
Durham E-Theses

Sub-nyquist sampling techniques

Bagshaw, Paul Christopher

How to cite:

Bagshaw, Paul Christopher (1990) Sub-nyquist sampling techniques, Durham theses, Durham
University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/6523/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support O�ce, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/6523/
 http://etheses.dur.ac.uk/6523/ 
http://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk


SUB-NYQUIST SAMPLING TECHNIQUES 

P C Bagshaw, B.Sc. (Hons) 
School o f Engineering and Applied Science 
University of Durham, U K 

Thesis for Master of Science submitted September 1990 

ABSTRACT 

A number of novel theoretical methods have been developed in an attempt to analyse 
data produced by sampling a signal at below the Nyquist rate and the limitations of the 
approaches have been investigated. 

A technique is developed that allows, under specified conditions, the frequency and 
amplitude of a band-limited sinusoidal signal (with no harmonics) to be determined 
when the signal is sampled simultaneously with three uniform samplers at below the 
Nyquist rate. The three samplers operate at slightly different rates. Each has its output 
ideally low-pass filtered with a cut-off frequency at half the sampling rate. The 
frequencies of the signals output f rom the ideal filters are analysed to determine the 
input sinusoid parameters. The frequency of the sinusoid can also be found within a 
calculated tolerance when approximate filter output frequencies are known. 

Two approaches extending this technique for a band-limited periodic signal consisting 
of more than just the fundamental, enable the frequencies of the harmonics to be found 
for the signal, but there is the possibility that other erroneous harmonics may be 
identified as part of the signal. The probability of this occurring can be reduced by 
uniformly sampling simultaneously with a greater number of samplers. This probability 
cannot reach zero. Furthermore, as the number of samplers increases or the number of 
signal harmonics increases, the computational workload imposed in determining the 
harmonic frequencies rises dramatically. The approaches are rendered impractical and 
sampling at irregular intervals is suggested as an alternative to using a very large 
number of uniform samplers. 

A modified discrete Fourier transform and its inverse are developed to allow an 
estimated spectral analysis of a continuous periodic signal sampled at irregular 
intervals. Additive pseudo-random sampling and periodic sampling with dither are 
rigourously defined as two proposed irregular sampling schemes. The periodicity and 
symmetrical properties of the modified transform are derived for the two schemes. 
Consistently alias-free spectral analysis of a band-limited periodic signal is 
demonstrated using additive pseudo-random sampling with a maximum sampling rate 
below the Nyquist rate. This does not apply when using periodic sampling with dither. 
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Multiple Sub-Nyquist sampling Encoding. Used in Japanese-developed 

high-definition television system. 

Numerical Algorithms Group. 

National Television Systems Committee. US-developed colour 

television, using quadrature amplitude modulation of a colour sub-carrier 

and a luminance signal. 

Phase Alternating Line. German-developed colour television system. 

Personal Computer ( I B M compatible.) 

Pulse Code Modulation. A development from pulse modulation 

involving sampling a continuous signal, quantizing the samples to 

specific levels, and encoding these values into some numerical form. 

Pseudo-Random Number Generator. 

estimated real Fourier coefficient relating to the harmonic of frequency 

B err 

fn 

amplitude of m"^ signal harmonic. 

real Fourier coefficient relating to m ^ signal harmonic. 

operational bandwidth for dealiasing algorithm when errors in fg are 

considered. 

estimated imaginary Fourier coefficient relating to the harmonic of 

frequency f^. 

imaginary Fourier coefficient relating to m * signal harmonic. 
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Bgpt optimum operational bandwidth for dealiasing algorithm. 

^pseudo bandwidth limitation required for input of pseudo-random DFT. 

X pseudo-random variable for selection of x. 

5(x) the impulse function. 

5f DFT frequency bin spacing. 

dfo frequency error in fg. 

dfsi difference in sampling frequencies f^i and fs2. 

dfs2 difference in sampling frequencies fs2 and fs3. 

dfs3 difference in sampling frequencies fgj and fs3. 

f̂ i frequency of m'̂  signal harmonic. 

fn frequency for which Fourier coefficients are calculated. 

fg frequency of signal output by sampler/LPF system. 

fp periodicity of Xj.(f). 

FR^2' ^^23' folding frequency/point of symmetry in aliasing pattern. 

FRl3 

fg rate of uniform sampling. 

fx frequency of a pure sinusoidal signal. 

f0 fundamental frequency of a periodic function. 

h(t) rectangular window function. 

L(f) frequency response of an ideal low-pass filter. 

M number of components (fundamental plus harmonics) that make up a 

periodic signal. 

N number of consecutive samples taken of a signal. 

P number of possible values x may take. 

Q minimum length of sequence x(^). 

Ô j relative phase of m"̂  signal harmonic. 

R () independent pseudo-random number generating function. 0 < R () < 1. 

Rj frequency resolution with which the input signal can be analysed. 

R^ () pseudo-random number generating function with an uniform distribution. 

X independent pseudo-random variable. 
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t^ time of the (k -i-1)''^ sampling instance 

'̂ min minimum possible difference between one sampling instance and the 

next. 

t^,l time f inal sample is taken. 

Tg uniform interval between regular sampling instances. 

T ^ width of rectangular window function h(t). 

T0 repetition interval of a periodic function. 

Uo(f) the continuous Fourier transform of uo(t). 

uo(t) infinite series of impulses where each impulse corresponds to a sampling 

instance. 

U i ( f ) the continuous Fourier transform of ui(t). 

uiit) repetition in the time domain corresponding to a series of impulses in the 

frequency domain. 

W^, W2 relative workloads for algorithms N° - l & N°-2 respectively. 

W f f j relative workload imposed by FFT. 

^ number of values instance tj^. can take. 

\(k) uniform sequence accommodating every irregular sampling instance. 

Xa'(t) instantaneous sample values according to inverse pseudo-random DFT. 

X^( f ) the continuous Fourier transform of x^{t). 

Xg(t) function of time representing the magnitude of a continuous analogue 

signal. 

X(i(n) function representing the magnitude of a discrete analogue signal at the 

(n-i-1)* sample. 

X ^ i f ) the continuous Fourier transform of Xo(t). 

XQ(t) function of time representing a continuous analogue signal output by a 

sampler/LPF system. 

X j ( f ) estimated coefficients of signal Xj.(t) according to pseudo-random DFT. 

Xj.(t) sampled, truncated, periodic waveform. 
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1. INTRODUCTION 

Reliable and relatively inexpensive digital hardware has been used to perform signal 

processing tasks in preference to conventional analogue means. However, digital signal 

processing is not necessarily the best solution for all signal processing problems and 

often for exQremely wide bandwidth signal real-time processing, analogue techniques 

are employed. The use o f digital systems has many well known advantages over 

analogue systems, in particular in being able to provide a greater degree of flexibility in 

system design. It is therefore desirable to devise digital techniques which allow wide 

bandwidth signals to be rapidly processed in preference to analogue means. 

Traditionally, the input to digital systems is formed by taking samples of a band-limited 

signal at a rate which is greater than or equal to twice the signal bandwidth; that is, at a 

Nyquist rate. I f a signal is sampled at regular intervals below the Nyquist rate (at a sub-

Nyquist rate) a phenomenon known as aliasing occurs. 

The limited bandwidth of digital signal processors (currentiy approximately 25 MHz 

but forever increasing) prohibits the digital analysis of very high frequency signals, 

such as radar. Sampling such signals uniformly below the Nyquist rate inherentiy 

results in aliasing and a loss of information. A technique is required which w i l l allow 

relatively slow digital signal processors (DSPs) to analyse wide bandwidth signals 

sampled below the Nyquist rate. The technique must therefore eitiier resolve the 

ambiguities in the alias signal or somehow prevent the aliasing phenomenon. 

This thesis describes the study o f two methods aimed at resolving the problems of sub-

Nyquist sampling. The first method involves the development of a technique which 

would ideally eliminate all the ambiguities in the aliased signal, and the second 

proposes a way to prevent the aliasing phenomenon. The origin of the aliases due to 

sampling a signal at uniform intervals at a sub-Nyquist rate is investigated in the 

frequency domain. A dealiasing algorithm is initially defined for a system of 



sub-Nyquist samplers, to enable the elimination of ambiguities caused by sampling a 

pure sinusoidal signal (one consisting of its fundamental harmonic alone) with the 

system. An investigation is then made into extending the dealiasing algorithm to allow 

ambiguities caused by sub-Nyquist sampling of a signal containing any number of 

harmonics to be eliminated. The method used to avoid the aliasing phenomenon, rather 

than resolve i t , centres around taking samples of a signal at irregularly spaced time 

intervals, as opposed to uniform sampling. Generators of irregularly spaced sampling 

instances are developed and a technique to perform consistentiy alias-free spectral 

analysis of the irregularly spaced samples is investigated. Simulation of every aspect of 

the methods studied is implemented to help in analysing their performance and 

efficiency, and aid in determining their limitations. 

The techniques developed, i f rigourous and truly capable of functioning at a 

sub-Nyquist rate, w i l l inevitably have some limitations. Digital processing of analogue 

signals has its drawbacks. The conversion of an analogue signal to a digital form 

involves sampling the signal and quantizing the samples, resulting in distortion which 

inhibits the reconstruction of the original analogue signal f rom the quantized samples. 

Some detailed study of the limitations of the techniques is presented in this thesis. 

Some work has already been done in the f ie ld of sub-Nyquist sampling. However, the 

techniques already well developed have been for specific applications; such as multiple 

sub-Nyquist sampling encoding (MUSE) for the Japanese high-defmition television. 

The MUSE system covers a vast area of research and has not been included in this study 

of sub-Nyquist sampling techniques. 

Another application specific technique has been devised for sub-Nyquist-encoded PCM 

NTSC colour television [I, Rossi] that enables the data rate of a PCM colour television 

signal to be reduced. The encoding frequency is reduced below the Nyquist rate such 

that the lower sidebands of the television signal overlap the baseband video frequencies. 

The sub-Nyquist encoding frequency is carefully chosen such that the alias components 



are placed into parts of the spectrum not normally occupied by the luminance or 

chrominance components of the video signal. A proper choice of comb filters (having a 

multiplicity of regularly spaced narrow attenuation bands) then allow most of the alias 

signals to be removed f rom the baseband video. 

Other systems make use of aliases caused by sub-Nyquist sampling rather than attempt 

to resolve them. A new despreading method based on sub-Nyquist sampling [2, Fiihren 

& Den Dulk] uses the aliasing phenomenon to make the input and output bands of the 

new despreader different, in accordance with the distinguished despreading method 

based on heterodyne correlation. This thesis does not consider such apphcation 

dedicated techniques, but addresses the problem of eliminating all the aliasing effects 

caused by sampling a signal unifomily at a sub-Nyquist rate. 

Previous research related to solving the problem of aliasing in systems using 

sub-Nyquist sampling, is limited. Some work is related to resolving the frequency 

ambiguities resulting f rom uniform sampling at a sub-Nyquist rate, while other works 

address random sampling schemes which could, in an ideal world, allow consistentiy 

alias-free spectral analysis of a non-band-limited signal. The relevant works are 

referenced in the thesis where they contribute to the development of the techniques 

formed. 



2. TECHNIQUE FOR SIGNALS CONTAINING A SINGLE ACTIVE 

E L E M E N T 

In order to eliminate aliasing when a signal is uniformly sampled at a sub-Nyquist rate, 

it is first necessary to determine the cause of the aliasing in detail. This chapter is 

concerned with using a traditional model of a continuous analogue signal to investigate 

the origin of the aliasing phenomenon which occurs when a signal is sampled uniformly 

at below the Nyquist rate. The simplest possible signal, a sinusoid, is considered and a 

rigourous dealiasing algorithm is developed to allow ambiguities to be eliminated when 

the sinusoid is sampled by a system of sub-Nyquist samplers. The limitations of the 

algorithm are stipulated. 

2.1 Fundamentals of Uniform Sampling. 

Foiuier's theorem states that any single valued periodic function, which has a repetition 

interval T^, can be represented by an infinite series of sine and cosine terms which are 

harmonics of the fundamental frequency, = l / T ^ [3, Dunlop & Smith]. It is therefore 

feasible to suppose that any analogue signal can be represented as a sum of sinusoids of 

different amplitude, frequency and phase. The magnitude of the analogue signal at time, 

t is modelled as Xjj(t) given by, 

M 

X a ( t ) = I A ^ C O S ( 2 7 C . f „ t + 0^) ( 2 . 1 ) 

m=l 

where M denotes the number of frequency components. A^,, f j„ and 0^ represent the 

amplitude, frequency and phase respectively of each component. To process this 

continuous-time signal by digital signal processing techniques, i t is necessary to convert 

the signal into a sequence of instantaneous values by sampling it periodically every T j 

seconds (uniform sampling at a rate f j = to produce a discrete-time signal, x^{n). 



M 

X A^cos ( 2 7 r . f „ . n T 3 + Qj 
m=l 

(2.2) 

where n is a positive number. N consecutive samples, where N is ideally a power of 2, 

then serve as the input to an N-point discrete Fourier transform (DFT), giving rise to 

amplitude and phase spectra with N/2 frequency bins in steps of l / N T j hertz from 0 to 

(N/2 - l)/NTs hertz [4, Benjamin]. The amplitude and phase spectra of x^(t) and x^in) 

are required for comparison to investigate the ambiguities generated when sampling at a 

frequency less than twice the maximum frequency component of the incoming signal; 

ie. when sampling at a sub-Nyquist rate. In order to simplify this investigation, a signal 

containing a single active element ( M = 1) is considered. 

2.2 Aliased Single Active Element Analysis. 

Consider the case in which M = 1; ie. the signal contains only one sinusoidal 

component, thus, f rom equation (2.1), 

X^it) = A j j . C O S {2-K.f^t + 0x) (2.3) 

Taking the continuous Fourier transform of this, to determine the signal spectrum, gives 

x , ( f ) = 
- j 2 n f t 

A^.cos (27t.fxt + Q^) .e d t (2 .4 ) 

" X 

2 J L 

j ( 2 7 : f ^ t + ê ) - j ( 2 T c f ^ t + ê ) 
e + e 

from the Euler identity"!". Expanding gives [3, Dunlop & Smith], 

^The Euler identity states that e-J*i' = cos(j> ± jsinc]) hence, 2.cos(j) = &)'!*+ e'J't'. 



Xa(f) 
Ax I j6x - j 2 7 r t ( f - fx) - jGx - j 2 n t ( f + fx) 

2 J 
e . e + e . e dt 

Ax j9x ^ Ax - jGx 
= - . e . 5 ( f - fx) + - . e . 5 ( f + fx) 

2 2 

therefore, 

Ax Ax 
X^{f) = -" . (cosGx + js inGx) . 5 ( f - f x ) + -' ' . (cosGx - j s inGx) .8 (f+fx) 

2 2 
(2.5) 

where 5(x) is the impulse function. Let 

a = Ax-cosGx and b = -Ax-s inQx (2.6) 

giving 

9^ = arctan (-b/a) and A^ = V(a2 + b )̂ ( 2 . 7 ) 

Therefore, the Fourier transform of a single harmonic in the time domain, may by 

represented as a pair of complex conjugates in the frequency domain. 

27cf,e, 

X;,(f) 

a/2 
A 

- j b / 2 

a/2 

-f., 1P% 
jb /2 

->f 

Figure 2.1. The time and frequency domain representations of a continuous sinusoidal 

signal, a & b are given in equation (2.6). 



The sinusoid is sampled at regularly spaced intervals to produce the sequence of 

instantaneous values, x^(n). The uniform sampling process may be regarded as 

multiplying the continuous signal by a periodic series of impulses where each impulse 

corresponds to a sampling instance [3, Dunlop & Smith]. An infinite series of 

equidistant impulses, UQ(t) may be represented by. 

u o ( t ) = Z 5 ( t - nTg) 
n = - o o 

(2.8) 

A graphical representation of this is shown in figure 2.2. 

u o ( t ) 

- 3 T , - T , 0 2 T , 4 T , 

Figure 2.2. A n infinite sequence of equidistant impulse functions. 

The Fourier transform of a sequence of equidistant impulse functions is another 

sequence of equidistant impulses [5, Brigham], given as. 

U o ( f ) = -

n=-o° 

8 ( f - - ) (2.9) 

From the Convolution theorem, multiplication in the time domain translates to 

convolution in the frequency domain. Convolution of a function with Uo(f) results in 

replication in the frequency domain. Hence, the spectrum at the output of a sampler 

whose input signal contains a single active element of amplitude A^, phase 9x, and 

frequency fx, consists of pairs of sidebands spaced away by fx from the sampling 

frequency harmonics ±f^, ±2{^, ±3f^, ... and 0; where f j = l /T^ and the sideband pairs 

form the complex conjugate pairs Ax/2.(cos9x + jsinGx) and Ax/2.(cos9x - jsinGx). 



input K^{t) 

a/2 

- j b / 2 

output X(j(n) 

-*Xd (n) 

0 *r + f 
jb/2 

- f O'f 
X X 

Figure 2.3. The spectra of the sinusoidal signal before and after super-Nyquist uniform 

sampling, a & b are given in equation (2.6). 

As fx increases f rom zero, the upper sideband of one replication tends towards the lower 

sideband of another, eg. f^ and f^ - f^, until the point when they meet and aliasing 

occurs. That is, when fx = fs - ie- fx = V ^ - Therefore, to prevent this aliasing, it is 

necessary to fol low the sampler by an 'ideal' low-pass filter (LPF) with a cut-off at half 

the sampling frequency. In practice, only an approximation can be implemented, 

leading to errors. The effect of such errors are not considered in this thesis. 

X3 ( t ) , f ^ -
SAMPLER Xd(n) 

> 
L . P . F . 

/-^ 
f s /2 

Figure 2.4. Sampler and low-pass filter system to prevent signal repetitions from 

overlapping. 

The frequency of the analogue signal XgCt) output by the system in figure 2.4, fg = fx for 

fx < fs/2. When fg > fx > fs/2, fg - fx w i l l be less than i^l and w i l l therefore appear at the 

output. Furthermore, when f s < f x < l.Sfg, = -fg + fx and when l.Sfg < fx < 2fs, 

fo = 2fs - fx, and so on. 



In general [6, Underbill, Sarhadi & Aitchison], the frequency of the signal output by 

the filter, fg is given by, 

f , = F - k . f ^ for k . f s < F < (k + 0.5) . f . 

and fo = (k + 1) .£„ - F for (k + 0 .5) .£„ < F < (k + 1) . f . 

where k is a positive integer. 

(2.10) 

3f /2 5 f „ / 2 

Figure 2.5. Frequency of signal output by sampler/LPF system against frequency of 

input sinusoid. 

Hence, the analysis of a given f^ merely identifies the 'comb' of frequencies (±fx + k.f^ 

hertz, where k is any positive integer and f^ is the frequency of the sinusoidal input of 

the sampler/LPF system giving rise to the output signal x^Ct) with frequency, fg. It can 

also be noted that as fg increases widi f^, the signal sideband (a + jb).5(fx) appears at the 

output of the sampler/LPF system. As fg decreases with f^, the complex conjugate 

sideband (a - jb).5(fx) appears at the output. The phase of the sidebands w i l l be shifted 

linearly by the characteristics of the 'ideal' LPF, but their amplitude w i l l remain 

unchanged i f the filter has an attenuation constant of unity in its pass-band. Thus, the 

frequency domain representation, X^if) of the output signal, x^Ct) is given by, 



X o ( f ) = (a + jb) . 8 ( f ^ ) . L ( f ) for k.f^ < f x < + 0 . 5 ) . f s 

and X^if) = (a - jb) .5 ( f x) . L ( f ) for (k + 0 . 5 ) . f 3 < < (k + D - f s 

(2.11) 

where k is a positive integer and L( f ) represents the system transfer function of an ideal 

low-pass filter. 

Therefore, for a signal consisting of a single active element, i f the frequency, f^ of the 

sinusoid can be determined and the characteristics of the low-pass filter are known, then 

the amplitude and phase may be calculated f rom the output of the sampler/filter system. 

A method, although incomplete, to determine the frequency without ambiguity is 

outiined by [6, Underbill, Sarbadi & Aitcbison]. A system of sub-Nyquist samplers 

w i l l now be considered in order to determine the frequency, f^ of the sinusoidal input. 

2.3 Proposed Dealiasing System. 

A n incoming signal of frequency f^ is sampled simultaneously by three samplers 

sampling at frequencies fg^, fs2 and fs3, with each followed by an 'ideal' low pass filter 

with a cut-off frequency fsi/2, f^2^2 and respectively. The sampling frequencies are 

such that 

0 < f^i < f s 2 < f s 3 < 2 . s i g n a l bandwidth (2.12) 

The frequency of the output of each filter are represented by f g j , fo2 and fo3, whose 

values, in practice, are determined by fol lowing the filter with a digital frequency 

counter. Input circuitry is also necessary to ensure the signal contains only one active 

element and is bandwidth limited. The proposed single active element sub-Nyquist 

sampling system to resolve ambiguity is illustrated in figure 2.6 [7, Sarhadi]. 

10 



input 
c i r c u i t r y 

LPF frequency 
counter 

fs2 

LPF Co2 frequency 
counter 

LPF •̂ o3 frequency 
counter 

d i g i t a l 
> output 

^s3 

Figure 2.6. Proposed system for input containing a single active element. 

The frequency at each output o f the three low-pass filters varies with fx as illustrated by 

figure 2.7 (from equation (2.10)). The frequency of the three sampler/filter outputs are 

described by equation (2.13). 

^ol 

f o l 

fo2 

fo2 

fo3 

fo3 

f x - P - f s l 

(P + 1) - f s l 

q . f s2 
(q + 1) .£32 - f> 

= f r . f . x - - - s S 

( r + 1 ).£33 

for p . f ^ i < < (p + 0 .5) .£31 

for (p + 0 .5) .£3! < < (p + 1) .£31 

for q . £ 3 2 < £x < (q + 0.5) .£32 

for (q + 0 .5) .£32 < f x < (q + 1) -£32 
for r.£33 < £x < ( r + 0.5) .£33 

for ( r + 0 . 5 ) . £ 3 3 < £x < (r + l ) . £ s 3 

. . . (2.13) 

where p, q and r are positive integers. 

The three sampler/LPF systems produce values for the three variables fg^, fo2 and fo3 

from the input of frequency fx- A dealiasing algorithm is required to reproduce the value 

of fx from the three frequencies f ^ j , fo2 and fo3. In order to do this without ambiguity, 

the three variables fp^, fo2 and fo3 must take a unique combination of values for each 

possible input frequency fx- The operational bandwidth of the system w i l l be the 

maximum frequency of fx which results in a combination of values of the variables fg^, 

fQ2 and fQ3 that is not produced for any lower input frequency. Having established the 

limits of fx, the dealiasing algorithm must solve equation (2.13) for fx, given the values 

f o r f o i , f o 2 andfo3. 
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2.4 O p e r a t i o n a l B a n d w i d t h . 

From figure 2.7, i t can be seen that a point of symmetry, corresponding to an input 

frequency FR22, exists in the output patterns generated by f^i and fQ2. and is given by, 

F R 1 2 = n . f 3 i = (n - 0.5) .£32 

for one n = 1, 1.5, 2, 2.5, ... Let dfs j = fs2 - f j i - From n.f^i = (n - 0.5).fs2 we get n = 

fs2/(2.dfsi). Therefore, the folding frequency for the pattern is. 

f s l - f s 2 
1̂2 " F R , , = (2.14) 

2 . d £ s i 

Similarly, points of symmetry exists at input frequencies FR23 and FR13, in the output 

patterns produced by fo2 & fo3 and fg^ & fo3 respectively, where. 

F R 2 3 = and F R i 3 = (2.15) 
2 . d f s 2 2 . d £ s 3 

with dfs2 = fs3 - fs2> and dfs3 = fs3 - fgi-

For the dealiasing algorithm to identify a single frequency component, i t is necessary 

for every possible frequency input to give a different output combination of f^i, fQ2 and 

fQ3; ie. a unique combination o f fgi, fo2 and fo3 must exist for every input frequency. I f 

this was not the case, the input to the dealiasing algorithm (ie. fg ,̂ fQ2 and fo3) for one 

frequency component input would not differ f rom that for others, and so the algorithm 

would generate all possible frequencies that could produce such an input, and 

ambiguities would remain. 
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The dealiasing algorithm proposed in [6, Underbill, Sarbadi & Aitcbison] states that 

"FR12 is taken to be the working frequency range of the whole system." However, this 

cannot be the case, as FRi^ must be the smallest of FR12, FR23 and FR^3, and, in some 

cases, the input to the dealiasing algorithm (ie. f g i , fQ2 and fQ3) w i l l be the same for two 

distinct input frequencies. 

Illustrative Example 2.1. 

Consider the three samplers operating at frequencies with only 2 Hz difference, such 

that fs i = 1000 Hz, fs2 = 1002 Hz and fs3 = 1004 Hz. The working frequency range 

claimed, FR12 = 250,500 Hz. I f , for example, the input has a frequency of either 

123,496 Hz or 127,504 Hz (both considerably less than FR12,) then f o i = 4 9 6 H z , 

fo2 = 250 Hz and fo3 = 4 Hz (from equation (2.13)) and the dealiasing algorithm wi l l not 

be able to distinguish between the two possible inputs. Similarly i f the input has a 

frequency of either 11,272 Hz or 239,728 Hz, for which f^^ = 272 Hz, fo2 = 250 Hz and 

fo3 = 228 Hz. 

Consider any two sampler/filter outputs fg^ and fo^ (ie. f^^ and f^^ can be any pair of 

f g j , fQ2 and fQ3.) For most, but not all, frequency inputs below the folding frequency 

FR^b, the output combination of f^^ and fo^ w i l l be unique, but w i l l be repeated for all 

inputs with a frequency greater than FR^i,- For example, an input frequency, f j which is 

greater than fs^2 such that f^^ = fob ^ i U generate the same output as an input frequency, 

^2 = foa which is less than f^J2. For an input frequency slightiy greater than FR^^ say 

by 5f, the output combination of fg^ and fg}, would not differ from that generated by an 

input of frequency FR^j, - 5 f However, the output of a third sampler/filter, say f^ ,̂, 

would differ for input frequencies up to, but not including, the point when 5f = f^J2; 

and for all input frequencies below FR^i^ for which the output combination of f^^ and 

fglj was not unique. A unique output combination of fg^, f^^, f^^, is thus produced for 

input frequencies below FR^ î, + f ^ l . Therefore, the optimum operational bandwidth is 

given by the minimum of FR12 + fs3/2, FR23 -1- fsi/2, and FR13 -1- fs2/2. But it is known 

14 



that fgi < fs2 < fs3 (dfs3 is greater than dfs^ and dfs2), and so FR13 -(- fs2/2 is always the 

minimum of the three values . Thus the optimum operational bandwidth is given by. 

f s l - f s 3 f s2 
Bopt = + <2.16) 

2 . ( f s 3 - f s l ) 2 

Note that the optimum operational bandwidth is inversely proportional to the difference 

between the highest and lowest sampling frequencies. Clearly very wide bandwidth 

signals could be analysed i f the difference in sampling frequencies is small. I f fg^, fg2 

and fs3 are approximately equal (say, = /g) and the difference between one sampling 

frequency and the next is approximately equal (say, ==dfs), then dfs^ = dfs2 = dfs, 

dfs3 = 2.dfs and the operational bandwidth w i l l be approximately, 

/s^ /s s 

4 . d f s 2 
Bopt = + 

The is approximately half the bandwidth claimed by [7, Sarhadi]. 
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2.S Single Active Element Dealiasing Algorithm. 

The analysis of the output fgi identifies the 'comb' of frequencies (±fx + p.fgi) hertz. 

The output fo2 analysis produces a similar ambiguity pattern (+fx + q.fg2) hertz. The two 

ambiguity patterns coincide on the true frequency, fx and at a possible 'ghost' frequency. 

The correct input frequency can be identified f rom these two coincident frequencies by 

comparison with a third ambiguity pattern (±fx + r.fg3) hertz generated by fQ3, and can 

be determined by solving for fx in the equations of (2.13). 

The fo l lowing dealiasing algorithm considers the patterns of the outputs f^i, fQ2 and fQ3 

simultaneously in order to solve the equations of (2.13) for fx, given that fx is less than 

BQPJ. From figure 2.8, eight distinct regions can be identified in the output containing 

f^l, fQ2 and fQ3, corresponding to the three fg's either increasing or decreasing with an 

increase in fx 

Region 1. fgj & fQ3 decreasing and fo2 increasing with an increase in fx. 

f „ i = (p + 1 ).£31 - f x 

fo2 = f x - q - f s 2 

f„3 = ( r + 1) . f 3 3 - f x p = q = r + 1 

Region 2. f^i decreasing and fQ2 & foS increasing with an increase in fx. 

f „ l = (P + 1) . f 3 l - f x 

fo2 = f x - q - f 3 2 

fo3 = f x - ^.£33 p = q = r 

Region 3. fgi & fo2 decreasing and fQ3 increasing with an increase in fx. 

£ „ l = (p + 1) .£31 - f x 

f„2 = (q + 1) . f s 2 - f x 

fo3 = f x - r . f 3 3 p = q = r 

16 



Region 4. fgj, fQ2 and fQ3 decreasing with an increase in f̂ .̂ 

= (p + 1) .£31 -

fo2 = (q + 1) - f s 2 - f x 

fo3 = ( r + 1) .£33 - f x p = q = r 

Region 5. fgi increasing and fo2 & fo3 decreasing with an increase in f̂ . 

f o l = f x - P - f s l 

f „ 2 = (q + 1) . f s 2 - f x 

fo3 = ( r + 1) .£33 - p = q + 1 = r + 1 

Region 6. fgi & fo2 increasing and fo3 decreasing with an increase in f̂ . 

f o l = f x - p - f s l 

fo2 = f x - q - f s 2 

f „ 3 = ( r + 1) .£33 - f ^ p = q = r + l 

Region 7. fgi & fo3 increasing and fo2 decreasing with an increase in f̂ . 

f o l = f x - p - f s l 

f „ 2 = (q + 1) - f s 2 - f x 

fo3 = f x - r . f 3 3 p = q + 1 = r + 1 

Region 8. fgj, fo2 & fo3 increasing with an increase in fj .̂ 

f . o l = f x - p f s l 

o2 = f x - q f s2 

o3 = f x - r f s 3 p = q = r . . . ( 2 . 1 7 ) 

Each of the above eight sets of simultaneous equations can be solved separately for p, 

giving. 

Region 1. 
f s l ~ f o l " fo2 fo2 + fo3 f s l ~ f o l + fo3 

P = 
d f s i d f s 2 d f s 3 

Region 2. 
f s l ~ f o l " fo2 fo2 ~ fo3 f s l ~ f o l ~ fo3 

p = = = 
d f s i d f s p d f s 3 
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Region 3. 
fo2 ~ f o l f s2 ~ fo2 ~ fo3 f s l ~ f o l ~ fo3 

p = 1 = 

Region 4. 

d f s i d £ s , d£s^ 

-o2 ~ f o l fo3 ~ fo2 fo3 ~ f o l 
p = 1 = 1 = 1 

d £ s i dfsp d£sT 

Region 5. 

p = 

Region 6. 

p = 

Region 7. 

p = 

Region 8. 

P = 

f o l + fo2 fo3 ~ fo2 f o l + fo3 

dfS i d £ s , d f s . 

f o l ~ fo2 fo2 + fo3 f o l + fo3 

d fS i dfSy dfS: 

f o l + fo2 f s2 - fo2 - fo3 f s 3 " fo3 + f o l 
= + 1 = 

dfsn d f s , d £ s . 

f o l ~ fo2 fo2 ~ fo3 f o l ~ fo3 

d f s i d f s y d£s3 . . . (2.18) 

For a value of p to be valid from any region, all three equations must yield the same 

value, and p, by definition, must be an integer. Furthermore, 

fx = (p + 1 ) - f s i - f o l for regions 1 to 4 

and fx = £ o i - p - f s i for regions 5 to 8, (2.19) 

Therefore, a value of p wi l l only be valid i f i t also gives a value for the correct 

coincident frequency, fx, as greater than or equal to 0 and less than BQP^. By careful 

observation of the equations of (2.18) and noting that the input frequency can faU in 

only one of the eight regions at any time, i t can be seen that only one such value of p is 

ever produced. The frequency ambiguity is thus eliminated. 
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2.6 Errors Imposed by the Limitations of the DFT. 

The frequency counters used in the proposed dealiasing system of section 2.3 can be 

replaced by spectral analysers that would not only give the frequency of each 

sampler/LPF output, but also the amplitude. This could then be used with equation 

(2.11) to determine the ampUtude of the sinusoidal input. Each spectral analyser w i l l 

need to perform a Fourier analysis of each sampler/LPF output which requires the use 

of the discrete Fourier transform. There is a limited resolution to which an N-point 

discrete Fourier transform can determine the frequency of an active element of a signal. 

Any active element must be represented spread over the coefficients of the DFT and 

assuming that most of the energy is concentrated in the single nearest coefficient, the 

maximum frequency error in the spectral analysis is given by [7, Sarhadi], 

l d £ o _ l = (2.20) 
2 .N 

where fg is the sampling frequency. The effects of this error on the dealiasing algorithm 

must be determined. 

The frequency error of equation (2.20) leads to an error in calculating the cycle count, p, 

when using the equations of (2.18). 

Consider region 1. 

f s l ~ f o l ~ fo2 fo2 + fo3 f s l ~ f o l + fo3 
p = — 

d f S i d f S j d f S 3 

The error in each fg w i l l produce an error in p for each of the three sections of the 

equation above, giving, 

19 



f ^ i - ( f o l ± d f o i ) - ( f „ 2 ± df02) 
p + d p i = 

d f s i 

( f „ 2 ± d f o j ) + ( f o 3 ± dfo3) 
P + alp2 = 

dfS2 

- (£, ,1+ d f o i ) + (£„3+ d£o3) 
P + dp3 

d£s. 

Hence, substituting for dfoj using equation (2.20) and assuming that each DFT uses the 

same N number of points (valid i f the differences in the sampling frequencies are 

small,) 

f s l + f s2 f s 2 + f s 3 f s l + f s3 
I d p i l = , Idp2l = , Idp^l = 

2.N.d£si 2 .N.d£s2 2.N.d£s3 . . . ( 2 . 2 1 ) 

Similarly for the other seven regions. The value of p that is to be used in calculating f^ 

from equation (2.19) must be the one containing least error. As f j j < fs2 < fs3. dp3 is 

always the minimum of dp i , dp2 and dp3. Therefore, by including dp3 with p in 

equation (2.19), 

f x + Idfx^ a x l = (P + l d P 3 l + l ) - f s l - f o l + l d f O i „ ^ J 

= £^ + idps i .£31 + l d £ o i „ a J 

Hence, 

f s l - f s 3 
Idfx^ a x l = l < i f O i „ ^ J + I d p 3 l.f3i = (2.22) 

N. (£33 - £31) 

The errors that can occur in both p and f^, mean that the dealiasing algorithm must be 

refined. For a value of p to be valid f rom any of the eight regions, each of the three 

equations must yield a value which is equal within the error bands dp j , dp2 and dp3 

respectively. Furthermore, p must not differ f rom an integer value by more than dp j , 
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dp2 or dp3 for each of the three equations, and the value of (fx + dfx) generated from p 

must be less than. 

f s l - f s 3 
Berr + Idf^maxl = 

2 . ( f s 3 - f s l ) 
(2.23) 

Where Bg^. is the operational bandwidth of the system when D F T errors are also 

considered, given by. 

f s l - f s 3 

( f s 3 - f s l ) 

1 1 

,2 N. 
(2.24) 

for N > 2. 

Bgrr is slightiy less than Egpt (for fs2 « FR13 and assuming N » 2) as it is no longer 

possible to guarantee that the output combination foj, fo2. fo3 will be unique for input 

frequencies greater than FR13. 

The frequency resolution with which the input signal can be analysed, 

2 . f , i . f 
R i = 2. Idfx„ 

N . ( f s 3 - f s l ) 
(2.25) 

By rearranging equation (2.25) and substituting into equation (2.24), 

B e r r = ^ i - N -
1 1 

.2 N j 

Hence, 

4 - B e r r 
N = + 2 

Ri 

(2.24) 

(2.26) 
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This clearly shows that the computational workload of the technique is inversely 

proportional to the frequency resolution. 

Furthermore, for the modified algorithm to perform correctiy, i t is necessary for dp j , 

dp2 and dp3 to be less than 0.5. This requirement is satisfied only i f (from equation 

(2.21)), 

f s 2 + f s l f s 3 + f s2 
N > and N > (2.27) 

f s 2 - f s l f s3 - f s 2 

A 'C simulation of this algorithm is presented in appendix A. The implementation 

rigourously defines the algorithm but when executed shows that the algorithm is not 

always error free! The rare errors observed are believed to occur due to floating-point 

arithmetic errors or the assumption that all three DFTs use an equal number of 

consecutive samples no longer being valid (which is the case for small N or large 

differences in the sampling frequencies.) As N increases, no enrors can be found. 

Figure 2.9 shows an example of the ideal sampler/filter output patterns generated when 

DFT errors f r o m an 85-point transform are considered, and the error made by the 

dealiasing algorithm in attempting to determine the frequency o f the signal input. The 

error, I dfx I is the absolute difference between the actual frequency of the signal input 

and its frequency as evaluated by the algorithm. The magnitude of the error varies in an 

approximately triangular fashion, increasing and decreasing as the estimated outputs 

fol, fo2 and fo3 tend away and towards the correct outputs of foj, fo2 and fo3 (given 

when N is infinite) respectively. The complex nature in which the error changes is not 

of great importance. However, note that the level of error is consistently below the 

maximum permissible error, dfxjjj^x • Therefore, the frequency of the input sinusoidal 

signal can be found within a calculated tolerance when the frequencies of the 

sampler/filter outputs are known with error. 
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2.7 Summary. 

A theoretical method has been established to eliminate not only the frequency 

ambiguity, but also any amplitude ambiguity, resulting from sampling a pure sinusoidal 

signal below the Nyquist rate. The dealiasing algorithm developed considers the output 

of three sampler/LPF systems to determine the frequency of the sinusoidal input. There 

is a limit to the maximum frequency of the signal in relation to the three sampling 

frequencies used, which represents the operational bandwidth, B^pt (given by equation 

(2.16)) of the technique. 

In practice, the limitations of an N-point discrete Fourier transform mean that the 

frequency of the signals at the output of each sampler/LPF filter can only be specified 

within some known tolerance. This error results in the technique being able to guarantee 

an unambiguous output with a small error (the maximum permissible error is given as 

IdfXjjja^l by equation (2.22)) at a slightly reduced bandwidth, B^^ (given by equation 

(2.24).) 

The technique is only applicable to pure sinusoidal signals and needs to be extended to 

apply to signals capable of containing any number of harmonics (signals consisting of 

multiple active elements.) 
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3. TECHNIQUE WITH UNIFORM SAMPLING FOR SPECTRAL 

ANALYSIS 

The dealiasing technique described in chapter 2 is to be extended for signals consisting 

of multiple active elements. Each active element in the input signal of the system 

(shown in figure 2.6) will result in an aliased spectral line in the spectrum of the signal 

at the output of each sampler/LPF system. I f the frequency counters used in the 

proposed dealiasing system of section 2.3 are replaced by spectral analysers, as in 

section 2.6, then the spectrum of the signal at the output of the sampler/LPF systems 

can be determined. These spectra must be analysed to determine the frequency of each 

component of the input signal. 

3.1 Multiple Active Element Ambiguity Reduction Algorithm N^*l. 

The technique developed to analyse an aliased single active element can be extended to 

identify, the components of an aliased multiple active element signal. Each active 

element results in a frequency component in the output of each of the three 

sampler/filter systems, some of which could overlap. There is, therefore, a spectrum of 

aliased lines at each sampler/filter output; namely, FFTl, FFr2, and FFT3. The 

proposed technique to resolve the frequency ambiguities involves the use of equation 

(2.19) to identify a possible input frequency in the manner described for the single 

active element analysis, for every combination of the aliased lines in FFTl, FFT2 and 

FFT3. 

3.2 Multiple Active Element Ambiguity Reduction Algorithm N®-2. 

An alternative to the algorithm N°-l described in section 3.1, is the following simple 

iterative algorithm which yields the same spectrum as algorithm N°-l. For any aliased 

line in FFTl, say ej , a set of possible values for the frequency components of the 

original signal exists; ie. each aliased Une in the sample/filter output can identify a 
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'comb' of possible input harmonic frequencies. The frequency, sf^, of the members of 

this set, S j , are given by, 

s f i = N j ^ . f g i ± for al l e F F T l ( 3 . 1 ) 

where is a positive integer and 0 < sf^ < B^pj. Frequencies that do not exist in the set 

Sj wi l l not exist in the original signal. Similarly, two further sets, S2 and S3, can be 

produced for the aliased lines in FFT2 and FFT3 respectively. The frequency 

components of the original signal, among some 'ghost' values (the frequency of 

components erroneously identified as part of the original signal,) are the frequencies 

that form the intersection of the sets S j , S2, and S3. Clearly, i f a greater number of 

aliased spectra had been generated by additional samplers operating at different 

frequencies, more ambiguity 'ghosts' could be eliminated. 

3.3 Illustration of Inherent Ambiguity. 

Unfonunately, a fundamental problem is inherent with the approach made by both 

algorithms N°-l and N* -̂2, described in sections 3.1 and 3.2 respectively. An illustration 

of this problem is given in the following example. 

Illustrative Example 3.1. 

Let fsi = 1000 KHz, = 100^ KHZ' and fs3 = 1002 KHz, giving an optimum 

operational bandwidth of 251,000.5 KHz from equation (2.16). Consider the case in 

which the original signal contains three active elements at 54,214 KHz, 150,920 KHz, 

and 191,782 KHz. 
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Multiple Actige Elenent Signal Analysis using sub-Nyquist Dealiasing Algorithms 
f s l = 1000.000 fs2 = 1001.000 fs3 = 1002.000 
Optimum operational frequency range, B = Z51000.500000 

0 54214 
Frequency components of input signal 

150920 191782 

0 54214 
Frequency components of output signal 

150920 191782 240080B 

Figure 3.1. Illustrative example 3.1 of the inherent ambiguities remaining after 

execution of either multiple active element ambiguity reduction algorithm. 

F F T l F F T 2 FFT3 

80 214 218 
- O l 

160 231 
f o 2 

410 106 382 400 
-o3 

Figure 3.2. Frequency of signal harmonics output by each of the three sampler/LPF 

systems (for example 3.1). 

I f the original signal also contained an active element at 240,080 KHz, for which 

foi = 80 KHz, fo2 = 160 KHz, fo3 = 400 KHz, then the aliased spectra FFTl, FFT2, and 

FFT3 would not differ in the case above. Therefore, processing the three aliased spectra 

above for the original signal shown, as described by either algorithm, will yield the 

active elements of the original signal as 54,214 KHz, 150,920 KHz, 191,782 KHz and 

240,080 KHz, although the true original signal contains only the first three of these 

components. 
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Figure 3.3 further illustrates this problem for a sparsely populated frequency spectrum. 

The input signal contains only four harmonics, yet the dealiasing algorithm erroneously 

identifies six harmonics. 

Multiple Actiue Element Signal Analysis using sub-Myquist Dealiasing Algorithns 
f s l = 40.000 fs2 = 41.000 fs3 = 42.000 
Optinun operational frequency range, B = 440.500000 

4 28 181 
Frequency conponents of input signal 

380 

4 28 140 181 
Frequency conponents of output signal 

332 380 

Figure 3.3. Illustrative example 3.2 of the inherent ambiguities remaining after 

execution of either multiple active element ambiguity reduction algorithm. 

In most cases, each active element in the input signal will cause some change to at least 

one of the spectra of the sampler/filter outputs, and both algorithm N°-l and N°-2 will 

be able to determine the frequencies of the input signal harmonics without ambiguity. 

However, there is the possibility that the algorithms wil l incorrectly identify harmonics 

as part of the input signal. 
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3.4 An Investigation of the Relative Efficiency of the Two Algorithms 

and a FuM=Scale F F T . 

Assume the algorithms are implemented on a modem, high speed, digital signal 

processor for which the. number of clock cycles required to perform multiplication or 

addition are equal, and take the form as implemented in the simulation program. It is 

known that a radix-2 N-point decimation-in-frequency FFT imposes a workload of 

(N/2).log2N complex multiplications and N.log2N complex additions [4, Benjamin]. 

Any complex multiplication requires, at most, four real multiplications and two real 

additions. Also, any complex addition requires two real additions. Therefore, it is 

possible to say that an N-point FFT imposes a workload proportional to 5N.log2N. 

Assume that the sub-Nyquist system contains k samplers all operating at a frequency 

approximately equal to fg. 

Consider a signal containing M active elements, with a bandwidth B requiring 

frequency analysis by use of a discrete Fourier transform with a frequency resolution R. 

Using a super-Nyquist system sampling at just more than 2B, a (B/R)-point FFT, at the 

bare minimum, would be required. This would impose a workload proportional to, 

WppT = 5 . ( B / R ) . l o g 2 ( B / R ) ( 3 . 2 ) 

For algorithm N*^-l described in section 3.1, the worst case occurs when, for every one 

of the k aliased spectra produced, ie. FFTl, FFT2, FFTk, there is a different 

ambiguity line for each of the M input signal components. Thus, in considering every 

possible combination of the aliased lines in the k, FFT spectra, the single active element 

dealiasing algorithm described in section 2.5 must be executed times. Of these 

executions, some combinations will not yield a possible input element, and a maximum 

of 2.M.B/f5 wil l be produced. Assume that the single active element dealiasing 

algorithm requires approximately 110 multiplications, additions and comparisons 
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(judged from the implementation in appendix B.) Therefore, the workload imposed by 

considering every line in the k aliased spectra is proportional to I I O . M K In addition, 

there are k, N-point FFTs that require computation, leading to a further workload 

proportional to k.5.(4B/R + 2).log2(4B/R + 2). Therefore, the total computational 

overhead. 

Vli = 110.M"^ + k . 5 . ( 4 B / R + 2 ) . l o g 2 ( 4 B / R + 2 ) 

= l O . d l . M ' ^ + 4 . k . ( B / R ) ) + 4 .k.WppT ( 3 . 3 ) 

For algorithm N°-2 described in section 3.2, k sets need to be formed. In the worst case, 

the maximum cardinality of a set is 2.M.B/f5. One real multiplication and one real 

addition are needed to calculate each member and one list assignment is required. 

Assume that a list assignment requires twenty times more clock cycles than 

multiplication or addition (judged from the implementation in appendix B.) Therefore, 

the computational workload in calculating the k sets is proportional to 

(20 + 1 + l).k.2.M.B/fs = 44.k.M.B/fs. The union of the sets is then required, which will 

take, at most, 2.M.B/fg list assignments when there is a match for every member of one 

of the k sets, and (k - l).M.B/fs comparisons. Therefore, the workload imposed in 

resolving the ambiguity spectra is proportional to (45.k - l).M.B/fs. In addition, there is 

the k, FFT computational workload proportional to k.5.(fg/R).log2(fs/R), as before. 

Therefore, the total computational overhead, 

W2 = ( 4 5 . k - 1 ) . M . B / f s + k . 5 . ( 4 B / R + 2 ) . l o g 2 ( 4 B / R + 2 ) 

= 5 . B . k . ( 9 / f s + 8 / R ) + M . B / f g + 4 .k.WppT ( 3 . 4 ) 

Clearly, algorithm N°-l would be a better method to use than algorithm N°-2 if W j < 

W 2 ; ie. i f I I O . M ' ^ < (45.k - l ) . M . B / f 3 . Consider the case in which three samplers are 

used (k = 3) and approximate, thus algorithm N°-l should be used only i f < B/f^, 

30 



which will be true when the number of active elements squared is less than the number 

of alias folds. As the number of samplers increases, which is necessary to improve 

dealiasing, it becomes evident that algorithm N°-2 is by far the better. 

Figure 3 . 4 shows just one case of how the proportional computational workloads Wppp, 

W j and W 2 vary for an increasing number of harmonics in the input signal, M. 

Unfortunately, but not surprisingly, it is evident that the computational workload 

imposed by the two algorithm is far greater than that required by a full-scale FFT. The 

workload W f f j is so small relative to workloads and W 2 that it appears to run along 

the abscissa. For the overheads to be kept to a minimum, it is necessary to reduce the 

number of samplers k. However, k must be increased to resolve the ambiguities of a 

signal with a high active element population. 
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3.5 Optimising Parameters to Minimise the Number of 'Ghost' 

Frequencies Possible in the Analysis of a Multiple Active Element 

Signal. 

It has been illustrated in section 3.3 that the dealiasing technique developed is by no 

means perfect, but it does achieve a reduction in ambiguity. The aim is to select 

parameters so that the reduction is maximal and efficient in computation. 

Consider the problem illustrated by example 3.1 in which an input of three active 

elements is incorrectly analysed as containing four elements. This is a direct result of 

the inability for the aliased spectra to change in response to the existence of a founh 

potential element in the original signal. For only the frequency components of the 

original signal and no 'ghosts' to appear in the final output spectrum, it is necessary to 

ensure that the aliased spectra alter for every possible additional active element in the 

input. 

For any given input active element there must be a unique combination of sampler 

output frequencies for that element to be identified without ambiguity. It has been 

shown that such identification is possible for a signal of bandwidth, Bq^^. Let the unique 

combination for any frequency component of a multiple active element signal, output 

by a system containing k samplers, be represented by, 

f o l ' ^o2' • • • ' fok • 

To prevent 'ghost' frequencies appearing in the output spectrum, this combination, for a 

single input, must differ from any possible combination of other outputs. That is to say, 

at least one member of { f Q j l i = l to k} in any given combination must not be repeated for 

any other of the possible unique combinations that could be produced. An arbitrary set 

of combinations for which this is true shall be represented by T. In a sub-Nyquist 

system, T must be a proper subset of the set of all practically possible output 
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combinations, U. However, T is any arbitrary set for which at least one fO[ is unrepeated 

for all its elements, and so, mathematically speaking, T may not be a subset of U. 

I f the bandwidth of the original signal is B and the signal is to be analysed with a finite 

frequency resolution R, then the number of frequency bins in the input is IB/RJ, where 

x j denotes the largest integer that is less than or equal to x. Each of k samplers 

sampling at a frequency f^j will give inputs for an FFT whose output will contain 

Lf5j/2RJ frequency bins of interest (the others being complex conjugates.) The total 

number of combinations of the sampler outputs that are mathematically possible is, 

( f ^ i . f ^ 2 fsk) / ( 2R) ' ^ = cardinality of the universal set. 

However, in practice only \ B/R\ combinations exist, corresponding to a unique output 

combination for each frequency bin in the input; ie. 

the cardinality of set U = j_B/RJ. 

The maximum number of active elements which could possibly be correctiy identified 

without ambiguity, ie. the maximum cardinality of T, is given from the mathematics of 

combinations and permutation as, 

k 
max = 2 + S (Lfsj/2RJ - 2 ) for k > 0 ( 3 - 5 ) 

j = l 

and the minimum cardinality of T, occurring for example when the input signal contains 

a harmonic for each and every frequency bin from 0 to the first folding frequency of the 

highest frequency sampler ie. f^ niax/2> as, 

min = the greatest of [ f^^ / 2Rjj_=]_ to k ( 3 . 6 ) 
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It can be seen that max = min = Lfsi/2RJ for k = 1 , and that the cardinalities of T and U 

are equal when fsi^/2 = B; ie. the sub-Nyquist scheme tends to that of the super-Nyquist 

system as f5i,/2 tends to B when k = 1. Remember, however, that T is not necessarily a 

subset of U, and equation (3.5) talks only of cardinality. Therefore, only the probability 

of correct analysis may be increased by an increase in k or fjj^.. An increase in f^y^ defeats 

the aim of using sub-Nyquist sampling and an increase in k results in a greater 

computational workload. It is therefore necessary to increase the effective number of 

samplers, k without using excessive hardware. This might be achieved by using random 

sampling. 

3.6 Summary. 

Two algorithms have been proposed to greatly reduce, but not eliminate, the 

ambiguities produced by sampling a multiple active element signal at below the Nyquist 

rate with a number of samplers. As the technique results in only a reduction of 

ambiguities, a detailed error analysis is not presented. An increase in the number of 

samplers is required for further reduction of the frequency ambiguities. However, the 

computational workload imposed can be excessive for highly populated signals and 

increases dramatically with a increasing number of samplers. An improved algorithm is 

required which has fewer computational overheads and eliminates all frequency 

ambiguities for even highly populated signals. 
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4. SPECTRAL ANALYSIS WITH SUB-NYQUIST PSEUDO-

4.1 Introduction. 

I f there are equal time intervals of l/fg between samples of a signal with a harmonic at 

frequency f^, then the resultant output contains other harmonics at frequencies f^^, 

2f^{j^, 3fs±fx, ... However, under certain conditions, i f sampling points are formed at 

unequal intervals, this phenomenon disappears and the aliasing effect becomes absent 

[8, Bilinsky, Vystavkin & Mikelson]. The objective is to determine the requisites of 

the irregular sampling signal so that, even with sampling rates below the Nyquist level, 

the harmonics of the original signal may be determined with the minimum of error and 

computational overheads. The bandwidth limitation that must be imposed on the 

original signal also needs to be determined. 

Uniform sampling has the limitation that aliasing occurs i f the rate of sampling is below 

the Nyquist rate. It is expected that irregular sampling will have limitations i f the 

maximum sampling rate is below the Nyquist level, but the limitation will not be an 

aliasing phenomenon. The limitations of irregular sampling are researched. 

It is suggested by [9, Beutler] that random sampling of a wide-sense stationary 

stochastic process is alias-free and the error-free recovery of the process is possible i f 

Poisson random sampling (sampling interval steps differ independently with identical 

exponential probability densities) is employed with an average sampling rate that does 

not fall below the Nyquist rate. [10, Masry] shows that such a Poisson random 

sampling scheme results in consistent alias-free estimates of the process' spectral 

density. Iterative methods have been developed which permit signal recovery with some 

additional uncorrelated background noise from "non-uniform samples with Poisson or 

uniform distributed epoches" and uniform samples with jitter or missing samples, in 
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[11,12, Marvasti] and [13, Wiley], but these methods assume an average sampling rate 

higher than the Nyquist rate. 

The papers [9,10, 11,12 and 13] make no comment on the bandwidth limitation to be 

imposed on the input signal, or the finite duration over which samples are taken. In a 

practical system, it is not possible to sample a non-band-Umited signal over an infinite 

duration. Instead, sampling is limited to a finite number of sampling instances over a 

known duration, and is only applicable to band-limited signals. Furthermore, it can be 

inferred from the definition of Poisson random sampling (sampling interval steps differ 

independentiy with identical exponential probability densities [9, Beutler]) that the step 

between one sampling instance and the next, can be of any size greater than some preset 

minimum. In practice, however, there must also be a limit to the maximum possible step 

and so such an ideal scheme is not feasible. The exact instances that each sample is 

taken, although irregular, may be known from the generating function. With this 

additional information at hand and the practical limitations of the Poisson random 

sampling scheme noted, it is intended that a sampling scheme with a maximum rate that 

falls below the Nyquist rate may be defined which allows alias-free samphng of a 

signal. 

What is meant by alias-free sampling of a signal when referring to samples taken at 

irregular intervals? When samples are taken at uniform intervals, sampling is said to be 

alias-free i f the original signal can be unambiguously reconstructed from the samples. 

An irregular sampling scheme will be referred to as 'alias-free' i f there is the capability 

to consistently reconstruct the spectrum of the original process from the spectral 

properties of the samples (which may be derived from the magnitude of die samples and 

the instances at which they are taken.) 

A transform must be rigourously defined to find the spectral property of a signal 

sampled at irregularly spaced intervals, as the traditional discrete Fourier transform, 

defined for samples taken at uniformly spaced intervals, is no longer suitable. The 
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properties of the transform depend on the nature of the irregular sampling instances, and 

are investigated. 

The irregularly spaced sampling instances are generated using two rigourously defined 

schemes. In both schemes, the step between one sampling instance and another will be 

one of a finite set of possible changes. The change selected will depend on the outcome 

of an independent pseudo-random number generator. For this reason, the transform will 

be referred to as the 'pseudo-random discrete Fourier transform.' 

4.2 Theoretical Development of the Pseudo-random Discrete Fourier 

Transform. 

The following derivation closely resembles that of the Discrete Fourier Transform for 

samples taken uniformly as described by [5, Brigham]. 

Consider a band-limited, analogue signal x^(t), with a fundamental period T^, 

represented as a sum of sinusoids of different amplitude, frequency and phase. 

Alternatively, represented as the Fourier series, 

x ^ ( t ) 

M - l 

s 
m=0 

a ^ . c o s ( 2 n . f „ . t ) + b „ . s i n ( 2 r t . f „ . t ) ( 4 . 1 ) 

where. 

an = -

0 
r 

X a ( t ) d t . 

m = 0 
T J 

X, ( t ) . c o s { 2 7 t . f . . t ) d t 

0 m = 1 , 2 , . . . , M - l 
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and. 

T J 
x ^ ( t ) . s i n ( 2 7 t . f „ . t ) d t 

0 m = 0 , 1 , . . . , M - 1 

M denotes the number of frequency components (including d.c.) and f j j , relates to the 

frequency of each component. 

Let samples of Xa(t) be taken at pseudo-random intervals for digital processing. The 

magnitude of a sample at any instance, tj, is given by, where k = 0 to N - 1 and N 

is the number of consecutive samples. Let the time domain sampling function, uo(t), be 

defined as. 

U n ( t ) = Z 5 ( t - t j . ) ( 4 . 2 ) 

k = - ° o 

where 5(t) represents the impulse function. uo(t) is represented graphically in figure 4.1. 

( t ) 

t o ^1 t 2 t 3 t]^ 

Figure 4.1. A series of impulses, each corresponding to a sampling instance. 

The truncation due to taking a finite number of N samples of x^{t) in the time domain 

results in rippling in the frequency domain. The sampled, truncated function can be 

written as. 
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x ^ C t ) . U o ( t ) . h ( t ) = 

N-1 

X a ( t ) . X 8(t - t),) 

k=0 

N-1 

I x^(t , , ) .5 ( t 

k=0 
tk) 

(4 .3) 

where h(t) is a rectangular window function of width t ^ - i + imin = given by, 

h ( t ) 

1 for < t < tN_i + 

1/2 for t = t = t ^ . i + X „ i „ / 2 

I 0 otherwise 

(4.4) 

•̂ min is minimum possible difference between one sampling instance and the next, 

and tjsf.j is the time the final sample is taken. 

rain 

Figure 4.2. Rectangular window function. 

There are N instantaneous samples of the periodic signal x^(t) in the interval of the 

rectangular window function. These N samples are assumed to represent at least one 

period, T^ of the signal x^Ct); thus, it is assumed that r.T^ = T^ where r is a positive 

integer (r > 0.) However, is fixed for a particular input signal, but T ^ = tN.i + Xmin 

depends on the time the final sample was taken, tj^f.^ which in turn depends on a 

pseudo-random quantity. Therefore, any practical system can only ensure that T^ is 

approximately equal to r.T0. The consequences of this will be considered later. 

For a Fourier transform of the samples to be made, the periodic function xjt) must be 

modelled by the samples in the interval T^. In order to form a periodic function x/t) 

which consists of N samples repeated in the time domain at intervals of T^, it is 
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necessary to use convolution. Repetition in the time domain, is equivalent to convolving 

the sampled, truncated waveform of equation (4.3) with the time function, 

oo 

u i ( t ) = T„. I 5(t - rT„) 
r=-oo 

The desired relationship is Xj.(t) = [Xa(t).uo(t).h(t)] * Ui(t); hence. 

X r ( t ) 

N - l 

Z X3 ( tk) .5 ( t - tk) 
k=0 

T„. Z 5(t - rT„) 

givmg, 

X r { t ) = T„. Z 
N - l 

Z ^^(tk) .5(t - tk - rT„) 
k=0 

(4.5) 

This convolution result is a periodic function with period T^ that consists of N samples 

of the signal Xa(t) where T^ = t ^ . i + must equal the periodicity of T0 to 

prevent discontinuities. That is to say, Xj.(t) is an infinitely long sequence of the samples 

of Xa(t) within the rectangular window h(t), with period T^. However, i f the period of 

Xj(t), T^ is only approximately equal to an integer multiple of the period of the original 

signal Xa(t), T0 as stated earlier, then Xj.(t) wil l model a signal with discontinuities at 

intervals of T ^ and the Fourier transform of Xj(t) wil l yield only an approximation to 

the continuous Fourier transform of x^it). 

The requirement for repetition in the time domain (achieved by convolution witii ui(t)) 

affects the spectrum. In the frequency domain, this convolution is equivalent to 

multiplying the continuous spectrum of Xa(t).uo(t).h(t) by the function, 
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U i ( f ) = Z 5 ( f - n/T„) 
n=-oo 

This is analogous to sampling in the frequency domain and so the approximate Fourier 

coefficients describing the signal can only be evaluated at discrete frequencies with a 

minimum separation of 1/T^. The Fourier transform of the periodic function x / t ) (with 

period T^) is given by the sequence of impulses. 

X j . ' ( f ) = Z afn -8 ( f - fn) where ttf^ = 

tN-l+tmin/2 
1 r - j 2 j i f n t 

n=-oo 

d t 

(4 .6) 

where the Fourier coefficients are calculated at regular frequency intervals such that the 

frequencies f j j = n/T^, n = ... 1,2,.... Substituting for x / t ) from equation (4.5) gives. 

1 OO 

T„. Z 
r=-oo 

N - l 

Z X3 ( tk ) .5 ( t 
k=0 

rT„) 
- j 2 7 l f „ t 

,e dt 

Note that the integral is only over one period (since T^ = t ^ . i + tminO hence. 

r N - l 

ttfn 

-tmin/2 

- j 2 7 r f „ t 
Z X3 ( tk) .5 ( t - t k ) . e dt 
k=0 

N - l 

Z X3(tk) 
k=0 

tN-l+'Cmln/2 
r 

5 ( t - t u ) . e 

- j 2 j : f n t 

dt 

- X . i n / 2 

N - l 

Z x^{t^) .e 
k=0 

-j2jrf„tk 
(4 .7) 
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Therefore, by substituting (4.7) into (4.6) the Fourier transform of the function Xj(t) is. 

X r ' ( f ) = L S x^(t^) .e .5 ( f - fn) (4.8) 
n=-ook=0 

Equation (4.8) is periodic and can be expressed equivalently as the desired pseudo­

random discrete Fourier transform of equation (4.9) which describes one period of the 

function X;(f). 

N-1 -j27lfntk 
Xr( fn ) = - jb f„ = I X , ( t j , ) .e (4.9) 

k=0 

where f j j is the particular frequency for which the estimated Fourier coefficients wish to 

be known. Thus, equation (4.9) gives the spectral property of a finite sequence of 

pseudo-random samples from the magnitude of the samples and the instances at which 

they are taken. 

The pseudo-random DFT of equation (4.9) reduces to the conventional discrete Fourier 

transform when samples are taken at regular intervals. In the case of uniformly spaced 

sampling intervals, each sampling instance { t j j | k = 1 toN-1} can be represented as 

tjj = k.Tg where T^ is the regular time interval between one sample and the next. The 

duration of the rectangular window, T^ = t j v j . j - I - x^jin = (N-l).Ts + Tg = N.T^. Thus, the 

firequencies for which the estimated Fourier coefficients wish to be known, fn = n/T^ = 

n/(N.Ts). Substituting f j , = n/(N.Ts) and = k.Tg into equation (4.9) reduces it to the 

familiar conventional DFT, 

N-1 - j 2 j r n k / N 
X^di/NTg) = Z K^iW.T^) .e (4.10) 

k=0 
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The properties of the new discrete transform developed will depend upon the 

characteristics of the sampling instances. Before the periodicity and symmetrical 

properties of the transform are investigated, a way must be found to describe the 

production of pseudo-random sampling instances. 

4.3 Generators of Pseudo-random Sampling Instances. 

Two random sampling schemes have been extensively studied in [14, Masry] for their 

theoretical ability to form alias-free spectra. These are "additive random sampling", 

where the sampling instances are given by, 

to = 0, tk = t k - i + T , k = 1, 2, N - l (4.11) 

with T as an independent positive random variable; and "periodic sampUng with jitter", 

where the sampling instances are given by, 

to = 0 , tk = k . T g + X , k = 1, 2 , N - l (4.12) 

with X as an independent random variable with zero mean over [-Tg/2, Tg/2]. 

Consider the general case in which the signal input is sampled by some irregular 

pattern. In a practical system, the pattem must be limited such that the signal is sampled 

with a maximum and a minimum frequency and at a finite number of intermediate 

sampling frequencies. Thus, the random variable x in the two sampling schemes must 

be considered as a pseudo-random discrete quantity which can be generated by some 

known function, R ( ) . 

Let P represent the total number of possible sampling frequencies, which may be any 

arbitrary positive value. 
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Let the number produced by some pseudo-random number generator with a large 

sequence period take a value between zero and one with some controllable distribution 

(for example; uniform, Poisson or Gaussian,) and be represented by the function, R ( ) . 

Let R () never be equal to zero or one, but take values in between; ie. 0 < R () < 1. One 

such pseudo-random number generator which produces a value between zero and one 

with an approximately uniform distribution, is described in [15, Widrow & Stearns]. 

Let the number produced by this generator be represented by the function, . The 

function R( ) is to be used in generating the irregularly spaced sampling instances. 

Ry 0 (a special case of R ( ) ) is the simplest pseudo-random function to implement and 

is used in the simulation program of appendix C. 

4.3.1 Additive Pseudo-random Sampling. 

Additive pseudo-random sampling instances are given by, 

to = 0, tk = tk_i + t , k = 1, 2, N-1 (4.13) 

where T is an independent positive pseudo-random variable. T will take one of P values 

and the value chosen wil l depend on the pseudo-random function R ( ) . 

Illustrative Example 4.1. 

Let there be a total of three possible sampling frequencies; ie. P = 3, and assign the set 

of sampling frequencies, f^ as 12.0 Hz, 12.2 Hz and 12.4 Hz. Letting x = l/fg means x 

can take the values 1/12.0 s, 1/12.2 s and 1/12.4 s, in this case. I f the independent 

function R () returns a value less than or equal to 1/3 then x is assigned the value 

1/12.0 s; and i f R () returns a value greater than 1/3 but less than or equal to 2/3 then x 

is assigned the value 1/12.2 s; otherwise x is set to 1/12.4 s. I f the pseudo-random 

function Ry () is used, x will take one of these three values with approximately equal 

probability. 
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In general, x takes one of a set of P deterministic values X j , X 2 , X p , and x is assigned 

the value x^ where. 

5C =rR( ) * P1 and fx! denotes the integer ceiling of x (4.14) 

Consider the example 4.1 once again where x^ = 1/12.0, X 2 = 1/12.2 and X3 = 1/12.4. 

Note tQ = 0. For each successive sampling instance, x will take one of the three values 

x^, X2, or X3, thus, 

to = 0 

t i = 1 /12 .0 or 1 /12 .2 or 1 /12 .4 

t2 = 2 / 1 2 . 0 , 1 /12 .0 + 1 /12 .2 , 1 /12 .0 + 1/12.4 , 2 / 1 2 . 2 , 

1 /12 .2 + 1 /12 .4 or 2 / 1 2 . 4 

t3 = 3 / 1 2 . 0 , 2 / 1 2 . 0 + 1 /12 .2 , 2 /12 .0 + 1 /12.4 , 1 /12.0 + 2 /12 .2 , 

1 /12 .0 + 1 /12 .2 + 1 /12 .4 , 1 /12.0 + 2 /12 .4 , 3 /12 .2 , 

2 / 1 2 . 2 + 1 /12.4 , 1 /12 .2 + 2 / 1 2 . 4 or 3 /12 .4 ...andsoon. 

In general, given a sampler with P possible values that x may take, the n '̂̂  sampling 

instance, tn.^ can take one of. 

4: 
p (n + P - 2) / 

(n - 1) .' (P - 1) .' 
(4.15) 

different values and the sampling instance t^ can be represented as, 

tk = u ^ . T i + U 2 . X 2 + . . . + U p . T p (4.16) 

where { u j i = 1 to P} are positive integers. 
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P.R.N.G 

Generate a new number 

Binary number 0..P-1 

MONO 

CLEAR 

MONO 

CLEAR 

MONO 

Delay &t CLEAR 

pulse « fit 

Set all Q high z f l l . Q 

MONO 

6t 

Output 

Figure 4.3. Proposed System to Produce Additive Pseudo-random Sampling Instances. 
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The minimum possible difference in sampling instances, 

Tfnin = the minimum value in the set {tj^li = 1 to P } . (4.17) 

In practice, it is proposed that a stream of sampling pulses, as described above, can be 

generated by the system shown in figure 4.3 which uses a series of monostables, each 

with a different pulse width and all capable of being forced to a stable state at any time. 

The P.R.N.G. module generates a pseudo-random integer, 5C - 1 in binary form in the 

region from 0 to P - 1, where % is given by equation (4.14). This then acts as input to die 

demultiplexing module, DUX. which selects the corresponding monostable pulse as its 

output. On the rising edge of the output pulse, all the monostable outputs are set high, a 

new pseudo-random number is presented as input to the DUX. module, and after a short 

delay, the monostables are retriggered. In this way, a pulse of constant width is 

produced after varying delays and the system yields a train of pulses that can be used by 

an sample and hold circuit and that has sampling instances characterised by equation 

(4.16). 

4.3.2 Periodic Sampling with Dither. 

Periodic sampling instances with dither are given by, 

to = 0 , tk = k.Tg + T, k = 1, 2, N - l (4.18) 

where x is an independent pseudo-random variable with zero mean over [-Tg/2, Tg/2]. x 

takes one of a set of P deterministic values X j , X 2 , X p , and the value chosen depends 

on the pseudo-random function R ( ) , as with the previously described sampling 

scheme; ie. x is assigned the value x^ where, 

% = r R ( ) * P1 
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Funhermore, the possible values that x can take are fractional pans of ±T/2 . This 

ensures that tj^+j > tĵ .̂ x is selected from the set, 

T = { i x i . T g , ± X 2 . T 3 , + X 2 . T 3 ) (4.19) 

where Xj are rational numbers such that, 

0 < X i < 1/2 I i = 1 to z , x i = 0 i f P i s odd, and z = fp / 2I 

The n * sampling instance, t j , . i can take one of only P different values and the sampling 

instance tĵ . can be represented as, 

tk = T 3 . ( k ± X i ) (4.20) 

The minimum possible difference in sampling instances, 

Tn,in = the minimum value in the set {T 3 . (1 - 2 x i ) | i = 1 to P ) . (4.21) 

Illustrative Example 4.2. 

A sampling scheme with a regular period, T3 = 1/20.25 s and five (P = 5) possible 

dithers x = {0, +0.3Ts, ±0.4Tg} wil l have sampling instances such that, 

to = 0 

t i = 1 /20 .25 or ( 1 ± 0 . 3 ) / 2 0 . 2 5 or ( 1 ± 0 . 4 ) / 2 0 . 2 5 

t2 = 2 / 2 0 . 2 5 or { 2 ± 0 . 3 ) / 2 0 . 2 5 or ( 2 ± 0 . 4 ) / 2 0 . 2 5 

t3 = 3 / 2 0 . 2 5 or ( 3 ± 0 . 3 ) / 2 0 . 2 5 or ( 3 ± 0 . 4 ) / 2 0 . 2 5 

... and so on. 
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4.4 Transform Period and Input Signal Bandwidth Limitations. 

It is necessary to determine the periodicity and symmetry of X/ ( f ) to find the bandwidth 

Umitations that must be imposed on the input signal x^(t) so as to prevent frequency 

domain aliasing, and hence aUow error-free signal reconstruction from the samples 

taken. Let fp be the periodicity of the function X^'(f). The value of fp is required such 

that Xj.(fj. - I - fp) = Xj(fj.). Letting fn = ff + fpi equation (4.9) becomes. 

N - l -j2K. (f^ + f p ) . t k 
(f^ + fp) = Z Xa(^k) -e 

k=0 

N - l - j27r. f^tk - j27t . fptk 
= Z x^(tk) .e .e (4.22) 

k=0 

-j2n;.fpti^ 

Therefore, Xj.(fj. -i- fp) = X^(f^) i f and only i f e ^ = 1 for k integer valued from 0 

to N - l . That is to say, X / ( f ) has a period fp, where fp is the least positive number 

greater than zero such that. 

f p . t k is integer valued for all t^, k = 0, 1, N - l (4.23) 

4.4.1 Periodicity for Uniform Sampling Scheme. 

Consider the simple case of uniform sampling in which the difference between one 

sampling instance, tĵ ^ and the next sampling instance, t^^i is constant; ie. x takes only 

one possible value, x̂ . when compared with additive pseudo-random sampling. From 

equation (4.16), ti(. = u.X(. where u is a positive integer. Thus, substituting into (4.23), 

Xj ' ( f) has a period fp where, fp is the least positive number greater than zero such that, 

fp.u.Xj. is integer valued. That is obviously when fp = l/x^, as u is an integer. However, 

1/X(. is the uniform sampling frequency fg. That is to say, the transform Xj.'(f) has a 

50 



period equal to the uniform sampling frequency, as expected from the traditional 

Fourier transform properties. 

4.4.2 Periodicity for Additive Pseudo-random Sampling Scheme. 

In the more complex case of additive pseudo-random sampling, each sampling instance 

is given by the general equation (4.16). Substituting this into equation (4.23) gives the 

period fp as the least positive number greater than zero such that, 

fpAu^.Ti + U 2 . T 2 + . . . + Up.Tp] = K is an integer. 

By definition, { u j i = 1 to P} are positive integers, and so K is an integer if, 

( f p . T i l i = 1 to P) are integer values. (4.24) 

Equation (4.24) must be solved for fp, the transform period. This may be done by first 

representing each { X j i = 1 to P} as a rational number in the most optimum form; ie. 

with use of the minimum possible denominator. Let each value that x can take, 

{Tĵ  = / b ^ l i = 1 to P) where a i and are integers. (4.25) 

I f every member of { X j l i = 1 to P} is multiplied by the lowest common multiple of the 

set of denominators { b J i = l t o P } , an integer will result. However, this lowest 

common multiplet will not be the smallest possible number that will produce an integer 

value i f the greatest common divisor* of the set of numerators {aj i = 1 to P} is not 

equal to one. The smallest possible number that when multiplied by each and every 

t lhe lowest common multiple (1cm) of two integers u and v, is the smallest positive integer 
that is a multiple of (ie., evenly divisible by) both u and v; the 1cm of zero and zero is zero; and the Icm of 
one integer is that integer. 

•t-The greatest common divisor (gcd) of two positive integers m and n, is the largest positive 
integer which evenly divides both m and n. 
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member of { X j i = 1 to P} results in an integer; ie. fp that satisfies equation (4.24) (and 

hence equation (4.23)), is given by, 

lowest common multiple { b ^ l i = 1 to P} 
fp = , for p > 1 (4.26) 

greatest common divisor { a ^ l i = 1 to P} 

Methods using Euclid's algorithm to determine the lowest common multiple and the 

greatest common divisor of a set of integers are described in [16, Knuth]. 

For the example 4.1, the possible values of x can be expressed in their optimum rational 

forms as X^ = 1/12 s, X2 = 5/61 s and X3 = 5/62 s. Giving, 

Icm (12, 61, 62) 
fp = = 22, 692 Hz. 

gcd (1, 5, 5) 

4.4.3 Periodicity for Periodic Sampling Scheme with Dither. 

For the periodic sampling scheme with dither, each sampling instance is given by 

equation (4.20). Substituting this into equation (4.23) gives the transform period fp as 

the least positive number greater than zero such that, 

f p . T s . ( k ± X i ) = K is an integer for i = 1 to z. (4.27) 

Note k is an integer by definition. Let Tg and (Tg .X i l i= 1 toz} be represented as 

rational numbers with the minimum possible denominator such that, 

Tg = ao / bo and {T^.x^ = / b i i i = 1 to z ) (4.28) 

where all aj and bj are integers. In the same manner fp was derived to satisfy equation 

(4.24), the hypothesis of equation (4.27) is satisfied by, 

52 



lowest common multiple (b^l i = 0 to z} 

greatest common divisor { a ^ l i = 0 to z} 
fp = : , for P > 1 (4.29) 

For the example 4.2, the regular period, Tg = 1/20.25 s and the three values of 

Tg.Xj = {0, 0.3Ts, 0.4Ts} can be expressed in their optimum rational forms as T j = 4/81, 

Tg.XQ = 0, Tg.xi = 8/405, and Ts.X2 = 2/135. Giving the transform period as, 

Icm (81, 405, 135) 

gcd (4, 8, 2) 
fp = = 202 .5 Hz. 

4.4.4 System Bandwidth. 

Now consider. 

N-1 - j 2 r t . (fp - f^) .tk 
X^(fp - f^) = Z X 3 { t k ) . e 

k=0 

N-1 - j 2 n . f p t k +j27r . f , tk 
= Z ^^(tk) -e .e 

k=0 

N-1 +j27t . f , tk 
= Z X a ( t k ) . e 

k=0 

= x / ( f ^ ) (4.30) 

-j27C.fptk 

since e = 1 by definition of fp from equation (4.23). Therefore, the amplitude of 

the transform, I Xr(fn) I is even-symmetrical about fp/2 and its argument, Z [ X / f j ) ] is 

odd-symmetrical about fp/2. That is, the transform consists of complex conjugates over 

one period, and so only half the information in one cycle is of interest. Therefore, the 

input signal must be band-limited to half the period of the transform in order to prevent 

frequency domain aliasing; ie. in the case of uniform sampling, the Nyquist criterion 
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must be satisfied. However, for pseudo-random sampling (additive or periodic with 

dither) the transform period is noticeably high. In the example 4.1, the signal needs only 

to be band-limited to 11,346 Hz although it is being sampled at frequencies of 12.0 Hz, 

12.2 Hz, and 12.4 Hz. Similarly, in the example 4.2 where the maximum sampling 

frequency is only 67.5 Hz, the input signal only needs to be band-limited to 101.25 Hz. 

It appears that the Nyquist criterion need not be satisfied when using pseudo-random 

sampling! However, it has not yet been established as to whether or not the spectrum 

produced by the pseudo-random DPT is 'alias-free' for irregularly sampled signals 

Umited within this enlarged bandwidth. 

In general, for any known pseudo-random sampling generator, it is possible to 

determine the periodicity, fp of the transform function X^{f) by the method described 

above, and hence the bandwidth limitation, Bpg^y^o that must be imposed on the input 

signal; that is. 

1 lowest common multiple {b^ I for all i } 

2 greatest common divisor {a^ I for all i } 

where all aj and bj are defined for the additive pseudo-random sampling scheme and for 

the periodic sampling scheme with dither by equations (4.25) and (4.28) respectively. 

Note that the bandwidth Bpggujo independent of the total number of possible sampling 

frequencies, P and only depends upon the possible changes between one sampling 

instance and the next for additive pseudo-random sampling, and upon the possible 

dithers and regular sampling period for periodic sampling with dither. 

Illustrative Example 4.3. 

An illustration of this is given in figure 4.4, which shows the output of the transform 

due to sampling a signal containing its fundamental harmonic at 17.0 Hz and no 
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overtones. In this case, the additive pseudo-random sampling process involved five 

hundred samples being taken at intervals of 1/12.0 s or 1/14.0 s; hence, fp = 84.0Hz 

from equation (4.29). It can clearly be seen that the input signal needs to be band-

Umited to fp/2 = 42.0 Hz. 

4.5 Inverse Pseudo-random DFT. 

A transform has been defined which takes pseudo-random samples of a signal x^(t) as 

its input data and produces an output Xj. '(f) . An inverse transform is required to f ind the 

N samples x^ity), tj^. = tg, t j , t ^ _ i f rom the data Xj.'(f)-

I f the sampling instances tj^, k = 0, 1 , N - 1 are spaced uniformly by intervals T^, then 

the inverse transform may be represented as [5, Brigham], 

N - l 1 

N n=0 
x^' ( t k ) = - X X ^ ( f n ) . e 

+ j 2 7 t . f „ t k 

where, f n = and tk = k . T s (seealso,equation (4.10)) ( 4 . 3 2 ) 

Note that the derivation of this inverse transform (for uniformly spaced samples) relies 

on the orthogonality relationship [5, Brigham], 

N - l _ 

I e 

n=0 

j2JC.f„tx + j 2 7 l . f „ t ^ N for X = K 

0 otherwise 
( 4 . 3 3 ) 

which does not hold for irregularly spaced samples. However, the two pseudo-random 

sampling schemes (defined in section 4.3) may be viewed as uniform sampling with a 

large number of carefully chosen missing sampUng instances. Define the sequence. 
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K^{t^) for Vfp 6 { t ^ l k = 0 t o N - 1 } 
for X = 0 t o Q-1 

0 otherwise 
( 4 . 3 4 ) 

where Q = (t^^.i + X(^^in).fp is the minimum sequence length required to accommodate 

every sample instance in one period o f x^Ct). Remember that in the theoretical 

development of the pseudo-random DFT in section 4.2, the periodicity of Xa(t) was 

assumed to equal the duration, = I n . i + of the rectangular window function h(t). 

x^in is as defined by equations (4.17) and (4.21) for the additive pseudo-random and 

periodic with dither sampling schemes respectively. Clearly Q is an integer by 

definition of fp in equation (4.23). 

Equation (4.9) becomes. 

X , ( f „ ) = Z x(;^) . e ( 4 . 3 5 ) 

X=0 

Let fn = n.5f where 5f is the DFT frequency bin spacing, with n = 0, 1 , f p / 5 f - 1. 

Thus, 

Q-l - j 2 7 t . n . 5 f .Vfp 
X^(n.5f ) = I K i X ) . e ( 4 . 3 6 ) 

X=0 

Consider the hypothesis that the inverse pseudo-random DFT is of the same form as 

equation (4.32); ie. that. 

5f fp/5f - 1 + j 2 7 r . n . K . 6 f / f p 
x ( K ) = X j - ( n . 5 f ) . e ( 4 . 3 7 ) 

n=0 

for K = 0, 1 , Q - 1 . Substituting equation (4.36) into equation (4.37) gives. 
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5f fp/5f - 1 Q-1 
X ( K ) = £ 

-j2rt.n.X.5f / f p +j2n . n . K.5f / f p 
2 x(;\.) .e .e 

-p n=0 X=0 

A swap of the summations is permissible only i f 5f = Vit^.i + Xj^in). Thus, 

Q-1 5f 
X(K) = ^ xt.X) 

X=0 fp 

Q-1 - j 2 7 t . n . ; i.5f / f p +j27t .n .K.5f / fp 
^ e .e 
n=0 

(4.38) 

Consider the section of this expression in the square brackets which is equivalent to, 

Q-1 - j 2 n . n . 5 f / f p . { X - K) 

I ^ 
n=0 

= V ( ) 

and let. 

+ j Q ( K - X) 
V = e where Q. = 27t.5f/f> (4.39) 

to givet. 

V ( ) = ^ V 

Q-1 1 - V 

^ = for V ^ 1 
n=0 1 - V 

(4.40) 

From equation (4.39), v = 1 for A, = K and vQ = 1 for ^ 9̂  K as ?l, K and 5f/fp are all 

integers by definition; so, substituting into (4.40) gives. 

'''From the malhemalical principles of sums and products, the basic formula for the sum of a 
geometric progression is given by, 

1 - x"+l 
o<j<n ax3 = a . 

1 - X 

assuming that x ;t 1 and n > 0. [16, Knuth]. 
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V ( ) = i 
Q for X = K 

( 4 . 4 1 ) 
0 Otherwise 

Thus equation (4.38) becomes its identity, so the hypothesis of equation (4.37) must be 

valid and the inverse pseudo-random discrete Fourier transform is given by, 

1 Q-1 + j 2 7 t . t k . n . 5 f 
^ a ' ( t k ) = - ^ X j . ( n . 5 f ) . e for tk ~ t o , ti, •r t i 4 - l 

Q n=0 
( 4 . 4 2 ) 

where Q = ( t ^ . j + x^^^).fp and 5f = 1/(1^.1 + x^ J . 

The discrete inversion formula (4.42) exhibits periodicity defined by the N samples of 

x^XO in a manner similar to the discrete transform; such that, 

X a ' ( t k ) = x^' ( tk + q . [ t ^ . i + X ^ i J ) for q = 0, ± 1 , ± 2 , . . . 

Examination o f the formula in (4.42) also reveals that to reconstruct the N sample 

values of x^(t) at t = tg, t ^ , t j s j . i f rom Xj.(fn) requires an excessive Q = (t^.i + Xn,in).fp 

points in the frequency domain to be calculated. Thus, an estimated wideband spectral 

analysis of the input signal may be made rapidly by taking N samples at pseudo-random 

intervals and performing the transform described by equation (4.9), but the 

reconstruction of just N samples of the signal x.^(t) at specific instances from this 

spectrum, although possible, involves vast time consuming evaluations. 

The workload involved can be dramatically reduced by noting that in practice, the input 

Xa(t) is real and so the values of x^Xtk) for k = 0, 1, N - l given by the inverse 

transform must also be real. Remember that when x^(t) is real, equation (4.30) holds; ie. 

X ^ ( f p - f ^ ) = x / ( f ^ ) 
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thus, 

X r ( Q . S f - r . 5 f ) = X ^ * ( r . 5 f ) 

and similarly, 

X r ( r . 5 f ) = X r * { Q.5f - r.5f ) 

The formula of (4.42) can therefore be reduced so that nearly only half the number of 

frequency bins need to be calculated. When Q is even, 

1 r Q /2 +j27:.ti,.n.6f 1 r Q /2 
i ' ( t k ) = - i X Xj.(n.5f) 

Q ^ n=0 
e 

Q / 2 - 1 ^ _ + j 2 7 r . t k . (Q - n) .5f 
+ X^" ( n.5f ) . e 

n = l J 

1 f + j j t . t k . f p 
- . X^(0) + X r ( f p / 2 ) . e 
Q I 

Q/2-1 -V 
+ 2 ^ a (nSf) c o s (2ntkn5f) + b (n5f) s i n (2ntj^n5f) • 

(4.43) 

and when Q is odd. 

1 r ( Q - l ) / 2 + j 2 r t . t k . n.5f 
X a ' ( t k ) = - j X X ^ ( n.5f) . e 

Q ^ n=0 

( Q - l ) / 2 ^ + j 2 7 : . t k . (Q - n) .5f-j 
+ ^ X^ {n.5f) .e 

n = l 

1 • 
- . X^(0) 
Q I 

( Q - l ) / 2 - - ] 
+ 2 £ a (nSf) c o s (27tt)^n5f) + b {n5f) s i n (27rt,^n5f) I 

(4.44) 

where Xr(n.5f) = a(n5f) - j .b(n5f) . 
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The value of x^Xt^) yielded by equation (4.43) or equation (4.44) must be real. This is 

so as Xr(0), Xj.(fp/2) and e'̂ '̂ '̂̂ '̂ '̂ P w i l l have no imaginary part by definition. 

Illustrative Example 4.4. 

The pseudo-random DFT of (4.9) and its inverse as described by equations (4.43) and 

(4.44) have been simulated for verification. (The simulation program source code is in 

Appendix C.) Figures 4.5 and 4.6 show the errors associated with the signal amplitude 

as determined by the inversion formulae at each sample instance in comparison with the 

actual signal amplitude. The input signal contained two harmonics; one at 7 Hz of 

amplitude 1 V , and another at 22 Hz of amplitude 2 V at 90° out of phase with the first 

harmonic. Figure 4.5 shows the error when the signal is sampled at 400 points 

uniformly at 84 Hz (system bandwidth 42 Hz.) 

Maxinun error: 5.690030e-013 Minimun error: 0.OOGGOOe*0GO 

0 Sample 399 

Figure 4.5. Example of amplitude errors f rom use of the inverse transform after 

sampling a signal uniformly. 

The errors that result are relatively small, occur because of computational inaccuracies 

when using floating-point arithmetic, and compare favourably with the errors that are 
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produced when using the N A G (Numerical Algorithms Group) library routines for an 

analogous simulation. The N A G simulation program source code is listed in appendix 

D. When executed, the list of errors produced showed that the errors generated by 

taking a DFT of a sequence of samples and then performing an inverse DFT, are of 

similar magnitude to those shown in figure 4.3, with the error in the first and final 

samples considerably greater than the others. 

Figure 4.6 shows the error when the signal is sampled at 400 points using the additive 

pseudo-random sampling scheme with = 1/12.0 s and X2 = 1/14.0 s (system 

bandwidth 42 Hz.) The errors are again relatively small, occur due to floating-point 

arithmetic inaccuracies, but are on average slightly greater than the errors of figure 4.5 

because more computation is required in the derivation of the sample values. In this 

case, the window width (the duration over which the 400 samples are taken) is 

approximately 400/13.0 s, compared with the case when the uniform sampling scheme 

is used for which the window width is only 400/84.0 s. Thus the number of frequency 

bins evaluated, Q = window width.fp, is much greater when using irregular sampling. 

Maxitiun error: 7.431944e-012 Mininun error: 8.881784e-016 

0 Sample 399 

Figure 4.6. Example of amplitude errors f rom use of the inverse transform after 

sampling a signal irregularly. 
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The amplitude error is noticeably high for the first and final samples. This is a familiar 

characteristic of the conventional inverse discrete Fourier transform (evident when 

using the N A G library routines) and is also due to the use of floating-point arithmetic in 

the simulation. The analysis on this error is covered in some detail in a collection of 

papers compiled in [17, Liu]. 

It has been clearly shown and verified by simulation that the equation (4.9) is a 

transform with a well defined inverse given by equation (4.42). However, this does not 

mean that the original signal may be reconstructed from its irregular samples, only that 

instantaneous values of the signal can be determined f rom an estimated spectrum. A 

method is required to f ind out whether or not unambiguous signal reconstruction is 

possible when using an irregular sampling scheme. I f such reconsuiiction is possible, 

relative to a particular sampling scheme, then that scheme w i l l be alias-free. 

4.6 Improving the Estimated Fourier Coefficients, 

To show that i t is possible to reconstruct the originally sampled signal from the N 

sample points, it is necessary to show that the coefficients a ,̂ and b^,, used to describe 

the signal by equation (4.1) for each harmonic at a frequency f ^ , can be determined 

without ambiguity f rom the N sample points. 

The coefficients generated by the pseudo-random transform in equation (4.9) are 

estimates of the Fourier coefficients â ^ and bj^, as is illustrated by figure 4.7. 

Illustrative Example 4.5. 

A signal containing one harmonic at 170 Hz of amplitude 1 V and another at 30 Hz of 

ampUtude 2 V with a 90° phase difference was simulated as being sampled at 500 

points using periodic sampling of 50 Hz ( T j = 1/50 s) with 5 possible dithers x = {0, 

±0.1Ts, ±0.4Ts} (giving a system bandwidth of 250 Hz). The spectrum of figure 4.7 
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shows the amplitude and phase of possible signal elements at ft-equencies spaced by 

0.5 Hz. 

Anplitude 

mm 
30.0 70.0 I30.C 170.0 l^c.Q f 

Phase 
IT 

-It 

Figure 4.7. An illustration of the large amount of noise present in the spectrum formed 

from the pseudo-random Fourier transform of equation (4.9). 

Examination o f figure 4.7 reveals the possibility of at least three erroneous signal 

elements at frequencies of 70 Hz, 130 Hz and 230 Hz in addition to the true components 

at 30 Hz and 170 Hz. 

It is necessary to devise an operation to eliminate this noise and thus determine the 

exact Fourier coefficients without ambiguity. 

Note that Xa(tjj) is given by (4.1). Substituting into (4.9) gives, 

X r ( f n ) = 

N - 1 M-1 

S I 
k=0 m=0 

afmcos (2r t f^tk) + b f ^ s i n (27rf„tk) 
•j27tfntk 

(4.45) 
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Rearranging this for its real and imaginary parts gives. 

M-1 N - l 

Z Z c o s ( 2 i r f n t k ) 
m=0 k=0 

a f „ . c o s ( 2 7 r f „ t k ) + b f ^ . s i n (27tf^tk) 

( 4 . 4 6 ) 

and. 

M-1 N - l 

E S s i n ( 2 n f n t k ) 
m=0 k=0 

a f „ . c o s ( 2 7 t f „ t k ) + b f „ . s i n ( 2 7 r f „ t k ) 

( 4 . 4 7 ) 

Equations (4.46) and (4.47) can be expressed in matrix form, as suggested by 

[8, Bilinsky, Vystavkin & Mikelson]; ie.. 

B = A . C o r C = A ~ - ^ . B ( 4 . 4 8 ) 

where the vectors, 

c = 
original 
coefficients 
sought 

B 
b f i coefficients 

calculated 
from (4.9) 

and the system transfer matrix, 

A = 

PsOO "clO PslO "c20 Ps20 
^sOl " c l l " s l l "c21 ^s21 

PcOl P e l l P s l l Pc21 Ps21 
0^502 ^ c l 2 ^sl2 ^c22 <^s22 
Pc02 P c l 2 P s l 2 Pc22 Ps22 

"cOm " e l m OCsim 0.^2m «s2m 
PsOm Pclm Pslm Pc2m Ps2m 

«cmO PsmO 
ttcml "sml 
Pcml Psml 
«cm2 "sm2 
Pcm2 Psra2 

'cmm rsmm 
( 4 . 4 9 ) 
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with. 

N-1 
ttcij = 21 cos (27rf i t j ^ ) .cos (2; i f j t ] ^ ) 

k=0 

N-1 
ttsij = Z s i n (2rtf it)^) .cos (27rf jt,^) 

k=0 

N-1 
Pcij = Z cos (2TCfit)^) . s i n (27tf j t k ) 

k=0 

N-1 
Psij = Z sin ( 2 7 t f i t , 5 ^ ) .sin ( 2 7 t f j t k ) 

k=0 

The dimensions of the matrix A, ) i by \i, are governed by the periodicity of the pseudo­

random DFT, fp = 2.Bpseu£jo and the frequency increment that the coefficients are 

calculated, 5f. The estimated coefficients are evaluated at frequencies f = m.5f for 

m = 0 to [Bpseudo/SfJ- I f fm = 0 (ie. m = 0) or f ^ = Bpseujo (ie. m = Bpseudo/5f is integer 

valued) then f rom the definition of the coefficients Xj( fn , ) , b f ^ w i l l be zero. It is 

therefore unnecessary to f ind the imaginary part of the coefficients for the first 

frequency bin (ie. fm = 0) at any time, or for the highest frequency bin (ie. fn , = Bpsg^ ĵo) 

when [ f p / 5 f j is even. Thus, 

= 2 .LBp3eudo/5fJ { + 1 i f [fp/SfJ i s odd } (4.50) 

The exact Fourier coefficients, C may be calculated from the inverse system transfer 

matrix, A'-*^ and the estimated Fourier coefficients, B. Matrix A is independent of the 

input signal and so A and A"-'̂  may be calculated prior to sampling for a known set of 

sampling instances. Noting that, ttgoj = oCcjO' PcOj ~ PsjO' ^sij - Pcji' ™ ^ e s it clear to 

see A is a symmetrical matrix. It follows f rom simple matrix theory that A"-'̂  must also 
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be symmetrical. This fact can be used to reduce the computation required to evaluate 

the matrix and its inverse. 

The classical approach for determining a matrix inversion, based on the use of Cramer's 

rule [18, Pipes & Hovanessian], involves an excessive number of arithmetical 

operations, approximately in the order of n^. Using an augmented matrix method, based 

on Gauss' elimination, the inverse matrix A"-^ may be obtained with a reduction in 

computation to the order of n-^ [18, Pipes & Hovanessian]. The most efficient method 

(implemented in the simulation program of appendix C,) also of order n^ but with a 

reduced constant of proportionality, is L U decomposition based on Grout's algorithm 

and is described in detail by [19 Press, Flannery, Teukolsky & Vettering]. 

It is expected that by using the inverse of the matrix in equation (4.49), the spectrum of 

a signal that has been band-limited in accordance with equation (4.31) and sampled 

irregularly at a maximum rate which may be below the Nyquist sampling rate, can be 

evaluated within the band limits without ambiguity at a finite number of frequencies. 

Illustrative Example 4.6. 

Consider, once again (as in the example 4.5,) a signal containing one harmonic at 

170 Hz of amplitude 1 V and another at 30 Hz of amplitude 2 V with a 90° phase 

difference. The signal is simulated as being sampled at 500 points by two pseudo­

random sampling schemes, each with a system bandwidth of 250 Hz. Scheme 1: 

Additive pseudo-random sampling with = 1/100.0 s and X2 = 1/125.0 s. Scheme 2: 

Periodic sampling at 50 Hz ( T s = l / 5 0 s ) with 5 possible dithers x = {0, i O . l T j , 

±0.4Ts}. Figure 4.8 shows the estimated signal spectrum (evaluated from equation 

(4.9)) when the signal is sampled using scheme 1. Figure 4.9 clearly shows that the 

noise in this estimated spectrum is eliminated when its coefficients are multiplied by the 

inverse of the matrix in equation (4.49), as expected. 
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Anplitude 

J I I I L J L 
30.0 170.0 

Phase 
n 

1 1 1 , 1 1 1 1 1 1 

j I 1 1 1 1 

Figure 4.8. Estimated spectrum of example signal sampled by scheme 1. 

Anpl itude 

30.0 170.0 
Phase 

IT 

Figure 4.9. Improved spectrum of signal after additive pseudo-random sampling. 

However, figures 4.10 and 4.11 show corresponding spectra when the signal is sampled 

using scheme 2. The noise is not eliminated and ambiguities remain. 
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Anplitude /, jjjj^ ̂  

I I I J I L J I L 

1 .322 - f / 

J i_ 
30.0 170.0 

Phase 
n 

Figure 4.10. Estimated spectrum of example signal sampled by scheme 2. 

AmpIitude 2k. C031 V 

30.0 TO.O 170.0 
Phase 

n 

210.0 f 

Figure 4.11. Incorrectly 'improved' spectrum of signal after periodic sampling with 

dither. 

The simulations reveal that, in the cases when a signal is sampled using periodic 

sampling with dither, i t is not possible to determine the coefficients a^ and b^,, used to 
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describe the signal by equation (4.1) for each harmonic at a frequency f ^ , without 

ambiguity f rom the N sample points. I t is possible to do so by using the matrix 

operation described above, i f the signal is sampled using an additive pseudo-random 

sampling scheme. It is not yet known why this phenomenon occurs for periodic 

sampling with dither. 

The four spectra above are coarse (coefficients are evaluated at frequency steps of 

5f = 10 Hz) because the simulation program of appendbc C finds i t understandably 

impossible to find the inverse of very large matrices. Evaluating the inverse of a very 

large matrix takes a long time, requires an excessive amount of storage and involves the 

use of very large floating-point numbers (sometimes too large for a computer's 

numerical representation.) For the example 4.6, with a system bandwidth of 

^pseudo ~ ^he inverse of a 50 by 50 matrix was calculated (dimensions given by 

equation (4.50),) enabling the coefficients to be calculated at only 26 points; ie. at 

frequencies f^^ = m.5f for m = 0 to 25. This should not be seen as a limitation to the 

technique but as an inconvenient restriction enforced by hardware limitations. 

4.7 Conceptual Interpretation and Discussion of the Technique. 

When a band-limited, periodic signal (assumed to be modelled by equation (4.1)) is 

sampled irregularly by either of the sampling schemes rigidly defined in section 4.3, the 

time required to acquire N samples of the signal w i l l inevitably be greater than the 

duration to obtain an equal number of samples by taking the samples at uniform 

intervals. That is to say, irregular sampling takes a longer time to obtain an equal 

amount of information (in terms of samples taken) as uniform sampling. This is a direct 

consequence of irregular sampling operating at a sub-Nyquist rate (for some given 

bandwidth) relative to uniform sampling. For example, consider a signal band-limited to 

250 Hz, sampled at 100 points. This could be sampled by using uniform sampling at 

500 Hz or, say, additive pseudo-random sampling with Xj = 1/100 s and X2= 1/125 s 

(corresponding to an average sampling rate of 112.5 Hz.) Using the irregular sampling 
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scheme, i t would take approximately 100/112.5 s to take the required number of 

samples, whereas it would only take 1/5 s using the uniform sampling scheme. 

Furthermore, as with the conventional discrete Fourier transform, some care is needed 

when using the pseudo-random DFT because it is valid only for the special case of a 

band-limited periodic signal. The transform w i l l only produce an approximation to the 

continuous Fourier transform spectrum i f there is not an integer number of complete 

cycles of the input signal sampled over the duration of the time domain window. I f the 

number of cycles sampled in the window interval is incomplete, then discontinuities 

w i l l exist at the extremities of the interval and the periodic signal w i l l no longer be 

band-limited. A form of distortion known as leakage w i l l be introduced into the 

spectrum. The resultant approximated spectrum can be made more accurate only by 

increasing the window interval for non-periodic signals (by effectively taking more 

samples); by making the window interval equal to a multiple of the actual period for 

periodic signals; or by altering the sampling scheme for a much greater bandwidth. 

In other words, all the problems that exist with the conventional DFT due to taking a 

finite length sequence of samples are also applicable to the pseudo-random DFT. 

It has been shown that the estimated spectrum produced by the pseudo-random 

transform may be improved i f the signal samples where taken using an additive pseudo­

random sampling scheme and hence the original signal may be reconstructed error-free 

from samples taken at irregular intervals. This is only possible i f the sampling instances 

are known prior to sampling. In most cases, i t is expected that the instances w i l l not be 

known until sampUng takes place. Evaluating the inverse of the matrix A every time 

samples are taken would incur excessive computational overheads and would therefore 

be impractical for a real-time system. However, as with the conventional DFT, the 

approximated spectrum can be made more accurate by taking a greater number of 

samples. 
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Consider the sampling of a signal containing two harmonics in phase; one at 20 Hz with 

an amplitude of 1 V, and the other at 90 Hz of amplitude 2 V. Figures 4.12, 4.13 and 

4.14 show the signal's estimated amplitude spectrum when samples using a variety of 

schemes. 

A n p l i t u d e 

20.G 90.0 

Figure 4.12. 500 samples taken uniformly every 1/125 s. 

Figure 4.12 clearly show the aliases that result when uniform sampling is employed. 

A n p l i t u d e 

20.0 90.0 f 

Figure 4.13. 100 samples taken using an additive pseudo-random sampling scheme with 

Xl = 1/100 s and X2 = 1/125 s. 
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f i n p l i t u d e 
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20.0 30.0 f 

Figure 4.14. 500 samples taken using an additive pseudo-random sampling scheme with 

Xi = 1/100 s and t2 = 1/125 s. 

Figures 4.13 and 4.14 illustrate how the estimated spectrum is improved by taking a 

larger number of samples. Furthermore, when compared with figure 4.12, it can be seen 

that aliases do not appear in the spectra in the form of frequency shifted replicas of the 

original signal, but spread in the form of broadband noise. The method described in 

section 4.6 shows that it is possible to unambiguously identify the original signal from 

this noise when samples are taken using the additive pseudo-random sampling scheme. 

A direct realisation of the pseudo-random DFT is clearly excessive in computation for a 

large number of points, which is required to reduce the noise present in the spectrum of 

the irregular samples. It is therefore necessary to use a fast algorithm for its 

implementation. Unfortunately, a decimation in time or a decimation in fi-equency form 

[20, Proakis & Manolakis] of fast Fourier transform is not applicable, as such an 

approach requires the input sequence to be evenly divided and makes use of the 

orthogonality relationships between one 'twiddle factor' and another. It could be 

advantageous to formulate a fast algorithm to implement the pseudo-random DFT of 

equation (4.1). However, the technique has some considerable limitations (as does the 

conventional discrete Fourier transform) but it has been demonstrated that sub-Nyquist 

sampling is possible by using additive pseudo-random sampling, with a gain in system 

bandwidth at the expense of signal-to-noise power ratio. 
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5. DESCRIPTION OF SIMULATION PROGRAMS 

The three techniques described in chapters 2, 3 and 4 have been simulated on a PC 

based system with a floating-point co-processor to show that they have been sufficiently 

and rigidly defined and to help in verifying the analysis of their characteristics and 

performance. NAG library routines have been used to determine the characteristics of 

errors generated by taking the DFT of a sequence of uniformly spaced samples, and 

then an inverse DFT to reproduce the sequence. 

The simulation programs of the three techniques are written in the 'C programming 

language and have been compiled using the Microsoft^ 'C optimizing compiler with 

the "compact" memory model. The simulation program that uses the NAG library is 

written in the Pascal programming language and was executed on a MTS Mainframe 

computer system. Their full source codes are listed in the appendices. 

The question of "how" the simulation programs work is intentionally not addressed 

here. It is expected that the reader has sufficient knowledge of 'C and Pascal to 

understand the programming with assistance from the comments within the listings and 

their structure, or should acquire such knowledge. However, "what" the simulation 

programs do is described. 

5.1 Simulation of Single Active Element Dealiasing Algorithm with 

DFT Errors Considered. 

The technique described in chapter 2 is simulated. 

The program takes the three sampling frequencies of equation (2.12) as its input and 

prompts the user as to whether or not the deaUasing algorithm is to be simulated with 

consideration of the errors imposed by the limited resolution of the discrete Fourier 

transforms used. I f so, the number of points, N used in calculating the DFTs is 
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requested. The program ensures that the number of points specified satisfies the 

conditions of equation (2.27). 

The operational bandwidth of the algorithm is returned as given by equation (2.16) i f 

DFT limitations are not to be considered, or otherwise by equation (2.24). The program 

then tests the dealiasing algorithm for every frequency ranging from zero to the pre-

calculated maximum operational frequency in steps of some user-entered increment, in 

an attempt to find an input frequency for which the technique does not work. A plot of 

the output frequency patterns from the three samplers/filters against input frequency is 

displayed, and i f the DFT limitations are considered, a plot of the error in the frequency 

as evaluated by the algorithm compared with the actual input frequency is also 

presented. I f the dealiasing algorithm operates correctiy, this error plot will show that 

the error does not exceed the maximum permissible error, as given by equation (2.22), 

at any time. 

The source code for this program is listed in appendix A. 

5,2 Simulation of Multiple Active Element Dealiasing AlgorithmSo 

The technique described in chapter 3 is simulated. 

The program takes the three sampling frequencies of equation (2.12) as its input and 

returns the operational bandwidth for the technique as given by equation (2.16). The 

simulation program prompts the user for a list of frequencies to correspond with the 

harmonics of the input signal to be modelled. The frequencies entered must be within 

the operational bandwidth calculated. The program then selects the most appropriate 

multiple active element dealiasing algorithm (either that of section 3.1 or section 3.2) 

for the modelled system, by using a criterion based on the relative efficiency of the two 

algorithms as described in section 3.4. 
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As output, the program says which algorithm was selected and lists the frequencies of 

all the harmonics that are believed to be in the input spectrum according to the alias 

reducing algorithm used. A plot of these frequencies and those of the actual input is 

produced for comparison, with the remaining 'ghost' frequencies (if any) highlighted. 

The source code for this program is listed in appendix B. 

5.3 Direct Realisation of the Pseudo-random Discrete Fourier 

Transform. 

This is the most complex of the simulation programs and models every aspect of the 

technique described in chapter 4. 

The program initially requests parameters to describe the sampling scheme to be 

modelled. This requires the number of sampling points to be taken, the type of sampling 

(uniform, additive pseudo-random, or periodic with dither,) and relevant sampling 

frequency data. The input signal bandwidth limitation is calculate and output for the 

scheme described on the basis of the theory laid out in section 4.4. 

Parameters may be entered to describe a complex input signal. The signal to be 

simulated is assumed to be formed of a summation of any finite number of sinusoidal 

harmonics of specified frequency, amplitude and relative phase. Sampling of this signal 

by the scheme declared is simulated, using a pseudo-random number generator with an 

approximately uniform distribution for the irregularly spaced sampling schemes. 

A number of operations may be preformed on the data produced by this process. The 

pseudo-random discrete Fourier transform of equation (4.9) can be evaluated and 

displayed at frequencies ranging from zero to a frequency corresponding to the system 

bandwidth at intervals, 5f specified by the user. The pseudo-random transform and its 

inverse described by equation (4.44) can be determined (with 6f = l/(tN.i + x^i^),) and 
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the errors associated with the signal amplitude as determined by the inversion formulae 

at each sample instance in comparison with the actual signal amplitude are plotted, in 

addition to the estimated signal spectrum. Alternatively, the matrix method proposed in 

section 4.6 to improve the estimated Fourier coefficients may be modelled. 

The source code for this program is listed in appendix C. 

So4 DFT and Inverse DFT using NAG Library Routines. 

In section 4.5, error plots were presented to show the magnitude of the errors generated 

when taking the pseudo-random DFT of a sequence of samples and then the inverse 

transform to reproduce the sequence. These plots where generated by executing the 

simulation program described in section 5.3 on a PC based system with a floating-point 

co-processor. In order to verify that the magnitude of these errors is consistent with 

floating-point arithmetic errors, a simulation was also produced using the NAG library 

routines. 

The NAG library routines are available on a MTS Mainframe computer system, which 

uses a different (and more accurate) representation of floating-point numbers to the PC 

based system. For this reason, the program listed in appendix D also simulates the 

pseudo-random DFT and its inverse. The program models uniform sampling of a signal 

to produce a sequence of consecutive sample values. The NAG library routines are then 

used to perform a conventional DFT and then an inverse DFT on this sequence to 

produce a new sequence with error. Similarly, the original sequence of sample values 

act as input to the pseudo-random DFT and then to its inverse, producing yet another 

sequence with error. The errors in the two new sequences (one produced by NAG 

routines and the other by the pseudo-random transforms) are then listed for a direct 

comparison. 

The source code of this program is listed in appendix D. 
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6. CONCLUSIONS AND SUGGESTIONS FOR FURTHER 

R E S E A R C H . 

A rigourous algorithm has been defined to establish the frequency and amplitude of a 

pure sinusoidal signal (ie. a signal consisting of only its fundamental harmonic) when 

sampled uniformly by three samplers simultaneously, although the frequency at which 

these samplers operate may be less than the twice the frequency of the sinusoidal signal. 

That is, the sinusoidal signal may be sampled at a sub-Nyquist rate and any resultant 

aliasing may be resolved. The output of each sampler is low-pass filtered 'ideally' with a 

cut-off at half the sampling frequency of the corresponding sampler. The algorithm has 

been shown to work within an acceptable and defined tolerance when only an 

approximation of the frequency of the signals that evolve from the sampling/filtering 

process, can be made because of limitations with the conventional discrete Fourier 

transform. The algorithm functions correctly up to a well defined maximum limit of the 

frequency of the sinusoidal signal, which depends on the three sampling frequencies 

used. 

An attempt to extend the algorithm developed by two analogous, although conceptually 

diverse methods, so as to eliminate aliases due to sampling (in the same way) a signal 

containing a sum of harmonics, proved only to reduce the frequency ambiguities. There 

is the possibility that erroneous harmonics may be identified as part of the signal, even 

for a signal containing only a few harmonics. It was shown that the only way to 

optimise the reduction in ambiguities, is to use a very large number of uniform 

samplers, each succeeded by a low-pass filter. However, the probability of finding 

erroneous harmonics remains and the excessive computational overheads imposed by 

the two methods rendered such an approach impractical. In fact, it would be far quicker 

and more accurate to use sampling at greater than the Nyquist rate. Alternatively, 

random sampling was proposed. 

78 



Irregular sampling of a continuous signal was investigated in terms of the spectrum of 

the samples taken. The conventional discrete Fourier transform is not applicable to non­

uniform samples and so a pseudo-random DFT was developed to determine an 

estimated spectrum for samples taken at irregular time intervals. Two sampling schemes 

to generate pseudo-random sampling instances are defined; namely, additive pseudo­

random sampling and periodic sampling with dither. The periodicity and symmetry of 

the transform were found and it is shown that a signal must be band-limited to a well-

defined frequency to avoid aliasing for the two sampling schemes. The maximum 

sampling rate may be well below twice the bandwidth of the limited signal. The 

transform inverse is derived and shown to function correctly within the floating-point 

limits of the simulation. I f the signal is sampled irregularly using the additive pseudo­

random sampling scheme, then its resultant estimated spectrum is consistentiy alias-free 

and, i f the instances at which each sample was taken were known prior to sampling, the 

exact Fourier coefficients of the original signal may be determined from it by the matrix 

method described. The signal must be band-limited to half the pseudo-random 

transform periodicity, which is dependent upon the irregularly spaced sampling 

instances. 

Simulations of the techniques were made and tiieir results used throughout to illustrate 

and verify some of the arguments presented. 

When samples of a signal are taken at irregular time intervals using an additive pseudo­

random sampling scheme, the alias-free spectrum estimated by the pseudo-random DFT 

shows the presence of noise. It is suggested that further research be undertaken to 

determine the level of this noise, the parameters upon which it depends (the number of 

samples taken being one,) and develop methods to reduce or eliminate it. Furthermore, 

the effects of sample quantization are unknown and should be investigated. The use of 

pseudo-randomly varying quantization thresholds may be examined to see if 

quantization noise can be reduced. The estimated spectrum will somehow be affected 

by random variations in the sampling instances {tj^}. The effect on the spectrum 
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estimation due to this or due to using different distributions of pseudo-random numbers 

in the production of the sampling instances, also requires investigation. Should such 

further research find the pseudo-random discrete Fourier transform to be of exceptional 

value, a fast algorithm should be developed to improve the efficiency of its 

implementation. 

Papers with a strong mathematical basis which may be of use in extending the research 

and which have been helpful from time-to-time to the research already undertaken are 

listed in the bibliography with a number of items which have been of use throughout the 

research. 
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APPENDIX A 

Program Source Code for the Simulation of the Single Active Element 

Dealiasing Algorithm with DFT Errors Considered. 
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* * 

* Sub-Nyquist Sampling Alg o r i t h m S i m u l a t i o n * 
* • 

* - S i n g l e A c t i v e Element A n a l y s i s - * 
* - Uniform sampling scheme - * 
* - DFT e r r o r s may be c o n s i d e r e d - * 
* - E r r o r s and output p a t t e r n s p l o t t e d - * 

* * 

* i n c l u d e system f i l e s * 

* • i t * * * * * * * * * * * * * * * * * * * * * / 

# i n c l u d e <stdio.h> 
S i n c l u d e <graph.h> 
• i n c l u d e <conio.h> 
# i n c l u d e <float.h> 
# i n c l u d e <math.h> 

* data p r o c e s s i n g r o u t i n e s * 
* * 

/* 
* Return o p e r a t i o n a l bandwidth of system with or without DFT e r r o r s c o n s i d e r e d 
* 
* f s - a r r a y of t h r e e sampling f r e q u e n c i e s 
* n - number of p o i n t s used to c a l c u l a t e the DFTs. Assumed equal f o r a l l t h r e e 
* n = 0 means DFT e r r o r s not c o n s i d e r e d 
*/ 

double frequency_range ( f s , n) 
double f s [ ] ; 
i n t n; 

double Bopt, B e r r ; 

i f (n == 0) ( 
/* equation (2.16) */ 
Bopt = f s [ 0 ] * f s [ 2 ] / ( 2 . 0 * ( f s J 2 ] - f s [ 0 ] ) ) + f s ( l ] * 0 . 5 ; 
r e t u r n (Bopt); 
} 

e l s e { 
/* equation (2.24) */ 
B e r r = ( f s [ 0 ] * f s [ 2 ] / ( f s [ 2 ] - f s [ 0 ] ) ) * (0.5 - 1.0/(double) n), 
r e t u r n ( B e r r ) ; 
) 
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/* 
* Return maximum p e r m i s s i b l e e r r o r i n c a l c u l a t i n g input frequency 

* f s - a r r a y of t h r e e sampling f r e q u e n c i e s 
* n - number of p o i n t s used to c a l c u l a t e the DFTs. Assumed equal f o r a l l three 
* n = 0 means DFT e r r o r s not c o n s i d e r e d 
*/ 

double max_error ( f s , n) 
double f s [ ] ; 
i n t n; 

double dfxmax; 

i f (n == 0) 
r e t u r n ( 0 . 0 ) ; 

e l s e { 
/* equation (2.22) */ 
dfxmax = f s [ 0 ] * f s [ 2 ] / ( ( d o u b l e ) n * { f s [ 2 ] - f s [ 0 ] ) : 
r e t u r n (dfxmax); 
} 

/* 
* C a l c u l a t e frequency of output s i g n a l from the t h r e e samples as g i v e n by DFT 
* 
* f s - a r r a y of t h r e e sampling f r e q u e n c i e s 
* n - number of p o i n t s used to c a l c u l a t e the DFTs 
* n = 0 means DFT e r r o r s not c o n s i d e r e d 
* i n - frequency of input s i g n a l 
* out - a r r a y of f r e q u e n c i e s of t h r e e output s i g n a l s 
*/ 

v o i d s i m u l a t e _ o u t p u t ( f s , n, i n , out) 
double f s [ ] ; 
i n t n; 
double i n ; 
double o u t [ ] ; 

r e g i s t e r i n t i ; 
double k, rem, i n t p a r t ; 

f o r ( i = 0; i <= 2; i++) { 
/* equation (2.13) */ 
k = f l o o r ( i n / f s ( i ] ) ; 
i f ( ( i n >= k * f s [ i ] ) SS ( i n <= (k + 0 . 5 ) * f s [ i ] ) ) 

o u t [ i l = i n - k * f 3 [ i l ; 
e l s e 

o u t [ i ] = (k + 1 . 0 ) * f s [ i ] - i n ; 
i f (n != 0) { 

/* t r u n c a t e output to s i m u l a t e e r r o r given by equation (2.20) */ 
rem = modf ( o u t [ i ] * ( d o u b l e ) n / f s [ i ] , s i n t p a r t ) ; 
i f (rem > 0.5) 

i n t p a r t += 1.0; 
o u t [ i ] = i n t p a r t * f s [ i ] / (double) n; 
) 
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I* 

* D e a l i a s i n g a l g o r i t h m 
* Determines the approximate frequency of the s i g n a l input from the DFT outputs 
* R e t u r n s zero i f f a i l s to f i n d a component frequency 

f s - a r r a y of t h r e e sampling f r e q u e n c i e s 
n - number of p o i n t s used to c a l c u l a t e the DFTs 

n = 0 means DFT e r r o r s not c o n s i d e r e d 
out - a r r a y of f r e q u e n c i e s of t h r e e output s i g n a l s determined by DFTs 
p _ c f - p o i n t e r to the c o r r e c t approximate frecpjency of the input 

*/ 
i n t d e a l i a s ( f s , n, 
double f s ( ] ; 
i n t n; 
double out [ ] ; 
double * p _ c f ; 

out, p c f ) 

double i d f s l , i d f s 2 , i d f s 3 ; 
double r [ 8 ] [ 3 ] , dfx, p o s s _ f r e q ; 
r e g i s t e r i n t i , num_found; 
double drOmax, drlmax, dr2max; 

i d f s l = l . a / ( f s [ l ] - f s [ 0 ] ) 
i d f s 2 = 1 . 0 / ( f s [ 2 ] - f s [ l ] ) 
i d f s 3 = 1 . 0 / ( f s [ 2 ] - f s ( 0 ] ) 

/* c a l c u l a t e c y c l e count f o r the e i g h t r e g i o n s of the output p a t t e r n */ 
/* equ a t i o n (2.18) */ 
r 7] [0] = (out[0] - o u t [ l ] ) * i d f s l ; 
r 7] [1] = (out [1] - out [2]) * i d f s 2 ; 
r 7] [2] = (out[0] - out [2]) * i d f s 3 ; 
r 1] [0] ( f s [ 0 ] - o u t [ 0 ] - o u t [ l ] ) * i d f s l ; 
r 1] [1] = r [ 7 ] [ 1 ] ; 
r 1] [2] = ( f s [ 0 ] - o u t [ 0 ] - o u t [ 2 ] ) * i d f s 3 ; 
r 2] (0] - r [ 7 ] [0] - 1.0; 
r 2] (1] = ( f s [ l ] - o u t ( l ] - out [2]) * i d f s 2 ; 
r 2] [2] = r [ l ] [ 2 ] ; 
r 3] [0] = r [ 2 ] [ 0 ] ; 
r 3] [1] - r [ 7 ] [1] - 1.0; 
r 3] [2] = - r [ 7 ] [2] - 1.0; 
r 4] [0] = (out [0] + o u t [ l ] ) * i d f s l ; 
r 4] [1] = - r [ 7 ] [ 1 ] ; 
r 4] [2] = (out[0] + out [2]) * i d f s 3 ; 
r 5] [0] = r [ 7 ] [ 0 ] ; 
r 5] [1] = (out [1] + out [2]) * i d f s 2 ; 
r 5] [2] = r [ 4 ] [ 2 ] ; 
r 6] [0] r [ 4 ] [ 0 ] ; 
r 6] [1] = r [ 2 ] [ 1 ] + 1.0; 
r 6] [2] = ( f s [ 2 ] - out [2] + o u t [ 0 ] ) * i d f s 3 ; 
r 0] [0] = r [ l ] [ 0 ] ; 
r 0] [1] = r [ 5 ] [ 1 ] ; 
r 0] [2] = ( f s [ 0 ] - ou t [ 0 ] + out [2] ) * i d f s 3 ; 

/* use simple a l g o r i t h m i f DFT e r r o r s are not to be c o n s i d e r e d */ 
i f (n == 0) ( 

*p_c f = -1.0; 
num_found = 0; 
f o r ( i = 0; i <= 7; i++) 

i f ( r ( i ] [ 0 ] == r [ i ] [ l ] SS r ( i ] [ l ] == r [ i ] [ 2 ] ss 
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( f l o o r ( r [ i ] [2]) == r [ i ] [ 2 ] ) ) { 
i f ( i >= 4) 

p o s s _ f r e q = ou t [ 0 ] + r [ i ] [ 2 ] * f s [ 0 ] ; 
e l s e 

p o s s _ f r e q = ( r [ i ] ( 2 ] + 1 . 0 ) * f s [ 0 ] - o u t ( 0 ] ; 
i f ( p o s s _ f r e q != *p_ c f &s 

p o s s _ f r e q >= 0.0 && 
p o s s _ f r e q < frequency_range ( f s , n) ) { 

num_found += 1; 
*p_cf = poss f r e q ; 

} 

/* o t h e r w i s e use modified a l g o r i t h m */ 
e l s e { 

/* e v a l u a t e maximum e r r o r i n c y c l e counts - equation (2.21) */ 
drOmax = ( f s ( 0 ] + f s [ l ] ) / ( 2 . 0 * ( f s [ l ] - f s [ 0 ] ) * (double) n) ; 
drlmax = ( f s [ l l + f s [ 2 ] ) / ( 2 . 0 * ( f s [ 2 ] - f s [ l ] ) * (double) n) ; 
dr2max = ( f s [ 0 ] + f s [ 2 ] ) / ( 2 . 0 * ( f s [ 2 ] - f s [ 0 ] ) * (double) n) ; 

/* e v a l u a t e max e r r o r i n approximating input frequency */ 
dfx = max_error ( f s , n ) ; 

/* f i n d v a l i d c y c l e count and hence the frequency of input s i g n a l */ 
*p_c f = -2.0*dfx; 
num_found = 0; 
fo r ( i = 0; i <= 7; i++) 

i f (fabs ( r [ i ] [ 0 ] - r [ i ] [ l ] ) < drOmax + drlmax S i 
fabs ( r ( i ] [ l ] - r [ i ] [ 2 ] ) < drlmax + dr2max s s 
fabs ( r [ i ] [0] - r [ i ] [ 2 ] ) < drOmax + dr2max SS 
(fab s ( f l o o r ( r ( i ] [ 0 ] ) - r [ i ] [ 0 ] ) < drOmax I I 
fabs ( c e i l ( r [ i H O ] ) - r [ i ) [ 0 ] ) < drOmax) SS 

(fab s ( f l o o r ( r [ i ] [ l ] ) - r [ i ] [ l ] ) < drlmax I I 
fabs ( c e i l ( r [ i ) [ l ] ) - r [ i ] [ l ] ) < drlmax) SS 

(fabs ( f l o o r ( r [ i ] [ 2 ] ) - r [ i ] [ 2 ] ) < dr2max I I 
fabs ( c e i l ( r [ i ] ( 2 ] ) - r [ i ] [ 2 ] ) < dr2max) ) { 

i f ( i >= 4) 
p o s s _ f r e q = ou t [ 0 ] + r [ i ] [2] * f s [0] ; 

e l s e 
p o s s _ f r e q = ( r [ i ] [ 2 ] + 1 . 0 ) * f s [ 0 ] - o u t [ 0 ] ; 

i f ( p o s 3 _ f r e q >= 0.0 SS 
p o s s _ f r e q < frequency_range ( f s , n) + dfx) { 

num_found = 1 ; 
*p_cf = p o s s _ f r e q ; 
} 

} 

} 

r e t u r n (num found == 1 ) ; 
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* • 

* u s e r i n t e r f a c e r o u t i n e s * 
* * 
***************************/ 

/* 
* Program i n t r o d u c t i o n d i s p l a y 
*/ 

v o i d heading 0 
{ 

p r i n t f ( 
p r i n t f ( 
p r i n t f ( 
p r i n t f ( 
p r i n t f ( 
p r i n t f ( 
p r i n t f ( 

[OmThe A n a l y s i s of S i g n a l s Sampled at a Sub-Nyquist Rate\n\n" 
P C Bagshaw December 1989\n\n"); 
S i m u l a t i o n of D e a l i a s i n g AlgorithmNn"); 
- S i n g l e A c t i v e Element A n a l y s i s - \ n " ) ; 
- Uniform sampling scheme - \ n " ) ; 
- DFT e r r o r s may be c o n s i d e r e d - \ n " ) ; 
'•- E r r o r s and output p a t t e r n s p l o t t e d - \ n \ n " ) ; 

/* 
* Request o p e r a t i n g f r e q u e n c i e s of the t h r e e samplers 
* 
* f s - a r r a y of t h r e e sampling f r e q u e n c i e s 
*/ 

v o i d s e l e c t _ s a m p l e _ f r e q u e n c i e s ( f s ) 
double f s [ ] ; 

r e g i s t e r i n t boolean, i ; 
f l o a t i n _ s a m p l e _ f ; 

p r i n t f ("Enter t h r e e sampling frequenciesXn") ; 
boolean = 1; 
w h i l e (boolean) { 

f o r ( i = 0; i <= 2; i++) { 
p r i n t f ( " f s % d : ", i + 1 ) ; 
sc a n f ("%f", S i n _ s a m p l e _ f ) ; 
f s [ i ] = (double) i n _ s a m p l e _ f ; 
} 

/* ensure eq u a t i o n (2.12) holds */ 
i f (boolean = (0.0 >= f s f O ] I I f s f O ] >= f s [ l ] 

I I f s [ l ] >= f s [ 2 ] ) ) 
p r i n t f ( " e r r o r : 0 < f s l < f s 2 < f s 3 not s a t i s f i e d \ n " ) , 

} 

r e t u r n ; 
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/* 
* Request number of p o i n t s to be used by DFTs and check s u f f i c i e n t a re used 
* 
* f s - a r r a y of t h r e e sampling f r e q u e n c i e s 
* p_n - p o i n t e r t o the number of p o i n t s used to c a l c u l a t e the DFTs 
*/ 

v o i d read_num_dft_points ( f s , p_n) 
double f s [ ] ; 
i n t *p_n; 
( 

r e g i s t e r i n t s u f f i c i e n t _ p o i n t s = 0; 
ch a r key; 

p r i n t f ("Are DFT e r r o r s to be c o n s i d e r e d ( y / n ) ? ") ; 
w h i l e ( (key = ge t c h ( ) ) != 'y' SS key != 'n') 

p r i n t f ("%c\n", k e y ) ; 
i f (key == ' n ' ) { 

*p_n = 0; 
r e t u r n ; 
) 

w h i l e ( ! s u f f i c i e n t _ p o i n t s ) ( 
p r i n t f ("Enter number of p o i n t s i n DFT: " ) ; 
s c a n f ("%d", p _ n ) ; 
/* ensure e q u a t i o n (2.27) holds */ 
s u f f i c i e n t _ p o i n t s = ((double) *p_n > ( f s [ l ] + f s [ 2 ] ) / ( f s [ 2 ] - f s [ l ] ) SS 

(double) *p_n > ( f s ( 0 ] + f s [ 1 ] ) / ( f s [ 1 ] - f s [ 0 ] ) ) ; 
i f ( ! s u f f i c i e n t _ p o i n t s ) 

p r i n t f ( " e r r o r : i n s u f f i c i e n t p o i n t s f o r a l g o r i t h m to operate c o r r e c t l y \ n " 
) 

r e t u r n ; 

> 

/* 
* P l o t sampler output f r e q u e n c i e s and a l g o r i t h m e r r o r a g a i n s t input frequency 
* 
* s - a r r a y of t h r e e sampling f r e q u e n c i e s 
* n - number of p o i n t s used to c a l c u l a t e the DFTs 
* n = 0 means DFT e r r o r s not c o n s i d e r e d 
*/ 

v o i d p l o t _ o u t p u t _ p a t t e r n s ( s , n) 
double s [ ] ; 
i n t n; 
{ 

s t r u c t v i d e o c o n f i g vc; 
double f r , x _ s c a l e , y _ s c a l e , fx, f o ( 3 ] , c f , dfxmax; 
s h o r t x; 

i f (!set_mode()) 
e x i t (-1); 

_ g e t v i d e o c o n f i g ( S v c ) ; 
_ s e t c o l o r (_WHITE); 
_ s e t t e x t p o s i t i o n (6, 1 ) ; 
p r i n t f ( " S a m p l e r / F i l t e r outputs: f o l , fo2 and f o 3 " ) ; 
_ s e t l o g c r g (0, ( i n t ) vc.numypixels*0.49); 
f r = frequency_range ( s , n) ; 
dfxmax = max e r r o r ( s , n ) ; 
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x _ 3 c a l e = (double) (vc.nuraxpixels - l ) / f r ; 
_moveto {0, (short) ( - s (2]*x_scale/2.0)); 
_ l i n e t o (0, 0 ) ; 
_ l i n e t o (vc.numxpixels, 0) ; 
_moveto (0, 0 ) ; 
f o r ( f x = 0.0; f x <= f r ; f x += 1.0/x_scale) { 

simulate_output ( s , n, f x , f o ) ; /* c a l c u l a t e and p l o t f o l , fo2, fo3 */ 
X = (short) ( f x * x _ s c a l e ) ; 
_ s e t c o l o r (12); /* l i g h t red */ 
_ s e t p i x e l (x, (short) ( - f o [ 2 ] * x _ s c a l e ) ) ; 
_ s e t c o l o r (10); /* l i g h t green */ 
_ s e t p i x e l (x, (short) ( - f o [ 1 ] * x _ s c a l e ) ) ; 
_ s e t c o l o r ( 9 ) ; /* l i g h t blue */ 
_ s e t p i x e l (x, (short) ( - f o [ 0 ] * x _ s c a l e ) ) ; 
} 

_ s e t t e x t p o s i t i o n ( 1 , 1 ) ; 
p r i n t f ( " f s l = %.3f fs2 = %.3f fs3 = % . 3 f \ n " , s [ 0 ] , s [ l ] , s [ 2 ] ) ; 
p r i n t f ("Operational frequency range, B = % f " , f r ) ; 
_ s e t t e x t p o s i t i o n (16, 1 ) ; 
p r i n t f ("0"); 
_ s e t t e x t p o s i t i o n (16, 32); 
p r i n t f ("Input frequency"); 
_ s e t t e x t p o s i t i o n (16, 80); 
p r i n t f ("B"); 

i f (n != 0) ( 
_ s e t t e x t p o s i t i o n (3, 1 ) ; 
p r i n t f ("Number of p o i n t s i n DFTs = %d\n", n ) ; 
p r i n t f ("Maximum permissible e r r o r , A d f x _ m a x A = % f \ n " , d f x m a x ) ; 
_ s e t t e x t p o s i t i o n (17, 1 ) ; 
p r i n t f ("Dealiasing e r r o r : A d f x A " ) ; 
_ s e t t e x t p o s i t i o n (18, 1) ; 
p r i n t f ("- % . 3 f " , dfxmax); 
y_scale = -(double) (vc.numypixels - 1)/dfxmax*0.35; 
_ s e t l o g o r g (0, ( i n t ) vc.numypixels*0.93); 
_moveto (0, 0 ) ; 
f o r ( f x = 0.0; f x <= f r ; f x += 1.0/x_scale) { 

_ s e t c o l o r (14); /* yellow */ 
simulate_output (s, n, f x , fo) ; 
i f ( I d e a l i a s ( s , n, f o , Scf) I I fabs ( f x - c f ) > dfxmax) { 

/* d e a l i a s i n g a l g o r i t h m given i n c o r r e c t answer */ 
_ s e t c o l o r (13); /* purple */ 
cf = f x - dfxmax; 
) 

_moveto ( ( s h o r t ) ( f x * x _ s c a l e ) , 0 ) ; 
_ l i n e t o ( ( s h o r t ) ( f x * x _ s c a l e ) , (short) (fabs ( f x - c f ) * y _ s c a l e ) ) ; 
) 

_ s e t t e x t p o s i t i o n (29, 1 ) ; 
p r i n t f ("0"); 
_ s e t t e x t p o s i t i o n (29, 32); 
p r i n t f ("Input frequency"); 
_ s e t t e x t p o s i t i o n (29, 80); 
p r i n t f ("B"); 
_ s e t c o l o r (_WHITE); 
_moveto (0, (short) (dfxmax*y_scale)); 
_ l i n e t o (0, 0 ) ; 
_ l i n e t o (vc.numxpixels, 0 ) ; 
) 

getch 0; 
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_setvideomode (_DEFAULTMODE); 
r e t u r n ; 

/* 
* Select video mode 
*/ 

i n t set_mode () 
{ 

i f (_setvideomode (_VRES16C0L0R)) 
r e t u r n (_VRES16C0L0R); 

i f (_setvideomode (_ERESCOLOR)) 
r e t u r n (_ERESCOLOR); 

i f (_setvideomode {_MRES16C0L0R)) 
r e t u r n {_MRES16C0L0R); 

else 
r e t u r n ( 0 ) ; 

} 

* * 
* main program * 
* * 

double sample_freqs[3] = {0.0, 0.0, 0.0) 

main () 

i n t num_points; 
double B, dfx_max, f r e q _ i n c = 0.0, f x , f o [ 3 ] , c f ; 
f l o a t entered_inc; 
r e g i s t e r i n t errors_found = 0; 

heading ( ) ; 
select_sample_frequencies (sample_freqs); 
read_num_dft_points (sample_freqs, Snum_points); 
B = frequency_range (sample_freqs, num_points); 
p r i n t f ("Frequency range: % f \ n " , B); 
dfx_max = max_error (sample_freqs, num_points); 
p r i n t f ("Maximum permissible e r r o r i n c a l c u l a t i n g input frequency: % f \ n " , dfx_max) ; 
while ( f r e q _ i n c <= 0.0) { 

p r i n t f ("Test d e a l i a s i n g a l g o r i t h m over range w i t h frequency increment: " ) ; 
scanf ("%f", Sentered_inc); 
f r e q _ i n c = (double) entered_inc; 
) 

p r i n t f ("Looking f o r e r r o r s i n d e a l i a s i n g algorithm...\n\n"); 
f o r ( f x = 0.0; f x < B; f x += f r e q _ i n c ) { 

simulate_output (sample_freqs, num_points, f x , f o ) ; 
i f ( i d e a l i a s (sample_freqs, num_points, f o , Scf) || fabs ( f x - c f ) > dfx_max) ( 

errors_found += 1; 
i f (errors_found == 1) 

p r i n t f ("Algorithm i n e r r o r f o r input frequency,\n"); 
p r i n t f ( " % f gives i n c o r r e c t answer % f - e r r o r = % f \ n " , f x , c f , f a b s ( f x -

o f ) ; 
} 
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} 
i f (!errors_found) 

p r i n t f ("No"); 
else 

p r i n t f ("%d", e r r o r s _ f o u n d ) ; 
p r i n t f (" e r r o r s found\n\nPress any key t o continue"); 
getch ( ) ; 
p l o t _ o u t p u t _ p a t t e r n s (sample_freqs, num_points); 
e x i t ( 0 ) ; 
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APPENDIX B 

Program Source Code for the Simulation of the Multiple Active 

Element Dealiasing Algorithms. 
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* * 
* Sub-Nyquist Sampling Algorithms Simulation * 
* * 
* - M u l t i p l e A c t i v e Element Analysis - * 
* - Uniform sampling scheme f o r three samplers - * 
* - Chooses most e f f i c i e n t a l g o r i t h m f o r case described - * 
* * 

* * 
* include system f i l e s * 

• i n c l u d e <malloc.h> 
•incl u d e <stdio.h> 
• i n c l u d e <graph.h> 
•include <conio.h> 
•incl u d e < f l o a t . h > 
• i n c l u d e <math.h> 

* * 
* d e f i n e a b s t r a c t data type f o r ordered l i s t of frequencies * 
« * 
•********************************************••**************/ 

typedef s t r u c t f r e q _ l i s t { 
double frequency; 
s t r u c t f r e q _ l i s t *next_frequency; 
} FREQ_LIST; 

v o i d a d d _ t o _ l i s t { p _ l i s t _ h d , f_value) 
FREQ_LIST * * p _ l i s t _ h d ; 
double f_v a l u e ; 
{ 

FREQ_LIST *new_node, *node = NULL, *old_node = NULL; 
r e g i s t e r new_value = 1; 

i f ( * p _ l i s t _ h d != NULL) { 
node = * p _ l i s t _ h d ; 
while ((new_value = f_value != node->frequency) SS 

node != NULL && f_value > node->frequency) { 
old_node = node; 
node = node->next_frequency; 
) 

) 
i f (new_value) { 

new_node = (FREQ_LIST *) malloc (s i z e o f (FREQ_LIST)); 
i f (new_node == NULL) { 

f p r i n t f ( s t d e r r , " e r r o r : i n s u f f i c i e n t memory availableXn") , 
e x i t (-1); 
} 

new_node->frequency = f_value; 
i f ( * p _ l i s t _ h d == NULL) { 

* p _ l i s t _ h d = new_node; 
new_node->next_frequency = NULL; 
} 
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else { 
i f (old_node == NULL) 

* p _ l i s t _ h d = new_node; 
else 

old_node->next_frequency = new_node; 
new_node->next_frequency = node; 
} 

* * 
* data processing r o u t i n e s * 
* * 

double frequency_range ( f s ) 
double f s [ ] ; 
{ 

double Bopt; 

/* equation (2.16) */ 
Bopt = f s [ 0 ] * f s ( 2 ] / ( 2 . 0 * ( f s ( 2 ] - f s [ 0 ] ) ) + f s [ l ] * 0 . 5 ; 
r e t u r n (Bopt); 

} 

v o i d simulate_output ( f s , i n , out) 
double f s [ ] ; 
double i n ; 
double o u t [ ] ; 
{ 

r e g i s t e r i n t i ; 
double k; 

f o r ( i = 0; i <= 2; i++) { 
/* equation (2.13) */ 
k = f l o o r ( i n / f s [ i ] ) ; 
i f ( ( i n >= k * f s [ i ] ) SS ( i n <= (k + 0 . 5 ) * f s [ i ] ) ) 

o u t [ i ] = i n - k * f s [ i ] ; 
else 

o u t [ i ] = (k + 1 . 0 ) * f s [ i ] - i n ; 
) 

r e t u r n ; 

} 

i n t s i n g l e _ d e a l i a s ( f s , out, p_cf) 
double f s [ ] ; 
double o u t [ ] ; 
double *p_cf; 

double i d f s l , i d f s 2 , i d f s 3 ; 
double r ( 8 ] [ 3 ] , d f x , poss_freq; 
r e g i s t e r i n t i , num_found; 
double drOmax, drlmax, dr2max; 
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i d f s l = 1.0/ ( f s [1] - f s [ 0 ] ) 
i d f s 2 = 1.0/(fs[21 - f s [ l ] ) 
i d f s 3 = 1 . 0 / ( f s [ 2 ] - f s [ 0 ] ) 

/* c a l c u l a t e cycle count f o r the e i g h t regions of the output p a t t e r n */ 
/* equation (2.18) */ 
r 7] [0] = ( o u t [ 0 ] - o u t [ l ] ) * i d f s l ; 
r 7] [1] ( o u t ( l ] - out [2]) * i d f s 2 ; 
r 7] [2] = ( o u t [ 0 ] - o u t [ 2 ] ) * i d f s 3 ; 
r 1] [0] = ( f s ( 0 ] - o u t [ 0 ] - o u t [ l ] ) * i d f s l ; 
r 1] [1] = r [ 7 ] [ 1 ] ; 
r 1] [2] = ( f s [ 0 ] - o u t [ 0 ] - o u t [ 2 ] ) * i d f s 3 ; 
r 2] [0] = - r ( 7 ] [0] - 1.0; 
r 2] (1] = ( f s ( l ] - o u t ( l ] - out [2] ) * i d f s 2 ; 
r 2] [2] = r [ l ] [ 2 ] ; 
r 3] [0] = r [ 2 ] [ 0 ] ; 
r 3] [1] - r ( 7 ] [1] - 1.0; 
r 3] [2] = - r [ 7 ] [ 2 ] - 1.0; 
r 4] [0] = (out [0] + out [1]) * i d f s l ; 
r 4] [1] - r [ 7 ] [1] ; 
r 4] [2] = (out [0] + out [2]) * i d f s 3 ; 
r 5] [0] = r [ 7 ] [0] ; 
r 5] [1] = ( o u t [ 1 ] + out [2]) * i d f s 2 ; 
r 5] [2] = r [ 4 ] [ 2 ] ; 
r 6] [0] = r [ 4 ] [ 0 ] ; 
r 6] [1] = r [ 2 ] [1] + 1.0; 
r 6] [2] = ( f s [ 2 ] - out [2] + out [0]) * i d f s 3 ; 
r 0] [0] = r [ l ] [ 0 ] ; 
r 0] [1] = r [ 5 ] [ 1 ] ; 
r 0] [2] = ( f s [ 0 ] - o u t [ 0 ] + out [2] ) * i d f s 3 ; 

/* use simple a l g o r i t h m since no DFT e r r o r s are considered */ 
*p_cf = -1.0; 
num_found = 0; 
f o r ( i = 0; i <= 7; i++) 

i f ( r [ i ] [ 0 ] == r [ i ] [ l ] SS r [ i ] [ l ] == r [ i ] [ 2 ] ss 
( f l o o r ( r [ i ] [2]) == r [ i ] [ 2 ] ) ) { 

i f ( i >= 4) 
poss_freq = o u t ( 0 ] + r [ i ] [ 2 ] * f s [ 0 ] ; 

else 
poss_freq = ( r [ i ] [ 2 ] + 1 . 0 ) * f s [ 0 ] - o u t [ 0 ] ; 

i f (poss_freq != *p_cf SS 
poss_freq >= 0.0 SS 
poss_freq < frequency_range ( f s ) ) { 

num_found += 1; 
*p_cf = poss_freq; 
} 

} 

r e t u r n (num found == 1 ) ; 
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/* 
* Implementation of m u l t i p l e a c t i v e element ambiguity reduction algorithm no.l 
*/ 

v o i d m u l t i p l e _ d e a l i a s _ l (s, o_hd, p_out_hd) 
double s [ ] ; 
FREQ_LIST *o _ h d ( ] ; 
FREQ_LIST **p_out_hd; 
{ 

double f o [ 3 ] , c f , f r ; 
FREQ_LIST * p _ n l , *p_n2, *p_n3; 

p _ n l = o_hd(0]; 
w h i l e (p_nl != NULL) { 

f o [ 0 ] = p_nl->frequency; 
p_n2 = o _ h d [ l ] ; 
while (p_n2 != NULL) { 

f o [ l ] = p_n2->frequency; 
P_n3 = o_hd[2]; 
while (p_n3 != NULL) { 

f o [ 2 ] = p_n3->frequency; 
i f ( s i n g l e _ d e a l i a s (s, f o , Scf)) 

a d d _ t o _ l i s t (p_out_hd, c f ) ; 
p_n3 = p_n3->next_frequency; 
) 

p_n2 = p_n2->next_frequency; 
} 

p_ n l = p_nl->next_frequency; 
) 

r e t u r n ; 

) 

/* 
* Implementation of m u l t i p l e a c t i v e element ambiguity reduction a l g o r i t h m no.2 
*/ 

v o i d m u l t i p l e _ d e a l i a s _ 2 (s, o_hd, p_out_hd) 
double s [ ] ; 
FREQ_LIST * o _ h d [ ] ; 
FREQ_LIST **p_out_hd; 

FREQ_LIST * p _ n [ 3 ] , * s e t [ 3 ] ; 
r e g i s t e r i n t n, c o n t r o l , o t h e r [ 2 ] ; 
double s f ; 

f o r ( c o n t r o l = 0; c o n t r o l <=2; control++) { 
s e t [ c o n t r o l ) = NULL; 
p _ n [ c o n t r o l ] = o_hd(control] ; 
while ( p _ n [ c o n t r o l ] != NULL) { 

sf = 0.0; 
n = 0; 
while ( ( s f = (double) (n++) * s [ c o n t r o l ] + p_n[control]->frequency) 

< frequency_range(s)) 
a d d _ t o _ l i s t ( S s e t [ c o n t r o l ] , s f ) ; 

s f = 0.0; 
n = 1; 
while ( ( s f = (double) ( n + + ) * s ( c o n t r o l ] - p_n(control]->frequency) 

< frequency_range(s)) 
a d d _ t o _ l i s t (Sset ( c o n t r o l ] , s f ) ; 

p _ n ( c o n t r o l ] = p_n(control]->next_frequency; 
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} 

w h i l e ( s e t [ 0 ] != NULL SS s e t [ l ] != NULL SS s e t [ 2 ] != NULL) ( 
i f ( s e t [ 2 ] - > f r e q u e n c y >= s e t [ 1 ] - > f r e q u e n c y ) 

i f ( s e t [ 2 ] - > f r e q u e n c y >= s e t [ 0 ] - > f r e q u e n c y ) { 
o t h e r [ 0 ] = 0; 
other [1] = 1; 
c o n t r o l = 2; 
} 

e l s e { 
c o n t r o l = 0 ; 
o t h e r [ 0 ] = 1; 
o t h e r [ l ] = 2; 
} 

e l s e 
i f ( s e t [1]->frequency >= s e t [ 0 ] - > f r e q u e n c y ) { 

o t h e r [ 0 ] = 0; 
c o n t r o l = 1; 
oth e r [1] = 2; 
} 

e l s e { 
c o n t r o l = 0; 
o t h e r [ 0 ] = 1; 
o t h e r [ 1 ] = 2; 
) 

f o r (n = 0; n <= 1; n++) 
w h i l e ( s e t [ o t h e r [ n ] ] != NULL SS 

s e t [ o t h e r [ n ] ] - > f r e q u e n c y < s e t [ c o n t r o l ] - > f r e q u e n c y ) 
s e t [ o t h e r [ n ] ] = s e t [ o t h e r [ n ] ] - > n e x t _ f r e q u e n c y ; 

i f { s e t [ o t h e r [ 0 ] ] != NULL SS s e t [ o t h e r [ 1 ] ] != NULL) 
i f ( s e t [ 0 ] - > f r e q u e n c y == s e t [ 1 ] - > f r e q u e n c y SS 

s e t [ 1 ] - > f r e q u e n c y == s e t [ 2 ] - > f r e q u e n c y ) { 
a d d _ t o _ l i s t (p_out_hd, s e t [ 0 ] - > f r e q u e n c y ) ; 
s e t [ c o n t r o l ] = s e t [ c o n t r o l ] - > n e x t _ f r e q u e n c y ; 
) 

} 

r e t u r n ; 

* u s e r i n t e r f a c e r o u t i n e s * 

v o i d p r i n t _ h e a d i n g 0 

p r i n t f ( 
p r i n t f { 
p r i n t f { 
p r i n t f { 
p r i n t f ( 
p r i n t f ( 
r e t u r n ; 

[OmThe A n a l y s i s of S i g n a l s Sampled at a Sub-Nyquist Rate\n\n"), 
P C Bagshaw January 1990\n\n"); 
S i m u l a t i o n of D e a l i a s i n g A l g o r i t h m s \ n " ) ; 
- M u l t i p l e A c t i v e Element A n a l y s i s - \ n " ) ; 
- Uniform sampling scheme f o r t h r e e samplers - \ n " ) ; 
- Chooses most e f f i c i e n t a l g o r i t h m f o r case d e s c r i b e d - \ n \ n " ) ; 
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v o i d s e l e c t _ s a m p l e _ f r e q u e n c i e s ( f s ) 
double f s [ ] ; 
( 

r e g i s t e r i n t boolean, i ; 
f l o a t i n _ s a m p l e _ f ; 

p r i n t f ("Enter t h r e e sampling f r e q u e n c i e s \ n " ) ; 
boolean = 1; 
w h i l e (boolean) { 

f o r ( i = 0; i <= 2; i++) { 
p r i n t f ( " f s % d : ", i + 1) ; 
s c a n f ("%f", s i n _ s a m p l e _ f ) ; 
f s [ i ] = (double) in_sample_f; 
} 

/* e n s u r e e q u a t i o n (2.12) holds */ 
i f (boolean = (0.0 >= f s [ 0 ] I I f s ( 0 ] >= f s ( l ] 

I I f s ( l ] >= f s ( 2 ] ) ) 
p r i n t f ( " e r r o r : 0 < f s l < f s 2 < f s 3 not s a t i s f i e d \ n " ) , 

) 
r e t u r n ; 

} 

v o i d p l o t _ a n a l y s i s ( s , in_hd, out_hd) 
double s [ ] ; 
FREQ L I S T * i n hd, *out hd; 

s t r u c t v i d e o c o n f i g vc; 
double f r , s c a l e , t e x t _ s c a l e ; 
r e g i s t e r s h o r t y; 
FREQ_LIST *node, *np; 
r e g i s t e r i n t a l i a s ; 

i f (!set_mode0) 
e x i t (-1); 

_ g e t v i d e o c o n f i g (Svc) ; 
f r = frequency_range (s) ; 
s c a l e = (double) ( v c . n u m x p i x e l s - 1 ) / f r ; 
t e x t _ s c a l e = 8 0 . 0 / c e i l ( f r ) ; 
_ s e t t e x t p o s i t i o n (1, 1 ) ; 
_ o u t t e x t ( " M u l t i p l e A c t i v e Element S i g n a l A n a l y s i s " ) ; 
_ o u t t e x t ("using sub-Nyquist D e a l i a s i n g Algorithm\n") ; 
p r i n t f ( " f s l = % . 3 f f s 2 = %.3f fs3 = % . 3 f \ n " , s [ 0 ] , s [ l ] , s [ 2 ] ) , 
p r i n t f ("Optimum o p e r a t i o n a l frequency range, B = % f " , f r ) ; 
_ s e t c o l o r ( 1 5 ) ; 
_ s e t t e x t p o s i t i o n (13, 1 ) ; 
p r i n t f ( " 0 " ) ; 
_ s e t t e x t p o s i t i o n (13, 8 0 ) ; 
p r i n t f ("B"); 
_ s e t t e x t p o s i t i o n (14, 1 ) ; 
_ o u t t e x t ("Frequency components of input s i g n a l " ) ; 
_ s e t l o g o r g (0, ( s h o r t ) vc.numypixels*0.39); 
_moveto (0, y = ( s h o r t ) -vc.numypixels*0.2); 
_ l i n e t o (0, 0 ) ; 
_ l i n e t o (vc.numxpixels, 0 ) ; 
_moveto (0, 0 ) ; 
node = in_ h d ; 
w h i l e (node != NULL) { 
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_ s e t c o l o r (10); /* l i g h t green */ 
_moveto { (short) (node->frequency'*scale) , 0) ; 
_ l i n e t o ( ( s h o r t ) (node->frequency*scale) , y) ; 
_ s e t t e x t p o s i t i o n (13, 1 + ( i n t ) ( t e x t _ s c a l e * c e i l (node->frequency))); 
p r i n t f ("%.0f", node->frequency); 
node = node->next_frequency; 
} 

_ s e t c o l o r (15); 
_ s e t t e x t p o s i t i o n (25, 1 ) ; 
p r i n t f ("0"); 
_ s e t t e x t p o s i t i o n (25, 80); 
p r i n t f ("B"); 
_ s e t t e x t p o s i t i o n (26, 1) ; 
_ o u t t e x t ("Frequency components of output s i g n a l " ) ; 
_ s e t l o g o r g (0, (short) vc.numypixels*0.79); 
_moveto (0, y = (short) -vc.numypixels*0.2); 
_ l i n e t o (0, 0 ) ; 
_ l i n e t o (vc.numxpixels, 0 ) ; 
_moveto (0, 0 ) ; 
node = out_hd; 
while (node != NULL) { 

a l i a s = 1; 
np = in_hd; 
while ( a l i a s SS np != NULL) { 

a l i a s = node->frequency != np->frequency; 
np = np->next_frequency; 
) 

i f ( a l i a s ) 
_ s e t c o l o r (12); /* l i g h t red */ 

else 
_ s e t c o l o r (14); /* yellow */ 

_moveto ( ( s h o r t ) (node->frequency*scale), 0 ) ; 
_ l i n e t o ( ( s h o r t ) (node->frequency*scale) , y ) ; 
_ s e t t e x t p o s i t i o n (25, 1 + ( i n t ) ( t e x t _ s c a l e * c e i l (node->frequency))) , 
p r i n t f ("%.0f", node->frequency); 
node = node->next_frequency; 
) 

getch 0; 
_setvideomode (_DEFAULTMODE) ; 
r e t u r n ; 

i n t set mode 0 

i f (_setvideomode (_VRES16C0L0R)) 
r e t u r n (_VRES16C0L0R) ; 

i f (_setvideomode (_ERESCOLOR)) 
r e t u r n {_ERESCOLOR); 

i f (_setvideomode (_MRES16C0L0R)) 
r e t u r n (_MRES16C0L0R) ; 

else 
r e t u r n ( 0 ) ; 
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* * 
* main program * 

double f s [ 3 ] = {0.0 ,0.0, 0.0); 
FREQ_LIST *fo_hd(3] = (NULL, NULL, NULL}; 

main () 
{ 

i n t num_harmonics = 0 ; 
double f o ( 3 ] , f r ; 
f l o a t e n t e r e d _ f r e q ; 
FREQ_LIST *i n p u t _ f r e q _ h d = NULL, *output_freq_hd = NULL; 
FREQ_LIST *p_node; 

p r i n t _ h e a d i n g () ; 
select_sample_frequencies ( f s ) ; 
p r i n t f ("Frequency range: % f \ n " , f r = fr e q u e n c y _ r a n g e ( f s ) ) ; 
p r i n t f ("\nEnter frequencies of the s i g n a l elements, " ) ; 
p r i n t f ("terminating w i t h an out-of-range value\n* " ) ; 
scanf ("%f", s e n t e r e d _ f r e q ) ; 
while (entered_freq >= 0.0 && entered_freq < f r ) { 

a d d _ t o _ l i s t (Sinput_freq_hd, (double) e n t e r e d _ f r e q ) ; 
num_harmonics++; 
p r i n t f {"* " ) ; 
scanf ("%f", 4 entered_freq); 
} 

p_node = i n p u t _ f r e q _ h d ; 
w h i l e (p_node != NULL) ( 

simulate_output ( f s , p_node->frequency, f o ) ; 
a d d _ t o _ l i s t (Sfo_hd[0], f o [ 0 ] ) , 
a d d _ t o _ l i 3 t ( S f o _ h d ( l ] , f o ( l ] ) , 
a d d _ t o _ l i s t (&fo_hd[2], f o [ 2 ] ) 
p_node = p_node->next_frequency; 
) 

/* choose the most e f f i c i e n t a l g o r i t h m */ 
i f (num_harmonics*num_harmonics < f r / f s ( l ] ) { 

p r i n t f ( " R u n n i n g d e a l i a s i n g a l g o r i t h m • l . . . \ n " ) ; 
m u l t i p l e _ d e a l i a s _ l ( f s , fo_hd, Soutput_freq_hd); 
} 

else ( 
p r i n t f ( " R u n n i n g d e a l i a s i n g a l g o r i t h m #2...\n"); 
m u l t i p l e _ d e a l i a s _ 2 ( f s , fo_hd, Soutput_freq_hd); 
} 

p r i n t f ("\nFrequencies believed to be i n input spectra a f t e r analysis:\n") ; 
p_node = output_freq_hd; 
while (p_node != NULL) ( 

p r i n t f ("* % f \ n " , p_node->frequency); 
p_node = p_node->next_frequency; 
\ 

p r i n t f ("Press any Icey to continue"); 
getch 0; 
p l o t _ a n a l y s i s ( f s , input_freq_hd, o u t p u t _ f r e q _ h d ) ; 
e x i t ( 0 ) ; 
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APPENDIX C 

Program Source Code for the Direct Realisation of the Pseudo-random 

Discrete Fourier Transform. 
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* Pseudo-Random F o u r i e r Transform S i m u l a t o r * 

/*********************«** 

i n c l u d e system f i l e s * 

****«*]»•* * * * 

^ i n c l u d e < s t r i n g .h> 
# i n c l u d e < f l o a t . h> 
S i n c l u d e <raath.h> 
^ i n c l u d e < s t d l i b .h> 
# i n c l u d e <nialloc .h> 
# i n c l u d e <io.h> 
# i n c l u d e < s t d i o . h> 
# i n c l u d e <Gonio. h> 
ffinclude <ctype. h> 
tfinclude <graph. h> 
# i n c l u d e < l i r n i t s .h> 
^ i n c l u d e <errno. h> 

* d e f i n e g l o b a l c o n s t a n t s 

# d e f i n e PI 3.14159265358979323849 
»deflnG TWOPI 6.28318530717958647698 
/* maximum v a l u e 'double' v a r i a b l e can be e x p r e s s e d as an 'unsigned long i n t ' */ 
• d e f i n e DBL_LNG_MAX 4294967295.0 
• d e f i n e MAX_FILENAME_SIZE 50 

/****************************** 
* « 

* e r r o r message h a n d l i n g * 
* * 

* v o i d e r r o r ( i n t e r r t y p e ) ; * 

******** 

»dGfIne NO_MEM 0 
• d e f i n e UNDEF_TYPE 1 
• d e f i n e NOT_RATIONAL 2 
• d e f i n e OVERFLOW 3 
• d e f i n e FILE_ERR 4 
• d e f i n e SINGULAR_MATRIX 5 

• d e f i n e NO_TEMP 6 

• d e f i n e NO_SF 7 

• d e f i n e NO_INPUT 8 

• d e f i n e GRAPHICS_MODE 9 
• d e f i n e EOF_FOUND 10 
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v o i d e r r o r ( e r r _ t y p e ) 
c o n s t unsigned i n t e r r _ t y p e ; 

( 

c h a r p r o g t ? ] ; /* program f i l e name */ 

s t r c p y (prog, "pseudo"); 
f p r i n t f ( s t d e r r , " tl;31m%s: ", p r o g ) ; 
s w i t c h ( e r r _ C y p e ) ( 

c a s e NO_MEM: 
f p r i n t f ( s t d e r r , " i n s u f f i c i e n t memory a v a i l a b l e " ) ; 
break; 

c a s e UNDEF_TYPE: 
f p r i n t f ( s t d e r r , "undefined l i s t t y p e " ) ; 
break; 

c a s e NOT_RATIONAL: 
f p r i n c f ( s t d e r r , "cannot e x p r e s s number i n r a t i o n a l form"); 
break; 

c a s e OVERFLOW: 
f p r i n t f { s t d e r r , " o v e rflow encountered i n c a l c u l a t i n g system bandwidth") ; 
break; 

c a s e FILE_ERR: 
p e r r o r (NULL); 
break; 

c a s e SINGULAR_MATRIX: 
f p r i n t f ( s t d e r r , " s i n g u l a r m a t r i x " ) ; 
break; 

c a s e NO_TEMP: 
f p r i n t f ( s t d e r r , "cannot c r e a t e a temporary f i l e name"); 
break; 

c a s e NO_SF: 
f p r i n t f ( s t d e r r , "no sampling frequency d e f i n e d " ) ; 
break; 

c a s e NO_INPUT: 
f p r i n t f { s t d e r r , "no input s i g n a l d e f i n e d " ) ; 
break; 

c a s e GRAPHICS_MODE: 
f p r i n t f { s t d e r r , "cannot open g r a p h i c s s c r e e n " ) ; 
break; 

c a s e EOF_FOUND: 
f p r i n t f { s t d e r r , "unexpected end o f f i l e e n c o u n t e r e d " ) ; 
break; 

d e f a u l t : 
f p r i n t f ( s t d e r r , "undefined e r r o r , %u o c c u r r e d " , e r r _ t y p e ) ; 
break; 

) 
f p r i n t f { s t d e r r , " [l;37m\n"); 
e x i t (-1); 
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/*****••« 

* d e f i n e a b s t r a c t d a t a type f o r a l i s t of v a r i o u s t y p e s • 
* * 

* v o i d i n i t l a l l s G _ l l s t ( L I S T * p _ l i s t , I n t t y p e _ o f _ l l s t ) ; * 
* v o i d a d d _ t o _ l i s t ( L I S T * p _ l i s t , ITEM d a t a ) ; * 

v o i d r e w i n d _ l l s t ( L I S T * p _ l l s t ) ; • 
* i n t r e a d _ l l s t ( L I S T *p l i s t , ITEM * p _ d a t a ) ; 

****************** .*******.*****/ 

/* 
* l i s t _ t y p G v a l u e s 
•/ 

• d e f i n e FREQ_LIST 1 /* s i g n a l harmonics data */ 
• d e f i n e LIST_SAMPLE_FREQS 2 /* d e t a i l s of p o s s i b l e sampling f r e q u e n c i e s •/ 
• d e f i n e SAMPLE_DATA 3 /* c h r o n o l o g i c a l l i s t o f sample v a l u e s and times t a k e n * / 
• d e f i n e FOURIER TRANSFORM DATA 4 /* t r a n s f o r m output I n f o r m a t i o n •/ 

d e f i n e a b s t r a c t d a t a type 
•/ 

t y p e d e f union { 
s t r u c t ( /* FREQ_LIST */ 

double f r e q u e n c y , amplitude, phase; 
} element; 

double f r e q u e n c y ; /« LIST_SAMPLE_FREQS */ 
s t r u c t ( /* SAMPLE_DATA */ 

double v a l u e , i n s t a n c e ; 
) sample; 

s t r u c t { /* FOURIER_TRANSFORM_DATA */ 
double f n , r e a l , imaginary; 
} b i n ; 

) ITEM; 

t y p e d e f s t r u c t b o d y _ o f _ l l s t { 
ITEM i t e m _ l i s t e d ; 
s t r u c t b o d y _ o f _ l l s t * n e x t _ l t e m ; 
) BODY_OF_LIST; 

t y p e d e f s t r u c t { 
i n t l i s t _ t y p e ; 
BODY_OF_LIST * l l s t _ h d , * c u r s o r ; 
) L I S T ; 

/* 
* s t a r t up v a l u e s t o be take n by any newly d e f i n e d v a r i a b l e o f type L I S T 

*/ 

v o i d i n i t i a l i s e _ l i s t ( p _ l l s t , t y p e _ o f _ l i s t ) 
L I S T * p _ l i s t ; 
c o n s t i n t t y p e _ o f _ l l s t ; 

( 

p _ l i s t - > l i s t _ t y p e = t y p e _ o f _ l i s t ; 
p _ l i s t - > l i s t _ h d = NULL; 
p _ l l s t - > c u r s o r = NULL; 
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/* 
* append l i s t t o i n c l u d e new item 
*/ 

v o i d a d d _ t o _ l i s t ( p _ l i s t , d a t a ) 
L I S T * p _ l i s t ; 
ITEM d a t a ; 
( 

BODY_OF_LIST •new_node, *node = NULL, •old_node - NULL; 
r e g i s t e r i n t new_value = 1; 

i f ( p _ l i s t - > l i s t _ t y p e == FREQ_LIST |I 
p _ l i s t - > l i s t _ t y p e == LIST_SAMPLE_FREQS) /* u n r e p e a l e d items r e q u i r e d */ 
f o r (node = p _ l i s t - > l l s t _ h d ; new_value i s node != NULL; 

old_node = node, node - node->next_item) { 
i f ( p _ l l s t - > l i s t _ t Y p e == FREQ_LIST) 

new_value 5= (data.element.frequency != n o d e - > i t e m _ l i s t e d . e l e m e n t . f r e q u e n c y ) ; 
i f ( p _ l i s t - > l i s t _ t y p e == LIST_SAMPLE_FREQS) 

new_value s= ( d a t a . f r e q u e n c y != n o d e - > i t e m _ l i s t e d . f r e q u e n c y ) ; 
I 

e l s e /« add new itera t o end of l i s t */ 
old_node = p _ l i s t - > c u r s o r ; 

i f (new_value) { 
new_node = (BODY_OF_LIST •) malloc ( s i z e o f (aoDY_OF_LIST)); 
i f (new_node == NULL) e r r o r (NO_MEM); 
s w i t c h ( p _ l i s t - > l i s t _ t y p e ) { 

c a s e FREQ_LIST: 
n e w _ n o d e - > i t e m _ l i s t e d . e l e m e n t . f r e q u e n c y = data.element,frequency; 
new_node->item_listed.element.amplitude = data.element.amplitude; 
new_node->item_listed.element.phase - data.element.phase; 
break; 

c a s e LIST_SAMPLE_FREQS: 
ne w _ n o d e - > i t e m _ l i s t e d . f r e q u e n c y = d a t a . f r e q u e n c y ; 
break; 

c a s e SAMPLE_DATA: 
new_ n o d e - > i t e r a _ l i s t e d . s a m p l e . v a l u e = d a t a . s a m p l e . v a l u e ; 
n e w _ n o d e - > i t e r a _ l l s t e d . s a m p l e . i n s t a n c e = d a t a . s a m p l e . i n s t a n c e ; 
break; 

case FOURIER_TRANSFORM_DATA: 
ne w _ n o d e - > i t e m _ l i s t e d . b i n . f n - d a t a . b i n . f n ; 
n e w _ n o d e - > i t e m _ l i s t e d . b i n . r e a l = d a t a . b i n . r e a l ; 
n e w _ n o d e - > l t e m _ l i s t e d . b i n . i m a g i n a r y = d a t a . b i n . i m a g i n a r y ; 
break; 

d e f a u l t : 
e r r o r (UNDEF_TYPE); 
break; 

} 

i f ( p _ l i s t - > l i s t _ h d == NULL) 
p _ l i s t - > l i s t _ h d = new_node; 

e l s e 
o ld_node->next_item = new_node; 

new_node->next_item = NULL; 
p l i s t - > c u r s o r = new_node; 
} 

i f (!new_value SS p _ l l s t - > l i s t _ t y p e =- FREQ_LIST) { 
/• modify p a r a m e t e r s i f harmonic a l r e a d y l i s t e d */ 
o l d node->item l i s t e d . e l e m e n t . a m p l i t u d e = data.element.amplitude; 
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o l d _ n o d e - > l t e m _ l l s t e d . e l e m e n t . p h a s e = data.element.phase; 

) 

/* 
* r e s e t l i s t c u r s o r t o the be g i n n i n g of the l i s t 
*/ 

v o i d r e w i n d _ l i s t ( p _ l i s t ) 

L I S T * p _ l i s t ; 

( 

p _ l l S t - > c u r s o r = p _ l i s t - > l i s t _ h d ; 

/ • 

* r e a d Item a t l i s t c u r s o r and forward c u r s o r by one item 
* r e t u r n s 0 i f no item 

*/ 

i n t r e a d _ l i s t ( p _ l i s t , p_data) 
L I S T * p _ l i s t ; 
ITEM *p_data; 

i f ( p _ l i s t - > c u r s o r ==• NULL) /* c u r s o r at end o f l i s t */ 
r e t u r n ( 0 ) ; 

e l s e ( 
s w i t c h ( p _ l i s t - > l l s t _ t y p e ) ( 

c a s e FREQ_LIST: 
p_data->element.frequency = p _ l i s t - > c u r s o r - > i t e m _ l i s t e d . e l e m e n t . f r e q u e n c y , • 
p_data->element.amplitude - p _ l i s t - > c u r s o r - > i t e m _ l i s t e d . e l e m e n t . a m p l i t u d e , • 
p_data->element.phase = p _ l i s t - > c u r s o r - > i t e m _ l i s t e d . e l e m e n t . p h a s e ; 
break; 

c a s e LIST_SAMPLE_FREQS: 
p_data->frequency « p _ l i s t - > c u r s o r - > i t e m _ l i s t e d . f r e q u e n c y ; 
break; 

c a s e SAMPLE_DATA: 
p_data->sample.value = p _ l i s t - > c u r s o r - > i t e m _ l i s t e d . s a m p l e . v a l u e ; 
p _ d a t a - > s a m p l e . i n s t a n c e = p _ l l s t - > c u r s o r - > I t e m _ l i s t e d . s a m p l e . i n s t a n c e ; 

break; 
c a s e FOURIER_TRANSFORM_DATA: 

p_ d a t a - > b i n . f n = p _ l i s t - > c u r s o r - > i t e r a _ l i s t e d . b i n . f n ; 
p _ d a t a - > b i n . r e a l - p _ l i s t - > c u r s o r - > i t e m _ l i s t e d . b i n . r e a l ; 
p _ d a t a - > b i n . i m a g i n a r y = p _ l i s t - > c u r s o r - > i t e m _ l i s t e d . b i n . i m a g i n a r y ; 
break; 

d e f a u l t : 
e r r o r (UNDEF_TYPE) ; 
break; 

J 
p _ l l s t - > c u r s o r = p _ l i s t - > c u r s o r - > n e x t _ i t e m ; 

r e t u r n ( 1 ) ; 

( 
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v o i d f r e e _ l l s t ( p _ l i s t ) 
L I S T * p _ l i s t ; 
( 

BODY_OF_LIST * n e x t ; 

While ( p _ l i s t - > l i s t _ h d != NULL) { 
next = p _ l i s t - > l i s t _ h d - > n e x t _ i t e m ; 
f r e e ((BODY_OF_LIST *) p _ l i s t - > l i s t _ h d ) ; 
p _ l i s t - > l i s t _ h d = next; 

) 
p _ l i s t - > c u r s o r = NULL; 

/»*****»..».....*»»*.•*»......*** 
* l i t t l e h e l p f u l maths r o u t i n e s * 
* * 

* i n t even ( i n t number) ; * 
* v o i d convert_complex (double a, double b, double *p_amp, double * p _ p h i ) ; * 
* double s i n e (double x ) ; * 
* double c o s i n e (double x ) ; * 
* * 
******************************************«*******«*****«*******************/ 

i n t even (number) 
i n t number; 

( 

r e t u r n (number % 2 0 ) ; 

v o i d convert_complex (a, b, p_amp, p_phi) 
double a, b, •p_arap, * p _ p h i ; 

{ 

*p_amp = s q r t (a*a + b * b ) ; 
i f ( f a b s (a) < 3e-14 S4 f a b s (b) < 3e-14) 

*p_phi - 0.0; 
e l s e 

*p_phi - atan2 (-b, a ) ; 

/* 
* s l i g h t l y more a c c u r a t e s i n e and c o s i n e f u n c t i o n s 

*/ 

double s i n e (x) 
double x; 

( 

x = fmod (X, TWOPI); 
r e t u r n ( s i n ( x ) ) ; 
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double c o s i n e (x) 
double x; 

( 

X = fmod (X, TWOPI); 
r e t u r n (cos ( x ) ) ; 

* * 
* r o u t i n e s to s i m u l a t e sample g e n e r a t o r - uniform, a d d i t i v e pseudo-random * 
* o r p e r i o d i c w i t h d i t h e r * 

* i n t equal_schemes (SAMPLING_SCHEME s i , SAMPLING_SCHEME s 2 ) ; * 
* v o i d c a l c _ b a n d w i d t h (SAMPLING_SCHEME * p _ s a m p l e r ) ; * 
* v o i d random_sampler (SAMPLING_SCHEME •p_sampler, L I S T i n _ f r e q s , L I S T * p _ o u t _ d a t a ) ; * 
* * 

A * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * / 

/ * 

* a b s t r a c t data type f o r sampling scheme parameters 
*/ 

• d e f i n e UNIFORM 'u' 
( d e f i n e ADDITIVE "a' 
I d e f i n e DITHER 'd' 

t y p e d e f s t r u c t { 
cha r scheme; /* t o t a k e t he v a l u e UNIFORM, ADDITIVE or DITHER */ 
i n t num_fs; 
L I S T f s ; 
i n t num_points; 
double bandwidth; 
double window_width; 
) SAMPLING_SCHEME; 

/* 
* t e s t i f two schemes a r e e q u i v a l e n t o t h e r than l i s t o f sampling f r e q u e n c i e s 

*/ 

i n t equal_schemes ( s i , s2) 
SAMPLING_SCHEME s i , s 2 ; 
( 

i n t e q u a l ; 

e q u a l = (si.scheme == s2.scheme is, 
s l . n u t n _ f s == s2.nura_fs a 

s l . n u i 7 ! _ p o l n t s =« s2.num_points S& 
s i . b a n d w i d t h == s2.bandwidth a 

sl.window_width == s2.window_width); 

r e t u r n ( e q u a l ) ; 
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/* 
* e v a l u a t e o p e r a t i o n a l bandwidth of system f o r s p e c i f i e d pseudo-random 
* sampling scheme - e q u a t i o n (4.31) 
*/ 

v o i d c a l c _ b a n d w i d t h (p_sampler) 
SAMPLING_SCHEME *p_sampler; 
( 

ITEM s; 
double 1cm, gcd, a, b, o l d _ a , old_b, tmp, l n t _ p a r t , r e g _ f s ; 
unsigned long i n t m, n, r ; 
i n t f l r s t _ t i m e = 1; 

i f (p_sampler->num_fs -= 1) { /* o n l y one sampling frequency */ 
r e w i n d _ l i s t ( s p _ s a m p l e r - > f s ) ; 
r e a d _ l i s t ( s p _ s a m p l e r - > f s , s s ) ; 
p_sampler->bandwidth = s.frequency / 2.0; 
r e t u r n ; 
) 

1cm = 1.0; 
r e w i n d _ l i s t ( 6 p _ s a m p l e r - > f s ) ; 
w h i l e ( r e a d _ l i s t ( s p _ s a m p l e r - > f s , s s ) ) ( 

/* e x p r e s s number i n some r a t i o n a l form, a/b */ 
i f (p_sampler->scheme == DITHER) 

i f ( f i r s t _ t i m e ) { 

r e g _ f s = s . f r e q u e n c y ; 
a - 1.0; 
b = s. f r e q u e n c y ; 
I 

e l s e ( 
a = s . f r e q u e n c y ; 
b = r e g _ f s ; 

) 

e l s e ( 
a - 1.0; 

b = s. f r e q u e n c y ; 

1 
o l d _ a = a; 
ol d _ b - b; 
w h i l e ((modf (a, strap) > l e - 1 0 II modf (b, s i n t _ p a r t ) > l e - 1 0 ) s s 

a <- DBL_LNG_MAX SS b <= DBL_LNG_MAX) { 
a +- o l d _ a ; 
b += o l d _ b ; 
} 

i f (a > DBL_LNG_MAX || b > DBL_LNG_MAX) 
/* number cannot be e x p r e s s e d i n a r a t i o n a l form w i t h i n t he computer l i m i t s */ 
e r r o r (NOT_RATI0NAL) ; 

/* f i n d g r e a t e s t common d i v i s o r of denominator and numerator t o e x p r e s s 
r a t i o n a l number i n most optimum form */ 

m = (unsigned long i n t ) a; 
n = (unsigned long i n t ) b; 
w h i l e ( ( r =• n % m) != OL) ( 

n = m; 
m = r ; 

) 
a /= m; 
b /= m; 
/* f i n d g r e a t e s t common d i v i s o r of numerators •/ 
i f ( f i r s t time) 
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gcd = a; 
e l s e ( 

m = (unsigned long i n t ) gcd; 
n = (unsigned long i n t ) a; 
w h i l e ( ( r - n % m) != OL) ( 

n = m; 
m = r ; 

) 
gcd - m; 

) 
/* f i n d g r e a t e s t common d i v i s o r of 1cm and denominator */ 
i f (1cm > DBL_LNG_MAX) e r r o r (OVERFLOW); 
m = (unsigned long i n t ) 1cm; 
n = (unsigned long i n t ) b; 
w h i l e ( ( r = n % m) != OL) ( 

n = m; 
ra = r ; 
} 

/* c a l c u l a t e l e a s t common m u l t i p l e •/ 
1cm *= b/m; 
f l r s t _ t i m e = 0; 
) 

p sampler->bandwidth = 1cm / gcd / 2.0; 

/* 
* g e n e r a t e a pseudo-random number between 0 and 1 

*/ 

t y p e d e f enum {RESET, CONT) RAND_STATUS; 

double random ( C t r l ) 
RAND_STATUS C t r l ; 
( 

s t a t i c double rnd = 12357.0; 

i f ( C t r l == RESET) ( 
rnd - 12357.0; 
r e t u r n ( 0 . 0 ) ; 
) 

e l s e ( 
rnd = fmod ((2045.0*rnd + 1.0), 1048576.0); 
r e t u r n ( { r n d + 1.0)/1048577.0); 

1 

/* 

* s i m u l a t e pseudo-random sampler 

*/ 

v o i d randora_sampler (p_sampler, i n _ f r e q s , p _ o u t _ d a t a ) 

SAMPLING_SCHEME *p_sampler; 

L I S T i n _ f r e q s , * p _ o ut_data; 

( 

i n t i , r , r 2 ; 
ITEM itm; 
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double argu, x r , t r - 0.0, d t r - 0.0, o l d _ d t r , f s , fs_max; 

random (RESET); 

f o r ( i = 0; 1 < p_sampler->num_points; i++) ( 
x r = 0.0; 
r e w i n d _ l i s t ( s i n _ f r e q s ) ; 
w h i l e ( r e a d _ l i s t ( s i n _ f r e q s , s i t m ) ) ( 

argu = TWOPI*itm.element.frequency*tr + itm.element.phase; 
x r += itm.element.amplitude • c o s i n e ( a r g u ) ; 
) 

it r a . s a m p l e . v a l u e = x r ; 
i t m . s a m p l e . I n s t a n c e = t r ; 
a d d _ t o _ l i s t (p_out_data, i t m ) ; 
r e w i n d _ l i s t (Sp_sarapler->fs) ; 
s w i t c h (p_sampler->scheme) ( 

c a s e UNIFORM: 
r e a d _ l i s t ( sp_sampler->fs, s i t m ) ; 
d t r - 1.0/itm.frequency; 
t r +- d t r ; 
break; 

c a s e ADDITIVE: 
f o r ( r = ( i n t ) f l o o r (random (CONT)»p_sampler->num_fs) + 1; 

r — !- 0; r e a d _ l i s t ( s p _ s a m p l e r - > f s , s i t m ) ) 

d t r - 1.0/itm.frequency; 
t r += d t r ; 
break; 

c a s e DITHER: 
r e a d _ l i s t ( s p _ s a m p l e r - > f s , s i t m ) ; 
f s = i t m . f r e q u e n c y ; 
o l d _ d t r = d t r ; 
r - ( i n t ) f l o o r (random (CONT)"p_sampler->num_fs) + 1; 
i f (p_sampler->num_fs % 2 SS r == p_sarapler->num_fs) 

d t r - 0.0; 
e l s e { 

f o r (r2 - (r + l ) / 2 ; r 2 — !•= 0; r e a d _ l l s t (sp_sampler->fs, s i t m ) ) 

d t r = i t m . f r e q u e n c y / f s ; 
d t r •= ( r % 2) ? -1.0 : +1.0; 

) 
t r += - o l d _ d t r + 1.0/f s + d t r ; 
break; 

d e f a u l t : 
break; 

) 

1 
/* determine minimum p o s s i b l e chance i n sampling i n s t a n c e s */ 
r e w i n d _ l l s t { s p _ s a m p l e r - > f s ) ; 
s w i t c h (p_sampler->scheme) ( 

ca s e UNIFORM: 
r e a d _ l i s t (Sp_sampler->fs, s i t m ) ; 
fs_max - itm. f r e q u e n c y ; 
break; 

c a s e ADDITIVE: 
r e a d _ l i s t ( s p _ s a m p l e r - > f s , s i t m ) ; 
fs_max = itm. f r e q u e n c y ; 
w h i l e ( r e a d _ l i s t (Sp_sampler->fs, S i t m ) ) 

fs_max = (i t m . f r e q u e n c y > fs_max) ? itm.frequency : fs_raax; 
break; 

c a s e DITHER: 
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r e a d _ l l s t ( s p _ s a m p l e r - > f s , s i t r a ) ; 
f s = i t m . f r e q u e n c y ; 
fs_max = 0.0; 
w h i l e ( r e a d _ l i s t (4p_sampler->fs, s i t m ) ) 

fs_max = ( f s / i t m . f r e q u e n c y > fs_max) ? f s / i t m . f r e q u e n c y : fs_max; 
fs_max = f s * ( 1 . 0 - 2.0*fs _ r a a x ) ; 
break; 

d e f a u l t : 
break; 

) 
p_sampler->window_width = t r - d t r + 1.0/fs_max; 

) 

/* 

* data p r o c e s s i n g r o u t i n e s 
* 

* v o i d d p r f t (SAMPLING_SCHEME sampler, double d e l t a f , L I S T s d a t a , L I S T * p _ f t d a t a ) ; 
* v o i d i n v _ d p r f t (SAMPLING_SCHEME sampler, L I S T f t d a t a , L I S T s d a t a , L I S T * p _ i d f t _ d a t a ) ; 

/* 
* perform d i r e c t d i s c r e t e pseudo-random F o u r i e r t r a n s f o r m - e q u a t i o n (4.9) 
*/ 

v o i d d p r f t (sampler, d e l t a f , s d a t a , p _ f t d a t a ) 
SAMPLING_SCHEME sampler; 
double d e l t a f ; 
L I S T s d a t a , * p _ f t d a t a ; 
( 

unsigned long i n t num_bins, e v a l u a t e , count, 1; 
double argu, f n = 0.0; 
ITEM itm, s; 

p r i n t f (" [l;37mPerforming F o u r i e r t r a n s f o r m . . . \ n " ) ; 
p r i n t f ( ) ; 
num_bins = (unsigned long i n t ) f l o o r (sampler.bandwidth * 2.0 / d e l t a f + 0 . 1 ) ; 
e v a l u a t e - (num_blns + I L ) / 2L + (num_blns + I L ) % 2L; 
count = e v a l u a t e / 50L; 
count += (count == OL) ; 
f o r ( i = OL; 1 < e v a l u a t e ; i++) { 

i t m . b i n . f n = f n ; 
i t m . b i n . r e a l = 0.0; 
i t m . b i n . i m a g i n a r y - 0.0; 
r e w i n d _ l i s t ( s s d a t a ) ; 
w h i l e ( r e a d _ l l s t ( S s d a t a , s s ) ) ( 

argu = TWOPI*fn*s.sample.instance; 
i t m . b i n . r e a l += s.sample.value * c o s i n e ( a r g u ) ; 
i t m . b i n . i m a g i n a r y += s.sample.value * s i n e ( a r g u ) ; 

) 
i f (1 == OL) 

I t m . b i n . i m a g i n a r y = 0.0; 
i f ( i — num_bins / 2.0) 

i t m . b i n . i m a g i n a r y = 0.0; 
a d d _ t o _ l i s t ( p _ f t d a t a , i t m ) ; 
fn += d e l t a f ; 
i f ( i % count == OL) 
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p r i n t f ("\b"); 
) 

p r i n t f C'Xn"); 

/* 
* perform i n v e r s e d i r e c t d i s c r e t e pseudo-random F o u r i e r t r a n s f o r m - e q u a t i o n (4.42) 
*/ 

v o i d i n v _ d p r f t (sampler, f t d a t a , s d a t a , p _ i d f t _ d a t a ) 
SAMPLING_SCHEME sampler; 
L I S T f t d a t a , s d a t a , * p _ i d f t _ d a t a ; 

{ 

unsigned long i n t num_bins, b i n s _ e v a l u a t e d , even, count, k, n; 
double xa, argu; 
ITEM itm, new_s, s ; 

p r i n t f ("Performing i n v e r s e t r a n s f o r m . . . \ n " ) ; 
p r i n t f ( ) ; 
num_bins = (unsigned l o n g i n t ) f l o o r (sampler.window_width * sampler.bandwidth « 2.0 + 0.1); 
b l n s _ e v a l u a t e d = (num_bins + I L ) / 2L + (num_bins + I L ) % 2L; 
even = (num_bins + I L ) % 2L; 
count " sampler.num_points / SOL; 
count += (count == OL); 
r e w i n d _ l i s t ( s s d a t a ) ; 
f o r (k = OL; k < sampler.num_points; k++) ( 

r e a d _ l i s t ( s s d a t a , s s ) ; 
r e w i n d _ l i s t ( s f t d a t a ) ; 
r e a d _ l i s t ( s f t d a t a , s i t m ) ; 
xa = i t m . b i n . r e a l ; 
f o r (n = I L ; n < b i n s _ e v a l u a t e d - even; n++) { 

r e a d _ l i s t ( s f t d a t a , s i t m ) ; 
argu = TWOPI * s . s a m p l e . i n s t a n c e * i t m . b i n . f n ; 

xa += 2.0 * ( i t m . b i n . r e a l * c o s i n e (argu) + i t m . b i n . i m a g i n a r y * s i n e ( a r g u ) ) ; 

) 
i f (even) { 

r e a d _ l i s t ( s f t d a t a , s i t m ) ; 
argu = TWOPI * s . s a m p l e . l n s t a n c e * i t m . b i n . f n ; 
xa +- i t m . b i n . r e a l * c o s i n e ( a r g u ) ; 
) 

xa /= (double) num_bins; 
new_s.sample.value = xa; 
ne w _ s . s a m p l e . i n s t a n c e = s . s a m p l e . i n s t a n c e ; 
a d d _ t o _ l i s t ( p _ i d f t _ d a t a , new_s); 
i f (k % count == OL) 

p r i n t f { " \ b " ) ; 

) 
p r i n t f ("\n"); 
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r o u t i n e s to determine e x a c t F o u r i e r c o e f f i c i e n t s from spectrum e s t i m a t e s * 

c h a r •append_name (name, e x t e n s i o n ) 
c h a r *name, * e x t e n s i o n ; 

{ 

c h a r *new_name, *p_ex t ; 

new_name = (c h a r *) m a l l o c (MAX_FILENAME_SIZE « s i z e o f ( c h a r ) ) ; 
new_name = s t r c p y (new_name, name); 
i f ( ( p _ e x t = s t r c h r (new_name, ' . ' ) ) != NULL) 

*p_ext = '\0'; 
new_name = s t r c a t (new_narae, e x t e n s i o n ) ; 
r e t u r n (new_name); 

/* 
* c r e a t e m a t r i x A i n f i l e w i t h e x t e n s i o n .mat 
*/ 

double m a t r i x _ A (sd, b i n _ s t e p , row, column) 
L I S T sd; 
double b l n _ s t e p ; 

I n t row, column; 

( 

double V = 0.0; 
ITEM 1; 

r e w i n d _ l i s t ( s s d ) ; 
i f (row == 0 s s column -= 0) ( 

w h i l e ( r e a d _ l i s t ( s s d , s i ) ) 
V += 1.0; 

r e t u r n ( v ) ; 

} 

i f (row == 0) ( 
i f (even (column)) 

w h i l e ( r e a d _ l l s t ( s s d , s i ) ) 
V += s i n e (TWOPI « (double) (column/2) * b i n _ s t e p * i . s a m p l e . i n s t a n c e ) ; 

e l s e 
w h i l e ( r e a d _ l i s t ( s s d , s i ) ) 

V += c o s i n e (TWOPI * (double) ((column + l ) / 2 ) * b l n _ s t e p * i . s a m p l e . i n s t a n c e ) ; 

r e t u r n ( v ) ; 

) 
i f (column 0) { 

i f (even (row)) 
w h i l e ( r e a d _ l i s t ( s s d , s i ) ) 

V += s i n e (TWOPI * (double) (row/2) * b i n _ s t e p * i . s a m p l e . i n s t a n c e ) ; 
e l s e 

w h i l e ( r e a d _ l i s t ( s s d , s i ) ) 
V += c o s i n e (TWOPI * (double) ((row + l ) / 2 ) * b i n _ s t e p * 1 . s a m p l e . i n s t a n c e ) ; 

r e t u r n ( v ) ; 

) 

i f (even (row)) 
i f (even (column)) 
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w h i l e ( r e a d _ l i s t ( s s d , s i ) ) 
V += s i n e (TWOPI » (double) (column/2) ' b i n _ s t e p * i . s a m p l e . i n s t a n c e ) * 

s i n e (TWOPI * (double) (row/2) * b i n _ s t e p • i . s a m p l e . i n s t a n c e ) ; 
e l s e 

w h i l e ( r e a d _ l i s t ( s s d , s i ) ) 
V += c o s i n e (TWOPI * (double) ((column + l ) / 2 ) * b i n _ s t e p * i . s a m p l e . i n s t a n c e ) 

s i n e (TWOPI * (double) (row/2) * b i n _ s t e p * i . s a m p l e . I n s t a n c e ) ; 
e l s e 

i f (even (column)) 
w h i l e ( r e a d _ l i s t (Ssd, s i ) ) 

v += s i n e (TWOPI * (double) (column/2) * b i n _ s t e p * i . s a m p l e . i n s t a n c e ) • 
c o s i n e (TWOPI * (double) ((row + l ) / 2 ) • b i n _ s t e p * i . s a m p l e . I n s t a n c e ) ; 

e l s e 
w h i l e ( r e a d _ l l s t (Ssd, s i ) ) 

V += c o s i n e (TWOPI * (double) ((column + l ) / 2 ) * b i n _ s t e p » i . s a m p l e . i n s t a n c e ) 
c o s i n e (TWOPI » (double) ((row + l ) / 2 ) * b i n _ s t e p * i . s a m p l e . I n s t a n c e ) ; 

r e t u r n ( v ) ; 

i n t g e n e r a t e _ m a t r i x _ A (sampler, d e l t a f , sample_times, f i l e n a m e ) 

SAMPLING_SCHEME sampler; 
double d e l t a f ; 
L I S T sample_tlmes; 
c h a r * f i l e n a m e ; 
( 

ch a r *matfile_name, key, * i n v f i l e _ n a m e ; 
F I L E *maCrix_a; 
i n t num_bins, b i n s _ e v a l u a t e d , m_size, s i z e , row, column; 
SAMPLING_SCHEME s s ; 
double v a l u e ; 

matfile_name = append_name ( f i l e n a m e , ".mat"); 
num_bins = ( i n t ) f l o o r (sampler.bandwidth • 2.0 / d e l t a f + 0 . 1 ) ; 
b i n s _ e v a l u a t e d = (num_bins + 1 ) / 2 + (num_bins + 1) % 2; 
m _ s i z e = 2 * b i n s _ e v a l u a t e d - 1 - (num_bins + 1) % 2; 
i f ( ( m a t r i x _ a - fopen (matfile_name, " r b " ) ) != NULL) ( 

rewind ( m a t r i x _ a ) ; 

i f ( f r e a d ( ( i n t *) s s i z e , s i z e o f ( i n t ) , 1, m a t r i x _ a ) s s 
f r e a d ((SAMPLING_SCHEME •) s s s , s i z e o f (SAMPLING_SCHEME), 1, m a t r i x _ a ) ) 
i f ( s i z e == m _ s i z e s s equal_schemes ( s s , s a m p l e r ) ) ( 

p r i n t f ("\n [l;37mRequired %dx%d m a t r i x a l r e a d y e x i s t s i n f i l e % s \ n " , m_slze, 
m _ s l z e , m a t f i l e _ n a m e ) ; 

f c l o s e ( m a t r i x _ a ) ; 
r e t u r n ( 1 ) ; 

) 
e l s e ( 

p r i n t f (" (0;37m%s e x i s t s . O v e r - w r i t e ( y / n ) ? [l;33m", m a t f i l e _ n a m e ) ; 
w h i l e ( ( k e y = g e t c h O ) !- 'y' ss key != 'n') 

p r i n t f ("%c\n", k e y ) ; 
i f (key — 'n') ( 

f c l o s e ( m a t r i x _ a ) ; 

r e t u r n ( 0 ) ; 

1 
e l s e ( /« en s u r e i n v e r s e m a t r i x f i l e a l s o o v e r - w r i t t e n */ 

i n v f i l e _ n a m e = append_name ( f i l e n a m e , " . I n v " ) ; 
i f (remove ( i n v f l l e _ n a m e ) -= -1 ss e r r n o != ENOENT) e r r o r ( F I L E _ E R R ) ; 
f r e e ( ( c h a r *) i n v f i l e _ n a m e ) ; 
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) 

) 

1 
p r i n t f ("Xn [ l ; 3 7 m " ) ; 
i f ( ( m a t r i x _ a = fopen (matfile_name, "wb")) -= NULL) e r r o r ( F I L E _ E R R ) ; 
p r i n t f ( " C r e a t i n g %dx%d m a t r i x i n f i l e % s . . . " , m _ s i z e , m _ s i z e , matfile_name) ; 
p r i n t f (" (0;37m rows made ( [ s O ) " ) ; 
f w r i t e ( ( i n t *) s m _ s i z e , s i z e o f ( i n t ) , 1, m a t r i x _ a ) ; 
f w r i t e ((SAMPLING_SCHEME •) Ssampler, s i z e o f (SAMPLING_SCHEME), 1, m a t r i x _ a ) / 
f o r (row = 0; row < m _ s i z e ; row++) ( 

f o r (column = 0; column < ra_slze; column++) { 
v a l u e = m a t r i x _ A (saraple_times, d e l t a f , row, column); 
f w r i t e ( ( d o u b l e *) s v a l u e , s i z e o f ( d o u b l e ) , 1, m a t r i x _ a ) ; 

) 
p r i n t f (" [ u % d ) " , row + 1 ) ; 

) 
p r i n t f ("\n"); 
f r e e ( ( c h a r *) m a t f i l e _ n a m e ) ; 
f c l o s e ( m a t r i x _ a ) ; 
r e t u r n ( 1 ) ; 

/* -1 
* c a l c u l a t e i n v e r s e o f m a t r i x , A and p l a c e i n f i l e w i t h e x t e n s i o n . i n v 
»/ 

v o i d c o p y _ m a t r i x _ f l i e (source_name, dest^name) 
c h a r *source_name, *dest_name; 

{ 

F I L E »source, * d e s t ; 
i n t s i z e ; 
SAMPLING_SCHEME sampler; 
double v a l u e ; 

i f ( ( s o u r c e - fopen (source_name, " r b " ) ) =•- NULL) e r r o r (FILE_ERR) ; 
i f ( ( d e s t = fopen (dest_narae, "wb")) -= NULL) e r r o r ( F I L E _ E R R ) ; 
rewind ( s o u r c e ) ; 
f r e a d ( ( I n t *) s s i z e , s i z e o f ( I n t ) , 1, s o u r c e ) ; 
f r e a d ((SAMPLING_SCHEME *) Ssampler, s i z e o f (SAMPLING_SCHEME), 1, s o u r c e ) ; 
w h i l e ( f r e a d ( ( d o u b l e ») s v a l u e , s i z e o f ( d o u b l e ) , 1, s o u r c e ) !=> 0) 

f w r i t e ( ( d o u b l e ") s v a l u e , s i z e o f ( d o u b l e ) , 1, d e s t ) ; 
f c l o s e ( s o u r c e ) ; 
f c l o s e ( d e s t ) ; 

1 

ludcmp ( i n _ f i l e , n, indx, p_d) 
F I L E * i n _ f i l e ; 
i n t n, "indx; 
s h o r t *p_d; 

( 

i n t i , j , k, i_max; 
double max_a, sum, x, y, dura; 
double * s c a l e v; 

s c a l e _ v = (double *) m a l l o c ( ( n + 1) * s i z e o f ( d o u b l e ) ) ; 
«p d = 1; /* no row I n t e r c h a n g e s yet */ 

115 



/* loop over rows to get the I m p l i c i t s c a l i n g i n f o r m a t i o n */ 
rewind ( i n _ f i l e ) ; 
f o r ( i - 1; 1 <- n; i++) ( 

max_a = 0.0; 
f o r ( j = 1; j <- n; j++) ( 

f r e a d ( ( d o u b l e *) sx, s i z e o f ( d o u b l e ) , 1, i n _ f l l e ) ; 
i f ( f a b s (X) > max_a) 

max_a » fabs ( x ) ; 

I 
i f (max_a == 0.0) e r r o r (SINGULAR_MATRIX); 
s c a l e _ v ( i l = 1.0/max_a; /* save the s c a l i n g */ 
} 

/* loop over columns of Grout's method »/ 
f o r ( j = 1; j <= n; j++) { 

f o r ( i - 1; i <= j - 1; i++) ( 
f s e e k ( i n _ f i l e , (long) ( ( ( 1 - l ) - n + ( j - l ) ) * s i z e o f ( d o u b l e ) ) , SEEK_SET); 
f r e a d ( ( d o u b l e *) ssum, s i z e o f ( d o u b l e ) , 1, i n _ f i l e ) ; 
f o r (k = 1; k <= 1 - 1; k++) { 

fse e k ( i n _ f l l e , (long) ( ( ( 1 - l ) * n + (k - l ) ) * s i z e o f ( d o u b l e ) ) , SEEK_SET); 
f r e a d ((double *) sx, s i z e o f ( d o u b l e ) , 1, i n _ f l i e ) ; 
fs e e k ( i n _ f i l e , (long) ( ( ( k - D ' n + ( j - l ) ) * s i z e o f ( d o u b l e ) ) , SEEK_SET); 
f r e a d ( ( d o u b l e ») sy, s i z e o f ( d o u b l e ) , 1, i n _ f l i e ) ; 
sum -= x*y; 
} 

f s e e k ( i n _ f i l e , (long) ( ( ( 1 - l ) - n + ( j - l ) ) * s i z e o f ( d o u b l e ) ) , SEEK_SET); 
f w r i t e ( ( d o u b l e *) ssum, s i z e o f ( d o u b l e ) , 1, i n _ f i l e ) ; 
) 

max_a - 0.0; /* i n i t i a l i s e f o r the s e a r c h f o r l a r g e s t p i v o t element •/ 
f o r (1 - j ; i <- n; i++) ( 

fse e k ( l n _ f i l e , (long) ( ( ( i - 1 ) - n + ( j - 1 ) ) ' s i z e o f ( d o u b l e ) ) , SEEK_SET); 
f r e a d ( ( d o u b l e *) ssum, s i z e o f ( d o u b l e ) , 1, i n _ f l i e ) ; 
f o r (k = 1; k <= j - 1; k++) ( 

f s e e k ( i n _ f i l e , (long) ( ( ( 1 - D ' n + (k - 1 ) ) ' s i z e o f ( d o u b l e ) ) , SEEK_SET); 
f r e a d ((double ») sx, s i z e o f ( d o u b l e ) , 1, l n _ f i l e ) ; 
f s e e k ( i n _ f i l e , (long) ( ( ( k - l ) * n + ( j - 1 ) ) ' s i z e o f ( d o u b l e ) ) , SEEK_SET); 
f r e a d ( ( d o u b l e ') sy, s i z e o f ( d o u b l e ) , 1, l n _ f i l e ) ; 
sum -= x'y; 
1 

f s e e k ( i n _ f i l e , (long) ( ( ( i - D ' n + (J - 1 ) ) ' s i z e o f ( d o u b l e ) ) , SEEK_SET); 
f w r i t e ( ( d o u b l e •) ssum, s i z e o f ( d o u b l e ) , 1, i n _ f i l e ) ; 
dum = s c a l e _ v [ i ) ' f a b s (sum); /' f i g u r e of m e r i t f o r the p i v o t */ 
i f (dum >= max_a) ( /' i s i t b e t t e r t h a n t he b e s t so f a r ? '/ 

i_max = i ; 
max_a - dum; 
1 

t 
i f ( j != i_max) ( 

f o r (k - 1; k <= n; k++) ( /* i n t e r c h a n g e rows «/ 
fse e k ( i n _ f l l e , (long) ( ( ( i _ m a x - 1) *n + (k - D ) ' s i z e o f ( d o u b l e ) ) , SEEK_SET); 
f r e a d ( { d o u b l e *) sdum, s i z e o f ( d o u b l e ) , 1, l n _ f l i e ) ; 
fs e e k ( i n _ f i l e , (long) ( ( ( j - D ' n + (k - l ) ) ' s i z e o f ( d o u b l e ) ) , SEEK_SET); 
f r e a d ((double ') Sx, s i z e o f ( d o u b l e ) , 1, l n _ f i l e ) ; 
f s e e k ( i n _ f i l e , (long) (- s i z e o f ( d o u b l e ) ) , SEEK_CUR); 
f w r i t e ( ( d o u b l e ') sdum, s i z e o f ( d o u b l e ) , 1, i n _ f i l e ) ; 
f s e e k ( i n _ f i l e , (long) ( ( ( i _ m a x - 1 ) ' n + (k - 1 ) ) ' s i z e o f ( d o u b l e ) ) , SEEK_SET); 
f w r i t e ((double ') sx, s i z e o f ( d o u b l e ) , 1, i n _ f i l e ) ; 

} 

'p_d = -'p_d; /' change the p a r i t y of 'p_d '/ 

s c a l e _ v [ l _ m a x l = s c a l e _ v [ j l ; /* I n t e r c h a n g e the s c a l e f a c t o r '/ 

1 
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i n d x [ j l = i_max; 
f s e e k ( i n _ f i l e , (long) ( ( ( j - l ) * n + ( j - l))«sizeof ( d o u b l e ) ) , SEEK_SET); 
f r e a d ( ( d o u b l e *) sdum, s i z e o f (double), 1, i n _ f l i e ) ; 
i f (dum == 0.0) ( 

dum = DBL_MIN; 
f s e e k ( i n _ f i l e , (long) (- s i z e o f ( d o u b l e ) ) , SEEK_CUR); 
f w r i t e ( ( d o u b l e *) sdum, s i z e o f ( d o u b l e ) , 1, i n _ f i l e ) ; 
) 

i f ( j != n) ( 
f s e e k ( i n _ f i l e , (long) ( ( ( j - 1 ) * n + ( j - l ) ) * s i z e o f ( d o u b l e ) ) , SEEK_SET); 
f r e a d ( ( d o u b l e *) sdum, s i z e o f ( d o u b l e ) , 1, i n _ f i l e ) ; 
f o r ( i = j + 1; i <= n; i++) { 

f s e e k ( i n _ f i l e , (long) ( ( ( 1 - l ) * n + ( j - l))«sizeof ( d o u b l e ) ) , SEEK_SET); 
f r e a d ( ( d o u b l e *) sx, s i z e o f ( d o u b l e ) , 1, i n _ f l i e ) ; 
i f (dum -= DBL_MIN) 

X = HUGE_VAL; 
e l s e 

X /= dum; 
f s e e k ( i n _ f i l e , (long) (- s i z e o f ( d o u b l e ) ) , SEEK_CUR); 
f w r i t e ( ( d o u b l e *) sx, s i z e o f ( d o u b l e ) , 1, i n _ f i l e ) ; 
) 

} 

p r i n t f (" [ u % d ) " , j ) ; 
) /* go back f o r the next column i n the r e d u c t i o n •/ 

f r e e ( ( d o u b l e *) s c a l e _ v ) ; 
r e t u r n ; 

l u b k s b ( i n _ f i l e , n, indx, b) 
F I L E * i n _ f i l e ; 
I n t n, * l n d x ; 
double 'b; 
{ 

i n t 11 - 0, 1, 11, j ; 
double sum, x; 

f o r ( 1 = 1 ; 1 <= n; i++) ( 
11 - I n d x d l ; 
sum = b [ l l l ; 
b [ l l l = b [ i l ; 
i f ( i i != 0) 

f o r ( j - i i ; j <= 1 - 1; j++) ( 
f s e e k ( i n _ f i l e , (long) ( ( ( i - 1 ) * n + ( j - l ) ) * s i z e o f ( d o u b l e ) ) , SEEK_SET); 
f r e a d ( ( d o u b l e *) sx, s i z e o f ( d o u b l e ) , 1, l n _ f i l e ) ; 
sum — x * b ( j l ; 

} 

e l s e 
i f (sum != 0.0) 

11 = 1; 
b [ i l = sum; 
) 

f o r ( i = n; i >- 1; 1 — ) ( 
sum = b [ i l ; 
i f ( i < n) 

f o r ( j = i + 1; j <= n; j++) ( 
f s e e k ( i n _ f l l e , (long) ( ( ( i - l ) * n + ( j - l ) ) * s i z e o f ( d o u b l e ) ) , SEEK_SET); 
f r e a d ( ( d o u b l e *) sx, s i z e o f ( d o u b l e ) , 1, i n _ f i l e ) ; 
sum -= x»b[j]; 
) 
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f s e e k ( i n _ f i l e , (long) ( ( ( 1 - l ) * n + (1 - l ) ) * s i z e o f ( d o u b l e ) ) , SEEK_SET); 
f r e a d ((double ») sx, s l z e c f ( d o u b l e ) , 1, i n _ f i l e ) ; 
i f (X == HUGE_VAL) 

b [ i l =• 0.0; 
e l s e 

b [ i ] = sum/x; 

) 
r e t u r n ; 

v o i d l n v e r s e _ m a t r i x ( f i l e n a m e ) 
c h a r ' f i l e n a m e ; 

{ 

F I L E " m a t r i x , "work, " i n v e r s e ; 
i n t i , j , "indx, s i z e ; 
double X, *y, *b; 
s h o r t d; 

cha r "tempfile_name, "matfile_name, " i n v f i l e _ n a m e ; 

p r i n t f (" [l;37m»); 

matfile_name = append_name ( f i l e n a m e , ".mat"); 
i n v f l l e _ n a m e = append_narae ( f i l e n a m e , " . I n v " ) ; 
i f ( ( i n v e r s e = fopen ( i n v f i l e _ n a m e , " r b " ) ) i= NULL) ( 

f c l o s e ( i n v e r s e ) ; 
p r i n t f ("Matrix i n v e r s e a l r e a d y e x i s t s i n f i l e % s \ n " , i n v f i l e _ n a m e ) ; 
r e t u r n ; 
} 

i f ( ( m a t r i x = fopen (matfile_name, " r b " ) ) == NULL) e r r o r ( F I L E _ E R R ) ; 
i f ( ( i n v e r s e = fopen ( i n v f i l e _ n a m e , "w+b")) == NULL) e r r o r ( F I L E _ E R R ) ; 
i f ( ( t empfile_name = tempnam ("c:\tmp", "mat")) -= NULL) e r r o r (NO_TEMP); 
c o p y _ m a t r i x _ f i l e (matflle_name, t e m p f i l e _ n a m e ) ; 
i f ((work - fopen (tempfile_name, "r+b")) == NULL) e r r o r ( F I L E _ E R R ) ; 
rewind ( m a t r i x ) ; 
f r e a d ( ( i n t *) s s i z e , s i z e o f ( i n t ) , 1, m a t r i x ) ; 
p r i n t f ( " C r e a t i n g i n v e r s e o f m a t r i x . . . [0;37m columns p r o c e s s e d ( [ s O ) " ) ; 
/* s e t up i d e n t i t y m a t r i x */ 
f o r ( i = 1; i <- s i z e ; 1++) 

f o r ( j = 1; j <= s i z e ; j++) { 
i f ( i " j ) 

X - 1.0; 
e l s e 

X = 0.0; 

f w r i t e ( ( d o u b l e ") sx, s i z e o f ( d o u b l e ) , 1, i n v e r s e ) ; 

) 
/" LU decompose the m a t r i x J u s t once */ 
indx = ( i n t *) m a l l o c ( ( s i z e + 1) * s i z e o f ( i n t ) ) ; 
ludcmp (work, s i z e , indx, s d ) ; 
/* f i n d i n v e r s e by columns •/ 
y - (double •) m a l l o c ( ( s i z e + 1) " s i z e o f ( d o u b l e ) ) ; 
b - (double ") m a l l o c ( ( s i z e + 1) " s i z e o f ( d o u b l e ) ) ; 
f o r ( j = 1; j <= s i z e ; j++) ( 

f o r (1 = 1; i <= s i z e ; i++) { 
f s e e k ( i n v e r s e , (long) ( ( ( i - 1 ) " s i z e + ( j - 1 ) ) " s i z e o f ( d o u b l e ) ) , SEEK_SET); 
f r e a d ((double *) s y [ i l , s i z e o f ( d o u b l e ) , 1, I n v e r s e ) ; 
b ( i l = (1 == j ) ? 1.0 : 0.0; 
) 

l u b k s b (work, s i z e , indx, y ) ; 
f o r ( i = 1; 1 <= s i z e ; i++) { 
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f s e e k ( i n v e r s e , (long) ( ( ( 1 - 1 ) ' s i z e + ( j - D ) ' s i z e o f ( d o u b l e ) ) , SEEK_SET) ; 
f w r i t e ( { d o u b l e ') s y [ i l , s i z e o f (double), 1, i n v e r s e ) ; 

) 
p r i n t f (" [u%d) ", j ) ; 

) 
p r i n t f { " \ n " ) ; 
f r e e { ( i n t ') i n d x ) ; 
f r e e { ( d o u b l e *) y ) ; 
f r e e ( ( c h a r ') matfile_name) ; 
f r e e ( ( c h a r *) i n v f i l e _ n a m e ) ; 
f c l o s e ( m a t r i x ) ; 
f c l o s e (work); 
f c l o s e ( I n v e r s e ) ; 
i f (remove (tempfile_name) == -1) e r r o r ( F I L E _ E R R ) ; 

/' 
* determine e x a c t F o u r i e r c o e f f i c i e n t s u s i n g i n v e r s e m a t r i x and e s t i m a t e d c o e f f s 

*/ 

v o i d c a l c _ c o e f f i c i e n t s ( f i l e n a m e , sampler, d e l t a f , f t d a t a , p_newdata) 
ch a r ' f i l e n a m e ; 
SAMELING_SCHEME sampler; 
double d e l t a f ; 
L I S T f t d a t a , 'p_newdata; 

{ 

c h a r ' i n v f i l e _ n a m e ; 
F I L E ' i n v e r s e ; 
I n t num_bins, b i n s _ e v a l u a t e d , 1; 
ITEM e s t i m a t e , e x a c t ; 
double f n - 0.0, sum, l n _ v a l ; 
enum (RE » 0, IM = 1, DONE = 2) s t a t e ; 

i n v f i l e _ n a m e = append_name ( f i l e n a m e , " . i n v " ) ; 
i f ( ( i n v e r s e = fopen ( i n v f i l e _ n a m e , " r b " ) ) =- NULL) e r r o r ( F I L E _ E R R ) ; 
rewind ( i n v e r s e ) ; 
num_bins = ( i n t ) f l o o r (sampler.bandwidth ' 2.0 / d e l t a f + 0 . 1 ) ; 
b l n s _ e v a l u a t e d = {num_bins + 1 ) / 2 + (num_bins + 1) % 2; 
f o r ( i = 0; 1 < b i n s _ e v a l u a t e d ; 1++) ( 

e x a c t . b i n . f n = f n ; 
f o r ( s t a t e = RE; s t a t e != DONE; state++) { 

sum = 0.0; 
r e w i n d _ l i s t ( s f t d a t a ) ; 
w h i l e ( r e a d _ l i s t ( s f t d a t a , s e s t i r a a t e ) ) ( 

i f ( f r e a d ((double ') s i n _ v a l , s i z e o f (double), 1, i n v e r s e ) == 0) e r r o r (EOF_FOUND); 
sum i n _ v a l ' e s t i m a t e . b i n . r e a l ; 
i f ( ! ( e s t i m a t e . b i n . f n == 0.0 I I 

( e s t i r a a t e . b i n . f n -= sampler.bandwidth s s even ( n u m _ b i n s ) ) ) ) { 
i f ( f r e a d ((double ') s i n _ v a l , s i z e o f ( d o u b l e ) , 1, i n v e r s e ) == 0) 

e r r o r (EOF_FOUND); 
sum += i n _ v a l * e s t i m a t e . b i n . i m a g i n a r y ; 
) 

) 
i f ( s t a t e =- RE) ( 

e x a c t . b i n . r e a l = sum; 
i f ( i == 0) ( 

s t a t e = IM; 

119 



exact.bin.imaginary - 0.0? 
) 

i f ( i == num_bins / 2.0) { 
s t a t e = IM; 
exact.bin-Imaginary = 0.0; 
1 

} 

else 
exact.bin.imaginary = sum; 

} 

a d d _ t o _ l i s t (p_newdata, e x a c t ) ; 
f n += d e l t a f ; 
) 

f c l o s e ( I n v e r s e ) ; 

* user i n t e r f a c e r o u t i n e s * 
* * 

* v o i d scanf_double (double * p _ v a r ) ; * 
* v o i d d i s p l a y _ t i t l e (void) 
* v o i d enter_sampler_parameters (SAMPLING_SCHEME *p_sampler); • 
* v o i d e n t e r _ s i g n a l _ d a t a (LIST * p _ i n p u t ) ; * 
* v o i d p l o t _ a n a l y s i s (LIST i n _ f r e q s , LIST f o u r i e r _ c o e f f s , SAMPLING_SCHEME sampler); • 
* v o i d p l o t _ e r r o r s (SAMPLING_SCHEME sampler, LIST s_data, LIST in v _ d a t a ) ; 
* « 
**********************************************************************«************«*/ 

v o i d scanf_double (p_var) 
double *p_var; 
{ 

char s t r i n g [ 3 0 1 , 'denominator; 

scanf (" \ t \ n % s " , s t r i n g ) ; 
*p_var = s t r t o d ( s t r i n g , sdenominator); 
i f ('denominator ==• '/') 

*p var /= a t o f (++denominator); 

v o i d d i s p l a y _ t i t l e (void) 
( 

p r i n t f (" [l;37m [2JSub-Nyquist Sampling TechniquesXn"); 
p r i n t f ("P C Bagshaw July 1990\n"); 
p r i n t f ("Pseudo-random Discrete Fourier Transform Simulator\n"); 

v o i d enter_sampler_parameters (p_sampler) 
SAMPLING_SCHEME *p_sampler; 
{ 

char key; 
i n t z e r o _ i n _ l i s t - 0; 
ITEM i t m ; 
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p r i n t f (" [l;37m\nSampling Scheme Parameters.\n") ; 
p r l n t f (" [0;37mNuraber of sampling p o i n t s (< % d ) : [l;33m", INT_MAX); 
scanf (••%cl", i (p_sampler->num_polnts)) ; 
p r l n t f (" [0;37mModel (U)niform sampling, ( A ) d d l t i v e pseudo-random sampling,\n"); 
p r l n t f ("or p e r i o d i c sampling w i t h (D)ither? (u/a/d): [l;33m"); 
/* assume machine uses ASCII character set •/ 
while ((key = ( I n t ) getchO I 32) != 'u' ii key != 'a' ii key != 'd') 

p r l n t f ("%c\n", key); 
p_sampler->scheme = key; 
p_sampler->num_fs = 0; 
i n i t i a l l s e _ l l s t (sp_sampler->fs, LIST_SAMPLE_FREQS); 
switch (p_sampler->scheme) { 

case UNIFORM: 
p r i n t f (" [0;37raEnter uniform sampling frequency: Cl."33m"); 
scanf_double (sltra.frequency); 
a d d _ t o _ l l s t {&p_sampler->fs, itm) ; 
p_sampler->nura_fs = 1; 
break; 

case ADDITIVE: 
p r i n t f (" [0;37raEnter pseudo-random sampling frequencies (end with zero): [l;33ra"); 
scanf_double (&ltm.frequency); 
while (itm.frequency > 0.0) ( 

a d d _ t o _ l l s t (Sp_sampler->fs, i t m ) ; 
p_sarapler->num_fS++; 
scanf_double (sitra.frequency); 
) 

break; 
case DITHER: 

p r i n t f (" [0;37mEnter p e r i o d i c sampling frequency: tl;33m"); 
scanf_double (sltm.frequency); 
a d d _ t o _ l i s t (Sp_sampler->fs, i t m ) ; 
p r l n t f (" [0;37mEnter possible p o s i t i v e d i t h e r i n terms of f r a c t i o n s , 0 x < 1/2 ") ; 
p r l n t f ("ofXnthe sampling period, % f (end w i t h x out of range): [l;33m", 

1.0/itm.frequency); 
scanf_double ( i l t r a . f r e q u e n c y ) ; 
w hile (itm.frequency >= 0.0 is, Itm.frequency < 0.5) ( 

i f (itm.frequency == 0.0) 
z e r o _ l n _ l i s t = 1; 

else 
a d d _ t o _ l l s t (sp_sampler->fs, I t m ) ; 

p_sampler->num_fs += 2; 
scanf_double (sitm.frequency); 
} 

p_sampler->num_fs — z e r o _ l n _ l l s t ; 
break; 

d e f a u l t : 
break; 

) 
i f (p_sampler->num_fs -= 0) e r r o r (NO_SF); 
i f (p_sampler->num_fs == 1) 

p_sampler->scheme = UNIFORM; 
p r i n t f (" (0;37m"); 
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v o i d e n t e r _ s i g n a l _ d a t a (p_input) 
LIST * p _ l n p u t ; 
1 

ITEM i t m ; 

p r i n t f (" [l;37ra\nlnput Signal D e t a i l s . \ n " ) ; 
p r i n t f (" [0;37mEnter frequency, amplitude and phase of the input signal harmonics,\n"); 
p r i n t f ("(terminate w i t h a negative frequency)\n"); 
itm.element.frequency = 0.0; 
whi l e (itm.element.frequency >= 0.0) { 

p r i n t f (" (0;37m* f r e q : [l;33m"); 
scanf_double (sitm.element.frequency); 
i f (itm.element.frequency >= 0.0) ( 

p r i n t f (" [0;37m* amp: [l;33m"); 
scanf_double (sitm.element.amplitude); 
i f (itm.element.frequency == 0.0) 

itm.element.phase - 0.0; 
else ( 

p r i n t f (" [0;37m* phase (degrees): [l;33ra"); 
scanf_double (sitm.element.phase); 
itm.element.phase *= PI / 180.0; 
) 

a d d _ t o _ l i s t (p_lnput, i t m ) ; 
) 

) 
r e w i n d _ l i s t ( p _ i n p u t ) ; 
i f ( ! r e a d _ l i s t (p_input, sitm)) e r r o r (NO_INPUT); 
p r i n t f (" [0;37m"); 

/* 
* d i s p l a y frequency domain information 
*/ 

typedef enum (ESTIMATE, EXACT) COEFF_TYPE; 

vo i d p l o t _ a n a l y s i s ( i n _ f r e q s , sampler, f o u r i e r _ c o e f f s , amp_control) 
LIST i n _ f r e q s , f o u r i e r _ c o e f f s ; 
SAMPLING_SCHEME sampler; 
COEFF_TYPE amp_control; 
( 

s t r u c t v ideoconfig vc; 
double max = 0.1, x_scale, amp_scale, phase_scale; 
double amplitude, phase; 
char l<ey; 
ITEM i t m ; 

i f (lset_raode()) e r r o r (GRAPHICS_MODE); 
_ge t v i d e o c o n f i g ( s v c ) ; 

/* p r i n t l a b e l s */ 
p r i n t f (" [l;37m"); 
_ s e t t e x t p o s i t i o n ( 1 , 1 ) ; 
i f (amp_control == ESTIMATE) 

_ o u t t e x t ("Estimate Signal Analysis using Pseudo-random sampling and Fourier transform"); 
else 

o u t t e x t ("Exact Signal Analysis using Transform and Inverse M a t r i x " ) ; 
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_ s e t t e x t p o s l t l o n (20, 1) ; 
_ o u t t e x t C'PhaseXn • • • ) ; 
_ s e t t e x t p o s l t i o n (28, 1) ; 
_ o u t t e x t (••-•"); 
_ s e t t e x t p o s i t l o n (19, 80); 
_ o u t t e x t ( " f " ) ; 

/* p l o t axes */ 
_ s e t c o l o r (15); /« white */ 
_ s e t l o g o r g (0, (short) vc.numypixels*0.59); 
x_scale = (double) (vc.nuraxpixels-1)/sampler.bandwidth; 
r e w l n d _ l i s t ( s f o u r l e r _ c o e f f s ) ; 
w h i l e ( r e a d _ l i s t ( s f o u r l e r _ c o e f f s , s l t m ) ) ( 

convert_complex ( i t r a . b i n . r e a l , itra.bin.Imaginary, Samplitude, Sphase); 
i f (arap_control != EXACT) { 

amplitude /= ( i t m . b i n . f n -= 0.0) + 1.0; 
amplitude *= 2,0/sampler.num_points; 
) 

i f (amplitude > max) 
max = amplitude; 

) 
amp_scale = (double) (-vc.numypixels) * 0.525 / max; 
_moveto (0, (short) (-vc.nuraypixels * 0.525)); 
_ l i n e t o (0, 0 ) ; 
_ l i n e t o (vc.numxpixels, 0 ) ; 
_s e t l o g o r g (0, (short) (vc.numypixels*0.795)); 
phase_scale = (double) (-vc.numypixels)/PI»0.118; 
_raoveto (0, (short) phase_scale"PI); 
_ l l n e t o (0, (short) -phase_scale'PI); 
_moveto (0, 0 ) ; 
_ l i n e t o (vc.numxpixels, 0 ) ; 

/* p l o t amplitude and phase i n f o r m a t i o n of transform output */ 
_ s e t c o l o r (14); /» yellow */ 
r e w l n d _ l l s t ( i f o u r l e r _ c o e f f s ) ; 
w h i l e ( r e a d _ l i s t ( 4 f o u r l e r _ c o e f f s , s i t m ) ) ( 

convGrt_complex ( i t m . b i n . r e a l , itm.bin.Imaginary, Samplitude, sphase); 
i f (arap_control != EXACT) ( 

amplitude /= ( i t m . b i n . f n == 0.0) + 1.0; 
amplitude •= 2.0/sampler.num_polnts; 
} 

_s e t l o g o r g (0, (short) vc.numypixels*0.59); 
_moveto ((s h o r t ) ( I t m . b i n . f n * x _ s c a l e ) , 0 ) ; 
_ l i n e t o ( ( s h o r t ) ( i t m . b i n . f n * x _ s c a l e ) , (short) (amplitude*amp_scale)); 
_ s e t l o g o r g (0, (short) (vc.numyplxels*0.795)); 
_movGto ( ( s h o r t ) ( I t m . b i n . f n * x _ s c a l e ) , 0 ) ; 
_ l i n e t o ( ( s h o r t ) ( i t m . b i n . f n * x _ s c a l e ) , (short) (phasG*phase_scale)); 
) 

/* p l o t sample frequencies */ 
_s e t l o g o r g (C, (short) vc.numyplxels*0.59); 
_ s e t c o l o r (13); /• l i g h t magenta */ 
r e w l n d _ l i s t (ssampler.fs); 
while ( r e a d _ l i s t (ssarapler.fs, sltm)) ( 

_moveto ( ( s h o r t ) (Itm.frequency*x_scale), 0 ) ; 
_ l i n e t o ( ( s h o r t ) (itm.frequency*x_scale), 10); 
} 

/* p l o t input frequencies */ 
s e t c o l o r (10); /* l i g h t green •/ 
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r e w i n d _ l i s t ( s i n _ f r e q s ) ; 
w h i l e ( r e a d _ l i s t ( s i n _ f r e q s , sitm)) { 

_moveto ( ( s h o r t ) (itm.element.frequency«x_scale), 0 ) ; 
_ l i n e t o ( ( s h o r t ) (itm.element.frequency«x_scale), 7 ) ; 
I 

/* h i g h l i g h t successive bins and displ a y d e t a i l s of h i g h l i g h t e d b i n */ 
key = - 1 ; 
r e w i n d _ l i s t ( s f o u r i e r _ c o e f f s ) ; 
w h i l e (key != 'e' SS r e a d _ l i s t ( s f o u r i e r _ c o e f f s , s i t m ) ) ( 

convert_complex ( i t m . b i n . r e a l , itm.bin.imaginary, Samplitude, sphase); 
i f (amp_control != EXACT) { 

amplitude /= ( i t m . b i n . f n == 0.0) + 1.0; 
amplitude *- 2.0/sampler.nura_points; 
) 

_ s e t c o l o r (12); /* red •/ 
_se t l o g o r g (0, (short) vc.numyplxels*0.59) ; 
_moveto ( ( s h o r t ) (itm.bin.fn«x_scale), 0 ) ; 
_ l i n e t o ( ( s h o r t ) (itm.bin.fn«x_scale), (short) (amplitude«amp_scale)); 
_s e t l o g o r g (0, (short) (vc.numypixels'O.795)); 
_moveto ( ( s h o r t ) (itm.bin.fn«x_scale) , 0 ) ; 
_ l l n e t o ( ( s h o r t ) ( i t m . b i n . f n * x _ s c a l e ) , (short) (phase«phase_scale)); 
_ s e t t e x t p o s i t i o n (2, 1 ) ; 
p r i n t f ("frequency: %.4f ", i t m . b i n . f n ) ; 
_ s e t t e x t p o s i t i o n (2, 25); 
p r i n t f ("amplitude: %.4f ", amplitude); 
_ s e t t e x t p o s i t i o n (2, 50); 
p r i n t f ("phase (degrees): %7.4f ", phase * 180.0 / P I ) ; 
key = getch () ; 
_ s e t c o l o r (14); /« yellow •/ 
_se t l o g o r g (0, (short) vc.numyplxels*0.59); 
_moveto ( ( s h o r t ) (itm.bin.fn«x_scale), 0 ) ; 
_ l i n e t o ( ( s h o r t ) (Itm. b i n . fn''x_scale), (short) (amplitude»amp_scale)); 
_s e t l o g o r g (0, (short) (vc.numypixels*0.795)); 
_moveto ( ( s h o r t ) ( i t m . b i n . f n * x _ s c a l e ) , 0 ) ; 
_ l i n e t o ( ( s h o r t ) ( i t m . b i n . f n * x _ s c a l e ) , (short) (phase'phase_scale)); 
) 

_setvideomode (_DEFAULTMODE); 
r e t u r n ; 

/* 
* d i s p l a y time domain i n f o r m a t i o n 
*/ 

vo i d p l o t _ e r r o r s (sampler, s_data, inv_data) 
SAMPLING_SCHEME sampler; 
LIST s_data, inv_data; 
{ 

s t r u c t v i d e o c o n f i g vc; 
I n t k; 
double x_soale, y_scale, e r r , max_e = 0.0, min_e = HUGE; 
ITEM s, i ; 

i f (iset_mode()) e r r o r (GRAPHICS_MODE) ; 
_get v i d e o c o n f i g (svc); 
r e w i n d _ l i s t (ss_data); 
rewind l i s t (slnv d a t a ) ; 
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w h i l e ( r e a d _ l l s t (ss_data, ss) ss r e a d _ l i s t (slnv_data, s i ) ) ( 
e r r = fabs (i.sample.value - s.sample.value); 
max_e - (e r r > max_e) ? e r r : raax_e; 
mln_e = (err < min_e) ? e r r : min_e; 
) 

x_scale = (double) (vc.numxpixels-1)/sampler.num_points; 
y_scale = (double) (-vo.numypixels) / max_e * 0.7; 
_ s e t c o l o r (15); /* white »/ 
_ s e t l o g o r g (0, (short) vc.numypixels*0.8); 
_moveto (0,(short) (-vc.numypixels*0.7)); 
_ l l n e t o (0, 0 ) ; 
_ l l n e t o (vc.numxpixels, 0 ) ; 
_ s e t c o l o r (14); /* yellow */ 
p r l n t f (" [l;37mError i n c a l c u l a t i n g sample values through Inverse transform\n\n") ; 
p r i n t f ("Maximum e r r o r : %e\tMlnimum e r r o r : %e\n", max_e, mln_e); 
_ s e t t e x t p o s i t i o n (26, 1 ) ; 
p r l n t f ("0"); 
_ s e t t e x t p o s i t i o n (26, 35); 
p r i n t f ("Sample"); 
_ s e t t e x t p o s l t l o n (26, 77); 
p r i n t f ("%d", sampler.num_polnts - 1 ) ; 
r e w i n d _ l l s t (ss_data); 
r G w l n d _ l l s t ( s i n v _ d a t a ) ; 
f o r (k = 0; k < sampler.num_polnts; k++) ( 

r e a d _ l i s t (5s_data, s s ) ; 
r e a d _ l i s t (slnv_data, s i ) ; 
e r r = fabs (1.sample.value - s.sample.value); 
i f (k -= 0) 

_moveto (0, (short) ( e r r ' y _ s c a l e ) ) ; 
_ l i n e t o ( ( s h o r t ) (k*x_scale) , (short) (err''y_scale)) ; 
) 

getch 0 ; 
setvideomode (_DEFAULTMODE); 

i n t set_mode () 

I f (_setvideoraode (_VRES16C0L0R)) 
r e t u r n (_VRES16C0L0R); 

i f (_setvideomode (_ERESCOLOR)) 
r e t u r n (_ERESCOLOR); 

i f (_setvldeomode (_MRES16COL0R)) 
r e t u r n (_MRES16C0L0R); 

else 
r e t u r n ( 0 ) ; 
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* main program 

************ 

SAMPLING_SCHEME sampler; 
LIST i n p u t _ s l g n a l , sample_data, f t _ d a t a , i d f t _ d a t a , e x a c t _ f t d a t a ; 
double bi n _ s t e p = 0,0, old _ s t e p ; 
char key = '0', matrix_name |;MAX_FILENAME_SIZE1 ; 
i n t need_sampler_parameters = 1; 
i n t need_signal_data - 1; 
i n t need_generate_data " 1; 
i n t n e e d _ p r d f t _ c a l c u l a t e d = 1; 
i n t n e e d _ i n v p r d f t _ c a l c u l a t e d = 1; 

vo i d s a t i s f y _ i n p u t _ n e e d s () 
{ 

i f (need_sampler_parameters) ( 
enter_sampler_parameters (ssampler); 
calc_bandwidth (ssampler); 
p r i n t f (" [l;37m\nSystem Bandwidth: % . 3 f \ n " , sampler.bandwidth); 
need_sampler_parameters = 0; 
f r e e _ l i s t (ssample_data); 
need_generate_data =• 1; 
) 

i f (need_signal_data) ( 
enter_ s i g n a l _ d a t a ( s i n p u t _ s i g n a l ) ; 
need_signal_data = 0; 
f r e e _ l i s t {ssample_data); 
need_generate_data = 1; 
) 

i f (need_generate_data) ( 
p r i n t f (" [l;37m\nGenerating sampling data \ n " ) ; 
random_sampler (Ssampler, i n p u t _ s i g n a l , ssample_data); 
need_generate_data ~ 0; 
f r e e _ l i s t ( S f t _ d a t a ) ; 
n e e d _ p r d f t _ c a l c u l a t e d = 1; 
1 

main (argc, argv) 
i n t argc; 
char ' a r g v l l ; 
( 

i n i t i a l i s e _ H s t ( s i n p u t _ s i g n a l , FREQ_LIST) ; 
i n i t i a l l s e _ l i s t (Ssample_data, SAMPLE_DATA); 
i n i t i a l i s e _ l i s t ( s f t _ d a t a , FOURIER_TRANSFORM_DATA); 
i n i t i a l i s e _ l i s t ( s i d f t _ d a t a , SAMPLE_DATA); 
i n i t i a l i s e _ l i s t ( 5 e x a c t _ f t d a t a , FO0RIER_TRANSFORM_DATA); 
d i s p l a y _ t l t l e ( ) ; 
sa t i s f y _ l n p u t _ n e e d s ( ) ; 
while (key '6') ( 

p r i n t f (" [l;37m [2J\nSimulation Options. [0;37m\n"); 
p r i n t f ("1. Change sampler pararaeters\n"); 
p r i n t f ("2. Change input s i g n a l d e s c r i p t i o n X n " ) ; 
p r i n t f ("3. Calculate pseudo-random d i s c r e t e Fourier transform only and di s p l a y spectrum\n"); 
p r i n t f ("4. Evaluate PRDFT, the Inverse PRDFT and displ a y e r r o r s and spectrum\n"); 
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p r i n t f ("5. Calculate PRDFT, determine exact c o e f f i c i e n t s from i t and displ a y spectraXn"); 
p r i n t f ("6. Q u i t \ n " ) ; 
p r l n t f ("Enter choice (1-6): tl;33m"); 
while ((key - getchO) < •!• I I key > -S') 

p r l n t f ("%c\n", key); 
i f (key == •!•) ( 

f r e e _ l l s t (Ssampler.fs); 
need_sarapler_parameters = 1; 
1 

i f (key == •2') 1 

f r e e _ l i s t ( 5 i n p u t _ s i g n a l ) ; 
need_slgnal_data = 1; 
} 

s a t i s f y _ i n p u t _ n e G d s () ; 
i f (key == '3- I I key == •5') { 

p r i n t f (" [0;37mEnter b i n step ( % f ) : [l;33m", 1.0/sampler.wlndow_width) ; 
old_step = b i n _ s t e p ; 
scanf_double ( s b i n _ s t e p ) ; 
i f (bin_step i= old_step) { 

f r e e _ l l s t (Sft_data) ; 
need _ p r d f t _ c a l c u l a t e d = 1; 
) 

) 
i f (key -= M') ( 

old_step = bin _ s t e p ; 
bin_step = 1.0/sampler.window_width; 
i f (bln_step != old_step) ( 

f r e e _ l l s t ( s f t _ d a t a ) ; 
n e e d _ p r d f t _ c a l c u l a t e d - 1; 
I 

1 

i f ((key == '3' I I key == '4') ss need_prdft_calculated) ( 
p r l n t f ("\n"); 
d p r f t (sampler, bln_step, saraple_data, s f t _ d a t a ) ; 
n e e d _ p r d f t _ c a l c u l a t e d = 0; 
) 

switch (key) ( 
case '3': 

p l o t _ a n a l y s l s ( l n p u t _ s l g n a l , sampler, f t _ d a t a , ESTIMATE); 
break; 

case '4•: 
i f ( n e ed_invprdft_calculated) ( 

i n v _ d p r f t (sampler, f t _ d a t a , saraple_data, S i d f t _ d a t a ) ; 
n e e d _ i n v p r d f t _ c a l c u l a t e d = 0; 
) 

p l o t _ e r r o r s (sampler, sample_data, i d f t _ d a t a ) ; 
p l o t _ a n a l y s i s ( i n p u t _ s i g n a l , sampler, f t _ d a t a , ESTIMATE); 
break; 

case 'S': 
p r i n t f (" [0;37mEnter name of matrix (filename without extension): [l;33m"); 
scanf (" \ t \ n % s " , matrix_name); 
while (!generate_matrlx_A (sampler, b i n _ s t e p , sample_data, matrix_name)) { 

p r i n t f (" [0;37mEnter name of matrix (filename without extension): [l;33m"); 
scanf (" \ t \ n % s " , raatrix_name); 
) 

inverse_matrlx (matrix_name); 
i f (need_prdft_calculated) I 

d p r f t (sampler, bln_step, sampie_data, s f t _ d a t a ) ; 
n e e d _ p r d f t _ c a l c u l a t e d - 0; 
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) 
c a l c _ c o e f f I c i e n t s (matrlx_name, sampler, bin_step, f t _ d a t a , sexact_ftdata) ; 
p l o t _ a n a l y s l s ( i n p u t _ s i g n a l , sampler, f t _ d a t a , ESTIMATE); 
p l o t _ a n a l y s l s ( l n p u t _ s i g n a l , sampler, e x a c t _ f t d a t a , EXACT); 
f r e e _ l l s t ( 5 e x a c t _ f t d a t a ) ; 
break; 

d e f a u l t : 
break; 

1 
) 

e x i t ( 0 ) ; 
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APPENDIX D 

Source Code of DFT and Inverse DFT using NAG Library Routines. 

129 



program nag_dft ( i n p u t , o u t p u t ) ; 

c o n s t raax_fft = 2048; 
p i = 3.14159265358979323849; 

type f f t _ d a t a = a r r a y [0..max_fft - 1] of r e a l ; 
t i m e_data = a r r a y [0..max_fft] of r e a l ; 

v a r n, i f a i l : i n t e g e r ; 
f s : r e a l ; 
xa, XX, work, f_nag, x_nag, f _ p r a , x _ p r a : f f t _ d a t a ; 
t k : t i r a e _ d a t a ; 

procedure C06FAF (var x : f f t _ d a t a ; const n : l n t e g e r ; v a r w o r k : f f t _ d a t a ; 
v a r i f a i l : i n t e g e r ) ; f o r t r a n 7 7 ; 

procedure C06GBF (var x : f f t _ d a t a ; const n : l n t e g e r ; 
v a r i f a i l : i n t e g e r ) ; f o r t r a n 7 7 ; 

procedure C06FBF (var x : f f t _ d a t a ; const n : i n t e g e r ; v a r w o r k : f f t _ d a t a ; 
v a r i f a i l : i n t e g e r ) ; f o r t r a n 7 7 ; 

procedure GENERATE_DATA (var num_samples:integer; v a r s a m p l e _ f r e q : r e a l ; 
v a r x : f f t _ d a t a ; var t : t i m e _ d a t a ) ; 

v a r j : i n t e g e r ; 
s c a l e : r e a l ; 

b e g in ( g e n e r a t e _ d a t a } 
r e a d l n (num_samples); 
r e a d l n (sample_freq) ; 
s c a l e := 0.0; 
f o r j := 0 to num_samples - 1 do 

begin 
t [ j ] := s c a l e / sample_freq; 
x [ j ] := cos (2.0 * p i * 4.0 * t ( j ] ) ; 
s c a l e := s c a l e + 1.0 
end; 

t [ n ] := s c a l e / saraple_freq 
end; { g e n e r a t e _ d a t a } 

procedure DPRFT (var x : f f t _ d a t a ; const n i i n t e g e r ; const bandwidth:real; 
c o n s t t : t i m e _ d a t a ; var w o r k : f f t _ d a t a ) ; 

v a r fn, argu, r e , im : r e a l ; 
i , j , num_bins, e v a l u a t e : i n t e g e r ; 

begin { d p r f t } 
fn := 0.0; 
num_bins := round ( t [ n ] * 2.0 * bandwidth); 
e v a l u a t e := (num_bins + 1) d i v 2 + (num_bins + 1) mod 2; 
f o r i := 0 to e v a l u a t e - 1 do 

begin 
re := 0.0; 
im := 0.0; 
fo r j := 0 to n - 1 do 

begin 
argu := 2.0 * p i * fn * t [ j ] ; 
re := r e + x [ j ] * cos ( a r g u ) ; 
im := im + x [ j ] * s i n (argu) 
end; 

im := -im; 
i f i = 0 then 

work[0] := re 
e l s e 

begin 
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work [nuin_bins - i ) := im; 
w o r k [ i ] := re 
end; 

fn := fn + 1.0/t(n] 
end; 

X := work 
end; ( d p r f t } 

procedure INVERSE_DPRFT (var f t d : f f t _ d a t a ; const n : i n t e g e r ; 
const bandwidth:real; const t : t i m e _ d a t a ; 
var w o r k : f f t _ d a t a ) ; 

v a r fn, argu : r e a l ; 
i , j , num_bins, e v a l u a t e : i n t e g e r ; 

b e gin { i n v e r s e _ d p r f t ) 
num_bins := round (t [n] * 2.0 * bandwidth); 
e v a l u a t e := (num_bins + 1) d i v 2 + (nura_bins + 1) mod 2; 
f o r j := 0 to n - 1 do 

begin 
fn := 0.0; 
work.[j] := f t d ( 0 ] ; 
f o r i := 1 to e v a l u a t e - 1 - (num_bins + 1) mod 2 do 

begin 
fn := fn + 1.0/t [n] ; 
argu := 2.0 * p i * t [ j ] * f n ; 
w o r k [ j ] := w o r k [ j ] + 2.0 * ( f t d [ i ] * cos (argu) -

ftd[num_bins - i ] * s i n (argu)) 
end; 

i f (num_bins mod 2 = 0 ) then 
begin 
fn := fn + 1.0/t[n] ; 
worlc[j] := w o r k [ j ] + 

ftd[num_bins d i v 2] * cos (2.0 * p i * t [ j ] * fn) 
end; 

wor)c[j] := w o r k ( j ] / num_bins 
end; 

f t d := work 
end; { i n v e r s e _ d p r f t } 

procedure DISPLAY_T_DOMAIN (const xa, x_nag, x _ p r a : f f t _ d a t a ; const n : i n t e g e r ) , 
v a r j : i n t e g e r ; 

e r r o r x , max_nag_err, max_pra_err: r e a l ; 
b e g i n { d i s p l a y _ t _ d o m a i n } 

max_nag_err := 0.0; 
max_pra_err := 0.0; 
w r i t e l n ('Input sequence as r e s t o r e d by IDPRFT'); 
f o r j := 0 to n - 1 do 

begin 
e r r o r x := abs ( x a [ j ] - x _ n a g [ j ] ) ; 
i f e r r o r x > max_nag_err then 

max_nag_err := e r r o r x ; 
e r r o r x := abs ( x a [ j ] - x _ p r a [ j ] ) ; 
i f e r r o r x > max_pra_err then 

max_pra_err := e r r o r x ; 
w r i t e l n ( j , x a [ j ] , x _ p r a [ j ] , e r r o r x ) 
end; 

w r i t e l n ('Maximum e r r o r i n r e s t o r i n g data by NAG: ', max_nag_err); 
w r i t e l n ('Maximum e r r o r i n r e s t o r i n g data by IDPRFT:', max_pra_err) 

end; { d i s p l a y _ t _ d o m a i n } 
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begin (main program) 
GENERATE_DATA (n, f s , xa, tk) ; 

{perform DFT u s i n g NAG l i b r a r y r o u t i n e ) 
XX := xa; 
i f a i l := 0; 
C06FAF (XX, n, work, i f a i l ) ; 
f_nag := xx; 

(perform IDFT u s i n g NAG l i b r a r y r o u t i n e s } 
C06GBF (XX, n, i f a i l ) ; 
C06FBF (XX, n, work, i f a i l ) ; 
x_nag := xx; 

(perform DFT u s i n g PSEUDO-RANDOM a l g o r i t h m ) 
xx := xa; 
DPRFT (XX, n, f s / 2 . 0 , tk, work); 
f _ p r a := xx; 

(perform IDFT u s i n g PSEUDO-RANDOM a l g o r i t h m ) 
INVERSE_DPRFT (xx, n, f s / 2 . 0 , tk, work); 
x _ p r a := xx; 

(output information to u s e r ) 
DISPLAY_T_DOMAIN (xa, x_nag, x_pra, n) 

end. {main program) 
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