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Absilract 

The plasma membrane, which separates intracellular contents from extra

cellular milieu, consists of a lipid bilayer comprising mainly phospholipids and 

cholesterol together with various functional proteins, which control the interac

tion of the cell with its environment. Cells are killed at elevated temperatures 

and previous work suggests that the plasma membrane may be a primary target 

in this hyperthermic cell death. The present study set out to test this hypoth

esis using a rat liver tumour cell line (Hepatoma Tissue Culture cells). Several 

different experimental approaches were adopted. 

Supplementation of these cells with linoleic acid (18 : 2) for a 36 hour period 

increased the thermal sensitivity of cells at 43°C, though increased sensitivity 

was not evident at other times. Plasma membrane-enriched fractions were ob

tained from control cells and from cells supplemented with linoleic acid for a 36 

hour period, then lipids were extracted and characterised. Whilst there was little 

difference in the cholesterol:phospholipid ratio, the phospholipid fatty acid com

position of membranes from supplemented cells showed elevated levels of 18 : 2 

and decreased levels of oleic acid (18 : 1) relative to control cell membranes. DPH 

fluorescence polarisation studies indicated that plasma membranes from supple

mented cells were less 'ordered' than control membranes. Alkaline phosphodi

esterase I, a plasma membrane-bound enzyme, appeared to be more thermolabile 

in supplemented cells suggesting that plasma membrane 'fluidity' may be an im

portant factor in determining the thermal sensitivity of this membrane-bound 

enzyme. 

Hyperthermic cell death was potentiated by the presence of local anaesthet

ics, two of which, dibucaine and tetracaine, also produced less 'ordered' mem

branes. Morphological studies conducted on cells in the presence and absence of 
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local anaesthetic at elevated temperatures indicated changes in cellular surface 

morphology on heating which were accelerated in the presence of the anaesthetic. 

The intermediate filament network of these cells did not appear to be a 

primary target of hyperthermic treatment. 

These studies suggest that the lipid composition and physical state of the 

plasma membrane are critical features involved in the expression of cell death, 

possibly through a modulation of membrane protein thermal sensitivity. 

4 



A..a:knowledgements 

I would like to express my thanks to the North of England Cancer Research 

Campaign for providing financial support for the work undertaken in this thesis 

and to Professor K. Bowler for providing research facilities in the Department of 

Zoology. 

I am very grateful to Professor K. Bowler and Dr. R. Manning for their help 

and advice during the course of the study and for their critical reading of the 

manuscript. 

I am indebted to the following people for their technical support: Miss J. 

Chambers for her expert and invaluable assistance particularly in cell culture 

work; Mr T. Gibbons for general technical assistance; Mrs C. Richardson for 

Electron Microscopy work and Mr D. Hutchinson for photography. 

I would also like to thank Dr. A. R. Cossins of Liverpool University for the 

use of Fluorescence Polarisation equipment and Dr. A. H. Seheult of Durham 

University for guidance in the statistical treatment of some of the data presented 

in this thesis. 

Special thanks go to Shah Ladha and Kay Fogg for their moral support and 

friendship during our time together in the 'huts'. 

I would like to thank my family and K.T. for their love and encouragement. 

Finally my love and greatest thanks go to Simon for the countless hours he has 

spent in the preparation of this thesis. 

5 



Absbad ...... . 

Acknowledgements 

Glossrury 

Matell'ials 

3 

5 

9 

11 

1 General! JrJrn.troduction 14 

2 Clh.aracterisation of the CuRtu:re System for HTC Cells . 31 

2.1 Introduction . . . . . . . . . . . . . . 31 

2.2 Materials and Methods 38 

2.2.1 Cell Type . . . . . . . . 38 

2.2.2 Culture Techniques . . 39 

2.2.3 Determination of Cell Number and Cell Size 44 

2.2.4 Experimental Systems 47 

2.3 Results . . . . . . . . . . . . 48 

2.3.1 Determination of Cell Size 48 

2.3.2 Culture Techniques . . . . 49 

2.4 Discussion . . . . . . . . . . 56 
3 Thermal Sensitivity of HTC cells and the Effects of Fatty Acid 

Supplementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 

3.1 Introduction . . . . . . 60 

3.2 Materials and Methods . . . . . . . . . . . . . . 66 

3.2.1 Hyperthermic Studies .............. . 

3.2.2 Surface Morphology Studies of Heated Cells 

3.2.3 Fatty Acid Supplements ... 

3.2.4 Free Fatty Acid Assay 

3.2.5 Fatty Acid Toxicity Studies . 

3.2.6 Cytoplasmic Lipid Droplet Studies . 

3.3 Results . . . . . . . . . . . . . . . . . . 

3.4 Discussion ............... . 

66 

67 

68 

68 

69 

70 
71 

80 

4 Purification and Characterisation of HTC Plasma Membranes 

6 



4.1 

4.2 

Introduction 

Materials and Methods 

89 

106 

4.2.1 Preparation of Purified Plasma Membranes 106 

4.2.2 Lipid Compositional Studies . . . . . . . . . 115 

4.2.3 DPH Steady State Fluorescence Polarisation Studies 120 

4.2.4 Thermal Inactivation of Plasma Membrane Enzymes 121 

4.3 Results ................... . 

4.3.1 Plasma Membrane Isolation Procedures 

4.3.2 Lipid Compositional Studies ..... . 

122 

122 

126 

4.4 Discussion . . . . . . . . . . . . . . . . . 129 

5 Effect of Local Anaesthetics on the Thermal Sensitivity, Surface 

Mo1rphology and InteJrnal Cytoskeleton of HTC Cells . . . . 151 

5.1 Introduction . . . . . . 151 

5.2 Materials and Methods 

5.2.1 Toxicity Studies 

5.2.2 Hyperthermic Studies 

5.2.3 pH Determinations . 

5.2.4 D.P.H. Steady State Fluorescence Polarisation 

5.2.5 Surface Morphology Studies ........... . 

5.2.6 Nuclear Matrix- Intermediate Filament (NM-IF) Studies 

5.3 Results .. 

5.4 Discussion 

GeneJral Discussion 

RefeJrences 

7 

155 

155 

156 

157 

157 

158 

159 

160 

165 

176 

192 



Dedaration 

JI dledBLll'e ihai il'nis d:n.e§is ]§ origiimcn.ll. No JPBLK'i oii it Jrn.as been §1!lbmitted 

pll."eviouslly foR" a dlegJree at al!lly oiher umiive:rsii.iy. AH work shown is my 

own except ft'oJr tl'ne ft11.lloJrescel!llce pollarisatiion measmremeuts which weJre 

made by Professoli' K. JBowlleli' at lLiiveli'pool Univeli'sity. The plasma memQ 

bll."ane st11.llCiy was cauiedl out jointly with Dr. R. Manning and §. lLadha. 

Copyright @1989 by Catharine A. Kingston 

The copyright of this thesis rests with the author. No quotation 

from it should be published without hell" pll"ior written consent and il!ll

formation from it should be acknowledged. 

8 



BHT 

BSA 

Ca2+-, Mg2+-free PBS 

CHO 

DPH 

EDTA 

FFA 

He pes 

HTC 

Mg2+ATPase 

MTT 

Na+ jK+ ATPase 

NBS 

Tav 

Glossary 

Butylated hydroxytoluene 

Bovine serum albumin 

Calcium and magnesium free 

phosphate buffered saline 

Chinese hamster ovary 

1,6-Diphenyl-1,3,5-hexatriene 

Ethylenediamine tetra-acetic acid 

Free fatty acid 

N-2-Hydroxyethylpiperazine

N'-2-ethanesulphonic acid 

Hepatoma tissue culture 

Magnesium-dependent, adenosine 

51 -triphosphate 

3-( 4,5-dimethylthiazol-2-yl)-2, 

5-diphenyl tetrazoliumbromide 

Sodium and potassium stimulated magnesium

dependent adenosine 51-triphosphate 

Newborn bovine serum 

Average radius of rotation 
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Other abbreviations used are in accordance with the Biochemical Journal 

(Policy of the Journal and Instructions to Authors: (1989) Biochem. J. 257 

1-21). 

The notation used in the thesis to describe individual fatty acids refers to 

the carbon chain length and the number of unsaturated bonds. e.g. 18 : 2 refers 

to a fatty acid with a carbon chain length of 18 having two unsaturated bonds. 
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Chapter JI 

Temperature has a profound influence on living organisms and their metab

olic processes (Schmidt Nielson, 1982). Whilst it is a general and universal 

feature that animals are able to make adaptive responses to changes iil environ

mental temperature (Cossins and Bowler, 1987), it is also true that damage and 

cell death occur, especially in mammalian cells, following exposure of cells to 

temperatures only a few degrees above the normal range (Burger and Fuhrman, 

1964). For humans this normal range varies from 35.1° to 37.7°0, whilst the 

normal range for all other mammals lies between 34°C and 40°C. 

Cancer cells are also sensitive to elevated temperatures (Levine and Robins, 

1970; Giovanella et al., 1976). Cancer is a term that describes a situation in 

which one cell, any cell, acquires the properties of unrestrained proliferation and 

invasiveness and is able to bequeath these properties to its descendants through 

countless generations (Cameron and Pauling, 1979). Clinical hyperthermia, as 

a treatment for cancer relates to the artificial elevation of the temperature of 

the tissue above normal body temperature. For therapeutic purposes, treatment 

levels are generally in the range 42°C-45°C corresponding-to elevations ranging 

between 5°C and 8°C. The objective of this temperature rise is the treatment of 

tumours either directly, by inducing irreversible biological damage by exploiting 

any differential thermal sensitivity of tumour cells that may exist, or indirectly 

by potentiating the effect of other well established treatment regimes such as 

surgery, radiotherapy or chemotherapy. 

Using elevated temperatures to treat cancer is by no means a modern con

cept. A 'fire drill' used to burn away tumours in the breast is mentioned in the 

Egyptian papyrus discovered by Edwin Smith thought to date from 3000 BC 

(Breasted, 1930). Over the last 100 years or so apparently spontaneous remis

sions of cancer were noted following prolonged intense fevers due to a variety of 
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infections. For example, Busch (1866) noted that a facial sarcoma showed com

plete regression after two attacks of erysipelas associated with high fever. This 

led Coley (1893) to devise a hyperthermic treatment by deliberate production of 

fever by administering a preparation containing bacterial pyrogenic toxins. The 

toxin injection produced a pyrexia of 40°0 for 4-6 hours and resulted in anum

ber of dramatic responses in patients with inoperable and advanced malignant 

disease. 

The use of heat as a treatment for cancer raises the question: are tumour 

cells more thermally resistant than normal cells? In several studies (Westermark, 

1927; Jares and Warren, 1939; Allison and Paton, 1965; Auersperg, 1966; Levine 

and Robins, 1970; Muckle and Dickson, 1971; Giovanella et al., 1976) some 

of which were performed more than 50 years ago, it has been suggested that 

neoplastic cells are in vitro as well as in vivo more easily damaged by elevated 

temperatures than are normal cells. However, many studies of the in vitro heat 

sensitivity of tumour cells (Jares and Warren, 1959; Muckle and Dickson, 1971) 

have not correlated their observations on tumour cells with similar effects on 

normal cells, being more interested in the description of the phenomena or in the 

mechanism underlying them (Allison and Paton, 1965). In those studies in which 

a comparison between normal and tumour cells has been performed, the choice 

of material selected for the purpose, is sometimes open to criticism. Bhuyan 

(1979) has argued that the value of studies conducted by Auersperg (1966) and 

Levine and Robins (1970) was limited since Auersperg (1966) compared non

growing fibroblasts with dividing epithelial carcinoma cells whilst Levine and 

Robins (1970) compared spleen cells with Ehrlich ascites cells. Similarly, studies 

by Harisiadas et al. (1975) compared survival of 'normal' liver cells with those 

obtained from a closely associated hepatoma and reported that hepatoma cells 

were slightly more resistant to heat than normal cells. Likewise, solid tumour 

physiology is now thought to be a major factor resulting in the apparent heat 

sensitivity of some tumour cells or subpopulations within a tumour. For example, 

most normal tissues when faced with a heat challenge react by increasing blood 

flow which serves to dissipate the heat. However, these normal physiological 

responses are often different or totally lacking in the neovasculature of tumours 

which permits the differential heating of normal tissues and tumours growing 

within normal tissue (Stewart, 1988). In addition, the extracellular milieu in 
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parts of most solid tumours has been shown to be characterised by nutrient 

depletion (Thomlinson and Gray, 1955), low pH (Wike-Hooley et al., 1984) and 

chronic hypoxia (Vaupel, 1979) largely as a result of an inadequate vascular 

supply (Otte, 1988). These conditions have been shown to markedly influence 

the thermosensitivity of mammalian cells in culture. Cell culture techniques are 

frequently used in biological studies since the physiological and physiochemical 

conditions can be regulated very easily. The use of cell culture techniques in the 

study of tumour cells is widespread since work suggests that tumour cells die in 

a similar manner both in vivo and in vitro with the major differences following 

hyperthermic treatment relating to events occurring after the cessation of the 

hyperthermic treatment such as in vivo immune responses and regional blood 

flow responses (Hahn, 1982). 

The effect of pH on cellular thermal sensitivity has now been studied in at 

least ten different cell lines in culture (see Gerweck, 1988) and with the excep

tion of an SDB rat mammary carcinoma cell line (Dickson and Oswald, 1976) 

thermal sensitivity has been found to be increased when the pH of the culture 

medium was reduced. The fact that pH sensitivity in vitro is manifest over a pH 

range which is observed in tumour tissue, i.e. pH 6.6 to pH 7.0 (Gerweck, 1977), 

attests to its likely significance in vivo. Similarly, several studies have compared 

the response of cultured cells to hyperthermia unde~fic' and hypoxic conditions 

(Kim et al., 1975; Bass et al., 1978; Gerweck, 1979). Although varying results 

have been: obtained, in general it appears that ce~ls are equally or more sensitive · 

to hyperthermia under hypoxic compared to...(o~ conditions. Likewise in vitro 

studies by a number of workers (Kim et al., 1980; Gerweck et al., 1984) have 

shown that when cultured cells are exposed to reduced levels of both glucose and 

oxygen, thermal sensitivity is markedly increased. Taken together such results 

strongly suggest that variations in normal and tumour tissue cellular microenvi

ronments could well play an important role in the differential heat sensitivity of 

many solid tumours that has been observed. 

On the other hand, a number of rigorous and quantitative studies have 

suggested that some tumour cells are indeed more thermosensitive than their 

normal cell counterparts. For example, studies by Chen and Heidelberger (1969) 
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in which they compared mouse prostate cells 'transformed' in vitro by a carcino

genic hydrocarbon with normal prostate cells, and by Giovanella et al. (1976) in 

which they compared human colon carcinoma cells with interstitial epithelial cells 

and melanoma cells with melanocytes have suggested that tumour cells are more 

thermosensitive than normal cells based on their decreased cloning efficiency in 

culture and their decreased ability to produce tumours upon inoculation into an 

appropriate recipient. 

Thus it would seem that although some tumour cells are more thermally 

resistant than normal cells this sensitivity is not a general characteristic of all 

. IQ.alignant cells/It seems likely that all cells die by a similar mechanism but that 

some tumour cells may possess certain characteristics or exist in a particular 

microenvironment which renders them more sensitive to heat than their normal 

counterparts. 

This leads on to the question of how and why do cells die when exposed to 

elevated temperatures? Exposure of mammalian cells to hyperthermic temper

atures in the range 43-46°C has been found to cause a wide range of effects. 

For example, hyperthermia inhibits protein synthesis (Henle and Leeper, 1979), 

induces heat shock proteins (Killey and Schlesinger, 1978), alters membrane flu

idity (Li and Hahn, 1980) and produces chromosomal aberrations (Dewey et al., 

1971) which suggests that heat induced injury and death is probably the end 

result of interference with a variety of different intracellular sites and functions. 

The vast majority of studies of in vitro responses to hyperthermia use the 

ability of cells to form colonies as the assay for injury since this provides an 

unambiguous definition of survival. Analysis of survival curves, produced by 

plotting the logarithm of the surviving fraction against time of heat treatment, 

following exposure of cells to elevated temperatures for various lengths of time 

has revealed that survival curves can be grouped into three classes according to 

the shape of the survival pattern. One class is exemplified by curves generated 

from HeLa cells heated at temperatures between 41 °C and 45°C for periods of up 

to 5 hours (Gerner et al., 1975) where survival is exponential over the entire time 

range suggesting a direct correlation between cell death and time at hyperthermic 

temperature. The second and most usual type of survival curves are typified by 
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Chinese hamster ovary (CHO) cells heated at temperatures ranging from 43.5°C 

to 46.5°C (Westra and Dewey, 1971). These curves are characterised by an 

initial shoulder with the shape becoming log-linear after longer exposure times. 

Several workers have suggested that the shoulder on heat survival curves implies 

an ability of the cells to sustain sublethal damage (Hahn, 1982) though it has 

not, as yet, been possible to show experimentally whether or not recovery from 

sublethal damage or repair of sublethal lesions does occur in heated cells. A third 

type of survival curve is seen in Chinese hamster cells heated at temperatures 

below 43°C (Sapareto et al., 1978). Whilst the initial portion of the survival curve 

is characterised by a shoulder region followed by a log-linear region, at longer 

exposures (typically 3-4 hours) the curve flattens out ending in a 'resistant' tail. 

Several workers have shown that this 'resistant' tail or plateau indicates the 

development of thermal tolerance which occurs in some, but not all, cell lines 

(Henle and Roti Roti, 1988). Two types of thermotolerance have been described. 

The first, as suggested above, is induced by prolonged heating at temperatures 

below 43°C where the cells become more resistant to heat after 3 to 4 hours of 

hyperthermia whilst the second develops as a consequence of a short exposure 

to hyperthermic temperatures ( 41 °C to 46°C) during subsequent recovery of the 

cells at physiological temperatures (37°C). Thermotolerance is expressed as an 

increase in cellular resistance to further heat treatment (Nielsen and Overgaard, 

1979). This thermotolerance effect is short lasting and is lost after a few hours 

at 37°C. Whilst the molecular basis for this thermotolerance is not understood 

there are numerous reports that hyperthermia results in the synthesis of a specific 

set of proteins (heat stress -or heat shock proteins) and there is some evidence 

that thermotolerance is related to such protein synthesis (e.g. Burdon, 1985). 

Other in vitro studies of hyperthermia have revealed that cellular heat sen

sitivity can vary enormously between specific mammalian cell lines even though 

cells are grown and heated under the same culture conditions. Raaphorst et al. 

{1979) have shown that cell survival of mouse LP59 cells after 5 hours at 42.5°C 

was 104 times lower than the survival of pig kidney CCL33 cells. These results 

suggest that some cells must possess certain characteristics which make them 

more vulnerable to the effect of heat than other cells. Also, the fact that cell 

lines derived from the same tissue, e.g. human melanoma xenografts in different 

individuals, can span a range of heat sensitivities (Rofstad and Brustad, 1984) 
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indicates that it is not possible to predict the heat sensitivity of specific cell lines 

based on their tissue of origin. Another interesting finding is that the differential 

heat sensitivity of two cell lines at one specific temperature may not be applicable 

for predicting their relative heat sensitivity to other temperatures. Raaphorst 

et al. (1979) showed that whilst Muntjac (Indian deer) CCL157 cells and pig 

kidney CCL33 cells showed similar heat sensitivities at 42.5°0, after 80 minutes 

at 45.5°0 cell survival of the Muntjac cells was more than 103 times lower than 

the survival of the pig kidney cells suggesting the complex nature of the response 

of cells to hyperthermia. 

Because of the complex nature of the hyperthermic response of cells, quan

titation of 'thermal dose' in a biologically meaningful way so that hyperthermal 

treatments can be compared is extremely difficult. Whilst radiation workers use 

the energy deposited to describe the dose of radiation since this relates directly 

to the resulting effect, the situation with hyperthermia is rather different since 

the biological response is primarily dependent on the time at an elevated temper

ature and not on the deposition of energy (Hahn, 1982). If the temperature was 

fixed and constant, time at the raised temperature would be a perfectly reason

able method of defining a thermal dose. However, the temperature is not fixed 

and in clinical practice is certainly far from constant. Variations in temperature 

and time, as already mentioned, can have a marked effect in determining the 

overall biological response leading to phenomena such as thermotolerance. Con

sequently, there is ·a.s· yet no fully satisfactory method of defining thermal dose. 

This problem has been examined recently by Field (1987 a,b). 

Jung (1986) has proposed an interesting mathematical model for cell killing 

based on the analysis of many survival curves obtained after hyperthermic treat

ments of Chinese hamster ovary (CHO) cells at various temperatures or after 

consecutive exposure to two different temperatures. He has suggested that cel

lular inactivation by heat is a two step process in which heat serves to cause 

nonlethal lesions which are then converted into lethal lesions upon further heat

ing. It is assumed that both the production and conversion of nonlethal lesions 

occur at random and it is suggested that cell death results from the conversion 

of one of the nonlethal lesions. 
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Bowler (1987) has proposed an interesting descriptive model for cell killing in 

which he suggests that heating perturbates function at a primary site(s) leading 

to an impairment of function at that site which in turn affects the functioning 

at secondary sites causing their malfunction. This 'knock-on' effect of damage 

at one site causing malfunction at other sites is envisaged to lead to a cascade 

and accumulation of damage which at some point causes an irreversible loss in 

function at some site(s) resulting in cell death. The major differences between the 

model of Jung (1986) and that of Bowler (1987) is that whilst Jung (1986) believes 

that heat produces nonlethal lesions which are converted into lethal lesions, with 

time, to bring about cell death, Bowler (1987) believes heat produces primary 

lesions which may or may not be, or become, irreversible that cause a wide range 

of secondary knock-on effects which become irreversible with time leading to cell 

death. 

To examine the feasibility of such models for cell killing has required the 

development of techniques such as cinematography, dye exclusion and monolayer 

detachment for use in post heating studies. Whilst clonogenic assays of the type 

developed by Puck and Marcus (1956) indicate that hyperthermia causes a dose 

dependent fraction of cells to be killed, such assays give no information regarding 

the events which accompany cell death and lysis. Zielke-Temme and Hopwood 

(1982) and Coss and Dewey (1988) have used time lapse cinematography to 

observe the time course of cell death in CHO cells heated in the G1 phase of the 

cell cycle. These studies have led these workers to the conclusion that heat can 

kill by more-than one~ mechanism; since cells either died prior to division or after 

having divided irregularly. Zielke-Temme and Hopwood (1982) suggested that 

less severe heat induced a mitotic-linked death whilst more severe heat induced 

an interphase death. Vidair and Dewey (1988) who followed CHO cells heated in 

plateau phase for up to 6 days post heating have suggested that heat-sterilised 

cells die by one of two modes of death which are distinguished by both the timing 

and type of the expressed damage. A rapid mode of death occurs during the first 

few days post heating and is characterised by cell detachment and inhibited 

rates of protein, RNA and DNA synthesis, whilst a slow mode of death becomes 

evident after cell detachment has ceased and after the cells have fully recovered 

from the heat induced inhibition of macromolecular synthesis. Cells exhibiting 

the slow mode of death were found to have reduced plating efficiencies relative 
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to non-heated populations and contained a large fraction of cells with multiple 

nuclei (Vidair and Dewey, 1988). 

However, despite a wealth of observations and data on the effects of hyper

thermia and models such as those of Jung (1986) and Bowler (1987) that have 

been proposed to account for cellular heat injury and death, the mechanism of 

cell death at elevated temperatures is still unknown. For example, the studies of 

Vidair and Dewey (1988) have certainly suggested that the slow mode of death 

is unlikely to be due to an irreversible inhibition of protein, RNA or DNA syn

thesis since all these processes recover in cells. However, the results are unable 

to establish what the primary site of damage is likely to be or whether the two 

modes of death result from similar damage differing only in severity or rather 

from different initial types of damage. The major problem is that temperature 

has an all pervasive influence on cellular structures so that heat damage is likely 

to occur at numerous sites, which makes it difficult to determine what factors 

might be of primary importance in the hyperthermic killing process. Most of 

the major cellular structures have been implicated as having a significant role in 

heat injury. 

One of the earliest 'targets' implicated in hyperthermic damage were lyso

somes. Because lysosomes are thought to be involved in cell lysis it was suggested 

that hyperthermia killed cells by causing lysosome rupture which resulted in the 

cell being digested by lysosomal enzymes. This idea was supported by the ob

servation that proteolytic activity increased 1.5-fold following exposure of PNJ 

tumour cells to 42.5°C for 1 hour (Overgaard and Poulsen, 1977). Additional 

support came from histochemical studies of mouse spleen which showed increased 

acid phosphatase activity following hyperthermia (Hume and Field, 1977). How

ever, the fact that agents which are known to enhance the susceptibility of lyso

somal membranes to damage such as trypan blue, retinol and hydrocortisone did 

not affect cell killing by heat (Hofer et al., 1979) argues against the lysosome 

hypothesis. In addition, since lysosomes are involved in the destruction of dead 

cells many of the above considerations could well reflect secondary rather than 

primary effects of heat damage. 

Heat induced damage to mitochondrial membranes has been suggested as 
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another primary target of hyperthermia. For example, Wheatly et al. (1989) 

reported marked changes in the ultrastructure of HeLa 83 cell mitochondria 

which appeared early on during hyperthermic treatment and correlated well with 

the loss of viability and metabolic functioning found after treatment. This led 

these workers to suggest that mitochondrial effects are intimately and possibly 

primarily involved in heat induced damage. Similar findings have been reported 

by a number of other workers. For example, Welch and Suhan (1985) observed 

more swollen mitochondria and greater intacristal spaces in rat fibroblast cells 

after heat treatment whilst Borrelli et al. (1986) reported dense mitochondrial 

granules in synchronous G1 CHO cells which were more prominent after heating. 

However, Heine et al. (1971) working with HeLa 83 cells found no significant 

changes in the mitochondria of cells heated for several hours at 45°C. 

Similarly, whilst heat induced damage to mitochondrial membranes should 

result in measurable changes in cellular respiration rates, data in the literature 

concerning the rates of both respiration and glycolysis Q/"e quite contradictory. 

For example, Strom et al. (1977) working with a number of rat hepatomas and 

human melanomas and osteosarcomas reported that glycolysis was unaffected by 

exposure of cells from these tumours to temperatures up to 44°C. Dickson and 

Suzanger (1976) however found that temperatures as low as 42.5°0 served to 

inhibit glycolysis in human tumours. Results obtained from respiration studies 

are also controversial. Whilst Strom et al. (1977) working with Novikoff hep

atoma cells, which were exposed to a temperature of 43°C for up to 4 hours 

reported only aslight-dedinejn-oxyge_:ru:-atesmeasured at 38°Cfor u~ ~<? 6 hours-

following heat exposure, Durand (1978) working with V-79 cells recorded very 

different results. Whilst cells incubated at temperatures above 42°C showed an 

initial increase in oxygen uptake this was short lived and was followed by a sharp 

decline in respiration. The duration of the increase and the subsequent rate of 

decline were found to be temperature dependent. In addition, the sharp decline 

in respiration was found to precede the initiation of cellular inactivation by a 

few minutes suggesting that cells became extremely heat sensitive once their 

metabolic rate and hence presumably their rate of ATP production was reduced. 

Work by Laval and Michel (1982) has suggested that ATP levels may well play a 

key role in thermal sensitisation since cells which were treated with inhibitors of 

ATP synthesis showed increased thermal sensitivity and decreased levels of ATP. 
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However, more recent work by Calderwood (1987) suggests that a general role 

for energy in cellular responses to heat is unlikely. He found that heat induced 

lesions in energy production were not reflected by changes in parameters of enD 

ergy status in most of the cells studied. For example, he reported that over 99% 

of HA-l fibroblasts were killed by 45°C heat before a decrease was observed in 

any parameter of energy status. 

Another mechanism that has been put forward to explain hyperthermic cell 

death is inactivation of cellular proteins. There is certainly some evidence to 

suggest that one or more cellular proteins may be critical elements at elevated 

temperatures. For example, cells incubated in the presence of sulfhydryl-rich 

compounds become very heat sensitive (Kapp and Hahn, 1979). Likewise, the 

fact that the activation enthalpy for cell killing above 45°C is similar to that 

observed for protein denaturation (Johnson et al., 1974) suggests that protein 

denaturation could be involved in cell killing. In addition, the finding that cells 

may be protected against heat damage by deuterium oxide (D20) and glycerol 

(Fisher et al., 1982) has been thought to be indicative of protein involvement in 

cell killing. It has been suggested that the deuterium is substituted for hydrogen 

and this stabilises the protein against heat, or that a solvent effect occurs that 

increases the strength of the hydrophobic interactions. However, whilst glycerol 

and dimethylsulphoxide also form hydrogen bonds, only glycerol protects against 

heat damage. In addition, although several studies have shown that protein 

synthesis is almost completely inhibited by the exposure of cells to 43°C or 

higher (Henle and-1eeper, 1979), these studies have also shown that some time 

after the return of cells to 37°C protein synthesis resumes, which suggests that 

inhibition of protein synthesis is unlikely to be the cause of cell killing. 

Another target of heat induced damage that has been suggested is the nucleus 

which contains the major portion of the cells genetic information encoded in 

DNA. It is not thought that the DNA molecule itself is the direct target for heat 

inactivations since the melting temperature of DNA in vitro is around 87°C. 

In addition, there is little evidence implicating DNA synthesis since Henle and 

Leeper (1979) have shown that although DNA synthesis is greatly reduced after 

exposure of cells to elevated temperatures this inhibition is reversible when cells 

are returned to normal temperatures. However, there is some evidence for a role 
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of chromosomes in heat death since Dewey et al. (1971) reported that S phase 

cells heated to 45°C developed chromosomal aberrations and that the number of 

these aberrations correlated with cell death. Simil;:trly, Tomasovi et al. (1978) 
l"td-

have shown that DNA isolated from heated cells i~ 1'n.nonhistone proteins and 

th<~.t the amount of bound protein is a function of thermal dose. However, this 

observation raises the question is this protein-DNA binding a direct effect of 

hyperthermia? If heat is acting specifically within the nucleus to modify the rate 

of protein binding to DNA one might expect the excess protein to be located 

within the nucleus. However, since Roti Roti and Winward (1980) found no 

increase in the protein content when isolated nuclei were heated at 45°C for 30 

minutes it seems unlikely that protein-DNA binding has a causal relationship to 

cell inactivation. The primary effect of heat in this instance would not appear 

to be the binding itself but rather modification of the nuclear envelope or some 

other extranuclear event. Similarly, the fact that a number of workers (e.g. Wong 

and Dewey, 1982) have described heat induced strand breaks in DNA which 

only occur during the post heating incubation period suggests that such changes 

could well be a result of cell necrosis rather than a direct effect of hyperthermic 

treatment. 

By far the greatest number of studies attempting to elucidate the effects 

of heat on mammalian cells have shown some modification of membrane struc

ture and/or function (Hahn, 1982). Since the plasma membrane is important 

in regulating ion transport, cell recognition, receptor mediated processes, energy 

transduction and also acts as a barrier to diffusion (Lee and Chapman; 1987) -it 

is perhaps to be expected that it will be affected by hyperthermia in a variety of 

ways. 

There is indeed considerable evidence to support the idea that the plasma 

membrane is involved in cell killing. Agents that are known to perturb the 

plasma membrane, including local anaesthetics and aliphatic alcohols, all act 

synergistically with heat (Yatvin, 1977; Li and Hahn, 1978). In addition, the 

effect that these agents produce by themselves on cells is very similar to the action 

of heat alone (Li et al., 1980). Some morphological evidence exists suggesting 

that membrane structure is disrupted by exposure to elevated temperatures. For 

example, a discontinuous plasma membrane has been observed by Schrek et al. 
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(1980) in heated lymphocytes, whilst the loss of microvilli (Mulcahy et al., 1981) 

is a common observation in heat damaged cells. Many workers (e.g. Basset al., 

1982; Borrelli et al., 1986) have also reported extensive blebbing in heat treated 

cells with the degree of membrane bleb bing showing a direct correlation with the 

degree of cell death. 

Further evidence for an important role of the plasma membrane in the hyper

thermic death of cells comes from membrane permeability studies. Hyperther

mia has been found to alter the membrane permeability to several compounds 

including adriamycin (Hahn and Strande, 1976), polyamines (Gerner et al., 1980) 

and certain ions (Strom et al., 1977). Under physiological conditions animal cells 

contain a high intracellular concentration of potassium and low intracellular con

centrations of calcium and sodium as compared with extracellular fluids. Any 

impairment of the control of permeability at hyperthermic temperatures will al

low the leak of K+ from and Ca2+ and N a+ into cells. Both Yi et al. (1983) and 

Ruifrock et al. (1985) have found that heating lowers intracellular [K+]. Vidair 

and Dewey (1986) on the other hand reported no change in intracellular levels of 

N a+, K+ or M g2+ using a heat dose that caused a 98% reproductive death of 

CHO cells. Vidair and Dewey (1986) have suggested that these different results 

may reflect the metabolic state of the cells with uncontrolled ionic exchanges only 

occurring in metabolically 'dead' cells. A number of reports have suggested that 

cells accumulate Ca2+ during hyperthermia (Anghileri et al., 1985; Wiegant et 

al., 1985; Stevenson et al., 1986). Since intracellular calcium is known to play a 

key role in the control-of many aspects of cellular activity, e;g. cell proliferation 

(Whitfield et al., 1976) and enzymatic phosphorylation and dephosphorylation 

(Westwood et al., 1985), a change in calcium levels could lead to a loss of cellular 

homeostasis and eventually to cell death. However, as yet there is little agree

ment as to whether the rise in calcium that is observed is actually involved in the 

cell killing process due to a number of discrepancies that exist between studies 

(see Bowler, 1987). 

Hyperthermia at 43.5°C and 45°C has been found to inhibit the uptake of 

thymidine in CHO cells grown in suspension and as monolayers (Slusser et al., 

1982) whilst exposure of rat and human thymocytes to temperatures ranging 

from 39°C to 43°C resulted in striking inhibition of N a+ dependent amino acid 

25 



transport (Kwock et al., 1978; Lin et al., 1978). This entry mechanism is believed 

to be a membrane protein mediated process which suggests that hyperthermia 

could result in a rearrangement of membrane protein conformation. 

Understanding why the plasma membrane might be sensitive to heat requires 

an understanding of membrane structure. The widely accepted model of biolog

ical membranes today is a modification of the fluid-mosaic model proposed by 

Singer and Nicholson (1972) with lipid molecules forming an asymmetric bilayer 

which also contains integral and peripheral proteins and cholesterol. The hy

drophilic polar head groups of the phospholipids that comprise membranes are 

oriented towards the outer surfaces of the bilayer, whilst the hydrocarbon tails 

are found in the interior. The molecular motion of phospholipids containing 

saturated fatty acyl chains has been found to be restricted when measured by 

techniques such as electron spin resonance or fluorescence polarisation (Alberts et 

al., 1983), whilst the molecular motion of phospholipids containing unsaturated 

fatty acyl chains has been found to be less restricted. 

Phospholipids in artificial bilayers undergo phase changes often near 20°0. 

Below this so called 'phase transition temperature' the lipids are in a solid 'gel 

phase' whilst above this temperature lipid bilayers enter a more fluid, 'liquid 

crystalline' phase. In mammalian cell membranes phase changes are masked by 

the presence of cholesterol and proteins. Cholesterol acts as a buffer of fluidity, 

stiffening the membrane at temperatures above the phase transition and flui

dising it below that -temperature, whilst the presence of proteins in the plasma 

membranes leads to non-uniformity in the viscosity of lipids. 

A possible link between growth temperature and the stability of cellular mem

branes was first suggested by Heilbrunn (1914) who proposed that resistance to 

heat was related to the melting temperature of the lipids. With an understand

ing of membrane structure, subsequent in vitro studies have shown that microor

ganisms (Sinensky, 1974) and ectothermal animals (Cossins and Sinensky, 1984; 

Hazel, 1984) respond to environmental temperatures by altering the degree of 

saturation of the fatty acyl chains of their cellular membrane phospholipids. De

creasing the growth temperature results in an increase in unsaturation, whilst an 

increase in growth temperature results in a more saturated membrane lipid frac-
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tion. This phenomenon, termed 'homeoviscous adaptation' by Sinensky (1974), 

in which cells regulate membrane 'fluidity' (order) in a compensatory fashion, 

clearly highlights the functional importance of lipid fluidity to cells. Implicit in 

this strategy is that there is an optimal range of membrane fluidity for normal cell 

function (Bowler, 1987; Yatvin et al., 1987). The demonstration of homeoviscous 

adaptation suggests that one of the key factors determining a cell's response to 

hyperthermia could well be the physical state of its plasma membrane. 

Lee and Chapman (1987) have reported that a change in temperature has two 

effects on membrane lipids. Firstly, an increase in temperature will result in ki

netic energy causing an increase in the molecular motion of the membrane lipids. 

Secondly, an increase in temperature may well cause a change in the phase of the 

lipids from a more ordered gel phase to a less ordered liquid crystalline phase. 

The overall effect will be a progressive increase in fluidity, i.e. a decrease in order 

of the lipid molecules which could have important consequences for membrane 

protein-lipid interactions. Whilst membrane proteins affect the viscosity of the 

lipid bilayer, they themselves are likely to be influenced by the dynamic state of 

the membrane lipids by their packing and movements which will depend amongst 

other things on their thermal disorder. Cossins et al. (1981) have suggested that 

the anisotropic hydrophobic core of the membrane forms a relatively hindered, 

viscous environment for enzyme functioning and that as a consequence enzymes 

may well possess relatively loose tertiary structures to enable molecular flexibility 

that is vital for catalysis. 

An incr€09Z.in temperature that leads to an increase in fluidity would there

fore provide a less hindered environment for the membrane proteins and could 

result in the proteins adopting configurations that are inactivating. Evidence 

in support of this idea comes from the studies of Cossins et al. {1981) who 

demonstrated that the N a+ I x+ ATPase from warm acclimated goldfish synap

tic membranes were more thermally stable than the same enzyme from more 

fluid cold acclimated membranes (Bowler, 1987). Barker (1985) showed that 

M g2+ ATPase in two transplantable rat tumours (MC7 and D23) was far more 

thermolabile than the corresponding enzyme from rat liver and that this heat 

sensitivity corresponded with lipid fluidity with the tumour membrane lipids 

showing a higher degree of disorder. Similarly, Cheng et al. {1987) have shown 
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that the thermostability of Ca2+ ATPase in reconstituted lipid vesicles can be 

correlated with the level of cholesterol, a component known to modulate the flu

idity of the plasma membrane, again suggesting the importance of lipid 'fluidity' 

in determining membrane protein activity. 

Since the 1960's when it was first realised that fairly extensive membrane 

lipid modifications could be produced both in vivo and in vitro by varying the 

composition of the bathing fluid surrounding cells (Geyer, 1962), many studies 

have adopted this approach to investigate the role of plasma membrane compo

sition on heat induced cell killing. Many of these studies have provided support 

for the hypothesis that a cell's response to hyperthermia is related to its mem

brane fluidity at the time of treatment. For example, the fatty acid auxotroph 

Escherichia coli K1060 requires unsaturated fatty acids for growth and by vary

ing the unsaturated fatty acids in the growth medium membrane composition 

can be markedly altered. On exposure to mild hyperthermia the sensitivity of 

E.Coli K1060 was found to increase in proportion with increased unsaturation 

index of the cellular lipids (Yatvin, 1977). Similarly, growing L1210 leu~mi.a 

cells in media supplemented with highly polyunsaturated fatty acids led to in

creased thermosensitivity, while decreased thermosensitivity was observed when 

cells were supplemented with more saturated fatty acids (Guffy et al., 1982). 

Lepock et al., {1981), on the other hand, concluded that there was a lack of 

correlation between hyperthermic cell killing and membrane fluidity based on 

their experiments with the anti-oxidant compound butylated hydroxytoluene in 

a V79 Chinese hamster cell-line. ,They proposed that a correlati?n exists between 

membrane protein denaturation and hyperthermic killing (Massicotte-Nolan et 

al., 1981; Lepock et al., 1983) rather than membrane fluidity and hyperthermic 

killing. 

Other workers have considered the importance of cholesterol in the hyper

thermic response. The fact that cholesterol is an important lipid molecule of 

the plasma membrane of eukaryotic cells and is known to modulate the physical 

properties of membranes (Oldfield and Chapman, 1972), acting as a membrane 

stabiliser (Sabine, 1983) suggests that cells with a higher cholesterol content will 

be more heat resistant because the higher the level of cholesterol that is present 

in membranes, the less will be the increase in membrane fluidity. This hypothesis 
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was first tested by Cress and Gerner (1980) who measured the cholesterol con

tent of five mammalian cell lines and reported a positive correlation between heat 

sensitivity at 43°C and cholesterol levels when expressed on the basis of cellular 

protein. However, comparable investigations that have since been performed by 

other groups have failed to confirm Cress and Gerner's results. Anderson et al. 

(1985) and Konings and Ruifrok (1985) examined the cholesterol/protein ratios 

of cells in a number of mammalian cell lines and found little differences in this 

ratio but marked differences in heat sensitivity. In addition, Konings and Ruifrok 

(1985) also showed that when the three cell lines used were adapted to a different 

nutrient medium, less cholesterol was present in the cells but the heat sensitivity 

did not alter. Anderson et al. (1984) found that in heat resistant variants of 

B16 melanoma cells the cholesterol/phospholipid ratio and cholesterol/protein 

ratio decreased rather than increased with increasing heat resistance. Similarly, 

Raaphorst et al. (1985) failed to show a consistent relationship between choles

terol content and thermal sensitivity of normal and X-ray transformed C3H lOT! 

mouse embryo cells. However, the significance of many of these cholesterol stud

ies is questionable since the purity of the cell fractions used for cholesterol assays 

is not always reported. 

The work produced over the past few years has contributed greatly to our 

picture of the changes occurring in the heated cell and would certainly seem to 

imply a major role for the plasma membrane in the hyperthermic killing process. 

The main aim of the work undertaken in this thesis therefore was to clarify further 

the significance of the plasma membrane, and in particular the lipid composition 

of the plasma membrane, in the hyperthermic death of cells and to investigate 

the possibility that a cell's response to hyperthermia is related to its membrane 

fluidity at the time of treatment. 

In order to do this, the membrane lipid composition of rat liver tumour cells 

maintained in culture was modified by dietary supplementation of specific lipids 

in the culture medium and the thermal sensitivity of control and supplemented 

cells was investigated over a range of hyperthermic temperatures ( 42.5°C to 

45°C). Changes in lipid composition, particularly with respect to the fatty acid 

composition of phospholipids, and the level of cholesterol were monitored after 

the isolation of plasma membranes from control and supplemented cells. Physical 
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measurements, using steady state fluorescence polarisation were employed toes

tablish whether any change occurred in the fluidity of plasma membranes derived 

from supplemented cells. In addition, surface morphological studies were carried 

out in an attempt to correlate changes in membrane structure with hyperthermia. 

Furthermore, the molecular basis of hyperthermia was investigated by assessing 

the effect of any changes in membrane lipid composition and fluidity on the 

thermal sensitivity of plasma membrane-bound enzymes (e.g. Na+ jK+ ATPase, 

alkaline phosphodiesterase I). 

To investigate further the importance of membrane 'fluidity' (order) in hyper

thermic cell death, the role of local anaesthetics, known to fluidise membranes, 

was also examined by surface morphological studies and steady state fluorescence 

polarisation techniques. In addition, the effect of heat on intermediate filaments 

(IF), one of the three fibrous systems of the cytoskeleton, was examined. The IF 

system is thought to serve as a mechanical integrator of cellular space (Lazarides, 

1980). Since intermediate filaments have been found in close association with a 

number of subcellular components including the plasma membrane, it was of in

terest to see how they were affected by the presence of heat in the presence or 

absence of anaesthetic. 

It is hoped that such studies will contribute to our knowledge of the cause 

of thermal sensitivity and hence offer possible methods for its potentiation, thus 

making hyperthermia a more useful clinical tool as a treatment for cancer. 
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Chapter JIJI 

2.JL Jintroduction 

Studies of tumour cells have often involved the growth of solid tumours in 

continuous passage in laboratory animals (Upreti et al., 1983; Boddie et al., 

1985). However, such systems have a number of drawbacks. Solid tumours 

invariably contain a heterogeneous population of cells. Also the properties of 

passaged tumours often show considerable change with time (Steel, 1977). When 

hyperthermic studies are performed with animals bearing tumours it is difficult 

to control experimental conditions precisely. For example, low pH, nutrient 

depletion and chronic hypoxia characterise the extracellular milieu in parts of 

most solid tumours (Samulski et al., 1984). 

Cell culture techniques have successfully overcome many of the problems 

associated with the growth of solid tumours. The practice of culturing cells 

in isolation away from the controlling and modifying influences of other cells 

within an organism dates back to Baker (1933), who successfully cultivated fowl 

monocytes in glass _flasks. Initiation of a cell culture involves mechanic.al or 

enzymatic dispersion -of a tissue into a cell -suspension. Th-ese cells are theri 

cultured either as an adherent monolayer, on a solid substrate, or as a suspension 

in an appropriate culture medium. Cell proliferation within such cultures means 

that they, in turn, can be dispersed by enzymatic treatment or simple dilution 

and reseeded into fresh vessels producing characteristic cell lines. 

A major advantage of cell culture is that it permits considerable control of the 

physicochemical environment in terms of pH, temperature, osmotic pressure, and 

oxygen and carbon dioxide tensions. In addition, the physiological conditions can 

also be kept relatively constant, though not necessarily defined, since most media 

still require the presence of serum which is highly variable in its composition 

(Honn et al., 1975). This means that cells in vitro can be manipulated in many 
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ways that cannot be achieved with cells in vivo. Cultured cells also exhibit a 

very high degree of homogeneity which means that replicate samples are virtually 

identical. In addition, the use of cultured cells in experiments is more economical 

than rearing and performing experiments with intact animals. 

The choice of cell to be used in any study will be influenced by a number of 

factors including the nature of the proposed work, the type of culture required 

and the quantity of cells. Plasma membrane modifications and hyperthermic 

studies have been performed on a wide variety of cell lines including L1210 murine 

leukaemia cells (Symonds et al., 1981; Guffy et al., 1982; Burns et al., 1986) which 

grow in suspension and have a doubling time of approximately 12 hours; HeLa 

cells (Burdon et al., 1982; Cress et al., 1982; Kampinga et al., 1988; Wheatley 

et al., 1989) some of which grow in suspension (e.g. HeLa 83 cells) and some 

of which grow as monolayers (e.g. HeLa human cervical carcinoma cells) with 

doubling times in the range 20 to 26 hours; and Chinese Hamster Ovary ( CHO) 

cells (Henle and Leeper, 1976; Borrelli et al., 1986; Bates and Mackillop, 1987; 

Chu and Dewey, 1987) which can be grown in suspension or as monolayers and 

have a doubling time of 13 to 15 hours. 

The use of the Hepatoma Tissue Culture (HTC) cell line in the present study 

partly reflects the earlier interest shown in this laboratory in rat liver tumours 

(Barker, 1985) and also reflects the use of the cell line by other workers. Clearly 

in a study such as this, in which the effects of modulating membrane lipid com

p-osition on the thermal sensitivity of tumour cells in cultu!'e are- t() b~ -examined,-
- - . --- - ----

some background information is desirable. Schamhart et al. (1984) have in-

vestigated cell survival and cell morphology of HTC cells following exposure to 

temperatures between 37°C and 44°C and have shown a remarkable difference 

in thermal sensitivity between this cell line and the H35 hepatoma cell line orig

inating from the same tissue. A number of other workers have already looked at 

various aspects of lipid metabolism in HTC cells. For example Wood and Falch 

(1973) performed a quantitative determination of phospholipid class composi

tions and fatty acid compositions of individual phosphoglycerides derived from 

HTC cells grown on media containing varying levels of serum and lipids. Alaniz 

et al. (1975, 1976, 1982, 1984), Wiegand and Wood (1974), Gaspar et al. (1975, 

1977) and Marra et al. (1984) have looked at the incorporation, biosynthesis and 
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metabolism of a wide range of fatty acids in HTC cells. Whilst Lopez-Saura et 

al. (1978) and Sauvage et al. (1981) have also characterised and purified the 

plasma membrane of HTC cells by cell fractionation techniques. Such studies 

therefore form a useful starting point for the current investigations. 

One of the biggest problems facing cell culture is contamination. The media 

for the cultivation of cells is highly nutritious not only for animal cells, but 

also for bacteria, fungi and mycoplasma. These generally have a much faster 

growth rate than the animal cells and can produce toxins that are lethal to them. 

Since decontamination, especially with mycoplasmas, is difficult to achieve and 

can produce hardier, antibiotic-resistant strains of the contaminant, the general 

rule is that contaminated cultures are discarded. As a result, one of the most 

important aspects of cell culture is the avoidance of contamination by the growth 

of cells in aseptic conditions. 

There are many potential sources from which contamination can arise includ

ing the atmosphere in which culture procedures are performed, the apparatus, 

the culture medium and the operator. Consequently all apparatus and liquids 

that come into contact with cultures are routinely sterilised either by autoclaving 

or by filtration. The adoption of good aseptic technique within a culture unit is 

a major way of preventing contamination. Correct aseptic technique provides a 

barrier between the micro-organisms in the environment outside the culture and 

the pure uncontaminated culture within the culture vessel. 

Culture medium is often supplemented with antibotics as an extra safeguard 

against contamination. A wide range of antibiotics have been developed over the 

years. Streptomycin and penicillin are commonly used to give protection against 

gram-positive and gram-negative bacteria (Nielsen and Overgaard, 1979; Von 

Hoff et al., 1986). Other antibiotics used against bacteria include gentamycin 

(Schamhart et al., 1984; Guffy et al., 1982) and neomycin (Silvestrini et al., 

1983). Amphotericin B deoxycholate has been employed against fungal and yeast 

contamination (Pearlman, 1979). A number of agents including tylosin (Friend 

et al., 1966) and more recently, ciprofioxacin (Schmitt et al., 1988) have been 

used against mycoplasma. 
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Although pathogen-free cell culture is difficult in the absence of such antibi

otics, it is important to bear in mind that dependence on such agents may lead to 

microbial resistance, and does not necessarily prevent cryptic contamination. In 

addition some antibiotics can exert toxic effects at elevated temperatures (Hahn 

et al., 1977). 

One of the major distinctions between cell culture systems is whether cells are 

grown attached to a substrate (monolayer culture) or in suspension (suspension 

culture). Suspension cultures derive from cells that can survive and proliferate 

without attachment. Monolayer culture however, implies that adherence is an 

integral part of survival and subsequent proliferation. In order to develop suc

cessful monolayer culture techniques it is important to understand the nature 

of the cell growth involved. Typically, the growth kinetics of cells in monolayer 

culture can be divided into three characteristic stages (McAteer and Douglas, 

1979). Firstly, freshly seeded cells will experience a quiescent period (lag phase) 

during which there is no cell division. The cells then enter a log phase of growth 

in which there is an exponential increase in cell number. When the culture condi

tions can no longer support cell division the cells enter a stationary phase during 

which cell number remains constant. 

There are many factors that will influence the length of these various stages 

such as the type of cell, the media composition (Richter et al., 1972; Porro et 

al., 1986), seeding density, pH, oxygen tension (Richter et al., 1972), surface 

area available for growth and the way in which cells are harvested. Puck et 

al. for example, in 1955, found that the then standard methods used for the 

trypsinisation and washing of cells (Dulbecco and Vogt, 1954; Youngner, 1954) 

subjected them to considerable trauma that greatly impaired their ability to 

initiate growth. Procedures adopted in cell culture studies aim to optimise growth 

by a careful consideration of such factors. 

In monolayer culture, since the cell yield is proportional to the available sur

face area, the choice of culture vessel is generally determined by the number of 

cells required and the type of experiment. Very small numbers of cells can be 

grown in multiwell plates which offer small surface areas for growth and the pos

sibility of multiple replicates. Larger numbers of cells are frequently grown in 
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petri dishes, or flasks, offering surface areas between 25cm 2 and 175cm 2 . Flasks 

of various sizes have proved useful as the culture vessel in a wide range of ex

perimental systems. Increasing the cell yield any further, which is necessary if, 

for example, biochemical analysis of cell plasma membranes is to be performed, 

either means increasing the size and number of conventional vessels or using sus

pensions of particulate microcarriers on which the cells can attach and multiply. 

The idea of culturing anchorage-dependent cells on small spheres (microcar

riers) kept in suspension by stirring, was first conceived by Van Wezel (1967). 

The great advantage of the microcarrier system is the very large surface area to 

volume ratio that it offers. Stirred microcarrier cultures can typically yield two 
' 

to four times as many cells for a given volume of medium as compared to other 

monolayer culture techniques. The superior yields with microcarrier culture have 

been reported for a wide variety of systems including chicken fibroblasts (Mered 

et al., 1980). In addition the microcarrier system provides a much more homoge

neous environment for the cell population due to the stirring which reduces the 

time-dependent changes in microenvironment that normally occur in traditional 

monolayer culture (Thilly and Levine, 1979). 

In order for a microcarrier to be suitable for animal cell culture its surface 

properties must be such that cells can adhere with a degree of spreading which 

permits proliferation. Similarly, it should be non-toxic and non-rigid. The lat

ter characteristic helps to reduce the possibility of damage to the microcarrier 

and cells on stirring. The density should be slightly greater than the surround

ing medium to facilitate its separation from the medium. In addition, the size 

distribution of microcarriers should be narrow so that even suspensions can be 

produced and cell confluency reached at approximately the same time on each 

m1crocarner. 

A wide range of materials have been used as microcarriers including porous 

silica, polystyrene plastic, polyacrylamide and glass (Varani et al., 1986). One of 

the most versatile forms of microcarrier is based on cross-linked dextran which 

has been derivitised into three types ofmicrocarriers, namely Cytodex 1, Cytodex 

2, Cytodex 3 (Pharmacia Fine Chemicals, 1981 ). 
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Cytodex 1 and Cytodex 2 possess specific densities of small charged molecules 

to promote attachment of cells. In Cytodex 1 the positively charged groups are 

distributed throughout the microcarrier matrix, whilst in Cytodex 2 there is only 

a surface layer of positively charged groups, in an attempt to reduce the binding 

of meciium components, metabolites and cell products to the inner microcarrier 

matrix. In Cytodex 3 attachment of cells is promoted by the connective tissue 

protein collagen, since this has also proved to be a valuable cell culture substrate 

(Elsdale and Bard, 1972). Each microcarrier consists of a surface of denatured 

collagen that is bound to the cross-linked dextran matrix. Denatured collagen 

is used to overcome the specificity some cells show for attachment to particular 

forms of native collagen. 

Although cells can often be grown on more than one type of microcarrier, 

the choice of Cytodex carrier used often reflects the purpose of the culture. Cy

todex 1 is particularly useful for general purpose microcarrier culture and has 

been employed for the successful cultivation of more than 60 different cell types 

including primary cells, diploid cell strains and established or transformed cell 

lines (Clark and Hirtenstein, 1980). Cytodex 2 has been found to be advanta

geous where the production of viruses or cell products is desired, whilst Cytodex 

3 is commonly used for cells known to be difficult to grow in culture. In addition, 

because the denatured collagen layer is susceptible to digestion by a variety of 

proteases, including trypsin and collagenase, Cytodex 3 is often used when it 

is necessary to remove cells from the microcarrier with the maximum possible 

recovery, viability and preservation of membrane integrity. Sirica et al., (1979), 

for example, obtained 100% recovery of rat hepatocytes from a collagen surface 

within 10 minutes using a collagenase solution. 

The successful growth of cells in microcarrier culture depends on many in

terrelating factors. The initial phase of microcarrier culture is usually the most 

crucial (Clark and Hirtenstein, 1980) and must be carefully controlled. Increas

ing cell density, reducing culture volume and reducing stirring speed during this 

initial period can greatly improve cell growth and yield. (Pharmacia Fine Chem

icals, 1981 ). 

Once a microcarrier culture has been initiated conditions must be optimised 
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to maintain proliferation of cells so that maximum cell yields can be achieved. 

The rate at which a culture is stirred after initiation can markedly influence the 

growth and final yield (Hirtenstein and Clark, 1980). Rapid cell division and 

high cell densities lead to depletion of the medium components, to a decrease 

in culture pH, and often to a build up of metabolites such as ammonia and 

specific inhibitors (Cooper et al., 1959). Thus, the frequency and extent of 

medium replenishment is important. The ideal replenishment scheme is one 

which results in the smallest fluctuation of nutrient concentrations and pH during 

the culture cycle. In a closed microcarrier culture system where vessels are sealed 

and the supply of gas is only renewed when the culture is opened for sampling or 

replenishment of the medium, the culture volume within the vessel can influence 

the maximum yield of cells obtained from the culture (Hirtenstein et al., 1981 ). 

A reduction in cell yield has frequently been found to occur in a closed vessel 

that is more than half full. It is thought that such a reduction probably reflects 

the decreased supply of oxygen and, where C02-bicarbonate buffering systems 

are involved, the reduced head space volume available for buffering purposes. 

In culture, because cells are being continuously cultivated in an artificial en

vironment, they may lose characteristics apparent in vivo or gain characteristics 

that were not apparent (Coriell, 1979). Such alterations may include chromo~ 

somal aberrations (Chu et al., 1958) and changes in membrane structure and 

permeability (McAteer and Douglas, 1979). The likelihood of these occurrences 

has been found to increase with the age of the culture. As a precaution against 

such changes, and as a safeguard against accidental loss of cells by contamina

tion, cell preservation techniques have been developed (Scherer and Hoogasian, 

1954; Swim et al., 1958). These techniques involved glycerol as a cryoprotectant 

with storage in dry ice at -70°C. However, although cell cultures could be re

covered in a viable state for many months, there was a gradual loss of viability 

at -70°C. Today, cell preservation involving the storage of frozen cell cultures in 

liquid nitrogen ( -196°C) has become a standard practice in the culture process. 

The potentially lethal effects of the freezing process have been minimised in 

a number of ways, including the addition of substances (e.g. glycerol, dimethyl 

sulphoxide) that lower the freezing point, the adoption of slow cooling rates that 

permit water to move out of the cell before it freezes and the storage of frozen cells 
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below -130°C to retard the growth of ice crystals. In addition, rapid thawing 

of frozen cells has meant that the cell culture passes quickly through the -50°C 

to 0°C temperature zone, where most cell damage is thought to occur. 

The choice of cryoprotectant used in the freezing process and its concentration 

in the freezing medium depends on the cell type in many cases. For example, 

epithelial cells of human skin have been found to survive best in 20-30% glycerol 

whilst fibroblasts from the same tissue survive best in 10% glycerol (Athreya et 

al., 1969). Ashwood-Smith (1985) has reported the successful storage of bacterial 

strains for up to 11 years at -196°C in the presence of 10% dimethysulphoxide 

(DMSO). However, where cells that are to be frozen show the possibility for gene 

activation and differentiation, it is currently thought to be advisable (Ashwood

Smith, 1985) to avoid the use of DMSO as a number of workers (Rudland et al., 

1982; Higgins et al., 1983) have demonstrated gene activation effects of DMSO 

in a variety of cellular systems. 

The aim of the current chapter is to introduce the techniques that were 

required for the successful culture of the chosen cell line and to account for the 

methods used in the study. 

2.2 Materials and Methods 

2.2.1 Cell Type 

A rat liver hepatoma cell line known as the Hepatoma Tissue Culture (HTC) 

cell line was employed in this study. This line was first established from primary 

cultures of male Buffalo rats containing two lines of hepatoma in the ascites 

form (Thompson et al., 1966). Histologically, Thompson found that these HTC 

cells had the characteristics of 'epitheloid' cells, showing irregular cytoplasmic 

projections when growing in contact with glass and isolated from other cells, 

but becoming more rounded as intercellular contact was established. They were 

shown to exhibit logarithmic growth with a doubling time of approximately 24 

hours. 

In the present study HTC cells of unknown passage number were purchased 

from Flow Laboratories. The cells were grown as monolayers on plastic and 
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occasionally glass under sterile conditions. The growth medium used was Ea

gles Minimum Essential Medium (EMEM), developed initially in 1959 (Eagle, 

1959). This EMEM purchased with Earles salt and nonoessential amino acids 

but without glutamine and sodium bicarbonate, was supplemented with New

born Bovine Serum (10%, vjv), 2mM glutamine, penicillin (200IU/ml), strepto

mycin (200J.Lgfml), tylosin (lOJ.Lg/ml) and fungizone (2.5J.Lg/ml) and was buffered 

at pH 7.4 with sodium bicarbonate (2.0 gjl). The cells were maintained in a hu

midified incubator at 37°C in airjC02 (19: 1, vjv). 

2.2.2 CuAtUATe Techmques 

Stock supplies of HTC cells were grown in either 25cm2 or 175cm2 flasks 

in lOml or 70ml respectively, of the above growth medium. The medium was 

changed on alternate days and cells were subcultured when subconfl.uent i.e., 

when a sheet of cells covered approximately 80% of the total flask growth area. 

Stock flasks were seeded so that they required subculturing once a week on 

average. Generally, only cells that had been subcultured fewer than ten times in 

the laboratory were used in experimental studies. 

(a) Cell harvesting and subculture 

The medium was discarded from the flasks. Cells in each 25cm2 flask were 

washed twice with lOml calcium- and magnesium-free phosphate buffered saline 

(Ca2+-, Mg2+-free PBS) and harvested using either 0.25% (wjv) trypsin in 

0.2% (wjv) ethylenediamine tetra-acetic acid (EDTA) in Ca2+-, Mg2+-free PBS 

(trypsin-EDTA solution) or 2mM EDTA in Ca2+ -, M g2+ -free PBS (EDTA so

lution). When trypsin-EDTA solution was used it was poured onto the cells 

(lml/25cm2 flask), swirled around and poured off. However, when the EDTA 

solution was used it was poured onto the cells (3ml/25cm2 flask) and the flasks 

were placed in the 37°C incubator for 3 to 5 minutes. As soon as the cells began 

to round up and detach from the flask bottom, growth medium (10ml/25cm2 

flask) was added to the flasks to resuspend the cells, and the suspension was 

transferred to a sterile plastic universal tube. The cells were then spun down 

at 320g (rav = 16cm) in a Mistral 3000 centrifuge at 20°C for 6 minutes. The 

pellet was resuspended in a small known volume of growth medium (typically 1 

to 3ml/25cm2 flask) by three aspirations with a syringe fitted with a number 25 
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gauge hypodermic needle. The cells were then counted either by haemocytome

ter or Coulter Counter, before being used in experiments or to set up further 

stock flasks. The medium was always changed the day after subculturing. 

(b) Microcarrier culture 

Cell production was increased by microcarrier cell culture technology using 

Techne MCS microcarrier stirrer systems. Each stirrer system consisted of up 

to four glass culture vessels (Techne flasks), each of 1 litre capacity, in which 

cells were grown on microcarrier beads, maintained in suspension by a magneti

cally driven, bulb-shaped stirring rod which provided a gentle and even circula

tion of the microcarriers in the medium. The Techne flasks were maintained at 

37°C (±1 °C) by a water bath positioned over the stirrer platform. 

Microcarrier cell culture methods were developed from those given in a hand

book entitled "Microcarrier cell culture : principles and methods" (published by 

Pharmacia Fine Chemicals). In the final method adopted, 1.5g of dry Cytodex 2 

microcarriers per Techne flask were swollen in 75ml of Ca2+ -, M g2+ -free PBS for 

a minimum of three hours at room temperature. The supernatant was decanted 

and the microcarriers washed twice with 50ml of fresh Ca2+ -, M g2+ -free PBS. 

The microcarriers were then sterilised by autoclaving at l10°C for 20 minutes 

at 15 p.s.i. After settling, the supernatant was discarded and the beads rinsed 

once with 50ml of warm growth medium, then suspended in 150ml of growth 

medium at 37°C and transferred to a siliconised sterile Techne flask. The flask 

was gassed with airjC02 (19: 1, vfv) at 37°C for 15 to 30 minutes. Meanwhile, 

cells from two 175cm2 subconfluent stock flasks were harvested using trypsin

EDTA solution and counted by Coulter Counter. 

Cells ( 4 x 107 ) were inoculated into the Techne flask which was gassed for a 

further ten minutes, sealed and transferred to the 37°C bath of the microcarrier 

stirrer system. Continuous stirring was commenced at 20 r.p.m. for 3 hours. 

After this time a further 100ml of growth medium was added and the flask was 

gassed again for 10 to 15 minutes. Stirring was increased to 30 r.p.m. when the 

flask was returned to the stirrer system. The microcarrier culture volume was 
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made up to 500ml with growth medium the following day and the flask was 

gassed for 15 minutes. 

The Techne flask was cultured for up to five further days from the day of 

initiation, depending on the speed of cell growth. Growth of cells was moniD 

tored visually on the microcarrier beads by withdrawing representative samples 

and examining the beads by light microscopy. Each day during the culture pe

riod flasks were gassed for 15-30min at 37°C and 100ml of the supernatant was 

replaced with fresh growth medium. 

Cells were recovered from the beads by the harvesting procedure detailed in 

Chapter 4, Materials and Methods, section 4.2.l(b). 

Electron Microscopy Studies 

HTC cells were cultured on Cytodex 2 microcarrier beads in a Techne flask 

as described above for a 72 hour period. The techniques used for the fixation of 

the HTC cells on beads were based on the methods of Karnovsky {1965). 

Karnovsky fixative reagents 

Solution A: 

2g paraformaldehyde and 40ml of distilled water. The paraformaldehyde 

was warmed with the distilled water with shaking and the precipitate that 

formed was dissolved by slowly adding 2-6 drops of lM NaOH. 

Solution B: 

lOml of 25% ( w fv) glutaraldehyde and 50ml of 0.2M sodium cacodylate, 

mixed together. 

Solutions A and B were kept separate at 4°C and mixed in equal proportions 

immediately before use. 

Aliquots (0.75ml) of bead suspension were removed from the Techne flask and 

placed in plastic microfuge tubes (volume 1.7ml). An equal volume of Karnovsky 

fixative was then added to each microfuge tube. After mixing the contents of 

the microfuge tubes the beads were allowed to settle and the supernatant was 
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removed. A further lml of Karnovsky fixative was added to the microfuge tubes 

which were placed in a rotator set at 2 r.p.m. at 4°C for 1 hour. The Karnovsky 

fixative was then replaced with lml osmium tetroxide (1% wlv) in sodium ca

codylate (O.lM) buffer, pH 7.3, for 0.5-1 hour at 4°C. 

After post-fixation the bead material was dehydrated at room temperature 

through an alcohol series of 70% (vI v), 90% (vI v) and absolute ethanol with 3 

changes at each stage and for a total of 15 minutes at each concentration. 

For Scanning Electron Microscopy (SEM) studies the alcohol was then sub

stituted by acetone, for critical point drying purposes. Critical point drying 

prevents surface damage that often occurs when tissue is allowed to dry in air or 

under vacuum. The bead material in the microfuge tubes was taken through an 

acetone series of 50% (vlv), 70% (vlv) and 100% acetone at room temperature 

with 3 changes at each stage and for a total of 15 minutes at each concentration. 

Once the cells on the beads had been dried through the C02 critical point in 

an E3100 Jumbo critical point drier, the bead material was then sputter coated 

with gold-palladium in an E5100 SEM Polaron Coating Unit for examination in 

a Stereoscan 800 scanning electron microscope. 

For Transmission Electron Microscopy (TEM) studies, following dehydration, 

the bead material was embedded in araldite in the following way. 

Araldite mixture: 

10ml of araldite (CY212), 10m[ dodecenylsuccinic anhydride (DDSA), 

lml dibutylphthalate and 0.5ml 2,4,6-Tri( dimethylaminomethyl)phenol 

30 (DMP 30). 

The absolute alcohol in the microfuge tubes was replaced with a mixture of 

0.5ml absolute alcohol and 0.5ml of propylene oxide and left for a total of 30 

minutes with 3 changes of the mixture during this time. This mixture was then 

replaced with lml of propylene oxide for 30 minutes which was again changed 3 

times. Following exposure to propylene oxide, the bead material was infiltrated 

for 30 minutes at 45°C in a mixture consisting of 0.5ml propylene oxide and 

0.5ml of araldite. This was replaced with lml of araldite mixture which was 

changed after a further 30 minutes at 45°C. The bead material was then left for 
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12 hours in this araldite solution at 45°C before being transferred to 60°C for a 

further 2 days. 

The embedded bead material was sectioned on a Reichart OMU3 ultra~ 

microtome using glass knives. Thin sections were doubly stained with uranyl 

acetate (1 %, wjv) in 70% ethanol followed by lead citrate, prepared as described 

below, to give contrast to the sections. 

lead citrate solution: 

1.76g Tris-sodium citrate and 1.33g lead citrate were placed in a 50ml 

flask and 30ml distilled water was added. The solution was shaken for 

one minute then intermittently for 20 minutes. After shaking, 8ml N aOH 

(1M) was added and the flask was inverted. The solution was then made 

up to 50ml with distilled water. 

Three drops of uranyl acetate were placed on 'parafilm' with the clean side 

up. The grid bearing the sample sections was placed copper side down on the 

surface of the drop and left for 10 minutes. The grid was then washed by dripping 

distilled water over it for about 40 seconds and then dried carefully. After drying 

the process was repeated with lead citrate in place of uranyl acetate. the grid 

was then washed thoroughly again for about 40 seconds with distilled water. The 

sections were then examined in a Phillips 400T transmission electron microscope. 

(c) Cryopreservation 

Subconfluent cells from 2 x 175cm2 flasks were harvested and the cell pellet 

obtained was resuspended in lOml freezing medium (Foetal Bovine Serum / 

Glycerol; 92 : 8, vjv). Aliquots (lml) of cell suspension in plastic vials were 

wrapped in cotton wool and placed in a polystyrene box. After sealing the 

box was maintained at -80°C for a minimum of four hours, then the vials were 

transferred to canes and stored in liquid nitrogen at -196°C for up to 26 months. 

(d) Thawing 

Vials of cells were thawed quickly by semi-immersion in a beaker of water at 

37°C. Cells were then added to 9ml of pre-warmed, pre-gassed growth medium 

in a 25cm2 flask and returned to culture. The medium was changed the next day 
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and cells were not used in experiments until they had been subcultured at least 

once. 

(a) Cell size studies 

Exponentially growing HTC cells were harvested from three 25cm2 flasks 

using trypsin-EDTA solution and resuspended in 5ml of lsoton II, a filtered 

phosphate-buffered saline solution. Using a Watson-Barnet stage micrometer 

and a calibrated eye piece on a Zeiss microscope, a sample of 100 cells were then 

examined and their diameters recorded. 

(b) Haemocytometer cell counts 

Counts of both live and dead cells were made initially by means of a haemo

cytometer using standard procedures. Solutions of harvested cells were prepared 

in a Trypan blue solution (0.6% wjv Trypan Blue, 0.85% wjv sodium chloride) 

such that when the suspension was added to the counting chamber of the haemo

cytometer approximately 50 to 100 cells were observed over each of the 9 large 

squares of the counting chamber. A minimum of two counts were performed on 

each cell sample. 

(c) Coulter Counter cell counts 

Although the haemocytometer counts provided quantitative information on 

cell viability, they were extremely time consuming to perform and began to im

pose serious limitations on the number of experiments that could be run. For this 

reason a Model D (Industrial) Coulter Counter, which was capable of counting 

and sizing up to 5000 cells per second, was purchased half way through the study. 

A Coulter Counter determines the number and size of particles suspended 

in an electrically conductive liquid by forcing the suspension to flow through a 

small aperture that has an immersed electrode on either side. As a particle passes 

through the aperture it changes the resistance between the electrodes, which in 

turn produces a voltage pulse that is proportional in its magnitude to the particle 
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mze. The series of pulses that are produced are then electronically scaled and 

counted. 

Accurate measurements were obtained with the Coulter Counter by followine; 

a few simple guidelines. Firstly Isoton II (a filter sterilised buffered saline solu

tion) was chosen as the electrolyte, since it was compatible with the characteris

tics of the cells, allowing true cell size measurements to be recorded. Secondly it 

was important to select an orifice tube with the correct size of aperture. Ideally 

the expected maximum particle size should not exceed approximately 40% of the 

aperture diameter. The cell sizing study enabled this criterion to be met. Also, 

since the Coulter Counter will only give a size analysis of the particulate material 

presented to the aperture, it was important to disperse the cells very well prior 

to counting, which was achieved by aspirating cell suspensions 3 times using a 

syringe fitted with a hypodermic needle (gauge number 25). 

Once the Coulter Counter had been calibrated using smooth particles of 

known densities, a size distribution of HTC cells was established in the following 

way. Three 25cm2 flasks of exponentially growing cells were harvested and re

suspended in 9ml of growth medium. A small volume (2ml) of this resuspension 

was added to 250ml of Isoton II in a plastic beaker and placed, after stirring, 

under the orifice tube of the Coulter Counter. 

Now 

equivalent particle volume = t x I x A , 

where 

t = threshold I = aperture current A= attenuation 

and 

particle diameter = k W , 

where 

k = calibration constant V =volume. 
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Thus, the total number of cells present could be calculated by setting the thresh

old (t), the aperture current (I) and the attenuation (A) to their lowest values 

and taking a cell count. 

To obtain an accurate value of cell number, it was important that this max~ 

imum count did not exceed 10 310 with the 140ttm aperture used, so that it was 

possible to apply a correction factor to compensate for the phenomenon of 'co~ 

incidence'. Coincidence occurs at high particle concentrations when two or more 

particles pass through an aperture simultaneously. 

In addition, for statistical accuracy, it was necessary to take six counts for 

numbers less than 100, four counts for numbers from 100 to 1000 and two counts 

for numbers over 1000. 

By gradually increasing the attenuation, threshold and aperture current, a 

range of cell size counts was made. A background count was then obtained 

for the electrolyte at each size level used for the sample analysis. The maximum 

acceptable level for this background count under these conditions was 150 counts. 

(d) Comparison of haemocytometer and Coulter Counter methods 

If the two methods available for cell counting were to be used interchangeably 

in future studies they needed to produce comparable results. A clonogenic assay 

(Kingston et al., 1989), first developed by Puck (1955) was used to assess their 

comparability. 

Exponentially growing HTC cells were harvested using trypsin-EDTA solu

tion and cell counts performed by haemocytometer and by Coulter Counter at 

threshold, aperture and attenuation settings determined by the earlier size dis

tribution studies. A number of flasks were each seeded with 200 cells in lOml of 

growth medium for each method of counting. Media changes were performed the 

following day (day 1) and then on day 5 and day 8. On day 9, the culture medium 

was discarded and cells were fixed in 10ml of Ca2+ -, M g2+ -free PBS/methanol 

(1 : 3, v jv) for 10 minutes. After discarding this fixative, cells were stained with 

5ml of 0.6% (wjv) Trypan blue in Ca2+-, Mg2+-free PBS for 10-15 minutes. 

After this time the number of cell colonies containing more than 50 cells (Von 

Hoff et al., 1986) as determined by microscopic observation, were counted. 
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(a) Flasks 

The clonogenic assay described above (section 2.3(d)) was used routinely with 

25cm2 flasks to assess cell number whenever small numbers of cells ( < 800 per 

flask) were involved. Where large numbers of cells were present in 25cm2 flasks 

cell number was determined by harvesting the cells, either with trypsin-EDTA or 

EDTA solution and counting the cells by haemocytometer or Coulter Counter. 

(b) Plates 

The current study employed 24 well plates with 2.01cm2 growth area per well 

and a 2ml capacity. Cells for plates were derived from stock flasks containing 

exponentially growing cells by the usual harvesting procedure using EDTA so

lution. Wells were seeded with up to 5000 cells in 1ml of growth medium. The 

medium was changed the day after seeding and every two days thereafter and 

cells were cultured in plates for a maximum of 6 days. 

The determination of cell number in plates was carried out by the colorimetric 

method of Mosmann (1983) with a number of modifications (Kingston et al., 

1989). This assay is based on the cleavage of the tetrazolium salt, MTT, (3-( 4,5-

dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide) into a blue coloured 

product (formazan), by the mitochondrial enzyme succinate dehydrogenase (Sla

ter et al., 1963). This conversion only takes place in living cells and the amount of 

formazan produced is reported to be proportional to the number of cells present 

(Green et al., 1984; Denizot and Lang, 1986). 

In the final method adopted, MTT was dissolved at 5mgjml in 20mM Hepes 

buffer (pH 7.4). This solution was sterilised by passage through a 0.22J.Lm fil

ter, which removed small amounts of insoluble residue, then it was diluted with 

an equal volume of 2x concentrated phenol red-free, serum-free, fungizone-free 

growth medium, to produce a final MTT concentration of 2.5mgjml (MTT 

medium). 

The 24-well plates to be assayed were inverted and blotted to remove the 

growth medium (Denizot and Lang, 1986). Then 200J.Ll of MTT medium was 
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added to each well and the plates were incubated at 37°C in an atmosphere of 

air/CO?. (19: 1, v/v) for 4 hours. Dimethylsulphoxide (lml) was added to each 

well and mixed thoroughly to dissolve the dark blue crystals. Two lODt-tl samples 

were transferred from each well to a 96 well plate using a multichannel pipette 

and the absorbance was x:ead on a Titerick Multiskan MCC/340 plate reader 

using a test wavelength of 540nm and a reference wavelength of 690nm (Denizot 

and Lang, 1986). 

:;1l.3.ll. Determination of Cell! §ize 

Figure 2.1 shows the results of the cell sizing studies performed with a cal

ibrated micrometer. It can be seen that the majority of diameters recorded lie 

between 10t-tm and 28t-tm. The mean cell diameter recorded was 19.37!-£m. In a 

normal distribution the median value is the same as the mean value. Since the 

median value for cell diameter was 19.74J.Lm it can be seen that the cell diameters 

recorded approximate to a normal distribution. Some variation in cell size would 

be expected throughout the cell cycle. A cell after division will often be only 

half the si2e of one about to divide. It seems likely that the larger cell diameters 

observed were of cells about to undergo cell division whilst the smaller diameters 

were of cells that had just been produced by mitosis. For a normal distribution 

95% of the population lies within (±2S.D.) of the mean, whilst 99% of the pop

ulation lies within (±3S.D.) of the mean. Analysis of the data reveals that 92% 

of the population lies within the range 9.2 to 29.6J.Lm (±2S.D.) whilst 100% of 

the population lies within the range 4.1 to 34.7J.Lm (±3S.D.). The results would 

therefore suggest a normal distribution. 

Figure 2.2(a) shows the cell size distribution data resulting from the Coulter 

Counter studies. The nature of the curve reveals that there is a single peak in 

the cell diameters recorded and that it occurs around about the 20J.Lm range 

(indicated by the steepness of the gradient in this area). It can be seen that 

approximately 90% of cell diameters lie between 7J.Lm and 34J.Lm. Reducing the 

diameter measurement below 6.97 J.Lm would appear to have little effect on the 

cumulative weight % oversize figure, suggesting that there were very few cells 
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Fiigme 2.]. 

Cell size distribution of HTC cells 

Figure.2.1 shows the ceU diameter distribution for 100 HTC cells. E)(ponen
tially growing cells were harvested ti$ing trypsin~ED'I'A solution and resuspended 

in Isoton II. A sample of 100 cells was then examined and their diameters recorded 

using a calibrated Watson~Ba.rnet stage micrometer. 
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Coulter Counter size distribution study ofHTC cells 

In two separate experiments, three 25cm 2 ft~ks of expoli¢Iliially growing cells 

were ~arvested with tcypsin-EDTA solu,tion and resuspended in 9~1 Of groWth 

m~diulll. A small volume'(2ml)ofttri,ssuspension was Cl.dcl~dto 2~0ml oflsoton II 

and a cell size distrib!l.tion established wlth,the Coulter Counter method outlined 

in Matetialscand Meth:ods, section 2.2;3fc). 

The data is represented in two forms: 

(i) Cumulativefrequency of cells ofa.nd above particular diameters (figure 2.2(a)). 

(ii) Frequency of cells of particular diameters (figure 2.2(b)). 
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with diameters less than 6.97/lm, a finding reflected in the micrometer cell sizing 

studies. 

Figure 2.2(b) shows the cell diameter frequency distribution established with 

the Coulter Counter. This figure confirms that the greatest frequency of cell 

diameter occurs in the 19.9 to 21.9/lm range and that over 90% of cell diameters 

lie between 11.1 and 31.4/lm. Some difference between the two curves, obtained 

from two independent determinations, is to be expected since different samples of 

cells are likely to show variations in the proportions of cells present in the various 

stages of the cell cycle. From the graph it would appear that cells measured in 

run 1 contained more cells that were about to divide than was the case in run 2, 

since the frequency of larger cell diameters was greater in run 1 than in run 2. 

Since the frequency of cells with diameters of less than 13.9/lm was very 

low it was concluded that most HTC cells have diameters of 13.9/lm or higher. 

On this basis 13.9/lm was chosen as the minimum size of diameter to be used 

for measuring cells on the Coulter Counter. To measure diameters of this size 

required Coulter Counter settings of A = 8, I = 0.017 and t = 20. 

To ensure that measurements made with the Coulter Counter at these set

tings were providing a true reflection of cell number a comparison was made 

between cells counted by haemocytometer and cells counted by Coulter Counter 

at the above settings. 

_The-_result_s _in Tit-_91~~2_.1 i11~kat~_ th:a~ t}_l~ h~ymoc:;yto~€:!ter and Co?l~e!: 

Counter methods for counting cells produce highly comparable results when Coul

ter Counter settings that measure particles of 13.9/lm and larger, are used. These 

Coulter Counter settings were therefore adopted in all future work. 

2.3.2 Culture Techniques 

(a) Flasks 

Figure 2.3 shows the typical growth curves produced when varying numbers 

of cells were seeded into 25cm2 flasks. All three curves are characterised by an 

initial lag period of between 0 and 50 hours where there is little alteration in cell 

number. The length of this initial lag phase would appear to last longer when 
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Talblle 2.]. 

Comparison of methods for determining cell number 

Three 25cm2 flasks of exponentially growing cells were harvested using a 

Trypsin-.EDTA solution and the cells resuspended in growth medium. Cell counts 

were performed by haemocytometer and Coulter Counter at threshold, aperture 

and attenuation settings determined by earlier size distribution studies. Five 

25cm2 flasks were each seeded with 200 cells in a total of 10ml of growth medium 
,_ 

for each method of counting. Flasks were maintained in an incubator at 37°C un-

der a humid atmosphere of air/ C02 (19: 1, vjv). The number of cells present in 

fl~ks was determined by the clonogenic assay outlined in Materials and Methods, 

section 2;2.3(d). 

Haemocytometer Coulter Counter 

number of colonies number of colonies 

186 162 

145 167 

161 164 

142 185 

167 136 .. 

Tlle-aiffel'e-nce ·betw'eeii -the-Coulter· Counter mean- (162;8) and-Haemocy

tometer mean (160.2) was tested for significance using the Student's t-test. The 

difference was not significant (p > 0.05). 

_. f: .. ,; 



JFngm1re 2.3 
Growth chara:cterisat;ion ofiiTCcells maintained in 25cm2 fl-aSkS ,.·. . - - --. - . . . . . ._ 

On c1ay 0 varying numbers of cells (5;2 x 104 Jo 5,575 ,X 105 per ft~k) w~re 

seeded into a number. of flasks in a , tQtal of lOml of groW:t·h medium. The 

fla.Sks were maintained in an int1.fbator at 37qC \lnder a humid atmofJpllere of 

air/C02·t19 :1, vfv). The~edium was~hangedlrl'flp.sk~ on day 1 ap,~,~every 2. 

days thereafter; Growth wa$ monitored at various times over the next 168 ·hours, 

by harvesting fta,sks in dupllcate with tcypsin.:EDTA solution and counting the 

cells by Coulter Counter. 

The three growth curves shown in the figure were derived from single exper

iments involving duplicate flasks~ 

Best fit regression lines were fitted to points in the exponential phase of 

growth using the regression equation y = a + bx. 
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fewer cells are present, perhaps reflecting a lack of cell to cell contact. The cells 

then enter a period of rapid cell growth with a cell doubling time of approximately 

24 to 26 hours. The rate of growth can be seen to be comparable under the 

different conditions of seeding, whilst the length of this exponential phase of 

growth shows some variation. When 5.575 x 105 cells were seeded into a 25cm2 

flask the cells remained in the exponential phase of growth for approximately 70 

hours. However, as the number of cells decreased, so the length of the exponential 

phase increased. It can be seen that when 5.2 x 104 cells were seeded into a flask 

they took longer to enter the exponential phase of growth and were still actively 

growing after 168 hours incubation. The major factors determining the length 

of the exponential phase include the surface area available for growth and the 

nutritional factors within the system. From the results it would seem that once 

the cells have covered the available surface area they enter a stationary phase. 

This suggestion is borne out by the fact that the two growth curves produced 

using the higher initial cell densities reach a plateau phase at approximately the 

same number of cells, despite regular media changes. From the graph it can be 

seen that this plateau phase occurs after approximately 140 hours incubation. 

To ensure that cells used in subsequent experiments were all in the same 

exponential phase of growth, flasks were routinely seeded with 3 x 105 cells and 

then harvested 120 hours later for experimental purposes. 

Table 2.2 shows the plating efficiencies obtained for HTC cells in the early 

st-~g~~-~fthe study. The average pl~ti.ng~ffi~iency was approximately 52%. It 

can be seen that cells seeded at different densities in flasks produce relatively 

constant plating efficiencies. Since there was some evidence of colonies merging 

together when higher numbers of cells were seeded into flasks, a cell density 

of 200 cells/flask was used as the seeding level in the majority of subsequent 

experiments. 

Figure 2.4 shows the rate of cell attachment to substratum which was an 

important criterion to establish for conducting future experiments. It can be 

seen that after two hours there is no significant change in the percentage of cells 

attached to the flask. On the basis of these results, flasks that were seeded with 
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Tablie 2.2 

Pla.ting efficiency of HTC cells 

A small number of cells {100 to 800 per flask) were seeded into a number 

of flasks on day 0 in lOml growth medium. The flasks were maintained in an 

incubator at 37°C under a humid atmosphere of airjC02 (19 : 1, vfv). The 

medium was changed in flasks on day 1 and every two days thereafter. Colonies 

were fixed and counted on day 9 as described in Materials and Methods, section 

2.2.3(d). 

Number of cells seeded Number of colonies Plating efficiency* 

into flasks initially counted % 

100 62.4 ± 3.67 (7) 62.4 ± 3.67 

200 196.7 ± 5.47 (10) 53.4 ± 2.74 

300 139.66 ± 5.78 (6) 46.6 ± 1.93 

400 196.08 ± 5.13 (12) 49.0 ± 1.28 

500 277.5 ±14.5 (2) 55.5 ± 2.9 

600 28.5.9 ±10.5 (-2) 47.6± 1.75 
-

800 4~2.5.± 16~0 (2) 5L6 ±.2.0 

Numbers in brackets are nU:inb.ers of replicates 

Results represent mean va.J.tie-·± S:E~M. 

. . . Number of colonies counted 
* Platmg Efbczency = N · b f ll d d ... ll x 100. um er o ce s see e znztza y 

Average plating efficiency = 52.3% 

The plating efficiency values were analysed statistically for differences follow

ing arc sign transformation. There was no apparent statistical difference between 

plating efficiencies. 



JFigwe~At 

Rat~. of HTC cell atta.cht,rlent to substratum 

Flasks (25·cm2} were :see~ed with 2.5.xt65 ce11s/fl~k in·a t.otal of10ml: growth 

medil}tl1 and maintaiiJ,ed in an jncu :Qatot at, 31° C undex; a pJliD.id -~t~o.sphere: o,f 
air/0,02 (19 : 1, ~/v) .. Ilt1p}ic~~e fia.sJss were h~est~d e~ery 30_ l!litxutes cjVe~ 
the ~ext three hours. Before. harvesting, the IJ,ledium containing unattathed 

cells~was discarde.d. Theil the attachedcens·in eidn<flaskwere harvested using 
Tcyp&in•EDTA-solutio~· and the cells we~~ counte:d.by Co,Ulter Cou~ter. 

Individual· results ofthree separ~te experiments run in duplicate are shown 

on the graph. 
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cells were always incubated for a minimum of two hours before being used in 

experimental work to ensure that cells were attached to the substratum. 

(b) Plates 

MTT assay 

In the original Mosmann procedure (1983), O.Olml MTT (5mgfml in phos

phate buffered saline) was added to cells contained in O.lml culture medium 

(containing serum and phenol red indicator) in individual wells of a 96 well plate 

to produce insoluble formazan. After 4 hours at 37°C for MTT cleavage the dark 

blue forma.zan product was solubilised by adding an equal volume of isopropanol. 

Acid was added to the isopropanol to convert phenol red to its yellow form since 

the red form of this indicator was known to interfere with subsequent readings. 

The absorbance was then read at 570nm against a calibration wavelength of 

630nm. 

In preliminary investigations modifications were made to this assay to en

hance its suitability to the current study. Since the assay was to be run in 24 

well plates as opposed to 96 well plates, optinium assay conditions needed to 

be redetermined. Initially, since precipitation of serum proteins was a m'!-jor 

problem in the presence of the acid isopropanol, the serum containing medium 

was removed ~fter MTT incubation prior to the addition of the acid isopropanol. 

However, removal of the media in this way often resulted in the lo~s of forma.zan 

producLsince cells_frequently_det_ached~from wells during- the MTT-incubation 

period, particularly if the assay wa.S run following exposure of the plates to el

evated temperatures. In addition, the acid isopropanol often failed to solubilise 

the formazan adequately. 

To improve the solubilisation of the formazan, dimethylsulphoxide (DMSO) 

was substituted for isopropanol following Alley et al. (1986} and Carmichael et 

al. (1987). In the presence of acid however, DMSO was found to produce much 

lower absorbance readings than it did when present on its own, as shown in Table 

2.3. 

To maintain the sensitivity of the assay a method was required in which acid 

could be excluded from the assay. In addition, to prevent the loss of formazan 
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'JrabRe 2.3 

Influence of solvent composition on absorbance values in the MTT assay 

Exponentially growing HTC cells were harvested with Trypsin-EDTA solu

tion and two 24-well plates were seeded with varying numbers of cells (2.0 x 104 

to 3.2 x 105 cells per well) in 1ml growt-h medium. The plates were maintained 

in an incubator at 37°C under a humid atmosphere of airjC02 {19 : 1, vfv). 
After 12 hours the medium was removed and one plate was assayed according to 

the final assay procedure given in Materials and Methods, section 2.2.4(b). The 

second plate was assayed in a similar fashion but with acid (0.35ml concentrated 

HCl per 100ml DMSO) present in the DMSO. 

Number of cells Absorbance at 540nm 

seed~d into well DMSO Acid-DMSO' 

2.0 X 104 0.120 ± 0.004 0.068-± 0.003-

4.0 X 104 0.210 ± 0.003 0.122 ± 0,0(_)4 

S.Ox 104 0.410 ± 0:013 0:236-± 0.010 

1.6 X 105 0.802 ± 0,0~1 0.429 ± o:01s 

3~2 X 105 1.254 ± o:-o~9. 0.864 ± 0.022 ·,-.· ;. . 

N mnbers of replicates == 4 

Re~ults represent ~ean value ± S._E .M. 
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a method was needed that did not necessitate the removal of media after the 

addition of MTT. The preparation of medium in the absence of phenol red indi

cator and serum (Denizot and Lang, 1986) provided the solution. Fungizone was 

also omitted from the incubation medium in case of interference problems, whilst 

lOmM Hepes was included to help maintain a constant pH value in the small 

volume of incubation medium used in the assay. Hence, whilst cells were grown 

in normal serum-containing medium this was replaced with serum-free, phenol 

red-'free, fungizone-free medium containing 10mM Hepes and MTT (2.5mgfml) 

in the MTT assay. 

Figure 2.5 shows the absorption spectrum of the formazan product. Since 

maximum absorption occurs around 540nm this was chosen as the test wave

length. The off-scale peak to the left of the formazan absorption peak represents 

the absorption produced by the unconverted MTT present in the incubation 

medium. Since the formazan clearly absorbs at 630nm, a fact also shown by 

Denizot and Lang (1986), an alternative reference wavelength of 690nm was 

used at which neither formazan, nor MTT absorb. 

Figure 2.6 shows the effect of using increasing MTT concentrations with 

constant cell number on the amount of formazan produced. It can be seen that 

the amount produced increases very rapidly from 0 to 1mgfml, slows between 

1 and 2mgfml, plateaus between 2 and 3tng/ml and shows a decline above 

3mg/ml. At the higher concentrations the· 'MTT is likely to be _e~~r_ti:rlg a toxic 

effect on-the -cells. On -the- basis-of these-results 2.5mg/ml-was selected as-the 

optimal MTT concentration for use in future studies. Since cells were exposed to 

200p.l of 2.5mg / ml MTT per well, the amount of MTT present per well represents 

a tenfold increase on that used in Mosmann's original assay reflecting the larger 

scale of this procedure. 

Figure 2. 7 shows the effect of increasing the incubation period on the ab

sorbance value obtained using a constant cell number with the optimal concen

tration of MTT. It can be seen that absorbance increases very markedly up to 

two hours and then declines slightly before reaching a constant value over the 

next 3 hours. In future studies, because the absorbance remained constant over 

the three to five hour range, plates were read during this time to ensure repro-
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FiguEe 2.5 

Absorption spectrum of formazan and MTT produced by the colorimetric assay 

On day 0 a plate was set up containing 5 X 105 cells in lml. ofgrowth mediuil1 . 

in two wells. The plate was maintained. in an incubator at 37°0 under a humid 

atmosphere of airjC02 (19 : 1, vfv). After 24 hours the following conditions 

were established:. 
. -

. (a) .One well containing cells W(U)- exposed to 200tllofphe~orred f~e, s¢ttiiil {iei, 
fungi:zone free medium (incubation medium) containing 2.5mg}ml MTT. - . 

(b) One well containing cells was exposed to 200 pJ ofincrih~tion riledi urn in th~ . 
absence of MTT. _ 

. (c) One well without cells was exposed to 2001Jl of incubation.medium: contahting 

2.5mgjml MTT. 

The plate was incubated for 4 hours and then lml DMSO was added to each 

test well. A 1 ml sample was removed from each well and an absorption spec

trum determined on a Pye Unicam SP8-100 spectrophotometer after blanking 

the cuvette first on air. 

The figure shows the absorption spectrum produced after exposure of cells to 

incubation medium cont-aining 2.5mgfml MTT. Analysis of absorption spectra 

produced by DMcSQ alOne and-also by conditions (a), {b) and (c) above has shown 

thelit the peak on the ri_ght hand side represents the absor-ption spectrutn for 

for.maz_an with an absorption .ma~mum arou~d 540nm, whiist the off-scale p~ak 

reptes¢nts the absorption pe,~k of u-nconverted MTT present in the 1ncubation 

medium at the end of the 4- hour incubation period. 
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lF!gwure 2,g;£ 

Effect of 1\ll'ET cozfcentratioJJ on absotbance 
. . 

Exponentially gl'()wing. H'I'Q .·cell$ were b:arve~t~d usi;ng. try,psin .. EDTA solu- . 
tion #done 24owell .Phtte vv~ seeded with LO :{105 cells pet well in lml gr9w:th 
medium. The plate ·waS· mhlntaitu~d in a.ri·incubator at 37°0 ~hder a humid at

m~sphere of air /C02 {19 : 1, v /v)' The mediu~ wa,s cha.J].ged 24 boq~s l~ter. 
After_• a tptal of 36 h!-?~r_s th~ Iilt~l~ was.- expose(Lto varying-concentrB.tions'of · 

MTT-(0.5 to 4.o~o/ml)for a 4 hour perl<">d at 37°-C and proc~ssed as described 

in Materials and Methods, section 2.2.4{b). 

Ea.ch point represents the mean ±S.E.M. of 4 replicate wells. 
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Fng1lllll'e :JJ. 7 

Effect of MTT incubation period on absorbance 

Exponentially growing HTC cells. were harvested using trypsin-EDTA solu

tion and 24-well plates were seeded with 5;0 x 104 cells per welFin lml growth 

medium. Plates were maintained in an incubator at_ 37°C under a humid atmo

sphere of airjC02 {19: 1, vfv). The medium was changed 24 hours later. After 

a total of 36-hours, plates were exposed to 2.5mgfml MTT at 37°0 for varying 

time periods (1 to 5 hours) and processed as described in Materials and Methods, 

section 2.2.4(b ). 

Each point represents the mean ±S.E.M. of 8 replicate wells. 

The absorbance value after 2 hours incubation was significantly different 

(p <: 0.001) from that obtained after 3 hours. However, since absorbance values 

obtained at 3, 4 and 5 hours incubation were not significantly different (p > 0.1 

in both cases), a period of 3-5 hours was chosen as the optimal incubation period. 

This incubation period was chosen to .ensure that reproducible absorbance values 

would be obtained even if the incubation period altered slightly. 
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ducible results were obtained in the event of slight differences in the length of 

the incubation period. 

Obviously for this modified version of Mosmann's colorimetric assay to be 

of use in the current study the absorbance values generated must have a lin

ear relationship with cell number. Figure 2.8 shows the effect of increasing the 

cell number (from 0 to 5.2 x 105 cells/well) on the absorbance value generated 

through formazan production, under the optimal conditions of MTT concentra

tion (2.5mgfml) and incubation period (4 hours) established for the assay. It 

can be seen that a linear relationship (r = 0.990) exists between cell number 

and absorbance for up to 2.1 x 105 cells per well. Since each well only has a 

2.01cm2 area available for growth there is a limit to the number of cells that 

can be introduced into a well without overcrowding it. The graph would sug

gest that well cell number should not exceed 2.1 x 105, nor absorbance 0.900 

absorbance units, if reliable results are to be obtained with this assay. Thus 

the results shown in figure 2.6 are less than ideal since a number of the points 

exceed the 0.900 limit. However the general trend reflected in this figure is in 

keeping with other workers (Denizot and Lang, 1986) which is why it has been 

included in the present results. On the basis of the cell number-absorbance re

lationship, future plate experiments were designed to ensure, as far as possible, 

that final experimental absorbance values were below 0.900 absorbance units so 

that the absorbance value accurately reflected the number of cells in the well. 

This in turn enabled estimates of cell numbers to be made from the absorbance 

values, so that comparisons could be drawn with cell determinations made in the 

alternative flask experimental systems. 

Figure 2.9 shows the absorbance values produced by incubating various num

bers of cells ( 4 to 8 x 103 per well) over a seven day period in 24-well plates under 

standard assay conditions. After one day the absorbance values reflect the origi

nal number of cells seeded into the plates suggesting cells are experiencing a lag 

phase in their growth. After two days the absorbance has doubled, and since this 

reflects the amount of formazan produced which is proportional to cell number, 

it can be assumed that cell number has also doubled indicating that the cells 

have entered the active phase of growth. Once again, as with the flasks, the 

length of this active period of growth can be seen to vary. Theoretically the 

53 



<:"''.' ·-

JFlig11Jill'e 2J~ 

Relationship between cell number and a.b~orbance reading obtaineii in_ plates 

Exponentially growing JITC cells were harvested using trypsin-EDTA solu

tion and 24-well plates were seeded with varying numbet:S ofcelis (0 to 5;2 X 105 

cells/well) in lml- growth m_edium. Plates were maintained in t:l.ll inc:ubator at 

37°0 under a humid atmosphere ofa.ir/C02 {19: 1, vfv). After 12 hOlirs pl~tes 
were exposed to 2.5mgfml MTT at 37°C for a 4 hour period a.nd processed as 

described in Materials and Methods, section 2.2.4(b ). 

The results from three separate experiments are shown. Each point r-epresents 

the mean value derived from 4 replicate wells. 

The best fit regression line has been fitted to the linear region of the graph 

using the regression equation y = a + bx. 
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Fng1l.llre 2.g 

In/luence of cell number on absorbance readings obtained in 24->well plates 

On day 0 exponentially growing HTC . cells were harvested using trypsin~ 
. . . 

EDTA solution and sev~n 24~well plates were seeded with varying numbers of 

cells (4 to 8 x 103 cells/well),in lmfgroWth'mec:li~m_- The prates :were malntained 

in an incubator at 37°0 under a humid atmosphere of ~rj'C02 (W : 1, vjv). 
The medium was changed in appropriate plates on days 1, 3 and 5. After 24 

hours (day 1) one plate was exposed to 2.5mgjml MTT at 37°0 for a 4 hour 

period and processed as described in Materials and Methods, section 2.2.4{b ). 

This procedure was repeated every 24 hours over the next six days. 

The results from a single experiment, run over 7 days are shown. Each point 

represents the mean value derived from 4 replicate wells. 
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absorbance values obtained with 8 x 103 cells per well should be more or less 

double that obtained with 4 x 103 cells after equivalent periods of incubation. 

Although this is the case after two to four days incubation, by day 7 it can be 

seen that these two absorbance values are very similar which suggests that cells 

in both wells have reached confluency and have entered a stationary phase of 

growth. Since the absorbance values obtained on day 7 exceed the maximum 

0.900 level permissible for cell number-absorbance linearity it is difficult to know 

how accurately these absorbance values reflect cell number. 

In Table 2.4 absorbance values from the data shown in figure 2.9 have been 

converted into approximate cell numbers on the basis of the linear regression 

line determined for the three sets of data shown in figure 2.8. Since the linear 

regression line does not pass through the origin, estimates of cell number based 

on very low absorbance values are difficult to obtain. As the absorbance values 

increase so it becomes easier to estimate the likely cell number. Taken as a 

whole, the estimated cell number as would be expected, reflects the lag, log and 

stationary phases of growth suggested by the absorbance values. 

Figure 2.10 shows a selection of growth curves produced in plates based 

on cell number estimates. Allowing for the fact that it is difficult to estimate 

cell number reliably at low absorbance values, it can be seen that the growth 

curves produced in plates are highly comparable to those produced in flasks. 

The gradients of the slopes during the exponential phase of cell growth are very 

similar indicating comparable doubling times. The fact that cells showed similar 

growth characteristics in plates and flasks enabled both types of vessel to be used 

interchangeably in subsequent experiments. 

On the basis of the data presented in this chapter whenever flasks were to be 

used for experimental purposes they were seeded with 200 cells/flask. The cells 

for these flasks were obtained from 'stock' flasks containing exponentially growing 

cells which was achieved by seeding 25cm2 flasks with 3 x 105 cells and incubating 

the stock flasks for a five day period prior to use (figure 2.3). After seeding, 

experimental flasks were left for a minimum of two hours in the incubator (figure 

2.4) to allow attachment of the cells to the flask. The appropriate experiment 
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'l'able 2.4 

Growth characteristics of cells maintained in 24-well plates 

Plates (24-well) were seeded with varying numbers of cells ( 4 x 103 to 8 x 103 

per well) on day 0 and treated as described in the legend of figure 2.9. 

The results given in the table were derived from a single experiment run over 

7 days. Estimated cell numbers have been determined from figure 2.8. 

Period of Absorbance {ABS) at 540nm and estimated cell number (ECN) 

incubation 

(Days) 

4 x 103 cells 

ABS ECN 

1 0.027 1.0 X 103 

±0.002 

2 0.048 5.0 X 103 

±0.001 

3 0.098 1.7 X 104 

±0.002 

4 0.214 4.45 X 104 

±0.003 

5 0.415 9.05 X 104 

±0.010 

6 0.647 1.44 X 105 

±0.010 

7 1.410 -
±0.013 

in wells seeded with varying cell number on day 0 

5 x 103 cells 6 x 103 cells 7 x 103 cells 

ABS ECN ABS ECN ABS 

0.031 1.2 X 103 0.044 4.5 X 103 0.034 

±0.002 ±0.002 ±0.002 

0.061 8.0 X 103 0.071 1.1 X 104 0.075 

±0.001 ±0.002 ±0.001 

0.129 2.4 X 104 0.152 3.0 X 104 0.177 

±0.003 ±0.002 ±0.004 

0.249 5.15 X 104 0.298 6.3 X 104 0.352 

±0.004 ±0.002 ±0.004 

0.469 1.03 X 105 0.620 1.38 X 105 0.742 

±0.010 ±0.007 ±0.007 

0.756 1.71 X 105 0.834 1.89 X 105 0.871 

±0.016 ±0.008 ±0.013 

1.496 - 1.542 - 1.455 

±0.025 ±0.012 ±0.011 

Numbers of replicates = 4 

Results represent mean value ± S.E.M. 

ECN 

2.5 X 103 

1.15 X 104 

3;5 X 104 

7.65 X 104 

1.67 X 105 

1.98 X 105 

-

8 x 103 cells 

ABS ECN 

0.042 4.0 X 103 

±0.002 

0.085 1.4 X 104 

±0.001 

0.183 3.7 X 104 

±0.001 

0.387 8.4 X 104 

±0.008 

0.785 1.78 X 106 

±0.010 

0.830 1.88 X 105 

±0.007 

1.423 -

±0.022 



. .· . . : . . 

OGrowth curves of-cells in plates estimated using MTT assay 

On day 9 varying numbers ·of cells ( 4 to 8- X 103 ceils/well) were seeded int~_ 
a number of 24-well plates in a total of lml growth medium.--- The plates were 

maintaixied inan incubator at 376C under a humid atmosphere ofairjC02 (19 : 

1,-vjv). The medium was changed in wells on day 1 ~nd ev~ry 2 days thereafter. 
- • 0 

Growth was monitored at various times over the next 144 hours using the mod-

ified Mosmann colorimetric assay described in Materials and Methods, section·. 

2.2.4(b). 

The three growth curves shown were derived from single experiments. Each 

point represents the mean value derived from 4 replicate wells. 

Best fit regression lines have been fitted to the points in the exponential 

phase of growth using the regression equation y --:- a+ bx. The gradients of the 

3 slopes are not significantly different. 
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would then be conducted after which time the flasks would be returned to the 

incubator for a further nine days before the colonies were counted. 

Alternatively when plates were used for experimental purposes, to enable 

them to be run over a 6 day period without the cells reaching confluency or 

the absorbance exceeding 0.900 they were seeded with 5 x 103 cells per well on 

day 0 {figure 2.9) from c:_xi>~J!ep.~i,ally ,gr_()\Yin~ fl_¥~ of <?~~1~: Experiments were t 
conducted on day 3 when the cells were in the exponential phase of growth (figure 

2.10) and subjected to the MTT assay on day 6. 

(c) Techne flasks 

In preliminary studies two of the microcarriers available, namely Cytodex 

2 and Cytodex 3, were tested to determine which one was more suited to the 

growth of HTC cells. Since cells proved more difficult to detach from Cytodex 

3, use was made of Cytodex 2 in the current study. 

Figure 2.11(a) shows a scanning electron micrograph of HTC cells growing 

on a Cytodex 2 microcarrier bead 72 hours after inoculation. It can be seen that 

the cells form a monolayer over the microcarrier bead surface. Boundaries of in

dividual cells are apparent and the cell surfaces are characterised by the presence 

of a large number of microvilli. Figure 2.11(b) shows a low power transmission 

electron micrograph of an HTC cell attached to a Cytodex 2 microcarrier bead. 

The cell can be seen to be closely associated with the bead surface and at the 

subcellular level it is characterised by a fairly large nucleus and a number of 

mitochondria. 

The yield of cells produced from the microcarrier cultures were rather lower 

than expected. Using the optimal concentration of microcarrier of 3mgjml final 

volume and an inoculation density of 8 x 104 cells/ml suggested by Pharmacia 

(Pharmacia Fine Chemicals, 1981) the surface area provided by the microcarrier 

(5500cm2 / g dry Cytodex 2) should have ensured a cell yield of approximately 

5.5 x 105 cells/mg Cytodex. However, seeding four Techne flasks, each containing 

1.5g of Cytodex 2, with 40 million cells per flask typically yielded 8 x 108 cells 

in total following 4 to 6 days growth, i.e. approximately one quarter of the yield 

expected. 
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S9an;ning and 'ITansmission electron mkrographs of HTC cells 

grown on Cytodex 2 

HTC cells were cultured on Cytodex -2 fuic~ocattier beads in a Techne flask 

for 72 hours a.fi(t prepared for scannihg arid tr~ns~ission electron microscopy as 

described in Materials and Methods, section 2.2.2(b). 

(a) Scanning electron micrograph of HTC cells.on a Cytodex 2 microcarrier bead. 

The bar represents 20J.tm. 

(b) Transmission electron micrograph ( x 12000) of an HTC cell attached to a 

Cytodex 2 microcarrier bead. Several features are identifiable: 

- -----

N =nucleus 

M = mitochondrion 

No = nucleolus 

Mv = microvillus 



a 

Bead 

b 

Mv 
/, 

• • 



(d) Cryopreservation 

The composition of the freezing medium was varied in initial studies to en

sure that HTC cells were stored in the most viable state. Four freezing me

dia were compared namely (a) growth medium (containing 10% NBS)/glycerol 

(92: 8, vjv), (b) Newborn bovine serum/glycerol (92: 8, vjv), (c) Foetal bovine 

serum/glycerol (92: 8, vjv), (d) Foetal bovine serum/DMSO (92: 8, vjv). New

born bovine serum (NBS) was included in the first two freezing media because 

the cells were grown routinely in medium containing 10% NBS. Cell survival 

was not determined quantitatively in these preliminary experiments, but visual 

observation revealed that the foetal bovine serum/glycerol and foetal bovine 

serum/DMSO mixtures gave the highest cell survivals and HTC cells have been 

frozen successfully at -196°C in these media for up to 26 months. 

2.4 Discussion 

The present chapter has defined conditions for the successful growth of HTC 

cells in monolayer culture in multiwell plates, flasks or attached to microcarrier 

beads in suspension. 

Characterisation of the growth patterns of this particular cell line was funda

mental if suitable experimental procedures were to be designed for future work. 

The growth curves obtained for these cells in both plates and flasks compare 

favourably with that described by Thompson et al. (1966). In that study aliquots 

of cells were grown in petri -dishes, and a doubling _time during the logarithmic 

phase of growth of approximately 24 hours was reported. Schamhart et al. (1984) 

reported a doubling time of 22 hours. Thus the doubling time of approximately 

24 to 26 hours determined under the present culture conditions reflects that of 

other workers. 

The plating efficiency of these HTC cells, which is a measure of the cells' 

ability to survive the subculture process, showed some variation over the course 

of the study from approximately 40 to 80%. Thompson et al. (1966) reported a 

figure of 50 to 100%. Some variation in plating efficiency is to be expected since 

it is clearly dependent on the culture procedure and conditions. For example 

when. enzymes are used to detach cells from the substrate slight variations in 
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enzyme concentration or the time of exposure of the enzyme to the cells can 

lead to increased cell surface damage, which will reduce cell viability and hence 

the plating efficiency that is recorded. The fact that enzymes, often when used 

in conjunction with chelating agents such as EDTA, can alter cell viability has 

been shown by a number of workers (Anghileri and Dermietzel, 1976). Similarly 

plating efficiencies are also much higher when cells in exponential growth are used 

rather than cells from a resting population (Pharmacia Fine Chemicals, 1981). 

In the present study an increase in plating efficiencies was observed when a 

Coulter Counter was employed for cell counting purposes. The Coulter Counter 

provided a much more rapid method for counting cells than the alternative 

haemocytometer method with the result that cells were exposed to stressful sub

culture conditions for shorter periods of time, and this could account for higher 

plating efficiencies. 

The modifications made to the original Mosmann method (1983) for assessing 

cell viability have provided a reliable, sensitive and rapid means of assessing cell 

number in 24 well plates, provided absorbance values do not exceed a specified 

value. 

Mosmann {1983) reported a linearity between cell number and amount of 

formazan generated in 96 well plates for up to 5 x 104 cells/well using a mouse 

lymphoma cell line. Green et al. (1984), using Mosmann's method with hu

man and mouse fibroblasts, again with 96 well plates, reported .linearity up to 

2 x 105 cells/well tho~gh at cell concentrations greater than 3 x 104 /well the 

cultures were overcrowded and did not maintain an even monolayer configura

tion. In the present system where there is a larger surface area available for 

growth (2.01cm2 as opposed to 0.28cm2 in 96 well plates) linearity exists for up 

to 2.1 x 105 cells/well. However, linearity in terms of number of cells per unit 

area are comparable in the 3 assay procedures. The study of Mosmann (1983) 

indicates linearity up to 1.7 x 104 cellsjcm2, and the study of Green et al. (1984) 

indicates linearity up to 1.07 x 104 cells/ em 2 whilst the current study indicates 

linearity up to 1.24 x 104 cells/ cm2. 

The MTT concentration curve produced in this study reflects that of Deni

zot and Lang (1986), except at higher concentrations of MTT. Whilst l)enizot 
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and Lang found that the amount of formazan produced began to reach a plateau 

above 2mgfml, a decline in formazan production was seen with higher concentra

tions of MTT in the current study. This difference is probably due to a toxicity 

effect of the MTT on the cells in this study since the amount of MTT exposed to 

cells was ten times higher than that employed by Denizot and Lang, even though 

the concentration was the same. 

The optimal incubation period of 3 to 5 hours used with this assay has also 

been adopted by other workers. Mosmann (1983) selected a 4 hour incubation 

period whilst Denizot and Lang (1986) chose a shorter incubation period of 3 

hours for their standard procedure to reduce the time of the assay procedure, 

since they found that there was a gradual increase in formazan production with 

time which levelled off after 3-4 hours. 

An important point to bear in mind is that whilst this assay, developed for 

use with plates, measures the metabolic activity of the cells, the clonogenic assay 

that is used with flasks measures the reproductive ability of cells. Thus it is likely 

that different results will be obtained from the two assay procedures under similar 

experimental procedures, in which cells are exposed to heat stress, since a cell 

may lose its reproductive ability but still maintain a degree of metabolic activity. 

The choice of assay should depend on the nature of the information sought. Also, 

when plates are being used as the experimental system, care must be taken to 

ensure.that .. iiJ.l cells ~re i~1.the exponential phase of _growth at the time of the 

assay. If control cells from experiments are allowed to enter the stationary phase, 

whilst treated cells continue to grow, and results are interpreted on the basis of 

differences in absorbances between control and treated cells, serious inaccuracies 

may result. 

The major reason for the rather lower than expected yields of cells from 

the microcarrier cultures appeared to be because not all the microcarrier beads 

supported cell growth. Clearly the key to achieving maximum cell yields from 

microcarrier cultures is to ensure that all microcarriers bear cells from the very 

beginning of the culture since transfer of cells from one microcarrier to another 

occurs fairly infrequently during the culture period as a result of constantly 

stirring the microcarrier suspension. Although cultures were initiated in reduced 
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volumes of medium to enhance the chances of cells coming into contact with 

all microcarriers it would seem that further measures are called for to increase 

cell yields. Some workers have found that variations in the inoculation density 

can improve cell yield. For example, Horng and McLimans (1975) reported that 

approximately 5 cells/microcarrier was the ideal inoculation level when using 

anterior calf pituitary cells to ensure maximum utilisation of the microcarriers. 

With human fibroblasts this number rises to approximately 10 cells/microcarrier 

(Pharmacia Fine Chemicals, 1981). Thus it could well be, that higher yields of 

HTC cells from microcarrier culture could be achieved in the future by increasing 

the inoculation density to a value above the 5 cells/microcarrier that is currently 

used. The number of cells attaching to microcarriers and hence cell yield will 

also be affected by culture conditions. For example since pH influences cell 

survival, attachment, growth and function, maintaining the correct pH is central 

to obtaining optimal cell growth. A decrease in pH is one of the most common 

causes of poor results in microcarrier culture and undoubtedly had an effect 

in the current study, since cultures were maintained in closed culture systems 

where pH was difficult to maintain at a constant level. Further studies involving 

microcarrier culture should pay even more attention to optimising conditions 

during all stages in the growth of the culture, since deviations at any stage 

usually have a dramatic effect on final cell yields. 

The cryopreservation technique adopted in the current study involving the 

use_ of glycerol and foet~l bovine s~_rum has proved to be very successful for the 

storage ofHTGcells in a viable state. Although DMSO was found to work equally 

well as cryoprotectant it was not employed due to reports of its potential for 

stimulating gene activation and differentiation effects in certain cell lines (Rud

land et al., 1982). Successful freezing of HTC cells in growth medium/glycerol 

(95: 5, vjv) has been reported by Thompson et al. (1966). However, the present 

attempt to develop an analogous method of freezing employing a different type of 

growth medium to that used by Thompson and a slightly higher level of glycerol 

(8% as opposed to 5%) did not prove useful in the current study and was not 

adopted. 
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ChapteX" HJI 

Th.ermaJ §e:n§iiiiviiy of HTC cells and the Effects of Fatty Add 

§upplementa~tion 

3.1 Jint:Iroduction 

Mammalian cells experience heat injury and heat death at temperatures only 

slightly above 40°C. As a result the effect of hyperthermia at 41 °C-46°C on cell 

viability has been studied extensively in vivo and in vitro because of its potential 

in the treatment of human cancers. 

Whilst mammalian cells are known to suffer heat injury and heat death at 

temperatures only slightly above their normal range and whilst a number of cell 

culture studies have shown tumour cells to be more thermosensitive than their 

normal counterparts (Giovanella et al., 1976), the mechanism of cell death is not 

well understood. Part of the problem is that temperature has an all pervasive 

influence on cellular structures which makes it difficult to identify the primary 

sites of lesion. All the major cellular structures have been implicated as having 

a significant role in heat injury at one time or another (Roti Roti, 1982). 

However, increasing attention is being focused on membranes_ as a site for 

hyperthermic damage to cells since heat has been shown to alter many proper

ties of the plasma membrane. Changes have been reported in the permeability 

and transport of many compounds. For example, inhibition of N a+ -dependent 

amino acid transport has been observed {Lin et al., 1978), the active transport of 

N a+ and K+ appears to be inhibited and there is loss of K+ (Burdon and Cut

more, 1982). The binding of growth factors and mitogens to plasma membranes 

{Magun and Fennie, 1981) and the surface morphology of plasma membranes 

(Basset al., 1978; Borrelli et al., 1986) has been shown to be altered as a result 

of hyperthermic treatment. 

Morphological evidence suggesting the importance of the plasma membrane 

as a site for hyperthermic damage comes from a number of sources. Fajardo et 
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al. (1980) observed the heat destruction of the plasma membrane in a tumour 

cell line, whilst a discontinuous plasma membrane has also been observed by 

Schrek et al. (1980) in heated lymphocytes. The loss of microvilli (Mulcahy 

et al., 1981) and the formation of blebs (Bass et al., 1978; Kapiszewska and 

Hopwood, 1986)a..te. a common observation in heat damaged cells. Bass et al. 

{1982) demonstrated a good correlation between membrane blebbing and cell 

killing for hyperthermic exposures at 42°C and 43°C. Similar work by Borrelli et 

al. (1986) has demonstrated a direct correlation between the degree of membrane 

blebbing and cell lethality when synchronous G1 CHO cells are heated at 45.5°C 

for 3-20 minutes. 

The significance of membranes as a possible target for cellular heat damage 

was emphasised by Bowler et al. (1973) from work on ectothermal animals. It 

has long been known that the heat death points of ectotherms are dependent on 

the acclimation history of the animals (see Cossins and Bowler, 1987). However, 

what is also evident is that during thermal acclimation ectotherms remodel their 

membrane lipids (Johnson and Roots, 1964; Cossins et al., 1977; Hazel, 1979). 

Cossins et al. (1977) have shown that changes occur in the 'fluidity' of goldfish 

brain synaptosomal membranes that parallel the changes in lipid composition. 

Similar relationships have been reported for Tetrahymena membranes by Martin 

and Thompson (1978). This remodelling of phospholipid fatty acid composition 

during thermal acclimation in ectotherms is believed to be an adaptive response, 

with the incorporation of unsaturated fatty acids in the cold resulting in an 

increase in disorder in the bilayer which serves to compensate for the direct 

ordering caused by the lower temperature. Sinensky (1974) has coined the term 

'homeoviscous adaptation' to describe this phenomenon. One feature of the 

less ordered bilayer in the cold acclimated condition is that it is likely to suffer 

greater perturbation by high temperatures than the more ordered membranes 

from warm acclimated cells. Evidence for this comes from a number of studies. 

For example, Esser and Souza (1974) found a correlation between membrane 

fluidity and thermal death in Bacillus stearothermophilus whilst Cossins et al. 

{1981) showed that the Na+ jK+ ATPase in the synaptic membranes from warm 

acclimated goldfish was more thermally stable than the same enzyme in cold 

acclimated membranes (Bowler, 1987). This latter study in particular suggests 
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that the thermostability of membrane proteins is affected by the level of 'fluidity' 

of the bilayer. 

The cells of most mammals do not experience changes in temperature as

sociated with season and so may not possess the same range of compensatory 

adaptations observed in ectotherms. However, there is some evidence that Chi

nese hamster ovary cells in culture show a similar capacity to alter their thermal 

resistance depending on culture (growth) temperature (Culver and Gerner, 1982) 

although it is not clear whether corresponding changes in membrane composi

tion and physical state occur and are responsible for the altered sensitivity. It 

is, however, possible to alter the composition of the membrane phospholipids of 

cultured mammalian cells by dietary means (Gerner et al., 1962; Spector et al., 

1979; Konings, 1985). Clearly if the plasma membrane is an important site of 

hyperthermic damage in mammalian cells then any changes produced in its mem

brane lipid composition might well be expected to influence events that occur 

under heat stress. 

Early studies of the lipid nutrition and metabolism of cultured cells indicated 

that most cultured cells were capable of synthesising essentially all of the lipids 

they require from water soluble compounds present in the culture medium. How

ever, since the culture medium typically contained serum which is rich in lipids, 

including lipoproteins and free fatty acids, de novo synthesis of lipids was found 

to be inhibited by exogenous lipids taken up from the culture medium. Initially 

it was thought that because phospholipids exist within membranes, their fatty 

acid composition would be closely regulated and unlikely to reflect the composi

tion of the lipids contained in the culture medium. However, Geyer et al. (1962) 

working with mouse L fibroblasts soon showed that this was not the case. These 

workers demonstrated that in the presence of chemically defined medium, L fi

broblast phospholipids were devoid of polyunsaturated fatty acids such as 18 : 2. 

However, when these cells were exposed to dialysed serum in the culture medium 

for 144 hours the phospholipids were found to contain approximately 15% of 

18 : 2 which replaced 18 : 1. Since 1962, the recognition that fairly extensive 

membrane lipid modifications could be produced by varying the composition of 

the culture fluid has led to a great deal of work which has utilised this approach 
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to study the role of lipid composition in membrane function and the response of 

cells to hyperthermic treatment. 

The use of cultured cells offers the capability of modifying fatty acid composi

tion of membrane lipids more rapidly than can be achieved in vivo, that is within 

a few hours rather than days. Also, since the cells derive from the same pop

ulation, the individual variation experienced in dietary studies can be avoided. 

In addition, changes in fatty acid composition that can be brought about in cell 

culture may often be of much greater magnitude than can be achieved by dietary 

means, as the processing of ingested fatty acids that occurs during the synthesis 

of plasma lipoproteins reduces the extremes of variation that can be achieved in 

vivo. 

Mammalian cells in culture appear to have a virtually unlimited capacity 

to incorporate and accumulate exogenous unsaturated fatty acids (Rosenthal, 

1987). There is no apparent regulatory mechanism to limit fatty acid uptake, 

instead excess fatty acyl groups are stored as triacylglycerols (Rosenthal, 1980). 

Accumulation of cytoplasmic lipid droplets can reach massive proportions causing 

cells to round up and even rupture (Geyer, 1967). However, minute fat droplets 

are often present in the extranuclear space of cultured cells even in the absence of 

an exogenous fatty acid supply, and most cells will tolerate a moderate increase 

in triacylglycerol reserves without any apparent deleterious effects. Studies have 

shown (Schneeberger et al., 1971) that the excess neutral lipid droplets readily 

disappear when cellsare subse_quently cultured in medium without exogenous 

fatty acid. 

Saturated fatty acids, on the other hand, often cause toxicity effects at con

centrations within the medium which are non-toxic for unsaturated fatty acids 

(Urade and Kito, 1982). This toxicity has been attributed to accumulation of 

crystalline solid neutral lipids ( Goto et al., 1986) or to increased saturation of 

membrane phospholipids with a resultant damaging effect on membrane physical 

state (Doi et al., 1978). 

Three major problems were anticipated during early attempts to achieve net 

replacements of fatty acids in membranes. Firstly, it was thought that cells 

would possess adequate enzymic mechanisms to control fatty acyl composition 
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so that intervention would be needed to prevent this. Secondly, it was felt that 

since most cultured cells required serum, which contains a variety of lipids, this 

would limit the extent to which lipid composition of the incubation medium 

could be varied. Thirdly, it was thought that the toxic nature of free fatty acids 

that had been observed by a number of workers (Geyer, 1967; Moskowitz, 1967) 

might cause unacceptable levels of damage to cells. As a result the early studies 

with lipid supplements were performed with mouse LM cells, a variant of the L 

fibroblast that could be grown in a serum-free medium. Fatty acid biosynthesis 

was inhibited by the presence of a biotin analogue, whilst the likelihood of fatty 

acid toxicity was reduced by using various fatty acid esters of Tween. In this 

way large differences in the fatty acid composition of the LM cell phospholipids 

were produced (Williams et al., 1974). In other experiments , again with mouse 

fibroblast LM cells, the linoleic acid content of phospholipid fatty acyl groups was 

raised from undetectable levels to 37% by supplementing a serum-free medium 

with linoleic acid bound to albumin (Glaser et al., 1974). Fatty acyl modifications 

have also been produced in 3T3 cells by growing them in a culture medium 

containing lipid depleted serum, supplemented with specific fatty acids (Horwitz 

et al., 1974). 

However, it has since become apparent that although these methods can be 

useful in certain cases, many diploid cells cannot be grown in adequate amounts in 

either a serum-free or lipid-depleted medium and in any case a wide variety of cells 

will readily incorporate net amounts of exogenous fatty acid into their membrane 
- - -

phospholipids in the presence of serum. For example, extensive modifications 

in human skin fibroblast phospholipid fatty acyl chain composition have been 

produced by adding specific fatty acids to the usual growth medium containing 

10% (vjv) foetal bovine serum (Spector et al., 1979). In addition, it has been 

found that overt toxicity can be avoided fairly easily by using low amounts of 

fatty acids. 

The extent of fatty acyl chain modifications of membrane lipids is known to 

depend on the time of exposure to the supplemental fatty acid and its concen

tration. For example, when Y79 retinoblastoma cells were supplemented with 

30J.LM docosahexaenoic acid (22 : 6) for various times up to 72 hours, the largest 

phospholipid fatty acyl compositional changes occurred during the first 48 hours. 
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Furthermore, in 72 hour exposures to a range of 22 : 6 concentrations, maximum 

enrichment with 22 : 6 in membrane lipids was produced with supplemental 

concentrations of less than 40J.LM (Spector and Yorek, 1985). 

Reports by a number of workers have suggested a correlation between ther

mosensitivity and membrane fatty acid composition. Much of the early work 

concentrated on the use of bacterial cells. Using the Escherichia coli mutant 

K1060, which is defective both in its ability to synthesise and to degrade un

saturated fatty acids, Yatvin (1977) demonstrated that cells enriched with the 

polyunsaturated fatty acid linolenic acid (18 : 3) were more susceptible to ther

mal killing than were cells enriched with the monounsaturated acid, oleic acid 

(18: 1). In addition, Overath et al. (1970) found that the 18 : 3 supplemented 

E.Coli K1060 cells were incapable of growth at temperatures greater than 40°C, 

whereas the 18: 1 supplemented cells could grow at temperatures up to 45°C. 

Similar observations have been made with mammalian cells. Hidvegi et al. 

(1980) working with murine P388 cells showed that when such cells were grown 

in animals fed a diet rich in polyunsaturated fatty acids, they were more ther

rnosensitive than cells grown in animals fed a diet rich in saturated fatty acids. 

Konings (1985) modified mouse fibroblast LM cells with respect to the content of 

their polyunsaturated fatty acyl chains of the phospholipids and showed not only 

that increased levels of polyunsaturated fatty acids in the plasma membrane led 

to enhanced thermosensitivity, but that they also led to an increase in the fluidity 

of the membranes; a finding that has been reported by other workers (King et 

al., 1977; Yatvin, 1977; Guffy et al., 1982) and has led to the hypothesis that the 

fluidity of membranes might be a major factor contributing to the death of cells 

exposed to hyperthermia. This hypothesis is, however, disputed by a number of 

workers, in particular Lepock and collaborators (Lepock et al., 1981; Massicotte

Nolan, 1981; Lepock, 1982, Lepock et al., 1983, 1988, 1989) who suggest that 

membrane protein denaturation rather than membrane lipid fluidity is the key 

factor leading to hyperthermic cell death as shall be discussed in Chapter 4. 

This chapter has a number of aims. Firstly, to characterise the hyperthermic 

response of HTC cells over a range of temperatures using the two assay procedures 

for cell survival described in Chapter 2. Characterisation of the hyperthermic 
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response will involve a consideration of factors such as the presence of polyene 

antibiotics {Hahn et al., 1977), serum (Van Dongen and Van Wijk, 1986), pH 

(Nielsen and Overgaard, 1979) and cell passage number which have been reported 

to influence the hyperthermic response of cells. Secondly, surface morphology 

studies of heated cells will be considered in an attempt to correlate membrane 

surface modifications with hyperthermic treatment. Thirdly, it aims to establish 

a suitable procedure for supplying fatty acids to HTC cells. Finally, it aims 

to establish whether there is any evidence for a correlation between fatty acid 

supplementation of HTC cells and their thermosensitivity. 

3.~ Materials axn.d Methodls 

3.2.1 Hyperthermic Studies 

(a) Flasks: Clonogenic assay 

Cells {3 x 105) were seeded into 10ml of growth medium in 25cm2 flasks 

on day 0 and incubated at 37°C under a humid atmosphere of airjC02 {19 : 

1, vjv). In the absence of supplementation, the medium was changed in the 

flasks the following day (day 1) and. on day 3. In supplementation studies cells 

were exposed to various concentrations of FFA supplemented medium on either 

day 1, day 2 or day 3 depending on the period of supplementation required. 

In both cases exponentially growing cells were harvested on day 4 by exposure 
- - -· - - - --- ---

to EDTA solution as described in Chapter 2, Materials and Methods, section 

2.2.2(a). A known number of cells (typically 200/flask) were then seeded into 

10ml of medium lacking fungizone (Hahn et al., 1977) 'heating medium' in 25cm2 

flasks and the cells were allowed to attach to the flask surface at 37°C for three 

hours. 

The flasks were then sealed and thermoequilibrated in a water bath at 37°C 

before rapid transfer to a water bath at the hyperthermic temperature (±0.1 °C). 

Equilibration to the higher temperature was complete within 5 minutes and this 

lag period was included in the total heating time. After heating, the unsealed 

flasks were returned to the 37°C incubator. The medium was replaced 1, 5 and 

8 days later and on day 9 the cells were fixed and stained in trypan blue and 
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the colonies counted as described in Chapter 2, Materials and Methods, section 

2.2.3(d). 

(b) Plates: Colorimetric assay 

Cells (5 x 103 /well) were seeded into 24-well plates in lml of growth medium 

on day 0 and incubated at 37°C under a humid atmosphere of air/C02 (19 : 

1, vjv). In the absence of supplementation, the medium was changed on day 

1. In supplementation studies, cell,s were exposed to various concentrations of 

linoleic acid-supplemented medium on day 1, at a time calculated to ensure a 36 

hour supplementation period prior to heat treatment. In both cases, the medium 

was replaced on day 3 with medium containing lOmM Hepes pH 7.4, but lacking 

fungizone. The plates, containing exponentially growing cells were returned to 

the incubator to gas for 20 minutes. After gassing the plates were sealed and 

thermoequilibrated at 37°C before rapid transfer to a water bath set 1.5°C higher 

than the required temperature for 5 minutes before final transfer to a water bath 

at the desired hyperthermic temperature (±0.1 °C). This protocol reduced the 

lag time to approximately that determined for flasks. After heating, unsealed 

plates were returned to 37°C. The medium was changed the following day (day 

4) and cell survival was assessed on day 6 by the colorimetric assay described in 

Chapter 2, section 2.2.4(b ). 

3.2.2 Surface Morphology Studies of Heated Cells 

Cells (3- x 105) we~~ seeded into 25cm.2 flasks containing glass. coverslips on .. 

day 0 in 10ml growth medium, and incubated at 37°C under a humid atmosphere 

of airjC02 (19 : 1, vjv). The medium was changed on day 1. On day 3, after 

replacing the medium with heating medium and gassing for 20 minutes in the 

37°C incubator, the flasks were heated as described in section 3.2.l(a), for various 

periods of time up to 80 minutes at 43.5°C. 

Following treatment, the cells on coverslips in each flask were washed once 

with lOml calcium and magnesium-free phosphate buffered saline ( Ca2+ -, M g2+

free PBS). Fixation techniques were based on the methods of Karnovsky (1965). 

Details of the fixative are given in Chapter 2, Materials and Methods, section 

2.2.2(b). The Ca2+-, Mg2+-free PBS used to wash the cells was replaced with 
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10ml of Karnovsky fixative, containing glutaraldehyde 2.1% (w/v) in sodium 

cacodylate (0.08M), and left for 1 hour at 4°C. The cells were then post-fixed on 

the coverslips in the 25cm2 flasks in lOml osmium tetroxide (1%, wfv) in sodium 

cacodylate (0.1M), dehydrated through the C02 critical point and sputter coated 

with gold palladium by the methodology described in Chapter 2, Materials and 

Methods, section 2.2.2(b). The samples were then examined in a Stereoscan 800 

scanning electron microscope. 

3.2.3 Fatty Acid Supplement§ 

Culture medium was supplemented with either linoleic acid (18: 2) or stearic 

acid (18 : 0) which were obtained as their sodium salts in a> 99% pure form and 

were added to the newborn bovine serum used to prepare the growth medium. 

Stock solutions of free fatty acid (approximately 2mM final concentration) in 

newborn bovine serum (NBS) were prepared. The free fatty acid sodium salt 

was dissolved in a small volume of distilled water (3ml/50ml of supplement 

prepared). Dissolution of the salt was performed at 40°C for linoleic acid and 

at 80°C for stearic acid. Once the salts had dissolved, an appropriate volume 

of NBS warmed to 40°C was added with mixing, at 40°C. The resulting NBS

free fatty acid solution was sterilised through a 0.22J.Lm filter and then aliquots 

(1ml), in glass vials, were gassed with nitrogen, sealed and stored at -20°C until 

required. 

Supplemented medium was prepared by substituting normal NBS. in the 

growth medium with an appropriate volume of NBS that had been supplemented 

with 2mM free fatty acid (NBS-FFA). The water content of the NBS-FFA was 

compensated for when preparing growth medium by adding additional NBS. 

3.2.4 Free Fatty Acid Assay 

Free fatty acid assays of normal and supplemented NBS were carried out by 

the method of Antonis (1965) with some modifications. The method is based 

on the production of the copper salt of the fatty acids in chloroform followed 

by an estimation of the copper content of the organic phase by reaction with 

zinc dibenzyldithiocarbamate (ZnDDC). Silicic acid (1.2 ± 0.1g), that had been 

activated at l10°C for 1 hour prior to use, was slurried with 7.5ml isopropyl ether 
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in capped vials. The isopropyl ether was passed through a column of activated 

alumina prior to use to remove peroxides. Serum (0.3ml) or serum-FFA (0.3ml) 

was added to the vials and the mixture was mixed vigorously for 1.5 minutes. 

The silicic acid acted as a phospholipid adsorbant, removing phospholipids which 

were a potential source of interference, without affecting the levels of free fatty 

acids. Once the contents of the vials had settled, a known volume ( 4ml) of the 

isopropyl ether supernatant was removed and transferred to glass centrifuge tubes 

which had been previously 'siliconised' using dimethyldichlorosilane (0.5%, vjv) 

in heptane. The isopropyl ether was evaporated to dryness under nitrogen in a 

40°C water bath and the residue in each tube was redissolved in 5ml chloroform. 

'Copper reagent' (2.5ml) consistingof3.8% (wjv) copper sulphate, pentahydrate, 

0.45M triethanolamine and 0.05M acetic acid in final concentrations was added 

immediately and the tubes mixed thoroughly for 45 seconds. The tubes were 

then spun at low speed for 10 minutes. After spinning, the excess upper aqueous 

phase was carefully removed by aspiration with a pasteur pipette. A 3ml aliquot 

of the chloroform extract was placed into a clean test tube and the colour was 

developed by the addition of 0.5ml of ZnDDC (0.3%, wjv) in chloroform. The 

tubes were mixed and the absorbance read at 440nm after 15 minutes at room 

temperature. 

Standard curves over the range 0-0.6pmoles palmitate were produced using 

l2mM palmitic acid in chloroform and PBS to act as aqueous phase. Assays 

were performed in duplicate; blank assays and standard assays being included in 

each series of analyses. 

The 'copper reagent' and ZnDDC reagent were stored in the dark at 4°C 

and replaced every 2 months. 

3.2.5 Fatty Acid Toxicity Studies 

(a) Flasks 

Cells (3 x 105 /25cm2 flask) were seeded into lOml of growth medium contain

ing either 5% (vjv) or 10% (v/v) serum on day 0 and incubated at 37°C under 

a humid atmosphere of airjC02 (19 : 1, vjv). The medium was changed the 

following day. To produce modifications in membrane fatty acid composition, 
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cells were exposed on day 2 to growth medium containing either 5% (vjv) or 

10% ( v Jv) serum, supplemented with varying concentrations of linoleic acid or 

stearic acid, for varying time periods up to 48 hours. 

The effect of fatty acid supplementation in flasks was monitored in terms of 

cell growth which was assessed by cell counts obtained with the Coulter Counter 

as described in Chapter 2. 

(b) Plates 

Cells (5 x 103 /well) were seeded into 24-well plates in lml of growth medium 

on day 0 and incubated at 37°C under a humid atmosphere of airjC02 (19 : 

1, vjv). The cells were exposed to linoleic acid supplemented growth medium 

the following day for varying periods up to 72 hours. In both plate and flask 

supplementation procedures the supplemented medium was replaced every 24 

hours to prevent depletion of the fatty acid supplement. 

The effect of fatty acid supplementation in plates was monitored in terms of 

cell number, which was assessed by the colorimetric assay described in Chapter 

2, Materials and Methods, section 2.2.4(b ). 

3.2.6 Cytoplasmic Lipid Droplet Studies 

Cells ( 5 x 103 /well) were seeded into 24-well plates containing glass cover

slips in lml of growth medium on day 0 and incubated at 37°C under a humic! 

atmosphere of air/C02 (19 : 1, vjv). The medium was changed the follow

ing day, and on the second day after seeding the cells were exposed to 80fLM 

linoleic acid supplemented growth medium. Accumulation of cytoplasmic lipid 

droplets, produced by the uptake of the fatty acid by cells on coverslips was 

monitored microscopically. The study employed an inverted Nikon Diaphot mi

croscope that was fitted with differential interference contrast Normarski optics. 

Coverslips were placed on the microscope stage in perspex holders containing 

growth medium previously warmed to 37°C with or without supplement and 

photographed with a Nikon camera. 

Disappearance of the excess neutral lipid droplets was also monitored mi

croscopically after returning cells to normal growth medium following periods of 
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supplementation. 

Serum is rich in lipids including lipoproteins and free fatty acids and is highly 

variable in its composition with respect to hormones and other undefined sub

stances (Olmsted, 1967; Honn et al., 1975). In consequence, preliminary inves

tigations were undertaken to determine the conditions that allowed the removal 

of, or a reduction in the need for serum for cell survival and growth in culture, by 

the use of defined culture medium (DCM) and delipidated serum. The purpose 

of such investigations was to produce a culture medium that could be supple

mented with particular fatty acids to produce alterations in the fatty acid profile 

of membrane phospholipids of the cells. 

Attempts to adopt techniques reported by other workers for the growth of 

cells in serum-free medium presented a number of problems. For example, the 

'improved minimal essential medium zinc option' type of DCM (Richter, 1970; 

Thompson et al., 1975) yielded zero plating efficiency and so was not further used. 

The use of delipidated serum proteins (Rothblat et al., 1976), which avoids in

troducing the wide spectrum of free fatty acids and other lipids normally present 

in most types of serum, was not successful since these delipidated serum proteins 

were highly insoluble in the culture medium at the recommended level of8mgfml. 

Lyophilised serum proteins (Wood, 1973) were equally insoluble in the culture 

medium. Lipid free serum _(Cham and Knowles, 1976) produced by extracting 

serum with a diisopropyl ether : butanol mixture (60 : 40, vfv) was more suc

cessful in terms of its solubility in culture medium. However, as shown in figure 

3.1, since HTC cells failed to grow successfully in the absence of unprocessed 

serum, the use of delipidated serum proteins could not be pursued. 

Since serum had to be maintained in the culture medium for the successful 

growth of HTC cells an attempt was made to reduce the level of serum normally 

present in the culture medium from 10% (vfv) to 5% (vjv), so that exposure of 

HTC cells to the 'unknown' fatty acid content characteristic of serum would be 

reduced in subsequent supplementation experiments. 

Initially growth of HTC cells did not appear to be markedly affected when 
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Fngunre 3.1 

The effect of medium composition on cell growth 

Flasks were seeded with 3 x 105 cells in lOml of growth medium on day 0 and 

maintained in an incU:ba~or at 3'7°C un-der a humid atmosphere of airjC02 {19: 

1, vjv). The medium was changed on day 1. On day 2 cells wereexposed 

to growth medium containing different levels of newborn bovine serum (NBS) 

and/or lipid~free serum (LFS) as indicated on the graph. The medium was 

changed on day 3 and cell growth was assessed on day 5 by the Coulter Counter 

method described in Chapter 2, Materials and Methods, section 2.2.3(c). 

The points represent individual results derived from 2 flasks in a single ex

periment. 
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the serum level in the culture medium was reduced from 10% (vjv) to 5% (vjv). 

Consequently, supplementation procedures were conducted in grc\vih medium 

conta.i.ning 5% (vjv) newborn bovine serum (NBS) in the ea-rly stages of the 

otudy. Unfortunately however, after a few months of culture, cell grovvth be-· 

gan to deteriorate at 5% ( v / v) NBS levels and serum levels had to be returned 

to 10% ( v fv) in the growth medium. As a result, all thermal sensitivity stud

ies of normal and supplemented HTC cells were conducted in growth medium 

containing 10% (vjv) NBS. 

The vast majority of hyperthermic studies in vitro have been based on dono

genic assays which tend to produce dose response curves of the logarithm of the 

surviving cell fraction versus time at hyperthermic temperature that are similar 

to those obtained after exposure to ionising radiation. Such curves are charac

terised by an initial shoulder followed by a phase of logarithmic cell killing, and 

as a consequence, results are often considered in terms of the two parameters Do 

and Dq (see figure 3.2). In hyperthermic inactivation studies Do describes the 

linear potion of the curve and is the reciprocal of the slope, i.e. the duration in 

minutes at a particular temperature needed to reduce the survival to 1/e (37%) 

of the initial value (Bhuyan, 1979). Dq, which is often referred to as the 'qua

sithreshold dose' is used to describe the size of the shoulder and may be defined 

as the time in minutes from the start of therapy obtained by back extrapolating 

the linear part of the curve to the Log10 %survival = 2 axis (Harris et al., 1977). 

Before the hyperthermic response of HTC cells in terms of the clonogenic 

assay and colorimetric assay were characterised in detail, studies were undertaken 

to ensure that factors other than temperature such as pH, cell passage number 

and the presence of particular medium components etc. were not influencing the 

survival curves obtained. 

Table 3.1 shows the variation in pH of heating medium with and without 

lOm.l\1! Hepes pH 7.4, that occurred over a 3! hour period at 43°C in the ab

sence of cells. It can be seen that whilst the pH values at 43°C do not alter 

significantly from the incubator control values in the case of the flasks, there is 

a difference in the case of the 24-well plates. This difference may arise because 

flasks contained a larger volume of medium (lOml) than the plates (lml/well). 
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Reciprocal of the slope of the linear portion of the survival curve. The dura

tion in minutes at a particular temperature needed to reduce the survival to 

lje (37%) of the initial value. 

Describes the size of the shoulder and is the time in minutes from the start 

of therapy obtained by back extrapolating the linear portion of the survival 

curve to the Log10 %survival = 2 axis. 



Tahlie 3l,Jl 

The influence of temperature on pH values £ecorded in ?.4--wel.l plates 

and 25cm 2 flasks 

Heati.ng medium was prepared in the abseuce or presence of lOmJl;J Hepes, 

pH 7.4. Heating medium without Hepes was added to six 25cm2 flasks (10ml 

/flask). Heating medium with and without Hepes was added to the wells of 

six 24-well plates. After gassing for 60 minutes in the 37°C' incubator under a 

humid atmosphere ofair/C'02 (19: 1, vfv), one flask and plate were maintained 

in the incubator, one flask and plate were maintained at 37°C' in a water bath 

and the remaining plates and flasks were heated at 43°C in a water bath. pH 

determinations were made at the time points stated using a Phillip Harris digital 

pH meter. The results represent data from a single experiment. 

Temperature Time pH value 

(OC') (mins) Flask Plate Plate 

minus Hepes minus Hepes plus Hepes 

37 Incubator 210 7.41 7.40 7.43 
I 

37 Bath 210 7.42 7.65 7.60 

43 Bath 30 7.48 7.95 7.71 

43 Bath 90 7.55 7.84 7.67 

43 Bath 150 7.47 7.84 7.61 

43 Bath 210 7.44 7.89 7.57 



The addition of 1 OmM He pes buffer, pH 7.4, reduced the extent of the pH change 

that occurred and was consequently always added to heating medium used in 

plate hyperthermic studies. 

Figure 3.3 shows the effect of heating cells in flasks over a range of tempera

tures in the absence or presence of fungizone (2.5p,gfml) in the growth medium. 

Regression lines fitted to the linear portions of the survival curves suggest that 

the presence of fungizone did increase the thermal sensitivity of the cells. This 

agrees with Hahn et al. (1977), especially at higher temperatures. For example, 

at 45°C the value of Do is decreased by approximately 10 minutes by the pres

ence of fungizone. As a result, fungizone was excluded from growth medium that 

was used in subsequent flask and plate heating experiments. 

Figure 3.4 shows the results of a single experiment run to monitor the effect 

of serum concentration on the hyperthermic response of cells heated in flasks at 

43.5°C. Regression lines fitted to the linear portions of the survival curves (with 

regression correlation coefficients, lrl > 0.83) suggest that the serum level does 

affect the thermal sensitivity of cells with lower serum levels leading to an in

creased sensitisation to heat. In all subsequent experiments that were conducted 

cells were routinely grown and heated in growth medium containing 10% (v/v) 
NBS. 

Figure 3.5 shows the effect of passage number on the hyperthermic cell sur-

- _viva! levels-recorded-at-42°C-and-43~C -from-duplicate flasks -run-in-sin-gle ex~ 

periments. It is evident that a temperature of 42°C does not markedly affect 

cell survival. In addition, both at 42°C, and also at 43°C where cell survival 

is reduced by approximately 70% after 90 minutes, it can be seen that passage 

number does not appear to have a marked effect on cell survival whilst cells that 

had been subcultured a total of 19 times (passage 19 cells) appear to be slightly 

less sensitive to heat than cells that had been subcultured a total of 9 times 

(passage 9 cells). Statistical analysis reveals that this difference is not signifi

cant. However, since only two measurements were made at each time point, to 

avoid the possibility of variation in results being due to passage number, sub

sequent hyperthermic studies were restricted to cells that had been subcultured 

fewer than 10 times in the laboratory. 
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lFig1llnre 3.:31 

The effect of ftingizotJ.e on the thetmaJ s(.msitivit'yofHTC cells 

Exponenti<i.lly growing HTC cells were h~ryested jxsi~g0EDTA solution and 

200 tells/25dm2 fl,<l~k~ere seeded into lOml of growth II1ediutil in the;ptesence .or 

ahsenc;e offungizone (2.5pgfml). Flasks were incubated at :woe u:qder a humid 

atmosphere of air /C02 ( 19 : 1' vI v) for three hours and then sealed and heated 

at various temperatures (37°C to 45°C) for various periods of time up to 100 

minutes. Following heating, unsealed flasks were returned to the 37°C incubator. 

The medium was replaced 1, 5 and 8 days later with normal growth medium and 

cell survival was assessed on day 9 by the clonogenic assay described in Chapter 

2, section 2.2.3(d). 

The data points represent mean values derived from two flasks in a single 

experiment run over the temperature range. Best fit regression lines have been 

fitted to the linear portions of the survival curves using individual flask results 

and the straight line equation y = a + bx. 

Correlation coefficients of the best fit regression lines and values of Do are 

given below. 

Temperature Do (mins) Correlation coefficient-

without with without with 

fungi zone fungizone f~~gi~()ne~ fungi~ one 

155,0 128~2 --mt8n -.0~88_3 

44 30:0 29A ~0:875 --0.92-9 .• 
c -~ ·.' -.-

::--.;-_ 

44:5 19..7 18:9 -0.9'16 ~0.999~ 
.---§_ .£ 

·' 

45 2~,2- 12;5 -0.'998 ~0;88~5'- .-
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Fng11.1nre 3A 

The effect of serum on 'the thermal sensitivity o£HTC cells 

Exponentially growing H'l'C cells- cultured, in gr_mvth Jireciiurn containll!g ei

ther 5% (vfv} or 10% (:l.l/v}nE!whot~ bovfne·ser:~m (NBS) were ha:rves~~d u~"' 
ing EPTA. soluti()n ~a,ild -20-0 cells /25cin 2 fl~k were seed~d :jnto · lOml of heating 

medium containing either 5% ( vjv) or Hi% (v fv) NBS asindicat~d on the gr~ph. 
Flasks were incubated at 37°C under a humid atmosphere of air/C02 (19 : 

1, vfv) for three hours and then sealed and heated at 43.5°C for various periods 

of time up to 100 minutes. Following heating, unsealed flasks were returned to 

the 37°C incubator. The medium was replaced 1, 5 and 8 days later with normal 

growth medium and cell survival was assessed on day 9 by the clonogenic assay 

described in Chapter 2, section 2.2.3( d). 

The data is derived from a single experiment. Best fit regression lines have 

been fitted to the linear portions of the survival curves using the straight line 

equation y = a + bx. 
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JF'iguure 3.5 

The effect of passil,ge number on the·thermalsensitivity of HTC ce]Js 

Expon_eiitially ~grqwing a:TC cells (pass(l.ge 8 and passage 18) were harvested 

u~ing _EDTA solutfo~_an_~ 200 <;~l_ls/25~mi,fi¥k were se~~ed:into l!Oinfofheatin.g 

medium a~d incu}>ated cit 37°C uii~er ·a humfd :atmo~phere of ait[C(;)2 ._(i9 : 
1, vfv) for three hours. After sealing( flasks-were heated at 426Cor 43°C for 

varioqs periods of time up to ·wo minutes·. Following heating, unsealed flasks 

were returned to the 37°C incubator. The medium waS replaced 1, 5 and 8 

days later with growth medium and cell survival was assessed on day 9 by the 

donogenic assay described in Chapter 2, section 2.2.3( d). 

The bar chart shows the mean values derived from two flasks at each time 

point in a single experiment at each temperature. 
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Having 'optimised' hyperthermic conditions as far as possible, a morpholog

ical study of HTC cells heated in flasks on glass coverslips at 43.5°C for various 

times up to 80 minutes was conducted. The results of the study are shown in 

figure 3.6. Figures 3.6(a) to (f) show low power surface views of monolayer HTC 

cells during the heating process. Under normal culture conditions (figure 3.6( a)) 

it can be seen that the cells spread out over the substrate surface as a fairly 

flat, even layer with little evidence of cellular boundaries between adjacent cells. 

After 15 minutes at 43.5°0 (figure 3.6(b)) it is evident that cells are beginning 

to separate from each other. Over the next 55 minutes (figures 3.6( c), (d) and 

(e)) this separation continues and cells start to round up so that by 70 minutes 

(figure 3.6( e)) the originally continuous sheet of cells consists of well separated 

rounded cells. By 80 minutes (figure 3.6( f)) cells are also beginning to show signs 

of detaching from the substrate surface. 

Figures 3.6(g) to (1) show high power surface views of cells under the same 

conditions. Under normal culture conditions (figure 3.6(g)) the cell surface is 

covered with numerous microvilli and cells exist in close association with sur

rounding cells. After 15 minutes (figure 3.6(h)) whilst cell surfaces still bear 

microvilli, the cell boundaries are becoming evident as cells start retracting cel

lular processes as they round up. By 30 minutes (figure 3.6(i)) there is obvious 

cell separation, whilst at 60 minutes (figure 3.6(j)) the rounded nature of many 

of the cells is apparent. At this stage cell surfaces are still characterised by the 

presence of microvilli. However, as heating continues these microvilli are lost 

(figure 3.6(k)) and by 80 minutes (figure 3.6(1)) the cell surface is also charac

terised by the presence of protrusions from the cell surface commonly described 

in the literature as 'blebs'. 

Figures 3.7 and 3.8 show the hyperthermic survival curves generated for HTC 

cells over a range of temperatures from 42.5°0 to 45°0 based on results obtained 

with the clonogenic assay and colorimetric assay respectively. In the clonogenic 

assay, cells were heated in flasks and cell survival was assessed in terms of the 

cells' reproductive ability at 9 days after heating. In the colorimetric assay on 

the other hand, cells were heated in plates and cell survival was measured at 

3 days after heating and cell survival was assessed in terms of the cells' ability 

to cleave MTT (3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide) 
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lFngru1Te J.8 

Surface morphological changes associated with hyperthermic treatment 

of HTC cells 

Flasks containing glass r.overslips were seeded with 3 x 105 celb in 10ml 

of medium on day 0 and maintained in an incubator at 37°C under a humid 

atmosphere of air/COz (19: 1, vjv). The medium was changed on day 1. On 

day 3 the cells on coverslips were heated at 43.5°C for various periods of time up 

to 80 minutes and processed as described under Materials and Methods, section 

3.2.2, for examination in a Stereoscan 800 scanning electron microscope. 

Low power surface views 

(a) Control HTC cells 

(b) 15 minutes at 43.5°C 

(c) 30 minutes at 43.5°C 

(d) 60 miuutes at 43.5°C 

(e) 70 minutes at 43.5°C 

(f) 80 minutes at 43.5°C 

The bar in each micrograph represents 20pm. 

High power surface views 

(g) Control HTC cells 

(h) 15 minutes at 43.5°C 

(i) 30 minutes at 43.5°C 

(j) 60 minutes at 43.5°C 

(k) 70 minutes at 43.5°C 

(l) 80 minutes at 43.5°C 

The bar in each micrograph represents 4pm. 
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Fiigumre 3. 7 

Hyperthermic cell death of HTC cells heated in flasks, 

assessed by the clonogenic assay 

Exponentia11y growing HTC cells were harvested using EDTA solution and 

200 cellsl25cm2 flask were seeded into 10ml of heating medium and incubated 

at 37° C under a humid atmosphere of air I C02 ( 19 : 1, vI v) for three hours. 

After sealing, flasks were heated at various temperatures (37°C to 45°C) for 

various periods of time up to 100 minutes. Following heating, unsealed flasks 

were returned to the 37°C incubator. The medium was replaced 1, 5 and 8 

days later with normal growth medium and cell survival was assessed on day 9 

by the clonogenic assay described in Chapter 2, Materials and Methods, section 

2.2.3(d). 

The data points represent mean values derived from two flasks. Experiments 

were run twice at each temperature and best fit regression lines have been fitted 

to the linear portions of the survival curves using the straight line equation 

y =a+ bx. 

Correlation coefficients of the best fit regression lines together with Do and 

Dq values, for the higher temperatures are given below. 

Temperature Do Dq Correlation 

(oC) (mins) (mins) coefficient 

43.5 34.0 55 -0.867 

44 31.3 33 -0.871 

45 18.9 20 -0.927 
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Figure 3.§ 

Hyperthermic cell death ofHTC cells heated in 24-well plates, 

assessed by the colorimetric assay 

Exponentially growing HTC cells were harvested using EDTA solution and 

5 x 103 cells/well were seeded into lrril of growth medium in 24-well plates on day 

0 and incubated at 37°C under a humid atmosphere of air/C02 (19: 1, v/v ). The 

medium was changed on day 1. On day 3 the medium was replaced with heating 

medium and after gaSsing for 20 minutes the plates were sealed and heated as 

described in Materials and Methods, section 3.2.1(b), at various temperatures 

(37°C to 45°C) for various periods of time up to 150 minutes. Following heating, 

the unsealed plates were returned to the 37°C incubator. The medium was 

changed the following day (day 4) and cell survival was assessed on day 6 by 

the colorimetric assay described in Chapter 2, Materials and Methods, section 

2.2.4(b ). 

The data points represent mean values derived from 12 wells. Experiments 

were run twice at each temperature and best fit regression lines have been fitted 

to the linear portions of the survival curves using the straight line equation 

y =a+ bx. 

Correlation coefficients of the best fit regression lines together with Do and 

Dq values, for the higher temperatures are given below . 

.. 
Temperature Do 

(oC) ..... .C111in~1· 

4·3.5 105.3 

44 53.2 

45 .. 52;6 

Dq 

(ruins) 
.. ·= 

6 

Correlatio11 

coefficient · 
.· c , .. < 

. ··.·•· 
-0:9.68 

--0.977 
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into a blue coloured product (formazan). Since this reaction only takes place 

in living cells utilising the mitochondrial enzyme succinate dehydrogenase, it is 

thought to reflect the cells' metabolic status. 

Considering the different parameters that are being used to measure cell 

survival and the time after heating that these two assays were performed, it is 

perhaps not surprising to find that the two assay systems produced substantially 

different dose response curves. For instance, whilst the donogenic assay curves 

(figure 3.7) had marked shoulders over the temperature range 43.5°0 to 45°0, 

these shoulders were very slight or absent in the colorimetric assay (figure 3.8). 

Similarly, whilst Do values in both assay systems showed a decrease with increas

ing temperature, the Do values obtained at 43.5°0, 44°C and 45°0 of 34, 31.3 

and 18.9 minutes in the clonogenic assay were much lower than the corresponding 

Do values of 105.3, 53.2 and 52.6 minutes obtained in the colorimetric assay. In 

addition, when the survival curves at 42.5°0, 43.5°0 and 44°0 produced by the 

colorimetric assay are considered, it is evident that unlike the clonogenic assay 

curves, at longer exposures to these temperatures colorimetric survival curves be

come biphasic and indicate enhanced cell survival as compared to the clonogenic 

assay at these time points. 

Having characterised the hyperthermic response of HTC cells in terms of 

the clonogenic and colorimetric assays, a suitable method for presenting fatty 

acids to cells was developed so that supplementation hyperthermic studies could 

be undertaken. Attempts at introducing fatty acid into the culture medium by 

means of celite, a particulate adsorbant (Spector and Hoak, 1969), proved un

successful as negligible transfer of fatty acids to serum occurred. However, direct 

supplementation of serum with fatty acid sodium salts proved a very satisfactory 

means of supplying fatty acids to cells. 

Table 3.2 shows the results of typical free fatty acid assays performed on 

normal newborn bovine serum (NBS), and NBS that had been supplemented with 

linoleic acid or stearic acid by the procedure outlined in Materials and Methods, 

section 3.2.3. It is evident that NBS does contain some endogenous free fatty 

acid, the level of which varies between batches, and that the supplementation 
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TalhRe 3.2 

Free fatty acid analysis of serum and fatty acid supplemented serum 

Three different batches of Newborn Bovine Serum were used to produce fatty 

acid supplemented serum as described in Materials and Methods, section 3.2.3. 

The table shows the mean results of typical fatty acid assays run in duplicate on 

the different batches of serum and their corresponding supplemented products. 

Type of serum Free Fatty Acid concentration ( mM) 

Batch 1 Batch 2 Batch 3 

Newborn Bovine 0.56 0.53 0.40 

Serum (NBS) 

NBS-Linoleic 2.11 (E) 2.03 (E) 1.98 (E) 

Acid 1.98 (I) 1.93 (I) 1.97 (I) 

NBS-Stearic 2.24 (E) 2.00 (E) 2.04 (E) 

Acid 2.18 (I) 1.67 (I) 1.73(1) 

E =Expected I = Increase due to supplementation 



procedure finally adopted consistently produced stock solutions with fatty acid 

concentrations close to the desired 2mM figure. 

Figures 3.9 and 3.10 show the effect of exposing exponentially growing HTC 

cells to increasing concentrations of either linoleic acid (18 : 2) or stearic acid (18 : 

0) supplemented growth medium for a 24 hour or 48 hour period. In figure 3.9 the 

effect of a 48 hour period of supplementation with various concentrations of the 

two fatty acids in growth medium containing 5% (vjv) NBS are shown. Linoleic 

acid at all concentrations served to increase cell number relative to control cells 

with the increase in cell number showing a positive correlation with fatty acid 

concentration suggesting a stimulatory effect of linoleic acid on cell growth. In 

the case of stearic acid, whilst concentrations up to 20p.M served to produce 

an increase in cell number relative to control cells, at higher concentrations ( 40-

60J.LM) there was a marked reduction in cell number relative to control cells 

suggesting an inhibitory effect on cell growth. 

In figure 3.10 the effect of both 24 hour and 48 hour periods of fatty acid 

supplementation with slightly different concentrations of the two fatty acids, in 

growth medium containing 10% ( v jv) NBS are shown. In the case of linoleic acid, 

the same trend in effect is visible at 24 hours and 48 hours and reflects the results 

seen in medium containing 5% ( v jv) NBS, that is, increasing concentrations up 

to 60p.M linoleic acid serve to increase the number of cells relative to control cells. 

At SOJ.LM linoleic acid concentrations, the apparent stimulatory effect of this fatty 

acid is abolished and cell number more closely reflects that of control cells. In 

the case of stearic acid it can be seen that even when very low concentrations 

were used, cell number relative to control cells showed a decrease with time again 

suggesting an inhibitory effect of this saturated fatty acid on cell growth. 

The supplemented concentrations of fatty acid to be used in hyperthermic 

studies were those that did not interfere with cell growth in a marked fash

ion prior to hyperthermic treatment. Figures 3.11, 3.12 and 3.13 show typical 

growth curves produced in flasks and plates where cells had been grown and 

supplemented in growth medium containing either 5% (vjv) or 10% (vjv) NBS 

and exposed to various concentrations of fatty acid supplement over a two day 

period. 
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The effect of supplemental fatty acid co11centration on cell number 

in the presence of growth medium containing reduc;ed levels of serum 

Exponentially growing HTC cells that had been grown for several passages in 

growth.medium containing5%(v/v).newbotrrbovine serum (5% growth medium) 

were harvested usingED'I'A solution and 3 x 105 cells were seeded into lOml of 5% 

growth medium, in 25em2 flasks on day 0 and incubated at 37°C under a humid 

atmosphere of airjC02 (19: 1, vfv). The 5% growth medium was changed the 

following day. On day 2 cells we're exposed to 5% growth medium supplemented 

with either linoleic acid or stearic acid at concentrations ranging from 0 to 60p.M 

for a 48 hour period. Control cells were maintained in 5% growth medium at all 

times. The 5% growth medium of control cells and the supplemented 5% growth 

medium were replaced after the first 24 hours. The number of cells present in 

each flask after the 48 hour period was determined using a Coulter Counter. 

All points, except the control value, represent individual results from a single 

experiment. The control value shown represents the mean value from two flasks. 
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Figure 3.10 

The effect of supplemental fatty acid concentration on cell number 

in the presence of normal growth medium 

Exponentially growing -HTGC cells were harvested using EDTA solution and 

3 x 105 cells/25cm2 flask were seeded into lOml of gtowth medium containing 

10% (v/v) NBS i.e. normal growth medium, on day 0 and incubated at 31°C 

under a humid atmosphere of air/C02 (19: 1, vfv). The medium was changed 

the following day. On day 2 cell~ were exposed to normal growth medium sup

plemented with either linoleic acid or stearic acid at.concentrations ranging from 

0 to 80J.LM and 0 to 20J.LM respectively for 24 and 48 hour periods. Control cells 

were maintained in normal growth medium at all times. The normal growth 

medium of control cells and the supplemented medium were replaced after the 

first 24 hours. The number of cells present in each flask after the 24 and 48 hour 

periods was determined using a Coulter Counter. 

All points, except control values, represent individual results of a single ex

periment. The control values shown represent the mean values derived from two 

flasks. 
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JFligtue 3.11 

Growth curves of HTC cells, grown and supplemented in flasks 

in the presence of growth me{iium containing reduced levels of serum 

Flasks {25cm2) were seeded with 2.5 x 105 cells in lOml of growth medium 

containing 5% (vjv) newborn bovine serum (5% growth medium) on day 0 and 

incubated at 37°C under a humid atmosphere of airjC02 (19 : 1, vfv). The 

medium was changed on day L On day 2 cells were exposed either to 20J.LM 

stearic acid or 40J.LM linoleic acid in lOml of 5% growth medium for a 48 hour 

period, with a media change after the first 24 hours. Cell nU'mber was then 

determined by the Coulter Counter method described in Chapter 2, Materials 

a.nd Methods, section 2.2.3( c). 

Each point on the graph represents the mean value derived from a total of 

4 flasks run in two separate experiments. The standard errors of flask data are 

shown below. 

Day Cell number x 10-6 

5% growth medium 5% growth medium 5% growth medium 

+40J.LM linoleic acid + 20J.LM stearic acid 

0 2.5 2.5 2.5 

1 3.50 ± 0.13 3.50 ± 0.13 3.50 ± 0.13 

2 3.24 ± 0.53 3.24 ±.0.13 3.24 ± 0.13 

3 10.87:1::2.62 1}.74 :±: 3.14 12.56_± 3:66 

4 25;73± 4.28 26.2't·± 11.01 8.90 ±5:33 

Results represent mean value ±S.E.l\ti. (n = 4}. 
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JFigure 3.12 

Growth curves of HTC cells in Basks in the- presence of normal growth medium 

Flasks were seededwith 3.0 x 105 cells in lOml of growth medium containing 

10% (vfv) NBS (normal-growth medium) on day 0 and incubated at 37°0 uiider 

a hum:id'atmosphere ofairj002 {19: 1, vjv). The medium was changed on day 

1. On day 2 cells were exposed to normal growth medium .supplemented with a 

range of linoleic acicl concentrations ( 40 to 60J,tM) for a 48 hour period. Control 

cells were IIlairttain~d in normal growth medium at all times. The normal growth 

medium and supplemented medium were replaced after the first 24 hours. Cell 

number was determined by the Coulter Counter method described in Chapter 2, 

Materials and Methods, section 2.2.3(c). 

Each point on the graph represents the mean value derived from a total of 

4 flasks run in two separate experiments. The standard errors of flask data are 

shown below. 

Day Cell number xl0-5 

Normal growth Normal growth Normal growth Normal growth 

medium medium + medium + medium + 
401lM linoleic acid 60J.LM linoleic acid 80J.LM linoleic acid 

0 3.0 3.0 3.0 3.0 

1 2.-84 ± 0.~4 2.84 ± 0.24 2.84± 0.24 2.84 ± 0.24 
-· --- -

2 7.20 ±0.63 7.20 ±0._63 7:.29·± 0.63 7.2"0 ±-0~_63 

3 16;30 ± 0.73 1&,65 ± 1.75 1~~90. ::1: 2:59 15.76 ± 1.55 
. -... _ 

4 28.18 ±0.~3 33~1:5 ± 2.79 34.26:h 4.64 28.20± 2:83 
- '., 

:' ~-- .,._ . 
"· - --

--

Results represent mean value ±S.E.M~ (n = 4). 
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Figuil!"e 3.13 

Growth curves of HTC cells grown and supplemented in 24-well plates 

in tbe presence of normal growth medium 

Plates (24-well) were seeded with 5 x 10~ cells/well in 1ml of growth medium 

containing 10% (vlv) NBS (normal growth medium) on day·O and incubated at 

37° C under a huniid atmosphere of air I C(}_2 ( 19 : 1, vI v). On cl_ay 1 the cells were 

exposed to normal growth medium containing 80J..iM linoleic acid supplet!lent for 

a 72 hour period. Control cells were maintained in normal growt-h medium at 

all times. The normal growth medium ancl supplemented medium were replaced 

after 24 and 48 hours. The number of cells present in wells over the 4 day period 

was determined by the modified Mosmann method described in Chapter 2, Ma

terials and Methods, section 2.2.4(b). Cell numbers were estimated from figure 

2.8 of the same chapter. Cell number estimates shown on the graph are based 

on mean absorbance values derived from 4 replicate wells in a single experiment. 
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From figure 3.11, where cells were grown and supplemented in flasks in growth 

medium containing 5% (vjv) NBS, it is evident that stearic acid has an inhibitory 

effect on cell growth at a relatively low concentration. Because growth of HTC 

cells in the presence of this saturated fatty acid was adversely affected under 

routine culture conditions it was not utilised in subsequent hyperthermic studies. 

Interest came to focus on linoleic acid which even at concentrations as high as 

80p,M did not have an inhibitory effect on cell growth. 

Figure 3.12 shows typical growth curves produced in flasks in the presence 

and absence of a range of linoleic acid concentrations, when cells were grown and 

supplemented in growth medium containing 10% (vjv) NBS. Figure 3.13 shows 

typical growth curves produced in plates in the presence and absence of 80p,M 

linoleic acid when the cells were exposed to supplement the day after seeding 

rather than two days after seeding. In both cases it would appear that the 

growth of cells is stimulated slightly in the presence of the supplemented fatty 

acid. 

In figure 3.14, the photomicrographs (a) to (e) show the effect of 80p,M 

linoleic acid supplementation on cytoplasmic lipid droplet formation in HTC cells 

grown on covetslips in 24-well plates. It can be seen that droplets are formed in 

the cytoplasm within 6 hours of supplementation (compare figure 3.14(a) with 

figure 3.14(b)) and that the numbers of droplets increases as the length of the 

supplementation period increases up to 72 hours (figures (c), (d) and (e)). The 

lipid droplets appear to concentrate at the periphery of cells (figure (e)). Figure 

3.14(f) shows the appearance of control cells at the end of the 72 hour period 

which contrasts markedly to that of supplemented cells (figure 3.14(e)) clearly 

indicating that the difference in appearance of the cells is due to the presence of 

supplement. 

Figures 3.14(g) and (h) demonstrate the effect of returning cells that have 

been exposed to 80p,M linoleic acid supplemented growth medium for various 

periods of time to normal medium. The cells in figure 3.14(g) were exposed to 

linoleic acid supplement for a 24 hour period and were then returned to normal 

growth medium for a 72 hour period before being examined. It is evident that 

the vacuoles generated during the supplementation period (figure 3.14(c)) have 
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Figure 3.141: 

The effect of fatty acid supplementation on cytoplasmic lipid droplet formation 

Plates (24-well) were seeded with 5 x 103 cells/well in 1ml of growth medium 

containing 10% (vjv) NBS (normal growth medium) into wells containing glass 

coverslips on day 0 and maintained in an incubator at 37°C under a humid 

atmosphere of airjC02 (19: 1, vjv). The medium was changed on day 1. On 

day 2 the cells were exposed to normal growth medium containing 80J.LM linoleic 

acid supplement for various periods of time as described below. Control cells 

were maintained in normal growth medium at all times. The normal growth 

medium and supplemented medium were replaced every 24 hours. Photographs 

were taken with a Nikon camera using an inverted Nikon Diaphot microscope 

fitted with Normarski optics. 

(a) Control HTC cells at the 6 hour supplementation time point. 

(b) HTC cells 6 hours after supplementation. 

(c) HTC cells 24 hours after supplementation. 

(d) HTC cells 48 hours after supplementation. 

(e) HTC cells 72 hours after supplementation. 

(f) Control HTC cells at the 72 hour supplementation time point. 

(g) HTC cells supplemented for 24 hours and then returned to normal medium 

for 72 hours. 

(h) HTC cells supplemented for 72 hours and then returned to normal medium 

for 24 hours. 

All photomicrographs x 280. 
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disappeared. In the case of figure 3.14(h) the cells were exposed to supplement 

for a 72 hour period and then returned to normal growth medium for a 24 

hour period before being examined. It can be seen that whilst vacuoles are still 

present they are greatly reduced in number as compared to the number present 

immediately after a 72 hour supplementation period (figure 3.14(e)). 

Overall, the photomicrographs suggest that when HTC cells are exposed to 

the unsaturated fatty acid, linoleic acid in the growth medium it is taken up very 

rapidly into the cell and accumulates to form cytoplasmic droplets, the number 

of which increases with time. They also indicate that these droplets quickly 

disappear when cells are returned to normal growth medium. 

In the supplementation hyperthermic studies that were conducted, two tem

peratures of 43°C and 43.5°C were selected for use since they were known to 

produce reasonable rates of cell kill over the experimental time courses that were 

planned. In the case of flask experiments, the time required to kill 90% of the 

cells ( LDgo) at a particular temperature has been used as an index of cyto

toxicity since this value occurs on the linear portion of the survival curves and 

reflects the effect of both the shoulder region and the slope of the curve (Bhuyan, 

1979). In the case of supplementation hyperthermia experiments conducted in 

plates, because a wider range of temperatures were investigated and because of 

the biphasic nature of the curves shown earlier (figure 3.8), LD5o values which 

occur in the first linear region of the survival curves have been quoted as an index 

. of cytotoxicty. 

Figures 3.15 and 3.16 show the results of hyperthermic studies on· control and 

fatty acid supplemented cells, conducted in flasks at 43.5°C over a 100 minute 

time period. When cells were supplemented with 40JLM linoleic acid for a 48 

hour period (figure 3.15) prior to heating there was no significant effect on the 

hyperthermic survival curves compared to control cells. The Do values for control 

and supplemented cells were 38.8 and 43.1 minutes respectively, whilst the LDgo 

values were 88 and 90 minutes respectively. When the concentration of linoleic 

acid in the growth medium was increased to 60JLM (figure 3.16(a) and (b)), the 

effect of both a 24 hour period of supplementation (figure 3.16(a)) and a 36 

hour period of supplementation (figure 3.16(b)) prior to heating at 43.5°0 was 
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Fiigure 3.15 

The effect of a 48 hour period ofsupplementation with 40JLM linoleic acid 

on the thermal sensitivity of HTC cells exposed to 43.59 0 in flasks 

Cells (3 x 105 cells/25cm2 flask) were seeded into lOrhl of normal growth 

medium on day 0 and incubated at 37°0 under a humid atmosphere of air fCOz 

(19: 1, vfv). The medium was changed on day 1. On day 2 cells were exposed 

to normal growth medium supplemented with 40JLM linoleic acid. Control cells 

were maintained in normal growth medium. The normal growth medium and 

supplemented medium were replaced after 24 hours (day 3). After 48 hours (day 

4) the exponentially growing cells were harvested using EDTA solution and 200 

cells/25cm2 flask were seeded into 10ml of heating medium and returned to the 

37°C incubator for 3 hours. Flasks were then sealed and heated at 43.5°0 for 

various periods of time up to 100 minutes. Following heating, unsealed flasks 

were returned to the 37°C incubator. The medium was replaced 1, 5 and 8 

days later with normal growth medium and cell survival was assessed on day 9 

by the clonogenic assay described in Chapter 2, Materials and Methods, section 

2.2.3(d). 

Individual results of a single experiment run in duplicate are shown on the 

graph. Best fit regression lines have been fitted to the linear portions of the 

survival curves using the straight line equation y ::=: a + bx. 
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FngqJre 3.15 

The effect of 24 hour and 36 hour periods of supplementation with ()bp,JI..f 

linoleic acid on the thetmalsensitivity of HTC cells exposed to 43.5°C in flasks 

Cells (3 x 1Q5 cells/25cm2 flask} were f)eeded into 1Qml of norma.lgrpwth 

medium on day o and incubated at 37·oc under a humid atmosphere of airjCQ2 

(19: 1, vfv). The medium was changed on day 1. CeHs wereoexposed to normal 

growth medium supplemented with 60-,_,M linoleic acid at appropriate times on 

day 2 and day 3 to achieve 24 hour and 36 hour periods of supplementation by 

day 4. Control cells were maintained in normal growth medium. On day 4 cells 

were harvested and treated as described in the legend of figure 3.15. 

Figure 3.16(a) shows individual results of a single experiment run in du

plicate. Figure 3.16(b) shows individual results from two experiments run in 

duplicate. 

Best fit regression lines have been fitted to the linear portions of the survival 

curves using the straight line equation y = a+ bx. 
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again minimal. After 24 hours the Do values for control and supplemented cells 

were 53.7 and 54.6 minutes respectively, whilst the LDgo values were 91.5 and 

94.5 minutes respectively suggesting a slight, though not significant (p > 0.05), 

decrease in thermal sensitivity of supplemented cells. Following a 36 hour period 

of supplementation prior to heating, the Do values for control and supplemented 

cells were 30.3 and 34.5 minutes respectively, whilst the LDgo values were 82 and 

83 minutes (figure 3.16(b)). 

Longer periods of heating at the slightly lower temperature of 43°C were 

then utilised, again in flasks, and the results of 24, 36 and 48 hour periods of 

supplementation with 601-£M linoleic acid prior to heat treatment are shown in 

figures 3.17, 3.18 and 3.19. Figure 3.17 shows the survival curves obtained in 

flasks following a 24 hour period of supplementation with 601-£M linoleic acid 

prior to heat treatment. It is evident that there is a high level of variability in 

the data presented in the figure. Consequently, the Do values of 125.8 and 96.2 

minutes for control and supplemented cells and the LDgo values of 165 and 152 

minutes respectively that have been deduced from the best fit regression lines 

can not be taken as being significantly different. 

However, the data shown in figure 3.18 is much more consistent. Regression 

lines fitted to the linear portion of the survival curves (with regression correlation 

coefficients, lrl > 0.94) indicate that a 36 hour period of supplementation with 

601-£M linoleic acid prior to exposure to 43°C produces a significant increase 

in the thermal sensitivity of HTC cells in terms of LDgo values as determined 

by the clonogenic assay. Whilst there is a slight change in the Do values from 

53.2 to 52.4 minutes respectively for control and supplemented cells, it can be 

seen that the LDgo value is reduced from 139.8 minutes in the case of control 

cells to 130 minutes in the case of supplemented cells, with these two values 

being significantly different at the p = 0.05 level. The fact that cell survival is 

consistently reduced throughout the linear portion of the curve strongly suggests 

that supplementation of HTC cells for a 36 hour period with 6011-M linoleic acid 

prior to heating increases their thermal sensitivity. 

Following a 48 hour period of supplementation with 601-£M linoleic acid (figure 

3.19) this significant increase in thermal sensitivity in terms of LDgo values is 
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Fiiguure 3.17 

The effect of a 24 hour period of supplementation with 60ttM linoleic acid 

on the thermal sensitivity ofHTC cells exposed to 43°C in flasks 

Cells (3 x 105 cells/25cm~ flask) were seeded into lOml of normal growth 

medium on day 0 and incubated at 37°C under a humid atmosphere of airjC02 

(19 : 1, vfv). The medium was changed on day 1. Cells were exposed to 

normal growth medium supplemented with 60f..£M linoleic acid on day 3. Control 

cells were maintained in normal growth medium. 24 hours later (day 4) the 

exponentially growing cells were harvested and 200 cells/25cm2 flask were seeded 

into lOml of heating medium and returned to the 37°C incubator for 3 hours. 

Flasks were then sealed and heated at 43°C for various periods of time up to 210 

minutes. Post heating treatment was as described in the legend of figure 3.15. 

Individual results from two experiments run in duplicate are shown on the 

graph. 

Best fit regression lines have been fitted to the linear portions of the survival 

curves using the straight line equation y = a + bx. 
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The effect of a 36 ,hour period of supplementation with 60J.LM linoleic acid 

on the thermal sensitivity of HTC cells exposed to 43°C in flasks 
. -- . . 

Experimental details are as described in the lege~d of fig1He 3.1 T except that · 
- - . . 

cells were exposed to normal growth medium supplemented mth 60J1M linoleic 

acid f~r a 36 hour period priorto heating rather than a24 hour period. 

Individual results from two experiments run in duplicate ate shown on the 

graph. 

Best fit regression lines have been fitted to the linear portions of the survival 

curves using the straight line equation y = a + bx. 
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JFigull'e -3.l~l 

The effect of a 48 hour period of supplementation with 60J.LM linoleic acid· 

on the thermal sensitivityOf HTC cells exposed to 43°C in flasks 

Exp_erimental aetails •are as described • irr the legend of figure- 3.17 e~cept that 
. -

cells Were exposed t~ -n~rmal growth ID.E!dium supplemented with 60 J.LM linoleic 

acid for a 48 hour period prior to heating rather th~m a 24 hour period. 

Individual results from two experiments run in duplicate are shown on the 

graph. 

Best fit regression lines have been fitted to the linear portions of the survival 

curves using the straight line equation y = a + bx. 
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Figure 3.20 

The effect of a 36 hour period of supplementation with 80J-LAi1 linoleic acid 

on the thermal sensitivity of HTC cells exposed to a range of temperatures 

in 24...;welJ plates 

Experimental details are as described in the legend of figure 3.8 except that 

on day 1 cells were exposed to normal growth medium supplemented with 80111\1 

linoleic acid to achieve a 36 hour periodofsupplementation prior to heating on 

day 3. 

Each point on the graph represents the mean value derived from a total of 8 

replicate wells run in two separate experiments. 

Best fit regression lines have been fitted to the linear portions of the survival 

curves using the straight line equation y = a + bx. 
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lost. Regression lines fitted to the linear portions of the survival curves (with 

regression correlation coefficients, jrj > 0.94) in fact suggest a decrease in thermal 

sensitivity since LDgo values for control and supplemented cells are 146 and 159 

minutes respectively. There is also a change in Do values from approximately 68 

minutes for control cells to 83 minutes with supplemented cells. 

Since the only experimental conditions that gave rise to a significant increase 

in the thermal sensitivity of HTC cells in terms of LDgo values in flasks were 

based on a 36 hour period of supplementation with 60J.LM linoleic acid prior to 

heating, it was decided to conduct a further series of hyperthermic experiments 

in plates over a range of temperatures following a 36 hour period of supple

mentation with the slightly higher concentration of 80J.LM linoleic acid. It was 

hoped that the slightly higher concentration of linoleic acid, which had not been 

found to markedly affect cell growth in plates (figure 3.13) might lead to a more 

pronounced sensitisation of the cells to heat. 

The results of the 36 hour supplementation hyperthermic studies conducted 

in plates are shown in figure 3.20. It is evident that supplementation with 80J.LM 

linoleic acid had little effect on the hyperthermic response of HTC cells as mea

sured by the colorimetric assay. Regression lines fitted to the linear portions 

of survival curves (with regression correlation coefficients, lrl > 0.90) in fact 

suggest that at 42.5°C and 45°C thermal sensitivity of the cells was slightly 

decreased by supplementation with linoleic acid, with this effect at 45°C being 

more pronounced after longer periods of heating. The most consistent,· though 

not significant (p > 0.05), increase in thermal sensitivity produced by supple

mentation is seen at a temperature of 43.5°C where supplementation served to 

reduce the LD5o value by approximately 4 minutes. The significant increase in 

thermal sensitivity seen with the clonogenic assay at 43°C was not observed with 

the colorimetric assay at the same temperature. 

3.41: 1Discll.ll.ssion 

From the results it would appear that newborn bovine serum is an important 

component of the growth medium of HTC cells (figure 3.1) and that the level of 

serum in the growth medium can influence the nature of hyperthermic survival 

curves that are produced (figure 3.4). Fluctuations in pH that would appear to 
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occur at elevated temperatures and are more marked where smaller volumes of 

media are involved (Table 3.1) can be minimised by employing a suitable buffering 

system. In addition, whilst cell passage number does not appear to influence the 

hyperthermic survival of HTC cells (figure 3.5) the presence of fungizone in the 

growth medium during the heating process would appear to increase the thermal 

sensitivity of these cells (figure 3.3). This information was of great importance 

in establishing the methodology that was subsequently adopted in morphological 

and supplementation hyperthermic studies. It helped to ensure that the effects 

observed with control and supplemented cells on exposure to heat were indeed 

due to hyperthermia and not artefactual, i.e. due to factors other than heat. 

The apparent influence of serum on the heating response of HTC cells ob

served in the current study (figure 3.4) has been demonstrated with a number 

of cell types by other workers. For example, Sertich et al. (1980) have shown 

that CHO cells heated in defined growth medium in the absence of 20% ( v jv) 

foetal bovine serum (FBS) were more sensitive to hyperthermic treatment at 

43°C than control cells maintained in medium with 20% ( v jv) FBS. Similarly, 

Van Dongen and Van Wijk (1986) working with synchronised mouse neuroblas

toma (Neuro-2A) cells found that the presence of 10% (v/v) foetal calf serum 

during heat treatment served to increase the thermoresistance of G1 phase cells 

relative to cells grown under conditions of serum depletion. 

The results of_the single study with the polyene antibiotic fungizone (figure 

3.3) at a concentration of 2.5J.Lg/ml are in agreement with Hahn et al. (1977) 

who showed that at 43°C {but not at 41 °C) this antibiotic effectively killed 

mammalian cells in vitro at doses up to 10J.Lg/ml. They suggested that the greatly 

enhanced cell killing reflected an interaction between the drug and hyperthermia 

at the level of the cells' plasma membrane, since this drug is known to bind 

to accessible sterols (particularly cholesterol) within the membranes of sensitive 

cells. Mondovi et al. (1969) using the polyene antibiotic filipin also showed 

that at 43°C this agent substantially reduced oxygen consumption of Novikoff 

hepatoma cells over control cells not treated with the antibiotic. 

Hyperthermic studies have been conducted on a wide range of cultured cells 

including Chinese hamster ovary (CHO) and V79 cell lines (Gerweck, 1977; Sa-
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pareto et al., 1978), murine 11210 leukemia cells (Guffy et al., 1982) and various 

rat hepatoma cell lines (Schamhart et al., 1984). In keeping with the results 

obtained with the clonogenic assay in the current study, the survival response 

of almost all cell lines studied when plotting Logw cell survival against time of 

exposure to the hyperthermic temperature has been shown to be characterised 

by a shoulder region followed by a straight line exponential portion. Different 

cell lines, and even cell lines originating from the same tissue, have been found 

to show different heat sensitivities. For example, CHO cells exposed to 43°C 

produce Do values in the range 11 to 26 minutes (Sapareto et al., 1978; Gerweck, 

1977), whilst V79 Chinese hamster cells have been found to have much higher 

Do values in the range 60 to 80 minutes (Schulman and Hall, 1974; Johnson, 

1974). In the current study Do values for control cells at 43°C were found to 

be in the order of 60 minutes. Schamhart et al. (1984) reported Do values of 

approximately 30 minutes for HTC cells heated at 43°0. The lower value may 

be because these workers used a different source of culture medium and foetal 

calf serum as opposed to newborn bovine serum in their experiments, or may 

reflect inherent differences in different subclones of HTC cells. 

The two types of hyperthermic survival curves generated by the clonogenic 

assay (figure 3.7) and colorimetric assay (figure 3.8) were clearly very different. 

For example, whilst the clonogenic assay survival curves were characterised by 

marked shoulders over the temperature range 43.5°0 to 45°0, these shoulders 

_were very slight or absent in _the colorimetric assay. At the current time the 

exact reasons for the existence of the shoulder are not well understood although 

several workers have postulated that the shoulder on heat survival curves implies 

an ability of the cells to sustain sublethal damage (Hahn, 1982). If this is the 

case then it could well be that the lower survival seen with the colorimetric 

assay at short exposure times to 43.5°C-45°C reflects a temporary impairment 

of mitochondrial function which is still evident at 3 days post heating, but which 

by 10 days post heating has been repaired. Similarly, an increase in temperature 

should reduce the width of the shoulder. Consideration of the shoulder in figure 

3. 7 shows this to be the case. 

Survival curves produced by the colorimetric assay at 42.5°0, 43.5°0 and 

44°C show a further difference to those produced by the clonogenic assay at these 
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temperatures. It is evident that the survival curves produced by the colorimetric 

assay at these temperatures are biphasic and at longer exposure times show 

an enhanced cell survival relative to the clonogenic assay survival curves. This 

enhanced survival relative to the clonogenic assay may reflect the presence of cells 

which are metabolically active in the colorimetric assay at 3 days after heating 

but which are reproductively incompetent in the clonogenic assay at 9 days after 

heating. However, work by Vidair and Dewey (1988) with CHO cells heated in 

the plateau phase of growth has suggested two distinct modes of hyperthermic 

cell death which may help to account for the biphasic nature of hyperthermic 

cell death observed with the colorimetric assay at certain temperatures. These 

two workers reported a 'rapid' mode of cell death which predominated during 

the first few days post heating and a 'slow' mode of death which became evident 

at a much later stage, typically 6 to 7 days post heating. 

Since the colorimetric assay was performed at 3 days post heating, then 

clearly if all the cells were dying by a rapid mode of death it would be expected 

that a more or less linear increase in cell death would occur with time. If, however 

some cells were affected by the slow mode of death then at the 3 days post heating 

assay period they would still be metabolically active and hence recorded as cells 

that had survived the hyperthermic insult, despite the fact that they were going 

to die. This proportion of cells could be fairly small in the population and hence 

have a fairly insignificant effect at the shorter time points where a larger number 

of cells survive. However, at the longer time points, where fewer cells survive 

their contribution will become more apparent causing the deviation from linearity 

observed. This explanation could also account for the higher Do values seen with 

the colorimetric assay. Vidair and Dewey were also able to demonstrate that as 

the heat dose was increased and the surviving fraction decreased, the rapid mode 

of cell death predominated. This finding could explain why the survival curve 

at 45°C produced by the colorimetric assay (figure 3.8) appears to show a linear 

response with time, as it would suggest that the proportion of cells being lost via 

the slow death mode is insignificant. It would also explain the gradual decrease 

in the plateau seen as the temperature increases from 42.5°C to 44°C. 

Clearly the major reasons for the differences in the hyperthermic survival 

curves generated by the clonogenic assay (figure 3.7) and colorimetric assay (fig-
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ure 3.8) would therefore seem to reflect differences in the parameters used to 

assess cell survival (reproductive activity versus metabolic activity) and, because 

hyperthermic cell death is thought to be characterised by two distinct modes of 

death, differences in the time at which the assays were performed post heating 

(10 days versus 3 days). 

It would seem that the version of the colorimetric assay adopted in the cur

rent study does not reflect the total hyperthermic cell death that is likely to 

occur, since a proportion of cells (represented by the plateau regions in the sur

vival curves of figure 3.8) which are thought to die after longer incubation periods 

post heating are recorded as surviving the hyperthermic insult under the present 

conditions. One solution to this problem might appear to be to leave the plates 

for longer periods of time after heat treatment before performing the assay. How

ever, if this were done then whilst cells surviving the heating process could well 

remain in the exponential phase of growth, control cells would undoubtedly reach 

confluency in wells and enter a stationary phase of growth leading to inaccura

cies in results since these are interpreted on the basis of differences in absorbance 

between control and treated cells assumed to be in the same phase of growth. 

The surface morphology changes that were observed with control cells follow

ing heating at 43.5°C for various time periods up to 80 minutes (figure 3.6) are 

consistent with the findings of other workers. Basset al. (1978) studied the sur

face morphology of Chinese hamster ovary (CHO) cells cultured as monolayer$ 

following heating at 43°C for 3 hours and found that the surface of these cells was 

characterised by a reduction in the number of microvilli, the presence of 'blebs' 

and decreased adherence to the substratum. Mulcahy et al. (1981) carried out 

a quantitative study of the distribution of such cell surface alterations in P388 

ascites tumour cells following heating at 43°C in suspension culture for various 

periods of time up to 3 hours. By establishing an arbitrary set of 10 morphologi

cal patterns to describe the broad spectrum of surface alterations observed, they 

were able to demonstrate a quantitative shift in the morphological distribution 

of surface alterations. For example, following 3 hours of heating at 43°C, 75% 

of cells were classified as having a very irregular shape, with a very rough pitted 

surface and showing signs of fragmentation. 
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Borrelli et al. (1986), heating synchronous G1 CHO cells at 45.5°C for various 

periods of time from 3 to 20 minutes, observed varying degrees of membrane 

blebbing ranging from blebbed cells virtually indistinguishable from control cells 

in appearance to those with blebs larger than the cell itself. They also showed 

that the proportion of cells exhibiting blebbing and the mean diameter of the 

blebs increased with heat duration, and that cells with blebs larger than 50% of 

the cell diameter did not survive to form colonies. It is interesting to note that 

in the current study with HTC cells the appearance of blebs on the surface of 

cells after approximately 80 minutes of heating at 43.5°C (figure 3.6) coincided 

with the time at which a marked decrease in cell survival began to be observed 

for these cells (figure 3.7) suggesting the importance of the plasma membrane as 

a site for hyperthermic damage. 

The alteration in growth rate that was observed in the present study with 

HTC cells in the presence of fatty acids (figures 3.9, 3.10 and 3.11) has been 

demonstrated by a number of other workers. Spector et al. (1979) showed that 

supplementation of a culture medium containing 10% ( v jv) foetal bovine serum 

with palmitic, linolenic or arachidonic acid reduced the growth rate of human 

skin fibroblasts, whilst supplementation with similar concentrations of oleate or 

linoleate did not affect the growth rate. In mouse fibroblast LM cells (Doi et 

al., 1978), supplementation with saturated fatty acids of longer than 15 carbons 

{100J.LM) was found to decrease growth whereas linoleic and arachidonic acids at 

the same concentration had no inhibitory effect. These workers have suggested 

that growth correlates with the unsaturated fatty acid content of the plasma 

membrane, with inhibition occurring when less than 50% of the acyl groups of 

plasma membrane phospholpids are unsaturated fatty acids. 

In trying to establish a correlation between the thermosensitivity of cells 

and fatty acid supplementation procedures, workers have employed a variety 

of parameters as indicators of thermosensitivity. For example, Hidvegi et al. 

(1980) modified the membrane lipid composition of P388 ascites tumour cells by 

feeding host animals with diets containing either unsaturated fatty acids (UFA) 

or saturated fatty acids (SFA). Both kinds of ascites cells were then treated in 

vitro at 37°C, 42°C or 43.5°C for 30 to 60 minutes and the cell killing effect of 

hyperthermia was assessed by transplantation of cells into recipient mice. The 
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length of survival of the mice was taken as indicative of the thermosensitivity 

of supplemented cells. On this basis, since a temperature of 43.5°C produced a 

much longer survival of mice receiving ascites cells derived from the UFA diet 

rather than from the SFA diet these workers concluded that UFA increased the 

thermal sensitivity of the cells. However, whilst direct modification of the ascites 

cell plasma membrane composition under these conditions was demonstrated in 

this study by isolating plasma membranes from the cells, extracting the lipids, 

and analysing the fatty acid composition by Gas Chromatography, there are 

a number of drawbacks to the methodology that was adopted. For example, 

producing modified cells in one mouse, isolating them from the mouse, heating 

them in vitro in the absence of serum, cooling them and then injecting them into 

a second mouse subjects the cells to considerable stress in addition to the effect of 

heat. Thus it could be that factors other than the fatty acid levels of the ascites 

cell plasma membrane phospholipids are responsible for the observed results. In 

addition, using 'mouse survival' as an index of thermosensitivity seems to be a 

very indirect measurement of thermosensitivity since it is dependent in turn on 

a wide range of other factors such as immunological response, in its evaluation. 

Guffy et al. (1982) working with 11210 murine leukemia cells used values of 

Do from hyperthermic survival curves as a measure of thermal sensitivity. They 

recorded Do values at 42°C of 27.5 minutes for control cells, 18.7 minutes for 

22 : 6 supplemented cells and 46.2 minutes for 18 : 1 supplemented cells. As a 

result they concluded that supplementation of the medium with 22 : 6 caused 

an increase in thermosensitivity whilst supplementation with 18 : 1 caused a 

decrease in thermosensitivity. In these studies heating conditions would seem 

to be preferable to those adopted by Hidvegi et al. (1980) since supplemented 

11210 cells were heated in suspension in a medium identical to that in which they 

were supplemented except for the absence of the supplemental fatty acid and a 

more quantitative soft agar clonogenic assay of cellular survival was adopted. 

However, since analysis of fatty acids was confined to a consideration of cellular 

phospholipids rather than plasma membrane phospholipids, a direct relationship 

between the thermosensitivity of 11210 cells and their plasma membrane fatty 

acid composition cannot be assumed. 

86 



Konings (1985) conducted hyperthermic studies in a similar way to Guffy 

et al. (1982) in an attempt to establish a correlation between thermosensitivity 

of mouse fibroblast LM cells and fatty acid supplementation. Cells were grown 

as suspensions in a serum-free medium that was supplemented with arachidonic 

acid (20 : 4) for a 24 hour period prior to heating in an identical medium lack

ing the fatty acid. He considered thermosensitivity in terms of both Dq and Do 
values and concluded that LM cells that had been supplemented with arachi

donic acid showed enhanced thermosensitivity since there were differences in the 

results between control and supplemented cells both at the level of the shoulder 

(Dq) as well as at the level of the slope (Do) of the survival curves. In ad

dition, he also isolated the plasma membranes from control and supplemented 

cells and found an increase in the amount of polyunsaturated fatty acyl chains 

in the supplemented membrane phospholipids of approximately 38%. Hence this 

study clearly indicated that a relationship exists between the thermosensitivity 

of mouse fibroblast LM cells and their plasma membrane fatty acid composition, 

suggesting the importance of the plasma membrane as a site for hyperthermic 

damage. 

In the current study, where HTC cells were grown as monolayers and sup

plemented and heated in serum-containing medium, LDgo and LD&o values were 

taken as indicators of thermosensitivity since such values should reflect the effect 

of both the shoulder region and the slope of the curve (Bhuyan, 1979). How

ever, the significant decrease in survival that was seen in flasks at 43°C following 

a 36 hour· period of supplementation in terms of LDgo values, and which was 

taken to mean an increase in the thermal sensitivity of these HTC cells was not 

accompanied by a significant decrease in Do value. Thus whilst this result is sig

nificant in the current study, if other parameters such as Do had been considered 

this result would not have been significant. In fact, if Do values are taken as 

indicators of thermal sensitivity then the more interesting results of fatty acid 

supplementation in the current study are revealed in figures 3.17 and 3.19. Do 

values suggest that a 24 hour period of supplementation with linoleic acid (figure 

3.17) increases the thermal sensitivity of HTC cells, since Do values for control 

and supplemented cells are 125.8 and 96.2 minutes respectively, whilst a 48 hour 

period of supplementation (figure 3.19) decreases thermal sensitivity since Do 

values for control and supplemented cells are 146 and 159 minutes respectively. 
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The major conclusion that emerges from the current studies is that supple

mentation of HTC cells with linoleic acid does not produce a marked effect on 

the thermal sensitivity of these cells. However, what effect it does produce may 

well be related to the period of exposure prior to heating since the results suggest 

an increase in sensitivity after 24 to 36 hours of supplementation but a decrease 

in the sensitivity of cells at 48 hours supplementation. If the plasma membrane 

is an important site of hyperthermic damage it seems likely that the increase in 

thermosensitivity of HTC cells at 43°C, that occurred after a 36 hour period of 

supplementation with linoleic acid is related in some way to the composition and 

physical state of the lipid matrix of the plasma membrane. This idea forms the 

basis of the work presented in the next chapter. 
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Chapie:r liV 

JPu:rifi.caH.on and!. Clbta:racte:rlisaii.on of JH['JI'C JPliasma Memb:ranes 

41:.1 lint:roclluctlion 

In order to understand the possible significance of the plasma membrane and 

its composition on the thermal sensitivity of HTC cells suggested by the sup

plementation studies of Chapter 3, it was very important to be able to isolate 

the plasma membranes of these cells in a state of known purity so that subse

quent biochemical analyses, fluidity measurements and enzyme studies could be 

conducted specifically on these membranes. 

Although the first isolation of a subcellular organelle occurred as early as 

1871 when Friedrich Miescher isolated nuclei from broken cells by a centrifugation 

procedure, it was not until the 1960's when the advent of the Electron Microscope 

had revealed the complex membrane architecture of animal cells and as scientists 

became more interested in understanding the various functions of the plasma 

membrane, that the isolate and characterise approach was applied to plasma 

membranes. 

Because rat liver was readily available and much was already known about 

this tissue, it formed the basis Tor many of the initial studies. As a result many of 

the techniques adopted in plasma membrane isolations today are based on pro

cedures developed originally for the fractionation and identification of the major 

organelles in rodent liver homogenates. After Neville (1960) had established a 

method for isolating plasma membranes from rat liver many other workers went 

on to develop methods for the isolation of various plasma membranes from a wide 

range of solid organs and tumours (see DePierre and Karnovsky review, 1973). 

However, solid tumours and organs have a number of drawbacks as a starting 

material for plasma membrane isolation. Firstly, they are generally composed of 

more than one cell type (de Duve, 1964). Indeed the liver contains approximately 

equal numbers of two different cell types, parenchymal and reticuloendothelial 
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(Kupffer) cells. Secondly, contamination of membrane fractions can arise from 

both the vascular and nervous systems associated with the organ. Thirdly, even 

the plasma membrane of an individual cell in an organ appears to be heteroge

neous. For example, distinct morphological differences have been shown (Bloom 

and Fawcett, 1962) in the apical, lateral and basal membranes of liver parenchy

mal cells. This means that plasma membranes that are produced from solid 

tumours or organs might easily be enriched in materials from a minor cell type 

or form a particular pole of a cell. In addition, in many tumours the nuclei are 

large in relation to the cytoplasm and so are easily disrupted during homogeni

sation forming a gel which hinders further separation of the plasma membranes 

(Emmelot et al., 1974). 

The development of cell culture techniques, where particular cell types are 

grown in isolation from other cells, has provided the solution to many of the 

problems associated with the isolation of plasma membranes from organs and 

tumours. Plasma membranes have been isolated from a number of types of 

cultured cells including HTC cells (Tweto et al., 1976; Lopez-Saura et al., 1978; 

Sauvage et al., 1981), HeLa cells (Boone et al., 1969), hepatoma cells (Koizumi 

et al., 1976) and epidermoid carcinoma cells of the A431 cell line (Payrastre et 

al., 1988). 

When use is made of cultured cells in plasma membrane isolations the way 

in which they are grown will often determine the isolation procedure that is 

adopted. For exam2le, with monolayer cultures when cell production is increased 

by growing cells on the surface of microcarrier beads in suspension (Chapter 

2) plasma membranes may either be isolated from cells attached to the beads 

(Gotlib, 1982) or after the cells have been removed from the beads. 

Although a number of techniques have been introduced for the isolation of 

plasma membranes based upon the principle of adherence of whole cells to solid 

supports, followed by removal of internal components (Gotlib and Searls, 1980; 

Cohen et al., 1980), release of plasma membranes attached to beads is often 

problematical. 

If cells are to be removed from the microcarrier beads on which they are 

grown, prior to plasma membrane isolation, efficient methods are required for 
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the harvesting of the cells from the microcarriers and for the separation of the 

cells from the microcarriers. Various methods can be used to remove cells from 

microcarriers but any method that is adopted should ensure that damage to the 

cells is minimised. Very often the type of harvesting procedure adopted depends 

on how firmly the cells are attached to the microcarrier and on the nature of the 

microcarrier itself. For example incubation in a hypotonic solution can be used 

for harvesting cells which do not have strong adhesion properties. The osmotic 

shock associated with the hypotonic solution causes the cells to adopt a rounded 

morphology and they can then be shaken from the microcarrier. Lai et al. (1980) 

have used hypotonic treatment to harvest CHO cells from microcarriers. Some

times chelating agents such as EDTA are sufficient for the removal of cells from 

microcarriers. However the most frequent method of removing cells from micro

carrier involves the use of enzymes. Trypsin is the most commonly used general 

protease for this purpose. It has been used, for example, to remove Vero, BS-C-1, 

MRC-5 and HeLa cells from Cytodex microcarriers (Billig et al., 1984). Some 

microcarriers have been especially designed so that cells can be removed by en

zymatic digestion of the culture surface rather than enzymatic digestion of the 

cell surface. Cytodex 3 microcarriers produced by Pharmacia possess a surface 

layer of denatured collagen which is susceptible to enzymatic digestion using col

lagenase. Removal of cells in this way should, in theory, increase cell viability 

and help maintain a greater membrane integrity. 

Having removed cells from microcarriers a number of methods are available 

for their _separation whieh are based on differences between the cells and mi

crocarriers in terms of size and density. Separation may be achieved simply by 

differential sedimentation at unit gravity (Gebb et al., 1982). However, much 

higher cell yields can be obtained, without significantly altering cell viability, by 

employing differential centrifugation or filtration methods (Billig et al., 1984). 

Billig et al. ( 1984) have reported the recovery of up to 80% of total cells present 

in a culture prior to harvesting by using Ficoll-Paque in a discontinuous gradient 

centrifugation technique. The use of filters to separate cells from microcarriers 

has been reported by a number of workers (Mitchell and Wray, 1979; Ewell and 

Carter, 1982; Billig et al., 1984). The percentage of cells recovered by filtration 

processes depends on the pore size of the filter and the thickness of the micro

carrier layer retained by the filter. Billig et al. (1984) showed that increasing 
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the pore size from 53JLm to 88JLm increased the yield of Vero and HeLa cells 

separated from microcarriers from 63% to 74% without affecting the purity of 

the filtrate. Both Billig et al. (1984) and Ewell and Carter (1982) have shown 

that greatest cell recoveries occur when the bead layer is maintained as a thin 

even layer. 

Two major steps characterise all plasma membrane isolation procedures 

whether cells are derived from organs, tumours or from cell culture, where they 

may or may not be attached to a culture surface. Firstly, the cells must be 

disrupted in some way and secondly the plasma membranes must be separated 

from the other cell organelles and membranes. 

The initial cellular disruption is a crucial step m the isolation procedure 

since it can profoundly affect the nature of the ensuing membrane preparation. 

Ideally it should produce minimal damage to intracellular organelles such as 

nuclei, mitochondria and lysosomes since many of these have buoyant densities 

close to those reported for plasma membranes (Kashnig and Kasper, 1969). In 

addition, the plasma membrane fragments produced should be as large as possible 

since this makes them easier to separate from microsomes which are the major 

contaminant of almost all plasma membrane preparations. (Boone et al., 1969; 

McKeel and Jarett, 1970). 

Methods of cellular disruption tend to vary in the types of forces used to break 

the cells and in the composition of the medium in which cells are disrupted. A 

number of workers have employed cell rupturing pumps to prepare plasma mem

brane fractions. Cells are propelled through a narrow spring-controlled orifice 

in this method, which strips them of their plasma membranes. Bridgen et al. 

(1976) have reported the isolation of plasma membrane fractions from cultured 

human lymphocytes using this method. 

Gas bubble nucleation, in which cells are equilibrated with inert gas at very 

high pressures and then returned suddenly to atmospheric pressure, has been 

used quite successfully in the preparation of plasma membranes from tumour 

cells, in particular Ehrlich ascites carcinoma cells (Wallach and Kamat, 1966). 

However, the drawback to this method is that it tends to produce very small 

plasma membrane fragments which are difficult to separate from microsomes. 
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Sonication has been used to achieve cellular disruption in some circumstances, 

e.g. rat mast cells (Cooper and Stanworth, 1976; Amende and Donlon, 1985). 

This method was adopted in the current study, for a short period, but was 

not continued since it was found to be a rather damaging process, invariably 

damaging both the plasma membrane and cell organelles. 

One of the most successful methods of cellular disruption, and the principal 

method adopted in this work, involves the use of mechanical forces to break 

cells. Mechanical disruption is commonly achieved either in motor driven Potter

Elvejham homogenisers or hand operated Dounce homogenisers. In either case 

cells are subjected to a shear force as they pass between the pestle and glass wall 

of the homogeniser. The Dounce homogeniser, being more gentle in its action, 

has been used by a number of workers to disrupt cultured cells. (Bosmann et al., 

1968; Boone et al., 1969). 

The effectiveness of any cellular disruption process employed can often be 

increased by paying special attention to the composition of the medium in which 

the cells are disrupted. Sucrose is often present in the medium since it has been 

found to encourage cellular disruption and prevent aggregation of particles in 

the homogenate in many, but not all, instances. Similarly, disruption media 

are frequently buffered at pH 7.4 since lower pH values have often been found 

to increase the resistance of cells to cellular disruption procedures, (Bell et al., 

1971 ). Consultation of the literature reveals many variations in the composition 

of the meqium used to disrupt cells which often reflect particular properties of 

the cells being isolated. 

Techniques for the separation of plasma membranes from other cell organelles 

and membranes are based to a large extent on the various properties of the sub

cellular particles such as weight, shape, density and surface charge. For example 

free-flow electrophoresis has been used to prepare plasma membranes from the 

stomach (Chang, 1977). However, the most common separations involve centrifu

gation techniques. Generally even when other techniques such as electrophoresis 

are employed, centrifugation is a necessary preliminary step. 

Centrifugation techniques in plasma membrane isolation procedures usually 

involve two steps, a differential centrifugation step and a density gradient step. 

93 



In the differential centrifugation step particles are separated due to differences 

in sedimentation coefficients which are determined by the volume, shape and 

density of the particle together with the viscosity and density of the medium. 

Providing the suspending medium is less dense than the particles, all of the 

components of the mixture can be separated in pellet form by using various 

combinations of increasing gravitational force (g force) and time. 

Although some workers have based their plasma membrane isolations on 

differential centrifugation alone (Carroll and Sereda, 1968), sedimentation coef

ficients of the various cellular organelles are not usually sufficiently different to 

ensure a clean separation in this way, which is why density gradient separations 

are generally performed. The density gradient step often involves an isopycnic 

separation in which the particles are centrifuged through a density gradient that 

encompasses their own density. The gradient in density has traditionally been 

established by a gradient in sucrose concentrations. Both continuous and dis

continuous gradients have been used though continuous gradients, which show a 

continuous decrease in density from bottom to top tend to give the best separa

tion (Wallach and Kamat, 1966). 

However, sucrose gradients not only exert an osmotic pressure but involve 

a great deal of time and care in their preparation, and normally require long 

centrifugation times, often in excess of 2 hours. Consequently alternative ways 

of producing gradients have been sought. Gradients have been produced by 

employing synthetic polymers such as Ficoll-400 (Wallach and Kamat, 1966) 

and inert particles composed of colloidal-silica such as Ludox (Rome et al., 1979) 

and Percoll (Belsham et al., 1980). 

Percoll is proving increasingly useful in plasma membrane isolation pro

cedures. It consists of heterogeneous particles of colloidal-silica coated with 

polyvinylpyrrolidone (PVP) which renders the material completely non-toxic. 

Unlike sucrose, it has a low osmolality which permits precise adjustment to 

physiological conditions and it does not penetrate membranes thereby allow

ing particles to band isopycnically at their true buoyant densities. However, the 

great advantage of Percoll is that due to the heterogeneity of particle sizes and 

its low viscosity, gradients can be generated spontaneously and very rapidly in 
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a centrifuge which means that gradient formation and sample separation can be 

achieved in a single operation thereby reducing the length of the isolation proce

dure, and hence the time that the membranes are exposed to the harsh isolation 

conditions. 

Amende and Donlon {1985) employed a single Percoll gradient centrifugation 

step to produce plasma membranes from rat liver cells that showed a 4.5-fold 

enrichment in the plasma membrane marker enzyme, 5'nucleotidase, as compared 

to the 2.8-fold obtained by Ishizaka et al. (1981) using discontinuous sucrose 

gradients. Chakravarthy and co-workers (1985) produced a high yield of purified 

plasma membrane fraction from cultured murine neuroblastoma cells that showed 

an 11-fold enrichment in the plasma membrane marker enzyme 5'nucleotidase 

on a discontinuous gradient of 5%, 25% and 35% Percoll within 1 hour of cell 

disruption by nitrogen cavitation. 

Since Percoll has been used successfully in plasma membrane preparations 

with other cultured cells and would appear to produce high yields of relatively 

pure plasma membrane by employing simple and rapid techniques, it was adopted 

in the current study. Laten and Redshaw-Laten (1986) have described a purifi

cation method involving Percoll for rat liver plasma membranes which provided 

a useful starting point to this work with HTC cells. 

In order to be able to isolate a component such as the plasma membrane from 

a mixture there has to be some form of assay for that component. In addition, 

to be able to assess the purity of the final plasma membrane preparation assays 

must be available to measure other components present in the cell homogenate. 

A wide range of 'marker' techniques have been developed that are based on 

the premise that each morphologically distinguishable organelle and membrane 

system has constituents or combinations of features that render them unique (de 

Duve, 1964). These techniques have made use of the morphological, biochemical, 

histochemical and immunological properties of the various organelles and mem

brane systems. For example, the presence of receptors in plasma membranes to 

which metabolic effectors (e.g. lectins, immunoglobulins, toxins) and polypeptide 

hormones bind rapidly and specifically has led to the use of radio-labelled lig

ands to identify plasma membranes in subcellular fractions (Chang et al., 1975). 
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Electron microscopy provides a qualitative assessment of contamination of sub

cellular fractions by nuclear envelopes since Monneron et al. (1972) have shown 

that these paired membranes are characterised by the attachment of amorphous 

material (containing DNA and chromatin) to their non-cytoplasmic surface. 

However one of the most common forms of marker techniques, and one that 

was adopted in the current study, is that involving the measurement of enzymes 

that have been shown histochemically to be associated with particular membrane 

fractions. The advantage of this technique is that it enables a quantitative mea

surement to be made and is fairly easy to perform. It is important to bear in 

mind however that this technique does have its drawbacks such as the loss in 

enzyme activity and vesicular latency that can occur during cell rupture and 

subsequent separation of organelles (Evans, 1982). In addition, it is important 

to remember that the cellular location of an enzyme in one cell type is not neces

sarily the same as that in other cell types. For example, although 51nucleotidase 

is assumed to be on the plasma membranes of mammalian cells, Wallach and 

Ullrey (1962) reported that this enzyme is localised exclusively in the nuclei of 

Ehrlich ascites carcinoma cells. Likewise, analytical fractionation studies of HTC 

cells (Lopez-Saura et al., 1978) have suggested that these cells do not contain 

typical 51 nucleotidase. Thus care must be taken in the choice of marker enzymes 

in plasma membrane isolation studies. 

The major constituents of animal cell membranes are lipids, proteins and 

polysaccharides (Simon, 1974; Singer and Nicolson, 1972). Membrane functions 

such as enzymic, transport and receptor activities are believed largely to be 

mediated by proteins which can contribute 50% or more of the weight of isolated 

animal cell plasma membranes (Nystrom, 1973). Lipids on the other hand, are 

considered to be more important as structural components of membranes and 

are composed mainly of cholesterol and phospholipids with lesser quantities of 

neutral fat (Brossa et al., 1980). Plasma membrane lipids encompass up to 

7 classes of phospholipid, their lyso-derivatives and neutral glycerolipids all of 

which exhibit varying patterns of fatty acids. 

Many models have been put forward over the years to account for the struc

ture of cell membranes. The contemporary model of membrane structure is 
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based on that proposed by Singer and Nicolson (1972) which pictures membrane 

proteins as floating in a sea of phospholipids, the latter being organised as a 

bilayer. From a consideration of the thermodynamics of macromolecules, prop

erties of the proteins and lipids of functional membranes and other experimental 

evidence, these authors concluded that a 'fluid mosaic model' of the gross or

ganisation and structure of the proteins and lipids of biological membranes was 

consistent with restrictions imposed by thermodynamics. They also suggested 

that the proteins in this model are a heterogeneous set of globular molecules, 

each arranged in an amphipathic structure, with the ionic and polar headgroups 

protruding from the membrane into the aqueous phase and the non-polar groups 

being largely buried in the hydrophobic interior qf the membrane. This model has 

since been expanded to include cholesterol which in the normal liquid phase has 

a condensing effect on the fatty acid chains of phospholipid molecules (Oldfield 

and Chapman, 1972). A further modification suggests that some of the proteins 

may be 'anchored' or their movements relatively impeded by association with 

the cytoskeleton. 

One of the most important features of the fluid mosaic model of membrane 

structure centres on the dynamic state of the lipids in the bilayer. This dynamic 

state has been found to be influenced by a number of factors including the prop

erties of the fatty acyl chains of the phospholipid bilayer, cholesterol content and 

the phospholipid polar headgroup composition (Van Blitterswijk et al., 1987) and 

temperature. 

Many different kinds of fatty acyl chains are present in biological membranes. 

They are of chain length C16 to C22 and most are characterised by an even number 

of carbon atoms. Of these, some 35% to 40% are saturated whilst the remain

der are unsaturated containing between 1 and 6 double bonds. In addition, not 

only are plasma membranes from different cell types characterised by different 

and distinctive fatty acyl compositions, but each phospholipid class of a partic

ular plasma membrane also has a characteristic spectrum of fatty acids present 

(White, 1973). The purpose of this complex chemical composition is not clear 

but it is believed to be related to the maintenance of the physical state of the 

lipid matrix. 
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In most organisms the primary product of fatty acid biosynthesis is palmitic 

acid (16 : 0) and it is from this common precursor that most other fatty acids, 

apart from linoleic and linolenic acid (the so called essential fatty acids), found 

in membranes are formed by elongation and desaturation reactions. Elongation 

reactions involve the addition of 2 carbon units to long chain fatty acids whilst 

desaturation reactions involve the dehydrogenation of 2 adjacent carbons in the 

fatty acyl chain with a high degree of positional specificity. Eukaryotic cells have 

been found to contain up to 4 distinct desaturase enzymes each of which has its 

own positional specificity. The most common of these, .6.9 desaturase, inserts 

a double bond between carbons 9 and 10 (from the carboxyl end) of saturated 

fatty acyl-GoA derivatives. The other desaturases that exist are .6.6, .6.5 and ~4 

desaturases. 

The fatty acid composition of animal cells is profoundly influenced by the 

availability of linoleic and a-linolenic acids. Since higher animals are unable to 

synthesise these two fatty acids, they are obtained from the diet in the case of 

animals and from the extracellular fluid in the case of cells. These two essential 

fatty acids serve as precursors for the two main classes of polyunsaturates found 

in animal cells. Dietary linoleic acid serves as the precursor for the w - 6 or n - 6 

family of polyunsaturated fatty acids, all of which have the first double bond at 

carbon 6 counting from the methyl end of the molecule (figure 4.1). Similarly, 

a-linolenic acid is the precursor for thew- 3 or n- 3 family (figure 4.1). Whilst 

the same series of enzymes desaturates and elongates the appropriate members 

of both families of polyunsaturated fatty acids, the two families of fatty acids are 

not interconvertible. Thus 18 : 3 n - 6 is a different fatty acid to the 18 : 3 of 

then- 3 class. The fatty acids can however, be modified by desaturation, chain 

elongation and in some cases chain shortening or retroconversion to produce 

other members of the same fatty acid family (Rosenthal, 1987). 

The attachment of a fatty acid to a phospholipid involves the action of a 

fatty acyl transferase using as its substrates a lysophospholipid and fatty acyl

GoA. The fatty acyl-GoA substrate is usually formed by the action of fatty 

acyl-GoA synthetase on free fatty acids either synthesised de novo or derived 

from dietary sources. Available evidence strongly supports the existence of 

at least two types of acyl-GoA : lysophospholipid acyltransferase (Lands and 
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JFig11.1ure 4.1 

Major pathways for desaturation and elongation of essential fatty acids 

in HTC cells 

n-3 

a:- Lin olen ate 

9, 12, 15 - 18 : 3 

j .6.6 Desaturase 

6, 9, 12, 15 - 18 : 4 

! Elongation 

8, 11, 14, 17- 20 : 4 

j .6.5 Desaturase 

Eicosapentaenoate 

5,8,11,14,17- 20:5 

j Elongation 

7, 10, 13, 16, 19- 22 : 5 

l .6.4 Desaturase 

Docosahexaenoate 

4, 7, 10, 13, 16, 19- 22 : 6 

n-6 

Lin oleate 

9,12- 18: 2 

~coo-

j 
")'· Linolenate 

6, 9, 12 - 18 : 3 

8, 11, 14 Eicosatrienoate 

8, 11, 14- 20 : 3 

Arachidonate 

5, 8, 11, 14- 20 : 4 

I 
Docosatetraenoate ( Adrenic acid) 

7, 10, 13, 16- 22 : 4 

The positions of double bonds with respect to the carboxyl carbon are indi

cated in front of the two numbers which indicate the number of carbon atoms 

: number of double bonds. The notation for fatty acid family ( n - 3, n - 6) is 

based on the location of the double bond proximal to the methyl or w carbon 

which is unchanged by the process of desaturation and elongation. (Redrawn 

from Rosenthal, 1987). 



Crawford, 1976). One specifically attaches an acyl group to the 1 position of 

2-acylglycerolphospholipids, while the other esterifies an acyl group to the 2 po

sition of 1-acylglycerolphospholipids. Under optimised in vitro conditions, the 

enzyme that places an acyl group at the primary hydroxyl position appears to 

be selective for saturated fatty acids, while the acyltransferase activity at the 2 

position seems to prefer unsaturated acids (Lands and Crawford, 1976). 

Most cells also contain enzymes capable of hydrolysing fatty acids from phos

pholipids. Such enzymes usually display positional specificity with those des

ignated phospholipase A1 cleaving the fatty acid from the sn - 1 position of 

glycerophospholipids and those designated phospholipase A2 deacylating glyc

erophospholipids at the sn - 2 position (Shinitsky, 1984). 

Though some of the remarkably asymmetric distributions of fatty acids in 

membrane structural lipids undoubtedly arises during de novo synthesis of these 

compounds, the subsequent replacement of certain fatty acyl chains of the com

pleted lipids with different ones through deacylation followed by reacylation re

actions would also seem to be important in producing the striking differences 

seen in the fatty acyl chains of membrane phospholipids. In addition, there are 

numerous other reactions by which the fatty acid composition of a particular 

phospholipid can be affected. For example, there can be quantitatively signif

icant transfers of entire diacylglycerol moieties from one phospholipid class to 

another by a number of different pathways. Sundler and Akesson (1975) have 

shown that approximately 20% of the molecular species of phosphatidylcholine 

in mammalian liver is recruited from the phosphatidylethanolamine pool by se

quential methylation of the latter phospholipid. 

When culture medium contains an adequate supply of lipids, fatty acid syn

thesis (de novo) and cholesterol synthesis are suppressed and most of the cellular 

lipids are derived from the material that is taken up from the medium (Spector 

and Yorek, 1985). This finding has led to a large number of studies in which the 

fatty acyl composition of mammalian cells has been modified. The types of cells 

that have been modified in this manner include fibroblasts (Rosenthal, 1980), 

myogenic cells (Horwitz et al., 1978) and endothelial cells (Spector et al., 1980). 
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Such studies have shown that there is considerable variation in the extent to 

which different fatty acids can be increased in fatty acyl groups of phospholipids. 

For example, when bovine pulmonary artery endothelial cells were supplemented 

with palmitic acid (16 : 0) in medium containing 10% foetal bovine serum (FBS), 

the phospholipid 16 : 0 content and total saturated fatty acid content increased 

only slightly, whereas with oleic acid (18 : 1) the 18 : 1 content of the endothelial 

phospholipids increased by 60% (Kaduce et al., 1982). When 3T3 cells were 

supplemented with linoleic acid (18 : 2) in 10% newborn bovine serum whilst the 

level of linoleic acid increases two fold, a four fold increase in the arachidonic 

acid (20 : 4) content of the phospholipids was seen (Denning et al., 1982). This 

increase in arachidonic acid content does not occur when human skin fibroblasts 

are supplemented with linoleic acid (Spector et al., 1979). 

Some of this variation has been found to reflect the cells' metabolic capacity 

for elongating and desaturating fatty acids. Although most cells in culture seem 

capable of carrying out elongation reactions, many cells have been found to lack 

one or more of the 4 enzymes involved in desaturation reactions. For example 

whilst ~9 desaturase, which primarily converts stearic acid (18 : 0) to oleic acid 

(18 : 1), would appear to be operational in most cell lines and has been con

clusively demonstrated in HTC rat hepatoma cells (Wiegand and Wood, 1975), 

the ~6 desaturase which converts linoleic acid (18 : 2 n - 6) to 1-linolenic acid 

(18: 3) and a-linolenic acid (18 : 3 n- 3) to parinaric acid (18 : 4) is reported to 

be absent in a number of different cell lines including several transformed mouse 

cell lines (Dunbar and Bailey, 1975). 

Although a large number of fatty acid supplementation studies have been 

conducted, in many instances such studies have been confined to a consideration 

of the modifications produced in total cellular phospholipids with lipid extraction 

procedures being carried out on whole cells (Rosenthal, 1979; Yatvin et al., 1983; 

Nelson et al., 1986). Some workers, such as Yatvin et al. (1987), suggest that 

since cellular phospholipids are primarily present in the membrane fractions the 

total phospholipid content of a cell serves as an approximate measure of its 

membrane content. However, as Burns et al. (1983) have shown in their study 

of normal mouse tissues and membranes in vivo, whilst cellular phospholipids 

can be used to estimate the direction of plasma membrane alteration they need 
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not necessarily reflect the extent of the alteration. For example, Burns et al. 

(1983) showed that, whilst purified liver plasma membranes demonstrated diet

induced changes, the level of arachidonic acid in the plasma membrane was lower 

as compared to whole liver phospholipids and when animals were fed sunflower 

diets, rich in polyunsaturates, the plasma membranes phospholipids were less 

polyunsaturated as compared to the whole liver phospholipids. Thus, in the 

current study, changes in phospholipid fatty acyl composition have been studied 

using purified HTC cell plasma membrane fractions. 

Fatty acid modification procedures have formed the basis of a large number of 

experiments in which fatty acyl group composition, membrane physical properties 

and membrane function are simultaneously compared in an effort to determine 

the nature of the relationship between these three properties. 

A number of studies with prokaryotic and artificial membranes (Machtiger 

and Fox, 1973; Silbert et al., 1974) have suggested that changes in saturated 

fatty acid content result in marked changes in membrane 'fluidity'. Similar stud

ies with cultured cells have suggested a relationship between fatty acyl compo

sition and 'fluidity'. For example Konings (1985) working with mouse LM cells 

showed that plasma membranes that were enriched with polyunsaturated fatty 

acyl chains were more 'fluid' as compared to control plasma membranes. Fur

thermore, Burns et al. (1979) using 11210 leukemia cells have demonstrated that 

cells from animals fed a diet enriched with polyunsaturated fatty acids have a 

more fluid plasma membrane than cells grown in host animals fed on diet rich in . 

saturated fatty acids. 

A relationship between fatty acyl composition, 'fluidity' and response totem

perature fluctuations has been suggested by a number of studies. It has been 

known for many years that exposure of microorganisms, plants and animals to 

low temperatures leads to the incorporation of increased proportions of unsat

urated fatty acids in the storage lipids and in membrane phospholipids (Hazel, 

1984). Sinensky (1974) using electron spin resonance (ESR) spectroscopy showed 

that the 'fluidity' and phase state of membrane from Escherichia coli remained 

constant at a variety of growth temperatures. He used the term 'homeovis

cous adaptation' to stress both the homeostatic nature of the response and its 
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adaptive importance. The significance of homeostatic regulation relates to the 

direct effects-of bilayer physical properties upon the functional properties of the 

membrane since bilayer lipids provide the effective solvent environment of the 

functional components, namely integral membrane-bound proteins. It would 

Seem that the chemical composition of many, if not all, membranes is regulated 

to maintain the physical state or 'fluidity' of the bilayer within tolerable limits 

optimal for membrane function. 

Membrane 'fluidity', although a term which is widely used in the study of 

membranes, is one that tends to lack a precise definition. Generally, it is taken to 

mean a combination of different types of mobility of membrane components which 

can include the flexibility of acyl chains, transverse diffusion of molecules from 

one monolayer to the other, the lateral diffusion of molecules in the plane of the 

membrane and phase transitions leading to lateral phase separations (Goldstein, 

1984). Different workers have their own interpretations. In the present study, as 

suggested by Stubbs and Smith (1984) membrane fluidity has been interpreted in 

terms of the physical state of the fatty acyl chains of the phospholipids comprising 

the bilayer structure. An important point to bear in mind however, is that whilst 

'fluidity' in this sense is likely to be directly affected by the degree of unsaturation 

of the fatty acyl chains and the fatty acyl chain length, it may also be influenced 

by other components of the membrane such as cholesterol and proteins since 

these are also known to influence the behaviour of fatty acyl chains. This implies 

that fatty acid unsaturation and membrane fluidity are unlikely to be related in 
_, - . ··- -- -- -

a simple·manner. 

Membrane fluidity can be operationally defined and quantified using one of 

several biophysical techniques such as nuclear magnetic resonance (NMR) spec-

troscopy, electron spin resonance (ESR) spectroscopy and fluorescence 

polarisation spectroscopy techniques that employ various 'probes' that can be 

intercalated within the bilayer interior. The basic assumptions are first that the 

measured motional characteristics of the probe are sensitive to the dynamical 

motion or order of the surrounding hydrocarbon chains and second that the nor

mal physical structure of the bilayer is not greatly disturbed by the probe. Each 

technique provides specific information on the type of motion which affects the 

spectroscopic property in question so that different techniques report on different 
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aspects of the fluid condition. Stubbs and Smith (1984) suggest that the various 

parameters that are extracted by the different techniques can be classified into 

one of two types. These are the rate of motion and the angular range of mo

tion, or the degree of order, which in membranes are related to the acyl chain 

rotational mobility. 

Steady state fluorescence polarisation spectroscopy, which appears to produce 

information on the angular range of motion (degree of order) of the fatty acyl 

chains, was selected in the current study since measurements can be performed 

on relatively small amounts of membrane sample, are highly reproducible and 

are relatively simple to perform (Lee, 1982). In steady state polarisation studies 

a fluorescent probe is inserted deep into the core of the membrane bilayer. Once 

the dye molecules have equilibrated in the lipid matrix of the membrane they are 

then excited by polarised light and emit fluorescence which is polarised parallel 

to the excitation light. The extent of movement of the molecules during the 

nanoseconds of the excited state determines the proportion of light which is 

depolarised on fluorescence. If the environment is very fluid then the excited 

molecules will be totally depolarised. If however, the environment is very rigid 

then no motion will take place during the lifetime of the excited state and the 

fluorescence polarisation will be equal to the maximum possible value for that 

molecule. 

In the current study 1,6-diphenyl-1,3,5-hexatriene (DPH), a rigid, rod shaped 
-

fluorescent molecule was chosen as the probe. Whilst this molecule only fluoresces 

when it is in the hydrophobic core of the membrane and not when it is an aqueous 

environment, it is prone to photoisomerisation and so exposure to excitation light 

should only occur just before a polarisation measurement is to be taken (Lee, 

1982). 

One important point to bear in mind with the use of probe techniques such as 

fluorescence polarisation spectroscopy is that although lipid domains of varying 

order have been shown to exist within many plasma membranes (Schroeder, 1983) 

these techniques are not able to differentiate between different microdomains but 

rather produce a weighted average of the probe positions, determining overall 

changes in the hydrophobic core of membranes. 
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Once again, as with fatty acyl compositional studies, fluorescence polarisa

tion fluidity measurements have often been conducted on whole cells rather than 

on isolated membranes. One possible artefact of such measurements has been 

suggested by Collard and De Wildt (1978) and Stubbs et al. (1980), who pointed 

out that with whole cells there is the possibility that the probe may be taken up 

into cytoplasmic lipid droplets which can appear in cells fed excess fatty acids 

and which were apparent in the current supplementation studies with HTC cells 

(see Chapter 3). For example, supplementation of lymphocytes with linoleate 

gave a large decrease in the fluorescence polarisation of DPH labelled intact cells 

which was found to be due entirely to DPH located in triacylglycerol droplets in 

the cytoplasm (Stubbs et al., 1980). Thus in the current study fluorescence po

larisation measurements were conducted on purified plasma membrane fractions. 

The importance of cholesterol in determining membrane lipid fluidity has 

been suggested by a number of studies. Poznansky et al. (1973) have shown that 

in artificial membranes cholesterol interacts with the membrane phospholipids 

thereby reducing their cross-sectional areas, suppresses the motion of acyl chains 

and decreases the fluidity of the membrane. Cholesterol would appear to exhibit 

a dual role with regard to membrane fluidity, since it has been shown to reduce 

the thermal motion of acyl chains at temperatures above the phospholipid phase 

transition when membranes become highly fluid whereas, below this temperature, 

it appears to increase acyl chain mobility by disrupting the van der Waal 's forces 

(Stubbs, 1983). 

Although studies with erythrocytes have shown that changing the choles

terol : phospholipid ratio over a wide range can markedly affect the physical 

properties of the erythrocyte membranes producing alterations in cell surface 

area, curvature and lipid fluidity (Chabanel et al., 1983) relatively few studies 

have investigated interactions between acyl chain modification and cholesterol 

content in regulating membrane properties. Where such studies have been con

ducted conflicting results have been obtained. King and Spector (1978) working 

with Ehrlich ascites tumour cells and Spector et al. (1979) working with human 

skin fibroblasts have shown that modifications in fatty acyl composition pro

duced by exposure of cells to a variety of fatty acids bound to albumin are not 

accompanied by any changes in the membrane cholesterol to phospholipid molar 
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ratio. Edwards-Webb and Gurr (1988), on the other hand, working with guinea 

pig erythrocyte membranes have shown that when guinea pigs are fed diets con

taining a high proportion of linoleic acid, membranes were not only enriched 

in linoleic acid but also contained a higher ratio of cholesterol to phospholipid. 

The order parameter of the membrane as determined by ESR spectroscopy was 

found to be unaffected by the dietary fat. These findings have led these workers 

to propose that any diet-induced change in phospholipid fatty acid composition 

may well be counteracted by a re-distribution of cholesterol in the membrane so 

as to maintain a constant physical state in the membrane. 

Membrane associated enzyme activity has been shown to be influenced in 

many instances by the 'fluidity' (order) of membrane lipids (Kimelberg, 1977). 

For example studies with essential fatty acid deficient rats have shown that the 

ouabain-sensitive N a+ I K+ ATPase is increased in the submandibular salivary 

glands and kidneys of rats, compared to control animals (Alam and Alam, 1986). 

Similarly, much evidence suggests an alteration in the structure or function of 

membrane proteins in hyperthermic cell death. Burdon et al. (1982, 1984) re

ported a dramatic loss of N a+ I K+ ATPase activity in HeLa cells after 10 minutes 

at 45°C. Clearly if hyperthermia produces an increase in membrane lipid 'fluid

ity' then this could account for the alterations in membrane proteins observed. 

Inactivation of membrane proteins such as enzymes and receptors will lead to an 

impairment of function and a loss of response by the compartment bounded by 

the membrane which, in time, could lead to a loss of cellular homoeostasis and, 

possibly, an -irreversible loss of function resulting in cell death. If exposure of 

cells to unsaturated supplemental fatty acids leads to changes in the fatty acid 

composition of the plasma membrane phospholipids which exert a fluidising effect 

on membrane lipids, then supplementation and heat treatment together should 

produce a marked increase in the thermal sensitivity of membrane proteins if 

membrane 'fluidity' is a key factor in determining membrane associated enzyme 

activity. 

This current chapter has a number of aims. First to develop an isolation 

procedure for HTC plasma membranes that will produce membranes in high yield 

and with a high degree of purity. Secondly, to determine the lipid composition 

of isolated plasma membranes derived from control and fatty acid supplemented 
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HTC cells. Thirdly, to determine whether any differences that exist can be 

correlated with a change in plasma membrane fluidity as determined by D .P.H. 

fluorescence polarisation measurements. Fourthly, it aims to establish whether 

such changes can also be correlated with an alteration in the thermal sensitivity 

of plasma membrane proteins. Taken together such investigations should provide 

an insight into possible reasons for the enhanced thermosensitivity of HTC cells 

observed at 43°C following a 36 hour period of supplementation with linoleic 

acid. 

4\.~ Ma.teJJ:'i.alls and Methods 

4.~.1!. Preparation of Purified P!asms Membranes 

(a) Microcarrier Culture 

An appropriate number of Techne flasks (maximum of 3 per plasma mem

brane (p.m.) isolation) were set up as described in Chapter 2, Materials and 

Methods, section 2.2.2(b) with 4 x 107 cells/1.5g Cytodex 2/Techne flask. When 

plasma membranes from fatty acid supplemented cells were required Techne flasks 

were supplemented with 60p,M linoleic acid prepared as described in Chapter 3, 

Materials and Methods, section 3.2.3, for a 36 hour period prior to p.m. isolation. 

(b) Isolation of cells from micro carriers 

The culture medium was discarded from the flasks. Microcarrier beads were 

washed three times with 10mM Tris-HCl, pH 7.4, containing 150mM NaCl at 

4°0. Cells were then removed from the beads by incubating the beads, with 

stirring, in the same buffer containing 2mM EDTA at 37°0 for 15 minutes. The 

omission of any enzyme in this detachment procedure ensured that damage to 

membranes was minimised. Cell detachment was facilitated by repeated aspira

tion of the suspension with a 50ml syringe during the last three minutes of this 

incubation. After the beads had settled the supernatant was filtered through 

nylon mesh (88pm pore size) and retained. This cell detachment procedure was 

repeated twice more and the supernatants combined. A cell count was per

formed on the isolated cells which were then pelleted by a low speed spin at 

250g (rav = 18cm) in an MSE Coolspin centrifuge at 4°0. 
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(c) Plasma membrane isolation Methods 

(i) Method 1 

The isolation of HTC plasma membranes was based on the method of Loten 

and Redshaw-Loten (1986) with some modification. Figure 4.2 summarises the 

original Loten and Redshaw-Loten purification scheme and the scheme adopted 

in method 1. 

In the Loten method rat liver tissue was cut into small pieces and ho

mogenised producing large sheets of plasma membrane nuclei etc., which were 

sedimented at low speeds (1500g/15min/4°C). The pellet was resuspended in 

0.25M sucrose lOmM Tris-HCl buffer, pH 7.4 (ST buffer) and fractionated on 

a self forming Percoll gradient (35000g/20min/4°C) to produce a plasma mem

brane band. A second Percoll step was then carried out (45000g/30min/4°C) 

in the presence of a low concentration of calcium ions to separate DNA from the 

plasma membranes. Finally, the plasma membranes were harvested and washed 

at 1500g for 10 minutes to remove Percoll and added calcium ions. 

In method 1, since the starting material was isolated HTC cells rather than 

liver tissue, the low speed spin (1500g/15min/4°C) of the Loten method was 

utilised to sediment unbroken cells since the homogenisation procedure produced 

small fragments of plasma membranes from the isolated cells. Consequently, the 

supernatant, rather than the pellet from the low speed spin was subsequently 

purified. In addition, after the second Percoll spin the plasma membrane was 

collected, diluted with ST buffer and spun down at lOOOOOg (rav = 7.7cm) to 

produce a membrane pellet. 

Once a cell pellet had been obtained, as described in section 4.2.1(b), all 

subsequent operations were performed at 4°C. The cell pellet containing ap

proximately 8 x 108 cells was resuspended in lOml of ice cold lOmM Tris-HCl 

buffer, pH 7.4, and left to swell for 20 minutes. This hypotonic medium which 

was not employed in the original Loten and Redshaw-Loten purification scheme 

encouraged disruption of the cells by osmotic forces thereby reducing the amount 

of mechanical force that subsequently had to be applied. The suspension was then 

homogenised in an all glass Dounce homogeniser using 20 up and down strokes 
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lFiglllure 4.2 

Purification schemes for rat liver and HTC cell plasma membranes 

Loten. Redshaw-Loten Method 

Cell Homogenate 

Rat liver (lOg) cut into small pieces in 0.25M sucrose. lOmM 

Tris- HCl, pH 7.4 (ST buffer). Homogenise in several steps: 

2.5g each time with 4 strokes of loose pestle in 40ml ST buffer. 

Combined homogenate made up to 250m/ with ST buffer. 

t 
centrifuge at 1500g/15min/4°C 

Method 1 

Cell Homogenate (H) 

Prepare from isolated cells as described in 

Materials and Methods. sections 4.2.l(b) and 4.2.l(c)i. 

centrifuge at 1500g/15min/4°C 

Pellet Supernatant Pellet (P1 ) Supernatant (St) 

Resuspend in ST buffer to 55ml. Resuspend in ST buffer to 75ml. 

Add lO.lml Percoll. 

1.45ml of 2M sucrose. 

~ 
c:entrifuge at 35000gf20min/4°C 

~ 
Plasma membrane band. Resuspend in 

ST buffer to 75ml. Add lO.lml Percoll. 1.45ml of 

2M sucrose. and 1.14ml of lOOm.M CaC/2. 

9 
centrifuge at 45000g/30min/4°C 

~ 
Pla:;ma mcmhrane baud. Harvest and wash 

at 1500g for 10 minutes to remove Percoll 

and added calcium ions 

-discard -discard 

Add i.4ml Percoll. 

1.06ml of 2M sucrose. 

* 
centrifuge at 35000yf20minf4°C 

~ 
Plasma. membrane band (S1A). Resuspend in 

ST buffer to 25m/. Add 3.36ml Percoll. 0.48ml of 

2M sucrose. and 0.38ml of lOOmM CaC/2. 

~ 
centrifuge at 45000g/30min/4°C 

~ 
Plasma membrane band (S2 A). Resuspend 

in ST buffer to 45ml 

t 
centrifuge at 100000g/30min/4°C 

~ 
Plasma membrane pellet ( S3 ) 



of a tight fitting (A) pestle. To return the medium to isotonicity, a final sucrose 

concentration of 250mM was produced by adding ~th volume of 2M sucrose. 

Following this, the suspension was rehomogenised with 20 up and down strokes 

of the tight fitting (A) pestle of a Dounce homogertiser and diluted to 25ml with 

0.25M sucrose, 10mM Tris-HCl pH 7.4 (ST buffer). 

The homogenate was spun at 1500g (rav = 19cm) for 15 minutes in an MSE 

Coolspin. The pellet (PI) was discarded and the supernatant (81) was diluted 

to 55ml with ST buffer. To this was added 7.4ml Percoll and 1.06ml of 2M 

sucrose. After mixing, the suspension was centrifuged at 35 OOOg { Tav = 12.3cm) 

for 20 minutes in a 6 x 38ml swing out rotor in a Prepspin 50 at 4°C. The 

plasma membranes banded on the self-forming Percoll gradient as a clearly visible 

layer near the top of each tube. These layers (S1A bands) were collected and 

diluted to 25ml with ST buffer and homogenised with 5 gentle up and down 

strokes of a loose-fitting (B) pestle of a Dounce homogeniser. Then 3.36ml 

Percoll and 0.48ml of 2M sucrose was added together with CaCl2 (1.3mM final 

concentration) to aid the separation of the plasma membrane from the nuclear 

material (Loten and Redshaw-Loten, 1986). 

The suspension was mixed and centrifuged at 45 OOOg (rav = 12.3cm) in the 

6 x 38ml rotor of the Prepspin 50 for 30 minutes at 4°C. 

The resulting p.m. band (S2A band) was collected and diluted to 45ml 

in ST buffer and centrifuged at 100 OOOg (rav = 7.7cm) for 30 minutes in an 

8 x 50ml angle rotor of the Prepspin 50 to produce a pellet (S3). This pellet was 

resuspended in 3ml of ST buffer and stored on ice for enzymic assays or under 

nitrogen at -20°C for any other assay procedures. 

(ii) Method 2 

Figure 4.3 summarises the purification scheme used in method 2. 

The second method that was used to isolate HTC plasma membranes was 

also based on the method of Loten and Redshaw-Loten (1986) but with more 

extensive modifications. (Manning et al., 1989). The speed of the second spin 

was greatly increased to sediment the plasma membranes. Also the pellet that 

was obtained from the second spin was washed in ST buffer to produce a purer 
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Figmure 4.3 

Alternative Purification scheme for HTC cell plasma. membranes 

Method 2 

Cell Homogenate 

Prepare from isolated cells as described in 

Materials and Methods. sections 4.2.l(b) and 4.2.l(c)ii. 

~ 
centrifuge at 250g/6min/4°C 

Cell pellet 

Resuspend in ST buffer to 12m/. Repeat 

homogenisa.tion and centrifugation a 

total of three times ---' Combine supernatants 

~ 
centrifuge at 15000g/20min/4°C 

Pellet 

Resuspend in ST buffer to 35m/ 

. ~ 

centrifuge at 15000g/20min/4°C 

~ 
Pellet Supernatant 

Resuspeud in ST buffer to 56m/. Add 

7ml Percoll. lml of 2M sucrose. 

and 0.84m/ of 100mlvf CaCl2 • 

~ 
centrifuge at 45000g/30min/4°C 

t 
Plasma membrane baud. Resuspend 

in ST buffer to 40ml 

~ 
centrifuge at 100000g/30min/4°C 

~ 
Plasma membrane pellet 

-discard 

Supernatant 

-discard 



starting material. In addition, only one Percoll gradient was run in the presence 

of CaCl2, to remove nuclear material. Once again the membrane bands were 

collected from the Percoll spin, diluted and spun down at 100 OOOg (rav = 7.7cm) 

to produce the final membrane pellet. 

The cell pellet containing approximately 8 x 108 cells that was produced as 

described in section 4.2.1(b), was resuspended and then homogenised in 12ml of 

ice-cold ST buffer using 30 up and down strokes of a tight fitting (A) pestle of 

an all glass Dounce homogeniser. This operation and all subsequent operations 

were performed at 4°C. After centrifugation at 250g for 6 minutes in an MSE 

Coolspin the supernatant was retained and the cell pellet was homogenised and 

centrifuged twice more. This 3-step approach to homogenisation was adopted to 

reduce the amount of damage caused to intracellular organelles. 

The supernatants were pooled and centrifuged at 15000g (rav = 8.26cm) for 

20 minutes in the 8 x 50ml angle rotor of an MSE Europa 24M centrifuge. The 

supernatant was discarded and the pellet was then 'washed' by gently resuspend

ing it in 35ml of ST buffer using 3 to 4 up and down stokes of the loose-fitting 

(B) pestle of a Dounce homogeniser, then repeating the spin at 15 OOOg. 

The pellet obtained was gently resuspended in ST buffer and then made up 

to 56ml with this buffer. After adding 7ml of Percoll, 0.84ml of lOOmM CaCl2 

and lml of 2M sucrose, the mixture was centrifuged at 45000g (rav = 12.3cm) 

for 30 minutes in a 6 x 38ml swing-out rotor of a MSE Prepspin 50 centrifuge. 

The discrete band of plasma membranes near the top of the gradient was col

lected, diluted to 40ml with ST buffer and then recovered by centrifugation at 

100 OOOg { r av = 7. 7 em) for 30 minutes in a 8 x 50ml angle rotor of the Preps pin 

50 centrifuge. Finally, the pellet produced was resuspended in 3ml of ST buffer 

and stored either on ice, or at -20°C under nitrogen, depending on the assays 

to be performed. 

(d) Characterisation of Isolated Fractions 

Preliminary time course studies and enzyme (protein) concentration studies 

were performed on all enzymes listed below that were used to characterise isolated 

fractions, to ensure assays of enzyme activity were made within the linear range. 
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(i) Na+ IK+ ATPase assay (E.C.3.6.1.3) 

N a+ I K+ stimulated ATPase activity was determined by the method of 

Atkinson et al. (1973) and was measured as that activity sensitive to the presence 

of ouabain. Incubations were run at 37°C in a final volume of 1ml. Test tubes 

containing 0.25ml of 12mM ATP-Tris, pH 7.2, and 0.5ml of 20mM potassium 

chloride, 6mM magnesium chloride, 200mM sodium chloride in 40mM imida

zole buffer, pH 7.2, with or without 2mM ouabain, were preincubated for 10 

minutes at 37°C. The reaction was started by the addition of 0.25ml of mem

brane suspension. Exactly 15 minutes later the reaction was stopped by the 

addition of 2ml of acid molybdatellubrol reagent which was prepared by mixing 

equal volumes of 1% (wlv) ammonium molybdate in 0.9M sulphuric acid with 

1% (wlv) lubrol. This reagent, which is known to give a linear response with 

released inorganic phosphate in the range 0 to l.2JLmoles, Pi, formed a yellow 

soluble complex of phosphomolybdic acid and lubrol which was read at 390nm 

after precisely 10 minutes at room temperature. 

The linearity of the N a+ I K+ ATPase and M g2+ ATPase enzyme activities 

with time were investigated using freshly prepared samples of cell homogenates 

and final plasma membrane fractions. The assays were run as described above, 

in the presence or absence of 1mM ouabain (final concentration) but using a 

range of incubation periods from 5 to 45 minutes. 

(ii) Alkaline Phosphodiesterase I (E.C.3.1.4.1) 

The assay for alkaline phosphodiesterase I activity was based on the method 

of Beaufay et al. (1974). The reaction media contained a final concentration of 

100mM MgCl2, 4mM zinc acetate, lmM p-nitrophenyl-thymidine 5'phosphate 

and 50mM glycine buffer, pH 10.2. The reaction was started, after 10 minutes 

preincubation at 37°C by the addition of 0.15ml of membrane suspension, pre

treated with an equal volume of0.2% (wlv) Triton X-100 for 10 minutes, to give 

a final assay volume of 0.75ml. The reaction was stopped, after 30 minutes at 

37°C, by the addition of 0.75ml of 0.2M NaOH and the tubes were placed on 

ice. The tubes were then spun at 900g for 15 minutes at 4°C. The supernatant 

was carefully pipetted into a cuvette and the absorbance measured at 400nm, in 

a dual beam Pye-Unicam SP8-100 spectrophotometer, using water as a blank. 
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The concentration of the p-nitrophenol produced was determined using its molar 

extinction coefficient of 18 300 at 400nm. 

(iii) Adenyla.te cyclase (E.C.4.6.1.1) 

Adenylate cyclase activity of membrane suspensions were determined in a 

final volume of 50j.tl. The reaction mixture used for this determination con

sisted of 25mM Tris (pH adjusted to 7.4 at room temperature with HCl), 

6mM M gCl2, 2mM ethyleneglycol-bis-(,8-amino-ethyl ether )N, N'-tetra-acetic 

acid (EGTA), 0.5mM 3-isobutyl-1-methylxanthine (IBMX), 1mM Adenosine 51 

triphosphate (ATP), 1mg/ml bovine serum albumin (BSA) and an ATP re

generating system composed of 7mM phosphocreatine and 30unitsfml creatine 

kinase. After 5 minutes preincubation at 37°C, the reaction was started by ad

dition of 10j.tl membrane suspension and the mixture incubated for a further 

8 minutes at 37°C. The reaction was terminated by the addition of 50j.tl of 

buffer, consisting of 50mM Tris-HCl and 12mM EDTA pH 7.4, and heating 

the reaction tube in a boiling water bath for 15 seconds, before dropping it into 

liquid nitrogen. The frozen reaction mixture could be stored at -20°C before 

determination of the cyclic AMP content. 

Measurement of cyclic AMP content 

The cyclic AMP generated by the adenylate cyclase or added in standards and 

recovery experiments was determined by a procedure first described by Gilman 

(1970) and later modified by Tovey (1974), based on the competition between 
3 H -labelled cyclic AMP and non-radioactive cyclic AMP for binding to a high

affinity cyclic AMP-binding protein. 

The final composition of the assay was 0.015j.tCi 3H-cyclic AMP, 37.5mM 

Tris-HCl pH 7.0 at 25°C, 3mM EDTA, 20J.Lg/ml 3151-cyclic AMP dependent 

protein kinase and 0.025% (w/v) BSA in a final volume of 200j.tl. 

The reaction mixtures containing cyclic AMP were thawed, centrifuged in 

a MSE Micro Centaur centrifuge ( minifuge) at 13 400g ( Tav == 6cm) for 2 min

utes and an aliquot of the supernatant was taken and mixed with the 3 H-cyclic 

AMP, Tris-HCl and EDTA. The protein kinase reconstituted in BSA was added 

to initiate the binding of the cyclic AMP. The tube contents were mixed on a 
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vortex mixer for 5 seconds and left in an ice bath for 2 to 5 hours at which time 

equilibrium binding had been achieved. After this period, a lOOJ..Ll aliquot of the 

charcoal reagent composed of2.6% (wjv) charcoal suspended in 50mM Tris-HCl 

and 4mM EDTA, pH 7.0 at 25°C, was added with mixing to adsorb unbound 

cyclic nucleotide. The mixture was centrifuged in the minifuge for 2 minutes 

at 13 400g ( r av = 6cm) to sediment the charcoal and a portion {200J..Ll) of the 

supernatant was taken for liquid scintillation counting to determine radioactivity 

complexed with the binding protein. The amount of [3 H)-cyclic AMP complexed 

with the binding protein was an inverse function of the amount of unlabelled 

cyclic AMP present in the assay. It was necessary to quantitate this relationship 

by reference to a set of calibration standards. 

Standardisation of cyclic AMP binding 

The standard binding curve was prepared by substituting known amounts of 

cyclic AMP for the supernatant in the binding assay. Final standard concentra

tions were 0, 20, 40, 80 and 160nM cyclic AMP. These were not incubated for 8 

minutes at 37°C; otherwise they were treated in exactly the same way as for the 

incubations involving membrane suspensions. 

Blanks 

To determine the cyclic AMP present in the membrane suspension itself, 

sample blanks were carried out. These were prepared and treated as for the 

normal adenylate cyclase assay but in a reaction mixture which lacked ATP. The 

final concentration of all other constituents remained unaltered. 

Recovery of cyclic AMP 

Experiments designed to measure the recovery of cyclic AMP were routinely 

performed in reaction mixtures lacking ATP but incorporating 40nM cyclic 

AMP. The final concentration of the other constituents remained unchanged and 

the mixtures were incubated with membrane preparation and treated as normal. 

Calculation and expression of results 

The following ratio was determined: 

112 



counts obtained without unlabelled cyclic AMP( Co) 
counts obta-ined with unlabelled cyclicAM P( Cx) 

This ratio was plotted versus the cyclic AMP present in the standards ( x = 

0, 1, 2, 4, 8 pmole) to obtain a standard graph so that cyclic AMP in test samples 

could be obtained, by interpolation, using the ~ values of the unknowns. 

(iv) Cholesterol 

Lipids were extracted from homogenate and final purified membrane samples 

by the rapid method of Bligh and Dyer (1959) described in section 4.2.2(a) below. 

Unesterified cholesterol was assayed enzymatically using a BDH kit (BDH 

choloxidate number 1) based on cholesterol oxidase. To determine unesterified 

cholesterol the cholesterol ester hydrolase was omitted from the reconstituted 

buffered enzyme solution. Since the assay was originally designed for use with 

blood serum it was modified as described by Johnson (1979). 

A known volume of lipid extract together with cholesterol standards (0-

0.3J.Lmoles) were placed in clean conical glass tubes and evaporated to dryness 

under a stream of nitrogen. The lipids were redissolved in 20J .. d of isopropanol 

and preincubated at 37°C for 5 minutes. Reconstituted buffered enzyme solu

tion (0.2ml) was then added and the tubes incubated for 10 minutes at 37°C. 

The pink colour which formed was read at 500nm on a Pye-Unicam SP8-100 

spectrophotometer in a glass cuvette -with a 5mm path length. 

(v) Succinate dehydrogenase (E.C.l.3.99.1) 

Succinate dehydrogenase was assayed according to the method of Tsai et 

al. (1975). Duplicate cuvettes were prepared each containing 0.6ml of 20mM 

sodium phosphate/1% (w/v) BSA, pH7.0 and 0.05ml of 1% (wfv) cytochrome 

c. After mixing they were equilibrated to 37°C in a water bath. Membrane 

suspension (25J.Ll) was then added to both cuvettes and the cuvettes were mixed 

well and read against each other, in a dual beam Pye-Unicam SP8-100 spec

trophotometer, to obtain a zero value. Two and a half minutes later 0.2ml of 

lOmM KCN was added to the reference cuvette and 0.2ml of 10mM KCN 

containing 50mM succinate was added to the test cuvette with mixing and the 
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increase in absorbance at 550nm was measured over the next 3 to 4 minutes at 

37°0. The initial rate of cytochrome c reduction was determined from its molar 

extinction coefficient of 29 705 at 550nm. 

(vi) NADPH cytochrome c reductase (E.C.1.6.2.3) 

This enzyme was assayed by the method of Tsai et al. (1975) with slight 

modification to ensure complete exposure of this endoplasmic reticulum marker 

to the assay conditions. 

Membrane suspensions were preincubated with an equal volume of ST buffer 

containing 0.1% (wfv) Triton X-100 for 10 minutes on ice. Duplicate cuvettes 

were prepared each containing 0.9ml of 0.1M sodium phosphate buffer, pH 7.4, 

containing 1% (wfv) Triton X-100 (final concentration) and 0.1ml of 1% (wfv) 

cytochrome c. After mixing they were equilibrated to 37°0 in a water bath. 

Preincubated membrane suspension (50~-Ll) was then added to both cuvettes 

which were mixed well and read against each other to obtain a zero value. Once a 

stable baseline was achieved the reaction was initiated by adding 0.1ml of lmM 

NADPH to the test cuvette. Distilled water (0.1ml) was added to the reference 

cuvette to act as a blank and the cuvettes were then read immediately against 

each other in a dual beam Pye-Unicam SP8-100 spectrophotometer at 550nm. 

The increase in absorbance was measured over the next 3 to 4 minutes. The 

initial rate of cytochrome c reduction was determined from its molar extinction 

coefficient of 29 705 at 550nm. 

(vii) N-acetyl {3-glucosaminidase (E.C.3.2.1.30) 

This enzyme assay was based on the method of Sellinger et al. (1960). In a fi

nal volume of 1ml the assay contained 0.1M sodium citrate buffer, pH 4.0, 0.1% 

(wfv) Triton X-100 and 6mM p-nitrophenyl-2-acetamido 2 deoxy-{3-D-gluco

pyranoside. After preincubation for 5 minutes at 37°0, the reaction was started 

by addition of 0.1ml of membrane suspension which had been pretreated with 

an equal volume of 0.2% ( w fv) Triton X-100 on ice for 10 minutes. The reac

tion was stopped after 30 minutes at 37°0 by the addition of O.lml 10% (wfv) 
trichloroacetic acid and the tubes were mixed well and placed on ice. The tubes 

were then spun at in a MSE Micro Centaur centrifuge at 13 400g ( r av = 6cm) 
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for 10 minutes. Following centrifugation, 0.3ml of 0.5M N aOH and 0.5ml of 

0.25M glycine buffer, pH 10.0, were added to 0.8ml of the supernatant in order 

to shift the pH of the solution so that the colour of the p-nitrophenol produced 

could develop. The intensity of the resultant colour was determined at 400nm 

on a Pye-U nicam SPS-100 spectrophotometer using water a.s a blank. The con

centration of p-nitrophenol was calculated using its molar extinction coefficient 

of 18 300 at 400nm. 

(viii) Protein determinations 

Protein determinations were carried out by the method ofBradford (1976) 

with slight modification. Sodium hydroxide (0.1mM final concentration) was 

included in the assay procedure to solubilise membrane proteins as suggested by 

Simpson and Sonne (1982). 

The protein reagent required was prepared by dissolving 100mg Coomassie 

Brilliant Blue G-250 in 50ml95% (vjv) ethanol. After filtering, 100ml85% (wjv) 
phosphoric acid was added. The resulting solution was diluted to a final volume 

of 1 litre. Freshly prepared protein reagent was routinely diluted with distilled 

water (3: 1, vjv reagent : water) to ensure blank reagent values did not exceed 

0.300. 

A small volume of membrane suspension in ST buffer was added to a plastic 

minifuge tube (capacity 1.7ml) and made up to 0.1ml with distilled water. To 

this was added 0.01 ml of 1.1M N aO H and the contents of the tube were mixed. 

Diluted protein reagent (1ml) was then added to the tube with mixing, and 

left to stand for 10 minutes at room temperature. At the end of this time 

and after further mixing, the contents of the tube were transferred to a cuvette 

and the absorbance was read at 595nm in a dual beam Pye-Unicam SPS-100 

spectrophotometer, using water as a blank. 

A standard curve was constructed using bovine serum albumin in the range 

0-20J.Lg in ST buffer. 

4.2.2 Lipicll Compositional Studies 

Various lipid compositional studies were carried out on serum, supplemented 
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serum and isolated plasma membrane samples from control and linoleic acid 

supplemented HTC cells. The supplemented serum was prepared as described in 

Chapter 3, Materials and Methods, section 3.2.3. Plasma membranes were de

rived from HTC cells grown in microcarrier culture on Cytodex 2 beads in Techne 

flasks by the methodology described in Chapter 2, Materials and Methods, sec

tion 2.2.2(b). The plasma membranes were isolated by method 2 outlined in 

section 4.2.1(c)ii following exposure of the cells either to normal growth medium 

or to 60j-tM linoleic acid supplemented growth medium for a 36 hour period. 

(a) Lipid extraction 

Lipid extractions were carried out on serum, supplemented serum and iso

lated plasma membrane samples from control and linoleic acid supplemented 

HTC cells by the methodology of Bligh and Dyer (1959). 

All solvents contained 0.005% ( w jv) butylated hydroxytoluene (BHT) to 

minimise oxidation of fatty acids. To 1 volume of sample (serum samples were 

diluted 1.5-fold) was added 3.75 volumes of chloroform/methanol (1 : 2, vjv) 
with thorough mixing. Subsequent additions of 1.25 volumes chloroform and 

1.25 volumes distilled water were each followed by thorough mixing. To assist 

the separation of the two resulting phases, a five minute low speed centrifugation 

(500g) was carried out. The bottom chloroform phase was removed and used for 

lipid assay procedures and thin layer chromatography studies. 

(b) Assay of phospholipid 

Phospholipid estimations were carried out on the lipid extracts derived from 

plasma membranes of control and linoleic acid supplemented HTC cells by the 

method of Raheja et al. (1973) with slight modification. 

Aliquots of lipid extract, in duplicate, were evaporated to dryness under a 

stream of nitrogen in thick-walled tubes. Duplicate blank and standard assays 

were included. Chloroform (0.4ml) and chromogenic reagent (0.2ml) were added 

and the contents mixed. Each tube was heated in a boiling water bath for 

exactly 3 minutes, then cooled and 1.5ml of chloroform added. The solution was 

vortexed and then spun at low speed in a centrifuge (500g) for 5 minutes at room 

temperature to separate the two layers. The absorbance of the blue colour of the 
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lower chloroform layer was measured at 716nm. Standard curves were prepared 

using dipalmitoyl phosphatidylcholine dissolved in chloroform. The assay was 

linear in the range 0-0.3j.tmoles of lipid phosphorus. 

Preparation of chromogenic reagent 

Reagent A: Ammonium Molybdate (8g) was dissolved in 60ml of distilled 

water. A few drops of concentrated hydrochloric acid were added to ensure 

complete dissolution. 

Reagent B: Redistilled mercury (5ml) was added to a mixture of 20ml con

centrated hydrochloric acid and 40ml reagent A. The resultant solution was 

mixed on a magnetic stirrer for 45 minutes and filtered producing a red brown 

filtrate. 

Reagent C: Concentrated sulphuric acid (lOOml) was carefully added to 20ml 

reagent A at 0° C. 

The final chromogenic reagent was prepared in a fume cupboard again at 

0°C to prevent denaturation of the reagents by boiling. Reagent C was added 

very carefully, with stirring, to reagent B. A dark green solution was formed (if 

dark blue the reagent had been denatured during preparation). This dark green 

solution (25 volumes) was mixed with methanol ( 45 volumes), chloroform (5 

volumes) and distilled water (20 volumes). The chromogenic reagent was stored 

in the dark at 4°C-for U:p to 6 months before being replaced. 

(c) Assay of unesterified cholesterol 

Unesterified cholesterol present in the lipid extract produced from purified 

plasma membranes from control and linoleic acid supplemented HTC cells was 

assayed enzymatically using the BDH choloxidate number 1 kit, as described in 

section 4.2.1(d)iv. 

(d) Thin layer chromatographic separations 

A slurry of silica gel H (Kieselghur H) 0.5mm thick, was applied to clean 

glass plates 20cm square. Plates were air dried and then activated in an oven at 

100-110°0 for at least one hour prior to use. 
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Lipid extracts from serum, supplemented serum and isolated plasma mem

brane samples produced from control and linoleic acid supplemented HTC cells 

were evaporated to dryness under nitrogen and dissolved in a small volume of 

chloroform. Aliquots (50J.ll) were then applied as 'streaks' to activated plates. 

Plates were run in chromatography tanks which had been 'flushed' with nitrogen 

just before use and all solvent systems contained 0.005% (wfv) BHT to minimise 

oxidation of fatty acids. 

(i) Separation of fatty acids in serum samples 

The solvent system used to separate fatty acids present in serum was light 

petroleum (bp 40-60°C)/diethyl ether/acetic acid {60 : 40 : 1, by volume). Oleic 

acid was run as a standard on the plates. 

(ii) Isolation of total membrane associated phospholipids 

Two solvent systems were used to isolate membrane phospholipids and their 

associated fatty acids. Sphingomyelin and phosphatidylcholine were run as stan

dards on plates. The plate was first developed in chloroform. It was then re

moved and dried before being developed in a second solvent system containing 

chloroform/methanol (1: 9, vjv). 

After development and drying, the separated fatty acid and lipid standards 

were visualised by exposure of the appropriate portion of each plate to iodine 

vapour. Silica gel was scraped off the thin layer plates from areas in the sample 

lanes corresponding to the position of fatty acid and lipid standards, into small 

bijou bottles with a Tuf-Bond teflon seal in the screw cap. 

(e) Gas liquid chromatography analysis 

(i) Preparation of fatty acid methyl esters 

Fatty acid methyl esters were prepared using the method of Morrison and 

Smith (1964) with slight modification. Sufficient boron trifluoride (14%, wjv) 
in methanol was added to the bijou bottles, containing the samples produced 

by thin layer chromatographic separations, to just wet the sample. The bottles 

were then sealed tightly and heated in an oven at 100°C for 15 minutes. After 

cooling, the volatile contaminants were allowed to evaporate in a fume cupboard 
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at room temperature and the fatty acid methyl esters were extracted by washing 

with hexane containing 0.005% (wfv) BHT and filtering the resulting extracts 

through glass-wool plugged pasteur pipettes which had been previously washed 

in the same solvent containing 0.005% (wfv) BHT. The filtrates were then either 

dried down under nitrogen to a minimum volume and injected onto the column 

or dried down completely under nitrogen, sealed and stored in the dark at -20°C 

for future analysis. 

(ii) Gas liquid chromatography of fatty acid methyl esters 

Separation was carried out using a Shimadzu GC-9A series gas chromato

graph. The glass columns used were 2m long with a 2mm internal diameter. 

They were packed with a cyanosilicone stationary phase, 10% Altech CS-5, on a 

chromasorb WAW 100-120 mesh support. Nitrogen was used as the carrier gas 

and the flow rate was 55ml/minute. The two columns (one reference) were run 

in a temperature program, with one temperature ramp, as follows 

Initial Temperature = 210°C 

Initial Time = 10 minutes 

Program Rate = 4°C /minute 

Final Temperature= 250°0 

Final time = 5 minutes 

Total run = 25 minutes. 

The resolved components were detected by a flame ionisation comhpstion 

system (hydrogen/air). Peaks were identified by comparison of their retention 

times with those of authentic fatty acid methyl ester standards. 

The chromatogram was connected to a Trilab 2 integrator with graphics, 

supplied by Trivector Scientific Ltd. which was used to provide quantitative 

determination of the fatty acid methyl esters present in samples. The integrator 

calculated the area of individual peaks and the percentage contribution of each 

peak to the total peak area. Since peak area is directly proportional to the mass 

of the resolved component, percentage area contributions were an indication of 

the percentage mass contribution of individual fatty acids to total fatty acid 

mass. 
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4.2.3 DPH Steady State Fluorescence lPolarisatiion Studies 

(i) Membrane preparation and introduction of probe 

Plasma membranes isolated from control and linoleic acid supplemented HTC 

cells by method 2 outlined in section 4.2.1( c)ii were resuspended in 10mM sodium 

phosphate buffer, pH 7.6. An appropriate volume of membrane suspension was 

added to 2.4ml of the same phosphate buffer in a quartz 10mm fluorescence 

cuvette to give an absorbance in the region of 0.1 at 500nm on a dual beam 

Cecil spectrophotometer. To insert the DPH probe into the membrane, 2J.Ll of 

a 2mM solution of DPH in glass distilled tetrahydrofuran was added to the 

cuvette with rapid mixing. The cuvette was then incubated at 37°C for 15 

minutes to enable the DPH to equilibrate within the membrane. Cuvettes were 

then cooled to 4°C before the start of a temperature run between 4-45°C. It 

was possible to take a number of cuvettes through each run. Consequently, 

control and supplemented membranes isolated from HTC cells on the same days 

were analysed for fluorescence polarisation under identical conditions. When 

cuvettes were read, they were placed in a thermostatically controlled chamber 

where temperatures were maintained within ±0.1 °C of the required temperature 

by means of a Julabo thermostated circulator. The temperature within cuvettes 

was measured with a calibrated thermistor. To prevent any condensation effects 

in the humid atmosphere at sub-ambient temperatures the thermostated cuvette 

chamber incorporated a facility for gassing cuvette surfaces with dry nitrogen 

gas. 

(ii) Polarisation measurements 

An analogue T-format fluorimeter (Applied Photophysic Ltd.) was used to 

measure steady state polarisation of DPH fluorescence. The fluorimeter was 

mounted on a !inch aluminium optical bench. The excitation wavelength was 

360nm. The excitation path was filtered with a Corning 7-54 broadband pass 

filter and the emission path with a Corning 3-73 sharp out filter. 

Polarisation of fluorescence (p) was calculated from the following equation: 
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Ivv- lvH 
p= 

Ivv + lvH 

where Ivv = excitation polariser vertical and emission polariser vertical. 

Iv H = excitation polariser vertical and emission polariser horizontal. 

4.2.4 Thermal Inactivation of Plasma Membrane Enzymes 

HTC cells were grown by microcarrier culture on Cytodex 2 beads in Techne 

flasks by the methodology described in Chapter 2, section 2.2.2(b ). Plasma 

membranes were isolated by method 2 outlined in section 4.2.1(c)ii, following 

exposure of the cells either to normal growth medium or to 60J.LM linoleic acid 

supplemented growth medium for a 36 hour period. 

Two types of enzymatic study employing different membrane associated en

zymes were conducted on the normal and linoleic acid supplemented membranes 

that were isolated. 

(a) Thermal inactivation of N a+/ K+ ATPase 

Purified plasma membranes were diluted with 0.25M sucrose, 10mM Tris

HOl, pH 7.4 (ST buffer) and 0.6ml of the membrane suspension was added to 

thermally equilibrated plastic test tubes held in a 'Forbes Bar'. This apparatus 

maintained a temperature gradient _between 37-57°0. At each temperature there 

were two tubes containing either membranes from control cells or membranes 

from linoleic acid supplemented cells. The tubes were incubated for exactly 10 

minutes and were then placed on ice to prevent further inactivation. Residual 

Na+ jK+ ATPa.se activity wa.s a.ssayed as described in section 4.2.1(d)i. 

(b) Isothermal inactivation of Alkaline Phosphodiesterase I 

Isothermal inactivation studies of the membrane associated alkaline phospho

diesterase I (Alk. PDE I) enzyme were run at 64°0 (±0.1 °0) in glass tubes. An 

appropriate volume of membrane suspension was equilibrated in a water bath 

set at 37°0 (±0.1°0). This membrane suspension was then diluted in a glass 

test tube in a specified volume of ST buffer, which had been equilibrated at 
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a temperature in excess of the final test temperature, such that on mixing the 

temperature of the suspension registered 64°C immediately when placed in a wa

ter bath set at 64°C. The glass tube containing the membrane suspension was 

capped to avoid evaporatory loss during the period of heating. Samples (200,ul) 

were withdrawn from test tubes containing control or linoleic c:..cid supplemented 

membranes set up in this way, at various time intervals over a 55 minute period, 

and placed on ice to prevent further inactivation. 

Once the final sample had been obtained, 200,ul of ST buffer containing 

0.2% (w/v) Triton X-100 was added to each sample on ice. The test tubes were 

left for a further 10 minutes on ice and then residual Alk. PDE I activity was 

assayed as described in section 4.2.1( d)ii. 

4.3.1 Plasma Membrane Jisollation Procedwres 

When the method of Gotlib (1982) for the isolation of cell plasma membranes 

on microcarrier culture beads was attempted in the current study very low yields 

of fairly impure HTC plasma membranes were obtained. In consequence, HTC 

cells were always removed from the microcarrier beads on which they had been 

growing prior to plasma membrane isolation. 

(a) Plasma membrane enrichment 

Two enzyme activities generally accepted as plasma membrane markers are 

the Na+ jJ(+ ATPase and the 5'nucleotidase (Amende and Donlon, 1985). How

ever, whilst Tweto et al. (1976) reported the presence of 5'nucleotidase in HTC 

cells, its presence was not detected in the current study nor has it been detected 

in HTC cells by Lopez-Saura et al. (1978). Consequently, N a+/ J(+ ATPase was 

used as the plasma membrane marker in initial studies. At a later stage, alka

line phosphodiesterase I and cholesterol were also assayed as plasma membrane 

components (Lopez-Saura et al., 1978). In addition, a determination of forskolin

activated adenylate cyclase was made since this enzyme appears to be located 

in the plasma membrane of many cell types including rat hepatomas (Emmelot 

and Bos, 1971). 
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The yield of plasma membrane was determined by the recoveries of the marker 

enzymes, whilst purification was based on enrichment of specific activities of these 

enzymes relative to the total cell homogenate. In the following text, reference 

will be made to the fractions obtained with method 1 in terms of the notations 

given in figure 4.2. 

Figures 4.4( a) and (b) show the time course studies produced for 111 g2+ 
ATPase and N a+ I K+ ATPase with HTC cell homogenates and purified plasma 

membrane S3 fractions respectively, which were produced by method 1. It can 

be seen in both cases that whilst the N a+ I K+ ATPase enzyme showed a linear 

response with time, the M g2+ ATPase enzyme did not. Some unidentified factor 

limits the activity of the M g2+ ATPase enzyme within approximately 5 minutes 

of incubation at 37°C. Emmelot et al. (1966) suggested that M g2+ ATPase 

does not give a linear response with time due to the phenomenon of 'product 

inhibition', that is caused by its reaction product ADP. Clearly to obtain a 

true estimate of M g2+ ATPase activity this enzyme should have been assayed 

after a period of 2 to 3 minutes of incubation at 37°C, alternatively, use could 

have been made of an ATP-regenerating system to remove the ADP product. 

Since N a+ I K+ ATPase is the more reliable plasma membrane marker (Evans, 

1982), as lvf g2+ ATPase has been found in a number of locations other than the 

plasma membrane, conditions were optimised for the measurement of the former 

enzyme. Consequently, N a+ I K+ ATPase activity was measured after a 15 minute 

incubation period once a reasonable level of activity had been established. 

(i) Method 1 

Table 4.1 shows the specific activity, purification and percentage recovery of 

theN a+ I K+ ATPase from the various fractions described in figure 4.2, produced 

by method 1. It can be seen that based on this marker, plasma membranes would 

appear to be obtained in fairly high yield (approximately 37%) and were purified 

approximately 13-fold over the original homogenate. 

Examination of the other fractions reveals that virtually 90% of the activity 

of the homogenate is obtained in the sl fraction after the first low speed spin. 

Whilst the S 1A fraction is purified approximately 3-fold over the S1 fraction there 

is a substantial 46% loss in activity during the first Percell spin. The subsequent 
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JFligute 4.4 

M g2+ ATPase and N a+ I K+ ATPase actiVity in HTC cell homogenates 

and purified plasma membranes 

HTC cell homogenates and purified plasma membranes fractions were pre

pared b~ method 1 outlined in Materials and Methods, section 4.2.1( c )i. Fig

ure 4.4 shows the effect of varying the incubation period on the activity of the 

M g2+ ATPase and N a+ I K+ ATPase enzymes in the cell homogenate fraction 

{figure 4.4(a)) and purified plasma membrane fraction (figure 4.4(b)). Enzyme 

assays were conducted as described in Materials and Methods, section 4.2.1(d)i. 

In figure 4.4(a) individual results of a single experiment are shown. 

In figure 4.4(b) each point represents the mean value ± S.E.M. for three 

separate membrane preparations. 
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Table 4.1 

N a+/ K+ ATPase activity of isolated fractions produced from HTC cells 

by method 1 

Table 4.1 shows the purification of plasma membranes from HTC cells pro

duced by method 1 described in Materials and Methods, section 4.2.1(c)i. The 

purification is indicated by the enrichment of the marker enzyme N a+/ K+ AT

Pase, which was assayed as described in Materials and Methods, section 4.2.1(d)i. 

The fractions H - S3 correspond to the notation given in figure 4.2. 

Fraction Number of Specific Activity Purification Recovery 

Preparations J.Lmoles Pi liberated (fold) (%) 

/mg protein/min 

H 5 0.032 ± 0.007 1.0 100 

pl 1 0.034 0.785 4.1 

s1 2 0.039 0.945 89.15 

s1A 2 0.123 3.05 43.25 

S2A 4 0.257 + 0.056 7.21 ± 0.828 46.33 ± 14.77 

83 4 0.380 ± 0.135 12.5 ± 1.806 36.48 ± 15.25 

Results represent mean value ± S.E.M. 



S2A and 83 fractions produced from the second Percoll spin and final high speed 

spin respectively lead to further increases in enzyme purity with only slight loss 

in the activity recovered. 

(ii) Method 2 

Because only 49% of the activity measured in the 81 fraction was recovered 

in the S1A fraction after the first Percoll spin, improvements were sought to 

method 1. In the original Loten and Redshaw-Loten (1986) method, on which 

this isolation procedure was based, a low speed pellet obtained from a rat liver 

homogenate was fractionated on the first self forming Percoll gradient. Although 

a smaller yield of plasma membranes was obtained (approximately 20%) in their 

method as judged by recovery of the three marker enzymes, 5'nucleotidase, alka

line phosphodiesterase I and adenylate cyclase, than was the case in method 1, 

the purification figure was much higher at approximately 27-fold. 

In the current study where the interest lay in conducting further biochemical 

analysis specifically on plasma membrane material, purification of the isolated 

plasma membranes was a more important consideration than yield. By employing 

a similar homgenisation procedure to the original Laten and Laten-Redshaw 

method which was different to that of method 1, by increasing the speed of the 

second spin above that of the corresponding initial speed employed by Loten and 

Loten-Redshaw and method 1, by washing the pellet obtained from the second 

spin in ST buffer, and by employing one Percoll gradient -rather than two as 

in method 1, the plasma membrane isolation procedure of method 2 served to 

increase the purity of the final membrane fractions produced. 

Table 4.2 shows the specific activities, purification and percentage recoveries 

of up to four putative plasma membrane markers studied in the initial cell ho

mogenates and final membrane fractions produced by method 2 for both normal 

and linoleic acid supplemented HTC cells. 

Normal membranes and linoleic acid supplemented membranes show similar 

patterns of purification as judged by the N a+ I K+ ATPase and alkaline phospho

diesterase I enzymes. In the case of the N a+ I K+ ATPase enzyme the specific 
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Talb!e 4.2 

Various plasma membrane activities of isolated fractions 

produced from control and linoleic acid supplemented HTC cells by method 2 

Tables 4.2( a) and (b) show the purification of plasma membranes from control 

cells and linoleic acid supplemented HTC cells respectively produced by method 

2 described in Materials and Methods, section 4.2.1(c)ii. Supplemented cells were 

exposed to 60J.LM linoleic acid for 36 hours prior to plasma membrane isolation. 

The purification is indicated by the enrichment of the following marker enzymes: 

N a+/ K+ ATPase, alkaline phoshodiesterase I and adenylate cyclase. Purification 

was also monitored by cholesterol. Cholesterol and enzyme assays were conducted 

as described in Materials and Methods, section 4.2.1(d). 

(a) Control membranes 

Membrane Number of Specific Activity* Purification Recovery 

marker Preparations Homogenate Final Pellet (fold) (o/c) 

N a+/ K+ ATPase 8 0.037 ± 0.003 0.552 ± 0.058 15.09 ± 1.46 28.55 ± 3.72 

Alkaline 8 0.044 ± 0.005 0.251 ± 0.032 5.69 ± 0.244 10.38 ± 0.666 

Phosphodiesterase I 

Cholesterol 5 0.029 ± 0.005 0.186 ± 0.026 6.35 ± 0.617 12.62 ± 1.24 

Adenyl ate 1 1.14 X 10-6 1.344 X 10-5 11.79 22 .. j 

Cyclase 

* Specific activit'<) for N a+/ K+ ATPase U; 

in J.Lmoles Pi liberated/mg protein/min and for cholesterol in J.Lmolesfmg pro

tein. Specific activity for adenylate cyclase is in J.Lmoles cAMP produced/mg 

protein/min. Sf-D- U...ft-i.- flll-c..hv~t-j (.::!-r 1\1~,,~ tJ.-.~sr..:_oA-u.Jkr"--f--€._ T CS ,...:_ 

,.M.~olLS f-t\Aho(>-·v'-oL fro~t:>L/fV'-j frob-e_,~jfi/'A..-;..._. 



(b) Linoleic acid supplemented membranes 

Membrane Number of Specific Activity Purification Recovery 

marker Preparations pmoles Pi liberated 
~· 

(fold) (%) 

f~g protein/~in 

Homogenate Final Pellet 

N a+/ K+ ATPase 3 0.033 ± 0.002 0.490 ± 0.028 14.86 ± 1.18 32.48 ± 3.31 

Alkaline 3 0.035 ± 0.009 0.290 ± 0.001 6.04 ± 0.159 12.81 ± 0.874 

Phosphodiesterase I 

Results in both tables represent mean value ± S.E.M. 

~ p_y-..v-J ~ N ''-..... I 1::-T- A1--f' A.J-.IL 

S fW-<.A.h-c...- o..c...hv.(..LJ ~-v- A1kA-L.L~ f'k..osp~"" A..u...rl-c.rA....R.- T L.r 

...A.;Lrr..:.:. loJ' f- r.A-b<iJfk"-C"L frO~c.P-ol. }rr--_J p~~C-t..:._ ~~. 



activities of the normal and supplemented membranes were 0.552 and 0.490 re

spectively, with purification factors of 15.09 and 14.86. These purification figures 

are approximately 1.2-fold higher than those obtained in method 1, although the 

recovery of the enzyme is approximately 6% less. The specific activities and 

purification figures for the alkaline phosphodiesterase I enzyme, although com

parable in the final pellets of both the normal and supplemented membranes, were 

much lower than the corresponding N a+ I K+ ATPase figures. The specific activi

ties of alkaline phosphodiesterase I in normal and supplemented membranes were 

only 0.251 and 0.290 respectively, with purification factors of 5.69 and 6.04. In 

addition, there was a relatively low recovery of this enzyme of approximately 11% 

as compared to the approximate 30% recovery obtained with N a+ I K+ ATPase. 

It is also evident that whilst the normal membranes show a slightly, though not 

significantly higher purification than the supplemented membranes with respect 

to the N a+ I K+ ATPase the reverse is true with the alkaline phosphodiesterase I 

enzyme. 

Results obtained with cholesterol as the putative plasma membrane marker in 

normal membranes support the alkaline phosphodiesterase I results since choles

terol measurements suggest a 6.35-fold purification of the plasma membrane rel

ative to total homogenate. On the other hand, the single forskolin-stimulated 

adenylate cyclase activity recorded for the normal plasma membrane final pellet 

is more in agreement with the N a+ I K+ ATPase results since the activity was 

purified approximately 12-fold with a recovery of 23% in this membrane frac

tion as compared to the 15-fold purification and 29% recovery seen with the 

N a+ I K+ ATPase enzyme. It is unfortunate that only one assay of adenylate 

cyclase was achieved in the current study. This was because assays for putative 

plasma membrane markers other than N a+/ K+ ATPase and alkaline phospho

diesterase I were not developed until a late stage in the study with the result 

that time did not permit more than one assay to be carried out. It is because 

this result would appear to support the N a+ I K+ ATPase study that it has been 

included for comparison. 

(b) Contamination with other membranes 

Table 4.3 shows the specific activities, purifications and percentage recover-
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Table 4.3 

Microsomal, mitochondrial and lysosomal contamination of HTC cell 

plasma membranes produced by method 2 

Table 4.3 shows the extent of plasma membrane contamination with mi

tochondria, lysosomes and endoplasmic reticulum in HTC cell plasma mem

branes produced by method 2, described in Materials and Methods, section 

4.2.1( c )ii. The level of contamination from these three sources is indicated 

by the enrichment of the marker enzymes succinate dehydrogenase, N-acetyl /3-
glucosaminidase and NADPH-cytochrome c reductase respectively, which were 

assayed as described in Materials and Methods, section 4.2.1(d). 

Membrane Number of Specific Activity* Purification Recovery 

marker Preparations Homogenate Final pellet (fold) (%) 

Succinate 2 0.0122 0.0044 0.394 0.63 

dehydrogenase 

N-acetyl 2 0.365 0.358 0.97 1.57 

{3-glucosaminidase 

NADPH-cytochrome 2 0.0195 0.0335 1.76 2.81 

c reductase 

Results represent mean values 
f- ~l::r~ fM.~o L 

* Specific activity of N-acetyl {3-glucosaminidase is in J.Lmoles.,.t rr::.r);.M.CL,.(;I(,jmg 

protein/min. Succinate dehydrogenase and NADPH-cytochrome c reductase 

specific activities are in J.Lmoles cytochrome c reduced/my protein/min. 



ies of the marker enzymes succinate dehydrogenase, N-acetyl ,6-glucosaminidase 

and NADPH-cytochrome c reductase used to monitor contamination of the final 

membrane with mitochondria, lysosomes and endoplasmic reticulum respectively. 

Once again, it is unfortunate that time did not permit more than two assays to 

be carried out on membrane material prepared by method 2. In addition, it is 

appreciated that assays for other contaminating membranes such as the nuclear 

envelope and peroxisomal material should ideally have been conducted but such 

studies were not feasible in the time scale available. However, it can be seen 

that plasma membrane contamination from the three sources that were inves

tigated was very low. It is evident that endoplasmic reticulum was the most 

significant contaminant of the plasma membrane preparation, since it was pu

rified marginally ( 1. 76-fold) by the procedure and showed the highest recovery 

(2.8%) of all contaminating membranes. Mitochondrial contamination was the 

least significant of the three contaminants assayed showing a 0.4-fold purification 

and a 0. 7% recovery, whilst the lysosomal contaminant showed a slightly higher 

purification (1-fold) and a 1.6% recovery. 

4.3.2 Lipid Compositional Studies 

Table 4.4 reveals the free fatty acid composition of newborn bovine serum, 

derived from several batches of supplied serum, and the composition of linoleic 

acid supplemented medium prepared as described in Chapter 3. It can be seen 

that there was a marked increase in the level of linoleic acid present in the 
- -

supplemented serum from approximately 6% to 60% of total free fatty acid, 

indicating that the supplementation procedure was enriching the level of linoleic 

acid in serum as intended. 

Having established that the supplementation procedure was producing a sig

nificant increase in the level of linoleic acid present in serum, the next step was 

to establish whether supplementation of HTC cells was also producing a change 

in the fatty acid composition of the plasma membrane phospholipids. Table 4.5 

shows the relative proportions of the major fatty acids in plasma membrane total 

phospholipid fractions derived from control and linoleic acid supplemented HTC 

cells. It can be seen that plasma membrane phospholipids from control cells 

are characterised by high levels of oleic acid (18 : 1) and palmitic acid (16 : 0), 
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Talble 4.4 

Free fatty acid composition of serum and linoleic acid supplemented serum 

Linoleic acid supplemented newborn bovine serum (NBS) was prepared as 

described in Chapter 3, Materials and Methods, section 3.2.3. The free fatty 

acid composition of NBS and linoleic acid supplemented NBS was determined as 

described in Materials and Methods, section 4.2.2. 

Fatty Acid Relative % weight 

Newborn Bovine Linoleic Acid 

Serum (NBS) supplemented-NBS 

16:0 27.0 ± 1.3 16.8 ± 5.2 

16: 1 1.7 ± 1.7 trace 

18: 0 22.8 ± 2.2 9.7 ± 2.6 

18: 1 32.6 ± 2.6 11.0 ± 3.5 

18:2 6.0 ± 1.5 62.2 ± 9.7 

18: 3 1.3 ± 0.1 n.d. 

20:0 3.4 ± 1.7 trace 

20: 1 3.3 ± 1.7 trace 

20:4 trace n.d. 

22:0 0.2 ± 0.2 n.d. 

22: 1 2.8 ± 1.4 n.d. 

Number of replicates= 4 

Results represent mean value ± S.E.M. 

trace = detectable leYel but less than 0.1% 

n.d. = none detected 



TaMe 4.5 

Fatty acid composition of plasma membrane phospholipids 

from control and linoleic acid supplemented HTC cells 

Plasma membranes were purified by method 2 outlined in Materials and 

Methods, section 4.2 .1 ( c )ii from control cells and from supplemented cells that 

had been exposed to 60J..LM linoleic acid for a 36 hour period. The fatty acid com

position of the plasma membrane phospholipids from control and supplemented 

cells was determined as described in Materials and Methods, section 4.2.2. 

Fatty Acid Relative % weight 

Control plasma Linoleic Acid 

membranes supplemented 

plasma membranes 

16: 0 27.7 ± 3.5 29.4 ± 2.3 

16: 1 9.2 ± 5.5 6.2 ± 2.6 

18: 0 20.1 ± 3.5 21.5 ± 3.7 

18: 1 40.0 ± 3.2 25.4 ± 5.0 

18: 2 2.2 ± 0.9 16.1 ± 1.5 

18: 3 trace 0.4 ± 0.1 

20: 0 0.3 ± 0.3 0.4 ± 0.2 

20: 1 n.d. trace 

20:4 0.3 ± 0.3 0.3 ± 0.3 

22:0 n.d. 0.2 ± 0.2 

22: 1 n.d. 0.1 ± 0.1 

Number of replicates = 4 

Results represent mean value ± S.E .M. 

trace= detectable level but less than 0.1% 

n.d. = none detected 



and by low levels of arachidonic acid and the two essential fatty acids; linoleic 

(18 : 2) and linolenic (18 : 3) acids. In addition, it is evident that the fatty 

acid composition of the plasma membrane phospholipids of HTC cells supple

mented with 10% (vjv) newborn bovine serum (NBS) is generally similar to the 

free fatty acid composition of the NBS used in the preparation of the culture 

medium (compare Tables 4.4 and 4.5). Whilst the proportions of palmitoleic 

(16 : 1) and oleic (18 : 1) acids were increased in the cell plasma membrane and 

the proportion of linoleic acid (18 : 2) was decreased compared to that present 

in the free fatty acids of NBS, these differences were not statistically significant 

(p > 0.05). The proportion of arachidonic acid in the cell plasma membrane was 

similar to that in the medium. These results suggest that HTC cells are capa

ble of absorbing the free fatty acid in the medium and incorporating them into 

membrane phospholipids, without substantial alteration of the fatty acid profile. 

Statistical analysis of the data in Table 4.5 by Student's t-test following arc-sine 

transformation indicates that supplementation of HTC cells with 60p.M linoleic 

acid for a 36 hour period produced a significant decrease (p < 0.05) in the level of 

oleic (18: 1) acid in the plasma membrane phospholipids from 40% to 25% and 

a significant increase (p < 0.05) in the level of linoleic acid from 2% to 16%. The 

level of arachidonic acid, a metabolic product of linoleic acid, and other fatty 

acids did not show any significant change as a result of supplementation. 

It was also of interest to determine whether supplementation of HTC cells 

with 60p.Mlirioleic acidfcir a 36hour period produced a change iii the proportions 

of saturated and unsaturated fatty acids present in the plasma membrane. Figure 

4.5 shows the degree of unsaturation versus saturation of the plasma membrane 

phospholipid fatty acyl chains. It can be seen that the proportion of saturated 

fatty acids in the control and supplemented membranes was very similar, remain

ing at approximately 50%. The major difference is in the type of unsaturation 

with control membranes containing greater levels of mono-unsaturated fatty acids 

than the supplemented membranes which were characterised by higher levels of 

di- and tri-unsaturated fatty acids. Statistical analysis of the data by Student's 

t-test following arc-sine transformation reveals that the level of saturated fatty 

acids in control membranes is not significantly different (p > 0.05) to the level in 

supplemented membranes. 
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Fiigm11re 4.5 

Fatty acid unsaturation ofHTCcellplasma membra11e ph~pholipids 

The figure shows the proportion~ of olefinic (unsaturated) bonds present 

in the fatty acids of plasma membrane phospholipids derived from control and 

linoleic acid supplemented HTC cells that were treated as described in the legend 

of table 4.5. This figure has been constructed from the data shown in table 4.5. 
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Since fatty acid chain length is a factor that can influence plasma membrane 

physical properties it was another important aspect to consider. Figure 4.6 shows 

the carbon chain length of plasma membrane phospholipid fatty acyl chains. It is 

evident that the chain length of plasma membrane phospholipids is not altered as 

a result of supplementation of HTC cells. Analysis of the data by Student's t-test 

following arc-sine transformation reveals that the proportion of both C-16 and 

C-18 chain lengths in control versus supplemented membranes is not significantly 

different (p > 0.05). 

The fact that some fatty acid supplementation studies have reported alter

ations in plasma membrane cholesterol : phospholipid ratios whilst others have 

not, highlighted the importance of determining this parameter in the current 

study. Table 4.6 shows the cholesterol/phospholipid molar ratios obtained for 

plasma membranes from control and linoleic acid supplemented HTC cells. It is 

evident that there was no significant difference in the cholesterol/phospholipid 

molar ratios obtained since the value for control membranes was 0.455 ± 0.021 

whilst the corresponding value for supplemented membranes was 0.406 ± 0.093. 

Figure 4.7 shows the steady state fluorescence of DPH in plasma membranes 

from control and linoleic acid supplemented cells over the temperature range 4-

450C. The lower polarisation values obtained with plasma membranes purified 

from supplemented cells together with the difference in intercept values obtained 

suggest that the plasma membranes derived from linoleic acid supplemented cells 

were less ordered (more 'fluid') than those of control cells. Supplementation of 

HTC cells with 60J-LM linoleic acid for a 36 hour period prior to plasma membrane 

isolation served to shift the curve by approximately 5°C along the temperature 

axis. The fact that there is no statistical difference in the slope of lines generated 

suggests that the effect of fatty acid supplementation on membrane order does 

not alter across the range of temperatures measured. 

Figure 4.8 shows the results of thermal inactivation studies conducted on the 

N a+/ K+ ATPase enzyme of purified plasma membranes produced from control 

cells or from supplemented cells that had been grown in microcarrier culture and 

exposed to 60J-LM linoleic acid supplement for a 36 hour period prior to isolation. 

It is evident that this form of inactivation study which produces a sigmoidal 
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JE'ng~te 4•18 

Fatty acid ch'airi lengtp of HTC cell pla.Sma membrane p'hospholipids 

The figure shows the proportions offatty acid chain lengths present in plasma 

membrane phospholipids derived. from control and linoleic acid supplemented 

HTC cells that were treated as described in the legend of table 4.5. This figure 

has been constructed from the data. shown in table 4.5. 
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TaMe 4.8 

Cholesterol/phospholipid molar ratios for control and linoleic acid 

supplemented HTC cell plasma membranes. 

Plasma membranes were purified by method 2 outlined in Materials and 

Methods, section 4.2.1 ( c )ii from control cells and from supplemented cells that 

had been exposed to 60J-LM linoleic acid for a 36 hour period. Cholesterol, phos~ 

pholipid and protein assays were conducted as described in Materials and Meth

ods, sections 4.2.1(d) and 4.2.2. 

Membrane Cholesterol Phospholipid Cholesterol 

type /Protein /Protein /Phospholipid 

J-Lmolesfmg J-Lmoles lipid P fmg Molar ratio 

Control 0.226 ± 0.029 0.497 ± 0.063 0.455 ± 0.021 

Linoleic Acid 0.201 ± 0.046 0.494 ± 0.013 0.406 ± 0.093 

-supplemented 

Number of replicates = 3 

Results represent mean value± S.E.lvf. 



Fligl.llrre 4.7 

Steady -state fluorescence polarisation of D.P.Il. in plasma membranes 

from control and linoleic acid supplemented HTC cells 

-< .. 

Plasma membranes were purified by method 2, outlined in Materials and 

Methods, section 4.2.1(c)ii from control cells and from supplemented cells that 

had been exposed to 60~tM linoleic acid for a 36 hour period. 

The figure shows the effect of temperature on the polarisation of D.P.H. in 

the temperature range 4-45°0. The plot is derived trom two separate membrane 

preparations. 

Best fit regression lines were fitted to the data using the straight line equation 

y =a+ bx. 

Values of a (intercept on y axis) and b (gradient) are given below. 

I Membrane type I a I b X 102
1 

Control 0.394 -0.409 

Linoleic acid 0.371 -0.406 

supplemented 
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Figu~e 4,.§ 

Thermal inactivation studies of the'pl_asrrra membrane en~yme, 

N a+/ K+ ATPase from control and linoleic acid supplem~nted HTC cells 

Plasma membranes were purified by method 2, outlined in Materials and 

Methods, section 4~2:1(c)ii from control ceils and from supplemented- cells that 

had been exposed to 60J,LM linoleic acid for a 36 hour period. 

Aliquots of purified plasma membranes were -preincubated for 10 minutes at 

the temperatures shown on the graph and residual activity was assayed at 37°C 

as described in Materials and Methods, section 4.2.1(d)i. 

Individual results derived from three separate experiments are shown on the 

figure. 
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dose response curve, does not detect any difference in the thermosensitivity of 

this enzyme from the two membrane sources. 

Isothermal inactivation studies offer a more sensitive means of studying the 

effect of supplementation procedures on membrane enzyme activity. The small 

quantities of purified plasma membrane material available limited such studies 

to a consideration of one membrane enzyme. Alkaline phosphodiesterase I as 

opposed to N a+ I K+ ATPase was selected for study as this analysis required less 

purified plasma membrane than the corresponding analysis of N a+ I K+ ATPase 

activity. Figure 4.9 shows typical results of isothermal inactivation studies con

ducted on the plasma membrane enzyme alkaline phosphodiesterase I, in purified 

plasma membranes isolated from control cells and from cells supplemented with 

60J.LM linoleic acid for 36 hours. It is evident that this enzyme displays a curvilin

ear time-course during isothermal inactivation with a linear rate of inactivation 

at times greater than 13 minutes. It is thought that this inactivation profile 

represents a sequential decay of a thermolabile species of the enzyme into a more 

thermostable species. 

e.g. Thermolabile~Thermostable~Inactive species 

where K1 and K2 are the first order decay constants with K1 > K2. 

The slope of the final decay process defines K 2, whilst the decay constant 

K1 for the thermolabile species can be derived by calculation as shown in the 

legend of figure 4.9. In the current study, it can be seen that whilst the K2 

values obtained in each experiment were very similar to each other, the K1 values 

for control and supplemented cell membrane enzymes were quite different in 2 

of the 3 experiments. Experimental data from 2 of the experiments suggests 

that the K1 values were higher and the half life values shorter in the case of 

membranes derived from linoleic acid supplemented cells. However, because the 

third experiment showed very little difference in the values of K1 and the half 

lives of this alkaline phosphodiesterase I enzyme from control and supplemented 

cells, the data is not found to be significant at the p = 0.05 level when paired 
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lFiig1lllX'e 4.~ 

Isothermal inactivation studies of the plasma membrane enzyme alkaline 

phosphodiesterase I from control and linolbic acid supplemeilt~d HTC cells 

Plasma membranes were purified by method 2, outlined in Materials and 

Methods, section 4.2.l(c)ii from control cells and from supplemented cells that 

had been exposed to60p,M linoleic acid for a 36 hour period. Aliquots ofpurified 

plasma membranes were preincubated at 64°C {±0.1°0) for the times shown and 

the residual activity assayed at 37°0 as described in Materials and Methods, 

section 4.2.l(d)ii. · 

The figure shows a typical set of data which indicates a sequential decay of 

a thermolabile species of the enzyme into a more thermostable species. 

K2, the decay constant of the thermostable species is defined as the gradient 

of the slope of the final decay process produced by plotting the natural logarithm 

of the enzyme activity versus exposure time. 

K1, the decay constant for the thermolabile species is defined as the gradient 

of the slope of the initial decay process shown in figure 4.9 and is calculated as 

the slope produced by plotting the activity of the thermolabile species ( z) versus 

the exposure time (inset in figure 4.9). 

The activity ( z) of the thermolabile species is calculated as follows: 

where x is intercept of the ex~rapolated decay of the thermostable species on the 

enzyme activity axis and t is the exposure time. 

Parameters describing. the thermal dec~y of alkaline pho~phodiesterase I at 

64°C from 3 separate experiments are given below. 
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Experiment 

1 

2 

3 

Experiment 

1 

2 

3 

* half life is given by: 

Control Membranes 

kl half life* k2 

(x1o-1 min-1) (min) ( x 10-2 min-1) 

5.56 1.25 6.1 

4.45 1.56 4.4 

3.02 2.23 4.0 

Supplemented Membranes 

kl half life* 

(xlo-1 min-1) (min) 

6.91 1.00 

4.36 1.59 

4.36 1.59 

ln2 
half life= kt 

k2 

(x1o-2 min-1) 

6.0 

4.3 

3.9 
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t-tests are performed. Further studies would therefore be required to confirm the 

significance of this data. 

This chapter has described a new isolation procedure for HTC plasma mem

branes based on the use of self-forming Percoll gradients as compared to the 

sucrose density gradients used by a number of other workers (Lopez-Saura et al., 

1978; Sauvage et al., 1981). Of the two methods tested in this study on the basis 

of the N a+/ K+ ATPase results it can be seen that the second method seems 

preferable as it produces plasma membranes of greater purity (approximately 

1.2-fold) with only a slight reduction in yield as compared to the first method. 

Unfortunately, because of the number of markers being followed in method 2, 

a complete characterisation of all the fractions produced in the procedure was 

not possible. Consideration of such fractions in the future may well reveal ways 

of enhancing the purification and yield of plasma membranes even further. For 

example, Chakravarthy et al. (1985) working with cultured neuroblastoma cells, 

found that yields of plasma membranes could be greatly increased by careful 

adjustment of the pH and M gCl2 concentration of the Percoll gradient. It seems 

that a higher pH serves to prevent clumping of subcellular organelles (Record et 

al., 1982) thereby improving the resolution of membranes on the gradient. This 

finding could in part explain the high loss of activity seen on the first Percoll 

gradient in method 1. 

Clearly, the degree of purity and the yield of plasma membrane for any given 

cell type will depend on the nature of the procedure used to produce the plasma 

membrane and it would also appear to depend on the component used as the 

plasma membrane marker. For example, in the case of HTC cells the method 

reported by Tweto et al. ( 1976) involving a sucrose gradient separation only 

gave a 1.2% plasma membrane yield, purified 12-fold as compared to the origi

nal homogenate based on the assay of the marker enzyme 51 nucleotidase, whilst 

Sauvage et al (1981) using sucrose density gradients and digitonin, a complex 

polymer known to increase the buoyant density of the plasma membranes by 

binding to cholesterol, reported yields of HTC plasma membrane of 22.8% which 

were purified 21-fold as compared to the original homogenate based on the assay 
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of alkaline phosphodiesterase I. Although this purification scheme of Sauvage et 

al. (1981) produced highly purified plasma membranes it could not be employed 

in the current study since digitonin, being a membrane active agent, serves to dis

rupt the physical structure of the membrane, making it unsuitable if any physical 

measurements are to be carried out as was the intention in the current work. 

Since N a+ I K+ ATPase is considered as one of the most reliable plasma 

membrane markers (Evans, 1982), it served as the principal plasma membrane 

marker in the current study. Based on the N a+ I K+ ATPase assay, method 

1 in the present work gave a 36.5% plasma membrane yield purified 12.5-fold 

whilst method 2 gave a 28.5% plasma membrane yield purified 15.1-fold. Un

fortunately, none of the available plasma membrane studies on HTC cells have 

utilised N a+ I K+ ATPase as a major plasma membrane marker. One of the rea

sons for this could be that although N a+ I K+ ATPase is considered as one of 

the most reliable plasma membrane markers, it is a transmembrane protein and 

requires access of ATP to the cytoplasmic face and ions to both faces of the 

membrane, which is often prevented during plasma membrane isolation proce

dures due to the formation of closed vesicles (Forbush, 1983). Thus the amount 

of N a+ I K+ ATPase activity measured will depend not only on the amount of 

enzyme present but also on the degree to which M g2+, ATP, N a+ and K+ are 

accessible to the appropriate sides of the membrane. In the current study a 

greater extent of vesicle formation in the homogenate may have led to an un

derestimate of the specific activity of this enzyme suggesting higher purification 

figures and yields thari should actually have been the case. Due to the limited 

time available this possibility was not examined though any future studies should 

investigate this possibility by employing detergents to break open any vesicles 

that may have formed. 

Clearly, further studies need to be conducted with adenylate cyclase, an 

enzyme which like N a+ I K+ ATPase is widely recognized as a reliable plasma 

membrane marker. However, if the present result is representative then it would 

certainly serve to support theN a+ I K+ ATPase results. Once again, HTC plasma 

membrane studies have not utilised adenylate cyclase as a marker enzyme though 

its existence in a number of rat and mouse liver and hepatoma plasma membranes 

has been demonstrated by a number of workers including Emmelot and Bas 
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{1971) and Makman (1971). These workers have shown that this enzyme is 

activated by various hormones according to cell type and to varying extents by 

different hormones. 

Whilst the data for N a+ I K+ ATPase and adenylate cyclase show that plasma 

membranes were recovered by method 2 in high yield (approximately 20-30%) and 

were purified approximately 12 to 16-fold, the data for alkaline phosphodiesterase 

I and cholesterol suggest a much lower yield (10-13%) and purification (5 to 6-

fold). Other workers have reported much higher purification figures for alkaline 

phosphodiesterase I. For example, Sauvage et al. (1981) working with HTC 

cells quoted a purification figure of 21-fold on a protein basis, whilst Laten and 

Laten-Redshaw (1986) working with rat liver plasma membranes reported a 26 

fold purification based on this enzyme. 

The precise reasons for the low purification values obtained with alkaline 

phosphodiesterase I are not clear. It could be that the parts of the plasma 

membrane containing the enzyme are being lost during this purification process, 

for although markers should be ideally distributed evenly within a single sub

cellular component there is increasing evidence for the heterogeneity of plasma 

membranes and the existence of membrane domains. A number of workers have 

separated liver plasma membranes into two or three sub-fractions. Evans (1970) 

found that his light subfraction contained most of the M g2+ ATPase, leucine 

aminopeptidase and 5'nucleotidase, whilst the heavy fraction contained most of 

the N a+ I K+ ATPase. Haeffner et al. (1980) obtained two plasma membrane 

fractions from Ehrlich-Lettre ascites cells which showed variations in the levels 

of marker enzyme activity present. Thus it could well be that alkaline phospho

diesterase I exists in a different part of the HTC cell membrane to other plasma 

membrane markers from which it is separated during the isolation procedure. 

Another possibility is that alkaline phosphodiesterase I is not in fact an ideal 

plasma membrane marker. Draye et al. (1987) have reported that as much as 

10.9%-14.3% of alkaline phosphodiesterase I activity of a rat fibroblast cell ho

mogenate was associated with a highly purified preparation of lysosomes. Sim

ilarly, Sauvage et al. (1981) have suggested that alkaline phosphodiesterase I 

in HTC cells in addition to having a plasma membrane location may also exist 
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within the membranes of endocytic vesicles, a finding based on a 30% latency in 

activity of this enzyme observed in cell homogenates. 

Alternatively, the low values obtained with the alkaline phosphodiesterase I 

enzyme could simply reflect a lower stability of the enzyme during the isolation 

procedure as compared to the N a+ I K+ ATPase, or perhaps a decrease in the 

strength of its association with the membrane since these are factors that can 

also affect the reliability of enzymic determinations (Tsai et al., 1975). 

The fact that comparable levels of purification were obtained with choles

terol and alkaline phosphodiesterase I agrees with the studies of Lopez-Saura et 

al. (1978) who found that cholesterol remained in close association with alkaline 

phosphodiesterase I during the purification process in HTC cells. The level of 

cholesterol in the cell homogenate and plasma membranes of HTC cells in the 

current study was 0.029 and 0.186 p,moleslmg protein respectively. These val

ues are generally much lower than those given by other workers. For example, 

Koizumi et al. (1981) give cholesterol values for L-1210 cell homogenates and 

23-fold purified (based on the assay of Na+ I K+ ATPase) plasma membranes of 

0.044 and 0.34 7 p,moleslmg protein using ferric chloride reagent by the method 

of Courchaine et al. (1959). Part of the reason for the lower values in the present 

method however, could well be due to the cholesterol assay procedure used, for 

whilst the Johnson {1979) method employed in the current study gives results in 

agreement with those from gas chromatography, many of the older, less specific 

analytical methods for cholesterol such as those involving the use of ferric chlo

ride have been shown by Johnson to give cholesterol results which are 10 to 33% 

higher. 

Once again the suitability of cholesterol as a plasma membrane marker is 

questionable since it is also known to occur at lower concentrations in a number 

of intra-cellular membranes. For example, Amar-Costesec et al. (1974) have 

suggested its association with the Golgi apparatus. Henning and Heidrich {1974) 

have shown the rat lysosomal plasma membrane to be rich in cholesterol. Other 

workers have found the results produced with cholesterol at variance with those 

produced by other putative plasma membrane markers. For example, Payras

tre et al. {1988) observed a 7.7-fold enrichment in cholesterol content of human 
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epidermoid carcinoma cell purified plasma membrane over the cell lysate. How

ever, binding of [3 H] concanavalin A, which is considered to be a good probe of 

the external cell surface (Record et al., 1982), and 5' nucleotidase activity ap

peared to be enriched in the purified plasma membrane only 4.4-fold and 4.5-fold 

respectively over the cell lysate. 

In any study concerned with the production of plasma membranes in a pu

rified state it is obviously important to monitor the level of contamination of 

the final plasma membrane fraction with other subcellular organelle material. 

Because time was a limiting factor, in this study it was only possible to consider 

levels of contamination produced by the most likely contaminants, namely, endo

plasmic reticulum, mitochondria and lysosmal material. The greatest source of 

these contaminants in the final plasma membrane fraction produced by the isola

tion procedure of method 2 came from the endoplasmic reticulum, with the least 

contamination from mitochondria. Yields of endoplasmic reticulum, lysosomal 

and mitochondrial marker enzymes in the current study were 2.81 %, 1.57% and 

0.63% respectively with corresponding purification figures of 1. 76-fold, 0.97-fold 

and 0.39-fold. Chakravarthy et al. (1985) using a similar Percoll purification 

process but with a different cell line (neuroblastoma cells) also reported a much 

higher yield of endoplasmic reticulum marker (7.6%) than mitochondrial marker 

(1.5%) with purification figures of 1.4-fold and 0.3-fold respectively as compared 

to the original homogenate. Lopez-Saura et al. (1978) carried out an analytical 

fractionation of HTC cells producing four particulate fractions and a supernatant 

by a differentia,! centdfugat_ion procedure. Re~ndts were expr_essed as a percent

age of the total activity of a component recovered in the five fractions. It is 

interesting to observe that the particulate fraction (P) in their study found to 

contain the highest level ( 45.6%) of plasma membrane material, assayed using 

the marker enzyme alkaline phosphodiesterase I, was also characterised by very 

high levels of NADPH-cytochrome c reductase (53.7%) and lower levels of N

acetyl ,8-glucosamidase (12.2%). This indicates that alkaline phosphodiesterase 

I was very poorly resolved from enzyme markers of other organelles, especially 

NADPH-cytochrome c reductase. In a later preparative procedure designed by 

Lopez-Saura and his co-workers (Sauvage et al., 1981) the original differential 

centrifugation procedure (Lopez-Saura et al., 1978) was repeated in the presence 

of small quantities of digitonin. This procedure resulted in the production of a 
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plasma membrane fraction containing 22.8% alkaline phosphodiesterase I which 

was purified 21-fold and contained only 1.2% NADPH-cytochrome c reductase 

purified 1.09-fold and 2.0% N-acetyl ,6-glucosaminidase purified 1.8-fold. These 

results of Sauvage et al. (1981) indicate a slightly better purification figure for 

N-acetyl ,6-glucosaminidase than the current study. 

NADPH-cytochrome c reductase was used as the enzymic marker for en

doplasmic reticulum since work by Lopez-Saura et al. (1978) suggests that 

HTC cells do not contain 'typical' glucose-6-phosphatase. 'Typical' glucose-6-

phosphatase exhibits a number of properties including inactivation following 

preincubation without glucose-6-phospha~ as a substrate (De Duve et al., 

1949), not found in HTC cells. The absence of typical glucose-6-phosphatase ac

tivity in HTC cells, which has also been observed in a number of other hepatomas 

(Morris, 1965) is thought to result from their dedifferentiated sate. Lopez-Saura 

et al. (1978) reported a specific activity for NADPH-cytochrome c reductase in 

HTC cell homogenates of 0.0137 J..Lmoles cytochrome c reduced/mg protein/min. 

The slightly higher figure of 0.0195 obtained in the present study is thought, 

in part, to reflect the increased level of Triton X-100 that was used, 1% (wjv) 
final concentration as opposed to 0.1% ( w j v), which was found to enhance the 

linearity of the reaction rate with a slight increase in the reaction rate measured. 

Laten and Redshaw-Laten (1986) working with rat liver reported a specific ac

tivity for this enzyme in homogenates of 0.0175 and a plasma membrane activity 

of 0.0033, giving a 0.18-fold purification figure and a 0.1% yield. This represents 

an improvement in their purification process with respect to the current method 

since initial levels of specific activity recorded by both methods are comparable. 

Reports on plasma membrane purifications from murine 11210 cells by Tsai et 

al. (1975) and Koizumi et al. (1981) indicate much lower specific activities of 

NADPH-cytochrome c reductase for homogenates of 0.0037 and 0.0085 respec

tively and for purified plasma membrane fractions of 0.0019 and 0.0038 with 

purification values of 0.5-fold and 0.44-fold again suggesting a lower contamina

tion of the final plasma membrane fraction with endoplasmic reticulum than is 

the case in the current study. However, Sun et al. {1988) working with rat cere

bral cortex reported a 2.5-fold purification of NADPH-cytochrome c reductase in 

plasma membrane preparations of glial and neuronal soma cells which is higher 

than the 1. 76-fold purification figure and hence level of contamination obtained 
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with NADPH-cytochrome c reductase in the present study. These varied results 

suggest that the level of endoplasmic reticulum contamination in any membrane 

preparation depends not only on the type of separation technique employed but 

also on the cell source. 

The N-acetyl ,8-glucosaminidase measured as the marker for lysosomal con

tamination showed the latency typical of lysosomal enzymes reported by 1opez

Saura et al. (1978) and the assay for this enzyme was cqnsequently performed in 

the presence of 0.1% (wfv) Triton X-100. Whilst the 1.57% yield of N-acetyl (3-

glucosaminidase obtained in this study was comparable to the 2% yield reported 

by Sauvage et al. (1981) also working with HTC cells, the 0.97-fold purification 

figure reported in this study represents an improvement over their 1.8-fold pu

rification figure but is not as low as the 0.43-fold purification figure reported for 

this enzyme in a plasma membrane fraction purified from the human epidermoid 

carcinoma cell line A431 (Payastre et al., 1988). 

Most workers report a very low yield of mitochondrial contamination in pu

rified plasma membranes. Tsai et al. (1975) working with murine 11210 cells 

reported a specific activity of succinate dehydrogenase in cell homogenates of 

0.05 ,umoles cytochrome c reduced/mg protein/min, a figure much higher than 

the 0.0122 figure recorded for this enzyme in the current study. However, they 

did not detect this enzyme in the final putative plasma membrane fraction sug

gesting an improved purification process relative to the current study. Koizumi 

et al. (1981) on the other hand, also using 11210 cells reported a specific activity 

of succinate dehydrogenase in cell homogenates of 0.03 and in final membranes of 

0.018 giving a 0.6-fold purification figure that was slightly higher than the 0.394-

fold figure obtained in the current study, suggesting a higher contamination of the 

plasma membrane with mitochondrial material than was the case in the present 

purification procedure. Also, whilst the 0.394-fold purification of succinate de

hydrogenase in the current study is comparable to the 0.3-fold purification figure 

obtained by Chakravarthy et al. (1985) in their study with neuroblastoma cells, 

the lower yield (0.63%) of mitochondrial material in the current study represents 

an improvement over the 1.5% yield reported by Chakravarthy et al. (1985). 

It is evident that method 2 described in the present chapter for the isolation 
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of HTC cell plasma membranes has provided a rapid and reliable method for 

producing plasma membranes in high yield and with similar levels of purity from 

cell suspensions of both normal and linoleic acid supplemented HTC cells. The 

establishment of a suitable procedure for the isolation of a relatively pure plasma 

membrane fraction has important consequences as it enables further comparative 

studies to be made between control and fatty acid supplemented cells at the level 

of the plasma membrane. For example, from the results it would appear that 

supplementation of HTC cells grown in Eagles Minimum Essential Medium with 

60p.M linoleic acid in the presence of newborn bovine serum (10%, vjv) can 

produce modifications in the fatty acid composition of the HTC cell plasma 

membranes (Table 4.5). These modifications do not appear to be accompanied 

by a change in membrane total phospholipid or cholesterol content (Table 4.6) 

but do appear to be associated with an increase in membrane 'fluidity' (figure 

4.7) as measured by DPH fluorescence polarisation. 

Although many other workers have shown that fatty acid supplementation 

procedures can be used to alter the lipid composition of cells, and membrane 

related properties such as enzymatic activity (Poon et al., 1981) and fluidity, 

there is a lack of uniformity in the level of the analysis. Differences in method 

exist not only in the means and period of supplementation but also in the frac

tionation of the tissue and the subsequent separation of the lipids which makes 

comparisons with the present study difficult. For example, Ferguson et al~ (1975) 

working with mouse LM cells showed that supplementation with 17p.M linoleic 

acid for a 16-24 hour period produced only trace amounts ( < 2%) of its long chain 

elongation and desaturation products 20 : 2 and 20 : 3 in total LM cell phos

pholipids, whilst after a 48 hour exposure to the same concentration of linoleate 

these two metabolic products of linoleic acid constituted 38% and 5.5% of the 

phospholipid fatty acid composition respectively. Similarly, as suggested in the 

introduction, whilst analysis of total cellular phospholipids may give an indica

tion of the direction of plasma membrane alterations, very often it will not reflect 

the extent of such changes (Burns et al., 1983). Clearly, in the current study, 

since a suitable plasma membrane isolation procedure has been developed en

abling investigations to be conducted at the level of the plasma membrane, the 

most useful comparisons are to be drawn from other plasma membrane based 
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studies and from studies involving HTC cells, since different cell lines may show 

variations in their ability to metabolize exogenously supplied fatty acids. 

Wood (1973) has examined the effect of serum lipid levels on the composi

tion of cellular lipids in HTC cells. A range of media were prepared containing 

decreasing amounts of bovine and/or fetal calf serum. Separate media were also 

prepared containing lipid free fetal calf serum. He found that although some 

differences were noted, in general cells grown in different media had comparable 

phospholipid class and fatty acid compositions. i.e. the fatty acid composition of 

total phospholipids derived from cells grown in medium containing 20% bovine 

serum and 5% fetal calf serum was very similar to that of cells grown in medium 

containing 5% lipid-free fetal calf serum. These findings led Wood to suggest that 

exogeneous serum lipids may have less influence on HTC cell lipid biosynthesis 

than is the case for most other cultured cells. 

The presence or absence of desaturation and/or elongation enzymes in mam

malian cells can lead to considerable variation not only in the fatty acid profiles 

of cellular phospholipids in control cells but also in the extent to which different 

fatty acids can be increased in cells by supplementation. In the present study, 

supplementation of HTC cells with linoleic acid did not produce an increase in its 

metabolic product 20 : 4. This agrees with the findings of Spector et al. (1979) 

working with human skin fibroblasts, and Needleman et al. (1982) working with 

human platelets. On the other hand, studies by Denning et al. (1982) with 3T3 

mouse fibroblasts and by Hyman and Spector (1981) with Y79 retinoblastoma 

cells have shown that these particular cells become enriched with 20 : 4 when 

they are supplemented with linoleic acid. This difference is thought to relate to 

different levels of activity of the A-6 and A-5 desaturase enzymes involved in the 

conversion of linoleic to arachidonic acid. 

A large number of lipid metabolism studies have been conducted on HTC 

cells. It has been shown that HTC cells retain the biosynthetic capacity to 

desaturate and elongate fatty acids. For example, Alaniz et al. (1975) have 

shown that cultured HTC cells retain the ability to desaturate stearic to oleic 

acid (69 desaturase), a-linolenic acid to octadeca-6,9,12,15-tetraenoic acid (A-6 

desaturase) and eicosa-8,11,14-trienoic acid to arachidonic acid (~5 desaturase). 
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The low level of arachidonic acid noted in the plasma membrane in the current 

study (Table 4.5) has been observed at the cellular level (Alaniz et al., 1975) and 

has been shown to be related to the diminished capacity of HTC cells to synthesise 

this acid from linoleic acid. Studies have indicated that whilst a-linolenic acid is 

rapidly converted to eicosa-5,8,11,14,17-pentaenoic acid, exogenous linoleic acid 

that is a precursor of eicosa-8,11,14-trienoic acid is converted to arachidonic 

acid only in very small amounts (Alaniz et al., 1975). The diijiculty of cells in 

converting exogeneous linoleic acid to arachidonic acid is not due to the absence 

or low activity of ~5 desaturase since Gaspar et al. (1975) have shown that 

the conversion of eicosa-8,11,14-trienoic acid to arachidonic acid, that requires 

~5 desaturase, readily takes place. Dunbar and Bailey (1975) confirmed these 

results and showed that a series of heteroploid cells were not characterised by 

a ~6 desaturase enzyme since they were unable to desaturate linoleic acid, but 

were characterised by a ~5 desaturase enzyme since they were able to desaturate 

eicosa-8,11,14-trienoic acid. They concluded that the cells suffered a loss or 

modification of the ~6 desaturase enzyme. However, since HTC cells do show 

an active .6.6 desaturation of a-linolenic acid and since it is thought that the 

same .6.6 desaturase desaturates oleic, linoleic and a-linolenic acid (Ninno et al., 

1974), Gaspar et al. (1975) have suggested that HTC cells are characterised by a 

highly specific inhibition of the .6.6 desaturase. This inhibition is envisaged only 

to decrease linoleic acid desaturation to eicosa-8,11,14-trienoic acid and to have 

no effect on a-linolenic conversion to octadeca-6,9,12,15-tetraenoic acid. 

Other studies with HTC cells at the cellular level have revealed that in addi

tion to the well established pathways for the synthesis of polyunsaturated fatty 

acids from a-linolenic and linoleic acid (figure 4.1) HTC cells have other biosyn

thetic pathways that utilise these two essential fatty acids (Alaniz et al., 1976). 

Whilst both these fatty acids form a substrate for a .6.6 desaturase they have 

also been found to form the substrate for an elongation reaction. Linoleic acid 

elongation leads to 20: 2 (~11, 14) which is then desaturated by .6.5 desaturase 

to 20 : 3 (.6.5, 11, 14), whilst a-linolenic acid is elongated to 20 : 3 (.6.11, 14, 17) 

which is then desaturated again by .6.5 desaturase to 20 : 4 (.6.5, 11, 14, 17). (The 

D. notation indicates the position of the double bond from the carboxyl end of 

the molecule). 
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Mahler et al. (1988) have isolated plasma membranes from liver and HTC 

cells, grown as the Morris hepatoma 7288C in the hind legs of male Buffalo 

rats, and examined the phospholipid acyl groups .. Whilst the trend in fatty 

acyl composition of the HTC cell plasma membrane phospholipids agrees with 

the findings of the current study, the level of oleic acid in Mahler's study was 

much lower, at 27% of total fatty acyl groups as opposed to 40% in the present 

investigations. This difference may well be due to the different dietary conditions 

experienced by the cells due to the method of growth, i.e. in vivo tumour as 

opposed to monolayer culture. 

The elevation in linoleic acid that occurs in the plasma membrane phos

pholipid of HTC cells following exposure of cells to linoleic acid supplemented 

medium has been reported by a number of other workers employing a variety 

of cell lines. King and Spector (1978) working with Ehrlich ascites cells found 

that the plasma membrane phospholipids were enriched with 18 : 2 when cells 

were exposed to this fatty acid bound to albumin during a 4 hour incubation 

period. In this study by King and Spector (1978) membranes isolated from cells 

exposed to 18: 1 served as the point of reference for the comparison of fatty acyl 

enrichments. It was found that the membrane fraction of cells exposed to 18 : 1 

contained 39% 18 : 1 and only 5% 18 : 2 whilst the membrane fraction isolated 

from cells exposed to 18 : 2 contained 31% 18 : 1 and 12% 18 : 2. In keeping with 

the current study there was no appreciable change in the cholesterol/phospholpid 

ratios of supplemented cells relative to control cells. 

Poon et al. (1981) working with murine T lymphocyte EL4 tumour cells 

reported an increase in the level of 18 : 2 in plasma membrane phospholipids 

from 12% in control cells to 40.7% in supplemented cells following a 24 hour 

exposure of the cells to ll5JLM linoleic acid. 

Sweet and Schroeder {1988) working with mouse LM fibroblasts which were 

cultured in suspension for 3 days in lipid-free medium or identical medium con

taining 17JLM linoleate (18 : 2) bound to bovine serum albumin, showed that the 

plasma membranes from cells cultured in lipid free medium contained only sat

urated and monosaturated fatty acids. Palmitic (16: 0) and oleic (18 : 1) acids 

together comprised 76% of the plasma membrane phospholipid acyl groups. Sup-
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plementation with 17 pM linoleic acid as described above, however resulted in the 

incorporation of 5% linoleic acid into membranes with a concomitant reduction 

in palmitic acid from 21% to 8%. Once again, this supplementation procedure 

did not alter the sterol/phospholipid molar ratio values of the plasma membrane 

which were 0.74 ± 0.09 and 0.60 ± 0.10 in plasma membranes from control and 

linoleate supplemented cells respectively. 

Edwards-Webb and Gurr (1988) showed that when guinea pigs were fed diets 

containing a high proportion of linoleic acid, (31% by molar proportion of the 

fatty acid present), the fatty acid composition of the lipids of the erythrocyte 

membrane was enriched in linoleic acid from 15% in control membranes to 21% 

in supplemented membranes. However, unlike the current study, these work

ers reported that membranes enriched in linoleic acid also contained a higher 

cholesterol/phospholipid ratio. 

The finding that the proportion of saturated fatty acid in the plasma mem

brane remained fairly constant at approximately 50% of total fatty acyl groups 

(figure 4.5) has also been reported by a number of other workers. It seems that 

biological mechanisms that detect changes in the fatty acyl content of membrane 

phospholipids are particularly sensitive to the ratio of saturated:unsaturated fatty 

acids. In addition it seems that the polyunsaturated fatty acid content of tis

sues is regulated by substitutions almost entirely among unsaturated fatty acids 

(Stubbs and Smith, 1984). A number of supplementation studies at the mem

brane level have revealed that the relative amounts of saturated and unsaturated 

fatty acids cannot be changed much from 1 : 1, although a great deal of unsat

urated fatty acid interchanging can occur. For example, Neudoerffer and Lea 

(1967) working with sarcoplasmic reticulum from turkey breast found that en

riching the diet with highly unsaturated fatty acids caused a marked change in 

the unsaturated fatty acid content of the membrane but little change in the sat

urated fatty acids. In particular, the content of the polyunsaturated fatty acids 

20 : 5 and 22 : 6 were increased at the expense of 18 : 1 and 18 : 2. This con

stancy in total saturated fatty acids no doubt relates to a considerable degree to 

the specificity of enzymes such as phospholipase A2 for the sn - 1 and sn - 2 

positions in phospholipids and in the segregation of saturated and unsaturated 
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fatty acids between those positions which invariably occurs (Lands and Hart, 

1966). 

Cossins et al. (1986) have suggested that relationships between lipid biosyn

thesis, lipid composition, membrane order and membrane function are often best 

revealed by correlating changes produced in one by experimental treatment with 

changes produced in another. In the current study, supplementation of HTC cells 

with linoleic acid produced no significant change in the cholesterol/phospholipid 

molar ratio, a marked alteration in the phospholipid fatty acid composition and 

a decrease in steady state fluorescence polarisation values of plasma membranes. 

Such results suggest that the decrease in polarisation values observed in supple

mented cell plasma membranes could well be correlated to the changes in the 

fatty acyl composition of the membrane phospholipids. 

A number of other workers have reported changes in membrane 'fluidity' 

measurements as a result of supplementation procedures. Wolters and Konings 

(1984) working with mouse fibroblast LM cells showed that when these cells 

were grown in a serum-free medium supplemented with 100p.M arachidonic acid 

(20: 4) complexed to bovine serum albumin for a 24 hour period, the percentage 

of polyunsaturated fatty acyl chains in membrane phospholipids increased from 

6.8% to 44.3% whilst a decrease in polarisation values was observed. George et 

al. (1983) cultured human lymphoid LDV cells in medium containing delipidated 

serum supplemented with either 40p.M oleic (18 : 1) or 40p.M linoleic (18 : 2) 

acid for periods of time -between 3 and 120 days. At acellular level they showed 

that after 3 or more days growth, not only were there substantial increases in 

the proportion of oleate and linoleate present in the cellular lipid respectively, 

but also that there was an increase in membrane fluidity as measured by DPH. 

This increase in membrane fluidity was found to be greater for cells grown in the 

presence of linoleic acid than for cells grown in the presence of oleic acid. 

Storch and Schachter {1984) working with rat hepatocytes showed that when 

the content of monoenoic and polyenoic acyl chains in plasma membrane lipids 

was increased in vivo by a dietary regimen involving intermittent starvation fol

lowed by refeeding with a fat-free diet, the fluidity of the plasma membranes, 

which was measured by steady state fluorescence polarisation of DPH, DL-2-
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(9-anthroyloxy) stearate (2AS) and DL-12-(9-anthroyloxy) stearate (12 AS), was 

significantly increased. There was also a decrease in the cholesterol/phospholipid 

molar ratio suggesting that the increase in fluidity was the result of more than 

one factor in this instance. 

Alam and Alam (1986) working with plasma membranes of rat submandibu

lar salivary glands reported a decrease in fluidity of membranes following ex

posure of rats to diets deficient in essential fatty acids. Whilst this decrease 

in membrane fluidity was accompanied by a decrease in the double bond index 

(which is a measure of the degree of unsaturation of lipids) relative to control 

membranes, there was no change in the cholesterol/phospholipid molar ratio. 

However, an association between membrane fatty acid composition changes 

and membrane fluidity changes does not occur in all systems. Poon et al. (1981) 

showed that significant alterations in the saturated and unsaturated fatty acyl 

composition of the membrane phospholipids of murine T lymphocyte EL4 tu

mour cells could be achieved by exposing cells to fatty acids for 24 hour periods. 

For example, incubation of the cells with 60JLM oleic acid (18 : 1) resulted in 

a 20% increase in the level of 18 : 1 in the plasma membrane phospholipids. 

However, there were no significant differences in 'fluidity' as measured by Elec

tron Spin Resonance (ESR) spectroscopy that were recorded suggesting that 

the T-lymphocyte must have a compensatory mechanism enabling it to resist 

changes in membrane fluidity. A similar finding was reported by Edwards-Webb 

and Gurr (1988) who modified the fatty acid composition of the plasma mem

brane phospholipids of guinea pig erythrocytes by feeding guinea pigs diets rich 

in linoleic acid. Whilst the plasma membrane phospholipids were found to be 

enriched in linoleic acid, the 'order' parameter of the membrane, as determined 

by ESR spectroscopy was unaffected. Further studies revealed a higher ratio of 

cholesterol to phospholipid in these supplemented membranes. The findings of 

these investigations has led Edwards-Webb and Gurr (1988) to propose that the 

physical properties of erythrocyte membranes are normally maintained relatively 

constant in response to different dietary fats by compensatory adjustments of the 

proportions of both polyunsaturated fatty acids and cholesterol. 

Clearly, in the current study with HTC cells it would appear that membrane 
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fatty acid compositional changes rather than changes in cholesterol/phospholipid 

levels are involved in determining membrane fluidity changes. However, it should 

not be assumed that membrane fluidity and the extent of fatty acid unsaturation 

are always related in the simple and direct manner suggested by the current 

results. As Stubbs and Smith (1984) have indicated, the relative proportion of 

fatty acid types do not always give predictable effects in terms of membrane 

physical properties. For example, it was thought that increasing the level of 

unsaturation of fatty acids would result in an increase in membrane fluidity due 

to the increased space occupied by their molecular structures. However, it has 

been shown by Van Deenen (1971) working with model systems, that whilst the 

introduction of the first and second double bond into a saturated fatty acid causes 

a marked effect on bilayer fluidity, further unsaturation has little effect on the 

fluidity. In addition, the position of double bonds along the hydrocarbon chain 

and chain length can have important effects in terms of membrane fluidity. 

It is also important to bear in mind that biological membranes contain a 

considerable diversity of phospholipids. Each unique molecule, totally defined 

with respect to every functional group, represents a 'molecular species'. Such 

a definition includes the identity of each fatty acid, aldehyde or alcohol and 

the position in the molecule at which it is attached. The current study, in 

common with the majority of studies to date, has not been conducted at the 

level of the molecular species which is a disadvantage in any attempt to relate 

physical properties, function and composition since it means that misleading 

conclusions may be drawn. This was highlighted by Dickens and Thompson 

(1982) in their study of the response of lipids in Tetrahymena pyriformis to 

adjustment of the growth temperature. Initially it was thought that the rapid 

response of Tetrahymena to changes in the growth temperature was the result of 

changes in the fatty acyl group composition. However, analysis at the molecular 

species level has indicated the importance of the presence of ether linkages in the 

rapid response to temperature. 

Again, it is possible that the supplementation procedures adopted in the 

current study may have produced additional perturbations to the plasma mem

brane structure which have not been investigated, with the result that other 
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mechanisms may be responsible for the fluidity changes observed. For exam

ple, phospholipid polar head group composition is known to be an important 

factor in bilayer fluidity. Whilst many of the supplementation studies with cul

tured cells (King and Spector, 1978; Spector et al., 1979) have not observed any 

changes in the phospholipid head group composition following supplementation, 

it is known that an increase in the ratio of phosphatidylethanolamine (PE) to 

phosphatidylcholine (PC) causes an increase in the steady state polarisation of 

DPH (Gilmore et al., 1979). The PC/PE ratio is particularly important since PE 

is a hydrogen donor and can form hydrogen bonds with the anionic phosphate

oxygen of the adjacent phospholipid thus restricting the movement of the acyl 

chains (Chapman and Wallach, 1968). 

Clearly, whilst the increased levels of linoleic acid present in HTC plasma 

membranes, following supplementation with this particular fatty acid, would ap

pear to produce a significant effect on membrane fluidity measurements, it is 

likely that in reality such changes that are observed result from an interrelation

ship of a number of factors. These include the level of unsaturation of the fatty 

acyl chains, the cholesterol content and the phospholipid head group composition 

within the plasma membrane. 

The idea that a cell's response to hyperthermic insult may well be related 

to its membrane 'fluidity' at the time of treatment (Dennis and Yatvin, 1981; 

. Mulcahy et al.,1981; Yatvin et al., 1987) and the fact that a few survhral studies 

of normal and neoplastic cells in culture have suggested that cancer cells may be 

more sensitive to the lethal effects of hyperthermia than normal cells ( Giovanella 

et al., 1973), makes it interesting to compare the DPH fluorescence polarisation 

measurements obtained in the current study with those of other workers. 

Control membranes from HTC cells were characterised by a polarisation value 

of 0.240 at 37°C which compares favourably with the DPH polarisation value of 

0.247 at 37°C recorded by Wolters and Konings (1984) working with mouse 

fibroblast LM cell membranes. Barker (1985) working with plasma membranes 

derived from rat liver cells and two transplantable rat tumours (MC7 and D23) 

recorded a higher DPH polarisation value of 0.290 for liver plasma membranes but 

comparable polarisation values of 0.250 and 0.230 for the MC7 and D23 tumour 
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cell plasma membranes respectively. Although relatively few studies have been 

carried out on tumour plasma membranes using the technique of steady state 

fluorescence polarisation spectroscopy, a number of those which have (e.g. Van 

Blitterswijk et al., 1987; Koizumi et al., 1981; Johnson, 1981) have revealed 

decreased DPH polarisation values in tumour cells. For example, Koizumi et 

al. {1981) working with plasma membranes from various mouse lymphoid cells 

recorded a range of DPH fluorescence polarisation values of 0.254-0.261 at 25°C 

for thymocyte plasma membranes and a lower range of DPH polarisation values 

of 0.235-0.241 for X-ray induced thymoma cell plasma membranes at the same 

temperature. Thus it could be that some tumour cells show an increase in thermal 

sensitivity relative to normal cells due to a difference in the plasma membrane 

'fluidity' (order) between tumour and normal cells. 

The decrease in polarisation value from 0.240 to 0.220 at 37°C observed with 

linoleic acid supplemented membranes in the current study which was accom

panied with an increase in thermal sensitivity of intact cells also implicates the 

importance of 'fluidity' in the hyperthermic response of cells. A similar finding 

was reported by Wolters and Konings (1984) when mouse fibroblast LM cells 

were supplemented with lOOJ.LM arachidonic acid for a 24 hour period. A de

crease in polarisation values from 0.247 to 0.223 was observed in purified plasma 

membranes together with an increase in the thermal sensitivity of the cells. 

Membrane associated enzyme activity, as stated in the introduction, is of

ten found to be influenced by the 'fluidity' (order) of membrane lipids (Kimel• 

berg, 1977). Part of the reason for this influence undoubtedly stems from the 

anisotropic hydrophobic core of the membrane which forms a viscous, relatively 

hindered environment for enzyme fuctioning (Cossins et al., 1981). Since enzymes 

require molecular flexibility for catalytic purposes it is probable that such an en

vironment will cause enzymes to adopt relatively loose tertiary structures which 

in turn are likely to be susceptible to perturbation. Any increase in membrane 

'fluidity' caused for example by supplementation procedures and/or hyperther

mic temperatures are likely to produce a less hindered environment for the pro

teins. This less ordered environment in turn is likely to permit a greater range 

of conformational movement which could lead to the adoption of inactivating 

configurations by membrane proteins. 
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In the current study where a 36 hour period of supplementation with 60p,M 

linoleic acid had been found to increase the 'fluidity' (decrease the order) of the 

plasma membrane (figure 4.7), it was hoped that hyperthermic studies would 

reveal a marked increase in the thermal sensitivity of supplemented membrane 

proteins relative to control membrane proteins. Unfortunately the results of 

N a+ I K+ ATPase enzyme were inconclusive. However, the isothermal inactiva

tion studies conducted with alkaline phosphodiesterase I seem to suggest that 

the enzyme from the supplemented cell plasma membranes was indeed more 

thermolabile than the same enzyme from control membranes. 

Conflicting results have been obtained by other workers who have conducted 

hyperthermic studies on membrane enzymes. For example, Burdon et al. (1982, 

1984) reported that the N a+ I K+ ATPase activity in HeLa cells was rapidly in

activated at 45°C, though this activity was partially restored by subsequent 

incubation at 37°C, if the hyperthermic treatment was brief (approximately 10 

minutes). On the other hand, Stevenson et al. (1983) working with CHO cells 

and Boonstra et al. (1984) working with hepatoma H35 cells found an enhanced 

ouabain sensitive K+ influx during hyperthermia at 42°C which was completely 

reversible when cells were returned to 37°C. Similarly, Bates and Mackillop 

(1985) also working with CHO cells showed that ouabain sensitive 86 Rb+ influx 

increased with temperatures between 37°C and 45°C and was only irreversibly 

inhibited above 45°C. 

Bowler et al. (1973) suggested that cellular heat inJ!lry may well result from 

the thermal sensitivity of membrane lipoproteins on the basis of a number of 

vitro experiments. For example, 3 enzymes from crayfish muscle membrane; 

M g2+ ATPase, N a+ I K+ ATPase and Ca2+ ATPase were found to be thermola

bile in the range of temperatures lethal to the whole organism. In addition, 

pyruvate kinase, a soluble enzyme from the muscle, was found to be much more 

thermostable than the membrane-associated enzymes. However, the thermosta

bility of the plasma membrane enzymes N a+ I K+ ATPase and M g2+ ATPase, 

unlike heat death of the organism, was not modified by acclimation tempera

ture in this instance. In contrast, Cossins et al. ( 1981) clearly demonstrated a 

resistance acclimation effect on the thermal sensitivity of goldfish synaptic mem

brane N a+ I K+ ATPase with the enzyme from 28°C acclimated fish being more 
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thermally resistant than that from 6°C acclimated fish. The thermal stability of 

goldfish brain synaptic membrane acetyl cholinesterase was similarly found to be 

dependent upon acclimation temperature (Bowler, 1987). 

Barker {1985) working with the M g2+ ATPase enzyme from rat liver and two 

transplantable rat tumours (MC7 and D23) found that the M g2+ ATPase from 

the tumours was far more thermolabile than the same enzyme from liver and 

that the membrane lipid order as measured by DPH fluorescence polarisation 

correlated with the thermal sensitivity of the three enzymes, i.e. the less ordered 

(more fluid) the membrane lipid the greater the sensitivity of the enzyme to heat. 

In summary, it is evident that development of a rapid and reliable method 

for the isolation of HTC cell plasma membranes in high yield and with a high 

degree of purity has enabled investigations into the effect of plasma membrane 

composition on the thermal sensitivity of these tumour cells to be conducted. 

Such studies in turn have revealed that changes do occur in terms of plasma 

membrane lipid composition and physical state when HTC cells are exposed to 

60J.LM linoleic acid supplement for a 36 hour period. Since supplementation 

of HTC cells under these conditions has already been shown to be linked to 

a.n increase in the thermal sensitivity of these cells, the findings of the current 

chapter lend support to the idea that the plasma membrane is an important 

site of hyperthermic damage and would seem to implicate the 'fluidity' of the 

plasma membrane as being a key factor in determining the response of cells to 

heat treatment. 

However, although this study and many others (e.g. Dennis and Yatvin, 1981; 

Mulcahy et al., 1981; Yatvin et al., 1987) have suggested that hyperthermic sensi

tivity is related to membrane fluidity, there are instances where 'fluidity' appears 

to have no effect on hyperthermic sensitivity. Studies by Lepock and coworkers 

(Lepock et al., 1981; Massicotte-Nolan et al., 1981) in particular have questioned 

the importance of membrane lipid fluidity in hyperthermic cell killing. Investi

gations conducted on V79 Chinese hamster lung fibroblasts cells with butylated 

hydroxytoluene (BHT), an effective lipid perturber (Lepock et al., 1981), indi

cated that BHT treatment which was found to increase membrane fluidity as 

measured by the Electron Spin Resonance (ESR) probe 2,2-dimethyl-5-dodecyl-
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5-methyloxazolidine-N-oxide (2N14) did not sensitise cells to hyperthermia nor 

was there any decrease in membrane fluidity observed in thermotolerant V79 cells 

compared to control cells. Similarly, Lepock and coworkers (Massicotte-Nolan et 

al., 1981) again working with V79 Chinese hamster lung fibroblast cells looked 

at the effects of short chain alcohols including methanol, ethanol and 2-propanol 

on the hyperthermic response of cells. In this particular study these workers re

ported that the membrane fluidising ability of these alcohols as measured by the 

ESR probe 2N14 did not correlate well with the degree of heat sensitisation by 

the same alcohols. However, a relationship was found to exist between the abil

ity of monohydric, dihydric and trihydric alcohols to sensitise or protect proteins 

from heat denaturation and their ability to sensitise or protect cells from heat. 

These findings led Lepock and coworkers to suggest that protein denaturation 

was the rate-limiting step in hyperthermic cell killing (Massicotte-Nolan et al., 

1981). 

In 1982 Lepock (Lepock, 1982) suggested that part of the reason for the 

discrepancies that were being reported in the importance of 'fluidity' in hyper

thermic cell killing could result from the poor definition and hence measurement 

of 'fluidity'. Whilst lipid motion and lipid order and often less well defined pa

rameters were usually classified together as membrane 'fluidity', he pointed out 

that an increase in temperature served to increase the rate of lipid motion but 

led to a decrease in lipL.d.order. Since some probes such as the fluorescent probe 

1,6-diphenyl-l,a,5.:hexatriene (DPH)- were more sensitive to-lipid--order-- whilst 

others such as the ESR probe 2N14, were more sensitive to the rate of motion, 

he suggested that this was likely to be the cause of some of the conflicting re

sults obtained. He also proposed that it would perhaps be more appropriate to 

consider the effects of lipid composition on hyperthermic cell killing in terms of 

changes in lipid order due to the inconsistancies he and his coworkers (Lepock 

et al., 1981; Massicotte-Nolan et al., 1981) had reported when the rate of lipid 

motion was considered. 

In 1983 Lepock et al. (1983) using both the ESR probe 2N14 and the fluo

rescence polarisation probe DPH conducted a further study for lipid or protein 

thermotropic transitions in mitochondrial and plasma membranes from Chinese 
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hamster lung V'{9 cells near the onset temperatures ( 40·-41.5°C) of hyperther

mic cell killing. Whilst they found no lipid transition near 40-41 .5°C that could 

be correla,ted with hyperthermic killing in either mitochondrial or plasma mem

branes they did find that measurements of intrinsic protein fluorescence and 

energy transfer from membrane protein to ihe lipid .. soluble fluorescent probe 

trans-paranaric acid demonstrated the existence of an irreversible transition in 

protein structure or arrangement above approximately 40°C in both mitochon

drial and plasma membranes. Later work by Lepock (Lepock et al., 1988, 1989) 

has also suggested the importance of thermal denaturation of membrane proteins 

in hyperthermic killing. 

It was therefore of interest to ascertain whether other agents such as local 

anaesthetics which are known to alter the 'fluidity' of plasma membranes might 

also affect the thermal sensitivity of the HTC cells in an attempt to establish 

the significance of membrane fluidity in the hyperthermic response of HTC cells. 

Such investigations form the basis of work presented in the following chapter. 
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Local anaesthetics have been reported to produce a wide variety of effects on 

cells. In addition to their anaesthetic action on excitable membranes (Blaustein 

and Goldman, 1966), they have been shown to have specific effects on rnem~ 

branes. For example, they induce the expansion of membranes (Seeman, 1972), 

displace Ca?.+ from membranes (Chen, 1974) and modify the osmotic fragility of 

erythrocytes (Roth and Seeman, 1971). They also in hi bit cell fusion (Paste and 

Reeve, 1972). Other studies have revealed that local anaesthetics can reversibly 

disrupt both microtubular and microfilamentous cytoskeletal systems (Nicolson 

et al., 19FT6). They also potentiate heat induced inhibition of DNA synthesis 

(Wong and Dewey, 1983) and loss of DNA polymerase activities (Jorritsma et 

al., 1984). They have also been proposed to cause an increase in protein mass 

of the nucleus (Roti-Roti and Wilson, 1984). However, many of these effects are 

probably secondary to the primary effect of the anaesthetic since, for example, 

the loss of polymerase activities and increase in protein content of nuclei are only 

observed in whole cells. There is no effect when isolated polymerase or nuclei are 

treated with anaesthetic. 

Although the molecular events accompanying anaesthetic induced changes 

are still unclear, the fact that they have been reported to enhance the fluidity of 

membranes in both natural (Hubbell et al., 1970) and model membranes (Colley 

and Metcalfe, 1972; Butler et al., 1973) prompted their use in the current study 

to serve as a further means of investigating the importance of membrane fluidity 

in the cause of hyperthermic cell death of HTC cells. 

As discussed earlier, the idea that membrane fluidity may be important in 

hyperthermic cell death is not new (see Chapter 4). The evidence from the use 
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of local anaesthetics for a role of membrane fluidity in cell death is fairly con

vincing for microorganisms. For example Yatvin (1977) using the local anaes

thetic procaine, was able to sensitise E.coli to heat, furthermore these workers 

demonstrated a direct correlation between bacterial hyperthermic survival and 

anaesthetic potency (Yatvin et al., 1982) which strongly supported the hypoth~ 

esis that the fluidity of membranes might be a major factor contributing to the 

death of cells. 

Yau (1979) working with murine 3T3 cells and CHO cells also reported a 

potentiation in hyperthermic killing of cells using the local anaesthetic, procaine. 

However, although the membrane probe, perylene, indicated a significant increase 

in fluidity of the anaesthetic treated cell membranes this was not apparent using 

1,6,diphenyl-1,-3,5 hexatriene (DPH) as a probe. Konings (1985) showed that 

the thermosensitivity of both normal mouse fibroblast LM cells and cells that had 

been modified with respect to the content of polyunsaturated fatty acyl chains 

of the membrane, could be enhanced by treatment with procaine. LM cells 

were grown in a serum-free medium supplemented with arachidonic acid (20 : 4) 

which increased the amount of polyunsaturated fatty acyl chains (PUFA) in the 

phospholipids from 6.6% to 35.9%. A similar result, again using procaine was 

reported by Hidvegi et al. (1980) working with ascites tumour cells. 

It was therefore of interest to ascertain whether a number of tertiary amine 

local anaesthetics of increasing potency could be shown to potentiate hyperther

mic cell- killing-in-H'I'C-cells-in-a-way that correlated-with-changes in membrane 

fluidity, as measured by the steady state fluorescence probe, DPH. 

One important factor that needs to be taken into consideration when us

ing tertiary amine local anaesthetics is that they can exist either as positively 

charged ions (cationic) or as neutral molecules depending on the dissociation 

constant (pKa) of the anaesthetic and the pH of the buffering medium. For 

example tetracaine exists purely in the charged cationic form at pH 5.5 and in 

the neutral form at pH 9.5. A number of studies have shown that the charge 

of the anaesthetic is important in determining its activity since the charged and 

uncharged forms have different partition coefficients in the lipid bilayer. Kelusky 

and Smith {1983) showed that in model phosphatidylcholine (PC) and phos-
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pha,tidylethanolamine (PE) bilayers, the uncharged form is more lipid .. soluble 

due to hydrophobic iD.teradions between the a,naesthetic acnd lipid molecules, 

wh.il.ot ::o:: phooph.ati.dy!.oerine, which was negatively charged at the plJ studied, 

the charged form of the ane,eothetic wa.s more soluble in the lipid bilayer due 

to elec'~;:ostatic interactions between the two opposite charges (Kelusky et al., 

1986). 

Au~er et al. (1988) have shown that the uncharged form of tetracaine can 

partition deeply into model membranes composed of myristoyl-sn-glycero-3 phos

phocholine bilayers whilst the charged form may interact electrostatically with 

the phospholipid head group and induce a greater fluidity change than the un

charged form. 

In the current study, to ensure that the anaesthetics dibucaine, tetracaine 

and procaine were maintained predominantly in their cationic form (figure 5.1), 

the pH was kept below 7.5 since the pK a values of these anaesthetics are around 

pH 7.8 (Low et al., 1979). Under these conditions the order of membrane surface 

adsorption of these cationic forms of local anaesthetic at any given concentration 

has been shown to be dibucaine > tetracaine > procaine (Ohki, 1984) which re-

fleets the narcotic potencies of these anaesthetics on ner·ve membrane excitability 

(Truant and Takman, 1965). 

As discussed in Chapter 3, a number of workers have reported morpholog

ical changes produced by hyperthermic treatment. Bass et al. (1978) working 

with CHO cells at 43°C noticed that following treatment, the surface was char

acterised by a reduction in the number of microvilli, a decreased adherence to 

the substratum and an increase in bleb formation. Similarly a number of studies 

have shown that hyperthermia causes cells to round up and inhibits their ability 

to attach to the culture substratum (Lin et al., 1973; Schamhart et al., 1984). 

Mulcahy et al. (1981) working with P388 ascites tumour cells demonstrated some 

interesting heat induced morphological differences between cells that had under~ 

gone various membrane modifications including treatment with local anaesthetic. 

Their results were consistent with the hypothesis that a cell's response to hyper

thermic insult was related to its membrane fluidity at the time of treatment. It 

was therefore of interest in the current study to see whether or not the presence 
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Cationic forms of three local anaesthetics used in hyperthermic studies 
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Edstrom et al., 19'/5; Nicolson et al., 1976) quite probably by an indirect mem

brane effect, which leado to a~n intracellular :release of calcium (Genna et al., 

1980), there are no :reports on the effects of <1naesthetic either in the presence 

or absence of heat, on the intermediate filaments of cells. Consequently a study 

of local anaesthetic effect on the intermediate filament network of heated and 

control cells was undertaken. Although a number of methods have been used 

to reveal the intermediate filament network of cells (French et al., 1982; Ishii et 

al., 1985) the method of Fey et al. (1984) was adopted for two main reasons. 

Firstly this method avoids the use of conventional embedded sections which can 

often mask cytoskeletal networks (Fey et al., 1984), secondly it is designed to 

reveal information on the architecture of the nuclear matrix of a cell as well as 

on the intermediate filament network which is of interest since the association 

between intermediate filaments and intact nuclei has frequently been reported 

(Woodcock, 1980; Capco et al., 1982). 

5.2 Maie1rialls and Meil'modls 

5.2.ll Toxicity §tudliel'l 

Stock solutions of dibucaine-hydrochloride ( 50mM), tetracaine-hydrochlo

ride (500mM) and procaine-hydrochloride (1000mM) were prepared in distilled 

water and filter sterilised. They were stored for a maximum of two weeks at 4°C. 

Ranges of anaesthetic concentrations in normal culture medium were pre

pared by serial dilution of the above stock solutions with culture medium. Dibu

caine was prepared in a final concentration range in the culture medium of 1mM 

to 0.005mM, tetracaine in the final concentration range 5mM to 0.05mM and 

procaine in the highest, final concentration range of 50mM to 0.1mM. Addition 

of anaesthetic to culture medium did not affect the final pH of the solution. 

Cells (5 x 103 /well) were seeded into 24-well plates in 1ml growth medium on 

day 0 and incubated at 37°C under a humid atmosphere of air/C02 (19: 1, v/v ). 
The medium was changed on day 1. On day 3, the culture medium in wells 

was replaced with either 1 ml of culture medium (control cells) or 1 ml of an 

anaesthetic in culture medium. In all experiments there was a minimum of 

4 wells per experimental condition. The plates were incubated at 37°C' in an 
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atmosphere of ajr/CO'), {19: 1, vjv) for a period of 4.5 hours. The medium was 

then replaced with normal culture medium and the platen returned to the 3'{°C 

incubator. The next day platen were given another media change. Cell survival 

was determined on day 6 by the modified Mosmann method described in Chapter 

2, Materials and Methods, sectiom 2.2.4(b). 

An 'anaesthetic survival value' (ASV) for each concentration of anaesthetic 

tested was determined as follows: 

h l l 
I ncubaior Anaesthetic Absorbance value 

Anaest etic surviva va ue :-:: I b l Ab b l X 100 ncu ator contro sor ance va ue 

If an anaesthetic has no effect on cell survival ASV = 100%. 

5.2.2 HypeirtheirlOO.ic §tudlie§ 

Concentrations of anaesthetic were selected that decreased the survival of 

cells incubated at 37°C in an atmosphere of airjC02, (19: 1, vjv) by no more 

than 35% compared to control cells as determined by the toxicity studies. 

Cells (5 x 103 /well) were seeded into 24-well plates in 1ml growth medium on 

day 0 and incubated at 37°C under a humid atmosphere of airjC02 (19: 1, v/v). 

The culture medium was changed after 24 hours and then on day 3 the medium 

was replaced with medium that lacked fungizone (Hahn et al., 1977) but con

tained 10mM Hepes, pH7.4 (heating medium). This heating medium was pre

pared with and without the selected concentrations of the various anaesthetics. 

Plates were returned to the incubator for 20 minutes to gas. After sealing, 

plates were equilibrated in a 37°C water bath. They were then rapidly transferred 

to a water bath set at 44.5°C (±O.l°C) for 5 minutes before final transfer to a 

water bath at the desired hyperthermic temperature of 43°C (±0.1°). The lag 

time for thermal equilibration, which was considerably reduced by this protocol, 

was included in the overall heating time. The medium was replaced with normal 

culture medium in each plate immediately after heating and the plates were 

returned to the 37°C incubator. 

A further media change was made the next day and the plates were then 

assayed for cell survival on day 6 by the modified Mosmann method described in 
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Chapter ?:, Materials and Methods, section ?..?..4(b ). Cell survival, after anaes

thetic treatment, wa.s defined as the survival measured. in the presence of anaes

thetic at 43°C relative to that measured in the presence of the same <maesthetic 

at 37°C in the 3'1°0 water bath which was taken as 100%. Control cell survival 

a.t 43°0 was similarly defined as the survival of control cells at 43°C relative to 

the survival of control cells at 37°C in the 3'f°C bath. 

Anaesthetic survival values were also determined from control plates kept in 

the 37°C incubator for the duration of the experiment. 

5.2.~ pH De~ex-minatioxw 

Three batches of heating medium, containing the highest final concentration 

of anaesthetic used in heating experiments (0.05mM dibucaine, 0.2mM tetra

caine or 5mM procaine) were prepared by serial dilution of the stock anaesthetic 

solutions in heating medium. 

Plates containing heating medium alone or heating medium containing the 

different concentrations of anaesthetic were either placed in the incubator at 

37°C for 3.5 hours or heated, after gassing, at 37°C and 43°C, as described 

above, for varying periods up to 3.5 hours. The pH of the various types of media 

was measured at appropriate time points using a Phillip Harris digital pH meter. 

5.2.4 D.P.H. §teady §taie Fluorescence Polax-isatioJrn 

HTC cell plasma membranes were isolated by method 2, outlined in Chapter 

4, Materials and Methods, section 4.2.1(c)ii. The membranes were prepared for 

fluorescence polarisation measurements as described in Chapter 4, Materials and 

Methods, section 4.2.3. 

Two types of study were performed. 

(i) Changes in polarisation with temperature 

A concentrated solution of dibucaine was added to a cuvette containing mem

branes to give a final concentration of 0.05mM, the same as that used in the 

hyperthermic studies. A similar cuvette was prepared in the absence of dibu

crune. The cuvettes were left to stand for 15 minutes at room temperature to 
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enable the reae;ent to equilibrate with the membranes. The change in polarisa

tion against temperature over the temperature range 4° to 50°C was then carried 

out as described earlier in Chapter 4, Materials and Methods, section 4.?..3. 

(ii) Changes in polarisation with anaesthetic concentration 

The fluorescence polarisation of membranes present in three separate cuvettes 

was measured at 3'/°C. Then concentrated solutions of dibucaine, tetracaine and 

procaine were prepared such that when 10,ul, 20pl or 25,ul volumes respectively 

were added to the membranes present in the 3 cuvettes they gave final anaesthetic 

concentrations of 0.05mM dibucaine, 0.2mM tetracaine and l.OmM procaine, 

reflecting the final concentrations of anaesthetics used in the hyperthermic stud

les. 

After leaving the cuvettes to stand for 15 minutes at room temperature, so 

that the reagent could equilibrate with the membranes, the fluorescence polarisa

tion values of the 3 cuvettes were measured again at 37°C. A further addition of 

each concentrated anaesthetic solution was then made to the appropriate cuvette, 

effectively doubling the final concentration of anaesthetic present and a further 

polarisation measurement was determined at 37°C. Five sequential additions of 

the anaesthetics were made to determine the effect of the concentration of the 

anaesthetic on the fluidity change. 

5.2.5 §W"face Morphology §tudl.ies 

Cells (3.5 x 104 /well) were seeded into 24-well plates containing coverslips 

on day 0 in lml growth medium and incubated at 37°C under a humid atmo

sphere of airjC02 (19: 1, vjv). The medium was changed on day 1. On day 

2 cells were exposed either to normal heating medium or to heating medium 

containing 0.20mM dibucaine (ASV = 75.3%). The cells were then gassed for 

20 minutes in the 37°C incubator. After gassing the cells were either main

tained in the incubator for a further one hour period, or sealed and heated at 

43°C for 1 hour. Following treatment, all cells were washed once with 1 ml of 

calcium and magnesium-free phosphate buffered saline ( Ca2+ -, M g2+ -free PBS) 

and then fixed on the coverslips in 1ml of Karnovsky fixative, post-fixed in os

mi urn tetroxide ( 1% w / v) in sodi urn cacodylate ( 0.1 M), dehydrated through an 
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ethanol series, dried through the C02 critical point and sputter coated with gold

palladium by the methodology described in Chapter 2, Materials and Methods, 

section 2.2.2(b ), for examination in a Stereoscan 800 scanning electron micro

scope. 

5.2.8 Nuclear Matrix D X:rntermediate Filament (NMDJrF) Studies 

The detergent extraction method of Fey et al. (1984), originally developed to 

study the nuclear matrix-intermediate filament arrangement in colonies of Marlin

Darby canine kidney cells, was adopted in the current investigations, with the 

modifications given in their later paper (Fey and Penman, 1984). 

HTC cells were grown on either glass coverslips or on formvar and carbon 

coated gold grids in 24 well plates. Wells seeded with 3.5 x 104 cells on day 0 

were treated with or without 0.20mM dibucaine in the presence of absence of 

heat, as described in section 5.2.5 above. 

After treatment the grids and coverslips were rinsed twice with Ca2+ -, M g2+

free PBS, taking care not to direct the Ca2+ -, M g2+ -free PBS onto the surface 

of the grids and coverslips and so dislodge cells. The grids and coverslips were 

then extracted with cytoskeleton (CSK) buffer (100mM NaCl, 300mM sucrose, 

10mM Piperazine-N N'-bis-2-ethanesulphonic acid (PIPES) (pH 6.8), 3mM 

M gCl2, 0.5% ( w fv) Triton X-100 and 1.2mM phenylmethylsulphonylfluoride) 

for-10~ minutes. at~0°C-(Extraction 1) and -the resulting-soluble-fraction ·Was-re

moved. 

Various types of cells including HeLa, 3T3 and CHO cell lines have been 

reported to retain their surface morphology after extraction with Triton X-100 

in CSK buffer. To examine whether this was also the case with HTC cells, cov

erslips bearing Triton X-100 extracted cells from this first extraction step were 

fixed in CSK buffer containing 2.5% (w/v) glutaraldehyde for 30 minutes at 0°C. 

The extracted cells on the coverslips were then rinsed in 0.1M sodium cacody

late buffer pH7.3 and post-fixed in 1% (wjv) osmium tetroxide in O.lM sodium 

cacodylate buffer, pH 7.3, for 0.5-1 hour at 4°C. Following post-fixation the cells 

on the coverslips were dehydrated through an ethanol series, dried through the 
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C02 critical point and sputter coated ·with gold-palladium as described in Chap~ 

ter ?., Ma,terials and Methods, section 2.2.2(b ), for examination in the Stereoscan 

800 scanning electron microscope. 

The cytoskeleton fraction from cells grown on gold e;rid§ was removed by 

subjecting the Triton X-100 insoluble structures remaining from the first extrac

tion step, to a second extraction buffer (250mM ammonium sulphate, 300m.NJ 

sucrose, 10mM PIPES (pH 6.8), 3mM M gCl2, l.2mM phenylmethylsulphonyl

fiuoride and 0.5% (wfv) Triton X~100) for 10 minutes at 0°C (Extraction 2). 

Finally, to remove the chromatin fraction from the HTC cells the material 

that was left from the two earlier extraction steps was exposed to a buffer identical 

to CSK except that it contained 50mM N aCl as opposed to 100mM N aCl, 

and in addition it also contained 400J.Lg/ml pancreatic DNase and 400J.Lg/ml 

pancreatic RNase. Digestion was permitted to proceed for 20 minutes at 20°C 

before ammonium sulphate was added, to a final concentration of 0.25M, to elute 

the chromatin associated proteins during a further 5 minute incubation period 

also at 20°C (Extraction 3). 

Grids bearing the resultant salt-resistant NM-IF structure were fixed in the 

final extraction buffer containing 50mM NaCl as opposed to 100ml\IJ NaCl, in 

the presence of 2.5% ( w fv) glutaraldehyde but in the absence of the DNase and 

RNase enzymes and ammonium sulphate for 30 minutes at 0°C. The material 

on the grids was then rinsed in O.lM sodium cacodylate buffer, pH 7.3, for 0.5-1 

hour at 4°C. Once again, following post-fixation the material on the grids was 

dehydrated through an ethanol series, dried through the C02 critical point and 

sputter coated with gold-palladium by the methodology described in Chapter 2, 

Materials and Methods, section 2.2.2(b ). Grids were then examined as whole 

mounts in a Phillips 400T transmission electron microscope. 

5.3 ResUJU§ 

Figure 5.2 shows the effect of increasing concentrations of the three local 

anaesthetics dibucaine, tetracaine and procaine on cell survival at 37°C. It can 

be seen that there is considerable variation in the potency of these drugs with 

dibucaine being the most potent, followed by tetracaine then procaine. When 
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The elfect of anaesthetic concentra,tion on cell survival at 37°C 

Plates (24"'well) were seeded with 5 x 103 cells/well on day 0 and maintained 

in an incubator at 37°C under a humid atmosphere of airjC02 (19: 1, vfv) at all 

times. The medium was changed on day 1. On day 3 cells were exposed to a range 

of dibucoine, procaine and tetracaine concentrations for a period of 4i hours. 

Cells were returned to normal medium after exposure. The medium was changed 

on day 4. Cell survival was determined on day 6 by the modified Mosrnann 

method described in Chapter 2, Materials and Methods, section 2.2.4(b ). 
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wells are inoculated with 5 x 103 cells, allowed to grow for three days and are then 

exposed to the stated concentrations of anaesthetic, it can be seen that to reduce 

cell survival by 50% requires only a O.?.mi\.1 final concentration of dibucaine, 

a 0.4m.M final concentration of tetracaine but a 6mM final concentration of 

procaine. The l:U:rveti obtained with the three anaesthetics are very similar and 

indicate that at low anaesthetic concentrations there is very little effect on cell 

survival. However, as the concentration of anaesthetic is increased it appears to 

reach a critical level above which dramatic reductions in cell survival result. 

Concentrations of the three anaesthetics were selected that were below this 

'critical' concentration and produced a decrease in cell survival at 37°C of no 

more than 35%. 

Figures 5.3, 5.4 and 5.5 show the effect of the presence of various concen

trations of anaesthetic on the response of HTC cells to heat at 43°C followed 

over a 3.5 hour period. It can be seen that as the concentration of anaesthetic in 

the heating medium increases there is a corresponding decrease in cell survival. 

Closer examination of figures 5.3, 5.4 and 5.5 reveal that following longer periods 

of incubation at 43°C in the absence of anaesthetics or in the presence of low 

concentrations of anaesthetics, there is a slight decline in the rate of hyperther-

mic cell death as measured by the colorimetric assay. As the concentration of 

the anaesthetics is increased this non-linearity disappears. 

As discussed in Chapter 3, the non-linear/biphasic nature of this assay which 

is apparent, is thought to reflect differences in the nature of the cell death that 

occurs after hyperthermic treatment (Vidair and Dewey, 1988). It has been 

proposed that cells may die quickly following heat treatment (rapid cell death) 

or after a much longer time period (slow cell death). Since this assay is performed 

3 days post heating, whilst it is likely to measure any rapid cell death that has 

occurred it is unlikely to monitor the slow cell death since this has been shown 

to take up to a week post heating to become evident (Vidair and Dewey, 1988). 

Hence the plateau regi.ons that are seen in figures 5.3, 5.4 and 5.5 would appear 

to result from the presence of cells affected by the slow mode of cell death which 

will be lost from the culture surface with time but which at the period of assay 

are still metabolically active and therefore recorded as cells which have survived 
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Figurre 5.3\ 

The effect of dibucaine on cell survival a.t 43°C 

Plates (24~well) were seeded with 5 x 103 cells/well on day 0 and maintained 

in an incubator at 37°C under a humid at,mosphere of air/C02 (19 : 1, vfv). 
The medium was changed on day 1. On day 3 cells were exposed to 0;05mM 

dibucaine f~r periods up -to 3! hours at 43°C. After heating, the medium was 

replaced with normal medium and the cells were returned to the 37°C incubator. 

The medium was changed on day 4 and cell survival was determined on day 6 by 

the modified Mosmann method described in Chapter 2, Materials and Methods, 

section 2.2.4(b). 

The figure shows data derived from two separate experiments. Best fit regres

sion lines have been fitted to the data using the straight line equation y = a+ bx. 

Correlation coefficients of regression lines: 

Control -0.953 

0.05mM Dibucaine -0.967 

Anaesthetic survival value: 

0.05mM Dibucaine = 84.5% 

The anaesthetic survival value was determined as described by Materials and 

Methods, section 5.2.1, and represents the average value obtained from the two 

experiments. 
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Fiigure 5.4 

The effect of tetracaine on cell survival at 43°C 

Plates (24-well) were seeded with 5 x 103 cells/well on day 0 and treated 

as described in the legend of figure 5.3 but using 0.05mM, O.lmM and 0.2mM 

tetracaine. 

The figure shows data derived from up to three separate experiments. Best 

fit regression lines have been fitted tothe data using the straight line equation 

y =a+ bx. 

Correlation coefficients of regression lines: 

Control -0.963 

0.05mM Tetracaine -0.984 

O.lmM Tetracaine -0.989 

0.2mM Tetracaine -0.941 

Anaesthetic survival values: 

0.05mM Tetracaine = 91.4% 

O.lmM Tetracaine= 86.7% 

0.2mM Tetracaine = 79.5% 

The anaesthetic survival value was determined as described by Materials and 

Methods, section 5.2.1, and represents the average value obtained from the two 

experiments. 
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JFiigtnli'e tUJ> 

The effect of procaine on cell survival at 43°C 

Plates (24-wel.l) were seeded with 5 x 103 cells/well on day 0 and treated a.s 

described in the legend of figure 5.3 but using lmM and 5mlld procaine. 

The figure shows data derived from up to four separate experiments. Best 

fit regression lines have been fitted to the data using the straight line equation 

y :-:a+ bx. 

Correlation coefficients of regression lines: 

Anaesthetic survival values: 

Control · -0.940 

1 miV.l Procaine ·-0.956 

5mM Procaine -0.97'9 

lmA::f Procaine = 84.3% 

5m.ll1 Procaine ::-:: FfO.'t% 

The anaesthetic survival value was determined as described by Materials and 

Methods, section 5.2.1, and represents the average value obtained from the two 

experiments. 
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the hyperthermic insult. Increasing the concentration of the anaesthetics would 

appear to produce a similar result as an increase in temperature (compare figures 

5.4 and 5.5 with figure 3.8) since both conditions produce linear survival curves, 

suggesting an increase in cell killing by the rapid mode of death. 

For statistical analysis, linear regression lines have been fitted to the ini

tial linear regions of the biphasic survival curves and the times required to kill 

25%, 50% and 75% of the cells (LD25, LD5o and LD75) have been used as an 

index of cytotoxicity since these parameters occur in the regions of the curves 

where cell death is most likely to be caused by the rapid mode. 

Table 5.1 shows the time taken to achieve LD25, LD5o and LD75 in the pres

ence and absence of anaesthetics. It can be seen that apart from 5mM procaine, 

the effect of the anaesthetics at the LDzs level is not substantial, i.e. the LDzs 

value obtained with control cells is not reduced appreciably by the presence of 

anaesthetics. However, whilst none of the LD25 values are significantly different 

from control LD25 values at the 95% confidence level (p = 0.05), it is obvious that 

in the presence of 5mM procaine there is a marked reduction in hyperthermic 

cell survival at the LD25 level. At the LD5o level it can be seen that although 

+h~ pr~~nn~~ ~f ~~~~s+hn+l·~ -~rlu~e~ +he t1"me +~ 1·e~ t~ k1"l1 ~ow.:o of ~nl1~ p-e~c~t 1"t t.r G ~ CO'C.l \....'C V a.Ua.'C IJUC\.t t., LGU. \... U l.dJ U. liO,.l\. U. V ~ VV/ \..G.l.l.:Jl _ L u .11 1 

is only the result obtained in the presence of 5mM procaine that is significant 

(p < 0.01). 5mM procaine would appear to reduce the LDso by 45 minutes. 

At the LD75 value the higher concentrations of all anaesthetics used produced a 

significant reduction in the LD75 value at the 95% confidence level. In fact, the 

result obtained with 5mM procaine is significant at the 99.9% level of confidence 

(p = 0.001). Dibucaine, at a concentration of 0.05mM, would appear to reduce 

the LD75 figure by 25 minutes, 0.2mM tetracaine would appear to reduce the 

LD75 figure by 33 minutes whilst 5mM procaine produces the greatest effect, 

reducing the LD75 value by 75 minutes. 

Table 5.2 shows the variation in pH of heating medium and medium con

taining anaesthetic that occurred over a 3.5 hour period at 43°C. It can be seen 

that pH does not alter significantly during the heating period although all values 

show a slight increase when compared to medium maintained in the incubator 

at 37°C in an atmosphere of air/COz (19: 1, v/v). 
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Talble 5.1 

The Influence of anaesthetics on LD25, LDso and LD75 values (mins) 

for HTC cells heated at 43°C 

J Anaesthetic ( mM) I LD25 I LD5o I LD1s 

Dibucaine 

0 28.6 ± 8.4 (10) 59.2 ± 5.9 (10) 111.6 ± 5.3 (10) 

0.05 16.1 ± 9.1 (14) 42.0 ± 7.4 (14) 86.3 ± 5.2 (14)t 

Tetracaine 

0 44.8 ± 4.8 (15) 72.8 ± 3.5 (15) 120.7 ± 4.0 (15) 

0.05 42.0 ± 6.6 (5) 67.5 ± 5.0 (5) 112.0 ± 4.9 (5) 

0.10 40.9 ± 5.5 (5) 64.6 ± 4.2 (5) 105.1 ± 3.8 (5) 

0.20 28.1 ± 11.4 (14) 50.2 ± 9.6 (14) 88.0 ± 7.1 (14)t 

Procaine 

0 37.2 ± 5.8 (20) 66.8 ± 4.1 (20) 117.6 ± 4.3 (20) 

1 36.6 ± 7.4 (10) 59.9 ± 5.7 (10) 99.8 ± 4.7 (10) 

5 9.9 ± 7.0 (10) 22.0 ± 6.3 (1o)t 42.8 ± 5.1 (10)* 

I 

The errors shown are derived from statistical analysis of regression lines using 

Student's-t~distribution following-the method- of Dr. Seheult. - -

Numbers in brackets represent number of observations 

t significantly different from control value at p = 0.05 

t significantly different from control value at p = 0.01 

* significantly different from control value at p = 0.001 



TalbRe 5.2 

The Influence of temperature on pH of medium in wells in the absence 

and presence of anaesthetics 

Heating medium was prepared in the absence or presence of the stated con

centrations of anaesthetics and added to wells of six 24-well plates. After gassing 

for 20 minutes in the 37°C incubator in an atmosphere of air/ C02 {19: 1, vjv), 

one plate was maintained in the incubator, one plate was maintained at 37°C 

in a water bath and the remaining four plates were heated at 43° C in a water 

bath. pH determinations were made at the time points given below. The results 

represent data from a single experiment. 

Temperature Time pH value 

(oC) (mins) Normal Dibucaine Tetracaine Procaine 

0.05mM 0.2mM 5mM 

37 Incubator 210 7.41 7.43 7.43 7.41 

37 Bath 210 7.61 7.59 7.60 7.58 

43 Bath 30 7.61 7.60 7.63 7.61 

43 Bath 90 7.62 7.63 7.71 7.64 

43 Bath 150 7.59 7.68 7.64 7.61 

43 Bath 210 7.75 7.64 7.61 7.66 
-- -------- - -- -- - --- - - -- ·- - --



Figure 5.6 shows the effect of dibucaine at the 0.05mM concentration used in 

hyperthermic studies, on the steady state polarisation of DPH in purified HTC 

cell plasma membranes in the temperature range 4-50°C. The plot is derived 

from a single membrane isolation and the equations of the two lines are given in 

the legend of figure 5.6. 

As discussed in Chapter 4, fluorescence polarisation measurements provide 

information on the physical state of the fatty acyl chains of the phospholipids 

comprising the membrane bilayer structure, (Stubbs and Smith, 1984) in terms of 

their angular range of motion (degree of order). This polarisation measurement 

is often used as an indication of membrane 'fluidity'. The greater the polarisa

tion value obtained, the more 'ordered' and hence less 'fluid' the membrane is 

considered to be. 

In figure 5.6 the large difference in the values of the intercepts indicates a 

decrease in membrane order brought about by the presence of the anaesthetic. 

Dibucaine displaces the polarisation measurements by 6°C along the temperature 

axis. The fact that the gradients of the slopes are not substantially different 

suggests that the effect of dibucaine on membrane order does not alter across 

the range of temperatures measured. Further preparations would be required to 

confirm the significance of this data. 

Figure 5. 7 shows the effect of varying dibucaine, tetracaine and procame 

concentrations on the steady state polarisation of DPH in purified HTC cell 

plasma-m.emofanes-at-37°C. Increasing the concentration of dibucaine-proauces

a corresponding decrease in membrane order indicated by a decrease in the po

larisation values obtained. The concentrations of dibucaine used in this study on 

membrane 'fluidity' ranged from 0.05mM which was the concentration adopted 

in the hyperthermic studies, up to 0.2mM. The fact that 0.05mM dibucaine 

did not affect cell survival at 37°C (figure 5.2) but did produce a decrease in 

membrane order (figure 5.6) and a decrease in cell survival at 43°C (figure 5.3) 

suggests the importance of the increased membrane fluidity of the membranes in 

the killing process. 

Similarly, from figure 5. 7 it is evident that increasing concentrations of tetra

caine produce a corresponding decrease in polarisation values at 37°C suggesting 
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Figull'e 5.8 
The effect of dibucaine on the steady state fluorescence polarisation of D.P.H. 

in HTC cell,plasma membranes 

The figure shows the effect of0.05mM dibucaine on the polarisation ofD.P.H. 

in the temperature range 4-50°0. The plot is derived from a single membrane 

preparation. -

Best fit regression lines were fitted to the data using the straight line equation 

y =a+ bx. Values of a (intercept on y axis) and b (gradient) are given below. 

Dibucaine a b 

concentration ( mM) (X 102) 

0 0.424 -0.373 

0.05 0.403 -0.379 

: _: ~"'".. . 
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Fig11lfJre 5.7 

The effect of increasing concentrations of dibucaine, 'tetracaine and procaine 

on the steadystate fluorescence pol_";tr:isation ofD.P:H. in HTC cell plasma 

membfapes at 31°C 

The figure shows the effect of dibucaine (Q.05mM to 0.2mM), tetracaine 

(0.2mMto 1.4mM)-and-procaine (lmMto 5mM)_on the polarisation of_D.P.H. 

at 37°C. The plots are derived from a single membrane preparation. 

The polarisation values measured for membranes at 37°C in the absence of 

dibucaine, tetracaine and procaine were 0.296, 0.293 and 0.291 respectively. 
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a decrease in membrane order. 

The results obtained with procaine however, are difficult to explain since 

increasing the concentration of this anaesthetic from 1 mM to 5mM had no 

effect on the steady state polarisation values obtained at 37°C, and yet 5mM 

procaine, which did not affect cell survival at 37°C (figure 5.2), produced a highly 

significant decrease in cell survival at 43°C (figure 5.5). This result would suggest 

that procaine serves to increase hyperthermic cell death by a different mechanism 

to the remaining anaesthetics. It could be that this anaesthetic exerts an effect 

without partitioning significantly into the membrane, i.e. it has a surface effect. 

Further preparations would be required to confirm the significance of this data. 

Figure 5.8 shows the effect of the presence or absence of heat on surface 

morphology of control and dibucaine treated HTC cells. A concentration of 

dibucaine was used in this study which reduced cell survival at 37°C by no more 

than 24.7% (i.e. A.S.V. = 75.3%). 

Control cells growing at 37°C, can be seen to form fairly flat colonies of cells 

which spread out over the available substratum (figure 5.8(a)). The surface of 

the cells are characterised by numerous microvilli. When anaesthetic is added to 

the medium the cells adopt a more rounded morphology (figure 5.8(b)) but the 

cell surface is still characterised by the presence of microvilli. 

When control cells are heated at 43°C for 1 hour, they assume a more rounded 

morphology (figure 5.8(c)) but are still characterised by a large number of mi

crovilli. However cells which have been treated with dibucaine and heated at 

43°C for 1 hour show a striking change in morphology (figure 5.8(d)). Microvilli 

are lost from the cell surface and the cell surface itself is characterised by a high 

degree of deformation in the form of pits in the cell surface. 

Figures 5.9 and 5.10 show the results of the NM-IF studies performed with 

HTC cells that were either maintained at 37°C for 1 hour in the presence or 

absence of 0.2mM dibucaine or heated at 43°C for 1 hour again in the presence 

or absence of 0.2mM dibucaine. 

The two scanning electron micrographs in figure 5.9 show the surface mor

phology of control HTC cells, at 37°C, before (figure 5.9(a)) and after (figure 
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Figumre 5.§ 

Scanning electron micrographs showing the effect of heat and/or dibucaine 

on the surface morphology of HTC cells 

HTC cells grown on glass coverslips were treated, fixed, dehydrated, dried 

through the C02 critical point and sputter coated with gold palladium as de

scribed in Materials and Methods, section 5.2.5. 

(a) Control HTC cells. The bar represents 20J1m. 

(b) HTC cells treated with 0.2mM dibucaine for 1 hour. The bar represents 

lOJ.tm. 

(c) Control HTC cell heated for 1 hour at 43° C. The bar represents 4J.tm. 

(d) HTC cells treated with 0.2mM dibucaine and heated for 1 hour at 43°C. 

The bar represents 4J.tm. 
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Fngunre 5. Sl 

Scanning electron micrographs of HTC cell surface morphology 

HTC cells grown on glass coverslips were treated, fixed, dehydrated, dried 

through the C02 critical point and sputter coated with gold palladium a.s de

scribed in Materials and Methods, section 5.2.6. 

(a) Whole cell surface morphology. 

(b) Cell surface morphology after extraction in 0.5% Triton X-100 (Extraction 

1 ). 

The bar in each figure represents lOJ.Lm. 



a 

b 



Fiigu:re 5.]. 0 

Whole mount Transmission electron micrographs of the NM-IF scaffold 

in HTC cells 

HTC cells grown on gold grids were treated, fixed, dehydrated, dried through 

the C02 critical point and sputter coated with gold palladium as described in 

Materials and Methods, section 5.2.6. 

(a) NM-IF scaffold in control HTC cells (x2200). 

(b) NM-IF scaffold in HTC cells treated with 0.2mM dibucaine for 1 hour 

( x2900). 

(c) NM-IF scaffold in control HTC cells heated for 1 hour at 43°C (x2200). 

(d) NM-IF scaffold in HTC cells treated with 0.2mM dibucaine and heated for 

1 hour at 43°C ( x 2200). 



a b 
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5.9(b)) extraction 1. It is evident that after the first extraction process, which is 

thought to remove soluble proteins and most of the lipids (Fey et al., 1984), the 

configuration of the cellular surface remains essentially unchanged suggesting the 

existence of some form of supportive internal skeletal framework. 

Figure 5.10 shows a series of whole mount transmission electron micrographs 

of HTC cells that have undergone the three extraction steps of the NM-IF prepa

ration procedure. Because of the rounding up process that tends to occur during 

heating which is enhanced when anaesthetic is present, the extraction process 

proved difficult with the heat treated cells, and the attempts at chromatin re

moval to expose the nuclear matrix architecture were not successful. However, in 

terms of the intermediate filament arrangement of the cells under the various con

ditions of treatment it can be seen that whilst the control cell cytoplasm (figure 

5.10( a)) is characterised by a web of interconnecting filaments extend~ng through

out most of the cytoplasmic space, when anaesthetic is present this web-like ar

rangement adopts a more strand-like appearance resulting in a more irregular 

distribution of these filaments throughout the cytoplasm (figure 5.10(b)). When 

control cells are heated at 43°C there is very little evidence of the intermediate 

filament network (figure 5.10(c)) suggesting that this cytoskeletal 'component is 

disrupted by the heating process. The small amount of IF that remains appears 

to be associated with the cell boundaries and nuclear region. Whilst there is 

no evidence of intermediate filament structure in the dibucaine and heat-treated 

cells (figure 5.10(d)) it is clear that the extraction processes have not worked 

very successfully in this instance. However, the fact that cytoplasmic material 

has collapsed onto the nuclear structures seems to suggest a total breakdown 

of the internal skeletal· framework of which the intermediate filaments are an 

important part. 

5.4 JDiscussio:n 

From the results it would appear that the presence of tertiary amine local 

anaesthetics can influence cell survival at normal culture temperatures (figure 

5.2), can potentiate hyperthermic cell death at 43°C (figures 5.3 to 5.5 and 

Table 5.1), can alter membrane 'fluidity' (figures 5.6 and 5.7), can affect surface 

morphology changes that take place at elevated temperatures (figure 5.8) and 
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may exert an effect on the intermediate filament network present m cells at 

normal culture temperatures (figure 5.10). 

Before comparisons are drawn between the findings of these studies and those 

of other workers it is important to consider the idea of membrane 'fluidity'. As 

discussed in Chapter 4, membrane 'fluidity' is a rather poorly defined term, with 

different workers having their own interpretations. In the present study, fol

lowing the suggestion of Stubbs and Smith (1984), membrane fluidity has been 

interpreted in terms of the physical state of the fatty acyl chains of the phos

pholipids comprising the membrane bilayer structure. This 'fluidity' has been 

measured through the insertion of the fluorescent polarisation probe, DPH, into 

membranes which is thought to measure the angular range of motion (degree 

of order) of the acyl chains (Lepock, 1982). However, as Yatvin et al. (1982) 

pointed out, since such probes only see the average properties of the whole sys

tem, uncertainties can arise with respect to the subcellular distributions of the 

probe, its lateral distribution between adjacent domains (e.g. gel and liquid crys

talline phases) and its vertical distribution within the bilayer matrix. Work by 

Jain and Wu (1977) on the interaction of small molecules with artifical phos

pholipid vesicles has led Yatvin to dispute the fluidity measurements made by 

Lepock et al. (1981) which suggested a lack of correlation between hyperthermic 

cell killing and membrane lipid fluidity, since these workers assumed that the 

spin label 2,2-dimethyl-5-dodecyl-5-methyloxazolidine-N-oxide (2N14) exhibited 

isotropic behaviour throughout the thickness of the bilayer which Jain and Wu 

have shown is not possible. 

The fact that 'fluidity' is characterised by a large number of parameters, 

which may be measured in many different ways, has undoubtedly led to some 

of the confusion that exists in the literature over the way it is affected by fac

tors such as heat and anaesthetics. For example, when Yau (1979) working with 

3T3 mouse fibroblast and murine L5178Y lymphoma cells measured fluidity in 

terms of fluorescence polarisation with perylene as the probe, he observed an 

increase in fluidity in the presence of procaine. However, when DPH was used as 

the probe a slight decrease in fluidity was observed. Yau interpreted the results 

as suggesting that the DPH and perylene probes embedded in entirely different 

membrane subregions with procaine significantly increasing the fluidity of the 
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membrane region where perylene equilibrated. However, it could be that the 

difference in results was due to fluorescence quenching, since direct quenching 

of DPH has been reported with procaine in model membranes (Surewicz and 

Leyko, 1982). Likewise when Constantinescu et al. (1986) were looking at the 

effects of procaine on membrane fluidity in erythrocytes, using the relative rate 

of haemolysis as a parameter of fluidity, they found that membrane fluidity de

creased with increasing anaesthetic concentration. Whilst the results obtained 

with dibucaine and tetracaine in the present study support the commonly held 

view that membrane fluidity is increased by local anaesthetics, the results ob

tained with procaine do not. However, since Sweet and Schroeder (1986) using 

the same DPH probe reported a fiuidising effect of procaine (10mM) with LM 

fibroblast plasma membranes, it could be that the single result obtained in this 

study has been influenced by fluorescence quenching effects. 

Potentiation of hyperthermic cell killing by the presence of local anaesthetics 

as observed in the present study with certain concentrations of the anaesthet

ics dibucaine, tetracaine and procaine, has been reported by several workers. 

Yatvin (1977) working with the bacterium E.coli, showed that the cytotoxic ef

fect of heating was enhanced when heating was conducted in the presence of 

procaine-HCl, whilst Yatvin et al. (1979) employing the local anaesthetic lido

caine reported that tumour bearing mice treated with heat and local lidocaine 

injection survived significantly longer than tumour bearing animals treated with 

heat or anaesthetic alone. Barker (1985) has confirmed Yatvin's findings in tu

mour bearing rats which were treated with heat and/or local injections of tetra

caine. Yau (1979) working with a variety of cultured cells found that procaine 

potentiated hyperthermic killing at 43°C in a dose dependent manner. More 

recently Coss and Dewey (1988) have shown that in addition to sensitising asyn

chronous mammalian cells, procaine can also sensitise synchronous populations 

of CHO cells to hyperthermic cell death at 43°C. 

The correlations found in this study between the anaesthetic potency of dibu

caine, tetracaine and procaine and their effects on cell survival at 43°C, are in 

agreement with the findings of Yatvin et al. (1982) in his studies with E.coli and 

the local anaesthetics lidocaine, procaine and tetracaine. 
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The fact that all three local anaesthetics at relatively high concentrations 

produced a dramatic decline in cell survival at 37°C is thought to be due to the 

detergent like action of anaesthetics (Fernandez, 1980; Maher and Singer, 1984). 

Early studies by Fernandez {1980) with amphipaths such as chlorpromazine and 

tetracaine suggested that it was only at very high concentrations exceeding their 

critical micelle concentration (erne), typically 60-70mM for tetracaine, that such 

amphipaths disrupted membranes and caused at least their partial dissolution 

through the formation of mixed micelles containing the am phi path along with the 

particular membrane component. However, Maher and Singer (1984) have shown 

that even at concentrations which are still relatively high but are below their 

erne (typically 0.5mM for tetracaine) the effects of amphipaths on membranes 

may still reflect the detergent-like affinities for membrane components that the 

amphipaths exhibit in mixed micelle formation at very high concentrations. 

The surface morphology changes that were observed with normal cells during 

hyperthermic treatment during this study have also been reported by a number of 

workers involved both with monolayer cultures (Lin et al., 1973; Basset al., 1978; 

Schamhart et al., 1984) and suspension cultures (Kapiszewska and Hopwood, 

1986). 

Although the reduction in the number of microvilli and increased bleb for

mation reported by a number of workers (Bass et al., 1978; Kapiszewska and 

Hopwood, 1986) was not observed with control cells after 1 hour of heating at 

43°C, this probably reflects the length of time that the cells were exposed to the 

heat and the temperature. Bass et al. (1978) exposed CHO cells to 43°C for 3 

hours whilst Kapiszewska and Hopwood (1986) exposed CHO cells to a range of 

temperatures 41.5°C, 43.5°C and 45.5°C for various times and found that cells 

exposed to lower temperatures exhibited less blebbing, whilst in cells exposed to 

45.5°C the percentage of cells with blebs following heating was dependent on the 

duration of heating with increases from 40% for 5 minutes to 90% for 30 minutes. 

Whilst exposure of cells to dibucaine at 37°C caused a slight change in mor

phology, with cells tending to adopt a more rounded morphology, exposure of 

cells treated with dibucaine to heat at 43°C for 1 hour produced very different 

and marked morphological changes to the cell surface as compared to control cells 
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heated for the same period of time. There were no microvilli present and the cell 

surface was characterised by a large number of pits. Mulcahy et al. (1981) have 

reported a similar modification in the morphological response of P388 ascites tu

mour cells in the presence and absence of procaine at 37°C and 43°C. Yau (1979) 

observed that in the presence of 30mM procaine 3T3 mouse fibroblasts rounded 

up within 10 to 15 minutes at 37°C. He also observed the occurrence of smooth 

blebs similar to those seen on the plasma membrane of hyperthermia treated cells 

which suggested that heating or treatment of cells with local anaesthetic might 

exert a certain type of membrane derangement via a similar mechanism. Clearly 

if the acquisition of such similar membrane morphology generally precedes the 

inactivation of cells this could explain the potentiating effect of anaesthetics in 

the presence of heat. 

The morphological findings of the current study together with the effects of 

the anaesthetic dibucaine on membrane order (figures 5.6 and 5.7) and on cell 

survival at 43°C (figure 5.3) clearly seem to suggest a couple of points. For exam

ple, since dibucaine has been shown both to fluidise plasma membranes relative 

to control membranes and to potentiate hyperthermic cell death it would seem 

that membrane 'fluidity' could well be a key factor determining the response of 

cells to heat. In addition, the marked morphological changes that were associated 

with this increase in cell death in the presence of dibucaine would seem to suggest 

that the mechanism of hyperthermic cell killing could well involve damage to the 

plasma membrane!). 

Many studies have been made on the intermediate filament networks present 

in cells such as hepatocytes (Franke et al., 1979; French et al., 1982; Ishii et al., 

1985), macrophages (Phaire-Washington et al., 1987) and in cultured cells such 

as Madin Derby Canine Kidney (MDCK) cells (Fey et al., 1984), prostatic car

cinoma DU 145 cells (Chakraborty and Von Stein, 1986), Baby Hamster Kidney 

(BHK) and 3T3 mouse fibroblast cells (Goldman et al., 1986). Such studies have 

revealed that intermediate filaments (IF) are typically 10nm in diameter and 

form a rich interconnecting network throughout the cytoplasm of cells extending 

from the nucleus to the cell surface. Goldman et al. (1986) have suggested that 

this IF system and the proteins that have been found to be associated with it, 

may well represent a chain of molecular connecting links between the nucleus 
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and cell surface. The interaction of IF with other structures in the cytoplasm, 

such as microtubules and centrioles but in particular with the plasma membrane 

has been observed in many cell types. For example, association between IF 

and plasma membranes in epithelial cells where keratin filaments have been ob

served to interact with desmosomal junctions is well documented (Schliwa, 1986). 

Similarly IF have been shown in close proximity in chicken embryo fibroblasts 

(CEF) to the microfilament bundles that accumulate subadjacent to the plasma 

membrane in specialised regions known as the fibronexus (Green and Goldman, 

1986). Thus it seems reasonable to presume that agents such as tertiary amine 

local anaesthetics that act at a membrane level may well have a secondary effect 

on the IF network of cells. 

Fey and Penman (1984) working with MDCK cells and a range of tumour 

promoters such as phorbol 12-tetradecanoate 13-acetate (TPA) and mezerein 

have shown that the significant change in cell surface morphology that results 

is reflected by a profound re-organisation in the NM-IF, suggesting that the 

information for architectural expression is mediated by the skeletal networks of 

each cell. The results obtained in the current study with dibucaine at 37°C would 

seem to support this idea since the more rounded morphology that was adopted 

by cells was accompanied by a more irregular distribution of the IF throughout 

the cytoplasm. 

A number of workers have reported the collapse of IF on heating. Welch 

and Suhan {1985) working with rat fibroblasts showed that at 37°C the IF and 

microtubules showed a well spread and often coincident distribution. However, 

after exposure to 42°C for 3 hours, whilst no obvious change was observed in the 

distribution of microtubules, the IF collapsed and were found to aggregate around 

the nucleus. A similar finding was reported by Collier and Schlesinger (1986) who 

were working with chicken embryo fibroblasts. Whilst no gross morphological 

changes occurred in cytoplasmic microfilaments and microtubules exposed to 

45°C for 3 hours, the IF network was found to be very sensitive, again collapsing 

around the nuclei of cells. Thus the findings of the current study are in keeping 

with other workers, but suggest that whilst dibucaine may have an important 

effect on the IF network at normal culture temperatures, at elevated temperatures 
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the breakdown of the IF network may simply be the result of cellular stress since 

this occurs in the presence or absence of anaesthetic. 

In order to be able to interpret the effects of the 3 local anaesthetics used in 

this study it is important to have an understanding of their site(s) of action and 

their molecular mode of action. However, although it is widely accepted that local 

anaesthetics produce their effects by interaction with membranes (Seeman, 1972), 

not only is the molecular mechanism of anaesthetic action not fully understood 

but also the site of action is often disputed. 

Various investigations have presented evidence favouring either protein or 

lipid as sites of action. The isolation and purification of a protein which spe

cially binds tertiary amine local anaesthetics from mammalian axonal membranes 

strongly supports the hypothesis according to which a protein should be a local 

anaesthetic receptor (Greenberg and Tsang, 1984). Similarly Chan and Wang 

(1984) have provided evidence of an interaction between local anaesthetics and 

membrane proteins. The variability of the chemical structure of various local 

anaesthetics, on the other hand, has led some workers to propose the possibility 

of heterogeneous sites of anaesthetic action which could involve binding sites on 

the protein and/or in the lipid matrix (Kelus,ky et al., 1986). 

However, at the current time many studies, including the fluidity measure

ments of the present study, would seem overwhelming to favour lipid as the site of 

anaesthetic action. Early studies by Seeman (1972) showed that drug-lipid inter

actions correlated with anaesthetic potency. Further support for lipids being the 

initial target for anaesthetic action comes from the studies of Yatvin (1977) and 

Yau (1979) in which anaesthetic agents enhanced thermosensitivity. Although 

the hydrophobic areas of the membrane bound protein could conceivably be a 

site of anaesthetic action, the thermosensitivity of solid tumours was not further 

influenced by lidocaine in host animals fed. diets enriched in linoleic acid, a diet 

which markedly modifies fatty acid and phospholipid patterns and cholesterol 

concentration of cellular membranes (Yatvin et al., 1983). This lack of effect 

would therefore seem to rule out a meaningful lidocaine-protein interaction. 

Although membrane lipid would appear to be the likely site of anaesthetic 

action, the precise molecular mechanism involved in this interaction is still un-
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clear. Part of the problem, already mentioned, is that many local anaesthetics 

are tertiary amine compounds. These tertiary amine compounds can exist in two 

forms in the aqueous solution (cationic and neutral) with the distribution of the 

two forms in the solution depending on the pK a of the anaesthetic as well as on 

the pH of the bathing solution. For example, Boulanger et al. ( 1981) showed in 

a deuterium/ P 31 N .M.R. study that tetracaine exerted different effects on phos

pholipid dispersions depending on whether it was positively charged (at pH 5) or 

uncharged (at pH9.5). Also since local anaesthetics are amphipathic molecules 

they demonstrate complicated adsorption properties. 

In an attempt to elucidate the molecular mechanism of anaesthetic action 

many workers have employed model membranes in their studies. For example 

the location of the local anaesthetic tetracaine in model membranes of phospho

lipids and its effects on the order and dynamics of the lipids have been the subject 

of several studies. Such studies have revealed that tetracaine decreases the order 

of lipid acyl chains and interacts differently with different phospholipids such as 

phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine depend

ing mostly on the charge and the shape of the lipid studied (Smith and Butler, 

1985). 

Work by Kuroda and Fujiwara (1987), using unilamellar phosphatidylcholine 

vesicles and the cationic forms of procaine, tetracaine and dibucaine, has sug

gested that the anaesthetic potency of these drugs, which was found to reflect 

their ability to potentiate hyperthermic cell death in the current study, might 

not be correlated with their ability to affect membrane fluidity, but rather with 

their ability to bind to lipids at the polar head group of the bilayer. Procaine 

was found to interact very weakly with lipids at the outer surface of the vesi

cles, tetracaine was found to bond to the lipids both at the outer and inner 

halves of the bilayer inserting its rod-like molecule in a sea of acyl chains of 

phosphatidylcholine, whilst dibucaine bound tightly to the polar head group of 

phosphatidylcholine which only resided at the outer half of the bilayer vesicles. 

These workers suggest that tetracaine might serve to perturb the organisation 

and mobility of the lipid bilayer more effectively than dibucaine due to its molec

ular shape (see figure 5.1). Since tetracaine is a more cylindrical molecule it is 

proposed to penetrate more deeply into the lipid bilayer than dibucaine, acting as 
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a wedge to separate the phosphatidylcholine molecules from each other. This in 

turn will weaken both the electrostatic binding at the polar head groups and the 

hydrophobic interaction at the acyl chains among phosphatidycholine molecules, 

thereby increasing their mobilities. Dibucaine on the other hand, being a more 

bulky molecule, is proposed to bind shallowly with the lipids at the outer surface 

of the bilayer developing a positive surface charge effectively stabilising the bi

layer vesicles and acting as a clamp that grasps the phosphatidylcholine molecules 

thereby reducing their mobility. These workers also suggested that the fluidising 

effects of dibucaine on multilamellar vesicles of phosphatidylcholine reported by 

Papahadjopoulos et al. (1975) at pH 7.2-7.4 could be due to a deeper penetration 

of its neutral form. 

Singer and Jain (1980) have investigated the interactions of dibucaine, pro

caine and tetracaine at various temperatures with multilamellar liposomes com

posed of saturated phosphatidylcholines and dicetyl phosphate, with respect to 

their influence on sodium-22 efflux. The liposomes were found to display a per

meability maximum in the temperature region of their phase transitions which 

could be increased and caused to occur at a lower temperature in the presence 

of these anaesthetics. The order of potency of these anaesthetics in terms of 

their capacity to alter 22 N a permeability was found to be dibucaine > tetra

caine > procaine, with procaine having no effect on the permeability properties. 

They also found a linear relationship between aqueous anaesthetic concentra

tions causing equal permeability effects and the corresponding concentration of 

the anaesthetics in the membrane. In addition, the permeability effects of the 

local anaesthetics were modulated by the length of the lipid fatty acyl chains 

and the anaesthetics were found to bind preferentially to the boundary regions 

between gel and liquid crystalline lipid found at the transition temperature. 

Ohki (1984), in a study with the cationic forms of dibucaine, tetracaine 

and procaine and vesicles composed of phosphatidylcholine or phosphatidylser

ine demonstrated that the surface adsorption order was dibucaine > tetracaine 

> procaine in accordance with the reported anaesthetic potency, and that the 

amounts of local anaesthetic adsorbed on phosphatidylserine membranes was 

much greater than that of the phosphatidylcholine membrane. He also found 

that Ca2+ could affect the adsorption of the charged form of local anaesthetics 
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onto the membrane. The adsorption of anaesthetic molecules onto the membrane 

surface was suppressed in the presence of Ca2+ in the solution in the region of 

low concentrations of local anaesthetics. However this inhibitory effect was re

moved at higher anaesthetic concentrations. This finding was of interest since 

Ca2+ binding to membranes has been observed to make the membrane more 

rigid (Gordon et al., 1983). Hence the fact that local anaesthetics can compete 

with Ca2+ for binding sites at higher concentrations offers one explanation for 

the way in which these agents bring about their disordering effect on membranes. 

Although studies with model membranes have revealed some of the mecha

nisms by which anaesthetics may exert their actions, when natural membranes 

are considered the picture becomes more complex. For example, in addition to 

phospholipids, membranes also contain a relatively large amount of cholesterol. 

Studies on the interactions of the local anaesthetic tetracaine with phosphatidyl

choline membranes containing a physiological concentration of cholesterol (Auger 

et al., 1988) have suggested a different location of the anaesthetic in cholesterol 

containing systems compared to that of pure phosphatidylcholine bilayers. The 

tetracaine molecule has been shown to sit higher in the membrane, closer to the 

aqueous interface of the lipid bilayer than is suggested by the studies of Kuroda 

and Fujiwara (1987). 

In addition it is known that the lipids of the cell surface membrane are not 

symmetrically distributed across the membrane bilayer (Op den Kamp, 1979) 
-. -. 

which means that charged amphipaths such as anaesthetics may also preferen

tially insert into one leaflet of the bilayer thereby selectively fluidising that leaflet 

(Sheetz and Singer, 1974). Sweet and Schroeder (1986) have demonstrated se

lective fluidisation by local anaesthetics of individual leaflets in isolated 1M

fibroblast plasma membranes. Thus the functional consequences of alterations 

in membrane fluidity that are brought about by local anaesthetics will depend 

in part on which leaflet or leaflets they fluidise. Whilst Sweet and Schroeder 

(1986) propose that procaine fluidises both leaflets, at least in 1M-fibroblast 

plasma membranes, other workers (Dipple et al., 1982) have suggested that most 

cationic local anaesthetics such as tetracaine, bind preferentially to the inner 

leaflet. 
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Clearly the molecular mechanism of anaesthetic interaction with membranes 

is highly complex and dependent on many factors. Although the evidence cited 

above would seem to suggest an anaesthetic-lipid interaction causing an increase 

in membrane 'fluidity', the effect of any local anaesthetic will depend not only on 

its molecular shape, size and adsorption properties but also on the distribution 

of lipids in the cell surface, the possible hydrophobic and electrostatic interac

tions, its concentration and whether it is present in the cationic or neutral form. 

Such factors will in turn influence the extent to which anaesthetic molecules can 

alter the structure of membranes and in particular the membrane 'fluidity' which 

would appear to be one of the most important influences when considering the 

factors that affect the hyperthermic cell death of HTC cells. 
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Gene!l"all Discussion 

The aim of this thesis has been to explore the hypothesis that the damaging 

effects of hyperthermia on cells acts at the plasma membrane, and that bilayer 

lipid composition and physical state are critical features in the expression of heat 

damage. 

In any study that monitors the response of cells to elevated temperatures 

there is the problem of artefact responses that arise simply as a consequence of 

changing environmental and assay conditions. Consequently, much of the work 

presented in Chapters 2 and 3 was concerned with standardising cell culture 

conditions and techniques for the chosen Hepatoma Tissue Culture (HTC) cell 

line. 

One of the major advantages of the cell culture system is that it offers the 

opportunity to control physicochemical and physiological conditions very eas

ily. Initial studies revealed that pH variations occurred at elevated tempera

tures, particularly in 24-well plates. In addition, fungizone and reduced levels 

of serum were found to increase the sensitivity of HTC cells exposed to ele

vated temperatures. Consequently, Hepes buffer (lOmM) was incorporated into 

heating medium to minimise pH fluctuations and fungizone was omitted from 

heating medium. A consistent 10% ( v fv) level of serum was maintained in heat

ing medium. Adoption of such measures ensured the feasibility of comparative 

studies, and also ensured that the effects observed in subsequent experiments 

with cells treated with fatty acids or local anaesthetics were due to heat and 

were not artefactual. 

The work reported in Chapters 2 and 3 also assessed two alternative methods 

for assaying cell survival following heat treatment. Since one of the key features 

of a cancer cell is its unlimited capacity for proliferation, a relevant endpoint 
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to consider in terms of the effectiveness of any treatment is loss of reproductive 

ability. The traditional clonogenic assay, which relies on the ability of a surviving 

cell to give rise to a colony, provided a fairly unambiguous definition of survival. 

The major drawback of this technique was the time involved with HTC cells, for 

they typically required a 9 day post-heating incubation period, and several media 

changes, for reasonable colony formation. However, the alternative colorimetric 

assay that was developed in the current study, whilst providing a much quicker 

estimate of cell survival, has produced survival curves that differ markedly from 

those obtained with the clonogenic assay following heat treatment. 

The clonogenic assay survival curves generated for HTC cells over the hy

perthermic temperatures 43°C to 45°C were characterised by an initial shoulder 

region followed by a phase of logarithmic cell killing. The fact that the shoulder 

region of these curves decreased as the temperature was increased supports the 

concept that the shoulder region of the survival curve reflects the cells' ability to 

sustain sublethal damage (Hahn, 1982). However, the survival curves produced 

by the colorimetric assay at elevated temperatures were very different, often lack

ing the initial shoulder. In addition, at temperatures of 42.5°C, 43.5°C and 44°C 

the colorimetric assay survival curves were biphasic in nature and suggested an 

enhanced cell survival relative to the clonogenic assay at longer exposure times. 

A consideration of the literature suggests that the differences observed be

tween the clonogenic assay and colorimetric assay could reflect the different pa

rameters used to assess cell survival (reproductive activity versus metabolic ac

tivity) and also differences in the time after heating at which the assays were 

performed (10 days versus 3 days), since a cell may lose its reproductive abil

ity but still maintain some metabolic activity. Also, Vidair and Dewey (1988) 

working with CHO cells heated in the plateau phase of growth have reported a 

'rapid' mode of death which was evident during the first few days post heating 

and a 'slow' mode of death that occurred typically 6 or 7 days post heating. In 

the current study it is proposed that since the colorimetric assay was conducted 

at 3 days post heating, rather than 6 or 7, it failed to account for cells dying 

by the slow mode of death. Assuming that the proportion of cells affected by 

the slow mode of death is fairly small, this would explain why such cells have a 

fairly insignificant effect at shorter time points. However, at longer time points, 
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where fewer cells survive, the contribution from these cells will become signifi

cant thus accounting for the biphasic survival curves observed at temperatures 

between 42.5°C and 44°0. The linearity of the 45°0 colorimetric survival curve 

is thought to suggest a decline in cell death by the slow mode of death as has been 

suggested to occur by Vidair and Dewey (1988) as the temperature is increased. 

The development of a suitable cryopreservation procedure for these HTC 

cells provided a safeguard against loss of cells by contamination and also meant 

that any changes in cell characteristics that can occur when cells are continu

ously grown in an in vitro environment (Coriell, 1976) could be minimised by 

re-initiation of the cell line from a frozen cell suspension at intervals during the 

course of the study. 

The morphological studies that are presented in Chapter 3 support the hy

pothesis that the plasma membrane is involved in the hyperthermic death of 

HTC cells. The gradual loss of microvilli during heating and the formation of 

'blebs' on the cell surface following 80 minutes of heating at 43.5°0 clearly indi

cates that membrane morphology is undergoing a change as a result of exposure 

to heat. The fact that the appearance of blebs on the cell surface coincides with 

the time at which a marked decrease in cell survival begins to be observed for 

these cells suggests the importance of this type of damage in hyperthermic cell 

death. Basset al. (1982) and Borrelli et al. (1986) both working with CHO cells 

have also provided evidence for a correlation between membrane blebbing and 

cell death at hyperthermic temperatures ranging from 42°0 to 45.5°0. 

Also in Chapter 3, the attempt to develop a suitable supplementation method 

for HTC cells has revealed that unlike LM cells that can be grown in serum-free 

medium (Konings, 1985) or 3T3 cells that can be grown in lipid-depleted serum 

(Horwitz et al., 1974), the HTC cells grown in this laboratory require the pres

ence of unprocessed serum. In addition, whilst supplementation of HTC cells 

with the unsaturated fatty acid, linoleic acid (18 : 2) in medium containing 

10% ( v / v) serum levels does not substantially alter the growth of cells at concen

trations up to 80J.LM fatty acid, cell growth is markedly inhibited in ~he presence 

of 20jtM stearic acid (18 : 0), a saturated fatty acid. Similar effects with var

ious saturated and unsaturated fatty acids have been reported by a number of 
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investigations utilising different cell lines (e.g. Doi et al., 1978; Spector et al., 

1979). The accumulation of lipid droplets in the cytoplasm of HTC cells in the 

presence of linoleic acid supplement and their subsequent disappearance when 

cells were returned to normal culture medium has been reported by a number of 

workers (Geyer, 1967; Schneeberger, 1971). The presence of lipid droplets in the 

cytoplasm of HTC cells following supplementation highlighted the importance of 

producing purified plasma membrane fractions for lipid fluidity measurements. 

A number of workers (e.g. Collard and De Wildt, 1978; Stubbs et al., 1980) 

have shown that fluidity measurements conducted on whole cells that contain 

lipid droplets can yield misleading results due to the incorporation of the probe 

within the cytoplasmic droplets. 

HTC cells supplemented with 60J.LM linoleic acid {18 : 2) showed enhanced 

thermal sensitivity at 43°C following a 36 hour period of supplementation. The 

period of supplementation appeared to be important since this increase in thermal 

sensitivity was not apparent after either a 24 or a 48 hour period of supplemen

tation. It seems likely that part of the reason for this is that the extent of fatty 

acyl chain modification of membrane lipids depends on the time of exposure 

to the supplemented fatty acid. Spector and Yorek {1985), for example, have 

shown that when Y79 retinoblastoma cells are exposed to 30J1.lvl docosahexenoic 

acid {22 : 6) for up to 72 hours, the greatest change in phospholipid fatty acyl 

composition occurs during the first 48 hours. 

Ladha et al. (1989), working in this laboratory, have recorded a much greater 

increase in thermosensitivity of these HTC cells following a 36 hour period of 

supplementation with 60J.LM arachidonic acid as opposed to 60J.LM linoleic acid. 

Arachidonic acid reduced the LDgo value recorded at 43°C for supplemented 

cells by 30 minutes relative to control cells as opposed to the 10 minute reduction 

obtained with 60J.LM linoleic acid under identical experimental conditions. Part 

of the reason for this increase in thermal sensitivity following exposure of HTC 

cells to arachidonic acid may well be due to the higher level of unsaturation of 

this fatty acid as compared to linoleic acid since arachidonic acid is characterised 

by 4 unsaturated bonds as opposed to the two found in linoleic acid. In addition, 

it could also result from the higher degree of incorporation of this fatty acid 

into plasma membrane phospholipids. Fatty acid analysis of plasma membranes 
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derived from HTC cells that had been exposed to arachidonic acid or linoleic acid 

for a 36 hour period revealed that archidonic acid rose from a barely detectable 

level in control cell plasma membrane phospholipids to approximately 20% of the 

total fatty acid content (Ladha et al., 1989), whilst linoleic acid produced a 14% 

increase from 2% of the total fatty acid content to 16%. The results of Ladha et 

al. (1989) are comparable to the studies of Konings (1985) who demonstrated a 

marked increase in the thermal sensitivity of mouse fibroblast LM cells exposed 

to 44°C following supplementation with 100~-tM arachidonic acid (20 : 4) for a 

24 hour period. 

In Chapter 4, plasma membrane-enriched fractions were obtained from con

trol cells and linoleic acid supplemented cells that had been grown by microcarrier 

culture and exposed to 60~-tM linoleic acid for a 36 hour period. The adoption of 

microcarrier technology, as described in Chapter 2, where HTC cells were grown 

as monolayers on small spheres kept in suspension by stirring, enabled HTC cell 

production to be scaled up in order to generate sufficient cells for purification of 

plasma membranes. However, the lower than expected yields of HTC cells pro

duced from microcarrier culture under the present conditions suggest that future 

studies should attempt to optimise microcarrier culture conditions. The isola

tion procedure that has been developed involving self-forming Percoll gradients 

as compared to the more conventional sucrose density gradients (Lopez-Saura 

et al., 1978) produced plasma membranes that were purified approximately 15-

fold with a recovery of 29% based on the assay of the plasma membrane enzyme 

N a+ I K+ ATPase. These results compare favourably with figures quoted by other 

workers. For example, Tweto et al. (1976) using a sucrose gradient separation 

reported a 12-fold purification of HTC plasma membranes and a much lower yield 

of 1.2% based on the assay of 5'nucleotidase as the plasma membrane marker. 

Amende and Donlon (1985), using a single Percoll gradient centrifugation step, 

reported a 4.5-fold purification of rat liver plasma membranes based on the assay 

of 5'nucleotidase. Sauvage et al. (1981) working with HTC cells and utilising 

sucrose density gradients and digitonin reported a 21-fold purification of plasma 

membranes, which was higher than the current study, but a similar yield (22.8%). 

The degree of purity and yield of plasma membrane for any given cell type 

would seem to depend not only on the procedure used to isolate the plasma mem-
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branes but also on the component used as the plasma membrane marker. The 

importance of selecting a marker that is specific for the plasma membrane has 

been highlighted by results of the present study. Whilst N a+/ K+ ATPase and 

adenylate cyclase assays both suggested a 20-30% yield of plasma membranes that 

were purified approximately 12 to 16-fold, data for alkaline phosphodiesterase I 

and cholesterol suggested a much lower yield at 10-13% with a 5 to 6-fold purifi

cation. Consideration of the literature suggests that alkaline phosphodiesterase 

I and cholesterol may not be ideal plasma membrane markers (see Draye et al., 

1987; Amar-Costesec et al., 1974; Henning and Heidrich, 1974). Similarly, whilst 

Tweto et al. (1976) utilised 51nucleotidase as a plasma membrane marker in 

HTC cells, the presence of this enzyme was not detected in the present study 

nor has it been detected by Lopez-Saura et al. (1978) which raises doubt as to 

its reliability as a plasma membrane marker for HTC cells. 

Contamination of the final plasma membrane preparation produced in this 

study by lysosomes, mitochondria and endoplasmic reticulum appeared to be 

very low though further studies would be required to confirm this result since 

only two assays of each contaminant were possible in the time-scale available. 

Isolation of plasma membranes from cell suspensions of both normal and 

linoleic acid supplemented HTC cells with similar levels of purity enabled com

parative studies of membrane structure and function to be carried out. These 

studies in which the fatty acyl composition of phospholipids and physical state 

of plasma membranes were examined, strongly suggested that the plasma mem

brane and in particular its lipid composition and level of 'fluidity' could be an 

important factor in the hyperthermic death of HTC cells. 

Supplementation of HTC cells with 60J..LM linoleic acid for 36 hours produced 

a significant decrease in the level of oleic acid (18 : 1) in plasma membrane phos

pholipids from 40% to 25% and a significant increase in the level of linoleic acid 

from 2% to 16%. Similar data has been obtained by King and Spector (1978) 

working with Ehrlich ascites cells. The proportion of saturated fatty acids in 

plasma membrane phospholipids, however, remained fairly constant at approxi

mately 50% of total fatty acyl groups, suggesting that the biological mechanisms 

that detect changes in the fatty acid content of membrane phospholipids are 
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particularly sensitive to the ratio of saturated:unsaturated fatty acid. This con

stancy in saturated fatty acid levels has been observed by Neudoerffer and Lea 

{1967) working with sarcoplasmic reticulum from turkey breast. These work

ers attempted to modify the saturated:unsaturated fatty acid ratio in phospho

lipids from turkey beast sarcoplasmic reticulum by feeding Broad Breasted White 

turkeys for 10 weeks on either a beef or fish diet. The beef diet was rich in sat

urated fatty acids such as palmitic (16 : 0) and stearic acid {18 : 0) whilst the 

fish diet was rich in polyunsaturated fatty acids such as arachidonic acid (20 : 4) 

and docosapentaenoic acid {22 : 5). It was found that enriching the diet in sat

urated fatty acids had no significant effect on the fatty acid composition of the 

membrane phospholipids and that the total content of saturated fatty acid re

mained constant at slightly less than 50%. In addition, whilst enriching the diet 

in polyunsaturated fatty acids did produce a marked change in the unsaturated 

fatty acid content of the membrane phospholipids with 20 : 5 and 22 : 6 levels 

being increased largely at the expense of 18 : 1 and 18 : 2, there was little change 

in the saturated fatty acids which again were found to remain fairly constant at 

approximately 50% of the total phospholipid fatty acyl groups. 

Two further interesting observations in the current study were that there 

was no change in the chain length distribution of the plasma membrane phos

pholipid fatty acids and also there was no significant change in the membrane 

cholesterol to phospholipid ratio after supplementation of HTC cells with linoleic 

acid, factors which have been shown to be capable of altering fluidity (see Stubbs 

and Smith, 1984). Whilst Sweet and Schroeder (1988) working with LM fibrob

lasts, and King and Spector (1978) working with Ehrlich ascites cells also found 

no appreciable change in the cholesterol: phospholipid molar ratio of fatty acid of 

supplemented cells, Edwards-Webb and Gurr (1988) have reported higher choles

terol:phospholipid ratios (relative to control membranes) in erythrocyte plasma 

membranes derived from guinea pigs fed diets rich in linoleic acid. The pre

cise reason( s) for these discrepancies in cholesterol:phospholipid ratios following 

supplementation either in vivo or in vitro are not certain. It could be that the dis

crepancies reflect differences in cells' abilities to make compensatory changes in 

their plasma membrane composition that enable them to maintain the constant 

plasma membrane physical state thought necessary for normal cell functioning. 

For example, in the present study where there was an increase in fatty acyl 
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unsaturation of plasma membrane phospholipids following supplementation of 

HTC cells with linoleic add but no change in the cholesterol:phospholipid ratio, 

there was also a change in plasma membrane physical state as measured by DPH 

fluorescence polarisation. However, in the studies conducted by Edwards-Webb 

and Gurr (1988) where guinea pigs were fed linoleic acid enriched diets for a 3-5 

month period, the diet induced increases in the acyl chain unsaturation which oc

curred in erythrocyte membranes did not produce any increase in fluidity which 

would seem to be due to the concomitant increase in the ratio of cholesterol to 

phospholipid, since cholesterol has been shown to decrease membrane fluidity via 

its interaction with membrane phospholipids (Poznansky et al., 1973). 

In Chapter 4 the lower steady state fluorescence polarisation values obtained 

with plasma membranes derived from HTC cells that had been exposed to 60J.LM 

linoleic acid for 36 hours suggest that supplementation with this unsaturated 

fatty acid produces membranes that are less ordered (more 'fluid') than control 

membranes. It seems logical to predict that the lower order of the plasma mem

branes derived from supplemented cells relates to the differences observed in the 

plasma membrane lipid composition. Thus it would seem that, in the case of 

HTC cells, the substitution of 18 : 1 by 18 : 2 in the plasma membrane phospho

lipids of supplemented cells is responsible for the decreased order observed. 

However, a consideration ofthe literature reveals that unsaturation and mem

brane 'fluidity' are unlikely to be related in the simple and direct manner sug

gested by this study. Whilst a number of other workers have reported that sup

plementation with unsaturated fatty acids produces cells with more fluid mem

branes (e.g. Wolters and Konings, 1984; George et al., 1983), other workers do 

not report any alterations in 'fluidity' (e.g. Poon et al., 1981; Edwards-Webb and 

Gurr, 1988). As mentioned above, it could be that part of the reason for discrep

ancies observed in 'fluidity' following supplementation relate to the cells' ability 

to show adaptive responses to dietary manipulations. Other possible reasons for 

discrepancies could relate to the level at which studies have been conducted and 

the techniques that have been used to measure 'fluidity'. One of the limitations 

of this study is that time did not permit a consideration of all the possible per

turbations that could have been produced in the plasma membranes as a result 

of supplementation. Changes in phospholipid headgroup composition can have 
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an important consequence on 'fluidity'. For example, an increase in the ratio 

of phosphatidylethanolamine to phosphatidylcholine causes an increase in the 

steady state polarisation of DPH (Gilmore, 1979). Similarly, positioning of the 

unsaturated fatty acid on the glycerol backbone ( sn - 1 or sn - 2) of phospho

lipids and the position of the double bond(s) along the fatty acyl chain can also 

have a considerable effect on the physical properties of the membrane, apart from 

the effect of a change in the level of unsaturation alone (see Stubbs and Smith, 

1984). Ideally, any future studies should aim to conduct more detailed inves

tigations by, for example, looking for changes in the phospholipid head group 

composition and by examining fatty acyl composition of individual phospholipid 

classes to obtain a more accurate picture of the precise effects of supplementation 

on the composition, structure and physical properties of the plasma membrane. 

In addition, studies employing a greater variety of polyunsaturated fatty acids 

would be useful. Furthermore, because of the complex nature of membrane 'flu

idity' and the diversity of biophysical techniques that have been developed which 

utilise a variety of 'probes' that are intercalated into the bilayer to measure par

ticular aspects of the fluid condition, future studies could be improved by the 

utilisation of a wider variety of the techniques available. For example, whilst 

steady state fluorescence polarisation spectroscopy indicates the extent of 'wob

bling' of a probe over a nanosecond time-scale and hence provides information on 

the range of motion (degree of order) of phospholipid fatty acyl chains, 2 H-NMR 

spectroscopy provides specific information on the dynamics of hygroc~rbon flex

ing. The probe motions measured by different techniques, therefore, are likely to 

occur over different time-scales and changes in one may not necessarily correlate 

with changes in another. Whilst Lepock et al. (1983) obtained similar results for 

'fluidity' by measuring either Electron Spin Resonance of the probe 2,2-dimethyl-

5-dodecyl-5-methyloxazolidine-N-oxide or fluorescence polarisation of the probe 

1,6-diphenyl-1, 3,5-hexatriene in Chinese hamster lung V79 cell plasma mem

branes, this does not necessarily mean that these two different techniques will 

give the same results in different cell types. Cells from different origins are usu

ally characterised by distinct plasma membrane compositions (Lee, 1985) which 

may influence the way in which probes are intercalated within the lipid bilayer. 

The use of different techniques to measure membrane 'fluidity' might explain 
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why Storch and Schachter (1984) employing steady state fluorescence polarisa

tion reported an increase in fluidity in rat hepatocyte plasma membranes that 

had been shown to contain increased levels of monoenoic and polyenoic acyl 

chains relative to control plasma membranes following exposure of rats to fat 

free diets, whilst Poon et al. (1981) using electron spin resonance reported no 

significant increase in fluidity following a 20% increase in the level of 18 : 1 in the 

plasma membrane phospholipids of murine T lymphocyte EL4 tumour cells. In 

addition, many probe techniques including DPH fluorescence polarisation sim

ply provide average information on 'fluidity' depending on the distribution of 

probe positions within the membrane even though the plasma membrane is now 

thought to be made up of a number of distinct microdomains each with different 

physical properties (Schroeder, 1983). As pointed out by Cossins and Raynard 

(1987), this means that probe techniques that give an overall average value for 

'fluidity' will not reflect the state of any given region in the membrane so that 

the precise reasons for changes in membrane fluidity can not be determined. For 

example, a change in membrane average 'fluidity' may result from changes in the 

properties of probes in some microdomains but not others or it may result from 

a change in the entire population of probe molecules. Thus ideally, a range of 

probes sensitive to different regions of the bilayer should be employed to gain a 

better understanding of the importance of 'fluidity' in determining the response 

of cells to elevated temperatures. 

It would also be of interest in future studies to investigate the composition 

and physical state of HTC cell plasma membranes at a wider range of time 

points following supplementation in an attempt to explain the change in thermal 

sensitivity of these HTC cells that was observed, for example, after a 48 hour 

period of supplementation. 

However, the fact that changes in lipid composition were found to take place 

in membranes of supplemented HTC cells which were associated with an increase 

in 'fluidity', as measured by steady state fluorescence polarisation, and the fact 

that these changes were associated with an increase in thermal sensitivity of the 

cells, strongly supports the proposition that the lipid composition and level of 

fluidity of the plasma membrane play an important role in the response of cells 

to hyperthermia. 
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A further extension of this study could be to grow HTC cells at different 

temperatures, say 32°C and 39°C as opposed to the usual 37°C and then to 

monitor the response of these cells to hyperthermic temperatures and relate 

this to plasma membrane composition and physical state, since a number of 

workers have observed changes in plasma membrane composition of mammalian 

cells as a result of growth at elevated or lowered temperatures (e.g. Culver 

and Gerner, 1982). This would provide additional information on the way in 

which the modulation of membrane lipid composition and 'fluidity' are related 

to cellular thermal sensitivity. Though some work has been carried out in this 

area (Anderson et al., 1981; Culver and Gerner, 1982; Bates et al., 1985) the 

membrane fraction utilised has often been poorly defined and characterised which 

leads to problems in interpretation of results. Having developed a rapid and 

reliable method for isolating HTC cell plasma membranes in the current study, 

such studies with HTC cells could prove productive. 

Since specific membrane functions are mediated by proteins and only indi

rectly by the properties of the lipid matrix of the membrane (Leyko and Bartosz, 

1986), a number of workers have suggested that membrane proteins rather than 

membrane lipids are the main site of action. Lepock et al. {1981) found that 

butylated hydroxytoluene (BHT) fiuidised membrane lipids of V79 Chinese ham

ster lung fibroblast cells, as measured by the lipophilic spin label 2,2-dimethyl-5-

dodecyl-5-methyloxazolidine-N-oxide (2N14), but did not affect the inactivation 

rate of cells at 42.6°C and actually decreased the rate at 43.6°C. However, 

Fukuzawa et al. (1981) reported that BHT rigidified rather than fluidised phos

phatidylcholine liposomes as judged by DPH fluorescence polarisation. Analysis 

of data on the sensitisation to heat of V79 cells by alcohols has suggested that 

alcohols affect membrane proteins rather than lipids (Massicotte-Nolan et al., 

1981). In the presence of low concentrations of alcohols the degree of heat sen

sitisation increased in the following order: methanol > ethanol > propanol > 
butanol. Whilst this order of sensitisation potency did not correlate with their 

fluidising abilities as measured by the electron spin resonance probe 2N14, it did 

correlate well with their effects on the temperature of thermal denaturation of a 

number of non-membraneous proteins. Similarly, ethylene glycol which did not 

affect the hyperthermic cell killing of V79 cells did not exert any clear cut influ

ence on thermal denaturation of proteins, whilst glycerol, which protected the 
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cells from hyperthermia, elevated the thermal inactivation temperature of the 

proteins (Massicotte-Nolan et al., 1981 ). Recent studies by Lepock and collabo

rators (Lepock et al., 1988, 1989) have also stressed the importance of proteins in 

the hyperthermic killing process. Studies by Stevenson et al. (1981) with Chinese 

hamster ovary cells have also shown that heat induced alterations in the bind

ing of hormone or antibody receptors correlate with heat sensitivity measured in 

terms of cell survival. 

However, it is perhaps more likely that both lipids and proteins of the plasma 

membrane are involved in the hyperthermic response. It is known that expo

sure of cells to elevated temperatures serves to increase the molecular motion of 

membrane lipids and may well cause a change in the phase of lipids from a more 

ordered gel phase to a less ordered liquid crystalline phase (Lee and Chapman, 

1987). Whilst the presence of proteins leads to non-uniformity in the viscosity 

of lipids it seems likely that proteins are themselves influenced by the dynamic 

state of the membrane lipids. It is thought that, on account of the anisotropic 

and hydrophobic nature of the lipid bilayer, enzymes probably need to possess 

relatively loose tertiary structures to enable the molecular flexibility that is vital 

for catalysis. This could also make such enzymes particularly sensitive to heat 

for such structures could be susceptible to perturbation. Hyperthermic temper

atures that serve to increase the molecular motion of membrane lipids (decrease 

lipid order) would provide a less hindered environment for proteins. This would 

in turn permit a greater range of conformational movement on the part of the 

proteins and could result in proteins adopting configurations that are inactivat

ing. 

The studies of membrane associated enzyme activity (Chapter 4), which pro

vides a natural 'probe' of the adjacent lipid region surrounding membrane pro

teins, suggested that alkaline phosphodiesterase I in HTC cell plasma membranes 

from linoleic acid-supplemented cells could be more thermolabile than the same 

enzyme from control membranes, although further studies would be required to 

confirm the significance of this data. These results support the idea that per

turbation of the plasma membrane by heat has a destabilising effect on proteins 

present in the bilayer. In addition, the fact that the thermosensitivity of alkaline 

phosphodiesterase I can be potentiated by supplementation of HTC cells with 
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linoleic acid, which has been shown to cause an increase in plasma membrane 

fluidity relative to control membranes, suggests the importance of plasma mem

brane fluidity in determining the response of membrane proteins to heat. Barker 

(1985) working with rat liver and with MC7 sarcoma and D23 hepatoma, two 

transplantable rat tumour lines, has similarly reported greater thermosensitivity 

of the plasma membrane M g2+ ATPase of tumour cells which correlated with a 

lower lipid order (increased plasma membrane fluidity). A correlation between 

plasma membrane cholesterol levels and the thermosensitivity of Ca2+ ATPase 

in reconstituted lipid vesicles has also been reported (Cheng et al., 1987), again 

suggesting the importance of lipid fluidity in the effects of heat. 

The physical state of plasma membrane lipids can also be modulated by a 

range of 'membrane active' agents which include alcohols and local anaesthetics. 

Whilst it is generally accepted that local anaesthetics produce their effects by 

interaction with membranes (Seeman, 1972) which causes an increase in mem

brane 'fluidity' (Butler et al., 1973) their site of action and molecular mechanism 

of action is not well understood. Current evidence favours lipids rather than 

proteins as the site of anaesthetic interaction (see Chan and Wang, 1984), whilst 

other studies into the molecular mechanism involved in their fluidising effect have 

revealed the complexity of their action. The effect of local anaesthetics on plasma 

membrane lipids have been shown to depend on a wide range of factors including 

the molecular shape of the anaesthetic molecule (Kuroda and Fuijawara, 1987), 

its adsorption properties (Ohki, 1984) and whether it is in a cationic or neutral 

form (Boulanger et al., 1981 ). 

The work presented in Chapter 5, utilising local anaesthetics in their cationic 

form, has shown that when HTC cells are heated in the presence of dibucaine, 

tetracaine or procaine there is a potentiation of hyperthermic cell killing, with 

the potentiation increasing with increasing concentration of the anaesthetic in 

the heating medium. Potentiation of heat death in the presence of anaesthet

ics has been reported by a number of workers (e.g. Yatvin, 1977; Yau, 1979; 

Bowler et al., 1987; Dewey, 1988). In the current study steady state fluorescence 

polarisation measurements, utilising DPH as the probe, also indicated that in 

the presence of increasing concentrations of dibucaine and tetracaine there was a 
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corresponding decrease in polarisation values measured in purified plasma mem

branes, implying a decrease in membrane order, i.e. increase in 'fluidity'. These 

results therefore provide evidence for the importance of increased membrane flu

idity in the hyperthermic death of HTC cells. 

Another interesting point that emerges from the anaesthetic work that was 

conducted in this study is that the increase in 'fluidity' of plasma membranes that 

was produced by adding dibucaine to HTC cells at 37°C is equal to the increase 

in fluidity of plasma membranes produced by exposing cells to 43°C (consult 

figure 5.6). However, only one condition (exposure of cells to 43°C) resulted in 

cell death. This suggests that fluidity changes alone are not the direct cause 

of cell death. Rather, it would appear that lipid fluidisation serves to influence 

some important membrane component, in all probability membrane proteins, in 

a critical way, that leads to cell death. 

However, the results obtained with procaine are difficult to explain. Whilst 

5mM procaine produced a highly significant decrease in cell survival at 43°C rel

ative to control cells, the same concentration of anaesthetic had no effect on the 

steady state DPH fluorescence polarisation values obtained. It could be that pro

caine increases hyperthermic cell death by a different mechanism to dibucaine 

and tetracaine, however, the fact that Sweet and Schroeder (1986) also using 

DPH as a fluorescence probe reported a fluidising effect of lOmM procaine with 

LM fibroblast plasma membranes, suggest that the procaine results of the current 

study could be questionable. The studies of Yau (1979) are of interest since he 

also reported a potentiation of hyperthermic killing in murine 3T3 and CHO cells 

following procaine treatment and very little effect on plasma membrane fluidity 

as measured by DPH fluorescence polarisation. However, when Yau used pery

lene as the fluorescent probe the fluidity of cell membranes of procaine treated 

cells was found to increase significantly. These observations taken together with 

the fact that the presence of procaine, at least in model membranes, can result in 

fluorescence quenching (Surewicz and Leyko, 1982) suggest that alternative mea

surements of membrane fluidity should be conducted on purified HTC plasma 

membranes in the future in the presence of procaine, before it is assumed that 

this anaesthetic does not alter membrane fluidity. 
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The morphological changes observed on heating cells in the presence of the 

anaesthetic dibucaine provide further evidence for the important role of mem

branes and membrane fluidity in hyperthermic cell death. HTC cells heated in 

the presence of dibucaine, which produced an increase in membrane fluidity, were 

characterised by more extreme surface morphological changes than control cells 

heated in the absence of anaesthetic. Microvilli were lost from the membrane 

surface, which in turn was characterised by a high degree of deformation in the 

form of pits in the cell surface. Similar findings have been reported by Mulcahy 

et al. (1981) working with P388 ascites tumour cells in the presence and absence 

of procaine at 37°C and 43°C and would seem to suggest that a cell's response 

to hyperthermia may well be related to its membrane fluidity at the time of 

treatment. 

Studies on the Intermediate Filament (IF) network of HTC cells (Chapter 5) 

indicated that under normal culture conditions cells are characterised by a web 

of interconnecting filaments extending throughout the cytoplasm. Exposure of 

cells to dibucaine, however, appeared to produce a more irregular distribution 

of IF within the cytoplasm, which could account for the rounded morphology of 

HTC cells observed in the presence of dibucaine at 37°C. These results suggest 

that local anaesthetics- such as dibucaine that are known to act at the plasma 

membrane level may well produce a secondary effect on the IF network of cells 

at 37°C. However, since heating both control and anaesthetic treated cells pro

duced similar disruption of the IF network in HTC cells, it seems unlikely that 

IF damage is a primary factor determining the differential response of cells to 

elevated temperature in the presence or absence of anaesthetics. 

In conclusion, the work presented in this thesis supports the concept that 

the plasma membrane is an important site of hyperthermic damage and that its 

lipid composition and physical state play a major role in determining the re

sponse of cells to hyperthermic insult, possibly by modulating membrane protein 

thermosensitivity. 

It is proposed that exposure of cells to elevated temperatures results in a 

decrease in plasma membrane order {increase in fluidity) which in turn leads 

to changes in protein-lipid interactions and the adoption of configurations by 
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membrane proteins that are inactivating. Such heat damage to the plasma mem

brane is thought to lead to changes in membrane permeability and to a loss of 

membrane receptor and membrane enzymatic activity. These alterations would 

inevitably lead to a loss of cellular homeostasis and ultimately to cell death. 
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