature is well below the initial volatilization temperature of 

CdC1 2 (i.e. 400°C). The height of the peak decreased significantly at 

450°C and at 550°C the chlorine peak was not detected~ which suggests 

that the remaining chlorine is less than 1 wt %. 

5.3.3 XRF Studies 

XRF was also employed-to ob-serve -th-e variation of- the quantffy of 

chlorine remaining after different sintering temperatures. The 

residual amount is shown here by CPS (counts per second). The values 

obtained after sintering at 350°~ 450° and 550°C were 1700, 1292 and 

310 CPS respectively. For a layer sintered at 620°C it dropped to 230 

CPS. Clearly the chlorine content decreased considerably at 550°C from 

its value at 450°C~ while when the temperature was raised to 620° the 

value was only slightly reduced further which indicated that the 

significant reduction occurred between 450° and 550°C. 
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5.3.4 AAS Studies 

The amount of chlorine left in the sintered layers was also 

measured by atomic absorption spectroscopy. The equivalent values with 

those obtained from XRF analysis for the three temperatures 

investigated here; 350°~ 450° and 550°C were 2.75 9 2.21 and .27 wt% of 

chlorine. For a layer sintered at 620°C the value was less than .05 

wt%. 

For comparison purposes it is worth mentioning that Uda et al (3) 

detected more than 4% chlorine ions in a CdS layer sintered at 550° and 

at 620° the remaining amount was about 1 .5%. These values are 

significantly higher than those measured here. Further discussion will 

be found in Chapter 6. 
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CHAPTER SIX 

CdS FILM CHARACTERIZATION 

6.1 Introduction 

The characterization of the screen printed CdS layers which will 

be presented in this chapter are concerned with the optimization of the 

parameters involved in the printing conditions discussed in Chapter 4. 

This is very important, because this optimization plays a significant 

role in the reproducibility of the electrical and structural behaviour 

of the final sintered layers. 

This chapter will discuss the characterization of CdS layers 

deposited on both insulating glass (Soda Lime and Borosilicate), and 

conducting glass (Sno2 coated glass). The preparation and sintering 

conditions were investigated mainly using Ha 11 effect and Schottky 

barrier measurements. 

There are two major purposes of this characterization. 

1) To determine the preparational and sintering parameters which lead 

to the optimum electrical and structural behaviour of the CdS 

1 ayer. 

-2) To assess the- suttability of the sinfered-CdS Tayer-for junction 

fabricat·ion by choosing a simpie device structure, namely a 

Schottky barrier diode, in order to avoid the complexity 

associated with the formation of a CdTe heterojunction which is 

the final goal. 

SEM observations were made in parallel with Hall effect measurements in 

an attempt to correlate the morphology of the sintered layer with the 

electrical behaviour. 

Resistivity data will be presented with Hall and Schottky data of 

donor concentration and carrier mobility. However 7 some aspects 
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related to the resistivity of the sintered layer will be given in 

Section 6.2.1. 

Finally9 EDAX, ESCA and XRD analysis will be presented as further 

means for tne characterization of the sintered layer. This leads to a 

better understanding of the structure and composition of the layers. 

It was hoped that a coherent relation between the optimum methods 

of preparation and sintering condltions, and the optimum CdS layer 

would be revealed with the aid of the characterization techniques used 

in this study. 

6.2 Electrical Characterization 

6.2.1 Resistivity Considerations 

6.2.1.1 Introduction 

Resistivity measurements give an initial characterization of the 

quality of the sintered layer. A low resistivity CdS layer is usually 

taken as an indication of a good sintered layer. 

The as printed layers were normally of very high resistance 

(>l06
J).. em). The preparation and sintering conditions have to be 

closely controlled to produce a low resistivity layer. The 

resistivities of CdS layers deposited on insulating and conducting 

glass have-been measured an-d c-ompared witn Hall a-na-Schottky aata, to 

draw a final conclusion of each specific condition under investigation. 

6.2.1.2 Ohmic contact formation 

Among the various methods described in Chapter 2 for achieving 

ohmic contact to CdS. alloying and evaporation methods were tried here. 

Alloyed indium contacts were fabricated by pressing small slices of 1.5 

mm diameter wire on the CdS surface and then heating at 200°C for 10 

minutes in an inert atmosphere. In the second method an indium contact 

was realised by evaporating indium dots 1 mm in diameter through a 

mask, and heating at l00°C for 10 minutes in an inert atmosphere. 
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Following a series of trials with both methods of contact fabrication 9 

pressed and alloyed In contacts were utilised rather than the 

evaporated ones because the latter occasionally gave rise to non ohmic 

behaviour as shown in Fig. 6.la. This is probably due to the 

formation of an Ino2 layer (1). In contrast 9 Figure 6.lb and Figure 

6. lc show ohmic behaviour for pressed and alloyed contacts on low 

resistivity CdS layers sintered on conducting and insulating glass 

respectively. However, non ohmic behaviour was occasionally found for 

high resistivity layers probably because of the unsuitable work 

function of In for these layers (2). The choice of pressed/alloy 

contacts also avoided the complexity associated with evaporated In 

especially when considering the vast number of samples which were 

investigated in this study where it was necessary for the contact to be 

made in a reproducible manner which is essential for ohmic contacts 

( 1 ) 0 

It is worth mentioning here that although the ohmic behaviour 

shown for pressed/alloyed contacts is necessary, it is not a sufficient 

condition for neglecting contact resistance (3) (4), which is a very 

important parameter, which can affect the series resistance of the 

final fabricated~olar cells. 

6.2.1.3 Resistivity measur'ements 

For CdS deposited onto conducting (Sno2) glass, estimates of the 

resistivity were made by measuring the resistance between alloyed In 

and the Sno2 back contact, whereas the Van der Pauw method was used to 

determine the resistivity of CdS deposited onto insulating glass, where 

the contacts were provided by pressing four small slices of 1.5 mn 

diameter indium wire on the periphery of the CdS sintered layer. All 

measurements were conducted at room temperature. 
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Hall measurements were made using the Van der Pauw technique 

reviewed in Chapter 2. A description of the Hall apparatus was 

provided in Chapter 3. Ohmic contacts to the sample were made as 

described in section 6.2.1~ and the ohmicity of the contacts was 

checked using Hall plots (Figure 6.lc). 

Most of the following results are for CdS layers deposited on to 

soda lime glass, with reference to borosilicate glass in a few cases. 

SEM observations were made in parallel with Hall measurements as a 

diagnostic tool for monitoring various conditions of preparation and 

s i nteri ng processes in an attempt to corre 1 ate the morpho 1 ogy of the 

layer with its electrical behaviour. 

6.2.2.2 Effect of preparation conditions 

There are large numbers of preparational parameters to be 

optimized if the best screen printed CdS layer for junction fabrication 

is to be produced. The following are the most important: (i) powder 

choice, (ii) flux ratio and (iii) paste mixing. 

(i) Powder Choice: 

Close- exanfina-non of the three powders under investigation 

described in Chapter 5 suggested the superiority of type A powder in 

satisfying various requirements for producing a good screen printed 

layer. This was largely due to its purity, optimum grain size, and 

grain size distribution. 

Hall measurements on CdS layers utiliz1ng these powders presented 

in Table 6.1 support the previous suggestions that CdS layers using 

powder 'A' produced the best electrical behaviour~ i.e. lowest 

resistivity. The morphology of such a layer, Figure 6.2a, also has the 

best microstructure with appreciable grain growth and a compact 
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pattern. The electrical behaviour of •type B• and •type c• powders 

layers was very poor with peculiar morphology as shown in Figure 6.2b 

and 6.2c. Although appreciable surface melting had occurred with type 

B powder~ nodules and angular grains were the general features. Type C 

powder had a porous structure~ with no grain growth 9 and an 

agglomeration of grains with some very distinct straight flat edged 

grains. The morphology of type B and C powders reveals strong 

inhomogeneties which can have an adverse influence on overall device 

performance as shown in Table 6.1. 

(ii) Flux (CdC1 2) ratio 

CdC1 2 has a dual function in the fabrication of the screen printed 

layer; i.e. as a flux and as a donor. Various aspects of the use of 

this material were discussed in Chapter 5. It is very important to use 

the correct ratio of CdC1 2 in the printing paste. Two different ratios 

were studied and Table 6.2 shows the Hall data of two CdS layers with 

10 wt % and 7 wt % CdC1 2. It is clear that this layer with 10 wt % 

CdC1 2 gave the better electrical behaviour with a good compact 

structure with an average grain size of (8- 10 ~m). The layer with 7 

wt % CdC1 2 had a porous structure with an average grain size of (2 - 4 

1-1m). Typica-l- micrographs of th_e_ -two layers are showrr ih Figure 6 ."3a 

and Figure 6.3b. Higher CdC1 2 contents were not studied here. 

However, some trials will be mentioned later in section 6.2.3.2. 

(iii) Paste mixing 

The significance of proper mixing of the constituents of the CdS 

paste can be clearly seen from the Hall data presented in Table 6.3. A 

major difference in resistivity, carrier concentration and mobility 

between an optimum mixed paste and a non optimum paste is apparent. 

Figure 6.4a shows a dry printed CdS layer of a well mixed paste. The 

layer has a powdery structure as expected before sintering, with narrow 
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Mi ero- Condition ~(stem) n ( em- 3 ) ~(em 2 v- 1 s- 1 ) 
graph 

A Type A 3 8.2 1 016 
powder 

B Type B 22 2.9 1015 
powder 

Type C c powder I 27.1 7.85 1015 
I 

Fig. 6.2 SEM mierographsof CdS surfaeesof the three 
powder investigated 

Tab1 e 6.1 Hall measurements of the above films. 

16 

95 

29.4 



Mi gro- F1 ux I (-> (sicm) n ( em- 3 ) l.l(cm 2v- 1s- 1) graph ratio 

A 7. % 16.7 6.18 1 016 6.04 

B 10% 3 8.2 1 016 16 

Fig. 6. 3 SEM micrographs of CdS surfaces using different 
ratio of flux under optimum conditions. 

Table 6.2 Hall measurements of the above films. 
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grain size distribution. These conditions aid sintering at high 

temperature (5) Figure 6.4c shows a dry printed CdS layer of a non 

optimum mixed paste with an agglomerated microstructure which affects 

the sintering and compactness of the grains. The results of sintering 

the two dry layers are shown in Figure 6.4b and Figure 6.4d. A 

dramatic change in the overall morphology of the two sintered layers is 

apparent and there is a good correlation between the morphology and the 

electrical behaviour. The good electrical behaviour in a well~mixed 

paste sintered layer is associated with a tightly packed structure with 

few voids and appreciable grain growth. 

6.2.2.3 Discussion 

In the following section an attempt is made to give an explanation 

for the above results. 

Powder choice : The optimum choice of CdS powder depends mainly on 

three parameters: purity~ grain size and grain size distribution. 

Chapter 5 gives a description of each powder type in relation to these 

parameters. Type A powder with its relative purity and optimum grain 

size of 3 IJm with optimum grain size distribution (Chapter 5~ Fig. 

5.lA) produced the best sintered layers with good compaction and 

electrical behaviour~-

Type B powder has two main problems; i) a large contamination and 

ii) a non uniform grain size disttribution (Fig. 5.10 ~ Chapter 5). 

The presence of foreign contamination could be very harmful since it 

can collect preferentially on grain boundaries by diffusion as the 

sintering temperature is increased (6}, and subsequently it may inhibit 

grain boundary migration and hence influence grain growth (7) (8). 

Moreover, the high density of morphological defects, such as coarse 

grain standing out from the paste, voids and grain boundaries may 

modify the electrical behaviour either by acting as scattering centers 



Micrograph Description (-' (J'I.Cm) n (em - 3 ) 

A Dry sample - -optimum mixing 

B Sample A 3 8.2 1016 
(After sintering) 

c Dry sample - -non optimum mixing 

D Sample C 
96 2.5 1015 

(After sintering) 

Fig. 6.4 SEM micrographs of CdS surfaces under optimum and 
non optimum paste mixing 

Table 6.3 Hall measurement of the above films. 

ll (em 2v- 1 s- 1 ) 

-

16 

-

35 



76 

or by causing chemical inhomogenity through the segregation of 

impurities (9). 

Type C powder9 which is an Optran grade powder was reported to be 

an optimum choice for thermal evaporated CdS layers (10). 

Unfortunately9 it was not a good choice for screen printed CdS layers. 

This is probably due to the large excess of sulphur in the starting 

material (Chapter 5). It is known that some sulphur evaporated 

preferentially in the sintering process due to its higher vapour 

pressure leading to a non-stoichiometric layer. These vacancies supply 

free electrons when ionized (12) resulting in low resistivity layers. 

Although this is what should normally be expected 9 it is possible that 

the sintering temperature was not high enough to remove all the excess 

sulphur from type (C) CdS layers 9 or it just removed the excess S 

without creating native S vacancies and thus resulted in a highly 

resistive layer. The poor morphology of this layer is probably due to 

the grain size distribution of the starting powder (see Chapter 59 

Fig. 5.10). Powders Band C have undesirable grain size distributions 

with some large particles reducing the fluxing effect of the CdC1 2• 

Flux (CdC1 2) ratio : CdC1 2 is an important constituent of the CdS 

scre-en printed paste~ A controTlea-amount of CdC12 h-as to be addeo to 

provide a low sintering temperature and also to act as a donor source 

(Chapter 5). The sample which contains 10 wt % of CdC1 2 produced the 

better morphology and electrical behaviour. This ratio was also 

reported by others (11) (13) as the optimum ratio for screen printed 

CdS layers. When the ratio was decreased to 7 wt % it resulted in a 

porous structure with smaller grain size and poorer electrical 

behaviour. The higher resistivity and lower mobility were also 

probably due to the decrease in the average grain size (11) (14). The 

carrier concentrations of both sintered layers using 10 wt % and 7 wt % 
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were nearly the same (8.2 x 1016 cm- 3 and 6.18 x 1016 cm'~ 3 ). This 

agrees with H.G. Yang et al (11) who found an increase in the carrier 

concentration with increasing quantities of CdC1 2 from 0 wt % to 6 wt % 

which then saturated with more CdC1 2. Nonetheless further improvement 

in morphology and conductivity would probably require a somewhat higher 

ratio of CdC1 2 to give a molten flux content which would lead to 

complete fusing of the CdS grains and hence help grain growth as 

described in Chapter 4. 

Paste mixing : Although the most important single parameter in the 

whole screen printing process is proper paste mixing (15), no previous 

effort to investigate the significance of this parameter has been 

reported in the literature. It is very important that the paste mixing 

process be carried out with great car~ and standardization to ensure 

satisfactory and reproducible results, otherwise, very misleading 

results can occur. The main concern for the moment is the CdC1 2 part 

of the paste. The significance of other paste constituents is 

discussed in Chapter 4. However, their contribution can be omitted at 

this point since the same powder (type A) with the same binder type and 

ratio was used for both optimum mixed and non optimum mixed paste. The 

compact structure with -appre-ciable grain-growtn, together with the gooa 

electrical behaviour achieved with an optimum mixing is an indication 

of the correct distribution of CdC1 2 particles in the paste, where it 

is in intimate contact with the other constituents. This feature is 

very important in avoiding the direct evaporation of CdC1 2 at the early 

stages of sintering. In contrast, the porous structure with small 

grain size obtained with non optimum mixing is an indication of a loss 

of CdC1 2. This is probably because CdC1 2 particles will be loosely 

bonded with other constituents of the paste and so will be 

preferentially lost at the early stages of sintering before their real 
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function has started. The amount of CdC1 2 remaining would be much 

smaller than the starting ratio. Bearing in mind that CdC1 2 is used as 

a flux and as a donor this explains the poor morphological and 

electrical behaviour of the 11 non optimum mixed 11 CdS layer. It is 

important to stress here that non proper mixing will cancel the effect 

of the optimization of all other fabrication parameters to a very large 

extent. 

6.2.2.4 Conclusion 

The investigation of the preparational conditions described above 

suggested the following as optimum conditions for preparing the best 

screen printed CdS layer: 

i using pure CdS powder with an average grain size of 3 ~m. 

ii using 10 wt % CdC1 2 as a flux and a donor source. 

iii precise control of mixing procedure is strongly advisable to 

ensure correct distribution of constituents. 

6.2.2.5 Effect of sintering conditions 

As well as the optimization of the preparational parameters 

described in section 6.2.2.2, there are also a large number of 

sintering parameters to be optimized to yield the most reproducible CdS 

layers-for- solar ce-1-1 fabrication-~ The most-impo-rtant par-ameters to be 

u(Jtirnized fall into three groups: Firstly, parameters related to the 

sintering ambient which involve sintering rate, sintering envelope 

configuration and flow rate. Secondly, parameters related to the 

sintering temperature and finally post sintering annealing parameters. 

The discussion of the first three s i nteri ng parameters wi 11 be 

referred to in Figure 6.4b and Table 6.3b as representative of an ideal 

CdS layer utilizing optimum parameters for its fabrication. This is 

justified since it is assumed that in investigating the significance of 

any parameter, all other parameters are chosen to achieve optimum 
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conditions. This assumption is necessary to avoid interrelated 

effects. The optimum sintering conditions were investigated and 

established for the sintering ambient parameters and the presentation 

wi 11 concentrate on the extreme cases to show their influence on the 

morphological and electrical behaviour. Using Figure 6.4b and Table 

6.3b as examples of optimum conditions will also help avoid displaying 

too many micrographs. 

i) Sintering rate 

From the fact that, CdC1 2 volatilizes above 400°C while at 600°C 

the volatilization is complete, it is obvious that the results are 

sensitive to the time spent totally from 400° to 600°, since the full 

utilization of the effects of CdC1 2 should occur during this period. 

Some aspects related to the sintering rate in the tube furnace used in 

this study were described in Chapter 4. Figure 6.5a and Figure 6.5b 

reveal the microstructures of two sintered layers using 30% and 100% 

sintering rates respectively, while Table 6.4a-b shows the 

corresponding Hall data. Figure 6.4b is representative of the 

microstructure of a CdS layer using 50% sintering rate, with the Hall 

data shown in Table 6.3b. Figure 6.6a is a graphical representation of 

---the-data- presented in Tables 6.4a, 6.4b and 6.3b. The superiority of 

using a 50% sh1tering rate in producing the best morphoiogicai and 

electrical behaviour is clearly seen. 

ii) Sintering envelope configuration 

Because of the volatile nature of CdC1 2 it was necessary to impose 

a restriction on the sintering ambient in order to control the 

evaporation of CdC1 2. Figures 6.5c-d show the microstructures of two 

CdS layers sintered in open and closed boats respectively. The 

associated Hall data is shown in Table 6.4c-d. Figure 6.4b is 

representative of the microstructure of a CdS layer sintered in an 
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open boat with the corresponding Hall data shown in Table 6.3b. Figure 

6.6b is a graphical representation of the data shown in Tables 6.4c~ 

6.4d and 6.3b the superiority of using an open boat configuration is 

clearly apparent in producing a good morphological and electrical 

behaviour of a sintered CdS layer. 

iii) Flow rate 

Again~ the significance of this parameter is related to the CdC1 2 
function in the sintering process. With a very slow flow rate faceting 

will occur and there is a strong possibility of CdO formation. With a 

very fast flow rate a very soft s i ntered 1 ayer is produced. Both 

extremes were not successful for contact formation and are simply 

included to illustrate the importance of controlling the flow rate. 

Figures 6.5e~f show the microstructures of two sintered CdS layers 

using flow rates '04 L/min and '4 L/min respectively. The 

corresponding Hall data are shown in Table 6.4e-f. Figure 6.4b 

represents the microstructure of a sintered CdS layer using .1 L/min 

with its Hall data shown in Table 6.3b. Figure 6.6c is a graphical 

representation of the data shown in Tables 6.4e, 6.4f and 6.3b. 

Although there were some similarities in the electrical behaviour of 

the three-layers~ the-best morphological and electrical combination was 

achieved for a CdS layer using .1 L/min flow rate. 

iv) Sintering temperature and duration 

Trials have been made to observe the changes in the morphology and 

electrical performance by progressively increasing the sintering 

temperature and duration, in order to find the conditions to produce 

CdS layers with the best morphological and electrical behaviour. CdS 

layers deposited onto soda lime and borosilicate substrates have been 

investigated. 



Conditions ~~ . Change ~ (.1\.cm) n (em- 3 ) J.l(cm2v-1s-1) ; ,, cro- I 

graph 

A 30% 6.2 3.4 X 10 1 5 1 93 

1 
Sintering 

B 100% 4.7 8.4 X 1 01 5 104 I rate 
I 

I 

' c Open boat 6.67 5.6 X 1016 11 
, Boat Con-

figuration D Covered boat 16.67 2.2 X 1 01 5 111 

E .04L/min 2. 57 3 X 1 016 53.8 
Flow rate I 

F .4 L/min I 10.6 2.3 X 1016 16 

Fig. 6.5 SEM micrographsof CdS surfaces undervarious sintering conditions 
Table 6.4 Hall measurements of the above films 

I 
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a) Soda Lime substrate trials 

The morphological behaviour of screen printed layers as a function 

of various sintering temperatures is shown in Figure 6.7. The dry 

printed layer before sintering is shown in Figure 6.7a. The micrograph 

reveals a soft powdery structure where the grains are loosely bonded 

and held mechanically by the binder. The resistivity of this layer was 

very high (>l06..n.. em), and therefore it was very difficult to obtain 

Hall data. Figures 6.7b,c and d show the morphological changes which 

occurred when the temperature reached 550°, 580° and 620° respectively, 

where it was held for 5 minutes duration at each temperature. Although 

significant grain growth occurred, the structures were still very 

disordered with non uniform grain size. Hall measurements are 

presented in Table 6.5 and show a sharp reduction in resistivity with a 

corresponding marked increase in carrier concentration and abnormally 

high mobility values. A graphical representation is shown in Figure 

6.llA. 

When the time of sintering at 620° was increased to 60 minutes a 

significant improvement in the morphology occurred as shown in Figure 

6.8a. The corresponding Hall data are shown in Table 6.6a. Although, 

preliminary- ~tests on soda 1 ime gTass suggestecf a -maximum- usable 

temperature of 620° for this type of glass, a further trial was made to 

investigate the effect of heating at higher temperature. Figure 6.8b 

shows the microstructure of a CdS layer sintered at 650°. It is clear 

that it has an improved morphology with appreciable grain growth. 

However, some secondary particles could be seen above the surface, and 

the Hall data in Table 6.8b indicate a reduced carrier concentration 

with abnormally high mobility values. Sintering temperatures higher 

than 650° were not tried. In an attempt to improve the performance 

further the annealing time was increased from 60 minutes to 90 minutes. 



Micrograph Sintering 
temp.(5 min) (J (It em) n (em -3 ) ll(cm2v -1 s -1 ) 

A 120 ° - - -

B 550 ° 22.3 1.2 101" 1550 

c 580 ° 6.3 1. 52 101& 43.29 

I 

D 620 ° 2.1 2. 97 1016 66.88 

Fig. 6.7 Effect of sintering temperature on CdS morphology. 

Table 6.5 Hall measurement of the above films. 
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Figure 6.8c shows the microstructure of a CdS layer sintered at 620° 

for 90 minutes. A reasonably dense and compact grain structure with 

few holes and a good grain growth was achieved with these conditions. 

The associated Hall data in Table 6.6c indicate good electrical 

behaviour. When the duration of sintering was increased further to 

120° minute~ the morphology was distorted by the appearance of sharp 

cubic particles emerging from the grain boundaries and nucleating above 

the surface as shown in Figure 6.8d. Hall data in Table 6.6d indicate 

a major deterioration in the electrical behaviour. It appears 

therefore that the optimum temperature and duration for sintering CdS 

layers deposited on soda lime glass is 620° for 90 minutes. 

b) Borosilicate substrate trials 

The investigation of screen printed layers on borosilicate 

substrates was made to examine the high temperature effect. Although 

the manufacturers information sheet did not recommend high temperature 

application, it was hoped that this study would illustrate some useful 

features about the value of the substrate. Figures 6.9a-b show the 

microstructure of CdS layers sintered at 620° for 60 minutes and 90 

minutes respectively, while Figures 6.9c-d are for two CdS layers 

-sintered at 680° for- 20 rhinu-tes and· -60 minutes--respectively. The 

morphologies shown in Figure 6.9 contain a dense and transgranular 

structure which make it difficult to estimate the grain size. Also 

there is an apparent segregation of an unknown secondary phase visible 

along the grain boundaries, very clearly shown at high temperature. 

The resistivities and carrier concentrations (Table 6.7) are better 

than those obtained under the same conditions with CdS layers sintered 

on soda lime glass. However, the rather high mobilities make the 

results difficult to interpret at this stage. Finally, for more 
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r~icro- Sintering Time ~~em) n (em- 3 ) ~ (cm 2 v- 1s-1) 
graph temp. 

A 620 60 5.2 6.88 1 01 6 

B 650 60 3.12 8.22 1015 

c 620 90 3 8.2 1016 

D 620 120 31.3 2.6 1015 

Fig. 6.8 SEM micrographs ofCdS surfaces under various sintering 
temperature and duration using Soda Lime glass. 

Table 6.6 Hall measurement of the above films. 

11 . 55 

161.45 

16 

52.12 
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Micro- Sintering Time (> (JLcm ) n(cm- 3 ) ll(cmzv:ls-1 
graph temp. (minute) 

A 520 60 .68 1. 78 1 0 l 7 

B 620 90 .44 2.5 10 l 7 

c 680 20 1.18 l. 33 10 l 7 

D I 680 
I 60 5.56 9. 1 1015 

Fig. 6.9 SEM micrographsof CEIS surfaces under various sintering 
temp. and duration using Borosilicate glass. 

Table 6.7 Hall measurement of the above films. 

33 . 9 

38 

70 

82.27 
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clarification a graphical representation of the data presented in 

Tables 6.6 and 6.7 is given in Figures 6.11 band c. 

v) Post sintering annealing 

To investigate the effects of post sintering treatment on the CdS 

layers two similar layer sintered at 620° for 60 minutes (Figure 6.8a) 

were annealed in hydrogen and vacuum respectively at 350°. Figure 6.10 

shows the significant improvement in the morpho 1 ogy of both anne a 1 ed 

layers in comparison with the starting layer in Figure 6.8a. A very 

good compact grain structure resulted with few voids, and it would seem 

that vacuum annealing yielded a better grain growth. The electrical 

properties of the annealed layers are presented in Table 6.8 together 

with those of a non-annea 1 ed 1 ayer for comparison purposes. It is 

interesting to note that although the resistivity decreased slightly 

the carrier concentration also decreased but both mobility values 

became very large. These results are shown graphically in Figure 6.1ld. 

6.2.2.6 Discussion 

Sintering rate : It was mentioned in Chapter 4 that the sintering rates 

used in the study are actually representative of the maximum power 

which gave different sintering rates. Thus 30% maximum power (M.P.) 

delivered to the furnace-was- equivalent To a s-intering rate -of l5°C per 

minute. 50% M.P. was equivalent to 28°C per minute, whereas 100% M.P. 

was equivalent to 44°C per minute. However, for simplicity these 

maximum power figures were used to represent the sintering rate term. 

The control of sintering rate is more important than that of the 

peak temperature (17) this becomes clear when it is recognized that 

CdC1 2 starts to volatilize at 400° and volatilizes completely at 600°. 

This makes the period that the sample remains between 400°C and 600°C 

very critical. With the optimum 50% sintering rate, this time was 7 

minutes as estimated from Figure 4.9 (Chapter 4). It was found to be 
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Micro- Post sinter ~(..n.cm) n(cm- 3 ) J.t(Cm 2 v-•s-') 
graph ing ambient 

-

A Hydrogen . 92 3.6 1016 120 

B Vacuum 2.6 1.84 1016 128.78 

Fig. 6.8A 
;sample 
without 5.2 6.88 1016 11. 55 
treatment 

Fig. 6.10 SEM micrographs of CdS surfaces under hydrogen and 
va c uum post sintering treatment for an 
optimum f11m. 

Tab1 e 6.8 Hall measurement of the above films. 
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optimum for complete utilization of the CdC1 2 as a flux and as a donor, 

i.e., the molten CdC1 2 was able to dissolve CdS particles and promote 

grain growth. and it was a 1 so ab 1 e to donate adequate donors. By 

decreasing the sintering rate to 30%, the time span between 400° and 

600° was estimated to be 14 minutes, twice as long in the critical 

zone. This would lead to a large loss of CdC1 2 before reaction at the 

melting point of CdC1 2, which is 568°C (16), could occur. Although a 

reasonably compact structure was produced. a major reduction in the 

carrier concentration resulted. probably due the loss of Cl doping. 

The occurrence of high mobility values is very unusual and will be 

discussed in Chapter 7. When the sintering rate was increased to 100%. 

the time span for the sample in the 400°-600° •critical zone• was 

estimated to be only 4 minutes. A fast sintering rate was reported 

(17) to cause the flux to flow to the film interface before sintering 

is well advanced. Although the 100% sintering rate did promote 

sintering, it resulted in a low density film with non homogeneous 

structure as shown in Figure 6.5b. The electrical behaviour was also 

affected by a loss of CdC1 2 as donor. 

The importance of the sintering rate has also been reported by H. 

Yang et a 1 ( 1 4-)-. 

Sintering envelope configuration : The most important component of the 

sintering envelope is the cover which should be designed in a 

controlled fashion to retard the direct evaporation of the high vapour 

pressure CdC1 2 at the early stages of sintering, thus ensuring that 

adequate CdC1 2 remained before its melting point was reached. The 

three different cases studied here reflect the significance of the 

cover where the best layer was achieved with an open side envelope 

configuration which imposed some restriction on the CdC1 2 pressure. 

However, this is still not the best configuration since the long side 
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opening is similar to a very big hole as shown in Figure 4.11. This is 

probably the reason for the similarity of the electrical behav·iour 

between this configuration and the open boat configuration. However 9 

the morphologies of the two layers shown in Figure 6.4b and Figure 6.5c 

show a marked difference which is a good indication of the effect of 

the open sided envelope in maintaining a higher CdC1 2 ratio. Trials to 

cover the envelope completely to utilize the maximum amount of CdC1 2 
resulted in unexpectedly poor morphological and electrical behaviour 

(Figure 6.5d and Table 6.4d}. This is probably due to the large amount 

of CdC1 2 remaining because evaporation of CdC1 2 could only occur when 

the vapour pressure of CdC1 2 lifted the cover slightly. The presence 

of excess CdC1 2 in the layer hindered grain growth (14) because of its 

presence on the surface and on the grain boundaries. In addition, too 

much Chlorine will result in a heavily doped CdS layer (19) leading to 

a higher resistivity and lower carrier concentration. 

It is concluded therefore that the open side configuration is the 

best choice as a compromise. The significance of the envelope cover 

has been studied extensively by H. Uda et al (19}. Their optimum CdS 

layer was achieved by sintering in an alumina case with a perforated 

cover· with a h-o 1 e area of between .l9 and 1 . 42 cm-2. They achieved a 

resistivity lower than .5..n. em with a carrier concentration of the 

order of 1018 cm-3 and mobility of 14 cm2 v-1 s-1. When they increased 

the hole area to 7.07 cm 2 the resistivity increased and the carrier 

concentration and mobility decreased, i.e. the electrical behaviour 

became poorer. J.S. Lee et al (20} also studied the significance of 

sintering CdS layers in a boat with a controlled opening and they also 

found this as an important condition to achieve a transparent CdS 

sintered layer. They sintered their layers in a quartz ampoule which 

had four lmm holes, and obtained a low resistivity of 0.5ncm. 
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Flow rate : The furnace ambient is very critical in the sintering 

procedure. An adequate flow of inert gas over the surface of the layer 

is normally required to prevent oxidation. A very slow flow will 

result in faceting effects~ while a very high rate will result in a 

fast drive-out of Cl 2• Both situations will prevent a proper 

sintering. The optimum layer was achieved with a 0.1 L/min flow rate. 

It is worth mentioning that the optimum inert gas flow rate is 

possibly a characteristic of each experiment and could vary slightly 

from one experiment to another. H. Young et al (20}(21) used a flow 

rate of .1 L/min9 and they increased the flow to .2 L/min in their 

recent work ( 22). Although these variations are small they 

nevertheless confirm that the flow rate is a characteristic of each 

experiment. 

Sintering temperature and duration : The correct sintering temperature 

and duration are probably the most important parameters in the whole 

screen printing procedure 9 since they define the optimum morphological 

and electrical behaviour of the layer (18). However, they are not easy 

quantities to determine because the optimum choice depends on many 

parameters such as paste components9 substrate material and furnace 
- -

type (23)-. -The optimum sintering temperature was found to be 620°C 

which is 1 ower than that reported by many workers. The Matsushita 

group in Japan started with a sintering temperature of 630°(24)(25), 

but in their recent work they increased it to 690° to reduce the 

residue of excess Cl ions present in the layer after sintering at 

630°(13)(26)(27) The Korean group used 650°C as their optimum for 

sintering CdS layers (14)(20)(21). It is believed that they were able 

to use such high sintering temperatures because of the superior quality 

of their substrates. The significance of substrate choice will be 

discussed in detail in Chapter 7. 
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The powdery structure of the dry layer shown in Fig. 6.7 was 

expected because the CdC1
2 

had not melted and was trapped in the 

printed paste. The structure had a narrow grain size distribution 

about an average grain size of 1-3JAm. When the sintering temperature 

was raised to 550° significant grain growth occurred 9 which is 

unexpected 9 since the melting point of CdC1 2 is 568°C. The CdC1 2 is 

supposed to melt and dissolve some of the CdS grains. However~ the 

microstructure (Fig. 6.78) suggests that significant sintering started 

at least 18°C below the reported melting point. This early sintering 

phenomenon was observed by H.G. Yang et al (11)(14) at 560° which is 

still soc below the melting point. They explained this was due to the 

difference in the melting temperature between the surface and the bulk 

of fine particles. The sharp reduction in the resistivity which 

occurred after sintering at 550° (22-.ncm), from the very high 

resistivity of the dry layer ( l06J'1.cm) 9 is largely attributed to the 

creation of S vacancies (12). It is not certain if any Cl doping 

occurred at this temperature because of the very low carrier 

( 14 -3) concentration of 1 .2 . 10 em • It has been reported that a 

similar carrier concentration can be produced by S vacancies in a layer 

which has-no -cdC1 2 (-n). The other fe-a-ture of sfnter-ing at this 

temperature is that the residual concentration of Cl ions left in the 

sintered layer is .27 wt% as found by atomic absorption spectroscopy 

(Chapter 5) which indicated a great loss of chlorine at low 

temperature. H. Uda et al (19) found more than 2 wt% of Cl ions still 

remaining at temperatures below 560°, which is an order of magnitude 

more than the amount found in this study. This could be related to 

their very controlled envelope configuration. 

When the sintering temperature was raised further9 the resistivity 

decreased until it reached a 2Acm at 620° (5 min duration). The 

carrier concentration showed a marked increase of two orders of 
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magnitude over the value obtained at 550°9 as shown in table 6.5 890. 

This improvement in electrical behaviour is attributable to the onset 

of Cl doping as reported by many authors (11)(28}. It is suggested 

here that significant Cl doping begins once the CdC1 2 was melted as 

tables 6.5C.- 6.50 show. It is also clear that increased Cl donor 

doping occurs at higher temperatures. Prolonged sintering at 620° 

favours further grain growth, where the molten material solidifies, and 

the grains tend to rearrange themselves to yield a compact structure. 

Growth was almost complete in 90 minutes (Figure 6.8C}. The electrical 

behaviour in table 6.6C shows a similar improvement under these 

conditions9 where the mobility lies in the range reported by others as 

optimum for screen printed layers. H. Uda et al achieved a value of 

2 -1 -1 ( ) 2 -1 -1 14.2 em v s , while H. Yang et al 14 reached 25 em v s . The 

resistivity and carrier concentration values for the optimum layer 

16 -3 . 1 produced here were 3Jnlcm and 8.6 x 10 em respect1ve y, as compared 

with .36J'\. em and 1.2 x 1018 cm3 reported by H. Uda et al (6). It is 

clear that the higher resistivity and lower carrier concentration 

obtained here is attributed to the loss of CdC1 2 by evaporation in the 

sintering procedure. This is obvious from the amount of Cl detected by 

AAS in the present layers wllich was less ttian :o5 wt%, whereas for 

example; although H. Uda et al (19) sintered their layers at 690°C, 

they contained .l wt% of Cl. Such a quantity of chlorine was estimated 

to give a carrier concentration of 8 x 1020 cm- 3
9 although their 

experimental values show 500 times less. The difference arises from 

the presence of CdC1 2 at the grain boundaries and on the surface. A 

further increase in the sintering time to 120 min (Figure 6.80} led to 

the appearance of Cd faceting as confirmed by EDAX analysis. The 

resistivity increased sharply to 3l~cm with a large reduction in the 

carrier concentration. The reason for this is probably due to the out 
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diffusion of chlorine~ which increases the height of the potential 

barriers of the grain boundaries (14). Sintering at 650°C for 60 min~ 

although yielding a better structure than that of a similar layer 

sintered at 620° for 60 min9 led to lower values of carrier 

concentration and mobility (table 6.6B). This is also~ probably due to 

the out diffusion of chlorine. The term high temperature as used here 

is a characteristic of the type of glass used. Although 650° is 

considered a high temperature for soda lime glass it is not 

particularly high for a high quality borosilicate or silica glass. 

Increasing the sintering temperature to a value above that recommended 

for any particular glass will certainly result in glass distortion~ and 

hence a considerable mis-match between the glass and material deposited 

on it. This will make a major contribution to the properties of the 

layer. Although according to report~ 620° for 90 min is high for soda 

lime glass~ it was nonetheless found to be the optimum condition for 

sintering CdS layers. 

The trials made on borosilicatate glass resulted in a non 

homogeneous microstructure with high mobility values for all the layers 

examined. However, the values of resistivity and carrier concentration 

for the optimum ca:-se -for- sintering af 620° for- 90 min we-re apparently 

better than for layers on soda lime glass, whereas the morphology was 

better in the latter case. This contradictory behaviour can perhaps be 

interpreted in terms of the thermal expansion and thermal conductivity 

of the glasses. 

( 3. 3 x 10-6 per 

Borosilicate glass has a much lower thermal expansion 

-1 ) ( -6 -1) deg than soda lime glass 9 x 10 per deg . By 

considering the thermal expansion of CdS (5.7 x 10-6 per deg- 1) (16)~ 

this would suggest that the fully fired CdS paste would expand at a 

much higher rate than borosilicate glass, leading to a pore structure. 

On the other hand the thermal expansion of soda lime glass is much 
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higher than that of the thermal expansion of CdS paste~ which will not 

allow flow out of the paste under normal conditions~ so that a more 

compact microstructure is formed. 

The above discussion would suggest the use of soda lime substrates 

as the best choice for depositing screen printed CdS layers. 

Post Sintering treatment : post fabrication annealing has been reported 

as over-riding some of the various conditions involved in the 

fabrication processes of CdS films deposited by thermal evaporation (2) 

(29) and spray pyrolysis (30) (31). However~ for screen printing CdS 

layers the only published work is by S.L. Fu et al (32). Their 

sintered CdS films had high resistivity with non uniform morphology~ 

and they used vacuum annealing to reduce the resistivity by more than 5 

orders of magnitude with a more regular morphology. 

In the present work greater grain growth was achieved with vacuum 

annealed layers~ probably due to the better close atmosphere obtained 

in this case~ compared with the open atmosphere when hydrogen was used. 

The electrical behaviour of the annealed layers~ whether in vacuum or 

hydrogen was unexpectedly poorer than before annealing; with a smaller 

carrier concentration and abnormally high mobility. This may be 
--

because th-e film-s were si ntered under optfmum conditions with the 

desirable non stoichiometry of the CdS layers. Post sintering 

annealing probably disturbed this balance by increasing the loss of 

sulfur. 

6.2.2.7 Conclusions 

The investigation of the sintering conditions described above 

suggests the following as the optimum conditions for sintering CdS 

screen printed layers. 

i) Use a moderate sintering rate equivalent to 50% M.P. 

ii) Use an open side envelope configuration to ensure controlled 

evaporation of the CdC1 2 vapor. 
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iii) Use a compromise argon flow of .1 L/min. 

iv) Use soda lime glass for the best combination of morphological 

and electrical behaviour of the CdS layer. 

v) Avoid post-sintering treatment of an optimum layer. 

6.2.2.8 Comments and Conclusion of Hall effect Measurements 

It turned out that there are three different conditions to be 

optimized in the screen printing process namely:~ 

1 the Printing Conditions 

2 the Preparation Conditions 

3 the Sintering Conditions 

These conditions are interdependent and in order to have a reproducible 

result the procedure must be standardized as much as possible. 

With such care taken~ it was possible to obtain an optimum CdS 

screen printed 1 ayer with reasonably compact morpho 1 ogy (see Figure 

6.48) and a low resistivity of (3)~cm with a carrier concentration of 

(8.2 x 1016 ) cm-3 and a mobility of (16) cm2v- 1s-l. These values are 

suitable for the fabrication of good solar cells. 

6.2.3 Schottky Barrier Diode Measurements 

6.2.3.1 Introduction 

A further method of chara-c-terising CaS laye-rs is via the formation 

of simple Schottky barrier devices on them. This had additional 

consequences, viz:-

1. Another substrate, namely, Sno2 coated glass was examined. 

2. The optimum preparation and sintering conditions found by 

Hall Measurements were confirmed. 

3. The usefulness of the sintered layers for junction formation 

was assessed before more complicated heterojunctions were 

formed. 

Schottky barrier devices were simply obtained by thermal evaporation of 

lmm diameter gold dots onto a screen printed CdS layers at a vacuum of 
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-5 about 1 x 10 torr. The resultant devices were investigated using 

conventional current-voltage (I-V) and capacitance-voltage (C-V) 

measurements. Useful information can be extracted as described in 

Chapter 2. 

6.2.3.2 Effect of preparation conditions 

In the following sections the properties of Schottky devices 

formed on differently prepared CdS layers are presented. In addition 

to the previously discussed parameters in section 6.2.2.2, two more 

parameters were introduced here including etching effects and a higher 

CdC1 2 ratio. 

i) Powder choice 

The current-voltage (I-V) characteristics for Schottky barrier 

diodes prepared on CdS layers using the main three powders under 

investigation are shown in Figure 6.12A. The diode with 'powder A' 

gave the best rectification with the least series resistance. The 

diode on 'powder B' had a higher series resistance, while that on 

'powder C' had very little rectification, with the highest series 

resistance observed. The calculated resistivities were 177, 2500 and 

l2,500..n..cm for the three layers. 

The -corresponalng semllogaritnmic plots of forward bias I-V 

characteristics are shown in Figure 6.12B. The values of the diode 

factors were calculated from the slopes of the plots of LnJF-VF using 

equation (2.14). These values were 2.1, 2.5 and 4.5 for the three 

Shottky diodes on powders A, B and C respectively. Although the lowest 

diode factor (for powder A) was still above the optimum value of an 

ideal diode (Chapt. 2) it did indicate the superiority of the powder A 

diode. 

The capacitance-voltage (C-V) characteristics measured at 1 MHz 

for the three diodes are shown in Figure 6.12C. The curves reveal a 
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decreasing capacitance with reverse bias for all three diodes. 

However~ this was rather smooth for the type A powder diode~ with a 

high value of capacitance. Type B and C powder diodes had lower 

capacitances with little change with reverse bias. 

c-2-v plots were also obtained and there were straight lines for 

all diodes. The net carrier concentrations were calculated from the 

slopes of each plot using equ. 2.2 1 (Chapter 2) and the carrier 

mobility was calculated using equ. 2.2 2 (Chapter 2). The calculated 

values are recorded in Table 6.9 together with the resistivity values 

of the CdS layers. The diode on powder A clearly gives the best 

electrical behaviour. The intercept on the voltage axis gives the 

value of the diffusion potential (Vd). The intercept is smaller with 

the powder A diode, which suggests that the thinest interfacial layer 

is present in these diodes as discussed in Chapter 2. Furthermore9 the 

widths of the depletion regions~ Wd~ were calculated using equ. 2.19 

(Chapter 2) leading to values of .07~ .11 and .31 J,lm for A, Band C 

diodes respectively. This again shows that the powder A diode had an 

optimum value (35) whereas, for example, powder C diode had a very wide 

depletion region ( .31 J,lm) which would be too large to allow direct 

tunne-11 i ng- from the bottom cff the c6rfduct ion oand into -the meta 1 ( 3jr 0 

This probably explains the very poor behaviour achieved for •powder c• 

diodes. 

The above data reflects the superiority of the •powder A' diode 

and hence confirmed the good choice of type A powder suggested in 

section 6.2.2.2.i. 

ii) Etching significance 

In general, starting with a clean CdS surface is a necessity for 

proper junction formation. Etching in dilute HCl is one of the methods 

which is currently used for surface treatment for the removal of 
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undesirable material. For example~ faceted cadmium can occur on the 

surface of the sintered CdS layers. Figure 6.13 shows a micrograph of 

a faceted CdS surface before and after etching 9 while Figure 6.14 

reveals the behaviour of Schottky diodes prepared on each type of 

surface. There is a significant improvement in the diode behaviour 

after etching. The ohmic behaviour of the diode facrica.ted on the 

faceted cadmium before etching can be attributed to the formation of an 

Au/Cd intermetalic compound (2). 

Surprisingly9 all the resultant CdS layers sintered on Sn02 coated 

substrates were dark yellowish in appearance9 unlike the CdS layers 

sintered on glass which showed a normal yellow appearance. Attempts to 

remove the darkness by washing in alcohol was not successful. However 9 

immersion in dilute aqueous 3-5% HCl for 3-5 sec. was successful and 

the colour became the normal yellow. The subsequent Schottkys were 

made on etched layers. 

iii) Flux (CdC1 2) ratio 

Typical forward current characteristics of the Schottky diodes on 

layers using 7%9 10% and 15% CdCl 2 ratios are shown in Figure 6.15A. 

The diode on the layer with 10 wt% CdC1 2 gave the best I-V behaviours 

with the least- series res;-s·tance. Higlier- or lower CCIC1 2 ratios 

resulted in a higher series resistance with very soft behaviour with 

the higher ratio. The estimated resistivity of CdS layers using 7%, 

10% and 15% were 8742, 2500 and 3lOO.n.cm. The lowest value was 

observed with the CdS layer using 10 wt% CdC1 2. 

The capacitance-voltage (C-V) characteristics for the three diodes 

are shown in Figure 6.158. They reveal a smoothly decreasing 

capacitance with reverse bias for the diode with the 10 wt% ratio, 

while the capacitance variation with reverse biase is very small for 

the other diodes. The highest capacitance value was obtained with the 

diode using the 10% ratio. 
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The Linear C 2-V plots shown in Figure 6.15C give the smallest 

intercept with the V-axis for the '10% ratio' diode. The net carrier 

concentration and mobility values are recorded in table 6.10 together 

with the layer resistivities. 

6.2.3.3 Discussion 

i) Powder choice : The results achieved with the optimum powder (A) 

in this investigation (table 6.9A) were very poor by comparison with 

the Hall measurements of the same powder on insulating Soda Lime glass 

(Table 6.1A). The resistivity of a layer sintered on Sno2 coated glass 

was 177....n.cm compared with 3ncm for a similar layer sintered on soda 

lime glass. The corresponding mobility values were .17 cm2v- 1s-l and 
2 -1 -1 16 em v s • Such high resistivity and very low mobility values were 

not considered to be suitable for further solar cell fabrication. P.C. 

Pande et al (34) obtained similar high resistivity (600J!.cm) and low 

b.,. 1 (3 2-1-1) 1 mo 1 1ty va ues • 8 em v s for their electrophoretica ly deposited 

layers on Sno2 coated glass and they explained this due to the presence 

of potential barriers between .14 and .18 eV high at the intergranular 

boundaries. In contrast H. Yang et al (14) reported a value of .048 eV 

for the potential barriers in their screen printed layers deposited on 

insulating gla-ss; -and they -obtafned a low resistiv-ity CaS layer of 

,... f"\ • t~ . . ., . t - -- 2 -1 -1 
.o.,.~&.CiTI W1rl earner moo1 1 y at ~o em v s • Comparing our results 

and those of P.C. Pande et al on Sno2 glass with those of H. Yang et al 

on insulating glass, it seems obvious that the only apparent difference 

is the Sno2 on the glass. The effect of Sno2 on the screen printed 

layer is probably quite complicated, although contamination with tin 

undoubtably occurs, and would appear to be responsible for the high 

intergranular potential barriers. The relatively high carrier 

concentrations of (2 x 1017 cm- 3) in those layers with such high 
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resistivity and low mobility values is rather unusual. In single 

crystal CdS~ such carrier concentrations would lead to a resistivity of 

approximately O.l~cm. 

ii) Etching significance : Etching in dilute HCl was necessary for all 

the CdS layers sintered on Sno2 glass to remove the darkish appearance. 

The optimum concentration and etching period were 4% and 4 sec 

respectively. 

It is well known that etching is important in the preparation of 

clean surfaces of CdS single crystals (35) and thin films {36). This 

etching procedure has frequently been found to affect the junction 

properties. 

Interfacial layers on screen printed CdS surfaces are very likely 

to occur in a variety of ways; for example it was initially thought 

that the darkness was due to the incomplete burning of the binder. 

However after increasing the prefiring at 300°C for a sufficient time 

to assure complete burn-off the darkness remained. The possible 

decomposition of the Sno2 at high temperature leads to a non 

stoichiometry in the coating may have caused the darkening. Another 

possible source of an interfacial layer is the non avoidable 

chemisorption of oxygen durtn-g sinter-;-ng. M.- Houng et a-r{37) reported 

that 02 chemisorption occurred on the surface of the sintered CdS 

layer, no matter how the films were prepared. The chemisorption of 

oxygen in our experiments could have resulted from oxygen in the 

sintering atmosphere and during the gradual cooling procedure. The 

existence of an oxide layer can lead to the formation of a bulk like 

oxide over layer. D. Litchman et al {38) and D. Hounge et al {37) 

identified this oxide layer as a thin sulphate layer such as an so4-2 

like compound. The sintered layer could also absorb o2 from the 

atmosphere while transferring to the vacuum jar for Au deposition. L. 
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Mahdjunbi et al (36) found an interfacial layer resulting in this 

process. They fabricated the best Schottky diodes on their vacuum 

evaporated CdS 1 ayers when they were prepared in situ i.e. under the 

same vacu~m. The quality of the vacuum can also affect the interfacial 

layer. The gold was evaporated onto the CdS in a relatively low vacuum 

of 1 x 10-5 torr9 with a greater chance of an interfacial layer being 

formed. An oil diffusion evaporation system can add another source of 

contamination from the back streaming diffusion~pump oil (39). 

Finally of course9 etching itself can produce an interfacial layer 

(35). Although etching was necessary to remove the dark colour and any 

possible interfacial layer9 it is not certain if it can remove any bulk 

oxide compound9 such as so4-2 and a further treatment may be needed in 

such cases (37). 

Flux (CdC1 2) ratio : The trials made to fabricate Schottky diodes on 

sintered layers with various CdC1 2 ratios confirmed the results 

obtained in section 6.2.2.2 ii concerning the optimum ratio of CdC1 2 
(10 wt%). Lowering the CdC1 2 ratio resulted in very poor Schottkys. 

The high series resistance and very slow variation of capacitance with 

reverse bias, together with the expected large intercept in c-2 vs V 

p-lot wer·e-indicatTons of the presence of a thick interlac-ial layer. It 

is believed that the occurrence of this interfacial layer is due to the 

poor morphology of the CdS layer with 7 wt% CdC1 2. 

Increasing the CdC1 2 ratio in the paste beyond 10 wt% would do 

more harm than good. The I-V characteristics of diodes formed on 

layers using 15 wt% CdC1 2 were soft. H. Yang et al (11) found some 

recrystallized CdC1 2 on the surface of sintered layers with high CdC1 2 
ratio. This unreacted CdC1 2 would lead to a shunting effect and would 

also result in a high density of interfacial states confirmed by the 



98 

very low capacitance value and slow variation with reverse bias~ 

together with the very high intercept of the c-2-v plots. 

The occurrence of a secondary phase of unreacted CdC1 2 on the CdS 

surface when using higher than optimum CdC1 2 ratio will lead to an 

increase in the series resistance of CdS layer (20)~ and will not 

enable a proper junction to be formed. The harmful effects of excess 

CdC1 2 in screen printed solar cells have been reported by many authors 

(13) (20) (22) (25). 

6.2.3.4 Conclusion 

The characterization of various Schottky diodes under different 

preparation conditions confirmed the superiority of powder A~ and the 

optimum choice of 10 wt% CdC1 2 ratio for the fabrication of the best 

CdS layer, as was also concluded from the Hall measurements. A brief 

treatment of all layers sintered on Sno2 coated glass in dilute HCl is 

recommended to remove the dark colouration. 

6.2.3.5 Effect of sintering conditions 

In the following sections the properties of Schottky diodes on 

1 ayers prepared under various sinteri ng conditions wi 11 be presented. 

The significance of the furnace type will also be discussed here. 

i) Furnace type 

The preliminary studies described in Chapter 4 suggested that the 

muffle furnace was not suitable for sintering the CdS layers mainly 

because of its long sintering and cooling rates. Other difficulies 

associated with the use of a muffle furnace were mentioned in Chapter 

4. However, trials were made to sinter similar CdS layers in both 

muffle and tube furnaces, to investigate the behaviour of Schottky 

Diodes fabricated on them. The current-voltage plots shown in figure 

6.16A, indicate a lower series resistance for the diode formed on the 

layers sintered in the tube furnace. 
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The capacitance~voltage plot shown in figure 6. l6B reveals a 

smoother behaviour of the •tube furnace• diode compared to the •muffle 

furnace• diode. The c- 2~V plots in figure 6. 16C showed a large 

intercept in the latter case which was improved by hydrogen annealing. 

The electrical properties of the diodes investigated are recorded 

in Table 6.11. Interestingly~ although the mobilities were generally 

low~ the •muffle furnace• diodes showed an even lower value of mobility 

by about one order of magnitude. 

ii) Sintering rate 

The current-voltage (I-V) characteristics of Schottky diodes 

prepared on CdS layers using sintering rates of 30%9 50% and 100% are 

shown in figure 6.17A. The •so%• diode had the lowest series 

resistance. 

The capacitance-voltage (C-V) plots in figure 6.17B also reveal 
-2 the superiority of •so%• diode. The C -V plots in figure 6.17C showed 

the lowest intercept for this diode. 

The electrical data of all three diodes are recorded in Table 

6. 12 0 

iii) Sintering envelope configuration 

-The current-val tage -plots- of diodes prepared---on CdS 1 ayers 

sintered using thr·ee different envelope configurations are shown in 

figure 6.18A. The layer sintered in an open side envelope 

configuration produced the best behaviour with the least series 

resistance. 

The C-V plots in figure 6.18B revealed a marked variation between 

diodes on layers sintered in closed or open side configurations. The 
-2 C vs V plots in figure 6.18C also gave the smallest intercept for the 

O.S. configuration diode. 
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The electrical behaviour for the three diodes under investigation 

is recorded in table 6.13. 

iv) Flow rate 

The current-voltage characteristics of Schottky diodes prepared on 

CdS 1 ayers s i ntered in the tube furnace using three different flow 

rates of .04, .1 and .4 L/min are shown in figure 6.19A. The diodes 

formed on the layer sintered under . 1 L/min flow rate provided the best 

device with the least series resistance. 

The C-V plots in figure 6.198 showed the highest capacitance with 
-2 a smooth variation for the •.1 L/min• diode. The C - V plots in 

figure 6.19C gave the smallest intercept for the same diode. 

Table 6.14 lists the electrical data of the three diodes in 

question. 

v) Sintering temperature and duration 

Typical current-voltage characteristics of diodes prepared on CdS 

layers sintered at 620°C for 60 minutes 9 90 minutes and 120 minutes9 

and at 650° for 60 minutes are shown in figure 6. 20A. There was a 

clear dependence on sintering temperature and duration9 90 minutes at 

620°C led to a diode with the lowest series resistance and hard reverse 

bias -characteristics.- La-rger- or -smaller time-s at 62-0° resulted -in a 

higher series resistance and inferior Schottky behaviour. 

The C-V plots for the four diodes are shown in figure 6.208. The 

highest capacitance and larger variation with reverse biase were found 

with the diode fabricated on the layer sintered at 620° for 90 minutes. 

The corresponding c-2 vs V characteristics shown in figure 6.20C were 

linear plots for all diodes. The diode formed on layers sintered at 

620° for 90 minutes had the smallest interfacial layers. 

The electrical data of the diodes together with resistivity values 

of the sintered CdS layers are recorded in table 6.15. 
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with different flow rates. 

A) I - V plots 
B) C - V plots· 
C) l/C 2 - V plots 

Table 6.14 Electrical data of the above diodes 
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with different sintering duration. 
A) I - V plots 
B) C - V plots 
C) l/C 2 - V plots 

Table 6.15 Electrical data of the above diodes 
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The SEM micrographs in figure 6.21 were taken in an attempt to 

relate the diode behaviour with the surface morphology of the sintered 

1 ayers. The best morphology was indeed achieved with the CdS 1 ayer 

sintered at 620° for 90 minutes. Increasing the temperature or the 

duration led to the loss of the good morphology and the appearance of 

undesirable secondary particles. 

vi) Post sintering treatment 

a) Optimum •condition• Diodes 

To investigate the effects of post sintering treatment for a 

possible improvement in the electrical behaviour of an optimum diode 9 

three similar CdS layers prepared under optimum sintering conditions 

were chosen. Two of them were annealed in hydrogen and vacuum 

respectively at 350° 9 while the third was used as a reference untreated 

layer. Schottky diodes were formed on all of them. 

The current-voltage characteristics of the three diodes are shown 

in figure 6.22A, where it is clearly seen that annealing in both 

hydrogen and vacuum resulted in inferior Schottky behaviour. 

The C-V and c2 - V plots in figure 6.22B and figure 6.22C 

respectively suggested the presence of interfacial layers for Schottky 

diodes formed on layers annealed in either atmosphere and confirmed the 

superiority of the untreated diode. 

The electrical data of the three diodes together with the 

resistivity data of the three sintered layers are shown in table 6.16. 

b) Non optimum diodes 

To investigate the effects of post sintering treatment on non 

optimum diodes, CdS layers fabricated from powder B and powder C were 

chosen in a view of a large interfacial layers expected as discussed in 

sections 6.2.2.3 and 6.2.3.3. 



Fig. 6.21 SEM micrograph of CdS surface sintered on 
conducting (Sn0 2 ) glass under various 
sintering temperatures 
A 620°C 90 min. 
B 650°C 60 min. 
C 620°C 120 min. 
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Fig. 6.22 Characteristics of CdS screen printed Schottky diodes 
with post sintering treatment 
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Table 6.16 Electrical data of the above diodes. 
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The current~voltage characteristics of Schottky diodes fabricated 

on CdS layers using powder B and powder C with and without post 

sintering treatment are shown in figure 6.23A. In contrast with the 

post annealing effects on an optimum 1 diode 1 ~ a significant improvement 

occurred here after vacuum annealing at 350°C. 
~2 

C~V and C -V plots in figure 6.238 and figure 6.23C respectively 

reveal similar improvement in the annealed Schottky behaviour. The 

electrical data are recorded in table 6.17. 

It is concluded therefore that post sintering annealing is only 

recommended for non optimum CdS layers. 

6.2.3.5 Discussion 

i) Furnace types one possible advantage of the muffle furnace is 

its closed cavity which provides a good insulation from the room 

atmosphere, but it may cause a problem by creating a slight 

over-pressure inside the cavity which could harm the sintered layer. 

However, the major disadvantages of this furnace are its slow sintering 

rate and the difficulties of controlling the cooling procedure as 

described in Chapter 4. In addition the s intering en vel ope 

configuration is like an open boat and is therefore not optimised. 

The significant improvement ln tlie diode performance with post 

sintedng annealing in hydrogen would confirm the presence of a high 

density of interfacial states on the layers sintered in the muffle 

furance. The tube furnace has proved to be superior to the muffle 

furnace in s i nteri ng the 1 ayers and it has been used by many authors 

(11) (14) (21). 

The most efficient screen printed solar cells have been sintered 

in the so called belt furnace (6) (26) (40). A description of the 

features of this furnace was presented in Chapter 4. 
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Fig. 6.23 Characteristics of CdS screen printed Schottky diodes with 
post sintering treatment. 

(ii) non optimum condition 
A) I -;V plots 
B) C- V plots 
C) l/C2 - V plots 

Table 6.17 Electrical data of the above diodes 
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ii) Sintering rate : The optimum sintering rate in this study was 

found to be 50% which agreed with the Hall measurement investigation 

described in section 6.2.2.5 ii. The shunting behaviour in the I-V 

p 1 ots of the '30%' diode (figure 6. 17 A) suggested the occurrence of 

secondary recrystallised particles on the surface or at the grain 

boundaries3 whereas the higher series resistance of the '100%' diode is 

probably due to the fast drive out of Cl donors at a fast sintering 

rate. 

The effect of sintering rate on the electrical behaviour of the 

CdS layers was clearer from this work where Schottky diodes were 

fabricated since this reflected the conduction of carriers through the 

sintered surfaces rather than the in-plane properties investigated by 

Hall measurements. The optimum sintering rate of 50% would suggest a 

clean surface appropriate for Schottky diode fabrication and also for 

other junction formation. 

iii) Sintering envelope configuration The optimum configuration of 

the sintering envelope is not ideal as discussed in section 6.2.2.5, 

because of the large side opening. It has however been shown here that 

this minimum confinement of CdC1 2 pressure inside the envelope is very 

effective in improving the- beh-av-iour of -schottl<f aiodes. A clos-ed 

envelope configuration results in the maximum confinement of CdC1 2 
vapour above the 1 ayer 3 which 1 eads to a high doping 1 eve 1 3 with 

undesirable products remaining on the surface. That this is 

undesirable can be seen clearly from figure 6.18, where a diode 

fabricated on a CdS layer sintered in a closed envelope hardly 

rectified and contained a high density of interfacial states. 

iv) Flow rate : Sintering CdS layers in an inert atmosphere is 

necessary to prevent oxidation at high temperature. In the tube 

furnace a correct flow of inert gas is required during the sintering 

process. Too slow a flow rate will not prevent oxidation completely. 
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On the other hand, with high flow rates the volatilised CdC1 2 will be 

driven off too fast and a high resistivity of the sintered CdS layer 

wi 11 result. 

v} Si nteri ng temperature and duration : The optimum temperature of 

sintering confirmed the assumption made in Chapter 4 that the glass 

under the Sno2 coating was of soda lime type. However, the existence 

of the Sno2 conductive coating would have increased the thermal 

conductivity of the glass, and this is probably the reason for the more 

compact morphology with larger grain growth which was achieved by 

sintering on Sno2 coated glass (Figure 6.21}. The morphology of the 

sintered CdS layer is more sensitive to a high sintering temperature on 

Sno2 coated glass than on soda lime glass as figures 6.21A and 6.88 

show. This again may be due to the higher thermal conductivity 

expected for Sno2 coated glass. 

The poor morphology of CdS layers sintered at high temperature 

(650°C} on Sno2 glass, or for a long period (120 min} was accompanied 

by a loss of chlorine ions and cadmium faceting as discussed in section 

6.2.2.6. This explains the shunting behaviour observed in the I-V 

plots of figure 6.20A. 

The surface morpflo 1 bgy of the CdS 1 ayers s i ntered at 650° fo-r 60 

min. and at 620° for 120 min., as shown in figure 6.218 and C, suggests 

that good junctions cannot be made on such surfaces in comparison with 

those on layers sintered at 620°C for 90 min. This is confirmed by the 

behaviour of Schottky diodes formed on these surfaces. 

vi} Post sintering treatment 

a} 'Optimum condition' diode Post sintering annealing was 

undertaken in an attempt to achieve: i) a reduction in the high 

resistivity of the sintered layer of (177 em); and ii} an increase 

in the low mobility value of (.17 cm2v-ls-1) obtained for the optimum 



105 

diode fabricated on the best CdS layer. Unfortunately the results 

obtained were not encouraging 9 since the resistivity of the annealed 

layers increased while the mobility remained anomalously low. 

b) •Non optimum c_gndition• diode : A significant improvement in 

the behaviour of Schottky diodes formed on 1 ayers prepared under non 

optimum conditions~ after post annealing in vacuum was expected for 

these conditions. It has been reported that post sintering treatment 

may over-ride some of the previous conditions (10) (29). S. Fu et al 

(32) found a marked improvement in the morphology and a major reduction 

in the resistivity of their non optimum as •sintered• screen printed 

layers. The improvement observed with the •powder s• diode was 

probably due to the removal of a thick interfacial layer together with 

an improvement of the surface morphology. The improvement in the 

•powder c• diode after vacuum annealing could be due to the creation of 

S vacanciess in addition to the removal of an oxide layer. The 

improvements in the annealed layers can only be properly appreciated by 

referring to the nature of powder B and powder C as described in 

Chapter 5. 

6.2.3.7 Conclusion 

Thi-s- investigation- of the various s i ntering conditions suggests 

the following as the optimum procedure for producing the best CdS 

layers on Sno2 coated glass : i) using a 50% sintering rate, ii) 

sintering in an open side envelope configurations iii) using a flow 

rate of . 1 L/min and iv) sintering at 620° for 90 minutes. 

These conditions are in line with the optimum conditions found 

from the Hall measurements on layers on insulating glass. 

The tube furnace was found to be superior to the muffle furnace in 

sintering CdS layers. Post sintering annealing is detrimental to 

•optimum condition• diodes, but very effective with •non optimum 

condition• diodes. 
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6.2.3.8 Comments and Conclusions from Schottky diode Measurements 

It is well known that when a metal is evaporated onto a 

semiconductor surface, the metal and semiconductor may not be in 

intimate contact (41). This is due to the presence of an inevitable 

interfacial layer between the two. This layer can influence the 

behaviour of the diode in many ways (39) (42) (43). For example, a 

thick interfacial layer between Au and CdS will provide an extra 

barrier to carrier transport through the junction, and hence will lead 

to high series resistance and high ideality factors. In contrast a 

very thin interfacial layer is assumed to have no significant effect on 

current transport and is transparent to tunneling carriers (44) (33). 

The above criterion was used to assess the CdS layers sintered 

onto Sno2 coated glass. It was assumed that a layer with the thinnest 

interfacial layer would yield a good diode which was taken as an 

indication of optimum CdS layer fabrication. 

1) Analysis of I-V Characteristics. The I-V characteristics can 

provide a wealth of information such as i) the rectification ratio of 

the diode, and whether a contact is rectifying or ohmic; i i) It can 

reveal any improvement in the behaviour of the diode with changing 

fabrication con-ditions (AS). Tne var-iations iri the gradient of the 

forward bias regime serve as an indication of the diode series 

resistance. The reverse bias regime also shows the hardness of a 

diode; iii) the slope of a semilogarithmic I-V plot yields the ideality 

factor, which is strongly affected by interfacial layers. For example, 

the lowest ideality factor measured for a 1 powder A1 diode in section 

6.2.3.2, indicates the thinnest interfacial layer is produced with 

powder A. The value of the ideality factor can also provide 

information about the conduction mechanisms in the diode. For example, 

the value of the ideality factor of the optimum diode was found to be 
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2.1 ~ this is larger than the optimum value of a good Schottky diode 

(Chapter 2). It indicates the non-applicability of the thermionic 

emission of electrons from CdS to Au and suggests that generation 

recombination in the space charge region is the dominant mechanism 

( 46) 0 

2) Analysis of the C-V plots. The degree of the change of 

capacitance with reverse bias can be used as a good indication of the 

thickness of the interfacial layer (47). For example, a smooth and 

large variation of capacitance with reverse bias in the •powder A• 

diode~ shown in figure 6.12C, is a good indication of a good junction 

with the thinnest interfacial layer. On the other hand, very slow 

variations of capacitance with reverse bias are an indication of a 

thick interfacial layer. This is because this thick layer will add 

capacitance in series with the depletion capacitance, making the change 

in applied voltage appear almost entirely across the interfacial layer 

(47). 

3) Analysis of c-2-V plots. Capacitance-voltage data in the form of 

C 2 vs V plots can be used to extract valuable information about the 

space charge region. However, because of the complexities associated 

with the possible dec-omposition- of sno2- su-ggestecr in--sectTon 6.2.3-~3~ 

the utilization of c-2 vs V should be treated with caution. 

Nevertheless, it is known that the voltage axis intercept is extremely 

sensitive to the presence of an interfacial layer (45). Higher 

intercept values imply thicker interfacial layer (39), which generally 

mean a higher density of surface states, and lead to lower donor 

concentration values (35). This fact was used here to give an 

approximate picture of the investigated diodes. For example, the 

intercept for the •powder c• diode in figure 6.120 predicts a very high 

intercept compared with •powder A•, and hence a high density of surface 
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state would be expected. The optimum diode was the one which had the 

smallest intercept~ which in this investigation was 0.7 V9 which is 

larger than the report 0.65 V for a diode on a CdS single crystal (33). 

The roughness of the sintered screen printed layer (11) (22) will 

also make the above measurements more unreliable. With rough surfaces 

the intimacy of the junction will change from site to site and also the 

actual junction area will be considerably larger than the geometrical 

area of the contact. This situation will become worse in very non 

uniform surfaces9 as in layers sintered for long time9 as shown in 

figure 6.21C, where there is a pore grain structure with the emergence 

of faceted particles. 

Despite these limitations the I-V and C-V plots do point out real 

differences between various diodes formed on CdS screen printed layers 

under various preparational and sintering conditions. 

6.3 Structural Characterization 

6.3. 1 Introduction 

Structural characterization was carried out to obtain an overall 

picture of the resultant CdS screen printed layer under various 

conditions, and to resolve ambiguities associated with some of the 

results described in the previuus- sectfnns. 

The four t~chniques employed were : SEM9 EDAX9 ESCA and XRD. 

6.3.2 SEM observations 

The scanning electron microscrope (SEM) is a powerful instrument 

for the assessment of the morphology of screen printed CdS layers. SEM 

micrographs obtained in parallel with the Hall measurements enabled a 

more rigorous control of the fabrication conditions to be established. 

Optimum preparation and sintering conditions produced a compact 

structure with few voids and appreciable grain growth9 whereas non 

optimum conditions resulted in a non homogeneous and porous structure 
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with small grain growth. Good morphology led to good electrical 

behaviour as with CdS single crystal Schottkys (33). This correlation 

was found to exist in most layers investigated~ and has been reported 

by many investigators of screen printed layers (11) (14). However 9 it 

is suggested that the correlation between a good morphology and good 

electrical behaviour does not always occur with polycrystalline layers 9 

because of the complications introduced by the grain boundaries. An 

example can be seen from Schottky measurements where regardless of the 

good compact morphology of an optimum layer (figure 6.21) 9 the 

corresponding electrical data for a diode formed on such a layer was 

poor. It is difficult to generalise about the correlation between 

morphology and electrical properties. Obviously good morphology is 

necessary but not always sufficient. 

6.3.3 EDAX observations 

Energy Dispersive Analysis by X-rays (EDAX) is a means of 

identifying the bulk composition of a material and of the localised 

features observed in the SEM. A particular example is shown in figure 

6.8A9 where the odd faceted particles were identified by EDAX as of 

pure cadmium. The shunting behaviour of the _diodes formed on layers 

using a high tdtl 2 --ratio was found to be -d-ue to unreacted CdC1 2 usfng 

EDAX. EDAX does however have some limitations since it cannot detect 

the presence of foreign species in the very top surface of the CdS 

1 ayer because the X-rays come from a depth of 1 micron. Therefore 9 

although the surface morphology might look clean in the SEM and show a 

stoichiometric composition according to EDAX, it might possibly still 

contain a substantial contamination in the surface layers. More 

sensitive methods in parallel with EDAX would then be required. 
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6.3.4 ESCA characterization 

Electron Spectroscopy for Chemical Analysis (ESCA) is a very 

useful technique for the identification of foreign impurities in the 

top 20 Angstroms of a sintered layer. This study was undertaken to 

investigate whether an interfacial layer was present on the surface of 

a screen printed layer prepared under optimum conditions. An 

interfacial layer was believed to occur after sintering~ and it was 

thought to contain sulphate ions (so4
2-) (37) (38). A high resolution 

scan was therefore made for an optimum CdS fabricated layer before and 

after sintering~ and the results were shown in figures 6.24A and B. A 

peak centred at 165.5 ev is revealed in both layers. This was 

identified by M. Houng et al (37) as due to s2- ions. However, the 

additional peak centered at about 172 ev only occurred for the sintered 

layer. Litchman et al (39) reported the formation of a thin sulphate 

layer with a peak around 170 ev. The second peak therefore may be the 

so4
2- related complex. This result is very important for Schottky 

analysis since it confirms the presence of an interfacial layer even in 

an optimum layer. 

It is interesting to note here that when examining the so/-;s 
ratio after vacuum- annealTng the sirftered layer~ the-ratio decreased 

s 1i ghtly ~ which caul d mean that the chemi sorbed oxygen was very 

strongly bonded to the surface forming the oxide compound. It is 

believed that the majority of this oxygen is formed during the 

sintering procedure as confirmed by the presence of the so4
2- peak only 

in the sintered layer. ESCA trials to investigate the presence of 

chlorine, and the suspected migration of tin were not successful. 

6.3.5 XRD characterization 

Preliminary trials to investigate the crystalline structure of the 

screen printed layers using RHEED were not successful. This is because 



Fig. 6.24 

Cll'lOT C1 CCCC;;!JLOTED 1!!:0 
1.0 

0.0 

REFLOT Of ~CCUI:ULATED SCRK FILE•COSBS 512 '87 

J.D -,--~-----.---).~ ---, 

Q.B r 

0.2 

ESCA spectra of S(2P) peaks in the high 
resolution scan 
A Dry CdS layer 

B Sintered CdS layer 



111 

of the rough surface which causes diffuse scattering of the electrons 

at the film surface (48) (20). 

Consequently an X-ray diffraction technique was used to assess the 

crystal structure. XRD was used to examine the changes in the 

structure of the CdS layer following the progressive increase in the 

sintering temperature. 

The diffraction patterns of the 1 ayers were measured using the 

X-ray diffractometer described in Chapter 3. The diffractometer 

spectra are shown in figure 6.25. The spectra of all layers exhibited 

three peaks at 2Q equal to 28.82, 30.80, 32.80 which correspond to 

diffraction from the (lOOL (002)9 (101) planes (49). These were 

identified as the three dominant diffraction lines of hexagonal CdS 

(PDF Card 6-0314). 

The sequence of spectra in figure 6.25 clearly shows that as the 

temperature was increased progressively from 120°C a noticeable change 

in the X-ray diffraction pattern took place. The progressive increase 

in the 002 reflection in particular is a strong indication of a 

preferential growth of the 002 plane (32) (50), which means that the 

basal plane of the hexagonal system is parallel to the surface of the 

substrate (50)~- ana that the C-axfs Ofthe majorfty of the grains is 

perpendicular to the substrate (51). This feature of C-axis 

orientation should make it possible to achieve a solar cell efficiency 

with polycrystalline material comparable to that of single crystal CdS 

( 16). 

The hexagonality value of the optimum layer sintered at 620° for 

90 minutes calculated from equ. 3.1 (chap. 3) was 59%, which is close 

to the va 1 ue of 62% found by S. Fu et a 1 ( 32). When the s i nteri ng 

temperature was increased to 650°, the intensity of the 002 reflection 

increased slightly (figure 6.25E), but the intensity of the 101 

r' 
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reflection increased as well. This suggests that a small number of 

crystallites grew with the C-axis parallel to the substrate (32). This 

may explain why the hexagonality value was reduced to 56%. 

The change in the structure was more obvious when the sintering 

temperature was increased still further to 680°C (this was shown with 

borosilicate glass) where a significant increase of the 001 and 101 

reflections was observed. 

The observation that 620°C is the optimum sintering temperature 

for maximum hexagonality is in close agreement with the results 

obtained in sections 6.2.2.4 iv and 6.2.3.5 v. 

6.4 Conclusion of CdS film characterization 

The accumulated results obtained from the electrical and 

structural characterization discussed in the previous sections reflect 

the care needed in the fabrication of screen printed CdS layers. 

Such characterization is important and will lead to a better 

understanding of the fabricated layer. It is a necessary step required 

before further junction fabrication can take place. 
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CHAPTER SEVEN 

SIGNIFICANCE OF THE SUBSTRATE IN THE FABRICATION OF CdS 

SCREEN PRINTED LAYERS 

7.1 Introduction 

In principle the substrate should only provide mechanical support 

for the deposited film and not interact with the components of the film 

except for the necessary adhesion. In practice however the substrate 

exerts a marked influence on the behaviour of the film (1). 

The selection of the substrate material for screen printing of CdS 

layers is a very important aspect which can influence the whole 

process. No attention has been given to this in the literature. The 

significance of this choice arises because of the high sintering 

temperatures involved in the fabrication processes of the CdS layers. 

The various requirements for the optimum choice of substrate are 

summarized in section 4.5oi. The properties of the substrate must be 

compatible with the chemical~ electrical~ thermal and mechanical 

properties of CdS. There are many possible substrates which can 

fulfill all these requirements, but cost presents a major obstacle. 

--ThTs ___ is--an imp-ortant param-eter since- -the fabricatfon of cheap screen 

printed solar cells is the final objective. 

To achieve this a compromise must be reached between reasonable 

overall substrate properties to match those of CdS and the cost of the 

substrate. 

Glass represents a good~ low cost choice, and its application as a 

substrate for thick film components has long been established (2). 

There are of course various types of glass substrates which vary 

markedly in their properties. These are summarized in table (4.2). 
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The three substrates investigated in the previous chapter 

reflected such differences and showed clearly the influence of each 

type of substrate on the morphological and electrical properties of the 

deposited layers. 

The purpose of the present chapter is to demonstrate this 

dependence more c 1 early by presenting a brief comparison between the 

optimum results achieved with the three substrate types. 

It is believed that the substrate material played a major role in 

the appearance of the anomalous Schottky and Hall data~ by affecting 

the complex nature of the polycrystalline screen printed layers. For 

example the grain boundaries are particularly sensitive to any small 

changes. 

It will be useful to start this chapter by introducing a few 

concepts which are thought to be important in interpreting the 

anomalous results. These include i) a brief description of some 

properties of the substrates used~ ii) the significance of grain 

boundaries and iii) short comments on the occurrence of stresses both 

in the substrate and in the deposited polycrystalline material. 

7.1.1 Substrate properties 

iCge-neral surrimarTof substrate properties was-presented in table 

(4.2). The following description will only concentrate on the most 

significant properties such as composition, strain, thermal expansion 

and thermal conductivity. 

a) Composition : The major compositional consideration is the 

alkali content. This should be very low (3) (4) since it is known that 

the alkali ions are the most mobile constituents in the substrate, and 

they can be leached out very readily by chemical treatment (5). This 

leaching is more likely to be enhanced at the high sintering 

temperatures involved. The presence of these ions in the CdS layer 
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will increase the resistivity (6). The high alkali content in the 

substrates used, particularly in the soda lime glass suggests such 

contamination did take place. 

b) Strain : The appearance of strain at 470°C with soda lime glass 

and 5l5°C with borosilicate glass was very undesirable because higher 

sintering temperatures were required. A minimum of 620°C was needed to 

produce the optimum layer. In general the use of glass substrates is 

limited to temperatures below the strain point, above which viscous 

flow becomes perceptible (1) (7). It is therefore recommended that the 

strain point should be regarded as the maximum safe operating 

temperature. When sintering above this temperature a great risk of 

permanent stress in the glass is to be expected. For example the 

literature of borosilicate 7740 used in this study suggests that this 

strain point should not be exceeded except for a short time, and at 

600°C there is a danger of deformation. The situation is expected to 

be worse for soda lime substrates. These undesirable features may be a 

possible cause of the anomalous behaviour observed in some layers~ 

especially since the strain occurred before the CdC1 2 flux melted at 

568°, which could possibly affect the main sintering mechanism. 

c) Therma 1 expansion : The therma 1 expansion coefficient of th-e 

substrate must be matched as closely as possible to the expansion 

coefficient of the deposited film (8). Poor matching will produce 

internal stress (9). W. Kingery (10) reported that high internal 

stress due to a substantial difference in expansion coefficients will 

cause boundary cracking and the appearance of micro cracks~ which will 

have a harmful influence on the overall behaviour of the deposited 

1 ayer. However, it is difficult to achieve a good match and 

consequently some strain should be expected in most cases. 
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The linear expansion coefficients of the soda lime and boro 

silicatate substrates used in this work are 9.5 x 10-6 per deg and 3.35 

x 10-6 per deg respectively 9 which vary considerably from the thermal 

expansion of CdS of 5.8 x 10-6 per deg. The mismatch between both 

substrates and CdS is very clear9 and may introduce complications in 

the overall behaviour as mentioned above. 

d) Thermal conductivity The thermal conductivity of the 

substrate is the most important factor which is relied upon to 

dissipate heat to the printed layer and hence has a considerable effect 

on the temperature distribution among the components of the layer. 

Therefore, a substrate with a high thermal conductivity will enable the 

paste based upon it to dissipate greater power. 

Unfortunately, glass substrates usually have low thermal 

conductivity (1) (10) (11). For example, the room temperature thermal 

conductivity of the soda lime and borosilicate glasses used in this 
-1 -1 -1 -1 study were .009 W em deg and .018 W em deg respectively. This 

low value can be more clearly appreciated if it is compared with the 

high thermal conductivity of alumina of 2.7 W cm- 1deg-l (1). 

In contrast, the thermal conductivity of crystalline substances 
- -- - -

whether single crystalline of polycrystalline is considerably higher 

than the thermal conductivity of glass (10). Thus the thermal 

conductivity of CdS single crystal at room temperature was measured by 

( -1 -1 M. Holland 12) as .2 W em deg • There is no reported value for the 

therma 1 conductivity of po lycrys ta 11 i ne CdS but it is expected to be 

slightly lower than that of single crystals (11). 

It should also be mentioned that these thermal conductivities of 

both glasses and the polycrystall ine layer behave differently with 

increasing temperature. The thermal conductivity of CdS decreases 

fairly sharply (10) (12), whereas that of glass increases by about 10% 
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per l00°C temperature rise (1). Further complications are that 

impurities in the layer reduce the thermal conductivity markedly (13), 

and this reduction depends on how much they disrupt the lattice (14). 

Moreover 9 the opening of the grain boundary cracks caused by 

internal stress leads to an even lower value of thermal conductivity 

(14)o 

7.1.2 Grain boundary contributions 

Grain boundaries have major effects on the electrical behaviour of 

doped poly crystalline semiconductors in several ways : (i) They act as 

sinks of segregated impurity atoms or other contaminants which occur 

during fabrication processes (15). This will lead to a localization of 

impurities at the grain boundaries where they become electrically 

inactive (16). (ii) Because of the structure of the grain boundaries 

with disorder due to incomplete bonding, a large number of trapping 

states are produced (16). This would reduce the number of free 

carriers available for electrical conduction, and account for the low 

mobilities observed in poly crystalline materials (17) (18). 

These grain boundaries become electrically charged by depleting 

the trapped carriers and create potential barriers surrounding the 
- -- . - ·---

grain boundaries, and these barriers can vary -signffican-tly with the 

net effect of the doping concentration of the poly crystalline material 

and the trap density of the grain boundary ( 19). R. Pet ritz ( 20) 

introduced a simple theory which accounts for the effect of intergrain 

boundaries on the performance of a poly crystalline layer. In this 

theory the grain boundaries act as reverse biased p-n junctions with an 

effective barrier height (21) which controls the carrier mobility (18) 

(29). Large barrier heights reduce the mobility and vice versa. The 

dependence of mobility upon the barrier height of the grain boundaries 

has also been reported by many other authors (22) (23). 
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The barrier height depends on the fabrication conditions (19) and 

good control should be maintained to minimize variable properties. 

7.1.3 Stress Phenomena 

Stress phenomena are common in polycrystalline films. Stress 

should be kept to the minimum. It can be introduced in different 

stages of the fabrication procedure. and can be generated in both the 

substrate and the over layer. 

1. Stresses associated with the substrate 

Stresses caused by the substrate are very significant and their 

occurrence can be appreciated from the description of various substrate 

properties presented in section 7.1.1. These stresses have an impact 

on the grain boundaries of the poly crystalline layer since they can 

lead to a migration of substrate constituents at high temperature which 

will probably lead to their localization at the boundary regions. 

Also, the permanent stress which occurs when sintering above the strain 

point of the substrate will result in deformation of the grain 

boundaries. In consequence these stresses and others mentioned in 

Section 7.1.1 will influence the electrical behaviour of the over layer 

as reported by many authors (21)(24). 

2. Stresses associateo with the poly crystalline mab~rlal 

The stresses associated with the starting material are also an 

important factor for the following reasons: 

i) The presence of impurities in the starting material can cause 

strain in the CdS layer during sintering (25) by evolving violent 

bursts of vapour, which can accumulate in the boundary region or 

nucleate on the surface. 

ii) Another possible source of impurity is the carbon deposit (26) 

which can arise from incomplete burning of the binder. 
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The concentration of such combinations can vary throughout the 

sintering procedure and it can also vary with different preparation 

and sintering conditions. This will lead to discrepancies in the 

achieved results. 

Stress either in the substrate or in the poly crystalline layer 

can have a strong influence on grain boundary behaviour. For example 9 

the opening of grain boundary cracks due to stress will prevent the 

production of a good compact structure and will allow the trapping of 

more contamination. A possible segregation of dopant from the semi 

conductor material may also occur at the grain boundaries. Such 

changes can obviously control the properties of the layer (19). 

7.2 The Optimum Condition 1A Comparison Study 1 

7.2.1 Introduction 

The series of experiments described in the previous chapter were 

carried out to study the effects of various preparational and sintering 

parameters on the morphological and electrical behaviour of screen 

printed CdS layers deposited on substrate such as soda lime~ 

borosilicate and Sn02 coated glass. 

In this section a comparison is made between the optimum results 

achieved us-ing each substrate. 

7.2.2 Morphological Behaviour 

The typical morphology of the optimum CdS layers on soda 1 ime, 

borosilicates and Sn02 coated substrates can be seen in Figures 6.8C, 

6.9B - 6.21A. 

The layers sintered on soda lime and Sn02 coated glass resulted in 

compact structures, while the layer sintered on borosilicate glass 

resulted in an inhomogeneous structure. The better growth and more 

compact structure of the layers on Sn02 coated glass can be attributed 

to the conductive nature of the Sno2 ~ which would increase the thermal 
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conductivity and compensate for the low thermal conductivity of the 

soda lime glass. Although borosilicate glass has high thermal 

conductivity, its very 1 ow therma 1 expansion compared t·Jith soda 1 ime 

glass (Sect. 7.l.l.c) may be responsible for the different morphologies 

of the layers deposited on both substrates. The high thermal expansion 

of soda lime glass (9.3 x 10-6 per deg.) makes a reasonable match with 

the therma 1 expansion of CdS ( 5.1 x 10-6 per deg.) under certain 

conditions, which would lead to a compact structure. This could also 

apply to layers deposited on Sn02 coated glass. However, the poor 

morphology of layers on borosilicate, despite its higher thermal 

conductivity could be attributed to the different expansion between the 

B.S substrate and the deposited layer. 

On the other hand, the cross sectional views of CdS layers on soda 

lime and borosilicate glass shown in Figure 7.1, reveal an interesting 

feature, namely that the CdS layer on borosilicate glass in Figure 7.18 

indicates a fusing of the CdS grains in some parts from the surface 

down to the substrate, as if tending to form a monograin layer. This 

is a useful feature since it reduces the harmful effects of grain 

boundaries. It is suggested that this feature can be attributed to the 

relatively high thermal con~uctivity of borosilicate glass as compared 

with soda lime glass. Further confirmation of this suggestion can be 

found in the 1 iterature. N. Nakayam et al {3) and H. Uda et al (4) 

obtained a 20-30~m mono grain CdS layer by using a borosilicate glass 

7095. Also, more recently M. Bohm et al (27), in their new trial of 

screen printed particulate silicon layer, were able to obtain a mono 

grain layer by using a high thermal conductivity alumina substrate for 

their layers. 

From the above observations it is recommended that the optimum 

substrate should have a combination of high thermal expansion and high 
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Fig. 7.1 Cross Sections of CdS Screen Printed Layer 
fabricated under optimum conditions. 

A Sn02 (Soda Lime Coated) glass 

B Borosilicate glass 
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thermal conductivity. A similar dependence of morphology on the nature 

of the glass substrate and its various properties has been reported by 

A Vecht et al (28). 

7.2.3 Electrical behaviour 

The characterization of CdS layers described in Chapter 6 

suggested that sintering at 620° for 90 min. was the optimum for the 

production of the best screen printed layer. These sintering 

conditions are critical, since lower or higher values resulted in 

poorer electrical behaviour. 

Table 7.1 summarizes the resistivity variations of CdS layers 

deposited onto the three substrates under investigation using different 

durations of sintering at 620°C. 

Substrate Resistivity ( J1. em) 
- ~- --

type 60 min. 90 min. 120 min. Table of results 

~· 

Soda Lime 5.2 3 31 6.6 

Borosilicate .68 .44 - 6.7 
-

Sno2 345 177 680 6.15 

Table 7.1 Resistivity variations with different sintering periods 

A Graphical representation of the above data is shown in fig. 7.2. 

Clearly the lowest resistivity occurred after sintering at 620° 

for 90 min. with all three substrate. This is thought to be due to the 

early appearance of strain in all three substrates. However, the 

lowest resistivity values were found in CdS layers on borosilicate 

glass, while the highest were on layers deposited on Sno2 coated glass. 
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The variation of donor concentration and carrier mobility together 

with the resistivity variation under optimum conditions of fabrication 

are presented in table 7.2 for the three different substrates. 

Substrate 

type ~( ...ft, em) Nd (cm-3) 1.1 
( 2-1-1) em n s Table of results 

~ - f---'<- - --- - - -..,-_ - ~ -

Soda Lime 3 8.2 1016 16 6.6 

Borosilicate .44 2.5 1017 38 6.7 

Sno2 177 2.08 1017 • 17 6.15 

Table 7.2 El~ctrical data variation under optimum conditions 

Graphical representation of the donor concentration and carrier 

concentration data is shown in fig. 7.3. 

It is clear that CdS layer deposited on soda lime substrate 

represented a good combination of electrical data. The fact that the 

lowest resistivity and the hi~ghest donor concentration was achieved for 

CdS layers deposited on borosilicate glass is probably attributable to 

the good cross sectional structure shown in figure 7.1 B where the 

apparent fusing of grains would reduce the grain boundary effect and 

thus enhance the carrier concentrations. 

The data for CdS layers on Sno2 coated glass is very unusual 

regardless of the good morphological structure shown in fig. 6.21 A. 

The analysis of this data will be presented in section 7.4. 
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7.3 Analysis of results on Insulating Substrates 

7.3.1 Introduction 

The term insulating substrates is used throughout this study to 

differentiate them from the conductive Sno2 coated glass. 

This section will investigate the possible reasons for the 

occurrence of high mobility values for CdS layers deposited on 

borosilicate glass and also for some CdS layers deposited on soda lime 

substrate as found in section 6.2.2. 

7.3.2 High mobility values 

The discussion of the high Hall mobility data will be based upon 

the concepts introduced in section 7.1 which depended on the effect due 

to stress, alkali content, thermal expansion mismatch and low thermal 

conductivity. Stress will have a great influence upon the electrical 

properties of the over deposited 1 ayer, s i nee it wi 11 1 ead to the 

opening of the grain boundary microcracks which make them preferential 

sites for precipitation of impurities. This will lead to the 

modi fi cation of the grain boundary barrier height and subsequently 

influence the mobility values. 

A close look at the morphology of the optimum layer as shown in 

fig. 6.48 reve-als separated gra-fns not in irinmate con-tact, and tile 

grain boundary clearly distinguished. P. Pande ( 29) observed these 

boundaries more clearly using the EBIC mode in the SEM. 

L. Kazmerski et al (21) and J. Wilson et al (22) used Petritz' 

model of electron scattering at grain boundaries in a poly crystalline 

film to measure the barrier height at the grain boundaries by applying 

the mobility expressions: 

PK = Ps exp (0/KT) ( 7. 1 ) 

where ~K' is the bulk mobility including the effect of grain boundaries 

and impurity scattering 
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~B~ is the single crystal mobility 

and 0~ is the barrier height at the grain boundary. 

If this equation can be used to calculate the barrier height for 

the optimum condition case in this study, where ~K is 16 cm2v-1s-l and 
~ 2 -1 -1 B is assumed to be 300 em v s for single crystals CdS, this gives a 

value of .07 eV as a measure for potential barrier height. This value 

is larger than the value of .048 eV reported by H. Yang et al (30) 
2 -1 -1 which resulted in a mobility value of 25 em v s . 

The above argument means that high mobility va 1 ues suggest a 

reduction in the barrier height at the grain boundaries. 

J.I. Wilson (31) found enhanced mobility values in In doped, 

thermally evaporated CdS layers, and also found the same increase in 

mobility in layers which contained excess Cd. He explained this as due 

to a reduction in barrier height by local excess of metal. 

The precipitation of impurities at grain boundaries is more likely 

to occur in screen printed layers, particularly if the mixing and 

cooling procedure are not optimised. The presence of such 

precipitation will be enhanced by stresse~ as described above. 

It is strongly believed therefore that the high mobility values 

-are due to the reduction of the inter-granular oa-rri er height by the 

precipitation of impurities. 

An attempt to examine the above ideas for some selected non 

optimum conditions which yield in high mobility would justify this 

further. This will be tried for the following conditions: 

A. Borosilicate substrate case 

The trials made to fabricate CdS screen printed layer on 

borosilicate substrates resulted in a low resistivity CdS layer with 

high donor concentrations, and abnormally high mobility values (table 

6.7B). Close examination of the morphology of the CdS surface fig. 
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(6.98) revealed some precipitation in the grain boundary regions. 

Although the composition of the precipitants could not be identified by 

EDAX~ it is believed they increased the conductivity of the grain 

boundary by reducing the height of the potential barriers at these 

boundaries. Using Petritz' formula the barrier height was found to be 

.05 eV as compared with a value of .07 eV with soda lime substrates 

which have a carrier mobility of 16 cm2v-ls- 1• Thus it is concluded 

that the 1 oweri ng of the barrier height 1 ed to the higher mobility 
2 -1 -1 value of 38 em v s . 

The influence of the precipitation on the mobility can be seen 

more clearly when considering the highest sintering temperature of 

680°C used with this substrate. This led to a non homogenous structure 

(fig. 6.90) and it can be clearly seen that the grains are surrounded 

by precipitated layers. This produced an even higher mobility of 82 
2 -1 -1 em v s due to a reduction in the barrier height to .03 eV from .05 

eV. 

B. Sintering temperature and duration 

The differences in mobility values obtained with increasing 

temperature and/or the duration of sintering as shown in tables 6.5 and 

6.6, suggest that complex changes taRe place aurfng sintering. For 

example, the stoichiometry, grain size, segregation of dopant 

impurities, and evolution of contamination changes throughout the 

process. As a result, the behaviour can vary at any specific stage 

until the optimum condition is reached. 

At the first stage of sintering, a significant amount of volatile 

compound wi 11 start to be driven off, such as the binder burning 

components and other contaminants. Also, CdCl 2 starts to volatize at 

400°C and continues to do so until it is completely volatized at 600°C. 
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The voltization products should find their way out to the exhaust. 

However, since early strain can occur in the glass even at a 

temperature lower than the melting point of CdC1 2 (568°C) 9 considerable 

disturbance will occur9 which will affect the smoothness of the above 

distillation process9 and will lead to some precipitation of impurities 

in the open grain boundary regions, instead of being driven off 

completely. 

It is suggested that this effect is responsible for the lowering 

of the barrier height at the grain boundary causing an increase in the 

carrier mobility. 

At the optimum condition of 620°C for 90 min. it is believed that 

a balance occurred between the substrate and the deposited CdS layer 9 

and most of the precipitations were then driven off. However, further 

increase in the temperature and/or duration would disturb the balance 

again, probably by the out diffusion of chlorine and the segregation of 

cadmium as shown in fig. 6.80. 

C. Post sintering annealing 

Post sintering annealing was undertaken in an attempt to improve 

the electrical and morphological properties of a near optimum layer, 

fig. (6.8A) table (6-.6A). Although the moq)hology improved markedly 

fig. (6.10), the mobility values increased anomalously (table 6.8). 

This is again thought to be a grain boundary effect9 where post 

annealing in hydrogen or vacuum disturbed the optimum balance. 

It is interesting to note that although the post annealed 

structure shown in fig. 6.10 appeared compact, it is clear that the 

grains are not in intimate contact providing favourable intergranular 

regions for possible impurity precipitation. 
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D. Other non-optimum conditions 

A similar explanation of high mobility values due to the lowering 

of intergranular barriers bv the precipitdtiJn of n1n d~sirable 

impurities9 can also be applied to other conditions shown in tables 

6.1, 6.3 and 6.4. 

However, an important observation should not be omitted. This 

concerns the two conditions of an open envelope and a fast flow rate 

discussed in sect. 6.2.2.5ii-iii. These two, although non-optimum for 

producing screen printed CdS layers, due to the poor morphology as 

shown in figs. 6.5C and 6.5F, nevertheless led to normal mobility 

values of 11 cm2v-ls-l and 16 cm2v-ls-l respectively, which are 

comparable with the optimum value of 16 cm2v-1s-1 obtained. 

The nature of these two conditions suggests that direct 

evaporation of the CdC1 2 occurs in an open envelope configuration, 

while with a fast flow, chlorine will be driven off before its complete 

utilization to form donors. It may be that some of the precipitated 

impurities in the grain boundary regions are chlorides. This can 

perhaps be justified when considering the covered envelope and the slow 

flow rate conditions, which yield high mobility values of 111 cm2v- 1s-1 

2 -1 -1 and 53.8 cm-v s . 

However, the presence of other sources of contamination in the 

layer, for example, carbon residue from the binder, alkali ions from 

the substrate and contamination from the starting powder, suggest that 

more than one type of impurity is precipitated in the grain boundary, 

which could be driven off quite readily in open envelope or fast flow 

conditions. 

Although, it could be argued that these are desirable conditions, 

since all the contamination would be driven out, the fact that the 

CdC1 2 is also driven out, judging from the poor morphology and higher 
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resistivitys is very undesirable. Therefore. a compromise has to be 

made to preserve the required amount of CdC1 2, regardless that some 

contamination would still rema.in in the boundary regions. 

7.3.3 Conclusion 

It is worth mentioning here that in addition to the high 

mobilitiess there is evidence that in some cases the mobility does vary 

with grain size and donor concentration as reported by many authors 

(17) (30), which is regarded as normal. This is apparent from the use 

of two flux ratios shown in fig. 6.3 and table 6.2. CdS layers which 

used 7% CdC1 2 had a grain size of 2-4 ~m and a donor concentration of 

6.18 x 1016cm-3, with a mobility of 6 cm2v-ls-1. Increasing the CdC1 2 
ratio to 10% resulted in a layer grain size of 8-10 ~m and a higher 

donor concentration of 8.2 x 1016 cm- 1, with an increased mobility of 
2 -1 -1 16 em v s • 

7.4 Analysis of results on Sn02 Coated Substrates 

7. 4.1 Introduction 

Conductive coated substrates have been used extensively in solar 

cells. They are usually applied as optically transparent electrodes, 

as antireflective coatings (AR), or as a major component part of 

hetrojunction solar cells f32"). Of particular interest are Sn02s In03, 

ITO and ZnO coated substrates, which are those most frequently used. 

Recently interest in Sn02 substrates has been revived because of 

their prospective application in photovoltaic solar cells (33}. Sn02 
films exhibit a wide band gap of 3.87 - 4.3 ev (34}. The most popular 

methods for the deposition of Sno2 coatings are chemical vapour 

deposition, spray pyrolysis and sputtering onto soda lime or 

borosilicate glass. The Sn02 coatings used in this study were 

deposited by spray pyrolysis onto soda lime glass, and had a thickness 

of . l~m. 

Sno2 substrates have been used as AR coatings (35). Sno2 has also 
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been used as a back contact layer (36). However~ its major application 

is as a main component in silicon (single crystals 9 polycrystalline and 

amorphous) solar cells (37-41)9 and also in GaAs and Ge heterojunction 

devices (42). 

With CdS solar cellsg Sno2 is often used as a back electrode 

(43-47). Howeverg the use of Sno2 coatings with screen printed CdS 

layers has not been reported. Preliminary work used other conductive 

coatings (48-50)9 which were unsatisfactory because of shorting 

prob 1 ems (51 ) . 

Sno2 substrates were used in this study to test the usefulness of 

screen printed CdS layers for solar cell fabrication, by forming simple 

Schottky diodes on the layers. Howeverg the results obtained were very 

anomalous and raised many questions about the validity of such a 

substrate for solar cell applications. In the following section the 

reasons for this will be discussed. 

7.4.2 Anomalous results 

The first measurements of CdS 1 ayers deposited onto Sno2 coated 

glasses revealed that they were high resistivity layers. This is 

unusual since the reverse effect was expected, because of the presence 

of the conductive coating. 

The Schottky data were summarized in tables 6.9-6.17 and these 

reveal anomalously low mobility values, with unexpectedly high donor 

concentrations considering the high resistivity values. For example, 

the donor concentration of the best CdS layer deposited onto Sno2 glass 

2 07 1017 -3 h. h . h. h d . th th . t. . t f was . x em , w 1c 1s 1g compare w1 e res1s 1v1 yo 

177..0.cm. A similar high donor concentration in a single crystal would 

have led to a resistivity of approximately .l~cm. 

Similar abnormal electrical behaviour using Sn02 substrates was 

reported by P. Pande et al (23). They obtained a high resistivity 

value of 600Jrbcm for a CdS layer deposited electrophoretically onto 
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Sn02 coated glass. They found a donor concentration of 2.7 x 1016 cm-3 

and a mobility of .38 cm2v-ls-l ~ which they attributed to the presence 

of high potential barriers at the grain boundaries with a height of .14 

eV. 

The barrier height for the best screen printed layer on Sno2 glass 

in this study~ which had a resistivity of 177.n. em and a mobility of 

.17 cm2v- 1s-l ~was found to be 0.18 eV using Petritz•s formula (7.1). 

This value is substantially higher than that of 0.07 eV for the optimum 

CdS layer on soda lime glass. 

Since there is no report about the way which the conductive Sno2 
substrate surface might interact with CdS layer~ the following 

discussion will attempt to investigate this in some detail. 

i) Reaction between Sno2 and CdS 

A reaction with the Sno2 layer was reported to occur in amorphous 

silicon solar cells (52) (53). The main reaction products were tin in 

metallic form and Si02 ~ despite the low temperature used in the 

fabrication. A chemical reaction is more likely to occur between Sno2 
and CdS because of the high sintering temperatures used. Cumberbatch 

et al (7) (44) indicated that high sintering temperatures with this 

type- of substrate are not r-ecommended, since the glass- will soften 

considerably and permit viscous flow. Their observation can also 

suggest the presence of a reaction between the CdS layer and the Sno2 
substrate possibly in the form: 

CdS + Sn02 -- Cd + Sn + so2j 

ii) Migration of metallic species 

Although Sno2 will only decompose at the very high temperature of 

1850° (54L the possibility of the migration of the constituents of 

Sno2 layer is very likely to occur. The migration of metallic species 
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into the over coated layer has been reported by many authors (55) (56), 

The migration of o2 and Sn from Sno2 must therefore be considered. 

a. ~tion 

The suggestion of 02 migration may be a 1 ittle confusing due to 

the unavoidable presence of 02 in the screen printed CdS layer, either 

at the surface or in the grain boundary, as discussed in the previous 

chapter. However if more 02 is introduced into the CdS from the Sno2 
coated layer~ its effect will be to reduce the donor concentration 

either by filling the nativeS vacancies at the surface (57) (58), or 

by introducing a high density of surface states if it is trapped in the 

grain boundaries. This will reduce the mobility (59) and result in a 

lower donor concentration (58). 

b. Sn migration 

There is strong evidence from the literature to suggest that the 

metallic species of the conductive substrate migrates into the over 

coated layer. For example, S. Naseem et al (60) observed tin migration 

from ITO into an over coated sputtered InP layer, and they reported 

this to cause an inversion type in the InP layer. A. Saidane et al 

(55) also found a segregation of tin from ITO substrates into thermally 

evaporated -ZnSe. 

The above examples involved the segregation of Sn from ITO which 

is less stable than Sno2. However, very recently, Cumberbatch (7) 

found some evidence for Sn migration into CdS layers on Sno2 which had 

been heated to 550°C. 

The next questions to be answered are: 1) where does the Sn go 

inside the material? and 2) what is its influence upon the behaviour 

of the layer? 

First, the diffusion of Sn will take place along grain boundaries, 

where it will accumulate. For this assumption to explain the observed 



135 

results~ the Sn should increase the trap density at the grain boundary 

and increase the barrier height. This would explain the low mobility 

values but would not explain the high donor concentration value. A 

second possibility is that tin may dope the CdS. This has much 

supporting evidence from the literature. 

Several workers have deliberately doped II-VI compounds with Sn 

(61) (62). Y. Mita (62) doped ZnS with Sn and he concluded that this 

element is electrically active and substitutes for Zn. Also~ H. Tuboto 

et al (61) used Sn to dope CdSe in order to decrease its resistivity. 

Fahrenbruch and Bube (63) indicated that CdS is easily doped n-type 

with Sn which forms shallow donors. 

It is suggested therefore that Sn replaces host Cd atoms and 

donates two free electrons to the conduction band. This seems a 

reasonable possibility since the atomic radii of Sn and Cd are 1.4A0 

and 1.48A 0 respectively (61). 

In conclusion~ the above arguments suggest that9 Sn doping is the 

most probably cause of the anomalous results of CdS layers deposited 

onto Sno2 substrates. 

7.5 Final Remarks 

-The chapter will be conclude-d by presenting two important remarks 

which are closely related to the scope of the present work. These 

involve the optimum substrate choice for screen printing and the high 

sintering temperature requirement in the fabrication processes. 

7.5.1 Optimum substrate choice 

In view of the above discussion of the anomalous results with both 

insulating and conductive substrates9 a more precise picture can be 

obtained for each substrate used9 from which the optimum choice of 

substrate for screen printing can be recommended. 
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A renewed examination of the three substrates suggests the 

following for the possibility of each of them as candidates for screen 

printing applications, 

a. Soda Lime substrates 

The unusual high mobility value achieved by using this substrate 

is largely attributed to the complexity associated with the occurrence 

of early strain of this glass at 470°C~ in addition to its high alkali 

content, These form two major obstacles for the successful utilization 

of this substrate type for efficient screen printed layers of CdS, 

b, Borosilicate substrates 

Although borosilicate type 7740 has a higher strain point of 

520°C~ this is still low for CdS screen printing applications. Another 

major problem of this substrate is its low thermal expansion which has 

an adverse influence on the electrical and morphological behaviour of 

CdS layer, The relatively higher thermal conductivity of this 

substrate is advantageous in producing a better cross sectional layer 

and would probably have a marked influence if this glass had a better 

thermal expansion matching with the over coated layer, 

c. Sno2 coated substrates 

-Initial observations of CdS la-yers deposited- on Sno-2 substrates 

would not encourage further use of these substrates. This is because 

of the darkish appearance, and the bad adhesion of the sintered CdS 

layers. Moreover, the anomalous results for all screen printed layers 

deposited onto these substrates would further support the above 

suggestion. 

In view of the above observation the following recommendation can 

be made for the optimum choice for screen printed layers of CdS. 

1. Avoid using conductive substrates because of the uncertainty 

associated with the migration of the metallic species. 
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2. Choose an inert insulating glass which should have the 

following features . 

. a high strain temperature above 600°C. For example~ the 

strain temperature for B.S. 7095 (which is mostly used for 

screen printed CdS layers) is 6l3°C . 

• a very low alkali content 

• a high thermal conductivity for more heat absorption 

• proper thermal expansion matching with CdS layer. 

7.5.2 Substrate Vs. sintering temperature 

From the economic point of view a low sintering temperature is 

desirable to save energy. In the fabrication of screen printed CdS 

layer, however, there is a minimum temperature which must be employed 

to produce an optimum layer and the maximum temperature can vary with 

varying fabrication conditions. 

It is known that a minimum temperature of 568°C is needed to melt 

CdC1 2 and form a molten solution to dissolve the surfaces of the high 

melting CdS grains. However, the presence of a CdC1 2 residue is not 

desirable after the completion of the sintering processes. In general, 

CdC1 2 starts to volatilize at 400°C and is completely volatilize at 

600°c.--rh~is -would put -a-maximum tem-perature of 600°C-f6r complete 

removal of CdC1 2. However, this is not always the case, because the 

necessary very constrained sintering envelope configuration needed for 

proper sintering will allow a high percentage of chlorine ions to 

remain, probably by trapping of the grain boundaries. This will imply 

raising the sintering temperature above 600° to ensure the complete 

removal of any undesirable CdC1 2 residue. The Japanese workers found 

more chlorine remained at 630°C after using a very constrained envelope 

(64). Consequently they employed a sintering temperature of 690°C to 

ensure that a minimum of chlorine remained. However, the Korean 
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workers reported 650° as their optimum temperature. Although they 

found complete growth occurred at 620°C (30L the lowest resistivity 

occurred at 650°C. 

These temperatures are too high to be employed in our work~ mainly 

because of the early strain in our substrates. The Japanese used a 

high quality substrate~ B.S. 7095, to meet their sintering requirement. 

The Koreans did not specify quality of their B.S. substrate but it is 

believed to be of inferior quality to 7095. 

The fact that very little chlorine remained in most sintered 

layers in this study 9 even at temperatures below 600°C is largely 

attributed to the non ideal sintering envelope (6.2.2.5ii) which 

allowed a relatively fast evaporation of CdC1 2 at the early stages of 

sintering. 
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CHAPTER EIGHT 

CdS/CdTe SOLAR CELLS 

In chapter 6 the suitability of CdS screen printed layers for 

solar cell fabrication was discussed and in this chapter attempts to 

fabricate solar cells on screen printed CdS layers are described. 

Although various junction combinations have been reported to 

produce photovoltaic cells on screen printed CdS layers (1-5), the best 

one was the CdS/CdTe structure fabricated entirely by screen printing 

processes ( 5). 

The fabrication of a cell of this type ideally requires a thorough 

characterization of the CdTe screen printed layer to optimise the 

efficiency of the cell, but this promises to be lengthy. Therefore a 

new structure has been investigated utilizing thermal evaporation to 

fabricate the CdTe part of the cell structure. 

This method was chosen from the point of view of simplicity of 

preparation. 

Following the recommendations made in Chapter 6, optimum CdS 

layers were prepared ·on soda lime glass to give-the best electrical and 

morphological characteristics for the fabrication of solar cells. 

All the- CdTe layers were prepared in a conventional vacuum 

evaporation system as described in sect. 3.4.2.i. The starting 

material was high purity CdTe, which was evaporated from a quartz 

crucible at temperatures between 780° and 980° in a vacuum of the order 

-5 of 1 x 10 torr. The evaporation rate was adjusted from 1.5 to 2.5 

-~m/min by controlling the crucible temperature. 

This chapter will start by introducing some preliminary work in 

section 8.2 followed by optimization studies of the CdTe evaporated 
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layer in section 8.3. In section 8.4 the influence of variously 

prepared CdS screen printed layers will be described~ with the aim of 

correlating the photovoltaic properties of the cell with the method of 

fabrication of the screen printed layer. In section 8.5 a general 

discussion of some of the features apparent in this new structure will 

be presented. 

8.2 Preliminary Studies 

8.2.1 Mode of illumination 

In heterojunction solar cells, two modes of illumination are 

possible; the front wall configuration, where the light is incident 

through the thin layer of the smaller band gap absorber material (i.e. 

CdTe), and the back wall configuration where the light is incident 

through the large band gap window material (i.e. CdS). 

The preliminary trials made to investigate the optimum mode of 

illumination are shown in fig. 8.1A. The photovoltaic behaviour under 

AMl illumination using both modes revealed the back wall configuration 

to be the best mode. This produced higher values of short circuit 

current (S.C.C.) of 0.65 rnA and open circuit voltage (O.C.V.) of 0.36 V 

as compared with 0.2 rnA and 0.26 V for S.C.C. and O.C.V. values 

respectively for- the- front -mode--confi-guration.--

The reason for this improvement is obvious since in the front wall 

configuration, most of the electron-hole generation will occur close to 

the CdTe surface because of the high absorption coefficient of CdTe (6) 

(7). Then the short diffusion length of minority carrier (6) means 

that most of the recombination occurs near the top surface before the 

carriers reach the junction. On the other hand, in the back 

illumination mode, the region of the maximum photo carrier generation 

is displaced away from the CdTe surface (8), and the absorption takes 
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place close to the CdS/CdTe interface~ where maximum photo carrier 

collection occurs. 

It should be noted that the nature of the CdS surface will affect 

carrier transport due to the presence of grain boundaries (9) (10) 

which can trap minority carriers. However~ the increased number of 

effective photons transmitted by the window material~ and the high 

resistivity of the CdTe material (see later)~ which enhances the 

surface recombination~ ensure that the back wall mode is superior to 

the front wall mode in these cells. 

8.2.2 Annealing temperature 

Various annealing temperatures between 250° and 350° were tried to 

investigate the best temperature for diffusing the Cu dopant (section 

2.2.l.i) into the CdTe layer in order to lower the resistivity of the 

P-type layer. 

The J-V characteristics of the two devices annealed at 250° and 

350° are shown in fig. 8.1B~ together with the characteristic of an 

unannealed device for comparison. It is clear that the optimum 

behaviour was found when the device was annea 1 ed at 350°C ~ giving a 

S.C.C. of 2 rnA and an O.C.V. of 0.53 V. This compares with a S.C.C. of 

.8 rnA and-O.c.v. of--0.32 v- far· -the device -annealed at--250°C. The 

unannealed devic-e showed a very poor S.C.C. (0.4 rnA) and O.C.V. (.2 V), 

which is to be expected, since the evaporated copper has not then 

diffused into the highly resistive CdTe layer. This study indicated 

the necessity of annealing the Cu doped device to drive the dopant into 

the 1 ayer. It a 1 so revea 1 ed the importance of the correct anne a 1 i ng 

temperature to ensure proper diffusion. 

Trials to anneal the device at high temperature (e.g. 400°C) 

resulted in a high series resistance of the device and produced 

inferior photovoltaic behaviour. 
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8.2.3 Annealin_g_ Ambient 

A vacuum ambient of -5 10 torr was chosen for the post annealing 

treatment in view of the possibility of introducing additional P-type 

doping by creating Cd vacancies, which result from the different vapour 

pressures of Te and Cd. Cadmium vacancies are reported to act as 

acceptors (11-14) and help in reducing the resistivity of the CdTe 

layer. 

The behaviour of two devices annealed for comparison in argon and 

in vacuum are shown in fig. 8.1C. The vacuum annealed device had 

higher values of S.C.C. (2 rnA) and O.C.V. (0.53 V) 9 in comparison with 

1.7 rnA and 0.47 V for the argon annealed device. 

An additional possible advantage of vacuum annealing is the 

creation of an excess of tellurium on the surface as a consequence of 

the cadmium vacancies. This feature would lead to a lower contact 

resistance (14) because the heavily doped region adjacent to the 

contact metal would permit easy tunneling (15). 

8.2.4 Contact Problem 

Various aspects of ohmic contact formation to P-type CdTe were 

reviewed in sect. 2.2.2iii. The two metals mostly employed nowadays to 

achieve- a reasonably ohmic -conta-ct to -P-type CdTe are go Hr (Au) and 

carbon (C). Howevef9 both materials still have considerably lower work 

functions of 5.1 ev and 5.05 ev (16) than that of CdTe which is 5.9 ev 

(17). The normal procedure followed to over come this mis-match 

problem, and obtain a barrier free contact necessary for a good ohmic 

behaviour, is to dope the CdTe heavily under the contact to promote 

easy tunneling (15) (17) (18). For carbon contacts this was done by 

incorporating the copper impurities in the carbon paste and then 

heating to produce the needed P+ layer (19). With the Au contact this 

layer was provided by producing a Te rich surface under the contact. 
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In this work~ trials of carbon contacts were unsuccessful and led 

to junction deterioration following the heating required for Cu 

diffusion. This may have been due to the introduction of some 

contamination from the carbon paste~ such as Al (20) ~ into the CdTe 

during the heat treatment which would increase the series resistance. 

As a result, gold was employed as the contact material for all 

CdTe evaporated layers. 

8.3 Optimization of CdTe layers 

8.3.1 Substrate temperature 

The influence of the substrate temperature at which the CdTe is 

deposited is very significant in controlling the behaviour of the 

resu 1 tant 1 ayer ( 10) ( 13) ( 21) and the subsequent performance of the 

fabricated device. 

Two substrate temperatures were tried~ 150°C and 200°C (here the 

term substrate refers to the screen printed CdS layers upon which CdTe 

was evaporated to form the hetrojunction). The photovoltaic behaviour 

under AMl illumination of the devices fabricated at the two substrate 

temperatures are shown in fig. 8.2. 

It is clear that the best values of S.C.C. of 5.6 rnA and O.C.V. of 

0.51 V -were from-the -device produc-ea using a -substrate- teinperafure of 

200°C. The device made at 150°C produced iower values of S.C.C. (1.9 

rnA) and O.C. V. (0.48 V). 

The spectral responses of the O.C.V. of the two devices are shown 

in fig. 8.3. The device manufactured using a substrate temperature of 

200°C gave the highest response, while that using a temperature of 

150°C was less sensitive in the short wave length region (high energy 

region). Both devices showed a low energy threshold at 0.85 ev, well 

below the energy of the CdTe band gap (1.5 ev), with the high energy 

response extended to energies slightly greater than that of CdS band 
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gap (2.4 ev). The possible reasons for the occurrence of these 

features will be discussed in section 8.5.3. The maximum peak response 

of the two devices was close to the band gap of CdTe (1.5 ev). 

In order to understand the superiority of the device produced 

using 200°C as the substrate temperature~ an attempt was made to 

observe the structure and crystallinity of the evaporated CdTe layer 

using RHEED. However, this was not successful because of the roughness 

of the underlying screen printed CdS, which affected the deposited CdTe 

layer and caused diffused scattering. As a result~ representative 

RHEED pictures were taken for CdTe layers deposited onto plane glass 

located very close to the CdS substrates, these are shown in fig. 8.4 

for the two temperatures employed in this study. 

The superiority of the higher substrate temperature in producing 

better crystallinity is very obvious from the smaller arc width (10) 

which indicates preferred orientation. Similar structures for CdTe 

layers deposited at 200°C were found by G. Awan (10) to display good 

columnar growth when examined by SEM. Such layers are very useful in 

solar cell devices, since the charge carriers can flow down the 

columnar crystallites without crossing grain boundaries which results 

-in bet-ter photovoltaic behaviour~ 

The columnar growth was less evident with the 150°C layer with a 

greater proportion of randomly orientated material. This implies that 

the carriers would have to cross different crystallites during 

transport, which would lead to increased recombination losses and poor 

photovoltaic behaviour. 

If the structures on the plane glass, shown in figs. 8.4A and B, 

are replicated on the CdS printed layers, then the above observations 

by Awan would explain the performance of the two devices shown in figs. 

8.2 and 8.3, i.e. the good photovoltaic performance of the 200°C device 



Fig. 8.4 RHEED Pattern of CdTe films deposited at 
different substrate temperatures 

A 150°C 
B 200°C 
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would be attributed to the good columnar growth of the CdTe layer 

deposited at 200°C9 while the poorer photovoltaic performance of the 

150°C device would be attributed to poor columnar growth. 

8.3.2 The importance of doping 

The as-deposited CdTe layer had a high resistivity of the order of 

106 
!1. cm9 which is not suitable for photovoltaic power conversion. 

Doping with elemental copper is one of the various methods (section 2) 

employed for reducing the resistivity by introducing acceptors into the 

layer as has been demonstrated by many workers (10) (11) (22-24). The 

actual doping mechanism and procedure is described in sect. 2.2.2ii and 

sect. 3.4.2ii respectively. Judging the literature (10) (25) only two 

doping concentrations were tried here 9 100 ppm and 300 ppm. Fig. 8.5 

shows the photovoltaic behaviour of two devices doped with the above 

concentrations of Cu. The behaviour of an undoped device is shown for 

comparison. 

It is apparent that the undoped device has a high series 

resistance9 and shows a poor photovoltaic behaviour. The S.C.C. value 

was 0.075 rnA with an O.C.V. of 0.26 V. However 9 by using 100 ppm Cu 

the behaviour improved considerably9 and the S.C.C. and O.C.V. reached 

values- -of 1.55 rnA -and 0.38- V--respectivel-y. By increasing the Gu 

concenti~ati on to 300 ppm, these parameters improved further to give 

higher values of 5.6 rnA and 0.51 V. 

The spectral responses of the devices doped with 100 ppm and 300 

ppm Cu are shown in figure 8.6 9 together with the data for an undoped 

device. The peak of the poor response of the undoped device was 

shifted toward higher energies (1.69 ev) compared with the band gap of 

CdTe. A substantial improvement was obvious with both doped devices. 

The two responses show some similarity in shape, although the magnitude 

of the response was greater for the 300 ppm Cu doped device. With the 
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100 ppm Cu device9 the peak response lay close to the CdTe band gap. 

Also~ the short wave length cut off occurred at the CdS band gap with 

no extension to higher energy. With the 300 ppm device the short wave 

length response extended further into the blue region. 

8.3.3 Thickness effects 

Bee au se of the 1 a rge absorption coefficient of CdTe ( > 1 04 em -l) 

(6) nearly all photons from the solar spectrum which have energies 

equal to or greater than the band gap of CdTe (1 .5 ev) are absorbed 

within a distance of 1-2 ~ of the surface (26-28). Therefore a large 

CdTe layer thickness is inefficient and a waste of material, especially 

with the short minority carrier diffusion length in CdTe (26L which 

means that all carriers created in the first few microns will recombine 

before reaching the junction where useful collection of carriers occurs 

(6). Although, this can be alleviated partially by using back mode 

illumination (section 6.2.1), the influence of the thickness would 

still be significant. 

Fig. 8.7 shows the photovoltaic behaviour of three devices with 

different CdTe thicknesses of 0.5, 5 and 15 ~m. It is clear that the 

•5 ~m· device produced the best photovoltaic parameters, with a S.C.C. 

of 5.6 rnA, O.C.V. of 0.51 V and a fill factor of 26%, The device with 

the thinnest layer of CdTe gave low values, of 1.5 rnA and 0.32 V for 

S.C.C. and O.C.V. respectively, but with a higher fill factor of 55%. 

The device using 15 ~m thick layer produced the poorest values of 

S.C.C. (0.1 rnA) and O.C.V. (0.28 V), with an extremely low fill factor 

of .2%. Obviously the thick CdTe layers (15 ~m) increased the series 

resistance. On the other hand a thin CdTe layer (.5 ~m) is not thick 

enough for complete absorption of light (10) (28), and of course the Cu 

doping may not have been fully optimized (10). The possibility of Cu 

diffusion into CdS layer through the thin CdTe layer is quite a problem 

and this would increase the resistivity of the CdS layer. 
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It is therefore suggested that a CdTe thickness of 5 ~m is 

required as a compromise to obtain a good light absorption and a low 

CdTe resistance. 

8.3.4 Post deposition annealing 

Post deposition annealing is necessary to allow copper diffusion 

into the CdTe layer (section 8.2.2L and this makes the layers more 

P-type. The superiority of a vacuum ambient over argon has been 

discussed in section 8.2.3. In this section a trial of post deposition 

annealing in hydrogen as another possible ambient is described. 

The photovoltaic characteristics of devices annealed in both 

vacuum and hydrogen ambients are shown in fig. 8.8. Both devices 

displayed similar S.C.C. values of 5.6 rnA. However~ the O.C.V. was 

higher for the vacuum annealed device at 0.51 V than that of 0.45 V for 

the hydrogen annealed device. 

The O.C.V. responses of the two annealed devices are shown in fig. 

8.9. These revealed a low energy threshold at .85 ev for the vacuum 

annealed device with a sharp cut off at the band gap of CdS. In 

contrast~ a sharp absorption edge on the CdTe side of the hydrogen 

annealed device was observed~ with a threshold at 1.2 ev. However~ 

there was no sharp cut off at the CdS band gap in this device. 

3.3.5 Conclusion 

The optimization studies presented above suggest the following as 

the conditions for producing the best CdTe layer for hetrojunction 

formation: 

A deposition substrate temperature of 200°C 

A Cu dopant concentration of 300 ppm 

A CdTe layer thickness of 5 ~m 

Post deposition annealing at 350°C for 15 minutes in a vacuum 

ambient 
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8.4 Effects of CdS layers 

8.4.1 Introduction 
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The great influence of the various preparational and sintering 

conditions involved in the fabrication of the screen printed layer 9 

upon the behaviour of a simple Schottky device has already been 

described in section 6.2.3. In this section the effect of the CdS upon 

the more complicated hetrojunction CdS/CdTe structure will be 

described. 

8.4.2 Substrate effects 

Major variations in the morphological and electrical behaviour of 

CdS layers deposited onto different substrates (Soda Lime~ Borosilicate 

and Sn02) are summarized in section 7.2. 

Attempts were made to fabricate CdTe heterojuncti on ce 11 s using 

the optimum CdTe recipe~ and the three optimum CdS layers deposited on 

the three different substrates 9 in order to obtain more information 

about the significance of the substrate in the overall process. 

Fig. 8.10 shows the photovoltaic behaviour of the devices 

fabricated on these different CdS layers under AMl illumination. The 

photovoltaic parameters are presented in table 8.1. 

Substrate o.c.v. s.c.c. F.F. Eff. 

type Volts mA/cm2 % % 

Soda Lime 0.51 5.6 26 . 74 

Borosilicate 0.48 8.3 28 1.1 

Sn02 0.43 12.8 30 1.6 

Table 8.1 Effect of Substrate type on device parameters 
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It is clear that the device on soda 1 ime glass produced the 

highest O.C.V. (.51 V)s but on the other hand it had the lowest S.C.C. 

of all (5.6 rnA). In contrasts the Sno2 device produced the highest 

S . C • C . ( 1 2 . 8 rnA ) but it had the 1 owes t 0 . C . V • ( . 4 3 V ) . The 

borosilicate device had an intermediate values of O.C.V. (.48 V) and 

S.C.C. (8.3 rnA). 

These differences are believed to be related mainly to the 

substrate materials which in turn affect the deposited over layer. For 

the Sno2 device the occurrence of a low O.C.V. value may be the result 

of a heavy Sn doping as suggested in section 7 .4.2. An increase in 

donor concentration was found to reduce the value of the O.C.V. (5). 

The fact that this device exhibited the highest value of S.C.C. could 

be attributed to an increase in the number of photons entering through 

the wide band gap Sno2 window in the back mode illumination (29). With 

the borosilicate device the improved structure of the deposited CdS 

layer (fig. 7.1 B) plays an important role in contributing to the 

relatively high S.C.C. value (8.3 rnA) compared with the soda lime 

device, because more carriers will flow because of the smaller number 

of grain boundaries. Conversely the presence of more boundaries in the 

CdS layer on soda lime glass (fig. 7.1 A) is probably responsible for 

the lower S.C.C. value, because of the increased probability of carrier 

loss in the powdery structure. Th occurrence of the highest O.C.V. in 

the soda lime device may be due to its cleaner CdS surface (fig. 6.8 

C). 

The fill factors and efficiencies of the three devices were very 

poor. The reasons for the low values of fill factor will be discussed 

later in Section 8.5.1. However, it is interesting to note that the 

Sno2 device showed the largest F.F. of 30% and the highest efficiency 

regardless of its low O.C.V. 
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The spectral responses of the O.C.V.'s of the three devices are 

shown in fig. 8.11. The largest response is given by the soda 1 ime 

device~ while the poorest is for the borosilicate device, which shows a 

narrow response~ falling off faster in short wave length region than 

the other two. 

The soda lime and Sno2 devices showed considerable similarity in 

the shape of the response. However, the magnitude of the Soda Lime 

device was greater than the Sno2 device. 

8.4.3 Post sintering annealing effect 

ESCA studies described in section 6.3.4 revealed the presence of a 

sulphate (so4-2) layer on all sintered CdS layers. This was found to 

be reducedg but not totally removed by post sintering annealing in an 

inert atmosphere. To investigate the possible effect of this layer 

upon the cell performance~ two devices were fabricated on unannealed 

and hydrogen annealed CdS layers. 

The photovoltaic performance of both devices is shown in fig. 

8. 12. It is c 1 ear that the device on annea 1 ed CdS produced poorer 

photovoltaic parameters 9 i.e. a S.C.C. of 2.9 rnA and O.C.V. of 0.48 V, 

compared with a S.C.C. of 5.6 rnA and O.C.V. of 0.51 V for the 

unannealed device. 

The O.C.V. responses of the two devices are shown in fig. 8.13. 

The annealed devices show a marked increase in the threshold energy of 

the red response which starts at an energy of 1.2 ev. They also 

reveal a better CdTe absorption edge. This contrasts with the 

unannealed device which has a threshold energy of 0.85 ev and a peak 

response shifted to slightly higher energy. The annealed device 

exhibited a poorer response in the blue region with a fast decay 

whereas the unannealed device revealed a larger and wider response over 

the same wave length region. 
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Hall measurements made on both annealed and unannealed layer 

(section 6.2.2.5 v) indicated the occurrence of unusually high mobility 

values in the annealed CdS layers. This is believed to be due to the 

presence of precipitated impurities in the grain boundary region 

(section 7.3.2) as a result of post annealing. It is very likely that 

the presence of these precipitates would influence the interface 

between CdS and CdTe junctions. Therefore~ regardless of the 

improvement in the bulk properties of the CdTe in the CdS annealed 

devices~ the adverse effects of other parameters would suggest the use 

of unannealed CdS layers for device fabrication. Therefore any 

improvement in the device performance should be sought without further 

treatment of the as made CdS layer. Nevertheless~ this study shows the 

influence of the unavoidable sulphate layer present on the sintered CdS 

1 ayer. 

8.4.4 Conclusion 

The work described in the above sections indicates the strong 

influence of the nature of the CdS layer on the CdS/CdTe 

hetrojunctions. It also confirms the undesirable effects of post 

annealing the optimum CdS layers on the performance of the fabricated 

device on these layers. 

8.5 Discussion 

Most of the devices described in the previous sections have many 

features in common. The object was to select the best conditions for 

fabrication of the device. In what follows an attempt will be made to 

explain some of the features observed in more detail with a view to 

gaining a better understanding of the processes involved. 

8.5.1 Analysis of the Photovoltaic Results: 

Oben Circuit Voltage: The relatively low O.C.V. for the soda lime 

device of 0.51 ev has many possible explanations. The following are 
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believed to be the most likely; i) the presence of grain boundaries in 

the po lycrysta 11 i ne CdTe 1 ayer produces a major prob 1 em due to the 

increased impurity concentration (i.e. Cu) in the boundary regions~ 

which will increase the shunt resistance of the cell and result in a 

lower O.C.V. (30). ii) the difficulties encountered in obtaining good 

P~type CdTe doping (sect. 2.2.2ii) also gives rise to a low barrier 

height (31) and iii) the rough CdS surface would disturb the desirable 

crystallinity of the CdTe layer giving a low shunt resistance and 

hence~ a low O.C.V. (10). 

Short Circuit Current: The relatively low S.C.C. of 5.6 rnA can be 

attributed to both the CdS and the CdTe layers; the powdery structure 

of the printed CdS layer introduces an increased number of grain 

boundaries which will act as traps for most of the photocarriers before 

they reach the junction. An improvement in the structure would lead to 

increased current collection as with the borosilicate devices (section 

8.4.2). Moreover~ the roughness of the CdS surface also has some 

influence in reducing the current value in general. This is possibly 

because the disordered area of the p-n junction for CdTe deposited on 

rough CdS layer produces one part of the active area of the cell and 

hence causes loss of current (32). On the other hand~ the non 

optimized P-type doping of the CdTe layer implies a high resistiv·ity 

CdTe layer, which wi 11 reduce the 1 ife time of the minority carriers 

resulting in less efficient current collection. 

Although the effect of the CdTe could be minimised by employing 

back wall mode illumination (section 8.2.1) it would still play a major 

role in limiting higher current values. 

Fi 11 Factors: The very low values of the fill factor for the optimum 

device is largely attributable to the high series resistance and the 

low shunt resistance of the devices. 
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The high series resistance of the cell is very clear from the 

shallow gradient of the I-V curve (fig. 8.10). This high resistance 

derives from the resistivity of both the CdS and CdTe layers 9 and the 

contact resistance to both layers. The relatively lm'll resistivity of 

CdS used in this study (3ficm) made little contribution to the total 

series resistance (33) (34) 9 and therefore would have had little 

influence upon the resultant 1 ow F. F. va 1 ue. On the other hand 9 the 

difficulties in obtaining a high level of P-type doping in the CdTe 

layer would suggest that the series resistance was dominated by the 

high CdTe resistance (10). Moreover9 non optimised P-doping may well 

have led to a higher contact resistance to the CdTe layer (34). 

Finally9 a contribution of the indium contact to CdS to the total 

series resistance is also possible regardless of the good ahmicity 

obtained (section 6.2.1). 

A second reason for the low fill factor in the low shunt 

resistance of the cell, which can be clearly seen from the soft knee of 

the light I-V curve, and the large gradient of the curve after crossing 

the current axis. This is fairly typical of most devices in this 

study. 

The low shunt resistance is associated mainly with the presence of 

grain boundaries, and unavoidable pinholes in the thin film structure 

which produce leakage currents (35). The roughness of the CdS surface 

is an additional problem which could create shunting paths. 

8.5.2 Analysis of Spectral response 

The shape of the spectral response of the best device shown in 

fig. 8.11 revealed a wide sensitivity over the whole visible spectrum. 

However, there are some features of this typical response, and of the 

response of the other devices examined which need to be investigated. 
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These include the low energy threshold occurring below the CdTe band 

gap and the poor blue response of some non optimum devices. 

Low energy threshold: The long wave length spectral edge is associated 

solely with the collection of photo carriers in the CdTe layer (6)~ and 

the shape of the absorption edge should ideally occur at energies 

corresponding to the CdTe band gap (36). However 9 the present devices 

in general have a spectral sensitivity which starts at a much lower 

energy (.85 ev) than that of CdTe (37)9 and have an exponential tail 

rather than an abrupt edge. This may be due to the presence of 

impurity or defect states close to the valence band of CdTe (9) (10) 

(13). J. Pickozewsk et al (38) have indicated that the presence of a 

large concentration of compensating donor and acceptor impurities will 

give rise to band gap narrowing and create a high field in the 

junction. Because of this 9 electron hole pairs can be generated at 

photon energies substantially less than the band gap (Eg) (39) by a 

tunneling assisted transition (Franz-Keldysh effect) (10). The larger 

the built-in field, the further the tail of the photo response extends 

into the infrared. The improvement in the threshold energy in the 

hydrogen annealed devices (figs. 8.9 and 8.13) reflects the formation 

of fewer impurity states and a lower field strength in these devices. 

Poor blue response: The sharp wave length cut off at the CdS band gap 

for the best device (fig. 8.11) in the blue region 9 is an indication of 

the presence of a true heterojuncti on ( 40). On the other hand 9 the 

poor blue response for most other devices is an indication of a buried 

homojunction (41). This may be the result of a large density of 

surface states at the CdS/CdTe interface which could act as a window 

and absorb most of the short wave length radiation with energy above 

the band gap (42). 
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8.6 Conclusion 

Although the present performance of the best device in this study 

is relatively poor9 the study has confirmed the validity of the 

fabricated CdS layer for heterojunction formation. 
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CHAPTER NINE 

SUMMARY AND CONCLUSION 

The work presented in this thesis can be categorized under b.JO 

major headings: i) preparation of CdS screen printed layers and ii) 

device trials. 

9.1 Preparation of CdS layers 

The ultimate aim was to prepare screen printed CdS layers with 

reproducible morphological and electrical behaviour for use in the 

fabrication of solar cells. To achieve this the interdependent 

printing, preparation and sintering conditions involved in the 

fabrication processes were investigated and optimized. 

A screen printer was built in this laboratory. The device and 

screen parameters were optimized to ensure the best printing 

conditions. 

The preparation and sintering conditions were then optimized. The 

fabricated CdS layers under these conditions were characterized using a 

variety of experimental techniques including Hall effect, Schottky 

diodes, SEM, EDAX, ESCA and XRD. Many new parameters were investigated 

such as CdS powder type, mixing significance, furnace type, flow rate, 

post sintering annealing and a rule of substrate. In general it was 

found essential to start with a pure powder which has an average grain 

size of 3 ~m. Adequate paste mixing was necessary to ensure dopant and 

flux distribution and to produce a thixotropic printing paste. The 

sintering in a tube furnace produced the best results rather than in a 

muffle furnace. The argon flow rate in the furnace was maintained at 

0.1 L/min as the best compromise to provide an inert sintering ambient 

and to minimize the fast drive-off of the volatilized CdC1 2 material. 

Post sintering annealing was tried and is only recommended for non 

optimised fabricated layers. 
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The best sintering rate was 28°C per min. and the optimum 

sintering temperature and duration was 620°C for 90 min. The detailed 

investigation of various substrate materials suggested that soda lime 

glass was best. The use of Sno2 coated glass as a substrate material 

presents a great risk of metallic migration into the over layer CdS 

leading to a deterioration in the electrical behaviour of the layer. 

The abnormally high mobility values obtained with layers on 

borosilicate glass 7740 was related to the precipitation of impurities 

at the grain boundary regions. 

By standardizing the printing~ preparation and sintering 

conditions a reproduc i b 1 e CdS 1 ayer was prepared which had a good 

compact morphology with a hexagonal structure. Such layers had a low 

resistivity of 3...n. em with a corresponding carrier concentration of 
16 -3 2 -1 ~ 1 8.2 x 10 em and a mobility of 16 em v s . 

9.2 Device trials 

Trials of a Schottky device formation resulted in good 

rectification behaviour of the fabricated diodes. C-V measurements 

suggested the formation of an interfacial layer on the surface of the 

sintered layer. This was confirmed by ESCA analysis since a layer 

containing so-2 
4 ions was suggested to form on the surface of all 

sintered layers. 

The fabrication of solar cells by evaporation of CdTe layers on 

the screen printed layer was also investigated. By optimizing the 

quality of the evaporated layers of CdTe a solar cell with a wide 

spectral response was achieved using CdS layers deposited on Soda Lime 

glass. The photovoltaic parameters were 0.53 v~ 5.6 rnA for O.C.V. and 

S.C.C. values respectively. The question of high resistivity of CdTe 

layer and high contact resistivity has to be solved to improve the 

overall efficiency. 
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Finally~ the fast reduction of the chlorine ions in the process of 

sintering as indicated from XRF and AAS analysis suggests that the 

performance of the CdS 1 ayers can be further improved if a better 

method of sintering confinement can be contrived for precise co~trol of 

the CdC1 2 evaporation. 




