
Durham E-Theses

Sub-nyquist sampling techniques

Bagshaw, Paul Christopher

How to cite:

Bagshaw, Paul Christopher (1990) Sub-nyquist sampling techniques, Durham theses, Durham
University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/6523/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support O�ce, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/6523/
 http://etheses.dur.ac.uk/6523/
http://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk

SUB-NYQUIST SAMPLING TECHNIQUES

P C Bagshaw, B.Sc. (Hons)
School o f Engineering and Applied Science
University of Durham, U K

Thesis for Master of Science submitted September 1990

ABSTRACT

A number of novel theoretical methods have been developed in an attempt to analyse
data produced by sampling a signal at below the Nyquist rate and the limitations of the
approaches have been investigated.

A technique is developed that allows, under specified conditions, the frequency and
amplitude of a band-limited sinusoidal signal (with no harmonics) to be determined
when the signal is sampled simultaneously with three uniform samplers at below the
Nyquist rate. The three samplers operate at slightly different rates. Each has its output
ideally low-pass filtered with a cut-off frequency at half the sampling rate. The
frequencies of the signals output f rom the ideal filters are analysed to determine the
input sinusoid parameters. The frequency of the sinusoid can also be found within a
calculated tolerance when approximate filter output frequencies are known.

Two approaches extending this technique for a band-limited periodic signal consisting
of more than just the fundamental, enable the frequencies of the harmonics to be found
for the signal, but there is the possibility that other erroneous harmonics may be
identified as part of the signal. The probability of this occurring can be reduced by
uniformly sampling simultaneously with a greater number of samplers. This probability
cannot reach zero. Furthermore, as the number of samplers increases or the number of
signal harmonics increases, the computational workload imposed in determining the
harmonic frequencies rises dramatically. The approaches are rendered impractical and
sampling at irregular intervals is suggested as an alternative to using a very large
number of uniform samplers.

A modified discrete Fourier transform and its inverse are developed to allow an
estimated spectral analysis of a continuous periodic signal sampled at irregular
intervals. Additive pseudo-random sampling and periodic sampling with dither are
rigourously defined as two proposed irregular sampling schemes. The periodicity and
symmetrical properties of the modified transform are derived for the two schemes.
Consistently alias-free spectral analysis of a band-limited periodic signal is
demonstrated using additive pseudo-random sampling with a maximum sampling rate
below the Nyquist rate. This does not apply when using periodic sampling with dither.

SUB-NYQUIST SAMPLING TECHNIQUES

Paul Christopher Bagshaw, B.Sc. (Hons)

Master of Science Thesis

University of Durham, U K
School of Engineering and Applied Science

September 1990

The copyright of this thesis rests with the author.

No quotation from it should be published without

his prior written consent and information derived

from it should be acknowledged.

WS'^ i i

1 MAR 1991

CONTENTS

ABSTRACT i

T I T L E PAGE i i

CONTENTS i i i

D E C L A R A T I O N v i

GLOSSARY OF ABBREVIATIONS A N D SYMBOLS v i i

1. INTRODUCTION 1

2. TECHNIQUE W I T H UNIFORM SAMPLING FOR SIGNALS CONTAINING A

SINGLE A C T I V E ELEMENT

2.1 Fundamentals of Uniform Sampling 4

2.2 Aliased Single Active Element Analysis 5

2.3 Proposed Dealiasing System 10

2.4 Operational Bandwidth 13

2.5 Single Active Element Dealiasing Algorithm 16

2.6 Errors Imposed by the Limitations o f the DFT 19

2.7 Summary 24

3. TECHNIQUE W I T H UNIFORM SAMPLING FOR SPECTRAL ANALYSIS

3.1 Multiple Active Element Ambiguity Reduction Algorithm N° - l 25

3.2 Multiple Active Element Ambiguity Reduction Algorithm N°-2 25

3.3 Illustration of Inherent Ambiguity 26

3.4 An Investigation of the Relative Efficiency of the Two 29

Algorithms and a Full-Scale FFT

3.5 Optimising Parameters to Minimise the Number of 33

'Ghost' Frequencies Possible in the Analysis of a Multiple Active

Element Signal

3.6 Summary 35

i i i

4. SPECTRAL ANALYSIS W I T H SUB-NYQUIST PSEUDO-RANDOM

S A M P L I N G

4.1 Introduction 36

4.2 Theoretical Development of the Pseudo-random Discrete Fourier 38

Transform

4.3 Generators of Pseudo-random Sampling Instances 44

4.3.1 Additive Pseudo-random Sampling 45

4.3.2 Periodic Sampling with Dither 48

4.4 Transform Period and Input Signal Bandwidth Limitations 50

4.4.1 Periodicity for Uniform Sampling Scheme 50

4.4.2 Periodicity for Additive Pseudo-random Sampling 51

Scheme

4.4.3 Periodicity for Periodic Sampling Scheme with Didier 52

4.4.4 System Bandwidth 53

4.5 Inverse Pseudo-random DFT 56

4.6 Improving the Estimated Fourier Coefficients 63

4.7 Conceptual Interpretation and Discussion of the Technique 70

5. DESCRIPTION OF S I M U L A T I O N PROGRAMS

5.1 Simulation of Single Active Element Dealiasing Algorithm wit i i 74

DFT Errors Considered

5.2 Simulation of Multiple Active Element Dealiasing Algorithms 75

5.3 Direct Realisation of the Pseudo-random Discrete Fourier 76

Transform

5.4 DFT and Inverse DFT using N A G Library Routines 77

6. CONCLUSIONS A N D SUGGESTIONS FOR FURTHER RESEARCH 78

I V

APPENDICES

A Program Source Code for the Simulation of Single Active 81

Element Dealiasing Algorithm with DFT Errors Considered

B Program Source Code for the Simulation of Multiple Active 91

Element Dealiasing Algorithms

C Program Source Code for the Direct Realisation of the Pseudo- 100

random Discrete Fourier Transform

D Source Code of DFT and Inverse DFT using N A G Library 129

Routines

B I B L I O G R A R H Y 133

REFERENCES 136

V

D E C L A R A T I O N

This thesis is submitted to the Board of Examiners for the School of Engineering and

Applied Science at the University of Durham for the degree of Master of Science. The

material contained within i t is solely the original work of the author and when detailed

reference has been made to other texts, the source of information has been clearly

stipulated.

The author wishes to convey special thanks to Dr. Mansoor Sarhadi for his supervision

and funding of the research undertaken, friends at the Queen's Head Hotel, Gilesgate, its

'spiritual' enlightenment and his parents and family for their moral support, without

whom the production of this work might not have been possible.

The copyright © of this thesis rests with the author. No quotation f rom it should be

published without his prior written consent and information derived from it should be

acknowledged.

V I

GLOSSARY OF ABBREVIATIONS AND SYMBOLS

DFT

DSPs

D U X

FFT

LPF

MTS

MUSE

N A G

NTSC

P A L

PC

P C M

PRNG
A
afn

Discrete Fourier Transform.

Digital Signal Processors.

Demultiplexing module.

Fast Fourier Transform.

Low-Pass Filter.

Michigan Terminal System.

Multiple Sub-Nyquist sampling Encoding. Used in Japanese-developed

high-definition television system.

Numerical Algorithms Group.

National Television Systems Committee. US-developed colour

television, using quadrature amplitude modulation of a colour sub-carrier

and a luminance signal.

Phase Alternating Line. German-developed colour television system.

Personal Computer (I B M compatible.)

Pulse Code Modulation. A development from pulse modulation

involving sampling a continuous signal, quantizing the samples to

specific levels, and encoding these values into some numerical form.

Pseudo-Random Number Generator.

estimated real Fourier coefficient relating to the harmonic of frequency

B err

fn

amplitude of m"^ signal harmonic.

real Fourier coefficient relating to m ^ signal harmonic.

operational bandwidth for dealiasing algorithm when errors in fg are

considered.

estimated imaginary Fourier coefficient relating to the harmonic of

frequency f^.

imaginary Fourier coefficient relating to m * signal harmonic.

V l l

Bgpt optimum operational bandwidth for dealiasing algorithm.

^pseudo bandwidth limitation required for input of pseudo-random DFT.

X pseudo-random variable for selection of x.

5(x) the impulse function.

5f DFT frequency bin spacing.

dfo frequency error in fg.

dfsi difference in sampling frequencies f^i and fs2.

dfs2 difference in sampling frequencies fs2 and fs3.

dfs3 difference in sampling frequencies fgj and fs3.

f̂ i frequency of m'̂ signal harmonic.

fn frequency for which Fourier coefficients are calculated.

fg frequency of signal output by sampler/LPF system.

fp periodicity of Xj.(f).

FR^2' ^^23' folding frequency/point of symmetry in aliasing pattern.

FRl3

fg rate of uniform sampling.

fx frequency of a pure sinusoidal signal.

f0 fundamental frequency of a periodic function.

h(t) rectangular window function.

L(f) frequency response of an ideal low-pass filter.

M number of components (fundamental plus harmonics) that make up a

periodic signal.

N number of consecutive samples taken of a signal.

P number of possible values x may take.

Q minimum length of sequence x(^).

Ô j relative phase of m"̂ signal harmonic.

R () independent pseudo-random number generating function. 0 < R () < 1.

Rj frequency resolution with which the input signal can be analysed.

R^ () pseudo-random number generating function with an uniform distribution.

X independent pseudo-random variable.

v i i i

t^ time of the (k -i-1)''^ sampling instance

'̂ min minimum possible difference between one sampling instance and the

next.

t^,l time f inal sample is taken.

Tg uniform interval between regular sampling instances.

T ^ width of rectangular window function h(t).

T0 repetition interval of a periodic function.

Uo(f) the continuous Fourier transform of uo(t).

uo(t) infinite series of impulses where each impulse corresponds to a sampling

instance.

U i (f) the continuous Fourier transform of ui(t).

uiit) repetition in the time domain corresponding to a series of impulses in the

frequency domain.

W^, W2 relative workloads for algorithms N° - l & N°-2 respectively.

W f f j relative workload imposed by FFT.

^ number of values instance tj^. can take.

\(k) uniform sequence accommodating every irregular sampling instance.

Xa'(t) instantaneous sample values according to inverse pseudo-random DFT.

X^(f) the continuous Fourier transform of x^{t).

Xg(t) function of time representing the magnitude of a continuous analogue

signal.

X(i(n) function representing the magnitude of a discrete analogue signal at the

(n-i-1)* sample.

X ^ i f) the continuous Fourier transform of Xo(t).

XQ(t) function of time representing a continuous analogue signal output by a

sampler/LPF system.

X j (f) estimated coefficients of signal Xj.(t) according to pseudo-random DFT.

Xj.(t) sampled, truncated, periodic waveform.

I X

1. INTRODUCTION

Reliable and relatively inexpensive digital hardware has been used to perform signal

processing tasks in preference to conventional analogue means. However, digital signal

processing is not necessarily the best solution for all signal processing problems and

often for exQremely wide bandwidth signal real-time processing, analogue techniques

are employed. The use o f digital systems has many well known advantages over

analogue systems, in particular in being able to provide a greater degree of flexibility in

system design. It is therefore desirable to devise digital techniques which allow wide

bandwidth signals to be rapidly processed in preference to analogue means.

Traditionally, the input to digital systems is formed by taking samples of a band-limited

signal at a rate which is greater than or equal to twice the signal bandwidth; that is, at a

Nyquist rate. I f a signal is sampled at regular intervals below the Nyquist rate (at a sub-

Nyquist rate) a phenomenon known as aliasing occurs.

The limited bandwidth of digital signal processors (currentiy approximately 25 MHz

but forever increasing) prohibits the digital analysis of very high frequency signals,

such as radar. Sampling such signals uniformly below the Nyquist rate inherentiy

results in aliasing and a loss of information. A technique is required which w i l l allow

relatively slow digital signal processors (DSPs) to analyse wide bandwidth signals

sampled below the Nyquist rate. The technique must therefore eitiier resolve the

ambiguities in the alias signal or somehow prevent the aliasing phenomenon.

This thesis describes the study o f two methods aimed at resolving the problems of sub-

Nyquist sampling. The first method involves the development of a technique which

would ideally eliminate all the ambiguities in the aliased signal, and the second

proposes a way to prevent the aliasing phenomenon. The origin of the aliases due to

sampling a signal at uniform intervals at a sub-Nyquist rate is investigated in the

frequency domain. A dealiasing algorithm is initially defined for a system of

sub-Nyquist samplers, to enable the elimination of ambiguities caused by sampling a

pure sinusoidal signal (one consisting of its fundamental harmonic alone) with the

system. An investigation is then made into extending the dealiasing algorithm to allow

ambiguities caused by sub-Nyquist sampling of a signal containing any number of

harmonics to be eliminated. The method used to avoid the aliasing phenomenon, rather

than resolve i t , centres around taking samples of a signal at irregularly spaced time

intervals, as opposed to uniform sampling. Generators of irregularly spaced sampling

instances are developed and a technique to perform consistentiy alias-free spectral

analysis of the irregularly spaced samples is investigated. Simulation of every aspect of

the methods studied is implemented to help in analysing their performance and

efficiency, and aid in determining their limitations.

The techniques developed, i f rigourous and truly capable of functioning at a

sub-Nyquist rate, w i l l inevitably have some limitations. Digital processing of analogue

signals has its drawbacks. The conversion of an analogue signal to a digital form

involves sampling the signal and quantizing the samples, resulting in distortion which

inhibits the reconstruction of the original analogue signal f rom the quantized samples.

Some detailed study of the limitations of the techniques is presented in this thesis.

Some work has already been done in the f ie ld of sub-Nyquist sampling. However, the

techniques already well developed have been for specific applications; such as multiple

sub-Nyquist sampling encoding (MUSE) for the Japanese high-defmition television.

The MUSE system covers a vast area of research and has not been included in this study

of sub-Nyquist sampling techniques.

Another application specific technique has been devised for sub-Nyquist-encoded PCM

NTSC colour television [I, Rossi] that enables the data rate of a PCM colour television

signal to be reduced. The encoding frequency is reduced below the Nyquist rate such

that the lower sidebands of the television signal overlap the baseband video frequencies.

The sub-Nyquist encoding frequency is carefully chosen such that the alias components

are placed into parts of the spectrum not normally occupied by the luminance or

chrominance components of the video signal. A proper choice of comb filters (having a

multiplicity of regularly spaced narrow attenuation bands) then allow most of the alias

signals to be removed f rom the baseband video.

Other systems make use of aliases caused by sub-Nyquist sampling rather than attempt

to resolve them. A new despreading method based on sub-Nyquist sampling [2, Fiihren

& Den Dulk] uses the aliasing phenomenon to make the input and output bands of the

new despreader different, in accordance with the distinguished despreading method

based on heterodyne correlation. This thesis does not consider such apphcation

dedicated techniques, but addresses the problem of eliminating all the aliasing effects

caused by sampling a signal unifomily at a sub-Nyquist rate.

Previous research related to solving the problem of aliasing in systems using

sub-Nyquist sampling, is limited. Some work is related to resolving the frequency

ambiguities resulting f rom uniform sampling at a sub-Nyquist rate, while other works

address random sampling schemes which could, in an ideal world, allow consistentiy

alias-free spectral analysis of a non-band-limited signal. The relevant works are

referenced in the thesis where they contribute to the development of the techniques

formed.

2. TECHNIQUE FOR SIGNALS CONTAINING A SINGLE ACTIVE

E L E M E N T

In order to eliminate aliasing when a signal is uniformly sampled at a sub-Nyquist rate,

it is first necessary to determine the cause of the aliasing in detail. This chapter is

concerned with using a traditional model of a continuous analogue signal to investigate

the origin of the aliasing phenomenon which occurs when a signal is sampled uniformly

at below the Nyquist rate. The simplest possible signal, a sinusoid, is considered and a

rigourous dealiasing algorithm is developed to allow ambiguities to be eliminated when

the sinusoid is sampled by a system of sub-Nyquist samplers. The limitations of the

algorithm are stipulated.

2.1 Fundamentals of Uniform Sampling.

Foiuier's theorem states that any single valued periodic function, which has a repetition

interval T^, can be represented by an infinite series of sine and cosine terms which are

harmonics of the fundamental frequency, = l / T ^ [3, Dunlop & Smith]. It is therefore

feasible to suppose that any analogue signal can be represented as a sum of sinusoids of

different amplitude, frequency and phase. The magnitude of the analogue signal at time,

t is modelled as Xjj(t) given by,

M

X a (t) = I A ^ C O S (2 7 C . f „ t + 0^) (2 . 1)

m=l

where M denotes the number of frequency components. A^,, f j„ and 0^ represent the

amplitude, frequency and phase respectively of each component. To process this

continuous-time signal by digital signal processing techniques, i t is necessary to convert

the signal into a sequence of instantaneous values by sampling it periodically every T j

seconds (uniform sampling at a rate f j = to produce a discrete-time signal, x^{n).

M

X A^cos (2 7 r . f „ . n T 3 + Qj
m=l

(2.2)

where n is a positive number. N consecutive samples, where N is ideally a power of 2,

then serve as the input to an N-point discrete Fourier transform (DFT), giving rise to

amplitude and phase spectra with N/2 frequency bins in steps of l / N T j hertz from 0 to

(N/2 - l)/NTs hertz [4, Benjamin]. The amplitude and phase spectra of x^(t) and x^in)

are required for comparison to investigate the ambiguities generated when sampling at a

frequency less than twice the maximum frequency component of the incoming signal;

ie. when sampling at a sub-Nyquist rate. In order to simplify this investigation, a signal

containing a single active element (M = 1) is considered.

2.2 Aliased Single Active Element Analysis.

Consider the case in which M = 1; ie. the signal contains only one sinusoidal

component, thus, f rom equation (2.1),

X^it) = A j j . C O S {2-K.f^t + 0x) (2.3)

Taking the continuous Fourier transform of this, to determine the signal spectrum, gives

x , (f) =
- j 2 n f t

A^.cos (27t.fxt + Q^) .e d t (2 .4)

" X

2 J L

j (2 7 : f ^ t + ê) - j (2 T c f ^ t + ê)
e + e

from the Euler identity"!". Expanding gives [3, Dunlop & Smith],

^The Euler identity states that e-J*i' = cos(j> ± jsinc]) hence, 2.cos(j) = &)'!*+ e'J't'.

Xa(f)
Ax I j6x - j 2 7 r t (f - fx) - jGx - j 2 n t (f + fx)

2 J
e . e + e . e dt

Ax j9x ^ Ax - jGx
= - . e . 5 (f - fx) + - . e . 5 (f + fx)

2 2

therefore,

Ax Ax
X^{f) = -" . (cosGx + js inGx) . 5 (f - f x) + -' ' . (cosGx - j s inGx) .8 (f+fx)

2 2
(2.5)

where 5(x) is the impulse function. Let

a = Ax-cosGx and b = -Ax-s inQx (2.6)

giving

9^ = arctan (-b/a) and A^ = V(a2 + b)̂ (2 . 7)

Therefore, the Fourier transform of a single harmonic in the time domain, may by

represented as a pair of complex conjugates in the frequency domain.

27cf,e,

X;,(f)

a/2
A

- j b / 2

a/2

-f., 1P%
jb /2

->f

Figure 2.1. The time and frequency domain representations of a continuous sinusoidal

signal, a & b are given in equation (2.6).

The sinusoid is sampled at regularly spaced intervals to produce the sequence of

instantaneous values, x^(n). The uniform sampling process may be regarded as

multiplying the continuous signal by a periodic series of impulses where each impulse

corresponds to a sampling instance [3, Dunlop & Smith]. An infinite series of

equidistant impulses, UQ(t) may be represented by.

u o (t) = Z 5 (t - nTg)
n = - o o

(2.8)

A graphical representation of this is shown in figure 2.2.

u o (t)

- 3 T , - T , 0 2 T , 4 T ,

Figure 2.2. A n infinite sequence of equidistant impulse functions.

The Fourier transform of a sequence of equidistant impulse functions is another

sequence of equidistant impulses [5, Brigham], given as.

U o (f) = -

n=-o°

8 (f - -) (2.9)

From the Convolution theorem, multiplication in the time domain translates to

convolution in the frequency domain. Convolution of a function with Uo(f) results in

replication in the frequency domain. Hence, the spectrum at the output of a sampler

whose input signal contains a single active element of amplitude A^, phase 9x, and

frequency fx, consists of pairs of sidebands spaced away by fx from the sampling

frequency harmonics ±f^, ±2{^, ±3f^, ... and 0; where f j = l /T^ and the sideband pairs

form the complex conjugate pairs Ax/2.(cos9x + jsinGx) and Ax/2.(cos9x - jsinGx).

input K^{t)

a/2

- j b / 2

output X(j(n)

-*Xd (n)

0 *r + f
jb/2

- f O'f
X X

Figure 2.3. The spectra of the sinusoidal signal before and after super-Nyquist uniform

sampling, a & b are given in equation (2.6).

As fx increases f rom zero, the upper sideband of one replication tends towards the lower

sideband of another, eg. f^ and f^ - f^, until the point when they meet and aliasing

occurs. That is, when fx = fs - ie- fx = V ^ - Therefore, to prevent this aliasing, it is

necessary to fol low the sampler by an 'ideal' low-pass filter (LPF) with a cut-off at half

the sampling frequency. In practice, only an approximation can be implemented,

leading to errors. The effect of such errors are not considered in this thesis.

X3 (t) , f ^ -
SAMPLER Xd(n)

>
L . P . F .

/-^
f s /2

Figure 2.4. Sampler and low-pass filter system to prevent signal repetitions from

overlapping.

The frequency of the analogue signal XgCt) output by the system in figure 2.4, fg = fx for

fx < fs/2. When fg > fx > fs/2, fg - fx w i l l be less than i^l and w i l l therefore appear at the

output. Furthermore, when f s < f x < l.Sfg, = -fg + fx and when l.Sfg < fx < 2fs,

fo = 2fs - fx, and so on.

In general [6, Underbill, Sarhadi & Aitchison], the frequency of the signal output by

the filter, fg is given by,

f , = F - k . f ^ for k . f s < F < (k + 0.5) . f .

and fo = (k + 1) .£„ - F for (k + 0 .5) .£„ < F < (k + 1) . f .

where k is a positive integer.

(2.10)

3f /2 5 f „ / 2

Figure 2.5. Frequency of signal output by sampler/LPF system against frequency of

input sinusoid.

Hence, the analysis of a given f^ merely identifies the 'comb' of frequencies (±fx + k.f^

hertz, where k is any positive integer and f^ is the frequency of the sinusoidal input of

the sampler/LPF system giving rise to the output signal x^Ct) with frequency, fg. It can

also be noted that as fg increases widi f^, the signal sideband (a + jb).5(fx) appears at the

output of the sampler/LPF system. As fg decreases with f^, the complex conjugate

sideband (a - jb).5(fx) appears at the output. The phase of the sidebands w i l l be shifted

linearly by the characteristics of the 'ideal' LPF, but their amplitude w i l l remain

unchanged i f the filter has an attenuation constant of unity in its pass-band. Thus, the

frequency domain representation, X^if) of the output signal, x^Ct) is given by,

X o (f) = (a + jb) . 8 (f ^) . L (f) for k.f^ < f x < + 0 . 5) . f s

and X^if) = (a - jb) .5 (f x) . L (f) for (k + 0 . 5) . f 3 < < (k + D - f s

(2.11)

where k is a positive integer and L(f) represents the system transfer function of an ideal

low-pass filter.

Therefore, for a signal consisting of a single active element, i f the frequency, f^ of the

sinusoid can be determined and the characteristics of the low-pass filter are known, then

the amplitude and phase may be calculated f rom the output of the sampler/filter system.

A method, although incomplete, to determine the frequency without ambiguity is

outiined by [6, Underbill, Sarbadi & Aitcbison]. A system of sub-Nyquist samplers

w i l l now be considered in order to determine the frequency, f^ of the sinusoidal input.

2.3 Proposed Dealiasing System.

A n incoming signal of frequency f^ is sampled simultaneously by three samplers

sampling at frequencies fg^, fs2 and fs3, with each followed by an 'ideal' low pass filter

with a cut-off frequency fsi/2, f^2^2 and respectively. The sampling frequencies are

such that

0 < f^i < f s 2 < f s 3 < 2 . s i g n a l bandwidth (2.12)

The frequency of the output of each filter are represented by f g j , fo2 and fo3, whose

values, in practice, are determined by fol lowing the filter with a digital frequency

counter. Input circuitry is also necessary to ensure the signal contains only one active

element and is bandwidth limited. The proposed single active element sub-Nyquist

sampling system to resolve ambiguity is illustrated in figure 2.6 [7, Sarhadi].

10

input
c i r c u i t r y

LPF frequency
counter

fs2

LPF Co2 frequency
counter

LPF •̂ o3 frequency
counter

d i g i t a l
> output

^s3

Figure 2.6. Proposed system for input containing a single active element.

The frequency at each output o f the three low-pass filters varies with fx as illustrated by

figure 2.7 (from equation (2.10)). The frequency of the three sampler/filter outputs are

described by equation (2.13).

^ol

f o l

fo2

fo2

fo3

fo3

f x - P - f s l

(P + 1) - f s l

q . f s2
(q + 1) .£32 - f>

= f r . f . x - - - s S

(r + 1).£33

for p . f ^ i < < (p + 0 .5) .£31

for (p + 0 .5) .£3! < < (p + 1) .£31

for q . £ 3 2 < £x < (q + 0.5) .£32

for (q + 0 .5) .£32 < f x < (q + 1) -£32
for r.£33 < £x < (r + 0.5) .£33

for (r + 0 . 5) . £ 3 3 < £x < (r + l) . £ s 3

. . . (2.13)

where p, q and r are positive integers.

The three sampler/LPF systems produce values for the three variables fg^, fo2 and fo3

from the input of frequency fx- A dealiasing algorithm is required to reproduce the value

of fx from the three frequencies f ^ j , fo2 and fo3. In order to do this without ambiguity,

the three variables fp^, fo2 and fo3 must take a unique combination of values for each

possible input frequency fx- The operational bandwidth of the system w i l l be the

maximum frequency of fx which results in a combination of values of the variables fg^,

fQ2 and fQ3 that is not produced for any lower input frequency. Having established the

limits of fx, the dealiasing algorithm must solve equation (2.13) for fx, given the values

f o r f o i , f o 2 andfo3.

11

o

CO

L n
•

r-i L n
U

Cm
II

a
!= It
U
31
O

U

Cm

I—1

0
n OJ

n j
£
Id
X

a u
Cm

A ©
II

©
© cn A

• +>
CSJ II S

0
m

II Sh
U

CO e «
>—1

Cm © •M
• Cm

© ^
M

^ II

II c n
3

CS3 Sh 0
(/> Cm

Cm
© •

© •
• L n •

© L n N

II U
II Sh

(SI
=;

M !h • M
o Cm Cm

• H N N ^

- H T ^ I S J T D

' H W (SJ C^-

© © © CO

lU
S<

Sh &^ a a tn
Sh b

12

2.4 O p e r a t i o n a l B a n d w i d t h .

From figure 2.7, i t can be seen that a point of symmetry, corresponding to an input

frequency FR22, exists in the output patterns generated by f^i and fQ2. and is given by,

F R 1 2 = n . f 3 i = (n - 0.5) .£32

for one n = 1, 1.5, 2, 2.5, ... Let dfs j = fs2 - f j i - From n.f^i = (n - 0.5).fs2 we get n =

fs2/(2.dfsi). Therefore, the folding frequency for the pattern is.

f s l - f s 2
1̂2 " F R , , = (2.14)

2 . d £ s i

Similarly, points of symmetry exists at input frequencies FR23 and FR13, in the output

patterns produced by fo2 & fo3 and fg^ & fo3 respectively, where.

F R 2 3 = and F R i 3 = (2.15)
2 . d f s 2 2 . d £ s 3

with dfs2 = fs3 - fs2> and dfs3 = fs3 - fgi-

For the dealiasing algorithm to identify a single frequency component, i t is necessary

for every possible frequency input to give a different output combination of f^i, fQ2 and

fQ3; ie. a unique combination o f fgi, fo2 and fo3 must exist for every input frequency. I f

this was not the case, the input to the dealiasing algorithm (ie. fg ,̂ fQ2 and fo3) for one

frequency component input would not differ f rom that for others, and so the algorithm

would generate all possible frequencies that could produce such an input, and

ambiguities would remain.

13

The dealiasing algorithm proposed in [6, Underbill, Sarbadi & Aitcbison] states that

"FR12 is taken to be the working frequency range of the whole system." However, this

cannot be the case, as FRi^ must be the smallest of FR12, FR23 and FR^3, and, in some

cases, the input to the dealiasing algorithm (ie. f g i , fQ2 and fQ3) w i l l be the same for two

distinct input frequencies.

Illustrative Example 2.1.

Consider the three samplers operating at frequencies with only 2 Hz difference, such

that fs i = 1000 Hz, fs2 = 1002 Hz and fs3 = 1004 Hz. The working frequency range

claimed, FR12 = 250,500 Hz. I f , for example, the input has a frequency of either

123,496 Hz or 127,504 Hz (both considerably less than FR12,) then f o i = 4 9 6 H z ,

fo2 = 250 Hz and fo3 = 4 Hz (from equation (2.13)) and the dealiasing algorithm wi l l not

be able to distinguish between the two possible inputs. Similarly i f the input has a

frequency of either 11,272 Hz or 239,728 Hz, for which f^^ = 272 Hz, fo2 = 250 Hz and

fo3 = 228 Hz.

Consider any two sampler/filter outputs fg^ and fo^ (ie. f^^ and f^^ can be any pair of

f g j , fQ2 and fQ3.) For most, but not all, frequency inputs below the folding frequency

FR^b, the output combination of f^^ and fo^ w i l l be unique, but w i l l be repeated for all

inputs with a frequency greater than FR^i,- For example, an input frequency, f j which is

greater than fs^2 such that f^^ = fob ^ i U generate the same output as an input frequency,

^2 = foa which is less than f^J2. For an input frequency slightiy greater than FR^^ say

by 5f, the output combination of fg^ and fg}, would not differ from that generated by an

input of frequency FR^j, - 5 f However, the output of a third sampler/filter, say f^ ,̂,

would differ for input frequencies up to, but not including, the point when 5f = f^J2;

and for all input frequencies below FR^i^ for which the output combination of f^^ and

fglj was not unique. A unique output combination of fg^, f^^, f^^, is thus produced for

input frequencies below FR^ î, + f ^ l . Therefore, the optimum operational bandwidth is

given by the minimum of FR12 + fs3/2, FR23 -1- fsi/2, and FR13 -1- fs2/2. But it is known

14

that fgi < fs2 < fs3 (dfs3 is greater than dfs^ and dfs2), and so FR13 -(- fs2/2 is always the

minimum of the three values . Thus the optimum operational bandwidth is given by.

f s l - f s 3 f s2
Bopt = + <2.16)

2 . (f s 3 - f s l) 2

Note that the optimum operational bandwidth is inversely proportional to the difference

between the highest and lowest sampling frequencies. Clearly very wide bandwidth

signals could be analysed i f the difference in sampling frequencies is small. I f fg^, fg2

and fs3 are approximately equal (say, = /g) and the difference between one sampling

frequency and the next is approximately equal (say, ==dfs), then dfs^ = dfs2 = dfs,

dfs3 = 2.dfs and the operational bandwidth w i l l be approximately,

/s^ /s s

4 . d f s 2
Bopt = +

The is approximately half the bandwidth claimed by [7, Sarhadi].

15

2.S Single Active Element Dealiasing Algorithm.

The analysis of the output fgi identifies the 'comb' of frequencies (±fx + p.fgi) hertz.

The output fo2 analysis produces a similar ambiguity pattern (+fx + q.fg2) hertz. The two

ambiguity patterns coincide on the true frequency, fx and at a possible 'ghost' frequency.

The correct input frequency can be identified f rom these two coincident frequencies by

comparison with a third ambiguity pattern (±fx + r.fg3) hertz generated by fQ3, and can

be determined by solving for fx in the equations of (2.13).

The fo l lowing dealiasing algorithm considers the patterns of the outputs f^i, fQ2 and fQ3

simultaneously in order to solve the equations of (2.13) for fx, given that fx is less than

BQPJ. From figure 2.8, eight distinct regions can be identified in the output containing

f^l, fQ2 and fQ3, corresponding to the three fg's either increasing or decreasing with an

increase in fx

Region 1. fgj & fQ3 decreasing and fo2 increasing with an increase in fx.

f „ i = (p + 1).£31 - f x

fo2 = f x - q - f s 2

f„3 = (r + 1) . f 3 3 - f x p = q = r + 1

Region 2. f^i decreasing and fQ2 & foS increasing with an increase in fx.

f „ l = (P + 1) . f 3 l - f x

fo2 = f x - q - f 3 2

fo3 = f x - ^.£33 p = q = r

Region 3. fgi & fo2 decreasing and fQ3 increasing with an increase in fx.

£ „ l = (p + 1) .£31 - f x

f„2 = (q + 1) . f s 2 - f x

fo3 = f x - r . f 3 3 p = q = r

16

Region 4. fgj, fQ2 and fQ3 decreasing with an increase in f̂ .̂

= (p + 1) .£31 -

fo2 = (q + 1) - f s 2 - f x

fo3 = (r + 1) .£33 - f x p = q = r

Region 5. fgi increasing and fo2 & fo3 decreasing with an increase in f̂ .

f o l = f x - P - f s l

f „ 2 = (q + 1) . f s 2 - f x

fo3 = (r + 1) .£33 - p = q + 1 = r + 1

Region 6. fgi & fo2 increasing and fo3 decreasing with an increase in f̂ .

f o l = f x - p - f s l

fo2 = f x - q - f s 2

f „ 3 = (r + 1) .£33 - f ^ p = q = r + l

Region 7. fgi & fo3 increasing and fo2 decreasing with an increase in f̂ .

f o l = f x - p - f s l

f „ 2 = (q + 1) - f s 2 - f x

fo3 = f x - r . f 3 3 p = q + 1 = r + 1

Region 8. fgj, fo2 & fo3 increasing with an increase in fj .̂

f . o l = f x - p f s l

o2 = f x - q f s2

o3 = f x - r f s 3 p = q = r . . . (2 . 1 7)

Each of the above eight sets of simultaneous equations can be solved separately for p,

giving.

Region 1.
f s l ~ f o l " fo2 fo2 + fo3 f s l ~ f o l + fo3

P =
d f s i d f s 2 d f s 3

Region 2.
f s l ~ f o l " fo2 fo2 ~ fo3 f s l ~ f o l ~ fo3

p = = =
d f s i d f s p d f s 3

17

Region 3.
fo2 ~ f o l f s2 ~ fo2 ~ fo3 f s l ~ f o l ~ fo3

p = 1 =

Region 4.

d f s i d £ s , d£s^

-o2 ~ f o l fo3 ~ fo2 fo3 ~ f o l
p = 1 = 1 = 1

d £ s i dfsp d£sT

Region 5.

p =

Region 6.

p =

Region 7.

p =

Region 8.

P =

f o l + fo2 fo3 ~ fo2 f o l + fo3

dfS i d £ s , d f s .

f o l ~ fo2 fo2 + fo3 f o l + fo3

d fS i dfSy dfS:

f o l + fo2 f s2 - fo2 - fo3 f s 3 " fo3 + f o l
= + 1 =

dfsn d f s , d £ s .

f o l ~ fo2 fo2 ~ fo3 f o l ~ fo3

d f s i d f s y d£s3 . . . (2.18)

For a value of p to be valid from any region, all three equations must yield the same

value, and p, by definition, must be an integer. Furthermore,

fx = (p + 1) - f s i - f o l for regions 1 to 4

and fx = £ o i - p - f s i for regions 5 to 8, (2.19)

Therefore, a value of p wi l l only be valid i f i t also gives a value for the correct

coincident frequency, fx, as greater than or equal to 0 and less than BQP^. By careful

observation of the equations of (2.18) and noting that the input frequency can faU in

only one of the eight regions at any time, i t can be seen that only one such value of p is

ever produced. The frequency ambiguity is thus eliminated.

18

2.6 Errors Imposed by the Limitations of the DFT.

The frequency counters used in the proposed dealiasing system of section 2.3 can be

replaced by spectral analysers that would not only give the frequency of each

sampler/LPF output, but also the amplitude. This could then be used with equation

(2.11) to determine the ampUtude of the sinusoidal input. Each spectral analyser w i l l

need to perform a Fourier analysis of each sampler/LPF output which requires the use

of the discrete Fourier transform. There is a limited resolution to which an N-point

discrete Fourier transform can determine the frequency of an active element of a signal.

Any active element must be represented spread over the coefficients of the DFT and

assuming that most of the energy is concentrated in the single nearest coefficient, the

maximum frequency error in the spectral analysis is given by [7, Sarhadi],

l d £ o _ l = (2.20)
2 .N

where fg is the sampling frequency. The effects of this error on the dealiasing algorithm

must be determined.

The frequency error of equation (2.20) leads to an error in calculating the cycle count, p,

when using the equations of (2.18).

Consider region 1.

f s l ~ f o l ~ fo2 fo2 + fo3 f s l ~ f o l + fo3
p = —

d f S i d f S j d f S 3

The error in each fg w i l l produce an error in p for each of the three sections of the

equation above, giving,

19

f ^ i - (f o l ± d f o i) - (f „ 2 ± df02)
p + d p i =

d f s i

(f „ 2 ± d f o j) + (f o 3 ± dfo3)
P + alp2 =

dfS2

- (£, ,1+ d f o i) + (£„3+ d£o3)
P + dp3

d£s.

Hence, substituting for dfoj using equation (2.20) and assuming that each DFT uses the

same N number of points (valid i f the differences in the sampling frequencies are

small,)

f s l + f s2 f s 2 + f s 3 f s l + f s3
I d p i l = , Idp2l = , Idp^l =

2.N.d£si 2 .N.d£s2 2.N.d£s3 . . . (2 . 2 1)

Similarly for the other seven regions. The value of p that is to be used in calculating f^

from equation (2.19) must be the one containing least error. As f j j < fs2 < fs3. dp3 is

always the minimum of dp i , dp2 and dp3. Therefore, by including dp3 with p in

equation (2.19),

f x + Idfx^ a x l = (P + l d P 3 l + l) - f s l - f o l + l d f O i „ ^ J

= £^ + idps i .£31 + l d £ o i „ a J

Hence,

f s l - f s 3
Idfx^ a x l = l < i f O i „ ^ J + I d p 3 l.f3i = (2.22)

N. (£33 - £31)

The errors that can occur in both p and f^, mean that the dealiasing algorithm must be

refined. For a value of p to be valid f rom any of the eight regions, each of the three

equations must yield a value which is equal within the error bands dp j , dp2 and dp3

respectively. Furthermore, p must not differ f rom an integer value by more than dp j ,

20

dp2 or dp3 for each of the three equations, and the value of (fx + dfx) generated from p

must be less than.

f s l - f s 3
Berr + Idf^maxl =

2 . (f s 3 - f s l)
(2.23)

Where Bg^. is the operational bandwidth of the system when D F T errors are also

considered, given by.

f s l - f s 3

(f s 3 - f s l)

1 1

,2 N.
(2.24)

for N > 2.

Bgrr is slightiy less than Egpt (for fs2 « FR13 and assuming N » 2) as it is no longer

possible to guarantee that the output combination foj, fo2. fo3 will be unique for input

frequencies greater than FR13.

The frequency resolution with which the input signal can be analysed,

2 . f , i . f
R i = 2. Idfx„

N . (f s 3 - f s l)
(2.25)

By rearranging equation (2.25) and substituting into equation (2.24),

B e r r = ^ i - N -
1 1

.2 N j

Hence,

4 - B e r r
N = + 2

Ri

(2.24)

(2.26)

21

This clearly shows that the computational workload of the technique is inversely

proportional to the frequency resolution.

Furthermore, for the modified algorithm to perform correctiy, i t is necessary for dp j ,

dp2 and dp3 to be less than 0.5. This requirement is satisfied only i f (from equation

(2.21)),

f s 2 + f s l f s 3 + f s2
N > and N > (2.27)

f s 2 - f s l f s3 - f s 2

A 'C simulation of this algorithm is presented in appendix A. The implementation

rigourously defines the algorithm but when executed shows that the algorithm is not

always error free! The rare errors observed are believed to occur due to floating-point

arithmetic errors or the assumption that all three DFTs use an equal number of

consecutive samples no longer being valid (which is the case for small N or large

differences in the sampling frequencies.) As N increases, no enrors can be found.

Figure 2.9 shows an example of the ideal sampler/filter output patterns generated when

DFT errors f r o m an 85-point transform are considered, and the error made by the

dealiasing algorithm in attempting to determine the frequency o f the signal input. The

error, I dfx I is the absolute difference between the actual frequency of the signal input

and its frequency as evaluated by the algorithm. The magnitude of the error varies in an

approximately triangular fashion, increasing and decreasing as the estimated outputs

fol, fo2 and fo3 tend away and towards the correct outputs of foj, fo2 and fo3 (given

when N is infinite) respectively. The complex nature in which the error changes is not

of great importance. However, note that the level of error is consistently below the

maximum permissible error, dfxjjj^x • Therefore, the frequency of the input sinusoidal

signal can be found within a calculated tolerance when the frequencies of the

sampler/filter outputs are known with error.

22

in

tiS </) o

IS ©
to <u £
a e X 16 o

23

2.7 Summary.

A theoretical method has been established to eliminate not only the frequency

ambiguity, but also any amplitude ambiguity, resulting from sampling a pure sinusoidal

signal below the Nyquist rate. The dealiasing algorithm developed considers the output

of three sampler/LPF systems to determine the frequency of the sinusoidal input. There

is a limit to the maximum frequency of the signal in relation to the three sampling

frequencies used, which represents the operational bandwidth, B^pt (given by equation

(2.16)) of the technique.

In practice, the limitations of an N-point discrete Fourier transform mean that the

frequency of the signals at the output of each sampler/LPF filter can only be specified

within some known tolerance. This error results in the technique being able to guarantee

an unambiguous output with a small error (the maximum permissible error is given as

IdfXjjja^l by equation (2.22)) at a slightly reduced bandwidth, B^^ (given by equation

(2.24).)

The technique is only applicable to pure sinusoidal signals and needs to be extended to

apply to signals capable of containing any number of harmonics (signals consisting of

multiple active elements.)

24

3. TECHNIQUE WITH UNIFORM SAMPLING FOR SPECTRAL

ANALYSIS

The dealiasing technique described in chapter 2 is to be extended for signals consisting

of multiple active elements. Each active element in the input signal of the system

(shown in figure 2.6) will result in an aliased spectral line in the spectrum of the signal

at the output of each sampler/LPF system. I f the frequency counters used in the

proposed dealiasing system of section 2.3 are replaced by spectral analysers, as in

section 2.6, then the spectrum of the signal at the output of the sampler/LPF systems

can be determined. These spectra must be analysed to determine the frequency of each

component of the input signal.

3.1 Multiple Active Element Ambiguity Reduction Algorithm N^*l.

The technique developed to analyse an aliased single active element can be extended to

identify, the components of an aliased multiple active element signal. Each active

element results in a frequency component in the output of each of the three

sampler/filter systems, some of which could overlap. There is, therefore, a spectrum of

aliased lines at each sampler/filter output; namely, FFTl, FFr2, and FFT3. The

proposed technique to resolve the frequency ambiguities involves the use of equation

(2.19) to identify a possible input frequency in the manner described for the single

active element analysis, for every combination of the aliased lines in FFTl, FFT2 and

FFT3.

3.2 Multiple Active Element Ambiguity Reduction Algorithm N®-2.

An alternative to the algorithm N°-l described in section 3.1, is the following simple

iterative algorithm which yields the same spectrum as algorithm N°-l. For any aliased

line in FFTl, say ej , a set of possible values for the frequency components of the

original signal exists; ie. each aliased Une in the sample/filter output can identify a

25

'comb' of possible input harmonic frequencies. The frequency, sf^, of the members of

this set, S j , are given by,

s f i = N j ^ . f g i ± for al l e F F T l (3 . 1)

where is a positive integer and 0 < sf^ < B^pj. Frequencies that do not exist in the set

Sj wi l l not exist in the original signal. Similarly, two further sets, S2 and S3, can be

produced for the aliased lines in FFT2 and FFT3 respectively. The frequency

components of the original signal, among some 'ghost' values (the frequency of

components erroneously identified as part of the original signal,) are the frequencies

that form the intersection of the sets S j , S2, and S3. Clearly, i f a greater number of

aliased spectra had been generated by additional samplers operating at different

frequencies, more ambiguity 'ghosts' could be eliminated.

3.3 Illustration of Inherent Ambiguity.

Unfonunately, a fundamental problem is inherent with the approach made by both

algorithms N°-l and N* -̂2, described in sections 3.1 and 3.2 respectively. An illustration

of this problem is given in the following example.

Illustrative Example 3.1.

Let fsi = 1000 KHz, = 100^ KHZ' and fs3 = 1002 KHz, giving an optimum

operational bandwidth of 251,000.5 KHz from equation (2.16). Consider the case in

which the original signal contains three active elements at 54,214 KHz, 150,920 KHz,

and 191,782 KHz.

26

Multiple Actige Elenent Signal Analysis using sub-Nyquist Dealiasing Algorithms
f s l = 1000.000 fs2 = 1001.000 fs3 = 1002.000
Optimum operational frequency range, B = Z51000.500000

0 54214
Frequency components of input signal

150920 191782

0 54214
Frequency components of output signal

150920 191782 240080B

Figure 3.1. Illustrative example 3.1 of the inherent ambiguities remaining after

execution of either multiple active element ambiguity reduction algorithm.

F F T l F F T 2 FFT3

80 214 218
- O l

160 231
f o 2

410 106 382 400
-o3

Figure 3.2. Frequency of signal harmonics output by each of the three sampler/LPF

systems (for example 3.1).

I f the original signal also contained an active element at 240,080 KHz, for which

foi = 80 KHz, fo2 = 160 KHz, fo3 = 400 KHz, then the aliased spectra FFTl, FFT2, and

FFT3 would not differ in the case above. Therefore, processing the three aliased spectra

above for the original signal shown, as described by either algorithm, will yield the

active elements of the original signal as 54,214 KHz, 150,920 KHz, 191,782 KHz and

240,080 KHz, although the true original signal contains only the first three of these

components.

27

Figure 3.3 further illustrates this problem for a sparsely populated frequency spectrum.

The input signal contains only four harmonics, yet the dealiasing algorithm erroneously

identifies six harmonics.

Multiple Actiue Element Signal Analysis using sub-Myquist Dealiasing Algorithns
f s l = 40.000 fs2 = 41.000 fs3 = 42.000
Optinun operational frequency range, B = 440.500000

4 28 181
Frequency conponents of input signal

380

4 28 140 181
Frequency conponents of output signal

332 380

Figure 3.3. Illustrative example 3.2 of the inherent ambiguities remaining after

execution of either multiple active element ambiguity reduction algorithm.

In most cases, each active element in the input signal will cause some change to at least

one of the spectra of the sampler/filter outputs, and both algorithm N°-l and N°-2 will

be able to determine the frequencies of the input signal harmonics without ambiguity.

However, there is the possibility that the algorithms wil l incorrectly identify harmonics

as part of the input signal.

28

3.4 An Investigation of the Relative Efficiency of the Two Algorithms

and a FuM=Scale F F T .

Assume the algorithms are implemented on a modem, high speed, digital signal

processor for which the. number of clock cycles required to perform multiplication or

addition are equal, and take the form as implemented in the simulation program. It is

known that a radix-2 N-point decimation-in-frequency FFT imposes a workload of

(N/2).log2N complex multiplications and N.log2N complex additions [4, Benjamin].

Any complex multiplication requires, at most, four real multiplications and two real

additions. Also, any complex addition requires two real additions. Therefore, it is

possible to say that an N-point FFT imposes a workload proportional to 5N.log2N.

Assume that the sub-Nyquist system contains k samplers all operating at a frequency

approximately equal to fg.

Consider a signal containing M active elements, with a bandwidth B requiring

frequency analysis by use of a discrete Fourier transform with a frequency resolution R.

Using a super-Nyquist system sampling at just more than 2B, a (B/R)-point FFT, at the

bare minimum, would be required. This would impose a workload proportional to,

WppT = 5 . (B / R) . l o g 2 (B / R) (3 . 2)

For algorithm N*^-l described in section 3.1, the worst case occurs when, for every one

of the k aliased spectra produced, ie. FFTl, FFT2, FFTk, there is a different

ambiguity line for each of the M input signal components. Thus, in considering every

possible combination of the aliased lines in the k, FFT spectra, the single active element

dealiasing algorithm described in section 2.5 must be executed times. Of these

executions, some combinations will not yield a possible input element, and a maximum

of 2.M.B/f5 wil l be produced. Assume that the single active element dealiasing

algorithm requires approximately 110 multiplications, additions and comparisons

29

(judged from the implementation in appendix B.) Therefore, the workload imposed by

considering every line in the k aliased spectra is proportional to I I O . M K In addition,

there are k, N-point FFTs that require computation, leading to a further workload

proportional to k.5.(4B/R + 2).log2(4B/R + 2). Therefore, the total computational

overhead.

Vli = 110.M"^ + k . 5 . (4 B / R + 2) . l o g 2 (4 B / R + 2)

= l O . d l . M ' ^ + 4 . k . (B / R)) + 4 .k.WppT (3 . 3)

For algorithm N°-2 described in section 3.2, k sets need to be formed. In the worst case,

the maximum cardinality of a set is 2.M.B/f5. One real multiplication and one real

addition are needed to calculate each member and one list assignment is required.

Assume that a list assignment requires twenty times more clock cycles than

multiplication or addition (judged from the implementation in appendix B.) Therefore,

the computational workload in calculating the k sets is proportional to

(20 + 1 + l).k.2.M.B/fs = 44.k.M.B/fs. The union of the sets is then required, which will

take, at most, 2.M.B/fg list assignments when there is a match for every member of one

of the k sets, and (k - l).M.B/fs comparisons. Therefore, the workload imposed in

resolving the ambiguity spectra is proportional to (45.k - l).M.B/fs. In addition, there is

the k, FFT computational workload proportional to k.5.(fg/R).log2(fs/R), as before.

Therefore, the total computational overhead,

W2 = (4 5 . k - 1) . M . B / f s + k . 5 . (4 B / R + 2) . l o g 2 (4 B / R + 2)

= 5 . B . k . (9 / f s + 8 / R) + M . B / f g + 4 .k.WppT (3 . 4)

Clearly, algorithm N°-l would be a better method to use than algorithm N°-2 if W j <

W 2 ; ie. i f I I O . M ' ^ < (45.k - l) . M . B / f 3 . Consider the case in which three samplers are

used (k = 3) and approximate, thus algorithm N°-l should be used only i f < B/f^,

30

which will be true when the number of active elements squared is less than the number

of alias folds. As the number of samplers increases, which is necessary to improve

dealiasing, it becomes evident that algorithm N°-2 is by far the better.

Figure 3 . 4 shows just one case of how the proportional computational workloads Wppp,

W j and W 2 vary for an increasing number of harmonics in the input signal, M.

Unfortunately, but not surprisingly, it is evident that the computational workload

imposed by the two algorithm is far greater than that required by a full-scale FFT. The

workload W f f j is so small relative to workloads and W 2 that it appears to run along

the abscissa. For the overheads to be kept to a minimum, it is necessary to reduce the

number of samplers k. However, k must be increased to resolve the ambiguities of a

signal with a high active element population.

31

O
o

ITS iC
-H O

D
O £ U
U O O

Ph U 3

o o
o
in Id

1=

O

O
o
©
©

O

C M

o
ID

C M

\

©
©
+
ID © ©

ID 3
O

T3
It
O

I — <

o

ID

05

32

3.5 Optimising Parameters to Minimise the Number of 'Ghost'

Frequencies Possible in the Analysis of a Multiple Active Element

Signal.

It has been illustrated in section 3.3 that the dealiasing technique developed is by no

means perfect, but it does achieve a reduction in ambiguity. The aim is to select

parameters so that the reduction is maximal and efficient in computation.

Consider the problem illustrated by example 3.1 in which an input of three active

elements is incorrectly analysed as containing four elements. This is a direct result of

the inability for the aliased spectra to change in response to the existence of a founh

potential element in the original signal. For only the frequency components of the

original signal and no 'ghosts' to appear in the final output spectrum, it is necessary to

ensure that the aliased spectra alter for every possible additional active element in the

input.

For any given input active element there must be a unique combination of sampler

output frequencies for that element to be identified without ambiguity. It has been

shown that such identification is possible for a signal of bandwidth, Bq^^. Let the unique

combination for any frequency component of a multiple active element signal, output

by a system containing k samplers, be represented by,

f o l ' ^o2' • • • ' fok •

To prevent 'ghost' frequencies appearing in the output spectrum, this combination, for a

single input, must differ from any possible combination of other outputs. That is to say,

at least one member of { f Q j l i = l to k} in any given combination must not be repeated for

any other of the possible unique combinations that could be produced. An arbitrary set

of combinations for which this is true shall be represented by T. In a sub-Nyquist

system, T must be a proper subset of the set of all practically possible output

33

combinations, U. However, T is any arbitrary set for which at least one fO[is unrepeated

for all its elements, and so, mathematically speaking, T may not be a subset of U.

I f the bandwidth of the original signal is B and the signal is to be analysed with a finite

frequency resolution R, then the number of frequency bins in the input is IB/RJ, where

x j denotes the largest integer that is less than or equal to x. Each of k samplers

sampling at a frequency f^j will give inputs for an FFT whose output will contain

Lf5j/2RJ frequency bins of interest (the others being complex conjugates.) The total

number of combinations of the sampler outputs that are mathematically possible is,

(f ^ i . f ^ 2 fsk) / (2R) ' ^ = cardinality of the universal set.

However, in practice only \ B/R\ combinations exist, corresponding to a unique output

combination for each frequency bin in the input; ie.

the cardinality of set U = j_B/RJ.

The maximum number of active elements which could possibly be correctiy identified

without ambiguity, ie. the maximum cardinality of T, is given from the mathematics of

combinations and permutation as,

k
max = 2 + S (Lfsj/2RJ - 2) for k > 0 (3 - 5)

j = l

and the minimum cardinality of T, occurring for example when the input signal contains

a harmonic for each and every frequency bin from 0 to the first folding frequency of the

highest frequency sampler ie. f^ niax/2> as,

min = the greatest of [f^^ / 2Rjj_=]_ to k (3 . 6)

34

It can be seen that max = min = Lfsi/2RJ for k = 1 , and that the cardinalities of T and U

are equal when fsi^/2 = B; ie. the sub-Nyquist scheme tends to that of the super-Nyquist

system as f5i,/2 tends to B when k = 1. Remember, however, that T is not necessarily a

subset of U, and equation (3.5) talks only of cardinality. Therefore, only the probability

of correct analysis may be increased by an increase in k or fjj^.. An increase in f^y^ defeats

the aim of using sub-Nyquist sampling and an increase in k results in a greater

computational workload. It is therefore necessary to increase the effective number of

samplers, k without using excessive hardware. This might be achieved by using random

sampling.

3.6 Summary.

Two algorithms have been proposed to greatly reduce, but not eliminate, the

ambiguities produced by sampling a multiple active element signal at below the Nyquist

rate with a number of samplers. As the technique results in only a reduction of

ambiguities, a detailed error analysis is not presented. An increase in the number of

samplers is required for further reduction of the frequency ambiguities. However, the

computational workload imposed can be excessive for highly populated signals and

increases dramatically with a increasing number of samplers. An improved algorithm is

required which has fewer computational overheads and eliminates all frequency

ambiguities for even highly populated signals.

35

4. SPECTRAL ANALYSIS WITH SUB-NYQUIST PSEUDO-

4.1 Introduction.

I f there are equal time intervals of l/fg between samples of a signal with a harmonic at

frequency f^, then the resultant output contains other harmonics at frequencies f^^,

2f^{j^, 3fs±fx, ... However, under certain conditions, i f sampling points are formed at

unequal intervals, this phenomenon disappears and the aliasing effect becomes absent

[8, Bilinsky, Vystavkin & Mikelson]. The objective is to determine the requisites of

the irregular sampling signal so that, even with sampling rates below the Nyquist level,

the harmonics of the original signal may be determined with the minimum of error and

computational overheads. The bandwidth limitation that must be imposed on the

original signal also needs to be determined.

Uniform sampling has the limitation that aliasing occurs i f the rate of sampling is below

the Nyquist rate. It is expected that irregular sampling will have limitations i f the

maximum sampling rate is below the Nyquist level, but the limitation will not be an

aliasing phenomenon. The limitations of irregular sampling are researched.

It is suggested by [9, Beutler] that random sampling of a wide-sense stationary

stochastic process is alias-free and the error-free recovery of the process is possible i f

Poisson random sampling (sampling interval steps differ independently with identical

exponential probability densities) is employed with an average sampling rate that does

not fall below the Nyquist rate. [10, Masry] shows that such a Poisson random

sampling scheme results in consistent alias-free estimates of the process' spectral

density. Iterative methods have been developed which permit signal recovery with some

additional uncorrelated background noise from "non-uniform samples with Poisson or

uniform distributed epoches" and uniform samples with jitter or missing samples, in

36

[11,12, Marvasti] and [13, Wiley], but these methods assume an average sampling rate

higher than the Nyquist rate.

The papers [9,10, 11,12 and 13] make no comment on the bandwidth limitation to be

imposed on the input signal, or the finite duration over which samples are taken. In a

practical system, it is not possible to sample a non-band-Umited signal over an infinite

duration. Instead, sampling is limited to a finite number of sampling instances over a

known duration, and is only applicable to band-limited signals. Furthermore, it can be

inferred from the definition of Poisson random sampling (sampling interval steps differ

independentiy with identical exponential probability densities [9, Beutler]) that the step

between one sampling instance and the next, can be of any size greater than some preset

minimum. In practice, however, there must also be a limit to the maximum possible step

and so such an ideal scheme is not feasible. The exact instances that each sample is

taken, although irregular, may be known from the generating function. With this

additional information at hand and the practical limitations of the Poisson random

sampling scheme noted, it is intended that a sampling scheme with a maximum rate that

falls below the Nyquist rate may be defined which allows alias-free samphng of a

signal.

What is meant by alias-free sampling of a signal when referring to samples taken at

irregular intervals? When samples are taken at uniform intervals, sampling is said to be

alias-free i f the original signal can be unambiguously reconstructed from the samples.

An irregular sampling scheme will be referred to as 'alias-free' i f there is the capability

to consistently reconstruct the spectrum of the original process from the spectral

properties of the samples (which may be derived from the magnitude of die samples and

the instances at which they are taken.)

A transform must be rigourously defined to find the spectral property of a signal

sampled at irregularly spaced intervals, as the traditional discrete Fourier transform,

defined for samples taken at uniformly spaced intervals, is no longer suitable. The

37

properties of the transform depend on the nature of the irregular sampling instances, and

are investigated.

The irregularly spaced sampling instances are generated using two rigourously defined

schemes. In both schemes, the step between one sampling instance and another will be

one of a finite set of possible changes. The change selected will depend on the outcome

of an independent pseudo-random number generator. For this reason, the transform will

be referred to as the 'pseudo-random discrete Fourier transform.'

4.2 Theoretical Development of the Pseudo-random Discrete Fourier

Transform.

The following derivation closely resembles that of the Discrete Fourier Transform for

samples taken uniformly as described by [5, Brigham].

Consider a band-limited, analogue signal x^(t), with a fundamental period T^,

represented as a sum of sinusoids of different amplitude, frequency and phase.

Alternatively, represented as the Fourier series,

x ^ (t)

M - l

s
m=0

a ^ . c o s (2 n . f „ . t) + b „ . s i n (2 r t . f „ . t) (4 . 1)

where.

an = -

0
r

X a (t) d t .

m = 0
T J

X, (t) . c o s { 2 7 t . f . . t) d t

0 m = 1 , 2 , . . . , M - l

38

and.

T J
x ^ (t) . s i n (2 7 t . f „ . t) d t

0 m = 0 , 1 , . . . , M - 1

M denotes the number of frequency components (including d.c.) and f j j , relates to the

frequency of each component.

Let samples of Xa(t) be taken at pseudo-random intervals for digital processing. The

magnitude of a sample at any instance, tj, is given by, where k = 0 to N - 1 and N

is the number of consecutive samples. Let the time domain sampling function, uo(t), be

defined as.

U n (t) = Z 5 (t - t j .) (4 . 2)

k = - ° o

where 5(t) represents the impulse function. uo(t) is represented graphically in figure 4.1.

(t)

t o ^1 t 2 t 3 t]^

Figure 4.1. A series of impulses, each corresponding to a sampling instance.

The truncation due to taking a finite number of N samples of x^{t) in the time domain

results in rippling in the frequency domain. The sampled, truncated function can be

written as.

39

x ^ C t) . U o (t) . h (t) =

N-1

X a (t) . X 8(t - t),)

k=0

N-1

I x^(t , ,) .5 (t

k=0
tk)

(4 .3)

where h(t) is a rectangular window function of width t ^ - i + imin = given by,

h (t)

1 for < t < tN_i +

1/2 for t = t = t ^ . i + X „ i „ / 2

I 0 otherwise

(4.4)

•̂ min is minimum possible difference between one sampling instance and the next,

and tjsf.j is the time the final sample is taken.

rain

Figure 4.2. Rectangular window function.

There are N instantaneous samples of the periodic signal x^(t) in the interval of the

rectangular window function. These N samples are assumed to represent at least one

period, T^ of the signal x^Ct); thus, it is assumed that r.T^ = T^ where r is a positive

integer (r > 0.) However, is fixed for a particular input signal, but T ^ = tN.i + Xmin

depends on the time the final sample was taken, tj^f.^ which in turn depends on a

pseudo-random quantity. Therefore, any practical system can only ensure that T^ is

approximately equal to r.T0. The consequences of this will be considered later.

For a Fourier transform of the samples to be made, the periodic function xjt) must be

modelled by the samples in the interval T^. In order to form a periodic function x/t)

which consists of N samples repeated in the time domain at intervals of T^, it is

40

necessary to use convolution. Repetition in the time domain, is equivalent to convolving

the sampled, truncated waveform of equation (4.3) with the time function,

oo

u i (t) = T„. I 5(t - rT„)
r=-oo

The desired relationship is Xj.(t) = [Xa(t).uo(t).h(t)] * Ui(t); hence.

X r (t)

N - l

Z X3 (tk) .5 (t - tk)
k=0

T„. Z 5(t - rT„)

givmg,

X r { t) = T„. Z
N - l

Z ^^(tk) .5(t - tk - rT„)
k=0

(4.5)

This convolution result is a periodic function with period T^ that consists of N samples

of the signal Xa(t) where T^ = t ^ . i + must equal the periodicity of T0 to

prevent discontinuities. That is to say, Xj.(t) is an infinitely long sequence of the samples

of Xa(t) within the rectangular window h(t), with period T^. However, i f the period of

Xj(t), T^ is only approximately equal to an integer multiple of the period of the original

signal Xa(t), T0 as stated earlier, then Xj.(t) wil l model a signal with discontinuities at

intervals of T ^ and the Fourier transform of Xj(t) wil l yield only an approximation to

the continuous Fourier transform of x^it).

The requirement for repetition in the time domain (achieved by convolution witii ui(t))

affects the spectrum. In the frequency domain, this convolution is equivalent to

multiplying the continuous spectrum of Xa(t).uo(t).h(t) by the function,

41

U i (f) = Z 5 (f - n/T„)
n=-oo

This is analogous to sampling in the frequency domain and so the approximate Fourier

coefficients describing the signal can only be evaluated at discrete frequencies with a

minimum separation of 1/T^. The Fourier transform of the periodic function x / t) (with

period T^) is given by the sequence of impulses.

X j . ' (f) = Z afn -8 (f - fn) where ttf^ =

tN-l+tmin/2
1 r - j 2 j i f n t

n=-oo

d t

(4 .6)

where the Fourier coefficients are calculated at regular frequency intervals such that the

frequencies f j j = n/T^, n = ... 1,2,.... Substituting for x / t) from equation (4.5) gives.

1 OO

T„. Z
r=-oo

N - l

Z X3 (tk) .5 (t
k=0

rT„)
- j 2 7 l f „ t

,e dt

Note that the integral is only over one period (since T^ = t ^ . i + tminO hence.

r N - l

ttfn

-tmin/2

- j 2 7 r f „ t
Z X3 (tk) .5 (t - t k) . e dt
k=0

N - l

Z X3(tk)
k=0

tN-l+'Cmln/2
r

5 (t - t u) . e

- j 2 j : f n t

dt

- X . i n / 2

N - l

Z x^{t^) .e
k=0

-j2jrf„tk
(4 .7)

42

Therefore, by substituting (4.7) into (4.6) the Fourier transform of the function Xj(t) is.

X r ' (f) = L S x^(t^) .e .5 (f - fn) (4.8)
n=-ook=0

Equation (4.8) is periodic and can be expressed equivalently as the desired pseudo

random discrete Fourier transform of equation (4.9) which describes one period of the

function X;(f).

N-1 -j27lfntk
Xr(fn) = - jb f„ = I X , (t j ,) .e (4.9)

k=0

where f j j is the particular frequency for which the estimated Fourier coefficients wish to

be known. Thus, equation (4.9) gives the spectral property of a finite sequence of

pseudo-random samples from the magnitude of the samples and the instances at which

they are taken.

The pseudo-random DFT of equation (4.9) reduces to the conventional discrete Fourier

transform when samples are taken at regular intervals. In the case of uniformly spaced

sampling intervals, each sampling instance { t j j | k = 1 toN-1} can be represented as

tjj = k.Tg where T^ is the regular time interval between one sample and the next. The

duration of the rectangular window, T^ = t j v j . j - I - x^jin = (N-l).Ts + Tg = N.T^. Thus, the

firequencies for which the estimated Fourier coefficients wish to be known, fn = n/T^ =

n/(N.Ts). Substituting f j , = n/(N.Ts) and = k.Tg into equation (4.9) reduces it to the

familiar conventional DFT,

N-1 - j 2 j r n k / N
X^di/NTg) = Z K^iW.T^) .e (4.10)

k=0

43

The properties of the new discrete transform developed will depend upon the

characteristics of the sampling instances. Before the periodicity and symmetrical

properties of the transform are investigated, a way must be found to describe the

production of pseudo-random sampling instances.

4.3 Generators of Pseudo-random Sampling Instances.

Two random sampling schemes have been extensively studied in [14, Masry] for their

theoretical ability to form alias-free spectra. These are "additive random sampling",

where the sampling instances are given by,

to = 0, tk = t k - i + T , k = 1, 2, N - l (4.11)

with T as an independent positive random variable; and "periodic sampUng with jitter",

where the sampling instances are given by,

to = 0 , tk = k . T g + X , k = 1, 2 , N - l (4.12)

with X as an independent random variable with zero mean over [-Tg/2, Tg/2].

Consider the general case in which the signal input is sampled by some irregular

pattern. In a practical system, the pattem must be limited such that the signal is sampled

with a maximum and a minimum frequency and at a finite number of intermediate

sampling frequencies. Thus, the random variable x in the two sampling schemes must

be considered as a pseudo-random discrete quantity which can be generated by some

known function, R () .

Let P represent the total number of possible sampling frequencies, which may be any

arbitrary positive value.

44

Let the number produced by some pseudo-random number generator with a large

sequence period take a value between zero and one with some controllable distribution

(for example; uniform, Poisson or Gaussian,) and be represented by the function, R () .

Let R () never be equal to zero or one, but take values in between; ie. 0 < R () < 1. One

such pseudo-random number generator which produces a value between zero and one

with an approximately uniform distribution, is described in [15, Widrow & Stearns].

Let the number produced by this generator be represented by the function, . The

function R() is to be used in generating the irregularly spaced sampling instances.

Ry 0 (a special case of R ()) is the simplest pseudo-random function to implement and

is used in the simulation program of appendix C.

4.3.1 Additive Pseudo-random Sampling.

Additive pseudo-random sampling instances are given by,

to = 0, tk = tk_i + t , k = 1, 2, N-1 (4.13)

where T is an independent positive pseudo-random variable. T will take one of P values

and the value chosen wil l depend on the pseudo-random function R () .

Illustrative Example 4.1.

Let there be a total of three possible sampling frequencies; ie. P = 3, and assign the set

of sampling frequencies, f^ as 12.0 Hz, 12.2 Hz and 12.4 Hz. Letting x = l/fg means x

can take the values 1/12.0 s, 1/12.2 s and 1/12.4 s, in this case. I f the independent

function R () returns a value less than or equal to 1/3 then x is assigned the value

1/12.0 s; and i f R () returns a value greater than 1/3 but less than or equal to 2/3 then x

is assigned the value 1/12.2 s; otherwise x is set to 1/12.4 s. I f the pseudo-random

function Ry () is used, x will take one of these three values with approximately equal

probability.

45

In general, x takes one of a set of P deterministic values X j , X 2 , X p , and x is assigned

the value x^ where.

5C =rR() * P1 and fx! denotes the integer ceiling of x (4.14)

Consider the example 4.1 once again where x^ = 1/12.0, X 2 = 1/12.2 and X3 = 1/12.4.

Note tQ = 0. For each successive sampling instance, x will take one of the three values

x^, X2, or X3, thus,

to = 0

t i = 1 /12 .0 or 1 /12 .2 or 1 /12 .4

t2 = 2 / 1 2 . 0 , 1 /12 .0 + 1 /12 .2 , 1 /12 .0 + 1/12.4 , 2 / 1 2 . 2 ,

1 /12 .2 + 1 /12 .4 or 2 / 1 2 . 4

t3 = 3 / 1 2 . 0 , 2 / 1 2 . 0 + 1 /12 .2 , 2 /12 .0 + 1 /12.4 , 1 /12.0 + 2 /12 .2 ,

1 /12 .0 + 1 /12 .2 + 1 /12 .4 , 1 /12.0 + 2 /12 .4 , 3 /12 .2 ,

2 / 1 2 . 2 + 1 /12.4 , 1 /12 .2 + 2 / 1 2 . 4 or 3 /12 .4 ...andsoon.

In general, given a sampler with P possible values that x may take, the n '̂̂ sampling

instance, tn.^ can take one of.

4:
p (n + P - 2) /

(n - 1) .' (P - 1) .'
(4.15)

different values and the sampling instance t^ can be represented as,

tk = u ^ . T i + U 2 . X 2 + . . . + U p . T p (4.16)

where { u j i = 1 to P} are positive integers.

46

P.R.N.G

Generate a new number

Binary number 0..P-1

MONO

CLEAR

MONO

CLEAR

MONO

Delay &t CLEAR

pulse « fit

Set all Q high z f l l . Q

MONO

6t

Output

Figure 4.3. Proposed System to Produce Additive Pseudo-random Sampling Instances.

47

The minimum possible difference in sampling instances,

Tfnin = the minimum value in the set {tj^li = 1 to P } . (4.17)

In practice, it is proposed that a stream of sampling pulses, as described above, can be

generated by the system shown in figure 4.3 which uses a series of monostables, each

with a different pulse width and all capable of being forced to a stable state at any time.

The P.R.N.G. module generates a pseudo-random integer, 5C - 1 in binary form in the

region from 0 to P - 1, where % is given by equation (4.14). This then acts as input to die

demultiplexing module, DUX. which selects the corresponding monostable pulse as its

output. On the rising edge of the output pulse, all the monostable outputs are set high, a

new pseudo-random number is presented as input to the DUX. module, and after a short

delay, the monostables are retriggered. In this way, a pulse of constant width is

produced after varying delays and the system yields a train of pulses that can be used by

an sample and hold circuit and that has sampling instances characterised by equation

(4.16).

4.3.2 Periodic Sampling with Dither.

Periodic sampling instances with dither are given by,

to = 0 , tk = k.Tg + T, k = 1, 2, N - l (4.18)

where x is an independent pseudo-random variable with zero mean over [-Tg/2, Tg/2]. x

takes one of a set of P deterministic values X j , X 2 , X p , and the value chosen depends

on the pseudo-random function R () , as with the previously described sampling

scheme; ie. x is assigned the value x^ where,

% = r R () * P1

48

Funhermore, the possible values that x can take are fractional pans of ±T/2 . This

ensures that tj^+j > tĵ .̂ x is selected from the set,

T = { i x i . T g , ± X 2 . T 3 , + X 2 . T 3) (4.19)

where Xj are rational numbers such that,

0 < X i < 1/2 I i = 1 to z , x i = 0 i f P i s odd, and z = fp / 2I

The n * sampling instance, t j , . i can take one of only P different values and the sampling

instance tĵ . can be represented as,

tk = T 3 . (k ± X i) (4.20)

The minimum possible difference in sampling instances,

Tn,in = the minimum value in the set {T 3 . (1 - 2 x i) | i = 1 to P) . (4.21)

Illustrative Example 4.2.

A sampling scheme with a regular period, T3 = 1/20.25 s and five (P = 5) possible

dithers x = {0, +0.3Ts, ±0.4Tg} wil l have sampling instances such that,

to = 0

t i = 1 /20 .25 or (1 ± 0 . 3) / 2 0 . 2 5 or (1 ± 0 . 4) / 2 0 . 2 5

t2 = 2 / 2 0 . 2 5 or { 2 ± 0 . 3) / 2 0 . 2 5 or (2 ± 0 . 4) / 2 0 . 2 5

t3 = 3 / 2 0 . 2 5 or (3 ± 0 . 3) / 2 0 . 2 5 or (3 ± 0 . 4) / 2 0 . 2 5

... and so on.

49

4.4 Transform Period and Input Signal Bandwidth Limitations.

It is necessary to determine the periodicity and symmetry of X/ (f) to find the bandwidth

Umitations that must be imposed on the input signal x^(t) so as to prevent frequency

domain aliasing, and hence aUow error-free signal reconstruction from the samples

taken. Let fp be the periodicity of the function X^'(f). The value of fp is required such

that Xj.(fj. - I - fp) = Xj(fj.). Letting fn = ff + fpi equation (4.9) becomes.

N - l -j2K. (f^ + f p) . t k
(f^ + fp) = Z Xa(^k) -e

k=0

N - l - j27r. f^tk - j27t . fptk
= Z x^(tk) .e .e (4.22)

k=0

-j2n;.fpti^

Therefore, Xj.(fj. -i- fp) = X^(f^) i f and only i f e ^ = 1 for k integer valued from 0

to N - l . That is to say, X / (f) has a period fp, where fp is the least positive number

greater than zero such that.

f p . t k is integer valued for all t^, k = 0, 1, N - l (4.23)

4.4.1 Periodicity for Uniform Sampling Scheme.

Consider the simple case of uniform sampling in which the difference between one

sampling instance, tĵ ^ and the next sampling instance, t^^i is constant; ie. x takes only

one possible value, x̂ . when compared with additive pseudo-random sampling. From

equation (4.16), ti(. = u.X(. where u is a positive integer. Thus, substituting into (4.23),

Xj ' (f) has a period fp where, fp is the least positive number greater than zero such that,

fp.u.Xj. is integer valued. That is obviously when fp = l/x^, as u is an integer. However,

1/X(. is the uniform sampling frequency fg. That is to say, the transform Xj.'(f) has a

50

period equal to the uniform sampling frequency, as expected from the traditional

Fourier transform properties.

4.4.2 Periodicity for Additive Pseudo-random Sampling Scheme.

In the more complex case of additive pseudo-random sampling, each sampling instance

is given by the general equation (4.16). Substituting this into equation (4.23) gives the

period fp as the least positive number greater than zero such that,

fpAu^.Ti + U 2 . T 2 + . . . + Up.Tp] = K is an integer.

By definition, { u j i = 1 to P} are positive integers, and so K is an integer if,

(f p . T i l i = 1 to P) are integer values. (4.24)

Equation (4.24) must be solved for fp, the transform period. This may be done by first

representing each { X j i = 1 to P} as a rational number in the most optimum form; ie.

with use of the minimum possible denominator. Let each value that x can take,

{Tĵ = / b ^ l i = 1 to P) where a i and are integers. (4.25)

I f every member of { X j l i = 1 to P} is multiplied by the lowest common multiple of the

set of denominators { b J i = l t o P } , an integer will result. However, this lowest

common multiplet will not be the smallest possible number that will produce an integer

value i f the greatest common divisor* of the set of numerators {aj i = 1 to P} is not

equal to one. The smallest possible number that when multiplied by each and every

t lhe lowest common multiple (1cm) of two integers u and v, is the smallest positive integer
that is a multiple of (ie., evenly divisible by) both u and v; the 1cm of zero and zero is zero; and the Icm of
one integer is that integer.

•t-The greatest common divisor (gcd) of two positive integers m and n, is the largest positive
integer which evenly divides both m and n.

51

member of { X j i = 1 to P} results in an integer; ie. fp that satisfies equation (4.24) (and

hence equation (4.23)), is given by,

lowest common multiple { b ^ l i = 1 to P}
fp = , for p > 1 (4.26)

greatest common divisor { a ^ l i = 1 to P}

Methods using Euclid's algorithm to determine the lowest common multiple and the

greatest common divisor of a set of integers are described in [16, Knuth].

For the example 4.1, the possible values of x can be expressed in their optimum rational

forms as X^ = 1/12 s, X2 = 5/61 s and X3 = 5/62 s. Giving,

Icm (12, 61, 62)
fp = = 22, 692 Hz.

gcd (1, 5, 5)

4.4.3 Periodicity for Periodic Sampling Scheme with Dither.

For the periodic sampling scheme with dither, each sampling instance is given by

equation (4.20). Substituting this into equation (4.23) gives the transform period fp as

the least positive number greater than zero such that,

f p . T s . (k ± X i) = K is an integer for i = 1 to z. (4.27)

Note k is an integer by definition. Let Tg and (Tg .X i l i= 1 toz} be represented as

rational numbers with the minimum possible denominator such that,

Tg = ao / bo and {T^.x^ = / b i i i = 1 to z) (4.28)

where all aj and bj are integers. In the same manner fp was derived to satisfy equation

(4.24), the hypothesis of equation (4.27) is satisfied by,

52

lowest common multiple (b^l i = 0 to z}

greatest common divisor { a ^ l i = 0 to z}
fp = : , for P > 1 (4.29)

For the example 4.2, the regular period, Tg = 1/20.25 s and the three values of

Tg.Xj = {0, 0.3Ts, 0.4Ts} can be expressed in their optimum rational forms as T j = 4/81,

Tg.XQ = 0, Tg.xi = 8/405, and Ts.X2 = 2/135. Giving the transform period as,

Icm (81, 405, 135)

gcd (4, 8, 2)
fp = = 202 .5 Hz.

4.4.4 System Bandwidth.

Now consider.

N-1 - j 2 r t . (fp - f^) .tk
X^(fp - f^) = Z X 3 { t k) . e

k=0

N-1 - j 2 n . f p t k +j27r . f , tk
= Z ^^(tk) -e .e

k=0

N-1 +j27t . f , tk
= Z X a (t k) . e

k=0

= x / (f ^) (4.30)

-j27C.fptk

since e = 1 by definition of fp from equation (4.23). Therefore, the amplitude of

the transform, I Xr(fn) I is even-symmetrical about fp/2 and its argument, Z [X / f j)] is

odd-symmetrical about fp/2. That is, the transform consists of complex conjugates over

one period, and so only half the information in one cycle is of interest. Therefore, the

input signal must be band-limited to half the period of the transform in order to prevent

frequency domain aliasing; ie. in the case of uniform sampling, the Nyquist criterion
53

must be satisfied. However, for pseudo-random sampling (additive or periodic with

dither) the transform period is noticeably high. In the example 4.1, the signal needs only

to be band-limited to 11,346 Hz although it is being sampled at frequencies of 12.0 Hz,

12.2 Hz, and 12.4 Hz. Similarly, in the example 4.2 where the maximum sampling

frequency is only 67.5 Hz, the input signal only needs to be band-limited to 101.25 Hz.

It appears that the Nyquist criterion need not be satisfied when using pseudo-random

sampling! However, it has not yet been established as to whether or not the spectrum

produced by the pseudo-random DPT is 'alias-free' for irregularly sampled signals

Umited within this enlarged bandwidth.

In general, for any known pseudo-random sampling generator, it is possible to

determine the periodicity, fp of the transform function X^{f) by the method described

above, and hence the bandwidth limitation, Bpg^y^o that must be imposed on the input

signal; that is.

1 lowest common multiple {b^ I for all i }

2 greatest common divisor {a^ I for all i }

where all aj and bj are defined for the additive pseudo-random sampling scheme and for

the periodic sampling scheme with dither by equations (4.25) and (4.28) respectively.

Note that the bandwidth Bpggujo independent of the total number of possible sampling

frequencies, P and only depends upon the possible changes between one sampling

instance and the next for additive pseudo-random sampling, and upon the possible

dithers and regular sampling period for periodic sampling with dither.

Illustrative Example 4.3.

An illustration of this is given in figure 4.4, which shows the output of the transform

due to sampling a signal containing its fundamental harmonic at 17.0 Hz and no

54

CO

in

©

£
to

O Pi

+»
M «
U O

£ »

(4
o

©

N
X ti
O 3

• +>

as £
flS

N
X *

N
O X
N O
iH •

5=
—
^ S
e s
M

+>
£ ?
O iD

£ P ti
$4 a

I O 1)
-T3 ^
3 »
03 S
to - H

= =
— V

— lU

N ^ =
u

N 3
\ 13)

& : t= —
1 ti.

55

overtones. In this case, the additive pseudo-random sampling process involved five

hundred samples being taken at intervals of 1/12.0 s or 1/14.0 s; hence, fp = 84.0Hz

from equation (4.29). It can clearly be seen that the input signal needs to be band-

Umited to fp/2 = 42.0 Hz.

4.5 Inverse Pseudo-random DFT.

A transform has been defined which takes pseudo-random samples of a signal x^(t) as

its input data and produces an output Xj. '(f) . An inverse transform is required to f ind the

N samples x^ity), tj^. = tg, t j , t ^ _ i f rom the data Xj.'(f)-

I f the sampling instances tj^, k = 0, 1 , N - 1 are spaced uniformly by intervals T^, then

the inverse transform may be represented as [5, Brigham],

N - l 1

N n=0
x^' (t k) = - X X ^ (f n) . e

+ j 2 7 t . f „ t k

where, f n = and tk = k . T s (seealso,equation (4.10)) (4 . 3 2)

Note that the derivation of this inverse transform (for uniformly spaced samples) relies

on the orthogonality relationship [5, Brigham],

N - l _

I e

n=0

j2JC.f„tx + j 2 7 l . f „ t ^ N for X = K

0 otherwise
(4 . 3 3)

which does not hold for irregularly spaced samples. However, the two pseudo-random

sampling schemes (defined in section 4.3) may be viewed as uniform sampling with a

large number of carefully chosen missing sampUng instances. Define the sequence.

56

K^{t^) for Vfp 6 { t ^ l k = 0 t o N - 1 }
for X = 0 t o Q-1

0 otherwise
(4 . 3 4)

where Q = (t^^.i + X(^^in).fp is the minimum sequence length required to accommodate

every sample instance in one period o f x^Ct). Remember that in the theoretical

development of the pseudo-random DFT in section 4.2, the periodicity of Xa(t) was

assumed to equal the duration, = I n . i + of the rectangular window function h(t).

x^in is as defined by equations (4.17) and (4.21) for the additive pseudo-random and

periodic with dither sampling schemes respectively. Clearly Q is an integer by

definition of fp in equation (4.23).

Equation (4.9) becomes.

X , (f „) = Z x(;^) . e (4 . 3 5)

X=0

Let fn = n.5f where 5f is the DFT frequency bin spacing, with n = 0, 1 , f p / 5 f - 1.

Thus,

Q-l - j 2 7 t . n . 5 f .Vfp
X^(n.5f) = I K i X) . e (4 . 3 6)

X=0

Consider the hypothesis that the inverse pseudo-random DFT is of the same form as

equation (4.32); ie. that.

5f fp/5f - 1 + j 2 7 r . n . K . 6 f / f p
x (K) = X j - (n . 5 f) . e (4 . 3 7)

n=0

for K = 0, 1 , Q - 1 . Substituting equation (4.36) into equation (4.37) gives.

57

5f fp/5f - 1 Q-1
X (K) = £

-j2rt.n.X.5f / f p +j2n . n . K.5f / f p
2 x(;\.) .e .e

-p n=0 X=0

A swap of the summations is permissible only i f 5f = Vit^.i + Xj^in). Thus,

Q-1 5f
X(K) = ^ xt.X)

X=0 fp

Q-1 - j 2 7 t . n . ; i.5f / f p +j27t .n .K.5f / fp
^ e .e
n=0

(4.38)

Consider the section of this expression in the square brackets which is equivalent to,

Q-1 - j 2 n . n . 5 f / f p . { X - K)

I ^
n=0

= V ()

and let.

+ j Q (K - X)
V = e where Q. = 27t.5f/f> (4.39)

to givet.

V () = ^ V

Q-1 1 - V

^ = for V ^ 1
n=0 1 - V

(4.40)

From equation (4.39), v = 1 for A, = K and vQ = 1 for ^ 9̂ K as ?l, K and 5f/fp are all

integers by definition; so, substituting into (4.40) gives.

'''From the malhemalical principles of sums and products, the basic formula for the sum of a
geometric progression is given by,

1 - x"+l
o<j<n ax3 = a .

1 - X

assuming that x ;t 1 and n > 0. [16, Knuth].

58

V () = i
Q for X = K

(4 . 4 1)
0 Otherwise

Thus equation (4.38) becomes its identity, so the hypothesis of equation (4.37) must be

valid and the inverse pseudo-random discrete Fourier transform is given by,

1 Q-1 + j 2 7 t . t k . n . 5 f
^ a ' (t k) = - ^ X j . (n . 5 f) . e for tk ~ t o , ti, •r t i 4 - l

Q n=0
(4 . 4 2)

where Q = (t ^ . j + x^^^).fp and 5f = 1/(1^.1 + x^ J .

The discrete inversion formula (4.42) exhibits periodicity defined by the N samples of

x^XO in a manner similar to the discrete transform; such that,

X a ' (t k) = x^' (tk + q . [t ^ . i + X ^ i J) for q = 0, ± 1 , ± 2 , . . .

Examination o f the formula in (4.42) also reveals that to reconstruct the N sample

values of x^(t) at t = tg, t ^ , t j s j . i f rom Xj.(fn) requires an excessive Q = (t^.i + Xn,in).fp

points in the frequency domain to be calculated. Thus, an estimated wideband spectral

analysis of the input signal may be made rapidly by taking N samples at pseudo-random

intervals and performing the transform described by equation (4.9), but the

reconstruction of just N samples of the signal x.^(t) at specific instances from this

spectrum, although possible, involves vast time consuming evaluations.

The workload involved can be dramatically reduced by noting that in practice, the input

Xa(t) is real and so the values of x^Xtk) for k = 0, 1, N - l given by the inverse

transform must also be real. Remember that when x^(t) is real, equation (4.30) holds; ie.

X ^ (f p - f ^) = x / (f ^)

59

thus,

X r (Q . S f - r . 5 f) = X ^ * (r . 5 f)

and similarly,

X r (r . 5 f) = X r * { Q.5f - r.5f)

The formula of (4.42) can therefore be reduced so that nearly only half the number of

frequency bins need to be calculated. When Q is even,

1 r Q /2 +j27:.ti,.n.6f 1 r Q /2
i ' (t k) = - i X Xj.(n.5f)

Q ^ n=0
e

Q / 2 - 1 ^ _ + j 2 7 r . t k . (Q - n) .5f
+ X^" (n.5f) . e

n = l J

1 f + j j t . t k . f p
- . X^(0) + X r (f p / 2) . e
Q I

Q/2-1 -V
+ 2 ^ a (nSf) c o s (2ntkn5f) + b (n5f) s i n (2ntj^n5f) •

(4.43)

and when Q is odd.

1 r (Q - l) / 2 + j 2 r t . t k . n.5f
X a ' (t k) = - j X X ^ (n.5f) . e

Q ^ n=0

(Q - l) / 2 ^ + j 2 7 : . t k . (Q - n) .5f-j
+ ^ X^ {n.5f) .e

n = l

1 •
- . X^(0)
Q I

(Q - l) / 2 - -]
+ 2 £ a (nSf) c o s (27tt)^n5f) + b {n5f) s i n (27rt,^n5f) I

(4.44)

where Xr(n.5f) = a(n5f) - j .b(n5f) .

60

The value of x^Xt^) yielded by equation (4.43) or equation (4.44) must be real. This is

so as Xr(0), Xj.(fp/2) and e'̂ '̂ '̂̂ '̂ '̂ P w i l l have no imaginary part by definition.

Illustrative Example 4.4.

The pseudo-random DFT of (4.9) and its inverse as described by equations (4.43) and

(4.44) have been simulated for verification. (The simulation program source code is in

Appendix C.) Figures 4.5 and 4.6 show the errors associated with the signal amplitude

as determined by the inversion formulae at each sample instance in comparison with the

actual signal amplitude. The input signal contained two harmonics; one at 7 Hz of

amplitude 1 V , and another at 22 Hz of amplitude 2 V at 90° out of phase with the first

harmonic. Figure 4.5 shows the error when the signal is sampled at 400 points

uniformly at 84 Hz (system bandwidth 42 Hz.)

Maxinun error: 5.690030e-013 Minimun error: 0.OOGGOOe*0GO

0 Sample 399

Figure 4.5. Example of amplitude errors f rom use of the inverse transform after

sampling a signal uniformly.

The errors that result are relatively small, occur because of computational inaccuracies

when using floating-point arithmetic, and compare favourably with the errors that are

61

produced when using the N A G (Numerical Algorithms Group) library routines for an

analogous simulation. The N A G simulation program source code is listed in appendix

D. When executed, the list of errors produced showed that the errors generated by

taking a DFT of a sequence of samples and then performing an inverse DFT, are of

similar magnitude to those shown in figure 4.3, with the error in the first and final

samples considerably greater than the others.

Figure 4.6 shows the error when the signal is sampled at 400 points using the additive

pseudo-random sampling scheme with = 1/12.0 s and X2 = 1/14.0 s (system

bandwidth 42 Hz.) The errors are again relatively small, occur due to floating-point

arithmetic inaccuracies, but are on average slightly greater than the errors of figure 4.5

because more computation is required in the derivation of the sample values. In this

case, the window width (the duration over which the 400 samples are taken) is

approximately 400/13.0 s, compared with the case when the uniform sampling scheme

is used for which the window width is only 400/84.0 s. Thus the number of frequency

bins evaluated, Q = window width.fp, is much greater when using irregular sampling.

Maxitiun error: 7.431944e-012 Mininun error: 8.881784e-016

0 Sample 399

Figure 4.6. Example of amplitude errors f rom use of the inverse transform after

sampling a signal irregularly.

62

The amplitude error is noticeably high for the first and final samples. This is a familiar

characteristic of the conventional inverse discrete Fourier transform (evident when

using the N A G library routines) and is also due to the use of floating-point arithmetic in

the simulation. The analysis on this error is covered in some detail in a collection of

papers compiled in [17, Liu].

It has been clearly shown and verified by simulation that the equation (4.9) is a

transform with a well defined inverse given by equation (4.42). However, this does not

mean that the original signal may be reconstructed from its irregular samples, only that

instantaneous values of the signal can be determined f rom an estimated spectrum. A

method is required to f ind out whether or not unambiguous signal reconstruction is

possible when using an irregular sampling scheme. I f such reconsuiiction is possible,

relative to a particular sampling scheme, then that scheme w i l l be alias-free.

4.6 Improving the Estimated Fourier Coefficients,

To show that i t is possible to reconstruct the originally sampled signal from the N

sample points, it is necessary to show that the coefficients a ,̂ and b^,, used to describe

the signal by equation (4.1) for each harmonic at a frequency f ^ , can be determined

without ambiguity f rom the N sample points.

The coefficients generated by the pseudo-random transform in equation (4.9) are

estimates of the Fourier coefficients â ^ and bj^, as is illustrated by figure 4.7.

Illustrative Example 4.5.

A signal containing one harmonic at 170 Hz of amplitude 1 V and another at 30 Hz of

ampUtude 2 V with a 90° phase difference was simulated as being sampled at 500

points using periodic sampling of 50 Hz (T j = 1/50 s) with 5 possible dithers x = {0,

±0.1Ts, ±0.4Ts} (giving a system bandwidth of 250 Hz). The spectrum of figure 4.7

63

shows the amplitude and phase of possible signal elements at ft-equencies spaced by

0.5 Hz.

Anplitude

mm
30.0 70.0 I30.C 170.0 l^c.Q f

Phase
IT

-It

Figure 4.7. An illustration of the large amount of noise present in the spectrum formed

from the pseudo-random Fourier transform of equation (4.9).

Examination o f figure 4.7 reveals the possibility of at least three erroneous signal

elements at frequencies of 70 Hz, 130 Hz and 230 Hz in addition to the true components

at 30 Hz and 170 Hz.

It is necessary to devise an operation to eliminate this noise and thus determine the

exact Fourier coefficients without ambiguity.

Note that Xa(tjj) is given by (4.1). Substituting into (4.9) gives,

X r (f n) =

N - 1 M-1

S I
k=0 m=0

afmcos (2r t f^tk) + b f ^ s i n (27rf„tk)
•j27tfntk

(4.45)

64

Rearranging this for its real and imaginary parts gives.

M-1 N - l

Z Z c o s (2 i r f n t k)
m=0 k=0

a f „ . c o s (2 7 r f „ t k) + b f ^ . s i n (27tf^tk)

(4 . 4 6)

and.

M-1 N - l

E S s i n (2 n f n t k)
m=0 k=0

a f „ . c o s (2 7 t f „ t k) + b f „ . s i n (2 7 r f „ t k)

(4 . 4 7)

Equations (4.46) and (4.47) can be expressed in matrix form, as suggested by

[8, Bilinsky, Vystavkin & Mikelson]; ie..

B = A . C o r C = A ~ - ^ . B (4 . 4 8)

where the vectors,

c =
original
coefficients
sought

B
b f i coefficients

calculated
from (4.9)

and the system transfer matrix,

A =

PsOO "clO PslO "c20 Ps20
^sOl " c l l " s l l "c21 ^s21

PcOl P e l l P s l l Pc21 Ps21
0^502 ^ c l 2 ^sl2 ^c22 <^s22
Pc02 P c l 2 P s l 2 Pc22 Ps22

"cOm " e l m OCsim 0.^2m «s2m
PsOm Pclm Pslm Pc2m Ps2m

«cmO PsmO
ttcml "sml
Pcml Psml
«cm2 "sm2
Pcm2 Psra2

'cmm rsmm
(4 . 4 9)

65

with.

N-1
ttcij = 21 cos (27rf i t j ^) .cos (2; i f j t] ^)

k=0

N-1
ttsij = Z s i n (2rtf it)^) .cos (27rf jt,^)

k=0

N-1
Pcij = Z cos (2TCfit)^) . s i n (27tf j t k)

k=0

N-1
Psij = Z sin (2 7 t f i t , 5 ^) .sin (2 7 t f j t k)

k=0

The dimensions of the matrix A,) i by \i, are governed by the periodicity of the pseudo

random DFT, fp = 2.Bpseu£jo and the frequency increment that the coefficients are

calculated, 5f. The estimated coefficients are evaluated at frequencies f = m.5f for

m = 0 to [Bpseudo/SfJ- I f fm = 0 (ie. m = 0) or f ^ = Bpseujo (ie. m = Bpseudo/5f is integer

valued) then f rom the definition of the coefficients Xj(fn ,) , b f ^ w i l l be zero. It is

therefore unnecessary to f ind the imaginary part of the coefficients for the first

frequency bin (ie. fm = 0) at any time, or for the highest frequency bin (ie. fn , = Bpsg^ ĵo)

when [f p / 5 f j is even. Thus,

= 2 .LBp3eudo/5fJ { + 1 i f [fp/SfJ i s odd } (4.50)

The exact Fourier coefficients, C may be calculated from the inverse system transfer

matrix, A'-*^ and the estimated Fourier coefficients, B. Matrix A is independent of the

input signal and so A and A"-'̂ may be calculated prior to sampling for a known set of

sampling instances. Noting that, ttgoj = oCcjO' PcOj ~ PsjO' ^sij - Pcji' ™ ^ e s it clear to

see A is a symmetrical matrix. It follows f rom simple matrix theory that A"-'̂ must also

66

be symmetrical. This fact can be used to reduce the computation required to evaluate

the matrix and its inverse.

The classical approach for determining a matrix inversion, based on the use of Cramer's

rule [18, Pipes & Hovanessian], involves an excessive number of arithmetical

operations, approximately in the order of n^. Using an augmented matrix method, based

on Gauss' elimination, the inverse matrix A"-^ may be obtained with a reduction in

computation to the order of n-^ [18, Pipes & Hovanessian]. The most efficient method

(implemented in the simulation program of appendix C,) also of order n^ but with a

reduced constant of proportionality, is L U decomposition based on Grout's algorithm

and is described in detail by [19 Press, Flannery, Teukolsky & Vettering].

It is expected that by using the inverse of the matrix in equation (4.49), the spectrum of

a signal that has been band-limited in accordance with equation (4.31) and sampled

irregularly at a maximum rate which may be below the Nyquist sampling rate, can be

evaluated within the band limits without ambiguity at a finite number of frequencies.

Illustrative Example 4.6.

Consider, once again (as in the example 4.5,) a signal containing one harmonic at

170 Hz of amplitude 1 V and another at 30 Hz of amplitude 2 V with a 90° phase

difference. The signal is simulated as being sampled at 500 points by two pseudo

random sampling schemes, each with a system bandwidth of 250 Hz. Scheme 1:

Additive pseudo-random sampling with = 1/100.0 s and X2 = 1/125.0 s. Scheme 2:

Periodic sampling at 50 Hz (T s = l / 5 0 s) with 5 possible dithers x = {0, i O . l T j ,

±0.4Ts}. Figure 4.8 shows the estimated signal spectrum (evaluated from equation

(4.9)) when the signal is sampled using scheme 1. Figure 4.9 clearly shows that the

noise in this estimated spectrum is eliminated when its coefficients are multiplied by the

inverse of the matrix in equation (4.49), as expected.

67

Anplitude

J I I I L J L
30.0 170.0

Phase
n

1 1 1 , 1 1 1 1 1 1

j I 1 1 1 1

Figure 4.8. Estimated spectrum of example signal sampled by scheme 1.

Anpl itude

30.0 170.0
Phase

IT

Figure 4.9. Improved spectrum of signal after additive pseudo-random sampling.

However, figures 4.10 and 4.11 show corresponding spectra when the signal is sampled

using scheme 2. The noise is not eliminated and ambiguities remain.

68

Anplitude /, jjjj^ ̂

I I I J I L J I L

1 .322 - f /

J i_
30.0 170.0

Phase
n

Figure 4.10. Estimated spectrum of example signal sampled by scheme 2.

AmpIitude 2k. C031 V

30.0 TO.O 170.0
Phase

n

210.0 f

Figure 4.11. Incorrectly 'improved' spectrum of signal after periodic sampling with

dither.

The simulations reveal that, in the cases when a signal is sampled using periodic

sampling with dither, i t is not possible to determine the coefficients a^ and b^,, used to

69

describe the signal by equation (4.1) for each harmonic at a frequency f ^ , without

ambiguity f rom the N sample points. I t is possible to do so by using the matrix

operation described above, i f the signal is sampled using an additive pseudo-random

sampling scheme. It is not yet known why this phenomenon occurs for periodic

sampling with dither.

The four spectra above are coarse (coefficients are evaluated at frequency steps of

5f = 10 Hz) because the simulation program of appendbc C finds i t understandably

impossible to find the inverse of very large matrices. Evaluating the inverse of a very

large matrix takes a long time, requires an excessive amount of storage and involves the

use of very large floating-point numbers (sometimes too large for a computer's

numerical representation.) For the example 4.6, with a system bandwidth of

^pseudo ~ ^he inverse of a 50 by 50 matrix was calculated (dimensions given by

equation (4.50),) enabling the coefficients to be calculated at only 26 points; ie. at

frequencies f^^ = m.5f for m = 0 to 25. This should not be seen as a limitation to the

technique but as an inconvenient restriction enforced by hardware limitations.

4.7 Conceptual Interpretation and Discussion of the Technique.

When a band-limited, periodic signal (assumed to be modelled by equation (4.1)) is

sampled irregularly by either of the sampling schemes rigidly defined in section 4.3, the

time required to acquire N samples of the signal w i l l inevitably be greater than the

duration to obtain an equal number of samples by taking the samples at uniform

intervals. That is to say, irregular sampling takes a longer time to obtain an equal

amount of information (in terms of samples taken) as uniform sampling. This is a direct

consequence of irregular sampling operating at a sub-Nyquist rate (for some given

bandwidth) relative to uniform sampling. For example, consider a signal band-limited to

250 Hz, sampled at 100 points. This could be sampled by using uniform sampling at

500 Hz or, say, additive pseudo-random sampling with Xj = 1/100 s and X2= 1/125 s

(corresponding to an average sampling rate of 112.5 Hz.) Using the irregular sampling

70

scheme, i t would take approximately 100/112.5 s to take the required number of

samples, whereas it would only take 1/5 s using the uniform sampling scheme.

Furthermore, as with the conventional discrete Fourier transform, some care is needed

when using the pseudo-random DFT because it is valid only for the special case of a

band-limited periodic signal. The transform w i l l only produce an approximation to the

continuous Fourier transform spectrum i f there is not an integer number of complete

cycles of the input signal sampled over the duration of the time domain window. I f the

number of cycles sampled in the window interval is incomplete, then discontinuities

w i l l exist at the extremities of the interval and the periodic signal w i l l no longer be

band-limited. A form of distortion known as leakage w i l l be introduced into the

spectrum. The resultant approximated spectrum can be made more accurate only by

increasing the window interval for non-periodic signals (by effectively taking more

samples); by making the window interval equal to a multiple of the actual period for

periodic signals; or by altering the sampling scheme for a much greater bandwidth.

In other words, all the problems that exist with the conventional DFT due to taking a

finite length sequence of samples are also applicable to the pseudo-random DFT.

It has been shown that the estimated spectrum produced by the pseudo-random

transform may be improved i f the signal samples where taken using an additive pseudo

random sampling scheme and hence the original signal may be reconstructed error-free

from samples taken at irregular intervals. This is only possible i f the sampling instances

are known prior to sampling. In most cases, i t is expected that the instances w i l l not be

known until sampUng takes place. Evaluating the inverse of the matrix A every time

samples are taken would incur excessive computational overheads and would therefore

be impractical for a real-time system. However, as with the conventional DFT, the

approximated spectrum can be made more accurate by taking a greater number of

samples.

71

Consider the sampling of a signal containing two harmonics in phase; one at 20 Hz with

an amplitude of 1 V, and the other at 90 Hz of amplitude 2 V. Figures 4.12, 4.13 and

4.14 show the signal's estimated amplitude spectrum when samples using a variety of

schemes.

A n p l i t u d e

20.G 90.0

Figure 4.12. 500 samples taken uniformly every 1/125 s.

Figure 4.12 clearly show the aliases that result when uniform sampling is employed.

A n p l i t u d e

20.0 90.0 f

Figure 4.13. 100 samples taken using an additive pseudo-random sampling scheme with

Xl = 1/100 s and X2 = 1/125 s.

72

f i n p l i t u d e

iiiAj^iijjj.jjLtiii>jiijiniii]ia«yti

20.0 30.0 f

Figure 4.14. 500 samples taken using an additive pseudo-random sampling scheme with

Xi = 1/100 s and t2 = 1/125 s.

Figures 4.13 and 4.14 illustrate how the estimated spectrum is improved by taking a

larger number of samples. Furthermore, when compared with figure 4.12, it can be seen

that aliases do not appear in the spectra in the form of frequency shifted replicas of the

original signal, but spread in the form of broadband noise. The method described in

section 4.6 shows that it is possible to unambiguously identify the original signal from

this noise when samples are taken using the additive pseudo-random sampling scheme.

A direct realisation of the pseudo-random DFT is clearly excessive in computation for a

large number of points, which is required to reduce the noise present in the spectrum of

the irregular samples. It is therefore necessary to use a fast algorithm for its

implementation. Unfortunately, a decimation in time or a decimation in fi-equency form

[20, Proakis & Manolakis] of fast Fourier transform is not applicable, as such an

approach requires the input sequence to be evenly divided and makes use of the

orthogonality relationships between one 'twiddle factor' and another. It could be

advantageous to formulate a fast algorithm to implement the pseudo-random DFT of

equation (4.1). However, the technique has some considerable limitations (as does the

conventional discrete Fourier transform) but it has been demonstrated that sub-Nyquist

sampling is possible by using additive pseudo-random sampling, with a gain in system

bandwidth at the expense of signal-to-noise power ratio.

73

5. DESCRIPTION OF SIMULATION PROGRAMS

The three techniques described in chapters 2, 3 and 4 have been simulated on a PC

based system with a floating-point co-processor to show that they have been sufficiently

and rigidly defined and to help in verifying the analysis of their characteristics and

performance. NAG library routines have been used to determine the characteristics of

errors generated by taking the DFT of a sequence of uniformly spaced samples, and

then an inverse DFT to reproduce the sequence.

The simulation programs of the three techniques are written in the 'C programming

language and have been compiled using the Microsoft^ 'C optimizing compiler with

the "compact" memory model. The simulation program that uses the NAG library is

written in the Pascal programming language and was executed on a MTS Mainframe

computer system. Their full source codes are listed in the appendices.

The question of "how" the simulation programs work is intentionally not addressed

here. It is expected that the reader has sufficient knowledge of 'C and Pascal to

understand the programming with assistance from the comments within the listings and

their structure, or should acquire such knowledge. However, "what" the simulation

programs do is described.

5.1 Simulation of Single Active Element Dealiasing Algorithm with

DFT Errors Considered.

The technique described in chapter 2 is simulated.

The program takes the three sampling frequencies of equation (2.12) as its input and

prompts the user as to whether or not the deaUasing algorithm is to be simulated with

consideration of the errors imposed by the limited resolution of the discrete Fourier

transforms used. I f so, the number of points, N used in calculating the DFTs is

74

requested. The program ensures that the number of points specified satisfies the

conditions of equation (2.27).

The operational bandwidth of the algorithm is returned as given by equation (2.16) i f

DFT limitations are not to be considered, or otherwise by equation (2.24). The program

then tests the dealiasing algorithm for every frequency ranging from zero to the pre-

calculated maximum operational frequency in steps of some user-entered increment, in

an attempt to find an input frequency for which the technique does not work. A plot of

the output frequency patterns from the three samplers/filters against input frequency is

displayed, and i f the DFT limitations are considered, a plot of the error in the frequency

as evaluated by the algorithm compared with the actual input frequency is also

presented. I f the dealiasing algorithm operates correctiy, this error plot will show that

the error does not exceed the maximum permissible error, as given by equation (2.22),

at any time.

The source code for this program is listed in appendix A.

5,2 Simulation of Multiple Active Element Dealiasing AlgorithmSo

The technique described in chapter 3 is simulated.

The program takes the three sampling frequencies of equation (2.12) as its input and

returns the operational bandwidth for the technique as given by equation (2.16). The

simulation program prompts the user for a list of frequencies to correspond with the

harmonics of the input signal to be modelled. The frequencies entered must be within

the operational bandwidth calculated. The program then selects the most appropriate

multiple active element dealiasing algorithm (either that of section 3.1 or section 3.2)

for the modelled system, by using a criterion based on the relative efficiency of the two

algorithms as described in section 3.4.

75

As output, the program says which algorithm was selected and lists the frequencies of

all the harmonics that are believed to be in the input spectrum according to the alias

reducing algorithm used. A plot of these frequencies and those of the actual input is

produced for comparison, with the remaining 'ghost' frequencies (if any) highlighted.

The source code for this program is listed in appendix B.

5.3 Direct Realisation of the Pseudo-random Discrete Fourier

Transform.

This is the most complex of the simulation programs and models every aspect of the

technique described in chapter 4.

The program initially requests parameters to describe the sampling scheme to be

modelled. This requires the number of sampling points to be taken, the type of sampling

(uniform, additive pseudo-random, or periodic with dither,) and relevant sampling

frequency data. The input signal bandwidth limitation is calculate and output for the

scheme described on the basis of the theory laid out in section 4.4.

Parameters may be entered to describe a complex input signal. The signal to be

simulated is assumed to be formed of a summation of any finite number of sinusoidal

harmonics of specified frequency, amplitude and relative phase. Sampling of this signal

by the scheme declared is simulated, using a pseudo-random number generator with an

approximately uniform distribution for the irregularly spaced sampling schemes.

A number of operations may be preformed on the data produced by this process. The

pseudo-random discrete Fourier transform of equation (4.9) can be evaluated and

displayed at frequencies ranging from zero to a frequency corresponding to the system

bandwidth at intervals, 5f specified by the user. The pseudo-random transform and its

inverse described by equation (4.44) can be determined (with 6f = l/(tN.i + x^i^),) and

76

the errors associated with the signal amplitude as determined by the inversion formulae

at each sample instance in comparison with the actual signal amplitude are plotted, in

addition to the estimated signal spectrum. Alternatively, the matrix method proposed in

section 4.6 to improve the estimated Fourier coefficients may be modelled.

The source code for this program is listed in appendix C.

So4 DFT and Inverse DFT using NAG Library Routines.

In section 4.5, error plots were presented to show the magnitude of the errors generated

when taking the pseudo-random DFT of a sequence of samples and then the inverse

transform to reproduce the sequence. These plots where generated by executing the

simulation program described in section 5.3 on a PC based system with a floating-point

co-processor. In order to verify that the magnitude of these errors is consistent with

floating-point arithmetic errors, a simulation was also produced using the NAG library

routines.

The NAG library routines are available on a MTS Mainframe computer system, which

uses a different (and more accurate) representation of floating-point numbers to the PC

based system. For this reason, the program listed in appendix D also simulates the

pseudo-random DFT and its inverse. The program models uniform sampling of a signal

to produce a sequence of consecutive sample values. The NAG library routines are then

used to perform a conventional DFT and then an inverse DFT on this sequence to

produce a new sequence with error. Similarly, the original sequence of sample values

act as input to the pseudo-random DFT and then to its inverse, producing yet another

sequence with error. The errors in the two new sequences (one produced by NAG

routines and the other by the pseudo-random transforms) are then listed for a direct

comparison.

The source code of this program is listed in appendix D.

77

6. CONCLUSIONS AND SUGGESTIONS FOR FURTHER

R E S E A R C H .

A rigourous algorithm has been defined to establish the frequency and amplitude of a

pure sinusoidal signal (ie. a signal consisting of only its fundamental harmonic) when

sampled uniformly by three samplers simultaneously, although the frequency at which

these samplers operate may be less than the twice the frequency of the sinusoidal signal.

That is, the sinusoidal signal may be sampled at a sub-Nyquist rate and any resultant

aliasing may be resolved. The output of each sampler is low-pass filtered 'ideally' with a

cut-off at half the sampling frequency of the corresponding sampler. The algorithm has

been shown to work within an acceptable and defined tolerance when only an

approximation of the frequency of the signals that evolve from the sampling/filtering

process, can be made because of limitations with the conventional discrete Fourier

transform. The algorithm functions correctly up to a well defined maximum limit of the

frequency of the sinusoidal signal, which depends on the three sampling frequencies

used.

An attempt to extend the algorithm developed by two analogous, although conceptually

diverse methods, so as to eliminate aliases due to sampling (in the same way) a signal

containing a sum of harmonics, proved only to reduce the frequency ambiguities. There

is the possibility that erroneous harmonics may be identified as part of the signal, even

for a signal containing only a few harmonics. It was shown that the only way to

optimise the reduction in ambiguities, is to use a very large number of uniform

samplers, each succeeded by a low-pass filter. However, the probability of finding

erroneous harmonics remains and the excessive computational overheads imposed by

the two methods rendered such an approach impractical. In fact, it would be far quicker

and more accurate to use sampling at greater than the Nyquist rate. Alternatively,

random sampling was proposed.

78

Irregular sampling of a continuous signal was investigated in terms of the spectrum of

the samples taken. The conventional discrete Fourier transform is not applicable to non

uniform samples and so a pseudo-random DFT was developed to determine an

estimated spectrum for samples taken at irregular time intervals. Two sampling schemes

to generate pseudo-random sampling instances are defined; namely, additive pseudo

random sampling and periodic sampling with dither. The periodicity and symmetry of

the transform were found and it is shown that a signal must be band-limited to a well-

defined frequency to avoid aliasing for the two sampling schemes. The maximum

sampling rate may be well below twice the bandwidth of the limited signal. The

transform inverse is derived and shown to function correctly within the floating-point

limits of the simulation. I f the signal is sampled irregularly using the additive pseudo

random sampling scheme, then its resultant estimated spectrum is consistentiy alias-free

and, i f the instances at which each sample was taken were known prior to sampling, the

exact Fourier coefficients of the original signal may be determined from it by the matrix

method described. The signal must be band-limited to half the pseudo-random

transform periodicity, which is dependent upon the irregularly spaced sampling

instances.

Simulations of the techniques were made and tiieir results used throughout to illustrate

and verify some of the arguments presented.

When samples of a signal are taken at irregular time intervals using an additive pseudo

random sampling scheme, the alias-free spectrum estimated by the pseudo-random DFT

shows the presence of noise. It is suggested that further research be undertaken to

determine the level of this noise, the parameters upon which it depends (the number of

samples taken being one,) and develop methods to reduce or eliminate it. Furthermore,

the effects of sample quantization are unknown and should be investigated. The use of

pseudo-randomly varying quantization thresholds may be examined to see if

quantization noise can be reduced. The estimated spectrum will somehow be affected

by random variations in the sampling instances {tj^}. The effect on the spectrum

79

estimation due to this or due to using different distributions of pseudo-random numbers

in the production of the sampling instances, also requires investigation. Should such

further research find the pseudo-random discrete Fourier transform to be of exceptional

value, a fast algorithm should be developed to improve the efficiency of its

implementation.

Papers with a strong mathematical basis which may be of use in extending the research

and which have been helpful from time-to-time to the research already undertaken are

listed in the bibliography with a number of items which have been of use throughout the

research.

80

APPENDIX A

Program Source Code for the Simulation of the Single Active Element

Dealiasing Algorithm with DFT Errors Considered.

81

* *

* Sub-Nyquist Sampling Alg o r i t h m S i m u l a t i o n *
* •

* - S i n g l e A c t i v e Element A n a l y s i s - *
* - Uniform sampling scheme - *
* - DFT e r r o r s may be c o n s i d e r e d - *
* - E r r o r s and output p a t t e r n s p l o t t e d - *

* *

* i n c l u d e system f i l e s *

* • i t * /

i n c l u d e <stdio.h>
S i n c l u d e <graph.h>
• i n c l u d e <conio.h>
i n c l u d e <float.h>
i n c l u d e <math.h>

* data p r o c e s s i n g r o u t i n e s *
* *

/*
* Return o p e r a t i o n a l bandwidth of system with or without DFT e r r o r s c o n s i d e r e d
*
* f s - a r r a y of t h r e e sampling f r e q u e n c i e s
* n - number of p o i n t s used to c a l c u l a t e the DFTs. Assumed equal f o r a l l t h r e e
* n = 0 means DFT e r r o r s not c o n s i d e r e d
*/

double frequency_range (f s , n)
double f s [] ;
i n t n;

double Bopt, B e r r ;

i f (n == 0) (
/* equation (2.16) */
Bopt = f s [0] * f s [2] / (2 . 0 * (f s J 2] - f s [0])) + f s (l] * 0 . 5 ;
r e t u r n (Bopt);
}

e l s e {
/* equation (2.24) */
B e r r = (f s [0] * f s [2] / (f s [2] - f s [0])) * (0.5 - 1.0/(double) n),
r e t u r n (B e r r) ;
)

82

/*
* Return maximum p e r m i s s i b l e e r r o r i n c a l c u l a t i n g input frequency

* f s - a r r a y of t h r e e sampling f r e q u e n c i e s
* n - number of p o i n t s used to c a l c u l a t e the DFTs. Assumed equal f o r a l l three
* n = 0 means DFT e r r o r s not c o n s i d e r e d
*/

double max_error (f s , n)
double f s [] ;
i n t n;

double dfxmax;

i f (n == 0)
r e t u r n (0 . 0) ;

e l s e {
/* equation (2.22) */
dfxmax = f s [0] * f s [2] / ((d o u b l e) n * { f s [2] - f s [0]) :
r e t u r n (dfxmax);
}

/*
* C a l c u l a t e frequency of output s i g n a l from the t h r e e samples as g i v e n by DFT
*
* f s - a r r a y of t h r e e sampling f r e q u e n c i e s
* n - number of p o i n t s used to c a l c u l a t e the DFTs
* n = 0 means DFT e r r o r s not c o n s i d e r e d
* i n - frequency of input s i g n a l
* out - a r r a y of f r e q u e n c i e s of t h r e e output s i g n a l s
*/

v o i d s i m u l a t e _ o u t p u t (f s , n, i n , out)
double f s [] ;
i n t n;
double i n ;
double o u t [] ;

r e g i s t e r i n t i ;
double k, rem, i n t p a r t ;

f o r (i = 0; i <= 2; i++) {
/* equation (2.13) */
k = f l o o r (i n / f s (i]) ;
i f ((i n >= k * f s [i]) SS (i n <= (k + 0 . 5) * f s [i]))

o u t [i l = i n - k * f 3 [i l ;
e l s e

o u t [i] = (k + 1 . 0) * f s [i] - i n ;
i f (n != 0) {

/* t r u n c a t e output to s i m u l a t e e r r o r given by equation (2.20) */
rem = modf (o u t [i] * (d o u b l e) n / f s [i] , s i n t p a r t) ;
i f (rem > 0.5)

i n t p a r t += 1.0;
o u t [i] = i n t p a r t * f s [i] / (double) n;
)

83

I*

* D e a l i a s i n g a l g o r i t h m
* Determines the approximate frequency of the s i g n a l input from the DFT outputs
* R e t u r n s zero i f f a i l s to f i n d a component frequency

f s - a r r a y of t h r e e sampling f r e q u e n c i e s
n - number of p o i n t s used to c a l c u l a t e the DFTs

n = 0 means DFT e r r o r s not c o n s i d e r e d
out - a r r a y of f r e q u e n c i e s of t h r e e output s i g n a l s determined by DFTs
p _ c f - p o i n t e r to the c o r r e c t approximate frecpjency of the input

*/
i n t d e a l i a s (f s , n,
double f s (] ;
i n t n;
double out [] ;
double * p _ c f ;

out, p c f)

double i d f s l , i d f s 2 , i d f s 3 ;
double r [8] [3] , dfx, p o s s _ f r e q ;
r e g i s t e r i n t i , num_found;
double drOmax, drlmax, dr2max;

i d f s l = l . a / (f s [l] - f s [0])
i d f s 2 = 1 . 0 / (f s [2] - f s [l])
i d f s 3 = 1 . 0 / (f s [2] - f s (0])

/* c a l c u l a t e c y c l e count f o r the e i g h t r e g i o n s of the output p a t t e r n */
/* equ a t i o n (2.18) */
r 7] [0] = (out[0] - o u t [l]) * i d f s l ;
r 7] [1] = (out [1] - out [2]) * i d f s 2 ;
r 7] [2] = (out[0] - out [2]) * i d f s 3 ;
r 1] [0] (f s [0] - o u t [0] - o u t [l]) * i d f s l ;
r 1] [1] = r [7] [1] ;
r 1] [2] = (f s [0] - o u t [0] - o u t [2]) * i d f s 3 ;
r 2] (0] - r [7] [0] - 1.0;
r 2] (1] = (f s [l] - o u t (l] - out [2]) * i d f s 2 ;
r 2] [2] = r [l] [2] ;
r 3] [0] = r [2] [0] ;
r 3] [1] - r [7] [1] - 1.0;
r 3] [2] = - r [7] [2] - 1.0;
r 4] [0] = (out [0] + o u t [l]) * i d f s l ;
r 4] [1] = - r [7] [1] ;
r 4] [2] = (out[0] + out [2]) * i d f s 3 ;
r 5] [0] = r [7] [0] ;
r 5] [1] = (out [1] + out [2]) * i d f s 2 ;
r 5] [2] = r [4] [2] ;
r 6] [0] r [4] [0] ;
r 6] [1] = r [2] [1] + 1.0;
r 6] [2] = (f s [2] - out [2] + o u t [0]) * i d f s 3 ;
r 0] [0] = r [l] [0] ;
r 0] [1] = r [5] [1] ;
r 0] [2] = (f s [0] - ou t [0] + out [2]) * i d f s 3 ;

/* use simple a l g o r i t h m i f DFT e r r o r s are not to be c o n s i d e r e d */
i f (n == 0) (

*p_c f = -1.0;
num_found = 0;
f o r (i = 0; i <= 7; i++)

i f (r (i] [0] == r [i] [l] SS r (i] [l] == r [i] [2] ss

84

(f l o o r (r [i] [2]) == r [i] [2])) {
i f (i >= 4)

p o s s _ f r e q = ou t [0] + r [i] [2] * f s [0] ;
e l s e

p o s s _ f r e q = (r [i] (2] + 1 . 0) * f s [0] - o u t (0] ;
i f (p o s s _ f r e q != *p_ c f &s

p o s s _ f r e q >= 0.0 &&
p o s s _ f r e q < frequency_range (f s , n)) {

num_found += 1;
*p_cf = poss f r e q ;

}

/* o t h e r w i s e use modified a l g o r i t h m */
e l s e {

/* e v a l u a t e maximum e r r o r i n c y c l e counts - equation (2.21) */
drOmax = (f s (0] + f s [l]) / (2 . 0 * (f s [l] - f s [0]) * (double) n) ;
drlmax = (f s [l l + f s [2]) / (2 . 0 * (f s [2] - f s [l]) * (double) n) ;
dr2max = (f s [0] + f s [2]) / (2 . 0 * (f s [2] - f s [0]) * (double) n) ;

/* e v a l u a t e max e r r o r i n approximating input frequency */
dfx = max_error (f s , n) ;

/* f i n d v a l i d c y c l e count and hence the frequency of input s i g n a l */
*p_c f = -2.0*dfx;
num_found = 0;
fo r (i = 0; i <= 7; i++)

i f (fabs (r [i] [0] - r [i] [l]) < drOmax + drlmax S i
fabs (r (i] [l] - r [i] [2]) < drlmax + dr2max s s
fabs (r [i] [0] - r [i] [2]) < drOmax + dr2max SS
(fab s (f l o o r (r (i] [0]) - r [i] [0]) < drOmax I I
fabs (c e i l (r [i H O]) - r [i) [0]) < drOmax) SS

(fab s (f l o o r (r [i] [l]) - r [i] [l]) < drlmax I I
fabs (c e i l (r [i) [l]) - r [i] [l]) < drlmax) SS

(fabs (f l o o r (r [i] [2]) - r [i] [2]) < dr2max I I
fabs (c e i l (r [i] (2]) - r [i] [2]) < dr2max)) {

i f (i >= 4)
p o s s _ f r e q = ou t [0] + r [i] [2] * f s [0] ;

e l s e
p o s s _ f r e q = (r [i] [2] + 1 . 0) * f s [0] - o u t [0] ;

i f (p o s 3 _ f r e q >= 0.0 SS
p o s s _ f r e q < frequency_range (f s , n) + dfx) {

num_found = 1 ;
*p_cf = p o s s _ f r e q ;
}

}

}

r e t u r n (num found == 1) ;

85

* •

* u s e r i n t e r f a c e r o u t i n e s *
* *
***************************/

/*
* Program i n t r o d u c t i o n d i s p l a y
*/

v o i d heading 0
{

p r i n t f (
p r i n t f (
p r i n t f (
p r i n t f (
p r i n t f (
p r i n t f (
p r i n t f (

[OmThe A n a l y s i s of S i g n a l s Sampled at a Sub-Nyquist Rate\n\n"
P C Bagshaw December 1989\n\n");
S i m u l a t i o n of D e a l i a s i n g AlgorithmNn");
- S i n g l e A c t i v e Element A n a l y s i s - \ n ") ;
- Uniform sampling scheme - \ n ") ;
- DFT e r r o r s may be c o n s i d e r e d - \ n ") ;
'•- E r r o r s and output p a t t e r n s p l o t t e d - \ n \ n ") ;

/*
* Request o p e r a t i n g f r e q u e n c i e s of the t h r e e samplers
*
* f s - a r r a y of t h r e e sampling f r e q u e n c i e s
*/

v o i d s e l e c t _ s a m p l e _ f r e q u e n c i e s (f s)
double f s [] ;

r e g i s t e r i n t boolean, i ;
f l o a t i n _ s a m p l e _ f ;

p r i n t f ("Enter t h r e e sampling frequenciesXn") ;
boolean = 1;
w h i l e (boolean) {

f o r (i = 0; i <= 2; i++) {
p r i n t f (" f s % d : ", i + 1) ;
sc a n f ("%f", S i n _ s a m p l e _ f) ;
f s [i] = (double) i n _ s a m p l e _ f ;
}

/* ensure eq u a t i o n (2.12) holds */
i f (boolean = (0.0 >= f s f O] I I f s f O] >= f s [l]

I I f s [l] >= f s [2]))
p r i n t f (" e r r o r : 0 < f s l < f s 2 < f s 3 not s a t i s f i e d \ n ") ,

}

r e t u r n ;

86

/*
* Request number of p o i n t s to be used by DFTs and check s u f f i c i e n t a re used
*
* f s - a r r a y of t h r e e sampling f r e q u e n c i e s
* p_n - p o i n t e r t o the number of p o i n t s used to c a l c u l a t e the DFTs
*/

v o i d read_num_dft_points (f s , p_n)
double f s [] ;
i n t *p_n;
(

r e g i s t e r i n t s u f f i c i e n t _ p o i n t s = 0;
ch a r key;

p r i n t f ("Are DFT e r r o r s to be c o n s i d e r e d (y / n) ? ") ;
w h i l e ((key = ge t c h ()) != 'y' SS key != 'n')

p r i n t f ("%c\n", k e y) ;
i f (key == ' n ') {

*p_n = 0;
r e t u r n ;
)

w h i l e (! s u f f i c i e n t _ p o i n t s) (
p r i n t f ("Enter number of p o i n t s i n DFT: ") ;
s c a n f ("%d", p _ n) ;
/* ensure e q u a t i o n (2.27) holds */
s u f f i c i e n t _ p o i n t s = ((double) *p_n > (f s [l] + f s [2]) / (f s [2] - f s [l]) SS

(double) *p_n > (f s (0] + f s [1]) / (f s [1] - f s [0])) ;
i f (! s u f f i c i e n t _ p o i n t s)

p r i n t f (" e r r o r : i n s u f f i c i e n t p o i n t s f o r a l g o r i t h m to operate c o r r e c t l y \ n "
)

r e t u r n ;

>

/*
* P l o t sampler output f r e q u e n c i e s and a l g o r i t h m e r r o r a g a i n s t input frequency
*
* s - a r r a y of t h r e e sampling f r e q u e n c i e s
* n - number of p o i n t s used to c a l c u l a t e the DFTs
* n = 0 means DFT e r r o r s not c o n s i d e r e d
*/

v o i d p l o t _ o u t p u t _ p a t t e r n s (s , n)
double s [] ;
i n t n;
{

s t r u c t v i d e o c o n f i g vc;
double f r , x _ s c a l e , y _ s c a l e , fx, f o (3] , c f , dfxmax;
s h o r t x;

i f (!set_mode())
e x i t (-1);

_ g e t v i d e o c o n f i g (S v c) ;
_ s e t c o l o r (_WHITE);
_ s e t t e x t p o s i t i o n (6, 1) ;
p r i n t f (" S a m p l e r / F i l t e r outputs: f o l , fo2 and f o 3 ") ;
_ s e t l o g c r g (0, (i n t) vc.numypixels*0.49);
f r = frequency_range (s , n) ;
dfxmax = max e r r o r (s , n) ;

87

x _ 3 c a l e = (double) (vc.nuraxpixels - l) / f r ;
_moveto {0, (short) (- s (2]*x_scale/2.0));
_ l i n e t o (0, 0) ;
_ l i n e t o (vc.numxpixels, 0) ;
_moveto (0, 0) ;
f o r (f x = 0.0; f x <= f r ; f x += 1.0/x_scale) {

simulate_output (s , n, f x , f o) ; /* c a l c u l a t e and p l o t f o l , fo2, fo3 */
X = (short) (f x * x _ s c a l e) ;
_ s e t c o l o r (12); /* l i g h t red */
_ s e t p i x e l (x, (short) (- f o [2] * x _ s c a l e)) ;
_ s e t c o l o r (10); /* l i g h t green */
_ s e t p i x e l (x, (short) (- f o [1] * x _ s c a l e)) ;
_ s e t c o l o r (9) ; /* l i g h t blue */
_ s e t p i x e l (x, (short) (- f o [0] * x _ s c a l e)) ;
}

_ s e t t e x t p o s i t i o n (1 , 1) ;
p r i n t f (" f s l = %.3f fs2 = %.3f fs3 = % . 3 f \ n " , s [0] , s [l] , s [2]) ;
p r i n t f ("Operational frequency range, B = % f " , f r) ;
_ s e t t e x t p o s i t i o n (16, 1) ;
p r i n t f ("0");
_ s e t t e x t p o s i t i o n (16, 32);
p r i n t f ("Input frequency");
_ s e t t e x t p o s i t i o n (16, 80);
p r i n t f ("B");

i f (n != 0) (
_ s e t t e x t p o s i t i o n (3, 1) ;
p r i n t f ("Number of p o i n t s i n DFTs = %d\n", n) ;
p r i n t f ("Maximum permissible e r r o r , A d f x _ m a x A = % f \ n " , d f x m a x) ;
_ s e t t e x t p o s i t i o n (17, 1) ;
p r i n t f ("Dealiasing e r r o r : A d f x A ") ;
_ s e t t e x t p o s i t i o n (18, 1) ;
p r i n t f ("- % . 3 f " , dfxmax);
y_scale = -(double) (vc.numypixels - 1)/dfxmax*0.35;
_ s e t l o g o r g (0, (i n t) vc.numypixels*0.93);
_moveto (0, 0) ;
f o r (f x = 0.0; f x <= f r ; f x += 1.0/x_scale) {

_ s e t c o l o r (14); /* yellow */
simulate_output (s, n, f x , fo) ;
i f (I d e a l i a s (s , n, f o , Scf) I I fabs (f x - c f) > dfxmax) {

/* d e a l i a s i n g a l g o r i t h m given i n c o r r e c t answer */
_ s e t c o l o r (13); /* purple */
cf = f x - dfxmax;
)

_moveto ((s h o r t) (f x * x _ s c a l e) , 0) ;
_ l i n e t o ((s h o r t) (f x * x _ s c a l e) , (short) (fabs (f x - c f) * y _ s c a l e)) ;
)

_ s e t t e x t p o s i t i o n (29, 1) ;
p r i n t f ("0");
_ s e t t e x t p o s i t i o n (29, 32);
p r i n t f ("Input frequency");
_ s e t t e x t p o s i t i o n (29, 80);
p r i n t f ("B");
_ s e t c o l o r (_WHITE);
_moveto (0, (short) (dfxmax*y_scale));
_ l i n e t o (0, 0) ;
_ l i n e t o (vc.numxpixels, 0) ;
)

getch 0;

88

_setvideomode (_DEFAULTMODE);
r e t u r n ;

/*
* Select video mode
*/

i n t set_mode ()
{

i f (_setvideomode (_VRES16C0L0R))
r e t u r n (_VRES16C0L0R);

i f (_setvideomode (_ERESCOLOR))
r e t u r n (_ERESCOLOR);

i f (_setvideomode {_MRES16C0L0R))
r e t u r n {_MRES16C0L0R);

else
r e t u r n (0) ;

}

* *
* main program *
* *

double sample_freqs[3] = {0.0, 0.0, 0.0)

main ()

i n t num_points;
double B, dfx_max, f r e q _ i n c = 0.0, f x , f o [3] , c f ;
f l o a t entered_inc;
r e g i s t e r i n t errors_found = 0;

heading () ;
select_sample_frequencies (sample_freqs);
read_num_dft_points (sample_freqs, Snum_points);
B = frequency_range (sample_freqs, num_points);
p r i n t f ("Frequency range: % f \ n " , B);
dfx_max = max_error (sample_freqs, num_points);
p r i n t f ("Maximum permissible e r r o r i n c a l c u l a t i n g input frequency: % f \ n " , dfx_max) ;
while (f r e q _ i n c <= 0.0) {

p r i n t f ("Test d e a l i a s i n g a l g o r i t h m over range w i t h frequency increment: ") ;
scanf ("%f", Sentered_inc);
f r e q _ i n c = (double) entered_inc;
)

p r i n t f ("Looking f o r e r r o r s i n d e a l i a s i n g algorithm...\n\n");
f o r (f x = 0.0; f x < B; f x += f r e q _ i n c) {

simulate_output (sample_freqs, num_points, f x , f o) ;
i f (i d e a l i a s (sample_freqs, num_points, f o , Scf) || fabs (f x - c f) > dfx_max) (

errors_found += 1;
i f (errors_found == 1)

p r i n t f ("Algorithm i n e r r o r f o r input frequency,\n");
p r i n t f (" % f gives i n c o r r e c t answer % f - e r r o r = % f \ n " , f x , c f , f a b s (f x -

o f) ;
}

89

}
i f (!errors_found)

p r i n t f ("No");
else

p r i n t f ("%d", e r r o r s _ f o u n d) ;
p r i n t f (" e r r o r s found\n\nPress any key t o continue");
getch () ;
p l o t _ o u t p u t _ p a t t e r n s (sample_freqs, num_points);
e x i t (0) ;

90

APPENDIX B

Program Source Code for the Simulation of the Multiple Active

Element Dealiasing Algorithms.

91

* *
* Sub-Nyquist Sampling Algorithms Simulation *
* *
* - M u l t i p l e A c t i v e Element Analysis - *
* - Uniform sampling scheme f o r three samplers - *
* - Chooses most e f f i c i e n t a l g o r i t h m f o r case described - *
* *

* *
* include system f i l e s *

• i n c l u d e <malloc.h>
•incl u d e <stdio.h>
• i n c l u d e <graph.h>
•include <conio.h>
•incl u d e < f l o a t . h >
• i n c l u d e <math.h>

* *
* d e f i n e a b s t r a c t data type f o r ordered l i s t of frequencies *
« *
•**••**************/

typedef s t r u c t f r e q _ l i s t {
double frequency;
s t r u c t f r e q _ l i s t *next_frequency;
} FREQ_LIST;

v o i d a d d _ t o _ l i s t { p _ l i s t _ h d , f_value)
FREQ_LIST * * p _ l i s t _ h d ;
double f_v a l u e ;
{

FREQ_LIST *new_node, *node = NULL, *old_node = NULL;
r e g i s t e r new_value = 1;

i f (* p _ l i s t _ h d != NULL) {
node = * p _ l i s t _ h d ;
while ((new_value = f_value != node->frequency) SS

node != NULL && f_value > node->frequency) {
old_node = node;
node = node->next_frequency;
)

)
i f (new_value) {

new_node = (FREQ_LIST *) malloc (s i z e o f (FREQ_LIST));
i f (new_node == NULL) {

f p r i n t f (s t d e r r , " e r r o r : i n s u f f i c i e n t memory availableXn") ,
e x i t (-1);
}

new_node->frequency = f_value;
i f (* p _ l i s t _ h d == NULL) {

* p _ l i s t _ h d = new_node;
new_node->next_frequency = NULL;
}

92

else {
i f (old_node == NULL)

* p _ l i s t _ h d = new_node;
else

old_node->next_frequency = new_node;
new_node->next_frequency = node;
}

* *
* data processing r o u t i n e s *
* *

double frequency_range (f s)
double f s [] ;
{

double Bopt;

/* equation (2.16) */
Bopt = f s [0] * f s (2] / (2 . 0 * (f s (2] - f s [0])) + f s [l] * 0 . 5 ;
r e t u r n (Bopt);

}

v o i d simulate_output (f s , i n , out)
double f s [] ;
double i n ;
double o u t [] ;
{

r e g i s t e r i n t i ;
double k;

f o r (i = 0; i <= 2; i++) {
/* equation (2.13) */
k = f l o o r (i n / f s [i]) ;
i f ((i n >= k * f s [i]) SS (i n <= (k + 0 . 5) * f s [i]))

o u t [i] = i n - k * f s [i] ;
else

o u t [i] = (k + 1 . 0) * f s [i] - i n ;
)

r e t u r n ;

}

i n t s i n g l e _ d e a l i a s (f s , out, p_cf)
double f s [] ;
double o u t [] ;
double *p_cf;

double i d f s l , i d f s 2 , i d f s 3 ;
double r (8] [3] , d f x , poss_freq;
r e g i s t e r i n t i , num_found;
double drOmax, drlmax, dr2max;

93

i d f s l = 1.0/ (f s [1] - f s [0])
i d f s 2 = 1.0/(fs[21 - f s [l])
i d f s 3 = 1 . 0 / (f s [2] - f s [0])

/* c a l c u l a t e cycle count f o r the e i g h t regions of the output p a t t e r n */
/* equation (2.18) */
r 7] [0] = (o u t [0] - o u t [l]) * i d f s l ;
r 7] [1] (o u t (l] - out [2]) * i d f s 2 ;
r 7] [2] = (o u t [0] - o u t [2]) * i d f s 3 ;
r 1] [0] = (f s (0] - o u t [0] - o u t [l]) * i d f s l ;
r 1] [1] = r [7] [1] ;
r 1] [2] = (f s [0] - o u t [0] - o u t [2]) * i d f s 3 ;
r 2] [0] = - r (7] [0] - 1.0;
r 2] (1] = (f s (l] - o u t (l] - out [2]) * i d f s 2 ;
r 2] [2] = r [l] [2] ;
r 3] [0] = r [2] [0] ;
r 3] [1] - r (7] [1] - 1.0;
r 3] [2] = - r [7] [2] - 1.0;
r 4] [0] = (out [0] + out [1]) * i d f s l ;
r 4] [1] - r [7] [1] ;
r 4] [2] = (out [0] + out [2]) * i d f s 3 ;
r 5] [0] = r [7] [0] ;
r 5] [1] = (o u t [1] + out [2]) * i d f s 2 ;
r 5] [2] = r [4] [2] ;
r 6] [0] = r [4] [0] ;
r 6] [1] = r [2] [1] + 1.0;
r 6] [2] = (f s [2] - out [2] + out [0]) * i d f s 3 ;
r 0] [0] = r [l] [0] ;
r 0] [1] = r [5] [1] ;
r 0] [2] = (f s [0] - o u t [0] + out [2]) * i d f s 3 ;

/* use simple a l g o r i t h m since no DFT e r r o r s are considered */
*p_cf = -1.0;
num_found = 0;
f o r (i = 0; i <= 7; i++)

i f (r [i] [0] == r [i] [l] SS r [i] [l] == r [i] [2] ss
(f l o o r (r [i] [2]) == r [i] [2])) {

i f (i >= 4)
poss_freq = o u t (0] + r [i] [2] * f s [0] ;

else
poss_freq = (r [i] [2] + 1 . 0) * f s [0] - o u t [0] ;

i f (poss_freq != *p_cf SS
poss_freq >= 0.0 SS
poss_freq < frequency_range (f s)) {

num_found += 1;
*p_cf = poss_freq;
}

}

r e t u r n (num found == 1) ;

94

/*
* Implementation of m u l t i p l e a c t i v e element ambiguity reduction algorithm no.l
*/

v o i d m u l t i p l e _ d e a l i a s _ l (s, o_hd, p_out_hd)
double s [] ;
FREQ_LIST *o _ h d (] ;
FREQ_LIST **p_out_hd;
{

double f o [3] , c f , f r ;
FREQ_LIST * p _ n l , *p_n2, *p_n3;

p _ n l = o_hd(0];
w h i l e (p_nl != NULL) {

f o [0] = p_nl->frequency;
p_n2 = o _ h d [l] ;
while (p_n2 != NULL) {

f o [l] = p_n2->frequency;
P_n3 = o_hd[2];
while (p_n3 != NULL) {

f o [2] = p_n3->frequency;
i f (s i n g l e _ d e a l i a s (s, f o , Scf))

a d d _ t o _ l i s t (p_out_hd, c f) ;
p_n3 = p_n3->next_frequency;
)

p_n2 = p_n2->next_frequency;
}

p_ n l = p_nl->next_frequency;
)

r e t u r n ;

)

/*
* Implementation of m u l t i p l e a c t i v e element ambiguity reduction a l g o r i t h m no.2
*/

v o i d m u l t i p l e _ d e a l i a s _ 2 (s, o_hd, p_out_hd)
double s [] ;
FREQ_LIST * o _ h d [] ;
FREQ_LIST **p_out_hd;

FREQ_LIST * p _ n [3] , * s e t [3] ;
r e g i s t e r i n t n, c o n t r o l , o t h e r [2] ;
double s f ;

f o r (c o n t r o l = 0; c o n t r o l <=2; control++) {
s e t [c o n t r o l) = NULL;
p _ n [c o n t r o l] = o_hd(control] ;
while (p _ n [c o n t r o l] != NULL) {

sf = 0.0;
n = 0;
while ((s f = (double) (n++) * s [c o n t r o l] + p_n[control]->frequency)

< frequency_range(s))
a d d _ t o _ l i s t (S s e t [c o n t r o l] , s f) ;

s f = 0.0;
n = 1;
while ((s f = (double) (n + +) * s (c o n t r o l] - p_n(control]->frequency)

< frequency_range(s))
a d d _ t o _ l i s t (Sset (c o n t r o l] , s f) ;

p _ n (c o n t r o l] = p_n(control]->next_frequency;

95

}

w h i l e (s e t [0] != NULL SS s e t [l] != NULL SS s e t [2] != NULL) (
i f (s e t [2] - > f r e q u e n c y >= s e t [1] - > f r e q u e n c y)

i f (s e t [2] - > f r e q u e n c y >= s e t [0] - > f r e q u e n c y) {
o t h e r [0] = 0;
other [1] = 1;
c o n t r o l = 2;
}

e l s e {
c o n t r o l = 0 ;
o t h e r [0] = 1;
o t h e r [l] = 2;
}

e l s e
i f (s e t [1]->frequency >= s e t [0] - > f r e q u e n c y) {

o t h e r [0] = 0;
c o n t r o l = 1;
oth e r [1] = 2;
}

e l s e {
c o n t r o l = 0;
o t h e r [0] = 1;
o t h e r [1] = 2;
)

f o r (n = 0; n <= 1; n++)
w h i l e (s e t [o t h e r [n]] != NULL SS

s e t [o t h e r [n]] - > f r e q u e n c y < s e t [c o n t r o l] - > f r e q u e n c y)
s e t [o t h e r [n]] = s e t [o t h e r [n]] - > n e x t _ f r e q u e n c y ;

i f { s e t [o t h e r [0]] != NULL SS s e t [o t h e r [1]] != NULL)
i f (s e t [0] - > f r e q u e n c y == s e t [1] - > f r e q u e n c y SS

s e t [1] - > f r e q u e n c y == s e t [2] - > f r e q u e n c y) {
a d d _ t o _ l i s t (p_out_hd, s e t [0] - > f r e q u e n c y) ;
s e t [c o n t r o l] = s e t [c o n t r o l] - > n e x t _ f r e q u e n c y ;
)

}

r e t u r n ;

* u s e r i n t e r f a c e r o u t i n e s *

v o i d p r i n t _ h e a d i n g 0

p r i n t f (
p r i n t f {
p r i n t f {
p r i n t f {
p r i n t f (
p r i n t f (
r e t u r n ;

[OmThe A n a l y s i s of S i g n a l s Sampled at a Sub-Nyquist Rate\n\n"),
P C Bagshaw January 1990\n\n");
S i m u l a t i o n of D e a l i a s i n g A l g o r i t h m s \ n ") ;
- M u l t i p l e A c t i v e Element A n a l y s i s - \ n ") ;
- Uniform sampling scheme f o r t h r e e samplers - \ n ") ;
- Chooses most e f f i c i e n t a l g o r i t h m f o r case d e s c r i b e d - \ n \ n ") ;

96

v o i d s e l e c t _ s a m p l e _ f r e q u e n c i e s (f s)
double f s [] ;
(

r e g i s t e r i n t boolean, i ;
f l o a t i n _ s a m p l e _ f ;

p r i n t f ("Enter t h r e e sampling f r e q u e n c i e s \ n ") ;
boolean = 1;
w h i l e (boolean) {

f o r (i = 0; i <= 2; i++) {
p r i n t f (" f s % d : ", i + 1) ;
s c a n f ("%f", s i n _ s a m p l e _ f) ;
f s [i] = (double) in_sample_f;
}

/* e n s u r e e q u a t i o n (2.12) holds */
i f (boolean = (0.0 >= f s [0] I I f s (0] >= f s (l]

I I f s (l] >= f s (2]))
p r i n t f (" e r r o r : 0 < f s l < f s 2 < f s 3 not s a t i s f i e d \ n ") ,

)
r e t u r n ;

}

v o i d p l o t _ a n a l y s i s (s , in_hd, out_hd)
double s [] ;
FREQ L I S T * i n hd, *out hd;

s t r u c t v i d e o c o n f i g vc;
double f r , s c a l e , t e x t _ s c a l e ;
r e g i s t e r s h o r t y;
FREQ_LIST *node, *np;
r e g i s t e r i n t a l i a s ;

i f (!set_mode0)
e x i t (-1);

_ g e t v i d e o c o n f i g (Svc) ;
f r = frequency_range (s) ;
s c a l e = (double) (v c . n u m x p i x e l s - 1) / f r ;
t e x t _ s c a l e = 8 0 . 0 / c e i l (f r) ;
_ s e t t e x t p o s i t i o n (1, 1) ;
_ o u t t e x t (" M u l t i p l e A c t i v e Element S i g n a l A n a l y s i s ") ;
_ o u t t e x t ("using sub-Nyquist D e a l i a s i n g Algorithm\n") ;
p r i n t f (" f s l = % . 3 f f s 2 = %.3f fs3 = % . 3 f \ n " , s [0] , s [l] , s [2]) ,
p r i n t f ("Optimum o p e r a t i o n a l frequency range, B = % f " , f r) ;
_ s e t c o l o r (1 5) ;
_ s e t t e x t p o s i t i o n (13, 1) ;
p r i n t f (" 0 ") ;
_ s e t t e x t p o s i t i o n (13, 8 0) ;
p r i n t f ("B");
_ s e t t e x t p o s i t i o n (14, 1) ;
_ o u t t e x t ("Frequency components of input s i g n a l ") ;
_ s e t l o g o r g (0, (s h o r t) vc.numypixels*0.39);
_moveto (0, y = (s h o r t) -vc.numypixels*0.2);
_ l i n e t o (0, 0) ;
_ l i n e t o (vc.numxpixels, 0) ;
_moveto (0, 0) ;
node = in_ h d ;
w h i l e (node != NULL) {

97

_ s e t c o l o r (10); /* l i g h t green */
_moveto { (short) (node->frequency'*scale) , 0) ;
_ l i n e t o ((s h o r t) (node->frequency*scale) , y) ;
_ s e t t e x t p o s i t i o n (13, 1 + (i n t) (t e x t _ s c a l e * c e i l (node->frequency)));
p r i n t f ("%.0f", node->frequency);
node = node->next_frequency;
}

_ s e t c o l o r (15);
_ s e t t e x t p o s i t i o n (25, 1) ;
p r i n t f ("0");
_ s e t t e x t p o s i t i o n (25, 80);
p r i n t f ("B");
_ s e t t e x t p o s i t i o n (26, 1) ;
_ o u t t e x t ("Frequency components of output s i g n a l ") ;
_ s e t l o g o r g (0, (short) vc.numypixels*0.79);
_moveto (0, y = (short) -vc.numypixels*0.2);
_ l i n e t o (0, 0) ;
_ l i n e t o (vc.numxpixels, 0) ;
_moveto (0, 0) ;
node = out_hd;
while (node != NULL) {

a l i a s = 1;
np = in_hd;
while (a l i a s SS np != NULL) {

a l i a s = node->frequency != np->frequency;
np = np->next_frequency;
)

i f (a l i a s)
_ s e t c o l o r (12); /* l i g h t red */

else
_ s e t c o l o r (14); /* yellow */

_moveto ((s h o r t) (node->frequency*scale), 0) ;
_ l i n e t o ((s h o r t) (node->frequency*scale) , y) ;
_ s e t t e x t p o s i t i o n (25, 1 + (i n t) (t e x t _ s c a l e * c e i l (node->frequency))) ,
p r i n t f ("%.0f", node->frequency);
node = node->next_frequency;
)

getch 0;
_setvideomode (_DEFAULTMODE) ;
r e t u r n ;

i n t set mode 0

i f (_setvideomode (_VRES16C0L0R))
r e t u r n (_VRES16C0L0R) ;

i f (_setvideomode (_ERESCOLOR))
r e t u r n {_ERESCOLOR);

i f (_setvideomode (_MRES16C0L0R))
r e t u r n (_MRES16C0L0R) ;

else
r e t u r n (0) ;

98

* *
* main program *

double f s [3] = {0.0 ,0.0, 0.0);
FREQ_LIST *fo_hd(3] = (NULL, NULL, NULL};

main ()
{

i n t num_harmonics = 0 ;
double f o (3] , f r ;
f l o a t e n t e r e d _ f r e q ;
FREQ_LIST *i n p u t _ f r e q _ h d = NULL, *output_freq_hd = NULL;
FREQ_LIST *p_node;

p r i n t _ h e a d i n g () ;
select_sample_frequencies (f s) ;
p r i n t f ("Frequency range: % f \ n " , f r = fr e q u e n c y _ r a n g e (f s)) ;
p r i n t f ("\nEnter frequencies of the s i g n a l elements, ") ;
p r i n t f ("terminating w i t h an out-of-range value\n* ") ;
scanf ("%f", s e n t e r e d _ f r e q) ;
while (entered_freq >= 0.0 && entered_freq < f r) {

a d d _ t o _ l i s t (Sinput_freq_hd, (double) e n t e r e d _ f r e q) ;
num_harmonics++;
p r i n t f {"* ") ;
scanf ("%f", 4 entered_freq);
}

p_node = i n p u t _ f r e q _ h d ;
w h i l e (p_node != NULL) (

simulate_output (f s , p_node->frequency, f o) ;
a d d _ t o _ l i s t (Sfo_hd[0], f o [0]) ,
a d d _ t o _ l i 3 t (S f o _ h d (l] , f o (l]) ,
a d d _ t o _ l i s t (&fo_hd[2], f o [2])
p_node = p_node->next_frequency;
)

/* choose the most e f f i c i e n t a l g o r i t h m */
i f (num_harmonics*num_harmonics < f r / f s (l]) {

p r i n t f (" R u n n i n g d e a l i a s i n g a l g o r i t h m • l . . . \ n ") ;
m u l t i p l e _ d e a l i a s _ l (f s , fo_hd, Soutput_freq_hd);
}

else (
p r i n t f (" R u n n i n g d e a l i a s i n g a l g o r i t h m #2...\n");
m u l t i p l e _ d e a l i a s _ 2 (f s , fo_hd, Soutput_freq_hd);
}

p r i n t f ("\nFrequencies believed to be i n input spectra a f t e r analysis:\n") ;
p_node = output_freq_hd;
while (p_node != NULL) (

p r i n t f ("* % f \ n " , p_node->frequency);
p_node = p_node->next_frequency;
\

p r i n t f ("Press any Icey to continue");
getch 0;
p l o t _ a n a l y s i s (f s , input_freq_hd, o u t p u t _ f r e q _ h d) ;
e x i t (0) ;

99

APPENDIX C

Program Source Code for the Direct Realisation of the Pseudo-random

Discrete Fourier Transform.

100

* Pseudo-Random F o u r i e r Transform S i m u l a t o r *

/*********************«**

i n c l u d e system f i l e s *

****«*]»•* * * *

^ i n c l u d e < s t r i n g .h>
i n c l u d e < f l o a t . h>
S i n c l u d e <raath.h>
^ i n c l u d e < s t d l i b .h>
i n c l u d e <nialloc .h>
i n c l u d e <io.h>
i n c l u d e < s t d i o . h>
i n c l u d e <Gonio. h>
ffinclude <ctype. h>
tfinclude <graph. h>
i n c l u d e < l i r n i t s .h>
^ i n c l u d e <errno. h>

* d e f i n e g l o b a l c o n s t a n t s

d e f i n e PI 3.14159265358979323849
»deflnG TWOPI 6.28318530717958647698
/* maximum v a l u e 'double' v a r i a b l e can be e x p r e s s e d as an 'unsigned long i n t ' */
• d e f i n e DBL_LNG_MAX 4294967295.0
• d e f i n e MAX_FILENAME_SIZE 50

/******************************
* «

* e r r o r message h a n d l i n g *
* *

* v o i d e r r o r (i n t e r r t y p e) ; *

»dGfIne NO_MEM 0
• d e f i n e UNDEF_TYPE 1
• d e f i n e NOT_RATIONAL 2
• d e f i n e OVERFLOW 3
• d e f i n e FILE_ERR 4
• d e f i n e SINGULAR_MATRIX 5

• d e f i n e NO_TEMP 6

• d e f i n e NO_SF 7

• d e f i n e NO_INPUT 8

• d e f i n e GRAPHICS_MODE 9
• d e f i n e EOF_FOUND 10

101

v o i d e r r o r (e r r _ t y p e)
c o n s t unsigned i n t e r r _ t y p e ;

(

c h a r p r o g t ?] ; /* program f i l e name */

s t r c p y (prog, "pseudo");
f p r i n t f (s t d e r r , " tl;31m%s: ", p r o g) ;
s w i t c h (e r r _ C y p e) (

c a s e NO_MEM:
f p r i n t f (s t d e r r , " i n s u f f i c i e n t memory a v a i l a b l e ") ;
break;

c a s e UNDEF_TYPE:
f p r i n t f (s t d e r r , "undefined l i s t t y p e ") ;
break;

c a s e NOT_RATIONAL:
f p r i n c f (s t d e r r , "cannot e x p r e s s number i n r a t i o n a l form");
break;

c a s e OVERFLOW:
f p r i n t f { s t d e r r , " o v e rflow encountered i n c a l c u l a t i n g system bandwidth") ;
break;

c a s e FILE_ERR:
p e r r o r (NULL);
break;

c a s e SINGULAR_MATRIX:
f p r i n t f (s t d e r r , " s i n g u l a r m a t r i x ") ;
break;

c a s e NO_TEMP:
f p r i n t f (s t d e r r , "cannot c r e a t e a temporary f i l e name");
break;

c a s e NO_SF:
f p r i n t f (s t d e r r , "no sampling frequency d e f i n e d ") ;
break;

c a s e NO_INPUT:
f p r i n t f { s t d e r r , "no input s i g n a l d e f i n e d ") ;
break;

c a s e GRAPHICS_MODE:
f p r i n t f { s t d e r r , "cannot open g r a p h i c s s c r e e n ") ;
break;

c a s e EOF_FOUND:
f p r i n t f { s t d e r r , "unexpected end o f f i l e e n c o u n t e r e d ") ;
break;

d e f a u l t :
f p r i n t f (s t d e r r , "undefined e r r o r , %u o c c u r r e d " , e r r _ t y p e) ;
break;

)
f p r i n t f { s t d e r r , " [l;37m\n");
e x i t (-1);

102

/*****••«

* d e f i n e a b s t r a c t d a t a type f o r a l i s t of v a r i o u s t y p e s •
* *

* v o i d i n i t l a l l s G _ l l s t (L I S T * p _ l i s t , I n t t y p e _ o f _ l l s t) ; *
* v o i d a d d _ t o _ l i s t (L I S T * p _ l i s t , ITEM d a t a) ; *

v o i d r e w i n d _ l l s t (L I S T * p _ l l s t) ; •
* i n t r e a d _ l l s t (L I S T *p l i s t , ITEM * p _ d a t a) ;

****************** .*******.*****/

/*
* l i s t _ t y p G v a l u e s
•/

• d e f i n e FREQ_LIST 1 /* s i g n a l harmonics data */
• d e f i n e LIST_SAMPLE_FREQS 2 /* d e t a i l s of p o s s i b l e sampling f r e q u e n c i e s •/
• d e f i n e SAMPLE_DATA 3 /* c h r o n o l o g i c a l l i s t o f sample v a l u e s and times t a k e n * /
• d e f i n e FOURIER TRANSFORM DATA 4 /* t r a n s f o r m output I n f o r m a t i o n •/

d e f i n e a b s t r a c t d a t a type
•/

t y p e d e f union {
s t r u c t (/* FREQ_LIST */

double f r e q u e n c y , amplitude, phase;
} element;

double f r e q u e n c y ; /« LIST_SAMPLE_FREQS */
s t r u c t (/* SAMPLE_DATA */

double v a l u e , i n s t a n c e ;
) sample;

s t r u c t { /* FOURIER_TRANSFORM_DATA */
double f n , r e a l , imaginary;
} b i n ;

) ITEM;

t y p e d e f s t r u c t b o d y _ o f _ l l s t {
ITEM i t e m _ l i s t e d ;
s t r u c t b o d y _ o f _ l l s t * n e x t _ l t e m ;
) BODY_OF_LIST;

t y p e d e f s t r u c t {
i n t l i s t _ t y p e ;
BODY_OF_LIST * l l s t _ h d , * c u r s o r ;
) L I S T ;

/*
* s t a r t up v a l u e s t o be take n by any newly d e f i n e d v a r i a b l e o f type L I S T

*/

v o i d i n i t i a l i s e _ l i s t (p _ l l s t , t y p e _ o f _ l i s t)
L I S T * p _ l i s t ;
c o n s t i n t t y p e _ o f _ l l s t ;

(

p _ l i s t - > l i s t _ t y p e = t y p e _ o f _ l i s t ;
p _ l i s t - > l i s t _ h d = NULL;
p _ l l s t - > c u r s o r = NULL;

103

/*
* append l i s t t o i n c l u d e new item
*/

v o i d a d d _ t o _ l i s t (p _ l i s t , d a t a)
L I S T * p _ l i s t ;
ITEM d a t a ;
(

BODY_OF_LIST •new_node, *node = NULL, •old_node - NULL;
r e g i s t e r i n t new_value = 1;

i f (p _ l i s t - > l i s t _ t y p e == FREQ_LIST |I
p _ l i s t - > l i s t _ t y p e == LIST_SAMPLE_FREQS) /* u n r e p e a l e d items r e q u i r e d */
f o r (node = p _ l i s t - > l l s t _ h d ; new_value i s node != NULL;

old_node = node, node - node->next_item) {
i f (p _ l l s t - > l i s t _ t Y p e == FREQ_LIST)

new_value 5= (data.element.frequency != n o d e - > i t e m _ l i s t e d . e l e m e n t . f r e q u e n c y) ;
i f (p _ l i s t - > l i s t _ t y p e == LIST_SAMPLE_FREQS)

new_value s= (d a t a . f r e q u e n c y != n o d e - > i t e m _ l i s t e d . f r e q u e n c y) ;
I

e l s e /« add new itera t o end of l i s t */
old_node = p _ l i s t - > c u r s o r ;

i f (new_value) {
new_node = (BODY_OF_LIST •) malloc (s i z e o f (aoDY_OF_LIST));
i f (new_node == NULL) e r r o r (NO_MEM);
s w i t c h (p _ l i s t - > l i s t _ t y p e) {

c a s e FREQ_LIST:
n e w _ n o d e - > i t e m _ l i s t e d . e l e m e n t . f r e q u e n c y = data.element,frequency;
new_node->item_listed.element.amplitude = data.element.amplitude;
new_node->item_listed.element.phase - data.element.phase;
break;

c a s e LIST_SAMPLE_FREQS:
ne w _ n o d e - > i t e m _ l i s t e d . f r e q u e n c y = d a t a . f r e q u e n c y ;
break;

c a s e SAMPLE_DATA:
new_ n o d e - > i t e r a _ l i s t e d . s a m p l e . v a l u e = d a t a . s a m p l e . v a l u e ;
n e w _ n o d e - > i t e r a _ l l s t e d . s a m p l e . i n s t a n c e = d a t a . s a m p l e . i n s t a n c e ;
break;

case FOURIER_TRANSFORM_DATA:
ne w _ n o d e - > i t e m _ l i s t e d . b i n . f n - d a t a . b i n . f n ;
n e w _ n o d e - > i t e m _ l i s t e d . b i n . r e a l = d a t a . b i n . r e a l ;
n e w _ n o d e - > l t e m _ l i s t e d . b i n . i m a g i n a r y = d a t a . b i n . i m a g i n a r y ;
break;

d e f a u l t :
e r r o r (UNDEF_TYPE);
break;

}

i f (p _ l i s t - > l i s t _ h d == NULL)
p _ l i s t - > l i s t _ h d = new_node;

e l s e
o ld_node->next_item = new_node;

new_node->next_item = NULL;
p l i s t - > c u r s o r = new_node;
}

i f (!new_value SS p _ l l s t - > l i s t _ t y p e =- FREQ_LIST) {
/• modify p a r a m e t e r s i f harmonic a l r e a d y l i s t e d */
o l d node->item l i s t e d . e l e m e n t . a m p l i t u d e = data.element.amplitude;

104

o l d _ n o d e - > l t e m _ l l s t e d . e l e m e n t . p h a s e = data.element.phase;

)

/*
* r e s e t l i s t c u r s o r t o the be g i n n i n g of the l i s t
*/

v o i d r e w i n d _ l i s t (p _ l i s t)

L I S T * p _ l i s t ;

(

p _ l l S t - > c u r s o r = p _ l i s t - > l i s t _ h d ;

/ •

* r e a d Item a t l i s t c u r s o r and forward c u r s o r by one item
* r e t u r n s 0 i f no item

*/

i n t r e a d _ l i s t (p _ l i s t , p_data)
L I S T * p _ l i s t ;
ITEM *p_data;

i f (p _ l i s t - > c u r s o r ==• NULL) /* c u r s o r at end o f l i s t */
r e t u r n (0) ;

e l s e (
s w i t c h (p _ l i s t - > l l s t _ t y p e) (

c a s e FREQ_LIST:
p_data->element.frequency = p _ l i s t - > c u r s o r - > i t e m _ l i s t e d . e l e m e n t . f r e q u e n c y , •
p_data->element.amplitude - p _ l i s t - > c u r s o r - > i t e m _ l i s t e d . e l e m e n t . a m p l i t u d e , •
p_data->element.phase = p _ l i s t - > c u r s o r - > i t e m _ l i s t e d . e l e m e n t . p h a s e ;
break;

c a s e LIST_SAMPLE_FREQS:
p_data->frequency « p _ l i s t - > c u r s o r - > i t e m _ l i s t e d . f r e q u e n c y ;
break;

c a s e SAMPLE_DATA:
p_data->sample.value = p _ l i s t - > c u r s o r - > i t e m _ l i s t e d . s a m p l e . v a l u e ;
p _ d a t a - > s a m p l e . i n s t a n c e = p _ l l s t - > c u r s o r - > I t e m _ l i s t e d . s a m p l e . i n s t a n c e ;

break;
c a s e FOURIER_TRANSFORM_DATA:

p_ d a t a - > b i n . f n = p _ l i s t - > c u r s o r - > i t e r a _ l i s t e d . b i n . f n ;
p _ d a t a - > b i n . r e a l - p _ l i s t - > c u r s o r - > i t e m _ l i s t e d . b i n . r e a l ;
p _ d a t a - > b i n . i m a g i n a r y = p _ l i s t - > c u r s o r - > i t e m _ l i s t e d . b i n . i m a g i n a r y ;
break;

d e f a u l t :
e r r o r (UNDEF_TYPE) ;
break;

J
p _ l l s t - > c u r s o r = p _ l i s t - > c u r s o r - > n e x t _ i t e m ;

r e t u r n (1) ;

(

105

v o i d f r e e _ l l s t (p _ l i s t)
L I S T * p _ l i s t ;
(

BODY_OF_LIST * n e x t ;

While (p _ l i s t - > l i s t _ h d != NULL) {
next = p _ l i s t - > l i s t _ h d - > n e x t _ i t e m ;
f r e e ((BODY_OF_LIST *) p _ l i s t - > l i s t _ h d) ;
p _ l i s t - > l i s t _ h d = next;

)
p _ l i s t - > c u r s o r = NULL;

/»*****»..».....*»»*.•*»......***
* l i t t l e h e l p f u l maths r o u t i n e s *
* *

* i n t even (i n t number) ; *
* v o i d convert_complex (double a, double b, double *p_amp, double * p _ p h i) ; *
* double s i n e (double x) ; *
* double c o s i n e (double x) ; *
* *
«*****«*****«*******************/

i n t even (number)
i n t number;

(

r e t u r n (number % 2 0) ;

v o i d convert_complex (a, b, p_amp, p_phi)
double a, b, •p_arap, * p _ p h i ;

{

*p_amp = s q r t (a*a + b * b) ;
i f (f a b s (a) < 3e-14 S4 f a b s (b) < 3e-14)

*p_phi - 0.0;
e l s e

*p_phi - atan2 (-b, a) ;

/*
* s l i g h t l y more a c c u r a t e s i n e and c o s i n e f u n c t i o n s

*/

double s i n e (x)
double x;

(

x = fmod (X, TWOPI);
r e t u r n (s i n (x)) ;

106

double c o s i n e (x)
double x;

(

X = fmod (X, TWOPI);
r e t u r n (cos (x)) ;

* *
* r o u t i n e s to s i m u l a t e sample g e n e r a t o r - uniform, a d d i t i v e pseudo-random *
* o r p e r i o d i c w i t h d i t h e r *

* i n t equal_schemes (SAMPLING_SCHEME s i , SAMPLING_SCHEME s 2) ; *
* v o i d c a l c _ b a n d w i d t h (SAMPLING_SCHEME * p _ s a m p l e r) ; *
* v o i d random_sampler (SAMPLING_SCHEME •p_sampler, L I S T i n _ f r e q s , L I S T * p _ o u t _ d a t a) ; *
* *

A * /

/ *

* a b s t r a c t data type f o r sampling scheme parameters
*/

• d e f i n e UNIFORM 'u'
(d e f i n e ADDITIVE "a'
I d e f i n e DITHER 'd'

t y p e d e f s t r u c t {
cha r scheme; /* t o t a k e t he v a l u e UNIFORM, ADDITIVE or DITHER */
i n t num_fs;
L I S T f s ;
i n t num_points;
double bandwidth;
double window_width;
) SAMPLING_SCHEME;

/*
* t e s t i f two schemes a r e e q u i v a l e n t o t h e r than l i s t o f sampling f r e q u e n c i e s

*/

i n t equal_schemes (s i , s2)
SAMPLING_SCHEME s i , s 2 ;
(

i n t e q u a l ;

e q u a l = (si.scheme == s2.scheme is,
s l . n u t n _ f s == s2.nura_fs a

s l . n u i 7 ! _ p o l n t s =« s2.num_points S&
s i . b a n d w i d t h == s2.bandwidth a

sl.window_width == s2.window_width);

r e t u r n (e q u a l) ;

107

/*
* e v a l u a t e o p e r a t i o n a l bandwidth of system f o r s p e c i f i e d pseudo-random
* sampling scheme - e q u a t i o n (4.31)
*/

v o i d c a l c _ b a n d w i d t h (p_sampler)
SAMPLING_SCHEME *p_sampler;
(

ITEM s;
double 1cm, gcd, a, b, o l d _ a , old_b, tmp, l n t _ p a r t , r e g _ f s ;
unsigned long i n t m, n, r ;
i n t f l r s t _ t i m e = 1;

i f (p_sampler->num_fs -= 1) { /* o n l y one sampling frequency */
r e w i n d _ l i s t (s p _ s a m p l e r - > f s) ;
r e a d _ l i s t (s p _ s a m p l e r - > f s , s s) ;
p_sampler->bandwidth = s.frequency / 2.0;
r e t u r n ;
)

1cm = 1.0;
r e w i n d _ l i s t (6 p _ s a m p l e r - > f s) ;
w h i l e (r e a d _ l i s t (s p _ s a m p l e r - > f s , s s)) (

/* e x p r e s s number i n some r a t i o n a l form, a/b */
i f (p_sampler->scheme == DITHER)

i f (f i r s t _ t i m e) {

r e g _ f s = s . f r e q u e n c y ;
a - 1.0;
b = s. f r e q u e n c y ;
I

e l s e (
a = s . f r e q u e n c y ;
b = r e g _ f s ;

)

e l s e (
a - 1.0;

b = s. f r e q u e n c y ;

1
o l d _ a = a;
ol d _ b - b;
w h i l e ((modf (a, strap) > l e - 1 0 II modf (b, s i n t _ p a r t) > l e - 1 0) s s

a <- DBL_LNG_MAX SS b <= DBL_LNG_MAX) {
a +- o l d _ a ;
b += o l d _ b ;
}

i f (a > DBL_LNG_MAX || b > DBL_LNG_MAX)
/* number cannot be e x p r e s s e d i n a r a t i o n a l form w i t h i n t he computer l i m i t s */
e r r o r (NOT_RATI0NAL) ;

/* f i n d g r e a t e s t common d i v i s o r of denominator and numerator t o e x p r e s s
r a t i o n a l number i n most optimum form */

m = (unsigned long i n t) a;
n = (unsigned long i n t) b;
w h i l e ((r =• n % m) != OL) (

n = m;
m = r ;

)
a /= m;
b /= m;
/* f i n d g r e a t e s t common d i v i s o r of numerators •/
i f (f i r s t time)

108

gcd = a;
e l s e (

m = (unsigned long i n t) gcd;
n = (unsigned long i n t) a;
w h i l e ((r - n % m) != OL) (

n = m;
m = r ;

)
gcd - m;

)
/* f i n d g r e a t e s t common d i v i s o r of 1cm and denominator */
i f (1cm > DBL_LNG_MAX) e r r o r (OVERFLOW);
m = (unsigned long i n t) 1cm;
n = (unsigned long i n t) b;
w h i l e ((r = n % m) != OL) (

n = m;
ra = r ;
}

/* c a l c u l a t e l e a s t common m u l t i p l e •/
1cm *= b/m;
f l r s t _ t i m e = 0;
)

p sampler->bandwidth = 1cm / gcd / 2.0;

/*
* g e n e r a t e a pseudo-random number between 0 and 1

*/

t y p e d e f enum {RESET, CONT) RAND_STATUS;

double random (C t r l)
RAND_STATUS C t r l ;
(

s t a t i c double rnd = 12357.0;

i f (C t r l == RESET) (
rnd - 12357.0;
r e t u r n (0 . 0) ;
)

e l s e (
rnd = fmod ((2045.0*rnd + 1.0), 1048576.0);
r e t u r n ({ r n d + 1.0)/1048577.0);

1

/*

* s i m u l a t e pseudo-random sampler

*/

v o i d randora_sampler (p_sampler, i n _ f r e q s , p _ o u t _ d a t a)

SAMPLING_SCHEME *p_sampler;

L I S T i n _ f r e q s , * p _ o ut_data;

(

i n t i , r , r 2 ;
ITEM itm;

109

double argu, x r , t r - 0.0, d t r - 0.0, o l d _ d t r , f s , fs_max;

random (RESET);

f o r (i = 0; 1 < p_sampler->num_points; i++) (
x r = 0.0;
r e w i n d _ l i s t (s i n _ f r e q s) ;
w h i l e (r e a d _ l i s t (s i n _ f r e q s , s i t m)) (

argu = TWOPI*itm.element.frequency*tr + itm.element.phase;
x r += itm.element.amplitude • c o s i n e (a r g u) ;
)

it r a . s a m p l e . v a l u e = x r ;
i t m . s a m p l e . I n s t a n c e = t r ;
a d d _ t o _ l i s t (p_out_data, i t m) ;
r e w i n d _ l i s t (Sp_sarapler->fs) ;
s w i t c h (p_sampler->scheme) (

c a s e UNIFORM:
r e a d _ l i s t (sp_sampler->fs, s i t m) ;
d t r - 1.0/itm.frequency;
t r +- d t r ;
break;

c a s e ADDITIVE:
f o r (r = (i n t) f l o o r (random (CONT)»p_sampler->num_fs) + 1;

r — !- 0; r e a d _ l i s t (s p _ s a m p l e r - > f s , s i t m))

d t r - 1.0/itm.frequency;
t r += d t r ;
break;

c a s e DITHER:
r e a d _ l i s t (s p _ s a m p l e r - > f s , s i t m) ;
f s = i t m . f r e q u e n c y ;
o l d _ d t r = d t r ;
r - (i n t) f l o o r (random (CONT)"p_sampler->num_fs) + 1;
i f (p_sampler->num_fs % 2 SS r == p_sarapler->num_fs)

d t r - 0.0;
e l s e {

f o r (r2 - (r + l) / 2 ; r 2 — !•= 0; r e a d _ l l s t (sp_sampler->fs, s i t m))

d t r = i t m . f r e q u e n c y / f s ;
d t r •= (r % 2) ? -1.0 : +1.0;

)
t r += - o l d _ d t r + 1.0/f s + d t r ;
break;

d e f a u l t :
break;

)

1
/* determine minimum p o s s i b l e chance i n sampling i n s t a n c e s */
r e w i n d _ l l s t { s p _ s a m p l e r - > f s) ;
s w i t c h (p_sampler->scheme) (

ca s e UNIFORM:
r e a d _ l i s t (Sp_sampler->fs, s i t m) ;
fs_max - itm. f r e q u e n c y ;
break;

c a s e ADDITIVE:
r e a d _ l i s t (s p _ s a m p l e r - > f s , s i t m) ;
fs_max = itm. f r e q u e n c y ;
w h i l e (r e a d _ l i s t (Sp_sampler->fs, S i t m))

fs_max = (i t m . f r e q u e n c y > fs_max) ? itm.frequency : fs_raax;
break;

c a s e DITHER:

110

r e a d _ l l s t (s p _ s a m p l e r - > f s , s i t r a) ;
f s = i t m . f r e q u e n c y ;
fs_max = 0.0;
w h i l e (r e a d _ l i s t (4p_sampler->fs, s i t m))

fs_max = (f s / i t m . f r e q u e n c y > fs_max) ? f s / i t m . f r e q u e n c y : fs_max;
fs_max = f s * (1 . 0 - 2.0*fs _ r a a x) ;
break;

d e f a u l t :
break;

)
p_sampler->window_width = t r - d t r + 1.0/fs_max;

)

/*

* data p r o c e s s i n g r o u t i n e s
*

* v o i d d p r f t (SAMPLING_SCHEME sampler, double d e l t a f , L I S T s d a t a , L I S T * p _ f t d a t a) ;
* v o i d i n v _ d p r f t (SAMPLING_SCHEME sampler, L I S T f t d a t a , L I S T s d a t a , L I S T * p _ i d f t _ d a t a) ;

/*
* perform d i r e c t d i s c r e t e pseudo-random F o u r i e r t r a n s f o r m - e q u a t i o n (4.9)
*/

v o i d d p r f t (sampler, d e l t a f , s d a t a , p _ f t d a t a)
SAMPLING_SCHEME sampler;
double d e l t a f ;
L I S T s d a t a , * p _ f t d a t a ;
(

unsigned long i n t num_bins, e v a l u a t e , count, 1;
double argu, f n = 0.0;
ITEM itm, s;

p r i n t f (" [l;37mPerforming F o u r i e r t r a n s f o r m . . . \ n ") ;
p r i n t f () ;
num_bins = (unsigned long i n t) f l o o r (sampler.bandwidth * 2.0 / d e l t a f + 0 . 1) ;
e v a l u a t e - (num_blns + I L) / 2L + (num_blns + I L) % 2L;
count = e v a l u a t e / 50L;
count += (count == OL) ;
f o r (i = OL; 1 < e v a l u a t e ; i++) {

i t m . b i n . f n = f n ;
i t m . b i n . r e a l = 0.0;
i t m . b i n . i m a g i n a r y - 0.0;
r e w i n d _ l i s t (s s d a t a) ;
w h i l e (r e a d _ l l s t (S s d a t a , s s)) (

argu = TWOPI*fn*s.sample.instance;
i t m . b i n . r e a l += s.sample.value * c o s i n e (a r g u) ;
i t m . b i n . i m a g i n a r y += s.sample.value * s i n e (a r g u) ;

)
i f (1 == OL)

I t m . b i n . i m a g i n a r y = 0.0;
i f (i — num_bins / 2.0)

i t m . b i n . i m a g i n a r y = 0.0;
a d d _ t o _ l i s t (p _ f t d a t a , i t m) ;
fn += d e l t a f ;
i f (i % count == OL)

111

p r i n t f ("\b");
)

p r i n t f C'Xn");

/*
* perform i n v e r s e d i r e c t d i s c r e t e pseudo-random F o u r i e r t r a n s f o r m - e q u a t i o n (4.42)
*/

v o i d i n v _ d p r f t (sampler, f t d a t a , s d a t a , p _ i d f t _ d a t a)
SAMPLING_SCHEME sampler;
L I S T f t d a t a , s d a t a , * p _ i d f t _ d a t a ;

{

unsigned long i n t num_bins, b i n s _ e v a l u a t e d , even, count, k, n;
double xa, argu;
ITEM itm, new_s, s ;

p r i n t f ("Performing i n v e r s e t r a n s f o r m . . . \ n ") ;
p r i n t f () ;
num_bins = (unsigned l o n g i n t) f l o o r (sampler.window_width * sampler.bandwidth « 2.0 + 0.1);
b l n s _ e v a l u a t e d = (num_bins + I L) / 2L + (num_bins + I L) % 2L;
even = (num_bins + I L) % 2L;
count " sampler.num_points / SOL;
count += (count == OL);
r e w i n d _ l i s t (s s d a t a) ;
f o r (k = OL; k < sampler.num_points; k++) (

r e a d _ l i s t (s s d a t a , s s) ;
r e w i n d _ l i s t (s f t d a t a) ;
r e a d _ l i s t (s f t d a t a , s i t m) ;
xa = i t m . b i n . r e a l ;
f o r (n = I L ; n < b i n s _ e v a l u a t e d - even; n++) {

r e a d _ l i s t (s f t d a t a , s i t m) ;
argu = TWOPI * s . s a m p l e . i n s t a n c e * i t m . b i n . f n ;

xa += 2.0 * (i t m . b i n . r e a l * c o s i n e (argu) + i t m . b i n . i m a g i n a r y * s i n e (a r g u)) ;

)
i f (even) {

r e a d _ l i s t (s f t d a t a , s i t m) ;
argu = TWOPI * s . s a m p l e . l n s t a n c e * i t m . b i n . f n ;
xa +- i t m . b i n . r e a l * c o s i n e (a r g u) ;
)

xa /= (double) num_bins;
new_s.sample.value = xa;
ne w _ s . s a m p l e . i n s t a n c e = s . s a m p l e . i n s t a n c e ;
a d d _ t o _ l i s t (p _ i d f t _ d a t a , new_s);
i f (k % count == OL)

p r i n t f { " \ b ") ;

)
p r i n t f ("\n");

112

r o u t i n e s to determine e x a c t F o u r i e r c o e f f i c i e n t s from spectrum e s t i m a t e s *

c h a r •append_name (name, e x t e n s i o n)
c h a r *name, * e x t e n s i o n ;

{

c h a r *new_name, *p_ex t ;

new_name = (c h a r *) m a l l o c (MAX_FILENAME_SIZE « s i z e o f (c h a r)) ;
new_name = s t r c p y (new_name, name);
i f ((p _ e x t = s t r c h r (new_name, ' . ')) != NULL)

*p_ext = '\0';
new_name = s t r c a t (new_narae, e x t e n s i o n) ;
r e t u r n (new_name);

/*
* c r e a t e m a t r i x A i n f i l e w i t h e x t e n s i o n .mat
*/

double m a t r i x _ A (sd, b i n _ s t e p , row, column)
L I S T sd;
double b l n _ s t e p ;

I n t row, column;

(

double V = 0.0;
ITEM 1;

r e w i n d _ l i s t (s s d) ;
i f (row == 0 s s column -= 0) (

w h i l e (r e a d _ l i s t (s s d , s i))
V += 1.0;

r e t u r n (v) ;

}

i f (row == 0) (
i f (even (column))

w h i l e (r e a d _ l l s t (s s d , s i))
V += s i n e (TWOPI « (double) (column/2) * b i n _ s t e p * i . s a m p l e . i n s t a n c e) ;

e l s e
w h i l e (r e a d _ l i s t (s s d , s i))

V += c o s i n e (TWOPI * (double) ((column + l) / 2) * b l n _ s t e p * i . s a m p l e . i n s t a n c e) ;

r e t u r n (v) ;

)
i f (column 0) {

i f (even (row))
w h i l e (r e a d _ l i s t (s s d , s i))

V += s i n e (TWOPI * (double) (row/2) * b i n _ s t e p * i . s a m p l e . i n s t a n c e) ;
e l s e

w h i l e (r e a d _ l i s t (s s d , s i))
V += c o s i n e (TWOPI * (double) ((row + l) / 2) * b i n _ s t e p * 1 . s a m p l e . i n s t a n c e) ;

r e t u r n (v) ;

)

i f (even (row))
i f (even (column))

113

w h i l e (r e a d _ l i s t (s s d , s i))
V += s i n e (TWOPI » (double) (column/2) ' b i n _ s t e p * i . s a m p l e . i n s t a n c e) *

s i n e (TWOPI * (double) (row/2) * b i n _ s t e p • i . s a m p l e . i n s t a n c e) ;
e l s e

w h i l e (r e a d _ l i s t (s s d , s i))
V += c o s i n e (TWOPI * (double) ((column + l) / 2) * b i n _ s t e p * i . s a m p l e . i n s t a n c e)

s i n e (TWOPI * (double) (row/2) * b i n _ s t e p * i . s a m p l e . I n s t a n c e) ;
e l s e

i f (even (column))
w h i l e (r e a d _ l i s t (Ssd, s i))

v += s i n e (TWOPI * (double) (column/2) * b i n _ s t e p * i . s a m p l e . i n s t a n c e) •
c o s i n e (TWOPI * (double) ((row + l) / 2) • b i n _ s t e p * i . s a m p l e . I n s t a n c e) ;

e l s e
w h i l e (r e a d _ l l s t (Ssd, s i))

V += c o s i n e (TWOPI * (double) ((column + l) / 2) * b i n _ s t e p » i . s a m p l e . i n s t a n c e)
c o s i n e (TWOPI » (double) ((row + l) / 2) * b i n _ s t e p * i . s a m p l e . I n s t a n c e) ;

r e t u r n (v) ;

i n t g e n e r a t e _ m a t r i x _ A (sampler, d e l t a f , sample_times, f i l e n a m e)

SAMPLING_SCHEME sampler;
double d e l t a f ;
L I S T sample_tlmes;
c h a r * f i l e n a m e ;
(

ch a r *matfile_name, key, * i n v f i l e _ n a m e ;
F I L E *maCrix_a;
i n t num_bins, b i n s _ e v a l u a t e d , m_size, s i z e , row, column;
SAMPLING_SCHEME s s ;
double v a l u e ;

matfile_name = append_name (f i l e n a m e , ".mat");
num_bins = (i n t) f l o o r (sampler.bandwidth • 2.0 / d e l t a f + 0 . 1) ;
b i n s _ e v a l u a t e d = (num_bins + 1) / 2 + (num_bins + 1) % 2;
m _ s i z e = 2 * b i n s _ e v a l u a t e d - 1 - (num_bins + 1) % 2;
i f ((m a t r i x _ a - fopen (matfile_name, " r b ")) != NULL) (

rewind (m a t r i x _ a) ;

i f (f r e a d ((i n t *) s s i z e , s i z e o f (i n t) , 1, m a t r i x _ a) s s
f r e a d ((SAMPLING_SCHEME •) s s s , s i z e o f (SAMPLING_SCHEME), 1, m a t r i x _ a))
i f (s i z e == m _ s i z e s s equal_schemes (s s , s a m p l e r)) (

p r i n t f ("\n [l;37mRequired %dx%d m a t r i x a l r e a d y e x i s t s i n f i l e % s \ n " , m_slze,
m _ s l z e , m a t f i l e _ n a m e) ;

f c l o s e (m a t r i x _ a) ;
r e t u r n (1) ;

)
e l s e (

p r i n t f (" (0;37m%s e x i s t s . O v e r - w r i t e (y / n) ? [l;33m", m a t f i l e _ n a m e) ;
w h i l e ((k e y = g e t c h O) !- 'y' ss key != 'n')

p r i n t f ("%c\n", k e y) ;
i f (key — 'n') (

f c l o s e (m a t r i x _ a) ;

r e t u r n (0) ;

1
e l s e (/« en s u r e i n v e r s e m a t r i x f i l e a l s o o v e r - w r i t t e n */

i n v f i l e _ n a m e = append_name (f i l e n a m e , " . I n v ") ;
i f (remove (i n v f l l e _ n a m e) -= -1 ss e r r n o != ENOENT) e r r o r (F I L E _ E R R) ;
f r e e ((c h a r *) i n v f i l e _ n a m e) ;

114

)

)

1
p r i n t f ("Xn [l ; 3 7 m ") ;
i f ((m a t r i x _ a = fopen (matfile_name, "wb")) -= NULL) e r r o r (F I L E _ E R R) ;
p r i n t f (" C r e a t i n g %dx%d m a t r i x i n f i l e % s . . . " , m _ s i z e , m _ s i z e , matfile_name) ;
p r i n t f (" (0;37m rows made ([s O) ") ;
f w r i t e ((i n t *) s m _ s i z e , s i z e o f (i n t) , 1, m a t r i x _ a) ;
f w r i t e ((SAMPLING_SCHEME •) Ssampler, s i z e o f (SAMPLING_SCHEME), 1, m a t r i x _ a) /
f o r (row = 0; row < m _ s i z e ; row++) (

f o r (column = 0; column < ra_slze; column++) {
v a l u e = m a t r i x _ A (saraple_times, d e l t a f , row, column);
f w r i t e ((d o u b l e *) s v a l u e , s i z e o f (d o u b l e) , 1, m a t r i x _ a) ;

)
p r i n t f (" [u % d) " , row + 1) ;

)
p r i n t f ("\n");
f r e e ((c h a r *) m a t f i l e _ n a m e) ;
f c l o s e (m a t r i x _ a) ;
r e t u r n (1) ;

/* -1
* c a l c u l a t e i n v e r s e o f m a t r i x , A and p l a c e i n f i l e w i t h e x t e n s i o n . i n v
»/

v o i d c o p y _ m a t r i x _ f l i e (source_name, dest^name)
c h a r *source_name, *dest_name;

{

F I L E »source, * d e s t ;
i n t s i z e ;
SAMPLING_SCHEME sampler;
double v a l u e ;

i f ((s o u r c e - fopen (source_name, " r b ")) =•- NULL) e r r o r (FILE_ERR) ;
i f ((d e s t = fopen (dest_narae, "wb")) -= NULL) e r r o r (F I L E _ E R R) ;
rewind (s o u r c e) ;
f r e a d ((I n t *) s s i z e , s i z e o f (I n t) , 1, s o u r c e) ;
f r e a d ((SAMPLING_SCHEME *) Ssampler, s i z e o f (SAMPLING_SCHEME), 1, s o u r c e) ;
w h i l e (f r e a d ((d o u b l e ») s v a l u e , s i z e o f (d o u b l e) , 1, s o u r c e) !=> 0)

f w r i t e ((d o u b l e ") s v a l u e , s i z e o f (d o u b l e) , 1, d e s t) ;
f c l o s e (s o u r c e) ;
f c l o s e (d e s t) ;

1

ludcmp (i n _ f i l e , n, indx, p_d)
F I L E * i n _ f i l e ;
i n t n, "indx;
s h o r t *p_d;

(

i n t i , j , k, i_max;
double max_a, sum, x, y, dura;
double * s c a l e v;

s c a l e _ v = (double *) m a l l o c ((n + 1) * s i z e o f (d o u b l e)) ;
«p d = 1; /* no row I n t e r c h a n g e s yet */

115

/* loop over rows to get the I m p l i c i t s c a l i n g i n f o r m a t i o n */
rewind (i n _ f i l e) ;
f o r (i - 1; 1 <- n; i++) (

max_a = 0.0;
f o r (j = 1; j <- n; j++) (

f r e a d ((d o u b l e *) sx, s i z e o f (d o u b l e) , 1, i n _ f l l e) ;
i f (f a b s (X) > max_a)

max_a » fabs (x) ;

I
i f (max_a == 0.0) e r r o r (SINGULAR_MATRIX);
s c a l e _ v (i l = 1.0/max_a; /* save the s c a l i n g */
}

/* loop over columns of Grout's method »/
f o r (j = 1; j <= n; j++) {

f o r (i - 1; i <= j - 1; i++) (
f s e e k (i n _ f i l e , (long) (((1 - l) - n + (j - l)) * s i z e o f (d o u b l e)) , SEEK_SET);
f r e a d ((d o u b l e *) ssum, s i z e o f (d o u b l e) , 1, i n _ f i l e) ;
f o r (k = 1; k <= 1 - 1; k++) {

fse e k (i n _ f l l e , (long) (((1 - l) * n + (k - l)) * s i z e o f (d o u b l e)) , SEEK_SET);
f r e a d ((double *) sx, s i z e o f (d o u b l e) , 1, i n _ f l i e) ;
fs e e k (i n _ f i l e , (long) (((k - D ' n + (j - l)) * s i z e o f (d o u b l e)) , SEEK_SET);
f r e a d ((d o u b l e ») sy, s i z e o f (d o u b l e) , 1, i n _ f l i e) ;
sum -= x*y;
}

f s e e k (i n _ f i l e , (long) (((1 - l) - n + (j - l)) * s i z e o f (d o u b l e)) , SEEK_SET);
f w r i t e ((d o u b l e *) ssum, s i z e o f (d o u b l e) , 1, i n _ f i l e) ;
)

max_a - 0.0; /* i n i t i a l i s e f o r the s e a r c h f o r l a r g e s t p i v o t element •/
f o r (1 - j ; i <- n; i++) (

fse e k (l n _ f i l e , (long) (((i - 1) - n + (j - 1)) ' s i z e o f (d o u b l e)) , SEEK_SET);
f r e a d ((d o u b l e *) ssum, s i z e o f (d o u b l e) , 1, i n _ f l i e) ;
f o r (k = 1; k <= j - 1; k++) (

f s e e k (i n _ f i l e , (long) (((1 - D ' n + (k - 1)) ' s i z e o f (d o u b l e)) , SEEK_SET);
f r e a d ((double ») sx, s i z e o f (d o u b l e) , 1, l n _ f i l e) ;
f s e e k (i n _ f i l e , (long) (((k - l) * n + (j - 1)) ' s i z e o f (d o u b l e)) , SEEK_SET);
f r e a d ((d o u b l e ') sy, s i z e o f (d o u b l e) , 1, l n _ f i l e) ;
sum -= x'y;
1

f s e e k (i n _ f i l e , (long) (((i - D ' n + (J - 1)) ' s i z e o f (d o u b l e)) , SEEK_SET);
f w r i t e ((d o u b l e •) ssum, s i z e o f (d o u b l e) , 1, i n _ f i l e) ;
dum = s c a l e _ v [i) ' f a b s (sum); /' f i g u r e of m e r i t f o r the p i v o t */
i f (dum >= max_a) (/' i s i t b e t t e r t h a n t he b e s t so f a r ? '/

i_max = i ;
max_a - dum;
1

t
i f (j != i_max) (

f o r (k - 1; k <= n; k++) (/* i n t e r c h a n g e rows «/
fse e k (i n _ f l l e , (long) (((i _ m a x - 1) *n + (k - D) ' s i z e o f (d o u b l e)) , SEEK_SET);
f r e a d ({ d o u b l e *) sdum, s i z e o f (d o u b l e) , 1, l n _ f l i e) ;
fs e e k (i n _ f i l e , (long) (((j - D ' n + (k - l)) ' s i z e o f (d o u b l e)) , SEEK_SET);
f r e a d ((double ') Sx, s i z e o f (d o u b l e) , 1, l n _ f i l e) ;
f s e e k (i n _ f i l e , (long) (- s i z e o f (d o u b l e)) , SEEK_CUR);
f w r i t e ((d o u b l e ') sdum, s i z e o f (d o u b l e) , 1, i n _ f i l e) ;
f s e e k (i n _ f i l e , (long) (((i _ m a x - 1) ' n + (k - 1)) ' s i z e o f (d o u b l e)) , SEEK_SET);
f w r i t e ((double ') sx, s i z e o f (d o u b l e) , 1, i n _ f i l e) ;

}

'p_d = -'p_d; /' change the p a r i t y of 'p_d '/

s c a l e _ v [l _ m a x l = s c a l e _ v [j l ; /* I n t e r c h a n g e the s c a l e f a c t o r '/

1

116

i n d x [j l = i_max;
f s e e k (i n _ f i l e , (long) (((j - l) * n + (j - l))«sizeof (d o u b l e)) , SEEK_SET);
f r e a d ((d o u b l e *) sdum, s i z e o f (double), 1, i n _ f l i e) ;
i f (dum == 0.0) (

dum = DBL_MIN;
f s e e k (i n _ f i l e , (long) (- s i z e o f (d o u b l e)) , SEEK_CUR);
f w r i t e ((d o u b l e *) sdum, s i z e o f (d o u b l e) , 1, i n _ f i l e) ;
)

i f (j != n) (
f s e e k (i n _ f i l e , (long) (((j - 1) * n + (j - l)) * s i z e o f (d o u b l e)) , SEEK_SET);
f r e a d ((d o u b l e *) sdum, s i z e o f (d o u b l e) , 1, i n _ f i l e) ;
f o r (i = j + 1; i <= n; i++) {

f s e e k (i n _ f i l e , (long) (((1 - l) * n + (j - l))«sizeof (d o u b l e)) , SEEK_SET);
f r e a d ((d o u b l e *) sx, s i z e o f (d o u b l e) , 1, i n _ f l i e) ;
i f (dum -= DBL_MIN)

X = HUGE_VAL;
e l s e

X /= dum;
f s e e k (i n _ f i l e , (long) (- s i z e o f (d o u b l e)) , SEEK_CUR);
f w r i t e ((d o u b l e *) sx, s i z e o f (d o u b l e) , 1, i n _ f i l e) ;
)

}

p r i n t f (" [u % d) " , j) ;
) /* go back f o r the next column i n the r e d u c t i o n •/

f r e e ((d o u b l e *) s c a l e _ v) ;
r e t u r n ;

l u b k s b (i n _ f i l e , n, indx, b)
F I L E * i n _ f i l e ;
I n t n, * l n d x ;
double 'b;
{

i n t 11 - 0, 1, 11, j ;
double sum, x;

f o r (1 = 1 ; 1 <= n; i++) (
11 - I n d x d l ;
sum = b [l l l ;
b [l l l = b [i l ;
i f (i i != 0)

f o r (j - i i ; j <= 1 - 1; j++) (
f s e e k (i n _ f i l e , (long) (((i - 1) * n + (j - l)) * s i z e o f (d o u b l e)) , SEEK_SET);
f r e a d ((d o u b l e *) sx, s i z e o f (d o u b l e) , 1, l n _ f i l e) ;
sum — x * b (j l ;

}

e l s e
i f (sum != 0.0)

11 = 1;
b [i l = sum;
)

f o r (i = n; i >- 1; 1 —) (
sum = b [i l ;
i f (i < n)

f o r (j = i + 1; j <= n; j++) (
f s e e k (i n _ f l l e , (long) (((i - l) * n + (j - l)) * s i z e o f (d o u b l e)) , SEEK_SET);
f r e a d ((d o u b l e *) sx, s i z e o f (d o u b l e) , 1, i n _ f i l e) ;
sum -= x»b[j];
)

117

f s e e k (i n _ f i l e , (long) (((1 - l) * n + (1 - l)) * s i z e o f (d o u b l e)) , SEEK_SET);
f r e a d ((double ») sx, s l z e c f (d o u b l e) , 1, i n _ f i l e) ;
i f (X == HUGE_VAL)

b [i l =• 0.0;
e l s e

b [i] = sum/x;

)
r e t u r n ;

v o i d l n v e r s e _ m a t r i x (f i l e n a m e)
c h a r ' f i l e n a m e ;

{

F I L E " m a t r i x , "work, " i n v e r s e ;
i n t i , j , "indx, s i z e ;
double X, *y, *b;
s h o r t d;

cha r "tempfile_name, "matfile_name, " i n v f i l e _ n a m e ;

p r i n t f (" [l;37m»);

matfile_name = append_name (f i l e n a m e , ".mat");
i n v f l l e _ n a m e = append_narae (f i l e n a m e , " . I n v ") ;
i f ((i n v e r s e = fopen (i n v f i l e _ n a m e , " r b ")) i= NULL) (

f c l o s e (i n v e r s e) ;
p r i n t f ("Matrix i n v e r s e a l r e a d y e x i s t s i n f i l e % s \ n " , i n v f i l e _ n a m e) ;
r e t u r n ;
}

i f ((m a t r i x = fopen (matfile_name, " r b ")) == NULL) e r r o r (F I L E _ E R R) ;
i f ((i n v e r s e = fopen (i n v f i l e _ n a m e , "w+b")) == NULL) e r r o r (F I L E _ E R R) ;
i f ((t empfile_name = tempnam ("c:\tmp", "mat")) -= NULL) e r r o r (NO_TEMP);
c o p y _ m a t r i x _ f i l e (matflle_name, t e m p f i l e _ n a m e) ;
i f ((work - fopen (tempfile_name, "r+b")) == NULL) e r r o r (F I L E _ E R R) ;
rewind (m a t r i x) ;
f r e a d ((i n t *) s s i z e , s i z e o f (i n t) , 1, m a t r i x) ;
p r i n t f (" C r e a t i n g i n v e r s e o f m a t r i x . . . [0;37m columns p r o c e s s e d ([s O) ") ;
/* s e t up i d e n t i t y m a t r i x */
f o r (i = 1; i <- s i z e ; 1++)

f o r (j = 1; j <= s i z e ; j++) {
i f (i " j)

X - 1.0;
e l s e

X = 0.0;

f w r i t e ((d o u b l e ") sx, s i z e o f (d o u b l e) , 1, i n v e r s e) ;

)
/" LU decompose the m a t r i x J u s t once */
indx = (i n t *) m a l l o c ((s i z e + 1) * s i z e o f (i n t)) ;
ludcmp (work, s i z e , indx, s d) ;
/* f i n d i n v e r s e by columns •/
y - (double •) m a l l o c ((s i z e + 1) " s i z e o f (d o u b l e)) ;
b - (double ") m a l l o c ((s i z e + 1) " s i z e o f (d o u b l e)) ;
f o r (j = 1; j <= s i z e ; j++) (

f o r (1 = 1; i <= s i z e ; i++) {
f s e e k (i n v e r s e , (long) (((i - 1) " s i z e + (j - 1)) " s i z e o f (d o u b l e)) , SEEK_SET);
f r e a d ((double *) s y [i l , s i z e o f (d o u b l e) , 1, I n v e r s e) ;
b (i l = (1 == j) ? 1.0 : 0.0;
)

l u b k s b (work, s i z e , indx, y) ;
f o r (i = 1; 1 <= s i z e ; i++) {

118

f s e e k (i n v e r s e , (long) (((1 - 1) ' s i z e + (j - D) ' s i z e o f (d o u b l e)) , SEEK_SET) ;
f w r i t e ({ d o u b l e ') s y [i l , s i z e o f (double), 1, i n v e r s e) ;

)
p r i n t f (" [u%d) ", j) ;

)
p r i n t f { " \ n ") ;
f r e e { (i n t ') i n d x) ;
f r e e { (d o u b l e *) y) ;
f r e e ((c h a r ') matfile_name) ;
f r e e ((c h a r *) i n v f i l e _ n a m e) ;
f c l o s e (m a t r i x) ;
f c l o s e (work);
f c l o s e (I n v e r s e) ;
i f (remove (tempfile_name) == -1) e r r o r (F I L E _ E R R) ;

/'
* determine e x a c t F o u r i e r c o e f f i c i e n t s u s i n g i n v e r s e m a t r i x and e s t i m a t e d c o e f f s

*/

v o i d c a l c _ c o e f f i c i e n t s (f i l e n a m e , sampler, d e l t a f , f t d a t a , p_newdata)
ch a r ' f i l e n a m e ;
SAMELING_SCHEME sampler;
double d e l t a f ;
L I S T f t d a t a , 'p_newdata;

{

c h a r ' i n v f i l e _ n a m e ;
F I L E ' i n v e r s e ;
I n t num_bins, b i n s _ e v a l u a t e d , 1;
ITEM e s t i m a t e , e x a c t ;
double f n - 0.0, sum, l n _ v a l ;
enum (RE » 0, IM = 1, DONE = 2) s t a t e ;

i n v f i l e _ n a m e = append_name (f i l e n a m e , " . i n v ") ;
i f ((i n v e r s e = fopen (i n v f i l e _ n a m e , " r b ")) =- NULL) e r r o r (F I L E _ E R R) ;
rewind (i n v e r s e) ;
num_bins = (i n t) f l o o r (sampler.bandwidth ' 2.0 / d e l t a f + 0 . 1) ;
b l n s _ e v a l u a t e d = {num_bins + 1) / 2 + (num_bins + 1) % 2;
f o r (i = 0; 1 < b i n s _ e v a l u a t e d ; 1++) (

e x a c t . b i n . f n = f n ;
f o r (s t a t e = RE; s t a t e != DONE; state++) {

sum = 0.0;
r e w i n d _ l i s t (s f t d a t a) ;
w h i l e (r e a d _ l i s t (s f t d a t a , s e s t i r a a t e)) (

i f (f r e a d ((double ') s i n _ v a l , s i z e o f (double), 1, i n v e r s e) == 0) e r r o r (EOF_FOUND);
sum i n _ v a l ' e s t i m a t e . b i n . r e a l ;
i f (! (e s t i m a t e . b i n . f n == 0.0 I I

(e s t i r a a t e . b i n . f n -= sampler.bandwidth s s even (n u m _ b i n s)))) {
i f (f r e a d ((double ') s i n _ v a l , s i z e o f (d o u b l e) , 1, i n v e r s e) == 0)

e r r o r (EOF_FOUND);
sum += i n _ v a l * e s t i m a t e . b i n . i m a g i n a r y ;
)

)
i f (s t a t e =- RE) (

e x a c t . b i n . r e a l = sum;
i f (i == 0) (

s t a t e = IM;

119

exact.bin.imaginary - 0.0?
)

i f (i == num_bins / 2.0) {
s t a t e = IM;
exact.bin-Imaginary = 0.0;
1

}

else
exact.bin.imaginary = sum;

}

a d d _ t o _ l i s t (p_newdata, e x a c t) ;
f n += d e l t a f ;
)

f c l o s e (I n v e r s e) ;

* user i n t e r f a c e r o u t i n e s *
* *

* v o i d scanf_double (double * p _ v a r) ; *
* v o i d d i s p l a y _ t i t l e (void)
* v o i d enter_sampler_parameters (SAMPLING_SCHEME *p_sampler); •
* v o i d e n t e r _ s i g n a l _ d a t a (LIST * p _ i n p u t) ; *
* v o i d p l o t _ a n a l y s i s (LIST i n _ f r e q s , LIST f o u r i e r _ c o e f f s , SAMPLING_SCHEME sampler); •
* v o i d p l o t _ e r r o r s (SAMPLING_SCHEME sampler, LIST s_data, LIST in v _ d a t a) ;
* «
«**********«*/

v o i d scanf_double (p_var)
double *p_var;
{

char s t r i n g [3 0 1 , 'denominator;

scanf (" \ t \ n % s " , s t r i n g) ;
*p_var = s t r t o d (s t r i n g , sdenominator);
i f ('denominator ==• '/')

*p var /= a t o f (++denominator);

v o i d d i s p l a y _ t i t l e (void)
(

p r i n t f (" [l;37m [2JSub-Nyquist Sampling TechniquesXn");
p r i n t f ("P C Bagshaw July 1990\n");
p r i n t f ("Pseudo-random Discrete Fourier Transform Simulator\n");

v o i d enter_sampler_parameters (p_sampler)
SAMPLING_SCHEME *p_sampler;
{

char key;
i n t z e r o _ i n _ l i s t - 0;
ITEM i t m ;

120

p r i n t f (" [l;37m\nSampling Scheme Parameters.\n") ;
p r l n t f (" [0;37mNuraber of sampling p o i n t s (< % d) : [l;33m", INT_MAX);
scanf (••%cl", i (p_sampler->num_polnts)) ;
p r l n t f (" [0;37mModel (U)niform sampling, (A) d d l t i v e pseudo-random sampling,\n");
p r l n t f ("or p e r i o d i c sampling w i t h (D)ither? (u/a/d): [l;33m");
/* assume machine uses ASCII character set •/
while ((key = (I n t) getchO I 32) != 'u' ii key != 'a' ii key != 'd')

p r l n t f ("%c\n", key);
p_sampler->scheme = key;
p_sampler->num_fs = 0;
i n i t i a l l s e _ l l s t (sp_sampler->fs, LIST_SAMPLE_FREQS);
switch (p_sampler->scheme) {

case UNIFORM:
p r i n t f (" [0;37raEnter uniform sampling frequency: Cl."33m");
scanf_double (sltra.frequency);
a d d _ t o _ l l s t {&p_sampler->fs, itm) ;
p_sampler->nura_fs = 1;
break;

case ADDITIVE:
p r i n t f (" [0;37raEnter pseudo-random sampling frequencies (end with zero): [l;33ra");
scanf_double (<m.frequency);
while (itm.frequency > 0.0) (

a d d _ t o _ l l s t (Sp_sampler->fs, i t m) ;
p_sarapler->num_fS++;
scanf_double (sitra.frequency);
)

break;
case DITHER:

p r i n t f (" [0;37mEnter p e r i o d i c sampling frequency: tl;33m");
scanf_double (sltm.frequency);
a d d _ t o _ l i s t (Sp_sampler->fs, i t m) ;
p r l n t f (" [0;37mEnter possible p o s i t i v e d i t h e r i n terms of f r a c t i o n s , 0 x < 1/2 ") ;
p r l n t f ("ofXnthe sampling period, % f (end w i t h x out of range): [l;33m",

1.0/itm.frequency);
scanf_double (i l t r a . f r e q u e n c y) ;
w hile (itm.frequency >= 0.0 is, Itm.frequency < 0.5) (

i f (itm.frequency == 0.0)
z e r o _ l n _ l i s t = 1;

else
a d d _ t o _ l l s t (sp_sampler->fs, I t m) ;

p_sampler->num_fs += 2;
scanf_double (sitm.frequency);
}

p_sampler->num_fs — z e r o _ l n _ l l s t ;
break;

d e f a u l t :
break;

)
i f (p_sampler->num_fs -= 0) e r r o r (NO_SF);
i f (p_sampler->num_fs == 1)

p_sampler->scheme = UNIFORM;
p r i n t f (" (0;37m");

121

v o i d e n t e r _ s i g n a l _ d a t a (p_input)
LIST * p _ l n p u t ;
1

ITEM i t m ;

p r i n t f (" [l;37ra\nlnput Signal D e t a i l s . \ n ") ;
p r i n t f (" [0;37mEnter frequency, amplitude and phase of the input signal harmonics,\n");
p r i n t f ("(terminate w i t h a negative frequency)\n");
itm.element.frequency = 0.0;
whi l e (itm.element.frequency >= 0.0) {

p r i n t f (" (0;37m* f r e q : [l;33m");
scanf_double (sitm.element.frequency);
i f (itm.element.frequency >= 0.0) (

p r i n t f (" [0;37m* amp: [l;33m");
scanf_double (sitm.element.amplitude);
i f (itm.element.frequency == 0.0)

itm.element.phase - 0.0;
else (

p r i n t f (" [0;37m* phase (degrees): [l;33ra");
scanf_double (sitm.element.phase);
itm.element.phase *= PI / 180.0;
)

a d d _ t o _ l i s t (p_lnput, i t m) ;
)

)
r e w i n d _ l i s t (p _ i n p u t) ;
i f (! r e a d _ l i s t (p_input, sitm)) e r r o r (NO_INPUT);
p r i n t f (" [0;37m");

/*
* d i s p l a y frequency domain information
*/

typedef enum (ESTIMATE, EXACT) COEFF_TYPE;

vo i d p l o t _ a n a l y s i s (i n _ f r e q s , sampler, f o u r i e r _ c o e f f s , amp_control)
LIST i n _ f r e q s , f o u r i e r _ c o e f f s ;
SAMPLING_SCHEME sampler;
COEFF_TYPE amp_control;
(

s t r u c t v ideoconfig vc;
double max = 0.1, x_scale, amp_scale, phase_scale;
double amplitude, phase;
char l<ey;
ITEM i t m ;

i f (lset_raode()) e r r o r (GRAPHICS_MODE);
_ge t v i d e o c o n f i g (s v c) ;

/* p r i n t l a b e l s */
p r i n t f (" [l;37m");
_ s e t t e x t p o s i t i o n (1 , 1) ;
i f (amp_control == ESTIMATE)

_ o u t t e x t ("Estimate Signal Analysis using Pseudo-random sampling and Fourier transform");
else

o u t t e x t ("Exact Signal Analysis using Transform and Inverse M a t r i x ") ;

122

_ s e t t e x t p o s l t l o n (20, 1) ;
_ o u t t e x t C'PhaseXn • • •) ;
_ s e t t e x t p o s l t i o n (28, 1) ;
_ o u t t e x t (••-•");
_ s e t t e x t p o s i t l o n (19, 80);
_ o u t t e x t (" f ") ;

/* p l o t axes */
_ s e t c o l o r (15); /« white */
_ s e t l o g o r g (0, (short) vc.numypixels*0.59);
x_scale = (double) (vc.nuraxpixels-1)/sampler.bandwidth;
r e w l n d _ l i s t (s f o u r l e r _ c o e f f s) ;
w h i l e (r e a d _ l i s t (s f o u r l e r _ c o e f f s , s l t m)) (

convert_complex (i t r a . b i n . r e a l , itra.bin.Imaginary, Samplitude, Sphase);
i f (arap_control != EXACT) {

amplitude /= (i t m . b i n . f n -= 0.0) + 1.0;
amplitude *= 2,0/sampler.num_points;
)

i f (amplitude > max)
max = amplitude;

)
amp_scale = (double) (-vc.numypixels) * 0.525 / max;
_moveto (0, (short) (-vc.nuraypixels * 0.525));
_ l i n e t o (0, 0) ;
_ l i n e t o (vc.numxpixels, 0) ;
_s e t l o g o r g (0, (short) (vc.numypixels*0.795));
phase_scale = (double) (-vc.numypixels)/PI»0.118;
_raoveto (0, (short) phase_scale"PI);
_ l l n e t o (0, (short) -phase_scale'PI);
_moveto (0, 0) ;
_ l i n e t o (vc.numxpixels, 0) ;

/* p l o t amplitude and phase i n f o r m a t i o n of transform output */
_ s e t c o l o r (14); /» yellow */
r e w l n d _ l l s t (i f o u r l e r _ c o e f f s) ;
w h i l e (r e a d _ l i s t (4 f o u r l e r _ c o e f f s , s i t m)) (

convGrt_complex (i t m . b i n . r e a l , itm.bin.Imaginary, Samplitude, sphase);
i f (arap_control != EXACT) (

amplitude /= (i t m . b i n . f n == 0.0) + 1.0;
amplitude •= 2.0/sampler.num_polnts;
}

_s e t l o g o r g (0, (short) vc.numypixels*0.59);
_moveto ((s h o r t) (I t m . b i n . f n * x _ s c a l e) , 0) ;
_ l i n e t o ((s h o r t) (i t m . b i n . f n * x _ s c a l e) , (short) (amplitude*amp_scale));
_ s e t l o g o r g (0, (short) (vc.numyplxels*0.795));
_movGto ((s h o r t) (I t m . b i n . f n * x _ s c a l e) , 0) ;
_ l i n e t o ((s h o r t) (i t m . b i n . f n * x _ s c a l e) , (short) (phasG*phase_scale));
)

/* p l o t sample frequencies */
_s e t l o g o r g (C, (short) vc.numyplxels*0.59);
_ s e t c o l o r (13); /• l i g h t magenta */
r e w l n d _ l i s t (ssampler.fs);
while (r e a d _ l i s t (ssarapler.fs, sltm)) (

_moveto ((s h o r t) (Itm.frequency*x_scale), 0) ;
_ l i n e t o ((s h o r t) (itm.frequency*x_scale), 10);
}

/* p l o t input frequencies */
s e t c o l o r (10); /* l i g h t green •/

123

r e w i n d _ l i s t (s i n _ f r e q s) ;
w h i l e (r e a d _ l i s t (s i n _ f r e q s , sitm)) {

_moveto ((s h o r t) (itm.element.frequency«x_scale), 0) ;
_ l i n e t o ((s h o r t) (itm.element.frequency«x_scale), 7) ;
I

/* h i g h l i g h t successive bins and displ a y d e t a i l s of h i g h l i g h t e d b i n */
key = - 1 ;
r e w i n d _ l i s t (s f o u r i e r _ c o e f f s) ;
w h i l e (key != 'e' SS r e a d _ l i s t (s f o u r i e r _ c o e f f s , s i t m)) (

convert_complex (i t m . b i n . r e a l , itm.bin.imaginary, Samplitude, sphase);
i f (amp_control != EXACT) {

amplitude /= (i t m . b i n . f n == 0.0) + 1.0;
amplitude *- 2.0/sampler.nura_points;
)

_ s e t c o l o r (12); /* red •/
_se t l o g o r g (0, (short) vc.numyplxels*0.59) ;
_moveto ((s h o r t) (itm.bin.fn«x_scale), 0) ;
_ l i n e t o ((s h o r t) (itm.bin.fn«x_scale), (short) (amplitude«amp_scale));
_s e t l o g o r g (0, (short) (vc.numypixels'O.795));
_moveto ((s h o r t) (itm.bin.fn«x_scale) , 0) ;
_ l l n e t o ((s h o r t) (i t m . b i n . f n * x _ s c a l e) , (short) (phase«phase_scale));
_ s e t t e x t p o s i t i o n (2, 1) ;
p r i n t f ("frequency: %.4f ", i t m . b i n . f n) ;
_ s e t t e x t p o s i t i o n (2, 25);
p r i n t f ("amplitude: %.4f ", amplitude);
_ s e t t e x t p o s i t i o n (2, 50);
p r i n t f ("phase (degrees): %7.4f ", phase * 180.0 / P I) ;
key = getch () ;
_ s e t c o l o r (14); /« yellow •/
_se t l o g o r g (0, (short) vc.numyplxels*0.59);
_moveto ((s h o r t) (itm.bin.fn«x_scale), 0) ;
_ l i n e t o ((s h o r t) (Itm. b i n . fn''x_scale), (short) (amplitude»amp_scale));
_s e t l o g o r g (0, (short) (vc.numypixels*0.795));
_moveto ((s h o r t) (i t m . b i n . f n * x _ s c a l e) , 0) ;
_ l i n e t o ((s h o r t) (i t m . b i n . f n * x _ s c a l e) , (short) (phase'phase_scale));
)

_setvideomode (_DEFAULTMODE);
r e t u r n ;

/*
* d i s p l a y time domain i n f o r m a t i o n
*/

vo i d p l o t _ e r r o r s (sampler, s_data, inv_data)
SAMPLING_SCHEME sampler;
LIST s_data, inv_data;
{

s t r u c t v i d e o c o n f i g vc;
I n t k;
double x_soale, y_scale, e r r , max_e = 0.0, min_e = HUGE;
ITEM s, i ;

i f (iset_mode()) e r r o r (GRAPHICS_MODE) ;
_get v i d e o c o n f i g (svc);
r e w i n d _ l i s t (ss_data);
rewind l i s t (slnv d a t a) ;

124

w h i l e (r e a d _ l l s t (ss_data, ss) ss r e a d _ l i s t (slnv_data, s i)) (
e r r = fabs (i.sample.value - s.sample.value);
max_e - (e r r > max_e) ? e r r : raax_e;
mln_e = (err < min_e) ? e r r : min_e;
)

x_scale = (double) (vc.numxpixels-1)/sampler.num_points;
y_scale = (double) (-vo.numypixels) / max_e * 0.7;
_ s e t c o l o r (15); /* white »/
_ s e t l o g o r g (0, (short) vc.numypixels*0.8);
_moveto (0,(short) (-vc.numypixels*0.7));
_ l l n e t o (0, 0) ;
_ l l n e t o (vc.numxpixels, 0) ;
_ s e t c o l o r (14); /* yellow */
p r l n t f (" [l;37mError i n c a l c u l a t i n g sample values through Inverse transform\n\n") ;
p r i n t f ("Maximum e r r o r : %e\tMlnimum e r r o r : %e\n", max_e, mln_e);
_ s e t t e x t p o s i t i o n (26, 1) ;
p r l n t f ("0");
_ s e t t e x t p o s i t i o n (26, 35);
p r i n t f ("Sample");
_ s e t t e x t p o s l t l o n (26, 77);
p r i n t f ("%d", sampler.num_polnts - 1) ;
r e w i n d _ l l s t (ss_data);
r G w l n d _ l l s t (s i n v _ d a t a) ;
f o r (k = 0; k < sampler.num_polnts; k++) (

r e a d _ l i s t (5s_data, s s) ;
r e a d _ l i s t (slnv_data, s i) ;
e r r = fabs (1.sample.value - s.sample.value);
i f (k -= 0)

_moveto (0, (short) (e r r ' y _ s c a l e)) ;
_ l i n e t o ((s h o r t) (k*x_scale) , (short) (err''y_scale)) ;
)

getch 0 ;
setvideomode (_DEFAULTMODE);

i n t set_mode ()

I f (_setvideoraode (_VRES16C0L0R))
r e t u r n (_VRES16C0L0R);

i f (_setvideomode (_ERESCOLOR))
r e t u r n (_ERESCOLOR);

i f (_setvldeomode (_MRES16COL0R))
r e t u r n (_MRES16C0L0R);

else
r e t u r n (0) ;

125

* main program

SAMPLING_SCHEME sampler;
LIST i n p u t _ s l g n a l , sample_data, f t _ d a t a , i d f t _ d a t a , e x a c t _ f t d a t a ;
double bi n _ s t e p = 0,0, old _ s t e p ;
char key = '0', matrix_name |;MAX_FILENAME_SIZE1 ;
i n t need_sampler_parameters = 1;
i n t need_signal_data - 1;
i n t need_generate_data " 1;
i n t n e e d _ p r d f t _ c a l c u l a t e d = 1;
i n t n e e d _ i n v p r d f t _ c a l c u l a t e d = 1;

vo i d s a t i s f y _ i n p u t _ n e e d s ()
{

i f (need_sampler_parameters) (
enter_sampler_parameters (ssampler);
calc_bandwidth (ssampler);
p r i n t f (" [l;37m\nSystem Bandwidth: % . 3 f \ n " , sampler.bandwidth);
need_sampler_parameters = 0;
f r e e _ l i s t (ssample_data);
need_generate_data =• 1;
)

i f (need_signal_data) (
enter_ s i g n a l _ d a t a (s i n p u t _ s i g n a l) ;
need_signal_data = 0;
f r e e _ l i s t {ssample_data);
need_generate_data = 1;
)

i f (need_generate_data) (
p r i n t f (" [l;37m\nGenerating sampling data \ n ") ;
random_sampler (Ssampler, i n p u t _ s i g n a l , ssample_data);
need_generate_data ~ 0;
f r e e _ l i s t (S f t _ d a t a) ;
n e e d _ p r d f t _ c a l c u l a t e d = 1;
1

main (argc, argv)
i n t argc;
char ' a r g v l l ;
(

i n i t i a l i s e _ H s t (s i n p u t _ s i g n a l , FREQ_LIST) ;
i n i t i a l l s e _ l i s t (Ssample_data, SAMPLE_DATA);
i n i t i a l i s e _ l i s t (s f t _ d a t a , FOURIER_TRANSFORM_DATA);
i n i t i a l i s e _ l i s t (s i d f t _ d a t a , SAMPLE_DATA);
i n i t i a l i s e _ l i s t (5 e x a c t _ f t d a t a , FO0RIER_TRANSFORM_DATA);
d i s p l a y _ t l t l e () ;
sa t i s f y _ l n p u t _ n e e d s () ;
while (key '6') (

p r i n t f (" [l;37m [2J\nSimulation Options. [0;37m\n");
p r i n t f ("1. Change sampler pararaeters\n");
p r i n t f ("2. Change input s i g n a l d e s c r i p t i o n X n ") ;
p r i n t f ("3. Calculate pseudo-random d i s c r e t e Fourier transform only and di s p l a y spectrum\n");
p r i n t f ("4. Evaluate PRDFT, the Inverse PRDFT and displ a y e r r o r s and spectrum\n");

126

p r i n t f ("5. Calculate PRDFT, determine exact c o e f f i c i e n t s from i t and displ a y spectraXn");
p r i n t f ("6. Q u i t \ n ") ;
p r l n t f ("Enter choice (1-6): tl;33m");
while ((key - getchO) < •!• I I key > -S')

p r l n t f ("%c\n", key);
i f (key == •!•) (

f r e e _ l l s t (Ssampler.fs);
need_sarapler_parameters = 1;
1

i f (key == •2') 1

f r e e _ l i s t (5 i n p u t _ s i g n a l) ;
need_slgnal_data = 1;
}

s a t i s f y _ i n p u t _ n e G d s () ;
i f (key == '3- I I key == •5') {

p r i n t f (" [0;37mEnter b i n step (% f) : [l;33m", 1.0/sampler.wlndow_width) ;
old_step = b i n _ s t e p ;
scanf_double (s b i n _ s t e p) ;
i f (bin_step i= old_step) {

f r e e _ l l s t (Sft_data) ;
need _ p r d f t _ c a l c u l a t e d = 1;
)

)
i f (key -= M') (

old_step = bin _ s t e p ;
bin_step = 1.0/sampler.window_width;
i f (bln_step != old_step) (

f r e e _ l l s t (s f t _ d a t a) ;
n e e d _ p r d f t _ c a l c u l a t e d - 1;
I

1

i f ((key == '3' I I key == '4') ss need_prdft_calculated) (
p r l n t f ("\n");
d p r f t (sampler, bln_step, saraple_data, s f t _ d a t a) ;
n e e d _ p r d f t _ c a l c u l a t e d = 0;
)

switch (key) (
case '3':

p l o t _ a n a l y s l s (l n p u t _ s l g n a l , sampler, f t _ d a t a , ESTIMATE);
break;

case '4•:
i f (n e ed_invprdft_calculated) (

i n v _ d p r f t (sampler, f t _ d a t a , saraple_data, S i d f t _ d a t a) ;
n e e d _ i n v p r d f t _ c a l c u l a t e d = 0;
)

p l o t _ e r r o r s (sampler, sample_data, i d f t _ d a t a) ;
p l o t _ a n a l y s i s (i n p u t _ s i g n a l , sampler, f t _ d a t a , ESTIMATE);
break;

case 'S':
p r i n t f (" [0;37mEnter name of matrix (filename without extension): [l;33m");
scanf (" \ t \ n % s " , matrix_name);
while (!generate_matrlx_A (sampler, b i n _ s t e p , sample_data, matrix_name)) {

p r i n t f (" [0;37mEnter name of matrix (filename without extension): [l;33m");
scanf (" \ t \ n % s " , raatrix_name);
)

inverse_matrlx (matrix_name);
i f (need_prdft_calculated) I

d p r f t (sampler, bln_step, sampie_data, s f t _ d a t a) ;
n e e d _ p r d f t _ c a l c u l a t e d - 0;

127

)
c a l c _ c o e f f I c i e n t s (matrlx_name, sampler, bin_step, f t _ d a t a , sexact_ftdata) ;
p l o t _ a n a l y s l s (i n p u t _ s i g n a l , sampler, f t _ d a t a , ESTIMATE);
p l o t _ a n a l y s l s (l n p u t _ s i g n a l , sampler, e x a c t _ f t d a t a , EXACT);
f r e e _ l l s t (5 e x a c t _ f t d a t a) ;
break;

d e f a u l t :
break;

1
)

e x i t (0) ;

128

APPENDIX D

Source Code of DFT and Inverse DFT using NAG Library Routines.

129

program nag_dft (i n p u t , o u t p u t) ;

c o n s t raax_fft = 2048;
p i = 3.14159265358979323849;

type f f t _ d a t a = a r r a y [0..max_fft - 1] of r e a l ;
t i m e_data = a r r a y [0..max_fft] of r e a l ;

v a r n, i f a i l : i n t e g e r ;
f s : r e a l ;
xa, XX, work, f_nag, x_nag, f _ p r a , x _ p r a : f f t _ d a t a ;
t k : t i r a e _ d a t a ;

procedure C06FAF (var x : f f t _ d a t a ; const n : l n t e g e r ; v a r w o r k : f f t _ d a t a ;
v a r i f a i l : i n t e g e r) ; f o r t r a n 7 7 ;

procedure C06GBF (var x : f f t _ d a t a ; const n : l n t e g e r ;
v a r i f a i l : i n t e g e r) ; f o r t r a n 7 7 ;

procedure C06FBF (var x : f f t _ d a t a ; const n : i n t e g e r ; v a r w o r k : f f t _ d a t a ;
v a r i f a i l : i n t e g e r) ; f o r t r a n 7 7 ;

procedure GENERATE_DATA (var num_samples:integer; v a r s a m p l e _ f r e q : r e a l ;
v a r x : f f t _ d a t a ; var t : t i m e _ d a t a) ;

v a r j : i n t e g e r ;
s c a l e : r e a l ;

b e g in (g e n e r a t e _ d a t a }
r e a d l n (num_samples);
r e a d l n (sample_freq) ;
s c a l e := 0.0;
f o r j := 0 to num_samples - 1 do

begin
t [j] := s c a l e / sample_freq;
x [j] := cos (2.0 * p i * 4.0 * t (j]) ;
s c a l e := s c a l e + 1.0
end;

t [n] := s c a l e / saraple_freq
end; { g e n e r a t e _ d a t a }

procedure DPRFT (var x : f f t _ d a t a ; const n i i n t e g e r ; const bandwidth:real;
c o n s t t : t i m e _ d a t a ; var w o r k : f f t _ d a t a) ;

v a r fn, argu, r e , im : r e a l ;
i , j , num_bins, e v a l u a t e : i n t e g e r ;

begin { d p r f t }
fn := 0.0;
num_bins := round (t [n] * 2.0 * bandwidth);
e v a l u a t e := (num_bins + 1) d i v 2 + (num_bins + 1) mod 2;
f o r i := 0 to e v a l u a t e - 1 do

begin
re := 0.0;
im := 0.0;
fo r j := 0 to n - 1 do

begin
argu := 2.0 * p i * fn * t [j] ;
re := r e + x [j] * cos (a r g u) ;
im := im + x [j] * s i n (argu)
end;

im := -im;
i f i = 0 then

work[0] := re
e l s e

begin

130

work [nuin_bins - i) := im;
w o r k [i] := re
end;

fn := fn + 1.0/t(n]
end;

X := work
end; (d p r f t }

procedure INVERSE_DPRFT (var f t d : f f t _ d a t a ; const n : i n t e g e r ;
const bandwidth:real; const t : t i m e _ d a t a ;
var w o r k : f f t _ d a t a) ;

v a r fn, argu : r e a l ;
i , j , num_bins, e v a l u a t e : i n t e g e r ;

b e gin { i n v e r s e _ d p r f t)
num_bins := round (t [n] * 2.0 * bandwidth);
e v a l u a t e := (num_bins + 1) d i v 2 + (nura_bins + 1) mod 2;
f o r j := 0 to n - 1 do

begin
fn := 0.0;
work.[j] := f t d (0] ;
f o r i := 1 to e v a l u a t e - 1 - (num_bins + 1) mod 2 do

begin
fn := fn + 1.0/t [n] ;
argu := 2.0 * p i * t [j] * f n ;
w o r k [j] := w o r k [j] + 2.0 * (f t d [i] * cos (argu) -

ftd[num_bins - i] * s i n (argu))
end;

i f (num_bins mod 2 = 0) then
begin
fn := fn + 1.0/t[n] ;
worlc[j] := w o r k [j] +

ftd[num_bins d i v 2] * cos (2.0 * p i * t [j] * fn)
end;

wor)c[j] := w o r k (j] / num_bins
end;

f t d := work
end; { i n v e r s e _ d p r f t }

procedure DISPLAY_T_DOMAIN (const xa, x_nag, x _ p r a : f f t _ d a t a ; const n : i n t e g e r) ,
v a r j : i n t e g e r ;

e r r o r x , max_nag_err, max_pra_err: r e a l ;
b e g i n { d i s p l a y _ t _ d o m a i n }

max_nag_err := 0.0;
max_pra_err := 0.0;
w r i t e l n ('Input sequence as r e s t o r e d by IDPRFT');
f o r j := 0 to n - 1 do

begin
e r r o r x := abs (x a [j] - x _ n a g [j]) ;
i f e r r o r x > max_nag_err then

max_nag_err := e r r o r x ;
e r r o r x := abs (x a [j] - x _ p r a [j]) ;
i f e r r o r x > max_pra_err then

max_pra_err := e r r o r x ;
w r i t e l n (j , x a [j] , x _ p r a [j] , e r r o r x)
end;

w r i t e l n ('Maximum e r r o r i n r e s t o r i n g data by NAG: ', max_nag_err);
w r i t e l n ('Maximum e r r o r i n r e s t o r i n g data by IDPRFT:', max_pra_err)

end; { d i s p l a y _ t _ d o m a i n }

131

begin (main program)
GENERATE_DATA (n, f s , xa, tk) ;

{perform DFT u s i n g NAG l i b r a r y r o u t i n e)
XX := xa;
i f a i l := 0;
C06FAF (XX, n, work, i f a i l) ;
f_nag := xx;

(perform IDFT u s i n g NAG l i b r a r y r o u t i n e s }
C06GBF (XX, n, i f a i l) ;
C06FBF (XX, n, work, i f a i l) ;
x_nag := xx;

(perform DFT u s i n g PSEUDO-RANDOM a l g o r i t h m)
xx := xa;
DPRFT (XX, n, f s / 2 . 0 , tk, work);
f _ p r a := xx;

(perform IDFT u s i n g PSEUDO-RANDOM a l g o r i t h m)
INVERSE_DPRFT (xx, n, f s / 2 . 0 , tk, work);
x _ p r a := xx;

(output information to u s e r)
DISPLAY_T_DOMAIN (xa, x_nag, x_pra, n)

end. {main program)

132

BIBLIOGRAPHY

Baranov, L. A.

"Error estimates of the restoration of a continuous random signal when sampling is

irregular."

Transactions in Telecommunications and Radio Engineering.

Vol. 38, No.8, August 1983, pp37-39

Bilinsky, I. Ya; Borovik, Yu. F. & Mikelson, A. K.

"Complexity-reduced discrete Fourier transform." in

'Signal Processing II: Theories and Applications.'

Schussler, H. W. (editors)

Proc. EUSIPCO-83: Second European Signal Processing Conference. pp743-746

Bilinsky, I. Ya. & Mikelson, A. K.

CTOXaCTMHeCKQFl MM'̂ t̂ POBOPl OePQSTKQ HGnPGPblBHblX CMrHQJlOB

('Stochastic Digital Sampling of Continuous Signals.')
Zinatne, Riga, Latvia, 1983 (in Russian)

Bilinsky. I. Ya; Mikelson, A. K. & Yakubaitis, S.

"Method for reducing the variance of a restored randomly sampled signal."

Institute of Electronics and Computational Technology of the Latvian Academy of

Science. 1985, Latv. PSR Zinat. Akad. Vestis Fiz. Teh. Zinat. Ser. (USSR)

No.5,ppl06-115

(CODEN: LZFTA6, ISSN: 0321-1673, In Russian.)

Bilinsky, I. Ya; Nemirovsky, R. F. & Strautmanis, G. F.

"Wideband signal processing by general-purpose signal processors."

Proc. Seventh European Conference on Circuit Theory and Design.

Prague, Czechoslovakia, 2-6 Sept. 1985, pp371-374

133

Blahut, R. E .

'Fast Algorithms for Digital Signal Processing.'

Addison-Wiley, Reading, Massachusetts, 1985

Gold, B. & Rader, C. M.

'Digital Processing of Signals.'

McGraw-Hill, New York, 1969

Kemighan, B. W. & Ritchie, D. M.

'The C Programming Language.'

Second Edition. Prentice Hall Software Series, Englewood Cliffs, New Jersey, 1988

Koffman, E . B.

'Problem Solving and Structured Programming in Pascal.'

Second Edition. Addison-Wesley, 1985

Leneman, O. A. Z.

"Random sampling of random processes: Impulse processes."

Information and Control, Vol. 9,1966, pp347-363

Masry, E.

"Poisson sampling and spectral estimation of continuous-time processes."

I E E E Transactions on Information Theory, Vol. IT-24, No.2, March 1978, ppl73-183

Masry, E; Klamer, D. & Mirabile, C.

"Spectral estimation of continuous-time processes: Performance comparison between

periodic and Poisson sampling schemes."

I E E E Transactions on Automatic Control, Vol. AC-23, No.4, August 1978, pp679-685

134

Masry, E . & Lui, M. C.

"Discrete-time spectral estimation of continuous-parameter processes: A new consistent

estimate."

I E E E Transactions on Information Theory, Vol. IT-22, No.3, May 1976, pp298-312

Wold, E. H. & Dippe, M. A. Z.

"Alias-free sound synthesis by stochastic sampling."

Proc. 1985 International Computer Music Conference, Vancouver. pp39-46

135

R E F E R E N C E S

[1] Rossi, J. P.

"Sub-Nyquist-encoded PCM NTSC color television."

SMPTE Journal, Vol. 85, No.l , January 1976, ppl-6

[2] Fuhren, M . & Den Dulk, R. C.

"A new despreading method based on sub-Nyquist sampling." in

'Signal Processing I I I : Theories and Applications.'

Young, I . T. et al. (editors)

Proc. EUSIPCO-86: Third European Signal Processing Conference.

The Hague, Netherlands, 2-5 Sept. 1986, Vol. 1, pp49-52

[3] Dunlop, J. & Smith, D. G.

'Telecommunications Engineering.'

Van Nostrand Reinhold (UK), Wokingham, 1984

[4] Benjamin, R.

"Orthogonally aliased Fourier transforms for the analysis of sparsely populated

frequency spectra."

Proc lEE, Vol. 124, No.6, June 1977, pp508-510

[5] Brigham, E. Oran.

'The Fast Fourier Transform and Its Applications.'

Prentice-Hall International, Englewood Cliffs, New Jersey, 1988

[6] Underbill, M . J; Sarhadi, M. & Aitchison, C. S.

"Fast-sampling frequency meter."

Electronics Letters, Vol. 14, No.l2, 8̂ ^ June 1978, pp366-367

136

[7] Sarhadi, M .

"Spectral analysis at high frequencies using a modified FFT."

Proc. 1989 International Symposium on Computer Architectiu-e and

Digital Signal Processing.

Hong Kong, 11-14 Oct. 1989, Vol. 1, pp242-246

[8] Bilinsky, I . Ya; Vystavkin, A. N. & Mikelson, A. K.

"Processing of randomly-sampled signals." in

'Signal Processing I I I : Theories and Applications.'

Young, I . T. et al. (editors)

Proc. EUSIPCO-86: Third European Signal Processing Conference.

The Hague, Netherlands, 2-5 Sept. 1986, Vol. 1, ppl09-112

[9] Beutler, F. J.

"Alias-free randomly timed sampling of stochastic processes."

IEEE Transactions on Information Theory, Vol. IT-16, No.2, March 1970,

ppl47-152

[10] Masry, E.

"Alias-free sampling: An alternative conceptualization and its applications."

IEEE Transactions on Information Theory, Vol. IT-24, No.3, May 1978,

pp317-324

[11] Marvasti, F. A.

"Spectral analysis of random sampling and error free recovery by an iterative

method."

Transactions of the Institute of Electronics and Communication Engineers of

Japan. Section E, Vol. E69, No.2, February 1986, pp79-82

137

[12] Marvasti, F. A.

"Spectrum of nonuniform samples."

Electronics Letters, Vol. 20, No.21, 11^^ October 1984, pp896

[13] Wiley, R. G.

"Recovery of bandlimited signals from unequally spaced samples."

IEEE Transactions on Communications, Vol. COM-26, No. l , January 1978,

ppl35-137

[14] Masry, E.

"Random sampling and reconstruction of spectra."

Information and Control, Vol. 19, No.4, 1971, pp275-288

[15] Widrow, B. & Stearns, S. D.

'Adaptive Signal Processing.'

Prentice-Hall, Englewood Cliffs, New Jersey, 1985

[16] Knuth, D. E.

'The Art of Computer Programming.'

Vol. 1, "Fundamental Algorithms," &

Vol. 2, "Seminumerical Algorithms."

Second Edition. Addison-Wesley, Reading, Massachusetts, 1973

[17] Liu, B. (editor)

'Digital Filters and The Fast Fourier Transform.'

Benchmark Papers in Electrical Engineering and Computer Science, Vol 12

Dowden, Hutchinson & Ross Inc., Stroudsburg, Pennsylvania, 1975

138

[18] Pipes, L. A. & Hovanessian, S. A.

'Matrix-Computer Methods in Engineering.'

Wiley, New York, 1969

[19] Press, W. H; Flannery, B. P; Teukolsky, S. A. & Vettering, W. T.

'Numerical Recipes.'

Cambridge University Press, Cambridge, 1986

[20] Proakis, J. G. & Manolakis, D. G.

'Introduction to Digital Signal Processing.'

Macmillan, New York, 1988

139

