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ABSTRACT 

A study was carried out on algal phosphatase activity and water chemistry in zinc-contaminated 

streams in the Northern Pennine Orefield. 

Fourteen field sites were studied; They ranged from low contaminated to high-zinc sites (0.1 mg 1"̂  

to 19.4 mg 1"̂  with 7 of the 14 above 1 mg 1"̂  Zn). Phosphate concentrations were low in the majority of 

sites (2.2 ^ig 1-1 to 22.8 ^ig l ' ^ with 13 of the 14 sites below 7.7 ^.g 1"̂  TFP and 1.8 |xg l ' ^ to 8.5 ̂ ig 

with 13 of the 14 sites below 4.9 |xg l ' ^ FRP). 

Phosphatase activity was tested over a broad pH range (3.0 -11.0) using at least two different buffers 

at each pH value. Phosphatase activity of samples tested showed different responses to pH. Most of the 

samples exhibited enzyme activity in the alkaline range. High phosphatase activity was observed in 

samples with Mougeotia and 3tigeoclonipm populations. 

Possible relationships between phosphatase activity and selected environmental variables were 

examined. Phosphatase activity was significantly correlated with Zn (+ve), TFP (-ve) and FRP (-ve) in 

the water. 

The role of phosphatases in these high-zinc environments is discussed. 



ABBREVIATIONS 

degrees Celsius 

g gramme 

mg milligramme 

|j.g micrograme 

dry wt dry weight 

1 litre 

ml miUilitre 

|xl microlitre 

m metre 

cm centimetre 

| im micrometre 

tun nanometre 

h hour 

min minute 

M molar 

m M miUimolar 

| i M micromolar 

|4,mol micromole 

P phosphorus 

Pj inorganic phosphorus 

FRP filtrable reactive phosphorus 

TFP total filtrable phosphorus 

PMEase phosphomonoesterase 

PDEase phosphodiesterase 

APA alkaline phosphatase activity 

bis-pNPP bis (p-nitrophenyl) phosphate 

AMeP 2-amino-2-methyl-l-propanol 

CAPS 3-(cyclohexylamino)-l-propanesulphonic acid 

DMG 3, 3-dimethylglutaric acid 

EDTA ethylenediamine tetra-acetic acid (disodium salt) 

EPPS N-(2-hydroxyethyl) piperazine-N'-3-propanesulphonic acid 

HEPES N-2-hydroxymethylpiperazine-N'-2-ethanesulphonic acid 

TES N-tris(hydroxymethyl) methyl-2-aminoethane sulphonic acid 

n number of samples 

p probability 

sem standard error of mean 



ACKNOWLEDGEMENTS 

I would like to express my gratitude to the people who have helped me during the course of this 

study. My special thanks must go to my supervisor Dr B. A. Whitton who provided help, encouragement 

and advice on all aspects in this work. Research facilities in the Department of Biological Sciences were 

made available by Professor D. Boulter. 

Within the Department of Biological Sciences many people have offered guidance and technical 

support. My sincere thanks go to Mr J. W. Simon whose accumulated knowledge from many years of 

experience was invaluble. Thanks must also go to Mr P.P. Jackson who with his valuable experience has 

helped in many aspects and to Mrs J. Langston for atomic absorption spectrophotometry guidance. 



C O N T E N T S 

ABSTRACT 

ABBREVIATIONS 

ACKNOWLEDGEMENTS 

CONTENTS 

LIST OF TABLES 

LIST OF FIGURES 

Page 

1. INTRODUCTION 10 

1.1 General Introduction 10 

1.2 Zinc in the aquatic environment 10 

1.3 Algae populations in high-zinc environments 11 

1.4 Phosphorus 12 
1.41 Phosphorus occurrence 12 
1.42 Phosphorus compounds 12 
1.421 Phosphorus fractions 12 
1.422 Organic phosphorus compounds in aquatic systems 13 
1.43 Biologicaly available phosphorus 14 
1.44 Algal requirements for phosphorus 15 

1.5 Phosphatase 15 
1.51 Introduction 15 
1.52 Classification of phosphatases 15 
1.521 Phosphomonoesterases 15 
1.522 Phosphodiesterases 17 
1.53 Bacterial phosphatase activity 17 
1.54 Algal phosphatase activity 17 
1.55 Characteristics of algal phosphatases 18 
1.551 Acid and alkaline 18 
1.552 Temperature dependfnce 19 
1.553 Effect of ions 19 
1.554 Stability 19 
1.555 Control of synthesis 19 

1.556 Alkaline phosphatase activity as a phosphorus-deficiency indicator 20 

AIMS 21 



2. MATERIALS AND METHODS 22 

2.1 Computing and statistics 22 

2.2 Chemicals 22 
2.21 Media 22 
2.22 Substrates used for assaying phosphatase activity 22 

2.3 Common procedures 23 
2.31 Absorption 23 
2.311 Shimadzu spectrophotometer 23 
2.312 MCC Plate Reader 23 
2.32 Flame atomic absorption spectrophotometry 23 
2.33 Assay for alkaline phosphatase activity 23 
2.331 Preparation of algal material for analysis of alkaline phosphatases assays 23 
2.332 Assay procedure for alkaline phosphatase activity using the plate Reader 24 
2.333 Measurement of phosphatase activity 24 
2.334 Effect of pH on phosphatase activity 24 

2.4 Standard culture techniques 26 
2.41 Cleaning of apparatus 26 
2.42 Media 26 
2.421 Chu 10-F 26 
2.422 Assay medium 26 

2.5 Sample collection and preparation 29 
2.51 On site 29 
2.52 Algal samples 29 
2.53 Water samples 29 

2.6 Chemical analysis 29 
2.61 Nitrite 29 
2.62 Nitrate 29 
2.63 Ammonia 29 
2.64 Phosphate 30 
2.641 A simplified phosphorus analysis technique 30 
2.642 Phosphate fractions measured 30 
2.643 Experimental 30 

2.7 Algae tested for phosphatase activity 31 

3. FIELD SITES AND SAMPLING PROGRAMME 32 

3.1 Introduction 32 

3.2 General background to areas of study 32 



3.3 Sites of study 33 
3.4 Sampling programme 33 

4. PHYSICAL AND CHEMICAL VARIABLES 39 

4.1 Introduction 39 

4.2 Mg, Ca and Zn concentrations 39 

4.3 Nitrate, nitrite and ammonia concentrations 39 

4.4 Phosphate 40 

5. PHOSPHATASE ACTIVITY 49 

5.1 Introduction 49 

5.2 Effect of pH on phosphatase activity 49 

5.21 Influence of buffering system used on phosphatase activity 49 
5.22 The pH profiles of phosphatase activity of algal populations tested 50 
5.23 Algal samples tested for PDEase activity (survey A) 52 

5.3 Phosphatase activity in relation to environmental variables (survey B) 64 

6. DISCUSSION 69 

6.1 Phosphatase activity 69 
6.11 Effects of buffers used on phosphatase activity 69 

6.12 Phosphatase activity of the algal samples tested 69 

6.2 Phosphatase activity in relationship to envimmental chemistry 71 

6.3 Phosphatase activity in relationship to zinc concentrations 72 

6.4 Organic phosphorus and phosphatase activity 73 

SUMMARY 75 

APPENDICES 78 

REFERENCES 83 



L I S T OF T A B L E S 

Tables Page 

2.1 Substrates used for assaying phosphatase activity 22 

2.2 Buffers used to investigate effect of pH on phosphatase actitvity 25 

2.3 Concentration of mineral salts in Chu 10-F and in assay medium 27 

2.4 The elemental concentration in Chu 10-F and in assay medium 28 

2.5 Stock solutions and reagents used for phosphate analysis 30 

3.1 Sites visited for the study of phosphatase activity of algal samples 35 

4.1 Physical and chemical variables for three sites sampled on five occasions 

(survey A) 41 

4.2 Physical and chemical variables for 14 sites sampled on 29/08/90 (survey B) 42 

5.1 Algal samples collected from 3 sites on five occasions (survey A) 52 

5.2 Algal samples collected from 14 sites for phosphatase activity (survey B) 53 

5.3 PhospHatase activity obtained using different buffers at each pH unit (survey B). 54 

5.4 Phosphatase activity (\imol pNP mg d. w f ^ h^^) obtained at optimum pH of 14 
samples tested (survey B). 65 

5.5 Phosphatase activity obtained at different pH units in the alkaline range 

of 14 samples tested (survey B). 66 

5.6 Spearman's rank correlation of phosphatase activity of 14 samples tested 
(survey B) with selected environmental variables: Ca, Zn, TFP, FRP and N : P 

ratio in the water. 67 



L I S T OF FIGURES 

Figures Page 

1.1 Formulae for phosphate esters 16 

1.2 Reaction scheme for the enzyme catalyzed hydrolysis of phosphate esters 16 

3.1 Location of 14 sampling sites in the Northern Pennine Orefield 36 

3.2 View of Caplecleugh Low Level from which mine water is discharged. The 

mine water is directed into the river by the remnants of a water leat channel 37 

4.1 Mg, Ca and Zn concentrations of 14 sites sampled in survey B. 43 

4.2 Nitrate, TFP and FRP concentrations of 14 sites sampled in survey B. 43 

4.3 Calibration curve and phosphate additions procedure employed for the 
determination of FRP and TFP of 14 samples from 14 sites in survey B 44 

5.1 PMEase activity of samples collected from site 1 on five occasions in 

survey A (Table 5.1) 55 

5.2 PMEase activity of samples collected from site 2 on five occasions in 

survey A (Table 5.1) 56 

5.3 PMEase activity of samples collected from site 3 on five occasions in 

survey A (Table 5.1) 57 

5.4 PDEase activity of samples collected from 3 sites on 19/07/90 in survey A 

(Table 5.1) 58 

5.5 Effect of pH on phosphatase activty of algal samples collected from 14 sites in 
survey B (Table 5.2). Each sample is presented twice in two ways: a, b (5.21) 59 

5.6 Scattergram showing relationship between phosphatase activity at optimum pH 

and FRP for 14 algal samples (Table 5.2) (n=14) from 14 sites (Table 3.1) in 

survey B 68 

5.7 Phosphatase activity at optimum pH and N : P ratio in the water for 14 algal 

samples from 14 sites(survey B) 68 



10 

C H A P T E R 1 

I N T R O D U C T I O N 

1.1 General introduction 

Measurements of environmental variables in aquatic systems are often used to assess biological 

needs and therefore it is logical to use biological systems in the assessment procedure. Much more work 

has been carried out using species presence or absence to give a broad indication of the water quality. 

Morphological and physiological characteristics of organisms are often related to environmental factors 

and in most cases, changes in these characteristics can reflect changes in the environmental conditions 

where these organisms grow. 

1.2 Zinc in the aquatic environment 

Zinc is a fairly abundant metal, representing 0.004 % of the earth's crust and is twenty-fifth in the 

order of abundance. According to Bowen (1966) the average concentration in the soil is 50 mg kg'^ and 

10 jig r M n freshwater. 

The patterns and processes of zinc entry into freshwater are reviewed by Weatheriey et al- (1980). 

Elevated level of zinc in freshwater can be expected in base-metal mining regions (derived from both 

groundwater drainage of mineral deposits and drainage of overburden of zinc or other ore bodies), in 

industrial regions and urban regions. In addition, acid mine drainages associated with coal mines may 

carry elevated levels of zinc, due to the increased mobilizing influence of acid waters. 

The chemistiy of zinc in freshwater is reviewed by Hem (1972) and Florence (1980). pH is 

particularly important in controlling the solubility of zinc in aqueous environments. Zinc may be 

precipitated at higher pH values in the following way: 

Zn-2 + H20 f=^ZnOH+ + H+r=f Zn(0H)2 -i -i- H+ 

Based on thermodynamic calculations, Hem (1972), however, showed tiiat the solubility of zinc carbonate 

(ZnC03) and zinc silicate (Zn2 Si04) were both less than that of zinc hydroxide and in the majority of 

freshwater, these form the major control of zinc solubility. Other chemical forms of zinc may also occur 

in the water, particularly organic complexes (e.g. Zn-humate, Zn-citrate) and as ions adsorbed into 

colloids (e.g. Zn^+.humic acid) or inorganic colloids (Zn2+-clay minerals). A l l complex forms of zinc in 
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natural waters occur more readily at higher pH values and above approximately pH 7 zinc complexes are 

likely to be formed; below pH 6 zinc is likely to exist as the simple divalent ion or as the hydrated ion 

(Hem, 1972; Horence, 1980). 

Many authors state the average level of zinc in unpolluted freshwater can suitably approximate to 10 

\igl'^. Levels of zinc tend to be elevated in thermal or acid streams excepting tiiese, levels of zinc above 

0.1 mg 1"! in streams are indicative of human activity and those above 1 mg 1"̂  are usually associated with 

past or present mining activities. Say (1977) reported many streams containing >1 mg 1"̂  zinc, in his 

survey of streams draining the Northern Pennine Orefield; the maximum was 22.3 mg 1'^ zinc. The 

maximum level reported in the hterature is probably that for a site draining a smelter tip in Southem 

France (Say & Whitton, 1982), where a small seepage was found to contain 3840 mg 1"̂  zinc. 

1.3 Algal populations in high-zinc environments 

Many algae populations have tiie ability to adapt in high-zinc environments. It has been shown that 

algae species present in flowing waters with high zinc levels were represented by populations genetically 

adapted for tolerance (Say si M- 1977). Filamentous green algal populations such as Stigeoclonium 

tenue and Mougeotia spp. are widespread and often abundant in waters with and without zinc pollution. 

At sites with mean zinc levels in water of about 0.2 mg 1'^ and above, populations of S. tenue showed 

increased tolerance to the metal in comparison with populations from sites with lower zinc levels. 

Experiments with Mougeotia spp. have indicated that populations of these species taken from high-zinc 

sites have acquired genetic tolerance (B.A.Whitton, unpublished). It tiius seems probable that most 

filamentous green algae growing at sites with high zinc levels will prove to be genetically tolerant 

populations of species which normally do not show such tolerance. 

Zinc is an important micro-nutrient for growth and metabolism of algae and plays a vital role in 

maintaining the integrity of ribosomes, although in most cases these requirements are fulfilled by low 

environmental levels. For instance stocks of Stigeoclonium tenue could be maintained in a medium with 

less than 0.002 mg Zn 1"̂  (Harding and Whitton, 1976). No zinc-tolerant population of eitiier S. tenue or 

Klebsormidium rivulare have been found with an increased requirement for zinc. 
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1.4 Phosphorus 

1.41 Occurrence of phosphorus 

Phosphorus (P) is the eleventh most abundant element in nature, its concentration is estimated as 

0. 1 . by weight in the lithosphere, and is thus classed as a trace element. 80 % of the P reserves are 

contained in phosphorite deposits in ocean sediments and 15 % in igneous and metamorphic rocks. 

1.42 Phosphorus compounds 

1.421 Phosphorus fractions 

Phosphorus generally occurs in the oxidized form, either as phosphates or organic P compounds. 

Phosphate can be divided into: 

1. Orthophosphates 

2. Polyphosphates (chain phosphates) 

3. Metaphosphates (ring phosphates) 

4. Ultraphosphates (branched ring phosphates) 

Orthophosphates are generated from the weathering of rocks or from biological metabolism or 

degradation. Polyphosphates and metaphosphates are produced by biological activity. Orthophosphates 

and polyphosphates are frequentiy introduced into waters by man. Analytically defined P fractions are 

categorized as: 

Tot P = Total phosphorus 

i 

PP = Particulate phosphorus > 0.45 ^mi 

TFP = Total filtrable phosphorus <0.45MJn 

FRP = Filtrable reactive phosphorus 

Particulate P includes: 

1. Phosphorus in organisms as (a) relatively stable nucleic acids DNA, RNA, and phosphoproteins which 

are not involved in rapid cycling of phosphorus, (b) low-molecular-weight esters of enzymes, vitamins, 

etc., and (c) nucleotide phosphate, such as adenosine diphosphate (ADP) and adenosine-triphosphate 
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(ATP). 

2. Mineral phases of rock and soil, such as hydroxyapatite, in which phosphorus is adsorbed into 

inorganic complexes such as clays, carbonates, and ferric hydroxides. 

3. Phosphorus adsorbed into dead particulate organic matter or in microorganic aggregations. 

In contrast to particulate P, TFP is composed of: 

(1) Orthophosphate (PO^'^), (2) Polyphosphates, (often originates fiom synthetic detergents), (3) Organic 

colloids or phosphorus combined wuth adsorptive colloids, (4) low-molecular-weight phosphate esters. 

The term filtrable reactive phosphorus is more appropriate than orthohposphate for the phosphorus 

fraction reacting to give the colour with the molybdenum blue technique. 

1.422 Organic phosphorus compounds in aquatic systems 

The major share of the phosphorus resources of the eartii's surface waters is in organic fomi. The 

principal pools or storage sites of organic phosphorus in the hydrosphere are: 

1. The organic compounds of living and dead particulate suspended matter (seston), 

2. A variety of filtrable organic compounds usually termed "dissolved", 

3. The organic compounds of rooted and encrusting plants of the bottom, 

4. The phosphorus of free-swimming animals, 

5. Phosphorus present in bottom sediments. 

Particulate organic P in aquatic ecosystems dominates total organic P, and is comprehensively 

reviewed by Broberg and Persson (1988). Although particulate organic P is the major constiuent of 

organic P forms it is not readily available. Dissolved organic P (DOP) can be regarded as a more 

important fraction as it is readily available to the biota and is rapidly tumed over. It is not know whether 

DOP is primarily released by active cell metabolism or by cell death and decay. 

Some pools of DOP do not undergo rapid hydrolysis by phosphatase, and these compounds may 

constitute a major part of the DOP pool. One such pool of DOP compounds are the nucleotides or 

polynucleotides. Broberg and Persson (1988) reported that up to 4.2% of the total P in bogs was 

attributed to nucleic acid. Hino (1989) found that 65% of DOP in lake waters was composed of 

compounds between 300 to 10(X)0 daltons. Addition of phosphodiesterases (1.522) to high molecular 

weight DOP compounds did not release any measurable Pj, although a combination of phosphodiesterases 



14 

and phosphomonoesterases increased the amount of Pj released by 30% when compared to release of P, 

by PMEase alone. 

A major component of colloidal P in aquatic systems are the inositol phosphates or phytates, which 

are hydrolyzed by the group of phosphatases known as phytases. The phytates are esters of inositol and 

phosphoric acid. Phytates exist in many forms as there are many different isomers of inositol and each 

isomer exists with one to six esterified phosphate groups per molecule. Phytates can comprise up to 35% 

of the colloidal P, which is mainly derived from microbial storage and structural compounds. 

1.43 Biologicaly available phosphorus 

The forms of P most conraionly utilized by biological systems are BPO^^' and H2PO4", the ionic 

forms of phosphorus which predominate according to pH. Many organisms have two uptake systems for 

phosphate, one being "diffusive" and the other "rapid". The rapid uptake system occurs when the internal 

phosphorus concentration is low. Both these uptake systems require energy but Whitton (1967) described 

colonies of Nostoc which appeared to passively take up P when the external concentration was very high. 

Many different substrates can be utilized as P sources by algae which are capable of alkaline 

phosphatase activity (Livingstone el 1983; Al-Mousawi, 1984). In natural waters both high and low 

molecular weight organic phosphorus fi-actions have been identified and at least a part of each fraction has 

been shown to be available to some algae. Livingstone et d . (1983) found that Calothrix parietina D550 

could utilize six different substrates as sources of phosphorus. Al-Mousawi (1984) found 10 substances 

could be utilized by nine strains of blue-green algae isolated from an Iraqi rice field. Most of the 

compounds used by algae are soluble but 84% of the particulate P was available to algae in the R. 

Amazon (Grobbelaar, 1983). 

Broberg (1985) stated that the availability of different phosphorus compounds to algae is dependent 

on the algae enzyme pool, the phosphorus status of the alga, the orthophosphate uptake rate, the nature of 

the P-compounds and environmental conditions. 
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1.44 Algal requirements for phosphorus 

Compounds containing phosphorus play major role in nearly all phases of metabolism, particulariy in 

tiie energy transformation of phosphorylation reactions during photosyntiiesis. Phosphorus is required in 

the synthesis of nucleotides, phospholipids, sugar phosphates, and other phosphorylated intermediate 

compounds. Further, phosphate is bonded, usually as an ester, in a number of low-molecular-weight 

enzymes and vitamins essential to algal metabolism. 

1.5 Phosphatase 

1.51 Introduction 

Phosphatase are enzymes which catalyze the hydrolysis of both esters and anhydrides of phosphoric 

acid and under some circumstances certain phosphatase act as transferases by catalyzing the transfer of 

phosphate from one substrate to another. They are often divided into acid and alkaline phosphatase 

according to their pH optima. 

1.52 Classification of phosphatase 

The commission on Enzymes of the Intemational Union of Biochemistry has classified all of these 

enzymes into five major groups: 

1. Phosphoric monoester hydrolases E.C 3.1.3 (phosphomonoesterases) 

2. Phosphoric diester hydrolases E.C 3.1.4 (phosphodiesterases) 

3. Triphosphoric monoester hydrolases E.C 3.1.5 

4. Hydrolases splitting anhydride bonds in phosphoryl-containing anhydrides E.C 3.6.1 

5. Hydrolases splitting P-N bonds E.C 3.9 (phosphoamidases) 

1.521 Phosphomonoesterases 

The phosphomonoesterases catalyze the hydrolysis of monoesters of otiiophosphoric acid. Most often the 

term "phosphatase" is used synonymously with phosphomonoesterases, abbreviated to PEMase. Similar 

but functionally different enzymes are the phosphodiesterases, abbreviated to PDEase, which include the 

nucleases. General formulae for phosphate esters are in Fig. 1.1. 



16 

Fig. 1.1 Formulae for phosphate esters 

0 

R — 0 — P — O H R — 0 — ; 

OH 

0 

•p-

OH 

PHOSPHOMONOESTER PHOSPHODIESTER 

R represents the organic part of the phosphate esters 

0 

R — 0 — P — 0 — R ' -P 

0 

R" 

PHOSPHOTRIESTER 

The most common catalytic breakdown studied is the breakdown of phosphomonoesters by PMEase. 

The reaction mechanism (Fig. 1.2) is divided into four steps (McComb ej al- 1979): 

1. Non-covalent binding of the substrate to the enzyme (EH). 

2. Alcohol release from the complex and Pj become covalenfly bound to the enzyme forming a 

phosphoryl-enzyme compound. 

3. Conversion of the phosphoryl-enzyme compound, through uptake of water, to a non-covalent complex. 

4. Release of Pj and regeneration of free enzyme. 

Any of the steps 2-3 can be rate-limiting for the overall reaction (McComb et 1979). 

Fig. 1.2 Reaction scheme for the enzyme catalyzed hydrolysis of phosphate esters as described by 

McComb SI al., (1979). 

R 

0 

EH + R — C — P = -P= 

0-

EH 

0-

0-

E—P==0 + R—OH 

0-

0: n- OH 0-

1 3 \ / 4 i 
E — P = 0 + H^O EH • P==0 EH + HO—P==0 

0- 0- 0-
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PMEase activity will primarily depend on the type and concentration of substrate and enzyme. 

Other factors which affect PMEase activity are temperature, ionic stength, pH and metal ions (McComb et 

al-. 1979). Alkaline PMEases have been characterized as metallo-enzymes with an essential metal ion, 

which has been reported to be zinc in many cases (Spiro, 1973; McComb sL 21- 1979 and Torriani-Gorrini 

SIM.. 1987). 

1.522 Phosphodiesterases 

These enzymes catalyse the hydrolysis of a phosphoric diester to yield a phosphoric monoester and 

an alcohol. PDEases are able to hydrolyze a wide range of nucleotides. PDEases are distinguished into 

two categories on their ability to hydrolysze 3' and 5' nucleotides. PDEase I hydrolyzes nucleic acids to 

nucleoside 5'-phosphate and pDEase I I hydrolyzes nucleic acids to nucleoside 3'-phosphates (KeUy et al., 

1975). PDEases are typically alkaline and inhibited by EDTA. The activity of EDTA treated PDEases 

is completely restored by zinc and partially by calcium and magnesium (Ito sL M- 1987), which suggests 

that PDEases are also zinc-metallo enzymes like PEMases. PDEases in aU cases are inhibited by Pj and 

in most cases PDEases are inhibited by ascorbic acid. 

1.53 Bacterial phosphatase activity 

Many studies have been made on phosphatase in bacteria. Much of what is known about the 

function and physiology of phosphatases is derived from studies on E.coli (McComb ej al., 1979) and 

phosphatase activity has been shown in bacterial strains isolated from lake water. More specific studies 

on aquatic bacterial phosphatase have been made with marine species. Marine bacteria, in general, 

appear to have phosphatases that are located in the periplasmac space (Thompson & Macleod, 1974a, b). 

1.54 Algal phosphatase activity 

Phosphatase activity has been found in all major groups and numerous species of algae. Synthesis 

of phosphatases with external function has been frequently demonstrated in cultured algae (Kuenzler, 

1965; Healey, 1973; Wynne, 1981). Phosphatases are located on the cell surface or in cell membranes 

and the release of extacellular phosphatase in cultures is frequently reported (Healey, 1973; Aaronson & 

Patni, 1976). 
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Phosphatase activities in aquatic environments have often been attributed to algae (Petterson, 1980). 

The major amount of work on activity in aquatic environments has concentrated on extracellular 

phosphatases (Jansson 1988), which can make up a substantial amount of the activity in lake waters. 

Extracellular phosphatases are generally defined as those which pass through 0.45 |xm membrane filtrs. 

The characteristics of extracellular phosphatses do not differ from "cell-bound" phosphatases (Rynn et al, 

1986). It is not clear how, or to what extent, active secretion of phosphatases takes place and whether it 

is more beneficial to release or to localize them on the external cell surface (Jansson si M-, 1988). 

1.55 Characteristics of algal phosphatases 

1.551 Acid and alkaline 

Phosphatases have maximum hydrolyzing capacity at different pH values and hence the common 

division into acid and alkaline phosphatases. Acid phosphatases generally have the highest activity 

between pH 4 - 6 and alkaline between pH 8 -11. Both acid and alkaline phosphatases have been found 

as extracellular and cell-bound enzymes in algae (Siuda, 1984). The alkaline phosphatases with 

extracellular function are the most studied type in aquatic ecosystems. 

In many aspects acid and alkaline phosphatases share essential characteristics. Both types have a 

broad specificity against different substrates, i.e. tiieir activity is restricted only to tiie P-0 bond on \ht 

phosphomonoesters. However, alkaline phosphatases differ in that they require cations for activity and 

are inhibited by chelators such as EDTA, whereas acid phosphatases have no cationic requirement and 

spcifically inhibited by fluoride. 

Acid and alkaline phosphatases show essential difference concerning their location in the cell and 

mode of synthesis. Acid phosphatases are intracellular (cellular) whereas alkaline are in contact wiUi the 

surrounding medium i.e. bound to the cell membrane, wall or sheath (Wynne, 1977; Siuda, 1984). In 

contrast to alkaline the synthesis of acid phosphatase is generally not inhibited by Pj (Wyrme, 1977). It is 

possible that acid phosphatases are constitutive enzymes produced for internal P-metabolism, whilst 

alkaline phosphatases have external functions and a synthesis which is induced or repressed depending 

upon die P status of tiie alga (Jansson et 1988). 
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1.552 Temperature dependence 

Algal phosphatases have QJQ values between 1.5 and 3 and temperature optima between 30 - 60°C, 

which is usually above the temperature of the original environment Ruber and Kidby (1984) showed 

that temperature optima of algal cultures and field populations were between 25 - 50°C. 

1.553 Effect of ions 

The ionic requirements for algal phosphatases vary considerably. The activity of phosphatases in 

many algae can be enhanced by the addition of Ca2+ (Healey, 1973). The effect of Mg2+ on phosphatase 

activity is less clear. Zinc may shghtly inhibit activity but has been reported as an activator in a 

multicellular marine alga (Walther & Fries, 1976). There are also reports of cobalt, iodine, manganese 

and potassium being stimulatory and cobalt and maganese being inhibitory (Walther & Fries, 1976) 

1.554 Stability 

Extrtacellular phosphatases are functional for long periods under axenic conditions. Alkaline 

phosphatases when incubated with chloroform-saturated water, decreased in activity by 20% over 10 days 

(Berman, 1970). Jansson ei (1984) found that extracellular acid phosphatases remained active after 

20 days and 10% of the original activity remained after 69 days. However, the mechanism for the 

inactivation or break down of phosphatases in §itu remains unclear. 

1.555 Control of synthesis 

The synthesis of enzymes is influenced most by the substrate supply or reaction products. Inducible 

phosphatases are those where synthesis starts in the presence of suitable substrate, and constitutive are 

enzymes produced independently of an activator, i.e. they are more or less constantly synthezed in the 

cell. Induction, where phosphatase activity is enhaced by the addition of a substrate, seems uncommon 

or rarely investigated. 

Algal acid phosphatases seem to be mostly constitutive while alkaline phosphatases are inducible. 

Acid phosphatases are located internally, whilst alkaline have external functions (1.551). Therefore, 

alkaline phosphatases supply algae with Pj from outside the cell and are regulated by the internal P, pool 

(Fitzgerald & Nelson, 1966; Wynne, 1977). When the internal Pj pool is filled, synthesis of alkaline 
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phosphatases is stopped, and when the pool is depleted to a particular level, alkaline phosphatase 

synthesis is induced. 

1.556 Alkaline phosphatase activity as a phosphorus-deficiency indicator 

Studies on P-limited marine and freshwater algae have shown that the production of alkaline 

phosphatases stopped when the algae were P-sufficient (Kuenzler & Perras, 1965; Fitzgerald & Nelson, 

1966). These two papers were the basis for the use of algal alkaline phosphatase as biological indicators 

of the P-status of tiie environment. Healey (1982) confirmed that many algal species respond sufficientiy 

similarly to phosphorus deficiency to permit measurments of phosphatase activity on natural populations. 

The induction of the alkaline phosphatase under P-limmited conditions seems to be a characteristic 

phenomenon which allows this enzyme assay to be used as a measure of P-limited growth. Studies have 

revealed that there is an inverse relationship between alkaline phosphatase activity and phosphorus in 

aquatic ecosystems (Wynne, 1977; Pettersson, 1980,1985; Franko, 1984; Chrost et M-. 1984). In each 

case low alkaline phosphatase activity was associated with high concentrations of P. High alkaline 

activity was only detected when the P concentration was low. 

Induction of alkaline phosphatase activity is often associated with low total cellular P concentration, 

low polyphosphate concentration and high polyphosphate synthetase activity (Healey, 1982). Therefore, 

alkaline phosphatase activity, total cellular P, polyphosphate concentration and polyphosphate synthetase 

activity are in themselves P-deficiency indicators. However, they are not independent of each other since 

repression-induction of alkaline phosphatase activity is controlled by cellular P fractions, probably 

polyphosphate (CembellaglM- 1984a). 

The usefiilness of phosphatase as indicator of P-deficiency has been argued. CembeUa et al.( 1984a) 

concluded that "the current practice of using assays of alkaline phosphatase as bio-indicators of the 

nutritional status of the environment is probably reckless and fi-aught with undesirable complications". 

They agreed tiiat phosphatases from zooplankton, bacteria, degenerating ceUs, external input of 

phosphatases, dissolved and constitutive phosphatases could all decrease the significance of the assay as 

an indicator of P-deficiency. Increased phosphatase activity can also be induced by factors otiier than P-

deficiency. Wilkins (1972) showed that alkaline phosphatase activity in E. eoli was induced by a 

deficiency in pyrimidines and guanine and not a lowering of the internal Pj pool. Variations in 
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phosphatase activity during the day have also been demonstrated (Reichardt, 1971; Chrost £l al-, 1984). 

This stresses the problem that even the time of sampling is a factor influencing phosphatase activity. 

Aims 

The overall aim of this study was to investigate the presence of phosphatase of algal populations in 

high zinc streams. 

1. The initial aim was to study the distribution of phosphatase activity of algal populations growing in 

these high zinc environments. 

2. Second aim was to examine the relationship between phosphatase activity and chemical variables and 

particularly with N : P ratio and phosphates in the water. 

3. A further aim was to examine if phosphatase activity in these high-zinc streams is associated directly or 

indirectly with the high zinc concentrations. 

4. The fourth aim was to examine the hypothesis that high phosphatase activity in these streams may be 

associated with high ratio of organic to inorganic phosphate. 
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CHAPTER 2 

MATERIALS AND METHODS 

2.1 Computing and statistical treatments 

The text for this dissertation was processed with Microsoft word 5.0 running on an IBM PS/2 model 

30. Alkaline phosphatase data conversion carried out with Quattro Pro Spreadsheets. 

For phosphatase activity and environmental variables Spearman's rank correlation was employed. 

The test with histograms showed that the above data do not foUow the normal curve by locating the center 

and indicating the spread around tiie center (Pisani, 1987). 

2.2 Chemicals 

2.21 Media 

Reagents used in the preparation of media were of Analar grade, obtained from British Drug House 

Ltd (BDH), Poole, Dorset. 

2.22 Substrates used for assaying phosphatase activity 

Table 2.1 Substrates used for assaying phosphatase activity 

Reagents Supptier 

(p-nitrophenyl phosphate disodium) (pNPP) 

bis (p-nitrophenyl) phosphate 

Sodium salt (bis-pNPP) 

Sigma Chemical Co., USA 

Sigma Chemical Co., USA 
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2.3 Common procedures 

2.31 Absorption 

2.311 Shimadzu spectrophotometer 

AU large volume i.e. more than 300 \il colorimetric analysis were carried out using a Shimadzu 

Digital Double-Beam Spectrophotometer (model UV-150-2). Glass cuvettes with a path length of 4 cm 

were used for all readings between the visible and infra-red range of the spectrum. 

2.312 MCC Plate Reader 

The MCC plate Reader was used for a large percentage of colorimetric analysis on alkaline 

phosphatase activity (APA). Assays using pNPP and bis-pNPP as substiates, Absorbance program 1 and 

Filter Code 1 (405nm) were used. 

2.32 Flame atomic absorption spectrophotometry 

Samples for Zn, Ca and Mg measurement, were analysed witii a Perkin-Elmer 5000 Atomic 

Absorption Spectrophotometer and Automatic Burner Control Unit using an air-C2H2 flame (gas box 

settings =28:35) and deuterium-arc lamp background correction. The sensitivity of the 

spectrophotometer was enhanced by replacing the flow spoiler with an impact bead, whilst concentrations 

of Zn below 0.2 mg 1"! were detected on a chart recorder with expansion factors of 1 to 12. The machine 

was calibrated with standards made from 1000 mg 1"1 Zn solutions (BDH "spectrosol"). 

2.33 Assay for alkaline phosphatase activity 

2.331 Preparation of algal material for analysis of alkaline phosphatase assays 

Algae were washed in stream water and transferred into flasks witii assay media. They were 

centrifuged in 50 ml MSE non-sealable polyefliylene centrifuge Uibes, in a SS-34 8 x 100 ml angle head 

rotor, using a SorvaU RC-5B refrigerated superspeed centrifuge at 8000 x g for 15 min. The algal peUet 

was washed in MQ water and recentrifuged. After the second centrifiigation, the supernatant was poured 
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off and the peUet was resuspended in 25 ml assay medium. The algal material was homogenized by 

passing it through a graded series of syringe needles. The algae were sonicated in a MSE soniprep 150 at 

an amplitude of 26 |am for 1-3 min. During sonication the algal homogenate was cooled with an ice 

jacket. 

2.332 Assay procedure for alkaline phosphatase activity using the MCC plate Reader 

The assay was carried out in microwell plates with a total reaction volume of 330 j i l . A 

multichaimel pipette was used to fill all eight wells in a column at a time. The pH range used was 5.0 to 

11.0 and at each pH unit the sample had 8 replicates i.e.each column corresponded to each pH unit. 100 

| i l of standard buffer and 50 ̂ 1 of algal material were pipetted into tiie microwells. 30 ^il of 4.95 M 

NaOH was pipetted into 4 wells at each column before substrate was added. These weUs were the 

control of the same material at each column. The microwell plates were transferred to the growth room at 

25°C where 150 | i l of substrate solution was pipetted to aU assay and control wells. The addition of tiie 

substrate was the start of the assay which was incubated for 60 minutes At the end of the incubation, 30 

|xl of 4.95 M NaOH was added to assay wells to terminate the activity and fully develop tiie yellow pNP 

colour. The absorbance of all assay and control weUs was read on tiie Titertek plate reader. 

2.333 Measurement of phosphatase activity 

The absorbance values obtained at each pH unit for each sample were converted into concentration of 

pNPP hydrolysed (|i,moI ml'^), using a series of standard solutions of pNP standard solution (Appendix 

3). The algal concentration used in the assay well was calculated from the dry weight of each sample (|j.g 

ml"^). The enzyme activity(M,mol mg d.wt"^) was obtained by dividing tiie pNP concentration by tiie 

algal concentration and multiplying by 1000. All tiie calculations were carried out by a Quattro Pro 

Spreadsheet. 

2.334 Effect of pH on phosphatase activity 

The buffers were 50 mM (final concentration), which was chosen as a suitable concenQ-ation for buffering 

physiological media. At each pH unit duplicate buffers and another third at die range of 7.0 to 10.3 pH 

were used to compensate for any inhibition of phosphatase activity by the buffers used (Table 2.2). 
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Table 2.2 Buffers used to investigate effect of pH on phosphatase activity, (final assay buffer conc.= 50 

mM) 

pH buffer buffering range pKa at 25 ° C 

3.0 DMG-NaOH 3.2- 7.6 3.66, 6.20 

3.0 glycine-HCL 2.2- 3.6 2.35, 9.60 

4.0 DMG-NaOH 3.2- 7.6 3.66, 6.20 

4.0 succinic-acid-NaOH 3.8- 6.0 4.18, 5.60 

5.0 DMG-NaOH 3.2- 7.6 3.66, 6.20 

5.0 succinic-acid-NaOH 3.8- 6.0 4.18, 5.60 

6.0 DMG-NaOH 3.2- 7.6 3.66, 6.20 

6.0 succinic-acid-NaOH 3.8- 6.0 4.18, 5.60 

7.0 DMG-NaOH 3.2- 7.6 3.66, 6.20 

7.0 HEPES-NaOH 6.8- 8.2 7.50 

7.0 EPPS-NaOH 7.3-8.7 8.0 

8.0 TES-NaOH 6.8- 8.2 7.50 

8.0 HEPES-NaOH 6.8- 8.2 7.50 

8.0 EPPS-NaOH 7.3- 8.7 8.0 

9.0 AMeP-NaOH 9.0- 10.5 9.69 

9.0 glycine-NaOH 8.6- 10.6 2.35, 9.60 

9.0 EPPS-NaOH 7.3- 8.7 8.0 

10.0 AMeP-NaOH 9.0- 10.5 9.69 

10.0 glycine-NaOH 8.6- 10.6 2.35, 9.60 

10.0 CAPS-NaOH 9.8- 11.1 10.40 

10.3 AMeP-NaOH 9.0- 10.5 9.69 

10.3 glycine-NaOH 8.6- 10.6 2.35, 9.60 

10.3 CAPS-NaOH 9.8- 11.1 10.40 

11.0 CAPS-NaOH 9.8- 11.1 10.40 

11.0 N2C03-NaHC03 9.2-10.8 10.33 
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2.4 Standard culture techniques 

2.41 Cleaning of apparatus 

AU glassware and plastic apparatus were cleaned by soaking in 2% Decon 90, a phosphate free 

detergent (Decon Laboratories Ltd, England) for 20 minutes. The apparatus were rinsed six times in 

distUled water. AH volumetric glassware was dried at room temperature. Plastics were dried at 40°C 

and other glassware at 100°C. 

2.42 Media 

2.421 ChulO-F 

This medium, a modification of the No 10 formula of Chu (1942) was used for growth of algal field 

material. The medium was prepared according to a recipe using concentrated stock solutions (Sinclair, 

1977) (Table 2.3). HEPES was used to adjust tiie pH to 7.5. The elemental composition of the standard 

media is presented in Table 2.4. 

2.422 Assay medium 

The concentration of mineral salts and elements of assay medium is presented in Tables 2.3 and 2.4, 

respectively. 
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Table 2.3 Concentration of mineral salts in Chu 10-F and in assay medium 

Salt ChulO-F assay medium 

|XM ligl-^ 

KH2PO4 4.39 32.0 

MgS04 7H2O 25.0 101.4 25.0 101.4 

Ca(N03)2 4H20 40.0 169.4 - -

NaN03 55.64 654.0 - -

NaHC03 15.80 188.6 15.80 188.6 

Na2Si03 10.87 12.8 - -

FeCl3 6H2O 1.94 7.2 0.97 3.6 

NaEDTA 2.67 7.2 1.33 3.6 

H3BO3 0.715 11.50 2.860 46 

MnCl2 4H2O 0.453 2.30 1.810 9.10 

ZnS04 7H2O 0.055 0.20 0.222 0.77 

Na2Mo04 2H2O 0.007 0.03 0.390 1.61 

CUSO4 5H2O 0.019 0.08 0.079 0.31 

C0SO4 7H2O 0.010 0.04 - -

Co(NO)3 6H2O - - 0.049 0.16 

NiS04 7H2O - - 0.048 0.16 

NaOH *c.60 1500.0 - -

HEPES 600.0 2517.0 - -

KCl - - 4.27 57.3 

CaCl2 2H2O - - 35.87 278 

* NaOH used to adjust pH 
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Table 2.4 The elemental concentration in Chu 10-F and in assay medium 

Element Chu 10-F 

^gl-^ ^iM 

assay medium 

^gl-^ ^M 

CI 0.92 25 22.72 641 

N 14 9921 0.002 0.14 

Ca 6.7 169 11.13 278 

Na 55 2391 4.4 190 

S 0.009 0.028 0.039 1.2 

Mg 2.5 100 2.5 100 

K 1.25 32 2.23 57 

Si 1.43 51 - -

P 1.0 32 - -

B 0.125 11.5 0.46 46 

Fe 0.4 7.2 0.2 3.6 

Mn 0.12 2.3 0.50 9.1 

Zn 0.01 0.019 0.05 0.77 

Cu 0.005 0.079 0.02 0.31 

Co 0.002 0.043 0.009 0.16 

Ni - - 0.01 0.16 

Mo 0.002 0.028 0.15 1.6 
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2.5 Sample collection and preparation 

2.51 On-site 

An number of physical and chemical factors were measured at the time of sampling. Conductivity 

and temperature were measured using a WTW (model FC910. pH was measured using a WTW (model 

pH91) pH meter with temperature display. 

2.52 Algal samples 

Samples of algae were collected using forceps; they were placed in polyethylene together with 

stream water and were kept on ice for transport back to the laboratory. After arrival at tiie laboratory, die 

material was kept in the fridge until tiie following day when the assaying procedure was carried out. 

2.53 Water samples 

Water was collected in acid-washed, iodized polypropylene botfles. Each bottie was rinsed tiiree 

times and filled, expelling all air. Sample bottles were returned to the laboratory in a box filled witii ice. 

The water for phosphate analysis was immediately passed through a GF/C filter. MQ-water was passed 

through the GF/C filter as a control sample for the phosphate analysis. After filtration, water for 

phosphate and nitrite analysis was stored at -20°C imtU analysis could be carried out. 

2.6 Chemical analysis 

2.61 Nitrite 

Nitrite was determined by the method of N-l-naphthyletiiylenediamine dihydrochloride (Stainton et 

2l.,1977). 

2.62 Nitrate 

Nitrate was reduced to nitrite by a cadmium-copper couple and analysed as for nitrite (Stainton et al-. 

1977). 

2.63 Ammonia 

Ammonia was determined by tiie indophenol blue method (Stainton gt al., 1977). 
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2.64 Phosphate 

2.641 A simplified phosphorus analysis technique 

Phosphorus analysis was carried out by a simplified phosphorus analysis technique by Eisenreich £i 

al., 1975. The method results in a 70 % decrease in analysis time for multiple samples and about a 30 % 

increase in sensitivity. The method can be directiy applied to water samples with P levels of 2 to 1100 |ig 

P H . 

2.642 Phosphate fractions measured 

The terminology of the various fractions measured corresponds approximately to that in American 

Public Health Association (APHA) (1980). In tiiis stiidy, Filtrable Reactive Phosphorus (FRP) and Total 

Filtrable Phosphorus (TFP) were determined. FRP is that which is detectable by colorimetry witiiout 

further treatment. TFP is that which is detectable by colorimetry after digestion witii acid sulphate, 

which hydrolyses most organic and any condensed phosphates. The difference between FRP and TFP 

gives filtrable organic phosphorus and filtrable acid hydrolysable phosphate in APHA terminology. For 

simplicity, the difference is termed simply "filtrable organic"-P. 

2.643 Experimental 

(i) Stock solutions and Reagents 

Four stock solutions were prepared for the phosphate analysis. From these solutions, three reagents 

were prepared daily for use (Table 2.5). 

Table 2.5 Stock solutions and reagents used for phosphate analysis 

Stock solutions Reagents 

A H2S04-Antimony 

B Molybdate 

C Digestion acid (concentrated H2SO4) 

D Phosphate standard solution 

Digestion Reagent (K2S2O8, C) 

Mixed Reagent I (A, B, ascorbic acid) 

Mixed Reagent II (A,B,C, ascorbic acid) 
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(ii) Procedure 

1. Determination of FRP 

From the phosphate standard solution, a calibration curve was prepared at die range of 10 |j.g 1'̂  to 

100 ]ig 10 replicates of each sample were prepared and an addition of P was carried out at each 

replicate. The addition in the first replicate was 10 \ig and in the tenth was 100 |j,g with a difference 10 

|j,g between each replicate (Appendix 1,2). AU samples were prepared in a 125-ml Erlenmyer flasks of 

25 ml volume. Two control samples also were carried out through tiie procedure. 15 min were aUowed 

for the colour development after tiie addition of reagent I I and tiie solution absorbance was measured at 

882 nm in 4 cm ceU against MQ-water. 

2. Determination of TFP 

For TFP, the calibration curve and samples were prepared in the same way as for FRP, except tiiat a 

digestion reagent was added to the samples which were tiien autoclaved for 30 min at 15 psi. After tiiis, 

reagent I was added and tiie absorbance was measured as above. 

2.7 Algae tested for phosphatase activity 

All algal samples tested for phosphatase activity consisted of filamentous green algae (Tables 5.1, 

5.2). They were examined under a type 109 Nikon Fluophot microscope, fitted with a Nikon micrometer 

eyepiece. Some samples had mixed algal species. Estimates of abundance for species within each 

sample were made on slides under the microscope. Although the estimates were subjective, tiiey 

indicated the relative abundance. This abundance was roughly estimated as a percentage. The samples 

were also examined for organisms other than algae. In this study, therefore, each algal sample consisted 

eitiier of a single population or a mixture of populations. 

The algal material was tested for phosphatase activity after 2 days of the collection date. For 

practical reasons it was impossible to test them in shorter time after collection (2.331) Care was taken by 

preserving them in tiie refrigerator in order to minimize changes in the material. 
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CHAPTER 3 

3 F I E L D SITES AND SAMPLING PROGRAMME 

3.1 Indroduction 

This chapter presents some background information on the sites, which were sampled for the study of 

phosphatase activity of algae present in these high Zn level streams sites. The sampling programme of 

this study is also presented here. 

3.2 General background to areas of study 

The study area is situated in tiie Permines, which constitute die dominant feature in the physiography 

of the North England. The Northern Pennine Orefield covers an approximate 3885 km^ in tiie counties of 

Cumbria, Northumberland, Durtiam and West Yorkshire. It is divided into two complementary halves by 

the Stainmore Gap. The area of study is situated in the northeriy half. This area is drained by the tiiree 

principal rivers of North-eastem England, tiie Tyne, Wear and Tees. The waters of of these catchments 

have been the subject of a wide range of studies (Home, 1977) and are easily accessible from the 

University of Durtiam. In the present study, sites in the Tyne and Wear River systems were visited 

(Table 3.1, Fig. 3.1). 

Anthropogenic influence comes mainly from agriculture and mining activities in these river systems 

studied. Mineral veins are reported to have been mined since pre-Roman times (Raistrick & Jennings, 

1965), but most of the mining activity took place in the nineteenth century. Many mine drainage water 

empty into these river systems, most being from disused mines (Harding & Whitton, 1976), polluting 

many of the upland sreams with heavy metals, heavy metals are also introduced by seepage from heaps of 

mine taUings (Say & Whitton, 1981) (Fig. 3.2). 

The upland areas are mainly covered by peat and heather moors, witii pasture giving way to crops 

intiie lower reaches (Whitton & Crisp, 1984). In general tiie upland areas have higher rainfall, more 

persistent cloud cover and lower temperature than the lowlands areas. The banks of many of tiie upland 

tributaries have littie or no tree cover. 
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3.3 Sites of study 

1. Caplecleugh Low Level 

This site is a small stream draining firom an adit of the Caplecleugh Mine in the village of Nenthead, 

Cumbria. Caplecleugh mine was previously a major source of lead and zinc concentrates in the Northern 

Pennine Orefield (Dunham 1948). The stream drains into the R. Nent which itself drains into the R. 

South Tyne (Fig. 3.2). 

2. Rampgill Level 

This site is a smal, zinc-rich stream that flows into the Nent from a tunnel, in the village of Nenthead. 

The stream is exposed for about one metre of its path and then flows uderground until its mouth, which 

was the point of sampling. 

3. "Shield Hilltop" 

This site is a zinc-rich, low flow small stream draining from an adit, near to the village Garrigill. 

The stream flows for 15 m before drainig into another sreara which is tributary to Brown Gill. 

4. GillgillBurn 

Gillgill Bum is a Zn-rich small upland stream near to the village of Nenthead. It originates as a 

spring from old waste tailing tip, receives drainage and percolations from surrounding tips. 

5. Mine at Newberryside 

This site is a relatively low polluted stream near to the town Alston and is tributary to R.South Tyne. 

6. KilhopeBurn 

This site is an acid, small stream in a mooriand, upland sheep grazing area. The water draining from 

the fells is acid and organic-rich. 
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7. R. West Allen 

This site is a low polluted stream in upland sheep grazing pasture area. It drains from top of fells 

and moorland. 

8,9. R. East Allen 

These two sites are the R. East AUen (8) and the spring stream (9) beside to river in the Sipton Shield 

area (Allendale common). R. East AUen drains from upper feUs and receives tributaries from meadow 

pastures. Site 9 is a spring calcareous, slow flow stream with relatively high zinc concentration. 

10. Sites in the village Nenthead (11,13,14) 

These sites come from an area of old mine buildings including an old dressing floor, a smelting mill 

and a large number of tailings heaps right up the valley towards the upper Nent. Sites 10 and 14 are 

small, slow flow streams draining from adits, with relatively high levels of Zn. Site 13 is a small spring 

stream with high Zn concentration. Site 11 is a small stream with a low Zn concentration. 

12. "Brown Gill tributary" 

Brown Gill tributary" is a Zn-rich acid stream, direct run-off from spoil heaps of old mine workings, 

in a sheep-grazing area near to Garrigill. 

3.4 Sampling programme 

Samples were collected during June, July and August. The sampling was carried out in two surveys 

(A & B). In survey A, three sites were chosen for intensive study: Caplecleugh Low Level, Rampgill 

Level and "Shield Hilltop" (3.3). Water and algal samples were collected from each site on five 

occasions. Each time, phosphatase activity and enviroimiental variables were measured. In survey B, 14 

sites were sampled once on 29/08/90 (Table 3.1). Phosphatase activity of algal organisms as well as the 

environmental variables for each site were measured. In this survey, particular attention was paid to 

phosphate analysis as well as the influence of buffering on phosphatase activity. 
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Table 3.1 Sites visited for the study of phosphatase activity of algal samples 

No Site Grid Stream * Environment 

reference reach 

1 Caplecleugh Low Level NY782435 0097-01 Zn-rich mine drainage 

2 RampgiU Level NY782435 0096-01 Zn-rich mine drainage 

3 "Shield Hilltop" NY752424 Zn-rich mine drainage 

4 Gillgill Bum NY795440 0093-01 Zn-rich upland stream 

5 Mine at Newberryside NY728448 Low polluted calcareous stream 

6 Killhope Bum NY807434 Acid small upland stream 

7 R.West Allen NY802449 0085-05 Low polluted upland stream 

8 R.East Allen NY847497 Low polluted calcareous river 

9 R.East Allen NY847497 Zn-rich spring small stream 

10 Village Nenthead NY787428 Mine drainage (slow flow) 

11 Village Nenthead NY784434 Small stream tributury to R. Nent 

12 "Brown Gill tributary" NY764423 0108-08 Zn-rich acid stream 

13 Village Nenthead NY785433 Zn-rich spring small stream 

14 Village Nenthead NY786420 Mine drainage (slow flow) 

* Stream reach is a code number for recognised sites which are listed in Durham database of river 

envirorraiental data. 



Fig. 3.1 Location of 14 sampling sites in the Northern Pennine Orefield 
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Fig. 3.2 View of Caplecleugh Low Level from which mine water is discharged. The 

mine water is directed into the river by the remnants of a water leat channel 

(The picture used was taken in summer 1981 by Dr B.A. Whitton) 
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CHAPTER 4 

PHYSICAL AND C H E M I C A L VARIABLES 

4.1 Introduction 

In order to provide environmental information for the study of phosphatase activity of algal samples 

from the field sites, selected variables were measured. These provided information about die 

environment where the algal populations had been growing so that relationships between phosphatase 

activity and envimmental variables could be examined. Measurements were carried out in two surveys 

(A, B) (3.4). Results of survey A water analysis are given in Table 4.1. Phosphate measurement in this 

survey was incomplete and results therefore are not included in Table 4.1. Results for survey B water 

analysis are given in Table 4.2. Major emphasis was placed to phosphate analysis by employing the 

procedure of phosphate additions to the samples in order to minimise errors and to measure more 

accurately low concentrations. In this survey, water samples were designated from 1 to 14 corresponding 

to the sites from where they were collected (Table 3.1). 

4.2 Mg, Ca and Zn concentration 

Survey A. The three streams sampled in this survey are typically highly buffered, have a pH greater than 

7.0, contain high concentrations of dissolved zinc and high concentrations of dissolved calcium. The 

feature of the water in these streams is the constancy of its chemistry. The concentrations of Mg, Ca and 

Zn were approximately at the same level on the five occasions of sampling (Table 4.1). 

Survey B. The water chemistries of the 14 sites reflect the different origins of the water in these streams. 

pH values ranged from 3.9 to 8.7 and most sites had a pH greater than 7.0. Calcium concentrations 

ranged from 2 mg 1"̂  to 98.6 mg 1"̂ . Zinc concentration ranged from 0.1 mg 1"̂  to 19.4 mg 1"̂  with 7 of 

die 14 sites above 1 mg l ' ^ Zn (Table 4.2, Fig. 4.1). 

4.3 Nitrate, nitrate and ammonia concentrations 

Survey A. Nitrate-N concentrations were relatively high with small variations between the five occasions 

in each site. Nitrite-N and ammonia-N concentrations were below the detection limits of the analytical 

technique (Detection limit < 5 |ig N) (Table 4.1). 
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Survey B. Nitrate-N concentrations were relatively high in the majority of the sites. Nitrite-N 

concentrations were below 5 |ig 1'̂  in all sites and anmionia-N also concentrations were below 5 |ig 1"̂  in 

the majority of the sites (Table 4.2, Fig. 4.2). 

4.4 Phosphate 

Survey A. Only FRP concentrations were determined. All the values were below the detection limit on 

all occasions (Detection Umit < 5 |i.g 1'̂  P). 

Survey B. For FRP and TFP determination in this survey, the procedure of adding known concentrations 

of P to each sample was employed. Each sample was measured eleven times, one as single and ten with 

additions, so that any contamination or interference of P with other elements in the sample was able to be 

detected. FRP and TFP were determined by comparing the absorbance value of each sample with the 

calibration curve using standards of known concentrations of P (Fig. 4.3, Appendix 1, 2). In the majority 

of the samples, the concentration of P in the replicates of each single sample was close to concentration of 

the single sample after substracting the added P values. However, there were some exceptions and 

particularly for TFP determination where the concentration of P in the replicates with the highest added P 

values was not close to the concentration of the single sample after substracting the added values (e.g. 

samples 1,4). The above indicate that contamination or interference was negligible in most of the 

samples. The values of the single samples are taken into account for FRP and TFP determination. 

TFP exceeded FRP for 9 of the 14 samples. In two samples the concentration of TFP was 

approximately the same as of FRP (sample 4,12), but in three samples the concentration of TFP was far 

lower of FRP (samples 3,10,14). For practical purposes the concentration of TFP is assumed to be equal 

to FRP in the last tiiree samples (Table 4.2, Fig. 4.2). 
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Fig. 4.1 Mg, Ca and Zn concentrations of 14 sites sampled in survey B 
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Fig. 4.3 Calibration curve and phosphate additions procedure employed for the determination of FRP and 
TFP of 14 samples from 14 sites in survey B 
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Fig. 4.3 continued 
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CHAPTER 5 

PHOSPHATASE ACTIVITY 

5.1 Introduction 

The presence of phosphatase activity and its relation to water chemistry in the high-zinc streams was 

studied in two surveys (A, B) (3.4). In the first, the response of phosphatase activity to pH throughout the 

five occasions was examined (1.551). The presence of mixed populations in the samples was also 

examined. In aU occasions the samples were tested for phosphomonoesterase (PMEase) activity and in 

one occasion apart from PMEase they were tested for phosphodiesterase (PDEase) activity (1.522). 

In the second survey, the response of phosphatase activity to pH in these sites with the different 

water chemistries was examined(l .551, Table 4.2). The relationship between phosphatase acitvity and a 

number of environmental variables was examined. Particular attention was paid to buffering system 

used. In both surveys phosphatase activity was tested over a broad pH (3.0 -11.0) using two different 

buffers at each pH unit. In survey B, a third buffer was used in the range from 7.0 to 10.3 (2.4). Samples 

in this survey were tested only for PMEase activity (1.52). The algal samples were designated from 1 to 

14 corresponding to the sites from where they were collected (Tables 3.1,5.2). 

5.2 Effect of pH on phosphatase activity 

5.21 Influence of the buffering system used on phosphatase activity 

Survey A. Phosphatase activity of algal samples tested in survey A is expressed with buffers which led to 

the higher enzyme activity (Figs 5.1,5.2,5.3). 

Servey B. The different buffers used at each pH unit showed variable values of phosphatase activity in 

each sample as well as different influences on phosphatase activity between the samples (Table 5.3). 

Because of these variations the phosphatase activity of each sample is presented in two ways with respect 

to the buffers (Fig. 5.5): 

(a) Buffer which led to the higher enzyme activity 

(b) Common group of buffers for aU the samples 

In Fig. 5.5 each sample is presented twice in both ways: a and b. Examples of the influence by buffers on 
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phosphatase activity are given below (Table 5.3 and Figure 5.5): 

1. Succinic acid buffer permitted enzyme activity in the majority of samples at pH 4.0. 

2. Glycine-NaOH permitted higher activity at pH 9.0 and 10.0 than the other two buffers (sample 1,2,3 

& 13). 

3. EPFS and CAPS permitted much higher activity at pH range from 7.0 to 10.3 than the other buffers at 

the same range (sample 7). 

4. Glycine-NaOH permitted higher activity than AMeP-NaOH at pH 9.0 in sample 1,2 and 3, whereas it 

permitted lower enzyme activity than AMeP-NaOH at the same pH in sample 4, 5 and 11. 

Fig. 5.1 shows however, that the majority of samples exhibited similar pH profiles in both ways 

except the case of the succinic acid interference at pH 4.0 and the sample 7. In all samples the 

phosphatase activity that is expressed with the buffer which led to higher activity will be taken into 

account without considering the case of succinic acid and sample 7. 

5.22 The pH profiles of phosphatase activity of algal samples tested 

Survey A. The algal populations present in the samples collected from three sites were Mougeotia spp.. 

Ulothrix spp. and Stigeoclonium (Table 5.1). Samples from sites 1 and 2 always had mixed populations. 

In order to examine the contribution of each algal population to phosphatase activity of the samples, one 

population was separated from each field sample collected on 19/07 and allowed to grow in the laboratory 

for 7 days. It was then tested for phosphatase activity. 

Mougeotia spp. Two Mougeotia populations 3.5 ̂ m and < 8 |xm were present in the samples from 

site I . Phosphatase activity of the samples showed the same pH profile on all occasions except the 

sample collected on 02/0S/90. The samples showed activity in the alkaline range with peak at pH 10.0 

and in a broad range with peak at pH 4.0. From sample collected on 19/07/90, Mougeotia < 8 p-m was 

separated for growth in the laboratory. It showed low enzyme activity (Fig. 5.1). 

Ulothrix spp. These were present with Stigeoclonium in the samples from site 2. The pH profiles 

of the samples varied with the occassions. Samples collected on 28/06,19/07 and 02/08 showed high 

enzyme activity in the alkaline range with pH maximum at 9.0 and 10.0, whereas samples on 05/07 and 

12/07 showed lower activity in a broad range with small peak at pH 9.0. From sample collected on 

19/07, Stigeoclonium was separated for growth in the laboratory. It showed high enzyme activity in the 
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alkaline range with peak at pH 9.0 (Fig. 5.2). 

Stigeoclonium. This was present in the samples from site 3. All samples had similar pH profile and 

showed high enzyme activity with peak at pH 10.0. The separated Stigeoclonium from sample collected 

on 19/07, after growing in the laboratory, showed high enzyme activity with peak at pH 10.0 and 10.3 

(Fig. 5.3). Stigeoclonium in samples fi-om both sites 2 and 3 had hairs. 

Survey B. The algal populations present in the samples from 14 sites were Stigeoclonium. Mougeotia 

spp., Ulothrix spp., Microspora. Zvgnema and Spirogvra (Table 5.2) 

Stigeoclonium. This was abundant in sample 2 and 3. In both samples, Stigeoclonium had hairs 

and both showed high enzyme activity. The pH optima of samples 2 and 3 was at pH 9.0 and 10.0 

respectively. The pH of the water from the site where the two samples were collected was near 7.8 (Fig. 

5.5). 

Mougeotia spp. Three Mougeotia populations were present in the samples: 3.5 nm, < 8 |am and > 8 

)i.m. Mougeotia 3.5 jxm was abundant in sample 1 which showed acid phosphatase activity with pH 

optima at 3.0. This sample was collected from site witii pH near to 7.7. Mougeotia < 8 ̂ m which was 

abundant in sample 9,10 and 13 which showed enzyme activity in the alkaline range. These samples 

were collected from sites with pH near to 7.5. Mougeotia > 8 |ijn was abundant in sample 4 which 

showed maximum activity in tiie range from 5.0 to 8.0 with a peak at pH 6.0. This sample was collected 

from site with pH near to 5.7 (Fig. 5.5). 

Microspora. This was present in samples 6 and 7 which showed different pH profile in the two 

samples. The sample 6 did not show activity whereas the sample 7 showed activity in the acid range witii 

a peak at pH 6.0. They were collected from sites with pH near to 4.0 and 5.5, respectively (Fig. 5.5). 

Ulothrix spp. Two Ulothrix populations were present in the samples: 7.5 um and 10 urn. Ulothrix 

7.5 ^im was present in samples 5 and 14 which showed enzyme activity in the alkaline range. The sample 

14 showed low activity with two peaks at pH 8.0 and 10.3, whereas the sample 5 showed higher activity 

witii a peak at pH 10.3. Both were collected from sites with pH near to 8.2. Ulotiirix 10 ̂ m was present 

in sample 12 which showed activity in a broad range with the highest peak at pH 5.0. It was collected 

from site with pH near to 5.2 (Fig. 5.5). 

Zygnema. This was present in sample 8 which showed low activity with a peak at pH 8.0 (Fig. 5.5). 

Spirogvra. This was abundant in sample 11 which showed activity in the alkaline range widi a peak 
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atpH 9.0 (Fig. 5.5). 

5.23 Algal samples tested for PDEase activity (survey A) 

Algal samples collected on 19/07 were also tested for PDEase. The sample from site 1 did not show 

PDEase activity, whereas the samples fi^m sites 2 and 3 showed activity in the alkaline range with two 

peaks at pH 7.0 and 9.0 (Fig. 5.4). 

Table 5.1 Algal samples collected from 3 sites on five occasions (survey A) 

Sites Algal samples 

28/06/90 05/07/90 12/07/90 19/07/90 02/08/90 

1 Mougeotia Mougeotia Mougeotia Mougeotia MougeoUa 

a 3.5 |im a 3.5 \m a 3.5 \m a 3.5 ^m a 3.5 |im 

b <8 ûn b <8 Mm b <8 nm b <8 urn b <8^m 

2 Stigeoclonium Stigeoclonium Stigeoclonium Stigeoclonium Stigeoclonium 

Ulothrix spp. Ulothrix spp. Ulothrix spp. Ulothrix spp. Ulothrix spp. 

3 Stigeoclonium Stigeoclonium Stigeoclonium Stigeoclonium Stieeoclonium 



53 

Table 5.2 Algal samples collected from 14 sites for phosphatase activity (survey B) 

Sites Alga ceU width percentage other organisms 

1 Mougeotia <8^m 10% 

3.5 ̂ im 90% 

2 Stigeoclonium 85% 

Ulothrix <8Mm 10% 

Mougeotia < 8tim 5% 

3 Stigeoclonium 

4 Mougeotia > 8 |xm 90% 

< 8 Mm 10% 

5 Ulotiirix 7.5 ̂ lm 95% obvious bacteria 

Mougeotia <8Mm 

6 Microspora <8|xm 

7 Microspora <8^im 

8 Zvgnema > 16 < 32 Mm 

9 Spirogvra > 16 < 32 Mm diatoms 

Mougeotia <8|xm 90% 

10 Spiroffvra > 16 < 32 mm 

Mougeotia <8^m 90% 

11 Spirogvra > 16 < 32 Mm 

12 Ulotiirix 10 Mm 

13 Mougeotia <8^m narrow Plectonema 

14 Ulothrix 7.5 M-m 
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Fig. 5.1 PMEase activity of samples collected ftom site 1 on five occasions in survey A (Table 5.1) 
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Fig. 5.2 PMEase activity of samples collected fmm site 2 on five occasions in survey A (Table 5.1) 
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Fig. 5.3 PMEase activity of samples collected from site 3 on five occasions in survey A (Table 5.1) 
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Fig. 5.4 PDEase activity of samples collectet from 3 sites on 19/07/90 in survey A (Table 5.1) 
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Fig. 5.5 Effect of pH on phosphatase activity of algal samples collected from 14 sites in survey B (Table 

5.2). Each sample is presented twice in two ways: a, b (5.21) 
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5.3 Phosphatase activity in relation to environmental variables (survey B) 

The relationship between phosphatase activity of 14 samples tested in survey B and a number of 

environmental variables from 14 sites was examined in two ways: 

(i) Phosphatase activity obtained at optimum pH for each sample was related to selected environmental 

variables: Ca, Zn, TFP, FRP and N : P ratio in the water (Tables 5.4,5.6). 

(ii) Phosphatase activity obtained at different pH values in the range from 7.0 to 10.3 was related to the 

above environmental variables (Tables 5.5,5.6). This approach was intended to examine if there was any 

pH at which phosphatase activity was correlated to above variables. 

In the first case, phosphatase activity was positively and negatively correlated with Zn and FRP, 

respectively (Table 5.6). In the second, phosphatase activity was positively correlated with Zn at ph 7.0 

and negatively correlated with TFP at pH 8.0. The relationship also of phosphatase activity at optimum 

pH with FRP and N : P ratio is presented in Figures 5.6 and 5.7, respectively. The scattergram in Fig. 5.6 

reflects the sUght correlation found between phosphatase activity and FRP. In Fig. 5.7, although no 

significant correlation was found between phosphatase activity and N : P ratio, tiiere are some sites where 

phosphatse activity seems to be related with N : P ratio. For example, sites 2, 3 and 9,10,13 show such 

relationships (5.22). 
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Table 5.4 Phosphatase activity (|xmol pNP mg d.wt"! h'^) obtained at optimum pH of the 14 samples 

tested (survey B). Detection limit < 0.03 ([imol pNP mg d. wt"^ h'^) 

Sample optimum pH Phosphatase activity 

1 3.0 0.151 

2 9.0 0.355 

3 10.0 0.813 

4 6.0 0.176 

5 10.3 0.105 

6 - <0.03 

7 6.0 0.075 

8 10.3 0.044 

9 10.0 0.035 

10 10.3 0.084 

11 10.0 0.083 

12 6.0 0.103 

13 10.0 0.255 

14 8.0 0.052 
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Table 5.5 Phosphatase activity obtained at different pH units in the alkalime range of the 14 samples 

tested (survey B). Detection limit < 0.03 i\mol pNP mg d. wf^ h-^) 

Sample Phosphatase activity (jxmol pNP mg d.wt"^ h" )̂ 

No pH7.0 pH8.0 pH9.0 pH 10.0 pH 10.3 

1 0.044 0.030 0.050 0.040 < 0.030 

2 0.123 0.190 0.354 0.194 0.139 

3 0.172 0.255 0.506 0.813 0.572 

4 0.163 0.124 0.047 0.035 0.034 

5 < 0.030 0.072 0.080 0.077 0.105 

6 < 0.030 < 0.030 < 0.030 < 0.030 < 0.030 

7 0.048 0.032 < 0.030 < 0.030 < 0.030 

8 < 0.030 0.030 < 0.030 < 0.030 0.044 

9 < 0.030 < 0.030 0.033 0.035 < 0.030 

10 < 0.030 0.047 < 0.030 0.039 0.084 

11 0.037 0.065 0.080 0.083 0.059 

12 0.062 0.079 0.050 0.043 0.079 

13 < 0.030 0.074 0.244 0.255 0.041 

14 0.032 0.052 < 0.030 < 0.030 0.037 
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Table 5.6 Spearman's rank correlation of phosphatase activity of 14 samples tested (survey B) with 

selected environmental variables: Ca, Zn, TIT, FRP, and N : P ratio in tiie water. (* = p < 0.05; ** = p < 

0.01;*** = p<0.001) 

Environmental Phosphatase activity (n=14) 

variable optpH pH7.0 pH8.0 pH9.0 pH 10.0 pH 10.3 

Ca 0.410 0.098 0.140 0.389 0.384 0.304 

Zn 0.685** 0.572 * 0.516 0.505 0.440 0.106 

TFP -0.434 -0.218 -0.568* -0.122 -0.319 -0.482 

FRP -0.580* -0.294 -0.260 -0.348 -0.431 -0.091 

N : P 0.450 0.221 0.200 0.429 0.507 0.120 
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Fig. 5.6 Scattergram showing relationship between phosphatase activity at optimum pH and FRP for 14 

algal samples (Table 5.2) (n=14) from 14 sites (Table 3.1) in survey B 
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Fig. 5.7 Phosphatase activity at optimum pH and N : P ratio in the water for 14 algal samples from 14 

sites in survey B 
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C H A P T E R 6 

DISCUSSION 

6.1 Phosphatase activity 

6.11 Effects of buffers used on phosphatase activity 

The activity and stability of the enzyme can be influenced by the buffering system that is used. The 

buffers used in the present study, did influence the enzyme activity. Glycine and AMeP for example had 

a different influence on the enzyme activity. The enzyme lost activity in AMeP buffer in some samples, 

whereas the glycine buffer permitted activity and vice versa (5.21). Studies on the orthophosphate-

repressible alkaline phosphatase in Neurospora.crassa. showed tiiat tiiis enzyme rapidly lost activity in an 

alkaline glycine buffer, and that this loss of activity was retarded by certain metals ions such as Câ "*", 

Zn^+ and Mn̂ "*" (Kadner & Joseph, 1969). It is probable that this influence of buffers on the enzyme 

activity is associated with such metals ions. The fact that the samples had mixed populations may also be 

associated with the different behaviour of buffere in different samples (5.21). 

6.12 Phosphatase activity of algal samples tested 

Phosphatase activity was detectable in all samples tested on five occasions (survey A) as well as in 

13 of the 14 samples tested in survey B. Most of the samples showed activity in the alkaline range. The 

highest activity observed in Stigeoclonium and Mougeotia populations. It is assumed in the present study 

that bacterial phosphatase activity is negligible in the algal samples tested. 

Mixed populations were present in the samples. It is expected that tiie enzyme activity obtained in 

samples with mixed populations is associated with the populations present in abundance. This abundance 

was estimated roughly as a percentage after examining each sample under the microscope. It is likely 

however, that the less abundant population in each sample may contribute to enzyme activity. As 

discussed below, phosphatase activity observed in samples collected in survey A may be associated wiUi 

the mixture of populations. 

Samples from site 1 showed phosphatase activity in the alkaline range on the four occasions but low 

acid activity on the fifth (Fig. 5.1). In the first two occasions the activity was lower tiian in the otiier two. 
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The two different populations of Mougeotia in this site are suspected for these variations in the enzyme 

activity. It is likely that the activity in the alkaline range is associated with the Mougeotia < 8 |im, 

whereas the activity in the acid range with the narrow Mougeotia 3.5 \m The separated Mougeotia < 8 

Jim for laboratory growth showed very low activity which is very difficult to be compared with the other 

samples. The fact that acid activity observed in sample 1 in survey B (Fig. 5.5) with Mougeotia 3.5 \im 

in abimdance, suggests that the narrow Mougeotia is associated with the acid activity. Samples from site 

2 showed activity in the alkaline range on all occasions (Fig. 5.2). A mixture of Stigeoclonium and 

Ulothrix spp. populations was present in these samples (5.3). It is likely that the low enzyme activity 

observed in samples collected on 05/07 and 12/07 is associated with the abundance of the two populations 

in the samples. The high activity of the separated Stigeoclonium suggests that Stigeoclonium was in 

abundance in samples with higher activity. Based on this interpretation, the low activity observed in the 

two samples is due to the presence of Ulothrix spp. as the abundant population. However, despite the 

indication of the separated sample, it is difficult to evaluate the contribution of Ulothrix spp. in the 

enzyme activity of each sample. Samples collected from site 3 with Stigeoclonium present as single 

population, showed high activity in the alkaline range (Fig. 5.3). The enzyme activity varied with the 

occasions. Both Stigeoclonium from sites 2 and 3 had hairs. 

In survey B, Mougeotia spp. and Ulothrix spp. were the most widespread in the samples (Table 5.2). 

The samples showed differences in pH profiles and in phosphatase activity (5.22, Fig. 5.5). Nine samples 

had pH optima in the alkaline range, 3 samples in the neutral and 1 sample in the acid range. The highest 

enzyme activity was observed in samples 2, 3 which had Stigeoclonium populations in abundance. In 

both samples Stigeoclonium had hairs. 

The response of phosphatase activity to pH varied with the samples and the sites from where they 

were collected. In survey A, all samples except one (sample from site 1) showed similar pH profiles but 

different phosphatase activity on the occusions of sampling. It is probable that the above differences may 

be associated to both phosphate concentrations in the water and mixed populations in the samples. It is 

difficult in this case to attribute these differences to one of the above reasons since phosphate analysis was 

incomplete and therefore no relationships can be made between phosphatase activity and phosphates. In 

survey B, there were differences in pH profiles and phosphatase activity in the 14 samples. Samples 

which had the same algal population in abundance and were collected from sites with similar pH, had 



71 

similar pH profiles but exhibited different phosphatase activity. For example, samples 2,3; 9,10,13; 5, 

14 showed different activity in the alkaline range. It seems reasonable to conclude here tiiat the above 

differences in the samples collected in survey B are associated with both: primarily, with the different 

water chemistries in the sites and secondary, with the mixed and different populations in the samples. 

The former fits with the correlations found betwwen phosphatase activity and a number of environmental 

variables (6.2) The later is confirmed by the examination of mixed populations in survey A. 

Phosphatase activity is widespread in these high-zinc sti-eams. The results indicate that algal 

populations growing in this environment synthesize phosphatases as a response to environmental 

conditions. Differences in phosphatases activity in the samples tested is more likely to be associated witii 

environmental conditions in the sites and the different populations in the samples. 

6.2 Phosphatase activity in relation to environmental chemistry 

Environmental data were obtained at the same time as the algal samples, so relationships might be 

obscured if the organisms grew in waters subject to mariced physical and chemical changes; overiand flow 

streams can encounter very great differences in flow and hence also the concentrations of many chemicals 

variables. However all the samples were taken after periods of relatively constant stream flow, so the 

values for environmental variables are probably a reasonable indication of die environment in which the 

algae had been growing. 

The relationship between phosphatase activity and selected environmental variables showed tiiat 

phosphatase activity at optimum pH and pH 8.0 was negatively correlated with FRP and TFP, respectively 

(5.3, Tables 5.4,5.5 and 5.6). No correlation found witii N : P ratio in tiie water. The N : P ratio is 

widely used in freshwater systems as an indicator of nutrient limitation. Chiaudani and Vighi (1974) 

concluded that phosphorus was always limiting when the ratio inorganic N to inorganic P was higher tiian 

10, using Selenastrum as test organism. The N : P ratio in the water of the sites sampled, was well above 

10 in 12 of the 14 sites. This indicates tiiat most of the sites were phosphorus limiting. The different and 

mixed populations of algae present in the samples may be associated with the fact that no correlation was 

foimd between the phosphatase activity and N : P ratio in the water. This is because different algae 

species may respond differendy to P-deficiency. For example in Fig. 5.7, tiie phosphatase activity of tiie 

two Stigeoclonium populations (sites 2, 3) as well as the Mougeotia < 8 |am populations (sites 9,10 & 13) 
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seems to be related to N : P ratio. The slight correlation found between phosphatase activity and FRP 

may be due to the different algal populations present in the samples. As Fitzgerald and Nelson (1966) 

pointed out, there are differences in alkaline phosphatase production between algae species. It is likely 

also that the small amount of data may be responsible for these relationships. 

The present results suggest that the algal populations tested for phosphatase activity had been 

growing under P-limited conditions. This fits with the negative correlation found between phosphatase 

activity and FRP as well as with the high N : P ratio in the water. For example, the presence of hairs 

found in the two Stigeoclonium populations is indication that these organisms had been growing under P-

limited conditions. Gibson and Whitton (1987) showed that presence of hairs in Stigeoclonium 

populations was strongly negatively correlated with environmental P and positively with phosphatase 

activity. 

Algal populations growing in these high-zinc and P-limlited streams exhibit phosphatase activity in 

order to meet the phosphorus requirement for their growth. Alkaline phosphatase synthesis in these 

streams results in the regeneration of orthophosphates and their production is determined mainly by the 

concentrations of orthophosphates at each time (1.556). It is reasonable to conclude that in sites with 

relatively high P concentrations, phosphatase activity is low. It seems ecologically probable that species 

able to produce large amounts of phosphatases would have an advantage when orthophosphate is in short 

supply. 

The present data do indicate that alkaline phosphatase activity in thsese streams is related to the 

availability of orthophosphates. However more data would be required to show such relationships 

between phosphatases and environmental variables. 

6.3 Phosphatase activity in relation to zinc concentrations 

The sites visited in this study varied from low to high-zinc streams. Algal populations tested are 

widespread and often abundant in these waters. Zinc is an important micro-nutrient for growth and 

metabolism of algae (1.3). Alkaline phosphatases have been characterized as a metaUo-enzymes with an 

essential metal ion, which has been reported to be zinc in many cases (Spiro, 1973; McComb £t gl., 1979). 

The metal is essential for catalytic activity and possibly also for maintenance of native enzyme structure. 

The zinc requirement for enzymatic activity was demonstrated by the inhibition of the enzyme with metal 
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binding agents in accord with the order of the stability constants of the zinc complexes. For example, 

EDTA inactivates the enzyme by removing zinc from the enzyme, but complete activity is restored by 

adding zinc. Workers have showed that Zn as well as Co and Cd induce binding of phosphate to alkaline 

phosphatase (Applebury sL M-. 1970). Studies on metal effect on phosphatase activity showed tiiat zinc 

was inhibitory at high concetrations (Grainger et al., 1989). Few details are available on the kinetics of 

Zn inhibition, which is surprising in view of the absolute requirement for this ion. In the present study, 

phosphatase activity of the 14 samples tested (survey B) at optimum pH and pH 7.0 was positively 

correlated with zinc concentrations in the water (5.3, Tables 5.4,5.5 and 5.6). 

It is possible also that high zinc concentration can have an indirect effect on phosphatase activity. 

Phosphate is extremely reactive and interacts witii many cations (e.g. Fe, Ca, Zn) to form relatively 

insoluble compounds tiiat precipitate out of the water. It is probable therefore, that availability of 

inorganic-P in tiiese high-zinc streams may be influenced by the high zinc concentrations. It tiius seems 

likely that the low concentrations of inorganic-P recorded in these streams may be associated witii tiie 

high zinc concentrations. Under these conditions phosphatase activity is associated with the low 

inorganic-P concentrations. The significant correlation found between phosphatase activity at pH 

optimum and Zn as weU as FRP, suggests that zinc concentrations may play an important role in 

phosphatase activity in these high-zinc environments. Further studies would be required to demonstrate 

tiie way of zinc influence on phosphatase activity. 

6.4 Organic phosphorus and phosphatase activity 

"Filtrable organic" P concentrations were low and in the majority of the samples were lower than 

FRP. The level of phosphate in tiiese sites is associated witii the geology of tiie areas of sites as well as 

the rate of precipitation. The streams visited are waters draining fiiom feUs, pastures and moorland 

(overland or ground water flow). Phosphate concentration in these streams and particulariy in peat 

drainage streams are influenced by climatic conditions. For example, temperature and precipitation can 

result in releasing P from peat which moves through tiie drainage system to the streams. Altiiough most 

of the sites visited were not peat drainage, it seems probable that tiie low organic phosphate 

concentrations recorded in this stiidy, are related witii the low precipitation occured during summer 

(mainly May-June). It is expected fliat the concentrations of organic phosphorus in tiie majority of tiiese 
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streams is much higher during the spring. Livingstone and Whitton (1984) in their study on streams in 

Upper Teesdale recorded very high concentrations of "filtrable organic" phosphates in the spring, whereas 

both organic and reactive phosphate were near or below detection limits for the other months. 

Under P-deficiency conditions, phosphatase are produced in order to release orthophosphate from 

organic P substrates. Such substrates can be either as dissolved or particulate form (1.422). Although 

the exact chemical nature of "filtrable organic" P in the present study is uncertain, it seems probable that 

most of it is truly associated with organic molecules. DOP consists of sensitive and insensitive 

compounds for alkaline phosphatases. Hino (1989) showed that some of die DOP in natural water is 

colloidal and amorphous P compounds unavailable form to the organisms. Studies on lake water have 

shown that phosphomonoesters exist in very low concentrations and thus are a minor part of die soluble 

organic P (Berman, 1970). Phosphomonoesters is the most readily hydrolised form of dissolved organic 

P. Limnological phosphatase studies have demonstrated in sM hydrolysis of phosphomonoesters. 

Heath and Cooke (1975) observed that the high concentrations of phosphatase in East Twin Lake during 

parts of the year (60 \ig esterified P1"̂ ) were almost entirely depleted in less than a week simultaneously 

with an increase in phosphatase activity. 

Far fewer studies have been made on phosphatases and organic P compounds in streams waters. 

These aquatic environments are characterized by very low PO4-P and somewhat higher dissolved organic 

P concentrations. It is probable that under these conditions, algal populations growing in these streams 

utilize these organic P substrates by producing phosphatases in order to meet their P requirements since 

the available inorganic P is not enough. The ability to use these organic P substrates would impose a real 

advantage to an organism at times of phosphate limitation. 

In the present study, it seems unfruitful to try to find any relation between phosphatase activity and 

"filtrable organic" P. Firstly, phosphatase activity was relatively low in the majority of the samples, 

secondly, FRP was not very low and thirdly, "filtrable organic" P was low and even lower than FRP in the 

majority of the samples. It is probable, that phosphatase activity of algal populations tested is associated 

with the regeneration of phosphate within the organisms living in these P-limited environments. 
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SUMMARY 

1. A study was carried out to examine the algal phosphatase activity in high-zinc streams in tiie Nortiiem 

Pennine Orefleld. These zinc-rich waters originate from botii surface and ground sources. The most 

important sources of high zinc concentrations were shown to be continued discharge of mine waters from 

adits and drainage from exposed heaps of tailings. Algal populations are abundant in these streams. 

Mougeotia (spp). was the most widespread genus in tiie samples, but not always present. 

2. The sampling was carried out in two surveys (A, B). Details of tiiese two surveys are given which 

were designed to provide information on the chemistry of the streams studied and to examine tiie presence 

of phosphatase activity and its relation to water chemistry in these high-zinc streams. In survey A, water 

and algal samples were collected from 3 sites on five occasions. This study was intended to examine: (i) 

the response of phosphatase activity to pH tiiroughout the five occasions of sampling, (ii) the presence of 

mixed populations in the samples and (iii) phosphodiesterase (PDEase) activity apart from 

phosphomonoesterase (PMEase). In survey B, water and algal samples were collected from 14 sites 

once. This study was intended to examine: (i) the response of phosphatase activity to pH in tiiese sites 

with the different water chemistries, (ii) the relationship between phosphatase activity and a number of 

environmental variables, and (ill) tiie influence of buffering system on phosphatase activity. The samples 

in this survey were tested only for PMEase activity. In both surveys phosphatase activity was tested over 

a broad pH range (3.0 -11.0) using at least two different buffers at each pH value. 

3. Survev A: The three streams sampled were zinc-rich mine drainage streams. They contained high 

concentration of zinc (2.6 - 8.7 mg 1"̂ ) and high concentration of calcium (74 - 104.5 mg 1"̂ ). Nitrate-N 

concentrations were relatively high (85 - 222 \Lg 1'̂ ). Nitrite-N and ammonia concentrations were below 

the detection limit (Detection limit < 5 |a.g 1'̂  N). Phosphate analysis in this survey was incomplete. 

The algal populations present in the samples from these 3 sites were Mougeotia spp., Stigeoclonium 

and Ulotiirix spp.. Samples from sites 1 and 2 always had mixed populations. All samples except one 
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showed similar pH profiles but differences in phosphatase activity throughout the occasions of sampling. 

For the examination of mixed populations, one algal population was separated from each sample in one 

occasion and was allowed to grow in the laboratory, and then was tested for phosphatase activity. The 

results showed that these mixtures were likely to be associated with the above differences in phosphatase 

activity. Algal samples in one occusion were also tested for PDEase activity. Two of the 3 samples 

exhibited PDEase activity. 

4. Survey B: Zinc concentrations in these streams ranged from 0.1 mg 1"̂  to 19.4 mg 1'̂  with 7 of the 14 

streams above 1 mg 1'^. Calciimi concentrations ranged from 2 mg 1'̂  to 98.6 mg 1'^. Nitrate-N 

concentrations ranged from 5 |i.g 1"̂  to 199 |ig 1'^. Nitrite-N concentrations were below the detection in 

all sites and ammonia-N concentrations were also below the detection limit in the majority of samples 

(Detection limit < 5 |i.g 1"̂  N). Phosphate concentration were low in the majority of die samples. TFP 

concentrations ranged from 2.2 |ig 1"̂  to 22.8 \ig l'^ with 13 of the 14 samples below 7.7 \ig 1"̂  TFP. 

FRP concentrations ranged from 1.8 |xg to 8.5 |ig 1"* with 13 of the 14 samples below 4.9 H-g 1'̂  FRP. 

The algal populations present in the samples from the 14 sites were Microspora. Mougeotia spp., 

Spirogyra. Stigeoclonium. Ulothrix spp. and Zvgnema. Some samples did have mixed populations. 

Thirteen of the 14 samples exhibited phosphatase activity. The samples showed differences in pH 

profiles and in phosphatase activity. Most of the samples exhibited enzyme activity in the alkaline range. 

Possible relationships between phosphatase activity and environmental variables were examined. 

Phosphatase activity was significantly correlated with Zn, TFP and FRP in the water. In particular, 

phosphatase activity at optimum pH for each sample was positively correlated with Zn and negatively 

with FRP. Phosphatase activity at pH 7.0 for each sample was positively correlated with Zn and at pH 

8.0 was negatively correlated with TFP. 

The examination of the influence of buffering on phosphatase activity involved the use of a third 

buffer in the range from pH 7.0 to 10.3. Some buffers appeared to have maiiced influence on phosphatase 

activity. In both surveys values obtained with buffers which led to higher activity were taken into 

account. 
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5. Phosphatase activity is widespread in these high-zinc streams. High phosphatase activity was 

observed in samples with Stigeoclonium and Mougeotia populations. Most of the samples showed 

phosphatase activity in the alkaline range. Differences in phosphatase activity in the samples tested are 

more likely to be associated with the different water chemistries at the sites and tiie different populations 

in the samples. The results suggest that these algal populations tested had been growing under P-limited 

conditions. 

6. The possibility that algal populations in tiiese high-zinc streams can utilize organic phosphates is 

discussed. 
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Appendix 1: Phosphate calibration sheet The determination of FRP by employing tiie phosphate 

additions procedure. Ten known P concentrations were added to each sample 

Standards: 

P cone. Abs 882 nm Regression Output: 
[pg/1] [units] Constant 0 

StdErr of Y Est 0.001505 
100 0.221 R Squared 0.999588 
90 0.202 No. of Observations 11 
80 0.178 Degrees of Freedom 10 
70 0.154 
60 0.133 X Coefficient(s) 0.002216 
50 0.111 Std EiT of Coef. 7.67E-06 
40 0.086 
30 0.066 
20 0.042 
10 0.021 Sample No 
0 0 

1 2 3 

Added P Abs 882nvn P cone. Abs SSln-rr^ p cone. Abs 882nTrv P cone. 
100 0.232 104.6931 0.227 102.4368 0.233 105.1444 
90 0.211 95.21661 0.202 91.15523 0.206 92.96029 
80 0.19 85.74007 0.184 83.03249 0.182 82.12996 
70 0.164 74.00722 0.164 74.00722 0.16 72.20217 
60 0.141 63.62816 0.139 62.72563 0.148 66.787 
50 0.115 51.89531 0.115 51.89531 0.117 52.79783 
40 0.092 41.51625 0.092 41.51625 0.125 56.40794 
30 0.07 31.58845 0.068 30.68592 0.071 32.03971 
20 0.047 21.20939 0.046 20.75812 0.05 22.56318 
10 0.025 11.28159 0.027 12.18412 0.033 14.8917 
0 0.005 2.256318 0.004 1.805054 0.005 2.256318 

4 5 6 

Added P Abs 882n>Y. P cone. Abs 882nrr P cone. Abs 882nm P cone. 
100 0.225 101.5343 0.225 101.5343 0.236 106.4982 
90 0.202 91.15523 0.207 93.41155 0.219 98.82671 
80 0.182 82.12996 0.18 81.22744 0.197 88.89892 
70 0.161 72.65343 0.173 78.06859 0.176 79.42238 
60 0.138 62.27437 0.148 66.787 0.156 70.39711 
50 0.117 52.79783 0.121 54.60289 0.131 59.11552 
40 0.094 42.41877 0.1 45.12635 0.11 49.63899 
30 0.071 32.03971 0.078 35.19856 0.089 40.16245 
20 0.049 22.11191 0.055 24.81949 0.068 30.68592 
10 0.027 12.18412 0.042 18.95307 0.047 21.20939 
0 0.008 3.610108 0.011 4.963899 0.019 8.574007 
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Added P Abs 882nvo P cone. Abs882n^ Pconc. Abs 882nm P cone. 
100 0.234 105.5957 0.225 101.5343 0.225 101.5343 
90 0.206 92.96029 0.202 91.15523 0.202 91.15523 
80 0.191 86.19134 0.184 83.03249 0.183 82.58123 
70 0.168 75.81227 0.16 72.20217 0.161 72.65343 
60 0.141 63.62816 0.139 62.72563 0.138 62.27437 
50 0.122 55.05415 0.119 53.70036 0.12 54.15162 
40 0.098 44.22383 0.094 42.41877 0.095 42.87004 
30 0.073 32.94224 0.075 33.84477 0.072 32.49097 
20 0.05 22.56318 0.051 23.01444 0.051 23.01444 
10 0.027 12.18412 0.029 13.08664 0.028 12.63538 
0 0.006 2.707581 0.008 3.610108 0.007 3.158845 

10 11 12 

Added P Abs 882ntŶ  Pconc. Abs 882ntA P cone. Abs 882nt> n P cone. 

100 0.227 102.4368 0.227 102.4368 0.228 102.8881 
90 0.204 92.05776 0.204 92.05776 0.208 93.86282 
80 0.183 82.58123 0.183 82.58123 0.186 83.93502 
70 0.16 72.20217 0.163 73.55596 0.164 74.00722 
60 0.139 62.72563 0.141 63.62816 0.142 64.07942 
50 0.115 51.89531 0.119 53.70036 0.12 54.15162 

40 0.094 42.41877 0.098 44.22383 0.099 44.67509 
30 0.071 32.03971 0.076 34.29603 0.076 34.29603 
20 0.051 23.01444 0.053 23.91697 0.055 24.81949 
10 0.028 12.63538 0.032 14.44043 0.032 14.44043 

0 0.007 3.158845 0.009 4.061372 0.01 4.512635 

13 14 

Added? Abs 882nw 1 P cone. Abs 882nvv, Pconc. 
100 0.224 101.083 0.26 117.3285 
90 0.202 91.15523 0.227 102.4368 
80 0.18 81.22744 0.204 92.05776 
70 0.157 70.84838 0.177 79.87365 
60 0.137 61.8231 0.152 68.59206 
50 0.113 50.99278 0.123 55.50542 
40 0.092 41.51625 0.1 45.12635 
30 0.069 31.13718 0.08 36.10108 
20 0.046 20.75812 0.057 25.72202 
10 0.025 11.28159 0.034 15.34296 

0 0.004 1.805054 0.009 4.061372 



80 

Appentix 2: Phosphate calibration sheet. Determination of TFP by employing the phosphate additions 

procedure. Ten known P concentrations were added to each sample 

Standards: 

P cone. Abs 882 nm Regression Output: 
[units] Constant 0 

StdErr of Y Est 0.000968 
100 0.194 R Squared 0.999774 
90 0.173 No. of Observations 11 
80 0.154 Degrees of Freedom 10 
70 0.136 
60 0.115 X Coefficient(s) 0.001927 
50 0.096 Std Err of Coef. 4.93E-06 
40 0.077 
30 0.056 
20 0.037 
10 0.019 Sample No 
0 0 

1 2 3 

Added P Abs 882nv n Pconc. Abs 882nvT\ P cone. Abs882nrf\ Pconc. 
100 0.262 135.9434 0.194 100.6604 0.194 100.6604 
90 0.212 110 0.18 93.39623 0.173 89.76415 
80 0.189 98.06604 0.158 81.98113 0.153 79.38679 
70 0.166 86.13208 0.139 72.12264 0.135 70.04717 
60 0.147 76.27358 0.123 63.82075 0.114 59.15094 
50 0.116 60.18868 0.104 53.96226 0.096 49.81132 
40 0.095 49.29245 0.084 43.58491 0.076 39.43396 
30 0.074 38.39623 0.065 33.72642 0.057 29.57547 
20 0.053 27.5 0.047 24.38679 0.038 19.71698 
10 0.034 17.64151 0.028 14.5283 0.019 9.858491 
0 0.015 7.783019 0.009 4.669811 0.002 1.037736 

4 5 6 

Added P Abs 882nYr > P cone. Abs 882nf» P cone. Abs 8S2n^ P cone. 
100 0.202 104.8113 0 0 0 0 
90 0.214 111.0377 0 0 0 0 
80 0.2 103.7736 0.166 86.13208 0 0 
70 0.174 90.28302 0 0 0 0 
60 0.15 77.83019 0.126 65.37736 0.156 80.9434 
50 0.131 67.9717 0 0 0 0 
40 0.09 46.69811 0.093 48.25472 0 0 
30 0.066 34.24528 0.075 38.91509 0 0 
20 0.046 23.86792 0.055 28.53774 0.083 43.06604 
10 0.026 13.49057 0.036 18.67925 0 0 
0 0.007 3.632075 0.014 7.264151 0.044 22.83019 



Appendix 2 continued 

Sample No 

Added P Abs 882n" ̂  P cone. Abs 882n>rA P cone. Abs 882n<v> P cone. 
100 0.204 105.8491 0.203 105.3302 0.2 103.7736 
90 0.182 94.43396 0.179 92.87736 0.182 94.43396 
80 0.162 84.0566 0.16 83.01887 0.163 84.57547 
70 0.144 74.71698 0.14 72.64151 0.144 74.71698 
60 0.123 63.82075 0.122 63.30189 0.124 64.33962 
50 0.108 56.03774 0.104 53.96226 0.106 55 
40 0.085 44.10377 0.084 43.58491 0.087 45.14151 
30 0.066 34.24528 0.065 33.72642 0.068 35.28302 
20 0.046 23.86792 0.045 23.34906 0.048 24.90566 
10 0.027 14.00943 0.025 12.9717 0.029 15.04717 
0 0.013 6.745283 0.008 4.150943 0.01 5.188679 

10 11 12 

Added P Abs 882nvr \ P cone. Abs 882nv^ p cone. Abs 882nrn P cone. 
100 0.191 99.10377 0.204 105.8491 0.198 102.7358 
90 0.174 90.28302 0.183 94.95283 0.181 93.91509 
80 0 0 0.166 86.13208 0.161 83.53774 
70 0.136 70.56604 0.148 76.79245 0.143 74.19811 
60 0.116 60.18868 0.128 66.41509 0.125 64.85849 
50 0.096 49.81132 0.107 55.51887 0.106 55 
40 0.076 39.43396 0.088 45.66038 0.086 44.62264 
30 0.056 29.0566 0.068 35.28302 0.067 34.76415 
20 0.037 19.19811 0.049 25.42453 0.047 24.38679 
10 0.019 9.858491 0.031 16.08491 0.028 14.5283 
0 0 0 0.01 5.188679 0.008 4.150943 

13 14 

Added P Abs 882nwN P cone. Abs 882nvn P cone. 
100 0.198 102.7358 0.195 101.1792 
90 0.181 93.91509 0.176 91.32075 
80 0.161 83.53774 0.153 79.38679 
70 0.143 74.19811 0.137 71.08491 
60 0.123 63.82075 0.117 60.70755 
50 0.104 53.96226 0.099 51.36792 
40 0.086 44.62264 0.082 42.54717 
30 0.064 33.20755 0.062 32.16981 
20 0.044 22.83019 0.042 21.79245 
10 0.024 12.45283 0.022 11.41509 
0 0.006 3.113208 0.003 1.556604 



82 

Appendix 3 : APA calibration curve of pNP concentration versus absorbance at 405 nm, with eight well-

replicates per concentration 

pNP concentration absorbance at 405 nm ± sem 

(mM) 

0.050 0.739 ± 0.0030 

0.040 0.598 ± 0.0025 

0.030 0.460 ± 0.0026 

0.020 0.300 ±0.0015 

0.010 0.138 ±0.0018 

0.005 0.077 ±0.0013 

Regression Une : Y = 14.193151 X - 0.0004 r^ = 0.9990 
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