Kinetic studies of nitrosations by alkyl nitrites

Crookes, Michael Jonathan

How to cite:

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-profit purposes provided that:

- a full bibliographic reference is made to the original source
- a link is made to the metadata record in Durham E-Theses
- the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.
Kinetic Studies of Nitrosations by Alkyl Nitrites

by

Michael Jonathan Crookes, B.Sc. (Durham)
(Grey College)

A Thesis submitted for the Degree of
Doctor of Philosophy of the University of Durham

September 1988

The copyright of this thesis rests with the author. No quotation from it should be published without his prior written consent and information derived from it should be acknowledged.
To My Parents
Memorandum

The work for this thesis has been carried out in the Department of Chemistry at the University of Durham between October 1985 and July 1988. It is the original work of the author unless otherwise stated. None of this work has been submitted for any other Degree.
Acknowledgements

I would like to express my special thanks to my supervisor, Dr. D.L.H. Williams, for his continual advice and encouragement during the course of this work.

I would like to thank my colleagues Pip, Hanif, Panchali and Shirlene for their valuable friendship and discussions. Special mention must be made to Mr. Colin Greenhalgh for his technical assistance and friendship.

I would also like to thank Mr. K. Appleby for maintainance of the spectrophotometers.

I am grateful to the Science and Engineering Research Council for the receipt of a research grant.

Finally, I would like to thank Ann Cutts for the typing of this manuscript.
ABSTRACT

The reactions of tertiary butyl nitrite and isopropyl nitrite in aqueous acid solution have been studied. In the case of isopropyl nitrite the rates of reaction with hydrazoic acid, sulphamic acid, thioglycolic acid and N-methylaniline are markedly reduced by the addition of propan-2-ol. This has been explained in terms of a rapid hydrolysis of the alkyl nitrite to yield an equilibrium concentration of nitrous acid which then effects nitrosation. Analysis of the results gives values for the equilibrium constant for isopropyl nitrite hydrolysis and for the rate constants for nitrous acid nitrosation of the substrate, which are in good agreement with the literature values obtained by direct measurement. For tertiary butyl nitrite the extent of hydrolysis is so large and rapid that the kinetics are identical to those obtained using nitrous acid.

The reactions of isopropyl nitrite in isopropanol and tertiary butyl nitrite in tertiary butanol with thiourea and thioglycolic acid have been studied. In both cases the reactions are acid catalysed and the results are consistent with a direct reaction between
the protonated alkyl nitrite and the substrate. The reactions with thioglycolic acid were subject to catalysis by chloride and bromide salts and thiourea. The results for chloride and bromide salts are best explained in terms of formation of hydrochloric or hydrobromic acid which can then act as a general acid catalyst. For thiourea the catalysis is due to the formation of an equilibrium concentration of s-nitrosothiourea.

In acetonitrile the reactions of tertiary butyl nitrite, isopropyl nitrite, isoamyl nitrite and nitrous acid with alcohols and thioglycolic acid were found to be kinetically zero order with respect to the substrate concentration. The results have been interpreted in terms of rate limiting formation of the nitrosonium ion. With less reactive substrates, aniline, N-methylaniline, p-toluidine, acetylacetone, 1,1,1, trifluoroacetylacetone and 1,1,1,5,5,5, hexafluoroacetylacetone, the reactions are kinetically first order with respect to the substrate concentration and have been interpreted in terms of rate limiting reaction of the nitrosonium ion with the free (at low acidity) or protonated (at high acidity) form of the amine. For the ketones reaction occurs, in a rate limiting step with either the enols or enolate ions.
Contents

Chapter 1. Introduction

<table>
<thead>
<tr>
<th>1.1 Nitrosating agents</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1.1 Nitrous acid</td>
<td>1</td>
</tr>
<tr>
<td>1.1.2 Nitrosyl halides</td>
<td>2</td>
</tr>
<tr>
<td>1.1.3 Nitrosyl thiocyanate</td>
<td>4</td>
</tr>
<tr>
<td>1.1.4 Nitrosyl acetate</td>
<td>4</td>
</tr>
<tr>
<td>1.1.5 Nitrosonium salts</td>
<td>5</td>
</tr>
<tr>
<td>1.1.6 S-Nitrosothioureas</td>
<td>6</td>
</tr>
<tr>
<td>1.1.7 Nitrogen oxides</td>
<td>7</td>
</tr>
<tr>
<td>1.1.8 Other reagents</td>
<td>8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1.2 Reactions of nitrous acid</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.2.1 Acidic solutions</td>
<td>9</td>
</tr>
<tr>
<td>1.2.2 Nucleophile catalysed reactions</td>
<td>16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1.3 O-Nitrosation</th>
<th>Page</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>1.4 Reactions of alkyl nitrites</th>
<th>Page</th>
</tr>
</thead>
</table>

Chapter 2. Nitrosation of isopropanol and tertiary butanol in aqueous solution

<table>
<thead>
<tr>
<th>2.1 Nitrosation of tertiary butanol</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1.1 Acid catalysis</td>
<td>43</td>
</tr>
<tr>
<td>2.1.2 Halide ion catalysis</td>
<td>49</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2.2 Nitrosation of isopropanol</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2.1 Acid catalysis</td>
<td>53</td>
</tr>
<tr>
<td>2.2.2 Halide ion catalysis</td>
<td>57</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2.3 Discussion</th>
<th>Page</th>
</tr>
</thead>
</table>

60
Chapter 3, Reactions of alkyl nitrites in aqueous acid solution

3.1 Reaction of isopropyl nitrite with various nitrous acid traps

3.1.1 Hydrazoic acid
3.1.2 Sulphamic acid
3.1.3 Thioglycolic acid
3.1.4 N-Methylaniline
3.1.5 Conclusion

3.2 Reaction of tertiarybutyl nitrite with various nitrous acid traps

3.2.1 Reaction with sulphamic acid
3.2.2 Reaction with hydrazoic acid

3.3 Discussion

Chapter 4, Reactions of alkyl nitrites in acidic alcohol solution

4.1 Reaction of tertiary butyl nitrite in tertiary butanol

4.1.1 Nitrosation of thiourea
4.1.2 Nitrosation of thioglycolic acid

4.2 Reactions of isopropyl nitrite in isopropanol

4.2.1 Nitrosation of thiourea
4.2.2 Nitrosation of thioglycolic acid

4.3 Nucleophilic catalysis of the nitrosation of thioglycolic acid by tertiary butyl nitrite

4.3.1 Catalysis by chloride and bromide salts
4.3.2 Thiourea catalysis

4.4 Nucleophilic catalysis of the nitrosation of thioglycolic acid by isopropyl nitrite

4.4.1 Chloride ion catalysis

4.4.2 Thiourea catalysis

4.5 Discussion

Chapter 5. Reactions of alkyl nitrites in acetonitrile and chloroform

5.1 Equilibrium constants for the formation of alkyl nitrites

5.2 Kinetics and mechanism of the transnitrosation reaction

5.2.1 Chloroform as solvent

5.2.2 Acetonitrile as solvent

5.3 Kinetics and mechanism of the nitrosation of thioglycolic acid in acetonitrile

5.4 Kinetics and mechanism of the reaction of nitrous acid in acetonitrile

5.5 Discussion

5.5.1 Acid-base behaviour in acetonitrile

5.5.2 Mechanism of nitrosation in acetonitrile

Chapter 6. Nitrosation of amines and ketones in acetonitrile

6.1 Nitrosation of 2-diketones

6.1.1 Nitrosation of acetylacetone

6.1.2 Nitrosation of 1,1,1-trifluoro-acetylacetone

6.1.3 Nitrosation of 1,1,1,5,5,5,hexa-fluoroacetylacetone
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1.4 Discussion</td>
<td>248</td>
</tr>
<tr>
<td>6.2 Reaction of alkyl nitrites with amines in acetonitrile</td>
<td>254</td>
</tr>
<tr>
<td>Chapter 7. Experimental Details</td>
<td></td>
</tr>
<tr>
<td>7.1 Reagents used</td>
<td></td>
</tr>
<tr>
<td>7.1.1 Aqueous solutions</td>
<td>269</td>
</tr>
<tr>
<td>7.1.2 Alcohol solution</td>
<td>270</td>
</tr>
<tr>
<td>7.1.3 Aprotic solutions</td>
<td>270</td>
</tr>
<tr>
<td>7.2 Rate Measurements</td>
<td>271</td>
</tr>
<tr>
<td>7.2.1 Stopped-flow spectrophotometry</td>
<td>271</td>
</tr>
<tr>
<td>7.2.2 Conventional U.V./Visible spectrophotometry</td>
<td>281</td>
</tr>
<tr>
<td>Appendix</td>
<td>285</td>
</tr>
</tbody>
</table>
1. INTRODUCTION

1.1 Nitrosating agents

Nitrosation reactions concern the introduction of the nitroso group (-N=O) into a molecule. There are many reagents that can bring about this transformation in a wide variety of molecules, typically amines, amides, alcohols, thiols, ketones, phenols and alkenes. The products of the nitrosation reactions are sometimes unstable but frequently yield synthetically useful intermediates, for example, diazonium ions (azo dye manufacture), oximes and carbonium ions. There has also been much interest in the formation and reactions of nitrosamines since the discovery, in 1956 [1], that they are potent carcinogens.

1.1.1 Nitrous acid

Nitrous acid is the most commonly used nitrosating agent. Nitrous acid itself is unstable and is usually prepared in solution by addition of a mineral acid to an alkali metal nitrite salt. Nitrous acid is a weak acid (pKₐ = 3.148 at 25°C [2]). In solution it is known to exist in cis and trans forms [3], (equation 1.1), the trans form being more stable by about 2.1 kJ mol⁻¹.
As well as acting as a nitrosating agent, nitrous acid can also act as an oxidizing agent (equation 1.2) and a reducing agent (equation 1.3).

\[
\text{HNO}_2 + \text{H}^+ + e^- = \text{NO} + \text{H}_2\text{O} \quad E^\circ = 1.0 \text{ v} \quad (1.2)
\]

\[
\text{NO}_3^- + 3\text{H}^+ + 2e^- = \text{HNO}_2 + \text{H}_2\text{O} \quad E^\circ = 0.94 \text{ v} \quad (1.3)
\]

1.1.2 Nitrosyl halides

Nitrosyl halides are frequently used nitrosating agents, especially in non aqueous solvents such as chloroform [4], alcohol [5], dimethyl formamide [6] and also in aqueous alkaline solution [7]. Nitrosyl fluoride, bromide and chloride are all well known compounds, usually prepared by reacting the halogen with nitric oxide, (equation 1.4). There is also evidence for the formation
of nitrosyl iodide in solution [8,9]. The physical properties of the gases are given in Table (1.1).

\[2\text{NO} + \bar{\text{X}_2} \rightarrow 2\text{XNO} \]

(1.4)

Table 1.1
Structural and physical properties of the nitrosyl halides

<table>
<thead>
<tr>
<th>Compound</th>
<th>Colour</th>
<th>Melting Point (°C)</th>
<th>Boiling Point (°C)</th>
<th>Bond Lengths (Å)</th>
<th>Bond Angle (deg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO</td>
<td>Colourless</td>
<td>-133</td>
<td>-60</td>
<td>1.52</td>
<td>1.13</td>
</tr>
<tr>
<td>ClNO</td>
<td>Orange-yellow</td>
<td>-62</td>
<td>-6</td>
<td>1.95</td>
<td>1.14</td>
</tr>
<tr>
<td>BrNO</td>
<td>Red</td>
<td>-56</td>
<td>0</td>
<td>2.14</td>
<td>1.15</td>
</tr>
</tbody>
</table>

Nitrosyl halides have been shown to act as both electrophilic and free radical nitrosating agents. The mechanism of the electrophilic process will be discussed later. The free radical reaction involves irradiation of the nitrosyl halide with UV light. This reaction is frequently used to produce C-nitroso compounds, as typified by the reaction of cyclohexane [10] (equation 1.5), the product from which is an intermediate in the production of nylon 6. These reactions are commonly accompanied by chlorinated products.
1.1.3 Nitrosyl thiocyanate

Nitrosyl thiocyanate (ONSCN) has not been isolated as a pure compound, but has been shown to exist as an unstable blood red species in solution at low temperature [11]. It is thought that the nitroso group is bound to the sulphur atom. This is to be expected from the Hard-Acid-Soft-Base (HASB) theory [12] and is predicted in an ab initio molecular orbital study [13]. Nitrosyl thiocyanate has however been identified as an electrophilic nitrosating agent in aqueous acid solutions of nitrous acid containing thiocyanate ion [14] by the observed thiocyanate ion catalysis and will be discussed later.

1.1.4 Nitrosyl acetate

Nitrosyl acetate is thought to be the effective nitrosating agent when sodium nitrite in glacial acetic
acid is used as the nitrosating medium. Nitrosyl acetate has been prepared from solid silver acetate and nitrosyl chloride at low temperature [15], (equation 1.6). Nitrosyl acetate is a pale brown liquid at room temperature, a green liquid at -78°C and a green solid at -196°C.

\[\text{CH}_3\text{COOAg} + \text{ClNO} \rightarrow \text{CH}_3\text{COONO} + \text{AgCl} \] (1.6)

It has also been identified kinetically from the catalysis by added acetate ion on the nitrosation of amines [16, 17] in the same way as nitrosyl halides and thiocyanate have been identified.

1.1.5 Nitrosonium salts

The most common example of nitrosonium salts, NO⁺X⁻ are the tetrafluoroborate (BF₄⁻), tetrachlororoborate (BCl⁷⁻), hexafluorophosphate (PF₆⁻), hydrogen sulphate (HSO₄⁻), perchlorate (ClO₄⁻) and hexafluoroantimonate (SbF₆⁻). The salts are reasonably stable and are readily prepared from dinitrogen tetroxide, dinitrogen trioxide or nitrosyl chloride and a source of the anion [18] as exemplified by equation (1.7) for the formation of nitrosonium hydrogen sulphate, which is an important intermediate in the lead-chamber process for production of sulphuric acid.
The salts are usually used under anhydrous conditions as they are readily hydrolysed to give nitrous acid. The salts are very reactive nitrosating agents, and are frequently used to bring about nitrosation of the less reactive species, for example amides [19] and sulphonamides.

1.1.6 S-Nitroso-thioureas

S-Nitrosothioureas are readily produced by the action of nitrous acid on the thiourea [20], the products are frequently unstable and react further to give the disulphide salts [21], (equation 1.8).

\[
\begin{align*}
\text{HNO}_2 + H^+ + (\text{NH}_2)_2\text{CS} &\rightarrow (\text{NH}_2)_2\text{CS}^{\ddagger}\text{NO} \\
2(\text{NH}_2)_2\text{CS}^{\ddagger}\text{NO} &\rightarrow (\text{NH}_2)_2\text{CS}^{\ddagger}\text{S-C(NH}_2)_2
\end{align*}
\]

(1.8)

S-Nitrosothioureas can themselves act as nitrosating agents as is frequently shown by the marked catalysis by thiourea on nitrosation kinetics [14] and will be discussed further later.
1.1.7 Nitrogen Oxides

Dinitrogen trioxide (\(\text{N}_2\text{O}_3\)) is commonly used as a nitrosating agent in organic solvents [22], and has also been shown to be effective in aqueous alkaline solution [23, 24]. It is also known to exist in equilibrium with nitrous acid in aqueous acid [25] solution, as shown in equation (1.9), and its reactions in these solutions will be discussed further later.

\[
2\text{HNO}_2 \rightleftharpoons \text{N}_2\text{O}_3 + \text{H}_2\text{O} \quad (1.9)
\]

Dinitrogen trioxide exists as a blue solid or liquid at low temperatures [18] and it exhibits in absorption maximum at 625 nm in solution. Its nitrosation reactions can be best explained in terms of an ionic structure of the type \(\text{NO}^+\text{NO}_2^-\). Reaction with dinitrogen trioxide can also yield nitro products. These probably arise from a radical addition of nitrogen dioxide which exists in equilibrium with dinitrogen trioxide (equation 1.10).

\[
\text{N}_2\text{O}_3 \rightleftharpoons \text{NO} + \text{NO}_2 \quad (1.10)
\]

Dinitrogen tetroxide (\(\text{N}_2\text{O}_4\)) can also bring about both nitrosation and nitration reactions [26, 27, 28]. Dinitrogen tetroxide is known to be a pale yellow solid and is a planar molecule with a centre of symmetry and a long N-N bond [18]. In the liquid and gaseous state...
dinitrogen tetroxide exists in equilibrium with nitrogen
dioxide, equation (1.11), and this can therefore explain
its activity as a nitrating agent. Its nitrosation
reactions are best explained in terms of an ionic
structure \(\text{NO}^+\text{NO}_2^- \).

\[
\begin{align*}
\text{N}_2\text{O}_4 & \rightleftharpoons 2\text{NO}_3 \\
\end{align*}
\]

(1.11)

Dinitrogen tetroxide is a very useful synthetic
reagent as it can bring about the nitrosation of compounds
such as secondary amides [29], which are unreactive
towards some of the other nitrosating agents.

Another commonly used nitrogen oxide in nitrosation
reactions is nitric oxide (NO), [30,31]. It seems likely,
however, that the nitrosating species involved is either
dinitrogen trioxide or dinitrogen tetroxide, formed by
oxidation of nitric oxide to nitrogen dioxide.

1.1.8 Other reagents

A wide variety of other species have been shown to be
capable of acting as nitrosating agents, these include,
potassium nitrosodisulphenate (\(\text{K}_2[\text{SO}_3\text{NO}] \)) or Fremy's
salt [32], nitroalkanes [33], alkyl nitrates [34], nitroso
sulphinates [35] (\(\text{RSO}_2\text{NO} \)), thionylchloronitrite (\(\text{SOClONO} \))
and thionyl dinitrile \(\text{SO(ONO)}_2 \) [36], nitrosothiosulphate
ion [37] \(\text{S}_2\text{O}_3\text{NO}^- \), nitrososulphonium ion [38]
\(((\text{CH}_3)_2\text{S} \text{NO})^+ \), thionitrates (\(\text{RSNO}_2 \)) [39], nitroprusside
ion (Fe(CN)$_3$NO$^{2-}$) [40] and alkyl nitrites (RONO). The reactions of alkyl nitrites will be discussed in detail in section 1.3.

1.2 Reactions of Nitrous Acid

1.2.1 Acidic Solutions

A commonly encountered rate equation in nitrosation reactions is given in equation (1.12). Here the reaction

$$\text{Rate} = k [\text{HNO}_2] [\text{H}_3\text{O}^+] [\text{S}]$$ \hspace{1cm} (1.12)

is first order in nitrous acid, substrate and hydrogen ion concentration. This equation has been found for a wide variety of substrates including thiols [41], alcohols [42], ketones [43], sulphamic acid [44], amines [45] and amides [46]. There are, however, two mechanistic interpretations of such a scheme, both of which propose the formation of an equilibrium concentration of a nitrosating species which then undergoes reaction with the substrate in the rate determining step. The first scheme (scheme 1.13) involves the formation of the nitrous acidium ion (H$_2$NO$_2^+$) and the second involves the formation of the nitrosonium ion (NO$^+$), (scheme 1.14). It is known that the nitrosonium ion exists in solutions of very high acidities [47,48,49, 50], (60% H$_2$SO$_4$ or HClO$_4$), where it can be detected spectroscopically, and it is analogous...
\[\text{HNO}_2 + \text{H}_3\text{O}^+ \rightleftharpoons \text{H}_2\text{NO}_2^+ + \text{H}_2\text{O} \]
(1.13)

\[\text{H}_2\text{NO}_2^+ + \text{S} \rightarrow \text{Products} \]

\[\text{HNO}_2 + \text{H}_3\text{O}^+ \rightleftharpoons \text{H}_2\text{NO}_2^+ + \text{H}_2\text{O} \]
(1.14)

\[\text{H}_2\text{NO}_2^+ \rightarrow \text{NO}^+ + \text{H}_2\text{O} \]

\[\text{NO}^+ + \text{S} \rightarrow \text{Products} \]

to the formation of the nitronium ion (\text{NO}_2^+) in nitration reactions \([51,59]\). The nitronium ion has been identified kinetically as the nitrating agent with very reactive substrates as the reaction becomes zero order in substrate, indicating rate limiting formation of the nitrating species. This has also been reported for two cases in nitrosation reactions at low acidities. In the nitrosation of hydrogen peroxide \([52]\) a plot of the observed first order rate constant against [\text{H}_2\text{O}_2] was curved, but the concentration of hydrogen peroxide used was very high and so the curvature could be attributed to a medium effect. A similar effect was also found in the nitrosation of alcohols \([53]\). In this case the limiting value of the first order rate constant was different for different alcohols and a similar curvature could be brought about by the addition of an inert solvent, clearly indicating a medium effect. In the
nitrosation of thiosulphate ion [54] a zero order term in \([S_2O_3^2-] \) was found, but this could also be due to rate-limiting dinitrogen trioxide formation, as is sometimes found in the nitrosation of amines (see later).

The major argument against the involvement of the nitrosonium ion as the reactive intermediate in dilute acid solution comes from the \(^1\text{H}\)O exchange reaction between nitrous acid and water [55]. The exchange occurs according to equation (1.15), where \(k = 230 \text{ l} \text{ mol}^{-1}\text{s}^{-1} \) at 0°C. If the reaction occurs via the nitrosonium ion, then this represents the fastest rate attainable in water. However for a range of anions which obey equation (1.12) such as azide and acetate ion a limiting value of \(k \) is obtained of \(\approx 2500 \text{ l}^2 \text{ mol}^{-2} \text{s}^{-1} \) also at 0°C. This implies that at \([N_3^-] > 0.1 \text{ mol l}^{-1}\) the rate limiting step should become the formation of the nitrosonium ion, which is not observed experimentally.

The alternative interpretation of equation (1.12) is that the reactive species is the nitrous acidium ion [58], but there is no spectrophotometric evidence for its formation in dilute acid solution. This problem has also been probed theoretically. Using ab initio molecular orbital calculations [57] the most favourable conformation
of the nitrous acidium ion can be considered a complex of the nitrosonium ion and water, with an unusually long \(N-O \) bond between the two. Another study using a frontier orbital treatment [58] predicts a nitrosonium water complex rather than the free nitrosonium cation.

The value of the third order rate constant, \(k \), defined by equation (1.12), tends towards a limiting value for very reactive species such as amines and thioureas [20] of ca 7000 l\(^2\) mol\(^{-2}\) s\(^{-1}\) at 25°C. This value does not change very much on increasing the basicity of the amine and is considered to be the diffusion controlled limit for nitrosation reactions. For negatively charged species such as thiocyanate ion [60], benzenesulphinate ion [61] the limit is ca 12000 l\(^2\) mol\(^{-2}\) s\(^{-1}\) which is as expected, higher than that for neutral species.

In the case of the nitrosation of basic species such as anilines equation (1.12) takes a slightly different form, as the amines are significantly protonated in these weakly–acidic solutions and it is the free base form of the amine that is the reactive species at low acidity [45]. The rate equation therefore becomes equation (1.16),

\[
\text{Rate} = \frac{k \text{ [Amine]}_{\text{T}} \text{[HNO}_2]\text{[H}^+\text{]}}{\text{Ka + [H}^+\text{]}}
\]

where \([\text{Amine}]_{\text{T}} \) is the total stoichiometric concentration.
of amine, and \(K_a \) is the dissociation constant of the protonated amine. For weakly basic amines [62], \(K_a \) can be greater or of the order of \([H^+]\) and so acid catalysis is expected. For the highly basic amines \([H^+] \gg K_a \) and so no acid catalysis is observed at low acidities. At moderately high acidities another acid catalysed pathway occurs for aromatic amines with \(pK_a > 3 \) [63, 64]. Here the rate is defined by equation (1.17), where \([\text{ArNH}_3^+]\) is the concentration of protonated amine and \(h_0 \) is the Hammett acidity function. These observations have been

\[
\text{Rate} = k[\text{ArNH}_3^+] [\text{HNO}_2] h_0 \quad (1.17)
\]

explained in terms of a mechanism where a rapid and reversible formation of a \(\Pi \) complex between the protonated amine and nitrosonium ion occurs, the rate limiting step being rearrangement of the nitroso group to the amino nitrogen group, as shown in scheme (1.18).

\[\text{NO}^+ + \text{Ar-N}_2^+ \rightleftharpoons \text{fast} \quad \text{NO}^+ \]
\[\text{slow} \quad \text{NH}_3 \]
\[\text{Ar-N}_2^+ \leftarrow \text{ON-\text{Ar-N}} \]
\[\text{ON-\text{Ar-N}} \leftarrow \text{NH}_2 \]
\[\text{H}^+ \]

(1.18)
In very acidic solutions (60% perchloric or sulphuric acid), the rate of nitrosation of anilines decreases with increasing acidity as shown in equation (1.19). This has been explained by the rapid and reversible formation of the protonated primary nitrosamine, the rate limiting step being proton transfer to the solvent [65] as shown in scheme (1.20).

\[
\text{Rate} = k \left[\text{ArNH}_2^+ \right] \left[\text{HNO}_2 \right] \text{H}^2
\]

(1.19)

\[
\text{Ar-NH}_3^+ + \text{NO}^+ \xleftrightarrow{\text{fast}} \text{Ar-\dot{\text{H}}}_2\text{NO} + \text{H}^+
\]

slow

\[
\text{Ar-\dot{\text{H}}}_2\text{NO} + \text{S} \xrightarrow{\text{fast}} \text{ArNHNO} + \text{SH}^+
\]

(1.20)

At low acidities and high total nitrous acid concentrations, where the concentration of free nitrite ion is significantly high, another mechanism occurs in the nitrosation of amines, and for a wide range of substrates generally. In this case a second order dependence on the concentration of nitrous acid is observed. This has been explained in terms of formation of an equilibrium concentration of dinitrogen trioxide from nitrous acid, which can effect nitrosation [45]. This is shown in scheme (1.21) and the derived rate equation is equation (1.22).
The value of K for the formation of dinitrogen trioxide is known [66] to be 3.0×10^{-3} l mol$^{-1}$ and so the value of the bimolecular rate constant k, for attack by N_2O_3 can be calculated. It has been found [67] that for very reactive species, such as amines with $pK > 5$ the values of k are in the range $10^6 - 10^9$ l mol$^{-1}$s$^{-1}$, which is close to the calculated diffusion controlled limit of 7×10^9 l mol$^{-1}$s$^{-1}$ at 25°C.

For very reactive substrates the reaction with dinitrogen trioxide can be made to occur faster than the hydrolysis of dinitrogen trioxide, thus changing the rate limiting step to one of formation of dinitrogen trioxide, as shown in scheme (1.23).

$$2HNO_2 \xrightarrow{k^4} N_2O_3 + H_2O$$ (1.23)

$$\text{Rate} = k'[\text{HNO}_2]^2$$
This has been found for several species including aniline [68], N-methylaniline [69] ascorbic acid [70] and azide ion [71]. The values of \(k' \) obtained are approximately constant at ca. 91 l mol\(^{-1}\)s\(^{-1}\) at 25°C.

1.2.2 Nucleophile catalysed reactions

Nitrosation reactions of nitrous acid are frequently catalysed by the addition of non-basic nucleophiles, commonly chloride ion [45], bromide ion [45], iodide ion [45], thiocyanate ion [72], thiosulphate ion [37], thiourea [72], alkyl thioureas [73] and dimethyl sulphide [38]. In all cases the reactions have been explained by the equilibrium formation of a nitrosyl species \(X\overline{\text{NO}} \) or \(X\overline{\text{NO}} \) (depending on the charge on \(X \)), which can then act as a nitrosating species. This is shown in scheme (1.24).

\[
\text{HNO}_2 + H^+ + X^- \xrightarrow{K_{X\overline{\text{NO}}}} X\overline{\text{NO}} + H_2O
\]

(1.24)

\[
X\overline{\text{NO}} + S \xrightarrow{k} \text{Products}
\]

The rate equation obtained from this scheme is equation (1.25)

\[
\text{Rate} = k [X\overline{\text{NO}}][S] = k K_{X\overline{\text{NO}}} [\text{HNO}_2][H^+][X^-][S]
\]

(1.25)

Since the values of \(K_{X\overline{\text{NO}}} \) are known, the value of the bimolecular rate constant, \(k \), can be obtained for attack of the nitrosyl species on the substrate. The values
of K_{XNO} are given in Table (1.2), and some selected values of k are given in Table (1.3).

Table 1.2

Values of K_{XNO} for the equilibrium

$$X + HNO_2 + H^+ \xrightleftharpoons{} XNO + H_2O$$

<table>
<thead>
<tr>
<th>X</th>
<th>K_{XNO} 1^2 mol$^{-2}$ at 25°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cl$^-$</td>
<td>1.1×10^{-3}</td>
</tr>
<tr>
<td>Br$^-$</td>
<td>5.1×10^{-2}</td>
</tr>
<tr>
<td>SCN$^-$</td>
<td>30</td>
</tr>
<tr>
<td>Thiourea</td>
<td>5000</td>
</tr>
<tr>
<td>Thiosulphate ion</td>
<td>1.66×10^3</td>
</tr>
</tbody>
</table>
Table 1.3:
Values of k ($1 \text{ mol}^{-1} \text{ s}^{-1}$), the rate constant for nitrosation by XNO at 25°C

<table>
<thead>
<tr>
<th>Substrate</th>
<th>ClNO</th>
<th>BrNO</th>
<th>CNSCN</th>
<th>$(\text{NH}_2)_2\text{CSNO}$</th>
<th>S_2CNO^-</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methanol</td>
<td>2.1×10^6 (a)</td>
<td>2×10^6 (a)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thioglycolic acid</td>
<td>1.4×10^7 (b)</td>
<td>1.1×10^6 (b)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-Nitroaniline</td>
<td>2.1×10^6 (c)</td>
<td>4.3×10^7 (c)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-Chloroaniline</td>
<td>1.8×10^5 (c)</td>
<td>2.5×10^6 (c)</td>
<td>8.2×10^7 (d)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aniline</td>
<td>2.6×10^6 (c)</td>
<td>1.7×10^6 (c)</td>
<td>1.9×10^6 (d)</td>
<td>1.3×10^5 (d)</td>
<td></td>
</tr>
<tr>
<td>N-Methylaniline</td>
<td></td>
<td>5×10^5 (e)</td>
<td>3.1×10^6 (e)</td>
<td></td>
<td>1.2×10^5 (e)</td>
</tr>
<tr>
<td>4-Methylaniline</td>
<td>3.4×10^5 (c)</td>
<td>2.5×10^6 (c)</td>
<td>4×10^6 (d)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-ethylanine</td>
<td>5.1×10^5 (c)</td>
<td>2.8×10^6 (c)</td>
<td>7.5×10^6 (d)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a) from reference 74
b) from reference 41
c) from reference 75
d) from reference 72
e) from reference 37
As is to be expected from electronegativity considerations, the order of reactivity of the XNO species is:
\[\text{ClNO} > \text{BrNO} > \text{ONSCN} > (\text{NH}_2)_2\text{CSNO} > \text{S}_2\text{O}_3\text{NO}^- \] but due to the size of the equilibrium constants the observed order of catalysis is \(\text{Cl}^- \sim \text{Br}^- < \text{SCN}^- < (\text{NH}_2)_2\text{CS} \). The values of \(k \) in table 1.3 also tend to the diffusion controlled limit of \(7 \times 10^8 \) l mol\(^{-1}\)s\(^{-1}\) with the very reactive amines with \(\text{Cl}^- \) and \(\text{Br}^- \); the values with \(\text{SCN}^- \) are usually an order of magnitude below this value and that for thiourea is usually several orders of magnitude below this. It has, however, been shown very recently that with a very reactive species such as malononitrile [76] even these species react at the diffusion controlled limit for the reaction, as shown in scheme (1.26).

\[
\begin{align*}
\text{CH}_2\text{(CN)}_2 & \quad \xrightarrow{\text{Ka}} \quad -\text{CHCN}_2 \\
\text{NOX} + -\text{CHCN}_2 & \quad \xrightarrow{k} \quad \text{ON} - \text{CHCN}_2 + X^-
\end{align*}
\]

(1.26)

\[
\begin{array}{c|c}
\text{NOX} & k \text{ 1 mol}^{-1}\text{s}^{-1} \\
\text{NOBr} & 1.1 \times 10^8 \\
\text{NOSCN} & 4.2 \times 10^9 \\
(\text{NH}_2)_2\text{CSNO} & 5.0 \times 10^9
\end{array}
\]

1.3 O-Nitrosation

The reaction of nitrous acid with an alcohol results in the formation of an alkyl nitrite (equation 1.27).

\[
\text{ROH} + H^+ + \text{HNO}_2 \quad \xrightarrow{K} \quad \text{RONO} + H^+ + \text{H}_2\text{O}
\]

(1.27)

The reaction is known to be reversible.
reaction [77], i.e. the nitrosation of the alcohol, has been shown to involve O-nitrosation of the alcohol by reaction of an optically active alcohol with nitrous acid which yielded the corresponding alkyl nitrite without inversion of configuration or racemisation. Similarly the reverse reaction, the hydrolysis of the alkyl nitrite, has been shown to involve nitrogen-oxygen bond fission by the retention of configuration from an optically active alkyl nitrite and also by the absence of ^{18}O incorporation in the alcohol when the hydrolysis is carried out in ^{18}O enriched water.

The equilibrium constants for the formation of several simple alkyl nitrites in aqueous acid solution have been determined by three separate methods. One method involved direct spectrophotometric measurements [78] of the concentrations of nitrous acid and alkyl nitrite at 265 nm. A second method was based on the effect of varying amounts of alcohol on the nitrosation kinetics of morpholine [78]. A third method involved the direct measurements of the forward and reverse reactions by reacting a large excess of the alcohol with nitrous acid [74]. The results are given in Table (1.4).

It can be seen that the equilibrium constants decrease in the order primary > secondary > tertiary. This indicates that steric effects must be more important than electronic effects in the nitrosation of alcohols, as
Table 1.4

Equilibrium constants for the formation of alkyl nitrites defined by \(\text{Keq} = \frac{[\text{RONO}]}{[\text{ROH}][\text{HNO}_2]} \)

<table>
<thead>
<tr>
<th>Alcohol</th>
<th>Method 1 (25°C)</th>
<th>Method 2 (25°C)</th>
<th>Method 3 (0°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MeOH</td>
<td>3.5 ± 0.1</td>
<td>5.1 ± 0.2</td>
<td>2.5 ± 0.5</td>
</tr>
<tr>
<td>EtOH</td>
<td>1.20 ± 0.06</td>
<td>1.39 ± 0.04</td>
<td>0.81 ± 0.02</td>
</tr>
<tr>
<td>(^{2}\text{PrOH})</td>
<td>1.3 ± 0.1</td>
<td>1.42 ± 0.04</td>
<td>0.66 ± 0.03</td>
</tr>
<tr>
<td>(^{3}\text{PrOH})</td>
<td>0.52 ± 0.05</td>
<td>0.56 ± 0.03</td>
<td>0.25 ± 0.03</td>
</tr>
<tr>
<td>2-BuOH</td>
<td>0.46 ± 0.03</td>
<td>0.39 ± 0.02</td>
<td></td>
</tr>
<tr>
<td>(^{2}\text{BuOH})</td>
<td>1.53 ± 0.05</td>
<td>1.90 ± 0.02</td>
<td>0.05</td>
</tr>
<tr>
<td>(^{3}\text{BuOH})</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

it is expected that increasing alkyl substitution would make the oxygen of the alcohol more nucleophilic and hence more susceptible to electrophilic nitrosation. Also electron donating substituents should stabilize the nitrite ester. These electronic effects have been seen in a series of transnitrosation experiments in deuteriochloroform as solvent, where para substituted benzyl alcohols were reacted with an equimolar concentration of \(^{3}\text{Butyl nitrite}\) and the equilibrium constants determined by N.M.R [79]. The results given in Table 1.5 show that electron donating substituents enhance the nitrosyl exchange process whereas electron withdrawing groups disfavour the process.
Table 1.5

Equilibrium constants for the equimolar reaction of benzyl alcohols with t-Butyl nitrite in deuteriochloroform

<table>
<thead>
<tr>
<th>Alcohol</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>pMeO-C₆H₅-CH₂-OH</td>
<td>5.36</td>
</tr>
<tr>
<td>pMe-C₆H₅-CH₂-OH</td>
<td>5.19</td>
</tr>
<tr>
<td>C₆H₅-CH₂-OH</td>
<td>3.64</td>
</tr>
<tr>
<td>pCl-C₆H₅-CH₂-OH</td>
<td>2.19</td>
</tr>
<tr>
<td>PO₃N-C₆H₅-CH₂-OH</td>
<td>1.11</td>
</tr>
</tbody>
</table>

Rate constants have been obtained for the forward and reverse reactions for the formation of alkyl nitrites from nitrous acid in aqueous solution [74] (equation 1.28)

\[
\begin{align*}
H^+ + ROH + HNO_2 & \quad \overset{k_1}{\longrightarrow} \quad RONO + H^+ + H_2O \\
\text{Rate of forward reaction} &= k_1[ROH][HNO_2][H^+] \\
\text{Rate of reverse reaction} &= k_4[RONO][H^+] \\
\text{Keq} &= \frac{k_1}{k_4} \quad (1.28)
\end{align*}
\]

The results are given in Table (1.6) and show that the decrease in the equilibrium constant on going from a primary to secondary to tertiary alkyl nitrite is due to a decrease in the forward rate constant, the \(k_1 \) step, since the rate constants for the hydrolysis of the alkyl nitrite (\(k_4 \) step) are very similar down the series. The
order of the values of k_1 is as expected if steric factors dominate over electronic factors in the forward reaction. The rate equation for the forward reaction is identical with that found for a wide range of substrates (equation 1.12). As discussed in section 1.2.1, the value of the third order rate constant, k, tends towards a limiting value of ca. 7000 $1^2 \text{ mol}^{-2} \text{ s}^{-1}$ at 25°C. For methanol the corresponding value at 25°C is 700 $1^2 \text{ mol}^{-2} \text{ s}^{-1}$, so the reaction of alcohols is an order of magnitude below this limit. The rate equation for the reverse reaction, the denitrosation of alkyl nitrites, has been interpreted as involving nucleophilic attack of the solvent on the protonated alkyl nitrite.

Table 1.6

Values for the forward and reverse rate constants for the nitrosation of alcohols at 0°C with nitrous acid

<table>
<thead>
<tr>
<th>Alcohol</th>
<th>$k_1 (1^2 \text{ mol}^{-2} \text{ s}^{-1})$</th>
<th>$k_{-1} (1 \text{ mol}^{-1} \text{ s}^{-1})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>MeOH</td>
<td>73 \pm 10</td>
<td>31 \pm 6</td>
</tr>
<tr>
<td>EtOH</td>
<td>38 \pm 0.3</td>
<td>47 \pm 0.2</td>
</tr>
<tr>
<td>s-PrOH</td>
<td>29 \pm 1</td>
<td>44 \pm 1</td>
</tr>
<tr>
<td>i-PrOH</td>
<td>11 \pm 1</td>
<td>44 \pm 2</td>
</tr>
<tr>
<td>t-BuOH</td>
<td></td>
<td>ca 100</td>
</tr>
</tbody>
</table>
Both the forward and reverse reactions have been shown to be halide ion catalysed [76]. This is interpreted as attack by the corresponding nitrosyl halide for the forward direction and nucleophilic attack by the halide ion for the reverse direction. The catalysis by chloride and bromide ion has been found to be less marked than is found for many amines. This can be seen by comparison of the second order rate constants for the reaction of NOBr and NOCl with alcohols and amines (Table 1.7).

Table 1.7

Rate constants for reaction with nitrosyl halides at 25°C

<table>
<thead>
<tr>
<th>Substrate</th>
<th>(k_{\text{NOE}}) ((1 \text{mol}^{-1} \text{s}^{-1}))</th>
<th>(k_{\text{EHH}}) ((1 \text{mol}^{-1} \text{s}^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>MeOH</td>
<td>(2 \times 10^6)</td>
<td>(2.1 \times 10^6)</td>
</tr>
<tr>
<td>Aniline</td>
<td>(1.7 \times 10^6)</td>
<td>(2.2 \times 10^6)</td>
</tr>
</tbody>
</table>

The values for aniline are close to the diffusion controlled limit and the values for methanol are considerably below this. This can be rationalized in terms of the Hard and Soft Acid and Base (H.S.A.B.) theory as NOHal is expected to be a softer electrophile than the positively charged \(\text{H}_2\text{NO}_2^+ \) (or \(\text{NO}^+ \)) ion and so will react more favourably with the softer amine species than with the harder alcohol.
The formation of alkyl nitrites in aqueous solution is summarized in scheme (1.29).

Scheme 1.29

Formation of alkyl nitrites in aqueous acid solution

\[\text{H}^+ + \text{HNO}_2 \rightleftharpoons \text{H}_2\text{NO}_2^+ \]

\[\text{H}_2\text{NO}_2^+ \overset{[\text{ROH}]}{\rightleftharpoons} \text{RONO} \overset{\text{H}^+}{\rightarrow} \text{RONO} + \text{H}^+ \]

\[\text{NOH} + \text{H}_2\text{O} \overset{[\text{ROH}]}{\rightleftharpoons} \text{RONO} + \text{Hal}^- \]

There have been two kinetic studies on the formation of alkyl nitrites from nitrosyl chloride in non-aqueous solvents. In glacial acetic acid [102], the equilibrium was found to move further to the alkyl nitrite by increasing the basicity of the alcohol. The mechanism involves the attack of the alcohol on NOCl to form a six-membered
adduct which includes a solvent molecule. This inter-
mediate then loses HCl to give the alkyl nitrite (Scheme
1.30). The other study was carried out in mixtures of
carbon tetrachloride and acetic acid [103]. In this case
the effect of varying the concentration of acetic acid
on the rate of nitrosation of n-butanol was investigated.
In pure CCl₄ the results were interpreted in terms of
a single step formation of an activated complex by simple
addition of reagents (Scheme 1.31). When acetic acid
was added the reaction was believed to proceed via a six
membered transition state, involving an acetic acid
molecule, similar to Scheme 1.30.

\textbf{Scheme 1.30}

\[
\text{ROH} + \text{NOCl} + \text{SH} \iff \begin{array}{c}
\text{SH = acetic acid} \\
\text{RONO} + \text{HCl} \iff \text{RON}--\text{O}--\text{HCl} \iff \text{R-O-N-OH} + \text{SH}
\end{array}
\]

\textbf{Scheme 1.31}

\[
\text{Bu-O-H} + \text{O=N-Cl} \iff \begin{array}{c}
\text{BuONO} \iff \text{BuONO}
\end{array}
\]

-26-
1.4 Reactions of Alkyl Nitrites

Alkyl nitrites are commonly used nitrosating agents, usually in non-aqueous solution, and react with a wide range of substrates such as amines [80], alcohols [79, 81], thiols [81]. Typical solvents and conditions include HCl-saturated diethyl ether, acidic alcoholic solution, basic alcoholic solution, liquid SO₂, and many aprotic solvents such as acetonitrile, chloroform, DMF, and THF without any added catalyst [107].

Many reactions involve the formation of diazonium ions from aromatic amines, which can then undergo similar reactions to those formed in aqueous solutions, often in better yields with fewer side reactions. Thus when the reaction is carried out in benzene solution [82] the product is the biaryl product (equation 1.32), probably formed by radical decomposition of the diazonium ion. When the reaction occurs in bromoform [83], the radical produced can abstract a bromine atom from the solvent to form the aryl bromide (equation 1.33). In a hydrogen radical donor solvent such as THF or DMF the main product is the deamination product [84, 85], (equation 1.34). If the reaction is carried out in acetonitrile in the presence of copper (II) halide salts the product is the aryl halide [86], (equation 1.35), and if an olefinic compound is added the reaction results in the arylation of the olefin [87] (equation 1.36).
\[
\begin{align*}
\text{RONO} + \text{ArNH}_2 & \xrightarrow{\text{boiling}} \text{ArN}_2^+ \rightarrow \text{Ar} \xrightarrow{\text{C}_6\text{H}_5} \text{ArC}_6\text{H}_5 \\
\text{RONO} + \text{ArNH}_2 & \xrightarrow{\text{CHBr}_3} \text{ArN}_2^+ \rightarrow \text{Ar} \xrightarrow{\text{CHBr}_3} \text{ArBr} \\
\text{RONO} + \text{ArNH}_2 & \xrightarrow{\text{THF}} \text{ArH} \\
& \quad \text{or DMSO} \\
2\text{RONO} + 2\text{ArNH}_2 & \xrightarrow{\text{Acetonitrile, CuX}_2, 65^\circ} 2\text{ArX} + 2\text{ROH} + \text{CuO} + \text{H}_2\text{O} + \text{N}_2 \\
\text{RONO} + \text{ArNH}_2 + \text{H}_2\text{C} = \text{CHCN} & \xrightarrow{\text{CuCl}_2} \text{ArCH}_2\text{CHCN} + \text{N}_2 \\
& \quad \text{CH}_3\text{CN} \\
\end{align*}
\]

The reaction with amines in aprotic solvent is applicable to aromatic and heterocyclic amines \[88, 89\], but aliphatic amines appear to be unreactive under similar conditions.

Several other methods have been employed to facilitate the exchange of an amino group for a halide or thio group, these include reacting the amine with an alkyl
nitrite in CHCl₃ [88] in the presence of bromine, iodine or dimethyl sulphide, with antimony trichloride [89] in dichloroethene and antimony tribromide [89] in dibromo-methane. Alkyl nitrites have also been shown to effect nitrosation of alcohols [79, 81] and thiols [81] in non-aqueous solvents in the absence of any added catalyst. Another common synthetic procedure involves the reaction of the alkyl nitrite in diethyl ether containing HCl gas. This has been used to bring about the nitrosation of ketones [90] (equation 1.37).

\[\text{Amyl nitrite} \rightarrow \text{HCl/ Et}_2\text{O} \]

\[\text{CH}_3\text{C}_2\text{H}_5\text{Cl} \]

\[\text{OH} \]

\[\text{CH}_3\text{C} - \text{C} - \text{Cl} \]

\[\text{CH}_3\text{C} - \text{C} - \text{Cl} \]

\[\text{N} \text{OH} \]

\[\text{H} \]

\[\text{Cl} \]

(1.37)

As well as undergoing acid catalysed reactions, alkyl nitrites are also capable of affecting N, C and O nitrosation in basic media, typical procedures being sodium ethoxide in ethanol or even in aqueous alkaline solution. Examples are shown in equations (1.38 - 1.41).

\[\text{C}_6\text{H}_{15} - \text{CH}_3\text{CH} = \text{CH}_2 \]

\[\text{NaOC}_2\text{H}_4\text{H}_2 \]

\[\text{Et}_2\text{O/ EtOH} \]

\[\text{H} \]

\[\text{CH}_3 \]

(1.38)

[ref. 91]
Very few kinetic studies have been carried out on the nitrosation reactions of alkyl nitrites. Due to the rapid rate of denitrosation (hydrolysis) of the alkyl nitrites [74] it seems likely that this will complicate the reaction and it has never been shown whether the reaction occurs via the nitrous acid formed or via the alkyl nitrite itself. A study of the kinetics of the N-nitrosation of sulphanilamide by cyclohexyl nitrite and by aqueous nitrous acid [95] indicated that a common
nitrosating species was present in both reactions. In another study the influence of alcohols on the rate of nitrosation of morpholine in aqueous acid solution was explained in terms of an equilibrium formation of the alkyl nitrite which was itself ineffective in the nitrosation reaction [78]. The kinetics of the reaction of n-propyl nitrite in acidic n-propanol with several aromatic amines have been studied [96]. The reaction was found to be extremely slow in the absence of any nucleophilic catalyst. With added halide ion the reaction proceeded readily and the results were consistent with a mechanism involving a rapid equilibrium formation of the corresponding nitrosyl halide which attacks the free base form of the amine in the rate determining step. The acid and base catalysed transnitrosation of an alcohol has been studied in a variety of solvent systems. The reaction of 1-methyl heptyl nitrite in 1-propanol was catalysed by added acid and small amounts of water was found to inhibit strongly the reaction [97]. It was found that the reaction did not involve the asymmetric carbon centre and a mechanism was proposed involving the protonated form of the alkyl nitrite in a bimolecular reaction (scheme 1.42).

In the base catalysed reaction [93] the rate was found to be proportional to both alkyl nitrite and alkoxide ion concentration and that the asymmetric carbon centre was again not involved in the reaction. A similar
Scheme 1.42
Alcoholysis of alkyl nitrite in acidic alcohol solution

Scheme 1.43
Alcoholysis of alkyl nitrites in basic alcoholic solution
A similar reaction scheme has been found for the reactions of alkyl nitrites in basic aqueous solution with amines and cysteine. In the case of the reactions with secondary aliphatic amines to form nitrosamines [98], the reaction was interpreted as involving nucleophilic attack by the free base form of the amine on the nitrogen centre of the alkyl nitrite (Scheme 1.44). As expected the second order rate constant for attack of the amine on the alkyl nitrite increases linearly with basicity of the amine for a series of structurally similar isomers [99], but a more complex dependence is found when structural features become more important. This has been explained [92, 99] in terms of the reaction being orbital controlled, the energy of the HOMO of the amine being important. This is also born out by the fact that alkyl nitrites with \(\beta\)-electron withdrawing groups such as Cl, F and OH react faster than those with electron releasing groups [98, 100]. This can be explained in terms of a lowering of the LUMO energy of the alkyl nitrite by electron withdrawing substituents. A similar trend in the reactivity of alkyl nitrites with the S-nitrosation of cysteine in aqueous alkali solution has been found [101]. The reaction in this case occurs via the \(S^-\) ion of cysteine.

The reactions in aqueous basic solution are less likely to be complicated by the hydrolysis of the alkyl nitrite than those in aqueous acid solution as the rate
of alkaline hydrolysis of the alkyl nitrite has been found to be much slower than the rate of the acid catalysed hydrolysis [104].

Scheme 1.44

Reaction of alkyl nitrites with amines in basic solution

\[
\begin{align*}
R_2NH_2 + Ka & \rightleftharpoons R_2NH + H^+ \\
R_2NH + RONO & \rightarrow R_2N^+ + R'O^- \\
& \downarrow \\
R_2N-NO + R'OH
\end{align*}
\]

As well as being able to undergo heterolytic reactions, alkyl nitrites can also undergo homolytic reactions. This results from the weakness of the RO—NO bond. The activation energies of the radical forming reactions are given in Table 1.8.

The majority of the reactions are those of the alkoxide radical and have been discussed in a review article [105]. The most important of these reactions
Table 1.8

Activation energy for $\text{RO} \rightarrow \text{NO} \rightarrow \text{RO} \cdot + \text{NO} \cdot$

<table>
<thead>
<tr>
<th>Alkyl nitrite</th>
<th>Activation energy $K \text{J.mol}^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{CH}_3 \text{ONO}$</td>
<td>152.9</td>
</tr>
<tr>
<td>$\text{C}_4\text{H}_7 \text{ONO}$</td>
<td>158.3</td>
</tr>
<tr>
<td>$\text{C}_3\text{H}_7 \text{ONO}$</td>
<td>155.4</td>
</tr>
<tr>
<td>$\text{C}_4\text{H}_9 \text{ONO}$</td>
<td>155.4</td>
</tr>
</tbody>
</table>

is the Barton reaction, whereby a 1,5 rearrangement of the nitroso group in an alkyl nitrite occurs from oxygen to carbon to yield a 4-nitroso alcohol [106]. The reaction has been shown to occur via homolysis of the alkyl nitrite, photochemically, to give the alkoxy radical which then effects an intramolecular hydrogen atom abstraction to give the carbon radical. This then reacts with nitric oxide to give the C-nitroso compound which can then dimerise or isomerise to the oxime. This is outlined in Scheme (1.45).

Scheme 1.45: Mechanism of the Barton reaction

$\text{CH(CH}_2\text{)}_2\text{C} \equiv \text{ONO} \xrightarrow{\text{hv}} \text{CH(CH}_2\text{)}_2\text{CO} \cdot \cdot \text{NO}$

$\text{CH(NO)(CH}_2\text{)}_2\text{C} \equiv \text{OH} \xrightarrow{\text{NO}} \text{C(CH}_2\text{)}_2\text{C} \equiv \text{OH}$
References:

12. R. G. Pearson, Chemistry in Britain, 1967, 3, 103

76. E.Iglesias and D.L.H.Williams. (To be published)

101. H.M.S. Patel and D.L.H. Williams. (To be published)

The reaction of nitrous acid with various aliphatic alcohols to form alkyl nitrites has been studied previously [1] at 0°C. There the reaction was found to be reversible and both the forward and reverse reactions were catalysed by acid and halide ions. The mechanism of the reaction was explained in terms of attack of the nitrous acidium ion (or nitrosonium ion) on the oxygen centre of the alcohol in the forward reaction and nucleophilic attack of solvent (water) on the protonated alkyl nitrite in the reverse direction. In the presence of halide ion the forward reaction also involves a component due to the attack of the nitrosyl halide on the alcohol and similarly the reverse reaction includes a component due to nucleophilic attack of the halide ion on the protonated alkyl nitrite. The mechanism is summarised in Scheme (2.1).

In the previous study no information on the halide ion catalysis or on the rate constants at 25°C was obtained for the formation of isopropyl nitrite and
tertiary butyl nitrite. These reactions were therefore studied using techniques developed previously [1].

Scheme 2.1

Mechanism of formation of alkyl nitrites in aqueous acid solution

\[
\begin{align*}
\text{HNO}_2 + \text{H}^+ & \rightleftharpoons \text{H}_2\text{NO}_2^+ \\
\text{H}_2\text{NO}_2^+ + \text{ROH} & \rightleftharpoons \text{RONO}^+ + \text{H}_2\text{O} \\
\text{RONO}^+ + \text{H}^+ & \rightarrow \text{RONO} + \text{H}_2\text{O} \\
\end{align*}
\]

2.1 Nitrosation of tertiary butanol

2.1.1 Acid catalysis

The formation of tertiary butyl nitrite (tBuONO) from tertiary butyl alcohol (tBuOH) is known to be acid catalysed [1] (equation 2.2) but the equilibrium is well
over to the nitrous acid side and so it has not proved possible to obtain values for the third order rate constant for the nitrosation of the tertiary butanol or its equilibrium constant for the formation of tertiary butyl nitrite with any precision by the kinetic technique employed. If the reaction is carried out under conditions where \([^{t}BuOH] \gg [HNO_2]\), the reaction can be conveniently followed by monitoring the formation of an equilibrium concentration of the alkyl nitrite in the 280 nm region by a stopped flow technique. The derived rate equation is shown in equation (2.3). On integration equation (2.3) leads to equation (2.4), hence a plot of

\[-\ln ([RONO]_{eq} - [RONO]_t) \text{ against time leads to the observed first order rate constant, } k_0 \text{ (equation 2.5).}

\[
H^+ + HNO_2 + ^{t}BuOH \overset{k_1}{\underset{k_{-1}}{\rightleftharpoons}} ^{t}BuONO + H^+ + H_2O \quad (2.2)
\]

\[
\text{Rate} = \frac{d[^{t}BuONO]}{dt} =
\]

\[
= (k_1[^{t}BuOH] + k_{-1})([^{t}BuONO]_{eq} - [^{t}BuONO]_t)[H^+]
\]

where \([^{t}BuONO]_{eq} = \text{equilibrium concentration of alkyl nitrite}

\([^{t}BuONO]_t = \text{concentration of alkyl nitrite at time } t. \]

(2.3)
\[
\ln \frac{[^{\text{t}}\text{BuONO}]_{eq} - [^{\text{t}}\text{BuONO}]_0}{[^{\text{t}}\text{BuONO}]_{eq} - [^{\text{t}}\text{BuONO}]_0} = k_0 t
\]

(2.4)

\[
k_0 = (k_1 [^{\text{t}}\text{BuOH}] + k_{-1})[H^+]
\]

(2.5)

The values of \(k_1\) and \(k_{-1}\) can be obtained from experiments where the value of \(k_0\) is measured at different concentrations of tertiary butanol and a plot of \(k_0\) against \([^{\text{t}}\text{BuOH}]\) constructed. The slope yields the value of \(k_1\) and the intercept yields the values of \(k_{-1}\). Such experiments were carried out at 0°C and 25°C and the results are shown in Tables (2.1)-(2.4) and the results at 0°C are shown graphically in figure (2.1)

Table 2.1:
Variation of \(k_0\) with \([^{\text{t}}\text{BuOH}]\) at 0°C

\[
[H\text{NO}_2^-] = 0.04 \text{ mol l}^{-1} \quad [H\text{ClO}_4^-] = 0.06 \text{ mol l}^{-1}
\]

\[
[^{\text{t}}\text{BuOH}] \text{ mol l}^{-1} \quad k_0 \text{ s}^{-1}
\]

<table>
<thead>
<tr>
<th>([^{\text{t}}\text{BuOH}] \text{ mol l}^{-1})</th>
<th>(k_0 \text{ s}^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.493</td>
<td>5.62 (\pm) 0.20</td>
</tr>
<tr>
<td>0.740</td>
<td>5.58 (\pm) 0.16</td>
</tr>
<tr>
<td>0.987</td>
<td>5.94 (\pm) 0.04</td>
</tr>
<tr>
<td>1.480</td>
<td>6.53 (\pm) 0.19</td>
</tr>
</tbody>
</table>

Slope = 0.99 \(\pm\) 0.21 \(\text{ l mol}^{-1} \text{ s}^{-1}\)

Intercept = 4.99 \(\pm\) 0.21 \(\text{ s}^{-1}\)
Table 2.2:
Variation of k_0 with $[t\text{BuOH}]$ at 0°C

$[\text{HNO}_2] = 0.04 \text{ mol l}^{-1}$ $[\text{HClO}_4] = 0.21 \text{ mol l}^{-1}$

$[t\text{BuOH}] \text{ mol l}^{-1}$ $k_0 \text{ s}^{-1}$

<table>
<thead>
<tr>
<th>$[t\text{BuOH}]$</th>
<th>k_0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.498</td>
<td>20.3 ± 1.2</td>
</tr>
<tr>
<td>0.747</td>
<td>21.6 ± 0.8</td>
</tr>
<tr>
<td>0.996</td>
<td>23.0 ± 1.7</td>
</tr>
<tr>
<td>1.494</td>
<td>23.2 ± 0.9</td>
</tr>
</tbody>
</table>

Slope = $2.78 ± 0.99 \text{ l mol}^{-1} \text{ s}^{-1}$
Intercept = $19.4 ± 1.0 \text{ s}^{-1}$

Table 2.3:
Variation of k_0 with $[t\text{BuOH}]$ at 25°C

$[\text{HNO}_2] = 0.02 \text{ mol l}^{-1}$ $[\text{HClO}_4] = 0.02 \text{ mol l}^{-1}$

$[t\text{BuOH}] \text{ mol l}^{-1}$ $k_0 \text{ s}^{-1}$

<table>
<thead>
<tr>
<th>$[t\text{BuOH}]$</th>
<th>k_0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.254</td>
<td>17.9 ± 0.7</td>
</tr>
<tr>
<td>0.508</td>
<td>18.0 ± 0.5</td>
</tr>
<tr>
<td>0.762</td>
<td>17.6 ± 0.3</td>
</tr>
<tr>
<td>1.016</td>
<td>17.0 ± 0.5</td>
</tr>
</tbody>
</table>

Slope = $-1.22 ± 0.44 \text{ l mol}^{-1} \text{ s}^{-1}$
Intercept = $18.4 ± 0.3 \text{ s}^{-1}$
Table 2.4: Variation of \(k_0 \) with \([{^t}BuOH]\) at 25°C

\[
[HNO_2] = 0.02 \text{ mol l}^{-1} \quad [\text{HClO}_4] = 0.107 \text{ mol l}^{-1}
\]

<table>
<thead>
<tr>
<th>([{^t}BuOH]) mol l(^{-1})</th>
<th>(k_0) s(^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.569</td>
<td>93.5 ± 4.2</td>
</tr>
<tr>
<td>0.758</td>
<td>92.1 ± 3.9</td>
</tr>
<tr>
<td>0.948</td>
<td>90.3 ± 1.9</td>
</tr>
</tbody>
</table>

Slope = -8.44 ± 0.596 l mol\(^{-1}\) s\(^{-1}\)
Intercept = 98.4 ± 0.5 s\(^{-1}\)

The values of the slopes are subject to very large errors. The main reason is the fact that the observed change in \(k_0 \) on increasing \([{^t}BuOH]\) is very small and is well within the experimental error of the measurement of the values of \(k_0 \). The large error in the measurement of \(k_0 \), typically ± 5%, is due to the very small absorbance change occurring in the reaction and also the reactions are very fast (especially at 25°C) and so are difficult to measure. (The plots at 25°C in fact have negative slopes but the values of \(k_0 \) are constant within the experimental error). It is therefore not possible to obtain meaningful values of the rate constant for nitrosation of \([{^t}BuOH]\), \(k_1 \), from this approach. The
Figure 2.1

Variation of k_0 with $[^6]$BuOH] at 0°C

- $[\text{HClO}_4] = 0.06 \text{ mol/l}$, $[\text{Cl}^-] = 0.5 \text{ mol/l}$
- $[\text{HClO}_4] = 0.06 \text{ mol/l}$, $[\text{Br}^-] = 0.5 \text{ mol/l}$
- $[\text{HClO}_4] = 0.21 \text{ mol/l}$
- $[\text{HClO}_4] = 0.06 \text{ mol/l}$
value of \(k_1 \), the rate constant for hydrolysis of \([\text{BuONO}] \), however can be obtained fairly reliably from the intercepts (or better still from the average values of \(k_0 \)). The values of \(k_1 \) obtained are shown in Table (2.5).

Table 2.5:

Values of the second order rate constant, \(k_1 \)

<table>
<thead>
<tr>
<th>Temperature (°C)</th>
<th>[HClO₄] mol l⁻¹</th>
<th>Average (k_0) s⁻¹</th>
<th>(k_1) 1 mol⁻¹ s⁻¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.06</td>
<td>5.91 ± 0.38</td>
<td>98.5 ± 6</td>
</tr>
<tr>
<td>0</td>
<td>0.21</td>
<td>22.0 ± 1.2</td>
<td>105 ± 6</td>
</tr>
<tr>
<td>25</td>
<td>0.02</td>
<td>17.6 ± 0.4</td>
<td>880 ± 20</td>
</tr>
<tr>
<td>25</td>
<td>0.107</td>
<td>92.0 ± 1.3</td>
<td>860 ± 12</td>
</tr>
</tbody>
</table>

The values obtained at 0°C agree well with those previously found of ca 100 l mol⁻¹s⁻¹, and they confirm the fact that the equilibrium constant for the formation of \([\text{BuONO}]\) is indeed very small [1,2].

2.1.2 Halide ion catalysis

Halide ion catalysis of the nitrosation of alcohols and denitrosation of alkyl nitrites has been studied previously [1]. No data exist on the catalysis of the
nitrosation of \(^7\text{BuOH}\). The reaction with \(^7\text{BuOH}\) was found to be first order in added bromide (Table 2.6), but the effect is not very marked and there is a substantial component due to the uncatalysed reaction.

Table 2.6:
Variation of \(k_0\) with \([\text{Br}^-]\)

\[
\begin{array}{c|c}
[\text{HNO}_2] & 0.04 \text{ mol l}^{-1} \\
[\text{HClO}_4] & 0.06 \text{ mol l}^{-1} \\
[^7\text{BuOH}] & 0.5 \text{ mol l}^{-1} \\
[\text{Br}^-] \text{ mol l}^{-1} & k_0 \text{ s}^{-1} \\
0 & 5.66 \pm 0.16 \\
0.025 & 5.75 \pm 0.13 \\
0.050 & 6.20 \pm 0.47 \\
0.075 & 5.91 \pm 0.41 \\
0.100 & 6.12 \pm 0.71 \\
0.150 & 7.03 \pm 0.22 \\
\end{array}
\]

Slope = 8.15 \pm 2.10 l \text{ mol}^{-1} \text{ s}^{-1} \\
Intercept = 5.57 \pm 0.17 \text{ s}^{-1}

The catalysis can be interpreted in terms of electrophilic attack of the nitrosyl halide on the alcohol for the forward reaction and nucleophilic attack of the halide ion on the protonated alkyl nitrite for the reverse
reaction (Scheme 2.6). The derived rate equation also contains a term from the non nucleophile catalysed reaction, and the measured observed first order rate constant, k, is given in equation (2.7)

\[
\begin{align*}
\text{HNO}_3 &+ \text{H}^+ + \text{X}^- \xrightleftharpoons{K_{\text{HNO}_3}} \text{H}_2\text{O} + \text{XNO} \\
\text{XNO} + \text{tBuOH} &\xrightleftharpoons{k_k} \text{tBuONO} + \text{H}^+ + \text{X}^- \\
\end{align*}
\]

(2.6)

\[
k_0 = (k_1 [\text{tBuOH}] + k_n) [\text{H}^+] + (k_k K_{\text{HNO}_3} [\text{tBuOH}] + k_m) [\text{H}^+][\text{X}^-]
\]

(2.7)

The values of \(k_k\) and \(k_m\) can be obtained from experiments where \(k_0\) is measured at different concentrations of [tBuOH] in the presence of added halide ion. Results from such experiments at 0°C are shown in Tables (2.7) and (2.8) and are displayed in figure (2.1).

Using the literature values for \(K_{\text{HNO}_3}\) of 2.2 x 10^{-2} \text{ mol}^{-2} for NOBr [3] at 0°C and 5.5 x 10^{-6} \text{ mol}^{-2} for NOCl [3] at 0°C allows the second order rate constant, \(k_k\), for attack of the nitrosyl halide on tBuOH to be determined. The results are shown in Table (2.9)
Table 2.7:
Variation of k_0 with $[^t\text{BuOH}]$ in presence of bromide ion

$$[\text{HNO}_2] = 0.04 \text{ mol } l^{-1} \quad [\text{HClO}_4] = 0.06 \text{ mol } l^{-1}$$

$$[\text{NaBr}] = 0.50 \text{ mol } l^{-1}$$

$$[^t\text{BuOH}] \text{ mol } l^{-1} \quad k_0 \text{ s}^{-1}$$

<table>
<thead>
<tr>
<th>$[^t\text{BuOH}]$</th>
<th>k_0 s$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.493</td>
<td>7.97 ± 0.29</td>
</tr>
<tr>
<td>0.740</td>
<td>8.12 ± 0.22</td>
</tr>
<tr>
<td>0.987</td>
<td>8.97 ± 0.29</td>
</tr>
<tr>
<td>1.480</td>
<td>10.61 ± 0.24</td>
</tr>
</tbody>
</table>

Slope = 2.82 ± 0.41 l mol$^{-1}$s$^{-1}$
Intercept = 6.31 ± 0.41 s$^{-1}$

Table 2.8:
Variation of k_0 with $[^t\text{BuOH}]$ in the presence of chloride ion at 0°C

$$[\text{HNO}_2] = 0.04 \text{ mol } l^{-1} \quad [\text{HClO}_4] = 0.06 \text{ mol } l^{-1}$$

$$[\text{NaCl}] = 0.50 \text{ mol } l^{-1}$$

$$[^t\text{BuOH}] \text{ mol } l^{-1} \quad k_0 \text{ s}^{-1}$$

<table>
<thead>
<tr>
<th>$[^t\text{BuOH}]$</th>
<th>k_0 s$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.493</td>
<td>7.57 ± 0.24</td>
</tr>
<tr>
<td>0.740</td>
<td>8.63 ± 0.17</td>
</tr>
<tr>
<td>0.987</td>
<td>9.04 ± 0.14</td>
</tr>
<tr>
<td>1.480</td>
<td>10.0 ± 0.3</td>
</tr>
</tbody>
</table>

Slope = 2.33 ± 0.36 l mol$^{-1}$s$^{-1}$ Intercept = 6.66 ± 0.36 s$^{-1}$
Table 2.9:
Rate constants for chloride and bromide ion catalysis on the nitrosation of tertiary butanol at 0°C

<table>
<thead>
<tr>
<th>Halide</th>
<th>$k_\text{f} (\text{1 mol}^{-1}\text{s}^{-1})$</th>
<th>$k_\text{r} (\text{1}^2\text{mol}^{-2}\text{s}^{-1})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cl^-</td>
<td>$8.72 \times 10^4 \pm 2.42 \times 10^4$</td>
<td>49.5 ± 13.3</td>
</tr>
<tr>
<td>Br^-</td>
<td>$2.74 \times 10^3 \pm 6.77 \times 10^2$</td>
<td>40.5 ± 14.9</td>
</tr>
</tbody>
</table>

Rate of forward reaction $= k_\text{f}[\text{NO}X][\text{tBuOH}]$
Rate of reverse reaction $= k_\text{r}[\text{tBuONO}][\text{H}^+][X^-]$

The values of the rate constants for halide ion catalysis are subject to large errors as they require knowledge of the uncatalysed rate constants for their calculation. This will be especially true for k_f as this is obtained from a very small slope. The results for both the acid catalysis and halide catalysed reactions will be discussed further later.

2.2 Nitrosation of isopropanol

2.2.1 Acid Catalysis

A similar approach to that used for tertiary butanol was used to obtain the rate constants for the nitrosation of isopropanol (iPrOH) and the hydrolysis of isopropyl
nitrite (\textit{t}-PrONO) at 25°C. The results are shown in Tables (2.10) - (2.12) and graphically in Figure (2.2). The values of k_1, the third order rate constant for nitrosation of \textit{t}-PrOH and k_{-1}, the second order rate constant for the hydrolysis of the alkyl nitrite, together with the equilibrium constant, K for the formation of \textit{t}-PrONO are shown in Table (2.13).

Table 2.10:

<table>
<thead>
<tr>
<th>[\textit{t}-PrOH] mol l$^{-1}$</th>
<th>k_0 s$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.246</td>
<td>12.2 ± 0.1</td>
</tr>
<tr>
<td>0.394</td>
<td>12.4 ± 0.2</td>
</tr>
<tr>
<td>0.591</td>
<td>12.9 ± 0.4</td>
</tr>
<tr>
<td>0.739</td>
<td>13.3 ± 0.6</td>
</tr>
<tr>
<td>0.985</td>
<td>13.2 ± 0.1</td>
</tr>
</tbody>
</table>

Slope = 1.54 ± 0.37 l mol$^{-1}$ s$^{-1}$
Intercept = 11.89 ± 0.24 s$^{-1}$
Table 2.11:

Variation of k_0 with $[^1\text{PrOH}]$ at 25°C

\[
\begin{align*}
[\text{HNO}_2] &= 0.02 \text{ mol l}^{-1} & [\text{HClO}_4] &= 0.04 \text{ mol l}^{-1} \\
[^1\text{PrOH}] \text{ mol l}^{-1} & \quad k_0 \text{ s}^{-1} \\
0.249 & \quad 23.7 \pm 0.1 \\
0.597 & \quad 25.0 \pm 0.1 \\
0.747 & \quad 25.7 \pm 0.2 \\
0.896 & \quad 26.4 \pm 0.2 \\
0.996 & \quad 26.6 \pm 0.4 \\
\end{align*}
\]

Slope = $4.02 \pm 0.17 \text{ l mol}^{-1} \text{ s}^{-1}$
Intercept = $22.68 \pm 0.12 \text{ s}^{-1}$

Table 2.12:

Variation of k_0 with $[^1\text{PrOH}]$ at 25°C

\[
\begin{align*}
[\text{HNO}_2] &= 0.02 \text{ mol l}^{-1} & [\text{HClO}_4] &= 0.107 \text{ mol l}^{-1} \\
[^1\text{PrOH}] \text{ mol l}^{-1} & \quad k_0 \text{ s}^{-1} \\
0.189 & \quad 62.2 \pm 1.6 \\
0.379 & \quad 67.0 \pm 1.1 \\
0.569 & \quad 69.4 \pm 0.9 \\
0.758 & \quad 71.3 \pm 0.8 \\
0.948 & \quad 73.0 \pm 0.9 \\
\end{align*}
\]

Slope = $13.65 \pm 1.85 \text{ l mol}^{-1} \text{ s}^{-1}$
Intercept = $60.8 \pm 1.17 \text{ s}^{-1}$
Figure 2.2

Variation of k_0 with t^1PrOH at 25°C

$\begin{align*}
[H^+] &= 0.02 \text{ mol/l} \\
[Br^-] &= 0.5 \text{ mol/l} \\
[H^+] &= 0.107 \text{ mol/l} \\
[H^+] &= 0.04 \text{ mol/l} \\
[H^+] &= 0.02 \text{ mol/l}
\end{align*}$
Values of k_s and k_1 for reaction of HNO_2 with $^3\text{PrOH}$ at 25°C and values of the equilibrium constant, K, for formation of $^3\text{PrONO}$.

<table>
<thead>
<tr>
<th>[HClO₄]</th>
<th>k_s 1² mol⁻² s⁻¹</th>
<th>k_1 mol⁻¹ s⁻¹</th>
<th>K 1 mol⁻¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.02</td>
<td>79.3 ± 18.2</td>
<td>594 ± 12</td>
<td>0.13 ± 0.03</td>
</tr>
<tr>
<td>0.04</td>
<td>100.6 ± 4.3</td>
<td>567 ± 3</td>
<td>0.18 ± 0.01</td>
</tr>
<tr>
<td>0.107</td>
<td>128 ± 17</td>
<td>568 ± 11</td>
<td>0.23 ± 0.03</td>
</tr>
</tbody>
</table>

The change in k_0 with $^3\text{PrOH}$ was again very small, especially at the low acid concentrations so that the values obtained at 0.1M HClO₄ are probably the most reliable values.

2.2.2 Halide ion catalysis

Experiments were carried out varying the concentration of $^3\text{PrOH}$ in the presence of added halide ion. The results are shown in Tables (2.14) - (2.16) and in Figure (2.2). The values of the rate constants for attack of NOX on the alcohol and the halide ion catalysed denitrosation of the alkyl nitrite were obtained, using the values of K_{NOX} [3, 4] of 5.1×10^{-2} 1² mol⁻² for NOBr at 25°C and 1.136×10^{-3} 1² mol⁻² for NOCl at 25°C.
The results are shown in Table (2.17).

Table 2.14:
Variation of k_0 with $[^1\text{PrOH}]$ in the presence of added bromide ion at 25°C

$[\text{HNO}_2] = 0.02 \text{ mol l}^{-1}$ $[\text{HClO}_4] = 0.02 \text{ mol l}^{-1}$

$[\text{Br}^-] = 0.50 \text{ mol l}^{-1}$

<table>
<thead>
<tr>
<th>$[^1\text{PrOH}] \text{ mol l}^{-1}$</th>
<th>$k_0 \text{ s}^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.236</td>
<td>20.7 ± 0.3</td>
</tr>
<tr>
<td>0.353</td>
<td>20.7 ± 0.3</td>
</tr>
<tr>
<td>0.471</td>
<td>21.3 ± 0.2</td>
</tr>
<tr>
<td>0.589</td>
<td>21.6 ± 0.2</td>
</tr>
<tr>
<td>0.707</td>
<td>21.8 ± 0.5</td>
</tr>
<tr>
<td>0.825</td>
<td>22.2 ± 0.3</td>
</tr>
</tbody>
</table>

Slope = 2.69 ± 0.26 1 mol l$^{-1}$ s$^{-1}$

Intercept = 20.0 ± 0.15 s$^{-1}$
Table 2.16:
Variation of k_0 with $[^1\text{PrOH}]$ in the presence of added chloride ion at 25°C

<table>
<thead>
<tr>
<th>$[^1\text{PrOH}]$ mol l$^{-1}$</th>
<th>k_0 s$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.236</td>
<td>18.4 ± 0.2</td>
</tr>
<tr>
<td>0.353</td>
<td>18.9 ± 0.1</td>
</tr>
<tr>
<td>0.471</td>
<td>19.0 ± 0.2</td>
</tr>
<tr>
<td>0.589</td>
<td>20.1 ± 0.8</td>
</tr>
<tr>
<td>0.707</td>
<td>19.4 ± 0.4</td>
</tr>
<tr>
<td>0.825</td>
<td>19.9 ± 0.1</td>
</tr>
</tbody>
</table>

Slope = 2.45 ± 0.79 1 mol$^{-1}$ s$^{-1}$
Intercept = 18.0 ± 0.5 s$^{-1}$

Table 2.15:
Variation of k_0 with $[^1\text{PrOH}]$ in the presence of added bromide ion at 25°C

<table>
<thead>
<tr>
<th>$[^1\text{PrOH}]$ mol l$^{-1}$</th>
<th>k_0 s$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.236</td>
<td>41.1 ± 1.5</td>
</tr>
<tr>
<td>0.353</td>
<td>40.7 ± 1.9</td>
</tr>
<tr>
<td>0.471</td>
<td>39.4 ± 1.4</td>
</tr>
<tr>
<td>0.589</td>
<td>43.7 ± 0.6</td>
</tr>
<tr>
<td>0.707</td>
<td>42.6 ± 1.0</td>
</tr>
<tr>
<td>0.825</td>
<td>43.3 ± 1.9</td>
</tr>
</tbody>
</table>

Slope = 4.73 ± 2.89 1 mol$^{-1}$ s$^{-1}$
Intercept = 39.3 ± 1.6 s$^{-1}$
Table 2.17:
Values of k_x and k_{-x} for nitrosation of isopropanol at 25°C

<table>
<thead>
<tr>
<th>Halide</th>
<th>k_x 1 mol$^{-1}$s$^{-1}$</th>
<th>k_{-x} 12 mol$^{-2}$s$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cl$^-$</td>
<td>$4.05 \pm 0.13 \times 10^6$</td>
<td>634 ± 116</td>
</tr>
<tr>
<td>Br$^-$</td>
<td>$1.72 \pm 0.02 \times 10^3$</td>
<td>836 ± 63</td>
</tr>
<tr>
<td></td>
<td>$1.13 \pm 0.07 \times 10^3$</td>
<td>805 ± 153</td>
</tr>
</tbody>
</table>

2.3 Discussion

The value of the equilibrium constant obtained for the formation of t-PrONO at 25°C (ca 0.23 l mol$^{-1}$) is in reasonable agreement with the value obtained previously by the same method at 0°C ($K = 0.25$ l mol$^{-1}$) [1]. The values obtained at 25°C [2] previously are 0.52 l mol$^{-1}$ and 0.56 l mol$^{-1}$. The discrepancy here probably arises from the high concentration of t-PrOH needed for this kinetic method (typically up to 7% by volume for t-PrOH and 14% by volume for t-BuOH). This means that in these experiments the solvent composition is being changed markedly. A solvent [5] effect has been noted previously in the nitrosation of methanol, where a curved plot of k_0 against [methanol] was obtained. Similar curves could also be obtained on the addition of a non reactive solvent (tetrahydrofuran). If a similar effect is occurring here then the measured values of the slope of a plot of
\(k_0 \) against [alcohol] probably represent a minimum value and so the derived equilibrium constants therefore also probably represent minimum values.

The values of the rate constants for the denitrosation of the alkyl nitrite (\(k_{-1} \)) can be obtained with a larger degree of certainty as they are derived from a large intercept that can be measured fairly accurately. It has been noted previously [1] that the values of \(k_{-1} \) at 0°C for a series of aliphatic alcohols do not alter much on changing the structure of the alcohol. This trend is also found at 25°C (Table 2.18) for four alkyl nitrites. The actual values for the bimolecular rate constants for the reaction of water with the protonated alkyl nitrite cannot be obtained as the pKa of the alkyl nitrite is not known. A possible explanation for the consistency of the values of \(k_{-1} \) could be that the protonated alkyl nitrite reacts with water at the diffusion controlled limit. This would require the pKa of each alkyl nitrite to be approximately equal. Further evidence for this explanation comes from the halide ion catalysed reaction. Here the reaction is assumed to occur via nucleophilic attack of the halide ion on the nitrogen centre of the alkyl nitrite. It is known that bromide ion is significantly more nucleophilic than chloride ion in aqueous solution [6] and so the rate of attack of bromide ion would be expected to be
Table 2.18:
Values of \(k_1 \) for hydrolysis of the alkyl nitrite at 25°C

<table>
<thead>
<tr>
<th>Alkyl nitrite</th>
<th>(k_1) 1 mol(^{-1})s(^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>MeONO</td>
<td>576 ± 57 ref. [1]</td>
</tr>
<tr>
<td>EtONO</td>
<td>282 ± 10 ref. [1]</td>
</tr>
<tr>
<td>(^t)PrONO</td>
<td>576 ± 13</td>
</tr>
<tr>
<td>(^t)BuONO</td>
<td>870 ± 20</td>
</tr>
</tbody>
</table>

markedly greater than that of chloride ion. This is found in the case of the denitrosation of both N-methyl N-nitroso aniline [7] and N-nitroso diphenylamine [8], where attack of the halide ion again occurs at the nitrogen of the nitroso group. The results for both \(^t\)BuONO and \(^t\)PrONO show that there is little selectivity of the protonated alkyl nitrite between the two ions. This has been found previously for the reaction of methyl nitrite [1] and is thought to represent a diffusion controlled process.

The values of \(k_1 \), for the nitrosation of the alcohol, show a marked dependence on the structure of the alcohol. The value of \(k_1 \) for \(^t\)BuOH is too small to be measured by this method and the value of \(k_1 \) for \(^t\)PrOH at 25°C is ca 100 1\(^2\) mol\(^{-2}\) s\(^{-1}\), which is several orders of magnitude below that expected for a diffusion controlled
process of ca. 7000 \text{ m}\text{ol}^{-2} \text{s}^{-1} \text{ [9]. It appears that}
steric factors are important in determining the size
of \(k_1 \).

The commonly found order of halide ion catalysis of
Br\(^{-}\) > Cl\(^{-} \text{ [10] is observed in the nitrosation of } \text{'PrOH and}
\text{'BuOH. In both cases the value for } k_{\text{NOCl}} \text{ is approximately}
one order of magnitude greater than } k_{\text{NOBr}} \text {. The value}
of \(k_{\text{NOCl}} \text{ however is typically five orders of magnitude}
below the diffusion controlled limit of } 7 \times 10^9 \text{ m}\text{ol}^{-1}\text{s}^{-1} \text{.}
References:

Alkyl nitrites have long been known to effect nitrosation reactions in aqueous acid solution. It has never been shown conclusively whether the alkyl nitrite or more likely its protonated form is the reactive species or whether reaction occurs via hydrolysis of the alkyl nitrite to nitrous acid. Due to the rapid rate of hydrolysis [1, 2, 3] it appears likely that at least part of the reaction will occur via the nitrous acid route in aqueous acid solution.

3.1 Reaction of isopropyl nitrite (\(\text{PrONO}\)) with various nitrous acid traps

3.1.1 Hydrazoic acid

Hydrazoic acid is known to react rapidly with an acidic solution of nitrous acid to give nitrous oxide and nitrogen (equation 3.1). The probable intermediate is nitrosyl azide [4], which has been isolated at low temperature [5], which forms in the rate determining
It has been shown that a number of reaction pathways exist in the initial nitrosation reaction. At low acidity \[[6] \], the reaction takes place via the azide ion with either the nitrous acidium ion (or nitrosonium ion) or with dinitrogen trioxide. At higher acidities, where protonation of the azide ion occurs, reaction occurs via hydrazoic acid \[[6,7] \] \((K_a = 1.8 \times 10^{-5} \text{ mol l}^{-1} \text{ at } 25^\circ\text{C})\). As expected the azide ion is more reactive to electrophilic nitrosation than hydrazoic acid, the former reacting at the diffusion controlled limit. Catalysis by acetate ion \([8]\), chloride ion \([6,9]\), bromide ion \([6,9]\) and thiocyanate ion \([9]\) has also been observed. At low acidity, where the azide ion is the reactive form the rate limiting step is usually the formation of the nitrosyl species \(\text{NOX} [6]\). At higher acidities the rate limiting step becomes the attack of \(\text{NOX} [9]\) on hydrazoic acid.

In the present work reactions were carried out under conditions where the azide ion is fully protonated, that is the only reactive species is hydrazoic acid. The reactions were carried out with \([\text{HN}_3] > > [\text{'PrONO}]\)
and good first order behaviour was observed in all cases by measuring the decreasing concentration of \(\text{iPrONO} \) at 370 nm. The observed first order rate constant was found to be first order in \([\text{HN}_3]\) but was found to decrease on addition of isopropanol (\(\text{iPrOH} \)). Results for two perchloric acid concentrations are shown in Tables (3.1) and (3.2) and the results for \([\text{HClO}_4] = 0.10 \text{ mol l}^{-1}\) are shown graphically in Figure (3.1).

There are two possibilities for the mechanism of the reaction of \(\text{iPrONO} \), namely the alkyl nitrite or its protonated form reacts directly with hydrazoic acid (equation 3.2) or that hydrolysis of the alkyl nitrite occurs to release nitrous acid which can then effect nitrosation (equation 3.3).

\[
\begin{align*}
\text{H}^+ + \text{iPrONO} & \rightleftharpoons K \xrightarrow{\text{K}} \text{PrONO}^+ \\
\text{PrONO}^+ + \text{HN}_3 & \xrightarrow{\text{k}} \text{N}_2\text{O} + \text{N}_2 + \text{iPrOH} \\
\text{iPrONO} & \xrightarrow{\text{Keq}} \text{iPrOH} + \text{HNO}_4 \\
\text{HNO}_4 + \text{H}^+ + \text{HN}_3 & \xrightarrow{\text{k}} \text{N}_2\text{O} + \text{N}_2 + \text{H}_2\text{O}
\end{align*}
\]
Table 3.1
Variation of k_o with $[\text{HN}_3]$ at 25°C

$[\text{tPrOH}] = 1.2 \times 10^{-3} \text{ mol l}^{-1}$ $[\text{HClO}_4] = 0.10 \text{ mol l}^{-1}$ 370 nm

![Table 3.1](image)

Table 3.2
Variation of k_o with $[\text{HN}_3]$ at 25°C

$[\text{tPrONO}] = 1.2 \times 10^{-3} \text{ mol l}^{-1}$ $[\text{HClO}_4] = 0.538 \text{ mol l}^{-1}$ 370 nm

![Table 3.2](image)

-68-
Figure 3.2
Plot of k_0' against $[^t\text{PrOH}]$ for nitration of HN_3.

- $[^t\text{PrOH}] = 0.10 \text{ mol/l}$
- $[^t\text{PrOH}] = 0.08 \text{ mol/l}$
- $[^t\text{PrOH}] = 0.06 \text{ mol/l}$
- $[^t\text{PrOH}] = 0.04 \text{ mol/l}$
- $[^t\text{PrOH}] = 0.02 \text{ mol/l}$

Figure 3.1
Variation of k_0 with $[^t\text{PrOH}]$ with $[\text{H}+] = 0.538 \text{ mol/l}$.

- $[^t\text{PrOH}] = 0.607 \text{ mol/l}$
- $[^t\text{PrOH}] = 0.402 \text{ mol/l}$
- $[^t\text{PrOH}] = 0.191 \text{ mol/l}$
- $[^t\text{PrOH}] = 0$
Since the rate of reaction is found to decrease on addition of \textit{i}PrOH the direct reaction mechanism can be ruled out as [\textit{i}PrOH] is not involved in any of the possible rate determining steps. The indirect reaction (equation 3.3), however, would be expected to show a dependence on [\textit{i}PrOH] as the initial equilibrium depends on [\textit{i}PrOH]. The derived rate equation for equation (3.3) is given below in equation (3.4).

\[
\text{Rate} = k \left[\text{HN}_3 \right][\text{HNO}_2][\text{H}^+] \\
\text{but } \text{Keq} = \frac{[\text{ROH}] [\text{HNO}_2]}{[\text{RONO}]} \\
\text{and } [\text{total nitrite}] = [\text{RONO}] * [\text{HNO}_2] \\
= \frac{[\text{HNO}_2][\text{ROH}]}{\text{Keq}} + [\text{HNO}_2] \\
\therefore [\text{HNO}_2] = \frac{[\text{Total nitrite}] \text{Keq}}{[\text{ROH}] + \text{Keq}}
\]

Writing the rate in terms of [Total nitrite] gives equation (3.4).

\[
\text{Rate} = \frac{k \text{Keq} [\text{HN}_3][\text{H}^+]}{[\text{ROH}] + \text{Keq}} \cdot [\text{Total nitrite}] \\
(3.4)
\]
Since the reaction was carried out with $[\text{HN}_3] \gg [\text{Total nitrite}]$, the observed first order rate constant, k_0, is given by equation (3.5)

$$
k_0 = \frac{k \text{Keq} [\text{HN}_3][H^+]}{[\text{ROH}] + \text{Keq}} \tag{3.5}
$$

Equation (3.5) predicts that the value of k_0 should decrease on addition of tiPrOH, moreover the values of k, the third order rate constant for reaction of nitrous acid with HN$_3$-, and Keq, the equilibrium constant for hydrolysis of the alkyl nitrite can be obtained since equation (3.5) can be rearranged to give equation (3.6)

$$
\frac{1}{k_0} = \frac{[\text{ROH}]}{k \text{Keq} [\text{HN}_3][H^+]} + \frac{1}{k[\text{HN}_3][H^+]} \tag{3.6}
$$

A plot of k_0^{-1} against $[\text{ROH}]$ should have a slope $= (k[\text{HN}_3][H^+]\text{Keq})^{-1}$ and an intercept $= (k[\text{HN}_3][H^+]^{-1})$. Therefore the value of k can be obtained from the intercept and the value of Keq can be obtained from the value of intercept/slope. Such plots were obtained from the experimental results and the data for $[\text{HClO}_4] = 0.10 \text{ mol l}^{-1}$ are shown graphically in Figure (3.2). The results of such an analysis for both acid concentrations are
shown in Tables (3.3) and (3.4).

The average values of K_{eq} are 1.34 ± 0.25 mol l^{-1} (for $[HClO_4] = 0.10$ mol l^{-1}) and 1.44 ± 0.19 mol l^{-1} (for $[HClO_4] = 0.538$ mol l^{-1}). These values give 0.75 ± 0.14 l mol$^{-1}$ and 0.69 ± 0.09 l mol$^{-1}$ for the equilibrium constant for the formation isopropyl nitrite which agree reasonably well with values obtained by other methods of 0.56 [10], 0.52 [10] and 0.25 [3] l mol$^{-1}$ at 25°C.

The value of k, the third order rate constant for attack of nitrous acid on HN$_3$ has also been determined previously [9] as 160 l2 mol$^{-2}$ s$^{-1}$ at 25°C. This value was the extrapolated value of k as $[H^+] \rightarrow 0$ since the rate was found not to be a linear function of $[H^+]$. The corresponding values of k at 0.10 and 0.538 mol$^{-1}$ of HClO$_4$ can be interpolated from the variation of k with $[H^+]$ and are 214 l2 mol$^{-2}$ s$^{-1}$ and 360 l2 mol$^{-2}$ s$^{-1}$. The values obtained here are 220 ± 11 l2 mol$^{-2}$ s$^{-1}$ and 300 ± 11 l2 mol$^{-2}$ s$^{-1}$ which agree well with those obtained from the reaction with nitrous acid.

3.1.2 Sulphamic Acid

Sulphamic acid is a fairly strong acid (pKa = 1.1) [9] and is commonly used as a trap for nitrous acid, reacting according to equation (3.7) [11].
<table>
<thead>
<tr>
<th>[HN\textsubscript{0}] (mol l-1)</th>
<th>Slope (1 mol-1 s)</th>
<th>Intercept (s)</th>
<th>Keq (mol l-1)</th>
<th>k (12mol-2 l-2 s-1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.020</td>
<td>1.468 ± 1.023</td>
<td>2.467 ± 0.446</td>
<td>1.66 ± 1.10</td>
<td>203 ± 37</td>
</tr>
<tr>
<td>0.040</td>
<td>1.205 ± 0.200</td>
<td>1.101 ± 0.087</td>
<td>1.49 ± 0.27</td>
<td>227 ± 16</td>
</tr>
<tr>
<td>0.060</td>
<td>0.754 ± 0.128</td>
<td>0.708 ± 6 x 10-6</td>
<td>0.939 ± 0.16</td>
<td>235 ± 2</td>
</tr>
<tr>
<td>0.080</td>
<td>0.419 ± 0.026</td>
<td>0.568 ± 0.011</td>
<td>1.35 ± 0.09</td>
<td>220 ± 4</td>
</tr>
<tr>
<td>0.100</td>
<td>0.342 ± 7 x 10-5</td>
<td>0.431 ± 3 x 10-6</td>
<td>1.26 ± 0.03</td>
<td>232 ± 2</td>
</tr>
</tbody>
</table>

Table 3.4

Values of Keq and k at 25°C from plots of Keq against [PrCN]

<table>
<thead>
<tr>
<th>[HN\textsubscript{0}] (mol l-1)</th>
<th>Slope (1 mol-1 s)</th>
<th>Intercept (s)</th>
<th>Keq (mol l-1)</th>
<th>k (12mol-2 l-2 s-1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.020</td>
<td>0.261 ± 0.019</td>
<td>0.318 ± 7 x 10-6</td>
<td>1.22 ± 0.09</td>
<td>292 ± 7</td>
</tr>
<tr>
<td>0.040</td>
<td>0.114 ± 0.017</td>
<td>0.164 ± 6 x 10-6</td>
<td>1.44 ± 0.22</td>
<td>284 ± 10</td>
</tr>
<tr>
<td>0.060</td>
<td>0.0596 ± 4.5 x 10-6</td>
<td>0.106 ± 2 x 10-6</td>
<td>1.77 ± 0.14</td>
<td>294 ± 6</td>
</tr>
<tr>
<td>0.080</td>
<td>0.0520 ± 1.5 x 10-6</td>
<td>0.0772 ± 6 x 10-6</td>
<td>1.48 ± 0.05</td>
<td>299 ± 3</td>
</tr>
<tr>
<td>0.100</td>
<td>0.0450 ± 2.9 x 10-6</td>
<td>0.0586 ± 1.1 x 10-6</td>
<td>1.30 ± 0.09</td>
<td>317 ± 6</td>
</tr>
</tbody>
</table>
The reaction is believed to occur via N-nitrosation. At low acidity the reaction occurs via the sulphamate ion [9,11], NH_2SO_3^-, sulphamic acid being much less reactive. At high acidity (>0.25 mol l$^{-1}$), where the concentration of sulphamate ion is very low, there is evidence for reaction of sulphamic acid itself [11]. Interestingly [9,11], the nitrosation of sulphamic acid is not subject to catalysis by halide ion or thiocyanate ion. This is also found in the nitrosation of amides [12,13,14,15] and seems to apply generally to the nitrosation of amines with powerful electron withdrawing group next to them. The results have been explained in terms of a rapid reversible N-nitrosation followed by a rate limiting proton transfer.

$$\text{NH}_2\text{SO}_3^- + \text{XNO} \rightarrow \text{NH}_2\text{SO}_3^- + \text{X}^-$$

The reaction of 1PrONO with sulphamic acid was carried out in a similar way to that of hydrazoic acid.
Results showing the dependence of k_0 on [sulphamic acid] at various [PrOH] are given in Table (3.5) and Figure (3.3).

The value of k_0 again was found to decrease with increasing [PrOH]. The reaction is therefore similar to that of HN$_3$, but in this case as the sulphamate ion is the likely reactive species, the protonation of the sulphamate ion must be taken into account. The reaction is shown in Scheme (3.8).

\[
{^1}\text{PrONO} \xrightleftharpoons{\text{Keq}} \quad {^1}\text{PrOH} + \text{HNO}_2
\]

\[
\text{HNO}_2 + \text{H}^+ + \text{NH}_2\text{SO}_3^- \xrightarrow{k} \text{N}_2 + \text{HSO}_3^- + 2\text{H}_2\text{O} + 2\text{H}^+
\]

\[
[H^+] \quad [\text{Ka}]
\]

\[
\text{NH}_2\text{SO}_3\text{H}
\]

(3.8)

The observed first order rate constant derived for such a scheme is given in equation (3.9). This can be rearranged to give equation (3.10) which predicts that plotting k_0 against [PrOH] should be a straight line with slope = $(K_a + [H^+])/k \text{ Keq Ka} [\text{sulphamic acid}][H^+]$ and intercept = $(K_a + [H^+])/ k \text{ Ka} [\text{sulphamic acid}][H^+]$.

-75-
The value of K_{eq} can be readily obtained from the ratio of slope / intercept and the value of k, the third order rate constant for attack of nitrous acid on the sulphamate ion can be calculated assuming that the pK$_a$ of sulphamic acid is 1.1 at 25°C [9]. The results of such an analysis are shown in Table (3.6).

\[k_0 = \frac{k \cdot K_{eq} \cdot [\text{sulphamic acid}] \cdot [H^+]}{(K_a + [H^+]) \cdot (K_{eq} + [\text{ROH}])} \]

(3.9)

Where $[\text{sulphamic acid}] = \text{total stoichiometric concentration of sulphamic acid}$

\[k_0 = \frac{(K_a + [H^+]) \cdot [\text{ROH}]}{k \cdot K_{eq} \cdot \left[\text{sulphamic acid} \right] \cdot [H^+] + k \cdot K_a \cdot \left[\text{sulphamic acid} \right] \cdot [H^+] \} } \]

(3.10)

The average value of K_{eq} is 1.46 \pm 0.16 mol $^{-1}$ which agrees well with the values found for the reaction with HN$_3$. The value of k, the third order rate constant for reaction of nitrous acid with sulphamate ion is known to be 1.13×10^3 $1^2 \text{ mol}^{-2} \text{ s}^{-1}$ at 25°C. The average value obtained in this work is $2.55 \times 10^3 \pm 90$ $1^2 \text{ mol}^{-2} \text{ s}^{-1}$. The small discrepancy could arise from the fact that the analysis assumes that the reaction occurs via the sulphamate ion but the possibility remains that there is a component of the reaction here via the acid form.
Table 3.5
Values of k_0 against [sulphamic acid] at 25°C

$[\text{'PrOH}] = 1.2 \times 10^{-5} \text{ mol l}^{-1}$
$[\text{HClO}_3] = 0.522 \text{ mol l}^{-1}$

<table>
<thead>
<tr>
<th>Sulphamic Acid (mol l$^{-1}$)</th>
<th>Slope</th>
<th>Intercept</th>
<th>K</th>
<th>k</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.020</td>
<td>3.52 ± 0.04</td>
<td>3.03 ± 0.14</td>
<td>2.87 ± 0.05</td>
<td>2.63 ± 0.16</td>
</tr>
<tr>
<td>0.030</td>
<td>5.29 ± 0.06</td>
<td>4.64 ± 0.05</td>
<td>4.14 ± 0.23</td>
<td>3.83 ± 0.12</td>
</tr>
<tr>
<td>0.040</td>
<td>6.94 ± 0.20</td>
<td>6.34 ± 0.05</td>
<td>5.52 ± 0.11</td>
<td>4.89 ± 0.17</td>
</tr>
<tr>
<td>0.050</td>
<td>8.54 ± 0.13</td>
<td>7.55 ± 0.12</td>
<td>6.52 ± 0.16</td>
<td>6.18 ± 0.14</td>
</tr>
<tr>
<td>0.060</td>
<td>11.0 ± 0.3</td>
<td>9.54 ± 0.15</td>
<td>8.63 ± 0.15</td>
<td>8.01 ± 0.15</td>
</tr>
<tr>
<td>0.070</td>
<td>11.0 ± 0.4</td>
<td>9.85 ± 0.03</td>
<td>8.70 ± 0.18</td>
<td></td>
</tr>
</tbody>
</table>

a) $[\text{'PrOH}] = 0.040 \text{ mol l}^{-1}$

b) $[\text{'PrOH}] = 0.200 \text{ mol l}^{-1}$

c) $[\text{'PrOH}] = 0.402 \text{ mol l}^{-1}$

d) $[\text{'PrOH}] = 0.602 \text{ mol l}^{-1}$

Table 3.6
Values of K_{eq} and k at 25°C from plots of k_0^{-1} against $[\text{'PrOH}]$

$[\text{HClO}_3] = 0.522 \text{ mol l}^{-1}$

<table>
<thead>
<tr>
<th>Sulphamic Acid (mol l$^{-1}$)</th>
<th>Slope</th>
<th>Intercept</th>
<th>K_{eq}</th>
<th>k_0^{-1}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.020</td>
<td>0.161 ± 0.025</td>
<td>0.286 ± 9 \times 10$^{-9}$</td>
<td>1.77 ± 0.28</td>
<td>2534 ± 80</td>
</tr>
<tr>
<td>0.030</td>
<td>0.128 ± 9 \times 10$^{-9}$</td>
<td>0.187 ± 4 \times 10$^{-9}$</td>
<td>1.46 ± 0.11</td>
<td>2584 ± 55</td>
</tr>
<tr>
<td>0.040</td>
<td>0.109 ± 5 \times 10$^{-9}$</td>
<td>0.138 ± 2 \times 10$^{-9}$</td>
<td>1.27 ± 0.06</td>
<td>2626 ± 39</td>
</tr>
<tr>
<td>0.050</td>
<td>0.082 ± 0.010</td>
<td>0.116 ± 4 \times 10$^{-9}$</td>
<td>1.41 ± 0.18</td>
<td>2499 ± 86</td>
</tr>
<tr>
<td>0.060</td>
<td>0.059 ± 6 \times 10$^{-9}$</td>
<td>0.091 ± 3 \times 10$^{-9}$</td>
<td>1.54 ± 0.16</td>
<td>2655 ± 88</td>
</tr>
<tr>
<td>0.070</td>
<td>0.066 ± 4 \times 10$^{-9}$</td>
<td>0.079 ± 2 \times 10$^{-9}$</td>
<td>1.32 ± 0.09</td>
<td>2386 ± 60</td>
</tr>
</tbody>
</table>
Figure 3.3
Plot of k_o against [sulphamic acid]

$[\text{PrOH}] = 0.60 \text{ mol/l}$
$[\text{PrOH}] = 0.40 \text{ mol/l}$
$[\text{PrOH}] = 0.20 \text{ mol/l}$
$[\text{PrOH}] = 0.04 \text{ mol/l}$
Thioglycolic acid (TGA) is known to undergo S-nitrosation [16] in acidic solution of nitrous acid, as shown in equation (3.11). The product thionitrite

\[
\text{HSCH}_2\text{CO} + \text{HNO}_2 \rightarrow \text{ON-S-CH}_2\text{CO}
\] (3.11)

is unstable as are almost all thionitrites, decomposing to the disulphide [17] (equation 3.12), but has been identified in solution by the appearance of a broad absorption band at 330 nm in the UV/visible spectrum.

\[
2\text{ONSCCH}_2\text{C} \rightarrow 2\text{NO} + \text{HOOCCH}_2\text{S-SCH}_2\text{COOH}
\] (3.12)

The formation of thionitrites from thiols has been shown to be effectively irreversible [18], which contrasts markedly with the reactions of alcohols to form alkyl nitrites [3]. This can be rationalized by considering the effect of changing from an oxygen centre to a sulphur centre on the rates of the forward reaction (equation 3.13) and reverse reaction (3.14). The forward rate
of reaction is expected to depend on the nucleophilicity of the sulphur or oxygen centre, with the sulphur site being the more nucleophilic. The reverse reaction depends on the basicity of the oxygen or sulphur site, oxygen being the more basic site. Therefore an oxygen centre (alkyl nitrite) favours the reverse reaction whereas a sulphur centre (thionitrite) favours the forward reaction.

The nitrosation of thioglycolic acid with nitrous acid has been shown to follow the commonly found rate law [16] (equation 3.15) in the absence of any added nucleophilic catalyst and the value of k, the third order rate constant is known to be \(2630 \text{ l}^2 \text{ mol}^{-2} \text{ s}^{-1}\) at 25°C. Under the conditions used in the study TGA exists mainly as the free acid.

\[
\text{Rate} = k [\text{TGA}][\text{HNO}_2][\text{H}^+] \tag{3.15}
\]
It is likely that the ionized form is also reactive, but at pH < 2 any contribution from this form can be ignored (pKa of TGA [19] = 3.42). The reaction is also known to be catalysed by added nucleophiles [16], the reactivity sequence of the corresponding nitrosyl species being the commonly encountered one of nitrosyl chloride > nitrosyl bromide > nitrosyl thiocyanate. In the presence of either bromide ion or thiocyanate ion and with high [TGA] it has been possible to achieve rate limiting formation of nitrosyl bromide or nitrosyl thiocyanate and the rate constants obtained agree well with values obtained by other methods.

The reaction of \(^{1}\)PrONO with TGA were carried out at 330 nm, following the formation of the thionitrite. Experiments were carried out with [TGA] > > \(^{1}\)PrONO and good first order behaviour was found in all cases. Results were obtained showing the dependence of the observed first order rate constant, \(k_0\), on [TGA] at various \(^{1}\)PrOH]. The results are shown in Table (3.7) and Figure (3.4).

The reaction is first order in [TGA] and the kinetic pattern is similar to that found for the reactions of hydrazoic acid and sulphamic acid on the addition of isopropanol. The reaction is therefore taking place via hydrolysis of the alkyl nitrite, the nitrous acid formed effecting nitrosation of TGA (Scheme 3.16)
Table 3.7:
Variation of k_0 with [TGA] at 25°C

$$[^{\text{t}}\text{Pr}OH] = 1.2 \times 10^{-4} \text{ mol l}^{-1} \quad [\text{HClO}_3] = 0.203 \text{ mol l}^{-1}$$

330 nm

<table>
<thead>
<tr>
<th>[TGA] mol l$^{-1}$</th>
<th>a</th>
<th>k_0 s$^{-1}$</th>
<th>b</th>
<th>k_0 s$^{-1}$</th>
<th>c</th>
<th>k_0 s$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0297</td>
<td>13.2 ± 0.3</td>
<td>12.0 ± 0.2</td>
<td>10.7 ± 0.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0396</td>
<td>17.6 ± 0.7</td>
<td>15.6 ± 0.3</td>
<td>14.4 ± 0.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0494</td>
<td>21.4 ± 0.3</td>
<td>18.6 ± 0.1</td>
<td>17.0 ± 0.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0593</td>
<td>26.2 ± 0.3</td>
<td>22.5 ± 1.0</td>
<td>20.6 ± 0.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0692</td>
<td>28.7 ± 0.2</td>
<td>27.2 ± 0.7</td>
<td>24.0 ± 0.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0791</td>
<td>32.1 ± 0.6</td>
<td>31.3 ± 0.1</td>
<td>26.0 ± 0.6</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a) $[^{\text{t}}\text{PrOH}] = 0.207 \text{ mol l}^{-1}$
b) $[^{\text{t}}\text{PrOH}] = 0.415 \text{ mol l}^{-1}$
c) $[^{\text{t}}\text{PrOH}] = 0.592 \text{ mol l}^{-1}$
Figure 3.4
Plot of k_o against [TGA]

$[1\text{PrOH}] = 0.59 \text{ mol/l}$
$[1\text{PrOH}] = 0.42 \text{ mol/l}$
$[1\text{PrOH}] = 0.21 \text{ mol/l}$
The observed first order rate constant for such a scheme is given in equation (3.17) which can be rearranged as before to give equation (3.18)

\[
k_0 = \frac{k \text{ Keq } [\text{TGA}][H^+]}{[\text{PrOH}] + \text{Keq}}
\]

\[
k_0^{-1} = \frac{[\text{PrOH}]}{k \text{ Keq } [\text{TGA}][H^+] + \frac{1}{k[\text{TGA}][H^+]}}
\]

A plot of \(k_0^{-1}\) against \([\text{PrOH}]\) should have a slope = \((k [\text{TGA}][H^+] \text{Keq})^{-1}\) and intercept = \((k [\text{TGA}][H^+]^{-1}\) \text{Keq})\), from which the values of \(k\), the third order rate constant for attack of nitrous acid on thioglycolic acid can be obtained. The results of such an analysis are shown in Table (3.8)
Table 3.8:

Values of K_{eq} and k at 25°C from plots of k_0 against $[^1]PrOH$

$[HClO_2] = 0.203 \text{ mol } l^{-1}$

<table>
<thead>
<tr>
<th>[TGA] (mol l$^{-1}$)</th>
<th>Slope</th>
<th>Intercept (s)</th>
<th>K_{eq} (mol l$^{-1}$)</th>
<th>k (l2 mol$^{-2}$ s$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0297</td>
<td>0.445 ± 5.9 x 10$^{-5}$</td>
<td>0.0661 ± 2.6 x 10$^{-5}$</td>
<td>1.49 ± 0.21</td>
<td>2512 ± 99</td>
</tr>
<tr>
<td>0.0396</td>
<td>0.0336 ± 1.4 x 10$^{-5}$</td>
<td>0.0498 ± 6 x 10$^{-5}$</td>
<td>1.48 ± 0.06</td>
<td>2500 ± 30</td>
</tr>
<tr>
<td>0.0494</td>
<td>0.0318 ± 1.5 x 10$^{-5}$</td>
<td>0.0403 ± 7 x 10$^{-5}$</td>
<td>1.26 ± 0.07</td>
<td>2476 ± 43</td>
</tr>
<tr>
<td>0.0593</td>
<td>0.0273 ± 2.2 x 10$^{-5}$</td>
<td>0.0327 ± 1.0 x 10$^{-5}$</td>
<td>1.20 ± 0.11</td>
<td>2543 ± 78</td>
</tr>
<tr>
<td>0.0692</td>
<td>0.0175 ± 5.3 x 10$^{-5}$</td>
<td>0.0306 ± 2.3 x 10$^{-5}$</td>
<td>1.75 ± 0.55</td>
<td>2329 ± 175</td>
</tr>
<tr>
<td>0.0791</td>
<td>0.0186 ± 9.4 x 10$^{-5}$</td>
<td>0.0263 ± 4.1 x 10$^{-5}$</td>
<td>1.41 ± 0.39</td>
<td>2371 ± 370</td>
</tr>
</tbody>
</table>
The average value of K_{eq} obtained = $1.43 \pm 0.18 \text{ mol l}^{-1}$ which agrees well with the earlier values. The value of k, $2455 \pm 78 \text{ l}^{2} \text{ mol}^{-2} \text{ s}^{-1}$ agrees well with the value measured directly [16] ($2630 \text{ l}^{2} \text{ mol}^{-2} \text{ s}^{-1}$ at 25°C).

3.1.4 **N-Methylaniline**

Nitrosation of N-methylaniline (NMA) is an example of nitrosamine formation (equation 3.19).

\[\text{HNO}_2 + \text{H}^+ + \overset{\text{Me}}{\text{N}}\text{H} \rightarrow \overset{\text{Me}}{\text{N}}\text{ON} \]

(3.19)

At low and moderate acidities [20] the free base form of the amine is the reactive species, reacting at or near to the diffusion controlled limit [21] with the nitrous acidium ion (or nitrosonium ion), dinitrogen trioxide, nitrosyl chloride and nitrosyl bromide. At higher acidities [22] reaction can also occur via the protonated form of the amine, possibly by a Π complex intermediate (equation 3.20)
The reaction of \(^{1}\text{PrONO}\) with NMA was studied at 280 nm, following the appearance of the nitrosamine. The reaction was carried out with \([\text{NMA}] \gg [^{1}\text{PrONO}]\) and good first order behaviour was found in each case. Experiments were carried out to investigate the effect of acidity on the observed first order rate constant \(k_o\), (Table 3.9) and also the effect of \([\text{NMA}]\) at various \([^{1}\text{PrOH}]\) on \(k_o\), (Table 3.10).

![Chemical diagram](attachment:image.png)

\((3.20)\)

Table 3.9:

Effect of acidity on the nitrosation of NMA at 25°C

\[
\begin{array}{c|c|c}
\text{[^{1}\text{PrONO}]} & 1 \times 10^{-6} \text{ mol l}^{-1} & \text{[NMA]} = 5.34 \times 10^{-3} \text{ mol l}^{-1} \\
\text{[^{1}\text{PrOH}]} & 0.20 \text{ mol l}^{-1} & 280 \text{ nm} \\
[\text{HClO}_4] \text{ mol l}^{-1} & 10^6 \text{ k}_o \text{ s}^{-1} \\
0.067 & 6.40 \\
0.083 & 6.24 \\
0.100 & 6.29 \\
\end{array}
\]
The value of \(k_0 \) is independent of the acidity, is first order in \([\text{NMA}]\) and is decreased on the addition of \(t\text{PrOH} \). These observations are consistent with reaction occurring by denitrosation (or hydrolysis) of the alkyl nitrite to give nitrous acid which can then react with the free base form of the amine, as is shown in Scheme (3.21).

\[
\text{tPrONO} \quad \text{Keq} \quad \text{tPrOH} + \text{HNO}_2
\]

\[
H^+ + \text{HNO}_2 + \text{ArNH}_2\text{Me} \quad \overset{k}{\longrightarrow} \quad \text{ArNHMe} + \text{H}^+ + \text{MeNO}
\]

Since the pKa of protonated \(\text{NMA} \) is known to be 4.85 [23], at the acidities used in these experiments the total stoichiometric concentration of the amine is effectively equal to the concentration of the protonated form, i.e., \([\text{NMA}]_T \approx [\text{ArNH}_2\text{Me}]\). The derived value of \(k_0 \) for this scheme is therefore equation (3.22). A plot of \(k_0 \) against \([t\text{PrOH}] \) can therefore be used to obtain values for \(\text{Keq} \) and \(k \), the third order rate constant for attack of nitrous acid on the free base form of
Table 3.10:
Variation of k_0 with $[\text{NMA}]$ at 25°C

$[\text{HClO}_4] = 0.0667 \text{ mol l}^{-1}$

$[\text{aPrOH}] = 1 \times 10^{-6} \text{ mol l}^{-1}$

280 nm

<table>
<thead>
<tr>
<th>[NMA]</th>
<th>10$^{-9}$ ko s$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>mol l$^{-1}$</td>
<td>a</td>
</tr>
<tr>
<td>1.22 x 10$^{-8}$</td>
<td>1.99 ± 0.07</td>
</tr>
<tr>
<td>2.45 x 10$^{-8}$</td>
<td>3.88 ± 0.38</td>
</tr>
<tr>
<td>3.67 x 10$^{-8}$</td>
<td>5.20 ± 0.17</td>
</tr>
<tr>
<td>4.89 x 10$^{-8}$</td>
<td>6.19</td>
</tr>
<tr>
<td>5.72 x 10$^{-8}$</td>
<td>8.53 ± 0.18</td>
</tr>
<tr>
<td>7.15 x 10$^{-8}$</td>
<td>9.80 ± 0.09</td>
</tr>
</tbody>
</table>

a) $[\text{aPrOH}] = 0.200 \text{ mol l}^{-1}$

b) $[\text{aPrOH}] = 0.337 \text{ mol l}^{-1}$

c) $[\text{aPrOH}] = 0.596 \text{ mol l}^{-1}$
the amine. The results of such an analysis are shown in Table (3.11)

\[k \frac{\text{Keq} \times [\text{NMA}]}{[\text{PrOH}] + \text{Keq}} \]

(3.22)

The values of Keq obtained in this case are much more scattered than those previously found. This arises from the large errors in the reproducibility of the values of \(k \) and the small size of the decrease in \(k \) on addition of \(^{1}\text{PrOH} \). The average value of \(k \), the third order rate constant for attack of nitrous acid on the free amine is \(11513 \pm 1379 \text{ l}^2 \text{ mol}^{-2} \text{ s}^{-1} \). This is somewhat larger than the literature value of \(4600 \text{ l}^2 \text{ mol}^{-2} \text{ s}^{-1} \) [21], but is of the right order of magnitude.

3.1.5 Conclusion

All the results obtained for nitrosation of hydrazoic acid, sulphamic acid, thioglycolic acid and N-methyl-aniline with isopropyl nitrite are consistent with a mechanism involving a fast hydrolysis of the alkyl nitrite to give an equilibrium concentration of nitrous acid which then effects nitrosation of the substrate. There is no evidence for a direct reaction between the alkyl nitrite and any of these substrates.

-90-
Table 3.11:

Values of K_{eq} and k at 25°C from plots of k_{o-a} against $[^2]PrOH$

<table>
<thead>
<tr>
<th>[NMA]$_t$ (mol l$^{-1}$)</th>
<th>slope (1 mol$^{-1}$ s)</th>
<th>intercept (s)</th>
<th>K_{eq} (mol l$^{-1}$)</th>
<th>k (la mol$^{-a}$ s$^{-a}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.22 x 10$^{-6}$</td>
<td>702 ± 230</td>
<td>4919 ± 95</td>
<td>7.01 ± 2.30</td>
<td>11723 ± 226</td>
</tr>
<tr>
<td>2.45 x 10$^{-6}$</td>
<td>2377 ± 33</td>
<td>2107 ± 14</td>
<td>0.89 ± 0.02</td>
<td>13680 ± 91</td>
</tr>
<tr>
<td>3.67 x 10$^{-6}$</td>
<td>1791 ± 108</td>
<td>1548 ± 45</td>
<td>0.87 ± 0.16</td>
<td>12408 ± 361</td>
</tr>
<tr>
<td>4.89 x 10$^{-6}$</td>
<td>560 ± 108</td>
<td>1519 ± 45</td>
<td>2.71 ± 0.53</td>
<td>9531 ± 282</td>
</tr>
<tr>
<td>5.72 x 10$^{-6}$</td>
<td>608 ± 75</td>
<td>1062 ± 31</td>
<td>1.75 ± 0.22</td>
<td>11611 ± 339</td>
</tr>
<tr>
<td>7.15 x 10$^{-6}$</td>
<td>346 ± 151</td>
<td>974 ± 62</td>
<td>2.81 ± 0.54</td>
<td>10122 ± 644</td>
</tr>
</tbody>
</table>
3.2 Reaction of tertiary butyl nitrite with various nitrous acid traps

3.2.1 Reaction with sulphamic acid

The reaction of tertiary butyl nitrite (\(tBuONO\)) with sulphamic acid was carried out in a similar way to the same reaction with \(iPrONO\). Thus under conditions where \([tBuONO] \ll [\text{sulphamic acid}]\), good first order behaviour was obtained, following the disappearance of the alkyl nitrite at 370 nm. The effect of added tertiary butyl alcohol (\(tBuOH\)) on the value of \(k_o\), the observed first order rate constant, was determined and the results are shown in Table (3.12).

The results show that under these conditions the reaction is first order in [sulphamic acid] and the values of \(k_o\) are independent of the concentration of added \(tBuOH\) within the experimental error. A possible explanation of this effect is due to the fact that the equilibrium constant for the hydrolysis of the alkyl nitrite is much larger for \(tBuONO\) than \(iPrONO\) [3, 10]. Assuming that the reaction occurs by a similar route to that of \(iPrONO\) a similar rate equation should apply in the case of \(tBuONO\) (equation 3.23). The value of the equilibrium constant for formation of \(tBuONO\) from nitrous acid has been estimated [3] to be \(< 0.05 \text{ mol}^{-1}\) at 0°C. This means that Keq, the
Table 3.12:

$[^7]$BuONo = 1.2 x 10^{-3} \text{ mol l}^{-1} \quad \text{[HClO$_3$]} = 0.522 \text{ mol l}^{-1}

370 nm

<table>
<thead>
<tr>
<th>Sulphamic acid mol l$^{-1}$</th>
<th>ko s$^{-1}$ a</th>
<th>ko s$^{-1}$ b</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.020</td>
<td>3.51 ± 0.06</td>
<td>3.51 ± 0.14</td>
</tr>
<tr>
<td>0.030</td>
<td>5.45 ± 0.29</td>
<td>5.53 ± 0.13</td>
</tr>
<tr>
<td>0.040</td>
<td>6.94 ± 0.18</td>
<td>6.81 ± 0.24</td>
</tr>
<tr>
<td>0.050</td>
<td>8.61 ± 0.13</td>
<td>8.81 ± 0.36</td>
</tr>
<tr>
<td>0.060</td>
<td>10.5 ± 0.35</td>
<td>9.97 ± 0.11</td>
</tr>
<tr>
<td>0.070</td>
<td>12.0 ± 0.2</td>
<td>11.6 ± 0.51</td>
</tr>
</tbody>
</table>

a) $[^7]$BuOH = 0.201 mol l$^{-1}$
slope = 169 ± 3 1 mol$^{-1}$ s$^{-1}$

b) $[^7]$BuOH = 0.603 mol l$^{-1}$
slope = 159 ± 6 1 mol$^{-1}$ s$^{-1}$
equilibrium constant for hydrolysis of the alkyl nitrite will be $\geq 20 \text{ mol} \cdot \text{l}^{-1}$. This means that under the conditions used $K_{eq} \gg [\text{tBuOH}]$ and so equation (3.23) reduces to equation (3.24), which predicts that the reaction should be first order in [sulphamic acid] and independent of [tBuOH]. In the case of iPrONO, the equilibrium constant for formation of iPrONO is ca. 0.56 \text{ mol} \cdot \text{l}^{-1} [10], which corresponds to a K_{eq} of ca. 1.8 \text{ mol} \cdot \text{l}^{-1}, therefore under the conditions used ([$\text{iPrOH}]= 0.2 - 0.6 \text{ mol} \cdot \text{l}^{-1}$) the value of K_{eq} is comparable in size with [iPrOH] and so there is a measurable decrease in rate on addition of iPrOH. Equation (3.24) predicts that the value of k, the third order rate constant for nitrosation of the sulphamate anion can be obtained from a plot of k_0 against [sulphamic acid], assuming that $pK_{a} = 1.1$. From the data in Table 3.12 the value of k is $2379 \pm 73 \text{ l}^{2} \text{ mol}^{-2} \text{ s}^{-1}$ which is in good agreement with the theoretical value.
agreement with those obtained from analysis of the data for the reaction of 'PrONO.

Experiments were carried out to investigate the effect of [sulphamic acid] at different acidities on the reaction rate. The results at four different acidities are shown in Tables (3.13) - (3.16).

Table 3.13:
Effect of [sulphamic acid] on \(k_\circ \) at 25°C

\[
\begin{align*}
[\text{'tBuONO}] &= 1.2 \times 10^{-3} \text{ mol l}^{-1} \\
[\text{'tBuOH}] &= 0.1 \text{ mol l}^{-1} \\
[HClO_4] &= 7.74 \times 10^{-3} \text{ mol l}^{-1} \\
\text{370 nm} \\

data:
\begin{array}{cc}
\text{[sulphamic acid]mol l}^{-1} & k_\circ \text{ s}^{-1} \\
0.025 & 0.34 \pm 0.01 \\
0.050 & 0.72 \pm 0.02 \\
0.100 & 1.12 \pm 0.05 \\
0.150 & 1.60 \pm 0.02 \\
0.301 & 3.20 \pm 0.20 \\
0.677 & 6.05 \pm 0.22 \\
0.803 & 5.98 \pm 0.33 \\
\end{array}
\]

-95-
Table 3.15:

Effect of [sulphamic acid] on k_0 at 25°C

<table>
<thead>
<tr>
<th>[sulphamic acid] mol l^{-1}</th>
<th>k_0 s$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.025</td>
<td>2.82 ± 0.09</td>
</tr>
<tr>
<td>0.050</td>
<td>6.69 ± 0.24</td>
</tr>
<tr>
<td>0.075</td>
<td>9.57 ± 0.45</td>
</tr>
<tr>
<td>0.150</td>
<td>18.3 ± 0.5</td>
</tr>
<tr>
<td>0.300</td>
<td>32.6 ± 1.2</td>
</tr>
<tr>
<td>0.450</td>
<td>46.6 ± 4.0</td>
</tr>
<tr>
<td>0.600</td>
<td>78.4 ± 4.6</td>
</tr>
<tr>
<td>0.803</td>
<td>93.0 ± 9.0</td>
</tr>
</tbody>
</table>

Table 3.14:

Effect of [sulphamic acid] on k_0 at 25°C

<table>
<thead>
<tr>
<th>[BuONO] = 1.2×10^{-3} mol l^{-1}</th>
<th>[BuOH] = 0.1 mol l^{-1}</th>
<th>[HClO₄] = 0.050 mol l^{-1}</th>
</tr>
</thead>
<tbody>
<tr>
<td>[sulphamic acid] mol l^{-1}</td>
<td>k_0 s$^{-1}$</td>
<td></td>
</tr>
<tr>
<td>0.025</td>
<td>1.68 ± 0.07</td>
<td></td>
</tr>
<tr>
<td>0.050</td>
<td>3.36 ± 0.15</td>
<td></td>
</tr>
<tr>
<td>0.150</td>
<td>9.47 ± 0.61</td>
<td></td>
</tr>
<tr>
<td>0.301</td>
<td>16.2 ± 0.5</td>
<td></td>
</tr>
<tr>
<td>0.462</td>
<td>23.1 ± 1.4</td>
<td></td>
</tr>
<tr>
<td>0.679</td>
<td>31.7 ± 2.1</td>
<td></td>
</tr>
<tr>
<td>0.803</td>
<td>33.3 ± 1.6</td>
<td></td>
</tr>
</tbody>
</table>
Table 3.16:
Effect of [sulphamic acid] on k_f at 25°C

$[^{t}\text{BuONO}] = 1.2 \times 10^{-3} \text{ mol l}^{-1}$
$[^{t}\text{BuOH}] = 0.1 \text{ mol l}^{-1}$
$[\text{HClO}_4] = 0.50 \text{ mol l}^{-1}$

370nm

<table>
<thead>
<tr>
<th>[sulphamic acid] mol l$^{-1}$</th>
<th>k_f s$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.025</td>
<td>4.32 ± 0.05</td>
</tr>
<tr>
<td>0.050</td>
<td>8.65 ± 0.28</td>
</tr>
<tr>
<td>0.075</td>
<td>12.2 ± 0.3</td>
</tr>
<tr>
<td>0.100</td>
<td>16.4 ± 0.4</td>
</tr>
<tr>
<td>0.150</td>
<td>23.9 ± 0.8</td>
</tr>
<tr>
<td>0.300</td>
<td>54.8 ± 3.7</td>
</tr>
<tr>
<td>0.525</td>
<td>90.4 ± 3.2</td>
</tr>
</tbody>
</table>

The results for the four acidities are shown in Figure (3.5). It can be seen that in each case, k_f is first order in [sulphamic acid] at low [sulphamic acid], but the plots curve at high [sulphamic acid], tending to a limit value of k_f. The effect is much more marked at the lower acidities, where the concentration of the sulphamate anion is the greatest. Since the reaction order changes from a first order to a zero order dependence on [sulphamic acid], this means that the rate determining step must have changed from being attack of the nitrous acidium (or nitrosonium ion) on...
the sulphamate anion to an earlier step, i.e. hydrolysis of the alkyl nitrite. The reaction scheme is shown in equation (3.25).

\[\begin{align*}
\text{tBuONO} &+ H^+ + H_2O &\xrightarrow{k_1} \text{tBuOH} + HNO_2 + H^+ \\
HNO_2 &+ H^+ + NH_2SO_3^- &\xrightarrow{k} N_2 + H_2SO_3^- + H^+ \\
\end{align*} \] (3.25)

From the reaction scheme it can be seen that if \(k [H^+] [NH_2SO_3^-] \gg k_{-1} [tBuOH] \) then the slow step will become the hydrolysis of the alkyl nitrite, the \(k_1 \) step. The derived rate equation for scheme (3.25) is equation (3.26)

\[k_0 = \frac{k_1 [sulphamic acid][H^+] Ka}{k_{-1} [tBuOH](Ka + [H^+]) + k Ka [sulphamic acid]} \] (3.26)

Equation (3.26) predicts that at high [sulphamic acid], if

\[\frac{k Ka [sulphamic acid]}{(Ka + [H^+])} \gg \frac{k_{-1} [tBuOH]}{(Ka + [H^+])} \]

then the equation reduces to equation (3.27), i.e. the
value of k_0 should be zero order in [sulphamic acid], and the limiting value of k_0 should yield the value of k_1, the second order rate constant for hydrolysis of the alkyl nitrite. Estimating the limiting values of

$$k_0 = k_1 [H^+]$$

(3.27)

k_0 from the data at $[\text{HClO}_4] = 7.74 \times 10^{-3} \ (k_0 \approx 6 \text{ s}^{-1})$ and $0.05 \ \text{mol l}^{-1} \ (k_0 \approx 35 \text{ s}^{-1})$ yield values of ca 780 mol$^{-2}$ s$^{-1}$ and 700 mol$^{-2}$ s$^{-1}$ for the values of k_1, which are in reasonable agreement with the values measured directly of 880 and 890 mol$^{-2}$ s$^{-1}$.

A more detailed kinetic analysis of the data show that plots of k_0 against [sulphamic acid]$^{-1}$ give reasonable straight lines with slopes and intercepts that are $\propto [H^+]^{-1}$ (Table 3.17 and Figure 3.6). Equation (3.26) predicts that a plot of k_0 against [sulphamic acid]$^{-1}$ should be a straight line with slope $= k_1 \ [\text{ROH}] (K_a + [H^+]) / k_1 k_a [H^+]$ and intercept $= (k_1 [H^+])^{-1}$. The average value of k_1, obtained from the intercept $= 1492 \pm 290 \ 1^2 \ \text{mol}^{-2} \ \text{s}^{-1}$, which is in fair agreement with those previously found. Also, by plotting the slope against $[H^+]^{-1}$, the value of K_a for sulphamic acid can be obtained from the ratio of slope / intercept of this graph. The value obtained $= 0.0997 \ \text{mol l}^{-1}$, which
Figure 3.6
Plot of k_0^1 against [sulphamic acid]$^{-1}$

Figure 3.5
Plot of k_0 against [sulphamic acid] at different acidities
Table 3.17:

Values of slope and intercept from plots of k_0^{-1} against [sulphamic acid]$^{-1}$

<table>
<thead>
<tr>
<th>[H$^+$] mol l$^{-1}$</th>
<th>slope mol l$^{-1}$s</th>
<th>intercept s</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.74 x 10$^{-3}$</td>
<td>0.0704 + 2.2 x 10$^{-3}$</td>
<td>0.0951 + 0.0383</td>
</tr>
<tr>
<td>0.050</td>
<td>0.0145 + 7.6 x 10$^{-3}$</td>
<td>0.0107 + 1.29x10$^{-3}$</td>
</tr>
<tr>
<td>0.19</td>
<td>7.43 x 10$^{-3}$</td>
<td>3.23 x 10$^{-3}$</td>
</tr>
<tr>
<td>0.50</td>
<td>5.76x10$^{-3}$ + 7.7x10$^{-5}$</td>
<td>1.79x10$^{-3}$ + 1.4x10$^{-4}$</td>
</tr>
</tbody>
</table>

corresponds to a pKa of 1.0 which is in good agreement with the literature values of 1.1 [9] at 25°C and 0.98 [11] at 0°C.

All the data obtained are consistent with a reaction mechanism where the alkyl nitrite undergoes hydrolysis to nitrous acid which is then responsible for nitrosation. It is possible for the hydrolysis step or the subsequent reaction of nitrous acid to be the rate limiting step under the appropriate conditions.

Further confirmation of this mechanism comes from the effect of added nucleophiles. It is known that the nitrosation of sulphamic acid by nitrous acid is not subject to catalysis by added nucleophiles [9, 11].
Results showing the effect of added chloride ion on k_0 are shown in Table (3.18). Clearly no catalysis is observed, indicating that the reaction behaves kinetically similarly to that using nitrous acid itself.

Table 3.18:
Effect of added chloride ion on k_0 at 25°C

<table>
<thead>
<tr>
<th>[NaCl] mol l$^{-1}$</th>
<th>k_0 s$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2.83 ± 0.02</td>
</tr>
<tr>
<td>0.041</td>
<td>2.89 ± 0.02</td>
</tr>
<tr>
<td>0.082</td>
<td>2.86 ± 0.03</td>
</tr>
<tr>
<td>0.123</td>
<td>2.83 ± 0.04</td>
</tr>
<tr>
<td>0.204</td>
<td>2.87 ± 0.03</td>
</tr>
</tbody>
</table>

At high concentrations of sulphamic acid and at low acidity, under conditions where hydrolysis of the alkyl nitrite is rate limiting, catalysis by added nucleophiles would be expected as the hydrolysis of the alkyl nitrite is known to be catalysed by added nucleophiles [1,2,3]. Results under these conditions are shown in Tables (3.19) and (3.20) for both chloride and bromide ions.
Table 3.19:
Effect of chloride ion at high [sulphamic acid] at 25°C

\[[\text{BuONO}] = 1.2 \times 10^{-3} \text{ mol l}^{-1} \quad [\text{HClO}_4] = 7.74 \times 10^{-3} \text{ mol l}^{-1} \]
\[[\text{sulphamic acid}] = 0.80 \text{ mol l}^{-1} \quad 370 \text{ min} \]

<table>
<thead>
<tr>
<th>[NaCl] mol l(^{-1})</th>
<th>(k_0) s(^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.050</td>
<td>6.63 ± 0.19</td>
</tr>
<tr>
<td>0.100</td>
<td>5.15 ± 0.26</td>
</tr>
<tr>
<td>0.150</td>
<td>5.52 ± 0.15</td>
</tr>
<tr>
<td>0.200</td>
<td>5.65 ± 0.14</td>
</tr>
</tbody>
</table>

Table 3.20:
Effect of bromide ion at high [sulphamic acid] at 25°C

\[[\text{BuONO}] = 1.2 \times 10^{-3} \text{ mol l}^{-1} \quad [\text{HClO}_4] = 7.74 \times 10^{-3} \text{ mol l}^{-1} \]
\[[\text{sulphamic acid}] = 0.80 \text{ mol l}^{-1} \]

<table>
<thead>
<tr>
<th>[NaBr] mol l(^{-1})</th>
<th>(k_0) s(^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.050</td>
<td>6.20 ± 0.24</td>
</tr>
<tr>
<td>0.100</td>
<td>5.55 ± 0.32</td>
</tr>
<tr>
<td>0.150</td>
<td>5.40 ± 0.22</td>
</tr>
<tr>
<td>0.200</td>
<td>5.27 ± 0.25</td>
</tr>
</tbody>
</table>
For both anions, k_0 decreases slightly on addition of the anion. This is possible due to a salt effect. The effect of added nucleophiles on the denitrosation rate of alkyl nitrites is known to be small [3], much less than that found in the denitrosation of nitrosamines [24,25], but it is a catalytic effect. Catalysis by added chloride and bromide salts in this case may possibly not be observed due to the large errors involved in the values of k_0 (due to gas formation) and also due to a salt effect that causes a reduction in the rate.

3.2.2 Reaction with hydrazoic acid

The reaction of tBuONO with hydrazoic acid (HN_3) was studied at 370 nm, following the disappearance of the alkyl nitrite. The reactions were carried out under conditions where $[t^{t}BuONO] \ll [HN_3]$ and good first order behaviour was observed in each case. The value of the observed first order rate constant, k_0, was found to decrease slightly on the addition of $t^{t}BuOH$ (Table 3.21), but the effect is within the experimental error. These results are again consistent with the fact that the equilibrium constant for formation of $t^{t}BuONO$ is considerably smaller than it is for $t^{t}PrONO$.

The reaction was also found to be first order in $[HN_3]$, as shown by the dependence of k_0 on $[HN_3]$ at
two different acidities (Tables 3.22 and 3.23). The results for \([\text{HClO}_2] = 0.10 \text{ mol l}^{-1}\) are shown in Figure (3.7)

Table 3.21:
Effect of \(^{t}\text{BuOH}\) on the rate of nitrosation of \(\text{HN}_3\) at 25°C

\[
\begin{align*}
\text{[^{t}\text{BuONO}]} &= 1.2 \times 10^{-3} \text{ mol l}^{-1} & \text{[HClO}_2] &= 0.477 \text{ mol l}^{-1} \\
\text{[HN}_3] &= 0.025 \text{ mol l}^{-1} & \text{370 nm} \\
\text{[^{t}\text{BuOH}]} \text{ mol l}^{-1} & \quad \kappa \text{ s}^{-1} \\
0 & \quad 3.07 \pm 0.05 \\
0.0238 & \quad 3.04 \pm 0.05 \\
0.0477 & \quad 3.01 \pm 0.04 \\
0.0953 & \quad 2.91 \pm 0.05 \\
0.238 & \quad 2.88 \pm 0.04
\end{align*}
\]

The first-order dependence on \([\text{HN}_3]\) means that the rate limiting step must be reaction of nitrous acid with \(\text{HN}_3\), although at high \([\text{HN}_3]\) there is a slight curvature on the plots of \(\kappa\) against \([\text{HN}_3]\), indicating that the hydrolysis of the alkyl nitrite has become partly rate-limiting. By comparison with the reaction of \(^{t}\text{PrONO}\) with \(\text{HN}_3\), the rate equation (equation 3.28) can be written for this reaction. Again, since the equilibrium constant

-105-
Table 3.22
Dependence of k_0 on $[HN_3]$ at 25°C

$[^7]$BuONO $= 1.2 \times 10^{-3}$ mol l$^{-1}$ \hspace{1cm} \[\text{HClO}_4\] $= 0.10$ mol l$^{-1}$

370 nm

<table>
<thead>
<tr>
<th>$[HN_3]$ mol l$^{-1}$</th>
<th>k_0 s$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.020</td>
<td>0.411 ± 0.021</td>
</tr>
<tr>
<td>0.040</td>
<td>0.822 ± 0.025</td>
</tr>
<tr>
<td>0.060</td>
<td>1.22 ± 0.06</td>
</tr>
<tr>
<td>0.080</td>
<td>1.68 ± 0.05</td>
</tr>
<tr>
<td>0.100</td>
<td>2.05 ± 0.08</td>
</tr>
</tbody>
</table>

Slope $= 20.68 \pm 0.34$ l mol$^{-1}$s$^{-1}$

Intercept $= 4 \times 10^{-3} \pm 2 \times 10^{-2}$ s$^{-1}$

Table 3.23:
Dependence of k_0 on $[HN_3]$ at 25°C

$[^7]$BuONO $= 1.2 \times 10^{-3}$ mol l$^{-1}$ \hspace{1cm} \[\text{HClO}_4\] $= 0.50$ mol l$^{-1}$

370 nm

<table>
<thead>
<tr>
<th>$[HN_3]$ mol l$^{-1}$</th>
<th>k_0 s$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0125</td>
<td>1.77 ± 0.04</td>
</tr>
<tr>
<td>0.025</td>
<td>3.26 ± 0.08</td>
</tr>
<tr>
<td>0.050</td>
<td>6.19 ± 0.23</td>
</tr>
<tr>
<td>0.075</td>
<td>8.62 ± 0.15</td>
</tr>
<tr>
<td>0.125</td>
<td>13.2 ± 0.6</td>
</tr>
</tbody>
</table>
for the formation of the alkyl nitrite is very small (< 0.05), the equilibrium constant for hydrolysis of the alkyl nitrite, K_{eq}, will be large so that the inequality $K_{eq} \gg [^tBuOH]$ will hold. Therefore equation (3.28) can be simplified to equation (3.29). This predicts

\[
ko = \frac{k K_{eq} [HN_3][H^+]}{(K_{eq} \cdot [^tBuOH])} \quad (3.28)
\]

\[
ko = k [HN_3][H^+] \quad (3.29)
\]

that a plot of ko against $[HN_3]$ will have slope $= k[H^+]$ and so k, the third order rate constant for attack of nitrous acid on hydrazoic acid can be obtained. The values obtained for k from these results are 205 l^2 mol$^{-2}$ s$^{-1}$ at $[HClO_4] = 0.10$ mol l$^{-1}$ and 250 l^2 mol$^{-2}$ s$^{-1}$ at $[HClO_4] = 0.50$ mol l$^{-1}$. These are in good agreement with the values found from analysis of the data from the reaction of iPrONO with HN$_3$ ($k = 220$ l^2 mol$^{-2}$ s$^{-1}$ at $[HClO_4] = 0.10$ mol l$^{-1}$ and 300 l^2 mol$^{-2}$ s$^{-1}$ at $[HClO_4] = 0.538$ mol l$^{-1}$). Equation (3.29) also predicts that ko should be linear in $[H^+]$. Results showing the dependence of ko on $[H^+]$ are shown in Table (3.24). The results are shown graphically in Figure (3.8).
Table 3.24:
Effect of [HClO₄] on the rate of nitrosation of HN₃ at 25°C

\[[\text{tBuONO}] = 1.2 \times 10^{-3} \text{ mol l}^{-1} \quad [\text{HN₃}] = 0.025 \text{ mol l}^{-1} \]

370 nm

<table>
<thead>
<tr>
<th>[HClO₄] \text{ mol l}^{-1}</th>
<th>(k_0) \text{ s}^{-1}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.025</td>
<td>0.133 ± 0.004</td>
</tr>
<tr>
<td>0.075</td>
<td>0.359 ± 0.009</td>
</tr>
<tr>
<td>0.125</td>
<td>0.648 ± 0.013</td>
</tr>
<tr>
<td>0.225</td>
<td>1.25 ± 0.05</td>
</tr>
<tr>
<td>0.475</td>
<td>3.21 ± 0.04</td>
</tr>
</tbody>
</table>

The dependence of \(k_0 \) on [H⁺] is not linear, a plot of \(k_0 \) against [H⁺] shows an upward curve. This is exactly the same acid dependence as is found in the nitrosation of HN₃ with nitrous acid [9]. Further, when these results are compared with those obtained from the reaction of nitrous acid with HN₃ (Figure 3.8) there is no difference between them. This is predicted by equation (3.29), which is identical to the rate equation for nitrous acid nitrosation of HN₃. In other words, this means that tBuONO is virtually completely hydrolysed to nitrous acid and tBuOH before any significant reaction of nitrous acid with the substrate occurs. Indeed, if \(k \), the
equilibrium constant for formation of alkyl nitrite is taken to be 0.05 \, \text{l} \, \text{mol}^{-1} \, \text{and} \, [{}^6\text{BuOH}] \, \text{is typically} \, 0.2 \, \text{mol} \, \text{l}^{-1} \, \text{the calculated extent of hydrolysis is} \, 95\%.

The reaction of \(^6\text{BuONO}\) with HN\(_3\) (contrasting with the reaction of NH\(_3\)SO\(_3\)H) was found to be markedly catalysed by added bromide ions. The results are shown in Table (3.25)

\begin{table}[h]
\centering
\caption{Catalysis by bromide ions at 25°C}
\begin{tabular}{ll}
[\(^6\text{BuONO}\)] \, \text{mol} \, \text{l}^{-1} & \, 1.2 \times 10^{-3} \\
[\text{HN}_3] \, \text{mol} \, \text{l}^{-1} & \, 0.025 \\
[\text{HClO}_4] \, \text{mol} \, \text{l}^{-1} & \, 0.50 \\
370 \, \text{nm} & \\

[\text{NaBr}] \, \text{mol} \, \text{l}^{-1} & \, k_0 \, \text{s}^{-1} \\
0 & \, 3.26 \pm 0.08 \\
0.025 & \, 16.9 \pm 0.6 \\
0.050 & \, 31.2 \pm 1.3 \\
0.075 & \, 44.5 \pm 10 \\
0.125 & \, 78.9 \pm 4.35 \\
\end{tabular}
\end{table}

Catalysis by halide ions has also been observed in the nitrosation of HN\(_3\) by nitrous acid [9]. If the reaction is assumed to be occurring via attack of nitrosyl bromide on \(^6\text{HN}_3\) and that the alkyl nitrite is almost completely hydrolysed before any reaction with HN\(_3\) occurs
then the value of the second order rate constant for attack of NOBr on HN$_3$ can be obtained as $9.5 \times 10^5 \pm 3 \times 10^5$ l mol$^{-1}$s$^{-1}$. This value compares reasonably well with the two published values [9] of 1.3×10^5 and 2.0×10^5 l mol$^{-1}$s$^{-1}$.

At very low acidity, where there is a substantial concentration of the azide ion (N$_3^-$), present in solution (pKa of HN$_3$ = 5), the reaction is zero order in [N$_3^-$]. The results at pH = 6.02 are shown in Table (3.26).

Table 3.26:

Nitrosation of HN$_3$ in dihydrogen orthophosphate buffer at pH = 6.02 and 25°C

<table>
<thead>
<tr>
<th>[tBuONO] = 2 x 10$^{-3}$ mol l$^{-1}$</th>
<th>[tBuOH] = 0.084 mol l$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>[KH$_2$PO$_4$] = 0.104 mol l$^{-1}$</td>
<td>370 nm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>[N$_3^-$]</th>
<th>k_0 s$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$2.45 \times 10^{-3} \pm 4.9 \times 10^{-4}$</td>
</tr>
<tr>
<td>0.0191</td>
<td>$2.46 \times 10^{-3} \pm 1.8 \times 10^{-4}$</td>
</tr>
<tr>
<td>0.0381</td>
<td>3.45×10^{-3}</td>
</tr>
<tr>
<td>0.0572</td>
<td>3.39×10^{-3}</td>
</tr>
<tr>
<td>0.0762</td>
<td>2.82×10^{-3}</td>
</tr>
<tr>
<td>0.0953</td>
<td>2.63×10^{-3}</td>
</tr>
</tbody>
</table>
The value of k_0 at $[N_3^-] = 0$ represents the rate of hydrolysis of the alkyl nitrite in the buffer to give the nitrite ion. The values of k_0 quoted are subject to quite large errors (typically $\pm 5\text{-}10\%$) due to the fact that there was excessive bubble formation occurring during the reaction which caused difficulties in obtaining accurate absorbance values, but even so the value of k_0 can be seen to be independent of $[N_3^-]$. This means that the rate of reaction under these conditions is governed by the hydrolysis of the alkyl nitrite. There was also an effect on the rate due to the buffer as shown in Table (3.27). The effect is relatively small.

Table 3.27

Effect of buffer concentration on the rate of nitrosation of N_3^- at 25°C

<table>
<thead>
<tr>
<th>$[^{1}B_{u}O_{N}O]$ - 2×10^{-3} mol l$^{-1}$</th>
<th>$[N_3^-]$ - 0.0191 mol l$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$[K_{H_2}PO_4]$ mol l$^{-1}$</td>
<td>k_0 s$^{-1}$</td>
</tr>
<tr>
<td>0.0518</td>
<td>1.93 $\times 10^{-3}$</td>
</tr>
<tr>
<td>0.0647</td>
<td>1.99 $\times 10^{-3}$</td>
</tr>
<tr>
<td>0.0776</td>
<td>2.65 $\times 10^{-3}$</td>
</tr>
<tr>
<td>0.0906</td>
<td>2.16 $\times 10^{-3}$</td>
</tr>
<tr>
<td>0.104</td>
<td>2.46 $\times 10^{-3}$</td>
</tr>
</tbody>
</table>
and probably arises due to a salt effect. The limiting value of k at $[KH_2PO_4] = 0.104 \text{ mol l}^{-1}$ of ca $2.5 \times 10^{-3} \text{ s}^{-1}$ can be extrapolated to zero buffer concentration to give a value of ca $1 \times 10^{-3} \text{ s}^{-1}$. This corresponds to a value of k_{1}, the second order rate constant for the acid catalysed denitrosation of the alkyl nitrite of ca $1000 \text{ l mol}^{-1}\text{s}^{-1}$ which agrees quite well with values previously obtained. There is no evidence for a direct reaction between the alkyl nitrite or its protonated form and the azide ion.

3.3 Discussion

All the data obtained for the reactions of $^i\text{PrONO}$ and $^t\text{BuONO}$ with a variety of substrates in aqueous acid solution are consistent with reactions proceeding via the hydrolysis of the alkyl nitrite to give nitrous acid which can then effect nitrosation of the substrate. In both cases the hydrolysis is rapid. In the case of $^i\text{PrONO}$ the rate of reaction is decreased on addition of $^i\text{PrOH}$, which can be interpreted in terms of an increase in the concentration of $^i\text{PrONO}$, which is ineffective as a nitrosating agent. In the case of $^t\text{BuONO}$, at low substrate concentrations hydrolysis of the alkyl nitrite occurs almost completely before any reaction with the
substrate occurs but at high substrate concentrations
the rate depends only on the rate of denitrosation of
the alkyl nitrite. There is no evidence for a direct
reaction of the alkyl nitrite with any of the substrates
used, but the protonated alkyl nitrite must react directly
with the solvent (water) and also chloride and bromide
ion, which are known to catalyse the hydrolysis [2,3]
reaction. This is analogous to the situation found
for the reaction of aromatic nitrosamines as nitrosating
agents. These have been shown to occur by hydrolysis
of the nitrosamine to nitrous acid [24], which can then
react with a nitrous acid trap, eg. sulphamic acid.
The equilibrium for the denitrosation in this case lies
well over to the side of the nitrosamine and the rate
of reaction is markedly reduced on addition of the amine.
At low concentrations of sulphamic acid the rate of
reaction is first order in [sulphamic acid] but at higher
concentrations it becomes zero order in [sulphamic acid]
indicating that rate limiting denitrosation is occurring.
The major difference between the reaction of alkyl
nitrites and that of nitrosamines in aqueous acid solution
is that the reaction of nitrosamines is markedly catalysed
by added nucleophiles [24,25] whereas the reaction of
alkyl nitrites is only slightly catalysed by added nucleo-
philes [3] (chloride and bromide). Indeed nitrosamines
have also been shown to react directly with nucleophilic
species such as thiols. The difference between the
two systems can be explained if the denitrosation of
alkyl nitrites by water is a diffusion controlled process. The concentration of water in these solutions is always far in excess of the concentration of the added substrate and so in aqueous solution hydrolysis of the alkyl nitrite would be much faster than the reaction of the alkyl nitrite with the substrate.
References:

Alkyl nitrites are frequently used nitrosating agents in both acidic and basic alcohol solutions. The advantages of these procedures over the normal aqueous nitrous acid procedure for nitrosation becomes apparent when the nitrosation of substrates of limited solubility in aqueous solution is required.

In a previous study [1], the alcoholysis of (+) and (-) 1-methylheptyl nitrite was studied in 1-propanol, 1-pentanol and tertiary butanol using various strong acids as catalysts. It was found that perchloric, hydrochloric and methanesulphonic acids were all equally efficient as catalysts at very low concentrations (10^{-6} to $10^{-5} \text{ mol} \cdot \text{L}^{-1}$), suggesting that all three acids are virtually completely dissociated and that the hydrogen ion is the only significant catalyst. The rate constant for reaction with tertiary butanol was found to be about twice that of the two primary alcohols. This was explained in terms of their being a higher concentration of the protonated alkyl nitrite in the tertiary alcohol than
in the primary alcohols, as the nucleophilic power of the alcohols is in the order \(1\)-propanol \(\sim\) \(1\)-pentanol \(>\) tertiary butanol. Catalysis by added chloride and bromide salts was also observed. In both cases the dependence of the rate constant on \([\text{Halide}]\) was not linear but tended to a maximum value. This was explained in terms of a salt effect and a depression of the \(H^+\) concentration due to association of \(H^+\) with halide ion.

In another study [2] the reaction of \(1\)-propyl nitrite in acidic \(1\)-propanol was studied with aniline, \(N\)-methylaniline and \(p\)-nitroaniline. In the absence of any added nucleophile the reaction was very slow, indicating that the protonated alkyl nitrite was not an effective nitrosating agent of aniline derivatives under the conditions used. In the presence of chloride ion, bromide ion and thiourea the reaction proceeded readily. Here the rate constant was again found to tend towards a limiting value at high concentrations of chloride ion, bromide ion and thiourea and was explained in terms of an equilibrium formation of the nitrosyl halide or nitrosyl thiourea which reacts reversibly with the amine to form the nitrosamine intermediate which then undergoes various reactions involving proton transfer and water loss (for primary nitrosamines) to give the diazonium ion, or in the case
of N-methylaniline, proton loss to give the nitrosamine (Scheme 4.1). This has also been found in the diazotization of aniline in methanol [3,4] solutions of HCl and HBr and for diazotizations involving nitrosyl halides in water solvent when electron withdrawing groups are present in the aromatic ring [5].

\[
\begin{align*}
\text{RONO} + \text{H}^+ + \text{X}^- & \rightleftharpoons \text{ROH} + \text{XNO} \\
\text{XNO} + \text{C}_6\text{H}_5\text{NH}_2 & \rightleftharpoons \text{C}_6\text{H}_5\text{NH}_2\text{NO} + \text{X}^- \\
[\text{H}^+] & \rightleftharpoons \text{K}_a \\
\text{C}_6\text{H}_5\text{NH}_3 & \rightleftharpoons \text{C}_6\text{H}_5\text{N}^+ \\
\end{align*}
\]

The aim of the present work is to ascertain whether or not an alkyl nitrite does react directly in acid solution as a nitrosating agent. Two alkyl nitrites were chosen for the study, tertiary butyl nitrite (tBuONO), an example of a tertiary nitrite and isopropyl nitrite, an example of a secondary nitrite. The reaction of each alkyl nitrite was studied in its parent alcohol as solvent with both thiourea and thioglycolic acid.
4.1 Reaction of tertiary butyl nitrite in tertiary butanol

4.1.1 Nitrosation of thiourea

Thiourea [6], and indeed alkyl thioureas in general, are known to undergo a rapid and reversible S-nitrosation reaction in aqueous acidic solutions of nitrous acid as shown in equation (4.2).

\[
\begin{align*}
K \\
H^+ + (\text{NH}_2)_2\text{C-S} + \text{HNO}_2 \xrightarrow{k_1} (\text{NH}_2)_2\text{C-S-NO} + \text{H}_2\text{O} \\
\xrightarrow{k_{-1}}
\end{align*}
\]

The values of \(k_1\), the third order rate constant for attack of nitrous acid, and \(k_{-1}\), the first order rate constant for hydrolysis of S-nitrosothiourea and \(K\), the equilibrium constant for formation of S-nitrosothiourea are known and are shown in table (4.1)

<table>
<thead>
<tr>
<th></th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(k_1)</td>
<td>6960 l^2 mol^{-2} s^{-1}</td>
</tr>
<tr>
<td>(k_{-1})</td>
<td>1.39 s^{-1}</td>
</tr>
<tr>
<td>(K)</td>
<td>5000 l^2 mol^{-2}</td>
</tr>
</tbody>
</table>
The product S-nitrosothiourea is unstable, decomposing according to equation (4.3) [7].

\[2\left(\text{NH}_2\right)_2\text{C}=\hat{\text{S}}-\text{NO} \rightarrow \left(\text{NH}_2\right)_2\text{C}=\hat{\text{S}}-\hat{\text{S}}-\text{C(\text{NH}_2)_2} + 2\text{NO} \]

(4.3)

S-nitrosothiourea can also act as a nitrosating agent with many substrates including amines, thiols and ketones. This is usually shown by a marked catalytic effect of the addition of thiourea [8, 9, 10] in the reaction using nitrous acid. The S-nitrosothiourea ion is markedly less reactive than the nitrosyl halides, but the catalytic effect of thiourea is much more pronounced than the effect of chloride and bromide ion, due to the large equilibrium constant for its formation.

Thiourea has also been shown to catalyse the denitrosation of nitrosamines in acid solution [11, 12]. Here the reaction is believed to occur via nucleophilic attack of thiourea on the protonated nitrosamine (Scheme 4.4). The catalytic effect of thiourea is much more marked than that of \(\text{Br}^- \) and \(\text{Cl}^- \), and there is a direct correlation between the rate of reaction with the nitrosamine and the nucleophilicity of the attacking species as defined by \(n \), the Pearson nucleophilicity factor. This reaction is of course the reverse of that of the
nitrosation of amines using thiourea as catalyst.

\[\text{Scheme (4.4)} \]

The reaction of tertiary butyl nitrite (\({^t}\text{BuONO} \)) with thiourea was followed at 420 nm, where only the S-nitrosothiourea absorbs. All reactions were carried out at 30°C. Under the conditions used with [thiourea] \(\gg \) [\({^t}\text{BuONO} \)], good first order behaviour was observed in all cases.

The variation of the observed first order rate constant, \(k_o \), with the concentration of thiourea was studied at two different concentrations of sulphuric acid. The results are shown in Table (4.2) and graphically in Figure (4.1).
Table 4.2:
Variation of k_0 with [thiourea] at $30^\circ C$

$[^t]{BuONO} = 1 \times 10^{-3} \text{ mol l}^{-1}$

<table>
<thead>
<tr>
<th>[thiourea] (mol l$^{-1}$)</th>
<th>k_0 (s$^{-1}$) a</th>
<th>k_0 (s$^{-1}$) b</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.012</td>
<td>$0.156 \pm 6 \times 10^{-3}$</td>
<td>$0.209 \pm 5 \times 10^{-3}$</td>
</tr>
<tr>
<td>0.024</td>
<td>$0.203 \pm 2 \times 10^{-3}$</td>
<td>$0.319 \pm 6 \times 10^{-3}$</td>
</tr>
<tr>
<td>0.036</td>
<td>0.301 ± 0.013</td>
<td>$0.406 \pm 3 \times 10^{-3}$</td>
</tr>
<tr>
<td>0.048</td>
<td>0.296 ± 0.014</td>
<td>$0.467 \pm 6 \times 10^{-3}$</td>
</tr>
<tr>
<td>0.060</td>
<td>0.314 ± 0.021</td>
<td>$0.530 \pm 9 \times 10^{-3}$</td>
</tr>
</tbody>
</table>

a) $[\text{H}_2\text{SO}_4] = 0.033 \text{ mol l}^{-1}$

b) $[\text{H}_2\text{SO}_4] = 0.066 \text{ mol l}^{-1}$

The plots of k_0 against [thiourea] give curves with common positive intercepts. The common intercept at the two different acidities can be explained if there is a simple equilibrium reaction between the protonated alkyl nitrite and thiourea. This is analogous to the reaction found in aqueous solution between thiourea and nitrous acid and is shown in Scheme (4.5)
Figure 4.1

Variation of k_0 with [thiourea]

$[H_2SO_4] = 0.066$ mol/l
$[H_2SO_4] = 0.033$ mol/l
The observed first order rate constant for such a scheme is equation (4.6)

\[k_\omega = k_1 [H^+] [\text{(NH}_2\text{)}_2 \text{CS}] + k_{-1} \]

Equation (4.6) predicts that a plot of \(k_\omega \) against [thiourea] should give a straight line with slope = \(k_1 [H^+] \) and intercept = \(k_{-1} \). This means that the slopes of such plots should increase with increasing acidity, but the intercepts should be independent of acidity. Equation (4.6) also predicts that the plots should be linear, whereas the experimental results show a substantial curvature, tending towards a limiting value of \(k_\omega \). A similar curvature is also found in the variation of \(k_\omega \) with [\(H_2SO_4 \)]. The results are shown in Table (4.3), and graphically in Figure (4.2). Equation (4.6) also predicts that a plot of \(k_\omega \) against [\(H^+ \)] should be linear with a positive intercept corresponding to \(k_{-1} \). The data in Table (4.3) show marked curvature in a plot of \(k_\omega \) against [\(H_2SO_4 \)], reaching a limiting value of \(k_\omega \) at high [\(H_2SO_4 \)]. This can be explained if there is a
Table 4.3:
 Variation of ko with $[\text{H}_2\text{SO}_4]$ at 30°C

$[^{1} \text{BuONO}] = 1 \times 10^{-3}$ mol l$^{-1}$ [thiourea] = 0.015 mol l$^{-1}$

<table>
<thead>
<tr>
<th>$[\text{H}_2\text{SO}_4]$</th>
<th>ko s$^{-1}$</th>
<th>$[\text{H}_2\text{SO}_4]$</th>
<th>(ko-0.06)$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>mol l$^{-1}$</td>
<td>1 mol l$^{-1}$</td>
<td>s</td>
<td></td>
</tr>
<tr>
<td>0.0264</td>
<td>0.156 ± 0.003</td>
<td>37.9</td>
<td>10.36</td>
</tr>
<tr>
<td>0.0396</td>
<td>0.186 ± 0.007</td>
<td>25.3</td>
<td>7.88</td>
</tr>
<tr>
<td>0.0528</td>
<td>0.222 ± 0.015</td>
<td>18.9</td>
<td>6.11</td>
</tr>
<tr>
<td>0.1056</td>
<td>0.279 ± 0.005</td>
<td>9.47</td>
<td>4.51</td>
</tr>
<tr>
<td>0.1584</td>
<td>0.305 ± 0.005</td>
<td>6.31</td>
<td>4.02</td>
</tr>
<tr>
<td>0.2111</td>
<td>0.328 ± 0.005</td>
<td>4.74</td>
<td>3.67</td>
</tr>
<tr>
<td>0.2639</td>
<td>0.341 ± 0.006</td>
<td>3.79</td>
<td>3.50</td>
</tr>
</tbody>
</table>
Figure 4.3
Double reciprocal plot for nitrosation of thiourea

Figure 4.2
Variation of k_0 with $[H_2SO_4]$
significant degree of protonation of thiourea under these conditions which would lower the effective concentration of both H_3SO_8 and thiourea. In water the pKa of protonated thiourea is known to be -1.19 and protonation is believed to occur on sulphur [13,14,15]. The pKa values for meta and para substituted phenyl thioureas have been found to be larger in methanol [16] than those found in water by about 4 pKa units. If a similar trend occurs in this case then the pKa of thiourea in tBuOH will be around 3 and so a substantial amount of protonation would be expected in these solutions. The modified reaction scheme (Scheme 4.7), allowing for protonation of thiourea, allows the equation for k_0 to be derived (equation 4.8).

\[
\begin{align*}
^tBuONO + H^+ & \rightleftharpoons K \rightarrow BuONO^+ \\
^tBuONO^+ + (NH_2)_2CS & \rightleftharpoons k_1 \rightarrow (NH_2)_2C\text{SNO} + ^tBuOH \\
\text{[H}^+\text{]} & \Bigg\vert K_a \\
(NH_2)_2C\text{SH} \\
\end{align*}
\]

\[k_0 = k_1 [(NH_2)_2CS][H^+] + k_{-1}\]

but \[K_a = \frac{[(NH_2)_2CS][H^+]}{[(NH_2)_2C\text{SH}]}\]
and the total thiourea concentration,

\[[(\text{NH}_4)_2 \text{CS}]_T = [(\text{NH}_4)_2 \text{CS}] + [(\text{NH}_4)_2 \text{CSH}] \]

so \[[(\text{NH}_4)_2 \text{CS}] = \frac{[(\text{NH}_4)_2 \text{CS}]_T \cdot K_a}{K_a + [H^+]} \]

so \[k_o = \frac{k_1 K_a [(\text{NH}_4)_2 \text{CS}]_T [H^+]}{K_a + [H^+]} + k_{-1} \] (4.8)

Equation (4.8) predicts that at high [H\(^+\)] a plot of \(k_o\) against [H\(^+\)] should be independent of [H\(^+\)] if [H\(^+\)] >= \(K_a\), the limiting value of \(k_0 = k_1 K_a [(\text{NH}_4)_2 \text{CS}]_T + k_{-1}\). From the plots of \(k_0\) against [thiourea] (Figure 4.1), a value of \(k_{-1}\) of ca 0.06 s\(^{-1}\) can be estimated. Equation (4.8) predicts that a plot of \((k_0 - 0.06)^-1\) against [H\(^+\)] should give a straight line with slope = \((k_1 [(\text{NH}_4)_2 \text{CS}]_T)^-1\) and intercept = \((k_1 K_a [(\text{NH}_4)_2 \text{CS}]_T)^-1\). The actual hydrogen ion concentration is unknown for sulphuric acid in tBuOH, but a plot of \((k_0 - 0.06)^-1\) against [H\(_2\)SO\(_4\)] gave a reasonable straight line (Figure 4.3) with slope = 0.201 ± 0.006 mol l\(^{-1}\)s and intercept = 2.61 ± 0.12s. The ratio of slope / intercept gives \(K_a\) for thiourea. The value of \(K_a\) obtained = 0.075 ± 0.004 mol l\(^{-1}\), therefore p\(K_a\) = 1.12. This value can only be considered a very
approximate one as it was obtained from an estimate of the value of k_{-1} and of the hydrogen ion concentration. The value of K_a can now be used to correct the data in Table (4.2) for protonation of thiourea.

Let A = total concentration of thiourea added
B = total concentration of acid added (assumed to be equal to the total hydrogen ion concentration)

and at equilibrium we have x mol l$^{-1}$ of $(\text{NH}_2)_2\text{CSH}^+$

then $K_a = \frac{(A-x)(B-x)}{x}$

or $x^2 - (A+B+K_a)x + AB = 0$ \hspace{1cm} (4.9)

The value of A, B and K_a are known, so equation (4.9) can be solved for x, which is also equivalent to the amount of acid that is effectively removed from the solution. Equation (4.8) predicts that at a given acid concentration the values of k_0 at two different thiourea concentrations are related by equation (4.10). Also, from the variation of k_0 with $[\text{H}_2\text{SO}_4]$,
of \(k_0 \) for \([(\text{NH}_2)_2\text{CS}]_r \) = 0.015 \(\text{mol} \ \text{l}^{-1} \) at any acid concentration can be calculated from equation (4.11).

\[
\frac{(k_0' - 0.06)}{(k_0 - 0.06)} = \frac{[(\text{NH}_2)_2\text{CS}]_r'}{[(\text{NH}_2)_2\text{CS}]_r} \quad (4.10)
\]

\[
(k_0 - 0.06) = 0.201 [\text{H}_2\text{SO}_4]^{-1} \times 2.61 \quad (4.11)
\]

Writing \(a = (k_0 - 0.06) \) as the rate constant, corrected for a reduction in acidity at the experimental thiourea concentration.

\(b = (k_0 - 0.06) \) as the observed rate constant, i.e. the rate constant at the actual acidity of the solution.

\(c = (k_0 - 0.06) \) as the rate constant at the apparent acid concentration (0.066 or 0.033 \(\text{mol} \ \text{l}^{-1} \)) as calculated from equation (4.11) for thiourea = 0.015 \(\text{mol} \ \text{l}^{-1} \).

\(d = (k_0 - 0.06) \) as the rate constant at the actual acidity of the solution calculated from equation (4.11) for thiourea = 0.015 \(\text{mol} \ \text{l}^{-1} \).
From equation (4.10), \[
\frac{a}{c} = \frac{b}{d}
\]
so that the value of \(a\), hence the corrected \(k_0\) can be calculated. The results of such analysis are shown in Table (4.4) and (4.5).

Both sets of data now give linear plots of \(k_0\) (corrected) against \([\text{thiourea}]_\tau\) (figure 4.4). The slopes of the plots clearly depend on the \([H_2SO_4]\) but the intercepts are independent of \([H_2SO_4]\) within the experimental error. The intercept corresponds to the value of \(k_1\), the rate constant for the alcoholysis of \(S\)-nitrosothiourea.

The average value of \(k_1\) is 0.107 \(\pm\) 0.016 s\(^{-1}\). Equation (4.8) predicts that the slope = \(k_1 Ka[H^+]/(Ka + [H^+])\). The value of \(k_1\) can be estimated from the slope, assuming \([H^+] \approx [H_2SO_4]\) and \(Ka = 0.075\) mol l\(^{-1}\). For \([H_2SO_4]\) = 0.033 mol l\(^{-1}\), \(k = 245\) l\(^2\) mol\(^{-2}\) s\(^{-1}\) and for \([H_2SO_4]\) = 0.066 mol l\(^{-1}\), \(k = 259\) l\(^2\) mol\(^{-2}\) s\(^{-1}\). The value of \(k_1\) can also be obtained from the limiting value of \(k_0\) from the variation of \(k_0\) with \([H_2SO_4]\), since \(k_0\) (limiting) = \(k_1 Ka [(NH_2)_2 CS]_\tau + k_{-1}\). Using \(k_0\) (limiting) = 0.34 s\(^{-1}\) and \(k_{-1} = 0.107\) s\(^{-1}\), the value of \(k_1\) obtained is 207 l\(^2\) mol\(^{-2}\) s\(^{-1}\), which is in reasonable agreement with the two values obtained before. The average value of \(k_1\) is therefore 237 \(\pm\) 22 l\(^2\) mol\(^{-2}\) s\(^{-1}\). Using these values of \(k_1\) and \(k_{-1}\) the equilibrium constant for formation of \(S\)-nitrosothiourea can be calculated since \(K = k_1/k_{-1} = 2215\) \(\pm\) 390 l\(^2\) mol\(^{-2}\). This appears to be a reasonable
Table 4.4:
Corrected values of \(k_0 \) for \([\text{H}_2\text{SO}_4]\) = 0.033 mol l\(^{-1}\)

<table>
<thead>
<tr>
<th>[thiourea]</th>
<th>([\text{H}_2\text{SO}_4]) actual</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>a</th>
<th>(k_0) corrected</th>
</tr>
</thead>
<tbody>
<tr>
<td>mol l(^{-1})</td>
<td>mol l(^{-1})</td>
<td>s(^{-1})</td>
<td>s(^{-1})</td>
<td>s(^{-1})</td>
<td>s(^{-1})</td>
<td>s(^{-1})</td>
</tr>
<tr>
<td>0.012</td>
<td>3.4 \times 10^{-3}</td>
<td>0.0296</td>
<td>0.096</td>
<td>0.115</td>
<td>0.106</td>
<td>0.105</td>
</tr>
<tr>
<td>0.024</td>
<td>6.3 \times 10^{-3}</td>
<td>0.0267</td>
<td>0.143</td>
<td>0.115</td>
<td>0.0986</td>
<td>0.167</td>
</tr>
<tr>
<td>0.036</td>
<td>8.8 \times 10^{-3}</td>
<td>0.0262</td>
<td>0.241</td>
<td>0.115</td>
<td>0.0916</td>
<td>0.303</td>
</tr>
<tr>
<td>0.048</td>
<td>0.0109</td>
<td>0.0221</td>
<td>0.236</td>
<td>0.115</td>
<td>0.0854</td>
<td>0.318</td>
</tr>
<tr>
<td>0.060</td>
<td>0.0128</td>
<td>0.0202</td>
<td>0.254</td>
<td>0.115</td>
<td>0.0796</td>
<td>0.327</td>
</tr>
</tbody>
</table>

\[\text{slope} = 5.62 \pm 0.26 \text{ l mol}^{-1} \text{ s}^{-1} \]
\[\text{intercept} = 0.0956 \pm 0.0105 \text{ s}^{-1} \]

Table 4.5:
Corrected values of \(k_0 \) for \([\text{H}_2\text{SO}_4]\) = 0.066 mol l\(^{-1}\)

<table>
<thead>
<tr>
<th>[thiourea]</th>
<th>([\text{H}_2\text{SO}_4]) actual</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>a</th>
<th>(k_0) corrected</th>
</tr>
</thead>
<tbody>
<tr>
<td>mol l(^{-1})</td>
<td>mol l(^{-1})</td>
<td>s(^{-1})</td>
<td>s(^{-1})</td>
<td>s(^{-1})</td>
<td>s(^{-1})</td>
<td>s(^{-1})</td>
</tr>
<tr>
<td>0.012</td>
<td>5.4 \times 10^{-3}</td>
<td>0.0606</td>
<td>0.149</td>
<td>0.177</td>
<td>0.169</td>
<td>0.156</td>
</tr>
<tr>
<td>0.024</td>
<td>0.0102</td>
<td>0.0558</td>
<td>0.259</td>
<td>0.177</td>
<td>0.161</td>
<td>0.285</td>
</tr>
<tr>
<td>0.036</td>
<td>0.0146</td>
<td>0.0514</td>
<td>0.346</td>
<td>0.177</td>
<td>0.153</td>
<td>0.400</td>
</tr>
<tr>
<td>0.048</td>
<td>0.0186</td>
<td>0.0474</td>
<td>0.407</td>
<td>0.177</td>
<td>0.146</td>
<td>0.493</td>
</tr>
<tr>
<td>0.060</td>
<td>0.0221</td>
<td>0.0439</td>
<td>0.470</td>
<td>0.177</td>
<td>0.139</td>
<td>0.598</td>
</tr>
</tbody>
</table>

\[\text{slope} = 9.10 \pm 0.32 \text{ l mol}^{-1} \text{ s}^{-1} \]
\[\text{intercept} = 0.118 \pm 0.001 \text{ s}^{-1} \]
Figure 4.4
Plot of corrected k_0 against [thiourea]

$[\text{H}_2\text{SO}_4] = 0.066 \text{ mol/l}$

$[\text{H}_2\text{SO}_4] = 0.033 \text{ mol/l}$
value as the corresponding value in aqueous solution between nitrous acid and thiourea is 5000 1² mol⁻² [6]. This means that the approximation used of [H⁺] ≈ [H₂SO₄] must be valid since the equilibrium involves the acid concentration term. The dissociation constants of hydrochloric and hydrobromic acid in tertiary butanol have been measured previously [17]. The overall acid-base equilibrium in ⁴BuOH, and indeed in non-aqueous solvents in general, is complicated by ion-pairing and ion association. This arises due to the poor solvation of certain ions by solvents of low polarity. Some of the important species found in dilute solution of HCl or HBr in ⁴BuOH are shown in Scheme (4.12), and the various equilibrium constants are shown in Table (4.6).

\[
\begin{align*}
HX & \overset{K_d}{\rightleftharpoons} H^+ + X^- \\
HX + X^- & \overset{K_f(HX^-)}{\rightleftharpoons} HX_2^- \\
HX + H^+ & \overset{K_f(H^+X^-)}{\rightleftharpoons} H_2X^+ \\
3HX & \overset{K_f(3HX)}{\rightleftharpoons} H_2X^+ + HX_2^-
\end{align*}
\] (4.12)

It can be seen that the minor species in these solutions is going to be the H⁺ ion or more correctly the H⁺ ion
Table 4.6:

Values of equilibrium constants of hydrogen halides in
BuOH at 25°C

<table>
<thead>
<tr>
<th></th>
<th>HCl</th>
<th>HBr</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>pKd = 3.10</td>
<td>pKd = 2.0</td>
</tr>
<tr>
<td>'PrOH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>'tBuOH</td>
<td>pKd = 5.5</td>
<td>pKd = 5.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>K_f(HX^-)_-2.0</td>
</tr>
</tbody>
</table>

solvated by 'tBuOH, in fact the major species will be the free undissociated acid. By analogy with results in other solvents [18], it can be expected that H_2SO_4 will behave similarly in 'tBuOH to the hydrogen halides and so the major species present will be undissociated H_2SO_4. The acid catalysis could be explained if general acid catalysis is occurring, ie. H_2SO_4 is the actual acid catalyst rather than the solvated proton. This point will be discussed further in section 4.5.
4.1.2 **Nitrosation of thiglycolic acid by tertiary butyl nitrite in tertiary butanol at 30°C**

The nitrosation of thiglycolic acid is known to occur on sulphur in aqueous acid solution to form S-nitrosothiglycolic acid [19]. The sulphur atom of thiglycolic acid, and of thiols generally, is expected to be much less nucleophilic than the sulphur atom of thiourea [20], and so it is of interest to see if a direct reaction between the thiol and alkyl nitrite occurs in tertiary butanol.

The reactions were carried out at 30°C. Under the conditions used, with \([\text{TGA}] \gg [\text{tBuONO}]\) good first order behaviour was obtained in all cases by following the appearance of the thionitrite at 330 nm. The observed first order rate constant, \(k_0\), was found to be first order in \([\text{TGA}]\) (Table 4.7) and also was strictly first order in \([\text{H}_2\text{SO}_4]\) over the acid range studied (Table 4.8 and Figure 4.5).

The results are consistent with a direct reaction between the protonated alkyl nitrite and the sulphur atom of TGA (Scheme 4.13). The derived rate equation is given in equation (4.14). The strict first order behaviour of \(k_0\) upon \([\text{H}_2\text{SO}_4]\) indicates that there is no significant protonation of the sulphur atom occurring in these solutions.
Table 4.7:
Variation of k_0 with [TGA] at 30°C

$[^7\text{BuONO}] = 2.5 \times 10^{-4} \text{ mol l}^{-1}$ \hspace{1cm} $[\text{H}_2\text{SO}_4] = 0.1014 \text{ mol l}^{-1}$

330 nm

<table>
<thead>
<tr>
<th>[TGA] mol l$^{-1}$</th>
<th>k_0 s$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.010</td>
<td>$8.02 \times 10^{-3} \pm 3.3 \times 10^{-4}$</td>
</tr>
<tr>
<td>0.020</td>
<td>$0.0153 \pm 9 \times 10^{-4}$</td>
</tr>
<tr>
<td>0.030</td>
<td>$0.0209 \pm 9 \times 10^{-4}$</td>
</tr>
<tr>
<td>0.040</td>
<td>$0.0283 \pm 1.0 \times 10^{-3}$</td>
</tr>
<tr>
<td>0.050</td>
<td>$0.0367 \pm 9 \times 10^{-4}$</td>
</tr>
<tr>
<td>0.060</td>
<td>$0.0434 \pm 3 \times 10^{-4}$</td>
</tr>
</tbody>
</table>

slope = 0.710 ± 0.018 l mol$^{-1}$s$^{-1}$

intercept = $6 \times 10^{-4} \pm 7 \times 10^{-4}$ s$^{-1}$

Table 4.8:
Variation of k_0 with [H$_2$SO$_4$] at 30°C

$[^7\text{BuONO}] = 2.5 \times 10^{-4} \text{ mol l}^{-1}$ \hspace{1cm} [TGA] = 0.020 mol l$^{-1}$ \hspace{1cm} 330 nm

<table>
<thead>
<tr>
<th>[H$_2$SO$_4$] mol l$^{-1}$</th>
<th>k_0 s$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0203</td>
<td>$3.43 \times 10^{-3} \pm 7 \times 10^{-5}$</td>
</tr>
<tr>
<td>0.0406</td>
<td>$6.41 \times 10^{-3} \pm 2.4 \times 10^{-4}$</td>
</tr>
<tr>
<td>0.0608</td>
<td>$0.0100 \pm 3.9 \times 10^{-3}$</td>
</tr>
<tr>
<td>0.0811</td>
<td>$0.0136 \pm 1 \times 10^{-4}$</td>
</tr>
<tr>
<td>0.1014</td>
<td>$0.0153 \pm 9 \times 10^{-4}$</td>
</tr>
<tr>
<td>0.1217</td>
<td>$0.0201 \pm 9 \times 10^{-4}$</td>
</tr>
</tbody>
</table>
slope = 0.160 ± 8 x 10^{-3} 1 mol^{-1}s^{-1}
intercept = 1 x 10^{-4} ± 6 x 10^{-5}s^{-1}

\[\text{BuONO} + H^+ \rightleftharpoons \text{BuONO}^+ \]

\[\text{BuONO}^+ + \text{RSH} \rightarrow \text{RSNO}^+ + \text{ROH} \] \hspace{1cm} (4.13)

\[k_0 = k_1 [\text{TGA}][H^+] \] \hspace{1cm} (4.14)

Equation (4.14) predicts that a plot of \(k_0 \) against \([H^+]\) should have slope = \(k_1 [\text{RSH}] \) and a plot of \(k_0 \) against \([\text{RSH}]\) should have slope = \(k_1 [H^+] \). Assuming that \([H^+] \approx [H_2SO_4] \) then the values of \(k_1 \) can be obtained of \(7 \) and \(8 \) \(1^2 \text{ mol}^{-1}\text{s}^{-1} \) respectively. These values of \(k_1 \) are considerably smaller than the value found for thiourea, as expected from the relative nucleophilicities of the two substrates.

-140-
Figure 4.5
Plot of k_0 against $[H_2SO_4]$ for nitrosation of TGA
4.2 Reactions of isopropyl nitrite in isopropanol

4.2.1 Nitrosation of thiourea

The reaction of isopropyl nitrite (iPrONO) with thiourea was followed at 420 nm, where only the S-nitrosothiourea absorbs. All reactions were carried out at 30°C. Under the conditions used with [thiourea] \(\gg [i\text{PrONO}] \), good first order behaviour was observed in all cases. Results showing the variation of the observed first order rate constant, \(k_0 \), with [thiourea] are shown in Table (4.9) and Figure (4.6). The plot of \(k_0 \) against

Table 4.9:

Variation of \(k_0 \) with [thiourea] at 30°C

\[
[i\text{PrONO}] = 1.2 \times 10^{-3} \text{ mol l}^{-1} \quad [\text{H}_2\text{SO}_4] = 0.117 \text{ mol l}^{-1}
\]

<table>
<thead>
<tr>
<th>[thiourea] mol l(^{-1})</th>
<th>(k_0) s(^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0162</td>
<td>0.249 ± 7 (\times 10^{-3})</td>
</tr>
<tr>
<td>0.0323</td>
<td>0.368 ± 6 (\times 10^{-3})</td>
</tr>
<tr>
<td>0.0485</td>
<td>0.484 ± 0.012</td>
</tr>
<tr>
<td>0.0647</td>
<td>0.585 ± 0.012</td>
</tr>
<tr>
<td>0.0809</td>
<td>0.653 ± 0.026</td>
</tr>
<tr>
<td>0.0970</td>
<td>0.723 ± 0.011</td>
</tr>
</tbody>
</table>
[thiourea] was slightly curved with a positive intercept. The value of \(k_0 \) was also found to be independent of \([\text{H}_2\text{SO}_4]\) at high \([\text{H}_2\text{SO}_4]\) (Table 4.10 and Figure 4.7), indicating that under these conditions a significant amount of protonation of thiourea is occurring. From the plot of \(k_0 \) against [thiourea] (Figure 4.6), the value of \(k_1 \), the rate constant for the reaction of S-nitrosothiourea with the solvent, can be estimated as ca. 0.13 s\(^{-1}\). The value of pKa of protonated thiourea

Table 4.10:

Variation of \(k_0 \) with \([\text{H}_2\text{SO}_4]\) at 30°C

<table>
<thead>
<tr>
<th>([\text{H}_2\text{SO}_4]) mol l(^{-1})</th>
<th>(k_0) s(^{-1})</th>
<th>([\text{H}_2\text{SO}_4]) (^{-1}) (k -0.13)(^{-1})s l mol(^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0140</td>
<td>0.192 ± 0.017</td>
<td>71.4</td>
</tr>
<tr>
<td>0.0234</td>
<td>0.228 ± 0.019</td>
<td>42.7</td>
</tr>
<tr>
<td>0.0468</td>
<td>0.274 ± 6x10(^{-3})</td>
<td>21.4</td>
</tr>
<tr>
<td>0.0936</td>
<td>0.330 ± 5x10(^{-3})</td>
<td>10.7</td>
</tr>
<tr>
<td>0.1404</td>
<td>0.317 ± 3x10(^{-3})</td>
<td>7.12</td>
</tr>
<tr>
<td>0.1872</td>
<td>0.330 ± 5x10(^{-3})</td>
<td>5.34</td>
</tr>
<tr>
<td>0.2340</td>
<td>0.323 ± 0.012</td>
<td>4.27</td>
</tr>
</tbody>
</table>

-143-
Figure 4.7
Plot of k_0 against $[\text{H}_2\text{SO}_4]$.

Figure 4.6
Plot of k_0 against $[\text{thiourea}]$ for reaction with $^3\text{PrONO}$.

- ∇: corrected for protonation
- Δ: observed
in this solvent can then be calculated from a plot of $(k - 0.13)^{-1}$ against $[H_2SO_4]^{-1}$. The plot has slope $= 0.164 \pm 0.010 \text{ mol l}^{-1} \text{ s}$ and intercept $= 3.88 \pm 0.33 \text{ s}$. The value of K_a can be calculated as $0.0422 \pm 0.0044 \text{ mol l}^{-1}$ ($pK_a = 1.38$). The value of K_a can then be used to 'correct' the values of k_∞ in a similar way to before. The corrected values of k_∞ are shown in Table (4.11).

A plot of k_∞ corrected against [thiourea] (Figure 4.6) gave a good straight line with slope $= 7.69 \pm 0.18 \text{ l mol}^{-1} \text{ s}^{-1}$ and intercept $= 0.13 \pm 0.011 \text{ s}^{-1}$. The value of k_1 obtained from the slope $= 248 \text{ l}^2 \text{ mol}^{-2} \text{ s}^{-1}$. The value of $k_{-1} = 0.130 \pm 9 \times 10^{-3} \text{ s}^{-1}$, so the equilibrium constant for formation of S-nitrosothiourea $= 1823 \text{ l}^2 \text{ mol}^{-2}$. All these values are reasonably similar to those found for the reaction with $t\text{BuONO}$ in $t\text{BuOH}$.

4.2.2 Nitrosation of thioglycolic acid

The reactions were again carried out at 30°C. In all cases good first order behaviour was observed under the conditions used ([TGA] \gg [PrONO]), by following the appearance of S-nitrosothioglycolic acid at 330 nm. The reaction was found to be first order in [TGA] (Table 4.12), with slope $= 1.42 \pm 0.07 \text{ l mol}^{-1} \text{ s}^{-1}$ and zero intercept. Assuming that the reaction is analogous to
Table 4.11:
Corrected values of k_0 for $[\text{H}_2\text{SO}_3] = 0.117 \text{ mol l}^{-1}$

<table>
<thead>
<tr>
<th>$[\text{thiourea}]_t$</th>
<th>x</th>
<th>$[\text{H}_2\text{SO}3]{\text{actual}}$</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>a</th>
<th>k_0 corrected</th>
</tr>
</thead>
<tbody>
<tr>
<td>mol l$^{-1}$</td>
<td>mol l$^{-1}$</td>
<td>mol l$^{-1}$</td>
<td>s$^{-1}$</td>
<td>s$^{-1}$</td>
<td>s$^{-1}$</td>
<td>s$^{-1}$</td>
<td>s$^{-1}$</td>
</tr>
<tr>
<td>0.0162</td>
<td>0.0116</td>
<td>0.1054</td>
<td>0.119</td>
<td>0.189</td>
<td>0.184</td>
<td>0.122</td>
<td>0.252</td>
</tr>
<tr>
<td>0.0323</td>
<td>0.0223</td>
<td>0.0947</td>
<td>0.238</td>
<td>0.189</td>
<td>0.178</td>
<td>0.253</td>
<td>0.382</td>
</tr>
<tr>
<td>0.0485</td>
<td>0.0323</td>
<td>0.0847</td>
<td>0.354</td>
<td>0.189</td>
<td>0.172</td>
<td>0.389</td>
<td>0.519</td>
</tr>
<tr>
<td>0.0647</td>
<td>0.0421</td>
<td>0.0749</td>
<td>0.455</td>
<td>0.189</td>
<td>0.165</td>
<td>0.521</td>
<td>0.651</td>
</tr>
<tr>
<td>0.0809</td>
<td>0.0498</td>
<td>0.0672</td>
<td>0.523</td>
<td>0.189</td>
<td>0.158</td>
<td>0.626</td>
<td>0.756</td>
</tr>
<tr>
<td>0.0970</td>
<td>0.0570</td>
<td>0.0600</td>
<td>0.593</td>
<td>0.189</td>
<td>0.151</td>
<td>0.742</td>
<td>0.872</td>
</tr>
</tbody>
</table>
Table 4.12: Variation of k_0 with [TGA] at 30°C

$[\text{PrONO}] = 2.5 \times 10^{-6} \text{ mol l}^{-1}$
$[\text{H}_2\text{SO}_4] = 0.234 \text{ mol l}^{-1}$

<table>
<thead>
<tr>
<th>[TGA] mol l$^{-1}$</th>
<th>k_0 s$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0143</td>
<td>0.0226 \pm 9 \times 10$^{-6}$</td>
</tr>
<tr>
<td>0.0199</td>
<td>0.0307 \pm 1.9 \times 10$^{-3}$</td>
</tr>
<tr>
<td>0.0257</td>
<td>0.0411 \pm 1.6 \times 10$^{-3}$</td>
</tr>
<tr>
<td>0.0314</td>
<td>0.0502 \pm 2.5 \times 10$^{-3}$</td>
</tr>
<tr>
<td>0.0371</td>
<td>0.0564 \pm 5 \times 10$^{-6}$</td>
</tr>
<tr>
<td>0.0428</td>
<td>0.0630 \pm 3 \times 10$^{-6}$</td>
</tr>
</tbody>
</table>

slope = 1.42 ± 0.07 l mol$^{-1}$ s$^{-1}$

intercept = $3 \times 10^{-3} \pm 2 \times 10^{-3}$ s$^{-1}$

that found for t-BuONO, then slope = $k_1 [\text{H}^+]$, so $k_1 = 6.1 \pm 0.3 \text{ l}^2 \text{ mol}^{-2} \text{ s}^{-1}$. This value is very similar to that found for reaction of TGA with t-BuONO. The value of k_0 was also found to decrease markedly on addition of small amounts of water (Table 4.13 and Figure 4.8). The value of k_0 drops off steeply at first but as more water is added the value of k_0 levels off. This has been found previously for the reaction of alkyl nitrites with alcohols [1] as solvent and was interpreted in terms of water being a stronger base than the alcohol.
and so lowers the effective acidity of the solution.

<table>
<thead>
<tr>
<th>Volume % (\text{H}_2\text{O})</th>
<th>(k_\text{O}) s(^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(0.0177 \pm 1.0 \times 10^{-3})</td>
</tr>
<tr>
<td>0.5</td>
<td>(8.85 \times 10^{-3} \pm 4.3 \times 10^{-4})</td>
</tr>
<tr>
<td>1</td>
<td>(6.38 \times 10^{-3} \pm 2.65 \times 10^{-4})</td>
</tr>
<tr>
<td>1.5</td>
<td>(4.69 \times 10^{-3} \pm 4 \times 10^{-5})</td>
</tr>
<tr>
<td>2</td>
<td>(3.64 \times 10^{-3} \pm 7.3 \times 10^{-4})</td>
</tr>
<tr>
<td>2.5</td>
<td>(3.44 \times 10^{-3} \pm 1.1 \times 10^{-4})</td>
</tr>
<tr>
<td>5</td>
<td>(2.74 \times 10^{-3} \pm 3.5 \times 10^{-5})</td>
</tr>
</tbody>
</table>

4.3 Nucleophilic catalysis of the nitrosation of thioglycolic acid by tertiary butyl nitrite in tertiary butanol at 30°C

4.3.1 Catalysis by chloride and bromide salts

The reaction was carried out in a similar way as described in section 4.1.2, but tetraethylammonium
Figure 4.9
Variation of k_0 with [Et$_4$NCl]

Figure 4.8
Effect of water
chloride (Et₄NCl) or bromide (Et₄NBr) was used as a source of halide ions. The effect of [Et₄NCl] on the observed first order rate constant, kₒ, at two different acidities was investigated (Tables 4.14 and 4.15) and the effect of acidity (Table 4.16) and [TGA] (Table 4.17) on kₒ in the presence of Et₄NCl was also investigated.

Table 4.14:
Effect of Et₄NCl on k at 30°C

<table>
<thead>
<tr>
<th>[Et₄NCl] mol l⁻¹</th>
<th>kₒ s⁻¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0136 ± 1 x 10⁻⁴</td>
</tr>
<tr>
<td>5.66 x 10⁻³</td>
<td>0.0633 ± 2.7 x 10⁻³</td>
</tr>
<tr>
<td>0.0113</td>
<td>0.1005 ± 1.45 x 10⁻³</td>
</tr>
<tr>
<td>0.0169</td>
<td>0.1325 ± 3.7 x 10⁻³</td>
</tr>
<tr>
<td>0.0226</td>
<td>0.1547 ± 1.7 x 10⁻³</td>
</tr>
</tbody>
</table>

The data in Table (4.14) show that the reaction is catalysed by added Et₄NCl. A plot of kₒ against [Et₄NCl] (Figure 4.9) is curved, tending towards a maximum value of kₒ, with a positive intercept. The intercept
Table 4.15:
Effect of Et₄NCl at low acidity at 30°C

\[
\begin{align*}
[H_2SO_4] &= 6.59 \times 10^{-6} \text{ mol l}^{-1} \\
[^2]BuONO &= 2.5 \times 10^{-6} \text{ mol l}^{-1} \\
[TGA] &= 0.0144 \text{ mol l}^{-1} \\

\begin{array}{|c|c|}
\hline
[Et₄NCl] \text{ mol l}^{-1} & k \text{ s}^{-1} \\
\hline
7.08 \times 10^{-3} & 5.15 \times 10^{-3} \pm 1.1 \times 10^{-5} \\
9.44 \times 10^{-3} & 5.13 \times 10^{-3} \pm 2 \times 10^{-5} \\
0.0189 & 4.64 \times 10^{-3} \pm 1.6 \times 10^{-5} \\
0.0283 & 5.10 \times 10^{-3} \pm 3 \times 10^{-5} \\
0.0472 & 5.31 \times 10^{-3} \pm 6 \times 10^{-5} \\
\hline
\end{array}
\]

Table 4.16:
Effect of [H₂SO₄] on ko in presence of Et₄NCl

\[
\begin{align*}
[^2]BuONO &= 2.5 \times 10^{-6} \text{ mol l}^{-1} \\
[TGA] &= 0.0144 \text{ mol l}^{-1} \\
[Et NCl] &= 9.44 \times 10^{-3} \text{ mol l}^{-1} \\

\begin{array}{|c|c|}
\hline
[H_2SO_4] \text{ mol l}^{-1} & ko \text{ s}^{-1} \\
\hline
5.28 \times 10^{-3} & 0.0271 \pm 1.0 \times 10^{-3} \\
0.0106 & 0.0475 \pm 1.2 \times 10^{-3} \\
0.01581 & 0.0501 \pm 7 \times 10^{-6} \\
0.0211 & 0.0585 \pm 9 \times 10^{-6} \\
0.0264 & 0.0585 \pm 2.6 \times 10^{-3} \\
\hline
\end{array}
\]
Table 4.17:
Effect of [TGA] on k_0 in presence of Et₄NCl

$[\text{^tBuONO}] = 2.5 \times 10^{-5} \text{ mol l}^{-1} \quad [\text{H}_2\text{SO}_4] = 0.0496 \text{ mol l}^{-1}$

$[\text{Et}_4\text{NCl}] = 8.26 \times 10^{-3} \text{ mol l}^{-1} \quad 330 \text{ nm}$

<table>
<thead>
<tr>
<th>[TGA] mol l$^{-1}$</th>
<th>k s$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0259</td>
<td>0.0433 ± 7 x 10$^{-6}$</td>
</tr>
<tr>
<td>0.0518</td>
<td>0.0885 ± 7 x 10$^{-6}$</td>
</tr>
<tr>
<td>0.0777</td>
<td>0.124 ± 2 x 10$^{-3}$</td>
</tr>
<tr>
<td>0.103</td>
<td>0.138 ± 1 x 10$^{-3}$</td>
</tr>
<tr>
<td>0.129</td>
<td>0.141 ± 3 x 10$^{-3}$</td>
</tr>
<tr>
<td>0.156</td>
<td>0.147 ± 2 x 10$^{-3}$</td>
</tr>
</tbody>
</table>

corresponds to the uncatalysed rate of reaction. Under conditions where $[\text{Et}_4\text{NCl}] \gg [\text{H}_2\text{SO}_4]$ (Table 4.15) the reaction rate was found to be independent of the concentration of Et₄NCl, even at concentrations of Et₄NCl that produced an increase in rate under the conditions used in Table (4.14).

The leveling off of k_0 at high concentrations of added chloride ion has been found for the reaction of n-propyl nitrite in n-propanol [2] with three aromatic amines. It was explained in terms of a reversible
nitrosation of the amine by nitrosyl chloride followed by a slow proton transfer step. If a similar explanation exists in the present case then reaction scheme (4.15) will apply.

\[
{t\text{BuONO}} + H^+ + X^- \xrightarrow{K_X} \text{ROH} + \text{NOX}
\]

\[
\text{NOX} + \text{RSH} \xrightarrow{k_1} \text{RSNO}^+ + X^- \\
\xrightarrow{k_{-1}} \text{RSNO} + H^+
\]

Applying a steady state treatment to \([\text{RSHNO}^+]\) equation (4.16) can be derived. This predicts that at high \([X^-]\) the value of \(k_0\) should become independent of \([X^-]\) i.e. \(k_{-1}[X^-] \gg k_2\), but this should not depend on the acidity. This scheme also assumes that the initial nitrosation step is reversible and can compete with the loss of a proton from the \(\text{RSNO}^+\) species. The relative values of \(k_2/k_{-1}\) can be found from a plot of
\(k_0^{-1} \) against \([X^-]^{-1}\). This has slope = \(1/(k_1 K_H H^+[\text{TGA}])\) and intercept = \(k_{-1} / (k_1 k_2 K_H H^+[\text{TGA}])\) and so slope / intercept = \(k_2 / k_{-1} \). Such a plot was carried out in this case, making an allowance for the uncatalysed rate and gave a reasonable straight line with slope = \(0.070 \pm 2 \times 10^{-3} \text{ mol l}^{-1}\text{s}\) and intercept = \(3.47 \pm 0.23 \text{ s}\). The value of \(k_2 / k_{-1} = 0.010 \pm 0.002 \text{ mol l}^{-1}\). The values reported for the reaction of n-propyl nitrite in n-propanol [2] with three aromatic amines are shown in Table (4.18).

<table>
<thead>
<tr>
<th>Nucleophile</th>
<th>aniline</th>
<th>N-methylaniline</th>
<th>p-nitro aniline</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cl(^-)</td>
<td>0.037</td>
<td>0.025</td>
<td>0.037</td>
</tr>
<tr>
<td>Br(^-)</td>
<td>0.033</td>
<td>0.021</td>
<td>0.032</td>
</tr>
<tr>
<td>thiourea</td>
<td>0.013</td>
<td>0.010</td>
<td></td>
</tr>
</tbody>
</table>

The value obtained in this work is in reasonable agreement with those shown in Table (4.18), but it seems unlikely that the value should be the same since one set of data is concerned with S-nitrosation and the
Figure 4.11
Plot of k_0 against [TGA] in the presence of Et₄NCl

Figure 4.10
Variation of k_0 with $[\text{H}_2\text{SO}_4]$ in the presence of [Et₄NCl]
other with N-nitrosation. This point will be discussed in Section 4.5. Evidence against this mechanism comes from the fact that the reaction is no longer first order with respect to both \([H_2SO_4]\) and [TGA] in the presence of Et\(_4\)NCl (Figures 4.10 and 4.11). This is also found in the variation of \(k_0\) with \([H_2SO_4]\) in the presence of Et\(_4\)NBr (Table 4.19).

Table 4.19:
Variation of \(k_0\) with \([H_2SO_4]\) in the presence of Et\(_4\)NBr

\([\text{tBuONO}] = 2.5 \times 10^{-4} \text{ mol l}^{-1} \quad [\text{TGA}] = 0.0259 \text{ mol l}^{-1} \]
\([\text{Et}_4\text{NBr}] = 4.34 \times 10^{-3} \text{ mol l}^{-1} \]

<table>
<thead>
<tr>
<th>[\text{H}_2\text{SO}_4] \text{ mol l}^{-1}</th>
<th>k_0 \text{ s}^{-1}</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.14 \times 10^{-4}</td>
<td>0.0140 \pm 4 \times 10^{-4}</td>
</tr>
<tr>
<td>1.98 \times 10^{-3}</td>
<td>0.0209 \pm 3 \times 10^{-4}</td>
</tr>
<tr>
<td>2.97 \times 10^{-3}</td>
<td>0.0276 \pm 1.0 \times 10^{-3}</td>
</tr>
<tr>
<td>3.97 \times 10^{-3}</td>
<td>0.0314 \pm 1.2 \times 10^{-3}</td>
</tr>
<tr>
<td>4.96 \times 10^{-3}</td>
<td>0.0361 \pm 6 \times 10^{-4}</td>
</tr>
<tr>
<td>9.22 \times 10^{-3}</td>
<td>0.0494 \pm 9 \times 10^{-4}</td>
</tr>
<tr>
<td>0.0149</td>
<td>0.0598 \pm 1.2 \times 10^{-3}</td>
</tr>
<tr>
<td>0.0198</td>
<td>0.0704 \pm 1.6 \times 10^{-3}</td>
</tr>
<tr>
<td>0.0248</td>
<td>0.0792 \pm 1.5 \times 10^{-3}</td>
</tr>
<tr>
<td>0.0496</td>
<td>0.1004 \pm 3 \times 10^{-4}</td>
</tr>
</tbody>
</table>
The problem with the analysis of Scheme (4.15) is that it assumes a knowledge of both [H⁺] and [Cl⁻]. From the earlier results it seems that the approximation of [H⁺]≈[H₂SO₄] is valid, but the analysis assumes that Et₄NCl is fully dissociated in the alcohol solvent. Values of the dissociation constants of several halide salts in alcohol solutions have been determined [24] previously and are shown in Table (4.20).

Table 4.20:
Dissociation constants of several chloride and bromide salts in alcohol solution at 25°C

<table>
<thead>
<tr>
<th></th>
<th>¹PrOH</th>
<th>²BuOH</th>
<th>n-BuOH</th>
</tr>
</thead>
<tbody>
<tr>
<td>HCl</td>
<td>7.94 x 10⁻⁴</td>
<td>3.16 x 10⁻⁶</td>
<td></td>
</tr>
<tr>
<td>HBr</td>
<td>1 x 10⁻²</td>
<td>1 x 10⁻⁵</td>
<td></td>
</tr>
<tr>
<td>Et₄NBr</td>
<td>9 x 10⁻⁴</td>
<td></td>
<td>7.5 x 10⁻⁴</td>
</tr>
<tr>
<td>Me₄NCl</td>
<td>4.4 x 10⁻⁴</td>
<td>1 x 10⁻⁶</td>
<td></td>
</tr>
<tr>
<td>Me₄NBr</td>
<td>5.5 x 10⁻⁴</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bu₄NBr</td>
<td>1.1 x 10⁻⁸</td>
<td>5.3 x 10⁻⁶</td>
<td></td>
</tr>
</tbody>
</table>

The dissociation constants of the salts in alcohols are very small and so there will not be a significant amount of free chloride ion present in these solutions.
An alternative explanation of the levelling off of k_0 with added chloride and bromide ion is that the formation of the nitrosyl halide becomes almost quantitative at high chloride ion concentrations. This requires that the value of the equilibrium constant, K_x, be in the order of $10^3 - 10^6$ 1^2 mol$^{-2}$. This is known not to be the case for chloride and bromide ion with nitrous acid in methanol solution [3] and is unlikely to apply in this case.

A further explanation is that at high Et$_4$NCl concentrations there is a significant amount of association of the chloride ion with any cations present in the solution, most importantly the proton. A similar explanation was put forward for the chloride and bromide ion catalysis of the reactions of 1-methyl heptyl nitrite in various alcohols [1]. The catalysis observed on addition of chloride to the solution could therefore be due to the formation of HCl which can act as a general acid catalyst in the same way as H$_2$SO$_4$. This is represented in Schemes (4.17) and (4.18).

$$
\begin{align*}
\text{RONO} + H_2SO_4 & \overset{K}{\longrightarrow} \text{RONO}^+HSO_4^- \\
\text{H} & \\
\text{RSNO} + H_2SO_4 & \longrightarrow \text{RSNO}^+HSO_4^-
\end{align*}
$$

(4.17)
Catalysis could arise from an increase in K or in k_1 on the addition of Et$_4$NBr and Et$_4$NCl. The results in Table (4.21) show that HCl also acts as a catalyst for these reactions and the reaction is first order in HCl. The derived value of k_1 from this data is $810 \text{ m}^2 \text{ol}^{-2} \text{s}^{-1}$ which is over 100 times larger than the corresponding value using H$_2$SO$_4$.

Table 4.21:
Variation of k_0 with [HCl] in the nitrosation of TGA

[$^t\text{BuONO} = 5 \times 10^{-4} \text{ mol l}^{-1}$] $\text{TGA} = 7.234 \times 10^{-3} \text{ mol l}^{-1}$

<table>
<thead>
<tr>
<th>[HCl] mol l$^{-1}$</th>
<th>k_0 s$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.18×10^{-3}</td>
<td>0.0135</td>
</tr>
<tr>
<td>4.35×10^{-3}</td>
<td>0.0274</td>
</tr>
<tr>
<td>8.70×10^{-3}</td>
<td>0.0523</td>
</tr>
<tr>
<td>0.0131</td>
<td>0.0778</td>
</tr>
</tbody>
</table>

slope = $5.85 \pm 0.07 \text{ m} \text{l} \text{mol}^{-1} \text{s}^{-1}$
intercept $= 1.3 \times 10^{-3} \pm 6 \times 10^{-1} \text{s}^{-1}$
This type of mechanism can also account for the lack of catalysis by Et₄NCl when [Et₄NCl] ≫ [H₂SO₄] as HCl could be expected to be formed quantitatively and so its concentration would remain constant even though [Et₄NCl] is increased. The non-linear dependence of k₀ on [H₂SO₄] in the presence of Et₄NCl is also explicable in these terms, as other equilibria (eg. Equation 4.19) have to be taken into account.

\[
\text{H}_2\text{SO}_4 + \text{Et}_4\text{NCl} \xrightarrow{\text{K}} \text{HCl} + \text{HSO}_4\text{Et}_4^+ \quad (4.19)
\]

4.3.2 Thiourea catalysis

The effect on the rate of nitrosation of TGA was investigated. Table (4.22) shows the effect of [thiourea] on the observed first order rate constant, k₀. A plot of k₀ against [thiourea] gave a curve, tending towards a limiting value of k₀, with a positive intercept (Figure 4.12). The intercept corresponds to the uncatalysed rate. On analysing the results in terms of an initial reversible nitrosation and subsequent proton transfer to the solvent (Scheme 4.15), a plot of (k₀ - intercept)⁻¹ against [thiourea] gave a straight line with slope = 0.304 ± 3 x 10⁻³ mol⁻¹s⁻¹ and intercept = 10.9 ± 0.3 s⁻¹. This gives a value of k₂/k₁ of 0.028 mol⁻¹ which is
Table 4.22: Variation of k_\circ with [thiourea] at 30°C

$[^7]{\text{BuONO}} = 2.5 \times 10^{-4} \text{ mol l}^{-1}$ \hspace{1cm} $[\text{H}_2\text{SO}_4] = 0.0660 \text{ mol l}^{-1}$

$[\text{TGA}] = 0.0144 \text{ mol l}^{-1}$

<table>
<thead>
<tr>
<th>[thiourea] mol l$^{-1}$</th>
<th>$k_\circ \text{ s}^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$6.4 \times 10^{-3} \pm 2 \times 10^{-6}$</td>
</tr>
<tr>
<td>0.006</td>
<td>$0.0226 \pm 9 \times 10^{-4}$</td>
</tr>
<tr>
<td>0.012</td>
<td>$0.0341 \pm 1.6 \times 10^{-3}$</td>
</tr>
<tr>
<td>0.018</td>
<td>$0.0420 \pm 6 \times 10^{-4}$</td>
</tr>
<tr>
<td>0.024</td>
<td>$0.0495 \pm 7 \times 10^{-4}$</td>
</tr>
<tr>
<td>0.030</td>
<td>$0.0531 \pm 4 \times 10^{-4}$</td>
</tr>
</tbody>
</table>

again in good agreement with the values found for chloride ion and also the k_2/k_1 values found for nitrosation of the aniline derivatives in n-propanol [2]. This approach, however, does not take into account the protonation of thiourea. Also with thiourea, since the equilibrium constant is large, curvature of a plot of k_\circ against [thiourea] could be expected if at high [thiourea], S-nitrosothiourea is formed rapidly and almost quantitatively before reaction with TGA occurs. This is taken into account in reaction Scheme (4.20).
\[\text{Rate} = k_1 \left[\text{RSH} \right] \left[(\text{NH}_2)_2\text{CS}^+\text{NO}^- \right] \]

But \[[\text{BuONO}]_0 = \left[(\text{NH}_2)_2\text{CS}^+\text{NO}^- \right] + [\text{BuONO}] \]

\[[\text{BuONO}]_0 = \left[(\text{NH}_2)_2\text{CS}^+\text{NO}^- \right] \left(1 + \frac{1}{K[H^+][(\text{NH}_2)_2\text{CS}]} \right) \]

\[\text{Rate} = \frac{k_1 K[H^+][(\text{NH}_2)_2\text{CS}] [\text{TGA}] [\text{BuONO}]_0}{1 + K[(\text{NH}_2)_2\text{CS}][H^+]^2} \]

\[k_0 = \frac{k_1 K [H^+][(\text{NH}_2)_2\text{CS}] [\text{TGA}]}{1 + [(\text{NH}_2)_2\text{CS}][H^+] K} \quad (4.21) \]

Equation (4.21) predicts that if \(K[(\text{NH}_2)_2\text{CS}][H^+] \gg 1 \) then the value of \(k_0 \) should be independent of [thiourea]. The actual concentrations of \([H^+] \), assumed to be equal to \([\text{H}_2\text{SO}_4] \) and free thiourea, \([(\text{NH}_2)_2\text{CS}] \) can be calculated, using the Ka value of 0.075 mol 1\(^{-1} \) and so a plot of \(k_0 \) against \(K[H^+][(\text{NH}_2)_2\text{CS}] / (1 + K[(\text{NH}_2)_2\text{CS}][H^+]) \) can be obtained (Figure 4.13), using \(K = 2215 \text{ mol}^{-2} \). The results are shown in Table (4.23).
Table 4.23:

\[[H_{2}SO_{4}]_{T} = 0.0660 \text{ mol l}^{-1} \quad [TGA] = 0.0141 \text{ mol l}^{-1} \]

<table>
<thead>
<tr>
<th>[thiourea] (_{T})</th>
<th>[(NH({2}))({2})CS-H] (_{\text{mol l}^{-1}})</th>
<th>[(NH({2}))({2})[S]] (_{\text{mol l}^{-1}})</th>
<th>[H({2})SO({4})]({\text{actual}}) ({\text{mol l}^{-1}})</th>
<th>(K[H^{+}][(NH_{2}){2}CS]) ({\text{(1 + K[(NH({2}))({2})CS][H({2})SO({4})]})_{\text{actual}}})</th>
<th>(k_{o}) (_{\text{s}^{-1}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.0660</td>
<td>0</td>
<td>6.4 \times 10^{-8}</td>
</tr>
<tr>
<td>0.006</td>
<td>2.75 \times 10^{-8}</td>
<td>3.25 \times 10^{-8}</td>
<td>0.0628</td>
<td>0.315</td>
<td>0.0226</td>
</tr>
<tr>
<td>0.012</td>
<td>5.36 \times 10^{-8}</td>
<td>6.64 \times 10^{-8}</td>
<td>0.0594</td>
<td>0.470</td>
<td>0.0341</td>
</tr>
<tr>
<td>0.018</td>
<td>7.86 \times 10^{-8}</td>
<td>0.0101</td>
<td>0.0559</td>
<td>0.560</td>
<td>0.0420</td>
</tr>
<tr>
<td>0.024</td>
<td>0.0102</td>
<td>0.0138</td>
<td>0.0522</td>
<td>0.618</td>
<td>0.0495</td>
</tr>
<tr>
<td>0.030</td>
<td>0.0125</td>
<td>0.0175</td>
<td>0.0485</td>
<td>0.656</td>
<td>0.0531</td>
</tr>
</tbody>
</table>

slope = 0.0713 \(\pm 5.7 \times 10^{-5}\) s

intercept = 3.4 \times 10^{-8} \(\pm 2.8 \times 10^{-8}\)
Figure 4.13
Catalysis by thiourea allowing for protonation

\[
\frac{K[H^+][\text{HNH}_2\text{CS}]}{1 + K[\text{HNH}_2\text{CS}[H^+]} \]

Figure 4.12
Plot of k_0 against [thiourea]
The plot (Figure 4.13) gives a reasonable straight line with a fair amount of scatter. The value of k_1, the second order rate constant for attack of S-nitrosothioureia on thioglycolic acid can be calculated as $5.0 \text{ mol}^{-1} \text{s}^{-1}$. The results are consistent with the formation of an equilibrium concentration of S-nitrosothioureia which then reacts with TGA in the rate determining step. The curvature found on plots of k_0 against thiourea can be explained by this mechanism and by allowing for protonation equilibria.

4.4. Nucleophilic catalysis of the nitrosation of thioglycolic acid by isopropyl nitrite in isopropanol at 30°C

4.4.1 Chloride ion catalysis

The variation of k_0 with added Et$_4$NCl was studied in the nitrosation of TGA by iPrONO at 30°C. The results are shown in Table (4.24) and in Figure (4.14). The plot of k_0 against [Et$_4$NCl] shows a marked curvature, tending towards a limiting value of k_0. A plot of $(k_0$-intercept)$^{-1}$ against [Et$_4$NCl]$^{-1}$ gave a good straight line with slope $= 0.482 \pm 6 \times 10^{-3} \text{ mol}^{-1} \text{s}$ and intercept $= 13.9 \pm 2.1 \text{ s}$. This corresponds to a value of k_1/k_{-1} of $3.5 \times 10^{-2} \text{ mol}^{-1}$, which is again consistent
Table 4.24:

Variation of k_0 with [Et$_4$NCl] at 30°C

$[\text{TGA}] = 9.2 \times 10^{-3}$ mol l$^{-1}$
$[\text{H}_2\text{SO}_4] = 0.119$ mol l$^{-1}$
$[\text{PrONO}] = 2.5 \times 10^{-6}$ mol l$^{-1}$

<table>
<thead>
<tr>
<th>[Et$_4$NCl] mol l$^{-1}$</th>
<th>k_0 s$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$7.01 \times 10^{-3} \pm 2.1 \times 10^{-4}$</td>
</tr>
<tr>
<td>1.06×10^{-3}</td>
<td>$9.13 \times 10^{-3} \pm 2.3 \times 10^{-4}$</td>
</tr>
<tr>
<td>3.19×10^{-3}</td>
<td>$0.0136 \pm 9 \times 10^{-5}$</td>
</tr>
<tr>
<td>6.38×10^{-3}</td>
<td>$0.0185 \pm 8 \times 10^{-5}$</td>
</tr>
<tr>
<td>8.85×10^{-3}</td>
<td>$0.0214 \pm 7 \times 10^{-5}$</td>
</tr>
<tr>
<td>9.58×10^{-3}</td>
<td>$0.0219 \pm 4 \times 10^{-5}$</td>
</tr>
<tr>
<td>0.0128</td>
<td>$0.0272 \pm 2 \times 10^{-5}$</td>
</tr>
<tr>
<td>0.0159</td>
<td>$0.0289 \pm 9 \times 10^{-5}$</td>
</tr>
<tr>
<td>0.0177</td>
<td>$0.0298 \pm 9 \times 10^{-4}$</td>
</tr>
<tr>
<td>0.0266</td>
<td>$0.0356 \pm 7 \times 10^{-5}$</td>
</tr>
<tr>
<td>0.0443</td>
<td>$0.0485 \pm 8 \times 10^{-4}$</td>
</tr>
</tbody>
</table>

with those previously found, but again assumes that the initial S-nitrosation of TGA is reversible.

-166-
Figure 4.14

Plot of k_0 against $[\text{Et}_4\text{NCl}]$
4.4.2 Thiourea catalysis

The value of k_0 was obtained at various [thiourea] and the results are shown in Table 4.25. The plot of k_0 against [thiourea] gives a curve with a positive intercept that corresponds to the uncatalysed rate.

Table 4.25:
Variation of k_0 with [thiourea] at 30°C

<table>
<thead>
<tr>
<th>[thiourea] mol l$^{-1}$</th>
<th>k_0 s$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.45×10^{-3}</td>
<td>0.0155</td>
</tr>
<tr>
<td>7.35×10^{-3}</td>
<td>0.0288</td>
</tr>
<tr>
<td>0.0147</td>
<td>0.0401</td>
</tr>
<tr>
<td>0.0220</td>
<td>0.0556</td>
</tr>
<tr>
<td>0.0294</td>
<td>0.0609</td>
</tr>
<tr>
<td>0.0367</td>
<td>0.0605</td>
</tr>
</tbody>
</table>

A plot of $(k_0$ -intercept)$^{-1}$ against [thiourea]$^{-1}$ gives a good straight line with slope = 0.263 mol l$^{-1}$ s and intercept = 10.44 s. This corresponds to a k_2/k_1 value

-168-
Table 4.26:

\[
\begin{array}{cccccccc}
\text{[thiourea]} & \text{[(NH}_2\text{)}_2\text{CS-\text{H}]} & \text{[(NH}_2\text{)}_2\text{S]} & \text{[H}_2\text{SO}_4\text{]}_{\text{actual}} & \frac{Kx[H^\circ][\text{(NH}_2\text{)}_2\text{CS}]}{(1 + K_\text{eq}(\text{NH}_2\text{)}_2\text{CS})[H^\circ]}) & \text{ko} \\
mol l^{-1} & mol l^{-1} & mol l^{-1} & mol l^{-1} & & s^{-1} \\
2.45 \times 10^{-6} & 1.80 \times 10^{-6} & 6.5 \times 10^{-6} & 0.1170 & 0.122 & 0.0155 \\
7.35 \times 10^{-6} & 5.35 \times 10^{-6} & 2.00 \times 10^{-6} & 0.1135 & 0.293 & 0.0288 \\
0.0147 & 0.0106 & 4.10 \times 10^{-6} & 0.1082 & 0.447 & 0.0401 \\
0.0220 & 0.0156 & 6.4 \times 10^{-6} & 0.1032 & 0.546 & 0.0556 \\
0.0294 & 0.0206 & 8.8 \times 10^{-6} & 0.0982 & 0.612 & 0.0609 \\
0.0367 & 0.0253 & 0.0114 & 0.0935 & 0.660 & 0.0605 \\
\end{array}
\]

slope = 0.0899 ± 6.4 × 10^{-6} s

intercept = 3.37 × 10^{-6} ± 3.12 × 10^{-6} s^{-1}
of 2.5×10^{-2} mol l$^{-1}$, which is again similar to those previously found, but again this approach does not take into account the protonation of thiourea. Assuming the value of 0.0422 mol l$^{-1}$ for K_a of thiourea and 1823 l2 mol$^{-2}$ for K_H for the formation of S-nitrosothiourea, the data can be analysed allowing for the protonation of thiourea in a similar way to the results in tBuOH. The results are shown in Table 4.26. A plot of k_0 against $K_H[H^+][(\text{NH}_2)_2\text{CS}]/(1 + K_H[(\text{NH}_2)_2\text{CS}][H^+])$ gave a reasonable straight line with slope $= 0.899 \pm 6.4 \times 10^{-3}$ s$^{-1}$ and intercept $= 3.37 \times 10^{-3} \pm 3.12 \times 10^{-3}$ s$^{-1}$. From the slope the value of k, the second order rate constant for attack of S-nitrosothiourea on TGA can be calculated as 9.81 mol$^{-1}$ s$^{-1}$.

4.5 Discussion

Both 1PrONO and tBuONO in their respective alcohol as solvent appear to react by a similar mechanism with both thiourea and thioglycolic acid. In the absence of any added nucleophilic catalyst the reaction appears to proceed by nucleophilic attack of the sulphur atom of the substrate on the nitrogen centre of the protonated alkyl nitrite. The mechanism is shown in Scheme (4.22).

Acid catalysis occurs but it is not clear whether the solvated proton, H^+, or sulphuric acid itself acts
as the catalyst. The data obtained analysed well if the acidity of the solution is represented by $[H_2SO_4]$. The main argument for this being true comes from the fact that the dissociation constants of several strong acids are known to be ca. 100 times smaller in tBuOH than iPrOH [17,21], therefore, assuming a similar trend for sulphuric acid, the rate of reaction in tBuOH would be expected to be significantly smaller than that in iPrOH if H^+ was the catalyst. This can be seen not to be the case by comparing the values of the rate and equilibrium constants obtained (Table 4.27). It is not possible to deduce the reactivity order of the protonated alkyl nitrites as the pKa values are not known. It can be seen though that both alkyl nitrites appear to have a very similar reactivity, and that the reaction with TGA is significantly slower than that with thiourea, indicating that the reaction with TGA does not approach the encounter controlled limit [22], as is observed in the reaction of TGA [19] and thiourea [6] with nitrous acid in water.
Table 4.21:
Values of rate and equilibrium constants obtained at 30°C

<table>
<thead>
<tr>
<th>Alcohol</th>
<th>$K_H (\text{mol}^2 \text{l}^{-1})$</th>
<th>$k_1 (\text{mol}^{-2} \text{s}^{-1})$</th>
<th>$k_{-1} (\text{s}^{-1})$</th>
<th>$k (\text{mol}^{-2} \text{s}^{-1})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>BuOH</td>
<td>2215</td>
<td>237</td>
<td>0.107</td>
<td>7.8</td>
</tr>
<tr>
<td>PrOH</td>
<td>1813</td>
<td>248</td>
<td>0.136</td>
<td>6.1</td>
</tr>
</tbody>
</table>

If H_2SO_4 acts as the acid catalyst, then any protonation equilibrium must depend on $[HSO_4^-]$, which would lead to non-first order kinetics (scheme 4.23).

$$
\begin{align*}
\text{RONO} + H_2SO_4 & \overset{K}{\longrightarrow} H^+ \text{RONO}^+ + HSO_4^- \\
\text{RONO}^+ + \text{RSH} & \overset{k}{\longrightarrow} \text{RSNO}^+ + \text{ROH} \\
& \text{fast} [HSO_4^-] \\
\text{RSNO}^- + H_2SO_4 & \longrightarrow \text{RSNO} + H_2SO_6
\end{align*}
$$

(4.23)

$$
ko = \frac{k \cdot [\text{RSH}]K[H_2SO_4]}{K[H_2SO_4] + [HSO_4^-]}
$$

(4.24)
Equation (4.24) predicts that the reaction should not be first order since \([\text{HSO}_4^-]\) is not constant throughout the reaction. It also predicts a non first order dependence upon \([\text{H}_2\text{SO}_4]\). Another possible explanation is if there is extensive ion pairing in these solutions (Scheme 4.25). This would then lead to a strict first order dependence upon \([\text{H}_2\text{SO}_4]\).

\[
\text{RONO} + \text{H}_2\text{SO}_4 \overset{k}{\longrightarrow} \text{RONO}^+ \text{HSO}_4^- \\
\text{RSH} + \text{RONO}^- \text{HSO}_4^- \overset{k}{\longrightarrow} \text{RS}^\cdot \text{HSO}_4^- + \text{ROH}
\]

\[
\text{RSNO} + \text{H}_2\text{SO}_4
\]

(4.25)

Catalysis by added halide and thiourea also occurs. The curvature of plots of \(k_o\) against [thiourea] can be accounted for by allowing for protonation of thiourea and assuming that the reaction occurs via the formation of an equilibrium concentration of \(\text{S-nitrosothiourea}\), which can effect nitrosation of TGA.

The curvature of the plots of \(k_o\) against [halide ion] can also be explained in a similar way if the halide ion is being extensively protonated. Evidence against the halide ion being the effective catalyst
in these solutions comes from the fact that the dissociation constants for the type of salts used are all very small in these solvents and further, they are ca 100 times smaller in 6BuOH than in 3PrOH. Therefore a much larger effect on the rate in 3PrOH than 6BuOH would be expected, but as can be seen by the data in Tables (4.14) and (4.24) a similar catalytic effect is observed in each case. The results are best explained in terms of formation of HCl and HBr in these solutions which can then act as a general acid catalyst.
References:

Chloroform and acetonitrile are examples of dipolar aprotic solvents. Some physical properties of these solvents are given in Table (5.1).

Table 5.1:
Physical properties

<table>
<thead>
<tr>
<th></th>
<th>Dielectric Constant (at 25°C)</th>
<th>Dipole Moment</th>
<th>Freezing Point °C</th>
<th>Boiling Point °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetonitrile</td>
<td>36.0</td>
<td>3.37</td>
<td>-45.72</td>
<td>81.60</td>
</tr>
<tr>
<td>Chloroform</td>
<td>4.81</td>
<td>1.01</td>
<td>-63.5</td>
<td>61.7</td>
</tr>
<tr>
<td>Water</td>
<td>78.54</td>
<td>1.85</td>
<td>0</td>
<td>100</td>
</tr>
</tbody>
</table>

Acetonitrile is not strictly speaking an aprotic solvent as in its pure liquid state it is known to undergo autoprotolysis [1] as shown in equation (5.1), the
autoprotolysis constant being ca. 3×10^{-5}. The value of the constant is so small that acetonitrile can be considered to be essentially an aprotic solvent.

$$2\text{CH}_3\text{C}≡\text{N} \xrightleftharpoons{K} [\text{CH}_3\text{C}≡\text{N}]^+ + [\text{CH}_3\text{C}≡\text{NH}]^+ \quad (5.1)$$

Chloroform, acetonitrile and dipolar aprotic solvents generally, have been used to some extent in nitrosation reactions of alkyl nitrites. In one previous study [2] the reaction of various alkyl nitrites with acetamide in various solvents was explained in terms of nucleophilic attack of the amino group of the amide on the nitrogen centre of the alkyl nitrite in an S_{N2} type process. The rate of reaction was found to increase as the polarity and dielectric constant of the solvent increased. Other studies [3,4] have investigated the transnitrosation reaction of alkyl nitrites with alcohols by a NMR technique (equation 5.2). In all cases the reaction proceeded readily in the absence of any acid catalyst.

$$\text{RONO} + \text{R'OH} \xrightleftharpoons{K} \text{ROH} + \text{R'OONO} \quad (5.2)$$

Using tertiary butyl nitrite as the nitrosating agent in chloroform [3], primary alkyl nitrites were formed
with $K \approx 10$ and secondary nitrites were formed with $K \approx 4$, indicating that steric effects are again important in these reactions. No mechanistic work was carried out on this reaction which was assumed to occur via a six-membered transition state (scheme 5.3), involving two alcohol molecules [3] or via a simple nitrosyl exchange reaction [4] (scheme 5.4).

\[
\text{BuONO} + 2\text{ROH} \quad \xrightarrow{\text{5.3}} \quad \text{RONO} + \text{BuOH} + \text{ROH}
\]
\[
\text{RONO} + \text{H}^+ \xrightleftharpoons{\text{fast}} [\text{RONOH}]^+
\]

\[
\text{R}'\text{OH} + [\text{RONOH}]^+ \xrightarrow{\text{slow}} [\text{R}'\text{O}--\text{N}--\text{OR}]^+ \xrightarrow{\text{fast}} [\text{R}'\text{ONOH}]^+ + \text{ROH}
\]

\[
[R'\text{ONOH}]^+ \xrightarrow{\text{fast}} \text{RONO} + \text{H}^+ \quad (5.4)
\]

5.1 **Equilibrium constants for the formation of alkyl nitrites in acetonitrile and chloroform**

The equilibrium constants for the reactions of alkyl nitrites with various alcohols, equation (5.5), have now been determined spectrophotometrically in the 330-420 nm region. The results are given in Tables (5.2) and (5.3)

\[
\text{RONO} + \text{R}'\text{OH} \xrightleftharpoons{\text{K}} \text{R'ONO} + \text{ROH} \quad (5.5)
\]

In each case equilibrium was obtained rapidly, without the addition of any external source of acid. The results show the trend that the equilibrium constant increases as the alcohol changes from a tertiary to
Table 5.2:
Equilibrium constants in acetonitrile at 25°C

<table>
<thead>
<tr>
<th>R</th>
<th>R'</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>t-Butyl</td>
<td>Methyl</td>
<td>13.0</td>
</tr>
<tr>
<td>i-Propyl</td>
<td>Methyl</td>
<td>3.8</td>
</tr>
<tr>
<td>s-Amyl</td>
<td>Methyl</td>
<td>2.5</td>
</tr>
</tbody>
</table>

Table 5.3:
Equilibrium constants in chloroform at 25°C

<table>
<thead>
<tr>
<th>R</th>
<th>R'</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>t-Butyl</td>
<td>i-Propyl</td>
<td>3.97 ± 0.14</td>
</tr>
<tr>
<td>i-Propyl</td>
<td>t-Butyl</td>
<td>0.301</td>
</tr>
<tr>
<td>t-Butyl</td>
<td>Ethyl</td>
<td>10.1 ± 0.9</td>
</tr>
<tr>
<td>t-Butyl</td>
<td>Methyl</td>
<td>20.5</td>
</tr>
</tbody>
</table>

^a) from reference [3]

secondary to primary, ie a primary alkyl nitrite is preferred over a secondary and tertiary one, indicating that steric effects are important. The values obtained
in chloroform are in good agreement with those found previously by NMR methods [3].

5.2 Kinetics and mechanism of the transnitrosation reaction

5.2.1 Chloroform as solvent

The reaction of tertiary butyl nitrite (tBuONO) and isopropyl nitrite (tPrONO) with methanol (MeOH) was studied in chloroform (CHCl₃) as solvent. The reaction was followed at 400 nm, where only tBuONO and tPrONO absorb significantly. In the absence of any acid catalyst the reaction proceeded readily to form methyl nitrite (MeONO). Good first order behaviour was obtained by following the disappearance of the alkyl nitrite when the [alkyl nitrite] ≪ [MeOH]. However the observed first order rate constant, ko, was found to increase markedly with the age of the stock solution of the alkyl nitrite as shown in Tables (5.4) and (5.5).

This effect can be explained if the alkyl nitrite is decomposing to produce an acid, possibly nitrous acid which can act as an acid catalyst or effect nitrosation itself (equation 5.6). A similar explanation has been given to account for the reactions of alkyl nitrites [5] in neutral solution.
Table 5.4:

Effect of time on the value of k_0 for 5BuONO

<table>
<thead>
<tr>
<th>MeOH $= 0.067$ mol l$^{-1}$</th>
<th>5BuONO $= 0.010$ mol l$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>25\degreeC</td>
<td>400 nm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>time (min)</th>
<th>k_0 (s$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.114</td>
</tr>
<tr>
<td>5</td>
<td>0.157</td>
</tr>
<tr>
<td>15</td>
<td>0.170</td>
</tr>
<tr>
<td>ca 30</td>
<td>0.225</td>
</tr>
<tr>
<td>ca 60</td>
<td>0.278</td>
</tr>
<tr>
<td>ca 120</td>
<td>0.475</td>
</tr>
</tbody>
</table>

Table 5.5:

Effect of time on the value of k_0 for iPrONO

<table>
<thead>
<tr>
<th>MeOH $= 0.251$ mol l$^{-1}$</th>
<th>iPrONO $= 0.018$ mol l$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>25\degreeC</td>
<td>400 nm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>time (min)</th>
<th>k_0 (s$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>8.89 x 10$^{-3}$</td>
</tr>
<tr>
<td>22</td>
<td>0.0129</td>
</tr>
<tr>
<td>29</td>
<td>0.0100</td>
</tr>
<tr>
<td>43</td>
<td>0.0138</td>
</tr>
<tr>
<td>58</td>
<td>0.0144</td>
</tr>
</tbody>
</table>
\[^\circ \text{BuONO} + \text{H}_2\text{O} \xrightarrow{\text{H}_2\text{O}} ^\circ \text{BuOH} + \text{HNO}_2 \] (5.6)

5.2.2 Acetonitrile as solvent

The reactions of \(^\circ \text{BuONO}, \ ^{\text{tPrONO}}\) and isoamyl nitrite (\(^\text{\text{\text{\text{oAmONO}\)}}}\)) with methanol were studied in acetonitrile (CH\(_3\)CN) as solvent. In the absence of any acid catalyst the reaction proceeded readily to form MeONO. Good first order behaviour was obtained by following the disappearance of the alkyl nitrite at 400 nm. The observed first order rate constant, \(k_0\), was again found to increase markedly with the age of the stock solution of the alkyl nitrite. The results for \(^{\text{tPrONO}}\) are shown in Table (5.6)

Table 5.6:
Effect of time on the value of \(k_0\) for \(^{\text{tPrONO}}\)

<table>
<thead>
<tr>
<th>[MeOH] = 0.356 mol l(^{-1})</th>
<th>[(^{\text{tPrONO}})] = 9.8 \times 10^{-3} \text{ mol l}(^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>25°C</td>
<td>400 nm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>time min</th>
<th>(k_0) s(^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>0.0240</td>
</tr>
<tr>
<td>16</td>
<td>0.0469</td>
</tr>
<tr>
<td>27</td>
<td>0.0496</td>
</tr>
<tr>
<td>34</td>
<td>0.0501</td>
</tr>
</tbody>
</table>
This effect can be explained again by decomposition of the alkyl nitrite to produce an acid catalyst. Further evidence for this comes from the fact that the reactions are catalysed by the addition of H_2SO_4. With fresh solutions of H_2SO_4 in CH_3CN reproducible values of k_0 could be obtained only after the acid solution had stood for ca 10-15 minutes. This 'time-effect' will be discussed in detail in section 5.5. The reaction of all three alkyl nitrites with MeOH was found to be approximately first order with respect to $[\text{H}_2\text{SO}_4]$ (Tables 5.7 - 5.9)

Table 5.7 (a):

Variation of k_0 with $[\text{H}_2\text{SO}_4]$ for reaction of tBuONO

$[\text{tBuONO}] = 0.010 \text{ mol l}^{-1}$

$[\text{MeOH}] = 0.118 \text{ mol l}^{-1}$

25°C

400 nm

$[\text{H}_2\text{SO}_4] \text{ mol l}^{-1}$

$\quad k_0 \text{ s}^{-1}$

2.18×10^{-3}

33.3 ± 0.5

4.36×10^{-3}

79.8 ± 2.8

6.53×10^{-3}

137 ± 4

8.71×10^{-3}

193 ± 6

0.0109

217 ± 9

0.0131

273 ± 7
Table 5.7 (b):
Variation of k_o with $[\text{H}_2\text{SO}_4]$ for reaction of $^t\text{BuONO}$

<table>
<thead>
<tr>
<th>$[^t\text{BuONO}]$ = 0.010 mol l$^{-1}$</th>
<th>$[^{\text{MeOH}}]$ = 0.109 mol l$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>25°C</td>
<td>400 nm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$[\text{H}_2\text{SO}_4]$ mol l$^{-1}$</th>
<th>k_o s$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.97×10^{-3}</td>
<td>39.4 ± 1.5</td>
</tr>
<tr>
<td>3.94×10^{-3}</td>
<td>98.4 ± 1.7</td>
</tr>
<tr>
<td>5.92×10^{-3}</td>
<td>150 ± 3</td>
</tr>
<tr>
<td>7.89×10^{-3}</td>
<td>193 ± 4</td>
</tr>
<tr>
<td>9.86×10^{-3}</td>
<td>234 ± 8</td>
</tr>
</tbody>
</table>

Table 5.7 (c):
Variation of k_o with $[\text{H}_2\text{SO}_4]$ for reaction of $^t\text{BuONO}$

<table>
<thead>
<tr>
<th>$[^t\text{BuONO}]$ = 0.010 mol l$^{-1}$</th>
<th>$[^{\text{MeOH}}]$ = 0.110 mol l$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>25°C</td>
<td>400 nm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$[\text{H}_2\text{SO}_4]$ mol l$^{-1}$</th>
<th>k_o s$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.16×10^{-3}</td>
<td>16.2 ± 0.4</td>
</tr>
<tr>
<td>2.33×10^{-3}</td>
<td>38.4 ± 1.9</td>
</tr>
<tr>
<td>3.49×10^{-3}</td>
<td>56.9 ± 2.4</td>
</tr>
</tbody>
</table>

-186-
Table 5.8:
Effect of $[\text{H}_2\text{SO}_4]$ on ko for reaction of $^{1}\text{PrONO}$

$[^{1}\text{PrONO}] = 0.010 \text{ mol l}^{-1}$

<table>
<thead>
<tr>
<th>$[\text{H}_2\text{SO}_4]$ mol l$^{-1}$</th>
<th>ko s$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.28×10^{-3}</td>
<td>24.4 ± 0.4</td>
</tr>
<tr>
<td>6.56×10^{-3}</td>
<td>59.3 ± 1.0</td>
</tr>
<tr>
<td>9.84×10^{-3}</td>
<td>89.6 ± 2.8</td>
</tr>
<tr>
<td>0.0131</td>
<td>131 ± 9</td>
</tr>
<tr>
<td>0.0164</td>
<td>165 ± 4</td>
</tr>
<tr>
<td>0.0197</td>
<td>210 ± 4</td>
</tr>
</tbody>
</table>

$[\text{MeOH}] = 0.117 \text{ mol l}^{-1}$

25°C

400 nm

Table 5.9:
Effect of $[\text{H}_2\text{SO}_4]$ on ko for reaction of $^{150}\text{AmONO}$

$[^{150}\text{AmONO}] = 0.015 \text{ mol l}^{-1}$

<table>
<thead>
<tr>
<th>$[\text{H}_2\text{SO}_4]$ mol l$^{-1}$</th>
<th>ko s$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.28×10^{-3}</td>
<td>17.0 ± 0.7</td>
</tr>
<tr>
<td>6.56×10^{-3}</td>
<td>42.8 ± 1.0</td>
</tr>
<tr>
<td>9.84×10^{-3}</td>
<td>59.7 ± 1.3</td>
</tr>
<tr>
<td>0.0131</td>
<td>90.6 ± 2.6</td>
</tr>
<tr>
<td>0.0164</td>
<td>118 ± 5</td>
</tr>
<tr>
<td>0.0197</td>
<td>148 ± 3</td>
</tr>
</tbody>
</table>
The data for \(\text{'BuONO} \) (Tables 5.7 (a) - (c)) are shown in Figure (5.1). The graph shows that there is only reasonable agreement between the three sets of data. When the experiment was repeated 1 week later using the same acid stock solution, the values of \(k_0 \) obtained were markedly smaller than those obtained previously. The results are shown in Table (5.10) and Figure (5.1). This shows that there is a substantial ageing effect occurring in the sulphuric acid solutions.

Table 5.10:
Effect of \([H_2SO_4]\) after 1 week

\[
\begin{array}{cc}
\text{[\text{'BuONO}]} & 0.010 \text{ mol } l^{-1} \\
\text{[MeOH]} & 0.118 \text{ mol } l^{-1} \\
400 \text{nm} & 25^\circ\text{C} \\
\hline
[H_2SO_4] \text{ mol } l^{-1} & k_0 \text{ s}^{-1} \\
3.42 \times 10^{-3} & 8.92 \pm 0.13 \\
1.03 \times 10^{-3} & 15.66 \pm 0.07 \\
1.71 \times 10^{-2} & 19.74 \pm 0.16 \\
\end{array}
\]

The rate constant was found to decrease markedly over several days even though the total stoichiometric concentration of sulphuric acid remained constant over that period, as shown by titration with standard sodium
Figure 5.1
Variation of k_0 with acid.

Figure 5.2
Acid catalysis in the nitrosation of methanol by alkyl nitrites.

$10^4 \left[H_2SO_4 \right]$ mol/l

Δ MeONO

∇ EtONO

\triangle BuONO

\triangle Table 5.7c

∇ Table 5.7b

Δ Table 5.7a
hydroxide solution. This effect will be discussed in section 5.5, but indicates that the reaction is probably subject to catalysis by hydrogen ions rather than by \(\text{H}_2\text{SO}_4 \) molecules. The data in all the other tables were obtained with freshly prepared solutions of sulphuric acid and were used within 6-8 hours of preparation, where this 'ageing effect' is not significant. This is shown by the reasonable agreement between the three sets of data in Figure (5.1).

When the data for the three different alkyl nitrites are plotted (Figure 5.2) it can be seen that the reactivity order towards formation of \(\text{MeONO} \) is \(\text{'BuONO} > \text{'PrONO} > \text{'AmONO} \), the relative reactivity order being approximately 3 : 1.5 : 1.

Strikingly the reactions of \(\text{'BuONO} \) and \(\text{'PrONO} \) were found to be completely zero order with respect to \([\text{MeOH}]\). Results are shown in Tables (5.11) and (5.12).

The zero order dependence of the rate upon \([\text{MeOH}]\) suggests that the rate limiting step occurs before the attack of the nitrosating species on \(\text{MeOH} \). Two possible explanations exist. The first explanation is that the protonated alkyl nitrite is the reactive species and that the rate limiting step is protonation of the alkyl nitrite (Scheme 5.7)
Table 5.11:
Variation of k_0 with [MeOH] for reaction of 6BuONO

$$[^6\text{BuONO}] = 0.010 \text{ mol l}^{-1}$$
$$[H_2\text{SO}_4] = 2.18 \times 10^{-3} \text{ mol l}^{-1}$$

400 nm $\quad 25^\circ\text{C}$

<table>
<thead>
<tr>
<th>[MeOH] mol l$^{-1}$</th>
<th>k_0 s$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0233</td>
<td>31.7 ± 0.7</td>
</tr>
<tr>
<td>0.0466</td>
<td>35.8 ± 1.2</td>
</tr>
<tr>
<td>0.0699</td>
<td>31.5 ± 1.4</td>
</tr>
<tr>
<td>0.0933</td>
<td>32.2 ± 0.5</td>
</tr>
<tr>
<td>0.117</td>
<td>33.3 ± 0.5</td>
</tr>
</tbody>
</table>

Table 5.12:
Variation of k_0 with [MeOH] for reaction of 4PrONO

$$[^4\text{PrONO}] = 5 \times 10^{-3} \text{ mol l}^{-1}$$
$$[H_2\text{SO}_4] = 1.43 \times 10^{-3} \text{ mol l}^{-1}$$

400 nm $\quad 25^\circ\text{C}$

<table>
<thead>
<tr>
<th>[MeOH] mol l$^{-1}$</th>
<th>k_0 s$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0434</td>
<td>11.9 ± 0.3</td>
</tr>
<tr>
<td>0.0651</td>
<td>12.9 ± 0.3</td>
</tr>
<tr>
<td>0.0996</td>
<td>11.5 ± 0.2</td>
</tr>
<tr>
<td>0.199</td>
<td>9.3 ± 0.4</td>
</tr>
<tr>
<td>0.299</td>
<td>7.5 ± 0.1</td>
</tr>
</tbody>
</table>
Since the equilibrium constants for the formation of MeONO are large, under the conditions used the reaction can be considered to be effectively irreversible. If the value of $k_1 [\text{MeOH}] \gg k_2$ then the rate determining step will be protonation of alkyl nitrite. If this is the case then a primary kinetic isotope effect ($k_{H^+}/k_{D^+} > 1$) would be expected. Experiments were carried out using D_2SO_4 in acetonitrile as catalyst in the reactions of $^t\text{BuONO}$ and $^t\text{PrONO}$ with MeOD. The results are shown in Tables (5.13) - (5.14).

The results are displayed in Figure (5.3), along with the results obtained using H_2SO_4. It is clear that the reaction is slightly faster in D_2SO_4 than H_2SO_4, indicating that proton transfer is not involved in the rate determining step. These results therefore rule out the mechanism in Scheme (5.7). Again in these experiments there is a considerable 'ageing effect' of the acid solution such that when the experiments were repeated after 6 days the value of k_0 had dropped by a factor of ca 10 (Table 5.13 (c)).
Table 5.13 (a):
Effect of D₂SO₆ on ko for reaction of BuONO

\[
\begin{array}{ll}
[D₂SO₆] \text{ mol } l^{-1} & \text{ko s}^{-1} \\
2.65 \times 10^{-3} & 54.4 \pm 3.0 \\
5.30 \times 10^{-3} & 129 \pm 2 \\
7.96 \times 10^{-3} & 201 \pm 6 \\
0.0106 & 284 \pm 12 \\
0.0133 & 369 \pm 25 \\
\end{array}
\]

Table 5.13 (b):
Effect of D₂SO₆ on ko for reaction with BuONO

\[
\begin{array}{ll}
[D₂SO₆] \text{ mol } l^{-1} & \text{ko s}^{-1} \\
1.82 \times 10^{-3} & 36.8 \pm 1.1 \\
3.65 \times 10^{-3} & 76.8 \pm 2.4 \\
5.27 \times 10^{-3} & 124 \pm 4 \\
\text{[MeOD]} = 0.0652 \text{ mol } l^{-1} \\
\end{array}
\]
Table 5.13 (c):
Effect of D_2SO_4 after 6 days for reaction with $^t\text{BuONO}$

$[^t\text{BuONO}] = 0.010 \text{ mol l}^{-1}$
$[^\text{MeOD}] = 0.114 \text{ mol l}^{-1}$

400 nm 25°C

$[\text{D}_2\text{SO}_4] \text{ mol l}^{-1}$ $k_0 \text{ s}^{-1}$

5.30×10^{-3} 15.8
0.0106 24.8
0.0133 32.0

Table 5.14:
Effect of D_2SO_4 on k_0 for reaction with $^t\text{PrONO}$

$[^t\text{PrONO}] = 0.010 \text{ mol l}^{-1}$
$[^\text{MeOD}] = 0.114 \text{ mol l}^{-1}$

400 nm 25°C

$[\text{D}_2\text{SO}_4] \text{ mol l}^{-1}$ $k_0 \text{ s}^{-1}$

4.86×10^{-3} 61.6 ± 3.2
9.72×10^{-3} 142 ± 8
0.0146 188 ± 7
An alternative explanation is that the rate limiting step is the formation of a nitrosating agent from the protonated alkyl nitrite (Scheme 5.8)

\[\text{RONO} + \text{H}^+ \overset{\text{fast } K}{\underset{\text{slow } k_1}{\rightarrow}} \text{RONO}^+ \]

\[\text{RONO}^+ \overset{k_1}{\underset{k_{-1}}{\rightarrow}} \text{ROH} + \text{NO}^+ \quad (5.8) \]

\[\text{NO}^+ + \text{MeOH} \overset{k_1}{\rightarrow} \text{MeONO} + \text{H}^+ \]

The nitrosating species is written here as \(\text{NO}^+\), but other possibilities exist, namely nitrous acid or the nitrous acidium ion, which could be formed if there are traces of water in the solvent. The derived rate equation for Scheme (5.8) is given in equation (5.9).

\[
k_0 = \frac{k_1 k_2 K [H^+][\text{MeOH}]}{k_{-1}[\text{tBuOH}] + k_2[\text{MeOH}]} \quad (5.9)
\]

This predicts that if \(k_2[\text{MeOH}] \gg k_{-1}[\text{tBuOH}]\) then \(k_0 = k_1 K[H^+]\) and so the rate constant would be independent of \([\text{MeOH}]\).
The reaction rate constant was found to decrease markedly on the addition of the parent alcohol. The results for the three alkyl nitrites are shown in Tables (5.15) - (5.17) and Figure (5.4).

Table 5.15:
Effect of \(\text{tBuOH} \) on the rate of nitrosation by \(\text{tBuONO} \)

\[
\begin{align*}
\text{[tBuONO]} &= 0.010 \text{ mol l}^{-1} & \text{[MeOH]} &= 0.113 \text{ mol l}^{-1} \\
\text{[H}_2\text{SO}_4\text{]} &= 6.84 \times 10^{-3} \text{ mol l}^{-1} & \text{400 nm} & \text{25°C}
\end{align*}
\]

<table>
<thead>
<tr>
<th>[tBuOH] mol l(^{-1})</th>
<th>(k)o s(^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>143 ± 2</td>
</tr>
<tr>
<td>0.0108</td>
<td>88.9 ± 2.1</td>
</tr>
<tr>
<td>0.0323</td>
<td>67.2 ± 1.2</td>
</tr>
<tr>
<td>0.0539</td>
<td>51.2 ± 1.0</td>
</tr>
<tr>
<td>0.0755</td>
<td>39.1 ± 0.5</td>
</tr>
<tr>
<td>0.108</td>
<td>25.1 ± 0.3</td>
</tr>
<tr>
<td>0.216</td>
<td>16.0 ± 0.4</td>
</tr>
<tr>
<td>0.323</td>
<td>9.8 ± 0.2</td>
</tr>
<tr>
<td>0.431</td>
<td>6.3 ± 0.1</td>
</tr>
<tr>
<td>0.539</td>
<td>4.5 ± 0.1</td>
</tr>
</tbody>
</table>
Table 5.16:
Effect of \(^{1} \text{PrOH} \) on the rate of nitrosation by \(^{1} \text{PrONO} \)

\[
\begin{align*}
[^{1}\text{PrONO}] &= 0.010 \text{ mol l}^{-1} \\
[\text{MeOH}] & = 0.113 \text{ mol l}^{-1} \\
[H_{2}SO_{4}] & = 6.84 \times 10^{-3} \text{ mol l}^{-1} \\
[H_{2}SO_{4}] & = 400 \text{ nm} \\
\text{ko} & = 25^\circ C
\end{align*}
\]

\[
\begin{array}{|c|c|}
\hline
[^{1}\text{PrOH}] \text{ mol l}^{-1} & \text{ko s}^{-1} \\
\hline
0 & 46.6 \pm 1.0 \\
0.0887 & 20.6 \pm 0.4 \\
0.178 & 10.3 \pm 0.2 \\
0.266 & 7.0 \pm 0.1 \\
0.355 & 5.22 \pm 0.12 \\
0.444 & 3.41 \pm 0.03 \\
0.532 & 2.99 \pm 0.04 \\
\hline
\end{array}
\]

Table 5.17:
Effect of \(^{i} \text{AmOH} \) on the rate of nitrosation by \(^{i} \text{AmONO} \)

\[
\begin{align*}
[^{i}\text{AmOH}] &= 0.010 \text{ mol l}^{-1} \\
[\text{MeOH}] & = 0.128 \text{ mol l}^{-1} \\
[H_{2}SO_{4}] & = 6.84 \times 10^{-3} \text{ mol l}^{-1} \\
[H_{2}SO_{4}] & = 400 \text{ nm} \\
\text{ko} & = 25^\circ C
\end{align*}
\]

\[
\begin{array}{|c|c|}
\hline
[^{i}\text{AmOH}] \text{ mol l}^{-1} & \text{ko s}^{-1} \\
\hline
0 & 28.5 \pm 0.2 \\
0.0909 & 15.8 \pm 0.1 \\
0.182 & 8.59 \pm 0.10 \\
0.278 & 7.81 \pm 0.04 \\
0.364 & 4.27 \pm 0.10 \\
0.455 & 3.72 \pm 0.15 \\
\hline
\end{array}
\]
Further in the presence of high concentrations of tBuOH or tPrOH the reaction was found to be no longer zero order with respect to [MeOH] (Tables 5.18 and 5.19).

Table 5.18:
Effect of [MeOH] in the presence of tBuOH

$[^t\text{BuOH}] = 5 \times 10^{-3}$ mol l$^{-1}$
$[^t\text{BuOH}] = 0.414$ mol l$^{-1}$
$[^t\text{H}_2\text{SO}_4] = 1.43 \times 10^{-3}$ mol l$^{-1}$

<table>
<thead>
<tr>
<th>[MeOH] mol l$^{-1}$</th>
<th>k_0 s$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0417</td>
<td>0.788 ± 6 x 10$^{-3}$</td>
</tr>
<tr>
<td>0.0626</td>
<td>0.944 ± 0.017</td>
</tr>
<tr>
<td>0.0958</td>
<td>1.07 ± 0.05</td>
</tr>
<tr>
<td>0.192</td>
<td>1.33 ± 0.01</td>
</tr>
<tr>
<td>0.287</td>
<td>1.52 ± 0.04</td>
</tr>
</tbody>
</table>

Table 5.19:
Effect of [MeOH] in the presence of tPrOH

$[^t\text{PrONO}] = 5 \times 10^{-3}$ mol l$^{-1}$
$[^t\text{PrOH}] = 0.444$ mol l$^{-1}$
$[^t\text{H}_2\text{SO}_4] = 1.43 \times 10^{-3}$ mol l$^{-1}$

<table>
<thead>
<tr>
<th>[MeOH] mol l$^{-1}$</th>
<th>k_0 s$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0434</td>
<td>0.704 ± 0.050</td>
</tr>
<tr>
<td>0.0651</td>
<td>0.789 ± 0.055</td>
</tr>
<tr>
<td>0.0996</td>
<td>0.969 ± 0.047</td>
</tr>
<tr>
<td>0.199</td>
<td>1.18 ± 0.04</td>
</tr>
<tr>
<td>0.299</td>
<td>1.26 ± 0.02</td>
</tr>
</tbody>
</table>
This is to be expected as equation (5.9) predicts that
the rate constant should decrease on addition of ROH
and should become first order in [MeOH], i.e. \(k_{-1} \cdot [\text{BuOH}] \)
can be made to compete with \(k_2 \cdot [\text{MeOH}] \). This means that
the reaction under these conditions must be considered
to be reversible (Scheme 5.10). The derived rate equation
for such a scheme is given in equation (5.11).

\[
\begin{align*}
\text{RONO} + H^+ & \xrightleftharpoons{k_{-1}} ROH + 'NO^+' \\
'NO^+' + MeOH & \xrightarrow{k_2} MeONO + H^+ \\
\end{align*}
\]

\[
ko = \frac{k_1 k_2[H^+][\text{MeOH}]}{k_{-1}[\text{ROH}] + k_2[\text{MeOH}]} + \frac{k_{-1} k_2[H^+][\text{ROH}]}{k_{-1}[\text{ROH}] + k_2[\text{MeOH}]} (5.11)
\]

The first term in equation (5.11) corresponds to the
rate of nitrosation of MeOH by the alkyl nitrite and
the second term corresponds to the rate of nitrosation
of ROH by methyl nitrite. If the first term is much
larger than the second term, as it must be due to the
size of the equilibrium constant, it can be seen to
a first approximation that if \(k_{-1} \cdot [\text{ROH}] \approx k_2 \cdot [\text{MeOH}] \) the
rate constant should decrease on addition of ROH and
should increase on addition on MeOH.

The observed first order rate constant was also found to decrease on addition of water. The results are shown in Table (5.20). The effect possibly results from the basicity of water in this solvent, i.e. water reduces the hydrogen ion activity in this solvent. This explanation has also been given to explain a similar effect in the reactions of alkyl nitrites in alcohol solvent [5,6]. The decrease in ko on addition of ROH

Table 5.20:

<table>
<thead>
<tr>
<th>[tBuONO] mol l⁻¹</th>
<th>[MeOH] = 0.110 mol l⁻¹</th>
<th>[H₂SO₄] = 1.08 x 10⁻³ mol l⁻¹</th>
<th>400 nm</th>
<th>25°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>[H₂O] mol l⁻¹</td>
<td>ko s⁻¹</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>13.4 ± 0.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0520</td>
<td>9.44 ± 0.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.104</td>
<td>6.71 ± 0.13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.156</td>
<td>4.38 ± 0.10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-0.300</td>
<td>2.55 ± 0.14</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
could therefore be explained in a similar way and this possibility is discussed further in Section 5.5.

All the data obtained for the reactions of the three alkyl nitrites are consistent with a mechanism involving rate limiting formation of a nitrosating agent, possibly NO+, followed by a rapid nitrosation of methanol. The reactivity order is tBuONO > iPrONO > iPrAmONO.

5.3 Kinetics and mechanism of the nitrosation of thioglycolic acid in acetonitrile

In view of the zero order dependence upon [Substrate] in the nitrosation of MeOH it was thought to be of interest to see if a similar effect was observed with other substrates. Thioglycolic acid [7] (TGA) was chosen as this had proved to be a suitable substrate in both aqueous and alcohol solution. Reactions were carried out in acetonitrile at 25°C. Good first order behaviour was obtained under the conditions used ([RONO] ≪ [TGA]), by following the appearance of the thionitrite at 330 nm. The value of ko was found to be independent of [TGA] at high [TGA] for all three alkyl nitrites studied (tBuONO, iPrONO, iPrAmONO). The results are given in Tables (5.21) - (5.23). The slight upward trend in ko as [TGA] is increased is probably due to the fact that TGA will
Table 5.21 (a):
Effect of [TGA] on k_0 for reaction with 7BuONO

$[^7\text{BuONO}] = 2 \times 10^{-6}$ mol l$^{-1}$ \quad $[\text{H}_2\text{SO}_4] = 2.33 \times 10^{-3}$ mol l$^{-1}$

<table>
<thead>
<tr>
<th>[TGA] mol l$^{-1}$</th>
<th>k_0 s$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.73×10^{-3}</td>
<td>27.9 ± 1.4</td>
</tr>
<tr>
<td>9.46×10^{-3}</td>
<td>38.7 ± 0.4</td>
</tr>
<tr>
<td>0.0142</td>
<td>37.1 ± 1.0</td>
</tr>
</tbody>
</table>

Table 5.21 (b):
Effect of [TGA] on k_0 for reaction with 7BuONO

$[^7\text{BuONO}] = 1 \times 10^{-6}$ mol l$^{-1}$ \quad $[\text{H}_2\text{SO}_4]^\circ = 6.84 \times 10^{-3}$ mol l$^{-1}$ \quad 330 nm \quad 25°C

<table>
<thead>
<tr>
<th>[TGA] mol l$^{-1}$</th>
<th>k_0 s$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.14×10^{-3}</td>
<td>15.6 ± 0.9</td>
</tr>
<tr>
<td>2.29×10^{-3}</td>
<td>18.0 ± 0.5</td>
</tr>
<tr>
<td>4.58×10^{-3}</td>
<td>20.2 ± 1.1</td>
</tr>
<tr>
<td>9.15×10^{-3}</td>
<td>21.0 ± 0.4</td>
</tr>
<tr>
<td>0.0137</td>
<td>22.2 ± 0.9</td>
</tr>
<tr>
<td>0.0183</td>
<td>23.8 ± 0.5</td>
</tr>
<tr>
<td>0.0229</td>
<td>23.1 ± 0.8</td>
</tr>
</tbody>
</table>

$^\circ$ Acid solution was three days old
Table 5.22:
Effect of [TGA] on \(k_0 \) for reaction with \(\text{1}\text{PrONO} \)

\[
\begin{align*}
\text{[PrONO]} & = 2 \times 10^{-5} \text{ mol l}^{-1} & \text{[H}_2\text{SO}_4] & = 5.61 \times 10^{-8} \text{ mol l}^{-1} \\
330 \text{ nm} & & 25^\circ \text{C} & \\
\text{[TGA]} \text{ mol l}^{-1} & \quad \text{ko s}^{-1} & \\
5.85 \times 10^{-3} & \quad 3.08 \pm 0.12 & \\
0.0117 & \quad 2.97 \pm 0.087 & \\
0.0176 & \quad 2.99 \pm 0.06 & \\
\end{align*}
\]

Table 5.23:
Effect of [TGA] on \(k_0 \) for reaction with \(\text{i}\text{soAmOH} \)

\[
\begin{align*}
\text{[H}_2\text{SO}_4] & = 3.07 \times 10^{-8} \text{ mol l}^{-1} & \text{[i}\text{soAmONO]} & = 1 \times 10^{-6} \text{ mol l}^{-1} \\
330 \text{ nm} & & 25^\circ \text{C} & \\
\text{[TGA]} \text{ mol l}^{-1} & \quad \text{ko s}^{-1} & \\
8.67 \times 10^{-3} & \quad 0.604 \pm 0.015 & \\
0.0260 & \quad 0.828 \pm 0.036 & \\
0.0347 & \quad 0.889 \pm 0.029 & \\
0.0434 & \quad 0.924 \pm 0.029 & \\
0.0607 & \quad 1.06 \pm 0.02 & \\
\end{align*}
\]
act as a weak acid in these solutions, so increasing the hydrogen ion activity. It can also be seen that the reaction is subject to the same 'ageing effect' of the sulphuric acid solutions as was the case with the methanol reactions. This can be seen by comparing the results for the reaction of tBuONO using fresh H\textsubscript{2}SO\textsubscript{4} (Table 5.21 (a)) and using three day old H\textsubscript{2}SO\textsubscript{4} (Table 5.21 (b)). In all cases the reaction was subject to acid catalysis. Results are shown in Table (5.24)-(5.26) and in Figure (5.5).

Table 5.24:
Catalysis by H\textsubscript{2}SO\textsubscript{4} in the reaction with tBuONO

\[
\begin{align*}
\text{[tBuONO]} & = 2 \times 10^{-6} \text{ mol l}^{-1} & \text{[TGA]} & = 0.0122 \text{ mol l}^{-1} \\
\text{[H}_2\text{SO}_4\text{]} & \text{ mol l}^{-1} & k & \text{ s}^{-1} \\
9.27 \times 10^{-6} & & 14.3 \pm 0.1 \\
1.85 \times 10^{-3} & & 33.3 \pm 0.7 \\
2.78 \times 10^{-3} & & 45.7 \pm 0.8 \\
3.71 \times 10^{-3} & & 60.7 \pm 1.4 \\
5.56 \times 10^{-3} & & 105 \pm 8
\end{align*}
\]
Table 5.25:
Catalysis by H$_2$SO$_4$ in the reaction with 11PrONO

<table>
<thead>
<tr>
<th>$[^{11}\text{PrONO}] = 2 \times 10^{-6} \text{ mol l}^{-1}$</th>
<th>$[\text{TGA}] = 0.0117 \text{ mol l}^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>330 nm</td>
<td>25° C</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$[\text{H}_2\text{SO}_4] \text{ mol l}^{-1}$</th>
<th>ko s$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.80×10^{-6}</td>
<td>1.13 ± 0.02</td>
</tr>
<tr>
<td>5.61×10^{-6}</td>
<td>2.97 ± 0.09</td>
</tr>
<tr>
<td>8.41×10^{-6}</td>
<td>4.59 ± 0.05</td>
</tr>
<tr>
<td>1.12×10^{-5}</td>
<td>6.73 ± 0.10</td>
</tr>
<tr>
<td>1.40×10^{-5}</td>
<td>8.20 ± 0.21</td>
</tr>
</tbody>
</table>

Table 5.26:
Catalysis by H$_2$SO$_4$ in the reaction with 15OAmONO

<table>
<thead>
<tr>
<th>$[^{15}\text{OAmONO}] = 1 \times 10^{-6} \text{ mol l}^{-1}$</th>
<th>$[\text{TGA}] = 0.0260 \text{ mol l}^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>330 nm</td>
<td>25° C</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$[\text{H}_2\text{SO}_4] \text{ mol l}^{-1}$</th>
<th>ko s$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.07×10^{-6}</td>
<td>0.828 ± 0.036</td>
</tr>
<tr>
<td>6.15×10^{-6}</td>
<td>1.65 ± 0.03</td>
</tr>
<tr>
<td>9.22×10^{-6}</td>
<td>2.62 ± 0.05</td>
</tr>
<tr>
<td>1.23×10^{-5}</td>
<td>3.46 ± 0.03</td>
</tr>
</tbody>
</table>
Figure 5.5

Acid catalysis in the nitrosation of TGA

\[
\begin{align*}
\text{[H}_2\text{SO}_4\text{]} \quad \text{mol/l} & \quad 0.000 & 0.002 & 0.004 & 0.006 \\
\text{[\text{LSOAmONO}]} & \quad 0 & 0 & 0 & 0 \\
\text{[\text{iPrONO}]} & \quad 0 & 0 & 0 & 0 \\
\text{[\text{tBuONO}]} & \quad 0 & 0 & 0 & 0
\end{align*}
\]
Since the rate constant for reaction is independent of the [TGA], this again implies that the rate determining step is the formation of the nitrosating species from the protonated alkyl nitrite, the k_1 step (scheme 5.12).

$$\text{RONO} + H^+ \xrightarrow{k_1} \text{ROH} + \text{'NO'}^+$$

$$\text{NO}^+ + \text{RSH} \xrightarrow{k_2} \text{RSNO} + H^+ \quad (5.12)$$

The rate of this step would be expected to be different for different alkyl nitrites but should only depend on the acidity of the medium, and not on the substrate used, for any one alkyl nitrite. By comparison of the limiting rates of reaction at the same acidity this can be seen to be the case. Thus for tBuONO at $[H_2SO_4]=2.33 \times 10^{-3}$ mol l$^{-1}$ the limiting value of k_0 is ca. 38 s$^{-1}$ with TGA as substrate and the value of k_0 measured using the same sulphuric acid solution with methanol is 38.4 ± 1.9 s$^{-1}$ ($[\text{MeOH}]=0.110$ mol l$^{-1}$, $[^t\text{BuONO}]=0.01$ mol l$^{-1}$). Similarly for tPrONO the limiting values obtained by using MeOH and TGA are identical (Table 5.27).

As expected the rate constant for reaction of tBuONO with TGA was found to decrease markedly on the addition of tBuOH. In the presence of tBuOH the reaction became
no longer zero order with respect to [TGA], again as for the reactions with methanol. The results are shown in Table (5.28)

Table 5.27:
Limiting values of k_0 for reaction of PrONO

$$[\text{H}_2\text{SO}_4] = 4.56 \times 10^{-3} \text{mol l}^{-1}$$

<table>
<thead>
<tr>
<th>$[\text{MeOH}]$ mol l$^{-1}$</th>
<th>k_0 s$^{-1}$</th>
<th>$[\text{TGA}]$ mol l$^{-1}$</th>
<th>k_0 s$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.07</td>
<td>31.5 ± 4.9</td>
<td>0.03</td>
<td>30.1 ± 0.7</td>
</tr>
<tr>
<td>0.14</td>
<td>32.8 ± 2.5</td>
<td>0.06</td>
<td>31.9 ± 0.4</td>
</tr>
</tbody>
</table>

These results therefore add weight to the argument in favour of a reaction mechanism involving rate limiting formation of a nitrosating species, possibly nitrous acid (by analogy with the reactions in water) or the nitrosonium ion. In order to try to distinguish between these two possibilities the reaction of PrONO with added water was studied.

In the reactions so far studied, traces of water will always be present in the solvent (even though it was dried and distilled prior to use) and also due to the fact that traces will be added due to the H_2SO_4 catalyst.
Table 5.28:

Effect of [TGA] in the presence of \[^{\circ}\text{BuOH}\]

\[^{\circ}\text{BuONO}\] = 1 x 10^{-5} \text{ mol l}^{-1} \\
\[^{\circ}\text{BuONO}\] = 1 x 10^{-5} \text{ mol l}^{-1} \\
330 \text{ nm} \\
25^\circ\text{C}

<table>
<thead>
<tr>
<th>[TGA] \text{ mol l}^{-1}</th>
<th>a \pm \text{ error}</th>
<th>b \pm \text{ error}</th>
<th>c \pm \text{ error}</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.06 x 10^{-5}</td>
<td>13.6 \pm 0.1</td>
<td>0.0505 \pm 7 x 10^{-6}</td>
<td>0.0127 \pm 5 x 10^{-6}</td>
</tr>
<tr>
<td>8.11 x 10^{-5}</td>
<td>15.5 \pm 0.2</td>
<td>0.0820 \pm 1.1 x 10^{-6}</td>
<td>0.0176 \pm 2 x 10^{-6}</td>
</tr>
<tr>
<td>0.0122</td>
<td>16.1 \pm 0.3</td>
<td>0.103 \pm 4 x 10^{-6}</td>
<td>0.0255 \pm 5 x 10^{-6}</td>
</tr>
<tr>
<td>0.0162</td>
<td>17.8 \pm 0.2</td>
<td>0.141 \pm 3 x 10^{-6}</td>
<td>0.0308 \pm 3 x 10^{-6}</td>
</tr>
<tr>
<td>0.0203</td>
<td>20.6 \pm 0.2</td>
<td>0.156 \pm 8 x 10^{-6}</td>
<td>0.0381 \pm 9 x 10^{-6}</td>
</tr>
</tbody>
</table>

a) \[^{\circ}\text{BuOH}\] = 0

b) \[^{\circ}\text{BuOH}\] = 0.216 \text{ mol l}^{-1}

c) \[^{\circ}\text{BuOH}\] = 0.431, [H\(_2\)SO\(_4\)] solution is 24 hrs old
This was shown by the fact that iPrONO, when mixed with the sulphuric acid solutions rapidly produced an equilibrium concentration of nitrous acid, as detected spectrophotometrically. This reaction was studied kinetically at 410 nm, following the disappearance of the alkyl nitrite. Good first order behaviour was observed in all cases. The results are shown in Table (5.29).

Table 5.29:
Nitrosation of water by iPrONO

<table>
<thead>
<tr>
<th>[H₂SO₄] mol l⁻¹</th>
<th>[iPrONO] mol l⁻¹</th>
<th>410 nm</th>
<th>25°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>[H₂O] mol l⁻¹</td>
<td>ko s⁻¹</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>22.3 ± 1.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0555</td>
<td>23.4 ± 0.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.111</td>
<td>21.5 ± 1.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.277</td>
<td>7.4 ± 0.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.111</td>
<td>1.73 ± 0.03</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Above [H₂O] ≈ 1.1 mol l⁻¹ the reactions were no longer first order with respect to iPrONO and were not investigated further.
The results show that at low \([H_2O]\) the reaction is independent of \([H_2O]\), but the value of \(k_o\) found is higher than those previously found, i.e. \(k_o \approx 22 \text{ s}^{-1}\) at \([H_2SO_4] = 1.61 \times 10^{-3} \text{ mol l}^{-1}\) compared with \(k_o \approx 31 \text{ s}^{-1}\) at \([H_2SO_4] = 4.56 \times 10^{-3} \text{ mol l}^{-1}\) for the reaction of \(^1\text{PrONO}\) with MeOH and TGA. This discrepancy probably arises from the fact that the reaction with water is significantly reversible under the conditions used (as detected by a marked increase in the absorbance change as \([H_2O]\) is increased). This means that the value of \(k_o\) will contain significant contributions from both the rate of nitrosation of \(H_2O\) by \(^1\text{PrONO}\) and also the rate of nitrosation of \(^1\text{PrOH}\) by HNO\(_2\) (cf. equation (5.11)). The decrease in \(k_o\) with \([H_2O]\) when \([H_2O] > 0.1 \text{ mol l}^{-1}\) can be attributed to a medium effect as described previously. These results show that under the conditions used in all the nitrosation experiments in acetonitrile the presence of water can lead to the formation of nitrous acid. These results however do not necessarily prove that the nitrosating species formed in the rate limiting step in the reactions of alkyl nitrites is nitrous acid.

The reaction of \(^1\text{PrONO}\) with TGA also occurs without the addition of any external acid (TGA is itself an acid). Experiments were carried out using (a) acetonitrile that was specially dried and used under a dry nitrogen atmosphere, and (b) acetonitrile that was purified by
the usual procedure [8] (see Chapter 7). The results are shown in Table 5.30. These show that the reaction

Table 5.30:
Reaction in 'Super dry' acetonitrile

\[
\begin{align*}
[TGA] &= 7.16 \times 10^{-3} \text{ mol l}^{-1} \\
[^{17}\text{PrONO}_2] &= 5 \times 10^{-6} \text{ mol l}^{-1}
\end{align*}
\]

'super dry' acetonitrile \hspace{1cm} k_0 = 3.6 \times 10^{-6} \text{ s}^{-1}

'normal' acetonitrile \hspace{1cm} k_0 = 1.4 \times 10^{-6} \text{ s}^{-1}

still proceeds readily even in the absence of traces of water, indicating that the rate limiting step is unlikely to be formation of HNO_2, rather it is more likely to be formation of NO^+.

Further evidence of this comes from the fact that the reaction was markedly catalysed by a solution containing dry HCl gas in CH_3CN (Table 5.31). The reaction was found to be zero order with respect to [TGA], indicating that the rate limiting step is again formation of a nitrosating species.
Table 5.31:
Effect of HCl on rate of reaction of iPrONO with TGA

\[\text{[iPrONO]} = 2 \times 10^{-6} \text{ mol l}^{-1} \quad \text{[TGA]} = 0.0114 \text{ mol l}^{-1} \]

<table>
<thead>
<tr>
<th>[HCl] mol l(^{-1})</th>
<th>(k_0) s(^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(7.82 \times 10^{-6})</td>
<td>(1.36 \pm 0.05)</td>
</tr>
<tr>
<td>(1.57 \times 10^{-3})</td>
<td>(3.16 \pm 0.07)</td>
</tr>
<tr>
<td>(2.35 \times 10^{-3})</td>
<td>(4.66 \pm 0.37)</td>
</tr>
<tr>
<td>(3.13 \times 10^{-3})</td>
<td>(6.27 \pm 0.07)</td>
</tr>
<tr>
<td>(4.70 \times 10^{-3})</td>
<td>(9.29 \pm 0.22)</td>
</tr>
</tbody>
</table>

Table 5.32:
Dependence of \(k_0\) on [TGA]

\[\text{[iPrONO]} = 2 \times 10^{-6} \text{ mol l}^{-1} \quad \text{[HCl]} = 2.35 \times 10^{-3} \text{ mol l}^{-1} \]

<table>
<thead>
<tr>
<th>[TGA] mol l(^{-1})</th>
<th>(k_0) s(^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(5.7 \times 10^{-3})</td>
<td>(4.15 \pm 0.04)</td>
</tr>
<tr>
<td>0.0114</td>
<td>(4.66 \pm 0.37)</td>
</tr>
<tr>
<td>0.0171</td>
<td>(3.95 \pm 0.05)</td>
</tr>
</tbody>
</table>
5.4 *Kinetics and mechanism of the reaction of nitrous acid in acetonitrile*

In order to obtain further evidence for the identity of the active nitrosating agent in these solutions, the reactions of nitrous acid itself were studied under similar conditions to those used for the alkyl nitrites. Solutions of nitrous acid in acetonitrile were formed by addition of sulphuric acid in acetonitrile to a solution of sodium nitrite in acetonitrile. The presence of nitrous acid was identified by the characteristic 'finger' absorption bands in the 330 - 400 nm region [9]. The exact concentration of nitrous acid used in the kinetic experiments was difficult to determine due to the very low solubility of sodium nitrite. Nitrous acid was reacted with MeOH (to form MeONO), 'PrOH (to form 'PrONO), tBuOH (to form tBuONO) and TGA (to form S-nitrosothioglycolic acid). In all cases good first order behaviour was found by following the appearance of the product when the reactions were carried out with [HNO₂]<<[Substrate]. The results are shown in Tables (5.33) - (5.36).

For MeOH, 'PrOH and TGA, the reaction is zero order in [Substrate], within the experimental error. For tBuOH the value of ko decreases slightly as [tBuOH] is increased. This probably arises due to a medium effect and will be discussed later. The limiting rate constant
Table 5.33:
Variation of \(k_0 \) with [MeOH] for reaction with HNO\(_2\)

\[
\begin{array}{|c|c|}
\hline
[NaNO_2] & \text{mol l}^{-1} \\
\hline
<10^{-5} & \hline
9.96 \times 10^{-3} & 21.9 \pm 0.9 \\
0.0199 & 21.2 \pm 1.2 \\
0.0249 & 26.9 \pm 2.7 \\
0.0498 & 24.8 \pm 1.9 \\
0.0767 & 22.8 \pm 1.1 \\
\hline
\end{array}
\]

Table 5.34:
Variation of \(k_0 \) with [\(^{1}\)PrOH] for reaction with HNO\(_2\)

\[
\begin{array}{|c|c|}
\hline
[NaNO_2] & \text{mol l}^{-1} \\
\hline
<10^{-5} & \hline
260 \text{ nm} & 25^\circ \text{C} \\
[H_2SO_4] & \text{mol l}^{-1} \\
260 \text{ nm} & 25^\circ \text{C} \\
\hline
\end{array}
\]

\[
\begin{array}{|c|c|}
\hline
[\(^{1}\)PrOH] & \text{mol l}^{-1} \\
\hline
0.0149 & 24.6 \pm 1.3 \\
0.0298 & 30.6 \pm 1.9 \\
0.0446 & 26.0 \pm 1.3 \\
0.0593 & 22.7 \pm 1.3 \\
0.0744 & 21.9 \pm 1.1 \\
\hline
\end{array}
\]
Table 5.35:
Variation of k_o with $[^t]BuOH$ for reaction with HNO$_2$

$[\text{NaNO}_2] < 10^{-6}$ mol l$^{-1}$ \hspace{1cm} $[\text{H}_2\text{SO}_4] = 8.46 \times 10^{-6}$ mol l$^{-1}$

260 nm \hspace{1cm} 25$^\circ$C

<table>
<thead>
<tr>
<th>$[^t]BuOH$ mol l$^{-1}$</th>
<th>k_o s$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0161</td>
<td>23.5 \pm 0.6</td>
</tr>
<tr>
<td>-0.0323</td>
<td>16.3 \pm 0.5</td>
</tr>
<tr>
<td>0.0484</td>
<td>14.3 \pm 0.4</td>
</tr>
</tbody>
</table>

Table 5.36 (a):
Variation of k_o with TGA for reaction with HNO$_2$

$[\text{NaNO}_2] < 10^{-5}$ mol l$^{-1}$ \hspace{1cm} $[\text{H}_2\text{SO}_4] = 8.46 \times 10^{-6}$ mol l$^{-1}$

330 nm \hspace{1cm} 25$^\circ$C

<table>
<thead>
<tr>
<th>TGA mol l$^{-1}$</th>
<th>k_o s$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.87×10^{-3}</td>
<td>15.8 \pm 0.6</td>
</tr>
<tr>
<td>0.0177</td>
<td>19.6 \pm 0.4</td>
</tr>
<tr>
<td>0.0266</td>
<td>21.7 \pm 0.4</td>
</tr>
<tr>
<td>0.0443</td>
<td>23.4 \pm 0.5</td>
</tr>
</tbody>
</table>
Table 5.36 (b):

Variation of k_0 with TGA for reaction with HNO$_2$

<table>
<thead>
<tr>
<th>[NaNO$_2$] (mol l$^{-1}$)</th>
<th>[H$_2$SO$_4$] = 6.20 x 10$^{-3}$ mol l$^{-1}$</th>
<th>330 nm</th>
<th>25°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.36 x 10$^{-3}$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0107</td>
<td></td>
<td>254 ± 16</td>
<td></td>
</tr>
<tr>
<td>0.0161</td>
<td></td>
<td>278 ± 25</td>
<td></td>
</tr>
<tr>
<td>0.0443</td>
<td></td>
<td>283 ± 24</td>
<td></td>
</tr>
</tbody>
</table>

is the same for all the substrates at the same acidity (assuming that the value of k_0 at [7BuOH] = 0.0161 mol l$^{-1}$ represents the limiting rate). This means that the reaction proceeds via rate limiting formation of the nitrosonium ion from nitrous acid (Scheme 5.13). The rate

\[
\begin{align*}
\text{HNO}_2 + H^+ & \xrightarrow{K_1} \text{H}_2\text{NO}_2^+ \\
\text{H}_2\text{NO}_2^+ & \xrightarrow{k_1} \text{H}_2\text{O} + \text{NO}^+ \\
\text{NO}^+ + S & \xrightarrow{k_2} \text{Products}
\end{align*}
\]

(5.13)
equation derived from Scheme (5.13) is equation (5.14).

\[
ko = \frac{k_1 [S][H^+]}{k_1 [H_2O] + k_2 [S]} \quad (5.14)
\]

If \(k_2 [S] \gg k_1 [H_2O]\), then \(ko = k_1 K[H^+]\) and so the rate limiting step becomes formation of the nitrosonium ion. This is directly analogous to the formation of the nitronium ion in nitration reactions using nitric acid [10]. Here the rate of nitration of reactive aromatic substrates, eg. toluene, was found to be zero order with respect to toluene. This occurred in a variety of solvents, including nitromethane [11], concentrated sulphuric acid [12] and carbon tetrachloride [13]. The results identified the nitronium ion as the reactive species. The reaction scheme is shown in Scheme (5.15).

\[
\begin{align*}
H_2SO_4 + HNO_3 & \rightleftharpoons \text{products} \\
H_2NO_3 & \xrightarrow{k_1} H_2O + NO_2^+ \\
\text{fast} & \quad \text{products}
\end{align*}
\]

\[
(5.15)
\]
As would be expected the reactions of nitrous acid in acetonitrile are subject to acid catalysis. Results are shown in Table (5.37).

Table 5.37 (a):
Acid catalysis in the nitrosation of TGA

<table>
<thead>
<tr>
<th>$[\text{NaNO}_2]$</th>
<th>$[\text{TGA}] = 0.0177 \text{ mol l}^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$< 10^{-6} \text{ mol l}^{-1}$</td>
<td></td>
</tr>
<tr>
<td>330 nm</td>
<td>25°C</td>
</tr>
<tr>
<td>$[\text{H}_2\text{SO}_4]$</td>
<td>mol l^{-1}</td>
</tr>
<tr>
<td>8.46×10^{-8}</td>
<td>19.6 ± 0.4</td>
</tr>
<tr>
<td>1.69×10^{-3}</td>
<td>46.7 ± 1.5</td>
</tr>
<tr>
<td>2.54×10^{-3}</td>
<td>80.2 ± 4.3</td>
</tr>
</tbody>
</table>

Table 5.37 (b):
Acid catalysis in the nitrosation of TGA

<table>
<thead>
<tr>
<th>$[\text{NaNO}_2]$</th>
<th>$[\text{TGA}] = 0.0443 \text{ mol l}^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$< 10^{-4} \text{ mol l}^{-1}$</td>
<td></td>
</tr>
<tr>
<td>330 nm</td>
<td>25°C</td>
</tr>
<tr>
<td>$[\text{H}_2\text{SO}_4]$</td>
<td>mol l^{-1}</td>
</tr>
<tr>
<td>1.55×10^{-3}</td>
<td>71.7 ± 2.1</td>
</tr>
<tr>
<td>3.10×10^{-3}</td>
<td>159 ± 9</td>
</tr>
<tr>
<td>6.20×10^{-3}</td>
<td>349 ± 16</td>
</tr>
</tbody>
</table>
5.5 Discussion

5.5.1 Acid-base behaviour in acetonitrile

In order to try to understand the acid catalysis observed in these reactions, especially the 'ageing effects' of the solutions it is necessary to review some of the work previously reported on acid-base equilibria in acetonitrile [14].

Sulphuric acid [15], and strong acids in general, are known to be incompletely dissociated in this solvent. The one exception to this is perchloric acid [16], which is believed to exist completely in the dissociated form in this solvent. Because of the polar nature of acetonitrile (Figure 5.6), the solvent is very good at solvating

Figure 5.6

\[\mu = 3.37 \text{D} \]
cations, but is only a poor solvator of anions, hence most anions in acetonitrile are stabilized by homoconjugation. The major dissociation equilibria of sulphuric acid [17] in this solvent are shown in equation (5.16). A similar series of equilibria exist for the hydrogen halides in this solvent [15] and the values of the equilibrium constants are shown in Table (5.38).

\[
\begin{align*}
\text{H}_2\text{SO}_4 \rightleftharpoons \text{H}^+ + \text{HSO}_4^- \quad \text{(acid dissociation)} \\
\text{H}_2\text{SO}_4 + \text{HSO}_4^- \rightleftharpoons \text{H}_2\text{SO}_4\text{HSO}_4^- \quad \text{(homoconjugation)}
\end{align*}
\]

(5.16)

<table>
<thead>
<tr>
<th>Acid</th>
<th>-pK</th>
<th>pKa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perchloric</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Hydrobromic</td>
<td>2.4</td>
<td>5.5</td>
</tr>
<tr>
<td>Sulphuric</td>
<td>3.0</td>
<td>7.3</td>
</tr>
<tr>
<td>Nitric</td>
<td>2.3</td>
<td>8.9</td>
</tr>
<tr>
<td>Hydrochloric</td>
<td>2.2</td>
<td>8.9</td>
</tr>
</tbody>
</table>
Experiments have been carried out to measure the hydrogen ion activity of solutions of strong mineral acids in acetonitrile. In these experiments the measured hydrogen ion activity [17,22] was found to give drifting values over the first 30 minutes and then reached a steady value. Over a longer time scale the hydrogen ion activity was found to drop markedly over periods of months [16,18], even though the stoichiometric concentrations of acid (as determined by titration) remained constant over the same period. The initial increase can be explained [19,20] in terms of a slow equilibrium process of some kind, possibly involving proton transfer from the acid to the solvent or the formation of nitrilium-like salts, of empirical formula CH$_3$CN.2HX or formation of salts of the type [19,20] CH$_3$C = NH$_2$X$^-$. The decrease in hydrogen ion activity over a longer period of time was explained [15,16] in terms of the formation of a basic species in acetonitrile, possibly acetamide or a polymer of acetonitrile [18], which then reduces the hydrogen ion activity. Since the acid catalysis observed in the nitrosation reactions in acetonitrile follows this pattern it seems reasonable that the nitrosation reactions in acetonitrile are catalysed by the hydrogen ion.

The hydrogen ion must necessarily be solvated by acetonitrile molecules. It has been shown that acetonitrile [21] is a very weak base as compared to water and
alcohols and so as the concentration of water or alcohol is increased the percentage of hydrogen ions associated with acetonitrile will drop and the percentage of hydrogen ions associated with water or alcohol will increase. This is probably the cause of the medium effect observed when water is added to the reaction medium, as a proton associated with a water molecule must necessarily be less acidic than one associated with acetonitrile. This may also occur to some extent when t-BuOH is added to the solution as the results for nitrosation of t-BuOH with HNO₂ (Table 5.35) show a marked decrease in rate with added t-BuOH.

5.5.2 Mechanism of nitrosation in acetonitrile

The results found for nitrous acid nitrosations in acetonitrile show conclusively that the nitrosating species involved is the nitrosonium ion. The nitrosonium ion most likely exists in a solvated form by acetonitrile, but could also be solvated by the bisulphate ion that must be present in solution, i.e. from nitrosyl sulphuric acid (HSO₄⁻NO⁺). By analogy with the reaction with HNO₂, the reactions of alkyl nitrites in this solvent are also likely to proceed via rate limiting formation of NO⁺.

For all the nitrosating agents used the reactions with methanol and thioglycolic acid proceed via rate
limiting formation of NO^+. This rate constant has been shown to be different for the four nitrosating agents used, but for each one it is independent of the nature and concentration of the substrate. Since the reaction is proportional to $[\text{H}^+]$ which will in turn be approximately proportional to $[\text{H}_2\text{SO}_4]$, the values of k_0 obtained at different acidities can be compared by simply dividing k_0 by $[\text{H}_2\text{SO}_4]$. This is only very approximate however since a plot of k_0 against $[\text{H}_2\text{SO}_4]$ is a slight curve in most cases, however the results of such an analysis are plotted in Figure (5.7). It can be seen that the value of $k_0 / [\text{H}_2\text{SO}_4]$ is approximately constant for each alkyl nitrite and nitrous acid and is not dependent on the substrate used. Further the approximate order of reactivity of $\text{HNO}_2 : \text{t}^{\text{Bu}}\text{ONO} : \text{t}^{\text{Pr}}\text{ONO} : \text{t}^{10}\text{AmONO}$ can be deduced as $6 : 3 : 1.5 : 1$. The reactivity order of the alkyl nitrites is easily explained in terms of steric effects, ie. $\text{t}^{\text{Bu}}\text{ONO}$ is more sterically crowded than $\text{t}^{\text{Pr}}\text{ONO}$ and so formation of the alcohol is favoured more in the case of $\text{t}^{\text{Bu}}\text{ONO}$ than $\text{t}^{\text{Pr}}\text{ONO}$. The relative reactivity also includes the pK_a of the alkyl nitrite and nitrous acid and since these are unknown it is not possible to comment on the actual rate constant for formation of NO^+ from the protonated alkyl nitrite or protonated nitrous acid.
Figure 5.7
Comparison of the limiting rate constants

\[
10^3 k_0/[H_2SO_4,] \text{ i mol}^{-1} \text{ s}^{-1}
\]

- HNO_3
- t-BuONO
- iPrONO
- iAmONO

\[0.00 \quad 0.05 \quad 0.10 \quad 0.15 \]
\[[\text{substrate}] \text{ mol/l} \]

\[\Delta \quad \text{t-BuOH} \]
\[\triangledown \quad \text{MeOH} \]
\[\triangle \quad \text{TGA} \]
References:

In Chapter 5, the reactions of alkyl nitrites and nitrous acid in acetonitrile were shown to be kinetically zero order with respect to [substrate], and were explained in terms of rate limiting formation of the nitrosonium ion. It was expected therefore, that with less reactive substrates the rate determining step might be the nitrosation of the substrate.

6.1 Nitrosation of β-diketones

The reaction of ketones with nitrous acid have been long known synthetically [1], but it has only recently been shown that the reaction occurs via the enol form [2] (Scheme 6.1). The reactions yield the C-nitroso species, which under acid conditions rapidly isomerise to give the oxime products. The enol form of the ketone was identified [2] as the reactive species in these reactions because under certain experimental conditions the reactions became zero order with respect to the
nitrous acid concentration, indicating that the rate limiting step was enolization of the ketone. The measured rate constant for enolization was in good agreement with that obtained for halogenation [3] and hydrogen-exchange reactions [4]. In the case of acetylacetone it was not possible to make the enolization rate limiting due to the lower reactivity of the enol.

In solution, ketones exist in equilibrium with their enol forms. For most simple ketones the percentage of enol in aqueous solution is very small, whereas for
β-diketones much more enol exists, e.g. for acetylacetone [5] K is 0.2. However in non-aqueous solutions the percentage [6,7,8] of the enol form is increased markedly. This is explained in terms of enhanced solvation of the most polar form (the ketoform) by the highly polar water molecules. In the case of β-diketones [9,10] the enol form is stabilized by the formation of a six membered cyclic structure, as shown in equation (6.2).

\[
\begin{align*}
\text{H} & \quad \text{O} \\
\text{C} & \quad \text{O} \\
\text{CH}_3 & \quad \text{CH} & \quad \text{CH}_3
\end{align*}
\]

(6.2)

This explains why in aqueous solution, although the K of acetylacetone is small, it is still many orders of magnitude greater than that of monoketones such as acetone and methylethyl ketone [11]. In non aqueous solution, where the keto form is not stabilized to the same extent as in aqueous solution, the percentage enol is increased markedly.
6.1.1 Nitrosation of acetylacetone in acetonitrile

The percentage enol of acetylacetone (AA) in acetonitrile was estimated from the N.M.R. spectrum. The 'H chemical shifts relative to TMS are shown in Table (6.1) and the estimated percentage enol is ca 67% (Kf -2)

Table 6.1:
'H N.M.R. spectra of AA in CD3CN

<table>
<thead>
<tr>
<th>δ ppm</th>
<th>Relative intensity</th>
<th>assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.58</td>
<td>6.0</td>
<td>CH3 enol</td>
</tr>
<tr>
<td>1.76</td>
<td>3.0</td>
<td>CH3 keto</td>
</tr>
<tr>
<td>3.18</td>
<td>1.0</td>
<td>CH1 keto</td>
</tr>
<tr>
<td>5.16</td>
<td>1.0</td>
<td>CH enol</td>
</tr>
</tbody>
</table>

The reaction of acetylacetone with tertiary butyl nitrite (°BuONO) was shown to yield the expected oxime by comparison with the U.V. /visible and infra red spectra of a sample prepared from nitrous acid. The reaction was followed kinetically at 375 - 380 nm where only the alkyl nitrite absorbs significantly. Good first order
behaviour was obtained by monitoring the disappearance of the alkyl nitrite under the conditions where \([{^t\text{BuONO}}] \ll [\text{AA}].\) The reactions were found to be first order with respect to [AA] and also to be approximately first order with respect to \([\text{H}_2\text{SO}_4] \). The results are shown in Table (6.2) and (6.3). A plot of \(k_0\) against \([\text{H}_2\text{SO}_4]\) (Figure 6.1) shows no significant intercept.

Table 6.2:
Variation of \(k_0\) with [AA]

\[
{^t\text{BuONO}} = 2 \times 10^{-3}\ \text{mol l}^{-1} \quad [\text{H}_2\text{SO}_4] = 4.44 \times 10^{-3}\ \text{mol l}^{-1}
\]

380 nm \quad 25°C

<table>
<thead>
<tr>
<th>[AA] \text{mol l}^{-1}</th>
<th>(k_0) \text{s}^{-1}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0202</td>
<td>0.922 \pm 0.029</td>
</tr>
<tr>
<td>0.0808</td>
<td>2.21 \pm 0.04</td>
</tr>
<tr>
<td>0.143</td>
<td>5.07 \pm 0.19</td>
</tr>
<tr>
<td>0.287</td>
<td>10.9 \pm 0.1</td>
</tr>
<tr>
<td>0.430</td>
<td>14.4 \pm 0.4</td>
</tr>
</tbody>
</table>

slope = 34.6 \pm 2.1 \text{ mol l}^{-1} \text{s}^{-1}

intercept = 0.1 \pm 0.5 \text{ s}^{-1}
Table 6.3:
Variation of ko with \([H_2SO_6]\)

\([{}^tBuONO] = 1 \times 10^{-3} \text{ mol l}^{-1}\)

\([AA] = 0.0161 \text{ mol l}^{-1}\)

\[375 \text{ nm} \quad 25^\circ \text{C}\]

\begin{array}{|c|c|}
\hline
[H_2SO_6] \text{ mol l}^{-1} & ko \text{ s}^{-1} \\
\hline
0.0117 & 3.94 \pm 0.14 \\
0.0234 & 10.4 \pm 0.3 \\
0.0351 & 16.6 \pm 0.6 \\
0.0468 & 22.3 \pm 2.1 \\
0.0585 & 31.6 \pm 1.3 \\
\hline
\end{array}

These results suggest that the rate determining step is the reaction of the nitrosating species with acetylacetone. The rate constant was also found to decrease markedly on the addition of \(^tBuOH\). Results are shown in Table (6.4).

This indicates that the alkyl nitrite itself is not the nitrosating agent and is consistent with the formation of an equilibrium concentration of the nitrosonium ion which then reacts with the enol form of the ketone in the rate determining step. This will be discussed further in Section 6.1.4.
Table 6.4 (a):
Effect of 3BuOH on ko at low acid concentrations

\[
\begin{align*}
[^{3}\text{BuONO}] &= 3 \times 10^{-3} \text{ mol l}^{-1} \\
[\text{H}_3\text{SO}_4] &= 8.99 \times 10^{-6} \text{ mol l}^{-1} \\
[\text{AA}] &= 0.0314 \text{ mol l}^{-1} \\
25^\circ\text{C} & \quad 375 \text{ nm}
\end{align*}
\]

\[
\begin{array}{c|c|c|c}
^{3}\text{BuOH} \text{ mol l}^{-1} & ko \text{ s}^{-1} \\
\hline
0 & 0.0373 \pm 4.4 \times 10^{-3} \\
0.0205 & 4.13 \times 10^{-3} \pm 3.2 \times 10^{-4} \\
0.0410 & 2.43 \times 10^{-3} \pm 3.2 \times 10^{-4} \\
\end{array}
\]

Table 6.4 (b):
Effect of 3BuOH on ko at high acid concentrations

\[
\begin{align*}
[^{3}\text{BuONO}] &= 5 \times 10^{-6} \text{ mol l}^{-1} \\
[\text{AA}] &= 9.64 \times 10^{-3} \text{ mol l}^{-1} \\
[\text{H}_3\text{SO}_4] &= 0.0351 \text{ mol l}^{-1} \\
375 \text{ nm} & \quad 25^\circ\text{C}
\end{align*}
\]

\[
\begin{array}{c|c|c|c}
^{3}\text{BuOH} \text{ mol l}^{-1} & ko \text{ s}^{-1} \\
\hline
0 & 4.41 \pm 0.24 \\
5.26 \times 10^{-3} & 1.30 \pm 0.09 \\
0.0158 & 0.206 \pm 0.029 \\
0.0316 & 0.155 \pm 0.006 \\
\end{array}
\]
Figure 6.2
Plot of k_0 against $[\text{H}_2\text{SO}_4]$ for TAA

Figure 6.1
Plot of k_0 against $[\text{H}_2\text{SO}_4]$ for AA

$[\text{H}_2\text{SO}_4]$ mol/l

∇ [TAA] = 1.44 \times 10^{-3}$ mol/l

\triangle [TAA] = 1.45 \times 10^{-3}$ mol/l
6.1.2 Nitrosation of 1,1,1,-trifluoroacetylacetone

1,1,1,-trifluoroacetylacetone (TAA) is known to exist almost totally as the enol form in non aqueous solution. N.M.R. measurements in d³-acetonitrile now confirm this is the case (Table 6.5), as there was no detectable signals due to the keto form.

Table 6.5:
'H N.M.R. data for TAA in CD₃CN

<table>
<thead>
<tr>
<th>δ ppm</th>
<th>Relative intensity</th>
<th>assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.83</td>
<td>3</td>
<td>CH Enol</td>
</tr>
<tr>
<td>5.63</td>
<td>1</td>
<td>CH Enol</td>
</tr>
<tr>
<td>13.88</td>
<td>1</td>
<td>O-H Enol</td>
</tr>
</tbody>
</table>

The enol of TAA can exist in two forms. These are shown in equation (6.3). It is known [13] that
the tautomer on the left hand side of equation (6.3) is the favoured form in the rapid equilibrium, with $K_{eq} \approx 0.4$ in hexane. The presence of the CF_3 group has the effect of making the enol form electron deficient compared with acetylacetone. This can be seen in an increase in the acidity of the proton of the OH bond, the pK_a values in water being 6.7 [14] for TAA and 8.87 [15] for AA.

The reaction of TAA with nitrous acid has been studied very recently in aqueous solution [16]. The product of the reaction, presumably the oxime, was not isolable, and indeed there has been no report of the synthesis of such a compound in the literature. The reaction was found to proceed readily in aqueous solution, the product absorbing in the 220-230 nm region. The results were interpreted in terms of a reaction via both the enol and enolate anion form, from the observed rate constant dependence upon the acidity.

The reaction of 4BuONO and TAA was found to proceed readily also in acetonitrile solvent, the spectrum of the product had a peak in the 220-230 nm region. 1H NMR experiments in deuteriochloroform showed that the signal due to the proton of the carbon-carbon double bond disappeared along with the enol $O-H$ proton signal. Also the signal from the CH_3 of the enol disappeared
and a new CH₃ signal appeared. The results are shown in Table (6.6). These data show that the nitrosation must occur at the enolic carbon-carbon double bond, and are consistent with the formation of the oxime.

Table 6.6:

'H N.M.R. data for nitrosation of TAA in CDCl₃

<table>
<thead>
<tr>
<th>Enol assignment</th>
<th>Product assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.13 CH₃</td>
<td>2.36 CH₃</td>
</tr>
<tr>
<td>5.86 C-C'</td>
<td>11.76 =N-O-H</td>
</tr>
<tr>
<td>14.23 O-H</td>
<td></td>
</tr>
</tbody>
</table>

The reaction of tBuONO with TAA was studied kinetically in acetonitrile by two methods. Firstly the reaction was studied by following the appearance of the product at 220 nm and secondly the reaction was studied by following the disappearance of the alkyl nitrite at 370 nm. In both cases good first order behaviour was found when the reactions were carried out with [tBuONO] << [TAA]. The reaction was found to be first order with respect
to [TAA] (Table 6.7) and was catalysed by added sulphuric acid (Tables 6.8 and 6.9)

Table 6.7:

Variation of k_0 with [TAA] at 370 nm

\[
[H_2SO_4] = 2.34 \times 10^{-2} \text{ mol l}^{-1} \quad [{}^2\text{BuONO}] = 7 \times 10^6 \text{ mol l}^{-1}
\]

25°C

<table>
<thead>
<tr>
<th>[TAA] mol l$^{-1}$</th>
<th>k_0 s$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.23×10^{-3}</td>
<td>$0.228 \pm 0.03 \times 10^{-3}$</td>
</tr>
<tr>
<td>14.5×10^{-3}</td>
<td>0.445 ± 0.049</td>
</tr>
<tr>
<td>21.7×10^{-3}</td>
<td>0.707 ± 0.040</td>
</tr>
<tr>
<td>28.9×10^{-3}</td>
<td>0.976 ± 0.041</td>
</tr>
<tr>
<td>36.2×10^{-3}</td>
<td>1.20 ± 0.02</td>
</tr>
</tbody>
</table>

slope = 34.3 ± 0.73 l mol$^{-1}$ s$^{-1}$

intercept = 0.03 ± 0.02 s$^{-1}$
Table 6.8:
Variation of \(k_0 \) with \([\text{H}_2\text{SO}_4]\) at 370 nm

\[
[T\text{AA}] = 14.5 \times 10^{-3} \text{ mol l}^{-1} \\
[\text{tBuONO}] = 7 \times 10^{-6} \text{ mol l}^{-1}
\]

\begin{array}{l|l}
[H_2SO_4] \text{ mol l}^{-1} & k_0 \text{ s}^{-1} \\
0.0234 & 0.445 \pm 0.049 \\
0.0467 & 0.751 \pm 0.047 \\
0.0701 & 1.22 \pm 0.03 \\
0.0935 & 1.27 \pm 0.06 \\
0.117 & 1.65 \pm 0.08 \\
\end{array}

slope = 12.5 \pm 1.4 \text{ l mol}^{-1} \text{ s}^{-1}
intercept = 0.189 \pm 0.119 \text{ s}^{-1}

Table 6.9:
Variation of \(k_0 \) with \([\text{H}_2\text{SO}_4]\) at 220 nm

\[
[T\text{AA}] = 1.44 \times 10^{-3} \text{ mol l}^{-1} \\
[\text{tBuONO}] = 1 \times 10^{-6} \text{ mol l}^{-1}
\]

\begin{array}{l|l}
[H_2SO_4] \text{ mol l}^{-1} & k_0 \text{ s}^{-1} \\
0.0217 & 0.0406 \pm 1.2 \times 10^{-3} \\
0.0435 & 0.0436 \pm 3.2 \times 10^{-3} \\
0.0652 & 0.0470 \pm 3.4 \times 10^{-3} \\
0.0869 & 0.0728 \pm 3.6 \times 10^{-3} \\
0.109 & 0.0895 \pm 0.0129 \\
\end{array}

slope = 0.585 \pm 0.127 \text{ l mol}^{-1} \text{ s}^{-1}
intercept = 0.0205 \pm 9.1 \times 10^{-3} \text{ s}^{-1}
Plots of k_o against $[\text{H}_2\text{SO}_4]$ (Figure 6.2) at the two different [TAA] both gave straight lines with substantial positive intercepts. Such plots can be explained if the reaction of TAA occurs via both the enol and enolate anion forms. This is shown in Scheme (6.4).

$$\text{Enol} \rightleftharpoons \text{Enolate} + \text{H}^+$$

$$\text{RONO} + \text{H}^+ + \text{E} \rightarrow \text{Oxime}$$

$$\text{RONO} + \text{H}^+ + \text{E}^- \rightarrow \text{Oxime}$$

(6.4)

Rate of reaction = $k_1 [\text{RONO}][\text{H}^+][\text{E}] + k_2 [\text{RONO}][\text{H}^+][\text{E}^-]$

$$[\text{E}^-][\text{H}^+]$$

but $K_a = \frac{[\text{E}]}{[\text{E}^-]}$

and $[\text{TAA}] = [\text{E}^-] + [\text{E}]$

so $[\text{E}] = \frac{[\text{TAA}][\text{H}^+]}{K_a + [\text{H}^+]}$ and $[\text{E}^-] = \frac{[\text{TAA}]K_a}{K_a + [\text{H}^+]}$

therefore Rate = $\frac{k_1 [\text{H}^+]^2 [\text{TAA}][\text{RONO}]}{K_a + [\text{H}^+]} + \frac{k_2 [\text{H}^+] [\text{TAA}] K_a [\text{RONO}]}{K_a + [\text{H}^+]}$

(6.5)
If \([H^+] \gg Ka\), equation (6.5) leads to the derived value of \(k_0\) (equation 6.6). This predicts that a plot of

\[
k_0 = k_1[TAA][H^+] + k_8[TAA]Ka
\]

(6.6)

\(k_0\) against \([TAA]\) should give a straight line with zero intercept and a plot of \(k_0\) against \([H^+]\) should give a straight line with slope \(= k_1[TAA]\) and intercept \(= k_1[TAA]Ka\). From the data in table (6.8) and (6.9), the values of \(k_1\) (by assuming \([H^+] \approx [H_2SO_4]\)) and \(k_8Ka\) can be obtained. Using the average value of \(k_8Ka\) the value of \(k_1\) can also be obtained from the data in Table (6.7). The results are shown in Table (6.10). The agreement between the three sets of data is reasonably good. These results will be discussed further in Section 6.1.4.

Table 6.10:

<table>
<thead>
<tr>
<th>Data</th>
<th>(k_1) (1^2) mol (^{-2}) s(^{-1})</th>
<th>(k_1Ka) (1) mol (^{-1}) s(^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 6.8</td>
<td>862 (±) 97</td>
<td>13 (±) 8</td>
</tr>
<tr>
<td>Table 6.9</td>
<td>406 (±) 89</td>
<td>14 (±) 6</td>
</tr>
<tr>
<td>Table 6.7</td>
<td>867 (±) 32</td>
<td></td>
</tr>
</tbody>
</table>
6.1.3 Nitrosation of 1,1,1, 5,5,5 hexafluoroacetylacetone

1,1,1, 5,5,5 hexafluoroacetylacetone (HAA) also exists almost entirely as the enol form in non aqueous solution [10,12]. 1H N.M.R. measurements in acetonitrile confirm that this is the case (Table 6.11), and the enol content is estimated at 97%. As was the case with TAA, there has been no report in the literature of the nitrosation of HAA. The reaction of HAA with tBuONO did proceed readily in acetonitrile, the product forming at 240 nm. Attempts to isolate the product failed. 1H N.M.R. experiments in CD$_3$CN showed that the signal due to the enol proton at $\delta = 6.1$ ppm disappeared indicating that reaction occurred at the enolic carbon-carbon double bond.
The reaction of \(^7\text{BuONO}\) with HAA was studied kinetically in acetonitrile by both following the appearance of the product at 220 nm and the disappearance of the alkyl nitrite at 370 nm. In both cases good first order behaviour was found when the reactions were carried out with \([\text{^7BuONO}] \ll [\text{HAA}]\). The reaction was found to be first order with respect to HAA (Table 6.12) but was not catalysed by sulphuric acid (Table 6.13).

Table 6.12 (a):
Variation of \(k_o\) with [HAA] at 220 nm

\[
[\text{^7BuONO}] = 5 \times 10^{-5} \text{ mol l}^{-1} \quad [\text{H}_2\text{SO}_4] = 4.92 \times 10^{-3} \text{ mol l}^{-1}
\]

25°C

<table>
<thead>
<tr>
<th>[HAA] mol l(^{-1})</th>
<th>(k_o) s(^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(7.23 \times 10^{-6})</td>
<td>(0.0287 \pm 8 \times 10^{-4})</td>
</tr>
<tr>
<td>(1.45 \times 10^{-3})</td>
<td>(0.0546 \pm 2.3 \times 10^{-3})</td>
</tr>
<tr>
<td>(4.34 \times 10^{-3})</td>
<td>(0.172 \pm 0.014)</td>
</tr>
</tbody>
</table>

slope = \(39.9 \pm 0.8 \text{ l mol}^{-1} \text{ s}^{-1}\)
intercept = \(1 \times 10^{-3} \pm 2 \times 10^{-3} \text{ s}^{-1}\)
Table 6.12 (b):

Variation of k_0 with [HAA] at 370 nm

$[^t]{BuONO} = 5 \times 10^6 \text{ mol l}^{-1} \quad [H_2SO_4] = 0.0109 \text{ mol l}^{-1}$

25°C

<table>
<thead>
<tr>
<th>[HAA] mol l$^{-1}$</th>
<th>k_0 s$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.03×10^{-3}</td>
<td>0.163 ± 0.012</td>
</tr>
<tr>
<td>7.55×10^{-3}</td>
<td>0.331 ± 0.018</td>
</tr>
<tr>
<td>0.0127</td>
<td>0.401 ± 0.019</td>
</tr>
<tr>
<td>0.0167</td>
<td>0.606 ± 0.034</td>
</tr>
<tr>
<td>0.0201</td>
<td>0.751 ± 0.019</td>
</tr>
</tbody>
</table>

slope = 36.4 ± 4.1 l mol$^{-1}$ s$^{-1}$
intercept = $1 \times 10^{-3} \pm 0.05$ s$^{-1}$

Table 6.13 (a):

Variation of k_0 with [H$_2$SO$_4$] at 220 nm

$[^t]{BuONO} = 5 \times 10^5 \text{ mol l}^{-1} \quad [\text{HAA}] = 7.23 \times 10^{-4} \text{ mol l}^{-1}$

<table>
<thead>
<tr>
<th>[H$_2$SO$_4$] mol l$^{-1}$</th>
<th>k_0 s$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.92×10^{-4}</td>
<td>$0.0196 \pm 7 \times 10^{-4}$</td>
</tr>
<tr>
<td>1.24×10^{-3}</td>
<td>$0.0247 \pm 3 \times 10^{-4}$</td>
</tr>
<tr>
<td>2.48×10^{-3}</td>
<td>$0.0320 \pm 2.0 \times 10^{-3}$</td>
</tr>
<tr>
<td>3.72×10^{-3}</td>
<td>$0.0236 \pm 1.1 \times 10^{-3}$</td>
</tr>
<tr>
<td>4.92×10^{-3}</td>
<td>$0.0287 \pm 8 \times 10^{-4}$</td>
</tr>
</tbody>
</table>
Table 6.13 (b):
Variation of ko with [H$_2$SO$_b$] at 370 nm

<table>
<thead>
<tr>
<th>[BuONO] = 5×10^{-6} mol l$^{-1}$</th>
<th>[HAA] = 5.81×10^{-3} mol l$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>[H$_2$SO$_b$] mol l$^{-1}$</td>
<td>ko s$^{-1}$</td>
</tr>
<tr>
<td>0.0115</td>
<td>$0.198 \pm 9 \times 10^{-3}$</td>
</tr>
<tr>
<td>0.0229</td>
<td>$0.192 \pm 8 \times 10^{-3}$</td>
</tr>
<tr>
<td>0.0344</td>
<td>0.172 ± 0.014</td>
</tr>
<tr>
<td>0.0458</td>
<td>0.182 ± 0.017</td>
</tr>
<tr>
<td>0.0573</td>
<td>$0.202 \pm 8 \times 10^{-3}$</td>
</tr>
</tbody>
</table>

The absence of acid catalysis can be explained if the reaction occurs via the enolate anion only. By analogy with equation (6.6) the derived value of ko is

$$ko = k_1 Ka [HAA]$$

(6.7)

should be first order in [HAA] and should be independent of [H$^+$]. The values of $k_1 Ka$ obtained from the four sets of data are, 39.9 ± 0.8, 36.4 ± 4.1, 35.5 ± 5.9 and 32.5 ± 1.9 l mol$^{-1}$ s$^{-1}$, which are all in good agreement with each other.
6.1.4 Discussion

All the results obtained for the reaction of "BuONO with the three acetylacetone derivatives are consistent with reaction involving the enol or enolate form of the ketone. The nitrosating species involved, by analogy with the results obtained in Chapter 5, is likely to be the nitrosonium ion. This is shown by the decrease in reaction rate on the addition of "BuOH (although some of this decrease probably arises from a medium effect). The reaction scheme is shown in Scheme (6.8) and the derived rate equation is equation (6.9)

\[
\begin{align*}
\text{"BuONO} & \quad \text{+ H}^+ \quad \xrightarrow{\text{K}} \quad \text{NO}^+ \quad \xrightarrow{\text{E}} \quad \text{Product} \\
\text{NO}^+ \quad \xrightarrow{\text{K}_1} \quad \text{Product} \\
\text{NO}^+ \quad \xrightarrow{\text{E}} \quad \text{H}^+ \quad \xrightarrow{\text{K}_a} \quad \text{Product}
\end{align*}
\]

(6.8)

\[
\begin{align*}
\text{ko} = \frac{k_i \{\text{H}^+\} \{\text{AA}\}}{K\{\text{H}^+\} \{\text{ROH}\}} + \frac{k_i \text{K}_{\text{Ka}} \{\text{AA}\}}{K\{\text{H}^+\} \{\text{ROH}\}}
\end{align*}
\]

(6.9)
Clearly in the absence of added \([^{8}\text{BuOH}]\), the value of \(k_0\) should not be constant throughout the reaction as \([^{8}\text{BuOH}]\) will increase as the reaction proceeds. This is contrary to what is observed experimentally as good first order behaviour is observed over 2-3 halflives. A possible explanation of this is if \(K[H^+] \gg [ROH]\), but this would lead to the observation of no acid catalysis for the reaction with the enol and a retardation of the rate by acid for the reaction with the enolate anion. A further explanation is if the alkyl nitrite is undergoing a rapid hydrolysis to nitrous acid with the traces of water present in the solution and then the nitrous acid can then react by forming \(NO^+\) which reacts with the substrate. In other words water is effectively competing with the enol for reaction with the alkyl nitrite. Evidence for this comes from the fact that when an alkyl nitrite and sulphuric acid are mixed in acetonitrile an equilibrium concentration of nitrous acid is rapidly formed (see Table 5.29). The reaction scheme is shown in Scheme (6.10) and the derived rate equation is shown in equation (6.11).

\[
^{t}\text{BuONO} + H_2O + H^+ \xrightarrow{K} ^t\text{BuOH} + \text{HNO}_2 + H^+ \\
\text{HNO}_2 + H^+ + E \xrightarrow{k_1} \text{Products}
\]

(6.10)
If the value of $K[H_2O] \gg [{}^{t}BuOH]$ then $k_0 = k_1[H^+][E]$ and so k_0 will be constant throughout the kinetic run despite the increasing $[{}^{t}BuOH]$. Further evidence for this type of mechanism comes from the fact that when ${}^{t}PrONO$ and AA are reacted under the same conditions the reactions are not first order with respect to $[{}^{t}PrONO]$, but on the addition of ${}^{t}PrOH$ to the solution the reactions do become first order. This is shown in Table (6.14). In this case the value of K is likely to be smaller than that for tBuONO by analogy with the results found in aqueous solution [17].

The three acetylacetone derivatives show interesting trends in their reactivity in acetonitrile. For acetylacetone the reaction appears to occur through the enol form only, for hexafluoroacetylacetone the reaction appears to occur through the enolate anion only and trifluoroacetylacetone appears to react through both forms. The values of k_1, for reaction with the enol form (obtained by assuming $[H^+] \approx [H_3SO_4]$) and k_1K_a for reaction of the enolate form are shown in Table (6.15).
Table 6.1.4:

Reaction of \(^{\text{6}}\text{PrONO}\) with AA

\[^{\text{6}}\text{PrONO} = 2 \times 10^{-3}\text{ mol l}^{-1}\] 380 nm

\[^{\text{6}}\text{PrONO} = 2 \times 10^{-3}\text{ mol l}^{-1}\] 380 nm

\[^{\text{6}}\text{PrOH} = 0.02 \text{ mol l}^{-1}\]

<table>
<thead>
<tr>
<th>time s</th>
<th>Vt (mv)</th>
<th>ko s(^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>14.5</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>10.1</td>
<td>0.86</td>
</tr>
<tr>
<td>1.0</td>
<td>7.6</td>
<td>0.79</td>
</tr>
<tr>
<td>1.5</td>
<td>6.1</td>
<td>0.73</td>
</tr>
<tr>
<td>2.0</td>
<td>5.1</td>
<td>0.69</td>
</tr>
<tr>
<td>2.5</td>
<td>4.5</td>
<td>0.63</td>
</tr>
<tr>
<td>3.0</td>
<td>4</td>
<td>0.59</td>
</tr>
<tr>
<td>3.5</td>
<td>3.6</td>
<td>0.57</td>
</tr>
<tr>
<td>4.0</td>
<td>3.3</td>
<td>0.54</td>
</tr>
<tr>
<td>1.9</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

mean ko = 0.68 ± 0.11 s\(^{-1}\)

<table>
<thead>
<tr>
<th>time s</th>
<th>Vt (mv)</th>
<th>ko s(^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>12.60</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>11.00</td>
<td>0.041</td>
</tr>
<tr>
<td>10</td>
<td>9.80</td>
<td>0.039</td>
</tr>
<tr>
<td>15</td>
<td>8.76</td>
<td>0.039</td>
</tr>
<tr>
<td>20</td>
<td>7.90</td>
<td>0.039</td>
</tr>
<tr>
<td>25</td>
<td>7.40</td>
<td>0.036</td>
</tr>
<tr>
<td>30</td>
<td>6.80</td>
<td>0.037</td>
</tr>
<tr>
<td>35</td>
<td>6.40</td>
<td>0.036</td>
</tr>
<tr>
<td>40</td>
<td>5.90</td>
<td>0.037</td>
</tr>
<tr>
<td>3.90</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

mean ko = 0.038 ± 2 x 10\(^{-3}\) s\(^{-1}\)
Table 6.15:
Values of k_1 and k_1K_a

<table>
<thead>
<tr>
<th></th>
<th>k_1 mol$^{-2}$ s$^{-1}$</th>
<th>k_1K_a 1 mol's$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA</td>
<td>$\sim 3 \times 10^6$</td>
<td></td>
</tr>
<tr>
<td>TAA</td>
<td>800</td>
<td>13</td>
</tr>
<tr>
<td>HAA</td>
<td>~ 0</td>
<td>40</td>
</tr>
</tbody>
</table>

It is clear that the enol of acetylacetone is much more reactive than that of trifluoroacetylacetone, as expected considering the powerful electron withdrawing effect of a trifluoromethyl group. For reaction with the enolate anion it is not possible to obtain the actual values of k_1 since the K_a values are not known. In aqueous solution the K_a value of HAA [18] ($pK_a = 4.71$) is ca 100 times larger than that of TAA ($pK_a = 6.7$). If such a difference occurs in this solvent then the value of k_1 for TAA would be greater than that of HAA, again in accordance with the electron withdrawal effect of two trifluoromethyl groups compared with one.

The fact that HAA only reacts via the enolate anion can be explained in terms of a very low reactivity of the enol form, due to the presence of two CF_3- groups, but the presence of negative charge in the enolate anion would
be expected to assist the nucleophilic attack of the carbon-carbon double bond on the nitrosonium ion. This is shown in Figure (6.3). For acetylacetone, the pKa value in water is much larger (pKa = 8.87) [15] and so the concentration of the enolate anion may be too small under the conditions used for reaction to occur via this form.

For TAA two possible isomers can exist in solution (equation 6.3). One isomer has a CF₃ group adjacent to the C-C bond and would be expected to behave more like the HAA derivative, whereas the other isomer, with the CH₃ group adjacent to the C-C bond would be expected to behave more like the AA derivative. This would explain why TAA shows behaviour that is a mixture of that found for the other two derivatives.
6.2 Reaction of alkyl nitrites with amines in acetonitrile

Due to the large amount of literature on the synthetic uses of alkyl nitrites in the nitrosation of amines [19] it was thought to be of interest to investigate the mechanism of these reactions in acetonitrile as solvent. Many procedures in the literature use an alkyl nitrite (typically amyl nitrite or tertiary butyl nitrite) and the amine, in a solvent such as acetonitrile or chloroform without any acid catalyst. When this was tried in acetonitrile the reaction proceeded readily with primary aromatic amines (aniline, p-toluidine, p-chloroaniline), but the reactions were complicated by the formation of triazines by coupling of the diazonium ion with the unreacted amine. When an aromatic secondary amine was used (N-methylaniline or diphenylamine), the reaction proceeded readily to form the nitrosamine but the nitrosamine reacted further in both cases again making it impossible for the reaction to be studied. The side reactions in this case are unknown but the same reactions could be effected by using a sample of the nitrosamine in acetonitrile indicating that the nitrosamine must be formed in the first step. No reaction was observed with primary and secondary aliphatic amines under the conditions used.
When an excess of sulphuric acid was used in the reaction of the primary aromatic amines, the expected diazonium ion was formed quantitatively with the absence of any side reactions. The diazonium ion was identified by coupling with 2-naphthol-6-8-disulphonic acid in borax buffer. This was calibrated by using the diazonium ion produced from the reaction of p-toluidine and nitrous acid in aqueous solution. The extinction coefficient of the coupled product was $464 \pm 1 \text{ mol}^{-1} \text{ cm}^{-1}$ at 510 nm. The results using $t\text{BuONO}$ and p-toluidine in acetonitrile are shown in Table (6.16)

Table 6.16:
Formation of the diazonium ion from p-toluidine in CH$_3$CN

<table>
<thead>
<tr>
<th>[toluidine] (mol l$^{-1}$)</th>
<th>[H$_2$SO$_4$] (mol l$^{-1}$)</th>
<th>[$t\text{BuONO}$] (mol l$^{-1}$)</th>
<th>Abs 510</th>
<th>[ArN$_2^+$] (mol l$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0113</td>
<td>0.12</td>
<td>2.76×10^{-6}</td>
<td>0.113</td>
<td>$2.5 \times 10^{-6} \pm 2 \times 10^{-6}$</td>
</tr>
<tr>
<td>0.12</td>
<td>-5.52×10^{-6}</td>
<td>0.271</td>
<td>$5.8 \times 10^{-6} \pm 3 \times 10^{-6}$</td>
<td></td>
</tr>
</tbody>
</table>

The reaction of $t\text{BuONO}$ with N-methylaniline (NMA) also occurred readily in the presence of H$_2$SO$_4$, but the nitrosamine underwent further reactions (possibly the Fischer-Hepp rearrangement). It was, however, possible
to study the initial nitrosation reaction because under the conditions used the rate of formation of the nitrosamine was much faster than its subsequent reactions.

The reactions of \(^{3}\)BuONO with aniline, p-toluidine and NMA were studied kinetically in acetonitrile. Reactions were carried out under conditions where \([{^{3}\text{BuONO}}] << [\text{Amine}]\) and also \([H_2SO_4] > 7 [\text{Amine}]\). Under these conditions the amine is essentially completely protonated, as detected by the U.V. spectrum. Good first order behaviour was observed by following the appearance of the diazonium ion or the nitrosamine in the 280-330 nm region. For all three amines the reaction was first order with respect to the amine concentration. Results are shown in Tables (6.17)-(6.19)

Table 6.17:
Variation of \(k_o\) with [aniline] in CH\(_3\)CN

\[
\begin{array}{c|c|c}
\text{[aniline], mol l} & \text{[H}_2\text{SO}_4], \text{mol l}^{-1} & \text{[H}_2\text{SO}_4] = 0.0573 \text{ mol l}^{-1} \\
\text{[aniline] mol l}^{-1} & \text{[H}_2\text{SO}_4] & \text{ko s}^{-1} \\
2.18 \times 10^{-3} & 0.0223 \pm 1.9 \times 10^{-3} \\
4.36 \times 10^{-3} & 0.0549 \pm 4.3 \times 10^{-3} \\
6.54 \times 10^{-3} & 0.0919 \pm 1.4 \times 10^{-3} \\
8.72 \times 10^{-3} & 0.131 \pm 0.010 \\
0.0109 & 0.187 \pm 0.018 \\
\end{array}
\]

slope = \(18.6 \pm 1.2 \text{ mol}^{-1} \text{ s} \) intercept = \(0.02 \pm 0.01 \text{ s} \)
Table 6.18:
Variation of k_o with $[p$-toluidine$]$ in CH$_3$CN

<table>
<thead>
<tr>
<th>[tolyidine] mol l$^{-1}$</th>
<th>k_o s$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.25×10^{-3}</td>
<td>$0.0346 \pm 1.3 \times 10^{-3}$</td>
</tr>
<tr>
<td>4.51×10^{-3}</td>
<td>$0.0638 \pm 1.6 \times 10^{-3}$</td>
</tr>
<tr>
<td>6.76×10^{-3}</td>
<td>$0.0797 \pm 6.4 \times 10^{-3}$</td>
</tr>
<tr>
<td>9.01×10^{-3}</td>
<td>$0.106 \pm 5 \times 10^{-3}$</td>
</tr>
<tr>
<td>0.0135</td>
<td>0.182 ± 0.014</td>
</tr>
</tbody>
</table>

slope = 12.8 ± 1.1 mol$^{-1}$ s$^{-1}$
intercept = $1 \times 10^{-3} \pm 9 \times 10^{-3}$ s$^{-1}$

Table 6.19:
Variation of k_o with [NMA] in CH$_3$CN

<table>
<thead>
<tr>
<th>[tolyidine] mol l$^{-1}$</th>
<th>k_o s$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.63×10^{-3}</td>
<td>$0.0494 \pm 1.3 \times 10^{-3}$</td>
</tr>
<tr>
<td>3.26×10^{-3}</td>
<td>$0.0826 \pm 5.0 \times 10^{-3}$</td>
</tr>
<tr>
<td>4.89×10^{-3}</td>
<td>$0.114 \pm 3 \times 10^{-3}$</td>
</tr>
<tr>
<td>6.52×10^{-3}</td>
<td>$0.173 \pm 5 \times 10^{-3}$</td>
</tr>
<tr>
<td>8.16×10^{-3}</td>
<td>$0.199 \pm 2 \times 10^{-3}$</td>
</tr>
</tbody>
</table>

slope = 23.9 ± 1.7 mol$^{-1}$ s$^{-1}$
intercept = $7 \times 10^{-3} \pm 9 \times 10^{-3}$ s$^{-1}$
An experiment was carried out using [toluidine]$_{\text{BuONO}}$. Again good first order behaviour was obtained by following the appearance of the diazonium ion and the reaction was first order with respect to [^BuONO]. These results are shown in Table (6.20).

Table 6.20:
Variation of k_o with [^BuONO] for reaction with p-toluidine

\[
\begin{array}{|c|c|}
\hline
[p\text{-toluidine}] & [^BuONO] \text{ mol l}^{-1} \\
5 \times 10^{-5} \text{ mol l}^{-1} & \text{mol l}^{-1} \\
330 \text{ nm} & 25^\circ C \\
\hline
\end{array}
\]

\[
\begin{array}{|c|c|}
\hline
[^BuONO] \text{ mol l}^{-1} & k_o \text{ s}^{-1} \\
6.92 \times 10^{-5} & 0.0225 \\
0.0234 & 0.0551 \\
0.0395 & 0.0706 \\
0.0566 & 0.0892 \\
0.0811 & 0.106 \\
\hline
\end{array}
\]

slope = $1.1 \pm 0.1 \text{ mol s}^{-1}$

intercept = $0.023 \pm 6 \times 10^{-3} \text{ s}^{-1}$

The effect of acidity on k_o was also investigated. For aniline, at low acid concentrations the reaction rate was independent of $[H_2SO_4]$, but at higher concentrations the rate increased as $[H_2SO_4]$ increased. The results are shown in Tables (6.21) - (6.23)
Table 6.21:
Effect of $[\text{H}_2\text{SO}_4]$ on rate of nitrosation of aniline

\begin{align*}
\text{[tBuONO]} &= 1 \times 10^{-5} \text{ mol l}^{-1} & \text{[aniline]} &= 2.18 \times 10^{-3} \text{ mol l}^{-1} \\
& & & \text{330 nm} & & \text{25°C} \\
\text{[H}_2\text{SO}_4\text{]} \text{ mol l}^{-1} & & \text{ko s}^{-1} \\
0.0176 & & 0.0211 \pm 1.7 \times 10^{-3} \\
0.0352 & & 0.0241 \pm 1.9 \times 10^{-3} \\
0.0528 & & 0.0239 \pm 1.4 \times 10^{-3} \\
0.0704 & & 0.0174 \pm 2 \times 10^{-4} \\
0.0880 & & 0.0265 \pm 2.2 \times 10^{-3} \\
\end{align*}

Table 6.22:
Effect of $[\text{H}_2\text{SO}_4]$ on the rate of nitrosation of aniline

\begin{align*}
\text{[tBuONO]} &= 1 \times 10^{-6} \text{ mol l}^{-1} & \text{[aniline]} &= 1.9 \times 10^{-3} \text{ mol l}^{-1} \\
& & & \text{330 nm} & & \text{25°C} \\
\text{[H}_2\text{SO}_4\text{]} \text{ mol l}^{-1} & & \text{ko s}^{-1} \\
0.0155 & & 0.0234 \pm 1.1 \times 10^{-3} \\
0.0310 & & 0.0262 \pm 9 \times 10^{-4} \\
0.0466 & & 0.0256 \pm 1.9 \times 10^{-3} \\
0.0776 & & 0.0392 \pm 2.5 \times 10^{-3} \\
0.109 & & 0.0471 \pm 1.1 \times 10^{-3} \\
0.140 & & 0.0599 \pm 2.2 \times 10^{-3} \\
0.233 & & 0.130 \pm 9 \times 10^{-3} \\
\end{align*}
Table 6.23:
Effect of $[\text{H}_2\text{SO}_4]$ on the rate of nitrosation of aniline

$[\text{BuONO}] = 1 \times 10^6 \text{ mol } l^{-1}$ $[\text{aniline}] = 5.9 \times 10^{-3} \text{ mol } l^{-1}$
330 nm 25°C

<table>
<thead>
<tr>
<th>$[\text{H}_2\text{SO}_4]$ mol l^{-1}</th>
<th>k l^{-1}s$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0322</td>
<td>$0.100 \pm 7 \times 10^{-3}$</td>
</tr>
<tr>
<td>0.0643</td>
<td>$0.169 \pm 7 \times 10^{-3}$</td>
</tr>
<tr>
<td>0.0966</td>
<td>0.210 ± 0.011</td>
</tr>
<tr>
<td>0.129</td>
<td>$0.290 \pm 7 \times 10^{-3}$</td>
</tr>
<tr>
<td>0.161</td>
<td>0.382 ± 0.031</td>
</tr>
<tr>
<td>0.241</td>
<td>0.686 ± 0.029</td>
</tr>
</tbody>
</table>

The results in Tables (6.21) and (6.23) are shown graphically in Figure (6.4).

A very similar effect was found in the nitrosation of NMA. The results are shown in Table (6.26).

In the case of p-toluidine the reaction was catalysed by acid over the entire concentration range studied. The results are shown in Table (6.25) and also in Figure (6.5)

These results can be readily understood by comparison with results found for nitrosation of aromatic amines in water with nitrous acid. At low or moderate acidities [20] it is known that the free base form of the amine is
Figure 6.5
Effect of acid in the nitrosation of p-toluidine

Figure 6.4
Effect of acid in the nitrosation of aniline

\[\text{[H}_2\text{SO}_4\text{]} \text{ mol/l} \]

\[k_0 \text{s} \]

\[\text{[aniline] = } 5.9 \times 10^{-3} \text{ mol/l} \]
\[\text{[aniline] = } 1.9 \times 10^{-3} \text{ mol/l} \]
Table 6.26:
Effect of $[\text{H}_2\text{SO}_4]$ on the rate of nitrosation of NMA

\[
\begin{array}{ll}
[+\text{BuONO}] = 5 \times 10^5 \text{ mol l}^{-1} & [\text{NMA}] = 1.63 \times 10^{-3} \text{ mol l}^{-1} \\
330 \text{ nm} & 25^\circ\text{C} \\
\hline \\
[\text{H}_2\text{SO}_4] \text{ mol l}^{-1} & \text{ko s}^{-1} \\
0.0595 & 0.0254 \pm 8 \times 10^{-6} \\
0.0893 & 0.0248 \pm 1.2 \times 10^{-3} \\
0.119 & 0.0345 \pm 7 \times 10^{-4} \\
0.149 & 0.0403 \pm 1.5 \times 10^{-3} \\
0.189 & 0.0494 \pm 1.3 \times 10^{-3} \\
\end{array}
\]

Table 6.25:
Effect of $[\text{H}_2\text{SO}_4]$ on the rate of nitrosation of p-toluidine

\[
\begin{array}{ll}
[+\text{BuONO}] = 5 \times 10^6 \text{ mol l}^{-1} & [\text{p-toluidine}] = 6.76 \times 10^{-4} \text{ mol l}^{-1} \\
285 \text{ nm} & 25^\circ\text{C} \\
\hline \\
[\text{H}_2\text{SO}_4] \text{ mol l}^{-1} & \text{ko s}^{-1} \\
0.0243 & 4.30 \times 10^{-3} \pm 1.8 \times 10^{-4} \\
0.0729 & 0.0121 \pm 7 \times 10^{-4} \\
0.122 & 0.0264 \pm 1.9 \times 10^{-3} \\
0.170 & 0.0463 \pm 3.5 \times 10^{-3} \\
\end{array}
\]
the reactive species in aqueous solution and a zero order dependence upon the concentration of acid is observed. This is shown in Scheme (6.12). The derived first order rate constant is shown in equation (6.13), where under the conditions used \([\text{ArNH}_3] = [\text{ArNH}_3]^\) the total stoichiometric concentration of amine used. A very similar

\[
\text{ArNH}_3 \xrightarrow{\text{Ka}} \text{ArNH}_2 + H^+ \quad (6.12)
\]

\[
\text{HNO}_2 + H^+ + \text{ArNH}_3 \xrightarrow{k} \text{ArN}^+ \xrightarrow{\text{fast}} \text{ArN}_2^+ + H_2O
\]

\[
k_0 = k \text{ Ka} [\text{ArNH}_3]^\)

reaction must be occurring in acetonitrile and so explains the zero order dependence of the rate upon \([\text{H}_2\text{SO}_4]\) at low \([\text{H}_2\text{SO}_4]\). The actual nitrosating species involved, by analogy with the results of Chapter 5, is likely to be the nitrosonium ion, but this could either be formed from the alkyl nitrites or from an equilibrium concentration of nitrous acid (see section 5.1.4). At higher acid concentrations, where the concentration of free amine is very low, another reaction pathway occurs in aqueous solution [20,21], namely the protonated amine becomes the reactive species. This is shown in equation
(6.14). The derived value of k_0 (equation 6.15) shows that the reaction should be first order with respect to both $[\text{amine}]_r$ and $[\text{H}^+]$. This would also explain the observed acid catalysis seen in these reactions. Further evidence for this comes from the fact that the acid catalysis is most marked for the most basic amine, p-toluidine, ($pK_a = 5.08$ [22]) which would be expected to have the lowest concentration of free amine of the amines studied and hence is most likely to react via the alternative mechanism. The pK_a of several amines [23,24] have been determined in acetonitrile. It was found that the aromatic amines are all ca 5-6 pK_a units more basic in acetonitrile than water, i.e. Aniline; $pK_a = 10.56$ in CH_3CN, $pK_a = 4.63$ in H_2O [22] and p-toluidine; $pK_a = 11.25$ in CH_3CN, $pK_a = 5.08$ in H_2O [22], and so the pK_a values in water give a good measure of the relative order of basicity in acetonitrile. The pK_a values of aliphatic amines are all ca 7-8 pK_a units more
basic in acetonitrile than \(\text{H}_2\text{O} \) and so the concentration of free amine in these solutions will be very small indeed. This explains why the aliphatic amines are apparently unreactive under similar conditions to those used for the aromatic amines.

For aniline, \(\text{N}-\text{methyl aniline} \) and \(p\)-toluidine the values of \(k_{Ka} \) for reaction with the free amine can be estimated by extrapolation of a plot of \(k_o \) against \([\text{H}_3\text{SO}_4] \) to zero acid concentration. The results are shown in Table (6.2b). As can be seen the values of \(k_{Ka} \) decrease

\[
\begin{array}{|c|c|c|c|c|}
\hline
\text{Amine} & [\text{Amine}] & k_o & k_{Ka} & p\text{Ka} [22] \\
\text{mol l}^{-1} & \text{mol l}^{-1} \text{s}^{-1} & \text{mol l}^{-1} \text{s}^{-1} & \text{mol l}^{-1} \text{s}^{-1} & \text{water} \\
\hline
\text{Aniline} & 2.18 \times 10^{-3} & 0.023 & 10.4 & 4.63 \\
 & 1.9 \times 10^{-3} & 0.022 & 11.6 & \\
 & 5.9 \times 10^{-3} & 0.065 & 11.0 & \\
\text{NMA} & 1.63 \times 10^{-3} & 0.011 & 6.8 & 4.85 \\
\text{p-toluidine} & 6.76 \times 10^{-3} & 0 & \sim 0 & 5.07 \\
\hline
\end{array}
\]

Table 6.2b:

Values of \(k_{Ka} \) for nitrosation of amines in acetonitrile

-265-
as the basicity of the amine increases. This may indicate that the reactions are diffusion controlled [25], as is the case in water, i.e. the value of \(k \) may be very similar for all three amines, but as accurate values of \(K_a \) are not known it is not possible to say for certain if this is the case.
References:

CHAPTER 7

EXPERIMENTAL DETAILS

7.1 Reagents used

7.1.1 Aqueous solutions (Chapters 2 and 3)

Solutions of perchloric acid were prepared by diluting the required amount of 60 - 62 % perchloric acid solution with distilled water. The acid solutions were then standardized by titration with standard sodium hydroxide solution, using phenolphthalein indicator. Isopropanol (laboratory reagent grade) and tertiary butanol (analar grade) were both purified by fractional distillation. Analar grades of sodium chloride, sodium bromide, sodium azide, sulphamic acid, disodium ortho—phosphate and sodium nitrite were used without further purification. N-methyl aniline was purified by fractional distillation under reduced pressure. Thioglycolic acid was obtained as a commercial sample and was used without any further purification. The alkyl nitrites used, isopropyl nitrite and tertiary butyl nitrite, were prepared from sodium nitrite by the usual procedure [1] and
were purified by fractional distillation (at reduced pressure for tertiary butyl nitrite). The samples were stored in the dark at 0-4°C. In some experiments the pH of the solutions were measured using a PTI-6 universal pH meter with glass electrode.

7.1.2 Alcohol Solution

The alkyl nitrates, alcohols and thioglycolic acid used were as described in Section 7.1.1. Solutions of sulphuric acid in alcohol solvent were prepared by dissolving sulphuric acid (98%-analytical reagent) in the alcohol with ice bath cooling. The solutions were standardized by titration with standard sodium hydroxide solution, using phenolphthalein indicator. Solutions of HCl were prepared by passing dry gaseous HCl into the alcohol with cooling. The HCl gas was produced by reaction of concentrated sulphuric acid with sodium chloride and was dried by passing through concentrated sulphuric acid. Thiourea, tetraethylammonium bromide and tetraethylammonium chloride were all of the highest purity available and the tetraethylammonium salts were stored desiccated.

7.1.3 Aprotic Solutions (Chapters 5 and 6)

Chloroform (laboratory reagent grade) was purified by repeated extraction with water to remove the ethanol. It was then dried for 24 hours over calcium chloride and fractionally distilled, the fraction boiling between 60 and 62°C being collected. The chloroform
was then stored over type 4A molecular sieves. Acetonitrile (H.P.L.C. grade) was purified [2] by reflux with calcium hydride for eight hours followed by fractional distillation from calcium hydride, the constant boiling point fraction being collected and stored over type 4A molecular sieves. Methanol (analytical grade) was purified by fractional distillation. Aniline, N-methyl aniline, acetyl acetone and iso-amyl alcohol were purified by distillation under reduced pressure and p-toluidine was recrystallized before use. Isoamyl nitrite was obtained as a commercial sample and was fractionally distilled under reduced pressure before use. Commercial samples of 1,1,1,5,5,5 - hexafluoro - 2,4, - pentanedione and 1,1,1 - trifluoro -2,4, - pentanedione were used without further purification.

Solutions of H₂SO₄ or HCl in acetonitrile were prepared in a similar way to that described in section 7.12. Commercial samples of sulphuric acid - d₁ (99.5+ atom %) and methanol-OD (99 atom %) were used without further purification. All acid solutions, unless otherwise stated, were used within 6-8 hours of preparation.

7.2 Rate Measurements

7.2.1. Stopped-flow spectrophotometry

Stopped-flow spectrophotometry is a technique for measuring the rate constants of fast reactions,
typically values of first order rate constants of between 0.01 s\(^{-1}\) and 200 s\(^{-1}\) can be measured. A schematic diagram of the apparatus is shown in Figure (7.1). The two solutions to be mixed are stored in the reservoirs and from there they enter two identical syringes. A single piston drives the two syringes so that equal volumes of the solution are mixed. When the plunger of the third syringe hits the stop, the flow stops and the collection of data is triggered. The two solutions usually consisted of a solution containing the alkyl nitrite only and a solution containing all the other reagents. A typical example is shown in Table (7.1).

Table 7.1:

A typical set of solutions for stopped-flow spectrophotometry

<table>
<thead>
<tr>
<th>Solution A</th>
<th>Concentration after mixing</th>
</tr>
</thead>
<tbody>
<tr>
<td>([{}^1\text{PrONO}] = 2.4 \times 10^{-5} \text{ mol l}^{-1})</td>
<td>(1.2 \times 10^{-5} \text{ mol l}^{-1})</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Solution B</th>
</tr>
</thead>
<tbody>
<tr>
<td>([\text{TGA}] = 0.988 \text{ mol l}^{-1})</td>
</tr>
<tr>
<td>([\text{HClO}_2] = 0.406 \text{ mol l}^{-1})</td>
</tr>
<tr>
<td>([{}^1\text{PrOH}] = 0.414 \text{ mol l}^{-1})</td>
</tr>
</tbody>
</table>

The reaction is monitored by using a beam of monochromatic light which passes through the cell. This signal is amplified by a photomultiplier, which has a voltage of about -6 volts across it. As the voltage change is small in the reaction, an equal but opposite voltage (the bias voltage) of +6 volts is added to
Figure 7.1: Stopped Flow Spectrophotometer

P = Observation Point
R = Reservoir
the signal. Therefore with just non-absorbing solution at the observation point, the final voltage is zero, and any voltage change observed results from the absorbance change during the reaction. The voltage changes with time were recorded on a storage oscilloscope, or in some cases were fed directly into an Apple IIe microcomputer where the rate constant was calculated using a Hi-Tech Scientific stopped-flow data aquisition and analysis system (SFOSI.0/05).

All the reactions were carried out under first order conditions.

For the reaction \(R \xrightarrow{k} P \)

\[
\frac{-d[R]}{dt} = \frac{d[P]}{dt} = k_0[R]
\]

On integration equation (7.1) is obtained,

\[
\frac{[n[R]_0}{[R]_t} = -ke^t \quad (7.1)
\]

where \([R]_0 = \) concentration of \(R \) at time = 0

\([R]_t = \) concentration of \(R \) at time = \(t \)
Under the conditions used in the stopped flow spectrophotometer, the voltage change during the reaction is less than 10% of the signal voltage (-6v) and so the output signal voltage is proportional to the absorbance. Absorbance (A) can be related to the concentration (c) of the absorbing species by the Beer-Lambert law (equation 7.2) by knowledge of the extinction coefficient (ε). The voltage is

\[A = \varepsilon \cdot c \cdot l \] \hspace{1cm} (7.2)

therefore directly proportional to concentration.

\[V \propto \varepsilon \cdot c \cdot l \]

\[V = a \cdot \varepsilon \cdot c \cdot l \] where a = constant of proportionality

The voltage at any time t is then given by

\[V_t = a \cdot \varepsilon \cdot R_0 \cdot 1 + a \cdot \varepsilon_p \cdot [P]_t \]

But \([P]_t = [R]_0 - [R]_t\)

\[\therefore V_t = a \cdot \varepsilon \cdot [R]_0 \cdot 1 + a \cdot \varepsilon_p ([R]_0 - [R]_t) \]

\[= [R]_t \cdot 1 (a \cdot \varepsilon \cdot a \cdot \varepsilon_p) + [R]_0 \cdot a \cdot \varepsilon_p \]

but \([R]_0 = [P]_\infty\), where \([P]_\infty\) = concentration of P at time = ∞
so \([R]_0\) a \(\xi_\phi 1\) - \([P]_\infty\) a \(\xi_\phi 1\) = \(V_\infty\)

\[
[R]_t = \frac{V_t - V_\infty}{(a \xi_t - a \xi_\phi)1}
\]

also at time \(t=0\), \([P]_0 = 0\)

so \(V_0 = a \xi_\phi [R]_0\) 1

and \(V_\infty = a \xi_\phi [P]_\infty\) 1 - a \(\xi_\phi [R]_0\) 1

so \(V_0 - V_\infty = [R]_0 (a \xi_\phi 1 - a \xi_\phi 1)\)

\[
\frac{[R]_t}{[R]_0} = \frac{V_t - V_\infty}{V_0 - V_\infty}
\]

substitution into equation (7.1) gives equation (7.2)

\[
\text{In} \quad \frac{V_t - V_\infty}{V_0 - V_\infty} = -k_0 t
\quad \text{(7.2)}
\]

Therefore if \(\text{In}(V_t - V_\infty)\) is plotted against time a straight line should be obtained, with gradient = \(-k_0\)

The values of the observed first order rate constant, \(k_0\), quoted are the mean of at least five separate measurements,
and the error quoted is the standard deviation between the individual ko values. Typical kinetic runs are shown in Tables (7.2) and (7.7)

Table 7.2:

A typical kinetic run for nitrosation of thioglycolic acid in water by \(i \)PrONO

\[
\begin{align*}
[i \text{PrONO}] &= 2 \times 10^{-5} \text{ mol l}^{-1} \\
[i \text{PrOH}] &= 0.592 \text{ mol l}^{-1} \\
[TGA] &= 0.0297 \text{ mol l}^{-1} \\
[HClO_4] &= 0.2 \text{ mol l}^{-1}
\end{align*}
\]

<table>
<thead>
<tr>
<th>t / s</th>
<th>(V_t) mv</th>
<th>ko s(^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>92.5</td>
<td></td>
</tr>
<tr>
<td>0.02</td>
<td>130</td>
<td>9.97</td>
</tr>
<tr>
<td>0.04</td>
<td>162.5</td>
<td>10.29</td>
</tr>
<tr>
<td>0.06</td>
<td>190</td>
<td>10.57</td>
</tr>
<tr>
<td>0.08</td>
<td>210</td>
<td>10.44</td>
</tr>
<tr>
<td>0.10</td>
<td>226</td>
<td>10.31</td>
</tr>
<tr>
<td>0.12</td>
<td>240</td>
<td>10.34</td>
</tr>
<tr>
<td>0.16</td>
<td>252.5</td>
<td>10.53</td>
</tr>
<tr>
<td>300</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

mean \(ko = 10.35 \pm 0.18 \text{ s}^{-1} \)
Table 7.4:
A typical kinetic run for the nitrosation of thiourea by \(^{8}\)BuONO in \(^{8}\)BuOH

\[
\begin{align*}
\text{[BuONO]} & = 1 \times 10^{-3} \text{ mol l}^{-1} \\
\text{[H}_2\text{SO}_4] & = 0.0660 \text{ mol l}^{-1} \\
\text{[thiourea]} & = 0.012 \text{ mol l}^{-1}
\end{align*}
\]

<table>
<thead>
<tr>
<th>t s</th>
<th>Vt mv</th>
<th>ko s^{-1}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>44</td>
<td>0.398</td>
</tr>
<tr>
<td>0.5</td>
<td>61</td>
<td>0.399</td>
</tr>
<tr>
<td>1</td>
<td>74</td>
<td>0.384</td>
</tr>
<tr>
<td>1.5</td>
<td>86</td>
<td>0.395</td>
</tr>
<tr>
<td>2</td>
<td>95</td>
<td>0.391</td>
</tr>
<tr>
<td>2.5</td>
<td>104</td>
<td>0.407</td>
</tr>
<tr>
<td>3</td>
<td>110</td>
<td>0.403</td>
</tr>
<tr>
<td>3.5</td>
<td>115.6</td>
<td>0.408</td>
</tr>
</tbody>
</table>

mean ko = 0.398 ± 0.008 s^{-1}

Table 7.3:
A typical kinetic run for the nitrosation of hydrazoic acid in water by \(^{8}\)BuONO

\[
\begin{align*}
\text{[BuONO]} & = 1.2 \times 10^{-3} \text{ mol l}^{-1} \\
\text{[H}^+] & = 0.50 \text{ mol l}^{-1} \\
\text{[HN}_3] & = 0.0125 \text{ mol l}^{-1}
\end{align*}
\]

<table>
<thead>
<tr>
<th>t s</th>
<th>Vt mv</th>
<th>ko s^{-1}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>156</td>
<td></td>
</tr>
<tr>
<td>0.1</td>
<td>136</td>
<td>1.89</td>
</tr>
<tr>
<td>0.2</td>
<td>122</td>
<td>1.73</td>
</tr>
<tr>
<td>0.3</td>
<td>108</td>
<td>1.78</td>
</tr>
<tr>
<td>0.4</td>
<td>96</td>
<td>1.82</td>
</tr>
<tr>
<td>0.5</td>
<td>87</td>
<td>1.80</td>
</tr>
<tr>
<td>0.6</td>
<td>80</td>
<td>1.77</td>
</tr>
<tr>
<td>0.7</td>
<td>74</td>
<td>1.75</td>
</tr>
</tbody>
</table>

mean ko = 1.79 ± 0.05 s^{-1}
Table 7.6: A typical kinetic run for the nitrosation of aniline by \(^{tBu}ONO\) in acetonitrile

\[
\begin{align*}
[tBuONO] & = 1 \times 10^{-4} \text{ mol l}^{-1} \\
[H_2SO_4] & = 0.161 \text{ mol l}^{-1} \\
[aniline] & = 5.9 \times 10^{-3} \text{ mol l}^{-1}
\end{align*}
\]

<table>
<thead>
<tr>
<th>t s</th>
<th>Vt mv</th>
<th>ko s^{-1}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>17.5</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>47.5</td>
<td>0.365</td>
</tr>
<tr>
<td>1.0</td>
<td>72.5</td>
<td>0.365</td>
</tr>
<tr>
<td>1.5</td>
<td>95.0</td>
<td>0.375</td>
</tr>
<tr>
<td>2.0</td>
<td>111.0</td>
<td>0.366</td>
</tr>
<tr>
<td>2.5</td>
<td>127.5</td>
<td>0.378</td>
</tr>
<tr>
<td>3.0</td>
<td>140.5</td>
<td>0.380</td>
</tr>
<tr>
<td></td>
<td>197.5</td>
<td></td>
</tr>
</tbody>
</table>

mean \(ko = 0.372 \pm 0.006 \text{ s}^{-1}\)

Table 7.5: A typical kinetic run for the nitrosation of methanol by isopropyl nitrite in acetonitrile

\[
\begin{align*}
[\text{PrONO}] & = 0.010 \text{ mol l}^{-1} \\
[\text{MeOH}] & = 0.113 \text{ mol l}^{-1} \\
[H_2SO_4] & = 6.24 \times 10^{-3} \text{ mol l}^{-1}
\end{align*}
\]

<table>
<thead>
<tr>
<th>t s</th>
<th>Vt mv</th>
<th>ko s^{-1}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.005</td>
<td>155</td>
<td></td>
</tr>
<tr>
<td>0.010</td>
<td>122</td>
<td>50.8</td>
</tr>
<tr>
<td>0.015</td>
<td>100</td>
<td>46.9</td>
</tr>
<tr>
<td>0.020</td>
<td>81</td>
<td>46.7</td>
</tr>
<tr>
<td>0.025</td>
<td>65</td>
<td>47.4</td>
</tr>
<tr>
<td>0.030</td>
<td>54</td>
<td>46.5</td>
</tr>
<tr>
<td>0.035</td>
<td>45</td>
<td>46.0</td>
</tr>
<tr>
<td>0.040</td>
<td>38</td>
<td>45.4</td>
</tr>
</tbody>
</table>

mean \(ko = 47.1 \pm 1.6 \text{ s}^{-1}\)
Table 7.8:
A typical kinetic run for the nitrosation of 1,1,1,5,5,5-
hexafluoroacetylacetone by t-BuONO in acetonitrile

\[
\begin{align*}
[HAA] &= 7.23 \times 10^{-6} \text{mol l}^{-1} \\
[BuONO] &= 5 \times 10^{-5} \text{mol l}^{-1} \\
[H_2SO_4] &= 1.24 \times 10^{-3} \text{mol l}^{-1}
\end{align*}
\]

<table>
<thead>
<tr>
<th>t</th>
<th>Abs t</th>
<th>ko s^{-1}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.060</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0.098</td>
<td>0.0240</td>
</tr>
<tr>
<td>20</td>
<td>0.129</td>
<td>0.0245</td>
</tr>
<tr>
<td>30</td>
<td>0.152</td>
<td>0.0242</td>
</tr>
<tr>
<td>40</td>
<td>0.171</td>
<td>0.0244</td>
</tr>
<tr>
<td>50</td>
<td>0.186</td>
<td>0.0246</td>
</tr>
<tr>
<td>60</td>
<td>0.197</td>
<td>0.0245</td>
</tr>
<tr>
<td>70</td>
<td>0.206</td>
<td>0.0245</td>
</tr>
<tr>
<td>80</td>
<td>0.213</td>
<td>0.0245</td>
</tr>
<tr>
<td>90</td>
<td>0.218</td>
<td>0.0243</td>
</tr>
<tr>
<td>100</td>
<td>0.222</td>
<td>0.0241</td>
</tr>
<tr>
<td>110</td>
<td>0.226</td>
<td>0.0245</td>
</tr>
<tr>
<td>230</td>
<td>0.238</td>
<td></td>
</tr>
</tbody>
</table>

mean \(ko \) = 0.0244 ± 2 \times 10^{-5} \text{ s}^{-1}

Table 7.7:
A typical kinetic run for the nitrosation of thioglycolic
acid by nitrous acid in acetonitrile

\[
\begin{align*}
[HNO_2] &< 10^{-4} \text{mol l}^{-1} \\
[H_2SO_4] &= 3.08 \times 10^{-3} \text{mol l}^{-1} \\
[TGA] &= 0.0164 \text{mol l}^{-1}
\end{align*}
\]

<table>
<thead>
<tr>
<th>t</th>
<th>Vt mv</th>
<th>ko s^{-1}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>0.002</td>
<td>53</td>
<td>134</td>
</tr>
<tr>
<td>0.004</td>
<td>73</td>
<td>132</td>
</tr>
<tr>
<td>0.006</td>
<td>88</td>
<td>129</td>
</tr>
<tr>
<td>0.008</td>
<td>100</td>
<td>129</td>
</tr>
<tr>
<td>0.010</td>
<td>109</td>
<td>128</td>
</tr>
<tr>
<td>0.012</td>
<td>113</td>
<td>118</td>
</tr>
</tbody>
</table>

mean \(ko \) = 128 ± 5 \text{ s}^{-1}
7.2.2 **Conventional U.V./Visible Spectrophotometry**

Rate measurements for the slower reactions ($k_0 < 0.01 \text{ s}^{-1}$) were usually carried out using a thermostatted recording spectrophotometer. The machines used were a Beckman model 25, Pye Unicam SP8 - 100, Perkin-Elmer lambda 3 and a Philips PU 8725. A typical reaction procedure was to thermostat a solution of the alkyl nitrite and a solution containing all the other reagents (total volume = 24 ml) at the required temperature. A 1 cm silica cell containing a sample of the solvent used in the reaction was placed in the reference beam of the spectrophotometer. The reaction was started by adding a small volume of the nitrite solution (typically 1 ml) to the other reagents. The solution was then thoroughly mixed and a sample was placed in an identical 1 cm silica cell and placed in the sample beam of the spectrophotometer. The absorbance change at a fixed wavelength was then measured as a function of time. The value of k_0 can then be obtained in a similar way to equation (7.2). A typical kinetic run is shown in Table (7.8)

Equilibrium measurements between alkyl nitrites and alcohols were carried out using the Perkin-Elmer lambda 3 spectrophotometer. The absorbance changes in the spectrum in the 280-410nm region were recorded as a
function of the concentration of the reagents. Knowledge of the extinction coefficients of the alkyl nitrites enabled the concentrations of the alkyl nitrites to be calculated and hence the equilibrium constant could be obtained. This is shown below.

\[
\begin{array}{cccc}
\text{RONO} + R'\text{OH} & \rightleftharpoons & \text{ROH} + R'\text{ONO} \\
A & B & C & D
\end{array}
\]

If only A and D absorb at the wavelength then;

\[
\text{Abs} = [A]_\lambda \epsilon_A l + [D]_\lambda \epsilon_D l
\]

but \([A]_0 = [A] + [D]\)

so \([A] = \frac{\text{Abs} - [D]_\lambda [A]_0}{\epsilon_A l - \epsilon_D l}\)

So if \([A]_0\) (the concentration of A added), the value of \([A]\) and hence \([D]\) can be calculated and if \([B]\) and \([C]\) are such that they are constant through the experiment the value of \(K\) can be readily calculated. Typical results are shown in Table (7.9).
Table 7.9:
Typical results for equilibrium constant measurements between 4PrONO and MeOH in acetonitrile

<table>
<thead>
<tr>
<th>λ (nm)</th>
<th>$\varepsilon_{^4\text{PrONO}}$ (1 mol$^{-1}$ cm$^{-1}$)</th>
<th>$\varepsilon_{\text{MeONO}}$ (1 mol$^{-1}$ cm$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>390</td>
<td>35.86</td>
<td>21.32</td>
</tr>
<tr>
<td>283</td>
<td>105.9</td>
<td>77.97</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>[MeOH] (mol l$^{-1}$)</th>
<th>$[^4\text{PrONO}]$ (mol l$^{-1}$)</th>
<th>$[^4\text{PrONO}]_0$ (mol l$^{-1}$)</th>
<th>Abs</th>
<th>$[^4\text{PrONO}]_{\text{eq}}$ (mol l$^{-1}$)</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.491</td>
<td>0.258</td>
<td>8.42 \times 10$^{-6}$</td>
<td>0.192</td>
<td>0.698</td>
<td>8.6 \times 10$^{-6}$</td>
</tr>
<tr>
<td>0.491</td>
<td>0.515</td>
<td>8.37 \times 10$^{-6}$</td>
<td>0.212</td>
<td>0.733</td>
<td>2.31 \times 10$^{-6}$</td>
</tr>
<tr>
<td>0.491</td>
<td>0.773</td>
<td>8.28 \times 10$^{-6}$</td>
<td>0.224</td>
<td>0.748</td>
<td>3.27 \times 10$^{-6}$</td>
</tr>
<tr>
<td>0.246</td>
<td>0.515</td>
<td>8.30 \times 10$^{-6}$</td>
<td>0.238</td>
<td>0.779</td>
<td>4.20 \times 10$^{-6}$</td>
</tr>
</tbody>
</table>

mean $K = 3.56 \pm 0.26$
References

APPENDIX

a) LECTURES AND SEMINARS ORGANISED BY THE DEPARTMENT OF CHEMISTRY DURING THE PERIOD 1985-1988
(* Denotes those attended)

17th October 1985
Dr C.J.Ludman (University of Durham)
'Some Thermochemical Aspects of Explosions'

24th October 1985*
Dr J Dewing (U.M.I.S.T.)
'Zeolites - Small Holes, Big Opportunities'

30th October 1985*
Dr S.N.Whittleton (University of Durham)
'An investigation of a Reaction Window'

31st October 1985*
Dr P.Timms (University of Bristol)
'Some Chemistry of Fireworks'

5th November 1985*
Prof. M.J.0'Donnell (Indiana - Purdue University)
'New Methodology for the Synthesis of Amino Acids'

7th November 1985*
Prof. G.Ertl (University of Munich)
'Heterogeneous Catalysis'

14th November 1985
Dr S.G.Davies (University of Oxford)
'Chirality Control and Molecular Recognition'

20th November 1985
Dr J.A.H.Macbride (Sunderland Polytechnic)
'A Heterocyclic Tour on a Distorted Tricycle - Biphenylene'

21st November 1985
Prof. K.H.Jack (University of Newcastle)
'Chemistry of Si-Al-O-N Engineering ceramics'
28th November 1985
Prof. D.J. Waddington (University of York)
'Resources for the Chemistry Teacher'

28th November 1985*
Dr B.A.J. Clark (Kodak Ltd)
'Chemistry and Principles of colour photography'

15th January 1986
Prof. N. Sheppard (University of East Anglia)
'Vibrational and Spectroscopic Determinations of the Structures
of Molecules Chemisorbed on Metal Surfaces'

23rd January 1986*
Prof. Sir J. Lewis (University of Cambridge)
'Some More Recent Aspects in the Cluster Chemistry of
Ruthenium and Osmium Carbonyls'

29th January 1986
Dr J.H. Clark (University of York)
'Novel Fluoride Ion Reagents'

30th January 1986*
Dr N.J. Phillips (University of Loughborough)
'Laser Holography'

12th February 1986*
Prof. O.S. Tee (University of Montreal)
'Bromination of Phenols'

12th February 1986
Dr J. Yarwood (University of Durham)
'The Structure of Water in Liquid Crystals'

13th February 1986
Prof. R. Grigg (University of Belfast)
'Thermal Generation of 1, 3-Dipoles'
19th February 1986*
Prof. G. Procter (University of Salford)
'Approaches to the Synthesis of some Natural Products'

20th February 1986*
Dr C. J. F. Barnard (Johnson Mathey Group)
'Platinum Anti-Cancer Drug Development'

26th February 1986
Miss C. Till (University of Durham)
'E.S.C.A. and Optical Emission Studies of the Plasma Polymerisation of Perfluoroaromatics'

27th February 1986*
Prof. R. K. Harris (University of Durham)
'The Magic of Solid State N.M.R.'

5th March 1986*
Dr D. Hathway (University of Durham)
'Herbicide Selectivity'

5th March 1986*
Dr M. Schroder (University of Edinburgh)
'Studies on Macrocycle Complexes'

6th March 1986*
Dr B. Iddon (University of Salford)
'The Magic of Chemistry'

12th February 1986
Dr J. H. Brown (University of Oxford)
'Chelate Control in Homogeneous Catalysis'

14th May 1986*
Dr P. R. R. Langridge-Smith (University of Edinburgh)
'Naked Metal Clusters - Synthesis, Characterisation and Chemistry'
9th June 1986
Prof. R. Schmutzler (Braunschweig, West Germany)
'Mixed Valance Diphosphorous Compounds'

23rd June 1986
Prof. R.E. Wilde (Texas Technical University, USA)
'Molecular Dynamic Processes from Vibrational Bandshapes'

16th October 1986*
Prof. N.N. Greenwood (University of Leeds)
'Glorious Gaffes in Chemistry'

23rd October 1986*
Prof. H.W. Kroto (University of Sussex)
'Chemistry in Stars, between Stars and in the Laboratory'

29th October 1986*
Prof. E.H. Wong (New Hampshire, USA)
'Coordination Chemistry of P-O-P Ligands'

5th November 1986*
Prof. D. Dopp (University of Duisburg)
'Cyclo-additions and cyclo-reversions involving Captodative Alkenes'

6th November 1986*
Dr R.M. Scrowston (University of Hull)
'From Myth and Magic to Modern Medicine'

13th November 1986*
Prof. Sir G. Allen (Unilever Research)
'Biotechnology and the future of the Chemical Industry'

20th November 1986*
Dr A. Milne/Mr S. Christie (International Paints)
'Chemical Serendipity - A Real Life Case Study'

26th November 1986*
Dr N.D.S. Canning (University of Durham)
'Surface adsorption studies of Relevance to Heterogeneous Ammonia synthesis'
27th November 1986
Prof. R.N. Williams (Metropolitan Police Forensic Science)
'Science and Crime'

3rd December 1986*
Dr. J. Miller (DuPont Central Research, USA)
'Molecular Ferromagnets; Chemistry and Physical Properties'

8th December 1986
Prof. T. Dorfmueller (University of Bielefeld)
'Rotational Dynamics in Liquids and Polymers'

22nd January 1987*
Prof. R.H. Ottewill (University of Bristol)
'Colloid Science, A Challenging Subject'

28th January 1987
Dr. W. Clegg (University of Newcastle)
'Carboxylate Complexes of Zinc; Charting a Structural Jungle'

4th February 1987
Prof. A. Thomson (University of East Anglia)
'Metallo Proteins and Magneto Optics'

5th February 1987*
Dr. P. Hubberstey (University of Nottingham)
'Demonstration Lecture on various aspects of Alkali Metal Chemistry'

11th February 1987*
Dr. D.T. Shepherd (University of Durham)
'Pteridine Natural Products; Synthesis and Use in Chemotherapy'

12th February 1987*
Dr. P.J. Rodgers (ICI Billingham)
'Industrial Polymers from Bacteria'

17th February 1987*
Prof. E.H. Wong (New Hampshire, USA)
'Symmetrical Shapes from Molecules to Art and Nature'

-289-
19th February 1987
Dr M. Jarman (Institute of Cancer Research)
'The design of Anti-Cancer Drugs'

4th March 1987
Dr R. Newman (University of Oxford)
'Change and Decay: A Carbon-13 CP/MAS N.M.R. Study of Humification and Coalification Processes'

5th March 1987
Prof. S.V. Ley (Imperial College)
'Fact and Fantasy in Organic Synthesis'

9th March 1987
Prof. G.G. Bordwell (N.E. University, USA)
'Carbon Anions, Radicals, Radical Anions and Radical Cations'

11th March 1987
Dr R.D. Cannon (University of East Anglia)
'Electron Transfer in Polynuclear Complexes'

12th March 1987
Dr E.M. Goodger (Cranfield Inst. of Tech.)
'Alternative fuels for transport'

17th March 1987
Prof. R.F. Hudson (University of Kent)
'Aspects of Organophosphorus Chemistry'

18th March 1987
Prof. R.F. Hudson (University of Kent)
'Homolytic Rearangement and Free Radical Stability'

6th May 1987
Dr R. Bartsch (University of Sussex)
'Low Coordinate Phosphorus Compounds'

7th May 1987
Dr M. Harmer (ICI Chem and Polymer Group)
'The Role of Organometallics in Advanced Materials'
11th May 1987
Prof. S. Pasyankiewicz (Tech. Univ., Warsaw)
'Thermal Decomposition of Methyl Copper and its Reactions with Tri-alkyl Aluminium'

17th May 1987*
Dr M. Blackburn (University of Sheffield)
'Phosphonates as analogues of Biological Phosphate Esters'

24th June 1987*
Prof. S.M. Roberts (University of Exeter)
'Synthesis of Novel Antiviral Agents'

26th June 1987
Dr C. Krespan (E I DuPont de Nemours)
'Nickel (0) and Iron (0) as Reagents in Organofluorine Chemistry'

15th October 1987*
Dr M.J. Winter (University of Sheffield)
'Pyrotechnics'

22nd October 1987*
Prof. J.W. Gray (University of Hull)
'Liquid Crystals and their Applications'

12th October 1987*
Mrs S. van Rose (Geological Museum)
'Chemistry of Volcanoes'

5th November 1987*
Dr A.R. Butler (University of St. Andrews)
'Chinese Alchemy'

12th November 1987*
Prof. D. Seebach (E T H Zurich)
'From Synthetic Methods to Mechanistic Insight'

26th November 1987
Dr D.H. Williams (University of Cambridge)
'Molecular Recognition'
3rd December 1987*
Dr J. Howard (ICI Wilton)
'Chemistry of Non-equilibrium Processes'

10th December 1987*
Dr C.J. Ludman (University of Durham)
'Explosives'

16th December 1987
Mr R. M. Swart (ICI)
'The Interaction of Chemicals with Lipid Bilayers'

19th December 1987*
Prof. P.G. Sammes (Smith, Kline and French)
'Chemical Aspects of Drug Development'

21st January 1988*
Dr F. Palmer (University of Nottingham)
'Luminescence'

28th January 1988*
Dr A. Cairns-Smith (Glasgow University)
'Clay Minerals and the Origin of Life'

11th February 1988
Prof J.J. Turner (University of Nottingham)
'Capturing Organometallic Intermediates'

18th February 1988*
Dr K Borer (University of Durham Industrial Research Labs.)
'The Brighton Bomb - A Forensic Science View'

25th February 1988*
Prof. A Underhill (University of Bangor)
'Molecular Electronics'

3rd March 1988
Prof. W.A.G. Graham (University of Alberta, Canada)
'Rhodium and Iridium Complexes in the Activation of Carbon-Hydrogen Bonds'
7th March 1988*

Prof. H.F. Koch (Ithaca College, USA)
'Does the E2 Mechanism Occur in Solution'

7th April 1988

Prof. M.P. Hartshorn (University of Canterbury, New Zealand)
'Aspects of Ipc Nitration'

18th April 1988

Prof. C.A. Nieto de Castro (University of Lisbon and Imperial College)
'Transport properties of Non-Polar Fluids'

19th April 1988*

Graduate Chemists (Northeast Polytechnics and Universities)
'R.S.C. Graduate Symposium'

25th April 1988*

Prof. D. Birchall (ICI Advanced Materials)
'Environmental Chemistry of Aluminium'

27th April 1988

Dr R Richardson (University of Bristol)
'X-ray Diffraction From Spread Monolayers'

27th April 1988*

Dr J.A. Robinson (University of Southampton)
'Aspects of Antibiotic Biosynthesis'

28th April 1988*

Prof. A. Pines (University of California, Berkeley, USA)
'Some Magnetic Moments'

11th May 1988*

Dr W.A. McDonald (ICI Wilton)
'Liquid Crystal Polymers'

8th June 1988

Dr J.P. Majoral (Universite Paul Sabatier)
'Stabilisation by Complexation of Short-lived Phosphorus Species'

29th June 1988*

Prof. G.A. Olah (University of Southern California)
'New Aspects of Hydrocarbon Chemistry'
b) First Year Induction Course (October-November 1985)

A series of one hour presentations on the services available in the Department

1) Departmental organisation
2) Safety matters
3) Electrical appliances and infra-red spectroscopy
4) Chromatography and Microanalysis
5) Atomic absorptiometry and inorganic analysis
6) Library facilities
7) Mass spectroscopy
8) Nuclear magnetic resonance spectroscopy
9) Glassblowing technique