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The Structure of Dark Matter Haloes in Cosmological Simulations

Philip Edward Bett

Abstract

We study the angular momentum, shape and density structures of dark matter haloes

using very large dark matter simulations, and use smaller, higher-resolution simulations to

investigate how the distributions of these properties are changed by the physical processes

associated with baryons and galaxy formation.

We begin with a brief review of the necessary background theory, including the growth

of cosmic structures, the origin of their angular momenta, and the techniques used to

simulate galaxies, haloes and the large scale structure.

In Chapter 2, we use the Millennium Simulation (MS) to investigate the distributions

of the spin and shape parameters of millions of dark matter haloes. We compare results

for haloes identified using three different algorithms, including one based on the branches

of the halo merger trees. In addition to characterising the relationships between halo spin,

shape and mass, we also study their impact on halo clustering and bias.

We go on in Chapter 3 to investigate the internal angular momentum structure of dark

matter haloes. We look at the radial profiles of the dark matter angular momentum in

terms of both magnitude and direction, again using large-volume dark matter simulations

including the MS. We then directly compare dark matter haloes simulated both with and

without baryonic physics, studying how this changes the dark matter angular momentum.

After relating the spin orientation of galaxies to their haloes, we consider the shape of the

projected, stacked mass distribution of haloes oriented according to their central galaxy,

mimicking attempts to measure halo ellipticity by weak gravitational lensing.

We consider the density structure of dark matter haloes in Chapter 4. For the dark

matter simulations, we focus our interest on the source of the scatter in the distribution of

concentration parameters, correlating it with both the halo spin and formation time. We

compare different algorithms for predicting the concentration distribution using different

aspects of the merger histories. We again go on to directly compare high-resolution haloes

in simulations run with and without baryons and galaxy formation, looking at how these

additional physical processes transform the density profiles. Finally, we compare the

circular velocity curves of the haloes simulated with galaxies to the rotation curves of

observed galaxies, using the Universal Rotation Curve model.
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Chapter 1
Introduction

People have always looked into the night sky and wondered how the various patterns

of lights they saw came to be, and how they related to their lives on Earth. In ancient

times, the writings of Greek philosophers such as Plato and Aristotle (4th century BCE)

promoted models of a geocentric universe, which were later expanded in great detail by

Ptolemy in his Almagest (mid-2nd century CE). This Ptolemaic system was the dominant

cosmological model for over a thousand years, amongst astronomers from both Islamic and

Christian cultures. However, in 1543, Copernicus published De Revolutionibus Orbium

Cœlestium, using observational evidence to propose a detailed heliocentric model. In

1610, Galileo published Sidereus Nuncius, describing discoveries made using his telescope:

there were mountains on the Moon; some of the nebulous patches of light, including the

Milky Way itself, were made up of stars; and there were four moons orbiting the planet

Jupiter. Around the same time, Kepler was formulating his three Laws of Planetary

Motion, describing planets orbiting the Sun in elliptical orbits. Finally, in 1687, Newton

published his laws of motion and theory of Universal Gravitation, in the Philosophiæ

Naturalis Principia Mathematica. The motions of the heavenly bodies were described,

and a reason for their motions proposed, in terms of a physical force that applied as much

to them as it did to life on Earth.

In the early 20th century, two scientific developments further revolutionised our view

of the cosmos. The first was the General Theory of Relativity, upon which all modern

cosmology is based (Einstein, 1916). The second was the build-up of observational evi-

dence that some of the nebulae in the sky were in fact other galaxies, similar in scale to

the Milky Way itself but at a far greater distance. This was a rapid paradigm shift that

vastly increased the scale of the Universe as people knew it: in 1920 it was still a matter of

debate1, but the middle of the decade saw it well-established (e.g. Hubble, 1926). These

two discoveries set the scene for the standard cosmological models of the late 20th and

1The “Great Debate”, in fact (Shapley and Curtis, 1921). A further example of the conceptual difficul-

ties involved with questions of distance and perceived scale, for a static observer, can be seen in Linehan

and Mathews (1996).

1



1. Introduction 2

early 21st centuries, on which this thesis is based.

In this chapter, we describe the modern cosmological paradigm, and the techniques

used to study it. In section 1.1 we briefly review the physics of the expanding Universe,

providing the basic expressions and definitions necessary to discuss cosmology. Section 1.2

describes the mass and energy content of the Universe, in terms of the ΛCDM model. The

growth of cosmic structure is followed in section 1.3, from perturbations to the formation

of the haloes that are the focus of this thesis. Section 1.5 describes the methods used to

simulate structures in the Universe, and describes in detail the particular simulations used

in this thesis. Finally, in section 1.6, we outline the contents of the remaining chapters.

A note on notation: we shall denote scalars, vectors and matrices using the styles of

p, p and p respectively. Logarithms are written as log x ≡ log10 x, and lnx ≡ loge x.

Quantities will generally be given in SI units (except where noted), supplemented by the

standard astronomical units for convenience: masses are given in terms of the solar mass

(1M¯ ≈ 2× 1030 kg), distances in terms of the parsec (1 pc ≈ 3.086× 1016 m), and times

in terms of Gigayears (1 Gyr ≈ 3.16× 1016 s).

1.1 The expanding universe

The standard paradigm of modern cosmology has its basis in a particular solution of the

Field Equations of general relativity: the Robertson–Walker metric for a homogeneous,

isotropic spacetime, which can vary with time (i.e. expand or contract), and is assumed

to apply to the Universe as a whole. In terms of the spacetime element ds, this is

ds2 = −c2dt2 + a2(t)

[
dx2

1− kx2

R2
u

+ x2
(
dθ2 + sin2 θdφ2

)
]

. (1.1)

Here, θ and φ are angles in standard spherical polar coordinates, and x is a radial co-

ordinate that follows the expansion of the Universe (a comoving coordinate). These are

related to physical coordinates r via the expansion factor a(t), by r = a(t)x. The cur-

vature of space is defined through the dimensionless constant k, which can take values

of −1, 0 or +1, and the ‘radius of curvature’, Ru, a constant with dimensions of length.

If k = 1, the Universe is spatially closed, and therefore finite in volume. The Universe

is open if k = −1, and if k = 0 then it is flat: the metric then corresponds to Euclidian

geometry for the comoving coordinates. The constant c is the speed of light.

The assumptions of homogeneity and isotropy (the “Cosmological Principle”) were

originally introduced as a simplifying first step in studying the dynamics of the Universe.
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However, they have since been found to be a good description of the real Universe on

sufficiently large scales: on scales larger than ∼ 100h−1Mpc (e.g. Yadav et al., 2005), the

Universe really does look the same regardless of location or orientation.

The evolution of the expansion factor in such a universe is given by the Friedmann

Equations,
(

ȧ

a

)2

=
8
3
πGρ(t)− kc2

a2R2
u

(1.2)

ä

a
= −4

3
πG

(
ρ +

3P

c2

)
. (1.3)

In these equations, the dots denote derivatives with respect to time, G is the gravitational

constant, and P and ρ are the pressure and density respectively of the content of the

Universe. Consider an observer at time to, measuring an object at a distance r, which

is receding with the expansion of the Universe at a velocity v = dr/dt (the light from

this object was of course emitted at a time earlier than to). The relationship between

physical and comoving distances leads to the Hubble Law, v = H(to)r, where the Hubble

Parameter H(t) ≡ ȧ/a is known as the Hubble Constant when the observation is made in

the present time2, H0 = H(t0). Throughout this thesis, we shall parameterise the Hubble

Constant as H0 = 100h km s−1 Mpc−1, where h is dimensionless.

The wavelengths of photons are also affected by the expansion of the Universe, such

that if a photon was emitted with wavelength λe when the expansion factor was a, then

the wavelength observed in the present is λ0 = λe/a. We define the redshift, z, to be the

ratio of the change in wavelength to the emitted wavelength. This means that

λ0

λe
=

1
a

= 1 + z. (1.4)

In the case that the velocity due to the expansion of the Universe v ¿ c, we can say

z = ∆λ/λe ' v/c.

In the Friedmann Equations, the average (mass) density ρ and pressure P of the

Universe are commonly separated into different components according to their equation

of state, P = wρc2:

• Non-relativistic matter: this has negligible pressure compared to its mass-density,

so we can say w = 0, but ρm > 0.

• Radiation and relativistic matter: w = 1/3, so Pγ = 1
3ργc2.

2Throughout this chapter, a subscript zero will denote functions evaluated at the present; note that

we define a0 = a(t0) = 1.
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• We can also allow for a positive vacuum energy density (which we shall take to be

constant for simplicity). This has w = −1, i.e. a negative pressure PΛ = −ρΛc2.

This last component can be identified with the Cosmological Constant term that can be

added to the Field Equations. The constant itself, Λ, has units of inverse length squared,

and is related to its equivalent mass-density through Λ = 8πGρΛ/c2.

It is convenient to define a critical density from equation 1.2 to separate the three

possible values of k. Taking k = 0 in the first Friedmann Equation, we get:

ρcrit(t) =
3H2(t)
8πG

. (1.5)

We can then refer densities to this value, resulting in the cosmological density parameters

Ωi = ρi/ρcrit, where i refers to any of the components described above, or the total density

Ωtot. We can therefore rewrite the first Friedmann Equation as

Ωtot − 1 =
kc2

ȧ2R2
u

. (1.6)

This shows how the density Ωtot and curvature k are tied together: If the Universe is

closed (k = +1), then Ωtot > 1 always; an open universe (k = −1) means Ωtot < 1, and

a flat universe k = 0 is always at the critical density (Ωtot = 1). This expression can also

be used to give a value for the radius of curvature, R2
u = kc2/

[
H2

0 (Ωtot,0 − 1)
]

Using the First Law of Thermodynamics (dU + PdV = dQ), with the internal energy

U = ρc2V , and the heat flow into/out of the Universe dQ = 0, we get the Fluid Equation

dρ +
(

ρ +
P

c2

)
dV

V
= 0. (1.7)

Using the equation of state above, and integrating, we get that ρ ∝ V −(1+w). Since

volume grows like V ∝ a3, we have an expression that relates density to the expansion

factor:

ρ ∝ a−3(1+w). (1.8)

If we consider the three components described above, we find that the matter density

(ρm ∝ a−3) decreases slower than the radiation density (ργ ∝ a−4), and ρΛ is constant.

Knowing these relations, we can write the Friedmann equation just in terms of the Hubble

parameter and the expansion factor, and the components’ cosmological densities in the

present:

H2(t) = H2
0

[
Ωm,0a

−3 + Ωγ,0a
−4 + ΩΛ,0 − kc2

a2H2
0R2

u

]
. (1.9)
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Figure 1.1: The growth of the Universe. The left panel shows the expan-

sion of the Universe as a function of time for the different cosmologies de-

scribed in table 1.1. We take H0 = 70 km s−1 Mpc−1. The lines are nor-

malised such that t(a = 10−3) = 0. The ΛCDM universe in the present

is older than the flat matter-dominated universe, and has also started

accelerating. The radiation-dominated universe grows faster than the

other models. The Λ-dominated massless universe starts growing at a

much slower rate, reaching a = 1 only after about 95 Gyr (not shown).

The right-hand panel shows the lookback time for the same models, i.e.

the normalisation is such that ∆t(a = 1) = 0.

This can then be integrated to find how the expansion factor behaves as a function of

time:

H0

∫ t(a2)

t(a1)
dt =

∫ a2

a1

(
Ωm,0a

−1 + Ωγ,0a
−2 + ΩΛ,0a

2 − kc2

H2
0R2

u

)−1/2

da (1.10)

One can easily find a(t) in the case of dominance by any one of the components in a flat

universe: if it is matter-dominated (an Einstein–de Sitter, EdS, universe), then a ∝ t2/3;

if it is radiation dominated, then a ∝ t1/2; and it grows exponentially if it is dominated

by the cosmological constant (a ∝ eH0t). Figure 1.1 shows both the degree of expansion

after a given time, and the lookback time, ∆t(a) = t(a0) − t(a) for a given expansion

factor a ≤ 1, for a selection of cosmological models (see table 1.1).
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Cosmology ΩΛ,0 Ωm,0 Ωγ,0 Ωtot,0 k

M-flat (EdS) 0.0 1.0 0.0 1.0 0

M-open 0.0 0.3 0.0 0.3 −1

M-closed 0.0 1.3 0.0 1.3 +1

γ-flat 0.0 0.0 1.0 1.0 0

Λ-flat 1.0 0.0 0.0 1.0 0

ΛCDM 0.7 0.3 0.0 1.0 0

Table 1.1: A selection of simple cosmologies, used in figure 1.1. There are

three matter-dominated examples (the flat one corresponding to an EdS

universe), and three other flat cosmologies: radiation (γ) dominated,

vacuum energy (Λ) dominated, and the ‘concordance’ ΛCDM model

(believed to be similar to the real Universe).

1.2 The ΛCDM model and the content of the Universe

The ΛCDM model is of particular interest, not least because it is the one favoured by

the majority of researchers in the field. It describes a flat universe (Ωtot = 1), with the

majority of the energy density budget taken by the cosmological constant (ΩΛ ≈ 0.7

to 0.8), the simplest possible form of “dark energy”. This causes the expansion of the

Universe to be accelerating in the present, an effect that was first measured through the

use of distant Type Ia supernovae as standard candles, in the late 1990s (Riess et al., 1998;

Goldhaber and Perlmutter, 1998). Although using the cosmological constant to produce a

flat universe with a low mass density was not unheard of before these results (e.g. Peebles,

1984; Lahav et al., 1991; Carroll et al., 1992), the measurement of the acceleration allowed

models of dark energy to be taken seriously, and has motivated a great deal of further

research. Although many models of dark energy have been hypothesized in the past

decade, current data are consistent with the equation of state being a constant w = −1.

Falsifying any of the more complex models (i.e. measuring any deviation from a constant

energy density across space and time) will be an immense technical challenge (see Frieman

et al. 2008 for a recent review).

The rest of the ΛCDM Universe is made of matter, Ωm,0 ≈ 0.2 to 0.3, distinguishable

from dark energy by clustering under gravity (radiation makes a negligible contribution in

the present). The matter content is divided into baryonic3, Ωb,0 ≈ 0.04, and non-baryonic.
3Baryonic refers to matter made from three quarks, i.e. protons and neutrons in practice. Leptons such
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“Dark matter” can refer to part of either of these: in the case of baryonic dark matter,

it refers to objects that do not emit a measurable amount of electromagnetic radiation,

although this can simply mean that we do not yet have the technical capability to measure

it. For example, one can compute the mass density in stars alone, using the galaxy

luminosity function to compute the total stellar luminosity density, and making reasonable

assumptions about stellar mass-to-light ratios: the value comes out at Ω∗,0 ∼ 10−3 ¿ Ωb,0

(e.g. Eke et al., 2005). The “missing” baryonic mass can be termed dark matter, although

it all radiates to some extent: some is the hot gas in clusters (dark in optical light, but

bright in X-rays), some is the mass of people and planets (which emit a tiny amount of

thermal radiation, which will be swamped by reflected light from their parent star, which

in most cases will also be swamped by direct light from the star); the majority however

is believed to reside in the Warm/Hot Intergalactic Medium (WHIM), gas that is cooler

than that in galactic haloes and the intracluster medium, and which is spread thinly

between the galaxies. The problem of the missing baryons and the WHIM is reviewed in

Bregman (2007), Nicastro et al. (2008), and Prochaska and Tumlinson (2008).

For the purposes of this thesis however, we shall use “dark matter” to refer to the

non-baryonic kind, which is dark simply because it does not interact with photons4: it

only feels the gravitational force (although it may also be able to decay through Weak

interactions). This means that it behaves in a fundamentally different way to baryonic

matter, since it cannot dissipate its energy by heating or cooling in the normal sense, but

only exchange it through gravitational interactions.

In principle, this dissipationless matter could be “hot”, i.e. relativistic until after it

decouples from the radiation field (see the next section); the neutrino is an obvious candi-

date particle. However, it has long been known that hot dark matter prevents structures

forming in the manner observed (e.g. White et al., 1983, 1984): the high velocities of the

neutrinos cause any small-scale structures to be erased in the early Universe, such that

objects form first on the largest scales (e.g. superclusters). However, the largest structures

we observe are seen to be still in the process of formation (they are not yet necessarily

self-bound or virialised), and individual protogalaxies have been observed at high redshift.

Furthermore, simulations using the neutrino as the dominant matter component result

as electrons and the neutrinos will also be present, but can be assumed to make a negligible contribution

to the cosmic density.
4Whereas planets are literally dark, and intergalactic gas glows only at certain wavelengths, the non-

baryonic dark matter is actually transparent rather than dark.
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in clustering behaviour that is inconsistent with the observed galaxy distribution. So

although neutrinos definitely exist, and have been measured to have mass, they cannot

be the dominant component during structure formation.

So we resort to the dark matter being “cold”, i.e. non-relativistic when structure

formation begins. No such particle is currently known to exist. It is hoped that future

particle physics experiments such as the LHC will provide viable possibilities, by revealing

evidence for extensions to the Standard Model of particle physics, such as supersymmetry

(Baer and Tata, 2008; Kane and Watson, 2008). Bertone et al. (2005) review the evidence

and constraints for different dark matter particle candidates; see also the overview in the

appendix to Weinberg (1997).

It has been the measurements of the cosmic microwave background (CMB) radiation

by the WMAP satellite (Dunkley et al., 2008), in conjunction with measurements of galaxy

clustering from two large-scale surveys (2dFGRS and SDSS, see Sánchez et al. 2006 and

Tegmark et al. 2004 respectively) and the distant supernovae data, which have provided

the strongest evidence in favour of the ΛCDM model. Komatsu et al. (2008) gives the

currently-favoured parameters from the 5-year WMAP data, together with supernova and

galaxy clustering constraints.

So, most of the baryons in the Universe are (at least) hard to detect, most of the

mass in the Universe is made of some substance we have yet to detect directly (although

its physical behaviour on astronomical scales is reasonably well-understood), and most

of the energy density in the Universe is something else entirely, about which we know

almost nothing. This may sound problematic at best, but the simplicity of the major

constituents—a constant dark energy component, with dissipationless cold dark matter—

actually make the Universe significantly easier to model than if was dominated by baryonic

gas, at least on large scales. Future discoveries, from both particle physics and astronomy,

are certain to make things more complicated.

1.3 The growth of cosmic structures

Although the background theory of section 1.1 assumes a homogeneous and isotropic uni-

verse, there is clearly structure on all but the largest scales. These structures are believed

to originate as random quantum fluctuations in the very early Universe, which were ex-

panded to physical scales during a period of exponential growth called Inflation. Their

post-Inflation growth in the early Universe is usually understood through Linear Theory,
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which follows perturbations in the otherwise-homogeneous background (with mean den-

sity ρ̄(t)). The perturbations are usually described by their amplitude δ ¿ 1, in terms

of their density ρ = ρ̄(t) (1 + δ(x, t)). They can be considered to be a combination of

plane waves, δ(x, t) ∝ ∫
δk(k, t)eik·xd3k, where δk is the Fourier transform of the density

fluctuations δ, and k is the (comoving) wavevector. The fluctuations are usually assumed

to be a Gaussian random field, specified entirely by its power spectrum P (k) = |δk|2.
Most models of Inflation predict the primordial power spectrum to have the form

P (k) ∝ kn, with the simplest case being n = 1 (the Harrison–Zeldovich power spectrum;

more complex models allow n to vary with scale). After Inflation, the power spectrum is

modified by the growth of structures from Linear Theory. This is usually parameterised

by a transfer function, T (k), such that the power spectrum from Linear Theory is given

by P (k) ∝ kn |T (k)|2. The precise form of the transfer function is determined by the

different matter components in the cosmological model, and is usually specified by fitting

formulae or computed numerically (e.g. Bardeen et al., 1986; Seljak and Zaldarriaga, 1996;

Eisenstein and Hu, 1999, and references therein).

The power spectrum is normalised using the variance, σ2
8, of density fluctuations

within an 8h−1Mpc sphere at z = 0, extrapolated from linear theory. Since they are

needed to fully determine the fluctuation power spectrum, the spectral index n and the

normalisation σ8 are treated as parameters of the cosmological model, and are measured

alongside the cosmological densities Ωi. The current preferred values are n ≈ 0.95 and

σ8 ≈ 0.8 to 0.9 (e.g. Komatsu et al., 2008).

One can consider a physical length scale for the perturbations using the wavelength

λ = 2πa/k. While matter perturbations are larger than the horizon scale (RH ≈ c/H,

the Hubble Radius), they grow like δ ∝ a2 in the radiation-dominated regime, and δ ∝ a

if the Universe has passed into the matter-dominated regime (matter-radiation equality

occurs at zeq ≈ 3100). Once the horizon has grown larger than the perturbation, the

growth changes. While a < aeq, growth of cold dark matter fluctuations is suppressed

by the Mészáros Effect (Mészáros, 1974): the expansion of the radiation-dominated Uni-

verse is fast enough that the dark matter cannot respond in time, effectively freezing δ.

Fluctuations in the baryons are coupled to the radiation field, and are prevented from

growth by pressure. Instead, the fluctuations oscillate as acoustic waves with constant

amplitude.

After aeq, matter is the dominant component, and perturbations in the the dark

matter are free to grow again, following δ ∝ a. The baryons are still coupled to the
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Figure 1.2: A relaxed halo (Williams, 2007). Note that it is located a

comfortable distance from disruptive tidal fields.

photons however, until recombination occurs (zrec ≈ 1100): the temperature and radiation

density become low enough for electrons to bind to protons as atoms, and the Universe

becomes transparent5. The pressure on the baryons plummets, and they rapidly fall into

the enhanced potential wells made by the dark matter since aeq, afterwards slowing to

match the dark matter growth rate.

At some point, the perturbations become non-linear (δ & 1), so a different theoretical

approach is required. The spherical collapse model follows the evolution of a spherical

overdense region containing a given mass, initially expanding with the Hubble flow. As

the radius of the perturbation grows, the mass within it causes it to decelerate, and

eventually it turns around and starts collapsing under gravity. In an idealised model, the

collapse is a time-reversal of the expansion, but in reality the object will not be perfectly

smooth: small irregularities will grow, and the matter in the object becomes virialised

5This description is, of course, a simplification. If an atom forms in an excited state, it can emit a

photon. This can excite another atom, making it more easily reionised by other photons. Furthermore,

the density fluctuations mean that some regions remain ionised, and coupled to the radiation, longer than

others. A significant amount of residual ionisation remains well into redshifts of ∼ 102 (see Peebles 1993

p165-175 for details).
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(i.e. relaxed; see figure 1.2). The object is now referred to as a halo. In the EdS model,

virialised haloes have an overdensity of ∆c = ρ/ρcrit = 18π2 ≈ 200. This basic prediction

was extended to the case of an open, low mass-density universe in Lacey and Cole (1993),

and the flat ΛCDM universe in Eke et al. (1996). Bryan and Norman (1998) provided

a simple quadratic fit to the results for the latter case. This overdensity can be used

to define an outer boundary for the halo: the radius which encloses that overdensity is

usually referred to as the virial radius, Rvir, and halo mass can be identified with the

mass within that radius:

Mvir =
4
3
π∆cρcritR

3
vir (1.11)

Measurements from simulations however have shown that haloes do not usually exhibit

any special features at Rvir, for example in their density or radial velocity profiles (e.g.

Prada et al., 2006). Instead, the transition between the virialised matter of the halo and

the surrounding infalling material appears to occur at ∼ 1–2Rvir (although this depends

on the mass of the halo, and how isolated it is). Furthermore, haloes are rarely spherical

(for example, in terms of isodensity or isopotential contours: Jing and Suto 2002; Hayashi

et al. 2007), instead forming irregular but roughly triaxial shapes, with a tendency for

prolateness.

The form of the CDM power spectrum is such that the power per logarithmic interval

in k-space is greatest at small scales. This means that the smallest scale perturbations

are the first to collapse to form haloes. Structures then form hierarchically, with larger

perturbations collapsing later. In the non-linear regime, haloes grow by the accretion of

surrounding matter, and through mergers with other haloes. This builds up ever larger

objects. The structure on large scales becomes the Cosmic Web: matter flows out of

voids into surrounding sheets of matter; these collapse into long filaments, which drain

into nodes. Haloes exist at all levels in this structure: small ones like beads along the

filaments, with massive haloes at the nodes. These remarkable structures exist in both

simulations and observations of the large-scale structure (see figure 1.3).

1.4 The origin of angular momentum

Since the angular momentum of dark matter haloes is such a central quantity in this

thesis, it is worth discussing its origin in a cosmological context.

Any primordial rotation decays away rapidly due to the expansion of the Universe

(see e.g. Schäfer, 2008, and references therein), so the angular momentum must come
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Figure 1.3: Illustration of the large-scale structure of the universe, from

observations (blues shades) and simulations (red shades). The two top

panels show very large “Great Wall” superstructures from the SDSS

(Gott et al., 2005) and CfA2 (Geller and Huchra, 1989) galaxy redshift

surveys. The left panel shows half of the 2dF Galaxy Redshift Survey

(Colless et al., 2003), showing the filamentary structure of the cosmic

web. The bottom and right panels show mock galaxy surveys made using

semi-analytic modelling to produce galaxies in the Millennium Simula-

tion (Springel et al., 2005b). The mock galaxies have been selected using

the same survey geometries and magnitude limits as the corresponding

observational plot in each case. This figure has been reproduced from

Springel et al. (2006).
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from another source. The work of Hoyle (1951), Peebles (1969), Doroshkevich (1970),

White (1984) and Catelan and Theuns (1996) developed the tidal torque theory (TTT),

which describes the growth of angular momentum for density perturbations in the linear

(mass-dominated) regime. Although a full description of TTT is beyond the scope of

this thesis, we shall outline the main results here (see also Porciani et al., 2002a; Schäfer,

2008).

We consider the matter in the Lagrangian volume that is destined to become a viri-

alised halo in the present (the protohalo). Angular momentum is transferred to this

pre-collapse protohalo by torques, caused by its mass distribution coupling to the tidal

field due to neighbouring fluctuations. The angular momentum vector L(t) of this object

can be written in terms of its components as (White, 1984):

Li(t) = a2(t)Ḋ(t)εijkDjlIlk, (1.12)

where we use the Einstein summation convention on the indices, and εijk is the Levi-Civita

symbol. The linear growth factor D(t), here appearing in terms of its time derivative Ḋ(t),

gives the temporal evolution of density perturbations from Linear Theory; i.e. in the

matter-dominated regime, D(t) ∝ a(t), and since a(t) ∝ t2/3, we have that Ḋ(t) ∝ t−1/3.

Therefore, the angular momentum of the protohalo grows as L(t) ∝ a3/2.

The magnitude of the angular momentum is also governed by the two tensors Dij and

Iij . The external gravitational field enters through the deformation tensor,

Dij = − ∂2Φ
∂qi∂qj

∣∣∣∣
q=0

(1.13)

where Lagrangian coordinates are given by q and the derivative is evaluated at the centre

of mass of the protohalo. The potential Φ(q) has units of area and is proportional to the

gravitational potential (approximated by a Taylor expansion to second order). The shape

of the protohalo is given by the inertia tensor,

Iij = ρ̄0a
3
0

∫

VL

qiqjd3q (1.14)

where the integral is over the Lagrangian volume VL, and ρ̄0 is the mean density of the

Universe in the present.

The tensor product in equation 1.12 means that L correlates with the misalignment

between the shape and the tidal field. For example, in the principle axis frame of the

inertia tensor, we have L1 ∝ D23 (I33 − I22), with similar expressions for L2 and L3.
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Only the off-diagonal terms of the deformation tensor are involved6. This means that if

the tidal field and the protohalo’s axes are perfectly aligned then the angular momentum

vanishes (and hence cannot grow). It also vanishes if the protohalo is spherical7.

If we assume that the tidal field and protohalo shape are uncorrelated, then the

direction of the angular momentum from TTT is dictated by the shape of the halo at

turnaround, when the inertia tensor is greatest. The angular momentum would tend to

align with the intermediate axis of the inertia tensor (Navarro et al., 2004a). However,

tests with N -body simulations find that the inertia and tidal tensors are actually highly

correlated, with their directions well-aligned (Porciani et al., 2002a,b; Navarro et al.,

2004a). This means that the angular momentum is reduced to being a residual effect,

caused by deviations away from the alignment of the tidal field and protohalo shape.

In addition to being much smaller, the angular momentum now tends to be aligned

perpendicular to the direction of maximum compression due to the tidal field (i.e. the

smallest eigenvector of Dij), which itself tends to be aligned with the minor axis of inertia.

It is worth recalling that these predictions for the magnitude and direction of the

angular momentum are for the linear system at turnaround. After turnaround, the pro-

tohalo decouples from the expanding background and collapses, becoming a halo. The

lever arm for torquing shrinks due to the collapse, and the angular momentum growth

is effectively stopped. The angular momentum of that Lagrangian volume is conserved

however, and for isolated systems the predictions from TTT can be preserved (Navarro

et al., 2004a; Zavala et al., 2008). However, in general, non-linear effects cause scatter

in the predicted angular momentum. Porciani et al. (2002a) found that the predicted

magnitude was accurate to within an order of magnitude, and the direction had a mean

error of ∼ 50◦.

6This means that in general the Dij and Iij tensors can be replaced by their traceless counterparts: the

tidal or shear tensor Tij = Dij− 1
3
Dkkδij , and the traceless quadrupole moment tensor Qij = Iij− 1

3
Ikkδij ,

where δij is the Kroneker delta. Note that the “usual” inertia tensor that we use in later chapters, which

relates angular momentum to angular velocity through Li = I′ijωj , is given by I′ij = Ikkδij −Iij (Binney

and Tremaine, 2008, p796)
7Peebles (1969) originally considered a spherical Eulerian volume, and found that its angular momen-

tum does grow. White (1984) showed that this was due to surface effects, and that an initially spherical

Lagrangian volume has no angular momentum growth.
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1.5 Simulations of cosmic structures

The non-linear nature of structure formation means that precise and accurate studies

of the predictions of particular models can only be done numerically. On astrophysical

scales, the physical dark matter and baryonic particles behave as continuous fluids, which

we can describe using a probability density in 6-dimensional phase-space, f(x,u, t).8 The

evolution of a fluid fi is described by the Boltzmann equation:

∂fi

∂t
+ u·∂fi

∂x
+ u̇·∂fi

∂u
=

∑

j

C[fi, fj ], (1.15)

where the collision integral, C, describes the physical processes of the interaction between

particles of the fluids fi and fj , such as scattering, creation and annihilation. For dark

matter and stars, the fluid is collisionless and C = 0; equation 1.15 is then known as the

Vlasov equation. Its solutions are found using characteristic equations, which look like

particle equations of motion. This leads us to approximate the continuous mass density

field into discrete “particles” (much larger than the physical particles). Following their

characteristic equations yields an approximation to the evolution of the continuous system.

The particles in this N -body approach are Monte-Carlo samplings of the probability-

density distribution in position and velocity.

1.5.1 Collisionless matter

In the case of the collisionless fluids (dark matter and stars), the equations we have to

solve for the N -body system are then:

dxi

dt
= ui;

dui

dt
= −∇Φ(xi, t), (1.16)

where the variables and derivatives here refer to physical (not comoving) coordinates.

The gravitational potential Φ is given by Poisson’s equation:

∇2Φ(xi, t) = 4πGρtot(xi, t), (1.17)

where ρtot(xi, t) is the total mass density field visible to particle i (located at position xi

at time t). Once Poisson’s equation has been solved for a given distribution of particles,

the equations of motion can be ‘integrated’, by approximating the differentials as finite

differences: the particle positions and velocities are computed for the next time step, the

clock is advanced, and we again solve Poisson’s equation for the new positions.
8This is defined such that f(x, u, t)d3xd3u is the probability that at time t a given particle is in the

volume of phase space centred on the position x and velocity u ≡ ẋ.
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The näıve way of progressing is to construct the potential for each particle i (although

in practice one would go directly to the acceleration ∇Φ) using simple direct summation,

over each of the remaining N − 1 particles:

Φ(xi) = −G
∑

j 6=i

mj√|xi − xj |2 + ε2
, (1.18)

where we have introduced a gravitational softening length ε to reflect the fact that an

astrophysical object of mass mi such as our particles will not have zero volume. Its inclu-

sion prevents unphysical two-body effects such as scattering to large angles, or forming a

bound pair (the softened potential shown here is just a simple example; a detailed study

of different choices is given in Dehnen 2001). Since we always want to use as many par-

ticles as possible, to maximise the number of well-resolved objects in the simulation, this

method is clearly not appropriate: the number of operations scales like N2. More efficient

solutions than this Particle–Particle (PP) method must be sought.

The Particle–Mesh (PM) technique (e.g. Klypin and Shandarin, 1983; Hockney and

Eastwood, 1988; Klypin and Holtzman, 1997, and references therein) works by assigning

the particle masses to grid cells, according to a given interpolation scheme. This is used

to calculate a discretised density field ρijk (where the subscripts label the grid cells). We

then use the fact that the potential can be represented as the convolution of the density

field and an appropriate Green’s function, G: in Fourier space, the convolution becomes

a straightforward product, Φ̂(k) = Ĝ(k)ρ̂(k) (where the circumflex indicates the Fourier-

transform of a quantity). Therefore, we transform the density field ρijk → ρ̂lmn (where

l, m and n index the cell in k-space), solve for Φ̂lmn, and transform it back into the

potential in real space, Φijk. The acceleration of each particle can now be computed by

interpolating the potential onto the particle’s position (with the same scheme used for

the particle-cell density assignment) and using the finite-difference method to compute

∇Φ. The accelerations are then used to compute the new particle positions and velocities;

these are typically output as a “snapshot” file, and the simulation can then advance to

the next time-step.

While the PM method is efficient both in terms of operations and memory require-

ments, it can suffer from the resolution limit imposed by the grid size. One way to avoid

this is to use direct-summation on small scales, and reserve the particle-mesh for larger

scales: the Particle–Particle, Particle–Mesh scheme, P3M (e.g. Efstathiou and Eastwood,

1981; Hockney and Eastwood, 1988). Although this does provide an improvement over

each of the PP and PM techniques alone, the highly-clustered nature of matter at late
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times can result in the PP part becoming dominant. For well-resolved systems (large

N), the simulation will slow dramatically, and could make it impractical to complete.

The Adaptive P3M method (AP3M, Couchman 1991) attempts to overcome this problem

by introducing sub-grids in high-density regions. This reduces the PP load by instead

performing more PM steps on a finer mesh. (We describe other adaptive methods later.)

A rather different method involves organising the particles into a hierarchical ‘Tree’

structure. A commonly-used system is the octree (Barnes and Hut, 1986): if a cubic

node contains more than one particle, it is divided into eight equal-sized child-nodes. The

process starts with a cube containing the entire simulation, and is performed recursively in

each child-node. The resulting tree structure is then used to produce an approximation

to the gravitational force felt by each particle in turn. For a given particle, the force

experienced due to the other particles is computed as follows. Starting with the largest

node, the following criterion is tested:

r >
l

θ
(1.19)

where r is the distance between the particle and the node in question, l is the size of

the node, and θ is the tree opening angle, a simulation parameter that governs the force

accuracy. If the criterion is true, the force from that node is added onto the accumulating

force felt by the particle. If it is false, then the node is “opened”, and equation 1.19 is

evaluated for each child-node in turn. This continues recursively until all the particles have

contributed. This criterion means that distant particles contribute collectively through

larger-scale nodes. For nearby particles though, the tree is “walked” to greater depth,

resulting in a more accurate force contribution.

A decision has to be made regarding the accuracy of the force contribution from a

given node. An obvious first choice is simply to use the node’s total mass, located at its

centre of mass. In practice, a multipole expansion of the gravitational potential is often

used; the simple choice just described is the monopole term in such an expansion. There

is a compromise between evaluating the force from a given node to greater accuracy using

higher-order terms, and walking the tree to greater depth to improve the force resolution.

The Gadget-1 code of Springel et al. (2001b) evaluates up to the quadrupole moment,

whereas the Gasoline code of Wadsley et al. (2004) continues to the hexadecapole mo-

ment, while using fewer tree nodes. The Gadget-2 code (Springel, 2005) however just

uses the monopole9, and walks deeper into the tree.

9The dipole term just gives the centre of mass of the node. Since the particle coordinates in the
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In fact, Gadget-2 can be used as a hybrid TreePM code: it evaluates the potential at

large-scales in Fourier space using the PM method, while the Tree is used for the potential

at smaller-scales. The simulations analysed in this paper all use variants of Gadget-2.

1.5.2 Gas dynamics

Baryonic gas behaves differently to the dark matter fluid, and requires solving the stan-

dard equations of hydrodynamics in addition to Poisson’s equation. If we discretise the

gas into particles in the same way as the dark matter and stars, we can use the same

method for dealing with gravity in both cases. However, the gas particles carry more in-

formation than just their position, velocity and mass; they also have an intrinsic internal

energy for example, which can be converted to a temperature if we know, or assume, its

composition (e.g. hydrogen).

The most commonly-used method for dealing with gas particles is through Smoothed

Particle Hydrodynamics (SPH, Gingold and Monaghan 1977; Lucy 1977; Monaghan 1988,

1992). The key aspect of this formalism is that quantities (such as densities, velocities,

energies, etc) are computed by smoothing over neighbouring particles. This is done using

a smoothing kernel function, W (x, h), where h is the smoothing length; in combination

with the functional form of W , it governs the volume over which to smooth, and can

vary between particles. In general, for some property A at position x, we compute the

smoothed average

〈A(x)〉 =
∫

A(x′)W (x− x′, h)d3x′. (1.20)

Discretising to a set of particles (with d3x′ → mj/ρj), we can estimate the value of A at

particle i by

Ai = A(xi) =
N∑

j=1

mj

ρj
A(xj)W (xi − xj , h). (1.21)

For example, the density around particle i can be estimated by ρi =
∑

j mjW (xij , h), and

the velocity field by vi =
∑

j(mj/ρj)vjW (xij , h) (where we have written xij ≡ xi − xj).

These quantities can be easily differentiated, since for a particular sum element it is

only the smoothing kernel that depends explicitly on the coordinates, e.g. (∇·v)i =
∑

j(mj/ρj)vj∇W (xij , h).

In practice, the particular expressions used to derive quantities, and the form of the

hydrodynamic equations used, are not unique: different choices have consequences for

the numerical accuracy of the resulting code, and relate to which quantities are explicitly

multipole expansion are computed relative to the centre of mass, the dipole term does not contribute.
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conserved. Springel and Hernquist (2002) investigate different formulations, and derived

a form of SPH that manifestly conserves both energy and entropy. They found that

it produced significantly better results, in terms of reducing numerical artefacts. It also

allows the particle equations of motion to be written in a form that can easily be integrated

forward in time. This entropy-based formulation of SPH replaced the standard form in

the subsequent release of the Gadget-2 code (Springel, 2005).

SPH implementations also require the addition of terms describing an artificial viscos-

ity. This allows the SPH method to produce physical shocks, which would otherwise be

smoothed away due to W (although SPH shocks are usually still not strong enough com-

pared to analytic results). The original form of the artificial viscosity term (Monaghan

and Gingold, 1983) was found to also add viscosity unphysically to pure shear flows (i.e.

where the velocity field has zero divergence but non-zero curl), and caused additional

angular momentum transport (e.g. during disc formation; Hernquist and Katz, 1989;

Katz and Gunn, 1991). The alternative form of Balsara (1991, 1995) removes the shear-

flow viscosity, and was found to vastly reduce the spurious angular momentum transport

(Steinmetz, 1996). This form of the artificial viscosity was used in Gadget-1, with a

slightly modified version used in Gadget-2 (Monaghan, 1997; Springel, 2005).

1.5.3 Adaptive grid methods

There is another set of methods for astrophysical simulations that we have not yet dis-

cussed, which make use of adaptive mesh refinement (AMR): i.e. an adaptive grid is

used in the N -body gravity solver, with Eulerian10 hydrodynamics on the grid for the

gas. The resolution limitations of the PM method are overcome by adaptively refining

(and de-refining) the grid in regions requiring higher (or lower) resolution, for example in

high density regions. AMR codes are typically more difficult than Lagrangian codes to

parallelise effectively, and often do not scale as well. However, they are able to accurately

simulate systems with a much greater dynamic range than their Lagrangian competitors;

for example shocks are much better-resolved. Currently popular AMR codes include ART

(Kravtsov et al., 1997, 2002), ENZO (Bryan and Norman, 1997; Norman and Bryan, 1999;

O’Shea et al., 2004), FLASH (Fryxell et al., 2000) and MLAPM/AMIGA (Knebe et al.,

2001). A detailed description of the methods used in AMR codes is beyond the scope

10The SPH method previously discussed is Lagrangian, as it describes the properties of individual mass

elements that move with the fluid flow. Eulerian methods do not use particles, instead tracking the

properties of the flow through discrete volume elements.
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of this thesis; a recent comparison between Lagrangian and Eulerian hydrodynamics was

done in O’Shea et al. (2005).

1.5.4 Additional physics for galaxy formation

In order to fully simulate the processes of galaxy formation, a great deal more physics

has to be modelled. These processes typically involve adding or removing heat and/or

mass from the gas, and enter the hydrodynamics equations through sink or source terms.

Although a detailed discussion of the modelling of these processes is beyond the scope of

this thesis, we shall outline them in brief here (see Okamoto, 2008, for a recent review).

The gas as described above is often known as ‘adiabatic’, although ‘non-radiative’ is

a more accurate term: it has no provision for transferring energy to or from the gas itself

other than through pressure (‘PdV ’ work). Giving the gas the ability to cool radiatively

is a common first step in proceeding towards more realistic simulations. The gas radiative

cooling rate depends on its composition, in terms of the abundance of different elements

(its metallicity). The net cooling functions for gas of a range of metallicities is usually

tabulated (e.g. Sutherland and Dopita, 1993), since it is very memory-intensive to track

each element individually, and needlessly processor-intensive to compute the cooling rates

for each gas particle from scratch at each timestep. In addition, there is often assumed to

be photoionising UV background radiation, acting as a heat source (Haardt and Madau,

1996). Because efficient computation of radiative transfer is difficult (due, in part, to the

high propagation speed compared to the sound speed of the gas; see e.g. Iliev et al. 2006),

the UV background is often assumed to be spatially uniform, although it can evolve with

time. Other heat sources that can be included are those more directly related to star

formation processes, such as stellar winds and supernovae.

A difficulty in implementing these heating/cooling processes in simulations is that the

timescales for the energy transfer (e.g. the cooling time) are typically much shorter than

the dynamic timescales for the hydrodynamic processes. A commonly-used solution is to

perform the heating/cooling integration in-between hydrodynamics timesteps. The gas is

assumed to be static over that period, and the net internal energy change due to heating

and cooling is computed and applied to the particles, ready for the next hydrodynamic

timestep.

Clearly, one cannot simulate galaxy formation without star formation. Gas particles

can be converted into collisionless ‘star’ particles if they satisfy certain conditions, such

as being above a certain density and below a certain temperature. Star formation occurs
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according to a probability distribution, designed such that the result mimics an observed

star formation rate. The star particles, which carry additional properties such as their

formation time and metallicity, represent a stellar population that is a Monte Carlo sam-

ple of the distribution of stellar properties. The task of computing the details of the

stellar population is known as Stellar Population Synthesis (SPS), and can be part of the

simulation code itself, or a separate program for post-processing. The SPS code takes a

star particle’s age and metallicity, and assumes a particular initial mass function (IMF,

the number of stars produced in bins of initial stellar mass, e.g. dN/dm). It can work out

how the corresponding stellar population would evolve, by considering individual stellar

evolution tracks. It also needs to estimate how much energy, metals, and mass are fed

back into the gas due to processes such as stellar winds and supernova explosions. Codes

can also generate spectral and photometric properties of the stellar populations, for more

direct comparisons with observations. Commonly-used population synthesis codes include

GALAXEV (Bruzual and Charlot, 2003) and PEGASE (Le Borgne et al., 2004), although

procedures can also be written directly into the simulation codes.

The constraints of processor-time and memory usage in simulations mean that many

processes in the interstellar medium (ISM), such as instabilities in cooling gas, nebulae

such as molecular clouds that form stars, and winds from stellar evolution, are well be-

low any practical resolution limit. Therefore, a multiphase ISM is usually implemented

through ‘sub-grid’ (or sub-particle) modelling, treating processes statistically rather than

following individual instances. This will usually include models for the growth and evap-

oration of cool clouds, which can have a significant influence on the star formation rate,

as well as the hot gas and stars already discussed. Implementations are commonly based

on the early work of McKee and Ostriker (1977), and include those of Yepes et al. (1997),

Springel and Hernquist (2003), Springel et al. (2005a) and Booth et al. (2007).

A relatively recent addition to the physics included in galaxy-formation simulations is

the tracking of central black holes. Heating due to radiation from active galactic nuclei

(AGN) can generate bubbles of hot gas in the ISM, as well as help regulate star formation

and gas cooling. Black hole sink particles can be placed in the centres of galaxies or

clusters, and their mass accretion rate tracked. The black hole particle consumes local gas

particles stochastically, to match the accretion rate; the use of gas from the neighbourhood

of the black hole means that the ISM model will have a role in determining the mass

accretion rate. The black hole can then inject energy back into the surrounding gas

through a luminosity proportional to the accretion rate. Mergers of black holes can also
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Simulation Lbox Npart mp η

h−1Mpc 107 h−1M¯ h−1kpc

MS 500 10 077 696 000 86.066 5.0

HR1 100 729 000 000 9.518 2.4

DMO 35.325 3 397 215 1.933 0.7

DMG: 35.325

–DM 3397 215 1.650 0.7

–Gas 2 985 242 0.2845 0.35

–Stars 1 668 836 0.06683 0.35

GDMO 35.325 207 605 1.955 0.7

GDMG: 35.325

–DM 161 009 1.694 0.7

–Gas 141 946 0.2607 0.35

–Stars 130 873 0.06138 0.35

Table 1.2: Parameters for the simulations used in this thesis: periodic

box size, numbers and masses of particles, and gravitational softening η

(see equations 2.5 and 3.4). For (G)DMG and (G)DMO, we analyse the

high-resolution region in the centre of the Lbox cube (see text). Note

that in (G)DMG, the number of gas and star particles, and their masses,

vary over the course of the simulation according to the star formation al-

gorithm. The values presented here are the numbers and median masses

at z = 0.

be tracked. Recent simulations that include models of black holes and AGN include

Sijacki and Springel (2006), Sijacki et al. (2007), and Okamoto et al. (2008).

1.5.5 Simulations used in this thesis

We use a particular set of simulations throughout this thesis. To avoid repetition in sub-

sequent chapters, we describe their main features here. Important simulation parameters

are shown in table 1.2, and their cosmological parameters are shown in table 1.3.
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Simulations ΩΛ,0 Ωm,0 Ωb,0 h n σ8

MS & HR1 0.75 0.25 0.045 0.73 1.0 0.9

G/DMG & G/DMO 0.70 0.30 0.044 0.70 1.0 0.9

Table 1.3: Cosmological parameters for the simulations used in this

thesis: The cosmological density parameters, the dimensionless Hubble

constant, the spectral index and the power spectrum normalisation (see

sections 1.1 and 1.3).

Simulations of the large scale structure

We use two main simulations that provide very large numbers of well-resolved dark matter

haloes, over a broad range of masses.

The Millennium Simulation (MS) is a major project of the Virgo Consortium, and

was run in the summer of 2004. It uses over ten billion dark matter particles (21603), in a

periodic box of length 500h−1Mpc (described fully in Springel et al., 2005b). It simulates

the large scale structure of a ΛCDM universe, with cosmological parameters chosen to

be consistent with the results of the Two-degree Field Galaxy Redshift Survey (2dFGRS,

Colless et al., 2001; Percival et al., 2002) and the first-year results from the Wilkinson

Microwave Anisotropy Probe (WMAP, Spergel et al. 2003; see also Sánchez et al. 2006).

More recent data from the WMAP satellite, in combination with other data sources

such as the 2dFGRS (Spergel et al., 2007; Dunkley et al., 2008; Komatsu et al., 2008),

now favour a slightly different cosmology. The most significant difference is a slight tilt in

the power spectrum (n = 0.960+0.014
−0.013), and a lower value of σ8 = 0.817± 0.026 (Komatsu

et al., 2008). A universe with a smaller n would have less power at small scales, which

would delay the formation of small haloes. Although this would be significant at early

times, there will be very little difference at z = 0. The lower σ8 means there is less power

overall, so that that rare objects (such as high-mass haloes) are made significantly rarer.

The second large-scale simulation used here we shall refer to as HR1. It uses the same

cosmology as the MS, but with higher spatial resolution, fewer particles (9003), and a

smaller box size (100h−1Mpc). In addition to the work presented here, this simulation

has also been used in Gao et al. (2008). The HR1 simulation allows studies of the ΛCDM

halo population to be extended down to lower masses, improving the dynamic range of

the analyses. This is particularly important for studies of the internal structure of haloes

(such as the angular momentum and density profiles), as each halo selected for study
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must be well resolved down to a very small distance from the centre.

Both the MS and HR1 simulations were performed using L-Gadget-2, a ‘lean’ version

of the Gadget-2 code that had been optimised for massively parallel computation and

low memory consumption (Springel, 2005; Springel et al., 2005b).

Simulations of galaxy formation

The use of the HR1 simulation allows us to push the mass of well-resolved haloes down

to the scale of individual galaxies. However, these haloes are simulated using only dissi-

pationless dark matter particles: in the real world, we expect the structure of the inner

regions of haloes (at least) to be substantially modified by the action of baryonic processes.

To investigate these effects, we have made use of the simulations described in Okamoto

et al. (2005)11. The code used was the modified version of Gadget-2, which includes

a sophisticated implementation of the physical processes required for forming galaxies.

Although we briefly review the details of these processes here, the reader is referred to

the original paper for the full details.

The main galaxy-formation simulation consists of a periodic box of length 35.325h−1Mpc,

initially containing an arrangement of dissipationless particles of various masses, and SPH

gas particles co-incident with the highest resolution (lowest mass) dissipationless parti-

cles. This evolves over cosmic time, such that at z = 0 there is a population of dark

matter haloes and galaxies in a roughly spherical high-resolution region in the centre of

the box, with a diameter of about 12.5 h−1Mpc. This is surrounded by progressively

lower-resolution boundary particles.

The modelling of the interstellar medium (ISM) mostly follows the method of Springel

and Hernquist (2003): the ISM is a two-phase gas, consisting of an ambient hot phase

and cool clouds, in pressure equilibrium with each other. The heating and cooling of

gas is done under the assumptions of collisional ionisation equilibrium and the presence

of a uniform ultraviolet background that evolves with time (Haardt and Madau, 1996).

Cooling depends explicitly on the gas metallicity, using the cooling tables from Sutherland

and Dopita (1993). Molecular cooling and metal cooling for temperatures below 104 K

are not included.

Energy to heat the gas is supplied from both Type II and Type Ia supernovae, and

provides a feedback mechanism from the stellar population. Stars form from the cool gas

in either a ‘quiescent’ or ‘burst’ mode. In quiescent star formation, stars form according

11Libeskind et al. (2007) also used them, to investigate satellite galaxy alignments
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to a given probability once the cold gas density goes above a certain threshold. Stars

are formed with an initial mass function (IMF) following Salpeter (1955). For the burst

mode, star formation occurs with a top-heavy IMF (Baugh et al., 2005) and a shorter

star-formation timescale. This causes stronger feedback due to the increased number of

subsequent supernovae; the resultant heating is greater than the local cooling, and the

heated gas gets blown out of the galaxy. The starbursts are triggered by the presence of

shocks, which are typically caused by galaxy mergers.

These prescriptions for star formation and feedback ensure that much gas remains hot

during the early stages of the galaxy-formation process, and that once the merger-rate

has reduced at later times the gas can cool and form stars stably, resulting in realistic

galaxies. We shall refer to the simulation ran with this code as “DMG” (dark matter plus

galaxies; this was the ‘SR’ simulation of Libeskind et al. 2007).

In addition, we re-ran the DMG simulation without baryons, redistributing the bary-

onic mass to the dark matter in the initial conditions to conserve the overall mass. Using

this dark-matter only (“DMO”) simulation allows us to link the complex physics but rel-

atively few objects of the DMG simulation with the simpler physics of the MS and HR1,

which contain many orders of magnitude more objects. Furthermore, since both DMO

and DMG use the same mass distribution in the initial conditions, individual haloes from

the two simulations can be compared directly, allowing the effects of baryonic physics to

be seen in detail.

In Chapter 4, we also use the single-halo simulation described in Okamoto et al. (2005)

and Libeskind et al. (2007) (referred to there as ‘SD’), which uses the same physical model

and is at approximately the same resolution. It provides a single additional well-resolved

galaxy–halo system, which is very welcome given the strenuous resolution constraints

required for the analysis of density profiles. The high-resolution region at z = 0 is roughly

spherical with a diameter of 1.8 h−1Mpc. We shall refer to this simulation as ‘GDMG’,

and its corresponding dark matter-only version as ‘GDMO’.

The cosmological parameters used for these galaxy-formation simulations are slightly

different to those of the MS and HR1, but this is not expected to significantly affect the

results.
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1.6 Structure of this thesis

In this thesis, we analyse the properties of haloes identified at z = 0 in the simulations

described above, with a focus on their angular momentum and density profiles. These

properties are not only fundamental to our understanding of the growth and structure of

dark matter haloes, but they are also essential to current and future observational tests

of the ΛCDM model. The distribution of halo angular momentum is a key parameter

in models of the growth of galactic discs, and the mass density profile is now able to be

measured through gravitational lensing.

Chapter 2 focuses on the dimensionless spin parameter, λ, which is a measure of the

amount of coherent rotation in an isolated system. We characterise the spin parameter

distribution, and its dependence on halo mass. We also measure the shapes of the haloes,

and relate the shape distribution to that of both the spin magnitudes and directions.

These distributions can depend sensitively on the halo definition used, and we test this

by comparing the results from different halo finders. Finally, we relate the spin and shape

of the haloes to their spatial clustering, and measure how these properties bias the halo

population with respect to the mean dark matter distribution.

In Chapter 3, we extend the study of halo spin to look at the direction and magnitude

of the angular momentum vector itself, as a function of halo radius. However, we expect

the inner regions of real haloes to be influenced by baryonic processes, so in addition to the

large-scale dark matter simulations, we use the DMO and DMG simulations to measure

the effect of the baryons. This also lets me compare the orientation of galaxies with

respect to their parent haloes, which leads to consequences for possible tests of ΛCDM

using weak gravitational lensing.

Chapter 4 studies the density profiles of haloes. Using the Millennium Simulation

halo concentration parameters derived in Neto et al. (2007), we investigated the source

of the scatter in the concentration-mass relation. This involves investigating correlations

between concentration, the spin parameter, and the halo formation time (measured using

the merger trees). Since the definition of ‘formation time” is somewhat arbitrary, we com-

pare the measured concentrations with those predicted by three models, which take into

account different aspects of the halo merger history. As with the angular momentum, we

then move on to analyse the density profiles of haloes with baryons, comparing individual

haloes in the DMO and DMG simulations. Finally, we look at the haloes’ correspond-

ing circular velocity profiles, and compare them to the Universal Rotation Curve (URC)
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model, which is calibrated to match observational data.

We bring together the conclusions of the thesis in Chapter 5. Appendix A contains

a gallery of haloes. The first set illustrate various important aspects of the groupfinder

algorithms tested in Chapter 2. These are followed by images of the four best-resolved

haloes from the DMO/DMG simulations used in Chapters 3 and 4. Finally, Appendix B

gives details of the bootstrap tests of the angular momentum profile orientation, used in

Chapter 3.
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Chapter 2
The spin and shape of

dark matter haloes

2.1 Introduction

The formation of galaxies is intimately linked to the acquisition and distribution of an-

gular momentum. In the current cosmological paradigm, the inflationary ΛCDM model,

cosmic structures grow hierarchically. Dark matter haloes form by the dissipationless

gravitational collapse of material associated with peaks in the primordial density fluc-

tuation field, growing, through mergers and smooth accretion, into objects with a wide

range of masses at the present day. Galaxies form when baryons cool and condense near

the centre of these haloes (White and Rees 1978, White and Frenk 1991). They undergo

mergers and tidal interactions along with their haloes, giving rise to the rich spectrum of

galaxy types and environments that we see today.

Understanding the generation and evolution of the angular momentum of dark matter

haloes is a prerequisite for understanding the angular momentum and morphology of

galaxies. For example, the distribution of halo spins is a basic input to models of galaxy

formation (e.g. Mo et al. 1998, van den Bosch 1998, Cole et al. 2000). The early evolution

of the angular momentum of a density perturbation is adequately described by the linear

tidal torque theory (see section 1.4, and e.g. Hoyle 1951, Peebles 1969, Doroshkevich

1970, White 1984, Catelan and Theuns 1996, Lee and Pen 2000). However, as work such

as that of White (1984) and Porciani et al. (2002a) has shown, the non-linear effects

inherent in the formation of large-scale structure lead to large quantitative disagreements

between the predictions of the tidal torque theory and the angular momenta found in

N -body simulations of dark matter haloes.

N -body simulations provide the way to progress beyond the linear regime. As com-

puting power has improved, so has the scale and resolution of simulations. Very early

numerical studies of the angular momentum of “proto-galaxies” were performed by Pee-

29
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bles (1971) (with Np ∼ 100 particles) and Efstathiou and Jones (1979) (Np = 1000), and

led the way to the analysis of the spins and shapes of CDM haloes in more sophisticated

simulations (Davis et al. 1985; Barnes and Efstathiou 1987; Frenk et al. 1988; all with

Np = 32 768). Warren et al. (1992) used a much larger simulation (Np ∼ 106) and focused

particularly on the details of the distributions of halo spins and shapes, and their rela-

tionship through the alignment of the halo angular momentum vector. Cole and Lacey

(1996) also investigated the shapes and spins of dark matter haloes, in addition to various

other aspects of halo structure.

An early study by Barnes and Efstathiou (1987) examined the relationship between

spin and the spatial clustering of haloes, as measured by the two-point correlation func-

tion. Later, Lemson and Kauffmann (1999) examined the environmental dependence of

halo properties, and found no correlations with halo spin. More recently, Faltenbacher

et al. (2002) carried out a mark correlation function analysis to investigate how spin varies

with halo pair-separation. They found that neighbouring cluster pairs tend to have higher

spins than the average.

Recent years have seen a large amount of work on the analysis of haloes in ΛCDM

simulations. Halo shapes and their variation with mass were investigated by Bullock

(2002), Kasun and Evrard (2005), Shaw et al. (2006) and Allgood et al. (2006). In agree-

ment with previous studies, halo spin was found to vary little, if at all, with halo mass.

The relationship between halo shape and spin was investigated by Bailin and Steinmetz

(2005), Avila-Reese et al. (2005), Shaw et al. (2006) and Gottlöber and Turchaninov

(2006). While the work presented here was being completed an independent analysis of

halo properties, investigating halo concentrations, spins and shapes in a series of simula-

tions, was published by Macciò et al. (2007).

Using the the 10-billion particle Millennium Simulation of the evolution of dark matter

in the ΛCDM cosmology (Springel et al. 2005b, see section 1.5.5), we re-examine, in

this chapter, some of the shape and spin properties of dark matter haloes previously

considered. Our analysis improves upon earlier work because the millions of haloes that

formed in this simulation provide unprecedented statistical power. This allows us, for

example, to quantify the distribution of halo spins and the relationship between spin,

halo mass and shape with a precision that has not hitherto been possible. Unlike previous

work, we consider different ways to identify haloes in the simulations; it turns out that the

details of halo definition and selection can have a strong impact on the results. Finally we

investigate how halo clustering depends on spin and shape for haloes of different masses.
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This chapter is structured as follows. Section 2.2 provides a description of the Millen-

nium Simulation itself, and the various halo properties we shall be investigating. Section

2.3 describes the construction of the catalogues whose haloes we investigate, including

the group-finding algorithms and halo selection criteria. These we use to remove haloes

whose properties are unreliable or biased, due to both numerical effects and the group-

finding algorithms themselves. The main results of this chapter are presented in section

2.4, where we describe the distribution of halo spins as a function of mass and shape, and

examine its effect on halo clustering. Our conclusions are presented in section 2.5. In

addition, Appendix A shows various examples of haloes that illustrate the effects of the

group-finders.

2.2 Dark matter halo properties

The Millennium Simulation is described in section 1.5.5. It followed the evolution of 10

billion dark matter particles in the ΛCDM model, which cluster under gravity to form

‘haloes’, groups of particles selected according to a particular algorithm. For each halo-

finding algorithm we consider in this chapter, we compute a range of halo properties.

We shall discuss these quantities here, and defer the details of the halo-finding and halo-

selection procedures to the next section.

Much of this work concentrates on the dimensionless spin parameter λ, introduced by

Peebles (1969, 1971). This is defined as:

λ ≡ J |E|1/2

GM
5/2
h

≡ j|E|1/2

GM
3/2
h

, (2.1)

where Mh is the halo mass, J is the magnitude of the angular momentum vector J (and j

is the specific angular momentum), E is the total energy, and G is Newton’s gravitational

constant. It is important to note that λ is defined for any object which has a well-defined

j, E and Mh; all these quantities are conserved for an isolated system, virialised or not.

In reality, none of the haloes in cosmological simulations are completely isolated, leading

to ambiguities in the definition. This means that for the λ of a halo to be useful, it is

the definition of halo that requires the most care (and conditions such as virialisation; see

section 2.3.2), not the definition of λ.

The meaning of λ is therefore best understood by considering an isolated, virialised,

spherical system. The spin parameter can be seen to be a measure of the amount of

coherent rotation in a system compared to random motions. For a spherical object, it is



2. The spin and shape of dark matter haloes 32

approximately the ratio of its own angular velocity to the angular velocity needed for it

to be supported against gravity solely by rotation (see e.g. Padmanabhan, 1993).

The specific angular momentum j and kinetic energy T of each halo containing Np

particles are given by1:

j =
1

Np

Np∑

i=1

ri×vi (2.2)

T =
1
2
mp

Np∑

i=1

v2
i (2.3)

where ri is the position vector of particle i relative to the halo centre, and vi is its velocity

relative to the halo centre of momentum.

The halo potential energy, U , is calculated using all halo particles if Mh ≤ 1000mp,

and is rescaled up from that of 1000 randomly-sampled particles otherwise. The potential

is that used in the simulation itself:

U =

(
N2

p −Np

N2
sel −Nsel

)(
−Gm2

p

η

)
Nsel−1∑

i=1

Nsel∑

j=i+1

−W2(rij/η) (2.4)

where Nsel is the number of selected particles (Nsel ≤ 1000), η is the softening length (see

table 1.2), rij is the magnitude of the separation vector between the ith and jth particles

in the halo, and the softening kernel (see Springel et al., 2001b) is:

W2(u) =





16
3 u2 − 48

5 u4 + 32
5 u5 − 14

5 , 0 ≤ u ≤ 1
2 ,

1
15u + 32

3 u2 − 16u3 + 48
5 u4 − 32

15u5 − 16
5 , 1

2 ≤ u ≤ 1,

− 1
u , u ≥ 1

(2.5)

A halo’s shape is derived from its mass distribution, which we characterise using the

inertia tensor, I. This relates angular momentum J and angular velocity ω through

J = Iω, and is formed from the following components:

Iαβ ≡
Np∑

i=1

mi

(
r2

i δαβ − ri,αri,β

)
, (2.6)

where ri is the position vector of the ith particle, α and β are are the tensor indices

with values of 1, 2 or 3, and δαβ is the Kronecker delta. The process of diagonalising I is

equivalent to rotating the coordinate system to find a set of axes in which a torque about

one does not induce a rotation about another; i.e. such that J is parallel to ω. These

1Note that in the original paper of Bett et al. (2007), the expression for T had an error, with Mh

written instead of mp. The correct version had been used in the code, so this did not affect any results.
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axes then describe a hypothetical uniform ellipsoid whose axes a ≥ b ≥ c are those of the

halo itself:

I =
1
5
Mh




b2 + c2 0 0

0 a2 + c2 0

0 0 a2 + b2


 . (2.7)

The eigenvalues are the moments of inertia I for rotation about that axis. For example,

rotation about the semi-major axis a has the moment of inertia Ia = 1
5Mh(b2 + c2); note

that Ia ≤ Ib ≤ Ic. These eigenvalues can then be combined to find the relative axis

lengths, e.g.

a =
√

5
2Mh

(−Ia + Ib + Ic). (2.8)

The axis vectors are given directly by the corresponding eigenvectors, so that, for

example, rotation about the a-axis of the ellipsoid (with the longest length a) has the

smallest moment of inertia, Ia.

Much of the literature on halo shapes uses the following description of the mass distri-

bution, confusingly also calling it the inertia tensor (e.g. Cole and Lacey 1996, Hopkins

et al. 2005, Bailin and Steinmetz 2005, Shaw et al. 2006):

Mαβ =
1

Np

Np∑

i=1

ri,αri,β. (2.9)

Since Iαβ = Mγγδαβ −Mαβ, the results are entirely equivalent: if one diagonalises this

matrix, then a, b and c can be found as just the square roots of the eigenvalues, and the

eigenvectors again give the axis vectors (see also the discussion in section 1.4).

Once the halo’s principal axes have been found, relationships between the axes and

between the shape and other properties such as spin can be examined in terms of the

axis ratios p ≡ c/b, q ≡ b/a and s ≡ c/a. The minor-to-major axis ratio s is a useful

measure of the sphericity of the system, but does not specify in what way a halo might

be aspherical. For this, we can use the triaxiality parameter introduced by Franx et al.

(1991):

T =
a2 − b2

a2 − c2
(2.10)

This measures whether a halo is prolate (T = 1) or oblate (T = 0), but it does not

quantify how aspherical a halo is.
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2.3 The halo catalogues

2.3.1 Groupfinder algorithms

The problem of how best to identify groups of particles within N -body simulations is a

ubiquitous feature in studies of dark-matter halo properties. Many solutions have been

found to this problem, typically involving first finding candidate-halo centres, followed by

an iterative scheme to shrink or grow the halo according to criteria involving the binding

energy or overdensity. Such algorithms include Bound Density Maxima (BDM, Klypin

et al. 1999), Spline Kernel Interpolative DENMAX (SKID, Weinberg et al. 1997), the

AMIGA Halo Finder (AHF, Gill et al. 2004), and Subfind (Springel et al., 2001a), which

we use below.

The very simple ‘friends-of-friends’ group-finder (FOF, Davis et al. 1985) was run on-

the-fly, during the Millennium Simulation run, with a linking length of s0 = b(L3
box/Npart)1/3

where b = 0.2, to attempt to select virialised structures in the particle distribution. As

is often the case (e.g. Porciani et al. 2002a, Shaw et al. 2006, Macciò et al. 2007), this

simple FOF catalogue forms the basis for the more sophisticated halo definitions we use.

An enhanced version of the Subfind program (Springel et al., 2005b) was run on

the data to identify self-bound substructures within each FOF halo, which we then use

to construct the different group catalogues we investigate. The Subfind algorithm is

essentially a two-step process. The first task is to identify subhalo candidates within

each FOF halo. This is done using an adaptively-smoothed dark matter density field,

effectively lowering a density threshold and identifying the peaks that grow out of it. The

second stage consists of performing an iterative gravitational unbinding procedure on the

candidates, successively removing particles that are not bound to the subhalo candidate.

For this purpose, the potential energies are computed using a tree algorithm similar to

that used for the simulation itself. The candidates that are left with at least 20 particles

after this procedure are then subhaloes of the parent halo. The algorithm can and does

identify subhaloes within subhaloes. It results in the FOF haloes typically consisting

of a hierarchy of self-bound structures (which are not necessarily bound to each other),

and a set of particles (referred to as “fuzz”) that are spatially linked to the halo but not

part of any self-bound (sub)structure. The most massive “subhalo” (MMSH) typically

contains most of the mass of the corresponding FOF object, and so is best regarded as

the self-bound background halo itself, with the remaining subhaloes as its substructure.

In addition to finding the bound structures within haloes, Subfind also computes
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Halo catalogue Number of haloes

FOF (without Subfind) 17 709 121 (‘raw’ catalogue)

FOFall 15 494 624 (87.5% of FOF raw)

FOFclean 1 332 239 (8.60% of FOFall)

SOall 15 458 379 (99.8% of FOFall)

SOclean 1 239 494 (8.02% of SOall)

TREEall 17 041 498 (110.0% of FOFall)

TREEclean 1 503 922 (8.83% of TREEall)

Table 2.1: Numbers of haloes in the halo catalogues defined in this chap-

ter. The “all” catalogues are the unfiltered results of the groupfinder

algorithms described in sections 2.3.1, 2.3.1 and 2.3.2. The “clean” cat-

alogues have been filtered as discussed in sections 2.3.2 and 2.3.2, with

the quasi-equilibrium parameter Q = 0.5 and the particle-number limit

Np ≥ 300.

certain subhalo properties, which are then stored in the subhalo catalogue files. These

include the location of the potential minimum, the ID number of the most bound particle,

the mass (number of particles), and the half-mass radius. Subfind also computes and

stores additional data related to each parent halo. Starting at the potential minimum

of the MMSH of a halo, three radii are found: the first two are those where the density

within them drops below 200ρcrit and 200ρ̄, to aid comparison with other work. The third

is the virial radius proper, which uses the fitting formula of Bryan and Norman (1998) for

spherical top-hat collapse in a flat (ΩΛ + Ωm = 1) cosmology (see also Eke et al. 1996):

ρ

ρcrit
= 18π2 + 82(Ωm(z)− 1)− 39(Ωm(z)− 1)2 (2.11)

This gives ρ/ρcrit ≈ 94 at z = 0. Although these properties are associated with sets

of grouped particles, Subfind does not restrict itself to these particles when computing

them.

We will now describe the group catalogues whose halo properties we have investigated,

and how they are built from the results of the FOF and Subfind algorithms. A key point

that is used for each halo definition is that we take the halo centre to be at the potential

minimum of the MMSH. For reference, table 2.1 gives a list of each halo catalogue we will

discuss, and the number of haloes they contain.
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FOF haloes

The basic FOF algorithm, run as already described, results in 17 709 121 groups containing

at least 20 particles, i.e. of mass & 1.7×1010 h−1M¯, at redshift z = 0. The most massive

group contained 4 386 162 particles (≈ 3.8 × 1015 h−1M¯). Using this catalogue we can

therefore identify dark matter haloes over a range of more than 5 orders of magnitude in

mass, ranging from subgalactic clumps to the most massive clusters.

In practice, since we use the centre (potential minimum) of the MMSHs as the centres

of the haloes themselves, we only use FOF haloes for which Subfind has found bound

substructures. Haloes without substructure (and hence without an MMSH) are excluded

from our base FOF catalogue. This has the effect of reducing the catalogue size by 12.5%,

preferentially at lower masses. We shall refer to this catalogue as FOFall, and we will not

discuss the larger raw FOF catalogue further.

SO haloes

The properties calculated by Subfind make it possible to construct a second halo cat-

alogue, in which each halo consists of only the particles within Rvir of the centre of the

MMSH of the corresponding FOF object (note that these particles do not have to be

members of the FOF halo). Due to the way Subfind constructs the MMSH, this yields

haloes whose definition is similar to those from a “spherical overdensity” algorithm (Lacey

and Cole, 1994), so we will refer to them as the SO haloes. We do not impose a lower limit

on the number of particles comprising these objects; as a result, haloes can be identified

with masses < 20mp when their virial radii encompass fewer particles than their original

FOF halo. This is simply a consequence of the algorithm employed; later examination of

halo spins reveals the need for a much higher particle-number limit, as discussed in full

in section 2.3.2. This halo definition is similar, but not identical, to that used in Macciò

et al. (2007).

2.3.2 Better halo catalogues

Groupfinder problems

The FOF and SO group-finding algorithms have various well-documented drawbacks.

Groupfinders such as SO which use the overdensity contained within a spherical region

tend to impose a more spherical geometry on the resulting systems. Although this is not a

problem for many objects, the algorithm can sometimes result in very unnatural-looking
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structures. An example is shown in figure A.4. This compares a massive FOF halo with

the corresponding SO object. The centre of mass of the FOF system is well separated

from the minimum of the potential, and the halo is significantly elongated. This results,

when growing a sphere around the potential minimum to form the SO halo, in the virial

overdensity being reached sooner in one direction than another. The SO halo contains

particles in low-density regions outside the FOF halo, and has a sharp cutoff in another

direction when the FOF halo continues. The more ‘normal’ haloes, in the background,

are much less affected.

The problems associated with the FOF groupfinder can be more extreme, and can

affect a greater proportion of the haloes. One of the most commonly-cited problems (e.g.

Gelb and Bertschinger 1994, Governato et al. 1997) is that well-resolved objects identified

using the FOF algorithm are often at risk of becoming linked with neighbouring objects

via tenuous bridges of particles. Low-mass particle bridges are usually extremely transient

structures, being just a chance grouping of particles at that instant in time. The joining

of two (or more) otherwise unrelated objects of similar mass in this way results in a

very large velocity dispersion. Examining the halo in velocity-space will clearly show the

multiple-object nature of the system. An example of a halo formed from objects joined

by a tenuous bridge can be seen in figure A.1.

Sometimes more massive haloes can be formed by the chaining together of somewhat

smaller objects that are undergoing mergers or close flybys with their neighbours. Their

multi-object composition can again be seen in velocity space as well as in real space, and

although their connections are likely to be less transitory than in the case of a thin bridge,

these objects are nevertheless well out of their equilibrium state, and so are unhelpful

when trying to characterise the spins of typical dark matter haloes. See figure A.2 for an

example of a larger multi-object halo.

A similar effect is that of velocity contamination of small objects due to their proximity

to more massive ones (see figure A.3 for an example). Just as particles can form a bridge

between passing haloes at the moment of the snapshot, so an individual particle orbit

can take it within the linking length of a neighbouring halo, without forming enough of

a bridge for the haloes themselves to be joined. The smaller halo will be contaminated

by these interloper particles, which will have a quite different mean velocity to the halo’s

own particles. This causes the mean velocity to be shifted away from that of the ‘original’

halo, and the resulting halo to have a much larger velocity dispersion than expected for

an object of that mass. The massive neighbouring object will have a much higher velocity
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Figure 2.1: Histogram of the spin parameters from the basic FOFall halo

catalogue of the Millennium Simulation, showing a long tail to high spins.

The tail continues up to λ ≈ 680, and there are over 900 000 objects with

λ ≥ 0.3 (marked on the graph). The median spin of the distribution,

λmed, is displayed with the uncertainty given by equation 2.13. This

demonstrates the need for more careful definition and selection of haloes.

dispersion anyway, so will be unaffected by such effects.

To illustrate the effect that these problems have on the physical properties we calcu-

late, we show the spin distribution of the FOFall catalogue in figure 2.1. It shows a long

tail at higher spins; there are 900 748 objects (6% of the catalogue) with spin λ ≥ 0.3.

Figure 2.2 shows the FOFall spin distribution as a function of halo mass, rescaled to

show the fractional number of objects at each mass so the trend of the mass function

is removed. It shows that the high-spin tail comes from objects over a large range of

masses, and is therefore not due to under-resolving groups. These presumed-anomalous

high spins come from objects with high velocity dispersions for their masses, caused by

situations such as those described above. This increases the haloes’ kinetic energies, T ,

leading to large values of λ.

These features are not usually seen in other published spin distributions (e.g. Gardner

2001, Vitvitska et al. 2002, Avila-Reese et al. 2005, Tonini et al. 2006, among many
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Figure 2.2: Halo spin as a function of halo mass for the FOFall halo cat-

alogue. The contours indicate the relative number density of haloes with

that value of λ(Mh); that is, the haloes were binned onto a 50× 50 grid

between the maximum and minimum values in log Mh and log λ, and

the number of haloes in each grid cell was normalised by the number of

haloes in that mass-bin, thus removing the effects of the halo mass func-

tion from the plot. The contours are spaced logarithmically, with one

contour for every factor of 100.5 in halo number density. The innermost

bold contour (red) represents 10−1 (i.e. a tenth of the haloes in each

mass bin), and the outer bold contour (blue) represents 10−3.5. Notice

the high-spin bulge, which extends over a large range of halo masses.

The results for SO haloes show a very similar distribution.
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others), partly because more advanced groupfinders and halo selection criteria are often

used (as we do below). However, the fact that we can see these artifacts so clearly is

because the Millennium Simulation gives us a vast number of objects, over a wide range

of masses.

For convenience, we shall refer to haloes suffering from the problems described in this

subsection as “mis-defined” haloes, as their anomalously-high spins originate in how the

haloes are defined by the groupfinder algorithm in relation to their environment, rather

than any physical or numerical effect.

A better groupfinder: The TREE haloes

As a third definition of halo, we use the ‘merger-tree’ haloes described by Harker et al.

(2006). These are the z = 0 objects in a catalogue of halo merger trees constructed in

the Millennium Simulation. These merger trees are similar to, but distinct from those of

Springel et al. (2005b) and Gao et al. (2005), who used different criteria for identifying

and tracking the haloes over time. The merger-tree-halo catalogue used here was designed

with the needs of the N -body Galform semi-analytic models in mind (e.g. Helly et al.

2003, Bower et al. 2006).

The haloes in the TREE catalogue are formed from the Subfind subhalo catalogue

(based on the FOF haloes) in the following way. Each halo is initially taken to consist

solely of its constituent subhaloes (i.e., is equivalent to the corresponding FOF halo, but

without the “fuzz”). Next, a “splitting” algorithm is applied, which attempts to account

for the linking of distinct, bound objects that often occurs with FOF. A subhalo can be

split off from its parent halo if it satisfies at least one of the following conditions: (1)

The distance between the subhalo’s centre and the parent’s centre is more than twice the

parent’s half-mass radius; or (2) the subhalo has retained at least 75% of the mass it had

at the last snapshot in which it was an independent halo. This second condition, which

uses the merger-tree data, is based on the idea that if the subhalo was genuinely merging

with the halo, it would be rapidly stripped of its mass. If however it was just a rapid

encounter causing an artificial link, then its mass would be retained. If the subhalo is

split off, any other subhaloes that reside within twice its half-mass radius are also split

off to become part of the new halo. We shall refer to the catalogue of all haloes defined

in this method as the TREEall catalogue.

This definition of the TREE-halo catalogue alleviates the groupfinder-based problems

somewhat. The unbound particles excluded from the TREE haloes have, by definition,
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higher velocities than the bound structures in the haloes. Their removal therefore reveals

the more relaxed underlying haloes, with lower kinetic energies and hence λ. “Interloper

particle” contamination, in particular, is reduced by this feature. The halo splitting

algorithm also helps in many cases by separating objects that have been spuriously linked

by bridges.

The spin-mass distribution of the TREEall catalogue can be seen in figure 2.3; al-

though some of the high-spin objects remain, the majority are now gone (there are suffi-

ciently few high-spin objects remaining that they are invisible in a plot of P (log λ) such

as Fig 2.2). Investigating the remaining high-spin objects reveals them to be victims of

velocity contamination from very massive neighbours. They are somewhat special cases

however: for them not to have been rejected as fuzz, the contaminants must be self-bound

bodies, with ≥ 20 particles each. They must also be built on density maxima independent

of that of the host halo, in order for Subfind to have identified them as separate sub-

haloes. Furthermore, the interloping subhalo must be within twice the half-mass radius

of the halo, so that the tree algorithm does not split it off. A consequence of this is that

the resulting halo must consist of at least 40 particles (20 for the interloper subhalo and

20 for the main halo), and this can be seen in the offset low-mass cutoff for high-λ haloes

in figure 2.3.

A better halo catalogue: The QE criterion

A relatively simple way of culling the remaining anomalous spin objects is to remove those

that are clearly out of equilibrium at the moment of the snapshot. This is not quite the

same as selecting only objects that are within a certain degree of true virialisation, since

we do not have the necessary time-resolution to determine if the system properties are

genuinely stationary: just as an object can appear to be linked to another by a bridge

that may exist only fleetingly, so a halo could instantaneously have very similar energies

to those of a stationary system. Therefore we will apply a cut in the instantaneous ‘virial

ratio’ of halo energies, 2T/U+1, and describe the objects that meet this criterion as haloes

in a quasi-equilibrium (QE) state. This name avoids implying the zero time-derivative

necessary for the true virial ratio.

The question of where to make the cut in ‘virialisation’ (i.e. applying a QE limit) is a

difficult one, because the decision will always be somewhat arbitrary. Since it is desirable

to minimise the effect of such arbitrariness, we concentrate on the effect of applying a QE

limit to the TREE haloes, since the merger-tree algorithm has already removed many of
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Figure 2.3: Spin as a function of halo mass for haloes in the TREEall

catalogue. The contouring is as in figure 2.2, i.e. in equal logarithmic

steps of 100.5, normalised to remove the mass function. In this plot, the

inner bold contour (red) represents 10−1 of the haloes at each mass, and

the outer bold contour (blue) represents 10−5 of the haloes at each mass.

The merger-tree halo definition has moved many of the high-spin haloes

visible in figure 2.2 down into the main body of the distribution.
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the mis-defined haloes.

The value of 2T/U +1 for the TREE haloes is plotted against their mass in figure 2.4.

We applied a QE cut of the form

−Q ≤ 2T

U
+ 1 ≤ Q (2.12)

to the TREEall catalogue, examining the effect of a wide range of Q-values on the P (log λ)

and λ(Mh) distributions. Because of the relatively small numbers of objects with anoma-

lously high spins, we find that the QE cut makes negligible difference to the shape of

the spin distribution, P (log λ). A very small value, Q . 0.3, will act to shift the median

spin lower by a few percent, due to the mass dependence seen in Fig 2.4. Through a

detailed examination of the λ(Mh) distribution, we find that a value of Q between 0.4

and 0.6 gives a good balance between removing the mis-defined haloes and reducing the

overall sample size (adding noise and biasing it by mass). Higher values of Q allow some

mis-defined haloes to creep in, with a significant impact for Q & 1.0. We will use a value

of Q = 0.5 for our cleaned halo catalogues. This cut is shown in the horizontal dashed

lines of figure 2.4, and the resulting λ(Mh) distribution is shown in figure 2.5. Applying

this form of virialisation cut on the halo catalogue provides a useful tool with which to

remove haloes with anomalous spins caused by mis-defined haloes.

A better halo catalogue: Numerical effects

A second peculiarity of the spin distributions is visible in figures 2.2, 2.3 and 2.5 (for the

FOFall, TREEall and quasi-equilibrium TREE halo catalogues respectively): an upturn

in the spin distribution at low masses. This can be seen clearer in the variation of the

median spin over mass bins λmed(Mh), plotted for the FOF haloes in figure 2.6. This

effect is unrelated to the velocity contamination problems of the mis-defined haloes, and

instead comes from the mass resolution of the simulation affecting the angular momenta.

This effect has been seen before, for example by Reed et al. (2005) in the context of

subhaloes. To understand the cause of this effect, consider a continuous object with

angular momentum Jtrue. If we construct a realisation of this object using a sample of N

discrete particles, the resulting angular momentum can be modelled as the vector sum of

the ‘true’ angular momentum (from the continuous object) with a noise vector oriented

in a random direction: J = Jtrue +Jnoise. This will act to push the measured magnitude

J up above Jtrue because the random direction of Jnoise will mean it reaches outside the

sphere of radius |Jtrue| more than 50% of the time. Therefore, the random noise inherent
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Figure 2.4: Contour plot of the instantaneous ‘virial ratio’, 2T/U + 1,

against halo mass for TREE haloes. A virialised object has a value

around zero, and a gravitationally bound object has a value > −1. The

tail at low values (large T ) extends down to 2T/U + 1 ≈ −960; there

are 3733 objects with 2T/U + 1 ≤ −1. The dashed lines show the QE

limit of Q = 0.5, and the lower particle-number limit of Np = 300. The

contouring is as in figure 2.2, i.e. relative halo number density in equal

logarithmic steps of size 100.5. The inner bold contour (red) represents

10−1 of the haloes at each mass, and the outer bold contour (blue)

represents 10−4 of the haloes at each mass. The plots for FOF and SO

groups are similar to this.
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Figure 2.5: Spin parameter against halo mass for TREE haloes with a

quasi-equilibrium (QE) limit of 0.5 applied; this can be compared with

figures 2.2 and 2.3. The same contouring is used, i.e. relative halo

number density in equal logarithmic steps of size 100.5. The inner bold

contour (red) represents 10−1 of the haloes at each mass, and the outer

bold contour (blue) represents 10−4 of the haloes at each mass. The

QE-limit has removed the vast majority of the high-spin haloes seen in

figure 2.3.
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in using discrete particles to sample a near-continuous object such as a dark matter halo

would act to bias J upwards, and λ along with it.

Modern N -body codes such as the L-Gadget-2 code used for the Millennium Simula-

tion are very good at conserving quantities such as energy and angular momentum, so for

a well-resolved object there is negligible inaccuracy arising from particle discreteness. For

a less well-resolved object however, the effect can nevertheless be relevant, even though

the angular momentum of the particles making up the halo has been well conserved.

Discreteness mainly affects the outer parts of a halo, making the effective surface more

jagged than that of the continuous object it represents. We also expect the outer parts

to harbour most of the angular momentum. For lower-mass haloes, a greater fraction

of their particles make up these ‘surface’ regions, so this problem has a greater effect;

the inclusion of a single particle can make a significant contribution to λ. Hence, the

spin parameter rises for haloes with fewer particles because the discreteness of the haloes’

surface layers adds noise to their ‘true’ angular momenta. (This is not the same effect

as discussed in Shaw et al. (2006); there, a surface pressure term is added to the virial

theorem to account for their halo truncation at Rvir.)

The importance of the noise contribution to λ can be examined by determining the spin

distribution of the same simulation (same code and same corresponding initial condition

waves) but run at a different resolution. We performed a lower resolution resimulation

of the Millennium Simulation, with 21603/64 = 5403 particles (so their mass is mp,low =

64mp,Millen), which we will refer to as milli lowres. The FOF and Subfind algorithms

were implemented on milli lowres in the same way as in the Millennium Simulation

itself. (Although we do not have merger-tree data for milli lowres, and hence cannot

construct a TREE halo catalogue, the Millennium Simulation results show that the same

effect is seen in FOF, SO and TREE haloes.) Figure 2.6 shows the median spin λmed(Np)

for FOF haloes in the Millennium Simulation and milli lowres, with vertical error bars

showing a Gaussian-like estimate of the precision of the median given by:

εmed ≡ (λ84 − λ16)√
Nhalo

(2.13)

where λi is the ith percentile of λ (84% − 16% = 68%, the amount of data within ±1σ

of a Gaussian peak) and Nhalo is the number of haloes in that mass bin. Note that the

spread in λ is much greater than the uncertainty in λmed; compare the error bars in figure

2.6 with the data shown in figure 2.2.

Although the two curves show the same qualitative behaviour (the low-Np upturn),
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Figure 2.6: Median spins for all FOF haloes for the Millennium Simu-

lation (thick red line) and the milli lowres run (thin blue line). The

most massive bin contains 2000 haloes, and the remaining bins are log-

arithmically spaced, with one bin every factor of 2 in halo mass (except

for the leftmost bin which extends down to the cutoff limit of 20 parti-

cles.) Horizontal bars mark the bin widths, and vertical error bars give

a measure of the precision of the median according to equation 2.13.

there is a vertical shift between them. This is due to milli lowres containing fewer of

the mis-defined objects described in section 2.3.2 than the Millennium Simulation itself.

Decreasing the resolution effectively smooths the density field, so that small objects with

more massive neighbours can disappear completely, whereas a more isolated object of

the same mass may still survive (although containing fewer particles). This means that

the “real” objects are retained (and there are still many under-resolved ones causing

the upturn in λmed(Np)), but there is a reduction in the number of mis-defined objects.

The milli lowres results seem to confirm the dominance of numerical effects at low-Np,

above which the effect of noise is negligible.

If we apply the quasi-equilibrium cut described in section 2.3.2 to remove the mis-

defined objects, we can examine the effect of discreteness on the median spins of just the

‘real’ haloes. Figure 2.7 shows λmed(Np) for QE-selected FOF haloes, compared with QE-
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selected FOF haloes from milli lowres. In contrast to figure 2.6, the two lines now lie

on top of each other, exhibiting the same upturn in spin for haloes with the same number

of particles. This demonstrates that the upturn is purely a numerical effect. We can

exclude haloes that appear to be dominated by this effect by fixing a limit of Np ≥ 300

on the halo catalogue.

Figure 2.4 shows how the QE and Np cuts we use relate to one another for the

TREE haloes. The low-Np cut has a significantly stronger effect on the halo catalogue.

Applying the QE cut on its own reduces the population of the TREEall catalogue by only

0.3%; applying the low-Np limit as well means removing in total 91.17% of the original

TREEall haloes (see table 2.1). We refer to the resulting cleaned TREE-halo catalogue

as TREEclean, and it is these haloes whose properties we shall be examining in detail. In

some cases, for completeness, we shall compare the results with those from the FOFclean

and SOclean catalogues. These are cleaned using the same Q = 0.5 and Np ≥ 300 cuts

as the TREEclean catalogue.

It is important to note that the criteria we have adopted—the QE cut and low-Np

limit—are those appropriate to the quantities of interest in this work. For example, Neto

et al. (2007) (see Chapter 4) use the substructure parameter S = ∆r/Rvir, where ∆r is

the distance between the potential minimum of the halo and its centre of mass (see section

4.2.2). Their final criteria for selecting haloes in the Millennium Simulation are S < 0.07

and 2T
U +1 > −0.25. They are concerned with fitting density profiles to haloes, and using

the substructure parameter allows them to remove haloes with a large fraction of mass in

substructures which would otherwise contaminate their results. Similarly, Macciò et al.

(2007) define an “offset parameter” as xoff = ∆r/Rvir, where ∆r is measured from the

most-bound particle rather than the potential minimum. They use this alongside the rms

of their density profile fits, to assess the quality of their halo catalogues for estimates of

halo concentration. Although we have examined the substructure/offset parameter and

how it affects λ, we find that it is not useful in removing the mis-defined haloes, or those

whose spins are dominated by the numerical effects discussed above.

Having successfully implemented an appropriate groupfinder and cleaned the result-

ing halo catalogues, we can now proceed to examine their spin properties. The FOF and

TREE halo catalogues, including some halo properties and semi-analytic galaxy proper-

ties, are publicly available online2 (Lemson and Virgo Consortium, 2006).

2http://www.mpa-garching.mpg.de/millennium

http://www.mpa-garching.mpg.de/millennium
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Figure 2.7: Median spins against number of particles in haloes, for

FOF haloes with the QE cut applied. The thin blue line shows the

milli lowres haloes and the thick red line shows those from the Mil-

lennium Simulation itself. The error bars show the uncertainty on the

median, using equation 2.13. The two lines show an identical trend at

low Np, demonstrating that the upturn in λmed is indeed a numerical

effect, affecting the spins of haloes containing fewer than about 300 par-

ticles.
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2.4 Results

2.4.1 The form of the spin distribution

The median spin of the TREEclean halo catalogue is λmed = 0.0381. The distribution of

halo spins about the median, P (λ), has been often fitted with a lognormal function (e.g.

van den Bosch 1998; Gardner 2001; Bailin and Steinmetz 2005), i.e. a Gaussian in log λ:

P (log λ) =
1

σlg

√
2π

exp

[
− log2 (λ/λ0)

2σ2
lg

]
(2.14)

While this fitting function has proved adequate for small numbers of objects, we find that

for the > 106 haloes in the Millennium simulation, deviations from a Gaussian are clear

and significant. The spin distribution drops faster than a Gaussian at high spins, and

slower than a Gaussian at low spins. The best fit to the TREEclean catalogue is shown

in figure 2.8, which fits equation 2.14 with peak location λ0 = 0.03687 ± 0.000016 and

width σlg = 0.2216± 0.00012.3 The corresponding lognormal function of λ has the same

peak, and a width of σ = ln(10)σlg. The fit has a reduced-χ2 of 40.46.

Part of the reason why a lognormal is such a poor fit is that this function strongly

avoids very low spin values, whereas the real distribution, based as it is on the three-

dimensional vector j, does not. The longer tail at low-λ is primarily due to the distribution

of j being smooth and isotropic about j = 0, implying4 that P (log λ) ∝ λ3.

We have found that the following function provides a better description of the data:

P (log λ) = A

(
λ

λ0

)3

exp

[
−α

(
λ

λ0

)3/α
]

. (2.15)

For the normalised spin distribution, we can express A in terms of the other free param-

eters, α and λ0 (the peak location):

A = 3 ln(10)
αα−1

γ(α)
, (2.16)

where the gamma function γ(α) = (α − 1)!. The best fit to the data is shown in figure

2.9, and has parameters:

λ0 = 0.04326± 0.000020, α = 2.509± 0.0033,
3Throughout this chapter, the quoted uncertainties on best-fitting parameters are given by the square

root of the diagonal of the covariance matrix for that fit.
4 Macciò et al. (2007) claimed the low-λ tail is due to the higher uncertainty in λ at low values.

However, by varying the minimum Np for the halo catalogue, and hence the uncertainty in λ, we found

that the low-λ side of the distribution consistently drops off slower than the high-λ end, confirming that

this shape is not primarily due to uncertainties.
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with a much-improved reduced-χ2 of 2.58.

We have examined whether the deviations from lognormal depends on our choice of

the quasi-equilibrium parameter Q when cleaning the halo catalogue. We found that the

fit remains good over a wide range of Q. We have also found the best fit of equation 2.15

to the FOFclean and SOclean catalogues. The results for SOclean haloes are remarkably

similar to those for the TREEclean haloes, with a reduced-χ2 of 3.10:

λ0 = 0.04174± 0.000022, α = 2.540± 0.0036.

The median spin of the distribution is λmed = 0.0367. The haloes in the FOFclean cata-

logue, which have a median spin of λmed = 0.04288, are not as well fitted by equation2.15.

The reduced-χ2 is 15.0 and the parameter values are:

λ0 = 0.04929± 0.000027, α = 3.220± 0.0046.

This is, in fact, slightly worse than the best-fitting lognormal (equation 2.14), which

yields a reduced-χ2 of 12.5, with a peak location λ0 = 0.04222 ± 0.000022 and width

σlg = 0.2611± 0.00016.

These tests show that the distribution of λ depends on the careful definition and

selection of dark matter haloes. However, the fact that the distribution is non-lognormal

is not a consequence of the particular choice of groupfinder or selection criteria used

here—the form of the distribution is not peculiar to the TREEclean catalogue.

2.4.2 Correlation of spin and halo mass

The variation of median spin parameter with halo mass, for the cleaned catalogues from

the three groupfinders, is shown in figure 2.10. It is interesting to note that the FOF

haloes exhibit an upturn in spin for objects more massive than the low-Np cut, an effect

that is not present in the TREE or SO haloes. This can be attributed to the outer parts

of the FOF haloes consisting mainly of unbound ‘fuzz’ particles. These will usually have

higher velocities, which act to inflate the spin. These particles are not part of the TREE

haloes, and most will be shaved off in SO haloes too. The SO and TREE haloes show

a shallow downwards trend of λmed up to Mh ∼ 1013 h−1M¯ ∼ 12 000mp and a rapid

decline at larger masses.

We fit a cubic polynomial to the TREEclean median spin data,

log λmed = αx3 + βx2 + γx + δ, (2.17)
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Figure 2.8: The normalised spin distribution (red histogram) for merger-

tree haloes with Np > 300 and filtered using the QE criterion (the

TREEclean catalogue). The best-fitting single Gaussian function is plot-

ted as the smooth blue curve. The Gaussian drops too quickly at low

spins, and too slowly at higher spins. To try to minimise these effects,

the best fit has a peak location that is shifted away from that of the

histogram data. The median spin of the distribution is also displayed.
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Figure 2.9: Histogram (red) of the normalised log λ distribution of

TREEclean haloes, as in figure 2.8. The smooth solid curve (blue) is

the best fit to the data using equation 2.15. The peak location of the fit

(λ0) and the median of the data (λmed) are marked with arrows.

where x = log Mh/( h−1M¯). The best-fitting values of these parameters are:

α = (−8.6± 1.4)× 10−3,

β = (3.2± 0.54)× 10−1,

γ = −4.1± 0.68,

δ = 15.7± 2.8,

with a reduced-χ2 of 0.44.

While the trend of λmed with mass is real, it is important to note that it is a small

effect; the scatter around this median is large (compare with figure 2.5, which shows data

from the same haloes but on a log λ scale). This is in qualitative agreement with previous

results (e.g. Cole and Lacey 1996), but because of its weak nature, this trend has often

not been visible (e.g. Warren et al. 1992; Lemson and Kauffmann 1999; Macciò et al.

2007).
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Figure 2.10: The median spins of halo mass bins, for TREEclean haloes

(bold blue points), SOclean haloes (medium green line) and FOFclean

haloes (thin red line). Data have also been calculated below the 300-

particle low-mass limit (marked with a dashed line). The thick black

curve is the best-fitting cubic polynomial to the TREEclean data. The

vertical error bars are given by equation 2.13. The mass-binning scheme

is similar to figure 2.6, but with bins every factor of
√

2 in mass. Only

the widths of the most massive two bins are marked, for clarity.
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2.4.3 The halo shape distribution

The shapes of the haloes are described by the axes, a ≥ b ≥ c, of the ellipsoid derived

from the inertia tensor, as described in section 2.2. Figure 2.11 shows the distributions

of p = c/b and q = b/a for the three cleaned halo catalogues. The haloes are generally

triaxial, but they have a range of shapes, with a slight preference for prolateness over

oblateness. The distribution agrees qualitatively with previous work such as that by

Frenk et al. (1988), Warren et al. (1992), Cole and Lacey (1996), Faltenbacher et al.

(2002) and Bailin and Steinmetz (2005). Unsurprisingly, SO haloes are more spherical

than FOF or TREE haloes. FOF haloes show a much broader distribution of shapes (and

a stronger preference for prolateness) than SO or TREE haloes.

Figure 2.12 shows how the median shape of haloes in the TREEclean catalogue changes

with halo mass, using the minor-to-major axis ratio s and the triaxiality parameter T =

(a2 − b2)/(a2 − c2). More massive haloes tend be less spherical and more prolate. Again,

this is in qualitative agreement with previous results, such as those of Warren et al. (1992),

Bullock (2002), Kasun and Evrard (2005), Shaw et al. (2006), Gottlöber and Turchaninov

(2006), Allgood et al. (2006), and Macciò et al. (2007). This is also what one might expect

in a hierarchical formation model in which haloes tend to form by matter collapsing along

filaments, leading to prolateness, rather than onto sheets which would lead to oblateness.

Furthermore, the more massive haloes form later, and have had less time to relax into

more spherical configurations. Since we have deliberately tried to select the more relaxed

objects, the remaining trend we see here is weak. Furthermore, although the medians

follow well-defined trends, the spread of the distribution in halo shapes covers virtually

the entire range in both s and T , as can be seen from the percentile bars on the graph.

The two graphs in figure 2.12 both show a change in behaviour not seen in previous

work, around the Np = 300 limit. Resolution tests similar to those described in section

2.3.2 were carried out using the milli lowres simulation, to assess whether this change

in behaviour was indeed a numerical effect similar to that seen in halo spins (in figures

2.6, 2.7 and 2.10). The results showed that these halo shape parameters do also require

Np & 300, reinforcing our previous choice. Indeed, one would expect haloes whose spins

are affected by particle discreteness (i.e. with Np . 300) to be less spherical and more

stringy (prolate).

We fit a broken line to both shape parameters for the TREEclean catalogue, of the
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Figure 2.11: Axis ratios p and q for the cleaned TREE, FOF and SO

halo catalogues. Prolate objects have p = 1, oblate objects have q = 1,

and spherical objects have p = q = 1. The SO haloes are more spherical

than the other two types. TREE and FOF objects exhibit a range of

shapes, and all three catalogues show a preference for prolateness over

oblateness. The contouring is by halo numbers, in equal logarithmic

steps of 100.5. In each plot, the red inner bold contour represents 103

haloes, and the blue outer bold contour represents 101.5 haloes.
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Figure 2.12: The median, in bins of halo mass, of the axis ratio s (top)

and the triaxiality parameter T (bottom), for TREEclean haloes, using

the same mass binning scheme as in figure 2.6. The low-Np limit of

300 particles is marked with a dashed line, and data points have also

been plotted below this limit. The medians for FOFclean and SOclean

haloes follow the same behaviour as the TREEclean haloes, but with SO

objects being more spherical and FOF objects less; FOF haloes are more

prolate and SO haloes show a weaker preference for prolateness. Error

bars on the medians (following equation 2.13) are plotted, but most

are vanishingly small. The outer bars and boxes indicate percentiles,

at the equivalent of 1σ (68% of haloes, boxes) and 2σ (95% of haloes,

bars); from the bottom to the top of each graph, these show where

approximately 2.5%, 16%, 84%, and 97.5% of the haloes have s (or T )

below these values. The thick blue lines show broken-line fits to the

data; see the text for details. The dotted red line is the fit of Allgood

et al. 2006, who used a different definition of a halo (see text).
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form:

ymed(x) =





m1x + c1 x ≤ x0

m2x + c2 x ≥ x0,
(2.18)

where x = log Mh/( h−1M¯). We fit with m1, m2, x0 and c2 as free parameters, with

c1 ≡ c2 + (m2 −m1)x0. The fitted parameters for smed are:

m1,s = (9.2± 0.87)× 10−3, c1,s = 0.56± 0.015,

m2,s = (−6.6± 0.12)× 10−2, c2,s = 1.48± 0.015,

x0,s = 12.27± 0.012,

with a reduced-χ2 of 29.9. The fitted parameters for Tmed are:

m1,T = (−1.6± 0.18)× 10−2, c1,T = 0.82± 0.031,

m2,T = (7.2± 0.24)× 10−2, c2,T = −0.25± 0.029,

x0,T = 12.28± 0.021,

with a reduced-χ2 of 4.27. The two mass breakpoints x0,s and x0,T agree within their

uncertainties.

Allgood et al. (2006) fit a power-law to smed(Mh). This is plotted in figure 2.12, and

indicates that that their haloes are significantly less spherical than ours. This is largely a

result of different group definitions; although not plotted, we find that our SOclean and

FOFclean catalogues differ from the TREEclean results by a similar amount. A power-law

of the type used by Allgood et al. (2006) would not be a good fit to the data presented

here which have a definite change in slope towards lower halo masses.

The overall distributions of s and T are shown in the upper plots of figures 2.13 and

2.15. These agree well with distributions seen previous work, e.g. Bailin and Steinmetz

(2005) and Shaw et al. (2006). The drop-off in halo sphericity below about s ∼ 0.3 can

be explained by considering how flatter haloes would puff up due to bending instabilities

(Merritt and Sellwood, 1994).

2.4.4 Spin and shape parameters

The relationship between spin parameter and halo shape is illustrated in figures 2.13,

2.14 and 2.15. Figure 2.14 emphasises the trend visible in figure 2.13 by plotting the

median spin parameter as a function of s for different mass bins. There is a clear trend

for more spherical haloes to exhibit less coherent rotation. Although this trend is in the
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Figure 2.13: The main plot shows spin versus axis ratio s = c/a for

TREEclean haloes; contouring is similar to figure 2.2, showing the num-

ber density of haloes, normalised by the number of haloes in each s-bin.

The red inner bold contour represents 10−1 of the haloes in each s-bin,

the blue outer bold contour represents 10−3 of the haloes in each s-bin,

and the contours are spaced in equal logarithmic steps of 100.5. The

upper plot is a histogram of s for TREEclean haloes, effectively showing

the function by which the contour plot has been normalised.
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Figure 2.14: The median spin parameter in bins of axis ratio s = c/a,

for haloes from the TREEclean catalogue. The heavy black line is for all

haloes with more than 300 particles (the full TREEclean sample); the

other lines show the trends for different halo mass bins. The horizontal

bars show the widths of the first and last bins for each line. The trend

is for more spherical haloes to have less coherent rotation in the median.

This trend becomes very steep for the most aspherical haloes (although

these are not present at higher masses because of the rapid drop in the

halo mass function).
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Figure 2.15: The main plot shows spin versus triaxiality parameter T
for TREEclean haloes; contouring is as for figure 2.13, i.e. in equal

logarithmic steps of 100.5 haloes per T -bin. The red inner bold contour

represents 10−1 of the haloes in each T -bin, and the blue outer bold

contour represents 10−3 of the haloes in each T -bin. The upper plot is a

histogram of T for TREEclean haloes, effectively showing the function

by which the contour plot has been normalised.

sense one might näıvely expect, the haloes, in fact, do not have very high spin, and are

not rotationally supported. The origin of this trend is likely to lie instead in the effects

of the tidal torques experienced by the haloes during their early phases of formation.

As seen previously in figure 2.10, the least massive objects have the most extreme spins,

in the median. Figure 2.14 shows that the higher spin objects are also less spherical. The

haloes which are closest to spherical have a spin parameter that is independent of halo

mass, and has λmed ≈ 0.033. (This does not apply to the most massive haloes, however,

since their population lacks the more spherical objects) Furthermore, the median spins

for the more massive haloes are independent of shape and have λmed ≈ 0.032.

In contrast to the variation of λmed with s, figure 2.15 shows that there is only a very

weak trend of spin with halo triaxiality. Over the entire range of triaxiality, each T -bin

contains a very similar fraction of haloes at each value of log λ.
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Figure 2.16: Normalised histograms of the cosines of the angle between

the angular momentum vector and the major (thick red line), interme-

diate (medium green line) and minor (thin blue line) axes of haloes in

the TREEclean catalogue, as defined in the text. A random distribution

would be a flat line at P (cos θ) = 1.

2.4.5 Spin-shape alignment

Figure 2.16 shows the angle between the angular momentum vector and the three shape

axis vectors, e.g.

cos θa =
|j·â|

j
(2.19)

for alignment with the semi-major axis given by the unit vector â. Note that this definition

does not distinguish between j lying parallel or antiparallel to the axis vectors.

Most haloes have their spin axis well aligned with their minor axis, and lying per-

pendicular to their major axis. However, the distribution of alignments with respect to

all three axes is fairly broad. This agrees with previous results (e.g. Warren et al. 1992,

Bailin and Steinmetz 2005, Allgood et al. 2006 and Shaw et al. 2006).

Extremely oblate objects have a degeneracy between the major and intermediate axes

( b
a ∼ 1), so there is an equal probability for the angular momentum vector to subtend a

given angle with either axis This can be seen in the top-left panel of figure 2.17, which
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Figure 2.17: Normalised histograms of the cosine of the angle between

the specific angular momentum vector and the major (thick red line),

intermediate (medium green line) and minor (thin blue line) axes of

the haloes. The TREEclean catalogue has been cut at the values of

the triaxiality parameter shown. The most spherical haloes (s > 0.8)

have been removed from each sample. The ‘very prolate’ selection only

contains 1360 groups, giving rise to a noisier histogram.
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shows the alignment distribution for the more oblate haloes, i.e. those with T < 0.2 (and

s < 0.8 in order to avoid an a ∼ b ∼ c degeneracy). Since most haloes have j aligned

with ĉ, j has a preference for being at right angles to the two large axes.

For extremely prolate haloes, the degeneracy is between minor and intermediate axes

( c
b ∼ 1). In this case, the distribution of the alignment of the angular momentum vector

with either of these axes is similar only for the tail of extremely prolate haloes, T > 0.99

(bottom-right panel). For T > 0.8, only a small number of haloes have their spin axis

aligned with the intermediate axis (top-right panel); like the bulk of the population as a

whole, most of these haloes rotate around their smallest axis.

The reason for the distinction between the major and intermediate axes present in

figure 2.16 can now be seen to be a combination of various effects. The preference for

prolateness over oblateness means that there is a tendency for the intermediate axis to

be more similar to the minor than to the major axis. This increases the probability of

j being aligned to the b̂ axis. However, since j can be aligned with only one axis (and

when this happens it must be perpendicular to the other two), the preference for the spin

axis to be the minor axis outweighs the preference for prolateness, and this results in the

slight excess probability for j to be perpendicular to the intermediate axis seen in the

figure.

2.4.6 Spin, shape and halo clustering

In this section, we investigate whether halo spin and shape has an environmental depen-

dence. We quantify environment by means of the haloes’ two-point correlation function,

ξ(r), and we explore whether the clustering amplitude differs for haloes with different

spin. The three halo catalogues were divided into four bins in mass, and the haloes in

each mass bin were then divided about the median spin for that mass; ξ(r) was calculated

for each set of haloes. The results are plotted in figures 2.18 and 2.19 for the TREEclean

and FOFclean catalogues respectively. (The results for SOclean haloes are very similar

to the FOF results.) The lines in figure 2.18 show power-law fits over the limited range

of pair separations shown,

ξ(r) =
(

r

r0

)γ

. (2.20)

The fitted values of r0 and γ are given in table 2.2.

For the higher mass bins, the results from the different types of haloes are simi-

lar: higher spin haloes are more strongly clustered than lower spin haloes. This could
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Figure 2.18: Two-point correlation function, ξ(r), for TREEclean haloes

in four mass bins. The lines represent power-law fits over the r-bins

shown. The thick lines and red points are for haloes with λ ≥ λmed

for that mass bin; the thin lines and blue points are for haloes with

λ < λmed. The data are noisy in the higher mass bins which contain

fewer haloes. The error bars are Poisson errors, i.e. the square-root of

the number of pairs in each r-bin, divided by the mean number of pairs

per r-bin.
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Mass bin λ < λmed λ ≥ λmed

( h−1M¯) γ r0/( h−1Mpc) γ r0/( h−1Mpc)

1011.4–1012 −1.553± 0.0013 3.670± 0.0070 −1.489± 0.0012 3.671± 0.0073

1012–1013 −1.591± 0.0031 4.22± 0.020 −1.537± 0.0026 4.82± 0.021

1013–1014 −1.64± 0.021 6.6± 0.24 −1.71± 0.016 8.3± 0.23

1014–1016 −1.6± 0.19 13± 5.8 −1.7± 0.12 19± 4.8

Table 2.2: Parameters for the power-law ξ(r) = (r/ro)γ from fitting to

the eight two-point correlation functions for TREEclean haloes.

Figure 2.19: As figure 2.18, but for the FOFclean haloes. No fits were

made to these data, and the lines merely join the points. For this cat-

alogue, the higher spin haloes (thick red lines) are consistently and sig-

nificantly more strongly clustered that the lower spin haloes (thin blue

lines). The results for the SOclean haloes are very similar.
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be because objects evolving in denser, more clustered environments are more likely to

experience stronger tidal forces, leading to more coherent rotation. These results are

consistent with the tentative earlier work of Barnes and Efstathiou (1987), as well as the

mark correlation function analysis of Faltenbacher et al. (2002).

The difference in clustering strength between high and low spin haloes increases with

halo mass. For the least massive TREE haloes, M = 1011.4–1012 h−1M¯, there is virtually

no difference in the correlation functions of the fast and slow rotators.

Note that haloes from the ‘cleaner’ groupfinder (TREE) exhibit stronger clustering

at all scales, for all but the highest masses. This is due to the fact that the splitting

algorithm applied during the construction of the merger trees results in a greater number

of close halo neighbours (albeit with reduced masses) compared to the corresponding FOF

haloes.

We have performed a similar analysis to that presented in figures 2.18 and 2.19 for

the halo sphericity parameter, s. We found analogous results, in that the more spherical

haloes are more clustered than the less spherical haloes.

To examine the effect of halo spin and shape on clustering in more detail, we consider

the bias parameter, b, which describes how much more or less clustered a set of haloes

is relative to the underlying dark matter distribution. We examine how the bias varies

for haloes with different values of λ or s, at a fixed range of mass. Similar analyses

have recently been performed by Gao et al. (2005), Wechsler et al. (2006) and Wetzel

et al. (2007), who examined the effect of halo formation time, concentration, substructure

content and time since last major merger on the bias.

The bias parameter is related to the correlation function through:

ξhh(r|Mh, λ) = b2(r|Mh, λ) ξmm(r) (2.21)

where ξhh(r|Mh, λ) denotes the halo-halo correlation function for haloes in a given range

of mass and spin (in this example), and ξmm(r) is the dark matter correlation function.

We compute the bias parameter as a function of mass, b(Mh), using a similar method

to that of Gao et al. (2005). Specifically, we compute ξhh(r|Mh, λ) in four r-bins in the

range 6 ≤ r ≤ 25 h−1Mpc, equally spaced in log r. The bias parameter at each mass is

then found as the normalisation constant that minimises:

χ2 =
n∑

i=1

(
ξhh(ri)− b2ξmm(ri)

σhh(ri)

)2

(2.22)

where the σhh(ri) are the Poisson errors on ξhh(ri), and the sum is over all (> 1) r-bins

where ξhh(ri) > 0 and ξhh(ri) was computed using at least 100 objects. This procedure is
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performed first for all the TREEclean and FOFclean haloes. It is then repeated for the

haloes in the upper and lower 20th percentiles of the λ and s distributions, from both

catalogues.

The results are shown in figure 2.20. This shows that higher spin haloes are more

clustered than the average, and the lower spin haloes are less clustered. This trend is

largest at higher masses, reaching a factor of ≈ 2.2 between the high-spin and low-spin

bias at the largest mass, ∼ 2× 1014 h−1M¯.

2.5 Conclusions

The huge size and high resolution of the Millennium Simulation (Springel et al., 2005b)

makes it possible to determine the properties of dark matter haloes in the ΛCDM cos-

mology with unprecedented statistical power. In this chapter, we have concentrated on

the spins and shapes of dark matter haloes, ranging in mass from those of dwarf galaxies

to those of rich clusters. We have investigated the distribution of the spin parameter, λ,

its dependence on mass, the distribution of shapes, the relationship between shape and

spin, and the environmental dependence of spin and shape. We provide accurate fitting

formulae for several quantities of interest.

While many of the properties we have investigated here have been studied in earlier

simulations going back over twenty years, a novel aspect of our work is the analysis and

comparison of haloes identified in different ways. Alongside the traditional “friends-of-

friends” (FOF) algorithm of Davis et al. (1985) and the “spherical overdensity” (SO)

algorithm of Lacey and Cole (1994), we have introduced a new halo definition, the TREE

haloes, which are perhaps the most appropriate when carrying out comparisons of the

simulation results with galaxy and cluster data. The TREE haloes are defined as branches

of the halo merger trees, in which special care has been taken to identify physical haloes by

separating objects that are artificially and transiently linked together. Each groupfinder

results in more than 15 million haloes at z = 0.

The TREE halo catalogue was further ‘cleaned’ in two ways. Firstly, to remove any

remaining spurious objects, we applied a cut in the instantaneous virial ratio, (−0.5 ≤
2T
U + 1 ≤ 0.5). Secondly, to remove objects whose angular momentum is biased due to

particle discreteness, we considered only haloes with more than 300 particles, as indicated

by convergence tests. Our final cleaned halo catalogues consist of > 106 haloes at z = 0.

We find that the distribution of the dimensionless spin parameter, P (λ), is poorly fit by
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Figure 2.20: Bias parameter, b(Mh), for the halo populations indicated

in the legend. In each plot, the central dotted line marks the bias for the

entire population at that mass. The thick red line is the bias for haloes

in the upper 20 per cent of the distributions of λ (upper two plots) and

s (lower two plots), and the thin blue line is for haloes in the lower 20

percent of the distributions. The error bars give the ∆χ2 = 1 confidence

interval. The lines stop either when the correlation function ξ(r) for at

least 3 of the 4 radial bins is non-positive, or if it was made using fewer

than 100 objects.
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a lognormal when this many objects are considered. The function given by equation 2.15

provides a much better description of the data. Although the distribution of λ(Mh) is

fairly broad, there is a clear trend of the median spin with halo mass, with more massive

haloes spinning more slowly. However, the strength and shape of the trend is significantly

different for different halo definitions. The cubic polynomial of equation 2.17 provides a

very good fit to the median spin of the TREEclean halo catalogue, over a factor of ∼ 103

in halo mass.

We analysed the shapes of the haloes, and found, as in previous studies, that there

is a broad distribution of shapes with a slight preference for prolateness over oblateness.

More massive haloes are less spherical and more prolate in the median, although the data

span a large fraction of the available shape parameter space. We fit broken lines to the

trends with log Mh of the median sphericity axis ratio s = c/a and the median triaxiality

parameter T (equation 2.18). Both these quantities exhibit a change of behaviour at a

galactic mass scale, Mh ≈ 2 × 1012 h−1M¯, where the gradient of the fit changes sign,

with haloes becoming increasingly aspherical and more prolate with increasing mass.

The rounder haloes have less coherent rotation, with a median spin that is indepen-

dent of mass (λmed(s & 0.9) ≈ 0.033). The most massive haloes have a median spin

that is independent of sphericity (λmed(s) ≈ 0.032). However, there is significantly less

correlation between the nature of halo triaxiality (prolateness vs oblateness) and the spin

parameter. Although the haloes are far from being rotationally supported, there is a

strong preference for the spin vector to be aligned parallel to the halo minor axis and to

be perpendicular to the major axis. The tendency for the spin to be perpendicular to the

intermediate axis is significantly weakened by the prevalence of prolate shapes for which

there is a near degeneracy between the intermediate and minor axes.

We find a clear signal that the spins and shapes of haloes are sensitive to the cos-

mological environment: more rapidly rotating haloes of a given mass are more strongly

clustered. The strength of this effect increases with halo mass. It is weak for subgalactic

and galactic haloes, but can be larger than a factor of ∼ 2 for galaxy cluster haloes. A

similar effect is seen when examining halo shapes: more spherical haloes are more strongly

clustered, with a greater signal at higher masses. Our result adds further evidence to the

recent finding by Gao et al. (2005), also from analysis of the Millennium Simulation,

that the internal properties of haloes depend not only upon their mass but also upon the

environment in which they form.

The huge number of haloes in the ΛCDM Millennium Simulation enables us to charac-
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terise the distribution of halo spins, and their relation to halo mass, shape and clustering,

with unprecedented precision. However, we have also shown the significance of a care-

ful halo definition. The properties of haloes defined and identified in different ways are

noticeably different, and it is important to make the appropriate choice for a given appli-

cation. For comparisons with real data, we recommend using the new class of “TREE”

haloes which we have investigated in this work.
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Chapter 3
Angular momentum

profiles of dark matter

haloes

3.1 Introduction

The formation of structures such as galaxies in the Universe we observe today is often

understood in the context of the two-stage model of White and Rees (1978), within

a ΛCDM cosmology: mass density perturbations (dominated by dark matter) collapse

under gravity, hierarchically forming ever-larger ‘haloes’, with galaxies forming from the

collapse of baryons that cool within them. While the relatively simple physics of the

dark matter evolution has enabled the evolution of haloes to be studied in increasing

detail over many years, the details of the galaxy-formation process, and the relationships

between galaxies and their parent dark-matter structures, are still poorly understood.

Modern computer simulations are however able to test different models to try and assess

the relative importance of various physical processes, and can now produce well-resolved

galaxies that match some observed relations (see Mayer et al. 2008, and Okamoto 2008

for reviews).

A difficulty that appeared when simulating the growth of galaxies was what became

known as the ‘angular momentum problem’—baryons cooled too fast as they collapsed,

losing their energy and falling rapidly into the centres of small haloes early on. When

these haloes then underwent mergers to form larger structures, the angular momentum

of the baryons got transferred to the dark matter through tidal stripping and dynamical

friction, resulting in galactic discs that were far too small. (see Maller and Dekel, 2002, for

a review). It is generally accepted that the solution to this problem lies in preventing the

premature cooling of baryons through ‘feedback’ mechanisms associated with the galactic

evolution process, which can inject energy back into the baryons. Processes that could

73
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provide this energy include winds from supernovae heating up gas and/or blowing it out

of the galaxy (e.g. Governato et al., 2004, 2007), and radiating jets from AGN re-heating

the gas (e.g. Sijacki et al., 2007; Di Matteo et al., 2008; Okamoto et al., 2008).

However, if we wish to understand the complex interplay of baryonic processes during

galaxy formation, we must first also understand the much simpler physics of the underlying

dark halo. There is a long history of studies of the angular momentum structure of dark

matter haloes. Modern computational techniques enable us to combine the high resolution

required to measure halo properties reliably, with the large volumes needed to measure

the statistical distribution of those properties definitively (e.g. Hahn et al. 2007, Macciò

et al. 2007, and Chapter 2 of this thesis).

An important gap in our knowledge of the angular momentum (and other) properties

of extragalactic structures is the question of the link between the well-studied properties

of the dark matter haloes, and the well-observed properties of the galaxies. The advent

of simulations that can produce reasonably realistic galaxies means that we are now able

to investigate that relationship meaningfully.

We expect the internal mass and velocity distribution of haloes to be transformed

by the baryonic processes of galaxy formation, when compared to haloes in dark matter

only ΛCDM simulations. This can be characterised in a variety of interrelated ways. We

study the density profile itself in Chapter 4. The shape profile (i.e. sphericity of the

mass distribution as a function of halo radius) and the angular momentum magnitude

profile also contain information related to the merger history of the halo. The relative

directions of the angular momentum and/or shape vectors at different radii within the

halo are also expected to be changed by the galaxy; the degree of alignment with the

galaxies themselves is of particular interest.

Kazantzidis et al. (2004) showed that haloes become much more spherical when gas

cooling and star formation was allowed to occur, compared to haloes in which gas was

not allowed to cool radiatively. The effect was strongest towards the halo centre, but

was significant throughout the halo. In a similar vein, Bailin et al. (2005a) examined

the alignment of galaxies with their parent haloes. They found that, although the dark

matter at the virial radius was essentially uncorrelated with the orientation of the galactic

disc, the presence of the disc had altered the mass distribution in the inner halo such that

the halo minor axis tended to align with the disc axis. Sharma and Steinmetz (2005) and

van den Bosch et al. (2002) looked at the relative orientations of dark matter and (non-

radiative) gas in haloes (at z = 0 and z = 3 respectively), finding a broad distribution of
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alignments; the former also found negligible evolution of misalignment with redshift, and

the latter found significant mis-alignment between the inner and outer regions of the halo.

Chen et al. (2003) also examined the angle between the halo and gas angular momentum

vectors, comparing the results from simulations where the gas is and is not allowed to

cool radiatively (although they did not have star formation). They found that the cold

gas shows a broader range of orientations relative to the dark matter than either the hot

or non-radiative gas.

Gustafsson et al. (2006) similarly analysed simulations of haloes run with and without

galaxy-formation processes, examining the density profiles, shapes and shape-orientation

profiles. Their found that the baryons made their haloes more spherical in shape, with a

wide range of angles between the dark matter and the galaxies. Croft et al. (2008) used a

model that included black hole feedback in the star formation process, and found a broad

distribution of angles between galaxies and their parent haloes, as well as between the

shape and angular momentum axes of each halo component (gas, stars, dark matter).

The limitations of studies such as these stem from the large amount of time and

computational resources required to run such simulations. Simulations usually cover only

a small volume, resolving just a handful of objects; or the galaxy formation recipe is

incomplete, not including radiative cooling of gas, star formation or feedback; or the

simulation is not run to the present day, biasing the nature of the galaxy population

involved.

However, the relationship between the way the dark matter and galaxy are arranged

in haloes, and how this differs from the purely-ΛCDM case, is highly important for fu-

ture work in testing our theories of structure formation. Semi-analytic models provide

a useful tool for this testing process. They allow us to assess the relative importance of

different physical processes, without having to run a prohibitively expensive series of hy-

drodynamic simulations. However, despite many successes, there are many areas where

the physical models used could be improved (see Baugh, 2006, for a review). One of

these is the treatment of angular momentum. The size of galactic discs in semi-analytic

models is directly related to the angular momentum of the halo, under the assumption

that the baryons initially have the same angular momentum distribution as the dark mat-

ter, and that this is conserved as the baryons collapse within their haloes (see, e.g. Cole

et al., 2000, for details). The halo angular momentum is usually generated by sampling

a lognormal distribution of the spin parameter λ, although different groups have found

that the λ distribution does not quite have this shape (see Chapter 2, and Macciò et al.
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2007, 2008). The assumption that there is no transfer of angular momentum between

the dark matter and gas is difficult to test, because of the angular momentum problem

found in hydrodynamic simulations (discussed above); indeed, the conservation of bary-

onic angular momentum is one of the key features in semi-analytic models that leads to

a realistic galaxy distribution compared to the hydrodynamic simulations. Furthermore,

semi-analytic models do not yet model the orientation of the galaxies that form, which

limits their ability to make mock observations, for example for studies of gravitational

lensing.

Weak gravitational lensing is a potentially very powerful tool for performing observa-

tional tests of the ΛCDM paradigm (see Hoekstra and Jain, 2008, for a recent review). By

probing the gravitational field around luminous objects, it is hoped that the predictions

of ΛCDM and alternative-gravity theories such as TeVeS/MOND can be distinguished

(Bekenstein 2004; Mortlock and Turner 2001 described gravitational lensing in MOND

theories). In the absence of dark matter, the shape of the gravitational potential at large

distances from galaxies is expected to be spherical, which contrasts with the prolate-

triaxial shape of ΛCDM haloes (see Chapter 2, and Hayashi et al. 2007). In practice,

while attempts have been made to measure potential shapes of galactic haloes using weak

lensing (Hoekstra et al., 2004; Mandelbaum et al., 2006; Parker et al., 2007), the com-

plexities of the systematic errors and weakness of the signal have made it difficult to

provide definite conclusions. Hoekstra et al. (2004), using the Red-Sequence Cluster Sur-

vey (RCS), claimed to observe a definite halo-ellipticity signal; given their assumption of

exact galaxy–halo alignment, this is a lower limit. Mandelbaum et al. (2006), using data

from the Sloan Digital Sky Survey (SDSS), did not manage to make a definite detection

of halo ellipticity, but their data suggested distinct galaxy–halo alignment distributions

for spiral and elliptical galaxies. Parker et al. (2007) used the CFHT Legacy Survey

to attempt to measure the halo ellipticity, again detecting a non-spherical signal but at

relatively low significance. Evans and Bridle (2008) have recently used a similar method

to measure the ellipticity of cluster haloes, reporting ruling out of spherical haloes. Rozo

et al. (2006) and Minor and Kaplinghat (2007) also demonstrated the importance of con-

sidering the effects of baryons, looking at the impact of galaxy–halo alignment and halo

contraction on the strong-lensing signal.

In this chapter, we use the statistical power given by the Millennium Simulation

(Springel et al., 2005b) to determine the angular momentum profiles of dark matter

haloes in a purely ΛCDM universe (that is, without baryons). We look at both the
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magnitude and orientation of the angular momentum vectors as functions of halo radius

and mass (section 3.2). In section 3.3, we use a pair of simulations of a smaller volume,

one of which contains just dark matter and the other has a sophisticated implementation

of the baryonic processes of galaxy formation. Using these simulations, we examine the

angular momentum profiles of the haloes in detail, comparing the dark matter at different

radii between the two simulations, and with the central galaxies. We also examine how

the changes we see in the dark matter angular momentum are related to the different

mass distributions in the haloes. Finally, we relate our results directly to the problem of

weak gravitational lensing, by computing the 2-D projected mass distributions (individual

and stacked), when each halo is aligned according to its galaxy’s axes. We present our

conclusions in section 3.4.

3.2 Dark matter haloes

We first examine the angular momentum structure of simulated dark matter haloes with-

out baryons, using two cosmological simulations containing a large number of well-resolved

objects.

3.2.1 The simulations

We use the two periodic-box dark-matter simulations of the ΛCDM large-scale structure

described in section 1.5.5: the Millennium Simulation (MS), and the smaller higher-

resolution HR1 simulation. These provide very precise statistics of dark matter halo

properties over a wide range of mass. We perform all our analyses at redshift z = 0.

3.2.2 Halo definition

We shall be looking at various halo properties defined in spherical shells, so it is makes

sense to use a Spherical Overdensity (SO, Lacey and Cole, 1994) algorithm to define

haloes. We do this in the same way as in section 2.3.1, but we cover it again here for

convenience. The halo definition algorithm starts by using Friends-of-Friends (FOF, see

e.g. Davis et al., 1985) with a linking length of 0.2 to construct an initial set of particle

groups. We then use the Subfind program (Springel et al., 2001a) to identify self-

bound structures within each group (one of which will always be the main halo itself), as

well as the location of the gravitational potential minimum. We consider the potential

minimum of the main self-bound structure within each FOF group to be the centre of the
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corresponding dark matter halo. We then grow a spherical boundary around each centre

until the total enclosed mass density (not just the original FOF particles) matches that of

a virialised halo in the spherical top hat model for a flat cosmology (Ωtot = Ωm +ΩΛ = 1;

see section 1.3, and Bryan and Norman 1998; Eke et al. 1996):

∆c =
ρ

ρcrit
≈ 18π2 + 82(Ωm(z)− 1)− 39(Ωm(z)− 1)2. (3.1)

This gives ∆c ≈ 94 for MS and HR1. We shall refer to this halo boundary as its virial

radius, Rvir, and the total mass within this radius as Mvir.

3.2.3 Analysis of physical properties

After defining the sets of particles that make up the haloes in the two simulations, a series

of physical properties of those objects is computed, in the same way as in section 2.2.

The kinetic energy of each halo, T , is computed by

T =
1
2

Np∑

i=1

miv
2
i , (3.2)

where the halo consists of Np particles. Each particle i has mass mi = mp, and velocity

vector vi relative to the centre-of-mass velocity.

To calculate the potential energy of each halo, U , we use a random sample of up to

Nsel = 1000 particles from each halo, then scale the total back up according to

U =

(
N2

p −Np

N2
sel −Nsel

) (−Gmp

η

) Nsel−1∑

i=1

Nsel∑

j=i+1

−W2(rij/η). (3.3)

This uses the form of the potential used in the simulation code itself, which incorporates

the SPH smoothing kernel (Springel et al., 2001b):

W2(x) =





16
3 x2 − 48

5 x4 + 32
5 x5 − 14

5 , 0 ≤ x ≤ 1
2 ,

1
15x + 32

3 x2 − 16x3 + 48
5 x4 − 32

15x5 − 16
5 , 1

2 ≤ x ≤ 1,

− 1
x , x ≥ 1

(3.4)

where the argument x is given by the ratio of the particle-pair separation rij to the spatial

softening constant, η (see table 1.2).

For computing the specific angular momentum profiles, we divide each halo into a

spherical ‘inner’ core region and a series of concentric spherical shells. The shells have

an equal spacing of 0.2 in log10(r/Rvir), where r is the radial distance from the halo

centre. We use an inner region of radius 0.1Rvir for the analysis of angular momentum

magnitudes, and 10−0.6Rvir ≈ 0.25Rvir for the orientation analyses. This is because
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angles between the angular momentum vectors are subject to different numerical errors,

and require more particles within a given radius to ensure the results are reliable (see the

discussion in Appendix B for full details).

The (cumulative) specific angular momentum1 vector, j(≤ r), of the Np(≤ r) dark

matter particles within a given radius r (of total mass M(≤ r)) is then given by

j(≤ r) =
1

M(≤ r)

Np(≤r)∑

i=1

mixi×vi, (3.5)

where xi and vi are the position and velocity vectors of particle i relative to the halo

centre and centre-of-mass velocity. Since we use the SO algorithm to define our haloes,

the total halo specific angular momentum is jtot = j(≤ Rvir).

The shapes of the dark matter haloes are computed using the inertia tensor, I, which

directly relates angular momentum J and angular velocity ω (i.e. J = I·ω). This has

components

Iαβ =
Np∑

i=1

mi

(
x2

i δαβ − xi,αxi,β

)
, (3.6)

such that Jα = Iαβωβ (i indexes particles, α and β are the tensor indices with values of 1,

2 or 3, and δαβ is the Kronecker delta). The eigenvectors of the diagonalised inertia tensor

define an ellipsoid, which represents the equivalent homogeneous shape of the object, in

terms of a semi-major axis a, intermediate axis b and semi-minor axis c (see also the

previous discussions on definitions of the inertia tensor, sections 1.4 and 2.2).

We also use the angular velocity magnitude profile, ω(r). This is defined from the

angular velocity vector ω(r), using the mass distribution within radius r, through the

expression

ω(r) = I−1(≤ r)·J(≤ r). (3.7)

3.2.4 Halo selection

In the analysis of the halo shapes and spin parameters in the MS (Chapter 2), we used a

halo catalogue that removed haloes that were clearly out of equilibrium at the time of the

simulation snapshot. This was done by restricting the selected haloes to a certain range

in the instantaneous ‘virial ratio’ of halo energies:

Q ≡
∣∣∣∣
2T

U
+ 1

∣∣∣∣ ≤ Qlim (3.8)

1The rather verbose phrase ‘specific angular momentum’ occurs throughout this chapter. However,

it was felt that the obvious acronym Sp.A.M. would have an adverse effect on the readability (see e.g.

Chapman et al. 1970), so it was not used.
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Here, we apply a cut of the same form, and adopt the same value of Qlim = 0.5 (see

section 2.3.2 for a detailed discussion).

In Chapter 2, we also found that angular momentum and shape parameters of a

halo were subject to numerical biases if it was realised with fewer than approximately

300 particles. For the analyses presented here, we apply the Np ≥ 300 selection criterion

either to the object in total (when profile information is not required), or to the innermost

radial bin considered, e.g. r ≤ 0.1Rvir. This ensures that only reliable angular momentum

profiles are considered, and is by far the most stringent criterion used in this chapter. The

mass functions of haloes selected in this way are shown in figure 3.1.

We apply further selection criteria when studying the orientation of the angular mo-

mentum vectors, since the magnitude of the vector is related to the uncertainty in the

direction. These are detailed in Appendix B.

3.2.5 Results

Angular momentum profiles

The cumulative specific angular momentum magnitude profiles, j(≤ r), of haloes in the

MS and HR1 are shown in figure 3.2. The vertical error bars (directly around the data

points) give an estimate of the uncertainty in the median, by analogy to a Gaussian mean,

ε+ =
X84 −X50√

N
, ε− =

X50 −X16√
N

, (3.9)

where Xi is the value at the ith percentile of the distribution in question, made up of

N objects (X50 is the median; note that this is an asymmetric version of equation 2.13).

These error bars are virtually invisible on the lines describing the simulations’ full halo

populations, but are quite significant in the higher-mass bin medians as they contain

considerably fewer haloes. In contrast, the outer bars and boxes (only shown on the MS

median line) indicate the spread of the data; the boxes enclose 68 percent of the data,

and the outer bars enclose 95 percent.

Figure 3.2 shows the trend of j(≤ r) with mass, as well as the trend with radius at

a fixed halo mass. For comparison, we also show the scaling with radius from simple

arguments from circular motion: if j = vr, and the circular velocity v is constant with

radius (as for an isothermal density profile), then j ∝ r.

A complementary measure of the angular momentum profile is the angular velocity

profile, ω(r). We show this in figure 3.3. We also show the simple scaling consistent with



3. Angular momentum profiles of dark matter haloes 81

Figure 3.1: Mass functions (halo number histograms) for haloes from

the four simulations we use in this chapter. The Millennium Simula-

tion is shown in black with yellow shading, HR1 is in dashed-black with

green shading, DMO is in blue and DMG is in red (the DMO and DMG

simulations are used in section 3.3). For each simulation we show the

histogram of mass within Rvir for each halo (for the DMG haloes this

includes stars and gas). We show two selections for each simulation:

objects that contain at least 300 dark matter particles within Rvir (thin

lines, light shading), and within r ≤ 0.1Rvir (heavy lines and shading).

In both cases, selected haloes must also satisfy the ‘virialisation’ crite-

rion, Q ≤ 0.5.
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Figure 3.2: Dark matter halo cumulative specific angular momentum

profiles, for objects in the MS and HR1 simulations. Coloured lines show

the median profiles for haloes in different mass bins, and the black lines

show the medians for the MS (solid) and HR1 (dashed) data together.

The error bars on each line (nearly invisible for MS and HR1) are given

by equation 3.9. The outer bars and boxes on the MS line indicate the

spread of individual halo profiles around the median (the boxes enclose

68 percent of the data, the bars enclose 95 percent). The dotted magenta

line shows the j ∝ r scaling (with arbitrary normalisation; see text).
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Figure 3.3: Angular velocity profiles ω(r) (see equation 3.7), for haloes

in MS (solid black) and HR1 (dashed black). As with figure 3.2, we plot

error bars on both lines, and indicate the the spread of the data by the

outer bars and boxes on the MS line. The trend ω ∝ r−1 is plotted as

the magenta dotted line (with arbitrary normalisation, see text).

j ∝ r, i.e. ω ∝ r−1. Using ω instead of j removes the mass dependence, but we still find

a similar amount of scatter about the median.

Spin orientation profiles

Having examined the magnitudes of the haloes’ angular momentum vectors, we now con-

sider the vector orientations. We compute the cumulative angular momentum orientation

profile,

cos θ(≤ r) = ̂inner·̂(≤ r), (3.10)

where the hat denotes a unit vector (e.g. ̂ = j/|j|) and the ‘inner’ region is now defined as

r ≤ 10−0.6Rvir ' 0.25Rvir. The direction of the cumulative angular momentum vector is

subject to significant uncertainty due to numerical effects. To ensure that our results are

robust, we have applied a different, additional, set of selection criteria to the datasets used

in this section. The net angular momentum of a halo, j(≤ r), is constructed by the 3-D
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vector sum of its individual particles’ angular momenta. But haloes in fact have very little

coherent rotation, so the specific angular momentum of a halo is small compared to the

typical specific angular momentum of an individual particle. A halo that has a particularly

small j compared to those of its particles will have its direction information dominated by

very few particles, which allows a significant amount of uncertainty. Therefore, restricting

our halo sample to those whose j are not too small will reduce the scatter, leaving reliable

angular momentum directions. We discuss the details of this process in Appendix B.

Figure 3.4 shows the orientation profiles of the haloes from the MS and HR1 simula-

tions. The cumulative angular momentum becomes increasingly poorly aligned with the

inner regions of the halo as one considers larger radii. Although the median alignment of

the angular momentum at Rvir with that in the inner regions is always within 30◦, there

is a very large scatter between haloes. This scatter is much larger than that expected to

remain due to the numerical issues discussed above, so we conclude that it comes from

the intrinsic variation between haloes.

Furthermore, when the data is split into different mass bins, we can see that there is

a clear trend, with more massive haloes tending to be less well aligned at large radius.

Figure 3.5 examines the mass trend in more detail, by looking at how the angle between

jtot = j(≤ Rvir) and jinner = j(≤ 0.25Rvir) varies as a function of halo mass. There

is a clear decrease in alignment for the very highest-mass haloes, although the trend

is weak over a wide range of mass at the lower end. The most massive haloes formed

most recently, and are likely to have had a major merger more recently than haloes with

less mass. Major mergers have been found to have a strong effect on a halo’s angular

momentum magnitude (see D’Onghia and Navarro, 2007, for a discussion); it is highly

likely that a major merger would de-correlate the alignment profile of a halo, albeit in a

way that could depend strongly on the details of the merger.

We have also examined how the halo inner angular momentum vector compares to

the shape orientation, as measured by the halo major axis a (if we expect haloes to have

a tendency towards prolateness, then the two smaller axis directions b and c are more

likely to be degenerate). We find a slight trend with mass in the distribution of the angle

between a and jinner (see figure 3.6). This is also likely to be due to the difference in

halo merger histories, but with the added complication of using a halo’s shape axis rather

than its spin axis. The distribution of angles between the halo mass distribution and

the angular momentum at Rvir was shown in Chapter 2 (figure 2.16), and is in fact very

similar to the shape-jinner distribution we show here.
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Figure 3.4: Cumulative specific angular momentum orientation profiles

for haloes from the MS and HR1 simulations. The median profile for

the entire halo population is shown in black, with error bars and per-

centile bars shown as in figure 3.2. There is an increasing likelihood

of misalignment at larger radius, with a very large amount of scatter

between haloes. The coloured lines show the results for the haloes in

different mass bins, showing that the lower-mass haloes tend to remain

better-aligned to a larger radius.
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Figure 3.5: Angle between the specific angular momentum within Rvir

and within the inner region (≈ 0.25Rvir), as a function of halo mass

Mvir. There is very little trend for the majority of haloes, but the most

massive ones show a clear tendency for increased mis-alignment. The

error bars indicate the uncertainty on the median, and the outer bars

and boxes show the spread of the data, as in figure 3.2.

We can compare our results to those found by Bailin and Steinmetz (2005). There,

the authors compared both the angular momentum and shapes-axis vectors of haloes

as a function of radius. Our results actually suggest better internal halo alignment than

Bailin and Steinmetz (2005), but the difference in selection and analysis means that direct

comparisons are difficult. Firstly, Bailin and Steinmetz (2005) used discrete radial shells,

whereas we use cumulative radial bins. This allows us to retain more objects, as the

particle-number limit for well-resolved objects does not have to be satisfied in each radial

bin separately. Although Bailin and Steinmetz (2005) have slightly better mass resolution,

our halo populations are actually over a very similar mass range, and we have used similar

techniques to control errors due to numerical effects. These include limiting the minimum

number of particles in the halo and using bootstrap resampling to test for and reject haloes

whose vector directions are unreliable. However, we also explicitly remove haloes whose

energies indicate that they are out of equilibrium. Although we do not find that this is as
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Figure 3.6: Normalised histogram of the angle between the halo major

axis and the specific angular momentum of the halo inner region (≈
0.25Rvir). The overall median for the MS and HR1 simulations is plotted

in black over the coloured lines representing the medians in different mass

bins. The error bars show the Poissonian uncertainty (
√

N) in each bin.

strong a constraint as the limits on particle number and those derived from the bootstrap

analysis of the vectors, it could still be a significant contributor in scattering the median

jinner · jtot alignment to larger angles. This is especially the case given that Bailin and

Steinmetz (2005) had relatively few haloes. The lack of a clear trend with halo mass seen

in their results is consistent with the results we presented in figure 3.5, since the trend

we see is quite weak and has a very large scatter. The similarity between the distribution

of angles between the shape axes and angular momentum vectors at Rvir and 0.25Rvir is

also in good agreement with Bailin and Steinmetz (2005).

3.3 The effect of baryons

In order to extend our results down to galaxy-scale objects it becomes important to

consider the effects of baryons and the galaxy-formation process on the dark matter

structures. We wish to know both about the properties of ‘realistic’ dark matter haloes,
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and also how the baryonic physics has transformed them in comparison to purely dark-

matter-only structures, such as we see in the larger simulations like the MS.

3.3.1 The simulations

We use the DMG simulation of dark matter with galaxy-formation, described in section

1.5.5; we refer the reader to that section and to Okamoto et al. (2005) for the full details.

Very briefly, the simulation consists initially of high-resolution dark matter and gas par-

ticles, surrounded in progressively higher-mass collisionless boundary particles. The gas

can be transformed into star particles if it either exceeds a density threshold whilst cool

(the quiescent mode), or if it is shocked, for example due to a galaxy merger (the burst

mode). Stars formed in the quiescent mode have a Salpeter (1955) initial mass function

(IMF), but those from the burst mode have a top-heavy IMF as used in Baugh et al.

(2005). Stars from the burst mode result in more supernovae, which inject more energy

back into the gas, heating it and blowing some of it outside its halo. We use the DMG

simulation in conjunction with its dark matter-only counterpart, DMO. Using this allows

us to compare the halo properties at the level of individual haloes. As in section 3.2, we

analyse our simulations at z = 0.

We identify haloes in DMO and DMG in the same way as for MS and HR1 (see section

3.2.2). The spherical overdensity algorithm uses equation 3.1 to define the ‘virial’ radius

of the haloes; for the DMO/DMG cosmology, the overdensity parameter has the value of

∆c = 101. We have to take account of the low-resolution (high-mass) boundary particles

that surround the high-resolution central region in the DMO and DMG simulations.

Haloes near the edge of the high-resolution region are at risk of contamination by boundary

particles. To ensure that this does not bias our results, we retain haloes only if there are

no boundary particles within a radius of Rvir + 100h−1kpc of their centre.

3.3.2 Galaxy identification

We identify galaxies as collections of gas and star particles within dark matter haloes.

Each galaxy is identified as the most massive object found by a FOF algorithm performed

on the baryonic particles (both stars and gas together) within the parent halo’s virial

radius, using a linking length of 1.07h−1kpc. This corresponds to b = 0.02 using the

stellar particle number density at z = 0. This value of b was chosen to be an order of

magnitude below the value used for dark matter, since baryons collapse by a factor of

∼ 1/(2λ), and λ ∼ 0.04; see e.g. Fall and Efstathiou (1980), Pearce et al. (2001), Baugh
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(2006). We have checked that this results in reasonable-looking galaxies: it does not

include lots of hot halo gas, or satellite galaxies that would strongly bias measurements

of shape and angular momentum.

The centre of each halo’s galaxy is determined by first finding the centre of mass of

the stellar particles within the halo, and the radius of the sphere encompassing them all.

The radius is then shrunk by 5 percent, and the centre of mass of the particles remaining

within the sphere is calculated. Using the new centre, the radius is shrunk again, and

we continue to iterate until we have ≤ 50 particles remaining. The galaxy centre is then

taken to be the last centre of mass calculated using at least 50 particles. The galaxy

centres are found to correspond very well with the halo centres. We also define the galaxy

outer radius to be the distance from the galaxy centre to the farthest baryonic particle

included in the FOF group.

3.3.3 Physical properties

Just as for the MS and HR1 simulations, we compute a series of physical properties for

the haloes identified in DMO and DMG. The inclusion of baryons in the DMG haloes

means some definitions have to be made more carefully. The virial masses and radii

of the DMG haloes are defined using all the mass (i.e. including baryons), as are the

kinetic and potential energies. The smaller number of haloes in these simulations means

that it is possible to compute the potential energies using all the particles within Rvir

in a reasonable amount of time, rather than having to use 1000-particle samples as we

did for the MS and HR1 data. We have to take into account the different gravitational

softening lengths and individual masses of the baryonic particles, so the contribution to

the potential energy from each particle pair i–j is the mean:

uij =
1
2

(−W2(rij/ηi)
ηi

+
−W2(rij/ηj)

ηj

)
(3.11)

where W2(x) is the SPH smoothing kernel (see equations 3.3 and 3.4). The total potential

energy of each halo system is therefore:

U = −G
N−1∑

i=1

N∑

j=i+1

mimjuij (3.12)

We compute the cumulative specific angular momentum and angular velocity profiles

of the halo dark matter only. We also compute the specific angular momentum of the

baryonic components (gas and stars) of the galaxies.
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Finally, we perform a dynamical decomposition on the star particles in our galaxies,

computing the fraction of stars that are in a disc component, in terms of both the mass

and B-band luminosity. We do this for galaxies containing at least 5000 star particles,

in the same way as Okamoto et al. (2005), which is based on the method of Abadi et al.

(2003). The stringent particle-number criterion ensures that we exclude galaxies whose

morphologies are biased towards bulginess due to poor numerical resolution. We let the

angular momentum of the stellar component of each galaxy define a ‘z’-axis, and compute

the component of the angular momentum of each star particle parallel to this direction.

Half of the bulge is identified with the particles that have jz < 0; the total bulge mass is

defined as twice the mass of those particles. The disc mass is then given by the difference

between the total stellar mass and the bulge mass. Using the same method, we also

compute the disc-to-total ratio in terms of the star particles’ B-band luminosity.

3.3.4 Halo and galaxy selection and comparison

The basic halo selection for the DMO and DMG haloes is the same as for MS and HR1

described in section 3.2.4: we require haloes to have Q ≤ 0.5, and Np(≤ r) ≥ 300 for

the innermost radius in question. Again, we use slightly different selection criteria for the

angular momentum orientation results (see Appendix B).

Having two simulations of the same region, run both with and without baryons, means

we can directly compare the properties of individual haloes between the two. We match

each dark matter halo in DMG with its counterpart in DMO, by finding the closest DMO

halo centre within 100h−1kpc of the DMG halo centre.

3.3.5 Results

Angular momentum profiles

We show the cumulative specific angular momentum profiles of haloes in the DMO and

DMG simulations in figure 3.7. The results show the same basic trends as those of the

MS and HR1 simulations (figures 3.2 and 3.3; we also plot the same j ∝ r trend for

comparison). The mass trend of j(≤ r), visible in the top panels, is removed using the

circular velocity and radius of each halo, j(≤ r)/(VvirRvir) (middle panels). The mass

trend is also not present when considering the angular velocity ω(r). There is also a

similar degree of halo-to-halo scatter compared to the MS and HR1 results.

Figure 3.8 plots the median ω(r) results from all four simulations together: we can
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Figure 3.7: Cumulative specific angular momentum profiles (top), scaled

angular momentum j(≤ r)/(VvirRvir) = j(≤ r)/
√

GMvirRvir (middle),

and angular velocity profiles (bottom), of the dark matter in haloes in

the DMO and DMG simulations (left and right panels respectively).

The profile for each halo is plotted, colour-coded by its total mass. The

heavy black lines are the median profiles, with error bars calculated us-

ing equation 3.9. As a guide, the dotted magenta lines show the radial

scaling from simple arguments with constant circular velocity, with ar-

bitrary normalisation (see text). Scaling the angular momentum of each

halo by its circular velocity and radius removes the mass-dependence of

j(≤ r).
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Figure 3.8: The median dark matter angular velocity profiles for haloes

in our four simulations. The profiles for haloes containing baryons

(DMG) have a significantly greater angular velocity in their inner re-

gions, in the median. As in previous figures, the error bars give the

uncertainty in the median (equation 3.9), and the outer bars and boxes

on the MS line give the spread of the data (the boxes enclose 68 percent,

and the outer bars enclose 95 percent of the data).
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Figure 3.9: Logarithm of the ratio of the cumulative specific dark matter

angular momentum profiles of haloes from the DMG simulation to that of

the corresponding haloes in the DMO simulation. Each line represents

the ratio from a matched DMG-DMO halo pair, colour-coded by the

mean mass of the two haloes. The median of the profile ratios is marked

by the heavy black line, with error bars given according to equation 3.9.

immediately see that the dark matter in the inner regions of haloes with galaxies spin

significantly faster than their dark-matter only counterparts. This can be seen even more

clearly in figure 3.9, where we plot the the ratio of j(≤ r) for each DMG halo to that of

its DMO counterpart (the equivalent plot for ω(r) is very similar). Although there is a

large halo-to-halo scatter, the median trend is that the angular momentum of the dark

matter in the inner 10 percent of a halo is ∼ 50 percent greater if that halo is simulated

with baryons. It is also important to note that at the virial radius, the dark matter is

unaffected by the baryons.

We now look into the difference between the jinner of the DMG and DMO haloes in

more detail. As already discussed, semi-analytic models owe much of their success to the

fact that they conserve angular momentum of the dark matter and baryons separately,

without any transfer between the two components. In the past, hydrodynamical sim-

ulations have suffered from transferring large amounts of angular momentum from the
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baryons to the dark matter, and the implementation of feedback processes has helped

alleviate that by restricting that transfer.

If we consider the dark matter in a single DMG halo and its DMO counterpart, then

we would expect it to be more centrally concentrated in the DMG case, due to the baryons

dissipating their energy, falling to the halo centre and thus causing a deeper potential well

(see e.g. Gnedin et al. 2004, and later discussion in section 4.4.3). If the dark matter

conserves its own angular momentum, we would expect that the increase in j(≤ r) would

be due to that additional dark matter mass within r spinning up as it fell in. So if the

additional angular momentum of the dark matter in the DMG halo is the same as that of

the dark matter in the DMO halo at a radius containing the same dark matter mass, then

we can say there has been no transfer of angular momentum between the dark matter

and the baryons.

We let M0 be the mass of the dark matter contained within 0.1Rvir of the DMG halo2,

and let r0 be the radius in the corresponding DMO halo that contains the same mass, i.e:

MDMO(≤ r0) = M ′
DMG(≤ 0.1Rvir) =: M0 (3.13)

We then compute the ratio between the dark matter j(≤ 0.1Rvir) of the DMG halo, and

j(≤ r0) of its DMO counterpart. In figure 3.10, we compare this to the ratio of dark

matter masses within 0.1Rvir (note that Rvir,DMG ' Rvir,DMO, so we do not distinguish

them in this plot ).

Figure 3.10 shows us that the increase in angular momentum of dark matter in DMG

haloes at a given mass is much more than the corresponding change in mass at that radius

(the median point shows it to be about 60 percent change in j compared to 10 percent

change in mass). This suggests that the angular momentum of the dark matter is not

simply conserved, but instead gains, at least in part, from the baryons. This is consistent

with the results of Kaufmann et al. (2007), who performed a detailed investigation of the

different ways that angular momentum can be transported away from the cooling gas in

a halo, given that current simulations have not yet reached the resolution whereby the

final angular momentum of the gas has converged.

2When comparing the dark matter mass between the DMO and DMG haloes, we scale each halo’s

MDMG by fbary, the fraction of mass in baryons within Rvir; i.e. we use M ′(≤ r) = M(≤ r)/ (1− fbary).



3. Angular momentum profiles of dark matter haloes 95

Figure 3.10: Ratio of the specific angular momentum of the dark mat-

ter mass within 0.1Rvir of each DMG halo, to that of the corresponding

DMO halo at a radius r0 that contains the same mass. This is plot-

ted against the ratio of dark matter masses at 0.1Rvir for each halo

pair (the DMG dark matter mass is scaled by the baryon fraction,

see text). Dashed lines mark unity for each axis, and the 1:1 line is

marked with dots. Haloes are selected according to our usual criteria of

Np(≤ 0.1Rvir) ≥ 300 and Q ≤ 0.5. Blue circles mark the 29 halo-pairs

with r0 ≥ 0.1Rvir; red crosses mark the 34 haloes where r0 < 0.1Rvir. In

the latter case, the measured j(≤ r0) could come from fewer than 300

particles, but in practice this only occurs for one halo (marked with a

magenta circle around its red cross) since most have r0 ≈ 0.1Rvir. The

median of all the halo-pairs excluding this one is marked with a black

cross with error bars.
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Spin orientation profiles

We examine the dark matter spin orientation profiles of haloes in the DMO and DMG

simulations in the same way as for the MS and HR1 data; note that the ‘inner’ region is

again set at ≈ 0.25Rvir. From the individual halo profiles (figure 3.11) we can see that, as

with the MS and HR1 haloes, there is a median trend such that the dark matter angular

momentum vector at Rvir is 15–30◦ away from that of the inner dark matter, but also

that there is a very large scatter about that trend. There is also no discernible trend with

halo mass; given the small mass range of these haloes, this is consistent with the results

shown earlier (figure 3.5). When comparing the median trends of DMO to those of DMG

(lower panel of figure 3.11), there is a suggestion that the haloes that have experienced

baryonic physics have a total spin that is slightly more well-aligned than the dark-matter

only haloes. However, the two lines are within each others’ error bars, so this result on

its own is inconclusive.

In order to examine any difference between the orientation distributions in more detail,

we compare the orientation profiles of DMG haloes directly with their counterparts in the

DMO simulation. These results are shown in figure 3.12. There is a definite tendency for

the baryonic processes inside the DMG haloes to change the orientation of the inner dark

matter angular momentum, while the outer regions of the haloes remain well-aligned with

their DMO counterparts. In combination with the tentative results from figure 3.11, we

find that the baryons tend to cause the inner regions of haloes to become better aligned

with their total halo angular momentum vector.

This is in agreement with the similar work of Bailin et al. (2005a), who considered the

angle between the minor axis of the haloes simulated with and without galaxy-formation

physics. They found that the inclusion of galaxy formation re-orients the inner halo shape

axes while leaving the outer halo unchanged.

Dark Matter-Galaxy alignment distributions

For most practical purposes, the orientation of a halo to its galaxy is a more important

distribution than the intra-halo orientation profile itself. The alignment of a galaxy with

its halo is in principle an observable quantity, since the gravitational lensing of background

objects can be used to measure the size and shape of the mass distribution surrounding a

galaxy (although in practice this can be extremely difficult). Furthermore, semi-analytic

models are used to place the modelled galaxies into pure-ΛCDM simulated haloes. If we
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Figure 3.11: Cumulative dark matter angular momentum orientation

profiles of haloes in the DMO and DMG simulations (top left and right

respectively). Each halo is colour-coded according to its mass, with the

median profile shown in heavy black, with error bars plotted according

to equation 3.9. The bottom-left panel shows just the two median lines,

with DMO and DMG shown in blue and red respectively.
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Figure 3.12: Angle between the cumulative specific angular momentum

vectors of dark matter in the DMG simulation and their counterparts in

the DMO simulation (cos θ = 1 means the dark matter mass within that

radius in the DMG halo is aligned with that from the DMO simulation).

Each halo pair is colour-coded according to the mean of the two halo

masses, and the median trend with error-bars is marked with the heavy

black line.
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Figure 3.13: Orientation profiles of haloes of the galaxies in the DMG

haloes with respect to the cumulative dark matter angular momentum

vector of the DMG parent haloes themselves (red), or the corresponding

DMO haloes (blue). Just the median profiles are plotted. Note that the

error bars are the uncertainties on the median (equation 3.9), not the

spread of the data, which is much larger.

are also to model galaxy alignments (for example to produce mock galaxy catalogues for

lensing), we need to know how a fully-simulated galaxy would compare to the equivalent

pure-ΛCDM halo in order to implement the orientation.

Previous work (on these simulations) by Libeskind et al. (2007) showed that the galaxy

angular momentum is a very accurate proxy for the orientation of the galaxy itself (i.e.

its mass distribution). Therefore, in this work, we shall use the angular momentum of

the stellar component of the galaxies to define their orientations.

Figure 3.13 shows the median orientation profiles of the stellar component of galaxies

from DMG with respect to the dark matter in either their parent haloes, or in the corre-

sponding DMO haloes. The first thing to note is that there is a very large scatter in the

results, to the extent that we do not show the usual boxes and outer bars; the error bars

shown give the uncertainty in the median. Only a very weak trend with radius is visible:

The median goes from 25◦ at ≈ 0.25Rvir to 35◦ at the virial radius, but the scatter means
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Figure 3.14: Distribution of the angles between the specific angular

momentum vector of the stellar components of galaxies in DMG haloes,

and the total dark matter specific angular momentum of the DMG halo

itself (red) or the corresponding DMO halo (blue). The medians of the

distribution are marked (at arbitrary heights) with error bars given by

equation 3.9.

that this is of very low significance.

We examine the alignment distributions themselves in figures 3.14 and 3.15, plotting

the histograms of cosines between jgal and the dark matter jtot and jinner respectively.

The distribution for the inner halo is certainly tighter than at Rvir, but haloes are present

over the same range of values. Furthermore, the distributions remain essentially un-

changed if the same region is simulated without the baryons. This galaxy–halo misalign-

ment serves to wash out the subtle changes in the relative orientations of the dark matter

from the DMO and DMG simulations seen in the previous section.

We have also examined the alignment distributions given by splitting the galaxy–

halo populations according to their disc-to-total ratios. However, because this restricts

us to galaxies with at least 5000 star particles, we are left with too few objects in the

resulting disc-dominated and bulge-dominated populations to be able to make any reliable

conclusions. We cannot measure any significant difference in galaxy–halo alignment due
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Figure 3.15: As figure 3.14, but this time using the angle between

the inner halo dark matter angular momentum vector and the stellar

component of the central galaxy. The medians and their uncertainties

are marked.

to galaxy morphology.

In their analogous work on halo shape axes, Bailin et al. (2005a) found that the

presence of baryons caused the inner halo to align itself with the galactic disc. We

do not find such a strong correlation in terms of angular momenta, probably due to a

combination of a different physical model, a larger mass range, and having more objects;

the correspondence would also be affected by the distribution of alignments between

the halo angular momentum and shape axes (see Chapter 2). Our results are similarly

consistent with those from the four haloes presented in Gustafsson et al. (2006), both in

terms of the variability between individual haloes and the overall trend. Croft et al. (2008)

looked at the orientations of the shape and angular momenta of the different components

of their galaxies (at z = 1), defined as the dark matter, gas and stars in the self-bound

subhaloes in their simulation. Their results show slightly worse alignment than we see

here (a median angle of 43.5◦ between dark matter and stars in the galaxies; we have 23.9◦

and 34.4◦ for the median angles with the inner and total halo respectively). The difference

in selection will be significant: we only use the central galaxy in each halo, as we decided



3. Angular momentum profiles of dark matter haloes 102

we do not have the resolution to be able to look at subhaloes properly. However, we also

take great care to remove objects whose combination of angular momentum magnitude

and number of particles results in an uncertain measure of orientation. Not doing this

will result in greater scatter in the angle between components. Croft et al. (2008) do

perform resolution tests however, which are very informative: in their lower resolution

run, the median alignment is significantly poorer. The resolution in our simulations is

slightly better, so our results are probably consistent.

Croft et al. (2008) and Gustafsson et al. (2006) used different physical models to

form galaxies in their simulations. While we expect this to have a strong impact on the

angular momentum magnitude of the objects that form (which, according to Kaufmann

et al. (2007), has yet to reach convergence in a simulation), it is not clear to what extent

different physics will systematically effect the orientation of galaxies.

Kang et al. (2007) used a semi-analytic model to study the central-satellite galaxy

alignments. They found that they could match the observed characteristics of the satellite

galaxy alignment distributions (e.g. colour and mass dependence) if each central galaxy

was perfectly aligned to its halo’s spin axis rather than the shape axis. It would be

interesting to see how our finding of a broad galaxy–halo alignment distribution affects

the results of such a semi-analytic model. (The alignments of satellite galaxies in our

DMG simulation has already been investigated in Libeskind et al. 2007.)

Projected Mass Distributions

The misalignment between haloes and their galaxies can have very important conse-

quences for observational efforts to measure halo properties, such as from gravitational

lensing. In practice, the lensing signal from individual galaxy-mass haloes is too weak to

be useful; it has to be averaged over many objects, by stacking data from appropriately

scaled and aligned images (Natarajan and Refregier, 2000). Thus, in order to produce

predictions of the observable shapes of dark matter haloes from simulations, we also need

to look at aligned, stacked, projected shapes rather than the full 3-D triaxiality/sphericity

distribution (as seen in Chapter 2).

The broad distribution of galaxy–halo (mis-)alignments (figure 3.14) will have a sig-

nificant impact on the observable halo shape from a stacked 2-D mass distribution. We

take the population of relaxed, well-resolved DMG haloes containing well-resolved galax-

ies (i.e. Qlim = 0.5, and requiring at least 300 dark matter particles in each halo, as well

as at least 300 star particles in each galaxy), and transform their particles’ coordinates
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such that the x–y ‘image’ plane corresponds to their galaxy’s major–minor axis plane.

We then compute the 2-D projected mass distribution matrix M of the halo, which has

the components:

Mαβ =
Np∑

i=1

miri,αri,β (3.14)

where the sum is over all particles in the halo (dark matter and baryons), and α, β denote

the matrix indices (1 or 2), such that ri,1 is the halocentric distance of particle i in the

direction parallel to the galaxy’s major axis; ri,2 is the distance parallel to the galaxy’s

minor axis. These matrices are then normalised by the halo size, M′ = M/
(
MvirR

2
vir

)
,

and then summed over all the selected haloes, resulting in a stacked mass distribution

matrix. This has eigenvectors and eigenvalues that describe the net shape distribution of

the selected haloes, in 2-D projection aligned by their galaxy.

Figure 3.16 shows the ellipse defined by the resulting eigenvectors, along with those

from each individual halo. Here we can see that although the projected mass distributions

of individual haloes are by no means necessarily circular, the misalignment of the halo

with the galaxy means that the stacked mass distribution is almost exactly circular: the

axis ratio is b/a = 0.989 (so the eccentricity is ε =
√

1− b2/a2 ' 0.1 and the ellipticity

is e = 1 − b/a ' 0.01); given the uncertainties associated with measuring the angular

momentum and shape directions, this is indistinguishable from a circle.

The distribution of the individual and stacked axis ratios themselves is shown in

figure 3.17. Even though the distribution peaks significantly away from b/a = 1, the

stacked result (marked by the arrow) is essentially indistinguishable from unity. We have

estimated the error on this stacked halo result, by bootstrap-resampling the projected-

halo shape data, and re-computing the stacked result. The point with the percentile boxes

and outer bars in figure 3.17 shows the median and spread (68 percent of the data within

the boxes, 95 percent within the bars) of the data from 5000 bootstrap resamplings.

There has been some limited observational work to attempt to measure the shapes of

dark matter haloes using weak lensing. Hoekstra et al. (2004) claimed to have found a

significant detection of halo ellipticity, excluding circular haloes at the 99.5 percent con-

fidence level, and yielding an average axis ratio of ≈ 0.7. However, they lacked redshift

data, which limited the accuracy of their results. Parker et al. (2007) found a similar

result (an axis ratio of ∼ 0.7 at a 2σ level) using the CFHT Legacy Survey, again with-

out redshift data. Mandelbaum et al. (2006) used the very large dataset of the SDSS

(including redshifts and morphologies), and performed a very thorough exploration of
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Figure 3.16: The 2-D projected normalised mass distributions of DMG

haloes (coloured dotted lines), each having been aligned according to

its galaxy’s stellar mass distribution. The colouring is by the total halo

mass. The net result from stacking each halo is the heavy black ellipse,

with arrows marking the semi-major (heavy) and semi-minor (lighter)

axes. Plotted beneath the stacked mass distribution ellipse is a circle

(heavy magenta) as a visual aid. The axes are labelled in the dimen-

sionless units of the matrix M′ (see text).
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Figure 3.17: Normalised histogram of the axis ratios of the 2-D projected

mass distributions of haloes shown in figure 3.16. The axis ratio of the

stacked mass distribution is indicated by the arrow at b/a ' 1. Below

the arrow is a point with percentile boxes and outer bars (see figure 3.2),

showing the spread of data from bootstrap-resampling the projected halo

distribution (see text). This gives an estimate of the uncertainty on the

stacked-halo result.
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possible systematic effects (see also Mandelbaum et al., 2005). Their results were far less

conclusive, not finding definitive detection of halo ellipticity. There was a hint that spiral

galaxies are aligned perpendicular to their haloes when averaged over luminosities, and

that ellipticals are increasingly well aligned with increasing luminosity. However, these

results were not statistically significant. We have checked to see if our results vary with

galaxy morphology, as determined by the disc-to-total ratios. However, we do not have

enough objects to be able to detect any statistically significant variation (there are just

30 galaxies that pass the additional criterion of having more than 5000 star particles, 10

of which have B-band disc-to-total ratios > 0.7.).

These papers highlight the difficulties in using weak lensing to measure halo properties,

and the results we have presented here have shown how small the effect is that they are

trying to detect. When interpreting this result, it is important to bear in mind the caveats

that come with it, and how they might be answered. Firstly, our use of the SO algorithm

for defining the halo boundaries inherently biases the halo mass distributions to be more

spherical (see Chapter 2). However, figures 3.16 and 3.17 show that this is not the main

cause of the near-spherical stacked halo: rather, it is the mis-alignment between galaxy

and halo that smears out the significant projected ellipticities of the haloes.

We have only shown the projected halo ellipticities at the virial radius. Studies have

shown that CDM haloes are expected to become increasingly aspherical towards the centre

(Hayashi et al., 2007). However, it is not clear that this remains the case for systems with

baryons: the limited studies of the shape profiles of CDM haloes with baryons suggest

that their sphericity does not vary much with mass, and they could even become more

spherical towards the centre, depending on their merger histories (Kazantzidis et al., 2004;

Bailin et al., 2005a; Gustafsson et al., 2006).

Finally, it is worth noting what constraints might also be possible from strong grav-

itational lensing. Strong lensing can provide good constraints on the innermost regions

of galaxies and clusters, and has been used to measure halo density profiles (see e.g.

Hoekstra and Jain, 2008; Chen and McGaugh, 2008, and references therein). Minor and

Kaplinghat (2007) modelled the effect of an ellipsoidal mass distribution, with different

galaxy–halo alignment distributions, on the strong-lensing signal from haloes with a cen-

tral elliptical galaxy. In particular, they compared the lensing probability as a function

of image separation, for double- and quadruple-image systems, and “naked cusp” systems

(strongly-magnified triple-image configurations). They found that the total lensing prob-

ability at relatively large separations (& 5′′) is significantly higher for triaxial sustems



3. Angular momentum profiles of dark matter haloes 107

compared to spherical systems, due to the additional mass along the line of sight. Fur-

thermore, at relatively small image-separations (. 5′′), the lensing probablilties of cusps

and quads is increased relative to the probability for double-images, if the major axes

of the projected mass and light distributions are aligned (and reduced if they are anti-

aligned). This method, of examining the relative image multiplicities of a population of

strong-lensing systems, provides a statistical way of measuring the galaxy–halo alignment

without having to perform individual lens modelling.

3.4 Conclusions

In this chapter we have investigated the angular momentum structure of dark matter

haloes. We have looked at cluster-mass haloes from a pair of very large-scale ΛCDM

simulations, containing many well-resolved objects. We then extended our study down

to galaxy-mass haloes, simulated both with and without the physics of gas and star-

formation. We also compared the orientation of the dark matter angular momentum to

that of the galaxies that form within the haloes.

We have found that the cumulative specific angular momentum of the dark matter

within a given radius, j(≤ r), in the simulations without baryons, exhibits significant

scatter between haloes. However, there is a clear trend in the median, similar to the

j ∝ r scaling from simple circular motion arguments. The normalisation of this trend

scales with halo mass, although the halo-to-halo variation still produces a significant

scatter, even at fixed mass. We find an equivalent trend with radius for the angular

velocity magnitude ω(r), which still shows a significant degree of scatter, but does not

depend on halo mass. It can clearly be seen that haloes do not rotate like solid bodies, and

behave much more like they have constant rotational velocity (i.e. similar to a ω ∝ r−1

scaling). These results are consistent over the ∼ 5 orders of magnitude in halo mass

spanned by our pure-ΛCDM simulations.

We also find a large scatter in the orientation of the dark matter cumulative angular

momentum vectors at different radii, compared with that within an ‘inner’ radius of

≈ 0.25Rvir, jinner. In the median, the total specific angular momentum (i.e. at the virial

radius) is directed about 25◦ away from jinner. The data is spread over a wide range of

angles, with 95 percent of the haloes having their total angular momenta directed between

5◦ and 65◦ away from their jinner. There is also a weak trend with mass, with the more

massive haloes showing a greater range of alignment angles (hence more misalignment in
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the median). We suggest that this is due to the hierarchical nature of structure formation,

with the more massive haloes being more likely to have suffered a recent merger event

that could have altered the halo angular momentum structure.

Following this work on dark-matter-only simulations, we then moved on to investigate

the effects of baryons on the dark matter angular momentum. We used an existing

simulation of galaxy formation in a small volume (DMG), in tandem with the same

volume re-simulated without baryons (DMO). This enables us not only to compare the

distributions of halo properties with and without baryons, but also to compare individual

haloes with their counterparts in the other simulation.

We detected a small (about 50%) but significant increase in the median dark matter

angular momentum magnitude at 0.1Rvir in haloes with galaxies, compared to their dark

matter-only counterparts (note that, typically, the bulk of the mass of the galaxies them-

selves is within a significantly smaller scale). This difference decreases with halo radius,

such that by Rvir the haloes simulated with and without baryons are indistinguishable (al-

though there is a significant scatter between individual haloes). We have shown that this

increase is due, at least in part, to transfer of angular momentum away from the baryons

and into the dark matter; the baryons do not conserve their own angular momentum.

The process of galaxy formation also affected the orientation of the dark matter an-

gular momentum vectors. Although again there is a large amount of variation between

haloes, the median of the distribution suggests that the presence of baryons causes the

dark matter in the inner regions of the halo to become better aligned with the total halo

spin direction. This is consistent with previous results on changes to the halo shape axes

(Bailin et al., 2005a).

Comparing the orientation of the angular momentum of the stellar components of the

galaxies with that of the dark matter throughout the haloes, we found that the galaxies

exhibit a broad distribution of alignments, ranging from perfectly aligned to over 120◦

away. There is a slightly greater tendency for alignment in the inner regions of the halo.

We find that because of the large amount of scatter between haloes, it is not possible to

distinguish between the halo–galaxy alignments when using the haloes from the DMG or

DMO simulations; the orientation distributions are the same. We also cannot distinguish

between the galaxy–halo alignment distributions of bulge-dominated and disc-dominated

galaxies, since protecting against numerical resolution effects in this case leaves us with

very few objects.

Gravitational lensing is potentially a very powerful tool for testing theories of ΛCDM
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structure formation, and the more complex physics that goes into the galaxies themselves.

However, we need concrete predictions from simulations of the projected halo mass dis-

tributions, aligned according to the galaxies. We have found that, although individual

haloes have aspherical projected mass distributions, when they are aligned by their galax-

ies and stacked the shape distribution is washed out; the resulting distribution is circular.

Thus, our prediction of the ellipticity of the weak lensing signal from ΛCDM haloes is in-

distinguishable from that of modified gravity theories such as TeVeS. Further work (with

more haloes) is required to see if there is any set of selection criteria—such as selecting

by morphology or luminosity—that will provide a detectable signal.

So, a consistent picture is emerging from this work and others about the spin and shape

structure of ΛCDM haloes, and what happens to them under the influence of gasdynam-

ics, star formation and feedback. Dark matter haloes are triaxial with a preference for

prolateness, becoming increasingly prolate towards their centres (Chapter 2, and Hayashi

et al. 2007). They have very little coherent rotation, and less angular momentum towards

their centres. The halo angular momentum is more consistent with scalings as if it has

constant rotational velocity rather than like a solid body (figures 3.2 and 3.8). If they are

simulated with baryons and the physics of galaxy formation however, they become more

spherical overall, with a tendency towards oblateness (Kazantzidis et al., 2004; Bailin

et al., 2005a; Gustafsson et al., 2006). The inner regions of the haloes change the most,

increasing in rotation (figures 3.8 and 3.9), and becoming more aligned with the original

halo at Rvir (figures 3.11 and 3.12), i.e. the halo has become more coherently aligned

overall. The baryons have taken information about the halo orientation at Rvir into the

inner halo as they collapse, resulting in central galaxies that tend to be slightly better

aligned with the inner halo than the total halo (figures 3.13, 3.14 and 3.15; Bailin et al.

2005a, Gustafsson et al. 2006)

Although this is an appealing picture, it must be stressed that all the quantities

involved (magnitudes and directions of shapes and angular momenta) have very broad

distributions due to large variation between individual haloes. One of the most important

limitations of this work and others is the small numbers of well-resolved objects available

for study. The internal alignment structure of haloes and galaxies is expected to depend

on their merger histories, and therefore morphologies. Simulations with many more haloes

are required in order to split the distributions according to such properties.

Furthermore, galaxy formation simulations have by no means yet ‘converged’ on a sin-

gle recipe for the baryonic physics involved; simulated galaxies, while much more realistic
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than a decade ago, are not yet passable for the ‘real thing’. We would expect different

physical processes to affect the angular momentum structure of haloes differently, since

they are known to affect the angular momentum of the baryons (Okamoto et al., 2005).

For example, Zavala et al. (2008) showed that differences in galaxy morphology stemming

from different feedback processes are related to the galactic angular momentum tracking

the evolution of that of the dark matter at different radii (e.g. inner instead of total).

Therefore, further studies need to be made of the influence of different physical processes

(such as different feedback modes) on the angular momentum and shape profiles of the

resulting galaxy–halo systems, and their observational consequences.



Chapter 4
Density profiles of dark

matter haloes

The work described in sections 4.2 to 4.3 has been published as Neto et al. (2007,

hereafter N07).

4.1 Introduction

A broad consensus is emerging on the properties of dark matter haloes within the ΛCDM

paradigm, thanks to modern simulations of the formation of cosmic structures. Properties

such as the mass function of haloes (see Tinker et al. 2008, and references therein), the

angular momentum and shape (see Chapter 2), and the density profiles and substructure

within the virial radius are becoming very well determined over a large range of halo

masses.

The spherically-averaged halo mass density profile, ρ(r), is a particularly interesting

property. The internal mass distribution of haloes has immediate observational conse-

quences, through gravitational lensing studies of galaxy clusters, or rotation curves of

disc galaxies. Furthermore, studies have long shown that the density profiles of relaxed

purely dark-matter haloes exhibit remarkably simple, and similar, behaviour over a wide

range of objects. The apparently ‘universal’ behaviour is well-described by the func-

tional form proposed by Navarro et al. (1996, 1997), for the mass density in terms of the

cosmological critical density ρcrit:

ρ(r)
ρcrit

=
δc

(r/rs)(1 + r/rs)2
(4.1)

The two free parameters in the NFW profile are the characteristic density δc, and the

scale radius rs; the latter is often described in terms of the halo radius R (which we shall

define later), as the concentration c ≡ R/rs. This density profile behaves like ρ(r) ∝ r−3

at large radii (r À rs), but changes smoothly to follow ρ(r) ∝ r−1 towards the centre of

the halo.

111
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In figure 4.1 we show the NFW density profile and corresponding circular velocity

profile (vc(r) =
√

GM(≤ r)r−1, where the spherically-averaged mass within r is M(≤
r) = 4π

∫ r
0 x2ρ(x)dx), along with those from other models. The constant-density case

ρ(r) = ρ0 is clearly not realistic, but provides a useful fiducial line. The singular isothermal

sphere (SIS) has a density ρ(r) = v2
c/(4πGr2), where the circular velocity vc is independent

of radius. Most density profiles proposed in the literature for dark haloes are shallower

than the r−2 trend of the SIS model at small radii, but steeper at large radii. The Burkert

(1995) profile,

ρ(r) =
ρc

(1 + r/rc)
(
1 + (r/rc)

2
) (4.2)

exhibits a central core within rc, with the density tending to a constant value of ρc, in

contrast to the ‘cuspy’ NFW model that continues to increase towards the centre. Some

observations (such as rotation curves of spiral galaxies, which we discuss in section 4.4.4)

suggest the need for a density profile with an inner core, although data are not consistent

enough for this to be true of all galaxy types (see e.g. Chen and McGaugh, 2008, and

later discussion).

Nevertheless, the work of Navarro et al. (1997, hereafter NFW97) and many subse-

quent studies has showed that the NFW profile is a good fit to well-resolved, relaxed dark

matter-only haloes that have formed hierarchically, regardless of their mass or the under-

lying cosmology1. The cosmological information is encoded in the correlations between

the parameters in the function, which also in principle allows measurements of the den-

sity of haloes to be used to constrain cosmological parameters. These correlations arise

because the characteristic density of a system is related to the density of the Universe

at the time when the halo forms. This result has been confirmed in many subsequent

studies of the NFW model (e.g. Kravtsov et al., 1997; Avila-Reese et al., 1999; Ghigna

et al., 2000; Jing, 2000; Bullock et al., 2001b; Eke et al., 2001; Klypin et al., 2001; Dolag

et al., 2004).

As a result, many semi-analytic or empirical algorithms have been developed to explain

and predict the distributions and correlations of halo structural parameters as measured

in N -body simulations. The differences in these procedures however lead to significantly

1Recent studies of very high resolutions simulations have shown small but systematic deviations of

dark matter haloes away from the NFW profile (Navarro et al., 2004b; Prada et al., 2006; Merritt et al.,

2006; Gao et al., 2008). It has been found that a density profile with a smoothly varying logarithmic slope

that depends on r (the “Einasto” profile) yields a better fit to simulated haloes. However, the difference

is small, and the NFW profile will suffice for the purposes of this chapter.



4. Density profiles of dark matter haloes 113

Figure 4.1: Illustrative comparison of density profile models (left) and

their corresponding circular velocity profiles (right). The lower panels

simply use different axis scales: the lower density plot is normalised

by the isothermal scaling ρ(r) ∝ r−2, and the lower circular velocity

plot has a linear x–axis showing the region to 0.5Rvir. The profiles are

normalised such that ρ(Rvir)/ρ0 = 1. The four profiles plotted are for

a constant density ρ0, an isothermal sphere (ρ(r) ∝ r−2, constant vc),

and the models of NFW97 (equation 4.1) and Burkert (1995) (equation

4.2). The NFW scale radius is set at rs = 0.1Rvir, with the Burkert core

radius rc set such that d ln ρ/d ln r = −2 occurs at the same place in

both models; this yields rc ' 0.066Rvir.
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different predictions, especially when their methods are extrapolated beyond the range of

the data they were originally devised to fit.

For example, in the original model of NFW97, the characteristic density is set at

the redshift (z) when most of the mass that comprises the halo in the present is first

contained within non-linear collapsed structures. Bullock et al. (2001b, hereafter B01)

on the other hand found that they could fit the data from their simulations better if

they assumed that the scale radius at fixed halo mass is independent of redshift. This

resulted in significantly different evolution of the resulting structural parameters. Eke

et al. (2001, hereafter ENS) confirmed the results of B01, and extended their model for

use with a truncated matter power spectrum (e.g. for a warm dark matter model). The

differences between the models of NFW97 and B01 are most significant at high masses,

where they are most difficult to validate: the most massive objects in a simulation are also

the rarest, and the combination of high resolution (so that ρ(r) is accurately measured)

and a large simulation volume (to provide enough objects for a statistically meaningful

sample) has been very difficult to achieve.

While these models can reproduce reasonably well the measured relationship between

concentration, mass and formation redshift, they do not account for the scatter in the

relationships (as first discussed in Jing 2000). This has been tackled through the use of

semi-analytic models, the most successful of which ascribe the scatter in concentration to

variation in the halo mass accretion histories of objects of a given mass. For example, in

the model of Wechsler et al. (2002, hereafter W02), the scatter in the concentration-mass

relation originates in the variations of the redshift at which the mass accretion rate of the

halo’s main progenitor peaks. In contrast, the model of Zhao et al. (2003b, hereafter Z03)

uses the time when the most massive progenitor stops undergoing rapid mass accretion

to set the concentration. This was extended to higher redshifts in Zhao et al. (2003a).

It is very important to test the different predictions of models such as these outside

the mass and redshift ranges they were originally derived to fit. This is typically around

redshift z = 0, and at the characteristic mass scale2 M∗. In order to extend the mass

and/or redshift range of the data used to test the models, one requires either a simulation

2The characteristic mass M∗ is defined as the mass at which the dimensionless ‘peak height’ ν ≡
δc/σ(M) = 1 (e.g. Zentner, 2007), where σ2(M) is the variance of the density field after smoothing with a

spherical top hat filter enclosing an average mass M , and δc is the overdensity of a spherical perturbation

at its collapse redshift. These are calculated using linear theory (see section 1.3) extrapolated to z = 0.

Gao et al. (2005) use a value of M∗ = 6.15 × 1012 h−1M¯ for the MS, and we also used this value in

section 2.4.6.
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with an extremely large dynamic range, or a series of specifically designed simulations of

single objects (e.g. NFW97). The disadvantage of the latter method is that it results in

relatively few haloes, and there is a danger that the way they are selected for simulation

could introduce subtle biases in their structural parameters. Macciò et al. (2007, hereafter

M07) used a series of simulations of varying box sizes and resolution to extend their

results down to much lower halo masses. However, in order to get down to masses M .

1010 h−1M¯, they had to use a very small simulation box size (side length 14.2h−1Mpc),

which has the potential problem of bias due to such a simulation missing large-scale power.

The alternate solution is to increase the dynamic range of a simulation, essentially by

putting more particles into the box. The work presented in the first part of this chapter

makes use of the two large ΛCDM simulations used in Chapter 3, the Millennium Simu-

lation (MS) and the smaller higher resolution simulation referred to as HR1 (see section

1.5.5 for details). The combination of large volumes with substantial numbers of parti-

cles results in minimal statistical uncertainty when characterising halo properties such as

concentration, spin, formation redshift, and the degree of relaxation. Even including the

HR1 simulation however, the haloes used here do not go down to masses as low as M07:

to prevent biases in the structural parameters measured, the halo mass range used here

is limited to 1012–1015 h−1M¯.

The large number of haloes available allows deviations from the correlations of con-

centration and mass to be studied in detail. The analysis presented here uses only the

halo population at z = 0; an analysis of the structural parameters of haloes in these

simulations at higher redshifts was presented in Gao et al. (2008).

The second part of this chapter deals with the question of how baryons affect the

density profiles of haloes. Although the MS allows us to charaterise the density profiles

of purely dark-matter haloes over a wide range of mass, we expect the internal mass

distribution of haloes to be transformed by the baryonic processes of galaxy formation.

Just as in Chapter 3, we use a high resolution region simulated both with and without

baryons to compare the effect on individual haloes’ density profiles.

Although there have been attempts to measure this in the past, previous work has

been hampered by incomplete physics (e.g. neglecting star formation, feedback, or radia-

tive cooling of the gas), poor resolution, or by having too few objects. Rudd et al. (2008)

found that the galaxy-formation process causes haloes to become significantly more cen-

trally concentrated, but the effect becomes much smaller if the gas is not allowed to cool

radiatively and form stars (in agreement with Lin et al. 2006). Gustafsson et al. (2006)
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found that the baryons steepened the inner density profiles of their four haloes, causing

them to deviate away from the NFW profile shape. The halo simulated with baryons

in Romano-Dı́az et al. (2008) exhibited a stronger cusp at early times, but this became

smoothed out into a small core by z = 0. We extend studies such as these by using

simulations containing a larger number of galaxy–halo systems. It is not expected that

the simulations we use produce perfectly realistic galaxy systems however: we also inves-

tigate how the circular velocity profiles of the haloes compare to observed spiral galaxy

rotation curves, as characterised by the Universal Rotation Curve of Persic et al. (1996)

and Salucci et al. (2007).

The outline of this chapter is as follows. We briefly review the simulations used

for investigating the dark matter halo concentrations, and detail the methods used for

halo definition and selection, in section 4.2. Section 4.3 presents the results of the dark

matter halo studies, including the analysis of the halo concentration parameter and its

correlations with mass, spin and formation time. We also investigate the ability of different

models to predict the trends and scatter in the concentration. We then move on in section

4.4 to analyse how the density profiles change due to the presence of gas and stars, and

also how the corresponding circular velocity profiles compare to measured rotation curves

from spiral galaxies. Section 4.5 presents my conclusions for this chapter.

4.2 Dark matter concentrations: haloes in the simulations

4.2.1 Halo identification

We use the ten billion particle Millennium Simulation (MS), in conjunction with the

smaller, higher resolution HR1 simulation (see Springel et al. (2005b) and section 1.5.5

for full details). These both use the same ΛCDM cosmology, and allow the identification

of many millions of haloes at z = 0. The problem of identifying and selecting dark matter

structures appropriate to the physical quantities being studied is a critical stage in the

analysis of a cosmological simulation. The simulation code used ran an implementation

of the ‘friends-of-friends’ algorithm (FOF, e.g. Davis et al. 1985) on the fly, with a linking

length of b = 0.2 in terms of the mean interparticle separation, and a minimum group

size of 20 particles. Following completion of the simulation, the Subfind code (Springel

et al., 2001a) was ran on the particle data. This breaks down each FOF group into

self-bound substructures, including the main body of the halo itself (the most massive

‘substructure’), and any resolved subhaloes; a FOF group will also contain additional
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particles not contained within a self-bound structure. Using this additional information

from Subfind means that we are able to immediately reject ‘haloes’ identified in the

FOF catalogue, but which do not contain any self-bound component (typically very low-

mass objects). The halo definition we use in this chapter is based on the substructure

information given by Subfind, which is itself based on the simple particle groups returned

by FOF.

The centre of each halo is defined to be at the minimum of the gravitational potential

of the most-massive substructure in the corresponding FOF group. A spherical outer

boundary to each halo is then defined at a radius R∆ from the centre, using an overdensity

criterion, ρ(≤ R∆) = ∆cρcrit. The overdensity ∆c is not unique, but is usually defined

with the intention of selecting virialised objects. In an Einstein-de Sitter (i.e. flat, matter-

dominated) universe, the spherical collapse model yields a value of ∆c ≈ 200 (see section

1.3). This was the value chosen in NFW97 and it has remained in common usage. In

the ΛCDM cosmology however, the overdensity of a virialised sphere is lower (Eke et al.,

1996). Using the approximation of ∆c ≈ 178Ω0.45
m (Eke et al., 1998), we get ∆c = 95.4 at

z = 0. We shall refer to the halo radii derived using this value as the virial radii (Rvir),

but for ease of comparison with other works, the radii obtained using ∆c = 200 will also

be retained (R200).

We define our haloes to be the total mass within a distance of Rvir (or R200) from the

potential-minimum centre of the most-massive substructure identified by Subfind (itself

based on the FOF groups). Note that this definition can include particles not present

in either the Subfind substructures or the FOF groups. The mass of the haloes thus

defined is given by

M∆ =
4
3
π∆cρcritR

3
∆ (4.3)

This halo definition is equivalent to the ‘SO’ (Spherical Overdensity) definition used in

Chapter 2.

4.2.2 Halo selection

Having defined our haloes, we must then select carefully those that are appropriate for our

study. Different halo properties are subject to different numerical biases, and selection

criteria appropriate for one quantity are not necessarily sufficient (or even necessary) for

another. Furthermore, when a halo is out of equilibrium—for example, when it is in the

process of a merger—the halo properties change rapidly, on a timescale much shorter than
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the interval between simulation snapshots. The halo boundary radius and mass defined

above are designed to select virialised objects, so it is inappropriate to apply them to

objects undergoing a merger: in such cases, the definition of the halo itself becomes

highly ambiguous. The inclusion of such objects in a halo catalogue leads to increased

scatter in measured properties and biases in correlations, as we shall see.

This chapter is primarily concerned with the spherically-averaged density profiles of

dark matter haloes. For these to be measured meaningfully, the halo must not be domi-

nated by dense substructures, it must have an unambiguously defined centre, and it must

be dynamically relaxed (or nearly so). These requirements are translated into three well-

defined selection criteria for our final ‘Relaxed’ halo catalogue. Haloes excluded by these

criteria comprise the ‘Unrelaxed’ catalogue, and the two taken together are the ‘Full’ halo

catalogue.

The fraction of the total halo mass contained in resolved substructures with centres

within Rvir (as identified by Subfind, and excluding the most-massive substructure), is

denoted fsub. Haloes selected for the Relaxed catalogue must satisfy fsub < 0.1.

The position of the halo centre (cpm, as defined by the potential minimum) and the

centre of mass of the halo (ccm) should be very similar. Following Crone et al. (1996) and

Thomas et al. (2001), we define S ≡ |ccm− cpm|/Rvir, and apply the constraint S < 0.07.

Finally, we apply a cut in the (instantaneous) virial ratio, 2T/|U |. Here, T is the ki-

netic energy computed from the velocities of the halo particles in the centre-of-momentum

frame, and U is the potential energy computed using the positions of all the halo particles

(or by taking a random sample of 1000 particles if there are more than that number; see

Chapter 2). This ratio should have a value of unity for an isolated, virialised object; to

allow for minor variations, the haloes selected for the Relaxed catalogue are constrained

to have 2T/|U | < 1.35. See section 2.3.2 for a more detailed discussion of the use of the

virial ratio3.

It is important to note that fsub and S are complementary measures, and are strongly

correlated. For low-mass haloes, the amount of mass in substructures will be underesti-

mated, as the subhaloes will not be sufficiently resolved for Subfind to identify them.

However, the mass distribution within the halo may still be sufficiently irregular that it

can be excluded through the constraint on S. Similarly, the substructures could be ar-

ranged, by chance, such that they do not shift the centre of mass significantly away from

3The ‘virial ratio’ used here is defined following N07, and is slightly different to that used in section

4.4 and Chapters 2 and 3, |2T/U + 1|.



4. Density profiles of dark matter haloes 119

the gravitational centre; however, fsub could still identify the halo as unrelaxed. Further-

more, the virial ratio means the selection criteria make use of the kinematic information

of the particle velocities, allowing the removal of unrelaxed objects that happen to satisfy

the other two criteria.

N07 performed a thorough study of the dependence of these selection criteria on

the number of particles in the haloes. The strong dependence of fsub on resolution has

already been noted; the virial ratio was also found to become increasingly unreliable

for haloes with Np . 1000. We defer assigning a formal lower limit on the number of

particles, pending an examination of the density profiles themselves. In terms of the

relative importance of the three selection criteria already described, it is the limit on

S that removes the most haloes. A significant number are also rejected by the fsub

criterion, and the virial ratio limit only rejects a few additional haloes. Figure 4.2 shows

the relationships between these different criteria and their effect on the halo population.

4.2.3 Density profiles and NFW fits

Each halo is divided into 32 radial bins, spaced logarithmically between log r0/Rvir = −2.5

and the virial radius. The mass density is measured in each bin, yielding the spherically

averaged mass profile ρ(ri). In N07, an NFW profile (ρNFW(r), see equation 4.1) was

fitted to each halo, by varying the two free parameters (δc and rs) in order to minimise

the rms deviation between the measured profile and the NFW function:

σ2
fit =

1
Nbins − 1

Nbins∑

i=1

[log ρ(ri)− log ρNFW(ri|δc, rs)]
2 , (4.4)

where ri is the radial distance to the outer edge of bin i from the halo centre. This

definition of σfit assigns equal weight to each bin. An alternative would be to use Poisson

weighting in each bin (see equation 4.14); this was tested, and the results were not found

to differ significantly.

For NFW profile fitting, the radial range used for the fit is of critical importance. Most

haloes of different masses are resolved to different degrees within a single simulation;

since we only use two simulations, we have to be particularly careful. N07 performed

extensive testing of the biases introduced in the resulting halo structural parameters

when fitting over different radial ranges, in particular in the mass range that is common

to both simulations. The eventual method chosen was a uniform radial range in terms

of Rvir, ensuring that haloes of different masses are treated equally. It was found that

the minimum radius of the fit had to be rmin ≥ 0.05 to prevent introducing bias in the
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Figure 4.2: The criteria used to define the Relaxed halo sample (see

section 4.2.2): the fraction of mass in resolved substructures fsub, the

virial ratio 2T/|U |, the centre-shift S, and the number of particles within

the virial radius Nvir (called Np in the text). The shaded regions indicate

areas where haloes are rejected from the Relaxed catalogue. The dots

represent a uniform sample of haloes from the MS with Np > 300. In

the top-left panel, the dashed line shows the detection limit of Subfind

(20 particles), with the solid histogram showing the fraction of haloes in

each mass bin with no resolved substructures (i.e. fsub = 0). This figure

has been reproduced from N07.
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correlation between halo concentration (c200 = R200/rs) and mass. However, a value of

rmin = 0.05 also minimised the scatter in the concentration-mass relationship, so this was

the value chosen.

These tests were performed with haloes containing at least 1000 particles. Using

this particle-number limit did not introduce significant biases into the correlation of the

concentration parameter with halo mass. However, it was found that the quality of the

fits, as measured by σfit, was significantly poorer for haloes realised with fewer than

10 000 particles. Therefore, this conservative limit was adopted as a minimum number

of particles for haloes used as the analysis. This yields a final mass range for the haloes

used here of 1012–1015 h−1M¯.

4.3 Dark matter concentrations: results and discussion

4.3.1 Concentration and halo mass

N07 performed a thorough analysis of the relationship between the concentration param-

eter and halo mass, which we shall summarise in this section.

The relationship between concentration and mass, for both the Relaxed and Full halo

catalogues, is shown in figure 4.3. The median c(M) trend is well-defined, but weak. It

is well-fitted by a power law, as shown in the figure. The results also agree very well

with those of M07, who use a mass range of 2× 109–2× 1013 h−1M¯. The differences are

likely to be due to their use of the mean rather than the median, and the differences in

selection criteria between M07 and N07. However, the similarity between the two results

implies that the median halo concentration is well-described by a single power law over

approximately 6 decades in halo mass.

The results are also in reasonably good agreement with the predictions of NFW97 and

ENS, although they both underestimate the concentration at lower masses. At higher

masses, there is a hint of the median concentration converging to a single value. As a

consequence, the NFW97 model performs slightly better than the ENS or B01 models,

since constant concentration at high masses is implicitly built in to the NFW97 model.

Both the ENS or B01 models predict a strong drop in concentration at high masses (Z03

have already noticed this behaviour, and cautioned against the B01 model at high masses).

M07 claimed that the B01 model fits their data better than the ENS model at low

masses. However, the difference only becomes noticeable at masses below ∼ 1010 h−1M¯.

This mass corresponds to just 700 particles in the highest resolution (smallest volume)
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Figure 4.3: Mass-concentration relation for haloes from the Relaxed

catalogue (top panel), and for all haloes (bottom panel). The outer bars

and boxes show percentiles of the distribution: the inner boxes mark

25 and 75 percent of the data, while the outer bars show the 5 and 95

percent tails. The points in the centres of the boxes are the medians.

The numbers along the top of each panel indicate the number of haloes

in each mass bin. The best fitting power law relation to the median

concentrations is given by the solid line, with the parameters shown in

the legend of each panel. The dot-dashed line shows the prediction of

the B01 model; the dashed and dotted lines corresponds to the ENS and

NFW97 models, respectively, with Γ = 0.15, as this approximates best

the input power spectrum of the MS. See text for further details. This

figure has been reproduced from N07.
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simulation in their suite. We have discussed above the concerns related to the small box

size in the highest resolution simulations of M07, and N07 showed that at least ∼ 1000

particles are required to produce unbiased concentrations (and 10 000 particles to produce

fits that do not depend on particle number); since the correlation also has a large scatter,

it was concluded that it is premature to judge conclusively the relative accuracy of the

ENS and B01 models at low mass. Further tests are required using higher resolution

simulations in larger volumes; or alternatively at higher redshift, where there is a greater

difference between the two models (see Gao et al., 2008).

Since the trend with mass is weak, and has a large scatter, the distribution of the halo

concentration parameter at fixed mass is also of interest. N07 found that only the haloes

in the Relaxed catalogue have concentrations that follow a lognormal distribution at fixed

mass. The Full halo catalogue has a tail at low-c that skews the distribution away from a

lognormal. In fact, the concentrations from the population of Unrelaxed haloes alone do

follow a lognormal, and the sum of the two best-fit lognormal distributions (Relaxed and

Unrelaxed haloes) describes the concentrations of the Full halo population at fixed mass

very well (see N07).

When examining the resulting lognormal distributions as a function of halo mass, the

dispersion in c200 was found to decrease monotonically with mass. This suggests that

the high-mass haloes are a more homogeneous population than the low-mass haloes. The

high-mass objects are rare and have collapsed recently; the low-mass haloes will have a

much wider distribution of formation times (we shall return to this point later in detail).

4.3.2 Concentration versus spin

The question of the origin of the large scatter in the distribution of concentrations as a

function of mass is not addressed in the models of NFW97, B01 or ENS. One possibility

is that the variation in concentration in fixed mass may be related to the distribution of

halo angular momentum: the spin parameter λ also has a large amount of scatter at fixed

mass (see Chapter 2). Both NFW97 and B01 investigated this possibility and did not find

a significant correlation between spin and concentration. However, Bailin et al. (2005b)

did find a correlation, which they claim might explain why low surface-brightness galaxies

appear to inhabit low-density haloes. Using the statistical power of the MS, extended to

lower masses using HR1, we can revisit this question.
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Figure 4.4: The distribution of concentration and spin parameters for

the two halo samples. The contours enclose 65, 95 and 99 percent of the

data, with individual points plotted for the remaining one per cent of

the haloes.

The spin parameter is defined in the same way as in Chapter 2, as

λ ≡ J |E|1/2

GM5/2
, (4.5)

where the quantities are described in section 2.2. The data used here are the same as

for the ‘SO’ haloes in Chapter 2. We added to that data the results for λ for haloes

from the HR1 simulation, computed in the same way. We show the joint distribution of

concentration and spin parameters in figure 4.4.

Although the correlation seen by Bailin et al. (2005b) is clearly visible in the distri-

bution from the Full halo catalogue, for the Relaxed haloes the trend disappears. The

low concentrations seen in unrelaxed haloes is a transient feature of the rapid evolution

of the mass distribution that occurs during an accretion event: they are a consequence of

the ambiguity of the halo definition in such situations, and the profile-fitting procedure,

rather than being genuinely indicative of a low-density halo.

The question of why the low-concentration (i.e. unrelaxed) haloes tend to have high

spin also needs to be addressed. D’Onghia and Navarro (2007) showed that the halo spin

parameter of the mass within their ‘virial’ boundaries during mergers tends to increase,

but that it then decreases during the subsequent process of virialisation. Therefore,

haloes from the Relaxed sample here should have lower values of λ, whereas the unrelaxed

haloes will have higher spin (albeit temporarily). This change in the angular momentum

distribution is partially due to the arbitrariness of the outer boundary of the halo: a large

accretion event such as a merger brings in mass and angular momentum, but redistributes
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it such that the high-spin material ends up preferentially on weakly-bound orbits. As the

halo virialises, the high-spin material can end up lying outside the virial radius, reducing

λ for virialised objects (see also Vitvitska et al., 2002).

In conclusion, we found that since there is no significant correlation between λ and c

for Relaxed haloes, the distribution of the spin parameter cannot directly be the source of

the variation in concentration parameter at fixed mass. This is in agreement with M07.

Most of the effect seen in Bailin et al. (2005b) was due to the inclusion of haloes that

were not in equilibrium. There is a hint of a very weak correlation remaining, visible in

the slant of the contours in the bottom panel of figure 4.4, but this is too small to have

observable consequences.

4.3.3 Concentration versus formation time

NFW97 claimed that the halo mass-concentration relationship is a consequence of the

relationship between formation time and halo mass. They also showed that most of the

scatter in the c(M) relationship is due to the variation of formations times for haloes

of fixed mass. We revisit their analysis in this section. To get information about the

histories of the haloes identified at z = 0, we use the merger trees described in Harker

et al. (2006) and Bower et al. (2006). The merger trees identify progenitors of a given halo

in preceding snapshots of the simulation. This enables single objects to be tracked over

the course of the simulation, for example by tracking the mass accretion history (MAH)

of the most-massive progenitor (MMP) of a given halo identified in the present. We shall

denote this by MP(z). Alternatively, one can analyse the spectrum of masses from all the

progenitors of a halo as a function of redshift.

The details of the algorithm used to identify the merger trees differs slightly from

that in Springel et al. (2005b), which was also used for analysis of the MS. However, this

difference is in most cases only significant for haloes undergoing major mergers, which

are excluded from the Relaxed halo catalogue here. There is an added complication that

the merger trees use the ‘TREE’ halo definition described in Chapter 2, rather than the

‘SO’ haloes used here (see section 2.3.2). In practice, calculations involving the MAH of

haloes (i.e. MP(z)) are performed using the masses of the TREE haloes, which are then

identified with their counterpart SO haloes at z = 0 (where the TREE halo’s MP(0) will

be similar to the SO halo’s Mvir).

The concept of a ‘formation’ time (in practice, a redshift zf) of a dark matter halo

does not have a unique definition. Various definitions have been used in the past (e.g.
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Lacey and Cole, 1993; Navarro et al., 1997; Wechsler et al., 2002; Zhao et al., 2003b), but

if it is to have important consequences for the halo structural parameters, it is important

to test the impact of these definitions. Any method will be somewhat arbitrary however4.

One of the simplest and most widely used definitions is the redshift at which a halo’s

most-massive progenitor first exceeds half the halo’s final mass: MP(zf) = 1
2MP(0). Using

this, we show in figure 4.5 the relationship between formation redshift and final halo

mass. Each point is colour-coded by concentration: the colour-gradient visible in the plot

suggests a strong link between concentration and formation time.

In figure 4.6, we show (for two mass bins) the deviations of haloes away from the

median relations of concentration and formation time with mass (as seen in figures 4.3

and 4.5 respectively). This shows that the residuals of the two relations are strongly

correlated, and therefore that a significant amount of the scatter in concentration at fixed

mass is due to variations in formation redshift at that mass.

We wish to quantify how significant a contribution this is. N07 compared the rms

scatter in the (logarithmic) concentration distribution, σc, to the rms scatter about the

1 : 1 line in figure 4.6, σz (for the two mass bins shown in that figure). The fractional

reduction in the variance, |σ2
c − σ2

z |/σ2
c , is an estimate of how much of σc is due to the

variation in zf . They found a reduction of 35% for the lowest mass bin, and just 12%

for the highest mass bin. This means that the formation time can only account for a

small fraction of the variance in c, so there must be other effects at work. Wechsler

et al. (2006) suggested that the excess scatter could be due to the effect of the halo

environment. However, the effect that they found was limited to the low-mass haloes,

and we see additional scatter at high masses too.

An alternative explanation is that the simple definition of formation time used above

is not adequate to capture all the relevant information influencing halo structure. After

all, the mass within the NFW scale radius rs is much less than the 1
2MP(0) used in

the definition of zf above. The scatter could come from aspects of the merger tree as a

whole, which are neglected when considering the MAH of the most-massive progenitor

only. N07 tested four different definitions of zf , by comparing them to the characteristic

density δc. This has an expected ‘natural’ scaling of δc ∝ (1 + zf)3. Three of these

4It is also important to note that although we will be referring to this characteristic time as a ‘formation’

redshift, for most definitions one can continue to track the life of the halo’s MMP back to earlier times.

The fact that the halo exists before it has formed reflects a failing of English rather than the physical

definition itself.
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Figure 4.5: Halo formation redshift as a function of final mass for haloes

from the Relaxed catalogue. The formation redshift is given by the

redshift at which the halo’s most-massive progenitor first reaches half the

final halo mass. The crosses show the median in the different mass bins,

with the error bars on the crosses giving the uncertainty in the median

(see equations 2.13 & 3.9). The percentiles of the distribution at that

mass are given by the boxes (75 and 25 percent) and the outer bars (5

and 95 percent). The numbers along the top of the main panel indicate

the number of haloes in each bin. The straight line is a least square

fit to the median zf . A random sample of half the haloes are plotted

as points, colour-coded according to their concentration parameter. A

gradient in colour is visible, with bluer points nearer the top and redder

points nearer the bottom: this shows qualitatively a correlation between

concentration and formation time.
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Figure 4.6: Deviations in c200 from the median mass-concentration rela-

tion (figure 4.3) plotted against deviations in zf from the median mass-

formation time relation (figure 4.5), for two mass bins, as labelled in

each panel. The residuals are strongly correlated. This suggests that

that much of the scatter in the c(M) relation is due to variations in the

formation time of haloes of given mass. As before, the points indicate the

medians, and percentiles of the distribution are indicated with the outer

bars (5th and 95th percentiles) and boxes (25th and 75th percentiles).

The number of haloes in each ∆ log(1 + zf) bin is given above each bin.

The solid lines show the 1 : 1 relation.
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definitions simply changed the fraction of the final halo mass that the MMP must reach

for the halo to be deemed to have ‘formed’ (1/10 and 1/4 were tested, in addition to the

value of 1/2 already investigated). The fourth definition is that described in NFW97:

the halo has ‘formed’ when the combined mass of all progenitors of mass > fMP(0)

first exceeds 1
2MP(0). NFW97 used f = 0.01, to match their results from the Extended

Press–Schechter (EPS) formalism (Press and Schechter, 1974; Bond et al., 1991; Lacey

and Cole, 1993; Zentner, 2007). This uses just the present-day halo mass to derive the

merger history. However, we found that we must use a higher value of f = 0.1 when

using the actual merger history measured from the N -body simulations. It was found

that the NFW97 prescription for zf fitted the ‘natural scaling’ of δc better than the other

definitions, implying that the full mass-spectrum of a halo’s progenitors is important in

determining its structural parameters.

4.3.4 Predictions of the concentration

The results of the previous section show that one must take into account some information

about a halo’s mass accretion history in order to predict its concentration accurately.

Common practice with current semi-analytic models is to take the median c(M) relation,

and either ignore the scatter completely or just produce it statistically (Cole et al., 2000).

However, since the halo formation time can impact on the clustering of haloes (Gao et al.,

2005), making use of the MAH of a halo when computing its structural parameters could

significantly affect the semi-analytic predictions of the size and internal structure of a

galaxy.

In this section we investigate the accuracy of three models that use different aspects

of the MAH to predict a scattered distribution of concentrations.

Wechsler et al. (2002)

In the model described in W02, the MAH of a halo’s most-massive progenitor is fitted to

a power-law,

log MP(z) = log MP(0)− αz, (4.6)

where the free parameter is related to the formation redshift (and scale factor) through

α

2 ln 10
=

1
1 + zf

= af . (4.7)

The concentration parameter of the halo is then given by cW = c0/af . W02 found that zf

defined in this way correlated well with the concentration parameters measured by B01.
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In the original paper, W02 used a value of c0 = 4.1, as this was the typical concentration

of haloes that are forming now (af = a0 ≡ 1). However, due to our different halo definition

and virial radius, we take a value of c0 = 2.26 to produce a good match to our measured

concentrations. Although this model is very simple to implement, we found that equation

4.6 is a poor approximation to the actual MAH in a significant number of systems.

Zhao et al. (2003)

In Z03, the MAH of the most-massive progenitor is modelled as having two phases. The

halo begins life in a period of fast accretion and mergers, before reaching a slower accretion

phase at late times. The model works by assuming that the inner properties of the halo

(e.g. rs) are fixed during the early fast accretion phase, and only weakly change thereafter.

After identifying the redshift of the turning point in the MAH, ztp, it is then used to

estimate the concentration at z = 0.

Z03 found that a good approximation to ztp is given when the following function

reaches its maximum:

Z(z) = log v(z)− γ log H(z) (4.8)

where the constant γ = −1/4. Using the expressions for circular velocity (v =
√

GM/R)

and halo mass5 (M = 4
3π∆hρ̄R3), and the scaling relations for the mean density of the

Universe ρ̄ ∝ (1 + z)3 and the Hubble parameter H2(z) ∝ (
Ωm,0(1 + z)3 + ΩΛ

)
, it can be

shown that

Z(z) ∝ 1
3

log MP(z) +
1
2

log (1 + z) +
1
8

log
(
Ωm,0(1 + z)3 + ΩΛ

)
(4.9)

The maximum of this expression can be found (this involves interpolating the MAH

between the simulation snapshots), yielding ztp, and Mtp ≡ MP(ztp).

The concentration parameter at z = 0 is then found by making use of the power-law

relationships found in Z03:

M(< rs(z))
M(< rs(z0))

=
(

rs(z)
rs(z0)

)3α

(4.10)

where z is the redshift we are interested in, z0 is some fiducial redshift (which we will take

to be ztp) and M(< r) refers to the mass within the radius r of the MMP at the specified

redshift. The constant α is found to be 0.48 during the slow (recent) accretion phase, and

5The halo identification at z > 0 is based on FOF with b = 0.2, i.e. using a constant comoving mean

interparticle separation. This means we can use the same overdensity value value ∆h at all redshifts.
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0.64 in the fast (older) accretion phase. Using this in conjunction with standard relations

for NFW haloes, Z03 derived the following equation:
(
ln(1 + c(z))− c(z)

1+c(z)

)
c(z)−3α

(
ln(1 + ctp)− ctp

1+ctp

)
c−3α
tp

−
(

MP(z)
Mtp

)1−α (
1 + z

1 + ztp

)3α

= 0 (4.11)

This is solved at z = 0, with α = 0.48 (since z < ztp) and ctp = 4.0 (which Z03 found to

be the typical value at ztp), yielding a prediction for c(0) =: cZ.

As with the W02 model, differences in halo definition meant we had to scale the

predicted concentrations to match the values that we measure from the MS, multiplying

cZ by 0.55. Furthermore, like W02, this method is prone to failing due to the requirement

of a specific form for MP(z). A significant fraction of haloes do not have a two-phase

MAH, instead having just a single slow phase, or multiple fast phases.

Navarro, Frenk, and White (1997)

As already discussed, the NFW97 model defines the formation time at the redshift when

half the mass of the final halo is contained within progenitors more massive than fMP(0).

We take a value of f = 0.1 here. Having found the formation redshift, this is then related

to the predicted characteristic density through

δc = CΩm,0(1 + zf)3, (4.12)

where the constant C has the value 3×103. The predicted concentration cN is then found

from the characteristic density by solving the following:

δc =
∆
3

(
c3
N

ln(1 + cN)− cN
1+cN

)
. (4.13)

Comparison of predictions

Figure 4.7 shows the distributions of concentrations predicted by the three models de-

scribed here against the distribution of measured concentrations. The models use different

features of the merger trees to get characteristic redshifts, with different procedures fol-

lowing that to generate a predicted concentration. W02 approximates the MAH of the

most-massive progenitor to a power-law. Z03 finds a redshift at which the (same) MAH

transitions from an early fast phase to a slower phase at late times. The NFW97 model

uses the redshift at which the entire mass spectrum of resolved progenitors has grown

above some threshold mass. Despite these differences in method however, the figure
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Figure 4.7: Comparisons of the concentrations predicted by the Z03

(top), W02 (bottom left) and NFW97 (bottom right) models with those

measured from the simulations. The contours enclose 65%, 95% and

99% of the haloes (from the Relaxed catalogue), with the remaining 1%

plotted as points. The σ-values indicated in each panel give the rms

scatter in the prediction 〈log2(cmeas/cpred)〉1/2. Also marked is σc, the

corresponding rms scatter about the mass-concentration relation for the

same set of haloes.

shows that the predicted concentrations all correlate reasonably well with the measure-

ments from the haloes themselves. The contours for the W02 and Z03 models show

significant deviations from symmetry about the 1 : 1 line, due to biases in the predicted

concentrations. This is due to haloes whose MAHs are poorly described by the prescrip-

tions in those models.

We have measured the rms scatter between the predicted and measured concentrations

(marked on each panel). The best (marginally) is the NFW97 model, with σN = 0.077.

However, this is only slightly less than the measured dispersion in the measured concen-
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trations themselves (σc = 0.092). Looking at the fractional change in variance (cf. section

4.3.3), |σ2
c − σ2

N|/σ2
c , we find that despite the good correlation between the predicted and

measured concentrations, the NFW97 model still only accounts for about 30 percent of

the variance in the concentration-mass relationship.

By this measure, the W02 model does similarly well, although the correlation with

the measured results has a slope that is slightly too shallow. The Z03 model has more

scatter, but this is entirely due to the low-cZ tail, which originates in haloes that do not

adequately satisfy its two-phase model of the MAH.

Therefore, although all three models produce predictions that agree well with the mea-

sured concentrations, none can account for even half of the scatter in the concentration-

mass relationship.

4.4 Haloes with baryons

The preceding sections in this chapter used very large simulations to characterise precisely

the distribution of the concentration parameters of dark matter haloes, and investigated

the source of its variation and the accuracy of models that attempt to predict it. We now

proceed to calculate the density profiles of galaxy-scale haloes, simulated with baryonic

physics including star formation and feedback. In addition to comparing the density

profiles to those from dark matter-only haloes, we use the related circular velocity profiles

to assess the realism of the simulated galaxy systems.

4.4.1 The simulations

To analyse the impact of baryons on density profiles in haloes, we used the DMG simula-

tion described in section 1.5.5, and used extensively in Chapter 3. We refer the reader to

those sections and Okamoto et al. (2005) for a full description. Very briefly, the simulation

consists of a high resolution region of dark matter, gas and star particles, surrounded by a

series of lower-resolution (higher mass) boundary particles. The stars can form from the

gas either by exceeding a density threshold (the quiescent mode, resulting in a Salpeter

(1955) IMF), or due to the presence of shocks from galaxy mergers (the burst mode,

resulting in a top-heavy IMF). The IMF from the burst mode results in more supernovae

per unit mass of stars formed, which heat the surrounding gas (feeding energy back into

it), and which can eject it out of the galaxy. As in Chapter 3, the DMG simulation is used

in conjunction with a dark matter-only simulation of the same region (‘DMO’), to allow
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a direct comparison between haloes. In addition to DMG and DMO, for the purposes of

this section we also use the single-halo simulations GDMG and GDMO, also described in

section 1.5.5. These use the same physical models as the DMG and DMO simulations,

and provide a single additional well-resolved object to study. Since GDMG and GDMO

use the same cosmology, physics, and have very similar resolution as the DMG and DMO

simulations respectively, most references to either larger simulation should be read as also

including the object from the smaller simulation.

Haloes are identified using the same ‘spherical overdensity’ algorithm as before: a halo

centre is identified as the potential minimum of the most massive self-bound substructure

found by Subfind from the FOF dark-matter particle groups. The halo boundary radius

is defined such that it encloses an overdensity calculated using equation 3.1; ∆c = 101.1

for the cosmology used in these simulations (see table 1.3).

Following the work by N07 on halo selection for studying density profiles, and my

previous work using these simulations (Chapter 3), we chose the following criteria to

select haloes for analysis:

• The number of dark matter particles: Np,DM ≥ 4000

• The centre-shift parameter S ≤ 0.07

• The virial ratio |2T/U + 1| ≤ 0.5

The particle number-limit of 4000 was chosen to balance the constraints of resolution

and halo numbers: requiring very well-resolved haloes reduces the number available for

analysis. The value we chose is below the (conservative) minimum of 10 000 particles

chosen by N07, which they note was chosen to maximise the quality of their NFW fits.

My value will produce slightly poorer fits, but it is well above the minimum for producing

unbiased values of the concentration parameter (1000 particles). The virialisation criteria

is also slightly different to that used for the MS analysis in this chapter (but the same

as that used for the MS in Chapters 2 and 3): The previous criteria (2T/U + 1 ≥ 0.35,

see section 4.2.2) is slightly tighter than the value used here; however, here the criterion

applies to both sides of the distribution of virial ratios.

For the DMG simulations, we make use of the central galaxies of each halo, using the

definition from Chapter 3 (i.e. running FOF on the star and gas particles within Rvir,

with a linking length of b = 0.02). We have computed for the galaxies’ disc-to-total ratios

in terms of both mass, (D/T )m, and B-band luminosity, (D/T )B (see section 3.3.3 for

further details).
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Applying these selection criteria to the DMO and DMG halo populations yields a

catalogue of 20 haloes. Some properties of the four most massive (and best resolved)

objects are shown in table 4.1, with a visual comparison in an Appendix (section A.2).

4.4.2 Computing the density profiles

To compute the density profiles of haloes in the DMO and DMG simulations, we use a

scheme based on that of N07 (described in section 4.2.3). This means initially setting

up 32 radial bins between Rvir and 10−2.5Rvir, spaced logarithmically. However, whereas

N07 chose to use a uniform radial range over all haloes, here we use an adaptive scheme,

and extend the radial binning down towards the halo centres, until there is a core of

50 particles remaining (haloes with fewer than 50 particles are not considered). This

means that although the bins are the same width (in terms of Rvir) for all haloes, the

number of bins varies. We do this so that we can make the most out of the relatively few

haloes we have available: we want to avoid rejecting any unnecessarily from resolution

constraints (there are so many haloes in the MS that this is not a problem, allowing the

cleaner choice of the uniform binning scheme). Note that, in practice, the particle-number

limit described earlier (Np ≥ 4000), and the inner radius we describe below, ensure the

reliability of the density profiles we analyse, regardless of the choice of binning scheme.

For the DMG haloes, we compute two density profiles: one of the dark matter alone,

and one of the total mass including the baryons. As in the preceding sections, we fit an

NFW function (equation 4.1) to the density profiles, by varying δc and rs such that they

minimise the rms deviation (σfit) between the measured discrete density profile and the

NFW function:

σ2
fit =

Nbins∑

i=1

Np(ri) [ log ρ(ri)− log ρNFW(ri|δc, rs) ]2 (4.14)

This implementation assigns Poisson-error weights to each bin through Np(ri), the number

of particles in bin i, whereas N07 assigned equal weights (cf. equation 4.4). In agreement

with N07, we also found that this choice did not significantly affect the results. We use

the convergence criterion given in Power et al. (2003) to determine the innermost radius

for the NFW fit, rather than the empirically-determined uniform range used in N07. The

NFW function is fitted to the data over a radial range rconv < r ≤ Rvir, where the

convergence radius rconv is the radius that satisfies
√

200
8

Np(≤ r)
lnNp(≤ r)

(
ρ(≤ r)
ρcrit

)−1/2

≥ 0.6, (4.15)
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where ρ(≤ r) is the mean density within the radius r. Strictly, this limit is only applicable

for haloes in the DMO simulation, as the convergence tests of Power et al. (2003) did not

use simulations containing gas or stars. Since the baryonic particles will be concentrated in

the centres of the haloes, including their number in the calculation of rconv pulls the limit

strongly inwards, implying that a much larger radial range can be fitted reliably. However,

without thorough convergence tests (beyond the scope of this thesis), it is impossible to

assess how reasonable this is. Although an un-converged dark matter profile would have

too low a density in the inner regions (Power et al., 2003), the additional physics associated

with the baryonic particles means that this cannot be assumed to be true for the DMG

simulations.

4.4.3 Results: density profiles with baryons

Figure 4.8 shows the density profiles of all the objects that pass the selection criteria (the

DMO haloes and their counterpart halo–galaxy systems in DMG both have to be selected).

As expected, the profiles from the DMO haloes are fitted well by NFW functions (blue

and cyan lines). Since we are plotting ρ(r)r2, the location of rs is given by the peak of

the fitted curve.

Looking at the density profiles from the DMG simulations (red for the dark matter6,

green for the full mass density), we can see that in the outer regions of the halo, very

little changes in most cases: the density tends to drop like r−3, just as the NFW profile

does. Furthermore, the DMG haloes’ dark matter density profiles match their total-mass

density profiles in the outer regions. This means that, as expected, the baryons are mostly

in the halo centres with the outer halo being dominated by dark matter. Note that the

‘radius’ of each galaxy (the distance to the most distant particle in the baryonic FOF

group) is ∼ 0.1Rvir (marked with vertical bars coloured blue for discs, (D/T )B ≥ 0.7,

and red otherwise). The resolution of the simulations means that for many haloes their

galaxy—and hence the majority of their baryons—is mostly in the under-resolved inner

region.

The inner radial limit of the NFW fit to the DMO profile, rconv, is indicated by the

thick vertical line for each halo. We also mark the nominal values of rconv calculated

for the DMG profiles by the transitions from solid to dotted lines. As discussed above,

without extensive convergence tests, we have no way of judging how reasonable this is, or

6For the dark-matter components of the DMG haloes, we scale the profile of each halo by its baryon

fraction, fbary, i.e. the values plotted are ρ′(r) = ρ(r)/ (1− fbary).
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even if the ‘real’ convergence radius is outside that of the DMO haloes. In the absence

of a more rigorous study, we recommend treating the convergence radius of the DMO

haloes as the approximate inner limit of ‘believability’ for the dark matter and total-mass

profiles from the DMG simulations, too.

Given that caveat, there is still evidence from the objects presented here that the

density profiles of ΛCDM systems containing stars and gas do not follow NFW profiles.

For the best-resolved systems, the profiles of the DMG mass, and to a lesser extent the

dark matter, show a clear deviation from the NFW form, with an increase in the steepness

of ρ(r) in the inner halo. This trend continues within rconv (whereas most of the DMO

haloes continue their NFW trend), and it is visible in that sense for all the selected

haloes regardless of resolution (although we cannot say if this is a physical effect for the

less well-resolved cases).

The divergence of the DMG haloes from NFW profiles is in agreement with the four

haloes studied in Gustafsson et al. (2006). Other studies have looked into how the con-

centration parameter changes when baryons are added to a simulation (e.g. Lin et al.,

2006; Rudd et al., 2008); however, since our DMG haloes do not have NFW profiles, it

would not be meaningful to find the concentration from an NFW fit.

As already discussed, it is computationally very expensive to run large simulations

involving baryons and the additional physics for galaxy formation. Because of this, it

has been common to simply use dark matter simulations, and scale the results using

the adiabatic contraction model when comparing with observed systems (see Blumenthal

et al., 1986; Gnedin et al., 2004; Sellwood and McGaugh, 2005, and references therein).

If the infall of dissipative baryons occurs adiabatically (e.g. the gas falls into the halo

through slow steady accretion), then the angular momenta of the dark matter and bary-

onic components are conserved separately. This means that the dark matter component

can be assumed to simply contract, due to the baryons in the centre deepening the po-

tential well. The dark matter density profile becomes steeper in the centre. However,

since we have already shown that in the DMG simulation there is some transfer of an-

gular momentum between the two components (section 3.3.5), we shall not consider this

model further. Gnedin et al. (2004) performed a detailed comparison of galaxy–halo sys-

tems whose baryons were simulated both with and without cooling and star formation,

alongside different implementations of the adiabatic contraction model.

The recent study of Romano-Dı́az et al. (2008) found that, for the single halo they

simulated, the presence of baryons caused the density profile to flatten, forming a core
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Figure 4.8: The density profiles of all the haloes selected from the DMG

and DMO simulations: DMO profiles (blue) have NFW fits (cyan), and

for the DMG haloes we show both the dark matter (red, scaled by fbary,

see text) and total mass profiles (green). The values of Mvir/1011 h−1M¯
are marked in each panel, using the same colour scheme. We mark rconv

by the transition from solid to dotted lines in the profiles, with that of

the DMO haloes emphasized with a vertical black bar (they are only

illustrative for the DMG haloes). The galaxy ‘radius’ (see text) for each

DMG halo is marked by a long vertical bar, colour-coded by morphology:

blue for discs, (D/T )B ≥ 0.7, and red otherwise. The softening lengths η

are marked by a long-dashed black line (dark matter), and a dot-dashed

line (baryons).
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by z = 0 (although it initially has a steeper, isothermal cusp, ρ(r) ∝ r−2, at high-z).

Their simulation uses a similar physical model to that used in DMG (see Heller et al.,

2007), although they use a different code. The authors claim that the core is produced by

the action of subhaloes containing baryons, which heat up the halo centre, causing dark

matter to flow out. However, the small size of the observed core (r ∼ 2 kpc) suggests

that it is likely to be a numerical artefact. While the authors state that the softening

used means that the gravitational forces are sufficiently accurate at these scales, the

problem of two-body relaxation will still remain (Power et al., 2003). Okamoto (2008,

private communication) analysed a similar-scale simulation, and found that it also formed

a small core. Its location well inside the unconverged inner region (i.e. rcore ¿ rconv)

lends weight to possibility that two-body effects are the source of the effect.

The result that the density profiles in our simulations become more cuspy (steeper),

rather than shallower, is potentially problematic. Many observations of galactic systems

have implied a constant-density core, although it is important to note that this does not

seem to be a universal feature: gravitational lensing studies of elliptical galaxies suggests

that NFW (or steeper) cusps provide a good fit (e.g. Gavazzi et al., 2007; Chen and

McGaugh, 2008), but low surface-brightness galaxies (LSBs, expected to be dominated

by dark matter), and some clusters, appear to have cores; see e.g. Sand et al. (2004),

Kuzio de Naray et al. (2008), and references therein. On the other hand, Meneghetti

et al. (2007) found that failure to take halo shape into account may mean that the central

densities from gravitational lensing may be significantly underestimated. The observation

of cored haloes is often seen as a threat to the whole ΛCDM paradigm, given how well the

NFW profile fits dark matter-only simulations. We shall look at how the density structure

of the simulated haloes compares with observational evidence in the next section.

4.4.4 Realism of galactic systems: circular velocity profiles

The galaxy formation model used in the DMG and GDMG simulations was investigated in

depth in Okamoto et al. (2005), and we am using use the most successful model from that

study. However, our understanding of the galaxy formation process is far from complete,

and here we shall look at how the mass distribution in the simulated galaxy–halo systems

compares with observational results.

A convenient method is to compare the circular velocity profile of simulated objects

with the rotation curves measured from real disc galaxies. The so-called circular velocity

profile of a halo is really just its cumulative mass distribution (vc(r) =
√

GM(≤ r)r−1),
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rather than any function of the velocities of the halo particles themselves. However, it

can be compared to the rotation curves from velocity measurements of observed galaxies.

Persic et al. (1996) and Salucci et al. (2007) describe an empirical result called the

Universal Rotation Curve (URC). It uses a simple model of a halo with a baryonic disc,

and fits the free parameters of the model such that the resulting rotation curves fit those

of a large population of observed spiral galaxies. Regardless of the physical realism of

the model, the URC provides a convenient functional form for generating rotation curves

that match observations for galaxies of a given luminosity.

In Salucci et al. (2007), the authors used much more observational data to constrain

the functional form they use, although it is based on the same principles. They also

extrapolate their model out to the virial radius of their model halo. This was done in

order to make predictions based on the model that would fit the observed data, but could

also be compared directly with simulations. Since we will be using the URC only as

a proxy for observational data, we am not interested in the accuracy of their model; we

restrict my use of the URC to the unextrapolated version, found just from fitting the model

equations to the observed rotation curve data. The basis of the URC is a decomposition

of the rotation curve into ‘disc’ and ‘halo’ components, which add in quadrature:

V 2
URC(r) = V 2

D(r) + V 2
H(r) (4.16)

The disc component is modeled as a Freeman (1970) disc, with an exponentially

decaying surface density profile:

ΣD(r) =
MD

2πR2
D

e−r/RD (4.17)

where RD and MD are the disc scalelength and mass respectively. The disc size is de-

fined as Ropt = 3.2RD. The contribution to the rotation curve is then, in terms of the

normalised radius y = r/RD:

V 2
D(y|MD, RD) =

1
2

GMD

RD
y2 (I0K0 − I1K1) (4.18)

where In and Kn are the modified Bessel functions, and are evaluated at y/2.

The halo is modeled with a Burkert (1995) density profile, which differs from the

NFW profile by having a core of radius rc and density ρc (see section 4.1, equation 4.2,

and figure 4.1). This provides the following contribution to the circular velocity:

V 2
H(r|rc, ρc) =

6.4Gρcr
3
c

r

{
ln

(
1 +

r

rc

)
− arctan

(
r

rc

)
+

1
2

ln

[
1 +

(
r

rc

)2
]}

(4.19)
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Salucci et al. (2007) then use the observational data to constrain the relationship

between ρc, rc and MD:

ρc(rc)
g cm−3

= 5× 10−24 (rc/kpc)−2/3 exp

(
−

(
rc/kpc

27

)2
)

(4.20)

MD(ρc)
1011M¯

=

(
log ρc

g cm−3 + 23.515

−0.964

)1/0.31

(4.21)

Note that the form of these expressions implicitly constrains the parameters: equation

4.21 means that log ρc/g cm−3 < −23.515, leading to rc > 2.0797 kpc from equation 4.21.

The equations are not without uncertainty; equation 4.21 in particular is derived from an

“eyeball fit” to the data, and has an uncertainty δrc/rc of 30 to 50 percent (Salucci and

Burkert, 2000).

These expressions leave rc and RD as free parameters in VURC(r). They are valid

out to a radius Rl ≈ 6RD, the limit of the observed rotation curves. We fit the URC as

described here to the vc(r) profiles of the halo–galaxy systems selected from the DMG

simulations7. As when fitting NFW curves to the density profiles, we take the value of

rconv of the equivalent DMO halo as the inner radius for the fit; we also fix the outer

radius at 20h−1kpc. This is much simpler than fitting out to Rl, since in that case the

fitting range would depend on the value of one of the free parameters, and given the

approximate nature of the URC in the first place, this level of precision was not deemed

necessary. Figure 4.9 shows the circular velocity curves and URC fits for the halo–galaxy

systems, selected in the same way as before.

The figure shows that, essentially, there are no real disc galaxies that have rotation

curves similar to the circular velocity profiles observed in these simulations8. The disc-

galaxy haloes in the simulations (those with (D/T )B ≥ 0.7, marked with an asterisk)

are in fact among the worst-matched objects in the sample; some of the more bulge-

dominated galaxies appear to be better fits (this does not mean they are more ‘realistic’

of course, since the URC is defined using observations of spiral galaxies only). Most of

7Strictly, the rotation speeds from disc geometries (including the URC with its explicit disc model)

should not be compared directly to the spherically-averaged circular velocity profiles. However, the dif-

ference is expected to be sufficiently small that it can be neglected for the purposes of this study: Binney

and Tremaine (2008, p101–102) show that the rotation curve of an exponential disc peaks about 15%

higher and peaks slightly further out than that of a sphere of the same mass.
8We have focused here on the later URC paper (Salucci et al., 2007), but we get qualitatively similar

results using the first paper (Persic et al., 1996). The fits tend to be slightly worse in that case, due to

the different way the URC equations are formulated and the approximations involved.
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Figure 4.9: Circular velocity profiles for the 20 selected halo–galaxy

systems in the DMG simulations. Haloes marked with a blue asterisk

have (D/T )B ≥ 0.7. The green curves give vc(r) calculated using all

the mass in each DMG halo. The value of rconv for each corresponding

DMO halo is marked with a black bar, and the transition from solid

to dotted indicates rconv computed using the DMG halo (but see text).

The magenta curves show the best-fitting Universal Rotation Curve,

with the outer limit for which the URC is reliably defined, Rl = 6RD,

marked by the transition from the solid to dashed line. The URC fits

are performed between rconv and 20h−1kpc. The plots are truncated at

50h−1kpc, although the virial radii of the haloes are much larger.
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the lower-mass objects (the lower panels in the figure) have very similar vc(r) profiles,

both in terms of shape and overall magnitude, and thus produce similarly bad best-fit

URC curves.

The source of the problem is simple: the haloes have too much mass in their centres.

This means that they rise sharply within the first ∼ 3h−1kpc (although this is always

within rconv). For the most massive objects, they then have a broad peak (with r > rconv)

and begin a gentle decline. For the less well resolved haloes there is a much sharper

peak (with r < rconv still) before the slow decay. For the best-resolved objects, the URC

has to fit to a gentle rise towards a broad peak. It can place the peak at roughly the

right radius, but this causes it to drop too fast afterwards. For the less well-resolved

haloes, the fit starts where the vc(r) data is already falling away from its peak. The URC

cannot reproduce this, yielding curves that are instead either flat or still rising at rconv.

Furthermore, this results in very little separation between rconv and the URC’s own outer

limit of Rl.

These results are not atypical for current simulations. Abadi et al. (2003), Gustafsson

et al. (2006) and Governato et al. (2007) all exhibit circular velocity profiles with similarly

problematic shapes. These results emphasize the need for further studies of the structure

of haloes simulated with baryons, using different recipes for star formation and feedback

and at high resolution. Preliminary results of a series of such tests have recently been

presented by Pedrosa et al. (2008), based on the simulation code of Scannapieco et al.

(2008). While their results are similar to ours, it does not seem that varying the supernova

feedback parameters alone can solve the problem of the high central density. It seems

likely that more detailed physical models, which incorporate additional processes (such as

feedback from AGN), will be necessary. Although the simulations we have used here are

very successful in alleviating many of the difficulties associated with the galaxy-formation

physics in simulations (see Okamoto et al., 2005; Libeskind et al., 2007), the problems are

still far from solved definitively.

4.5 Conclusions

In this chapter, we have examined the structural parameters of haloes in a ΛCDM uni-

verse, both in large dark matter-only simulations, and later in smaller simulations to

study the impact of gas and star formation.

As others have found, the density profile of relaxed dark matter haloes is well-fitted
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by the functional form given in Navarro et al. (1997, NFW97). Neto et al. (2007, N07)

found that at least 1000 particles are required for the concentration distribution to be free

of numerical bias, and investigated various potential pitfalls that can arise from studying

poorly-resolved or unrelaxed haloes. They extended previous studies of the concentration-

mass relation to much higher masses, and therefore rarer objects. In combination with

the results of Macciò et al. (2007), it was found that the concentrations of relaxed haloes

follow the same power-law relationship over six decades in halo mass. The results are in

reasonable agreement with Eke et al. (2001) and NFW97; however, the model of Bullock

et al. (2001b) fails at high masses: the predicted median concentration is a factor of ∼ 2

too low for haloes of mass ∼ 1015 h−1M¯.

The trend in c(M) is weak, and the scatter in concentration at fixed mass is equally

important. The distribution of the concentrations of Relaxed haloes at fixed mass is well-

fitted by a lognormal function, with a mean and dispersion that decrease with increasing

halo mass.

By combining the concentrations measured in N07 with the spin parameters measured

in Chapter 2, we found that there was no significant correlation between them. This is

in apparent contradiction to Bailin et al. (2005b). A correlation between λ and c can be

shown to exist, however, if the unrelaxed haloes are included, as they are systematically

biased towards lower concentrations and higher spins. The lack of correlation amongst

the relaxed haloes means that the spin distribution cannot be a significant source of the

scatter in the c(M) relation.

Instead, a significant amount of the scatter seems to come from variations in the

formation times of haloes. After testing various different definitions of formation redshift

(zf), it was found that the structural parameters of haloes are best predicted by models

that take the full spectrum of progenitor masses into account when finding the formation

redshift, rather than just the most massive progenitor.

We compared the predictions of the halo concentration in the models of Wechsler et al.

(2002), Zhao et al. (2003b) and a variant of the Navarro et al. (1997) model that uses the

merger trees to compute zf . All three models produced concentrations that correlate well

with the measured values. However, none of the models can account for more than about

30% of the variance in the measured distribution. This implies that a large fraction of the

scatter is likely to depend on a more subtle aspect of the merger histories of the haloes,

which is not captured in these relatively simple schemes.

We then used a simulation of a much smaller, high resolution volume, that included
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gas and star formation, to investigate how this changes the density profile. We found

that the total mass density profiles of these objects do not follow an NFW shape, instead

becoming steeper within ∼ 0.1Rvir (although they do converge onto the ρ(r) ∝ r−3 trend

at larger radii).

Finally, we used the mass density profile information to examine the circular velocity

profiles of the haloes simulated with baryons. These were compared to the URC of Salucci

et al. (2007), a functional form constrained to match observed rotation curves. We found

that the disc galaxy–halo systems in our simulations cannot be matched to any rotation

curve described by the URC. Much work therefore remains to be done, in testing the

impact of different models of galaxy formation in simulations.



Chapter 5
Conclusions

5.1 Haloes in dark matter-only simulations

We have used the Millennium Simulation (MS) and HR1 simulation to determine struc-

tural properties of dark matter haloes with unprecedented precision. In Chapter 2, we

examined the distributions of the spin parameters and shapes of the haloes, and their

dependence on mass, environment, and halo definition. Chapter 3 built on this and ex-

amined the angular momentum profiles of those haloes, considering both their magnitude

and orientation. In Chapter 4, we investigated the source of scatter in the concentration

parameter of the MS and HR1 haloes, relating it to both the spin parameter and the halo

formation time.

The halo definition algorithm is a critical step in the post-simulation analysis of a

cosmological model. We have tested the dependence of the spin parameter λ, and the

halo sphericity s and triaxiality T , on the algorithm used. In addition to comparing the

“friends-of-friends” (FOF) and “spherical overdensity” (SO) methods, we tested a third

definition that uses the merger trees together with substructure information (section 2.3).

This TREE definition effectively cleans the FOF halo population of objects that have

been artificially linked, but are dynamically separate.

The work presented in this thesis has emphasised the importance of choosing a halo

definition, and subsequent halo selection criteria, which are appropriate to the quantities

being studied. The TREE haloes were ideal for measurements of λ and halo shape, but for

the halo profile properties, studied in spherically-averaged radial bins, the SO definition is

a more suitable choice. Furthermore, model fits to density profiles are more susceptible to

biases caused by the presence of substructure; the selection criteria needed to reflect this

by removing the less smooth haloes. Similarly, the angular momentum vector directions

were only reliable if the vector magnitudes were not too small.

We found that, for the MS TREE halo population of more than 1.5 million, the spin

parameter was poorly described by the traditional lognormal distribution. Instead, we

proposed an alternative function (equation 2.15), which is not biased away from j = 0 and

147
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thus provides a better description of the data. We have detected a slight but significant

trend in the variation of λ with halo mass, such that higher mass haloes have lower median

spin values. However, the trend differs significantly for different halo definitions.

The MS haloes exhibit a broad range of shapes, with a tendency for prolateness, con-

sistent with previous results; the particular distribution depends strongly on the halo

definition. More massive haloes tend to be less spherical and more prolate. The re-

lationship between spin and shape depends strongly on halo mass: the more spherical

haloes have relatively low median spins, independent of mass; whereas the median spin

of the most massive haloes is independent of their sphericity. The least massive haloes

(Mh = 1011.4–1012 h−1M¯) have spins that anticorrelate strongly with sphericity.

We examined two-point correlation functions for haloes selected according to their spin

or shape, and found that these parameters depend significantly on the halo environment.

Haloes with greater spin, or a more spherical shape, tend to reside in more clustered

environments. The effect becomes stronger at higher masses.

The cumulative specific angular momentum profiles of haloes, j(≤ r), show a signif-

icant amount of scatter. However, the median profiles at fixed mass behave similarly

to the j(≤ r) ∝ r trend expected from simple circular-motion arguments with constant

velocity. The median trend scales with halo mass, with the more massive haloes having

more specific angular momentum (in the median) within all radii. This mass trend disap-

pears if one considers the angular velocity ω(r) instead, but there is still a large amount

of halo-to-halo scatter. Haloes do not rotate as solid bodies, but instead behave as if they

have a constant circular velocity (ω ∝ 1/r), consistently over the five orders of magnitude

in halo mass that are studied in Chapter 3.

We have found that both the inner and total angular momentum vectors tend to

align perpendicular to the halo major shape axis, and parallel to the minor axis. We

also calculate the angular momentum orientation profiles themselves. The median total

halo angular momentum j(≤ Rvir) is directed about 25◦ away from the inner angular

momentum j(. 0.25Rvir). However, the data exhibit a large degree of scatter, with the

bulk of the angles between haloes’ total and inner angular momenta lying between 5◦ and

65◦. A weak mass trend is also visible, with a greater range of values present for the most

massive haloes, resulting in a reduced alignment in the median. These massive haloes

are more likely to have suffered a recent merger or near-merger event, which could easily

change the spin orientation structure.

In Chapter 4 We used the measurements of halo concentration, c, from the NFW fits of
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Neto et al. (2007), and investigated the source of their scatter. Although it had been sug-

gested that a correlation between λ and concentration indicated that the scatter in λ was a

significant contributor, We showed that relaxed haloes show no such correlation. Instead,

we found that a significant amount of the scatter in concentration at fixed mass seems to

come from the variation in halo formation time: the variance in c for haloes of a given

mass correlates with the variance in their formation redshift. However, the definition of

formation time is somewhat arbitrary. We tested three different models that predict halo

concentration using different aspects of their merger histories. The most successful model

used the full spectrum of progenitor masses, rather than defining a characteristic redshift

based on the mass accretion history of the most massive progenitor alone. Nevertheless,

all three models succeeded in predicting concentrations that correlated reasonably well

with those measured in the simulations. However, none of them could account for more

than about 30% of the measured scatter. This means that there is likely to be some other

significant aspect of the merger histories that these relatively simple schemes do not take

into account.

5.2 Haloes simulated with baryonic physics

We have used a simulation of the formation of galaxies within CDM haloes (DMG,

Okamoto et al., 2005), which includes a multiphase ISM model, star formation in quiescent

and burst modes, and supernova feedback, to investigate how the structural properties of

haloes are transformed by baryonic physics. Using a dark matter-only simulation of the

same region (DMO), We were also able to compare individual objects directly.

In Chapter 3, we used these simulations to study the effect of baryons on the dark

matter angular momentum. We found that the angular momentum within 0.1Rvir is

about 50% greater in the median for the haloes with baryons, even though typically the

bulk of the galaxy mass is within a significantly smaller scale. The difference in angular

momentum reduces as we consider the dark matter within larger radii, such that by Rvir

the median angular momentum of the haloes is the same as in the dark matter-only case.

Part of the increase in the inner angular momentum is due to transferral from the baryons

as the haloes collapse.

We also examined changes in the orientation of the dark matter angular momentum.

Despite the large amount of variation between individual haloes, the median trend is that

the baryons cause the inner dark matter to become slightly better aligned with the total
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halo angular momentum direction.

The simulated galaxies’ angular momenta also exhibited a broad range of orientations,

with respect to their parent haloes. The galaxies tend to be slightly better aligned with the

inner regions of the haloes, than with all the dark matter within Rvir. However, there is no

significant difference between the galaxy–halo alignment distributions if the parent haloes

are replaced by their dark matter-only counterparts. We also attempted to distinguish

between the alignment distributions of disc-dominated and bulge-dominated galaxies.

However, separating the population into these two samples results in too few well-resolved

objects to be able to make any firm conclusions: we did not find any significant difference

between the galaxy–halo orientations of the two types of galaxy.

The broad galaxy–halo alignment distributions have implications for future measure-

ments of halo shape using weak gravitational lensing. We measured the halo shape re-

sulting from stacking the projected halo mass distributions, aligned according to their

galaxy. The stacked projected mass distribution shape was indistinguishable from circu-

lar. If the orientation distributions from this simulation are a faithful sample of the true

distribution, then it will be extremely challenging for weak lensing surveys to use halo

shape measurements to distinguish between ΛCDM and alternative-gravity theories such

as TeVeS.

Finally, in Chapter 4, we used the same simulations to see how the baryons affected

the dark-matter and total-mass density profiles. We found that within about 0.1Rvir, the

density profiles of the haloes with baryons tend to diverge from the NFW shape, with a

steeper central profile. This is also reflected in the halo circular velocity profiles, which we

compared to observed objects using the Universal Rotation Curve (URC) formalism. The

haloes in the simulations used here do not match any rotation curve that can be modelled

by the URC. This demonstrates an important shortcoming in the simulations: there is

too much matter in the central regions compared to data from observed disc galaxies.

5.3 Future prospects

The work presented in this thesis can be extended and applied in a variety of directions.

Current semi-analytic models (such as Galform, Cole et al. 2000) set the size of galac-

tic discs directly using the spin parameter λ. In practice, this is generated by sampling

a lognormal distribution, even when the model is based on the haloes from an N -body

simulation (e.g. Helly et al., 2003). An obvious extension is to use the spin parameters
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measured from the haloes themselves, or to sample the measured distribution (equation

2.15) for the under-resolved haloes. This will allow for greater continuity when a given

galaxy’s disc size is re-computed, since halo spin parameters are expected to be correlated

in time; resampling from a lognormal will result in uncorrelated spins each time. Fur-

thermore, the environmental dependence of the spin parameter will become encoded into

the galaxy properties. In simulations with large numbers of objects (such as the MS),

this will allow more realistic measures of statistical properties of galaxy populations in

different environments.

The halo angular momentum direction information could also be incorporated into

semi-analytic models. Currently, models do not monitor changes to the direction of the

halo spin vector, even though events such as halo flybys can cause dramatic changes to

a halo’s orientation and presumably perturb its internal structure. It would be useful to

investigate the significance of spin flips on halo structural parameters, and to consider an

additional criterion based on this to trigger the model to re-assess the galaxy properties

based on the halo.

In principle, galaxy orientations could be directly incorporated into semi-analytic mod-

els using the galaxy–halo alignment distributions from section 3.3.5. In practice however,

these would benefit from further study of galaxy-formation simulations. There are two

main questions concerning my results from the DMG simulations that remain unresolved:

(1) How robust are the measurements of the changes to the angular momentum and

density profiles to changes in the physical model used in the simulation, and (2) can

relationships be found between halo and galaxy properties when objects are selected by

environment, morphology, luminosity, colour, size, etc?

In order to answer the first question, further simulations must be analysed that use

significantly different models for the ISM, star formation and feedback processes. We

need to investigate under what circumstances the density profiles of haloes can be made

to match those from observations, to ensure that we are analysing sufficiently realistic

systems. The simulations must have at least the size and resolution of the ones analysed

here, although the answer to the second of the above questions is of course to use larger

simulations, at higher resolution.

An increase in size (simulation volume) means more objects, which means the ability

to discern trends amongst sub-populations of objects: haloes selected by spin, shape,

or concentration, galaxies selected by luminosity, colour or morphology, etc. The work

on the MS has shown how existing results can be improved when they are re-examined
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using a much larger halo population. Chen and McGaugh (2008) have shown the impor-

tance of careful object selection when comparing simulations to observations: low surface

brightness galaxies appear to have cored mass density profiles, but giant elliptical galaxies

suggest a cuspy profile. Simulations and models need to produce many objects, with a

range of properties, so that selecting subsets of galaxy–halo systems to match an observed

population will result in sufficient numbers of objects to make robust conclusions.

An increase in resolution (i.e. reduced softening lengths and particle masses, for

the Lagrangian simulations considered here) means being able to make more definitive

statements about the behaviour of the central regions of galaxy–halo systems. The results

presented here on the spin orientation profiles in particular would benefit from being able

to see down to the central galaxy, since that is where the galaxy–halo misalignment will

be most significant.

As an example, consider the study of the projected mass distribution of galaxy-aligned

haloes (section 3.3.5), intended to inform weak lensing studies that attempt to measure

the shape of the gravitational potential around galaxies. Increased resolution would allow

the shape of the projected halo mass distribution to be computed as a function of radius.

This could be used to characterise how the strength of any ellipticity signal varies with

distance from the central galaxy. With more objects, the distribution could be filtered by

galaxy type, and a set of selection criteria could be devised that maximises the chance of

detecting an ellipticity signal.



Appendix A
Examples of haloes

A.1 Effects of the group-finder algorithm on the Millen-

nium Simulation haloes

The following plots give examples of haloes from the catalogues derived from the Mil-

lennium Simulation in Chapter 2. They have been chosen as clear examples of various

(usually undesirable) groupfinder effects—they are not ‘typical’ haloes from their respec-

tive catalogues. We show them to give some visual intuition as to the problems that can

be encountered with different group-finding algorithms, as described in section 2.3.

The first three show FOF haloes with unusual properties in real and velocity space.

Figure A.1 shows a halo that is clearly made up of at least two objects joined via a tenuous

bridge. We show a more massive halo that nevertheless consists of many linked objects

in figure A.2. Figure A.3 shows a very distorted object located near a much larger halo.

The final two figures compare the results of the three different group-finding algo-

rithms used. Figures A.4 and A.5 compare haloes defined using the FOF, SO and TREE

algorithms. In both cases, projections of the selected FOF halo (and its neighbours) are

shown in the left-hand panels, and the corresponding SO/TREE halo and neighbours are

in the right-hand panels. The selected haloes (green) have, again, been chosen to provide

a striking illustration of the effects of different algorithms. The more ‘normal’ haloes in

the background (blue) are less strongly affected by the choice of groupfinder.
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Figure A.1: An example of a FOF halo made of two objects linked by

a tenuous bridge. The left-hand panels show projections of the halo

(overplotted in green) and its neighbours within 2h−1Mpc (blue) in real

space, in units of h−1Mpc. The black contours show projected particle

density, at 1, 10 and 100 particles per contouring bin. The potential-

minimum centre of the main halo is marked with a red star, and the

centre-of-mass is marked with a red cross. The right-hand panels show

the particles of the selected halo in velocity space, in km s−1. This

halo has a mass of Mh = 11 418mp ≈ 9.82 × 1012 h−1M¯, and a spin

parameter of λ = 1.5712. Its virial ratio, 2T
U + 1 = −4.23 means it is

excluded from the FOFclean catalogue.
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Figure A.2: As figure A.1, but showing an example of a larger multi-

object FOF halo. This halo has a mass of Mh = 38 741mp ≈ 3.33 ×
1013 h−1M¯, and a spin parameter of λ = 0.3295. Its virial ratio, 2T

U +

1 = −2.05 means it is excluded from the FOFclean catalogue.
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Figure A.3: As figure A.1, but showing an example of a small FOF halo

with a large neighbour. The selected halo has a mass of Mh = 1967mp ≈
1.69× 1012 h−1M¯, and a spin parameter of λ = 17.60. Its virial ratio,
2T
U + 1 = −53.8 means it is excluded from the FOFclean catalogue.
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Figure A.4: As figure A.1, but showing a comparison of a massive FOF

halo (left) and the corresponding SO halo (right), and their neighbours in

each catalogue within 4h−1Mpc. A random sample of 1/4 of the particles

are plotted; this does not effect the overall image of the halo. Projected

logarithmic density-contours are plotted in black, spaced every factor of
√

10 between 1 and 103.5 particles per contouring bin. The outermost

contour (the halo boundary) is reproduced on the opposite panel in red.

Note how the SO halo includes particles that were not part of the FOF

group, and are much less dense than the halo proper. The FOF halo

has mass Mh = 744 019mp ≈ 6.40× 1014 h−1M¯, spin λ = 0.05959, and

virial ratio 2T
U + 1 = −0.262; it is included in the FOFclean catalogue.

The SO halo has mass Mh = 610 023mp ≈ 5.25 × 1014 h−1M¯, spin

λ = 0.04539 and virial ratio 2T
U + 1 = −0.332, slightly less relaxed than

its FOF counterpart but still included in the SOclean catalogue.
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Figure A.5: As figure A.4, but comparing a massive FOF halo (left) and

the corresponding TREE haloes (right). Again, a random selection of

1/4 of the points are plotted, and the density contours are spaced every

factor of
√

10 up to 102.5 particles per contouring bin. Note how the FOF

halo is highly extended, with the subhalo housing the potential minimum

being linked to a large neighbouring halo. The TREE catalogue splits

these into two objects. The FOF halo has a mass of Mh = 126 033mp ≈
1.08 × 1014 h−1M¯, and a spin of λ = 0.1953. It has a virial ratio of
2T
U + 1 = −0.111, so it is included in the FOFclean catalogue (despite

its peculiar structure). The TREE halo has a much lower mass of Mh =

40 719mp ≈ 3.50× 1013 h−1M¯, and a spin of λ = 0.05711. It is slightly

less relaxed however, with a virial ratio of 2T
U +1 = −0.159; it is included

in the TREEclean catalogue.
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A.2 Haloes with and without baryons

Here we provide a visual representation of the relationships between halo, galaxy, mass

and angular momentum, for the four most massive haloes (G, A, B and C) selected in

Chapter 4 from the DMO and DMG simulations . Various properties of these galaxy–

halo systems are provided in table 4.1, and their density and circular velocity profiles

were shown in the top panels of figures 4.8 and 4.9.

Figure A.6 compares the mass distributions of the four haloes. The left panels show

the haloes as simulated with just dark matter. The middle column shows the dark matter

from the corresponding haloes simulated with baryons, and the right panels show the

mass distribution of the baryons (gas and star particles). The haloes are shown in the

‘natural’ x–y frame of the simulation, without any additional rotation.

Figures A.7 to A.10 each show one of the four halo-galaxy systems from the DMG

simulations in detail. The left panels show the distribution of the galactic star particles,

and the right panels show the dark matter halo (note that these are at different scales).

The objects in each figure have been rotated such that the galaxy is face-on, i.e. the x–axis

in the image corresponds to the major axis of the galaxy (as defined by its inertia tensor),

the image y–axis is the galaxy’s intermediate axis, and the galaxy’s minor axis is directed

out of the page. The upper panels show the mass distribution of the galaxy and halo.

The lower panels show the angular momentum distribution: each pixel is colour-coded

according to the z–component of the total specific angular momentum of the particles

projected in that pixel (jz). This means that, for example, a bright blue pixel has a

large positive jz, indicating anticlockwise rotation in the image plane. Red indicates a

negative jz (into the page), and therefore clockwise rotation. Disc galaxies rotating in

the image plane should therefore appear monochromatic. The fact that galaxy “C” is

slightly bimodal in image colour implies a misalignment between its mass and angular

momentum distributions. This is not too surprising however, since it is the least ‘discy’

of the four objects (see table 4.1).
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Figure A.6: Comparison of the four large haloes from the DMO and

DMG simulations described in table 4.1. Each row is a different halo (G,

A, B and C from top to bottom). The left column shows the halo from

the DMO simulation. The middle column is the dark matter component

of the corresponding DMG halo, and the right column shows its total

baryonic component (gas and stars). The colours give the projected mass

density in each pixel. Rings are drawn at Rvir and the galaxy radius.

The extremes of the colourbar are upper and lower limits respectively,

for the sake of contrast. Each halo is shown in the simulation x–y frame,

without rotation, but centred on the halo centre.
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Figure A.7: Mass and angular momentum distributions for halo “G”

and its central galaxy. Top: Mass density of (left) stellar component of

the galaxy, and (right) the dark matter component of halo (see text).

Bottom: specific angular momentum per pixel for (left) the stellar com-

ponent of the galaxy, and (right) the dark matter component of the halo.

In all four panels, the galaxy–halo system is rotated such that the x and

y axes correspond to the galaxy’s major and intermediate axis directions

respectively.
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Figure A.8: Mass and angular momentum distributions for halo “A”

and its central galaxy. Layout and colour schemes are the same as for

figure A.7.
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Figure A.9: Mass and angular momentum distributions for halo “B”

and its central galaxy. Layout and colour schemes are the same as for

figure A.7.
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Figure A.10: Mass and angular momentum distributions for halo “C”

and its central galaxy. Layout and colour schemes are the same as for

figure A.7.



Appendix B
Orientation resolution

tests

In sections 3.2.5 and 3.3.5 we considered the orientations of halo (or galaxy) angular

momentum vectors. These are formed from a vector sum of the contributions from the

objects’ constituent particles. The vector sum means that the contribution from many

particles can be much smaller than that of a single particle. If the summed vector’s

magnitude is particularly small, then the individual particles’ vectors must have been

largely in opposite directions, and have mostly cancelled out. In that case, the inclusion

of a very few particles with parallel vectors, or even a single particle, can completely

dominate the result. Clearly, any property that is dominated by the effects of discreteness

in such a way is not reliable. To ensure our results are robust, we have performed extensive

Monte Carlo tests using the halo catalogues from the HR1, DMO and DMG simulations.

(This problem has been tackled in the past by Bullock et al. (2001a), Bailin and Steinmetz

(2004), and Avila-Reese et al. (2005). We re-visit it here to ensure that we can retain

as many haloes as possible for our simulations, while rejecting those that are clearly

unreliable.)

For each halo, we perform 5000 bootstrap samples (e.g. Heyl et al., 1994) from both

the particles from the halo in total, and from just the halo inner region, independently.

The cosine of the angle between the original jtot (or jinner) and the bootstrap-sampled jtot

(or jinner) is computed. We take the median of the 5000 samples for each halo and plot

it against the magnitude of the original vector, rescaled in such a manner that any halo-

to-halo trends are removed: we use the dimensionless quantity ̃(≤ r) ≡ j(≤ r)/j0(≤ r),

where j0(≤ r) is the specific angular momentum of a (hypothetical) test-particle in a

circular orbit at radius r, j0 = vcr. Since the circular velocity vc(r) =
√

GM(≤ r)r−1,

we have:

̃(≤ r) =
j(≤ r)√

GM(≤ r)r
(B.1)

We have confirmed that this quantity does not vary systematically with either mass or

radius.
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We wish to find a limiting value of ̃ = ̃lim such that some given percentage of haloes

with ̃ ≥ ̃lim have their median bootstrapped vectors aligned to within a given angle. In

particular, we require that 99.5 percent of the selected haloes have θmed ≤ 15◦, where θ

is the angle between the actual halo j and the bootstrap-sampled vector.

In practice, the limits one gets from this process, and the severity of the cut on the

resulting halo population depend strongly on the other selection criteria used. We always

restrict ourselves to ‘virialised’ haloes (Qlim = 0.5), but the minimum number of particles

in the given region (total or inner halo) has a strong impact. To balance the competing

restrictions of having a well-resolved inner region, and spin orientations robust against

discreteness effects, we decided to move the ‘inner’ radius outwards: the spin-magnitude

results use rinner = 0.1Rvir, but we chose to move to two bins further out for the orientation

profiles, to rinner = 10−0.6Rvir ≈ 0.25Rvir. We also use 1000 as the minimum number of

particles in the given region (total or inner), rather than the 300 we use for the analysis

of the angular momentum magnitudes. Doing this meant that we were left with a large

enough sample of haloes to be statistically viable, once the cuts in Np and ̃ had been

applied.

Figure B.1 shows the bootstrap results for the angular momentum of dark matter

within Rvir. The median of the bootstrapped angles from each halo are plotted, with a

clear increase in scatter visible for haloes with low ̃ (that is, low j compared to that of

a typical particle). The same trend applies to haloes from the HR1, DMO and DMG

simulations. Our requirement that most haloes should have a median bootstrap angle

within 15◦ produces a selection criterion of approximately log10 ̃ ≥ −1.5. Figure B.2

shows the results of applying this method to the inner regions of the haloes only. Although

the scatter behaves slightly differently, the value of ̃lim is very similar. It is worth noting

that, as long as they are produced with the same selection criteria, the presence of the

DMO and DMG haloes does not affect the value of ̃lim significantly. Including the

galaxies (in terms of their stellar components) also does not affect the results greatly, as

the galaxies generally have higher angular momentum anyway.

Thus, the halo selection criteria we use for our work on angular momentum orientation
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Figure B.1: Bootstrap resampling results for the angular momenta of the

dark matter within Rvir. Each point is the median of the 5000 angles

between the jtot of a halo and that of the bootstrap-resamplings of that

halo. This angle is plotted against the halo’s scaled angular momentum

̃, so that the different simulations can be compared together. The heavy

magenta contour joins the series of lower limits on ̃ such that 99.5

percent of the haloes with ̃ ≥ ̃lim are better aligned in the median than

that angle. The haloes have been selected to be ‘virialised’ (Q ≤ 0.5)

and well-resolved (at least 1000 dark matter particles), and have been

taken from the HR1 (black dots), DMO (cyan squares) and DMG (red

rings) simulations.

are:

Q ≤ 0.5

Np ≥ 1000 (inner or total)

log10 ̃ ≥



−1.44 (total)

−1.51 (inner)

We do not select according to the ̃ of the galaxies.
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Figure B.2: As for figure B.1, but for the angular momentum of the dark

matter within ≈ 0.25Rvir; the Np selection criteria therefore applies to

this inner region. HR1 haloes are marked as black dots, DMO haloes

as blue crosses, and DMG haloes as red asterisks. Also included are the

angular momenta of the stellar components of the central galaxies from

the DMG haloes (green rings). To be included, the DMG haloes/galaxies

also need to satisfy Np ≥ 1000 on the star particles. Inclusion of the

galaxies does not affect the resulting limit on ̃.
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Spergel, D. N., Bean, R., Doré, O., Nolta, M. R., Bennett, C. L., Dunkley, J., Hinshaw,

G., Jarosik, N., Komatsu, E., Page, L., Peiris, H. V., Verde, L., Halpern, M., Hill,

R. S., Kogut, A., Limon, M., Meyer, S. S., Odegard, N., Tucker, G. S., Weiland, J. L.,

Wollack, E., and Wright, E. L.: 2007, ApJS 170, 377



BIBLIOGRAPHY 180

Spergel, D. N., Verde, L., Peiris, H. V., Komatsu, E., Nolta, M. R., Bennett, C. L.,

Halpern, M., Hinshaw, G., Jarosik, N., Kogut, A., Limon, M., Meyer, S. S., Page, L.,

Tucker, G. S., Weiland, J. L., Wollack, E., and Wright, E. L.: 2003, ApJS 148, 175

Springel, V.: 2005, MNRAS 364, 1105

Springel, V., Di Matteo, T., and Hernquist, L.: 2005a, MNRAS 361, 776

Springel, V., Frenk, C. S., and White, S. D. M.: 2006, Nature 440, 1137

Springel, V. and Hernquist, L.: 2002, MNRAS 333, 649

Springel, V. and Hernquist, L.: 2003, MNRAS 339, 289

Springel, V., White, S. D. M., Jenkins, A., Frenk, C. S., Yoshida, N., Gao, L., Navarro,

J., Thacker, R., Croton, D., Helly, J., Peacock, J. A., Cole, S., Thomas, P., Couchman,

H., Evrard, A., Colberg, J., and Pearce, F.: 2005b, Nature 435, 629

Springel, V., White, S. D. M., Tormen, G., and Kauffmann, G.: 2001a, MNRAS 328,

726

Springel, V., Yoshida, N., and White, S. D. M.: 2001b, New Astronomy 6, 79

Steinmetz, M.: 1996, MNRAS 278, 1005

Sutherland, R. S. and Dopita, M. A.: 1993, ApJS 88, 253

Tegmark, M. et al.: 2004, Phys. Rev. D 69(10), 103501

Thomas, P. A., Muanwong, O., Pearce, F. R., Couchman, H. M. P., Edge, A. C., Jenkins,

A., and Onuora, L.: 2001, MNRAS 324, 450

Tinker, J. L., Kravtsov, A. V., Klypin, A., Abazajian, K., Warren, M. S., Yepes, G.,

Gottlober, S., and Holz, D. E.: 2008, ArXiv e-prints 0803.2706

Tonini, C., Lapi, A., Shankar, F., and Salucci, P.: 2006, ApJ 638, L13

van den Bosch, F. C.: 1998, ApJ 507, 601

van den Bosch, F. C., Abel, T., Croft, R. A. C., Hernquist, L., and White, S. D. M.:

2002, ApJ 576, 21

Vitvitska, M., Klypin, A. A., Kravtsov, A. V., Wechsler, R. H., Primack, J. R., and

Bullock, J. S.: 2002, ApJ 581, 799



BIBLIOGRAPHY 181

Wadsley, J. W., Stadel, J., and Quinn, T.: 2004, New Astronomy 9, 137

Warren, M. S., Quinn, P. J., Salmon, J. K., and Zurek, W. H.: 1992, ApJ 399, 405

Wechsler, R. H., Bullock, J. S., Primack, J. R., Kravtsov, A. V., and Dekel, A.: 2002,

ApJ 568, 52

Wechsler, R. H., Zentner, A. R., Bullock, J. S., Kravtsov, A. V., and Allgood, B.: 2006,

ApJ 652, 71

Weinberg, D.: 1997, in M. Persic and P. Salucci (eds.), “Dark and Visible Matter in

Galaxies and Cosmological Implications”, Sesto Pusteria, BZ, Italy, 2-5 July 1996,

Vol. 117 of Astronomical Society of the Pacific Conference Series, pp 578–597, See

appendix A. Further details available from http://www.astronomy.ohio-state.edu/

∼dhw/Silliness/silliness.html

Weinberg, D. H., Hernquist, L., and Katz, N.: 1997, ApJ 477, 8

Wetzel, A. R., Cohn, J. D., White, M., Holz, D. E., and Warren, M. S.: 2007, ApJ 656,

139

White, S. D. M.: 1984, ApJ 286, 38

White, S. D. M., Davis, M., and Frenk, C. S.: 1984, MNRAS 209, 27P

White, S. D. M. and Frenk, C. S.: 1991, ApJ 379, 52

White, S. D. M., Frenk, C. S., and Davis, M.: 1983, ApJ 274, L1

White, S. D. M. and Rees, M. J.: 1978, MNRAS 183, 341

Williams, K. E.: 2007, “A Relaxed Halo”, sketch, pencil on paper

Yadav, J., Bharadwaj, S., Pandey, B., and Seshadri, T. R.: 2005, MNRAS 364, 601

Yepes, G., Kates, R., Khokhlov, A., and Klypin, A.: 1997, MNRAS 284, 235

Zavala, J., Okamoto, T., and Frenk, C. S.: 2008, MNRAS 387, 364

Zentner, A. R.: 2007, IJMPD 16, 763

Zhao, D. H., Jing, Y. P., Mo, H. J., and Börner, G.: 2003a, ApJ 597, L9

Zhao, D. H., Mo, H. J., Jing, Y. P., and Börner, G.: 2003b, MNRAS 339, 12

http://www.astronomy.ohio-state.edu/~dhw/Silliness/silliness.html
http://www.astronomy.ohio-state.edu/~dhw/Silliness/silliness.html


It’s over – FINISHED!

Furman (1991), etc.


	Introduction
	The expanding universe
	The LCDM model and the content of the Universe
	The growth of cosmic structures
	The origin of angular momentum
	Simulations of cosmic structures
	Collisionless matter
	Gas dynamics
	Adaptive grid methods
	Additional physics for galaxy formation
	Simulations used in this thesis

	Structure of this thesis

	The spin and shape of dark matter haloes
	Introduction
	Dark matter halo properties
	The halo catalogues
	Groupfinder algorithms
	Better halo catalogues

	Results
	The form of the spin distribution
	Correlation of spin and halo mass
	The halo shape distribution
	Spin and shape parameters
	Spin-shape alignment
	Spin, shape and halo clustering

	Conclusions

	Angular momentum profiles of dark matter haloes
	Introduction
	Dark matter haloes
	The simulations
	Halo definition
	Analysis of physical properties
	Halo selection
	Results

	The effect of baryons
	The simulations
	Galaxy identification
	Physical properties
	Halo and galaxy selection and comparison
	Results

	Conclusions

	Density profiles of dark matter haloes
	Introduction
	Dark matter concentrations: haloes in the simulations
	Halo identification
	Halo selection
	Density profiles and NFW fits

	Dark matter concentrations: results and discussion
	Concentration and halo mass
	Concentration versus spin
	Concentration versus formation time
	Predictions of the concentration

	Haloes with baryons
	The simulations
	Computing the density profiles
	Results: density profiles with baryons
	Realism of galactic systems: circular velocity profiles

	Conclusions

	Conclusions
	Haloes in dark matter-only simulations
	Haloes simulated with baryonic physics
	Future prospects

	Examples of haloes
	Effects of the group-finder algorithm on the Millennium Simulation haloes
	Haloes with and without baryons

	Orientation resolution tests

