W Durham
University

AR

Durham E-Theses

Sub-nyquist sampling techniques

Bagshaw, Paul Christopher

How to cite:

Bagshaw, Paul Christopher (1990) Sub-nyquist sampling techniques, Durham theses, Durham
University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/6523/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-profit purposes provided that:

e a full bibliographic reference is made to the original source
e a link is made to the metadata record in Durham E-Theses
e the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support Office, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107
http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/6523/
 http://etheses.dur.ac.uk/6523/
http://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk

SUB-NYQUIST SAMPLING TECHNIQUES

P C Bagshaw, B.Sc. (Hons)
School of Engineering and Applied Science
University of Durham, UK

Thesis for Master of Science submitted September 1990

ABSTRACT

A number of novel theoretical methods have been developed in an attempt to analyse
data produced by sampling a signal at below the Nyquist rate and the limitations of the
approaches have been investigated.

A technique is developed that allows, under specified conditions, the frequency and
amplitude of a band-limited sinusoidal signal (with no harmonics) to be determined
when the signal is sampled simultaneously with three uniform samplers at below the
Nyquist rate. The three samplers operate at slightly different rates. Each has its output
ideally low-pass filtered with a cut-off frequency at half the sampling rate. The
frequencies of the signals output from the ideal filters are analysed to determine the
input sinusoid parameters. The frequency of the sinusoid can also be found within a
calculated tolerance when approximate filter output frequencies are known.

Two approaches extending this technique for a band-limited periodic signal consisting
of more than just the fundamental, enable the frequencies of the harmonics to be found
for the signal, but there is the possibility that other erroneous harmonics may be
identified as part of the signal. The probability of this occurring can be reduced by
uniformly sampling simultaneously with a greater number of samplers. This probability
cannot reach zero. Furthermore, as the number of samplers increases or the number of
signal harmonics increases, the computational workload imposed in determining the
harmonic frequencies rises dramatically. The approaches are rendered impractical and
sampling at irregular intervals is suggested as an alternative to using a very large
number of uniform samplers.

A modified discrete Fourier transform and its inverse are developed to allow an
estimated spectral analysis of a continuous periodic signal sampled at irregular
intervals. Additive pseudo-random sampling and periodic sampling with dither are
rigourously defined as two proposed irregular sampling schemes. The periodicity and
symmetrical properties of the modified transform are derived for the two schemes.
Consistently alias-free spectral analysis of a band-limited periodic signal is
demonstrated using additive pseudo-random sampling with a maximum sampling rate
below the Nyquist rate. This does not apply when using periodic sampling with dither.

SUB-NYQUIST SAMPLING TECHNIQUES

Paul Christopher Bagshaw, B.Sc. (Hons)
Master of Science Thesis

University of Durham, UK
School of Engineering and Applied Science

September 1990

The copyright of this thesis rests with the author.
No quotation from it should be published without
his prior written consent and information derived

from it should be acknowledged.

ii

11 MAR 1981

CONTENTS

ABSTRACT i
TITLE PAGE i
CONTENTS il
DECLARATION vi
GLOSSARY OF ABBREVIATIONS AND SYMBOLS vii
1. INTRODUCTION 1

2. TECHNIQUE WITH UNIFORM SAMPLING FOR SIGNALS CONTAINING A

SINGLE ACTIVE ELEMENT
2.1 Fundamentals of Uniform Sampling 4
2.2 Aliased Single Active Element Analysis 5
2.3 Proposed Dealiasing System 10
2.4 Operational Bandwidth 13
2.5 Single Active Element Dealiasing Algorithm 16
2.6 Errors Imposed by the Limitations of the DFT 19
2.7 Summary 24

3. TECHNIQUE WITH UNIFORM SAMPLING FOR SPECTRAL ANALYSIS

3.1 Multiple Active Element Ambiguity Reduction Algorithm N©-1 25
3.2 Multiple Active Element Ambiguity Reduction Algorithm N©-2 25
3.3 Illustration of Inherent Ambiguity 26
3.4 An Investigation of the Relative Efficiency of the Two 29

Algorithms and a Full-Scale FFT

3.5 Optimising Parameters to Minimise the Number of 33
'Ghost' Frequencies Possible in the Analysis of a Multiple Active
Element Signal

3.6 Summary 35

iii

4. SPECTRAL ANALYSIS WITH SUB-NYQUIST PSEUDO-RANDOM

SAMPLING
4.1 Introduction
4.2 Theoretical Development of the Pseudo-random Discrete Fourier
Transform

4.3 Generators of Pseudo-random Sampling Instances
4.3.1 Additive Pseudo-random Sampling
4.3.2 Periodic Sampling with Dither

4.4 Transform Period and Input Signal Bandwidth Limitations
4.4.1 Periodicity for Uniform Sampling Scheme
4.4.2 Periodicity for Additive Pseudo-random Sampling

Scheme

4.4.3 Periodicity for Periodic Sampling Scheme with Dither
4.4.4 System Bandwidth

4.5 Inverse Pseudo-random DFT

4.6 Improving the Estimated Fourier Coefficients

4.7 Conceptual Interpretation and Discussion of the Technique

5. DESCRIPTION OF SIMULATION PROGRAMS
5.1 Simulation of Single Active Element Dealiasing Algorithm with
DFT Errors Considered
5.2 Simulation of Multiple Active Element Dealiasing Algorithms
5.3 Direct Realisation of the Pseudo-random Discrete Fourier
Transform

5.4 DFT and Inverse DFT using NAG Library Routines

6. CONCLUSIONS AND SUGGESTIONS FOR FURTHER RESEARCH

36
38

45
48
50
50
51

52

53

56

63

70

74

75
76

77

78

iv

APPENDICES

A Program Source Code for the Simulation of Single Active
Element Dealiasing Algorithm with DFT Errors Considered

B Program Source Code for the Simulation of Multiple Active
Element Dealiasing Algorithms

C Program Source Code for the Direct Realisation of the Pseudo-
random Discrete Fourier Transform

D Source Code of DFT and Inverse DFT using NAG Library

Routines

BIBLIOGRARHY
REFERENCES

81

91

100

129

133
136

DECLARATION

This thesis is submitted to the Board of Examiners for the School of Engineering and
Applied Science at the University of Durham for the degree of Master of Science. The
material contained within it is solely the original work of the author and when detailed
reference has been made to other texts, the source of information has been clearly

stipulated.

The author wishes to convey special thanks to Dr. Mansoor Sarhadi for his supervision
and funding of the research undertaken, friends at the Queen's Head Hotel, Gilesgate, its
'spiritual' enlightenment and his parents and family for their moral support, without

whom the production of this work might not have been possible.
The copyright © of this thesis rests with the author. No quotation from it should be

published without his prior written consent and information derived from it should be

acknowledged.

vi

GLOSSARY OF ABBREVIATIONS AND SYMBOLS

DFT
DSPs
DUX

LPF
MTS
MUSE

NAG
NTSC

PAL
PC
PCM

PRNG

afp

Discrete Fourier Transform.

Digital Signal Processors.

Demultiplexing module.

Fast Fourier Transform.

Low-Pass Filter.

Michigan Terminal System.

Multiple Sub-Nyquist sampling Encoding. Used in Japanese-developed
high-definition television system.

Numerical Algorithms Group.

National Television Systems Committee. US-developed colour
television, using quadrature amplitude modulation of a colour sub-carrier
and a luminance signal.

Phase Alternating Line. German-developed colour television system.
Personal Computer (IBM compatible.)

Pulse Code Modulation. A development from pulse modulation
involving sampling a continuous signal, quantizing the samples to
specific levels, and encoding these values into some numerical form.
Pseudo-Random Number Generator.

estimated real Fourier coefficient relating to the harmonic of frequency
.

amplitude of m™ signal harmonic.

real Fourier coefficient relating to mt signal harmonic.

operational bandwidth for dealiasing algorithm when errors in f are
considered.

estimated imaginary Fourier coefficient relating to the harmonic of
frequency f.

imaginary Fourier coefficient relating to mth signal harmonic.

vii

opt

pseudo

8(x)

A PO Tz

e

A X =R

A

optimum operational bandwidth for dealiasing algorithm.
bandwidth limitation required for input of pseudo-random DFT.
pseudo-random variable for selection of 1.

the impulse function.

DFT frequency bin spacing.

frequency error in £,

difference in sampling frequencies fg; and f,.

difference in sampling frequencies fy; and fg;.

difference in sampling frequencies fg; and fg;.

frequency of mth signal harmonic.

frequency for which Fourier coefficients are calculated.
frequency of signal output by sampler/LPF system.
periodicity of X(f).

folding frequency/point of symmetry in aliasing pattern.

rate of uniform sampling.

frequency of a pure sinusoidal signal.
fundamental frequency of a periodic function.
rectangular window function.

frequency response of an ideal low-pass filter.

number of components (fundamental plus harmonics) that make up a

periodic signal.

number of consecutive samples taken of a signal.
number of possible values T may take.

minimum length of sequence x(A).

relative phase of mth signal harmonic.

independent pseudo-random number generating function. 0 <R () < 1.

frequency resolution with which the input signal can be analysed.

pseudo-random number generating function with an uniform distribution.

independent pseudo-random variable.

viii

Tmin

Xg(n)

Xo()

Xo(t)

X ()

x(t)

time of the (k + 1)! sampling instance

minimum possible difference between one sampling instance and the
next.

time final sample is taken.

uniform interval between regular sampling instances.

width of rectangular window function h(t).

repetition interval of a periodic function.

the continuous Fourier transform of ug(t).

infinite series of impulses where each impulse corresponds to a sampling
instance.

the continuous Fourier transform of u, (t).

repetition in the time domain corresponding to a series of impulses in the
frequency domain.

relative workloads for algorithms N©-1 & N©-2 respectively.

relative workload imposed by FFT.

number of values instance t) can take.

uniform sequence accommodating every irregular sampling instance.
instantaneous sample values according to inverse pseudo-random DFT.
the continuous Fourier transform of x,(t).

function of time representing the magnitude of a continuous analogue
signal.

function representing the magnitude of a discrete analogue signal at the
(n+1)th sample.

the continuous Fourier transform of x(t).

function of time representing a continuous analogue signal output by a
sampler/LPF system.

estimated coefficients of signal x (t) according to pseudo-random DFT.

sampled, truncated, periodic waveform.

ix

1. INTRODUCTION

Reliable and relatively inexpensive digital hardware has been used to perform signal
processing tasks in preference to conventional analogue means. However, digital signal
processing is not necessarily the best solution for all signal processing problems and
often for extremely wide bandwidth signal real-time processing, analogue techniques
are employed. The use of digital systems has many well known advantages over
analogue systems, in particular in being able to provide a greater degree of flexibility in
system design. It is therefore desirable to devise digital techniques which allow wide

bandwidth signals to be rapidly processed in preference to analogue means.

Traditionally, the input to digital systems is formed by taking samples of a band-limited
signal at a rate which is greater than or equal to twice the signal bandwidth; that is, at a
Nyquist rate. If a signal is sampled at regular intervals below the Nyquist rate (at a sub-

Nyquist rate) a phenomenon known as aliasing occurs.

The limited bandwidth of digital signal processors (currently approximately 25 MHz
but forever increasing) prohibits the digital analysis of very high frequency signals,
such as radar. Sampling such signals uniformly below the Nyquist rate inherently
results in aliasing and a loss of information. A technique is required which will allow
relatively slow digital signal processors (DSPs) to analyse wide bandwidth signals
sampled below the Nyquist rate. The technique must therefore either resolve the

ambiguities in the alias signal or somehow prevent the aliasing phenomenon.

This thesis describes the study of two methods aimed at resolving the problems of sub-
Nyquist sampling. The first method involves the development of a technique which
would ideally eliminate all the ambiguities in the aliased signal, and the second
proposes a way to prevent the aliasing phenomenon. The origin of the aliases due to
sampling a signal at uniform intervals at a sub-Nyquist rate is investigated in the

frequency domain. A dealiasing algorithm is initially defined for a system of

1

sub-Nyquist samplers, to enable the elimination of ambiguities caused by sampling a
pure sinusoidal signal (one consisting of its fundamental harmonic alone) with the
system. An investigation is then made into extending the dealiasing algorithm to allow
ambiguities caused by sub-Nyquist sampling of a signal containing any number of
harmonics to be eliminated. The method used to avoid the aliasing phenomenon, rather
than resolve it, centres around taking samples of a signal at irregularly spaced time
intervals, as opposed to uniform sampling. Generators of irregularly spaced sampling
instances are developed and a technique to perform consistently alias-free spectral
analysis of the irregularly spaced samples is investigated. Simulation of every aspect of
the methods studied is implemented to help in analysing their performance and

efficiency, and aid in determining their limitations.

The techniques developed, if rigourous and truly capable of functioning at a
sub-Nyquist rate, will inevitably have some limitations. Digital processing of analogue
signals has its drawbacks. The conversion of an analogue signal to a digital form
involves sampling the signal and quantizing the samples, resulting in distortion which
inhibits the reconstruction of the original analogue signal from the quantized samples.

Some detailed study of the limitations of the techniques is presented in this thesis.

Some work has already been done in the field of sub-Nyquist sampling. However, the
techniques already well developed have been for specific applications; such as multiple
sub-Nyquist sampling encoding (MUSE) for the Japanese high-definition television.
The MUSE system covers a vast area of research and has not been included in this study

of sub-Nyquist sampling techniques.

Another application specific technique has been devised for sub-Nyquist-encoded PCM
NTSC colour television [1, Rossi] that enables the data rate of a PCM colour television
signal to be reduced. The encoding frequency is reduced below the Nyquist rate such
that the lower sidebands of the television signal overlap the baseband video frequencies.

The sub-Nyquist encoding frequency is carefully chosen such that the alias components

2

are placed into parts of the spectrum not normally occupied by the luminance or
chrominance components of the video signal. A proper choice of comb filters (having a
multiplicity of regularly spaced narrow attenuation bands) then allow most of the alias

signals to be removed from the baseband video.

Other systems make use of aliases caused by sub-Nyquist sampling rather than attempt
to resolve them. A new despreading method based on sub-Nyquist sampling [2, Fiihren
& Den Dulk] uses the aliasing phenomenon to make the input and output bands of the
new despreader different, in accordance with the distinguished despreading method
based on heterodyne correlation. This thesis does not consider such application
dedicated techniques, but addresses the problem of eliminating all the aliasing effects

caused by sampling a signal uniformly at a sub-Nyquist rate.

Previous research related to solving the problem of aliasing in systems using
sub-Nyquist sampling, is limited. Some work is related to resolving the frequency
ambiguities resulting from uniform sampling at a sub-Nyquist rate, while other works
address random sampling schemes which could, in an ideal world, allow consistently
alias-free spectral analysis of a non-band-limited signal. The relevant works are
referenced in the thesis where they contribute to the development of the techniques

formed.

2. TECHNIQUE FOR SIGNALS CONTAINING A SINGLE ACTIVE
ELEMENT

In order to eliminate aliasing when a signal is uniformly sampled at a sub-Nyquist rate,
it is first necessary to determine the cause of the aliasing in detail. This chapter is
concerned with using a traditional model of a continuous analogue signal to investigate
the origin of the aliasing phenomenon which occurs when a signal is sampled uniformly
at below the Nyquist rate. The simplest possible signal, a sinusoid, is considered and a
rigourous dealiasing algorithm is developed to allow ambiguities to be eliminated when
the sinusoid is sampled by a system of sub-Nyquist samplers. The limitations of the

algorithm are stipulated.

2.1 Fundamentals of Uniform Sampling.

Fourier's theorem states that any single valued periodic function, which has a repetition
interval Ty, can be represented by an infinite series of sine and cosine terms which are
harmonics of the fundamental frequency; f¢ =1/T o [3, Dunlop & Smith]. It is therefore
feasible to suppose that any analogue signal can be represented as a sum of sinusoids of
different amplitude, frequency and phase. The magnitude of the analogue signal at time,

t is modelled as x,(t) given by,

M
x,(t) = 2 Agcos (2m.f,t + O) (2.1)
m=1

where M denotes the number of frequency components. A, f,, and 6, represent the
amplitude, frequency and phase respectively of each component. To process this
continuous-time signal by digital signal processing techniques, it is necessary to convert
the signal into a sequence of instantaneous values by sampling it periodically every Ty

seconds (uniform sampling at a rate fg = 1/T) to produce a discrete-time signal, x4(n).

M

xq(n) = x,(nTy) = 2 Aycos (2m.f,.nT, + 0) (2.2)
=1

where n is a positive number. N consecutive samples, where N is ideally a power of 2,
then serve as the input to an N-point discrete Fourier transform (DFT), giving rise to
amplitude and phase spectra with N/2 frequency bins in steps of 1/NTg hertz from 0 to
(N/2 - 1)/NTj hertz [4, Benjamin]. The amplitude and phase spectra of x,(t) and x4(n)
are required for comparison to investigate the ambiguities generated when sampling at a
frequency less than twice the maximum frequency component of the incoming signal;
ie. when sampling at a sub-Nyquist rate. In order to simplify this investigation, a signal

containing a single active element (M = 1) is considered.
2.2 Aliased Single Active Element Analysis.

Consider the case in which M = 1; ie. the signal contains only one sinusoidal

component, thus, from equation (2.1),
x,(t) = B, .cos (2r.f,t + 6,) (2.3)

Taking the continuous Fourier transform of this, to determine the signal spectrum, gives

~-j2nft
X, (£) Ay .cos (2m.f.t + 0,) .e dt (2.4)

(==
A J(2rf .t + O -j(2rf.t + O
= {[e](x x) + e I X X)}.e'jznft dt
2 o0

from the Euler identity’. Expanding gives [3, Dunlop & Smith],

The Euler identity states that etit = cos¢ * jsing hence, 2.cosd = e+ &9,

A, 30, -j2mt(f - £,) =30, -j2mt(f + £,)
X (£) = - e .e + e .e dt
2 —00
Ay 9x Ay 'jex
=-.e O(f -f) + - .e BU(E + £))
2
therefore,
A, Ay
X () = - .(cosB, + jsin@,) .8(£f-£f,) + - .(cosB, - jsinB,) .8 (f+£,)
2 2
(2.5)
where d(x) is the impulse function. Let
a = A,.cos0, and b = -A_ .sinf, (2.6)
giving
0, = arctan (-b/a) and A, = V(a2 + b?) (2.7)

Therefore, the Fourier transform of a single harmonic in the time domain, may by

represented as a pair of complex conjugates in the frequency domain.

ct

a/2

Xa

-jb/2

(£)
A

e

jb/2

Figure 2.1. The time and frequency domain representations of a continuous sinusoidal

signal. a & b are given in equation (2.6).

The sinusoid is sampled at regularly spaced intervals to produce the sequence of
instantaneous values, x4(n). The uniform sampling process may be regarded as
multiplying the continuous signal by a periodic series of impulses where each impulse
corresponds to a sampling instance [3, Dunlop & Smith]. An infinite series of

equidistant impulses, ug(t) may be represented by,

oo

ug(t) = X2 8(t - nTy) (2.8)

n=-oo

A graphical representation of this is shown in figure 2.2.

TITLLTT T],

-3r, -T, 0 T, 2T 4T

5 5 3 S

Figure 2.2. An infinite sequence of equidistant impulse functions.

The Fourier transform of a sequence of equidistant impulse functions is another

sequence of equidistant impulses [5, Brigham], given as,
. .
Uglf) = - X S(£ - -) (2.9)
T

From the Convolution theorem, multiplication in the time domain translates to
convolution in the frequency domain. Convolution of a function with Uy(f) results in
replication in the frequency domain. Hence, the spectrum at the output of a sampler
whose input signal contains a single active element of amplitude A,, phase 6,, and
frequency fy, consists of pairs of sidebands spaced away by f, from the sampling
frequency harmonics g, £2f;, £3f, ... and 0; where f; = 1/T and the sideband pairs

form the complex conjugate pairs A,/2.(cosOy + jsin0,) and A,/2.(cosB, - jsinb,).

input x,(t) output x4 (n)

a/2 a/2 x4 (t) y I Pxq (n)
-3b/2 T
peud . 2 N
P 0 «3F >t £s7>Ey iy “f 0°f 2
X]b/2 X X X

Figure 2.3. The spectra of the sinusoidal signal before and after super-Nyquist uniform

sampling. a & b are given in equation (2.6).

As f, increases from zero, the upper sideband of one replication tends towards the lower
sideband of another, eg. f, and f; - f,, until the point when they meet and aliasing
occurs. That is, when f, = f; - f,; ie. f; = f/2. Therefore, to prevent this aliasing, it is
necessary to follow the sampler by an 'ideal’ low-pass filter (LPF) with a cut-off at half
the sampling frequency. In practice, only an approximation can be implemented,

leading to errors. The effect of such errors are not considered in this thesis.

SAMPLER Xq (n) L.? E
x4 (£, £y — > T —xy (). £,
~

| £s/2

fs

Figure 2.4. Sampler and low-pass filter system to prevent signal repetitions from

overlapping.

The frequency of the analogue signal x4(t) output by the system in figure 2.4, f, = f, for
fy <fy/2. When f > f, > {/2, f - f; will be less than f/2 and will therefore appear at the
output. Furthermore, when fg <f, < 1.5f;, f; = -f; + f; and when 1.5fg < f; < 2f,

f, = 2f; - £, and so on.

In general [6, Underhill, Sarhadi & Aitchison], the frequency of the signal output by

the filter, f is given by,

Hh
1l

F - k.f, for k.f, < F < (k + 0.5).f,

(k + 1).£f, - F for (k + 0.5).£, < F < (k + 1) .f,

g
[=H
rh
(o]
I

(2.10)

where k is a positive integer.

3f./2 S5£./2

Figure 2.5. Frequency of signal output by sampler/LPF system against frequency of

input sinusoid.

Hence, the analysis of a given f, merely identifies the ‘comb' of frequencies (Hf, + k.fy)
hertz, where k is any positive integer and f, is the frequency of the sinusoidal input of
the sampler/LPF system giving rise to the output signal x(t) with frequency, f,. It can
also be noted that as f,, increases with f,, the signal sideband (a + jb).5(f,) appears at the
output of the sampler/LPF system. As f, decreases with f,, the complex conjugate
sideband (a - jb).3(f,) appears at the output. The phase of the sidebands will be shifted
linearly by the characteristics of the ‘ideal' LPF, but their amplitude will remain
unchanged if the filter has an attenuation constant of unity in its pass-band. Thus, the

frequency domain representation, X,(f) of the output signal, x(t) is given by,

X, (£)

(a + jb) .8(£f,) .L(£f) for k.f, < £, < (k + 0.5).f,

and X (£f) (a - 3b).8(£,) .L(f) for (k + 0.5).f, < £, < (k + 1).fg
(2.11)
where k is a positive integer and L(f) represents the system transfer function of an ideal

low-pass filter.

Therefore, for a signal consisting of a single active element, if the frequency, f, of the
sinusoid can be determined and the characteristics of the low-pass filter are known, then
the amplitude and phase may be calculated from the output of the sampler/filter system.
A method, although incomplete, to determine the frequency without ambiguity is
outlined by [6, Underhill, Sarhadi & Aitchison]. A system of sub-Nyquist samplers

will now be considered in order to determine the frequency, f, of the sinusoidal input.

2.3 Proposed Dealiasing System.

An incoming signal of frequency f, is sampled simultaneously by three samplers
sampling at frequencies f;, fi> and fg3, with each followed by an 'ideal' low pass filter
with a cut-off frequency £;/2, f(,/2 and f53/2 respectively. The sampling frequencies are

such that

0 < £, < £, < f43 < 2.signal bandwidth (2.12)

The frequency of the output of each filter are represented by f;, f;, and f3, whose
values, in practice, are determined by following the filter with a digital frequency
counter. Input circuitry is also necessary to ensure the signal contains only one active
element and is bandwidth limited. The proposed single active element sub-Nyquist

sampling system to resolve ambiguity is illustrated in figure 2.6 [7, Sarhadi}].

10

LPF fo1 frequency
4 M £,,/2 counter 3% d
4 .
fs1 a
1
input LPF fo2 frequency i digital
f,—3} circuitry " £gp/2 ~ counter a [output
-+ s
) e
r
LPF f53 frequency
s £q3/2 counter >
F
fs3

Figure 2.6. Proposed system for input containing a single active element.

The frequency at each output of the three low-pass filters varies with f, as illustrated by
figure 2.7 (from equation (2.10)). The frequency of the three sampler/filter outputs are

described by equation (2.13).

fo1 = £4 - p.f4 for p.fg; < £, < (p + 0.5).f;
fo1 = (p + 1).£5, - £, for (p + 0.5).f,; < £, < (p + 1).£f5
foo = £, - q.fg; for qg.fg, < £, < (g + 0.5).f,,
foo = (@ + 1) .f,, - £, for (g + 0.5).f, < £, < (g +1).f,

f03 = fx - r.fs3 fOr r.fs3 < fx < (r + 0.5).fs3
f°3 = (r + 1).fs3 - fX for (r + 0.5).fs3 < fx < (r + 1).fs3

... (2.13)

where p, q and r are positive integers.

The three sampler/LPF systems produce values for the three variables f;, f;; and f 3
from the input of frequency f,. A dealiasing algorithm is required to reproduce the value
of f, from the three frequencies f,;, f;, and f3. In order to do this without ambiguity,
the three variables f,,;, f,, and f,3 must take a unique combination of values for each
possible input frequency f,. The operational bandwidth of the system will be the
maximum frequency of f, which results in a combination of values of the variables f,
f,p and f3 that is not produced for any lower input frequency. Having established the
limits of f,, the dealiasing algorithm must solve equation (2.13) for f,, given the values

for f,q, fy and f,3.
11

suaajjed ajqissod 3ybro [re Bururiejuos ndiyno JJ71 Haeajziqay g -z aanbr g

uoi faa
d

91
2
€1
19

- NN
-l N
v o NP
L alal o Ny
- - N
R
Lol I Y s
SO wn
oW
ceoecm
SOON
ool os)

b
0 |

7]
/

03

arduexa *indino a93y1§ ssed nog 27 aanfitg

0'0E = ETAF 0°99 = EZXF 0°SS5 = ZT43
G 'GE = afuea Aouanhaaj reworjeqadg <= Q2T = €SI QO IT = 2SJ 0°0OT = IS}
€243 FADR | ET1F 0

oy

PSRN Ny

0}

12

2.4 Operational Bandwidth.

From figure 2.7, it can be seen that a point of symmetry, corresponding to an input

frequency FRy,, exists in the output patterns generated by f; and {5, and is given by,

FRlZ = n.fsl = (n - 0.5).f52

forone n =1, 1.5, 2, 2.5, ... Let dfs = fy, - f;. From nfg; =(n-0.5).f;, we getn =

f»/(2.dfs;). Therefore, the folding frequency for the pattern is,

Similarly, points of symmetry exists at input frequencies FR3 and FR3, in the output

patterns produéed by £y & f,3 and £, & f,3 respectively, where,

FRy,; = ——— and FRy3 = ——— (2.15)

with dfsy = f3 - f,, and dfsg = fg3 - {;.

For the dealiasing algorithm to identify a single frequency component, it is necessary
for every possible frequency input to give a different output combination of f;, f;; and

f

»3; ie. a unique combination of fy;, f; and fy3 must exist for every input frequency. If

this was not the case, the input to the dealiasing algorithm (ie. f,;, f; and f,3) for one
frequency component input would not differ from that for others, and so the algorithm
would generate all possible frequencies that could produce such an input, and

ambiguities would remain.

13

The dealiasing algorithm proposed in [6, Underhill, Sarhadi & Aitchison] states that
"FR;, is taken to be the working frequency range of the whole system." However, this
cannot be the case, as FR 3 must be the smallest of FR;, FR3 and FR3, and, in some
cases, the input to the dealiasing algorithm (ie. f;, f; and f,3) will be the same for two

distinct input frequencies.
Nlustrative Example 2.1.

Consider the three samplers operating at fre(iuencies with only 2 Hz difference, such
that f; = 1000 Hz, f, =1002 Hz and fg3 = 1004 Hz. The working frequency range
claimed, FR;, =250,500 Hz. If, for example, the input has a frequency of either
123,496 Hz or 127,504 Hz (both considerably less than FRi,,) then f;; =496 Hz,
f,» =250 Hz and f 3 = 4 Hz (from equation (2.13)) and the dealiasing algorithm will not
be able to distinguish between the two possible inputs. Similarly if the input has a
frequency of either 11,272 Hz or 239,728 Hz, for which fy; = 272 Hz, f 5 = 250 Hz and
f

0

3 =228 Hz.

Consider any two sampler/filter outputs f,, and f,, (ie. f,, and f, can be any pair of
fy1, fop and f,3.) For most, but not all, frequency inputs below the folding frequency
FR,;,, the output combination of f, and fG, will be unique, but will be repeated for all
inputs with a frequency greater than FR,,. For example, an input frequency, f; which is
greater than f,/2 such that f,, = f;, will generate the same output as an input frequency,
f5 =f,,, which is less than fg,/2. For an input frequency slightly greater than FRy,, say
by &f, the output combination of f,; and f,;, would not differ from that generated by an
input of frequency FR,;, - 6f. However, the output of a third sampler/filter, say f,
would differ for input frequencies up to, but not including, the point when &f = £ /2;
and for all input frequencies below FR,, for which the output combination of f,, and
f,p, was not unique. A unique output combination of fy,, fop, foc, i thus produced for
input frequencies below FR,y, + f,./2. Therefore, the optimum operational bandwidth is

given by the minimum of FRy, +fi3/2, FRy3 + f1/2, and FRy5 + f»/2. But it is known

14

that f) <fg <fg3 (dfsy is greater than dfs; and dfs,), and so FR3 + f;5/2 is always the

minimum of the three values . Thus the optimum operational bandwidth is given by,

fsl'fs3 st
Bopt = + (2.16)
2. (f53 - fSl) 2

Note that the optimum operational bandwidth is inversely proportional to the difference
between the highest and lowest sampling frequencies. Clearly very wide bandwidth
signals could be analysed if the difference in sampling frequencies is small. If fy, fp
and fg3 are approximately equal (say, = f,) and the difference between one sampling
frequency and the next is approximately equal (say, = dfs), then dfs; = dfs, = dfs,

dfs; = 2.dfs and the operational bandwidth will be approximately,

2 fs
Bopt ==t —
4 .dfs 2

The is approximately half the bandwidth claimed by [7, Sarhadi].

15

2.5 Single Active Element Dealiasing Algorithm.

The analysis of the output f, identifies the 'comb’ of frequencies (Hf, + p.f;) hertz.
The output f, analysis produces a similar ambiguity pattern (f, + q.f) hertz. The two
ambiguity patterns coincide on the true frequency, f, and at a possible 'ghost’ frequency.
The correct input frequency can be identified from these two coincident frequencies by
comparison with a third ambiguity pattern (f, + r.fi3) hertz generated by f3, and can

be determined by solving for £, in the equations of (2.13).

The following dealiasing algorithm considers the patterns of the outputs f;, f,5 and f3
simultaneously in order to solve the equations of (2.13) for f,, given that £, is less than
Bopt: From figure 2.8, eight distinct regions can be identified in the output containing

£

o1» fop and f,3, corresponding to the three f's either increasing or decreasing with an

increase in f,_

Region 1. f,; & f 3 decreasing and f;; increasing with an increase in f,.

fo1 = (P + 1).£g - £

for = £x - q.fy
fo3 = (r + 1).£f53 - £, p=g=r+1
Region 2. f,; decreasing and f; & f,3 increasing with an increase in f,.
for = (P + 1) .£5 - £
£o2 = £x - q-£s
fo3 = £, - r.f; p=g=r

Region 3. f,; & f,, decreasing and f3 increasing with an increase in f,.

fo1 = (p+ 1).£; - £,
f°2 = (q + 1) .fsz - fx
f°3=fx— r.f53 P=4qg=Tr

16

Region 4. f,, f; and f3 decreasing with an increase in f,.

fo1 = (p + 1).£5, - £,

fo2 (@ + 1) .£f,,; - £,

fo3 = (r + 1).f43 - £, P=q=r

Region 5. f; increasing and f, & f,3 decreasing with an increase in f,.

fo1 = £4x - p.f4

foZ (q + 1) .fsz - fx

fo3 (r + 1).£53 - £ p=g+l=1r+1

Region 6. f,; & f, increasing and {3 decreasing with an increase in f,.

fo1 = fx - p.f5

fo2 fx - q9.£5

o3 (r +1).£,5 - £, p=g=1r +1

Region 7. f;; & {3 increasing and f, decreasing with an increase in f,.

fo1 = £5x - P.f51

f°2 (q + l).fsz - fx
f03 = fx - r.fs3 P =q +1=r + 1

Region 8. f;, f,p & f,3 increasing with an increase in f,.

fol = fy - p-fs1
foo = £ - q. £
f,3 = £, - r. £, P=9g=r

.. (2.17)

Each of the above eight sets of simultaneous equations can be solved separately for p,

giving,
Region 1.
fs1 - fo1 - o2 foo *+ fo3 fs1 - fo1 * fo3
P = = =
del dez de3
Region 2.
fo1 - £o1 - o2 foo = o3 fs1 = £o1 - fo3
p E—3 =3 =

del deZ de3

17

Region 5.

p =

Region 6.

p=

Region 7.

p=

Region 8.

for = fo1 fso = £o2 - fo3 fs1 - £o1 - fo3
l - -
dfsl df52 de3
foo = fo1 fo3 - fo2 fo3 - fo1
1= -1 = -1
dfsq dfs, dfs;
fo1 + £o2 fo3 = o2 fo1 + o3
dfsl dst de3
fo1 = fo2 fo2 * fo3 fo1 t+ fo3
del df52 de3
fol + fo2 st - foZ foB fs3 f03 + fol
+ 1 =
dfsl deZ de3
fs1 — fo2 for = fo3 fo1 = fo3
dfs, dfs, dfsjy ... (2.18)

For a value of p to be valid from any region, all three equations must yield the same

value, and p, by definition, must be an integer. Furthermore,

(p +1).£f

fo1 - P-f51

- £, for regions 1 to 4

for regions S to 8, (2.19)

Therefore, a value of p will only be valid if it also gives a value for the correct

coincident frequency, f,, as greater than or equal to O and less than Bopl' By careful

observation of the equations of (2.18) and noting that the input frequency can fall in

only one of the eight regions at any time, it can be seen that only one such value of p is

ever produced. The frequency ambiguity is thus eliminated.

18

2.6 Errors Imposed by the Limitations of the DFT.

The frequency counters used in the proposed dealiasing system of section 2.3 can be
replaced by spectral analysers that would not only give the frequency of each
sampler/LPF output, but also the amplitude. This could then be used with equation
(2.11) to determine the amplitude of the sinusoidal input. Each spectral analyser will
need to perform a Fourier analysis of each sampler/LPF output which requires the use
of the discrete Fourier transform. There is a limited resolution to which an N-point
discrete Fourier transform can determine the frequency of an active element of a signal.
Any active element must be represented spread over the coefficients of the DFT and
assuming that most of the energy is concentrated in the single nearest coefficient, the

maximum frequency error in the spectral analysis is given by [7, Sarhadi],

l[afona,l = (2.20)

where f; is the sampling frequency. The effects of this error on the dealiasing algorithm

must be determined.

The frequency error of equation (2.20) leads to an error in calculating the cycle count, p,

when using the equations of (2.18).

Consider region 1.

fs1 - for — fo2 foo + fo3 £o1 - for * fo3
p 3 == i
dfsl df32 de3

The error in each f, will produce an error in p for each of the three sections of the

equation above, giving,

19

£o1 - (£1% dfoy) = (fg,% dfoy)

p + dp =
dfsl
(fozi df02) + (foai' dan)
P+ dp2 =
df52
fSl - (foli dfol) + (f03i df03)
p t dp3 =
dfs,

Hence, substituting for dfo; using equation (2.20) and assuming that each DFT uses the
same N number of points (valid if the differences in the sampling frequencies are

small,)

fsl + st f52 + fsB fsl + f53
lap;| = ————, lap,| = ———, ldpyl = —— —
2.N.dfsl 2.N.df52 2.N.de3 .« (2.21)

Similarly for the other seven regions. The value of p that is to be used in calculating f,
from equation (2.19) must be the one containing least error. As fg; < fo, < fg3, dp3 is
always the minimum of dp;, dp, and dps. Therefore, by including dpy with p in

equation (2.19),

£, + lagxg, | = (p +ldpsl + 1) £ - £41 + |dforna,l
= £, +ldpsl.£,, + ldfoin,!
Hence,
£51-fs3
lagx | =ldforma,l +lapsl. £, = (2.22)

N.(fg3 - £4q)

The errors that can occur in both p and f,, mean that the dealiasing algorithm must be
refined. For a value of p to be valid from any of the eight regions, each of the three
equations must yield a value which is equal within the error bands dp,, dp; and dp;

respectively. Furthermore, p must not differ from an integer value by more than dp;,

20

dp; or dpj for each of the three equations, and the value of (f, + dfx) generated from p

must be less than,

fs1-£53
(2.23)

maxl -

Boyy + |dfx
2.(f43 = £47)

Where B, is the operational bandwidth of the system when DFT errors are also

considered, given by,

fo1.£43 1 1
Berr = - - - (2.24)

for N > 2.

Beyr is slightly less than By (for fyy << FR;3 and assuming N >> 2) as it is no longer
possible to guarantee that the output combination fy,, fg,, f53 will be unique for input
frequencies greater than FR 3.

The frequency resolution with which the input signal can be analysed,

2.fsl.f53
(2.25)

max| =

R; = 2.lafx
N.(f53 = £41)

By rearranging equation (2.25) and substituting into equation (2.24),

1 1
Berr = Ry.NJf- - - (2.24)

Hence,

N=————— +2 (2.26)

21

This clearly shows that the compufational workload of the technique is inversely

proportional to the frequency resolution.

Furthermore, for the modified algorithm to perform correctly, it is necessary for dp;,
dp, and dp3 to be less than 0.5. This requirement is satisfied only if (from equation

(2.21)),

st + fsl fs3 + st
N> ———— and N > ———— (2.27)
feo - £s1 fs3 - £

A 'C' simulation of this algorithm is presented in appendix A. The implementation
rigourously defines the algorithm but when executed shows that the algorithm is not
always error free! The rare errors observed are believed to occur due to floating-point
arithmetic errors or the assumption that all three DFTs use an equal number of
consecutive samples no longer being valid (which is the case for small N or large

differences in the sampling frequencies.) As N increases, no errors can be found.

Figure 2.9 shows an example of the ideal sampler/filter output patterns generated when
DFT errors from an 85-point transform are considered, and the error made by the
dealiasing algorithm in attempting to determine the frequency of the signal input. The
error, |dfx| is the absolute difference between the actual frequency of the signal input
and its frequency as evaluated by the algorithm. The magnitude of the error varies in an
approximately triangular fashion, increasing and decreasing as the estimated outputs
f,1, fop and fy3 tend away and towards the correct outputs of f;, fyp and fy3 (given
when N is infinite) respectively. The complex nature in which the error changes is not
of great importance. However, note that the level of error is consistently below the
maximum permissible error, |dfxmax|. Therefore, the frequency of the input sinusoidal
signal can be found within a calculated tolerance when the frequencies of the

sampler/filter outputs are known with error.

22

a1dwexa ‘unuixew ajqIissiuaad mo[aq sSaoaas wyjraobie Buiserjeaq - 'z aanbrg

q fouanhbaaj ynduj 0

+
.

90L° 0 -
|¢3p] :acaxs HBurserjeag
q fiouanhaay nduj o)

B e s
- = e = L T = e e d
- - Eah -.. A Py
l.l-l |||l I-ll ||||a llll - . - |ll| lull p _ llll ||l- - n.-;a“\
.nl - |.|-| = I..|| ||||| u.l.lnul -||..| - |||| ||..... |.|.| l.\-l
||I|l| - nl-l lluln - - - ||.l||l - l||l - nllu .\a\l
- =~ - |||| ||.|.I|| e - ||.| |-|.|n.\.

£0J pue zZoj ‘foJ :sindino xayjylgruaajdueg

298502°0 = |xew xjp| ‘Joxaa ajqrssiusad wnuixey
68 = SLJQ ul sjulod Jo JIQuUNy

8TTEEZ 62 = g “abuex Aouonbaay jeuorjedadg

000" 2T = ESJ 000" 1T = 257 000°0OT = 1ISJ

23

2.7 Summary.

A theoretical method has been established to eliminate not only the frequency
ambiguity, but also any amplitude ambiguity, resulting from sampling a pure sinusoidal
signal below the Nyquist rate. The dealiasing algorithm developed considers the output
of three sampler/LPF systems to determine the frequency of the sinusoidal input. There
is a limit to the maximum frequency of the signal in relation to the three sampling
frequencies used, which represents the operational bandwidth, Bopt (given by equation

(2.16)) of the technique.

In practice, the limitations of an N-point discrete Fourier transform mean that the
frequency of the signals at the output of each sampler/LPF filter can only be specified
within some known tolerance. This error results in the technique being able to guarantee
an unambiguous output with a small error (the maximum permissible error is given as
ldfxmax| by equation (2.22)) at a slightly reduced bandwidth, B, (given by equation
(2.24).)

The technique is only applicable to pure sinusoidal signals and needs to be extended to

apply to signals capable of containing any number of harmonics (signals consisting of

multiple active elements.)

24

3. TECHNIQUE WITH UNIFORM SAMPLING FOR SPECTRAL
ANALYSIS

The dealiasing technique described in chapter 2 is to be extended for signals consisting
of multiple active elements. Each active element in the input signal of the system
(shown in figure 2.6) will result in an aliased spectral line in the spectrum of the signal
at the output of each sampler/LPF system. If the frequency counters used in the
proposed dealiasing system of section 2.3 are replaced by spectral analysers, as in
section 2.6, then the spectrum of the signal at the output of the sampler/LPF systems
can be determined. These spectra must be analysed to determine the frequency of each

component of the input signal.

3.1 Multiple Active Element Ambiguity Reduction Algorithm N°-1.

The technique developed to analyse an aliased single active element can be extended to
identify, the components of an aliased multiple active element signal. Each active
element results in a frequency component in the output of each of the three
sampler/filter systems, some of which could overlap. There is, therefore, a spectrum of
aliased lines at each sampler/filter output; namely, FFT1, FFT2, and FFT3. The
proposed technique to resolve the frequency ambiguities involves the use of equation
(2.19) to identify a possible input frequency in the manner described for the single
active element analysis, for every combination of the aliased lines in FFT1, FFT2 and

FFT3.

3.2 Multiple Active Element Ambiguity Reduction Algorithm N9-2,

An alternative to the algorithm N1 described in section 3.1, is the following simple
iterative algorithm which yields the same spectrum as algorithm N©:1. For any aliased
line in FFTI1, say e, a set of possible values for the frequency components of the

original signal exists; ie. each aliased line in the sample/filter output can identify a

25

‘comb’ of possible input harmonic frequencies. The frequency, sf}, of the members of

this set, s, are given by,

Sfl = Nl'fsl + el forall el € FFT1 (3.1)

where N is a positive integer and 0 < sf; < B,.. Frequencies that do not exist in the set
s; will not exist in the original signal. Similarly, two further sets, s and s3, can be
produced for the aliased lines in FFT2 and FFT3 respectively. The frequency
components of the original signal, among some 'ghost' values (the frequency of
components erroneously identified as part of the original signal,) are the frequencies
that form the intersection of the sets sy, sp, and s3. Clearly, if a greater number of
aliased spectra had been generated by additional samplers operating at different

frequencies, more ambiguity 'ghosts' could be eliminated.

3.3 Illustration of Inherent Ambiguity.

Unfortunately, a fundamental problem is inherent with the approach made by both
algorithms N©-1 and N©-2, described in sections 3.1 and 3.2 respectively. An illustration

of this problem is given in the following example.
Hlustrative Example 3.1.
Let f;; = 1000 KHz, f, = 1001 KHz, and f;; = 1002 KHz, giving an optimum

operational bandwidth of 251,000.5 KHz from equation (2.16). Consider the case in

which the original signal contains three active elements at 54,214 KHz, 150,920 KHz,

and 191,782 KHz.

26

Multiple Active Element Signal Analysis using sub-Nyquist Dealiasing Algorithms
fsl = 1060.000 fs2 = 1001.000 fs3 = 1662.000
Optimum operational frequency range, B = 251000.5000060

o 54214 150926 191782 B
Frequency components of input sigmal

c] 54214 150920 191782 2400808
Frequency components of output signal

Figure 3.1. Ilustrative example 3.1 of the inherent ambiguities remaining after

execution of either multiple active element ambiguity reduction algorithm.

FFT1 FFT2 FFT3

fo1 fo2 £63
80 214 218 160 231 410 106 382 400

Figure 3.2. Frequency of signal harmonics output by each of the three sampler/LPF

systems (for example 3.1).

If the original signal also contained an active element at 240,080 KHz, for which
fo1 = 80 KHz, f; = 160 KHz, f,3 = 400 KHz, then the aliased spectra FFT1, FFT2, and
FFT3 would not differ in the case above. Therefore, processing the three aliased spectra
above for the original signal shown, as described by either algorithm, will yield the
active elements of the original signal as 54,214 KHz, 150,920 KHz, 191,782 KHz and
240,080 KHz, although the true original signal contains only the first three of these

components.

27

Figure 3.3 further illustrates this problem for a sparsely populated frequency spectrum.
The input signal contains only four harmonics, yet the dealiasing algorithm erroneously

identifies six harmonics.

Hultiple Active Element Signal Analysis using sub-Nyquist Dealiasing Algorithms
fsi = 40.600 fsZ = 41.000 fs3 = 42.000
Optimum operational frequency range, B = 440 .500000

4 28 181 380 B
Frequency components of input sigmal

4 28 140 181 332 380 B
Frequency components of output signal

Figure 3.3. Illustrative example 3.2 of the inherent ambiguities remaining after

execution of either multiple active element ambiguity reduction algorithm.

In most cases, each active element in the input signal will cause some change to at least
one of the spectra of the sampler/filter outputs, and both algorithm N°-1 and N2 will
be able to determine the frequencies of the input signal harmonics without ambiguity.
However, there is the possibility that the algorithms will incorrectly identify harmonics

as part of the input signal.

28

3.4 An Investigation of the Relative Efficiency of the Two Algorithms
and a Full-Scale FFT.

Assume the algorithms are implemented on a modern, high speed, digital signal
processor for which the.number of clock cycles required to perform multiplication or
addition are equal, and take the form as implemented in the simulation program. It is
known that a radix-2 N-point decimation-in-frequency FFT imposes a workload of
(N/2).logyN complex multiplications and N.logyN complex additions [4, Benjamin].
Any complex multiplication requires, at most, four real multiplications and two real
additions. Also, any complex addition requires two real additions. Therefore, it is

possible to say that an N-point FFT imposes a workload proportional to SN.log,N.

Assume that the sub-Nyquist system contains k samplers all operating at a frequency

approximately equal to f..

Consider a signal containing M active elements, with a bandwidth B requiring
frequency analysis by use of a discrete Fourier transform with a frequency resolution R.
Using a super-Nyquist system sampling at just more than 2B, a (B/R)-point FFT, at the

bare minimum, would be required. This would impose a workload proportional to,
Wrpe = 5.(B/R) .logp (B/R) (3.2)

For algorithm N©-1 described in section 3.1, the worst case occurs when, for every one
of the k aliased spectra produced, ie. FFT1, FFT2, ..., FFTk, there is a different
ambiguity line for each of the M input signal components. Thus, in considering every
possible combination of the aliased lines in the k, FFT spectra, the single active element
dealiasing algorithm described in section 2.5 must be executed MK times. Of these MX
executions, some combinations will not yield a possible input element, and a maximum
of 2.M.B/f; will be produced. Assume that the single active element dealiasing

algorithm requires approximately 110 multiplications, additions and comparisons

29

(udged from the implementation in appendix B.) Therefore, the workload imposed by
considering every line in the k aliased spectra is proportional to 110.MK In addition,
there are k, N-point FFTs that require computation, leading to a further workload
proportional to k.5.(4B/R + 2).log2(4B/R +2). Therefore, the total computational

overhead,

Wy = 110.MK + k.5.(4B/R + 2).log, (4B/R + 2)

= 10.(11.MX + 4.k.(B/R)) + 4.k.Wppp (3.3)

For algorithm NO-2 described in section 3.2, k sets need to be formed. In the worst case,
the maximum cardinality of a set is 2.M.B/f;. One real multiplication and one real
addition are needed to calculate each member and one list assignment is required.
Assume that a list assignment requires twenty times more clock cycles -than
multiplication or addition (judged from the implementation in appendix B.) Therefore,
the computational workload in calculating the k sets is proportional to
(20 + 1 + 1).k.2.M.B/f = 44.k. M.B/f;. The union of the sets is then required, which will
take, at most, 2.M.B/f; list assignments when there is a match for every member of one
of the k sets, and (k - 1).M.B/f; comparisons. Therefore, the workload imposed in
resolving the ambiguity spectra is proportional to (45.k - 1).M.B/f,. In addition, there is
the k, FFT computational workload pr_oportional to k.5.(f/R).Iogy(f/R), as before.

Therefore, the total computational overhead,

W, = (45.k - 1).M.B/f, + k.5.(4B/R + 2).log, (4B/R + 2)

5.B.k.(9/f; + 8/R) + M.B/f, + 4.k.Wppq (3.4)

ll

Clearly, algorithm N©-1 would be a better method to use than algorithm NO2 if W <
W, ie. if 110.MK < (45.k - 1).M.B/f. Consider the case in which three samplers are

used (k = 3) and approximate, thus algorithm N©-1 should be used only if M2 < Bff ,

30

which will be true when the number of active elements squared is less than the number
of alias folds. As the number of samplers increases, which is necessary to improve

dealiasing, it becomes evident that algorithm N©-2 is by far the better.

Figure 3.4 shows just one case of how the proportional computational workloads Wger,
W, and W, vary for an increasing number of harmonics in the input signal, M.
Unfortunately, but not surprisingly, it is evident that the computational workload
imposed by the two algorithm is far greater than that required by a full-scale FFT. The
workload Wiy, is so small relative to workloads Wy and W, that it appears to run along
the abscissa. For the overheads to be kept to a minimum, it is necessary to reduce the
number of samplers k. However, k must be increased to resolve the ambiguities of a

signal with a high active element population.

31

00°0ST = SJ ‘00°002 = Y ‘900+200°2 = g ‘€ = 3 Y}Im panjonul peo[qJopn " g aanbrg

H ‘1eubrs jndur ur sotuowavy jJo Jaqumy sy/d = LM

ERRY

™/

N ‘peoriJIon
[euo1jeynduo)
[euo1jaodoa]

32

3.5 Optimising Parameters to Minimise the Number of 'Ghost'
Frequencies Possible in the Analysis of a Multiple Active Element

Signal.

It has been illustrated in section 3.3 that the dealiasing technique developed is by no
means perfect, but it does achieve a reduction in ambiguity. The aim is to select

parameters so that the reduction is maximal and efficient in computation.

Consider the problem illustrated by example 3.1 in which an input of three active
elements is incorrectly analysed as containing four elements. This is a direct result of
the inability for the aliased spectra to change in response to the existence of a fourth
potential element in the original signal. For only the frequency components of the
original signal and no 'ghosts’ to appear in the final output spectrum, it is necessary to
ensure that the aliased spectra alter for every possible additional active element in the

input.

For any given input active element there must be a unique combination of sampler
output frequencies for that element to be identified without ambiguity. It has been
shown that such identification is possible for a signal of bandwidth, By, Let the unique
combination for any frequency component of a multiple active element signal, output

by a system containing k samplers, be represented by,

foll foZ' MR 4 fok'

To prevent 'ghost’ frequencies appearing in the output spectrum, this combination, for a
single input, must differ from any possible combination of other outputs. That is to say,
at least one member of {f01| i=1 to k} in any given combination must not be repeated for
any other of the possible unique combinations that could be produced. An arbitrary set
of combinations for which this is true shall be represented by T. In a sub-Nyquist

system, T must be a proper subset of the set of all practically possible output

33

combinations, U. However, T is any arbitrary set for which at least one fo; is unrepeated

for all its elements, and so, mathematically speaking, T may not be a subset of U.

If the bandwidth of the original signal is B and the signal is to be analysed with a finite
frequency resolution R, then the number of frequency bins in the input is | B/R |, where
| x| denotes the largest integer that is less than or equal to x. Each of k samplers
sampling at a frequency fg; will give inputs for an FFT whose output will contain
I_fsj/ZRJ frequency bins of interest (the others being complex conjugates.) The total

number of combinations of the sampler outputs that are mathematically possible is,

(£g1-£52. «-v Eg) / (2R) X = cardinality of the universal set.

However, in practice only | B/R | combinations exist, corresponding to a unique output

combination for each frequency bin in the input; ie.

the cardinality of set U = |B/R}

The maximum number of active elements which could possibly be correctly identified
without ambiguity, ie. the maximum cardinality of T, is given from the mathematics of

combinations and permutation as,

k
max = 2 + 2 (£s3/2R| - 2) for k>0 (3.5)
j=1

and the minimum cardinality of T, occurring for example when the input signal contains
a harmonic for each and every frequency bin from O to the first folding frequency of the

highest frequency sampler ie. f m,,/2, as,

min = the greatestof |£5; / 2R}j=1 to k (3.6)

34

It can be seen that max = min = Lfsl/2R] fork =1, and that the cardinalities of T and U
are equal when £y /2 = B; ie. the sub-Nyquist scheme tends to that of the super-Nyquist
system as f /2 tends to B when k = 1. Remember, however, that T is not necessarily a
subset of U, and equation (3.5) talks only of cardinality. Therefore, only the probability
of correct analysis may be increased by an increase in k or f.. An increase in fg defeats
the aim of using sub-Nyquist sampling and an increase in k results in a greater
computational workload. It is therefore necessary to increase the effective number of
samplers, k without using excessive hardware. This might be achieved by using random

sampling.

3.6 Summary.

Two algorithms have been proposed to greatly reduce, but not eliminate, the
ambiguities produced by sampling a multiple active element signal at below the Nyquist
rate with a number of samplers. As the technique results in only a reduction of
ambiguities, a detailed error analysis is not presented. An increase in the number of
samplers is required for further reduction of the frequency ambiguities. However, the
computational workload imposed can be excessive for highly populated signals and
increases dramatically with a increasing number of samplers. An improved algorithm is
required which has fewer computational overheads and eliminates all frequency

ambiguities for even highly populated signals.

35

4. SPECTRAL ANALYSIS WITH SUB-NYQUIST PSEUDO-
RANDOM SAMPLING

4.1 Introduction.

If there are equal time intervals of 1/f; between samples of a signal with a harmonic at
frequency f,, then the resultant output contains other harmonics at frequencies ff,,
2fAf,, 3ff,, ... However, under certain conditions, if sampling points are formed at
unequal intervals, this phenomenon disappears and the aliasing effect becomes absent
[8, Bilinsky, Vystavkin & Mikelson]. The objective is to determine the requisites of
the irregular sampling signal so that, even with sampling rates below the Nyquist level,
the harmonics of the original signal may be determined with the minimum of error and
computational overheads. The bandwidth limitation that must be imposed on the

original signal also needs to be determined.

Uniform sampling has the limitation that aliasing occurs if the rate of sampling is below
the Nyquist rate. It is expected that irregular sampling will have limitations if the
maximum sampling rate is below the Nyquist level, but the limitation will not be an

aliasing phenomenon. The limitations of irregular sampling are researched.

It is suggested by [9, Beutler] that random sampling of a wide-sense stationary
stochastic process is alias-free and the error-free recovery of the process is possible if
Poisson random sampling (sampling interval steps differ independently with identical
exponential probability densities) is employed with an average sampling rate that does
not fall below the Nyquist rate. [10, Masry] shows that such a Poisson random
sampling scheme results in consistent alias-free estimates of the process' spectral
density. Iterative methods have been developed which permit signal recovery with some
additional uncorrelated background noise from "non-uniform samples with Poisson or

uniform distributed epoches" and uniform samples with jitter or missing samples, in

36

[11, 12, Marvasti] and [13, Wiley], but these methods assume an average sampling rate

higher than the Nyquist rate.

The papers [9, 10, 11, 12 and 13] make no comment on the bandwidth limitation to be
imposed on the input signal, or the finite duration over which samples are taken. In a
practical system, it is not possible to sample a non-band-limited signal over an infinite
duration. Instead, sampling is limited to a finite number of sampling instances over a
known duration, and is only applicable to band-limited signals. Furthermore, it can be
inferred from the definition of Poisson random sampling (sampling interval steps differ
independently with identical exponential probability densities [9, Beutler]) that the step
between one sampling instance and the next, can be of any size greater than some preset
minimum. In practice, however, there must also be a limit to the maximum possible step
and so such an ideal scheme is not feasible. The exact instances that each sample is
taken, although irregular, may be known from the generating function. With this
additional information at hand and the practical limitations of the Poisson random
sampling scheme noted, it is intended that a sampling scheme with a maximum rate that
falls below the Nyquist rate may be defined which allows alias-free sampling of a

signal.

What is meant by alias-free sampling of a signal when referring to samples taken at
irregular intervals? When samples are taken at uniform intervals, sampling is said to be
alias-free if the original signal can be unambiguously reconstructed from the samples.
An irregular sampling scheme will be referred to as ‘alias-free’ if there is the capability
to consistently reconstruct the spectrum of the original process from the spectral
properties of the samples (which may be derived from the magnitude of the samples and

the instances at which they are taken.)

A transform must be rigourously defined to find the spectral property of a signal
sampled at irregularly spaced intervals, as the traditional discrete Fourier transform,

defined for samples taken at uniformly spaced intervals, is no longer suitable. The

37

properties of the transform depend on the nature of the irregular sampling instances, and

are investigated.

The irregularly spaced sampling instances are generated using two rigourously defined
schemes. In both schemes, the step between one sampling instance and another will be
one of a finite set of possible changes. The change selected will depend on the outcome
of an independent pseudo-random number generator. For this reason, the transform will

be referred to as the 'pseudo-random discrete Fourier transform.’

4.2 Theoretical Development of the Pseudo-random Discrete Fourier

Transform.

The following derivation closely resembles that of the Discrete Fourier Transform for

samples taken uniformly as described by [S, Bi'igham].

Consider a band-limited, analogue signal x,(t), with a fundamental period T¢,
represented as a sum of sinusoids of different amplitude, frequency and phase.

Alternatively, represented as the Fourier series,

M-1
x,(t) = X [am.cos (2r.£,.t) + b,.sin (21t.fm.t)] (4.1)
=0
where,
TZ TZ
1 2
ag = = x,(t) dt, an = - x,{t) .cos (2m.£f,.t) dt
T T
0 m=0 0 m=1, 2, ..., M-1

38

and,

TZ
J x,{t).sin (2m.£,.t) dt
0

m=20, 1, ..., M-1

M denotes the number of frequency components (including d.c.) and f, relates to the

frequency of each component.

Let samples of x,(t) be taken at pseudo-random intervals for digital processing. The
magnitude of a sample at any instance, ty is given by, x,(t,) where k=0toN-1and N
is the number of consecutive samples. Let the time domain sampling function, ug(t), be

defined as,

ug(t) = 2 8(t - ty) (4.2)

k==o0

where 8(t) represents the impulse function. u(t) is represented graphically in figure 4.1.

up (t)

AL 0

to 1 ty t3 tx

Figure 4.1. A series of impulses, each corresponding to a sampling instance.

The truncation due to taking a finite number of N samples of x,(t) in the time domain

results in rippling in the frequency domain. The sampled, truncated function can be

written as,

39

N-1 N-1
X, (t) .ug(t) .h(t) = x,(£).2 8(t = t) = X x,(t).8(t - ty)

(4.3)
where h(t) is a rectangular window function of width tn_1 + Tp;n = Ty, given by,
1 for ~T,;,/2 <t <ty + Tpin/2
h(t) =3 1/, for t = -1,;,/2, t = ty1 + Tpin/2 (4.4)

0 otherwise

Tmin 1S the minimum possible difference between one sampling instance and the next,

and ty_; is the time the final sample is taken.

h (/Pt)
1
- T, -
>t
~Tmin/ 2 EN-1*Tmin/ 2

Figure 4.2. Rectangular window function.

There are N instantaneous samples of the periodic signal x,(t) in the interval T, of the
rectangular window function. These N samples are assumed to represent at least one
period, T¢ of the signal X,(); thus, it is assumed th_at r.Ty=T, where r is a positive
integer (r > 0.) However, Ty is fixed for a particular input signal, but Ty, = tn.1 + Tpin
depends on the time the final sample was taken, ty.; which in turn depends on a
pseudo-random quantity. Therefore, any practical system can only ensure that T, is

approximately equal to r.T . The consequences of this will be considered later.
For a Fourier transform of the samples to be made, the periodic function x,(t) must be

modelled by the samples in the interval T,,. In order to form a periodic function x(t)

which consists of N samples repeated in the time domain at intervals of T, it is

40

necessary to use convolution. Repetition in the time domain, is equivalent to convolving

the sampled, truncated waveform of equation (4.3) with the time function,

uy(t) = T,. X 8(t - rT,)

r=-o0

The desired relationship is x(t) = [x,(t).ug(t).h(t)] * u,(t); hence,

N-1 oo
x(t) =] 2 x (.8t -t |*| T,. & 8t - rT)
k=0 r=-00
giving,
= N-1
x . (t) = T,. 2 2 x (k) .8t -ty - rT,) (4.5)
r=-o0 =0

This convolution result is a periodic function with period T,, that consists of N samples
of the signal x,(t) where T, =ty + Tpj, must equal the periodicity of x,(t), Ty to
prevent discontinuities. That is to say, x,(t) is an infinitely long sequence of the samples
of x,(t) within the rectangular window h(t), with period T,,. However, if the period of
x(t), Ty, is only approximately equal to an integer multiple of the period of the original
signal x,(t), Ty as stated earlier, then x/(t) will model a signal with discontinuities at
intervals of T, and the Fourier transform of x,(t) will yield only an approximation to

the continuous Fourier transform of x,(t).

The requirement for repetition in the time domain (achieved by convolution with u(t))
affects the spectrum. In the frequency domain, this convolution is equivalent to

multiplying the continuous spectrum of x,(t).uq(t).h(t) by the function,

41

©0

U (£) =2 8(f - n/T,)

n=-co

This is analogous to sampling in the frequency domain and so the approximate Fourier
coefficients describing the signal can only be evaluated at discrete frequencies with a
minimum separation of 1/T,. The Fourier transform of the periodic function x(t) (with

period Ty,) is given by the sequence of impulses,

t'N—1+tmin/2

oo

-j2nf t
X,'(f) = 2 0, .8(f - £,) where ag = - . %, (t) .e dt
W

n=-oo

-

3

~Tain/ 2
(4.6)

where the Fourier coefficients are calculated at regular frequency intervals such that the

frequencies f, = n/Ty, n=... 1, 2,.... Substituting for x/(t) from equation (4.5) gives,
t:M-l'*"':min/z
1 o N-1 -32nf t
afn = - . Tw. 2 z Xa(tk) .5(t - tk - ITW) .e dt
Ty r=-oo| k=0
~Tnin/ 2

Note that the integral is only over one period (since Ty, = tn. + Tpips) hence,

1:-N-1+‘tmin/2
-1 -j2nf t
Oey = Z Xy (tk) .8(t - tk) .e dt
k=0
"tmin/z
t:N—1+‘cmj.n/2
N-1 -j2nE t
= Xa(tk) . 8(t - tk) .e dt
k=0
_Tmin/z
N-1 -j2mE by
=2 X, (ty) .e (4.7)
k=0

42

Therefore, by substituting (4.7) into (4.6) the Fourier transform of the function x(t) is,

> N-1 -32nE £,
X)) =X X x,(ty).e BUE - £, (4.8)
n=-cok=0

Equation (4.8) is periodic and can be expressed equivalently as the desired pseudo-
random discrete Fourier transform of equation (4.9) which describes one period of the

function X,'(f).

X (£,) = agy - Jbgn = X x,(ty) .e (4.9)

where £, is the particular frequency for which the estimated Fourier coefficients wish to
be known. Thus, equation (4.9) gives the spectral property of a finite sequence of
pseudo-random samples from the magnitude of the samples and the instances at which

they are taken.

The pseudo-random DFT of equation (4.9) reduces to the conventional discrete Fourier
transform when samples are taken at regular intervals. In the case of uniformly spaced
sampling intervals, each sampling instance {tkl k=1toN-1} can be represented as
t, =k. T where T is the regular time interval between one sample and the next. The
duration of the rectangular window, T, = tn.1 + Tryin = (N-1).Tg + Tg = N.Tg. Thus, the
frequencies for which the estimated Fourier coefficients wish to be known, f, =n/T, =
n/(N.Ty). Substituting f;, = n/(N.Ty) and t, =k. T into equation (4.9) reduces it to the

familiar conventional DFT,

N-1 ~j2nnk/N
X, (n/NT) = X x,(k.T,) .e (4.10)
k=0

43

The properties of the new discrete transform developed will depend upon the
characteristics of the sampling instances. Before the periodicity and symmetrical
properties of the transform are investigated, a way must be found to describe the

production of pseudo-random sampling instances.

4.3 Generators of Pseudo-random Sampling Instances.

Two random sampling schemes have been extensively studied in [14, Masry] for their
theoretical ability to form alias-free spectra. These are "additive random sampling",
where the sampling instances are given by,

to = 0, tk = tk—l + 1, k = 1, 2, « s ey N-1 (4.11)

with T as an independent positive random variable; and "periodic sampling with jitter",

where the sampling instances are given by,

to =0, ty=%k.Tg+1T k=1,2, ..., N-1 (4.12)

with 7 as an independent random variable with zero mean over [-T¢2, T/2].

Consider the general case in which the signal input is sampled by some irregular
pattern. In a practical system, the pattern must be limited such that the signal is sampled
with a maximum and a minimum frequency and at a finite number of intermediate
sampling frequencies. Thus, the random variable T in the two sampling schemes must
be considered as a pseudo-random discrete quantity which can be generated by some

known function, R ().

Let P represent the total number of possible sampling frequencies, which may be any

arbitrary positive value.

44

Let the number produced by some pseudo-random number generator with a large
sequence period take a value between zero and one with some controllable distribution
(for example; uniform, Poisson or Gaussian,) and be represented by the function, R ().
Let R () never be equal to zero or one, but take values in between; ie. 0 <R () < 1. One
such pseudo-random number generator which produces a value between zero and one
with an approximately uniform distribution, is described in [15, Widrow & Stearns].
Let the number produced by this generator be represented by the function, R, (). The
function R () is to be used in generating the irregularly spaced sampling instances.
R, () (a special case of R ()) is the simplest pseudo-random function to implement and

is used in the simulation program of appendix C.

4.3.1 Additive Pseudo-random Sampling.

Additive pseudo-random sampling instances are given by,

to = 0, tk = tk-l + T, k = 1, 2, « .oy N-1 (4.13)

where 7 is an independent positive pseudo-random variable. T will take one of P values

and the value chosen will depend on the pseudo-random function R () .

Nlustrative Example 4.1.

Let there be a total of three possible sampling frequencies; ie. P = 3, and assign the set
of sampling frequencies, fg as 12.0 Hz, 12.2 Hz and 12.4 Hz. Letting T = 1/f; means 1
can take the values 1/12.0s, 1/12.2s and 1/12.4 s, in this case. If the independent
function R () returns a value less than or equal to 1/3 then 7 is assigned the value
1/12.0 s; and if R () returns a value greater than 1/3 but less than or equal to 2/3 then 1
is assigned the value 1/12.2s; otherwise T is set to 1/12.4 s. If the pseudo-random
function R () is used, T will take one of these three values with approximately equal

probability.

45

In general, T takes one of a set of P deterministic values 4, T, ..., Tpr and 7 is assigned

the value Ty where,
X =[R() * p] and [x] denotes the integer ceiling of x (4.14)
Consider the example 4.1 once again where Ty =1/12.0, 75, =1/12.2 and 13 = 1/12.4.

Note ty = 0. For each successive sampling instance, T will take one of the three values

Ty, Tp, OT T3, thus,

ty = 0
t, = 1/12.0 or 1/12.2 or 1/12.4
t, = 2/12.0, 1/12.0 + 1/12.2, 1/12.0 + 1/12.4, 2/12.2,
1/12.2 + 1/12.4 or 2/12.4
ty = 3/12.0, 2/12.0 + 1/12.2, 2/12.0 + 1/12.4, 1/12.0 + 2/12.2,

1/12.0 + 1/12.2 + 1/12.4, 1/12.0 + 2/12.4, 3/12.2,

2/12.2 + 1/12.4, 1/12.2 + 2/12.4 or 3/12.4 ...and soon.

In general, given a sampler with P possible values that T may take, the nth sampling

instance, t,_; can take one of,

(n + P - 2)!
§ = (4.15)

n (n - 1)!(p - 1)!

different values and the sampling instance t; can be represented as,

tk = ul.'tl + u2.‘Cz + ... + up.‘tp (4.16)

where {ui|i =1 to P} are positive integers.

46

Generate a new number

Binary number 0..P-1

%TRIG Xo
X
CLEAR T ot
- A e
O
Output
{TRIG
Xp.1
CLEAR
%TRIG
:]_F
‘tp-ﬁl
CLEAR Delay ot
pulse << Ot
Setall @ high = Qrp 4 TRG

Figure 4.3. Proposed System to Produce Additive Pseudo-random Sampling Instances.

47

The minimum possible difference in sampling instances,

Tain = the minimum value in the set {‘cili =1 to P}. (4.17)

In practice, it is proposed that a stream of sampling pulses, as described above, can be
generated by the system shown in figure 4.3 which uses a series of monostables, each
with a different pulse width and all capable of being forced to a stable state at any time.
The P.R.N.G. module generates a pseudo-random integer, X - 1 in binary form in the
region from 0 to P - 1, where X is given by equation (4.14). This then acts as input to the
demultiplexing module, DUX. which selects the corresponding monostable pulse as its
output. On the rising edge of the output pulse, all the monostable outputs are set high, a
new pseudo-random number is presented as input to the DUX. module, and after a short
delay, the monostables are retriggered. In this way, a pulse of constant width is
produced after varying delays and the system yields a train of pulses that can be used by
an sample and hold circuit and that has sampling instances characterised by equation

(4.16).
4.3.2 Periodic Sampling with Dither.
Periodic sampling instances with dither are given by,

to = 0, tk=k-Ts + T, k=1, 2, ..., N=-1 (4.18)
where 7 is an independent pseudo-random variable with zero mean over [-Ty2, T42]. T
takes one of a set of P deterministic values Ty, T, ..., Tj, and the value chosen depends
on the pseudo-random function R (), as with the previously described sampling
scheme; ie. T is assigned the value Ty where,

X =[r() * P

48

Furthermore, the possible values that T can take are fractional parts of Ty2. This

ensures that t, 1 > t;.. T is selected from the set,

T = {ixl.Ts, tX2.Ts, « ey iXZ‘Ts} (4.19)

where x; are rational numbers such that,

0<% <1/2 | 4i=1toz, x =04if P is odd, and z = [p / 2]

The nth sampling instance, t;_; can take one of only P different values and the sampling

instance t can be represented as,

ty = Tg.(k £ x) (4.20)
The minimum possible difference in sampling instances,

T.:, = the minimum valuein theset {T.. (1 - 2x;) i = 1 to P}. (4.21)

Mlustrative Example 4.2.

A sampling scheme with a regular period, Tg=1/20.25s and five (P =35) possible

dithers © = {0, +0.3T, £0.4T} will have sampling instances such that,

tg =0
t, = 1/20.25 or (1£0.3)/20.25 or (1*0.4)/20.25
t, = 2/20.25 or (2+0.3)/20.25 or (2%0.4)/20.25
t; = 3/20.25 or (3%0.3)/20.25 or (3+0.4)/20.25

... and so on.

49

4.4 Transform Period and Input Signal Bandwidth Limitations.

It is necessary to determine the periodicity and symmetry of X/ (f) to find the bandwidth
limitations that must be imposed on the input signal x,(t) so as to prevent frequency
domain aliasing, and hence allow error-free signal reconstruction from the samples
taken. Let fp be the periodicity of the function X/'(f). The value of f5 is required such

that X (f, + fp) =X, (f). Letting f, = f. + fp; equation (4.9) becomes,

N-1 -32m. (£, + £p) .ty
X (£, + £,) = X x,(t) .e
k=0
N-1 -j2m. £ty -32m.f .ty
=2 x,(t).e e (4.22)
k=0

. . -j27r.fptk
Therefore, X (f; + fp) =X, (f) if and only if e

= 1 for kinteger valued from O
to N-1. That is to say, X,(f) has a period fp, where fp is the least positive number

greater than zero such that,
fo.ty isinteger valued forall t,, k. = 0, 1, ..., N-1 . (4.23)
4.4.1 Periodicity for Uniform Sampling Scheme.

Consider the simple case of uniform sampling in which the difference between one
sampling instance, ti and the next sampling instance, t); is constant; ie. T takes only
one possible value, T, when compared with additive pseudo-random sampling. From
equation (4.16), t =u.T, where u is a positive integer. Thus, substituting into (4.23),
X, (f) has a period f, where, f, is the least positive number greater than zero such that,
fu.T¢ is integer valued. That is obviously when f, = 1/1¢ as u is an integer. However,

1/z, is the uniform sampling frequency f;. That is to say, the transform X/'(f) has a

50

period equal to the uniform sampling frequency, as expected from the traditional

Fourier transform properties.
4.4.2 Periodicity for Additive Pseudo-random Sampling Scheme.
In the more complex case of additive pseudo-random sampling, each sampling instance

is given by the general equation (4.16). Substituting this into equation (4.23) gives the

period f, as the least positive number greater than zero such that,
fo.lup.Ty + up.7 + ... + uy.T,] = K isan integer.
By definition, {ui]i =1 to P} are positive integers, and so K is an integer if,

{fp.‘cili = 1 to P} areinteger values. (4.24)
Equation (4.24) must be solved for f, the transform period. This may be done by first
representing each {Ti|i= 1to P} as a rational number in the most optimum form; ie.
with use of the minimum possible denominator. Let each value that T can take,

{t, = a; / bili = 1 to P} wherea; andb; are integers. (4.25)
If every member of { ‘Ci,i =1 to P} is multiplied by the lowest common multiple of the
set of denominators {bili =11t P}, an integer will result. However, this lowest
common multiplet will not be the smallest possible number that will produce an integer

value if the greatest common divisort of the set of numerators {aili =1to P} is not

equal to one. The smallest possible number that when multiplied by each and every

The lowest common multiple (Icm) of two integers u and v, is the smallest positive integer
that is a multiple of (ie., evenly divisible by) both u and v; the lem of zero and zero is zero; and the lem of
one integer is that integer.

The grealest common divisor {gcd) of two positive integers m and n, is the largest positive
integer which evenly divides both m and n.

51

member of {Tili =1 to P} results in an integer; ie. fp that satisfies equation (4.24) (and
hence equation (4.23)), is given by,
lowest common multiple {b;li = 1 to P}

fp = , for P >1 (4.26)
greatest common divisor {ai|i 1 to P}

Methods using Euclid's algorithm to determine the lowest common multiple and the

greatest common divisor of a set of integers are described in [16, Knuth].

For the example 4.1, the possible values of T can be expressed in their optimum rational

forms as 1) = 1/12 s, T, = 5/61 s and 13 = 5/62 5. Giving,

lem (12, 61, 62)
£ = = 22,692 Hz.
ged (1, 5, 5)

4.4.3 Periodicity for Periodic Sampling Scheme with Dither.

For the periodic sampling scheme with dither, each sampling instance is given by
equation (4.20). Substituting this into equation (4.23) gives the transform period fp as

the least positive number greater than zero such that,

.To.(k * x;) = K isanintegerfori=1toz. (4.27)

Note k is an integer by definition. Let Ty and {T.x;li=1toz} be represented as

rational numbers with the minimum possible denominator such that,

Tg =ag / by and (Tg.x; = a; / bili =1 to z} (4.28)

where all a; and b; are integers. In the same manner f;, was derived to satisfy equation

(4.24), the hypothesis of equation (4.27) is satisfied by,

52

lowest common multiple {b;[i 0 to z}
£, = , for P >1 (4.29)
greatest common divisor {ai|i =0 to z}

For the example 4.2, the regular period, T;=1/20.25s and the three values of
Ts.x; = {0, 0.3T, 0.4T} can be expressed in their optimum rational forms as T = 4/81,

Tgxg =0, Tg.xy = 8/405, and T.xy = 2/135. Giving the transform period as,

lcm (81, 405, 135)
f_o = = 202.5 Hz.
gcd (4, 8, 2)

4.4.4 System Bandwidth.

Now consider,

N-1 -32m. (£, - £) .ty
X (£, = £,) = X x,(ty) .e
k=0
N-1 -j2m.fpty +i2m.f by
= Z ¥, (ty) .e .e
k=0
N-1 +j2m. £t
= z X5 (tk) .e
k=0
= X, " (£,) (4.30)
. -J2m.fpty o . .
since e = 1 by definition of fp from equation (4.23). Therefore, the amplitude of

the transform, er(fn)I is even-symmetrical about f/2 and its argument, £ [X((fy)] is
odd-symmetrical about fp/2. That is, the transform consists of complex conjugates over
one period, and so only half the information in one cycle is of interest. Therefore, the
input signal must be band-limited to half the period of the transform in order to prevent

frequency domain aliasing; ie. in the case of uniform sampling, the Nyquist criterion

53

must be satisfied. However, for pseudo-random sampling (additive or periodic with
dither) the transform period is noticeably high. In the example 4.1, the signal needs only
to be band-limited to 11,346 Hz although it is being sampled at frequencies of 12.0 Hz,
12.2 Hz, and 12.4 Hz. Similarly, in the example 4.2 where the maximum sampling
frequency is only 67.5 Hz, the input signal only needs to be band-limited to 101.25 Hz.
It appears that the Nyquist criterion need not be satisfied when using pseudo-random
sampling! However, it has not yet been established as to whether or not the spectrum
produced by the pseudo-random DFT is 'alias-free' for irregularly sampled signals

limited within this enlarged bandwidth.

In general, for any known pseudo-random sampling generator, it is possible to
determine the periodicity, fp of the transform function X/ (f) by the method described
above, and hence the bandwidth limitation, Bpge, 4, that must be imposed on the input

signal; that is,

1 lowest common multiple {b;! forall i}
(4.31)

B

pseudo ~ T .. .
2 greatest common divisor {a;| forall i}

where all a; and b; are defined for the additive pseudo-random sampling scheme and for
the periodic sampling scheme with dither by equations (4.25) and (4.28) respectively.
Note that the bandwidth Bpgey 4o is independent of the total number of possible sampling
frequencies, P and only depends upon the possible changes between one sampling
instance and the next for additive pseudo-random sampling, and upon the possible

dithers and regular sampling period for periodic sampling with dither.

Nlustrative Example 4.3.

An illustration of this is given in figure 4.4, which shows the output of the transform

due to sampling a signal containing its fundamental harmonic at 17.0 Hz and no

54

o0 @seyd ‘g 1 apnjrjdue ‘zy @ 2T 3e 3ndur juauwaja ajburg
uayel sajdwes g5 ‘zH 0°FT ¥ 2ZH 0°2Z2T1 3¢ PBurjdues wopuea-opnasg - aanbijg

_______EF} ______i ____d_._k_ ' i__ ____ _______:.f__ i

27 -

| |

COH (RLLRGUA LR |

P

aseyq

J 581 IGT TOT 29 ZF A 0
,__z%_._:_:________:é __ﬂ_____ﬁﬁaj___ LR ___.______, __1___4_:__1

duy

55

overtones. In this case, the additive pseudo-random sampling process involved five
hundred samples being taken at intervals of 1/12.0s or 1/14.0 s; hence, fp= 84.0 Hz
from equation (4.29). It can clearly be seen that the input signal needs to be band-

limited to fp/2 =42.0 Hz.

4.5 Inverse Pseudo-random DFT.

A transform has been defined which takes pseudo-random samples of a signal x,(t) as
its input data and produces an output X/'(f). An inverse transform is required to find the

N samples x,(ty), ty = tg, ty, ..., ty.1 from the data X'(f).

If the sampling instances ty, k =0, 1, ..., N-1 are spaced uniformly by intervals Tj, then

the inverse transform may be represented as [S, Brigham],

1 N-1 +92m. £ty
X' (L) = = X X (£, .e
N n=0
n
where, £, = and t, = k.T, (scealso, equation (4.10)) (4.32)
N.T,

Note that the derivation of this inverse transform (for uniformly spaced samples) relies

on the orthogonality relationship [5, Brigham],

N-1 _j2m.£.t) +32m.f.t, N for A=k
X e .e = (4.33)

n=0 0 otherwise

which does not hold for irregularly spaced samples. However, the two pseudo-random
sampling schemes (defined in section 4.3) may be viewed as uniform sampling with a

large number of carefully chosen missing sampling instances. Define the sequence,

56

x,(t) for A, € {tylk = 0 to N-1}
x(A) = for A =0 to Q-1
0 otherwise
. (4.34)

where Q = (tn_1 + Tpyjp)-f, is the minimum sequence length required to accommodate
every sample instance in one period of X,(t). Remember that in the theoretical
development of the pseudo-random DFT in section 4.2, the periodicity of x,(t) was
assumed to equal the duration, T, = tN_1 + Tryin Of the rectangular window function h(t).
Tmin 1S as defined by equations (4.17) and (4.21) for the additive pseudo-random and
periodic with dither sampling schemes respectively. Clearly Q is an integer by

definition of f, in equation (4.23).

Equation (4.9) becomes,

Q-1 -j2m. £, M/ £
X () = 2 x(\).e (4.35)
=0

Let f, = n.0f where df is the DFT frequency bin spacing, with n=0, 1, ..., f/8f - 1.
Thus,

Q-1 -j2m.n.8f .M/ £,
X, (n.8f) = 2 x(M).e (4.36)
A=0

Consider the hypothesis that the inverse pseudo-random DFT is of the same form as

equation (4.32); ie. that,

Of £,/0f - 1 +j2rm.n.x.8E/£,
x(x) = — ¥ X, (n.8f) .e (4.37)
fo n=0

for k=0, 1, ..., Q-1. Substituting equation (4.36) into equation (4.37) gives,

57

8f £,/8f - 1 Q-1 -j2n.n.A.8£/ £, +j2m.n.x.0f/f,
X(K) = —— 3 3 x(A) .e .e

f5 n=0 A=0

A swap of the summations is permissible only if 8f = 1/(ty.; + Tpjy). Thus,

Q-1 of
x(K) =% x(A)
=0 fp

Q-1 -j2m.n.r.8f/f, +j2m.n.x.8£/£,
Z e .e
n=0

(4.38)

Consider the section of this expression in the square brackets which is equivalent to,

Q-1 -j2m.n.8f/f,. (A - K)
z e = V()
n=0
and let,
+iQ (K - A)
v =e where Q = 211:.8f/fp (4.39)
to giveT,
Q
Q-1 1 ~v
v) =y vl=———— for v=1 (4.40)
n=0 1-v

From equation (4.39), v=1 for A=x and vQ@=1 for A#x as X, x and df/f; are all

integers by definition; so, substituting into (4.40) gives,

TFrom the mathematical principles of sums and products, the basic formula for the sum of a
geometric progression is given by,

z 1 - xn+l
j =g —
o<i<n T T
assuming that x # 1 and n 2 0. [16, Knuth].
58

Q for A=x
V() = (4.41)
0 otherwise

Thus equation (4.38) becomes its identity, so the hypothesis of equation (4.37) must be

valid and the inverse pseudo-random discrete Fourier transform is given by,

[ant

+j211:.tk.n.5f

Xa'(tk) = Xr(n.Sf) .e for tk = to, tl' et tN-l

oINS
3 0
||M I

o

(4.42)

where Q = (tn.1 + Tin)-fp and 3f = 1/(t\.1 + Trin)-

The discrete inversion formula (4.42) exhibits periodicity defined by the N samples of

X,'(t) in a manner similar to the discrete transform; such that,

X' (ty) = %' (ty + q.ltyy + Tyal) for g =0, £1, %2,

Examination of the formula in (4.42) also reveals that to reconstruct the N sample
values of x,(t) at t = to, ty, ..., ty.1 from X (fy) requires an excessive Q = (tn.1 + Tyin)-fp
points in the frequency domain to be calculated. Thus, an estimated wideband spectral
analysis of the input signal may be made rapidly by taking N samples at pseudo-random
intervals and performing the transform described by equation (4.9), but the
reconstruction of just N samples of the signal x,(t) at specific instances from this

spectrum, although possible, involves vast time consuming evaluations.

The workload involved can be dramatically reduced by noting that in practice, the input
X4(t) is real and so the values of x,(t) for k = 0, 1, ..., N-1 given by the inverse

transform must also be real. Remember that when x,(t) is real, equation (4.30) holds; ie.

1
>3

X (£, - £1) = X (£,)

P

59

thus,

X, (Q.8f - r.8f) = X, *(r.df)
and similarly,

X (x.8f) = x,.7(Q.8¢ - r.8f)

The formula of (4.42) can therefore be reduced so that nearly only half the number of

frequency bins need to be calculated. When Q is even,

1 Q/2 +327.t, .n.8f
X, (ty) = — { s X (n.8f) .e
Q =0
0/2-1 +32m.ty. (Q - n) .8f
+ 3 X, (n.8f) .e
n=1
1 +m.ty . £y
- — { X (0) + X (£,/2) .e
Q
Q/2_1 A A
+2y a (ndf) cos (2ntyndf) + b(n8f)sin(2ntkn8f)}
net (4.43)
and when Q is odd,
1 (Q-1)/2 +32m.ty .n.Of
x,"(ty) = — { s X, (n.8f) .e
Q n=0
(Q-1)/2 . +32n.t,. (Q - n) .8f
+y X, (n.8f) .e
n=1
1
= — { X, (0)
Q
(Q-1)/2 =« A
+2y a (ndf) cos (2nt,ndf) + b (ndf) sin(2ntyndf)
n=1

(4.44)

A
where X (n.0f) = g(nSf) - j.b(ndf).

60

The value of x,'(ty) yielded by equation (4.43) or equation (4.44) must be real. This is

+H.t . f,
so as X(0), X(f/2) and e %D will have no imaginary part by definition.
[lustrative Example 4.4.

The pseudo-random DFT of (4.9) and its inverse as described by equations (4.43) and
(4.44) have been simulated for verification. (The simulation program source code is in
Appendix C.) Figures 4.5 and 4.6 show the errors associated with the signal amplitude
as determined by the inversion formulae at each sample instance in comparison with the
actual signal amplitude. The input signal contained two harmonics; one at 7 Hz of
amplitude 1 V, and another at 22 Hz of amplitude 2 V at 90° out of phase with the first
harmonic. Figure 4.5 shows the error when the signal is sampled at 400 points

uniformly at 84 Hz (system bandwidth 42 Hz.)

Maximnum error: 5.630030e-013 Minimum error: 0.000000e+000

M/HMW:«MMMWWM/WWNWJYWM‘M\MW

(0] Sample

Figure 4.5. Example of amplitude errors from use of the inverse transform after

sampling a signal uniformly.

The errors that result are relatively small, occur because of computational inaccuracies

when using floating-point arithmetic, and compare favourably with the errors that are

61

produced when using the NAG (Numerical Algorithms Group) library routines for an
analogous simulation. The NAG simulation program source code is listed in appendix
D. When executed, the list of errors produced showed that the errors generated by
taking a DFT of a sequence of samples and then performing an inverse DFT, are of
similar magnitude to those shown in figure 4.3, with the error in the first and final

samples considerably greater than the others.

Figure 4.6 shows the error when the signal is sampled at 400 points using the additive
pseudo-random sampling scheme with T, = 1/12.0s and T, = 1/14.0s (system
bandwidth 42 Hz.) The errors are again relatively small, occur due to floating-point
arithmetic inaccuracies, but are on average slightly greater than the errors of figure 4.5
because more computation is required in the derivation of the sample values. In this
case, the window width (the duration over which the 400 samples are taken) is
approximately 400/13.0 s, compared with the case when the uniform sampling scheme
is used for which the window width is only 400/84.0 s. Thus the number of frequency

bins evaluated, Q = window width.f,, is much greater when using irregular sampling.

Maximum error: 7.431944e-012 Minimun error: 8.881784e-016

“"‘M.M»mme,wmmwmmmmww\mﬂ/‘«h\}vww:&.mMw’wmrmﬂ

0 Sample 399

Figure 4.6. Example of amplitude errors from use of the inverse transform after

sampling a signal irregularly.

62

The amplitude error is noticeably high for the first and final samples. This is a familiar
characteristic of the conventional inverse discrete Fourier transform (evident when
using the NAG library routines) and is also due to the use of floating-point arithmetic in
the simulation. The analysis on this error is covered in some detail in a collection of

papers compiled in [17, Liu].

It has been clearly shown and verified by simulation that the equation (4.9) is a
transform with a well defined inverse given by equation (4.42). However, this does not
mean that the original signal may be reconstructed from its irregular samples, only that
instantaneous values of the signal can be determined from an estimated spectrum. A
method is required to find out whether or not unambiguous signal reconstruction is
possible when using an irregular sampling scheme. If such reconstruction is possible,

relative to a particular sampling scheme, then that scheme will be alias-free.
4.6 Improving the Estimated Fourier Coefficients.

To show that it is possible to reconstruct the originally sampled signal from the N
sample points, it is necessary to show that the coefficients ay, and by, used to describe
the signal by equation (4.1) for each harmonic at a frequency f,, can be determined

without ambiguity from the N sample points.

The coefficients generated by the pseudo-random transform in equation (4.9) are

estimates of the Fourier coefficients a;, and by, as is illustrated by figure 4.7.
Hlustrative Example 4.5.

A signal containing one harmonic at 170 Hz of amplitude 1 V and another at 30 Hz of
amplitude 2 V with a 90° phase difference was simulated as being sampled at 500
points using periodic sampling of 50 Hz (T =1/50 s) with 5 possible dithers T = {0,
#0.1T,, +0.4T} (giving a system bandwidth of 250 Hz). The spectrum of figure 4.7

63

shows the amplitude and phase of possible signal elements at frequencies spaced by

0.5 Hz.

Amplitude

-
Figure 4.7. An illustration of the large amount of noise present in the spectrum formed

from the pseudo-random Fourier transform of equation (4.9).

Examination of figure 4.7 reveals the possibility of at least three erroneous signal
elements at frequencies of 70 Hz, 130 Hz and 230 Hz in addition to the true components

at 30 Hz and 170 Hz.

It is necessary to devise an operation to eliminate this noise and thus determine the

exact Fourier coefficients without ambiguity.

Note that x,(t,) is given by (4.1). Substituting into (4.9) gives,

N-1 M-1

X (£) = 2 X [afmcos (2mf ty) + bgsin (21rfmtk)}.e
k=0 m=0

-j2rf £ty

(4.45)

64

Rearranging this for its real and imaginary parts gives,

and,

M-1 N-1

bfn = §: 2:

m=0 k=0

cos (2rf ty) .[afm.cos(Zn:fmtk) + bfm.sin(anmtk)J

(4.46)

sin(2rf t,) .[afm.cos(anmtk) + ben-sin(2rf ty)

(4.47)

Equations (4.46) and (4.47) can be expressed in matrix form, as suggested by

[8, Bilinsky, Vystavkin & Mikelson]; ie.,

where the vectors,

arg
ary
bey

af“
bey

or C=a"1lgs

original
- coefficients
sought

and the system transfer matrix,

BSOO

Uso1

c01l
A= ®s02
Bc02

Ceom

BsOm

0c1o Bsio 20 Bszo -
Oo1p Os11 Qepy Ospp ot

Bcll lel ﬁch Ble

Qe1p Qg1 Qe Ggpo

Bch leZ Bc22 B522

Ocim Xsim Ceom Osom -

Bclm lem Bc2m BsZm

aso
af1
bgy

acmO BsmO
Qo1 Osm
gsml sml
em2 Xsm2
chZ Bsm2

acmm asmm
chm Bsmm

(4.48)
coefficients
calculated
from (4.9)

(4.49)

65

with,

N-1

Ociy = X COS(2ME ty) .cos (2mE,ty)
k=0
N-1

Ogiy = E sin(2nf;t,) .cos(21tfjtk)
k=0
N-1

Bcij =2 cos(2nfity) .sin(2nfity)
k=0
N-1

Beis = L sin(2mfty) .sin(2mEyty)
k=0

The dimensions of the matrix A, 1 by L, are governed by the periodicity of the pseudo-
random DFT, f;=2.Bpeudo and the frequency increment that the coefficients are
calculated, df. The estimated coefficients are evaluated at frequencies f, = m.5f for
m =0 t0 | Bpseydo/0f | If fry = 0 (ie. m = 0) or £y = Bpgeydo (i€ m = Bpgeyqo/Sf is integer
valued) then from the definition of the coefficients X (f;,), bg, will be zero. It is
therefore unnecessary to find the imaginary part of the coefficients for the first
frequency bin (ie. fy, = 0) at any time, or for the highest frequency bin (ie. fiy = Bpseydo)

when pr/Sf | is even. Thus,
B = 2.Bpseuao/df] { + 1 if |£,/0f] is odd } (4.50)

The exact Fourier coefficients, C may be calculated from the inverse system transfer
matrix, A'1 and the estimated Fourier coefficients, B. Matrix A is independent of the
input signal and so A and Al may be calculated prior to sampling for a known set of
sampling instances. Noting that, 0,s0; = O¢j0, Beoj = Bsjo, and @i = Beji, makes it clear to
-1

see A is a symmetrical matrix. It follows from simple matrix theory that A™* must also

66

be symmetrical. This fact can be used to reduce the computation required to evaluate

the matrix and its inverse.

The classical approach for determining a matrix inversion, based on the use of Cramer's
rule [18, Pipes & Hovanessian], involves an excessive number of arithmetical
operations, approximately in the order of n. Using an augmented matrix method, based

1 may be obtained with a reduction in

on Gauss' elimination, the inverse matrix A~
computation to the order of n3 [18, Pipes & Hovanessian]. The most efficient method
(implemented in the simulation program of appendix C,) also of order n3 but with a
reduced constant of proportionality, is LU decomposition based on Crout's algorithm

and is described in detail by [19 Press, Flannery, Teukolsky & Vettering].

It is expected that by using the inverse of the matrix in equation (4.49), the spectrum of
a signal that has been band-limited in accordance with equation (4.31) and sampled
irregularly at a maximum rate which may be below the Nyquist sampling rate, can be

evaluated within the band limits without ambiguity at a finite number of frequencies.
Nlustrative Example 4.6.

Consider, once again (as in the example 4.5,) a signal containing one harmonic at
170 Hz of amplitude 1 V and another at 30 Hz of amplitude 2 V with a 90° phase
difference. The signal is simulated as being sampled at 500 points by two pseudo-
random sampling schemes, each with a system bandwidth of 250 Hz. Scheme 1:
Additive pseudo-random sampling with T; = 1/100.0 s and T, = 1/125.0' 5. Scheme 2:
Periodic sampling at 50 Hz (Tg=1/50s) with 5 possible dithers © = {0, £0.1T,,
+0.4T,}. Figure 4.8 shows the estimated signal spectrum (evaluated from equation
(4.9)) when the signal is sampled using scheme 1. Figure 4.9 clearly shows that the
noise in this estimated spectrum is eliminated when its coefficients are multiplied by the

inverse of the matrix in equation (4.49), as expected.

67

Amplitude 1.0065V

(.6236V

Figure 4.8. Estimated spectrum of example signal sampled by scheme 1.

Amplitude W

N
30.0 170.0 f
Phase
n
%

~Ir

Figure 4.9. Improved spectrum of signal after additive pseudo-random sampling.

However, figures 4.10 and 4.11 show corresponding spectra when the signal is sampled

using scheme 2. The noise is not eliminated and ambiguities remain.

68

1.322%V

l’lll}lllllll |.ll|

36.0 170.0 f
Phase
n

| llll‘il’lll\ I‘
T] T
-

Figure 4.10. Estimated spectrum of example signal sampled by scheme 2.

Amplitude % 0024 V
11207 H: V N
iS.6185V
10. 264V
81686 V
b
30.0 30.0 i30.0 170.0 23c.¢ f
Phase
n
l ’ | | l . | (‘ |
T T]] B
~

Figure 4.11. Incorrectly 'improved’ spectrum of signal after periodic sampling with

dither.

The simulations reveal that, in the cases when a signal is sampled using periodic

sampling with dither, it is not possible to determine the coefficients ap, and by, used to

69

describe the signal by equation (4.1) for each harmonic at a frequency f,, without
ambiguity from the N sample points. It is possible to do so by using the matrix
operation described above, if the signal is sampled using an additive pseudo-random
sampling scheme. It is not yet known why this phenomenon occurs for periodic

sampling with dither.

The four spectra above are coarse (coefficients are evaluated at frequency steps of
of = 10 Hz) because the simulation program of appendix C finds it understandably
impossible to find the inverse of very large matrices. Evaluating the inverse of a very
large matrix takes a long time, requires an excessive amount of storage and involves the
use of very large floating-point numbers (sometimes too large for a computer's
numerical representation.) For the example 4.6, with a system bandwidth of
Bpseudo = 250 Hz, the inverse of a 50 by 50 matrix was calculated (dimensions given by
equation (4.50),) enabling the coefficients to be calculated at only 26 points; ie. at
frequencies f;; = m.3f for m=0 to 25. This should not be seen as a limitation to the

technique but as an inconvenient restriction enforced by hardware limitations.
4.7 Conceptual Interpretation and Discussion of the Technique.

When a band-limited, periodic signal (assumed to be modelled by equation (4.1)) is
sampled irregularly by either of the sampling schemes rigidly defined in section 4.3, the
time required to acquire N samples of the signal will inevitably be greater than the
duration to obtain an equal number of samples by taking the samples at uniform
intervals. That is to say, irregular sampling takes a longer time to obtain an equal
amount of information (in terms of samples taken) as uniform sampling. This is a direct
consequence of irregular sampling operating at a sub-Nyquist rate (for some given
bandwidth) relative to uniform sampling. For example, consider a signal band-limited to
250 Hz, sampled at 100 points. This could be sampled by using uniform sampling at
500 Hz or, say, additive pseudo-random sampling with T; =1/100s and 15 =1/125s

(corresponding to an average sampling rate of 112.5 Hz.) Using the irregular sampling

70

scheme, it would take approximately 100/112.5s to take the required number of

samples, whereas it would only take 1/5 s using the uniform sampling scheme.

Furthermore, as with the conventional discrete Fourier transform, some care is needed
when using the pseudo-random DFT because it is valid only for the special case of a
band-limited periodic signal. The transform will only produce an approximation to the
continuous Fourier transform spectrum if there is not an integer number of complete
cycles of the input signal sampled over the duration of the time domain window. If the
number of cycles sampled in the window interval is incomplete, then discontinuities
will exist at the extremities of the interval and the periodic signal will no longer be
band-limited. A form of distortion known as leakage will be introduced into the
spectrum. The resultant approximated spectrum can be made more accurate only by
increasing the window interval for non-periodic signals (by effectively taking more
samples); by making the window interval equal to a multiple of the actual period for

periodic signals; or by altering the sampling scheme for a much greater bandwidth.

In other words, all the problems that exist with the conventional DFT due to taking a

finite length sequence of samples are also applicable to the pseudo-random DFT.

It has been shown that the estimated spectrum produced by the pseudo-random
transform may be improved if the signal samples where taken using an additive pseudo-
random sampling scheme and hence the original signal may be reconstructed error-free
from samples taken at irregular intervals. This is only possible if the sampling instances
are known prior to sampling. In most cases, it is expected that the instances will not be
known until sampling takes place. Evaluating the inverse of the matrix A every time
samples are taken would incur excessive computational overheads and would therefore
be impractical for a real-time system. However, as with the conventional DFT, the
approximated spectrum can be made more accurate by taking a greater number of

samples.

71

Consider the sampling of a signal containing two harmonics in phase; one at 20 Hz with
an amplitude of 1V, and the other at 90 Hz of amplitude 2 V. Figures 4.12, 4.13 and

4.14 show the signal's estimated amplitude spectrum when samples using a variety of

schemes.

Amplitude

20.0 90.90 f

Figure 4.12. 500 samples taken uniformly every 1/125 s.

Figure 4.12 clearly show the aliases that result when uniform sampling is employed.

Amplitude

20.0 90.0

Figure 4.13. 100 samples taken using an additive pseudo-random sampling scheme with

T, =1/100 s and T, = 1/125 s.

12

Amplitude

20.0 50.0 f

Figure 4.14. 500 samples taken using an additive pseudo-random sampling scheme with

T3 =1/100 s and Ty = 1/125 .

Figures 4.13 and 4.14 illustrate how the estimated spectrum is improved by taking a
larger number of samples. Furthermore, when compared with figure 4.12, it can be seen
that aliases do not appear in the spectra in the form of frequency shifted replicas of the
original signal, but spread in the form of broadband noise. The method described in
section 4.6 shows that it is possible to unambiguously identify the original signal from

this noise when samples are taken using the additive pseudo-random sampling scheme.

A direct realisation of the pseudo-random DFT is clearly excessive in computation for a
large number of points, which is required to reduce the noise present in the spectrum of
the irregular samples. It is therefore necessary to use a fast algorithm for its
implementation. Unfortunately, a decimation in time or a decimation in frequency form
[20, Proakis & Manolakis] of fast Fourier transform is not applicable, as such an
approach requires the input sequence to be evenly divided and makes use of the
orthogonality relationships between one 'twiddle factor' and another. It could be
advantageous to formulate a fast algorithm to implement the pseudo-random DFT of
equation (4.1). However, the technique has some considerable limitations (as does the
conventional discrete Fourier transform) but it has been demonstrated that sub-Nyquist
sampling is possible by using additive pseudo-random sampling, with a gain in system

bandwidth at the expense of signal-to-noise power ratio.

73

5. DESCRIPTION OF SIMULATION PROGRAMS

The three techniques described in chapters 2, 3 and 4 have been simulated on a PC
based system with a floating-point co-processor to show that they have been sufficiently
and rigidly defined and to help in verifying the analysis of their characteristics and
performance. NAG library routines have been used to determine the characteristics of
errors generated by taking the DFT of a sequence of uniformly spaced samples, and

then an inverse DFT to reproduce the sequence.

The simulation programs of the three techniques are written in the 'C' programming
language and have been compiled using the Microsoftg 'C' optimizing compiler with
the "compact" memory model. The simulation program that uses the NAG library is
written in the Pascal programming language and was executed on a MTS Mainframe

computer system. Their full source codes are listed in the appendices.

The question of "how" the simulation programs work is intentionally not addressed
here. It is expected that the reader has sufficient knowledge of 'C' and Pascal to
understand the programming with assistance from the comments within the listings and
their structure, or should acquire such knowledge. However, "what" the simulation

programs do is described.

5.1 Simulation of Single Active Element Dealiasing Algorithm with

DFT Errors Considered.

The technique described in chapter 2 is simulated.

The program takes the three sampling frequencies of equation (2.12) as its input and
prompts the user as to whether or not the dealiasing algorithm is to be simulated with
consideration of the errors imposed by the limited resolution of the discrete Fourier

transforms used. If so, the number of points, N used in calculating the DFTs is

74

requested. The program ensures that the number of points specified satisfies the

conditions of equation (2.27).

The operational bandwidth of the algorithm is returned as given by equation (2.16) if
DFT limitations are not to be considered, or otherwise by equation (2.24). The program
then tests the dealiasing algorithm for every frequency ranging from zero to the pre-
calculated maximum operational frequency in steps of some user-entered increment, in
an attempt to find an input frequency for which the technique does not work. A plot of
the output frequency patterns from the three samplers/filters against input frequency is
displayed, and if the DFT limitations are considered, a plot of the error in the frequency
as evaluated by the algorithm compared with the ac,tualf input frequency is also
presented. If the dealiasing algorithm operates com:étly, this error plot will show that
the error does not exceed the maximum permissible 'exror, as given by equation (2.22),

at any time.

The source code for this program is listed in appendix A.

5.2 Simulation of Multiple Active Element Dealiasing Algorithms.
The technique described in chapter 3 is simulated.

The program takes the three sampling frequencies of equation (2.12) as its input and
returns the operational bandwidth for the technique as given by equation (2.16). The
simulation program prompts the user for a list of frequencies to correspond with the
harmonics of the input signal to be modelled. The frequencies entered must be within
the operational bandwidth calculated. The program then selects the most appropriate
multiple active element dealiasing algorithm (either that of section 3.1 or section 3.2)
for the modelled system, by using a criterion based on the relative efficiency of the two

algorithms as described in section 3.4.

75

As output, the program says which algorithm was selected and lists the frequencies of
all the harmonics that are believed to be in the input spectrum according to the alias
reducing algorithm used. A plot of these frequencies and those of the actual input is

produced for comparison, with the remaining 'ghost’ frequencies (if any) highlighted.

The source code for this program is listed in appendix B.

5.3 Direct Realisation of the Pseudo-random Discrete Fourier

Transform.

This is the most complex of the simulation programs and models every aspect of the

technique described in chapter 4.

The program initially requests parameters to describe the sampling scheme to be
modelled. This requires the number of sampling points to be taken, the type of sampling
(uniform, additive pseudo-random, or periodic with dither,) and relevant sampling
frequency data. The input signal bandwidth limitation is calculate and output for the

scheme described on the basis of the theory laid out in section 4.4,

Parameters may be entered to describe a complex input signal. The signal to be
simulated is assumed to be formed of a summation of any finite number of sinusoidal
harmonics of specified frequency, amplitude and relative phase. Sampling of this signal
by the scheme declared is simulated, using a pseudo-random number generator with an

approximately uniform distribution for the irregularly spaced sampling schemes.

A number of operations may be preformed on the data produced by this process. The
pseudo-random discrete Fourier transform of equation (4.9) can be evaluated and
displayed at frequencies ranging from zero to a frequency corresponding to the system
bandwidth at intervals, &f specified by the user. The pseudo-random transform and its

inverse described by equation (4.44) can be determined (with 6f = 1/(ty.; + Tpy;n),) and

76

the errors associated with the signal amplitude as determined by the inversion formulae
at each sample instance in comparison with the actual signal amplitude are plotted, in
addition to the estimated signal spectrum. Alternatively, the matrix method proposed in

section 4.6 to improve the estimated Fourier coefficients may be modelled.

The source code for this program is listed in appendix C.
5.4 DFT and Inverse DFT using NAG Library Routines.

In section 4.5, error plots were presented to show the magnitude of the errors generated
when taking the pseudo-random DFT of a sequence of samples and then the inverse
transform to reproduce the sequence. These plots where generated by executing the
simulation program described in section 5.3 on a PC based §ystcm with a floating-point
co-processor. In order to verify that the magnitude of these errors is consistent with
floating-point arithmetic errors, a simulation was also ﬁroduced using the NAG library

routines.

The NAG library routines are available on a MTS Mainframe computer system, which
uses a different (and more accurate) representation of floating-point numbers to the PC
based system. For this reason, the program listed in appendix D also simulates the
pseudo-random DFT and its inverse. The program models uniform sampling of a signal
to produce a sequence of consecutive sample values. The NAG library routines are then
used to perform a conventional DFT and then an inverse DFT on this sequence to
produce a new sequence with error. Similarly, the original sequence of sample values
act as input to the pseudo-random DFT and then to its inverse, producing yet another
sequence with error. The errors in the two new sequences (one produced by NAG

routines and the other by the pseudo-random transforms) are then listed for a direct

comparison.

The source code of this program is listed in appendix D.

77

6. CONCLUSIONS AND SUGGESTIONS FOR FURTHER
RESEARCH.

A rigourous algorithm has been defined to establish the frequency and amplitude of a
pure sinusoidal signal (ie. a signal consisting of only its fundamental harmonic) when
sampled uniformly by three samplers simultaneously, although the frequency at which
these samplers operate may be less than the twice the frequency of the sinusoidal signal.
That is, the sinusoidal signal may be sampled at a sub-Nyquist rate and any resultant
aliasing may be resolved. The output of each sampler is low-pass filtered ‘ideally’ with a
cut-off at half the sampling frequency of the corresponding sampler. The algorithm has
been shown to work within an acceptable and defined tolerance when only an
approximation of the frequency of the signals that evolve from the sampling/filtering
process, can be made because of limitations with the conventional discrete Fourier
transform. The algorithm functions correctly up tb a well deﬁned maximum limit of the
frequency of the sinusoidal signal, which depends on the three sampling frequencies

used.

An attempt to extend the algorithm developed by two analogous, although conceptually
diverse methods, so as to eliminate aliases due to sampling (in the same way) a signal
containing a sum of harmonics, proved only to reduce the frequency ambiguities. There
is the possibility that erroneous harmonics may be identified as part of the signal, even
for a signal containing only a few harmonics. It was shown that the only way to
optimise the reduction in ambiguities, is to use a very large number of uniform
samplers, each succeeded by a low-pass filter. However, the probability of finding
erroneous harmonics remains and the excessive computational overheads imposed by
the two methods rendered such an approach impractical. In fact, it would be far quicker

and more accurate to use sampling at greater than the Nyquist rate. Alternatively,

random sampling was proposed.

78

Irregular sampling of a continuous signal was investigated in terms of the spectrum of
the samples taken. The conventional discrete Fourier transform is not applicable to non-
uniform samples and so a pseudo-random DFT was developed to determine an
estimated spectrum for samples taken at irregular time intervals. Two sampling schemes
to generate pseudo-random sampling instances are defined; namely, additive pseudo-
random sampling and periodic sampling with dither. The periodicity and symmetry of
the transform were found and it is shown that a signal must be band-limited to a well-
defined frequency to avoid aliasing for the two sampling schemes. The maximum
sampling rate may be well below twice the bandwidth of the limited signal. The
transform inverse is derived and shown to function correctly within the floating-point
limits of the simulation. If the signal is sampled irregularly using the additive pseudo-
random sampling scheme, then its resultant estimated spectrum is consistently alias-free
and, if the instances at which each sample was taken were known prior to sampling, the
exact Fourier coefficients of the original signal may be determined from it by the matrix
method described. The signal must be band-limited to half the pseudo-random
transform periodicity, which is dependent upon the irregularly spaced sampling

instances.

Simulations of the techniques were made and their results used throughout to illustrate

and verify some of the arguments presented.

When samples of a signal are taken at irregular time intervals using an additive pseudo-
random sampling scheme, the alias-free spectrum estimated by the pseudo-random DFT
shows the presence of noise. It is suggested that further research be undertaken to
determine the level of this noise, the parameters upon which it depends (the number of
samples taken being one,) and develop methods to reduce or eliminate it. Furthermore,
the effects of sample quantization are unknown and should be investigated. The use of
pseudo-randomly varying quantization thresholds may be examined to see if
quantization noise can be reduced. The estimated spectrum will somehow be affected

by random variations in the sampling instances {t,}. The effect on the spectrum

79

estimation due to this or due to using different distributions of pseudo-random numbers
in the production of the sampling instances, also requires investigation. Should such
further research find the pseudo-random discrete Fourier transform to be of exceptional
value, a fast algorithm should be developed to improve the efficiency of its

implementation.

Papers with a strong mathematical basis which may be of use in extending the research
and which have been helpful from time-to-time to the research already undertaken are
listed in the bibliography with a number of items which have been of use throughout the

research.

80

APPENDIX A

Program Source Code for the Simulation of the Single Active Element

Dealiasing Algorithm with DFT Errors Considered.

81

/**********‘k**********************************

* *

* Sub-Nyquist Sampling Algorithm Simulation *

*® *
* - Single Active Element Analysis - *
* - Uniform sampling scheme - *
* — DFT errors may be considered - *
* - Errors and output patterns plotted - *
* *

*********************i***********************/

/************************
* *
* include system files *
¥* *

hkok kKo kKK kKKK kkkkkkkkkkk /

#include <stdio.h>
#include <graph.h>
#include <conio.h>
#include <float.h>
#include <math.h>

/****************************
* *

* data processing routines *
* *

HhkIhkKIIK KKk Xk Ik kKKK KKK KKK ** [

/*

* Return operational bandwidth of system with or without DFT errors considered

*

* fs - array of three sampling frequencies

* n - number of points used to calculate the DFTs. Assumed equal for all three

* n = 0 means DFT errors not considered
*/

double frequency_range (fs, n)

double fs(];

int n;

{
double Bopt, Berr:;

if (n == 0) {
/* equation (2.16) */
Bopt = £s{0)*fs{2}/(2.0*{£fs([2] - £s[0])) + £s({1]1*0.5;
return (Bopt):;
}
else {
/* equation (2.24) */

Berr = (fs{0]*fs([2]/(fs[2] - £s[0])) * (0.5 - 1.0/(double) n);

return (Berr):;

}

82

/*
* Return maximum permissible error in calculating input frequency
*
* fs - array of three sampling frequencies
* n - number of points used to calculate the DFTs. Assumed equal for all three
* n = 0 means DFT errors not considered
x/
double max_error (fs, n)
double fs{];
int n;

{
double dfxmax;

if (n == 0)
return (0.0);
else {
/* equation (2.22) */
dfxmax = fs[0]*fs[2])/((double) n*(fs[2] - £s(0])):
return (dfxmax);

}

/%
* Calculate frequency of output signal from the three samples as given by DFT
*

* fs - array of three sampling frequencies

* n - number of points used to calculate the DFTs

* n = 0 means DFT errors not considered

* in - frequency of input signal

* out - array of frequencies of three output signals
*/

void simulate_output (fs, n, in, out)

double fs{];

int n;

double in;

double out([];

{

register int 1i;
double k, rem, intpart;

for (i = 0; 1 <= 2; i++) {
/* equation (2.13) */
k = floor (in / fs[i]):
if ((in >= k*fs[i]) && (in <= (k + 0.5)*fs[i]))
out (i] = in - k*fs(i};
else
out[i]l = (k + 1.0)*fs[i] - in;
if (n != 0) {
/* truncate output to simulate error given by equation (2.20) */
rem = modf (out[i]*(double) n/fs[i], &intpart):;
if (rem > 0.5)
intpart += 1.0;
out[i] = intpart*fs{i]/(double) n;
}

* Dealiasing algorithm
* Determines the approximate frequency of the signal input from the DFT outputs
* Returns zero if fails to find a component frequency

* fs - array of three sampling frequencies
* n - number of points used to calculate the DFTs
* n = 0 means DFT errors not considered
* out - array of frequencies of three output signals determined by DFTs
* p_cf - pointer to the correct approximate frequency of the input
*/

int dealias (fs, n, out, p_cf)

double fs(]:

int n;

double outl(]:

double *p_cf;

{

double idfsl, idfs2, idfs3;
double r([8]{3], dfx, poss_freq:
register int i, num_found;
double drOmax, drlmax, dr2max;

idfsl = 1.0/ (fs[1] - fsi0l);
idfs2 = 1.0/ (fs{2] - fs([1]));
idfs3 = 1.0/ (fs[2] -~ £s(0]):

/* calculate cycle count for the eight regions of the output pattern */
/* equation (2.18) */

r{7][0] = (out{0] - out[l])*idfsl;

r[(71{1) = (out(l] - out{2])*idfs2;

r{71(2) = (out(0] - out[2])*idfs3;

r{l](0) = (£s{0] - out (0] - out[l])*idfsl;
rl11(1] = r[7)(1]:

r[11(2] = (£s{0) - out[0] - out{2])*idfs3;
r(2])(0)] = ~-r[7]1{0] - 1.0:

r(2)(1] = (£s[1] - out({l]} - outf2])*idfs2;

r(2}12] = r(1)(2]);
r(31(0] = r[2][0];
r(31(1) = -r{7](1) - 1.0;
r(31(2] = -r{71[2]) - 1.0:
r(4]{0] = (out[0] + out(l])*idfsl;
r(4)(1) = -x[7)(1]:
r(4} (2] = (out(0] + out[2])*idfs3;
r{5][0] = c[7}([0]:
r[5][1] = (out[l] + out[2])*idfs2;
r[5]1(2} = r{4][2]:
r[6][0] = r[4][0];
[6][1] = r[2]{1] + 1.0;
r(6]{2] = (£s[2] - out[2] + out(0])*idfs3;
r(0){0] = r[1](0];
r{01{1] = r[51[1]:
r{0]{2] = (£s{0] - out[0] + out([2])*idfs3;

/* use simple algorithm if DFT errors are not to be considered */
if (n == 0) {
*p ef = -1.0;
num_found = 0;
for (i = 0; 1 <= 7; i++)
if (r(i}{0] == r[i]([1] && r{il{1l] == r{i](2] s&s&

(floor (r(i](2]) == rlil[2])} ({
if (i >= 4)
poss_freq = out[0] + r[i][2]}*fs[0];
else
poss_freq = (r{i] (2} + 1.0)*fs{0] - out{0];
if (poss_freq != *p cf &&
poss_freq >= 0.0 &&
poss_freq < frequency_range (fs, n)) {
num_found += 1;
*p_cf = poss_freq;

}

/* otherwise use modified algorithm */

else {

/* evaluate maximum error in cycle counts - equation (2.21) */
drlimax (fs{0] + fs[1))/(2.0 * (fs[1l] - £s5[0]) * (double) n):
drlmax = (fs[l] + fs[2])/{2.0 * (fs[2] - fs([l]) * (double) n);
dr2max = (fs[0] + £s(21)/(2.0 * (fs[2] - fs[0]) * (double) n);

/* evaluate max error in approximating input frequency */

dfx = max_errcor (fs, n);

/* find valid cycle count and hence the frequency of input signal

*p_cf = -2.0%dfx;

num_found = 0;

for (i = 0; i <= 7; i++)

if (fabs (r(i][0) - r[i]{1]) < drOmax + drlmax &&

fabs (r{i][1] - r{il1{2]) < drlmax + dr2max &&
fabs (r{i][0] - r([i1{2]) < drOmax + dr2max &&
(fabs (floor (r(il}f{0]}) - r{i][0]) <
fabs (ceil (rf{i}f0]) - r{i}[0}) < drOmax) &&
(fabs (floor (r{i}[1]) - r[il[1]) < drlimax ||

drOmax ||

fabs (ceil (r{i](1]) - r(i)[1l]) < drlmax) &&

(fabs (floor (r{i)[2]) - r[il{2]) < dr2max ||

fabs (ceil (r([i]{2]) - r{il1[2]) < dr2max)) {
if (i >= 4)

poss_freq = out [0} + r{i][2]1*fs([0];
else
poss_freq = (r[i]1(2] + 1.0)*£s[0] - ocut(0]:
if (poss_freq >= 0.0 s&
poss_freq < frequency range (fs, n) + dfx) {
num_found = 1;
*p_cf = poss_freq;

}

return (num_found == 1);

/***************************
* *
* user interface routines *
* *

***************************/

/*

* Program introduction display
*/

void heading ()

{

printf (" [OmThe Analysis of Signals Sampled at a Sub-Nyquist Rate\n\n”"):;
printf ("P C Bagshaw December 1989\n\n");

printf ("Simulation of Dealiasing Algorithm\n");

printf ("- Single Active Element Analysis -\n"):;

printf ("~ Uniform sampling scheme -\n");

printf ("- DFT errors may be considered -\n");

printf ("- Errors and output patterns plotted -\n\n"):
}
/*
* Request operating frequencies of the three samplers
*
* fs - array of three sampling frequencies
x/

void select_sample_frequencies (fs)
double fs{]:;
{

register int boolean, i;

float in_sample_f;

printf ("Enter three sampling frequencies\n");
boolean = 1;
while (boolean) {
for (1 = 0; 1 <= 2; i++) {
printf ("fs%d: ", 1 + 1);
scanf ("%f", &in_sample f);
fs[i] = (double) in_sample_f;
}
/* ensure equation (2.12) holds */
if (boolean = (0.0 >= fs{Q] || £sI0] >= fs[l1]
Il £s{1] >= £s[2]))
printf ("error: 0 < fsl < fs2 < fs3 not satisfied\n"):;
}

return;

/*

* Request number of points to be used by DFTs and check sufficient are used
»*

* fs - array of three sampling frequencies
*

*/
void read_num_dft_points (fs, p_n)
double fs([]:

int *p_n;

{

p_n - pointer to the number of points used to calculate the DFTs

register int sufficient points = 0;
char key:

printf ("Are DFT errors to be considered (y/n)? "):
while ((key = getch ()) != 'y' && key !'= 'n')

printf ("%c\n", key):

if (key == 'n') {
*p_n = 0;
return;

}
while (!sufficient_points) {
printf ("Enter number of points in DFT: ");
scanf ("%d", p_n):;
/* ensure equation (2.27) holds */
sufficient_points = ((double) *p_n > (fs{l] + £s[2])/(fs[2] -~ fs{1])

(double) *p n > (£s{0]} + £s[1])/(fs[1l] - £s(0]));

if (!sufficient_points)

printf ("error: insufficient points for algorithm to operate correctly\n”);

}

return;

* Plot sampler output frequencies and algorithm error against input frequency

* s — array of three sampling frequencies
* n - number of points used to calculate the DFTs
* n = 0 means DFT errors not considered
*/
void plot_output_patterns (s, n)
double s[];
int n;

{

struct videoconfig vc;
double fr, x_scale, y_scale, fx, fo{3], cf, dfxmax;

short x:;

if (!set_mode())
exit (-1):
_getvideoconfig (&vc);
_setcolor (_WHITE);
_settextposition (6, 1);
printf ("Sampler/Filter outputs: fol, fo2 and fo3");
_setlogorg (0, (int) vc.numypixels*0.49);
fr = frequency range (s, n};

dfxmax = max_error (s, n);

87

x_scale = (double) (vc.numxpixels - 1)/fr;
_moveto (0, (short) (-s{2]*x_scale/2.0));
_lineto (0, 0);

_lineto (vc.numxpixels, 0);

_moveto (0, 0);

for (fx = 0.0; fx <= fr; fx += 1.0/x_scale) {

simulate_output (s, n, fx, fo); /* calculate and plot fol, fo2, fo3 */

x = (short) (fx*x_scale);
_setcolor (12); /* light red */
_setpixel (x, (short) (-fc[2]*x_scale));

_setcolor (10); /* light green */
_setpixel (x, (short) (-fo{ll*x_scale)):
_setcolor (9); /* light blue */
_setpixel (x, (short) (-fo{0]*x_scale)):
}
_settextposition (1, 1):
printf ("fsl = %.3f fs2 = $.3f £s3 = $.3f\n", s[0], s[l], s{2]);
printf ("Operational frequency range, B = %f", fr}):;
_settextposition (16, 1);
printf ("0"™):;
_settextposition (16, 32);
printf ("Input frequency®):
_settextposition (16, 80);
printf ("B"):

if (n !'= 0) {
_settextposition (3, 1)
printf ("Number of points in DFTs = %d\n", n);
printf ("Maximum permissible error, Adfx_maxA = $f\n", dfxmax);
_settextposition (17, 1);
printf ("Dealiasing error: AdfxA");
_settextposition (18, 1);
printf ("- %.3f", dfxmax);
y_scale = -(double) (vc.numypixels - 1)/dfxmax*0.35;
_setlogorg (0, (int) vc.numypixels*0.93);
_moveto {0, 0);
for (fx = 0.0; fx <= fr; fx += 1.0/x_scale) {
_setcolor (14); /* yellow */
simulate_output (s, n, fx, fo);
if (!dealias (s, n, fo, &cf) || fabs (fx - cf) > dfxmax) {
/* dealiasing algorithm given incorrect answer */
_setcoler (13); /* purple */
cf = fx - dfxmax;
}
_moveto ((short) (fx*x_scale), 0);
_lineto ({({short) (fx*x_scale), (short) (fabs (fx - cf)*y_scale));
}
_settextposition (29, 1);
printf ("0");
_settextposition (29, 32);
printf ("Input frequency”):;
_settextposition (29, 80);
printf ("B");
_setcolor (_WHITE):
_moveto (0, (short) (dfxmax*y_scale));
_lineto (0, 0):
_lineto (vc.numxpixels, 0);

}

getch ()

_setvideomode (_DEFAULTMODE) ;

return;
}
/*
* Select video mode
*/

int set_mode ()

{

if (_setvideomode (_VRES16COLCR))
return {_VRES16COLCR);

if (_setvideomode (_ERESCOLOR))
return (_ERESCOLOR):

if (_setvideomode (_MRES16COLOR))
return {(_MRES16COLOR):;

else

return (0);

/****************
) *
* main program *
* *

****************/

double sample_ freqs{3] = {0.0, 0.0, 0.0};
main ()
{
int num_points:;
double B, dfx max, freq_inc = 0.0, fx, fo[3], cf;

float entered_inc;

register int errors_found = 0;

heading ()
select_sample_frequencies (sample_ fregs):
read_num_dft_points (sample_freqs, &num_points):

B = frequency_range (sample_freqs, num points);
printf ("Frequency range: $f\n", B);

dfx_max = max_error (sample freqs, num_points);
printf ("Maximum permissible error in calculating

while (freq_inc <= 0.0) {

input frequency: %f\n", dfx_max):

° printf ("Test dealiasing algorithm over range with frequency increment: ");

scanf ("%f", &entered_inc):
freq_inc = (double) entered inc;

}

printf ("Looking for errors in dealiasing algorithm...\n\n"):

for (fx = 0.0; fx < B; fx += freq_inc) {

simulate output (sample_freqgs, num points, fx, fo):

if (!dealias (sample_freqs, num points, fo, &cf)

errors_found += 1;
if (errors_found == 1)
printf ("Algorithm in error for input

printf ("%$f gives incorrect answer %f - error =

cf));

|1 fabs (fx - cf) > dfx_max) {

frequency, \n");

$f\n", fx, cf, fabs(fx -

89

}
if (!errors_found)
printf ("No"):;

else

printf ("%d", errors_found):
printf (" errors found\n\nPress any key to continue");
getch (),

plot_output_patterns (sample_freqs, num_points);
exit (0}

90

APPENDIX B

Program Source Code for the Simulation of the Multiple Active

Element Dealiasing Algorithms.

91

/*************************‘k*‘k*******************************

* x
* Sub-Nyquist Sampling Algorithms Simulation *
* *
* - Multiple Active Element Analysis - *
* - Uniform sampling scheme for three samplers - *

* - Chooses most efficient algorithm for case described - *
* *

‘k‘k*******/

/************************
* *
* include system files *
* *

I KKK KI KKK KK I I XKk K KKk * [

#include <malloc.h>
#include <stdio.h>
#include <graph.h>
#include <conio.h>
#include <float.h>
#include <math.h>

/************'k*************************t‘k*t*x*****************
* *
* define abstract data type for ordered list of frequencies *
* *

*****‘k****************‘k**************************************/

typedef struct freg list {
double frequency;
struct freq_list *next_frequency;
} FREQ_LIST;

void add_to_list (p_list_hd, f_value)
FREQ_LIST **p_list_hd;
double f_value;

{
FREQ LIST *new_node, *node = NULL, *old_node = NULL;

register new_value = 1;

if (*p_list_hd != NULL} ({
node = *p_list_hd;
while ((new_value = f_value != node->frequency) &&
node != NULL && f_value > node->frequency) {
old node = node;
node = node->next_frequency;
}
}
if (new_value) {
new_node = (FREQ_LIST *) malloc (sizeof (FREQ_LIST)):
if (new_node == NULL) {
fprintf (stderr, “"error: insufficient memory available\n"):
exit (-1);
}
new_node->frequency = f_value;
if (*p_list_hd == NULL} {
*p list_hd = new_node;
new_node->next_frequency = NULL;

}

92

else {
if (old_node == NULL)
*p_list_hd = new_node;

else

old_node->next_frequency = new_node;

new_node->next_frequency =

}

/****************************
* *

* data processing routines *
* *

****************************/

double frequency range (fs)
double fs{]:;
{

double Bopt:

/* equation {(2.16) */

node;

Bopt = fs([0)}*fs(2]/(2.0*(fs(2] - £s[0]))) + £s{1]*0.5;

return (Bopt):;

void simulate output (fs, in, out)
double fs(]:

double in;

double out|]:

{

register int i;
double k:

for (i = 0; 1 <= 2; i++)
/* equation (2.13) */
k = floor (in / fs(i}):
if ((in >= k*fs[i]) && {(in <=
out [i] = in - k*fs{i]:
else
out[i] = (k + 1.0)*fs[i]
}

return;

int single_dealias (fs, out, p_cf)
double fs[]:

double out(];

double *p_cf;

{

double idfsl, idfs2, idfs3;
double r({8](3], dfx, poss_freq;
register int i, num_found;
double drOmax, drlimax, dr2max;

(k + 0.5)*fs[i]))

in;

93

idfsl

= 1.0/ (fs[1] - £s([0]):
idfs2 = 1.0/ (fs[2) - fs{1]):
idfs3 = 1.0/ (fs[2] - £s({01):

/* calculate cycle count for the eight regions of the output pattern */
/* equation (2.18) */

r{7][0) = (out{0] - out([1l})*idfsl;

r[7][1] = (out{1l] - out[2])*idfs2;

r(71[2] = (out{0] - out(2))*idfs3;

r(1]1 (0] = (£s{0] - out[0] - outll])*idfsl;
r{11{1] = ¢(71(1]);

r(13[(2] = (£s[0] - out{0] - out[2])*idfs3;
r(2](0] = -r(71(0) - 1.0;

r{2]{1] = (fs{1] - out[l] - out(2])*idfs2;
rf{2]{2] = r(11[2}:

r[3)10] = r{2](0};

r(31(11 = -r{71[11 - 1.0;

r{31(2] = -r{71(2] - 1.0;

r{41[0] = (out[0] + out{l])*idfsl:

r{4][1) = -c[7](1];

r{4](2] = (out(0] + out[2])*idfs3;

r[5]1(0] = r(7]1(0]):

r(5}{1] = (out[l] + out(2])*idfs2;

r(5)(2] = r{41(2};

r{6)[0] = r[4][0];

r{6](1] = r{2}[1] + 1.0;

r{(6]1(2} = (fs[2] - out{2} + out[0})*idfs3;
r{0][0] = r{1](0];

r(0]1[1] = r[5)[1};

r{01(2] = (fs{0] - out{0] + out(2])*idfs3;

/* use simple algorithm since no DFT errors are considered */
*p cf = -1.0;
num_found = 0;
for (i = 0; 1 <= 7; i++)
if (r[i](0] == r(i][1] && r[i]{1] == r[i]([2] &&
(floor (r(il[2]) == r(i}(2])) {
if (1 >= 4)
poss_freq = out[0] + r[i][2]*£s[0];
else
poss_freq = (r[i][2] + 1.0)*fs[0] - out(0];
if (poss_freq != *p_cf &&
poss_freq >= 0.0 &&
poss_freq < frequency_range (fs))
num_found += 1;
*p_cf = poss_freq;

}

return (num_found == 1);

/*
* Implementation of multiple active element ambiguity reduction algorithm no.1l
*x/
void multiple dealias_l1 (s, o_hd, p_out_hd)
double s[];
FREQ LIST *o_hd(];:
FREQ_LIST **p_out_hd:
{
double fo[3], cf, fr:
FREQ_LIST *p_nl, *p_n2, *p_n3:

p_nl = o_hd(0];
while (p_nl != NULL) {
fo[0] = p_nl->frequency:;
p_n2 = o_hd[1];
while (p_n2 != NULL) ({
fo(l} = p_n2->frequency;
p_n3 = o_hd([2];
while (p_n3 != NULL) {
fo (2] = p_n3->frequency:
if (single_dealias (s, fo, &cf))
add_teo_list (p_out_hd, cf):
p_n3 = p_n3->next_frequency;

p_n2 = p n2->next_frequency;

p_nl = p_nl->next_frequency;
}

return;

/*
* Implementation of multiple active element ambiguity reduction algorithm no.2
*/

void multiple dealias_2 (s, o_hd, p_out_hd)

double s|[];

FREQ_LIST *o_hd([];

FREQ_LIST **p_out_hd;

{

FREQ LIST *p_n(3], *set[3]:
register int n, control, other[2]:;

double sf;

for (control = 0; control <=2; control++) {
set [control] = NULL;
p_nlcontrol] = o_hd{control];

while (p_n(contreol] != NULL) {
sf = 0.0;
n = 0;
while ((sf = (double) {(n++)*s{control] + p_nfcontrol]->frequency)

< frequency_ range(s))
add_to_list (&set[control], sf);

sf = 0.0;
n=1;
while ((sf = (double) (n++)*s{contrel] - p n{control}->frequency)

< frequency_range(s))
add_to_list (&set [control], sf):
p_nlcontroll = p_n[control]l->next_frequency;

}

while (set([0] != NULL && set[1l] != NULL && set[2] != NULL) {
if (set{2)->frequency >= set[l]->frequency)
if (set[2]->frequency >= set[0]->frequency) ({
other{0] = 0;
other({1l] = 1;
control = 2;
}
else {
control = 0;
other{0] = 1;
other (1] = 2;
}
else
if (set[l]->frequency >= set[0]->frequency) ({
other[0] = 0;
control = 1;
other[1l] = 2;
}
else {
control = 0;
other (0] = 1;
other[l] = 2;
}
for (n = 0; n <= 1; n+t+)
while (set(other[n]] != NULL &&

if (set[other{0]]

}

return;

set [other[n]]->frequency < set[controll->frequency)

set [other([n}]
NULL
if (set[0}->frequency

set (other[n}]->next_frequency:
set {other{1]] != NULL)
set[l]l->frequency &&

t= &&

set {1]->frequency == set[2]->frequency) {
add_to_list (p_out_hd,
set [control] set [control]l->next_frequency;

}

set [0] ~>frequency) ;

/***************************

*

*

* user interface routines *

*

*

*********************‘k*****/

void print_heading ()

{

printf
printf
printf
printf
printf
printf

return;

(" [OmThe Analysis of Signals Sampled at a Sub-Nyquist Rate\n\n”):;
("P C Bagshaw January 1990\n\n");

("simulation of Dealiasing Algorithms\n");

{"- Multiple Active Element Analysis -\n");

(*- Uniform sampling scheme for three samplers -\n");

("~ Chooses most efficient algorithm for case described -\n\n"):

void select_sample_frequencies (fs)
double fs{];
{

register int boolean, 1i;
float in_sample_f£;

printf ("Enter three sampling frequencies\n");
boolean = 1;
while (boolean) {
for (i = 0; 1 <= 2; i++) |
printf (vfs%d: ", 1 + 1);
scanf ("%f", sin_sample_f):
fs{i] = (double) in_sample_f;
}
/* ensure equation (2.12) holds */
if (boolean = (0.0 >= fs{0] || fs[0} >= fs(1]
i1 £s(1) >= fs[2]))

printf ("error: 0 < fsl < fs2 < £s3 not satisfied\n");

}

return;

void plot_analysis (s, in_hd, out_hd)
double s(]:

FREQ LIST *in_hd, *out_hd;

{

struct videoconfig ve;
double fr, scale, text_scale;
register short y;

FREQ_LIST *node, *np;
register int alias;

if (!set_mode())
exit (-1):
_getvideoconfig (&vc);
fr = frequency range (s);
scale = (double) (vc.numxpixels-1)/fr;
text_scale = 80.0/ceil (fr);
_settextposition (1, 1):
_outtext ("Multiple Active Element Signal Analysis ");
_outtext ("using sub-Nyquist Dealiasing Algorithm\n");

printf ("fsl = %.3f fs2 = %.3f £s3 = %.3f\n", s{0], s[i], s[2]):

printf ("Optimum operational frequency range, B = %f", fr):
_setcolor (15);

_settextposition (13, 1):

printf ("0%);

_settextposition (13, 80);

printf ("B"):;

_settextposition (14, 1):

_outtext ("Frequency components of input signal®);
_setlogorg (0, (short) vce.numypixels*0.39);
_moveto (0, y = (short) -vc.numypixels*0.2);
_linetoe (0, 0);

_lineto (vc.numxpixels, 0):

_moveto (0, 0);

node = in_hd;

while {(node != NULL) {

97

_setcolor (10): /* light green */
_moveto ({short) (node->frequency*scale), 0):;
_lineto ((short) (node->frequency*scale), y):
_settextposition (13, 1 + (int) (text_scale*ceil (node->frequency))):
printf ("%$.0f", node->frequency):;
node = node->next_frequency;
}
_setcolor (15);
_settextposition (25, 1)
printf ("0™):
_settextposition (25, 80);
printf ("B"):
_settextposition (26, 1):
_outtext ("Frequency components of ocutput signal”);
_setlogorg (0, (short) vc.numypixels*0.79);
_moveto (0, y = (short) -vc.numypixels*0.2);
_lineto (0, 0):
_lineto (vc.numxpixels, 0);
_moveto (0, 0);
node = out_hd;
while (node != NULL) {

alias = 1;

np = in_hd;
while (alias && np != NULL) {
alias = node->frequency != np->frequency’;

np = np->next_frequency;
}
if (alias)
_setcolor (12); /* light red */
else
_setcolor (14); /* yellow */
_moveto ((short) (node->frequency*scale), 0);
_lineto ((short) (node~>frequency*scale), y):;
_settextposition (25, 1 + (int) (text_scale*ceil (node->frequency)));
printf ("%.0£", node->frequency):
node = node->next_frequency;
}
getch ()
_setvideomode (_DEFAULTMODE);

return;

int set_mode ()

if (_setvideomode (_VRES16COLOR))
return (_VRES16COLOR):

if {_setvideomode (_ERESCOLOR))
return (_ERESCOLOR):;

if (_setvideomode (_MRES16COLOR))
return (MRES16COLOR);

else

return (0);

98

/************x***
* *
* main program *
* *

‘k‘k********/

double fs(3} = (0.0 ,0.0, 0.0}
FREQ LIST *fo_hd (3] {NULL, NULL, NULL}:

main ()

{

]
o
~

int num_harmonics
double fo[3], fr;
float entered_freq:
FREQ LIST *input_ freq_hd = NULL, *output_freq hd = NULL;
FREQ LIST *p_node:;

print_heading ():
select_sample frequencies (fs):
printf ("Frequency range: %f\n", fr = frequency range(fs)):
printf ("\nEnter frequencies of the signal elements, "):
printf ("terminating with an out-of-range value\n* ");
scanf ("%f", gentered_freq);
while (entered_freq >= 0.0 && entered freg < fr) {
add_to_list (&input_freq_hd, (double) entered_freq):
num_harmonics++;
printf ("* ™);
scanf ("%f", &entered freq);
}
p_node = input_freq_hd;
while (p_node != NULL) {
simulate_output (fs, p_node->frequency, fo):
add_to_list (&fo_hd[0], fol[0]}):
add_to_list ({&fo_hd{1], foll]):
add_to_list (&fo_hd(2], £fo(2]);
p_node = p_node->next_frequency;
}
/* choose the most efficient algorithm */
if (num_harmonics*num_harmonics < fr/fs(1]} ({
printf ("Running dealiasing algorithm #l...\n");
multiple dealias_l (fs, fo_hd, s&output_freq_hd):
}
else {
printf ("Running dealiasing algorithm #2...\n");
multiple dealias_2 (fs, fo_hd, &output_freq_hd);
}
printf ("\nFrequencies believed to be in input spectra after analysis:\n");
p_node = output_freg_hd;
while (p node != NULL) {
printf {("* %£\n", p_node->frequency):
p_node = p_node->next_frequency;
}
printf ("Press any key to contipnue");
getch ()
plot_analysis (fs, input_freq_hd, output_freq_hd);
exit (0);

APPENDIX C

Program Source Code for the Direct Realisation of the Pseudo-random

Discrete Fourier Transform.

100

S IRk kI A KN AR IR AN KRR KN AR R R RN R A Rk R ATk H X Hw

*

x

* Pseudo-Random Fourier Transform Simulator *

*

T e

/******k
*
* inclu
*

* kKKK

#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include

VARAA SR

*

*

AR X AN R KRR NN R AR AR R RNRNRRR RN R A AR RN RN [

KKK XXX AXK XN AKX H X
*
de system files *
«

KEERRIXK KX RN XK AR N [

<string.h>
<float.h>
<math.h>
<stdlib.h>
<malloc.h>
<io.h>
<stdio.h>
<conio.h>
<ctype.h>
<graph.h>
<limits.h>

<errno,h>

AR IKKI X ENTRNKN

*

* define global constants *

*

KAk ok ok kN

#define
#defline

#define
#define

/iﬁﬁ****
*
* error
*
* void
*

AkHATRK

#define
#define
#define
f#define
#define
#define
#define
#define
#define
#define
#define

*

Ahk kRN IR KRN NIRRT XA RN [

PI 3.14159265358979323849
TWCPI 6.28318530717958647698

/* maximum value ‘double* variable can be expressed as an 'unsigned long int®

DBL_LNG_MAX 4294967295.0
MAX FILENAME_SIZE 50

KXARNRR A Kk kR AR KA A X AR AN K
*

message handling *

*
error (int err type); *
*

AXRK KRR ARRIKRRR KK AN R KRR ®]

NO_MEM
UNDEF_TYPE
NOT_RATIONAL
OVERFLOW
FILE_ERR
SINGULAR_MATRIX
NO_TEMP

NO_SF

NO_INPUT
GRAPHICS_MODE
EOF_FOUND

L Y= T < TS Y - SR U Y R VU R S R o

(]

101

void error (err_type)

const unsigned int err_type;

{

char prog{7]; /* program

strcpy (prog, “pseudo”);

fprintf

switch (err_type) {

}
fpri

exit

case NO_MEM:
fprintf (stderr,
break;

case UNDEF_TYPE:
fprintf (stderr,
break;

case NOT_RATIONAL:
fprintf (stderr,
break;

case OVERFLOW:
fprintf (stderr,
break;

case FILE_ERR:
perror (NULL);
break;

case SINGULAR MATRIX:
fprintf (stderr,
break;

case NO_TEMP:
fprintf (stderr,
break;

case NO_SF:
fprintf (stderr,
break;

case NO_INPUT:
fprintf (stderr,
break;

case GRAPHICS_MODE:
fprintf (stderr,
break;

case EOF_FOUND:
fprintf (stderr,
break:

default:
fprintf (stderr,

break;

file name */

(stderr, " {1;3lm%s: ", prog):;

“insufficient memory available");

"undefined list type");

"cannot express number in ratiocnal form");

“overflow encountered in calculating system bandwidth");

"singular matrix"};

“cannot create a temporary flle name");

"no sampling frequency defined”);

"no input signal defined®);

*cannot open graphics screen");

*unexpected end of file encountered");

"undefined error, %u occurred”, err_type);

ntf {stderr, " [1;37m\n"});

(-1):

102

VARLAAAEEE R AR AR R R el A R R

*

*

* define abstract data type for a list of various types *

*

*

* void initialise_list (LIST *p_list, int type of list); *
* void add_to_list (LIST *p_list, ITEM data); *
* void rewlnd_list (LIST *p_list);

* int read llst (LIST *p_list, ITEM *p_data); *

*

*

AR kAR KRR AR IR R R AT KRN A AR I RARN AR RN AN IR A NIRRT AR RN AR AN [

/*
* list_type values
*/

#define FREQ_LIST

#define LIST_SAMPLE_FREQS
#define SAMPLE_DATA

#define FOURIER_TRANSFORM_ DATA

/*
* define abstract data type
*/

typedef union {

struct {

double frequency, amplitude,

} element;
double frequency;

struct {

double value, instance;

} sample;

struct {

1/*
2 /*
3 /=
4 /*

double fn, real, imaginary;

} bin;
} ITEM;

typedef struct body_ of_list {
ITEM item_listed;

struct body_of_ llst *next_item;

} BODY_OF_LIST;

typedef struct {
int list_type:

BODY OF LIST *list_hd, *cursor;

} LIST:;

/*

signal harmonics data */

detalils of possible sampling frequencies */

chronological list of sample values and times taken*/

transform output information */

/* FREQ_LIST */

phase;

/* LIST_SAMPLE_FREQS */
/* SAMPLE_DATA */

/* FOURIER_TRANSFORM_DATA */

* start up values to be taken by any newly defined varlable of type LIST

*/

void initialise_list (p_list, type_of_list)

LIST *p_list;
const int type_of_list;
{

p_list->list_type = type_of_ list;

p_list->list_hd = NULL;

p_list->cursor = NULL;

103

/*
* append list to include new item

*/

vold add to_list (p_list, data)
LIST *p_list;

ITEM data;

{

BODY_OF_LIST *new_node, *node = NULL, *old_node = NULL;

register int new_value = 1;

if (p_list->list_type == FREQ_LIST ||

p_list->list_type == LIST_SAMPLE_FREQS) /* unrepeated items required */

for (node = p_list->list_hd; new_value && node != NULL;
old_node = node, node = node->next_item) {
1f (p_list->list_type == FREQ_LIST)

new_value &= (data.element.frequency != node->item_listed.element.frequency};

if (p_list->list_type == LIST_SAMPLE FREQS)
new_value &= (data.frequency != node->item_listed.frequency);
i
else /* add new item to end of list */
old node = p_list->cursor;
1f (new_value) {
new_node = (BODY_OF_LIST *) malloc (sizeof (BODY_OF_LIST));
if (new_node == NULL) error (NO_MEM):;
switch (p_list->list_type) {
case FREQ_LIST:

new_node->item listed.element.frequency = data.element.frequency;

new_node->item_listed.element.amplitude = data.element.amplitude;

new_node—>item_lisced.element.phase = data.element.phase;
break;
case LIST_SAMPLE_FREQS:
new_node->item_listed.frequency = data.frequency;
break;
case SAMPLE_DATA:
new_node->item_listed.sample.value = data.sample.value;
new_node->item_listed.sample.instance = data.sample.lnstance;
break;
case FOURIER_TRANSFORM_DATA:
new_node->item listed.bin.fn = data.bin.fn;
new_node->item listed.bin.real = data.bin.real;
new_node->item listed.bin.imaginary = data.bin.imaginary;
break;
default:
error (UNDEF_TYPE);
break;
}
if (p_list->list_hd == NULL)
p list->1ist_hd = new_node;
else
old_node->next_ltem = new_node;
new_node->next_item = NULL;
p_list->cursor = new_node;
}
1f (!new_value && p_list->list_type == FREQ LIST) {
/* modify parameters if harmonic already listed */

old_node->item_listed.element.amplitude = data.element.amplitude;

104

old_node->item_listed,element.phase = data.element.phase;

}

/*
* reset list cursor to the beginning of the list
*/

vold rewind_list (p_list)
LIST *p_list;
{

p_list->cursor = p list->list_hd;

/t
* read item at list cursor and forward cursor by one item
* returns 0 if no item

*/

int read_list (p_list, p_data)
LIST *p_list;

ITEM *p_data;

{

if (p_list->cursor == NULL) /* cursor at end of list */
return (0};
else {
switch (p_list->list_type) {
case FREQ LIST:

p_data->element.frequency = p_list->cursor->item listed.element.frequency;
p_data->element.amplitude = p_list->cursor->item_llisted.element.amplitude;

p_data->element.phase = p_list->cursor->item_listed.element.phase;

break:

case LIST_SAMPLE TFREQS:
p_data->frequency = p_list->cursor->item_listed. frequency;
break;

case SAMPLE DATA:

p_data->sample.value = p_list->cursor->item_listed.sample.value;

p_data->sample.instance = p_list->cursor->item_listed.sample.instance;

break;
case FOURIER_TRANSFORM_DATA:
p_data->bin.fn = p_list->cursor->item_listed.bin.fn;

p_data=->bin.real = p_list->cursor->item listed.bin.real;

p_data->bin.imaginary = p_list->cursor->item_listed.bin. imaginary;

break:
default:
error (UNDEF_TYPE);
break; .
}
p_list->cursor = p_list->cursor->next item;
return (1}
1

105

vold free_list (p_list)
LIST *p_ list;
{

BODY_OF LIST *next;

while (p_list->list_hd = NULL} {
next = p list->list_hd->next_item;
free ((BODY_OF_LIST *) p_list->list_hd);
p_list->1list _hd = next;
1
p_list->cursor = NULL;

VASAAAAER AR RS AR R SRR Eiat st Al sttt s sttt sttt tll st

* *
* little helpful maths routines *
* *
* int even (int number): *

* void convert_complex (double a, double b, double *p_amp, double *p phi); *

* double sine (double x}; *
* double cosine (double x): *
* *

H AR KRR KA E KRR KA KRR KA A KR AR RE AR R AT R R R AR AR AN R RR AR RE KRR ERN AR AR KR AR AR AR KX/

int even (number})
int number;
{

return (number % 2 == 0);

void convert_complex (a, b, p_amp, p_phi)
double a, b, *p_amp, *p_phi;
{

*p_amp = sqrt (a*a + b*b);

if {fabs (a) < 3e~14 && fabs(b) < 3le-14)
*p_phi = 0.0;

else

*p_phl = atan2 (-b, a});

/t
* glightly more accurate sine and cosine functions

*/
double sine (x)
double x;

{

x = fmod (x, TWOPI);

return (sin (x)};

106

double cosine (x)
double x;
{

X = fmod (X, TWOPI):;

return {cos (x));

VAEA A AR AR R R AR s R R R R R e e e R L Py

* *
* routines to simulate sample generator - uniform, additive pseudo-random *
* or periodic with dither *
* *
* int equal_schemes (SAMPLING_SCHEME sl, SAMPLING_SCHEME s2); *
* void calc_bandwidth (SAMPLING_SCHEME *p_sampler); *

* void random_sampler (SAMPLING _SCHEME *p_ sampler, LIST in_freqs, LIST *p_out_data); *
* *

KRR KT KK KK KK AR KT XK R KK R R N Ak KK AR E A R R AR AR AN AN AR NN RN NN AR AR AT AR KRR A RARK AN RN R A KX N]

/t
* abstract data type for sampling scheme parameters
*/
$define UNIFORM ‘u'
#define ADDITIVE ‘a’
#define DITHER 'd*

typedef struct {
char scheme; /* to take the value UNIFORM, ADDITIVE or DITHER */
int num_fs;
LIST fs;?
int num_points;
double bandwidth;
double window width;
} SAMPLING_SCHEME;

/*
* test if two schemes are equivalent other than list of sampling frequencies

*/

int equal_schemes (sl, s2)
SAMPLING_SCHEME sl, s2;
{

int equal;

equal = (sl.scheme == s2.scheme &&
sl.num_£fs == s2.num_fs &&
sl.num_pelints == s2.num_points &&

sl.bandwidth == s2.bandwidth &&
sl.window_width == s2.window_width)};

return (equal);

107

/*

* evaluate operational bandwidth of system for specified pseudo-random

* sampling scheme - equation (4.31)

*/

vold calc_bandwidth (p_sampler)
SAMPLING_SCHEME *p_sampler;

{

ITEM s;
double lcm, ged, a, b, old_a, old b, tmp, int_part, reg_fs;
unsigned long int m, n, r;

int first_time = 1;

if (p_sampler->num_fs == 1) { /* only one sampling frequency */
rewind_list (&p_sampler->fs);
read_list (&p_sampler->fs, &s);
p_sampler->bandwidth = s.frequency / 2.0;
return;
}
lem = 1.0;
rewind_list (&p_sampler->fs);
while (read_list (&p_sampler->fs, &s)) {
/* express number in some rational form, a/b */
if (p_sampler->scheme == DITHER}
if (first_time} {
reg_fs = s.frequency;
a =1,0;
b = s.frequency:
}

else {

s. frequency;

reg_£fs;

else {
a = 1,07

b = s.frequency;

old_a = a;

old_b = b;

while ((modf (a, &tmp) > le-10 || modf (b, &int_part) > le-10) s&&

a <= DBL LNG_MAX && b <= DBL_LNG_MAX) ({
a += old_a;
b += old b;
}
1f (a > DBL_LNG_MAX || b > DBL_LNG_MAX)

/* number cannot be expressed in a rational form within the computer limits */

error (NOT_RATIONAL);

/* find greatest common divisor of denominator and numerator to express

rational number in most optimum form */
m = (unsigned long int) a;
n = (unsigned long int) b;
while ({r = n % m) != OL) {

n = m;
m=r;
}
a /=m;
b /= m;
/* find greatest common divisor of numerators */

if (first_time)

108

/*

ged = ay
else {
m = {unsigned long int} gecd;
n = (unsigned long int) a;
while ((r = n $ m} != OL) {
n = m;
m = r;
}
gcd = m;

}

/* find greatest common divisor of lcm and denominator */

if (lcm > DBL_LNG_MAX) error (OVERFLOW):

m (unsigned long int) lem;

n
while {({r = n $ m) != OL) {

(unsigned long int) b;

n=m
m = r;

}

/* calculate least common multiple */

iem *= b/m;
first_time = 0;
}

p_sampler->bandwidth = lem / ged / 2.0;

* generate a pseudo-random number between 0 and 1

*/

typedef enum {RESET, CONT} RAND_STATUS;

double random (ctrl)

RAND_STATUS ctrl;

{

/*

static double rnd = 12357.0;

if (ctrl == RESET) {
rnd = 12357.0;
return (0.0);
}

else {
rnd = fmod ((2045.0*rnd + 1.0},
return ({(rnd + 1.0)/1048577.0);
}

* simulate pseudo-random sampler

*/

void random_sampler (p_sampler, in_fregs, p_out_data}

SAMPLING_SCHEME *p_sampler;
LIST in_freqgs, *p_out_data;

{

int i, r, r2;
ITEM itm;

1048576.0) ;

109

double argu, xr, tr = 0,0, dtr = 0.0, old_dtr, fs, fs_max;

random (RESET):;
for (1 = 0; i < p_sampler->num_points; i++) {
xr = 0.0;
rewind_list (&in_fregs):
while (read_list (&in_fregs, &itm)} {
argu = TWOPI*itm.element.frequency*tr + itm.element.phase;
Xr += itm.element.amplitude * cosine (argu);
}
itm.sample.value = xr;
itm.sample.instance = tr;
add_to_list (p_out_data, itm);
rewlind_list (&p_sampler->fs);
switch (p_sampler->scheme) {
case UNIFORM:
read_list (&p_sampler->fs, &itm);
dtr = 1.0/itm.frequency;
tr += dtr;
break;
case ADDITIVE:
for (r = (int) floor (random (CONT)*p sampler->num_£fs) + 1;
r-- != 0y read_list (&4p_sampler->fs, &itm))
dtr = 1.0/itm.frequency;
tr += dtr;
break;
case DITHER:
read_list (sp_sampler->fs, &itm);
fs = itm.frequency;
old_dtr = dtr;
r = {int) floor (random {CONT)*p sampler->num_£fs} + 1;

if (p_sampler->num_fs % 2 && r == p sampler->num_f£s)
dtr = 0.0;
else (>
for {(r2 = (r + 1)/2; r2-- != 0; read_list (&p_sampler->fs, &itm))

’

dtr = itm.frequency/fs;
dtr *= (r % 2) 2 -1.0 : +1.0;
}
tr += -old_dtr + 1.0/fs + dtr;
break;
default:

break;

}
/* determine minimum possible chance in sampling instances */
rewind_list (s&p_sampler->fs);
switch (p_sampler->scheme) {
case UNIFORM:
read_list (&p_sampler->fs, &itm};
fs_max = ltm.frequency;
break;
case ADDITIVE:
read_list (&p_sampler->fs, &itm);
fs_max = itm.frequency;
while (read_list (&p_sampler->fs, &itm)}
fs_max = (itm.frequency > fs_max) ? itm.frequency : fs_max’
break;
case DITHER:

110

read_list (&p_sampler->fs, &itm);
fs = itm.frequency;
fs_max = 0.0;
while (read_list (sp_sampler->fs, &itm))
fs_max = (fs/itm.frequency > fs_max) ? fs/itm.frequency : fs_max;

fs_max = fs* (1.0 - 2.0*fs_max);
break;

default:
break;

!

p_sampler->window_width = tr - dtr + 1.0/fs_max;

VAR AR AR RS AR AR R AR R R R e R R A e R e R R e S Al a

*

* data processing routines

*

* vold dprft (SAMPLING_SCHEME sampler, double deltaf, LIST sdata, LIST *p_ftdata):’

* vold inv_dprft (SAMPLING SCHEME sampler, LIST ftdata, LIST sdata, LIST *p_idft_data);

*

AR R KRR Nk kAR Rk N RN R KR A A AR R A R AR R RN AR AR RN AR RN RN R AR RN AR A AR R TR R AR AT NN N]

/* .
* perform direct discrete pseudo-random Fourier transform -'equation (4.9)

*/

void dprft (sampler, deltaf, sdata, p_ ftdata)
SAMPLING _SCHEME sampler;

double deltaf;

LIST sdata, *p_ftdata;

{

unsigned long Iint num_bins, evaluate, count, i;
double argu, fn = 0.0;

ITEM itm, s;

printf (* [1;37mPerforming Fourier transform...\n"});
DrinCf (Meseseecescasnccscscstscsvarossssssssocscnsrsnsnsast);
num_bins = (unsigned long int) floor (sampler.bandwidth * 2.0 / deltaf + 0.1);
evaluate = (num_bins + 1L) / 2L + (num_bins + 1L) % 2L;
count = evaluate / 30L;
count += {(count == QL)
for (1 = 0L; 1 < evaluate; i++) {
ttm.bin.fn = fn;
itm.bin.real = 0.0;
itm.bin.imaginary = 0.0;
rewind_list (&sdata);
while (read_list (&sdata, &s)) |
argu = TWOPI*fn*s.sample.instance;
itm.bin.real += s.sample.value * cosine {(argu):
itm.bin.imaginary += s.sample.value * sine (argu};
}
1f (1 == 0OL)
itm.bin.imaginary = 0.0;
if (1 == num_bins / 2.0)
itm.bin.imaginary = 0.0;
add_to_list (p_ftdata, itm);
fn += deltaf:
if (i % count == QL)

*

*

-

*

-

*

111

printf ("\b");
i
printf (*\n"};

/*
* perform inverse direct discrete pseudo-random Fourier transform - equation (4.42)

*/

void inv_dprft (sampler, ftdata, sdata, p_ ldft_data)
SAMPLING_SCHEME sampler;

LIST ftdata, sdata, *p_idft_data;

{

unsigned long int num_bins, bins_evaluated, even, count, k, n;
double xa, argu;

ITEM itm, new_s, s:

printf ("Performing inverse transform...\n");
Printf (Meeccesecccsorcereccrcncorscnsscnsrecrsesoncsnnssns™)y
num_bins = (unsigned long int) floor (sampler.window_width * sampler.bandwidth * 2.0 + 0.1);
bins_evaluated = (num_bins + 1L} / 2L + (num_bins + 1L) % 2L;
even = (num_bins + 1L) % 2L;
count = sampler.num _points / 50L;
count += (count == QL);
rewind list (&sdata):
for (k = OL; k < sampler.num_points; k++) {
read_list (&sdata, &s);
rewind_list (&ftdata);
read_list (&ftdata, &itm};
xa = itm.bin.real;
for (n = 1L; n < bins_evaluated - even; n++) |
read_list (&ftdata, &itm);
argu = TWOPI*s.sample.instance*itm.bin.fn;
Xa += 2.0 * (ltm.bin.real * cosine {argu) + itm.bin.imaginary * sine (argu)}:
}
if (even) {
read_list (&ftdata, &itm);
arqu = TWOPI*s,sample.lnstance*itm.bin.fn;
Xa += itm.bin.real * cosine (argu);
}
xa /= (double} num_bins;
new_s.sample.value = xa;
new_s,sample.instance = s.sample.instance;
add_to_list (p_1idft_data, new_s);
1f (k % count == OL)
printf (“\b"):
}
printf ("\n"};

112

VASAAAAAS AR RS AR R E s e R e e T

*

-

* routines to determine exact Fourier coefficients from spectrum estimates *

*

*

LA AAARAASAL AL SRS AR SRRl E SRR Rt Rty

char *append_name (name, extension)

char *name, *extension;

{

char *new_name, *p_ext;

new_name = (char *) malloc (MAX_FILENAME_SIZE * sizeof (char));

new_name = strcpy (new_name, name};

if ((p_ext = strchr (new_name,
*p_ext = '\0';
new_name = strcat

return (new_name);

/*

* create matrix A in flle with extension

*/

o))

f= NULL)

(new_name, extension);

.mat

double matrix A (sd, bin_step, row, column)

LIST sd;
double bin_step;
int row, column;

{

double v = 0.0;
ITEM 1;

rewind_list (&sd);

if (row == 0 && column == 0} {

while (read_list (&sd, &1))
v += 1.0;
return (v);
}
if (row == 0) {
if (even (column))
while (read_list (&sd,

v += sine (TWOPI *
else
while (read_list (&sd,
v += cosine (TWOPI
return (v};

}

if (column == 0) {
1f (even (row))
while (read_list (&sd,
v += sine (TWOPI *
else
while (read_list (&sd,
v += cosine (TWOPI
return (v);
}
if (even (row})

if (even (column})

&i))

(double) (column/2) * bin_step * i.sample.instance};

&1))

* (double) ((column + 1)/2) * bin_step * i.sample.instance);
&1))

(double} (row/2) * bin_step * l.sample.instance);

&1))

* (double) ({row + 1)/2) * bin_step * i.sample.instance);

113

while (read_list (&sd, &i)
v += sine (TWOPI * (double) (column/2) * bin_step * i.sample.instance} *
sine (TWQOPI * (double) (row/2) * bin_step * i.sample.instance);
else
while (read_list (&sd, &i)
v += cosine (TWOPI * (double) ((column + 1)/2) * bin_step * il.sample.instance)
sine (TWOPI * (double) (row/2) * bin_step * i.sample.instance):;
else
if (even (column))
while (read_list (&sd, &1))
v += sine (TWOPI * (double) (column/2) * bin_step * l.sample.instance) *
cosine (TWOPI * (double) {((row + 1)/2) * bin_step * i.sample.instance):
else
while (read_1list (&sd, &i))
v += cosine (TWOPI * ({double} ((column + 1)/2) * bin_step * i.sample.instance)
cosine (TWOPI * (double) ((row + 1)/2) * bin_step * i.sample.instance);

return (v};

int generate_matrix A (sampler, deltaf, sample_times, filename)
SAMPLING_SCHEME sampler;

double deltaf;

LIST sample_times;

char *fllename;

{

char *matfile_name, key, *invflle_name;

FILE *matrix_a;

int num_bins, bins_evaluated, m_size, size, row, column;
SAMPLING_SCHEME ss;

double value;

matfile name = append_name (filename, “.mat");
num_bins = (int) floor (sampler.bandwidth * 2.0 / deltaf + 0.1);
bins_evaluated = (num bins + 1) / 2 + (num_bins + 1) % 2;
m_size = 2 * bins_evaluated - 1 - (num_bins + 1) % 2;
if ((matrix_a = fopen (matfile_name, "“rb")) != NULL) {
rewind (matrix_a};
Lf (fread ({int *) &size, sizeof (int), 1, matrix_a) &s&
fread ((SAMPLING SCHEME *) &ss, slzeof (SAMPLING_SCHEME), 1, matrix_a))
if (size == m_size && equal_schemes (ss, sampler)) |
printf (*\n [1;37mRequired %dx%d matrix already exists in file %s\n", m_size,
m_size, matfile_name}:;
fclose (matrix_a);
return (1};
}
else {
printf (" (0;37m%s exists. Over-write (y/n}? [1;33m", matflle_name);
while ((key = getch()) != 'y’ && key I= 'n‘)
printf (“sc\n", key):
1f (key == 'n"'} {
fclose (matrix_a):
return {0);
}
else { /* ensure inverse matrix file also over-written */
invfile_name = append_name (filename, ".inv");
if (remove (invfile name) == -1 && errno != ENOENT} error (FILE_ERR};

free ((char *) invfile_name):

*

114

I
printf (*\n [1;37m");

if ((matrix_a = fopen (matfile_name, "wb")) == NULL) error (FILE_ERR);

printf ("Creating %dx%d matrix in file %s...", m_size, m_size, matfile_name);

printf (" [0;37m rows made ([sO)"):

fwrite ((int *) sm_size, sizeof (Int), 1, matrix_a);

fwrite ((SAMPLING_SCHEME *) &sampler, sizeof (SAMPLING_SCHEME), 1, matrix_a):

for (row = 0; row < m_size; row++) |

for (column = 0; column < m_size; column++) {

value = matrix A (sample_tlmes, deltaf, row, column};

fwrite ((double *) &value, sizeof (double), 1, matrix a);

}
printf (" (u%d)", row + 1);
}
printf (“"\n*");
free ((char *) matfile_name);
fclose (matrix_a);

return (1});

/= -1

* calculate inverse of matrix, A and place in file with extension .inv

*/

void copy_matrix flle (source_name, dest_name)
char *source_name, *dest_name;

{

FILE *source, *dest;

int size;
SAMPLING_SCHEME sampler;
double value;

if ((source = fopen (source_name, "rb")) == NULL) error (FILE_ERR);
error (FILE_ERR);

1f ({(dest = fopen (dest_name, *"wb")) == NULL)

rewind (source);

fread ((int *) &size, slzeof (int), 1, source);

fread ((SAMPLING_SCHEME *} &sampler, sizeof (SAMPLING_SCHEME), 1, source):
while (fread ({double *) svalue, sizeof (double}, 1, source}

fwrite ((double *) &value, sizeof (double), 1, dest);

fclose (source);

fclose (dest};

ludemp {(in_file, n, indx, p_d}
FILE *in_file;

int n, *indx;

short *p_d;

{

int i, 3, k, i_max;
double max_a, sum, X, y, dum;

double *scale_v;

scale_v = (double *) malloc ({n + 1) * sizeof

p_d = 1; / no row lnterchanges yet */

{double)):

115

/* loop over rows to get the implicit scaling information */
rewind (in_flle);
for (L = 1; 1 <= n; i++) |
max_a = 0.0;
for (J = 1; J <= n; J++) |
fread ((double *) &x, sizeof (double), 1, in_file);
1f (fabs (x) > max_a)
max_a = fabs (x);
}
if (max_a == 0.0) error (SINGULAR MATRIX);
scale_v[i] = 1.0/max_a; /* save the scaling */
}
/* loop over columns of Crout's method */
for (3 = 1; 3 <= n; 3++) |
for (1 = 1; 1 <= 3§ - 1; i++) |
fseek (in_file, (long) (((i{ - 1)*n + (3 - 1))*sizeof (double)), SEEK_SET);
fread ((double *) &sum, sizeof (double), 1, in_file);
for (k = 1; k <=1 - 1; k++) |
fseek (in_file, (long) (((l1 - 1)*n + (k - 1))*sizeof (double)), SEEK_SET):
fread ((double *) &x, sizeof (double), 1, in_file);
fseek (in_file, (long) (((k - 1)*n + (j - 1))*sizeof (double)), SEEK_SET);
fread ((double *) &y, sizeof (double), 1, in_file);
sum -= xX*y;
}
fseek (in_file, (long) (((i - 1)*n + (J - 1))*sizeof (double}), SEEK_SET);
fwrite ((double *) &sum, sizeof (double), 1, in_file);
}
max_a = 0.0; /* initialise for the search for largest pivot element */
for (L = j; 1 <= n; i++) { ’
fseek (in_file, (long) (({i - 1)*n + (J - 1))*sizeof (double}), SEEK_SET};
fread ((double *) &sum, sizeof (double), 1, in_file):
for (k = 1; k <= 3 = 1; k++) |{
fseek (in_flle, (long) ({(f - 1)*n + (k - 1))*sizeof (double)}, SEEK_SET);
fread ((double *) &x, sizeof (double), 1, in_file};
fseek (in_file, (long) (((k - 1)*n + (3 - 1))*sizeof (double}), SEEK_SET);
fread ((double *) &y, sizeof (double), 1, in_file);
sum -= x*y;
}
fseek (in_file, (long) (((i{ - 1}*n + (J - 1))*sizeof (double)), SEEK_SET);
fwrite ((double *) &sum, sizeof (double), 1, in_file);
dum = scale_v([i}*fabs (sum); /* figure of merit for the pivot */
if (dum >= max_a) { /* is it better than the best so far? */
i max = i;
max_a = dum;
}
I
if (3 t= 1 _max) {
for (k = 1; k <= n; k++} { /* interchange rows */
fseek (in_file, (long) (({i_max - 1)*n + (k - 1))*sizeof (double)), SEEK_SET);
fread ((double *} sdum, sizeof (double), 1, in_file);
fseek (in_file, (long) (((j - 1}*n + (k - 1))=*sizeof (double}}, SEEK_SET):
fread ((double *) &x, sizeof (double), 1, in_flile);
fseek (in_file, (long) (- sizeof (double)), SEEK _CUR);
fwrite ((double *) &dum, sizeof (double), 1, in_file)};
fseek (in_file, (long) ({{i_max - 1)*n + (k - 1))*sizeof (double}), SEEK_SET);
fwrite ((double *) &x, sizeof (double), 1, in_file};
}
*p.d = -*p_d; /* change the parity of *p d */
scale_v([i_max] = scale_v[]j]; /* interchange the scale factor */

}

116

indx[3] = 1_max;
fseek (in_flle, (long) (({(J ~ D)*n + (3 - 1))*sizeof (double)), SEEK_SET);
fread ((double *) s&dum, sizeof (double}, 1, in_file);
tf (dum == 0.0) {
dum = DBL_MIN;
fseek (in_file, (long) (- sizeof (double)), SEEK_CUR):
fwrite ((double *) &dum, sizeof (double), 1, in_file);
}
if (3 = m |
fseek (in_file, (long) (((j - 1)*n + (3 - 1))*sizeof (double)), SEEK_SET};
fread ((double *) &dum, sizeof (double), 1, in_file);
for (1 = 3 + 1; 1 <= n; 1++) {
fseek (in_file, (long) ({({(} - 1)*n + (J - 1})*sizeof (double}), SEEK_SET);
fread ((double *) &x, sizeof (double}, 1, in_file);
1f (dum == DBL_MIN)
x = HUGE_VAL;
else
x /= dum;
fseek (in_fille, (long) (- sizeof (double)), SEEK_CUR});
fwrite ((double *) &x, sizeof (double), 1, In_file);
)
}
printf (" [usd)", 3J);
} /* go back for the next column in the reductlon */
free ((double *)} scale_v);

return;

lubksb (in_file, n, indx, b}
FILE *in_file;
int n, *indx;
double *b;
{
int i1 =0, 4, 11, 3:

double sum, Xx;

for (1 = 1; & <= n; i++4) {
11 = indx{i}]:
sum = b{1ll};
b{1ll] = bli};
1€ (41 = 0)
for (3 = ii; 3 <=1 - 1; j+H) |
fseek (in_file, {long) (({i - 1})*n + (J - 1))*sizeof (double)), SEEK_SET);
fread ((double *) &x, sizeof (double), 1, in_file};
sum -= x*b{}):
}
else
1f (sum != 0.0)
i1 = &;
b{i] = sum;
}
for (L = n; i >= 1; i--) {
sum = b{i]s
if 1 <
for (3 =1 + 1; 3 <= n; J++) |
fseek (in_file, (long) (((i - 1)*n + (3 - 1)) *sizeof (double)), SEEK_SET);
fread ((double *) &x, sizeof (double), 1, in_file);
sum -= x*b[j];
}

117

fseek (in_file, (long) (((i ~ 1)*n + (L ~ 1))*sizeof (double)), SEEK_SET)
fread ({(double *) &x, sizeof (double), 1, in_file);

if (x == HUGE_VAL)
b{i}] = 0.0;
else
b[i] = sum/x;
}

return;

vold inverse matrix (filename)
char *filename;
{

FILE *matrix, *work, *inverse;
int i, Jj, *indx, size;

double x, *y, *b;

short d;

char *tempfile_name, *matfile name, *invfile name;

printf (" [1;37m*);
matfile_name = append_name (filename, ".mat"};

invfile name = append_name ({(filename, “.inv"};

if ((inverse = fopen (invfile_name, “rb")) != NULL)

fclose (inverse):

{

printf ("Matrix inverse already exists in file %s\n", invfile_ name);

return;

}
1f ((matrix = fopen (matfile name, "rb")) == NULL) error (FILE_ERR};
1f ((inverse = fopen (invfile name, “w+b")}) == NULL} error (FILE_ERR};

if ((tempfile_name = tempnam ("c:\tmp“, “mat")) == NULL) error (NO_TEMP};

copy matrix file (matfile_name, tempfile_name);

if ((work = fopen (tempfile_name, “r+b*")) == NULL) error (FILE_ERR};

rewind (matrix);

fread {((int *) &size, sizeof (int), 1, matrix);

printf ("Creating inverse of matrix... [0;37m columns processed ((s0)"):

/* set up ldentity matrix */
for (1 = 1; i <= size; i++)

for (3 = 1; j <= size; j++) |{

if (L == J
x = 1.0;
else
x = 0.0;

fwrite {{double *) &x, slzeof (double}, 1,
}
/* LU decompose the matrix just once */
indx = (int *) malloc ({(size + 1)} * sizeof (int)};
ludcmp (work, size, indx, &d);

/* find inverse by columns */

inverse);

y = {double *) malloc ((size + 1) * sizeof (double));

b = (double *) malloc {{size + 1) * sizeof (double));

for (3 = 1; J <= size; j++) |{

for (1 = 1; 1 <= size; i++) |

fseek (inverse, (long) (((i - 1)*size + (J - 1))*sizeof (double)), SEEK_SET}:

fread ({double *) &y[i], sizeof (double},
b(i}] = (i == 3) 2 1.0 : 0.0;
}

lubksb (work, size, indx, y);

for (1 = 1; 1 <= size; i++}) {

1,

inverse):;

118

fseek (inverse, (long) (({i - 1)*size + (j - 1))*sizeof (double)), SEEK_SET);
fwrite {({double *) g&y[i], sizeof (double}, 1, inverse};
}
printf (* ([u%d) *, 3);
}
printf ({(“\n");
free ((int *) indx);
free ({double *) y);
free {(char *) matfile name):
free ((char *) invfile_name);
fclose (matrix);
fclose {(work);
fclose {inverse);

1f (remove (tempfile_name) == -1) error (FILE_ERR);

/*
* determine exact Fourier coefficients using inverse matrix and estimated coeffs

*/

void calc_coefficients (filename, sampler, deltaf, ftdata, p_rewdata)
char *filename;

SAMPLING_SCHEME sampler;

double deltaf;

LIST ftdata, *p _newdata;

{

char *invfile name;

FILE *inverse;

int num_bins, bins_evaluated, 1;
ITEM estimate, exact:

double fn = 0.0, sum, in_val;

enum {RE = 0, IM = 1, DONE = 2} state;

invfile_name = append name (filename, ".inv"};
if ({inverse = fopen (invfile name, “rb"}) == NULL) error (FILE_ERR);
rewind (inverse);
num_bins = (int) floor (sampler.bandwidth * 2.0 / deltaf + 0.1);
bins_evaluated = (num bins + 1) / 2 + (num _bins + 1) % 2;
for (L = 0; 1 < bins_evaluated; 1++) |
exact.bin.fn = fn;
for (state = RE; state != DONE; state++) {
sum = 0.0;
rewind_list (sftdata);
while (read_list (s&ftdata, &estimate)) {
if (fread ((double *) &in_val, sizeof (double), 1, inverse) == 0) error (EOF_FOUND);
sum += in_val*estimate.bin.real;
if (!{estimate.bin.fn == 0.0 ||
(estimate.bin.fn == sampler.bandwidth && even (num bins)))} {
if (fread ((double *) &in val, sizeof (double), 1, inverse) == 0)
error (EOF_FOUND);
sum += in_val*estimate.bin.imaginary;
}
}
1f (state == RE)} {
exact.bin.real = sum;
1f (1 == 0) {
state = IM;

119

exact.bin.imaginary = 0.0;
}
if (1 == num_bins /7 2.0) {
state = IM;
exact.bin.imaglnary = 0.0;
1
}
else
exact.bin.imaginary = sum;
}
add_to_llist (p_newdata, exact);
fn += deltaf;
}

fclose {lnverse);

SR R R AR AR KRR KKK AR R AR kAR KR KRR A A AR AN KA AR AN AR IR AR A A A AR A R TR XA RN RI NN RN X

*

* user interface routines

*

* vold scanf_double (dopble *p_var);

* void display_title (void)

* void enter sampler_ parameters (SAMPLING_SCHEME *p_sampler);
* void enter_signal_data (LIST *p_input);

* vold plot_analysis (LIST in_freqs, LIST fourier_coeffs, SAMPLING_SCHEME sampler);
* void plot_errors (SAMPLING_SCHEME sampler, LIST s_data, LIST inv_data);

*

H RN R AR KT AT AR R KR AR A AR AR R AR AR A A A AR AR R R I A R AR R RN R R R A RN A AR kX AR AR ARk AR AR A NS]

vold scanf_double (p_var)
double *p_var;

{

char string(30], *denominator;

scanf (" \t\n%s", string);
*p_var = strtod (string, &denominator);
1f (*denominator == '/')

*p_var /= atof (++denominator);

vold display_title (void)
{

printf (* [1;37m [20Sub-Nyquist Sampling Techniques\n"};
printf ("P C Bagshaw July 1990\n"};

printf (“Pseudo-random Discrete Fourier Transform Simulator\n"):;

void enter_sampler_parameters (p_sampler)
SAMPLING_SCHEME *p_sampler;
{

char key:
int zero_in_list = 0;
ITEM itm;

*

*

*

*

120

printf (" ([1:;37m\nSampling Scheme Parameters.\n");

printf (* [0;37mNumber of sampling points (< %d): ([1:33m", INT_MAX);

scanf ("%d", & (p_sampler->num_points});

printf (" [0;37mModel (U)niform sampling, (A)dditive pseudo-random sampling,\n"};
printf (“or periodic sampling with (D)ither? (u/a/d): [1;33m");

/* assume machine uses ASCII character set */

while ((key = (int) getch() | 32) != 'u' && key != 'a' g& key != 'd")

H

printf ("%c\n", key):;
p_sampler->scheme = key;
p_sampler->num_fs = 0;
initiallse_list (&p sampler->fs, LIST SAMPLE_FREQS):;
switch (p_sampler->scheme) {
case UNIFORM:
printf (* [0;37mEnter uniform sampling frequency: (1:33m");
scanf_double (&itm.frequency):
add_to_list (sp_sampler->fs, itm);
p_sampler->num_fs = 1;
break;
case ADDITIVE:
printf (" [0:;37mEnter pseudo-random sampling frequencies (end with zero):
scanf_double (&itm.frequency);
while (itm.frequency > 0.0) {
add_to_list (&p_sampler->fs, itm};
p_sampler->num_fs++;
scanf_double (&itm.frequency);
}
break;
case DITHER:
printf (" [0:;37mEnter perlodic sampling frequency: (1:33m"};
scanf_double (&itm.frequency};
add_to_list (&p sampler->fs, itm);
printf (" (0;37mEnter possible positive dither in terms of fractions, 0
printf ("of\nthe sampling period, $f (end with x out of range): [1:;33m",

1.0/itm. frequency);

scanf_double (&itm.frequency);
while (itm.frequency >= 0.0 && itm.frequency < 0.5) {
1f (itm.frequency == 0.0)
' zero_in_list = 1;
else
add _to_list (&p_sampler->fs, itm);
p_sampler->num_fs += 2;
scanf_double (&itm.frequency);
}
p_sampler->num_fs -= zero_in_list;
break;
default:
break;
}
if (p_sampler->num_fs == 0) error (NO_SF);
if (p_sampler->num_fs == 1)
p_sampler->scheme = UNIFORM;
printf (* (0:;37m");

[1;33m");

x < 1/2 *);

121

void enter_signal_data (p_input)
LIST *p_input:
{

ITEM itm;

printf (" [1;37m\nInput Signal Detalls.\n"};

printf (" [0:;37mEnter frequency, amplitude and phase of the input signal harmonics.\n"):

printf (" (terminate with a negative frequency)\n"):;
itm.element. frequency = 0.0;
while (itm.element.frequency >= 0.0} {
printf (" {0;37m* freq: [1;33m");
scanf_double (&itm.element.frequency):;
1f (itm.element, frequency >= 0.0) {
printf (" [0;37m* amp: ([1;33m"};
scanf_double (sitm.element.amplitude);
if (itm.element.frequency == 0.0)
itm.element.phase = 0,0;

else |{

printf (" [0;37m* phase (degrees): [1:;33m");

scanf_double (&itm.element.phase);
itm.element.phase *= PI / 180.0;
}
add_to_list (p_input, itm);
}
}
rewind_list (p_input};
if (!read_list (p_input, &itm)) error (NO_INPUT);
printf (" [0;37m");

/*
* display frequency domain information
*/

typedef enum (ESTIMATE, EXACT} COEFF_TYPE;

void plot_analysis (in_freqs, sampler, fourier_coeffs, amp_control)

LIST in_freqs, fourler_coeffs;
SAMPLING_SCHEME sampler;
COEFF_TYPE amp_control;

{

struct videoconfig vec;

double max = 0.1, x_scale, amp_scale, phase_scale;
double amplitude, phase;

char key;

ITEM itm;

if (!set_mode()) error (GRAPHICS_MODE);
_getvideoconfig (&vc);

/* print labels */

printf (" [1:;37m");
_settextposition (1, 1);

if (amp_control == ESTIMATE)

_outtext (“"Estimate Signal Analysis using Pseudo-random sampling and Fourier transform"};

else

_outtext ("Exact Signal Analysis using Transform and Inverse Matrix”);

122

_settextposition (20, 1):
_outtext ("Phase\n ")
_settextposition (28, 1);
_outtext (“="");
_settextposlition (19, 80):
_outtext ("f");

/* plot axes */
_setcolor (195): /* white */
_setlogorg (0, (short) vc.numypixels*0.59});
x_scale = (double} (vc.numxpixels-1)/sampler.bandwldth;
rewind_list (&fourier_coeffs);
while (read_list (&fourier coeffs, <m)) {
convert_complex (itm.bin.real, ltm.bin.imaginary, &litude, &phase);
if (amp_control != EXACT) ({
amplitude /= (itm.bin.fn == 0.0) + 1.0;
amplitude *= 2.0/sampler.num_points;
}
if (amplitude > max)
max = amplitude;
}
amp_scale = (double) (-vc.numypixels) * 0.525 / max;
_moveto (0, (short) (-vc.numypixels * 0.525});
_lineto (0, 0);
_lineto (vc.numxpixels, 0);
_setlogorg (0, (short) (vc.numypixels*0.79S5));
phase_scale = (double) (-vc.numypixels)/PI*0.118;
_moveto (0, (short) phase_scale*PI);
_lineto (0, {short) -phase_scale*PI);
_moveto (0, 0);

_lineto (vc.numxpixels, 0);

/* plot amplitude and phase information of transform output */
_setcolor (14); /* yellow */
rewind_list (&fourier coeffs);
while (read_list (&fourier_coeffs, &itm)) {
convert complex (itm.bin.real, itm.bin.imaginary, s&litude, &phase);
if (amp_control != EXACT) {
amplitude /= (itm.bin.fn == 0.0) + 1.0;
amplitude *= 2.0/sampler.num_points;
}
_setlogorg (0, (short) vec.numypixels*0.59);
_moveto ((short) (itm.bin.fn*x_scale), 0);
_lineto {(short) (itm.bin.fn*x_scale), (short) (amplitude*amp_scale));
_setlogorg (0, (short) (ve.numypixels*0,795));
_moveto ((short) (itm.bin.fn*x_scale), 0};
_lineto ({(short) (itm.bin.fn*x_scale), (short) (phase*phase_scale));

}

/* plot sample frequencies */

_setlogorg (0, ({short) ve.numyplixels*0,59);

_setcolor (13); /* light magenta */

rewind_list (&sampler.fs);

while (read_list (&sampler.fs, &itm)) {
_moveto ({short) (itm. frequency*x_scale), 0);
_lineto ((short) (itm.frequency*x_scale}, 10};
}

/* plot input frequencies */

_setcolor (10); /* light green */

123

rewind_list (&in_fregs);

while (read_list (&in_freqgs, &itm)) {
_moveto ({short) (ltm.element.frequency*x_scale), 0);
_lineto ((short) (itm.element.frequency*x_scale), 7);

}

/* highlight successive bins and display details of highlighted bin */
key = -1;
rewind_list (&fourier_coeffs):

while (key != 'e' && read_list (&fourier_coeffs, &itm)) {

convert_complex (itm.bin.real, ltm.bin.imaginary, &litude, &phase};

if (amp_control != EXACT) {
amplitude /= (itm.bin.fn == 0.0} + 1.0;
amplitude *= 2.0/sampler.num_points;
}
_setcolor (12); /* red */
_setlogorg (0, (short) vc.numypixels*0.59};

_moveto ((short) (itm.bin.fn*x_scale), 0);

_lineto ({short) ({itm.bin.fn*x_scale), (short) (amplitude*amp_scale));

_setlogorg (0, (short) (vc.numyplxels*0.795})};

_moveto ((short) (ltm.bin.fn*x_scale}, 0);

‘_lineto ((short) (itm.bin.fn*x_scale}, (short) (phase*phase_scale}};

_settextposition (2, 1):

printf ("frequency: %.4f ", itm.bin.fn};
_settextposition (2, 25);

printf ("*amplitude: %.4f ", amplitude);

_settextposition (2, 50);

printf ("phase (degrees): $7.4f “, phase * 180.0 / PI);
key = getch (}:

_setcolor (14); /* yellow */

_setlogorg (0, {short) vc.numypixels*0.59);

_moveto ((short) (itm.bin.fn*x_scale}, 0);

_lineto ({(short) (itm.bin.fn*x_scale}, (short) (amplitude*amp_scale));

_setlogorg (O, {short) (vc.numypixels*0.795}));

_moveto ((short) (itm.bin.fn*x_scale), 0);

_lineto {(short) (itm.bin.fn*x_scale), (short) (phase*phase_scale)};

}
_setvideomode (DEFAULTMODE):;

return;
}
/*
* display time domain information
*/

vold plot_errors (sampler, s_data, lnv_data)
SAMPLING SCHEME sampler;

LIST s_data, lnv_data;

{

struct videoconfig vec;
int k;
double x_scale, y_scale, err, max_e = 0.0, min_e = HUGE;

ITEM s, i;

if (iset_mode{)) error (GRAPHICS_MODE};
_getvideoconfig (&vec):
rewind_list (&s_data);

rewind_list (&inv_data};

124

while (read_list (&s_data, &s) && read_list (&inv_data, &l)) {
err = fabs (i.sample.value - s.sample.value);
max_e = (err > max_e) ? err : max_e;
min e = (err < min_e) ? err : min_e;
}
x_scale = (double) (vc.numxpixels-1)/sampler.num points;
y_scale = (double) (-vc.numypixels) / max_e * 0.7;
_setcolor (15}; /* white */
_setlogorg (0, (short) ve.numypixels*0.8);
_moveto (0, (short} (-vc.numyplxels*0.7)};
_lineto (0, 0};
_lineto (vc.numxpixels, 0);
_setcolor (14); /* yellow */
printf (" [1;37mError in calculating sample values through inverse transform\n\n");
printf ("Maximum error: $e\tMinimum error: %e\n", max_e, min_e);
_settextposition (26, 1)
printf (“0%);
_settextposition (26, 35);
printf ("Sample”):;
_settextposition (26, 77);
printf ("%d", sampler.num_points =~ 1});
rewind_list (&s_data);
rewind_list (&inv_data);
for (k = 0; k < sampler.num_péints; k++) |
read_list (&s_data, &s);
read_list (&inv_data, &i);
err = fabs {(i.sample.value - s.sample.value);
1f (k == 0}
_moveto (0, ({short) (err*y_scale));
_lineto ((short) (k*x_scale), ({short) (err~y scale)):;
}
getch ():
_setvideomode (_DEFAULTMODE);

int set_mode ()

if (_setvideomode (_VRES16COLCR))}
return (_VRES16COLOR};

if (_setvideomode {_ERESCOLOR)}
return (_ERESCOLOR};

1f (_setvideomode (_MRES16COLOR})
return (_MRES16COLOR):;

else

return (0};

125

/*t*t*t*tﬂtﬂ*#t*t
* *
* maln program *
* *

KEAEKKEX XK AN A KA *]

SAMPLING_SCHEME sampler;

LIST input_slignal, sample_data, ft_data,

idft_data, exact_ftdata;

double bin_step = 0.0, old_step;

char key

int
int
int
int

int

= '0', matrix_name[MAX_FILENAME SIZE};

need_sampler parameters = 1;
need_signal_data = 1;
need_generate_data = 1;
need_prdft calculated = 1;

need_invprdft_calculated = 1;

void satisfy input_needs ()

{

i1f (need_sampler parameters) {

enter_sampler parameters (&sampler);
calc_bandwidth (&sampler);

printf (" [1;37m\nSystem Bandwidth: %.3f\n", sampler.bandwidth};
need_sampler parameters = 07

free_list (&sample_data);

need_generate_data = 1;

}

if (need_signal_data} {

enter_signal_data ({(sinput_signal};

need_signal data = 0;

free_list

(&sample_data);

need_generate_data = 1}

}

if (need_generate_data) {

printf (*

[1;37m\nGenerating sampling data...\n");

random_sampler (&sampler, input_signal, &sample data);

need_generate_data = 0;

free_list (&ft_data);

need prdft calculated = 1;

}

mailn (argec, argv)
int arge;
char *argvil;

{

initialise_list
initialise_list
initialise_list
initialise_list
initialise_list

(¢input_signal, FREQ_LIST):
(¢sample_data, SAMPLE_DATA);

(¢ft_data, FOURIER_TRANSFORM_DATA);
(¢idft_data, SAMPLE_DATA);
(sexact_ftdata, FOURIER_TRANSFORM DATA);

display_title ();

satisfy input_needs {);

while (key !=
printf (*
printf ("1.

printf
printf
printf

("2.
("3.
("4,

"6y |
f{1;37m {2J\nSimulation Options.

[G737m\n") ;

Change sampler parameters\n®):;

Change 1lnput signal descriptioh\n"):

Calculate pseudo-random discrete Fourier transform only and display spectrum\n®);

Evaluate PRDFT, the Inverse PRDFT and display errors and spectrum\n");

126

printf ("5. Calculate PRDFT, determine exact coefficients from it and display spectra\n"):
printf ("6. Quit\n");
printf {(“Enter cholce (1-6): (1;33m");
while ((key = getch()) < *'1' || key > '6*)
printf ("$c\n", key):
if (key == '1') {
free list (&sampler.fs);
need_sampler parameters = 1;
}
1f (key == '2*) {
free_list (&input_signal):
need_signal data = 1;
}
satisfy_ input_needs (};
1f (key == *3* || key == '5'} {
printf (" [0;37mEnter bin step { %f): [1;33m“, l.0/sampler.window_width};
old_step = bin_step;
scanf_double (&bin_step):
1f (bin_step != old_step) {
free_list ({(&ft_data);
need_prdft calculated = 1;
}
}
1f (key == "4') {
old_step = bin_step;
bin step = 1.0/sampler.window_width;
1f {pbin_step != old_step) {
free_list (&ft_data);
need prdft_calculated = 1;
}
}
if ((key == '3' || key == '4') && need_prdft_calculated} {
printf ("\n"};
dprft (sampler, bin step, sample_data, s&ft_data);
need_prdft_calculated = 0;
}
switch (key) |
case ‘'3':
plot_analysis (input_signal, sampler, ft_data, ESTIMATE):
break;
case '4°':
1f (need_invprdft_calculated) {
inv_dprft (sampler, ft_data, sample_data, &ldft_data);
need_invprdft_calculated = 0;
}
plot_errors (sampler, sample_data, idft_data);
plot_analysis (input_signal, sampler, ft_data, ESTIMATE);
break;
case 'S5':
printf (* {0;37mEnter name of matrix (filename without extension): [1;33m");
scanf (" \t\n%s”, matrix_name}:
while (!generate_matrix_ A (sampler, bin_step, sample_data, matrix_name}} {
printf (* [0;37mEnter name of matrix (fllename without extenslon): [1;33m");
scanf (" \t\n$s", matrix_name);
}
inverse matrix (matrix name);
if (need_prdft_calculated) |
dprft (sampler, bin_step, sample_data, &ft_data);
need_prdft_calculated = 0;

127

I
calc_coefficlents (matrix_name, sampler, bin_step, ft_data, &exact_ftdata);

plot_analysls (input_signal, sampler, ft_data, ESTIMATE);
plot_analysils (input_signal, sampler, exact_ftdata, EXACT);
free_list (&exact_ftdata);
break:

default:

break;

}
exit (0):

128

APPENDIX D

Source Code of DFT and Inverse DFT using NAG Library Routines.

129

program nag_dft (input, output);

const max_fft = 2048;
pi = 3.14159265358979323849;

type fft_data = array [0..max_fft - 1) of real;

time_data = array [0..max_fft] of real:;

var n, ifail : integer;
fs : real;
xa, xx, work, f_nag, x_nag, f_pra, x_pra : fft_data;
tk : time_data;

procedure CO6FAF (var x:fft_data; const n:integer; var work:fft_data;
var ifail:integer);fortran77;

procedure CO6GBF (var x:fft_data; const n:integer:
var ifail:integer);fortran?7;

procedure CO6FBF (var x:fft_data; const n:integer; var work:fft_data;
var ifail:integer);fortran77;

procedure GENERATE_DATA (var num_samples:integer; var sample_freq:real;
var x:f£ft_data; var t:time_data):
var j : integer;
scale : real;
begin {generate_data}
readln (num_samples);

readln (sample_freq):

scale := 0.0;
for j := 0 to num_samples - 1 do
begin

t{j] := scale / sample_freq;
x[j] := cos (2.0 * pi * 4.0 * t(3j]);
scale := scale + 1.0
end;
t[n] := scale / sample freq

end; {generate_data}

procedure DPRFT (var x:fft_data:; const n:integer; const bandwidth:real;
const t:time_data; var work:fft_data):
var fn, argu, re, im : real;
i, j, num_bins, evaluate : integer;
begin {dprft}

fn := 0.0;
num_bins := round (t[n]} * 2.0 * bandwidth);
evaluate := (num_bins + 1) div 2 + (num bins + 1) mod 2;
for i := 0 to evaluate - 1 do
begin
re := 0.0;
im := 0.0,
for j := 0 ton - 1 do
begin
argu := 2.0 * pi * fn * t(3];
re := re + x[j] * cos (argu):;
im := im + x[3j] * sin (argu)
end;
im := -im;
if 1 = 0 then
work (0] := re
else
begin

130

work [num_bins - i} := im;

work (1] := re
end;
fn = fn + 1.0/t {n]
end;
X := work

end; (dprft}

procedure INVERSE_DPRFT (var ftd:fft_data; const n:integer;

var fn,

i,

const bandwidth:real; const t:time_data;
var work:fft_data);
argu : real;

j, num_bins, evaluate : integer;

begin {inverse dprft}

num _bins := round (t(n] * 2.0 * bandwidth);
evaluate := (num_bins + 1) div 2 + (num_bins + 1) mod 2;
for j := 0 ton ~ 1 do

begin
fn := 0.0;
work [j] := ftd[0]:
for i := 1 to evaluate - 1 - (num_bins + 1) mod 2 do
begin
fn := £fn + 1.0/t (n}):
argu := 2.0 * pi * t([j] * fn;
work([j] := work(j} + 2.0 * (ftd[i] * cos (argu) -
ftd[num_bins - i] * sin (arqu))
end;

if (num_bins mod 2 = 0) then
begin
fn := fn + 1.0/t [n):
work[j] := work{j] +
ftd[num bins div 2] * cos (2.0 * pi * t[j] * fn)
end;
work([j] := work[j] / num _bins

end; {inverse_dprft}

procedure DISPLAY T _DOMAIN (const xa, x_nag, x_pra:fft_data; const n:integer);

var 3

integer;

errorx, max_nag_err, max_pra_err: real;

begin {display_t_domain}

max_nag_err := 0.0;

max pra_err := 0.0;

writeln ('Input sequence as restored by IDPRFT'):

for

j := 0 ton -1 do

begin

errorx := abs (xa{j] - x_nagl(jl):

if errorx > max_nag_err then
max_nag_err :i= errorx;

errorx := abs (xal[j] - x_praljl):

if errorx > max_pra_err then
max_pra_err := errorx;

writeln (j, xaljl, x praljl, errorx)

end;

writeln ('Maximum error in restoring data by NAG: ', max_nag err);

writeln ('Maximum error in restoring data by IDPRFT:', max_pra_err)

end; {display t domain}

131

begin {(main program}

end.

GENERATE_DATA (n, fs, xa, tk):
{perform DFT using NAG library routine}

XX = Xa;

ifail := 0;

CO6FAF (xx, n, work, ifail):;
f nag := xx;

{perform IDFT using NAG library routines}
CO06GBF (xx, n, ifail);
CO6FBF (xx, n, work, ifail);
X_nag := XX;

{perform DFT using PSEUDO-RANDOM algorithm}
XX = Xa;
DPRFT (xx, n, fs/2.0, tk, work);
f pra := xx;

{perform IDFT using PSEUDO-RANDOM algorithm}
INVERSE_DPRFT (xx, n, fs/2.0, tk, work):
X_pra := xx;

{output information to user}
DISPLAY T _DOMAIN (xa, X_nag, x_pra, n)

{main program}

132

BIBLIOGRAPHY

Baranov, L. A.

"Error estimates of the restoration of a continuous random signal when sampling is
irregular.”

Transactions in Telecommunications and Radio Engineering.

Vol. 38, No.§8, August 1983, pp37-39

Bilinsky, I. Ya; Borovik, Yu. F. & Mikelson, A. K.

"Complexity-reduced discrete Fourier transform." in

‘Signal Processing II: Theories and Applications.’

Schiissler, H. W. (editors)

Proc. EUSIPCO-83: Second European Signal Processing Conference. pp743-746

Bilinsky, I. Ya. & Mikelson, A. K.

CTOXQACTWMHECKOA U$PPOBAA OSPOETKA HenMPePblBHbIX CMrHAMNOB

('Stochastic Digital Sampling of Continuous Signals.")

Zinatne, Riga, Latvia, 1983 (in Russian)

Bilinsky. I. Ya; Mikelson, A. K. & Yakubaitis, S.

"Method for reducing the variance of a restored randomly sampled signal.”
Institute of Electronics and Computational Technology of the Latvian Academy of
Science. 1985, Latv. PSR Zinat. Akad. Vestis Fiz. Teh. Zinat. Ser. (USSR)

No.5, pp106-115

(CODEN: LZFTAG6, ISSN: 0321-1673, In Russian.)

Bilinsky, I. Ya; Nemirovsky, R. F. & Strautmanis, G. F.
"Wideband signal processing by general-purpose signal processors."
Proc. Seventh European Conference on Circuit Theory and Design.

Prague, Czechoslovakia, 2-6 Sept. 1985, pp371-374

133

Blahut, R. E.

1

'Fast Algorithms for Digital Signal Processing.

Addison-Wiley, Reading, Massachusetts, 1985

Gold, B. & Rader, C. M.
'Digital Processing of Signals.’

McGraw-Hill, New York, 1969

Kernighan, B. W. & Ritchie, D. M.
'The C Programming Language.’

Second Edition. Prentice Hall Software Series, Englewood Cliffs, New Jersey, 1988

Koffman, E. B.
'Problem Solving and Structured Programming in Pascal.’

Second Edition. Addison-Wesley, 1985

Leneman, O. A. Z.
"Random sampling of random processes: Impulse processes."

Information and Control, Vol. 9, 1966, pp347-363

Masry, E.
"Poisson sampling and spectral estimation of continuous-time processes."

IEEE Transactions on Information Theory, Vol. IT-24, No.2, March 1978, pp173-183

Masry, E; Klamer, D. & Mirabile, C.

"Spectral estimation of continuous-time processes: Performance comparison between

periodic and Poisson sampling schemes."

IEEE Transactions on Automatic Control, Vol. AC-23, No.4, August 1978, pp679-685

134

Masry, E. & Lui, M. C.

"Discrete-time spectral estimation of continuous-parameter processes: A new consistent

estimate."

IEEE Transactions on Information Theory, Vol. IT-22, No.3, May 1976, pp298-312

Wold, E. H. & Dippé, M. A. Z.
"Alias-free sound synthesis by stochastic sampling."”

Proc. 1985 International Computer Music Conference, Vancouver. pp39-46

135

REFERENCES

(1]

[2]

[3]

(4]

(5]

(6]

Rossi, J. P.
"Sub-Nyquist-encoded PCM NTSC color television."
SMPTE Journal, Vol. 85, No.1, January 1976, pp1-6

Fiihren, M. & Den Dulk, R. C.

"A new despreading method based on sub-Nyquist sampling." in
'Signal Processing III: Theories and Applications.'

Young, I. T. et al. (editors)

Proc. EUSIPCO-86: Third European Signal Processing Conference.
The Hague, Netherlands, 2-5 Sept. 1986, Vol. 1, pp49-52

Dunlop, J. & Smith, D. G.
'Telecommunications Engineering.'

Van Nostrand Reinhold (UK), Wokingham, 1984

Benjamin, R.
"Orthogonally aliased Fourier transforms for the analysis of sparsely populated

frequency spectra.”

Proc IEE, Vol. 124, No.6, June 1977, pp508-510

Brigham, E. Oran.
‘The Fast Fourier Transform and Its Applications.'

Prentice-Hall International, Englewood Cliffs, New Jersey, 1988
Underhill, M. J; Sarhadi, M. & Aitchison, C. S.

"Fast-sampling frequency meter."

Electronics Letters, Vol. 14, No.12, 8t June 1978, pp366-367

136

[7]

[8]

(9]

(10]

(11}

Sarhadi, M.

"Spectral analysis at high frequencies using a modified FFT."

Proc. 1989 International Symposium on Computer Architecture and
Digital Signal Processing.

Hong Kong, 11-14 Oct. 1989, Vol. 1, pp242-246

Bilinsky, I. Ya; Vystavkin, A. N. & Mikelson, A. K.

"Processing of randomly-sampled signals." in

'Signal Processing III: Theories and Applications.'

Young, I. T. et al. (editors)

Proc. EUSIPCO-86: Third European Signal Processing Conference.
The Hague, Netherlands, 2-5 Sept. 1986, Vol. 1, pp109-112

Beutler, F. J.

"Alias-free randomly timed sampling of stochastic processes."

IEEE Transactions on Information Theory, Vol. IT-16, No.2, March 1970,

ppl47-152

Masry, E.

"Alias-free sampling: An alternative conceptualization and its applications.”

IEEE Transactions on Information Theory, Vol. IT-24, No.3, May 1978,

pp317-324

Marvasti, F. A.

"Spectral analysis of random sampling and error free recovery by an iterative

method."

Transactions of the Institute of Electronics and Communication Engineers of

Japan. Section E, Vol. E69, No.2, February 1986, pp79-82

137

[12]

[13]

[14]

[15]

[16]

[17]

Marvasti, F. A.
"Spectrum of nonuniform samples."

Electronics Letters, Vol. 20, No.21, 11" October 1984, pp896

Wiley, R. G.

"Recovery of bandlimited signals from unequally spaced samples."

IEEE Transactions on Communications, Vol. COM-26, No.1, January 1978,
ppl135-137

Masry, E.
"Random sampling and reconstruction of spectra.”

Information and Control, Vol. 19, No.4, 1971, pp275-288

Widrow, B. & Stearns, S. D.
'Adaptive Signal Processing.'
Prentice-Hall, Englewood Cliffs, New Jersey, 1985

Knuth, D. E.

"The Art of Computer Programming.’
Vol. 1, "Fundamental Algorithms," &
Vol. 2, "Seminumerical Algorithms."

Second Edition. Addison-Wesley, Reading, Massachusetts, 1973

Liu, B. (editor)
'Digital Filters and The Fast Fourier Transform.'
Benchmark Papers in Electrical Engineering and Computer Science, Vol 12

Dowden, Hutchinson & Ross Inc., Stroudsburg, Pennsylvania, 1975

138

[18] Pipes, L. A. & Hovanessian, S. A.
‘Matrix-Computer Methods in Engineering.'

Wiley, New York, 1969

{19] Press, W. H; Flannery, B. P; Teukolsky, S. A. & Vettering, W. T.

‘Numerical Recipes.'

Cambridge University Press, Cambridge, 1986
[20] Proakis, J. G. & Manolakis, D. G.

'Introduction to Digital Signal Processing.'

Macmillan, New York, 1988

139

