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There are more things in heaven and earth, Horatio, than are dreamt 

of in your philosophy. 

Hamlet, Act I, Scene V. 



. ABSTRACT 

The non-perturbative behaviour of the non-Abelian gauge theory of 

strong interactions, namely Q(;D, is investigated using the Schwinger-Dyson 

equations. Using an approximation based on solving the Slavnov-Taylor iden­

tities, we derive a closed integral equation for the full gluon propagator. \Ve 

numerically solve this equation, finding a consistent solution which is as sin­

gular as 1/p4 as the momentum p2 - 0, whilst at large momenta the gluon 

propagates like a free particle. 

This infra-red behaviour can be seen as a signal for the confinement of 

quarks and gluons, implying, for example, that the Wilson loop operator behaves 

an 'area law'. 

\Ve then derive an equation for the full massless quark propagator. Us­

ing our solution for the gluon, we find the quark propagator to be suppressed at 

low momentum, to such an extent that the physical particle pole is removed, and 

free quarks cannot propagate. This is just what we might expect of a confining 

theory. 

The inclusion of quarks means we must study their dynamical effects 

via closed fermion loops in the gluon propagator equation. This couples the 

two equations together. We solve the two equations simultaneously, finding that 

the previous infra-red behaviour still holds. As we introduce more flavours of 

fermions, however, the infra-red enhancement of the gluon propagator is dimin­

ished, and this in turn means that the quark propagator is less suppressed. This 

exhibits the dynamical importance of quarks. 

These physically realistic results demonstrate the importance and va­

lidity of the Schwinger-Dyson equations as a valuable tool for investigating the 

non-perturbative features of gauge theories. 
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1.1 Introduction 

Chapter One Strong Interactions 

CHAPTER ONE 

STRONG INTERACTIONS 

The modern study of particles and their interactions has provided us 

with the great successes of non-Abelian gauge theories, which in their second 

quantised form provide us Vvith an extremely accurate description of the weak 

and electromagnetic forces. These two interactions are seen to be different man­

ifestations of a more fundamental 'electroweak' force. This was experimentally 

confirmed by the discovery of the W and Z bosons[l.l], which along with the 

photon constitute the carriers of this force. It also appears that another non­

Abelian gauge theory, that of Quantum Chromodynamics (QCD), may well 

provide us with a dynamical theory of the strong nuclear force. Unfortunately, 

despite many succesful predictions at collider energies, we do not yet under­

stand the most important manifestation of this strong interaction, namely the 

plethora of low energy bound states we call hadrons; their masses, lifetimes, 

decay modes and interactions. Nevertheless, a great many theoretical physicists 

accept this 'standard model' of relatively low energy physics as proven, and cast 

their research efforts towards 'loftier' goals. 

The most important of these is to try and understand how the eligible 

bachelor of general relativity can be married to the unwilling bride of quantum 

theory. It is hoped that the offspring of such a match would be a full quantum 

description of gravity, the attainment of which has been one of the outstanding 

aims of physics for over fifty years. Unfortunately it is unlikely that we shall 

find any experimental evidence to guide us below energies of the Planck mass 

("" 1019 Ge V), a scale totally inaccessible to the earth bound scientist for the 

forseeable future. Indeed, experiment has yet to give us any real clues about 

physics beyond the standard model, despite the belief of most physicists that 

1 



Chapter One Strong Interactions 

there is much more to learn. 

In the absence of experimental clues, much research is guided less by 

physical intuition and more by a desire for mathematical elegance, an avenue 

which has not always proven the most fruitful. The most recent craze is for 

'superstring' theories, which are held to promise the unification of all known 

(and unknown) forces. Here the fundamental objects are not particles, but 

one dimensional 'strings', living in some higher dimensional space-time. As 

a growing band of physicists fiock to the superstring banner, it is worthwhile 

to consider that we have still to understand the existence of many 'everyday' 

particles such as the proton and neutron, the building blocks of nearly all matter 

in the universe! 

This study is an examination of the proposed theory of strong interac­

tions, namely QCD, at the low energies where hadrons dominate. H QCD is the 

theory of strong interactions then there are some fundamental questions which 

must be answered. Here we describe a framework which may well provide these 

answers and we make some first steps towards them, obtaining results which 

qualitatively at least, are physically realistic, and bode well for future studies. 

We shall, however, try to highlight various shortcomings and problems which 

will hopefully be addressed in future studies. 

1.2 Historical Background 

The earliest manifestation of strong interactions is now known to be 

the production of a-rays in the nuclear decays of uranium. The radiation from 

uranium was first observed by Becquerel in 1896. At the time however, the 

nucleus was yet to be discovered and these so called 'Becquerel rays' remained 

unexplained. 

It was 1911 before Rutherford proposed the nucleur model of the atom 

to explain the large angle scattering of a-rays off a gold foil target as observed by 

2 







Chapter One Strong Interactions 

this was likely to be meaningless, without addressing the problem of finding a 

theory which could be made finite by renormalisation. Perhaps the situation is 

best summed up in a conversation between Dirac and Feynman when they first 

met in 1961[1.3): 

F. 

D. 

F. 

D. 

I am Feynman. 

I am Dirac. (Silence.) 

It must be wonderful to be the discoverer of that equation. 

That was a long time ago. (Pause.) 

D. What are you working on? 

F. Mesons. 

D. Are you trying to find an equation for them? 

F. . It is very hard. 

D. One must try. 

In 1947 the situation was further complicated by the discovery of new 

particles in cosmic rays by Rochester and Butler[1.4]. These were called V­

particles because of the tracks they made in the bubble chambers. Soon new 

particles were being copiously produced in accelerators. It was noticed that 

these new particles were always produced in pairs, and this led to the idea 

of 'associated production', or conservation of a new quantum number known 

as strangeness (S). The known particles, the proton, neutron and pion were 

assigned zero strangeness, i.e S=O. So, for example, in the reaction 

1r+ + n --. J(+ +A 

the new particles ](+ and A were assigned strangeness S= + 1 and S= -1 

respectively, and strangeness is seen to be conserved in this allowed reaction. 

This concept also helped to explain the relatively long lifetimes of these strange 

particles ( ...... 10-9 s compared to the usual strong interaction scale of ..... 10-23s). 

5 



Chapter One Strong Interactions 

Since strong interactions conserved strangeness, these particles could only decay 

via the weak nuclear force which was seen to violate strangeness conservation, 

but was very much weaker than the strong force, leading to long lifetimes. 

The way forward was by an extension of the isospin SU(2) symmetry. 

The three pions ( 7r+, 7!"
0 , 71"-) fitted into this symmetry as an I= 1 triplet of 

isospin. With the discovery of strange particles, similar assignments were looked 

for. Gell-Mann and others[1.5] realised that the particles could be fitted into 

representations of the larger group SU(3), which contained the isospin SU(2) as 

a subgroup. SU(3) has eight generators compared to three for SU(2). Some of 

these SU(3) multiplet assignments are shown in fig. 1.1. 

If this SU(3) symmetry were exact, then all particles in the same multi-

plet would have the same mass. Deviations from this were larger than those seen 

within isospin multiplets. By assuming that isospin is an exact symmetry, and 

that the mass term breaking the SU(3) symmetry transforms like the eighth 

generator of SU(3) it was possible to derive a formula relating the masses of 

the different particles in the multiplets. This is the famous Gell-Mann- Okubo 

mass formula for the octet, which states that 

with MN = 940 MeV, M=. = 1320 MeV, MA = 1115 MeV and ME = 1190 MeV, 

this formula is seen to hold to a good approximation. More importantly, at the 

time the n- was missing from the decuplet in fig. 1.1. Gell-Mann was able 

to predict its mass of 1680 MeV and its electric charge. When in 1964 such a 

particle was discovered with the correct mass and charge at Brookhaven, SU(3) 

symmetry was in! 

Despite its apparent simplicity, it seemed that nature did not want to 

use the simplest representations of SU(3), namely a triplet 3, and its conjugate 

representation 3. It is possible to build up all the higher representations by 

6 



Chapter One Strong Interaction.s 

a) b) 

n ,---___,1---...... P 

s-

c) 

n-

Fig. 1.1: SU(3) particle multiplets: a) JP = o- meson octet, b)JP =!+baryon 

octet, c)JP =!+baryon decuplet. Horizontal axis denotes 13 , vertical 

axis denotes Hypercharge Y = S + B, where B is baryon number. 
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u d 

s 

Fig 1.2: fundamental quark triplet of SU(3). 

e 

e 

p Hadrons 

Fig 1.3: Deep Inelastic Scattering. A high energy virtual photon scatters off a 

parton inside the proton. 

virtual photon produced has a high enough energy, and hence a short enough 

wavelength, then it will probe the internal structure of the proton, if any exists. 

It was found[L2], that by analogy with Rutherford's famous experiments 

of fifty years earlier, that a significant number of high energy events involved 

the electron being scattered through a large angle. The analysis revealed that 

this was consistent with the virtual photon scattering off free, spin-!, point..,like 

objects within the proton. It was natural to identify these 'partons', as they 

were called, with the quarks. The 'parton model' of Feynman assumed that 

9 







Chapter One Strong Interactions 

where g is a free parameter. 

Consider the new Lagrangian: 

(1.4) 

This is invariant under the phase transformations in Eq. 1.1 with a now a( x), 

a function of space-time x, if we let the field A 11 transform as: 

(1.5) 

As yet the new gauge field A 11 has no kinetic term, and so we add the 

simplest term quadratic in A 11 (x) and invariant under the transformation of Eq. 

1.5, to obtain the well known Lagrangian: 

(1.6) 

where 

(1. 7) 

This is the Lagrangian for QED, where we identify A"(x) as the photon field. 

Its interaction with the electron field \ll(x) is uniquely defined by demanding 

invariance under local phase, or gauge transformations. Composition of these 

phase transformations forms the Abelian group U(l ). 

We expect the quark field to have three components because of the three 

degrees of colour: 

,y, _- ( tPred ) 
'!t.' tPblue 

tPgreen 

12 
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1.4 Perturbative QCD 

As mentioned earlier, perturbation theory in powers of the coupling 

constant is the only way we know of consistently calculating most quantities in 

field theory. Although the pion-nucleon coupling is large, since it was observed 

that quarks behave like almost free particles inside a proton, the QCD coupling 

between these partons may well be small, allowing us to perform a perturbative 

calculation. This is indeed the case, and we briefly mention some of the successes 

of perturbative QCD[1.6]. 

For the process e+ e- -+ qq, contributing to the ratio R already men­

tioned, we can consider the QCD correction, where one of the produced quarks 

can radiate a gluon. If the parton hypothesis is correct, then this process "'ill 

occur on an extremely short time scale compared to the subsequent hadronisa­

tion. Thus if all three final state particles are sufficiently energetic, we might 

expect to see three reasonably well-defined streams or 'jets' of hadrons. 

This was indeed seen to occur with exactly the correct distribution 

as expected from QCD. It was possible to show that the process involved a 

spin-1 particle in the final state, i.e the gluon. Indeed processes with more 

partons in the final state have now been seen, for example, 'four-jet' events 

from the processes e+e--+ qqgg, e+e- -+ qqqq have been seen, with final state 

distributions conforming to the predictions of QCD. 

More importantly, since QCD is a renormalisable field theory, higher 

order calculations have been carried out with testable experimental predictions. 

For example, the distribution of quarks inside the proton is described in terms of 

two structure functions. The naive parton model implies that these are related, 

and that certain quantities are independent of the energy of the virtual photon. 

Essentially this is a consequence of the quarks being considered as free particles, 

and is known as 'scaling'. The QCD higher order interactions can be calculated 

to cause deviations from this scaling, and these QCD predictions have been 
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experimentally confirmed. There are many other confirmations that _at high 

energies at least, QCD correctly describes the interactions of quarks and gluons. 

An extremely important consequence of higher order calculations in 

field theory is that the coupling strength becomes momentum dependent. For 

example, keeping the dominant (leading) logarithm terms only, the effective 

quark-gluon coupling becomes: 

(1.17) 

where g is the lowest order ('bare') coupling appearing in Eq. 1.11, q is the 

incoming gluon momentum, and K is a large (ultraviolet) momentum cutoff, 

which is needed to make the higher order corrections finite. /30 is equal to 

(11/3)Nc- (2/3)n,, where Nc is the number of colours, and n1 is the number 

of quark flavours. For Nc = 3, and with six quark flavours, as is commonly 

supposed, this quantity is positive. We work with the quantity a,= g2 /4Tr, and 

so squaring Eq. l.li gives us: 

(1.18) 

H we evaluate this equation at another scale q2 = p.2 we obtain: 

/3 1-'2 
a,(p.) =a, -a;

4
°ln( 2 )+0(a:) 
1r "' 

(1.19) 

It is possible to eliminate a, and K 2 between these two equations to 

obtain: 

2 f3o q2 a a.,(q) = a,(p.)- a.,(p.)
4
-ln( 2 ) + O(a.,(p.)) 

1r J.l 
(1.20) 

This can be verified by substituting Eq. 1.19 into Eq. 1.18 and working to 

0( a;(p. )). Here we have expressed the coupling at one scale q2 in terms of the 

coupling at another scale p.2 , and in doing .so have eliminated the dependence 

16 





Chapter One Strong Interactions 

we could no longer rely on perturbation theory, and the derivation of Eq. 1.23 

would break down. 

The conclusion to be drawn from this is that. at larger momentum scales, 

perturbative QCD becomes more reliable, and is self-consistent. At low mo­

menta perturbation theory is no longer valid and we require a non-perturbative 

treatment if we are to test QCD in this crucial region. 

For QED exactly the opposite happens. The quantity {30 is negative, 

and hence it is at low momenta that perturbative QED is reliable and self­

consistent. Although perturbation theory will break down at large momenta, 

this is expected to occur at a scale many orders of magnitude larger than that 

achieved in any experiment. 

What is the physical meaning of this momentum dependence of the 

coupling? H we consider an electron, we can measure its electric charge by 

placing a test particle in its Coulomb field and measuring the force. In field 

theory, however, we cannot just consider an electron on its own, but we must 

take into account the emission of photons, which can produce e+ e- pairs. These 

can exist for a tiny fraction of a second before annihilating into a photon, to 

be subsequently reabsorbed by the electron. Because opposite charges attract, 

the positrons will be preferentially closer to the initial electron, thus 'screening' 

its charge. The closer the test particle approaches the electron, the more it 

penetrates this cloud of surrounding positrons, and thus it will 'see' a larger 

charge. 

For QCD we expect the same screening to occur, but this time we must 

not only take into account qq pairs, but must also include the effect of the gluons, 

since they carry the colour charge, unlike QED where the photon is electrically 

neutral. It turns out that the effect of the gluons is to preferentially surround 

a 'blue' quark with other blue charges. As our test particle is moved closer 

to our initial quark, it is the effect of the gluons which dominate, and so we 

18 



Chapter One Strong Interactions 

will now see less blue charge, and consequently the coupling measured "'i.ll be 

smaller. lVe say that QCD produces 'anti-screening'. Since the distance probed 

is inversely proportional to the momentum scale, we have a heuristic explanation 

for Eq. 1.22 and its equivalent in QED. The smallness of the coupling at large 

momenta helps to explain the observation that a high energy probe sees almost 

free quarks inside a proton. Presumably the coupling becomes large at low 

momenta, prohibiting the quarks from escaping to become free particles, but 

until we can perform a calculation in this non-perturbative region, we have no 

way of knowing whether this is true, or indeed of knowing how the coupling 

really behaves at low energies. 

Returning to Eq. 1.21, this independence of the result of the arbitrary 

scale ll is called 'renormalisation group' invariance[l.6], a subject of important 

study in its own right. It leads to equations that allow the potentially large 

logarithms which can appear in field theory to be summed to give an answer 

independent of ll· An. example occurs in the QCD corrections to the ratio R 

mentioned in section 1.2. Higher order corrections give to leading logarithmic 

order: 

(1.24) 

where the sum is over the different quark flavours and the e9 are the electric 

charges of the quarks. Here W 2 is the centre of mass energy squared of the e+ e­

pair. Substituting the renormalised coupling a,(ll) from Eq. 1.18 gives, to the 

same order in a,(ll ): 

(1.25) 

R must be independent of #l, and we recognise the last two terms as the 

start of the series in Eq. 1.20. Thus we obtain 
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shall give an argument which suggests that this is not so, and that confinement 

will only be understood if we can go beyond perturbation theory. We shall 

then briefly describe one of the most promising avenues of non-perturbative 

calculations to date, that of lattice gauge theories. 

Within perturbation theory in both QED and QCD we do not just 

find the ultraviolet divergences removed by renormalisation, but we also find 

infra-red divergences which occur at zero momenta in the loop integrals. These 

arise because of the masslessness of the gauge particles, the photon and the 

gluon. When calculating, for example, the elastic scattering of an electron off 

an external potential, the higher order corrections are infra-red divergent. These 

can be removed by having a fictitious mass..\ for the photon, and we obtain terms 

proportional to In(..\). It can be shown that in perturbation theory we generate 

a series which sums to be proportional to exp(ln-\). Thus by letting ,\ - 0 

this exponential damping factor makes the cross-section vanish. Thus purely 

elastic scattering is forbidden. Because of the masslessness of the photon, it 

is kinematically possible to emit an infinite number of very low energy (soft) 

photons, and elastic scattering has zero probability. 

To overcome this, physicists use the Bloch-Nordsieck treatment, where 

we calculate only physically observable cross-sections. Since any experiment must 

have a finite energy resolution, in our scattering experiment we must also include 

processes which involve emission of undetectable soft photons. In perturbation 

theory the infra-red divergences will cancel between the higher order corrections 

to the elastic process (virtual corrections) and the soft photon emission processes 

(real corrections) order by order[l.B]. 

In QCD the infra-red divergences are more severe because of the self­

coupling of the gluon. However, it has been shown that here they also produce 

exponential factors damping elastic scattering processes. The question remains 

as to whether we can define physically observable cross-sections as in QED. It is 
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found that the Bloch-Nordsieck treatment works in QCD, as long as we sum over 

the colour degree of freedom of the initial and final states (even this condition 

is not always required). Thus for a detector with a finite energy resolution, 

and which is 'colour blind', we can calculate finite cross-sections involving the 

fundamental constituents of QCD, namely the quarks and gluons. 

This result implies that asymptotic states with quark quantum numbers 

(e.g. fractional electric charge) can exist in perturbation theory. Since they 

are not observed in nature, we deduce that quark confinement is a truly non­

perturbative phenomenom. 

Nevertheless it is argued[1.9] that the severe infra-red beha·viour of QCD 

does proYide a possible mechanism for confinement. Support for this is drawn 

from two dimensional QED and QCD whose infra-red behaviour are extremely 

severe. The simplicity of these models enables us to examine their spectrum. 

In two dimensional massless QED, the theory is exactly solvable. The fermion 

and photon field which appear in the Lagrangian disappear from the physical 

spectrum, leaving a free massive scalar particle. With a fermion mass the the­

ory is no longer exactly solvable, but we still find only scalar particles in the 

physical spectrum. In two dimensional QCD, an expansion based on having a 

large number of colours N, and letting 1/N being an expansion parameter, sim­

ilarly finds that the quark and gluon are absent from the spectrum, leaving only 

scalar particles. Although suggestive, it is not possible to extend the analysis 

from these relatively simple models to the more realistic but far more compli­

cated four dimensional ones. Nevertheless it is argued by some that in QCD 

for scattering involving external coloured particles, we have the possibility that 

the soft gluon emission processes themselves sum to a finite answer, although 

they are individually infra-red divergent. This leaves the cross-section damped 

by the exponential factor from the virtual corrections, and therefore vanishing 

when the gluon mass .\ .,.... 0. It has not yet been possible to show that this 
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is indeed the case, and it seems difficult to relate it to the view of many, that 

confinement is intimately related to the QCD coupling becoming large at low 

momenta, and thus binding the quarks and gluons together so strongly that they 

cannot exist as free particles. 

Probably the most important development in non-perturbative field the­

ory has been that of lattice gauge theories[l.lO]. Treating space-time as a finite 

four dimensional lattice, it was shown how to formulate a gauge theory on this 

discrete space. It was also shown how to perform these lattice calculations us­

ing computers. Theoretically it should be possible to calculate the properties 

of bound states (if they exist) such as masses. Unfortunately the present lat­

tice sizes of about 244 sites are probably too small to give believable results, 

although progress is being made. The use of larger lattices is limited by the size 

of computers available, although this should increase in future. To obtain results 

which apply to real physical space-time, it is necessary to take the 'continuum' 

limit of lattice calculations, where the lattice spacing is to be taken to zero. It 

is not clear that the continuum limit of a lattice theory is necessarily related 

to the continuum theory itself. Nevertheless this area will remain an important 

testing ground for gauge theories. 

It would be desirable then, to have a non-perturbative, continuum anal­

ysis of QCD, which, even if it could not accurately calculate the proton mass or 

other quantitative details, would at least allow us to understand the qualitative 

mechanism whereby quarks and gluons are confined. 
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CHAPTER TWO 

THE SCHWINGER-DYSON EQUATIONS 

2.1 Path Integrals and Functional Methods in Field Theory 

Our approach to a non-perturbative study of QCD will be to examine 

certain integral equations which in general form are obeyed by all quantum field 

theories. Before we do this however, we must first set up a frameworkin which 

to define various quantities in field theory, and then to derive these equations. 

The starting point for the functional approach to field theory is the 

generating functional[2.1]: 

Z[J] = j[D¢J]exp (is+ i j cJ4x¢J(x)J(x)) (2.1) 

where here we are looking at a scalar field theory. The symbol [D¢] denotes a 

functional integral over all possible field configurations ¢(z ), and Sis the classi­

cal action. In field theory we generally want to calculate the Green's functions, 

which are defined by 

(2.2) 

In general we can relate then-point Green's function to then-particle 

scattering amplitude[2.2]. These Green's functions can be obtained from the 

generating functional via functional differentiation: 

(2.3) 

We define a related quantity W[J] by 

Z[J] = exp lV[J] (2.4) 
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