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There are more things in heaven and earth, Horatio, than are dreamt 

of in your philosophy. 

Hamlet, Act I, Scene V. 



. ABSTRACT 

The non-perturbative behaviour of the non-Abelian gauge theory of 

strong interactions, namely Q(;D, is investigated using the Schwinger-Dyson 

equations. Using an approximation based on solving the Slavnov-Taylor iden

tities, we derive a closed integral equation for the full gluon propagator. \Ve 

numerically solve this equation, finding a consistent solution which is as sin

gular as 1/p4 as the momentum p2 - 0, whilst at large momenta the gluon 

propagates like a free particle. 

This infra-red behaviour can be seen as a signal for the confinement of 

quarks and gluons, implying, for example, that the Wilson loop operator behaves 

an 'area law'. 

\Ve then derive an equation for the full massless quark propagator. Us

ing our solution for the gluon, we find the quark propagator to be suppressed at 

low momentum, to such an extent that the physical particle pole is removed, and 

free quarks cannot propagate. This is just what we might expect of a confining 

theory. 

The inclusion of quarks means we must study their dynamical effects 

via closed fermion loops in the gluon propagator equation. This couples the 

two equations together. We solve the two equations simultaneously, finding that 

the previous infra-red behaviour still holds. As we introduce more flavours of 

fermions, however, the infra-red enhancement of the gluon propagator is dimin

ished, and this in turn means that the quark propagator is less suppressed. This 

exhibits the dynamical importance of quarks. 

These physically realistic results demonstrate the importance and va

lidity of the Schwinger-Dyson equations as a valuable tool for investigating the 

non-perturbative features of gauge theories. 
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1.1 Introduction 

Chapter One Strong Interactions 

CHAPTER ONE 

STRONG INTERACTIONS 

The modern study of particles and their interactions has provided us 

with the great successes of non-Abelian gauge theories, which in their second 

quantised form provide us Vvith an extremely accurate description of the weak 

and electromagnetic forces. These two interactions are seen to be different man

ifestations of a more fundamental 'electroweak' force. This was experimentally 

confirmed by the discovery of the W and Z bosons[l.l], which along with the 

photon constitute the carriers of this force. It also appears that another non

Abelian gauge theory, that of Quantum Chromodynamics (QCD), may well 

provide us with a dynamical theory of the strong nuclear force. Unfortunately, 

despite many succesful predictions at collider energies, we do not yet under

stand the most important manifestation of this strong interaction, namely the 

plethora of low energy bound states we call hadrons; their masses, lifetimes, 

decay modes and interactions. Nevertheless, a great many theoretical physicists 

accept this 'standard model' of relatively low energy physics as proven, and cast 

their research efforts towards 'loftier' goals. 

The most important of these is to try and understand how the eligible 

bachelor of general relativity can be married to the unwilling bride of quantum 

theory. It is hoped that the offspring of such a match would be a full quantum 

description of gravity, the attainment of which has been one of the outstanding 

aims of physics for over fifty years. Unfortunately it is unlikely that we shall 

find any experimental evidence to guide us below energies of the Planck mass 

("" 1019 Ge V), a scale totally inaccessible to the earth bound scientist for the 

forseeable future. Indeed, experiment has yet to give us any real clues about 

physics beyond the standard model, despite the belief of most physicists that 
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Chapter One Strong Interactions 

there is much more to learn. 

In the absence of experimental clues, much research is guided less by 

physical intuition and more by a desire for mathematical elegance, an avenue 

which has not always proven the most fruitful. The most recent craze is for 

'superstring' theories, which are held to promise the unification of all known 

(and unknown) forces. Here the fundamental objects are not particles, but 

one dimensional 'strings', living in some higher dimensional space-time. As 

a growing band of physicists fiock to the superstring banner, it is worthwhile 

to consider that we have still to understand the existence of many 'everyday' 

particles such as the proton and neutron, the building blocks of nearly all matter 

in the universe! 

This study is an examination of the proposed theory of strong interac

tions, namely QCD, at the low energies where hadrons dominate. H QCD is the 

theory of strong interactions then there are some fundamental questions which 

must be answered. Here we describe a framework which may well provide these 

answers and we make some first steps towards them, obtaining results which 

qualitatively at least, are physically realistic, and bode well for future studies. 

We shall, however, try to highlight various shortcomings and problems which 

will hopefully be addressed in future studies. 

1.2 Historical Background 

The earliest manifestation of strong interactions is now known to be 

the production of a-rays in the nuclear decays of uranium. The radiation from 

uranium was first observed by Becquerel in 1896. At the time however, the 

nucleus was yet to be discovered and these so called 'Becquerel rays' remained 

unexplained. 

It was 1911 before Rutherford proposed the nucleur model of the atom 

to explain the large angle scattering of a-rays off a gold foil target as observed by 

2 



Chapter One Strong Interactions 

Geiger and Marsden. Subsequent experiments confirmed Rutherford's scattering 

formula and the atomic nucleus came into existence. 

In many ways Rutherford .was fortunate that the energy of his a-rays 

(,...., 5 MeV) was too low to penetrate the Coulomb barrier of the relatively heavy 

nuclei, such as gold, used in the target. After the first world war the experi

ment was repeated but this time with light nuclei, particularly Hydrogen, in the 

target, for which the coulomb repulsion was less. For the first time induced nu

clear reactions were observed[l.2] as massive deviations from the electromagnetic 

coulomb repulsion, the first signal of a new force. 

Despite the success of the nuclear model, the problem remained of 

atomic mass and it was not until 1930 that Bothe and Bekke observed a new 

penetrating form of radiation. Chadwick was then able to show that this was 

due to a new, electrically neutral particle with the same mass as the proton. 

With this new particle, the neutron (n), and the already discovered electron 

(e) and proton (p), the family of subatomic particles seemed complete. The 

atom was held to be a small central nucleus consisting of protons and neutrons, 

around which the electrons orbited. 

The question remained as to how the nucleus was held together against 

the electrostatic Coulomb repulsion of the protons. Experiment showed that 

the n- n, p- p, and n- p nuclear forces we~e similar in strength, leading to 

the conclusion that the nuclear force was independent of the electrical charge 

of the particle involved. This was made into a more sophisticated statement by 

considering the neutron and proton as two different aspects of one particle, the 

nucleon (N), similar in concept to the two different spin states of any spin-! 
' 

particle. More exactly, the nucleon was a doublet of isotopic spin or isospin, 

I= !· The proton was assigned Ia = +! and the neutron 13 = -!, where Ia 

is the third component of the isospin vector. The nuclear forces were invariant 

under the isospin rotations of the group SU(2). 

3 



Chapter One Strong Interactions 

On a more dynamical level, Yukawa proposed that this force would be 

carried by a particle called the pi-meson or pion ( 1r ), by analogy ·with how the 

photon carried the electromagnetic force. Because of the short range of the 

nuclear forces, this pion would have to be massive, of the order of 100 Mev. A 

particle of this mass was indeed observed in cosmic rays and naturally identified 

as the pion. Unfortunately it had all the wrong properties and was later realised 

to be a more massive copy of the electron, which became known as the muon 

(J.l ). The pion itself was discovered just after the second world war, and had all 

the properties expected. 

These early advances went hand in hand vdth the development of quan

tum theory, and particularly quantum field theory, in which particles were cre

ated and annihilated in interactions. Unfortunately quantum field theories are 

plagued mth infinities in any calculations beyond the lowest order in pertur

bation theory, the only known consistent method for performing calculations. 

These occur in momentum (loop) integrals which are divergent at large, or 'ul

traviolet' momenta. One of the major theoretical successes of the thirties and · 

forties was to show that for quantum electrodynamics (QED) the theory of 

electromagnetism, that these infinities could be absorbed into infinite renormal

isations of the fields, masses and coupling constants. Any quantity was then 

finite when expressed in terms of these renormalised quantities. This program 

of renormalisation has allowed calculations to be performed in QED in which 

we can obtain the finest agreement known between theory and experiment. 

At the same time people tried to develop a quantum field theory of the 

strong (and weak) nuclear forces. Perturbation theory expresses quantities as 

a power series in the coupling constant. For QED the relevant quantity is the 

fine structure constant a ~ 1i7 • Since this .is a small number, we might expect 

the first few terms of such a series to give accurate answers. The same quantity 

for strong interactions was estimated to be of the order of 10. A power series in 

4 



Chapter One Strong Interactions 

this was likely to be meaningless, without addressing the problem of finding a 

theory which could be made finite by renormalisation. Perhaps the situation is 

best summed up in a conversation between Dirac and Feynman when they first 

met in 1961[1.3): 

F. 

D. 

F. 

D. 

I am Feynman. 

I am Dirac. (Silence.) 

It must be wonderful to be the discoverer of that equation. 

That was a long time ago. (Pause.) 

D. What are you working on? 

F. Mesons. 

D. Are you trying to find an equation for them? 

F. . It is very hard. 

D. One must try. 

In 1947 the situation was further complicated by the discovery of new 

particles in cosmic rays by Rochester and Butler[1.4]. These were called V

particles because of the tracks they made in the bubble chambers. Soon new 

particles were being copiously produced in accelerators. It was noticed that 

these new particles were always produced in pairs, and this led to the idea 

of 'associated production', or conservation of a new quantum number known 

as strangeness (S). The known particles, the proton, neutron and pion were 

assigned zero strangeness, i.e S=O. So, for example, in the reaction 

1r+ + n --. J(+ +A 

the new particles ](+ and A were assigned strangeness S= + 1 and S= -1 

respectively, and strangeness is seen to be conserved in this allowed reaction. 

This concept also helped to explain the relatively long lifetimes of these strange 

particles ( ...... 10-9 s compared to the usual strong interaction scale of ..... 10-23s). 

5 



Chapter One Strong Interactions 

Since strong interactions conserved strangeness, these particles could only decay 

via the weak nuclear force which was seen to violate strangeness conservation, 

but was very much weaker than the strong force, leading to long lifetimes. 

The way forward was by an extension of the isospin SU(2) symmetry. 

The three pions ( 7r+, 7!"
0 , 71"-) fitted into this symmetry as an I= 1 triplet of 

isospin. With the discovery of strange particles, similar assignments were looked 

for. Gell-Mann and others[1.5] realised that the particles could be fitted into 

representations of the larger group SU(3), which contained the isospin SU(2) as 

a subgroup. SU(3) has eight generators compared to three for SU(2). Some of 

these SU(3) multiplet assignments are shown in fig. 1.1. 

If this SU(3) symmetry were exact, then all particles in the same multi-

plet would have the same mass. Deviations from this were larger than those seen 

within isospin multiplets. By assuming that isospin is an exact symmetry, and 

that the mass term breaking the SU(3) symmetry transforms like the eighth 

generator of SU(3) it was possible to derive a formula relating the masses of 

the different particles in the multiplets. This is the famous Gell-Mann- Okubo 

mass formula for the octet, which states that 

with MN = 940 MeV, M=. = 1320 MeV, MA = 1115 MeV and ME = 1190 MeV, 

this formula is seen to hold to a good approximation. More importantly, at the 

time the n- was missing from the decuplet in fig. 1.1. Gell-Mann was able 

to predict its mass of 1680 MeV and its electric charge. When in 1964 such a 

particle was discovered with the correct mass and charge at Brookhaven, SU(3) 

symmetry was in! 

Despite its apparent simplicity, it seemed that nature did not want to 

use the simplest representations of SU(3), namely a triplet 3, and its conjugate 

representation 3. It is possible to build up all the higher representations by 

6 



Chapter One Strong Interaction.s 

a) b) 

n ,---___,1---...... P 

s-

c) 

n-

Fig. 1.1: SU(3) particle multiplets: a) JP = o- meson octet, b)JP =!+baryon 

octet, c)JP =!+baryon decuplet. Horizontal axis denotes 13 , vertical 

axis denotes Hypercharge Y = S + B, where B is baryon number. 
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Chapter One Strong Interactions 

taking tensor products of these fundamental representations. For example we 

have: 

3 ® 3 ® 3 = 10 Ef7 8 Ef7 8 Ef7 1 

Those hadrons with integer spin, known as mesons, e.g. the pions, 

appeared in multiplets from the first of these decompositions, those with half 

integer spin, known as the baryons, from the second. It was as though there were 

three fundamental particles with spin-! in the 3 representation called quarks 

(q). The mesons appeared to be made from qq pairs, and the baryons from qqq 

combinations. This quark triplet is shown in fig 1.2. It consists of an up (u) 

quark of charge+~ and a down (d) and strange (s) quark both of charge -k· 
If the masses of the up and down quarks were the same, with the strange quark 

heavier, then this would give rise to the correct mass formula which was seen to 

hold to a good approximation. By assigning Is = +t, -!, 0 and S= 0, 0,-1 to 

the u,d,s quarks respectively, the correct quantum numbers for the hadrons were 

obtained. The u,d,s labels have become known as different ':flavours' of quarks. 

It should be stressed that at this stage quarks were purely mathematical 

objects, and their fractional electric charge in partiCular made it difficult for 

them to be thought of as real particles. 

The situation changed dramatically in what has become known as the 

Deep Inelastic Scattering experiments performed at SLAC during the sixties. 

Here high energy electrons were scattered onto protons. The latter broke up to 

create a shower of hadrons. As far as we know an electron is a truly fundamental 

particle, It therefore survives the impact and can be detected in the final state 

to 'tag' the collision. The process is depicted diagramatically in fig. 1.3. If the 

8 
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u d 

s 

Fig 1.2: fundamental quark triplet of SU(3). 

e 

e 

p Hadrons 

Fig 1.3: Deep Inelastic Scattering. A high energy virtual photon scatters off a 

parton inside the proton. 

virtual photon produced has a high enough energy, and hence a short enough 

wavelength, then it will probe the internal structure of the proton, if any exists. 

It was found[L2], that by analogy with Rutherford's famous experiments 

of fifty years earlier, that a significant number of high energy events involved 

the electron being scattered through a large angle. The analysis revealed that 

this was consistent with the virtual photon scattering off free, spin-!, point..,like 

objects within the proton. It was natural to identify these 'partons', as they 

were called, with the quarks. The 'parton model' of Feynman assumed that 

9 
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these quarks were essentially free inside the proton, and that they interacted 

instantaneously with the incident photon. It. was on a much larger time scale 

that the subsequent break-up and hadronisation of the proton into the final state 

particles occured. This model had much success in phenomenological studies of 

hadrons. Quarks had arrived as real particles! Despite these successes, problems 

still remained: 

(i) Why were free quarks not observed in nature, and only qq, qqq combinations 

seen. 

(ii) Quarks must have spin-! to explain the observed hadrons. The~++ with 

third component of spin Sa = +l must therefore be made up from three up 

quarks all with Sa = +! and therefore have a symmetric wave function with 

respect to interchange of any two of these identical quarks. This was a violation 

of Fermi-Dirac statistics. 

The most satisfactory solution to this second problem is to suppose 

that the quarks have an additional quantum number, which we shall call colour, . 
and that the colour wave function is antisymmetric with respect to interchange 

of quarks. Thus it is postulated that all observable hadrons axe singlets with 

respect to the colour degree of freedom. 

How many colours are there? This can be answered by experiment. For 

example the ratio 

R = u(e+e- -+ hadrons) 
u(e+e--+ J.l+J.l-) 

is naively expected to be constant and equal to the sum of the squares of the 

quark charges. For three flavours (and later four and five) this ratio was found 

to be a factor of three too small when compared with experiment. By proposing 

three colours, each flavour of quark is counted three times and we can obtain 

10 
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agreement. This was supported by a similar argument in calculating the width 

for the decay 1r
0 --+"'("'(,which was found to be about nine times too small when 

compared with experiment, and was expected to be proportional to the number 

of colours squared. 

Progress was being made, but there was still no dynamical theory of 

strong interactions, and such a theory would have to explain the non-observation 

of free quarks, despite the fact that in high energy collisions they behaved as 

almost free particles! 

1.3 Local Gauge Invariance 

The way forward to a dynamical theory of strong interactions was by the 

principle of local gauge invariance, which had provided us with the successful 

theory of electromagnet~sm, QED. The non-Abelian extension of this was to 

provide us with a candidate theory for the unified electroweak interactions, and 

since gauge theories were playing such a crucial role in nature, it was sensible 

to attempt to extend the idea to strong interactions. 

Symmetries play an important role in both classical and quantum 

physics. In quantum field theory we usually think of a symmetry as a group 

of transformations on the fields, which leave the Lagrangian invariant. Consider 

the Lagrangian for a free Dirac fermion: 

{1.1) 

This is invariant under a constant change of phase 

- _, - . 
w(z)--+ \l1 (z) = \ll(z)e-•a-

(1.2) 

This is not the case if we let a be space-time dependent, because of 

the derivative in Eq. 1.1. We can restore invariance by introducing a new field 

A"(z), and defining a covariant derivative D", such that 

11 



Chapter One Strong Interactions 

where g is a free parameter. 

Consider the new Lagrangian: 

(1.4) 

This is invariant under the phase transformations in Eq. 1.1 with a now a( x), 

a function of space-time x, if we let the field A 11 transform as: 

(1.5) 

As yet the new gauge field A 11 has no kinetic term, and so we add the 

simplest term quadratic in A 11 (x) and invariant under the transformation of Eq. 

1.5, to obtain the well known Lagrangian: 

(1.6) 

where 

(1. 7) 

This is the Lagrangian for QED, where we identify A"(x) as the photon field. 

Its interaction with the electron field \ll(x) is uniquely defined by demanding 

invariance under local phase, or gauge transformations. Composition of these 

phase transformations forms the Abelian group U(l ). 

We expect the quark field to have three components because of the three 

degrees of colour: 

,y, _- ( tPred ) 
'!t.' tPblue 

tPgreen 

12 



Chapter One Strong Interactions 

where we use the labels red,blue and green to denote the three colours. 

Thus our free Lagrangian for one flavour of quark will be: 

Co = \l1(x)(ip- m)\l1(x) (1.8) 

but where the \l1(x) are three component quantities. 

This is invariant under the transformations of the larger non-Abelian 

group SU(3) (not to be confused with the flavour SU(3) invariance above): 

(1.9) 

where the eight quantities A4 /2 are the Gell-Mann 3 x 3 matrices which generate 

the group SU(3). The 84 are eight phase parameters. The A4 satisfy the well 

known commutation relations: 

[
_xa _xbl 
2 ' 2 

(1.10) 

where the /abc are called the structure constants of the group 

Following the same procedure as that for QED, we would like to de

rive a Lagrangian which is invariant when the 84 become the space-time de

pendent functions 84 (x). This time we have to introduce eight gauge fields 

A~(x ), one for each generator of the group. Introducing the matrix function 

U(x) = eiB"(z)'A"/2 , we define the covariant derivative in a similar way to be-

fore: 

{1.11) 

where it is to be stressed that D 11 is a 3 x 3 matrix, and we will write A 11 (x) for 

the matrix A~(x ).X 4 /2. 

We can obtain invariance under local SU(3) transformations provided 

A 11 ( x) transforms as: 
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(1.12) 

The covariant derivative has the transformation property: 

(1.13) 

And so the quantity F;, = - i / g ( D I', D, J transforms in the same way. 

Explicit calculation yields: 

(1.14) 

Using the commutation relations in Eq. 1.10, and writing the matrix F~'" as 

F;, ..\a /2 we obtain: 

(1.15) 

This is the non Abelian extension of Eq. 1.7. Thus our gauge invariant La-

grangian will now read: 

(1.16) 

This is the classical Lagrangian from which the quantum field theory 

known as QCD is obtained. In other words QCD is the theory of gauged SU(3) 

colour transformations, specifying how the coloured quarks interact with the 

non-Abelian gauge fields we call gluons (g). Unlike QED it should be noted 

that the gluons themselves carry the colour charge, and so can interact with 

other gluons, a feature of essential importance. 

Finally it should be mentioned that gauge theories are renormalisable, 

and in fact are the only possible theories of spin-1 particles in which we can 

consistently eliminate the ultraviolet divergences of field theory. 
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1.4 Perturbative QCD 

As mentioned earlier, perturbation theory in powers of the coupling 

constant is the only way we know of consistently calculating most quantities in 

field theory. Although the pion-nucleon coupling is large, since it was observed 

that quarks behave like almost free particles inside a proton, the QCD coupling 

between these partons may well be small, allowing us to perform a perturbative 

calculation. This is indeed the case, and we briefly mention some of the successes 

of perturbative QCD[1.6]. 

For the process e+ e- -+ qq, contributing to the ratio R already men

tioned, we can consider the QCD correction, where one of the produced quarks 

can radiate a gluon. If the parton hypothesis is correct, then this process "'ill 

occur on an extremely short time scale compared to the subsequent hadronisa

tion. Thus if all three final state particles are sufficiently energetic, we might 

expect to see three reasonably well-defined streams or 'jets' of hadrons. 

This was indeed seen to occur with exactly the correct distribution 

as expected from QCD. It was possible to show that the process involved a 

spin-1 particle in the final state, i.e the gluon. Indeed processes with more 

partons in the final state have now been seen, for example, 'four-jet' events 

from the processes e+e--+ qqgg, e+e- -+ qqqq have been seen, with final state 

distributions conforming to the predictions of QCD. 

More importantly, since QCD is a renormalisable field theory, higher 

order calculations have been carried out with testable experimental predictions. 

For example, the distribution of quarks inside the proton is described in terms of 

two structure functions. The naive parton model implies that these are related, 

and that certain quantities are independent of the energy of the virtual photon. 

Essentially this is a consequence of the quarks being considered as free particles, 

and is known as 'scaling'. The QCD higher order interactions can be calculated 

to cause deviations from this scaling, and these QCD predictions have been 
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experimentally confirmed. There are many other confirmations that _at high 

energies at least, QCD correctly describes the interactions of quarks and gluons. 

An extremely important consequence of higher order calculations in 

field theory is that the coupling strength becomes momentum dependent. For 

example, keeping the dominant (leading) logarithm terms only, the effective 

quark-gluon coupling becomes: 

(1.17) 

where g is the lowest order ('bare') coupling appearing in Eq. 1.11, q is the 

incoming gluon momentum, and K is a large (ultraviolet) momentum cutoff, 

which is needed to make the higher order corrections finite. /30 is equal to 

(11/3)Nc- (2/3)n,, where Nc is the number of colours, and n1 is the number 

of quark flavours. For Nc = 3, and with six quark flavours, as is commonly 

supposed, this quantity is positive. We work with the quantity a,= g2 /4Tr, and 

so squaring Eq. l.li gives us: 

(1.18) 

H we evaluate this equation at another scale q2 = p.2 we obtain: 

/3 1-'2 
a,(p.) =a, -a;

4
°ln( 2 )+0(a:) 
1r "' 

(1.19) 

It is possible to eliminate a, and K 2 between these two equations to 

obtain: 

2 f3o q2 a a.,(q) = a,(p.)- a.,(p.)
4
-ln( 2 ) + O(a.,(p.)) 

1r J.l 
(1.20) 

This can be verified by substituting Eq. 1.19 into Eq. 1.18 and working to 

0( a;(p. )). Here we have expressed the coupling at one scale q2 in terms of the 

coupling at another scale p.2 , and in doing .so have eliminated the dependence 
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on the bare coupling as well as the ultraviolet cutoff. This is an example of 

renormalisation. 

Unfortunately even if a 6 (Jl) ¢: 1, the perturbative series will break down 

at large momenta, because of the logarithm. In Eq. 1.20, however, the scale 

Jl is arbitrary, and so the value of the coupling at q should not depend on the 

choice of the scale Jl· This means that the higher terms in the series must all be 

related, so that the series sums to an answer independent of Jl· In fact the series 

is summed by solving a differential equation, but here we merely note that to 

this order we can rewrite Eq. 1.20 as: 

aB(Jl) 
a 8 (q) = 1 + a 8 (Jl)(f3o/4rr)ln(q2 /Jl2 ) 

{1.21) 

That this is independent of Jl can be seen by taking the reciprocal of this equation 

to get: 

1 f3o 2 1 f3o 2 -- - -lnq = -- - -lnJl 
a 8 (q) 4rr a 11 (Jl) 4rr 

(1.22) 

The left hand side of this equation is independent of Jl, whilst the right hand 

side is independent of q. Thus both sides must be equal to a constant which we 

write as (f30 /4rr)lnA2 • Thus we obtain: 

{1.23) 

Here A is a scale introduced in the theory because of the requirements 

of renormalisation. It is not specified, and must be deduced from experiment. 

The important thing to note is that at large momenta, q2 ~ A2 , a 11 (q) becomes 

smaller and smaller. Thus as q2 --+ oo we find that a 11 (q) --+ 0. This property 

is known as ~asymptotic freedom'. At small momenta however, the coupling 

becomes large, and indeed from Eq. 1.23 becomes infinite at q2 = A2• Before we 

reached this scale though, the fact that the coupling is large would mean that 
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we could no longer rely on perturbation theory, and the derivation of Eq. 1.23 

would break down. 

The conclusion to be drawn from this is that. at larger momentum scales, 

perturbative QCD becomes more reliable, and is self-consistent. At low mo

menta perturbation theory is no longer valid and we require a non-perturbative 

treatment if we are to test QCD in this crucial region. 

For QED exactly the opposite happens. The quantity {30 is negative, 

and hence it is at low momenta that perturbative QED is reliable and self

consistent. Although perturbation theory will break down at large momenta, 

this is expected to occur at a scale many orders of magnitude larger than that 

achieved in any experiment. 

What is the physical meaning of this momentum dependence of the 

coupling? H we consider an electron, we can measure its electric charge by 

placing a test particle in its Coulomb field and measuring the force. In field 

theory, however, we cannot just consider an electron on its own, but we must 

take into account the emission of photons, which can produce e+ e- pairs. These 

can exist for a tiny fraction of a second before annihilating into a photon, to 

be subsequently reabsorbed by the electron. Because opposite charges attract, 

the positrons will be preferentially closer to the initial electron, thus 'screening' 

its charge. The closer the test particle approaches the electron, the more it 

penetrates this cloud of surrounding positrons, and thus it will 'see' a larger 

charge. 

For QCD we expect the same screening to occur, but this time we must 

not only take into account qq pairs, but must also include the effect of the gluons, 

since they carry the colour charge, unlike QED where the photon is electrically 

neutral. It turns out that the effect of the gluons is to preferentially surround 

a 'blue' quark with other blue charges. As our test particle is moved closer 

to our initial quark, it is the effect of the gluons which dominate, and so we 
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will now see less blue charge, and consequently the coupling measured "'i.ll be 

smaller. lVe say that QCD produces 'anti-screening'. Since the distance probed 

is inversely proportional to the momentum scale, we have a heuristic explanation 

for Eq. 1.22 and its equivalent in QED. The smallness of the coupling at large 

momenta helps to explain the observation that a high energy probe sees almost 

free quarks inside a proton. Presumably the coupling becomes large at low 

momenta, prohibiting the quarks from escaping to become free particles, but 

until we can perform a calculation in this non-perturbative region, we have no 

way of knowing whether this is true, or indeed of knowing how the coupling 

really behaves at low energies. 

Returning to Eq. 1.21, this independence of the result of the arbitrary 

scale ll is called 'renormalisation group' invariance[l.6], a subject of important 

study in its own right. It leads to equations that allow the potentially large 

logarithms which can appear in field theory to be summed to give an answer 

independent of ll· An. example occurs in the QCD corrections to the ratio R 

mentioned in section 1.2. Higher order corrections give to leading logarithmic 

order: 

(1.24) 

where the sum is over the different quark flavours and the e9 are the electric 

charges of the quarks. Here W 2 is the centre of mass energy squared of the e+ e

pair. Substituting the renormalised coupling a,(ll) from Eq. 1.18 gives, to the 

same order in a,(ll ): 

(1.25) 

R must be independent of #l, and we recognise the last two terms as the 

start of the series in Eq. 1.20. Thus we obtain 
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R = N L enl + 0"~W) + O(o~(lv))] (1.26) 
q 

In principle, an all orders calculation would sum all logarithms into a 

power series in o 11 ('W.) with non-logarithmic coefficients. 

1.5 Confinement 

At high energies perturbative QCD is seen to be theoretically self-

consistent. Higher order calculations have been performed for many processes, 

and good agreement has been found with experiment. The quarks and gluons 

which we suppose to be true elementary particles, however, are not seen as 

free particles in nature unlike the electron and photon of QED. Instead we see 

the host of colourless particles and resonances we call the hadrons with masses 

of the order of 1 Ge V. We interpret these hadrons as bound states of quarks 

and gluons, although we do not yet understand the mechanism which confines 

them[l.i]. 

If we are to accept that QCD really is the theory of strong interactions, 

as seems to be the case at high energies, then we must try to understand how 

the quarks are trapped inside the hadrons. Even if we cannot calculate the exact 

quantitative nature of confinement, we should at least expect to understand how 

its qualitative features follow from a non-Abelian gauge theory. 

One of the main problems has been to formulate a frame-work in which 

these questions can be answered. As we have seen, our best calculational tool in 

field theory, namely perturbation theory, is not applicable. This thesis describes 

an attempt to formulate a non-perturbative framework in which, qualitatively 

at least, the nature of low energy QCD can be studied. 

Despite not being able to use perturbation theory, we might expect that 

some aspect of confinement might be apparent even at high energies, and that 

some evidence of this might appear in a perturbative calculation. Below we 
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shall give an argument which suggests that this is not so, and that confinement 

will only be understood if we can go beyond perturbation theory. We shall 

then briefly describe one of the most promising avenues of non-perturbative 

calculations to date, that of lattice gauge theories. 

Within perturbation theory in both QED and QCD we do not just 

find the ultraviolet divergences removed by renormalisation, but we also find 

infra-red divergences which occur at zero momenta in the loop integrals. These 

arise because of the masslessness of the gauge particles, the photon and the 

gluon. When calculating, for example, the elastic scattering of an electron off 

an external potential, the higher order corrections are infra-red divergent. These 

can be removed by having a fictitious mass..\ for the photon, and we obtain terms 

proportional to In(..\). It can be shown that in perturbation theory we generate 

a series which sums to be proportional to exp(ln-\). Thus by letting ,\ - 0 

this exponential damping factor makes the cross-section vanish. Thus purely 

elastic scattering is forbidden. Because of the masslessness of the photon, it 

is kinematically possible to emit an infinite number of very low energy (soft) 

photons, and elastic scattering has zero probability. 

To overcome this, physicists use the Bloch-Nordsieck treatment, where 

we calculate only physically observable cross-sections. Since any experiment must 

have a finite energy resolution, in our scattering experiment we must also include 

processes which involve emission of undetectable soft photons. In perturbation 

theory the infra-red divergences will cancel between the higher order corrections 

to the elastic process (virtual corrections) and the soft photon emission processes 

(real corrections) order by order[l.B]. 

In QCD the infra-red divergences are more severe because of the self

coupling of the gluon. However, it has been shown that here they also produce 

exponential factors damping elastic scattering processes. The question remains 

as to whether we can define physically observable cross-sections as in QED. It is 
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found that the Bloch-Nordsieck treatment works in QCD, as long as we sum over 

the colour degree of freedom of the initial and final states (even this condition 

is not always required). Thus for a detector with a finite energy resolution, 

and which is 'colour blind', we can calculate finite cross-sections involving the 

fundamental constituents of QCD, namely the quarks and gluons. 

This result implies that asymptotic states with quark quantum numbers 

(e.g. fractional electric charge) can exist in perturbation theory. Since they 

are not observed in nature, we deduce that quark confinement is a truly non

perturbative phenomenom. 

Nevertheless it is argued[1.9] that the severe infra-red beha·viour of QCD 

does proYide a possible mechanism for confinement. Support for this is drawn 

from two dimensional QED and QCD whose infra-red behaviour are extremely 

severe. The simplicity of these models enables us to examine their spectrum. 

In two dimensional massless QED, the theory is exactly solvable. The fermion 

and photon field which appear in the Lagrangian disappear from the physical 

spectrum, leaving a free massive scalar particle. With a fermion mass the the

ory is no longer exactly solvable, but we still find only scalar particles in the 

physical spectrum. In two dimensional QCD, an expansion based on having a 

large number of colours N, and letting 1/N being an expansion parameter, sim

ilarly finds that the quark and gluon are absent from the spectrum, leaving only 

scalar particles. Although suggestive, it is not possible to extend the analysis 

from these relatively simple models to the more realistic but far more compli

cated four dimensional ones. Nevertheless it is argued by some that in QCD 

for scattering involving external coloured particles, we have the possibility that 

the soft gluon emission processes themselves sum to a finite answer, although 

they are individually infra-red divergent. This leaves the cross-section damped 

by the exponential factor from the virtual corrections, and therefore vanishing 

when the gluon mass .\ .,.... 0. It has not yet been possible to show that this 
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is indeed the case, and it seems difficult to relate it to the view of many, that 

confinement is intimately related to the QCD coupling becoming large at low 

momenta, and thus binding the quarks and gluons together so strongly that they 

cannot exist as free particles. 

Probably the most important development in non-perturbative field the

ory has been that of lattice gauge theories[l.lO]. Treating space-time as a finite 

four dimensional lattice, it was shown how to formulate a gauge theory on this 

discrete space. It was also shown how to perform these lattice calculations us

ing computers. Theoretically it should be possible to calculate the properties 

of bound states (if they exist) such as masses. Unfortunately the present lat

tice sizes of about 244 sites are probably too small to give believable results, 

although progress is being made. The use of larger lattices is limited by the size 

of computers available, although this should increase in future. To obtain results 

which apply to real physical space-time, it is necessary to take the 'continuum' 

limit of lattice calculations, where the lattice spacing is to be taken to zero. It 

is not clear that the continuum limit of a lattice theory is necessarily related 

to the continuum theory itself. Nevertheless this area will remain an important 

testing ground for gauge theories. 

It would be desirable then, to have a non-perturbative, continuum anal

ysis of QCD, which, even if it could not accurately calculate the proton mass or 

other quantitative details, would at least allow us to understand the qualitative 

mechanism whereby quarks and gluons are confined. 
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CHAPTER TWO 

THE SCHWINGER-DYSON EQUATIONS 

2.1 Path Integrals and Functional Methods in Field Theory 

Our approach to a non-perturbative study of QCD will be to examine 

certain integral equations which in general form are obeyed by all quantum field 

theories. Before we do this however, we must first set up a frameworkin which 

to define various quantities in field theory, and then to derive these equations. 

The starting point for the functional approach to field theory is the 

generating functional[2.1]: 

Z[J] = j[D¢J]exp (is+ i j cJ4x¢J(x)J(x)) (2.1) 

where here we are looking at a scalar field theory. The symbol [D¢] denotes a 

functional integral over all possible field configurations ¢(z ), and Sis the classi

cal action. In field theory we generally want to calculate the Green's functions, 

which are defined by 

(2.2) 

In general we can relate then-point Green's function to then-particle 

scattering amplitude[2.2]. These Green's functions can be obtained from the 

generating functional via functional differentiation: 

(2.3) 

We define a related quantity W[J] by 

Z[J] = exp lV[J] (2.4) 

24 



Chapter Two The Schwinger-Dyson Equations 

We call W[J] the generator of connected Green's functions G~(zh · · ·, xn)· Us

ing the definition of Eq. 2.4 we can easily derive: 

_1_ bZ[J] _ 
Z[J] ibJ(x) 

further differentiation yields: 

bW[J] 
ibJ(x) 

+G~ ( z1, z 2 )G~ ( z 3, z 4) +cyclic permutations 

(2.5) 

(2.6) 

These equations and higher ones give the relation between the full Green's func

tion generated by Z[J] and the connected ones generated by W[J]. The con

nected two point function G~ ( x, y) is called the propagator, and is denoted 

i.:l(x- y). For theories such as >.¢4 theory, where the action is symmetric under 

</> -+ -</>, then when we set J = 0, the odd Green's functions will vanish. For 

this case, we depict the last of Eq. 2.6 in fig. 2.1. 

For a free field theory, where S contains only kinetic and mass terms, 

then the functional integral can be performed[2.1] to give 

where iA0(x- y) is the usual free scalar field propagator. 
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x, Xz x, Xz x, x2 Xokx, x, Xz .,X ~ = + + + 
XJ x .. 

X3 X4 

x. x. XJ x. 
XJ 

fig. 2.1: The relation between full and connected Green's functions. Here a long 

line represents a full propagator, a circle denotes a full Green's function, 

and a C inside a circle denotes a connected Green's function. Taken from 

Nash, ref. [2.1]. 

The final quantity we need is the effective action r[¢>], defined via the 

functional Legendre transform: 

W[J] = ir[¢>] + i j atzJ(z)<,i>(z) (2.8) 

Here we think of W as a function of J alone, and r as a function of¢> alone. ¢>( x) 

is usually referred to as the classical field, and is not to be confused with the 

functional integration variable in Eq. 2.1. From Eq. 2.8 we have the definitions 

hW 
cp(z) = ihJ(z) 

hr 
J(z) =- h<,i>(z) 

We can functionally expand r[¢>] as: 

(2.9) 

(2.10) 

where the rn(ZI,···,zn) are called the proper vertices and can be related to 

scattering amplitudes[2.2]. Thus we have: 

(2.11) 

The following equation is a functional identity: 
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J 6¢(:r) i6J(z) 
cflzi6J(z) 6¢(y) = 6(x-y) (2.12) 

where 6( x) denotes a four dimensional delta function. Using the definitions in 

Eq. 2.9 we obtain the relation: 

{2.13) 

from which we see that -i62r /6¢6¢ is the inverse propagator. Taking the deriva

tive of Eq. 2.13 with respect to ibJ(w) and using Eq. 2.9 gives: 

J 4 63 W -i62r 
d z i6J(z)i6J(x)i6J(w) 6¢(y)6¢(z) 

{2.14) 

multiplying this expression by 62 Wfi6J(y)i6J(u ), integrating over d4 y and using 

the relation in Eq. 2.13 gives us: 

·cJ( )'~Jaw( )'cJ( ) - c""(y):~
3

(zr)c""(v)i~(z- z)i~(v- w)i~(y- u) (2.15) 
IU U lo X lo W V'f' U'f' U'f' 

Here we have introduced a convention whereby a repeated space-time variable 

is to be integrated over. This equation is depicted diagrammatically in fig. 2.2. 

We call ihr /h4>h<Ph4> the one particle irreducible Green's functions. Because the 

propagators on the external legs have been removed, we cannot split this Green's 

function into two pieces by 'cutting' one propagator. This is the meaning of 'one-

particle irreducible'. Taking the derivative of Eq. 2.15 with respect to ihJ(t) we 

obtain: 
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fig. 2.2: The relation between the connected and one particle irreducible three 

point function. A W in a circle denotes a connected Green's function, 

a r in a circle denotes one particle irreducible Green's function. A line 

with a circle on it represents a full propagator. Taken from Nash, ref. 

[2.1]. 

+ 

fig. 2.3: The relation between the connected four point Green's function, and . 

the one particle irreducible Green's functions. Taken from Nash, ref. 

[2.1]. 

64 W i64r 
i6J(t)i6J(u)i6J(z)i6J(w) = 6¢(s)6¢(y)6¢(z)6¢(v) x 

xia(s- t)ia(z- z)ia(v- w)ia(y- u) 

i63r i63r 
+ 6¢(y)6¢(z)6¢(v) 6¢(z')6¢(z')6¢(v') x 

(2.16) 

xia(v- w)ia(y- u)ia(z- x')ia(t- v')ia(z- z') 

+ cyclic permutations 

For the last terms, we have used the fact that one derivative of ia with respect 

to i6J is equal to 63W/i6Ji6Ji6J and used Eq. 2.15. Eq. 2.16 is depicted 

diagramatically in fig. 2.3. Again we see that f[¢] generates the one particle 
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irreducible Green's functions. Taking higher functional derivatives of Eq. 2.16 

will reveal the same structure for the higher Green's functions, the general proof 

going by induction. 

We are now in a position to perform a perturbative expansion. First we 

write 

(2.17) 

where S0 is the free action, and S1 contains any interaction terms. The free 

action is quadratic in ¢,and we write it as 

{2.18) 

S 1 will in general be a polynomial in ¢ where we call each term a vertex. 

For a vertex of order N, we can write its contribution to S1 as: 

(2.19) 

The perturbative series is generated by using the expansion 

(2.20) 

then any factors of ¢(z) which appear in Eq. 2.20 can be written as 6fi6J(z), 

and taken outside the functional integral. Thus the perturbative solution for a 

Green's function Gn(Zb···,zn) is 

where Z0 [J] is the free field generating functional, Eq. 2.7. Here the functional 

derivatives act on Z0 [ J] to bring down free field propagator factors. These are 
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connected together by the vertices, such as that in Eq. 2.19. The lowest non-

trivial contribution to the Green's function GN(x 1 ,···,xN) for this vertex is 

therefore seen to be: 

For a connected Green's function, the free field propagators must connect 

one x-variable to one y-variable in Eq. 2.22. This can be done in N! dif-

ferent ways, so we can simply read off the Feynman rule for this vertex as 

i J ( n ~= 1 d4 y k) s N ( YI ' ••• ' y N). In momentum space, we simply take the Fourier 

transform. For example, in >,.¢4 theory we have: 

S1 = - >,.
1 
J d4 x¢4 (x) 

4. 

= - ; J ( fJ dz•) 6(x, - x, )6(x1 - x3 )6(x1 - z4 )if>(x, )if>(z,)if>(xa)if>(z4 ) 

(2.23) 

From this we can read off the Feynman rule in momentum space to be -iA, as 

usual. 

Having set up the machinery, we are now in a position to derive our 

equations, which relate the various Green's functions of the theory. 

2.2 The Schwinger-Dyson Equations for Scalar Field Theory 

The Schwinger-Dyson equations are derived from Z[J] by using the fact 

that the functional integral of a derivative vanishes: 

(2.24) 

which gives us the functional equation 
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j[D4JJ(6!~) + J(z)) exp (is+ i j d!y¢J(y)J(y)) = 0 (2.25) 

Note the similarity of Eq. 2.25 to the classical equations of motion in the 

presence of a source term: 

6S 
6¢J(z) + J(z) = 0 (2.26) 

In this sense Eq. 2.25, and the equations we shall derive from it can be seen 

. as the equations of motion of a quantum field theory. H we use the symbol 

< H(z) > to denote the path integral of H(z) weighted by the exponential of 

iS+ i J d"y¢(y)J(y), all divided by Z[O], then Eq. 2.25 can be written 

6S hSo 6S1 
< 6¢(z) > +J(z) = < 6¢J(z) > + < 6¢J(z) > +J(z) = 0 (2.27) 

Let us find the contribution to this equation of our vertex of Eq. 2.19. 

We have from Eq. 2.27: 

(2.28) 

where once again we have replaced ¢(Yi) by 6/ihJ(yi), and a repeated space

time index is to be integrated over. Taking the derivative with respect to the 

classical field ¢(z2 ), Eq. 2.9, and using its definitions we obtain: 
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where we have used the functional chain rule for differentiation in the second 

term. Recognising -iS2 (x 17 x 2 ) as the inverse free propagator, and settin.g the 

source term J equal to zero gives us the equation: 

(i~(xl- x2))-
1 

= (i~o(xl- x2))-
1 

- (N ~ l)!iSN(xl,Yh" · · ,YN-l)Gn(Yl, · · · ,yN)(i~(YN- x2))-
1 

(2.30) 

We can represent this equation diagramatically by noting that it states 

that the full inverse propagator is equal to the free inverse propagator minus a 

term which contracts the lowest order vertex iSN, with the full N-point Green's 

function with the propagator on one external leg removed. For >.4>4 theory, we 

use the form of the vertex in Eq. 2.23. Using the relations between the full 

and connected Green's functions, Eq. 2.6, and then using the relations between 

the connected and the one particle irreducible Green's functions, Eqs. 2.15 and 

2.16., we obtain the equation depicted diagrammatically in fig. 2.4. 

= -·~ -----~ 
-I 

fig. 2.4: The Schwinger-Dyson equation for the inverse propagator in >.4>4 theory. 

Taken from Nash, ref. [2.1). 

This is the Schwinger-Dyson equation for the full inverse propagator 

in >.4>4 theory. It is an integral equation, which relates the full two and four 

point functions of the theory. Higher equations are simply derived by taking 

more functional derivatives of Eq. 2.29. The resulting equation for the four 

point function in >.4>4 theory is depicted in fig. 2.5. Here we can see that, in 

general, the equation for then-point function involves contributions from up to 

the (n+2)-point function. 
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X I~. I +- +-
2! ]! 

fig 2.5: The Schwinger-Dyson equation for the four point function in ),<P4 theory. 

Taken from Nash, ref. [2.1]. 

The form of Eq. 2.30 arises naturally in perturbation theory. Consider 

a lowest order correction :E(p) which contributes to the self energy of the propa

gator in momentum space. Then the full perturbation series for the propagator 

will contain the terms: 

i.6.(p) = i.6.o(p) + i.6.o(p):E(p)i.6.o(p) + i.6.o(p):E(p)i.6.o(p):E(p)i.6.o(p) + · · · 

=i.6.o(p)(1 + i.6.o(p):E(p) + (i.6. 0(p):E(p))
2 + ... 

i.6.o (p) 
1- i.6.o(p):E(p) 

(2.31) 

simply inverting this expression gives: 

( i.6.(p)) - 1 
- ( i.6.o(P)) - 1 

- :E(p) (2.32) 

which is identical in structure to Eq. 2.30. 

2.3 Fermions and Path Integrals 

A slightly different procedure is needed to deal with fermions, requiring 

us to perform the functional integral over anticommuting, or Grassmann fields, 

see ref. [2.1] for more details. In general though, for each fermion we introduce 

two fields t/;, .,P and two anticommuting sources Tj, 1J· The fermionic part of the 

path integral is then: 
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The general n-point Green's functions are defined by: 

(2.34) 

In a similar way to before, we define W[f7, 17] and r['¢, '¢]. This time because of 

the anticommuting nature of the fields we have as the parallel of Eq. 2.9: 

6W 
.,P(x) = "6 ( ) 

l 1] X 

- 6W 
.,P(x) = ·c ( ) 

-to1] X 

6r 
fl(X) =- 6'¢(x) 

6r 
ry(x) =~ 

'¢(x) 

Thus the fermion propagator is defined as: 

(2.35) 

(2.36) 

where a and /3 are spinor inclices, which we shall in general suppress. It can easily 

be verified that i62 rj6'¢(x)6'¢(y) is the inverse fermion propagator. Similar 

relations hold between the connected and the one-particle irreducible Green's 

functions as for the scalar case. 

2.4 The Schwinger-Dyson Equations for QCD 

The path integral formulation of non-Abelian gauge theories has proved 

to be the most intuitive way of formulating the full quantum field theory[2.3]. 

It is an elegant way of imposing the constraints of quantising a massless spin-1 
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field, which has only the two transverse degrees of freedom as dynamical fields. 

Because the path integration should really be over only gauge inequivalent fields, 

we need to introduce a 'gauge fixing term'. This procedure also involves the 

introduction of the so-called 'ghost' fields, which are anti-commuting. In an 

Abelian theory, or in axial gauges for a non-abelian theory, these ghost fields 

decouple. In covariant gauges however, they are an essential feature, preserving 

the unitarity of scattering amplitudes, and the transversality of the gauge field. 

This path integral formulation of a gauge theory is a well understood procedure, 

and here we will merely write down the full QCD Lagrangian: 

C = Cgauge + Cgauge-fix + C~host + Cquark (2.37) 

where 

C - - !pp.va F gauge -
4 

p.va 

Cgauge-fix 

(2.38) 

Cquark = tPi(iDfjlp.- m)t/Jj 

= tPi(ifJ- m)t/J + gTtjA11atPi/p.tPj 

where Tri = >.fi /2 and ca, Ca are the ghost and anti-ghost fields respectively. 

{is a parameter which fixes the gauge, where for example { = 0 is the Landau 

gauge and { = 1 is the Feynman gauge. All the other quantities are defined in 

section 1.3. The action is defined as: 
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S = J cf'x.C(x) (2.39) 

We can therefore write the pure gauge part of the action as: 

where: 

rabcd 
0 p.vcrr 

2 

+ ~! rg~c:crr(xi' X2, xa, x4)A:(xi )At(x2)A~(xa)A~(x4) 

- (r•· r•· [ 6,.6 .. - 6 •• 6,,] 
+/bee /dae [ h,.,.crhvr - hcrrhp.v] 

(2.40) 

+ , ... !'"' [ 6 •• 6,, - 6,.6 .. ]) 6( z, - z, )6( %3 - z. )6( z, - %3) 

(2.41) 

Once again it is implicit that repeated space-time variables are to be integrated 

over. Here we recognise igf0~11 cr, ig2 f0~!crr as the bare triple and quartic gluon 

couplings respectively[2.1]. Next we have: 
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Sghost = J d4 x1Ca(xt)OCa 
(2.42) 

+grg~c(x 1 , x2, X3 )A~c(x 1 )C\x2 )C6(x3) 

where 

(2.43) 

is the bare ghost-gluon coupling. Finally we have: 

(2.44) 
~a a -+gA0 Ot/3 ij(xll x2, x3)A~(xi)'!f0ti(x2)tPf3j(x3) 

where o and {3 are spinor indices, and 

(2.45) 

Following the form of Eq. 2.26, the Schwinger-Dyson equation for the 

gluon field reads 

fJS < -Ja fJA~(x) > = -~ (2.46) 

Thus we obtain: 

+g/2lrg~d17r(x,xbx2) < A 17c(.x1 )Ard(x2) > 

+g2 /3!rg~d:rp(x,xbx2,x3) < A17c(x1)Ard(x2)Ape(x3) > (2.47) 

-grg~d(x, xb x2) < Cd(x2)Cc(xt) > 

-gA~:/3 ij(x, X}, X2) < tP{3j(X2)tPOti(xi) > 

where the minus signs in the last two terms come from interchanging the order 

of anti commuting fields. In terms of the classical field A~, and the connected 

Green's functions we have: 
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(2.48) 

where w,w are the sources for the ghost fields. Taking a further derivative with 

respect to Ab (y) and setting J = A = 0 we obtain: 

On multiplying by -i, and using Eqs. 2.13-2.16 which hold in identical form for 

the gluon field, we obtain the Schwinger-Dyson equation {or the inverse gluon 

propagator, first derived in ref. [2.4], and depicted diagramatically in fig. 2.6. 

The relative minus sign of the last two terms in Eq. 3.49 can be ascribed to 
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closed loops of anti-commuting fields. 

Equations can similarly be derived for the ghost and quark propagators. 

The equation for the quark propagator will be derived in chapter five. Until then 

we consider a pure gauge theory, in which quark fields are absent. 

Equations for the higher point Green's functions can also be derived, by 

taking more functional derivatives of Eq. 2.48. It is easy to see from this that 

the equation for the n-point gluon Green's function will involve contributions 

from the 2, 3 · · · , n, n + 1, n + 2 point functions. Our equation for the propagator, 

or two point function, is the first example of this, involving contributions from 

the full 2, 3 and 4-point functions. 

Since the Schwinger-Dyson equations are exactly satisfied by the full 

Green's functions of the theory, by solving them we would hope to obtain infor

mation on the non-perturbative features of QCD, particularly that of confine

ment. Because there are infinitely many of these equations, one for each Green's 

function, and all of them coupled, it is obviously an impossible task to solve them 

exactly. Nevertheless we might hope to solve some truncated version of them. 

This is in fact nothing more than we having been doing all along in perturbation 

theory. The simplest truncation possible of the Schwinger-Dyson equations is 

to ignore all terms involving loops. We are left with equations which state that 

the 2,3 and 4-point functions are equal to the corresponding bare ones appear

ing in the classical Lagrangian, with the higher Green's functions all vanishing. 

We can then take these solutions and substitute them in the right hand side 

of the Schwinger-Dyson equations. Thus Eq. 2.49, for example, will generate 

the :first few terms of the perturbative expansion of the inverse gluon propa

gatpr. More exactly, perturbation theory is nothing else than the solution to 

the Schwinger-Dyson equations based on a truncation in succesive powers of the 

coupling constant. Of course, perturbation theory is a very special truncation, 

in that it satisfies the requirements of renormalisability and unitarity, i.e. it 
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- / 1 ' I 
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-I 

fig 2.6: The Schwinger-Dyson equation for the gluon propagator in QCD. The 

curly lines represent gluons, the dotted lines ghosts. A dark circle on a 

line represents a full propagator, a dark circle on a vertex represents a 

full one particle irreducible vertex. We have not included the fermion 

contribution, for this see chapter six. 
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allows a systematic removal of the ultraviolet infinities, to give answers in which 

quantum mechanical probabilities are conserved. These are essential features in 

the calculation of physical quantities. 

This thesis details an entirely different truncation of the Schwinger

Dyson equations, in which quantities are not truncated at some particular order 

in the coupling constant, and so contain some information to all orders in g. In 

this way we might hope to attack the non-perturbative region of QCD. That 

'this truncation has yet to be made entirely consistent in the way perturbation 

theory is, should not deter us. At the best, we may eventually discover a fully 

consistent non-perturbative treatment of QCD. At the worst, we might still 

expect to divine some of the salient features of the theory. 

2.5 The Slavnov-Taylor /Ward-Takahashi Identities 

The importance of a gauge theory lies in the constraints of gauge in

variance which are essential in ensuring renormalisability and unitarity in per

turbation theory. At the quantum level, this gauge symmetry is manifested in 

the Slavnov-Taylor identities for a non-Abelian theory[2.5], the generalisations 

of the Ward-Takahashi identities for QED[2.6]. These identities are relations 

between the full Green's functions of the theory. The generic form for these 

.identities in momentum space is 

(2.50) 

where Pi is an external boson momentum contracted with the appropriate 

Lorentz index of a Green's function. The Slavnov-Taylor identities equate this 

contraction to a combination of lower Green's functions, denoted symbolically 

here by ~n· The most well known example arises in QED: 

q~'r p(q,p,p') = Sil(p')- Sjl(p) 
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where fll(q,p,p') is the full electron-photon three point irreducible Green's func

tion, q is the incoming photon momentum, equal top' - p, and SF is the full 

electron propagator. This identity holds for the full Green's functions, but also 

holds order by order in perturbation theory. Thus to lowest order r ll = -i-yll, 

SF= i/p, and Eq. 2.51 holds trivially. 

In general we can divide such a vertex into a longitudinal and a trans

verse piece[2.7], where the transverse piece is defined by the property that it 

vanishes when contracted with any external boson momenta. i.e. 

(2.52) 

where we have 

'Vi (2.53) 

The transverse part is obviously unconstrained by the Ward identities. 

Moreover, this split is not unique because we can always add an arbitrary amount 

of the transverse part to the longitudinal part. We can ensure uniqueness, 

however, by demanding that fL be free of kinematic singularities. Since the 

complete vertex must also be free of kinematic singularities, then the transverse 

part must be as well. The important point about this condition, is that in general 

it allows us to 'solve' the Ward identity for the longitudinal vertex in terms of 

the lower Green's functions in a unique way. The best way of demonstrating 

this is to give an example. 

In scalar electrodynamics, we have a three-point vertex describing the 

interaction of the photon with a charged scalar particle. The Ward identity for 

this vertex reads[2. 7]: 

(2.54) 
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where D(p) is the full scalar propagator. Since momentum is conserved at the 

vertex we can write 

(2.55) 

where A, B are scalar functions of the momenta. The Ward identity Eq. 2.54 

gives us the following condition on A and B: 

(2.56) 

Thus we can eliminate B to obtain: 

r = (n-1(p')- n-1(p)) P~ + A(p - P · q p') 
ll p'·q ll p'·q ll 

(2.57) 

The first term has a kinematic singularity at p' · q = 0 which must be cancelled 

by a similar singularity in the second term. Evidently A satisfies: 

lim (P · qA) = n-1(p')- n-1(p) 
p'·q-o 

Asp'· q-+ 0 then p · q-+ (p'2 - p2 ), so we have: 

A = n-l(p')- n-l(p) + p'. qA' 
p'2- p2 

with A' unconstrained. Thus for our vertex we obtain: 

(2.58) 

(2.59) 

(2.60) 

The first term is the longitudinal part of the vertex which is free of kinematic 

singularities, the second is transverse to q~'- and is unconstrained. 

An important consequence of this unique division into a longitudinal and 

a transverse piece, using absence of kinematic singularities, can be determined 

from Eq. 2.53. Taking the derivative of this equation with respect to Pi gives: 
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r"'l ···11···1-'n + p'!"i _!!__ rl-'1"""1-'i ···1-'n = 0 (2.61) 
T I 8p'[ T . 

From our previous discussion we have obtained a rT which is itself free from 

kinematic singularities. Thus as Pi - 0 the second term must vanish. From Eq. 

2.61 we therefore deduce that rT itself vanishes in this limit that the external 

momenta go to zero. In other words by splitting the vertex as we have done, the 

low momentum behaviour is given entirely by the longitudinal part, precisely 

the piece we can determine from the Ward identity. This result is of much 

importance in a non-Abelian theory, in which it is the low momentum behaviour 

of Green's functions which cannot be determined in perturbation theory, and 

which we wish to investigate. 

We are now in a position to outline the approach we will take to solve 

the Schwinger-Dyson equations[2.8]. We can write the full hierarchy of equations 

symbolically as follows: 

r2 =n2[r2,r3,r4] 

r3 =na[r2,r3,r4,rs] 

(2.62) 

Here r n represents the n-point gluon Green's function, and nn the relevant 

combination of Green's functions. The first thing we do is to truncate the 

equations at, say, the equation for r n• If we first set r n+2 = o, and then set 

r n+l equal to its longitudinal part in the expression for nn, then we will have a 

closed set of equations which we can think about solving. Since the longitudinal 

part of r n+I gives the exact behaviour in the zero momentum limit, we should 

expect this to be a valid ·approximation in which to study the low momentum 
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behaviour of Green's functions. The neglecting of the terms involving r n+2 can 

also be justified (see section 3.1 ). The procedure is to solve this truncated version 

of the equations for n = 2. We would then repeat the procedure for n = 3 and 

higher until the solutions for the lower Green's functions remain stable as we 

increase n. 

The first step then, is to consider the equation for the gluon propagator, 

Eq. 2.49. In practice it will probably not be possible to go beyond this first 

equation, because of the increasing complexity of the problem, which in general, 

requires numerical techniques to find a solution. Moreover, the Schwinger-Dyson 

equation for then-point function is in general a multitude of tensor equations. 

The equation for three point triple gluon vertex for example, can be divided into 

14 coupled equations[2.7], and so attempting to treat this equation will need an 

extraordinary amount of computing power. Nevertheless, by considering this 

first equation, we might hope to extract some indication as to the low momentum 

behaviour of the gluon propagator. This in turn may help us understand the 

non-perturbative aspects of gluons. 

Before we do this, however, we must consider the Slavnov-Taylor iden

tities for QCD. These have the same general features as in Eq 2.50, although 

the situation is complicated by ghost terms. Also, from now on we work in 

Euclidean space. This is partly because quantum field theories are really only 

defined in Euclidean space[2.1], with a Wick rotation to Minkowski space to 

be performed at the end of a calculation. Moreover, in perturbation theory, 

in order to perform the integrals that arise in higher order corrections, and to 

isolate their divergent parts, we usually use the technique of 'dimensional reg

ularisation', which again, is really only defined in Euclidean space. The use of 

Euclidean space also eases the numerical integrations we shall perform in later 

chapters. 

First of all we introduce the full gluon propagator in a covariant gauge: 
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tl. /lll 
ab (

Q(p) (6''v- pllpV) + {piLpV) Dab 
p2 p4 (2.63) 

where {is our gauge parameter. Here we are working in momentum space. The 

tensor structure of Eq. 2.63 is determined by the Slavnov-Taylor identity for 

the gluon propagator which ignoring colour indices reads: 

(2.64) 

where flllv is the inverse gluon propagator. This means that the longitudinal part 

of the full gluon propagator is equal to that of the free propagator, so that the 

full propagator is an undetermined transverse piece plus the free longitudinal 

part, as in Eq. 2.63. The full non-perturbative content of the propagator is 

contained in the gluon renormalisation function 9(p). 

The full ghost propagator is simply a scalar function of p2 : 

H(p) 
tl.ab(P) = Dab_2_ 

p 

Finally we decompose the ghost gluon vertex as: 

(2.65) 

(2.66) 

where r 11 is the anti-ghost incoming momentum, and p is the incoming gluon 

momentum. 

We write the full triple gluon vertex as r:~: (p, q, r) = /abcrpvt7 (p, q, r) 

In terms of these quantities the Slavnov-Taylor identity for the full triple gluon 

vertex reads: 

q•r , •• (p, q, r) = H(q) { - Q;r) (h .. r 2 
- r' r"}r ,,(p, q, r) 

+ 9;p) W' P'- p'p')r .. (r,q,p)} 
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This can be solved[2. 7] to determine the longitudinal part ~f r p.vcr(P, q, r) which 

is free of kinematic singularities, in terms of the ghost-gluon vertex, and the 

ghost and gluon propagators. From Eq. 2.67 we see that: 

(2.68) 

and this, with its cyclic permutations, provides further constraints on the vertex. 

Further simplifying approximations can be used if we work in the Lan-

dau gauge (e = 0)[2.9,1.6]. We can write the full ghost-gluon vertex diagram-

matically as in fig. 2.7. This is essentially the Schwinger-Dyson equation for 

this vertex. It says the full ghost-gluon vertex is equal to the bare one, plus a 

ghost-gluon scattering kernel. This kernel is proportional to rP. from the external 

anti-ghost line, and .contains a term 1P,6."P(q -1) = qP,6."P(q -1), by using the 

fact that the gluon propagator is transverse in this gauge. Thus this kernel is 

proportional to rP.q" and so vanishes when one of these external momenta goes 

to zero. In this limit the full ghost-gluon vertex is equal to the bare one, and 

we haver P." = 6,. 11 • This considerably simplifies the Slavnov-Taylor identity Eq. 

2.67. Again since it is the low momentum behaviour of the theory we wish to 

determine, we can use this simplification. 

A + 

Q 

fig. 2. 7: Equation for the full ghost-gluon vertex. A wavy line denotes a gluon, 

a curly line denotes a ghost. The black dots denote an anti-ghost line. 

The momenta are labelled. Taken from Marciano and Pagels, ref. [1.6]. 

If we now consider: 
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p" q11 r 1'110' (p, q' r) (2.69) 

-
we can perform the two contractions in either order. Performing the q11 contrac-

tion first and t].sing the simplified Slavnov-Taylor identity of Eq. 2.67 we obtain 

the expression: 

(2.70) 

On the other hand, if we perform them the other way round we obtain the 

expressiOn: 

(2.il) 

and these two expressions must be equal. Since p+q+r = 0, we have p = -q-r. 

The tensors in Eqs. 2. 70 and 2. 71 are transverse, and vanish when contracted 

with r. Thus the tensor parts are equal, and hence we deduce that H(p) = H(q). 

Thus the ghost propagator function His a constant which we set equal to one, its 

bare value. We therefore obtain the final version of the Slavnov-Taylor identity 

for the triple gluon vertex: 

q~'f pvu(p, q, r) (2.72) 

This can be 'solved' for the longitudinal part of the triple gluon vertex[2.7) to 

g~ve: 
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(2.73) 

We shall use this form of the triple gluon vertex in the next chapter. 

For completeness we give the Slavnov-Taylor identity for the quark

gluon vertex rrja(q,p,p')[2.7]: 

(2.74) 

where Aij( q,p,p') is a ghost-quark scattering kernel, similar in form to the ghost

gluon scattering kernel in fig. 2.7. As before, it can be shown that as the external 

momenta go to zero, that Aij(q,p,p') behaves like Tlj,. the bare kernel[2.9]. This 

is simply the colour matrix of rr;a = Tljf~-', and so using this low momentum 

approximation the Slavnov-Taylor identity of Eq. 2. 74 reduces to an Abelian-like 

Ward identity to give: 

(2.75) 

For massless quarks we have Sp(p) = :F(p)jp, and the identity of Eq. 2.75 can 

be solved for the longitudinal part of the vertex[2.7], to give: 
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(2.76) 

This form of the quark-gluon vertex will be used in chapters five and six. 

2.6 The Perturbative Gluon and Quark Propagators 

Our first study will be to examine the Sch·winger-Dyson equation for 

the gluon propagator. This will constitute the work of the next two chapters. 

Before we do this, we give the one-loop perturbative calculation of the gluon 

propagator. 

In perturbation theory it is usual to perform the calculation inn= 4-2e 

space-time dimensions. The divergences which occur at the large momentum end 

of the loop integrals, now appear as poles in e, diverging when e-+ 0, or n-+ 4. 

For the pure gauge theory there are the same one-loop diagrams as those 

fig. 2.6, but now with all propagators and vertices being bare. Inn dimensions 

the 'tadpole' diagram vanishes, and we are left with just the ghost and gluon 

loops. 

Here we just give the results of this calculation[1.6,2.1]. The gluon loops 

contribute a self-energy correction: 

where C A is the relevant group Casimir, equal toN for an SU(N) gauge theory, 

"YE is the Euler-Mascheroni constant and p,2 is an arbitrary momentum scale 

needed to define the integrals in n dimensions. g(p,) is the running coupling 

introduced in section 1.4. From the ghost loop we get a correction: 
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(2.i8) 

Adding these together gives 

Note that this correction is transverse, and so the Slavnov-Taylor identity for 

the gluon propagator Eq. 2.64 holds. Essentially this identity states that the 

longitudinal part will not get renormalised by higher order corrections, and we 

see that this is indeed the case. 

Although the ghost corrections are essential in preserving the transver

sality of the higher order corrections to the propagator, we see that for 'sensible' 

gauges, such as e = o, they make a numerically small contribution of less than 

10%. This provides further support for our neglect of the ghost terms in section 

2.5. 

Renormalisation consists of subtracting the poles in e. We use the MS 

scheme which also subtracts the "'E and ln411" factors, to give the renormalised 

self-energy 

{2.80) 

Since we have: 

(2.81) 

we can invert this to extract: 
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(2.82) 

For large p2 we must use the renormalisation group techniques detailed 

in section 1.4 to eliminate the large logarithms of Eq. 2.82 and obtain for large 

momenta: 

(2.83) 

where g(p) is the renormalised running cou piing of Eq. 1.22, and /30 = ( 11/3) CA. 

Here "'Yo is extracted from Eq. 2.82 and is equal to (13/6- {/2)CA. To define 

our renormalisation completely, we choose a value for p,2 and specify the value 

of Q(p,) 

For large momenta, we see from Eq. 2.83 that Q(p) is only logarith

mically different from 1 ,' and so the propagator behaves as if the gluon were 

almost 'free'. This is what we observe in high energy collisions. In the next two 

chapters we will see that in the non-perturbative regime at low momenta, we 

find a startlingly different behaviour for Q(p). 

Once again, for completeness we give the one-loop perturbative results 

for the quark propagator, where in the same MS scheme the fermion propagator 

function :F(p) is given by: 

:F(p) = 1+g2(p,)CFe(InJl2 +2-!) 
1611'2 . p2 e (2.84) 

where CF is the quark Casimir, equal to (N2 -1)/2N. Once again these poten-

tially large logarithms can be summed for large p2 to give: 

(
g2(p)) "Y~//3o 

:F(p) = :F(p,) g2 (p,) 
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where ici = f.CF. 

The introduction of quarks introduces a closed fermion loop in the 

calculation for the gluon propagator. This merely changes the form of 'Yo to 

(13/6- {/2)CA- (4/3)ntTF, and changes f3o to (11/3)CA- (4/3)ntTF in Eq. 

2.83. Here TF is a colour trace, with TF = 1/2 for QCD. 

We now return to a world without quarks, and attempt to solve the 

truncated Schwinger-Dyson equation for the gluon propagator, using the ap

proximations outlined in section 2.5. 
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CHAPTER THREE 

THE GLUON EQUATION 

3.1 Derivation of the Equation for 9(p) 

We now proceed to derive a closed equation for the gluon renormali

sation function Q(p), following the procedure outlined in section 2.5[3.1]. The 

complete Schwinger-Dyson equation for the inverse gluon propagator, depicted 

in fig. 2.6 involves the unknown triple and quartic gluon vertices, as well as the 

ghost contributions. In order to derive a closed equation for the gluon renor

malisation function we must make some approximations. 

The first step is to ignore those diagrams which involve quartic gluon 

couplings, (see section 2.5). This can be seen as a first step in an iterative 

procedure to solve the entire heirarchy of the Schwinger-Dyson equations. Per

haps more realistically, we note that these diagrams contain an explicit factor 

of a5, where ao = g5/4rr is the bare coupling. When we come to renormalise 

our equation (see section 3.3), we will do this at some scale tt2 , which we will 

choose to be in the perturbative regime. The bare couplings which appear in 

the unrenormalised equation will be replaced by the renormalised running cou

pling a(J.L ), which, since J.L2 is in the perturbative region, will be a small number. 

Hence these diagrams involving the quartic couplings will be suppressed by a 

factor a(tt) relative to the remaining terms. Of course, the value of the loop 

integral could swamp this suppression, but it seems natural to believe that the 

triple gluon vertex already contains the seeds, if not all the details, of a confining 

mechanism. 

Next we consider the ghost diagram. Since we choose to work in the 

Landau gauge, then as was seen in section 2.5, it is believed that the ghost 

kernels which appear in the Slavnov-Taylor identites for both the triple gluon 

vertex, and the quark-gluon vertex, will vanish as one of the external momenta 
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goes to zero. Although the ghost contributions are essential in preserving the 

transversality of the inverse gluon propagator, it is to be hoped that they will 

not play a significant role in the analytic behaviour of 9(p ). This is supported by 

the fact that in a one-loop perturbative calculation, the ghost loop (see section 

2.6) makes a numerically small contribution to 9(p), at least for the Landau, 

and other 'sensible' gauges. 

Our equation still involves the full triple gluon vertex. In the light of the 

above comments on the infra-red vanishing of the ghost kernels, by setting them 

identically to zero, we can 'solve' the Slavnov-Taylor identity for this vertex 

entirely in terms of 9(p). This was done in section 2.5. This allows us to 

completely determine the longitudinal part of the vertex; the Slavnov-Taylor 

identity does not constrain any transverse part. Fortunately it can be shown, 

Eq. 2.61, that as one of the external momenta ofthe vertex goes to zero, then the 

transverse part vanishes. In QCD it is precisely the low momentum behaviour 

which cannot be determined by perturbation theory, and it is in this region that 

our various approximations made are likely to be valid. Thus we set the full 

triple gluon vertex equal to its longitudinal part, determined in terms of g from 

the Slavnov-Taylor identity in the absence of ghosts. 

At this stage we do not include the contributions of quarks, which would 

contribute a quark loop diagram to our equation. If this were included, we would 

have to consider the Schwinger-Dyson equation for the fermions as well. This 

problem is addressed in chapters five and six. For the moment we consider only 

the pure gauge theory, as we expect that it is the non-Abelian nature of the 

gauge part of the theory which is responsible for confinement. 

After all these approximations, we have managed to derive a closed 

equation for the gluon function 9(p): 

II"'" II"'" "C"'Il" ab = Oab - ~ab 
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Here IT represents the full inverse gluon propagator, ll0 the bare one, and ~ is the 

contribution to the gluon self-energy from the equation depicted diagramatically 

in fig. 2.6, neglecting the ghost and two-loop terms. The colour indices of Eq. 

3.1 are given on both sides by hab, and we factor this out. We project with the 

tensor 

{3.2) 

to give a scalar equation. This tensor gives zero when contracted with hllv, and 

gives 1 when contracted with pllpv. The contribution of the tadpole diagram 

in fig. 2.6 is as usual proportional to hllv and so this contribution vanishes. 

Thus the only diagram contributing to the self-energy is the gluon loop diagram 

shown in fig. 3.1 which we now calculate. 

k 

p-k 

fig. 3.1: The gluon loop contributing to the truncated Schwinger-Dyson equation 

for the inverse gluon propagator. 
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3.2 The Gluon Loop 

We can write out our eguation as: 

Q~p) = 1 + ~57r~;2 P11 v j d4kr~06 ( -p, k, q)iln,B(k )il..,6(q)r~"..,( -k,p, -q) 

(3.3) 

where r~06 (-p,k,q) is the bare triple gluon vertex, and r~""Y(-k,p,-q) is the 

longitudinal part of the full triple gluon vertex, which we take to be given by 

Eq. 2.73. The momenta are as labelled in fig. 3.1. Working in the Landau 

gauge, the full gluon propagator is given by: 

where: 

We write the integrand in Eq. 3.3 as Q(k)Q(q)IIl" fk 2q2 , with: 

If" = r~n6 ( -p, k, q)6n,86..,6r~"..,( -k,p, -q) 

I:" = r~n6 ( -p, k, q)kok,86..,6r~"..,( -k,p, -q) 

I:" = r~n6 ( -p, k, q)6nflq..,q6r~".., ( -k,p, -q) 

I:" :.... r~06 ( -p, k, q)kokflq..,q6r~"..,( -k,p, -q) 

(3.4) 

(3.5) . 

(3.6) 

We can now use the Slavnov-Taylor identites in the absence of ghost 

contributions: 

(3.7) 
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which are satisfied by the vertices in Eq. 3.3 (see Eq. 2.72), to simplify some of 

the expressions in Eq. 3.6. Some easy tensor algebra gives: 

If" is identical to I:", but with k and q interchanged. We also have: 

If" is more complicated. After performing the Lorentz contractions in Eq. 3.6 

it is equal to r~rh(-p,k,q)r~"-r(-k,p,-q), which from Eqs. 2.73 and 2.41 we 

write as: 

(3.10) 

After performing the Lorentz contractions we obtain: 
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Note that the integrand is symmetric between k and q, as it should be. Using 

this symmtry, we can replace I:'' I q2 with I:" I k2 , and we can also simplify If", 

writing it as: 

Projecting with the tensor P~", Eq. 3.2, we obtain: 

1 
I~" p = --(p2(p. k)2- k2p4) 

4 "" 3Q(p) 
(3.13) 
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Next we have: 

Finally we split lf 11 into four terms: 

p 2 ( 1 1 ) (6/JII )2 2 iJ II 
iJII p2 - q2 Q(p) - Q(q) (p + q p' q + 4p q q 

-p. qp/Jpll- (q2 + 2p. q)piJqll- 4p. qq/Jpll) 

2 ( 1 1 ) 1 ( )2 2 2 2 2) = - - - - - 2(p. q - 3q p. q - 3p p. q- 4p q 
p2 - q2 Q(p) Q(q) 3 

=- - - - - 12p + 24p p. k + 3k p. k 2 1 ( 1 1 )( 4 2 2 
3 p2- q2 Q(p) Q(q) 

- 7k2
p

2
- B(p • k)2

) 
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(3.15) 

Putting all this together allows us to write the equation for Q(p) as 

Q(q)- Q(p) C(k,p) Q(k) + Q(q)- Q(k) D(k,p) 
q2- p2 k2q2 Q(p) q2 - k2 k2q2p2 

A(k,p) =48k2(p · k)2 - 32k2p2p · k -16(p. k)8 -12k4p2 

+6k2p4 + 6p2(p. k)2 

B(k,p) =38k2p2p · k- 25p2(p. k)2 -14k2p4 + 12p4p. k 

-13k4p2 - 2k2(p. k)2 + 4(p. k) 3 

C(k,p) = 24p4 + 14k2p2 + 16(p · k)2 - 48p2p · k- 6k2p. k 

D(k,p) = 12k4l- 48k2(p · k)2 + 48(p · k)3 + 24k2p2p · k 

-5k2p4 - 40p2(p. k)2 + 9p4p. k 
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This is the equation we have to solve. As it stands, however, the integrals have 

ultraviolet logarithmic divergences, as well as potential infra-red divergences. 

These must be dealt with to give us a finite renormalised equation. 

3.3 Renormalisation 

As we shall later argue, the only possible consistent behaviour for 9(p) 

as p2 --+ 0 is 9 (p) "' 1/ p2
• If 9 (p) is this singular, however, the integrals in 

Eq. 3.16 are potentially infra-red divergent. In a related study in the axial 

gauge[3.2], such divergences are avoided by assuming that: (i) the full axial 

gauge propagator has the same tensor structure as the bare one, and (ii) that 

the coefficient of such an infra-red enhanced term is independent of the choice of 

axial gauge. It is possible that if we could solve the complete Schwinger-Dyson 

equation with no approximations or truncations, then such a term would not 

give rise to divergences. Nevertheless, as they do appear in our truncation, we 

must deal with them. We choose to treat them by defining 9(p) by a 'plus' 

prescription, which we define later in section 3.5. Of course, this prescription 

is not determined by the theory, but put in 'by hand'. In chapter five, and 

in other work[3.3], different treatments are used, but the justification here will 

lie in the physically meaningful results we obtain. One of the long term goals 

of any analysis based upon the Schwinger-Dyson equations will be to eliminate 

these infra-red divergences in a self-consistent way, entirely within the context 

of the theory. A fuller discussion of this and other infra-red problems appears 

in chapter seven. 

Even when we have dealt with these divergences, we still obtain contri

butions violating the masslessness of the gluon, a condition demanded by gauge 

invariance. If 9(p) has such an infra-red singular term, on dimensional grounds 

it must be AJ.t2 jp2 • Even after integration, the dimensionful quantity 112 must 

be balanced, and the only quantity available is p2 • Thus we get contributions 
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to the right hand side of Eq. 3.16 which behave like 1/p2 • The condition for 

masslessness is: 

(3.18) 

where IT~'" is the full inverse gluon propagator. Since the bare inverse gluon 

propagator obeys the condition Eq. 3.18, then all our integrals on the right 

hand side of Eq. 3.16, ·must obey this as well. This is clearly not true of some 

of the terms which arise from integration of the infra-red enhanced term. We 

must perform a subtraction to remove these terms. Formally, we may imagine 

some appropriate counter-terms in the bare Lagrangian to achieve this 

The easiest way to preserve masslessness is to write Q(p) = AJ12 fp2 + 
9 1 (p), where p2Q1 (p)--+ 0 as p2 --+ 0. The entire contribution to the mass term 

comes from the enhanced term AJJ2 fp2• Thus if in the right hand side of Eq. 

3.16 we set Q(p) = AJ12 fp2 and subtract this from Eq. 3.16, then no mass 

term will arise. Note that if the mass term should be equal to zero, then the 

term subtracted will vanish as well. This mass renormalisation, and the 'plus' 

prescription treatment of the infra-red divergences do not prejudge that Q(p) 

does possess such an infra-red enhanced term, as we allow the possibility that 

the coefficient of this term can vanish. Finally, any terms on the right hand 

side of Eq. 3.16 which are linear in Q will have the entire contribution of the 

enhanced term subtracted by this mass renormalistaion. In these terms we can 

effectively set Q = Q1 • 

We still have the usual logarithmic ultraviolet divergences, which arise 

from the momentum loop integral at large k2 • To handle these we cast Eq. 3.16 

into the form: 

1 

Q(p) 
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where: 

(3.20) 

C(k,p) = 9(q)B(k,p) + C(k,p) [9( ) - 9( ) (P2 + J.l2 )] 1 
k4q4p2 q2- p2 q p q2 + J.l2 k2q2p2 

Here JC(k,p) contains those terms which are linear in 9, whereas C(k,p) 

contains those terms which are quadratic in 9 in the numerator, with an explicit 

1/9 (p) in the denominator. 

In splitting the integral into these two tem1s, there is a slight tech

nicality over the term proportional to C(k,p), which involves the factor 

(9(k)/9(p))(9(q)- 9(p))/(q2 - p2). This term contains a part which belongs to 

JC(k,p) and a part belonging to C(k,p). These will be renormalised differently, 

and so we must be careful not to introduce any singularities from the q2 - p2 

term in the denominator. This is done by writing: 

(3.21) 

Here we call the first term part of C(k,p) and the second term part of JC(k,p). 

All we have done is to add and subtract at term which ensures both parts are 

individually finite at p2 = q2 • This term is obviously arbitrary, but we have 

chosen it so that it does not introduce any extra ultraviolet divergences, being 

finite by power counting. The momentum p.2 in Eq. 3.21 is also arbitrary, but 

for convenience we choose it equal to our renormalisation scale. 
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Returning to Eq. 3.20, we define a renormalised gluon function 9R(P) 

VIa: 

(3.22) 

for convenience we also use X:R(k,p), .CR(k,p); which are equal to X:(k,p) and 

.C(k,p) respectively but with 9 replaced by 9R· Here K is an ultraviolet cutoff 

which serves to make th~ integrals finite. We now define a renormalised running 

coupling constant by: 

D2(J-t) = g5Z(K/Jt) 

1 + ~~~: j d4kX:R(k,p) 
(3.23) 

Using Eq. 3.19 we can also rewrite this as: 

(3.24) 

Inverting these two equations in terms of the bare coupling 95 gives us: 

2z("'/ ) - g2(J-t) 
Do J-t - 1 - a,<e>cA fd4k X: (k ) 

9611"4 R 'J-l 

(3.25) 

2 z2(~ef ) - g2(J-t) 
Do J-t - 9R(J-t) + 92Jg~~A J d4k9R(k).CR(k,p) 

Substituting these expressions in Eq. 3.25 into Eq 3.19, and using the definition 

of Eq. 3.22 gives, after a little rearranging: 

Qtp) [QR(J-t) + ~:~: J tf4k QR(k) ( .CR(k, J-t)- .CR(k,p))] 

= [ 1 + D
2

~~~; A J trk ( X:R(k,p)- X:R(k,p)) l X (3.26) 

QR(J-t) + 92J:~~A j d4k 9R(k)£R(k,p) 
X _...:..:_:._~~:::--=---___;___:_____;__..;_ 

1-
92J:~?A J d4kX:R(k,p) 
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The quotient in the third line of Eq. 3.26 is seen to be simply 1 I Z (,..I Jl) from 

Eq. 3.25. This can be used to renormalise the factor of 1l9(p) on the left hand 

·side of Eq. 3.26 to give us the renormalised equation in which all integrals will 

be ultraviolet finite: 

(3.2i) 

In the next section, we will need a more explicit form for the running 

coupling, in order to determine the behaviour of 9n(p) at large p2 • We first 

invert Eq. 3.23 to give: 

(3.28) 

subtracting Eq. 3.28, from the same equation evaluated at p gives: 

(3.29) 

If we take the definition of Eq. 3.22, and instead renormalise at p2 we would 

have: 

9(p) = Z(Kip)9n,(P) (3.30) 

where for clarity we have written the subscript Rp to denote. that p2 is our 

renormalistaion scale. However we must have 9 n, (p) = 9 R,. (Jl), and we rewrite 

Eq. 3.30 as: 

(3.31) 

Then the equality of Eqs. 3.22 and Eq. 3.31 allows us to write: 
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9R(p) 
9R(Jl) 

(3.32) 

where all quantities are renormalised at the scale 112 • This allows us to simply 

rewrite Eq. 3.29 as: 

(3.33) 

as an equation for the renormalised running coupling constant. We have given 

the deri-vation of Eq. 3.33 in some detail, as the same sort of arguments will be 

used to define the other running couplings which will appear in our study. 

3.4 Consistent Asymptotic Behaviour of 9R(P) 

Because of the complicated structure of our equation for the gluon renor

malisation function 9R(p), Eq. 3.27, an analytic solution is not possible, and 

we attempt a numerical study. Before we do this, we investigate the possible 

asymptotic behaviour for both small and large p2 that we should build into our 

numerical solution. In general we will take a trial input function 9in(p), and 

substitute this into the right hand side of our equation, Eq. 3.27. After per

forming the integrals we obtain an output fu~ction 1/9out(p), to be compared 

to the reciprocal of the input function. We allow our trial function to depend 

on a number of parameters, and we vary these until we find good agreement 

between input and output over a suitable range of p2 • 

All of the integrals in Eq. 3.27 give rise to dimensionless quantities, and 

all contain the factor 1/ k2 q2 in their denominator. This allows us to derive the 

following general results 

a) H 9in(P) _... constant, as p2 _... 0, then the output of the right hand side of 

Eq. 3.27 is easily seen to give: 

1 
~ = 1 + (constant)ln(p2 /112

) 
~out 
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b) If 9in (p) "' lnp2 as p2 
-t 0, then the right hand side gives: 

1 
;::;--- = 1 + constant In 2 (p2 j JL 2 ) 
~out 

c) These logarithms may sum to a power. If we let 9in(P) -t (p2 jp2 ) 0 as p2 -t 0 

with a < 1, then all the integrals are infra-red finite, and we would obtain: 

-- = 1 + constant JL 
2 

1 ( 2) 0 

9out P 

where this is purely on dimensional grounds, to balance the dimensionful quan

tity p 2 • 

In all of these cases it is not possible to obtain agreement between input and 

output. If, however, we consider the case 9in -t p 2 /p2 , and we use some regu-

larisation technique to deal with the infra-red divergences, then we would find 

by the same dimensional arguments that 

where Cis a constant. Unlike the terms in c) above, this will violate our mass

lessness condition, and so must be subtracted. Then if the higher order terms 

in p2 of Q(p) generate a contribution to the right hand side of which cancels the 

explicit factor of 1, then the right hand side of the equation would vanish as 

p2 -t 0. This is exactly the behavior of the left hand side, and we have the pos

sibility of finding agreement. If the next order p2 corrections to 9in(P) behaved 

like a constant, a logarithm, or a power as in c) above, but with 0 <a < 1, then 

this would give rise to inconsistent behaviour, as the left hand side of Eq. 3.27, 

i.e the reciprocal of the input function vanishes at small p2 • We therefore will 

attempt to find solutions which behave like: 
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as p2 -+ 0. 

We can now use Eqs. 3.27 and 3.33 to determine the asymptotic form of 

our equation for large p2
• By writing 9R = 1 + O(a(JL)) then if we only work to 

O(a(JL)), we can simply set 9R = 1 on the right hand side of Eq. 3.27. However, 

if we set 9R = 1 in our ansatz for the full triple gluon vertex Eq. 2.73, it reduces 

to the bare vertex. Thus the leading term from this diagram is simply that of 

perturbation theory (see section 2.6), and we have: 

-- = 1 + --'Yoln -1 a(Jt) (p2
) 

9R(P) 4r. J.L
2 (3.34) 

where from Eq. 2.ii we have 'Yo = tC A· This can also be verified using the 

integrals of Appendix A, Eq. A.32. We also need to know the leading behaviour 

of the renormalised running coupling Eq. 3.33. We extract the leading term of 

J d4k[K:R(k,p)- K:R(k,p)l by using 9R = 1 in Eq. 3.23. We therefore must 

work out the leading contribution of 

(3.35) 

using Eq 3.21 and Eq. A.32 in Appendix A, we obtain the leading behaviour of 

Eq. 3.35 as: 

(
12- 32 - 16 + 6 + ~ -14- 16 + 6)m(P2) 

2 4 4 4 p,2 

1 . ( p2 ) 25 ( p2 ) =(-- -12)ln - = --In -
2 J.L2 2 p,2 

(3.36) 

Thus from Eq 3.36 we obtain from Eq. 3.33: 

_1_. _ 9R(J.l) (-1- + 25CAln(p
2 
)) 

a(p) - 9R(P) a(p) 48r. p,2 (3.37) 

Using Eq. 3.34 to expand 9R(p), we obtain: 

"'(lp) = ___!___) + f3o In ( p: ) 
... a(Jt 4rr JL 

(3.38) 
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where f3o = ~~CA. This is to be compared with the usual /30 of perturbation 

theory being 1
3
1 CA. In the usual way (see section 1.4), we can eliminate the 

arbitrary momentum p 2 , by rewriting Eq. 3.38 as: 

411" 
a(p) = f3oln(p2 /A 2) {3.39) 

The usual renormalisation group argument allows us to rewrite the 

asymptotic form for 9R(P) as: 

{3.40) 

We have given this derivation of the asymptotic form in some detail, as we shall 

use similar arguments throughout this study. From now on though, we shall 

merely give the answer. The arithmetic can easily be checked with the integrals 

in Eq. A.32. 

We have therefore deduced the possible analytic behaviour of 9R(P) for 

both small and large p2 • Before we proceed with our numerical study, however, 

there are some technical details to be dealt with. 

3.5 Technical Details 

In order to calculate the numerical integrals in Eq. 3.27, there are a 

number of technical details which we give here. The ·most important of these 

is the definition and implementation of the 'plus' prescription, which we use to 

make our potentially infra-red divergent integrals finite. The basic definition is 

as follows: 

100 

dk'( A:,')+ S(k,p) = [' dk2 (A;,' )(S(k,p)- S(O,p)) 

{oo (AJ12) + Jp2 dk
2 IT S(k,p) 

(3.41) 
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where the subtraction in the first integral removes any pole at P = 0 leaving 

us with a finite answer. For those integrals in which the angular integrals can 

be performed analytically, the implementation of this prescription is easy. Un

fortunately for many of the integrals we have to deal ·with, namely the C.(k,p) 

terms, the angular integrals cannot all be performed analytically, and must be 

done numerically. Thus writing: 

S(k,p) = 1w sin2 t/;dt/;s(k,p,cost/.•) (3.42) 

we define 

S(O,p) = lim ltr sin 2 .,P dt/; s(k,p, cost/;) 
A:2-o o 

(3.43) 

For many of these terms the limit and the integral sign in Eq. 3.43 can be 

interchanged to give us s(O,p,cost/.•), for other terms more work remains to be 

done. We illustrate this and other problems by means of some examples. 

First of all, some of the terms are infra-red finite, and for these, the 

subtraction detailed in Eq. 3.41 does not occur, S(O,p) being zero. This includes 

all terms with S(k,p) = O(k) or higher. For the higher powers, :finitene~s is 

ob,ious. For those .terms with S(k,p) = O(k), since the integration measure 

is dk2 , we have an integrable singularity at k2 = 0. This can be removed by 

writing dk2 = 2k dk. 

In general the terms from C.(k,p) are proportional to Q(k)Q(q), and 

either of these two can be infra-red enhanced, the contribution where both are 

enhanced being subtracted by our mass renormalisation (see section 3.3). By 

transforming integration variables k-+ q we can always make the enhanced term 

From Eq. 3.20 we deal with the terms from B(k,p). From Eq. 3.li 

and its transform when k +-+ q, we can read off the kind of terms we have to 
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deal with. The measure d4 k gives us a fac.tor of k 2 d~~2 , so terms in B(k,p) with 

three powers of k or higher in the numerator are explicitly infra-red finite. This 

leaves us with infra-red divergent terms having: 

p2J.~. p (k. p)2 p2 
s(k,p)"' q2k2 9t(q), q 4 k2 9t(q), q4 9t(q) {3.44) 

where 91 is the non enhanced part of 9. The second two of these are relatively 

easy to deal with giving rise to: 

cos2 t/' 1 
s(O,p,cost/;)"' -

2
-9t(p), - 29t(P) 

p . p 
{3.45) 

To calculate the actual value of the integrand at k2 = 0, we can taylor expand 

s(k,p,cost/.'), subtracting the leading term s(O,p,cost/;). Thus for the second of 

the terms in Eq. 3.44 we obtain: 

cos
2

1/; ( ) s(k,p) - p2 91 (p) + (1.~ 2 - 2k· · p)9~ (p) + 2(k · p)2 9~'(p) x 

( 
k2 k . p 12(k . p)2

) 
X 1-2-+4-+ +0(k3

) p2 p2 p4 

(3.446) 

where a prime denotes differentiation with respect to p2 • Here we can expand 

the brackets, subtract the leading term (Eq. 3.45), and use the fact that terms 

odd in cost/; will integrate to zero over 1/'. 

We perform our numerical integrations by a Simpson's rule method, 

increasing the number of integration points until the answer is stable to within 

0.1 %, as well as demanding similar numerical agreement with the analytically 

calculable answer when 91 = 1. To implement our plus prescription, Eq. 3.41, 

numerically, the integral from 0 to p2 is split into two regions: 0 to ep2
, and ep2 

to p2 • Over the second region, away from k2 = 0 we simply use s(k,p)- s(O,p) 

in our integrand. Over the first region we use the taylor expansion to O(k2
), 

subtracting the leading term. By using f = 10-4 we maintain our numerical 

accuracy. 
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The first of the terms in Eq. 3.44 is a little more difficult, itself appearing 

divergent as k2
- 0, leaving s(O,p) apparently undefined. In this case the limit 

and integral sign in Eq. 3.43 cannot be naively interchanged. Taylor expanding 

s(A~,p) we obtain: 

p2k. p 
s(k,p) = q4k2 91 (q) 

= p;:k·2p (9I(P) + (k 2 - 2~~ · p)9~(p)) (1- 2k
2 

-p;k. P) + O(k) 

(3.47) 

The potentially divergent leading term is odd in cos¢ and so will vanish on 

performing the .,P integration. Thus from Eq. 3.47 we obtain: 

(3.48) 

Once again we can split the 0 to p2 integration into two regions, using the taylor 

expansion with the leading term Eq. 3.47 subtracted for 0 < k2 < Ep2 , and v.-ith 

the full s(k,p)- s(O,p) for Ep2 < k2 < p2 • 

We are left with the terms from C(k,p) in Eq. 3.20. With 9(k) en-

hanced, all the terms are finite by counting powers of k except for the term 

proportional to p4 for which 

24p4 ( p2 + 1-'2 ) 1 
s(k,p) = 22 9t(q)- 2 + 2 9t(P) 2 2 q p q ll q - p 

{3.49) 

By Taylor expanding we can easily obtain: 

s(O,p) = 24( ~t(P)2 + Q'(p)) 
p + ll 

(3.50) 

and we use the same treatment of the numerical integrals as outlined above. 

For the case where Q(q) is enhanced, we can transform variables k +-+ q for the 

C(k,p) terms. It can easily be checked that C(k,p) transforms to the following 

quantity: 

73 



Chapter Three The Gluon Equation 

and all terms are explicitly infra-red finite because of sufficient powers of k in 

the numerator. This completes our discussion of the plus prescription and its 

implementation. 

'Ve now turn to the ultraYiolet region of our integrals, where we must 

implement the renormalisation procedure outlined in section 3.3. As we have 

mentioned our numerical integrations are performed usinq a Simpson's rule tech

nique. This allows us to integrate over a finite region, and so we must transform 

variables from the infinite momentum region of the loop integral. We split the 

k2 integration into two regions, the first from 0 to p2 , and the second from p2 

to infinity. In the first region we implement the Simpson's rule on the integrals 

as they stand. For the second region we change variables, using w2 = 1/k2 to 

transform to a finite integration region. For those integrals which are ultraviolet 

finite, this is sufficient. For those which diverge, however, we must make sure 

our renormalisation procedure cancels these divergences before we perform our 

numerical integrations. The terms involving the enhanced infra-red behaviour 

for 9 are all ultraviolet finite by power counting, because of the extra power of 

k2 in the denominator from this term. Thus we are left to deal with the terms 

where 9 = 91· 

Turning to Eq. 3.17, we first look at the A(k,p) terms. Some of these 

appear quadratically divergent by power counting, but this divergence will cancel 

between compensating terms leaving only a logarithmic divergence. Other terms 

appear linearly divergent, but here the angular integrations will make them only 

logarithmically divergent again. Since the term proportional to A(k,p) is linear 

in 9, we can analytically perform the angular integrals. Using Eq. A.28 from 

Appendix A we obtain: 
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Jd4k Q1(k)A.(k,p) = 27r2 r 2 

dk2Q1(k) {48(p
2 + P)k

4p2 
32k

4
p

3 

k4q2p4 Jo k2p4 Sp4 4p3 

___::...___ - + -- + --=--~--..:.. 16p3k4 12l~4p2 6~~2p4 6p4k2(p2 + k2)} 
Spa 2p2 2p2 Sp4 

+27r2 {1(2 dk2gi(~~) {48(p2 + k2)k4p2 32k3p4 
JP2 k2p4 8k4 4k3 

16p4l_.3 12~~4p2 6k2p4 6p4k2(p2 + k2)} 
8k3 - 21.· 2 + 2P + 8k4 

(3.52) 

here we can see the explicit cancellation of the quadratically divergent terms, 

and the absence of linearly divergent terms. 'We are left ·with a logarithmically 

divergent integral, where for the moment we have retained the ultraviolet cutoff 

K
2. The renormalisation procedure essentially consists of subtracting Eq. 3.52 

evaluated at p2 = p,2 , from itself, (see Eq. 3.27). The logarithmically divergent 

term in the second of the integrals of Eq. 3.52 is independent of p2 , and so will 

cancel in this subtraction, lea,ing us with a finite integral. For the finite terms 

in Eq. 3.52, our renormalisation consists of a finite subtraction. The integrals in 

Eq. 3.52 are the easiest case to consider, because we have been able to perform 

the angular integrals explicitly. 

We now turn to the B(k,JJ) terms in Eq. 3.17. There are eight 

powers of k in the denominator, so that with the four powers of k from the 

integration measure d4 k, the only divergent terms are those proportional to 

-13k4 - 2k2{ k · p )2 / p2 • After our ultraviolet subtraction we must calculate the 

following integral: 
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(3.53) 

where qm = k2 + 112 
- 2k · 11· Here 11 is a Euclidean 4-vector in the direction of 

p, ·with 11 ·11 = 112
• We can add and subtract a term proportional to Q1 (q)fq:n 

to give: 

In the first term the highest power of ~~ 2 cancels in the q! - q4 term, leaving us 

with a finite integral. The second term is still divergent by power counting. We 

integrate this term up to some large momentum R, with R 2 ~ 112 , p2 • Then we 

can expand: 

QI(q) =QI(k) + (q2
- k2 )Q~(k) + ~(q2 - k2 )2 Q~'(k) + 0(1jk3

) 

= QI (k) + (p2 
- 2k · p)Q~ (k) + 2(k • p) 2 Q~'(k) + 0(1/k3

) 

A similar expansion for Ql(qm) allows us to write 9t(q)- Ql(qm) as: 

(3.55) 

(p2 -112 + 2k ·11- 2k. p)Q~(k) + 2((k. p)2
- (k ·11)2 )Q~'(k) + 0(1/k3

) (3.56) 

Since we will choose an explicit parameterisation for 9t, its derivatives can be 

calculated, and the extra powers of k2 in the denominator coming from these 

make the integral finite. These powers can be explicitly extracted to enable us 

to perform the numerical integration (see Eq. 3.74). For R 2 sufficiently large, 

the errors introduced by ignoring higher terms in the expansion are small. \Ve 

usually choose R 2 = 103max(p2 , 112 ). 

We now move on to the C(k,p) terms in Eq. 3.20. These are of two 

types, those that contribute to K.(k,p), and those that contribute to .C(k,p). For 
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the former we can count six powers of ~·2 in the denominator, and so the divergent 

terms can be read off as those proportional to 14k2 p2 + 16( k · p )2 - 6k2 k . p. The 

last term here appears linearly divergent, but if we could perform the angular 

integrals the divergence would be only logarithmic. To deal with this we write 

the contribution of this last term as: 

(3.57) 

where the term we have subtracted is equal to zero because its numerator is odd 

in cos.,P, and there is no other 1/J dependence. 'Ve can rewrite Eq. 3.57 as: 

(3.58) 

we can see that the highest power of k will cancel in the numerator, leaving us 

with a logarithmically divergent integral. We can extract this divergent piece, 

finding it to be: 

(3.59) 

After renormalisation, this becomes: 

(3.60) 

The term in brackets from Eq. 3.60 can be written over a common denominator, 

·with a numerator equal to p2 (q~- q2 ) + q~- q4 • It is obvious that the highest 

power of k 2 cancels, and again we are left with a finite integral. The remaining 

divergent terms from C(k,p) are dealt with in a similar manner to this. 

For the C(k,p) terms contributing to .C(k,p) we split the k2 integral 

into two regions, from 0 to 4max(p2 , p2 ), and from 4max(p2 , p2 ) to infinity. In 

this second region we are well away from the points where q2 = p2 or q~ = 112 
• 

...... 
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Then from the factor 91 (q)- 9 1 (p)(p2 + J.t2)/(q2 + J.t 2) in Eq. 3.20, we see 

that the second term carries an extra power of ~~ 2 in the denominator, and this 

makes all the integrals involving this term ultraviolet finite by power counting. 

The logarithmically divergent terms proportional to 91(q) can be dealt with in 

exactly the same way as the terms from B(~~,p), see Eqs 3.53-3.56. The only 

difficult term is that proportional to: 

J atk9tU~)9I(q) k2 ~~ • p (l- 9I(P) (p2 + J.t2)) 
k2q2p2 q2- p2 9t(q) q2 + J.l2 

(3.61) 

which appears linearly divergent. This time we cannot perform the angular 

integrals analytically, nor can we perform an easy subtraction as in Eq. 3.57. 

'Ve deal with this term by writing it as: 

We have introduced a term (k2 - p2)/(k2 - p2) so that the term in brackets in 

eq. 3.62 is q +-+ k symmetric. By changing variables q +-+ k, and relabelling the 

momenta we obtain: 

(3.63) 

where for convenience we have introduced TV(k,p) = k2p2 -3p2 k·p+2(k·p) 2 +p4 
• 

. Both Eq. 3.62 and Eq. 3.63 are finite at k2 = p2 and q2 = p2
• Using the fact 

that I is equal to half the sum of Eqs. 3.62 and 3.63, we can simply apply 

Simpson's rule for the k2 integral for 0 < k2 < 4max(p2
, J.t2 

). For k2 greater 

than this, we can split the integrand, isolating the divergent terms ~·hich we 

read off as: 
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J cfk k2q2p2~2(~~~~f~2- p2) (<k2- p2)J.~2k. p+ (q2- p2)(W(k,p)- k2k. p)) 
(3.64) 

'Vriting q2 - p2 = (k2 - p2) + (p2 - 2k · p) we can rewrite the bracketed term in 

the numerator of Eq. 3.64 as: 

(3.65) 

We are left with terms which are only logarithmically divergent, which we deal 

with in exactly the same way as in Eqs. 3.53-3.56. 

Finally we turn to the D(k,p) terms in Eq. 3.20. This contains apparent 

quadratic divergences, which we will show to be absent because of the angular 

integrations. First of all, however, we deal "ith the apparent linearly divergent 

terms in D(k,p) proportional to (1.: • p)3 and k2p2 k · p. We write: 

(3.66) 

that / 1 is equal to 

Thus we obtain: 

In exactly the same way we can compute: 
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(3.69) 

and both Eq. 3.68 and Eq. 3.69 are only logarithmically divergent. 

\Ve now turn to the quadratically divergent terms, proportional to 

J J4k91(q)- 9l(k) 1 (1?k4 2- 48k4 2 2·'·) 
a- q2 - k2 k2 q2 p4 - p . p cos '+' (3.69) 

As before we integrate this up to ~· 2 = R2 = 103max(p2 , 11 2 ) as it stands. For 

k2 > R2 we Taylor expand the integrand, giving us 

Q1(q)-Ql(k) = Q'(k)+0(1/k3) 
q2- k2 1 

(3.70) 

It is this first term in this expansion which is potentially quadratically divergent. 

We can now perform the angular integrals using Eq. A.28 for k2 > p2 ,from 

Appendix A to find the high momentum contribution of this term: 

271"2 [/(2 dk29'(k)12~·4 (-1-- 4(k2 +p2)) 
}R2 1 p2 2k2 8k4 

=24"' t dk'g;(k)( _ D (3.72) 

Since Q'(k) = 0(1/P), we see that the quadratic divergences have cancelled. 

This procedure can be continued to isolate the other logarithmically divergent 

pieces, and the leading order finite pieces. By expanding 1/q2 in powers of p2 /k 2 

as well, we can perform the angular integrals term by term. Since the integrals 

give a dimensionless answer, the logarithmically divergent terms must be simply 

proportional to dk2 jk2 , and so independent of p2
• Thus just as in Eq. 3.52 the 

renormalisation will explicitly cancel these terms, leaving us with the leading 

order finite terms for k2 > R2 , and hence convergent integrals. 

This completes our discussion of the technical details of the calculation. 

We have mentioned them in some detail since the calculations of this chapter 
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are somewhat more complicated than those we will meet in later chapters. Thus 

from now on we will not dwell at length on the technical details needed to 

compute the numerical integrals. 

3.6 The Solution 

We choose a parameterisation for 9R(P) consistent with the expected 

infra-red enhancement, and the asymptotic behaviour of Eq. 3.40. \Ve introduce: 

Yoo{P) = ( 1 + Po:: (I•)]+ + ::) ) ->o/Po (3.73) 

which is well behaved at all values of p2 • Here "to/ {30 = 28/53 We choose to 

parameterise 9R(P) by: 

AJ,l2 N ( p2 )nb 
9R(P) = - 2 + 9oo(P) I: an 2 + 2 

P n=l P Po 
(3.74) 

Here the parameters A, Po, an, b are to be determined by self-consistency of Eq. 

3.27. We substitute this form into Eq. 3.27, treating the enhanced infra-red term 

by our plus prescription, and performing the numerical integrals, the details of 

which are given in section 3.5. Where needed the derivatives of Eq. 3.74 are 

easily calculated. 

We then vary these parameters until good agreement is obtained over 

a range of values of p2 , between the right and left hand sides of Eq. 3.27. 

Because of the extreme length of time needed to perform these two dimensional 

integrals numerically, we set P5 = 0.3 Ge V2 and b = 0.3, values for which we 

obtained approximate agreement 'by hand'. Since these are the only parameters 

on which the dependence of Eq. 3.74 is non-linear, the integrals of Eq. 3.27 can 

be performed once, and the output stored. We then allow A and the an to vary 

within the numerical minimisation program MINUIT. 

\Ve choose our range of momentum to be 0.01 < p2 < 100GeV2
, with 

the renormalisation scale J.t 2 = 10GeV2 a scale we know from experiment to be in 
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the perturbative regime. We set 9R(I') = 1, and choose a value for a 8 (p). \Vith 

N = 4 in Eq. 3.74 we find this matching is achieved to impressive numerical 

accuracy, over the whole momentum range, from the deep infra~red to the deep 

ultraviolet. Using the form of Eq. 3.38 for the running coupling, we detail 

the solutions obtained for A = 200 and A = 500MeV i.e. a 8 (1l) = 0.172 and 

0.257 respectively (see Eq. 3.39). The results are plotted in fig. 3.2, and the 

parameters are detailed in Table 3.1. 

A (MeV) 200 500 

aa(ll) 0.172 0.257 

A 0.01934 0.07363 

b 0.3 0.3 

q5 (GeV2
) 0.3 0.3 

al 2.637 1.469 

a2 0.009379 -0.09048 

a a -0.4407 0.2547 

a4 -1.180 -0.6274 

Table 1 : parameters for Q(q), Eq. 3.72, for 
solutions shown in fig. 3.2 

We find that the solution to this truncated Schwinger~Dyson equation 

for the gluon propagator does indeed posess a solution in which the function 

9R(P) "'1/p2 as p2 -... 0. Thus the propagator itself will behave like 1/p4 in this 

limit. Before we go on to discuss the importance of this result, and its relevance 

to confinement physics in section 4.5, we first detail a far simpler approximation 

to this gluon equation, which nevertheless posesses the same qualitative solutions 

as those we have obtained here. 
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input 

output • 

A=500 MeV 

A=200 MeV 

.1 10 100 

fig. 3.2: The gluon renormalisation function 9n(p) as a function of p2 for A = 

200, 500 MeV~ 
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CHAPTER FOUR 

THE MANDELSTAM APPROXIMATION 

4.1 Introduction 

In this chapter we consider again the Schwinger-Dyson equation for the 

inverse gluon propagator, but this time in a simpler approximation first proposed 

by Mandelstam [4.1]. We shall demonstrate, qualitatively at least, that the 

solutions using this approximation have the same features as those obtained in 

chapter three, and discuss why this is so. Because of tile simplicity of this so 

called 'Mandelstam approximation' we use it as a basis for the calculations of 

chapters five and six. 

In solving the Slavnov-Taylor identity for the triple gluon vertex in terms 

of the gluon renormalisation function 9(p), Eq. 2.72, we see that the determined 

longitudinal part of the vertex, Eq. 2. 73, always involves terms proportional to 

1/9, with arguments p, k, q. The two gluon propagators in the gluon loop of fig. -

3.1, give a contribution of 9(k )9( q), partially cancelling some of these 1/9 terms. 

Mandelstam has suggested an approximation which assumes this cancellation to 

be complete, where we simply write the full triple gluon vertex as 1/9(q) times 

the bare vertex. This reduces the diagram of fig. 3.1 to that of fig. 4.1. 

fig. 4.1: The gluon loop diagram in the Mandelstam approximation. 

This approximation has also been studied by others [3.3), but as it is the 

basis of our later calculations, we give it in some detail, as our approach differs in 

some respects, particularly in the renormalisation of the equation in section 4.2. -
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As in chapter three we still neglect the ghost contributions and the diagrams 

involving quartic gluon couplings. This allows our simplified equation to be 

written diagrammatically as in fig. 4.2, giving us the following mathematical 

equation for the inverse gluon propagator: 

nf.lll n llll ~ c A95 J d4k r llOC( . k ) A (k)A' ( ) roP11

i'( -k,p, -q) 
ab = Oab + 0 ab 327r4 0 -p, 'q oP -y6 q 9( q) 

(4.1) 

where all the quantities are defined in sections 2.4 and 2.5, and once again we 

work in the Landau gauge. 

4.2 The Calulation and Renormalisation 

Following Eq. 3.4 we write the integrand in Eq. 4.1 as 9(k )N"" jk2q2 , 

where we have explicitly extracted the simple functional dependence on 9 and 

Nil" is defined as: 

where: 

Nf" = f~06 ( -p, k, q)bo~6.,.6rg"i'( -k,p, -q) 

N:" = f~06 ( -p, k, q)k0 kpb7 6rg"i'( -k,p, -q) 

Nf 11 = f~06 ( -p, k, q)bo~q7q6rg"7( -k,p, -q) 

Nt" = f~06 ( -p, k, q)kok~q7q6rg"i'( -k,p, -q) 

(4.2) 

(4.3) 

Using the form of the bare triple gluon vertex, as used in Eq. 3.10, some 

simple tensor algebra gives: 
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II 

I ...... 

I ...... 

fig. 4.2: The Schwinger-Dyson equation for the inverse gluon propagator using 

the Mandelstam approximation. 
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Nt' =h'"'(p4 + k4- 2k2p2) + (2~~2- p2)pllpll + (2p2- k2)kllk" 

-p. k(k 11 p" + p 11 k") 

(4.4) 

Projecting with the tensor P 1111 , Eq. 3.2, and denoting Ni = Nr" P1111 

we obtain: 

2 40 (k. p)2 10 2 
NI =- 2p +- - -k ~ lOk. p 

3 p2 3 

(4.5) 

We can now use the results of Appendix A to perform the angular 

integrals to obtain: 
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(4.6) 

where we have introduced an ultraviolet cutoff K2 making all the integrals in Eq. 

4.6 finite. Putting all this together, dividing by p2 , and factoring out the colour 

matrix 6ab, we obtain the following equation: 

1 

Q(p) - 1 + 
(4.7) 

The beauty of this Mandelstam approximation is that it allows all the 

angular integrals to be performed analytically, leaving us with just the momen

tum integration to do. This is to compared to the far more complicated situation 

in chapter three. Thus Eq. 4.7 is a far easier equation to deal with numerically, 
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a feature which will be of essential importance when we come to consider the 

coupled gluon and quark system in chapter six. 

Because of the presence of the ultraviolet cutoff, we have really only de

fined 9(p, K ). As in chapter three we define a renormalised gluon renormalistaion 

function by: 

(4.8) 

To obtain an equation independent of the cutoff K 2 , we first evaluate Eq. 4. 7 at 

p2 = JL 2
, where once again JL 2 is some arbitrary momentum~ We then subtract 

this from Eq. 4.7, and use the definition in Eq. 4.8 to obtain a renormalised 

equation: 

(4.9) 

where the kernel.J(k,p) is simply read off from Eq. 4.7. Here the renormalised 

running coupling is given as: 

(4.11) 

and as usual a-1 (JL) = g2 (JL) / 47r. The subscript on the coupling a-1 (JL) is to dis

tinguish it from the couplings a 2(JL), aa(JL) defined from the quark-gluon vertex 

which we will meet later in chapters five and six. The consistent renormalis-

tion of the Schwinger-Dyson equations is a highly non-trivial problem, which we 

discuss further in chapt.er seven. 

We must also mention the gluon mass renormalisation as in section 

3.3 .. A term violating p2 /9(p) -+ 0, as p2 -+ 0 will arise from terms where 

Q(p)"' AJL2 fp2 on the right hand side of Eq. 4.9 . This is equivalent to a gluon 

mass term and must be subtracted. As in the previous chapter, the easiest way to 
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deal "'ith such mass terms is to subtract the contribution where Q(p) = AJL2 jp2 • 

Since the right hand side of Eq. 4.9 is linear in Q(k), the effect of this is to 

completely cancel the contribution of such an infra-red enhanced term to the 

integrals in Eq. 4.9. Such an enhanced term will, in general, give rise to infra

red divergent integrals (see section 3.3). However, because of the gluon mass 

renormalisation this term does not appear on the right hand side of Eq. 4.9, and 

thus no infra-red divergences arise. Thus if we write 9R(P) = AJL2 jp2 + 91 (p), 

it is only the term 91 which will appear within our integrals. 

4.3 The Solution 

As in chapter three, it has not proved possible to find an analytic solu

tion to Eq. 4.9, and again we attempt a numerical solution. The analysis of the 

possible low momentum behaviour of 9R(P) is similar to the dimensional anal-

ysis of section 3.4, so again we look for a solution with the enhanced infra-red 

term, bearing in mind that the &luon mass renormalistaion above means that 

this term does not contribute to the integrals we must perform. As in section 

3.4 we can also extract the asymptotic form of 9 R(P) for large p2 • By expanding 

9n = 1 + O(a1 (JL)), we easily obtain for the leading behaviour: 

1 --
9R(P) 

(4.11) 

where the final momentum integral can easily be performed to give "'16 = fCA. 

Using Eq. 3.33, we can recast our definition of the running coupling in the form: 

(4.12) 

Again expanding in powers of a 1 (JL ), and using Eq. 4.11 we obtain: 

(4.13) 
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where we easily see that f3b = 2'Yb = 1
3
4 C A from the simple form of E_q. 4.12. 

The standard renormalisation group argument yields: 

(4.14) 

Since 'Y~/ /3~ = 1/2, we can use the usual one-loop asymptotic form for the 

coupling arising from Eq. 4.13, to give us the asymptotic form for 9R(p)as: 

1 
(4.15) 

Again we choose a parameterisation for 9 R(P) which reproduces this 

asymptotic form, so we first introduce: 

(4.16) 

allowing us to parameterise 9 R(P) by: 

(4.17) 

where the parameters A, an, bn, Cn, dn, Pn and qn are allowed to vary. Since 

all the angular integrals have been performed, we can allow the dimensionful 

parameters Pn, qn to vary numerically. This is unlike the situation in chapter 

three, where the corresponding dimensionful parameters were chosen by trial 

and error. This was because of the large amount of computing time needed 

when the parameters are allowed to vary under the integral sign, where only 

one of the angular integrals can be performed numerically. Also, we expect a 

non-zero value for the coefficient of the infra-red enhanced term A, but again 

we do not prejudice this result, by allowing the possibility that this parameter 

can be zero. 

91 



Chapter Four The Mandelstam Approximation 

As before, we set 9R(J.t) = 1 and choose J.t 2 = 10 GeV2
• We demand 

consistent numerical agreement between input and output for the range 0.01 < 

p2 < 100GeV2
, with a 1 (J.t) = 0.15,0.2,0.25,0.3, i.e A1 = 159,335,525, 708MeV 

respectively, where A1 is calculated using Eq. 1.23 with f3o = ~4 CA. In fact the 

equation Eq. 4.9 has a momentum scale dependence which is wholly specified by 

J.t, and by the value of the running coupling o 1 (p) at p2 = J.t2• As usual though, 

this scale can be defined in terms of an intrinsic parameter of the theory, namely 

A 1 • We find good agreement (to \'\-ithin 1%) with N,ll1 = 1 in Eq. 4.17. ·we 

plot our results in fig. 4.3, and give the parameters obtained in table 4.1. 

a(J.t) 0.15 0.2 0.25 0.3 

A 0.004207 0.01533 0.03254 0.05263 

al 0.9313 0.9352 0.9744 1.006 

Po (GeV) 0.1794 0.3037 0.4501 0.6121 

bl 1.055 0.9394 1.198 1.527 

C} 0.1308 0.1386 0.1079 0.09592 

qo (GeV) 0.1443 0.2636 0.3870 0.4867 

dl 0.43i9 0.4918 0.6605 0.8051 

Table 4.1 : Parameters for 9R(p), Eq. 4.9, for solutions shown in figs. 4.3. 

Once again we obtain solutions which possess the infra-red enhancement 

we saw in chapter three. Note that the size of this enhanced term rises with 

A1 exactly as we would expect if A1 is the intrinsic momentum scale of the 

theory. We discuss this further in chapter seven. In section 4.5 we will discuss 

the physical implications of this enhancement of 9R(P) and hence the gluon 

propagator, and see how it is related to confinement. Before this we first discuss 
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fig 4.3: The gluon renormalisation function QR(P) in the Mandelstam approxi

mation, as a function of p2 , for a 1 (JL) = 0.15, 0.2, 0.25, 0.3. 
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the relationship between the Mandelstam approximation, and the full vertex 

approximation of chapter three. 

4.4 How Good is the Mandelstam Approximation? 

In this and the preceding chapter, we have used two different approxi

mation schemes to solve the Sch"'inger-Dyson equation for the gluon propagator. 

In both cases we have obtained solutions for the gluon renormalisation function 

9n(p) which has an infra-red enhanced term AJI2 fp2 , which we believe to be in

dicative of confinement. In chapter three we solved the Slavnov-Taylor identity 

for the triple gluon vertex in the absence of ghost contributions. This allows us 

to write the longitudinal part of this vertex in terms of(}, where we drop the 

subscript R for the discussion of this section. The solution for this longitudinal 

part is proportional to 1/9 with arguments p, k and q. The propagators in the 

gluon loop of fig. 3.1 contain a factor fJ(k)(}(q), and so we obtain three generic 

terms, proportional to 

fJ(~~~iq), fJ(k) and fJ(q) (4.18) 

The last type can be made equal to the second type by the change of variable 

k --+ q, q --+ k within the loop integral. The first term we denoted by C(k,p), 

the second and third by JC(k,p), see Eq. 3.20. The Mandelstam approximation 

assumes that the cancellation which occurs for the second and third tems in Eq. 

4.18 occurs for the entire vertex. 

An essential feature of both our calculations is the gluon mass renor

malisation, which subtracts off those terms on the right hand side of Eqs. 

3.27 and 4.9, which do not vanish when we multiply by p2 and let p2 ~ 0. 

Such contributions only arise from the infra-red enhanced term, so we write 

(J(p) = AJI2 jp2 + (}1(p), and subtract from these equations the contribution 

where any (} which appears in the numerator is put equal to its infra-red en-
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hanced term only. This means that such singular terms do not contribute to 

the right hand side of the Mandelstam approximation at all, and similarly not 

in the X:( k, p) terms of the full vertex approximation. After this subtraction the 

only singular terms which contribute to the .C(k,p) are those where one of the 

factors of Q in the numerator is equal to AJL2 jk2, and the other is equal to Q1 • 

For example: 

(AJL2 jk2)QI (q) 

Q(p) 
(4.19) 

where the other contribution can be put in a similar form by a change of in

tegration variable. In section 3.5 we define the divergent contributions arising 

from such a term by means of a plus prescription and the technical details are 

described there. On dimensional grounds though, the integration must provide 

a dimensionful quantity to balance the factor of JL 2 • Since the only variable 

aYailable to us is p2 , after integrating such a quantity as in Eq. 4.19 we get a 

contribution proportional to: 

(4.20) 

where W(p) is some function arising from the integration which is well behaved 

as p2 -+ 0. In this limit the factor in the denominator also behaves like AJL2 fp2 

and cancels with the term in the numerator. Thus the cancellation which occurs 

completely in the Mandelstam equation, and partially for the X:(k,p) term in 

the full vertex approximation before integration, is seen in a sense, to occur in 

the infra-red limit of the equation for the .C(k,p) term after integration. Since 

it is in this p2 -+ 0 limit in which using only the longitudinal part of the vertex, 

and neglecting the transverse part is valid, we might expect that the simpler 

Mandelstam equation will work. Of course the arguments above concern only 

the qualitative analytic behaviour, and there is no reason why the Mandelstam 
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equation should not give quantitatively different results. By comparing fig. 4.3 

with fig. 3.2 we see that this is indeed the case. However, as was mentioned in ref. 

[3.2], although neglecting the transverse part of the triple gluon vertex will not 

affect the existence of infra-red enhanced solutions, it will affect the coefficient of 

such a term, and so we should not therefore worry about any further quantitative 

difference induced by using the Mandelstam approximation. 

Another difference between the two approximations lies in the different 

renormalisations, and hence the different running couplings, Eq. 3.33 and Eq. 

4.12. The important fact though, is the dependence of the running coupling on 

Q(p), and in both cases we have: 

(
Q(p) )n 

a(p) "' a_(J.t) Q(J.t) (4.21) 

where n = 1 for the full vertex approximation and n = 2 for the Mandelstam 

approximation. Although different, both couplings become strongly enhanced 

at low p2
, because of the factor of Q(p) in the numerator. This is exactly what 

we would expect of the coupling in a confiDing theory, and in both cases this 

enhancement is by a power law. In chapter seven we discuss other differences 

between these couplings, and a later one which we shall meet in the inclusion of 

quark loops in the gluon equation. 

In summary, the cancellation of factors of Q used in the Mandelstam 

equation is seen to arise in the full vertex approximation, partially before in

tegration, and partially after. The much simpler Mandelstam equation gives 

rise to qualitatively similar solutions, both for the gluon renormalistaion func

tion Q(p) and for the running coupling. Since the Mandelstam equation is far 

simpler to use, both analytically, and more importantly, numerically, it is this 

approximation that we shall use in our studies of fermions in a non-Abelian 

gauge theory in the subsequent chapters. 
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4.5 Confinement and a 1/p4 Gluon Propagator 

In the studies of the Schwinger-Dyson equation for the gluon propaga

tor in this and the preceding chapter, we have demonstrated solutions for the 

gluon renormalisation function Q(p) which are as singular as 1/p2 as p2 -+ 0. 

This in turn means that the gluon propagator is as singular as 1/p4 • This same 

behaviour has been found by others(3.2,3.3,4.2] in various different approxima

tions and truncations of these equations. It seems likely then, that this does 

reflect the true behaviour of the gluon. Before we go on to study the inclusion 

of coloured fermions in the theory, we first discuss ways in which this infra-red 

enhanced gluon propagator is related to confinement. 

Since we do not 'see' the gluon as a physical particle in the real world, 

unlike the electron or photon, we cannot immediately translate this low energy, 

or long distance, enhancement of its propagator directly into physical state

ments. Indeed, since the gluon propagator itself is not a gauge invariant quan

tity we should not expect this. Nevertheless, there is good reason to suggest 

that this enhancement is physically meaningful, and related to the confinement 

of colour. Here we shall discuss three ways in which to translate the behaviour 

we have obtained for the propagator into statements about confinement. This 

is not meant to be an exhaustive study of the implications of our solutions, but 

they do contain good evidence that the infra-red behaviour we have obtained is 

indeed a signal of confinement. 

(i) The Static Colour Potential 

In QED the long range force between two static electric charges is di

rectly related to the photon propagator(2.1]. By virtue of gauge invariance this 

guarantees the Coulomb 1/r2 force law. The connection is based on considering 

a 'one photon exchange' approximation, which for an Abelian theory correctly 

gives the large distance limit. For QCD, because of the self coupling of the 
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gluon, this approximation breaks down[4.3], and we have to consider 'multi

gluon' exchanges between static colour charges as well. Nevertheless we present 

here the 'one-gluon' exchange contribution to the large distance behaviour of 

QCD, which gives us an intuitive feeling for the meaning of a propagator which 

is as infra-red singular as 1/p4
• Here we calculate a contribution to the large 

distance potential between static colour charges. Because the gluon is a vector 

particle, this one gluon exchange generates a vector contribution to the poten

tial. The multi-gluon exchanges we neglect will generate a scalar component to 

the potential, and this is expected to play an important role[4.3]. 

The potential arising from one gluon exchange for a colour singlet state 

is related to the propagator via: 

V(r) = -CFg2 
/_: dt ~oo(r, t) (4.22) 

where ~00 is the time-time component of the full gluon propagator in configu-

ration space. Using its Fourier transform we obtain: 

(4.23) 

where z = (t,r) is the space-time variable. The t integral can be performed to 

give a delta function of k0 , allowing the k0 integral to be performed trivially, 

giving us: 

V( ) C 2 J d3
k A (k2) -ik·r 

r = - F9 (21r)3 ~oo e (4.24) 

where k, rare three-vectors. Using spherical polar coordinates we obtain: 

V(r) = - CF~B roo k2 dk 11 dz r2fr d¢ ~oo(k2)e-ikrz 
211" Jo -1 lo 

(4.25) 

where z = cos8. We perform the¢ and z integrals to give: 
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V(r) 2CFeta1
00 

• 
- - 3 wdwsmwtl.oo(w/r) 

1rT 0 
(4.26) 

where w = kr. 

Evaluating the gluon propagator at k0 = 0 gives us 

(4.27) 

and so our form for this one gluon exchange potential is: 

V( ) 2CFet 8 100
dw . 9(w/r) r = - sz nw ---'---'-...:.. 

1rr 0 w 
(4.28) 

For QED we expect the photon renormalisation function to be approx

imately one. The potential can be easily calculated to be: 

(4.29) 

4r.r 

where e1 , e2 are the electric charges of the two particles. This is the usual 

Coulomb potential. For QCD, however, we have obtained a very different ba

haviour for 9(k), which we parameterise as Ap,2 /k 2 + 91 (k). The infra-red 

enhanced term gives a contribution to the potential 

(4.30) 

where we have introduced a small momentum cutoff A to make the integral finite. 

Using integration by parts twice, we can write the integral in Eq. 4.30 as: 

sin(Ar) cos(Ar) 1100 dw. 
----,-~~ + -- -sznw 
2(Ar )2 2Ar 2 .>.r w 

(4.31) 

The integral in Eq. 4.31 is well behaved as A- 0, so we can expand Eq. 4.31 

in powers of A giving: 
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roo dw sinw = ]_ - ~ 
l>.r w 3 Ar 4 

{4.32) 

The first term here gives a contribution to the potential which has no r de

pendence. Although it diverges in the limit A -+ 0 we can always subtract a 

constant term from a potential, and so we remove this infinite constant, giving 

us the enhanced contribution to the potential: 

{4.33) 

Thus our 1/p4 propagator generates a linear term to the static colour 

potential. This linear potential is a good signal for confinement. In a Coulomb 

potential the flux lines spread out radially to give a 1/r2 force law, for a linear 

potential, they must be squeezed into a narrow 'flux tube' between the colour 

charges. The energy needed to separate these charges grows linearly with their 

separation. Eventually it will be energetically more favourable to create a qq 

pair from the vacuum to shorten these stretched lines of flux. This process can 

be repeated, until the momenta of the created quarks is low enough that they 

form the bound states we call hadrons. 

The Q1 (k2 ) contribution to the potential can be calculated numerically, 

and the result for o:a(lt) = 0.25 is plotted in fig. 4.4. For comparison we plot 

it against the phenomenological potential of Quigg and Rosner[4.4], which has 

been succesful in describing the properties of heavy qq states, and is simply pa

rameterised as a sum of a linear term and a Coulomb 1/r term. From the nature 

of our solution for Q, we see that this form for the potential arises naturally. 

(ii) The Wilson Loop Operator 

As we mentioned previously, this naive treatment of the propagator 

to obtain the static colour potential does not give the whole answer for QCD. 

Thus we cannot yet conclude that this potential does rise linearly with distance 
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1 

0 

......... Quigg & Rosner 

-- GR(P) potential 

-1 
0 1 4 

fig. 4.4: The static colour potential V(r) as a function of r, derived from our 

gluon function 9R(P) with a 1 (JL) = 0.25. We have chosen the renormal-

isation constant to maximise the agreement with a phenomenological 

potential of Quigg and Rosner in the region probed by cc and bb spec-

tra. 
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for large separations. Indeed since the gluon propagator itself is not a gauge 

invariant quantity, we should not expect to immediately be able to translate 

its properties into physical statements. A quantity which is gauge invariant, 

however, is the Wilson loop operator lV(L)[l.lO], defined by: 

W(L) = jrnA]w(L)e-s j jrnAJe-s ( 4.34) 

where [DA] denotes a functional integral over the gauge field, where we are 

working in Euclidean space. Here we need the quantity w(L) defined by: 

(4.35) 

which is the integral of the gauge field around a closed loop L in space-time. 

Here the symbol P denotes the path ordering of the A a matrices around the 

loop, which were introduced in section 1.3. For rectangular loops, in which the 

time distance is very long compared to the space distance, then the Wilson loop 

operator is related to the static colour potential[l. 7] via: 

W(L) = exp (- TV(r)) (4.36) 

where T is the length of the time interval. For QCD to confine, it is supposed 

that V(r) must behave linearly with r for large distances. Writing V(r) = ttr, 

where we call tt the string tension, we would find in this case that 

ll'(L) = exp (- ttAL) (4.37) 

where AL is the area enclosed by the loop. This result generalises to any shape 

of contour. Thus a possible criterion for confinement which is gauge invariant 

would be that the Wilson loop obeyed a so-called 'area law' for large loops, i.e. 

that this operator was exponentially damped, with the damping proportional 

to the area enclosed by the loop. For a non-confining theory such as QED, we 
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expect the potential to be constant at large distances, and thus the Wilson loop 

will be exponentially damped only proportional to the perimeter length of the 

loop. 

The Wilson loop is a quantity that can be calculated on a space-time 

lattice[l.lO], and indeed Creutz has shown an area law at least for a lattice SU(2) 

theory in the strong coupling limit. It is hoped that lattice simulations of QCD 

will themselves reveal an area-law, which will still hold in the continuum limit 

of these lattice theories (see section 1.5). 

An important result by West[4.5] relates the Wilson loop operator to 

the full gluon propagator. The result. states that if in any gauge, the full gluon 

propagator is as singular as 1/p4 as p2 -+ 0, then the Wilson. loop obeys an 

area law. This is the result we need, relating our gauge variant propagator to 

a gauge invariant quantity, which itself is related to the static potential. Some 

comments are needed here. First of all, since we had to truncate the Sch·winger

Dyson equations in order to obtain a closed equation, we cannot yet prove that 

the enhanced infra-red behaviour we have found is indeed the behaviour of the 

exact propagator. Nevertheless, the link with our results and a linear confining 

potential is suggestive. If we could show that this enhanced behaviour does 

hold for the exact propagator, then it will have essentially been demonstrated 

that QCD can indeed confine coloured objects. This would provide impressive 

support for the perturbative successes of QCD. 

There have been previous studies of the Schwinger-Dyson equation for 

the gluon propagator, and it is appropriate here to mention the most important 

of these, by Baker, Ball and Zachariasen[3.2]. Their study is in many ways sim

ilar to our.own, but with the crucial difference that they work in an axial gauge 

instead of a covariant one. This has the bonus that all the ghost terms are ab

sent, greatly simplifying the equations themselves, as well as the Slavnov-Taylor 

identities. The propagator itself, however, is more complicated, depending on 
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two scalar functions instead of just the one, namely Q, in our calculation. They 

employ an approximation in which they assume that the dominant infra-red be

haviour is given by only one of these functions, so that their full propagator has 

the tensor structure of the free one. They also assume that the coefficient of 

any infra-red enhanced term is independent of the gauge chosen. Under these 

assumptions the integrals involved in the truncated Schwinger-Dyson equation 

for the propagator are infra-red finite, even in the presence of the enhanced 

term. Unfortunately these approximations are put in somewhat by hand, and 

as usual in axial gauges, there is still the problem of dealing with the spurious 

singularities when one of the momenta in the problem becomes orthogonal to 

the vector defining the particular axial gauge. A prescription for dealing with 

these has also to be introduced 'by hand', and there is still controversy over how 

to deal with them properly[4.6], even in perturbation theory. 

The most compelling reason, however, for choosing to work in a covari

ant gauge is ·because of another important result by West[4.7]. Here he shows 

that because all the particles appearing in axial gauges are physical ones (i.e. 

no ghosts), that the spectral functions obey certain positivity conditions. The 

important conclusion from this is that he finds it impossible for the full axial 

gauge propagator have an infra-red behaviour more singular than 1/p2
• Note 

that this does not contradict the results of Baker, Ball and Zachariasen, in that 

they only considered one of the two scalar functions appearing in the axial gauge 

propagator. This may well indeed be as infra-red singular as 1/ p4 even though 

the full propagator is not. Presumably this enhanced infra-red behaviour would 

cancel between the two functions. This does, however, call into question their 

approximation of only considering one of the functions. More importantly, we 

must relate whatever behaviour we find for the propagator to physical, and hence 

gauge invariant quantities. The conclusion of this 'no-go' theorem of West's, is 

that it will be impossible to prove confinement via the Wilson loop in axial 
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gauges. 

Fortunately this theorem does not hold in a covariant gauge, and does 

not in anyway constrain the possible infra-red behaviour of the covariant gauge 

propagator. In the light of the problems arising in axial gauges, this is a com

pelling reason for studying the Sch"inger-Dyson equations in a covariant gauge. 

(iii) The QCD Vacuum and Dual Chromomagnetic Superconductivity 

A different approach to the link between confinement and a 1/ p4 prop

agator is related to the ideas of superconductivity[4.8) and electromagnetic du

ality. This duality is the invariance of Maxwell's equations under the transfor-

mations: 

E -+ B B -+ -E Pe -+ Po Po -+ Pe (4.38) 

Here Pe,Po are the electric and magnetic charge densities respectively, and E 

and B are the electric and magnetic field vectors. 

First we consider the electromagnetic action in a source-free, transla

tionally invariant medium: 

(4.39) 

as usual F,.,.ll .= a,.,.AII- aliA,.,., and e(z- y) is the dielectric constant describing 

the polarisation properties of the medium. For a free theory we have e( x - y) = 
6(z - y) and Eq. 4.39 reduces to the usual Maxwell action. The action of Eq. 

4.39 leads to the equations: 

(4.40) 

where: 
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- J 4 Gpv(x) = d Y€(x- y)Fpv(Y) 

Fpv(x) = ~€pvpuFpu(x) 
( 4.41) 

The first of the equations of Eq. 4.40 is the equation of motion, whilst the 

second is the Bianchi identity. 

It is equally possible to formulate this theory in terms of magnetic, or 

dual potentials Bw We introduce G"'" = 8"'B"- 8"'B". Then the action, Eq. 

4.39, can be written: 

(4.42) 

where we call p,(x- y) the magnetic permeability, which satisfies: 

J d4 y€(x-y)p,(y-z) = h(x-z) (4.43) 

Using this new action Eq. 4.42, we have the equations: 

(4.44) 

where 

Fpv(x) = J ~y p,(x- y)Gpv(Y) 

Gpv(x) = ~€pvpuGPO'(x) 
(4.45) 

where this time the second of Eq. 4.44 is the equation of motion and the first is 

the Bianchi identity. The statement of duality, is the invariance if physics under 

the transformation Fpv +-+ Gpv· 

An electric source is best treated by adding a term J! A" to Eq. 4.39, 

changing the first of Eq. 4.40 to 8,.,G,.," = J~. For a magnetic source we can 

add a term J~ B" to Eq. 4.42 to change the second of Eq. 4.44 to 8"'F"'" = J~ 
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The formulation preferred depends on the sources present and the properties of 

the medium. 

We can form the current: 

( 4.46) 

and the current correlation 

(4.47) 

Similarly we have the magnetic current correlation: 

( 4.48) 

These correlations are nothing more than inverse propagators. In momentum 

space, the relation Eq. 4.43 between f and Jl becomes E(k2 )JL(P) = 1, with both 

equal to unity for a free theory. Perturbatively we can write: 

(4.49) 

Since we know that electrically charged particles produce screening for the A 11 

potential (i.e. QED), they must produce anti-screening for the B11 potentials. 

The opposite will hold for magnetically charged particles or magnetic monopoles. 

Thus the anti-screening observed in QCD can be ascribed to a 'monopole-like' 

behaviour, and indeed this can be made somewhat more rigorous(4.9). 

We now turn to a consideration of electrical superconductivity. This is a 

fully non-perturbative phenomenon, with f and Jl very different from unity. The 

most important manifestation of superconductivity is the exclusion of magnetic 
r 

fields from inside the superconducting medium, suggesting JL(k2 ) = 0. In fact we 

know that magnetic fields penetrate up to the London penetration depth >.L. So 

for a finite >.1 we would have at small k2 that JL(k2) = k2 /mi,, where mL = 1/ >.L. 
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Using the fact that fJ.l = 1 we have that for small k2 that f( k2 ) = m jj k2 • Thus 

for small momenta, using Eq. 4.47 the inverse photon propagator becomes 

proportional to: 

(4.50) 

Thus the propagator behaves like 1/ m 1 for small momenta, and we see that 

the photon has acquired a mass. It therefore only propagates over distances 

comparable to the London length ,\L. On the other hand the inverse propagator 

for the 'dual' photon, derived from the Bp. potentials, has a small momentum 

behaviour given by: 

(4.51) 

Thus the dual photon propagator is as singular as 1/k4 in this limit. 

Consider then the theoretical possibility of a 'magnetic superconductor', 

where exactly the reverse happens. We would now have a massive dual photon, 

with the photon itself as singular as 1/k4 at small momenta. 

This result is suggestive, as this is precisely the momentum behaviour 

we have found for the gluon at small momenta. For QCD though, this analysis 

is complicated by the non-Abelian nature of the theory. Nevertheless, it is 

still possible to define dual non-Abelian potentials[4.10], and it is expected that 

the correlation between the behaviour of the gluon propagator and its dual 

holds. Thus our result that the gluon propagator is as singular as 1/k4 at small 

momenta can be interpreted as a signal that the QCD vacuum is behaving like 

an infinite chromo-magnetic, or dual superconductor. 

It is interesting to consider what would happen when we put magnetic 

monopoles inside our ordinary electrical superconductor. Because of the Meiss

ner effect, a single monopole would not be able to exist, as it would take 
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infinite energy to place it inside our superconductor. With more than one 

monopole, however, we would have the possibility of forming monopole-anti

monopole bound states, where the two particles would have a separation of the 

order of the London penetration length or less. In a type I superconductor the 

magnetic flux would be essentially contained within a small volume, whereas for 

a type II superconductor the magnetic flux would be squeezed into a small tube, 

with the monopole and the anti-monopole at the ends. 

'''ith a dual or magnetic superconductor, it would be electric monopoles 

which could not exist singly, but could form bound states with other electric 

charges. 

Thus we can now formulate a physically intuitive, albeit heuristic picture 

of confinement. The QCD vacuum behaves like a chromo-magnetic supercon

ductor. Colour electric monopoles, such as quarks, cannot exist singly within 

the vacuum but can form bound states with other quarks. There has been spec

ulation as to whether a type I chromo-magnetic superconductor corresponds to 

a bag model of hadrons, whereas the type II version would correspond to flux

tube solutions. Indeed in a closer study of the dual formulation of QCD[4.10] 

explicit flux-tube solutions have been constructed, displaying much of the be

haviour we might expect. A signal for this picture of confinement might well 

be the 1/ k4 propagator that our investigation of the Schwinger-Dyson equations 

has suggested. 
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CHAPTER FIVE 

THE FERMION EQUATION 

5.1 Introduction 

We now turn to the Sch"inger-Dyson equation for the inverse fermion 

propagator in a non-Abelian gauge theory. In a similar manner to the deriva

tion of the gluon equation in section 2.4 we can derive an integral equation for 

the quark propagator. Again we use the fact that the functional integral of a 

derivative vanishes to obtain: 

6S 
<-=- > +11(x) = 0 

61/,(x) 

Using Eq. 2.35 and the QCD Lagrangian Eq. 2.38, we obtain: 

(5.1) 

(5.2) 

In terms of classical fields and connected Green's functions, we can write this 

as: 

Taking the derivative of Eq. 5.3 with respect to tPtJi(Y) and setting the 

source terms and the classical fields to zero gives us: 
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Now ihry/ht/J is equal to the inverse quark propagator from Eq. 2.35, and so we 

obtain the equation depicted in fig. 5.1. 

Our aim is .to solve this equation for the fermion renormalisation func

tion .F(p), see ref. [5.1] for previous studies of this equation. Of course, once 

we have fermions in our theory we must include their effects in the pure gauge 

sector, by considering closed fermion loops, which occur, for example, in the 

gluon equation. As a first approximation, however, we can neglect these terms 

in the so-called 'quenched' approximation. In this limit, the equation for the 

inverse gluon propagator is that of a pure gauge theory. Thus we can take our 

solution for Q(p) and use it whenever it occurs in the fermion equation. 

The real world of course, contains the fermions we call quarks which 

do couple to the gluons. In chapter six we will consider the equations for the 

gluon and quark as a coupled system, fully including the dynamical effects of 

the fermions in the gluon equation. As a first step towards this, the 'quenched' 

approximation serves to outline the type of solutions we might expect in the full 

theory, as well as setting up the machinery for the more involved study later. 

5.2 The Ward Identity and the Equation for .F(p) 

As in the discussion before Eq. 2.76, we write the full fermion propaga-

tor as: 

(5.5) 

Using this we can write the diagrammatic equation depicted in fig. 5.1 as: 

s;.1 (p) = s;j.(p) - ;~~: j d4 k "( 11 SF(q)r"(k,q,p).6.""(k) (5.6) 

Here SoF is the bare fermion propagator, i.e. Eq. (5.5) with .F(p) = 1, CF the 

appropriate color factor, (Nb -1)/2Nc, and r''(k,q,p) is the full quark-gluon 

vertex. As before q = p - k. 

111 



Chapter Five The Fermion Equation 

II 

I ..... 

I ..... 

fig. 5.1: The Schwinger-Dyson equation for the inverse fermion propagator in a 

gauge theory. 
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Once again it is the infra-red or low momentum behaviour we are inter-

ested in, and as demonstrated in section 2.3, it is the longitudinal part of the 

vertex function r* which determines this. Once again we can use the Slavnov

Taylor identity for the quark-gluon vertex[2. 7] to determine this longitudinal 

part. Neglecting ghost contributions as before, this reduces to the Ward iden

tity of an Abelian theory, Eq. 2. 75, which we solve for the longitudinal part, 

give in Eq. 2.76. Using this, and the solution we obtained for the gluon func

tion Q(p) in chapter four, we can now derive a closed integral equation for the 

fermion renormalisation function :F(p), 

As an aside, we note that we have only included massless fermions. In 

general, the mass is also a dynamical function of p2 , and its contribution to 

the Ward identity of Eq. 2.75 can be determined [2.7]. Formally, however, 

a solution to the Schwinger-Dyson equation in which this dynamical mass is 

identically zero always exists, at least for vertex functions of the form of Eq. 

2.76. However, there is the possibility of addressing the important question of 

chiral symmetry breaking through these equations, and there have been some 

studies in toy models [5.2], and in more realistic calculations [5.3]. Nevertheless, 

to a good approximation, the non-generation of a dynamical mass should be a 

valid approximation, at least for the first generation of quarks. 

Returning to Eq. 5.7, we take its trace having first multiplied by p/4 to 

obtain: 

To perform the algebra, we writer~= r~ + rz, where: 
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(5.9) 

Defining: 

(5.10) 

Using the usual manipulations of spin algebra we first work out 

'Yp.f'Y11 (k 2hP."- kP.k") = k2 -yP.f'Yp. -1f.1 

= - 2k2f.- 2k. q1 + gk2 (5.11) 

= - ~~~2 - 2k . q1 
Multiplying by p/4 and taking the trace gives: 

1 
II(k,p) = 2( -q. pk2 - 2k. qk. p) 

1 = 2( -p2k2 + k. pk2 - 2(k. p)2 + 2k2k. p) (5.12) 

= !(3k2k. p- p2k2 - 2(k. p)2) 
2 

Next, defining 

2I2(k,p) = ~Tr[JhP.f.(g + p)](q + p)"(k2hP."- kP.k") (5.13) 

we first work out 

=(I+ p)fi(f. + p)k2 -1f.Ci + p)(k · q + k · p) 

= 2(q + p). qk2(g + p)- (q + p)2k2f. -1q2(k. q + k. p) 

- ,p2(k. q + k. p) + k2p(k. q + k. p) 
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Once again we multiply by p/ 4 and take the trace to obtain: 

1 
12(k,p) = 2[2(2p2 + k2 - 3k. p)k2(2p2 - k. p)- (2p- k)2k2(p2 - k. p) 

+ (2k. p- k2)(k2p2 - 2p2k. p- k2k. p + 2(k. p)2) 

. k4 p2 - k 2 (k · p)2 - 2k2p2(k · p) + 2(k · p)3
- 2p2(k · P? + 2p4 k2 

(5.15) 

A useful way of writing 12(k,p) can easily be verified to be: 

12(k,p) = (k2p2 - (!.·. p)2)(k2 - 2k. p + 2p2 ) 

= (k2p2- (k. p)2)(q2 + p2) 

This allows us to write the equation for F(p) as: 

1 
F(p) 

- 1-

(5.16) 

where /1 (k,p) and l2(k,p) are given in Eqs. 5.12 and 5.16 respectively. This 

equation, however, is in terms of bare quantities and contains divergences which 

need to be renormalised, which we now proceed to do. 

5.3 Renormalisation 

As it stands Eq. 5.17 contains the usual logarithmic ultraviolet diver

gences as well as being potentially infra-red divergent as a result of the enhanced 

low momentum behaviour of Q(p) we have discovered in the preceding chapters. 

This equation is somewhat more complicated than that for the gluon we consid

ered in chapter four, as it involves both F and g, As usual, we make the equation 

ultraviolet finite by introducing a running coupling. Before we do this, however, 

we note the similarity of the structure of Eq. 5.17 to that of the gluon equation, 

115 



Chapter Five The Fermion Equation 

Eq. 3.2i, we considered in chapter three. Generically we have two types of 

terms, one set proportional to 9(k), the other proportional to 9(k):F(q)J:F(p). 

As in section 3.3, there is a slight technicality with the terms in ! 2(k,p) because 

of the factor 1/(q2 - p2). To deal with these we write 12(k,p) in the following 

way: 

12(k,p) = (q2 + p2)(J.~2p2- (k. p)2) 

= (q2- p2)(J.~2p2- (k. p)2) + 2p2(k2p2- (k. p)2) 
(5.18) 

In the first term the factor q2 - p2 cancels between the denominator and the 

numerator. As in section 3.3 this split. is by no means unique, but once again, the 

term we have added and subtracted contains less powers of k 2 in the numerator 

and so is ultraviolet convergent. 

We can now cast Eq. 5.18 in the following form: 

1 g
2
CF J g5CF 1 J .14 - = 1- - 0

- d"kQ(J.~)K.(J.·,p)- ---- a-kQ(k)C(k,p) (5.19) 
F(p) 1Gr.4 161r4 F(p) 

where 

K.(k,p) = k4 \ 2 [11 (k,p) + k2p2- (k. p)2] 
qp 

1 ( 2 2 )2] .C(k,p) = k4q2p2 F(q)[I1(k,p)- k p + (k. p 

+ 2p2(k2p2 _ (k. p)2) [F(p)- F(q)]) 
q2- p" 

(5.20) 

At this stage, F(p) is formally F(p, K, >.), where >., K are infra-red and 

ultraviolet cutoffs respectively, introduced to make the integrals in Eq. 5.19 

finite. Infra-red divergences arise only from the enhanced 1/k2 term in9(k ), and 

as we shall later show, only in the second integral of Eq. 5.19 involving C(k,p), 

the other being infra-red finite. 

To deal with the ultraviolet divergences, we introduce a running cou-

piing defined by: 
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g2(p,) = g5Za("-/1-L) 
1- ~~6~~ f d4 kK(k,p,)Q(k,tc) 

( 5.21) 

.where we introduce the renormalised functions 9n (as in section 4.2) and :Fr 

specified by: 

Za(tc/p,)9n(p) = Q(p,tc) 

ZF(tcjp,,).jp,):Fr(p,).) = :F(p,A,tc) 
{5.22) 

Note that since this definition only involves the K term, all the quantities in 

in Eq. 5.21 are infra-red finite, and tlils coupling is well defined when ). -+ 0. 

Using Eq. 5.19 we can also write this coupling as: 

2( ) _ g5Za(tc/ p,)ZF(tc/ p,, ).j p,):Fr(/-L, A) 
g P, - g 2 CF 

1 + ~ J d4 k Cr(k,p,)Q(k, tc) 
(5.23) 

where Cr(k,p,) is the same as C(k,p,), but with :F replaced by :Fr in Eq. 5.17. 

Inverting Eq. 5.21 gives: 

Za(tc/p,) = _!__- CF J d4 kK(k,p,)Q(k,tc) (5.24) 
g2 (p,) 95 1671"4 

Following the same procedure we used in Eqs. 3.28-3.33, we subtract Eq. 5.21 

from itself evaluated at p, which gives: 

Za(tc/p) = Za(tc/p,) _ CFZa(tc/p,) J ~kg (k)[K(k ) - K(k )) (5 25) 
g2 (p) g2 (p,) 1671"4 R 'p ' 1-L . 

We now use Eq. 3.32, which simply derives from the definitions in Eq. 5.22 to 

give: 

1 9n(p,) ( 1 CF J 14 ( )) 

92(p) = Qn(p) g2(p,)- 471" 3 a-k9n(k) K(k,p)- ~(k,p,) • (5.26) 

Introducing o 2 (p,) = g2 (p,)/47r, we can expand Eq. 5.26 in powers of o 2 (p,) to 

gtve: 
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1 1 /3" p2 

o:2(P) = o:2(JL) + 4; ln JL2 (5.27) 

where /3~' = fCA + ~CF. The CA term comes from expanding the 1/9n(p), 

using the result of Eq. 4.10. The CF term comes from the integral in Eq. 

5.26 with 9n(k) = 1 + O(o:2 ), see Appendix A for the simple integrals needed 

to calculate this. It is important to note that this coupling differs from o:1 (JL) 

defined in chapter four. 'Ve postpone a discussion of this, and the consistency 

of the renormalisations we have used until chapter seven. 

Again we follow the manipulations of section 3.3, inverting Eqs. 5.21 

and 5.23 in terms of the bare coupling g0 to give: 

(5.28) 

2 Z (K/ )ZF(Kj ,\f ) - . g
2

(JL) 90 
G JL JL, JL - :Fr(JL,A)- c~~:~ll) J d4 k9n(k).Cr(k,p) 

Substituting these expressions in Eq. 5.19 gives after the usual rearrangement 

the ultraviolet renormalised equation: 

~~~:~~ = 1-
02~;3CF [/ cJ4k9n(k)(K(k,p)- K(k,p)) 

+ J tf4k9n(k)(.Cr(k,p)- .Cr(k,p))] 
{5.29) 

Before we proceed further, we must deal with the infra-red divergences 

. which arise from the enhanced Ap2 jP term in the gluon renormalisation func

tion 9 n( k ). First of all, we determine the form of these divergences by setting 

Qn(k) = Ap2 fk 2 in Eq. 5.26. The K:-term gives rise to an integral: 

(5.30) 
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Using the angular integrals in Appendix A, Eq. A.28, we find that this is equal 

to: 

(5.31) 

This explicitly demonstrates that the infra-red divergent terms in the first of 

these integrals cancel, leaving us "'-ith a finite contribution, as we mentioned 

earlier. The Cr-term involves the following integral: 

(5.32) 

We split the range of integration into two regions (i) A2 < k2 < p2 and (ii) 

p2 < k2
• The infra-red divergences occur in the first of these regions, and we 

extract the divergent terms explicitly by writing the term in square brackets in 

Eq. 5.32 as: 

[I1(k,p)- k2p2 + (k o p)2](Fr(q, A)- Fr(p, A)) 

+[II (k,p)- k2p2 + (k o p)2]Fr(p, A) 

+2p2(k2p2 _ (k 0 p)2) [Fr(P, A;- ~r(q, A)+ .r;(p, A)] 
q -p 

-2p2(k2p2 - (k 0 p)2)F;(p, A) 

(5o33) 

Here the prime denotes a derivative with respect to p2 
o Essentially all we have 

done is to add and subtract a term which cancels \1\--ith the integrand in the limit 

k2 --+ 0, using the first term in a Taylor expansion of Fr. Thus the first and 

third of the terms in Eqo 5o33 are infra-red finite, leaving us with the divergent 

integral: 
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1 d,4 k A~-t 2 [ 2 2 2 

k4 2 -k2 (11 (k,p)- k P + (k · p) )Fr(p, .X) 
).2<k2<p2 q 

- 2p2(k2p2- (k. p)2)F;(p, .X)] 
(5.34) 

Since the argument of Fr in Eq. 5.36 is p, the angular integrals can be performed 

( see Appendix A) to give us: 

2 
1r2 [P 2 AJL 2 1 [ 3 ~~4 2 
2 }).2 dk k2 k2 ( 2 p2 - 3k )Fr(p, .X) 

2 I ( ) 2 1 k
4 

1 2)] - 2p Fr p, A (2k - 2 p2 - 2k 
(5.35) 

The terms with a factor of k4 in the numerator are obviously finite, so we read 

off the divergent terms as: 

We can therefore write Eq. 5.29 in the symbolic form: 

Fr(JL, .X) 1 [ )l .X] 
Fr(p,.X) = l+A(p,JL)+ Fr(p,.X) B(p,JL)+C(p,JL np_ 

(5.36) 

(5.37) 

Here the A(p, JL) term comes from the K-term which was infra-red finite. The 

.C-term is divided into a finite piece B(p,JL) and a divergent piece, being ln(A/JL) 

times C(p, JL ). The form of C(p, JL) is easily read off from Eqs. 5.3i and Eq. 

5.29 to be: 

C(p, JL) = _ 3o2<;;)CF [ Fr~, .X) + .r;(p; .X)_ Fr~' .X) _ .r;(JL, .X)] (5.38) 

Note we have used the identity ln(p2 /A2 ) = ln(p2 jp2 )- 2ln(A/JL) in going from 

Eq. 5.36 to Eq. 5.38, and included the lnp2 /JL2 term in B(p,JL). We have also 
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included the infra-red finite terms from Eqs. 5.33 and 5.35 in B(p, 11 ). Both 

A(p,11) and B(p,11) also include the contributions where we have used 91 (k) for 

the gluon function, where as before we use 9R(P) = A11 2 fp2 + 91 (p). This term 

has no infra-red enhancement, and so all the integrals "ill converge as A -+ 0. 

Unlike the expression for C(p, 11 ), Eq. 5.38, no easy analytic form exists for 

A(p, 11) and B(p, 11 ), and they are evaluated numerically on a computer. 

Before we do this, however, we must make our equation infra-red finite 

by eliminating the dependence on A. To do this we take Eq. 5.37 and evaluate 

it at p2 = 11'2 • A can then be simply eliminated between the two equations to 

give: 

C(;, 
11

) (:Fr(l1, A)-B(p, 11) - :Fr(P, A)(1 + A(p, 11 )) ) 

= C(l1\l1) (:Fr(I1,A)- B(11',11)- :Fr(I1',A)(1 + A(11',11))) 

(5.39) 

The term B(p,11) contains a factor :Fr in its integral definition from Eq. 5.29. 

Thus the numerator of Eq. 5.39 is linear in :Fr, as is the denominator from Eq. 

5.38. Thus we define a factor ZIR(A/11) such that: 

(5.40) 

where :FR(P) is the ultraviolet and infra-red finite fermion renormalisation func

tion. The factor Z 1 R( A/ 11) cancels between numerator and denominator, and 

we can rewrite our renormalised equation as: 
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It is important to mention that this way of dealing with the infra-red 

divergences is different to the method employed in chapter three, where we 

defined finite quantities by means of a 'plus' prescription. A fuller discussion 

of this, and other features of the infra-red problems of these equations appears 

in chapter seven. There is no contradiction with the calculations of chapter 

three, however, since it is the gluon function determined by the Mandelstam 

approximation in chapter four that we have used here. There any infra-red 

divergences were removed by the gluon mass renormalisation, and the problem 

did not arise. 

Eq. 5.41 is a complicated equation to solve, but it is possible to simplify 

it. Since the equation is invariant when we multiply :FR by a constant (this is 

easiest seen from the form of the unrenormalised equation Eq. 5.19), we can 

essentially see it as an equation for :FR(P)/:FR(J.l). Thus the value of :FR(J.l) is 

not determined and we ·will later set it equal to 1. We can now rewrite Eq. 

5.41, returning to the form of Eq. 5.38, but this time as an equation for the 

finite function :F R(P ). The left hand side of this equation is a function of p and 

independent of p,', whereas the right hand side is a function of p,' independent of 

p. Hence each side must be equal to a constant which we write as ln6 / J.l· Thus 

:F R(P) satisfies: 

:FR(J.l) 1 [ . 6] 
:FR(P) = 1 + A(p,p,) + :FR(P) B(p,p,) + C(p,p,)lnp (5.42) 

This is of course symbolically the same as Eq. 5.3i, but with the important 

distinction that all quantities are well-defined when we let ..\ -+ 0. 

In Eq. 5.41, :FR(J.l') is not an arbitrary number, in the sense that whilst 

we are free to choose the momentum p,', the functional dependence of :F R(J.l') 

on p,' is determined by the fact it is to be a solution of the Schwinger-Dyson 

equation. Thus, in Eq. 5.42, 6 is a parameter to be determined. This was demon

strated explicitly by choosing a parameterisation for :FR (see section 5.4) and 
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first solving Eq. 5.41 by varying the parameters until good numerical agreement 

is obtained between the right and left hand sides. Then, taking our solution for 

:FR(P) we can determine h through Eq. 5.42 for all values of p2 for which we nu

merically solved the equation. Over the range 0.01 < p2 < 100 Ge V2
, we found 

that lnh ·was constant within the numerical accuracy to which we worked. Solv

ing Eq. 5.42 directly, with lnh as a parameter is more efficient numerically, since 

we determine h directly, rather than implicitly through Eq. 5.41. Of course, 

once we have obtained a solution for :FR(P) the two approaches are identical. 

Since we allow h to be determined, it can be seen as a dynamically 

generated infra-red cut-off whose value, a priori, could be anything. Remarkably 

we found h to be of the order of a few MeV. This is a momentum scale which does 

arise in strong interactions and we discuss this further in chapter seven. That 

the value is physically sensible, seems to justify the rather involved procedure 

outlined above which makes the equation for the fermion function :F R(P) infra

red finite. 

5.4 The Solution for :FR(P) 

Just as in chapters three and four, an analytic solution to this equation 

Eq. 5.42 is not possible, and again we attempt a numerical study. Before we do 

this, we investigate the possible analytic form our parameterisation should take. 

(i) H :F R(P) - p,2 I p2 as p2 -+ 0, then the left hand side behaves like p2 I p,2 in this 

limit. The small momentum behaviour of the right hand side is dominated by 

the enhanced J..t2 lk2 term in 9R(k ). On dimensional grounds we must balance 

the p,2 in the numerator by a p2 in the denominator, and we see that agreement 

is not possible. 

(ii) H :FR(P)- constant as p2 -+ 0, then the left hand side will also behave like 

a constant. As in (i) above, the right hand side gives a J..t2 IP2 behaviour, and 
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again consistency is not possible. 

(iii) Finally, if :F R (p) "' p2 /11 2 as p2 
- 0, then the left hand side of Eq. 5.17 

behaves like 112 /p2 , the same behavior we expect on dimensional grounds from 

the right hand side. Thus in this case there is the possibility of a consistent 

solution. 

This rough analysis reveals the possibility of a solution for :FR(P) which 

vanishes as p2 - 0. Note that we have not proven that the fermion equation 

Eq. 5.42 does indeed demand this behaviour. It might be that it is impossible 

to obtain a consistent solution over a range of values of p2 away from zero. In 

order to demonstrate that this behaviour is indeed realised, we must investigate 

the equation numerically. 

In the asymptotic region for large p2 , we can expand :FR(P) = 1 + 

O(a2),9R(P) = 1 + O(a2). As in the usual one-loop perturbative calculation of 

the fermion self energy, :FR is finite. The l2(k,p) term vanishes to this order 

because of the :FR(P)- :FR(q) factor (see Eq. 5.17), and the only contribution 

comes from the 11 (k,p) term, Eq. 5.12, which with :F = 1 is identical to the 

one-loop perturbative term (see section 2.6). Thus to O(a2) we have: 

:F R - constant (5.43) 

asymptotically. We therefore choose a parameterisation for :FR(P) which not 

only vanishes as p2 - 0 but also reproduces the simple asymptotic form Eq. 

5.43. We use 

N f 2 

:FR(P) = ?; p2 ~ r~ 

where fn, rn are parameters to be determined. 

(5.44) 

The use of such a form as in Eq. 5.44 seems to have prejudged the 

vanishing of :F n(P) as p2 - 0. We argued above that this was the only possible 

124 



Chapter Five The Fermion Equation 

beha·viour for small p2
• It is fairly trivial to add a constant term fo to Eq. 5.44, 

and whilst it will then be impossible to find consistent agreement in the exact 

limit p2 -+ 0, if we numerically solve the equation down to a small but finite value 

of p2
, self-consistency of the solution may not demand that fo = 0, but only 

that it be small. Indeed, in an earlier study [3.3), the value of such a constant 

term was found to be 0(10-2 ). Justified by this numerically small value we 

explicitly set fo = 0 in keeping with the analytic arguments above. Once again 

we choose 112 = 10 GeV 2
, a momentum scale in the perturbative regime, and set 

FR(I1) = 1. \Ve vary the parameters in Eq. 5.42 until we obtain good numerical 

agreement over the usual range of 0.01 < p2 < 100 GeV2 • Because of the simple 

asymptotics in the Landau gauge, Eq. 5.43, we find agreement to within 1% 

for N = 1 in Eq. 5.46. We solve the equation for a2(11) = 0.15,0.2,0.25,0.3, 

the same values as in chapter four. The results are plotted in fig. 5.2 and the 

parameters are listed in Table 5.1. 

a(l1) 0.15 0.2 0.25 0.3 

fi 0.9985 1.004 1.021 1.046 

rl 0.1034 0.2130 0.4049 0.6410 

6 (MeV) 4.422 13.22 8.861 5.087 

Table 5.1 : Parameters for FR(p), Eq. 5.42, for solutions shown in fig. 5.2. 

These results show numerically that the truncated Schwinger-Dyson 

equation for the fermion renormalisation function FR(P) does have a solution 

which vanishes as p2 -+ 0. This behaviour is a direct result of the infra-red 

enhancement of the gluon propagator, derived in chapters three and four. This 

suppression occurs at a scale A which will be related to the usual scale of QCD. 

125 



1.2 

1 

.8 

.6 

.4 

.2 

0 
.01 

Chapter Five The Fermion Equation 

input -

output • 

.1 1 

fig. 5.2: The quark renormalisation function :FR(P) as a function of p2 , for 

ll'2(JL) = 0.15, 0.2, 0.25, 0.3. 
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For larger o 2 (p) we see that the suppression scale rises exactly as we would 

expect from the dependence of the coupling on the intrinsic scale of the theory 

(see sections 1.4 and chapter seven). For large p2 , Fn(p)"' 1 as in perturbation 

theory, and the full fermion propagator behaves essentially like the bare one. If 

this is taken as a model of the behaviour of the full quark propagator , we would 

deduce that at large momenta they propagate as almost. free particles, just as 

we see in high energy scattering, and as we would expect from the arguments of 

'asymptotic freedom'. At low momenta, however, the propagation is suppressed, 

and as p2 -+ 0 the suppression is sufficient that the quark propagator would van

ish, removing the particle pole on mass-shell at p2 = 0. This surely models the 

features of a confining theory, answering the paradox of 'asymptotic freedom' 

and 'infra-red slavery'. A more detailed discussion of all our results appears in 

chapter seven. 
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CHAPTER SIX 

QUARK LOOPS 

6.1 Introduction 

In the previous chapters we have obtained solutions for the quark and 

gluon renormalisation functions Fn(p), 9n(p), which realistically model the qual

itative features we would expect of a confining theory. To date, however, we have 

neglected the contribution of dynamical quarks by suppressing closed fermion 

loops in the Schwinger-Dyson equation for the gluon. The relevant diagram 

is depicted in fig. 6.1 with momentum labels. By neglecting this term in the 

so-called 'quenched' approximation, the equation for the gluon decouples and 

can be solved separately. The solution obtained can then be substituted in the 

fermion equation. By including the contribution of closed fermion loops, there is 

no decoupling, and we must try to solve the two equations simultaneously[6.1]. 

The validity of the 'quenched' approximation is based on the assumption that 

the contribution of the added quark loop is small, and this would seem to be 

borne out by the results of perturbation theory, where, for example the one-loop 

beta function gives us: 

11 2 
f3o = -Nc- -n! 

3 3 
(6.1) 

where Nc is the number of colours and n1 the number of light quark :flavours. 

The naive counting given by this expression suggests that the effect of quarks 

will be small. 

There is other evidence [1.7], however, that in the non-perturbative 

region quark loops play an important role. Indeed in a preliminary study of 

the Schwinger-Dyson equations[6.2] the inclusion of quark loops has a marked 

effect on the gluon renormalisation function. In that study, the contribution 

of quark loops was calculated using the solutions obtained in the 'quenched' 
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k 

k-p 

fig. 6.1: The closed fernUon loop contribution to the Schwinger-Dyson equation 

for the inverse gluon propagator, Eq. 4.i depicted diagrammatically in 

fig. 4.2. 

approximation. Although this result motivates us to investigate the effect of 

these contributions, until the two equations have been consistently solved as a 

coupled system, the effect of quark loops remains unclear. 

Solving two coupled non-linear integral equations is, however, an ex

tremely non-trivial exercise. In particular, as we are attempting to solve the 

equations numerically, the computing time needed to solve the two equations 

simultaneously is dramatically increased. To simplify matters as much as possi

ble, we adopt the Mandelstam approximation for the gluon equation, which, as 

was mentioned in chapter four, allows us to perform all the angular integrals, 

reducing the computing time required. As we stressed there, this approximation 

satisfactorily models the behaviour of the more exact equation considered in 

chapter three. The solutions obtained posessed the same qualitative features, 

namely the infra-red enhancement, which we believe to be a signal of confine-
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ment. Since both equations derived involve truncations and approximations, 

we cannot hope to investigate quantitatively the low momentum properties of 

QCD, but we can at least model its infra-red behaviour, and it is in this sense, 

that it is valid to use the Mandelstam approximation. 

6.2 The Quark Loop diagram 

The first step in this study is to calculate the contribution of the diagram 

shown in fig. 6.1, for one flavour of massless quark. We write its contribution 

as: 

As usual, the colour matrix .5ab has been factored out. Tp is the appropriate 

colour trace, and we have a minus sign arising from the Feynman rules for 

closed fermion loops. Note that since the fermion momenta are directed, we 

have q = k - p. The other quantities are defined in chapters four and five. 

In line with the calculation for the fermion equation in chapter five, we have 

replaced the quark-gluon vertex with its longitudinal part, using the form Eq. 

2. 76 for this, based on solving its Slavnov-Taylor identity in the absense of ghost 

contributions, Eq. 2.i5. 

As defined in Eq. 5.9 we write rL, = rr + 'r~ We therefore need to 

evaluate two spin traces: 

(6.3) 

and 

(6.4) 
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We now contract this with the projection tensor pp.v, Eq. 3.2, giving the con

tribution of rr as: 

(6.5) 

and the contribution of r2 as: 

(6.6) 

We can now use the k-+ -q q-+ -k symmetry of the integral to write 

Eq. 6.5 as: 

g~TF J d4k ~ (8(k. p)2 - 2k2- 6k. ) 
1671"4 k2q2 3 p2 p (6.7) 

and to write Eq. 6.6 as : 

(6.8) 

As in the preceding chapters we must, in general, evaluate the expres

sions in Eqs. 6.7 and 6.8 numerically. However, since the fermion equation 

remains explicitly unchanged, we will try to use the parameterisation in Eq. 

5.45 for F(p), writing it as fip2 f(p2 + rf). For this simple form for Fall the 

above integrals can be performed analytically. This only applies in the Landau 

gauge, because of the simple asymptotic form of F. Of course, if we are un

able to solve the equations with this form for F, we would have to return to 

Eqs. 6. 7 and 6.8, and perform a numerical integration with a more complicated 

parameterisation for F(p). 
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We first deal with Eq. 6.7. Using the integrals given in App~ndix A, 

we can evaluate this as: 

g5TF B1r
2 

[ 1P2 

2 (8(p
2 + k2

)k
2 

2k
2 6k2p) 

1611"4 3 o dk F(k) 8p4 - 2p2 - 4ps 
2 

1K ,2 • (8(p2 + ~~2)k2 2k2 6kp2)] + dk F(k) k4 - -k2- -ks 
p2 8. 2 4 

(6.9) 

where we have introduced an ultraviolet cutoff K. This simplifies to: 

(6.10) 

2 

g5TF fi [ 1P dk2 k
2 

(k
4 

_ 3k
2

) 

611"2 o k2 + ri p4 p2 

+ t dk' k' ~ r) ( - ::,) l 
(6.11) 

Transforming variables to w 2 = k2 + ri gives: 

g5TF fi [ 1P2+r~ dw2 ((w2- rns - ~ (w2- rn2) 
611"2 r~ p4 w2 2 p2 w2 

+ J.::;: ( -;:, ) l 
(6.12) 

giving us the contribution of the rr term as: 

(6.13) 

The contribution of Eq. 6.8 is more complicated. First of all we use our 

specific form for F(p) to obtain: 
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(6.14) 

(6.15) 

Using the results of Appendix A, two of the angular integrals are trivial and 

give a factor of 47r. The remaining angular integral can be performed using Eq. 

A.21, with a= p2 + k2 + r~, b = 2pk, to give: 

(6.16) 

Although the momentum integral left is tractable, it is difficult and messy (see 

ref. 6.2), and it is best performed using an algebraic manipulations program, 

such as MACSYMA, which gives the results below: 

133 



Chapter Six Quark Loops 

(6.17) 

Where we have ignored terms of 0(1/ K 2 ). This gives the contribution of Eq. 

6.8 as: 

(6.18) 

Note that because of the factor F(k)- F(q), the fact that F(k),F(q)- / 1 as 

k 2 - oo, makes this term ultraviolet finite which is explicitly demonstrated in 

Eq. 6.18. 

Putting together Eqs. 6.13 and 6.18 and dividing by p2 gives the con

tribution of the fermion loop diagram as: 
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(6.19) 

For convenience we write Eq. 6.18 as: 

n - !I g'5 Tp [Q( 2 2) -In( "'2 )] 
F - 1211"2 p 'rl rf (6.20) 

where Q(p2 , ri) is simply read off. Note that llp is well behaved in the limits 

p2 -+ 0, ri -+ O, as it should be from its integral definition. This term also makes 

no contribution to the gluon mass (see sections 3.3 and 4.2), as it vanishes when 

we multiply by p2 and take the limit p2 -+ 0. Note that Eq. 6.19 has the correct 

one-loop perturbative logarithmic divergence. 

6.3 The Gluon Equation with Quarks 

We now return to the gluon equation derived in chapter four, where we 

used the Mandelstam approximation for the triple gluon vertex. The unrenor

malised equation (Eq. 4. 7) can be written as: 

(6.21) 

where !:(p) is simply read off from Eq. 4.7. The inclusion of quark loops means 

that the gluon equation becomes: 

(6.22) 
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where we have included n J flavours of massless quarks. As usual this really only 

defines 9(p, ") and :F(p, A, K ), and we define the renormalised functions ( see 

Eqs. 4.8,5.21 and 5.39) as: 

ZG( K/ J-l )9 R(P) =9(p, K) 

ZF(K/ J-L, A/ J-L)Zin(A/ J-L):Fn(p) =:F(p, A, K) 
(6.23) 

As in section 4.2, we subtract Eq. 6.22 evaluated at p2 = J-l 2 from itself, 

and, using the definitions in Eq. 6.23, we obtain the renormalised equation 

which includes quark loops as: 

(6.24) 

As in chapter four, o 1 {J-L) = Zb( K / J-l )g5/4Tr, and here the new coupling o3 (J-L) is 

defined by oa(,u) = ZG( K/ ,u)ZF(K/ J-l, )..j J-l )Zin(>..j J-l )g5/4Tr These couplings are 

different from each other and from the coupling o 2 (J-L) defined in chapter five .. 

These differences are discussed in chapter seven. To solve our coupled set of 

equations we choose to set o1 {~-t) = o2(J-l) = oa(J-l) = o(J-L). 

We have two non-linear coupled integral equations involving the two un-

known functions 9R(p),:Fn(p), with all other quantites being specified. Dealing 

with both equations simultaneously is a cumbersome numerical exercise, and so 

we choose to adopt an iterative approach. Firstly, with n 1 = 0 the gluon equa

tion decouples, and the solutions obtained in chapter four for the gluon function, 

and chapter five for the fermion function satisfy the coupled system identically. 

For non-zero n1 we take our solution for :FR(P) with n1 = 0 and substitute 

the values of the parameters obtained into Eq. 6.24. Keeping these fermion 

parameters fixed, we then re-solve the gluon equation until we once again ob

tain consistent numerical agreement over our range of p2 • This new solution for 
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YR(P) is then substituted into the fermion equation Eq. 5.41, and this too is re

solved until we find a new solution for :FR(P). This procedure is repeated until 

the solutions we obtain remain reasonably stable. Having found these iterative 

solutions for :FR(P) and YR(p), we now solve the equations as a simultaneous 

pair allowing all the parameters to vary. This final step was not found to change 

the iterative solutions very much, but did allow some 'fine-tuning'. Since the it

erative solutions were numerically close to the solutions which solve the coupled 

set, the potentially difficult numerical excercise was much simplified. 

So long as nf, the number of massless quark flavours was varied in 

small steps, this iterative procedure was found to converge relatively quickly. 

Using this method we obtain solutions for the coupled system for a(J.L) -

0.15, 0.2, 0.25, 0.3 as before. \Ve varied the number of flavours through n 1 -

0, 2, 4, 6 over the usual range of p2
, 0.01 < p2 < 100 GeV2

• We plot the solutions 

in figs. 6.2-6.9, and table the parameters in tables 6.1-6.4. 

As in chapter four, we obtain solutions for the gluon renormalisation 

function YR(P) which have the power-law infra-red enhancement term AJ.L2 fp2 • 

This in turn is reflected in the suppression of the fermion renormalisation func

tion :F R(P ), to the extent that the particle pole at p2 = 0 is removed. The effect 

of closed quark loops, however, is to dampen both these effects by quite a large 

amount, as can be seen from figs. 6.2-6.9. Thus it is suspected that with more 

than seven flavours of massless quarks, the enhancement of the gluon propaga

tor would no longer occur. This in turn would remove the suppression of the 

fermion propagator, and we can see this as an aspect of 'deconfinement'. We 

discuss this further in the next chapter. 

Finally, in the same spirit of the discussion of the static colour potential 

in section 4.5, we plot this for a(p,) = 0.25 with n 1 = 0, 2 in fig. 6.10. Again, 

this is not to be taken too seriously, but merely demonstrates the 'deconfining' 

effect of even a small number of massless quarks. 
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fig. 6.2: The gluon renormalisation function 9 R(P) as a function of p2 for a(p.) = 

0.15, with n1 = 0,2,4. 
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fig. 6.3: The quark renormalisation function :F R(P) as a function of p2 for a(Jl) = 

0.15, with n 1 = 0, 2, 4. 
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fig. 6.4: The gluon renormalisation function g R(P) as a function of p2 for a(Jl) = 

0.2, with n f = O, 2, 4, 6. 
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fig. 6.5: The quark renormalisation function :FR(P) as a function of p2 for a(Jl) = 

0.2, with n 1 = 0, 2, 4, 6. 
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fig. 6.6: The gluon renormalisation function 9 n(P) as a function of p2 for a(J.L) = 

0.25, with n 1 = 0, 2, 4, 6. 
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fig. 6. 7: The quark renormalisation function :FR(P) as a function of p2 for a(Jl) = 

0.25, with n 1 = 0, 2, 4, 6. 
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fig. 6.8: The gluon renormalisation function g R(P) as a function of p2 for a:(f-L) = 

0.3, with n f = 0, 2, 4, 6. 
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fig. 6.9: The quark renormalisation function FR(P) as a function of p2 for a:(J.L) = 

0.3, with n f = 0, 2, 4, 6. 
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Df' 0 2 4 

A 0.004207 0.001881 0.0007524 

a1 0.9313 0.9426 0.9544 

Po (GeV) 0.1794 0.1873 0.1874 

bl 1.055 0.6509 0.4534 

CI 0.1308 0.1091 0.08631 

qo (GeV) 0.1443 0.1252 0.1224 

dl 0.4379 0.4311 0.4117 

/I 0.9985 0.9982 0.9976 

rl 0.1034 0.07986 0.0509 

c5 (MeV) 4.422 1.006 0.4539 

Table 6.1: Parameters for :Fn(p) and 9n(p) with a(J.t) = 0.15, 
for solutions shown in figs. 6.2 and 6.3. 

nr 0 2 4 6 

0.01533 0.008523 0.003716 0.0009881 

0.9352 0.9315 0.9470 0.9610 

Po (GeV) 0.3037 0.2611 0.2116 0.1927 

bl 0.9394 0.8415 0.7944 0.4447 

CI 0.1386 0.1361 0.1063 0.07684 

qo (GeV) 0.2636 0.1986 0.1436 0.1217 

dl 0.4918 0.4482 0.4514 0.4375 

fi 1.004 1.000 0.9985 0.99il 

rl 0.2130 0.1572 0.1115 0.05446 

c5 (MeV) 13.22 10.98 4.895 4.002 

Table 6.2: Parameters for :Fn(p) and 9n(p) with a(J.t) = 0.2, for 
solutions shown in figs. 6.4 and 6.5. 
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nr 0 2 4 6 

A 0.03254 0.0208 0.01046 0.003833 

al 0.9744 0.9761 0.9467 0.9454 

Po (GeV) 0.4501 0.4524 0.3935 0.4120 

bl 1.198 1.296 1.128 0.4215 

CJ 0.1079 0.1155 0.1299 0.1054 

q0 (GeV) 0.3870 0.3250 0.2441 0.1696 

dl 0.6605 0.6195 0.5188 0.4620 

!I 1.021 1.010 1.001 0.9972 

rl 0.4049 0.2980 0.1998 0.1167 

6(MeV) 8.861 12.44 12.39 10.27 

Table 6.3: Parameters for :Fn(p) and 9n(p) "'ith a(J.L) = 0.25, for 
solutions shown in figs. 6.6 and 6.7. 

nr 0 2 4 6 

A 0.05263 0.03758 0.02173 0.009141 

al 1.006 0.9778 0.9605 0.9843 

Po (GeV) 0.6121 0.6046 0.8482 0.6095 

bl 1.527 1.432 0.5433 0.1634 

CJ 0.09592 0.1226 0.1269 0.06521 

q0 (GeV) 0.4867 0.4498 0.3827 0.3066 

dl 0.8051 0.7034 0.5990 0.5852 

!I 1.046 1.029 1.015 1.001 

rl 0.6410 0.5035 0.3512 0.2103 

6 (MeV) 5.087 7.769 10.90 12.47 

Table 6.4: Parameters for :Fn(p) and 9n(p) with a{J.L) = 0.3, for 
solutions shown in figs. 6.8 and 6.9. 
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fig. 6.10: The static colour potential V(r) as a function of r, derived from our 

gluon renormalisation function 9R(P) for a(Jl) = 0.25, with n 1 = 0, 2. 
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CHAPTER SEVEN 

A NON-PERTURBATIVE STUDY OF QCD 

7.1 Propagation of Quarks and Gluons 

In the preceding chapters we have used a truncation of the Schwinger

Dyson equations to investigate the infra-red behaviour of the quark and gluon 

propagators in QCD. Our numerical analysis of the gluon and quark renormal

isation functions VR(p), FR(P) reveal a striking low momentum behaviour. In 

the_ two different approximations we have used for the gluon equation in chap

ters three and four, we have obtained a consistent solution for VR(P) which is 

as singular -as 1/p2 as p2 --. 0. This means that in this infra-red limit the gluon 

propagator itself is as singular as 1/p4 • As discussed in section 4.5, there is very 

good reason to suppose that this enhanced infra-red behaviour is an indication of 

confinement. This can be demonstrated in a gauge invariant way by the fact that 

the Wilson loop operator obeys an area law. More naively, the Fourier transform 

of the propagator, which will contribute to the potential between static colour 

charges, gives rise to a linear term which should be sufficient to confine colour. 

We also have a simple intuitive interpretation of this confinement mechanism, 

it being related to a 'dual' Meissner effect with respect to colour charge. 

We then proceeded to investigate the effect that this infra-red enhance

ment of the gluon has on the propagation of the coloured quarks. Corresponding 

to the low momentum enhancement of the gluon we find a suppression in the 

fermion function FR(p), such that it vanishes at p2 --. 0. Indeed it vanishes 

sufficiently fast that ~here is no physical particle pole on the quark mass-shell at 

p2 = 0. Physically we can say that a quark cannot propagate on, or near mass 

shell, because of the vanishing of its propagator. At high momentum, however, 

the propagator is found to behave as if it were almost free. This offers us an 

explanation perhaps, of the experimental observation of almost free quarks in 
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high energy collisions over small distances, before the confining mechanism sets 

in as the quarks separate to larger distances. This high energy behaviour is also 

found for the gluon propagator. This is exactly what we would expect from the 

successes of perturbative QCD at high energies, and in particular the property 

of 'asymptotic freedom'. 

As was also mentioned in section 4.5, we have chosen to work in a 

covariant gauge as opposed to an axial gauge which has been studied before. This 

was a necessary step, as this infra-red enhancement which seems so intimately 

related to confinement can be shown to be absent in an axial gauge, and we 

cannot therefore hope to demonstrate confinement by using the Wilson loop 

operator in such axial gauges. Since this particular argument relies on gauge 

invariant quantities it remains the most important way of extracting information 

about the theory from the non gauge invariant propagator. 

We have managed to demonstrate the validity of the simple 'Mandel

starn approximation', used in chapter four, by comparing the qualitative features 

of the results obtained, to the more exact approximation used in chapter three, 

based on solving the Slavnov-Taylor identity for the full triple gluon vertex. Be

cause of its relative simplicity, the use of the Mandelstam approximation has 

allowed us to study the inclusion of massless quarks into the theory. Numerical 

simplicity was essential in studying the coupled equations for both the quark 

and gluon propagators in chapter six, which is the first study of a dynamically 

coupled quark-gluon system within the context of the Schwinger-Dyson equa

tions. 

The infra-red enhancement of the gluon propagator, and the correspond

ing suppression of that of the quark, was first studied using the 'quenched' 

approximation, in which the effect of closed quark loops was neglected in the 

equation for the gluon. This infra-red behaviour was found to survive the inclu

sion of dynamical quarks, and the subsequent coupling of the equations. We do 
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find, however, that the effects are damped, and that as we include more-flavours 

of fermions the gluon propagator has much less enhancement, and as a result of 

this, the suppression of the quark propagator is diminished. Indeed, as can be 

seen from the graphs in figs. 6.2-6.9, it seems that for about eight flavours of 

massless quarks the enhancement of the gluon propagator, and therefore maybe 

confinement, ·will disappear. We might well expect this, for the inclusion of 

quarks affects the one-loop beta function in perturbation theory (see Eqs. 1.17 

to 1.23) to the extent that for more than sixteen flavours of quarks the sign 

of {30 will change. This will mean that to leading order in perturbation the

ory the coupling strength will behave like that of QED, and grow as we go to 

larger momentum, becoming smaller as we go to low momentum. The effect 

that we find, however, suggests that non-perturbatively quarks have a bigger 

effect than we might naively expect from perturbation theory. Although it is 

only the qualitative features of our study which are likely to be reliable, this 

conclusion does support other evidence[6.2,6.3] that quarks play an important 

role in non-perturbative physics. 

7.2 Ultraviolet Problems 

In order to solve the equations generated for the quark and gluon prop-

agators, it was necessary to remove the ultraviolet divergences which occurred, 

and to introduce the running couplings 0'1 (i-t), a2 (JL ), 0'3 (JL) from Eqs. 4.12,5.26 

and 6.23, which for completeness we give here: 

_1_· __ 1_(QR(IL)) 2 

0'1 (p) - 0'1 (JL) 9R(P) 

_1_ = 9R(JL) (-1-- Cp J trkQR(k) [JC(k,p)- JC(k,JL)l) (i.1) 
a2(p) 9R(P) a2(1l) 47r3 

1 _ _ 1_QR(JL) :FR(IL) 
as(p) as(JL) 9R(P) :FR(P) 
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The last of these is derived in an analagous way to the first two using the 

definition of o:a(J.l) follo"'-ing Eq. 6.22. The consistent renormalisation of the 

Schwinger-Dyson equations is as yet an unsolved problem. Exact gauge invari

ance, as expressed in the content of the Slavnov-Taylor identities demands that 

these three couplings should be the same[1.6,2.1]. This is patently not so, as we 

can see from Eq. 7.1, but we would expect this, as the truncation detailed in 

chapter two, used to derive the equations we have studied, ignores the Schwinger-

Dyson equations for the three-point functions. It is these that determine the 

behaviour of the couplings in the theory. 

In our equations it is only the explicit O:i(J.l) that appear, although of 

course the full running coupling does enter implicitly through Eq. 7.1, and the 

equations for 9R(P) and :FR(p). 

We can expand Eq. 7.1 in powers of the O:i to obtain: 

(7.2) 

where we have distinguished the three Ai (see sections 1.4 and 3.4). The coeffi

cients p~i) are equal to : 

(7.3) 

where we have included the effects of fermions in 0:1 (J.l ), and used the fact that 

:FR(P) is finite to one-loop in the Landau gauge. The lowest order perturbative 

results in the Landau gauge: /10 = (11/3)CA -(4/3)nJTF, which is independent 

of the gauge, and "Yo = (13/6)CA - (4/3)nJTF are both independent of the 

Casimir CF as a result of gauge invariance. Eq. 7.3 highlights the differences 

between our three couplings. We note in passing that all three couplings have 
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the correct sign for /30 , as they better had do if we are to control the asymptotics. 

For completeness we plot the three running couplings in fig. 7.1, over 

the range of p2 for which we solved the Schwinger-Dyson equations for 9R(P) 

and :FR(p). Outside this range we cannot consistently determine them from 

Eq. 7.1 because of the dependence on these quark and gluon renormalisation 

functions. In the light of this it should be mentioned that for small enough 

p2
, the a 2(p) coupling develops a pole. This arises from the bracketed term 

in the second equation of Eq. 7.1. The enhanced term AJ.L2 jk 2 from 9R(k) 

inside the integral does not generate any infra-red singularities (see section 5.3). 

Nevertheless, it generates a term proportional to J.L 2 jp2 by dimensional counting, 

which for sufficiently small p2 (outside our range) is large enough to cancel 

the term 1/o:2(J.L). Hence 1/a2 (p) is zero and the coupling has a pole. This 

behaviour though, is entirely due to the form of our renormalisation, and to 

the approximations we have used. A totally consistent renormalisation of the 

equations which properly treats the couplings should rectify this problem. The 

other two couplings are well behaved for all momenta. In our study we make 

the simple ansatz that 0:1 (J.L) = 0:2 (J.L) = o:a (J.L ). 

In previous investigations of the Schwinger-Dyson equations, there has 

been little or no discussion of the problems of a consistent renormalisation. This 

remains one of the outstanding problems in using these equations to investigate 

non-perturbative physics. Hopefully by highlighting the difficulties as we have 

done here, it will be possible to reach a greater understanding of the problems 

involved, and eventually to solve them. 

On a practical level, we note that not only do the ultraviolet renormal-

. isations we have employed serve to make our equations finite, but they have 

done so independently of any form of parameterisation we might choose for the 

functions YR(P) and :FR(p). Since our study has been largely a numerical one, 

the particular solutions we obtain should hopefully be numerically similar to the 
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a1(p) 

.1 10 100 

fig. 7.1: The three running couplings ai(JL), with i = 1,2,3, as a function of p2
, 

with ai(JL) ~ 0.2, i = 1, 2, 3. 
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exact solutions, although the analytic form will certainly be different. 

Finally it is of interest to ask how the solutions depend on the renor

malisation scale p 2 • Were our renormalisations entirely consistent, we would 

expect them to be invariant under the transformations of the renormalisation 

group (see section 1.4). Since our renormalisations are not totally consistent 

we might expect some discrepancy. Nevertheless, it is possible to show that 

our solutions are at least approximately renormalisation group invariant. To 

demonstrate this we return to the Mandelstam equation of chapter four, ·with 

no quarks for simplicity. We start from Eq. 4.12, which we cast into the form: 

(7.4) 

where here we use the notation (} R(P, Jl) to denote the gluon renormalisation 

function evaluated at p2 , with renormalisation scale p 2 • We can evaluate this 

equation at a different renormalisation scale 712
• Since we must have (} R (JL, Jl) = 

YR(71,Ji) (which we usually choose equal to 1), we can easily derive: 

- ( 0'1 (JL)) 1/2 
YR(p, Jl) = 9n(p, Jl) a

1 
(
71

) 
(7.5) 

YR(p,p) 
-

(} R(71, Jl) 

We can re-solve our Schwinger-Dyson equation, but this time choosing a 

renormalisation scale "ji2 • The equation now depends explicitly on a 1 (71), which 

we can evaluate from the first equation in Eq. 7.1 (see fig. 7.1), using our 

previous solution for the Schwinger-Dyson equation plotted in fig. 4.3. Having 

done this, we can check to what extent Eq. 7.5 holds. We solve the equation 

for three scales: p 2 = 4, 10,25 GeV2 , where we choose a 1 (10) = 0.2, which 

gives us a(4) = 0.2558 and a(25) = 0.1650 (see fig. 7.1). Here we use an 

obvious notation, in that a 1(4) denotes the value of the running coupling ai(P) 

at p2 = 4. From the solution of chapter four (parameters in table 4.1), we 
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have 9R(4, 10) = 1.131, 9R(10, 10) = 1 and 9R(25, 10) = 0.9083. The curves 

9R(P, J.L) x 9R(J.L, 10) are plotted for our three different values of J.L 2 in fig. 7.2. 

We see that Eq. 7.5 does indeed hold to l'\rithin a satisfactory degree. 

This completes our discussion of the ultraviolet renormalisation of the 

equations we have studied. It is evident that problems of consistency remain 

and that further research is required. However, in the spirit of this study as a 

model for the true behaviour of these equations, it is hoped that what we have 

achieved does shed some light upon the non-perturbative region of QCD, as well 

as highlighting the problems which further study must face. 

7.3 Infra-red Problems 

Central to the results obtained throughout this study, is the conclusion 

that as the momentum y - 0, the gluon renormalisation function 9R(P) "' 

AJ.L 2 lp2 , and hence the gluon propagator -behaves like 1lp4 in this limit. The 

size of this enhancement AJ.L2 carries the dimensions of mass-squared, and is 

presumably related to some intrinsic scale of the theory A. This enhancement 

of the gluon leads to;a suppression of the quark function FR(p), which using the 

parameterisation of Eq. 5.44 is characterised by a momentum scale ri I !I. This 

too should be related to some intrinsic scale. 

Such a scale naturally arises in renormalisation, but because of the 

difficulties of consistently renormalising the equations, it is not clear which of 

the three scales in Eq. 7.2 we might take. For definiteness, we consider the scale 

A1 from the gluon equation, as it is the coupling a 1 which plays the most central 

role in this study, the others vanishing when we do not have quarks. Indeed it 

is this coupling which lead's to the infra-red enhancement of 9R(p), which as 

stated is our central result. 

In fig. 7.3, we plot the scale of the gluons infra-red enhancement AJ.L 2
, 

and that of the quarks suppression rr I !I against Ai' for n I = 0. Essentially 
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2 2 
- fl =10 GeV 

2 2 
fl =25 GeV 
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fig. 7.2: The curves QR(P,Il) x 9R(p,10) as a function of p2 , with ~t2 -

4, 10,25 GeV2
• 
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this corresponds to solutions for different a1 (~-t), where as usual~-t2 = 10GeV2 • 

We can represent both these scales as being proportional to A~ modified by 

logarithms. In fig. 7.3 we have also plotted the curves 

A~t2 = 0.497A~ (lnp
2 /A~ r·'" 

rU !I =A~ ( 0.36 + 107 (ln~-t 2 I An -s) 
(7.6) 

These are more to guide the eye, than meant as serious analytic expressions. 

The error bars were determined using an analysis of the input/output agree

ment of our solutions. This modification by logarithms, however, may well be 

due to the fact that although the power of the infra-red enhancement of 9R(P) is 

given by 1/p2
, the exact analytic form of this enhancement will have logarithmic 

modifications in p2 • In a numerical study such as ours, it would be extremely 

difficult to determine such beha·viour, and indeed the important fact is the ex

istence of a power-law infra-red enhancement, irrespective of any logarithmic 

deviations. In general, the scale in our equations, and in perturbation theory, is 

introduced by choosing ~-t 2 and a value for a(~-t)· The scale ~-t2 is arbitrary, and 

can be eliminated leaving the theory dependent on a scale parameter A, which 

is intrinsic to the theory. A is to be determined by experiment. Perturbative 

quantities such as the running coupling at large momenta, have in general, a log

arithmic dependence on A. We have seen that in the non-perturbative regime 

that this can become a power law dependence, with its important consequences 

for confinement. 

The other infra-red momentum scale 6, introduced in chapter five to 

make the quark equation infra-red finite, seems to have no obvious dependence 

on the scale A2 • We plot this variation for the n1 = 0 solutions in fig. 7.4. The 

error bars here are large, because the quark equation determines the quantity 

lnp,/6, for which the error is relatively small, but we need to exponentiate this 

to obtain 6. The value for 6 mostly seems to be between 1 and 13MeV. As 

158 



Chapter Seven A Non-perturbative Study of QCD 

mentioned in section 5.3, a priori 6 could have taken any value, and the values 

obtained of a few MeV may well have physical significance. Firstly though, since 

these values are an order of magnitude less than any momentum for which we 

solve the quark and gluon equations, it may be hoped that the exact details of 

the infra-red regularisation employed do not significantly alter the qualitative 

nature of the solutions. Secondly, and perhaps more interestingly, such a value 

for 6 is not widely different from the masses of the lightest flavours of quarks in 

the real world. This may bode well for solutions to the quark equation which 

break chiral symmetry and develop a dynamical mass for the quarks. 

Finally, and related to this, we note that 6 was introduced to remove 

the infra-red divergences in the fermion equation, arising from the Ap2 fp2 en

hancement of 9R(p). In the completely separate study of the gluon equation in 

chapter three, we used a 'plus' prescription in order to define our integrals. In 

many respects this is less satisfactory than the introduction of an infra-red cut

off 6, since at least this latter procedure does have some physical interpretation, 

as well as being performed entirely within the context of the equations studied, 

since the non-linearity of the resulting equation should then determine this scale 

6 too. The plus prescription on the other hand is introduced somewhat arbitrar

ily, the main advantage being the relatively simple numerical implementation, 

· without the somewhat contorted manipulations of section 5.3. However, this 

plus prescription as implemented through Eq. 3.41 does mean that we subtract 

a different finite amount at each value of p2 , in addition to removing the infin

ity. This now seems rather unsatisfactory and so it would be nice to repeat the 

calculation of chapter three introducing sueh an infra-red cut-off 6, despite the 

increased complexity of the calculation. 

Of course, there is some arbitrariness in any way of introducing an infra

red regularisation, although as far as our solutions are concerned it is arguments 

based on dimensionality which really matter. Since the functions 9R(p), FR(P) 
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are dimensionless, when we integrate a term proportional to A11 2 fk 2 , the answer 

too must be dimensionless. Thus the momentum 112 in the numerator must be 

balanced, and the only available quantity is the external momentum p2 • Thus 

the result of such an integration must be proportional to 1'2 fp2 although of 

course for the divergent integrals the coefficient of this term will be infinite. 

Different methods of dealing with these divergences will only generate different 

coefficients for such a term, and not affect its existence. Thus the derivation of 

the infra-red enhanced solutions for 9R(P) in the different studies of refs. [3.1-

3.3,4.1,4.2,6.1} encourages us to believe that this behaviour is indeed that of the 

complete theory, where presumably such problems might not arise. 

7.4 Approximations and Improvements 

Our entire program of analysis of the Schwinger-Dyson equations for 

QCD rests on the truncations and approximations, used to generate closed and 

finite equations. These approximations are obviously essential, as it is impossible 

to attack the entire infinite hierarchy of equations at once. Nevertheless, if we 

are to retain some hope of modelling the physics of the real world, we must try 

to justify these approximations, and to understand what they entail. 

One of the main approximations we make in this study is the retention 

of only the longitudinal part of the vertices or three-point functions. As was 

shown in section 2.5, the neglected transverse part of these vertices will vanish 

when the external momenta go to zero, and as it is the low momentum behaviour 

we wish to investigate, this approximation is to a large extent justified. This 

is borne out by the study of ref. [3.2}, where it is argued that inclusion of 

the transverse part of the vertex will not affect the existence of the infra-red 

enhanced solutions obtained, but they will affect its coefficient. It is likely, 

therefore, that retention of only the longitudinal part will accurately model the 

qmilitative behaviour of the small momentum limit of the theory[7.1J. It should 
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also be noted that to leading order in o(JL) the longitudinal part of the vertex 

gives the leading perturbative behaviour, although this can be affected in other 

ways, for example by our neglecting ghost contributions. Thus this particular 

approximation of neglecting the transverse part of the vertices seems to be well 

motivated. 

In the light of our comments on axial gauges in section 4.5, it is desir

able to perform calculations in other gauges. The immediate disadvantage of a 

covariant gauge is the inclusion of ghost contributions. If we work in the Landau 

gauge, however, then many ofthe ghost contributions will vanish at low momen

tum (see section 2.5), considerably simplifying the Slavnov-Taylor identities. We 

can also demonstrate that in perturbation theory the ghost contributions to the 

gluon propagator are numerically small (see section 2.6), and so we neglect the 

ghost loop in the Schwinger-Dyson equation. 

The elimination of ghost contributions, however, is probably the least 

satisfactory part of the study. To demonstrate its validity we should study the 

Schwinger-Dyson equation for the ghost propagator, which is identical in form 

to the equation for the fermion. Unfortunately, we have no way of making a 

satisfactory ansatz for the ghost-gluon vertex, and so must rely on the argument 

that it is equal to the bare ghost-gluon vertex for small momentum in the Landau 

gauge. Indeed, it is the presence of ghosts in the spectrum which enables the 

covariant gauge propagator to escape the no-go theorem of West (see chapter 

4.6), and which therefore allows the covariant gauge gluon propagator to have 

an infra-red enhanced behaviour. 

Many of the problems may be related to the problem of gauge invariance. 

Although by demanding that our vertices satisfy the Slavnov-Taylor identities 

we do retain some form of gauge invariance, our truncation which neglects the 

Schwinger-Dyson equations for the three-point and higher Green's functions 

means that we cannot consistently treat the coupling strength of the theory. 
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The neglecting of the ghost contributions further compounds this. 

In further studies, where the problems of renormalisation, and a more 

complete treatment of the ghost contributions should be addressed, it may well 

be that the guiding light. of gauge inYariance will play a crucial role. Indeed, 

were we able to treat the equations in a gauge invariant way, then not only 

could we really begin to believe our solutions, but we would have also developed 

a calculational tool to rival lattice gauge theory as a means of going beyond 

perturbation theory. 

7.5 Comments on the Solutions 

Although we have only solved the equations for the quark and gluon 

propagators over a finite range of momenta, we have built in the asymptotic 

behaviour of the solutions in the limits p2 -+ 0, p2 -+ oo. In the light of this 

it is likely that our numerical solutions are indeed close to the exact solutions 
/ 

of the equations we have derived. An obvious question to ask is whether these 

solutions are unique. For the simple parameterisations we have chosen for 9R(P) 

and FR(P) we have not found any other solutions. Indeed, it is difficult to see 

what a different solution would look like, given that we have built in the correct 

infra-red and ultraviolet behaviour of the solution. 

The equations also depend explicitly on the various colour factors that 

arise. For all our solutions we have chosen CA = Nc = 3 as in 'real' QCD. 

However, we have solved for a range of a(11) which suggests that the qualitative 

form of our solutions remain valid as we change the number of colours. It is the 

explicit combinations a(11 )C A and a(11 )n 1 which appear in the gluon equation, 

multiplying the gluon loop and the quark loop diagrams respectively. Since 

C A = Nc, where the gauge group is SU(N), our equation is invariant under the 

replacements: 
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(7.7) 

· n1 --+ n,N;/3 

For example, the solution with Nc = 3, a(Jl) = 0.3 and n 1 = 0, 2., 4, 6 can equally 

well be regarded as the solution for Nc = 6, a(Jl) = 0.15 and n 1 = 0, 4, 8, 12 

respectively. The important conclusion is that for a gauge theory based on SU(6) 

for example, we could accomodate many more flavours of massless fermions than 

for SU(3), and we therefore expect that the solutions with N = 6,a(JL) = 0.3 

will have a much larger infra-red enhancement. This is in keeping with the 

philosophy of the 1/N expansions, where in the limit that N --+ oo we can 

neglect the dynamical effect of fermions. It is clear from our solutions, however, 

that N = 3 is a long way from this large N limit, at least as far as the effect 

of fermion flavours is concerned. A heuristic criterion for neglecting the effect 

of fermions would appear to be simply that n Jl Nc < 1. At high momentum, 

the one-loop beta function would tell us that this should be (2nJ )/(llNc) < 1. 

Once again this demonstrates that at low momentum quarks play an important 

role. 

7.5 Conclusions 

In the preceding chapters we have carried out an extensive study of the 

Schwinger-Dyson equations for QCD. This infinite hierarchy of equations ate 

in a sense the field equations of a quantum field theory, relating the different 

Green's functions to which all scattering amplitudes are related. 

To date, however, most calculations in field theory are carried out using 

perturbation theory, expanding the Green's functions in powers of the coupling 

constant a. This allows a consistent and gauge invariant renormalisation of the 

ultraviolet infinities which appear. For a non-Abelian theory it is found that 

the renormalised coupling decreases as we go to larger momenta, making high 
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energy perturbative calculations reliable, and agreeing "ith the experimental 

observation of the coloured quarks behaving as is they were almost free within 

hadrons. 

For small momenta, however, the coupling strength grows, and pertur

bation theory breaks down. If QCD really is the theory of strong interactions, 

as seems to be the case, then it must contain the dynamics whereby the coloured 

quarks and gluons are not seen as free particles at low momenta, but are per

manently confined within hadrons. It is desirablel qualitatively at least, that we 

understand the mechanism by which this confinement occurs. 

Perturbation theory itself is no more than a truncation of the Schwinger

Dyson equations to some power in the coupling strength. Here we have em

ployed an entirely different truncation, including contributions from all orders 

in a. This will hopefully contain some information about the non-perturbative 

behaviour of QCD, and in particular confinement. 

\Ve have derived equations for the quark and gluon propagators. Studies 

of these have revealed a power law infra-red enhancement for the gluon prop

agator, which we have been able to relate to confinement through an area law 

for the Wilson loop operator. This enhancement gives rise to a linearly rising 

potential, strong enough to confine colour. This enhancement in turn suppresses 

the quark propagator at small momenta, so that physical massless quarks cannot 

propagate on their mass-shell. At large momenta, both the full quark and gluon 

propagators are equal to their bare counterparts, with logarithmic modifications. 

This is exactly what we expect from perturbation theory, and corresponds to the 

quarks and gluons behaving like almost free particles at these high momenta. 

Our study has in no way been exhaustive, and as we have highlighted in 

this chapter, significant problems remain in making this non-perturbative treat

ment entirely consistent. Nevertheless, the qualitative nature of the solutions 

. we have obtained are physically believable, and may give us a deeper insight 
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into the nature of confinement. Perhaps more importantly, we believe we have 

demonstratcc.l that the Schwinger-Dyson equations are an important tool for ex

aminiug the long distance behaviour of a continuum non-Abelian gauge theory, 

a region hitherto out of our calculational reach, yet of fundamental importance 

in our understanding of strong interactions. Indeed since non-Abelian gauge 

theories appear to play a vital role in physics as a whole, the study of these 

equations may well be of even more fundamental importance. 
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APPENDIX A INTEGRALS 

In this appendix we detail the analytic integrations we have performed 

throughout this study. All our integrals have been of a 'one-loop' type, involving 

a four dimensional integral over some loop momentum k. The answer depends 

on some external momentum such as p or IL· As we mentioned in section 2.5 our 

calculations are performed in Euclidean space. We choose a frame of reference 

in which the external momentum is defined to be: 

p~-' = (p, 0, 0, 0) (A.l) 

and we parameterise the loop momentum in terms of the following variables: 

k~-' = ( kcost/•, ksin,Psin8cos¢, ksin,Psin8sin¢, ksint/Jcos8) (A.2) 

I 

where 0 ~ k ~ oc, 0 ~ 8, 1/J ~ 1r and 0 ~ ¢ ~ 21r. In terms of these variables the 

four dimensional integration measure is given by: 

(A.3) 

All functions in the integrand depend only on the quantities k2 , q2 , k · p, 

where q = p- k. from Eqs. A.l and A.2 all these are independent of (} and ¢. 

Thus these two angular integrals can be performed trivially giving a factor of 

47r. In many cases this is as much as we can do analytically, for example, in the 

calculation of chapter three, many of the terms contain the factor Q(k)Q(q) in 

the integrand, which necessitates a numerical integration over k and t/J. However 

many of the integrals contain no dependence on 1/J, except for powers of q2 in the 

denominator from propagator factors, and powers of k · p in the numerator. In 

these cases the t/J integral can be performed, and the main work of this appendix 

is to detail this. 
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In general we must calculate an angular integral of the form: 

since k · p = kpcost/J, so we must evaluate: 

1,.. . 2 cos"t/J 
In m = 8tn t/Jdt/J-( --b--.1-)-' 0 a- COS'f' m 

where the integral in Eq. A.4 for example, has a= k2 + p2 , b = 2pk. 

The simplest of these is: 

1,.. sin2 1/• 11 J1- z2 

Io,1 = dt/J = dz 
0 a - bcost/J _1 a - bz 

Integrals 

(A.4) 

(A.5) 

(A.6) 

where we have substituted z = cost/' to obtain the second integral. Putting 

y =a- bz, we obtain: 

- ,! 1a+b Jb2- (a- y)2 
Io,1 - b2 dy 

a-b Y 
(A.7) 

We set R = b2 - (a- y)2 = b2 - a 2 + 2ay- y2, and rewrite Eq. A.7 to get: 

1 1a+b .JR 1 1a+b R 
Io,I = b2 -dy = b2 r;:;Rdy 

a-b Y a-b yvn 
(A.B) 

Using the explicit form of R in the numerator gives: 

b2 - a21a+b dy a 1a+b dy 1 1a+b a - y 
Io 1 = -- + - - + - --dy 

' b2 a-b y.JR b2 a-b .JR b2 a-b .JR 
(A.9) 

The last of these three integrals is zero, as can be explicitly seen by writing 

w = y- a, giving: 

- dw = 0 lb tV 

-b Jb2- w2 
(A.lO) 
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which vanishes by symmetry. The second of the integrals in Eq. A.9 is easily 

evaluated by writing w = y - a, giving: 

1b dw 1'"/2 - dB - 1r 
-b Vb2 - w 2 - -rr/2 -

(A.ll) 

where we have used w = bsinB. Finally, in the first integral of Eq. A.9 we put 

t = 1/y to obtain: 

r+b dy 1;-h dt 

la-b yVR =- ~ tJb2- (a- i)2 

1~ dt (A.12) 
= ....1..... Jb2t2 - a2t 2 + 2at - 1 

a+b 

= 1 1 ~ dt [ b2 _ ( a _ t) 2]-1 
Ja2-b2 m (a2-b2)2 a2-b2 

where we have completed the square. Now with v = t- a/(a2 - b2 ) we obtain: 

where we have used y = bsin8/(a2 - b2). Putting Eqs. A.ll and A.12 together 

with A.9 gives us: 

Io,I = ~(a- .Ja2- b2) (A.14) 

We have calculated this integral in some detail, as all the other inte

grals are easily obtained from Eq. A.14 by differentiation and simple algebraic 

rearranging. In order to calculate these we also need to know the form of Ir,O· 

We have: 

11 
r-1 

= 
0 

dw w-2- Jl='W 

(A.15) 
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where we have used the substitutions z = cos'¢ and then w = z2. The final 

integral in Eq. A.15 is equal to B( rf,! ), where B(a, b) is the well known Beta 

function which can be written in terms of the Gamma function as: 

B( b) = r(a)r(b) 
a, r(a+b) (A.16) 

Using the property of the Gamma function r(n) = (n- 1)r(n- 1), we obtain: 

1 _ 2 2 __ 2_ 2 2 _ r- 1 
rc !:±1. )r( ~) ( .!:.=.!) r( !:=1. )r( ~) ( 1) 

r,O - r( r!4) - ( r!l) r( r!2) - r + 2 r-2, 0 (A.17) 

For r odd the 1r,o vari.ish by symmetry. Using the fact that r(!) = v:rr we have: 

7r 
lo,o = 2 

12 0 
7r 

=-
' 8 

14,0 
7r 

=-
16 

Any others needed can be calculated using Eq. A.17. 

To calculate 1n,I we write: 

1n,1 
= {'lr dt/J sin2tf;cos"t/J 

} 0 a- bcost/J 

117r d·'· . 2.!. n-1.!. a 17r d·'· sin2t/Jcosn-ItP = - - 'f/ szn 'f/cos 'f/ + - 'f/ 
b 0 b 0 a- bcost/J 

and this allows us to derive the relationship: 

1 a 
ln,l = -~;Jn-1,0 + i/n-1,1 

Using this, together with Eqs. A.14 and A.18 we obtain: 
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Finally we have: 

8
8 In 

1 
= !..._ {rr d·'• sin

2
f/Jcos"t/J = _ {rr d·'· sin

2
f/Jcosnt/J = -In 

2 a ' 8a Jo "~' a- bcost/• } 0 '~-'(a- bcost/J)2 ' (A·22) 

From Eq. A.21 we compute: 

8 
Io,2 =- -Io 1 

8a ' 

8 
I1,2 = - -I11 

8a ' 
8 

I2,2 = - 8a I2,1 

which after some tidying up gives: 

Io,2 = ~ ( v'a2a_ b2 - 1) 
= ~ ( a2 - 2a + Va2- b2) 

b3 v'a2 - b2 

=~( a
3 

-3a2 +!b2 +2a)a2-b2) 
b4 .ja2 _ b2 2 

(A.24} 

It is obviously easy to generalise this to calculate any In,m• The integrals we 

have calculated, however, suffice for the calculations of this study. Eqs. A.19 

and A.21 are the general form of these integrals for any a and b. Usually we have 

a = p2 + k 2 and b = 2pk. In the calculations of chapter six, however, where we 

use the expression II q2 I ( q2 + rn for the fermion function .1"( q }, we again obtain 

angular integrals of this form, but this time with a= p2+P+r? and b = 2pk. For 

this last choice of a and b the remaining momentum integral is difficult and we 

performed it using an algebraic manipulations program. However, if a= p2 +k2 , 

and no other functions appear in the integrand except for simple powers of k and 

p, then the momentum integral can be explicitly performed analytically. This is 

the case , for example, when we are calculating the asymptotic leading behaviour 
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of an integral by setting :F, 9 = 1 + 0( a(J.L) ). Since this was an important part 

of our analysis, we give this in some detail. 'Ve start by noting: 

../a2 - b' = (<P' + k2
)

2 -4p2k2))! = (p' +k' + 2p2 k2 -4p2k2 )i =I p2
- k2 I 

(A.25) 

We define a function h(x) such that: 

h(x)={; 
for x < 1 
for x ~ 1 

An important way of writing h(x) is: 

1 
h(x) = 2(1 +X- 11- X I) 

From Eqs. A.19 and A.24 we can compute: 

lo,1 7r 2 2 2 2 I 7r 1 ( k2 I k2 I ) = -- (p + k - I P - 1.~ ) = -- 1 + -- 1 - -4p2 k2 2k2 2 p2 p2 

7r p 
= 2k2 h(p2) 
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13 1 , 
1r 

32
Psp c _2p4k4 + (p2 + k2)4 _ (p2 + k2)s I P2 _ k2 I _2(p2 + k2)2p2k2) 

_ 1r (ps + ks + 2p6k2 + 2k6p2 _ (p6 + p4k2 + p2k4 + k6) I P2 _ k2 I 
32p5 k5 

_ 2k2p2(p2 + k2) I P2 _ k2 I) 

- 32;ks (ps + ks- IPs- ks I +2k2p2(P4 + k4- I P4- k4 I)) 

1r p3 k8 1r p k4 
= 16k4 -,;h(p8) + 8k2 -,;h(p4) 

(A.28) 

First a comment on the factor I p2
- k2 I which appears in the denom

inator of the integrals of the type In,2 , and which would appear to have a pole 

at p2 = k2 • In fact when all the factors of this type are added in any calculation 

they will be finite, coming as they do from a qP.q" jq2 term in a propagator, 

which does not have a pole at k2 = p2 • The pole appears because we expand 
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q = p- kin the numerator. An example of this is: 

(A.29) 

The donominator has a doublepole at q2 = 0, in other words when k = p 

and cos¢= 1. The numerator has a factor sin 2 .,P = (1- cos¢)(1 +cos¢) from 

the measure, and another from the integrand. Thus the integral does not diverge 

at k2 = p2 and should exist. Using Eq. A.28 this integral equals: 

for 0 ::; k ::; p 

for p < k 

_ { :P~ for 0 ::; k ::; p 
- 37r 

Sk-4 for p < k 
(A.29) 

To extract the leading logarithmic behaviour of the ultraviolet divergent 

integrals is now trivial. For example: 

(A.30) 

After renormalistaion this will simply become ln(~-t 2 jp2 ). Another way of doing 

this is to expand the integrand in powers of 1/ k2 , and read off the divergent 

terms. To do this we write: 

1 1 ( p2 
- 2 • p) -n 1 1 

- (k2 + p2 _ 2k. p)n = k2 1 + k2 = k2 + 0( k3) (A.31) 

Since the denominator is now .,P independent, all the angular integrals are of the 

form Ir,o, listed in Eq. A.18, with Ir,o = 0 for r odd. We can therefore calculate 
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the logarithmic divergence of the following integrals where we use ~ to denote 

that terms have the same ultraviolet divergence. For some of the terms we have 

to keep higher orders in this expansion of the q2 terms in the denominator. 

(A.32) 

On renormalisation, K 2 gets replaced by p,2 • Note that this analysis equally 

works if instead of q2 in the denominator we had q2 + p,2 • Finally we must also 

extract the leading behaviour of: 

(A.33) 

Here both of the terms in Eq. A.33 are quadratically divergent, but this cancels 

by using the expansion above. To see this, we again expand q2
, but this time to 

a higher power in 1/ k2
: 

_!_ = _!_ ( - p2
- 2k. p (p2

- 2k. p) 2
) 

q2 k2 1 k2 + k2 (A.34) 

Giving us for the leading behaviour of Eq. A.33: 
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(A.35) 

where the quadratic divergence has cancelled between the two terms, and the 

logarithmic divergence can be read off too. 
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