
Durham E-Theses

A Service Late Binding Enabled Solution for Data

Integration from Autonomous and Evolving Databases

WANG, CHONG

How to cite:

WANG, CHONG (2010) A Service Late Binding Enabled Solution for Data Integration from

Autonomous and Evolving Databases, Durham theses, Durham University. Available at Durham
E-Theses Online: http://etheses.dur.ac.uk/659/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support O�ce, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/659/
 http://etheses.dur.ac.uk/659/
http://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk

A Service Late Binding Enabled Solution for Data

Integration from Autonomous and Evolving Databases

Name: Chong Wang

 Supervisor: Prof. Keith H. Bennett

Ph.D. Thesis

School of Engineering
University of Durham

2010

Abstract
Integrating data from autonomous, distributed and heterogeneous data sources to

provide a unified vision is a common demand for many businesses. Since the data

sources may evolve frequently to satisfy their own independent business needs,

solutions which use hard coded queries to integrate participating databases may cause

high maintenance costs when evolution occurs. Thus a new solution which can handle

database evolution with lower maintenance effort is required.

This thesis presents a new solution: Service Late binding Enabled Data Integration

(SLEDI) which is set into a framework modeling the essential processes of the data

integration activity. It integrates schematic heterogeneous relational databases with

decreased maintenance costs for handling database evolution. An algorithm, named

Information Provision Unit Describing (IPUD) is designed to describe each database

as a set of Information Provision Units (IPUs). The IPUs are represented as Directed

Acyclic Graph (DAG) structured data instead of hard coded queries, and further

realized as data services. Hence the data integration is achieved through service

invocations. Furthermore, a set of processes is defined to handle the database

evolution through automatically identifying and modifying the IPUs which are

affected by the evolution.

An extensive evaluation based on a case study is presented. The result shows that the

schematic heterogeneities defined in this thesis can be solved by IPUD except the

relation isomorphism discrepancy. Ten out of thirteen types of schematic database

evolution can be automatically handled by the evolution handling processes as long as

the evolution is represented by the designed data model. The computational costs of

the automatic evolution handling show a slow linear growth with the number of

participating databases. Other characteristics addressed include SLEDI’s scalability,

independence of application domain and databases model. The descriptive

comparison with other data integration approaches shows that although the Data as a

Service approach may result in lower performance under some circumstances, it

supports better flexibility for integrating data from autonomous and evolving data

sources.

Acknowledgements

I would like to express my deep sense of gratitude to everyone who has helped me

with my research. In particular, I am heartily thankful to my supervisor, Professor

Keith H. Bennett, whose untiring effort, encouragement, guidance and support have

helped me greatly in my research. My sincerely thanks and appreciation go to

Professor Roger Crouch whose advice and encouragement have been extremely

helpful during the final phase of my thesis writing. My thanks also go to all the other

people in the department who have discussed my work with me and provided

technical support, Bin Weng, Trevor Nancarrow and Michael Wilson in particular.

I have thoroughly enjoyed my time as a Ph.D. student and much of this is due to the

people I have shared an office with over the years. My thanks go to Giovanni Airoldi

and Graciela Becci for many enjoyable discussions.

I would like to thank my parents, Chending Wang and Xuerong Mei, who have

provided endless patience and inspiration with their unconditional love, and supported

me in all the ways at all time. I am forever indebted to them.

Finally, my greatest thanks go to my wife Chanjuan Liu. Without her unfailing love,

company, encouragement and confidence in me, the ups and downs of research would

have been much harder to go through. She has listened to my explanations of my

ideas and has always been happy to read my work. The supports she has given me are

immeasurable and this thesis is dedicated to her with all my love.

Statement of Copyright
The copyright of this thesis rests with the author. No quotation from it should be

published without their prior written consent and information derived from it should

be acknowledged.

Declaration
The material presented in this thesis is the sole work of the author and has not been

previously submitted for a degree at this or any other university.

Contents

Contents ..1

Chapter 1 Introduction..1
1.1Context ...1
1.2 Area of Interest ..1

1.2.1 Distribution ..2
1.2.2 Autonomy...2
1.2.3 Heterogeneity ...3
1.2.4 Existing Types of Approach ...6

1.3 Problem Discussion...7
1.3.1 Evolution ..7
1.3.2 Data as a Service ..9
1.3.3 Summary ..9

1.4 Research Outline ...10
1.4.1 The Database Evolution Problem...10
1.4.2 Research Issues ..10
1.4.3 Problem Boundaries ...11
1.4.4 Summary ..12

1.5 Research Aims and Criteria for Success..12
1.6 Evaluation Criteria ..13
1.7 Contribution ..14
1.8 Thesis Structure...15
1.9 Summary ...16

Chapter 2 Background ..17
2.1 Introduction ...17
2.2 Data Integration...17

2.2.1 Federated Database Management System (FDBMS)...17
2.2.2 Data Warehousing ..19

2.3 Software Evolution..21
2.3.1 Software Evolution Process..21
2.3.2 Data Integration System Evolution ..22
2.3.3 Evolution Support ..23

2.4 Service Based Concepts and Technologies ...23
2.4.1 Software as a Service and Data as a Service ..23
2.4.2 Service-Oriented Computing and Architecture ..24
2.4.3 Grid computing and Web Service...24
2.4.4 RDF and SPARQL ...25
2.4.5 Service Based Data Integration Solution..26

2.5 Case Study Method ...27
2.6 Mental Health Application Domain ..28
2.7 Summary ...30

Chapter 3 Data Integration Framework..31
3.1 Introduction ...31
3.2 Data Integration Activity Framework..31
3.3 The Service Late-binding Enabled Data Integration Solution...34

3.3.1 Overview of the Services ...35
3.3.2 Overview of the Processes ...36

3.4 The processes of the SLEDI..37
3.4.1 Data Source Describing..37
3.4.2 Query Processing..38
3.4.3 Evolution Handling ..39

3.5 The services of the SLEDI ..40
3.5.1 Information Provision Service..40

3.5.2 Broker Service..41
3.5.3 Evolution handling service...42
3.5.4 Registry Service ...43

3.6 Characteristics of the SLEDI...44
3.7 Summary ...46

Chapter 4 Data Sources Describing ...47
4.1 Introduction ...47
4.2 Overview of the Data Sources Describing ..47
4.3 Application Domain Ontology ..48

4.3.1 Knowledge Representation...49
4.3.1.1 Representation Formalisms ...49
4.3.1.2 Description Logic..49

4.3.2 Domain Ontology Representation ..51
4.3.2.1 Concept Description ..51
4.3.2.2 The Terminology ...52
4.3.2.3 The Rule ..52

4.3.3 Domain Ontology Model ...53
4.3.3.1 The Terminology ...53
4.3.3.2 The Rule ..55
4.3.3.3 Domain Ontology Construction ..55

4.4 The Information Provision Unit Describing Algorithm ..57
4.4.1 Overview of the IPUD..57
4.4.2 The Information Provision Unit ...58
4.4.3 Global Definition..59
4.4.4 Local Definition ...60

4.4.4.1 Query Languages...60
4.4.4.2 Conjunctive Query ..61
4.4.4.3 View Definition ...62
4.4.4.4 The Model ...63
4.4.4.5 Validation Rules ..65

4.4.5 Summary of the IPUD..66
4.5 The Information Provision Service Assembly...66

4.5.1 Information Provision Service..66
4.5.2 Organizational Structure...67
4.5.3 Registry ..68

4.6 Summary ...69
Chapter 5 Query Processing ...70

5.1 Introduction ...70
5.2 Overview of Query Processing..70
5.3 Data Source Filtering ..74

5.3.1 User Query ...74
5.3.2 Filtering ..75

5.4 Query Rewriting..77
5.4.1 Answering queries using views ..77
5.4.2 Completeness and Complexity of finding query rewritings78
5.4.3 The query rewriting algorithm..79

5.4.3.1 Ordinary Expanding ..79
5.4.3.2 Terminal Expanding ..80
5.4.3.3 Rewritings Verifying ...81
5.4.3.4 A Simple Example ...81

5.5 Result Generating..84
5.5.1 Service Plan Generating ...84
5.5.2 Service Plan Executing...85
5.5.3 Result Constructing ..88

5.6 Summary ...89
Chapter 6 Evolution Handling..90

6.1 Introduction ...90
6.2 Overview of Evolution Handling ..90
6.3 Organizational Evolution Handling...92

6.3.1 Organizational Evolution Identification ...93
6.3.1.1 The Types of Organizational Evolution...93
6.3.1.2 The Model of Organizational Evolution..94

6.3.2 Organizational Evolution Solving ..95
6.4 Schematic Evolution Handling..97

6.4.1 Schematic Evolution Identification ..98
6.4.1.1 The Types of Schematic Evolution..98
6.4.1.2 The Model of Schematic Evolution...100

6.4.2 Schematic Evolution Solving ...103
6.4.2.1 Affected IPU Identification ...104
6.4.2.2 Affected IPU Modification ..105

6.4.3 Schematic Evolution Handling Services ..114
6.5 Summary ...115

Chapter 7 Experimental Implementation..116
7.1 Introduction ...116
7.2 Services and Processes of the SLEDI..116

7.2.1 Services ..116
7.2.1.1 Information Provision Service...116
7.2.1.2 Registry Service ..117
7.2.1.3 Broker Service...118
7.2.1.4 Evolution Handling Service ..119

7.2.2 Processes ..119
7.2.2.1 Query Processing...119
7.2.2.2 Schematic Evolution Handling..121

7.3 Experimental System...122
7.3.1 Specification of the Services ..123

7.3.1.1 Broker Service...123
7.3.1.2 Data Service ..124
7.3.1.3 Registry Service ..125

7.3.2 Architecture of the SLEDIS ...127
7.3.3 Metadata structure and management ..128
7.3.4 Development and testing environment...130
7.3.5 Implementation of the Services..131

7.3.5.1 Registry Service ..131
7.3.5.2 Broker Service...132
7.3.5.3 Data Service ..133

7.4 Test Data..134
7.5 Evaluation of the Implementation ...136

7.5.1 Design Evaluation ..136
7.5.2 Test and Validation ...137

7.6 Summary ...137
Chapter 8 Evaluation...138

8.1 Introduction ...138
8.2 Case Study...138

8.2.1 Context and Analysis Unit..138
8.2.2 Research Questions and Propositions...139

8.3 Overview of the Evaluation...141
8.4 Capability of solving heterogeneity problems...143

8.4.1 Various Heterogeneity Problems ..144
8.4.2 Constructed IPUs..146
8.4.3 User queries and results..151
8.4.4 Summary ..152

8.5 Capability of Solving Evolution Problems..153

8.5.1 Proposition 2 ..153
8.5.2 Proposition 3 ..157
8.5.3 Proposition 4 ..159
8.5.4 Proposition 5 ..160
8.5.5 Proposition 6 ..162

8.6 Scalability..164
8.7 Other Characteristics ...166

8.7.1 Expandability ...166
8.7.2 Programming Language Independency..167
8.7.3 Application Domain Independency ..168
8.7.4 Limitations ...168

8.8 Conclusion...169
8.9 Summary ...170

Chapter 9 Conclusions...171
9.1 Introduction ...171
9.2 Review of Research...171

9.2.1 Research aims and issues ...171
9.2.2 Service based approach ..172
9.2.3 Data integration framework..172
9.2.4 SLEDI solution...172
9.2.5 Case study and experimental implementation..173

9.3 Evaluation of Research..174
9.4 Discussion ...176
9.5 Further Work ...177

9.5.1 User queries involving multiple versions of organizational structure178
9.5.2 Data Inconsistency ...178
9.5.3 Other models for representing application domain ontology178
9.5.4 Other types of participating databases..179
9.5.5 Extension of schematic evolution handling..179
9.5.6 Large scale evaluation ..180

9.6 Final Summary ..180
Reference: ...181

 1

Chapter 1 Introduction

1.1Context

Along with the wide use of database technology and the Internet, it is usual for large business

consortiums to require information data from multiple data sources. These data sources may be

autonomously designed, supported by heterogeneous database systems, managed by their own

applications and situated in distributed locations. Through integrating the data from theses data

sources to provide a unified vision, end users can interact with the unified vision directly to only

focus on their information needs instead of having to access each data source separately. It can

help the businesses run more efficiently hence is crucial for their success. Therefore data

integration is a common concern that many businesses share.

As the data sources are under autonomous control and may employ heterogeneous database and

network technologies to manage their data, data integration can be a complex and difficult task to

accomplish hence has been continuously attracting much research attention for decades [55, 37].

Lenzerini refers to the problem of data integration as:

“Combining data residing at different sources, and providing the user with a unified view of these

data” [55].

Therefore, data integration needs to solve the heterogeneities of the data stored in the databases

of the autonomous and distributed data sources to establish a unified data store for end users to

utilize.

1.2 Area of Interest

Despite the large amount of research which has been done, data integration still remains a

difficult and costly issue for business [38, 52]. Take the data integration in the Mental Health

application domain as an example; the information of the patients may be stored in many

autonomous data sources such as hospitals, social services, etc. The data sources may be situated

in distributed locations, using heterogeneous databases to manage the data. More importantly, the

data sources may change rapidly for various reasons such as changing of the government policy

and upgrading of their IT systems. Researches in the IBHIS project [106] has shown that because

the participating databases of data integration may evolve constantly to fulfil their own business

drive, the evolution may impact the data integration system hence require large amounts of

maintenance work. The traditional solutions such as the Federated Database System [76] and

Data Warehousing [20, 44] fail to meet the requirements of data integration in a constantly

 2

evolving environment. Consequently, a new solution is required for integrating data from the

autonomous and evolving data sources.

Although the data sources may employ their own Database Management System (DBMS) to

manage their data, all the DBMSs involved in this research are assumed to be Relational

Database Management systems (RDBMS) as the RDBMS currently dominates the DBMS market

[23]. The RDBMS is based on the relational data model. [22, 23] The relational model is a

database model based on first-order predicate logic. It describes a database as a set of relations

and each relation constitutes a set of attributes. Each attribute is described by a name and a data

type. Thus each relation can be considered as a predicate variable and the data in the database can

be considered as instances of relations (an instance data of a relation is also referred as a tuple).

The content of the database at any given time can be considered as a finite set of instances of

relations. Thereafter in this research, the database schema refers to the set of relations of a

database. Each data source is assumed to manage its data through a single relational database

hence the terms data source and participating database may be used interchangeably in this

thesis.

Since the data sources may be controlled by different owners and designed for different purposes

over a period of time, some characteristics of the data sources must be considered as they can

form troublesome problems that the data integration has to tackle. Sheth and Larson proposed to

define those characters of the data sources along three orthogonal dimensions: distribution,

autonomy and heterogeneity [76].

1.2.1 Distribution

Data may be distributed across multiple databases in different data sources, located in different

geographical locations. The data sources may be connected to each other by the supporting

communication network system. The data from different data sources may relate to each other in

different ways. Take the relational database as an example; a set of tuples can be distributed

vertically (i.e. different attributes stored in different data sources) or horizontally (i.e. different

tuples are stored in different data sources). Since a data integration system provides a unified

vision, end users only need to query against the unified vision without being concerned with

where the data is stored and the data integration system must be able to manage the distribution

of the data. This means that under some circumstances, the data integration system may have to

access multiple databases to answer a single user query.

1.2.2 Autonomy

As the data sources may be designed independently without knowing they could be participating

 3

in the data integration system, they may be under autonomous control by their own DBMS and

applications, making full decisions on their own, such as what data they are willing to share and

how others can access those data. They may represent the same information in different ways

such as employing different database models (schemas, constrains and query languages);

associate with or disassociate from the data integration system at the time they wish; dictate the

communication protocols to access their data; decide whether to accept the data access request

from other parts of the system and the details of how to process the request. They may also make

changes to their database without acknowledging the data integration system.

1.2.3 Heterogeneity

Since the data sources may design their databases independently for different purposes, the

participating databases of a data integration system may exhibit a wide range of heterogeneities

[42]. As the data managed by the databases are the abstractions used to represent the information

in the real world, the design of a database is the process of creating the abstractions and realizing

them into computational data through using the database technology. In [07], Batini et al. model

the process of database design as four stages:

1. Requirements Specification and Analysis: an analysis to identify the information of various

areas in the real world. This results in a preliminary specification of the information that is

required to be realized into data.

2. Conceptual Design: modelling and representation of the information from the point view of

end users. This results in a conceptual schema that represents a high-level consensus

semantic description of the required information.

3. Implementation Design: transforming a conceptual schema into the logical schema of a

database model such as the relational model, resulting in a database schema which provides

a representation of the required information at schematic level

4. Physical Schema Design and Optimization: mapping the logical database schema into an

appropriate stored representation in a DBMS such as a RDBMS. The physical parameters to

optimize the database performance based on end user’s requirement may be considered

during the mapping. This results in a physical database in a specific software and hardware

environment to manage the data that represents the required information.

Although the participating data sources design and implement their DBMSs autonomously, it is

assumed the information they model are in the same application domain area in the real world.

Indeed, if the participating data sources concern different area of the real world and the

information they model is not related at all, the data integration may become meaningless. To

describe the application domain that all the participating data sources are interested in, the

ontology is borrowed in this research. Gruber defines the concept of ontology as “An ontology is

an explicit specification of a conceptualization.” [36]. Thus the role the ontology plays is to

 4

provide a high-level consensus semantic description of the salient aspects of the application

domain. Since the conceptual schema is also for providing an abstract and simplified view of the

application domain [07], it can be considered plays the same role of the ontology from data

integration point of view.

When different data sources design their databases, divergence may still arise at any stage from

stage two to stage four of the database design process. In stage two, all the data sources intend to

model the information of the same application domain of the real world. Different data sources

may model the application domain ontology differently from their own point of views hence

introducing semantic heterogeneities into the application domain ontology. Take the ER model

[21] as an example for representing the application domain ontology. A data object may be

modelled as an entity type in one data source and as an attribute of an entity type in another data

source.

In stage three, different data sources may represent the same application domain ontology by

adopting different logical data models such as the relational data model and the Object-Oriented

data model. They may map the domain ontology into different structured database schemas even

though they adopt the same logical data model. Thus they introduce schematic heterogeneities

into the participating databases. Kashyap and Sheth categorized the schematic heterogeneities

into a taxonomy [46]. Since all the data sources are assumed to employ the relational data model

to realize their databases, the taxonomy is adopted with some modifications in this thesis. Let us

assume that in the application domain ontology, there is an entity type (or relationship) E0

containing a set of attributes (EA00, …, EA0n), with subtypes E1 and E2 containing attributes

(EA10, …, EA1n) and (EA20, …, EA2n) respectively; two data sources map the application domain

ontology independently through their relational database schemas DS0 and DS1 which contains a

set of relations (R00, …, R0n) and (R10, …, R1n) respectively, and each relation contains a set of

attributes (RA0, …, RAn) The schematic heterogeneities can be described as the discrepancies

between DS0 and DS1 at different levels:

 Attribute level discrepancy:

1. Naming discrepancy: EAij is mapped to RAi in DS0 and to RAj in DS1 where RAi and RAj

have different names (Homonyms). Or EAij is mapped to RAi in DS0 and EAkl is mapped to

RAj in DS1 where RAi and RAj have the same names (Synonyms).

2. Attribute domain discrepancy: EAij is mapped to RAi in DS0 and to RAj in DS1; DS0 and

DS1 are said to have Attribute domain discrepancy if any of the following conditions is true:

1) RAi and RAj have different data types

2) The information instance Ii of EAij corresponds to the data instance Di of RAi and

Dj of RAj, Di ≠ Dj (for example, the mental illness Schizophrenia is represented as a

string “schizophrenia” in DS0 where as a string “schizo” in DS1)

 5

3. Attribute granularity discrepancy: EAij is mapped to a single attribute RAi in DS0 and a set

of attributes (RAj …, RAk) in DS1 (for example, the patient name is represented as a single

attribute Name in DS0 where as the attributes First_Name, Middle_Name, and Last_Name in

DS1)

 Relation level discrepancy

1. Naming discrepancy: E0 is mapped to Rij in DS0 and to Rkl in DS1 where Rij and Rkl have

different names (Homonyms). Or E0 is mapped to Rij in DS0 and E1 is mapped to Rkl in DS1

where Rij and Rkl have the same names (Synonyms).

2. Relation granularity discrepancy: E0 is mapped to a set of relation (R0i, …, R0j) with

cardinality X in DS0 and to (R1k, …, R1l), with cardinality Y in DS1 where (X > 0) ∧ (Y > 0)

∧ (X ≠ Y). In other words, the information instances of E0 can be derived from data

instances in DS0 as well as in DS1 (for example, all the attributes of a patient are modeled as

one relation in DS0 but as two relations in DS1)

 Schema level discrepancy

1. Abstraction level discrepancy: In DS0, E0 is mapped to Rij with an extra attribute RAi to

indicate each data instance of Rij represents an information instance of either E1 or E2.

Whereas in DS1, E1 and E2 are mapped to two relations Rij and Rkl respectively. In other

words, the information instances of E1 or E2 can be derived from data instances in DS0 as

well as in DS1 (for example, DS0 has a relation “patient” which has an attribute “Category”

to indicate whether an instance is an adult or child patient, whereas DS1 has two relations

for adult and child patient respectively)

2. Schematic discrepancy: schematic discrepancy refers to an attribute and its information

instances from the application domain ontology are mapped to relations or attributes or data

instances in DS0 whereas they are mapped differently in DS1 (information instances can be

derived from data instances in DS0 as well as in DS1, the examples are provided in section

8.3.1). It could be in any of the following forms:

1) EAij is mapped to an attribute RAi in DS0 whereas each instance of EAij is mapped

to an attribute RAj in DS1

2) Each instance of EAij is mapped to an attribute RAi in DS0 whereas it is mapped to

a relation Rkl in DS1

3) EAij is mapped to an attribute RAi in DS0 whereas each instance of EAij is mapped

to a relation Rkl in DS1

3. Missing item discrepancy: missing item discrepancy refers to the items in the application

domain ontology which are mapped to one database schema but not another. It could be in

any of the following forms

1) EAij is mapped to RAi in DS0 whereas it is not mapped to any attribute in DS1

2) E0 is mapped to Rij in DS0 whereas it is not mapped to any relation in DS1

4. Relation isomorphism discrepancy: E0 is mapped to a set of relations (R0i, …, R0j) in DS0

 6

where each corresponding data instance of E0 explicitly identifies itself as a data instance of

either E1 or E2. Whereas E0 is mapped to a set of relations (R1k, …, R1l) in DS1 where it is

not specified whether a data instance of E0 is an instance of E1 or E2. (for example, both DS0

and DS1 has the “patient” relation, the relation in DS0 has an attribute to indicate whether an

instance is an adult or child patient, whereas the relation in DS1 does not have this attribute)

Due to the autonomy of the data sources, different data sources may choose different DBMSs

based on their own preference to manage their databases despite the fact that they are all

implementing the same database schema. Even though all the DBMSs involved are RDBMSs,

different RDBMS products may require different hardware and software environments and they

may support different communication protocols, concurrency control, transaction management

and the syntax of query languages. Thus the system level heterogeneities might be introduced in

the stage four of the database design process.

1.2.4 Existing Types of Approach

For the purpose of facilitating the end users to fulfill their information requirements, data

integration needs to combine the data from the participating databases which exhibit the various

characteristics introduced above into a unified vision. The vision may be realized through an

integrated data store (IDS) and the database schema of the IDS (also referred as global schema)

is a synthesis of the schemas of all the participating databases. Much research has been devoted

to the data integration problems and generated solutions [105, 50, 03]. The current approaches of

the solutions to address data integration problems can be broadly divided into two categories:

materialized data integration and virtual data integration

1. Materialized Data Integration: this approach transports the actual data from the participating

databases into a materialized IDS. The approach is also known as Data Warehousing where

Widom [95] refers to it as eager approach or in-advance approach.

2. Virtual Data Integration: this approach establishes a virtual IDS store of descriptive

information instead of actual data of the participating databases. The information

requirements from end users are fulfilled through accessing the actual data in the

participating databases based on the descriptive information in the IDS. The approach is also

referred to as a ‘lazy’ or ‘on demand’ approach.

In materialized data integration, the IDS may be constructed through firstly filtering and

extracting data from the participating databases, then resolving the heterogeneities through

transforming the data to comply with the global schema and loading the data into the IDS. As the

consequence of this, end users can directly pose queries to the IDS and obtain the required results

data. Since the data in the IDS is a replication of the data in the participating databases and the

IDS is realized as a single database in this approach, end users can appreciate the efficiency of

 7

the query processing and obtain the results data even if the participating databases are offline

when the queries are being answered. However, this approach requires extra time and spatial cost

for maintaining large volumes of redundant data for establishing the IDS. Moreover, changes

occurring in the participating database may cause complex maintenance operations in the IDS.

In virtual data integration, it is the descriptive information which is stored in the IDS while the

actual data remains residing in the participating databases. The solutions such as the Federated

Database System follow this approach. The heterogeneities of the participating databases are

solved through constructing the descriptive information to describe the mappings between the

global schema and the schemas of the participating databases. As a consequence of this, end

users may raise queries against the global schema and the queries are answered through firstly

examining the mappings in the IDS to determine which participating databases are relevant for

answering the queries, and then accessing them to obtain the required results data. The mappings

may be established by following the approaches of Local-as-View (LAV) or Global-as-View

(GAV) [55, 37].

Since only the mappings are stored in the IDS, the virtual data integration approach enjoys the

flexibility of maintaining modest amounts of data over large number of participating databases.

However, as the results data must be obtained from the participating databases, inefficiency may

arise in query processing and results data may not be obtained when the participating databases

are offline. Changes occurring in the participating database may also cause large amounts of

maintenance effort to revise the mappings stored in the IDS when the mappings are realized

through hard coded programs.

1.3 Problem Discussion

Although the solutions such as the Federated Database System and Data Warehousing are

capable of integrating data from distributed, autonomous and heterogeneous participating

databases, substantial amounts of maintenance work may be required when evolution arises in

the participating databases; especially for the solutions following the materialized data

integration approach. Since the data sources may evolve constantly to fulfill their own business

requirements due to autonomy, the evolution has to be taken into account as a characteristic of

the participating databases in the data integration.

1.3.1 Evolution

The evolution is a pervasive challenge that every software system has to tackle. Since predicting

every possible situation and covering all of them at system design time are simply not feasible,

the maintenance operations have to be conducted through the system lifetime and typically take

 8

more than 50 percent of its total lifetime cost [61]. As suggested previously, autonomous data

sources may evolve constantly to reach their own requirements, thus the evolution a data

integration system has to tackle may appear in various forms. For example, new participating

databases may join the system and existing participating databases may drop out of the system or

go offline. The participating databases may also change their database schemas and what data

they are willing to share after they have joined the system. Research in the IBHIS project has

identified a set of evolutions a data integration system may encounter; the evolutions are adopted

in this research with some modifications. Generally, the evolutions can be categorized as the

evolutions at data integration system level and the participating database level, based on which

part of the data integration system the evolutions occur.

Evolution at data integration system level:

 End user requirements evolution: the information requirements from end users may change

over time, thus the application which is responsible for answering user queries through

accessing the IDS may have to be maintained to deal with the evolution.

 Application domain ontology evolution: changes may occur in the application domain

leading to the modification of the application domain ontology modelled for the data

integration system.

Evolution at data source level:

 Organizational evolution: the participating databases may be organized into a specific

organizational structure based on some features of the data sources rather than loosely

gathered as an unordered set. Thus the evolution of the data sources may cause alterations in

the organizational structure. For example, the location of a hospital may change from

Durham to Newcastle due to the county boundary reorganization.

 Schematic evolution: the participating databases may change their database schemas to

fulfill the evolving requirements of the data sources after they join the data integration

system. The changes should be propagated into the IDS in order to reflect the latest state of

the databases. For example, databases may rename, add and/or remove the attributes and

relations in their schemas.

 System level evolution: the participating databases may change the DBMSs which

accommodate them, the information such as names and URLs to describe them, and the

software and network environment they reside at due to the autonomy of the data sources.

The changes should be managed in order to keep the correspondence between the IDS and

the participating databases.

Even for the data integration solutions which follow the virtual data integration approach, as the

mappings in the IDS may be realized through hard coded programs, the evolution may still result

 9

in enormous successive maintenance effort in the data integration system as any of the evolution

introduced above may cause revising, recompiling and redeploying of the mappings. The

maintenance work of the data integration system may become unmanageable or even

unachievable once the evolution occurs frequently. Hence a new solution is required to solve the

data integration problems while decreasing the maintenance effort caused by the evolution.

1.3.2 Data as a Service

The conception of Software as a Service (SaaS) [52, 13] proposed by the Pennine Research

Group provides a possible solution for building software systems in a constantly changing

environment. This is achieved through turning software systems into a set of self-described,

standard interfaced services and publishing the services on a central registry. The functions of the

software systems can be realized through discovering the relevant services and conducting

invocations onto them. A truly SaaS based software system can bind to and execute the most

appropriate software product service as and when needed (i.e. very late binding). “At the extreme,

the binding which takes place prior to execution, is discarded immediately after execution in

order to permit ‘system’ to evolve for the next point of execution.” [52]. The main benefit of the

SaaS is it can be used to build a highly flexible and agile software system which is able to meet

rapidly changing business needs [52, 13]. By allowing the easy substitution of the constituent

parts of the system (i.e. the service), an ‘upgraded new system’ is produced to best meet the user

requirements every time the evolution occurs.

The IBHIS project [106, 85] conducted by the Pennine Research Group promotes the SaaS into

Data as a Service (DaaS) to address the data integration problems by proposing a

Service-Oriented data integration architecture (SODIA). It argues that through publishing the

participating databases as Data Services and employing the very late binding technique, the data

integration may be achieved by establishing a dynamic unified vision on demand over a set of

distributed, autonomous and heterogeneous participating databases which may evolve frequently.

The evolution occurring in the data integration system may be handled through modifying or

substituting only the data services which are affected by the evolution without involving the rest

of the system, hence the maintenance effort may be largely reduced.

1.3.3 Summary

Traditional solutions are not adequate for solving the data integration problems in a constantly

evolving environment. This research is targeted at constructing a new service based solution:

Service Late Binding Enabled Data Integration (SLEDI) for integrating data from distributed,

autonomous, heterogeneous and frequently evolving participating databases. The participating

databases are assumed to be relational databases which realize the same application domain

 10

ontology, thus the heterogeneities focused in this research are the schematic heterogeneities as

described in section 1.2.3. The evolution focused in this research is at the data source level and

hence include the organizational evolution, schematic evolution and the system level evolution as

described in section 1.3.1.

1.4 Research Outline

1.4.1 The Database Evolution Problem

To meet the needs of integrating data from autonomous and evolving data sources, this thesis

addresses the problem of automatic assisted database evolution handling in the context of data

integration. More specifically, the question it needs to answer is: How structured metadata in a

service-based data integration model can be used to provide assistance for automatically

handling the defined evolutions that occur in the heterogeneous and distributed participating

databases? Since the SLEDI solution is constructed for data integration with automatic evolution

handling, it needs:

1. Construction of a unified vision from the data supplied by the data sources, in order to fulfill

the information requirements from end users.

2. Providing automatic assistance for handling the evolution occurring at the data source level,

in order to decrease the maintenance costs arising from the evolution.

1.4.2 Research Issues

The SLEDI aims to integrate data from participating databases into the IDS by following the

DaaS and virtual data integration approaches. Each data source carries out its data supplying

through data services and the user information needs are fulfilled through invoking the services.

The mappings between the application domain ontology and each data source are established

through describing the data supplied by each data source following mainly the GAV approach.

Then the mappings are represented as structured data instead of hard code programs and stored in

the IDS. As a consequence, the evolution handling may be achieved through employing

automatic assistance to conduct the appropriate modifications onto the mappings according to the

predefined processes with respect to each specific type of evolution. Therefore, the three major

research issues can be identified as following:

1. Data Source Describing: integrating the participating databases through describing each

data source and the data it supplies with respect to the application domain ontology. The

data source descriptions are realized through conjunctive queries and directed acyclic graphs

(DAGs) for supporting information needs from end users and automatic assisted evolution

handling.

2. Query Processing: fulfilling the information needs from end users by answering the user

 11

queries. End users describe their information needs through composing queries against the

application domain ontology. And the queries are answered through dynamically

discovering the relevant participating databases and obtaining the results data from the

databases based on the data source descriptions.

3. Evolution Handling: employing automatic assistance to automatically examine the parts of

the data source descriptions which are affected by the various types of evolution and modify

them accordingly to reduce the overall maintenance effort.

Data source describing involves establishing the mappings between the application domain

ontology and the participating databases and constructing the data services. Query processing

includes discovering the relevant data services and invoking the services to obtain results data.

Evolution handling consists of analyzing the mappings and modifying them accordingly to

maintain the validity of the mappings.

1.4.3 Problem Boundaries

The solution for integrating data from autonomous and evolving data sources presented in this

thesis has been developed with the assumption of certain problem boundaries.

 The dominating position of the RDBMS in the DBMS market provides a strong motivation

for assuming that the data sources employ RDBMS products such as Microsoft SQL Server

for managing their data. Thus all the participating databases involved in this research are

assumed to be relational databases. Each data source is responsible for determining which

data it is willing to share, describing the mappings between its databases schema and the

application domain ontology and realizing its data supplying activity as data services.

 Each participating database is assumed to actualize the same application domain ontology

by its database schema where the database schema conforms to at least the Second Normal

Form (2NF) [22]. Thus each relation has a primary key and each data instance of an attribute

of the relation is an atomic data value.

 For the purpose of keeping the focus of this research, although the data represents same

information instance in the application domain may be stored in multiple participating

databases; it is assumed that no data inconsistency and data redundancy problems need to be

addressed. Security is certainly a critical problem for any DBMS, but it is beyond the scope

of this thesis. It is assumed that all the data in this research are operated in a secure

environment with no authentication and authorization problems.

 The addressed evolutions are those only occurring at the data source level; the application

domain ontology is assumed to have no changes.

 The user queries are assumed to be read only queries and are answered one at a time. The

query optimization in the query processing, the database concurrency and transaction

 12

control of the participating databases are not considered in this thesis.

1.4.4 Summary

In summary, this thesis is targeted at constructing a solution (i.e. the SLEDI) to integrate data

from participating heterogeneous relational databases which are evolving frequently by following

DaaS and virtual data integration approaches. The solution solves the database heterogeneities

and handles the database evolution with automatic assistance to provide a unified vision to fulfill

the information needs from end users through answering user queries. The heterogeneities

focused on are the schematic heterogeneities and the evolution focused on is the organizational,

schematic and system level evolution.

The solution is capable of solving most of the schematic heterogeneities introduced in section

1.2.3 although the participating databases may not be able to supply results data for answering

user queries under some circumstances. For example, for the missing item discrepancy, a

participating database may not provide results data if its database schema does not model the

entity types, relationships or attributes involved in the user queries. And for the relation

isomorphism discrepancy, a participating database may fail to contribute if it cannot precisely

describe the instance of which entity type it provides (for example, a database cannot contribute

to the query asking for child patients information if it does not distinguish the adult and child

patients in its schema). The evolution occurring in the application domain ontology cannot be

automatically handled as it may cause substantial modification even a discarding of the data

source descriptions. The organizational, schematic and system level evolution are covered

although user queries involve multiple versions of organizational structure cannot be directly

answered as the late binding can only find the relevant data sources based on their latest states.

However, further research may be conducted to address the issues.

1.5 Research Aims and Criteria for Success

The aims of the research presented in this thesis, characterized by the criteria for success, cover

many aspects of both the problem and solution. A framework to model the data integration is

required to allow the easy comparison between the solution constructed in this research and other

related works. The problem of integrating data from heterogeneous and frequently evolving

participating databases presented previously must be solved. An experimental implementation of

the solution is produced to illustrate the viability of the solution. A case study [104, 28] in the

Mental Health application domain is then conducted to evaluate the solution. The criteria for

success are formally stated below:

1. The definition of a framework for integrating data from the autonomous and evolving data

 13

sources is constructed. The framework should capture the essential processes involved in the

data integration activity.

2. The creation of the Service Late-binding Enabled Data Integration (SLEDI) solution which

defines the processes and data structures involved in the solution precisely with respect to

the framework discussed in criterion 1.

3. The schematic heterogeneities of the participating databases defined in section 1.2.3 can be

solved by the Information Provision Unit Describing (IPUD) algorithm created for the data

source describing in the solution.

4. The organizational and schematic evolutions introduced in section 1.3.1 can be handled by

the evolution handling process constructed in the solution allowing the data integration

system to still function properly despite the evolutions which occurred.

5. The DAG structured data source descriptions can support the evolution handling process

hence reducing the maintenance effort of the data integration system caused by the

evolution.

6. The DaaS approach and service late binding technique can help to mitigate the maintenance

costs of the data integration system caused by the evolution introduced in section 1.3.1

The above criteria set out the goals this research is targeted at and are used in chapter 9 as the

references for the discussion of the success of the research.

1.6 Evaluation Criteria

The primary objective of this work is to define a data integration solution featuring automatic

assisted evolution handling to integrate heterogeneous databases compliant with a simple

application domain ontology. It should be capable of being successfully applied to real world

applications with the data integration requirements described previously. The experimental

implementation and case study are discussed in chapter 7 and 8 which presents an extensive

evaluation of the solution constructed in this thesis. In addition to the criteria of success

introduced in the previous section, the following criteria are also used in the evaluation:

 Computational costs of evolution handling

 Scalability

 Expandability

 Programming language independency

 Application domain independency

The above criteria cover a wide range of aspects which can help to explore the strengths and

weaknesses of the solution in order to determine where the solution can be better applied.

 14

1.7 Contribution

The main contribution of this work is a new solution: Service Late binding Enabled Data

Integration (SLEDI) for integrating data from schematic heterogeneous databases where the

databases are frequently evolving. It follows the virtual data integration approach and is realized

through data as a service and service late binding technique. The participating databases are

integrated through describing themselves by following mainly the GAV approach regarding

simple application domain ontology. The descriptions are then represented as DAG structured

data and realized as metadata maintained in the data service. End users raise queries against the

application domain ontology without concerning the participating databases and the queries are

answered through invocating the data services. The evolution of the participating databases is

handled by automatically conducting modifications to the metadata based on a set of pre-defined

processes. The solution is targeted at relational databases and three main research issues within

the data integration problem are addressed:

1. Data source describing: each participating database of the data sources is described by the

IPUD algorithm which organizes the data the database is willing to share into a set of

Information Provision Unit (IPU). Each IPU is described through a Global Definition (GD)

and a Local Definition (LD) where GD represents what data this IPU provides with respect

to the application domain ontology and LD represents how the data can be constructed

through a conjunctive query over the database schema. All the IPUs of the database are then

embodied into a data service for others to utilize.

2. Query processing: the user queries are answered by examining the GDs of the IPUs to find

the relevant participating databases that provide the results data through accessing the

metadata of the data services. The data services are then invoked to construct the results data

only at run time thus hard wired queries can be avoided.

3. Evolution handling: a set of processes are defined regarding various types of evolution to

identify the IPUs that are affected by the evolution and the corresponding modifications

required. Thus automatic assisted evolution handling can be conducted on the data services

descriptions based on the processes.

The solution is set in the context of a framework describing the data integration activity. This

captures the essential data structure and processes involved in the activity for both virtual and

materialized data integration approaches. A formal model of the framework expresses its data

structures in set theory, and SLEDI is compared to other related work throughout the thesis. An

extensive evaluation of the solution and where the solution may be applied in the real world data

integration applications is presented.

 15

1.8 Thesis Structure

The thesis constitutes nine chapters

Chapter 1 introduces the context and motivation of the research, discusses and states the problem

the research is focusing on, and sets out the research aims and criteria for success.

Chapter 2 discusses the current approaches for solving the data integration problem in detail. The

evolution problem of the data integration, Service-Oriented Computing and its implementation

technologies are introduced.

Chapter 3 develops a framework modelling the data integration activity to capture the essential

data structures and processes. An overview of the SLEDI solution is presented; the processes and

components involved are introduced in general.

Chapter 4 constructs the IPUD algorithm to describe the participating databases into a set of IPUs.

The global definitions and local definitions of the IPUs are represented as structured data and the

IPUs are accommodated into IPSs. The IPU and IPS are formally presented using set theory and

the corresponding constraints are defined.

Chapter 5 introduces the algorithm of answering user queries. The service plan for answering a

user query is generated based on the available data services and the query rewriting. The results

data of the user queries are constructed through executing the service plans.

Chapter 6 describes the evolution handling algorithm based on a set of processes. Various types

of evolution are identified and represented, the automatic assisted evolution handling are

illustrated in detail.

Chapter 7 represents an experimental implementation of SLEDI using web service technology. A

case study is also presented.

Chapter 8 presents the comprehensive evaluation of the SLEDI based on the case study. The

criteria outlined in section 1.5 and 1.6 are used for the evaluation.

Chapter 9 summarizes the work accomplished with a general discussion. The success of the

research is considered in terms of the criteria presented in section 1.5 and ideas for further work

are suggested

 16

1.9 Summary

Chapter 1 has introduced the work presented in this thesis. The motivation and context of the

research have been explained with reference to other related researches in the field. Three major

research issues have been identified within the data integration problem: data source describing,

query processing, and evolution handling. Evaluation criteria have been presented and the

structure of the thesis has been outlined.

Chapter 2 discusses the background of the current approaches for solving the data integration

problem in detail. The evolution problem of the data integration, Service-Oriented Computing

and relevant implementation technologies are introduced.

 17

Chapter 2 Background

2.1 Introduction

Chapter 1 presented the brief overview of the context and motivation of this work. The research

problem was formally defined and three key research issues have been identified. Criteria for

evaluating both the solution and the research were presented. The structure of the thesis was also

outlined.

This chapter examines the background of the SLEDI solution presented in this thesis. The current

issues of the data integration problems and the software evolution problems are further

investigated. The approaches and technologies for solving the data integration problems together

with the research methods and application domain are discussed in detail to provide the context

of this research.

2.2 Data Integration

Cost effective operation is critical for all business. As many organizations store their information

in distributed databases, it is a common requirement to synthesize the information from these

different databases within the organization to provide a unified view to support the executive

operations. Take the Mental Health domain as an example; information of patients is held by

many different entities (primary care practices, hospitals, mental health trust and community

health services). The end users (e.g. doctors) need to have a unified view of the data from all the

participating entities to have the comprehensive and latest information about the patients in order

to provide better services. From a software engineering point view, the need is to integrate data

from distributed and autonomous data sources to provide a unified database so that the end users

can raise queries against the database.

As introduced in section 1.2, the data integration problem has attracted a great deal of research

and the solutions [57, 08, 31] can be broadly categorized as virtual data integration and

materialized data integration. The former has been followed by the Federated Database

Management System (FDBMS) and the latter leads to Data Warehousing.

2.2.1 Federated Database Management System (FDBMS)

The Federated Database Management System provides a unified access to heterogeneous data

from diverse and distributed databases [76, 40]. It is an integrated collection of the component

 18

databases. These component databases share their data through adding interfaces allowing others

to access them. The FDBMS serves as a middle layer stands between the end users and the

component databases and provides transparent access for the end users to access and manipulate

the components databases to various degrees. The user can enjoy heterogeneity transparency by

translating different data formats from component databases into a common or canonical model

(CDM). Other heterogeneities exist in the hardware and operation systems, the data access and

manipulation methods and the programming languages of the component databases can also be

shield by the FDBMS. The FDBMS can also provide the distribution transparency by masking

the distributed nature of the component databases and the network communication details. The

general architecture of the FDBMS is illustrated below:

Figure 2-1 the FDBMS architecture

FDBMS can be categorized as loosely coupled and tightly coupled based on who administrates

the FDBMS and how the components are integrated.

 Loosely coupled FDBMS: a FDBMS is loosely coupled if the user takes the responsibility

of creating and maintaining the federation and there is no central control enforced by the

federated system and its administrators. The loosely coupled FDBMS may also be referred

to as multidatabase system or interoperable database system [76]

 Tightly coupled FDBMS: a FDBMS is tightly coupled if the federation and its

administrators take the responsibility of creating and maintaining the federation, managing

the FDBMS by enforcing actively central control on the component databases. A tightly

coupled FDBMS is said to have single federation if it only creates and maintains one

 19

federation schema.

In both loosely and tightly coupled FDBMS, sharing of any part of a component database or

invoking a capability (i.e., an operation) of a component DBS is controlled by the administrator

of the component DBS. [40]

FDBMS integrates components and provides a single interface for end users to query. The

common process of the user query process involves two steps:

1. User queries over the federation schema are decomposed into smaller fragments called

subqueries based on the information of the component databases in the federation. The

subqueries are then sent to corresponding component databases to obtain the results.

2. The FDBS communicates with the component databases through their interfaces. The

interfaces are responsible for translating the subqueries into local queries which the

component database can process directly. An interface may be a simple mechanism which

only delivers the sub queries if both the user queries and local queries are based on the

same common data model. Or the interface may be complex to do further filtering,

transforming and aggregating operations on the data apart from query translating.

One of the key limitations the FDBMS faces is that the users have to explicitly specify the

component databases in the queries. Hence if a new component database joins in or existing

component database drop out, the user queries have to be explicitly changed. The approach may

also suffer lower performance as the user query has to be decomposed and delivered to the

components databases to be answered. Furthermore, each component database must build its own

interface. As a result, the changes inside the component database such as schematic changes may

lead to the interfaces have to be reengineered to keep the DBMS working properly [51].

2.2.2 Data Warehousing

Data Warehousing integrates data from component databases into a single repository called the

data warehouse which is available for querying and analysis [20, 44]. Under this approach, the

data integration problem is tackled by Extracting the data from component databases,

Transferring the data into a common data model, and Loading the data into the warehouse (i.e.

the ETL process). Since the model and semantic difference has already been solved during the

ETL process and the user queries are processed against the single repository (i.e. data warehouse),

this approach enjoys the higher availability and better query performance. The general

architecture of Data Warehousing is illustrated as below:

 20

Figure 2-2 the Data Warehousing architecture

The main idea behind this approach is to integrate the data in advance of the query processing.

Hence there is no need for query translation and subqueries delivery and executions in remote

component databases. The ETL takes care of the processes such as data format converting,

information filtering, merging and summarizing. As the component databases might change after

the data warehouse was built, the ETL also needs to detect the changes and propagate the

changes into the data warehouse.

In the Data Warehousing approach, the component databases always retain their autonomy. As

the data in the data warehouse are the replication of the data in the component databases, they

can be manipulated asynchronously without affecting each other. One of the key limitations of

the Data Warehousing approach is that it has to specify in advance what data should be extracted

and integrated from which component databases. After the data warehouse has been built, it is

relatively complex to change the original design (e.g. change the specification about what data

should be integrated and from which component databases). Furthermore, the physical

replication of data introduces potential inconsistencies. The data in the data warehouse may be

out of date; hence the changes in the component databases must be explicitly propagated.

 21

2.3 Software Evolution

2.3.1 Software Evolution Process

Software maintenance and evolution activities are pervasive challenges for many software

systems. The activities are characterized by their huge cost and slow speed of implementation

and their inevitability [54]. Software maintenance is defined in IEEE Standard [43] as:

“The modification of a software product after delivery to correct faults, to improve performance

or other attributed, or to adapt the product to a modified environment”

Lientz and Swanson surveyed and categorized maintenance activities into four classes:

 Adaptive: changes in the software environment

 Perfective: new user requirements

 Corrective: fixing errors

 Preventive: prevent problems in the future

The survey showed that around 75% of the maintenance effort was on the first two types and

many subsequent studies suggest a similar magnitude of the problem [12, 61]. These studies

show that the core problem is addressing the Environment and the User requirement changing.

Bennett and Rajlich suggest these changes should be explicitly addressed and referred to as

software evolution and proposed a staged model to better describe the software maintenance and

evolution activities in the software system’s lifecycle [12, 11].

The staged model divides the lifecycle of the software system into five stages: Initial

development, Evolution, Servicing, Phase-out and Close-down. The software architecture and the

knowledge acquired during the development are two main outcomes of the initial development

stage. The architecture of the software will persist during its lifetime and the knowledge is a

crucial prerequisite for the stage of evolution. Hence the main challenge in the evolution stage is

to make the software architectures permit the software system to evolve in controlled ways and

raise the abstraction level in the way the evolution is expressed, reasoned about and

implemented.

During the service stage, the change of the system component may cause it no longer properly

interact with other components. In this case, secondary changes must be made in the neighboring

components, which may trigger further changes. This process is referred to as change

propagation [101]. The subsequent stages are phase-out and close-down. In the former stage, the

software may be still in production, but no servicing is being undertaken. In the later stage, the

software used is disconnected and the users are directed towards a replacement.

 22

The evolution handling activities may be conducted through making changes onto the software

system during different phases such compile-time and run-time. The changes made at

compile-time are also referred to as static evolution handling which concerns the source code

hence may result in system shut down, recompile and restart. The changes made at run-time are

also referred to as dynamic evolution handling which normally does not require stopping of the

system. The static evolution may cause high cost and the dynamic evolution may require an

appropriate level of control over the change to prevent the system crashing or behave erroneously

[17, 65].

2.3.2 Data Integration System Evolution

Data Integration System faces the evolution challenge just as other software systems do. As

introduced previously, the evolution problems addressed in this research are defined through

analyzing the requirements of integrating data from autonomous and evolving relational

databases. And the evolution problems can be categorized into organizational, schematic and

system level evolutions. The following table provides examples to demonstrate the different

types of evolution problems. It is assumed the participating databases are organized into groups

and each database schema contains a set of relations.

Evolution

Category

Examples

Organizational

Evolution

A participating database moved from a virtual group (e.g. Durham) to another

virtual group (e.g. Newcastle)

A new virtual group adds in or drops out

Schematic

Evolution

An attribute changes its name or data type

An attribute is split into two or more attributes

Two or more attributes are combined into an attribute

A relation changes its name

A relation adds or removes its attributes

A relation is split into two or more relations

Two or more relations are combined into a relation

A database adds or removes its relations

New databases join in or existing databases drop out

System level

Evolution

A database changes its name

A database changes its description (e.g. URL)

Table 2-1 Database Evolution

When the data integration system is built by following the traditional approaches such as

 23

FDBMS and Data Warehousing, the described evolution may cause static evolution handling

onto the system every time the evolution occur. It can be too costly when the amount of

participating databases is big and the evolution occurs frequently. Consequently, dynamic

evolution handling requires support under these circumstances.

2.3.3 Evolution Support

Generally, FDBMS and Data Warehousing lack the support of dynamic evolution handling. Data

Warehousing builds a static centralized repository; hence the evolution handling may be

conducted through changing the source code of the ETL process and repopulating the repository.

In the tightly coupled federations, since the end users have to explicitly specify which

participating databases are involved in the user queries and the federation schema is mostly

constructed by manual and static schema integration. The evolution handling may include

rebuilding the federation schema and changing the user queries. In the loosely coupled

federations, the query translation is normally realized through hard-coded programs based on

query based schema matching of the federation schema and the schemas of the participating

databases. Thus the evolution handling may include revising the programs which can result in

high costs. As a consequence of this, all three solutions for data integration require large amounts

of maintenance work for handling the databases evolution introduced above, especially the

schematic evolution. Further comparison of the solutions can be found in the next chapter.

2.4 Service Based Concepts and Technologies

2.4.1 Software as a Service and Data as a Service

Although the supply-side approach of developing software works well for the systems with rigid

boundaries, it cannot meet the requirement of systems in a constantly changing environment. The

new demand-side approach has been proposed to fill the gap: Software as a Service (SaaS) [52,

84]. Under this approach, the system is a service that is composed of smaller ones. The smaller

services are only bound at the time of execution and discarded afterwards. Hence the software is

procured and paid for on demand, as and when needed.

The IBHIS project promotes the SaaS into Data as a Service (DaaS) through proposing a

Service-Oriented data integration architecture (SODIA) [106, 85]. Through publishing the

participating databases as Data Services that are dynamically determined and bound at the time

of execution, a dynamically unified vision can be established on demand over a set of distributed,

autonomous and heterogeneous participating databases which may frequently evolve.

 24

2.4.2 Service-Oriented Computing and Architecture

Service-Oriented Computing addresses the relevant research issues of the software application

development methods to achieve the SaaS. From the SaaS point of view, a Service is not only a

mechanized process; it involves humans managing supplier-consumer relationships [52]. SOC

focuses on more technical issues by treating the services as autonomous, platform-independent

entities that can be described, published, and discovered; using services which support the

development of rapid, low-cost, interoperable, evolvable and massively distributed applications.

[79, 70]

Service-Oriented Architecture (SOA) focuses on addressing the requirement of loosely coupled,

standards-based, and protocol-independent distributed computing from the software architecture

point of view [26]. By using a set of statements that describes software components and assigns

the functionality of the system to these components, the SOA describes the technical structure,

constraints and characteristics of the components and the interfaces between them. The

architecture is the blueprint for the system and therefore the implicit high-level plan for its

construction [69, 49]

2.4.3 Grid computing and Web Service

The technologies such as Grid computing and Web Service can be used to develop software

following the SOA. Grid computing addresses the research issues of the infrastructure that can

synthesize multiple regional software and hardware facilities into a Grid to create a universal

source of computing power [29, 72]. It intends to develop and promote the standards and

specifications to support a wide range of applications. Some specifications and implementations

which focus on the data integration problem in a distributed environment have been developed

such as Open Grid Service Architecture Database Access and Integration (OGSA-DAI) and Web

Service Data Access and Integration (WS-DAI) [35, 01]

Web Service is developed and promoted by The World Wide Web Consortium (W3C) to help on

building SOA based software systems [94, 70]. It is currently the most promising technology that

the IT industry as a whole has enthusiastically embraced [25, 90]. Web Service is based on three

roles of Service Provider, Service Registry and Service consumer, and consists of a set of

standard protocols such as Simple Object Access Protocol (SOAP), Web Service Description

Language (WSDL) and Universal Description Discovery and Integration (UDDI). The typical

scenario of the interactions among the three roles is illustrated in the following figure:

 25

Figure 2-3 Web Service roles and interactions

A service provider hosts a web service and uses WSDL to describe the service, and then publish

the service description into the service registry. The service consumer may then access the

service registry to discover the service description and invoke the service based on the

description. The interactions are realized through SOAP messages exchanging.

The protocols are designed to be independent of any particular programming implementation and

to be built on top of the Extensible Markup Language (XML) which has already been largely

employed as a basic building block across many application domains. The protocols also

accommodate the Hypertext Transfer Protocol (HTTP) to use the current Internet infrastructure

for supporting information exchange. These characteristics speed up the software development

by reusing the current software and the infrastructure assets with little extra investment.

2.4.4 RDF and SPARQL

The Resource Description Framework (RDF) is a language promoted by W3C for representing

resources, particularly the metadata about resources in the World Wide Web [73]. It provides a

common framework for identifying things using Uniform Resource Identifiers (URIs) and

describing resources in terms of simple properties and property values, thus simple statements

about resources can be represented as a graph of nodes and arcs. The application designers can

leverage the availability of common RDF parsers and processing tools to exchange information

between different applications. Consequently, the information created by one application may be

 26

made available to other applications to achieve higher interoperability.

Since RDF is in a data form of directed labeled graph, the SPARQL query language [82] is

designed and promoted by W3C for querying RDF data. The SPARQL defines syntax for

specifying queries as required and optional graph patterns, along with their conjunctions and

disjunctions. Hence the queries may be evaluated through traversing the RDF data to find out the

sub graphs which match the patterns. Although the properties in RDF can be used to describe the

relationships between resources, the RDF itself does not provide mechanism for doing so. The

RDF Schema (RDFS) [74] is promoted by W3C as a semantic extension of RDF which defines a

set of vocabulary to describe groups of related resources and the relationships between them.

Based on the RDFS, richer vocabulary or ontology languages such as OWL [66] can contribute

to capture meaningful generalization about data in the Web.

The specifications such as RDF and OWL introduced above can be used to describe web

resources and their relationships. The data in other formats, apart from web resources, such as

relational data may be transformed into RDF data through middleware. Hence applications can

also be developed to exploit the semantics contained in the RDF data.

2.4.5 Service Based Data Integration Solution

Data Integration Solution following the DaaS may achieve higher flexibility. By publishing the

participating databases as Data Services, user applications can interact with the databases through

the standard service interface without having to know the details of the databases. The evolution

of the databases may be handled through changing the corresponding data service without

affecting other parts of the data integration system. However, some gaps still exist for the current

web service technology to fully achieve dynamic discovery and binding processes in a large-scale,

open and ever-changing computational environment [85]. The main challenge is using automated

means to accurately discover and bind services with minimal user involvement.

For tackling this challenge in DaaS, the semantics of both the data services and user requests

need to be explicitly stated. Although the WSDL explicitly specifies how a service consumer can

invoke the service, it does not contain high level semantic information about the service such as

what data the service provides. Thus the information needs to be added in addition to the WSDL

to support the service discovery and binding at run-time. The UDDI also lacks the support of the

additional information. Consequently, the SLEDI solution proposed in this research realizes the

additional information as metadata complemented by WSDL to form a meaningful description of

the participating databases. The details will be introduced in the following chapters.

 27

2.5 Case Study Method

Research methodology is essential for any research. As a method of conducting academic

research, among other empirical methods such as experiments and survey, case studies have been

extensively applied and examined in social science research topics [102]. Among the definitions

of the case study method from different researchers with different perspectives, Yin has given a

technical definition of the method. He suggests that the definition is constituted as a twofold. The

first part begins with the scope of a case study [104]:

“A case study is an empirical inquiry that

 investigates a contemporary phenomenon within its real-life context, especially when

 the boundaries between phenomenon and context are not clearly evident”.

Yin has pointed out that early works treated the case study not as a formal research method and

only used it as complementary to other methods. A common misconception had been established

that because the case study method only examines a single example in details in the longitude

dimension; it cannot provide reliable information about the broader class thus is only appropriate

for the exploratory phase of a research. In fact, the case study method can be used for the purpose

of descriptive and explanatory of the research as well. [103]

Flyvbjerg also specified the five common misunderstanding from the early works about the case

study method in his research [28]. Including

1. theoretical (context-independent) knowledge is more important than practical

(context-dependent) knowledge

2. the results from case studies cannot be generalized to apply to a class of phenomenon as

they are based on a single case

3. the case study is appropriate only for the hypotheses generation. Other methods are more

suitable for hypotheses testing

4. there is a tendency to confirm preconceived notions of the researchers as the case study

contains a bias toward verification

5. it is often difficult to summarize and develop general propositions based on specific case

studies

These five propositions were discussed and examined in the research. The conclusion was drawn

that all of them are not necessarily true and the disadvantages of the case study method that

claimed in the propositions can be avoided.

The case study method can provide a systematic approach for the empirical research by carefully

selecting the case, examining the phenomenon, collecting the data, analyzing the information and

reporting the results. As a result of applying the case study method, the researchers may gain a

 28

sharpened understanding of why the instance of the phenomenon happened in the way as it did,

and what might become salient and need to be examined extensively in future research.

Consequently, the case study method is suitable to both hypotheses generating and testing [28].

As a research method, the case study can be adopted by the software engineering field from

social science. Some pioneering researches for this adoption have been conducted to examine

how to apply the case study appropriately in software engineering [48, 47]. Kitchenham, Pfleeger

and Pickard [48] suggest that the case study method can help industry evaluate the benefits of

methods and tools and provide a cost-effective way of ensuring that employing the methods and

tools provides the desired results. Although the case study method may not achieve the scientific

rigor of the formal experiments, it can provide sufficient information for judging if specific

technologies will benefit the certain organization or project.

The choice of the method depends on the size and nature of the organization or project the study

will be conducted on, and whether the technology or tools being studied are in advance or after

the fact [48]. The experiments method may be used for comparing several competing

technologies or tools in order to conclude which one to choose. The case study method may be

employed for assessing a new technology or tools by applying it to a pilot project in order to

conclude the effects of it. The survey method may be favoured for examining a technology or

tool that has already been implemented across a large number of projects in order to conclude the

benefits of using it.

The experiments method requires full control hence is difficult to conduct when the degree of

control is limited. Because the experiments method is normally used for small scale research in a

laboratory, it can be a problem when trying to increase the scale from the laboratory to a real

project. On the other hand, the case study method can avoid the scale up problem. This

characteristic makes it particularly useful for industrial evaluation of software engineering

methods and tools. Consequently, the case study method is preferable for helping the researchers

to understand the improvement that a new technology or tool can bring to a class of objects by

assessing the technology or tool through applying them to a pilot project.

2.6 Mental Health Application Domain

The Mental Health application domain provides a perfect example of the research of integrating

data from autonomous and evolving data sources as it demonstrates the characteristics of the

research by its natural requirements [106, 33]. In the mental health domain, the patient

information may be stored in many autonomously managed data sources such as local surgeries,

hospitals, social services, etc. Each data source may realize the patient information in different

database schemas and employ different DBMS to manage the databases in their own IT systems

 29

as shown in the following figure:

Figure 2-4 Data integration in the mental health application domain

Integrating the data from the data sources is a common requirement in the domain. For example,

patient records may be held by different data sources when the patient has been living in different

locations and treated by different hospitals and social services. Thus it is required to integrate the

data from the data sources to construct a comprehensive view of the patient information in order

to provide a better service for the patient. The mental health researchers may also require data

integration based on their own criteria to do their research such as the epidemiology, the effect of

a specific medicine or treatment, etc.

 Figure 2-5 Data integration example

The databases in the data sources may present various heterogeneities as they are autonomously

managed. As the example illustrated in figure 2-5, the patient record is realized as one relation in

DS1 and as two relations in DS2. Diagnosis of patient in DS1 is represented as simple text and as

integer code in DS2. Furthermore, the autonomous nature of the data sources may result in

 30

continuing evolution of the participating databases and data sources may join in and drop out at

their convenience. Thus the database schemas may evolve continuingly in various ways as

introduced in section 2.3.2. The DBMS, software and hardware environment of the databases

may also evolve due to upgrading of the IT system of the data sources. Consequently, the data

integration solution should be able to solve the heterogeneity and evolution problems to provide a

unified view hence end users can focus only on their own information needs.

2.7 Summary

This chapter has introduced the current approaches for solving the data integration problems. The

issues of the software evolution and data integration system evolution are then presented. The

service based concepts and technologies, the case study research method and the mental health

application domain are also introduced. This background provides the clear view of the setting of

the research presented in this thesis.

Chapter 3 presents a descriptive framework to model the activity and representation of the

process of integrating data from autonomous and evolving data sources. The framework provides

the context for the novel solution (i.e. SLEDI) created in this research which will be described

through the next chapters. The services and processes of the SLEDI are also briefly discussed.

 31

Chapter 3 Data Integration Framework

3.1 Introduction

Chapter 2 introduced the background of current solutions for solving data integration problems.

The evolution problems the data integration may encounter were presented. The case study

method of research and the mental health application domain were briefly discussed.

This chapter introduces a descriptive framework to characterize the data integration activity from

the abstract level, hence the virtual and materialized approaches can both fit into it. The new

solution for integrating data from autonomous and evolving data sources, the Service-Late

Binding enabled Data Integration (SLEDI), is presented. The constituted services and the

processes of the SLEDI are described and the characteristics of the solution are briefly discussed

with respect to the framework.

3.2 Data Integration Activity Framework

As discussed in section 1.3, in order to combine data from multiple data sources to provide an

information provision service to end users, the activity of data integration is required. This

section presents a descriptive framework for the data integration activity. It specializes in

integrating data from distributed, autonomous and evolving data sources. The framework unifies

the virtual and materialized approaches and is used later in this thesis for a discussion of the cost

saving which might be achieved when using automatic assistance for handling the evolution

occurred in data sources.

Initially, it is assumed there are a set of distributed data sources. The data sources manage their

data autonomously and are constant evolving. The data integration activity intends to combine

the data from the data sources into a single centralized database (i.e. the integrated data store IDS)

and provides an information supplying service to end users. This is shown in figure 3-1

 32

Figure 3-1 Basic Framework describing the data integration activity

The data integration activity can be characterized as the creation, access, and maintenance of the

IDS, which is achieved by the processes: data integrating, information supplying, and evolution

handling respectively. The three processes works together to fulfill the requirement of the data

integration. This is shown in figure 3-2

Data Integration Activity

Key

Activity

Process

Information Store

Information Flow

Data Source
(DS1)

Integrated
Data Store

(IDS)

Data integrating

Information Supplying

Evolution HandlingData Source
(DSn)

 33

Figure 3-2 The Framework of data integration activity

1. Data integrating: the role of the data integrating process is to select the data from the data

sources, harmonize the heterogeneities among those data and combine the data together to

create the unified data store (i.e. IDS). It is the preliminary step in the data integration

activity and builds up the IDS hence other processes can be conducted based on the IDS

2. Information supplying: the role of this process is to communicate to the end users to fulfill

their information needs. It takes the description of the information needs from end users (e.g.

queries raised by end users); processes it and conducts appropriate operations against the

IDS; it then constructs the results and sends the results back to the end users (e.g. results for

answering the queries).

3. Evolution handling: this process is triggered when evolution in data sources occur. It

investigates the evolution occurring and take actions against the IDS accordingly. Hence

maintaining the coherence between the IDS and data sources. As a consequence, the end

users’ information needs can be processed based on the latest state of the data sources.

The framework in Figure 3-2 captures the general requirements of a data integration activity.

Since the framework models the requirements from a highly abstract level, both the materialized

and virtual approaches for conducting the data integration activity can be fitted into the

framework. Hence the comparison can be made between different approaches and the strength

and weakness of the approaches and the cost related issues can be discussed within the

framework

In the materialized approach, the IDS is a materialized data store. The data integrating process is

carried out by first selecting the data from data sources and harmonizing the heterogeneities.

Then the integrated data is transported into the IDS. Although some addition and alteration may

be made to the data during this process, the data in the IDS are mainly replications of the data in

the data sources. The information supplying process examines the descriptions of the information

required from end users and meets the requirements by directly manipulating the actual data in

the IDS. When evolution occurs in the data sources, the evolution handling process analyses the

evolution and takes appropriate actions against the actual data in the IDS in order to propagate

the evolution from data sources into the IDS.

In the virtual approach, the IDS is a virtual data store, which means instead of the actual data, it

is the descriptive information about the data which is contained in the IDS. This information

represents how the data in the IDS can be formed from the data sources and normally is realized

by formally specifying the mappings between the actual data in the data sources and the IDS (e.g.

queries over the data sources). The data integrating process is performed by investigating the data

 34

sources, and then creating the formal declarations to describe the mappings. The information

supplying process first evaluates the information requirements and then interrogates the

descriptive information in the IDS to generate the operation plan. Finally it executes the plan

against the data sources to accomplish the requirements. The evolution handling process analyses

the evolution occurring; and then reviews the descriptive information in the IDS and makes

appropriate modification to it in order to maintain the coherence between the IDS and the data

sources.

3.3 The Service Late-binding Enabled Data Integration Solution

As discussed in chapter 1.3, the focus of the work in this thesis is integrating data from

autonomous and evolving data sources. All the data sources involved employ relational DBMS to

manage their data and the evolution addressed are the schematic, organizational and system level

evolution occurring in the data sources. This thesis presents a new solution: the Service

Late-Binding Enabled Data Integration (SLEDI) which takes the virtual approach and employs

the concept of Software as a Service [52] and Web Service technology [94], using Late Binding

techniques [13, 106] to achieve the required data integration.

To meet the design purpose, the SLEDI must not only have the ability to integrate the data from

the data sources to provide the information supplying service to end users, but also have the

potential to decrease the maintenance costs while the data sources are evolving. Conceptually, the

SLDEI constitutes four types of services: Information Provision Service (IPS), Broker Service

(BS), Evolution Handling Service (EHS) and Registry Service (RS). In practice, each type of

service might be implemented by multiple instances. Based on the services, the SLEDI

accomplishes the data integration activity through three processes: Data Source Describing,

Query Processing and Evolution Handling. Each process may involve one or more type of

services to achieve its purpose. The general architecture of the Services is shown in Figure 3-3

 35

Information
Provision Service

Data Source
(DS1)

Data Generator

Service metadata
Evolution

Handling Service

Key

Services

component

Data Store

Information Flow

Locator

Modifier

Broker Service

Query Convertor

Service Planner

Service Plan
Executor

Registry Service

Interface

Registry

Service
Descriptions

Domain
Ontology

Information
Provision Service

Data Source
(DSn)

Data Generator

Service metadata

Evolution
Handling Service

Locator

Modifier

Figure 3-3 the General architecture of the SLEDI

3.3.1 Overview of the Services

1. Information Provision Service: Each data source shares its data through the Information

Provision Unit (IPU) mechanism. An IPS aggregates all the IPUs of a data source and

reveals its service description metadata which includes the Global Definition of the IPUs to

describe what information the IPS provides. It accepts invocation calls from the Broker

Service. Finally, it generates results by consulting the Local Definition of the IPUs and

accessing the actual data to respond the invocation calls.

2. Broker Service: this Service accepts the information requirement descriptions (e.g. queries)

from end users. It analyses the descriptions and interacts with the Registry Service to

discover the appropriate IPSs which provide the information required. Then, it filters out

these IPSs and produces a service execution plan based on them. It then executes the plan by

invoking the IPSs and collects and combines the results of the service invocations into a

final result. Finally, it sends the results back to the end users.

3. Evolution Handling Service: this Service accepts the descriptions of the evolution occurring

 36

in the data sources. It analyses the descriptions to locate the IPSs which are affected by the

evolution. It then modifies the IPSs accordingly to reflect the evolution, hence maintaining

the virtual IDS to be consistent with the latest state of the data sources.

4. Registry Service: this Service provides a central repository as a registry that all the IPSs,

EHS and BS can be published onto. The service publication is realized by storing the

description of the services into the repository and the Registry Service provides an interface

allowing the services to publish, search, retrieve and update the services descriptions in the

registry. Hence the services can be discovered by accessing the repository and invoked by

parsing the service descriptions.

As the research focus is integrating data from autonomous and evolving data sources, the SLEDI

is designed to provide a solution for building data integration systems with flexibility. The data

sources can connect into and disconnect from the data integration system by simply adding or

removing the IPSs. The descriptions of IPSs provide an interface for data sources to specify what

data they provide and how the data can be formed. As the description is realized in structured

metadata instead of a hard wired programme, the evolution handling can be achieved through

employing automatic assistances to modify the metadata without human interventions thus

decreasing the maintenance costs of the system. The interoperability the Web Service provides

further enhances the flexibility of the SLEDI. Moreover, the EHS and BS may have multiple

instances in the implementation of the SLEDI to achieve a better performance.

3.3.2 Overview of the Processes

As a solution for data integration, the SLEDI can also be fitted into the framework which has

been introduced in section 3.2. The processes of data integrating, information supplying and

evolution handling of the framework are carried out in the SLEDI by the processes of data

source describing, query processing, and evolution handling respectively.

1. Data source describing: Each data source first determines the data in its databases it is

willing to share. Then the data is organized into a set of Information Provision Units (IPU).

An algorithm named Information Provision Unit Describing (IPUD) is created for producing

the IPUs. Each IPU is described by a Global Definition and a Local Definition. The global

definition is specified by an expression over the application domain ontology and the local

definition is represented by an expression over local database schema. The global definition

provides a description which can be understood across the application domain hence

insulating the schematic heterogeneities among the data sources. All the IPUs provided by a

data source are then aggregated into an IPS and the definitions of the IPUs are realized as

service description metadata of the IPS. Then data sources publish the IPSs through the

Registry Service for other services to discover and invoke.

2. Query processing: end users describe their information requirements through raising queries

 37

over the application domain ontology. The queries are then processed by the Broker Service

and each query is transformed into a service plan; the Broker Service then executes the plan

by sending invocation calls to the appropriate IPSs. Each IPS responds to the invocation by

generating results from local database and sending them back. Finally, the Broker Service

composes the results into the final answer to fulfil the requirements.

3. Evolution handling: every evolution occurring in the data sources is described and sent to

the Evolution Handling Service. This analyses the evolution descriptions, interacts with the

Registry Service and the IPSs to identify the IPSs which are affected by the evolution. It

then examines and automatically modifies the affected IPSs accordingly. Under some

circumstance, the modification may be achieved with human interventions.

The three processes work together to establish the data integration system which is realized by

the four types of services. Hence the required data integration activity can be accomplished to

fulfill the information needs from end users.

3.4 The processes of the SLEDI

This section illustrates the constituted processes of the SLEDI in more detail. Each process is

delineated by describing the requirements it intends to fulfill, the detailed processes of which it

consists, the algorithms and operations involved and its realization over the services.

3.4.1 Data Source Describing

In this research, all the databases involved in the data sources are assumed to be relational

databases. As introduced in chapter 1, all the data sources in this research are in the same

application domain. A canonical data model (also referred to as a domain ontology model) is

employed to characterize the salient parts of the application domain. The model is used as the

virtual schema of the IDS hence end users can describe their information requirements by raising

queries against it. The data source describing process intends to build the virtual IDS by

establishing the descriptions of the data sources with respect to the ontology. It is composed of

the following steps

1. Constructing the domain ontology: a Description Logic based data model is created to

model the application domain ontology. It provides an abstract description of the application

domain by modelling it through concepts, roles and rules. As the data in the data sources are

also representing the information in the application domain, they can be described by

aligning to the application domain ontology. This step is a preliminary step which is

supposed to be accomplished before all other steps and the domain ontology is stored into

the registry for other components to access.

2. Establishing the IPUs: Due to the autonomy, the data sources may only agree to share some

 38

parts of their data. An IPU is an information unit which can be described unambiguously by

an expression over the domain ontology. By employing the IPU, each data source can share

its data through a set of IPUs.

3. Building the definitions of IPUs: the definitions of each IPU consists two parts: the Global

Definition and the Local definition. The global definition is in the form of an expression

over the application domain ontology which semantically describes the information the IPU

provides, hence can be understood by other components across the application domain. The

local definition is in the form of a conjunctive query over the local database schema which

specifies how the data of the IPU is formed from the data sources.

4. Constructing the IPSs: All the IPUs a data source provides are aggregated into an IPS. The

global and local definitions of the IPU are converted into structured metadata. A service

metadata model is designed to accommodate the metadata together with other descriptive

information to describe the IPS.

5. Publishing the IPSs: As described in chapter 1, there is an organizational structure among

the data sources; a set of DAGs are employed to represent the organizational structure. Then

all the IPSs of the participating data sources are published into the registry together with the

DAGs. Hence other components can discover and access the IPSs.

The data models, algorithms and the detailed processes of the data source describing are further

described in the next chapter.

3.4.2 Query Processing

After the processes of data source describing for all the participating data sources are

accomplished, the IDS is successfully built. Then the description of information requirements

from end users (e.g. queries) can be processed. In this research, each user query consists of two

parts: the targeting data source set and the query content. The targeting data source set specifies

the set of data sources the query intends to query against. And the query content describes the

information requirements by an expression over the domain ontology. In this research, the

expression is in the form of a union of conjunctive queries (the definition of the logical form

conjunctive query can be found in [88]). Each conjunctive query constitutes the concepts, roles

and rules from the application domain ontology. The process of query processing for a user query

consists of the following steps:

1. Targeting data sources filtering: the targeting data source set specified in the user query is

processed to identify the targeting data sources. Then the IPSs of the targeting data sources

are filtered out into a list.

2. Query rewriting: the query content of the user query is rewritten into a set of subqueries.

Each subquery is in the form of conjunctive query so that each of its atomic conjunct refers

to the global definition of an IPU from the IPSs. The query rewriting technique [09, 34] is

employed to generate the maximum contained rewritings to answer the user query.

 39

3. Service plan generating: examines each of the subqueries, identifies the IPUs whose global

definition is in the subquery and then generates the service invocation calls to the

corresponding IPSs from the IPUs. Then constructs the service plan of the subquery based

on the service invocation calls.

4. Service plan executing: executes the service plan by invoking the IPSs. Each IPS responds

to the invocation call by firstly examining the local definition of the IPU specified in the

invocation call, then constructing the local queries against the local database schema.

Finally it executes the local queries to construct the results data for the invocation call from

the data source.

5. Result constructing: collects the results data of the service invocation calls of every

subquery, combining the results data to form the answer to the subquery. As a consequence,

the answer for the user query can be finally constructed by integrating the results data from

each of the subqueries.

The above steps are accomplished by cooperation among the Broker Service, IPSs and the

Registry Service. The details of query processing are further discussed in chapter 5

3.4.3 Evolution Handling

As one of the central issues in this research, evolution handling is designed to deal with the

evolution occurring in the data sources to decrease the maintenance costs. By describing the data

sources through the IPU mechanism, the impact the evolution have on the IDS can be reflected

through the IPUs and, more specifically, on the definitions of the IPUs. Because these definitions

are realized through the structured metadata, automatic assistance can be employed to traverse

and modify the metadata accordingly to handle the evolution. The evolution handling process is

composed of following steps:

1. Identifying the evolution: The evolution covered in this research are the schematic,

organizational and system level evolution as discussed in chapter one. Evolution data

models are created to accommodate the detailed data for describing each type of the

evolution. Thus the evolution can be identified and further actions can be determined based

on the detailed data.

2. Constructing the modification processes: establishing the specification to describe the

processes of modifying the local definitions of the IPUs with respect to each distinct type of

evolution.

3. Identifying the affected IPUs: investigating the descriptions of the evolution occurring.

Identifying the IPUs which have been affected by the evolution based on the evolution

description and the local definition of the IPUs. Then the affected IPUs are filtered out into a

list.

4. Modifying the affected IPUs: analysing the evolution descriptions and the definitions of the

 40

IPUs in the list. Modifying the IPUs based on the processes defined in step 2.

The above steps are accomplished by cooperation among the Evolution Handling Service, IPSs

and the Registry Service and the details of the evolution handling are further discussed in chapter

6

3.5 The services of the SLEDI

As introduced in section 3.3, the SLEDI is based on the Web Service technology and late binding

techniques and is realized by four types of Service. This section explains the mechanism and the

working process of each type of service.

3.5.1 Information Provision Service

The IPS in the SLEDI has got two roles to play. The first role of the IPS is to expose the global

definition of its IPUs to declare what information the IPS supplies. Thus other services can

discover the IPSs which fulfill their needs. The second role of the IPS is to generate the data

which represent the information it supplies from the data source it belongs to. It accepts the

invocation calls from and sends the results data back to the Broker Service. In this research, each

data source is assumed using a single relational database which is represented by a relational

schema (i.e. local database schema) and provides exactly one IPS. The IPS contains all the IPUs

the data source provides; it accepts invocation calls from the Broker Service and the Evolution

Handling Service and does not invoke other services. The IPS consists of the following

components:

 41

Figure 3-4 Information Provision Service

1. Service metadata: the service metadata accommodates the description of IPS which includes

its name, address, exposed methods with parameters, global definition and local definition

of the IPUs. The metadata apart from the local definition of the IPUs are exposed through

publishing onto the Registry Service for other services to access.

2. Data generator: at each time the IPS is invoked by the Broker Service, the data generator

takes the parameters from the Broker Service as the input. It then extracts the IPU specified

in the parameters and retrieves the local definition of the IPU from the service metadata.

Next, it composes the local queries and executes the queries against the data source to

generate the results data. Finally the IPS sends the results data back to the Broker Service.

Each data source accommodates the IPS it provides at its own site and publishes the descriptions

of the IPS into the registry.

3.5.2 Broker Service

The role the Broker Service plays is to communicate with end users, accepts the information

requirements descriptions from end users and delivers the results back. It is composed of the

following components.

Figure 3-5 Broker Service

1. Query convertor: the query convertor consists of a series of operations which take one query

at a time from end users. The query is in the form of an extended conjunctive query over the

application domain ontology. The query convertor firstly analyses the query and acquires the

organizational structure information through accessing the Registry Service to construct the

targeting IPS set. Then it rewrites the query into a set of subqueries based on the global

definition of the IPUs contained in the IPS set through employing the query rewriting

technique. Subsequently, it outputs the set of subqueries for further processing.

2. Service planner: the service planner takes the set of subqueries produced by the query

convertor as the input and processes one subquery at a time. Since each atomic conjunct of a

 42

subquery refers to the global definition of an IPU. Each subquery is then segmented and

converted into a list of service invocation calls. Once all the subqueries are processed, the

service planner collects all the lists of service invocation calls to construct a service plan.

3. Service plan executor: the service plan executor takes the service plan as the input and

processes one list at a time. For each list, it invokes each of the service invocation calls in

the list sequentially by sending the call to the corresponding IPS and acquiring the results

data. Once all the service invocation calls in a list are invoked, the results data of the list can

be composed. After all the lists are processed, the final results data can be produced and sent

back to the end user to answer the user query.

The Broker Service is the only type of service in the SLEDI which communicates with the end

users. It accomplishes the task of fulfilling the user information requirements through interacting

with the IPSs and the Registry Service. In practice, another layer might be appended on top of the

Broker Service in order to employ applications to provide a more user friendly interface for the

end user to interact with. The Broker Service might also be realized by multiple instances to

distribute the workloads of information supplied in order to achieve a better performance.

Although the Broker Service is only invoked by end users in SLEDI, all its instances are required

to register through the Registry Service. Hence other applications or systems may discover and

interact with it to achieve higher flexibility.

3.5.3 Evolution handling service

The role the evolution handling service plays is to tackle the evolution occurring in the data

sources to mitigate the maintenance costs of the system caused by the evolution. Initially, it is

assumed at every time the evolution occurring, the data source takes the responsibility to identify

the evolution and invoke the EHS to propagate the evolution into the IDS. The evolution

description is passed to the EHS through the invocation call. The EHS responds to the invocation

call by processing the evolution descriptions; it then locates the IPS whose IPUs are affected by

the evolution. Then it modifies the service metadata of the IPS. The modification process might

involve invocations to the Registry Service to be accomplished. The EHS consist of the following

components:

 43

Figure 3-6 Evolution Handling Service

1. Locator: the locator accepts one evolution description at a time as the input. For each

evolution description, the locator detects the evolved local database specified in the

evolution description to find the IPS the local database (i.e. data source) provides. Then for

each IPU contained in the service metadata of the IPS, the locator analyses its local

definition against the evolution description to determine whether the IPU is affected by the

evolution. Subsequently, for each evolution description, the locator generates a list

containing all the affected IPUs as the output.

2. Modifier: the modifier takes the output of the locator as its input. For each IPU in the list, by

parsing the evolution description and consulting the predefined modification processes, the

service metadata of the IPS corresponding to the IPUs are modified accordingly. The

modifier then determines whether further modification onto the registry is required. If this is

the case, the modifier invokes the Registry Service to conduct the modification.

Conceptually, only one EHS is required in the IDS, it accepts the evolution description from the

participating data sources and applies the modifications onto the service metadata of

corresponding IPSs. In practice, the evolved local data source which invokes the EHS also

accommodates the IPS that may require modification. Thus each data source may implement an

instance of EHS to enhance the efficiency of the evolution handling.

3.5.4 Registry Service

The Registry Service contains a data repository (i.e. registry) which consists of services

descriptions and the domain ontology. An interface is exposed to interact with other services. It

accepts invocation calls, accesses the registry and sends the results back to other services.

Through the interface, all the services can publish and maintain their descriptions into the registry.

Based on the Web Service technology, the descriptions are realized in a standard and neutral way

to achieve better interoperability across heterogeneous environments. The Registry Service

consists of the following components:

 44

Registry Service
Key

Services

component

Data Store

Information Flow

Interface

Registry
Service

Descriptions
Domain

Ontology

Figure 3-7 Registry Service

1. Registry: the registry is a conceptual data store and might be realized by different data

management technologies. In this research, the registry is implemented as XML data.

2. Interface: the interface interacts with other services by exposing a set of methods for other

services to invoke. It accepts one invocation call at a time as the input; it then analyses the

information received from the invocation call such as the method specified and the

parameters passed over and finally it conducts appropriate operations against the registry

and sends the results back in response to the invocation call.

The Registry Service only accepts invocation calls and does not call other services. It might be

realized in multiple instances in practice to distribute the workload to achieve a better

performance.

3.6 Characteristics of the SLEDI

After the creation of the data integration activity framework, various characteristics of the SLDEI

can be discussed by comparing it with other solutions of the data integration with respect to the

framework. The solutions include the federated database system and the data warehousing which

have been introduced in previous chapters and the comparisons are made from different aspects

including the complexity, flexibility, scalability and the performance. The summary of the

comparisons is shown in the Table 3-1 followed by a brief discussion. Technical details of the

three main processes are provided in chapters 4, 5 and 6 respectively, whilst details of the

comparison are provided in chapter 8.

 Federated Database

System

Data

warehousing

SLEDI

 45

 Tightly

coupled

Loosely

coupled

Integrated data store Virtual Virtual Materialized Virtual

Complexity Medium High Very High Low

Flexibility Low Medium High Very High

Data Integrating

Process

Scalability Medium High Low Very High

Complexity Medium High Low Very High

Flexibility Medium High Low Very High

Information

Supplying

Process

Performance High Medium Very High Low

Complexity High Medium Very High Low

Flexibility Medium High Low Very High

Evolution

Handling

Process

Scalability Medium High Low Very High

Table 3-1 Characteristics of the SLEDI

In the Federated database system, the data integrating process is achieved by creating federate

schemas to specify the relationships between the virtual IDS and the data sources. The tightly

coupled federated database normally only contains one federated schema and the loosely coupled

one may contain multiple federated schemas. The information supplying process is realized by

processing the user queries over the federate schemes into the queries referring to the data

sources. And the evolution handling process is accomplished by maintaining the federate

schemas. Compared to other solutions, building the federated schemas is a medium complex

process and may not have good scalability since the set of data sources is getting larger, the

federate schemas are getting more complex. The query answering is based on the processing of

the federated schemes hence might delivers medium performance and may not be very flexible.

The maintenance of the federated schemas may become complex when the scale and frequency

of the evolution occurring in the data sources are getting higher, and can be infeasible in the

worst cases.

In Data Warehousing, the data integrating process is achieved by extracting the data from data

sources and transferring them into the materialized IDS. The information supplying process

evaluates the user queries directly against the IDS. And the evolution handling process is

achieved by maintaining the IDS. Compared to other solutions, building the IDS can be very

 46

complex and hard to scale, as data sources may require complex processes to extract their data

and more data sources mean more processes. However, Data Warehousing may provide the best

performance for the supply of information as user queries are processed directly against the

materialized IDS. The evolution handling in Data Warehousing has got the highest complexity, as

evolution may result in building new complex processes to refresh the data in the IDS and can

quickly become infeasible when data sources frequently evolve.

In SLEDI, the data integrating process is achieved by building application domain ontology at an

abstract level, and then each data source specifies the information it provides with respect to the

application domain ontology through the IPU mechanism. The information supply is realized by

processing the user queries and producing a service execution plan to generate the results. The

evolution handling is achieved by maintaining the definition of the IPUs which are

accommodated as service metadata of the IPSs. Compared to other solutions, creating the IPSs

provides lower complexity and is relatively easy to scale, as more data sources simply means

more IPSs to publish. The query processing is relatively complex as it first needs to determine the

IPSs who provide the answers, and then extract the data from data sources to generate the final

results data hence may result in lower performance. Nevertheless, the evolution handling is

relatively easy to achieve, as evolution may only affect the descriptive information in the service

metadata of the IPSs and automatic assistance might be employed, hence the maintenance costs

can be decreased.

3.7 Summary

This chapter presents a descriptive framework for data integration activity. The new solution:

Service Late binding Enabled Data Integration (SLEDI) is introduced. The constituent

components of the SLEDI are presented to set up the context for the next few chapters. A brief

discussion of the characters of the SLEDI is presented.

Chapter 4 introduces the process of data sources describing. The process is the first stage of the

SLEDI. It virtually integrates data from autonomous data sources into the IDS. The IPUD

algorithm is presented which describes data sources through the IPU mechanism. The IDS is then

built through assembling the IPUs into IPSs and organizing the IPSs according to the

organizational structure.

 47

Chapter 4 Data Sources Describing

4.1 Introduction

Chapter 3 provided a descriptive framework for the data integration activity and an overview of

the SLEDI method. The services and processes of the SLEDI were introduced and the characters

of the SLEDI were briefly discussed with respect to the framework.

This chapter introduces the process of Data Sources Describing with its three basic steps:

Application domain ontology construction, IPU creation and IPS assembly. The IPUD algorithm

is presented for describing data sources through the IPU mechanism. The details of using global

definition and local definition of IPU to integrate the data from autonomous data sources are

explained. This is followed by the description of assembling the IPUs into IPSs with respect to

the organizational structure, hence the IDS is formally built up. The formal model of the IPU

definitions, IPS and the IDS are presented by using set theory.

4.2 Overview of the Data Sources Describing

As introduced in Chapter 3, one of the design purposes of the SLEDI is to integrate data from the

autonomous data sources into an Integrated Data Store (IDS). As a result, end users can interact

with the IDS to meet their information requirements. In the SLEDI method, the data integration

is achieved by building the IDS through the process of Data Sources Describing. The process is

the first stage in establishing the data integration system hence other processes can be conducted

against the IDS. From the point view of the end users, there is only one single integrated data

source: the IDS. Because the SLEDI adopts the virtual approach of data integration, the IDS is a

virtual database where all its data actually reside in the data sources. Hence the IDS has two

objectives:

1. It provides a unified vision to represent the integrated data thus end users can describe their

information requirements through raising queries against the vision

2. It provides the mappings to specify the relationship between the unified vision and the data

sources. Consequently, the user queries can be answered by extracting the data from the data

sources based on the mappings.

In order to achieve the above objectives, the unified vision of the (virtual) IDS is required to not

only have the ability to represent the application domain but also to provide a platform for end

users to raise queries. The mappings between the unified vision and the data sources are required

to be specified in a well defined way thus users can get the answers to their queries by employing

 48

automatic assistance to find the relevant data sources and obtain the results data from them. More

importantly, the mappings provide a solution for solving the various heterogeneity problems

existing in the participating data sources as defined in section 1.2.3.

In this research, a domain ontology model is employed to represent the unified vision and the

mappings are realized through the mechanism of the Information Provision Unit (IPU). Through

formulating the Global Definition and the Local Definition of each IPU, the mappings are

formally specified to establish the correlation between the application domain ontology (i.e. the

unified vision) and the database schemas of the data sources. An algorithm termed Information

Provision Unit Describing (IPUD) is designed which adopts the approaches of the

Global-as-View (GAV) and parts of the Local-as-View (LAV) to create the definitions of the IPU.

Because the SLEDI follows the approach of Software as a Service, the IPUs are finally realized

through the Information Provision Service (IPS). After all the data sources are processed, the

IPSs produced are grouped together with respect to the organizational structure of the data

sources and published into the registry for other parts of the system to utilize.

The process of Data Source Describing can be divided into three elementary steps: Application

Domain Ontology Construction, IPU creation and IPS assembly. After the application domain

ontology is constructed, the IPU creation can be achieved by using the IPUD algorithm to create

IPUs from the data sources. Consequently, the IPSs can be established from the IPUs and

assembled according to the organizational structure of the data sources. The application domain

ontology is denoted as Onto, a data source is denoted as DS, the local schema of a DS is denoted

as DSLS, and the organizational structure of the data sources is denoted as Org. The IPU and IPS

produced from a data source is denoted as IPU(DS) and IPS(DS) respectively. The IPUD algorithm

hence can be formally defined as a function:

IPUD : (DSLS, Onto) → {x : IPUi
(DS) (1≤i≤n)}

And the process of Data Source Describing for a set of data sources {DS1, … , DSn} can be

formally defined as a function:

Data Source Describing : ({x : DSj (1≤j≤n)}, Onto) → (Org, { y : IPS(DS
j
) (1≤j≤n)})

The elementary steps, the IPUD algorithm, the data models and the processes involved in the

Data Source Describing are delineated in details in the following sections.

4.3 Application Domain Ontology

As discussed in section 1.3.3, although different data sources might store their data in

schematically heterogeneous relational schemas, the real world objects described by these data

are in the same application domain. Indeed, if the objects represented by different data sources do

not overlap each other, the data integration will become too difficult. Obviously, a canonical

model capturing the salient parts of the application domain can provide a standard representation

 49

of the objects, hence each data source is able to describe the data they provide with respect to the

canonical model without having to concern other data sources. In this research, a domain

ontology model is created to represent the application domain ontology thus playing the role of

the canonical model.

4.3.1 Knowledge Representation

4.3.1.1 Representation Formalisms

To fulfill the requirement of explicitly and precisely representing the application domain, the

technique of Knowledge Representation can be employed. Knowledge Representation is a

research field that mainly concerns the formalism for describing a domain of discourse [15]. By

defining a symbol system and assigning semantics to it, the formalism provides a high level

description of the domain. Hence the explicit knowledge the symbols represents can be searched

and the implicit knowledge can be further inferred based on the reasoning methods the formalism

supports. The formalisms may be roughly divided into two categories: logical-based and

non-logical-based [04]. The logical-based formalism is developed based on the intuition that the

facts of the domain can be represented by predicate calculus hence can be unambiguously

interpreted. On the other hand, the non-logical based formalism is thrived from more cognitive

notions which simulate the experience of memory recall and task execution of humans.

The Semantic Networks [53] and Frames [63] are two examples of the non-logical-based

formalisms which follow the network-shaped cognitive structures. Although they can represent

the sets of individual objects and relationships among them, they suffer from lacking precise

semantic characterization. This can result in systems with identical components and relationship

names behaving totally differently to each other [04]. For tackling this problem, the network

structure can be assigned semantics by relying on First-order logic; hence the research in the area

of Description Logic began by following this approach.

4.3.1.2 Description Logic

Description Logic (DL) is a family of knowledge representation formalisms [04, 15] which can

be used to define formal languages for representing knowledge and reasoning about it. The

network structure based knowledge can be expressed in DL such as assigning a group of

individuals into a class and categorizing the classes into taxonomy. A complex class can be

formed from atomic classes by declaring its definition formulae in first-order logic. Equipped

with model-theoretic semantics, logical reasoning may be achieved by assigning the proper

inference procedures.

 50

DL languages represent the knowledge of an application domain by first defining the relevant

concepts of the domain (i.e. its terminology), and then using these concepts to specify properties

of objects occurring in the domain. The elementary descriptions in DL languages are atomic

concepts and atomic roles. Complex concepts can be further constructed from them by using

concept constructors inductively. The main characteristic that distinguishes different DL

languages is the concept constructors the languages supports. The notations for denoting the

atomic concepts, atomic roles and the concept constructors used here follow the conventional

syntax and rules [05]. The letters A and B are used for denoting atomic concepts, the letter R for

atomic roles, and the letters C and D for concept descriptions:

C, D →

A | (atomic concept)

⊤ | (universal concept)

⊥ | (bottom concept)

¬A | (atomic negation)

C ⊓ D | (intersection)

∀R.C | (value restriction)

∃R.⊤ | (limited existential quantification)

The above syntax forms the basic description language AL (attributive language). Other

languages with more expressive power can be added by extending the constructors the language

supports. For example, in the ALN DL language, the cardinality restriction is added to describe

the roles:

≥ n R (at least cardinality restriction)

≤ n R (at most cardinality restriction)

The semantics of DL languages can be formally assigned by introducing the interpretations I that

consist of a non-empty set ∆I (the application domain) and an interpretation function. Every

atomic concept A is assigned a set AI ⊆ ∆I, and every atomic role R a binary relation RI ⊆ ∆I

× ∆I. Intuitively, the ∆I are all the individuals in the application domain. AI is the set of all

individuals which are the instances of the concepts A, and RI is the set of all the pairs of

individuals with the atomic role relation holding in each pair. The interpretation function can be

extended to concept descriptions by the following inductive definitions [05]:

⊤I = ∆I

⊥I = Ø

(¬A)I = ∆I \ AI

(C ⊓ D)I = CI ⊓ DI

(∀R.C) I = { a ∈∆I | ∀b.(a,b) ∈ RI → b ∈ CI}

(∃R.⊤) I = { a ∈∆I | ∃b.(a,b) ∈ RI }

 51

(≥ n R) I = { a ∈∆I | |{b.(a,b) ∈ RI}| ≥ n }

(≤ n R) I = { a ∈∆I | |{b.(a,b) ∈ RI}| ≤ n }

Under the definition above, the concept C is said to be subsumed by the concept D if CI⊆DI and

C is said to be equivalent to D when CI=DI. Since the semantics of concepts identifies DL

languages as fragments of the first-order logic, the subsumption relationships between concepts

can be reasoned out even if they are not explicitly specified.

4.3.2 Domain Ontology Representation

The ALN DL language, though simple, provides a richer modeling framework compared to the

pure relational approaches. In addition, the ALN DL is equipped with reasoning services for

checking concept and rule subsumption, hence has been chosen in the PICSEL project for

representing the domain ontology [34]. In order to keep the focus of this research on solving the

evolution problems, the domain ontology representation in this research is also based on ALN DL

and extended with extra characters. Therefore the query rewriting algorithm of the PICSEL can

be employed in this research, which will be discussed in details in the next chapter. The domain

ontology model consists of two components: the Terminology and the Rule.

4.3.2.1 Concept Description

As discussed above, the DL lends itself well to naturally conceptually modelling the application

domain by grouping the individual objects and categorizing their relationships. In this research,

because of the autonomous nature of the data sources, the same objects might be realized in

different forms of data (e.g. different data types). As one of the objectives of the domain ontology

is to provide an interface with which the end user can interact, it is required that the domain

ontology also presents a canonical specification about how the objects are realized in data. In

other words, the domain ontology is not only required to provide an agreement across the

application domain at a semantic level but also at syntactic level.

By extending the interpretation I described in section 4.3.1.2, we refer to the non-empty set ∆I as

the semantic spaces and further introduce another non-empty set ∆D as the syntactic spaces and a

set of predicates PD over ∆D. The elements of ∆D are purely data symbols and the elements of PD

are ordinary predicates with arity n. Another function f I is introduced to assign each element in ∆I

with an element of the ∆D, f I : ∆I × ∆D. Thus each individual object in the application domain is

denoted by a specific data symbol from the ∆D. The predicates in PD discussed in this research are

ordered relations (e.g. ≤, <) which are used to describe the possible partial order associated with a

subset of ∆D. For each concept A, syntactic space AD ⊆ ∆D indicates the data symbols used to

denote the instances of A in the application domain. The subset AD might be described by a data

 52

type and associated with ordered relations. Consequently, each concept is equipped with a

semantic space to describe its semantic meaning by a possible complex ALN DL statement and a

syntactic space to provide a canonical format of the data to denote its instance objects.

4.3.2.2 The Terminology

Similarly with the PICSEL project, the Terminology component of the domain ontology model

consists of a set of statements which can be categorized into two types: the concept definition and

the concept inclusion. The concept definition is in the form of Concept := Expression and the

concept inclusion is in the form of Concept ⊑ Expression or Concept1 ∩ Concept2 ⊑ ⊥[34].

The Expression is an ALN DL concept description hence the constructors allowed are

intersection, value restriction, cardinality restriction and atomic negation as described in section

4.3.1.2. In this research, for the concept definition statements, any concept is allowed to appear at

the left hand side of the statements at most once, and the concepts do not appear in the left hand

side for any of the statements termed as Atomic Concepts. A concept C is considered depending

on the concept C’ if C’ appears in its definition expression. A set of the statements is said to be

acyclic if there is no cycle in the concept dependency. Only atomic concepts are allowed in the

concept inclusion statements. As only acyclic concept definition is considered in this research,

the set of concept definition can be unfolded by iteratively substituting every concept with its

definition. Thus every concept definition can be unfolded and put in a normal form of a

conjunction of basic forms: A (atomic concept), ¬A, (≥ n R), (≤ n R), or the complex

form∀R1∀R2…∀RK.D, where D is a basic form.

4.3.2.3 The Rule

Since the terminology statements are DL based, only concept (unary relation) and role (binary

relation) can be expressed. The domain ontology model is extended with the Rule component to

express the ordinary relation (n-ary relation). The Rule is also constituted by a set of statements.

Each statement is in the form of Horn Rules: R(ȳ) :- ∀x̄ P1(x̄1)∧…∧Pn(x̄n) where the left hand

side is the consequence and the right hand side is the antecedent. The x̄1, …, x̄n, ȳ are tuples of

variables or constants which are all included in x̄. The relations P1, …, Pn may be concepts, roles

and ordinary relations. We require that any variable appears in ȳ must also appear in x̄

1∪ …∪x̄n. The relations which do not appear in any consequence of the Rule statements are

called base relations. The base relation P(x̄) is a concept-base if P is a concept from the

terminology and P(x,y) is a role-base if P is a role. A relation R is said to depend on a relation P if

P appears in the antecedent of a statement where R is the consequence. A set of rule statements is

recursive if there is a cycle in the dependency relationship among the relations. In this research,

we only consider non-recursive rule statements; every base relation must be either a concept-base

 53

or a role-base and the consequence of a rule must be an ordinary relation. Hence every statement

can be rewritten into a normal form so that the antecedent only includes concept-bases and

role-bases. We also employ the unique name assumption that for every pair of distinct variables

appearing in a rule statement, there is inequality that x ≠ y.

After augmenting the domain ontology model with the Rule component, the interpretation I is

also extended. It assigns every constant a with an object αI(a) ∈∆I, and every relation of arity n

with a relation of arity n over the ∆I. Thus an interpretation I is a model of a rule statement

R(ȳ) :- P1(x̄1)∧…∧Pn(x̄n) if whenever α is a mapping from the variables to the ∆I such that α(x̄i)

∈Pi
 I for every base relation of the antecedent, then α(ȳ) ∈R I. Consequently, an interpretation I

is a model of a domain ontology if it is a model of each of its Terminology and Rule components.

4.3.3 Domain Ontology Model

After the introduction of the domain ontology which has been given in the previous section, the

formal model of the domain ontology can be defined.

4.3.3.1 The Terminology

Concepts and roles are the central elements in the domain ontology. Role has three properties.

The first property Name is to identify it in the domain ontology. The second and third properties

con1 and con2 refer to the subject concept and the filler concept associated by the role

respectively. Concept is described by four properties: Name, Level, Semantic space, and Syntactic

space. The Name is a string which can be used to identify the concept. The Level is either atomic

or composite. Any concept which is not an atomic concept is labelled as composite in its level

property. The Semantic space is a concept definition or concept inclusions to describe the

semantic meaning of the concept. As discussed in 4.3.2.2, concept definition can only appear in

the semantic space of composite concepts and concept inclusions can only appear in the semantic

space of atomic concepts. The concept definition is represented by a statement in the normal

form of an ALN DL expression, and the normal form is a conjunction of the various basic forms.

The concept inclusion can be represented by either an ALN DL expression or by a contradiction

of two atomic concepts. The Syntactic space is a string to denote the data type of the data for

representing the instance objects of the concept. The model of the terminology is described

below:

Role : (nrole : Name, con1 : Concept, con2 : Concept)

Name : String

Concept : (nconcept : Name, l : Level, sem : Semantic Space, syn : Syntactic Space)

 54

Level : String

∀X : Level X ∈ {“atomic”, “composite”}

Semantic Space : Concept Definition | Concept Inclusion

Concept Definition : ALN-Expression

ALN-Expression : {bf : Basic Form}

Basic Form (ft : Form Type, f : Form)

Form Type : String

∀Y : Form Type Y ∈ {“atomic”, “atomic negation”, “cardinality restriction”, “value

restriction”}

Form (otr : Operator, ord : Operand)

Operator : String

∀Z : Operator Z ∈ {“null”, “¬”, “>=” , “<=”, “=”, “∀” , “Ø”}

Operand : { ord: Positive Integer | Concept | Role | Form}

There are four types of basic form. Each type employs a different set of operators and operands

to construct its specific representation hence each is defined individually.

Form (otr = “null”, ord : Concept) (when ft = “atomic”)

Form (otr = “¬”, ord : Concept) (when ft = “atomic negation”)

Form (otr = “>=” | “<=” | “=”, ord : (n : Positive Integer, r : Role)) (when ft = “cardinality

restriction”)

Form (otr = “∀”, ord : (r : Role, f : Form) (when ft = “value restriction”)

Concept Inclusion : ALN-Expression | Contradiction

Only when the subject concept is an atomic concept, the concept inclusion might be assigned into

its semantic space. As the contradiction considered here is only required to indicate the object

atomic concept which has no intersection with the subject atomic concept, the contradiction is

defined below.

Contradiction : (otr : Operator, ord : Concept) (otr = “Ø”)

Syntactic Space : (dt : Data Type)

Data Type : String

∀X : Data Type, X ∈ {“string”, “decimal”, “integer”, “date”, “Boolean”}

The syntactic space only has one property data type, the data type is used to specify the type of

data associated with the concept for denoting the instance of the concept in the application

domain. The data types defined above can be extended in practice.

 55

After the concepts and roles have been formally defined, the Terminology of the domain

ontology can be defined.

Terminology : ({con : Concept}, {rol : Role })

4.3.3.2 The Rule

As introduced in 4.3.2.2, the Rule contains a set of statements with each statement in the form of

Horn Rules. Each statement consists of two parts: the antecedent and the consequence. The

consequence is an ordinary relation with a variable list and the antecedent is the conjunction of a

set of base relations. The Rule is formally defined below:

Rule : {sta : Statement}

Statement : (conse : Consequence, ante : Antecedent)

Consequence : (nconse : Name, {vconse : Variable})

Variable : (vname : Name, dt : Data Type)

Antecedent : (nante : Name, {br : Base Relation})

Base Relation : (rtp : Relation Type, (con : Concpet | role : Role | conse : Consequence),

{(vbr : Variable) | (const : Constant)})

Constant : (dt : Data Type, value : String)

Relation Type : String

∀X : Relation Type, X ∈ {“concept” , “role” , “ordinary” }

For each of the distinct relation types, the base relation is represented differently hence is defined

separately below

Base Relation : (rtp=“concept”, con : Concpet, vbr : Variable | const : Constant)

Base Relation : (rtp=“role”, role : Role, {vbr : Variable} | {const : Constant})

Base Relation : (rtp=“ordinary”, ordi : Consequence {vbr : Variable} | {const : Constant})

The constants have two properties; the first property indicates its data type and the second

property represents its value in the form of string. As discussed above, some constraints have to

be followed when constructing the Rules. If the relation type is ordinary, the consequence of

other rule statements can be used as the value of the ordi and no recursion is allowed. The

variables appearing in the consequence of any statement must also appear in the base relations of

its antecedent.

4.3.3.3 Domain Ontology Construction

After formally defined the model of the Terminology and Rule components of the domain

ontology, the model of domain ontology can be formally denoted as

Domain Ontology : (ter : Terminology, rule : Rule)

Thus the domain ontology of the application domain can be constructed based on the model. In

 56

practice, the application domain ontology might already exist with realization in other conceptual

data models such as the Entity-Relationship (ER) model. In this case, a transformation is required

in order to realize the application domain ontology into the model described above. Take the ER

model as an example, a property of an Entity type might be defined as an atomic concept Cp and

the Entity type might then be defined as a composite concept Ce. A role might be defined to take

Ce as its subject and Cp as its filler. In similar fashion, a relationship type might be defined as a

concept and connected by roles to the concepts which represent its participating Entity types.

How to transfer the domain ontology represented by one formalism (e.g. ER model) into another

formalism (e.g. the domain ontology model above) is out of the scope of this research hence will

not be discussed further. However, a very simple example from the mental health application

domain is used here to illustrate the ontology construction:

Figure 4-1 simple example of Patient information

In the above ER model, the patient entity type has four properties: Gender, Patient_ID, Name and

Age; and two subclass entity types: Adult and Child patient. The application domain ontology for

modelling the patient information can be constructed in the following way.

Atomic Concept:

{ PatientID, Name, Gender, Age, Classification }

Role:

{HasPatientID, HasName, HasGender, HasAge, HasClassification}

Composite Concept: {

Adult ⊑ Classification; Child ⊑ Classification; Adult ∩ Child ⊑ ⊥;

Patient := (=1HasPatientID.PatientID) ⊓(=1HasName.Name) ⊓ (=1HasGender.Gender) ⊓ (=1

HasAge.Age) ⊓ (=1HasClassification.Classification);

AdultPatient := Patient ⊓ ∀HasClassification.Adult;

ChildPatient := Patient ⊓ ∀HasClassification.Child; }

Rule: {… ;

Patient-Info(X_PatientID, X_Name, X_Gender, X_Age) :- Patient(X) ∧ HasPatientID(X,

 57

X_PatientID) ∧ HasName(X, X_Name) ∧ HasGender(X, X_Gender) ∧ HasAge(X, X_Age);

…}

Table 4-1 application domain ontology example

The domain ontology model provides a mechanism for representing the application domain, but

the design of the content of the domain ontology still relies on the expertise on the application

domain and the data sources. Through exploiting the expressive power of the domain ontology

model, a high quality design of an application domain ontology should be able to express the

application domain precisely to fulfill the users’ information requirements; as well as allowing

the data sources to easily correlate their data with the application domain ontology.

4.4 The Information Provision Unit Describing Algorithm

After the domain ontology is constructed, the first objective of the IDS as discussed in section 4.2

is achieved. The second objective can be achieved through specifying the mappings between

each data source and the domain ontology. The IPUD algorithm for formulating the mappings is

described in detail below.

4.4.1 Overview of the IPUD

In this research, as introduced previously, despite the fact that the participating data sources

might manage their data through employing a distributed database system or even an integrated

database system, all the data are realized in the relational data model. Hence each data source is

represented by a single relational schema referred to as local schema. Because the data sources

are autonomously controlled, they may only expose part of their data to be accessed. The

correlations between the exposed data and the domain ontology are specified formally through

the IPU mechanism. The IPUD algorithm is designed to process one data source at a time which

takes the local schema and the domain ontology as input, and generating the IPUs as the output

(i.e. the mapping between the data source and the domain ontology). Through the IPUD, each

data source first organizes its exposed data into a set of IPUs and then specifies the global

definition and local definition for each IPU to constitute the mapping. The process of using IPUD

to describe a data source is depicted in Figure 4-2

 58

Figure 4-2 Data Source Describing by IPUD

4.4.2 The Information Provision Unit

For the purpose of correlating each data source with the domain ontology, the mapping is

required to describe formally the relationship between the elements in the local schema and the

elements in the domain ontology. The ways of specifying the mapping can be broadly categorized

into two approaches: Local-as-View (LAV) and Global-as-View (GAV) [55, 37]. In the LAV

approach, each element of the local schema is associated with an expression over the domain

ontology, the concept the element represents corresponds to the concept the expression represents.

On the contrary, in the GAV approach, each element of the domain ontology is associated with an

expression over the local schema. Each approach has its advantages and drawbacks. While the

LAV approach appreciates its high expressivity and flexibility of representing the content of the

data source relatively to the domain ontology, the user query processing may encounter high

complexity. Compared to the LAV approach, on the other hand, the GAV approach suffers limited

flexibility for representing the data source but enjoys the simplicity for the user query processing

 59

[60]. For example, when the user query is based on function-free Horn rules such as Datalog, the

query processing for GAV can be done by simply rules unfolding. In this research, the mapping is

built by following the GAV approach and augmented with some features of the LAV approach in

order to exploit the simplicity of user query processing while appreciating the flexibility for

describing the data source.

As the data sources are autonomously managed, each data source is required to firstly determine

the data they are willing to share. Then describe the data through the Information Provision Unit

(IPU). Each IPU is described through a global definition and a local definition. The global

definition is formulated by the elements from the application domain ontology to describe what

data this IPU provides at the application domain level; and the local definition describes how the

data can be formed from the data source by using the elements in the local schema. A data source

can generate as many IPUs as needed to describe its exposed data. Since the IPU acts as a middle

layer between the application domain ontology and heterogeneous participating data sources, the

various heterogeneity problems defined in section 1.2.3 may be solved through the IPU

mechanism. The details of the global definition and local definition are explained in the

following sections.

4.4.3 Global Definition

The global definition of an IPU constitutes a compulsory content part and an optional constraint

part. The content is expressed by a rule which associates a source relation with a base relation

from the domain ontology in the form of V(x̄) :- P(x̄). The source relation V(x̄) (also referred to

as the head of the content) represents the data the IPU provides in the form of a relation. The

base relation P(x̄) (also referred to as the body of the content) indicates the element from the

domain ontology whose instance can be found in the source relation. The base relation is either a

concept or a role in the domain ontology which itself may be associated with an (possibly

complex) ALN DL expression. We require that the variables in the head and the body of the

content are identical hence the source relation V(x̄) can only be either a unary or a binary

relation.

The content specifies the mapping between the data the IPU provides and the application domain

ontology by following the GAV approach. For the purpose of providing higher flexibility in

describing the data source, the global definition is augmented with the constraint for fine-tuning

of the characterization of the data the IPU provides. Two types of constraints are employed in this

research: the terminological constraints and the integrity constraints. The terminological

constraints are expressed in the form of V(X) ⊑ C where C is a concept expression over the

domain ontology. The V(X) and C are referred to as head and body of the terminological

 60

constraints respectively. The head is required to be identical to the source relation of the content

part. And the integrity constraints are expressed in the form of V1(x̄1)∧…∧Vn(x̄n) ⊑ ⊥where

the Vn(x̄n) (1≤i≤n) is the source relation or negation of the source relation of the content of the

IPUs the same data source provides. The V1(x̄1) is also required to be identical with the source

relation of the content part.

After the introduction, the formal model of the global definition of the IPU can be defined:

Global Definition : (nante : Content, [br : Constraint])

Content : (conthe : Head, contbo : ContentBody)

Head : (hdn : Name, {vhd : Variable})

ContentBody : (cbbr : Base Relation) (where rtp ∈{“concept”, “role”} ∧ vbr = vhd)

Constraint : (cstra : Terminological Constraints | Integrity Constraints)

Terminological Constraints : (tche : Head, tcbd : ALN-Expression) (where tche = conthe)

Integrity Constraints : (ich : Head, { icbd : Head }) (where ich = conthe ∧ icbd ∈{conthe})

Through the global definition model, the data an IPU provides is specified with respect to the

domain ontology hence the data can be understood unambiguously across the application domain

without concerning how the data are actually realized in different data sources.

4.4.4 Local Definition

After the global definition is specified, the data an IPU provides is precisely described at the

application domain level. Because of the actual data is stored in the data source, the way in which

the IPU data is generated must be formally specified. Thus each IPU is equipped with a local

definition for achieving this purpose. As the data is realized through the relational data model, the

local definition is formulated as a virtual view of the local schema of the data source. A virtual

view is essentially a named query over the local schema and the data of the view is constructed

through executing the query against the local schema. The virtual view provides the mechanism

for adding a layer between generating the data the IPU provides and the actual realization of the

data in the local schema. Hence each data source can enjoy the flexibility of implementing their

own local schema according to their needs and the data the IPU provides can be derived from the

actual relations of the local schema.

4.4.4.1 Query Languages

For expressing the virtual views, some query languages are commonly used in literatures such as

 61

relational algebra, relational calculus and conjunctive query [24, 87]. The relational algebra and

relational calculus have identical expressive power while the views expressed by the relational

algebra are more prescriptive oriented and the views in the form of relational calculus are more

descriptive oriented. The conjunctive query is a restricted form of first-order logic query which

provides a logic based approach that can be used to specify the queries over the relational schema.

The expressive power of the conjunctive query is equivalent to the Select-Project-Join queries in

relational algebra [87]. As this research is only considering the read only queries from the end

users, the conjunctive query is chosen and extended with extra features for expressing the views

to fulfill the research needs. Furthermore, because the logic based conjunctive query formulates

the views in a well formed and abstract way, not only can it be translated into different forms of

local queries with respect to the various DBMS systems the data sources might employ (which

will be discussed in details in chapter 5), but it also provides the ground for supporting the

automatic assisted evolution handling (which will be discussed in details in chapter 6).

4.4.4.2 Conjunctive Query

The notations used for describing the relational schemas and conjunctive query in this thesis

follow the syntax in [87]. Let a local schema LS be constituted by a set of relations R1,…Rn.

each relation Ri (1≤i≤n) is constituted by a set of attributes Ai1,…Aim. And each attribute Aij

(1≤i≤n, 1≤j≤m) is described by a name and a data type which indicates in which types of data the

instances of this attribute are realized. A logical rule is expressed by assigning a body to a head in

the form of H(ȳ) :- ∀x̄ B1(x̄1)∧…∧Bn(x̄n) where x̄1, …, x̄n, ȳ are tuples of variables or

constants. The variable quantification is omitted thereafter for a shortcut and the rule is regarded

as safe if ȳ ⊆ x̄1∪ …∪x̄n. This safety requirement is to assure that there are no undefined

variables in the head. Each atom of the body Bi (1≤i≤n) is called a subgoal. A conjunctive query

(CQ) is a safe rule which is evaluated by applying all possible substitutions of values for the

variables in the body. If a substitution makes all the subgoals true, it forms a valid instance data

for the head relation. Hence a CQ can be treated as a virtual relation which is derived from its

subgoal relations.

To meet the research needs, the conjunctive query is extended by applying certain constraints.

The subgoals of a CQ are categorized as three different types: ordered relation subgoal,

converting relation subgoal and regular relation subgoal (also referred to as ORS, CRS and RRS

respectively for short). A subgoal Bi(x̄i) is an ORS when it satisfies the following constraints:

1. Bi(x̄i) is a binary relation (Bi(Xi,Yi))

2. Xi and Yi are either two variables or one variable and one constant.

3. the binary relation expresses the relationship between Xi and Yi by the means of orders (i.e.

>, ≥, <, ≤, =)

 62

A CRS is a unary relation Bi(Xi) where Xi is a variable and assigned with an expression. The

expression is constituted by operands and operators where the operands are either constants or

variables from other subgoals. The operators specify how to construct the instance data of the Xi

from the instance data of the operands such as arithmetic calculation and string operations. A

RRS Bi(x̄i) is neither an ordered relation nor a converting relation, and Bi(x̄i) can be in any arity

and x̄i are all variables.

4.4.4.3 View Definition

A virtual view can be defined as a union of CQs where all the CQs have identical heads. A CQ

can assign each of its RRS with an actual relation from the local schema to derive the instance

data for its head and all the instance data of the view can be derived by the union of the heads of

the CQs. Because the view itself can be treated as a virtual relation which is represented by its

head, it can be assigned as a RRS for other CQs. By allowing the assignment of RRSs to views as

well as actual relations, the arbitrary complex view can be defined through the CQs and their

assignments.

A normal form of CQ assignment is defined in this thesis to facilitate building the view

expression. A CQ assignment is in the normal form if all of its RRS are assigned to the actual

relations in the local schema. And a CQ assignment is in the negation normal form if none of its

RRS is assigned to an actual relation, in other words, all of its RRS are assigned to virtual views.

Because any actual relation can be assigned to a virtual view, any CQ can be rewritten to get the

(negation) normal form assignment by creating extra virtual views. The (negation) normal form

is also applied to the view definition in similar fashion that a view is considered to be in the

normal form if all of the CQs in its definition are in the normal form and it is in the negation

normal form if all of the CQs are in negation normal form. It is required that all the CQ

assignments and views must be in either the normal form or negation normal form. This

constraint does not affect the expressive power of the views and provides the leverage for the

user query processing and the automatic assisted evolution handling which will be discussed in

the next chapters.

A view V is said to directly depend on a view V1 if V1 is assigned to a RRS in the definition of V.

It is required that there is no circle in the dependency relation among the views. Thus a view

definition can be conceptually illustrated as a directed acyclic graph (DAG) where each vertex

represents an actual relation or a virtual view and each arc represents the direct dependency from

a view to a view or to an actual relation. The view V is referred to as the root which has no

incoming arc and the leaves which have no outgoing arc which are assigned to actual relations in

the local schema:

 63

Key

Virtual View

Actual Relation

Dependency

V

V4V1

V3

V2R1

R2

R3

Figure 4-3 DAG structure of view expression

All the virtual views involved in a view definition V are categorized as two types: basic and

intermediate. The views in the normal form are considered as the basic views (e.g. V1, V2, V3, in

Figure 4-3), and the views in the negation normal form are intermediate views (e.g. V, V4, in

Figure 4-3). The V is also referred to as the root view which must be an intermediate view. It is

obvious that a view can be evaluated only on the premise that all the views it depends on have

already been evaluated. From the DAG structure point of view, an actual relation is a leaf vertex

and a view is a non-leaf vertex and any vertex must be evaluated before its direct predecessor.

4.4.4.4 The Model

After the introduction of the mechanism of the local definition, the formal model can be defined.

Local Schema : (lsname : Name, {rela : Relation})

Relation : (relname : Name, {attr : Atrributes})

Attributes : (attname : Name, atttype : Data Type)

A view is described by its name, head, type, all the CQs in its definition and a dependency list.

The dependency list contains all the views (or actual relations) which are the direct successors of

the view.

View : (viewname : Name, vhead : Head, vtype : View Type, defi: {cq : Conjunctive Query},

dependency : {dpc: View | Relation})

View type : String

∀X : View type, X ∈ {“basic” , “intermediate” }

Conjunctive Query : (cqname : Name, cqhead : Head, body : {sbg : Subgoal}) (where cqhead

= vhead)

 64

Subgoal : (sbgname : Name, sbghe : Head, sbgtp : Subgoal Type, sbgas : Assignment)

Subgoal Type : String

∀Y : Subgoal Type, Y ∈ {“regular”, “ordered”, “converting”}

Different types of subgoals and views result in different assignments hence are modelled

separately below:

An RRS of a subgoal of a CQ in a basic view is assigned to an actual relation of the local schema

and each variable of the RSS head is assigned to an attribute.

Assignment : (rela : Relation, {(asvar : Variable, asatt : Attribute)}) (where asvar = sbghe .vhd

∧ asatt = rela. attr ∧ sbgtp = “regular” ∧ vtype = “basic”)

It is worth noticing in this type of assignment, an actual relation does not have to assign all of its

attributes to the variables.

An RRS of a subgoal of a CQ in an intermediate view is assigned to a view and the head of the

RRS is required to be identical with the head of the view.

Assignment : (vie : View) (where sbghe = vhead ∧ sbgtp = “regular” ∧vtype =

“intermediate”)

The assignment of an ORS requires that the head of the subgoal contains exactly one variable and

the assignment describes the correlation of order between the head variable and a variable or a

constant. The variables and constant are required to have identical data type.

Assignment : (ordoperator : Ordered Relation, odopd : Variable | Constant) (where

sbghe.vhd.dt = odopd2.dt)

Ordered Relation : String

∀Y : Ordered Relation, Y ∈ {“>” , “<” , “>=” , “<=”, “=”}

The assignment of a CRS also requires the head of the subgoal contains exactly one variable. The

assignment expresses the operations for constructing the instance of the head variable over a set

of constants or variables. The operators described in this model are binary operators include

arithmetic and string operators; and a unary operator “&“ which transforms the instance of one

variable into the instance of another variable. The operators can certainly be extended in practice.

Converting Operator : String

∀Z : Converting Operator, Z ∈ {“+”, “-”, “*”, “/”, “||” “&”}

Assignment : ({ opn : Operation })

Operation : (convopt : Converting Operator, convopd1 : Variable | Constant, convopd2 :

Variable | Constant) (where sbghe.vhd.dt = convopd1.dt ∧ convopd1.dt = convopd2.dt ∧

converopa ≠ “&”)

 65

Operation : (convopt : Converting Operator, convopd : Variable | Constant) (where

converopa = “&”)

Local Definition : (root : View, inter : {intv : View}, basic: {basv : View}) (where basv.vtype =

“basic” ∧ inter.vtype = “intermediate”)

4.4.4.5 Validation Rules

In order to formulate meaningful local definitions to construct the data of the IPU correctly,

certain constraints have to be applied. The constraints are referred to as validation rules which

are discussed with respect to the model.

1. For the assignment of ORS and CRS when its converting operator is not “&”, all the

variables and constants are required to have identical data type.

2. For the assignment of a RRS to an actual relation, the corresponding CQ of the RRS must

belong to a basic view definition and the actual relation must belong to the local schema.

Each variable of the RRS head must be assigned to an attribute of the relation.

3. For the assignment of a RRS to a view, the corresponding CQ of the RRS must belong to an

intermediate view definition and the RRS head must be identical with the view head it is

assigned with.

4. For a CQ, the variables in the head of the CQ, the RRS, the ORS and the CRS are denoted

as cqh, rrsh, orsh and crsh respectively. The variables in the assignment of the ORS and

CRS are denoted as orsa and crsa. Thus (orsa ∈rrsh) and (crsa ∈rrsh) and (cqh ⊆ rrsh

∪ orsh ∪ crsh).

5. For a view, all the CQs in its definition must have identical head and the heads must be also

identical with the head of the view.

6. For the dependency list of a basic view, the list must contain exactly one actual relation

from the local schema. For the dependency list of an intermediate view, all the elements in

the list must be views.

7. For a local definition, its root view, intermediate views and basic views are denoted as root,

inter, and basic respectively. Thus (root ∉ (inter ∪ basic)) and (root.dependency ⊆

inter ∪ basic) and (basic ≠ Ø)

8. For a local definition, the head of its root view must be identical with the head of the content

of the corresponding global definition.

The validation rules have to be complied with during the formulation of the local definitions.

This not only helps to build the local definition which constructing data properly for the IPUs

where the user query processing can rely on, but also provides the base for checking the validity

of the local definitions after the automatic assisted evolution handling has conducted

 66

modifications onto the local definitions. It is also required that the actual relations involved in the

local definition and the basic views of the local definition must have a bijection mapping

relationship. The exact one to one mapping between the involved actual relations and the basic

views guarantees the views are in the (negation) normal form thus facilitating the automatic

evolution handling. The details will be discussed in the next chapters.

4.4.5 Summary of the IPUD

Once the global definition and the local definition of an IPU are formulated, the IPU is formally

constructed. An IPU is modelled as:

IPU : (iname : String, gd : Global Definition, ld : Local Definition)

After a data source is processed by the IPUD algorithm, all the IPUs with respect to the data it

exposes are produced. Hence the data source is described through the IPUs. Conceptually, as the

IPU specifies the correlation between the data exposed by data sources and the domain ontology,

the data sources are virtually integrated into the IDS. After all the participating data sources are

processed by the IPUD, The IDS is established. As a consequence, the end users can raise queries

based on the domain ontology and the data integration system can answers the queries through

accessing the IPUs in the IDS.

4.5 The Information Provision Service Assembly

4.5.1 Information Provision Service

As the SLEDI is following the SaaS approach, each data source is required to share their data

through a service which is termed as the Information Provision Service (IPS). Conceptually, an

IPS is a data intensive service which follows the general concept of service in SaaS. It uses

metadata to describe itself thus other components can understand what data the IPS provides and

how to interact with the IPS by processing the description. Because the global definition of all

the IPUs of a data source unambiguously specifies what data the data source provides, the IPS

can accommodate the global definition of the IPUs into its service description metadata.

Although in practice a data source may construct more than one IPS and distributes all of its

IPUs among them for efficiency, conceptually, a data source provides one IPS which includes the

global definition of all its IPUs in its service description metadata. In other words, each

participating data source is represented by exactly one IPS.

By following the concept of service, the IPSs are implemented at the data source sites and

publish their descriptions into the registry for other components to access. When an IPS receives

 67

invocation calls, it accesses the local data source to generate the results data based on the local

definition of the IPUs and sends the results data back to respond to the invocation calls. From the

IPUs’ perspective, their global definition is realized through the metadata in the IPS description

and their local definition is maintained at the data source site for IPS to utilize. Thus an IPS can

be described by the following model:

IPS (ipsdescription:(ipsname : String, {(ipuname : IPU.iname, gd : IPU.gd) }), ls: DSLS,

{(ipuname : IPU.iname, ld: IPU.ld)})

4.5.2 Organizational Structure

For the participating data sources in a data integration system, apart from what data they provide,

they may also be described by other aspects such as where the data sources are geographically

located or which group the data sources belong to. These aspects help to organize all the

participating data sources into an organizational structure. The structure provides leverage for

fine-grained control for the end users hence the end users can specify precisely which of the data

sources they are willing to query against. Consequently, instead of searching all the participating

data sources for answering every single user query, only the specified data sources are considered

which narrows down the search space for query processing.

Which aspects are used for describing the data sources are much depends on the practical

situation of the data integration system which may be different from case to case. Take an

example from the Mental Health application domain; a clinic provides primary care service and

locates at Durham which further belongs to County Durham. In this example, there are two

different classifications involved. One describes the data source of the clinic from the aspect of

what type of health service it provides (i.e. Primary care service) and another from where it is

located geographical (i.e. Durham). In this research, a generalized data structure is designed for

representing the organizational structure which fits into different practical situations. Each data

source is represented by its corresponding IPS and each aspect used to describe the data sources

is represented by a classification which is conceptually modelled as a DAG as illustrated below:

 68

Key

Classification

Group

Data Source

Dependency

Classification

DS1(IPS1)

Group1
Group2

Group3

Group4

DS2(IPS2) DS3(IPS3)

DS4(IPS4)

Figure 4-4 Organizational Structure expression

The root represents the classification; other non-leaf nodes represent the virtual groups to

describe the different classes specified in the classification and the leaf nodes represent the data

sources (IPSs). Each group is described by a name and a list contains all of its direct successors,

each of its direct successors may represent a sub-group or a data source belonging to the group.

Hence the organizational structure can be represented by the following model:

Organizational Structure : {clas : Classification }

Classification : (rootname : String, {group : Group})

Group : (gname : String, {gcontent : Group | IPS})

Applying the model to the example above, the two aspects correspond to two classifications

respectively. From the geographical aspect, the clinic is represented by an IPS which belongs to

the group “Durham” which further belongs to another group “County Durham”, and the root of

the classification represents it as “geographical classification”; From the mental health service

type aspect, the IPS belongs to the group “Primary Care Service”, and the root of the

classification is described as “mental health service type classification”. An organizational

structure of a data integration system may have as many classifications as needed.

4.5.3 Registry

As introduced in section 2.5, the Registry is a central component of the software systems which

are implemented by employing the SOA. The role the registry plays is to provide a repository to

accommodate the description of the services hence facilitating the communications between the

services in the system. The Registry in the SLEDI follows the general concept of the registry in

the service architecture and is extended with extra features to fulfill the research needs. First of

 69

all, all the IPSs provided by the participating data sources of the data integration system are

required to publish their descriptions in the registry. And then, the application domain ontology

and the organizational structure of the data sources are also accommodated in the registry. As a

consequence of this, when the queries from end users are processed, by simply accessing the

registry, the relevant IPSs can be filtered out by searching the domain ontology and the

organizational structure. Then through traversing the description of the IPSs, a service plan can

be generated to produce the results data for the queries. The details of query processing in SLEDI

will be discussed in the next chapter. The registry is modelled as a triple:

Registry : (onto : Domain Ontology, org : Organizational Structure, {ipsdescription :

IPS.ipsdescription})

Through describing the data sources by IPS and aggregating the description of the IPSs, the

domain ontology and the organizational structure into the registry, the IDS is formally built and

the data from the autonomous data sources are virtually integrated. The IDS is modelled as

IDS : (reg : Registry, {ips : IPS})

4.6 Summary

This chapter has presented the process of data sources describing which virtually integrates data

from autonomous data sources into the IDS. The IPU mechanism which constitutes its global

definition and local definition is introduced in detail. The IPUD algorithm is presented for

describing the data sources through the IPU mechanism. The process of IPS assembly is then

explained and the formal model of the IPU, IPS and IDS is described.

Chapter 5 introduces the information supplying process of the SLEDI: query processing. Query

processing is responsible for answering user queries with results data. The detailed process of

rewriting the user queries into resulting queries with respect to the IPUs and constructing the

results data through generating and executing service plans are described.

 70

Chapter 5 Query Processing

5.1 Introduction

Chapter 4 presented the first stage of the SLEDI: establishing the IDS through data source

describing. The IPUD algorithm was introduced which virtually integrates data from the data

sources by describing the data sources through IPU mechanism. The IPUs are then assembled

into IPSs which are provided by the data sources at their own sites.

This chapter describes the process of query processing. The process addresses the information

needs from end users through answering user queries. Each user query is formulated based on the

application domain ontology and the organizational structures of the participating data sources,

and is answered through firstly rewriting the query into resulting queries according to the global

definition of IPUs, and then the resulting queries are answered through generating and executing

service plans with respect to the IPSs. Finally, the results of the service plan executions are

combined into the final results data and sent back as the answer of the query to the end users.

Although query processing is not the focus of this research, it needs to be described to form the

entire structure of the SLEDI.

5.2 Overview of Query Processing

As introduced previously, the data integration problem addressed in this thesis combines data

from autonomous and evolving data sources in order to provide the information supplying

service to end users. The service is delivered by the process of query processing which is an

important constituent part of the SLEDI method. Through query processing, end user describe

their information needs as queries, then query processing takes one user query at a time as input

and produces a result for the query as output to fulfill the information needs. Hence query

processing can be formally described as:

Query Processing : User Query → Result

For the purpose of describing user information needs in a data integration system, the user

queries are required to be expressed in a formal way. Generally speaking, the formalism

employed for representing the user queries much depends on the formalism used for representing

the data sources the end user intends to query against. In this thesis, as described in the previous

chapter, the IDS have already been successfully built thus the application domain ontology and

the organizational structure provide the base for end users to express their queries. From the

perspective of end users, they pose queries directly against the IDS and the query processing of

 71

the SLEDI is responsible for processing the queries, accessing the actual data in the data sources

and producing the results data to answer the queries.

The detailed process of the query processing in SLEDI can be characterized through three

consecutive sub-processes: Data Source Filtering, Query Rewriting and Result Generating, with

each sub-process involving one or more elementary steps. The sub-processes and the steps are

illustrated and briefly explained below:

Result Generating

Key

Sub-process

Step

Data

Information Flow

Service Plan Generation

Service Plan Execution

Result Construction

Data Source Filtering

Query Rewritting

Ordinary Expansion

Terminal Expansion

User Query

Result

Figure 5-1 Query Processing Mechanism

1. Data Source Filtering: this sub-process accepts the user query and parses the query

preliminarily. As there may be many data sources involved in the data integration system

 72

and a user query may only involve querying against a subset of all the data sources, this

sub-process is responsible for filtering out the targeting data sources the user query is

interested in by analyzing the information of the targeting data source set specified in the

user query. As the consequence, the output of this sub-process is a set containing all the

targeting data sources and the reformed query in which the elements of the query only refer

to the application domain ontology.

2. Query Rewriting: this sub-process takes the targeting data source set and the reformed query

from the previous sub-process as its input. It rewrites the query into resulting queries as its

output. As introduced in the previous chapter, each data source exposes its data through

IPUs and each IPU has a global definition. The global definition can be considered as a

virtual view defined over the application domain ontology. This sub-process is responsible

for rewriting the query expressed with respect to the application domain ontology into the

resulting queries with respect to the global definition of the IPUs. The technique of

answering query using views is employed to find the rewriting (i.e. the resulting queries) of

the input query. In other words, the input query can be answered by using the answers of the

resulting queries. Because the global definition is formed by mainly following the GAV

approach, this sub-process is achieved by two consecutive elementary steps:

 Ordinary Expansion: this step expands the input query by accessing the Rule

component of the application domain ontology. If an element of the query is the head

of a rule, it is substituted by the body of the rule. The substitution is carried out

recursively as a standard backward chaining unfolding until all the elements of the

query are traversed. As the result, the output of this step is the ordinarily expanded

query where all the elements are either a concept or a role defined in the Terminology

of the application domain ontology.

 Terminal Expansion: this step takes the ordinarily expanded query from the previous

step as its input for continuing expanding. All the elements of the query are traversed

and expanded by considering the Terminology of the application domain ontology and

the global definition of the IPUs provided by the data sources in the targeting data

source set. As a result, the terminally expanded query is obtained in which every

element of the query is the global definition of an IPU. The terminal expansion

represents all the ways of deriving the answers of the original user query from the

views. Thus the user query is rewritten into a set of resulting queries with respect to the

IPUs.

3. Result Generating: this sub-process takes the terminal expansion of the user query from the

previous sub-process as its input and generates the final result for the query as its output.

After the query rewriting is accomplished, finding the result for the original user query is

transformed into finding the result for the resulting queries in the terminal expansion. And

the result of each resulting query can be obtained from the IPUs in the query. As introduced

 73

in the previous chapter, the IPUs are accommodated through the IPS mechanism. The

acquisition of the results data of the IPUs can be realized through the service invocation

calls against the corresponding IPSs. As the consequence, the final result can be constructed

by composing the results data sent back from all the service invocation calls. This

sub-process can be characterized by three consecutive elementary steps: Service Plan

Generation, Service Plan Execution and Result Construction.

 Service Plan Generation: this step takes the terminal expansion as input. For each IPU

in a resulting query in the terminal expansion, a service invocation call is generated

regarding to the IPS which accommodates this IPU. After all the IPUs in a resulting

query are traversed, the generated invocation calls can be used to find the results data

for the resulting query hence produce a partial service plan for the original user query.

This procedure is carried out iteratively until all the resulting queries in the terminal

expansion are processed. As the result, all the partial service plans generated constitute

the Service Plan for answering the original user query.

 Service Plan Execution: this step takes the Service Plan produced from the previous

step for execution. For each service invocation call in the plan, the invocation is

dispatched to the relevant data source site which hosts the IPS the invocation refers to.

Then the IPS is responsible for producing the results data to respond the service

invocation call. As introduced in the previous chapter, the results data can be produced

based on the local definition of the IPUs of the IPS. Because a local definition is

represented as a view over the local schema of the data source, the local query can be

formulated to produce the results data. As all the data sources involved in this research

are assumed to employ the relational data model, the results data is in fact in the form

of a relation. Consequently, this step executes the Service Plan and generates the results

data for every invocation call in the plan.

 Result Construction: this step gathers the results data from all the invocation calls of

the plan and composes them to produce the Final Result to answer the original user

query. Because the results data of an invocation call is a relation, the results data of

different invocation calls can be combined by applying relational operations. After all

the results data of the invocation calls of a partial service plan are combined together,

the results data of the partial service plan is acquired. This procedure is then performed

iteratively until the results data of all the partial service plans are attained.

Consequently, the Final Result of the Service Plan can be constructed in a similar

fashion. Finally, the Final Result is sent back to the end user as the answer of the

original user query to meet the information needs.

The elementary steps, sub-process, the formalisms and operations involved in query processing

are elucidated in detail in the following sections.

 74

5.3 Data Source Filtering

As introduced in the previous section, a user query may specify a certain set of data sources the

query is targeted at. The data source filtering sub-process intends to exclude the data sources

which are certainly not interested in the query. Thus these data sources will not be considered in

the subsequent sub-processes. As a result, only a subset of all the data sources is selected and

brought to the following sub-processes for further processing. Hence the search space is

narrowed down and the efficiency of the query processing may be enhanced.

5.3.1 User Query

In this research, since the application domain ontology and the organizational structure provide

the base for end users to express their information needs, the formalism for expressing the user

query constitutes two parts: The first part provides the interface so that the user can specify the

data sources the query is interested in by exploiting the organizational structure. And the second

part is for the user to describe the information they require by utilizing the application domain

ontology. Through formally denoting the first part as Q(org) and the second part as Q(onto), the

user query can be formally denoted as:

User Query : (Q(org), Q(onto))

As introduced in section 4.5.2, the participating data sources of the data integration system are

classified by the organizational structure which is realized through a set of classifications. Each

classification describes the data sources from an aspect. A classification is modelled as a DAG

with the data sources being denoted as leaf nodes and the virtual groups being denoted as

non-leaf nodes. Hence through stipulating the name of classification and groups, end users can

specify the data sources they are willing to query against. In this thesis, the targeting data

sources set specified by the Q(org) is expressed through a set of atomic targets. An atomic target

specifies the data sources through a pair of names where the first name indicates the

classification and the second name indicates the virtual group. And the targeting data sources set

is formed through the union of the atomic targets. As a result, the Q(org) is formally denoted as:

Q(org) : { atar: Atomic Target }

Atomic Target : (Classification root name: String, Group name: String)

This model provides the flexibility which allows the end users to apply fine-grained control for

specifying the targeting data sources for each user query.

As introduced in section 4.3.2, the elements which constitute the application domain ontology are

concepts, roles and rules which are represented as unary, binary and n-ary relations respectively

(all the relations are also referred to as domain relations). These relations provide the basic

 75

materials that end users can manipulate to describe their information needs through the query

content (i.e. Q(onto)). Thus the conjunctive query is chosen as the formalism for expressing the

Q(onto). Because the global definition of an IPU can be considered as a view over the same

relations, the technique of answering queries using views can be applied to find the answer of

Q(onto) which will be discussed in detail in the next section.

In this thesis, Q(onto) is formed as a union of conjunctive queries over the application domain

ontology which is in the form of: Q(x̄) :- ∪i∈[1..k] P1
i(x̄1, ȳ1)∧…∧Pm

i(x̄m, ȳm) where the Pj
i’s

are domain relations. The variables of x̄ = x̄ 1∪ …∪ x̄m are distinguished variables; the

variables of ȳ ⊆ ȳ1∪ …∪ȳm are existential variables. The distinguished variables represent

the instance data that users are interested in knowing and the existential variables are used to

constrain the distinguished variables. It is assumed without loss of generality that inequalities x ≠

y are implicit for every pair of distinct variables that appear in the query.

Classically, a query is interpreted relatively to a database db containing a finite set of stored data.

The data represents information instances of the application domain ontology onto which consists

of the terminology T and rules R. Given a model I of db and onto, a conjunctive query Qi(x̄) :-

P1
i(x̄1, ȳ1)∧…∧Pm

i(x̄m, ȳm) over db and onto is interpreted as the set Qi
I of tuples ō made of

elements of the interpretation domain ∆I such that when substituting ō for x̄, the formula ∃ȳ

P1
i(ō1, ȳ1)∧…∧Pm

i(ōm, ȳm) evaluate to be true in I. (distinct variables are mapped to distinct

elements). A union of conjunctive queries Q(x̄) is interpreted as the set QI of tuples ō made of

elements of ∆I such that the formula Q(ō) evaluates to be true in I. In other words, the answer of

a query Q(x̄) over a database db and onto is the set of tuples ā such that:

db, onto╞ ∪i∈[1..k] ∃ȳP1
i(ā1, ȳ1)∧…∧Pm

i(ām, ȳm)

The Q(onto) is formally denoted as:

Q(onto) : {q: Query}

Query : (qhead: Head, {cj: Head }) (where cj.hdn ⊆ (onto.ter.con.nconcept ∪

onto.ter.rol.nrole ∪ onto.rule.sta.cones.nconse))

5.3.2 Filtering

Through the Q(org), the targeting data sources the user query aims to interrogate are explicitly

specified. Hence these data sources can be determined by parsing the Q(org) and examining it

against the organizational structure. The sub-process of the data source filtering takes the

responsibility of identifying the data sources and organizing them as a set (i.e. targeting data

source set). Because each participating data source is represented by an IPS (see section 4.5.1),

the elements of the set are IPSs. After the sub-process is accomplished, the Q(org) is no longer

 76

needed in the following sub-processes of the query processing thus can be eliminated from the

user query. As a result, the sub-process of data source filtering can be formally denoted as:

Data Source Filtering : User Query → (Targeting Data Source Set, Q(onto))

Targeting Data Source Set : { ips : IPS }

The targeting data source set can be constructed through determining the indicated data sources

of the atomic targets. An atomic target can be calculated by identifying all the data sources

(directly and indirectly) belonging to the group specified by it. After all the atomic targets are

calculated, the targeting data source set can be generated based on the results. It is worth

mentioning that user query may leave its Q(org) part empty to indicate that all the participating

data sources are required for the query. Under this circumstance, all the data sources will be

selected. The following steps are taken for constructing the targeting data source set:

1. Let O be an empty set representing the targeting data source set

2. Select all the atomic targets of the Q(org) and place them in a set T

3. Select all the classifications of the organizational structure and place them in a set Org

4. If T = Ø, for every element of Org, traverse all the groups of the element recursively to find

all the IPSs. Store the IPSs into O and remove duplicates.

5. If T ≠ Ø, for every element of T

i. Let atr be the current element of T

ii. Attempt to find the element cla in Org whose root name is identical with the

Classification root name of atr.

iii. If cla is found, attempt to find the group gr whose gname is identical with the Group

name of atr.

iv. If gr is found, traverse all the gcontent of gr recursively to find all the IPSs. Store

the IPSs into O and remove duplicates.

v. Repeat from i for the next element.

An example used here is to illustrate how the sub-process of data source filtering works. Let us

assume there are four participating data sources organized by their geographical locations, the

organizational structure of which is depicted in the following figure:

 77

Figure 5-2 Sample Organizational Structure

A user query intends to query all the data sources located in Durham area specifies its Q(org) as

(Geographical Location, Durham), the targeting data sources set can then be constructed

through firstly determining all the groups belong to Durham (i.e. Shincliff and Gilesgate) and

then finding out all the data sources belong to groups Shincliff (i.e. DS2 and DS3) and Gilesgate

(i.e. DS4). Although the example is simple (only have one atomic target in Q(org) and one

classification in the organizational structure), it demonstrated the rational of how data source

filtering sub-process works. In practice, user query may specify any number of atomic targets in

its Q(org) and the organizational structure may include more classifications.

5.4 Query Rewriting

Essentially, the IDS is a database which stores a finite set of information instances of the

application domain ontology. Finding the answer to a user query is in fact finding all the

information instances stored in the IDS so that when substituting the distinguished variables of

the user query with the information instances, the user query evaluates to be true. Since the IDS

is virtual, the information instances stored in the IDS are not directly available, in fact they are

stored in the data sources and abstractly represented by the IPUs. Hence the answer can be

produced by using the information instances the IPUs provide. Because the global definitions of

the IPUs are views over application domain ontology, the answer to the user query can be

obtained by rewriting the user query into resulting queries that only refer to the IPUs. The

technique of answering query using views is employed for the query rewriting.

5.4.1 Answering queries using views

The problem of answering queries using views can be informally described as given a query Q

 78

over a database schema and a set of views V1,…Vn over the same schema, then find the answer

of Q by only using the views. The problem can be tackled through finding the query Q’ so that

Q’ only refers to the views and the answer of Q’ can be used to answer Q. The Q’ is termed as

rewriting of Q. For the purpose of providing a semantic basis to enable the comparison between

queries and their rewriting, the concepts of query containment and query equivalence are

introduced: [37, 60]

 Query containment: A query Q’ is considered to be contained in a query Q if for all database

instances D, the computed results data for Q’, denoted as Q’(D) is a subset of the computed

results data for Q, denoted as Q(D). i.e. Q’(D)⊆Q(D)

 Query equivalence: A query Q’ is considered to be equivalent to a query Q if they are

mutually contained in each other. i.e. Q’(D)⊆Q(D) ∧ Q’(D)⊆Q(D)

Based on the above definition, the equivalent rewriting and Maximally-contained rewriting can

be distinguished. Let Q be a query and V={V1,…Vn} be a set of view definitions. The Q’ is

considered as an equivalent rewriting of the query Q using V if

 Q’ refers only to the views in V and

 Q’ is equivalent to Q

In the context of data integration, the Maximally-contained rewriting is also considered. Unlike

the equivalent rewriting, the Maximally-contained rewriting may differ with respect to different

query languages employed in the context. Let Q be a query, V={V1,…Vn} be a set of view

definitions and L be a query language. The Q’ is considered as a Maximally-contained rewriting

of the query Q using V with respect to L if

 Q’ is a query in L that refers only to the views in V and

 Q’ is contained in Q and

 There is no rewriting Q’’∈L, such that Q’⊆Q’’ ⊆Q and Q’’ is not equivalent to Q’

5.4.2 Completeness and Complexity of finding query rewritings

Among many algorithms which have been developed for finding query rewriting using views

with respect to different query languages, some problems cut across all of the algorithms from a

more theoretical perspective such as completeness and complexity [37]. The completeness that a

query rewriting algorithm concerns is, given a set of views V and a query Q, will the algorithm

always find a rewriting Q’ using V if one exists?

The completeness is characterized with respect to the specific query language in which the

rewritings are expressed. In some cases, the limitation on the expressiveness of the query

language (e.g. no union is allowed in the rewritings) may result in no equivalent rewriting being

 79

able to be found. For the purpose of extracting all the certain answers for the query from the

views, the Maximally-contained rewriting comes up as the alternative. In fact, finding the

Maximally-contained rewriting also depends on the specific query language employed as the

maximal containment is defined with respect to the query language. For example, in some cases,

Maximally-contained rewriting can only be found if the recursive datalog rewriting is considered

[37, 34].

Another related issue is characterizing the complexity of the query rewriting algorithms. The

complexity can be discussed under the specific setting of the query languages the algorithms

apply. Although the complexity may be vary with respect to different query languages, in general,

it is in NP as it is sufficient to guess a rewriting Q’ and check its correctness (i.e. whether Q’ is

contained by Q) [37]

5.4.3 The query rewriting algorithm

As introduced previously, the application domain ontology in SLEDI is realized through the ALN

description logic and non recursive function-free horn rules. The IPU is mapped to the

application domain ontology by mainly following the GAV approach and its global definition is

formulated as either a concept or a role from the application domain ontology. The user query is

in the form of unions of conjunctive query over domain relations. Hence the query rewriting

algorithm used in the PICSEL system [34] is employed in SLEDI. The algorithm is briefly

introduced below:

Through expanding the user query in terms of the global definition of the IPUs, the algorithm

computes a representative set of all the possible rewritings of the original user query with respect

to the available views. Apparently, when the user query is a single concept and the global

definitions are all mapped with concepts, the query rewriting can be reduced to subsumption

checking. The algorithm constitutes the steps of ordinary expanding, terminal expanding and

rewritings verifying.

5.4.3.1 Ordinary Expanding

Ordinary expanding takes the targeting data source set and Q(onto) as input and expands Q(onto)

preliminarily. For the convenience of describing the algorithm, for a subquery Qi(x̄) :- P1
i(x̄1, ȳ

1)∧…∧Pm
i(x̄ m, ȳ m), the atomic conjunct Pi

i(x̄ 1, ȳ 1) is referred to as concept-relation,

role-relation and rule-relation if it is a concept, role and rule from the application domain

ontology respectively. The ordinary expanding of a query unfolds all the rule-relations in the

query according to the Rule component in the application domain ontology.

 80

Let P(x̄) be a rule-relation; it is expanded by iteratively unfolding the rules whose consequent is

in the form P(x̄’) :- P1 (x̄1’, ȳ1’)∧…∧Pk(x̄k’, ȳk’). Let α be the most general unifier of P(x̄)

and P(x̄’), extend such that every variable Yi’ is assigned to a fresh variable that appears nowhere

else. Then the P(x̄) is replaced by P1(α(x̄1’),α(ȳ1’)∧…∧Pk(α(x̄k’),α(ȳk’). A step of

expansion of the P(x̄) results in the set of rewritings obtained by unfolding all the rules whose

consequent is unifiable with P(x̄).

The expansion is applied iteratively, since the rules are non recursive. After a finite number of

steps, the ordinary expansion is obtained which is a set of conjunctions with every atomic

conjunct either being a concept-relation or a role-relation (see section 4.3.2.2). This results from

the soundness and completeness of the backward chaining algorithm for non recursive

function-free horn rules that the ordinary expansion characterizes all the ways of deriving the

original query.

5.4.3.2 Terminal Expanding

Terminal expanding takes the targeting data source set and ordinary expansion as its input and

further expands the rewritings with respect to the global definition of the IPUs in the targeting

data source set. For each rewriting P1
i(x̄1, ȳ1)∧…∧Pm

i(x̄m, ȳm) in the ordinary expansion, if

there exists Pk
i(z, z’), z’ is said to be a direct successor of z and the transitive closure of the

direct successor is defined as successor. If using nodes represents variables and an arc links a

variable to any of its direct successors, the distinguished variable X is said to be the root of a tree

structure if each node in the tree has no distinguished successor. Then the X can be expanded by

its descriptive support hence producing the compact expansion. For example, x1 has a tree

structure in the rewriting P(x1)∧P1(x1,y1)∧P2(y1,y2)∧P3(y2), the conjunction can be replaced

by its descriptive support [P⊓(≥1P1)⊓∀P1.(≥1P2)⊓∀P1.∀P1.P3)] (x1).

After all the rewritings in the ordinary expansion are expanded inductively, the set of

conjunctions can be brought for final expanding also referred to as Grounding. The atomic

conjuncts in the rewritings are grounded to the concept-relations and the role-relations that can be

obtained from the global definitions of the IPUs in the targeting data source set. For example, let

V(x̄) be the content of the global definition of an IPU (see section 4.3.3), a concept-relation P(z)

can be grounded if

 Either exists V(x) :- P1(x) or V ⊑ P1 such that P subsumes P1, then P(z) is extended to V(z)

 There exists V1(x) :- [∀P1.P](u) and V2(x,y) :- P1(u,z), then P(z) is extended to

V1(x)∧V2(x,z)

A role-relation P(z1,z2) can be expanded if

 81

There exists V(x,y) :- P(x,y), then P(z1,z2) is extended to V(z1,z2)

Finally, the terminal expansion is obtained which consists of a set of rewritings. Each rewriting is

in the form of conjunctive query where the head is identical with the original user query, and

each atomic conjunct in a rewriting is either a global definition of an IPU or a domain relation

which cannot be logically derived from the IPUs. Those domain relations are denoted as

Remainder(x̄, ȳ).

5.4.3.3 Rewritings Verifying

The final stage of the algorithm is Rewritings Verifying. It verifies each rewriting in the terminal

expansion through two phases. Since each global definition has an optional constraint part (see

section 4.4.3), each rewriting is checked against the constraint part to examine whether it is

compatible with the constraints. As a result, the incompatible rewritings are eliminated from the

terminal expansion in the first phase. It is easy to see that rewritings consisting of only global

definitions provide the answers for the original user query. However, the rewritings consisting of

remainder part may still entail the original query. Thus the second phase checks each of the

rewritings to analyse whether they actually entail the original user query. If they do, the

remainder part is deleted and the rest part of the conjunction is kept as a rewriting in the terminal

expansion. Each rewriting is also referred to as a resulting query.

The algorithm is complete in the sense that the resulting queries completely characterize the

rewritings of the original query. The complexity, in the worst case, is exponential in terms of

maximum unfolding depth of the rule-relations and the maximum size of concept expressions in

the query or application domain ontology. Although the query rewriting algorithm is an important

constituent part of the SLEDI system, it is not the focus of this research. Due to the limited space

of this thesis, only a brief introduction of the algorithm is provided as above, the details of the

formal definition and explanation can be found in [34, 59].

5.4.3.4 A Simple Example

A simple example from the mental health application domain is used to illustrate the PICSEL

query rewriting algorithm. The focus of this research is on solving evolution problems in the data

integration, and the query rewriting algorithm is borrowed just for completing the data

integration system. The example does not intend to show all the reasoning details of the

algorithm. Though simple, the example demonstrates some subtle points of how the algorithm is

applied. Assume the application domain ontology contains the following part:

Terminology: {…

Adult ⊑ Classification; Child ⊑ Classification; Adult ∩ Child ⊑ ⊥

 82

AdultPatient := Patient ⊓ ∀HasClassification.Adult;

ChildPatient := Patient ⊓ ∀HasClassification.Child

Doctor ⊑ Category; SocialWorker ⊑ Category ; Doctor ∩ SocialWorker ⊑ ⊥

DoctorStaff := Staff ⊓ ∀HasCategory.Doctor;

SocialWorkerStaff := Staff ⊓ ∀HasCategory.SocialWorker

 …}

Rule: {… ;

Patient-Info(X_PatientID, X_Name, X_Gender, X_Age, X_ Classification) :-

Patient(X)∧HasPatientID(X,X_PatientID)∧HasName(X, X_Name)∧HasGender(X,

X_Gender)∧HasAge(X, X_Age)∧HasClassification(X, X_Classification)

…}

Table 5-1 application domain ontology

The Terminology declares that a Patient can be either an Adult Patient or a Child Patient. Staff

can be either a Doctor or a Social Worker. The Rule defines an ordinary relation including the

information of patient ID, name, gender, age and classification (i.e. child or adult) of a patient.

A user query is raised in the following way to ask for the name, gender and age of the patients

who have been assigned to a social worker:

Q(X_Name, X_Gender, X_Age) :-

Patient-Info(X_PatientID, X_Name, X_Gender, X_Age, X_ Classification) ∧ Staff(Y) ∧

HasAssignedPatientID (Y, X_PatientID) ∧ HasCategory(Y, Y_Category)

∧SocialWorker(Y_Category)

Firstly in the query rewriting, the ordinary expansion can be obtained through substituting the

Rule for its definition in the application domain ontology:

Patient(X)∧HasPatientID(X,X_PatientID)∧HasName(X,X_Name)∧HasGender(X,X_Gende

r)∧HasAge(X,X_Age)∧HasClassification(X,X_Classification)∧Staff(Y)

∧HasAssignedPatientID(Y,X_PatientID)∧HasCategory(Y,Y_Category)∧SocialWorker(Y_Cate

gory)

It is worth mentioning here that the existential variables such as X are added into the body of the

query during the expansion. In fact, any fresh variable can be used here.

Since the Y_Category is an existential variable, the Staff(Y)∧ HasCategory(Y, Y_Category)∧

SocialWorker(Y_Category) can be substituted for its descriptive support: SocialWorkerStaff(Y).

Then the user query is further expanded as:

Patient(X)∧HasPatientID(X, X_PatientID)∧HasName(X, X_Name)∧HasGender(X,

 83

X_Gender)∧HasAge(X,X_Age)∧HasClassification(X,X_Classification)∧SocialWorkerStaff(Y)

∧HasAssignedPatientID(Y,X_PatientID)

Assume there are three data sources DS1, DS2 and DS3 and that each data source provides a set of

IPUs. The global definitions of the IPUs are in the following table:

DS1: Content:{ V11(X):- ChildPatient(X), V12(X,Y):- HasPatientID(X,Y),

V13(X,Y):-HasName(X,Y), V14 (X,Y):- HasGender(X,Y), V15 (X,Y):- HasAge(X,Y), V16 (X,Y):-

HasClassification(X,Y)}

Constraint:{ V12(X,Y)∧¬V11(X) ⊑ ⊥ ,V13(X,Y)∧¬V11(X) ⊑ ⊥ ,V14(X,Y)∧¬V11(X) ⊑

⊥,V15(X,Y)∧¬V11(X) ⊑⊥,V16(X,Y)∧¬V11(X) ⊑⊥ }

DS2:Content:{V21(X):-SociaworkerStaff(X),V 22(X,Y):-HasAssignedPatientID(X,Y)}

Constraint:{ V22(X,Y)∧¬V21(X) ⊑⊥}

DS3: Content:{ V31(X):- Patient(X), V32(X,Y):- HasPatientID(X,Y), V33(X,Y):-HasName(X,Y),

V34 (X,Y):- HasGender(X,Y), V35 (X,Y):- HasAge(X,Y), V36 (X,Y):- HasClassification(X,Y)}

Constraint:{ V31(X) ⊑ (∀ HasClassification.Adult), V32(X,Y)∧¬V31(X) ⊑

⊥ ,V33(X,Y)∧¬V31(X) ⊑ ⊥ ,V34(X,Y)∧¬V31(X) ⊑ ⊥ ,V35(X,Y)∧¬V31(X) ⊑

⊥,V36(X,Y)∧¬V31(X) ⊑⊥ }

Table 5-2 the global definitions of the IPUs

The final expansion can then be obtained by grounding the atomic conjuncts in the query based

on the global definitions. Some grounding is obvious. For example, the atomic conjunct

Patient(X) can be grounded to V31(X) as the global definition shows that V31(X):- Patient(X); the

atomic conjunct HasName(X, X_Name) can be ground to V13(X,Y) or V33(X,Y) and the variable

Y can be substituted for X_Name. However, some grounding may not be straightforward. For

example, the atomic conjunct Patient(X) can also be grounded to V11(X) as it can be deduced

from the global definition and the application domain ontology that since V11(X):-

ChildPatient(X) and ChildPatient ⊑ Patient, then V11(X) ⊑ Patient(X). After the grounding, the

verification step then takes place based on the constraint of the global definitions hence the final

expansion of the user query is obtained as following:

1) V31(X) ∧ V32(X, X_PatientID) ∧ V33(X, X_Name) ∧ V34(X, X_Gender) ∧ V35(X, X_Age)

∧ V36(X, X_Classification) ∧ V21(Y) ∧ V22(Y, X_PatientID)

2) V11(X) ∧ V12(X, X_PatientID) ∧ V13(X, X_Name) ∧ V14(X, X_Gender) ∧ V15(X, X_Age)

∧ V16(X, X_Classification) ∧ V21(Y) ∧ V22(Y, X_PatientID)

Finally, the user query is rewritten into the union of the resulting queries 1) and 2). The resulting

query 1) combines the IPUs from DS1 and DS2 while the resulting query 2) combines the IPUs

from DS2 and DS3.

 84

5.5 Result Generating

After the query rewriting sub-process is accomplished, the original user query is reformulated

into a set of resulting queries. The union of the answers of the resulting queries provides the set

of answers which can be obtained from the available data sources for answering the original user

query. Since the resulting queries are in the form of conjunctions where each atomic conjunct is

the global definition of an IPU, the answer of a resulting query can be acquired through

combining the results data extracted from the IPUs in the query. As mentioned previously, each

IPU is accommodated by an IPS. Extracting results data from an IPU can be achieved through

sending a service invocation call to the corresponding IPS. In SLEDI, the result generating

sub-process takes the responsibility of producing the results data. It takes the terminal expansion

from the query writing as input and processes each resulting query sequentially. For each

resulting query, it sets up a partial service plan through generating service invocation calls from

the atomic conjuncts. Then all the partial service plans constitute the service plan. Through

executing the service plan, the results data can be finally composed to answer the original user

query. Hence the sub-process can be formally denoted as:

Result Generating : Terminal Expansion → Result

There are three elementary steps involved: Service Plan Generating, Service Plan Executing and

Result Constructing.

5.5.1 Service Plan Generating

This step takes the terminal expansion from the query rewriting as its input. As described

previously, each resulting query in the terminal expansion is a conjunction of the global

definition of IPUs. Abstractly, the resulting query is in the form of Qi(x̄):-V1
i(x̄1)∧…∧Vm

i(x̄m)

where the Vi
i(x̄i) represents the global definition of an IPU. In SLEDI, the global definition of an

IPU is realized through the model of IPU.gd and is accommodated by an IPS through pairing

with the name of the IPU (IPU.iname) as a constituent component of the IPS (see section 4.5).

Thus an atomic conjunct in the resulting query is realized as a triple which consists of the IPS

name, IPU name and a variable list describing x̄i. The terminal expansion and resulting query are

actualized through the following model:

Terminal Expansion : (qhead : Head, {rq : Resulting Query})

Resulting Query : (rqhead : Head, {ipsname : IPS.ipsname, ipuname : IPU.iname, {var :

Variable}})

For each atomic conjunct in a resulting query, since the triple explicitly indicates which IPU

provides the required results data and which IPS accommodates the IPU, a service invocation call

can be generated in a straightforward manner to obtain the results data for the atomic conjunct.

 85

Thus the model of the service invocation call is:

Service Invocation Call : (ipsname : IPS.ipsname, ipuname : IPU.iname, {var : Variable})

For each resulting query, the action of service invocation call generating is applied iteratively

until all the atomic conjuncts in the resulting query are processed. As a result, a set of invocation

calls are produced. These service invocation calls comprise the partial service plan which can be

used to acquire the results data for the resulting query. Thus the model of a partial service plan is:

Partial Service Plan : (rqhead : Head, {sic: Service Invocation Call})

After all the resulting queries of the terminal expansion are processed, the set of partial service

plans produced constitutes the service plan. Then the service plan is outputted by the step of

service plan generating which can be brought to the following steps for further processing. The

model of a service plan is:

Service Plan : (qhead : Head, {psp : Partial Service Plan})

5.5.2 Service Plan Executing

Data Source

Key

Plan

IPS

Database

Data Source

Information Flow

Local Database

IPS

Service Plan

Partial Service Plan

Service
Invocation Call

Partial Service Plan Partial Service Plan

Service
Invocation Call

Service
Invocation Call

Service
Invocation Call

Service
Invocation Call

Data Source

Local Database

IPS

Data Source

Local Database

IPS

Figure 5-3 Service Plan Executing Process

The process of the service plan executing step is illustrated in figure 5-3. This step takes the

service plan as input and carries out the plan through executing each of the partial service plans

 86

in it. A partial service plan is executed by sending each of its invocation calls to the

corresponding IPSs to acquire the results data. For a service invocation call, the appropriate

targeting IPS can be located through parsing the IPS.ipsname. Then the service invocation call is

sent to the IPS and the IPU.iname is passed over as the parameter. Since each IPS is provided by

a data source at its own site (see section 4.5.1), the IPS constructs the required results data

through accessing the local database of the data source and sends it back to respond to the service

invocation call.

Once an IPS receives a service invocation call, since the parameter IPU.iname clearly specifies

the name of the IPU, the local definition IPU.gd of the IPU can be located by this name. And

then, the local schema DSLS of the data source can be obtained as it is a constituent component of

the IPS (see section 4.5.1). Through interrogating the local definition and the local schema, local

queries can be composed for constructing the required results data. Since the local queries refer

directly to the local schema, they can be executed directly against the local database. Hence the

required results data can be constructed.

As introduced in section 4.4.4.4, the local definition of an IPU defines how the data the IPU

provides are formed from the local database. The local definition is in the structure of a DAG

where the leaf vertices represent actual relations from the local schema and the non-leaf vertices

represent virtual views. The virtual views include root view, intermediate views and basic views

where the root view represents the required results data the IPU intends to provide and all the

direct successors of a basic view are actual relations. As a view can be evaluated on the premise

that all its direct successors are evaluated, the results data of the IPU can be obtained through

evaluating the vertices of the DAG in bottom-up fashion.

The example in section 4.4.4.3 is extended here for illustrating how the results data of an IPU are

produced. Suppose the local definition of an IPU includes the root view V, the intermediate view

V4, the basic views V1,V2,V3 and the actual relations R1(A11, A12, A13), R2(A21, A22, A23), R3(A31,

A32, A33). Suppose the view definitions are as following:

The basic views V1,V2,V3 are defined by one CQ each and each CQ only has one subgoal which

is an RRS to assign the actual attributes and relations to the views:

V1 (X1, X2) :- CQV1 (S1(X1, X2), S1→R1, X1→A11, X2→A12)

V2 (X3, X4, X5) :- CQV2 (S2(X3, X4, X5), S2→R2, X3→A21, X4→A22,X5→A23)

V3 (X6, X7, X8) :- CQV3 (S3(X6, X7, X8), S3→R3, X6→A31, X7→A32,X8→A33)

The intermediate view V4 is defined by one CQ which is abstractly represented as

V4 (X3, X8, X9) :- CQV4

(S5(X3, X4, X5) ∧ S6 (X6, X7, X8) ∧ S7(X3>5) ∧ S8(X5=X6) ∧ S9(X9= X4+ X7))

 87

The CQV4 is realized by five subgoals as:

S5(X3, X4, X5) :- (S5→V2)

S6 (X6, X7, X8) :- (S6→V3)

S7 (X3) :- (>, 5)

S8 (X5) :- (=, X6)

S9 (X9) :- (+, X4, X7)

Where the RRSs S5 and S6 are assigned to the basic views V2 and V3 respectively. The ORSs S7

and S8 and the CRS S9 altogether put the constrains onto CQV4

The root view V is defined by one CQ which is abstractly represented as:

V(X1, X9) :- CQV(S10(X1, X2) ∧ S11 (X3, X8, X9) ∧ S12(X2=X8))

The CQV is realized by three subgoals as:

S10(X1, X2) :- (S10→V1)

S11 (X3, X8, X9) :- (S11→V4)

S12 (X2) :- (=, X8)

Where the RRSs S10 and S11 are assigned to the basic view V1 and the intermediate view V4

respectively. The ORSs S12 put the constrains onto the CQ

By substituting the subgoals and variables for the corresponding actual relations and attributes

according to the assignments, the conjunctive queries can be transformed into local queries which

can be directly evaluated against the local database of the data source. For example the CQV in

the above example can be transformed into a SQL query as following:

SELECT R1.A11 AS X1, R2.A22+R3.A32 AS X9

FROM R1, R2, R3

WHERE R1.A12=R3.A33 AND R2.A21>5 AND R2.A23=R3.A31

Different data sources may employ different DBMSs to manage their local databases thus they

may support different query languages. Even if all the DBMSs support SQL, the syntax can vary

slightly between DBMS and DBMS. The transformation of a conjunctive query into a local query

is not the focus of this research thus will not be discussed further in this thesis.

After all the basic views are evaluated, they can be treated as actual relations (also referred to as

materialized views in other research [37]). Thus the intermediate views whose direct successors

are basic views can be evaluated in exactly the same way as the basic views. By applying the

view evaluation process iteratively, the root view can be finally evaluated thus producing the

required results data to respond the service invocation call.

 88

5.5.3 Result Constructing

This step is responsible for generating the results data for the partial service plans and the service

plan from the results data of the service invocation calls. As introduced in section 4.4.3, the data

an IPU provides is in the form of a unary or a binary relation. Thus the results data produced

from a service invocation call are a set of tuples stored as the extension of the relation and the

variable list in the service invocation call specifies the head of the relation. As described in

section 5.5.1, a resulting query is in the form of conjunctive query where the query corresponds

to a partial service plan and each subgoal relation in the query corresponds to a service

invocation call in the partial service plan. Thus the resulting query can be evaluated through

substituting its subgoal relations for the results data relations produced by the corresponding

service invocation calls. As a result, after all the service invocation calls in a partial service plan

are executed, the results data for the partial service plan can be formed through collecting and

composing the results data produced by the service invocation calls.

Since the results data is in the form of a relation, the set of results data of the service invocation

calls of a partial service plan can be stored in a temporary relational database. And the set of the

relation heads constitutes the schema of the database. The corresponding resulting query can be

evaluated through transforming the query into a local query which can be executed directly

against this temporary database in exactly the same way as described in the previous section.

Hence the results data of a partial service plan can be produced which is in the form of an n-ary

relation where the results data is the extension of the relation and the head of the partial service

plan specifies the head of the relation.

As described in section 5.4.3.2, each resulting query is a rewriting of the original user query. The

resulting queries have identical heads to the original user query and the original user query can be

answered by the union of the answers of the resulting queries. Thus after the results data of all the

partial service plans in a service plan are produced, they can be stored in the temporary relational

database. Since all the results data relations have identical heads, they can be combined together

by applying the union operations to the results data relations which may be realized through

composing a local query. As a consequence, the final results data for answering the original user

query can be constructed through executing the local query against the temporary database. The

final results data is also in the form of an n-ary relation and the tuples in the extension of the

relation represent the information instances which can be obtained from the participating data

sources to fulfil the user information needs.

To sum up, the role of information supplying (see section 3.2) in SLEDI is played through the

following process:

 89

1. End users specify their information needs as user queries in terms of the application domain

ontology and organization structure.

2. Through employing the technique of answering queries using views, each user query is

rewritten into a set of resulting queries where each resulting query only consists of the

global definition of the IPUs.

3. The corresponding service invocation calls, partial service plans and service plans are

generated according to the involved IPUs, resulting queries and the user queries, in a

bottom-up fashion.

4. The service plans are executed through sending invocation calls to the appropriate IPSs

which stand at the participating data sources sites. The IPSs construct the results data

through composing local queries according to the local definition of the IPUs to respond to

the service invocation calls.

5. The results data of the service plans and partial service plans are constructed through

collecting and composing the results data produced by the service invocation calls in a

bottom up fashion.

6. The final results data of the service plans are returned to the end users to answer the user

queries hence to fulfil the users’ information needs.

5.6 Summary

This Chapter has presented the process of query processing in SLEDI which delivers information

supplying service to end users. The procedure of rewriting user queries into resulting queries is

introduced. The operations of converting the resulting queries into service plans, generating

corresponding partial service plans and service invocation calls, executing the plans to obtain the

results data and constructing the final results data are delineated in detail.

Chapter 6 introduces the automatic evolution handling process which is responsible for

modifying the IDS with respect to the various types of evolution. The modification is carried out

through firstly identifying the evolution occurring, and then identifying the parts of the IDS

which are affected by the evolution and finally applying automatic modifications onto the parts.

The details of the process are described.

 90

Chapter 6 Evolution Handling

6.1 Introduction

Chapter 5 presented the details of user query processing. The algorithm for user query rewriting

and the process of transforming the queries into service plans were described. Then the

operations of executing the service plans and constructing the results data were introduced.

This chapter delineates the automatic evolution handling process in this research which

completes the description of the SLEDI method. The organizational and schematic evolutions are

addressed. The organizational evolution are identified and then handled by adding a new function

into the user query processing. And the schematic evolution are identified and then handled

through analysing the local definitions of the corresponding IPUs and automatically modifying

the IPUs based on a set of predefined processes.

6.2 Overview of Evolution Handling

As introduced in section 1.3.1, software maintenance is the most expensive stage of the software

life cycle. According to the IEEE standards [43], the maintenance process can be defined as

having seven stages including: Modification Identification, Analysis, Design, Implementation,

Testing, Accept Testing and Delivery. Thus when evolution occurs in a data integration system,

the maintenance programmers may conduct the maintenance work based on their knowledge

through the following processes:

1. Identifying the evolution

2. Identifying the components of the systems which are affected by the evolution

3. Modifying the components accordingly to keep it functioning properly

In the database integration systems where data integrating is accomplished through hard wiring

on the local schemas of the participating data sources, a huge quantum of hard-coded queries

may come into existence when the amount of data sources is large. The evolution occurring in the

data sources may result in having to analyse and rectify all the existing hard wiring queries which

involve a large amount of human effort. This maintenance work can rapidly become

unmanageable when evolution occurs frequently.

Since the SLEDI is designed to integrate data from autonomous and evolving data sources, the

evolution handling is one of the main research issues addressed in this thesis. Hence mitigating

the human effort in the maintenance work is one of the targets the SLEDI intends to reach. As the

 91

data integrating in SLEDI is achieved by describing the data sources through the IPU mechanism,

automatic assistance can be employed for evolution handling. The evolution handling process is a

simulation of the maintenance work carried out by human effort hence is constituted of the three

processes mentioned above.

The evolution covered in this research can be classified into three different types: organizational

evolution, schematic evolution and system level evolution. Organizational evolution refers to the

changes happening in the organizational structure of the system, the schematic evolution

concerns alterations occurring in the local schemas of the data sources and the system level

evolution refers to the modifications applied onto the narrative information of the data sources

such as the names and URLs for describing the data sources.

As introduced in section 4.5.2, in order to allow fine-grained control from the end users, the

participating data sources are also described by the aspects which characterize them. The

description categorizes the data sources into the organizational structure. Since the data sources

are frequently evolving, the description may change from time to time. As a consequence, to

acquire the results data which reflect the latest state of the system, existing user queries may

require evolution handling as an organizational structure the queries have been composed against

may have evolved. The process of handling the organizational evolution will be described in

detail in section 6.3

The alteration arising in the local schema of the participating data sources can result in a great

deal of maintenance work, especially in the hard wired data integration system. The data

integration in SLEDI is established on the IPU mechanism where each IPU is correlated to the

participating data sources through its local definition. Since the local definitions of IPU are

defined as virtual views over the local schemas and realized through structure data in the form of

DAG (see section 4.4.4.3), the schematic evolution can be handled by employing the automatic

assistance to search the structured data and apply modifications accordingly without human

intervention. The detailed delineation of the process will be described in section 6.4

The narrative information of the participating data sources such as the names and the URLs of

the local databases may also change when the data sources evolve. This system level evolution

may also impact the data integration system and hence requires maintenance work to take place.

Compared to the hard wired data integration system, the SLEDI is based on SOA and all the IPUs

provided by the data sources are accommodated through the IPSs. Thus the maintenance effort

for handling the system level evolution can also be decreased thanks to the characteristic of loose

coupling, autonomy and discoverability of the services that SOA intrinsically supports. The

handling of system level evolution will be covered in the next chapter.

 92

6.3 Organizational Evolution Handling

As introduced previously, user query can specify the targeting data sources it intends to query

against through the Q(org) with respect to the organizational structure. Then the targeting data

sources can be filtered out based on processing the Q(org) according to the organizational

structure. When organizational evolution occurs frequently, the organizational structure may

come into multiple versions and only the latest version may be accessible. As a consequence, the

version of the organizational structure that some existing user queries are composed against may

not be the current version when the user queries are being answered. The discrepancies between

different versions of the organizational structure may cause obstacles to obtaining the proper

results data for answering the user queries. Hence the evolution handling process is required to

tackle the discrepancies and properly filter out the targeting data sources for answering the user

queries.

In SLEDI, the organizational structure is actualized through a set of DAGs where each DAG

represents a classification to characterize the data sources from an aspect; each non-leaf node of

the DAG represents a virtual group to describe a class in the classification and each leaf node

represents a data source which is classified as an instance of the class where its direct predecessor

represents. Thus the discrepancy between two adjacent versions of organizational structure can

be described as the transformation between two DAGs and the transformation can be correlated

to the evolution occurring which caused the alteration of the organizational structure. As a

consequence, the relationship between the original version of the organizational structure the user

queries are composed against and the current version when the queries are being answered can be

established and automatic assistance can be employed to filter out the targeting data sources

properly despite the discrepancies created by the organizational evolution.

The automatic assisted evolution handling for the organizational evolution is carried out through

the processes of Organizational Evolution Identification and Organizational Evolution Solving.

By analysing the organizational evolution occurring, the process of Organizational Evolution

Identification records each evolution and correlates them with the transformations which

represent the corresponding alterations in the organizational structure. Hence the Organizational

Evolution Identification keeps tracks of all the evolution occurring in the organizational structure

as a set of records. Then the process of Organizational Evolution Solving takes into place,

through examining the Q(org) of the user query which should be answered with respect to the

records, the process can determine whether the user query is affected by the evolution. If not

affected, no further evolution handling action is needed and the user query is answered through

the query answering process which has been described in chapter 5. On the contrary, if the user

query is affected, the evolution solving process rewrites the Q(org) into an equivalent formula

 93

with respect to the current version of the organizational structure by accessing the records. Then

the rewritten user query is answered by the query answering process. The details of the processes

are described in the following sections.

6.3.1 Organizational Evolution Identification

As introduced previously, Evolution Identification plays the role of identifying the evolution

occurring in the organizational structure. Since the organizational structure is actualized through

the structure of DAG where the root nodes, non-leaf nodes and leaf nodes correspond to the

classifications, virtual groups, and data sources (see section 4.5.2), the organizational evolution

covered in this research as introduced in section 2.3.2 can be described with respect to the

organizational structure hence can be categorized into three different levels, and each level

involves several different types of atomic evolution. They are described in details below:

6.3.1.1 The Types of Organizational Evolution

1) Data Source Level

 Data Source Addition: a new data source is added to the organizational structure as a

new leaf node

 Data Source Rename: a current data source changes its name

 Data Source Removal: a current data sources drops out of the organizational structure

2) Group Level

 Group Addition: a new group is added to the organizational structure as a new non-leaf

node

 Group Rename: a current group changes its name

 Group Removal: a current group drops out of the organizational structure

 Group separation: a current group is split into two or more groups and all the data

sources belonging to the original group are distributed into the new groups.

 Group Aggregation: two or more current groups are aggregated together into a new

group and all the data sources belonging to original groups are put into the new group

3) Classification Level

 Classification Addition: a new classification is added to the organizational structure as

a new DAG

 Classification Rename: a current classification changes its name

 Classification Removal: a current classification drops out of the organizational

structure

 Classification separation: a current classification is split into two or more

classifications and all the groups belonging to the original classification are distributed

into the new classifications.

 94

 Classification Aggregation: two or more current classifications are aggregated together

into a new classification and all the groups belonging to the original classifications are

put into the new classification

Although the organizational evolution can appear in various ways, by defining the atomic types

of organizational evolution above, each organizational evolution occurring in the organizational

structure can be represented by one of the atomic organizational evolution. It is worth mentioning

that the atomic organizational evolution defined above separate the concerns of the

organizational evolution into different levels. For example, the separation and aggregation

evolution in the group level only concerns evolution of the virtual groups which require that the

data sources belonging to the groups remain unchanged during these atomic organizational

evolutions. And the atomic organizational evolutions in the classification level follow the same

fashion.

From the process of query processing described in chapter 5, only the data source filtering

sub-process may be affected by the organizational evolution (see section 5.3.2). Since the

sub-process filters out the targeting data sources set through extracting the names of the

classifications and virtual groups in the Atomic Targets specified by the Q(org), and then

traversing the organizational structure to filter out all the data sources which are the successors of

the groups. It is obvious that some of the atomic organizational evolution defined above will not

affect the query processing thanks to the design of the organizational structure. For example, for

the atomic organizational evolution in the data source level, being the leaf nodes of the DAGs, no

matter the addition, rename or removal of the data sources happing, the groups and classifications

remains unchanged thus the targeting data sources will be properly filtered out according to the

current version of the organizational structure. Also for the addition to the group and

classification level, since the newly-added group and classification do not exist in the Q(org) of

any existing user queries, the query processing will not be affected.

6.3.1.2 The Model of Organizational Evolution

Since the Organizational Evolution Identification takes the responsibility of recording the

organizational evolution occurring and correlates them with the corresponding alterations of the

organizational structure, a formal model is created in this research to describe the atomic

organizational evolution and the corresponding alterations. As some of the atomic organizational

evolution will not affect the query processing, only those which may affect the query processing

are recorded. The model is defined below:

Atomic Organizational Evolution : (aoetype : Atomic Organizational Evolution Type, aoe :

Atomic Organizational Evolution Description)

 95

Atomic Organizational Evolution Type : String

∀X : Atomic Organizational Evolution Type, X ∈ {“Group Rename”, “Group Removal”,

“Group separation”, “Group Aggregation”, “Classification Rename”, “Classification

Removal”, “Classification separation”, “Classification Aggregation” }

Since different types of the atomic organizational evolution may trigger different kinds of

alterations onto the organizational structure, the atomic organizational evolution descriptions

require different models to represent hence are modelled separately below:

Atomic Organizational Evolution Description : (classification : String, group name : String,

altered group name : String) (where aoetype ∈ {“Group Rename” , “Group Aggregation”})

Atomic Organizational Evolution Description : (classification : String, group name : String)

(where aoetype = “Group Removal”)

Atomic Organizational Evolution Description : (classification : String, group name : String,

{ altered group name : String }) (where aoetype = “Group separation”)

Atomic Organizational Evolution Description : (classification : String, altered classification

name : String) (where aoetype ∈ {“Classification Rename” , “Classification Aggregation”})

Atomic Organizational Evolution Description : (classification : String) (where aoetype =

“classification Removal”)

Atomic Organizational Evolution Description : (classification : String, { altered classification

name : String }) (where aoetype = “classification separation”)

And then, the organizational evolution can be modelled as:

Organizational Evolution { ae : Atomic Evolution }

When organizational evolution occurs, the organizational structure is modified accordingly to

reflect the evolution. Since the evolution handling is focused on generating proper answers for

the user queries, how to modify the organizational structure is trivial for this research hence is not

covered. The purpose of the evolution identification is to keep the tracks of all the organizational

evolution ever occurring in the IDS, thus it is assumed that every time organizational evolution

occurs, the process of evolution identification is applied and the Organizational Evolution data

model keeps all the records up to the current version of the organizational structure.

Consequently, further evolution handling actions can be taken based on the records which will be

discussed in detail in the next section.

6.3.2 Organizational Evolution Solving

As discussed in section 6.2, the automatic assisted evolution handling is a simulation of human

effort which consists of the three processes. Through defining the atomic organizational

 96

evolution and representing them in the data model above, the organizational evolution have been

identified. Thus the next stages are identifying the parts of the IDS which are affected by the

evolution and modifying them accordingly. These targets are achieved by the process of

organizational evolution solving in this research. And the process consists of the following steps:

1. Assess whether the user query is affected by the organizational evolution through parsing

the classification and groups specified in the Q(org) and accessing the evolution records

2. Taking appropriate actions based on the assessment in the previous step. If the query is not

affected, pass the query to the query processing to acquire the results data. If the query is

affected, rewrite the Q(org) into a corresponding formula through accessing the evolution

records and the current version of the organizational structure before passing the query to

the query processing.

Since the user queries may require evolution solving before going to query processing, the

evolution solving is introduced as the first process into the query processing. This means every

user query which requires an answer will first be processed by the evolution solving process and

the process is realized through the following steps:

1. Let R be the organizational evolution records built up in the organizational evolution

identifying

2. Let AT be the atomic targets list in the Q(org) of the user query

3. If AT ≠ Ø, for each element atr in AT, attempt to find the element r in R that the

classification of the atomic organizational evolution description of r is identical with the

Classification root name of atr. If r is found, let ty be the atomic organizational evolution

type of r

i. If ty ∈ { “Classification Removal”, “Group Removal” }, reject the user query

ii. If ty ∈ { “Classification Rename” , “Classification Aggregation” }, rewrite the

Classification root name of atr as the altered classification name of the atomic

organizational evolution description of r

iii. If ty ∈{ “Group Rename” , “Group Aggregation” }, if the Group name of atr is

identical with the group name of the atomic organizational evolution description of r,

rewrite the Group name of atr as the altered group name of the atomic

organizational evolution description of r.

iv. If ty = “classification separation”, let grp be the Group name of atr and ACN be the

list of the altered classification name of the atomic organizational evolution

description of r. For each element ac in the ACN, add a new element atrn in AT,

then set the value of ac and grp into the Classification root name and Group name

of atrn respectively. Then delete the atr from AT

v. If ty = “Group separation”, if the Group name of atr is identical with the group

 97

name of the atomic organizational evolution description of r, let AGN be the list of

the altered group name, For each element ag in the AGN, add a new element atrn in

AT, then set the value of classification of r and ag into the Classification root name

and Group name of atrn respectively. Then delete the atr from AT

4. output AT as the rewritten Q(org) of the user query

As the organizational evolution records keep track of all the organizational evolution occurring,

through comparing the classifications and groups specified in the Q(org) with their counterparts

in the records, the process of organization evolution solving can determine whether the user

query is affected by the evolution. Through traversing the records, the equivalence in the current

organizational structure of the classifications and groups specified might be found. In the case of

rename and aggregation in the classification and group level, the classifications and groups

specified in the Q(org) are replaced by their corresponding counterparts in the current version of

the organizational structure. In the case of separation in the classification and group level, since

each classification and group specified in the Q(org) may correspond to two or more

classifications and groups, extra atomic targets are added to the Q(org), as appropriate. And

under the circumstances of classification and group removal, the original user query is rejected

since the targeting data sources the user query intendeds to query against are no longer available.

As a consequence, the Q(org) of the user queries are modified accordingly with respect to the

current version of the organizational structure and the semantics of the user query are preserved.

The process of the organizational evolution solving can be modelled as a function:

Organizational Evolution Solving :

User Query (Q(org), Q(onto)) → User Query (Q(org)rewriting, Q(onto))

6.4 Schematic Evolution Handling

As introduced in section 1.3.1 and section 6.2, the schematic evolution refers to the evolution

occurring in the local schema of the participating data sources. Schematic evolution handling is

one of the central evolution issues the SLEDI is designed to tackle, as the alterations arising in

the local schema may result in large amount of maintenance work. Compared to the hard wired

data integration approach, The IPU mechanism of SLEDI not only provides a solution for

integrating the data from the participating data sources, but, more importantly, it also builds the

foundation for introducing automatic assistance to handle the schematic evolution. Hence human

effort involved in the maintenance work may be mitigated.

In SLEDI, the participating data sources expose the data they are willing to share through the

IPU mechanism. The IPU consists of Global Definition and Local Definition where the Local

Definition describes how the data that IPU provides are constructed through specifying the

virtual views over the local schema of the participating data sources. Thus when schematic

 98

evolution occurs in the data sources, alterations may arise in the local schema, and, as a

consequence, the virtual views specified by the local definition of the IPUs might become invalid,

thus the IPUs may not be able to construct data properly over the evolved local schema. Since the

virtual views are realized through DAGs, by introducing automatic assistance to examine the

schematic evolution and the DAGs, the evolution might be handled without human intervention

and the IPUs can be modified accordingly in order to be compatible with the evolved local

schema.

Similarly with the organizational evolution handling, the schematic evolution handling of SLEDI

is delivered through the process of Schematic Evolution Identification and Schematic Evolution

Solving. Once the schematic evolution occurs in a data source, the process of schematic

evolution identification identifies the type of the evolution and describes the evolution with the

corresponding alterations in the local schema the evolution caused. Then the process of

schematic evolution solving can search the local definitions of the IPUs the data source provided

to filter out those IPUs whose local definitions are affected by the schematic evolution. After the

affected IPUs are identified, through analysing the schematic evolution and the local definitions

of the IPUs, appropriate actions are taken to automatically modify the affected IPUs in order to

make them still semantically and syntactically valid for the IDS. In some circumstances, human

intervention may be required and some affected IPUs may have to be disposed of. The processes

are delineated in detail in following sections.

6.4.1 Schematic Evolution Identification

As introduced previously, the first step of evolution handling identifies the evolution occurring,

thus further actions can be determined based on it. The schematic evolution identification

identifies the types of schematic evolution occurring in the data sources with the corresponding

alterations onto the local schemas the evolution caused. Since there are no materials to define a

complete delineation of the possible schematic evolution for the time being and the database

schemas involved in this research are relational schemas, the schematic evolution covered in this

research are defined from the manipulations provided by the relational DBMS for the

administrators to conduct onto the database schemas. Thus the schematic evolution can be

categorized into three different levels and each level involves several types of schematic

evolution.

6.4.1.1 The Types of Schematic Evolution

The three levels of schematic evolution are Attribute Level, Relation Level and Database Level

which refer to the evolution causing alterations to the attributes, relations and databases of the

local schema respectively. They are listed below:

 99

Attribute Level:

 Attribute Addition: a new attribute is added to a relation

 Attribute Removal: an existing attribute is dropped from a relation

 Attribute Rename: an existing attribute changes its name

 Attribute Domain Change: an existing attribute changes its domain (i.e. data type)

 Attribute Decomposition: an existing attribute is divided into two or more attributes

 Attribute Aggregation: two or more attributes are aggregated into one attribute

Relation Level:

 Relation Addition: a new relation is added to a database

 Relation Removal: an existing relation is dropped from a database

 Relation Rename: an existing relation changes its name

 Relation Decomposition: an existing relation is divided into two or more relations

 Relation Aggregation: two or more relations are aggregated into one relation

Database Level:

 Database Addition: a new database source is added to the IDS

 Database Removal: an existing database source is dropped from the IDS

Through the descriptive definitions above, the various types of schematic evolution are listed

with respect to the alterations they cause onto the database schema. As described in section 4.5.1,

a participating data source of the IDS shares its data through connecting the local definition of

the IPUs with its local schema; hence the results data the IPUs provide can be constructed via

composing the local queries based on the local definitions and executing the queries against the

local database. Once the schematic evolution occurred in the local database, the local schema

may be altered. Thus two versions of the local schemas may come into existence. Since the local

definition is defined with respect to the original version of the local schema, the local queries

may not be able to run against to the currently local schema which is in fact the evolved version.

Although various schematic evolutions are listed above, some types of evolution may not

introduce impact onto the local definitions of the existing IPUs. For example, in the case of an

addition to the attribute and relation level, although the newly-added attributes and relations may

require human effort to integrate them into the IDS by following the algorithm described in

chapter 4, they did not exist when the existing IPUs were constructed, thus all the existing local

definitions would not be affected. The same situation applies to the addition of databases;

although the addition of a database may also affect the organizational structure (see section

6.3.1.1), for all the existing IPUs, no impact would be made. For other types of schematic

evolution, the IPUs may be affected hence may have to be modified in order to work properly.

 100

6.4.1.2 The Model of Schematic Evolution

Although the schematic evolution discussed above can be intuitively understood by human

maintenance programmers, the lack of precise definition makes it difficult for employing

automatic assistance into the evolution handling. Thus a formal model is created in this research

to describe the schematic evolution. Through correlating each type of the schematic evolution

with the corresponding alteration onto the schema, the schematic evolution can be identified and

further actions can be determined. Similar with the organizational evolution, only those evolution

which may affect the IPUs are modelled:

Schematic Evolution: (ipsname : String, sevt : Schematic Evolution Type, se : Schematic

Evolution Description)

Since each schematic evolution occurs in a specific data source and each data source shares its

data through an IPS, the first property of the schematic evolution model is to specify in which

data source the schematic evolution occurred by indicating the name of the IPS. The second

property indicates the type of the schematic evolution and the third property specifies the details

of the schematic evolution.

Schematic Evolution Type : String

∀X : Evolution Type, X ∈ {“Attribute Removal”, “Attribute Rename”, “Attribute Domain

Change”, “Attribute Decomposition”, “Attribute Aggregation”, “Relation Removal”, “Relation

Rename”, “Relation Decomposition”, “Relation Aggregation” , “Database Removal” }

Different types of schematic evolution cause different alterations onto the schema thus require

different data to describe the details. They are modelled separately below:

1) Schematic Evolution Description : (re : Relation, att : Attribute) (where sevt=“Attribute

Removal”)

The first property re refers to the relation in the schema which the removed attribute belongs to

and the second property att refers to the attribute which is removed by the schematic evolution.

2) Schematic Evolution Description : (re : Relation, attori : Attribute, attevo : Attribute)

(where sevt=“Attribute Rename”)

The first property re refers to the relation in the schema where the evolved attribute belongs. The

second and third properties refer to the attribute before and after the evolution respectively.

3) Schematic Evolution Description: (re : Relation, attori : Attribute, attevo : Attribute,

opn : Operation) (where sevt=“Attribute Domain Change”)

In this research, attribute domain change refers strictly to an attribute which only changes its

domain (i.e. data type) during the evolution; the semantic of the attribute remains unchanged.

 101

Consequently, every instance of the attribute has two types of representation data; one in the form

of the original attribute and another in the form of the evolved attribute. Thus there is a one to

one mapping between the instances of the original attribute and the evolved attribute. Similarly

with the attribute rename; the first three properties of the attribute domain change refer to the

relation the evolved attribute belongs to, the attribute before and after the change. The fourth

property is an operation (recall section 4.4.4.4). The operation describes how to convert the

instances of the evolved attribute into the corresponding instances of the original attribute.

4) Schematic Evolution Description : (re : Relation, attori : Attribute, {attevo : Attribute},

{opn : Operation}, {(varop : Variable, attevo : Attribute)}) (where sevt=“Attribute

Decomposition”)

The attribute decomposition refers to an original attribute decomposed into two or more evolved

attributes where all the original and evolved attributes reside in the same relation and the

instances of the original attribute can be constructed through converting the instances of the

evolved attributes. Similarly with the attribute domain change; the first three properties refer to

the relation, the original attribute and list of the evolved attributes. The fourth property refers to

the list of operations for constructing the instances of the original attribute from the evolved

attributes and the fifth property is a list of pairs where each pair correlates an attribute with the

corresponding variable in the operation.

5) Schematic Evolution Description: (re : Relation, {attori : Attribute}, attevo : Attribute,

{opn : Operation}, {(varop : Variable, attevo : Attribute)}) (where sevt=“Attribute

Aggregation”)

The attribute aggregating refers to two or more original attributes aggregated into one evolved

attribute. Similarly with the attribute decomposition, all the original and evolved attributes

belonging to the same relation and the instances of the original attributes can be formulated from

the instances of the evolved attribute. The first property refers to the relation, the second property

refers to the list of the original attributes, the third property refers to the evolved attribute and the

fourth property refers to the list of operations for constructing the instances of the original

attributes from the instances of the evolved attribute. Each operation in the list corresponds to

one original attribute. And the fifth property refers to the correlations between the attributes and

the variables in the operations.

6) Schematic Evolution Description : (re : Relation) (where sevt=“Relation Removal”)

The relation removal only has one property re which refers to the relation removed from the

schema.

7) Schematic Evolution Description : (reori : Relation, reevo : Relation) (where

 102

sevt=“Relation Rename”)

The relation rename has two properties where the first property reori refers to the original

relation before the evolution and the second property reevo refers to the evolved relation after the

evolution.

8) Schematic Evolution Description : (reori : Relation, {reevo : Relation}, {rbv : View}, riv :

View) (where sevt=“Relation Decomposition” ∧ rbv.vtype = “basic” ∧ riv.vtype =

“intermediate”)

The relation decomposition refers to an original relation separated into two or more relations.

More precisely, all the attributes in the original relation are distributed into the evolved relations.

Since all the attributes are preserved through the evolution, the instances of the original relation

can be constructed through applying relational operations over the instances of the evolved

relations. In other words, only those evolutions where the original relation can be rebuilt without

loss of information are considered in this research. As introduced in section 4.4.4.3, the relational

operations over the evolved relations can be described through the view definitions. The model of

relation decomposition consists of four properties. The first property refers to the original relation

before the evolution; the second property refers to the list of all the evolved relations after the

evolution; the third property refers to the list of basic views connected to the evolved relations

and the fourth property refers to the intermediate view which specifies how to compose the

instance data of the original relation from the instance data of the corresponding basic views of

the evolved relations.

9) Schematic Evolution Description : ({reori : Relation}, reevo : Relation, { reori : Relation,

riv : View }, rbv : View) (where sevt=“Relation Aggregation” ∧ rbv.vtype = “basic” ∧

riv.vtype = “intermediate”)

The relation aggregation refers to two or more original relations aggregated into one evolved

relation. Similarly with the relation decomposition, all the attributes belonging to the original

relations are preserved during the evolution and the instances of the original relation can be

rebuilt from the instances of the evolved relations. The model of relation aggregation consists of

four properties, the first property refers to the list of the original relations; the second property

refers to the evolved relation; the third property refers to the list of pairs of the original relation

and intermediate view, where the intermediate view represents how to construct the instance data

of the original relation it corresponds to from the instances data of the basic view of the evolved

relations; the fourth property refers to the basic view correlating to the evolved relation.

10) Schematic Evolution Description : () (where sevt=“Database Removal”)

The database removal refers to the evolution of the entire database removed from the IDS. Since

every data source only uses one database, the database removal results in all the IPUs the data

 103

source provides are not available any more thus need to be removed. As the corresponding IPS of

the IPUs are already specified in the ipsname, no further detailed data is required in the model of

the evolution description.

When the schematic evolutions occur in data sources, the corresponding database schemas are

altered accordingly. How to amend the local schema properly according to the schematic

evolution is trivial for this research hence is not discussed. The process of evolution identification

plays the role of recording the schematic evolution occurring with the necessary detailed data in

order to build the basis from which further actions can be taken. Through the formal model

defined above, every single schematic evolution is identified and represented. Each schematic

evolution is considered in isolation with no connection to another. After schematic evolution is

identified, the process of schematic evolution solving takes place. The process analyses the IPUs

of the corresponding data source where the schematic evolution occurred, filters out those

affected IPUs and modifies them accordingly. The detail of the process is described in the next

section.

6.4.2 Schematic Evolution Solving

After the schematic evolution is identified, the impact the evolution have on the IDS can be

examined and the appropriate actions can be taken to handle the evolution. This task is carried

out through the process of schematic evolution solving. Similarly with the organizational

evolution, the schematic evolution identification provides detailed data and the schematic

evolution solving processes the data to accomplish the evolution handling. However, unlike when

all the organizational evolution are identified and recorded together, each schematic evolution is

identified and solved individually and immediately. From the IDS point of view, each schematic

evolution can be considered as an event. Once the event happens, the evolution is identified

immediately and is solved by the process of schematic evolution solving before another

schematic evolution occurs.

As introduced previously, the evolution handling is a simulation of human effort on maintenance

work. Once a schematic evolution is identified, the actions of identifying the affected parts of the

IDS and modifying those parts can be taken. Since the only parts of the IDS which may be

affected by schematic evolution are the IPUs, the process of schematic evolution handling needs

to pinpoint all the affected IPUs and modify them accordingly. The process consists of the

following steps:

1. Identifying the affected IPUs: Through parsing the data in the formal model which

represents the schematic evolution, the altered attributes, relations and the database relating

to the evolution can be identified. Then all the IPUs connected with the database can be

identified and the IPUs whose local definition is affected by the altered attributes and

 104

relations can be filtered out.

2. Modifying the affected IPUs: A set of processes are defined and associated with each type of

the schematic evolution. For each of the affected IPUs filtered out from the previous step,

automatic modification onto the local definition of the IPU is applied based on the processes.

Under some circumstances, the IPUs may have to be disposed of.

In order to precisely delineate the process of schematic evolution handling, some assumptions

about the IDS and the evolution are explicitly made. It is assumed that all the IPUs of the IDS are

valid before a schematic evolution occurs. By means of valid IPU, it refers to the global

definition properly declares what data the IPU provides with respect to the application domain

ontology; and local definition is properly defined with respect to the local schema. The local

definition complies with the validation rules described in section 4.4.4.5 and can be used to

generate local queries to construct the proper results data for the IPU from the local database.

6.4.2.1 Affected IPU Identification

Once a schematic evolution is identified, the process of schematic evolution solving determines

the affected IPUs by taking the schematic evolution data model and the list of IPSs of the IDS

(see section 4.5.1) as input, and then filters out all the affected IPUs as the output. Thus the

identification of affected IPUs can be considered as a function:

Affected IPU Identification: (se: Schematic Evolution, {ips: IPS}) → {ipu : IPU}

The affected IPU identification is carried out through the following steps:

1. Let ipsen be the ipsname of the schematic evolution se; IPS be the list of all the IPSs; sevt

be the schematic evolution type of se; re be the relation in the schematic evolution

description of se and AI be an empty list.

2. Attempt to find the element ips in IPS where the ipsname of ips is identical with ipsen.

3. If ips is found, put all the IPUs of ips in a list IPU

4. If sevt ≠“Database Removal” and IPU ≠ Ø, for each element ipu in IPU

i. Find all the basic views of the local definition of ipu and put them into a list BV

(see section 4.4.4.4)

ii. For each element bv in the BV, find all the relations in the dependency list of bv

and put them into a list DEP

iii. Attempt to find the element dep in DEP where dep is identical with re. If dep is

found, put ipu into AI and remove duplicates.

5. Output AI.

As illustrated above, the relations in the dependency list of the basic views of a local definition

indicates there is a connection between the relations and the IPU which the local definition

 105

belongs to. Since the schematic evolution data model specifies the relations which have been

altered, through comparing the altered relations and the relations involved in the local definition

of an IPU, whether the IPU is affected by the schematic evolution can be determined. If the

schematic evolution is database removal, no comparison is needed as all the IPUs connected with

the database require removal. After the process of affected IPU identification, the affected IPUs

are filtered out into a list and output for further processing.

6.4.2.2 Affected IPU Modification

After the list of affected IPUs is generated, the modification onto them can be applied. Generally,

since the schematic evolution introduces the discrepancies between the schema the local

definition of the affected IPUs are defined over and the schema the local database currently has

after the schematic evolution, the purpose of the modification is to make the two schemas

consistent again through modifying the local definition of the affected IPUs. As the different

types of schematic evolution alter the local schema in different ways hence cause different impact

onto the local definition of the affected IPUs, the process of affected IPU modification is applied

through a set of predefined processes with respect to the various types of schematic evolution

defined in section 6.4.1.

Although the affected IPU modification intends to modify the local definition of the IPUs to be

consistent with the current local schema in order to continuingly construct proper results data for

the IPUs, it may not be achievable under some circumstances. Recall the validation rules

described in section 4.4.4.5, the rules introduce a set of constraints the local definition of IPU

must apply for generating results data properly. Thus the validity of the local definition of IPU

can be defined:

1. A Local Definition of IPU is considered valid if it complies with the validation rules and all

of the views in the definition are valid.

2. A View is valid if it complies with the validation rules and all the conjunctive queries in its

definition are valid.

3. A Conjunctive Query is valid if it complies with the validation rules and all the subgoals in

its definition are valid.

4. A Subgoal is valid if it complies with the validation rules and all the assignments in its

definition are valid.

5. An Assignment is valid if it complies with the validation rules.

Once the assignments, subgoals, conjunctive queries, views and local definitions are not valid

any more after the modification, they have to be disposed of.

The general process of the affected IPU modification is to firstly apply the schematic evolution

onto the relations in the dependency list of all the basic views. By doing so, those relations

 106

become consistent again with the current local schema after the schematic evolution occurs. And

then, the definitions of the basic views are examined to determine whether they are still valid and

modifications are applied accordingly if they are not valid. If the basic views are not valid after

the modification, they are disposed of. After that, the same examining, modifying and disposal

processes are applied onto all the intermediate views and then the root view. Finally, all the view

definitions in the local definition are either modified to be valid or disposed of, then the

corresponding local definition becomes valid again with respect to the evolved local schema or

can be disposed of.

The process of affected IPU modification takes the schematic evolution data model and the list of

affected IPUs from the affected IPU Identification as its input to perform the modification. In

order to precisely describe the modification process, some clarifications are described below:

1. Two attributes A and B are said to be identical if the name of A equals the name of B and the

data type of A also equals the data type of B.

2. Two relations R1 and R2 are said to be identical if the name of R1 equals to the name of R2

and the attributes in R1 are identical with the attributes in R2.

3. Two variables V and V’ are said to be identical if the name of V equals the name of V’ and

the data type of V also equals the data type of V’.

It is also assumed that once the modifications of the affected IPUs are undertaken, it takes effect

immediately onto the IPSs in the IDS (see section 4.5.1). The unique name assumption is also

applied, which means any item in the IDS such as IPU, local definition, view, variable, attribute

etc. uses a unique name to represent itself. There are no two items using same literals for their

names. The processes of applying the modification are described in details below with respect to

the different types of schematic evolution:

1) Modification process for attribute removal

If the type of the schematic evolution is “Attribute Removal”, extract the relation re and the

attribute att out from the schematic evolution model; let AI be the list of affected IPUs and

DELVAR and DELV be empty lists, then

1. For each element ipu in the AI, let ld be the local definition of ipu; rv, IV, BV be the root

view, the list of intermediate views and the list of basic views of ld respectively.

2. If BV ≠ Ø, for each element bv in BV, let CQ be the list of conjunctive queries of bv and R

be the dependency list of bv.

3. If R ≠ Ø, for each element r in R, if r is identical with re, attempt to find attribute att’ in r

where att’ is identical with att. If att’ is found, remove att’ from r.

4. If CQ ≠ Ø, for each element cq in CQ, let SBG be the list of subgoals of cq. And for each

element sbg in SBG, let sbgtp be the subgoal type of sbg and asi be the assignment of the

sbg.

 107

i. For every sbg whose sbgtp = “regular”, if the relation re’ in the asi is identical with

re, attempt to find the attribute att’ of re’ which is identical with att. If att’ is found,

remove att’. In the list of variable and attribute pairs of asi, attempt to find the

attribute att’ which is identical with att. If att’ is found, put the variable asvar which

is paired with att’ into DELVAR and remove duplicates. Then remove the pair of

asvar and att’ from asi.

ii. For every sbg whose sbgtp = “ordered”, attempt to find element v’ in DELVAR

which is identical with the variable v in the head of sbg (sbg has exactly one variable

in its head when sbgtp = “ordered”, see section 4.4.4.4). If v’ is found, remove the

sbg and the corresponding cq.

iii. For every sbg whose sbgtp = “converting”, let OP be the list of operation of asi. For

each element op in OP, attempt to find element v’ in DELVAR which is identical

with any of the variables in op. If v’ is found, remove op. If OP = Ø , remove the sbg

and the corresponding cq.

5. Until all sbg in SBG are processed, check whether the corresponding cq is valid against the

validation rules. If cq is not valid, remove the cq from CQ.

6. Until all cq in CQ are processed, check whether the corresponding bv is valid against the

validation rules. If bv is not valid, put the viewname of bv into DELV and remove duplicates.

Then remove bv from BV.

7. If IV ≠ Ø, for each element iv in IV, let ICQ be the list of conjunctive queries of iv and DPL

be the dependency list of iv.

8. If DPL ≠ Ø, for each element dpl in DPL, attempt to find the element viewname’ in DELV

which the viewname’ is identical with the viewname of dpl (dpl can only be view when iv is

an intermediate view, see section 4.4.4.4). If viewname’ is found, remove dpl from DPL.

9. If ICQ ≠ Ø, for each element icq in CQ, let ISBG be the list of subgoals of icq. And for each

element isbg in ISBG, let isbgtp be the subgoal type of isbg and iasi be the assignment of

the isbg.

10. For every isbg whose isbgt = “regular”, let vie be the view in iasi and attempt to find the

element viewname’ in DELV which the viewname’ is identical with the viewname of vie. If

viewname’ is found, remove icq from CQ.

11. Until all the icq in CQ are processed, check whether the corresponding iv is valid against the

validation rules. If iv is not valid, put the viewname of iv into DELV and remove duplicates.

Then remove iv from IV.

12. Repeat from step 7 iteratively until no more iv can be removed.

13. Attempt to find an identical match between the elements in DELV and the viewname of

views in the dependency list of rv. If found, remove the corresponding view from the

dependency list.

14. Check whether the conjunctive queries in the rv are valid against the validation rules and

 108

remove the invalid ones.

15. Check whether the rv is valid against the validation rules. If not valid, remove the ipu and

repeat from step 1 until all the ipu in the AI are processed.

The process above solves the attribute removal through firstly removing the attributes from the

basic views of the local definition for each of the affected IPUs. Then it validates the basic views

against the validation rules and invalid basic views are removed from the local definition. If the

corresponding variables of the removed attribute are involved in CRS or ORS in a basic view, the

view is considered as invalid as the semantics of the view are changed. After the basic views are

validated, each intermediate view can be validated as soon as all the views which are its direct

successors have been already validated. Through validating the views iteratively, the root view

can be finally validated. If the root view is not valid, it cannot construct results data properly

from the evolved local schema and the IPU is removed.

2) Modification process for attribute rename

If the type of the schematic evolution is “Attribute Rename”, extract the relation re, the original

attribute attori and evolved attribute attevo from the schematic evolution model; let AI be the list

of affected IPUs then,

1. For each element ipu in the AI, let ld be the local definition of ipu; BV be the list of basic

views of ld.

2. If BV ≠ Ø, for each element bv in BV, let CQ be the list of conjunctive queries of bv and R

be the dependency list of bv.

3. If R ≠ Ø, for each element r in R, if r is identical with re, attempt to find attribute att’ in r

where att’ is identical with attori. If att’ is found, replace att’ with attevo.

4. If CQ ≠ Ø, for each element cq in CQ, let SBG be the list of subgoals of cq. And for each

element sbg in SBG, let sbgtp be the subgoal type of sbg and asi be the assignment of the

sbg.

5. For every sbg whose sbgt = “regular”, if the relation rela in the asi is identical with re, in

the list of variable and attribute pair of asi, attempt to find the attribute asatt which is

identical with attori. If asatt is found, replace asatt with attevo.

6. Check whether bv is valid against the validation rules. If not valid, remove bv.

7. Validate all the views in ld iteratively and remove the invalid views, then repeat from step 1

until all the ipu in the AI are processed.

Recall section 4.4.4.3 and section 4.4.4.4; every actual relation in the local schema is connected

to the local definition of IPUs through a basic view. Each relation is mapped to a regular type of

subgoal (i.e. RRS) in the definition of the basic view. Through the list of paired attributes and

variables in the assignment of the subgoal, each attribute is correlated with a variable. Thus the

attribute rename can only affect the definition of basic views as all the direct predecessors of the

basic view use the variables instead of the actual relation and attributes in their definition. The

 109

above process solves the attribute rename through firstly updating the relations in the dependency

lists of the basic views to be consistent with the evolved local schema. Then it alters the

correlation of the evolved attribute so that the variable correlated with the original attribute is

redirected and correlated with the evolved attributes. And then validate the basic views. Finally

all the views in the local definition are validated and the affected IPUs are updated to be valid

with respect to the evolved local schema.

3) Modification process for attribute domain change

If the type of the schematic evolution is “Attribute Domain Change”, extract the relation re, the

original attribute attori, the evolved attribute attevo and the operation opn out from the schematic

evolution model; let AI be the list of affected IPUs then,

1. For each element ipu in the AI, let ld be the local definition of ipu; BV be the list of basic

views of ld.

2. If BV ≠ Ø, for each element bv in BV, let CQ be the list of conjunctive queries of bv and R

be the dependency list of bv.

3. If R ≠ Ø, for each element r in R, if r is identical with re, attempt to find attribute att’ in r

where att’ is identical with attori. If att’ is found, replace att’ with attevo.

4. If CQ ≠ Ø, for each element cq in CQ, let SBG be the list of subgoals of cq. And for each

element sbg in SBG, let sbgtp be the subgoal type of sbg and asi be the assignment of the

sbg.

5. For every sbg whose sbgt = “regular”, if the relation rela in the asi is identical with re, in

the list of variable and attribute pair of asi, attempt to find the pair whose attribute asatt is

identical with attori. If the pair is found, let varori be the variable of the pair and replace the

pair with (varevo, attevo) where the varevo is a new variable has same data type with varori,

i. Add a new element sbgn into SBG, set its sbgtp as “converting”; the variable in its

head as varori; and the operation in its assignment as opn

ii. Replace the convopd of opn with varevo

6. Check whether bv is valid against the validation rules. If invalid, remove bv

7. Validate all the views in ld iteratively and remove the invalid views, then repeat from step 1

until all the ipu in the AI are processed.

The model of attribute domain change uses opn to describe the operation for constructing the

results data of the original attribute from the results data of the evolved attribute. The variable in

the head of the opn and the convopd of the opn are mapped to the original attribute and the

evolved attribute respectively. Through adding a new converting type of subgoal into the

conjunctive query which is connected to the relation the evolved attribute belongs to and

replacing the original attribute (and its corresponding variable) with the evolved attribute (and its

corresponding variable), the original attribute in the conjunctive query can be rebuilt over the

evolved local schema. Similarly with the attribute rename, the attribute domain change also only

 110

affects the basic views. The above process solves the attribute domain change by firstly updating

the relations in the dependency lists, and then rewriting the conjunctive queries to rebuild the

original attributes. Finally the basic views and the local definitions of the IPUs are validated.

4) Modification process for attribute decomposition

If the type of the schematic evolution is “Attribute Decomposition”, extract the relation re, the

original attribute attori, the list of evolved attributes ATTEVO; the list of operations OPN and

the list of paired variables and attributes VA out from the schematic evolution model; let AI be

the list of affected IPUs.

Since the step 1, 2, 4 and 6 are completely the same as the process for solving attribute domain

change, only the step 3 and 5 are described below:

3. If R ≠ Ø, for each element r in R, if r is identical with re, attempt to find attribute att’ in r

where att’ is identical with attori. If att’ is found, for each element attevo in ATTEVO, add

attevo into r and remove duplicates remove attori.

5. For every sbg whose sbgt = “regular”, if the relation rela in the asi is identical with re, in

the list of variable and attribute pair of asi, attempt to find the attribute asatt which is

identical with attori. If asatt is found, Let varori be the variable correlated with attori.

i. For each va in VA, if the attribute of va ≠ attori, add va into asi and remove

duplicates. If the attribute of va = attori, let opv be the corresponding variable.

ii. For each element opn in OPN, add a new element sbgn into SBG and remove

duplicates, set its sbgtp as “converting” and the operation in its assignment as opn. If

the variable in the head of opn = opv, set the variable as varori;

iii. Remove the variable and attribute pair in asi where the attribute = attori

Similarly with solving the attribute domain change, the process rebuilds the original attribute

from the evolved attributes through modifying the local definitions by updating the dependency

list of the basic views, adding new converting type of subgoals and correlating the evolved

attributes with the appropriate variables based on the correlations specified in the schematic

evolution description of the attribute decomposition. And finally validates the local definitions.

5) Modification process for attribute aggregation

If the type of the schematic evolution is “Attribute Aggregation”, extract the relation re, the list

of original attributes ATTORI, the evolved attribute attevo; the list of operations OPN and the list

of paired variables and attributes VA out from the schematic evolution model; let M and P be two

empty lists and AI be the list of affected IPUs then,

As with the attribute decomposition, only steps 3 and 5 of the process are described:

3. If R ≠ Ø, for each element r in R, if r is identical with re, add attevo into r and for each

element attori in ATTORI, attempt to find attribute att’ in r where att’ is identical with

attori. If att’ is found, put att’ into M and remove duplicates. Then remove the att’ from r.

 111

5. For every sbg whose sbgt = “regular”, if the relation rela in the asi is identical with re,

i. Attempt to find the element va in VA that the attribute of va is identical with attevo,

if va is found, add va into asi and remove duplicates

ii. For each element m in M, attempt to find the pair of variable and attribute in asi

where its attribute att’ is identical with m. If the pair is found, put it into P and

remove duplicates. Then remove the pair from asi.

iii. For each element p in P, let var’ and att’’ be the variable and attribute of p. Attempt

to find the element va in VA where the attribute of va is identical with att’’. If va is

found, reset att’’ of p as the variable of va.

iv. For each element opn in OPN, add a new element sbgn into SBG, set its sbgtp as

“converting” and the operation in its assignment as opn. Attempt to find element p in

P that the second variable var’’ of p is identical with the head variable of sbgn, if

var’’ is found, reset the head variable of sbgn as the first variable var’ of p.

Similarly with solving the attribute decomposition, the above process modifies the local

definition through updating the relations in the dependency list to be consistent with the evolved

local schema, adding new converting types of subgoals based on the operations specified in the

schematic evolution model. And then correlating the attributes with the appropriate variables

based on the assignments in the original basic views and the schematic evolution description.

Thus the original attributes are rebuilt from the evolved database schema. Finally, the local

definition of the affected IPUs are updated and validated.

6) Modification process for relation removal

If the type of the schematic evolution is “Relation Removal”, extract the relation re from the

schematic evolution model; let AI be the list of affected IPUs then,

1. For each element ipu in the AI, let ld be the local definition of ipu; BV be the list of basic

views of ld.

2. If BV ≠ Ø, for each element bv in BV, let CQ be the list of conjunctive queries of bv and R

be the dependency list of bv.

3. If R ≠ Ø, for each element r in R, if r is identical with re, remove r from R.

4. If CQ ≠ Ø, for each element cq in CQ, let SBG be the list of subgoals of cq. And for each

element sbg in SBG, let sbgtp be the subgoal type of sbg and asi be the assignment of the

sbg.

5. For every sbg whose sbgtp = “regular”, if the relation re’ in the asi is identical with re,

remove the cq.

6. Check whether bv is valid against the validation rules. If not valid, remove bv.

7. Validate all the views in ld iteratively and remove the invalid views, then repeat from step 1

until all the ipu in the AI are processed.

Similar with the attribute removal, the above process solves the relation removal through firstly

 112

removing the relations in the dependency list of the basic views, updating the basic views and

checking them against the validation rules. Invalid basic views are removed. Then all the views

in the local definition are updated accordingly and validated. If the root view of an IPU is not

valid after the modification, the IPU is removed.

7) Modification process for relation rename

If the type of the schematic evolution is “Relation Rename”, extract the original relation reori

and the evolved relation reevo from the schematic evolution model; let AI be the list of affected

IPUs then,

1. For each element ipu in the AI, let ld be the local definition of ipu; BV be the list of basic

views of ld.

2. If BV ≠ Ø, for each element bv in BV, let CQ be the list of conjunctive queries of bv and R

be the dependency list of bv.

3. If R ≠ Ø, for each element r in R, if r is identical with reori, replace r with reevo.

4. If CQ ≠ Ø, for each element cq in CQ, let SBG be the list of subgoals of cq. And for each

element sbg in SBG, let sbgtp be the subgoal type of sbg and asi be the assignment of the

sbg.

5. For every sbg whose sbgt = “regular”, if the relation rela in the asi is identical with reori,

replace rela with reevo.

6. Check whether bv is valid against the validation rules. If not valid, remove bv.

7. Validate all the views in ld iteratively and remove the invalid views, then repeat from step 1

until all the ipu in the AI are processed.

Similarly with attribute rename, the above process firstly updates the relations in the dependency

list of the basic views, and then modifies the basic views through replacing the original relation

in the assignment of regular subgoals with the evolved relations. Then it validates the basic views

and the local definition of the IPUs.

8) Modification process for relation decomposition

If the type of the schematic evolution is “Relation Decomposition”, extract the original relation

reori, the list of evolved relations REEVO, the intermediate view riv and the list of basic views

RBV from the schematic evolution model; let AI be the list of affected IPUs then,

1. For each element ipu in the AI, let ld be the local definition of ipu; IV and BV be the list of

intermediate views and the list of basic views of ld respectively.

2. If BV ≠ Ø, for each element bv in BV, let CQ be the list of conjunctive queries of bv and R

be the dependency list of bv.

3. If R ≠ Ø, attempt to find element r in R where r is identical with reori, if r is found, remove

r from R. For each element reevo in REEVO, add reevo into R and remove duplicates.

4. If CQ ≠ Ø, for each element cq in CQ, let SBG be the list of subgoals of cq. And for each

 113

element sbg in SBG, let sbgtp be the subgoal type of sbg and asi be the assignment of the

sbg.

5. For every sbg whose sbgt = “regular”, if the relation rela in the asi is identical with reori,

i. Let viewname’ be the view name of bv.

ii. Remove bv and for each element rbv in RBV, add rbv into BV and remove

duplicates.

iii. Add riv into IV and replace the view name of riv as viewname’.

6. Validate all the views in ld iteratively and remove the invalid views, then repeat from step 1

until all the ipu in the AI are processed.

The above process solves the relation decomposition through firstly updating the relations in the

dependency list of basic views according to the original relation and the list of evolved relations

represented in the schematic evolution model. Then it removes the basic view connected with the

original relation and adds new basic views correlated with the evolved relations specified in the

schematic evolution description. It then adds the intermediate view described in the description

into the local definition. Since each actual relation is correlated to a basic view (see section

4.4.4.5), each evolved relation is connected to the local definition through adding a new basic

view and the original relation is connected to an intermediate view which is defined over the

added basic views.

9) Modification process for relation aggregation

If the type of the schematic evolution is “Relation Aggregation”, extract the list of original

relations REORI, the evolved relation reevo, the list of paired original relation and intermediate

view RRIV and the basic view rbv from the schematic evolution model; let AI be the list of

affected IPUs.

As steps 1, 2, 4 and 6 of the above process for solving relation aggregation are completely the

same as the process of solving relation decomposition, only step 3 and 5 are described.

3. If R ≠ Ø, for each element reori in REORI, attempt to find element r in R where r is

identical with reori, if r is found, remove r from R. Add reevo into R and remove duplicates.

5. For every sbg whose sbgt = “regular”, let rela be the relation in the asi, attempt to find

element reori in REORI which is identical with rela. If reori is found.

i. Let viewname’ be the view name of bv.

ii. Attempt to find element rriv in RRIV that the relation reo of rriv is identical with

rela. If rriv is found, replace the name of intermediate view riv of rriv with

viewname’ then add riv into IV and remove duplicates.

Add rbv into BV.

As with solving relation aggregation, the process firstly updates the relations in the dependency

list of basic views then adds a new basic view corresponding to the evolved relation. It then

replaces the basic views correlated with the original relations with the corresponding

 114

intermediate views specified in the schematic evolution model. Hence every original relation is

rebuilt from the evolved relation through the intermediate views.

10) Modification process for database removal

The modification process for database removal is different from the nine processes described

above. Instead of analysing the affected views and modifying them accordingly, the database

removal requires removing all the correlated IPUs from the IDS. Recall the process of affected

IPU identification introduced in section 6.4.2.1; the affected IPU list is empty when the

schematic evolution is “Relation Aggregation”. The modification process is carried out through

the follow steps:

1. Let ipsname and sevt be the IPS name and the evolution type of the schematic evolution

model respectively; the IPS be the list of IPSs in IDS.

2. If sevt = “Database Removal”, for each element ips in IPS, attempt to find the name of ips

which is identical with ipsname. If ips is found, remove ips from IPS.

After all the processes for solving different types of schematic evolution are described in detail

above, the modification of affected IPUs can be considered as an automatic process which takes

the schematic evolution model and the affected IPU list as input and modifies the IPUs

accordingly based on the predefined processes. When the schematic evolution is an addition to

the attribute, relation and database level, human intervention is required to integrate the

newly-added attributes, relations and databases into the IDS by following the process described

in chapter 4. Other types of schematic evolution can be automatically handled without human

intervention through the corresponding processes described above, although under the

circumstance of removal to the attribute and relation level, the affected IPUs may finally be

disposed of.

6.4.3 Schematic Evolution Handling Services

As introduced in section 6.3.2, the evolution handling for organizational evolution is realized

through adding a new function right before the first step of the user query processing: the target

data sources filtering. Different from handling organizational evolution, schematic evolution

handling is realized through the evolution handling services as introduced in section 3.5.3.

Conceptually, data sources identify the schematic evolution occurring in them; they represent the

evolution by using the data model described in section 6.4.1.2 and send the model to the

evolution handling service. The service takes the schematic evolution data model as its input and

applies automatic modifications onto the IPUs of the IPSs based on the processes defined in

section 6.4.2.2. The service consists of a Locator and a Modifier, the Locator actualizes the

process of affected IPU identification and the Modifier actualizes the process of affected IPU

modification. In practice, multiple instances of the evolution handling services may be

 115

implemented for enhancing efficiency.

6.5 Summary

This chapter described the process for automatically handling the organizational evolution and

schematic evolution. The process is a simulation of human effort. Through identifying the

evolution, the affected parts of the IDS can be identified. Since the IDS is built on the

organizational structure and the IPU mechanism which is realized through DAGs, automatic

modifications can be applied based on the predefined processes.

Chapter 7 presents an experimental implementation of the SLEDI, various issues related to the

design and the implementation are discussed, followed by a short evaluation.

 116

Chapter 7 Experimental Implementation

7.1 Introduction

Chapter 6 presented the evolution handling in the SLEDI. Through delineating the processes of

identifying and solving the various types of evolution, the description of the SLEDI solution and

all the algorithms were completed.

This chapter presents the experimental implementation of the SLEDI solution. Various technical

issues of the implementation are discussed including the design of each service, the system

architecture and the developing and testing environments.

7.2 Services and Processes of the SLEDI

As introduced previously, the SLEDI follows the DaaS approach. The data models and

algorithms of the three processes: data source describing, query processing and evolution

handling which are described in chapter 4, 5 and 6, are realized through a set of services. This

section illustrates the constituent components of the services and how the three processes are

accomplished through the collaborations among the services.

7.2.1 Services

As introduced in section 3.5, the services of SLEDI conceptually include Information Provision

Service (IPS), Registry Service (RS), Broker Service (BS) and Evolution Handling Service

(EHS). Each conceptual service plays a certain role in the general architecture of SLEDI and

cooperates with the other services to achieve the data integration from autonomous and evolving

data sources.

7.2.1.1 Information Provision Service

Chapter 4 described the IPUD algorithm which organizes the data provided by a data source into

a set of IPUs. Through the global definitions and the local definitions, the IPUs build up a

mapping between the application domain ontology and the local database schema of the data

source. As the IPUs are accommodated by an IPS, an abstract data model is created which

contains the mapping and the local database schema. And the data model is realized as the

metadata of the IPS which is illustrated in the figure 7-1 below:

 117

Figure 7-1 Metadata of the IPS

The metadata can be regarded as a conceptual data store and may be realized through databases

technologies such as a relational database, xml file and etc. The global definitions explicitly

describe what data this IPS provides, thus need to be exposed for the Broker Service to access.

On the other hand, the local database schema and the local definitions are used to construct

results data to respond to the service invocations sent from the Broker Service hence are only

accessed by the IPS itself. Thus the IPS publishes its service description which contains the

global definitions into the central Registry Service for the Broker service to access.

7.2.1.2 Registry Service

Registry is a central role in SOA (see section 1.3.2). It maintains a central repository for service

provider (e.g. IPS) to describe what service it provides and how others can invoke the service

through the service description. The service consumer (e.g. BS) accesses the repository to

discover the services which satisfy its requirements and interacts with the services through

message exchanging. In SLEDI, the Registry Service contains a registry and an interface where

the registry is a conceptual data store and the interface manages the access activities conducted

onto the registry from other services. The data elements of the registry include Application

Domain Ontology, Organizational Structure, IPS Service Descriptions and Organizational

Evolution which are illustrated in the figure 7-2 below:

 118

Figure 7-2 Registry of the Registry Service

As introduced previously, the application domain ontology models the salient real world objects

hence provides an explicit representation of the application domain (see section 4.3). The

organizational structure describes how the participating data sources are organized in the

structure of DAG. (See section 4.5.2). The organizational evolution keeps all of the atomic

organizational evolutions which have ever occurred (see section 6.3.1). Thus by accessing the

data elements of the registry, the Broker Service can find the relevant IPSs and communicate

with them to construct proper results data hence answering the queries from end users.

7.2.1.3 Broker Service

The Broker Service plays the role of the user interface of the SLEDI. It firstly accepts the queries

from end users, then accesses the data elements of the registry introduced in the previous section

to discover the relevant IPSs who can provide the answers to the queries. Then it generates the

service invocations by accessing the service descriptions of the IPSs and executes the service

invocations through exchanging the messages with the IPSs. Finally, the Broker Service collects

the results data of the service invocations and combines them together to construct the final

results data to answer the queries.

Conceptually, the Broker Service may have to access all the data elements of the registry for

answering a single user query. This may lead to frequent data exchanging between the Broker

Service and the Registry Service, whilst retaining all the data elements in the registry separates

the data and the processing activities of user query answering. Hence only one copy of the data

elements needs to be maintained in the SLEDI. Furthermore, the Broker Service and the Registry

Service may be implemented through multiple instances and the implementation can be easily

replaced with a different version.

 119

7.2.1.4 Evolution Handling Service

As introduced in Chapter 6, the organizational evolutions are handled through firstly identifying

the organizational evolutions occurring and recording them into the organizational evolution data

element of the registry. And then, the organizational evolutions are solved through the

sub-process of query processing to rewrite the user queries which are composed against an old

version of organizational structure into equivalent queries with respect to the current version of

the organizational structure. Thus the organizational evolution is actually carried out by the

Broker Service during the query processing.

The schematic evolutions are handled by firstly identifying each schematic evolution which

occurs. The schematic evolution identifying is carried out through the administrator of the data

source to describe the evolution using the data model of schematic evolution (see section 6.4.1.2).

Then, through accessing the metadata of the IPS the data source provides, the IPUs whose local

definition and global definition are affected by the evolution can be located. Finally, the

schematic evolution is solved through applying modifications on the metadata. Hence the

Evolution Handling Service of the SLEDI is actually specialized in solving the schematic

evolution. Each data source hosts an EHS which is invoked by the administrator and

communicates with the IPS and RS to accomplish the schematic evolution handling.

7.2.2 Processes

The data source describing process results in the establishing of the IPSs. The process of query

processing and evolution handling are carried out through the internal processing of the BS, IPSs,

RS and EHSs and the collaborations among them.

7.2.2.1 Query Processing

Chapter 5 introduced the process of query processing consisting of three sub-processes: Data

Source Filtering, Query Rewriting and Result Generating. Since the query processing of data

integration from distributed data sources is a research area covers many research issues, and the

focus of this research is to provide a solution dealing with the evolution of the participating data

sources during the data integration, only the parts which are relevant to the evolution are

considered. The components of the services and the collaborations among the services for

achieving the query processing are illustrated in the Figure 7-3 below:

 120

U
se

r Q
u e

rie
s

Fi
na

l R
es

ul
t D

at
a

Serv
ice

 in
voca

tio
ns Service Invocations

Figure 7-3 Service collaborations for query processing

Each sub-process of the query processing is delivered through one or more components of the

services and may involve collaborations among the services as shown above:

1. Data Source Filtering: this sub-process is realized by the Query Convertor component of the

Broker Service and the collaboration between the Broker Service and the Registry Service.

Once a user query is passed to the Broker Service, the Query Convertor parses the query,

communicates with the Registry Service to find out the information of organizational

evolution and organizational structure, then the IPSs provided by the targeting data sources

specified in the user query are determined.

2. Query Rewriting: this sub-process is also carried out by the Query Convertor and the

collaboration between the Broker Service and the Registry Service. Through communicating

with the Registry Service, the global definitions in the metadata of the IPSs which are

filtered out in the previous sub-process are collected. Then the user query is further rewritten

into subqueries in terms of the collected global definitions by using the query rewriting

technique.

3. Result Generating: this sub-process is achieved through the Service Planner and the Service

Plan Executor components of the Broker Service, the Data Generator component of the IPS

 121

and the collaborations among the Broker Service, Registry Service and the IPSs. After the

subqueries are produced in the previous sub-process, the Service Planner communicates

with the Registry Service to convert each global definition of a subquery into a service

invocation through parsing the service descriptions of the IPS which contains the IPU that

the global definition belongs to. Then the Service Plan Executor sequentially executes the

service invocations by sending messages to the corresponding IPS. When the IPS receives

an invocation, the Data Generator parses the message to determine which IPU the

invocation requires, and then accesses the metadata to find out the corresponding local

definition and the local database schema to compose a local database query. The Data

Generator then conducts the local query onto the database of the data source to generate the

results data and send the results data back to respond to the Service Plan Executor. Finally,

the Service Plan Executor collects the results data of each service invocation and combines

them together to answer the user query.

The conceptual services can certainly be extended by having multiple instance implementations

in practice.

7.2.2.2 Schematic Evolution Handling

Chapter 6 introduced the process of Schematic Evolution Handling which consists of two

sub-processes: Evolution Identification and Evolution Solving. The components of the services

and the collaborations among the services for accomplishing the Schematic Evolution Handling

are illustrated in the figure 7-4 below:

Key

Services

Component

Data Store

Information Flow

Registry Service

InterfaceRegistry

IPS

Data Source
(DS1)

Data Generator Metadata

EHS

Locator

Modifier
IPS

Data Source
(DSn)

Data Generator Metadata

EHS

Locator

Modifier

 Figure 7-4 Service collaborations for Schematic Evolution Handling

 122

1. Schematic Evolution Identification: this sub-process is delivered by the invocation of the

EHS from the data source administrator. Once a schematic evolution occurs in the database

of a participating data source, the administrator describes the evolution using the data model

of schematic evolution described in section 6.4.1.2 and then invokes the EHS by sending

messages containing the description of the evolution and the updated local database schema.

2. Schematic Evolution Solving: this sub-process is carried out by the Locator and Modifier

components of the EHS and the collaborations among the EHS, IPS and the Registry

Service. Once the EHS is invoked, the Locator parses the message and accesses the

metadata of the IPS to determine the local definitions and global definitions which are

affected by the evolution based on the algorithm described in section 6.4.2.1. After that, the

Modifier conducts modifications onto the metadata by firstly updating the local database

schema and then modifies the affected local and global definitions according to the

algorithm. If a global definition is modified, the Modifier is then sending messages to the

Registry Service to refresh the registry in order to update the IPS description.

Conceptually, the administrator of the data source invokes the EHS for handling the schematic

evolution. The EHS then modifies the metadata of the IPS and may communicate with the

Registry Service if the service description of the IPS is changed. The EHS may be implemented

by multiple instances in practice.

The four conceptual services may be implemented variously in different contexts to better fulfil

the system requirements. One conceptual service may be implemented by multiple services

instances and two or more conceptual services may be combined into a single service instance.

For example, in the experimental implementation of this research, the EHS is segmented into two

parts, one part is combined with the Registry Service and another part is combined with the IPS

to produce Data Service (DS). The details will be illustrated in the following sections.

7.3 Experimental System

Since the SLEDI is a solution for integrating data from autonomous and evolving data sources, it

is impractical to implement a complete data integration system based on the SLEDI in a single

research by a single researcher, because it may involve research issues which fall beyond the

boundaries of this research such as the security issues of data integration, query translation, query

optimization and etc. Consequently, an experimental implementation of SLEDI is implemented

for conducting the evaluation of this work. The methods presented in the preceding chapters are

embodied in the experimental system. The system is referred to as Service Late Binding Enabled

Data Integration System (SLEDIS) for convenience.

As introduced previously, the experimental system is in the mental health application domain.

 123

Since the SLEDI is a service based solution, the experimental system is developed by employing

the SOA architecture and Web Service technologies. Thus the Service-Oriented design and

development method introduced in [68] is used for developing the SLEDIS. The conceptual

services presented in section 7.2.1 can be roughly considered as the result of the service design

phase which explicitly describes the business process each conceptual service intends to

accomplish. The following phase of the development is the service specifying. Through

considering the service coupling, service cohesion and service granularity, it explicitly designates

the structural and behavioral specifications of the services such as input and output messages,

port types and operations. Thus some conceptual services are coupled as a single service and

some processes are combined as a single operation. Consequently, the phase of service specifying

results in the abstract definition of the WSDL of each service. The following parts of the WSDL

are described:

 definition of all service operations

 definition of input and output messages of each operation

 definition of associated XSD schema types used to represent message payloads

7.3.1 Specification of the Services

7.3.1.1 Broker Service

As mention previously, the Broker Service intends to accomplish query processing through three

sub-processes: Data Source Filtering, Query Rewriting and Result Generating, while the

Organizational Evolution Solving is embedded in the Data Source Filtering. During the designing

of the experimental system, the three sub-processes are combined into one operation:

QueryAnswering. Because the communications between services are realized through SOAP

messages, the data types of the input and output messages of the operation are defined based on

XML Schema Definition (XSD). Table 7-1 shows the result of the service specifying of the

Broker Service.

Input (Request Message) Output(Response Message) Operation

Message Name Type Message Name Type

QueryAnswering QueryRequest xsd:String QueryResponse xsd:complexType

Table 7-1 design of the Broker Service

It is observed that the three sub-processes are working sequentially while the input of the Query

Rewriting and Result Generating are dependent on the output of their preceding sub-processes;

hence the sub-processes are unlikely to be accessed by other operations individually. By applying

the principle that a service should be designed with the characteristics of loose coupling,

reusability and autonomy, the operation QueryAnswering is produced through combining the

 124

three sub-processes. The input and output messages of the QueryAnswering are also defined in

XSD schema. The input message is an xsd:string which is a primitive data type defined by W3C

[98]. The message describes a query raised by end users in the form of a conjunctive query over

the relations in the application domain ontology. The output message is in the format of

xsd:complexType to store the results data for answering the input user query.

One of the problems of a data-intensive service is exchanging the results data of a query between

services. The results data cannot be encapsulated into SOAP directly because the results data is

normally in the form of relation instances like a two-dimensional table, whereas the messages

between the services are in the form of SOAP. Therefore, the results data must be transformed so

that it can be carried by SOAP messages. The DataSet is a data format which is supported by

the .NET Framework and can be used to store the relation instances. More importantly, it can be

serialized into XML format and loaded into the body of SOAP messages. Therefore, the results

data of each query is stored in the format of DataSet and automatically serialized as the

QueryResponse message of the Broker Service. Since the serialization process is automatically

managed by .NET Framework, the details of the xsd:complexType of the output message are not

discussed further.

7.3.1.2 Data Service

As introduced previously, each data source provides an Information Provision Service at its own

site, and the schematic evolution handling process is triggered by the administrator of a data

source and carried out through modifying the metadata of the corresponding IPS. By applying the

same principle used in the design of the Broker Service, a Data Service is designed for each of

the participating data sources. The Data Service combines the functions of the IPS and the

schematic evolution handling process of the EHS. Consequently, the metadata in the IPS is

adopted into the Data Service. The operations of InformationProvision and

SchematicEvolutionHandling are produced to implement the functions respectively. Table 7-2

shows the result of the service specifying of the Data Service.

Input (Request Message) Output(Response Message) Operation

Message Name Type Message Name Type

InformationProvision InfoRequest xsd:String InfoResponse xsd:comple

xType

SchematicEvolutionHandling SEHRequest xsd:comple

xType

SEDResponse xsd:String

Table 7-2 design of the Broker Service

The operation of InformationProvision is similar to the QueryAnswering operation of the Broker

Service. Both of them take a query described in the string data type as the input message and

 125

return the results data in the format of xsd:complexType for answering the query. The difference

is that the input message of the Broker Service represents the user query whereas the input

message of a Data Service represents a subquery resulting from the query rewriting sub-process

which is carried out by the Broker Service. The InformationProvision operation of a Data Service

is normally invoked by the Broker Service and the QueryAnswering operation of the Broker

Service is usually invoked by an end user.

The operation of SchematicEvolutionHandling is directly derived from the schematic evolution

handling process. The input message is a complex type defined in XSD schema which represents

the schematic evolution description. Due to the limited space of the thesis, only partial definition

of the complex type is shown below, all the trivial details such as name space definitions are

omitted. This style is also applied to other complex type definitions in the rest of this chapter.

<xsd:element name=”SEHRequest”>

<xsd:complexType>

<xsd:sequence>

<xsd:element name=”SchematicEvolutionType” type=”xsd:string”/>

<xsd:element name=”SchemaEvolutionDescription” type=”xsd:string”/>

 </xsd:sequence>

</xsd:complexType>

</xsd:element>

The first element of the input message is a string to describe the type of the schema evolution

(e.g. “Attribute Removal”), while the second element of the input message is a string that

represents the schema evolution description (e.g. “(Relation1, Attribute1)”). The output message

is also a string that represents the status of the execution of this operation (e.g. “successful” or

“fail”).

7.3.1.3 Registry Service

The Registry Service is derived directly from the conceptual Registry Service. It maintains its

metadata (i.e. the registry) and provides an Interface for other services to communicate with. The

interface is composed through three operations: GetReg, GetIPSDescription and IPSEvolution.

Table 7-3 shows the result of the service specifying of the Registry Service.

Input (Request Message) Output(Response Message) Operation

Message Name Type Message Name Type

GetReg RegRequest xsd:String RegResponse xsd:complexType

GetIPSDescription IPSDRequest xsd:String IPSDResponse xsd:complexType

 126

IPSEvolution IPSERequest xsd:complexT

ype

SEDResponse xsd:String

Table 7-3 design of the Broker Service

As mentioned previously, the metadata of the Registry Service maintains the four data items:

application domain ontology, organizational structure, organizational evolution, and IPS

descriptions. The operation of GetReg is produced for other service to get access to the first three

data items as these data items are normally required to be fully retrieved instead of partially

retrieved. The operation is usually invoked by the Broker Service. The input message of the

operation is a string to specify which data item the Broker Service intends to retrieve. The output

message is a complex type which represents the retrieved data item to respond to the invocation.

The operation of GetIPSDescription is designed for retrieving the location of the IPS and the

global definition of the IPUs which are associated with the IPS. The input message of the

operation is a string to represent the name of the IPS that the Broker Service intends to retrieve.

The output message is a complex type which represents the retrieved IPS description. The details

of the complex type for each data item will be discussed in later sections.

The operation of IPSEvolution is derived from part of the schematic evolution solving process.

As introduced in section 6.4.2.2, the global definition of the IPUs may require modification under

some circumstances. Since the global definition of the IPUs are embedded in the IPS descriptions

and the registry maintains all the IPS descriptions. The IPSEvolution operation is designed for

modifying the IPS descriptions. The input message of the operation is a complex type which is

shown below

<xsd:element name=” IPSERequest”>

<xsd:complexType>

<xsd:sequence>

<xsd:element name=”IPSName” type=”xsd:string”/>

<xsd:element name=”IPUName” type=”xsd:string”/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

Since the only modification action applied onto a global definition is to delete it (see section

6.4.2.2), the first and the second elements of the input message are both strings to respectively

specify the names of the IPS and the IPU which are associated with the global definition

requiring deletion.

 127

7.3.2 Architecture of the SLEDIS

The previous section introduced the service design of the SLEDIS by following the

Service-Oriented design method. Since the service design only cover the abstract definition of the

services, this section describes the design of the internal components and process of each services

based on the Object-Oriented design method. Figure 7-5 shows the architecture of the SLEDIS in

terms of its databases, services and the clients. The diagram demonstrates the internal classes and

process of the Broker Service, Data Service and Registry Service. The input and output messages

of each service and the messages exchanging activities are omitted

+DataSourceFiltering()
+QueryExpansion()
+ResultConstruction()

-Head
-Subgoals
-Targeting Sources

UserQuery

+QueryDecomposition()
+ResultConstruction()

-Head
-Subgoals

ResultingQuery

+GetResult()

-Head
-IPSName
-IPUName

AtomicQuery

+GetOntology()
+GetOrganizationStructure()
+GetOrganizationalEvolutionDescription()
+GetGlobalDefinitions()
+GetIPSName()
+GetIPSLocation()

-OrganizationalStructure
-OrganizationalEvolutionDescription
-GlobalDefinitions

GlobalDefinitions

Broker Service

+GetResultData()

-IPUName
-Head

Query

+Retrieve()
+Update()
+SubgoalCreation()
+SubgoalDeletion()
+SubgoalModification()
+SQLConstruction()
+SQLExecution()

-Head
-Subgoals
-Assignments

ConjunctiveQuery

+Retrieve()
+Update()()
+ResultDataCreation()

-IPUName
-RootView
-IntermediateViews
-BasicViews
-LocalSchema

LocalDefinition

+Retrieve()
+Update()
+ViewCreation()
+ViewDeletion()
+ViewModification()
+ViewContentCreation()

-Head
-ConjunctiveQueries
-Dependency

View

+SchematicEvolutionSolving()
-SchematicEvolutionDescription

SchematicEvolutionSolving

Data Service

Metadata

Local
Database

+Retrieve()
+Update()

-IPSName
-GlobalDefinitions
-ServiceLocation

IPSDescription

+Retrieve()

-DomainOntology
-OrganizationalStructure
-OrganizationalEvolutionDescription

OntoAndOrg

Registry Service

Registry

Client (Web page)

 Figure 7-5 Architecture of the SLEDIS showing classes and databases

This architecture reflects the design of the services in SLEDIS.

 128

 In the Broker Service, the classes of UserQuery, GlobalDefinitions, ResultingQuery and

AtomicQuery encapsulate the sub-processes of Data Source Filtering, Query Rewriting and

Result Generating.

 In the Data Service, the classes of Query, LocalDefinitions, View and ConjunctiveQuery

encapsulate the results data construction for answering the subqueries delivered to the Data

Service. The SchematicEvolutionSolving class and the LocalDefinition class encapsulate the

part of the schematic evolution solving process which is performed for modifying the local

definitions.

 In the Registry Service, the OntoAndOrg class and the IPSDescription class provide the

information for the Broker Service to perform the query processing. The IPSDescription

class encapsulates the part of the schematic evolution solving process which is performed

for modifying the global definitions.

In the implementation, a web page is developed to accept user queries and display the results data

obtained from the Broker Service. The Metadata in the Data Service (i.e. the metadata in the IPS)

and the Registry in the Registry Service are implemented in XML data format. The local database

represents the actual DBMS of the data source. The above design of the SLEDIS has also been

influenced by a number of considerations:

1. Service Reusability: All the Data Services have the unified operations which receive

subqueries delivered from the Broker Service in the format of a string. Hence when

new databases need to be published as Data Services, no programs are required.

2. Service Loose coupling: The Broker Service implements most of the business logic of

the query processing while maintaining no metadata. Hence the Broker Service can be

implemented by multiple instances and each instance can be easily substituted by a

different implementation.

3. Optimization of results data construction: Data Service not only maintains the local

definitions, but also builds materialized views to help the results data construction.

7.3.3 Metadata structure and management

As introduced previously, both Data Service and Registry Service have their own metadata which

contains a number of data elements. The metadata are realized in XML format through XML files

and managed at the sites of the corresponding services. The structure of the metadata is

illustrated through the XSD schemas in the following figures. Due to the limited space of the

thesis, only some parts of the metadata structure are depicted in the following figures for

demonstration purpose.

 129

Figure 7-6 The Rule component of the application domain ontology

Figure 7-7 Global Definition

Figure 7-8 Local Definition

As introduced in chapter 4, the application domain ontology contains the terminology part and

the rule part. The terminology constitutes description logic expressions and is realized through

 130

Web Ontology Language (OWL). The OWL is a specification developed and recommended by

W3C to represent DL based ontology and RDF/XML based serialization of the ontology. The

details of OWL can be found in [66]. The rule part of the application domain ontology,

organizational structure and organizational evolution is realized as XML format and the XSD of

the rule part is depicted in figure 7-6. Similarly, the global definition and local definition of the

IPUs are also implemented in XML format and the XSD schemas of them are depicted in figures

7-7 and 7-8 respectively.

The software tool XML Notepad 2007 is used to build the metadata. Although various XML

editing software tools are available for helping to build the metadata, they can only provide

simple help with editing the metadata, the content of the metadata must be constructed and

validated manually before being realized into the XML files. The metadata constructing would

need to be rectified if the system were released for large-scale use. However, the current situation

is acceptable for the evaluation purpose.

7.3.4 Development and testing environment

As introduced previously, the experimental implementation system SLEDIS implements the

SLEDI solution to integrate participating databases in the mental health application domain. The

SLEDIS implements the Broker Service, Registry Service, and Data Services and runs on

Microsoft Windows XP professional operating system. The development of the SLEDIS was

undertaken in the following environment:

 Integrated Development Environment (IDE): Microsoft Visual Studio 2008

 Programming Language: C# 2008

 Programming Platform: .Net Framework 3.5

 Web Service developing toolkit: ASP.Net 2008

 Web Server: Internet Information Service (IIS) 5.1

 Database Management System: Microsoft SQL Server 2005

The IDE is supported by the .Net framework which is a software framework released by

Microsoft. It includes a large library of code solutions and a Common Language Runtime (CLR)

infrastructure to manage the execution of the programs written in various programming

languages that .Net framework supports. The IDE was chosen for several reasons:

 It is currently a major IDE for supporting developing web service based software solutions.

 It supports a number of programming languages (e.g. C#) for the developer’s convenience.

 It provides a development and runtime environment which major components of the web

service such as WSDL and SOAP message can be easily realized.

 Database connectivity is very well supported.

 Easy testing and debugging are supported by the friendly user interface of the IDE.

 131

C# is a programming language developed within the .Net initiative by Microsoft hence is well

supported by the .Net framework. It supports multiple programming diagrams such as

Object-Oriented Programming (OOP), hence can be used to realize the design of the services as

introduced in section 7.4.2. ASP.Net is a web application framework developed based on the

CLR to allow programmers to build web related applications such as web sites and web services.

It allows programmers writing ASP.Net code using any of the programming languages supported

by .Net such as C#. Furthermore, ASP.Net supports the processing of the web service

components such as WSDL and SOAP hence allowing easy development and deployment of the

web services.

In addition, the SLEDIS was tested under the following hardware environments:

 Computer: Two desktop PCs with the same hardware configuration

 Processor: Pentium 4 (3.20 GHz)

 RAM: 2 GB

 Hard Drive: 320GB

The two PCs were connected through a local Ethernet network running at 10 megabytes per

second (10Mbps). One PC was used to host all the Data Services and publish the service

descriptions into the registry. Another PC was used to host the Broker Service and the Registry

Service.

7.3.5 Implementation of the Services

This section introduces the implementation of the services through describing the designed

classes and methods of each service, as illustrated in figure 7-5 in section 7.3.2

7.3.5.1 Registry Service

In a typical scenario of web service interaction, the Registry maintained by the Registry Service

only hosts the service descriptions of the services (i.e. the data services in the case of SLEDI).

The Registry in SLEDI also contains the application domain ontology, organizational structure

and organizational evolution. Thus the Registry Service also needs to provide assistance for other

services to access that information. The following classes are designed:

 OntoAndOrg: this class represents the data elements of the application domain ontology,

organizational structure and the organizational evolution stored in the Registry. It provides a

method for retrieving the data elements and will be invoked by the Broker Service.

 IPSDescription: this class represents the description of Data Service stored in the Registry.

It is responsible for retrieving and updating the descriptions. The retrieving will take place

when it is invoked by the Broker Service to obtain location and global definitions of a Data

 132

Service. The updating will be performed when it is invoked by a Data Service when the

name, location and global definitions of the Data Service require modification.

Only one Registry Service is implemented; other services can perform the actions of service

publishing and discovering through invoking the Registry Service. The invocation is realized

through knowing the service description of the Registry in advance and binding to the service in

hard coded programs.

7.3.5.2 Broker Service

The Broker Service may have multiple instances in practice and the following classes are

designed:

 GlobalDefinitions: this class represents the data elements retrieved from the Registry

Service. It has two roles to play. The first role is to retrieve the application domain ontology,

organizational structure and organizational evolution for the data source filtering process to

use. The second role is to retrieve the service descriptions of the relevant Data Services

determined by the data source filtering.

 UserQuery: this class represents a user query received from an end user through the user

interface (a simple web page in this case). It has three methods of performing the processes

of data source filtering, query expansion and result construction.

 ResultingQuery: this class represents a resulting query produced by the query expansion. It

is responsible for decomposing the resulting query into subqueries and the results

construction of the resulting query.

 AtomicQuery: this class represents a subquery produced by the resulting query

decomposition, where each subquery corresponds to a global definition. It is responsible for

invoking the corresponding Data Service to obtain the results data of the subquery.

As the case study aims to examine whether SLEDIS can solve the evolution problems, the

parallel query processing is not considered in the implementation. In addition, the query

rewriting algorithm described in chapter 5 is implemented without considering the optimization.

After the resulting queries are produced, each resulting query is decomposed into subqueries

where each subquery corresponds to the global definition of a single IPU and is referred to as an

atomic query. The atomic queries are evaluated sequentially through invoking the Data Service

the IPU corresponds to. The results data of each resulting query is obtained through combining

the results data of all its subqueries into a temporal data table. After the resulting queries are

evaluated in turns, the final results data of the user query can be constructed in the same way.

Although this may increase the data transferred between the Broker Service and the Data

Services, it enables the investigator to check whether each Data Service is able to provide the

correct results data especially in the circumstances of schematic evolution occurring.

 133

7.3.5.3 Data Service

Each participating database implements one Data Service and all the Data Services have the same

service interfaces and classes, as introduced previously. The following classes are designed:

 LocalDefinition: this class represents the local definition of an IPU stored in the metadata of

the Data Service. The result data corresponds to the local definition is maintained as a

materialized view in the local database. This class is responsible for retrieving the view data

to respond to the requests from the Query class and updating the view data to respond to the

requests from the SchematicEvolutionolving class.

 Query: this class represents the atomic query sent from the Broker Service through service

invocation. It is responsible for accessing the corresponding local definition based on the

IPU name specified in the atomic query and sending the results data back to respond to the

service invocation.

 View: this class represents a view defined in the local definition. It is responsible for

maintaining the definition and the content data of the view.

 ConjunctiveQuery: this class represents a conjunctive query of a view. It is responsible for

maintaining the definition and the results data of the conjunctive query. The results data is

produced through constructing an SQL query based on the definition of the conjunctive

query and evaluating the SQL query against the local database.

 SchematicEvolutionovling: this class is responsible for implementing the schematic

evolution handling processes. It locates affected local definitions based on the schematic

evolution descriptions provided by the local database administrator. It then applies the

modifications based on the algorithms described in section 6.4.2.2

As introduced previously, the complete translation of an arbitrary conjunctive query into an SQL

query, which can be evaluated directly against the local databases, can be very complex hence is

not suitable for this single case study. Therefore, each view in the local definition is materialized

and maintained in the local database. As a consequence, each subgoal of a conjunctive query is

assigned to either a schema relation or a materialized view. Thus constructing a

“select-from-where” SQL query from the conjunctive query is much easier to undertake.

Although it requires more space in the local database to store the views and the views may need

to be rebuilt after local definition is modified, the atomic query sent from the Broker Service can

be answered more efficiently as the results data are already maintained in the root view of the

corresponding local definition. Furthermore, it is easier for the investigator to check whether the

views are still providing the correct results data after the schematic evolution handling has taken

place.

 134

7.4 Test Data

After the experimental system is successfully developed, the SLEDIS can be applied into a

specific application domain to further conduct the evaluation of the solution. As introduced in

section 2.6, the mental health application domain demonstrates the data integration requirements

with the evolution and heterogeneity problems, as defined in chapter 1. The patient information is

held by different data sources such as hospitals and social services. The data sources realize the

information in different database schemas and store the information in their own local databases.

In addition, the data sources are organized by their geographical locations. Applying the SLEDIS

into the application domain aims to allow end users to find the patient information from the

various entities. Thus whether the SLEDI solution can solve the evolution and heterogeneity

problems it is designed for can be examined through the case study which will be discussed in

details in the next chapter.

In order to conduct the case study, the test data from the mental health domain is designed for the

case study. It is assumed that every data source realizes the patient information in its own

database schema. The patient information is represented in the E-R model and illustrated in the

following graphs:

Patient

Patient_ID Name

Gender Age

Care
Service

Service-ID

Class Address

Diagnosis

Main
Diagnosis Level

StaffStaff_ID

Name Category

Treatment Type

Cost Spell

Patient-
Care

1

1

Patient-
Staff

1

1

Patient-
Diagnosis

1

1

Patient-
Treatment

1

1

Figure 7-9 The E-R model of Patient Information

 135

Figure 7-10 Subclasses of Patient Information

As shown in figure 7-9, the patient information involves five entities, four relationships and a

number of attributes. A patient may attend a care service and the care service may be a hospital or

a social service represented by the attribute “class” of the care service. A patient may be assigned

to a staff who may be a doctor or a social worker. In addition, a patient may be associated with a

diagnosis and a treatment. The diagnosis identifies the illness of the patient through the main

diagnosis and the level of severity. A treatment has an attribute spell to describe the treatment

activities have been taken by the patient in a certain period of time. The patient entity has two

subclasses indicating whether a patient is either an adult patient or a child patient, as shown in

figure 7-10.

The patient information is realized in the application domain ontology and a number of different

local database schemas. The details will be illustrated in the next chapter. Although the test data

is much simpler than the practical situation, it is able to cover the heterogeneity and evolution

problems defined in this thesis thus is enough for the case study. The design of the test data is

influenced by a number of considerations:

 The information modelled (i.e. the patient information) should be general information in the

application domain which can be understood by the data sources in the domain and may be

managed in the participating databases.

 Each data source realizes the general information into its own local database schema

differently. The local database schemas should be able to cover all the heterogeneities

defined in section 1.2.3.

 An evolution plan should be designed to cover various types of evolution defined in this

research and to perform each evolution onto different databases to cover many possible

cases.

 A set of user queries should be devised to examine whether the relevant Data Service for

 136

answering the queries can be correctly found and the results data can be correctly

constructed especially after the evolution handling has taken place.

Due to the nature of the evolution problems, the evolutions of the participating databases are

manually conducted. Plain text log files are also used to store the outputs of each process and to

compare them with the pre-defined correct answers in order to obtain the results for the measures.

The details of the test data and the case study will be further discussed in the next chapter.

7.5 Evaluation of the Implementation

This section discusses some of the issues arising from the implementation of the experimental

system SLEDIS. The SLEDI solution itself will be evaluated in the next chapter.

7.5.1 Design Evaluation

The methods of using the Service-Oriented approach for designing the service specifications and

the Object-Oriented approach for implementing the services have been proved effective. The

system architecture has not been changed for any version of the SLEDIS although some of the

methods of the classes have been modified over time. The Service-Oriented approach helps to

clearly specify the operations and messages of the services correctly hence reducing the

modification effort afterwards. The Object-Oriented approach helps to accurately design the

internal structure of each service. Because the SLEDIS is implemented using C# which is an

Object-Oriented programming language, the programming effort are also reduced thanks to the

design. Furthermore, the design also mitigates the programming effort for expanding the system

through adding more data services.

There were some disadvantages, in particular, the implementation of the query processing. The

implementation of the query rewriting sub-process considers little optimization; a resulting query

produced from the query rewriting algorithm generates a ResultingQuery object. The large

number of the objects may use more computing resources. However, it made the program elegant

and easy to check whether the correct resulting queries are produced. In addition, each atomic

query is answered through accessing the corresponding data service and all the data services are

accessed sequentially. It may to some extent increase the network communication costs,

especially when the number of the IPUs provided by a data service and/or the amount of the data

services becomes very large. Nevertheless, since the case study is focusing on the evolution

problem, not on the performance, the current situation is acceptable.

Each data service maintains a number of materialized views according to the local definitions of

the IPUs it provides. It may increase the spatial cost of the local database especially when the

 137

local definitions of the IPUs involve more views and/or the number of the IPUs is large. However,

it saves the computational cost on the database connections when obtaining the results data of the

IPUs. Furthermore, no validation check on input data is provided, hence the investigator needs to

ensure the input data is valid. However, it was not a problem after a complete set of test data was

produced.

7.5.2 Test and Validation

Each class was tested individually before being integrated into the system. Slight modifications
were made onto the program code of each class during the testing in order to visualize the input
and output data. Since the interactions between the classes are sequential (i.e. the output of a
class is used as the input of another class), the classes were tested in sequence. Consequently,
there were very few problems found during integrating the classes into the system. In addition,
each service was also tested though checking its input and output messages. The checking was
mainly undertaken through verifying whether the output of a class or a service was as expected.
For example, the resulting queries produced from a user query and the data services found
relevant to a resulting query were compared with a manually performed analysis. The modified
views in the local definition conducted by the evolution handling process were compared to the
results produced by hand.

The UserQuery class and the GlobalDefinitions class of the Broker Service, and the
LocalDefinition class of the Data Service were checked through using the debugging tools
provided by the IDE due to their complexity. It helped to display the state of the various fields at
the appropriate points during the executions. Single-step debugging was also used to verify the
correctness of the implementation of the algorithms. SQL queries were also printed out to ensure
the correctness before its execution. Although it is not feasible to test the QueryExpension of the
UserQuery class with a large number of data services, the experiments with the well designed
typical test data are enough to confirm the correctness of the query expansion even with a large
number of data services.

7.6 Summary

This chapter has presented the design of the architecture and the services of the experimental

system (i.e. the SLEDIS). Various technical issues relating to the design and implementation of

the SLEDIS were discussed and a short evaluation of the implementation was also presented.

Chapter 8 presents an extensive evaluation of the SLEDI solution. The algorithms of the SLEDI

are evaluated through verifying the results of the case study. The main focus is on the capability

of solving the evolution and heterogeneity problems. Various other characteristics of the SLEDI

are also discussed.

 138

Chapter 8 Evaluation

8.1 Introduction

Chapter 7 described an experimental implementation system SLEDIS, various issues related to

the implementation of the system, such as the design of the architecture, the services and the

metadata structure were discussed.

This chapter presents an extensive evaluation which covers various characteristics of the SLEDI

solution. The evaluation is conducted through firstly defining the research questions and

corresponding propositions of the case study and then obtaining the results of the measures to

examine the propositions. The results are then discussed.

8.2 Case Study

For the purpose of evaluating the SLEDI solution presented in this research, a single case study

has been conducted in the Mental Health application domain based on the experimental

implementation system. Case study is a research method which is commonly applied in social

science research and can be adopted in software engineering field [48, 47]. Some pioneering

researches have presented general guidance on how to apply the case study method appropriately

to software engineering research [48].

8.2.1 Context and Analysis Unit

Since the purpose of this case study is to evaluate the SLEDI solution for integrating data from

autonomous and evolving data sources, the objective is to investigate whether the SLEDIS is able

to solve the evolution problems defined in this thesis while integrating data from distributed and

heterogeneous databases. It is assumed there are various entities in the mental health application

domain such as hospitals, social services and etc. Each entity provides partial information about

patients such as their names, addresses, diagnoses and etc. The entities are organized by their

geographic locations and each entity is considered as a data source which publishes its database

as a Data Service (DS) and registers the DS into the registry. Thus, the case study is a single

project case study with a single analysis unit. The context and analysis unit of the case study is:

 Context: mental health application domain

 Analysis Unit: the experimental implementation system (SLEDIS)

 139

8.2.2 Research Questions and Propositions

In order to conduct the case study effectively, the research questions and propositions of the case

study have to be clearly defined. The objective of the SLEDI is to provide a solution which is

able to integrate data from distributed and heterogeneous databases while reducing the

maintenance costs caused by the evolution of the participating databases. The main research

questions of the case study are defined below:

 How and why the IPU mechanism can integrate distributed databases with the

heterogeneities defined in section 1.2.3

 How and why the IPU mechanism and the metadata of the IPS can help to solve the

evolution problems defined in this thesis

 How and why the evolution handling process can help to solve the evolution problems

defined in this thesis

 How and why the service based solution (i.e. the SLEDI) can help to solve the evolution

problems defined in this thesis

Based on the research questions, the propositions of the case study can be further defined below:

1. The heterogeneity problems defined in section 1.2.3 can be solved in the data

integration through the IPU mechanism and the query processing.

2. The IPU mechanism and the metadata of the IPS and BS can reduce the modification

effort caused by the schematic evolution occurring in the participating databases.

3. The organizational evolution handling in the query processing can reduce the

modification effort made to the user queries caused by the organizational evolution.

4. The schematic evolution occurring in one participating database will not affect the

metadata of the IPSs provided by other data sources hence the system can still work

properly.

5. The EHS can reduce the cost of the modification effort caused by the schematic

evolution.

6. The service late binding based on the SOA and web service can help to reduce the

maintenance costs caused by the evolution defined in the thesis.

Based on the propositions, the measures for verifying the propositions are defined in the six

tables from 8-1 to 8-6 below. Each table corresponds to one proposition.

Measure Explanation

Correctness of the result. The correctness of the results data constructed

for answering a user query.

Table 8-1 Measure for Proposition 1

 140

Measure Explanation

Number of user queries explicitly specifies the

local database schemas.

The number of user queries which explicitly

specify the actual relations and attributes of the

local database schemas they intend to query

against.

Number of hard coded queries in mappings. The number of hard coded queries established

for integrating the local database schemas of

the participating data sources.

Table 8-2 Measures for Proposition 2

Measure Explanation

Number of user queries explicitly specifies the

participating databases.

The number of user queries which explicitly

specify the actual names of the local database

schemas they intend to query against.

Number of the affected user queries. The number of existing user queries which are

affected by the evolution which occurs.

Table 8-3 Measures for Proposition 3

Measure Explanation

Number of databases considered. The number of participating databases which

need to be considered when a single schematic

evolution occurs.

Table 8-4 Measure for Proposition 4

Measure Explanation

Number of IPUs which require modification

effort.

The number of the IPUs whose local definition

and/or global definition require modification

when a schematic evolution occurs.

Human intervention. Whether an evolution handling process

requires human intervention.

The effort of identifying the IPUs affected. The work to find the IPUs which are affected

by a schematic evolution.

Table 8-5 Measures for Proposition 5

Measure Explanation

The effort of modification on the IPUs. The work to modify the IPUs which are

affected by a schema evolution.

Table 8-6 Measure for Proposition 6

 141

The case study is carried out with the aim of answering the research questions through verifying

the propositions as defined above. Consequently, if the propositions are well supported by the

results of the case study, the SLEDI solution constructed in this thesis is generally considered to

be successful, hence the aim of this research is achieved.

8.3 Overview of the Evaluation

The evaluation begins with one of the most important properties of the SLEDI: the capability of

solving the evolution and heterogeneity problems in the data integration. Since the evolution

problems are set in the context of integrating data from schematic heterogeneous databases as

defined in chapter 1, the capability of solving the heterogeneity problems is evaluated first. Then

the capability of solving evolution problems in the data integration is evaluated, which is the

focus of this research. The issues relating to the query processing are also discussed. The

verification of the propositions is illustrated in detail with the relevant data evidences throughout

the evaluation. Furthermore, some general characteristics of the SLEDI solution such as

scalability, expandability, language independence and application domain independence are also

discussed.

As introduced in section 7.4, a set of test data is designed for undertaking the case study. The

patient information was presented in the E-R model in figures 7-9 and 7-10. Initially, it is

assumed there are four data sources denoted as DS1, DS2, DS3 and DS4. The corresponding

databases of the data sources are denoted as DB1, DB2, DB3 and DB4. Each data source model the

patient information into its local database schema differently. Although only four data sources are

involved, the local schemas of the data sources are designed to cover all the heterogeneity

problems defined in section 1.2.3. Each data source publishes a Data Service for evaluating the

capability of solving the evolution and heterogeneity problems, and then more data sources are

added hence more data services are published to evaluate the scalability of the system. In

addition, the patient information is also modelled in the application domain ontology and the four

data sources are organized into a hierarchy based on their geographical locations. The realization

of patient information in the application domain ontology is shown below for demonstration

purposes (e.g. using conjunctive query instead of the real xml data to illustrate the Rule

component in the application domain ontology). Due to the limited space of the thesis, only some

parts are illustrated:

Atomic Concepts:

{…PatientID, Name, Gender, Age, Adult, Child, MaritalStatus, Guardian, MainDiagnosis,…}

Roles:

{… HasPatientID, HasName, HasGender, HasAge, HasClassification, HasMartialStatus,

 142

HasGuardian, …}

Composite Concepts: {…

Adult ⊑ Classification; Child ⊑ Classification; Adult ∩ Child ⊑ ;⊥

Patient := (=1HasPatientID.PatientID) ⊓(=1HasName.Name) ⊓ (=1HasGender.Gender) ⊓ (=1

HasAge.Age) ⊓ (=1HasClassification.Classification);

AdultPatient := Patient ⊓ ∀HasClassification.Adult ⊓ (=1HasMartialStatus. MaritalStatus);

ChildPatient := Patient ⊓ ∀HasClassification.Child ⊓ (=1 HasGuardian. Guardian);

 …}

Rules: {… ;

Patient-Info(X_PatientID, X_Name, X_Gender, X_Age) :- Patient(X) ∧ HasPatientID(X,

X_PatientID) ∧ HasName(X, X_Name) ∧ HasGender(X, X_Gender) ∧ HasAge(X, X_Age);

…}

Table 8-7 application domain ontology (partial)

The application domain ontology is designed by following the rule introduced in section 4.3.3.3:

that it should be able to represent the general information precisely while allowing the data

sources to easily describe their data.

The local schemas of the data sources are illustrated below:

Local schema of DB1:

Patient(PID(String), name(String), gender(String), age(Int), main-diagnosis(String),

level(String))

Patient-Assignment(PID(String), Care_Service_ID(String), class(String), address(String),

Staff_ID(String), Staff_name(String), Staff_category(String))

Treatment (PID(String), type(String), Spell(String), cost(Double))

Local schema of DB2:

Patient(Patient_ID(String), first_name(String), middle_name(String), last_name(String),

gender(String), age(Int), guardian(String))

Care-Service(Patient_ID(String), Care_Service_ID(String), class(String), address(String))

Diagnosis(Patient_ID(String), main-diagnosis(String), level(String))

Treatment (Patient_ID (String), type(String), Spell_ID(String), cost(Double))

Spell(Spell_ID(String), Jan(String), Feb(String)…)

Local schema of DB3:

Child-Patient(PID(String), name(String), gender(String), age(int), guardian(String))

Adult-Patient(PID(String), name(String), gender(String), age(Int), Marital_status(String))

Diagnosis(PID(String), main-diagnosis(Int), level(String))

Local schema of DB4:

Patient_info(PID(String), name(String), gender(String), age(Int), guardian(String),

 143

Marital_status(String), classification(String))

Diagnosis(PID(String), main-diagnosis(String), level(String), Staff_ID(String),

Staff_name(String), Staff_category(String))

Treatment (PID(String), type(String), Spell_ID(String), cost(Double))

Spell(Spell_ID(String), month(String), Activity(String))

Table 8-8 four typical local database schemas

In addition, DS1 and DS2 are located in Durham which further belongs to County Durham. DS3

and DS4 are located in Newcastle. The organizational structure is illustrated below (recall section

4.5.2). The data service corresponding to each data source is denoted by the name of the data

source here for simplicity:

Classification: (rootname : Geographical Location, (group: County Durham), (group:

Newcastle))

Group : (gname : County Durham, (group: Durham))

Group : (gname : Durham, (Data Service: DS1), (Data Service: DS2))

Group : (gname : Newcastle, (Data Service: DS3), (Data Service: DS4))

Table 8-9 organizational structure

It can be seen from the above local schemas; DS1 may be a clinic which holds the patients

information with the diagnoses information in one relation and does not distinguish between an

adult patient and a child patient. DS2 may be a social service specializing in child services which

only holds child patient information. DS3 may be a research centre which distinguishes between

the adult and child patient information and DS4 may be a hospital which puts the adult patient

and child patient into one relation. The Treatment of a patient is described by the treatment

activities the patient has had (i.e. the spell). In this case study, it is assumed there are 65 kinds of

activities and a patient only has one activity in each month hence the spell of a patient is

represented as a digital code (i.e. 1 to 65) for a month. Though it is much simpler than the

practical situation, it is enough to demonstrate the main features of the SLEDIS. The above test

data are used in the evaluation and the details will be discussed in later sections.

8.4 Capability of solving heterogeneity problems

As introduced in chapter 1, this research aims to provide a solution for integrating data from

heterogeneous and frequently evolving participating databases to provide a unified vision for end

users to utilize. Thus before solving the evolution problems, the heterogeneity problems must be

solved first. For evaluating the capability of solving heterogeneity problems, the experimental

system SLEDIS in the case study should be able to successfully integrate participating databases

with various schematic heterogeneities as defined in section 1.2.3. As introduced in chapter 4, the

 144

IPUD algorithm based on the IPU mechanism is designed for solving the heterogeneity problems,

hence a research question was defined in section 8.2.2 as follows:

 How and why the IPU mechanism can integrate distributed databases with the

heterogeneities defined in section 1.2.3.

For answering the research question, a proposition is also defined in section 8.2.2:

Proposition 1

The heterogeneity problems defined in section 1.2.3 can be solved in the data integration

through the IPU mechanism and the query processing

The Proposition 1 is investigated through integrating data from the four pre-designed

participating databases (e.g. DS1, DS2, DS3 and DS4) in the SLEDIS. In principle, various

heterogeneity problems have been covered by the four typical databases and each database

constructs its IPUs without concerning other participating databases. If the heterogeneity

problems in the four typical databases can be solved, then these heterogeneity problems can be

solved by the SLEDI solution no matter how many participating databases are involved. The

heterogeneities problem in a participating database is considered as “solved” if all of the

following statements are TRUE:

 For each IPU constructed from the database, the head of the root view of its local definition

is identical with the head of the content of its global definition

 For each local definition, a set of valid view definitions are constructed based on the local

schema of the databases using conjunctive queries.

 The database can be found by the SLEDIS for answering user queries based on the global

definition of the IPUs it constructed

 The results data for answering the user queries can be obtained as long as it exists in the

database.

8.4.1 Various Heterogeneity Problems

As introduced in the previous section, there are four data sources where each data source holds

one database. Each database models the patient information in its local database schema

differently in order to cover the various heterogeneity problems. Each data source constructs a set

of IPUs and publishes a data service to accommodate the IPUs. The metadata of each data service

is stored in an xml file residing at the site of the corresponding data service. The local schema of

each database was created individually and populated with a set of data tuples to further

investigate whether the SLEDIS is able to produce correct results data for answering a set of

pre-defined user queries. In order to examine the capability of solving the heterogeneity problems,

it is helpful to discuss whether the four typical local database schemas have covered all types of

the heterogeneities defined in section 1.2.3. The following table shows where each type of the

heterogeneities is covered:

 145

Heterogeneity type Covered Example

Naming

discrepancy

YES The PatientID is modelled to an attribute

PID(String) in DB1 but modelled to an attribute

Patient_ID(String) in DB2.

Attribute

domain

discrepancy

YES 1) The MainDiagnosis is modelled to an attribute

main-diagnosis(String) in DB2 but modelled to an

attribute main-diagnosis(int) in DB3.

2) The same instance of MainDiagnosis is

represented as “schizophrenia” in the attribute

main-diagnosis(String) in DB2 but represented as

“schiz” in the attribute main-diagnosis(String) in

DB4.

Attribute

Level

Attribute

granularity

discrepancy

YES The Name is modelled to a single attribute

name(String) in DB1 but modelled to three

attributes:first_name(String),last_name(String) and

middle_name(String) in DB2.

Naming

discrepancy

YES The ChildPatient is modelled in the relation

Child-Patient in DB3 but modelled in the relation

Patient in DB2

Relation

level

Relation

granularity

discrepancy

YES The Patient-Diagnosis is modelled in the relation

Patient in DB1 but modelled in two relations

Patient_info and Diagnosis in DB4.

Abstraction

level

discrepancy

YES The AdultPatient and ChildPatient are modelled as

two separate relations Adult-Patient and

Child-Patient respectively in DB3 but are modelled

as a single relation Patient_info in DB4 with an

attribute classification(String) to indicate whether

an instance is an adult or a child patient.

Schema

level

Schematic

discrepancy

YES 1) The spell is modelled as two attributes

month(String) and Activity(String) in DB4 while

each treatment activity represented by a code string

(i.e. 1 to 65) corresponds to the month.

2) The spell is modelled as 12 attributes Jan(String),

Feb(String)… in DB2 while each attribute

represents the corresponding activity code.

3) The spell is modelled as a single attribute

Spell(String) in DB1 while representing the 12

activity codes in one string separated by comma.

 146

Missing item

discrepancy

YES 1) The Guardian is modelled as an attribute

guardian(String) in DB4 but it is not modelled as

any attribute in DB1

2) The Treatment is modelled as a relation

Treatment in DB1 but it is not modelled as any

relation in DB3

Relation

isomorphism

discrepancy

YES The relation Patient_info in DB4 has an attribute

classification(String) to indicate whether an

instance is an adult or a child patient, but the

relation Patient in DB1 has no indication at all.

Table 8-10 heterogeneity problems coverage

8.4.2 Constructed IPUs

As introduced in chapter 4, the process of data source describing constructs the application

domain ontology to represent the unified vision of the IDS and integrates data from the

participating databases by establishing the mappings between the local schema of the databases

and the application domain ontology. Consequently, the heterogeneity problems among the

databases are solved by the mappings. The mappings are established through using the IPUD

algorithm to construct a set of IPUs, more precisely, the global definitions and local definitions of

the IPUs. As a matter of fact, some of the heterogeneity problems are solved by the global

definitions and local definitions, while others are solved by the query processing.

As the application domain ontology and the local schemas of the participating databases have

been created in the previous section, whether a set of IPUs can be established can be discussed.

Moreover, after the various heterogeneity problems and their examples have been listed in table

8-10, whether and how the heterogeneity problems can be solved can also be discussed based on

the constructed IPUs. The global definitions and local definitions of the IPUs constructed for the

participating databases DB1, DB2, DB3 and DB4 are listed in the following table:

IPUs constructed from DB1: Global Definitions:

Content: V11(X):- Patient(X), V12(X,Y):- HasPatientID(X,Y), V13 (X,Y):-HasName(X,Y), ……

Constraint: V12(X,Y)∧¬ V11(X) ⊑⊥, ……

Local Definitions: Root Views:

V11(X):-CQ1(Subgoal1: (RRSassignment (BV11; X→PatientID)

V12(X,Y):-CQ1(Subgoal1: (RRSassignment (BV11; X→PatientID, Y→PatientID)

V13(X,Y):-CQ1(Subgoal1: (RRSassignment (BV11; X→PatientID, Y→Name)

……

Intermediate Views:

 147

Basic Views:

BV11(PatientID, Name, Gender, Age, MainDiagnosis, Level):-CQ1(Subgoal1: (RRSassignment

(Patient; PatientID→PID, Name→name, Gender→gender, Age→age,

MainDiagnosis→main-diagnosis, Level→level)))

BV12(PatientID, ServiceID, ServiceClass, ServiceAddress, StaffID, StaffName,

StaffCategory):-CQ1(Subgoal1: (RRSassignment (Patient-Assignment; PatientID→PID,

ServiceID→Care_Service_ID, ServiceClass→class, ServiceAddress→address,

StaffID→Staff_ID, StaffName→Staff_name, StaffCategory→Staff_category)))

BV13(PatientID, TreatmentType, TreatmentSpell, TreatmentCost):-CQ1(Subgoal1:

(RRSassignment (Treatment, PatientID→PID, TreatmentType→type, TreatmentSpell→Spell,

TreatmentCost→cost)))

IPUs constructed from DB2: Global Definitions:

Content: V21(X):- ChildPatient(X), V22(X,Y):- HasPatientID(X,Y), V23

(X,Y):-HasName(X,Y), ……

Constraint: V22(X,Y)∧¬ V21(X) ⊑⊥, ……

Local Definitions: Root Views:

V21(X):-CQ1(Subgoal1: (RRSassignment (Iv21; X→PatientID)

V22(X,Y):-CQ1(Subgoal1: (RRSassignment (Iv21; X→PatientID, Y→PatientID)

V23(X,Y):-CQ1(Subgoal1: (RRSassignment (Iv21; X→PatientID, Y→Name)

……

Intermediate Views:

Iv21(PatientID, Name, Gender, Age, Guardian):-CQ1(Subgoal1: BV21, Subgoal2:

(CRSassignment (Name): (fname+mname+ lname)))

Iv22(PatientID, TreatmentType, TreatmentSpell, SpellCost):-CQ1(Subgoal1: BV24, Subgoal2:

BV25, Subgoal3: (CRSassignment (TreatmentSpell): (Jan+Feb+…)))

Basic Views:

BV21(PatientID, fname, mname, lname, Gender, Age, Guardian):-CQ1(Subgoal1:

(RRSassignment (Patient; PatientID→Patient_ID, fname→first_name, mname→middle_name,

lname→last_name Gender→gender, Age→age, Guardian→guardian)))

BV22(PatientID, ServiceID, ServiceClass, ServiceAddress):-CQ1(Subgoal1: (RRSassignment

(Care-Service; PatientID→Patient_ID, ServiceID→Care_Service_ID, ServiceClass→class,

ServiceAddress→addres)))

BV23(PatientID, MainDiagnosis, Level):-CQ1(Subgoal1: (RRSassignment (Diagnosis,

PatientID→Patient_ID, MainDiagnosis→main-diagnosis, Level→level)))

BV24(PatientID, TreatmentType, spellID, TreatmentCost):-CQ1(Subgoal1: (RRSassignment

(Treatment, PatientID→Patient_ID, TreatmentType→type, spellID→Spell_ID,

TreatmentCost→cost)))

BV25(spellID, Jan, Feb…):-CQ1(Subgoal1: (RRSassignment (Spell, spellID→Spell_ID,

 148

Jan→Jan, Feb→Feb, …)))

IPUs constructed from DB3: Global Definitions:

Content: V31(X):- ChildPatient(X), V32(X):- AdultPatient(X), V33(X,Y):- HasPatientID(X,Y),

V34 (X,Y):-HasName(X,Y), ……

Constraint: V33(X,Y)∧¬ V31(X) ⊑⊥, V34(X,Y)∧¬ V32(X) ⊑⊥,……

Local Definitions: Root Views:

V31(X):-CQ1(Subgoal1: (RRSassignment (BV31; X→PatientID)

V32(X):-CQ1(Subgoal1: (RRSassignment (BV32; X→PatientID)

V33(X,Y):-CQ1(Subgoal1: (RRSassignment (BV31; X→PatientID, Y→PatientID)

V34(X,Y):-CQ1(Subgoal1: (RRSassignment (BV32; X→PatientID, Y→Name)

……

Intermediate Views:

IV31(PatientID, MainDiagnosis, Level):-CQ1(Subgoal1: BV33, Subgoal2: (CRSassignment

(MainDiagnosis): (&maindiagnosis)))

Basic Views:

BV31(PatientID, Name, Gender, Age, Guardian):-CQ1(Subgoal1: (RRSassignment

(Child-Patient; PatientID→PID, Name→name, Gender→gender, Age→age,

Guardian→guardian)))

BV32(PatientID, Name, Gender, Age, MaritalStatus):-CQ1(Subgoal1: (RRSassignment

(Adult-Patient; PatientID→PID, Name→name, Gender→gender, Age→age,

MaritalStatus→Marital_status)))

BV33(PatientID, maindiagnosis, Level):-CQ1(Subgoal1: (RRSassignment (Diagnosis,

PatientID→PID, maindiagnosis→main-diagnosis, Level→level)))

IPUs constructed from DB4: Global Definitions:

Content: V41(X):- ChildPatient(X), V42(X):- AdultPatient(X), V43(X,Y):- HasPatientID(X,Y),

V44 (X,Y):-HasName(X,Y), ……

Constraint: V43(X,Y)∧¬ V41(X) ⊑⊥, V44(X,Y)∧¬ V42(X) ⊑⊥,……

Local Definitions: Root Views:

V41(X):-CQ1(Subgoal1: (RRSassignment (IV411; X→PatientID)

V42(X):-CQ1(Subgoal1: (RRSassignment (IV42; X→PatientID)

V43(X,Y):-CQ1(Subgoal1: (RRSassignment (IV41; X→PatientID, Y→PatientID)

V44(X,Y):-CQ1(Subgoal1: (RRSassignment (IV42; X→PatientID, Y→Name)

……

Intermediate Views:

IV41(PatientID, Name, Gender, Age, Guardian):- CQ1(Subgoal1: BV41, Subgoal2:

(ORSassignment (Classification=”Child”)))

IV42(PatientID, Name, Gender, Age, MaritalStatus):- CQ1(Subgoal1: BV41, Subgoal2:

(ORSassignment (Classification=”Adult”)))

 149

IV43(PatientID, MainDiagnosis, Level):-CQ1(Subgoal1: BV42, Subgoal2: (CRSassignment

(MainDiagnosis): (&maindiagnosis)))

Iv44(PatientID, TreatmentType, TreatmentSpell, TreatmentCost):-CQ1(Subgoal1: BV43,

Subgoal2: BV44, Subgoal3: (TreatmentSpell): Program(month, activity))

Basic Views:

BV41(PatientID, Name, Gender, Age, Guardian, MaritalStatus, Classification):-CQ1(Subgoal1:

(RRSassignment (Patient_info; PatientID→PID, Name→name, Gender→gender, Age→age,

Guardian→guardian, MaritalStatus→Marital_status, Classification→classification)))

BV42(PatientID, maindiagnosis, Level, StaffID, StaffName, StaffCategory):-CQ1(Subgoal1:

(RRSassignment (Diagnosis, PatientID→PID, maindiagnosis→main-diagnosis, Level→level,

StaffID→Staff_ID, StaffName→Staff_name, StaffCategory→Staff_category l)))

BV43(PatientID, TreatmentType, spellID, TreatmentCost):-CQ1(Subgoal1: (RRSassignment

(Treatment, PatientID→PID, TreatmentType→type, spellID→Spell_ID, TreatmentCost→cost)))

BV44(spellID, month, activity):-CQ1(Subgoal1: (RRSassignment (Spell, spellID→Spell_ID,

month→month, activity→Activity)))

Table 8-11 Global and local definitions of the IPUs

Due to the limited space of the thesis, only some of the global and local definitions are shown in

the above table which can be used as examples to demonstrate how the heterogeneity problems

are tackled. It is apparent that the view definitions in the above table (e.g. the definition of the

basic, intermediate and root views) only show one possible construction of the global and local

definitions. Different programmers may construct the view definitions differently for their own

preference. In theory, the IPUD algorithm can be regarded as effective if at least one construction

can solve the heterogeneity problems successfully.

It can be seen from table 8-11, the naming discrepancy in the attribute level and the relation level

were solved through the assignment in the Regular Relation Subgoal (RRS) (see section 4.4.4.2)

in the view definitions. For example, the attributes PID(String) in DB1 and Patient_ID(String) in

DB2 are assigned to the same variable PatientID through the basic views BV11 and BV21

respectively. The relations Patient in DB2 and Child-Patient in DB3 are firstly assigned to BV21

and BV31 and then assigned to the root views V21 and V31 respectively, and then through the

global definitions of the V21 and V31, both of them are assigned to the ChildPatient relation in the

application domain ontology. Hence the naming discrepancies were solved through assigning the

heterogeneous attributes and relations to the corresponding elements in the application domain

ontology.

The attribute domain discrepancy and the attribute granularity discrepancy in the attribute level

were solved through the assignment in the Converting Relation Subgoal (RRS) in the view

 150

definitions. For example, the attribute main-diagnosis(int) in DB3 is converted into the string data

type and assigned to the variable MainDiagnosis through the intermediate view IV31. The three

attributes: first_name(String), middle_name(String) and last_name(String) in DB2 are firstly

combined into one attribute and then assigned to the variable Name through the intermediate

view IV21. The schematic discrepancy in the schema level was solved in a similar fashion. For

example, through constructing BV24, BV25 and IV22 for DB2 and constructing BV43, BV44 and

IV44 for DB4, the data of patient treatment in the DB2 and DB4 were firstly converted in the same

format as in the DB1 and then assigned to the corresponding local and global definitions.

The relation granularity discrepancy in the relation level was solved through constructing the

local definitions and the corresponding global definitions. Since the actual relations in a local

schema are mapped to a set of virtual relations which are the head relations of the local

definitions and the content of the global definitions (see section 4.4.3), the global definitions

represent the actual relations using the elements from the same application domain ontology.

Consequently, the relation granularity discrepancy was solved. For example, the Patient and

Diagnosis information is realized as one relation in DB1 but as two relations in DB4, Both DB1

and DB4 using a set of virtual relations (i.e. V11(X), V12(X,Y)… and V41(X), V42(X,Y)…) to

represent the information.

The abstraction level discrepancy in the schema level was solved through the assignment in the

Ordered Relation Subgoal (ORS) in the view definitions and the construction of the local and

global definitions. For example, by constructing two intermediate views, IV41 and IV42, and the

corresponding local and global definitions, DB4 extracts the adult and child patient information

separately from its actual relation Patient_info. The missing item discrepancy and the relation

isomorphism discrepancy in the schema level were not addressed explicitly by the construction

of the local and global definitions. In fact, the two discrepancies are similar as both of them result

from a lack of necessary data in the participating databases. However, they were considered in

the query processing which will be discussed in the next section.

In principle, most of the heterogeneity problems were solved through construction of the local

and global definitions of the IPUs. The correctness of the local and global definitions was tested

before conducting further evaluations onto the system. As introduced in chapter 7, the views in

the local definitions are materialized through constructing SQL queries based on the view

definitions. This enables the investigator to conduct tests onto each local definition individually.

All the views were tested through a set of queries which involved all the attributes in the views

head and no errors were found. Thus the construction of the SQL queries from the view

definitions was considered correct.

 151

8.4.3 User queries and results

After the correctness of the local definitions was checked, the capability of solving heterogeneity

problems was further evaluated through running a set of user queries against the SLEDIS to

obtain the results data. The correct answers of the queries were manually built as testing oracle

hence the system produced results data can be verified against it. In order to evaluate the

capability thoroughly, the correct answer for each user query includes the result tuples and the

relevant databases. The result tuples refer to all the results data which can be obtained from the

participating databases for answering the user query which are in the form of relation tuples. The

relevant databases refer to the participating databases which can provide result tuples for

answering the user query even if they only provide data on some attributes of the tuples. The

result of the evaluation is shown in the following table:

Number of Result Tuples Number of Relevant Databases User Query

Manually

Produced

System Produced Manually

Produced

System Produced

Q1 4 3 6 4

Q2 3 3 4 4

Q3 3 3 3 3

Q4 2 2 3 3

Q5 3 2 4 2

Q6 2 2 4 4

Q7 4 4 4 4

Q8 4 4 5 5

Q9 3 2 4 3

Q10 2 2 2 2

Table 8-12 Result for evaluating heterogeneity problems solving capability

It can be seen from table 8-12, that the system produced results data tuples of 3 out of 10 user

queries were less than the correct answers. Hence further investigations on the missing tuples and

relevant databases were conducted through comparing the tuples and relevant databases produced

by the system and the correct answers. It is observed that the missing tuples of the system

producing results data are the tuples provided by the missing relevant databases. The missing

relevant databases are the participating databases which do not provide some attributes required

by the user queries. However, this is not surprising due to the PICSEL query rewriting algorithm

adopted in this research as introduced in chapter 5. If a participating database fails to provide one

or more attributes the user query requires, it may not be considered as a relevant database during

the query processing. For example, a user query requires all information of child patient which

has a conjunct Guardian(X), and a participating database provides child information except the

 152

guardian attribute, thus there is no HasGuardian(X,Y) or Guardian(X) in its global definitions.

Consequently, the conjunct cannot be grounded to the global definitions of the database and the

database is not considered as relevant, it results in other information such as name, age and etc

are not obtained even though the database does provide those information. Therefore, the

manually built correct answers were then modified by following the PICSEL query rewriting

algorithm strictly and the system produced results data which became identical with the correct

answers.

In fact, the above investigation demonstrates how the missing item discrepancy was addressed

during the query processing. The relation isomorphism discrepancy was also addressed in the

same way. For example, DB1 provides the patient information but fails to distinguish between the

adult and child patient, hence it does not have global definitions representing adult or child

patient specifically and it will not be considered as a relevant database if a user query requires

precisely adult or child patient information. Through not considering the participating databases

as relevant, the missing item discrepancy and relation isomorphism discrepancy were solved and

the system can integrate data from the participating databases without errors.

8.4.4 Summary

The results of the test have shown that most types of heterogeneity problems defined in section

1.2.3 were successfully solved by the IPU mechanism, more precisely, by using the IPUD

algorithm to construct the local and global definitions of the IPUs. Some of the heterogeneity

problems were solved by the assignment used in the view definitions and some others were

solved by constructing local and global definitions. It is worth mentioning that there is more than

one possible ways to construct the local and global definitions; programmers may construct the

view definitions based on their own preference with no strict rules on which set of views should

be used for solving which specific type of heterogeneity problem.

The missing item discrepancy and relation isomorphism discrepancy were solved by not

considering the participating databases as relevant during the query processing. This results in the

system may not being able to produce the complete results data in some circumstances. However,

this is due to the adoption of the PICSEL query rewriting algorithm hence is not an issue raised

from constructing local and global definitions. A possible solution is the participating database

may be to add extra attributes with null values and construct local and global definitions to

represent the database providing the attributes, although only null values can be obtained.

Consequently, the databases will be considered as relevant and the results tuples can be obtained

from the database with null value in the extra attributes.

The local definitions and global definitions of the IPUs for the participating databases were

 153

successfully constructed, and the results data of the testing user queries produced by the system

were verified to be correct. Thus, proposition 1 is well supported, the IPU mechanism is

considered to be effective and the SLEDI has the capability of solving the heterogeneity

problems defined in this thesis.

8.5 Capability of Solving Evolution Problems

After the capability of solving heterogeneity problems had been evaluated, further evaluations

were conducted. As introduced in chapter 1, the main focus of this research is aimed at using the

SLEDI solution to solve some evolution problems of the participating databases in the data

integration. Thus a set of research questions, propositions and measures were defined in section

8.2.2 intending to thoroughly evaluate the capability of SLEDI on solving those evolution

problems which have been defined in chapter 1. This section discusses whether each of the

propositions was supported with reference to the results of the measures. Although the conceptual

services IPS and EHS of a participating database were combined into a single DS as introduced

in section 7.4.1, they were implemented as two different operations. Thus the propositions based

on the conceptual services as listed above can still be evaluated through examining the

corresponding operations.

8.5.1 Proposition 2

The IPU mechanism and the metadata of the IPS and BS can reduce the modification effort

caused by the schematic evolution occurring in the participating databases

The measures for verifying the proposition are:

A. Number of user queries explicitly specifies the participating databases.

B. Numbers of user queries explicitly specifies the local database schemas.

C. Number of hard coded queries in mappings.

D. Number of the affected user queries.

E. Number of IPUs which require modification effort.

F. Human intervention.

In order to avoid bias in the testing, the user queries used for testing were designed by a

colleague of the investigator (i.e. not the same programmer for developing and evaluating the

system)

Number of total user queries in the testing: 10

Number of user queries explicitly specifies the participating databases: 0

Table 8-13 Results of Measure A

 154

It can be seen from the above table that there is no user query to explicitly specify which

participating databases the query intends to query against. We recall that all the participating

databases are organized into the organizational structure through assigning each database into a

virtual group and organizing the groups into classifications in the DAG structure. A user query

can only specify its targeting databases through designating the names of the classification and

groups in the Q(org) component of the query, even though the user knows exactly the names of

the targeting databases. This allows the end users to specify the targeting databases through the

virtual groups, instead of through the hard coded names of the targeting databases.

The user query will not be affected and no modification work is needed when the schematic

evolution or system level evolution (e.g. changing the name or removal of the database)

occurring in the targeting databases. Compared to the Federated database management system

(FDBMS) which also follows the virtual data integration approach introduced in chapter 2, the

SLEDI provides a more flexible way for end users to raise queries. The user queries in a FDBMS

need to designate all the databases they intend to query against explicitly, thus when evolution

occurs in the databases, user queries may have to be modified accordingly to indicate the evolved

databases. From this comparison, SLEDI reduces the modification work onto the user queries

caused by the database evolution hence proposition 2 is supported by the result of the measure A.

Number of total user queries in the testing: 10

Numbers of user queries explicitly specifies the local database schemas: 0

Table 8-14 Results of measure B

It can be seen that there is no user query to explicitly specify the local schemas of the databases it

intends to query against. We recall that the SLEDI integrates the participating databases through

establishing the mappings between the local schemas of the participating databases and the

application domain ontology. The mappings are realized through the IPU mechanism and the

metadata of the IPSs and BS. End users only see the virtual integrated database and raise queries

as conjunctive queries over the relations in the application domain ontology in the Q(onto)

component of the queries. Hence end users do not need to concern the local schemas of the

participating databases.

This design allows end users to focus on the virtual integrated database instead of a set of

participating databases and to query against the application domain ontology instead of against a

set of local schemas. It is apparent that no modification work onto the existing user queries is

required when the local schemas of the participating databases evolve as the application domain

ontology remains stable. Compared to the loosely coupled FDBMS in which user queries need to

explicitly include the local schemas of the participating databases, SLEDI reduces the

modification work onto the user queries as the schematic evolution occurring in the participating

 155

database in the loosely couple FDBMS may result in having to modify the existing user queries.

Consequently, the proposition 2 is supported by the result of the measure B.

Number of participating databases: 4

Numbers of hard coded queries in mappings (lines of program): 0

Table 8-15 Results of measure C

As introduced previously, one of the causes of high maintenance costs of the data integration

system is that the data integration is achieved through hard coded queries. In other words, the

mappings between local schemas of the participating databases and the application domain

ontology are realized as hard coded programs. It can be seen from the above table that there is 0

line of program for realizing the mappings. This is because all the mappings (i.e. the local and

global definitions) are constructed as DAG structured data and stored as the metadata of the IPSs

and BS, hence no mappings are coded in the programs. The programs only focus on

implementing the algorithms to access and manage the metadata (i.e. mappings) hence the

evolution occurring in the participating databases may only result in modification to the metadata

and no modification work is required to the programs.

The evolution occurring in the participating databases in a FDBMS may result in a large amount

of modifications since the mappings are realized as hard coded programs. Modifying hard coded

programs can be very complex and requires huge amounts of work, especially when the volume

of the mappings is huge. Compared to the FDBMS, the SLEDI largely reduces the modification

work to the mappings when the local schemas of the participating databases evolve hence

proposition 2 is supported by the result of the measure C.

As introduced in chapter 6, the evolution problems the SLEDI solution is designed to tackle

include three classes: system level, schematic and organizational evolution. Each class covers

various types of evolution occurring in the participating databases. In order to examine how the

evolutions were tackled by the SLEDIS, a set of evolutions were applied to the participating

databases in the SLEDIS to obtain the results of the measure D, E and F. Different types of

evolution may affect different components of the SLEDIS. For example, the schematic evolution

may affect the local and global definitions but the organizational evolution will not. Even the

same type of evolution may still impact SLEDIS differently depends on where the evolution

occur. For example, removal of an attribute may only affect one basic view when it occurs on one

attribute, A, but affect a set of views if it occurs on another attribute, B. In order to conducting

the evaluation thoroughly, the evolution applied onto the SLEDIS not only covers all types of the

evolution, but also triggers all the possible evolution handling processes. The results are listed in

the following tables with respect to the different class of evolution:

 156

Evolution type Evolution

Applied

User Query

Affected

Local definition

modified

Global definition

modified

Human

Intervention

Database Name Change 2 0 0 0 Yes

Service Name Change 2 0 0 0 Yes

Service URL Change 2 0 0 0 Yes

Table 8-16 Results of system level evolution

It can be seen that all the types of system level evolution have no impact on either user queries or

on local and global definitions. We recall that the SLDEIS was developed based on the Web

Service technology and the descriptive information of the participating databases were stored in

the xml format registry separately with other information such as organizational structure and

global definitions. Consequently, the system evolution will not affect the user queries and the

local and global definitions. Although the evolution handling requires human intervention, it was

simply done through manually modifying the corresponding data in the xml files representing the

database name, service name and URL, where each modification was completed in no more than

one minute. The advantages of employing the web service technology will be discussed in later

in this section.

Evolution type Evolution

Applied

User Query

Affected

Local definition

modified

Global definition

modified

Human

Intervention

Attribute Addition 8 0 3 3 Yes

Attribute Removal 8 0 10 10 No

Attribute Rename 8 0 12 0 No

Attribute Domain

Change

3 0 4 0 No

Attribute Decomposition 2 0 3 0 No

Attribute Aggregation 2 0 3 0 No

Relation Addition 2 0 8 8 Yes

Relation Removal 2 0 12 12 No

Relation Rename 2 0 12 0 No

Relation Decomposition 1 0 5 0 No

Relation Aggregation 1 0 5 0 No

Database Addition 1 0 9 9 Yes

Database Removal 1 0 8 8 No

Table 8-17 Results of schematic evolution

It can be seen from table 8-17 that the schematic evolution may only affect the local and global

definitions and have no impact on the user queries. Some types of schematic evolution result in

the modifications to both the local definitions and global definitions, while some other types only

cause local definitions to be modified. This can be explained by recalling the data source

 157

describing process introduced in chapter 4; the local definitions are constructed as views over the

local schemas and their heads are identical to the corresponding global definitions. Some

schematic evolution may cause the views to become invalid hence the local definitions need to be

modified in order to make the views valid again, thus the corresponding global definitions remain

stable. On the other hand, some schematic evolution may result in the local definitions not being

valid through modification, thus the local definitions and the corresponding global definitions

have to be removed. Consequently, the number of global definitions modified is always less than

or equal to the number of local definitions modified.

It may be realized from table 8-17 that the number of local definitions modified may be larger

than the number of evolutions applied. This is not surprising since the local definitions are

constructed in the DAG structure and one attribute or relation can be the successor of multiple

views and one schematic evolution may lead to multiple local definitions requiring modification.

There were only 3 out of 13 types of schematic evolution requiring human intervention which

means the majority (10 out of 13 types) of the schematic evolution were handled automatically.

The types of schematic evolution requiring human interventions are the addition of the attribute,

relation or database. Although the newly-added elements may only require the construction of

new IPUs (i.e. the local and global definitions) and have no impact on the existing IPUs, they

need to be integrated into the system and hence will involve some manual effort.

Compared to the FDBMS where mappings between the local schemas and the application

domain ontology are represented by hard coded queries; the SLEDI solution largely reduces the

maintenance effort by representing the mappings through the IPU mechanism and structured

metadata hence automatic evolution handling can be applied. Although there is still a small

amount of schematic evolutions which involve human intervention, most types of schematic

evolution were handled automatically hence the proposition 2 is supported by the result of the

measures D, E and F.

8.5.2 Proposition 3

The organizational evolution handling in the query processing can reduce the modification effort

made to the user queries caused by the organizational evolution

Since proposition 3 is focusing specifically on how SLEDIS handles the impact on the existing

user queries brought about by the organizational evolution, the result of the measures D and F

can also be used for verifying the proposition. The results of the measure on applying the

organizational evolution onto the SLEDIS are listed in the following table:

Evolution type Evolution User Query User Query Human

 158

Applied Affected Modified Intervention

Group Addition 2 0 0 No

Group Removal 2 8 0 No

Group Rename 2 8 0 No

Group Separation 1 4 0 No

Group Aggregation 1 8 0 No

Classification Addition 2 0 0 No

Classification Removal 2 10 0 No

Classification Rename 2 10 0 No

Classification Separation 1 10 0 No

Classification Aggregation 1 10 0 No

Table 8-18 Results of organizational evolution

It can be seen from table 8-18 that organizational evolution impacted on the existing user queries

under most circumstances (8 out of 10 types organizational evolution). This can be explained by

recalling the user query format introduced in chapter 5 where every user query includes a Q(onto)

component to specify the targeting databases it intends to query against. The targeting databases

were specified through designating the classifications and virtual groups the targeting databases

belong to with respect to the organizational structure. Since the organizational evolution may

introduce alterations to the classifications and/or the virtual groups specified in the Q(onto)

component of the existing user queries, the user queries may be affected and hence require

evolution handling.

Although the existing user queries were affected, it is apparent from table 8-18 that no

modifications to the user queries were needed and no human intervention was required in the

evolution handling. This can be explained by recalling the organizational evolution handling

process introduced in chapter 6. The process automatically modifies the Q(onto) component of

the existing user queries during the query processing based on the organizational evolution

information stored in the registry, hence the Q(onto) becomes consistent again with the latest

version of the organizational structure. Consequently, the targeting databases can still be

determined correctly without modifying the existing user queries.

It may be realized from the table that the number of existing user queries which were affected

may be larger than the number of organizational evolutions applied. This is because the same

classifications and/or virtual groups may appear in multiple existing user queries. The addition of

the classifications and/or virtual groups will not affect the existing user queries as they did not

exist when the user queries were composed hence it is not possible for them to appear in the

queries. The removal of the classifications and/or virtual groups may cause no targeting

 159

databases to be selected since the classifications and groups may no longer exist. Although it is

not shown in the table, the results data obtained for the existing user queries were verified as

expected with respect to the latest version of the organizational structure at the time when the

queries were answered. Consequently, proposition 3 is supported by the results of the measures D

and F.

8.5.3 Proposition 4

The schematic evolution occurring in one participating database will not affect the metadata of

the IPSs provided by other data sources hence the system can still work properly.

Proposition 4 is focusing on whether schematic evolution occurring in one participating database

will lead to modifications to the metadata of the IPSs (i.e. data services) provided by other

participating databases. A set of schematic evolution were applied onto the participating database

individually one at a time. Observing the metadata of which data services were modified by the

SLEDIS, the result is shown in the following table:

 DS1 DS2 DS3 DS4

DB1 Yes No No No

DB2 No Yes No No

DB3 No No Yes No

DB4 No No No Yes

Table 8-19 Evolution applied and metadata modified among databases

It can be seen from table 8-19 that schematic evolution occurring in one database only leads to

modifications to the metadata (i.e. the local and global definitions) of the data service provided

by this database. The local and global definitions of other participating databases were not

affected at all. Although not shown in the above table, the results data of the user queries were

verified as expected under all the evolution applied. For example, when a database is removed

from the SLEDIS, the data service hence all the local and global definitions the database provides,

are removed. Under these circumstances, the results data obtained for the user queries are the

results data which can be obtained from the other three participating databases left in the

SLEIDS.

This can be explained by recalling the data source describing process introduced in chapter 4;

every participating database describes the data it provides without being concerned with whether

Metadata
modified to

Evolution
Applied to

 160

there are other participating databases involved in the system, what data other databases provide,

or what the relationships are between the data provided by itself and the data provided by other

participating databases. This design leads to the advantage that every participating database only

maps its local schema to the application domain ontology. The relationships among the

participating databases were handled at the query processing stage, not at the data source

describing stage. Hence there is no information about the relationship of the participating

database embedded in the mappings (i.e. local and global definitions). Schematic evolution

occurring in one database can only affect the mappings of this database; other participating

databases will be working as usual. Consequently, proposition 4 is well supported.

8.5.4 Proposition 5

The EHS can reduce the cost of the modification effort caused by the schematic evolution

As introduced in chapter 6, the evolution handling process includes organizational evolution

handling and schematic evolution handling. The organizational evolution handling was

implemented as part of the query processing while the schematic evolution handling was

implemented as EHS. The EHS handles the schematic evolution by modifying the metadata of

the corresponding IPS and the BS (i.e. local definitions and global definitions) through

implementing the 10 pre-defined processes with respect to the schematic evolution type, as

introduced in section 6.4.2.2. This design aims at using programs to automatically modify the

structured metadata instead of human effort to revise the mappings for handling the various types

of schematic evolution. Since proposition 5 is focusing on whether the EHS can reduce the

modification effort of handling the schematic evolution, the investigation was conducted through

examining the time costs for handling the various types of schematic evolution in the SLEDIS.

It can be seen from table 8-17 that most types of schematic evolution were handled automatically

by EHS while the addition of the attribute, relation and database requires human intervention. In

order to make the investigation thorough, the time costs of the EHS for handling each individual

type of schematic evolution were examined. As a set of evolutions were applied for each type as

listed in table 8-17, the average time for handling one schematic evolution of each type applied in

one participating database were calculated. Since the cost of schematic evolution handling which

requires human intervention may vary depending on what are the newly-added elements, only the

costs of automatic evolution handling were counted. The results are shown in the following chart:

 161

EHS Cost

A
B
C
D
E

F
G

H
I

J

0 0.5 1 1.5 2

S
c
h
e
m
a
t
i
c

E
v
o
l
u
t
i
o
n

T
y
p
e

Time (Seconds)

Figure 8-1 Time costs of EHS

It can be seen from figure 8-1 that the processes for handling the attribute rename and relation

rename cost the least computational time. This is because the attributes and relations were all

assigned to basic views, as introduced in chapter 4, thus when the name of attributes and/or

relations changed, EHS only needed to modify the assignments in the basic views hence other

parts of the local definitions remained unchanged. The processes for handling attribute domain

change, attribute decomposition and attribute aggregation took slightly more time as the subgoals

of the basic views also needed to be modified. Then, the processes tackling relation

decomposition and relation aggregation took even more time as new basic views were added and

other views in the local definition also needed to be modified. Finally, the processes for handling

attribute removal, relation removal and database removal cost most computational time as the

global definitions also had to be modified. This required communications between the IPS and

BS hence cost more computational time. In summary, the average time for handling one

schematic evolution was always less than 2 seconds, irrespective of the type of the schematic

evolution.

In an FDBMS where the mappings between local schemas and application domain ontology are

realized through hard coded queries, the handling of schematic evolution may require an

understanding of and revising of the hard coded queries. Compared to the FDBMS, the SLEDI

 162

solution largely reduces the maintenance costs of handling the schematic evolution as most types

of the schematic evolution can be handled through automatically modifying the structured

metadata by the EHS. Since the EHS only takes less than 2 seconds for handling one schematic

evolution, which no human effort can achieve, the proposition 5 is well supported.

8.5.5 Proposition 6

The service late binding based on the SOA and web service can help to reduce the maintenance

costs caused by the evolution defined in the thesis.

As introduced previously, the SLEDI is a service based solution following the DaaS approach

and is designed for reducing the maintenance costs of the data integration system through

applying late binding to the data services. Since proposition 6 is focusing on whether the SOA

and web service technology can help to reduce the maintenance costs, the investigation was

conducted through examining whether the characteristics that SOA and web service intrinsically

support, such as the service autonomy, discoverability, abstraction and loose coupling can

facilitate SLEDI to achieve its design purpose.

As the participating data sources are in autonomous control, the owners of the data sources

require full control over their databases. This is supported in SLEDI through the data source

describing process as the owner of the participating data source plays the role of data service

provider. They only expose the data they are willing to share through the global definitions. In

other words, the external service consumers (i.e. the BS) can only access the data described by

the global definitions instead of accessing the local schema directly hence data source owners

have full control over what data can be accessed. In addition, the permission of accessing the

local databases (e.g. the user name and password) was granted only to the data service, not to the

external service consumers and the data services were situated at the sites of the corresponding

data sources. This means the data source owners retain full control of their local databases and

there is no extra constraint added onto the local databases hence the owners may still run their

own applications on the databases and have complete rights to decide when they want to change

their state such as joining in or dropping out from the system. Consequently, proposition 6 is

supported.

Due to the discoverability of the services supported by the SOA and web service, each

participating data source need only publish their data service descriptions into the central registry.

Then the BS is able to find and access all the relevant data services when answering user queries

through simply accessing the registry. In the handling of the evolutions occurring in local

databases, the service description in the registry may only require modification when the global

definition needs to be modified and the modifications made to the local definitions only will not

 163

affect the central registry. Hence the maintenance effort was reduced and proposition 6 is

supported.

The abstraction of the service effects on the data services only needs to describe their global

definitions, operations and locations in a standard way (i.e. service description), hence no further

details of the local database and data service implementation were explicitly bound with

participating data sources. Thus the service consumers can access the data services based on the

simplified service descriptions and all the tedious work of achieving service communications was

left to the web service implementation framework to finish, in this case, the .NET framework.

Furthermore, the data sources can easily change the implementation of their data services thanks

to the abstraction. Consequently, the maintenance effort was reduced and proposition 6 is

supported.

The loose coupling of the services leads to each data service being independent of other data

services. The data sources are not concerned with whether there are other participating data

sources involved in the system when they publish their data services hence each data service has

no information about other participating data sources to maintain. Thus the schematic evolution

occurring in one database will not affect the data services provided by other participating

databases which have been verified by proposition 4. In addition, the service consumers are not

coupled with specific data services. Instead, the relevant data services were only located and

accessed during the query processing hence the service consumer will not be affected by the

evolutions occurring in the participating databases which further reduce maintenance effort.

Consequently, the proposition 6 is supported.

Furthermore, based on the characteristics supported by the SOA and web service as described

above, the service late binding applied in SLEDI results in relevant data services for answering

user queries only being located and accessed at run time, instead of at design time. In other words,

the data services only publish their service description in the central registry, and the service

consumers do not know what data services are available and how to access them at design time.

Thus when modifications were made to the data services for handling the evolution, no other

parts of the system were affected, hence the impact on the system brought by the evolution was

largely reduced. Consequently, proposition 6 is supported.

In summary, through supporting the service autonomy, discoverability, abstraction and loose

coupling, the SOA and web service provided substantial help in applying the service late binding

in the design and implementation of the SLEDI solution to largely reduce the maintenance costs

caused by the evolution occurring in the participating databases. Therefore proposition 6 is well

supported.

 164

8.6 Scalability

As the SLEDI solution is designed for integrating data from autonomous and evolving data

sources, it is important the SLEDI can still perform properly on reducing the maintenance costs

as it is designed for when the number of the participating databases increases. Thus another

important characteristic, the scalability of the SLEDI, was also evaluated during the case study.

The evaluation was conducted through reproducing the four existing participating databases to

join into the SLEDIS and then examining various aspects related to the scalability. As each

participating database shares its data through constructing a set of local and global definitions,

the relationship between the total number of the (pairs of) local and global definitions and the

number of the participating databases was examined first. Then, since the schematic evolutions

occurring in the participating databases were handled through examining and modifying the local

and global definitions, the relationship between the number of affected local and global

definitions and the number of the participating databases was also examined. The number of the

affected local and global definitions was obtained through firstly applying a set of pre-defined

schematic evolutions to the participating databases in the same way as introduced in the table

8-17, and then calculating the average number of the affected local and global definitions of one

participating database when all the schematic evolutions were applied. The results are show in

the figure 8-2 below:

0

100

200

300

400

500

600

700

10 20 30 40 50 60 70 80

Number of Participating Databases

Number of Global/Local definitions

Number of affected Local definitions

Number of affected Global definitions

Figure 8-2 Relationship between the numbers of global/local definitions, affected global/local

definitions and the number of participating databases

It can be seen that the number of global/local definitions had linear growth in the number of

participating databases, while the numbers of the affected global and local definitions

 165

approximately remained stable, regardless of the number of the participating databases. The

growth of the global/local definitions was as expected because every participating database

provides a set of global and local definitions. The numbers generally remaining unchanged

indicates that the amount of maintenance effort required did not increase when more databases

joined in. Therefore, the SLEDI solution provides satisfying scalability at this stage.

And then, the relationship between the computational time cost of EHS for handling the

schematic evolutions and the number of the participating databases was further examined. In

order to make the evaluation thorough, the computational time cost was counted separately with

respect to each type of schematic evolution through calculating the average time cost of EHS for

handling one type of schematic evolution applied to one participating database. The results are

show in the figure 8-3 below:

0

0.5

1

1.5

2

2.5

3

3.5

10 20 30 40 50 60 70 80

Number of Participating Databases

T
i
m
e

(
S
e
c
o
n
d
s
)

Attribute Removal

Attribute Rename

Attribute Domain Change

Attribute Decomposition

Attribute Aggregation

Relation Removal

Relation Rename

Relation Decomposition

Relation Aggregation

Database Removal

Figure 8-3 Relationship between the computational time costs for handling schematic evolutions

and the number of participating databases

It can be seen that the computational costs for handling the attribute removal, relation removal

and database removal were slightly raised in a merely linear fashion along with the increasing

number of the participating databases. This is because the handling of the three types of

schematic evolution may involve modifications to the global definitions. Since the increasing

number of participating databases leads to a growth in the number of global definitions and all

the global definitions were stored as metadata in the central registry, more time may be required

for traversing the central registry to achieve the modifications. On the other hand, the time costs

of handling the other types of schematic evolution generally remained unchanged, regardless of

the increasing number of the participating databases. This was due to those schematic evolutions

 166

only requiring modification to the local definitions which only the evolved participating

databases were involved in. The results further strengthen the evidence that SLEDI provides

satisfying scalability.

In summary, the above results demonstrated that although the time costs of handling some types

of schematic evolution were slightly raised when the number of participating databases increased,

the number of global and local definitions affected by the schematic evolution and the time costs

of handling most types of schematic evolution generally remained unchanged despite the

growing number of participating databases. This differs from the traditional solution such as

FDBMS, where all the relationships among the participating database have to be considered at

design time. The complexity of the system may be dramatically escalated when the number of

participating databases grows large. Therefore, the SLEDI solution supports good scalability.

8.7 Other Characteristics

In addition to the characteristics evaluated above, some other aspects of the SLEDI were also

evaluated during the case study including the expandability, programming language

independency and application domain independence of the SLEDI. The results are discussed as

follows:

8.7.1 Expandability

As stated in section 1.2, all the data sources involved in this research are assumed to employ

RDBMS to manage their data, in other words, all the participating databases are relational

databases which realize the relational data model. Hence the databases which realize other types

of data model, such as Object-Oriented databases, xml databases, flat files and legacy databases,

were not considered in the research, thus cannot be directly integrated into the system through the

data source describing process in the SLEDI. However, although the local definition of the IPU

mechanism were particularly designed to build virtual views over relational database schemas,

the database schemas were represented as a set of relations and the views were constructed in the

form of conjunctive queries over the relations. The actual data in the databases were accessed

through translating the conjunctive queries into local SQL queries which the databases can

directly process. Since the conjunctive query and relation are abstract forms for representing data,

the databases realizing data models other than the relational model, may still be integrated into

the system through data source describing, if they can provide mechanisms for representing their

data in the form of relations and programs to translate the conjunctive queries into local queries

they can process.

The global definition of the IPU mechanism is constructed as a conjunctive query over relations

 167

in the application domain ontology, and the IPUs are accommodated through data services. They

do not have dependency on the data model of the participating database thus other types of

database may be integrated into the system through adding proper wrappers to produce data

services. In conclusion, the SLEDI solution has the potential to integrate the types of

participating databases other than relational database, although this capability has not been

supported in the current stage. Further research is required to achieve this capability, not only on

the data source describing for other database types, but also on the query processing and

evolution handling problems newly-introduced by the database types.

8.7.2 Programming Language Independency

Although the experimental system SLEDIS was developed using the C# programming language

and ASP.Net web service toolkit supported by the .Net framework, the SLEDI solution was

designed by following SOA and the components of the SLEDI, such as data services, were

designed as standard web services. This means in principle that the implementation of the SLEDI

is not bound to any specific programming language because one of the main characteristics of the

SOA and web service is the programming language independency. Each data service provider

(e.g. participating database) only needs to describe the service (e.g. data service) it provides in a

standard way (i.e. through WSDL), the service consumers will be able to access the services

based on the description and communicate with the service through exchanging standard SOAP

messages regardless of what programming language has been employed for the service providers

to implement the services.

The two main platforms supporting the implementation of web service based applications

currently available are .Net framework and J2EE. Both platforms provide a set of programming

languages, toolkits and APIs to facilitate web service developing such as C#, java, Asp.Net and

Axis. Thus the services implemented by J2EE may work together with the services developed by

the .Net framework because all the services declare their operations and parameters in their

service description, and both platforms are able to generate and process the service descriptions

and the SOAP messages in the service invocations.

The language independency was also examined during the case study through implementing a

data service in two versions where one version was developed by .Net and another version was

developed by J2EE. The results show the .Net version worked well with other parts of the

SLEDIS whereas the J2EE version encountered some problems. One problem was that the data

of parameters and returning results were packed differently in the .Net service and in the J2EE

service. This caused the service consumer (i.e. the BS) to be modified in order to correctly parse

the results data obtained from the J2EE service. In conclusion, although the web service is

supposed to have complete language independency, the current tools available did not achieve its

 168

full potential, although this situation may change with future releases of the tools.

8.7.3 Application Domain Independency

Although the case study was conducted in a single application domain and there is no cross

domain data usage applied to the experimental implementation system, the SLEDI solution was

designed to be abstract from particular applications. For example, the data source describing

process constructs local and global definitions based on the assumption that all the participating

databases were relational databases. Thus the databases can be from any application domain as

long as they realized the relational data model. The application domain ontology was constructed

based on the description logic and the user queries were represented in the format of conjunctive

query. In addition, the schematic evolution examined was focusing on the evolution of attributes

and relations in the relational data model which were also abstract from specific applications.

It can be seen from the constructed local and global definitions, as introduced in the early

sections that all the views defined in the local definitions represented the information in an

abstract fashion (i.e. conjunctive queries) although the information is all from the single

application domain. Besides, the data models and algorithms of the SLEDI solution, such as the

local and global definition data model, the IPUD algorithm, the evolution description model and

the evolution handling process were all described by abstract symbols without adhering to any

specific application domain. Therefore, it can be concluded that the SLEDI solution supports

good application domain independency.

8.7.4 Limitations

Apart from the results discussed above, some issues were also raised during the case study which

may arguably signify that the SLEDI solution may not be perfectly suitable under certain

circumstances. The issues are discussed as follows:

 As introduced in chapter 6 and 7, although all the organizational evolutions ever occurring

in the system were stored in the central registry to keep track of transitions over multiple

versions of the organizational structure, only the latest version of the organizational

structure was maintained. Consequently, because all the user queries were answered with

respect to the latest version of the organizational structure, the user queries are not supported

at this stage if they intend query multiple versions of the organizational structure. This issue

requires further research.

 As mentioned in chapter 1, data inconsistency has not been addressed in the SLEDI solution

through assuming there is no conflict among the data in different participating databases if

they represent the same instance in the application domain. This assumption may not always

be applicable in practice. For example, it is possible that a patient was recorded by different

 169

names in different databases. This may indicate the occurrence of data inconsistence error in

the system. This issue may be solved through further research

 The schematic evolutions were identified and handled immediately after they occurred in

the participating databases. This requires the database administrator to identify the evolution

in atomic type, represent each atomic evolution in the data model provided and send the data

to EHS to trigger the schematic evolution handling. However, in practice, this involves a

considerable amount of manual work and a set of schematic evolutions may have happened

in short time which brings further work to the administrators of the participating databases.

This issue may also require further research.

 As mentioned previously, the types of databases other than relational database, may not be

integrated into the system directly at this stage, because different types of database may

cause the heterogeneity and evolution problems differently. As other types of databases may

exist in practice, this issue also requires further research.

 As the SLEDI solution follows the virtual data integration and service-based approaches, the

efficiency of query answering may not be as good as traditional solutions such as data

warehousing which follow materialized data integration and hard code program approaches.

Since the query processing in SLEDI not only involves the process of rewriting user queries

with respect to the available global definitions, but also the communications with the data

services, the SLEDI may not be a suitable solution for the data integration applications

which focus on query answering efficiency, rather than on evolution maintenance.

8.8 Conclusion

Through conducting the case study, all the research questions defined were answered by

verifying the propositions and the propositions were examined through obtaining the results of

the measures. The test data of the case study covered all the heterogeneities defined in chapter 1

and all the evolutions defined in the thesis. Moreover, the schematic evolution applied during the

case study covered all possible evolution handling processes. Consequently, the case study

conducted can be considered as a representative case.

Apart from the capabilities of the SLEDI solution of solving the heterogeneity and evolution

problems, other characteristics such as scalability, expandability, programming language

independency and application domain independency were also discussed. Despite some

limitations being found during the case study, the evaluation criteria were successfully met based

on the results.

Therefore, the conclusion can be drawn that the SLEDI solution constructed in this research has

the ability of solving most of the heterogeneity and evolution problems defined in the thesis. The

main design purpose of the SLEDI solution, to reduce the maintenance effort of the data

 170

integration system, has been achieved.

8.9 Summary

This chapter has presented an extensive evaluation of the SLEDI solution through conducting a

case study. The characteristics of the SLEDI such as its ability to solve heterogeneity and

evolution problems; its scalability, expandability, programming language and application domain

independency were discussed in detail. The SLEDI solution was deemed as success.

Chapter 9 concludes the thesis by summarizing the heterogeneity and evolution problems in the

data integration and the solution presented in this research. The success of the research is

discussed and ideas for further research are suggested.

 171

Chapter 9 Conclusions

9.1 Introduction

Chapter 8 presented an extensive and detailed evaluation of the SLEDI solution. The research

questions were answered. The propositions were supported by the results of the measures

obtained from the case study. General characteristics were examined followed by the discussion

of the limitations found during the evaluation.

This chapter reviews the research presented in this thesis. The work accomplished is considered

with reference to the research aims and criteria for success as defined in Chapter 1. Some general

issues and suggestions for further work are also discussed.

9.2 Review of Research

9.2.1 Research aims and issues

This thesis investigated the data integration from autonomous data sources where the

participating databases are distributed, heterogeneous and frequently evolving due to the

autonomy. Through following the virtual data integration and service based approaches, the

Service Late binding Enabled Data Integration (SLEDI) solution is designed to reduce the

maintenance effort of the data integration system caused by the evolutions occurring in the

participating databases. The two objectives the SLEDI solution intends to achieve are:

1. Construction of a unified vision from the data supplied by the data sources, in order to fulfill

the information requirements from end users.

2. Providing automatic assistance for handling the evolution occurring at the data source level,

in order to decrease the maintenance costs arising from the evolution.

Data source describing, query processing and evolution handling were identified as three major

research issues. Data source describing integrates the data provided by the participating databases

into a virtual integrated database and solves the database heterogeneities. Query processing

answers user queries through dynamically identifying the relevant participating databases and

obtaining the actual results data from the databases. Evolution handling employs automatic

assistance to examine the evolutions occurring in the participating databases and modifies the

affected components of the system accordingly in order to reduce the maintenance effort.

 172

9.2.2 Service based approach

Chapter 2 explored the virtual and materialized data integration approaches and looked at some

existing solutions following the two different approaches, including federated database systems

and data warehousing. Which applications the solutions were best applied to were discussed

through comparisons between the various aspects of the solutions. The weaknesses of the

solutions on dealing with database evolutions were analyzed. Then the concepts and technologies

of service based approach were introduced such as Data as a Service (DaaS), Service-Oriented

Architecture (SOA) and Web Service technology. Then, the potential of the data integration

solution to reduce the maintenance costs of handling the database evolutions through following

the service based approach was investigated. Finally, the case study research method employed

by this research and the application domain used for conducting the case study, were briefly

introduced.

9.2.3 Data integration framework

A descriptive framework was constructed in chapter 3 to characterize the data integration activity

through examining various aspects of the activity. The framework is specialized in integrating

data from autonomous and evolving data sources. It captures the essential processes for solving

the heterogeneity problems of the distributed participating databases to produce a unified

integrated database which end users can communicate with directly to fulfil their information

needs. More importantly, the framework explicitly describes the process of solving the problems

in the data integration caused by the evolutions occurring in the participating databases. The

framework characterizes the data integration activity from an abstract view angle where both the

virtual and materialized data integration approaches can be fitted in, and provides a context for

the SLEDI solution constructed in this research.

9.2.4 SLEDI solution

The SLEDI solution presented in this thesis addresses the three major research issues reviewed in

section 9.2.1 through three processes. The detailed delineation of each process includes the

algorithms, data models and sub-processes which the process may involve were described

throughout chapter 4 to chapter 6. Chapter 3 presented the overview of the general architecture,

components and services of the SLEDI for realizing the three processes.

The first process of data source describing was presented in chapter 4. Based on the Information

Provision Unit (IPU) mechanism and the Information Provision Unit Describing (IPUD)

algorithm, each data source describes the data it is willing to share as a set of IPUs. As each IPU

is equipped with a global definition and a local definition, the mappings between the local

 173

schemas of the participating databases and the application domain ontology are established. Thus

the databases heterogeneity problems are addressed by the IPUs. Through representing the global

and local definitions of the IPUs as Direct Acyclic Graph (DAG) structured data and

accommodating the IPUs into Information Provision Services (IPSs), the IPUs are encapsulated

as metadata of the service descriptions of the IPSs. In addition, the IPSs are organized into an

organizational structure which is also represented as DAG structured data and stored in the

central registry. Consequently, further processes can be realized through exploiting those

constructed data. The formal model of the global and local definitions, organizational structure

and service description metadata were also presented.

Then the process of query processing was presented in chapter 5. The process takes the

responsibility of answering user queries and involves three sub-processes: data source filtering,

query rewriting and result generating. Data source filtering identifies the relevant participating

databases for answering user queries; query rewriting transforms user queries in terms of

application domain ontology into resulting queries in terms of global definitions of the IPUs

through adopting the PICSEL query rewriting algorithm; and result generating obtains the results

data of resulting queries through accessing the IPSs and producing the final results data for

answering user queries.

The final process is evolution handling which was presented in chapter 6. It involves handling the

organizational and schematic evolutions. The organizational evolution is handled through

inserting a process as the first step of the data source filtering of the query processing. The

schematic evolutions is tackled through identifying the global and local definitions of the IPUs

which are affected by the evolution, and then automatically modifying the affected global and

local definitions through the 10 processes defined with respect to various types of schematic

evolution.

Some characteristics of the SLEDI solution such as the complexity, flexibility and scalability of

each process were discussed with respect to the related works and the data integration framework

in chapter 3. Furthermore, various types of evolution were identified, described and discussed in

chapter 6.

9.2.5 Case study and experimental implementation

The main focus of this research is on reducing the maintenance costs of the data integration

system caused by the evolutions occurring in the participating databases. It is impractical to

implement a complete data integration system based on the SLEDI solution in a single research

by a single researcher, since the frequency of different types of evolution may be vary largely in

practice. A single case study based on the experimental implementation system: Service Late

 174

Binding Enabled Data Integration System (SLEDIS) was conducted in the mental health

application domain in order to evaluate the SLEDI solution.

Various issues involved in the design and implementation of the SLEDIS were discussed in

chapter 7. As the SLEDI solution follows the service based approach, the design of the SLEDIS

employed both the service design and Object-Oriented design methods. The component services

of the SLEDIS which realizes the algorithms and processes of the SLEDI solution and the

cooperation among the services was presented. The SLEDIS was developed in the .Net

environment and the services were implemented by using the C# programming language and .Net

web service toolkits. The implementation of the metadata was also described. Furthermore, in

order to thoroughly evaluate the solution, the research questions, the propositions for answering

the research questions and the measures for examining the propositions were also presented.

Chapter 8 presented an extensive and detailed evaluation of the SLEDI solution based on the case

study. A set of local schemas and the application domain ontology were designed, and the

capability of solving heterogeneity problems was investigated based on the global and local

definitions constructed from the local schemas. Most types of heterogeneity problems defined in

chapter 1 were successfully solved while the missing item discrepancy and relation isomorphism

discrepancy may result in incomplete results for answering user queries due to the PICSEL query

rewriting algorithm adopted in the solution. The capability of solving the evolution problems was

examined through applying the evolution designed covering all the types of evolution defined in

chapter 6 and analyzing the results data of user queries. Through examining the results of the

measures obtained in the case study, all the propositions were verified as generally supported. In

addition, the scalability of the SLEDI solution was investigated, the results showed the number of

global and local definitions affected by the various types of schematic evolution and the time

costs for handling the evolution generally remained unchanged, while the number of global and

local definitions had a slow linear growth when the number of the participating databases

increased. The SLEDI solution has good programming language independency and application

domain independency. Finally, some limitations of the solution were also discussed.

9.3 Evaluation of Research

This research is evaluated with respect to the research aims and criteria for success as defined in

chapter 1. The discussion of the evaluation is presented as follows:

1. The definition of a framework for integrating data from the autonomous and evolving data

sources is constructed. The framework should capture the essential processes involved in the

data integration activity.

Chapter 2 defined a descriptive framework for data integration. The framework specializes in

solving the heterogeneity and evolution problems in the data integration due to the autonomy of

 175

the participating databases. It explicitly describes the processes involved for achieving the

required data integration.

2. The creation of the Service Late-binding Enabled Data Integration (SLEDI) solution which

defines the processes and data structures involved in the solution precisely with respect to

the framework discussed in criterion 1.

Chapter 3 presented the overview of the SLEDI solution through briefly introducing its

realization of the three processes defined in the descriptive framework. The detailed description

of the algorithms, data models and sub-processes involved in each process was presented through

chapter 4 to chapter 6.

3. The schematic heterogeneities of the participating databases defined in section 1.2.3 can be

solved by the Information Provision Unit Describing (IPUD) algorithm created for the data

source describing in the solution.

Chapter 4 described the IPU mechanism and IPUD algorithm. The formal representation of the

global and local definitions, view definitions and validation rules of the views involved in the

IPUD were defined. The results in chapter 8 demonstrated that the heterogeneity problems can be

solved.

4. The organizational and schematic evolutions introduced in section 1.3.1 can be handled by

the evolution handling process constructed in the solution allowing the data integration

system to still functions properly despite the evolutions which occurred.

Chapter 6 delineated the evolution handling processes covering various types of evolution

defined in section 1.3.1. The details of handling each different types of evolution were presented

as processes and the results in chapter 8 showed that the evolution can be successfully handled by

the SLEDI solution.

5. The DAG structured data source descriptions can support the evolution handling process

hence reducing the maintenance effort of the data integration system caused by the

evolutions.

Chapter 4 described how the global and local definitions were represented as DAG structure data.

Using the structured data instead of hard coded programs, the automatic modification can be

conducted on the global and local definitions for handling the evolutions occurring in the

participating databases. The results in chapter 8 showed that the DAG structure data and the

evolution handling processes can reduce the maintenance effort caused by the evolutions

6. The DaaS approach and Service Late Binding Technique can help to mitigate the

maintenance costs of the data integration system caused by the evolution introduced in

 176

section 1.3.1

Various characteristics of the DaaS approach and Service Late Binding Technique were covered

in chapter 2 and the component services based on the web service were described in chapter 7.

Through realizing the global and local definitions as metadata of the IPS and central registry, the

evolutions can be handled through automatically modifying the metadata and the relevant data

services are bound at run time instead of at design time. Hence the maintenance costs can be

reduced and this was discussed in chapter 8.

It has been demonstrated that the work presented in this thesis meets the research aims and

criteria for success, as defined in chapter 1. The accomplishments and ideas for continuing work

which may be carried out based on this research are discussed in the following sections.

9.4 Discussion

A reflective discussion of the accomplishments achieved in this research is presented as follows.

In general, the SLEDI solution is a success as it meets the requirements defined in chapter 1.

Applying the DaaS approach and Late Binding Technique has been considered to be successful.

The IPU mechanism is a good initiative as it allows participating databases to flexibly describe

what data they are willing to share. The global and local definition helps to precisely represent

the mappings between the local database schemas and application domain ontology. The use of

the conjunctive query has been a good idea as it provides a foundation for constructing the local

definitions and represents the definitions as structured data. The adoption of the PICSEL query

rewriting algorithm is a good choice as only the global definitions need to be accessed for finding

the relevant databases in query answering and the global definitions can be dynamically changed

without affecting the query answering process. Although the query rewriting may result in high

costs and produce incomplete results under some circumstances, the global and local definitions

and the query answering process provide a base for reducing the maintenance costs.

One of the major successes of this research has been encapsulating the local and global

definitions into the metadata of the data services and central registry. The structured metadata has

been demonstrated to be effective as all the data constructed in the data source describing process

can be realized into the metadata. It has been the key mechanism in avoiding hard coded

programs. Hence automatically modifying the metadata can be implemented to handle the

evolutions occurring in the participating databases which reduce human effort involved in the

maintenance work.

The data source filtering in query processing handles the eight types of organizational evolution

through accessing the metadata in the central registry which records all the organizational

 177

evolutions occurring, thus the existing user queries do not require modification to adapt to the

evolutions. The query rewriting has been proved to be effective in the original work and the

result generating produces results data through service invocations. The query processing has

been proved to be correct and effective.

The evolution handling process has been demonstrated to be effective. The 10 types of schematic

evolution were solved by 10 processes to modify the metadata of the data services based on

verifying the validation rules of the view definitions involved in the local definitions and global

definitions. The processes have been proved to be correct and effective. Although the handling of

the addition of attributes, relations and databases still requires human intervention, the automatic

evolution handling based on the processes largely reduced the human effort involved in the

maintenance work. One issue concerning the current schematic evolution handling process is that

each evolution is supposed to be handled sequentially and immediately. However, this may be

improved in further work.

The Service Late Binding based on the SOA and web service has been proved to be helpful in

reducing the maintenance costs. Participating databases can join in or drop out easily through

publishing data services. The system level evolution was solved through modifying the

descriptions of the data services and the schematic evolution handling processes were carried out

through automatically modifying the metadata of the data services. The characteristics of service

autonomy, discoverability, abstraction and loose coupling facilitate the modification of the data

services hence the maintenance cost is reduced and the relevant data services always reflect the

latest state of the participating databases and can only be bound at the time the user queries being

answered.

Comparing the SLEDI solution with the related work such as the federated database system and

data ware housing has proved an interesting exercise. SLEDI is similar to the federated database

system as they both following the virtual data integration approach. However, SLEDI provides

better flexibility for handling evolution as the mappings were represented as structured metadata

instead of hard coded programs. Overall, the SLEDI solution has been proved to be a successful

data integration solution specializing in handling various types of evolution occurring in the

participating databases.

9.5 Further Work

The work presented in this thesis could be extended in many ways and some ideas suggesting

possible further works are discussed as follows:

 178

9.5.1 User queries involving multiple versions of organizational

structure

As mentioned in previous chapters, a data integration system based on the SLEDI solution can

only answers the user queries based on the latest version of the organizational structure. This is

because, although all the organizational evolutions occurring are recorded, only the latest version

of the organizational structure is maintained in the central registry. Thus a user query cannot be

directly answered if it requires results data over a period of time and organizational evolutions

occurring during this time. For example, a user query asks for all the patient information from the

databases belonging to virtual group A in 2009 and a database DB1 was in group A in 2009 but

dropped out before the user query was answered. Under these circumstances, the DB1 would not

be considered, although it should be.

A possible solution is to add an extra property in the organizational structure to identify its

version number and maintain all the versions of the organizational structure in the central registry.

Thus the user queries can indicate the versions of the organizational structure they intend to cover

and the relevant databases can be properly filtered out through accessing the right versions of the

organizational structure. Under the circumstances of the above example, all the versions of

organizational structure during 2009 would be accessed. However, further work is required on

this issue.

9.5.2 Data Inconsistency

As introduced in chapter 1, it is assumed that the data in the different participating databases are

all consistent. However, the assumption may not always be true in practice. For example, the

information about the same patient obtained from participating databases have identical patient

ID numbers but different patient names. Under these circumstances, it is required to verify which

information should be considered as reliable. A possible solution is using simple rules to validate

the inconsistent information. In this example, a device can be designed to compare all the patient

names obtained and select the majority answer or simple pick one randomly. This issue would be

subject for further research.

9.5.3 Other models for representing application domain ontology

As introduced in chapter 4, the application domain ontology in SLEDI is represented in the

model based on description logic. Employing other models to represent the application domain

ontology may facilitate the effectiveness of constructing the data integration systems based on

SLEDI. For example, the local schemas of the participating databases may have a large amount

 179

of relations in common, then the application domain ontology may be represented as relational

schema and the common relations can be directly used in the application domain ontology. It is

important to realize that this change may cause the modifications to the global definition

representation and the query rewriting algorithm hence any potential benefits should be weighed

against this change. The issue may require further research.

9.5.4 Other types of participating databases

As introduced in chapter 1, all the participating databases involved in this research are relational

databases. In practical situations, other types of databases such as Object-Oriented databases, xml

databases and flat files may exist. Integrating other types of databases could be a fruitful line of

research. As discussed in chapter 8, since the local definitions are constructed as virtual views

over local databases schemas and the views are defined in a conjunctive query which is an

abstract form, the SLEDI solution has the potential to integrate other types of participating

database. The local definitions of other types of database may still be constructed if the databases

can describe their data into a set of (virtual) relations through some mechanisms (e.g. a wrapper).

However, the heterogeneity problems may appear differently in other types of databases and hard

coded queries may not be completely avoidable if the mechanisms have to be realized through

programs instead of structured data. This may raise the complexity of evolution handling. The

complexity may still be mitigated by using the experience gained from this research: using

structured data as much as possible to replace the hard coded programs to reducing the

maintenance costs. This issue would be subject for further research.

9.5.5 Extension of schematic evolution handling

Currently, schematic evolution is handled sequentially and immediately. The rationale of

schematic evolution handling is to modify the local definitions to make them valid again with

respect to the latest version of the local databases schemas and the evolution handling process

which is triggered manually by the administrators of the local databases. A possible research

direction is to change the current rationale to follow the similar fashion of organizational

evolution handling. This may be achieved through representing the transitions between every two

adjacent versions of local schemas. The relationship between the original version and the latest

version of local schemas may be formally built if the transitions are represented in a well defined

way. Hence the original version of local schemas when the local definitions were constructed

may be established based on the latest version of local schemas even though only the latest

version is accessible and more than one schematic evolution has already occurred. Under these

circumstances, instead of modifying the affected local definitions every time the local schema

evolves, only the transitions are recorded. The local queries produced based on local definitions

which are defined over the original version of the local schema may be transformable into

 180

equivalent queries with respect to the latest version of local schema. Since the modifications

required for handling the schematic evolution are to the transitions instead of to the local

definitions, the amount of modification work may be reduced. Furthermore, automatic assistance

may be employed to construct the transitions without human intervention hence the maintenance

costs may be further reduced. However, the query processing may have to be changed through

adding the query transformation process and this issue may require further research.

9.5.6 Large scale evaluation

The evaluation in chapter 8 provides a large amount of useful information about various

characteristics of the SLEDI solution, especially on using automatic tools for conducting

evolution handling. A large scale evaluation can be undertaken such as the effect of considerably

increasing the items in the application domain ontology, the number of attributes and relations in

the local schemas, the number of participating databases and the number of evolutions applied.

This can further investigate evolution handling to determine the effectiveness of the tool when

used in a practical situation and may guide the development of further research on the method

and tools.

9.6 Final Summary

A review of the work accomplished in this research has been presented in this chapter. The

overall success of the research has been discussed with respect to the research aims and criteria

for success defined in Chapter 1. Several directions for further work have been suggested.

This thesis has examined the context, motivation, and definition of integrating data from

autonomous and evolving data sources, leading to the development of a framework to describe

the data integration activity. A new solution following a service based approach and employing a

service late binding technique called Service Late binding Enabled solution has been presented.

The mechanisms and algorithms for accomplishing the processes of data source describing, query

processing and evolution handling have been described and compared to other similar systems.

An extensive evaluation based on a case study has demonstrated various characteristics of the

solution through obtaining the results of measures to verify the propositions. Issues found in the

case study were discussed and ideas for further work were also suggested.

The SLEDI solution includes the IPU mechanism and IPUD algorithm for data source describing.

The procedures addressing query processing and evolution handling offer novel and successful

solutions for integrating data from autonomous and evolving data sources.

 181

Reference:

[01] Mario Antonioletti , Malcolm Atkinson , Rob Baxter , Andrew Borley , Neil P. Chue Hong ,

Brian Collins , Neil Hardman , Alastair C. Hume , Alan Knox , Mike Jackson , Amy Krause ,

Simon Laws , James Magowan , Norman W. Paton , Dave Pearson , Tom Sugden , Paul Watson ,

Martin Westhead, ‘The design and implementation of Grid database services in OGSA-DAI’,

Concurrency and Computation: Practice and Experience, Volume 17, Issue 2-4, Year of

Publication: 2005, Pages 357 – 376.

[02] Yigal Arens, Craig A. Knoblock, Wei-Min Shen, Query reformulation for dynamic

information integration Source, Journal of Intelligent Information Systems, ISSN:0925-9902,

Year of Publication: 1996, Volume 6, Issue 2-3, Pages: 99 – 130.

[03] Yigal Arens, Chun-Nan Hsu, Craig A. Knoblock, Query processing in the SIMS information

mediator Source, Readings in agents, ISBN:1-55860-495-2, Year of Publication: 1997, Pages: 82

– 90.

[04] Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi, Peter F.

Patel-Schneider, The description logic handbook: theory, implementation, and applications,

ISBN:0-521-78176-0, Pages: 5-8, Year of Publication: 2003, Cambridge University Press.

[05] Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi, Peter F.

Patel-Schneider, The description logic handbook: theory, implementation, and applications,

ISBN:0-521-78176-0, Pages: 51-55, Year of Publication: 2003, Cambridge University Press.

[06] V R Basili, R W Selby, D H Hutchens, Experimentation in software engineering, IEEE

Transactions on Software Engineering, ISSN:0098-5589, Volume 12, Issue 7 (July 1986), Pages:

733 – 743.

[07] C. Batini, M. Lenzerini, S. B. Navathe, A comparative analysis of methodologies for

database schema integration, ACM Computing Surveys (CSUR), ISSN:0360-0300, Volume 18,

Issue 4, Year of Publication: 1986, Pages: 323 – 364.

[08] R. J. Bayardo, Jr., W. Bohre, R. Brice, A. Cichocki, J. Fowler, A. Helal, V. Kashyap, T.

Ksiezyk, G. Martin, M. Nodine, M. Rashid, M. Rusinkiewicz, R. Shea, C. Unnikrishnan, A.

Unruh, D. Woelk, InfoSleuth: agent-based semantic integration of information in open and

dynamic environments Full text, Proceedings of the 1997 ACM SIGMOD international

 182

conference on Management of data, ISBN:0-89791-911-4, Year of Publication: 1997, Pages: 195

– 206.

[09] C Beeri, A Y Levy, M-C Rousset, Rewriting queries using views in description logics,

Proceeding PODS '97 Proceedings of the sixteenth ACM SIGACT-SIGMOD-SIGART

symposium on Principles of database systems, ISBN:0-89791-910-6, Year of Publication: 1997,

Pages: 99 – 108.

[10] Sonia Bergamaschi, Silvana Castano, Maurizio Vincini, Domenico Beneventano, Semantic

integration of heterogeneous information sources, Data & Knowledge Engineering, Volume 36

Issue 3, March 2001.

[11] K.H.Bennett, S.Bradley, G.Glover, D.Barnes, “Software Evolution in an Interdisciplinary

Environment”, Proceedings of the Eleventh Annual International Workshop on Software

Technology and Engineering Practice, ISBN:0-7695-2218-1, Year of Publication: 2003, Pages:

199 – 203.

[12] Keith H. Bennett, Václav T. Rajlich, Software maintenance and evolution: a roadmap,

Proceedings of the Conference on The Future of Software Engineering, Proceedings of the

Conference on The Future of Software Engineering, Year of Publication: 2000, Pages: 73 – 87.

[13] K.H.Bennett, J.Xu, “Software Services and Software Maintenance”, Proceedings of the

Seventh European Conference on Software Maintenance and Reengineering, 2003,

ISBN:0-7695-1902-4 pp.3.

[14] Paul V. Biron, Ashok Malhotra. XML Schema Part 2: Datatypes Second Edition, W3C

Recommendation 28 October 2004.

[15] Ronald J. Brachman, Hector J. Levesque, Knowledge Representation and Reasoning,

ISBN:1558609326, Year of Publication: 2004.

[16] S.P. Bradley, K.H. Bennett, “Mental Health Minimum Data Set (MHMDS)”, September

2002

[17] Jim Buckley, Tom Mens, Matthias Zenger, Awais Rashid, Günter Kniesel, Towards a

taxonomy of software change: Research Articles, Journal of Software Maintenance and Evolution:

Research and Practice, ISSN:1532-060X, Volume 17, Issue 5 Year of Publication: 2005, Pages:

309 – 332.

 183

[18] Diego Calvanese, Giuseppe De Giacomo, M. Lenzerini, Maurizio Lenzerini, On the

Decidability of Query Containment under Constraints, Proceeding PODS '98 Proceedings of the

seventeenth ACM SIGACT-SIGMOD-SIGART symposium on Principles of database systems,

ISBN:0-89791-996-3, Year of Publication: 1998, Pages: 149 – 158.

[19] Diego Calvanese, Maurizio Lenzerini, Daniele Nardi, Riccardo Rosati, Description logic

framework for information integration, Proc. of the 6th Int. Conf. on the Principles of Knowledge

Representation and Reasoning (KR'98), ISBN: 1-55860-554-1, Year of Publication: 1998, Pages:

2 – 13.

[20] S. Chaudhuri, U. Dayal. An Overview of Data Warehousing and OLAP Technology,

SIGMOD Record, ISSN: 0163-5808, Year of Publication: 1997, Volume 26, Issue 1.

[21] Peter Pin-Shan Chen, The entity-relationship model: toward a unified view of data, ACM

Transactions on Database Systems, ISSN:0163-5840, Volume 10, Issue 3, Pages: 9 – 9, Year of

Publication: 1975.

[22] E.F.Codd, The relational model for database management: version 2, ISBN:0-201-14192-2,

Year of Publication: 1990, Addison-Wesley Longman Publishing Co., Inc.

[23] C.J.Date, An Introduction to Database System, 8th Edition, ISBN: 978-0321197849, Pages:

26 – 29, Year of Publication: 2003.

[24] C.J.Date, An Introduction to Database System, 8th Edition, ISBN: 978-0321197849, Pages:

173 – 250, Year of Publication: 2003.

[25] N. J. Davies, D. Fensel, M. Richardson, The Future of Web Services Full text, BT

Technology Journal, ISSN:1358-394, Year of Publication: 2004, Volume 22, Issue 1, Pages: 118 –

130.

[26] Thomas Erl, Service-Oriented Architecture: Concepts, Technology, and Design,

ISBN:0131858580, Year of Publication: 2005.

[27] Daniela Florescu, Alon Levy, Alberto Mendelzon, Database Techniques for the World-Wide

Web: A Survey, ACM SIGMOD Record, Volume 27 Issue 3, Sept. 1, 1998, Pages: 59 – 74.

[28] Bent Flyvbjerg, Five Misunderstandings about Case-Study Research, Qualitative Inquiry,

 184

Volume 12, Number 2, April 2006, Page 219-245.

[29] Ian Foster, Carl Kesselman, ‘The grid: blueprint for a new computing infrastructure’,

ISBN:1-55860-475-8, Year of Publication: 1998.

[30] Ian Foster, Carl Kesselman, Steven Tuecke, “The Anatomy of the Grid: Enabling Scalable

Virtual Organizations”. International Journal of High Performance Computing Applications,

ISSN:1094-3420, Year of Publication: 2001, Volume 15, Issue 3, Pages: 200 – 222.

[31] Hector Garcia-Molina, Yannis Papakonstantinou, Dallan Quass, Anand Rajaraman,

Yehoshua Sagiv, Jeffrey Ullman, Vasilis Vassalo, Jennifer Widom, The TSIMMIS Approach to

Mediation: Data Models and Languages, Journal of Intelligent Information Systems,

ISSN:0925-9902, Volume 8, Issue 2, Year of Publication: 1997, Pages: 117 – 132.

[32] Globus Toolkit 4.0, http://www.globus.org/toolkit/docs/4.0/key/index.html, last accessed in

August 2005.

[33] Gyles Glover, Adult mental health care in England, European Archives of Psychiatry and

Clinical Neuroscience, ISSN: 0940-1334, 257:71–82, (2007).

[34] François Goasdoué, Véronique Lattès and Marie-Christine Rousset, The Use of CARIN

Language and Algorithms for Information Integration: The PICSEL System, International Journal

of Cooperative Information Systems (IJCIS), ISSN: 0218-8430, Volume 9, Issue 4 (December

2000), Pages: 383-401.

[35] Alistair Grant, Mario Antonioletti, Alastair C. Hume, Amy Krause, Bartosz Dobrzelecki,

Michael J. Jackson, Mark Parsons, Malcolm P. Atkinson, Elias Theocharopoulos, OGSA-DAI:

Middleware for Data Integration: Selected Applications, Proceedings of the 2008 Fourth IEEE

International Conference on eScience, ISBN:978-0-7695-3535-7, Year of Publication: 2008, Page

343.

[36] Thomas R. Gruber, A translation approach to portable ontology specifications, Knowledge

Acquisition, Volume 5, Issue 2, June 1993, Pages: 199-220, ISSN:1042-8143.

[37] Alon Y Halevy, Answering queries using views: A survey. The International Journal on Very

Large Data Bases J., 10(4):270–294, 2001.

[38] Alon Y Halevy, Anand Rajaraman, Joann Janet Ordille, Data integration: the teenage years,

 185

Proceedings of the 32nd international conference on Very large data bases, Pages: 9 - 16 , 2006.

[39] Ian Horrocks, Peter F. Patel-Schneider, Frank Van Harmelen, From SHIQ and RDF to OWL:

The Making of a Web Ontology Language, Journal of Web Semantics, Volume 1, Number 1,

Pages: 7-26, Year of Publication: 2003.

[40] David K. Hsiao, Federated databases and systems: part I --- a tutorial on their data sharing,

The International Journal on Very Large Data Bases, ISSN:1066-8888, Volume 1, Issue 1, Year of

Publication: 1992, Pages: 127 – 180.

[41] Richard Hull, Gang Zhou,A framework for supporting data integration using the

materialized and virtual approaches, Proceedings of the 1996 ACM SIGMOD international

conference on Management of data, ISBN:0-89791-794-4, Year of Publication: 1996, Pages: 481

– 492.

[42] R. Hull, Managing semantic heterogeneity in databases: A theoretical perspective, In Proc.

of the 16th ACM SIGACT SIGMOD SIGART Symp. on Principles of Database Systems

(PODS’97), 1997.

[43] IEEE standard for software maintenance, 1219-1998, Software Engineering Standards

Committee of the IEEE Computer Society, ISBN: 0-7381-0336-5, Publication Date: 21 Oct 1998.

[44] M. Jarke, M. Lenzerini, and P. Vassiliadis Y. Vassiliou, Fundamentals of Data Warehouses,

Springer Verlag, 2000. ISBN 3540420894, pp19-21

[45] Jena – A Semantic Web Framework for Java, http://jena.sourceforge.net/, last accessed in

December 2007.

[46] Vipul Kashyap, Amit Sheth, Semantic and schematic similarities between database objects: a

context-based approach, The VLDB Journal — The International Journal on Very Large Data

Bases, ISSN:1066-8888, Volume 5, Issue 4 Year of Publication: 1996, Pages: 276 – 304.

[47] Barbara A. Kitchenham, Shari Lawrence Pfleeger, Lesley M. Pickard, Peter W. Jones, David

C. Hoaglin, Khaled El Emam, Jarrett Rosenberg, Preliminary guidelines for empirical research in

software engineering, IEEE Transactions on Software Engineering, ISSN:0098-5589, Volume 28,

Issue 8 (August 2002), Pages: 721 – 734.

[48] Barbara Kitchenham, Lesley Pickard, Shari Lawrence Pfleeger, Case Studies for Method

 186

and Tool Evaluation, IEEE Software, ISSN:0740-7459, Volume 12, Issue 4 (July 1995), Pages:

52 – 62.

[49] Dirk Krafzig, Karl Banke, Dirk Slama, “Enterprise SOA”, Prentice Hall Professional

Technical Reference, ISBN: 0-13-146575-9 p. 56-57, 2004.

[50] Wilburt J. Labio, Yue Zhuge, Janet L. Wiener, Himanshu Gupta, Héctor García-Molina,

Jennifer Widom, The WHIPS prototype for data warehouse creation and maintenance,

Proceedings of the 1997 ACM SIGMOD international conference on Management of data,

ISBN:0-89791-911-4, Year of Publication: 1997, Pages: 557 – 559.

[51] Stéphane Lafortune, Eugene Wong, ‘A State Transition Model for Distributed Query

Processing’ August 1986, ACM Transactions on Database Systems (TODS), Volume 11 Issue 3.

[52] P.J.Layzell, K.H.Bennett, D.Budgen, P.Brereton, L.A.Macaulay, M.Munro, ‘Service-Based

Software: The Future for Flexible Software’ Asia-Pacific Software Engineering Conference, 5-8

December 2000, ISBN: 0-7695-0915-0 pp. 214-222.

[53] Fritz Lehmann, Semantic Networks in Artificial Intelligence, ISBN:0080420125, Year of

Publication: 1992, Pages: 768.

[54] Meir.M.Lehman, Juan F. Ramil, “Software Evolution and Software Evolution Process”,

Annals of Software Engineering, ISSN:1022-7091, Volume 14 , Issue 1-4 (December 2002).

[55] Maurizio Lenzerini, Data integration: A theoretical perspective. Proceedings of the 21st

ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems (PODS 2002),

pages 233-246, 2002.

[56] Alon Y. Levy, Anand Rajaraman , Joann J. Ordille, Query-Answering Algorithms for

Information Agents, AAAI'96 Proceedings of the thirteenth national conference on Artificial

intelligence, ISBN: 0-262-51091-X, Year of Publication: 1996, Pages: 40 – 47.

[57] Alon Y. Levy, Anand Rajaraman, Joann J.Ordille, Querying Heterogeneous Information

Sources Using Source Descriptions Source, Proceedings of the 22th International Conference on

Very Large Data Bases, ISBN:1-55860-382-4, Year of Publication: 1996, Pages: 251 – 262.

[58] Alon Y Levy, Marie-Christine Rousset, The limits on combining recursive horn rules and

description logics, Proceeding AAAI'96 Proceedings of the thirteenth national conference on

 187

Artificial intelligence, ISBN:0-262-51091-X, Volume 14 , (1996), pages 577-584.

[59] Alon Y. Levy, Marie-Christine Rousset, Combining Horn rules and description logics in

CARIN, Artificial Intelligence, ISSN:0004-3702, Volume 104, Issue 1-2 (September 1998),

Pages: 165 – 209.

[60] Alon Y. Levy, Logic-based techniques in data integration, Logic-based artificial intelligence,

ISBN: 0-7923-7224-7, Year of Publication: 2000, Pages: 575 – 595.

[61] B.P.Lientz, E.B.Swanson, Software Maintenance Management, Addison-Wesley Publishing

Company, 1980, ISBN 0201042053.

[62] David Martin, Mark Burstein, Drew Mcdermott, Sheila Mcilraith, Massimo Paolucci, Katia

Sycara, Deborah L. Mcguinness, Evren Sirin, Naveen Srinivasan, Bringing Semantics to Web

Services with OWL-S, World Wide Web, ISSN:1386-145X, volume 10 Issue 3, September 2007.

[63] Marvin Minsky, A framework for representing knowledge, Computation & intelligence:

collected readings, ISBN:0-262-62101-0, Year of Publication: 1995, Pages: 163 – 189.

[64] OMII uk, http://www.omii.ac.uk/wiki/SoftwareOverview, last accessed in April 2007.

[65] P. Oreizy, R. Taylor, On the Role of Software Architectures in Runtime System

Reconfiguration, Proceedings of the International Conference on Configurable Distributed

Systems, ISBN: 0-8186-8451-8, Page: 61, Year of Publication: 1998.

[66] OWL Web Ontology Language Overview, W3C Recommendation 10 Feburary 2004.

http://www.w3.org/TR/owl-features/, last accessed in November 2007.

[67] Massimo Paolucci, Takahiro Kawamura, Terry R. Payne, Katia Sycara, Semantic Matching

of Web Services Capabilities, ISWC 2002 In The Semantic Web, Pages: 333 – 347.

[68] Michael P. Papazoglou, Willem-Jan Van Den Heuvel, Service-Oriented design and

development methodology, International Journal of Web Engineering and Technology archive,

ISSN:1476-1289, Volume 2, Issue 4, Pages: 412-442, Year of Publication: 2006.

[69] Mike P. Papazoglou, Willem-Jan Heuvel, Service-Oriented architectures: approaches,

technologies and research issues, The VLDB Journal — The International Journal on Very Large

Data Bases, ISSN:1066-8888, Year of Publication: 2007, Volume 16 , Issue 3 (July 2007),

 188

Pages: 389 – 415.

[70] Michael P. Papazoglou, Paolo Traverso, Schahram Dustdar, Frank Leymann,

“Service-Oriented Computing: State of the Art and Research Challenges”, Computer,

ISSN:0018-9162, Year of Publication: 2007, Volume 40, Issue 11, Pages 38-45.

[71] Pellet: OWL 2 Reasoner for Java, http://clarkparsia.com/pellet/, last accessed in March

2008.

[72] Vijayshanker Raman, Inderpal Narang, Chris Crone, Laura Haas, Susan Malaika, Tina

Mukai, Dan Wolfson and Chaitan Baru, ‘Data Access and Management Services on Grid’,

Database Access and Integration Services Working Group, Global Grid Forum (GGF) 5, 2002.

[73] RDF Primer, W3C Recommendation 10 February 2004. http://www.w3.org/TR/rdf-primer/,

last accessed in November 2009.

[74] RDF Vocabulary Description Language 1.0: RDF Schema, W3C Recommendation 10

February 2004. http://www.w3.org/TR/rdf-schema/, last accessed in November 2009.

[75] Semantic Annotations for WSDL and XML Schema, W3C Recommendation 28 August

2007, http://www.w3.org/TR/2007/REC-sawsdl-20070828/, last accessed in March 2008.

[76] A. Sheth, J. Larson, ‘Federated database systems for managing distributed, heterogeneous

and autonomous databases’ ACM Computing Surveys, 1990, 22, 3, pp. 183-236.

[77] Amit. P. Sheth, “changing focus on interoperability in information systems: from system,

syntax, structure to semantics”, Michael F. Goodchild, Max J. Egenhofer, Robin Fegeas, Cliff

Kottman “Interoperating geographic information systems”, ISBN 0792384369, Published by

Springer, 1999, pages 5-30.

[78] Alan Simon, Steven Shaffer, Data warehousing and business intelligence for e-commerce,

ISBN: 978-1-55860-713-2, Year of Publication: 2002.

[79] Munindar P. Singh, Michael N.Huhns. “Service-Oriented Computing” John Wiley & Sons,

Ltd, ISBN 0-470-09148-7, 2005.

[80] SOAP Version 1.2 Part 0: Primer (Second Edition), W3C Recommendation 27 April 2007,

http://www.w3.org/TR/2007/REC-soap12-part0-20070427/, last accessed in December 2007.

 189

[81] SOAP Version 1.2 Part 1: Messaging Framework (Second Edition), W3C Recommendation

27 April 2007, http://www.w3.org/TR/2007/REC-soap12-part1-20070427/, last accessed in

December 2007.

[82] SPARQL Query Language for RDF, W3C Recommendation 15 January 2008.

http://www.w3.org/TR/rdf-sparql-query/, last accessed in November 2009.

[83] The Protege; Ontology Editor and Knowledge Acquisition System,

http://protege.stanford.edu/, last accessed in December 2007.

[84] Duane P. Truex, Richard Baskerville, Heinz Klein, Growing systems in emergent

organizations, Communications of the ACM, ISSN:0001-0782, Volume 42, Issue 8, Year of

Publication: 1999, Pages: 117 – 123.

[85] M. Turner, Zhu, F., Kotsiopoulos, I., Russell, M., Budgen, D., Bennett. K., Brereton, P.,

Keane, J., Layzell, P., and Rigby, M., ‘Using Web Services Technologies to create an Information

Broker: An Experience Report’, Proceedings of the 26th International Conference on Software

Engineering, ISBN ~ ISSN:0270-5257 , 0-7695-2163-0, Year of Publication: 2004, Pages: 552 –

561.

[86] UDDI v3.0, http://www.uddi.org/pubs/uddi_v3.htm, last accessed in May 2006.

[87] J.D. Ullman, Database and Knowledge-Base Systems, Volumes I and II. Computer Science

Press 1989

[88] J. D. Ullman, Information integration using logical views. In Proc. of the 6th Int. Conf. on

Database Theory (ICDT’97), volume 1186 of Lecture Notes in Computer Science, pages 19–40.

Springer, 1997.

[89] Web Services Addressing 1.0 – Core, W3C Recommendation 9 May 2006,

http://www.w3.org/TR/2006/REC-ws-addr-core-20060509/, last accessed in October 2006.

[90] W3 Working Group, Web Services Architecture W3C Working Group Note 11, February

2004, http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/, last accessed in December 2005.

[91] Web Services Choreography Description Language Version 1.0, W3C Candidate

Recommendation 9 November 2005, http://www.w3.org/TR/2005/CR-ws-cdl-10-20051109/, last

 190

accessed in November 2006.

[92] Web Services Description Language (WSDL) Version 2.0 Part 0: Primer, W3C

Recommendation 26 June 2007, http://www.w3.org/TR/2007/REC-wsdl20-primer-20070626,

last accessed in January 2008.

[93] Web Services Description Language (WSDL) Version 2.0 Part 1: Core Language, W3C

Recommendation 26 June 2007, http://www.w3.org/TR/wsdl20/, last accessed in January 2008.

[94] Sanjiva Weerawarana, Francisco Curbera, Frank Leymann, Tony Storey, Donald F. Ferguson,

Web Services Platform Architecture: SOAP, WSDL, WS-Policy, WS-Addressing, WS-BPEL,

WS-Reliable Messaging and More, Prentice Hall PTR, ISBN:0131488740, Year of Publication:

2005.

[95] Jennifer Widom, Research Problems in Data Warehousing, Conference on Information and

Knowledge Management Proceedings of the fourth international conference on Information and

knowledge management, ISBN:0-89791-812-6, Year of Publication: 1995, Pages: 25 – 30.

[96] XML Schema Part 0: Primer Second Edition, W3C Recommendation 28 October 2004,

http://www.w3.org/TR/2004/REC-xmlschema-0-20041028/, last accessed in February 2006.

[97] XML Schema Part 1: Structures Second Edition, W3C Recommendation 28 October 2004,

http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/, last accessed in February 2006.

[98] XML Schema Part 2: Datatypes Second Edition, W3C Recommendation 28 October 2004.

http://www.w3.org/TR/xmlschema-2/, last accessed in March 2006.

[99] XQuery 1.0 and XPath 2.0 Data Model (XDM) W3C, Recommendation 23 January 2007,

http://www.w3.org/TR/2007/REC-xpath-datamodel-20070123/, last accessed in July 2007.

[100] XQuery 1.0 and XPath 2.0 Formal Semantics W3C, Recommendation 23 January 2007,

http://www.w3.org/TR/2007/REC-xpath-datamodel-20070123/, last accessed in July 2007.

[101] S.S. Yau, J.S. Collofello, T. MacGregor, Ripple effect analysis of software maintenance,

Computer Software and Applications Conference, 1978. COMPSAC '78. pp. 60-65, 1978.

[102] Robert K. Yin, Applications of case study research, second edition, Publisher: SAGE

Publications 2003, Series: Applied Social Research Methods, Volume 34, ISBN:

 191

9780761925507.

[103] Robert K. Yin, Case Study Research Design and Methods, Fourth Edition, Pages: 1-11,

Publisher: SAGE Publications (28 December 2008 - Thousand Oaks, United States), ISBN:

1412960991.

[104] Robert K. Yin, Case Study Research Design and Methods, Fourth Edition, Pages: 12-17,

Publisher: SAGE Publications (28 December 2008 - Thousand Oaks, United States), ISBN:

1412960991.

[105] Gang Zhou, Richard Hull, Roger King, Generating data integration mediators that use

materialization, Journal of Intelligent Information Systems, ISSN:0925-9902, Year of Publication:

1996, Volume 6 Issue 2-3, Pages: 199 – 221.

[106] F. Zhu, M. Turner, I. Kotsiopoulos, K. Bennett, M. Russell, D. Budgen, P. Brereton, J.

Keane, P. Layzell, M. Rigby, and J. Xu, ‘Dynamic Data Integration Using Web Services’,

Proceedings of the IEEE International Conference on Web Services, ISBN:0-7695-2167-3, Year

of Publication: 2004, Page: 262.

