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Abstract

In this thesis we study problems associated with the
generalisation, to include Grassmann type variables, of the
‘group theoretical’ approach to quantisation of C.Isham [37].
Although a full generalisation of this guantisation scheme is
not achieved, consideration of this problem leads us to make
studies in four principle sectors:

(A) Graded Poisson brackets and graded “vector field like’
constructs. A graded version of the Hamiltonian vector field
is defined and it is found that both left acting and right
acting vector fields are necessary. Properties of these vector
fields are investigated. '

(B) Local graded canonical transformations and graded function
groups. Simple examples of these structures are studied.

(C) The realisation of a general superalgebra by the use of graded
‘functions  and the graded Poisson bracket. The graded general-
isation of a standard classical result is presented. Also the

. question of central extensions to these algebras is studied and a
partial generalisation of a classical result on this is given.

(D) Investigations into a model of quantum mechanics on .a
2-sphere which incorporates fermions. This medel is similar

to that derived by Spiegelglas [56] and Barcelos-Neto et al.[6,7]
from the 0(3) supersymmetric sigma model first studied by

Witten in [B2,63], except that an additional primary constraint
has been included. The graded Dirac brackets of this model

are calculated.



Statement of reseaxch content.

The thesis is organised in two parts. The sections which
make up Part I are of an introductory nature and therefore
unoriginal. The original work of this thesis is contained in
Part II. Section 2.1 is claimed as original in approach and
formulation, although later it was discovered that there is some
overlap between this section and work by De Witt in [22].
Sections 2.2 and 2.3 are claimed as original. Parts of sections
2.4 and 2.5 are claimed as original - work not claimed as
original in these sections is indicated in the text. Finally,
the inclusion of an additional constraint in the model presented
in section 2.6 is claimed as a new feature, and which results in
a substantially different model from that of {[6,58].
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INTRODUCTION

The relationship between a quantum theory and the classical
theory associated with it is often not straightforward. Broadly
speaking there are two ‘directions” which this relationship may
take. Either a quantum theory arises as a result of taking the con-
stituents of a classical theory and applying a "quantisation map"” to
them, which relates the classical observables and phase space to
linear quantum operators in some Hilbert space. Or the classical
theory arises as the result df taking some low energy limit of an ’
a priori quantum theory. An éxample of this is the Green and
Schwarz Superstring theory giving rise to N=1,D=10 Supergravity [54].

In this thesis we are concerned with the first of these two
routes. The'motivation for the work coming from a desire to gener-
alise to include fermioﬁic variables one particular approach to the
construction of such a 'quantistion map’} that due to C.Isham and
described in his Les Houche lectures [371 and also [36,38]. In this
work Isham outlines a general procedure for moving from a classical
theory to a quantum theory. the methodology of which centres round
the use of the symmetry group of the classical phase space in the
construction of the quantum operators of the new theory. There are
several features of this group theoretic quantisation scheme which
are attractive, for instance the use of a globally well defined
framework in which to discuss topological and cohomological aspects
of the quantisation process. However, as it stands [37] only deals
witﬁ theories which.are bosonic in nature. The work of thié thesis
is to study problems associated with generalising this quantisation
scheme to include theories which incorporate Grassmannilan, which is
to say anticommuting, variables. While ultimately a full generali;—
ation of Isham’s work in [37] is.not achieved, the path to such a

fermi/bose unified framework is clarified and some new features

of ‘classical’ theories which include graded variables are found.




The canonical quantisation of classical theories - that is
theories in which all the variables commute - through the use of the
group theoretical programme described in [37], is in essence taking
the principle “repléce Poisson brackets by commutator brackets,
observables by operators”, proposed by Dirac, Heisenberg and others
to its logical conclusion. Rather than have this rule for theories
without constraints and a different rule for when constraints are
present (forAexample the underl&ing phase space of the theory might
be some general non-flat space. Expressed as an embedding this would
result in relationships between the local phase space variables),
in [37] it is proposed that quantisation of a classical theory should
always revolve round the natural symplectic Z-form of the space under
study. The objective of the procedure is to construct the "quantum
group’ associated with'the classical theory uvnder quantisation,
and then find irreducible operator pepresentations of the algebra
of this group on some Hilbert space. Thesé operators then form the
basis of the quantum theory. So how is the quantum group constructed
and which set of operators are chosen to repressent it ? To construct
the quantum group Isham appeals to the group of symplectic trans-
lational symmetries of the classical phase space. This symplectic
symmetry group, assuming such a group exists, is required to meet
various conditions before it’can be a suitable candidate for this
guantisation process. The action of the group on the underlying
phﬁse space must be transitive and almost effective [37], where
these conditions are obtained as a result of certain technical
considerations. Once this candidate gquantum group has been chosen,
the next step in the proéedure is to realise the algebra of this
group using classical observables on the phase space and the
natural symplectic 2-form (Poisson bracket) of the theory as the
Lie combination principle. If this is possible to do, and sometimes
jt is not due to the existence of obstructions to this process,

then it is this set of classical observables that will determine



the structure of the quantum operators of the theory. The complete
gquantum theory is then uncovered by stﬁdying the irreducible
representations of these quantum operators, which act in some

(to be chosen) Hilbert space and obey the same (or almost the same,
the algebfa might have to be adjusted to take into account the
requirement that the quantum operators are hermitian) commutation
relations as their classical counterparts.

The programme described above really involves knowledge of
-three areas:

(A) the differential geometry of symplectic spaces,

(B) the realisation of Lie transformation groups which act
symplectically on those spaces by observables, and

(C) the representatibn theory of semi-direct products of Lie
transformation groups (Mackey theory [43]);

The inveétigations of this thesis seek to generalise (to
include Grassmannian variables) results and constructions on the
first two of these subjects, with the thought being ultimately to
produce a graded versipn of the quantisation programme developed
by Isham in [37]1. The thesis is arranged in two parts, the first
consisting qf an introduction to some key concepts in classical
mechanics and differential geometry and concluded by a brief over-
view of the group theoretical approach to quantisation found in [37].
And the second, where the original work of this thesis is presented
and where graded generalisations of structures and results aired
in Part I are produced. The remainder of this introduction will be
taken up by discussion of those sections of Part II that are claimed

as original.

The original work of this thesis falls under four broad

headings as follows:
(A) Investigations into various orthosymplectic structures - graded

Poisson brackets, vector fields and so on - found in section 2.1.



(B) The presentation of a class of local graded canonical transform-
ations and the introduction to the concept of the graded function
group. This is found in sections 2.2 and 2.3.
(C) Studies concerning problems encountered when attempting to
realise a general superalgebra by graded functions on a super phase
space: section 2.4.
(D) And finally the last two section 2.5 and 2.6. In the first of
these a graded version of the group theoreticzl quantisation scheme
is studied, for a space which is the direct product of Rn with an
N;dimensional Grassmann parameter space GN. And in the second, a
quantum hechanical model of fermions on a 2-sphere is studied, very
similar in construction to the standard 0(3) supersymmetric sigma
model [6,56,63,64], and the gfaded Dirac brackets of this model
areicalculated.

The originalicontributions presented under each of these
genéral_headings will now be éﬁamined, starting with a brief

description of the work on graded orthosymplectic structures.

Graded orthosymplectic structures.

In order to make a graded generalisation to a gquantisation
prescription of the type suggested in [37], one must first have a
well understood theory of 'classical; dynamics that incorporates
Grassmannian variables - preferably stated in a way which makes the
role of any supers&mmetries iﬂ the theory explicit. Such a theory
has beén developed in a series of papers by R.Casalbuoni and
others [8,17,18,19], and also briefly and in a very different
setting by B.Kostant [40]. However neither of these approaches
seemed suitable to baée a gdeneralisation of [37] around: the
language of the first was not precise enough, where as conversely
the algebraic geometry used in.the second seemed over absgract. The
investigations of this thesis begin by taking the definition of the

graded Poisson bracket derrived by R.Casalbuoni in [17] and trying



to couch it in a more 'geometriqal' setting (in a sense we will
describe shortly). It is well known that the Poisson bracket between
two functions on phase space can be obtained from the symplectic
2-form product of the Hamiltonian vector fields associated with

those two functions. An imhediate question to ask was whether

the definition of the g;aded Poisson bracket in [17] could also be
thought of arising in this-manner. In order to discuss the notion of
the graded vector field one must first have some idea of what a
graded manifold—like structure is. Unfortunately the definitionsiof
these objects in the literature tend to be highly technical, but
broadly speaking.there are two approaches to dealing with these
structures. Work has been done by F.A. Berezin et al. [13,15],

B. Kostant [40]'and others, using techniques taken from algebraic
geometry, on what are called "graded manifolds’. Where as B. De Witt
originated an altefnatiQe ’SUpermanifold"approach {22]1. Work has
also been done on variations of supermanifolds by M. Batchelor [10,
11] and A.Rogers [49,50,51] ( we will return to this in a moment).
lThe approach we take here is close to that of [22], which the author
only aescpvered-after theAcompletion of>section 2.1 ( the text

cites where any duplication Has occurfed). So as to be able to
_proceed further with the graded vector field question without
becoming overly technical, we assume the existence of some underlying
graded manifold-like structure whose local co—ordinate expansion is
aof ﬁhe form: (x1,...,xn;&,,...;8N),'with the xi variables commuting
and the Ba variables'belonging to some anticommuting Grassmann
algebra. The precise nature of the underlying space is not defined,
but we assume such a definition is possible. Under this assumption we
. produce a graded generalisation of the Hamiltonian vector field which
is structufed from the definition of the graded Poisson bracket made
by Casalbuoni in [17]}. From these investigations the following struc-
tural feature of the graded Poisson bracket becomes clear. For the

graded bracket to be thought of as arising from a graded Hamiltonian

- 12 -—-



vector field, two sorts of graded vector field are required: a field
associated with even generators which acts to the left, and a field
associated with odd generators which acts to the right. These left
acting and right acting fields are built up from left and right
acting derivatives resﬁectively, as defined in F.A. Berezin’s book
[12]. This result was arrived at independently., although the idea of
a dual vector field structure is closely linked to Berezin’'s two
types of graded form [13]. Throughout the remainder of this section
the properties of.the left and right acting graded Hamiltonian vector
field are explored, in particular how these graded vector fields
combine under graded commutation - the classical result on this type
of combination is generalised. Also the "function of a function’
Poisson bracket identity is extended to the graded case. The
"symmetrisation with respect to handedness’ first observed in the
graded Hamiltonian vector field is found to carry through as a
general feature of graded vector calculations, and it is postulated
at the end of this section that the natural structural object of
this type of graded manifold is the ’“left/right” tensor.

In fact De Witt s book [22] also explores the properties of objects
vér& similar to the left/right tensor suggested in section Z2.1.7.
For this reaéonvwe did not persue further structural development of
the gradedlvector fields introduce in section 2.1. The similarities
which exist between the dual “left/right’ structure we uncover here
and which‘is further developed in [22], and the work of Berezin

et al [13,15] on the Koétant type graded manifold, might seem to
point to a more subtle correspondance. This is actually the'case.
The Kostant approach studies the geometry of the space through the
algebraic structure of its sheaf of functions [40], where as the

De Witt supermanifold incorporates the Grassmann variables into a
manifold-like structure from the outset. After the cessation of work

on this subject, the work of M.Batchelor [10,11] was brought to the



author s attention *. In [11] it is demonstrated that the category

of Kostant graded manifolds are equivalent to the category of De Witt
supermanifolds. Hence, the type of structural similarity between these
two approaches that we descover in this work is not incredible, but is

merely an expression of the fundamental equivalence of these theories.

We now discuss the work on graded canonical transformations
and graded function groups. The work presented in sections 2.2 and
2.3 is'éiaimed as being wholley original in content. In 2.2 a class
of local graded canonical transformations is introduced and explored,
using at first a graded phase space consisting of one even and one
odd conjugate pair, and then extending this to higher orders in
even and odd conjugate pairs of variables. In the simplest case a
local co-ordinate net’ (q,p;e,ﬁ) wiph variables which satisfy the
graded fundamental Poisson brackets [17], is transformed into a
second co-ordinate net (Q,P;Z,T) which we demand also satisfy the
fundamental brackets. It is found that the form of the "twisted’
variables”(Q,P;E,F) may be determined up to an arbitary function of
the bosonic sector of the phase space. This result is generalised for
arbitary dimension in both odd and even sectors of the phase space.
Interestingly, it is found not possible to generalise the result
by making the arbitary function graded. However, it is possible to
raise the set of trﬁnsformations to form a group, by demanding that
the underlying bosonic functions satisfy two partial differential
equations as conditions (by this we mean that the super Jacobi
identities are satisfied by the associated graded Hamiltonian vector
‘fields, but only for special sets of generator functions). A seperable

variable solution of these conditions is given.

*¥ The author wishes to thank Professor Isham for bringing these

references to his attention.



The highly constrained requirément that the graded fundamental
Poisson brackets be satisfied, makes extension of these results dif-
ficult. The transformations we describe above all depend on a
conformal-like scaling in the fermionic sector, which seems highly
resistant to generalisation of any sort. There is some cause to
believe that more intereéting étructures in the fermionic sector are
possible if one imposes conditions on. the Bosonic functions which
generate the symmetrieé (for instance demanding that they form a
commuting function group), but this would have to be an objective of
further research. It is clear that these structures represent some
interplay between the odd and even sectors of the graded Poisson
bracket, but just how much more is waiting to be uncovered here is
ha?d‘to estimate.

In section 2.3-the notion of the graded function group is
introduced. Before discussing'this.work we look briefly at why the
classical version of this concept is important.

The standard reference quoted on function groups is
surprisingly still Eisenhart’s book [27], which was written at a
time before the modern index free differential geometric language
was widély in use. In [27] é function group is defined as a collection
of functions fi, which is closed under Poisson bracket combination.
Thus: { fi,fji } = ®1j(f), where 2ij ié some function of the fi's
antisyﬁmetric in i and j. Eisenhart proves a number of theorems
about function groups (two of whicﬁ are quoted in Part 1) and which
indicate to what extent one is "free’ to reduce a given set of
canonical variables to a smaller set, which also obeying the can-
onical commutation relations..It is this process which underpins the
construction of the DifacAbracket, first introduced in Dirac’'s
paper [25], and which under certain conditions is actually Jjust the
Poisson bracket of a special reduced set of variables (for a good
contempofary account of this see N. Mukunda and E.C.G. Sudarshan’s

book [44]1). When such a reduction 1s possible, the reduced set of
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variables can be thought as representing the "true’ variables of the

theory, in the sense that each one corresponds to some actual physical

degree of freedom of the system (up to some possible rotations of
basis). This process of ‘phase space reduction’ - that is stating a
constrained theory in é manner which manifestly preserves the con-
straints - is one which potentially has great interest for theories
involving Grassmannian variables. Gra&ed theories generically have
large amounts of constraints associated with them (for instance see
P.Fayvet and S.Ferrara’s review [28]), which by their nature are
hard to grasp intuitively. Discovering whéther it is possible to
“lock in  graded constraints by the local redefinition of graded
variablés, in a fashion analogous to the classical case, could be
interesting frpm both a mathematical and physical perspective, and it
was for this reason that the investigations of section 2.3 were
undertaken.

In section 2.3 a simple example of the formation of a graded
function group is studied, corresponding to the reduction of a
canonical set of two even and two odd variables (q,p:;8,m) to a pair
of graded variables, where these variables form a simple graded func-
tion group. There are three poséibilities for the graded character of
this pair of variables, and each of these is studied in turn. The
graded Jacobi identities impose strong conditions on the form of the
function group in each case, ruling out in this simple example any
truely non trivial 'mixéd' odd-even and odd-odd function group.
However, even though the form of the group in these cases is heavily
constrained, the functional form of the two graded variables in the
group show what we term a ‘compression’ of the graded canonical
transformation found in the previous section. It is intriguing to
speculate that the apparent difficulty in generalising the canonical
transformation in section 2.2.1 to include anything more than a real
scaling function in the fermionic sector, together with the more

general form of this variable in the ‘compressed’ example of

-— 18 --



section 2.3.2, might hint of a more fundamental result. In the case
of the even-even function group, the structure of the standard
bosonic sector of the gfoup dominates the overall form of the two
even functions. Some speculation as to the underlying nature of the

graded function group concludes this section.

Section 2.4 contains work on the realisation of a general
superalgebfa by odd and e&en functions over a graded phase space.
The Lié combination rule is provided bQ the graded Poisson bracket
introduced earlier. In the first subsection the gquestion of graded
central extensions isAstudied. The objective of this work is to try
and réprodhce Whitehead's theorem [37] on cocycles in a graded
setting. Broadly speaking cocycles are numbers that can appear
on the R.H.S. of some (super) Lie algebras, when one attempts to
realise those algebras by, for example, functions on (super) phase
space. They arise in a variety of settings and are endemic to part-
icular_clasées of Lie algebra [37,38,59,65]. Our interests lie in
‘removing them’, as they represent an obstruction to the quantisation
process. Provided the superalgebra satisfies various conditions all,
with the exception of one caveat, similar to the classical case, it
is found that graded central extenéions associated with these real-
isationsAof superalgebras may be removed. In the second subsection a
graded generalisation of a well known classical realisation is
presented. This result appears in a less general form in {81, and
deals with the case when the dimensiéns of the graded phase space
exactly match the numbers of odd and even generators of the super-

algebra. ‘The graded Hamiltonian vector fields associated with this

realisation are calculated.



Graded examples.

The last two sections of tﬁe thesis contain graded examples
designed to illustrate some of the concepts introduced in the text.
In the first of of these, section 2.5, we examine how a graded
generalisation of the group theoretical approach to qﬁantisation
might look when applied to a "flat’ space of real and Grassmann
variables, mimicing the example of the quantisation of Rn in Part I.
Although this work has not been done elsewhere to the author’'s know-
ledge, the lack of a fully developed theory means that it is only
of limited use at this stage. However it does serve to illustrate
the previous work in section 2.4.1 on cocycles occurring in a ‘non
removable’ maﬁner. This section also outlines the form a graded
generalisation of the group theoretical approach to quantisation .
might be expected to take.

" Perhaps of greater interest is the example presented in section
2 6. Here we study a model of quantum mechanics on a Z-sphere with
fermions. The model is derived in a simple way using an argument
first presented by E. Witten in [63,64] for the supersymmetric sigma
model, and also used by J. Barcelos-Neto et al in [6.7] and by
M. Spiegelglas in [56]. The model we use differs from that used in
the afare ﬁentioned papers b& the inelusion of an extra constraint.
which arises iﬁ a simple way from the natural superfield constraint
for this model [58]. The prééence of this éxtra caonstraint results in
some substantial structural ‘differences occuring to the model. While
the manifestly supersymmetric construction 6f the model ensures that
all the primary constraints are preserved under supersymmetry trans-
formations,.it is found that the secondary constraints required to
maintain the closure of the system under time developement are not
all supersymmetric invariants. This casts some doubt on whether this
model is in fact supersymmetric or not, and represents a substantial
departure from the work in [6,56]. These differences become even more

apparent when the graded Dirac brackets of the model are calculated.
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Here the presence of the extra primary constraint causes non-trivial
additions to the Dirac brackets betweeﬁ the fundamental variables of
the theory, when compaired with similar braéket calculations per-
formed in [B]. This work is claimed as original, though similar in
formulation to work in [6] and [56]. Further work is required to
understand fully the relationship between the model we use here,
incorporating the extra primary constraint, and the model studied

in [6,568]. The model might also be useful as a theoretical
laboratory to study the graded group theoretical quantisation process
in a non trivial setting. The topology of the sphere might make it
possible to insert a “twist’ into the coupling together of the
quantum theory on the local graded co;ordinate patches covering the
sphere, with potentially interesting consequences¥ (the bosonic
version of.this idea is explored in [37]). It is regretable

that sufficient time is not availible to investigate this possibility.

* The author wishes to thank Professor Isham for suggesting this

avenue for future investigation.




There exist many excellent accounts of classical mechanics in
mathematical physics literature, varying widely in sophistication,
abstration and style. Two texts which illustrate this well are
Abrahams and Marsden [1] and Mukunda & Sudarshan {44], and the
purpose of the introductory first half of this thesis is not to
attempt to give another, more of less comprehensive, account of
classical mechanics —Zthat would not be useful in aiding the illu-
-minatién of the second part of the work. What the first part is
intended to do is merely to introduce some of the relationships and
ideas, which in the second part of the thesis are looked at from a
graded point of view. In this sense Part I should be viewed as bein
a detailed guide to Part II.

The classical mechanics described and introduced below-is
draw chiefly from [33j,[44] and [58].
1.0.1 Lagrange’'s Fquations.

It turns out that Newton's Laws of Motion can be stated in
a. very elegant- fashion using the notion of generalised co-ordinates
and velocities to describe completely some mechanical system, and
- a function of them know as the Lagrangian. A particularly fast way
of reaching the equation’'s of motioﬁ is by the use of Hamilton's
Stationary Action Principal. The system ié descfibed by K gener-
alised co-ordinates gs, s = 1,...,K and by K generalised velocities
ds, s = 1,...,K, where gs and 4s are all smooth functions of a real
time parametér denoted t. And also by the Lagrangian function
L = L(gs,qgs,t). We define an action integral, thus:

(1) A(gs(t)) := ‘JL(qs,QS,t)dt
Where the integral is carried out over some evolutionary path

C(to,t; ) of the system, determined by the functions gs(t), for t =

to t = t; and where t € (ty,t; Y& R.
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We now demand that this action is stationary with respect to

variations round the classical path C(t. ,t; ). That is:

(2) 8A := A(C") - A(C) =0
With:
(3 , C" =C + &C . 6C = 0 |to .ty
(42) q's(t) = gs(t) + Bas(t)
(4b) g's(t) = §s(t) + 83s(t)
(4c) Bgs(t)|te,t, = O
Writ{ng: _
L := L(g’'s,§'s,t) = L(as+dgs,qs+6ds,t)

and Fourier expanding in powers of 8gs we are led to the following
expression for 8A (up to 1lst order in 8qgs ):

(5) ' SA. = J( 3 - d_(2))Ldt
‘ 3gs dt ods

.Demanding stationary action 8A = 0 yields the following K partial
differential‘équations for gs(t):

(8) A oL - d (¥L) =0 , where s =1,...,K
das dt o4s v

These are Lagrange’'s equations of motion, equivalent to Newton's
equations, and which must be solved to determine the gs(t) and find
the time evolution of the system. In the above equations, the

functions gqs and qs are regarded as being functionally independant,

although, clearly, as = das.
dt
Actually the Lagrangian formulation of mechanics is not the

most~useful to.‘employ when moving between classical mechanics and
quan;um mechanics using the roufe first taken by Heisenberg and

Dirac - historically the formulation due to Hamilton has played a
stronger role. For this reason we now continue by describing in a

formal manner Hamilton's approach to classical mechanics, which

results in 2K first order equations of motion, rather than the K

second order equations above.



1.0.2 Hamilton's Egquations.

Proceeding formally at this stage following Arthurs [3], we
assume it is possible to introduce a new variable ps(t), independent
of the generalised co;ordinates gs(t) and defined:

7 _ ps := 2L(gs,gs,t) o, s =1,...,K
0as

Where L(gs,qs,t) is the previously introduced Lagragian function.
The variables ps(t) are said to be conjugate t§ the generalised
co-ordinates gs(t) and are called ’"generalised momenta’. Further-
more, we assume that (7) may be solved to give all the as in
terms of (qs,ps,tj; that is the system is non-singular (we will
return to this condition later); We now define a new function
H(gqs,ps,t) thus:

(8) H(qs,ps,t) := 2 psgds - L(gr,qgr,t)
s

This function H is known as Hamiltonian. We now rewrite the action
integrai (1) in terms of the Hamiltonian:

(9 A(gs,ps) = (3 psds - H(gs,ps,t))dt
-

where gs(t), ps(t) are independant functions of t. Applying the
stationary action principle as before, equation (2) leads us to the

following Lagrange’ s equations:

(108) (L - d.g. )( 2 prér - H ) = D > r,s = 1: ,K
o A dgs dtdgs r
(10b) (& - d o Cz2 praqr - H ) = O , r,s =1, ,K
dJps dtops r
(10a) and (10b) give us the following:
(11a) -3 - ps =20 , s =1,...,K
0gs
(11b) - 9H + as =0 , s =1,...,K
ops

These 2K first order P.D.E's are known as Hamilton' s equations and
are'equivalent to the K second order Lagrange equations (B).
In the Lagrangian description of dynamics the fundamental

variables are (gs,as,t). With the Hamiltonian approach they are
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(gs,ps,t). In the language of differential geometry, Lagrangian
"mechanics takes place on the “tangent bundle’, with local co-
ordinates (gs,ds), of the configuration space. Where as Hamiltonian
mechanics taken place on the “cotangent bundle’, or phase space with
(gs,ps) as local co-ordinates, of the configuration space. One can
picture the time evolution of a physical syétem as a path through

phase space parameterised by time. That is:

%’/ ot ¢ (Qpin Py j
- Tt (Q(t),p(t)) :

o

[ tl‘n'n'.gl : (qh'\i"i-\\ s p\'ni*\l‘ ) /

/
The path, or phase space trajectory, is determined by the initial

values of the generalised variables (Qi..i. >Piuwid ) @nd by equations
(11a) and (11b). The Hamiltonian H(q,p,t) is the energy function of
the system. We now introduce the key notion of the "Poisson bracket’ .

1.0.3 The Poisson bracket.

Consider the time derivative of a function f defined on phase

space (qs,ps), f = f(gs,ps,t), where f: {Phase space} ---> R, thus:
(12) df(q,p,t) = 2 (dasdf + dpsof ) + of , s =1,...,K
dt s dt 9gs dt ops ot

Now let ué employ equations (1la) and (11b):

8]

(13) df = 2 (ef oH - of oH ) + of , s 1,...,K

dt s  dgsops ops 3gs ot
We now define the Poisson bracket of two functions A and B defined
on phase space, denoted { A,B } to be:

(14) { ALB } := Z (A 0B - A 0B ) , s =1,...,K
s cas drs ¢PS dgs

In this notation (12) becomes:

(15) df = { £f,H } + of
dt ot

The property of skew-symmetry of the P.B. implies immediately:

(18) ‘ diH = aH
' dt ot

Thus change with time of the Hamiltonian can only come about via an

explicit time dependence, thus energy is conserved. More special
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cases of egquation (13) and definition (14) are:

as = { gqs,H} , ps = { ps,H }
(17)

{ gs,qt } = 0O { ps,pt } , { gs,pt } = &8st
These last three relationships are called the fundamental Poisson
brasckets of the system. The following properties of the Poisson

bracket may be verified by direct calculation:

(P1) Skew-Symmetry:

{ALB}=-{B,A} ., for A,B,C e F(M)
(P2) Linearity:
'{ aA+bB,C } = a{ A.C } + b{ B,C} , for a,b € R
(P3) Product Rule:
{ AB,C } = A{B,C } + { A,C JB , for A,B,C € F(M)

(P4)  Jacobi Identity:
{A{B,C} >+ {C,{AB}}Y+ {B{CA}}=0

Where F(M) is the set of suitably differentiable function over the
phase space M.
At this stage we méke the observation that‘(Pl),(PZ) and (P4), to-
gether define an infinite dimensional lie algebra over the function
space F(M), with the Poission bracket acting as the combination
principle. The Potisson bracket (P.B.) is the fundamental structural
object of classical mechanics and forms the starting point for the
so called "canonical quantisation’ of dynamical systems. In more
geometrical language, in defining the P.B. on phase space, one is
requiring‘that there exist a closed,:noh—degenerate, 2-form on the
cotangent bundle of the configuratiﬁn space. This co-ordinate free
approach is the natural one in which to address global questions, and
will be briefly described later in § 1.2.
1.0.4 Canonical Transformations.

A_canonical transformation is one which does not alter the
functional form of Hamilton’'s equations of motion. More precisely,
given a transformation of phase space co-ordinates thus:

(18) Qs = Qs(q,p,t) , Ps = Ps(q,p,t) , for s =1,...,K
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where Qs,Ps are 2K independent functions of (gs,ps,t). We demand
that there exist a new Hamiltonian H'(Q,P,t) such that:

(19) . Qs = oH° . Ps = -2H , for s =1,...,K
oPs oQs

This requirement implies that the two Lagrangians L(g,P,t) and
L°(Q,P,t) differ only by a total derivative. That is:

(20) S Ps@s - H'(Q,P,t) = S psas - H(g,p,t) +dF , s =1,...,K
s . [ dt

~{ Note thaf we exclude two transformations from our definition:
gs ---> ps and (gs,ps) ---> (fgs,fps) , f € F(ﬂ).
That is, interchange of gs & ps and dilations.)
Following [44], if we expand the R.H.5. of (20) in terms of @s and
Ps , s = 1,...,K , and compare coefficients, we obtain 2K+1

conditions:

(21) Ps - 3 ptaat = QF(Q,P,t) , s,t = 1,....K
t 9@s Qs
(22)  _ S ptegt = aF(R,P,t) st = 1,....K
» t Ps oPs
(23) H (Q,P.t) = H(g,p,t) - 2 ps gs - 2F(Q,P,t)
: s it

For F(Q,P,t) to exist the following integrability conditions,

which are dbtained directly from (21),(22) and (23) must be satisfied

(24) 2 (aas ps - ggsgps ) = 0 s r,s,t = 1,...,K
s 0@t Qr ¢QrcQt
(25) 2 (pasegps - @s¢eps ) = O » r,s,t = 1, ,K
s JdPtoPr ePre¢bPt
(26) ' S (3gsops - pasgps ) = &rt r,s,t = 1,...,K
oProQt ’

s 0QtoPr
The form of these conditions leads us to define the “Lagrange

bracket’  of 2K independent functions of qs,ps denoted Ri, as the

following:
(27) " ( Ri,Rj ) := Z (3g9sps - ases ) , for i,j =1,...,2K
. s doR1i9dRJ o0Rj oRi

Where it is required that the qs,ps may be written as functions of

the Ri‘s , for i = 1,..., 2K. In this notation the integrability

conditions (24) to (28) become:
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(24a) ( Qt,Qr ) = 0O , t,r = 1, , K
(25a) ’ ( Pt,Pr > = O , t,r = 1, ,K
(28a) ( Qp,Pr > = &tr , t,r = 1,...,K

A simple calculation reveals the true nature of the Lagrange

bracket:
2 ( Ri,Rj ). { Ri.Rk } = 2 (35)ps -93asaps D( 9RJ oRk - 4Rk 3Rj 2
3 s,J oRi3RJ d0Rj dRi oqtopt dqt opt
= - 3 (pgsRk &st - ¢psgRk &8st ) = -dik , with 1,3,k = 1,...,2K
- s,t dRijaqt dR1idpt

That is the Lagrange bracket is the inverse of the Poisson bracket.

This means we may write (24a) to (26a) in the following form

(28) {Qt.as } = 0 , s.t = 1,...,K
(29) { Ps,Pt } = O y s,t = 1,...,K
(30) ' - { Qs,Pt } = &st . s,t = 1,...,K

Thus we see that the fundamental P.B.’s (17) have been preserved by
the canonical transformations (18). To clarify what is going on
here we introduce a new notation (for further details of this see
for example [44] or [58]) and look at the canonical transformation
from a more éroup theoretical stand point. Hoﬁever, before
proceeding with the group theory of the Poisson-bracket, we state

without proof the following easily verifiable identity:

(P5) { F.¢ } =2 2aF { hi.hj } G
i,J dhi ¢hj
Where hi = hi(g,p) € F(M), i,3 = 1...., 2K , and F = F(h), G = G(h).

'1.0.5 Croup theoretical aspects of canonical transformations.

So far we have treated the canonical vayiables gs and ps
separately. However, to get at the invariance aspects of the P.B. it
is easier to unify them and to defiﬁe a general phase space co-
ordinate:

(31) (xa) = (ql,...,qi,...,qﬁ;g,,...,pi,...,pn) ,"with a=1,..,2n
In this notation the P.B of two observables F(q,p), G(p,q) becomes:

(32) { F,G } = OF { xa,xB } 9G = oF TaB G
, oxa dxB dxa 9xB

Where from now on we use the repeated index summation convention.
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Direct calculation shows that the matrix IT'a® has the following

form:
On 1n

(33) (TaB)
-in On

where On and 1n are the n x n block matrices:

Q
[y
(=]

(34) Cons | 0 . in = 1

g ... 0 o ... 1
This is the fundamental P.B. in the unified rnotation. The matrix
(TaB) has the following properties:
(35) P r’ =-r
(38) o rZ = -1
We can now state a canonical transformation in a far simpler way.
For the fundamental P.B. to be preserved in a transformation:.
(37) X ---> x’ , where Xx'a= x'a(...xB...)
we require:

(38) ' { xa,x'B } = TCaB

However, .
{ xa,xB } = axa { xp,x7 } 2xB

OXU IXT
but since {'xa,xB y = T'aP for a canonical transformation, we have:
(39) ' dxa Tut axB = TaB

OX L OXT

Or, if we call
(40) (SaB) = (3xa)

xR

Then we may write the condition (38) as:

(41) srs =T

It is easy to show two canonical transformations carried out in
succession is also a canonical transformation, and clearly identity
and inverse transformation exist. It follows that the set of
matrices 3 satisfying (41) form a group. This group is called the
‘symplectic group, denoted Sp(2n,R), of Z1Q92n dimensional matrices

which preserve the sympletic form I'. Also it is easy to see that

the P.B. of two functions w.r.t. two different, but canonically



related co-ordinate sets are equal. That is:

(42) { A(x"),B(x") Ix° = [ A(x"(x),B(x"(x)) }x

The canonical group of those transformations (37) whose Jacobians
(40) éatisfy (41) is infinite dimensional as a set. Various sub-
groups of the canonical group exist, for example the subgroup of
canonical transformations which satisfy the fsllowing relationship:

(43) , S Psd@ds = 2 psdags
s s

These are know as "contact transformations™, and have an elegant
geometrical interprétation as the preservation of the Louville

form [37]. More important for the c¢anonical quantisation path between
the classical and the quantum, is the notation of a l-parameter sub-
group of canonical transformations sometiﬁes known as a ‘canonical
flow’'. As will be shown, the time development of a mechanical system
is one such canonical flow. Associated with these l-parameter sub-
gfoups are certain functions, called observables, which are said to
‘generate’ the transformatioés. To discuss this firstly we need the
canonical transformation in the‘infinitesimal.

1.0.8 Infinitesimal cancnical transformations.

Following the analysis in [44] and [58], let us now make an
infinitesimal change to the variables (xa) and demand that (38) is
still satisfied:

(44) xa ---> xa + dxa , for a =1,...,2K

substituting in (38):

(45) d(xa + dxa) Tur A(xB + dxR) = T'aP
XK OXT A

Expanding (45), and neglecting 0(3) terms we ocbtain:

(46) 2(8xa) Tut 578 + dua Tura(éxB) = O
' XM COIXT
or &(8xa) TpuB -~ 8(8xB) Tua = 0
OXU axp

Multiplying through by I'tal'¢B and using Tzz -1 gives:

47) A(BxRB T'gB) - ¥(8xa T'ta) = 0
OXT oxd



Equation (47) implies that 6xa I'ta is in fact a gradient of some
function 8f(x) say, where B8 << 1. That is:
(48) 8xa Tta = -a(8f)
OXT
Thus (44) becomes:

(49) x'a = xa + 8TFatdf = xa + 8{ xa,f }
: OXT

The function f(g,p) associated in this way with the infintesimal
canonical transformation (44) is called the ‘generator’ of the
infinitesimal transformation.

'Further insight into the P.B. is obtained by taking the
commutator of two infinitesimal transformations, each associated
with different functions f and g, say. Denoting these by:

81{ xa,f }

H

(50) (81f)xa

(51) . (82¢g)xa 82{ xa,g }

and taking the commutator of these transformations:

[61f,82g])xa (51f62g - 62g61f)xa

81f(u2{xa,g}) - 82g(ul{xa,f})

wlu2{{xa,g},f} -uln2{{xa,f}.g}

Now employing the Jacobi identity gives:
[61Ff,82g81xa = uluZ2{xa,{g.f}}
(52)
= - nly2Z &8{f,glxa

'So we see that the commutafor of two infinitesimal canonical
transformations is itself an infinitesimal canoniéal transformation,
whose generator is the (minus) P.B. of the generators of those two
transformations. Thus the set of infinitesimal canonical transform-
ations form a Lie algebra whose combination bracket is the
(negative).PoissQn bracket.

By.employing (13) we see that Hamilton s equations in this
notation become simply:

(853) dxa = {xa,H} + 3H
dt ot

Thus we see that the time development of the system for a non-

explicitely time-dependent Hamiltonian is none other than the
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unfolding of a l-parameter canonical transformation in which the
Hamiltonian is the generator function.

At this stage we raise one other point concerning infinitesimal
canonical transformations. Suppose a collection of functions of
qi and pJ dehoted fi, for i = 1,...,N , satisfy:
(54) { fi,H } =0 for all N
Clearly (15) implies that the functions fi are conserved gquantities,
sometimes known as conserved charges, which do not change with the
time evolution of the system. Since the Poisson bracket satisfies
the Jacobi idéntity, it follows thaf any combination { fi,fj } also
commutes with the Hamiltonian. In fact we are able to give the set
of functions {fi} the structure of a Lie algebra under Poisson
bracket combinations. Hamiltonians of this sort are said to exhibit
an interpnal symmetrv. A good example of this behavior is given by
the first class constraints in % 1.3, which produce an effect
rather similar to gauge invarience in Yang-Mills theory [4,58]. This

will be discussed in more detail later on.

1.1.0  An Introduction to some Differential Geometry.

Before proceéding‘further with the structure of classical
mechanics, we will briefly look at the some of the concepts and
language of differential geometry. This will enable us to reform-
ulate some of the previous results in a far more compact and illum-
inating fashion. The notation we use here is drawn principly from
Hawking and Ellis [35] and O 'Neill [47].

1.1.1 Definitions of fundamental objects.
A topological space S is a pair of objects (X,U);, where X
is a non empty set and U is a topology on X. That is, a class of

subsets of X which is closed under the formation of arbitary unions

and finite intersections.



A topological space is called a Hansdgxﬁﬁ_sgggg if for every
_pair of distinct points x and y in X there exist neighborhoods V
and W such that x € V, vy €¢ ¥ and VNW = Empty Set.
A co-ordinate system or chart, of diménsion n in a topolgical
space S, is a homeomorphism ¢ of an open set V of S onto an open set
g(V) of Rn. That 1is

g(p) = (g (P)...., gn(p)) for each p € V

where the functions ¢ ..... ¢#n are called the co-ordinate functions
of #. which has dimension n

Two n-dimensional charts (#,V) and (6,W) in a Hausdorff
space S are said to overlap smoothly provided the functions ¢.8
and 8.¢?are infinitely differentiable. Diagrzmatically we can

represent this as follows:

8(VhH)

An infinitely differentiable n-dimensional atlas A on a

Hausdorff space S, is a collection of charts (gi,Ui), 1 € P, where

P is a labelling set, such that:
a) S = Q Ui (that is, the domain of charts cover S),
b) For e;ii i,j € P, the map @i.gj is infinitely differentiable.
. We now come to a key definition. A smooth n-dimensional manifold M
is a Hausdorff space S furnished with an infinifely differentiable
n-dimensional gtlas A. Thus locally the manifold may be made to
resemble Rn in a smooth, well behaved, manner. An example of a
manifold is thé two dimensional sphere S5(2).

A differentiable function on M, is a function f: M ---> R
such that f£.¢°: Rn ---> R is differentiable w.r.t. the relevant

local co-ordinates. A similar definition may be given for a differ-

entiable map between two manifolds of the same dimension.



A curve I' on M is a smooth map from some open interval of

the real line to M:
T: (-86,8)cR ---> M

Using our local co-ordinate functions we can express [ as a curve in
Rn parameterised by some real parameter t € (-6,6)
g.': R ---> Rn , g.T(tY = (x4 (), ..., xp(E))
where xi(t)= gi(I(t)).
Suppose I'(t) = p at t = 0 ,then the contravariant vector
(%E)F<D) tangent to the curve I' in M at p = T(0) is the operator which

maps a smooth, differentiable function f € F(M), say, to the number:

(0f)r 1 t=0
ot

That is, maps the function f to its derivative in the direction of

the curve I'(t) at the point p = I'(0) € M. Thus we have:

(3fHT 1 t=0 = Lim L {f(T'(s)) - £(I'(0))>}
(1) ' ot - s-->0 s
= 3 dxiaof 'T(0)=p , where i = 1,...,n
i dt oxi

Clearly a tangent vector to any curve I'(t) passing through p can

be expressed as a linear combination of the ccordinate derivatives:

(2) : rcd)=p ) ‘ i=1,...,n

t
t
x 1

v |
»

Conversely, it is easy to see every linear sum of derivatives comes
from a curve in M. In this way the.collection of all tangent
vectors to all curves through point p € M form a vector space
called the tangent space to M at p, denoted Tp(M). The operators
(2) are the basis vectors to this space. In general, a vector can
be thought of as a linear operator which maps the space of functions
over M into R. That is:

(3) ' V: F(MD ——=> R., Ve Tp(M)

for £ € F(M) , V(f) € R with value given by (1).

Note : There are alternative ways of defining the tangent space to
a manifold. In particular one may define a tangent vector as an

equivalence class of curves which are tangent to one another at

—— 32 --



some point p. The tangent space at p is then the complete set of
tangent vectors at p.
The tangent bundle of M, denoted T(M), is defined as the union
of all tangent spaces over M: T(M) = U Tp(M).
A vector field is a smooth ass?gnment of tangent vectors
Vp € Tp(M) to each point p € M, in the sense ihat the function de-
fined on the ménifold M, whose value at p'is given by the number

Vp(f) for sohe arbitrary £ € F(M), is smooth. Thus:

V =UVp: F(M) ---> F(M)

P
In components:
Vf(p) := Vp(f) € R.
and Vi(p) = Vp(xi) s for i1 =1,...,n
Vp(f) = 3 Vi(p)of(p) , for all p € M
i axi
This is true for all f € F(M) so:
(4) - : Vp = 2 Vp(xi)(a D)
: i oxi p

The cotangent space at p € M is the dual space to Tp(M),
and is denoted by Tp*(M). A covariant vector Wp at point p € M is
a linear map of Tp(M) into K:

Wp: Tp(M) ---> R

We denote the product between contravariant and covariant vectors
Wp € Tx¥p(M) and Vp € Tp(M) by <HWp,Vp>p € R.

A 1-Form W is a smooth assignment of covariant vectors to
each point in M. We can naturally transform a smooth real functicn
f ¢ F(M) into a 1-form, called the differential of f and denoted df,

in the following manner. At p € M, df € Txp(M) and is defined by

< df,Vp »>p := Vp(f) for any Vp € Tp(M).
Clearly { dxi } i = 1,...,n form a basis for the cotangent space
at p € M, since from the definition < dxi,g > = 8ij . Also we have:

axJ

Wp = = (Widxi)p and Vp =3 (Via_)p , and therefore:

i i ox i
(5) < Wp,Vp >p = 3 (WiVi)p
i



which is denoted Wp(V). Clearly, if V is a vector field over M and
W is a 1-form, then < W,V > € F(M), that is, a function over M whose
value at p is defined by equation (95).

A smooth 1-form is one such that for all vector fields V on M,
< W,V > is a smooth function on M.
Note: A smooth function f € F(M) is regarded as being a O-form on M.

A K-Form is a totally skew-symmetric, multi-linear map:

(6) Wp: Tp(H) ®.. ® Tp(M) (k-times) ---> R
such that the function: p -=--> Wp(V1,...,Vk) is smooth for all
p € M, for any set of K vector fields V1,...,VK on M.

The eng:iQr derivative d is a map which takes a K-form to a
(K+1)-form, as follows. For the K-form:
(7 W = Aij...k dxixdxJx...*dxk , with Aij...k € F(M)
the (K+1)-form dW is defined by:
(85 ) dW := dAij. .. kxdxikxdxix...*dxk.
Where the ¥  denotes the wedgde product and summation occurs over
the i,4,...,k indices. |

The QQL&R&QQL_DMEQJQ_T*M.iS defined as the union of all the
cotangent spaces over M. Thét is: .
(9) T*¥M := U Txp(M).
We define the commutator of two sector fields V1 and V2, denoted
by [ V1,V2 ], as the following vector field
(10) , [ V1,V2 ] := V1(V2f) - VZ(Vif) ,- for all f € F(H).
Note that vector fields combined in this manner satisfy the Jacobi
identity:
(11) [ V1,[ V2,V3 1 1+ [ V3,[ V1,v2 1 1+ [ Vvz2,[ V3,Vv1] ] =0

To conclude this brief introduétion to differential geometry
we describe one last useful concept - this is the notion of
"pushing forward  and ‘pulling back’ tangent and cotangent vectors
between manifolds.

Given a smooth differentiable map ¢ between two manifolds

X and Y, say, it is possible for a tangent vector on X to define a
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tangent vector on Y, and a cotangent vector on Y to define a co-
tangent vector on X. These correspondences are defined as follows.
For a tangent vector Vp € Tp(X) we define the corresponding push
forward vector of Vp, @gVp € T¢(p)(¥), by:

(12) (gVp)g(p)(f) := Vp(f.g)

where f € F(Y) and ¢ is known as the r

Diagramatically we have:

Similarly, to pull back a coténgent vector Wg(p) € Txg(p)(Y), we
define gXxWg(p) € Txp(X) by:

- (13) < gXxWg(p),Vp >p r= < gVp,Wg(p) > , for any Vp € Tp(X).
These definitions are well behaved for individual tangent and co-
tangent vectors; the question arises whether it is possible to
apply the same map to vector fields on X and 1-forms on Y. In the
case of the 1-form the defini;ion of the pull back operator gener-
alises as expected:

(14) < (g¥Wip.Vp >p := <._W¢(p),¢Vp >#(p). for any Vp € Tp(X).
Noté: In the case of a O-form (i.e a function on Y), we define the

pull back simply as: .
(gXxf)(p) := f(g(p)) , for f € F(Y).

However, with the casé of the vector field there can be a problem.
If the map ¢ is many-to-one then there will be points where the
push forward vector field is not well defined. Similarly, if ¢Ais
not surjective then there will be points in Y where there isn’'t a
vector field defined at all. To extricate ourselves from these

two possible paﬁhoiogies we demand that ¢ is a diffeomorphism.
‘Under these circumstances we may define a ¢ - related vector field
on Y, ¢V, from a vector field V on X by:

(15) (#V)B(p)(£f) := (gxVp)(f) := Vp(f.g)

for any f € F(Y) and where Vp := (V)p € Tp(X), (#xV)g(p) € Tag(p)(Y).

g-related vector fields have the property of preserving the
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commutator. That is:

(18) gx[ V1,V2 1 = [ @xV1,8%VZ2 ]

We can proceed to make use of this new formalism to reformulate
some of the previous results on classical mechanicas in a new and

more illuminating manner in the next subsection.

1.2.0 Differential Geometry in Classical Mechanies.

In the last section the reader was introduced to some central
concepts and definitions used in differential geometry. Employing
this compact and elegant language it is possible to reformulate the
previous work on the classical mechanics of non-singular systems in
a far more revealing way. This reworking also serves to introduce
the reader to some constructions, graded ahalogues of which will be
studied in Part II. A good reference for this approach to classical
mechaniecs is found in Abraham and Marsdén {1] or Sundermeyer [58],
for example.

1.2.1 The svmplectic manifold.

A manifold S is a symplectic wmanifold ifAthere exists a
closed, non-degenerate 2-form W, where closure heans dWw = 0
and non-degenerate means that if W(V1,V2) = 0 for all V2 € Tp(S)
and some p € S, then it follows that V1 = O.

The cotangent bundle T¥M of some configuration space M has
a natural symplectic structure associated with it. We lable the
local co-ordinates of TxM : (q1,...,qn;pi,...,pn), where tﬁe {pi}
are the ‘“fibre co-ordiantes’ associated Qith each cotangent space
at some particular point p € M. We‘now consider 1-forms defined on
the Zn-dimensional cotangent bﬁndle T*M. We define the Liouville
1-form on T*M by:

(1) L := 2 pi(u)(dgiduy , where pu € TxM
.

The natural symplectic structure on T*M is given by:

(2) W := - dL



or, in words, the exterior derivative of the Liouville form. In
local co-ordinates on T*¥M this symplectic 2-form has the following
expressién:
(3) W = ? dgi * dpi , i=1,...,n
This is the natural symplec;ic structure on a cotangent bundle,
and we shall see that it is very closely related to the previously
defined Poisson bracket between two functions 6n phase space.
Before that though, we define a sxmgiﬁgLig_ixansignmaiign on phase
space. - '
1.2.2 The svmplectic transformation.

A svmplectic transformation (or “canonical transformation’)

is a smooth differentiable map taking the phase space M to itself,
in such a way as to preserve the symplectic'Z-form of the space.
That ié:

(4) ' ' g: M ---> M and g*xW = W~

where ¢¥% is the pull-back operator. Basically this statement is the
equivalent of the “canonical transformations are those which pre-
serve the Poission brackét"” statement of § 1.0.5. As before, a
symplectic transformation can be thought of as arising from an-
infiﬁitesimal generator. This comes about in the following way. A
i-paramenter family of smooth differentiable maps on M gives rise
to a field of téﬁgent vectors on M, where the direction of these
vectors at each point is determined by the tangent to the flow line

of the 1—parameter family of diffeomorphisms gt through that point.

That is:
go(x) = x for all x € M

where

gt(gs(x)) = gs+t(x) for all x € M, with s,t € R
Conversely, a vector field on M ~gives rise to an unique integral
curve through each point x € M, which can be used to construct a
l-parameter family of diffeomorphisms of M for some range of the

real paramenter t. If the range of t is R - the whole real

line - then the vector field is said to be complete. In this way



vector fieldsrgenerate l-parameter groups of diffeomorphisms, and a
group of l-parameter diffeomorphisms determines a vector field.
This relationship becomes pertinent to the symplectic transform-
ation when wé consider one vector field in particular, known as the
‘Hamiltonian vector field.

1.2.3 The Hamiltonian vector field.

The nature of the canonical transformation is further 11lum-~
inated b? the introduction of the following vector field on M,
associated with some function f € F(M). We define the Hamiltonian
vector field (H.V.F.) on M associated with f, denoted Hf by:

(5) Hf := 5 (2f 9 - 2f ¢ )
’ i dpidqi dgiepi

Why is this vector field important ? The H.V.F is important because
the transformations assocated with flows along its integral curves

are symplectic. Thus, if H
gt . t € R

is the family of diffeomorphisms associated with a flow of para-
meter ‘distance’ t down an integral curve of Hf from some point
x € M, then:
. H

(6) gt * W = W
In this way, every function on M can be thought of as determining a
canonical transformation via the intergral curves of its associated
Hamiltonian vector field. If Hf is complete, then the l-parameter
group of canonicai tranformations is defined on the whole phase
space.

How about the converse process of determining if a given vector
field is Hamiltonian (that is, 1if it arises from some function
f € F(M) and‘the definition (5))? This question is more subtle and
depends on the cohomology group of the.phase space [37]. If the
first cohomologﬁ group is trivial - resulting in every closed
{-form being exact - then for the vector fields which cause the Lie
derivative of the symplectic 2Z2-form to vanish, it is possible to find

a function which will give the fields the structure of the definition
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(5). Thus to answer even such a straight forward question, immediately
involves one_ in considefations about.the global nature of the phase
space. If the cohomology of the space is non-trivial the Lie
derivative condition only guarantees that the vector field is "locally
Hamiltonian - a far weaker statement [37]. He'hbw ask the question:
does the commutator of‘two Hamiltonian vector fields yield a third
H.V.F. and, if so, what is the function which corresponds to it in
definition (5)7 That is if Hf,.Hg e { H.V.F. on M }, with £, g € F(M),
then does there exist a function h € F(M) which satisfies

[ Hf ,Hg ] = Hh ? After some calculation one finds [37]:

(7) [ Hf ,Hg ] = HHH%

What is this function Hf(g)? Substitution in the explicit co-
ordinate form of (35) qpickly reveals that it is none other than

the negative Poisson bracket between f and g. That is we have:

(8) 4 [ HEHg ] = - HOE, 2}

This relationship is the rigourous form of (51) in § 1.0.6. We now
can understand the timé'development of a dynamical system as being =z
flow along the Hamiltonian vector field generated by the Hamiltonian
funection H, and with a structure given locally by definition (5).
This gives us back Hamilton's equations (52) section 1.0.6 simply
by reading off the'components of the H.V.F.:

(8) dai(t) = M(q,p) , dpi(t) = - oM
dt oapi - dt 0qi

Similarly the time development of a function f can be thought of as
being its.evolution along a line of flow of the system, giving the

previous result (52):

(10) E(T(tY) = { £,H HTN
: dt

for some integral curve of HH in M, I'(t). The Poisson bracket
between two functions f,g € M may now be understood in terms of

their H.V.F.s. In fact calculation shows:

(11) : W(Hf ,Hg) = { f,g }



How is the underlying group theory expressed in this new
approach? The set of all (complete) vector field on phase space
together with the commutator bracket operation (7) form a Lie
algebra - actually it is the Lie algebra of the group of all smooth
1-parameter differentiable maps of M onto M, or in other words the
diffeomorphism group Diff M [37]. Clearly the group of all sympl-
ectic transformat;ons of M is a subgroup of Diff M, with its Lie
algebra being the set of all complete locally Hamiltonian vector
fieldé; The set of all functions defined on M together with the
Poisson bracket operation form another Lie algebara, which, through
the correspondence: f ---> - Hf, is homomorphic to the Lie algebrsa
of Hamiltonian vector fields. This map is not 1-1, as clearly the
constant functioﬁs are the kernel and lie in the centre of the
Poisson bracket algebra (because the Poisson bracket between a
constant and a function on M is zero). This is a feature which has
important :epercussions later on regarding the occurence of cocycles
in the quantisation process [37].

This concludes this brief geometric interlude - it is intended
to show the eariier sections on classical mechanics from a different
perspective. Aiso it introduces some important objects and language
which will be of use in the later section on the group theoretical
approach to quantisation, and in the work of Part II on graded
analogue structureé. However for the next section we return to
£he more pedestrian language of the earlier sections to deal with
the problem of dynamical systems which incorporate a singular

Lagrangian - that is, when constraints are present in the theory.
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1.3.0 Constrained Hamiltonian Systems.
Introduction

Early in the introduction £o Hamilton mechanies it was assumed
that equation (7) in section 1.0.2 defining the canonical momenta,
led to equations in which it was possible to explicitly solve the
system for the generalised velocities. These would then be expressed
as functions of the generalised co-ordiantes and their conjugate
momeﬁta. In the presence of constraints, that is, functional rela-
tionships between phase space variables valid throughout the system’s
time evolutiéﬁ, this process is made complicated by the inherent
dependence of some of the co-ordinates. In the following section we
describe the canonical approach to dealing with these problems,
which was pioneered by Dirac [23,25], Bergmann [2,16] and others,
culminating in the intfoduotion of the 'Dirac bracket’. And, by way
of an example, we demonstrate this construction for particles moving
on an N-Sphere. The following review relies on [44] and [58] , and
Aaléo with contributicns frdm [23] and [34].
1.3.1 $Singular systems.

A singular lagrangian L . that is one in which the generalised

velocities may not be unigquely expressed in terms of phase space
variables. is characterised by the vanishing of the determinant

'(W)rs!, where:

(1) (Wirs = gL,_ where |(W)rs| = 0 , with r,s = 1,...,K
.0Qrads

This property is invariant under canonical transformations, unlike
the cofresponding one for the Hamiltonian [44]. At this point one
may now proceed in the Lagrangian formalism if so desired. However
here we decide to follow the Hamilténian approach because tradi-
tionally ﬁhis formulation has played a stronger role in relation

to gquantum mechénics*. Following this formalism equation (1) leads

%x Note: there are alternative approaches to quantum mechanics, for

instance see Feynmann’'s path intergral method [30].
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to the following phase space constraints:
(2) gu(q,p) = 0, with u = R+1,...,K
where, as before, ps is defined:

(3) . ps := oL s with s = 1,...,K
dgs

and where R is the rank of the matrix (#). Equation (2) embodiecs

the so-called ‘'primary constraints’ of the system and, in principle.

it allows one to express momenta pR+1,...,pK in terms of the
pl,...,pR. That is [447]:
(4) pu = Bu(gs,pJj) , for uy = R+1,...,K and 3J = 1,...,R

This means that K-R generalised velocities are arbitrary functions,
so that the first R generalised velocities may be solved as
functions of (gs,pj>, gnd K-R arbitrary generalised velocities.
The canonical Hamiltonian is defined as before, with:

(5) . He := S ps.4s -.L(a,q)
S

At first‘sight it appears that this should depend on the arbitrary

unsolved generalised velocities, however, analysis shows that fhis

is not the case. Thus:

(8) He := He(gs.p3d?

Differentiating (3) w.r.t. gs and pJj. and using Lagrange’'s equation

(B8) in @ 1.0.1 leads to the following equations of motion [44]:

(7) gi = QHc - £ QquaBu , with j = 1,...,R
opPJ H opJ
(8) = - ps = -8He + 3 quafp , with s = 1,...,K
0as u Jgs
and with o = R+1,...,K.
{Note : 1t is possible to identify the K-R arbitrary generalised

velocities with the X-R qgu). The above (7) and (8) are Hamilton's

equations for a constrained system.)



1.3.2 Heak and Strong Equality

By using an idea first introduced by Dirac [23], it is possible
to rearrange the constrained Hamilton’'s equations (7,8) in an illum-
inating manner. Before we can do this though, two definitions are
needed. When the two functions f and g, say, defined over the.whole
phase space, are equal when valued on the hypersurface satisfying
the constraints of the system, they are said to be ‘weakly equal’.
This is denoted:

(9) ! f(as.ps) = g(ags,ps) <=> f = g | pu = Bulas,pj)
Two functions f(g.p) and g{q,p) are  strongly egual’ when they are
" weakly equal and their gradients are alsoc weakly equal. This is

denoted;
f(ags,ps) = g(gs,ps)

It is easy to prove the following lemma (Dirac) [23]:
f(gs,ps) = g(gs,ps) <=> f - % guaf = g - I gug
: H dp U Cou dpu
where- o .
gu = @gu(gs,ps) := pu - Bu(gs.pJ)

Employing this theorem one is quickly led to & more elegant form of

equations (7) and (8):

(10 4 qs = 23H + 3 quigu s =1,...,K
o : dJps i Ips
(11) . ps = o8H - 3 Juigu W = R+1,...,K
29s U &gqs
where:
(12) H = H - gu. .’
' Py
(13) H = He

Equations (10) and (11) may be written thus [44]:

(14) qs ~ { gs,H } + £ { gs,gu }aqu , for s = 1,...,K
iy
(15) ps = { ps,H } + £ { ps,gn }qu , and u = R+1,...,K
. n

Where we have the primary constraints gu(gs,ps) = 0 and where also
H = He. If g(qs,pt) is some function on phase space, then (14) and
(15) give: -

(18) _ dg(as,pt) =~ { g,H } + = { g,8u }qu
dt 1]



We now demand that the constraint functions ¢gu remain weakly zero
throughout the time development of the system - this gives us the
further equation:

(17) { guH } + { gu,da 3qa = 0, a = R+1,...,K
Assuming det!{gu,ga}! is non-zero then it is possible . to solve for

the qu in (18) to give:

(18) , dg(gs,pt) = { g¢,H } - £ { g.8u }Cua{ ga,H }
dt u,a
-1 N
‘Where Cupa = ({gu,ga}) , the inverse of the matrix of constraints.

So enters the 'Dirac bracket’  on to the scene, and which is defined:

(18) { AB ¥x := { A,B } - 2 { A.gu }Cua{ ga,B }
u,a

Clearly if the matrix of constraints is non-singular we now have:

(20) dg(gs,pt) = { g,H }*
dt

Thus we see that by employving Dirac’s notion of weak and strong
equality, we are able to rewrite Hamilton s equations of motion
for a constréined system in a form tﬁat is reminiscent of the free
equations. That ﬁne is able to do this is, in fact, no accident
and is a topic we will return to later.
1.3.3 EingT@hg_ﬁﬁgand_giggs_ggnsirﬁinLg

How do we proceed if the matrix ({gu,dal) is singular? In this
event4(17).will give rise to further constraint egquations between
the (qs;pt), called secondary constraints, which must be added to
the primary'constraints already present. Once again the time devel-
cpment of the full set of constraints must be checked. If their time
development ﬁroduées further independent conditions which must be
set weakly to zero, then these should be added to the existing
collection and'the process repeated until all the constraints have
been determined. (It must be said that the general case of this
procedure is quite complex as the rank of the constraints matrix
must also be checked). The upshot of all this is that to the R |

primary constraints are now added a number, say S, of secondary



constraints, the total number R + S representing the complete set of
constraints associated with the system.

The next step, following Dirac and others [23,34,44] is
to partition the.primary and secondary constraints into so
called first class and second class constraints. A first class
constraint'has a weakly vanishing Poisson bracket with all other
contraints; second class otherwise (note: first and second class
mixes primary and secondary). Suppose we call the first class
constraints:
(21) €i(q,p) = O , for i=1,...,1
and the second class constraints:
(22) Fa(g,p) = O , for a=1,...,N and I+N = S+R
Dirac has a néat proof that the'constraints matrix associated'
with the second class constraints DaB = ({fa,FB}). is non-
‘singular and therefore invertable [23]. It can be shown, that the
first class constrainfs are responsible for contributing various
linear combinationé, which we denote by vi for 1 = 1,...,I, of the
unsolved generalised,velooities ga to the time derivative of a
furniction on phase space [44]. In fact if g{qs.pt) is some function
on phase space, then:

(23) dg(as.pt) = { g, H } + £ { g.€i }vi - 2 { g.,Ta }(D)aB{ I'B.H }
‘ dt i a,B

These arbitrary functions may be ineluded within the Hamiltonian by
defining a “total Hamiltonian  Ht ,thus:

(24) Ht := H + 2 €i vi
i

Then the time derivative once again becomes:

(25 dg(gs.pt) = { g,Ht }x
: dt

The fact that { A,Ta }¥ = 0 identically for any A = A(gs,pt ) means
that, provided Dirac brackets are used throughout, weak equations
may now be replaced by strong ones - it no longer matters that the

constraints are imposed after calculating a bracket expression.



To discover why the Dirac brécket is structurally the way it
is, or what transformations preserve it, detailed analysis must be
carried out. This &as first done in [16], and we briefly review
some of the results of this work in the next section. We shall see
that the Dirac bracket has many properties in common with the stand-
ard Poisson bracket - in fact structurally it is a Poisson bracket,
only constructed out of a reduced set of variables. These variables
are independant frgm and complementary to the functions which embed
the 'oonstréint hypersuface’ - the surface obtained by resolving
the phase space constraints - in the higher‘dimensional phase
space which has natural co-ordinates (qs.pt). First ciass
constraints are in fact generators of internal symmetries rather
similar to gaﬁge degrees of fréedom in Yang-Mills theory [4].

That is, you can show that the functions €a generate infinit-
esimal contact transformations which do not alter the state qf
the system physically. In this sensé the presence of first class
con&traints obscures the relationship between the phasé space

variables and the states of the theory [58].

1.3.4 Ihg"generalispd'Poiscon bracket

In their elegant book Mukunda and Sudarshan [44] define the
notion of the 'generalised Poisson bracket’ of which they demon-
strate the Dirac bracket t§ be an example. They consider a general
construction of the following nature:

Let Xi, for i = 1,...,N , be a set;of real variables defined on
certain open iﬁtervals in R, and let there exist a set of real
functions of {Xi}, Bij(X), ﬁhicﬁ are antisymmetric in i and J.
If f(x) and g(x) are two functions of the {Xi} we define a third
function h{(x) by:

(28) h(xy = { f,g ¥*¥x := Bij(X)of a8
: %1 oxJ

Furthermore, we demand that the { , }*X operation obeys the Jacobi

identity:
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(27) { f,{ g,h }xx}%*x + Cyclic permutations = 0

A combination operation defined in this way is called a gepneralised
Poisson bracket (G.P.B.) after [44].

We may now define a Generalised Canonical Transformation (G.C.T.)
as being a map {Xi} --->{X'i = X i(X)} wﬁich preserves the G.P.B.
The condition that the variablesv{Xi} must satisfy in order to
-achiéve this is f44]:

(28) o { X'1,X73 3¥xx = Bij(X")

Notice that this condition is Jjust like the usual Poisson bracket
condition with Bij replacing the T'ij from § 1.0.6. Imposing the
Jacobi identity (27) on this bracket gives us further conditions

‘that the Bij must satisfy:

(2 3BjkBmi +¢BmjBki +9oBkmBji = O , i=1,...,N
oxi oxi axi

As in the case of the straight Poisson bracket, we can use func-
tions to generate LnﬁiniﬁQsimal_ﬁﬁn3ialiEEQfQﬁnQnigal_Inansignm-
ations (I.G.C.T.) by demanding that the following differential
equation is satisfied:

(30) ‘ dXi(t) = [ Xi(t),a(Xi,t) }xx*
dt ’ ’

where Xi(t) = fi(Xoi,t), and fi(Xoi,O) = Xoi = Xi(0), t € R

The function ¢ 1is known .as the “generator’ of the I.G:C.T., and

it is simple to verify using the Jacobi identity that the {fi} which
satisfy (30).do also satisfy (28). The G.P.B. is said to be singular
if det)Bijl = 0. This implies that there exists a function or
functions Wa such that:

(3 { f.,Wa }*x = 0 for all f € F(X)

where F(X) = {The set of all smooth functions over {Xi}}. These
functions Wa are called neutral functions {44). If the rank of the
matrix (B)iJ is N—ﬂ then you can show that there are M neutral
functions, which form a basis for the space of functions satisfying

(31), each one being responsible for generating a null eigenvector of

matrix (B)ij. Suppose there are M neutral functions Wa of the
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above G.P.B. Let us adjoin to them N-M indeperndent functions gsa
so that together the set (ga,Wa) form N independent functions over
phase space. Then it is possible to show that the G.P.B. (26) reduces

to the following:

(32) { £,g }xx = 2 Bab 3f g
a,b dga2gb
where Bab(X) = {ga,gb}** |x and is non-singular. Thus a singular

G.P.B. may be made to loock like a non-singular G.P.B. in a lower
number of variables, that number of variables being determined by the
rank of the original matrix (B)ij.

The importance of the above discgssion lies iﬁ its use in under-
standing the underlying nature of the Dirac bracket. In the next
section we will see that the Dirac bracket ié none other than a
special case of a generalised Poisson bracket.

1.3.5 The Dirac Bracket as an example of a generalised Poisson
 bracket

Reverting to the notation used in § 1.0.8; we now consider
the caée when the variables Xa, a = 1,...,2K, are the natural
co-ordinates on phase space. Suppose that there exist an even number
of secondary constraint functions ﬂé, a=1,....28 < 2K, with
a non-singular matrix of Poisspn brackets, whose inverse 1is
denoted Cab = ({¢a}¢b})d. To this set of 2N independent functions
{ga} we add the further 2K-2N independent functions Ws, where
s = 2K-2N+1,...,2K, such that the 2K functions (ga,Ws) form an
independent co-ordinate set. Then Mukunda and Sudarshan show that
the G.P.B. defined by:

(33) { £,8 }¥X(g,W) := S Bstaf ag
's,t d¥s oWt

and where (Bst) = (-(WS,Wt)jﬁ is the inverse of negative Lagrange
bracket of Ws and Wt w.r.t. the variables Xa; are precisely that

of the Dirac bracket. That is:
(34) { f,g8 }xx = { f,g }%

This is straightforward to demonstrate, relying mainly on the
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properties of the Lagrange bracket, that it is the inverse of the
Poisson bracket. This shows neatly why the Jacobi identity holds
for the Dirac bracket. Rather than being a miracle it is merely a
result of the matrix (Bst) satisfying condition (29) through the
identity properties of the Lagrange bracket.

Before going on to discuss the significance of the trans-
formations which preserve the Dirac bracket, we introduce an idea
which is returned to in Part II, and which really lies at the heart
of manipulations involving Poisson brackets: this is the notion of

the “function group’  [27,44].

1.3.6 Function groups.

Definition

A set of R independent functions Fa(Xa), a = 1,...,R , over phase
space {Xa} :.(qi,...qn;pi,...,pn) and such that:

(35) { Fa,Fb } = Gab(Fe) with a,b,ec = 1,...,R

where Gab is some function antisymmetric in 2 and b, is said

to form a function group G of rank R. A function group G is
commutative if { Fa,Fb } = O for all values of a and b. If a subset
of functions of the function group G forms a function group then
they constitute a subgroup of the group G. There are two theorems

on functions groups which are of special interest to us and we state
them here without proof (for a proof see [27]).

Theorem 1

A non—commutative function group G of rank R is a subgroup of a
function group of rank 2n whose basis (# ,...,8n;m ,...,Tn) can be.

chosen so that:

{ ¢i.6j } = { mi,mj 3} = 0, and { @gi,nj } = 81iJ

A system of 2m+qg independent equations which defihe a surface of

dimension D = 2n-2m-q, denoted 'u = 0, for u = 1,...,2m+q, and



such that the rank of ({I'w,T&}) = 2m, for u,6 = 1,...,2m+q, can be
substituted for a locally equivalent system:
ga = 0 , for a = 1,...,m+q and

1,....,m

nta = O , for «a
ahd for which the relations:
{ ga.¢b } = { ma,nwB } = 0 , and { ga,na } = daa

hold locally in phase space.

These theorems make it possible to, locally at least, set the matrix
(Bab) from § 1.3.5 equal to the natural symplectic Z-form in the
reduced number of variables. This makes the Dirac bracket look 1like

a Poisson bracket in that locality of the embedded constraint hyper—‘

space. That is locally we can choose N independent functions on phase

space (gr;ns;Wi), such that:

(=2
Q-

(386) C O { f,g ¥x = 2 (of g - of o8 )

' . r gr onr nr 0@
where £ = f(g,n,W) and g = g(¢g,n, W) , and with Rank(Bab) = Z2ZR.
Note: Invgeneral the transformation: (Xa) ---> (gr.ms,Wi) is not
a generalised céﬁonical transformation. For.this reason often it

is not convenient to state the Dirac bracket in this manner.

1.3.7 Generalised canonical transformations and the Dirac bracket.

Consider the I1.G.C.T. generated by some function €(Xa,t), where

{Xa} are the phase space coordinates with a = 1,...,2K, and the
functions:

(37) Xa(t) = fa(Xa(0),t) , with €(Xa(0),0) = Xa(0)
are determined.from the differential equation:

(38> : , d¥a(t) = { Xa(t),e(Xa,t) I*
dt

It is easy to that for all constraints functions ¢m used in

deriving the Dirac bracket

(39 dgm(t) = 0 , for all m..
dt

This comes about directly as a result of how the bracket is

constructed and, as a consequence, means that the transformation
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Xa(0)--->Xa(t), for t > O, preserves the constraint.hypersurface.
For a generating functioﬁ € such that:

(40) { gm(Xa),€ } = 0 , for all m

then the generalised canonical transformation becomes an ordinary
canonical transformation. If equation (40) is weakly zero then it
is possible to show that there exists a function € (Xa,t), which
generates a normal cgnonical transformation the same as that gener-
ated by using G(X;,t) in (38) on the constraint hypersurface, but
which differs when away from it in areas where gm = 0. The function
€{Xa,t) 1s arbitrary and_€’(Xa,t2 is consfructed from it {44]. For
the case of transformations generated by the Hamiltonian this works
as follows. The time development of a system which incorporates
constraints can either be regarded as a generalised canonical -

" transformation generated by ‘H, thus: |

(41) dg(Xa) = { g,H ¥
: dat

(note: we assume only second class contraints are present); Qr as
an ordinary canonical transformation confined to the constraint
hypersurface and generated by the associated Hamiltonian H", where:

(42) H =H - 2 ¢m Cmn { ¢n,H }
m,n

In a phase space where we could globally make our Dirac bracket
look like a Poisson bracket, the group of generalised canonical
transformations 1is merely a group of ordinary canconical t;ansform-
ations in a phase space of reduced dimension ~ the fact that we can
only usually'db this procedure locally means that normally these
groups only coincide near their origins. A necessary and sufficient
condition that this reduction process is possible other than

locally is that the constraint equations themselves form a function

'group [447.



1.3.8 An example: the Dirac Bracket on S(N).
An N-sphere is defined as: { X € S(N) ; X € Rn, X.X = 1 } where

X.X denotes the inner product 2 XiXi , for i = 1,..:,N+1 , and

it is this which defines the con%iguration space of our example.
For‘the Hamiltonian of'the system we choose the standard:

(43) _ H = ; PiPi = B.P

The distinction of primary andlsecondary constraints is not nearly
as important as knowing whether a constraint is first or second
‘class. But before determining that, we must find all. the constraints
of the system. Following § 1.3 we téke the P.B. between any and
every two cdonstraints in the theory, and between those and the

Hamiltonian, until we have a closed set. Thus:

H=P.B , gl = X.X -1
and : ’

{ H,g1 } = 2P.X := g2 , { H,g2Z } = 2H ; and { ¢1,82 } = 2H
sd.we see that the set (H,¢l,¢2) is closed w.r.t. Poisson bracket

combination. Furthermore the constraints ¢l and @¢Z2 are second class.

We now form the constraints matrix ({ga.gb}), for a,b = 1,2.
- We have: )
: : 8] . X
(44) : ({ga,gb}) = 2
-¥.X O

so the inverse of ({ga.,gb}), denoted (C)ab'is:

, . 0 =1
(45) : . (Crab = % X.X
) 1

—

£.X -0
From § 1.3, the Dirac bracket between two function is given by:

{f F.G }x := { F,G } - S { F,géa }Cab{ gb,G }
a,b

which with the constraint matrix above gives the following funda-

mental brackets:

"
o

(46) { Xi,Xj }¥

(47) { Pi,Pj }x

]



(48) { Xi,PjJ ¥ = 8ij - XiXi
X.X

We remark at this stage that the R.H.S5. of (475 has given us the
SO0(3) Casimir operator. In this example for N = 1, that is,
guantisation on the circle lying in Rn, it is instructive to show
how the.'phase épace reduction’ idea of § 1.3.86 can be understood.
In this example it can be seen very simply by choosing the basis
variables of the system to be (6;p) where:

(49a) ’ X1 = Cos8 (48b) P1 = -p Sin8

$in@ (49d) P2 p Cos8

(49¢c) X2
with 0 ¢ 8 < 2n, p € R.
Defining the bracket { f,g }r to be:

(50) { f.g 3r := fag - agof
d83p a8 dp

where f = F(Xi(6,p);Pi(8,p)) and similarly g = g(Xi(8,p),Pi(86,p)).

Djrect baiculation shows that:

(51) { Xi,X3 3% = { Xi,Xj }r
(52) . : { Xi,Pj 3% = { Xi,Pj Ir
(53) ' { Pi,Pj }*.= { Pi.Pi }r

That is the reduced bracket (50) in the variables (8;p) is equiv-

alent to a Dirac bracket in the variables (Xi;Pj) from (46,47,48).

-~ 53 --



1.4.0
Introduction.

In thiz section we brisefly desceribe the guantisation of
clagsical theories by the so called "group theoretical’  approach of

:1s is not so much to

]

C.Isham et al.[36,37,38]. Once again the emphsza

.

give a comprehensive sccount of these ideas, but simply to explain
them sufficiently to mativate the censiderations of Part II. At the
local level at least, the group thecretical apprcach to quantisation
is essentizlly the same as the ‘Dirsc brackst method  of quantising
systems whose associated classical phase space is some constrained

hypersurface. An important difference is that the G.T. approach leads

Tiould

[a

orie to givs a new interpretation tc the “ih” in the Heisenberg

algebrz, as being the result of the existence of a Z-cocycle in
the translation group on Rn [37] (the graded emulation of this

noticn is discussed in § 2.5). Throuvghout this brief loock at the

quantisation process, we concentrate on a particular approach to

quantum thesory - that it arises as z result 'doing scmething’ teo
the classicsl thecry. By this we mezn that it is aszumed that cone

alrzady has a well developed classiczl theory from which to con-
struct the guantum theory through the devising cof some sort of
‘quantisation' map’ . This is not the cnly path between a quantum

theory and the classical theory though. For example, in the case

9]
t

of

14

ring theorvy one thinks of the clasgsical theory as re-

>UPEers

sulting from the first order terms in the quantum string [54]. He

wholly on the canonical path.
1.4.1 Ihgm&aaig_EgﬁLglgiﬁs_gi;ﬂugnLum_lnggzx.

In the standard approach to gquantum mechaniecs folleowed in for
example [9.24,53,80], physicai states of a system are described by
unit rays of vectors in some complex Hilbert space H. (A unit ray [
in Hilbert space is the set of vectors {ul'}., where

{ T eH : (Tl =11}, u=exp(ia), and where IT] is the norm



of T in H. This 1-1 correspondance between the physical stateg of
the system and rays in Hilbert space comes about through the way
in which the theory is interpreted, which is in a probabiiistic
manner. The transition between one state. represented by unit ray ¢
and another F! is numerically equal to the following:
(1) Praobabhility: ¢ --—-> T = |g.T|
That is, the sgquare of the modulus of the inner product between =zny
two vectors. g4.€ g and.F € I', one from eaéh of the rays g and [
respectively. The space of rays in Hilbert space is a projective
space: the quotient'épace obtained.by dividing the Hilbert space H
by the cirecle S(2). Hilbert space is also é linear space, so the
wantum theory incorporates a principle of superpesition. That is
if {uT} and {88} are two rays represvnting twe states of the system,
then 8 = al+B¢ is another vector in H space and so the ray {83}
pepresents another state of the system (where a,B,8,u, 7 € C).

We remark that while the vectors 8 and 76 both represent the

same state of the system, in general 8° = al{u’'T) + RB(6°'8) rep-
recents a different state. This means that while overall phase
changes are unimportant (representing ‘movement’ within a ray),

changes in relative phase within a state consisting of a super-
position of other states are important and do change the overall
state of the system. Physical quantities (observahles) associated

energy, angulsar mcmentum etc) appear in

n

with the systeﬁ (such a
guantum theory as linear operators on Hilbert space. What value
does one obtain by measuring such an observable? The guantum prin-
ciple states that a measurement will result in an esigenvalue of the
vabhle. Thus,

b

nil

[}

r

o
0
m
"

W

pomt
[
3

inear operator assocciated with that parti
for an operateor to represent an observable on H space, it must be
hermitian (to ensure the reality of its eigenvalues). If the system
is in a state g which consists of superposition of eigenvectors of
some observable, then the probability of measuring a particular

eigenvalue of an operator O, say, is (where we assume all H space



vectors are normalised):

(2) {Probability of meazsuring «i} = [681.a)|

where 0O: H --->H and 0.81i = aifi { no sum over i) with ai € R.

Hence, over a successive number of measurements with each time
the system starting from.- the same state g, the average value of the
" observable represented by the coperator O'will be:
(3) ' g.0 g

A statg { where we now use the terms 'state’, "ray’  and
‘vector’ ;nterchangeably unless otherwise stated ) develops in time
through the action of‘an hermitian operator U(t,to). That is if gt
represents the state g at time t, then:
(4) ' : gt = U(t,to).gto

We may write:

(5) ‘ Ut = exp(-itH")
where H° iz the self adjoint Hawmiltonian operatcr for the system.

Eigenvalues of the Hamiltonian operator give the energy of the
system, which is to say:

(8 -H'd = Eg

[vy]

ul

A symmetry of the Hamiltonian H™ of quantum zystem is said to
have been'generated,‘when a collection of hermitian operators {T:i}
on the Hilbert space H commute with the Hamiltonian [9,53]:

(7) ' [(H',T1i ] =0, fori=1,...,k

If T1,T3 cémmute with the Hamiltonian operator then, by the Jacobi
identity, so does [ Ti,Tj ]. It follows that the collection of &
operators that commute with the Hamiltonian H', together with the
commutator bracket operation form a k-dimensional Lie algebra on H.
It is easy to brqve the following theorem by Ehrenfest on time

development in guantum mechanical systems [ZB]. If O is an hermitian

operator on some Hilbert space H, and H' 1is the Hamiltonian operator,.

then:

(8) d(gt.0.gt) = 1 gt.[ O,H ]Jgt
dt i

Indeed, if we transfer the time dependence of the system from the
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state vectors to the operators - the so called Heisenberg picture -
then we may write this expression as:

(P doct)y = 1L [ T(t),H']
dt i

The operators for position {Qi} and momentum {Pi} do not cocmmute in
quantum theory and thus it is imposcsible to find an eigenstate of
both these operators simultaneocusly - a measurement of position
destroys momentum info?mation and vice versz. The feollowing com-
mutation relations are imposed on the operators {Qi} and {PJj}:

(10) [ Qi,Q3i 1 = 0 = [ Pi,P] 1, and [ @i,P3i ] = ih &1i3]

These are Heisenberg s canonical commutaticon relations (C.C.R.).
Using-the BakerfCambell-Hausdorff formulae we can expocnentiate
these relations to obtain Weyl relations (or Heisenberg group)

corresponding to the C.C.R."s (10>:

Va.Va®™ = Va+ta’
(11) UR.UB" = UR+B"
Va.UBR = <a,B>UB.Va
where Va := exp(iajP3), UB :=

exp(iBjQ3), <a.B» := exp(iajBi)

ard where ai,B33 € K.

t
[9Y]

Quantum mechanics on Rn is basieally =zbout finding irreducible
representations of this group (11). Heisenberg’s 'matrixbmechanics'
ic the problem of finding an irreducible representation of the
algebra (10) that diagonalises the Hamiltonian operator H (Qi,F3)
and solves the eigenvalue problém, whilst Schroedingers 'wave
mechanics’  1s about-solving the differentiasl equation that results
from the substitution of a particular representation of (10) - the
Sehroedinger representation - 1into the energy eigenvalue equation
H'¢g = E ¢. The Stone-Von Neumann theorem [&7,61] states that that
any other intégrable representation of the algebra (10) must be
equivalent to the Schroediger representaticn:

, exp(iBjQi) : u(x) ---> exp(iBixjdul(x)
(125

exp(iajPj) : u(x) ---> u(x + a)

Thus, quantum mechanics on Rn has an essentially unique solution [37].
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1.4.2 Quantising a classical theory.

Although, in many fundamental ways, quantum mechanics 1is
utterly different -from classical mechanics, both in the space in
which it acts and the types of statements it makes, many key rela-
tionships within the theory appear to have counterparts in classical
mechaniés. Take, for example, the similarity between Ehrenfest’s
theorem from § 1.4.1 and eguation (52) for the time development of a
classical observable in § 1.0.8; or the condition (53) that a collec-
tion of classical phaée space functions generates a symmetry of the
Hamiltonian and the condition k?) above that [H,Ti} = 0. Consider
also the strong resemblence between the fundamental Poisson brackets
(17) in § 1.0.3 and the Heisenberg commutation relations (10) in
§ 1.4.1. Clearly. knowing more about the structure of this powerful
link between the two theories might make it possible to consider
more general theoretical settings: For instance, in a quantum theory
"based on a-qlassical theory whose phase space is some manifold
(for example a 2~sphére), what algebra will then replace the
Heisenberg algebra and will there be a similar correspondence
between it and some group algebra on the classical phase space?

The 'grdup theoretic  approach to quantisation tacklés these
questions by appealing to the symmetry group (if there is one) of
~ the underlying classical phase space. It shows how to construct
from it the ‘quantum group’, irreducible representations of which
will form the guantum theory in the same way that irreducible
representations of the Heisenberg group.are the basis of quantum
mechanics on Rn [37].

Firstly what constitutes gquantisation of a classical theory?
The process Dirac and others orginated was that to each classical
observable f € F(M) defined on some phase space M is associated a

self adjoint linear operator £ on Hilbert space H such that {36]:



(A) The map: f ---> £ is real, linear. That is:

af + bg ---> af + bg , where a,b € R
(B) The unit operators correspond: 1 ---> 1.
(0D G(f) ---> G(£) , where G is some function of f € F(M).
0y [ f.g) -->_10[ £.21

ih

In the event that there are constraints inherent in the classical
theory and its Lagrangian is singular, then the correspondence
suggested by (D) comes badly adrift because the constraints of the
theory are not preserved through time. To rectify this problem Dirac
proposed that (D) should be replaced by:

(D)  {f.g¥--—>1[fe],

where { , 1% represents the Dirac bracket, of § 1.3.

A quantisation scheme based around this correspondence does not
have the above mentioned trouble because, as we know, a Dirac
bracket between any function and a>constraint is identically zero
and therefore valid throughout the time evolution of the system.
We will return to this later.

The objéctive of G.T. @uaﬁtisation scheme [37] is to find for =z
general configuration space the Lie group whose algebra corresponds
to.the role the Heisenberg algebra plays when carrying ocut guan-
tisation on Rn. But where then does the Heisenberg algebra come
from? Clearly it is just the algebra one obtains by taking the
Poisson bracket.of the (special) set of classical observables,

the co—ordinate functions (gi,pJj):

]
Q

H
-~
U
[V
3
-

{ 9i,qj 1}
(13) | { qi,pj } = &i3 , for i,i = 1,...,n

{e,qi } =0 =1{ c.pj}
where qgi,pj € F(M) and ¢ GVR: the constant functions on phase
space M. Put in a more general way, it appears that quantisation is
based on finding irreducible representations of some finite dimen-

sional Lie group, whose Lie algebra is some sub-algebra of the



infinite dimensional Lie algebra of functions on phase space, with
the Poisson bracket as the combination principle. What makes the
set of observable (gi,pJ) special is that any function on Rn

(or indeed on some local co-ordinate patch of a general manifold)
may be expressed in terms of them. Any sub—algesra of the infinite
dimensional Lie algebra of functions which is used to construct a
quantum theory around, must reflect this property in some way [37].
The fundamental question is - how does the quantum group of this
sub-algebra relate to the classical phase space? This question

is answerea in [37] through appeal to the case of guantum theory
on Rn. Briefly the argument goes as follows. Previously we

defined the operatorslla and UB which make up the Heisenberg

grouﬁ (11). These operators act on the position and momentum

operators @i and Pj as follows:

Va.Qi. Ya = @i - ail Where 1 is
(14> ' ) the unit
UB.pi.UB = Pi + Bil operator

Clearly the quantum operators Ya,UB representing the Heisenberg
group (11) are acting in a fashion reminiscent of the'generators
of the group of abelian transalations of fhe classical variables
(qi:pjd. This suggests that (see [37] for the full argument) the
group whose algebra will play the same role as the Heisenberg
algebra on some more general non-linear bhase space, will be a Lie
transformation group of that phase space. Tﬁis Lie group must also
be symplectic, because its algebra must be capable to being real-
ised by some sub-algebra of the infinite dimensional Lie algebra
of classical observables on phase space, which has the P.B. as a
combination principle. We may define a (left acting) Lie transfor-
mation group as a Lie group G, whose elements g € G méy act on
some uhderlying manifold M in such a way that the map,

g: p ---> g.p for p € M and g € G, is a differentiable map. Also
for the identity elemént i € G we have ip = p, and for any g,8°€ G

then g(g°'p) = (gg )p for all p € M. A good example of a Lie trans-
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formation group is the action of SO(3) on the 2-Sphere, where the
three generators of SO(3) generate rotations round the sphere.
Barring some global considerations this guantisation principle

is in essence close to that of Dirac’s for constrained systems.

As we know from § 1.3, the Dirac bracket is none other than a
Poisson bracket in a reduced set of-variables, with these variables
being.the unconstrained variables in some local patch of the
underlying phase space of the theory. When we substitute Dirac
brackets for commutétop brackets, what we are really trying to do
is to represent the “generalised canonical group of transform-
ations that preserve the Dirac bracket, by linear operators on
some Hilbért space. However, because it is nét generally possible
to move canonically from one set of reduced vériables (that trans-
form the Dirac bracket into looking like a P.B;) po another
adjacent set, the group theoretical approach to guantisation 1is
far better suited to tackling problems which have a global
_element to ;hem. One situation hhere these two approaches will
exactly match each other, is iﬁ the case where the constraint
functions of the DiracAtheory themselves form a function group.
This is becauée under these circumstances generaiised canonical
transformations are also canonical transformations. Given then
that the group which will provide us with our quantum algebra is a
group of symplectic transformations of the underlying classical
phase space, which classigal observables do we choose to
guantise? The group theoretical programme [37] requires that one
choose the set of classical observables which make a Poisson
bracket realisation-of the algebra of the sympleétic group. For
this to make sense;, the (assumed finite) subset of the infinite
set of all smooth functions on phase space, must be sufficiently
large as to play the same role as the (qi;pj) in managing to gener-
ating all observables,- in that particular local co-ordinate patch

of the phase space. This requirement demands that the action
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of the Lie transformation group G on M must be transitive [37].
That is, given any p,p € M then there must exist an element

g € G such that p° = g.p. This means that using G and a single

point p € M, one may reach any other point in the phase space,

which ensures that the set of obéervables whidh realise the Lie
algebra of G is large enough locally to express any observable

on M as a function of this special set [37].

Following [37] we can now list the steps for the ‘"group
theoretical quantisation of a classical theory which has some
generallmanifold M as its.phase space:

(A) Find a Lie transformation group G which acts transitively and
symplectically (so it preserves the natural symplectic 2Z-form on M)

on M. For the sake of simplicity we assume that this Lie group has

finite dimension N, say. Clearly, G has some Lie algebra associated

" with it L{(G):
_ k
(15) [ Ti,Tj 1 = Cij Tk . where {Ti} € L(G) and

k
with i,3.k = 1,...,N, and where Cij are the structure constants

of the Lie algebra L(G) of G.
(B) Find a finite subset of the set of all smooth functions on
phase space M which produce a Poisson bracket realisation of the

above algebra L(G). That is, find a correspondence:

(18) Ti ---> fi - . for i = 1,...,N
such that:

) k
(17) “{ fi,f3 3} = Cij fk

cH "Quantise’ the set of functions {fi}, by mapping them onto a
set of hermitian operators {fi} which act on some Hilbert space H,

and which obey the same commutation relations:

(18) fi ---> fi for i = 1,...,N
where:

k
(19) [ £i,f3 1 = cij £k



(D) Find irreducible répresentations of this algebra.
Points (A) through (D) outline in ‘physics type  language, the
basic steps of the mathematically precise quantisation procedure
described by C.Isham in [37]. Put in more mathematically correct
language steps (A) to (D) involves the féllowing:
(A" Finding a Lie transformation group G which acts.fransitively
and symplectically on M. That is if ¢ is a smooth diffeomorphism
of M induced by the action of the group G, then g*W = W where W is
the naﬁural symplectic 2-f§rm on M, and ¢* is the pullback operator
associated with the diffeomorphisﬁ @.

Taking the N dimensional Lie algébra L(G) associated with
this group and using each generator of the algebra to determine a
vector field on M. ThisAis achieved by exponentiating eagh generator
of'the algebra to obtain a l-parameter family of diffeomorphisnms,
which thén determine (by the process discﬁssed in.§ 1.2.3 ) an
associated se£ of N lgggi;x Hamiltonian veétor'fields_FTi. |
That,ig: . |
(20) r : Ti ---> [Ti . iz 1., N
wheré Ti € L(G) énd I'Ti € {Locally Hamiltonian vector fields on HM}.
For the group theoretieal quantisation pfocedure to succeed we
need fuiAx,Hamiltonian vector fields on M [37]. This requirement
along with the necessity that the map I' be one-to-one, in order
to create an isomorphism beﬁween'the algebra of generators and
their corresponding H.V}F.fs,(sets further constraints on the group
d and the phase space M. To ensure the hap T is 1-1, action of G on
M must be almost effective. meaning that if there exists an element
g € G such_that gp = p for all p € M, then it must neccessarily
imply that g € D , where D is a discrete subgroup of G.
'(B’) Finding a map - technieélly known as the ‘Souriau momentum
map (see [55]), which maps the algebra L(G) into the space of

observables on M

(21) P : Ti € L(G) ~--> P(Ti) = fi € F(M) , for i = 1,...,N

-~ 83 --



Where the map P is linear and also a Lie algdebra isomorphism,
meaning that the collection of functions {P(Ti) = fi} realise the
Lie algebra L(G) of G under Poisson bracket combination. This
requirement uncovers another possible upset ih the gquantisation
process, namely the algebra L(G) might have what is known as a
non-trivial Z-cocycle attached to it. Abstractly a Z2-cocycle ig a
-Skew—symmétric map Z, say, which mabs'a rair of elements in the
‘Lie algebra L(G) of G into the reals R:

(22) o Z(A,B) = - Z(B,A) € R, with A,B € L(G).

The map also satisfies the Jacobi identity:

(23) - Z(A,[ B,C 1) + Z(C,[ A,B 1) + Z(B,[ C,A]) = O
Basically these objects come.about through the possibility of re-
defining the functions P(Ti) in (21) up to the addition of an |
arbitary constant (where we recall that kernel of the map between
the set of observables on M and their associated H.V.F. s is the
space of constant functions),.In-simple language this means that
a real number ZiJj, say, mighf appear on the R.H.S. of (17):

(24) : { £fi,f3 } = Cijkfk + Ziji , with Zij € R

If this happens then there is a problem, because clearly the
functions {P(Ti)} are no longer realising the algebra L(G) of G.
To try and éircumvent_this problem we. are free to add arbitrary
constants to the the functﬁons P(Ti) in an attempt to cancel out

the numbers Zij, by the following redefinition:

(25) P(Ti) = fi ----> f"1 = fi + Zi , where Zi € R
In this ca%e we require:

 k
(26) : . ‘ Cij Zk + Zij = O

. k
Under what conditions for the structure constants Cij are we

assured of being able to solve (26) for the numbers Zi7 Stated
1ike this it is fairly clear that we can do this when the Cartan-
Killing form of the Lie algebra L(G) is non-singular and so we are

able to invert (26). This is the case when the group G is semi-simple.



In suhmary it is certainly possible to find a map
P:L(G)--->F(M) éhich has the properties we desire, in the circum-
stances that the second cchomology group of L(G) vanishes. An
example of this occurs when the group G is semi-simple.

The number of sets of functions {P(Ti)} that one can find which
satisfy our requirgments'is actually labelled by the elements of
the first cohomology group of L(G) [37]. An example of a situation
when -this group is trivial is once again the case when the group G
is semi-simple [37].‘Thus, when G is semi-simple essentially
there is a unigue choice of the set of functions P(Ti).

But suppose we want to quantise a dynamical system with a
phase space whose transitively acting Lie group G does have a non-
trivial 2-cocycie? In this evént the "quantum group  of the theory
‘is not the Lie group G of symmetries of the classical phase space M,
but rathér.it is this.group centrally extended. Basically this
means we actually incorporate thé non-removezble Z-cocycle into
thé algebra we are trying to realisé, by enlarging the group G to
include a central terh (this means that the algebra of the new
group G, say, now includes a term that.commutes with all the
generators of thé algebra, in just the same manner as the constant
functions commute with all functions on phase space under Poiséon
bracket combination). |

We finish off this sectiop Qith an exé@pié of the group
theoretical apprdach to quantum mechanics for the most frequently
studied case: wﬁen the underlying phase sbace is simply Euclidean
space Rn. As it turns out this is a case in point when the second
cochomology group of the space is non-trivial, which results in the
algebra of the transformétion group having to be centrally extended.

This results in the familiar ih term in Heisenberg algebra [37].



1.4.3  The group theoretical approach to the quantisation of Rn
Here the underlying configuration space of'our theory is
Fuclidean space Rn. The phase space is therefore just the trivial
bundle of cotangent spaces. which here is the direct product of Rn
with itself: Rn X Rn. Because of the uncomplicated nature of this
phase space we are able to define co-ordinates (ql,a.,qn;pl,..,pn)
which can be used through the space. Similarly it follows that
there is a globally well-defined Poisson bracket given by the
usual expressidn (14) in § 1.0.3 expanded in the above co-ordinates.
What then is thé relevant Lie group of transitive and symplectic
transformatibns on the phase space? The obvious choice is the
abelian group of translations {37], which acts on the phase

space as fecllows:

g(al...,an;bl,..,bn)(..,qi,.;.,pj,..) -——=>
(27) '
——=> (..,qi+ai,.;.,pi+b3i,..)
'where g € G and for i,j = 1,...,n. Also for g,8 € G we have:
(28) g(g'p) = (gg’)dp = (g'g)p = 2°(gp)

The Lie algebra corresponding to this group is simply the set of

unit basis vectors in RZn:

(29) ‘ Ea = (0,...,0,1,0,...,0 ) , for a = 1,....,2n
prosition a

Vectors in this LieAalgebra are combined by vector addition and so
clearly we have:

(30) | [ Ea,Eb J:= Ea.Eb - Eb.Ea = 0

The programme now demands that we must realise this algebra by 2n
independent functions on phase space, using the Poisson bracket

as the Lie bracket. Thus we must find fa = fé(qi;pj) ¢ F(M) such
that:

(31) " {fa,fb 3} =0 , foralla=1,...,n

Given that we need 2n independent functioné, the best we can do is

the correspondence:



(32) (. .,Ea,..) —==> (..,fa,..) = (..,ai,..5..,p3,..)
where a = 1,...,2n and 1 = 1,..,n.

Clearly this does not realise theAalgebra (30) because of the cross
terms:

(33) { fi,f3+4n } = { gi.pd } = 613 , 1.3 = 1,...,n

This problem is a consequence of a non-trivial Z-cocycle in the Lie
transformation algebra (30) we are using. It is not possible to
remove it by redefinition of the functicns fi because of the abelian
na£ure-of the group (27). The remedy to this problem, as indicated
above, is to incorporéte the 2-cocycle into the algebra (30), and
make this centrally extended algebra the one around which to base
the gquantum mechanics of the system. Changing notation and calling
generators: |

(34) Ei := Qi , and Ei+n := Pi , for 1 = 1,...,n

The vector space of the centrally extended Lie algebra is now the
space Rn+Rn+R, with a typical element A € L(G) of the algebra
being (al,...,an;bl,...,bn;c) € Rn+Rh+R. In terms of the generators
Qi and Pj, we have a typical element of L{(G) as:

(3%) A= ; ai@i + biPi + el , with A € L(G) , 1 =1,...,n
and where the12n+1-tuple 1l = (0,..,0,..,1). (Note that now Qi and
Pj are also 2n+l-tuples defined like Ea in (29) except now with an
extra O in the 2n+1 slot). The Lie bracket of this centrally extended

algebra in terms of the generators Qi and Bj is {[37]:

[ Q1,093 ] 0
(386) - [ Bi,Bj ]

[ @i.B3 1 = Z2(Qi,R3) = 61d 1

0

for i,j = 1,...,n. For two general elements A.B € L(G) of the algebra

the Lie bracket is:

(37) . { A,B ] =2 (ai.b’i - a’i.bi)l
i

With A = 3 ai@i + biPi +e¢l , and B = 2 a’"i@i + b"iRi + ¢'1 .
i i



Clearly we may realise this algebra by observables on phase space
with the Poisson bracket as the Lie bracket, by the correspondance:
(38) @i --->qi , PBPi--->pi, 1 --->1where 1 =1,...,n.
The final step is to quantise these classical observables to obtain
familiar Heisenberg algebra, by.performing the following map into
the space of linear operators on Hilbert space [377]:
(39D qj ---> -iaj , pj ---> -ipj , 1 ---> -ihl
Here.the under-1lining now represents operafors on Hilbert space
and where the scaling factor h, Planck’'s constant, comes about
through some implicit scaling in (38) which we.have not shown here.

What this example demonstrates is that we may interpret the
ihl in the Heisenberg algebra, as coming about through the exist-
ance of a non-trivial second cohomology class for the Lie algebra
of the group of abelian translations on Rn [37]. This is quite a
satisfactory result as'it is reminiscent of the appearance of
anomalous terms in, for example, current algebras [39,65].

The abo&e example concludes this rather telegraphic look at
the group theoretical approach to guantisation contaiﬁed in [37].
It also concludes.the first, introductory., part of this thesis.
Now, excépt where cited, the work is claimed as original from

§.2.1 onwards.



BART II1

2.0.0 Graded Analogues of Classical Concepts.
Introduction

In the sections comprising Part II the original work of
this thesis ié presented. The work consists of attempting to find
coﬁsistent graded analogues to the various pieces of classical
ﬁachinery which were introduced in the first half of this thesis,
the ultimate goal in mind being the inclusion of fermion like vari-
ébles info C.Isham’'s group theoretical apprqach to quantisation [37]
reviewed earlier. Although in the end this task is not fully achi-
eved, the pursuit of the goal raises a number of interesting points
which we feel are sufficient to justify the undertaking.

Before starting the aufhor-would like to state that the
initial stages of the work presented here,'namely ﬁ 2.1, were
carried out without the knowiedge of a particularly important
reference [22]. Subsequently further references, particularly the
work of Marjorie Batchelor [10,11] and also additional work by
F.A Berezin et al [158] were brouéht to the author’'s attention¥.
This work has a direct bearing on the considerations of @ 2.1
and, on discovery of [22], there was no point in pursuing further
investigations'in this area. Earlier knowledge of‘the more
accessible and_figorous approach to supermanifold theory présented
in [22] for example, might have significanﬁly increased the
progress made towards producing a credible graded generalisation
to C.Isham’'s work in [37]. We commence this half of the thesis by
making some introdﬁctory remarks and statements about graded
algebras, and their uses in constfucting graded analogues to

classical mechanics. For a review of the uses of graded algebras

in physiecs see [21].

* The author wishes to thank Professor Isham for bringing these

references to his attention.



2.0.1 Z2 graded algebras.

The work that follows relies extensively on the properties of
so called ‘graded  objects. This refers to members of a Z; graded
algebra A, which as a vector space is the direct sum of two sectors,
Ao and Aq. If ai € Ai and a’J G_Aj, then:

(1) ai.a’"j = (—l)lJa'j.ai for i,j = 0,1

Typically we refer to the members of Ao as being equivalently;
"even’, ‘commuting  or ‘boson like’, and denoting them by the

Roman alphabet. Similarly members of A; are refered to as being
equivalenfly; ‘odd’, ‘anticommuting’ or “fermion like’, and usually
denoted by the Greek alphabet. An element of A which lies either

fully in Ao or in Ai is called homogeneneous. For a more detailed

exposition of graded vector spaces see [22]. An example of

a 72 graded algebra is a Grassmann algebra which has a set of N
generators Ba, for a = 1,...,N. such that:
(2) - Ba.BB = - 8B.8a , Ba.Ba = 0 , for all a,B = 1,...,N

We denote this algebra Gn.Clearly all polynomials of even order:
1, Ba.8B, B8a.6B.65.6u....ete (where we have included 1) are members
of Ao, and all pol&nomials of odd order: Ba, Ba.BR.BO.,...etc are
members of Aj.
2.0.2 Graded analcgunes of classical mechanics.

In a series of papers R.Casalbuoni et al. [8,17,18] developed
a version-of classical mechanics which incorporated the use of Z7
gradedfvariables as the fundamental variables of the theory.
There is a number of reasons why such a theory might be of interest,
not the least of them being that it allows the study of graded
variables in physics in a very familiar classical setting. However,
the reason why it is of interest to us here is because the group
theoretical quantisation programme described iﬁ [37] requires the
existence of a classical theory, the symmetries of which will
provide a basis for determining the group of the quantum theory.

Casalbuoni’s work is useful because it provides just such a theory,
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however unfortunately it is not stated in a way that makes a
generalisation of the group theoretical approach to quantisation
straightforward. The only other approach that was avalable on this
type of graded analogue of classical mechanics was a short secticn
at the end of B.Kostant’'s work on graded manifold theory [40].
Structurally this seemed as far removed from [37] as Casalbuoni’s
work did, and the langpage it was sgt in - algebraic geometry - wzs
mathematically tougher to follow (as it turﬁs out the type of
approach that seems best suited to provide a convincing generél—
isation of [37] is the one adopted by B.De Witt in [22], where

the “supermanifold’ is defined. However at this stage the author
“wasn’'t aware of this work). It was decided to use Casalbuoni’s
work as a basis for the approach we take here, and to couch it

in a formalish‘more suited to our needs with regard to producing a
graded generalisation of [37]. Rather than giving a long review of
the results and conclusions aired in (8,17,18], we decide to limit
ourselves to a brief but sufficient sketch of this approach to

72 graded classical mechanics, a theory which Casalbuoni et al.
_named ‘pseudomechanics’.

2.0.3 - Some elements of pseudomechanics.

The Lagrangian formulation of pseudomechanics takes place
on a configuration space C described by a set of n real co:
ordinates {qi} and a furtﬁer N co—qfdinates {B8a} which form a
GN Grassmann algebra. Thus the ‘position’ of a pseudoparticle
in the configuration space C.is described by the (n+N)-tuple
(..{qi...;..,ea,;.) with i = 1,....n and a = 1,....N. These
position variables are functions of some real time parameter
t € R, and this leads to the concept of generalisea velocity co-
ordinates (..,qi,.;..,8a,..). Thus we may completly describe
the‘dynamics of a pseudoparticle using the generaliséd position

and velocity co-ordinates (.,qi,.;.,qd,.;..,8a,.;.,8B8,.), with

i,5=1,..,nand a,B = 1,..,N



Following [18] one may now define a pseudomechanical Lagrangian
function L = L{(gi(t),qj(t);B8a(t),B8B(t)) which typically will look
like:

(3) L = 1 3 6aBa + Z mi(gqi) - V(q,8)
a i

Where V(q,e) is a potential term. Defining the asction S as:

(4) S = JLdt

Then the principle of least action leads us to the following Euler

Lagrange equations of motion [18]:

(5) midgi = - 8V , ( no sum over) i = 1,:..,n
dt dqi

(6) dBa = -1V . and a=1,...,N
dt dBa

As with the case of standard classical mechanics we now define
the Hamiltonian function H, and reformulate our theory 1in a
7 graded generalisation of phase space. We define:

C7) . pi = Al }‘ na = oL
341 d6a

where the pi commute and the ma anti-commute. Then the Hamiltonian

is defined:

(8) H := 3 (4ipi + Bama) - L
i,a

Once again employing the principle of least action as 1in § 1.2

we are lead to Hamilton’ s equations [18]:

(9) dpi = - H . , dai = 2H i=1,..,n
dt gl dt epi

(10) dra = - 2H dBa = - ¢H a=1,...,N

’ dt é8a dt ina

Where the Hamiltonian function H = H(q,p;8,n) is even and diff-
erentiation is with respect to the real time parameter t. Notice
that there is a relative sign difference between the equations of
the even sector and a similarity of sign between the equations of

the 6dd sector. We will return to this point shortly.



We now introduce the reader to the graded Poisson bracket
defined in [17], a structure which leads naturally to the notion
of the infinitesimal graded canonical transformation. We will make
extensive use of this device in § 2.1.

2.0.4 The graded Poisson bracket.

From the graded version of Hamilton's equations (8) and (10)
we can see that the natural variables of this t&pe’of graded phase
space arel(..,qi,;.;.,pj.;.,Ga,.f.,mB,.) where the qi,pJj are the
natural bosonic phase space co-ordinates as before, and the 8a, n@
aré conjugafe pairs of anticommuting odd co-ordinates, which together
with the qi,pj make up the full Z? graded phase space.

By considering the time derivative of some general fuﬁction
F = F(q,p;6.n) defined on~graded phase space, we can arrive at the
expression for the graded Poisson braéket by following the same
steps as we do in § 1.0.3. In fact one finds [18]:

(11 dF(q,p;8,m) = { F,H }~ + 2F

dt _ at
Where the { , }  represents the graded Poisson bracket, which is

defined as fcllows:

[O«
[op]

(3G oF + 4G oF )

<
a dBadma omnadbBa

o

(12) { F.G }° = 2 ( - oG oF ) -
i dpieqi

AaF
gieépi
Where F = F(q,p;e;n) and G = G(q,p;:8,m) are two functions on the
graded phase space. As it turns out [17], this definition (12) is
only viable for the case when the function G is even (commutative).
To deal with the other alternatives, we require our graded bracket
to éatisfy an additional condition. We demand that if u is some odd
parameter, then:

(13) w { E.O Y = { wE,0 }" = { E,u0 }’
Where E is some even function of (qi,pj:Ba,nB) and 0 is some odd

function. That is, we demand that the graded bracket forms an

algebra over a Grassmann ring [17].



This extra condition (13) means that we may now define the

additional graded Poisson brackets as follows [17]:

(14) { 0,E }° := 3 (20 aE - QFE a0 ) - Z (a0 2E + aE 20 )
i dgigpi eqipgpi a JdBasma dBana
(18> I E,0 17 = Z (QF .90 - o0 @E) + Z (E o0 + 0 o )
i eqidpi eqidpi a d8adna dBadna
(16) { 0a,0b )} := I (20a0b + a0bada ) - 3 (20aa0b + Oby0a)
i daiepi dalopi a dBa dna d8a oma

These definitions lead to the following properties of the graded

bracket under the interchange of the various object functions:

(17 { Ea,Eb } = - { Eb,Ea }~
(18) { E,0} = - { 0,E }’
(19 . { 0a.0b }° = { 0b,0a }’

Where O, Oa, Ob are odd; E, Ea, Eb even. This completes the defin-
ition of the graded Poisson bracket (some additional proper£ies

of thelbracket are stated in appendix A). We now look at the

group of fixed tranéformations which preserve the structure of
this bracket, that is, the group of “infinitesimal graded canonical

transformations’” (I.Gr.C.T.).

2.0.5 The jinfinitesimal graded caponical transformations.

We define the group of graded canonical transformations in a
similar way as we did before in f 1.0.4, only this time making the
generating'function graded even. Thus we have the following defin-
ition for a éraded canonical transformation (Gr.C.T.):

Definiti

A graded canonical transformation is a transformation
of the fundamental variables (qi;dj;ea,éﬁ) such that the new and
old Lagrangian functions differ by at most a total time derivative

of some arbitrary function f, say. That is, we have a transformation:

(20) (gi,d3;6a,68) ---> (3°1,3°3;8 a,B'B)

(21) L(q,3;6,8) ---> L'(qa",43";8",8")

where i,j = 1,...,n and a,B = 1,...,N, and such that:

(22) L'(qa’,a";8°,8") = L(q,a;8,8) - gfcq,d';e.é'>



By differentiation this produces the following relationships [18]:

(23) dp’'i = - 2f , dpi = of i=1,...,n
dt g i dt 0qi

(24) dn'a = - of , dna = af a=1,...,N
dt 38a dt d6a

Using (8) this is equivalent to:

(25) ‘ H(q ,p ;8" ,n") = H(g.p;9.,m) + af
, ot

One can show [18] that the class of I.Gr.C.T. which do _not change the
graded character of the fundamental variables may all be generated .

by even functions defined on graded phase space. That is if:

(26) gi =z 9’1 + 8g1 , pi p’i + 8pi
(27) Ba = 8°a + 88a , na = t'a + 6na
where 89qi,0pi commute and &8a,b6nta anticommute, then:

(28) H = H + oF
o at

with F = F(q.p;8,m) and is even, and F = I (8aipi + 8Bama) - f.
The variation of a génerai function on ;;Zded phase space under
the transformation (26,27) is:
(29) - G(q,p;é,n) ~==> G + 8¢ , where &G = { G,F }~
Where { , } represents tﬁe graded Poisson bracket.

The group theory of these infinitesimal transformations 1is
discussed in detail in [18]. What the work there demonstrates is
that I.Gr.C.T. are those transformations which préserve the graded

equivalent of the symplectic form in f 1.0.5, whieh is the ortho-

symplectic form [18]:

Aij 0
(30> r =
0 BaB
where:
. 0100 0-1 0 ©
(31) (A)ij ={-1 0 0 O , (BYaB =|-1 0 0 O..
: 0001 0 0 0-1
g 0-10 00-10

Thus the group which plays the same role in pseudomechanics as the

symplectic group does in classical mechanics, is the super Lie



group O0Sp(n!N), that is the group of orthosymplectic transform-
ations which preserve the orthosymplectic form (30)[{48].

Fér further details of Casalbuoni’s work on pseudomechanics
the readér should consult. the references given earlier in this
section, as we now leave the introductory material as it stands
and start on the original contributions of this thesis.

2.1.0 Further Investigation into the Graded Poisson Bracket.
Introduction

In this seéction Wwe invéétigate some further properties of -
the graded Poisson bracket (G.P.B.) with a view to determining tb
what extent Casalbuoni’'s definition of the bracket (12,14,15,18)
is consistant, when it is used in the construction of graded general-
isations of some of the structures introduced~in Part I. The first
structure we attempt to apply Zzgrading to is the Hamiltonian
vector field of ﬁ 1.2.3. What we discover is that a single graded
version of this vector field is not enough to enable the repro-
duction of basic propefties that a generalisation éhguld possess, 1n
ordef to be consiétent with the definition of the C.P.B.
This leads to thé'introduction of the notion of "left acting’  and
'right actingf-vector fields, which are a fundamental feature
of‘the geometry of spaces which involve anticommuting variables.
Although we arrive at this conclusion independently, and purely
thrdugh the study of graded analogues to classical ‘phase space’,
this claim is supported elsewhere [15,22], and in a far more rig-
orous setting fhan we use here. We start by trying to find a
consistent Z2 graded Hémiltonian_vector field.
2.1.1 &_ﬂmﬁd_mmggnuﬁih&mﬂmww.

In §'1.2.3 of this thesis, we saw that theré is a natural geo-
metrical way in which to imagine the application of a regular
infinitesimal canonical transforamtion (I.C.T.) to some dymamical
system. This is through the integral curves of some suitably

smooth and well defined Hamiltonian vector field (H.V.F.) on the
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phase space of the system. The H.V.F. is the differential operator
asasociated with some well defined function f € F(M) on rhase space,
which maps some other well defined function g € F(ﬁ).onto the
Poisson bracket between itself and f. Thus, if f,g € F(M) then:

(1) Hf : g ~-——> { g,f }

Where Hf is the Hamiltonian vector field associated with £ € F(M).
In terms of the natural co-ordinate basis (.,qi,..;.,pJ,..) on phase
space M, the H:V.F. has the following form:

2y - Hf = 3 3f o - 2f a_ o, i=1,...,n.
i spiagil dgigpl

The first aspect of the definition in § 2.0 of the graded Poisson
bracket we wish to explore, is to descover if it is possible to
consider this bracket definition as arising in a similar manner
from some gradéd analogue of the H.V.F.

Rather than delving deepiy into the precise nature of the space
which is being dealt with here, we decide to proceed in a more
‘pedestrian manner using the consfructions introduced in Part I
as a guide. In § 2.0 we saw that there is a graded version of
éhaselspace‘which is described by graded variables (qgi,pj;6a,nB),
with 1.3 = 1,...,n and a,B = 1,....N, and where the (qi.,pJ)
commute and the (8a,nB) anticommute. Althoggh we haven’'t defined
exactly what this means in a mathematical sense, we assume that
these variables represent some form of local expression for the
natural co-ordinates of an object we call a 'super phase space’
(this approach .is made rigorous in [22]). We assume that it is
possible to express this super phase space in a globally well
defined manner, as it is for a normal symplectic manifold, but
at this stage we don’'t know how to do that. 411 we have are local
co-ordinate expansions. Vectors in this approach we assume, for
time being, are derivative operators with respect to the natural
super phase space (S.P.S.) variables (qi,pj;Ba,nB), as they are on

a local co-ordinate patch of a normal manifold (we will say more



about this later though). Using only this limited mschinery is it
now possible to construct a convincing Z? graded generalisation to
the H.V.F.? Any generalisation to the H.V.F. we produce must reflect
the above property (1) of Hf in some way. That is, if we denote the
graded Hamiltonian vector field (G.H.V.F.) associated with some
Zr graded function f on S.P.S. by &f, then we demand that:
(3) ' of g ---> { f.g }’
Where now f,g are both Z2 graded functions and { , }  represents
the graded Poissoﬁ bracket defined in & 2.0. Thus we require that
thevG.H.V.F. associéted with the graded function f must map any
graded function g on S.P.S. to the graded Poisson bracket between
f and g. This seems to be a reasonable request to make of any
candidate G.H.V.F.

Looking at the expression for the graded Poisson bracket in
§ 2.0.4 the naturai guess taq make fbr the G.H.V_.F.is the following:

(4) @f := 2 (of o - of ¢ ) - 2 (of 9 + of o
i dpieggi ogiodpi a ¢&nadBa dBadna

Where the first term in brackets is the normal H.V.F.(2) contrib-
uted from the even co-ordinates (qi,pi), and the second term is the
odd extension associated with the co-ordinates (Ba,nB). If this is
used as a definifion for the G.H.V.F. 0f, does it then satisfy the
requirement (3) consistently for all possible choices of character
for the graded functions f and g ? We now examine the separate
cases which occur:

A) Suppose we tgke f to be an even generator function on S.P.S.

and £ to be even also. Then:

df(g) = (f p8 - of 98 ) - (of g + of o8 )
dpidgi %qidpi ona 88a  ¢8a dna
:(ﬁ_éd_f'éfig)"(égéi—d_ﬁg)
daiopi odqiopi d8adna dBadna
=+ {g,f 3} , since the £, g anticommute.

B) Now take the case when f is even, but g is odd:

df(g) := (f o - of 28 ) - (f 8 + o o8 )
dpidqi aqiopi dBa ama  dBadma
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= (8 of - f a8 ) - (28 f + & &)
dqidpi ogiodpi Basna d0a na
=+ { g,f }°

So when the generator function f is even, the definition (4) for
the G.H.V.F. ®f is satisfactory. Unfortunately difficulties occﬁr
when we take the generator function f to be odd. To sée this:

C) When generator function f islodd, but g is even:

(5) Pf(g) = ... = (38 of - of a8 ) - (g8 of + f o8 )

: dqidpi dqidpi 0Badnta dBaema
and finally,

D) With both generator function f and g odd:

(6) Bf(g) := ... = - (o8 of + of 38 ) - (of o8 + a8 of )
0gldpl dgiodpi 0Badma JBadma

We can see now that both (C) and (D) are a departure from equation
(3), because the relativq signs between the first and second terms
of (5) and (8) have changed, when compared to the corresponding
definitions (15) and (16) in § 2.0 for the {Even,0dd) and {0dd,0dd}"
brackets respectively. It is no£ surprising that we have encountered
some difficulty when dealing with a generator function whose
character is odd. This is because an anticommuting generator function
actually changes the character of the variable on which it oper-
ates, since:

7 {Even,0dd} ~ = 0dd

This means thét I1.Gr.C.T. generated by these functions mix the odd
and even sectors of the super phase space. in actiop similar to

the odd generators of a supersymmetry algebra [5]. All this leads

us to conclude that definition of the G.H.V.F. WeAhave used in (4)
is only a suiﬁable candidate when the generator function is even.
When the generatof function is odd, the character of the function
being operated on is effecting the outcome of the signs in the

final expression. Since it is neccessary that a successful candi-
date G.H.V.F. must be independent of the character of the object
function which it operates on, it follows that definition given

in (4) will not suffice.



Before making another guess at the G.H.V.F. for the case of an odd
generator function, first we look a little more carefully at what
is meant by differentiation of, or by, graded objects. This is
covered in Berezin's book [12] and which we follow here. In this,
it is made clear that two equivalenf definitiens of different-
jation by Crassmann like objects are possible. Zince in general
a function of Grassmann variables may be thought of as being a
finite power expansion in those variables, all we need consider
the.differentiation of is a term like:
- (8) AaB...u(BabB...8u) , with P terms, where a,B,u = 1,...,N2P
4AaB...u is a real valued function of'the even fundamental S.P.S5.
variables (..;qi;.;.,pj,..), and which is totally antisymmetric
in the indices a,B,..,u

The differentiation of an expression like (8) by a Grass-
mann variable, 68 say, may be approached in two ways [12]. Either
by defining ‘differentiation to the right’, thus;
(9) Q:(AaB..TuBaGB..GTBu)v:: Aa...u(dad BB...8u - 6B Ba...Bu +

._686 , -
..... “+ (-1) 5ud Ga...ej)
That is, you permute eéch successive term to the extreme left hand
side of the pollynomial, and then replace it by a Kronecker delta.
QOr alternatively, you can define"differentiation to the left’ ™ by:
(10) (AaB..TueaBB..eTeu)i_ .= Aa...u(8ud Ba...8T - 5786.8a...Bu +
0858
P-1

This time successive terms have been permuted to the extreme right
hand side and then replaced by a Kronecker delta. We illustrate

these two processés by a simple example. Suppose we only have two

Grassmann elements 8 and B8, then:

> <

__6_(81 82) = 92 s (6, 8 )@_ = -8

28, (RS 2
(11)

> <

3(818,) = - 8 . (8,80 =8

e, 2 36,



That is here left and right derivatives differ by a sign.
In fact we can write down the general relationship between the

left and right derivative. It is:

> SN IR
(12) ‘ 8F = (=1) F3

3A (-1)A A
Where |F|, |Al are the characters of F and A respectively. When
a graded function F is even, then |F| = 0. When F is odd then
FI = 1.

VNote that the only case which does incorporate a sign change is
when F is even and A is odd. That is [F| = 0, [A}] = 1.
Now that we have a better understanding of what is meant by the
differentiation in the conféxt of Z2 graded variables, we return
to the problem of defining a graded version of the H.V.F. What we
discover is that it is precisely the sign changing property of
tﬁe left—handed derivative in the case of two even functions which
is required to define the G.H.V.F. for the case when thé generating
function is odd. In fact tﬁe definition of the G.H.V.F. applicable
to this situation is the following:
<« < < << <<

(13) F® := (3 fy - 3 fa_ ) - (a_fa + 2 £3 )

dai 3pidpi 2qi da emnadma ¢Ba
where wé have introduced some new notation. The generator function
f now appears to the left of Q‘to indicate it is odd and that
we are now dealing with vector fields which act to the left. To

that this does solve the problem, we calculate:

A) When the generator function f is odd, and g is even:

< < < < < < < <
(g)FD := (g3 f3 - g £ ) - (& h + gy 3 O
dgi dpi opi dqil . 3B8a dma dma 9Ba
(14) = (a8 of - a8 of ) + (22 of + 2 of )
' ‘dgiodpi  dpiodqil d8adna Idmadba
= {g,f } as required.

B) When generator f and g are both odd:

< < < < < < < <

(2)f® := (ga fp - g £3 ) - (g £8 + g9 fo )
9qi opi opi 2dgi 2B8a ama 9Ba dma



(15) = ... =4{g,f } as required.
So, in order to incorporate the character changing properties of
an odd generator embodied by equation (7); we must introduce
the notion of differentiation to the left and "left handed’ vector
fields. This device naturally takes care of the graded character
of the function being operated oﬁ. as a candidate G.H.V.F. should.
Thus, in attempting to generalise the idea of the Hamiltonian
vector field to a 22 graded environment, we have come across an
important structural clue as to the nature of_differential geo-
metf§ on this typé of graded space. Vectors, it appears, come
in two distinet types: ones built from derivatives which act to
"the right, and ones built from de?ivatives which act to the left.
Clearly the identity {12) enables one to move between these two
spaces when the variables are homogeneous. In order to construct
éraded Hamiitonian vectorAfields on these Spéces, both left and
right acting vectors are required. The right acting vectors are
employed for G.H.V.F.s associated with even, commuting, generator
functions and which we denote by éf. and left acting Qectors are
émployed-for G H.V.F.s associated with odd., anticommuting, gener-
ator functions, which we denote by f®. Although we camé across
these idea’'s independently they were not wholly without precedent.
Berezin [13] introduces two typés of 1-form on his supermanifold,
and the ex1stance of both left and right generators to super Lie
algebra’'s [5] again indicated that this was the right direction to
take. Later discovery of De Witt s work [22] confirmed this.

In the next section we start to éxplore the properties of
the G.H.V.F.s (4) and (13), to discover to what extent ®f and fd
play a role similar tb their classical counterpart Hf 1in § 1.2.3.

2.1.2 Properties of the G.H.V.F.s &f and f®,

In @ 1.2.3 we saw that key property of H.V.F. s is that they
form a Lie algebra whose combination principle is a Poisson bracket.

This is one way to think of the Poisson bracket between two
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functions: as resulting from the Lie commutator between the two
corresponding H.V.F. s, since we have from ﬁ 1.2.3:

(18) [ Hf,Hg ] = - H{f,g}

where f,g € F(M) and Hf,Hg are'the H.V.F. s associated with f and g.
How then does this relationship generalise to the case of tﬁe
G.H;V.F.s ®f and f® ? Let us examine the case of the right acting
field &f first.

2.1.3 The Right-acting field &f.

We first must define thé graded commutator between twé right-
acting graded vector fields V and W, say. Since a right-acting
field by definition maps a graded fﬁnction onto another graded
function by action on the right, we may appeal to the earlier
definition of the commutator bracket in § 1.1.1 and define:

(17) CVW T(E) i VCHE) - WOVE)

Where V and W are graded vector. fields, f is a graded function

‘and [ , ] represents the graded commutator brackets. In component

form this is:

. , : . Vtwil -
{18) [ Via ,Wiga 1% = 'S (VigWia - e(=1) Wjavia)
dai - da] . daieai (-1yalld  3z5eai

CHW3l+IVil+lail+ladl)

Where V Vi, W = Wj and € = (-1)

Note: € = 1 when V and W are both riéht—acting G.H.V.F.s.

The factor in front of the‘second paft of the expression arises
by the requirement that the terms whiech are second order in
derivatives must cancel. For the situation when V and W are two

right-acting G.H.V.F.s ®f and &g, say, we havé:

(19). [ of,%g 1°

> > > > > > > > > > > > >
= [of 9 - oFf 9 - f a-ofF 2 ., 289 - 283 -2 - & 3 1
dpidgi Jdgidpi Idnma dBa dBaIna qilopl dpidgi eBadma ow

Let us now look at the coefficients of the operatord ; there are
: dBa

eight contributions to it (and omitting the arrows):



L%

opjdajama dgidpioma o pidgicema dqjdpjeéma

(20)
C+ (of g - ag 2k )+ (f g - g 2f )
oBRomBITa omPB dBRoma anpB o8B ana ¢OBBnPBona

Collecting toghether and rearranging the first and second, third

and fourth, terms of (20) we sée that this does indeed come to:

N >
(21) + o { f,g } o_
dma d8a

Without verifying the other terms here, one can carry on and prove
the following result: |

(225 - [ of,%g 1 = - ®{f,g}’

A version of this result occurs in Kostant s review [40], though
there the underlying space is substantially different from the
one we employ here. It might seem somewhat of a miracle that two
suéh similar looking reéults cccur in such diverse theorétical
background. The reason for this will be discussed at the end

of this section. We now continue by examining the case of the
graded commutator between two 1eft—écting fields f® andng.
2.1.4 The Left-acting field f®. |

¢ <
If V and ¥ are now two left-acting vector fields (denoted by

the arrows), then we may define the graded commutator bracket

between them as being:

< < < < < <
(23) . (EX[ V,W 17 = (£VOW - (fW)V

where f is some 'Zy graded function on super phase space. By doing

a similar calculation to (20) one may verify that the following
relationship holds:

- (24) (h)[ £2.,g2 17 = - B{f.g} (0

Where: |f| = fg! = 1, thi = 0,1 and £, g, h are Z, graded
functions on S.P.S. Notice that because the graded Poisson bracket
of the odd functions f and g is itself an even funection, it appears
on the right hand side of the ®. What this means is that the rel-

sionshiop (24) has set up an isomorphism between the spaces of left-



acting and right-acting vector fields. Thus we may write:

(23) N [ £f0,89 1" = - o{f,g}’

Which is the left-acting equivalent of the right-acting equality
given in (22).

We now turn our attention to the final poésibility, which 1is

the graded commutator bracket between a left-acting and a right-
acting G.H.V!F.

2.1.5  Left-acting and Right-acting fields.

This is the most interesting case_in that it~imp1ies an inter-
action between the odd and even sectors, which 1s needed in a
"non trivial way for supersymmetry to be possible. First of all
we must define the graded commutator bracket between a left-
acting and a right-acting vector field. As it turns out this

>
is simpler than might at first be expected. If V is some right-

z

acting vector field, and W is some field acting to the left,

then we may define the graded commutator brackets between these

two fields as follows:

’ Sy K > < > <
{26) - . X (hy[ V,W 71" := (Vh)H ~ V{h¥W)
Wheré lhi{ = 0, 1, is some Z7 graded function on S.P.S5. If we now set
> . < ‘ )
V = &f for [f] = 0, and W = g® for gl = 1, then we may compute

the bracket:
(h)[ &f,g® ]° for (h} = 0,1

After some calculation similar to (20), but made more tricky by

the presence of both left and right acting derivatives - for

< >
example the terms corresponding to the coefficients of &, ¢
38 08
for the case (h|l = 0 above are:

> < > < ‘ > < > < > < > < > <> <
+of ho gy - of ho olge  ~ffa ¢h g + afy oh g

dp 90 2ggm 2q 39 Jpam dmdq 86 ap ndp ¢8 aq

> <D < > <> < > <> < > < > <
- 3lfy odh gy + Of ho dlgy -2y ah gy + of hd ey

a8 996 ow énvde 089 miw 46 38 08 08 émam

We find that the following relationship holds true:
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(27) (h)[ ®f,g® ] ° := (®f(h))gd® - 2f((h)g?) = (h){f,g}'®
for any Z2graded function h, where |hl = 0,1 and where (|f] = 0
and gl = 1.

These three relétionships (22),(25) and (27) represent the
the generalisation of the H.V.F. relationship (1) to case of the
G.H:V.F. The fact that one is able to do this makes the need for
the presence of left and right acting vector fields on this type of
super phase space uncontrived. It also makes it possible to carry
out non-trivial supersymmetry’traﬁsformations on the S.P.S., in a
way that preserves the graded Poisson bracket, but we will discuss
this in § 2 4.2. In the next section we explore the properties of
the graded Poisson bracket under a change of variables, with a
view to generalising the “function of a function’ rule (32) in
§ 1.0.5. As we will see, once again we are lead to the natural
employment of left-acting and right—acting derivatives in deriving
the éraded generalisations to this claésical relationship.

2.1.6 A graded identitv.
Introduction

In § 1.0.5 a well-known Poisson bracket identity was

stated, namely:

(28) { F,G 3} = oF { I'a,Tb 120G , where T'a = Ta(q;p).
ol'a o'b

This is an important identity and which is used, for example, in
the proof of the function group theorems [27]. In this séction

we investigate the graded generalisation of this identity and show
that it has an elegant description in terms of left and right
acting derivatives. And that one is naturally led to introduce a
“left-right tensor” similar to those that appear in [22]. This

leads to the concept of the a graded generalised Poisson bracket.

The graded Taylor's theorem

To prove a graded version of (28) we must consider what it

is we mean by a graded function of a graded functions and, in



particular, whether it possible to use a graded version of Taylor's
theorem. These questioAS are covered more fully in [22], or for

a rigorous treatment see A.Roger’ s paper [49]. Here wé confine
ourselves to some elementary considerations.

Spppdse we have some collection of n Zygraded functions fa, where

a =-1,...,n, fa = fa(gi;pj;0a;nB), with a,B = 1,...,n°2 n and
where (8a,nB) together form a Gn .n° Grassmann algebra. Let us now
consider functions F(fa) of these functions (fa). How may we
differentiate F(fa)vwith respect to the variables (8a,ma)? It can
be- shown [48] that the “function of a function  rule for differ-
entiation works in the graded case, provided we can split up the
functions fa into odd and even sectors. That is, we reorder the (fa)-
into the disjoint sets (fs;@#s’) where s = 1,...,N ; s” = 1,...,N’
with n = N + N, and where |fs] = 0, |gs’.|'= 1, for all s, s’

Thus we have:

(29) ' ‘ F(fa) = F'(fs;gs’)

ana where fs = fs(qi;pj;ea;mﬁ), gs’ = #s’(qiipj;Ba;mB).

Graded function of a fpnction differentiapion then becomes:

(30) JF(fs;@ds ) = ofsdF + ags IF
d8a d8a ¢fs 28a o@s’

Where it is important that this same ordering is used throughout
the calculation of these expressibns. It is now possible to
calculate the graded vérsion of Taylor's theorem. Because the
functions (@gs’) are odd, they form a GN° subalgebra of the Grass-
mann algebra Gn’',n’, so typically a function F(fs;gs ) will have
the form:

(31) F(fs;gs ) = Fs'gs’ + Fs 't (gs’ .gt") +...+ Fs'...u'{(gs”...gu")
Where the functions: Fs'; Fs't’; .;.: Fs ...t , are all Z) graded
even functions of fs(qi;pi;Ba;mB) totally antisymmetrié in the
indices s';t’,...,u’, up to a highest order n° in fs’. A normal
Taylor expansion'may now be carried out on each successive even
term - because each fs is an even function of (qi;pj;Gq,nB), it

may potentially involve a completely ‘Grassmann free’ leading
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term: the purely bosonic sector contribution.

We now have enough machinery to calculate a graded version
of the identity (28).
Qﬁlgnlaiingfihg_gxadﬁd_idﬁniiix

We are now in a position to calculate the graded version of
the identity (28). Consider a collecticn of Zj graded functions:
(32) Ei = Ei(fs:¢s’) , T3 = Ti(fs;gs’) . where i,J = 1,2
Also IEil,Ifsj = 0 and ITi|,l¥s"{ = 1, with the functions
fs, @gs’ being those defined abové. After much tedious calculation,
with great attention having to be paid to the signs of the various

terms, we obtain the following jdentities:

{ E1,E, 17 = 2Eq By fs,ft }  + 9E13E{ fs,gt’}’
afsaf{ ags Af s
(33)
- oF; Ep{ fs.gt )} - B JE;{ #s’,gt’}’
- 3fsigt’ 0gs 3t
{ E.T 37 = oE of { fs.ft 37 + oF oF { fs,pt’}’
_ f s ¥fs afsapt’
(34)
~ oE oF { fs,pt 3" - oE ol { gs ' .gt’}’
pt ofs epsdst’
{L.L, } = ol oL { fs,ft 37 + alyelo{ fs, gt’}’
. of saft dfsegt’
(35) '

+ oTh a0y { fs, s’} + ol a2 { #s ,ot’)
gt s dBs adt ”

Which as it stands it does not have a great deal in common in a

structural sense with the identity (28). However, writing (33,34,359)

thus:

{ Eq,Ep} = REy{ fs,ft 3 eE2- oE1{ @s’,ft 1} E2
_ : of s oft  ags’ eft
(36) :
+ 3 { fs,8t" )} IEy - ¢ gs gt } dE2
)'s Cdgt ags’ _ dgt”’
{ E,T 3 = aE { fs,ft } ol + 3E { fs,gt "} ol
afs aft ofs ' 3gt’
(37)
- o { gs’,ft } ol - F { s ,8t 3 L
s’ aft  ags’ gL’
{Ih,03 = A1 d fs,ft )} alp+ oli{ fs,dt } al'2
fs 3ft  ofs ddt”

(38) :
. + a1 { ¢s”,ft } ol2+ Al { gs’,et } a2
38s’ afs  dgs’ gL’



It now becomes clear that in order to bring the troublesome minus
signs into line, we must use left-acting derivatives for the left
hand side term on each of the above brackets. This works because

the only sign changes occur when an odd derivative acts on an even

function. Using this device we obtain the expressions:

' < > < >
{ B, E;} = ER { fs,ft } 2+ ER { gs’.ft } QK
of s ft  ags’ of s
(39) ’ < > < >
+ Fo { fs.gt '} o+ E@ { ds .8t '} oF
df s agt’ ags’ agt’

and so on.
Now all the signs are homogeneous and positive, which enables us
to write (39) in a similar manner to (28). We do this by defining
the variable (ha) := (fs,gs’ ), where a = 1,...,N+N° = n. Now we

may write:

. < >
(40) { F,G }" = F3 { ha,hb } G
dha ohb

which is the graded version of (28). The beauty of this expression
is that the graded characters of the various functions which appear
in the expression do not have to be included in an explicit manner.
All the signs presént in the eXpansions (33,34,35) are now taken
care of by the 1eft—ac£ing derivative. Thus we see once again that
both left-acting and riéht—acting derivatives occur naturally when
one makes statements in a Z; graded environment. We explore some of
the implications‘of,this in the ﬁext short section.

2.1.7 Structures on 22 graded phase space.

Introduction

The last three sections represent an attempt to interpret
the graded Poisson brackef defined by Casalbuoni [17] in a more
’geometrical’ way - geometrical in the sense that the construction
seeks to mimic the standard differential geometry of symplectic
spaces. These considerations were made in a background as free as

possible from technical jargon, in the hope that the underlying



structure of the space under inveétigation would become clearer

as the work continued. Progress towards this end did seem to be
being made. What started out as essentially a guess as to the

form -of the gradeq Hamiltonian vector field, became fairly plausible
throuéh the next two sections. The time seemed to be right

to try for a more general theory as to the nature of this type of
space. Below we confine ourselves to just some preliminary
discussion as to where we believed our investigations to be

leading - the work in [22) supports that this speculation was along
the right lines;

Vectors and Tensors

In § 1.1.1 we saw how a useful way of looking at vectors
on a manifold is as linear combinations of partial derivatives,
taken with respect to the local co-ordinates on that particular
patch of the manifold. That is, if {fi} for 1 = 1,..N is some local
co-ordinate system on a manifold M, then a general vector field V
defined on that patch may be expressed as the linear combination:

(41) . _ V = Vi{f)e
of i

Where the real function Vi(f) are known as the components of the
contravarient vector Y. However, what.the work of the last three
sections indicates is that for a graded generalisation of these
jdeas to be viable, both types of graded differentiation are
‘required - this leads to the notion of right-acting §nd left-acting
vectors which we denote respectivly as follows:

>

> . <
(42) V = Va(h)? _ , V =
dha

aV(h) , where a = 1,...,n
a .

Qi
jon i L s MIVLN

and where the functions {ha} are a set similar to the one employed
in the last part of § 2.1.6 above. The Zzgraded functions Va(h)

and aV(h) are the components of the right-acting and left-acting

> < o
vectors Y and Y respectively, with |aV|, |Val equalling either O
or 1. Under a change of basis {ha} ---> {h’a}, the co-ordinates



of the vectors Y and ¥ would transform as ekpected:

< ‘ >
(43) aV(h) ---> a’V(h’) = h'agbV , Va(h) ---> V'a(h’) = Vbdh'a
' 2hb ’ dhb
for a,b = 1,...,n. Examples of these left-acting and right-acting

vector fields are provided by the previously introduced G.H.V.F.s
f® and ®f. For more rigorous development c¢f this type of vector
space see [2Z2].

Another direction in which the work of the previous sections
indicates a notational development might be made, is the intro-
duction of what we call the left-right tensor. This is an object H,
say, the cdmponents of which have indices which correspond to both
left and right action. For example the components of H with respect
~to the basis {ha} might be:

(44) » aHb(h) with a, b = 1,...,n

The existence of an object of this néture is not inconceivable, in
fact, we already have an example of just such a left-right tensor
in the graded Poisson bracket. We can see this quickly by

employing the identity (40). If we define the components aHf as

follows:
(45) : ' aHb := { ha,hb }’
where the funetions (..,ha,..):= (.,qi,.;.,pd,.;.,Ba,.;.,nuB,.) are

the fundamental co-ordinate variables, then the fundamental graded
Poiéson brackets and the structure of the identity (40) ensure
that k45) defines a bona fide left;right tensor of the type we
suggest. In this instance the left—riéht tensor (45) is none other
than the orthosymplectic form (30) in.ﬁ 2.0.5 [18]. That is we have:
aHb = T'ab :=
0 BaB
| where the matrices A and B are those defined in §'2.0.5. Using
this left-right tensor the possibility of defining a
‘generalised graded Poisson bracket"arises. This 1is envisaged

to be the graded counter-part to the generalised Poisson bracket



of § 1.3.4, and would take the general form:

< >
(46) : { A,B } ":= Ao aHbiB
dha dha
where the ha, a = 1....,n, are now some general (ordered: even

first, odd secona) graded set of variables, and aHb is some
graded matrix with’the same block symmetries as those described
in § 2.3.6. We then would demand that the bracket { , } ~ satis-
fies the graded Jacobi identities (see Apendix A), and determine
what conditions that places on the elements of aHb. Although we have
not proved this, we feel sure that the graded Dirac bracket intro-
duced by Casalbuoni in [17] is an example of jJjust such a graded
generalised bracket. What would be interésting to find out is
whether it is possible to.reduce the'gréded Dirac bracket of [17]
to the form of a graded Poisson bracket in a reduced number of
graded variables. This would require a graded generalisation of
the function group theorems of § 1.3.6, and represents an obvious
target for further research. |

This concludes this brief look at pdséible further Z) graded
structures on graded phase space - a topic which for the most part
is well covered in [22]. However, De Witt spends little time on
the development bf the graded phase space aspects of his work,
so the guestions concerning graded function groups, to the best
of the author’s k_nowledgef still.rémain unanswered. We do some

work on these objects 1in & 2.3.



2.2.0 A Class of Canonical Transformations..
Introduction

In Part'I the idea of the canonical transformation was explored
in some detail. We recall that the canonical transformation may be
regarded either from an ’actiQe’ pbint of view as beilng associated
with a movement along a path in phase space parameterised by time.
Or, it may be thought of in a “passive’  way zs the transformation
between different sets of canonical co-ordinztes in some patch of
the phaée space.

In this section we view the graded canonical transformations
from a passive viewpoint, as being a transformation between two
canonical co-ordinate sets which preserves the graded Poisson
bracket. In addition to the matrix transformations briéfly
described at the start of Paft I1, we demonstrate that there
exists an infinite class of such transformations, characterised by
an arbitrary function. Furthermore we demonstrate for the simplest
case, the G1,1 algebra, that these transformétions ﬁay be made to
form a group proQided that various conditions are imposed on
the bosonic generatof functions. Another way of putting this is to
say that the céllection of graded Hamiltonian vector fields assoc-
jated with the generator functions of the transéormations, can be
made to satisfy the graded Jacobi identities under certain
conditions. These conditions are studied.

2.2.1 The simplest case: G1.1.

We start this investigation by considering only the most simple
of super phase spaces, namely the space in which there are two
bosonic conjugate variables (q;p) and two fermionic Grassmann co-
ordinates (8;m) which are also conjugate. These variables satisfy

the following fundamental‘graded Poisson bracket relations:

(1) {ag,9 3} =0={p,p }" , {a,p } =1
(2) {p,6} =0={qg,8} , {p,m} =0={aq,mn}’
(3) o {e,n} =-1
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Where the minus sign in (3) is by earlier conﬁention, and { , }°
represents the graded Poisson bracket. The question we now ask is
what freedom exists to redefine the variables (q;p,6;n)? That is,
iz it possible to find a new set of four variables, two even, two
odd, such that the relations (1,2,3) are still satisfied? Since we

are dealing with a G1,1 system, these new functions must have the

following form:

(4) P = A(q,p) + B(g,p)B.1
(5) | | Q = a(gq,p) + b(g,p)8.7
(67 I' = X(q,p)8 + Y(g,p)n
7 § = x(q,0)8 + y(a,p)m

Where P,Q are even, and [, are odd, and are obtained by power
expansion in the Grassmann variables, followed by separation of
odd and even sectors. Ne;now demand that the set (Q;P;®;I') satisfy
the following conditions:

:(8) f Q,p 3 =1 ,..., ¢, } = -1

that is just the conditions (q;p.,9;mn) satisfied in (1,2,3). If we
now calculate out.these brackets and set the coefficients of the

terms of the various Grassmann contributions to zero, we pbtain the

following -conditions on the set of functions (A,a....,Y,v):
{ P, } =.-1 implies { A,a } = -1
(9)
and { B,a}+ { A,b} =20
{p,I 3 =20 implies { A,X } - BX =20
(10)
and { ALY } + BY = 0
{Q,® }" =20 implies { a,x } - bx =0
(11)
and { a.v } + by = 0
{0, 3y = -1 implies { X,y » + { x,Y } =0
(12) . -
and Yx + Xy = -1
{r,rU }'m: 0 implies
(13) XY = 0
{o,® }" =0 implies
(14) xy = 0



Where the antisymmetry of the graded bracket for even objects
ensures that the other relations are satisfied identically.

We now impoée the following ansatz on the equations (8,..,14) which
effeotiveiy reduces the "mixing” of the canonical co-ordinates

to come from the fermionic sectdr:

(158) Alag,p) = p , a(a,p) = a

This now reduces the conditions (89) and (10) to the following:

(186) B+ b =20
‘ ‘ dp &g
(17) ‘ 3 + BX = 0
A X
(18) Y - BY = O
' . [ ]e]

If we now set the function Y = 0, (18) is satisfied identically, and
Wwe may solve the equations (16) and (17) to obtéin the following

new canonical set (Q;P;®;T):

(19) P=p- 1 8.1
X g

(20) Q =q+ 10X 8.1
X op

(21) . r = xe

(22) =1

X
Where X = X(q.p) is an arbitrary function of {(q;p). We see that the
function X is acting as a type of conformal factor scaling on the
Grassmann sector, where as in the even sector a non-trivial mixing
of the even and odd co-ordinates has Qccurred. By placing X = 1 we
may return the set (Q;P;®;T) back to the original set (g;p;8;m).
If we now expand this transfqrmatdon'infinitesimally about the

identity we get:

(23)~- X =1 4+ uh(aq,p) , where u << 1
P =p - (1 - ph + 0OCu ))2(1 + yh)8.n
09
(24) = p - ush 6. + OCu )

0q



(25) Q = q + udh 9.«
3q
(26) I = (1 + ph)®
(27) = (1 - uh)w
That is:
(28) | 3P = 3h , 20 = -2h
: A fole| Ju op
(29) o = h , M = - h
o ' In

Equations (28) and (28) give the ggnerators. Under the conditions
6f the ansatz (15) equations (19,...,22) are the only possibilities
for the G1,1 system.
There are two observations that can be m;de straight away about
the new canonical‘set (19, ...,22):
a) Theré is a ‘reflection’ symmetry to the equations in the sense
that the discrete traﬁsformation:
(30) q.<--->p . B <=->-8, Ww<-—--> -w, X <---> X
leaves the set unchanged. Also,
b) it is possible to e#tend the bosonic sector arbitrarily, by

the éddition of an index to all the bosonic co-ordinates

involved. That is:

P -——> Pi = pi - 19X B.1 and so on, where now
Xdqi
( Pi.Q3 }° = -8ii.

Because of the heavily constrained nature of the Gl1,1 system it is
actually possible to "invert” the relations (18....,22) in the

following manner. If we call:

(31) . P =zp - Flga.p)8.n
(32) @ = q + G(g,p)8.
We have:

(33) | 8.m = I.3
(34) P .: p - F(q,p)[.2
(35) Q =g + G(q,p)l.2
Thus:



P + F(Q - G(q,p)l.®%, P + F(q,p)l.0) I'. 2

(36) P

(37) q 8 - G(Q - G(q,p)T.®, P + F(g,p)I'.®) T.®
Because of the anti-commuting nature of I',%, a normally infinite
process of substitution is cut off straight away, to give by

Taylor expansion the following expressions for the set (q;p;06;m):

P+ F(Q,P)L.T

(38) P =
(39) q = Q@ - G(Q,P)r.2
(40) . 8 = _ I
' - X(Q,pP)
(41) n = X(Q,P)?®

Where the 6 term is fixed by the m term. This means that we may

use the (Q;P;[;®) to define a graded canonical Lagrange bracket of
the type introduced in Part I, for which the set (q;p;8;n) give the
fundamental bracket relatidné when the functions F and G are
defined as in (19) and (20).

As mentioned at the beginning of this section, so far all we have
is an infinite set of canonical transformations, we don’'t yet have
a group structure. In order tc raise these transformations to form
a group we must impose certain conditions on the bosonic functions
taking part. To see how this comes about we perform the following
calculations. We combine tranformations involving different generator

funictions with each other:

(42) { Px,Py } = oC 1Y - 1¢gX J)8.m
' ea Yoq Xdaq
(43) : { Qx,Qy 3~ = a( 1e¢Y - 1¢ )B.mn
: ep Yeép Xap
(44) . { Px.Qy } = -1 + (2(C 19X) - 8( 1¢¥))0.m
: ¢p Xoq dg Yep
(45) { IT'x,Qy } = -eX 68 + Xo¥ =«
or Yeaq
(46) { I'x,Py 3}~ = 29X 8 - XY «
dq Yaq
(47) { ®x,Qy } = - 1.8Y B8 + loX ™

XYop X3p



(48) -{ ®x,Py }" = 1l Y 8 - 1lXn
XY 3q X dq

(49) : {. %y, Tx }" = - X - L{X,¥Y}8.¢n

(50) { I'x, Ty }" =0 ! !

(51) - : { ox,%y }" =0

What these relationships are 1is the components of the action of
the various G.H.V.F.s on each other. For example if we take the
case of the generator function Px, then the G.H.V.F. associated
with this function is right-acting and of the form:

HPx = (1 - o(13X)6.md - (1 - a(1X)8.m) -
(52) ' apXdg 3q 3gX¢p op

-10X 89 + 19X ma

Xdg 68 Xéq omn
And if we now look at the graded commutator bracket we obtain

equations'(42), (43), and (44):

[ HPx,HPy 17 = 84(1aY - 1aX»8.méd_ -.3(13Y - 13X)8.me
(53) speaYoaq X3q 3q aaYdq Xeq ep

4 Q(123Y - 19X)89 - 1Y - 1eX)ma_
. 8qYeq Xdg 98 yg¥Yg Xeq 4m

and so on. In order to raise these transformations to the level of

a group we must test that the graded Hamiltonién vector fields assoc-
iated with the bosonic generator function X, namely the set
(HPx.Héx.H@x;fo){'must,satisfy the graded Jacobi identities when
coﬁbined'with the similar sets corresponding to different generators
Y and Z, say. That is, we must check:

(54) (HPx,[HPy,HPz]1 ]  + [(HPz,[HPx,HPy ]1°]° + [HPy.,[HPz,HPx]"] =0
and so on, for all ﬁossible coﬁbinations of functions in X, Y and Z.
On calculating the various brackets we find that they all vanish
identically except two. They are the brackets associated with the

G.P.B. combination of the following functions:

(55) { Gx,{ Qv,%z }'}  + Cyclic Perms. = Z(1&Y - 18X)0
Yopl Xeop2

(58) { Px,{ Py, Tz }°}" + Cyclic Perms. = 10127 —_yEX)n
Z Yool Xoql

Thus, in order for the graded Jacobi identities to be satisfied,
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we demand that X, Y and Z meet the following requirements:

(57) ‘ Z ¢ 0

(58) 18Y - 12X =0
Yop? Xop?

(59) 18y - 1% = O
: Yo gl Xaqgl

To solve these conditions, first we separate the variables and look

for solutions of the form:

(60) X(a,p) A(q)B(p)
(61) Y(a,p) = V(g)W(p)
Substituting (60) and (8B1) into (58) and (58) gives the following

differential conditions on the functions A,V,B and ¥:

(62) 1'd’w - 1dB =0
W dp? B dp?

(83) 1d2y - 1d24 =0
V dg? A dqgl

Let us now look for solutions of (62) and (83) of the following

form:
(64) . N(p) = F(B(p))
(65) - Vig) = G(A(a))

for some well behaved functions F and G. Turning now to (62)
(solving (62) and (63).being essentially the same problem) we show
how to generate solutions to this egquation. Substituting (64) into
(62) and collecting terms yeilds the following eguation:
(B86) _F ' = -Bpp

' F' - FE - (Bp)?

B

where the dashes on the left represent differentiation w.r.t. B,
and where the subscript p on the right represents differentiation

w.r.t. p. For the moment let us write this equation as follows:

(67) _F'" = H(B) = -Bpp
F" - FE (Bp)Z.
B

where H is some function of B. This then leads to the two equations:



(B8) F°°" - H(BY(F" - E) =0
B

(68) Bpp = -H(B)(Bp)’
Taking (68) first, we notice that a particular solution is F = B.
This particular intergral has been obvious from the outset in (58)

and (58). Using the methods from the theory of linear differential

equations, we know that another particular intergral will be:

(70) -F = B.J;?EXD(J;(B)dB)dB
B
so the general solution will have the form:
(71) F = ¢B + eB.Jﬁ}Exp(Jh(B)dB)dB
‘ B
for some constants ¢ and e. For the case of equation (88) we have:
(72) : Bpp = -Bp H(B)
Bp

Intergrating both éides we obtain:

(73) Bp = Exp(4Jg(B)dB)

By substituting (73) back into (71) we may now eliminate H(B) fronm

the expression for F, giving a general solution of the following:

(74) F(BY = ¢cB + eB.Ji_dp
: YRR

where B is some unspecified function of p. Doing a similar analysis

for eqguation (82) and the q dependence, gives us the following

general solution in seperable variable form for the functions (80)

and (61):

(75) - X(a.p) = A(qQ)B(p)

(78> Y(gq.p) = (aA + bAJl7dq)(cB + eBJi?dp)
A ' B

where a, b, ¢ and e are constants. Thus we see that the function
X{(g,p) is still arbitrary but, in order for the graded Jacobi

identities to be satisfied, it will dictate the form of the
nm

function Y{(gq,p). Suppose, for example X(q,p) = ka p . Then (76) would

give us the form of equation Y(gq,p) as being:
n m
Y(a,p) = (ag + b )(ep + d )
q’\'l pr\-l



2.2.2 The G2.2 svstem.

As one increases the nuﬁber of Grassmann variables which make
up the odd sector of the space, the number of cohstraint equations
increases in an alarming fashion! So much so, in fact, that to
think of actually solving the constraints for a Gn.,n system for
n > 2 by hand is unrealistic. Below we examine the GZ,2 system,
following a similar path to that taken in the earlier example.

Aé before we set out by writing down the general‘form of the new
'set of canonical yariables. In the case of the G2,2 algebra the

fermionic variables are (81,82;n1,n2), where (Ba;nf) satify:

(77) . { Ba,nB }" = -6af}

(78) { Sa,eﬁ }o =0 { ma,nB }° for a,B = 1,2
For the moment we assume for simplicity that the bosonic sector
consists merely of the single canonical conjugate pair (g;p).

Ye denote the new, twisted , canonical set by (Q;P;la;®B) with

a,p = 1,2, and as before we demand that these new variables

satisfy the following conditions:

(79) , {pP,@ 3} = -1
(80) { P.Ta} =0=¢{Q,Ta} , {P,® } =0=1{@,da}"
(81> { Ta,TB } =0 = { @a,@BA}' , { Ta.?B } = -%aB

The reguirement that P,Q are even and Ta,®f are odd variables

implies that the general form these Zzgraded functions take is

as follows:

(82) P=A+B.8.6, + CaB.Ba.mp + D.mw, .m,+ E.61.82.n1.n2
(83) @ =a+ b.8;.6; + caB.Ba.mB + d.m, .m,+ €.8,.8,. .7, .7,
(84) Ta = UaB.BB + VaB.np + WaB.6) .8, .nB + XaB.m, .m, .60
(85) da = uaB.6B + vaB.mB + waB.8;.68,.mB + xaB.m .m, .68

Computing the brackets (789),(80),(81) vyields the following condi-
tions the set of functions (A,a........ ,X,x) of (g,p) must satisfy:

From brackets (78) we obtain:




(86) { A,a } = -1

(87)  (Ab )+ {Ba)+BCel+ o) -bCg + ¢f)y=o0
(88)  {Ad )+ {Dal}+DCe’+ ) -d(C'+ Cf)y=0
(88)  { Ae)] 3+ {C' ,a)+ Cacal - cia.Cd + Bd - bD = 0
(30) {Acfy+ (c.al+ c’a.caz - c,a.Cal + Bd - bD = O
(91) { A,c; Yo+ C; ,a } o+ Cza.ca1 - cza.Ca? =0
(925 { A,c12} + { C12,a o+ Cia.ca2 - c]a.Ca2 =0
(93) {A.e} + {B,d}+{Db3+{Ea}+..

..+ E( 012+021—c11—022)—e( C12+C21—C11—C22):0
From the (78) bracket we get { P,fa }° = 0, which implies:

(94) { A,UaB } - C8B.Uad - B.Vap = 0O
where p,8 = 1,2 ; 2,1

(95) { A,VaB } - CB®.Vad - D.Uaw = O

{ B’ uap 1 - (Cal.Ua? 3

(86) { A,WaB } + { B,VaB } +
.~ B.Xau + CB8.Wad + C,% .WaB + C;' .WaB - E.Uap = O
(97)  { A,XaB } + { D,UaB } + { C{B,Va1 } - { C2B,Vaj } -..
- D.Wau - C8B.Xad + C,2 .XaB + C, .XaB - E.Vau = O
Finally the (81) bracket { Ta,l'8 } = O gives us:
{(98) .Uau.VBu + UBu:Vau =0
(99) {ua' ug? 3+ g ous'ua 3 - Uap WBW - UBn.Waw = O
(100) { Va1 ,VB3z 3} + { VB1,Vay } - Vau.XBu - VBu.Xap = 0
(101) (UG ,VBy 3+ £ U LV 3 - ual.xp - us?.Xa' 4.
| ..+ Vap WB o+ V[32.Wa1' = 0
(102) [ Ua’,vez 3 + ¢ UB . vaz } + Ua'.x8® + ug xa’-..
| - Vo1 .WB2 - VB .Wa2 = O
(103) Cual B2 3+ { U8 Ve 3+ Ua' x8 + sl Xa'+..
..+ Vaz . WB2 + VB2 .Waz = 0
(104)  {udd,ver 3+ ¢ UB° Va1 } - Ua?.x8? - uB?.xd
.- Var . WB1 - VB .War = O
(105)  { Ua',xB82 3 + { XB',Ua’ } + { Vay ,VBZ } + { WB1,Vaz } +..

o+ [ W VB2 1+ {UB ,Xa? 3+ { Xa' ,UB%} 4 WBW.Xauw = O
One can read the other conditions straight off by changing case

appropriately, the only other change being in condition (88),
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which for the bracket { Ta,®B }  reads:

(108) - Uap.vBu + uBu.Vap = -56aB

We now attempt to solve the above set of constraints. Proceeding
as before we impose an ansatz to simplify the conditions. However,
unlike the G1,1 case, there are now several possibilities. As it

turns out the ansatz which generalises the G1.,1 result is the

following:

(107) P =p + CaR.Ba.nB + ¥ E(Ba.ma)
(108) . @ =q + caB.Ba.mB + % e(Ba.ma)
(109) Fa = Uaa.Ba

no sum over a
(110)_ Pa = vaa.mna

Without stating phe calcuation here, this leads to the following

generalisation of the G1,1 resuit:

(111) _ P = p - 1¢X(Ba.nma) -1_{ 3X,X }(8a.na)
Xaaq . 2X  dq
(112) Q = g + 12X(Ba.ma) +1.{ 3X,X }(Ba.ma)
Xep 2X op
(113) Fa = XBa
(1145 - ®a = na
X

As before X is an arbitrary function of (g,p): acting as a con-
formal scaling factor in the fermionic sector. We now explicitly
demonstrate how the various terms combine in the case of the

{ Q,P }  brachket:

{ Q,P 3}~ =
(115) . 1+ ( { 1X(Ba.ma),p } - { q,1e¢X(Ba.ma) } ) +..
X dp | Xoaq '
(118) ..+ ( { 1 { X, X ¥ea.ma),p } - { g,1 { X.X }(Ba.ma) } ) -..
X sp- . X ¢q
(117) .- { laX(Ba.ma),laX(BR.MB)Y } -..
Xap Xeoq

(118) .- { 1¥X(8a.ma),l { &X,X }(Ba.ma) } -..

X dp X 0g
(119) o= {1 { 8X,X 3(Ba.ma),lX(Ba.mta) } -..

X Yl Xaq
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(120) _ - 01 { XX ¥(Ba.ma),l { X, X }(Ba.ma) } )
X P X aq

The cancellations between brackets (115) to (120) work as follows:
Bracket (115) is (almost trivially) zero. The first term in bracket
(118) gives the following contributions:

( -1oX { X,X ¥ -1 ¢ X, X } - 1.{ 2X,2X } )Y(Ba.na)
X3ag - op 2X daep 2X 39 ¢p

Clearly the second of these terms cancels with those produced by
the second term in bracket (118), while the remaining two terms

cancel with the term:

- { lix_:.l.ﬁ }(ea.ﬂ.a)
Xdp X2g

of bracket‘(117). We now have no further trouble, as the Grassmann
terms ensure that additional terms in (118,118,120) and the second
term in (117) are all identically zero. Thus the non-trivial cancel-
-lation is that occurring between the terms in bracket (118) and
{117). One can carry on and verify fhe other graded canonical comm-
utation relations in a similar manner. As before we have the freedom
of adding a bosonic iﬁdex to p and 9 to give, in general for a G2,2
system:

Pi = pi - 1 (Ba.ma) - 1_ { 38X ., X }(Ba.ma)
Xaai 2X dqi

Qi = qi + 193X (Ba.ma) + 1_ { X .X }(Ba.mna)
Xapi 2X api

" Ta = X(gi,pi)Ba
ba = ____na___
X(gqi.pd)

We now go on to generalise this result to the Gn,n system for

arbitarv n = 2.

AN

.2.3 Generalisation to the Gn.n_system.

Having seen how the above class of canonical transformations
generalised up from the G1,1 system to the G2,2, it is now

straight forward to determine how these transformations work for
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higher orders of Grassmannian variables. Taking note of the can-
cellation between the terms (114) and (115) of the previous section,
we find that the G2,2 generalisation of the above result is as
follows:

(121

Pi = pi - laX(Ba.ma) - 1 { aX.X ¥Ba.ma) -1 _{ { 98X, X },X }(Ba.ma)
Xaqi 2X 3qgi - 2.3X d0gi

(1223

Qi = gi + 1¢X(Ba.ma) + i_{ X, X Y(Ba.ma) +_1 { { #X.X },X }(Ba.ma)
Xapi 2X api 2.3X opi

and where as before the function X acts as a conformal factor on

the fermionic sector:

(123) Ta = X(gi,pi)Ba
where a.B = 1,2.3
(124) o8 = __ mwB
X(qai.pd)

1t is not hard now to see how the Gn,n result works. Indeed we

obhtain:
(125)
Pi = pi - 1¥&(Ba.ma) - ... - L {.. .1 X X 3,X¥ 3},..,X }(Ba.na)
Xadqgi N!X dai
(1289
Qi = gi + leéX(Ba.ma) + ... + _1 {...{ &X.X }.X },..,X }(Ba.ra)
Xopi N!X api
with
(127 Ta = X(gi,pd)Ba
where a,B = 1,...,n
(128) - da = e
" X(gi,pd)

The yérious caﬁcélations between terms work in a similar manner to
the G2,2 example. It is interesting to wonder how one might intro-
duce'further functions into this canonical symmetry in order to
make the fermionic sector transformations more interesting. The
author feels this might be possible to do if one demands that the
arbitrary functions themselves satisfies various conditions. For

example, a fermionic sector with individual conformal factors on

the Grassmann terms, thus:
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(129) I'a = Xa(q,p)Ba
no sum over a, for a = 1,...,n

(130) Qa = I
Xa(a.p)

might form part of a canonical set which satisfied (79,80,81), if
oné imposed that the arbitary funections Xa(g,p), a = 1,.:.,n them-
selves formed a commutative function group and satisfied:

(131D { Xa, X y = 0 , for a,f = 1,...,n

This condition ensures that (129) and (130) satify the conditions
(Sl)‘for a,p = 1,...,n, however, finding the even members df the.
set to satify the remaining conditions (789) and (80) is not easy.
Never the less this does seem a fairly promising avenue for future
enquiry. Take, for instance the example of the G2,2 algebra. There

exists a “‘special case’ solution of the algebra suggested above as

follows:
(132) @ =g + 10F(8 .m) + laggez.%y
Fop Gap
(133) P=p
(134) - I, = Fe
(135) L, = GO,
(136) ¢, = w,
F
(135) )= m

3
Where the funcfions ¥ and G are independant and F = F(p), G = G(p).
Because F andAG are both‘functiops of p the condition (131) is
satisfied identically. Clearly, a similar graded canonical set is
possible if F and G are both made functions of q instead, and
equations (132) and {133) are adjusted to become:

(138) - d = q

(139) P =p - 1F(8;.m) - 136(8,.m)

F oq Goq
The above graded canonical tranéformation is similar to a pairing
up of two G1,1 transformations described earlier in f 2.2.1. This

is really as far as this subclass of the functions satisfying (131)
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will take us. The case of F :.F(q) and G = G(p), say, is quite
heavily constrained by the condition (81), and making the jump to
the general case described by (79),(80) and (81) is not easy to do.
It may be that this simple conformal structure in the fermionic
sector described by (127) and (128) can not be made to work without
the presence of additional higher order odd terms, but proving
this is difficult.

We now continue our investigations into Z,graded structures
associated with the gfaded Poisson brackét, by studying a Zzgfaded

generalisation of the function group introduced in § 1.3.6.

2.3.0  Graded Function Groups.

In § 1.3.6 of the introduction. two theorems on structures
known as function”groups were quotedi The importance of these
theorems lies in their telling us that for a classical system which
incorporates constraints, locally at least, ‘we may always find a re-
duced set of variables which satisfy the canonical brackets [27].

A consequence of this 1is that Iocally we can aiways choose a co-

ordinate system which makes the Dirac bracket look like a Poisson

bracket in a réduced number of varibles [44] (we assume the

constraints of the system are 'second class ). Unfortunately this

transformaiion is in general not canocnical., so in many situations

it is not-pract;cal to employ this co-ordinate system [44] ..
Potentially, at léast, function groups might be of considerablc«

interest, in that the subclass of the linearised groups covers the

Poisson bracket realisaﬁions of the Lie algebras. By this we mean

that a general function group is of the form:

(1 { fa,fb } = Fab(f)

of which a Poisson bracket realisation of a Lie algebra:

(2) { fa,fb } = Cabc fc

is a linear example. There might also be global features to these
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objects which are of interest, with seemingly little work having
been done recently on the subject. However, as far as the author
knows, little or no work at all has been done on the the graded
generalisation of these ideas. Casalbuoni [18] defines a graded
versidn of the Dirac bracket, but does not develop the underlying
notion of the existance of a graded function group, or it being
possible to produce a generalisation of the classical theorems
quoted in § 1.3.8 to include anticommuting variables. Although
it seems-unlikely that this area has gone.unstudied, it should be
remembered that the discovery of supersymmetry [46,82] and its
subsequent Qevelopment did not follow a graded generalisation
of the canonical quantisation path. With the Poisson bracket assoc-
iated with a classical theofy being mapped over to the commu-
‘tator bracket of the quan?um theory under construction. For this
reason a systematiec study of graded function groups may have been
overlooked.

We start this study by taking a loock at the simplest
exémple.of'the graded function group, that being the case when

there is only one conjugate pair of fermionic variables: the G1,1

system.
2.3.1 The Gl.1 svstem function group..

We start with a system of four canonical variables (q;p;8;mn),
twa even and two odd, and we ask what possibilities exist for
graded function groups of rank two. That is to say we are interested
in a set of functions -®a with a = 1,2 such that:

(3) - { 2a,®B } = FaB(®)
Where the function FaB is graded (anti)symmetric in the indices

a,B = 1,2. In the next section we look at the choice of one even

and one odd function for the functions &a.



2.3.2 The ‘even-odd” G1.1 function group.

For this example we have one even and one odd function making
up the functions ®a, which are denoted E and [ respectively. That
is we have:

E = E(q.p;6,n) , |El = 0 , and I = I'(q,p;8.m) , T} =1

and where the functicns E, T satify:

1

F(E,T) , IF(E, )|

"
(WY

(4) { E.,T }~

"
(ow)

(5) { T.T }° = G(E.[) 1G(E,T)|
where'cleafly antisymmetry of the "even-even’  bracket implies:
(6) : { E,E } = O‘>

What possibilities are exist then for equations (4) and (98) 7
Since by assumpﬁion we have only one odd functioﬁ ', power series
expansion immediately implies that they take the following form:
7 | { E,T +° = FET

(8) { T.T 3y = G(E)

However. the functions F and G are not independent as we must
ensure that the graded Jacobi identities are satisfied. That is:
(9y  { E.{ 0T 37} + 4 r.{ T,E}y3y -{Ir,{ET}} =0
Substituting (7) and (8) into (8 gives:

(10) { E,G(E) } - {_F;F(E)F Y- { T,F(E)T }" =0

By employing (40) of @ 2.1.6 this implies:

(11) { T,F(EXT 3} = F(EY {I',T }" - { F(E), T} T =0

Put since { F(E),T } =T the'secpnd term must vanish, leaving
us with the following condition:

(12) F(E)G(E) = O

Thus we see. there are two possibilities for the form of equations

(7) and (8). Either:

(a)

(13) {ET ) =FET
(14) {r,r3 =0

or |

(B)
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0

(15) { E.T }7

(186) - {r,r 3} G(E)

So requiring that the brackets (7) and (8) satisfy the graded
Jacobi identities imposes great restrictions on the form that
they may take. Having determined this form, we now examine the
explicit structure of the functions E and I.

Fower expanding E and I in terms of their Grassmann sector

gives the following:

(17) ' E a(q,p) + b(g,p)8.=
(18) ' ' = a(q,p)8 + B(q,p)n
where the functions a,b,a.B are all graded even and real valued.

Dealing first with possibility (A), substitution of (18) into (14)

vields the following:

{ a8 + Bn,a8 + Bm }'.: 2{ aB8,Brt } = 2({ a,P }8.nt - aB) = 0O
which is only satisfied when aB} = O.
Let us choose Q = 0, that is we give the function T the following
form:
(19) ; ' = alg.p)86

Substituting (17) and (19) into (13) now gives us:

{a+bB.m,a8 ¥} = { a.a }8 + ba{ 8.w.68 } =
= ({ a,a } - ba)® = F( a + bB8.n)8 = F(a)ab
where we have Taylor expanded the second last term. Thus we now

have the following relationship between the even component

functions:

(20) a F{a)} { a,a } - ba
‘b(a,p) =" { a,lna } - F{a)
Thus for equations (17) and (18) to satisfy (13) and (14), we

require the functions E(q,p;8,n) and I'(q,p;8.n) to be of the

[}

following form: -

a + ({ a,lna } - F(a))d.=m

(21) E

(22) I = a8
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Before dealing with the second possibility (B), let us briefly
review the steps that led to equations (21) and (22). Recall

that we made two initial choices. Firstly that we were dealing
with a graded phase space consisting of two even and two odd
variables. And secondly that the function group under consid-
eration consisted of one even and one odd function. Having

made those choices, the requirement that the functions which

make up the gfoup must satisfy the graded Jacobi identities
dictates that'the group may take on two possible forms (A) or

(B). Looking at form (A) in more detail, employing expansions

in powers of the graded variables, we were able to "solve’ the
graded function group up to the presence of two arbitary even,
real functions of (q,p). This was done at the expense of making
one further choice, which amounted to fixing the form of>the odd
sector of the functieon group, resulting in equation (18). Choosing
the only other possibility iqherent in the condition results

in an equivalent pair of equations to (21) and (22), and is not
of great significance. We now continue our analysis and deal with
the other possible form.(B) of the “even-odd  G1,1 function group.
We approach case (B) in a similar manner to case (A). Substituting
{(18) into (185 we get:

(23) { a8 + Bmw,a® + Bw } = 2({ a.B }B.m - a.B) = G(E)

First let us look at the form of G{Ef. Let us assume G(x) may be
expressed as some power series in X, thus:

(24) G(X) = Mo+ M X + u2x2+ oL unx:+

Where we do not specify finiteness at this stage. Substituting

expression (17) for x now gives us:

n

(25) G(E) = u + u1(a + bB.w) + ... + uy(a + b8.mt) +...

Looking at the nth term in this expansion we have the following:
. n n n-1

(26) (a+b8.t)=2a+na bo.nm

So the function G(E) has the form:
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G(E) = ( ug+ wmya + ...+ gwan+...) ;
(27) n-1
+ b(C p,+ 23 +...ny a +..)8.n
If the function G(x) is expressible as a finite polynomial, then
we may write (27) above as:
(28) G(E) = G(a) + bG'(a)d.w
If G(x) is not a finite polynomial, then there exist pathological
functions that would make the step_between (273 and (Z28) erroneous,
howéver, for most well behaved infinite polynomials (28) will
still hold. |
We may now employ (28) in (23) to éive:
(29) - a.B+ { a,B }8.m = %(G(a) + bG(a)8.m)
Clearly this implies:
(30) a.B = -%G(a)
(31) . {aB } = %bG(a)
Turning now to (15) we have:
(32> { a + bB.m,aB + Bw }" = O
which gives us:
(33) - {a,a } = a.b
(34) | { a,p } = -B.b
Thus we have four ‘equations (30),(31),(33) and (34), linking ﬁhe
functions a,B8,a and b. Using equations (30) and (31) we may
determine B and b:

- G(a)

(335) B =
: . 2a
(36) b=1{ a,a}’
a

Equations (33) and (34) are now satisfied identically by B and b.
Substitution of the above expressions for B8 and b into the
expansions (17) and (18) for the functions E and T give us the

following general forms of these variables:

(37) ' E=a+{ a,lna }'8.1
(38) T = ab - Q(adm
2a
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We remark that once again, after analysis similar in content to
that which we did for group (A), we have been led to a general
expression for the functions which comprise the function group (B).
Again, after the group has been chosen, there exists two arbitrary
real valued functions a and a of the even phase space variables
(q,p) which characterise the group functions E and I'. The above
analysis completes the second of the only two possibilities (A)

and (B) for = gréded function group COnsisting‘of one even and

one odd function, constructed from two even and two odd conjugate
phase space yariables'(q,p;e,nj.

Before leaving this example it is interesting to compare the
form of the above function groups and their associated functions
with the work we did earlier in f 2.2 on graded canonical transfor-
mations. This is best done in a column, with the bracket relations

on the L.H.S. and the functions which satisfy those brackets on the

R.H.S. Observe, from § 2.2.1 we have:

(1
(@P 3} =1,{Q@} =0=¢{PP] Q=g+ {g.lnX 8.1
fT, 63} =-1,{@r3} =0={PT} ; P=p+{plnXj}énm
(r.e1 =0, (T.,T} =0={08) ; I=X8 , &= o

And from the above work on the (A) and (B) type function groups we

have:
(2) : '
{ E.T 3} = F(EDE E-a+({alnal - F(a) de.m
(T,T } =0 o T = a8
(3) |
{E,T} =0 E=a+{alna} 8.n
{ T,T }° = G(ED ; I = a8 - G(a)n

2a
We can see that in a sense groups (2) and (3) represent possible
‘ecompressions’ of the fundamental bracket relations (1). Notice
how the function a(g,p) in (2) and (3) now plays the role that

the variables (q,p) played in (1) - this is showing the mixing in
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the purely bosonic part of the functioﬁ group. The other arbitrary
function a(q.p) in (2) and (3), is playing a role similar to the
X(qg,p) in (1), which represents a conformal rescaling of the
fermionic sector.. Notice in (3) that the function G has caused a
mixing of the'fermionic variables @ and w. Because this is only a
first example, it is hard to understand clearly what is going on
here. A necessary first step is to analyse fully all the possible
graded canonical transformations of the type found in ﬁ 2.2, as
the freedom introduced by the arbitrary functions associated with
these symmetries seem to be present throughout function group type
reductions in the number of graded variables.

We now carry on with our analysis of the G1,1 graded function
groups by next -looking at the possibility of reducing the two even
and two odd graded»canonical variables down to two odd functions.

2.3.3° The_ odd-odd’ G1.1 function group.

The next possibility we examine is that of the two pairs of
graded canonical variables (g.p:;6,m) being used to construct a

graded function group .consisting of two odd functions, which we

denote by & = & (g.p:6,m) and & = $,(q.p:8.n), where |[®4] = 1 and
t®,1 = 1. In this situation equation (3) gives us the following:
(39) { 09,81 = A(®,9;)

(40) [ 9,.0) = B(31,97)

(41) { ®p,821 = C(P; ,92)

where the function B(®d;,%,) is required to be symmetric under the
interchange of & and $,.
As before we must first check to see what restrictions the graded

Jacobi identities place on us. With only two odd functions we have:

0

(42) e, B9,823 ) v 2( 8. { B .81}
0

(43) . { 82,{ & .93} + 2{ &4.{ 2,,9} "}
Looking at (39),(40).(41) again, it is clear that since we only
have two odd functions in the system, the only possibilities for

the functions A(®y ,®% ), B(® ,®;) and C(&1,2;) are to be of the
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following form:

(44) AC®, ,8,) = a & .8
S (45) _ B(® .8 ) = %b(21.% - 9, %)
(46) C(@1 ,@2) = C @1 .@2

Where a,b,c are real constants.

Substituting (44).(45) and (48) into (42) gives us the following
conditions on the constants a,b.,c:

(47) b.c =0 s a.c + 2b =0

Unfortunately, doing the same substitution with (43) yields the
further condition:

(48) a.b =0

Thus the only possibility for the form of the brackets (39,40,41)

is the trivial>group:

(49) { &,,81}" =0
(50) - { 81,8} =0
(51) { & ,% 1 =0

As before we make the following Grassmann expansions:

(52) Bz 8+ BT

With a1,a2,B1,B2 being functions of (q,p). He now substitute these
expreésiohs~into équations (49),(50) and (&1).

This gives us the following conditions on the functions a .a and

B .8

(54) ’ a1.@ = 0

(55) | ay By = O

(58) aT'BZ+ a2.31: 0
(57) B T S N S

Clearly, various.choices are possible here. For example take the

case of:
(58) 0.2: 0
(58) B1=20

Then (56) would imply:
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(60) Ca,.B,=

Which amounts to either:

(61) " $ =0 , B,=B,m
or
(62) &= a;8 , 8= 0

One can quickly see that another possibility is:

(63) %, = a1Q ; @2: 028

and so on. Thus we conclude that thé requirements of satifying the
graded Jacobi identities place severe restrictions on the form and
solutions of the “odd-odd” graded function group. All that remains
to complete the analysis of this class of graded function groups,

is to examine the case of the reduction to two even functions.

2.3.4 The ‘even-even  Gl1.1 graded function group.

We now consider the final case of the graded canonical set
{(q,p;8,n) being reduced down to two even functions, which aré
denoted E;(q,p:9,m) and E;(q.p;8,m), with |Es] = 0 = |E,|. The
function group equation (3) in this case becomes:

(B4) { E+ ,Ep 3" = F(E; .Ez)

Wheré the function F is anti-symmetric under interchange of E1,E2.
The Jacobi identities are satisfied identically for only two even
functions. so we have no gonditions on the function F that way.

Some progress can be made by assuming the function F(E{,E;) has

the following férm:

(B5) F(E1,E2) = ACE{)B(E;) - A(E,)B(E;)

Then 1f we ﬁlace:

(66) Ey= ag+ by 8.1

(B87) Ey= a;+ byf8.«

we have from before:

(68) : A(Ey) = A(a1) + bjA'(a1)8.x
(869) A(E;) = A(aé) + byA'(a;)8.w
(70) B(Ey) = B(a1) + 1B’ (g )6.n
(71) B(E;) = B(aj;) + bpB'(a;)8.m
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where we assume the functions A and B are suitably well behaved,
and upon substitution in (64) gives us:
(72) { 81.82} = A(a,)B(az) - A(a,)B(a;)
(73) { at,bz} + { by.ay} = b, (ACa; )B (ay) - A(aj;)B (a;)) +

+ by (A" (ay)B(a,) - A'(aZ)B(a1))
The first condition (72) tells us that the functions a,, a,, must
themselves form a bosonic function group with the function F.
The second equation (73) is a condition that the functions b, . b
must satisfy for E1,E2 td also satisfy (64). By employing a power
expansion argument similar to the one we used above, it is clear
that any well behaved function F will produce a condition similar
to (72). That is,.the zeroth order term in Grassmann variables of
the functions E; and E, will always satisfy (72). The additional
functions b1,b2 will then have to be chosen to satisfy the further
constraints which_occur. Thus we see that the “even-even’ graded
function group for fhe G1.1 system is by far the least constrained
of the three possibilities, and nearest in form to the standard
function group defined in Part I. An example of an ‘even-even’
graded function group which physically might be of interest is
the case when the two even functions E1.E2 form a éonjugate pair.
That is:
(74) {E LBy} =1
Under these circumstances, using the expansions (68) and (87) for

Eq and Ez, we obtain the following conditions on the functions ay,

az,b1 ,bZ:
(75) o {ay.a,d =1
(76) { a;.b,} + { b3} =0

If we suﬁpose that b, = Q(a1,a2) and b2: Q(a1,a2), then clearly

the following functions satisfy (74):

(77) Ey ay + ( kg + f(az))b.w
(78) Ep= a2 - ( kap+ g(a1))e.n
Where f and g are arbitrary functions of a and a respectively, and
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k is some real constant. A particularly obvious choice for the

functions a, and 8, which satisfies (735) is the following:

1
(79) : E

q + ( kg + f(p))B.n

(80) E=p - ( kp + g(q))8.¢

This concludes this brief look at the simplest examples of the
‘idea of the graded funétion group, which we believe serves to show
that the idea does make sense and should be investigated system-
atically. At this stage we do not have enough examples to be able
to realistically hope to p?oject what the gerieral principle is
lying behind these objeéts, we'feel certain that the graded perm-
utation group will play a role in this theory somewhere, though
this is just speculation. Again, it 1s not clear if anything fund-
améntally new will come out of such a study. However so long as
objects such as the graded Dirac bracket are in.use by the physics
community, then the structure of gfaded function groups should be
understood.

We now leave this subject and go on to investigate the problem
of realising a general super Lie algebra using graded fuhctions
defined on a super phase space of the type we have been dealing
with,vwhefe the graded Poisson bracket is used to define the Lie

combination operation.



2.4.0 Graded Poisson Bracket Realisations.

Introduction

In Part I it was made clear that a necessary element that is
required before being able to carry out the group theoretical quan-
tisation program in [37], is understanding how to realise a gen-
eral Lie algebra using'phase space observables and the Poisson
bracket as the Lie combination rule. What this amounts to locally
is that, given some Lie algebra [ Ti,Tj ] = Cijk Tk, we may find well
defined.functions on phase space Fi such that { Fi,Fi } = Cijk Fk.
Technically such a correepondance is known as a ‘Souriau momentum
map  and has many interesting properties [55]. In this section we
examine a graded generalisation of this idea, with particular
attention being paid to the graded equivalent of the cocycles of
Part I. What finding the graded generalisation of the momentum map
described above comes down to is! given some super Lie algebra L
which has both commuting and anticommuting generators, we must
find a correspondance between these generators and the space of
odd and even functions on the graded phase space, which realises

the algebra under graded Poisson bracket combination. That is, if

the super algebra has the following form:

_ k -
(1) [ Ei,Ei 1~ = Cij Ek :
with i,3,k = 1,..,n
B
(2) : { Ei,Oa 17 = Dia 0B
and a,B = 1,...N
(3> » [ Ca,.0B8 ] = FaB Ek
Where Ei represents the even (commuting) generators, and Oa the
k B k
odd (anti-commuting) generators. And where Cij , Dia , FaB are the
structure constants of the super algebra, with [ . ] representing

the graded commutator bracket which is defined as follows:
(4) [ A,B 1 := A.B - (-1) B.A

where [Ei|l = 0, [Oal = 1.

Also we require that the brackets (1,2,3) satisfy the graded Jacobi



identities (see appendix A), which means that the structure constants

of the algebra C, D and F in (1,2,3) satisfy:

m n m n m n

(5) Cij Ckm + Cki Cjm + Cik Cim = O
1 5 1 6 1 5

(6) FBu Dal + FaB Dul + Fua DB1 = O
1 kK a1 b1

(7a) Cik FaB + Dai FuB + DBi Fua = O
, k & H- 0 u &

(76) Cij Dak + Dja Diu + Dai Dju = O.

We wish to find a correspondence:
(8) Ei ---> fi(q,p;8,m) , Oa ---> fa(q,p;8,m)
where |fi| = 0, for i = 1,..,n, and |faf = 1, for a = 1,...,N,

and such that the functions fi, fa satisfy the following:

k
(9) { fi,f3 +° = Cij fk
: with 1,3,k = 1,..,n
B
(10) { fi,fa } = Dia 1B
' ' and a,B = 1,...,N
: . k
(11) { fa,fB } " = FaB fk

If this is possible to do one says that the superalgebra has been
truly realised. Unfortunately in general this 1is not possible to dc.
Irn carrying out this process in Part I on a straight forward Lie
algebra, we saw how central terms, called cocyecles, appear and
which have to be removed if a true realisation is to be made. A

similar occcurence arises in the graded case, which we describe in

the next section.

2.4.1 Central terms in graded Poisson bracket realisations.

The local central extension which can occur in graded Poisson
bracket realisations, appear on the right hand side of equations

¢9), (10) and (11) in the following manner:

k

(12) { £fi,f3 }° = Cij fk + =zij
B8

(13) { fi,fa }° = Dia fB + zia
k

FaB fk + zaB

(14) { fa,fB }-
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Where |zijl = 0 = |zaBl, lzial = 1. Also the central terms have

the following symmetry properties:

(15) zij = -zji
(16) ' zia = -zai
(17) o zaB = zBa

in accord with the symmetries of the graded Poisson bracket. The
first property we prove about these central terms is the following:
Proposition 1

The central ﬁerm zia in equation (13) is identically =zero.

Praof

The central term zia arises from a graded (skew)symmetric object
Z(A,B), which we call a graded 2-cocycle [58], and where A,B are
génerators of the superalgebra defined by equations (1), (2) and
(3). We have:

(18) ziq'E Z(Ei,Oa) = - Z(Oa,Ei) = -zai

However, since the gfaded poisson bracket is bilinear in Grassmann
numbers, for consistancy we also have:

(18) ' 7( €0a,Ei) = Z(0a,€Ei) = €Z(0a,Ei) , where [€] = 1

This imﬁlies:'

€Z(Ei,0a) = Z(Ei,e0a) = Z(€0a,Ei) = €Z2{0a,Ei) = - €Z(Ei,Qa)

=> zia = -zia = zia = 0 as claimed.
Where we have used the fact'thét Z(A,B) is graded (skew)symmetric.
Thus, requiring zia to be antisymmetric in (i,a) is inconsistent
with the bilinearity of the graded Poisson bracket. This is a well
known result, see for example [5] on central extensions to super-
algebras.

Wwhat other conditions do the these obJjects satisfy? By applying
ﬁhe super Jacobi identities to the bragkets (12), (13) and (14) we
obtain the following identities:

| 1 14 1
(20) Cij =zkl + Cki zjl + Cjk zil =

!
o

: J v} )
(21) FaB zij + Dai zBu + DBi zap

"
o
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Equation (20) is just the standard result similar to the one

we encountered 1in § 1.4.2, which is Jjust the condition that the
Z-cocycle is closed. However (21) is associatzd with the graded

- extension. We notice that (20) and (21) are sztisfied identically
by the application of the supef Jacobi .identities (5,6,7), if

z1ij and éaB are of the following form:

k
(22) : zij = Cij zk

k
(23) . za = FaB zk
Where |(zk| = 0, for i,j,k = 1,...,n.

This is equivaleht to the situation in § 1.4.2 where the 2-cocycle
is the exterior derivative of a l-coboundary. In Part I it was showurn
that it is possible under the conditions of the Lie group having a
nori-degenerate Killing form, to invert equatiecn (22) (that is the
group .is semisimple). Under these cicumstances it is possible to
‘remove  the central terms from (12) and (14). by the addition of
- zk to the functions fk. The gquestion arises as to whether it
possible to discover a similar remedy in the graded case. That is,
is it in general possible to invert equation {22)? If we can, then
the graded cocycle is removeable. In studying this problem, let us
first assume that the bosonic part of the supsr algebra is semi-
simple and compact. That is:

n m
(24) Cim Cin = 81ij : the Kronecker delta

The super Cartan-Killing forms are [45]:

(25) gij = 81j - Dia DJjB = - gii
i , | i
(28) gaB = Dai FBu - DBi Fap = - gBa
(27) gai = gia = 0
We are required to invert the equation:
k
(28) 2zij = Cij zk



The first observation we make is that to raise and lower indices we
should use the full, supersymmetric, Cartan-Killing forms. For this
reason we make the further assumption that the supersymmetric
Cartan-Killing forms gij, gaB have well behaved inverses. That is:

Jjk k

t
[0
(W

(29) | gii g = Bik

BT T
(30) sal g = Ba

Becéuse we are using the full Killing forms (25) and (26) we note
. . _ k
that now it will not follow automatically that Cijk = Cij as in

the standard theory. In fact, if we define:

m
(313 C"ijk := gkm Cij

then we may state the following proposition:

Ezgggsitign_lL"

The tensor C° ijk is totally anti-symmetric in indices.

Proof
Since-by definition:

' ' .m [ r B a m
(32). : C ijk := gkm Cij = ( Ckr Cms - Dka DmB ) CijJ

the first expresssion in the bracket gives the standard anti-
symmetric result for the bosonic algebra. For the second term we

have:
o a i B

13 L +
Diuw + D3R Dip )

2 a m !
(DB

- Dka DmB Cii Dka

t

B i a B u a
Dka DiB Diu - Dka DiB Dju

Where we have used the super Jacobi identity (7b). Manifestly this
ig anti-symmetric in i and i, interchanging k and j we get:
3 oo B ot o B8 ¥ b« 8
Dia DkB Dig - Dja DiB Dku = - (Dkp Dja Diff - DkB Dip Dja )
which completes the proof.

We also note that:

k1l k
(33> g C"ijl = Cij
We are now able to invert the expression (28) since:
, k k . k
(34) ‘ zij = Cij =2k = C’ijk z = C’kij z

raising j on both sides we get:
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A J i k
(35) . : . zi = Cki =z
i
and now multiplying through by Cmj gives us:

i 3 i Jj k k m
{36) Cmj 2zi = Cmj Cki 2z = 6mk z = =z
That 1is:
: 13 i
(37) zm = gmk g Cki =zil

So we see that although we move through an intermediate state and
deal with the non;stanQafa C’'ijk tensor, the property of anti-
symmetry is sufficient to ensure the inversion 1s still possible,
albeit under cértain assumptions. We are now able to prove the the
following proposition, which goes part way to generalising that
stated in § 1.4.2:

Proposition I11L

Under conditions (24),(28) and (30), and also the caveat below, the
lcentral extentions zij and zaB in equation (12) and (14) may be
rémoved by a redefinition of funetions fi énd'fﬁ.

Proof |

Redefine fi by the addition of - zm from (37). The super Jacobi
indentities (5) to (7) then ensure that the fi satisfy .(8) and (11).
However there is a caveat: | |

Caveat

There ic & further assumption underlying this. It ié that given

z1j = Cijk zk, then-the only possibility for zal such that
equétidns (22) and (23) are satisfied identically, is that the

components zaB are of the form zaB = FaR =zk. Subject to this

caveat the proof 1s complete. What this amounts to is showing that

the only solution of:

B B | K
(38) Dia AuB + Diy AaPp = 0 , where AaB = zaB - FaB =zk
is that:
(39) AaB = O
B

It seems reasonable to hope that this requirement on the Dia 1is
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already covered by demanding gij has a well defined inverse, though
the author does not know a proof of this. Until this point is clearec
up equation (38) represents a further condition on the types of éuper
algebras which permit the removal of cocycles.

2.4.2 Graded Poisson bracket realisations.

Having looked at the gquestion of central extensions we move on

to the question first posed in the introductior to § 2.4, namely,

is it possiblg to find a graded version of the momentum map (8).

That is a correspondence suéh that (9), (10) and (11) are

satisfied. In this section we generalise one classical realisation

of this problem. This result appears in a less general form in [8].
It is well known classical result that, given some Lie algebra

(40) [ Ei,Ej ] = CijkEk

then the following map fealisesvthis algebra by observables on

rhase space, under Poisson bracket combination:

(41) . Ei ---> fi := Cij g pk

It is easy to verify by employing the Jacobi identity that:
' k

(42) _ { fi,fi } = Cij fk

What is the graded generalisation of this result? The following map

is found to work:

k 3 B a
(43) Ei ---> fi := Cij q pk + Dia nB.8

k g B 1
(44) Oa ---> fa := FaB pk &8 + Dai g nB

We demonstrate this explicitly for the {even, odd} case:

k m u 1 m J
((Cim pk)(Fau 8 ) - (Dam mu)(Cii g )) -

{ fi,fa }°
B Mod 3 B
- ((Dip mwRY(Dai q ) + (Fau pj)(DiB B8 )

vl 1 B B
Dia (FBu pl 8 + Diju q mB)

"l
Dia fu

Where we have used the super Jacobi identity (7). We can see
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clearly that (43) and (44) are the natural generalisation to

(41) if we state them in a more unified form using graded matrices
similar to those introduced by Casalbuoni in [18]. Setting:

(45) (Qa) = (qi;Ba) , (Pb) = (pj;mB)

with i, = 1,...,n, a,B =1,...,N, and a,b = 1,...,n+N. And
defining the matrix M to be:

C D
(46) (MYab :=

D F
Where C.D,F are the structure cénstants of the super algebra (1,2,3),
then we may write the maps (43).and (44) as:
(47) ' (Ga) ---> (fa) = (Pa)Mab(@b)
Where (Ga) = (Ei;Oa) and (fa) = (fi;fa). This is the natural form
in which to seé the generalisation of the map (41).

Another way that the map defined by (43) and (44) may be
understood is by the use of the graded Hamiltonian vector fields of

ﬁ 2.1. If we form the G.H.V.F.s assobiated with the functions f1i

and fa, thus:

» m 3 > 3 > B a> a >
(48) Pfi := Ciji g8 - Cim pjo_ - Dia 89 - Diu nad_
. ogm Spm 0Bk dmp
< mB < B < B k < k
(49> af® := o FaB 8 -2 Dam nwR -8 Dak g -2 Fap pk
oqm opm OB QTN

Then employing (27) from § 2.1 and using the properties of fi1 and

fa, then the following holds:

k

(50> [ fi,®fj 1~ = Cij @fKk
' B

(51) [ ¢fi,af® ] ° = Dia Bfd
' k

(52) [ af®,Bfd ]~ = FaB ofk

Thus we have realised the super algebra (1,2,3) by the use of graded
Hamiltonian vector fields and the graded commutator bracket.
Before we leave this subject there is one further point to

make. In the event that the super algebra in question is of a
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type which has C = 0 and F = 0, then the functions fi and fa may
be adjustéd to the following:

(33) f1i = pi + Dia nwp ©

B2
(54) C f'a = ma + Dia g n

This is the realisation which appears in [3].

2.5.0 Group Theoretiéal approach to Quantisation of Graded

Systems .

Introduction

In § 1.4.3 we explain briefly some of the ideas behind the
group theoretical approach to guantisation, a full account of
which is given by C.Isham in [36,37,38]. As we explained previously.
the motivation for this thesis came from a désire to extend
this approach to guantisation to include systems which incorporate
anticommuting variables in -a natural way. To be able to construct
a rigorous general theory which achieves this, requires considerable
familiarity with the differentiél geometry of graded phase spaces.
However, it is possible to examine the idea from a less ambitious
angle. Because at this stage we lack a fully developed theory of
graded manifolds, instead we decide to employ a ‘flat’® graded
pafameter space of the type frequeﬁtly used by physicists (and
confusingly known as superspace) on which to illustrate some of
the ideas we have been descussing. The actual superspace we
use is just a flat coset space obtained from a completely
abelian graded algebra, which 1s designed to parallel the example
in § 1.4.3 on the group thecretical approach to the guantisation
-of Rn drawn from [37].

We begin-this section by carrying out what is essentially a

verbal exercise of inserting words like "graded” and ’super-
symmetric’ into the programme described in [37] and which we

reviewed in § 1.4.2. After some descussion as to what this might
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mean, we illustrate how this approach to graded qQquantisation mighf
look when applied to a "flat’ configuration space of mixed real and
Grassmann variables, which is the direct product Rn @GN of an n-
dimensional real space Rn with an N-dimensional Grassmann algebra GN.
2.5.1 ‘The graded aquantisation programme.

The central idea of the "group theoretical’ approach to quant-
isation is that the guantum operators of the theory come about by
a ‘quantisation map” from a special set of observables appearing in
the classical theory..The observables which comprise this set are
those which realise the algebra of the‘classical transformation
symmetry group (or a central exXtension of this gfoup) associated
with the classical phase space under guantisation. This approach to
quantisation gives a nice interpretation of the "ih” in the standard
Heisenberg canonical commutation relations, as‘being a kind of
anomaly: a failure of realisation between the classical symmetry
of the phase space and the natural observables of the system. In an
putiine form we might express the generalisation of this quantisa-

tion procedure as a correspondence between the columns of the

following chart:

Standard Bosonic programme Bosonic/Fermionic programme
Classical mechanics with phase Pseudomechanics on a graded
space being some symplectic phase space being some ortho-
manifold with symmetry. symplectic supermanifold with
supersymmetry
Find some transitively acting Lie Find some transitive acting
group on the phase space, which Lie super group on S.P.S.
linkslall the points in the which links all points in
phase space to one another by the S.P.S. by the action of the
action of the group. . supergroup.
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Realise the-algebra of this group
by some subset of the set of well
defined observables on phase space,
using the Poisson bracket as the
Lie combination operation. If this
is not possible to do with this

algebra, use the central extension.

Carry out a ‘quantisation map’ from
this set of classical observables
to a cofresponding set of linear
operators 1in some Hilbert space

which realise the quantum algebra.

Complete the process by finding
irreducible representations of
the quantum algebra on Hibert

space.

Realise the algebra of this
super group by some subset
of the set of graded obser-
vables using the graded
Poisszn bracket as the Lie
combination operation. If
this is not possible to do
with this superalgebra, use

the graded central extension.

Carry out a ‘quantisation
map from this set of
pseudo-classical observables
to a corresponding set of
graded linear operators on
super Hilbert space which

realise the quantum algebra.

Find irreducible represen-

taticns of super algebra

on super Hibet space.

These then are the ﬁords. Below we discuss some of the problems one

encounters when actually trying to associate meaning with the

graded programme suggested above.

2.5.2 Discussion of the graded guapntisation programme.

The first point to consider is that = pseudomechanical

phase space 1s not as intuitive an idea as a standard classical

phase space whose local co-ordinate functions are all real and

commutative. Faced with some classical theory, it is likely that

one will have a good intuitive grasp of the form the classical

phase space will take (though we note that this is not always the
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case. For example the phase space of the classical string is not
straight forward to envisage), or a notion at least of some of

the symmetries the space might possess. However, when the config-
eration space of the theory involves anticommuting variables as

it does in the case here, this type of intuition is far harder to
come by in even the simplest of examples. The lack of easy
visualisation of the variables makes graded theories intrinsically
harder to grasp. For this reason the link between the way the graded
phase space is expressed and the group of symmetries of the space,
if indeed there is one, might be hard to find. In fact often in the
physics 1iteratufe superspace is actually defined by use of the
symmetry group, by identifying it as the coset space between some
known supergroup and its even Lie subgrouﬁ {32,411. A theory const-
ructed in this manner essentially reverses the first two of the
correcpondence steps above, making the link between the two steps

a definition. Two examplesbof populéf superspzces which have been
constructed in this way are [41]: (A) Super Minkowski space and

(B) Super De-sitter space. Looking aﬁ these two spaces in turn, in
the case of Super Minkowskil space we have:

(A) The quotient is taken between the Super-Poincare group and

the Lorentz group. The resulting space is necessarily flat and has
four bosonic co-ordinates Xp, o = 1,...,4, ard four fermionic co-
ordinates 68a, a = 1....,4. This type of superspace can be decomposed

into a direct product of the bosconic and fermionic parameter spaces,

thus:

Superspace S = BfX)F , where B = Bogonic configeration space
and . F = Fermionic parameter space.

Where we have:

(1) s = (g/h) @ (G/g)

where g < h = {even subgroup of supergroup G}. In the case of super

Minkowski space this decomposition works as follows:



€2) Minkowski superspace M = (g/h);@ (G/g)

where; G = Super Poincare group, g = Poincare group , h = Loréntz
group. Thus:

(3) M = (Minkowski 4—space)@§(Fermionic parameter space)

where M has co-ordinates:

(4 , (Xa) = (Xu;B8a) , a = 1,...,8

with Xu € R4, p = 1,...,4 ., and Ba form a G4 Grassmann algebra.
(B) For the case of Super de Sitter space we have:

(5) S =6G6/h = BQF = _0Sp(N:4)

SL(Z,C) @ O(N)
Where the boscnic and fermionic parameter subspaces are:

(B6) B = SQ(QB) ~ 0(3.2)
. SL(2,C) 0(3,1)

which is the standard de Sitter space,and:

(7) F = __QSp(N:;4)
Sp(4;R)Y @ 0N

as the Fermionic sector.

For a superspace defined in this way one would, by definition,
autogatically have a transitively acting Lie supergroup on the
superspace. So for this sub-class Qf'graded spaces, the link between
the symmetry of the space of the space itself is by construction
trivial. We note that we would want our notion of a supermanifold
toc be a far more general constrpction than the type of superspacés
defined above, and hence we would need to understand what is meant
by the "transitive action’ of a gupergroup on a supermanifold in a
wider context. For the spaces defined as above the standard group
definition suffices.

To héve successfully completed the first two parts of the
correspondance we suggest above, we must have furnished ourselves
with some sort of graded phase space, which has a local co—ordinate
expansion which looks something like (qi,pj;8a,mB), where the
(qai,pj) commute and the (Ba,nB) anticommute. Also we must have some

supergroup S which moves us (transitively) round the space in some
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manner to be defined. Having obtained this group, we can start the
process of realising the algebra of this group, or if necessary a
central extension of it, by functions on the graded phases space.
These_functions determine which observables toc map over to become
linear operators on super Hilbeft space, from which the quantum
theory of the system is determined through irreducible represent-
ations. If the correspéndence suggested above does indeed work out,
then we would expect that the quantum algebra of these linear
operators to be either the graded Lie algrebra associated with the
supergroub S, or a central thension of this algegra if there is
an obstruction analagous to the cocycles of § 1.4.2 present, and
which we discussed earlier in b 2.4.1.

The programme we outline above represents how‘we expect a
graded generalisaticn of the group theoreticai approach to quant-
isation to work in a broad sense. To give'a more detailed
exposition of such a programme would require far more machinery
than we have developed here. Instead, we work through an example
which applies these.ideas to a superspace of a type commonly
emploved by physicists, that of the coset space between a super
group and its even Lie subgroup. The example we use is designed
to parallel the example given 1in § 1.4.3 of the group theoretical
approach to the quantisation of Rn, whibh was taken from the work
of C.Isham in [37].

2.5.3" The group theoretical approach to the gquantisation
of Rn ) GN.

The natural generalisation té the example in § 1.4.3, is the
guantisation of the configuration space Rn(@ GN. That is, a space
consisting of n commuting real co-ordinate functions xi, and N
anticommuting Grassmann parameters 8a. By analogy to the case of Rn,
translations about the space may be affected by the action_of the

graded abelian Lie transformation group on some arbitary point in



the space (because we have not defined an abstract superspace yet,
this is really the definition of Rn ) GN: a coset space between the
group of graded abelian translations and its even subgroup). The

algebra of this graded apelian group 1is:

(8) [ Ei,Ef 17 = G

(9) [ Ei,0a 17 = 0

(109 [ Oa,0B 1~ =0

Where Ei, i = 1,....n are the even generators, and Oa, a = 1,..,N
are the odd generators. Also [ , 1° repreéents the graded coﬁm—

utator bracket. To see what the group action associated with this
algebra is on some point in the coset space; we exponentiate the
generators. An element g of this group may be expressed 1in
following way:

(11) g(xi.8a) = exp(xiEi + Bala)
Because all the gradg commutation relations are zero, use of the
graded B-C-H formulae gives us the group action on a point in the
the space Rn & GN:

(12) ' g(xi,Ba).(yi,ma) ---> ( yi + xi, Ba + ma ).
So the graded commutation relations (8).¢(38) and (10) produce a
group action on a point in Rn'X)GN which i=s the natural general-
ication of the example in § 1.4.3 of the action of the abelian group
of translations on Rn. This then deals with the structure of the
configuration space..To-obtain the full super phase space we
take the direct prq&uct of the configuration space with the
‘momentum sector’, thus:'

Super Phase Space = (Configuration space)@D(Momentum Sector}

(Rn @ 6N) ® (Rn ® GN) = R2n ¥ G2N

The full graded abelian translation group 1is obtained by exponent-

iating the following algebra:

(13) [ Ei,E53 1" =0 , [ Fi",Fj'1" =0 , [ Ei,F3°]1" =0
(14) [ Ei,Oa 1" =0 , [Fi,Ma']l" =0 , [Oa,Fi"]1" =20
(15) [ Oa,08 1" =0 , [ Ma",Mp"1" =0 , [ Oa,Bp’]” =0
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where (Ei,QOa), with i = 1,..,n and a = 1,..,N are the configuration
space generators from above. And (Fi’ ,Ma’), with i~ = 1,..,n and

a = 1,..,N are the generators associated with translations in the
momentum sector of ' the super phase space. Writing:

(16) (As) = (Ei,Fi ) , with s = 1,...,Zn

(0a,0a’) ., with u = 1,...,2N

(17) (Hw)

then we may write the brackets (13),(14) and (1%) as:

(18) [ As,At 1% = O
(19) [ As,Hu 17 = O
(20) [ Hu,H8 17 = O

This then is the algebra of the group of pseudo-classical graded
abelian translation of the super phase space Rn(@ GN. Following the
comments earlier in this section, it is this algebra that we are
required to find a true graded Poisson bracket realistion of to

be able to continue with the group theoretical approach to quan-
tisation.

Specifically we must find a map from the space of generétors
of the algebra into the space of graded observables on super
phase space, which preserves the algebra'(18), (18) and (20), with
the graded commutator bracket being mapped over to the graded
Poisson brécket. However, as we know from the previous discussion
in § 2.3, a realisation of the algebra (18), (19), (20) will involve
central terms. That is, 1in general a map from the space of gener-

ators into the space of graded observables, thus:

il
[

(21) As --—-> fs(gqi,pji;Ba,nf3)} , where |fs|l = 0 for s .,2n

(22) Hu ---> gu{gi,pi:Ba,nB) , where [gul 1 for u

1
—

., 2N

will necessarily produce central terms as follows:

(23) : { fs.ft )} = zst
(24) ' { fs,gn 3}~ =0
(25) { gu,88 ¥ = zug

These central terms are indicative of a.non-trivial graded: Z2-cocycle

in the graded algebra (18,189,20), which is not possible to remove by
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the addition of constant terms to the functions fs and gu, because
the structure constants of the algebra are all zero. Explieitly this
goes as followé. Let us try to realise the algebra (18,18,20) by a
set of functions on super phase space. The simplest functions we can
use are the graded canonical variables themselves (qi,pj;8a,na),
with the natural correspondance:

(28) Ei ---> pi , 0QOa ---> ma

(27) 4 Fi"---> gi , Ma'---> Ba

(Note that the prime in (26,27) is just a tag which is used to
indicate the momentum sector.)

Clearly the mapping (26) and (27) does not produce a graded Poisson
bracket realisation of the algeb?a (18,19,20), because of the cross
terms which result in the numbers zst and zug being of the following
form for this'choiée of the functions fs and gu:

(28) zst = 8is.861°t

(29) ' zZug dap.da’ @

Although the mapping (26) and (27) of the generators As and Hu td
the functions fs and gp is only one possible choice, in general zany
other choice will also result in fhe numbers z=t and zug being non-
zero. That is, it is impossible to realise thé algebra (18,19,20) zs
it stands by graded observabies on super phase space. Following the
discussion of the subject earlier, this is a signal to us that we
are dealing with the wrong algebra - in other words the group about
which the quantum theory ié built is different from the super group
of Lie transformations of the underlying psuedo-classical phase
space. This is similar to the idea of the "ancmaly’ . Basically an
anomaly occurfes when a classical symmetry is broken at the
quantum level [38]. Here wé have a somewhat similar situation: it
is not possible to base a gquantum theory round a (psuedo) classical
symmetry and therefore that symmetry is not present at the quantum

jevel. In fact, the graded algebra we should be dealing with 1is

the central extension of the (psuedo) classical algebra, which in
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the case of (13), (14) and (15) is the following:

(30) { Ei,E3 1] =0 , [ Fi",Fi"'] =0 , [ ﬁi,Fj’]’ = Tij~
(31) ( Ei,Oa ] =0 , [ Fi",Ma’] =0 , [ O0Oa,Fj'] =0
(32) { Oa,OB 31" =0 , [ Ma",MB"]1'=0 , [ Oa,MB"] = TaB"
(33) [‘Tij’, any generator]l” :>U = [ TaB’, any generator]’
where |Tij'} = 0 and |TaB’'| = 0, and in this notation may be
expressed:

-(34) — Tij ™ = 8ij , TaB ™ = &aB

Thic algebra 'is now realiséd by the mapﬁing (28) and (27), so it
does form a suitable basis round which to form a gquantum theory.
The hermiticity of operateors in quantum mechanies deems a final
alteration to the algebra (30,31,32,33) apprcpriate before it may
used to coﬁstruot a quantum theory around:
(35) . Tij " = 1h 81ij s Ta@” = 1h 8aB.
Thus, brackets (30) to (33) together with the choise of central
extencsions (35) constitute the familiar quantum algebra of the
Rn ® GN system (for example see [17]).

This concludes this short look at the grocup theoretical approach
to quantisation in a graded setting, the ﬁurpose of which really
is to show that such an idea can make sense. For a fuller treatment

of this subject considerably more graded machinery is required.



2.6.0 The Q(3) Supersvmmetric Sigma model: @uantum Mechanics
on_a Sphere with Fermions.
Introduction

In this final section of the thesis we discuss the natural
generalisation to include fermions of the “particle on a sphere’
model looked at 1in § 1.3.8. We derive this model in a simple way
from considerations similar to those present in papers by E. Witten
[63,64], J.Barcelos-Neto et al [6,7] and M.Spiesgelglas [5B8]. And
we'célculate the Dirac brackets of this theory. During this
work, reference [B] came to. the attention of the author, and which
highlights an interesting difference between the work we do here
and that done in [6] and [56]. The model dealt with in these ref-
erences does not include various extra constraints, which in the
approach we take here seem unavoidable. As we shall see, one of
the conseguences these additional constraints have is to put in
question how, if at all, the model that we p;esent here is super-
symmetric. From these considerafions it would appear that further
work is required to determine the role of the secondary constraints
in the supersymmetry of this model.

Z2.6.1 0(3) supersvmmetric quantum mechanics in (0+1) dimensions.

Following [6,56;83]., we introduce the standard 0(3)
supersymmetric quantum mechanics model, making as few as possible
assumptlons as to the nature of the variables concerned, stating
th° transformations under which the model is supersymmetric [6)

We then introduce a primary constraint analogous to the 'motion on
a 2-sphere’ constraint used in § 1.2.8 and, zfter determining all
the associated secondary constraints, calculate the Dirac brackets.
IbLM_al

As in [6,56] we start with a general superfield .$1(8,8,t), where

i=1,2,3, and 0, 8 are two independent Grassmannian variables
such that:

2 _2 — _
(1) 8 0 =26 , 8.8 + 6.0 =0



Furthermore, we have the following well known super covariant

derivatives:

(2) D=3 - iBa
00 ot
(3) ‘ D = 9o - iB3.
oe ot

And a general superspace action integral:

'l

(4) A = Jdtdedé L(®i,Ddi DEi)

which is invarient under two supersymmetry transformations:

(5) 80i(t,6,8) = €(3 + 1623 3%i(t,H8,8)
. 30 3t

(8) - 56i(t,8,8) := €(2_+.i80 )Pi(t,8,8)
2 at

where € and € are two independant anti-commuting parameters. We now

choose the lLagrangian to be:

(7) L(®i,D®i,D®) = - % T D®i.D®
i

and we expand the superfield ®i in powers of 8, 8 thus:

(8) 3i(t,0,8) = Xi(t) + gi(t)8 + Fi{t)B + Fi(t)6.6

We make the following remarks at this stage:

(A)Y The Xi{(t) is & real, 3-component, time—dependent field which
forms the bosonic co-ordinates of our (super) configuration space.
In components (Xi(t)) = {(x(t),y(t),z(t)).

(B The @gi(t) is a cdmpiex valued, 3-component, anti-commuting
time dependent field. It therefore has & independent anti-commuting
components with gi(t) being the complex conjugate field.
Substituting the superfield ex@ansion (8) into the Langrangian
(7)Y, and carrying out fhe integration over the Grassmanian
variables we obtain the following expression for the action 1in
component form [6]: | |

(9) A = J;t(%(Xi)2+ %i(gi.pi - éi-ﬁi) + %(Fif) '
Also substituting the expansion (8) for ®i into the £wo super-
symmetry transformations (5) and (6) gives us the SUSY transform-

ations in component form [6]:
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(10) 8Xi = €gi , 8Xi = - €gi

(11) 5g3 = O ) Bpi = E(Fi + iXi)
(12) 5gi = e(Fi - iXi) , Fgi = O

(13) 5Fi = iegi , 3Fi = iépi

This is straight supersymmetric gquantum mechanics without any
additional featureé or assumptions, and with the Fi(t), i1 = 1,2,3
acting as real valued auxiliary fields.

Now, following [6,56,63], we impose the supersymmetric
equivalent of “the motion on a sphere’ constra}nt of § 1.3.8, by
demanding fhat:

(14) ¢i.2i = R?

where R € R and we use the Einstein summation convension.

This is a naturai generalisation to the X.X = chondition that we
encountered in § 1.3.8, and a quite reasonable primary constraint.
loaking at compéneﬁts of the various Grassmann variables we obtain
four conditions that the component fields must obey:

(15) ‘ : Xi.Xi = K

This is purely the reemergence of the ‘motion on a sphere  const-

By

raint from §.1.3.8 now relevant to the bosonic sector of this theory.

(18) ' Xi.g¢gi = O the 8 component.
(17) , Xi.gi = 0 the 6 component.
(18) Fi.Xi + ¢i.%1i = 0O : the 868 component

Let us look.at the effect of the SUSY ;ransformations'(lﬂ) to (13)
on the constraints (16) to (18). Under the 6 transformations the

four variations are:

(19) 5(Xi.Xi) = 2Xi.6Xi = 2egi.Xi = O
(20) , S§(Xi.pi) = 6Xi.gi + Xi.0gi = €gi.gi = O
(21) B5(Xi.31i) = 6Xi.Fi + Xi.68i = ¥ € d( Xi.Xi - R%)
dt
(22)  B8(Fi.Xi + gi.gi) = S6Fi.Xi + Fi.dXi + 8gi.gi + @1i.841
- ie d(gi.Xi)
dt

Where we have used (12) in (22), and employ the Einstein summation
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convention. The & transformations work in a similar manner, except
for (22)., which instead becomes:

(23) B(Fi.Xi + gi.gi) = ... = i€ d(gi.Xi)
dt

We will return to these variations later; at this stage we confine
ourselves to saying that the requirement that primary constraints
(18) to (18) are preserved under the SUSY transformations depends
on the constraints (168) to (17) being preservad in time.

Following [B3] the argument now goes thzt because there are no
derivatives of F appearing in the constraints (16) to (18) or in
the Lagrangian in (9), it is possible to eliminate the auxiliary
field F from it, yeilding the Lagrangian encountéred in [56]:

(24) L = % M(iif + %i(gi.@i —'éﬁ.ﬁi) + ﬁ(ai.¢i)2
. 8R2

. This Lagrangian together with the conétraints (18) to (17) give the
ecssential elements of the theory we will hbe considefing here. As
can be seen, it has been derived in a straightforward manner by
imposing a natural superfield constraint (14) on a standard super-
symmetric quantum mechanics lagrangian. We hzve made no assumptions
as to the nature of the fields Qi'and @i (for instance in the 1+1
dimensional sigma model of [6,83] these fields are majorana
spinors), and our superfield constraint (14) is compatible with the
transformations (10) through (13) providing we ensure that these
cons£raints are preserved throughout time. Since we are interested
essentially in "Dirac quantisaiion’, we must now move into a
Hamiltonian formalism, and use thaf setting to examine any further
canstraints of the theory.

2.6.2 The Hamiltonian feormalism.

We define the bosonic and fermionic conjugate momenta as follows:

(25) Pi := oL
X i

(26) mi = 9L for i = 1,2,3
dB i
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(27) mi := oL
: dF

Clearly (25) is well defined, however because our Lagrangian (24)
is linear in fermionic kinetic terms, we are led to the following

fermionic constraints:

(28) mti + %igi = O \ for 1 = 1,2.2
(29) Ti + %igi = O . for i = 1,2,3

As a result of these constraints. the Hamiltonian associated with
the Lagrangian (24) contains no fermionic momenta terms, but just
the bosonic momenta and the fermionic potential term, thus:

_ 2
(30) H = 1(Pi.Pi) - M(@gi.di)
2M 8RZ

At this stage the degrees of freedom are 6 bosonic and 6 fermionic
(where we include constraints (28) and (29) in the counting), which
balance as expectéd. The Rey point about Lagrangians linear in
kinetic terms is to realise that this feature must be incorporated
from'the start, by straight away using the Dirac brackets formed
from the constraints (28) and (29), and employing these brackets as
the natural Poisson brackets of the system. If one does not do this
it is tempting to believe that extra secondary constraints are
required to ensure that (28) and (29) remain valid under the time
development of the system.'This je erronecus and may be avoided by
incorporating these linear fermionic constraints from the start,
and thus removing all mention of the fermionic momenta i and Wi
right from the outsét.

Doing this then, the fundamental Poisson brackets we will be

using are the following:

{ Xi,Pj } =813 . { Xi,xdiy =0 , {Pi,P3} =0
(31) _ o
{ Fi.gi } = idi3 . { ei,g3 3} =0 . { ¢i,gj } =20

We now have everything that is required to be able to determine any
secondary constraints that might be associated with the primary
constraints (15),(18) and (17). We do this by demanding that the

primary constraints remain valid over all values of the time
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parameter t. Using (31) we obtain the following:

(32) { Xi.Xi-RAH 37 = 2(Xi.Pi)
M

(33) { #i.Xi,H }- 1(Pi.gi) - %(Xi.gi)(gi.gi)

M

(34) " s1.Xi.,H }~

1(Pi.gi) - %(Xi.gi)(@i.gi)
M :

The'second two terms in (33) and (34) are proportional to (18) and
(17) respectively and so may be disregarded. However, we see that
the requirement that (32),(33) and (34) are preserved throughoutA

the systems time development 1imposes three new secondary constraints

on us:

(35) Xi.Pi = 0O
(36)‘ _ Pi.gi = 0
(37) Pi.gi = O

Further action of'the Hamiltonian on (335), (36) and (37) fails to
produce any new constraints, so (35) through to (37) represents the
sum total. At this point an interesting question comes to light,
the anéwer to whiﬁh is not obviocus to the author at the present
time and which deéerves further investigation. The question simply
is: can we expect the secondary constraints (3%) to (37) to be
preserved by the suéersymmetry transformations (10) to (13)7 The
variations in the sécondary constraints produced by the super-
symmetry transformﬁtioné &5 are given by the following:

(38) 6(Xi.Pi) = BXi.Pi + Xi.dP1 = €(pgi.Fi + Xi.gi)

(39) - 5(P1.gi) oPi.g1 + Pi.8¢g1 = €gi.g1

(40) 8(Pi.gi) 8Pi.gi + Pi.é@i = e(gi.gi + Pi.(Fi - iX1i))
It is clear that using the equations of motion two out of the three
variations associated with the transfofmations % may be made to
vanish, but to satisfy the third does-not seem possible. As can be
seen above, variation (40) for the transformations & does not seem

to want to vanish. It may be that it is asking too much for the

secondary constraints to be compatible with the supersymmetry



transformations, or it could be that the model as we have described
it is not truly supersymmetric. These questions need to be answered
and certainly deserve further investigation at some later date.
We now move on and calculate the graded Dirac brackets of our
model. However, before we do that, it is worth making a few obser-
vations about graded matrices and their inversion.
2.6.3 The graded matrix

The graded matrix, which is a matrix incorporating both odd and
even variables, has the following block form:

Even f 0dd

i

(41)

0dd | Even
By way of illustration we take the simplest possible case of the

graded 2 x 2 matrix for an example. Let:

a a

(42) G oz
. ’ [l?) bJ

bt

Where lal = Ibl = 0 , lal = [B| = One may then verify that the

‘following matrix is the inverse of G:

f1¢ 1+ a.B) -a.
!a a.hb a.b
G = '
- 11 - a.B D
a.b b a.b

Thus the Grassmann elements somewhat obscure how the general case
will work. As it turns out. ﬁhe constraints matrix we are required
to invert has a large nﬁmber of zero entries, which removes much of
the difficulty. However, it is useful to show how one might tackle

the general case.

Assuming our graded matrix has the block form:

\
!

A I a
B B

Where a and B are matrices with purely odd components, and A and B

¢
!

(43) M =

4

matrices of purely even, then the block inverse to M has the

following form:
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A . C m

(44) Moo=
8 D

where:
(45) C = (A - aBlp )T
(46) D=(B - BAla !
(47) W= - &lac B - pa'a !
(48) | 5 = - B'B(A-aB g )

Thus we see that we are never faced with the bewildering task of
inverting a matrix made up of purely odd components, but only even
and even products of odd matrices.

For our purposes it is useful to seé how matrices M which have the

following block form look vpon inversion. If we have:

T T T
(49) A - - A , a=- - B , B =B
Where the superscript- 'T  represents 'transposé', then substitution
of (44) into M.M'1 =71 = Mq.M quickly yields the following {(note

that by virtue of the definition these symmetries (48) are always

present in a graded constraints matrix):

T T T
(ou) c = -C , g = 0 o, D =D

Notice how the sign of the inverted odd block u does not change
upon transposition.

Caleulation of any graded inverse may ncw be carried out using
the relation (45) to (48) - as a technical pcint it is possible to
uée a software package which incorporates anticommuting variables
(for example REDUCE) by empléying the Cayley-Hamilton theorem which
we demonstrate in appendix B. We now have all the machinery need to
calculate the graded Dirac brackets of our model.

*2.6.4 The graded Dirac brackets.

One of the original motivations of this thesis was to make a
more detailed investigation into the nature of the graded function
group; a subject which in the classical case has a strong bearing on

the possible forms the Dirac bracket may take. To see how these



ideas translate to the situation where the fundamental variables

of the theory are Z;graded, is a worthy topic of investigation
because of its possible beafing on the question of dealing with
constraints in supersymmetric theories. Problems concerning graded
constrainte have dogged these models from the outset [5,28,32], and
so discovering exactly under what circumstances the reduction of
graded phase spaceé may be carried out might prove to be useful.
Although a start has been made to answering some of these questions,
it has become clear that a far better understandiﬁg of the nature of
the supermanifold is neccessary before one can hope to fully solve
these'problems. Some work has been done by Casalbuoni [18] on the
graded Dirac bracket, however the reduction properties. the bracket
should possess were not demonstrated there. There seems little
doubt that thé graded Dirac bracket is an example of the
’generalised graded Poisson bracket’  introduced in § 2.1.7, but
further work is required to fully determine its true nature. Below,
we use the definition given by Casalbuoni in [18], to calculate the
eraded Dirac brackets of the fundamental variables in our model.

We willléee that the inclusion of the constraint (17) produces a
substantial departure in the form of the brackets from the corres-

ponding expressions 1in J .Barcelos-Neto et al’'s paper [B].

The functional form of the Dirac bracket

Rather than repeating the construction of -[18] here, we simply
state that one can construct a bracket, analogous in form to the
standard Dirac bracket, using real and Grassmann variables as
the fundamental variables of the theory. It has fhe following form:
(51) { A,B ¥k := { A,B } - { A, 2%a }’(Cq)ab { ob,B 1}~
Where A and B are functions defined over some graded phase space,
and the {®a} are a set of ordered graded constrainés, even const-
raints coming first and odd, with the indices a,b running over
both odd and even functions in the manner introduced in § 2.1.6.

The matrix (C4)ab is the inverse of the matrix of constraints, and
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is defined:

(52) (chab := ( { %a,3b }°) = (Cab)’

The ordering of the odd and even sectors of the indices a,b ensures
that the matrix (Cab) and its inverse (C4ab) have the form (50) anc
therefore make sense as graded matrices. To calculate the Dirac
bracket of'the fundamgntal variables of the model. the matrix of

constraints and 1its inverse must be determined. We do this below.

2.8.5 The matrix of constraints.

The constraints of our theory {®a} form a G-tuple, which we
order as follows:
(53 (®a) = (Xi.Xiin.Pi;¢i.Xi,¢i.Pi,Bi.Xi,Ei.Pi)
with even constraints leading. Of the thirty six contibutions to
the constraints matrix, happily fourteen are outright zero. These
come from, fqr éiample, the graded brackets between the following
constraints:
(54) - { Xi.Xi,X3.X3 }" =0 . { ¢i.Xi,61.P1 }° = O
‘and so on (where we have used the fundamental graded Poisson
hracket relatioﬁs (31)). A further twelve brackets give purely
constraint type terms on the R.H.S. These are for example:
(55) { Xi.Xi,Pi.gi 3}’ = 2Xi.gi , { Xi.Xi,Pi.@i } = 2Xi.éi
Which we may set to zero by virtue of the constraints themselves.

Finally we have the remaining ten non-trivial contributions which

are the following:

(56) { Xi.Xi,Xi.Pj 3 = 2Xi.Xi , { ¢i.Xi.65.X3 3} = iXi.Xi
(57) [ $i.Pi,@j:X3 } = #i.gi + iXi.Pi = gi.gi ,
(58) , { ¢1.Pi,83.P3 3} = 1iP3.PJ

Bearing in mind that the graded Poisson bracket has the symmetries
given earlier, we now have all the contributions required to form

the matrix. Thus we have:



(59) [ o 2Xi.X1i 0 0 0 0o )
-2Xi.Xi 0 0 0 0 0
0 0 0 0 iXi.Xi -gi.gi
Cab = _
0 0 0 0 #i.gi  iPi.Pi
0" 0 iXi.Xi gi.gi 0 o
0 0  -Fi.gi - iP3.P3 0 0

where the symmetries of the graded bracket ensure that this matrix
(59) 1is qf the sort type described by (49). Because of the large
number of zeros it is now a simple ﬁéék to calculate the required
inverse. Calling: | |

(60) : S = (gi.gi) - (Xi.Xi)(Pj.Pj)

we have for the inverse C ab:

(61) g =1 0 . 0 §] 0
CXilXi
1 0 0 0 0 0
Xi.Xi .
0 o 0 0 iP3i.P3 -gi.gi
C ab = . 2 2
g o U o gigi  iXi.XJ
. : . s s
0 0 iPi.Pi  @i.gi 0 0
s s
o 0 -gi.gi iXi.Xi G o |
: s s

We see that because of £he lack of odd terms the constraints matrix
has simply decoupled into a direct sum of the two even sectors. He
can now employ (51) and calculate the graded Dirac brackets for the
fundamental variables of our theory. For the purposes of the
calculation it is most convenien£ to form the following four graded
6-tuples obtained by:taking the graded Poisson brackets between the
fundémental variables of the theory and the vector (53) made up of
the constraints (®a). They are:

( 0, Xi, 0, @i, 0, g1 )

(62) - Qi 1= { Xi,® )}~

(-2Xi,-Pi,-¢i, 0,-gi, 0)

H
i

(83) Ui { P1,2 }~



( 0, 0, 0, 0, Xi, Pi )

fl

(64) ri { 61,8 )}’

'(85) ri { 1,2 }~ ( 0, 0, Xi, Pi, 0, 0

Where in this notation we have suppressed the constraint index ‘a’
in (83) by making @ a Qector. The "1° index is of course Jjust

the normal i :'1,2,3, label from befbre. Also we may define a
‘Grassmann traﬂspose', denoted T, of these row vectors as the cclumn

vectors whose components are:
T T

(@i da = -(Qida , (Ui ja = -(Ui)a

§]
il

(886)
’ T T
(r'y da (I'i)a ; (T'i )Ha

(Ti)a

In this notation we may now write the graded Dirac bracket of the
fundamental variébles of the theory as follows:

(B87) . { Xi.Xj }* = - @i.C.Qj

Y uj

. (B8) { Xi.P3 }* = 8ij - Qi.C
..and so on. Substituting (62) gives us explicitly the ten graded

Dirac brackets:

(89) [ Xi.X3 3% = i(XE.XE)( gi.g3 + &i.83 )
s . .
(70) £ Xi.P3 1% = 8ij - Xi.Xi + (ok.ok)( di.@éj - @i.@3)
(Xk.Xk> z
(71) { Xi,gd ¥*x = - 1((gk.gk)pi.Xj + i(Xk.Xk)gi.Pj)
>
¢72) { Xi.@g3 1% = 1((pk.gk)gi.Xj - i(Xk.Xk)gi.PJj)
s
{73) { Pi,g3 3* = .1{1{Pk.Pk)@F1.X3 - (Ek.ﬁk)ﬁi.Pj)
S
(74) { Pi,@#i 3%.= 1(i((Pk.PK)Fi.Xj + (gk.gk)gi.Pj)
s
(75y { Pi,Pj 3x = _1( Pi.X3j -Xi.P3j) + i(PK.Pk)( #i.gi + #i.dj )
(Xk.XK) s :
(76) { #i,863 }x = 0
(77) ' { #i,83 3% = O
(78) { @i,33 1% = i8ij - i( (Pk.Pk)Xi.Xj + (Xk.Xk)Pi.Pj )
S

+ (ZKk.gk)( Pi.X3j - Xi.P3j )
s

These are all the graded Dirac brackets of our model.
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2.6.6 Concluding comments.

In conclusion to this section we make the following remarks.
It is eclear that this model is different form that of [8] and [56]
throught the inclusion of the “extra constraint’ gk.Xk = 0, an
addition which results in'the Dirac brackets of the theory having
further terms not present in these papers. The full ramifications
of adding this constraint are not yet clear, zs it appears that by
so doing, the supersymmetry of the model is being put into question.
And yet‘the inclusion this constraint appears to be the natural
thing to do. This is a question which needs further investigation.
There are other avenues along which‘additional studies might
proceed, however. This model could be an ideal candidate on which
te try out the group theoretical approach to quantisation in non-
trivial background. An investigation along thsse lines would
first seek to determine what super group is relevant to the S5.P.5.
of this model; The algebra of this group would have 0(3) as a
bosonic sub-algebra - this is because of the form of the constraints
matrix, which is 0(3) invarient in the bosonic sector. Also, finding
a new set of variables which reduced the graded Dirac brackets (6S9)
through (78) to graded Poisson brackets similar to the classical
example given in § 1.3.8, and thus locally reducing the graded
phase space, is another interesting path of ihquiry. One can imagine
Qseing the non-trivial topology of the sphere to try and induce a
“twist  into the quantum'thedry, similar to the classical twisted
representations studied in [ 1%. These are potentially highly
rewarding areas to-investigate, from the point of view of under-
standing the underlying structure of all graded theories, and we

feel represent worthy subjects for further research.

* The author wishes to thank Professor Isham and Dr E. Corrigan

for their help with these ideas.



Appendix A
Further useful properties of the graded Poisson bracket
include the following (181:

(a) The super Jacobi identities:

(1y { E1,{ E2.E3 y ¥ + { EZ2,{ EG,E1 } > + { E2,{ EL,E2 } } =

(2% {£01.{02.02 Y ¥+ {02 {03011+ {03.{01.027} 1 =
¢%y [ E1,{ E2,01 % } + { E2.{ O1,E} } } + { 01.{ E1,E2 } } =
(4 { E1,{ 01,02 } } + {01, { CZ,E1 } } - { 02,{"EL01 } } =

(b)Y The product rules:

{80 { E1.E2,E3 } = E2.{ F1,E3 ¥ + { E1,E2 }.E3
(B3 { D1.02,E1 3y = 01.¢{ 02,E1 } + { QO1,E1 .02
(70 { 01.E1,E2 } = Q1.{ E1,E2 } + { DO1,EZ }.E1l
(87 { E1.E2,01 } = E1.{ E2,01 ¥ + { E1.01 }.E2
9% { E1.01,02 3} = E1.{ 01,02 } - { E1,02 .01
100 f01.02,03 vy 01 02,03 Y - { Q1,03 (.02
Where we have [Ei{ = €, 1 = 1,2.3, and (Caj = 1 for o = 1.,2,3



dppendix B
The Caylev-Hamilt l
Let A be some n X n square matrix over some field k:

all. . . . . aln

énl. S énn
then the ghazag;e:iégig matrix C of A is defined as:
(1) C =t 1n - A
where t € R is a real parameter and 1In is the n X n identity
matrix. The characteristic polvnomial Cp of A-.is defined as:
(2) , Cp = Det(C)
The C;yley—Hamilton theore@ states that every matrix is a zero
of its characteristic polynomial. This finds elegant expression
in terms of the following determinant [287]. For some n X n

matrix A:

n n-1

A AL A 1 ;
Trea™ Tredh . Tr(A) n o
}
Te¢A™ . . . . . . n-1 0
Det H = 0
Tr¢a"™S . . . . . n-20 0
Tr¢(A) 10 . . . . .0 0

This is a useful device to use in conjunction with an algebraic
package like REDUCE, because it gives expression to the inverse
of A as a power series. For example in the case of n = 4 we
have:
4 3 2 v 2 2 _
Det(A)A = - A+ Tr(AA -_1((Tr(A))Y - Tr(A“)A
2

C 1(3(Tr(A2)Tr(A) - 2Tr(ad) - (Tr(a))y )1
6 .
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